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Inspired by recent work of Mourgoglou and the second author, and earlier work of Hofmann, Mitrea and
Taylor, we consider connections between the local John condition, the Harnack chain condition and weak
boundary Poincaré inequalities in open sets � ⊂ Rn+1, with codimension-1 Ahlfors–David regular bound-
aries. First, we prove that if � satisfies both the local John condition and the exterior corkscrew condition,
then � also satisfies the Harnack chain condition (and hence is a chord-arc domain). Second, we show that if
� is a 2-sided chord-arc domain, then the boundary ∂� supports a Heinonen–Koskela-type weak 1-Poincaré
inequality. We also construct an example of a set � ⊂ Rn+1 such that the boundary ∂� is Ahlfors–David reg-
ular and supports a weak boundary 1-Poincaré inequality but � is not a chord-arc domain. Our proofs utilize
significant advances in particularly harmonic measure, uniform rectifiability and metric Poincaré theories.
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1. Introduction

Extending the PDE theory from smooth or otherwise “nice” domains to spaces with rough geometries
has been under intensive research over the previous decades. The new tools and techniques developed
by numerous authors have helped to overcome many difficulties in this field but many questions remain
open. See [Hofmann 2019; Mattila 2023] for recent surveys related to key developments in some parts of
this and related research.

We consider connections between John-type conditions, the Harnack chain condition and Poincaré
inequalities in spaces with rough boundaries, inspired by the recent work [Mourgoglou and Tolsa 2021].
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In their work, they solved a long-standing open problem [Kenig 1994, Problem 3.2.2] (see also [Toro
2010, Question 2.5]) about the solvability of the regularity problem for the Laplacian. More precisely,
they proved the following theorem. We give the exact definitions of the objects and concepts in the
theorem in Sections 2 and 3.

Theorem 1.1 [Mourgoglou and Tolsa 2021, part of Theorems 1.2 and 1.5]. Let � ⊂ Rn+1 be a bounded
open set satisfying the corkscrew condition (see Definition 2.7), with n-dimensional Ahlfors–David regular
boundary ∂� (see Definition 2.6). For 1 < p ≤ 2 we have:

(a) The regularity problem for the Laplacian is solvable in L p for � (see Definition 2.31) if and only if
the Dirichlet problem is solvable in L p′

(see Definition 2.30), where p′ satisfies 1/p + 1/p′
= 1.

(b) Suppose that either ∂� supports a weak p-Poincaré inequality (see Definition 2.29) or that �

satisfies the 2-sided local John condition (see Definitions 2.1 and 3.2). If the regularity problem for
the Laplacian is solvable in L p for �, then the tangential regularity problem for the Laplacian is
also solvable in L p for � (see Definition 2.31).

Remark that, in particular, from (a) in the theorem above it follows that the regularity problem is
solvable in L p for chord-arc domains (see Definition 2.10) for some p > 1; see, e.g., [David and Jerison
1990; Semmes 1990]. This extends previous results of [Jerison and Kenig 1982b] in the plane, and of
[Verchota 1984] in Lipschitz domains.

Our goal is to revisit the assumptions of Theorem 1.1(b) by studying them from the point of view of
2-sided chord-arc domains: we show that a 2-sided local John domain with codimension 1 Ahlfors–David
regular boundary is a 2-sided chord-arc domain, and the boundary of any 2-sided chord-arc domain
supports weak Poincaré inequalities. To be more precise, we prove the following two results:

Theorem 1.2. Suppose that � ⊂ Rn+1 is an open set with n-dimensional Ahlfors–David regular boundary
that satisfies the local John condition and the exterior corkscrew condition (see Definitions 2.1 and 2.7).
Then � also satisfies the Harnack chain condition (see Definition 2.9). In particular, a 2-sided local John
domain with codimension 1 Ahlfors–David regular boundary is a 2-sided chord-arc domain.

Theorem 1.3. Suppose that �⊂ Rn+1 is a 2-sided chord-arc domain. Then the following weak 1-Poincaré
inequality for Lipschitz functions on ∂� holds: there exist constants C ≥ 1 and 3 ≥ 1 such that for every
Lipschitz function f on ∂� and every 1 = 1(y, r) = B(y, r) ∩ ∂� we have

/
∫

1

| f (x) − ⟨ f ⟩1| dσ(x) ≤ Cr /
∫

31

|∇t f (x)| dσ(x), (1.4)

where ∇t f is the tangential gradient of f (see Definition 2.27), σ := Hn
|∂� is the surface measure and

⟨ f ⟩1 :=
1

σ(1)

∫
1

f (y) dσ(y)

is the integral average of f over 1.

We note that the conclusion of Theorem 1.2 holds if the local John condition is “good enough” in
the sense that a D0-local John condition implies the Harnack chain condition but a (D0, R0)-local John
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condition for R0 = c · diam(∂�) and c < 1 small enough does not if diam(∂�) < ∞. See the definitions
and discussion in Section 3.

Theorem 1.3 and its consequence Corollary 1.6 improve some results in the literature. Earlier, Semmes
proved that a weak 2-Poincaré inequality for the tangential gradient (that is, inequality (1.4) with the right-
hand side replaced by Cr(/

∫
31

|∇t f (x)|2 dσ(x))1/2) holds for smooth functions on any chord-arc surface
with small constant [Semmes 1991, Lemma 1.1] (see the introduction of that work for the definition of
these surfaces). Theorem 1.3 both provides a stronger inequality and generalizes the class of surfaces
considered by Semmes. A key element in the proof of Theorem 1.3 is the machinery built by Hofmann,
Mitrea and Taylor [Hofmann et al. 2010]. In their paper, they prove a weak (p, p)-Poincaré inequality with
a tail for the Hofmann–Mitrea–Taylor Sobolev space L p

1 (∂�) with respect to the Hofmann–Mitrea–Taylor
gradient (see Definition 2.28) for any 1 < p < ∞ on boundaries of 2-sided local John domains [Hofmann
et al. 2010, Proposition 4.13]. Combining Theorem 1.3 with some density results in [Hofmann et al.
2010] and tools in [Mourgoglou and Tolsa 2021] shows us that the tail in their inequality can be removed,
at least when � is a bounded 2-sided chord-arc domain (see Corollary 7.13).

Our results have some immediate consequences. First, we note that since chord-arc domains satisfy
the local John condition, Theorem 1.2 gives us the following characterization result:

Corollary 1.5. Let � ⊂ Rn+1 be an open set satisfying a 2-sided corkscrew condition, with n-dimensional
Ahlfors–David regular boundary ∂�. Then the following conditions are equivalent:

(a) � satisfies the local John condition.

(b) � satisfies the Harnack chain condition.

For recent related results for semiuniform domains and chord-arc domains, see [Azzam 2021b; Azzam
et al. 2017].

Second, Theorem 1.3 combined with a Lipschitz characterization of Poincaré inequalities [Keith 2003,
Theorem 2] gives us the following Heinonen–Koskela-type weak 1-Poincaré inequality:

Corollary 1.6. Let � ⊂ Rn+1 be a 2-sided chord-arc domain. There exist constants C ≥ 1 and 3 ≥ 1
such that for every 1 = 1(y, r) we have

/
∫

1

| f (x) − ⟨ f ⟩1| dσ(x) ≤ Cr /
∫

31

ρ(x) dσ(x) (1.7)

for any f ∈ L1
loc(∂�) and any upper gradient ρ of f (see Definition 2.25), where σ := Hn

|∂� is the
surface measure.

We note that this weak 1-Poincaré inequality implies a weak p-Poincaré inequality (that is, inequality
(1.7) with the right-hand side replaced by Cr

(
/
∫
31

|ρ(x)|p dσ(x)
)1/p) for any 1 < p < ∞ by Hölder’s

inequality. Furthermore, by [Heinonen et al. 2015, Corollary 9.14], these weak p-Poincaré inequalities
imply weak (p, p)-Poincaré inequalities of the type(

/
∫

1

| f (x) − ⟨ f ⟩1|
p dσ(x)

)1/p

≤ C̃r
(

/
∫

31

|ρ(x)|p dσ(x)

)1/p

,
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where we used the same notation as in Corollary 1.6. See also Corollary 7.13 for an inequality of this
type for the Hofmann–Mitrea–Taylor Sobolev spaces in bounded 2-sided chord-arc domains. We also
note that the conclusion of Corollary 1.6 is the inequality appearing in Theorem 1.1. It is natural to ask if
Corollary 1.6 can be strengthened into a characterization but this is not possible: there exist non-chord-arc
domain open sets � ⊂ Rn+1 with n-dimensional Ahlfors–David regular boundaries ∂� that support
weak Poincaré inequalities. See Section 8 for an example and discussion. However, we point out that a
result for the converse direction was recently proven by Azzam [2021a] who showed that weak Poincaré
inequalities imply uniform rectifiability (see Definition 2.8) for Ahlfors–David regular sets E ⊂ Rn+1.

Furthermore, Corollary 1.6, combined with [Heinonen and Koskela 1998, Theorem 5.7; Korte 2007,
Theorem 3.3; Cheeger 1999, Theorem 17.1] (see also, e.g., [Merhej 2017; Heinonen et al. 2015]),
immediately gives us the following two new results about the geometric structure of boundaries of 2-sided
chord-arc domains:

Corollary 1.8. Let � ⊂ Rn+1 be a 2-sided chord-arc domain. Then ∂� is a Loewner space (see
Definition 2.24).

Examples of Loewner spaces include the Euclidean space, Carnot groups and Riemannian manifolds of
nonnegative Ricci curvature [Heinonen and Koskela 1998, Section 6]. For other examples, see [Heinonen
et al. 2015, Section 14.2].

Corollary 1.9. Let � ⊂ Rn+1 be a 2-sided chord-arc domain. Then

• if n = 1, then ∂� is quasiconvex (see Definition 2.22),

• if n > 1, then ∂� is annularly quasiconvex (see Definition 2.22).

We note that the case n = 1 in Corollary 1.9 cannot be improved to annular quasiconvexity: �= B(0, 1)

(the unit disc) is a 2-sided chord-arc domain but for any z ∈ ∂� and any 0 < r < 1
2 there exist points

x, y ∈ B(z, 2r)\ B(z, r) such that x and y can be joined in ∂�\ {z} only with paths γ such that ℓ(γ ) ≥ 1.
The proofs of Theorems 1.2 and 1.3 and Corollary 1.6 utilize significant advances in geometric analysis

over the past 25 years. For Theorem 1.2, we use harmonic measure theory (particularly the very recent
results of Azzam, Hofmann, Martell, Mourgoglou and the second author [Azzam et al. 2020]) and uniform
rectifiability techniques (particularly the bilateral weak geometric lemma of [David and Semmes 1993]).
For Theorem 1.3 and Corollary 1.6, we combine layer potential techniques of [Hofmann et al. 2010] and
pointwise and Lipschitz characterizations of Poincaré inequalities of [Heinonen and Koskela 1998; Keith
2003] (see also [Heinonen 2001]) with suitable localization and truncation arguments. One of the novelties
in the proof of Theorem 1.3 is the use of a weak type-(1, 1) version of a weak Poincaré inequality with
a tail, analogous to the strong type-(p, p) version proved previously in [Hofmann et al. 2010].

The paper is organized as follows. In Section 2 we fix the basic notation, review the numerous
definitions needed in the paper and consider some auxiliary results from the literature. In Section 3, we
define three different John-type conditions and compare them. In Section 4, we consider the bilateral
weak geometric lemma of David and Semmes and prove some straightforward related results for the proof
of Theorem 1.2, and in Section 5 we prove Theorem 1.2. In Section 6, we consider the Hofmann–Mitrea–
Taylor-type weak p-Poincaré inequality with a tail for 1 < p < ∞ and use techniques from its proof to
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prove a weak-type estimate for the case p = 1. In Section 7, we use this weak-type estimate together
with some key results from the theory of Poincaré inequalities in metric spaces to prove Theorem 1.3
and Corollary 1.6. In Section 8, we end the paper by constructing an example that shows us that the
assumptions in Corollary 1.6 are not optimal and consider some questions related to this work.

2. Notation, basic definitions and auxiliary results

Definition 2.1. Let � ⊂ Rn+1 be an open set and consider a geometric condition; such as the local John
condition (see Definition 3.2). If the interior of �c satisfies the condition, we say that � satisfies the
exterior version of the condition. If both � and the interior of �c satisfy the same condition, we say that
� satisfies the 2-sided version of the same condition.

We use the following basic notation and terminology:

• � ⊂ Rn+1 is an open set with n-dimensional boundary ∂�. We denote the surface measure of ∂� by
σ :=Hn

|∂�. Unless explicitly mentioned, we assume that ∂� is Ahlfors–David regular (see Definition 2.6)
and that both � and int �c satisfy the corkscrew condition (that is, � satisfies the 2-sided corkscrew
condition; see Definitions 2.1 and 2.7).

• Usually, we use capital letters X, Y, Z , and so on, to denote points in �, and lowercase letters x, y, z,
and so on, to denote points in ∂�.

• For every point X ∈ Rn+1, we define δ(X) := dist(X, ∂�).

• We denote the open (n+1)-dimensional Euclidean ball with radius r > 0 by B(X, r) or B(x, r),
depending on whether the center point lies in � or ∂�. For any x ∈ ∂� and any r > 0, we denote the
surface ball centered at x with radius r by 1(x, r) := B(x, r) ∩ ∂�.

• Given a Euclidean ball B := B(X, r) or a surface ball 1 := 1(x, r) and a constant κ > 0, we define
κ B := B(X, κr) and κ1 := 1(x, κr).

• For a metric measure space (X, d, µ), a function f and an open ball B, we denote the average of f
over B by

⟨ f ⟩B := /
∫

B
f dµ :=

1
µ(B)

∫
B

f dµ.

• A path is a continuous function γ : [0, 1] → X, where X is a metric space. With slight abuse of
terminology, we call a path γ : [0, 1] → � a path in � if γ (t) ∈ � for every t ∈ (0, 1]. With slight abuse
of notation, we write Z ∈ γ if there exists t ∈ [0, 1] such that γ (t) = Z . We say that a path γ is from X1

to X2 if γ (0) = X1 and γ (1) = X2.

• The length of a path γ : [0, 1] → � is defined as

ℓ(γ ) := sup
{ k∑

i=0

|γ (ti ) − γ (ti+1)|

}
,

where the supremum is taken over all finite partitions 0 = t0 < t1 < · · · < tk = 1 of the interval [0, 1]. We
say that a path γ is rectifiable if the length of γ is finite.
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• Given a rectifiable path γ and a function f , we denote the arc-length parametrization of γ (that is, the
reparametrization of γ with respect to ℓ(γ )) by γℓ : [0, ℓ(γ )] → Rn+1 and the integral of f over γ by∫

γ

f :=

∫ ℓ(γ )

0
f ◦ γℓ(t) dt.

• For a path γ and points X1, X2 ∈ γ with γ (t) = X1 and γ (s) = X2 for t, s ∈ [0, 1], t < s, we denote
the piece of γ from X1 to X2 by γ (X1, X2) and its length by ℓ(γ (X1, X2)). Again, with slight abuse of
notation, we write Z ∈ γ (X1, X2) if there exists u ∈ (s, t) such that γ (u) = Z .

• We denote harmonic measure with pole at X ∈ � by ωX. Usually, we drop the pole from the notation if
we consider properties that hold for every X ∈ �.

• Let A ⊂ Rn+1, f : A → R, α > 0 and β ≥ 1. We say that f is α-Lipschitz if

| f (x) − f (y)| ≤ α|x − y|

for all x, y ∈ A. We say that f is locally α-Lipschitz if

lim sup
A∋y→x

y ̸=x

| f (x) − f (y)|

|x − y|
≤ α (2.2)

for every x ∈ A. We say that f is β-bi-Lipschitz if

1
β

|x − y| ≤ | f (x) − f (y)| ≤ β|x − y|

for all x, y ∈ A.

• We denote the measure-theoretic boundary of � by ∂∗�: we have x ∈ ∂∗� if and only if x ∈ ∂�, and

lim inf
r→0+

|B(x, r) ∩ �|

rn+1 > 0 and lim inf
r→0+

|B(x, r) \ �|

rn+1 > 0. (2.3)

• For any p > 1, we denote the Hölder conjugate of p by p′. The numbers p and p′ satisfy 1/p+1/p′
= 1.

• We denote the nontangential maximal operator by N∗: for a function u in �, N∗u is a function ∂�

defined as
N∗u(x) := sup

Y∈0α(x)

|u(Y )|, (2.4)

where 0α(x) is the cone at x ∈ ∂� with aperture α,

0α(x) := {Y ∈ Rn+1
: |x − Y | < α δ(Y )}. (2.5)

We say that a function u in � converges nontangentially to a function f on ∂� if u(Y ) → f (x) as Y → x
inside 0α(x).

• The letters c and C and their obvious variations denote constants that depend only on dimension, ADR
constant (see Definition 2.6), UR constants (see Definition 2.8) and other similar parameters. The values
of c and C may change from one occurrence to another. We do not track how our bounds depend on these
constants and usually just write α1 ≲ α2 if α1 ≤ c α2 for a constant like this c and α1 ≈ α2 if α1 ≲ α2 ≲ α1.
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If the constant cκ depends only on parameters of the previous type and some other parameter κ , we
usually write α1 ≲κ α2 instead of α1 ≤ cκα2.

2A. ADR, UR, NTA, CAD, and the corkscrew condition.

Definition 2.6 (ADR). We say that a closed set E ⊂ Rn+1 is a d-ADR (Ahlfors–David regular) set if
there exists a constant D ≥ 1 such that

1
D

rd
≤ Hd(B(x, r) ∩ E) ≤ Drd

for every x ∈ E and every r ∈ (0, diam(E)), where diam(E) may be infinite.

Definition 2.7 (corkscrew condition). We say that � satisfies the corkscrew condition if there exists a
constant c ∈ (0, 1) such that for every surface ball 1 := 1(x, r), with x ∈ ∂� and 0 < r < diam(∂�),
there exists a point X1 ∈ � such that B(X1, cr) ⊂ B(x, r) ∩ �,

Definition 2.8 (UR). Following [David and Semmes 1991; 1993], we say that an n-ADR set E ⊂ Rn+1

is UR (uniformly rectifiable) if it contains big pieces of Lipschitz images of Rn, i.e., there exist constants
θ, M >0 such that for every x ∈ E and r ∈ (0, diam(E)) there is a Lipschitz mapping ρ =ρx,r : Rn

→Rn+1,
with Lipschitz norm no larger than M, such that

Hn(E ∩ B(x, r) ∩ ρ({y ∈ Rn
: |y| < r})) ≥ θrn.

Definition 2.9 (NTA). Following [Jerison and Kenig 1982a], we say that a domain 2 ⊂ Rn+1 is NTA
(nontangentially accessible) if

• 2 satisfies the Harnack chain condition: there exists a uniform constant C such that for every ρ > 0,
3 ≥ 1 and X, X ′

∈ 2 with δ(X), δ(X ′) ≥ ρ and |X − X ′
| < 3ρ there exists a chain of open balls

B1, . . . , BN ⊂2, N ≤C(3), with X ∈ B1, X ′
∈ BN , Bk ∩Bk+1 ̸=∅ and C−1 diam(Bk)≤dist(Bk, ∂2)≤

C diam(Bk),

• both 2 and Rn+1
\ 2 satisfy the corkscrew condition.

Definition 2.10 (CAD). An open set � ⊂ Rn+1 is a CAD (chord-arc domain) if it is NTA, and ∂� is
n-ADR.

The following result originates from [David and Jerison 1990; Semmes 1990] (see also [Hofmann et al.
2010, Definition 3.7 and Corollary 3.9]):

Theorem 2.11. Suppose that � ⊂ Rn+1 is an open set satisfying the two-sided corkscrew condition and
that ∂� is ADR. Then ∂� is UR and σ(∂� \ ∂∗�) = 0.

2A1. Dyadic cubes.

Theorem 2.12 (see, e.g., [Christ 1990; Sawyer and Wheeden 1992; Hytönen and Kairema 2012]). Suppose
that E is a d-ADR set. Then there exists a countable collection D (that we call a dyadic system),

D :=

⋃
k∈Z

Dk, Dk := {Qk
α : α ∈ Ak},

of Borel sets Qk
α (that we call (dyadic) cubes) such that
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(i) the collection D is nested: if Q, P ∈ D, then Q ∩ P ∈ {∅, Q, P},

(ii) E =
⋃

Q∈Dk
Q for every k ∈ Z and the union is disjoint,

(iii) there exist constants c1 > 0 and C1 ≥ 1 such that

1(zk
α, c12−k) ⊆ Qk

α ⊆ 1(zk
α, C12−k), (2.13)

(iv) for every set Qk
α there exist at most N cubes Qk+1

βi
(called the children of Qk

α) such that Qk
α =⋃

i Qk+1
βi

, where the constant N depends only on the ADR constant of E.

Notation 2.14. We shall use the following notational conventions.

(1) For each k, and for every cube Qk
α := Q ∈ Dk , we define ℓ(Q) := C12−k and xQ := zk

α . We call ℓ(Q)

the side length of Q, and xQ the center of Q. If the set E is bounded or disconnected, the side length
might not be well-defined, but we can fix this problem easily by, for example, considering the minimum
of the numbers C12−k such that Q ⊂ 1(xQ, C12−k).

(2) For every Q = Qk
α and κ ≥ 1, we define

κ BQ := B(zk
α, κℓ(Q)).

For κ = 1, we simply let κ BQ = BQ .

Definition 2.15. We say that a collection A ⊂ D satisfies a Carleson packing condition if there exists a
constant C ≥ 1 such that ∑

Q∈A,Q⊂Q0

σ(Q) ≤ Cσ(Q0)

for every cube Q0 ∈ D. We call the smallest such constant C the Carleson packing norm of A and denote
it by CA.

We need the following straightforward lemma in the proof of Theorem 1.2:

Lemma 2.16. Let A ⊂ D be a collection satisfying a Carleson packing condition. Also, let Q0 ∈ D be a
cube and A ⊂ Q0 a measurable subset such that σ(A) ≥ c σ(Q0) for a constant c ∈ (0, 1). Then there
exists a cube Q ∈ D \A such that σ(Q ∩ A) > 0 and ℓ(Q) ≈CA,c ℓ(Q0).

Proof. Let us consider the first K > CA/c generations of subcubes of Q0. Each of these generations
covers the set A. For contradiction, suppose that σ(Q ∩ A) = 0 for each of these subcubes such that
Q /∈ A. Then, for every m = 1, . . . , K , we can cover the set A (up to a set of measure 0) by cubes from
the collection {Q ∈ A : ℓ(Q) = 2−mℓ(Q0)}. In particular, we get∑
Q∈A,Q⊂Q0

σ(Q)=

∞∑
m=0

∑
Q∈A

ℓ(Q)=2−mℓ(Q0)

σ(Q)≥

K∑
m=1

∑
Q∈A

ℓ(Q)=2−mℓ(Q0)

σ(Q∩A)=

K∑
m=1

σ(A)≥ K c σ(Q0)>CA σ(Q0),

which contradicts the Carleson packing condition. Hence, there exists at least one cube Q from the first
⌈CA/c⌉ generations of subcubes of Q0 such that σ(Q ∩ A) > 0 and Q ∈ D \A. □
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2B. Harmonic measure and the weak-A∞ condition.

Definition 2.17 (weak A∞ for harmonic measure). For harmonic measure ω, we write ω ∈ weak-A∞(σ )

if there exist constants C ≥ 1 and s > 0 such that if B := B(x, r) with x ∈ ∂� and r ∈
(
0, 1

2 diam(∂�)
)

and A ⊂ 1 := B ∩ ∂� is a Borel set, then

ωY (A) ≤ C
(

σ(A)

σ (1)

)s

ωY (21) (2.18)

for every Y ∈ � \ 4B.

We note that the constant 2 in (2.18) can be replaced with any constant c > 1 without changing the
class weak-A∞(σ ) and that the weak-A∞ property is equivalent with a weak reverse Hölder property for
the Radon–Nikodym derivative; see, e.g., [Anderson et al. 2017, Section 8].

We use the following lemma from [Azzam et al. 2020] in the proof of Theorem 1.2. The lemma is
a key ingredient for the proof of the geometric characterization of the weak-A∞ property of harmonic
measure:

Lemma 2.19 [Azzam et al. 2020, Section 10]. Suppose that � has a uniformly rectifiable boundary ∂� and
that ω ∈ weak-A∞. Suppose also that R0 ∈ D(∂�) is a dyadic cube and Y ∈ � \ 4BR0 is a point such that

c1ℓ(R0) ≤ δ(Y ) ≤ dist(Y, R0) ≤ c−1
1 ℓ(R0)

and ωY (R0) ≥ c2 > 0. Then there exist a constant c3 > 0 and a subset A ⊂ R0 such that σ(A) ≥ c3 σ(R0)

and each point x ∈ A can be joined to Y by a D-nontangential path (see Definition 3.1), where c3 and D
depend only on c1, c2, n, the weak-A∞ constants and the uniform rectifiability constants.

We also need the following classical estimate (sometimes referred to as Bourgain’s estimate [1987,
Lemma 1]):

Lemma 2.20. There exist uniform constants c0 ∈ (0, 1) and C0 > 1, depending only on n and the
ADR constant, such that the following holds: if x ∈ ∂�, r ∈ (0, diam(∂�)) and Y ∈ B(x, c0r), then
ωY (1(x, r)) ≥ 1/C0 > 0.

2C. Quasiconvexity, annular quasiconvexity and Loewner spaces.

Definition 2.21. Let (X, d) be a metric space. We say that a nonempty set E ⊂ X is a continuum if it is
compact and connected. We call a continuum nondegenerate if it contains more than one point. We say
that points x, y ∈ F ⊂ X can be joined in F if there exists a continuum E ⊂ F such that x, y ∈ E .

Definition 2.22. Let (X, d) be a metric space. We say that X is

(i) quasiconvex if there exists a constant C ≥ 1 such that for any pair of points x, y ∈ X there exists a
path γx,y : [0, 1] → X such that γx,y(0) = x , γx,y(1) = y and ℓ(γx,y) ≤ C d(x, y),

(ii) annularly quasiconvex if there exists a constant C ≥ 1 such that if x, y ∈ B(z, 2r)\ B(z, r) for z ∈ X
and r < (1/C) diam(X), then x and y can be joined by a path γ = γx,y in B(z, Cr) \ B(z, r/C)

such that ℓ(γ ) ≤ C d(x, y).

(iii) rectifiably connected if for any pair of points x, y ∈ X there exists a rectifiable path γx,y from x to y.
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Definition 2.23. Let (X, d, µ) be a rectifiably connected metric measure space with a locally finite Borel
measure µ. Let E, F ⊂ X be two disjoint nondegenerate continua, (E, F) = (E, F; X) be the family of
paths in X connecting E and F and p ≥ 1. We define the p-modulus of (E, F) as

modp(E, F) := inf
ϱ

∫
X

ϱp dµ,

where the infimum is taken over all nonnegative Borel functions ϱ : X → [0, ∞) satisfying∫
γ

ϱ ds ≥ 1

for every γ in (E, F).

Definition 2.24. Let (X, d, µ) be a d-dimensional, rectifiably connected metric measure space with a
locally finite Borel measure µ. We say that X is a d-Loewner space if there exists a function φ : (0, ∞) →

(0, ∞) such that if E and F are two disjoint, nondegenerate continua in X satisfying

dist(E, F)

min{diam(E), diam(F)}
≤ t,

then φ(t) ≤ modd(E, F).

2D. Upper, Hajłasz, tangential and Hofmann–Mitrea–Taylor gradients, Sobolev spaces, and weak
Poincaré inequalities on ∂�.

Definition 2.25. Let f : ∂� → R. We say that a Borel-measurable function ρ : ∂� → [0, ∞] is an upper
gradient of f if we have

| f (x) − f (y)| ≤

∫
γ

ρ =

∫ ℓ(γ )

0
ρ ◦ γℓ(t) dt

for all x, y ∈ ∂� and every rectifiable path γ from x to y, where γℓ : [0, ℓ(γ )] → R is the arc-length
parametrization of γ .

The notion of upper gradients originates from [Heinonen and Koskela 1996; 1998], where they were
called very weak gradients.

Definition 2.26. Let f : ∂� → R. We say that a Borel-measurable function g : ∂� → R is a Hajłasz
gradient of f if we have

| f (x) − f (y)| ≤ (g(x) + g(y))|x − y|

for almost every x, y ∈ ∂�. We denote the class of all Hajłasz gradients of f by D( f ). For p ≥ 1,
we denote the space of Borel functions with a Hajłasz gradient in L p(∂�) by Ẇ 1,p(∂�) and define a
seminorm ∥ · ∥Ẇ 1,p(∂�) for this space by setting

∥ f ∥Ẇ 1,p(∂�) := inf
g∈D( f )

∥g∥L p(∂�).

The notion of Hajłasz gradients originates from [Hajłasz 1996]. By [Jiang et al. 2015], if f, g ∈ L1
loc(∂�)

and g is a Hajłasz gradient of f , then there exist functions f̃ , g̃ ∈ L1
loc(∂�) such that f = f̃ and g = g̃

almost everywhere and 4g̃ is an upper gradient of f̃ .



CONNECTIVITY CONDITIONS AND BOUNDARY POINCARÉ INEQUALITIES 1841

Definition 2.27. Let f : ∂� → R be a Lipschitz function and let x ∈ ∂� be a point such that the
approximate tangent plane Tx∂� exists. Let f̃ : Rn+1

→ R be any Lipschitz extension of f to Rn+1. We
say that f is tangentially differentiable at x if f̃ |x+Tx∂� is differentiable at x . When it exists, we denote
the corresponding tangential gradient at x by ∇t f (x).

A thorough reference for these types of differentiability results is [Maggi 2012]. In particular, since
∂� is uniformly rectifiable by Theorem 2.11 (and therefore ∂� is rectifiable; see [Hofmann et al. 2010,
p. 2629] for an explicit proof), we know that the approximate tangent plane exists for almost every point
x ∈ ∂� by [Maggi 2012, Theorem 10.2], the tangential gradient exists for σ -a.e. point x ∈ ∂� by [loc. cit.,
Theorem 11.4] and the definition of the tangential gradient is independent of the choice of the Lipschitz
extension by [loc. cit., Theorem 10.1, Proposition 10.5, and Lemma 11.5].

By [Hofmann et al. 2010], the next definitions make sense if we know that — on top of the standing
assumptions on � and ∂� (see the beginning of Section 2) — � is a set of locally finite perimeter and
σ(∂�\∂∗�) = 0 (recall (2.3)). Since we only use the following objects when � satisfies the 2-sided local
John condition (or, equivalently by Corollary 1.5, when � is a 2-sided chord-arc domain), the assumptions
are automatically satisfied by Theorem 2.11 and [Hofmann et al. 2010, Corollary 3.14].

Definition 2.28. Let ν(x) := (νj (x))n+1
j=1 be the outer unit normal at x ∈ ∂�. For a function ϕ : Rn+1

→ R,
ϕ ∈ C1

c , we define the (Hofmann–Mitrea–Taylor) tangential derivatives of ϕ as

∂t, j,kϕ := νj (∂kϕ)|∂� − νk(∂jϕ)|∂�

for 1 ≤ j, k ≤ n + 1. The Hofmann–Mitrea–Taylor Sobolev space L p
1 (∂�) is the space of the functions

f ∈ L p(∂�) such that there exists a finite constant C f such that∑
1≤ j,k≤n+1

∣∣∣∣∫
∂�

f ∂t,k, jϕ dσ

∣∣∣∣ ≤ C f ∥ϕ∥L p′
(σ )

for every ϕ ∈ C∞
c (Rn+1). By the Riesz representation theorem, for every f ∈ L p

1 (∂�) and each j, k =

1, 2, . . . , n + 1 there exists a function h j,k ∈ L p(∂�) satisfying∫
∂�

h j,kϕ dσ =

∫
∂�

f ∂t,k, jϕ dσ

for every ϕ ∈ C∞
c (Rn+1). We set ∂t, j,k f := h j,k and define the Hofmann–Mitrea–Taylor gradient ∇HMT f

by setting

∇HMT f :=

(∑
k

νk∂t, j,k f
)n+1

j=1
.

For the comprehensive theory of Hofmann–Mitrea–Taylor Sobolev spaces, see in particular Section 3
and 4 in [Hofmann et al. 2010].

Definition 2.29. Let 1 ≤ p < ∞. We say that ∂� supports a weak (Heinonen–Koskela-type) p-Poincaré
inequality if there exist constants C = C p ≥ 1 and 3 ≥ 1 such that for every 1 = 1(y, r) we have

/
∫

1

| f (x) − ⟨ f ⟩1| dσ(x) ≤ Cr
(

/
∫

31

ρ(x)p dσ(x)

)1/p

for any f ∈ L1
loc(∂�) and any upper gradient ρ of f .
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2E. Solvability for the Laplacian.

Definition 2.30. Let 1 ≤ p < ∞. We say that the Dirichlet problem (for the Laplacian) is solvable in L p

for � if there exists a constant C such that for any continuous function f ∈ C(∂�) the solution u = u f to
the Dirichlet problem with datum f converges nontangentially to f σ -a.e. and

∥N∗u∥L p(∂�) ≤ C∥ f ∥L p(∂�),

where N∗ is the nontangential maximal operator (recall (2.4)).

Definition 2.31. Let 1 ≤ p < ∞. We say that the regularity problem ( for the Laplacian) is solvable in L p

for � if there exists a constant C such that for any Lipschitz function f : ∂� → R the solution u = u f to
the Dirichlet problem with datum f converges nontangentially to f σ -a.e. and

∥N∗(∇u)∥L p(∂�) ≤ C∥ f ∥Ẇ 1,p(∂�), (2.32)

where ∥ · ∥Ẇ 1,p(∂�) is the Hajłasz seminorm (see Definition 2.26). For 1 < p < ∞, we say that the
tangential regularity problem ( for the Laplacian) is solvable in L p if the previous holds after we replace
(2.32) with the estimate

∥N∗(∇u)∥L p(∂�) ≤ C∥∇t f ∥L p(∂�).

3. John, local John and weak local John conditions

In this section, we define different John-type conditions, compare them by considering some examples
and make some remarks related to literature. We assume that � ⊂ Rn+1 is an open set, with n-dimensional
Ahlfors–David regular boundary. We do not assume that the corkscrew conditions hold in general but we
discuss their role below.

Definition 3.1 (nontangential paths). Let γ : [0, 1] → � be a path in � from X to Y. For D ≥ 1, we say
that γ is a D-nontangential path if we have

ℓ(γ (X, Z)) ≤ D δ(Z)

for every Z ∈ γ .

Notice that Definition 3.1 is not symmetric with respect to X and Y. The general idea is that we
use nontangential paths to measure how well we can connect boundary points to certain points inside
the space. We use the name nontangential path to emphasize the connection between these paths and
nontangential convergence we discussed in Section 2. Indeed, if there exists a D-nontangential path γ

from x ∈ ∂� to Y ∈ �, then, by definition, we have

|x − Z | ≤ ℓ(γ (x, Z)) ≤ D δ(Z)

for every Z ∈ γ and therefore we have Z ∈ 0D(x) for every Z ∈ γ . Here 0D(x) is the cone at x of
aperture D (see (2.5)).

Definition 3.2 (John, local John and weak local John conditions). Let D0 ≥ 1. We say that � satisfies

(i) the D0-John condition if there exists a point X0 ∈ � such that for every Y ∈ � there exists a
D0-nontangential path in � from Y to X0,
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(ii) the local D0-John condition if for every x ∈ ∂� and every r ∈ (0, diam(∂�)) there exists a point
Yx ∈ B(x, r)∩� (that we call a local John point) such that B(Yx , r/D0)⊂� and for every z ∈1(x, r)

there exists a D0-nontangential path γz in � from z to Yx such that ℓ(γz) ≤ D0r ,

(iii) the weak local D0-John condition if there exist constants θ ∈ (0, 1] and R ≥ 2 such that for every
X ∈ � there exists a Borel set F ⊂ 1X := B(X, R δ(X)) ∩ ∂� such that σ(F) ≥ θσ (1X ) and for
every z ∈ F there exists a D0-nontangential path γz in � from z to X such that ℓ(γz) ≤ D0 R δ(X).

The John condition was first used in [John 1961] but the terminology originates from [Martio and
Sarvas 1979]. The local John condition was first used in [Hofmann et al. 2010, Definition 3.12] and weak
local John condition originates from [Azzam et al. 2020, Definition 2.11].

Generally, the John condition does not imply the local John condition, the local John condition does
not imply the John condition, and there are domains that satisfy the weak local John condition but not the
local John condition. We can see this by considering some straightforward examples:

Example 3.3. In R2 we have the following:

(1) �1 := B(0, 1)\{(x, 0) : x ∈[0, 1]} satisfies the John condition (we can choose, e.g., X0 =
(
0, −1

2

)
as the

“John point”) but not the local John condition. We can see this by noticing that any ball B((1, 0), r)∩�1

contains points (y, t) ∈ �1 and (z, t) ∈ ∂�1 for both t < 0 and t > 0 with arbitrarily small |t |. Hence, no
matter how we choose the point X̃0 ∈ B((1, 0), r)∩�1, there are points in B((1, 0), r)∩ ∂�1 that can be
connected to X̃0 inside �1 only with paths γ satisfying ℓ(γ ) ≥ 1.

(2) �2 := R2
\ ∂ B(0, 1) satisfies the local John condition but not the John condition because we cannot

connect a point in B(0, 1) to a point in R2
\ B(0, 1) with a path in �2.

(3) �3 := B(0, 1)\{(x, 0) : x ∈ (−1, 1)} satisfies the weak local John condition but not the John condition
or the local John condition. This is because �3 is not connected (and hence cannot satisfy the John
condition) and it cannot satisfy the local John condition for the same reason why �1 in the part (1) of this
example does not satisfy it.

To the best knowledge of the authors, it is not known if the local John condition alone implies the
weak local John condition. We note that if there exists an open set � ⊂ Rn+1 with n-ADR boundary such
that it satisfies the weak local John condition but not the local John condition, then � cannot satisfy the
exterior corkscrew condition (see Lemma 3.6).

The John condition can be seen as a stronger form of connectivity of the space, but it does not imply
connectivity for the boundary, not even if the exterior corkscrew condition holds. We can see this by
considering the annulus A := B(0, 2) \ B(0, 1). By the same example and the set �2 in Example 3.3(2),
we see that the local John condition does not generally imply connectivity for the space nor the boundary.
However, by Theorem 1.2, we know that if the exterior corkscrew condition holds and the boundary of
the space is Ahlfors–David regular, the local John condition implies connectivity for the space (but not
the boundary, as we saw from the annulus A). By Corollaries 1.5 and 1.9, we know that the 2-sided local
John condition combined with Ahlfors–David regularity of the boundary implies annular quasiconvexity
(and therefore connectivity) for the boundary.
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Figure 1. The 2-sided local (D0, R0)-John condition does not imply the Harnack chain
condition or any kind of connectivity if R0 is not large enough. In Example 3.5, for the
complement of a closed annulus, we can find local John points for small balls centered at
either the inner or the outer boundary. However, if the ball is large enough, then it contains
both inner and outer boundary points, and we cannot find a point in � that connects to all
the boundary points inside the ball without passing through the annulus itself.

We note that the local John condition in Definition 3.2 is the “extreme” case in the definition given in
[Hofmann et al. 2010, Definition 3.12]. To be more precise, let us consider the following weaker version
of the local John condition:

Definition 3.4. Let � ⊂ Rn+1 be an open set, D0 ≥ 1 and 0 < R0 ≤ diam(∂�). We say that � satisfies the
local (D0, R0)-John condition if for every x ∈∂� and every r ∈ (0, R0) there exists a point Yx ∈ B(x, r)∩�

(that we call a local John point) such that B(Yx , r/D0) ⊂ � and for every z ∈ 1(x, r) there exists a
D0-nontangential path γz in � from z to Yx such that ℓ(γz) ≤ D0r .

Thus, the local D0-John condition and the local (D0, diam(∂�))-condition are the same thing. The
reason why we consider only the case (D0, diam(∂�)) in Theorem 1.2 is simply because the result may
fail if the local John condition is not good enough. We see this by the following simple example (see also
Figure 1):

Example 3.5. Let � := B(0, 1) ∪ {X ∈ R2
: |X | > 2} ⊂ R2 be the interior of the complement of the

annulus B(0, 2) \ B(0, 1). Now ∂� is 1-ADR and � satisfies the 2-sided local
(
D0,

1
2

)
-John condition

for suitable D0 > 1, but � is not a chord-arc domain. In addition, the boundary ∂� is not connected.

In the proof of Theorem 1.2, we use harmonic measure theory and techniques that require that harmonic
measure belongs to the class weak-A∞(σ ). By the main result of [Azzam et al. 2020], we know that,
in our context, the weak-A∞ property is equivalent to uniform rectifiability for ∂� and the weak local
John condition for �. We note that although we do not assume the weak local John condition, it follows
from the assumptions of Theorem 1.2. Indeed, by [David and Jerison 1990, p. 842] (see also [Semmes
1990]), we know that the 2-sided corkscrew condition implies the interior big pieces of Lipschitz graphs
condition (see [Bennewitz and Lewis 2004, p. 572] for the definition). This condition then implies that
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harmonic measure is in weak-A∞ by [Bennewitz and Lewis 2004, Theorem 1]. Combining this with
[Azzam et al. 2020, Theorem 1.1] gives us the weak local John condition:

Lemma 3.6. Let � ⊂ Rn+1 be an open set satisfying the 2-sided corkscrew condition, with n-dimensional
Ahlfors–David regular boundary. Then ω ∈ weak-A∞(σ ) and � satisfies the weak local John condition.

4. The bilateral weak geometric lemma and nontangential approach

In this section, we consider some tools that we use in the proof of Theorem 1.2 to connect two pieces of
different paths to each other without going too close to the boundary. Our approach is based on the use
of β-numbers of [Jones 1990] and the bilateral weak geometric lemma of [David and Semmes 1993].
Throughout the section, we assume that �⊂Rn+1 is an open set satisfying the 2-sided corkscrew condition,
with uniformly rectifiable boundary ∂�, and D is a dyadic system on ∂�. Recall that σ := Hn

|∂� is the
surface measure and δ(X) := dist(X, ∂�) for X ∈ Rn+1.

Given a ball B = B(x, r) ⊂ Rn+1, a hyperplane L ⊂ Rn+1 and a constant c > 0, we define

bβ∂�(B, L) := sup
y∈B∩∂�

dist(y, L)

r
+ sup

Y∈L∩B

δ(Y )

r
,

Uc(L) := {Y ∈ Rn+1
: dist(Y, L) < c}.

For any ball B ⊂ Rn+1, we define the bilateral β-number as

bβ∂�(B) := inf
L

bβ∂�(B, L),

where the infimum is taken over all hyperplanes L ⊂ Rn+1.
Recall from Notation 2.14 that for a cube Q ∈ D we write BQ = B(xQ, ℓ(Q)), where xQ is the center

of Q and ℓ(Q) is its side length. By a straightforward reformulation of [David and Semmes 1993,
Chapter I.2, Theorem 2.4], the following version of the bilateral weak geometric lemma (BWGL) holds:

Lemma 4.1. For every ε > 0, there exists a constant Cε ≥ 1 such that∑
Q∈D,Q⊂R,

bβ∂�(2BQ)>ε

σ(Q) ≤ Cεσ(R) (4.2)

for any R ∈ D, i.e., for any ε > 0 the collection {Q ∈ D : bβ∂�(2BQ) > ε} satisfies a Carleson packing
condition with Carleson packing norm depending only on ε, n and uniform rectifiability constants.

The BWGL actually characterizes the uniform rectifiability property but we only need the part written
in Lemma 4.1.

In the proof of Theorem 1.2, we use the BWGL combined with the following lemmas that help us with
technicalities related to constructing a path from a point to a nearby local John point. Alternatively, we
could use the Whitney region constructions of Hofmann, Martell and Mayboroda [Hofmann et al. 2016,
Section 3] (and their straightforward geometric applications in [Hofmann and Tapiola 2020; 2021]) for the
same purpose, but this alternative approach is slightly less elementary than the one we present in this paper.
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Lemma 4.3. There exists ε0 > 0, depending only on the 2-sided corkscrew condition, such that the
following holds: if B = B(x, r) is a ball with x ∈ ∂� and L B is a hyperplane such that bβ∂�(B, L B) <

ε ≤ ε0, then B \Uεr (L B) consists of two convex components, B+ and B−, such that

B+
⊂ � and B−

⊂ Rn+1
\ �.

Proof. Let B = B(x, r) be a ball with x ∈ ∂�, ε > 0 and L B be a hyperplane such that bβ∂�(B, L B) < ε.
By the definitions of bβ∂�(B, L B) and Uεr (L B), we know that

∂� ∩ B ⊂ Uεr (L B),

and B \Uεr (L B) has exactly two components if ε is small enough, say ε < 1
10 . Thus, the two connected

components V1 and V2 of B \Uεr (L B) are contained in Rn+1
\ ∂� = � ∪ (Rn+1

\ �). Furthermore, the
components V1 and V2 are convex by the definition of Uεr (L B), and each Vi is either fully contained in �

or fully contained in Rn+1
\ �. Indeed, if Vi intersects both � and Rn+1

\ �, then the line segment from
any point Z1 ∈ Vi ∩ � to any point Z2 ∈ V1 ∩ Rn+1

\ � has to contain a point z0 ∈ ∂� which then has to
belong to Vi by convexity. This is impossible because Vi ⊂ B \Uεr (L B) and therefore Vi ∩ ∂� = ∅.

Let us then show that if ε is small enough, one of the components Vi lies in � and the other lies in
Rn+1

\�. By the 2-sided corkscrew condition (applied for the surface ball 1(x, r) = B(x, r)∩∂�), there
exist balls

B1 := B(Z+, cr) ⊂ � ∩ B, B2 := B(Z−, cr) ⊂ (Rn+1
\ �) ∩ B,

where c ∈ (0, 1) is independent of 1. Let us assume that ε ≤
c
5 . Now neither B1 nor B2 can be contained

in Uεr (L B) and therefore both the balls intersect V1 ∪ V2. Since each Vi is either fully contained in �

or fully contained in Rn+1
\ �, we know that Vi ∩ B1 ̸= ∅ implies Vi ⊂ � and Vi ∩ B2 ̸= ∅ implies

Vi ⊂ Rn+1
\ �. We also notice that if V1 ∩ B1 ̸= ∅, then V1 ∩ B2 = ∅ since otherwise V1 intersects

both � and Rn+1
\ �. Thus, since both B1 and B2 intersect V1 ∪ V2, we know that V1 ∩ B1 ̸= ∅ implies

V2 ∩ B2 ̸= ∅, and similarly V1 ∩ B2 ̸= ∅ implies V2 ∩ B1 ̸= ∅. In particular, B1 intersects exactly one of
the components Vi , say V1, which is then contained in �, and B2 then intersects V2, which is contained
in Rn+1

\ �. Thus, we may set B+
= V1 and B−

= V2 and choose ε0 = min
{ 1

10 , c
5

}
. □

Lemma 4.4. Let B = B(x0, r) be a ball with x0 ∈ ∂�, X1 ∈ � a point such that |X1 − x0| ≈ δ(X1) ≥
r
2

and γ a D-nontangential path from x0 to X1, where D ≥ 1. Let ε0 > 0 be as in Lemma 4.3 and suppose
that 0 < ε < min

{
ε0,

1
12D

}
. Let L B be a hyperplane such that bβ∂�(B, L B) < ε, and let B+ and B− be

the components of B as in Lemma 4.3. Now γ intersects B+
\U2εr (L B).

Proof. Since |X1 − x0| ≥
r
2 , we know that X0 /∈ B

(
x0,

r
4

)
. Thus, there exists a point Y0 ∈ γ ∩ ∂ B

(
x0,

r
4

)
.

We claim that Y0 ∈ B+
\U2εr (L B).

We notice that, by the definition of D-nontangential paths, we have

δ(Y0) ≥
1
D

ℓ(γ (x0, Y0)) ≥
1
D

|x0 − Y0| =
1

4D
r. (4.5)

For any point X ∈ Rn+1, let prX be its orthogonal projection onto L B . Let Z ∈
1
2 B ∩U2εr (L B). Now it

holds that
| prZ −x0| ≤ | prZ −Z | + |Z − x0| < 2εr +

1
2r < r,
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and thus, prZ ∈ B. In particular, since prZ ∈ L B and bβ∂�(B, L B) < ε, we have

δ(Z) ≤ |Z − prZ | + δ(prZ ) ≤ 2εr + εr = 3εr <
1

4D
r (4.6)

since ε < 1
12D . In particular, by (4.5) and (4.6), we know that Y0 /∈ 1

2 B ∩U2εr (L B). On the other hand,
since Y0 ∈ γ ∩ ∂ B

(
x0,

r
4

)
, we know that Y0 ∈ B ∩ � and hence Y0 ∈ B+ by Lemma 4.3. In particular,

Y0 ∈ γ ∩ B+
\U2εr (L B), which proves the claim. □

Lemma 4.7. Let ε0 > 0 be as in Lemma 4.3 and suppose that 0 < ε < 1
8ε0. Let B = B(x0, r) be a ball with

x0 ∈ ∂�, L B be a hyperplane such that bβ∂�(B, L B) < ε and y0 ∈
1
2 B ∩ ∂�. Now we have

• bβ∂�

(
B

(
y0,

r
4

)
, L B

)
< 4ε < 1

2ε0,

• the set � ∩ B
(
y0,

r
4

)
\Uεr (L B) is convex,

• for any point Y ∈ � ∩ B
(
y0,

r
4

)
\U2εr (L B) we have δ(Y ) ≥ εr .

Proof. The second claim follows from the first claim combined with Lemma 4.3, and the first claim
follows from the definition of β-numbers and the facts B

(
y0,

r
4

)
⊂ B and bβ∂�(B, L B) < ε < 1

8ε0 in a
straightforward way:

bβ∂�(B, L B) = sup
y∈B∩∂�

dist(y, L B)

r
+ sup

Y∈L B∩B

δ(Y )

r

≥
1
4

sup
y∈B(y0,r/4)∩∂�

dist(y, L B)
r
4

+ sup
Y∈L B∩B(y0,r/4)

δ(Y )
r
4

=
1
4

bβ∂�

(
B

(
y0,

r
4

)
, L

)
.

For the third claim, let Y ∈ � ∩ B
(
y0,

r
4

)
\ U2εr (L B). Since y0 ∈ ∂�, we know that δ(Y ) < r

4 . On the
other hand, for any point Z ∈ Rn+1

\ B we have

r ≤ |x0 − Z | ≤ |x0 − y0| + |y0 − Y | + |Y − Z | <
r
2

+
r
4

+ |Y − Z |,

and thus, |Y − Z | > r
4 . In particular, we have δ(Y ) = infz∈∂�∩B |Y − z|. Let zY ∈ ∂�∩ B be a point such

that δ(Y ) = |Y − zY |. Since Y /∈ U2εr (L B), we know that dist(Y, L B) ≥ 2εr , and since bβ∂�(B, L B) < ε,
we know that dist(zY , L B) < εr . In particular,

2εr ≤ dist(Y, L B) ≤ |Y − zY | + dist(zY , L B) < |Y − zY | + εr = δ(Y ) + εr,

and therefore δ(Y ) ≥ εr , as claimed. □

5. Local John and exterior corkscrews imply Harnack chains

In this section, we prove Theorem 1.2, i.e., that the local John condition together with the exterior
corkscrew condition implies the existence of Harnack chains. Let � ⊂ Rn+1 be an open set with n-ADR
boundary ∂�, and suppose that � satisfies the local D1-John condition and exterior corkscrew condition.
Throughout the section, D is a dyadic system on ∂�.

Proof of Theorem 1.2. Let X, Y ∈ � with δ(X), δ(Y ) ≥ ρ > 0 and |X − Y | < 3ρ for 3 ≥ 1. We start
by noticing that by Theorem 2.11 we know that ∂� is UR, and by Lemma 3.6 we know that harmonic
measure belongs to the class weak-A∞(σ ).
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We will construct a path between X and Y that stays far away from the boundary and use this path
to construct the Harnack chain between X and Y. To ensure that we stay away from the boundary in
a quantitative way, we have to be careful with the construction. This will make the construction quite
technical and therefore we divide the proof into a few different parts.

The argument we present below works as it is in the case diam(∂�) = ∞. We discuss the other cases
in the end of the proof.

Part 1: choosing suitable cubes for X and Y for Lemma 2.19. Take a point zX ∈ ∂� such that δ(X) =

|X − zX |. Let c0 and C0 be the constants from Lemma 2.20. Now, by Lemma 2.20, since X ∈ B(zX , c0 ·

2δ(X)/c0), we know that ωX (1(zX , 2δ(X)/c0)) ≥ 1/C0. Let us cover 1(zX , 2δ(X)/c0) by dyadic
cubes Qi of the same side length such that ℓ(Qi ) ≈ 2δ(X)/c0 and X /∈ 4BQi for any i . There are
at most cn of these types of cubes Qi . Since ωX (1(zX , 2δ(X)/c0)) ≥ 1/C0 and the cubes Qi cover
1(zX , 2δ(X)/c0), we know that there exists a cube Q X ∈{Qi }i such that ωX (Q X )≥ (cnC0)

−1. In addition,
the cube Q X satisfies ℓ(Q X ) ≈ δ(X) ≈ dist(X, Q X ) with uniformly bounded implicit constants since

• one of the cubes Qi contains the point zX and δ(X) = |X − zX |,

• there is only a uniformly bounded number of the cubes Qi , and

• ℓ(Qi ) ≈ 2δ(X)/c0 for every i .

Similarly, we can choose a cube QY that has the same properties but with respect to Y instead of X.

Part 2: choosing a local John point. Let us consider the ball B(zX , D1r0), where

r0 := Cn · max{δ(X), δ(Y ), |X − Y |} (5.1)

for a large enough dimensional constant Cn such that Q X , QY ⊂ B(zX , D1r0). Let Z0 ∈ � be a local
John point for the ball B(zX , D1r0). By the local John condition, we know that B(Z0, D1r0/D1) =

B(Z0, r0) ⊂ � and there exist D1-nontangential paths from the points of 1(zX , D1r0) to Z0. In particular,
there exist D1-nontangential paths from the points on Q X and QY to Z0.

Part 3: choosing starting points for paths. Let us consider the cube Q X . By the choice of Q X and
Lemma 2.19, we know that there exist constants α ∈ (0, 1] and D2 ≥ 1 (independent of X and Q X ) and
a subset AX ⊂ Q X such that

• σ(AX ) ≥ α σ(Q X ), and

• there exist D2-nontangential paths from the points on AX to X.

Let ε0 > 0 be as in Lemma 4.3 and set

ε :=
1
8

min
{ 1

10
ε0,

1
12D1

,
1

12D2

}
. (5.2)

By the bilateral weak geometric lemma (Lemma 4.1) and Lemma 2.16, we know that there exists a cube RX

such that bβ∂�(2BRX ) < ε, σ(RX ∩ AX ) > 0 and ℓ(RX ) ≈ ℓ(Q X ), where the implicit constant depends
only on α and the Carleson packing norm of the collection of cubes Q such that bβ∂�(2BQ) > ε. Let us
choose any point z̃X ∈ RX ∩ AX . Similarly, we can choose sets AY and RY and a point z̃Y for the point Y.
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Part 4: constructing paths between the local John point and X and Y. Let us recap:

• RX ⊂ ∂� is a dyadic cube such that ℓ(RX ) ≈ δ(X).

• ε > 0 is a number defined in (5.2) and we have bβ∂�(2BRX ) < ε.

• z̃X ∈ RX is a point such that there exists a D2-nontangential path from z̃X to X.

• Z0 ∈ � is the local John point for the ball B(zX , D1r0), where |X − zX | = δ(X) and r0 > 0 is the
radius defined in (5.1), and z̃X ∈ B(zX , D1r0).

Let γ1 be a D1-nontangential path from z̃X to Z0 and γ2 be a D2-nontangential path from z̃X to X. Let
L X be a hyperplane such that bβ∂�(2BRX , L X ) < ε and consider the ball B

(
z̃X , 1

2ℓ(RX )
)
. Since we know

that z̃X ∈ RX ⊂ BRX ⊂ 2BRX , Lemma 4.7 gives us

bβ∂�

(
B

(
z̃X ,

1
2
ℓ(RX )

)
, L X

)
< 4ε <

1
2

min
{ 1

10
ε0,

1
12D1

,
1

12D2

}
.

By Lemma 4.4 (applied for bβ∂�

(
B

(
z̃X , 1

2ℓ(RX )
)
, L X

)
< 4ε), we know that both γ1 and γ2 intersect

B
(
z̃X , 1

2ℓ(RX )
)
\U2·4ε·ℓ(RX )/2(L X ) = B

(
z̃X , 1

2ℓ(RX )
)
\U2ε·2ℓ(RX )(L X ).

Let Z1 ∈ γ1 and X1 ∈ γ2 be any points such that Z1, X1 ∈ B
(
z̃X , 1

2ℓ(RX )
)
\ U2ε·2ℓ(RX )(L X ), and let

γ3 be the line segment connecting Z1 to X1. By Lemma 4.7, we know that γ3 is fully contained in
B

(
z̃X , 1

2ℓ(RX )
)
\U2ε·2ℓ(RX )(L X ) and we have

δ(X̂) ≥ ε · 2ℓ(RX ) ≳ δ(X) (5.3)

for every X̂ ∈ γ3, where the implicit constant depends on ε0, D1, D2 and the structural constants appearing
in the proof. Since γ3 is line segment that is fully contained in B

(
z̃X , 1

2ℓ(RX )
)
\U2ε·2ℓ(RX )(L X ), we know

ℓ(γ3) ≤ ℓ(RX ) ≲ δ(X). (5.4)

See Figure 2 for an illustration of the situation.
We now build a path γX from Z0 to X by gluing together (after rescaling) the reversed part of γ1

that travels from Z1 to Z0, the whole γ3 (from Z1 to X1) and the part of γ2 that travels from X1 to X.
Similarly, we can choose a hyperplane LY for RY and points Z2, Y1 ∈ B

(
z̃Y , 1

2ℓ(RY )
)
\ U2ε·2ℓ(RY )(LY )

and construct a path γY from Z0 to Y that passes through Z2 and Y1.

Part 5: constructing the Harnack chains. Let us consider the path γX . Since γ2 is a nontangential path
(from z̃X to X ) and δ(X1) ≈ δ(X), we know that ℓ(γ2)≲ δ(X) and δ(X̂) ≈ δ(X) for every X̂ ∈ γ2(X1, X).
By (5.4), we know that ℓ(γ3) ≲ δ(X), and by (5.3), δ(X̂) ≈ δ(X) for every X̂ ∈ γ3. Thus, for a suitable
uniform implicit constant, we may cover γX \ γ1 by a uniformly bounded number of balls Bi with radii
ri ≈ δ(X) satisfying dist(Bi , ∂�) ≈ diam(Bi ). As for γ1, we notice that since γ1 is a nontangential path
(from z̃X to Z0) given by the local John condition and δ(Z1) ≈ δ(X), we have

ℓ(γ1(z̃X , Z1)) ≲ δ(Z1) ≈ δ(X) and ℓ(γ1) ≲ r0 = Cn · max{δ(X), δ(Y ), |X − Y |},
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X
γ2

Z0
γ1

γ3

X1
Z1

z̃X

U2ε·2ℓ(RX )(L X )

Figure 2. We construct a path between X and the local John point Z0 that stays far away
from the boundary the following way. By a careful choice of a point z̃X ∈ ∂�, we know
that there exists a nontangential path γ1 from z̃X to Z0 (given by the local John condition)
and a nontangential path γ2 from z̃X to X (given by the weak-A∞ property of harmonic
measure through Lemma 2.19). By the BWGL, there exists a hyperplane L X such that L X

approximates B ∩ ∂� well for a suitable ε > 0 and a ball B = B
(
z̃X , 1

2ℓ(RX )
)
, where RX

is a dyadic cube containing z̃X such that ℓ(RX ) ≈ δ(X). By applications of the BWGL,
we know that there exist points Z1 ∈ γ1 ∩ B ∩ � and X1 ∈ γ2 ∩ B ∩ � that do not lie on
the strip U2ε·2ℓ(RX )(L X ), i.e., they lie reasonably far away from the boundary. Because
� ∩ B \ U2ε·2ℓ(RX )(L X ) is convex, we can connect Z1 and X1 to each other with a line
segment γ3. We can now travel from Z0 to X by using pieces of the paths γ1, γ3 and γ2.

and therefore δ(X̂) ≳ δ(X) for all X̂ ∈ γ1(Z1, Z0). In particular, we can cover γX \ (γ2 ∪ γ3) by
N0 ≲ r0/δ(X) balls Bk of radii rk ≈ δ(X) such that dist(Bk, ∂�) ≈ diam(Bk) for each k. Recall that
δ(X), δ(Y ) ≥ ρ > 0 and |X − Y | < 3ρ for 3 ≥ 1. Let us consider different cases:

• Suppose that r0 ≲ |X − Y |. Now we have

N0 ≲
|X − Y |

δ(X)
=

ρ

δ(X)
3 ≤ 3.

• Suppose that r0 = Cnδ(X). Then

N0 ≲
Cnδ(X)

δ(X)
= Cn ≤ Cn3.

• Suppose that r0 = Cnδ(Y ) and δ(Y ) ≫ |X − Y |. Then, by the triangle inequality, δ(X) ≈ δ(Y ) and

N0 ≲
Cnδ(Y )

δ(X)
≈

Cnδ(X)

δ(X)
= Cn ≤ Cn3.

By almost identical arguments, we know that same estimates hold for γY . Thus, we can connect X to Y
by taking the chain of balls Bi that covers γX and γY . These balls satisfy dist(Bi , ∂�) ≈ diam(Bi ) for
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every i with possibly different implicit constants. We may choose a constant C̃ ≥ 1 such that

1
C̃

diam(Bi ) ≤ dist(Bi , ∂�) ≤ C̃ diam(Bi )

for every i since we used only a finite number of different constants in the construction (six, to be more
precise, since we built γX and γY using three pieces for each path with uniform implicit constants for
each piece). We needed a uniformly bounded number of balls to cover the two out of three pieces of γX

(same for γY ) and N ≲ 3 balls to cover the last piece of γX (same for γY ). Thus, the number of balls Bi

is bounded by C3, where C is a large enough constant depending only on n and the ADR, UR, local John,
weak-A∞ and corkscrew constants. Hence, (Bi )i is a Harnack chain between X and Y. This completes
the proof for the case diam(∂�) = ∞.

Let us then consider the remaining two cases. Suppose that diam(∂�) < ∞ and diam(�) < ∞.
Now, if max{δ(X), δ(Y ), |X − Y |} ≪ diam(∂�), things work just as earlier. Thus, we may assume that
max{δ(X), δ(Y ), |X − Y |} ≈ diam(∂�). Since diam(∂�) < ∞, there exists a point Z0 ∈ � such that for
any z ∈ ∂� there exists a D1-nontangential path from z to Z0. Now the previous proof works when we
simply choose this “global” local John point instead of the point we chose in Part 2.

Finally, suppose that diam(∂�) < ∞ and diam(�) = ∞. Let us consider the following three cases:

• If max{δ(X), δ(Y ), |X − Y |} ≪ diam(∂�), we proceed as in the case “diam(∂�) = ∞”.

• If δ(X) ≲ diam(∂�), δ(Y ) ≲ diam(∂�) and |X − Y | ≈ diam(∂�), we proceed as in the case
“diam(∂�) < ∞ and diam(�) < ∞”.

• If δ(X) ≫ diam(∂�) and δ(Y ) ≫ diam(∂�), we can construct a Harnack chain from X to Y in the
simple geometry of Rn+1

\ B(Z , s) for Z ∈ � and s ≈ diam(∂�).

Thus, we may assume that δ(X) ≲ diam(∂�) and δ(Y ) ≫ diam(∂�). The previous procedure does not
work directly in this case because we cannot apply Lemmas 2.20 and 2.19 for δ(Y ) ≫ diam(∂�). Instead,
we connect Y to a point that is close enough to the boundary and then connect this point to X.

Let ŷ ∈∂� be a point such that δ(Y )=|Y − ŷ|. Let us consider the line segment L with endpoints ŷ and Y.
Since L is a line segment and δ(Y )=|Y−ŷ|, we have δ(Z)=|Z−ŷ| for any Z ∈ L . Let us take a point Ŷ ∈ L
such that δ(Ŷ ) = δ(X). Now we can use the earlier procedure to construct a Harnack chain (Bi )i from X
to Ŷ, possibly using a “global” local John point as we did in the case “diam(∂�) < ∞ and diam(�) < ∞”.
Since δ(X) = δ(Ŷ ) ≲ diam(∂�) and δ(Y ) ≫ diam(∂�), the length of the chain (Bi )i depends only on

|X − Ŷ |

δ(X)
≲

|X − Y |

δ(X)
≤

ρ

δ(X)
3 ≤ 3.

We then continue this chain from Ŷ to Y by covering the line segment from Ŷ to Y using balls B̂k with
radii rk ≈ δ(Ŷ ) = δ(X) such that dist(B̂k, ∂�) ≈ diam(B̂k). The number of balls B̂k that we need is
approximately

ℓ(L)

δ(X)
≈

δ(Y )

δ(X)
≈

|X − Y |

δ(X)
≤

ρ

δ(X)
3 ≤ 3,
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where we used that δ(X) ≲ diam(∂�) and δ(Y ) ≫ diam(∂�) (and therefore we have δ(Y ) ≈ |X − Y |).
Hence, combining the chains (Bi )i and (B̂k)k gives us a Harnack chain from X to Y. This completes the
proof of the last case. □

6. Weak (1,1)-version of the Hofmann–Mitrea–Taylor Poincaré inequality and quasiconvexity

Let � be a 2-sided chord-arc domain. In this section, we consider some parts of the Hofmann–Mitrea–
Taylor theory that we need for the proof of Theorem 1.3. Recall the definitions of the tangential
gradient ∇t f , the Hofmann–Mitrea–Taylor Sobolev space L p

1 (∂�) and the Hofmann–Mitrea–Taylor
tangential derivatives ∂t, j,k f and gradient ∇HMT f in Section 2D. It is straightforward to check that for a
compactly supported Lipschitz function f on ∂� we have f ∈ L p

1 (∂�) for every 1 < p < ∞ and hence
the Hofmann–Mitrea–Taylor gradient ∇HMT f exists.

Remark 6.1. In this section and in Section 7, we mostly consider compactly supported Lipschitz
functions but this is enough for our purposes: by the results of [Keith 2003] (see Theorem 7.12 below)
and [Mourgoglou and Tolsa 2021] (see Lemmas 6.2 and 6.4 below), verifying Theorem 1.3 for compactly
supported Lipschitz functions implies Corollary 1.6, which then allows us to give up the assumption
about compact support for Theorem 1.3. Assuming that our Lipschitz functions are compactly supported
ensures that the Hofmann–Mitrea–Taylor gradients exist and we can use the machinery in [Hofmann et al.
2010; Mourgoglou and Tolsa 2021] without additional considerations.

Let us start by recalling two lemmas from [Mourgoglou and Tolsa 2021]. First, when considering
compactly supported Lipschitz functions, the norm of the Hofmann–Mitrea–Taylor gradient agrees with
the norm of the tangential gradient almost everywhere:

Lemma 6.2 [Mourgoglou and Tolsa 2021, Lemma 6.4]. Let f be a compactly supported Lipschitz function
on ∂�. Then

|∇t f | = |∇HMT f | (6.3)

σ -almost everywhere.

In fact, [Mourgoglou and Tolsa 2021, Lemma 6.4] shows us that ∇t f = −∇HMT f almost everywhere,
but we only need the comparability of the norms. We note that that lemma is formulated for bounded
domains but a routine inspection of the proof shows us that it holds for compactly supported Lipschitz
functions also in unbounded domains.

Furthermore, for Lipschitz functions, the norm of the tangential gradient (and hence the norm of the
Hofmann–Mitrea–Taylor gradient) agrees almost everywhere with the “local Lipschitz constant” function:

Lemma 6.4 [Mourgoglou and Tolsa 2021, Lemma 2.2]. Let f be a Lipschitz function on ∂�. Then

|∇t f (x)| = lim sup
∂�∋y→x

| f (x) − f (y)|

|x − y|
≈ lim sup

r→0
/
∫

1(x,r)

| f (x) − f (y)|

|x − y|
dσ(y) (6.5)

for σ -a.e. x ∈ ∂�.

As a part of their extensive work, Hofmann, Mitrea and Taylor proved the following weak (p, p)-
Poincaré inequality with a tail:
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Theorem 6.6 [Hofmann et al. 2010, Proposition 4.13]. Let 1 < p < ∞. There exists a constant C =

C(�, p) such that for every f ∈ L p
1 (∂�), x ∈ ∂� and r > 0 we have(

/
∫

1

| f −⟨ f ⟩1|
p dσ

)1/p

≤ Cr
(

/
∫

51

|∇HMT f |
p dσ

)1/p

+Cr
∞∑
j=2

2− j

σ(2 j1)

∫
2 j 1\2 j−11

|∇HMT f | dσ, (6.7)

where 1 := 1(x, r).

Some remarks related to the formulation of Theorem 6.6 are in order. In [Hofmann et al. 2010],
Theorem 6.6 is formulated assuming only that ∂� is Ahlfors–David regular and � satisfies the 2-sided
local (D0, R0)-John condition (recall Definition 3.4), and the result holds for all r ∈ (0, R0) instead
of all r ∈ (0, diam(∂�)). As we noted in Example 3.5, if R0 is not large enough, the 2-sided local
(D0, R0)-John condition is not strong enough to imply that ∂� is connected. Since Heinonen–Koskela-
type weak Poincaré inequalities (recall Definition 2.29) imply connectivity (see, e.g., [Cheeger 1999,
Theorem 17.1]), we know that the Hofmann–Mitrea–Taylor Poincaré inequalities may hold even when
Heinonen–Koskela-type weak Poincaré inequalities fail.

This being said, if � is a 2-sided chord-arc domain (as we assumed in the beginning of this section),
then the Hofmann–Mitrea–Taylor Poincaré inequalities hold as in Theorem 6.6 and they self-improve to
Heinonen–Koskela-type Poincaré inequalities. The first claim is due to [Hofmann et al. 2010, Lemma 3.13]:
any NTA domain satisfies the local (D0, R0)-John condition where R0 is the upper bound for the scales of
the corkscrew conditions. Since we assume that the corkscrew conditions hold for any 0 < r < diam(∂�),
we get the local D0-John condition. The second claim follows from Corollary 1.6 which we prove using
a Hofmann–Mitrea–Taylor-type Poincaré estimate (see Lemma 6.8 below) in the next section.

For the case p > 1, we can use directly the estimate (6.7) together with the arguments in the next
section to obtain a weak p-Poincaré inequality. However, for the case p = 1, we need to revisit estimate
(6.7) since an inspection of its proof shows us that a simple limiting argument does not work. Because of
this, we prove the following weak (1, 1)-type version of the Hofmann–Mitrea–Taylor Poincaré inequality:

Lemma 6.8. There exists a constant C = C(�) such that the following holds. For every compactly sup-
ported Lipschitz function f on ∂� and every ξ ∈ ∂�, r >0 and 1 :=1(ξ, r), there exists a1 ∈R such that

sup
λ>0

λσ({y ∈1 : | f (y)−a1|>λ})≤Cr
∫

51

|∇HMT f |dσ+Cr
∞∑
j=2

2− j (n+1)

∫
2 j 1\2 j−11

|∇HMT f |dσ. (6.9)

The proof of Lemma 6.8 is similar to the proof of estimate (6.7), which uses heavily the machinery
built in [Hofmann et al. 2010]. For the convenience of the reader, we provide the key arguments below.
For the proof, we recall the definitions of the Riesz transform Rσ , the maximal truncation of the Riesz
transform Rσ,∗ and the double layer potential D of a suitable function f on ∂�: for ε > 0, X ∈ Rn+1 and
Z ∈ �, we set

Rσ,ε f (X) :=
1

Cn

∫
∂�\B(X,ε)

X − y
|X − y|n+1 f (y) dσ(y), Rσ f (X) := lim

ε→0
Rσ,ε f (X),

D f (Z) :=
1

Cn

∫
∂�

ν(y) · (y − Z)

|Z − y|n+1 f (y) dσ(y), Rσ,∗ f (X) := sup
ε>0

|Rσ,ε f (X)|,
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where ν is the measure-theoretic outer unit normal of � (see (2.2.11) in [Hofmann et al. 2010]) and Cn

is the surface area of the unit sphere in Rn+1. We extend D f to the whole Rn+1
\ ∂� by changing the

direction of the normal ν for points X ∈ int �c.

Proof. Let f be a compactly supported Lipschitz function on ∂�, ξ ∈ ∂� and 0 < r < diam(∂�). Let
1 := 1(ξ, r) = B(ξ, r) ∩ ∂�. By the theory of layer potentials we know that for σ -a.e. x ∈ ∂� we have

f (x) = D+ f (x) −D− f (x),

where D+ f (x) and D− f (x) are the inner and outer nontangential limits of D f at x , respectively (see, e.g.,
[Hofmann et al. 2010, Section 3.3] and apply the results separately for � and int �c). These nontangential
limits exist σ -almost everywhere. For a constant vector h1 to be fixed below, we consider the function

u(X) := D f (X) − X · h1, X ∈ Rn+1
\ ∂�.

Then, by the σ -a.e. existence of the limits D± f , the inner and outer nontangential limits u±(x) of u exist
for σ -a.e. x ∈ ∂�. Thus, we have

f (x) = u+(x) − u−(x) for σ -a.e. x ∈ ∂�.

To prove the estimate (6.9), we choose

a1 = u(X+

1) − u(X−

1),

where X+

1 and X−

1 are interior and exterior local John points inside B(ξ, r), respectively. Since
B(X±

1, cr) ⊂ B(ξ, r) \ ∂�, we know that δ(X±

1) ≈ r . Now, for any λ > 0, we have

σ({x ∈ 1 : | f (x) − a1| > λ})

≤ σ
({

x ∈ 1 : |u+(x) − u(X+

1)| >
λ

2

})
+ σ

({
x ∈ 1 : |u−(x) − u(X−

1)| >
λ

2

})
. (6.10)

We only estimate the first term on the right-hand side of (6.10) since the second one is estimated similarly.
For any x ∈ 1, let γ +

x be a nontangential path in � from x to X+

1. Such a nontangential path with a
uniform constant exists for every x ∈ 1 by the local John condition. Since γ +

x is a nontangential path
with a uniform constant, we know that γ +

x ⊂ B(ξ, Ar) for some fixed A ≥ 1. Then, for any Y ∈ γ +
x ∩ �,

the mean value theorem gives us

|u(Y ) − u(X+

1)| ≤ H1(γ +

x ) sup
Z∈γ +

x ∩�

|∇u(Z)| ≲ r N∗(χB(ξ,Ar)|∇u|)(x),

where N∗ is the nontangential maximal operator for suitable aperture constant α > 1 as defined in (2.4)
(recall that a D-nontangential path from x ∈ ∂� to X ∈ � travels inside the cone 0D(x), like we discussed
in the beginning of Section 3). Letting Y → x then gives us

|u+(x) − u(X+

1)| ≲ r N∗(χB(ξ,Ar)|∇u|)(x).

Thus,

σ
({

x ∈ 1 : |u+(x) − u(X+

1)| >
λ

2

})
≲ σ({x ∈ 1 : r N∗(χB(ξ,Ar)|∇u|)(x) > cλ}). (6.11)
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Let us then estimate the right-hand side of (6.11). We notice that for all X ∈ 0α(x)∩ B(ξ, Ar) it holds
that ∇u(X)=∇D f (X)−h1. By (3.6.29) in [Hofmann et al. 2010], we know that for all X ∈� it holds that

∇D f (X) =

(∑
i

∫
∂�

∂iE(X − y) ∂t, j,i f (y) dσ(y)

)
1≤ j≤n+1

,

where E is the fundamental solution to the Laplacian in Rn+1, that is,

E(X) :=


1

Cn(1−n)

1
|X |n−1 if n ≥ 2,

1
2π

log |X | if n = 1
(6.12)

for X ∈ Rn+1
\ {0}, where Cn is the surface area of the unit sphere in Rn+1. Thus, choosing

h1 :=

(∑
i

∫
∂�\2A1

∂iE(ξ − y) ∂t, j,i f (y) dσ(y)

)
1≤ j≤n+1

gives us

∇u(X) =

(∑
i

∫
2A1

∂iE(X − y) ∂t, j,i f (y) dσ(y)

)
1≤ j≤n+1

+

(∑
i

∫
∂�\2A1

(∂iE(X − y) − ∂iE(ξ − y)) ∂t, j,i f (y) dσ(y)

)
1≤ j≤n+1

=

(∑
i

Ri,σ (χ2A1 ∂t, j,i f )(X)

)
1≤ j≤n+1

+

(∑
i

Ri,σ (χ(2A1)c ∂t, j,i f )(X) −Ri,σ (χ(2A1)c ∂t, j,i f )(ξ)|

)
1≤ j≤n+1

=: I (X) + II (X), (6.13)

where Ri,σ stands for the i-th component of the Riesz transform Rσ . We then have

σ({x ∈ 1 : r N∗(χB(ξ,Ar)|∇u|)(x) > cλ})

≤ σ
({

x ∈ 1 : r N∗(χB(ξ,Ar)|I |)(x) >
cλ
2

})
+ σ

({
x ∈ 1 : r N∗(χB(ξ,Ar)|II |)(x) >

cλ
2

})
.

We first estimate the term σ
({

x ∈1 :r N∗(χB(ξ,Ar)|I |)(x)> 1
2 cλ

})
. Let x ∈1 and Y ∈0α(x)∩B(ξ, Ar),

where 0α(x) is the cone at x with aperture α (recall (2.5)). Let ε = εx,Y := 2|x − Y | and 1ε := 1(x, ε).
We then have

|I (Y )| ≤

∑
i, j

|Ri,σ (χ2A1 ∂t, j,i f )(Y )|

≤

∑
i, j

|Ri,σ (χ2A1∩1ε
∂t, j,i f )(Y )| +

∑
i, j

|Ri,σ (χ2A1\1ε
∂t, j,i f )(Y ) −Ri,σ (χ2A1\1ε

∂t, j,i f )(x)|

+

∑
i, j

|Ri,σ (χ2A1\1ε
∂t, j,i f )(x)|. (6.14)

Since dist(Y, ∂�) ≈ ε, the first term on the right-hand side of (6.14) satisfies∑
i, j

|Ri,σ (χ2A1∩1ε
∂t, j,i f )(Y )| ≲

∑
i, j

∫
1ε

|χ2A1 ∂t, j,i f |

εn dσ

≈

∑
i, j

/
∫

1ε

|χ2A1 ∂t, j,i f | dσ ≤ M(χ2A1|∇HMT f |)(x),
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where we used Ahlfors–David regularity for the estimate εn
≈ σ(1(x, ε)) and M stands for the centered

maximal Hardy–Littlewood operator on ∂�. For the second term on the right-hand side of (6.14), we get∑
i, j

|Ri,σ (χ2A1\1ε
∂t, j,i f )(Y ) −Ri,σ (χ2A1\1ε

∂t, j,i f )(x)|

(A)
≲

∫
2A1\1ε

|Y − x |

|x − y|n+1 |∇HMT f (y)| dσ(y)

≲
∫

∂�\1ε

ε

|x − y|n+1 |χ2A1(y)∇HMT f (y)| dσ(y)

(B)
≲

∞∑
k=1

∫
2k1ε\2k−11ε

ε

(2kε)n+1 |χ2A1(y)∇HMT f (y)| dσ(y)

(C)
≲

∞∑
k=1

2−k

σ(2k1ε)

∫
2k1ε\2k−11ε

|χ2A1∇HMT f | dσ ≲ M(χ2A1∇HMT f )(x),

where we used

(A) the mean value theorem for the Riesz kernel functions X = (X1, X2, . . . , Xn+1) 7→ X i/|X |
n+1 and

the estimate |∇ X i/|X |
n+1

| ≲ 1/|X |
n+1,

(B) the fact that x is the center point of 1ε and hence, |x − y| ≈ 2kε for y ∈ 2k1ε \ 2k−11ε,

(C) Ahlfors–David regularity.

In addition, the last term on the right-hand side of (6.14) is bounded above by the sum∑
i, j

Ri,σ,∗(χ2A1 ∂t, j,i f )(x),

where Ri,σ,∗ stands for the maximal truncation of the Riesz transform defined using only the i-th
component of Rσ . Thus,

|I (Y )| ≲ M(χ2A1∇HMT f )(x) +

∑
i, j

Ri,σ,∗(χ2A1 ∂t, j,i f )(x),

and so

σ
({

x ∈ 1 : r N∗(χB(ξ,2r)|I |)(x) >
cλ
2

})
≤ σ

({
x ∈ 1 : M(χ2A1∇HMT f )(x) >

c′λ

r

})
+

∑
i, j

σ
({

x ∈ 1 : Ri,σ,∗(χ2A1 ∂t, j,i f )(x) >
c′λ

r

})
.

Since ∂� is uniformly rectifiable, Rσ is bounded from L2(σ ) to L2(σ ) [David and Semmes 1991], and
therefore Ri,σ,∗ is of weak type-(1, 1) with respect to σ by classical Calderón–Zygmund-type techniques;
see, e.g., [Grafakos 2014, Section 5]. This and the weak type-(1, 1) of the Hardy–Littlewood maximal
operator, combined with the previous estimates, then give us

σ
({

x ∈ 1 : r N∗(χB(ξ,Ar)|I |)(x) >
cλ
2

})
≲ r

λ

∫
2A1

|∇HMT f | dσ. (6.15)
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Let us then consider the term II (X) in (6.13). For x ∈1 and X ∈0α(x)∩B(ξ, Ar), the same arguments
as with the middle sum in (6.14) give us

|II (X)| ≲
∫

∂�\2A1

r
|ξ − y|n+1 |∇HMT f (y)| dσ(y) ≲

∞∑
j=2

2− j

σ(2 j1)

∫
2 j 1\2 j−11

|∇HMT f | dσ.

Therefore,

σ
({

x ∈ 1 : r N∗(χB(ξ,2r)|II |)(x) >
cλ
2

})
≲

r
λ

σ(1)

∞∑
j=2

2− j (n+1)

∫
2 j 1\2 j−11

|∇HMT f | dσ. (6.16)

Combining (6.15) and (6.16) with (6.11) and other previous estimates gives us

σ
({

x ∈ 1 : |u+(x) − u(X+

1)| >
λ

2

})
≲

r
λ

∫
2A1

|∇HMT f | dσ +
r
λ

∞∑
j=2

2− j (n+1)

∫
2 j 1\2 j−11

|∇HMT f | dσ.

By a straightforward covering argument, the right-hand side of the preceding inequality is comparable to
the right-hand side of (6.9), with the comparability constant depending on A. By similar arguments, one
can check that the same estimate holds replacing u+ by u− and X+

1 by X−

1. The claim follows then by
applying the inequalities for u+ and u− to (6.10). □

For the proof of the case diam(∂�) < ∞ in Theorem 1.3, we give a short proof of the fact that
Theorem 6.6 implies quasiconvexity for bounded 2-sided chord-arc domains:

Lemma 6.17. Suppose that � is a 2-sided chord-arc domain such that diam(∂�) < ∞. Then the
boundary ∂� is quasiconvex.

Notice that Corollary 1.6 implies stronger connectivity properties than the conclusion of Lemma 6.17
(recall Corollary 1.9) but we need Lemma 6.17 to prove Corollary 1.6. Lemma 6.17 follows almost
directly from the results reviewed in this section when we combine them with the following result of
Durand-Cartagena, Jaramillo and Shanmugalingam:

Theorem 6.18 [Durand-Cartagena et al. 2013, Theorem 3.6]. Let (X, d, µ) be a complete metric measure
space with a doubling measure µ. Suppose that for every bounded Lipschitz function f that is locally
1-Lipschitz there exists a functional a f : B → [0, ∞) such that

/
∫

B
| f − ⟨ f ⟩B | dµ ≤ a f (B) ≤ CrB,

where B is the collection of all open balls in (X, d), C is a uniform constant and rB is the radius of the
ball B. Then the space (X, d) is quasiconvex.

Proof of Lemma 6.17. Let f be a bounded Lipschitz function on ∂� such that f is locally 1-Lipschitz,
and let B = {1(x, r) : x ∈ ∂�, r < diam(∂�)}. Since diam(∂�) < ∞, we know that ∇HMT f exists (recall
Remark 6.1). Let us define the functional a f : B → R by setting

a f (1) = C2r
(

/
∫

1

|∇HMT f |
2 dσ

)1/2

+ C2r
∞∑
j=2

2− j

σ(2 j1)

∫
2 j 1\2 j−11

|∇HMT f | dσ
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for every 1 = 1(x, r) ∈ B, where C2 is the constant given by Theorem 6.6 for the arbitrary choice p = 2.
By part (1) of Lemma 6.2, the functional a f is well-defined, and the fact that a f (1) < ∞ for each 1 ∈ B
follows from the argument below. Now, by Lemmas 6.2 and 6.4, and the fact that f is locally 1-Lipschitz,
we know that |∇HMT f | ≤ 1 almost everywhere. In particular, for 1 = 1(x, r) ∈ B we have

a f (1) ≤ C2r + C2r
∞∑
j=2

2− j

σ(2 j1)
σ(2 j1 \ 2 j−11) ≤ C2r +

∞∑
j=2

2− j
≤ 2C2r. (6.19)

Thus, we now only need to notice that by Hölder’s inequality and the estimate (6.19), we have

/
∫

1

| f − ⟨ f ⟩1| dσ ≤

(
/
∫

1

| f − ⟨ f ⟩1|
2 dσ

)1/2

≤ a f (1) ≤ 2C2r

for any 1 = 1(x, r) ∈ B, and the claim follows from Theorem 6.18. □

7. Weak 1-Poincaré inequality for boundaries of 2-sided chord-arc domains

Let � be a 2-sided chord-arc domain. In this section, we prove Theorem 1.3 and Corollary 1.6 with
the help of some tools from the literature. As a simple consequence of Theorem 1.3 and some results
in the literature, we also show that the tail in the Hofmann–Mitrea–Taylor weak Poincaré inequality
(Theorem 6.6) can be removed, at least when � is a bounded 2-sided chord-arc domain (see Corollary 7.13).

Instead of proving a Poincaré-type inequality directly, we use the following result to reduce the proof
to a pointwise estimate:

Theorem 7.1 [Heinonen et al. 2015, part of Theorem 8.1.7]. Let (X, d, µ) be a metric measure space
with a doubling measure µ and V be a Banach space. Suppose that 1 ≤ p < ∞, u : X → V is integrable
on balls and g : X → [0, ∞] is measurable. Then the following two conditions are equivalent:

(a) There exist constants C, λ ≥ 1 such that

/
∫

B
|u(x) − ⟨u⟩B | dµ(x) ≤ C diam(B)

(
/
∫

λB
g(x)p dµ(x)

)1/p

for every open ball B in X.

(b) There exist constants C, λ ≥ 1 such that

|u(x) − u(y)| ≤ Cd(x, y)
(
Mλd(x,y)(g p)(x) + Mλd(x,y)(g p)(y)

)1/p

for almost all x, y ∈ X, where MR is the R-truncated centered Hardy–Littlewood maximal operator
on ∂�,

MR f (z0) := sup
r<R

/
∫

1(z0,r)

| f (z)| dσ(z).

These types of characterizations with respect to pointwise inequalities originate from [Heinonen and
Koskela 1998].

Thus, to prove Theorem 1.3, it is enough for us to prove the following lemma (recall also Remark 6.1):



CONNECTIVITY CONDITIONS AND BOUNDARY POINCARÉ INEQUALITIES 1859

Lemma 7.2. Suppose that u is a compactly supported Lipschitz function on ∂�. There exists a universal
constant C ≥ 1 such that

|u(x) − u(y)| ≤ C |x − y|
(
MC |x−y|(|∇t u|)(x) + MC |x−y|(|∇t u|)(y)

)
for all points x, y ∈ ∂� for which the tangential gradient ∇t u exists and (6.5) holds.

Let u be a compactly supported Lipschitz function on ∂�. As we noted in Section 2D, the tangential
gradient ∇t u exists for almost every point x ∈ ∂�. By Lemma 6.4, we know that (6.5) holds for almost
every point x ∈ ∂�. Thus, the points in Lemma 7.2 are almost all points in ∂�, as is required in
Theorem 7.1.

In the proof of Lemma 7.2, we use a smooth cutoff function for balls. The construction of the function
uses the usual mollifier technique. For the convenience of the reader — particularly because we need a
quantitative bound for the norm of the gradient — we give the key details below.

Let us start by defining the standard mollifier. We set η : Rn+1
→ R,

η(X) =

{
cne−1/(1−|X |

2) if |X | < 1,

0 if |X | ≥ 1,

where the constant cn is chosen so that
∫

Rn+1 η(X) d X = 1. For any κ > 0, we set

ηκ(X) =
1

κn+1 η

(
X
κ

)
.

Notice that supp ηκ ⊂ B(0, κ). Using the standard mollifier, we define the smooth cutoff function ϕκ for
the ball B(0, κ) characteristic function using convolutions: we set ϕκ : Rn+1

→ R,

ϕκ(X) = ηκ ∗ χB(0,κ)(X). (7.3)

Thus, we have

ϕκ(X) =

∫
Rn+1

ηκ(X − Y ) χB(0,κ)(Y ) dY

=

∫
Rn+1

ηκ(Y ) χB(0,κ)(X − Y ) dY =

∫
B(0,κ)

ηκ(Y ) χB(0,κ)(X − Y ) dY.

From this representation, we see that ϕκ ≡ 1 on B(0, κ) and ϕκ ≡ 0 on Rn+1
\ B(0, 2κ). By the standard

theory of mollifiers (see, e.g., [Evans and Gariepy 1992, p. 123–124]), we know that ϕκ is smooth and it
satisfies

∇ϕκ(X) =

∫
Rn+1

∇Xηκ(X − Y ) χB(0,κ)(Y ) dY. (7.4)

In particular, by the construction, the smoothness and compact support of η and (7.4), for X =(X1, . . . ,Xn+1)

we have ∣∣∣∣ ∂i

∂ X i
ϕκ(X)

∣∣∣∣ =

∣∣∣∣∫
Rn+1

∂i

∂ X i
ηκ(X − Y )χB(0,κ)(Y ) dY

∣∣∣∣
≤

∫
Rn+1

∣∣∣∣ ∂i

∂ X i
ηκ(X − Y )

∣∣∣∣ dY =
1
κ

∫
Rn+1

∣∣∣∣ ∂i

∂ X i
η(X − Y )

∣∣∣∣ dY ≤
C
κ

,
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where the constant C does not depend κ . Thus, we have |∇ϕκ(X)| ≲ 1
κ

. We note that this implies that ϕκ

is a compactly supported Lipschitz function. Therefore the tangential gradient of ϕκ exists for almost
every point x ∈ ∂�, and (7.5) and Lemma 6.4 imply that

|∇tϕκ(x)| ≲ 1
κ

. (7.5)

By translating and adjusting the constant κ , we can construct a smooth cutoff function for any ball B(X, r)

in Rn+1.

Proof of Lemma 7.2. Let us fix points x, y ∈ ∂� such that the tangential gradient exists at x and y and
(6.5) holds for x and y.

We prove the bound by using truncation and localization arguments which help us to control the values
of the function inside balls 1(x, c|x − y|) and 1(y, c|x − y|) and allow us to deal with the tail in the
right-hand side of inequality (6.9). We first assume that diam(∂�) = ∞. Without loss of generality, we
may assume that u(x) = 0 < u(y). In particular, we have |u(x) − u(y)| = u(y). We set

ũ(z) :=


u(z) if u(x) < u(z) < u(y),

0 if u(z) ≤ 0,

u(y) if u(z) ≥ u(y).

Notice that ũ is a Lipschitz function since we get it by truncating the Lipschitz function u from above
and below. Thus, by Lemma 6.4, we have

|∇t u(z0)| = lim sup
∂�∋z→z0

|u(z0) − u(z)|
|z0 − z|

and |∇tũ(z0)| = lim sup
∂�∋z→z0

|ũ(z0) − ũ(z)|
|z0 − z|

for σ -a.e. z0 ∈ ∂�. Let z0 ∈ ∂� be a point such that the above holds. By continuity, we have the following:

(i) If u(z0) < u(x) = 0 or u(z0) > u(y), then |∇tũ(z0)| = 0 ≤ |∇t u(z0)|.

(ii) If u(x) < u(z0) < u(y), then |∇tũ(z0)| = |∇t u(z0)|.

(iii) If u(z0) = u(x) = 0, then there exists r = rz0 > 0 such that if |z0 − z| < r , then u(z) < u(y). For
such z,

• if u(z) > u(x), then |ũ(z0) − ũ(z)| = |u(z0) − u(z)|, and
• if u(z) ≤ u(x), then |ũ(z0) − ũ(z)| = 0 ≤ |u(z0) − u(z)|.

In particular, we have |∇tũ(z0)| ≤ |∇t u(z0)|.

(iv) If u(z0) = u(y), then |∇tũ(z0)| ≤ |∇tu(z0)| by an argument similar to that in (iii).

Thus, for almost every z0 ∈ ∂�, the tangential gradients exist for u and ũ and we have

|∇tũ(z0)| ≤ |∇t u(z0)|. (7.6)

Let us then start processing |u(x) − u(y)|. We define

R := |x − y|, 10 := 1(x, R), 1′

0 := 1(y, R), 1j := 2− j10 and 1′

j := 2− j1′

0.
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Let ϕ = ϕ2α R be a smooth cutoff function for the ball B(x, 2α R) as in (7.3) (after translation, for the
choice κ = 2α R) for large α ∈ N to be fixed later, and let v := ϕ ũ. By Lemma 6.8, there exist numbers
a1j ∈ R such that

sup
λ>0

λ σ({z ∈ 1j : |v(z) − a1j | > λ}) ≤ Crj σ(1j ) Sj , (7.7)

where rj := 2− j R and

Sj := /
∫

51j

|∇HMTv| dσ +

∞∑
k=2

2−k

σ(2k1j )

∫
2k1j \2k−11j

|∇HMTv| dσ. (7.8)

An analogous estimate holds when we replace 1j , a1j and Sj by 1′

j , a1′

j
and S′

j , respectively, where S′

j
is defined as Sj with 1′

j in place of 1j . We claim now that

lim
j→∞

a1j = v(x) = ũ(x) = u(x) = 0. (7.9)

Indeed, for any λ ∈ (0, |a1j − ⟨v⟩1j |) and any z ∈ 1j , we have

λ < |a1j − ⟨v⟩1j | ≤ |v(z) − a1j | + |v(z) − ⟨v⟩1j |.

Hence, by (7.7) and Chebyshev’s inequality, we get

σ(1j ) ≤ σ
({

z ∈ 1j : |v(z) − a1j | >
λ

2

})
+ σ

({
z ∈ 1j : |v(z) − ⟨v⟩1j | >

λ

2

})
≲

1
λ

rj σ(1j ) Sj +
1
λ

∫
1j

|v − ⟨v⟩1j | dσ.

Therefore,

λ ≲ rj Sj + /
∫

1j

|v − ⟨v⟩1j | dσ. (7.10)

Since v is a compactly supported Lipschitz function, Lemmas 6.2 and 6.4 give |Sj |≲ ∥∇HMTv∥L∞(σ ) <∞,
and thus rj Sj → 0 as j → ∞. By the continuity of v, we also know that /

∫
1j

|v(z) − ⟨v⟩1j | dσ → 0 as
j → ∞. Then, choosing λ =

1
2 |a1j − ⟨v⟩1j | gives us (7.9) by (7.10) and continuity of v.

Analogously to (7.9), we also have

lim
j→∞

a1′

j
= v(y) = ũ(y) = u(y).

Thus,
u(y) = |u(x) − u(y)| = |v(x) − v(y)|

=

∣∣∣∣( ∞∑
j=0

(a1j+1 − a1j ) + a10

)
−

( ∞∑
j=0

(a1′

j+1
− a1′

j
) + a1′

0

)∣∣∣∣
≤

∞∑
j=0

|a1j+1 − a1j | +

∞∑
j=0

|a1′

j+1
− a1′

j
| + |a10 − a1′

0
|

=: I + II + III.

Let us consider the sum I first. We analyze I by applying (7.7) again for |a1j − a1j+1 |. For any
λ ∈ (0, |a1j − a1j+1 |) and any z ∈ 1j , we have

λ < |a1j − a1j+1 | ≤ |v(z) − a1j | + |v(z) − a1j+1 |,
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and therefore (7.7) gives us

σ(1j ) ≤ σ
({

z ∈ 1j : |v(z) − a1j | >
λ

2

})
+ σ

({
z ∈ 1j+1 : |v(z) − a1j+1 | >

λ

2

})
≲ 1

λ
rj σ(1j ) Sj +

1
λ

rj+1 σ(1j+1) Sj+1

≲ 1
λ

rj σ(1j ) Sj .

Thus, λ ≲ rj Sj . Since this holds for all λ ∈ (0, |a1j − a1j+1 |), we have

|a1j − a1j+1 | ≲ rj Sj . (7.11)

This then gives us

I ≲
∞∑
j=0

rj Sj

(A)
≲

∞∑
j=0

(
2− j R /

∫
51j

|∇t(ũϕ)|dσ+2− j R
j+α+1∑

k=2

2−k /
∫

2k1j

|∇t(ũϕ)|dσ

)
(B)
≤

∞∑
j=0

2− j R
j+α+1∑

k=2

2−k /
∫

2k1j

|∇tũ|dσ+

∞∑
j=0

2− j R·2− j−α−1 1
σ(2α+110)

∫
2α+110\2α10

|ũ(z)∇tϕ(z)|dσ(z)

(C)
≲ R·M2α+2 R(∇tũ)(x)+

ũ(y)

2α
,

where we used

(A) the definition of Sj (see (7.8)), Lemma 6.2 and the fact that ϕ vanishes outside 2α+110,

(B) Ahlfors–David regularity, the product rule for gradients and the properties of the cutoff function ϕ:
ϕ ≤ 1 everywhere and ϕ is constant on 2α10 and outside 2α+110,

(C) the fact that 2k1j ⊂ 2α+110 for all the relevant k and j , the definition of the truncated Hardy–
Littlewood maximal operator, the fact that ũ(z) ≤ ũ(y) for all z, and (7.5).

Using the same techniques gives us the bound

II ≲ R · M2α+2 R(∇tũ)(y) +
ũ(y)

2α
.

As for III , we notice that

III ≤ |a10 − a210 | + |a210 − a1′

0
| ≲ r0 S0.

Indeed, the fact that |a10 − a210 | ≲ r0 S0 follows from (7.11), and an analogous estimate holds for the
term |a210 − a1′

0
|. Thus, the estimate obtained above for the term I is also valid for III :

III ≲
∞∑
j=0

rj Sj ≲ R · M2α+2 R(∇tũ)(x) +
ũ(y)

2α
.
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Note that none of the implicit constants for the bounds for I , II and III depends on α. Thus, recalling
that u(x) = 0 < u(y) = ũ(y) and R = |x − y|, there exists a constant C such that

u(y) = |u(x) − u(y)| ≤ I + II + III

≤ C R(M2α+2 R(∇tũ)(x) + M2α+2 R(∇tũ)(y)) +
C
2α

ũ(y)

(7.6)
≤ 2C |x − y|(M2α+2 R(∇t u)(x) + M2α+2 R(∇t u)(y)) +

C
2α

u(y).

By choosing large enough α, we may absorb (C/2α)u(y) to the left-hand side. This completes the proof
for the case diam(∂�) = ∞.

Let us then assume that diam(∂�) < ∞. We have to consider this case separately because in the
bounded case there might not exist cutoff functions with gentle enough gradient slope. However, the proof
is still based on the previous case. The proof works as previously if |x − y| ≪ diam(∂�) and thus, we may
assume that |x−y|≈diam(∂�). Now, by Lemma 6.17, we know that there exists a path γx,y from x to y in
∂� such that ℓ(γx,y)≤C0|x−y|≈C0 ·diam(∂�). Using a covering argument for γx,y , we find a uniformly
bounded number of points z0, z1, . . . , z J ∈ ∂� with z0 = x , z J = y and |z j − z j+1| ≪ diam(∂�). We get

|u(x) − u(y)| ≤

J−1∑
j=0

|u(z j ) − u(z j+1)|

≲
J−1∑
j=0

|z j − z j+1|
(
MC |z j −z j+1|(|∇t u|)(z j ) + MC |z j −z j+1|(|∇t u|)(z j+1)

)
≲ |x − y|

(
MC̃ |x−y|

(|∇t u|)(x) + MC̃ |x−y|
(|∇t u|)(y)

)
,

which is what we wanted. □

Corollary 1.6 follows now immediately when we combine Theorem 1.3 and Lemma 6.4 with the
following key result of Keith (which is an improvement of an earlier result of [Heinonen and Koskela
1999, Theorem 1.1]):

Theorem 7.12 [Keith 2003, Theorem 2]. Let (X, d, µ) be a complete metric measure space with a
doubling measure µ and 1 ≤ p < ∞. Then the following conditions are equivalent:

(a) The space (X, d, µ) supports a weak p-Poincaré inequality.

(b) There exist constants C, λ ≥ 1 such that

/
∫

B
|u(x) − ⟨u⟩B | dµ(x) ≤ C diam(B)

(
/
∫

λB
(Lip u(x))p dµ(x)

)1/p

for every compactly supported Lipschitz function u and every ball B in X, where

Lip u(x) := lim sup
y→x
y ̸=x

| f (x) − f (y)|

d(x, y)
.

As a consequence of Theorem 1.3, we get the following improvement of Theorem 6.6 in bounded
2-sided chord-arc domains:
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Corollary 7.13. Let � ⊂ Rn+1 be a bounded 2-sided chord-arc domain, and let 1 < p < ∞. There exists
a constant C = C(�, p) such that for every f ∈ L p

1 (∂�), x ∈ ∂� and r > 0 we have(
/
∫

1

| f − ⟨ f ⟩1|
p dσ

)1/p

≤ Cr
(

/
∫

31

|∇HMT f |
p dσ

)1/p

,

where 1 := 1(x, r) and 3 is the constant from Theorem 1.3.

It is likely that the boundedness assumption is not necessary for Corollary 7.13 but since the density
results in [Hofmann et al. 2010, Section 4.3] are stated in the case where the boundary ∂� is compact, we
only consider this case. We do not consider the case p = 1 since the theory of the Hofmann–Mitrea–Taylor
Sobolev spaces L p

1 (∂�) has been developed only for 1 < p < ∞.

Proof of Corollary 7.13. Let f ∈ L p
1 (∂�), x ∈ ∂�, r > 0 and 1 := 1(x, r). By [Hofmann et al. 2010,

Corollary 4.28], we know that Lipschitz functions form a dense subset of L p
1 (∂�) when L p

1 (∂�) is
equipped with the natural Sobolev-type norm; see [Hofmann et al. 2010, Section 3.6] for details. In
particular, since � is a bounded 2-sided chord-arc domain, there exists a sequence of compactly supported
Lipschitz functions ( fk) such that fk → f and ∇HMT fk → ∇HMT f in L p(∂�). By Theorem 1.3, the
functions fk satisfy a weak 1-Poincaré inequality with respect to the tangential gradient, which implies a
weak (p, p)-Poincaré inequality with respect to tangential gradient by Hölder’s inequality and [Heinonen
et al. 2015, Corollary 9.14]. These observations together with Lemma 6.2 give us(

/
∫

1

| fk − ⟨ fk⟩1|
p dσ

)1/p

≤ Cr
(

/
∫

31

|∇t fk |
p dσ

)1/p

= Cr
(

/
∫

31

|∇HMT fk |
p dσ

)1/p

.

Letting k → ∞ then gives us(
/
∫

1

| f − ⟨ f ⟩1|
p dσ

)1/p

≤ Cr
(

/
∫

31

|∇HMT f |
p dσ

)1/p

by standard L p convergence arguments, which is what we wanted. □

8. A counterexample and questions

By Corollary 1.6, we know that the boundary of any 2-sided chord-arc domain supports weak Heinonen–
Koskela-type Poincaré inequalities. It is natural to ask the following:

(1) Can Corollary 1.6 be reversed, i.e., if � ⊂ Rn+1 is an open set with n-dimensional Ahlfors–David
regular boundary such that ∂� supports weak Poincaré inequalities, is � a 2-sided chord-arc domain?

(2) Can the assumptions of Corollary 1.6 be weakened in the obvious way, i.e., if � ⊂ Rn+1 is a (1-sided)
chord-arc domain with connected boundary, does ∂� support weak Poincaré inequalities?

In the second question, the connectivity assumption for ∂� is necessary since weak Poincaré inequalities
imply connectivity; see, e.g., [Cheeger 1999, Theorem 17.1]. However, the answer to both of these
questions is no. For the first question, this follows from Example 8.4 below. For the second question, this
follows from the example constructed in [Mourgoglou and Tolsa 2021, Section 10]. They construct a
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chord-arc domain with connected boundary such that the tangential regularity problem for the Laplacian
is not solvable in L p for any 1 ≤ p < ∞ (recall Definition 2.31). The boundary of this chord-arc domain
cannot support weak Poincaré inequalities by [Mourgoglou and Tolsa 2021, Theorem 1.2].

For our example, we need some results in the literature. In particular, we need the following result of
Heinonen and Koskela about how weak Poincaré inequalities survive under unions. We formulate the
result only in our context but we note that the result holds more generally for certain types of unions of
Ahlfors–David regular metric spaces.

Theorem 8.1 [Heinonen and Koskela 1998, special case of Theorem 6.15]. Let E1, E2 ⊂ Rn+1 be two
n-ADR sets such that both E1 and E2 support a weak p-Poincaré inequality for some 1 ≤ p < ∞, and
Hn(E1 ∩ E2 ∩ B(x, r)) ≥ crn for all x ∈ E1 ∩ E2 and all 0 < r < min{diam(E1), diam(E2)}. Then also
the union E1 ∪ E2 supports a weak p-Poincaré inequality when we equip E1 ∪ E2 with the metric d that
equals the usual Euclidean distance individually on E1 and E2 and

d(x, y) := inf
Z∈E1∩E2

|X − Z | + |Z − Y | (8.2)

for X ∈ E1 \ E2 and Y ∈ E2 \ E1.

We will also use repeatedly the fact that bi-Lipschitz mappings preserve weak Poincaré inequalities
(see [Björn and Björn 2011, Proposition 4.16] for an explicit proof in the context of more general metric
spaces and inequalities):

Proposition 8.3. Let E1, E2 ⊂ Rn+1 be two n-ADR sets equipped with metrics d1 and d2, respectively.
Suppose that there exists a bi-Lipschitz mapping 8 : (E1, d1) → (E2, d2) such that Hn(A) ≈ Hn(8(A))

for every measurable set A ⊂ E1 and a uniform implicit constant. If E1 supports a weak p-Poincaré
inequality for some 1 ≤ p < ∞, then also E2 supports a weak p-Poincaré inequality.

Let us then construct a disconnected non-chord-arc domain example of a set whose boundary still
supports a weak 1-Poincaré inequality:

Example 8.4. Let us consider a “twice-pinched annulus” in R2 which we construct the following way.
We start by considering the boundary of a usual annulus A := B(0, 4) \ B(0, 3). We remove all the points
that lie on the strip {(x, y) ∈ R2

: −1 < y < 1}. This leaves us with four circular arcs: two inner arcs and
two outer arcs. We then connect these arcs to each other with four line segments so that the inner arcs
connect to outer arcs, and vice versa. This leaves us with a shape that looks like an annulus that has been
pinched in two places so that the interior is no longer connected but the boundary is. We let � be the
disconnected interior of this pinched annulus (see Figure 3).

The set � satisfies the 2-sided corkscrew condition and the boundary ∂� is 1-ADR but since � is
not connected, it is not a chord-arc domain (however, we can easily modify the example to make it
connected but still not a chord-arc domain; see Remark 8.6). The boundary of � still supports a weak
1-Poincaré inequality. We see this by noticing that we can express ∂� as a union of pieces that satisfy
weak 1-Poincaré inequalities and that we can glue together with ample intersections to give back ∂�

(that is, we can use Theorem 8.1 for these pieces). Indeed, ∂� consists of a slightly distorted inner circle
and a slightly distorted outer circle. These distorted circles intersect only in two points (the two places
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Figure 3. The set � in Example 8.4 is the disconnected interior of a twice-pinched
annulus in R2. Unlike with a usual annulus, the boundary of � is connected (which is
one of the minimum requirements Poincaré inequalities).

Figure 4. In Example 8.4, the boundary of � consists of a slightly distorted inner circle
(on the left) and a slightly distorted outer circle (on the right) that intersect each other
only at two points. However, the cross-like unions of two line segments (one copy in the
middle) have ample intersections with both of these distorted circles.

where the line segments cross over each other) and therefore they alone are not enough for Theorem 8.1.
Because of this, as two additional pieces, we take the cross-like unions of the pairs of line segments
that cross over each other. These pieces have ample intersections with both of the distorted circles (see
Figure 4).

As a 1-dimensional compact Riemannian manifold, a circle supports a weak 1-Poincaré; see [Heinonen
and Koskela 1998, Section 6.1]. Since both of the distorted circles are bi-Lipschitz equivalent to a regular
circle, both of them support a weak 1-Poincaré inequality by Proposition 8.3. As for the unions of two
line segments, we first notice that a line segment supports a weak 1-Poincaré inequality because it is
bi-Lipschitz equivalent to a piece of the real line (and a connected piece of the real line supports a weak
1-Poincaré inequality by definition and the classical result that the Euclidean space supports a 1-Poincaré
inequality; see [Heinonen et al. 2015, Section 8.1]). The two line segments in the cross-like union meet
only at one point and therefore we cannot use Theorem 8.1 directly for them. Because of this, we take
three line segments and transform them (with bi-Lipschitz mappings) into three V-like shapes which we
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Figure 5. By Theorem 8.1, we can preserve weak Poincaré inequalities in intersections
if the intersections are ample enough. In Example 8.4, the two intersecting line segments
do not have ample intersection but we can create the cross-like shape by gluing three
V-like shapes one by one into each other, and we get these V-like shapes by using three
line segments and bi-Lipschitz mappings.

can then glue one by one to each other with ample intersections to create the original cross-like piece
(see Figure 5).

We now get the boundary ∂� by gluing first two cross-like pieces to either one of the distorted circles
and then gluing the remaining distorted circle to this shape. Gluing sets together using Theorem 8.1
preserves the weak Poincaré inequalities but with a different metric, the one in (8.2). However, for shapes
as simple as the ones we use, it is straightforward to see that the new metrics we get are bi-Lipschitz
equivalent with the Euclidean metric. Thus, by gluing together the two distorted circles with the help
of two cross-like unions of two line segments, we see that ∂� supports a weak 1-Poincaré inequality.
We note that we had to use two cross-like pieces for the gluing process because with just one cross-like
piece the ample intersection requirement of Theorem 8.1 does not hold for the final step for one of the
two intersection points of the distorted circles. By the original, more general form of Theorem 8.1 in
[Heinonen and Koskela 1998], we can leave this type of a problematic isolated point out of the gluing
process, but this would end up giving us a metric space with a different structure than ∂�.

Remark 8.5. Example 8.4 gives us a 2-dimensional example but we can use the same techniques to
construct higher dimensional examples. These examples are of the type � × (0, 1)n, where � is the
2-dimensional set from Example 8.4. Thus, for example, the 3-dimensional example would be a hollow,
twice-pinched cylinder with a thick boundary.

Remark 8.6. By using a once-pinched annulus instead of the twice-pinched one we used in Example 8.4,
we get a connected set � such that it satisfies the 2-sided corkscrew condition, the boundary ∂� is 1-ADR
and ∂� supports a weak 1-Poincaré inequality. However, despite connectivity, � is still not a chord-arc
domain: there are points arbitrarily close to each other on different sides of the pinched part of the annulus
such that they can be connected inside � only by circling around almost the entire annulus.

Thus, Corollary 1.6 cannot be reversed and we cannot weaken its assumptions in the obvious way. It is
natural to formulate the following problem:

Problem 8.7. Let � ⊂ Rn+1 be an open set with n-dimensional Ahlfors–David regular boundary.
Give a geometric characterization for weak Heinonen–Koskela-type boundary p-Poincaré inequalities
for 1 ≤ p ≤ n.
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By a geometric characterization in Problem 8.7, we mean a characterization of the type “ω ∈

weak-A∞(σ ) if and only if ∂� is UR and � satisfies the weak local John condition” (which is the
main result of [Azzam et al. 2020]). By [Cheeger 1999, Theorem 17.1], we know that ∂� has to be
quasiconvex, and by [Azzam 2021a], we know that ∂� has to be UR. By Corollary 1.6, Example 8.4
and [Mourgoglou and Tolsa 2021, Section 10], we know that 2-sided chord-arc domains are too strong
for the characterization and (1-sided) chord-arc domains are not strong enough for a characterization.
However, the answer does not lie somewhere between these two classes of domains: by Example 8.4, the
connectivity properties of � itself do not play a big role in this problem.

Concerning John-type conditions, we recall the open problem we mentioned in Section 3:

Problem 8.8. Let � ⊂ Rn+1 be an open set with n-UR (or just n-ADR) boundary. Suppose that �

satisfies the local John condition. Does � also satisfy the weak local John condition?

Problem 8.8 is interesting only if � does not satisfy the exterior corkscrew condition: the local John
condition implies the corkscrew condition and therefore the answer is trivially true in the presence exterior
corkscrews by Lemma 3.6.
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