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ON THE SPECTRUM OF NONDEGENERATE MAGNETIC LAPLACIANS

LAURENT CHARLES

We consider a compact Riemannian manifold with a Hermitian line bundle whose curvature is nonde-
generate. Under a general condition, the Laplacian acting on high tensor powers of the bundle exhibits
gaps and clusters of eigenvalues. We prove that for each cluster the number of eigenvalues that it contains
is given by a Riemann–Roch number. We also give a pointwise description of the Schwartz kernel of
the spectral projectors onto the eigenstates of each cluster, similar to the Bergman kernel asymptotics of
positive line bundles. Another result is that gaps and clusters also appear in local Weyl laws.

1. Introduction

Consider a Hermitian line bundle L on a compact Riemannian manifold with a connection ∇ whose
curvature is nondegenerate. We will be concerned with the eigenvalues and eigenstates of the Bochner
Laplacians 1k =

1
2∇

∗
∇ + kV acting on positive tensor powers Lk of the bundle, V being a real function,

in the limit where k tends to infinity. Physically, k−21k is a magnetic Schrödinger operator with k the
inverse of the Planck’s constant, ∇ the magnetic potential and k−1V the electric potential.

A very particular case is the ∂̄-Laplacian of high powers of a positive line bundle on a complex manifold.
Its ground states are the holomorphic sections which play obviously a central role in algebraic/complex
geometry, but also in mathematical physics: in Kähler quantization, the space of holomorphic sections
is the quantum space and the large k limit is the semiclassical limit. Starting from [Guillemin and
Uribe 1988], it has been understood that for a manifold that is not necessarily complex, the holomorphic
sections can be replaced by the bounded states of the Bochner Laplacian 1k , where the potential V is
suitably defined; bounded here means that the eigenvalues are bounded independently of k. These “almost”
holomorphic sections have been used with success in various problems on symplectic manifolds from their
projective embeddings to their quantizations [Borthwick and Uribe 1996; 2000; Ma and Marinescu 2007].

In the larger regime where we consider all the eigenvalues smaller than k3, with 3 arbitrary large
but independent of k, few results are known: a general Weyl law was established in [Demailly 1985],
which we will recall later, and for a specific class of connection ∇, [Faure and Tsujii 2015] showed that
the spectrum of 1k exhibits some gaps and clusters, the first cluster consisting of the bounded states of
[Guillemin and Uribe 1988].

A natural question is to determine the number of eigenvalues in each cluster. For the first cluster, in
the case of holomorphic sections of a positive line bundle, the answer is provided by the Riemann–Roch–
Hirzebruch theorem and the Kodaira vanishing theorem. More generally, when k is sufficiently large,
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the number of bounded states of the Bochner Laplacian of [Guillemin and Uribe 1988] is still given by
the Riemann–Roch number of Lk. One of our main results is that the number of eigenvalues in each
higher cluster is given as well by a Riemann–Roch number, associated to Lk tensored with a convenient
auxiliary bundle F defined in terms of the cluster.

We are also concerned with results of local nature: we show that gaps and clusters appear as well
in the local Weyl laws of 1k ; local here means that each eigenvalue is counted with a weight given by
the square of the pointwise norm of the corresponding eigensection. Furthermore we give a pointwise
description of the Schwartz kernel of the spectral projectors associated to each cluster, generalizing the
Bergman kernel asymptotics for positive line bundles.

The picture emerging from these results is that the restriction of the Bochner Laplacian 1k to each
cluster is essentially a Berezin–Toeplitz operator with principal symbol an endomorphism of the auxiliary
bundle F.

1A. The magnetic Laplacian. Let us turn to precise statements. Let M2n be a closed manifold equipped
with a Riemannian metric g, a volume form µ, a Hermitian line bundle L with a connection compatible
with the metric, a Hermitian vector bundle A over M having an arbitrary rank r with a connection, and a
section V ∈ C∞(M,End A) such that V (x) is Hermitian for any x ∈ M. Define the Laplacian

1k =
1
2∇

∗
∇ + kV : C∞(Lk

⊗ A)→ C∞(Lk
⊗ A). (1)

Here k ∈ N, ∇ is the covariant derivative of Lk
⊗ A, ∇

∗ is its adjoint, the scalar products of sections of
Lk

⊗ A or Lk
⊗ A ⊗ T ∗M are defined by integrating the pointwise scalar products against the volume

form µ. The metric of T ∗M is induced by the Riemannian metric.
We have introduced the bundle A with the endomorphism-valued section V to include some important

Laplacians as the ∂̄-Laplacian acting on p-forms or the square of some Dirac operators. Furthermore our
results hold for a slightly more general class of operators than (1), which are defined in Section 3 and are
locally of the form (B).

Since 1k is a formally self-adjoint elliptic operator on a compact manifold, it is essentially self-adjoint,
its spectrum sp(1k) is a discrete subset of [k inf V1,+∞[ and consists only of eigenvalues with finite
multiplicities, and the eigenfunctions are smooth sections of Lk

⊗ A. Here V1(x) is the lowest eigenvalue
of V (x).

The curvature of L has the form ω/ i , with ω ∈�2(M,R) a closed form. Let us assume that

ω is nondegenerate at each point of M. (A)

Thus ω is a symplectic form. Associated to ω is the Liouville volume form µL = ωn/n! . We will assume
that µ= µL. This is not a restrictive assumption because if we multiply µ by a positive function ρ and
the metric of A by ρ−1, we do not change the scalar products of C∞(Lk

⊗ A) and �1(Lk
⊗ A). Working

with µL will simplify several statements.

1B. Pointwise data. We now introduce several pointwise data that will enter in our asymptotic description
of the spectrum of 1k . Denote by jB the section of End(T M) such that ω(ξ, η)= g( jBξ, η). Then M
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has an almost-complex structure j compatible with ω defined by

jy := | jB,y|
−1 jB,y for all y ∈ M.

So the vector bundle T 1,0 M = Ker( j − i idT M⊗C) ⊂ T M ⊗ C has a Hermitian metric h given by
h(ξ, η)= ω(ξ, η̄)/ i .

Moreover, the complexification of jB,y/ i restricts to a positive endomorphism of (T 1,0
y M, h y). Denote

its eigenvalues by 0< B1(y)⩽ · · ·⩽ Bn(y). We introduce an orthonormal basis (ui ) of (T 1,0
y M, h y) such

that jB,yui = i Bi (y)ui .
Consider the space D(Ty M)= C[T 0,1

y M] of antiholomorphic polynomials of Ty M. If (zi ) are the linear
complex coordinates of Ty M dual to the ui , then D(Ty M)= C[z̄1, . . . , z̄n]. Define the endomorphism

□y =

∑
i

Bi (y)
(
a†

i ai +
1
2

)
+ V (y) : D(Ty M)⊗ Ay → D(Ty M)⊗ Ay, (2)

where ai and a†
i are the endomorphisms of D(Ty M) acting by derivation with respect to z̄i and multipli-

cation by z̄i respectively.
We introduce an eigenbasis (ζj ) of V (y): V (y)ζi = Vi (y)ζi , with V1(y) ⩽ · · · ⩽ Vr (y). Then □y is

diagonalizable, with eigenbasis (z̄α ⊗ ζj , (α, j) ∈ Nn
× {1, . . . , r}),

□y(z̄α ⊗ ζj )=

(∑
i

Bi (y)
(
α(i)+ 1

2

)
+ Vj (y)

)
z̄α ⊗ ζj .

Let λ1(y)⩽ λ2(y)⩽ · · · be the eigenvalues of □y ordered and repeated according to their multiplicities.
The operators □y depend smoothly on y even if it is not obvious from (2), because in general there is

no local smooth frame (ui ) of T 1,0 M which is an eigenbasis of jB,y at each y. The various eigenvalues
Bi (y), Vj (y) and λℓ(y) depend continuously on y.

1C. Weyl laws. Demailly [1985] proved a Weyl law for the operators k−11k . It says roughly that in
the semiclassical limit k → ∞, the spectrum of k−11k is an aggregate of the spectra of the □y . More
precisely, we introduce the counting functions Ny(λ)= ♯{ℓ : λℓ(y)⩽ λ} of the □y and the one of k−11k

N (λ, k)= ♯ sp(k−11k)∩ ]−∞, λ].

Here and in the sequel, an eigenvalue with multiplicity m is counted m times. Let v : R → R be the
nondecreasing function v(λ) :=

∫
M Ny(λ) dµL(y). Let D be the set of discontinuity points of v. Then

for any λ ∈ R \ D, we have

N (λ, k)=

(
k

2π

)n

v(λ)+ o(kn) (3)

as k tends to infinity. We have slightly reformulated the original result [Demailly 1985, Theorem 0.6],
which holds more generally for ω not necessarily nondegenerate and M not necessarily compact.

The subset D is in general nonempty. As an easy example, if jB = j and V = 0, then D =
1
2 n + N,

v is locally constant on R \ D and, for any ℓ ∈ N,

v
(n

2
+ ℓ+ 0

)
= v

(n
2

+ ℓ− 0
)

+ rµL(M)
(n+ℓ−1
ℓ−1

)
.
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Our goal is to understand the corrections to the Weyl law (3), in other words what is hidden in the
remainder o(kn). For instance, if the function v is constant on a compact interval J, then (3) implies
that ♯ sp(k−11k)∩ J = o(kn). Actually, as we will see, in this situation, when k is sufficiently large, J
contains no eigenvalue of k−11k . Furthermore, the numbers of eigenvalues between such intervals is
given by Riemann–Roch numbers.

To state our results, we introduce the set 6 =
⋃

j λj (M). 6 is a locally finite union of closed disjoint
intervals. The function v is locally constant on R \6 and 6 is the support of the Lebesgue–Stieltjes
measure dv; see Section 2D for a proof of these statements.

If B is complex vector bundle of M, we denote by RR(B) the Riemann–Roch number of B, that is,
the integral of the product of the Chern character of B by the Todd form of (M, j).

Theorem 1.1. Let a, b ∈ R \6, with a < b. Then when k is sufficiently large,

♯ sp(k−11k)∩ [a, b] =

{
RR(Lk

⊗ F) if [a, b] ∩6 ̸= ∅,
0 otherwise,

(4)

where F is the vector bundle with fibers Fy = Im 1[a,b](□y), y ∈ M.

The assumption that a, b ∈ R \6 guarantees that the number of eigenvalues of □y in [a, b] is constant,
so that F is a genuine smooth vector bundle. RR(Lk

⊗ F) depends polynomially on k, with leading term

RR(Lk
⊗ F)= (rank F)

(
k

2π

)n

µL(M)+O(kn−1).

The result is consistent with the Weyl law (3) because when a, b ∈ R\6 we have Ny(b)= Ny(a)+rank F
for any y ∈ M.

Theorem 1.1 holds not only for the magnetic Laplacians (1), but also for other remarkable geometric
operators, as for instance the holomorphic Laplacians or the square of spin-c Dirac operators. The
corresponding results are stated in Theorems 3.4 and 3.6. In these cases, 6 = N, so the spectrum of
k−11k consists of clusters at nonnegative integers, the dimension of each cluster being given by the
Riemann–Roch number RR(Lk

⊗ F), where F is a sum of tensor products of symmetric and exterior
powers of T 1,0 M ; see part (3) of Theorem 3.6.

Theorem 1.1 is relevant only when 6 has several components. Note that the set of (ω, g, V ) such that
6 is not connected is open in C0-topology. Let us discuss some examples where the fiber bundle F can
be made explicit.

First if j = jB and V = 0, the set 6 is 1
2 n + N, and for a =

1
2(n − 1)+ ℓ, with ℓ ∈ N and b = a + 1,

the bundle F in Theorem 1.1 is Symℓ(T 1,0 M)⊗ A. More generally, suppose that B1 = · · · = Bn , that is,
jB = B j , with B ∈ C∞(M,R>0). Then 6 ⊂

⋃
ℓ∈N[σ−

ℓ , σ
+

ℓ ], where

σ−

ℓ = inf
(

B
(
ℓ+

n
2

)
+ V1

)
, σ+

ℓ = sup
(

B
(
ℓ+

n
2

)
+ Vr

)
.

Assume there exist a, b ∈ R, such that σ+

ℓ−1 < a < σ−

ℓ and σ+

ℓ < b < σ−

ℓ+1 for some ℓ ∈ N. Then
Theorem 1.1 holds and F = Symℓ(T 1,0 M)⊗ A.
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Since 6 is the support of the Lebesgue–Stieltjes measure dv, the Weyl law (3) implies that, for any
λ ∈6, the distance d(λ, sp(k−11k)) tends to 0 as k → ∞. To the contrary, if λ /∈6, by the second case
of (4), there exists ϵ > 0 such that d(λ, sp(k−11k))⩾ ϵ when k is sufficiently large.

The following theorem gives more precise estimates.

Theorem 1.2. For any 3> 0, there exists C > 0 such that, for any λ⩽3,

λ ∈6 =⇒ dist(λ, sp(k−11k))⩽ Ck−1/2, (5)

λ ∈ sp(k−11k) =⇒ dist(λ,6)⩽ Ck−1/2. (6)

When the bundle F of Theorem 1.1 has a definite parity, see Remark 7.3, (6) can be slightly improved.
For instance, if as above jB = B j and there exist a, b such that σ+

ℓ−1 < a < σ−

ℓ and σ+

ℓ < b < σ−

ℓ+1, then
sp(k−11k)∩ [a, b] ⊂ [σ−

ℓ , σ
+

ℓ ] +O(k−1).
Interestingly, some local Weyl laws hold with a similar gapped structure. Instead of 6, the local law

at y ∈ M involves the spectrum 6y = {λi (y) : i ∈ N} of □y , which is a discrete subset of R. Clearly,
6 =

⋃
y 6y .

For any k ∈ N, choose an orthonormal eigenbasis (9k,i )i∈N of k−11k such that k−11k9k,i = λk,i9k,i ,
with λ0,k ⩽ λ1,k ⩽ · · · . For any y ∈ M and real numbers a < b, define

N (y, a, b, k)=

∑
i :λk,i ∈[a,b]

|9k,i (y)|2,

so we count the eigenvalues in [a, b] with weights given by the square of the pointwise norm at y of the
corresponding eigenvectors.

Theorem 1.3. For any 3 ∈ R \6, y ∈ M and a, b ∈ ]−∞,3] \6y such that a < b, the following holds:
If [a, b] ∩6y is empty, then N (y, a, b, k)= O(k−∞). Otherwise we have an asymptotic expansion

N (y, a, b, k)=

(
k

2π

)n ∑
λ∈6y∩[a,b]

∞∑
ℓ=0

mℓ,λk−ℓ
+O(k−∞), (7)

where the coefficients mℓ,λ do not depend on a, b, k. In particular, m0,λ is the multiplicity of the
eigenvalue λ of □y .

We believe that the same result holds without the assumption that a, b are smaller than 3 ∈ R \6.
Observe that the first-order term

∑
λ∈[a,b]

m0,λ in (7) is merely the number of eigenvalues of □y in
[a, b]. In particular we recover the same structure as in the counting law (4) of Theorem 1.2: when the
leading-order term is zero, N (y, a, b, k)= O(k−∞). We interpret this as a gap in the local Weyl law.

Besides these gaps and clusters, another notable aspect in Theorems 1.1 and 1.3 is that we have full
asymptotic expansions. For the Laplace–Beltrami operators or the Schrödinger operator without magnetic
fields, the remainders in Weyl laws have a completely different behavior; see for instance the survey
[Zelditch 2008, Section 8]. Another situation where clusters and gaps occur is for the pseudodifferential
operators with a principal symbol having a periodic Hamiltonian flow. This has been studied in many
papers; see for instance [Weinstein 1977; Colin de Verdière 1979], [Dozias 1997] for a semiclassical result
and [Boutet de Monvel 1980; Boutet de Monvel and Guillemin 1981, Section 1] for earlier results, with
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Riemann–Roch numbers already. For our magnetic Laplacians, the gaps are also connected to periodic
Hamiltonians: the quantum harmonic oscillators a†

i ai of (2). In dimension 2, this lies at the origin of the
cyclotron motion or resonance of a charged particle in a magnetic field.

1D. Schwartz kernels of spectral projectors. Another result we would like to emphasize in this introduc-
tion is the asymptotic description of the Schwartz kernel of g(k−11k), where g : R → C is a bounded
function with compact support satisfying some assumptions. These Schwartz kernels are by definition
given at (x, y) ∈ M2 by

g(k−11k)(x, y)=

∑
i

g(λk,i )9k,i (x)⊗9k,i (y) ∈ Lk
x ⊗ Ax ⊗ Lk

y ⊗ Ay .

We will prove that g(k−11k) belongs to the operator algebra L(A) introduced in [Charles 2024]. Let us
recall the main characteristics of L(A); the complete definition will be given in Section 5.

L(A) consists of families (Pk)k∈N such that, for any k, Pk is an endomorphism of C∞(M, Lk
⊗ A)

having a smooth Schwartz kernel in C∞(M2, (Lk
⊗ A)⊠ (Lk

⊗ A)) satisfying the following conditions.
First, for any compact subset K of M2 not intersecting the diagonal, for any N, we have Pk(x, y)=O(k−N )

uniformly on K . Second, for any open set U of M identified with a convex open set of R2n through a
diffeomorphism, let F ∈ C∞(U 2, L ⊠ L) be the unitary frame such that F(x, y)= u ⊗ v̄, where v is any
vector in L y with norm 1 and u ∈ L x is the parallel transport of v along the path t ∈ [0, 1] → y + t (x − y).
We introduce a unitary trivialization of A on U and identify accordingly the sections of A⊠ A over U 2

with the functions of C∞(U 2,Cr
⊗ Cr ). Then the Schwartz kernel of Pk has the following asymptotic

expansion on U 2: for any N ∈ N, for any x ∈ U and ξ ∈ TxU such that x + ξ ∈ U,

Pk(x + ξ, x)=

(
k

2π

)n

Fk(x + ξ, x)e−k|ξ |2x/4
N∑
ℓ=0

k−ℓaℓ(x, k1/2ξ)+O(kn−(N+1)/2), (8)

where |ξ |2x = ωx(ξ, jxξ), the coefficients aℓ(x, · ) are polynomial maps Tx M → Cr
⊗ Cr depending

smoothly on x , and the O is uniform when (x + ξ, x) runs over any compact set of U 2.
Such an operator P = (Pk) has a symbol σ0(P), which at y ∈ M is the endomorphism of D(Ty M)⊗ Ay

defined by

(σ0(P)(y))( f )(u)= (2π)−n
∫

Ty M
e(u−v)·v̄a0(y, u − v) f (v) dµy(v).

Here, the scalar product u · v̄ and the measure µy are defined in terms of linear complex coordinates
zi : Ty M → C associated to an orthonormal frame of (T 1,0

y M, h y) by u · v̄ =
∑

zi (u)zi (v) and µy =

|dz1 · · · dzndz̄1 · · · dz̄n|.
As a result, for any (Pk) ∈ L(A), we have ∥Pk∥ = O(1) and

∥Pk∥ = O(k−1/2) ⇐⇒ σ0(P)(y)= 0 for all y ∈ M ⇐⇒ a0(y, · )= 0 for all y ∈ M.

Furthermore L(A) is closed under composition and the map σ0 is an algebra morphism. Here the product
of the symbols at y is the composition of endomorphisms of D(Ty M)⊗ Ay , which is not commutative.
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Theorem 1.4. (1) For any a, b ∈ R\6, the spectral projector5k := 1[a.b](k−11k) and k−11k5k belong
to L(A) and their symbols at y are equal to 1[a,b](□y) and □y1[a,b](□y) respectively.

(2) For any 3 ∈ R \6, for any g ∈ C∞(R,C) such that supp g ⊂ ]−∞,3], (g(k−11k))k belongs to
L(A) and its symbol at y is g(□y).

The second assertion is actually a generalization of the first one because choosing 3 > b such that
[b,3]∩6=∅, one has 1[a,b] = g on an open neighborhood of 6 with g ∈ C∞(R) supported in ]−∞,3],
and by Theorem 1.1, 1[a,b](λ)= g(λ) for any λ ∈ sp(k−11k) when k is sufficiently large.

1E. Comparison with earlier results. This work started as a collaboration with Yuri Kordyukov and
some of the results presented here appeared also in [Kordyukov 2022]: the existence of spectrum gaps, that
is, (4) when [a, b]∩6=∅, and a weak version of (6) with a O(k−1/4) instead of the O(k−1/2) are proved
in [loc. cit., Theorem 1.2]. Moreover, under the assumption of Theorem 1.4, the Schwartz kernel of the
spectral projector 5k = 1[a,b](k−11k) is described in [loc. cit., Theorem 1.6] in a way similar to our result.

In the case where jB = j and V is constant, the existence of spectrum gaps, that is, (4) when
[a, b] ∩6 = ∅, was proved in [Faure and Tsujii 2015, Theorem 10.2.2]. Our proof will follow the same
line as in that work and is similar to the proof in [Kordyukov 2022].

In the case again where jB = j and V = 0, the first gap and the asymptotic description of the first
cluster has a long history. When j is integrable so that M is a complex manifold and ω is Kähler,
the gap follows from Kodaira vanishing theorem, the first cluster consists of the holomorphic sections
of Lk, its dimension is given by the Riemann–Roch–Hirzebruch theorem, and the Schwartz kernel of the
corresponding spectral projector is the Bergman kernel, whose asymptotic can be deduced from [Boutet
de Monvel and Sjöstrand 1976] and which has been used in many papers starting from [Zelditch 1998].
The extension to almost-complex structure was done in [Guillemin and Uribe 1988; Borthwick and Uribe
2007; Ma and Marinescu 2008]. Parallel results for spin-c Dirac operators were proved in [Borthwick
and Uribe 1996; Ma and Marinescu 2002; 2007].

The main tool we use in this paper is the algebra L(A) introduced in [Charles 2024]; a first weaker
version was proposed in [Charles 2016]. The asymptotic expansions (8) or similar versions have been
used before by several authors to describe the spectral projector on the first cluster and corresponding
Toeplitz operators, [Shiffman and Zelditch 2002; Charles 2003; Ma and Marinescu 2007] for instance. In
[Charles 2024], besides establishing the main properties of L(A), we considered some projectors (5k) in
L(A) whose symbol at y ∈ M is the projector onto the m-th level of a Landau Hamiltonian

∑
a†

i ai . In
particular we computed the rank of 5k as a Riemann–Roch number and we studied the corresponding
Toeplitz algebra. By the results of the current paper, particular instances of such projectors are the spectral
projectors on the m-cluster of a magnetic Laplacian with jB = j and V = 0.

In a different context, many works have been devoted to the magnetic Schrödinger operator in Rn; see
[Raymond 2017] for a general overview. The most significant result is a semiclassical description of the
bottom of the spectrum in terms of effective operators whose principal symbols are the functions we
denoted by λi ; see for instance [Ivrii 1998, Theorem 6.2.7], [Raymond and Vũ Ngo. c 2015, Theorem 1.6]
or [Morin 2020, Theorem 2] for a statement in the manifold setting. These works differ in at least two ways
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from the current paper: The global gap assumption is generally replaced by a confinement hypothesis;
typically the function we denote by λ0 is assumed to have a nondegenerate minimum. Moreover, the
general strategy is to put the Schrödinger operator on a normal form by conjugating it with a convenient
Fourier integral operator.

1F. Outline of the paper. The main idea in the first part of the paper is to approximate the Laplacian 1k

locally by a family of Laplacians 1y,k , y ∈ M, obtained from 1k by “freezing” the coordinates at y. In
Section 2 we introduce these operators, recall the basic results regarding their spectrum and explain the
relationship with the operators □y of Section 1B. In Section 3, we introduce a class of Laplacians slightly
more general than the magnetic Laplacians 1k and which are well-approximated by the 1y,k . This
class contains the holomorphic Laplacians and some of their generalizations without integrable complex
structure. In Section 4, we prove a weak version of Theorem 1.2 which says that sp(k−11k)→6 in the
limit k → ∞, by constructing on one hand some peaked sections which are approximate eigenmodes
of 1k , and on the other hand, by inverting λ− k−11k up to a O(k−1/4) when λ /∈6.

In the second part of the paper, Sections 5 and 6, we introduce the algebra L(A) and prove that the
spectral projector 1[a,b](k−11k) belongs to L(A) when a, b ∈ R \6. The proof is divided into three
steps: From the resolvent estimate of Section 4, we deduce that any operator of L(A) having symbol
1[a,b](□) is an approximation of 1[a,b](k−11k) up to a O(k−1/4). We then prove that L(A)/O(k−∞) has
a unique self-adjoint projector having symbol 1[a,b](□) and commuting with 1k . Finally we prove that
this operator is indeed the spectral projector.

In the last part, Section 7, we establish some spectral properties for the Toeplitz operators associated to
the projectors of L(A), including a sharp Gårding inequality and the functional calculus. Then we deduce
Theorems 1.1 and 1.3 and the second part of Theorem 1.4.

2. The linear pointwise data

In this section we consider a compact manifold M2n equipped with a symplectic form ω and a Riemannian
metric g. Let A → M be a Hermitian vector bundle with a section V of C∞(M,End A) such that V (x) is
Hermitian for any x ∈ M. We choose a point y ∈ M.

2A. The complex structure. Let jB,y be the endomorphism of Ty M such that ωy(ξ, η)= gy( jB,yξ, η).
It will be useful to work with the following normal form.

Lemma 2.1. There exists 0< B1(y)⩽ · · · ⩽ Bn(y) such that Ty M has a basis (ei , fi ) satisfying

ωy(ei , ej )= ωy( fi , f j )= 0, ωy(ei , f j )= δi j ,

jB,yei = Bi (y) fi , jB,y fi = −Bi (y)ei .

The vectors ui =
1

√
2
(ei − i fi ), ūi =

1
√

2
(ei + i fi ) are a basis of Ty M ⊗ C and

1
i
ωy(ui , u j )=

1
i
ω(ūi , ū j )= 0, 1

i
ω(ui , ū j )= δi j ,

jB,yui = i Bi (y)ui , jB,y ūi = −i Bi (y)ūi .
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Proof. Since jB,y is a gy-antisymmetric invertible endomorphism of Ty M, there exists a gy-orthonormal
basis (ẽi , f̃i ) such that jB,y ẽi = Bi (y) f̃i and jB,y f̃i = −Bi (y)ẽi , where the Bi (y) are positive. We set
ei = (Bi (y))−1/2ẽi and fi = (Bi (y))−1/2 f̃i , and the result follows by direct computations. □

We can interpret this result as follows: first, jB,y/ i is C-diagonalizable with only nonzero real
eigenvalues, denoted by ±Bi (y). Second, the subspace W of Ty M ⊗ C spanned by the ui is the sum of
the eigenspaces of jB,y/ i with a positive eigenvalue. W is Lagrangian and the sesquilinear form h y of
Ty M ⊗ C given by h y(u, v)= ωy(u, v̄)/ i is positive on W. Equivalently the endomorphism jy of Ty M
such that jy = i on W is a complex structure of Ty M compatible with ωy . So from now on, we will
denote W = Ker( jy − i) by T 1,0

y M, and by the definition of jy , the restriction of jB,y/ i to T 1,0
y M is a

positive endomorphism of (T 1,0
y M, h y) with eigenvalues the Bi (y). Hence the vectors (ui ) in Lemma 2.1

are nothing else than a h y-orthonormal eigenbasis of T 1,0
y M.

An important remark is that jy depends smoothly on y, so it defines an almost complex structure
of M. Indeed, the space T 1,0

y M depends smoothly on y because jB,y/ i being invertible, no eigenvalue
can cross 0. Another reason is that jy = | jB,y|

−1 jB,y , where | jB,y| is the positive square root of the
gy-positive endomorphism − j2

B,y . Actually, the construction of j is the classical proof of the fact that
any symplectic manifold admits a compatible almost-complex structure; see [McDuff and Salamon 2017,
Proposition 2.5.6].

To the contrary, in general, we cannot choose a local continuous symplectic frame (ei , fi ) of T M
such that jBei = Bi fi , jB fi = −Bi ei , even if we renumber the eigenvalues Bi (y) in a way depending
on y. Indeed, as is well known, it is not possible in general to diagonalize smoothly a symmetric matrix,
the symmetric matrix being −( jB,y)

2 in our case. More specifically, consider on R2
⊗ R2 with its usual

Euclidean structure the endomorphism jB(s, t)= M(s, t)⊗ j2, where

M(s, t)=

(
1+s t

t 1−s

)
, j2 =

(
0 −1
1 0

)
,

with s and t parameters in a neighborhood of 0. Then jB is nondegenerate and antisymmetric, and we
can choose for each (s, t) a basis (ei , fi ) satisfying the previous conditions, but not continuously with
respect to (s, t). Indeed, − j2

B(s, t) = M2(s, t)⊗ id and for s = 0, t small nonzero, the eigenspaces of
M(s, t) are (1, 1)R and (1,−1)R, whereas for t = 0 and s small nonzero, they are (1, 0)R and (0, 1)R.

This example appears on R4 equipped with its usual Euclidean metric and the closed form

ω = (1 + p1) dp1 ∧ dq1 + (1 − p2) dp2 ∧ dq2 + q1 dq1 ∧ dp2 − q2 dp1 ∧ dq2,

which is symplectic on a neighborhood of the origin. On the plane {p1 = p2 : q1 = q2}, the matrix of jB

is M(p1, q1)⊗ j2.
We have also to be careful that the metric g̃ determined by (ω, j),

g̃y(ξ, η) := ωy(ξ, jyη)= gy(| jB,y|ξ, η), (9)

is equal to gy only when B1(y)= · · · = Bn(y)= 1, that is, when jB,y is itself a complex structure.
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2B. The scalar Laplacian of Ty M. Consider now the covariant derivative

∇ = d +
1
i
α : C∞(Ty M)→�1(Ty M), (10)

where α ∈�1(Ty M,R) is given by αξ (η)=
1
2ωy(ξ, η). Since dα = ωy , the curvature of ∇ is ωy/ i . We

then define the scalar Laplacian of Ty M by

1scal
y :=

1
2∇

∗
∇ : C∞(Ty M)→ C∞(Ty M). (11)

Here the scalar products of C∞(Ty M) and �1(Ty M) are defined by integrating the pointwise scalar
products against a fixed constant volume form, the pointwise scalar product of �1(Ty M) is defined from
the metric gy .

We can explicitly compute the spectrum and eigenfunctions of 1scal
y as follows. We introduce a basis

(ei , fi ) of Ty M as in Lemma 2.1. This basis is gy-orthogonal and gy(ei , ei )= gy( fi , fi )= Bi (y)−1, so
we have

1scal
y = −

1
2

n∑
i=1

Bi (y)(∇2
ei

+ ∇
2
fi
)=

n∑
i=1

Bi (y)
(
−∇ui ∇ūi +

1
2

)
,

where ui =
1

√
2
(ei − i fi ), ūi =

1
√

2
(ei + i fi ). Denote by zi the linear complex coordinates dual to the ui .

If (pi , qi ) are the real linear coordinates of Ty M in the basis (ei , fi ), then zi =
1

√
2
(pi + iqi ). Since

ωy = i
∑

dzi ∧ dz̄i , we have

∇ = d +
1
2

n∑
i=1

(zi dz̄i − z̄i dzi ).

We introduce the function s(ξ) := exp(−|ξ |2y/4), ξ ∈ Ty M, where

|ξ |2y =

∑
i

(p2
i + q2

i )= 2
∑

i

|zi |
2
= g̃y(ξ, ξ).

Since s = exp(−|z|2/2), we have ∇ūi s = 0, so s is ∇-holomorphic.
Let us consider C∞(Ty M) as the space of sections of the trivial line bundle over Ty M and let us use s

as a global frame. We introduce the operators

ai = ∂z̄i , a†
i = z̄i − ∂zi . (12)

Then ∇ūi ( f s)= (ai f )s and ∇ui ( f s)= −(a†
i f )s, so that

1scal
y ( f s)= (□̃scal

y f )s, with □̃scal
y :=

n∑
i=1

Bi (y)
(
a†

i ai +
1
2

)
. (13)

Let P(Ty M) be the space of polynomial functions Ty M → C, not necessarily holomorphic or antiholomor-
phic. With the coordinates (zi ), P(Ty M)= C[z1, . . . , zn, z̄1, . . . , z̄n]. Observe that ai and a†

i preserve
P(Ty M) and the same holds for □̃scal

y .
Since the ai , a

†
i satisfy the so-called canonical commutation relations

[ai , aj ] = [a†
i , a

†
j ] = 0, [ai , a

†
j ] = δi j ,
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we deduce by a classical argument that the endomorphisms a†
i ai of P(Ty M) are mutually commuting endo-

morphisms, each of them diagonalizable with spectrum N; see for instance [Charles 2024, Proposition 4.1].
So we have a decomposition into joint eigenspaces

P(Ty M)=

⊕
α∈Nn

Lα, with Lα =

n⋂
i=1

Ker(a†
i ai −α(i)). (14)

Furthermore, L0 = C[z1, . . . , zn] and Lα = (a†)αL0 for all α ∈ Nn where (a†)α = (a†
1)
α(1)

· · · (a†
n)
α(n).

Consequently □̃scal
y is a diagonalizable endomorphism of P(Ty M) with spectrum 6scal

y given by

6scal
y =

{ n∑
j=1

Bj (y)
(
α( j)+ 1

2

)
: α ∈ Nn

}
. (15)

Moreover the eigenspace E(λ) of the eigenvalue λ ∈ 6y is the sum of the Lα, where α runs over the
multi-indices of Nn such that

∑
Bi (y)

(
α(i)+ 1

2

)
= λ.

We can deduce from these algebraic facts the L2-spectral theory of 1scal
y . First of all, the space

exp(−|ξ |2y/4)P(Ty M) is dense in L2(Ty M) by the same proof that Hermite functions are dense. So we
deduce from (14) a decomposition of L2(Ty M) in a Hilbert sum of orthogonal subspaces,

L2(Ty M)=

⊕
α∈Nn

Kα, Kα = e−|ξ |2y/4Lα
L2(Ty M) for all α ∈ Nn (16)

Let G be the subspace of L2(Ty M) consisting of the ψ having a decomposition
∑
ψα in (16) such

that
∑

|α|
2
∥ψα∥

2 is finite. As a differential operator, 1scal
y acts on the distribution space C−∞(Ty M)

and in particular on L2(Ty M). It is not difficult to see that G consists of the ψ ∈ L2(Ty M) such that
1scal

y ψ ∈ L2(Ty M).

Lemma 2.2. (1scal
y ,G) is a self-adjoint unbounded operator of L2(Ty M), which is the closure of

(1scal
y , e−|ξ |2y/4P(Ty M)). Its spectrum is 6y and consists only of eigenvalues, the eigenspace of λ ∈6y

being the closure of exp(−|ξ |2y/4)E(λ).

This follows from (16), (14) and (13) by elementary standard arguments; see for instance [Davies
1995, Lemma 1.2.2]. Even if we won’t need this in the sequel, it can be useful to note that

• the eigenspace K0 is the Bargmann space: ψ ∈ K0 if and only if ψ ∈ L2(Ty M) and ψ =

e−|ξ |y/4 f (z1, . . . , zn) with f holomorphic.

• G is different from the Sobolev space H 2
=

{
ψ ∈ L2(Ty M) :

∑
(∂2

pi
+∂2

qi
)ψ ∈ L2

}
. Actually, H 2

∩G=

G ∩G = H 2
iso(Ty M), the isotropic Sobolev space defined as

{
ψ ∈ H 2(Ty M) :

∑
(pi

2
+ qi

2)ψ ∈ L2
}
.

2C. The Ay-valued Laplacian 1 y. We now consider the full Laplacian

1y :=1scal
y + V (y) : C∞(Ty M, Ay)→ C∞(Ty M, Ay). (17)
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We deduce from the properties of 1scal
y that (1y,G ⊗ Ay) is a selfadjoint unbounded operator of

L2(Ty M)⊗ Ay with discrete spectrum

6y =

{ n∑
j=1

Bj (y)
(
α( j)+ 1

2

)
+ Vℓ(y) : α ∈ Nn, ℓ= 1, . . . , r

}
, (18)

where V1(y) ⩽ · · · ⩽ Vr (y) are the eigenvalues of V (y). Let (ζℓ) be an eigenbasis of V (y), V (y)ζℓ =

Vℓ(y)ζℓ. Then any λ ∈ 6y is an eigenvalue of 1y with eigenspace the closure of the sum of the
exp(−|ξ |2y/4)E(λ′)⊗ Cζℓ such that λ′

+ Vℓ(y)= λ.
In the sequel, we will mainly work with

□̃y = e|ξ |2y/41ye−|ξ |2y/4 = □̃scal
y + V (y) (19)

acting on P(Ty M)⊗ Ay .

2D. The set 6 and the function v. Denote by λ1(y)⩽ λ2(y)⩽ · · · the eigenvalues of □y ordered and
repeated according to their multiplicities. Let

6 =

⋃
y∈M

6y =

⋃
ℓ

λℓ(M).

We introduce for any y ∈ M the counting function Ny(λ)= ♯{ℓ : λℓ(y)⩽ λ} of □y . Let v : R → R be the
nondecreasing function v(λ) :=

∫
M Ny(λ) dµL(y).

Lemma 2.3. The functions λℓ are continuous. 6 is locally a finite union of closed bounded intervals; it is
the support of the Lebesgue–Stieltjes measure dv.

Proof. First the functions Bi and Vj are continuous, so, for any α ∈ Nn and j , fα, j :=
∑

i Bi
(
α(i)+ 1

2

)
+Vj

is continuous as well. Since M is compact, c := infy∈M B1(y) is positive. Then fα, j ⩾ c|α|+ inf V1, with
|α| = α(1)+ · · · + α(n). Thus, for any 3 ∈ R, fα, j ⩾ 3 except for a finite number of (α, j). Since
6 =

⋃
α, j fα, j (M) and fα, j (M) is compact, this proves that 6 ∩ ]−∞,3] is a finite union of closed

bounded intervals. By the same reason, for any y ∈ M and 3 ∈ R, fα, j (y)=3 only for a finite number
of (α, j). From this we deduce readily that the functions λℓ are continuous.

For any λ, the function y → Ny(λ) takes only integral values. It is measurable because, for any ℓ,
{y : Ny(λ)= ℓ} = {λℓ ⩽ λ} ∩ {λℓ+1 > λ} is the intersection of an open set with a closed set. So v(λ) is
well-defined. Then v is clearly nondecreasing, and the associated Lebesgue–Stieltjes measure ν = dv is
defined by ν([a, b])= ν(b+)− ν(a−).

Now λ /∈ supp(ν) if and only if v is constant on a neighborhood of λ. If λ /∈ 6, then there exists
ℓ and ϵ > 0 such that λℓ ⩽ λ− ϵ and λ+ ϵ ⩽ λℓ+1; thus, for any y, Ny(λ− ϵ) = Ny(λ+ ϵ) and so
v(λ− ϵ) = v(λ+ ϵ), giving λ /∈ supp ν. Conversely, if, for some ϵ > 0, v(λ− ϵ) = v(λ+ ϵ), then
Ny(λ− ϵ)= Ny(λ+ ϵ) for any y ∈ A, where M \ A has measure zero. Since A is dense, this implies that
λℓ ⩽ λ− ϵ and λℓ+1 ⩾ λ+ ϵ, with ℓ= Ny(λ), so λ /∈6. □

2E. The restriction □ y of □̃ y to antiholomorphic polynomials. Since the spaces Lα in (14) are infinite-
dimensional, the eigenvalues of □̃y are infinitely degenerate. We can avoid this degeneracy by replacing
P(Ty M) by the subspace D(Ty M)⊂P(Ty M) of antiholomorphic polynomials. With the coordinates (zi )
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introduced previously, D(Ty M)= C[z̄1, . . . , z̄n]. This point is central in our treatment since it will lead
us to the definition of the fiber bundle F of Theorem 1.1.

First, the annihilation and creation operators ai , a
†
i preserve the subspace D(Ty M) in which they act

respectively by ∂z̄i and z̄i . Moreover the joint eigenspaces Lα of the a†
i ai satisfy Lα∩D(Tx M)= C z̄α. So

□̃y preserves D(Ty M)⊗ Ay and its restriction □y ∈ End(D(Ty M)⊗ Ay) has the same spectrum as □̃y .
For any eigenvalue λ, the corresponding eigenspaces of □̃y and □y are

⊕
Lα ⊗ Cζℓ and

⊕
Cz̄α ⊗ Cζℓ

respectively, where in both cases we sum over the (α, ℓ) such that
∑

Bi (y)
(
α(i)+ 1

2

)
+ Vℓ(y)= λ.

For any p ∈ N, the endomorphism □y preserves the subspace D⩽p(Ty M) of D(Ty M) of polynomials
with degree smaller than p. These spaces are obviously finite-dimensional and their union D⩽p(T M)=⋃

y D⩽p(Ty M) is a genuine vector bundle over M. Moreover y 7→ □y|D⩽p(Ty M) is a smooth section of
End(D⩽p(T M)).

Lemma 2.4. (1) For any3> 0, there exists p ∈ N such that, for any y ∈ M and λ ∈ sp(□y)∩]−∞,3],
the eigenspace Ker(□y − λ) is contained in D⩽p(Ty M)⊗ Ay .

(2) For any compact interval I whose endpoints do not belong to 6, the spaces

Fy =

⊕
λ∈sp(□y)∩I

Ker(λ−□y), y ∈ M,

are the fibers of a subbundle F of D⩽p(T M)⊗ A, with p a sufficiently large integer.

Proof. As in the beginning of the proof of Lemma 2.3,
∑

Bi (y)
(
α(i) +

1
2

)
+ Vℓ(y) ⩽ 3 implies

c|α| ⩽ 3− inf V1, with c = inf B1 > 0, which proves the first assertion with p any integer larger than
c−1(3− inf V1).

Since I is bounded, by the first part, Fy ⊂ D⩽p(Ty M)⊗ Ay for any y, when p is sufficiently large.
The projector of End(D⩽p(Ty M)⊗ Ay) onto Fy is given by the Cauchy integral formula

(2π i)−1
∫
γ

(λ−□y,p)
−1 dλ, (20)

where □y,p is the restriction of □y to D⩽p(Ty M)⊗ Ay and γ is a loop of C \6y which encircles I. By
the assumption that the endpoints of I do not belong to 6, we can choose γ independent of y. Hence
(20) depends smoothly on y and its image Fy as well. □

3. A class of magnetic Laplacians

Consider a compact Riemannian manifold (M, g) equipped with a Hermitian line bundle L with a
connection ∇ of curvature ω/ i , and a Hermitian vector bundle A with a section V ∈ C∞(M,End(A))
such that V (x) is Hermitian for any x ∈ M.

The results we will prove later hold for families of differential operators

(1k : C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A), k ∈ N)



1920 LAURENT CHARLES

having the following local form: for any coordinate chart (U, xi ) of M and trivialization A|U ≃ U × A,
we have on U by identifying C∞(U, Lk

⊗ A) with C∞(U, Lk
⊗ A) that

1k = −
1
2

∑
gi j

∇i,k∇j,k + kV +

∑
ai∇i,k + b, (B)

where gi j
= g(dxi , dx j ), ∇i,k is the covariant derivative of Lk with respect to ∂x i , and ai , b are in

C∞(U,End(A)) and do not depend on k.
In this section, we will prove that various operators have the form (B): the magnetic Laplacians (1)

defined in the Introduction, the holomorphic Laplacians and also some generalized Laplacians associated
to semiclassical Dirac operators.

3A. About Assumption (B). The proof that some operators satisfy Assumption (B) consists in each
case of establishing a Weitzenböck-type formula. Since we don’t need to give a geometric definition of
the coefficients ai and b in (B), the computations will be rather simple once we know which terms to
neglect. To give a systematic treatment and to have a better understanding of the approximations we do,
we will introduce noncommutative symbols for the differential operator algebra generated by the ∇i,k and
C∞(U,End A). Instead of the full algebra, we will only work with second-order operators. Everything in
this section works without assuming that ω is degenerate, the dimension of M could be odd as well, but
we will not insist on that.

Let (ei ) be a frame of T M on an open set U of M and A be a Hermitian vector space. Let ∇i,k be the
covariant derivation of C∞(U, Lk) with respect to ei . For any y ∈ M, let ∇y,i be the covariant derivative
of C∞(Ty M) for the connection (10) with respect to ei (y).

We say that a family P = (Pk : C∞(U, Lk
⊗ A)→ C∞(U, Lk

⊗ A), k ∈ N) of differential operators
belongs to G2 if it has the form

Pk =

∑
i⩽ j

di j∇i,k∇j,k + kc +

∑
bi∇i,k + a (21)

for some coefficients di j , c, bi , a ∈ C∞(U,End A) independent of k. For such a family, we define

σ2(P)(y)=

∑
i⩽ j

di j (y)∇y,i∇y, j + c(y) : C∞(Ty M,A)→ C∞(Ty M,A).

Similarly we define the subspaces G0 and G1 of G2 and the corresponding symbols as follows. Assume
that P satisfies (21). Then

P ∈ G1 ⇐⇒ di j = c = 0, σ1(P)(y)=

∑
bi (y)∇y,i ,

P ∈ G0 ⇐⇒ di j = c = bi = 0, σ0(P)(y)= a(y).

The basic property we need is the following.

Lemma 3.1. Let P ∈ GN , P ′
∈ GN ′ , with N + N ′ ⩽ 2. Then

• P∗
:= (P∗

k ) belongs to GN and σN (P∗)(y)= (σN (P)(y))∗.

• P P ′
:= (Pk P ′

k) ∈ GN+N ′ and σN+N ′(P P ′)(y)= σN (P)(y) ◦ σN ′(P ′)(y).
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Here the formal adjoints P∗

k are defined with respect to any volume form µ of U which is independent
of k, whereas the adjoint of σN (P)(y) is defined with respect to any constant volume form of Ty M.

Proof. This is easily proved, let us emphasize the main points. First ∇
∗

i,k = −∇i,k + divµ(ei ), so (∇∗

i,k)

belongs to G1 and σ1(∇
∗

i,k)(y) = −∇y,i = ∇
∗

y,i . Second ∇i,ka = a∇i,k +Lei a, so (∇i,ka) belongs to G1

and has symbol σ1(∇i,ka)(y)= a(y)∇y,i = ∇y,i a(y). Third

∇i,k∇j,k = ∇j,k∇i,k +
k
i
ω(ei , ej )

so when i > j , (∇i,k∇j,k) belongs to G2 and

σ2(∇i,k∇j,k)(y)= ∇y, j∇y,i +
1
i
ω(ei , ej )(y)= ∇y,i∇y, j . □

Remark 3.2. Viewing k−1 as a semiclassical parameter, we can consider the algebra generated by the
∇i,k and C∞(U ) as a semiclassical algebra. But the order and the symbol that we use here are different
from the semiclassical ones. A first reason is that the product of the σN (P) is not abelian. Let us compare
the order of the generators.

If we define the order of (Pk) ∈ GN as N, the covariant derivatives ∇i,k have order 1, multiplication
by k has order 2 and multiplication by a function f has order 0. In particular k has twice the order of ∇i,k .

In contrast, let us trivialize L over an open set U so that C∞(U, Lk)≃ C∞(U ) and ∇
Lk

= d + kα/ i ,
with α ∈�1(U,R) the connection 1-form. We introduce the semiclassical parameter h̄ = k−1. Then the
operators (ik)−1

∇i,k = h̄∂ei / i −α(ei ) and multiplication by f are semiclassical differential operators of
order 0. So ∇i,k and k have the same order as semiclassical differential operators. □

Notice that for any vector field X of U, (∇Lk

X ) belongs to G1 with symbol at y given by the covariant
derivative of C∞(Ty M) with respect to X (y). Using this and Lemma 3.1, we deduce that GN and σN do
not depend on the choice of the frame (ei ). Let us make the dependence with respect to (U,A) explicit,
so we write GN (U,A) instead of GN .

Using again Lemma 3.1, we see that if u ∈ C∞(U,End A) is invertible at each point, then, for any P ∈

GN (U,A), u Pu−1 belongs to GN (U,A) and σN (u Pu−1)(y)= u(y)σN (P)(y)u(y)−1. So we can define
GN (A) as the space of differential operator families (Pk) such that for any k, Pk acts on C∞(M, Lk

⊗ A)
and for any trivialization A|U ≃ U × A, the local representative of (Pk) belongs to GN (U,A). The
corresponding symbol σN (P)(y) is invariantly defined as a differential operator of C∞(Ty M, Ay).

It is also useful to consider differential operators from C∞(M, Lk
⊗ A) to C∞(M, Lk

⊗ B), where B is
a second auxiliary Hermitian vector bundle. To handle these operators, we define the subspace GN (A, B)
of GN (A⊕ B) consisting of the (Pk) such that, for any k, Im Pk ⊂ C∞(M, Lk

⊗ B)⊂ Ker Pk . The symbol
at y of an element of GN (A, B) is a differential operator C∞(Ty M, Ay)→ C∞(Ty M, By).

Observe now that assumption (B) has the reformulation

(1k) ∈ G2(A) and σ2(1k)(y)=1scal
y + V (y) for all y ∈ M. (B’)

3B. Magnetic Laplacian. The simplest example of an operator satisfying condition (B) is the magnetic
Laplacian defined in Section 1A. So besides the line bundle L with its connection, the Riemannian
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metric g and the section V ∈ C∞(M,End A), we introduce a connection on A not necessarily preserving
the Hermitian structure and a volume form µ on M. Set

1k =
1
2(∇

Lk
⊗A)∗∇Lk

⊗A
+ kV : C∞(M, Lk

⊗ A)→ C∞(M, Lk
⊗ A),

where the formal adjoint of ∇
Lk

⊗A is defined from the scalar product obtained by integrating pointwise
scalar products against µ.

Proposition 3.3. (1k) satisfies assumption (B).

Proof. This follows from Lemma 3.1 and the fact that (∇Lk
⊗A) belongs to G1(A, A ⊗ T ∗M) with symbol

at y equal to the covariant derivative ∇ of C∞(Ty M) tensored with the identity of Ay . To see this, write
locally

∇
Lk

⊗A
=

∑
i

ϵ(e∗

i )∇
Lk

⊗A
ei

=

∑
i

ϵ(e∗

i )(∇i,k + γi ),

where (e∗

i ) is the dual frame of (ei ), ϵ(e∗

i ) is the exterior product by e∗

i and the γi ∈ C∞(U,End A) are
the coefficients of the connection 1-form of ∇

A in a trivialization A|U ≃ U × A. □

3C. Holomorphic Laplacian. Assume that M is a complex manifold and L , A are holomorphic Hermitian
bundles, L being positive in the sense that the curvature of its Chern connection if ω/ i , where ω∈�1,1(M),
is a Kähler form. Equip T 0,1 M with the metric |u|

2
= ω(ū, u)/ i , u ∈ T 0,1 M, and let µ= ωn/n! be the

Liouville volume form. Define the holomorphic Laplacian

1′′

k = (∂̄Lk⊗A)
∗∂̄Lk⊗A : C∞(M, Lk

⊗ A)→ C∞(M, Lk
⊗ A).

By Hodge theory, Ker1′′

k is isomorphic with the Dolbeault cohomology space H 0(Lk
⊗ A). When k is

sufficiently large, the dimension of H 0(Lk
⊗ A) is the Riemann–Roch number RR(Lk

⊗ A) defined as
the evaluation of the product of the Chern character of Lk

⊗ A by the Todd class of M. Additionally, 1′′

k
satisfies assumption (B), which leads to the following description of its spectrum.

Theorem 3.4. For any 3 > 0, there exists C > 0 such that sp(k−11′′

k ) ∩ [0,3] is contained in
N + Ck−1

[−1, 1]. For any m ∈ N,

♯ sp(k−11′′

k )∩
[
m −

1
2 ,m +

1
2

]
= RR(Lk

⊗ A ⊗ Symm(T 1,0 M)),

when k is sufficiently large.

Notice that the first eigenvalue cluster is degenerate in the sense that sp(1′′

k )∩
[
0, 1

2

]
⊂ {0} when k is

sufficiently large.

Proof. Now ∂̄Lk⊗A belongs to G1(A, A ⊗ (T ∗M)0,1) and its symbol at y is the (0, 1)-component of
the connection ∇ defined in (10). Using the same notation (ui ) and (zi ) as in Section 2B, ∇

0,1
=∑

ϵ(dz̄i )⊗∇ūi . Since the adjoint of ϵ(dz̄i ) is the interior product by ūi , we have ϵ(dz̄i )
∗ϵ(dz̄i )= 1 so that

σ2(1
′′

k )(y)= −

∑
i

∇ui ∇ūi .

Thus1′′

k satisfies assumption (B) with V (y)=−
1
2 n and6y =N. The result follows now from Corollary 7.2

with k−1 instead of k−1/2 by Remark 7.3. □
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Similarly we can consider the Laplacian acting on (0, q)-forms and prove the same result where N is
replaced by q + N and the number of eigenvalues in q + m +

[
−

1
2 ,

1
2

]
is the Riemann–Roch number of

Lk
⊗ A ⊗ ∧

0,q(T ∗M)⊗ Symm(T 1,0 M).
We can also generalize this to the case where the complex structure is not integrable. So assume

that (M, ω) is a symplectic manifold with a compatible almost-complex structure j , that L → M is a
Hermitian line bundle with a connection of curvature ω/ i and that A a Hermitian vector bundle with a
connection. Then Theorem 3.4 holds with the operator

1′′

k = ((∇Lk
⊗A)(0,1))∗(∇Lk

⊗A)(0,1) : C∞(Lk
⊗ A)→ C∞(Lk

⊗ A)

and the proof is exactly the same. However, it is no longer true that the first eigenvalue cluster is
nondegenerate. Using Dirac operators, one can generalize the previous result and still have the degeneracy
of the first cluster, as explained in the next section.

3D. Semiclassical Dirac operators. In this section, (M, ω, j) is a symplectic manifold with an almost
complex structure, (L ,∇) is a Hermitian line bundle on M with a connection having curvature ω/ i and
A is an auxiliary Hermitian vector bundle.

Let S =∧
0,•T ∗M be the spinor bundle and S+, S− be the subbundles of even and odd forms respectively.

For any y ∈ M, extend the covariant derivative ∇ defined in (10) to �•(Ty M) in the usual way and denote
by ∇

0,1 the restriction of its (0, 1)-component to �0,•(Ty M)= C∞(Ty M ⊗ Sy).

Definition 3.5. A semiclassical Dirac operator is a family (Dk) ∈ G1(A ⊗ S) with symbol

σ1(Dk)(y)= ∇
0,1

+ (∇0,1)∗ :�0,•(Ty M)→�0,•(Ty M) for all y ∈ M

such that for any k, Dk is formally self-adjoint and odd.

Such an operator can be constructed as follows: we introduce a connection on S preserving S+ and S−

and a connection on A and set

Dk =

∑
i

ϵ(θ̄i )∇
Lk

⊗A⊗S
ūi

+ (ϵ(θ̄i )∇
Lk

⊗A⊗S
ūi

)∗,

where (ui ) is any orthonormal frame of T 1,0 M, (θi ) is the dual frame of (T ∗M)1,0 and the exterior
product ϵ(θ̄i ) acts on S. Another example is provided by spin-c Dirac operators; see [Duistermaat 1996:
Ma and Marinescu 2007, Section 1.3]. Observe as well that the semiclassical Dirac operator is unique up
to a self-adjoint odd operator of G0(A ⊗ S). We denote by

D±

k : C∞(Lk
⊗ A ⊗ S±)→ C∞(Lk

⊗ A ⊗ S∓)

the restrictions of Dk and observe that D−

k is the formal adjoint of D+

k .

Theorem 3.6. Let (Dk) be a semiclassical Dirac operator. Then the operator 1k = D−

k D+

k satisfies:

(1) For any 3> 0, there exists C > 0 such that sp(k−11k)∩ [0,3] is contained in N + Ck−1/2
[−1, 1].

(2) sp(k−11k)∩
[
0, 1

2

]
⊂ {0} and Ker1k has dimension RR(Lk

⊗ A) when k is sufficiently large.
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(3) For any m ∈ N, when k is sufficiently large,

♯ sp(k−11k)∩
[
m −

1
2 ,m +

1
2

]
= RR(Lk

⊗ Am),

where Am =
⊕

(ℓ,p) A ⊗ Symℓ(T 1,0 M)⊗∧
2p(T 1,0 M), the sum being over the (ℓ, p) ∈ N2 such that

ℓ+ 2p = m and p ⩽ n.

Proof. As in Section 2B, let (ui ) be an orthonormal basis of T 1,0
y M and (zi ) be the associated linear

complex coordinates. We have ∇
∗

ūi
= −∇ui , ϵ(dz̄i )

∗
= ι(ūi ) so that

σ1(Dk)(y)=

∑
ϵ(dz̄i )∇ūi − ι(ūi )⊗ ∇ui .

A standard computation using that ∇ui , ∇ūi commute with ϵ(dz̄ j ), ι(ū j ) and [∇ui ,∇u j ] = [∇ūi ,∇ū j ] = 0,
[∇ui ,∇ū j ] = δi j leads to

σ2(D2
k )(y)=

∑
(−∇ui ∇ūi + ϵ(dz̄i )ι(ūi ))=1scal

y −
n
2

+ Ny,

where Ny is the number operator of Sy , that is, Nyα = (degα)α. Restricting to S+, we deduce that (1k)

satisfies assumption (B) with V (y)= −
1
2 n +Ny . So 6y = N and the first assertion of the theorem follows

from the second part of Corollary 7.2.
In the same way, (D+

k D−

k ) has the form (B) with V (y)= −
1
2 n + Ny as well, but the number operator

takes odd value on S−. Thus
sp(k−1 D+

k D−

k )⊂ [1 − Ck−1/2,∞[

for some positive C . Since, for any λ ̸= 0, D+

k is an isomorphism between Ker(D−

k D+

k − λ) and
Ker(D+

k D−

k − λ), this proves that sp(k−11k)∩
]
0, 1

2

]
is empty when k is sufficiently large and the first

part of the second assertion follows.
The second part of the second assertion and the third assertion follow from Corollary 7.2. Indeed, for

V (y)= −
1
2 n +Ny acting on Ay ⊗ S+

y , the bundle F with fiber Fy = ker(□y −m) is isomorphic to Am as
a complex vector bundle. □

4. Spectral estimates

Let (1k : C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A)) be a differential operator family satisfying (B). We assume
that the curvature ω/ i is nondegenerate. We assume as well that 1k is formally self-adjoint, where the
scalar product of C∞(M, Lk

⊗ A) is defined from the measure µ= ωn/n! .
For any y ∈ M, by the Darboux lemma, there exists a coordinate system (U, xi ) of M centered at

y such that ω is constant in these coordinates, that is, ω =
1
2

∑
ωi j dxi ∧ dx j , with ωi j = ω(∂xi , ∂x j )

constant functions. We identify U with a neighborhood of the origin of Ty M through these coordinates.
We assume that this neighborhood is convex.

We introduce a unitary section Fy of L → U such that, for any ξ ∈ U, Fy is flat on the segment [0, ξ ].
Then

∇Fy =
1
2i

∑
i, j

ωi, j xi dx j ⊗ Fy . (22)
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Indeed ∇Fy = (α/ i)⊗ Fy with α satisfying dα = ω and
∫
[0,ξ ] α = 0 for any ξ ∈ U. We easily see that

these conditions determine a unique α and that they are satisfied by α =
1
2

∑
ωi j xi dx j .

So trivializing L on U by using this frame Fy , L|U ≃ U × C and ∇ becomes the linear connection
defined in (10). Moreover trivializing Lk on U with Fk

y , the covariant derivative ∇j,k of Lk with respect
to ∂x j is

∇j,k = ∂x j +
ik
2

∑
i

ωi, j xi . (23)

Now we introduce the Laplacian1y,k of C∞(Ty M, Ay) associated to this covariant derivative, the constant
metric gy of Ty M and the constant potential kV (y), that is,

1y,k = −
1
2

∑
gi j

y ∇i,k∇j,k + kV (y). (24)

For k = 1, we recover the Laplacian 1y defined in (17).
We introduce a trivialization of the auxiliary vector bundle A|U = U × Ay so that C∞(U, Lk

⊗ A)≃

C∞(U, Ay). Then assumption (B) tells us that

1k −1y,k =

∑
i, j

ai j∇i,k∇j,k +

∑
i

ai∇i,k + kc + b, (25)

where ai j = −
1
2 gi j

+
1
2 gi j

y and c = V − V (y) are both equal to zero at the origin y. The identity (25) will
be used later to compare the spectra of 1k and 1y,k ; see the proofs of Proposition 4.1 and Lemma 4.4.

Before that, let us compute the spectrum of 1y,k . The Laplacian k−11y,k is unitarily conjugated to 1y .
Indeed, we introduce the rescaling map

Sk : C∞(Ty M, Ay)→ C∞(Ty M, Ay), Sk( f )(x)= kn/2 f (k1/2x). (26)

Then, from the formula (23), we easily check that

k1/2Sk∇i = ∇i,k Sk, k−11y,k Sk = Sk1y . (27)

Consequently, the spectrum of k−11y,k is 6y for any k.

4A. Peaked sections. As above, we identify a neighborhood U of y with a neighborhood of the origin in
Ty M through Darboux coordinates, we introduce the frame Fy of L on U with covariant derivative given
by (22), and we work with a trivialization A|U ≃ U × Ay . Choose a function ψ ∈ C∞

0 (U,R) such that
ψ = 1 on a neighborhood of y. Then to any polynomial f ∈ P(Ty M)⊗ Ay , we associate the smooth
section 8k( f ) of Lk

⊗ A defined on U by

8k( f )(ξ)= kn/2 Fk
y (ξ)e

−k|ξ |2y/4 f (k1/2ξ)ψ(ξ) (28)

and equal to 0 on M \ U.

Proposition 4.1. We have

(1) ∥8k( f )∥2
=

∫
Ty M e−|ξ |2y/2| f (ξ)|2 dµy(ξ)+O(e−C/k), with µy = ωn

y/n! the Liouville form of Ty M,

(2) k−11k8k( f )=8k(g)+O(k−1/2), with g = □̃y( f ).
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The peaked sections of [Charles 2024] are defined without using the Darboux coordinates, and for this
reason the O(e−k/C) in the norm estimate is replaced by a O(k−1/2). Actually, the Darboux coordinates
are not essential in this subsection, they only simplify slightly some estimates, whereas in Sections 4B
and 4C it will be necessary to use them.

Proof. Since 8k( f ) is supported in U, we can view it as a function of Ty M, so

8k( f )= ψSk(s f ),

where s(ξ)= e−|ξ |2y/4 as in Section 2B and Sk is the rescaling map (26). Since we work with Darboux
coordinates, the volume form µ of M coincide on U with µy . So

∥8k( f )∥2
=

∫
Ty M

|Sk(s f )|2ψ2 dµy .

We will need several times to estimate an integral having the form

Ik(ψ̃)=

∫
Ty M

|Sk(s f )|2ψ̃ dµy = kn
∫

Ty M
e−k/2|ξ |2y | f (k1/2ξ)|2 ψ̃(ξ) dµy(ξ),

with ψ̃ ∈ C∞(Ty M) satisfying ψ̃(ξ)=O(|ξ |m) on Ty M for m ⩾ 0. We claim that Ik(ψ̃)=O(k−m/2) and
in the case where ψ̃ = 0 on a neighborhood of the origin, Ik(ψ̃)= O(e−k/C) for some C > 0.

The first claim follows from the change of variable
√

kξ = ξ ′. For the second one, we use that
e−k|ξ |2y/2ψ̃(ξ)= O(e−k/C

|ξ |me−k|ξ |2y/4) and do the same change of variable.
The first assertion of the proposition is an immediate consequence of the second claim with ψ̃ = 1−ψ2.

For the second assertion, we start from (25) and using that [∇i,k, ψ] = ∂xiψ repetitively, we obtain

1kψ = ψ
(
1y,k + ai j∇

k
i ∇

k
j + b̃i∇i + kc + c̃), (29)

where ai j , c are the same functions as in (25), and b̃i and c̃ do not depend on k.
Now, by (29), 1k(ψSk(s f )) is a sum of five terms, the first one being

ψ1y,k Sk( f s)= kψSk(1y(s f ))= k8k(g), with sg =1y(s f ),

by (27). We will prove that the four other terms are in O(k1/2), which will conclude the proof.
Each time, we will apply the preliminary integral estimate with the convenient function ψ̃ . First since

|ψ c̃| is bounded, ψ c̃ Sk(s f ) = O(1). Second, c vanishes at the origin, |ψ(ξ)c(ξ)|2 = O(|ξ |2) so that
ψc Sk(s f )= O(k−1/2). Third, by (27),

∇i,k Sk(s f )= k1/2Sk(∇i (s f ))= k1/2Sk(s fi ),

with a new polynomial fi , and since ψ b̃i is bounded, we get

ψ b̃i ∇i,k Sk(s f )= O(k1/2).

Similarly, ∇i,k∇j,k Sk(s f )= kSk(s fi j ) with new polynomials fi j , and ai j vanishing at the origin, so we
obtain

ψai j∇i,k∇j,k Sk(s f )= O(k1/2)

as was to be proved. □
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Theorem 4.2. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Then, if
λ ∈6y , there exists C(y, λ) such that

dist(λ, sp(k−11k))⩽ C(y, λ)k−1/2 for all k.

Furthermore, for any 3> 0, C(y, λ) stays bounded when (y, λ) runs over M × ]−∞,3].

This proves the first assertion of Theorem 1.2.

Proof. By Section 2B, any eigenvalue λ of □̃y has an eigenfunction f ∈ P(Ty M)⊗ Ay . Normalizing
conveniently f , we get by Proposition 4.1,

∥8k( f )∥ = 1 +O(e−k/C), k−11k8k( f )= λ8k( f )+O, (k−1/2),

which proves that dist(λ, sp(k−11k))= O(k−1/2). To get a uniform O when λ⩽3, remember that by
the first assertion of Lemma 2.4, we can choose f ∈ D⩽p(Ty M)⊗ Ay , where p is sufficiently large and
independent of y ∈ M. Furthermore, for any p ∈ N, the O’s in Proposition 4.1 are uniform with respect
to f describing the compact set { f ∈D⩽p(T M)⊗ A : ∥ f ∥= 1}. Here we can use any metric of D⩽p(T M),
the natural one in our situation being ∥ f ∥

2
=

∫
Ty M e−|ξ |2y/2| f (ξ)|2 dµy(ξ) for f ∈ D(Ty M). □

4B. A local approximate resolvent. Recall that k−11y,k = Sk1y S∗

k so that k−11y,k has the same spectrum
6y as 1y . For any λ ∈ C \6y , we denote by

Ry,k(λ) := (λ− k−11y,k)
−1

: L2(Ty M)⊗ Ay → L2(Ty M)⊗ Ay

the resolvent. We will need the following basic elliptic estimates.

Proposition 4.3. For any λ ∈ C \6y , the resolvent Ry,k(λ) sends C∞

0 to C∞ and satisfies

∥k−1/2
∇i,k Ry,k(λ)∥ ⩽ C3d−1, ∥k−1

∇i,k∇j,k Ry,k(λ)∥ ⩽ C3d−1 (30)

if |λ| ⩽3 with d = dist(λ,6y) and the constant C3 independent of k.

Here and in the sequel, the norm ∥ · ∥ is the operator norm associated to the L2-norm.

Proof. The first assertion follows from elliptic regularity: for any distribution ψ of Ty M, if (λ−k−11y,k)ψ

is smooth then ψ is smooth.
Since Ry,k(λ)= Sk Ry,1(λ)S∗

k and k−1/2
∇i,k = Sk∇i S∗

k , it suffices to prove the inequalities (30) for k = 1.
We can assume that the frame (∂/∂xi ) is g-orthonormal at y, so gi j

y = δi j , so 1y = −
1
2

∑
i ∇

2
i + V (y).

Since ⟨1yu, u⟩ =
1
2

∑
∥∇i u∥

2
+ ⟨V (y)u, u⟩, we have by the Cauchy–Schwarz inequality

∥∇i u∥
2 ⩽ C∥u∥(∥1yu∥ +∥u∥). (31)

Since [∇i ,∇j ] = ωi, j/ i , we have

∥∇i∇j u∥
2
= ⟨∇j∇

2
i ∇j u, u⟩ = ⟨∇

2
i ∇

2
j u, u⟩ +

2
i
ωj i ⟨∇i∇j u, u⟩

= ⟨∇
2
j u,∇2

i u⟩ +
2
i
ωi j ⟨∇j u,∇i u⟩. (32)
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Moreover,
1
4

∑
i, j

⟨∇
2
i u,∇2

j u⟩ = ∥1yu − V (y)u∥
2 ⩽ C(∥1yu∥ +∥u∥)2. (33)

Estimating the first term of (32) with (33) and the second one with (31), it comes that

∥∇i∇j u∥
2 ⩽ C(∥1yu∥ +∥u∥)2. (34)

To conclude the proof, we use that the norm of Ry(λ)= (λ−1y)
−1 is d−1 and1y Ry(λ)= λRy(λ)− id

so when |λ| ⩽3,

∥1y Ry(λ)∥ ⩽3d−1
+ 1 ⩽ C3d−1

because d stays bounded when λ is. Hence it follows from (31) and (34) that

∥∇i Ry(λ)v∥ ⩽ C3d−1
∥v∥, ∥∇j∇i Ry(λ)v∥ ⩽ C3d−1

∥v∥,

which corresponds to (30) for k = 1. □

Recall that we identified a neighborhood of y ∈ M with a neighborhood U of the origin of Ty M through
Darboux coordinates. We introduce a smooth function χ : Ty M → [0, 1] such that χ(ξ)= 1 when |ξ |⩽ 1
and χ(ξ)= 0 when |ξ | ⩾ 2. Define χr (ξ) := χ(ξ/r). In the sequel we assume that r is sufficiently small
so that χr is supported in U. Then for any differential operator P acting on C∞(U ), χr P and Pχr are dif-
ferential operators with coefficients supported in U, so we can view them as operators acting on C∞(Ty M).

In the following lemma, we prove that the resolvent Ry,k(λ) of k−11y,k is a local right-inverse of
(λ− k−11k) up to some error.

Lemma 4.4. For any λ ∈ C \6y such that |λ| ⩽3, we have with d = d(λ,6y)

∥(λ− k−11k)χr Ry,k(λ)−χr∥ ⩽ C3F(r, k−1, d), (35)

where F(r, h̄, d)= (r + h̄1/2
+ h̄r−2

+ h̄1/2r−1)d−1.

Proof. We compute

(λ− k−11k)χr Ry,k(λ)−χr = −k−1
[1k, χr ]Ry,k(λ)+χr (λ− k−11k)Ry,k(λ)−χr

= −k−1
[1k, χr ]Ry,k(λ)+χr k−1(1y,k −1k)Ry,k(λ). (36)

To estimate the first term, we start from assumption (B), which gives us

[1k, χr ] = −
1
2 gi j

[∇i,k∇j,k, χr ] + aj [∇j,k, χr ]

= −
1
2 gi j((∂j∂iχr )+ (∂iχr )∇j,k + (∂jχr )∇i,k

)
+ aj (∂jχr ).

Applying the estimates (30), we deduce that

∥k−1
[1k, χr ]Ry,k(λ)∥ ⩽ C(k−1r−2d−1

+ k−1/2r−1d−1
+ k−1r−1d−1)

⩽ C(k−1r−2
+ k−1/2r−1)d−1.
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To estimate the second term of (36), we use the expression (25) and the fact that the ai j and c vanish at
the origin so that |χr ai j | ⩽ Cr and |χr c| ⩽ Cr . By (30) it follows that

∥χr k−1(1k −1y,k)Ry,k(λ)∥ ⩽ C(r + k−1/2
+ k−1)d−1 ⩽ C(r + k−1/2)d−1,

which concludes the proof. □

4C. Globalization. The local approximation of the resolvent at y in the previous section was based on a
choice of Darboux coordinates. To globalize this, we will first choose such coordinate charts depending
smoothly on y. All the constructions to come depend on an auxiliary Riemannian metric. For any y ∈ M
and r > 0 let By(r) be the open ball {ξ ∈ Ty M : ∥ξ∥< r}.

Lemma 4.5. There exist r0 > 0 and a smooth family of embeddings (9y : By(r0)→ M, y ∈ M) such that,
for any y ∈ M, 9y(0)= y, T09y = idTy M and 9∗

yω is constant on By(r0).

The family (9y, y ∈ M) is smooth in the sense that the map 9(ξ) = ψy(ξ), ξ ∈ By(r0), from the
open set

⋃
y∈M By(r0) of T M to M, is smooth.

Lemma 4.6. There exist N ∈ N, r1 > 0 and for any 0 < r < r1 a finite subset I (r) of M such that the
open sets 9y(By(r)), y ∈ I (r), form a covering of M with multiplicity bounded by N.

The multiplicity of a covering
⋃

i∈I Ui ⊃ M is the maximal number of Ui with nonempty intersection.
The proofs of Lemmas 4.5 and 4.6 are standard and postponed to Section 8.

Recall that 6 =
⋃
6y . So, for any λ ∈ C\6, the resolvents Ry,k(λ) : C∞

0 (Ty M, Ay)→ C∞(Ty M, Ay)

are well-defined. As previously, we introduce a section Fy of L → 9y(By(r)) satisfying (22) and a
trivialization of A on 9y(By(r)), from which we identify C∞(9y(By(r)), Lk

⊗ A)≃ C∞(By(r), Ay). Let

R̃y,k(λ) : C∞

0 (9y(By(r)), Lk
⊗ A)→ C∞(9y(By(r)), Lk

⊗ A)

be the map corresponding to Ry,k(λ) under these identifications.
For r sufficiently small, define the function χy,r supported in 9y(By(r0)) and such that χy,r (9y(ξ))=

χ(ξ/r). We introduce a partition of unity (ψr,y , y ∈ I (r)), subordinated to the cover (9y(By(r)), y ∈ I (r)).
Then define the operator Rr

k(λ) acting on C∞(M, Lk
⊗ A) by

Rr
k(λ) :=

∑
y∈I (r)

χy,r R̃y,k(λ)ψr,y . (37)

Theorem 4.7. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Then,
for any |λ| ⩽3,

∥(λ− k−11k)Rr
k(λ)− 1∥ ⩽ C3F(r, k−1, d), (38)

with d = dist(λ,6) and F the same function as in Lemma 4.4.

Proof. Let (Ui ) be a covering of M with multiplicity N = supx |{i/x ∈ Ui }|. Then:

(1) If vi is a family of sections such that supp vi ⊂ Ui for any i , then
∥∥∑

vi
∥∥2

⩽ N
∑

∥vi∥
2.

(2) For any section u,
∑

∥u∥
2
Ui

⩽ N∥u∥
2.
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To prove the first claim,
∥∥∑

vi
∥∥2

=
∑

i, j Mi j ⟨vi , vj ⟩⩽
∑

Mi j∥vi∥∥vj∥, where Mi, j =1 when Ui ∩Uj ̸=∅
and 0 otherwise. By Schur test applied to the matrix M, ⟨Ma, a⟩ ⩽ N∥a∥

2 and the result follows. To
prove the second claim, set m(x)=

∑
1Ui (x), which is bounded by N by assumption. Then

∑
∥u∥

2
Ui

=∫
M |u(x)|2m(x) dµ(x)⩽ N∥u∥

2.
We now apply this to the covering 9y(By(r)), y ∈ I (r). By Lemma 4.4, for any u ∈ C∞(M, Lk), we

have ∥Sr
y,kψy,r u∥ ⩽ C F∥ψy,r u∥, where

Sr
y,k = (λ− k−11k)χy,r R̃y,k(λ)−χy,r ,

F = F(r, k−1, d) and the constant C can be chosen independently of y because everything depends
continuously on y and M is compact. Since Rr

k(λ)− 1 =
∑

y∈I (r) Sy,kψy,r , we have

∥Rr
k(λ)u − u∥

2 ⩽ N
∑

y∈I (r)

∥Sr
y,kψy,r u∥

2 ⩽ N (C F)2
∑

y∈I (r)

∥ψy,r u∥
2

⩽ N (C F)2
∑

y∈I (r)

∥u∥
2
9y(By(r)) ⩽ (NC F)2∥u∥

2,

which proves (38). □

Recall basic facts pertaining to the spectral theory of 1k ; see for instance [Shubin 1987, Section 8.3].
As an elliptic formally self-adjoint differential operator of order 2 on a compact manifold, 1k is a
self-adjoint unbounded operator with domain the Sobolev space H 2(M, Lk

⊗ A). Its spectrum sp(1k) is
a discrete subset of R bounded from below and consists only of eigenvalues with finite multiplicities.

Corollary 4.8. For any 3> 0, there exists C > 0 such that for any k we have

sp(k−11k)∩ ]−∞,3] ⊂6+ Ck−1/4
[−1, 1]. (39)

So any λ ∈ C satisfying |λ|⩽3 and d(λ,6)⩾ Ck−1/4 does not belong to sp(k−11k). Moreover, for any
such λ,

∥Rrk
k (λ)− (λ− k−11k)

−1
∥ ⩽ Cd(λ,6)−2k−1/4, (40)

with rk = k−1/4.

Equation (39) shows the second assertion of Theorem 1.2 with k−1/4 instead of k−1/2. The improvement
with k−1/2 will be proved in Corollary 7.2.

Proof. First, since ∥R̃y,k(λ)∥ ⩽ d(λ,6y)
−1 ⩽ d−1 with d = d(λ,6), we deduce from the first part of the

proof of Theorem 4.7 that
∥Rr

k(λ)∥ ⩽ Cd−1, (41)

where C does not depend on r , λ and k. From now on assume that r = k−1/4. So F(r, k−1, d) ⩽
C ′k−1/4d−1. By Theorem 4.7, as soon as C3C ′k−1/4d−1 ⩽ 1

2 , we have (λ− k−11k)Rr
k(λ) is invertible,

so R̃k := Rr
k(λ)((λ− k−11k)Rr

k(λ))
−1 is a bounded operator of L2 satisfying

(λ− k−11k)R̃k = id (42)

and by (41),
∥R̃k − Rr

k(λ)∥ ⩽ 2∥Rr
k(λ)∥∥(λ− k−11k)Rr

k(λ)− 1∥ ⩽ C ′′d−2k−1/4.
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We claim that R̃k is actually continuous L2
→ H 2. Indeed, by classical result on elliptic operators [Shubin

1987, Theorem 5.1], there exists a pseudodifferential operator Pk of order −2 which is a parametrix of
λ− k−11k ; that is, Pk(λ− k−11k)= id + Sk , where Sk is a smoothing operator. Then multiplying by R̃k ,
we obtain Pk = R̃k + Sk R̃k , so R̃k = Pk − Sk R̃k . Now, since Pk is of order −2 and Sk is smoothing, they
are both continuous L2

→ H 2, so the same holds for R̃k .
To finish the proof, we assume that λ is real. Then k−11k − λ is a Fredholm operator from H 2 to L2

with index 0, because it is formally self-adjoint; see [Shubin 1987, Theorem 8.1]. By (42), λ− k−11k

sends H 2 onto L2, so its kernel is trivial, and thus λ is not an eigenvalue. □

5. The operator class L(A)

5A. Symbol spaces. Let E be an n-dimensional Hermitian space. As we did in Section 2B for E = Ty M,
consider the spaces P(E), D(E) consisting respectively of polynomial maps and antiholomorphic polyno-
mial maps from E to C. We will introduce two subalgebras S(E) and S̃(E) of End(D(E)) and End(P(E))
respectively. These algebras will be used later to define the symbols of the operators in the class L.

First we equip P(E) with the scalar product

⟨ f, g⟩ = (2π)−n
∫

E
e−|z|2 f (z) g(z) dµE(z), (43)

where µE is the measure
∏

dzi dz̄i if (zi ) are linear complex coordinates associated to an orthonormal
basis of E. The Gaussian weight e−|z|2 appeared already in Section 2B through the pointwise norm of the
frame s = exp(−|z|2/2).

Choose linear complex coordinates (zi ) as above. Then the family |α⟩ := (α!)−1/2 z̄α, α ∈ Nn, is an
orthonormal basis of D(E). For any α, β ∈ Nn, we introduce the endomorphism ραβ := |α⟩⟨β| of D(E).
Here we use the physicist notation, so ραβ(z̄γ )= 0 when γ ̸= β and ραβ(|β⟩)= |α⟩.

Consider the creation and annihilation operators ai , a
†
i defined in (12) as endomorphisms of P(E).

Note that with the scalar product (43), a†
i is the formal adjoint of ai . We introduce the endomorphism ρ̃αβ

of P(E)
ρ̃αβ := (α!β!)−1/2(a†)αρ̃00a

β,

where aβ = a
β(1)
1 · · · a

β(n)
n , (a†)α = (a†

1)
α(1)

· · · (a†
n)
α(n) and ρ̃00 is the orthogonal projector onto the

subspace L0 of P(E) consisting of holomorphic polynomials.
Observe that the restriction of ρ̃αβ to D(E) is ραβ . Furthermore, in the decomposition into orthogonal

subspaces P(E)=
⊕

α Lα considered in (14), ρ̃αβ is zero on Lγ with γ ̸=β and restricts to an isomorphism
from Lβ to Lα. Also ρ̃αα is the orthogonal projector onto Lα.

The algebras S(E) and S̃(E) are defined as the subalgebras of End(D(E)) and End(P(E)) with basis
the families (ρα,β, α, β ∈ Nn) and (ρ̃αβ, α, β ∈ Nn) respectively. As the notation suggests, these algebras
do not depend on the coordinate choice. This follows from the following Schwartz kernel description.

Let Op : P(E)→ End(P(E)) be the linear map defined by

Op(q)( f )(u)= (2π)−n
∫

E
eu·v̄−|v|2q(u − v) f (v) dµE(v), (44)
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where u · v̄ is the scalar product of u and v. By [Charles 2024, Lemma 4.3], ρ̃α,β = Op(pα,β), where pαβ
is the polynomial

pα,β := (α!β!)−1/2(z̄ − ∂z)
α(−z)β, α, β ∈ Nn. (45)

Since these polynomials form a basis of P(E), Op is an isomorphism from P(E) to S̃(E). Furthermore,
the map sending q ∈ P(E) to Op(q)|D(E) is an isomorphism from P(E) to S(E).

In the sequel we will tensor the space P(E) with an auxiliary vector space A and extend the map Op
from P(E)⊗ End A to S̃(E)⊗ End A.

5B. Eigenprojectors of Landau Hamiltonian. Choose now E = Ty M and recall that, for a convenient
choice of complex coordinate (zi ), the associated Landau Hamiltonian □̃y is given by

□̃y = e|ξ |2y/41ye−|ξ |2y/4 =

∑
Bi (y)

(
a†

i ai +
1
2

)
+ V (y) (46)

acting on P(Ty M)⊗ Ay . Its spectrum 6y and its eigenspaces were described in Section 2C in terms of
the Lα and an eigenbasis (ζℓ) of V (y), V (y)ζℓ = Vℓ(y)ζℓ. Consequently if I is any bounded subset of R,
the spectral projector of □̃y for the eigenvalues in I is Op(σ I (y)), where

σ I (y)=

∑
(α,ℓ)∈Iy

pαα ⊗ |ζℓ⟩⟨ζℓ|,

and Iy =
{
(α, ℓ) ∈ Nn

× {1, . . . , r}/
∑

i Bi (y)
(
α(i)+ 1

2

)
+ Vℓ(y) ∈ I

}
.

The map y 7→ σ I (y) is a section of the infinite-rank vector bundle P(T M), not smooth in general, not
even continuous. In the sequel we will assume that

I is a compact interval with endpoints not belonging to 6. (C)

Let P⩽p(E) be the subspace of P(E) of polynomials with degrees in z and in z̄ smaller than p. Let
P⩽p(T M) be the vector bundle over M with fiber at y equal to P⩽p(Ty M).

Lemma 5.1. If I satisfies (C) and p is sufficiently large, then y 7→ σ I (y) is a smooth section of
P⩽p(T M)⊗ End A.

Proof. Recall from Section 2E that □y is the restriction of □̃y to D(Ty M). By Lemma 2.4, the spaces

Fy := Im 1I (□y)= Span(z̄α ⊗ ζℓ, (α, ℓ) ∈ Iy) (47)

are the fibers of a subbundle of D⩽p(T M) ⊗ A if p is sufficiently large. So the projector onto Fy

depends smoothly on y; in other words, the map y → Op(σ I (y))|D(Ty M)⊗Ay is a smooth section of
End(D⩽p(T M)⊗ A).

Now we have an isomorphism

P⩽p(E)
Opp

−−→ End(D⩽p(E)), q 7→ the restriction of Op(q) to D⩽p(E).

Indeed, on one hand (pαβ , |α|, |β|⩽ p) is a basis of P⩽p(C
n) and on the other hand (ραβ , |α|, |β|⩽ p) is a

basis of EndD⩽p(C
n). This gives a vector bundle isomorphism P⩽p(T M)⊗End A≃End(D⩽p(T M)⊗A),

and concludes the proof. □
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Let S(T M) be the infinite-rank vector bundle over M with fibers S(Ty M) defined as in Section 5A. A
section U of S(T M)⊗ End A is smooth if it has the form

U (y)= Op(q(y))|D(Ty M)⊗Ay , (48)

where y → q(y) is a smooth section of P⩽p(T M)⊗End A for some p. By Lemma 5.1, for any interval I
satisfying (C), we have a symbol π I

∈ C∞(M,S(T M)⊗ End A) defined at y by

π I (y)= 1I (□y)= Op(σ I (y))|D(Ty M)⊗Ay , (49)

which is the projector of D(Ty M)⊗ Ay onto the subspace Fy defined in Lemma 2.4.

5C. Operators. The operator class L(A) was introduced in [Charles 2024]. It depends on (M, ω, j), the
prequantum bundle L , that is, L with its metric and connection, and the auxiliary Hermitian bundle A.

L(A) consists of families of operators (Pk : C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A), k ∈ N) having smooth
Schwartz kernels satisfying the following conditions. First, Pk(x, y) is in O(k−∞) outside the diagonal.
More precisely, for any compact subset K of M2

\ diag M and for any N, there exists C > 0 such that

|Pk(x, y)| ⩽ Ck−N for all k ∈ N, for all (x, y) ∈ K .

Second, for any open set U of M identified through a diffeomorphism with a convex open set of R2n and
any unitary trivialization A|U ≃ U × Cr, we have on U 2 for any positive integers N, k

Pk(x + ξ, x)=

(
k

2π

)n

Fk(x + ξ, x)e−k|ξ |2x/4
N∑
ℓ=0

k−ℓaℓ(x, k1/2ξ)+ rN ,k(x + ξ, x), (50)

where the section F : U 2
→ L ⊠ L is defined as in Section 1D, the coefficients aℓ(x, ξ) ∈ Cr

⊗Cr depend
smoothly on x and polynomialy on ξ , with degree bounded independently of x , and the remainder rN ,k is
in O(kn−(N+1)/2) uniformly on any compact subset of U 2.

The subspace L+(A) of L(A) consists of the operator families (Pk) where the coefficients aℓ in the
local expansions (50) satisfy aℓ(x,−ξ)= (−1)ℓaℓ(x, ξ). The symbol map is the application σ0 : L →

C∞(M,S(T M)⊗ End A) given locally by

σ0(P)(x)= Op(a0(x, · ))|D(Tx M) ∈ S(Tx M)⊗ End Ax , (51)

where we view a0(x, ξ) in Cr
⊗ Cr

≃ End Cr
≃ End Ax .

Recall that for any compact interval I of R, we denote by 5I
k the corresponding spectral projector

of k−11k . The central result of this paper is the following theorem.

Theorem 5.2. Let (5I
k ) be the spectral projector of a formally self-adjoint operator family (1k) of the

form (B) with I satisfying (C). Then (5I
k ) belongs to L+(A) and has symbol π I.

The proof is given in Section 6. We will actually prove a stronger result where we describe the Schwartz
kernel derivatives as well.
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5D. The class L∞(A). We need first a few definitions. Consider a real number N. We say that a
sequence ( fk) of C∞(U ) with U an open set of M is in O∞(k−N ) if, for any m ∈ N, for any vector fields
X1, . . . , Xm of U, for any compact subset K of U, there exists C > 0 such that

|X1 · · · Xm fk(x)| ⩽ Ck−N+m for all x ∈ K , k ∈ N.

Let s = (sk ∈ C∞(M, Lk
⊗ A), k ∈ N). We say that s ∈ O∞(k−N ) if, for any unitary frames u and

(vj )
r
j=1 of L and A defined over the same open set U of M, the local representative sequences ( fk, j )

such that sk =
∑

f j,kuk
⊗ vj , are in O∞(k−N ). We say that s belongs to O∞(k∞) (resp. O∞(k−∞)) if

s ∈ O∞(k−N ) for some N (resp. for any N ). So

O∞(k−∞)⊂ O∞(k−N )⊂ O∞(k−N ′

)⊂ O∞(k∞) if N ⩾ N ′.

Replacing M, L and A by M2, L ⊠ L and A⊠ A, we can apply these definitions to Schwartz kernels of
operator families (Pk : C∞(M, Lk

⊗ A)→ C∞(M, Lk
⊗ A), k ∈ N).

By definition, L∞(A) and L∞
∞
(A) are the subspaces of L(A) consisting of operator families with

a Schwartz kernel in O∞(k∞) and O∞(k−∞) respectively. By [Charles 2024, Proposition 6.3], the
difference between L∞(A) and L(A) is rather small because for any P ∈ L(A), there exists P ′

∈ L∞(A)
such that the Schwartz kernel of P − P ′ is in O(k−∞), that is, Pk(x, x ′)= P ′

k(x, x ′)+O(k−N ) for any N,
with O uniform on M2. Furthermore P ′ is unique modulo L∞

∞
(A).

By [Charles 2024, Proposition 6.3], for any (Pk) ∈ L∞(A) the asymptotic expansion (50) holds with a
remainder rN ,k in O∞(kn−(N+1)/2).

Theorem 5.3. Under the same assumptions as in Theorem 5.2, (5I
k ) belongs to L∞(A).

The proof will be given in Section 6. To end this section, let us state the following corollary of
Theorems 5.2, 5.3 and Lemma 6.3.

Corollary 5.4. Under the same assumptions as in Theorem 5.2, (k−11k5
I
k ) belongs to L+(A)∩L∞(A)

and has symbol σ0(k−11k5k)= □ ◦π I.

So the first part of Theorem 1.4 follows from Theorem 5.2 and Corollary 5.4.

6. Proof of Theorems 5.2 and 5.3

The first step, Lemma 6.1, is to show that any operator in L(A) with symbol π I is an approximation of5I
k

up to O(k−1/4). This will follow from the resolvent estimate given in Corollary 4.8 and the Cauchy–Riesz
formula. The second step, Lemma 6.2, is the construction of a formal projector (Pk) ∈ L+(A) with
symbol π I which almost commutes with 1k . The third step, Section 6C, is to show that this formal
projector (Pk) is equal to 5I

k up to O(k−∞) and even up to O∞(k−∞) when (Pk) ∈ L∞(A).

6A. A first approximation.

Lemma 6.1. Under the same assumptions as in Theorem 5.2, 5I
k = Pk +O(k−1/4) for any (Pk) in L(A)

with symbol π I.
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Proof. Step 1: The proof starts from the resolvent approximation given in Corollary 4.8. Choose a loop γ
of C \6 which encircles I. When k is sufficiently large, by Corollary 4.8, γ does not meet the spectrum
of k−11k . So by Riesz projection formula and (40),

5I
k =

1
2iπ

∫
γ

(λ− k−11k)
−1 dλ=

1
2iπ

∫
γ

Rrk
k (λ) dλ+O(k−1/4), (52)

with rk = k−1/4. Since Rr
k(λ) :=

∑
y∈I (r) χy,r R̃y,k(λ)ψr,y , we get

5I
k =

∑
y∈I (rk)

χy,rk P̃ I
y,kψrk ,y +O(k−1/4), (53)

where for any y

P̃ I
y,k =

1
2iπ

∫
γ

R̃y,k(λ) dλ.

Recall that R̃y,k(λ) is the restriction of the resolvent (λ− k−11y,k)
−1 to C∞

0 (By(r),Cr ) identified with
C∞

0 (9y(By(r)), Lk
⊗ A). So by Riesz projection formula again, P̃ I

y,k is the restriction of the spectral
projection

P I
y,k =

1
2iπ

∫
γ

(λ− k−11y,k)
−1 dλ.

Step 2: Let d : M2
→ R⩾0 be a distance locally equivalent to the Euclidean distance in each chart

and set mk(x ′, x) := kn exp(−kcd(x ′, x)2) with c > 0. Then by Schur test, any operator family (Qk :

C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A), k ∈ N) having a continuous Schwartz kernel satisfying |Qk(x ′, x)| =
O(mk(x ′, x)) uniformly with respect to x, x ′ and k, has a bounded operator norm; see [Charles 2024,
proof of Lemma 5.1] for more details. Given this and (53), it suffices now to prove that

Pk(x ′, x)=

∑
y∈I (r)

χy,rk (x
′)P̃ I

y,k(x
′, x)ψrk ,y(x)+ (mk(x ′, x)+ 1)O(k−1/4). (54)

In the sequel, we will allow the constant c entering in the definition of mk to decrease from one line to an-
other. With this convention, for any p>0, we can replace any O(d p(x ′, x)mk(x ′, x)) by O(k p/2mk(x ′, x)).

Step 3: Equation (54) follows from

Pk(x ′, x)= P̃ I
y,k(x

′, x)+ (mk(x ′, x)+ 1)O(k−1/4) (55)

for all (x ′, x) ∈9y(By(2r))×9y(By(2r)), with O uniform with respect to all the variables, y included.
Indeed, since suppψr,y ⊂9y(By(r))⊂ {χy,r = 1}, we have

χy,r (x ′)ψr,y(x)= ψr,y(x)+O(d(x ′, x)r−1) for all x, x ′
∈9y(By(2r)).

Recall that by [Charles 2024, Lemma 5.1], Pk(x ′, x)= O(mk(x ′, x))+O(k−N ) for any N. Applying this
to N =

1
4 and using that mkd = O(k−1/2mk) as explained above, we obtain

χy,r (x ′)Pk(x ′, x)ψr,y(x)= Pk(x ′, x)ψr,y(x)+O(k−1/2mk(x ′, x)r−1)+O(k−1/4).



1936 LAURENT CHARLES

Assume now that (55) holds. Multiplying (55) by χy,r (x ′)ψr,y(x) and using the last equality, we obtain

Pk(x ′, x)ψr,y(x)= χy,r (x ′)P̃ I
y,k(x

′, x)ψr,y(x)+O(k−1/2mk(x ′, x)r−1)+O(k−1/4),

which holds for all x ′, x ∈ M. Recall that the covering
⋃
9y(By(r)), y ∈ I (r), has a multiplicity bounded

independently on r . So we can sum these estimates without multiplying the remainder by the number
of summands and we obtain

Pk(x ′, x)=

∑
y∈I (r)

χy,r (x ′)P̃ I
y,k(x

′, x)ψr,y(x)+O(k−1/2mk(x ′, x)r−1)+O(k−1/4).

This proves (54) because rk = k−1/4.

Step 4: We give a formula for the Schwartz kernel of the spectral projector P I
y,k . First, by the rescaling

(26), (27), we have

P I
y,k(ξ, η)= kn P I

y (k
1/2ξ, k1/2η), (56)

with P I
y := P I

y,1. Second, the Schwartz kernel of P I
y is given by

P I
y (η+ ξ, η)= (2π)−ne(i/2)ωy(η,ξ)−|ξ |2y/4π I (y, ξ). (57)

Indeed, by (46), P I
y = e−|ξ |y/4 Op(σ I (y))e|ξ |y/4 and it follows from (44) that

P I
y (ξ, η)= (2π)−ne−|u|

2/2+u·v̄−|v|2/2σ I (y, u − v)

= (2π)−ne(u·v̄−ū·v)/2−|u−v|2/2σ I (y, u − v), (58)

with (ui ), (vi ) the complex coordinates of ξ and η defined as in Section 2B, in particular |ξ |2y =
1
2 |u|

2

and |η|2y =
1
2 |v|2. Since ωy = i

∑
i dui ∧ dūi , (57) follows from (58). Inserting (57) into (56), we get

P I
y,k(η+ ξ, η)=

(
k

2π

)n

Fk
y (η+ ξ, η)e−k|ξ |2y/4σ I (y, k1/2ξ), (59)

with Fy(η + ξ, η) = e(i/2)ωy(η,ξ). Fy has the same characterization as the section F entering in the
expansion (50), that is, Fy(η, η)= 1 and R ∋ t → Fy(η+ tξ, η) is flat for any ξ , η.

Step 5: The Schwartz kernel of Pk has the local expansion (50). By [Charles 2024, Lemma 5.1], the
remainder rN ,k is in O(k−N/2mk)+O(k−N ′

) for any N ′. So in particular,

Pk(x + ξ, x)=

(
k

2π

)n

Fk(x + ξ, x)e−k|ξ |2x/4σ I (x, k1/2ξ)+ (mk + 1)O(k−1/4). (60)

Step 6: We now prove (55) by comparing (59) and (60). So let x, x ′
∈9y(By(2r)) and ξ = x ′

− x . We
will use several times that

d(x, y)⩽ Cr, C−1d ⩽ |ξ | ⩽ Cd, where d := d(x ′, x).
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Let8y :9y(By(r0))→ Ty M be the inverse of9y . We have to compare Pk(x +ξ, x) with P̃ I
y,k(x +ξ, x)=

P I
y,k(η+ ξ̃ , η), where

η =8y(x), η+ ξ̃ =8y(x + ξ).

We claim that

ξ̃ = ξ +O(rd + d2). (61)

To see this, write ξ̃ =8y(x + ξ)−8y(x)= L y(x, ξ)ξ , where L y(x, 0)= Tx8y . Since L y(y, 0)= idTy M ,
we have

L y(x, ξ)= L y(x, 0)+O(|ξ |)= idTy M +O(d(x, y)+ |ξ |).

So ξ̃ = ξ +O(|ξ |(d(x, y)+ |ξ |))= ξ +O(d(r + d)).
Consider now a smooth function (x, ξ)→q(x, ξ) which is polynomial homogeneous in ξ with degree ℓ.

Then

q(x, ξ)= q(y, ξ)+O(d(x, y)|ξ |ℓ)= q(y, ξ)+O(rdℓ)

and by (61), q(y, ξ)= q(y, ξ̃ )+O(dℓ(r + d)). So

q(x, k1/2ξ)= q(y, k1/2ξ̃ )+O((k1/2d)ℓ(r + d)). (62)

Consequently

σ I (x, k1/2ξ)= σ I (y, k1/2ξ̃ )+O(r + d)
∑

(k1/2d)ℓ, (63)

where the sum on the right is over ℓ and finite.
By [Charles 2016, Section 2.6], the section E(x+ξ, x) := F(x+ξ, x)e−|ξ |2x/4 depends on the coordinate

choice up to a section vanishing to third order along the diagonal. So

E(x + ξ, x)= Fy(η+ ξ̃ , η)e−|ξ̃ |x/4eO(d
3)

= Ey(η+ ξ̃ , η)eO(d
3
+d2r),

with Ey(η+ ξ̃ , η) := Fy(η+ ξ̃ , η)e−|ξ̃ |y/4 because |ξ̃ |2y = |ξ |2x + O(d2(r + d)) by (62). So using that
|ez

− 1| ⩽ |z|e| Re z| and that kn Ek(x + ξ, x)= O(mk), we have

kn(Ek(x + ξ, x)− Ek
y(η+ ξ̃ , η))= O(d2(d + r)mk)ekCd2(d+r)

= O(d2(d + r)mk)ekCd2(d+r)

= O(k−5/4mk)ekCd2(d+r)
= O(k−5/4mk), (64)

where we have used that d and r are both in O(k−1/4), and always the same convention that the con-
stant c in mk can change from one line to another so that d pmk = O(k−p/2mk). Using again that
kn Ek(x + ξ, x)= O(mk), it follows from (63),

kn Ek(x + ξ, x)σ I (x, k1/2ξ)= kn Ek(x + ξ, x)σ I (y, k1/2ξ̃ )+O(k−1/4mk)

= kn Ek
y(η+ ξ̃ , η)σ I (y, k1/2ξ̃ )+O(k−1/4mk)

by (64), which ends the proof of (55). □
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6B. A formal projector. This section is devoted to the proof of the following lemma.

Lemma 6.2. Under the same assumptions as in Theorem 5.2, there exists (Pk) ∈ L∞(A)∩L+(A) unique
modulo L∞

∞
(A) such that σ0(Pk) = π I, Pk = P∗

k for any k, Pk ≡ P2
k modulo L∞

∞
(A) and [1k, Pk] ≡ 0

modulo L∞
∞
(A).

To show this, we will construct (Pk) by successive approximations. We introduce the filtration

L∞

p (A) := L∞(A)∩O∞(k−p/2),

p ∈ N. For any p ∈ N, we have a symbol map

σp : L∞

p (A)→ C∞(M,S(T M)⊗ End A)

such that σp(P) = σ0(k p/2 P), where σ0 was defined in (51). By [Charles 2024, Proposition 2.1 and
Theorem 2.2], σp is onto, Ker σp =L∞

p+1(A) and for any sequence (Q p) of L∞(A) such that Q p ∈L∞
p (A)

for any p, there exists Q ∈ L∞(A) such that Q = Q0 + · · ·+ Q p modulo L∞

p+1(A) for any p. Moreover:

(1) If Q and Q′ belong to L∞
p (A) and L∞

p′ (A) respectively, then their product belongs to L∞

p+p′(A).
Furthermore, at any x ∈ M, σp+p′(Q Q′)(x) is the product of σp(Q)(x) and σp′(Q′)(x).

(2) If Q belongs to L∞
p (A), then its adjoint Q∗ belongs to L∞

p (A) with symbol σp(Q∗)(x)= σp(Q)(x)∗.

By [Charles 2024, Theorem 2.5], L+(A) is a subalgebra of L(A).

Lemma 6.3. For any Q in L∞
p (A), (k

−11k Qk) and (k−1 Qk1k) both belong to L∞
p (A) and their symbols

at x are □x ◦ σp(Q)(x) and σp(Q)(x) ◦ □x . If Q ∈ L+(A) then the same holds for (k−11k Qk) and
(k−1 Qk1k).

Proof. By [Charles 2024, Proposition 6.3, Assertion 3c and 3d], (k−11k Qk) and (k−1 Qk1k) both belong to
L∞

p (A). To compute the symbol, we can use the peaked sections of Section 4A. Indeed, if8k( f ) is defined
by (28), with f ∈ D(Tx M)⊗ Ax and (Pk) ∈ L0(A) then by [Charles 2024, Proposition 2.4], Pk8k( f )=

8k(g)+O(k−1/2) with g = σ0(Pk)(x) f . So the symbol of any operator of Lp(A) is characterized by its
action on the peaked sections. Proposition 4.1 tells us how k−11k acts on the peaked section and the
first part of the result follows. To show that the composition with k−11k preserves the subspace L+(A)
of even operators, one uses instead of the asymptotic expansion (50) the alternative expansion

Pk(x, y)=

(
k

2π

)n

Ek(x, y)
∑

k−ℓ/2bℓ(x, y)+O(k−∞);

see [Charles 2024, equation (45) and Proposition 5.6]. The fact that (Pk) is even means that bℓ = 0 when ℓ
is odd. When (Pk) ∈ L∞(A), this expansion holds for the C∞ topology, so we can compute the Schwartz
kernel of k−11k Pk by letting k−11k act on each term of the expansion. Doing this with the expression (B),
no half power of k appears so k−11k Pk is even. The same argument works for k−1 Pk1k . □
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In the sequel, to lighten the notation, we write π instead of π I. Let L1 and L2 be the endomorphisms
of C∞(M,S(T M)⊗ End A) defined by

L1( f )(x)= π(x) ◦ f (x)+ f (x) ◦π(x)− f (x),

L2( f )(x)= [□x , f (x)].

Assuming that I satisfies (C), π ∈ C∞(M,End(D⩽p0(T M)⊗ End A) for some p0, so that L1 is well-
defined, meaning that L1( f ) is a smooth section of S(T M)⊗ End A when f is.

Lemma 6.4. The following sequence is exact:

0 → Symb L
−→ Symb ⊕ Symb L ′

−→ Symb → 0, (65)

where Symb = C∞(M,S(T M)⊗ End A), L( f )= (L1( f ), L2( f )) and L ′( f1, f2)= L2( f1)− L1( f2).

Proof. L ′
◦ L = 0 is equivalent to L1 ◦ L2 = L2 ◦ L1, which follows from [□, π] = 0. Indeed [□, π] = 0

implies that [□, f π ] = [□, f ]π and [□, π f ] = π [□, f ] so that

L2(L1( f ))= [□, f π +π f − f ]

= [□, f ]π +π [□, f ] − [□, f ] = L1(L2( f )).

Recall that Symb =
⋃

p∈N Symbp, with Symbp = C∞(M,End(D⩽p(T M)⊗ A)). L2 preserves each
Symbp and the same holds for L1 when p is larger than p0. So we have to prove that, for any p ⩾ p0,
the sequence (65) with Symb replaced by Symbp is exact.

By Lemma 2.4, the image of π is a subbundle F of D⩽p(T M) ⊗ A. Let F⊥ be the orthogonal
subbundle, so that D⩽p(T M)⊗ A = F ⊕ F⊥. Write the elements of Symbp as block matrices according
to this decomposition. The restrictions of π and □ to Symbp have the particular forms

π =

(
1 0
0 0

)
, □ =

(
□in 0
0 □out

)
Writing

f =

(
a b
c d

)
we have

L1( f )=

(
a 0
0 −d

)
, L2( f )=

(
[□in, a] E1(b)
E2(c) [□out, d]

)
,

with
E1(b)= □inb − b□out, E2(c)= □outc − c□in = −E1(c∗)∗.

Let us prove that E1 and E2 are invertible endomorphisms of the spaces C∞(M,Hom(F⊥, F)) and
C∞(M,Hom(F, F⊥)) respectively. For any y ∈ M, we introduce an orthonormal eigenbasis (ei ) of the
restriction of □y to D⩽p(Ty M)⊗ Ay . So □yei = λi ei and Fy (resp. F⊥

y ) is spanned by the ei such that
λi ∈ I (resp. λi /∈ I ). Now the endomorphism

Hom(F⊥

y , Fy)→ Hom(F⊥

y , Fy), b(y) 7→ □in(y)b(y)− b(y)□out(y), (66)
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is diagonalizable with eigenvectors |ei ⟩⟨ej | and eigenvalues λi − λj , where λi ∈ I and λj /∈ I. Since
λi − λj ̸= 0, (66) is invertible for any y, so the same holds for E1. The proof for E2 is similar.

From this, we deduce easily that the sequence is exact. In particular if L ′( f1, f2)= 0 with

fi =

(
ai bi

ci di

)
for i = 1 or 2,

then ( f1, f2)= L( f ) with

f =

(
a1 E−1

1 (b2)

E−1
2 (c2) −d1

)
.

Observe as well that f1 = f ∗

1 and f2 = − f ∗

2 imply that f = f ∗. □

Proof of Lemma 6.2. Let P ∈ L∞(A) be self-adjoint with symbol σ0(P)= π . Then R1 := P2
− P and

R2 := k−1
[1k, P] both belong to L∞

1 (A). Indeed their σ0-symbols are respectively π2
−π and [□, π],

and both of them vanish.
Let us prove by induction on m ⩾ 1 that there exists P as above such that R1 and R2 are in L∞

m (A).
Define P ′

= P + S with S ∈ L∞
m (A). Assume that R1 and R2 are in L∞

m (A). Then

(P ′)2 − P ′
= R1 + S P + P S − S mod L∞

m+1(A),

[k−11k, P ′
] = R2 + [k−11k, S].

So (P ′)2 − P ′ and [k−11k, P ′
] belong to Lm(A) and their σm-symbols are respectively f1 + L1( f ) and

f2 + L2( f ) with f = σm(S), f1 = σm(R1) and f2 = σm(R2). Let us prove that we can choose f so
that f1 + L1( f ) = 0 and f2 + L2( f ) = 0. By Lemma 6.4, it suffices to check that L1( f2) = L2( f1).
But L2( f1) is the σm-symbol of [k−11k, R1], L1( f2) is the σm-symbol of P R2 + R2 P − R2, and these
operators are equal as shows a direct computation. So f exists. Furthermore f = f ∗ by the remark at the
end of the proof of Lemma 6.4. So we can choose S self-adjoint.

We conclude the proof with the convergence property with respect to the filtration Lm(A) recalled
above. Observe also that if we start with P ∈ L+(A), then we end with a formal projector in L+(A). □

6C. Operator norm and pointwise estimates. Let us choose an operator (Pk) satisfying the conditions of
Lemma 6.2. Recall that for any operator Q ∈ Lm(A), Qk =O(k−m/2) in the sense that the operator norm
of Qk is in O(k−m/2). So Pk is self-adjoint, it is an almost projector P2

k = Pk +O(k−∞) and it almost
commutes with1k in the sense that [1k, Pk]=O(k−∞). Furthermore, by Lemma 6.1, Pk =5I

k +O(k−1/4).

Lemma 6.5. Pk =5I
k +O(k−∞).

Proof. We omit the index k to simplify the notation. Let H+ = Ran5I and H− be its orthogonal in
L2(M, Lk

⊗ A). We introduce the corresponding block decomposition of P

P =

(
P++ P+−

P−+ P−−

)
.

We first prove that P−+ and P+− are in O(k−∞).
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By Corollary 4.8 and assumption (C), there exists ϵ such that when k is sufficiently large

dist(I, sp(k−11k) \ I )⩾ ϵ.

Let ξλ and ξµ be two eigenfunctions of k−11k with eigenvalues λ and µ respectively. Then

(λ−µ)⟨Pξλ, ξµ⟩ = k−1(⟨P1kξλ, ξµ⟩ − ⟨Pξλ,1kξµ⟩)

= k−1
⟨[P,1k]ξλ, ξµ⟩

= O(k−∞)∥ξλ∥ ∥ξµ∥ (67)

because [P,1k]=O(k−∞). Now for any ξ+ ∈H+ and ξ− ∈H−, write their decompositions into eigenvec-
tors ξ+ =

∑
ξλ and ξ− =

∑
ξµ. So ∥ξ+∥

2
=

∑
∥ξλ∥

2, ∥ξ−∥
2
=

∑
∥ξµ∥

2 and ⟨Pξ−, ξ+⟩ =
∑

⟨Pξλ, ξµ⟩.
So by (67),

|⟨Pξ−, ξ+⟩| ⩽ ϵ−1O(k−∞)
∑

∥ξλ∥ ∥ξµ∥ ⩽ ϵ−1O(k−∞)∥ξ−∥ ∥ξ+∥

by the Cauchy–Schwarz inequality. This proves that P+− = O(k−∞). The same holds for its adjoint P−+.
Now the fact that P2

= P +O(k−∞) implies P2
++

= P++ +O(k−∞) and the same for P−−. Indeed,

(5I P5I )2 =5I P5I P5I

=5I P25I
+O(k−∞) (because P−+ = O(k−∞))

=5I P5I
+O(k−∞) (because P2

= P +O(k−∞)).

By Lemma 6.1, P =5I
+O(k−1/4), so P−− = O(k−1/4). Then P2

−−
= P−− +O(k−∞) implies

P−− = O(k−∞).

In the same way, (idH+
−P++)

2
= idH+

−P+++O(k−∞) and idH+
−P++ =O(k−1/4) imply idH+

−P++ =

O(k−∞). So

P++ = idH+
+O(k−∞),

which concludes the proof. □

Lemma 6.6. For any ℓ, m ∈ N, we have 1ℓk(Pk −5I
k )1

m
k = O(k−∞).

Proof. On one hand, we have

1ℓk Pk = O(kℓ), 1ℓk5
I
k = O(kℓ), (68)

where the first estimate is a consequence of ((k−11k)
ℓPk) ∈ L∞(A), and the second one is merely that

5I
k is the spectral projector of k−11k for the bounded interval I.
On the other hand, since for any Q ∈ L∞

∞
(A), 1ℓk Q1m

k belongs to L∞
∞
(A) as well, we have

1ℓk P2
k 1

m
k =1ℓk Pk1

m
k +O(k−∞),

1ℓk[k
−11k, Pk]1

m
k = O(k−∞).

(69)
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By the first equality, 1ℓk Pk1
m
k =1ℓ+m

k Pk +O(k−∞). Since [1k,5
I
k ] = 0, it suffices to prove the final

result for m = 0, that is, 1ℓk(Pk −5I
k )= O(k−∞). We have

1ℓk(Pk −5I
k )

(69)
= 1ℓk(P

2
k −5I

k )+O(k−∞)

= 1ℓk Pk(Pk −5I
k )+1

ℓ
k(Pk5

I
k )−1

ℓ
k5

I
k +O(k−∞)

(69)
= 1ℓk Pk(Pk −5I

k )+ Pk1
ℓ
k5

I
k −1ℓk5

I
k +O(k−∞)

= 1ℓk Pk(Pk −5I
k )+ (Pk −5I

k )1
ℓ
k5

I
k +O(k−∞) = O(kℓ)O(k−∞)

by (68) and Lemma 6.5. □

We are now ready to conclude the proof of Theorems 5.2 and 5.3: we will show that the Schwartz
kernel of Pk −5I

k is in O∞(k−∞), in the sense of Section 5D.
Choose two open sets U and U ′ of M equipped both with a set of coordinates and unitary trivializations

of L and A, so that we can identify the sections of Lk
⊗ A on U with functions. Let ϕ ∈ C∞

0 (U ),
ϕ′

∈ C∞

0 (U
′). Then ϕ(Pk −5I

k )ϕ
′ can be viewed as an operator of R2n. We introduce the differential

operator

3k = 1 − k−2
2n∑

i=1

∂2
xi

acting on C∞(R2n).

Lemma 6.7. For any ℓ ∈ N,

3ℓk ϕ(Pk −5I
k )ϕ

′3ℓk = O(k−∞). (70)

Consequently, the Schwartz kernel of ϕ(Pk −5I
k )ϕ

′ is in O∞(k−∞).

Proof. We will use basic results on semiclassical pseudodifferential operators of R2n , with the semiclassical
parameter usually denoted by h equal here to k−1. Choose ψ1, ψ2 ∈ C∞

0 (U ) such that suppϕ ⊂ {ψ1 = 1}

and suppψ1 ⊂ {ψ2 = 1}. The operator ψ1(1+ (k−21k)
ℓ), viewed as an operator of R2n, is a semiclassical

differential operator with principal symbol ψ1(H ℓ
+ 1), where H is the symbol of 1k , so

H(x, ξ)=

∑
gi j (x)(ξi +αi (x))(ξj +αj (x)),

with −i
∑
αi dxi the connection 1-form of L in the trivialization used to identify sections with functions.

The operator ϕ3ℓk is also a semiclassical differential operator with symbol ϕ(x)⟨ξ⟩2ℓ. Since the symbol
ψ1(H ℓ

+ 1) is elliptic on suppϕ× Rn , we can factorize

3ℓkϕ = Qkψ1(1 + (k−21k)
ℓ)+ Sk,

with Qk a zero-order semiclassical pseudodifferential operator and Sk in the residual class. To do this,
we only need the pseudodifferential calculus in the usual class Sk

1,0(T
∗R2n) of symbols; see for instance

[Dyatlov and Zworski 2019, Section E.1.5]. Composing with ψ2,

3ℓkϕ = Qkψ1(1 + (k−21k)
ℓ)+ Skψ2. (71)
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Similarly, we have
ϕ′3ℓk = ψ ′

1(1 + (k−21k)
ℓ)Q′

k +ψ ′

2S′

k . (72)

Now by Lemma 6.6,
(1 + (k−21k)

ℓ)(Pk −5I
k )(1 + (k−21k)

m)= O(k−∞), (73)

and by the usual result on boundedness of pseudodifferential operators, see [Dyatlov and Zworski 2019,
Proposition E.19], Qk, Q′

k = O(1) and Sk, S′

k = O(k−∞). We deduce (70) easily with (71), (72) and (73).
Now let H m

k be the Sobolev space H m(R2n) with the k-dependent norm ∥u∥Hm
k

= ∥⟨k−1ξ⟩û(ξ)∥L2(R2n).
Then 3ℓk is an isometry H m

k → H m−2ℓ
k . So (70) tells us that the operator norm H−2ℓ

k → H 2ℓ
k of

Rk = ϕ(Pk −5I
k )ϕ

′ is in O(k−∞). Since the Schwartz kernel of Rk at (x, y) is equal to δx(Rkδy) and the
Dirac δx belongs to H−m

k with a norm in O(k2n) for any m > n, we have Rk(x, y)= O(k−∞). Similarly,
∂αx ∂

β
y Rk(x, y) = O(k−∞) for any α, β ∈ N2n because the H−m

k -norm of ∂αδx is a O(k2n) as soon as
m ⩾ n + |α|. □

7. Toeplitz operators

Let F be a vector subbundle of D⩽p(T M)⊗ A for some p. Let (5k) ∈ L(A) such that, for each k, 5k

is a self-adjoint projector of C∞(M, Lk
⊗ A) and, for any x ∈ M, the symbol π(x) = σ0(5k)(x) is the

orthogonal projector onto Fx . Let Hk be the image of 5k .
The corresponding Toeplitz operators are the (Pk) ∈ L(A) such that 5k Pk5k = Pk . The symbol

σ0(P)(x) of such an operator satisfies

π(x)σ0(P)(x)π(x)= σ0(P)(x).

So σ0(P)(x)= f (x)π(x), with f (x)∈ End Fx . This section f of End F can be considered as the Toeplitz
symbol of (Pk).

We will establish several spectral results for these Toeplitz operators. Applied to the spectral projector
5k = 1[a,b](k−11k) and Pk = k−11k5k , this will complete the proofs of Theorems 1.1, 1.2, 1.3 and 1.4
stated in the Introduction.

7A. Global spectral estimates.

Theorem 7.1. (1) When k is sufficiently large, dimHk = RR(Lk
⊗ F).

(2) For any (Pk) ∈ L(A) such that P∗

k = Pk and 5k Pk5k = Pk for any k, we have for any 9 ∈ Hk with
∥9∥ = 1 that

inf
M

f− +O(k−1/2)⩽ ⟨Pk9,9⟩ ⩽ sup
M

f+ +O(k−1/2), (74)

where the O’s are uniform with respect to 9 and, for any x ∈ M, f−(x) and f+(x) are the smallest
and largest eigenvalues of the restriction of σ0(P)(x) to Fx .

The proof is based on the generalized ladder operators introduced in [Charles 2024]: if (A′, F ′,5′

k,H
′

k)

is a second set of data satisfying the same assumption as (A, F,5k,Hk) and F, F ′ are isomorphic vector
bundles, then there exist isomorphisms Uk : Hk → H′

k when k is sufficiently large. Then defining H′

k
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as the kernel of a well-chosen spin-c Dirac operator, dimH′

k is given by the Atiyah–Singer theorem,
which will prove the first statement. For the second one, choose H′

k so that F ′
= A′, Uk PkU∗

k is equal to
a Toeplitz operator 5′

k f5′

k up to a O(k−1/2). The inspiration here comes from the proof of the sharp
Gårding inequality for semiclassical pseudodifferential operator.

Proof. Consider a second self-adjoint projector 5′
∈ L(A′) with σ0(5

′) the orthogonal projector onto a
vector bundle F ′ of D⩽p(T M)⊗ A′. Assume that F and F ′ are isomorphic vector bundles. Then there
exists u ∈ C∞(M,Hom(F, F ′)) such that, for any x ∈ M, u(x) is a unitary isomorphism from Fx to F ′

x .
Extending u(x) to a map D(Tx M)⊗ Ax →D(Tx M)⊗ A′

x which is zero on the orthogonal of Fx , we have

u∗(x)u(x)= σ0(5)(x), u(x)u∗(x)= σ0(5
′)(x).

So if (Uk) ∈ L(A, A′) has symbol u, then

U∗

k Uk =5k +O(k−1/2), UkU∗

k =5′

k +O(k−1/2). (75)

Furthermore replacing Uk by 5′

kUk5k does not modify the symbol of Uk so the same property holds and
moreover 5′

kUk5k = Uk . Consequently Uk restricts to an isomorphism from Hk to the image H′

k of 5′

k ,
when k is sufficiently large.

Hence for large k, the dimension of Hk only depends on the isomorphism class of F. To compute
it, we introduce a spin-c Dirac operators Dk acting on Lk

⊗ A′ with A′
= F ⊗

∧0,•T ∗M and define
H′

k as the kernel of Dk . Then by a vanishing theorem [Borthwick and Uribe 1996; Ma and Marinescu
2002], dimH′

k is equal to the index of D+

k when k is sufficiently large. By Atiyah–Singer index theorem,
dimH′

k = RR(Lk
⊗ F). Furthermore, it follows from [Ma and Marinescu 2007] that the projector (5′

k)

belongs to L(A′), and σ0(5
′

k) is the projector onto C ⊗ F ⊗ C. Alternatively the vanishing theorem and
the fact that (5′

k) ∈ L(A′) follows also from Corollary 4.8 and Theorem 5.2 applied to D−

k D+

k as in the
proof of Theorem 3.6.

To prove the second part, we choose A′
= F ′

= F, that is, (5′

k) belongs to L(F) and its symbol is the
projection onto D0(T M)⊗ F. For instance, we can choose 5′

k = 1I (k−11k) with I =
1
2 n +

[
−

1
2 ,

1
2

]
and

1k the magnetic Laplacian acting on C∞(M, Lk
⊗ F) defined from any connection of F and the metric

ω( · , j · ) so that 6 =
1
2 n + N.

Now let P ∈L(A) be selfadjoint and such that5k Pk5k = Pk . Then the symbol σ0(P)(x) is self-adjoint
and has the form σ0(P)(x)= f (x)π(x) with f (x) ∈ End Fx . So σ0(P)(x)= u∗(x) f (x)u(x), and thus

Pk = U∗

k f Uk +O(k−1/2), (76)

where f acts on C∞(M, Lk
⊗ F) by pointwise multiplication. For any 9 ′

∈ C∞(M, Lk
⊗ F),

(inf
M

f−)∥9 ′
∥

2 ⩽ ⟨ f9 ′, 9 ′
⟩ ⩽ (sup

M
f+)∥9 ′

∥
2,

where f−(x) and f+(x) are the smallest and largest eigenvalues of f (x) for any x . We conclude the
proof by setting 9 ′

= Uk9 and using (75) and (76). □
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Corollary 7.2. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Let
a, b ∈ R \6, with a < b. Then when k is sufficiently large

♯ sp(k−11k)∩ [a, b] =

{
RR(Lk

⊗ F) if [a, b] ∩6 ̸= ∅,
0 otherwise,

(77)

with F the bundle with fibers Fx = 1[a,b](□x). Furthermore

sp(k−11k)∩ [a, b] ⊂ [a, b] ∩6+O(k−1/2). (78)

Proof. When [a, b]∩6 is empty, we already know by Corollary 4.8 that sp(k−11k)∩[a, b] is empty when
k is sufficiently large. When [a, b] ∩6 ̸= ∅, by Theorem 5.2, the spectral projector 5k = 1[a,b](k−11k)

belongs to L(A) with symbol π = 1[a,b](□). So the dimension of Im5k is given in the first assertion of
Theorem 7.1.

Moreover, by Corollary 5.4, (k−11k)5k belongs to L(A) and its symbol is □1[a,b](□). By the second
assertion of Theorem 7.1,

sp(k−11k)∩ [a, b] = sp(k−11k5k)⊂ [inf f−, sup f+] +O(k−1/2)

where f is the restriction of □ to F = Imπ .
This proves the inclusion (78) when [a, b] ∩6 is connected. Indeed,

[a, b] ∩6y = [ f−(y), f+(y)] ∩6y .

So on one hand, M being compact, inf f− = f (y−) and sup f+ = f (y+) belongs to [a, b] ∩6. On the
other hand [a, b] ∩6 ⊂ [inf f−, sup f+]. Consequently [a, b] ∩6 = [inf f−, sup f+].

To treat the general case, we use that [a, b] ∩6 is a finite union of mutually disjoint compact intervals
I1, . . . , Iℓ. So there exists a1 = a < a2 < · · · < aℓ+1 = b in R \6 such that Ii = [ai , ai+1] ∩6 and by
what we have proved, sp(k−11k)∩ [ai , ai+1] ⊂ Ii +O(k−1/2). □

Remark 7.3. Decompose D(T M) into even and odd subspaces

D+(T M)=

⊕
p∈N

D2p(T M), D−(T M)=

⊕
p∈N

D2p+1(T M).

Let us assume that (5k) is even and that F has a definite parity in the sense that F is a subbundle of
Dϵ(T M)⊗ A for ϵ = + or −. Then (74) and (78) hold with k−1 instead of k−1/2.

Indeed, by [Charles 2024, Theorem 2.5], the σp-symbol of Pk ∈ L+
p (A) has the same parity of p,

meaning that σp(Pk) sends Dϵ(T M) ⊗ A into Dϵ′

(T M) ⊗ A with ϵ′
= (−1)pϵ. So if an operator

(Pk) ∈ L+

1 (A) is such that 5k Pk5k = Pk , then its symbol σ1(Pk) is odd and has the form gπ for some
g ∈ End F. So g is odd, but F has a definite parity, so g = 0. Consequently (Pk) ∈ L+

2 (A). Moreover, by
[Charles 2024, Theorem 3.4], we can construct (Uk)∈L(A, F) such that UkU∗

k = id when k is sufficiently
large and (Uk) has the same parity as F. So if (Pk) ∈ L+(A), then (Uk PkU∗

k ) ∈ L+(F). Then in the proof
of Theorem 7.1, we can replace the O(k−1/2) in (75) and (76) by a O(k−1). □
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7B. Local spectral estimates.

Theorem 7.4. Let (Pk) ∈ L(A) be such that 5k Pk5k = Pk and P∗

k = Pk . Let f ∈ C∞(M,End F) be the
restriction of σ0(Pk) to F.

(1) For any compact subsets C of M and I of R such that I ∩ sp( f (x))= ∅ for any x ∈ C , we have for
any N

(5k1I (Pk)5k)(x, x)= O(k−N ) for all x ∈ C,

with a O uniform with respect to x.

(2) For any g ∈ C∞(R,C), (5k g(Pk)5k) belongs to L(A) and its σ0-symbol is (g ◦ f )π . Moreover, if
(5k) and (Pk) are in L+(A), then the same holds for (5k g(Pk)5k).

Proof. Let U be the open set {x ∈ M : sp( f (x)) ∩ I = ∅}. Let ϕ ∈ C∞

0 (U ) and λ ∈ I. Observe that
ϕ( f − λ)−1

∈ C∞(M,End F). So if (Qk) ∈ L(A) has symbol ϕ( f − λ)−1π , we have

5k Qk5k(Pk − λ5k)=5kϕ5k − Rk, (79)

with (Rk) ∈ L1(A). Let us improve this to obtain (Rk) ∈ L∞(A).
We need the following notion of support: for any S ∈ L(A), supp S is the closed set of M such that

x /∈ supp S if and only if Sk(y, z)=O(k−∞) on a neighborhood of (x, x). Using that the Schwartz kernel
of S ∈ L(A) is in O(k−∞) on compact subsets of M2

\ diag M and in O(kn) on M2, we prove that for
any S, S′

∈ L(A) we have supp(SS′)⊂ (supp S)∩ (supp S′).
Assume now that (Qk) ∈ L(A) has the symbol ϕ( f − λ)−1π as above and is supported in U. Then

(Rk) ∈ Lp(A) with p ⩾ 1, 5k Rk5k = Rk so that the symbol r = σp(Rk) satisfies πrπ = r . Furthermore,
(Rk) is supported in U, so the same holds for r , so that r( f −λ)−1

∈ C∞(M,End F). Let (Q′

k) ∈ Lp(A)
be supported in U and have symbol σp(Q′

k)= r( f −λ)−1π . Then if we replace Qk in (79) by Qk + Q′

k ,
we have now (Rk) ∈ Lp+1(A). We deduce the existence of (Qk) such that (79) holds with (Rk) ∈ L∞(A),
so the operator norm of Rk is in O(k−∞).

We claim that this construction can be realized so that we obtain an O(k−∞) uniform with respect to
λ ∈ I. To do this, we consider families

(Sk(λ)) ∈ L(A), λ ∈ I, (80)

such that in the kernel expansion (50), the coefficients aℓ depend continuously on λ and the remainders rN ,k

are in O(kn−(N+1)/2) on compact subsets of U 2 with an O independent of λ. Then if (S′

k(λ)) is another
family depending continuously on λ in the same sense, the same holds for the product (S′

k(λ)Sk(λ)).
Furthermore, if (Sk(λ)) ∈ Lp(A) for any λ ∈ I, the operator norm of Sk(λ) is in O(k−p/2) with an O
independent of λ. The proof of these claims is the same as the proof of the same facts without λ. Later
in (85), we will use these results again with the parameter λ describing a compact subset of C.

Now we deduce from (79) with ∥Rk∥ = O(k−∞) that, for any k, any normalized 9 ∈ Hk such that
Pk9 = λ9 with λ∈ I satisfies ⟨ϕ9,9⟩ =O(k−∞) with an O independent of λ and 9. For any x ∈ U, we
can choose ϕ equal to 1 on a neighborhood of x and we deduce the existence of a compact neighborhood V
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of x , such that any 9 as above satisfies∫
V

|9(x)|2 dµ(x)= O(k−∞).

Writing9=5k9 and using that the Schwartz kernel of5k is in O(kn) on M2 and in O(k−∞) on compact
subsets of M2 not intersecting the diagonal, we get that on a neighborhood of x the pointwise norm of 9
is in O(k−∞). Since (5k1I (Pk)5k)(x, x) is the sum of the |9ℓ(x)|2, where (9ℓ) is an orthonormal basis
of Hk ∩ Im 1I (Pk) consisting of eigenvectors of Pk , and dimHk = O(kn), we deduce that

(5k1I (Pk)5k)(x, x)= O(k−∞) for all x ∈ U,

with an O uniform on compact subsets of U. This ends the proof of the first assertion.
For the second assertion, since the operator norm of Pk is bounded independently of k, we can assume

that g ∈ C∞

0 (R,C). We will apply the Helffer–Sjöstrand formula, which we already used in a similar
context for the functional calculus of Toeplitz operators [Charles 2003, Proposition 12]. So for P̃k the
restriction of Pk to Hk , we have

g(P̃k)=
1

2π

∫
C

(∂z̄ g̃)(z)(z − P̃k)
−1

|dz dz̄|, (81)

where g̃ ∈ C∞

0 (C,C) is an extension of g such that ∂z̄ g̃ vanishes to infinite order along the real axis
[Zworski 2012, Theorem 14.8].

In the same way we proved (79), we can construct, for any z ∈ C \ R, (Qk(z)) ∈ L(A) such that
5k Qk(z)5k = Qk(z) and

Qk(z)(z − Pk)=5k − Rk(z), (82)

with (Rk(z)) ∈ L∞(A). At the first step we set Qk(z) = 5k Q̃k5k , with Q̃k(z) in L(A) having sym-
bol (z − f )−1π . We obtain (82) with (Rk(z)) ∈ L1(A). Then if (Rk(z)) ∈ Lp(A) and has symbol
σp(Rk(z))= r(z), we add to Qk the operator 5k Q′

k(z)5k , where (Q′

k(z)) is an operator of Lp(A) with
symbol σ(Q′

k(z))= r(z)(z − f )−1π .
To apply this in (81), we need to control carefully the dependence with respect to z. For U an open set

of M, we introduce the space FC∞(U ) consisting of family ( f (z, · ), z ∈ C\R) of C∞(U ) having the form

g(z, x)=

∑
m am(x)zm∑
m bm(x)zm

where the sums are finite, the coefficients am and bm belong to C∞(U ), and for any x the poles of g( · , x)
lie on the real axis. Since FC∞(U ) is a C∞(U )-module, we can define FC∞(U, B) for any auxiliary
bundle B as the space of z-dependent section of B on U with local representatives in FC∞(U ) for any
z-independent frame of B on U.

Having in mind the construction of Qk(z) in (82), observe that (z − f )−1 belongs to FC∞(M,End F).
Moreover, FC∞(U ) being closed under product, for any r(z)∈FC∞(M,End F), we have r(z)(z− f )−1

∈

FC∞(M,End F).
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Now we introduce the space FL(A) consisting of families (Pk(z), z ∈ C \ R) of L(A) such that in the
asymptotic expansion (50) satisfied by the Schwartz kernel of Pk(z), the coefficients have the form

aℓ(z, x, ξ)=

∑
aℓ,α(z, x)ξα, (83)

with aℓ,α ∈FC∞(U,End Cr ), and each remainder rN ,k is in O(kn−(N+1)/2) uniformly on K ∩((C\R)×U 2),
where K is any compact subset of C × U 2. We claim that we can choose Qk(z) ∈ FL(A) in (82). To
see this, it suffices to prove that

S(z) ∈ FL(A) =⇒ 5k Sk(z)5k(z − Pk) ∈ FL(A), (84)

and then to use what we said before on r(z) ◦ (z − f )−1. To prove (84), it suffices to show that, for any
S(z) ∈ FL(A) and T ∈ L(A) independent of z, T S(z) and S(z)T belong to FL(A). To prove this, we
can assume that the Schwartz kernel of T (z) is contained in a compact subset of U 2 independent of k
and z, where we have the expansion (50), and we can treat each term of the expansion independently
of the others. Suppose we only have aℓ(z, x, ξ). Then by (83), S(z) =

∑
Sαaℓ,α(z, · ), where the sum

is finite, Sα ∈ Lℓ(A) and does not depend on z. Since T S(z)=
∑
(T Sα)aℓ,α(z, · ) and T Sα ∈ Lℓ(A), for

any α, T S(z) belongs to FLℓ(A). The product S(z)T is more delicate to handle. By the same proof as
[Charles 2016, Lemma 5.11], for any compact set K of U, there exists a family (Tβ, β ∈ N2n) such that
Tβ ∈ L|β|(A), and for any f ∈ C∞

K (U ) we have f T =
∑

|β|⩽N Tβ(∂β f ) modulo LN+1(A). Consequently

S(z)T =

∑
α

Sα(aℓ,α(z, · )T )=

∑
α,|β|⩽N

SαTβ(∂βaℓ,α(z, · ))|vtw

modulo LN+1(A). To conclude we use that SαTβ ∈ Lℓ+|β|(A) and ∂βaℓ,α ∈ FC∞(U,End Cr ).
Now the function ξ(z)= (Im z)−1∂z̄ g̃(z) vanishes to infinite order along the real axis and its support

is contained in the compact set K = supp g̃. For any f ∈ FC∞(U ), the product ξ(z) f (z, · ) extends
smoothly to C. We deduce that there exists a family (Sk(z)) of L(A) depending continuously of z ∈ K
in the same sense as (80), and such that

5k Sk(z)5k = Sk(z), Sk(z)(z − Pk)= ξ(z)5k +O(k−∞), (85)

with an O uniform with respect to z. Since ∥(z − P̃k)
−1

∥ = O(| Im z|−1), multiplying the last equality
by (Im z)(z − P̃k)

−1, we obtain

∂z̄ g̃(z)(z − P̃k)
−15k = (Im z)Sk(z)+ Rk(z), (86)

with Rk(z) = O(k−∞). Since 5k Rk(z)5k = Rk(z) and the Schwartz kernel of 5k is in O(kn), this
implies that the Schwartz kernel of Rk(z) is in O(k−∞) uniformly with respect to z. Inserting (86)
in (81), it comes that (g(P̃k)5k) belongs to L(A). To see this, we simply have to integrate with respect
to z the coefficients aℓ(z, x, ξ) in the expansion (50) of the Schwartz kernel of (Im z)Sk(z). Since
σ0((Im z)Sk(z))= ∂z̄ g̃(z)(z − f )−1π , we deduce also that

σ0(g(P̃k)5k)=
1

2π

∫
C

∂z̄ g̃(z)(z − f )−1π |dz dz̄| = g( f )π,

which concludes the proof. □
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Corollary 7.5. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Let
3 ∈ R \6. Then for any g ∈ C∞(R,C) supported in ]−∞,3], (g(k−11k)) belongs to L+(A) and has
symbol g(□).

Proof. Since g is supported in ]−∞,3], we have g(k−11k) = 5k g(k−11k5k)5k where 5k =

1]−∞,3](k−11k). By Theorem 5.2 and Corollary 5.4, (5k) and k−11k5k belong to L+(A) with symbols
π = 1]−∞,3](□) and f = g(□). So the result follows from the second assertion of Theorem 7.4. □

This proves the second part of Theorem 1.4. We end this section with the proof of the local Weyl laws,
Theorem 1.3. The proof works for any (1k) of the form (B).

Proof of Theorem 1.3. We use the same notation as in Corollary 7.5 and its proof. Let a, b ∈ ]−∞,3]\6y .
We have sp( f (y)) = 6y ∩ ]−∞,3]. When [a, b] ∩6y is empty, the first part of Theorem 7.4 implies
that N (y, a, b, k) = O(k−∞). To the contrary, assume that [a, b] ∩6y = {λ}. Then choose a function
g ∈ C∞

0 (]a, b[,R) which is equal to 1 on ]λ−ϵ, λ+ϵ[ for some ϵ > 0. Since N (y, a, λ−ϵ, k)=O(k−∞)

and N (y, λ+ ϵ, b, k)= O(k−∞) by the first part of the proof,

N (y, a, b, k)= g(k−11k)(y, y)+O(k−∞).

Since g(k−11k) is in L+(A) and has symbol g(□), we have by [Charles 2024, Theorem 2.2, Assertion 5
and Proposition 5.6]

g(k−11k)(y, y)=

(
k

2π

)n ∞∑
ℓ=0

mℓ,λk−ℓ
+O(k−∞),

with m0,λ = tr g(□)(y), so m0,λ is the multiplicity of λ as an eigenvalue of □y . □

8. Miscellaneous proofs

Proof of Lemma 4.5. This is essentially Darboux lemma with parameters. We can adapt the proof presented
in [McDuff and Salamon 2017, Section 3.2]. A more efficient approach based on [Bursztyn et al. 2019]
is as follows. First, if r is sufficiently small, for any y, the exponential map expy : Ty M → M restricts to
an embedding from By(r) into M. Identify U = expy(By(r)) with an open set of Ty M. We are looking
for a diffeomorphism ϕ defined on a neighborhood of the origin of Ty M such that ϕ(0)= 0, T0ϕ = id
and ϕ∗ω is constant. The important point is to define ϕ in such a way that it depends smoothly on y.

Let α be the primitive of ω on U obtained by radial homotopy. So

αx(v)=

∫ 1

0
ωt x(t x, v) dt, x ∈ U, v ∈ Ty M, (87)

and dα = ω. Let X be the vector field of U such that ιXω = 2α. By the Poincaré lemma, LXω = 2ω.
Furthermore, linearizing α at the origin, we see that X = E +O(2), with E the Euler vector field of
Ty M. Since Z = X − E vanishes to second order at the origin, the family Z t(x) := Z(t x)/t2 extends
smoothly at t = 0. Let ϕt be the flow of the time-dependent vector field Z t of U, that is, ϕ0(x) = x
and ϕ̇t(x) = Z t(ϕt(x)). Since Z t is zero at the origin, ϕ1 is a germ of a diffeomorphism of (Ty M, 0).
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By the proof of Lemma 2.4 in [Bursztyn et al. 2019], ϕ∗

1 X = E , where the pull-back is defined by
ϕ∗

1 X = (ϕ−1
1 )∗X . So LXω = 2ω implies that LEϕ

∗

1ω = 2ϕ∗

1ω. So ϕ∗

1ω is constant.
To conclude, observe that ϕ1 depends smoothly on y because α given in (87) depends smoothly on y,

so the same holds for X and Z t , and the solution of a first-order differential equation depending smoothly
on a parameter, is smooth with respect to the parameter. Finally the radius r0 is chosen so that ϕ1 is
defined on By(r0). Since M is compact, we can choose r0 > 0 independent of y. □

Proof of Lemma 4.6. Let d be the geodesic distance of M associated to our Riemannian metric. Starting
from d(y, expy(ξ))= ∥ξ∥ when ξ is sufficiently close to the origin, we get

C−1
∥ξ∥ ⩽ d(y, 9y(ξ))⩽ C∥ξ∥ (88)

for any ξ ∈ By(r1) with r1 sufficiently small. So if B(y, r) is the open ball of the metric space (M, d),
then 9y(By(r))⊂ B(y, rC)) and B(y, r)⊂9y(By(rC)). Define

v−(ϵ)= inf{vol(B(y, ϵ)) : y ∈ M}, v+(ϵ)= sup{vol(B(y, ϵ)) : y ∈ M}.

Then, replacing C by a larger constant if necessary, when ϵ is sufficiently small, C−1ϵ2n ⩽ v−(ϵ) and
v+(ϵ)⩽ Cϵ2n.

For any ϵ > 0, choose a maximal subset J (ϵ) of M such that the balls B(y, ϵ/2), y ∈ J (ϵ), are mutually
disjoint. From the maximality, M ⊂

⋃
y∈J (ϵ) B(y, ϵ) so that the sets Uy(ϵ) := 9y(By(ϵC)), y ∈ J (ϵ),

cover M. For any x ∈ M, let N (x, ϵ) be the number of y ∈ J (ϵ) such that x ∈Uy(ϵ). If x ∈Uy(ϵ), by triangle
inequality, B(y, ϵ/2)⊂ B(x, ϵ(1+C2)). Since the balls B(y, ϵ/2), y ∈ J (ϵ) are mutually disjoint, we have

N (x, ϵ)v−(ϵ/2)⩽ vol(B(x, ϵ(1 + C2)))⩽ v+(ϵ(1 + C2))

So N (x, ϵ)⩽ C2(2(1 + C2))2n . Thus the multiplicity of the cover Uy(ϵ), y ∈ J (ϵ), is bounded indepen-
dently of ϵ. □
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