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IMPROVED ENDPOINT BOUNDS FOR
THE LACUNARY SPHERICAL MAXIMAL OPERATOR

LAURA CLADEK AND BENJAMIN KRAUSE

We prove new endpoint bounds for the lacunary spherical maximal operator and as a consequence
obtain almost everywhere pointwise convergence of lacunary spherical means for functions locally in
L log log log L(log log log log L)1+ϵ for any ϵ > 0.

1. Introduction

Let d ≥ 2 be a fixed dimension; all constants in this paper are allowed to depend on d. We use the
asymptotic notation X ≲ Y , Y ≳ X , or X = O(Y ) to denote the estimate |X | ≤ CY for a constant C that
can depend on d , and X ≈ Y for X ≲ Y ≲ X .

Define the lacunary spherical maximal operator M by

M f (x) := sup
k∈Z

| f ∗ σk(x)|,

where σk denotes the (L1-normalized) surface measure on the (d−1)-sphere of radius 2k centered at the
origin.

Throughout this paper, log = log2 denotes the logarithm to base 2, and we define the iterated logarithms

Log(t) := log(100 + t), Log3(t) := Log Log Log t,

Log2(t) := Log Log t, Log4(t) := Log Log Log Log t.

It was shown by C. Calderón [1979] and Coifman and Weiss [1978] that M extends to a bounded
operator on L p(Rd) for p > 1, which implies almost everywhere pointwise convergence of lacunary
spherical means for functions in L p(Rd) for p > 1. An alternate proof of this result was later given
in [Duoandikoetxea and Rubio de Francia 1986]. It has remained open, however, as to whether M is
weak-type (1, 1), or equivalently, whether almost everywhere pointwise convergence of lacunary spherical
means holds for functions in L1(Rd).

Christ and Stein [1987] showed using an extrapolation argument that M f ∈ L1,∞(Rd) for functions f
on Rd supported in a cube Q satisfying f ∈ L Log L(Q). Christ [1988] also proved that M maps the
Hardy space H 1(Rd) to L1,∞(Rd). More recently, Seeger, Tao, and Wright [Seeger et al. 2003; 2004]
showed that M maps the space L Log2 L(Rd) to L1,∞(Rd). In this paper we prove that M maps all
characteristic functions in L Log3 L(Rd) boundedly to L1,∞(Rd), and more generally maps the entire
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space L Log3 L Log1+ϵ
4 L(Rd) to L1,∞(Rd) for every ϵ > 0, thus obtaining almost everywhere pointwise

convergence of lacunary spherical means for functions locally in L Log3 L Log1+ϵ
4 L(Rd).

Proposition 1.1 (lacunary spherical maximal inequality for indicator functions). For all measurable
indicator functions f = χE and all α > 0 we have

|{M f > α}| ≲ 1
α

∫
| f (x)| Log3

| f (x)|

α
dx . (1-1)

Here and in the sequel we use |E | to denote the Lebesgue measure of a subset E of Rd .

Proposition 1.2 (lacunary spherical maximal inequality for arbitrary functions). For every ϵ > 0, all
measurable f and all α > 0 we have

|{M f > α}| ≤ Cϵ
1
α

∫
| f (x)| Log3

| f (x)|

α
Log1+ϵ

4
| f (x)|

α
dx (1-2)

for some constant Cϵ depending only on ϵ.

By the usual limiting and truncation arguments we obtain the following corollary.

Theorem 1.3 (almost everywhere convergence of lacunary spherical means). Let ϵ > 0, and let f be
locally in L Log3 L Log1+ϵ

4 L(Rd). Then
f ∗ σk(x) → f (x)

for almost every x ∈ Rd .

Before we proceed with the proofs, we briefly outline the argument. In [Seeger et al. 2003], the
restricted version of the argument relied crucially on a decomposition of the function f = χE on Whitney
cubes into characteristic functions of sets called “generalized boxes”, which had properties called “length”
and “thickness”. As the name suggests, in two dimensions such sets are a generalization of rectangular
boxes, for which the length and thickness correspond to the long and short sides respectively of the
rectangle. In the case of two dimensions, convolution of a rectangular box with the measure σk has
measure equal to 2k times the length of the box. Similarly, the length of a generalized box determines for
how many scales k one may throw away the support of σk convolved with the characteristic function of
the generalized box. Conversely, the thickness of the box determines what L2 estimates one may obtain
for σk convolved with the characteristic function of the generalized box.

The argument of [Seeger et al. 2003] proceeded by combining standard Calderón–Zygmund techniques
along with this decomposition of E into generalized boxes on Whitney cubes, and by leveraging L2 and
exceptional set size estimates via the properties of length and thickness for each generalized box. Our
argument will also make use of a similar decomposition, but there will be many new ingredients involved,
and in general our argument will more closely use the geometry of the sphere.

For example, we exploit the geometry of caps on spheres to introduce a fairly involved algorithm for
defining exceptional sets, and we throw away more exceptional sets than in [Seeger et al. 2003]. These
exceptional sets are defined by covering Rd with collections of rotated grids of rectangles,1 where the

1In higher dimensions d > 2, by a “rectangle” we refer to a rotated box of some dimensions c × · · · × c × c′, with one side c′

shorter than the other sides c.
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dimensions of the rectangles are determined by an iterative relationship between the dimensions of a
given generalized box and the cap structure of the spherical measure. On fixing a particular direction
in Sd−1 which determines the orientation of the rectangular grids to be considered, we then subdivide
the generalized box into rectangular pieces where the generalized box has sufficiently high “mass”, and
throw away as an exceptional set the sumset of this rectangular box and a piece of the cap on the sphere
with normals pointing in similar directions as the short side of the rectangular box, so that such a set is
contained in a translation of the fattening of the spherical cap by an amount comparable to the short side
of the rectangular box.

We then decompose the kernel σk ∗σk into linear combinations of characteristic functions of rectangles
with dimensions corresponding to the caps that appear in our algorithm for defining exceptional sets. The
L2 estimates for each such piece of the kernel convolved with a given rectangular piece in a grid with
similar orientation is determined by the mass of the generalized box on that rectangular piece. There
are essentially double-logarithmically (in the relevant parameter) many such different sizes of caps that
appear, which alone would lead to the desired L2 estimates with an additional double-logarithmic factor.
However, we are able to throw away triple-logarithmically many “intermediate scales”; that is, we may
sum in L1 the convolutions of characteristic functions of parts of the generalized boxes with intermediate
masses with the associated cap measures. After doing so, we improve the L2 estimates for the remaining
“light scales” by the needed double-logarithmic factor, and also improve the support size estimates for the
remaining “heavy scales” by a double-logarithmic factor.

2. Preliminary reductions

In Calderón–Zygmund theory, weak-type estimates are often established by a combination of L1 and
L2 estimates outside of an exceptional set, and our arguments will be no exception to this strategy. It is
convenient to introduce some notation to abstract this strategy.

Definition 2.1 (Calderón–Zygmund control). Let α, V > 0. A Calderón–Zygmund term of threshold α

and measure V is a measurable function F : Rd
→ R of one of the following types:

(type L0) F is a function supported on a set of measure O(V ).

(type L1) F is an L1 function with ∥F∥1 ≲ αV .

(type L2) F is an L2 function with ∥F∥
2
2 ≲ α2V .

Here and in the sequel we use ∥ · ∥p to denote the usual L p(Rd) norms. A function F is Calderón–
Zygmund controlled with threshold α and measure V if |F | can be pointwise dominated by a sum of
boundedly many Calderón–Zygmund terms F1, . . . , Fn , with n = O(1), and each Fi a Calderón–Zygmund
term (of type L0, L1, or L2) of threshold α and measure V.

A model example of a Calderón–Zygmund controlled term to keep in mind is a simple function αχE ,
where E is of measure O(V ). The type-L1 terms are in fact redundant as they can be easily split into the
sum of a type-L0 and a type-L2 term, but we find it conceptually convenient to retain this intermediate
term for our arguments.
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We record some convenient properties of Calderón–Zygmund controlled functions:

Lemma 2.2 (basic properties of Calderón–Zygmund controlled functions). Let α > 0.

(a) (Chebyshev inequality) If F is Calderón–Zygmund controlled with threshold α and some measure
V > 0, then |{|F | > α}| ≲ V.

(b) (triangle inequality for bounded sums) If F, F1, F2 obey the bounds |F | ≲ |F1| + |F2| and F1, F2 are
Calderón–Zygmund controlled with threshold α and some measure V1, V2 > 0 respectively, then F is
Calderón–Zygmund controlled with threshold α and measure V1 + V2.

(c) (triangle inequality for square functions and unbounded sums) If (Fq)q∈Q is a collection of functions,
with each Fq Calderón–Zygmund controlled with threshold α and some measure Vq > 0, then the square
function

(∑
q∈Q |Fq |

2
)1/2 is Calderón–Zygmund controlled with threshold α and measure

∑
q∈Q Vq . If

the Fq are Calderón–Zygmund terms of type L0 or L1 of the threshold α and measure Vq , then
∑

q∈Q Fq

is also Calderón–Zygmund controlled at threshold α and measure
∑

q∈Q Vq ; but if the Fq were instead
L2 terms of threshold α and measure Vq , then

∑
q∈Q Fq can only be said to be an L2 term of threshold α

and measure
(∑

q∈Q V 1/2
q

)2.

Proof. For (a), we bound |F | ≤ F1 + · · · + Fn by the sum of Calderón–Zygmund terms Fi of threshold α

and measure V. By Chebyshev’s inequality (in the type-L1 and type-L2 cases) we have

{Fi > α/n} ≲ V

for all i = 1, . . . , n; summing, we obtain the claim.
The claim (b) is immediate from the triangle inequality, as is (c), after using the trivial bound(∑

q∈Q |Fq |
2
)1/2

≤
∑

q∈Q |Fq | to handle type-L1 terms arising from the square function. □

Most of this paper will be devoted to the proof of the following variant of Propositions 1.1 and 1.2.
Call a function f : Rd

→ R granular if it is a finite linear combination of indicator functions of dyadic
cubes. As in [Seeger et al. 2003], it is convenient for minor technical reasons to restrict attention to
granular functions.

Proposition 2.3 (bounding the lacunary spherical maximal function). Let 0 ≤ α ≤ 1, and let f be a
granular function taking values in [0, 1]. Then M f is Calderón–Zygmund controlled with threshold α

and measure (Log3(1/α)/α)∥ f ∥1.

By Lemma 2.2(a) we see that the conclusion of Proposition 2.3 implies the bound

|{x ∈ Rd
: M f (x) > α}| ≲

Log3(1/α)

α
∥ f ∥1 (2-1)

for granular f taking values in [0, 1]; the granularity hypothesis can then be removed by a standard
limiting argument. It is then clear that Proposition 2.3 implies Proposition 1.1 as a special case. Let us
now also see why it implies Proposition 1.2:
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Proof of Proposition 1.2. Without loss of generality we may assume that f is nonnegative. Since we
have the pointwise estimate M f ≤ M( f χ f ≥α/2)+α/2, we may assume without loss of generality (after
replacing α with α/2) that f (x) ≥ α for all x in the support of f . We then have the pointwise bound

M f (x) ≤

∞∑
k=1

M( f χLog3( f/α)≈2k )

and hence

|{M f > α}| ≤

∞∑
k=1

∣∣∣∣{M( f χLog3( f/α)≈2k )(x) >
α

Cϵk1+ϵ

}∣∣∣∣
for a sufficiently large constant Cϵ . By (2-1) and a simple rescaling we have∣∣∣∣{M( f χLog3( f/α)≈2k ) >

α

Cϵk1+ϵ

}∣∣∣∣ ≤ C ′

ϵ(k
1+ϵ2k/α)

∫
Rd

f (x)χLog3( f (x)/α)≈2k dx

for some quantity C ′
ϵ depending only on ϵ. Summing in k, we obtain the claim. □

It remains to establish Proposition 2.3.

Reductions using Calderón–Zygmund theory. Similarly to [Seeger et al. 2003], we first make some
standard reductions using Calderón–Zygmund theory. By the L2 boundedness of the lacunary spherical
maximal function, any expression of the form Mg with ∥g∥

2
2 ≲ α∥ f ∥1 will be a Calderón–Zygmund

term of type L2, threshold α, and measure (1/α)∥ f ∥1, and can thus be neglected. In particular, if we
define the standard Calderón–Zygmund exceptional set

� := {MH L( f ) ≥ α},

where MH L is the Hardy–Littlewood maximal operator, then f is bounded almost everywhere outside
of � by α, so in particular

∥ f χRd\�∥
2
2 ≤ α∥ f ∥1.

Thus the M( f χRd\�) gives a negligible contribution, and it suffices (by Lemma 2.2(b)) to control the
contribution M( f χ�) arising from the set �.

By the Whitney decomposition, we may partition � (up to null sets) by a family Q of essentially
disjoint cubes q on which

∫
q f ≲ α|q|; setting fq := f χq , each fq is granular, and we conclude

that f χ� =
∑

q∈Q fq almost everywhere, and by the Hardy–Littlewood maximal inequality one has∑
q |q| ≲ (1/α)∥ f ∥1. By arguing as in the start of [Seeger et al. 2003, §3] we may partition Q into a

bounded number of families Qi such that the cubes q in each Qi have their doubles 2q pairwise disjoint.
By the triangle inequality (Lemma 2.2(b)), it suffices to show that for each i , the expression M

∑
q∈Qi

fq

is Calderón–Zygmund controlled at threshold α and measure Log3(1/α) ·
∑

q∈Qi
|q|.

Henceforth we fix i and omit the constraint q ∈ Qi from summations for sake of brevity. Following
[Seeger et al. 2003], we now introduce some cancellation, by defining the projection operator 5q to be the
projection operator onto a certain space of polynomials. That is, let {Pj }

L
j=1 be an orthonormal basis for
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the space of polynomials of degree ≤ 100d on the unit cube
[
−

1
2 , 1

2

]d. If q is a cube with center xq and
sidelength l(q), define

5q [h](x) := χq(x)

L∑
j=1

Pj

(
x − xq

l(q)

) ∫
q

h(y)Pj

(
y − xq

l(q)

)
dy

l(q)d .

Introduce the “bad functions”
bq := fq − 5q [ fq ].

Since
|5q [ fq ](x)| ≲ αχq ,

we have ∥∥∥∥∑
q

5q [ fq ]

∥∥∥∥2

2
≲ α2

∑
q

|q|,

and so by the L2-boundedness of the lacunary spherical maximal operator, the contribution of M
∑

q5q [ fq]
is a type-L2 Calderón–Zygmund term of threshold α and measure

∑
q |q|. Thus it remains to obtain

Calderón–Zygmund control on the contribution

sup
k

∣∣∣∣∑
q

bq ∗ σk

∣∣∣∣
of the bad functions bq .

The contributions of those k with 2k
≤ l(q) are contained in

⋃
q 3q , and are thus acceptable Calderón–

Zygmund terms of type L0. For the remaining k, we will replace the sup by an ℓ2 norm; thus we will
show that (∑

k

∣∣∣∣ ∑
q: 2k>l(q)

bq ∗ σk

∣∣∣∣2)1/2

is Calderón–Zygmund controlled at threshold α and measure
∑

q∈Qi
|q|. Expanding out the square and

using the triangle inequality, it suffices to establish this claim for the diagonal contribution(∑
q

∑
k: 2k>l(q)

|bq ∗ σk |
2
)1/2

(2-2)

and for the off-diagonal contribution(∑
k

∑
q ̸=q ′: 2k>l(q),l(q ′)

(bq ∗ σk)(bq ′ ∗ σk)

)1/2

. (2-3)

The off-diagonal expression (2-3) can be handled by existing arguments. Indeed, since∥∥∥∥(∑
k

∑
q ̸=q ′: 2k>l(q),l(q ′)

(bq ∗ σk)(bq ′ ∗ σk)

)1/2∥∥∥∥2

2
≤

∑
k

∑
q ̸=q ′

|⟨bq ∗ σk, bq ′ ∗ σk⟩|,

it would suffice (by the definition of a type-L2 term) to show that∑
k

∑
q ̸=q ′

|⟨bq ∗ σk, bq ′ ∗ σk⟩| ≲ α2
∑

q

|q|,
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which can be proven as in [Seeger et al. 2003, (4.17)] by exploiting the smoothness of the kernel σk ∗ σk

and the cancellation of bq (and the hypothesis that the doubles 2q of q ∈ Qi are disjoint). Since the proof
is nearly identical to that given in [Seeger et al. 2003], we omit it here.

It remains to control the diagonal contribution (2-2). It is easy to see that∑
q

∑
k: 2k>l(q)

∥5q [ fq ] ∗ σk∥
2
2 ≲

∑
q

∑
k: 2k>l(q)

∥αχq ∗ σk∥
2
2

≲
∑

q

∑
k: 2k>l(q)

α22−k(d−1)ℓ(q)2d−1 ≲ α2
∑

q

|q|.

Thus
(∑

q
∑

k:2k>l(q) |5q [ fq ] ∗ σk |
2
)1/2 is a type-L2 term of the required threshold and measure, and so

by the triangle inequality we may replace (2-2) with(∑
q

∑
k:2k>l(q)

| fq ∗ σk |
2
)1/2

.

To show that this expression is Calderón–Zygmund controlled at threshold α and measure
∑

q |q|, it
suffices by Lemma 2.2 to show that the inner square functions

(∑
k:2k>l(q) | fq ∗ σk |

2
)1/2 are Calderón–

Zygmund controlled at threshold α and measure |q| for each cube q. A simple scaling argument shows
that we may then normalize q to be a unit cube. We have thus reduced matters to establishing:

Proposition 2.4 (bounding the lacunary spherical maximal function of fq ). Let 0 < α < 1, and let fq be
a granular function supported on a unit cube q taking values in [0, 1] with

∫
q fq ≲ α. Then the expression(∑

k>0

| fq ∗ σk |
2
)1/2

(2-4)

is Calderón–Zygmund controlled at threshold α and measure Log3(1/α).

The remainder of this paper will be devoted to the proof of this proposition.

Structural decomposition of fq . Let q, fq , α be as in Proposition 2.4. In [Seeger et al. 2003], the support
of fq was decomposed into structures referred to as “generalized boxes”, which behaved in a certain way
like 1-dimensional sets and which had associated quantities referred to as “length” and “thickness”, the
former which governed support size estimates and the latter which controlled L2 bounds. We describe a
decomposition of fq that is in a similar spirit.

Lemma 2.5 (structural decomposition lemma). Let q, fq , α be as in Proposition 2.4. List the dyadic
numbers between α2 and 1 in increasing order as

α2 < γ0 < γ1 < · · · < γJ = 1;

thus J ≈ Log(1/α). Then we can take the decomposition

fq =

J∑
j=0

f γ j
q (2-5)
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such that, for each j , f γ j
q is a granular function taking values in [0, 1] that is supported on a finite union

of cubes Q in q whose total “length” λ( f γ j
q ) :=

∑
Q l(Q) obeys the estimates∫

f γ j
q ≈ γ j · λ( f γ j

q ) (2-6)

if j > 0, with just the upper bound ∫
f γ j
q ≲ γ j · λ( f γ j

q ) (2-7)

for j = 0. Furthermore, one has ∫
Q

f γ j
q ≲ γ j l(Q) (2-8)

for every cube Q. We refer to γ j as the critical density of f γ j
q .

We will use the decomposition (2-5) in an essential way throughout the rest of the paper, as well as
the key properties (2-6), (2-7) and (2-8). In [Seeger et al. 2003], the analog of (2-7) is that for every
generalized box B of thickness γ and length λ, we have |B| ≲ γ · λ.

Proof. We perform a greedy algorithm, extracting the “heaviest” cubes first. Given a (nonnegative)
function f and a cube Q, we define the weight

wtQ[ f ] :=
1

l(Q)

∫
Q

f.

The symbol Q will always be understood to be a dyadic cube. We then inductively define

EγJ
q :=

⋃
Q⊂q: wtQ [ fq ]≥γJ

Q;

note that from the trivial bound wtQ[ fq ] ≤ wtQ[χq ] there are only finitely many cubes Q that can
contribute here. For 1 < j < J , we define

Eγ j
q :=

⋃
Q⊂q: wtQ [ fqχ

q\
⋃

l> j E
γl
q

]≥γ j

Q; (2-9)

again, this is a finite union of dyadic cubes. Set

Eγ0
q := q \

( ⋃
1≤ j≤N

Eγ j
q

)
.

If we then set

f γ j
q := fqχE

γ j
q \

⋃
j<l≤J E

γl
q
,

we obtain (2-5), and the fq are clearly granular. For j > 0, let Q j be a maximal cover of Eγ j
q by dyadic

cubes Q ⊂ q obeying the stated condition

wtQ[ fqχq\
⋃

l> j E
γl
q
] ≥ γ j ,
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and set
λ( f γ j

q ) :=

∑
Q∈Q j

l(Q). (2-10)

Then f γ j
q is supported on

⋃
Q∈Q j

Q, and the required claims (2-6), (2-8) follow from the construction of
the f γ j

q and (2-9) (and the upper bound fq ≤ χq , in the j = J case). For j = 0, we still have (2-8), and
the claim (2-7) follows by taking Q0 to consist just of the unit cube q . □

It remains to show that the expression(∑
k>0

∣∣∣∣∑
γ

f γ
q ∗ σk

∣∣∣∣2)1/2

(2-11)

is Calderón–Zygmund controlled of threshold α and measure Log3(1/α), where γ is implicitly restricted
to γ0, . . . , γJ .

Further reductions. We record the basic L0, L1, L2 estimates on f γ
q ∗ σk (which were already implicit

in [Seeger et al. 2003]):

Lemma 2.6 (L0, L1, L2 estimates). Let k > 0 and γ ≥ γ0.

(L0) f γ
q ∗ σk is a type-L0 Calderón–Zygmund term of threshold α and measure 2k(d−1)λ( f γ

q ).

(L1) f γ
q ∗ σk is a type-L1 Calderón–Zygmund term of threshold α and measure (1/α)∥ f γ

q ∥1.

(L2) f γ
q ∗ σk is a type-L2 Calderón–Zygmund term of threshold α and measure

2−k(d−1)γ

α2 Log
2k(d−1)

γ
· ∥ f γ

q ∥1.

Proof. For the L0 estimate, we decompose f γ
q into functions f γ

q χQ supported on cubes Q with
∑

Q l(Q)=

λ( f γ
q ). A geometric calculation shows that f γ

q χQ ∗ σk is supported on an annular region of measure
O(2k(d−1)l(Q)), and the claim follows by summing in Q.

The L1 estimate is immediate from Young’s inequality, so we turn to the L2 estimate. Using the
well-known pointwise estimate

σk ∗ σk(x) ≲
2−k(d−1)

|x |
χ|x |≤2k+1, (2-12)

we may expand

∥ f γ
q ∗ σk∥

2
2 = ⟨ f γ

q , σk ∗ σk ∗ f γ
q ⟩

≲ 2−k(d−1)

∫
f γ
q (x)

( ∑
l≤k+1

2−l
∫

y: |x−y|≈2l
f γ
q (y) dy

)
dx

≲ 2−k(d−1)
∥ f γ

q ∥1 sup
x

∑
l≤k+1

2−l
∫

y: |x−y|≈2l
f γ
q (y) dy.

From (2-8) and the pointwise bound f γ
q ≤ f ≤ 1 we have∫

y:|x−y|≈2l
f γ
q (y) dy ≲ min(γ 2l, 2dl) (2-13)
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and thus
∥ f γ

q ∗ σk∥
2
2 ≲ 2−k(d−1)

∥ f γ
q ∥1

∑
l≤k+1

min(γ, 2(d−1)l).

The summand is equal to γ for O(Log(2k(d−1)/γ )) terms, and decays geometrically otherwise, giving
the claim. □

From the L2 case of this lemma we see that f γ0
q ∗σk is a type-L2 Calderón–Zygmund term of threshold α

and measure

α−22−k(d−1)γ0 Log
2k(d−1)

γ0
· ∥ f γ0

q ∥1 ≲ 2−k(d−1)α Log
2k(d−1)

α2

since γ0 ≈ α2 and ∥ f γ0
q ∥1 ≤ ∥ fq∥1 ≲ α. Summing over all positive k using Lemma 2.2(c), we conclude

that (∑
k>0

| f γ0
q ∗ σk |

2
)1/2

is Calderón–Zygmund controlled of threshold α and measure O(α Log(1/α)), which is acceptable. Thus
we may delete the γ0 term from (2-11) and focus attention on(∑

k>0

∣∣∣∣∑
γ>γ0

f γ
q ∗ σk

∣∣∣∣2)1/2

. (2-14)

From the L0 case of this lemma and Lemma 2.2(c), followed by (2-6), we see that(∑
k>0

∣∣∣∣ ∑
γ>γ0: k(d−1)<log(γ /α)

f γ
q ∗ σk

∣∣∣∣2)1/2

is a type-L0 Calderón–Zygmund term of threshold α and measure∑
k>0

∑
γ>γ0: k(d−1)<log(γ /α)

2k(d−1)λ( f γ
q ) ≲

∑
γ>γ0

γ

α
λ( f γ

q ) ≈
1
α

∑
γ>γ0

∥ f γ
q ∥1 ≤

∥ fq∥1

α
≲ 1,

giving the claim. Thus the contribution of the “small scales” with k(d − 1) < log(γ /α) is acceptable.
Next, we claim that the contribution of the “nearly small scale” case

log
γ

α
≤ k(d − 1) < log

γ

α
+ 100 Log3

1
α

(2-15)

is also acceptable. Indeed, from the L1 case of Lemma 2.6 and Lemma 2.2(c), we see that(∑
k>0

∣∣∣∣ ∑
γ>γ0:(2-15)

f γ
q ∗ σk

∣∣∣∣2)1/2

is a type-L1 Calderón–Zygmund term of threshold α and measure∑
k>0

∑
γ>γ0: (2-15)

1
α

∥ f γ
q ∥1 ≲

Log3(1/α)

α

∑
γ>γ0

∥ f γ
q ∥1 ≤

Log3(1/α)

α
∥ fq∥1 ≲

Log3(1/α)

α

giving the claim.
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Furthermore, as in [Seeger et al. 2003], we claim that the contribution of terms σk ∗ f γ
q in the “large

scale” case
k(d − 1) ≤ log

γ

α
+ 100 Log2

1
α

(2-16)

is also acceptable (with some room to spare). Indeed, from Cauchy–Schwarz one has∑
γ>γ0: (2-16)

f γ
q ∗ σk ≲

( ∑
γ>γ0: (2-16)

(
k(d − 1) − log

γ

α

)2

| f γ
q ∗ σk |

2
)1/2

and from this, the L2 case of Lemma 2.6 and Lemma 2.2(c) we see that(∑
k>0

∣∣∣∣ ∑
γ>γ0: (2-16)

f γ
q ∗ σk

∣∣∣∣2)1/2

is a type-L2 Calderón–Zygmund term of threshold α and measure∑
k>0

∑
γ>γ0: (2-16)

(k(d − 1) − log(γ /α))2

α2 2−k(d−1)γ Log
2k(d−1)

γ
· ∥ f γ

q ∥1

≲
∑
γ>γ0

Log2
2(1/α)

α2

(
γ

α
Log100 1

α

)−1

γ Log2
1
α

· ∥ f γ
q ∥1 ≲

1
α

∑
γ>γ0

∥ f γ
q ∥1 ≤

∥ fq∥1

α
≲ 1

as required.
We have now treated all scales k except for those in the “medium-scale” range Kγ defined by

Kγ :=

{
k > 0 : log

γ

α
+ 100 Log3

1
α

≤ k(d − 1) ≤ log
γ

α
+ 100 Log2

1
α

}
. (2-17)

We have thus reduced Proposition 2.4 to the following.

Proposition 2.7. Let 0 < α < 1, and let fq be a granular function on a unit cube q taking values in [0, 1]

with ∫
q

fq ≲ α. (2-18)

Let f γ
q be as in Lemma 2.5, and Kγ be given by (2-17). Then the expression(∑

k>0

∣∣∣∣ ∑
γ>γ0: k∈Kγ

f γ
q ∗ σk

∣∣∣∣2)1/2

(2-19)

is Calderón–Zygmund controlled at threshold α and measure Log3(1/α).

Remark 2.8. If we were willing to replace Log3(1/α) by of Log2(1/α) in the measure parameter of the
conclusion then we could use the previous “nearly small scale” argument to express (2-19) as a type-L1

term, recovering the results of [Seeger et al. 2003] (with essentially the same proof). The main innovation
of this paper is to treat these medium-scale contributions by a more sophisticated argument than this
simple L1 argument, in particular constructing some additional exceptional sets outside of which one can
establish good L2 estimates at “light” scales.
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3. Proof of Proposition 2.7

Let α, q, fq , f γ
q be as in the above proposition. To prove Proposition 2.7, we will identify an exceptional

set to hold the “heavy” terms of type L0, then split the remaining portions of (2-19) into “intermediate”
terms that will be of type L1, and finally “light” terms that will be of type L2 outside of the previously
identified exceptional set. To construct these terms we need to introduce some additional scales, and
identify certain rectangles on which the f γ

q are unusually “heavy”.

Defining double-logarithmically many scales. Let us temporarily fix a critical density γ with α2
≤ γ ≤ 1.

For each such density we associate a key radius

r = rγ := max(1, (γ /α)1/(d−1)) (3-1)

and note that the constraint (2-17) ensures that 2k is a little bit larger than r :

2k
≥ r Log100/(d−1)

2
1
α

for all k ∈ Kγ . (3-2)

With the density γ fixed, we identify O(Log2(1/α)) many natural scales

γ 1/(d−1)
= c0 ≤ c1 ≤ · · · ≤ cN ≤ r

between γ 1/(d−1) and r in our problem that will lead us to our L Log3 L result. They will be defined
recursively by initializing

c0 := γ 1/(d−1)
≤ 1 ≤ r

and then taking iterated geometric means with r ; thus

ci :=
√

ci−1r (3-3)
for all i ≥ 1. More explicitly, we have

ci = (γ 1/(d−1)/r)2−i
r = max(γ 2−i /(d−1), γ 1/(d−1)α−(1−2−i )/(d−1)) (3-4)

for all i ≥ 0. Geometrically, each ci for i ≥ 1 arises (up to constants) as the diameter of a spherical cap of
thickness ci−1 on a sphere of radius r ; see Figure 1. These scales are motivated by a decomposition of
the kernel σk ∗ σk into linear combinations of characteristic functions of rectangles, which will appear
later in the paper.

We terminate the sequence of scales ci at the first N = Nγ for which

cN ≥ 2−10r.

Since α2 < γ ≤ 1, we have 1 ≤ r/γ ≤ α−O(1), and hence N ≲ Log2(1/α).

Throwing away exceptional sets at each scale. We can now define some exceptional sets.

Definition 3.1. Let the parameters k, γ be fixed as above, and define the scales c0 ≤ · · · ≤ cN as in the
previous section. Let 1 ≤ i ≤ N. Let M > 0 be a dyadic number.

(1) Define {8 j,i } j∈Ji to be a maximal set of (ci−1/ci )-separated directions 8 j,i in Sd−1, so that the
number of directions is ≈ (ci/ci−1)

d−1.
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c0
c1 c1

c2

c2

c3

Figure 1. The scales ci . Here c0 = γ 1/(d−1) and the circle has radius 2k for some k with
2k somewhat larger than r .

(2) For each direction 8 j,i in the above set, partition Rd into ci × ci × · · ·× ci × ci−1 parallel rectangles
that belong to some fixed grid, with the short direction parallel to the direction 8 j,i . Define R j,i,M to be
the collection of all such rectangles R such that∫

R
| f γ

q | ≥ ci−1 Mγ. (3-5)

(3) We then define our exceptional set as

SM,k,q,γ :=

N⋃
i=1

⋃
j∈Ji

supp(σk, j,i ∗ χ⋃
R∈R j,i,M

100R),

where σk, j,i is the restriction of σk to a spherical cap on the sphere of radius 2k of angular width 100ci−1/ci

centered at 2k8 j,i .

Observe that the sets SM,k,q,γ decrease as M increases. We claim the crucial upper bound on the size
of the exceptional sets defined above.

Lemma 3.2 (maximal inequality). With the notation of Definition 3.1, we have the bound

|SM,k,q,γ | ≲
2k(d−1)

M
λ( f γ

q ).

A key point here is that we do not lose a factor of N (which can be as large as Log2(1/α)) on the
right-hand side, by taking advantage of how the rectangles associated to different scales ci nest within
(dilates of) each other. This inequality can be viewed as a complicated variant of the Hardy–Littlewood
maximal inequality.

Before we proceed with the proof of Lemma 3.2, we say a few words to motivate the previous
definitions. We note that in some sense the support of σk, j,i is “adapted” to translates of rectangles
in R j,i,M , in the sense that convolution with characteristic functions of rectangles effectively fattens it by
ci−1 and translates it. Thus we note that for each R ∈ R j,i , the set supp(σk, j,i ∗χ100R) is contained in a
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1000ci−1-neighborhood of a translate of (a slightly wider version of) the cap supp(σk, j,i ). The rectangles
R ∈R j,i,M that are sufficiently “heavy” in the sense of (3-5) correspond to (more or less) poor L2 estimates
for σk, j,i ∗ χR , and so we would like to remove the supports of σk, j,i ∗ χR . Since the support of this is
essentially contained in a ci−1-fattening of the cap supp(σk, j,i ), the heavier the rectangles we consider (the
larger M is) the fewer number of such rectangles there can be, so the smaller the total size of exceptional
sets thrown away. Thus using a pigeonholing argument, we can obtain the bound from Lemma 3.2.

Proof of Lemma 3.2. We need to impose a partial order relation on the directions 8 j,i . For any i, i ′ with
i > i ′, we will say that a direction 8 j,i is an ancestor of 8 j ′,i ′ and write ( j ′, i ′) ≺ ( j, i) if the ball of
radius 10ci ′−1/ci ′ centered at 8 j ′,i ′ is contained in the ball of radius 10ci−1/ci centered at 8 j,i . This is
easily seen to be a partial order, and every 8 j ′,i ′ has at least one ancestor 8 j,i at generation i .

By definition, SM,k,q,γ is contained in a set of the form⋃
1≤i≤N

⋃
j∈Ji

⋃
R∈R j,i,M

supp(σk, j,i ∗ χ1000R),

where each R ∈ R j,i,M is a ci × ci × · · · × ci × ci−1 rectangle with short side pointing in direction 8 j,i

satisfying ∫
R

f γ
q ≥ ci−1 Mγ. (3-6)

Moreover, if ( j, i) ≺ ( j ′, i ′) then for any R ∈R j,i,M and any R′
∈R j ′,i ′,M , if R ∩ R′

̸=∅ then R ⊂ 100R′.
It follows that we can choose subcollections R̃ j,i,M ⊂ R j,i,M satisfying

SM,k,q,γ ⊂

⋃
1≤i≤N

⋃
j∈Ji

⋃
R∈R̃ j,i,M

supp(σk, j,i ∗ χ10000R),

so that for given any direction 8 j1,1, a chain of ancestors

8 j1,1 ≺ 8 j2,2 ≺ · · · ≺ 8 jN ,N (3-7)

satisfies the property that the rectangles in the collections R̃ ji ,i,M , 1 ≤ i ≤ N, are all pairwise disjoint.
Indeed, we can choose R̃ j,i,M to be the collection of rectangles R ∈ R j,i,M which are maximal in the
sense that they do not intersect any R′

∈ R j ′,i ′,M for some ancestor ( j ′, i ′) ≻ ( j, i).
Since σk, j,i ∗ χ10000R is essentially supported in a ci−1-fattening of (a slightly wider version of) the

cap supp(σk, j,i ∗ χ10000R), the measure of its support is ≲ 2k(d−1)cd
i−1/cd−1

i . We can thus bound

|SM,k,q,γ | ≲

∣∣∣∣ ⋃
1≤i≤N

⋃
j∈Ji

⋃
R∈R̃ j,i,M

supp(σk, j,i ∗ χ10000R)

∣∣∣∣ ≲ N∑
i=1

∑
j∈Ji

2k(d−1)
cd

i−1

cd−1
i

· card(R̃ j,i,M).

By the disjointness property mentioned above and (3-6), for a chain of ancestors as in (3-7), we have the
bound ∫

f γ
q ≥

∑
1≤i≤N

∑
R∈R̃ ji ,i,M

∫
R

| f γ
q | ≥

∑
1≤i≤N

ci−1 Mγ · card(R̃ ji ,i,M) (3-8)
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and hence by (2-6) ∑
1≤i≤N

ci−1 card(R̃ ji ,i,M) ≲
λ( f γ

q )

M
.

Since each direction 8 j,i is the ancestor of ≲ ((ci−1/ci ) · (c1/c0))
d−1 many directions 8 j ′,i ′ with i ′

= 1,
it follows that

|SM,k,q,γ | ≲
∑

i

∑
j

2k(d−1)
cd

i−1

cd−1
i

· card(R̃ j,i,M)

≲ 2k(d−1)
∑

j1

∑
j,i : ( j,i)≻( j1,1)

2k(d−1)
cd

i−1

cd−1
i

·

(
ci−1

ci
·

c1

c0

)1−d

· card(R̃ j,i,M)

≲ 2k(d−1)
∑

j1

∑
j,i : ( j,i)≻( j1,1)

ci−1

(
c0

c1

)d−1

· card(R̃ j,i,M)

≲ 2k(d−1)

(
c0

c1

)d−1 ∑
j1

λ( f γ
q )

M
≲

2k(d−1)

M
· λ( f γ

q ). □

For a given choice of k and γ , we define the upper height M+(k, γ ) by the formula

log2 M+(k, γ ) :=

⌊
k(d − 1) + log α

γ
+ Log3

1
α

⌋
(3-9)

and the lower height M−(k, γ ) by the formula

log2 M−(k, γ ) :=

⌊
k(d − 1) + log α

γ
− 100 Log3

1
α

⌋
. (3-10)

The exceptional set associated to the upper height M+(k, γ ) is of acceptable size:

Lemma 3.3. We have the bound ∣∣∣∣⋃
k,γ

SM+(k,γ ),k,q,γ

∣∣∣∣ ≲ 1.

In particular, any component of (2-19) that is supported in
⋃

k,γ SM+(k,γ ),k,q,γ is a type-L0 Calderón–
Zygmund term of threshold α and measure 1.

Proof. By Lemma 3.2, (2-6), and (3-9), we have

|SM+(k,γ ),k,q,γ | ≲
2k(d−1)

M+(k, γ )
λ( f γ

q ) ≲
1

α Log2(1/α)
∥ f γ

q ∥1.

Summing over k ∈ Kγ using the fact that |Kγ | ≲ Log2(1/α), and then summing over γ , we obtain the
desired bound thanks to (2-18). □

A decomposition of f γ
q ∗ σk. Recall that f is granular, and hence f =

∑
l clχωl , where each ωl is a

δ-grain, i.e., a dyadic cube of small sidelength δ > 0, which we can take to be smaller than (say) α100. We
now associate a natural spherical measure to each δ-grain ωl , defined so that it is supported on those caps
where there exists a “heavy” rectangle containing ωl with short side essentially pointing in the direction
normal to the corresponding cap.
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Definition 3.4. For each δ-grain ωl and for a given height M, define σ
M,γ

k,ωl
to be the restriction of σk to

N⋃
i=1

⋃
j∈Ji : ∃R∈R j,i,M (ωl∩R ̸=∅)

supp(σk, j,i ),

where n ranges over 1 ≤ n ≤ N. Observe that these measures are decreasing as M increases.

Recall that the parameter i corresponds to the “height”, in a sense, of the spherical measure σ
i,γ
k,ωl

. We
now decompose the function f γ

q ∗ σk into different “heights” as follows. For a given height M, define the
“projection of f γ

q ∗ σk onto height M” as

gM,γ

k :=

∑
δ−grains ωl

σ
M,γ

k,ωl
∗ ( f γ

q χωl ). (3-11)

Then we have the telescoping decomposition

f γ
q ∗ σk∗ = f γ

q ∗ σk − gM−(k,γ ),γ

k +

∑
M≥M−(k,γ )

(gM,γ

k − g2M,γ

k ). (3-12)

As previously mentioned, we will see that we have efficient (even when summing over γ and over the
relevant range of k) L2 estimates for the term f γ

q ∗ σk − gM−(k,γ ),γ

k . This term represents the “projection
of f γ

q ∗ σk onto low heights”.

Discarding the heavy terms via exceptional sets. We can easily dispose of the “heavy” terms in which
M ≥ M+(k, γ ).

Proposition 3.5. The terms gM,γ

k − g2M,γ

k for M ≥ M+(k, γ ) are supported in SM+(k,γ ),k,q,γ , and thus
collectively contribute an acceptable L0 Calderón–Zygmund term thanks to Lemma 3.3.

Proof. For all δ-grains ωl which appear in the expression defining gM,γ

k for some M ≥ M+(k, γ ), there
is a “heavy” rectangle R containing ωl such that supp(σk, j,n ∗χR) is contained in SM,k,q,γ and hence in
SM+(k,γ ),k,q,γ . □

Handling the intermediate terms via L1 estimates. Now we dispose of the “intermediate” terms in which
M−(k, γ ) ≤ M < M+(k, γ ).

Proposition 3.6. The contribution of the terms gM,γ

k − g2M,γ

k with M−(k, γ ) ≤ M < M+(k, γ ) to (2-19)
is an acceptable L1 Calderón–Zygmund term.

Proof. We need to establish the bound∥∥∥∥(∑
k≥0

∣∣∣∣ ∑
γ>γ0: k∈Kγ

∑
M−(k,γ )≤M<M+(k,γ )

gM,γ

k − g2M,γ

k

∣∣∣∣2)1/2∥∥∥∥
1
≲ α Log3

1
α

.

Bounding the ℓ2 norm by the ℓ1 norm, we can bound the left-hand side by∑
k≥0

∑
γ>γ0: k∈Kγ

∑
M−(k,γ )≤M<M+(k,γ )

∥gM,γ

k − g2M,γ

k ∥1.
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Writing M = 2 j M−(k, γ ) for some 0 ≤ j ≲ Log3(1/α), it suffices to show that∑
k≥0

∑
γ>γ0: k∈Kγ

∥g2 j M−(k,γ ),γ

k − g2k+1 M−(k,γ ),γ

k ∥1 ≲ α

for each such j .
Fix j . Since ∑

γ

∥ f γ
q ∥1 ≤ ∥ f ∥1 ≲ α,

it will suffice to show that ∑
k∈Kγ

∥g2 j M−(k,γ ),γ

k − g2k+1 M−(k,γ ),γ

k ∥1 ≲ ∥ f γ
q ∥1.

By (3-11) and Young’s inequality, it suffices to show that∑
k∈Kγ

∥σ
2 j M−(k,γ ),γ

k,ωl
− σ

2 j+1 M−(k,γ ),γ

k,ωl
∥ ≲ 1

for each grain ωl , where ∥ · ∥ denotes the total variation norm.
Fix ωl . By rescaling all the spheres supporting σk to a common sphere, it suffices to show that the

angles subtended by the spherical cap supporting each of the measures

σ
2 j M−(k,γ ),γ

k,ωl
− σ

2 j+1 M−(k,γ ),γ

k,ωl

are disjoint as k varies. But this follows directly from the definition of these measures, the telescoping
nature of the decomposition, and the fact that d−1 ≥ 1 ensures that for different values of k, the differences
of these measures live at different “heights”, and the differences of measures at consecutive heights isolate
the height at which a certain angular piece first occurs. □

Estimating the L2 norm of the light term. In view of the preceding calculations and Lemma 2.2(b), it
will suffice to show that (∑

k≥0

∣∣∣∣ ∑
γ>γ0: k∈Kγ

f γ
q ∗ σk − gM−(k,γ ),γ

k

∣∣∣∣2)1/2

is a type-L2 Calderón–Zygmund term of threshold α and measure 1 (we will no longer need to lose the
additional factor of Log3(1/α)). Because each k is associated to O(Log2(1/α)) values of γ , it suffices
by Cauchy–Schwarz to show that(∑

k≥0

∑
γ>γ0: k∈Kγ

∣∣∣∣ f γ
q ∗ σk − gM−(k,γ ),γ

k

∣∣∣∣2)1/2

is a type-L2 Calderón–Zygmund term of threshold α and measure Log−1
2 (1/α). We rearrange this

expression as (∑
γ>γ0

∑
k∈Kγ

| f γ
q ∗ σk − gM−(k,γ ),γ

k |
2
)1/2

.

Since ∑
γ>γ0

∥ f γ
q ∥1 ≤ ∥ fq∥1 ≲ α,
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it then suffices by Lemma 2.2(c) to show that, for each γ > γ0 and k ∈ Kγ , the quantity

f γ
q ∗ σk − gM−(k,γ ),γ

k

is a type-L2 Calderón–Zygmund term of threshold α and measure

Log−2
2 (1/α)

α
∥ f γ

q ∥1.

In other words, it remains to establish the bound

∥ f γ
q ∗ σk − gM−(k,γ ),γ

k ∥
2
2 ≲ α Log−2

2
1
α

· ∥ f γ
q ∥1. (3-13)

The first step is to write

∥ f γ
q ∗ σk − gM−(k,γ ),γ

k ∥
2
2 =

∥∥∥∥ ∑
δ-grains ωl

(σk − σ
M−(k,γ ),γ

k,ωl
) ∗ f γ

q χωl

∥∥∥∥2

L2

≲
∑

δ-grains ωl

⟨(σk − σ
M−(k,γ ),γ

k,ωl
) ∗ f γ

q χωl , σk ∗ f γ
q ⟩

=

∑
δ-grains ωl

⟨ f γ
q χωl , σk ∗ (σk − σ

M−(k,γ ),γ

k,ωl
) ∗ f γ

q ⟩. (3-14)

Domination of the kernel σk ∗ σk by linear combinations of characteristic functions of rectangles. Recall
from (2-12) that we have the pointwise estimate

σk ∗ σk(x) ≲ 2−k(d−1)
|x |

−1χBk (x),

where Bk := {|x | ≤ 2k+1
} is the ball of radius 2k+1 around the origin. Inside this ball, we isolate the

annulus
Aγ := {x : γ 1/(d−1)

≤ |x | ≤ 2−100rγ },

where we recall that the radius rγ was defined in (3-1).
Thus the kernel σk ∗ σk can essentially be decomposed as follows. Fix q and γ , and let {ci }

N
i=0 be the

enumeration of the scales described earlier in (3-4). For 1 ≤ i ≤ N, let Ri be a collection of (ci/ci−1)
d−1

many rectangles of dimensions ci × ci × · · ·× ci × ci−1 centered at the origin, with short sides pointing
in equally spaced directions, where {ci }

N
i=1 are the scales described earlier. We may dominate

2−k(d−1)
|x |

−1χAγ
(x) ≲

N∑
i=1

2−k(d−1)c−(d−1)
i cd−2

i−1

∑
R∈Ri

χR. (3-15)

Indeed, for each i , c−(d−1)
i cd−2

i−1
∑

r∈Ri
χR is essentially of size c−1

i for |x | ≈ ci , since for |x | ≈ ci the
rectangles are essentially disjoint in the case that d = 2, and for general d there are

≈ c−d
i × (ci/ci−1)

d−1
× cd−1

i ci−1 ≈ (ci/ci−1)
d−2

many rectangles that intersect a given x . By similar reasoning, one sees that for ci−1 ≤ |x | ≤ ci , we also
have c−(d−1)

i cd−2
i−1

∑
r∈Ri

χR is essentially of size |x |
−1.



IMPROVED ENDPOINT BOUNDS FOR THE LACUNARY SPHERICAL MAXIMAL OPERATOR 2029

Figure 2. Domination of the kernel σk ∗ σk in the sphere of radius 2−100rγ centered at the origin.

From (3-15) and (2-12) we have the bound

σk ∗ σk(x) ≲
N∑

i=1

2−k(d−1)c−(d−1)
i cd−2

i−1

∑
R∈Ri

χR + 2−k(d−1)
|x |

−1χBk\Aγ
(x); (3-16)

see Figure 2.

Eliminating bad rectangles. Now fix some i with 1 ≤ i ≤ N, and suppose that R is a rectangle in Ri such
that ∫

ωl+R
f γ
q > ci−1γ M−(k, γ ).

Then by definition, the support of σ
M−(k,γ ),γ

k,ωl
contains a spherical cap of angular width 50ci−1/ci with

some normal parallel to the short side of R. This implies that σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside

of the set
(R)1 :=

{
x ∈ R : x ≥

1
10 ci

}
.

Indeed, for any x ∈ R in the support of σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) with |x | ≥

1
10 ci , we require there to

exist y on the sphere of radius 2k centered at the origin such that x − y is also on the sphere of radius 2k

centered at the origin, but outside the cap of angular width 50ci−1/ci with some normal parallel to the
short side of R. Suppose toward a contradiction that x ∈ R ∩

{
z :

1
10 ci ≤ |z| ≤ 10ci

}
. But for any such

x − y, we have that (x − y) + (R)1 lies outside the sphere of radius 2k, since R will be transverse to the
boundary of the sphere at x − y (see Figure 3). Thus we have verified our claim that σk ∗(σk −σ

M−(k,γ ),γ

k,ωl
)

is supported outside of the set (R)1.
Repeating this process, if ∫

ωl+(R\(R)1)

f γ
q > ci−1γ M−(k, γ ),

then by definition, the support of σ
M−(k,γ ),γ

k,ωl
contains a spherical cap of angular width 50 · 2ci−1/ci with

some normal parallel to the short side of R. As before, this implies that σk ∗(σk −σ
m(k,q,γ ),γ

k,ωl
) is supported
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50ci−1/ci

x − y

Figure 3. The two blue rectangles represent the set x − y + (R)1.

outside of the set
(R)2 :=

{
x ∈ R : |x | ≥

1
20 ci

}
.

Repeating again, if ∫
ωl+(R\(R)2)

f γ
q > ci−1γ M−(k, γ ),

then σ
M−(k,γ ),γ

k,ωl
contains a spherical cap of angular width 50 · 4ci−1/ci with some tangent parallel to the

long side of R. This implies that σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside of the set (R)3, where we

define
(R)3 :=

{
x ∈ R : |x | ≥

1
40 ci

}
.

We continue this process until some stage L when∫
(ωl+(R\(R)L ))

f γ
q > ci−1γ M−(k, γ ),

and σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside of the set

(R)L :=

{
x ∈ R : |x | ≥

1
2L−1 × 10

ci

}
.

(Note that this must eventually happen if σk − σ
M−(k,γ ),γ

k,ωl
is not identically 0, since the set (R)L can

potentially increase by continuing this process up to {x ∈ R : |x | ≥ 10ci−1}, which would imply that
σk − σ

m(k,q,γ ),γ

k,ωl
is identically 0.)

For convenience, we summarize the above argument in the following lemma.

Lemma 3.7. Fix a δ-grain ωl . For any rectangle R ∈ Ri , there is a subset (R)L ⊂ R such that∫
ωl+(R\(R)L )

| f γ
q | ≲ ci−1γ M−(k, γ )

and σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside of the set (R)L .



IMPROVED ENDPOINT BOUNDS FOR THE LACUNARY SPHERICAL MAXIMAL OPERATOR 2031

Finishing up the proof. Lemma 3.7 and (3-16) implies that, for each δ-grain ωl and each rectangle R ∈Ri ,
there is a function h R with

∫
|h R| ≤ ci−1 M−(k, γ )γ so that by (3-14) we may dominate

∥ f γ
q ∗ σk − gM−(k,γ ),γ

k ∥
2
2 ≲

∑
δ−grains ωl

⟨ f γ
q χωl , σk ∗ (σk − σ

M−(k,γ ),γ

k,ωl
) ∗ f γ

q ⟩

≲
∑

δ−grains ωl

⟨ f γ
q χωl , 2−k(d−1)

|x |
−1χBk\Aγ

∗ f γ
q ⟩

+

∑
δ−grains ωl

N∑
i=1

2−k(d−1)
cd−2

i−1

cd−1
i

∑
R∈Ri

⟨ f γ
q χωl , χR ∗ h R⟩. (3-17)

It is not difficult to show that

⟨ f γ
q χωl , 2−k(d−1)

|x |
−1χBk\Aγ

∗ f γ
q ⟩ ≲ α Log−2

2
1
α

∥ f γ
q χωl ∥1. (3-18)

Indeed, by Young’s inequality it would suffice to show that

2−k(d−1)

∫
|x−y|∈Bk\Aγ

f γ
q (y)

|x − y|
dy ≲ α Log−2

2
1
α

(3-19)

for any x . From (2-13) we have ∫
|x−y|≈2l

f γ
q (y)

|x − y|
dy ≲ min(γ, 2l(d−1))

so by dyadic decomposition we may bound the left-hand side of (3-19) by

2−k(d−1)

( ∑
2l≲γ 1/(d−1)

2l(d−1)
+

∑
rγ≲2l≲2k

γ

)
,

which we can sum to

≲ 2−k(d−1)γ Log
2k

rγ

≲ 2−k(d−1)γ Log
2k(d−1)

γ /α

thanks to (3-1). By (3-2), we have
2k(d−1)

γ /α
≥ Log100

2
1
α

,

giving (3-18) as claimed.
This gives a satisfactory bound for the first term occurring in the right-hand side of (3-17). To bound

the second term, we observe that since
∫

|h R| ≲ ci−1 M−(k, γ )γ , we have

⟨ f γ
q χωl , χR ∗ h R⟩ ≲ ci−1 M−(k, γ )γ ∥ f γ

q χωl ∥1. (3-20)

Combining (3-17), (3-18), and (3-20) and summing over all i and all δ-grains ωl , using the fact that the
cardinality of Ri is ≲ (ci/ci−1)

d−1 and N ≲ Log2(1/α), and recalling the definition (3-10) of M−(k, γ ),
we obtain

∥ f γ
q ∗ σk − gM−(k,γ ),k,γ

k ∥
2
2 ≲ α Log−2

2
1
α

∥ f γ
q ∥1,

which is the desired L2 bound. This completes the proof of (3-13), and hence Propositions 1.1, 1.2, and
Theorem 1.3.
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