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EXISTENCE OF RESONANCES
FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE

DAVID BORTHWICK AND YIRAN WANG

We prove existence results and lower bounds for the resonances of Schrödinger operators associated to
smooth, compactly support potentials on hyperbolic space. The results are derived from a combination of
heat and wave trace expansions and asymptotics of the scattering phase.

1. Introduction

This article is devoted to establishing lower bounds on the resonance count for Schrödinger operators
on the hyperbolic space Hn+1. Although such results are well known in Euclidean scattering theory,
the literature for Schrödinger operators on hyperbolic space is comparatively sparse. Upper bounds on
resonances for such operators were considered in [Borthwick 2010; Borthwick and Crompton 2014]. Most
other recent papers dealing with Schrödinger operators on hyperbolic space have focused on applications
to nonlinear Schrödinger equations [Anker and Pierfelice 2009; Banica 2007; Banica et al. 2008; 2009;
Borthwick and Marzuola 2015; Ionescu et al. 2012; Ionescu and Staffilani 2009]. As far as we are aware,
the literature contains no general existence results for resonances in this context.

Let1 denote the positive Laplacian operator on Hn+1. For V ∈ C∞

0 (H
n+1,R), the Schrödinger operator

1+ V has continuous spectrum
[1

4 n2,∞
)
. The resolvent of 1+ V is defined for Re s > 1

2 n by

RV (s) := (1+ V − s(n − s))−1. (1-1)

As an operator on weighted L2 spaces, RV (s) admits a meromorphic extension to s ∈ C, with poles
of finite rank, as described in Section 2. The resonance set RV associated to V consists of the poles
of RV (s), repeated according to the multiplicity given by

mV (ζ ) := rank Resζ RV (s). (1-2)

There are no eigenvalues embedded in the continuous spectrum, and no resonances on the line Re s =
1
2 n

except possibly at 1
2 n. For a proof, see, for example, [Borthwick and Marzuola 2015, Theorem 1]. The

discrete spectrum of 1+ V is therefore finite and lies below 1
4 n2. An eigenvalue λ corresponds to a

resonance ζ ∈
( 1

2 n, n
)

such that λ= ζ(n − ζ ).
The resonance counting function,

NV (r) := #
{
ζ ∈ RV :

∣∣ζ −
1
2 n

∣∣ ≤ r
}
, (1-3)
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satisfies a polynomial bound as r → ∞:

NV (r)= O(rn+1). (1-4)

This estimate is covered by the more general result of [Borthwick 2008, Theorem 1.1], but with Hn+1

as the background metric one could also give a simpler proof following the approach that Guillopé and
Zworski [1995] used for n = 1. A sharp constant for the bound (1-4), depending on the support of the
potential, was obtained in [Borthwick 2010]. The corresponding lower bound was shown to hold in a
generic sense in [Borthwick and Crompton 2014], but the existence question was not resolved.

The existence problem for resonances looks quite different in even and odd dimensions. In even
dimensions, R0 contains resonances at negative integers, with multiplicities such that the polynomial
bound (1-4) is already saturated for V = 0. Therefore our goal in even dimensions is to distinguish RV

from R0. On the other hand, R0 is empty for odd dimensional hyperbolic space. In that case we seek
lower bounds on RV itself.

In the present paper, we will prove the following:

Theorem 1.1. Let RV denote the set of resonances of 1+ V for V ∈ C∞

0 (H
n+1,R), with NV (r) the

corresponding counting function.

(1) If the dimension is even or equal to 3, then RV = R0 only if V = 0.

(2) For even dimension ≥ 6, if V ̸= 0 then RV and R0 differ by infinitely many points. This conclusion
holds also if

∫
V dg ≥ 0 for dim = 2, and if

∫
V dg ̸= 0 for dim = 4.

(3) In all odd dimensions, if RV is not empty then the resonance set is infinite and NV (r) ̸= O(r).

In even dimensions, we also show that the resonance set determines the scattering phase and wave
trace completely, and in particular fixes all of the wave invariants. See Section 9 for the full set of inverse
scattering results.

Theorem 1.1 is derived from the asymptotic expansions of the scattering phase and heat and wave
traces. In the context of potential scattering in hyperbolic space, these expansions do not seem to have
not been studied in the literature, so we give a full account of their adaptation to this setting. The explicit
formulas for the wave invariants are stated in Proposition 6.4.

The organization of the paper is as follows. After reviewing some facts on the resolvent and its kernel
in Section 2, we use the spectral resolution to define distributional traces in Section 3. In Section 4 we
establish the Birman–Krein formula relating these traces to the scattering phase. The Poisson formula
expressing the wave trace as a sum over resonances is proven in Section 5. In Section 6 the asymptotic
expansion of the wave trace at t = 0 is established. The corresponding heat trace expansion is worked out
in Section 7, which is then used to study asymptotics of the scattering phase in Section 8. Finally, in
Section 9 these tools are applied to derive the existence results.

2. The resolvent

The resolvent of the free Laplacian on Hn+1 is traditionally written with spectral parameter s(n − s) as
in (1-1). Derived by Patterson [1989, Proposition 2.2], the resolvent kernel is given by the well-known



EXISTENCE OF RESONANCES FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE 2079

hypergeometric formula

R0(s; z, w)=
π−n/22−2s−10(s)

0
(
s −

1
2 n + 1

) cosh−2s( 1
2 d(z, w)

)
F

(
s, s −

1
2(n − 1), 2s − n + 1; cosh−2( 1

2 d(z, w)
))
,

where d(z, w) is the hyperbolic distance. Using hypergeometric identities [NIST 2010, §14.3(iii)], we
can rewrite this formula as

R0(s; z, w)= (2π)−(n+1)/2 0(s)
sinhµ d(z, w)

Qµ
ν (cosh d(z, w)), (2-1)

where ν := s −
1
2(n + 1), µ :=

1
2(n − 1), and Qµ

ν denotes the normalized Legendre function:

Qµ
ν (x) :=

e−iπµ

0(µ+ ν+ 1)
Qµ
ν (x).

(Under this convention Qµ
ν (x) is entire as a function of both indices.) The factor 0(s) in (2-1) has poles

at negative integers, but these yield resonances only for n + 1 even. In odd dimensions the poles are
canceled by zeroes of Qµ

ν .
Let (r, ω) ∈ [0,∞)× Sn denote geodesic polar coordinates on Hn+1. We will take

ρ :=
1

cosh r

as a boundary defining function for the radial compactification of Hn+1 into a ball. The hypergeometric
formula for Qµ

ν (x) [Erdélyi et al. 1953, §3.2(5)] yields an expansion of the resolvent kernel:

R0(s; z, w)= π−n/22−s−1 0(s)

0
(
s −

1
2 n + 1

) ∞∑
k=0

ak(s)
(cosh d(z, w))s+2k , (2-2)

with a0(s)= 1. In particular,

R0(s; z, w)= O(e−sd(z,w)) as d(z, w)→ ∞, (2-3)

which shows that R0(s) extends meromorphically to s ∈ C as a bounded operator ρN L2(Hn+1) →

ρ−N L2(Hn+1) for Re s >−N +
1
2 n.

For V ∈ C∞

0 (H
n+1,R), the resolvent RV (s) defined in (1-1) is related to R0(s) by the identity

R0(s)= RV (s)(1 + V R0(s)). (2-4)

The operator 1 + V R0(s) is invertible by Neumann series for Re s sufficiently large, and it follows
from (2-3) that the operator V R0(s) is compact on ρN L2(Hn+1) for Re s >−N +

1
2 n. Hence the analytic

Fredholm theorem yields a meromorphic inverse (1 + V R0(s))−1, with poles of finite rank, which is
bounded on ρN L2(Hn+1) for Re s > −N +

1
2 n. We thus obtain a meromorphic extension of RV (s) by

setting
RV (s)= R0(s)(1 + V R0(s))−1,

which is bounded as an operator ρN L2(Hn+1)→ ρ−N L2(Hn+1) for Re s >−N +
1
2 n.
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We can see from (2-2) that the free resolvent kernel R0(s; z, z′) is polyhomogeneous as a function
of ρ(z′) as ρ(z′)→ 0, with leading term of order ρ(z′)s. It follows from (2-4) that the kernel of RV (s) has
the same property. The Poisson kernel is defined as the leading coefficient in the expansion as ρ(z′)→ 0:

EV (s; z, ω′) := lim
r ′→∞

ρ(z′)−s RV (s; z, z′). (2-5)

Interpreting this function as an integral kernel, with respect to the standard sphere metric, defines the
Poisson operator

EV (s) : C∞(Sn)→ L2(Hn+1).

The Poisson operator maps boundary data to solutions of the generalized eigenfunction equation

(1+ V − s(n − s))u = 0.

By Stone’s formula, the continuous part of the spectral resolution of 1+ V is given by the restriction
of the operator RV (s)− RV (n − s) to the line Re s =

1
2 n. This is related to the Poisson operator by the

identity
RV (s)− RV (n − s)= (n − 2s)EV (s)EV (n − s)t (2-6)

as operators C∞

0 (H
n+1)→ L2(Hn+1), meromorphically for s ∈ C. The proof of (2-6) is essentially the

same as in the case n = 1 presented in [Borthwick 2016, Proposition 4.6].

3. Traces

Given V ∈ C∞

0 (H
n+1,R) and f ∈ S(R), the operator f (1+ V )− f (1) is of trace class. In fact, the map

f 7→ tr[ f (1+ V )− f (1)] (3-1)

defines a tempered distribution. For the proof, see [Dyatlov and Zworski 2019, Theorem 3.50], which
applies to the hyperbolic setting with only minor modifications.

The spectral theorem gives the representation

f (1+ V )= lim
ε→0

1
2π i

∫
∞

−∞

[(1+ V − λ− iε)−1
− (1+ V − λ+ iε)−1

] f (λ) dλ,

with the limit taken in the operator-norm topology. We can separate the contributions from the discrete
and continuous spectrum, and write the continuous part in terms of RV (s) by setting s(n − s)= λ± iε.
The result is

f (1+ V )= lim
ε→0

1
2π i

∫
∞

−∞

[
RV

(1
2

n − iξ + ε
)

− RV

(1
2

n + iξ + ε
)]

f
(1

4
n2

+ ξ 2
)
ξ dξ

+

d∑
j=1

f (λj )φj ⊗ φ̄j , (3-2)

where the λ1, . . . , λd are the eigenvalues of 1+ V , with corresponding normalized eigenvectors φj .
The self-adjointness of 1+ V implies an estimate

∥(1+ V − s(n − s))u∥ ≥ |Im s(n − s)|∥u∥
2.
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This shows that a pole of RV (s) at s =
1
2 n could have at most second-order. (This argument is analogous

to the Euclidean case; see [Dyatlov and Zworski 2019, Lemma 3.16].) A pole of order 2 can occur only
if 1

4 n2 is an eigenvalue, which is ruled out by [Bouclet 2013, Corollary 1.2]. Therefore RV (s) has at
most a first-order pole at 1

2 n. The integrand in (3-2) is thus continuous at ε = 0 in the operator topology
because a pole would be canceled by the extra factor of ξ . Taking the limit ε→ 0 gives

f (1+ V )=
1

2π i

∫
∞

−∞

[
RV

(1
2

n − iξ
)

− RV

(1
2

n + iξ
)]

f
(1

4
n2

+ ξ 2
)
ξ dξ +

d∑
j=1

f (λj )φj ⊗ φ̄j .

Let us define the integral kernel of the spectral resolution as

KV (ξ ; z, w) :=
ξ

2π i

[
RV

(1
2

n − iξ ; z, w
)

− RV

(1
2

n + iξ ; z, w
)]
. (3-3)

For V = 0 this kernel can be written explicitly using (2-1) and the Legendre connection formula [NIST
2010, §14.9(iii)]:

Qµ

−ν−1(x)

0(µ+ ν+ 1)
−

Qµ
ν (x)

0(µ− ν)
= cos(πν)P−µ

ν (x).

The result is
K0(ξ ; z, w) := cn(ξ)(sinh r)−µP−µ

−1/2+iξ (cosh r), (3-4)

where µ=
1
2(n − 1), r = d(z, w), and

cn(ξ) := (2π)−µξ sinh(πξ)0
( 1

2 n + iξ
)
0

( 1
2 n − iξ

)
.

The hypergeometric expansion [NIST 2010, (14.3.9)] of P−µ
ν (x) near x = 1 shows that K0(ξ ; z, w) is

smooth for all z, w ∈ Hn+1
× Hn+1.

For the Schrödinger operator case, we note that (2-4) yields the identity

RV (s)− RV (n − s)= (1 − RV (s)V )(R0(s)− R0(n − s))(1 − V RV (n − s)).

Since R0(s)− R0(n − s) has a smooth kernel for Re s =
1
2 n, V ∈ C∞

0 (H
n+1,R), and RV (s) is a pseudo-

differential operator of order −2, the identity implies that RV (s)− RV (n − s) also has a smooth kernel
for Re s =

1
2 n, s ̸=

1
2 n. The kernel KV (ξ ; · , · ) is thus continuous for ξ ∈ R and smooth as a function on

Hn+1
× Hn+1.

In [Borthwick and Marzuola 2015, Proposition 6.1], it was shown that Im RV
(1

2 n + iξ ; z, w
)

satisfies
a polynomial bound as a function of ξ ∈ R, uniformly in Hn+1

× Hn+1, provided there is no resonance
at s =

1
2 n. This restriction can be removed for the KV estimate because of the extra factor of ξ in (3-3),

since, as noted above, RV (s) has at most a first-order pole at s =
1
2 n. We can thus use the spectral

resolution formula to write the kernel of f (1+ V ) as

f (1+ V )(z, w)=

∫
∞

−∞

KV (ξ ; z, w) f
( 1

4 n2
+ ξ 2) dξ +

d∑
j=1

f (λj )φj (z)φ̄j (w). (3-5)

Since f (1+ V )− f (1) is trace-class and has a continuous kernel, the trace can be computed as an
integral over the kernel by Duflo’s theorem [1972, Theorem V.3.1.1]. This proves the following:
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Proposition 3.1. For V ∈ C∞

0 (H
n+1,R),

tr[ f (1+ V )− f (1)] =

∫
Hn+1

∫
∞

−∞

[KV (ξ ; z, z)− K0(ξ, z, z)] f
( 1

4 n2
+ ξ 2) dξ dg(z)+

d∑
j=1

f (λj ).

4. Birman–Krein formula

The Birman–Krein formula relates the spectral resolution of 1+ V to the scattering matrix. This formula
provides the crucial link between the traces discussed in Section 3 and the resonance set. The formula for
the hyperbolic case is analogous to the Euclidean version [Dyatlov and Zworski 2019, Theorem 3.51].

The scattering matrix associated to V is defined as follows. The Poisson operator maps a function
f ∈ C∞(Sn) to a generalized eigenfunction EV (s) f , which admits an asymptotic expansion with leading
terms

(2s − n)EV (s) f ∼ ρn−s f + ρs f ′, (4-1)

where f ′
∈ C∞(Sn) for Re s =

1
2 n, s ̸=

1
2 n. The structure of this expansion is well known and can be

deduced from the resolvent identity (2-4).
The scattering matrix SV (s) is a family of pseudodifferential operators SV (s) on Sn that intertwines

the leading coefficients of (4-1):
SV (s) : f 7→ f ′.

For appropriate choices of s, we can interpret f as incoming boundary data, and f ′ as the corresponding
outgoing data. By the meromorphic continuation of the resolvent, SV (s) extends meromorphically to s ∈ C.
The identities

SV (s)−1
= SV (n − s) (4-2)

and
EV (n − s)SV (s)= −EV (s), (4-3)

which follow from (4-1), hold meromorphically in s.
The integral kernel of the scattering matrix (with respect to the standard sphere metric) can be derived

from the resolvent by a boundary limit analogous to (2-5):

SV (s;ω,ω′) := (2s − n) lim
ρ,ρ′→0

(ρρ ′)−s RV (s; z, z′)

for ω ̸= ω′. We can thus see from (2-4) that

SV (s)= S0(s)− (2s − n)EV (s)V E0(s).

This gives a formula for the relative scattering matrix

SV (s)S0(s)−1
= I + (2s − n)EV (s)V E0(n − s). (4-4)

Since (2s − n)EV (s)V E0(n − s) is a smoothing operator, SV (s)S0(s)−1 is of determinant class. We can
thus define the relative scattering determinant

τ(s) := det[SV (s)S0(n − s)].
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By (4-2), the scattering determinant satisfies

τ(s)τ (n − s)= 1. (4-5)

Also, since SV (s) is unitary on the critical line, |τ(s)| = 1 for Re s =
1
2 n.

We can evaluate τ
( 1

2 n
)

by noting that

SV
( 1

2 n
)
= −I + 2P, (4-6)

where P is an orthogonal projection of rank mV
( 1

2 n
)
. (See [Borthwick 2016, Lemma 8.9] for the

argument.) This implies that

τ
( 1

2 n
)
= (−1)mV (n/2).

The scattering phase σ(ξ) for ξ ∈ R is defined as

σ(ξ) :=
i

2π
log

τ
( 1

2 n + iξ
)

τ
( 1

2 n
) ,

with the branch of logarithm chosen continuously from σ(0) := 0. The reflection formula (4-5) implies

σ(−ξ)= −σ(ξ).

We will be particularly interested in the derivative of the scattering phase. By [Gohberg and Kreı̆n 1969,
§IV.1],

τ ′

τ
(s)= tr

[
(SV (s)S0(n − s))−1 d

ds
(SV (s)S0(n − s))

]
= tr[SV (n − s)S′

V (s)− S0(s)S′

0(n − s)],

where S′

V (s) := ∂s SV (s). For the scattering phase this gives

σ ′(ξ)= −
1

2π
tr
[

SV

(1
2

n − iξ
)

S′

V

(1
2

n + iξ
)

− S0

(1
2

n + iξ
)

S′

0

(1
2

n − iξ
)]
. (4-7)

Theorem 4.1 (Birman–Krein formula). For V ∈ L∞
cpt(H

n+1,R) and f ∈ S(R),

tr[ f (1+ V )− f (1)] =

∫
∞

0
σ ′(ξ) f

( 1
4 n2

+ ξ 2) dξ +

d∑
j=1

f (λj )+
1
2 mV

(1
2 n

)
f
(1

4 n2),
where λ1, . . . , λd are the eigenvalues of 1+ V and mV

( 1
2 n

)
is the multiplicity of 1

2 n as a resonance
of 1+ V.

Proof. For convenience, let us assume that the discrete spectrum of 1+ V is empty, since the contribution
to the trace from λ1, . . . , λd is easily dealt with. Under this assumption, Proposition 3.1 gives

tr[ f (1+ V )− f (1)] =

∫
Hn+1

∫
∞

−∞

[KV (ξ ; z, z)− K0(ξ, z, z)] f
( 1

4 n2
+ ξ 2) dξ dg(z).
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If the integral over z is restricted to the set {ρ(z)≥ ε}, then switching the order of integration is justified
by the uniform polynomial bounds on KV . We can thus write

tr[ f (1+ V )− f (1)] = lim
ε→0

∫
∞

−∞

Iε(ξ) f
( 1

4 n2
+ ξ 2) dξ, (4-8)

where

Iε(ξ) :=

∫
{ρ≥ε}

[KV (ξ ; z, z)− K0(ξ, z, z)] dω′ dg(z).

To compute Iε(ξ), we first use (2-6) to write KV in terms of EV :

Iε(ξ) := −
(2s − n)2

4π

∫
{ρ≥ε}

∫
Sn

[
EV (s; z, ω′)EV (n − s; z, ω′)

−E0(s; z, ω′)E0(n − s; z, ω′)
]

dω′ dg(z), (4-9)

where dω′ is the standard sphere measure. We are using the identification s =
1
2 n + iξ freely here, to

simplify notation where possible. The next step is to apply a Maass–Selberg identity as described in the
proof of [Borthwick 2016, Proposition 10.4]. Because EV (s) satisfies the eigenvalue equation, we can
write

EV (s ′)E(n − s)t =
1

s(n − s)− s ′(n − s ′)
[EV (s ′)1E(n − s)t −1EV (s ′)E(n − s)t ].

Applying this to (4-9) yields

Iε(ξ) := −
1

4π
lim
s′→s

2s − n
s ′ − s

∫
{ρ≥ε}

∫
Sn

[
EV (s ′

; z, ω′)1EV (n − s; z, ω′)

−1EV (s ′
; z, ω′)EV (n − s; z, ω′)− E0(s ′

; z, ω′)1E0(n − s; z, ω′)

− E0(s ′
; z, ω′)1E0(n − s; z, ω′)

]
dω′ dg(z),

with 1 acting on the z variable. By Green’s formula applied to the region {ρ = ε},

Iε(ξ) :=
1

4π
lim
s′→s

2s − n
s ′ − s

∫
{ρ=ε}

∫
Sn

[
EV (s ′

; z, ω′)∂r EV (n − s; z, ω′)

− ∂r EV (s ′
; z, ω′)EV (n − s; z, ω′)− E0(s ′

; z, ω′)∂r E0(n − s; z, ω′)

− E0(s ′
; z, ω′)∂r E0(n − s; z, ω′)

]
sinhn r dω′ dω,

where z = (r, ω) in geodesic polar coordinates. The same calculation with s = s ′ yields zero, so we can
evaluate the limit s ′

→ s as a derivative:

Iε(ξ)=
2s − n

4π

∫
Sn

∫
Sn

[
E ′

V (s; z, ω′)∂r EV (n − s; z, ω′)

− ∂r E ′

V (s; z, ω′)EV (n − s; z, ω′)− E ′

0(s; z, ω′)∂r E0(n − s; z, ω′)

+ ∂r E ′

0(s; z, ω′)E0(n − s; z, ω′)
]

sinhn r dω′ dω
∣∣∣
r=cosh−1(1/ε)

,

where E ′

V = ∂s EV . The integrand can be simplified using the identity (4-2) and the distributional
asymptotic

(2s − n)EV (s; z, ω′)∼ ρn−sδω(ω
′)+ ρs SV (s;ω,ω′),



EXISTENCE OF RESONANCES FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE 2085

which follows from (4-1). After cancelling terms between EV (s) and E0(s), we find

Iε(ξ)= −
1

4π
tr
[

SV

(1
2

n−iξ
)

S′

V

(1
2

n+iξ
)
−S0

(1
2

n−iξ
)

S′

0

(1
2

n+iξ
)]

+
ε−2iξ

8π iξ
tr
[

SV

(1
2

n−iξ
)
−S0

(1
2

n−iξ
)]

−
ε2iξ

8π iξ
tr
[

SV

(1
2

n+iξ
)
−S0

(1
2

n+iξ
)]

+o(ε). (4-10)

The first trace in (4-10) reduces to 1
2σ

′(ξ) by (4-7). Thus, applying (4-10) in (4-8) gives

tr[ f (1+V )− f (1)]= 1
2

∫
∞

−∞

σ ′(ξ) f
(1

4
n2

+ξ 2
)

dξ+ lim
a→∞

∫
∞

−∞

[
eiξa

8π iξ
ϕ(ξ)−

e−iξa

8π iξ
ϕ(−ξ)

]
dξ, (4-11)

where we have substituted ε = e−a/2 and

ϕ(ξ) := tr
[
SV

( 1
2 n − iξ

)
− S0

(1
2 n − iξ

)]
f
( 1

4 n2
+ ξ 2). (4-12)

To evaluate the limit a → ∞ in (4-11), we need to control the growth of ϕ(ξ). We can argue as in
[Borthwick and Crompton 2014, Lemma 3.3] that, for χ ∈ C∞

0 (H) equal to 1 on the support of V ,

SV (s)− S0(s)= −(2s − n)E0(s)tχ(1 + V R0(s)χ)−1V E0(s).

The Hilbert–Schmidt norms of the cutoff factors χE0
( 1

2 n±iξ
)

are O(|ξ |−1) by [Borthwick and Crompton
2014, Lemma 3.3]. The operator norm of(

1 + V R0
( 1

2 n ± iξ
)
χ

)−1

is O(1) by the cutoff resolvent bound from [Guillarmou 2005, Proposition 3.2]. Therefore the trace
in (4-12) has at most polynomial growth, and ϕ is integrable over ξ ∈ R.

The Riemann–Lebesgue lemma gives

lim
a→∞

∫
|ξ |>1

[
eiξa

8π iξ
ϕ(ξ)−

e−iξa

8π iξ
ϕ(−ξ)

]
dξ = 0

as well as

lim
a→∞

∫ 1

−1

e±iξa

8π iξ
[ϕ(±ξ)−ϕ(0)] dξ = 0.

We can thus drop the portion of the integral with |ξ |> 1 and replace ϕ(±ξ) by ϕ(0) for |ξ | ≤ 1 before
taking the limit. This reduces the final term in (4-11) to

lim
a→∞

∫
∞

−∞

[
eiξa

8π iξ
ϕ(ξ)−

e−iξa

8π iξ
ϕ(−ξ)

]
dξ = lim

a→∞

∫ 1

−1

sin(ξa)
4πξ

ϕ(0) dξ

= ϕ(0)
∫

∞

−∞

sin(ξ)
4πξ

dξ =
1
4
ϕ(0).

To complete the argument, we note that (4-6) implies

tr
[
SV

( 1
2 n

)
− S0

( 1
2 n

)]
= 2mV

( 1
2 n

)
. □
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5. Poisson formula

The Poisson formula expresses the trace of the wave group as a sum over the resonance set. The relative
wave trace,

2V (t) := tr
[
cos

(
t
√
1+ V −

1
4 n2

)
− cos

(
t
√
1−

1
4 n2

)]
, (5-1)

is defined distributionally as in Section 3. That is, for ψ ∈ C∞

0 (R),

(2V , ψ) := tr[ f (1+ V )− f (1)],

where

f (x) := χ(x)
∫

∞

−∞

cos
(

t
√

x −
1
4 n2

)
ψ(t) dt, (5-2)

with χ a smooth cutoff which equals 1 on the spectrum of 1+ V −
1
4 n2 and vanishes on (−∞, c] for

some c < 0. The cutoff is a technicality, included so that f ∈ S(R).

Theorem 5.1 (Poisson formula). For a potential V ∈ C∞

0 (H
n+1,R),

tn+12V = tn+1
[

1
2

∑
ζ∈RV

e(ζ−n/2)|t |
− u0(t)

]
(5-3)

as a distribution on R, where

u0(t) :=

{
cosh(t/2)

(2 sinh(t/2))n+1 for n + 1 even,

0 for n + 1 odd.

A more general version of the Poisson formula for resonances for compactly supported black-box
perturbations of Hn+1 was stated in [Borthwick 2010, Theorem 3.4], with the proof omitted because of its
similarity to the argument of [Guillopé and Zworski 1997]. Zworski has recently noted that the proof in
that paper glossed over certain technical details concerning the computation of the distributional Fourier
transform of the spectral resolution. Furthermore, the optimal factor of tn+1 was not obtained in these
previous versions.

The technicalities of this proof are now worked out in [Dyatlov and Zworski 2019, Chapter 3], including
the t prefactor. The proof of [Dyatlov and Zworski 2019, Theorem 3.53] relies only on a global upper
bound on the counting function, as in (1-4), and a factorization formula for the scattering determinant,
which we state as Proposition 5.2 below. It therefore essentially applies to Theorem 5.1.

However, there are some structural differences in the hyperbolic case, due to the shifted spectral
parameter z = s(1 − s) and the nontrivial background contribution of Hn+1 in even dimensions. For the
sake of completeness, we will include a hyperbolic version of the proof.

The starting point is to apply the Birman–Krein formula (Theorem 4.1) to the relative wave trace. The
relation (5-2) implies that

f
( 1

4 n2
+ ξ 2)

=
1
2 [ψ̂(ξ)+ ψ̂(−ξ)].



EXISTENCE OF RESONANCES FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE 2087

Using this, and the fact that σ ′(ξ) is even, reduces the Birman–Krein formula to

(2V , ψ)=
1
2

∫
∞

−∞

σ ′(ξ)ψ̂(ξ) dξ +

d∑
j=1

f (λj )+
1
2

mV

(1
2

n
)
ψ̂(0). (5-4)

To evaluate the integral in (5-4), we need some additional facts about the scattering determinant. Given
the polynomial bound on the resonance counting function (1-4), we can define the Hadamard product

HV (s) := smV (0)
∏

ζ∈RV \{0}

E
( s
ζ
, n + 1

)
,

where

E(z, p) := (1 − z)ez+z2/2+···+z p/p.

This yields an entire function with zeros located at the resonances.
The following factorization formula provides the connection between the Birman–Krein formula and

the resonance set.

Proposition 5.2. The relative scattering determinant admits a factorization

τ(s)= (−1)mV (n/2)eq(s) HV (n − s)
HV (s)

H0(s)
H0(n − s)

,

where q is a polynomial of degree at most n + 1 satisfying q(n − s)= −q(s).

Proposition 5.2 is a special case of [Borthwick 2010, Proposition 3.1], which applies to black-box
perturbations of Hn+1. That statement did not include the symmetry condition on q(s), which follows
from (4-5) once the parity of mV

( 1
2 n

)
has been factored out. An analogous result for metric perturbations

was given in [Borthwick 2008, Proposition 7.2], without the estimate on the degree of q(s). These
previous versions contained a typo in the Hadamard product, in that the ζ = 0 term should always be
treated as a separate factor sm(0).

In view of (3-1), Theorem 4.1 implies that the derivative σ ′ defines a tempered distribution. We will
need the following estimate of its rate of growth.

Proposition 5.3. For V ∈ C∞

0 (H
n+1,R), the derivative of the scattering phase satisfies

|σ ′(ξ)| ≤ CV (1 + |ξ |)n−1

for ξ ∈ R.

The fact that σ ′ has at most polynomial growth follows from Proposition 5.2 by a general argument
given in [Guillopé and Zworski 1997, Lemma 4.7], which in turn is based on a method introduced by
Melrose [1988]. The explicit growth rate of Proposition 5.3 was proven in [Borthwick and Crompton
2014, Proposition 3.1].

With these ingredients in place, the strategy for the proof of the Poisson formula is essentially to
compute the Fourier transform of σ ′.
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Proof of Theorem 5.1. Let us first show that the right-hand side of (5-3) defines a distribution. Indeed, if
we exclude the finite number of terms with Re ζ > 1

2 n, which have exponential growth, the remaining
sum gives a tempered distribution. To see this, consider a test function ψ ∈ S(R). Repeated integration
by parts can be used to estimate, for Re ζ > 1

2 n,∣∣∣∣∫ ∞

−∞

tn+1e(ζ−n/2)tψ(t) dt
∣∣∣∣ ≤

C(
1 +

∣∣ζ −
1
2 n

∣∣)n+2

n+1∑
k=0

sup
t∈R

|⟨t⟩n+3ψ (k)(t)|.

It then follows from the polynomial bound (1-4) that the sum

tn+1
∑

Re ζ<n/2

e(ζ−n/2)|t |

defines a tempered distribution on R. The right-hand side of (5-3) is thus well defined as a distribution,
since there are only finitely many terms with Re ζ ≥

1
2 n.

Let 2sc denote the tempered distribution defined by

(2sc, ψ) :=
1
2

∫
∞

−∞

σ ′(ξ)ψ̂(ξ) dξ (5-5)

for ψ ∈ S(R). This distribution accounts for the contributions to the Birman–Krein formula (5-4) from the
continuous spectrum. The sum over the discrete spectrum can be rewritten as a sum over the resonances
with Re s > 1

2 n, using the fact that

cos
(

t
√
λ−

1
4 n2

)
= cosh

(
t
(
ζ −

1
2 n

))
for ζ ∈

( 1
2 n,∞

)
and λ= ζ(n − ζ ). The Birman–Krein formula then becomes

2V (t)=2sc(t)+
∑

Re ζ>n/2

cosh
(
t
(
ζ −

1
2 n

))
+

1
2 mV

( 1
2 n

)
. (5-6)

Since 2sc is tempered, it suffices to evaluate (5-5) under the assumption that ψ̂ ∈ C∞

0 (R). From
Proposition 5.2 we calculate

τ ′

τ
(s)= q ′(s)−

H ′

V

HV
(n − s)−

H ′

V

HV
(s)+

H ′

0

H0
(s)+

H ′

0

H0
(n − s).

The Hadamard product derivatives are given by

H ′

V

HV
(s)=

mV (0)
s

+

∑
ζ∈RV \{0}

[
1

s − ζ
+

1
ζ

+ · · · +
sn

ζ n+1

]
.

Hence we can write

H ′

V

HV
(n − s)+

H ′

V

HV
(s)=

∑
ζ∈RV

[
n − 2ζ

(n − s − ζ )(s − ζ )
+ pζ (s)

]
,

where pζ (s) is a polynomial of degree n for ζ ̸= 0, and p0(s) := 0.
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Switching to a ξ derivative for σ gives

σ ′(ξ)= −
1

2π
τ ′

τ

(1
2

n + iξ
)
,

which evaluates to

σ ′(ξ)= −
1

2π
q ′

(1
2

n + iξ
)

+
1

2π

∑
ζ∈RV

[
n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 + pζ
(1

2
n + iξ

)]
−

1
2π

∑
ζ∈R0

[
n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 + pζ
(1

2
n + iξ

)]
, (5-7)

where pζ is a polynomial of degree at most n. The convergence is uniform on compact intervals. Note
that there is no pole corresponding to the possible resonance at ζ =

1
2 n, because a zero at this point would

cancel out of HV (s)/HV (n − s).
Assuming that ψ̂ is compactly supported, the contributions of (5-7) to (tn+12sc, ψ) can be evaluated

term by term. Under the Fourier transform, the factor tn+1 becomes (−i∂ξ )n+1, which knocks out all of
the polynomial terms. Hence, after integrating by parts,

(tn+12sc, ψ)=
1

4π

∑
ζ∈RV

∫
∞

−∞

n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 (i∂ξ )
n+1ψ̂(ξ) dξ

−
1

4π

∑
ζ∈R0

∫
∞

−∞

n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 (i∂ξ )
n+1ψ̂(ξ) dξ.

By a straightforward contour integration,∫
∞

−∞

e−iξ t n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 dξ =

{
−2πe−(ζ−n/2)|t |, Re ζ > 1

2 n,

2πe(ζ−n/2)|t |, Re ζ < 1
2 n.

Using this calculation in the formula for (tn+12sc, ψ) gives

(tn+12sc, ψ)=
1
2

∫
∞

−∞

tn+1
( ∑

ζ∈RV
Re ζ<n/2

e(ζ−n/2)|t |
−

∑
ζ∈RV

Re ζ>n/2

e−(ζ−n/2)|t |
−

∑
ζ∈R0

e(ζ−n/2)|t |
)
ψ(t) dt. (5-8)

This calculation contains no contribution from a resonance at ζ =
1
2 n, because a zero at this point cancels

out of the formula for τ(s).
To remove the restriction of compact support for ψ̂ , we note that the right-hand side of (5-8) defines a

tempered distribution by the remarks at the beginning of the proof. Since2sc is also tempered and C∞

0 (R)

is dense in S(R), it follows that (5-8) holds for all ψ ∈ S(R).
Combining this computation of tn+12sc with the formula (5-6) now yields the formula

tn+12V =
1
2

tn+1
[ ∑
ζ∈RV

e(ζ−n/2)|t |
−

∑
ζ∈R0

e(ζ−n/2)|t |
]
.

Note that the constant term 1
2 mV

( 1
2 n

)
from (5-6) is now incorporated into the sum over RV . This completes

the proof for n + 1 odd, because R0 is empty. If n + 1 is even, then R0 is equal to −N0 as a set, with
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multiplicities given by the dimensions of spaces of spherical harmonics of degree k,

m0(−k)= (2k + n)
(k + 1) · · · (n + k − 1)

n!
.

The resulting sum over R0 was computed in [Guillarmou and Naud 2006, Lemma 2.4],

1
2

∞∑
k=0

m0(−k)e−(k+n/2)|t |
=

cosh(t/2)
(2 sinh(t/2))n+1 . □

6. Wave trace expansion

In this section, we compute the expansion at t = 0 of the relative wave trace distribution 2V , as defined
in (5-1), and determine the first two wave invariants explicitly. Although the existence of the wave-trace
expansion is considered to be well known, we are not aware of any direct proof for Schrödinger operators
in the literature. For the odd-dimensional Euclidean case, [Melrose 1995, §4.1] is generally cited, but this
source does not include a proof. Because the hyperbolic setting leads to differences from the familiar
Euclidean formulas, we will include the argument here.

To set up the expansion formula, we recall that |t |β is well defined as a meromorphic family of
distributions on R, with poles at negative odd integers. The residues at these poles are given by delta
distributions. Dividing by 0

( 1
2(β + 1)

)
cancels the poles and defines a holomorphic family

ϑβ(t) :=
|t |β

0
( 1

2(β + 1)
) , (6-1)

where

ϑ−1−2 j (t)= (−1) j j !
(2 j)!

δ(2 j)(t)

for j ∈ N0 (see, e.g., [Kanwal 2004, §4.4, (52)]).

Theorem 6.1. Let V ∈ C∞

0 (H
n+1) with n ≥ 1. For each integer N >

[ 1
2(n + 1)

]
, there exist constants

ak(V ) (the wave invariants) such that

2V (t)=

N∑
k=1

ak(V )ϑ−n+2k−1(t)+ FN (t),

with FN ∈ C2N−n−1(R) and FN (t)= O(|t |2N−n) as t → 0.

The proof is adapted from [Bérard 1977] and relies on the Hadamard–Riesz construction of a parametrix
for the wave kernel [Hadamard 1923; Riesz 1949]. For V ∈ C∞

0 (H
n+1), let

PV :=1+ V −
1
4 n2.

We denote by eV the fundamental solution of the Cauchy problem for the wave equation

(∂2
t + PV )eV (t; z, w)= 0,

eV (0; z, w)= δ(z −w),

∂t eV (0; z, w)= 0,

(6-2)

for t ∈ R and z, w∈ Hn+1. In other words, eV (t; · , · ) is the integral kernel of the wave operator cos(t
√

PV ).
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For α ∈ C, we define the holomorphic family of distributions

χα
+

:=
xα
+

0(α+ 1)

using the notation of [Hörmander 1983, §3.2]. This family satisfies the derivative identity

d
dx
χα

+
= χα−1

+
.

Since χ0
+

= x+, it follows that χα
+

is a point distribution at negative integers:

χ−m
+

= δ(m−1)(x).

For z, w ∈ Hn+1, we set r := d(z, w) and denote by χα
+
(t2

− r2) the pullback of χα
+

by the smooth
map Hn+1

× Hn+1
× R → R given by (z, w, t) 7→ t2

− d(z, w)2. Since χα
+

is classically differentiable
for Reα >−1, derivatives of χα

+
(t2

− r2) can be computed directly in this region, and then extended by
analytic continuation. Hence the formulas

∂t [χ
α
+
(t2

− r2)] = 2tχα−1
+

(t2
− r2),

∂r [χ
α
+
(t2

− r2)] = −2rχα−1
+

(t2
− r2)

(6-3)

are valid for all α.
Following [Bérard 1977, §D], we seek to construct the parametrix as a sum of the distributions

|t |χα
+
(t2

− r2) with increasing values of α. The starting point for the expansion is dictated by the initial
conditions in (6-2), so we need to understand the distributional limit of |t |χα

+
(t2

− r2) as t → 0.

Lemma 6.2. For ψ ∈ C∞

0 (H
n+1),

lim
t→0

(|t |χα
+
(t2

− d(z, · )2), ψ)=

{
πn/2ψ(z), α = −

1
2 n − 1,

0, α >−
1
2 n − 1

(6-4)

and
lim
t→0

(∂t [|t |χα+(t
2
− d(z, · )2)], ψ)= 0 (6-5)

for α = −
1
2 n − 1 and α >−

1
2(n + 1).

Proof. The distribution is even in the variable t , so it suffices to consider t > 0. The first formula of (6-3)
gives, for k ∈ N,

χα
+
(t2

− r2)=

(
1
2t
∂t

)k

χα+k
+

(t2
− r2),

which can be used to shift the computation to the integrable range. For t > 0 and Reα+ k >−1, we have

(χα
+
(t2

− d(z, · )2), ψ)=
1

0(α+ k + 1)

(
1
2t
∂t

)k ∫ t

0
(t2

− r2)α+kψ̃(r)rn dr,

where in geodesic polar coordinates (r, ω) centered at z,

ψ̃(r) :=
sinhn r

rn

∫
Sn
ψ(r, ω) dω.
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Rescaling r → tr in the integral gives

(χα
+
(t2

− d(z, · )2), ψ)=
1

0(α+ k + 1)

(
1
2t
∂t

)k[
t2(α+k)+n+1

∫ 1

0
(1 − r2)α+kψ̃(tr)rn dr

]
. (6-6)

Since ψ̃ is the spherical average of ψ centered at z, and the linear term in a Taylor approximation of ψ
at z cancels out in this average,

ψ̃(r)= Vol(Sn)ψ(z)+ O(r2)=
2π (n+1)/2

0
( 1

2(n + 1)
)ψ(z)+ O(r2).

For the same reason, ∂r ψ̃(r)= O(r). Higher radial derivatives are bounded on {r > 0}. Hence, in the
leading term from (6-6), all of the t derivatives are applied to the factor preceding the integral, which
gives (

1
2t
∂t

)k

[t2(α+k)+n+1
] =

0
(
α+ k +

1
2(n + 3)

)
0

(
α+

1
2(n + 3)

) t2α+n+1.

The leading contribution from the r integration can be calculated from Euler’s beta function formula
[NIST 2010, (5.12.1)]: ∫ 1

0
(1 − r2)α+krn dr =

0
(
α+ k + 1

)
0

( 1
2(n + 1)

)
20

(
α+ k +

1
2(n + 3)

) .

Combining these results in (6-6) gives, for t > 0,

(χα
+
(t2

− d(z, · )2), ψ)=
π (n+1)/2

0
(
α+

1
2(n + 3)

) t2α+n+1ψ(z)+ O(t2α+n+3). (6-7)

This proves (6-4) once the extra factor of t has been inserted.
To establish (6-5), we note that

∂t [tχα+(t
2
− r2)] = χα

+
(t2

− r2)+ 2t2χα−1
+

(t2
− r2)

by (6-3). We thus obtain from (6-7),

(∂t [tχα+(t
2
− d(z, · )2)], ψ)= π (n+1)/2 2α+ n + 2

0
(
α+

1
2(n + 3)

) t2α+n+1ψ(z)+ O(t2α+n+3),

and (6-5) follows. □

We take the following ansatz for the parametrix:

eV,N (t, z, w) := π−n/2
N∑

k=0

uV,k(z, w)|t |χ
−n/2+k−1
+ (t2

− r2), (6-8)

where uV,0(z, z) = 1 and the higher coefficients uV,k are to be chosen such that, in the expression for
(∂2

t + PV )eV,N (t, z, · ), the coefficients of |t |χ−n/2+k−1
+ (t2

− r2) cancel for k ≤ N . Lemma 6.2 implies
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that the initial conditions are satisfied:

eV,N (0; z, w)= δ(z −w),

∂t eV,N (0; z, w)= 0.
(6-9)

To work out the equations for the coefficients, we will compute the action of (∂2
t + PV ) on each term.

As above, it suffices to compute for t > 0 by evenness, and we will use the temporary abbreviations

uV,k(z, · )⇝ uk, χα
+
(t2

− r2)→ χα
+

to simplify the formulas. The time derivatives are calculated from (6-3):

∂2
t [tχα

+
] = 6tχα−1

+
+ 4t3χα−2

+
.

Using the geodesic polar coordinate form of the Laplacian

1= −∂2
r − n coth r ∂r + sinh−2 r 1Sn , (6-10)

we also compute
PVχ

α
+

= (2 + 2nr coth r)χα−1
+

− 4r2χα−2
+

.

Putting these together gives

(∂2
t + PV )[uk tχα

+
] = (PV uk)tχα+ + 4r(∂r uk)tχα−1

+
+ (8 + 2nr coth r)uk tχα−1

+
+ 4uk t (t2

− r2)χα−2
+

.

The final term simplifies:
(t2

− r2)χα−2
+

= (α− 1)χα−1
+

,

which reduces the formula to

(∂2
t + PV )[uk tχα

+
] = (PV uk)tχα+ + [4r∂r uk + (4(α+ 1)+ 2nr coth r)uk]tχα−1

+
.

After setting α = −
1
2 n + k − 1 as in (6-8), we obtain, for t > 0,

(∂2
t + PV )[uk tχ−n/2+k−1

+ ] = [4r∂r uk +(2n(r coth r −1)+4k)uk]tχ
−n/2+k
+ +(PV uk)tχ

−n/2+k−1
+ . (6-11)

The calculation (6-11) shows the cancelling of terms in (∂2
t + PV )eV,N (t, z, · ) is ensured by the

transport equations
[4r∂r + 2n(r coth r − 1)]uV,0(z, · )= 0,

[4r∂r + 2n(r coth r − 1)+ 4k]uV,k(z, · )= −PV uV,k−1(z, · ).
(6-12)

To solve (6-12) we define

φ(r) :=

(
sinh r

r

)−n/2

, (6-13)

and then set
uV,0(z, w)= φ(r),

uV,k+1(z, w)= −
1
4
φ(r)

∫ 1

0

sk

φ(sr)
PV uV,k(z, γ (s)) ds,

(6-14)
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where γ is the geodesic from z to w, parametrized by s ∈ [0, 1], and PV acts on the second variable
of uV,k . The coefficients uV,k are smooth for all k.

Proposition 6.3. With eV,N defined as above, set

qV,N (t, z, w) := eV (t, z, w)− eV,N (t, z, w).

For m ∈ N, we have qV,N ∈ Cm for N sufficiently large and

|qV,N (t, z, w)| = O(|t |−n+N−1)

as t → 0, uniformly in z, w.

Proof. From (6-8), (6-11), and the transport equations (6-12), we observe that

(∂2
t + PV )eV,N (t, z, · )= fN (t, z, · ),

where
fN (t, z, · )= π−n/2 PV uV,N (z, · )|t |χ

−n/2+N−1
+ (t2

− r2), (6-15)

with PV acting on the second variable. Since eV,N satisfies the same initial conditions (6-9) as eV , this
gives

(∂2
t + PV )qV,N (t; z, w)= fN (t, z, w),

qV,N (0; z, w)= 0,

∂tqV,N (0; z, w)= 0.

The coefficients uV,k are smooth, by (6-14), and |t |χα
+
(t2

− r2) is C l for α > l + 1. Hence, by (6-15),
fN ∈ C l for l < N −

1
2 n − 2 and has support in {r ≤ t}. It follows that qV ∈ Cm for N sufficiently large.

For any b > 0, the Sobolev norms of fN (t, z, · ) can be estimated by O(|t |b) for N sufficiently large.
These estimates are uniform in z, since φ depends only on r and V has compact support. Standard
regularity estimates for hyperbolic PDEs (see, for example, [Trèves 1975, Chapter 47]) then show that,
for N1 sufficiently large,

|qV,N1(t, z, w)| = O(|t |2N−n−1),

uniformly in z, w. The estimate of qV,N as t → 0 is then derived from

qV,N (t, z, w)= π−n/2
N1∑

k=N+1

uV,k(z, w)|t |χ
−n/2+k−1
+ (t2

− r2)+ qV,N1(t, z, w). □

With this estimate on the parametrix, we are now prepared to establish the wave trace expansion.

Proof of Theorem 6.1. For ψ ∈ C∞

0 (R), we write the integral kernel of the trace-class operator∫
∞

−∞

[cos(t
√

PV )− cos(t
√

P0)]ψ(t) dt

as ∫
∞

−∞

[eV (t, z, w)− e0(t, z, w)]ψ(t) dt,
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which is smooth and compactly supported. Taking the trace gives

(2V , ψ)=

∫
Hn+1

(∫
∞

−∞

[eV (t, z, w)− e0(t, z, w)]ψ(t) dt
)∣∣∣∣

z=w
dg(z). (6-16)

The wave kernel parametrices can be substituted into (6-16) and the contributions from the terms
k = 0, . . . , N evaluated separately.

For Reα sufficiently large, we can verify directly that

|t |χα
+
(t2

− r2)
∣∣
r=0 = ϑ2α+1(t),

and this formula extends to all α ∈ C by analytic continuation. It follows from (6-16) and Proposition 6.3
that

2V (t)= π−n/2
N∑

k=1

(∫
Hn+1

[uV,k(z, z)− u0,k(z, z)] dg(z)
)
ϑ−n+2k−1(t)+ FN (t),

where

FN (t) :=

∫
Hn+1

[qV,N (t, z, z)− q0,N (t, z, z)] dg(z). □

The proof of Theorem 6.1 yields a formula for the wave invariants:

ak(V )= π−n/2
∫

Hn+1
[uV,k(z, z)− u0,k(z, z)] dg(z). (6-17)

This formula can be simplified somewhat using the transport equations. By (6-12), we have

(L + 4) · · · (L + 4k)uV,k(z, · )= (−1)k PV uV,0(z, · ), (6-18)

where, in geodesic polar coordinates centered at z, L is the differential operator

L := 4r∂r + 2n(r coth r − 1).

Note that, for any smooth function f , L f vanishes at r = 0. Therefore, evaluating (6-18) at the point z
yields

uV,k(z, z)=
(−1)k

4kk!
Pk

V uV,0(z, z), (6-19)

where uV,0(z, w)= φ(d(z, w)) and Pk
V acts on the second variable. In principle, (6-19) can be used to

derive explicit formulas for all of the wave invariants. The first two are relatively simple.

Proposition 6.4. For V ∈ C∞

0 (H
n+1,R),

a1(V )= −
1
4
π−n/2

∫
Hn+1

V (z) dg(z)

and

a2(V )=
1

32
π−n/2

∫
Hn+1

[
2n − n2

6
V (z)+ V (z)2

]
dg(z).
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Proof. Since uV,0(z, z)= 1 and PV − P0 = V , we see immediately from (6-19) that

uV,1(z, z)− u0,1(z, z)= −
1
4 V (z).

This gives the formula for a1(V ).
For the second invariant, we use (6-19) to write

uV,2(z, z)− u0,2(z, z)=
1
32(P

2
Vφ− P2

0 φ)|r=0 =
1
32 [2V (z)P0φ(0)+1V (z)+ V (z)2],

where r is the radius for geodesic polar coordinates centered at z, and we have used the facts that φ(0)= 1
and ∂rφ(0)= 0. From (6-10) and (6-13) we compute

P0φ(0)=
n(n + 1)

6
−

n2

4
=

2n − n2

12
.

This gives

uV,2(z, z)− u0,2(z, z)=
1

32

[
2n − n2

6
V (z)+ V (z)2 +1V (z)

]
.

When substituted into the formula for a2(V ), the term 1V (z) integrates to zero because V has compact
support. □

7. Heat trace

The relative heat trace associated to a potential V ∈ C∞

0 (H
n+1,R) is defined by applying the distribu-

tion (3-1) to the function f (x)= χ(x)e−t (x−n2/4) for t > 0, where χ is a smooth cutoff which equals 1
on the spectrum of PV :=1−

1
4 n2

+ V and vanishes on (−∞, c] for some c < 0. The Birman–Krein
formula (Theorem 4.1) gives

tr[e−t PV − e−t P0] =

∫
∞

0
σ ′(ξ)e−ξ2t dξ +

d∑
j=1

et (n2/4−λj ) +
1
2 mV

( 1
2 n

)
. (7-1)

We have no analog of the Poisson formula of Theorem 5.1 for the heat trace. This is because the values
of

(
ζ −

1
2 n

)2 are spread over the full complex plane, so there is no apparent regularization of the heat
trace as a sum over the resonance set.

The asymptotic expansion of the heat trace at t = 0 can be derived by a variety of methods. The
simplest route for us is via the wave trace expansion.

Theorem 7.1. As t → 0, the relative heat trace admits an asymptotic expansion

tr[e−t PV − e−t P0] ∼ π−1/2
∞∑

k=1

ak(V )(4t)−(n+1)/2+k, (7-2)

where ak(V ) are the wave invariants from Theorem 6.1.

Proof. Since 2sc(s) is tempered, the definition (5-5) gives

1
√

4π t

∫
∞

−∞

2sc(s)e−s2/4t ds =

∫
∞

0
σ ′(ξ)e−ξ2t dξ
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for t > 0. It then follows from (5-6) and (7-1) that

tr[e−t PV − e−t P0] =
1

√
4π t

∫
∞

−∞

2V (s)e−s2/4t ds (7-3)

even when 2V (s) is not tempered.
For Reβ sufficiently large, we compute

1
√

4π t

∫
∞

−∞

ϑβ(s)e−s2/4t ds = π−1/2(4t)β/2,

and this formula extends to all β ∈ C by analytic continuation. Theorem 6.1 thus yields the expansion

tr[e−t PV − e−t P0] = π−1/2
N∑

k=1

ak(V )(4t)−(n+1)/2+k
+

1
√

4π t

∫
∞

−∞

FN (s)e−s2/4t ds

for N >
[1

2(n+2)
]
, where FN (s)= O(|s|2N−n) as s → 0. From (5-6) we also see that FN (s)= O(en|s|/2)

as |s| → ∞. It follows that
1

√
4π t

∫
∞

−∞

FN (s)e−s2/4t ds = O(t−n/2+N ). □

Note that coefficients in (7-2) are not quite the usual heat invariants because of the shift −n2/4 in the
definition of PV . This shift gives an extra factor of e−n2t/4 in (7-2), so the traditional heat invariants could
be computed as finite linear combinations of the ak(V ).

The behavior of the heat kernel as t → ∞ is also of interest to us. According to (7-1), this behavior
is dominated by exponential terms corresponding to eigenvalues and a constant term from the possible
resonance at s =

1
2 n. If these contributions are absent, then the heat kernel decays at a rate independent

of the dimension.

Proposition 7.2. For the potential V ∈ C∞(Hn+1,R), suppose that PV has no eigenvalues and no
resonance at 1

2 n. Then the following bound holds uniformly for t ∈ (0,∞) and z, w in H:

e−t PV (t; z, w)≍ t−3/2e−r2/(4t)−(nr)/2
(

1 +
r + 1

t

)n/2−1

(1 + r), (7-4)

where r = d(z, w) and ≍ means that the ratio of the two sides is bounded above and below by positive
constants.

In the case V = 0, (7-4) was proven in [Davies and Mandouvalos 1988, Theorem 3.1]. There is no
factor e−n2t/4 in (7-4) because of the shift −

1
4 n2 in the definition of PV . These estimates were generalized

in [Chen and Hassell 2020, Theorem 5] to asymptotically hyperbolic Cartan–Hadamard manifolds with
no eigenvalues and no resonance at s =

1
2 n by methods that allow for the inclusion of a C∞

0 potential. The
power t−3/2, independent of dimension, corresponds to the vanishing of the spectral resolution KV (ξ ; · , · )

to order ξ 2 at ξ = 0 under the assumption of no resonance at 1
2 n.

Proposition 7.2 implies a bound on the heat trace by the argument from [Sá Barreto and Zworski 1996,
Proposition 3.1].
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Corollary 7.3. For a potential V satisfying the hypotheses of Proposition 7.2,

tr[e−t PV − e−t P0] = O(t−1/2)

as t → ∞.

Proof. Duhamel’s principle gives the trace estimate

|tr[e−t PV − e−t P0]| ≤

∫ t

0

∫
Hn+1

∫
Hn+1

e−(t−s)P0(w, z)e−s PV (z, w)|V (z)| dg(z) dg(w) ds. (7-5)

The uniform bound (7-4) implies in particular that

e−s PV (z, w)≤ CV e−s P0(z, w),

so we can use the semigroup property to estimate∫
Hn+1

e−(t−s)P0(w, z)e−s PV (z, w) dg(w)≤ CV e−t P0(z, z)≤ CV t−3/2

as t → ∞, uniformly in z. Applying this to (7-5) gives

|tr[e−t PV − e−t P0]| ≤ CV t−1/2
∥V ∥L1 . □

8. Scattering phase asymptotics

The Birman–Krein formula allows us to connect the wave-trace invariants to corresponding asymptotic
expansions for the scattering phase and its derivative. For Schrödinger operators in the odd-dimensional
Euclidean setting, the asymptotic expansion of the scattering phase was established by Colin de Verdière
[1981], Guillopé [1981], and Popov [1982], via formulas relating the scattering determinant to regularized
determinants of the cutoff resolvent. An argument based on expansion of the scattering matrix is given
in [Yafaev 2010, Theorem 9.2.12], and a semiclassical version is given in [Dyatlov and Zworski 2019,
Theorem 3.62].

For hyperbolic space we have the following version of these results:

Theorem 8.1. For V ∈ C∞

0 (H
n+1,R) the function σ ′(ξ) admits a full asymptotic expansion as ξ → +∞.

If the dimension n + 1 is odd, then

σ ′(ξ)∼

∞∑
k=1

ck(V )ξ n−2k.

For n + 1 even, the expansion is truncated:

σ ′(ξ)=

[n/2]∑
k=1

ck(V )ξ n−2k
+ O(ξ−∞).

The coefficients are related to the wave invariants by

ck(V )=
2−n+2k

π1/20
( 1

2(n + 1)− k
)ak(V ).
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Before proving the theorem, we start by establishing the existence of the scattering phase expansion.
The coefficients are relatively easy to calculate once this is known.

Proposition 8.2. For V ∈ C∞

0 (H
n+1,R) the function σ ′(ξ) admits an asymptotic expansion of the form

σ ′(ξ)∼

∞∑
j=0

bjξ
n− j−1 (8-1)

as ξ → ∞.

Proof. Of the approaches mentioned above, the ray expansion method from [Yafaev 2010, §8.4] is the
most easily adapted to the hyperbolic setting. In our context, the idea is to expand EV (s; z, ω′) in powers
of s and then apply this expansion to the scattering phase.

To develop the approximation formula, we first consider z ∈ Hn+1 with ω′
= ∞. In standard hyperbolic

coordinates z = (x, y) ∈ Rn
× R+,

1= −y2∂2
y + (n − 1)y∂y + y21x , (8-2)

and the unperturbed generalized eigenfunction has the form (see, e.g., [Borthwick 2010, §4])

E0(s; z,∞)= 2−2s−1π−1/2 0(s)

0
(
s −

1
2 n + 1

) ys. (8-3)

In geodesic coordinates y = e−r, so this is the analog of a Euclidean plane wave with frequency ξ = Im s.
Following the construction in [Yafaev 2010, §8.1], we define an approximate plane wave using the

ansatz

ψN (s; z)=

N∑
j=0

s− j yswj (z), (8-4)

with w0(z)= 1. From (8-2), we have

[1+ V − s(n − s)](yswj )= ys(1+ V )wj − 2sys−1∂ywj .

We can thus cancel coefficients up to order s N by imposing the transport equation

2y∂yw j+1 = (1+ V )wj .

The solutions are given recursively by

w j+1(z) :=
1
2

∫ 0

−∞

(1+ V )wj (x, et y) dt (8-5)

for j ≥ 1. With these coefficients, the function (8-4) satisfies

[1+ V − s(n − s)]ψN (s; z)= s−N yswN (z). (8-6)

In (8-5), the point (x, et) can be interpreted geometrically as the translation of z = (x, y) by distance t
along the vertical geodesic through z. Returning to the geodesic polar coordinates z = (r, ω) ∈ R+ × Sn
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used to define EV (s), we let φz,ω′(t) denote the unique geodesic through z with limit point ω′
∈ Sn

as t → 0. Let w0(z, ω′)= 1 and define wj (z, ω′) for j ≥ 1 by

w j+1(z, ω′) :=
1
2

∫ 0

−∞

(1+ V )wj (φz,ω′(t)) dt.

For the approximate Poisson kernel

EV,N (s; z, ω′) :=

N∑
j=0

s− jwj (z, ω′)E0(s, z, ω′), (8-7)

the calculation of (8-6) shows that

[1+ V − s(n − s)]EV,N (s; z, ω′) := s−N E0(s, z, ω′)(1+ V )wN (z, ω′).

The coefficients of (8-7) have support properties analogous to the approximate plane waves in the
Euclidean case. That is, for j ≥ 1, wj (z, ω′) vanishes unless z lies on a geodesic connecting a point in
supp V to the limit point ω′. One can thus repeat the argument from [Yafaev 2010, Theorem 8.4.3] using
the cutoff resolvent bound from [Guillarmou 2005, Proposition 3.2] in place of its Euclidean counterpart.
The result is that

EV (s; z, ω′)= EV,N (s; z, ω′)+ qn(s; z, ω′), (8-8)

where, for Re s =
1
2 n,

∥qn(s; · , ω′)∥L2(B) = O(sn/2−N ),

with B a ball in Hn+1 containing supp V . The shift in the power in the error estimate comes from the
0 factors in the normalization of (8-3). The same error estimate applies when (8-8) is differentiated with
respect to s.

The approximation (8-8) can be applied to the scattering phase through the formula (4-4), which gives

τ(s)= det(1 + T (s)),

where
T (s) := (2s − n)EV (s)V E0(n − s).

By the definition of the scattering phase and the fact that 1 + T
( 1

2 n + iξ
)

is unitary for ξ ∈ R,

σ ′(ξ)= −
1

2π
tr
[(

1 + T
(1

2
n + iξ

)∗)
T ′

(1
2

n + iξ
)]
. (8-9)

The kernels of T (s) and T ′(s) are smooth, and (8-8) gives uniform asymptotic expansions of their kernels
for Re s =

1
2 n, with leading term of order at most ξ n−1. We can thus deduce the expansion of σ ′(ξ)

from (8-9). □

Although the leading term in (8-1) matches the growth estimate of Proposition 5.3, this coefficient
vanishes and the leading order is actually ξ n−2. Computing coefficients through the construction of
Proposition 8.2 is rather cumbersome, however. Comparison to the heat trace expansion via the Berman–
Krein formula yields a much easier method.
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Proof of Theorem 8.1. By a straightforward calculus argument (see [Dyatlov and Zworski 2019,
Lemma 3.65]), the expansion (8-1) yields the corresponding expansion∫

∞

0
σ ′(ξ)e−ξ2t dξ ∼

1
2

n−1∑
j=0

0
(1

2
(n − j)

)
bj t−(n− j)/2

−
1
2

∞∑
l=0

(−1)l

l!
bn+2l t l log t

+
1
2

∞∑
l=0

0
(
−l −

1
2

)
bn+2l+1t l+1/2

+ g(t)

as t → 0+, where g ∈ C∞
[0,∞). The function g is not determined by the coefficients bj . On the other

hand, by (7-1) and Theorem 7.1 we have∫
∞

0
σ ′(ξ)e−ξ2t dξ ∼ π−1/2

∞∑
k=1

ak(V )(4t)−(n+1)/2+k
+ h(t), (8-10)

where h ∈ C∞
[0,∞) is given by

h(t) :=

d∑
j=1

et (n2/4−λj ) +
1
2 mV

( 1
2 n

)
.

If n + 1 is odd, then comparing these expansions shows that bj = 0 if j is even and

b2k−1 =
2−n+2k

π1/20
( 1

2(n + 1)− k
)ak(V ) (8-11)

for k ∈ N. For n + 1 even the heat trace expansion contains only integral powers of t . This implies that
bj = 0 for all j ≥ n and also for even values of j < n. For odd values of j < n, the coefficients are given
by (8-11). □

Integrating the asymptotic expansion from Theorem 8.1 yields the following:

Corollary 8.3. The scattering phase admits a full asymptotic expansion as ξ → 0. If the dimension n + 1
is odd, then

σ(ξ)∼

[n/2]∑
k=1

ck(V )
n − 2k + 1

ξ n−2k+1
+ d +

1
2 mV

( 1
2 n

)
+

∑
k>[n/2]

ck(V )
n − 2k + 1

ξ n−2k+1,

where d is the number of eigenvalues. For n + 1 even,

σ(ξ)=

[n/2]∑
k=1

ck(V )
n − 2k + 1

ξ n−2k+1
+ d +

1
2 mV

( 1
2 n

)
+ O(ξ−∞).

Proof. By Theorem 8.1, the function

t 7→

∫
∞

0

[
σ ′(x)−

[n/2]∑
k=1

ck(V )xn−2k
]

e−x2t dx
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is continuous for t ∈ [0,∞). By (8-10), taking the limit as t → 0+ yields∫
∞

0

[
σ ′(x)−

[n/2]∑
k=1

ck(V )xn−2k
]

dx = d +
1
2 mV

( 1
2 n

)
.

Splitting the integral at x = ξ then gives, since σ(0)= 0,

σ(ξ)=

[n/2]∑
k=1

ck(V )
n − 2k + 1

ξ n−2k+1
+ d +

1
2 mV

( 1
2 n

)
−

∫
∞

ξ

[
σ ′(x)−

[n/2]∑
k=1

ck(V )xn−2k
]

dx .

By Theorem 8.1, for n + 1 odd the final integral on the right can be integrated to produce an asymptotic
expansion in ξ . For n + 1 even, this integral gives an error term O(ξ−∞). □

9. Existence of resonances

The asymptotic expansions of the wave trace and scattering have significantly different behavior in odd
and even dimensions, so we will consider the two cases separately.

Even dimensions. For n + 1 even, all of the singularities in the wave trace expansion of Theorem 6.1
are detectable for t ̸= 0. It thus follows immediately from Theorem 5.1 that, for V ∈ C∞

0 (H
n+1,R), the

resonance set RV determines all of the wave invariants ak(V ). In particular, since the vanishing of the
first two wave invariants implies V = 0 by the formulas of Proposition 6.4, we obtain the following:

Theorem 9.1. For V ∈ C∞

0 (H
n+1,R) with n + 1 even, if RV = R0 then V = 0.

We can also deduce a lower bound on the resonance counting function from the wave trace in even
dimensions. Note that 2V (t)= O(t−n+1) by Theorem 6.1, whereas the R0 contribution in (5-3) satisfies

u0(t)∼
1

tn+1

as t → 0. It thus follows from (5-3) that ∑
ζ∈RV

e(ζ−n/2)t
∼

2
tn+1 . (9-1)

The lower-bound argument from [Guillopé and Zworski 1997, Theorem 1.3] (see also [Borthwick 2016,
§12.2]) can be applied to (9-1), yielding the following:

Theorem 9.2. For n + 1 even, the counting function for RV satisfies

NV (r)≥ crn+1

for some constant c > 0 that depends only on n and the radius of supp V.

Proof. Choose φ ∈ C∞

0 (R+) with φ ≥ 0 and φ(1) > 0, and set

φλ(t) := λφ(λt).
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By (9-1) we have ∫
∞

0

( ∑
ζ∈RV

e(ζ−n/2)t
)
φλ(t) dt ≥ cnλ

n+1,

where cn does not depend on V . Using the Fourier transform to evaluate the right-hand side gives∑
ζ∈RV

φ̂

(
i
(
ζ −

1
2 n

)
λ

)
≥ cnλ

n+1. (9-2)

Since φ̂(ξ) is rapidly decreasing, we can estimate φ̂(ξ) = O(|ξ |−n−2) in particular. In terms of the
counting function, (9-2) then implies

cnλ
n+1

≤

∫
∞

0

(
1 + r
λ

)−n−2

d NV (r)= (n + 2)
∫

∞

0
(1 + r)−n−3 NV (λr) dr.

Splitting the integral at r = a and adjusting the constant gives

cnλ
n+1

≤ NV (λa)+
∫

∞

a
(1 + r)−n−3 NV (λr) dr. (9-3)

If V has support in a ball of radius R, then [Borthwick 2010, Theorem 1.1] gives an upper bound

NV (r)≤ CRrn+1.

Applying this estimate to (9-3) gives

NV (λa)≥ cnλ
n+1

− CRλ
n+1a−1.

We can then set a = 2CR/cn and rescale λ to obtain

NV (λ)≥
1
2

cn

(
cn

2CR

)n+1

λn+1. □

The existence of a lower bound in even dimensions is not surprising, since the optimal order of growth
is already attained for V = 0. It is more interesting to examine the difference between RV and the
background resonance set. Note that when n +1 is even, the expansion of Theorem 8.1 contains only odd
powers of ξ . Since σ ′(ξ) is an even function, this creates a discrepancy that we can exploit.

Theorem 9.3. For n + 1 even, suppose that V1, V2 ∈ C∞

0 (H
n+1,R). If the resonance sets RV1 and RV2

differ by only finitely many points (counting multiplicities), then:

(1) The corresponding scattering phases σV1 and σV2 differ by a constant.

(2) The sets RV1\RV2 and RV2\RV1 are contained in (0, n) and invariant under the reflection s 7→ n − s.

(3) The wave invariants satisfy ak(V1)= ak(V2) for k = 1, . . . , 1
2(n − 1).

Furthermore, if RV1 = RV2 (with multiplicities), then 2V1 =2V2 , and hence all of the wave invariants
match.



2104 DAVID BORTHWICK AND YIRAN WANG

Proof. Under the assumption that RV1 and RV2 differ by only finitely many points, the factorization of
Proposition 5.2 implies that

τV1(s)
τV2(s)

= (−1)mV1 (n/2)−mV2 (n/2)ep(s)
∏

ζ∈RV1\RV2

n − s − ζ

s − ζ

∏
ζ∈RV2\RV1

s − ζ

n − s − ζ
, (9-4)

where p is a polynomial with degree at most n+1 satisfying p(s)= p(n−s). It follows that σ ′

V1
(ξ)−σ ′

V2
(ξ)

is an even, rational function of ξ . Since the expansion formula from Theorem 8.1 contains only odd powers
of ξ plus an O(ξ−∞) remainder, this implies that σ ′

V1
(ξ)= σ ′

V2
(ξ). The equality of the wave invariants for

k = 1, . . . ,
[ 1

2 n
]

then follows from the matching of expansion coefficients. Since σ ′

V1
= σ ′

V2
also implies

that τV1(s)/τV2(s) is constant, the characterization of RV1\RV2 and RV2\RV1 follows from (9-4).
If RV1 = RV2 , then the same argument shows that the scattering phases are equal. It then follows

from (5-6) that 2V1 =2V1 . □

Let us apply Theorem 9.3 to compare RV to R0. The hypothesis that RV and R0 differ by finitely
many points implies that σ ′(ξ)= 0 and ak(V )= 0 for k ≤

1
2(n −1). Since R0 ∩ (0, n)=∅, it also implies

that RV is the union of R0 with a possible resonance at ζ =
1
2 n plus a finite set of pairs of the form

ζ =
1
2 n ±

√
1
4 n2

− λj ,

where λj is an eigenvalue.
As noted at the start of this section, the vanishing of the first two wave invariants implies that V = 0.

From Theorem 9.3 we thus immediately obtain the following:

Corollary 9.4. Let V ∈ C∞

0 (H
n+1,R) with n + 1 even and n ≥ 5. If V ̸= 0 then RV differs from R0 by

infinitely many points (counting multiplicities).

For n ≤ 3, we cannot fully control the first two wave invariants. However, we can derive some extra
information from the heat trace. If σ ′(ξ)= 0, we see from (7-1) and (7-2) that

d∑
j=1

et (n2/4−λj ) +
1
2 mV

( 1
2 n

)
∼

∞∑
k=(n+1)/2

2−n+2k−1π−1/2ak(V )t−(n+1)/2+k (9-5)

as t → 0. Matching the coefficients in the expansion leads to a set of relationships between the discrete
eigenvalues λj , the multiplicity mV

( 1
2 n

)
, and the wave invariants.

Corollary 9.5. For V ∈ C∞

0 (H
2,R), if V ̸= 0 and

∫
V dg ≥ 0, then RV differs from R0 by infinitely many

points. The same conclusion holds for V ∈ C∞

0 (H
4,R), provided

∫
V dg ̸= 0.

Proof. Assume that RV differs from R0 by finitely many points. For n = 1, the t0 term in (9-5) gives

d +
1
2

mV

(1
2

n
)

= −
1

4π

∫
H2

V (z) dg(z).

Hence
∫

V dg ≥ 0 implies RV = ∅, which gives V = 0 by Theorem 9.1.
For n = 3, the assumption that RV differs from R0 by finitely many points gives a1(V ) = 0 by

Theorem 9.3. This means
∫

V dg = 0. □
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Assuming a finite discrepancy between RV and R0, the expansion (9-5) also implies a set of relations
between eigenvalues and wave invariants. For n = 1, we have

1
(k − 1)!

d∑
j=1

(1
4

− λj

)k−1
= 4k−1π−1/2ak(V )

for k ≥ 2. If n = 3,
d +

1
2 mV

( 3
2

)
= π−1/2a2(V )

and
1

(k − 2)!

d∑
j=1

(9
4

− λj

)k−2
= 4k−2π−1/2ak(V )

for k ≥ 3. Although these relations seem rather delicate, they do not lead to any obvious contradictions.

Odd dimensions. In odd dimensions, the primary limitation to drawing implications from the wave trace
is the fact that the terms in the expansion of Theorem 6.1 with k ≤

1
2 n are distributions supported only

at t = 0. Hence the trace formula of Theorem 5.1 yields no information about the first 1
2 n wave invariants.

In the Euclidean case, [Sá Barreto and Zworski 1996] exploited the decay of the heat trace as t → ∞

to prove an existence result. In the hyperbolic case, the corresponding decay rate from Corollary 7.3 is
merely O(t−1/2), independent of the dimension. Hence this approach fails and we obtain an existence
result only for dimension three.

Theorem 9.6. For V ∈ C∞

0 (H
3,R), if V ̸= 0 then RV is not empty.

Proof. For n = 2, if RV = ∅ then Theorems 5.1 and 6.1 show that ak(V )= 0 for k ≥ 2. By the formula
from Proposition 6.4,

a2(V )=
1

32π

∫
H3

V (z)2 dg(z),

so a2(V )= 0 implies V = 0 when n = 2. □

As long as at least one resonance exists, we can use the Poisson formula to show that there are infinitely
many. The arguments from [Christiansen 1999, Theorem 1] and [Sá Barreto 2001, Theorem 1.3] can then
be applied to produce a lower bound on the count.

Theorem 9.7. For V ∈ C∞

0 (H
n+1,R) with n + 1 odd, either RV = ∅ or RV is infinite and the counting

function satisfies

lim sup
r→∞

NV (r)
r

> 0.

Proof. Suppose that RV is finite. By Theorem 5.1 the wave trace is given by a finite sum:

2V (t)=
1
2

∑
ζ∈RV

e(ζ−n/2)|t |

for t ̸= 0. Hence
lim
t→0

2V (t)=
1
2 #RV .



2106 DAVID BORTHWICK AND YIRAN WANG

Since the wave trace expansion of Theorem 6.1 has no term of order t0 for n + 1 odd, this shows that
RV = ∅.

Now assume that RV is infinite. Since R0 = ∅ in odd dimensions, the factorization formula of
Proposition 5.2 reduces to

τ(s)= (−1)mV (n/2)eq(s) HV (n − s)
HV (s)

.

This is completely analogous to the factorization in the Euclidean case, once we shift the spectral parameter
by setting s =

1
2 n + iξ .

Suppose that NV (r)= O(r). Then, the scattering phase expansion of Corollary 8.3 allows us to apply
[Sá Barreto 2001, Theorem 1.2] to deduce that∣∣∣∣ ∑

|ξj |<r

1
ξj

∣∣∣∣ ≤ C

for all r > 0. The argument from the proof of [Sá Barreto 2001, Theorem 1.3] then yields a contradiction
to the fact the asymptotic expansion from Corollary 8.3 has only integral powers of ξ . □
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