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CHARACTERIZATION OF RECTIFIABILITY
VIA LUSIN-TYPE APPROXIMATION

ANDREA MARCHESE AND ANDREA MERLO

We prove that a Radon measure p on R” can be written as . =y - i;, where each of the y; is an
i-dimensional rectifiable measure if and only if, for every Lipschitz function f : R” — R and every ¢ > 0,
there exists a function g of class C! such that u({x e R" : g(x) # f(x)}) <e.

1. Introduction

A fundamental yet simple consequence of Rademacher’s theorem and Whitney’s theorem is the fact that
Lipschitz functions on the Euclidean space admit a Lusin-type approximation with C'-functions, namely,
for every Lipschitz function f : R" — R and every & > 0, there exists a function g : R" — R of class C!
such that

L"({x eR"1g(x) # f(O}) <,

where .#" denotes the Lebesgue measure; see [Simon 1983, Theorem 5.3]. This fact has a central role in
many pivotal results in geometric measure theory, including the existence of the approximate tangent
space to a rectifiable set [Simon 1983, Lemma 11.1] and the validity of area and coarea formulas [Simon
1983, § 12].

On the one hand, this approximation property does not only hold for the Lebesgue measure: for instance
it holds trivially for a Dirac delta. It is not difficult to see that the same property holds for any rectifiable
measure, and clearly the class of Radon measures for which the property holds is closed under finite sums.

On the other hand, it is known that there are measures p for which Lipschitz functions do not admit
a Lusin-type approximation with respect to u with functions of class C!; see [Marchese 2017]. In this
note we completely classify those measures, proving that the validity of such an approximation property
characterizes rectifiable measures, in the following sense.

Theorem 1.1. Let u be a positive Radon measure on R". The measure | can be written as . = Z?:o Wi,
where each of the 1 is an i-dimensional rectifiable measure if and only if, for every Lipschitz function
f:R" = Rand every ¢ > 0, there exists a function g of class C' such that

p(x e R":g(x) # f(0)} <e. (D
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The proof of the “only if” part of Theorem 1.1 is a simple application of Whitney’s theorem. The proof
of the “if” part exploits some tools introduced in [Alberti and Marchese 2016], including the notion of the
decomposability bundle of a measure (: a map x — V (u, x) which detects the maximal subspaces along
which Lipschitz functions are differentiable p-almost everywhere [Alberti and Marchese 2016, § 2.6].
For the purposes of this paper, we need to refine the result [Alberti and Marchese 2016, Theorem 1.1(ii)]
on the existence of Lipschitz functions which are nondifferentiable along directions which do not belong
to the decomposability bundle. In that paper, such nondifferentiability is proved by finding a Lipschitz
function f and for p-almost every point x a sequence of points y; ;== x +t;v € R” converging to x along a
direction v € V (u, x), such that the corresponding incremental ratios ( f(y;) — f(x))/¢t; do not converge.
Here we need to find a function f such that there exist points y; as above, with the additional requirement
that y; € supp(u); see Proposition 3.1. For a nonrectifiable measure w, the existence of a p-positive
set of points x for which there are points y; € supp(ut) approaching x along a direction v ¢ V (u, x) is
guaranteed by Lemma 2.1.

We plan to investigate similar questions in Carnot groups, exploiting tools and techniques introduced
in [De Philippis et al. 2022]. In this setting, similar questions have already attracted some interest. For
instance, in [Julia et al. 2023] the authors proved a suitable extension of Lusin’s approximation-type
theorem for the surface measure of 1-codimensional C"{H-rectiﬁable surfaces in the Heisenberg groups H",
n > 2, and where the regular approximation of Lipschitz functions are found in the class of Cnlu—regular
functions. The authors also prove that in H' there is a regular surface and a Lipschitz function that cannot
be approximated by Cﬂﬂ]—regular functions. This different behavior is connected to the algebraic structure
of the tangents to 1-codimensional regular surfaces in the Heisenberg groups H” whenn =1 or n > 2.

2. Notation and preliminaries

We denote by U (x, r) the open ball in R"” with center x and radius » and by B(x, r) the closed ball. In
addition, for a Borel set E and a § > 0, we define B(E, §) := B(y, §). The unit sphere is denoted
by "~ 1.

Given a Radon measure ¢ and a (possibly vector-valued) function f, we denote by fu the measure

fu(A) = f fdu for every Borel set A.
A

For a measure p and a Borel set E we denote by L E the restriction of p to E, namely the measure
defined by

yeE

uL E(A):=u(ANE) forevery Borel set A.

The support of a positive Radon measure (., denoted supp(it), is the intersection of all closed sets C such
that w(R" \ C) = 0. For 0 < k < n, the symbol A% denotes the k-dimensional Hausdorff measure on R”.

Definition (rectifiable sets and measures). For 0 <k <n, a set E C R" is k-rectifiable if there are sets E;
(i=1,2,...)such that

(i) E; is a Lipschitz image of R for every i;
(i) A*(E\U;=, Ei) =0.
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A Radon measure is said to be k-rectifiable if it is absolutely continuous with respect to % _ E for some
k-rectifiable set E.

As usual, the symbol Gr(k, n) denotes the Grassmannian of k-planes in R"”, and we define Gr :=
Wo <k<n Gr(k, n). We endow Gr with the topology induced by the distance

d(V,W):=d»(VNU@©,1), Wnu(Q,1l)),

where d» is the Hausdorff distance. We recall the following definition; see [Alberti and Marchese 2016,
§2.6, §6.1 and Theorem 6.4].

Definition (decomposability bundle). Given a positive Radon measure u on R”, its decomposability
bundle is a map V (u, -) taking values in the set Gr defined as follows. A vector v € R" belongs to
V(u, x) if and only if there exists a vector-valued measure T with div 7 = 0 such that
M(T —vp) L B(x, 1))
1m =
r=0 w(B(x,r))

where M((T — vu) L B(x, r)) denotes the total variation of the vector-valued measure (T —vu) L B(x, r).

0,

Definition (tangent measures). We define the map 7 ,(y) = (y — x)/r, and we denote by T ,u the
pushforward of w under 7y ,, namely 7, i (A) := pu(x +rA) for every Borel set A. Given a measure
and a point x, the family of fangent measures Tan(u, x), introduced in [Preiss 1987], consists of all
the possible nonzero limits (with respect to the weak™* convergence of measures) of ¢; T ,, u for some
sequence of positive real numbers ¢; and some sequence of radii r; — 0. We know thanks to [Preiss 1987,
Theorem 2.5] that Tan(u, x) is nonempty p-almost everywhere.

Definition (cone over a k-plane). Forany ke {1,...,n—1}, 0< 9 <1, x e R" and V € Gr(k, n), we let
X(x,V,9):=x+{veR":|py()| = v},

where py denotes the orthogonal projection onto V. For notational convenience, for kK = 0 and for every
0 <9 <1, we define X (x,0, 9) := {x}.

Definition (Fg distance between measures). Given ¢ and i two Radon measures on R", and given
K C R" a compact set, we define

Fi@. ¥ =suwp]| [ fdg— [ fay|: f eLipf (K0}, @

where LipT(K ) denotes the class of 1-Lipschitz nonnegative functions with support contained in K. We
also write Fy , for Fp(x ).

Lemma 2.1. Let i be a Radon measure on R" with dim(V (i, x)) = k < n for u-almost every x. Assume
that W (R) = 0 for every k-rectifiable set R. Then, for every 0 < ¥ < 1 and for every ¢ > 0,

supp(p) N B(x, &) \ X (x, V(u, x), ) # 3)

for p-almost every x.
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Proof. Assume by contradiction that there exists a Borel set E with w(E) > 0 such that, for every x € E,
there exists ¢ > 0 such that (3) fails. We claim that this implies that, for @-almost every x € E, every
tangent measure v € Tan(u, x) satisfies

supp(v) C X0, V(u, x), 9). @)

In order to prove (4), fix x € E such that Tan(u, x) is nonempty and consider any open ball U (y, p) C
R"\ X (0, V(u, x), ¥). Notice that since (3) fails, we have T, (U (y, p)) = w(U(x +ry, rp)) =0 for
every r < ¢/(]y|+ p), which we conclude in view of [De Lellis 2008, Proposition 2.7]. Thanks to [Del Nin
and Merlo 2022, Proposition 2.9] we infer that supp(v) C V (u, x) and in particular v = cH* LV (, x)
for some ¢ > 0. For every W e Gr(k, n), define

Ew :={x eR": (k+ 1)Fo 1 (A" LV (i, x), #*L W) <207%4},

By the compactness of the Grassmannian, there exists W € Gr(k, n) such that w(Ew) > 0. On the other
hand, by [Preiss 1987, §4.4(5)] and by the locality of tangent measures, see [Preiss 1987, §2.3(4)], we
conclude that ;L Ew is supported on a k-rectifiable set. This however contradicts the assumption that
w(R) = 0 for every k-rectifiable set R. O

Definition (cone-null sets). For any ¢ € S" ! and 0 € (0, 1), we let the one-sided cone of axis e and
amplitude 6 be the set
Cle,0):={veR":(v,e)>0|v|}.

In the following we denote by I"(e, 0) the family of Lipschitz curves y : E C R — R" such that y’'(¢) €
C(e, 0) for £'-almost every t € E. Finally, a Borel set B is said to be C (e, )-null if 21 (im(y)NB) =0
for any y € I'(e, ).

Proposition 2.2. Let E be a compact set in R". Let W € Gr(k, n), with k < n, and suppose that there
exists 0y € (0, 1) such that, for any e € W, the set E is C(e, 6p)-null. Then, forany 6p <0 < 1 and
e > 0, there exists 6y > 0 such that

A (m(y) N B(E, 8)) < ¢
foranyy €' (e, 0). Forany 8y <0 <1, 0 <8 < 8y and any e € W=, consider the function

Weo,5(x):= sup ' (B(E,8)Nim(y)) — Ale|. (5)
yel(e.0)
y (b)=x+Xe
Then the following properties hold:
(1) 0 <weg,5(x) <¢e foranyx e R",
(1) We,p,5(x) S wep,5(x+5€) <wep,5(x)+sle| foreverys >0 and any x € R". Moreover, if the segment
[x, x +se] is contained in B(E, §), then w, g s(x +s€) = w, 9.5(x) + sle|,

(i) [@e.0.6(x + V) — wep.5(x)| <O —02)"V2|v| for everyv e V := e,

(V) we.9.5is (14 (n — 1)8(1 —6>)~1/?)-Lipschitz.
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Proof. The first part of the proposition is an immediate consequence of Step 1 in the proof of [Alberti and
Marchese 2016, Lemma 4.12]. On the other hand, the construction of the function w, g s was performed
in the second step of that proof. (|

3. Construction of nondifferentiable functions

In this section we prove the existence of some suitable Lipschitz functions which are nondifferentiable
along directions that are quantitatively far away from the decomposability bundle. Given a measure p as
in Lemma 2.1, we prove that there are many functions which are nondifferentiable on a set of positive
u-measure with the additional property that the nondifferentiability is “detected” by the points in the
support of w; see Proposition 3.1.

In this section we fix k € {0, ..., n — 1} and let i be a Radon measure such that dim(V (u, x)) = k for
u-almost every x € R” and p(R) = O for any k-rectifiable set R. Thanks to the strong locality principle,
see [Alberti and Marchese 2016, Proposition 2.9(i)], and Lusin’s theorem, we can assume, up to restriction
to a compact subset KcC supp(u) of positive p-measure, that V (u, x) is uniformly continuous on K. Up
to restricting to a subset where the oscillation of V is small, we can assume that there are n continuous
vector fields eq, ..., e, : R" — S"! such that

V(u, x) =spanfe;(x), ..., ex(x)} and V(u, x)L = span{exy1(x), ..., e,(x)} forevery x € K.
The aim of this section is to prove the following.

Proposition 3.1. Let i and K be as above. There exists a Lipschitz function f : R* — R and a Borel set
E C K of positive p-measure such that, for j-almost every x € E, there exists a direction v € V (i, x)
and a sequence of points y; = y;j(x) € K such that
SO — )
—_ >

yi—X : SO
—v and limsup ——————— —liminf
|yi — x| imoo  |Yi—X| imoo [y — x|

0.

Writing o = 1/4/n, we apply Lemma 2.1 with the choice ©# = +/1 — o2 to find a compact subset K,
of K with positive measure, where

supp(u) N B(x, r)\ X (x, V(u,x),vV1—a?) #@ forany r > 0 and every x € K. (6)

Lemma 3.2. Let u and K, be as above. Then, we can find a compact set K C K, of positive -measure
and a continuous vector field e : R" — S"~! such that e(x) is orthogonal to V (i, x) at ju-almost every
x € R" and such that

supp(u) N B(x,r)NC(e(x), (n — k)_loz) \X(x, Vi, x), V1 —a?) £
forany r > 0 and for every x € K. (7)

Proof. By the choice of «, the cones

Cler1(x), n—k) '), ..., Clen(x), n—k) '), C(—epy1(x), (n—k)a), ..., C(—eu(x), (n—k) ')
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cover R" \ X (0, V(u, x), /1 —a?) for every x € K,. Hence there exists one vector field, which we
denote by e, among the exy 1, ..., €y, —€k+1, - - . , —e, for which the set of those x € K, where (7) holds
has positive p-measure. (|

Definition. Throughout the rest of this section we will let oy be as in (6) and we fix 0 < o < ap. We
also fix the compact set K and the continuous vector field e : R” — S"~! yielded by Lemma 3.2. We let

er,...,e: R" — S"! be continuous orthonormal vector fields spanning V (i, x) at every x € K and
we complete {ey, ..., e, e} to a basis of R" of orthonormal continuous vector fields that we denote by
{ela e €k, €, ek-‘rl’ ey en—l}-

Fix a ball B(0, r) such that K C B(0,r — 1). For any B € (0, 1), we denote by Xz the family of
Lipschitz functions f : B(0, r) — R such that

|IDef(x)l <1 and  |D, f(x)|<p forany j=1,....,n—1, ®)

for #"-almost every x € R". We metrize Xg with the supremum norm and note that this make Xg a
complete and separable metric space. Note also that X4 is nontrivial as it contains all the B-Lipschitz
functions.

In the following definition we introduce some quantities which measure the incremental ratios “detected”
by points in the support of w, at fixed scales and along directions which are outside a cone whose axis is
the decomposability bundle.

Definition. For any 8 > 0 and any 0 < ¢’ < o < 1, we can define on Xy the maps

fx+v) - fx)

vl

Tgf,gf:xremax{sup{ o' <v|<o
and x +v € supp(p) \ X (x, V(u, x), v'1 —Olz)}, —ng,

fx+v) - fx)

v

o <v|<o

T, ,f:x— min{inf{
and x +v € supp(u) \ X (x, V (i, x), v 1 —az)}, nt.

Proposition 3.3. Forany 0 <o’ < o < 1, the functionals

UZ, f = /K T, f(2)du(2)
are Baire class 1 on Xg.

Proof. As a first step we show that the T; . Xp— L'(;u L K) are continuous whenever 0 < o’ <o < 1.
The functions TGJC’U f belong to L'(uL K) since K has finite measure and

T}, f1 < Lip(f) +n.

In addition, it is immediate to see that

2 —
”f—/g”oo for w-almost every x € R”,
o

T, () =T g(x)| <
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thanks to the fact that if at some x € R"” we have

(B(x,0)\ B(x,0") N (supp(w) \ X (x, V(1t, x), V1 —0?)) = &
then Ty ; f(x) = —n for any f € Xg. Integrating with respect to u, we infer that
M( )

1T f ) =T, 8L uek) < I1f = glloo

This implies in particular that U ;r, , 18 a continuous functional on Xg. Following verbatim the argument
above, one can also prove the continuity of the functionals 7, - and U_,
In order to prove that U(fa is of Baire class 1, thanks to [Kechris 1995, §24.B] we just need to show
that, for any f € Xg, we have
Jlim UZ, f =Ug, /. ©)

This is an immediate consequence of the dominated convergence theorem since the sequence (T f )j
converges pointwise to T, f and is dominated by the function constantly equal to n. U

We are now ready to prove the main result of the section, namely the fact that Xz contains plenty of
Lipschitz functions whose nondifferentiability at some points of K is “detected” by points in the support
of .

Proposition 3.4. Let B < (8n%)~'a. Then, for every o > 0, the continuity points of USEU are contained
in the set

Li(0) —{fexﬁ iUgi,f_—u(m}

In particular both L (o) and L_(0) are residual in Xg.

Let us briefly explain here the idea of the proof. In our reduction, for every point x € K at any small
scale, there is a point y € supp(u) such that y — x is far away from V (i, x); see Lemma 3.2. Hence the
point y is not reached by Lipschitz curves passing through x and lying inside supp(u). By Proposition 2.2,
we can find a Lipschitz function @ with small supremum norm which “jumps” with high derivative along
the segment [x, y] for any such point y. Assuming by contradiction that at a continuity point g € Xg the
value of U(;f . 18 below a certain threshold, we reach a contradiction perturbing g by adding w, so that the
value of U(ir ., increases significantly.

Proof. We prove the result just for U(;t »- The argument to prove the analogous statement for U, , can be
obtained following verbatim that for U({ » While making suitable changes of sign.

Assume for contradiction that g is a continuity point for U&r . contained in Xg \ L, (o). Itis easy to
see by convolution that smooth functions are dense in Xg. Since g is a continuity point for U&r .» for any
¢ € N, we can find a smooth function 4, € Xg such that

I8 = helloe <27¢ and U, he < ap(K)/(8n),

and, for any x € R", we have

|D.he(x)] <1 and [D;jhe(x)| <B forany j=1,....,n—1
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Let
A=y € K : Tyl he(y) < o/ (8m).

Thanks to Besicovitch’s covering theorem and [Alberti and Marchese 2016, Lemma 7.5], we can cover
p-almost all A with countably many closed and disjoint balls {B(y;, r;)};en such that, for 0 <7, x <
(nleZ)—lﬂZ

(i) rj <275 w(ANB(yj.rj)) = (1 —mu(B(yj, r;)) and w(dB(y;, ;) =0,

(i) for any z € B(y;, r),

he(2) — he(y; _y;
le(2) — (o) + [Vhe(y;) — Vhe(D)] + M—vm@[ bl ]’ <
|z — yjl |z — y;l

(iii) for any j € N, we can find 0 < p; < n2%~18% and a compact subset Aj of ANB(y;, (1 =2pj)r;)
such that j(A;) > (1 —2n)u(B(yj,r;)) and A; is C(e(y;), 27'%x?)-null.

For any j € N, we let ¢; be a smooth 2(pjrj)_1—Lipschitz function such that 0 < ¢; <1, ¢; =1 on
B(y;, (1 —pj)r;) and it is supported on B(y;, r;). Now fix 0 < ¢ < Bx2. Thanks to Proposition 2.2 we
can find §; <27/ p;r; and a function w; such that:
() 0<wj(x) <eBpjr; for any x € R".
(2) wj(x) < wj(x +se(y;)) <w;j(x)+s for every s > 0 and any x € R". Moreover, if the segment
[x, x +se(y;)] is contained in B(A.,-, d;), then wj(x +se(y;)) =w;(x)+s.
(3) lwj(x +v) —wjx)| <27%x?|v| for every v € e(y;)*.

(4) w; is 1+ 27%x2-Lipschitz.
We thus define the function g, as
gei=(1- 2X)<hz + Y [~ (V). e()) + 1]¢jwj>. (10)
jeN

First we estimate the supremum distance
lg — gelloo < N8 = elloo +2x I elloo + (1 = 25 he = (1 =230 ' gelloo

D A= (Vhe(y)), e(ym)H

jeN
<272+ llglloo + 1+ — DBHYH <27@ + lIglloo), (11)

<274 x(llglloo +27H 4+ (1 =2x)

where the last inequality follows from the choice of 8. The above computation shows that the sequence g,
converges in the supremum distance.

Let us now prove that g, € Xg. If z & | ;B (yj, rj), then the functions &, and g, and their gradients
coincide at z and hence g, satisfies (8) on (U] B(y;, rj))c. If on the other hand z € Uj B(yj,r;), there
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exists a unique j € N such that z € B(yj, ;). In particular, differentiating (10) we get

Vge(2) = (1 =2x0)[Vhe(2) +[=(Vhe(y)), e(y))) + 11V (2)w; (2)
+ = (Vhe(y)), e(y)) + 11 (2) Vo (2)],

so that, for #"-almost every x € R", we have
(Vge(2), e())| = (1 =2x){Vhe(2), e(2)) + [—(Vhe(y)), e(y;)) +11¢;(2)(Vw;(2), e(2))| + 2¢B,
where in the estimate above we have used the facts that

|—(Vhe(yp), ep)) +11 2, [IV@lleen <20pr)~" and  lojlleo < &Bpjr.

Now we replace z with y; in the first addendum, by means of the estimate (ii), obtaining

(Vge(2), e(@)] <3(1—=2)) x>+ (1 =2)0)|(Vhe(y)), ey (1 — $;(2) (Vo (2), e(2)))
+¢;(2)(Vw;(2), e(2))| + 2¢p.

Finally, substituting z with y; in the argument of the vector field e, we deduce thanks to (ii) that

(Vge(2), e()] < 3(1—2x)x* +2ep +6(1 —2x)(1 +27 x)x*
+ (1 =2)X) (VI (y)), e (1 — $;(2) (Vo (2), e(y) + ¢ (2) (Vo (2), e(y))]
<3(1=2;0)x* +2ep+6(1 =201 +27 %) x> + (1 =2x) < 1,

where the last inequality follows from the choice of x, B, ¢. Furthermore, forany g =1,...,n—1, we
infer similarly that

1ge(z +1e4(2)) — ge(2)]
< (I =2))|he(z +1e4(z)) —he(2)]
+ (1 =2))I[1 = (Vhe(y)), ey (P (z+1e4(2)) — ¢ (2))w;(2)]
+ (1 =211 = (Vhe(y;), e(yiN]p;(2)(@;(z +1eq(y;)) — @;(2))]
+ (1 =2))[[1 = (Vhe(y)), e(yiNgj(2)(w;(z+1e4(2)) —wj(z+1eq(yj)))| +o(lt])
< (1 =281l +4(0 =2))(Bepjr)(pjr)) 111 +3-27°(1 = 2) It
+3(1 =21+ 270 x e + o1t
<(1=20)(B+4Be+4- 27 > +401+27" ) x|
< (1=2))(1+10x»)Blt| +o(lt]) < B,
provided [¢] is chosen sufficiently small (depending on z) and where the second to last inequality holds

thanks to the choice of x, ¢ and for £ large enough that 2=¢ < 8. The above bound implies that, in
particular,

(Vgi(2),e4(2))| < B for £"-almost every x € R". (12)

This concludes the proof that, for £ sufficiently large, we have g, € Xg.
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The next step in the proof is to show that the functions g, satisfy the inequality U(;t L8t = au(K)/(8n)
for ¢ sufficiently large, which contradicts the continuity of U(f , at g (recall that we supposed UOJ’r 8>
au(K)/(16n)). In order to see this, we first estimate from below the partial derivative of g, along e on
the points of Aj for any j. So, let us fix for any j € N a point z € Aj. Then, let 0 < 49 < §; be small
enough that ¢;(z +1e(z)) = 1 for any 0 < A < A, and note that
(8e(z+ Ae(2)) — ge(2), e(2))
> (1 =2))[(he(z+2e(2)) = he(2)) +[1 = (Vhe(yj), e(yi)) (@) (z + 1e(z) — w;(2)]
> (1= 2)0[= XA+ M{Vhe(2), e@)) + [1 = (Vhe(y)), e(y))]A]
= M1 =2))(1—4x*) = (1= 6.

This implies in particular that, for any unit vector v € C(e(z), (n — k)~ ') and for any A > 0, we have

8e(z+Iv) —ge(2) = ge(z+Av) — ge(z+A(e(z), v)e(2)) + ge(z + Ale(2), v)e(z)) — ge(2)

>a(n—k) {1 —6x)A—Bvn—1r>

A
T T

where the last inequality follows from the choice of 8. However, thanks to the choice of K, see (7), we
infer that

foranyzeUAj.
J

Ty, 8e2) = ——
o ~4n—k)

This allows us to infer that

Uso8t = fAToTagde f y Ty gedu > / Ty gedpu+au(K \ A)

:f o(,gedu+2f Ty, gedu+au(K \ A)
MU, 4;

jeN
Z—M(A\U )Llp(ge)+ I (UAj>+O‘M(K\A)
jeN eN
Z—ZM(A\U ) ((K\A)UU )
JjeN jeN
o
> —4nu(K )+4(n_k)(1—2n)u(K) > QM(K)

for ¢ sufficiently large.
Since the functional U(;f . 1s of Baire class 1, thanks to [Oxtoby 1971, Chapter 7] we know that the

set of the continuity points of U(f ., 1s residual. However, since, thanks to the above argument, £ (o)
contains the continuity points of U, J,’U, we conclude that £ (o) is residual in Xg. U
Proof of Proposition 3.1. Let B := (16n%) o and let ¢(a) == « /(16n). Note that since the count-
able intersection of residual sets is residual, we can find a Lipschitz function f in Xg such that
fe ﬂae@m(o,l)(£+ ()N L_(0)). In particular, for any o > 0, we have

Uy f = —c@u(K) < c@u(K) < Uf, f.



CHARACTERIZATION OF RECTIFIABILITY VIA LUSIN-TYPE APPROXIMATION 2119
Letting AT, f(z) := Tofaf(z) — Tofaf(z) and C, :={z€ K : AT,(z) > c¢(«)}, we have

e (K) < fK AT, () dp e K (@) < u(K \ Co)e(@) +2Lip(Hn(Co).

Thanks to the above computation we infer in particular that ©(C,) > c(@)u(K) /(2 Lip(f)) for any o > 0.
Thus, defining E := 1)y U5 ; C1/1, Fatou’s lemma implies that

clo)u(K) . f
———  <limsu C < | limsuple,, du = u(E),
2Lip(f) = s () = [ IS Ay, it =R(E)

where 1c, /p denotes the indicator function of the set Cy/,. Therefore, E is a Borel set of positive
u-measure such that, for p-almost every z € E, there exists a sequence of natural numbers (depending
on z) such that p — oo and AT, > c(«). In particular, for p-almost every z € E, we have

(o) < ligr_l)iogf(Tofl/pf(Z) - T()T]/pf(z)) = pli_)néo(TO-f_l/pf(Z) - T()Tl/pf(z))’ (14)

where the last identity comes from the fact that p +— T0+1 /p f(z) is decreasing and p — T, /p f(2)1is
increasing for any z. However, thanks to the definitions of TOJF1 pfand Ty f, it is immediate to see
that, for w-almost every z € E, we can find a sequence

yi = i(2) € supp() N B(z,i ")\ X(0, V (i, x), V1 —a?)

such that

Yi—2 : fO-f@ . . fO)—f@) _ a)
— v and limsup ——————— —liminf > .

lyi — zl i—>00 lyi — z i—00 lyi — z 2

4. Proof of Theorem 1.1

Without loss of generality we can restrict our attention to finite measures. Assume that p is a finite sum
of rectifiable measures. For every ¢ > 0, there exist finitely many disjoint, compact submanifolds §;
for j=1,..., N of class C! (of any dimension between 0 and #) such that, defining K := U?’:] S, we
have u(R"\ K) < %8. Consider now any Lipschitz function f : R* — R. By [Alberti and Marchese
2016, Theorem 1.1(i)] and Lusin’s theorem, we can find a closed subset C C K such that u(K \ C) < %8
and, for every x € C, the differential dy, x)f(x), see [Alberti and Marchese 2016, §2.1], exists and is
continuous. Let d : C — R" be obtained by extending dy ,,.) f to be zero in the directions orthogonal
to V(u, -). By [Alberti and Marchese 2016, Proposition 2.9(iii)] and since the §;’s have positive mutual
distances, we can apply Whitney’s extension theorem, see [Evans and Gariepy 1992, Theorem 6.10],
deducing that there exists a function g : R” — R of class C! such that g = f and dg =d on C. Hence
Lipschitz functions admit a Lusin-type approximation with respect to x with functions of class C'.
Assume now that w is not a finite sum of rectifiable measures, and write y = ZZ:O uL Ey, where

Ep:={x eR":dim(V (i, x)) = k}.

Then there exists k € {0, ...,n — 1} such that u . E} is not a k-rectifiable measure: the case k = n
can be excluded by combining [Alberti and Marchese 2016, Theorem 1.1(i)] and [De Philippis and
Rindler 2016, Theorem 1.14] so as to ensure that a measure on R"” whose decomposability bundle has
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dimension r is absolutely continuous with respect to the Lebesgue measure .#". Let v be the supremum
of all k-rectifiable measures o < L Ey, and let E be any Borel set such that v = u L (R" \ E). We claim
that u L E satisfies the assumptions of Lemma 2.1.

To prove the claim, consider a k-dimensional surface S that is the graph of some function 4 : W — W+
of class C!, where W € Gr(k, n). Assume for contradiction that 1 := u L (E N S) is nonzero. If

G ={p =" L E)ies € 7,

is a family as in [Alberti and Marchese 2016, Proposition 2.8(ii)], then supp(u;) C S for almost every ¢ € 1.
Since both V (n, x) and Tan(S, x) are k-dimensional, this implies that V (5, x) = Tan(S, x) for n-almost
every x. Fix now a point y € supp(#), and observe that the family (A" pw(ED}rer belongs to F ().
(as (pw)z1: 1s absolutely continuous with respect to AV L pw(E,) for any ) and that V((pw)sn, -) 18
k-dimensional (pw)z:n-almost everywhere. By [De Philippis and Rindler 2016, Corollary 1.12], we infer
that (pw)zn is absolutely continuous with respect to .2 _ W. Finally, since py is locally bi-Lipschitz
from S to W, this implies that 1 is absolutely continuous with respect to % _ S, which contradicts the
maximality of o. Hence L E satisfies the assumptions of Lemma 2.1.

Let f : R* — R be the Lipschitz function obtained from Proposition 3.1. Clearly there exists no
function g : R” — R of class C! which coincides with f on a set of positive 1 L E measure, hence
Lipschitz functions do not admit a Lusin-type approximation with respect to 1« with functions of class C'.

Remarks. (1) It is evident from the last lines in the proof of Theorem 1.1 that the condition that g is of
class C! can be replaced by the condition that g is differentiable everywhere.

(2) In Theorem 1.1 the condition (1) can be strengthened to

p(fx €R": g(x) # f(x) or dvg(x) #dv f(0)}) <e, (15)

where dy denotes the “tangential differential” defined in [Alberti and Marchese 2016, Theorem 1.1].
This follows immediately from [De Philippis et al. 2022, Proposition 6.2]; see also [Julia et al. 2023,
Theorem B]. On the other hand one cannot replace (1) with the condition

n(fx €R* :dyg(x) #dy f(0)}) <e, (16)

since the latter does not force any geometric structure on p. More precisely, for every Radon measure u
and every Lipschitz function f, for every ¢ > 0, one can find a function g of class C' such that (16)
holds; see [Marchese and Schioppa 2019, Theorem 2.1].
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