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ON THE ENDPOINT REGULARITY IN ONSAGER’S CONJECTURE

PHILIP ISETT

Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible
Euler flows with Hölder regularity below 1

3 . This conjecture was recently solved by the author, yet the
endpoint case remains an interesting open question with further connections to turbulence theory. In
this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler
equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and
containing the entire range of exponents

[
0, 1

3

)
.

Our construction improves the author’s previous result towards the endpoint case. To obtain this
improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex
integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration.
This goal is achieved using localization techniques of Isett and Oh (Arch. Ration. Mech. Anal. 221:2
(2016), 725–804) to modify the convex integration scheme.

We also prove results on general solutions at the critical regularity that may not conserve energy. These
include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute
structure functions satisfying the Kolmogorov–Obukhov scaling for any p > 3 if their singular supports
have space-time Lebesgue measure zero.

1. Introduction

We consider the endpoint regularity in Onsager’s conjecture for the incompressible Euler equations
on R × T3, which we write in conservation form as

∂tv
ℓ
+ ∇j (v

jvℓ)+ ∇
ℓ p = 0,

∇jv
j
= 0,

(E)

using the summation convention for summing repeated indices. We are concerned mainly with weak
solutions to the incompressible Euler equations, which are defined most generally as a locally square-
integrable vector field v (called the velocity field) and scalar function p (called the pressure) that together
satisfy (E) in the sense of distributions.

Onsager’s conjecture states that for any Hölder exponent α < 1
3 there exist periodic weak solutions

to the three-dimensional incompressible Euler equations that belong to the Hölder class v ∈ L∞
t Cα

x and
fail to conserve the total kinetic energy 1

2

∫
T3 |v(t, x)|2 dx . The endpoint case of the conjecture is that

the same statement should hold for α =
1
3 . The above statements originate from [Onsager 1949] on the

statistical theory of hydrodynamic turbulence, where he postulated that dissipation of energy may occur
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in the absence of viscosity1 through the mechanism of an energy cascade modeled by the incompressible
Euler equations.

Onsager’s argument predicts that such energy dissipation should be possible for incompressible Euler
flows with regularity exactly 1

3 . Specifically, Onsager argued that the energy cascade occurring in a
turbulent flow will result in an energy spectrum with a statistical power law consistent with exactly the
(Besov or Hölder) regularity 1

3 in the inertial range of frequencies, which agrees with the scaling laws
of turbulence predicted by Kolmogorov’s theory [1941]. (See also [De Lellis and Székelyhidi 2013a;
Eyink and Sreenivasan 2006] for more detailed reviews of these statements and computations.) On the
other hand, Onsager asserted that conservation of energy must hold for every incompressible Euler flow
v ∈ L∞

t Cα
x (I × T3) with Hölder regularity α strictly above 1

3 . A strengthening of this latter assertion was
proved in [Constantin et al. 1994] after initial work in [Eyink 1994], with the sharpest known result being
that conservation of energy holds for weak solutions in the Besov class v ∈ L3

t B1/3
3,c0(N)

[Cheskidov et al.
2008]. These results leave open the possibility that energy dissipation as considered by Onsager may
be possible for solutions to incompressible Euler with exactly the critical regularity 1

3 (e.g., for weak
solutions in the class v ∈ CtC

1/3
x ), while the construction in [Eyink 1994] of initial data with critical

regularity and nonzero energy flux provides further evidence that dissipation of energy for weak solutions
at the critical regularity should indeed exist.

The existence of weak solutions to incompressible Euler equations in the class v ∈ L∞
t Cα

x (R × T3)

that fail to conserve energy has been established by the author for all α < 1
3 in [Isett 2018]. The solutions

are constructed using the method of convex integration, which was first introduced to the incompressible
Euler equations by De Lellis and Székelyhidi [2009; 2013b; 2014] and was further developed towards
improved partial results towards Onsager’s conjecture in [Buckmaster et al. 2015; 2016; Isett 2017a]. The
proof in [Isett 2018] relies also on the use of Mikado flows introduced in [Daneri and Székelyhidi 2017]
to implement convex integration in combination with a new “gluing approximation” technique.

In the present work, we improve upon the result in [Isett 2018] to construct solutions with borderline
regularity that approaches the endpoint case at small length scales while failing to conserve energy. Our
main result is the following.

Theorem 1.1. There exists a weak solution (v, p) to the incompressible Euler equations that has nonempty,
compact support in time on R×T3 and belongs to the class v ∈

⋂
α<1/3 Cα

t,x . Moreover, one may arrange
that v also satisfies an estimate of the form

|v(t, x +1x)− v(t, x)| ≤ C |1x |
1/3−B

√
(log log |1x |−1)/(log |1x |−1) (1)

for some constants C and B and for all (t, x) ∈ R × T3 and all |1x | ≤ 10−2.

The theorem is significant for the following reasons:

• Theorem 1.1 demonstrates how close the method of convex integration can come to achieving the
self-similar L∞

t C1/3
x regularity that corresponds to the Kolmogorov theory.

1A related and important open question is whether such energy dissipating solutions arise as zero viscosity limits of solutions
to the Navier–Stokes equations.
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• The theorem is the first result proved by convex integration that approaches the endpoint regularity and
avoids the strictly positive gap in regularity from the endpoint faced by previous results. In particular, we
have that v ∈

⋂
α<1/3 Cα

t,x rather than having regularity bounded strictly below the limiting exponent (i.e.,
v ∈ C1/3−ϵ

t,x for some ϵ > 0).

• The proof of Theorem 1.1 is based on a new algorithm that optimizes the regularity coming from
a convex integration construction, which may be useful for future numerical simulations of convex
integration solutions. This algorithm also apparently identifies an evident barrier towards achieving the
endpoint regularity exactly using the convex integration method.

• The proof of Theorem 1.1 clarifies which techniques in the literature yield the sharpest regularity.

The constant B, which determines2 the rate at which the regularity 1
3 is approached at small scales, can be

taken to be B = 2
√

2
3 +o(1), and this bound can be improved to B =

4
3 +o(1) by combining our methods

with the approach to the gluing approximation taken in [Buckmaster et al. 2019a] (see Sections 11–12
below). For comparison, note that inequality (1) with

O
(√

log log |1x |
−1

log |1x |−1

)
replaced by O

(
1

log |1x |−1

)
would correspond to exactly the endpoint regularity L∞

t C1/3
x .

The algorithm we develop to prove Theorem 1.1, presented in Sections 11–12, is the main novelty
of our paper relating to the construction of solutions. Later on we will discuss theorems that elaborate
a general theory of endpoint solutions. We expect that our algorithm can be adapted to give similar
borderline regularity results in any known convex integration construction of Hölder-continuous solutions
in which loss of powers in the frequency in the estimates can be avoided. In particular, the method is
likely to generalize to isometric embeddings as in [Conti et al. 2012] (but not [De Lellis et al. 2018]), to
nondegenerate active scalar equations [Isett and Vicol 2015], to the two-dimensional Monge–Ampère
equation [Lewicka and Pakzad 2017], and to the surface quasigeostrophic (SQG) equation [Buckmaster
et al. 2019b]. In these cases, there is no logarithmic loss in the main lemma and the log log |1x |

−1 term
appearing in (1) should be replaced by a large constant. (In the present case, the gluing technique gives
rise to a logarithmic loss.) It is hopeful that our algorithm for optimizing the regularity may also be useful
for potential applications to simulating convex integration solutions.

To achieve solutions with borderline regularity, it is necessary that the proof avoids losses of powers
of the frequency in the estimates of the iteration scheme. An important point in this regard is that the
approach to the gluing construction taken in [Isett 2018] obtains estimates that lose only a power of
the logarithm of the frequency. These estimates require extending the timescale of the gluing beyond
the standard timescale in the local existence theory for incompressible Euler, which would be inversely
proportional to some Cα norm of the initial velocity gradient. (We note in contrast that the approach taken
in [Buckmaster et al. 2019a] leads to loss of powers in the frequency at several points in the proof. These
occur both in the gluing and convex integration in parts of the proof where local well-posedness theory,

2Note that changing the value of B in (1) corresponds to an inequivalent norm.
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Schauder estimates and Calderón–Zygmund commutator estimates are employed.) Still there is one point
in the proof in [Isett 2018], which occurs during the convex integration step, where one encounters a
loss of powers in the frequency, and it is necessary to modify the convex integration part of the proof to
obtain our borderline result. This loss of powers occurs specifically when solving the divergence equation
∇j R jℓ

= U ℓ for a symmetric tensor R jℓ.
To avoid this power loss, we adapt the strategy of [Isett and Oh 2016b] for localizing the convex

integration method, which relies on two main modifications to the construction to gain the necessary
estimate. The first point is to modify the construction using waves that are localized to small length
scales and are each forced to obey the conservation of angular momentum in addition to the conservation
of linear momentum. The second point is to make use of a family of operators developed in [Isett and
Oh 2016b] that give compactly supported, symmetric solutions to the divergence equation when the
necessary conditions for solving the symmetric divergence equation are satisfied. In combination, these
modifications allow one to avoid the loss of powers in the frequency that had been present in [Isett 2017a]
while enabling the authors to extend previous work of [Isett 2017a] on

( 1
5 − ϵ

)
-Hölder Euler flows to the

nonperiodic setting of R × R3. Here we adapt these ideas to the present scheme to achieve an analogous
improvement in our bounds. We note that it is important for this gain that we rely on the approach to
the nonstationary phase estimate based on a parametrix and nonlinear phase functions introduced in
[Isett 2017a].

Obtaining the endpoint case of Onsager’s conjecture will require further new ideas, and it is of interest
to study the behavior of potential energy nonconserving solutions with endpoint regularity and possible
approaches to constructing them. A convex integration approach to the endpoint regularity would be
possible if something sufficiently close to an “ideal” main lemma can be proven where one has neither
logarithmic nor loss of powers in the frequency and the constant in the frequency growth is equal to
Ĉ = 1 (as in a remark of [Isett and Oh 2016b]) or approaches Ĉ = 1 asymptotically at a rate such that∑

k log Ĉ(k) converges.
Such a construction appears to be presently out of reach; however, it may be considered favorable

that convex integration constructions are able in general to yield solutions whose singularities occupy
regions of space with positive volume. As the following theorem demonstrates, singularities with positive
Lebesgue measure are necessary for any energy nonconserving solution with critical regularity to exist
provided the integrability exponent for this regularity is greater than 3.

Theorem 1.2 (intermittency theorem). A weak solution (v, p) to incompressible Euler on I ×Td or I ×Rd

that dissipates or otherwise fails to conserve energy cannot belong to an endpoint class v ∈ Lr
t B1/3

r,∞ ∩ L2
t,x

with an integrability exponent r > 3 if its singular support has space-time Lebesgue measure zero.

Here singular support is in the sense of distributions — the closed set whose complement is the largest
set on which v is locally C∞. In fact, the precise theorem we obtain is a sharper result where singular
support is improved to singular support relative to the conservative Onsager critical space L3

t Ḃ1/3
3,c(N) —

that is, the closed set whose complement is the largest open set on which v is locally represented by an
L3

t Ḃ1/3
3,c(N) function (see Section 3).
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Theorem 1.2 has a special significance in terms of intermittent scaling exponents in turbulence. The
K41 theory [Kolmogorov 1941] predicts a scaling law of the form ⟨|v(x +1x)− v(x)|p

⟩
1/p

∼ |1x |
1/3

for absolute structure functions (the Kolmogorov–Obukhov law), which mathematically corresponds
to B1/3

p,∞ control of the velocity field. The idea that “intermittency” (deviations from self-similarity and
homogeneity) in the energy dissipation and singular structure of turbulence can lead to the failure of
this scaling law for p ̸= 3 was first attributed to Landau by Kolmogorov in the 1940’s (see [Frisch 1991,
Section 5]). Moreover, experimental studies have found evidence of such intermittency in the energy
dissipation of turbulent flows accompanied by deviations from the Kolmogorov–Obukhov law arising from
a multifractal structure [Meneveau and Sreenivasan 1987; 1991; Meneveau et al. 1990]. Theorem 1.2 and
its proof provide a rigorous sense in which lower dimensional singularities or energy dissipation in fact
logically imply deviations from the Kolmogorov–Obukhov law, thus reinforcing the experimental findings.

Theorem 1.2 is a consequence of two facts that are also new remarks in the literature, which are a local
version of the sharp energy conservation criterion in [Cheskidov et al. 2008] and a result on integrability
of the energy dissipation measure (see Theorems 3.1 and 3.2 below). One would most likely expect that
energy nonconserving solutions exist for the entire spectrum of endpoint spaces above, including the
endpoint case of L∞

t C1/3
x . For a more precise formulation of Theorem 1.2, we refer to Section 3. We

also note the works [Buckmaster et al. 2021; Cheskidov and Shvydkoy 2014; 2023; De Rosa and Haffter
2023; Luo and Shvydkoy 2015; Novack and Vicol 2023; Shvydkoy 2018] for further mathematical results
related to intermittency.

In addition to having the endpoint regularity, Onsager’s paper [1949] describes Euler flows that
furthermore have decreasing kinetic energy. Related to this point, we state the following Theorem.

Theorem 1.3. If (v, p) are a weak solution to (E) on I × Td , d ≥ 2, with v ∈ CtC
1/3
x (or more generally

with v ∈ Ct B1/3
3,∞) then the total kinetic energy e(t)=

∫
Td

1
2 |v(t, x)|2 dx is C1 in time.

Theorem 1.3 implies that the task of finding an energy dissipating solution in the class v ∈ CtC
1/3
x

can be reduced to finding any example of a solution in this class that fails to satisfy energy conservation.
Such a solution would have total kinetic energy that is either strictly increasing or strictly decreasing
on some open interval of time. After possibly reversing time one obtains a solution with a decreasing
energy profile on an open interval. For α < 1

3 , the existence of energy-dissipating solutions in CtCα
x was

proven in [Buckmaster et al. 2019a] by introducing an additional idea in the convex integration part of the
proof to prescribe the energy profile of the solutions. We expect that this technique3 should be possible to
extend to the class described by (1) for example by modifying the statement of our main lemma in a way
similar to the analysis in [Isett and Oh 2016b; 2017].

The proof of Theorem 1.3, presented in Section 2 below, suggests that the failure of energy conservation
for solutions in the critical space v ∈ CtC

1/3
x should be very common. The proof reduces the existence of

an energy-dissipating solution to solving the Euler equations with appropriate initial data in the desired
critical space for a short time. However, one must be cautious that the Euler equations are ill-posed

3A related technical point is that the approach to prescribing the energy profile in [Buckmaster et al. 2019a] involves requiring
the stress tensor R jℓ to be trace-free in addition to being symmetric. It is also possible to prescribe the energy profile without
imposing the trace-free requirement on R jℓ; see [Isett and Oh 2016b; 2017].
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in CtCα
x or in Ct Bα3,∞ for all α < 1, as has been shown in [Bardos and Titi 2010; Cheskidov and Shvydkoy

2010], which presents a significant difficulty for constructing solutions in these spaces. Complementing
these negative results, our proof of Theorem 1.3 yields as a byproduct a necessary condition for a given
divergence-free vector field to be the initial datum of a solution in the class v ∈ Ct B1/3

3,∞.
With regard to energy dissipation and solving the Cauchy problem, a natural question is whether there

is a simple, Onsager-critical function space in which local dissipation of energy is guaranteed along with
total kinetic energy dissipation if one can solve the Cauchy problem in that space with the appropriate
initial data. A simple criterion of this type is provided in Theorem 3.3 of Section 3A. The regularity
condition imposed to maintain local dissipation in this criterion is notably stronger than that assumed
to control total kinetic energy in Theorem 1.3, as our Theorem 3.3 involves solutions in the function
space CtC

1/3
x rather than assuming only Besov regularity in space.

We now summarize the organization of the paper and the proof of our borderline result, Theorem 1.1.
The general theory of endpoint solutions, including Theorems 1.2–3.3, is contained in Sections 2–3A. We
then summarize notation for the main body of the paper in Section 4. Sections 5–10 contain the main
lemma of the paper and our modification of the convex integration construction of [Isett 2018]. These
sections assume familiarity with the convex integration construction in that paper. Section 11 explains the
proof of Theorem 1.1 using the main lemma, and presents our new method for optimizing the regularity in
a general convex integration scheme. Section 12 outlines how to combine our methods with the approach
to the gluing approximation taken in [Buckmaster et al. 2019a] to improve the rate of convergence to the
critical exponent in the estimate (1).

2. Regularity of kinetic energy at the critical exponent

We start with a proof of Theorem 1.3 on the C1 regularity of the kinetic energy profile for solutions of
class Ct B1/3

3,∞. In the next section we prove Theorem 1.2. We will use the summation convention for
summing repeated upper and lower spatial indices, so that vℓvℓ = |v|2 and ∇ℓv

ℓ
= div v.

The proof of Theorem 1.3 is an extension of the argument of [Constantin et al. 1994] for proving energy
conservation for weak solutions in the class v ∈ L3

t B1/3+ϵ

3,∞ and of a remark in [Isett 2023] on the endpoint
case. Namely, suppose that (v, p) is a weak solution to (E) with velocity of class v ∈ Ct B1/3

3,∞(I × Td),
d ≥ 2, with I an open interval. Let ηϵ be a standard mollifier in Rd at length scale ϵ, and let vℓϵ = ηϵ ∗ vℓ

denote the mollification of v in the spatial variables. Then, as in [Constantin et al. 1994], one has (using
v ∈ Ct L2

x ) that
d
dt

∫
Td

|v|2(t, x)
2

dx = lim
ϵ→0

d
dt

∫
Td

|vϵ |
2(t, x)
2

dx = − lim
ϵ→0

∫
Td

∇j (vϵ)ℓR jℓ
ϵ (t, x) dx, (2)

R jℓ
ϵ (t, x) := v j

ϵ (t, x)vℓϵ(t, x)− ηϵ ∗ (v jvℓ)(t, x),

where the convergence in (2) holds in D′(I ). (See [Isett and Oh 2016a, Proof of Theorem 2.2] for a
detailed presentation of this point.) The rightmost term in (2) gives rise to the family of trilinear forms
Tϵ[v, v, v](t) :=

∫
Td ∇j (vϵ)ℓR jℓ

ϵ (t, x) dx that satisfy, uniformly in ϵ, the bound

|Tϵ[u, v, w]|(t)≲ ∥u(t, · )∥B1/3
3,∞

∥v(t, · )∥B1/3
3,∞

∥w(t, · )∥B1/3
3,∞
, (3)



ON THE ENDPOINT REGULARITY IN ONSAGER’S CONJECTURE 2129

by the commutator estimate of [Constantin et al. 1994]. Using (3), we have that the family of functions
Tϵ[v, v, v](t) are both uniformly bounded and equicontinuous on every compact subinterval of I , as they
satisfy

|Tϵ[v, v, v](t)− Tϵ[v, v, v](t0)| ≲ ∥v(t, · )− v(t0, · )∥B1/3
3,∞

∥v∥2
Ct B1/3

3,∞
,

and their moduli of continuity can therefore be bounded uniformly in ϵ in terms of the modulus of
continuity of v(t, · ) into B1/3

3,∞(T
d) and local bounds for ∥v(t, · )∥B1/3

3,∞
. Consequently, the convergence

in (2) is actually uniform-in-t on every open interval J with compact closure in I , as the weak limit
in D′(J ), which is unique, must also be achieved uniformly along subsequences by Arzelà–Ascoli. (If the
convergence were not uniform, there would exist a subsequence converging uniformly to a continuous
function different from (2), which contradicts the weak convergence.) The energy flux in (2), a priori
in D′(I ), is thus continuous in t on I , and the kinetic energy profile is therefore C1 in t on I .

Note that one would typically expect the energy flux given by the right-hand side of (2) to be nonzero
at any given time t0 for a vector field with v(t0, · ) ∈ C1/3

x , as examples of divergence-free initial data
v0(x) ∈ C1/3 for which this limit can be positive are given in [Cheskidov et al. 2008; Eyink 1994].

We note also that our argument provides a necessary condition for a vector field v0(x) ∈ B1/3
3,∞

to be realized as the initial datum of an Euler flow in the class v ∈ Ct B1/3
3,∞, which is that the limit

limϵ→0 Tϵ[v0, v0, v0] on the right-hand side of (2) must exist and must also be independent of the chosen
mollifying kernel ηϵ , so that the instantaneous rate of energy dissipation is well defined at time 0.

We now turn to the proof of Theorem 1.2.

3. Singularities of dissipative solutions with critical regularity

We now establish Theorem 1.2 on the necessity of positive measure singularities of Onsager critical
solutions with integrability exponent p>3 that do not conserve energy, which is an immediate consequence
of Theorems 3.1 and 3.2 below. Both theorems are stated in terms of Besov spaces whose basic properties
we recall within the proofs. We state the first Theorem 3.1 in a sharp, critical space to make clear the
severity of the singularity that is implicitly discussed in Theorem 1.2.

Theorem 3.1. Let (v, p) be a weak solution to the incompressible Euler equations of class v ∈ L3
t,x on

I × Td or I × Rd , with I an open interval. Then the distribution

−D[v, p] := ∂t
( 1

2 |v|2
)
+ ∇j

((1
2 |v|2 + p

)
v j)

has support contained in the singular support of v relative to the critical space L3
t B1/3

3,c0(N)
.

Here we define the singular support of v relative to the space L3
t B1/3

3,c0(N)
to be the complement of those

points q = (t, x) for which there exists an open neighborhood Oq of q on which v is represented by a
distribution of class L3

t B1/3
3,c0(N)

. We recall the standard characterization of the B1/3
r,∞ norm of a vector field

on an open set � in Rd , which is given by ∥v∥Lr (�) + suph∈Rd
\{0} |h|

−1/3
∥v( · − h)− v( · )∥Lr

x (�∩(�+h)),
and we also recall that C∞(�) is dense in B1/3

r,c0(N)
(�) with respect to the B1/3

r,∞ norm. It is clear that the
singular support of v relative to L3

t B1/3
3,c0(N)

is a subset of the usual singular support of v as a distribution.
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Related restrictions on the support of D[v, p] under different hypotheses and with different proofs are
given in [Cheskidov and Shvydkoy 2014, Theorem 4.3], [Drivas and Nguyen 2018, Theorem 1] and
[Bardos et al. 2019, Theorem 3.1].

Our second theorem asserts that weak solutions of class v ∈ Lr
t B1/3

r,∞ for integrability exponents r > 3
possess integrability for their corresponding energy dissipation measure D[v, p]. The assumptions are
given in a way that is sufficient for our application to proving Theorem 1.2.

Theorem 3.2. Let (v, p) be a weak solution to incompressible Euler of class v ∈ Lr
t B1/3

r,∞ for some r ≥ 3
on I × Td or I × Rd , with I an open interval. Then the distribution D[v, p] above is a (signed) measure.
If furthermore r > 3, this measure is absolutely continuous with respect to the Lebesgue measure, and its
Radon–Nikodym derivative is of class D[v, p] ∈ Lr/3

t,x .

It will be clear that the proof of Theorem 3.2 does not give absolute continuity in the case r = 3.
For example, the proof would apply to many other equations such as Burgers’, where shock solutions
give examples of L∞

t B1/3
3,∞ solutions for which the corresponding energy dissipation measure is not

absolutely continuous. There also exist time-independent divergence-free vector fields demonstrating that
our approach would not yield absolute continuity in the r = 3 case.4

Proof of Theorem 1.2. Let us observe now that Theorem 1.2 follows from Theorems 3.1 and 3.2, focusing
on the case of I × Rd . Namely, if a weak solution (v, p) is of class v ∈ L3

t,x ∩ L2
t,x and does not

conserve kinetic energy (meaning that the distribution e(t) :=
1
2

∫
Rd |v|2(t, x) dx is not a constant), then

the distribution D[v, p] is well defined and cannot be the 0 distribution. This statement can be checked
by verifying that, for any test function ψ ∈ C∞

c (I ), by dominated convergence one has

⟨ψ(t), e′(t)⟩D′(I ) = lim
R→∞

⟨ψ(t)χR(x),−D[v, p]⟩D′(I×Rd )

:= −

∫
I
ψ ′(t)e(t) dt

= − lim
R→∞

∫
I×Rd

[
ψ ′(t)χR(x)

|v|2

2
+ψ(t)∇jχR(x)

(
|v|2

2
+ p

)
v j

]
dt dx,

where χR(x)= χ(x/R) is a rescaled bump function that is equal to 1 in a growing neighborhood of the
origin that encompasses the whole space as R → ∞. We use here that

(1
2 |v|2 + p

)
v j and 1

2 |v|2 are both
in L1

t,x(I ×Rd) as v ∈ L2
t,x ∩ L3

t,x and p =1−1
∇j∇ℓ(v

jvℓ) ∈ L3/2
t,x by Calderón–Zygmund theory,5 which

implies that 1−1
∇j∇ℓ acts as a bounded operator on L3/2

t,x mapping two-tensors to scalars. In fact the
weaker condition (1 + |x |)−1

( 1
2 |v|2 + p

)
v j

∈ L1
t,x suffices for this proof.

For a solution of class v ∈ Lr
t B1/3

r,∞ with r > 3, we have by Theorem 3.2 that D[v, p] is of class Lr/3
t,x .

For D[v, p] to be nonzero, the support of D[v, p] as a distribution must then occupy a closed set with
positive Lebesgue measure. From Theorem 3.1, the nontrivial support of D[v, p] gives a lower bound for
the singular support of v as a distribution, which implies Theorem 1.2. □

4R. Shvydkoy, personal communication.
5The case of Td appears to be less standard than the Rd case but can be deduced from the Rd case using the local Calderón–

Zygmund theory in Rd as in [Wang 2003]. See, e.g., [Isett 2017b, Proof of Theorem 6.2].
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We now prove Theorem 3.1 along with Theorem 3.2. The proof is a local version of the energy
conservation criteria of [Cheskidov et al. 2008; Constantin et al. 1994]. The observation that the proof of
energy conservation in [Constantin et al. 1994] can be localized is originally due to [Duchon and Robert
2000] and has recently been of use to several authors in the context of bounded domains [Bardos and Titi
2018; Bardos et al. 2019; Drivas and Nguyen 2018]. Some issues that are not central to our goals here
have been avoided as our hypotheses suffice to guarantee p =1−1

∇j∇ℓ(v
jvℓ) ∈ L3/2

t,x . The norms and
function space in what follows refer to the entire space I × Td or I × Rd unless otherwise stated. We will
focus on the Rd cases in what follows as the results for Td follow from the same proofs.

Proof of Theorems 3.2 and 3.1. Let (v, p) be a weak solution of class v ∈ Lr
t B1/3

r,∞ ∩ L2
t,x for some r ≥ 3.

Then

v ∈ Lr
t,x ∩ L2

t,x and p =1−1
∇j∇ℓ(v

jvℓ) ∈ Lr/2
t,x

by Calderón–Zygmund theory as before. The key formula we use is the analogue of the formula from
[Duchon and Robert 2000] involving the commutator of [Constantin et al. 1994]:

−D[v, p] = ∂t
( 1

2 |v|2
)
+ ∇j

[(1
2 |v|2 + p

)
v j]

= lim
ϵ→0

∇jvϵℓR jℓ
ϵ , (4)

R jℓ
ϵ = ηϵ ∗ (v jvℓ)− v j

ϵ v
ℓ
ϵ ,

where vℓϵ = ηϵ ∗ vℓ is a standard mollification of vℓ in the spatial variables at length scale ϵ, and the
limit (4) holds for any fixed test function on I × Rd or I × Td .

We first prove Theorems 3.2 and 3.1 assuming (4). By Hölder’s inequality with 3/r = 1/r + 2/r and
the commutator estimates of [Constantin et al. 1994], one has the following bound uniformly in ϵ:

∥∇jvϵℓR jℓ
ϵ ∥Lr/3

t,x
≤ ∥∇jvϵℓ∥Lr

t,x ∥R jℓ
ϵ ∥Lr/2

t,x
≲ (ϵ−1+1/3

∥v∥Lr
t B1/3

r,∞
)∥R jℓ

ϵ ∥Lr/2
t,x

≲ (ϵ−1+1/3
∥v∥Lr

t B1/3
r,∞
)ϵ2/3

∥v∥2
Lr

t B1/3
r,∞

≲ ∥v∥3
Lr

t B1/3
r,∞
. (5)

The sequence ∇jvϵℓR jℓ
ϵ is therefore uniformly bounded in Lr/3

t,x independent of ϵ > 0.
As a consequence, using r ≥ 3, the weak limit D[v, p] = limϵ→0 ∇jvϵℓR jℓ

ϵ is a Radon measure. That
is, by (5) and Hölder’s inequality (with the characteristic function of K as one of the factors), for any
compact set K and any test function φ(t, x) supported in K , one has

|⟨φ, D[v, p]⟩D′(I×Rd )| ≤ CK ∥φ∥C0∥v∥3
Lr

t B1/3
r,∞
.

Moreover, for r > 3, the measure D[v, p] is absolutely continuous with density function in Lr/3
t,x by

the duality characterization of the latter space, thus confirming Theorem 3.2. Namely, if s ∈ (1,∞) is the
dual exponent with 1/s + 3/r = 1, we have

|⟨φ, D[v, p]⟩D′(I×Rd )| ≤ C∥φ∥Ls
t,x

∥v∥3
Lr

t B1/3
r,∞
.

From the density of test functions in Ls
t,x , we have that D[v, p] is in the dual of Ls

t,x , which is the
space Lr/3

t,x .
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The proof of Theorem 3.1 is more subtle as the statement concerns the function space L3
t B1/3

3,c0(N)
and is

more local in nature. In particular, our approach is local as compared to the Fourier-analytic approach of
[Cheskidov et al. 2008]; the details in the presentation below are similar to those of [Isett and Oh 2016a].

Let v ∈ L3
t,x be a weak solution, so that p ∈ L3/2

t,x , and let q be a point in the complement of the
singular support of v relative to L3

t B1/3
3,c0(N)

. That is, there is an open neighborhood of q that can be
taken to have the form J × Bq with J a finite open subinterval of I and Bq a spatial ball such that
v ∈ L3

t B1/3
3,c0(N)

(J × Bq). Let φ ∈ C∞
c (J × Bq) be a fixed test function and B ′

q ⊆ Bq be a smaller spatial
ball such that suppφ ⊆ J × B ′

q . From (4), we have

⟨φ,−D[v, p]⟩ = lim
ϵ→0

∫
J

∫
B ′

q

φ(t, x)∇jvϵℓR jℓ
ϵ dx dt,

where by assumption v ∈ L3
t B1/3

3,c0(N)
(J × Bq). Then as in the proof of (5) one has that

|⟨φ,−D[v, p]⟩| ≤ lim sup
ϵ→0

∥φ∥C0

∫
J
∥∇vϵ(t, · )∥L3(B ′

q )
∥R jℓ

ϵ (t, · )∥L3/2(B ′
q )

dt, (6)

and that the dt integrand is bounded uniformly in ϵ by C∥v(t, · )∥3
B1/3

3,∞(Bq )
, which is integrable over J .

Moreover, for almost every t ∈ J , one has that v(t, · ) ∈ B1/3
3,c0(N)

belongs to the closure of C∞(Bq) in
the B1/3

3,∞ norm. For each such t , the improved bound

lim sup
ϵ→0

ϵ1−1/3
∥∇vϵ(t, · )∥L3(B ′

q )
= 0

holds, as can be seen by a smooth approximation argument. Combined with ∥R jℓ
ϵ (t, · )∥L3/2(B ′

q )
≤ Ctϵ

2/3

on the same set of t , we have the convergence to zero for almost every t in (6), which implies the limit
in (6) is zero by the Lebesgue dominated convergence theorem.

The last remaining point is to justify the limit in (4) for any fixed test function, which we prove using
the definition of a weak solution following details similar to [Isett and Oh 2016a]. Let (v, p) be a weak
solution of class v ∈ L3

t,x , so that p ∈ L3/2
t,x on I × Rd as before. Let φ ∈ C∞

c be a test function on I × Rd

and Vφ be an open set with compact closure in I × Rd that contains suppφ. Let ηϵ(h) = ϵ−dη(h/ϵ)
and ζδ(τ ) = δ−1ζ(τ/δ) be even mollifying kernels in the space and time variables, respectively, with
respective supports supp ηϵ ⊆ Bϵ(0) in Rd and supp ζδ ⊆ Bδ(0) in R. Define ηϵδ(τ, h)= ζδ(τ )ηϵ(h) and
the vector field ωℓϵδ = ηϵδ ∗ (φηϵδ ∗v

ℓ), where the convolution is in both space and time. We will write ∗x

or ∗t to mean convolution in only the space or time variables. Taking ωℓϵδ as our test function in the weak
formulation of Euler (i.e., multiplying the equation and integrating by parts) gives

−

∫
I×Rd

[vℓ∂tηϵδ ∗ (φηϵδ ∗ vℓ)+ v
jvℓ∇jηϵδ ∗ (φηϵδ ∗ vℓ)+ p∇

ℓηϵδ ∗ (φηϵδ ∗ vℓ)] dx dt = 0.

Using the self-adjointness of ηϵδ∗ and the divergence-free property of ηϵδ ∗ vℓ, one obtains

−

∫
I×Rd

[
∂tφ(t, x)

|ηϵδ ∗ vℓ|2

2
+ (v jvℓ)ηϵδ ∗ ∇j [φηϵδ ∗ vℓ] + pηϵδ ∗ (∇ℓφηϵδ ∗ vℓ)

]
dx dt = 0.
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As v ∈ L3
t,x ∩ L2

t,x(Vφ) and p ∈ L3/2
t,x (Vφ), we may safely let δ → 0 at this point with ϵ > 0 fixed using

uniform-in-δ boundedness of the convolution operators in the formula (including the operators ∇jηϵδ∗ that
appear from the product rule) and the strong convergence of ηϵδ∗vℓ→ vℓϵ :=ηϵ∗x v

ℓ in L2
t,x ∩L3

t,x(suppφ)
for each fixed ϵ > 0. Taking the δ→ 0 limit, we may replace each appearance of ηϵδ∗ = ηϵ ∗x [ζδ ∗t · ] in
the formula with ηϵ∗x , which we now write more simply as ηϵ∗ := ηϵ∗x .

Using the self-adjointness of ηϵ∗ and the divergence-free property of vℓϵ , which are justified by the
same limiting argument, one then obtains

−

∫
I×Rd

[
∂tφ(t, x)

|ηϵ∗v
ℓ
|
2

2
+∇jφ(t, x)

(
|vϵ |

2

2
v j
ϵ +ηϵ∗ pv j

ϵ

)]
dx dt =

∫
I×Rd

φ(t, x)∇jvϵℓR jℓ
ϵ dx dt+Zϵ,

Zϵ :=

∫
I×Rd

∇jφR jℓ
ϵ vϵℓ dx dt.

Note that the left-hand side of the first equation tends to exactly ⟨φ,−D[v, p]⟩D′(I×Rd ) as ϵ → 0, using
that vℓϵ = ηϵ ∗ vℓ → vℓ in L3

t,x ∩ L2
t,x(Vφ) and that p ∈ L3/2

t,x again. Thus formula (4) will be proven once
it is shown that limϵ→0 Zϵ = 0.

To this end, write R jℓ
ϵ in terms of bilinear operators R jℓ

ϵ = Bϵ[v j , vℓ], where the operators Bϵ are
defined for smooth u j and wℓ by Bϵ[u j , wℓ] := ηϵ ∗ (u jwℓ)− ηϵ ∗ u jηϵ ∗wℓ. One has then that

∥Bϵ[u, w]∥L3/2
t,x (Vφ)

→ 0 as ϵ → 0

whenever u j and wℓ are smooth vector fields on I × Rd , and that

∥Bϵ[u, w]∥L3/2
t,x (Vφ)

≤ C∥u∥L3
t,x

∥w∥L3
t,x (I×Rd )

uniformly in ϵ > 0. Combining these properties and using the density of smooth vector fields in
L3

t,x(I × Rd), we obtain that ∥R jℓ
ϵ ∥L3/2

t,x (Vφ)
→ 0 as ϵ → 0, and Zϵ → 0 as well by applying Hölder’s

inequality with vϵ bounded in L3
t,x(Vφ). □

3A. Stability of local energy dissipation in a critical class. In this section we prove Theorem 3.3, which
provides a simple function space criterion from which one can deduce local dissipation on an open interval
of time from local dissipation at time 0.

Theorem 3.3. Let v̄ be a divergence-free vector field of class v̄ ∈ C1/3(Td) for which the local energy
dissipation is everywhere bounded by a strictly negative constant. Then any weak solution (v, p) of class
v ∈ CtC1/3(I × Td) that obtains the initial data v̄ must satisfy the local energy inequality D[v, p]< 0 on
some open time interval containing t = 0.

The precise condition on the initial data v̄ will be specified in line (8) of the proof below.

Proof. Let v̄ be as above and let (v, p) be a weak solution to the Euler equations of class v∈CtC1/3(I ×Td)

on an open interval of time containing t = 0 with initial data v̄(x). Let Ĩ be an open subinterval of I
containing t = 0, and let φ ∈ C∞

c ( Ĩ × Td) be a nonnegative test function supported in t ∈ Ĩ . As in the
previous sections, we have

⟨φ, D[v, p]⟩ = lim
δ→0

∫
Ĩ

∫
Td
φ(t, x)Tδ[v](t, x) dx dt, Tδ[v](t, x)= ∇jvδℓR jℓ

δ (t, x),
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where Tδ is the trilinear form from Section 2 and D[v, p] is as in the previous sections. We write

⟨φ, D[v, p]⟩ = lim
δ→0

∫
Ĩ

∫
Td
φ(t, x)(Tδ[v](t, x)− Tδ[v](0, x)) dx dt

+ lim
δ→0

∫
Ĩ

∫
Td
φ(t, x)Tδ[v](0, x) dx dt. (7)

The precise assumption placed on the initial condition v̄ is that

lim
δ→0

Tδ[v](0, x)= lim
δ→0

∇j v̄δℓR jℓ
δ (0, x)≤ −ε < 0 (8)

in the sense of distributions on Td for some constant ε > 0. Integrating (8) against the nonnegative test
function

φ̃(x)=

∫
Ĩ
φ(t, x) dt ∈ C∞(Td),

we have that

second term of (7) ≤ −ε

∫
Td

[∫
Ĩ
φ(t, x) dt

]
dx .

For a sufficiently small time interval Ĩ , we can obtain the bound

sup
δ>0

∥Tδ[v](t, x)− Tδ[v](0, x)∥L∞( Ĩ×Td ) ≤
1
2ε

using that the Tδ are uniformly bounded trilinear forms mapping C1/3 to L∞, the assumption that
v ∈ CtC

1/3
x is continuous in time with values in C1/3, and the commutator estimate of [Constantin et al.

1994] to control the bilinear term. Combining these estimates with the sign condition on φ gives

⟨φ, D[v, p]⟩ ≤ ∥φ∥L1( Ĩ×Td )

ε

2
− ε

∫
Ĩ

∫
Td
φ(t, x) dx dt

≤ −
ε

2

∫
Ĩ

∫
Td
φ(t, x) dx dt

for all nonnegative φ ∈ C∞
c ( Ĩ × Td). This bound shows that D[v, p] ≤ −

1
2ε < 0 as a distribution when

restricted to Ĩ × Td , which concludes the proof of Theorem 3.3. □

With Theorems 1.2–3.3 now proven, we turn to the notation that will be used for the remainder of the
paper and the proof of Theorem 1.1.

4. Notation

We will follow the same notational conventions as introduced in [Isett 2018, Section 2]. In particular,
multi-indices will be represented in vector notation. For example, if a⃗ = (a1, a2, a3) is a multi-index
of order |a⃗| = 3, each ai ∈ {1, 2, 3}, then ∇a⃗ = ∇a1∇a2∇a3 denotes the corresponding third-order partial
derivative operator. We use suppt f to indicate the time support of a function f with domain in R × T3

(i.e., the closed set of times for which {t} × T3 intersects the usual support).
We recall the definitions of an Euler–Reynolds flow and frequency-energy levels.
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Definition 4.1. A vector field vℓ : R × T3
→ R3, function p : R × T3

→ R and symmetric tensor field
R jℓ

: R × T3
→ R3

⊗ R3 satisfy the Euler–Reynolds equations if the equations

∂tv
ℓ
+ ∇j (v

jvℓ)+ ∇
ℓ p = ∇j R jℓ,

∇jv
j
= 0

hold on R × T3. Any solution to the Euler–Reynolds equations (v, p, R) is called an Euler–Reynolds
flow. The symmetric tensor field R jℓ is called the stress tensor.

Definition 4.2. Let (v, p, R) be a solution of the Euler–Reynolds equation, 4≥ 3 and ev ≥ eR > 0 be
positive numbers. We say that (v, p, R) have frequency-energy levels bounded by (4, ev, eR) to order L
in C0 if v and R are of class CtC L

x and the following estimates hold:

∥∇a⃗v∥C0 ≤4|a⃗|e1/2
v for all 1 ≤ |a⃗| ≤ L ,

∥∇a⃗ R∥C0 ≤4|a⃗|eR for all 0 ≤ |a⃗| ≤ L .

Here ∇ refers only to derivatives in the spatial variables.

5. The main lemma

The first goal of the paper will be to improve on the main lemma in [Isett 2018], so that we remove the
need for a double exponential growth of frequencies. The main lemma of our paper states the following:

Lemma 5.1 (main lemma). Let L = 3. There exists constants Ĉ and CL such that the following holds.
Let (v, p, R) be any solution of the Euler–Reynolds equation with frequency-energy levels bounded by
(4, ev, eR) to order L in C0, and let J be an open subinterval of R such that

suppt v ∪ suppt R ⊆ J.

Define the parameter 4̂=4(ev/eR)
1/2. Let N be any positive number obeying the condition

N ≥ (ev/eR)
1/2. (9)

Then there exists a solution (v1, p1, R1) of Euler–Reynolds with frequency-energy levels bounded by

(4′, e′

v, e′

R)=

(
Ĉ N4, (log 4̂)eR, (log 4̂)5/2

e1/2
v e1/2

R

N

)
(10)

to order L in C0 such that

suppt v1 ∪ suppt R1 ⊆ N (J ;4−1e−1/2
v )

and such that the correction V = v1 − v obeys the estimate

∥V ∥C0 ≤ CL(log 4̂)1/2e1/2
R . (11)

The crucial difference between the main lemma above as compared to [Isett 2018, Lemma 2.1] is
that we do not require any lower bound of the form N ≥4η for the frequency growth parameter N in
inequality (9). This difference enables us to avoid double exponential growth of frequencies in constructing
solutions as in [Isett and Oh 2016b]. Likewise, the constants Ĉ and CL in the estimates do not depend on
such a parameter η.
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We establish Lemma 5.1 by modifying the proof of the convex integration lemma, [Isett 2018,
Lemma 3.3], as the proof of this lemma contains the only step in which the assumption N ≥4η is used.

6. The improved convex integration lemma

As in [Isett 2018], we will establish Lemma 5.1 by combining a gluing approximation lemma and a
convex integration lemma. In Lemma 6.1 below, we summarize the result of combining the regularization
lemma and the gluing approximation lemma from [Isett 2018, Section 3]. (Here we have renamed the
Euler–Reynolds flow that were (ṽ, p̃, R̃) to be (v, p, R).)

Lemma 6.1 (gluing approximation lemma). There are absolute constants C1 ≥ 2 and δ0 ∈
(
0, 1

25

)
such

that the following holds. Let (v0, p0, R0) be an Euler–Reynolds flow with frequency-energy levels bounded
by (4, ev, eR) to order 3 in C0 such that suppt v0 ∪ suppt R0 ⊆ J . Define the parameters

N̂ := (ev/eR)
1/2, 4̂ := N̂4= (ev/eR)

1/24.

Then, for any 0<δ≤ δ0, there exist a constant Cδ ≥ 1, a constant θ > 0, a sequence of times {t (I )}I∈Z ⊆ R

and an Euler–Reynolds flow (v, p, R), R =
∑

I∈Z RI , that satisfy the support restrictions

suppt v ∪ suppt R ⊆ N (J ; 3−14−1e−1/2
v ), (12)

2−1δ(log 4̂)−24−1e−1/2
v ≤ θ ≤ δ(log 4̂)−24−1e−1/2

v , (13)

suppt RI ⊆
[
t (I )− 1

2θ, t (I )+ 1
2θ

]
, (14)⋃

I

⋃
I ′ ̸=I

[t (I )− θ, t (I )+ θ ] ∩ [t (I ′)− θ, t (I ′)+ θ ] = ∅, (15)

and the estimates
∥v− v0∥C0 ≤ C1e1/2

R ,

∥∇a⃗v∥C0 ≤ C14
|a⃗|e1/2

v , |a⃗| = 1, 2, 3, (16)

sup
I

∥∇a⃗ RI ∥C0 ≤ Cδ N̂ (|a⃗|−2)+4|a⃗| log 4̂eR, |a⃗| = 0, 1, 2, 3, (17)

sup
I

∥∇a⃗(∂t + v · ∇)RI ∥C0 ≤ Cδ(log 4̂)34e1/2
v 4|a⃗|eR, |a⃗| = 0, 1, 2.

Our improved convex integration lemma may then be stated as follows.

Lemma 6.2 (convex integration lemma). There exists an absolute constant b0 such that, for any C1,Cδ≥1
and δ > 0, there is a constant C̃ = C̃δ,C1,Cδ for which the following holds. Suppose J is a subinterval of R

and (v, p, R) is an Euler–Reynolds flow, R =
∑

I RI , that satisfy the conclusions (12)–(15) and (16)–(17)
of Lemma 6.1 for some (4, ev, eR), some θ > 0 and some sequence of times {t (I )}I∈Z ⊆ R. Also suppose

|θ |∥∇v∥C0 ≤ b0. (18)

Let N ≥ (ev/eR)
1/2. Then there is an Euler–Reynolds flow (v1, p1, R1) with frequency-energy levels in

the sense of Definition 4.2 bounded by

(4′, e′

v, e′

R)=

(
C̃ N4, (log 4̂)eR, (log 4̂)5/2

e1/2
v e1/2

R

N

)
(19)



ON THE ENDPOINT REGULARITY IN ONSAGER’S CONJECTURE 2137

such that
suppt v1 ∪ suppt R1 ⊆ N (J ;4−1e−1/2

v ),

∥v1 − v∥C0 ≤ C̃(log 4̂)1/2e1/2
R .

Lemma 5.1 now follows by combining Lemmas 6.1 and 6.2 as explained in [Isett 2018, Section 3].
(Here Lemma 6.1 is applied with (v0, p0, R0) taken to be the (v, p, R) given in the assumptions of
Lemma 5.1.) The only important difference in the present case is that we have removed the assumption
N ≥4η and the constants Ĉ and CL (which can be set equal if desired) do not depend on η.

We now explain how to prove Lemma 6.2 by modifying the proof of [Isett 2018, Lemma 3.3].

7. Modifying the convex integration

We now proceed with the proof of Lemma 6.2. The construction will be based on the proof of [Isett 2018,
Lemma 3.3] implementing convex integration with the Mikado flows of [Daneri and Székelyhidi 2017],
but modified to adapt the localization strategy of [Isett and Oh 2016b] to our setting.

Let (v, p, R), R =
∑

I RI be given as in the assumptions of Lemma 6.2, which are the conclusions of
Lemma 6.1. We will use the symbol ≲ to denote inequalities involving explicit constants that are allowed
to depend on the parameters C1, δ and Cδ, but never on (4, ev, eR), N , θ, 4̂, etc.

We obtain the new Euler–Reynolds flow (v1, p1, R1) of Lemma 6.2 by adding carefully designed
corrections vℓ1 = vℓ+V ℓ and p1 = p+ P to the velocity and pressure, respectively, and using the resulting
equation for (v1, p1) to construct the appropriate R1. The correction V ℓ will be a sum of divergence-free,
high-frequency vector fields indexed by a set J :

V ℓ
=

∑
J∈J

V ℓ
J , ∇ℓV ℓ

J = 0 for all J ∈ J .

The index J ∈ J will have several components, J = (I, J1, J2, J3, f ), that together specify the time
interval and spatial location in which VJ will be supported as well as the direction in which VJ takes
values. Specifically, we choose an even integer 5 ∈ [34, 64] ∩ 2Z of size comparable to 4 and define

J := Z × (Z/5Z)3 × F, F := {ei ± ej : 1 ≤ i < j ≤ 3}.

Each VJ , J = (I, J1, J2, J3, f ), will be supported in a time interval of length ∼ θ around time t (I ), and
initially at time t (I ) will be supported in a ball of size ∼4−1 around the point

x0(J ) :=5−1(J1, J2, J3) ∈ (R/Z)3.

The component f ∈ F specifies which of the #F = 6 directions in R3 in which V ℓ
J approximately takes

values.
As in [Isett 2017a, Section 12], let vϵ = ηϵ ∗v be the coarse scale velocity field obtained by mollification

in space at scale ϵ. Let 8s : R × R × T3
→ R × T3 be the coarse scale flow (the flow map of vϵ)

8s(t, x)= (t + s,8i
s(t, x)), d

ds
8i

s(t, x)= vi
ϵ(8s(t, x)), 80(t, x)= (t, x), (20)



2138 PHILIP ISETT

and let 0I : R × T3
→ T3 be the back-to-labels map associated to vϵ from the initial time t (I ):

(∂t + vi
ϵ∇i )0I (t, x)= 0,

0I (t (I ), x)= x .
(21)

We also define the coarse scale advective derivative Dt := (∂t + vϵ · ∇).
To localize the waves VJ , we construct a smooth, quadratic partition of unity initiating from each

time t (I ) that follows the flow of vϵ and has length scale ∼4−1. The elements of this partition of unity
are functions χ(I,[k]) : R × T3

→ R that are indexed by (I, [k]) ∈ Z × (Z/5Z)3, and they satisfy∑
[k]∈(Z/5Z)3

χ2
(I,[k])(t, x)= 1 for all I ∈ Z, (t, x) ∈ R × T3, (22)

Dtχ(I,[k])(t, x)= 0 for all (I, [k]) ∈ Z × (Z/5Z)3, (t, x) ∈ R × T3. (23)

To construct the initial data for the partition of unity, choose a smooth χ̄ : R3
→ R with support in[

−
3
4 ,

3
4

]3 such that
∑

m∈Z3 χ̄2(h − m)= 1 for all h ∈ R3, then periodize and rescale to define

χ(I,[k])(t (I ), x) :=

∑
m∈Z3

χ̄(5x − [k] −5m). (24)

Observe that χ(I,[k])(t (I ), x) does not depend on how we represent the equivalence classes of x ∈ (R/Z)3

or [k] ∈ (Z/5Z)3, and that (22) holds at time t (I ). The same identity holds for all time t ∈ R by (23) and
uniqueness of solutions to the transport equation. Observe also, since 34≤5≤ 64, that the initial data
for χ(I,[k])(t (I ), · ) is supported in a ball of radius 4−1 around 5−1

[k] in (R/Z)3, and satisfies estimates
of the form ∥∇a⃗χ(I,[k])(t (I ), · )∥C0 ≲|a⃗| 4

|a⃗|.

7A. Localizing the convex integration construction. Unlike the scheme in [Isett 2018], our scheme will
involve many Mikado flow based waves at any given time that are supported within overlapping regions.
In general, interference between overlapping Mikado flows would produce error terms that cannot be
controlled for the iteration. We avoid this interference by “threading” the Mikado flows together, so that,
at the initial time, the main terms of the waves VJ will have disjoint support. The support then remains
disjoint as the Mikado flows are advected along the coarse scale flow.

To accomplish this construction, let f ∈ F and let [k] ∈ (Z/2Z)3. Choose an r0 > 0 and choose disjoint,
periodic lines ℓ( f,[k]) = {p( f,[k]) + t f : t ∈ R} that are separated from each other by a distance greater
than 6r0 in the torus (R/Z)3. Choose smooth functions ψ( f,[k]) : T3

→ R of the form ψ( f,[k])(X) =

g(dist(X, ℓ( f,[k]))), supp g( · )⊆
[ 1

2r0, r0
]
, such that∫

T3
ψ( f,[k])(X) d X = 0,

∫
T3
ψ2
( f,[k])(X) d X = 1. (25)

With these choices, the functions ψ( f,[k]) have disjoint support and have gradients orthogonal to f :

∇ℓψ( f,[k])(X) f ℓ = 0,

suppψ( f,[k]) ∩ suppψ( f̃ ,[k̃]) = ∅ if f ̸= f̃ or [k] ̸= [k̃] in (Z/2Z)3.

(26)
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Conditions (26) and (25) imply that ψ( f,[k])(X) f ℓ is divergence-free with mean zero, which implies that
there is6 a smooth tensor field

�
αβ

( f,[k]) : T3
→ R3

⊗ R3

that is antisymmetric in αβ and satisfies

∇α�
αβ

( f,[k])(X)= ψ( f,[k])(X) f β,
∫

T3
�
αβ

( f,[k])(X) d X = 0 for all 1 ≤ α, β ≤ 3.

Since all components of the �αβ( f,[k]) have mean zero on the torus, we can further construct tensor fields

�̃
αβγ

( f,[k]) : T3
→ R3

⊗ R3
⊗ R3,

also antisymmetric in αβ, such that

∇γ �̃
αβγ

( f,[k])(X)=�
αβ

( f,[k])(X),
∫

T3
�̃
αβγ

( f,[k])(X) d X = 0 for all 1 ≤ α, β, γ ≤ 3.

For example, we can take

�̃
αβγ

( f,[k]) := ∇
γ1−1�

αβ

( f,[k]).

These second-order potentials will be used to impose local conservation of angular momentum similar to
the use of double-curl form waves in [Isett and Oh 2016b].

For J = (I, J1, J2, J3, f ), let [J ] := [(J1, J2, J3)]. We define the corrections V ℓ
J to have the form

V ℓ
J = V̊ ℓ

J + δV ℓ
J , V̊ ℓ

J = vℓJψJ (t, x), ψJ (t, x) := ψ( f,[J ])(λ0I (t, x)). (27)

The amplitudes vℓJ have the same form as in [Isett 2018, Section 13] except they incorporate the partition
of unity χJ . In particular, they take values orthogonal to the gradient of the oscillatory functions ψJ :

vℓJ = χJ [e
1/2
I (t)γ(I, f )(t, x)(∇0−1

I )ℓa f a
], (28)

suppt e1/2
I (t)⊆ [t (I )− θ, t (I )+ θ ], (29)

χJ (t, x)= χ(I,[J1,J2,J3])(t, x), J = (I, J1, J2, J3, f ),

vℓJ ∇ℓψJ = 0. (30)

Note in particular that by construction the main terms of each wave have disjoint supports

supp V̊J ∩ supp V̊K = ∅ if J ̸= K . (31)

Indeed, if J = (J0, J1, J2, J3, f ) and K = (K0, K1, K2, K3, f ′) are not equal and J0 ̸= K0, then V ℓ
J

and V ℓ
K live on different time intervals. If J0 = K0 = I , one has either f ̸= f ′ or (J1, J2, J3) ̸= (K1, K2, K3)

mod 2, either case implying suppψJ ∩ suppψK = ∅, or f = f ′ and (J1, J2, J3)= (K1, K2, K3) mod 2.
In the last case, one has suppχJ ∩ suppχK = ∅ unless J = K .

6We can take for instance �αβ
( f,[k])

= ∇
α1−1

[ψ( f,[k]) f β ] −∇
β1−1

[ψ( f,[k]) f α].



2140 PHILIP ISETT

The correction V ℓ
J is made to be divergence-free and to have the form (27) by making V ℓ

J the divergence
of an antisymmetric tensor built from the Lie transport of the potentials �̃αβγ( f,[k]) above:

V ℓ
J = λ−2

∇a∇c[χJ (∇0
−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )�̃
αβγ

J ], (32)

δV ℓ
J = δvℓJ,αβ�

αβ

J + δvℓJ,αβγ �̃
αβγ

J ,

�
αβ

J (t, x) :=�
αβ

( f,[J1,J2,J3])
(λ0I ),

�̃
αβγ

J (t, x) := �̃
αβγ

( f,[J1,J2,J3])
(λ0I ),

δvℓJ,αβ := λ−1
∇a[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβe1/2

I (t)γ(I, f )],

δvℓJ,αβγ := λ−2
∇a∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )].
(33)

Note that the main term V̊ ℓ
J in (27)–(28) appears when the derivatives ∇a and ∇c both fall on �̃αβγJ .

Since V ℓ
J has the form V ℓ

J =∇aW aℓ
J , where W aℓ

J is antisymmetric in aℓ, we have that V ℓ
J is divergence-free.

The amplitudes constructed here are related to those constructed in [Isett 2018, Section 13] (which are
indexed by (I, f ) ∈ Z × F and do not involve spatial cutoffs) by the formula

vℓJ = χJv
ℓ
(I, f ), J = (I, J1, J2, J3, f ). (34)

This comparison allows us to see that the parameter ϵ = ϵv in the mollification of v 7→ vϵ can be chosen to
have the same value ϵv = cvN−1/24−1 as in [Isett 2018, Section 16], which is based on the requirement

∥v− vϵ∥C0 max
J

∥|vJ ||ψJ |∥C0 ≤ (log 4̂)1/2
e1/2
v e1/2

R

500N
.

Since we have chosen the same parameter in the mollification v 7→ ϵv as that chosen in [Isett 2018],
we obtain the same estimates for vϵ :

∥∇a⃗vϵ∥C0 ≲|a⃗| N (|a⃗|−2)+/24|a⃗|e1/2
v if |a⃗| ≥ 1, (35)

where the implicit constant is equal to 1 for |a⃗| = 1. From this fact we will see in the following Section 8
that all the remaining estimates for the components of the construction coincide with those in the proof of
[Isett 2018, Lemma 3.3].

8. Estimates for components of the construction

Here we summarize the estimates for the components of the construction, which coincide with those of
[Isett 2018]. The following elementary lemma will be convenient:

Lemma 8.1. For u ≥ 0, an integer M ≥ 0 and for g : T3
→ R, define ( for N ≥ 1, 4 > 0)

HM,u[g] := max
0≤|a⃗|≤M

∥∇a⃗g∥C0

N (|a⃗|−u)+/24|a⃗|
. (36)

Then, for λ≥ N 1/24, we have for any first-order partial derivative ∇a

HM,u[λ
−1

∇ag] ≤ HM+1,u[g],

HM,u[4
−1

∇ag] ≤ HM+1,u+1[g].
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We also have the triangle inequality HM,u[g(1) + g(2)] ≤ HM,u[g(1)] + HM,u[g(2)] and product estimate

HM,u[g(1)g(2)] ≲M HM,u[g(1)]HM,u[g(2)]. (37)

All the properties follow quickly from the definition (36). Inequality (37) follows from the expansion

∇a⃗(g(1)g(2))=

∑
|a⃗1|+|a⃗2|=|a⃗|

ca⃗1,a⃗2∇a⃗1 g(1)∇a⃗2 g(2),

the bound
∥∇a⃗i g(i)∥C0 ≤ N (|a⃗i |−u)+/24HM,u[g(i)]

and the inequality (|a⃗1| − u)+ + (|a⃗2| − u)+ ≤ (|a⃗| − u)+.
The estimates for the construction may now be summarized as follows. Here we use the fact that the

frequency λ := BλN4 is larger than N 1/24 to conclude that the lower-order terms δvℓJ,αβγ obey the same
bounds as the δvℓJ,αβ .

Proposition 8.2. The following bounds hold with constants depending only on |a⃗|:

∥∇a⃗γ(I, f )∥C0 + ∥∇a⃗(∇0
−1
I )∥C0 ≲ N (|a⃗|−1)+/24|a⃗|, (38)

∥∇a⃗ Dtγ(I, f )∥C0 + ∥∇a⃗ Dt(∇0
−1
I )∥C0 ≲ (log 4̂)24e1/2

v N (|a⃗|−1)+/24|a⃗|, (39)

sup
t∈R

(e1/2
I (t)+ θ |∂t e

1/2
I (t)|)≲ (log 4̂)1/2e1/2

R , (40)

∥∇a⃗χJ ∥C0 ≲ N (|a⃗|−1)+/24|a⃗|, (41)

∥∇a⃗v
ℓ
J ∥C0 ≲ (log 4̂)1/2 N (|a⃗|−1)+/24|a⃗|e1/2

R , (42)

∥∇a⃗ Dtv
ℓ
J ∥C0 ≲ (log 4̂)5/2 N (|a⃗|−1)+/24|a⃗|e1/2

R , (43)

∥∇a⃗δv
ℓ
J,αβ∥C0 + ∥∇a⃗δv

ℓ
J,αβγ ∥C0 ≲ λ−1(log 4̂)1/2 N |a⃗|/241+|a⃗|e1/2

R , (44)

∥∇a⃗ Dtδv
ℓ
J,αβ∥C0 + ∥∇a⃗ Dtδv

ℓ
J,αβγ ∥C0 ≲ λ−1(log 4̂)5/2 N |a⃗|/24|a⃗|+2e1/2

v e1/2
R . (45)

Proof. Inequalities (38)–(40) follow from the bounds in [Isett 2018, Section 17.1]. Inequality (41) for
|a⃗| = 0 follows from the maximum principle for DtχJ = 0. To obtain (41), we apply [Isett 2017a,
Proposition 17.4] in the case of order L = 2 frequency-energy levels to obtain

EM [χJ ](8s(t, x))≤ eCM4e1/2
v |s|EM [χJ ](t (I ), x),

EM [χJ ](t, x) :=

∑
0≤|a⃗|≤M

4−2|a⃗|N−(|a⃗|−1)+ |∇a⃗∇χJ (t, x)|2,

(46)

and we use the fact that, by the construction in (24),

EM [χJ ](t (I ), x)≲M

∑
0≤|a⃗|≤M

4−2|a⃗|N−(|a⃗|−1)+(4|a⃗|+1)2 ≲M 42.

We have 4e1/2
v |s| ≤4e1/2

v θ ≤ 1 on the support of the time cutoff e1/2
I from (29), so (46) yields

∥∇a⃗χJ ∥C0 ≲ N (|a⃗|−2)+/24|a⃗|,

which implies (41).
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The proofs of estimates (42)–(45) for vℓJ and for δvℓJ,αβγ are exactly as in [Isett 2018, Section 17.1]
with the addition of the cutoff function χJ . For instance, note that

χJ (∇0
−1
I )aα and Dt [χJ (∇0

−1
I )aα] = χJ Dt(∇0

−1
I )aα

obey the same bounds as (∇0−1
I )aα and Dt(∇0

−1
I )aα , respectively, up to constants, so we may absorb the

cutoff χJ into the first factor of (∇0−1) in estimating formulas (28) and (33) while repeating the proofs
in [Isett 2018, Section 17.1].

It remains to check (42)–(45) for the lower-order term δvℓJ,αβγ . Applying Lemma 8.1, we obtain

λ4−1δvℓJ,αβγ =4−1λ−1
∇a∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )],

λ4−1 HM,0[δv
ℓ
J,αβγ ] ≲M HM+1,1[λ

−1
∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]

≲M HM+2,1[χJ (∇0
−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]

≲M e1/2
I (t)HM+2,1[χJ ]HM+2,1[(∇0

−1
I )]3 HM+2,1[γ(I, f )], (47)

HM,0[δv
ℓ
J,αβγ ] ≲M λ−1(log 4̂)1/24e1/2

R . (48)

Here every term in (47) is bounded by ≲M 1 except e1/2
I (t). Note that (48) is equivalent to (44).

To prove (45), we proceed similarly by commuting in the advective derivative weighted by the parameter
θ ∼ (log 4̂)−24−1e−1/2

v :

(λ4−1θ)Dtδv
ℓ
J,αβγ =4−1λ−1

∇a∇c[θDt [χJ (∇0
−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]] (49)

− θ(∇av
i
ϵ)4

−1λ−1
∇i∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )] (50)

−4−1
∇a[∇cv

i
ϵλ

−1
∇i [χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]]. (51)

The terms (50) and (51) may be estimated using Lemma 8.1 as in the proof of (47)–(48) to obtain

HM,0[(50)] + HM,0[(51)] ≲M e1/2
I (t)HM+1,1[θ∇vϵ]HM+2,1[χJ ]HM+2,1[(∇0

−1
I )]3 HM+2,1[γ(I, f )]

(35)−(41)
≲M e1/2

I (t)≲ (log 4̂)1/2e1/2
R .

For (49), apply the product rule for θDt and apply Lemma 8.1 repeatedly to obtain

HM,0[(49)] ≲M (e1/2
I (t)+ θ |∂t e

1/2
I (t)|)HM+2,1[χJ ] · (HM+2,1[(∇0

−1
I )] + θHM+2,1[Dt(∇0

−1
I )])3

· (HM+2,1[γ(I, f )] + θHM+2,1[Dtγ(I, f )]).

Since
θHM+2,1[Dtγ(I, f )] and θHM+2,1[Dt(∇0

−1
I )]

are bounded by ≲M 1 from (38)–(39), we have

HM,0[δvJ,αβγ ] ≤ θ−1λ−14(HM,0[(49)] + HM,0[(50)] + HM,0[(51)])

≲M θ−1λ−14(e1/2
I (t)+ θ |∂t e

1/2
I (t)|)

≲ θ−1λ−14(log 4̂)1/2e1/2
R .

This bound is equivalent to the desired bound (45) for δvJ,αβγ . □
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As (42)–(45) are the same bounds for the components of the correction as those proven for vℓ(I, f ) and
δvℓ(I, f ),αβ in [Isett 2018, Section 17], we have the following bounds from [Isett 2018, Proposition 17.3].

Proposition 8.3 (correction estimates). For 0 ≤ |a⃗| ≤ 3, we have

sup
J

∥∇a⃗ V̊J ∥C0 ≲ (BλN4)|a⃗|(log 4̂)1/2e1/2
R ,

sup
J

∥∇a⃗δVJ ∥C0 ≲ (BλN4)|a⃗|−14(log 4̂)1/2e1/2
R ,

∥V ∥C0 ≲ (BλN4)|a⃗|(log 4̂)1/2e1/2
R , (52)

suppt V ⊆

⋃
I

suppt eI ⊆

⋃
I

[t (I )− θ, t (I )+ θ ].

For the estimate (52), we use that at most a bounded number (say 23) distinct V ℓ
J are supported at any

given point (t, x). This detail will be explained following (76) below. We now consider the error terms
and their estimates.

9. The error terms

Given the Euler–Reynolds flow (v, p, R), the new velocity field vℓ1 = vℓ + V ℓ, with

V ℓ
=

∑
J

V ℓ
J =

∑
J

V̊ ℓ
J + δV ℓ

J ,

and pressure p1 = p + P will solve the Euler–Reynolds equations when coupled to a new Reynolds stress
tensor R jℓ

1 . The new stress tensor R jℓ
1 will be composed of terms that solve

R jℓ
1 = R jℓ

M + R jℓ
T + R jℓ

S + R jℓ
H , (53)

R jℓ
M = (v j

− v j
ϵ )V

ℓ
+ V j (vℓ − vℓϵ)+ (R

jℓ
− R jℓ

ϵ ),

∇j R jℓ
T = ∂t V ℓ

+ ∇j (v
j
ϵ V ℓ

+ V jvℓϵ), (54)

R jℓ
S =

∑
J,K∈J

δV j
J V̊ ℓ

K + V̊ j
J δV ℓ

K + δV j
J δV ℓ

K ,

∇j R jℓ
H = ∇j

[∑
J∈J

V̊ j
J V̊ ℓ

J + Pδ jℓ
+ R jℓ

ϵ

]
. (55)

In writing (55), we have made the crucial observation that all of the off-diagonal terms in the summation∑
J,K∈J V̊ j

J V̊ ℓ
K vanish due to the disjointness of support stated in (31).

Our construction has been designed in such a way that∑
J∈J

v
j
Jv
ℓ
J + Pδ jℓ

+ R jℓ
ϵ = 0. (56)

From (27) and (56), equation (55) reduces to

∇j R jℓ
H = ∇j

[∑
J∈J

v
j
Jv
ℓ
J (ψ

2
J − 1)

]
. (57)
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To verify (56), note that, for each I ∈ Z and J (I ) := {I }×(Z/5Z)3 ×F, we have from (22) and (34) that∑
J∈J (I )

v
j
Jv
ℓ
J =

∑
[k]∈(Z/5Z)3

∑
f ∈F

χ2
(I,[k])v

j
(I, f )v

ℓ
(I, f ) =

∑
f ∈F

v
j
(I, f )v

ℓ
(I, f ), (58)

where v(I, f ) are the amplitudes from the construction in [Isett 2018]. The equality∑
I∈Z

∑
f ∈F

v
j
(I, f )v

ℓ
(I, f ) + Pδ jℓ

+ R jℓ
ϵ = 0

proved in [Isett 2018, Sections 14–15] now implies the equality (56) in the present construction using (58).
It now remains to show that, when R jℓ

T and R jℓ
H are chosen appropriately, the tensor R jℓ

1 defined by (53)
satisfies the bounds required by Lemma 6.2.

10. Solving the symmetric divergence equation

To estimate the error tensor R1 defined in (53), the only terms that require a different treatment from
[Isett 2018] are the terms RT and RH . Namely, since our choice of vϵ and Rϵ and our estimates for V̊J

and δVJ also coincide with those of that paper, Proposition 17.4 there shows that

∥RM∥C0 + ∥RS∥C0 ≤ (log 4̂)
e1/2
v e1/2

R

10N
, (59)

∥∇a⃗ RM∥C0 + ∥∇a⃗ RS∥C0 ≲ (BλN4)|a⃗|(log 4̂)
e1/2
v e1/2

R

N
, 1 ≤ |a⃗| ≤ 3,

suppt RM ∪ suppt RS ⊆

⋃
I

[t (I )− θ, t (I )+ θ ],

provided we choose the constant Bλ in the definition of λ= BλN4 to be larger than a certain, absolute
constant Bλ.

The tensors RT and RH are defined as summations of the form

R jℓ
T =

∑
J∈J

R jℓ
T,J , R jℓ

H =

∑
J∈J

R jℓ
H,J , (60)

where each term is symmetric and is localized both in space and in time around the support of V ℓ
J .

We expand the terms (54) and (57) (using the orthogonality v j
J ∇jψJ = 0 stated in (30) in the case

of RH , and using ∇jv
j
ϵ = ∇j V

j
J = 0 in the case of RT ) to obtain the equations

∇j R jℓ
T,J = ∂t V ℓ

J + ∇j (v
j
ϵ V ℓ

J + V j
J v

ℓ
ϵ), (61)

∇j R jℓ
T,J = uℓT JψJ + uℓT J,αβ�

αβ

J + uℓT J,αβγ �̃
αβγ

J , (62)

∇j R jℓ
H,J = uℓH J (ψ

2
J − 1), (63)

uℓH J = ∇j [v
j
Jv
ℓ
J ],

uℓT J := Dtv
ℓ
J + v

j
J ∇jv

ℓ
ϵ ,

uℓT J,αβ := Dtδv
ℓ
J,αβ + δv

j
J,αβ∇jv

ℓ
ϵ ,

uℓT J,αβγ := Dtδv
ℓ
J,αβγ + δv

j
J,αβγ∇jv

ℓ
ϵ .
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By the construction in Section 7A, each of the functions ψJ , (ψ2
J − 1), �αβJ and �̃αβγJ have the form

ω(λ0I (t, x)), where ω : T3
→ R belongs to a finite set of smooth functions of mean zero on T3. We may

therefore apply the following proposition, which is similar to [Isett 2018, Proposition 17.6] and is proven
in Section 10A below using the same parametrix expansion technique.

Proposition 10.1 (nonstationary phase). If U ℓ
: R × T3

→ R3 is a smooth vector field of the form
U ℓ

= uℓω(λ0I ), where ω : T3
→ R is a smooth function of mean zero, then, for any D ≥ 1, there exist a

smooth, symmetric tensor field Q jℓ
(D) : R × T3

→ R3
⊗ R3 and a vector field U ℓ

(D) satisfying

U ℓ
= ∇j Q jℓ

(D) + U ℓ
(D),

sup
0≤|a⃗|≤3

λ−|a⃗|
∥∇a⃗ Q jℓ

(D)∥C0 ≲ λ−1 sup
0≤|a⃗|≤D+3

∥∇a⃗uℓ∥C0

N |a⃗|/24|a⃗|
,

sup
0≤|a⃗|≤3

λ−|a⃗|
∥∇a⃗U ℓ

∥C0 ≲ B−1
λ N−D/2 sup

0≤|a⃗|≤D+3

∥∇a⃗uℓ∥C0

N |a⃗|/24|a⃗|
,

supp Q jℓ
(D) ∪ supp U ℓ

(D) ⊆ supp U ℓ,

where the implicit constant depends only on ω and D.

We apply Proposition 10.1 to each of the terms in (62) and (63) and use the estimates

HD+3,0[uℓT J ] + HD+3,0[uℓT J,αβ] + HD+3,0[uℓT J,αβγ ] + HD+3,0[uℓH J ] ≲ (log 4̂)5/24e1/2
v e1/2

R ,

HD+3,0[u] := sup
0≤|a⃗|≤D+3

∥∇a⃗uℓ∥C0

N |a⃗|/24|a⃗|
,

which follow from (42)–(45) and Lemma 8.1 (and are saturated only by uℓT J ), to obtain the decompositions

(62) = ∇j Q jℓ
T J,(D) + U ℓ

T J,(D), (63) = ∇j Q jℓ
H J,(D) + U ℓ

H J,(D), (64)

where the symmetric tensors QT J,(D) and Q H J,(D) and remainder terms UT J,(D) and UH J,(D) satisfy

sup
0≤|a⃗|≤3

λ−|a⃗|(∥∇a⃗ Q jℓ
T J,(D)∥C0 + ∥∇a⃗ Q jℓ

H J,(D)∥C0)≲D λ
−1(log 4̂)5/24e1/2

v e1/2
R

≲D B−1
λ (log 4̂)5/2

e1/2
v e1/2

R

N
, (65)

sup
0≤|a⃗|≤3

λ−|a⃗|(∥∇a⃗U jℓ
T J,(D)∥C0 + ∥∇a⃗U jℓ

H J,(D)∥C0)≲D B−1
λ N−D/2(log 4̂)5/24e1/2

v e1/2
R , (66)

supp UT J,(D) ∪ supp UH J,(D) ∪ supp QT J,(D) ∪ supp Q H J,(D) ⊆ suppχJ · e1/2
I (t). (67)

To complete the construction of R jℓ
T,J and R jℓ

H J to (62)–(63), we construct solutions to the equations

∇j R jℓ
T J,(D) = U ℓ

T J,(D), ∇j R jℓ
H J,(D) = U ℓ

H J,(D) (68)

that are localized around space-time cylinders containing the supports of vJ by using the inverses for the
symmetric divergence equation that were constructed in [Isett and Oh 2016b]. We first recall the notions
of Lagrangian and Eulerian cylinders from that paper.
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Definition 10.2. Let 8s be the flow map associated to vϵ as defined in (20). Given a point in space-time
(t0, x0)∈ R×T3 and positive numbers τ, ρ > 0, we define the vϵ-adapted Eulerian cylinder Ĉ(τ, ρ; t0, x0)

with duration 2τ and base radius ρ as well as the vϵ-adapted Lagrangian cylinder 0̂(τ, ρ; t0, x0) with
duration 2τ and base radius ρ to be

Ĉ(τ, ρ; t0, x0) := {8s(t0, x0)+ (0, h) : 0 ≤ |s| ≤ τ, 0 ≤ |h| ≤ ρ},

0̂(τ, ρ; t0, x0) := {8s(t0, x0 + h) : 0 ≤ |s| ≤ τ, 0 ≤ |h| ≤ ρ}.

The two notions are related (see [Isett and Oh 2016b, Lemma 5.2]) by

(t ′, x ′) ∈ Ĉ(τ, ρ; t0, x0) ⇐⇒ (t, x) ∈ 0̂v(τ, ρ; t ′, x ′), (69)

0̂(τ, e−τ∥∇vϵ∥C0ρ; t0, x0)⊆ Ĉ(τ, ρ; t0, x0)⊆ 0̂(τ, eτ∥∇vϵ∥C0ρ; t0, x0). (70)

It follows that the amplitudes constructed in Section 7A are supported in an Eulerian cylinder

suppχJ · e1/2
I (t)⊆ 0̂(θ,5−1

; t (I ), x0(J ))⊆ Ĉ(θ, eθ∥∇vϵ∥C05−1
; t (I ), x0(J ))

⊆ Ĉ(θ,4−1
; t (I ), x0(J )), (71)

and the remainder terms U ℓ
T J,(D) and U ℓ

H J,(D) are supported in the same Eulerian cylinder by (67).
Before we can obtain symmetric tensors that solve the equations in (68), we must check that the

necessary orthogonality conditions∫
R3

U ℓ(t, x) dx = 0,
∫

R3
(x jU ℓ

− xℓU j )(t, x) dx = 0, 1 ≤ j, ℓ≤ 3 (72)

are satisfied, where U ℓ is the (nonperiodic restriction of) U ℓ
T J,(D) or U ℓ

H J,(D). To check condition (72),
note that U ℓ

H J,(D) is by construction in (57) and (64) the divergence of a smooth symmetric tensor with
compact support, and that U ℓ

T J,(D) has the form ∇a∇c[T acℓ
J ]+∇jU

jℓ
J (using (32), (61), (64)), where U jℓ

J
is symmetric and both T acℓ

J and U jℓ
J have compact support in the cylinder (71). Integrating by parts, one

obtains the conditions (72) for the nonperiodic restrictions of both U ℓ
T J,(D) and U ℓ

H J,(D).
We now have the necessary inputs to solve the symmetric divergence equation with good control over

the support and boundedness properties of the solution map. We recall7 the following result of [Isett and
Oh 2016b, Section 10] (in particular Lemmas 10.3 and 10.4).

Lemma 10.3. Suppose U is a smooth vector field on R × Rd with support in an Eulerian cylinder
Ĉ(θ, ρ; t0, x0) relative to a smooth vector field v̄. If U is orthogonal at all times to the rotation and
translation vector fields on Rd in the sense of (72), then there is a symmetric tensor field R jℓ

U that is also
supported in the same Eulerian cylinder and that solves ∇j R jℓ

U = U ℓ. The solution can be taken to depend
linearly on U and to satisfy the bounds

∥∇a⃗ RU ∥C0 ≲ ρ
∑

a⃗1+a⃗2=a⃗

ρ−|a⃗1|∥∇a⃗2U∥C0 .

7Here we do not need to use the additional advective derivative estimates that were used in [Isett and Oh 2016b] since we
only need to bound spatial derivatives.
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Applying this lemma, we obtain symmetric tensors solving (68) such that

supp R jℓ
T J,(D) ∪ supp R jℓ

H J,(D) ⊆ Ĉ(θ,4−1
; t (I ), x0(J )), (73)

∥R jℓ
T J,(D)∥C0 + ∥R jℓ

H J,(D)∥C0 ≲ 4−1(∥U ℓ
T J,(D)∥C0 + ∥U ℓ

H J,(D)∥C0)

(66)
≲ B−1

λ N−D/2(log 4̂)5/2e1/2
v e1/2

R , (74)

∥∇a⃗ R jℓ
T J,(D)∥C0 + ∥∇a⃗ R jℓ

H J,(D)∥C0 ≲|a⃗| 4
−1

∑
|b⃗|≤|a⃗|

4|a⃗|−|b⃗|(∥∇b⃗U ℓ
T J,(D)∥C0 + ∥∇b⃗U ℓ

H J,(D)∥C0). (75)

We now set D = 2 and define

R jℓ
T J = Q jℓ

T J,(D) + R jℓ
T J,(D) and R jℓ

H J = Q jℓ
H J,(D) + R jℓ

H J,(D).

Combining (65), (67), (73), and (74) into (60), we obtain the estimate

∥RT ∥C0 + ∥RH∥C0 ≲ B−1
λ (log 4̂)5/2

e1/2
v e1/2

R

N
. (76)

To sum the estimates we have also used the fact that the number of distinct cylinders of the form (73) that
can intersect at a given point in space-time (t, x) is bounded by an absolute constant. To check this fact,
note that if two cylinders indexed by J and J ′ intersect at a point (t∗, x∗) ∈ R × T3, then

(t∗, x∗) ∈ Ĉ(θ,4−1
; t (I ), x0(J ))∩ Ĉ(θ,4−1

; t (I ′), x0(J ′)) ⇒

I = I ′ and (t (I ), x0(J )), (t (I ), x0(J ′))
(69)
∈ 0̂(θ,4−1

; t∗, x∗)

(70)
∈ Ĉ(θ, eθ∥∇vϵ∥C04−1

; t∗, x∗)⊆ Ĉ(θ, 34−1
; t∗, x∗).

The number of indices J = (I, f ) for which (t (I ), x0(J )) can belong to a given ball of radius 34−1 ≲5−1

is bounded by an absolute constant by the construction of the cutoff functions.
We can now take Bλ to be a sufficiently large number such that the right-hand side of (76) is bounded

by (log 4̂)5/2e1/2
v e1/2

R /(20N ) (and so that λ= BλN4 ∈ Z is an integer). This choice achieves our desired
bound for ∥R1∥C0 when combined with (59). The desired bounds for higher derivatives

∥∇a⃗ RT ∥C0 + ∥∇a⃗ RH∥C0 ≲ (N4)|a⃗|(log 4̂)5/2
e1/2
v e1/2

R

N
, 1 ≤ |a⃗| ≤ 3,

now follow from (65), (66), (75) and the observations concerning the overlaps of the cylinders (73). The
assertions about the desired support of R jℓ

1 asserted in Lemma 6.2 are clear from construction.
The proof of Lemma 6.2 will now be complete after explaining the proof of Proposition 10.1.

10A. The parametrix expansion. We now prove Proposition 10.1 using the argument in the proof of
[Isett 2018, Proposition 17.6]. Let U ℓ

= uℓω(λ0I ) be given as in the assumptions of Proposition 10.1.
By Fourier-expanding ω(X) as a function on T3, we have

U ℓ
=

∑
m ̸=0

ω̂(m)eiλξm(t,x)uℓ(t, x), (77)
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where m ∈ Z3 and ξm(t, x) := m ·0I (t, x). Following the proof of [Isett 2018, Proposition 17.6], we set

Q jℓ
(D) =

∑
m ̸=0

ω̂(m)Q jℓ
(D),m, Q jℓ

(D),m := λ−1
D∑

k=1

eiλξm q jℓ
(k),m . (78)

The amplitudes q jℓ
(k),m are constructed inductively with a sequence of amplitudes uℓ(k),m such that

i∇jξmq jℓ
(k),m = uℓ(k−1),m,

uℓ(k),m = −λ−1
∇j q

jℓ
(k),m

(79)

and uℓ(0),m = uℓ. By (77), (79) and induction on D, we then obtain

U ℓ
= ∇j Q jℓ

(D) + U ℓ
(D),

U ℓ
(D) =

∑
m ̸=0

ω̂(m)eiλξm uℓ(D),m .
(80)

More specifically, to solve (79) we first choose smooth functions q̄ jℓ
a (p) of a variable p ∈ R3

\ {0},
symmetric in jℓ, such that each q̄ jℓ

a (p) is degree −1 homogeneous (q̄ jℓ
a (αp)= α−1q̄ jℓ

a (p) if α ∈ R \ {0})
and such that i pj q̄

jℓ
a (p) = δℓa for all p ̸= 0. See [Isett 2018, Proposition 17.6] for an explicit example.

We then set q jℓ
(k),m := q̄ jℓ

a (∇ξm)ua
(k−1),m , so that (79) is satisfied.

From this construction we see that both Qℓ
(D) and U ℓ

(D) have support contained in supp uℓ. We obtain
the desired estimates for Qℓ

(D) and U ℓ
(D) stated in Proposition 10.1 from the formulas (78) and (80) by

using the bounds

∥∇a⃗q jℓ
(k),m∥C0 ≲ N−(k−1)/2 N |a⃗|/24|a⃗|HD+3,0[u] for all 0 ≤ |a⃗| ≤ D − k + 4, 1 ≤ k ≤ D,

∥∇a⃗uℓ(k),m∥C0 ≲ B−1
λ N−k/2 N |a⃗|/24|a⃗|HD+3,0[u] for all 0 ≤ |a⃗| ≤ D − k + 3, 1 ≤ k ≤ D,

from the proof of [Isett 2018, Proposition 17.6] (where HD+3,0[u] is written simply as H ), and by using
the rapid decay of |ω̂(m)| ≲ (1 + |m|)−40 to ensure convergence in the summation over m ∈ Z3. (The
main point in the estimate is that each spatial derivative of the sum costs at most a factor of λ.)

11. Iterating the main lemma

We now explain the proof of Theorem 1.1. Similar to other convex integration constructions, the
theorem will be proven by repeatedly applying Lemma 5.1 to obtain a sequence of Euler–Reynolds
flows (v(k), p(k), R(k)) indexed by k (with frequency-energy levels bounded by (4(k), ev,(k), eR,(k))) that
will converge uniformly to the solution v stated in Theorem 1.1. Unlike previous works, we introduce
here a new and sharper approach to estimating the regularity and to optimizing the choice of parameters
governing the growth of frequencies.

To initialize the construction, we construct a smooth Euler–Reynolds flow (v(1), p(1), R(1)) with
compact support in time that satisfies

sup
x∈T3

v(1)(0, x)≥ 10 (81)
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and has frequency-energy levels (to order 3 in C0) bounded by (4(1), eR,(1), eR,(1)), where 4(1) = 4̂(1)

and eR,(1) are large and small parameters, respectively, that remain to be chosen. One way to produce such
an Euler–Reynolds flow is to apply the main lemma in the convex integration scheme of [Isett 2017a] (as
was done in [Isett 2018]). This approach has some added benefits such as the ability to obtain arbitrarily
large increases in energy within an arbitrarily small time interval [Isett 2017a]. For the present purpose it
will suffice to take a simpler approach.

We take v(1) to have the form vℓ(1) = ψ(B−1t)U ℓ, where ψ is a smooth cutoff with ψ(0) = 1 and
0 ≤ ψ(t)≤ 1 for all t , B is a large parameter, and U ℓ

: T3
→ R3 is a smooth vector field that satisfies∫

T3
U ℓ(x) dx = 0, ∇ℓU ℓ

= 0, ∇j (U jU ℓ)= 0, sup
x∈T3

U ℓ(x)≥ 10.

For example, one can take a sufficiently large Mikado flow for U ℓ(x). We then take p(1) = 0 and R(1) to
be a symmetric tensor that solves

∇j R jℓ
(1) = ∂tv

ℓ
(1) = B−1ψ ′(B−1t)U ℓ(X) (82)

by applying an appropriate, degree −1 Fourier-multiplier to the right-hand side of (82). The Euler–
Reynolds flow (v(1), p(1), R(1)) obtained in this way has frequency-energy levels (to order 3 in C0)
bounded by (4, 1, eR,(1)), where 4 depends only on U ℓ, and where eR,(1) ≲ B−1 can be made arbitrarily
small by taking B large depending on U ℓ. It follows from Definition 4.2 that (v(1), p(1), R(1)) also have
frequency-energy levels bounded by

(4(1), ev,(1), eR,(1)) := (4e−1/2
R,(1), eR,(1), eR,(1)),

where we have now fixed our choice of 4(1) :=4e−1/2
R,(1) in terms of the small parameter eR,(1) that remains

to be chosen.

11A. Heuristics and deriving the optimization problem for the parameters. The sequence of frequency-
energy levels (4, ev, eR)(k) and Euler–Reynolds flows will now be determined by repeatedly applying
Lemma 5.1, so that the following rules hold. (Here Ĉ and CL denote the two constants of Lemma 5.1
and 4̂(k) := (ev/eR)

1/2
(k)4(k).)

4(k+1) = Ĉ N(k)4(k), (83)

ev,(k+1) = (log 4̂(k))eR,(k), (84)

eR,(k+1) =
eR,(k)

g(k)
, (85)

N(k) = (log 4̂(k))A
(

ev
eR

)1/2

(k)
g(k), A :=

5
2 . (86)

The sequence g(k) > 1 describes the “gain” in the size of the error after stage k, and the sequence of
frequency growth parameters N(k) is determined by inequality (10) in Lemma 5.1, so that this choice
of N(k) achieves the desired gain. To work with the estimate (11), it will also be useful to impose that

(log 4̂(k+1))
1/2e1/2

R,(k+1) ≤
1
2(log 4̂(k))1/2e1/2

R,(k) for all k ≥ 1. (87)
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The Euler–Reynolds flows constructed by repeatedly applying Lemma 5.1 using the above choice of
parameters N(k) will converge uniformly to the velocity field vℓ = vℓ(1) +

∑
∞

k=1 V ℓ
(k). Assuming (87),

which is verified in Proposition 11.1 below, this solution will be nontrivial and continuous for eR,(1)

chosen small enough (depending on 4, Ĉ and CL ) thanks to (81) and

∞∑
k=1

∥V ℓ
(k)∥C0

(11),(87)
≤

∞∑
k=0

CL(log 4̂(1))1/2eR,(1)2−k
≤ 5. (88)

As R(k) converges uniformly to 0, one has from the Euler–Reynolds system that the associated sequence
of pressures p(k) =1−1

∇j∇ℓ(R
jℓ
(k) − v

j
(k)v

ℓ
(k)) converge weakly in D′(R × T3) to p = −1−1

∇j∇ℓ(v
jvℓ),

and that the pair (v, p) form a weak solution to the Euler equations.
Our goal is now to choose g(k) that optimize the regularity of the solution v. The key evolution rule

that isolates 1
3 as the limiting regularity and plays a key role in our analysis will be the following:

δ(k)
( 1

3 log 4̂(k) + 1
2 log eR,(k)

)
=

( 1
3 A +

1
6

)
log log 4̂(k) + log Ĉ . (89)

Here δ(k)[ f(k)] = f(k+1)− f(k) is the discrete differencing operator and A =
5
2 . A crucial point is that (89)

holds for all possible choices of g(k).
With the goal of computing regularity in mind, suppose 1x ∈ R3 with, say, 0< |1x | ≤ 10−2. Writing

v = v(k̄) +
∑
k≥k̄

V(k) and Lk := log 4̂(k),

we can bound |v(t, x +1x)− v(t, x)| using (87) by

|v(t, x +1x)− v(t, x)| ≤ ∥∇v(k̄)∥C0 |1x | +

∑
k≥k̄

2∥V(k)∥C0 ≤4(k̄)e
1/2
v,(k̄)

|1x | + 4CL(log 4̂(k̄))
1/2e1/2

R,(k̄)

≤ 4CL L k̄(4̂(k̄)|1x | + 1)e1/2
R,(k̄)

. (90)

The estimate is optimized by choosing k̄ to be the largest value k for which 4̂(k)|1x | ≤ 1. Now assuming k̄
has been chosen as this value, the estimate (90) leads to

|v(t, x +1x)− v(t, x)| ≤ 8CL L k̄e1/2
R,(k̄)

= 8CL L k̄4̂
−1/3
(k̄)

exp
( 1

3 log 4̂(k̄) +
1
2 log eR,(k̄)

)
≲ L k̄4̂

−1/3
(k̄+1)

exp
( 1

3δ(k) log 4̂(k)
∣∣
k=k̄ +

1
3 log 4̂(k) + 1

2 log eR,(k)
)

≲ |1x |
1/3L k̄ exp

(1
3δ(k) log 4̂(k)

∣∣
k=k̄ +

1
3 log 4̂(k) + 1

2 log eR,(k)
)
. (91)

Using (89) to expand 1
3 log 4̂(k) + 1

2 log eR,(k), we minimize the right-hand side of (91) if we minimize

Hk̄ :=

(
1
3
(log 4̂(k̄+1) − log 4̂(k̄))+

k̄−1∑
k=1

(log log 4̂(k) + log Ĉ)
)
. (92)

The expression (92) now reveals the optimization problem for choosing g(k). Namely, to control the
term δ(k) log 4̂(k), the frequencies should not grow too quickly. However, a slow growth of frequencies
produces a long summation and a poor estimate for the sum as the construction is iterated many times
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before achieving a given length scale. Intuitively, the best estimate should be achieved if the two terms are
balanced, which suggests the parameters Lk = log 4̂(k) should satisfy the discrete version of the equation

d L
dk

= 3
∫ k

1
(log L(κ)+ c) dκ,

whose solutions grow like Lk = (3 + o(1))k2 log k at infinity.
We will see that the regularity is optimal precisely when Lk are chosen to have this growth.

11B. Parameter asymptotics and optimization. With this motivation, we take g(k) = eγ k log k , where
γ > 0 is a parameter that will be chosen to optimize the regularity. To simplify the algebra we can
restrict to k ≥ 2 by assuming that the Euler–Reynolds flows (v(1), p(1), R(1))= (v(2), p(2), R(2)) and their
frequency-energy levels are equal.

Before estimating the regularity, we wish to fix our choice of the parameter eR,(1) that dictates the
initial frequency-energy levels. We therefore verify the assumption (87) (restricting now to γ ≥ 2).

Proposition 11.1. If γ ≥ 2 and eR,(1) is small enough depending on Ĉ , then (87) holds for all k ≥ 2.

Proof. Taking logs of (87), it suffices to bound the quantity

1
2δ(k) log log 4̂(k) + 1

2δ(k) log eR,(k) =
1
2δ(k) log log 4̂(k) − 1

2 log g(k) (93)

by − log 2 uniformly in k.
Towards this goal, we set Zk := Ĉ(log 4̂(k))A+1/2 to be the lower-order factor from (83) and (86).

Linearizing log( · ) around Lk := log 4̂(k) and using (83)–(86) and concavity, we have

δ(k) log log 4̂(k) = log(log 4̂(k) + log(Zk g3/2
(k) ))− log log 4̂(k) ≤

log(Zk g3/2
(k) )

log 4̂(k)
. (94)

We now substitute (94) into (93) and take eR,(1) small enough to ensure that 4̂(k) ≥4(k) ≥4(1) =4e−1/2
R,(1)

is large enough so that the following bound holds for all k ≥ 2:

(93) ≤
log Zk

log 4̂(k)
−

1
3

log g(k). (95)

Taking eR,(1) smaller and hence 4(1) larger, we can ensure that the function

f (4) :=
log(Ĉ(log4)A+1/2)

log4

is decreasing in 4 on the interval 4 ∈ [4(1),∞). From 4̂(k) ≥4(1) and (95) we obtain

(95) ≤
log(Ĉ(log4(1))A+1/2)

log4(1)
−

1
3

log g(2) for all k ≥ 2. (96)

We have that −
1
3 log g(2) = −

2
3γ log 2 ≤ −

4
3 log 2. Taking eR,(1) small and thus 4(1) large, we can bound

(96) and therefore (93) by − log 2, which establishes Proposition 11.1. □
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At this point, we choose eR,(1) sufficiently small (depending on Ĉ and CL ) to satisfy the assumptions
of Proposition 11.1 and such that (88) holds.

With the initial frequency-energy levels determined, we now turn to the asymptotics of the frequency-
energy levels for large k. These asymptotics are summarized as follows.

Proposition 11.2. For all k ≥ 3 and the above choice of g(k), we have the asymptotics

− log eR,(k) =
γ k2

2
log k + O(k log k), (97)

1
2

log
(

ev
eR

)
(k)

=
1
2
γ k log k + O(log k), (98)

δ(k) log 4̂(k) =
3
2
γ k log k + O(log k), (99)

log 4̂(k) =
3
2
γ k2

2
log k + O(k log k), (100)

log log 4̂(k) = 2 log k + O(1), (101)

1
3

log 4̂(k) +
1
2

log eR,(k) = 2
( A

3
+

1
6

)
k log k + O(k), (102)

4(k) = exp
(

3γ k2

4
log k + O(k log k)

)
, (103)

together with the bounds
( log 4̂(k))−1

= O(k−2(log k)−1), (104)

log log 4̂(k) = O(log k). (105)

Here the implicit constants in the O( · ) notation depend only on Ĉ, γ , 4(1), eR,(1) and A =
5
2 .

The proof will proceed by induction on k ≥ 3 and will use some extra notation for the induction.
We write C(97), . . . ,C(105) to refer to the implicit constants in the O( · ) notation in the proposition. For
example the term in (105) is bounded by |O(log k)| ≤ C(105) log k. We assume at the onset that all the
constants C(97), . . . ,C(105) are sufficiently large depending on 4(1) and eR,(1) = ev,(1) such that the bounds
(97)–(105) hold for k = 3. The proof will make use of the Taylor expansion formula

f (X + Y )= f (X)+ Y
∫ 1

0
f ′(X +σY ) dσ = f (X)+ f ′(X)Y + Y 2

∫ 1

0
(1 −σ) f ′′(X +σY ) dσ. (106)

Proof of (97). The equality follows from the evolution rule log eR,(k+1) = − log g(k) + log eR,(k) and∑
1≤I≤k

log g(I ) =
∑

1≤I≤k

γ I log I =
γ k2

2
log k + O(k log k), k ≥ 3

(where the constant above depends on γ ). □

Proof of (104). From log 4̂(k+1) ≥ log g(k) + log 4̂(k), we have

k2 log k ≲
∑

3≤I≤k

log g(I ) ≤ log 4̂(k). □
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Proof of (105). Let Lk := log 4̂(k) and Zk = Ĉ(log 4̂(k))A+1/2. Then for some A0 ≥ 1 and all k ≥ 3,

δ(k) log log 4̂(k) = log(Lk + log(Zk g3/2
(k) ))− log Lk

≤ L−1
k (log Zk + log g3/2

(k) )≤ A0C(104)(k−2(log k)−1 log log 4̂(k) + k−1).

Choose k∗
= k∗(C(104)) large enough that A0C(104)k−2

≤ 10−1δ(k) log k for all k ≥ k∗, and assume
that C(105) is large enough that (105) holds for k ≤ k∗.

We now proceed by induction on k to obtain (105) for k > k∗. Assuming (105) for k, we have

δ(k) log log 4̂(k) ≤ 10−1C(105)δ(k) log k + A0C(104)k−1
≤ C(105)δ(k) log k for k ≥ k∗

if C(105) is sufficiently large, which implies (105) for k + 1, and thus for all k ≥ k∗ by induction. □

Proof of (98). The equality follows from (105) and

1
2

log
(

ev
eR

)
(k+1)

=
1
2
(log g(k) + log log 4̂(k)). □

Proof of (99)–(100). For k ≥ 3, we have by (98) and (105)
(
for A =

5
2

)
δ(k) log 4̂(k) =

1
2

log
(

ev
eR

)
(k+1)

+ log g(k) + A log log 4̂(k)

=
3γ
2

k log k + O(log k)=
3γ
2
δ(k)

[k2

2
log k

]
+ O(δ(k)[k log k]),

which implies both (99) and (100) after summing over k. □

Proof of (101). Again writing Lk = log 4̂(k) and Zk = Ĉ(log 4̂(k))A+1/2, we have by Taylor expansion

δ(k) log log 4̂(k) = log(Lk + log(Zk g3/2
(k) ))− log Lk

= (log 4̂(k))−1 log(Zk g3/2
(k) )−

∫ 1

0
dσ
(log(Zk g3/2

(k) ))
2(1 − σ)

(Lk + σ log(Zk g3/2
(k) ))

2
.

The main term is

(log 4̂(k))−1 log g3/2
(k) = 2k−1

+ O(k−2)= 2δ(k) log k + O(k−2)

by (100). The remaining terms are of size O(k−2) by (105) and (100) again. Summing over k gives the
desired result (101). □

Proof of (102). Equation (102) follows from (89), (101) and summation over k. □

Proof of (103). Equation (103) follows from

log4(k) = log 4̂(k) −
1
2

log
(

ev
eR

)
(k)
,

equation (100) and (98). □
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We now return to analyzing the regularity estimate (91). From (100), (99), (102), and by the definitions
of k̄ and 4̂(k̄), we obtain (using (106) with f (X)= X−1 or log X ) that, for all |1x | ≤ 10−2,

k̄2 log k̄ ≲ log 4̂(k̄) ≤ log |1x |
−1

≤ log 4̂(k̄+1) ≲ k̄2 log k̄,

3γ
4

k̄2 log k̄ = log |1x |
−1

+ O(k̄ log k̄), (107)

(log |1x |
−1)−1

=

(
4

3γ
+ O(k̄−1)

)
k̄−2(log k̄)−1,

log(k̄2)= log log |1x |
−1

+ O(log log k̄). (108)

To bound (91) purely in terms of |1x |, we first estimate the logarithm of the term L k̄ exp(Hk̄) appearing
in (91)–(92) (using A =

5
2 and 1

3 A +
1
6 = 1) by

(log |1x |
−1)−1

· (Hk̄ + log L k̄)=

(
4

3γ
(1 + O(k̄−1))(k̄2 log k̄)−1

)
·

((
γ

2
+ 2

)
k̄ log k̄ + O(k̄)

)
=

4
3γ

(
γ

2
+ 2

)
k̄−1

+ O(k̄−1(log k̄)−1)

=
4

3γ

(
γ

2
+ 2

)
(k̄2 log k̄)−1/2(log k̄)1/2 + O(k̄−1(log k̄)−1)

= 2−1/2
(

4
3γ

)(
γ

2
+ 2

)
(k̄2 log k̄)−1/2(log log |1x |

−1)1/2

+ O
(

log log k̄
(k̄2 log k̄)1/2(log log |1x |−1)1/2

)
.

In the last line we used (108) and (106) with f (X)= X1/2. From (107) and (106) we then have

(log |1x |
−1)−1

· (Hk̄ + log L k̄)= 2−1/2
(

4
3γ

)1/2(
γ

2
+ 2

)
(log |1x |

−1)−1/2(log log |1x |
−1)1/2

+O
(

log log log |1x |
−1

(log |1x |−1)1/2(log log |1x |−1)1/2

)
. (109)

The bound (109) is optimized by taking γ = 4, which is precisely the value that leads to the asymptotic
log 4̂(k) = (3 + o(1))k2 log k predicted by the heuristics at the conclusion of Section 11A. Substituting
into (91), we finally obtain

|v(t, x +1x)− v(t, x)| ≲ |1x |
1/3−B

√
(log log |1x |−1)/(log |1x |−1), (110)

where one can take the constant B = 2
√

2
3 at the expense of introducing the additional lower-order term8

from (109). In particular, v belongs to
⋂
α<1/3 L∞

t Cα
x , and therefore belongs to

⋂
α<1/3 Cα

t,x by the results
in [Isett 2023]. To check that v has compact support in time, note that the time support in each iteration
grows by at most a factor

4−1
(k)e

−1/2
v,(k) = 4̂−1

(k)e
−1/2
R,(k) = 4̂

−2/3
(k) exp

(
−

1
3 log 4̂(k) − 1

2 log eR,(k)
)
.

8The derivation of (92) suggests that taking g(k) =
(∑k

I=1(log log 4̂(I ) + log Ĉ)
)
+ (log log 4̂k/2) would optimize the

lower-order terms as well, although this alternative choice would not affect the leading-order terms.
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Using (100) and (102), we conclude that the series
∑

k 4
−1
(k)e

−1/2
v,(k) converges, and hence the limiting

solution is supported on a finite time interval. This calculation concludes the proof of Theorem 1.1.

12. Improving the borderline estimate

In this section, we sketch roughly how the value of the B appearing in the regularity estimate (110) can be
improved by combining with the approach to the gluing lemma introduced in [Buckmaster et al. 2019a].

Recall that, in the notation of [Isett 2018], the gluing lemma is proved by introducing, for a given
Euler–Reynolds flow (v, p, R), corrections

yℓ =

∑
I

ηI yℓI and p̄ =

∑
I

ηI p̄I

to the velocity and pressure such that the new velocity field ṽℓ = vℓ + yℓ and pressure p̃ = p + p̄ solve
the Euler–Reynolds system with a new Reynolds stress R̃ that is supported in disjoint time intervals of
width θ ∼ (log 4̂)−24−1e−1/2

v . The new stress R̃ is constructed in terms of symmetric tensors r jℓ
I that

solve ∇jr
jℓ
I = yℓI , which are obtained by solving the following initial value problem:9

(∂t + vi
∇i )r

jℓ
I = R jℓ

[∇i [∇av
irab

I ] − yi
I ∇iv

b
] − y j

I yℓI − p̄I δ
jℓ

− R jℓ,

r jℓ
I (t (I ), x)= 0.

(111)

Here R jℓ is an order −1 operator that inverts the divergence equation in symmetric tensors, and the
identity ∇jr

jℓ
I = yℓI can be checked using the equation

∂t yℓI + vi
∇i yℓI + yi

I ∇iv
ℓ
+ ∇j (y

j
I yℓI )+ ∇

ℓ p̄I = −∇j R jℓ,

∂t yℓI + vi
∇i yℓI + yi

I ∇i uℓI + ∇
ℓ p̄I = −∇j R jℓ,

(112)

where uℓI = vℓ+ yℓI is the classical solution to incompressible Euler equations with initial data vℓ(t0(I ), x).
In [Buckmaster et al. 2019a], a different approach to solving and estimating solutions of the equation

∇jr
jℓ
I = yℓI is taken. There, one first considers the potential z̃ I =1−1

∇ × yI , which solves ∇ × z̃ I = yI ,
div z̃ I =0, and turns out to satisfy an evolution equation that (like (111)) has a good structure. From z̃ I , one
then obtains a symmetric antidivergence for yI by applying a zeroth-order operator (e.g., r jℓ

I =R jℓ
[∇×z̃ I ]),

which is estimated using Schauder and commutator estimates for Calderón–Zygmund operators (CZOs).
(We note that, conversely, estimates for z̃ I can be deduced from those of r jℓ

I above by similar zeroth-order
commutator estimates.) The key simplification comes in treating the term 1−1

∇ × [yI · ∇v] that is
analogous to the term R jℓ

[yI · ∇v] in (111), the latter of which had been treated by a decomposition into
frequency increments in [Isett 2018]. For the present applications, the estimates employed in [Buckmaster
et al. 2019a], which apply the classical local well-posedness theory for Euler and Schauder and commutator
estimates for CZOs, are not strong enough as they lose small powers of the frequency 4, which restricts
the regularity to 1

3 − ϵ for some ϵ > 0. However, as we now explain, combining the techniques in

9Here we have simplified the equations by combining the equations for the ρ jℓ
I and z jℓ

I from [Isett 2018] into one equation.
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[Buckmaster et al. 2019a] and [Isett 2018] leads to a logarithmic improvement in the timescale of the
gluing and hence a logarithmic improvement in the main estimate of the iteration.

The approach of [Buckmaster et al. 2019a] can be extended to any dimension using the antisymmetric
potential10 defined by

ψab
I = Bab

[yI ] :=1−1(∇a yb
I − ∇

b ya
I ),

which solves the Hodge system11

∇aψ
ab

= yb
I , (∇ ∧ψ)abc

:= ∇
aψbc

− ∇
bψac

+ ∇
cψab

= 0,
∫

T3
ψ(x) dx = 0. (113)

Using the antisymmetry of ψab
I , one obtains the identity

yi
I ∇iv

ℓ
= ∇a[ψ

ai
I ∇iv

ℓ
]. (114)

Using (114) and ψab
I = Bab

[y j
I ] = Bab

∇i [r
i j
I ] can provide an alternative approach to treating the low-

frequency part of the term R jℓ
[yi

I ∇iv
b
] in (111) and the analogous term in the pressure.

Towards improving the timescale of the gluing, apply (112) along with the calculus identity (which we
express in both index and invariant notation)

1ψab
= (∇ ∧ [∇¬ψ])ab

+ (∇¬[∇ ∧ψ])ab,

∇i [∇
iψab

] = (∇a
[∇jψ

jb
] −∇

b
[∇jψ

ja
])+ ∇i [∇

iψab
+ ∇

bψ ia
+ ∇

aψbi
],

to derive the following equation for the potentialψab
I , generalizing [Buckmaster et al. 2019a, Section 3.3]:12

1[(∂t + vi
∇i )ψ

jk
I ] = ∇a∇i [(ψ

jk
I ∧ ∇

a)vi
] −∇

j
∧ [∇a(ψ

ai
I ∇iv

k)+ ∇a[ya
I yk

I ] +∇i Rik
]

+ ∇
j
∧ [∇i [∇av

iψak
I ]],

(115)

ψ
jk
I ∧ ∇

avi
:= ψ

jk
I ∇

avi
−ψak

I ∇
jvi

+ψ
aj
I ∇

kvi .

This derivation relies on (113) and ∇
j
∇

k p̄I − ∇
k
∇

j p̄I = 0, and uses that ∇iv
i
= 0 to maintain the

divergence form. The convention above for ∇
j
∧ applied to a vector field is ∇

j
∧ uk

:= ∇
j uk

− ∇
ku j ,

while (ψ jk
I ∧ ∇

a)vi indicates a sum over cyclic permutations of jka in ψ jk
I ∇

avi .
One may now couple (115) to (111) while writing

R jℓ
[yi

I ∇iv
ℓ
] = R jℓ

∇a[ψ
ai
I ∇iv

ℓ
]

and similarly for the analogous term 1−1
∇ℓ[yi

I ∇iv
ℓ
] appearing in the pressure p̄I . By considering a

weighted norm h(t)= hI (t) such that
(
setting N̂ := (ev/eR)

1/2 and, for instance, α =
1
7

)
∥∇a⃗rI ∥C0 + ∥∇a⃗ψI ∥C0 + 4̂−α(∥∇a⃗rI ∥Ċα + ∥∇a⃗ψI ∥Ċα )≤ N̂ (|a⃗|−2)+4|a⃗|(4e1/2

v )−1eRh(t),

∥∇a⃗ yI ∥C0 + 4̂−α
∥yI ∥Ċα ≤ N̂ (|a⃗|−2)+4|a⃗|e1/2

R h(t) for 0 ≤ |a⃗| ≤ 3,

10We write ψab to agree with the usual stream function ψ in dimension 2, which is related by ψab
= ψϵab, where the

two-dimensional volume element ϵab is the unique antisymmetric tensor with ϵ12
= 1.

11We caution the reader that our normalizations for wedge products are taken to elucidate the present calculations, but do not
agree with all standard normalizations, which can differ up to multiplication by constants.

12A slight departure from [Buckmaster et al. 2019a] is the isolation of quadratic terms of the form y j
I yℓI , which would be

estimated jointly in yi
I ∇iv

ℓ
+ ∇i (yi

I yℓI )= yi
I ∇i uℓI in the approach of that paper. The y j

I yℓI terms are kept separate here in order
to avoid a resulting additional derivative loss in the estimates.
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and following the Littlewood–Paley approach to the gluing estimates in [Isett 2018], we obtain the bound

h(t)≲ (log 4̂)4e1/2
v

∫ t

0
(1 + h(τ ))2 dτ. (116)

The prefactor in (116) improves the analogous prefactor in [Isett 2018, Proposition 10.1] by a factor
of (log 4̂)−1, which thus improves the timescale θ by a logarithmic factor to θ ∼ (log 4̂)−1(4e1/2

v )−1.
What this improvement in timescale yields is that the time cutoff factors of η′

I in the terms of the
form ∼ η′

I r jℓ
I that compose the new stress error R̃ have become smaller by a factor (log 4̂)−1 in size,

while the antidivergence terms r jℓ
I have increased in size by a factor of (log 4̂) over the elongated

time scale.
Although the estimate ∥R̃∥C0 ≲ (log 4̂)eR on the stress does not improve, the estimate on the advective

derivative improves logarithmically to

∥Dt R̃∥C0 ≲ (log 4̂)24e1/2
v eR.

The bound (19) for the new frequency-energy levels in the main lemma similarly improves by one power
of log 4̂ to become

(4′, e′

v, e′

R)=

(
C̃ N4, (log 4̂)eR, (log 4̂)A e1/2

v e1/2
R

N

)
, A =

3
2
. (117)

(One can alternatively pursue an approach closer to [Buckmaster et al. 2019a] wherein the equation for
ψab

I is coupled to the evolution equation13 for a different, symmetric antidivergence such as

r̃ jℓ
I :=1−1(∇ j yℓI + ∇

ℓy j
I ).

Implementing this alternative approach requires additional, sharper commutator estimates.)
The improvement in the power A =

3
2 of log 4̂ in (117) then leads to an improvement in the constant B

in the leading-order term of the regularity estimate (110). Namely, repeating the analysis of Section 11
but with A =

3
2 instead of 5

2 improves the leading-order term in (102), which leads to a factor of
(1

2γ +
4
3

)
in (109) in place of

( 1
2γ + 2

)
. After choosing γ =

8
3 to optimize (109), one obtains a leading-order

constant of B =
4
3 = 2

( 2
3

)
instead of B = 2

√
2
3 . Note that, with the improved constant, the function space

implicitly defined by the estimate (110) is strictly contained in the one with the larger value of B, and the
corresponding norms are not comparable to each other.
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