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L?-POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT

B0 BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

This article introduces L? versions of the support function of a convex body K and associates to
these canonical L”-polar bodies K°# and Mahler volumes M, (K). Classical polarity is then seen
as L%°-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler
conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers
for each p € (0, 00). We settle the upper bound by demonstrating the existence and uniqueness of an
LP?-Santal6 point and an L?-Santal6 inequality for symmetric convex bodies. The proof uses Ball’s Brunn—
Minkowski inequality for harmonic means, the classical Brunn—Minkowski inequality, symmetrization,
and a systematic study of the M, functionals. Using our results on the L”-Santalé point and a new
observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced
to lower bounds on the L?-Mahler volume coupled with a certain conjectural convexity property of the
logarithm of the Monge—Ampere measure of the L?-support function. We derive a suboptimal version
of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this
approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler
conjecture is instead precisely an approach to the L!-Mahler conjecture.
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1. Introduction

The polar K° and the support function hg of a convex body K are fundamental objects in functional and
convex analysis. The Mahler and Bourgain conjectures have motivated an enormous amount of research
in those fields over the past 85 years. One of the goals of this article is to point out that K° and hg are
L®°-versions of a more general one-parameter family of objects

K®? and hp k.
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introduce the associated one-parameter generalization of the Mahler volume M, and conjectures, and
establish some of their fundamental properties. As we explain in detail and back up with explicit
computations, minimizers should be unique (see Figure 3 and the discussion surrounding it). This is a
subtle, but perhaps crucial, advantage, as compared to Mahler’s original conjecture. To quote [Tao 2007]
(see also [Btocki 2015, p. 90]),

In my opinion, the main reason why this conjecture is so difficult is that unlike the upper bound,
in which there is essentially only one extremiser up to affine transformations (namely the ball),
there are many distinct extremisers for the lower bound. ..

As an application of the theory of L?-polarity, we develop a connection between these new objects
(LP-support functions and L?-Mabhler volumes) and Bourgain’s slicing conjecture, e.g., making contact
with Kobayashi’s theorem on the Ricci curvature of Bergman metrics. Finally, we explain how Nazarov’s
and Btocki’s work on a complex-analytic approach to the classical Mahler conjecture fits in, being
precisely an approach to the L!-Mahler conjecture.

Our approach is loosely motivated by complex geometry, but the article in its entirety can be read
with no knowledge of complex methods. As is probably clear from the text, the authors are novices in
the study of the Mahler and Bourgain conjectures and are sorry for any omission in accrediting results
properly. The motivation for this article lies not so much in the particular results as in showing the link
between complex geometry and this beautiful area. It should also be stressed that the list of references is
far from complete. We have tried to make the text accessible to both convex and complex analysts and so
perhaps included a bit more background than usual.

1A. Motivation from Bergman kernels. Denote by
K°:={yeR":(x,y)<1forall x € K} (1-1)

the polar body associated to a convex body (compact and convex with nonempty interior) K C R”. A key
step in Nazarov’s complex-analytic approach to the Bourgain—Milman inequality [1987, Theorem 1] is a
bound on the Mahler volume

M(K):=n!|K||K"| 1-2)

of a symmetric (i.e., —K = K) convex body K from below by a multiple of the Bergman kernel K7, (z, w)
of the tube domain Tk := R" + +/—1K over K, evaluated on the diagonal at the origin [Nazarov 2012,
p. 338]. This was generalized by Hultgren [2013, Lemma 11] and two of us [Mastrantonis and Rubinstein
2022, Proposition 6] to any convex body K:

7" |K*Kry (V=1b(K), V=1b(K)) < M(K —b(K)), (1-3)

dx
b(K):= /Kx m

This article, however, is not about Bergman kernels (though we come back to Bergman kernels in

where

is the barycenter of K.

Sections 1F and 6E). Nonetheless, the L?-Mahler volumes introduced below are partly motivated by (1-3).
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In order to prove (1-3) one uses Jensen’s inequality together with an explicit formula for the Bergman
kernels of tube domains evaluated on the diagonal, due to [Rothaus 1960, Theorem 2.6; Koranyi 1962,
Theorem 2; Hsin 2005, (1.2)], that as observed recently can be expressed as [Mastrantonis and Rubinstein

2022, Remark 36]
/ e M.x() d_y’ (1-4)
R7 |K|

Kre©.0) = 0

where, following [Mastrantonis and Rubinstein 2022, Definition 13], we denote by
d
hk(7) = log / pen 4 (1-5)
K K|
the logarithmic Laplace transform of the convex indicator function 1% (1% is 0 on K and oo other-

wise). Therefore, the left-hand side of (1-3) becomes 7" |K| [gn e M.k 0) gy, bearing a curious
resemblance to the standard formula for the Mahler volume (1-2),

M(K) = |K|/ e "k gy (1-6)
Rl‘l
(see (4-2) below), where
hi (y) := sup (x, y) (1-7)
xeK

is the (classical) support function of K.

1B. LP-support function, -polarity, and -Mahler volume. Motivated by the preceding discussion and
[Mastrantonis and Rubinstein 2022, Remark 36], we introduce the L?-support function of a compact
body (compact with nonempty interior) K C R” for all p > 0,

1

4ot

hp,K(y)ZZIOg(/ e”(x’”—x)p, y €R", (1-8)
K IK|

unifying and interpolating between (1-5) and (1-7) (notice that heo g := limp o0 hp x = hg by

Corollary 2.7). These are convex functions in y, monotone increasing in p, and take the Cartesian

product of bodies to the sum of the respective L?-support functions (Lemma 2.2). Less obviously, they

also enjoy a convexity property in p (Lemma 2.4), and a “concavity” property in K (Lemma 2.5).
Generalizing (1-6), we introduce the L?-Mahler volume,

Mp(K) = |1<|/ e k0D gy (1-9)
Rﬂ

The functional M), shares many (but not all) of the properties of M = M, (by Corollary 2.7), e.g.,
invariance under the action of GL(n, R) (Lemma 4.7), tensoriality (Remark 2.3), existence and uniqueness
of a Santal6 point (Proposition 1.5), and a Santal6 inequality for symmetric bodies (Theorem 1.6).

It is natural to ask whether there is an analogue of (1-2) for M), i.e., is there a canonically associated
body to K for which M), can be expressed as the volume of a product body in R2"? We answer this
affirmatively. To that end, we introduce the following:
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Figure 1. The L”-polars of the square B2, :=[—1, 1]? (left), the diamond 312 :=(B2)°
(middle), the 2-simplex centered at the origin (right) for p = % (green), p = 1 (orange),
p =10 (red) and p = 100 (blue).

Definition 1.1. Let K C R”". Define the L?-polar body of K by
o0
K°P .= {y eR” :/ P Lo kY qp > (n— )14 (1-10)
0

Our first result answers the aforementioned question.

Theorem 1.2. Let p € (0, 00]. For a convex body K C R", K°? s convex, closed, has nonempty interior,
and

Mp(K) =n!|K||K>P|. (1-11)
It is compact (bounded) if and only if 0 € int K. For K symmetric, K°P is symmetric.

Theorem 1.2 justifies the notation

1 o0
I yllge.r := " lemho.k(Y) gp (1-12)
(n—=1)!Jo

(the power serves to homogenize), and K°? = {y € R" : ||y| gxo.» < 1}. For p = 0o one recovers the

3=

usual polar body, i.e., K = K° (Lemma 3.6). The case p = 0 is treated in Section 3B1. Figure 1
illustrates some explicit examples.

As p approaches 0, the L?-polars of all three of the bodies pictured in Figure 1 increase to R2. In fact,
for any convex body K C R",, K°? increases to {y : {y,b(K)) < 1} as p — 0 (Proposition 3.7), so we
define K°0 to be exactly that (Definition 3.10). In particular, K °? is either R? or a half-space depending
on whether or not b(K) vanishes. By Example 3.11, we may plot a few of the L?-polars of the standard
simplex on the plane (1-14); see Figure 2. Note that A;’O is a half-space since b(A;) # 0.

The proof of Theorem 1.2 has several parts. To obtain (1-11) we rely on a result of Ball (Theorem 5.20)
that implies that (1-12) has all the properties of a norm, except that it is, in general, only positively
1-homogeneous, i.e., |[Ay|ge.r = A|y|lge.r for A > 0. If K is symmetric then | - ||go.» is fully
1-homogeneous, i.e., a norm (then K°? is also symmetric). For completeness, we include a detailed and
self-contained proof of Ball’s result in the Appendix. In particular, || - ||go.» is convex and so is K°*2.
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Figure 2. The boundary of (A)®? for p = 0 (green), p = 2 (orange), p = 10 (red),
and p = oo (blue).

Equality (1-11) follows from a standard formula relating the volume of a convex body to the surface
integral of |- ||, over the unit sphere (see (3-2)). Nonemptiness of the interior follows from K° C K*®?
(Lemma 3.6). This inclusion also implies that K°-? is unbounded when 0 ¢ int K. The converse is slightly
more subtle: when 0 € int K one has a small cube [—¢, €]" C K. For classical polarity this would be the
end of the argument; yet unlike classical polarity, L?-polarity does not invert inclusions, so we cannot
simply argue that K°? C ([—e¢, €]")%?. Instead, we use the existence of a small cube inside of K to
obtain a lower bound on £, g in terms of A, [_ .= (see (3-8)), which then induces an upper bound on
K°? by a multiple of ([—¢, £]")°P. The latter can be shown to be bounded (Claim 3.4), from which the
boundedness of K°? follows by using yet another key estimate (Lemma 2.6).

1C. LP-Mahler conjectures and uniqueness of minimizers. For g > 0, denote by

By :={xeR":[x1[T+---+[xn? < 1} (1-13)
the (closed) n-dimensional g-ball, and denote by

Ap:={x€[0,00)" :x1+-+x, <1} (1-14)
the standard simplex in R”. We propose a 1-parameter generalization of Mahler’s conjectures. Mahler’s
original conjectures [1939a; 1939b, p. 96] amount to setting p = oo in the following statements.
Conjecture 1.3. Let p € (0, 00]. For a symmetric convex body K C R”,

Mp([—1.1]") = Mp(K) = Mp(B3).
Conjecture 1.4. Let p € (0, o<c]. For a convex body K C R",
inf Mp(A, —x) < Mp(K).
XEA,

By Proposition 1.5 below, the infimum in Conjecture 1.4 is attained by a unique point.

By the Bourgain—Milman inequality [1987, Corollary 6.1], there is ¢ > 0 independent of dimension
so that M(K) > ¢" for all convex bodies K C R”. By Lemma 3.12 below, this induces a lower bound
on M,, for all p with the constant only depending on p. The best known constant for M in dimensions
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n > 4 with K symmetric is ¢ = & [Kuperberg 2008, Corollary 1.6; Berndtsson 2021, Theorem 2.1].
The sharp bound ¢ = 4 is due to [Mahler 1939a, (2)] in dimension # = 2 and [Iriyeh and Shibata 2020,
Theorem 1.1] in dimension n = 3 (see also [Fradelizi et al. 2022]). For general K, the best known constant
isc =2 forn =3 and ¢ = % for n > 4 by the symmetric bound and a symmetrization trick (see, for
example, [Mastrantonis and Rubinstein 2022, Corollary 55]). In dimension n = 2 the sharp bound is due
to [Mahler 1939a, (1)]. One may also formulate other versions of Mahler’s original conjecture, e.g., to
zonoids [Reisner 1986] or unconditional bodies [Saint-Raymond 1981, §4] and generalize these to all p,
but in this article we focus on Conjectures 1.3 and 1.4. In the special case p = 1, using (1-4) one can
show that the lower bound of Conjecture 1.3 is equivalent to a conjecture of Btocki [2014, p. 56], while
Conjecture 1.4 reduces to a conjecture of [Mastrantonis and Rubinstein 2022, Conjecture 10], both stated
in terms of Bergman kernels of tube domains.

Conjectures 1.3 and 1.4 for all p € (0, oo) imply Mahler’s conjectures, as we show in Lemma 3.12. On
the surface, the former look harder to deal with. However, there is a subtle, perhaps crucial, advantage in
the “regularized” version of the symmetric Mahler conjecture (Conjecture 1.3 for p € (0, c0)) compared
to the classical version (p = co) of that conjecture. This has to do with the nonuniqueness of minimizers
in the classical symmetric Mahler conjecture which has been pointed out by experts [Tao 2008, §1.3;
2007] (see, in particular, the comments in the latter) as one of the main obstacles to tackling it (see also
the quote by Tao in the Introduction). Let us elaborate on that.

Indeed, tensoriality of M = M, together with its invariance under classical polarity leads to the
conjectured nonuniqueness of symmetric minimizers, referred to as Hanner polytopes (nonuniqueness
here is in the strong sense: after taking the quotient by GL(%, R), i.e., there are minimizing bodies that
are in different GL(n, R)-orbits). Hanner polytopes are symmetric convex polytopes that are defined
inductively: [—1, 1] is the unique Hanner polytope in dimension # = 1. In higher dimensions, a Hanner
polytope is given either as the Cartesian product of two lower-dimensional Hanner polytopes, or as the
polar of such [Hanner 1956, Theorems 3.1-3.2, 7.1; Hansen and Lima 1981, Corollary 7.4]. For example,
in dimension n = 3 there are precisely two non-GL (7, R) equivalent Hanner polytopes: the cube [—1, 1],
as the product of lower-dimensional Hanner polytopes, and its polar Bf [Hanner 1956, pp. 86-87].

By contrast, our L?-polarity operation (1-10) is no longer a duality, i.e., (K°?)°? £ K in general.
In fact, the L?-polar always has a smooth boundary for p € (0, 00), and hence L?-polarity is never a
duality operation among polytopes. By (1-11) this means M, is not invariant under L”-polarity. We
conjecture that for all p € (0, 00), up to the action of GL(n, R), M,, is uniquely minimized by the cube
among symmetric convex bodies, and by the simplex, appropriately repositioned, among general convex
bodies. If true, this would give some motivation for studying M, and show that the original Mahler
conjecture has (for better and for worse) additional invariance absent from our L?-Mahler conjectures.
Figure 3 illustrates this symmetry-breaking property of M, in n = 3:

We emphasize that the above discussion pertains to the symmetric case, since in the nonsymmetric
case, the simplex, appropriately repositioned, is already conjectured to be the unique (up to GL(n, R))
minimizer for the classical nonsymmetric Mahler conjecture [Tao 2007]. That is, M should be minimized
by A, — b(A,), where b(A,) coincides with the Santal6 point of A,. Note that (A, —b(Ay))° is
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Figure 3. M, (B3)/M,(B3,) for p € [1.20].

a GL(n, R) image of A,, —b(A,), so polarity does not produce a non-GL(n, R) equivalent minimizer in
this case. The conjectured uniqueness of the minimizer in the nonsymmetric case (regardless of p) is
perhaps related to the fact that A, cannot be expressed as a product of polytopes of lower dimension.

1D. L2-Santalo theorem. For a function f : R” — R U {oco}, denote by

V(f)i= /R O ar ad b(/) :=%f) [ 3o ax

its volume and barycenter respectively. This terminology is motivated by V(hg) = n!|K°| (see (4-2)),
and b(hg) = (n + 1)b(K°) (see (4-1)). By Theorem 1.2, V(h, k) = n!|K*?|. However, lacking
homogeneity, it is not clear how b(h,, k) can be directly related to b(K°-?) (Section 4). Our next result
generalizes the Santal6 point.

Proposition 1.5. Let p € (0, 00]. For a convex body K C R" there exists a unique x, g € R" with
Mp(K —xp k) = inf Mp(K—x),
x€R”

which is also the unique point such that b(hp g —x, ) = 0. Moreover, xp k € int K.

Part of the proof of Proposition 1.5 is almost identical to Santald’s proof [1949, §2] of the existence and
uniqueness of Santal6 points. The idea is to show that the function x > M, (K — x) is oo for x ¢ int K
(Lemma 4.2), and smooth and strictly convex for x € int K (Lemma 4.4). This forces the existence of a
unique minimum. The main difference is that we study fRn e .k ) dy under translations of K, while
Santal6 [1949, (1.1)] studied the surface integral fa B} hg(u)™" du.

One of our main results is a generalization of Santalé’s theorem, verifying the upper bound in
Conjecture 1.3:

Theorem 1.6. Let p € (0, o0]. For a symmetric convex body K C R",
Mp(K) < Mp(B3).

In particular, by taking p — oo, one recovers Santal6’s inequality [1949, (1.3)] M(K) < M(B})
(though, of course, for this purpose alone there are direct, easier, proofs, e.g., [Saint-Raymond 1981,
Theorem 14]).
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The L?-polar K°-? (1-10) is central to the proof of Theorem 1.6. One idea behind the proof is standard:
for u € 9BJ, the Steiner symmetrization with respect to a hyperplane through the origin

ut={x eR": (x,u) =0},

increases the volume of the L?-polar |(oy, K)®?| > |K°?| (Proposition 5.1). Yet proving this seems
nonstandard and rather nontrivial. We achieve it by proving the estimate

LKP 0wt +tu) + 2(K>P 0 (uh —tu)) C (0w K)>P N (u™ +1tu) forallt € R, (1-15)

L

which compares the slices of K and those of 0, K over u—, and then using the (classical) Brunn—

Minkowski inequality. To obtain (1-15) we use Ball’s Brunn—Minkowski inequality for harmonic means
(Theorem 5.20), together with the convexity of x + log(4 sinh(¢)) (Claim 5.19).

Remark 1.7. Theorem 1.6 is different from the L? Santal inequalities of Lutwak and Zhang, who
introduced the symmetrized L?-centroid body I', K with support function given by

1 dx \7
o)== [ e )

(where ¢y, is a constant that depends on n and p determined by I', Bj = BJ) for which they proved

|K||(T'pK)°| <|B} |2 [Lutwak and Zhang 1997]. Their construction is restricted to symmetric bodies since
I'p, K is always symmetric (regardless of whether K is), and the large p limit does not recover the polar body
but rather the reflection body: limp— 0 I'y K = K U (—K) (since limp—o0 Air, k (V) = supyeg (X, ¥)]).
Subsequently, Ludwig and Haberl-Schuster extended this to nonsymmetric bodies [Ludwig 2005, p. 4195;
Haberl and Schuster 2009, §3] introducing the L?-centroid body M, K * whose support function is

1

hag, k+(y) == (Cn,p(n +p) /Kmax{(x,y),O}p dx)p.

Note that as p — oo, we have K°# — K° (Lemma 3.6), while M, K *+ — K [Haberl and Schuster 20009,
p. 9]. Yet for fixed p, it is not apparent to us if there is a precise relation between M, K™ and our K °-?
(though the polar of former are “isomorphic” to the latter — see Remark 3.14). They seem to be distinct.
For example, I'; K is the Legendre ellipsoid of the convex body; thus bounding | K||(I'2 K)°| from below
by a bound of the form c¢”, where c is a constant independent of dimension, would imply Bourgain’s
conjecture (Conjecture 1.8) [Lutwak and Zhang 1997, p. 14]. On the contrary, by Lemma 3.12 below, the
Bourgain—Milman inequality implies bounds of this type for M,, for all p > 0. It would be interesting
to investigate relations between these constructions and ours, as well as relations to the level-sets of
the logarithmic Laplace transform (see Remark 3.14), e.g., as in [Klartag and Milman 2012; Latata and
Woijtaszezyk 2008].

1E. Relation to the isotropic constant and Bourgain’s slicing conjecture. The L?-support function
hp,k is related to the covariance matrix of a convex body (Lemma 6.3),

C (K) f dx /‘ dx dx (1-16)
oVjj = xixj—— | xXi— | Xj — -
Y x UKl Je UK Ik K|
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via the identity

V2h, k(0) = p Cov(K). (1-17)
This turns out to have an interesting connection to the slicing problem. Set
K|?
CK) = ——. 1-18
(K) det Cov(K) ( )
Note
K

where Lk is the isotropic constant [Brazitikos et al. 2014, Definition 2.3.11]. Bourgain [1986, Remark,
p. 1470; 1991, (1.9)] conjectured the following.

Conjecture 1.8. There exists a constant ¢ > 0 independent of dimension such that C(K) > ¢" for all
n € N and all convex bodies K C R™.

Let B > 0. We introduce the following convexity hypothesis:
UB K :=10gdetV2h1,K+Bh1,K is convex. (*B)
Note here that /& g is twice differentiable (Lemma 4.4). We restrict to p = 1 since property (xp) is
equivalent to a similar convexity property on 4, g (see Remark 6.15).
Theorem 1.9. Let K C R" be a convex body for which (x ) holds for some B > 0. Then:
(1) There is xg € int K with
Mi(K—xg)* /9 \"
C(Ky> 28— —(—].
M S (K—xg) \eB
(i1) There is xg € int K with

C(K) =

M(K—xK)> 7\
e2npn — \2¢2B )

(iii) If K is symmetric,

c(ky= ME) (1)n
eB" — \eB

Theorem 1.9 has the following consequence for Bourgain’s slicing conjecture.

Corollary 1.10. Ifthere is a constant B > 0 independent of dimension such that (x g) holds for all convex
bodies in all dimensions, then Conjecture 1.8 holds.

In this direction, we have the following partial progress:
Theorem 1.11. Property (*, 1) holds for all convex bodies K C R".

As an immediate corollary of Theorems 1.9 and 1.11 we recover the so-called “folklore” bound on the
isotropic constant due to [Milman and Pajor 1989, p. 96].

Corollary 1.12. For a convex body K C R",

C(K) > (26%) .
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Corollary 1.12 is equivalent to an upper bound on the isotropic constant,
Lx <C+n (1-20)

for C = e\/2/_71, and hence is far from optimal: (1-20) holds with C = 2mwe by Milman and Pajor,
Lg <Cnl/* logn by [Bourgain 1991, Theorem 1.6], and Lg < Cnl/* by [Klartag 2006, Corollary 1.2],
while very recently Chen [2021] obtained Lg < C LeC2/log(n) /loglog(3n) (i particular, Lg < Cn? for
all € > 0); see also [Klartag and Lehec 2022, (1)]. On these foundations several authors improved this
to Lx < C(log(n))? for various values of g [Klartag and Lehec 2022; Jambulapati et al. 2022; Klartag
2023]; Conjecture 1.8 remains open.

The proof of Theorem 1.9 starts with the observation (1-17). The convexity assumption (*g) allows
for the application of Jensen’s inequality with respect to any probability measure p. Because of (1-17)
this will only be useful if u is centered at the origin, i.e.,

b() = /Rnydum:ow".

We use the family of log-concave measures given by the %-support functions,

e—hl/p.K(y)dy B e—Phl,K(J’)dy
fRn e—hl/p.K(J’) dy - ./R" e_Phl,K(y) dy’

Vp K = (1-21)
and optimize over p (the equality in (1-21) follows from Lemma 2.2(i) below). Proposition 1.5 is crucial
here, since it ensures that K may be translated to a position for which b(v, ) = 0 (Corollary 4.5). After
applying Jensen’s inequality for the measures v, g, it remains to bound fR" log det Vzhly K dvp ()
and [, 11,k (¥) dvp, x (¥); this is done in Lemmas 6.10 and 6.13 respectively. The L?-Mahler volumes
M, figure quite prominently throughout the proofs.

The proof of Theorem 1.11 is based upon an explicit computation

log det V2hy k (y) = —p(n + Dhpx (y) +log ¥ (), (1-22)
¥ being the determinant of a positive-definite matrix. This relies on writing det V25 p,K as the determinant

of the (n+1) x (n+1) Gram matrix M of the first moments of the measure

eP{x:y) 12 (x) dx
ePlhp.xk(y)  |K|

Each entry of M then involves an e "?"». (") term; thus det V2h, xk = detM = e~ (+DPhp K for a
positive ¥ > 0. Taking the logarithm gives (1-22). For the remaining terms, v, being the sum of products
of n + 1 integrals over K, can be written as an integral over K" *1,

from which the convexity of log ¥ can be deduced (Lemma 6.16), and hence the claim of Theorem 1.11.
Finally, we generalize Theorem 1.11 to the setting of a general probability measure — this is formulated
in Theorem 6.19. In this generality, we show that the constant B =n 41 is actually optimal. In Section 6E
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we give a completely different proof of both theorems using, surprisingly, Kobayashi’s theorem on the
Ricci curvature of Bergman metrics, coming back full circle to the point of departure of this article in
Section 1A: Bergman kernels.

1F. Perspective on the work on Nazarov and Blocki. Having presented L?-polarity, it is perhaps worth-
while to revisit our original motivation for developing this theory: [Nazarov 2012; Blocki 2014; 2015].
Nazarov applied the theory of Bergman kernels of tube domains to tackle the symmetric Mahler
conjecture. The constant he obtained ¢ = ’17—2 in the inequality M(K) > ¢" for symmetric convex
bodies K C R" was suboptimal compared to the conjectured value of ¢ = 4 (see Section 1C) but the
possibility remained open that perhaps a better choice of holomorphic L? function and weight function
in Hormander’s E_i—technique would allow to tackle the Mahler conjectures, or that perhaps, as Nazarov

[2012, p. 337] suggested

...in order to get the Mahler conjecture itself on this way, one would have to work directly with
the Paley—Wiener space by either finding a good analogue of the Hormander theorem allowing
to control the Paley—Wiener norm of the solution, or by finding some novel way to construct
decaying analytic functions of several variables.

Nazarov’s approach was subsequently revisited by Blocki [2014; 2015], Hultgren [2013], and ourselves
[Berndtsson 2022; Mastrantonis and Rubinstein 2022]. It became plausible after [Btocki 2015, p. 96] that
Nazarov’s approach might not yield Mahler’s conjectures. In view of the results in the present article (e.g.,
Lemma 3.12) it is now clear why this is so, and exactly how Nazarov’s approach fits in our story: it is an
approach to the case p = 1 of Conjectures 1.3—1.4. It is a beautiful coincidence that L !-Mahler volumes can
be expressed in terms of Bergman kernels (see Section 1A and [Mastrantonis and Rubinstein 2022, (42)]),

Mi(K —b(K)) = (47)" | K [PK 1y (V=1b(K), V=1b(K)); (1-23)

but even if one had a complete understanding of the variation of such kernels among tube domains,
solving the classical Mahler conjectures would still require bridging the gap between L! and L.
Finally, we touch upon an observation encountered in [Btocki 2015, p. 96]:

This shows (although only numerically) that the Bergman kernel for tube domains does not
behave well under taking duals.

Indeed, the theory of Bergman kernels of tube domains corresponds to M and L !-polarity and the lack
of homogeneity of /11 g leads to incompatibility with L°°-polarity, i.e., with classical polarity/duality.

Organization. In Section 2A basic properties of h, g are laid out, namely the convexity of &, g
(Lemma 2.1), its behavior under affine transformations of K, Cartesian products, and its monotonicity with
respect to p (Lemma 2.2). Convexity properties of /1, x with respect to p or K are studied in Section 2B.
In Section 2C, an upper bound to the support function /4, in terms of /1, g for bodies with barycenter at
the origin b(K) = 0 is given. Section 2D is dedicated to the explicit computation of /1, [ }» for the
cube. In Section 3A the L?-polar K7 is introduced, for which M, (K) = n!|K||K*?|, K° C K*?
and (), K*# = K°. Inequalities relating M to M, are established in Section 3C, and Section 3D is
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dedicated to computing M, ([—1, 1]"). In Section 3E, the L?-support of the diamond B is explicitly
computed in all dimensions and for all p (Lemma 3.17). Section 4 establishes the existence and uniqueness
of Santal6 points for M, (Proposition 1.5), and in Section 5 we prove a Santal6 inequality for M, for
symmetric convex bodies, showing that the 2-ball BY is the maximizer (Theorem 1.6). In Section 6, we
study the isotropic constant and the relations between &, g, M), and Bourgain’s conjecture. In particular,
we prove Theorem 1.9, Theorem 1.11, and its generalization, Theorem 6.19. We conclude by giving an
alternative proof of the latter using Bergman kernel methods and Kobayashi’s theorem. In the Appendix,
we verify that K°? is a convex body by proving Proposition A.1, and provide a detailed proof of Ball’s
Brunn—-Minkowski inequality for the harmonic mean (Theorem 5.20).

2. LP support functions

In this section we lay out basic properties for /1, k. In Section 2A we show convexity of y > &, g ()
(Lemma 2.1) and list several properties in Lemma 2.2, e.g., how /), g transforms under affine transforma-
tions of K or with respect to Cartesian products. In Section 2B we study convexity properties of /1, g in
terms of convex combinations of p (Lemma 2.4) or K (Lemma 2.5). An upper bound for the support
function hg by hj, k for bodies with barycenter at the origin »(K) = 0 is given in Section 2C. Finally, in
Section 2D we carry out explicit computations for the cube.

2A. Basic properties of hp . The functions h, g defined by (1-8) are convex, even if the underlying
body K is only compact.

Lemma 2.1. Let p € (0, 00). For a compact body K CR", hy g (y) is a convex function of y.

Proof. Let y,z € R" and A € (0, 1). By Holder’s inequality,

1 d
ok (1= A)y +Az) = — log( / P (1=R)y+Az) —x)
p K |K|

— llog(/ (ep<xsy))1_i(ep<xaz))k d_x)
p K K|

1-A A
TP K K| K K|
p K Kl P K K|

= (1 =Dhpx(y) +Ahp k(2). .

Next, we list some properties of L?-support functions that will be useful throughout.

Lemma 2.2. Let 0 < p < q < 0o. For compact bodies K C R", L C R™ and A € GL(n,R), a € R":
@) hp,x(¥) = 5h1,x(pY).

(i) hp,k—a(¥) = hp,x(y) —(a. y).

(i) hp,ak (y) = hp k(AT y).
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(V) hp kxL(¥,2) =hp gk (y) +hp,L(2), y €R", z€ R™
(V) hp.xk <hgx <hk.

Proof. (i) By definition,
1 dx 1 dx 1
() = tog [ er) S5 = Jtog [ er) L~ 2y ().
i p Kl p "k K| p

(i) Changing variables x =u —a for x € K —a, u € K, and dx = du,

! dx 1 du
hp,k—-a(y) = —IOg(/ ePx:y) ) = —10g(/ eP(u—a.y) )
nee p K—a |K —al P X K|

1 d
-1 10g(/K o) %e—pw,y)) =y k() — (a. ).

(iii) For x = Au, dx = |det A|du,

! d 1 det A|d
hp,ak(y) = —IOg(/ epxy) & ) = _10g(/ P (Au.y) |det A|du )
P AK |[AK|) p K det A K|

1 7.,y du
= ;log(/K ePATY) m) = hp,K(ATu).

(iv) By Tonelli’s theorem [Folland 1999, §2.37; Mastrantonis and Rubinstein 2022, Claim 22],

log( / o P{Cran),(v.2) _dxdu )
KxL |KX Ll
( / oPx) pplza) 4¥AU )
KxL |K||L]
|:(/ eP(x:y) dx )(/ eP(z:u) d_“)i|
K K| IL|
_ llog(/ opixy) 9% )+llog(/ oPiz) d_“)
p K K| L IL]

= hp,k (¥) + hp,L(2).

hp,KxL(y’ z) =

log

1
4
1
P
1
P

(v) By (1-7),

1 d 1 d 1
hy x(y) = —log(/ ed(x:7) X ) - log(/ edhK (y) X ) — —logeth(y) =hg(y).
q K K1)~ ¢q K Kl ¢

By Holder’s inequality (note % > 1),

y 1—-2
1 d 1 q dx \¢ dx q
hy.x(y) = —log(/ o P(x:y) _) < —log[(/ e p PXY) _) (/ _) ]
P P K |K| P K |K| K K]
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Remark 2.3. One may wonder why we have a factor of n! in (1-2) and (1-11). The first reason is that
then one has (1-6) and (1-9). The second, more important, reason is that then M, is fensorial. Indeed, by
Lemma 2.2(iv) and (1-9),

Mp(KxL):=|KxL| e M kx1(02) 4y dz
R xR

= |K||L| et kD) g=ho.L () qy dz = M, (K)M,(L).
RnXRm

2B. Additional convexity properties. Lemma 2.1 states that y — hj g (y) is convex regardless of the
convexity of K. Regarding p and K as the variables, we show two more properties: Lemma 2.4 describes
convexity in p, and Lemma 2.5 shows an asymptotic (in p) concavity in K. These two lemmas are not
used elsewhere in the article and we state them for their independent interest.

Lemma 2.4. Let p,q € (0, 00). For a convex body K C R" and A € (0, 1),

1-Mp Aq

ha— <— ——h, k.
A=Prtdak = (3 p g K T T p+2q K

Proof. By Holder’s inequality,

1 - dx
h(l—)t)p-f-/lq,K(y) = m log(/l\( e((l A)p-i-lfI)(x,y) m)

= ; log(/ e(1=A)p{x.») s Aq{x,y) d_x)

1-A A
< 1 log[(/ eP(x:¥) d_x) (/ ed(x:¥) d_x) }
(I=M)p+2q K K] K K]

1—2A 1 d A 1 d
_ 1(,\ )P —log(/ W ICRY) _x)+—q_log(/ 04(%.7) _x)
(1-=Mp+2iqgp K |K| (1-Mp+2iqq K |K|

T (1-M)ptiq mhq,K(J’)- O

Lemma 2.5. Let p € (0, 00). For convex bodies K, L C R" and A € (0, 1),

|(1—)L)K+)LL|)
|[K=ALA )

hp,K(y) +

1
hypa-syk+ir = (1 —=Ahp x +Ahp 1 — > 10g(

Proof. Fix y € R". Note that
La-ayk+aL (1= A)x + Az2)ePAATDFAZI) > (14 (x)eP TN I7A (1 (2)eP Z3))A

for all x, z € R"™. Therefore, by the Prékopa—Leindler inequality [Prékopa 1973, Theorem 3],

1-1 A
/ ePY) 4y > (/ eP(x:y) dx) (/ eP(x-») dx) )
(1-A)K+AL - Uk L
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As a result,

dx
hp.-nk+aL(y) = Og([ ePtxy) )
p(1-AK+AL (DKL (1= A)K +AL|

1
P
1 w1\ ) 4\ 1

> —1lo /ep X,y dx) (/ eP\ %y dx) :|
p g[( p f (1= 1)K + AL]
1
P
=

A 1=A|7 |A
(e o) (e ) i
K |K] L IL]) [(1=A)K + AL|

I |(1—A)K+AL|)
—AMh Ah ——1 ,
) p,K(y)+ p,K(y) » Og( |K|1_A|L|A

as claimed. O

2C. A reverse inequality. By Lemma 2.2(v),
hpxk <hk

regardless of the position of K. A reverse inequality holds when the barycenter is at the origin:

Lemma 2.6. Let p € (0, 00). For a convex body K C R" with b(K) =0, and A € (0, 1),

() < by (3 ) = tog1 = ).

Proof. Let x € K, y e R" and A € (0, 1). The aim is to use Jensen’s inequality to get an upper bound on
(x,y). Since b(K) =0,

(v, y) = <kx, %> = </\x + (1= 1)b(K), %>
_ du y du
_<)\x+(1—k)/K K] A> /<)Lx+(l—k)u >|K| (2-1)

By convexity, (1 —A)x + Au lies in K as x,u € K. Therefore, by (2-1), Jensen’s inequality, and the
change of variables v = Ax 4+ (1 — A)u,

(x,y) = 1oge(x,y) < log(/ e()tx+(1_,1)u,%> d_u)
K K|

= log(/ e(“%) W)
Ax+(1-MK |K]|

_ 1og(—1 / el r) )
(I=)" Jax+a-nk |K]|

1 (v,2) dv) v\ B
= Og((l_k)n/ e? |K|)—Php,1<(pk) nlog(l—2A).

A supremum over x € K gives hx(y) < phk, p(—) —nlog(1—A). By a change of variable, hg(py) <
phk, p( ) —nlog(l —A). The lemma now follows from homogeneity of /. O

Corollary 2.7. Let g € (0, 00]. For a convex body K C R",

lim A =h .
Jlim p.k(V) =hg k()
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Proof. First, let ¢ € (0,00). Since K is bounded, there exists M > 0 with |x| < M for all x € K. In
particular, e?(*-¥) < ¢2dM Y| for all x € K and p < 2¢. By dominated convergence [Folland 1999, §2.24],

lim [ ep(x,y)d_le glxy) 9%
=>4 Jg Kl Jk K]

1 dx\ 1 dx
lim K —lim( =1 pix.y) -1 / qlxy) = _p
Jm fp k() plg}[(p og/Ke |K|) ¢ )¢ K] 2.k (9)-

Next, consider ¢ = oo. By Lemma 2.2(v), hp, k() is monotone increasing in p, with i, g (y) <hg(y).

Therefore,

Thus the limit exists with limp, o0 hp x (¥) < hg(y); equivalently, limp, oo [hp k (V) — (¥, b(K))] <
hg(y)—(y,b(K)). By Lemma 2.2(ii), this is

Ay kb k) (V) = hk—b(x) ()-

On the other hand, as b(K — b(K)) = 0, Lemma 2.6 applies:

hx—bpx)AY) _ hpk-b)(y) n
hg—bx)(¥) = (/\) <2 A( J —Elog(l—k),

where we used the homogeneity of hg (here A can be taken as any fixed value in (0, 1)). Letting first
p —ooand then A — 1,

hx—bk)(y) < pli{go hp,k—bK)(Y)-
In conclusion, hg_p (k) (¥) =limp—co0 hp k—p(k)(y) and using Lemma 2.2(ii) again we obtain g (y) =

2D. The cube. We explicitly compute the L?-support functions and L?-Mahler volumes of the cube
[—1, 1] This will be useful in proving Lemma 4.2 later.

Lemma 2.8. For p € (0, 00),

sinh
hy o1 (9) = — Zl ( (py’)), y e R".

l =1
Proof. By Claim 2.9 below,

1 dx
hy (- n(y)=—10g(/ ePtxy) —)
pl=L P 1) =1, 17|

1 " sinh(py;) 1 1 — inh(py;
_ _log(zn I sin (pyz)_n) _1 Zlog(sm (pyz))' 0
p iy i 2 P pYi

Claim 2.9. For y € R”,

n .
/ e(x,y) dx = 2" 1_[ Slnh(yi).
[(-1,1] /

=1 Vi
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Proof. This may be expressed as the product of integrals

n
(X9) g — /
e dx =
/[_1,1]11 l_[

1
e*1Vi dx;,
i=1771

because e!¥:Y) = ¢X1¥1 ... e¥n¥n and [—1, 1] is the product of n copies of [—1, 1]. It is therefore enough
to take n = 1 and y € R. Suppose first that y # 0. Then

1 1 _ .
/ exydx=[ﬂi| :ey—e y:251nh(y).
-1 Y dx=—1 y y

For y =0, we have f_ll e*0dx = 2. By L’Hopital’s rule also

. 2sinh(y) . eY—e? . e te?
lim ——— = lim ——— = lim ——— =2,
y—0 y y—0 y y—0 1
verifying the formula for all y. (|

3. LP-polarity and LP?-Mahler volumes

In Section 3A, we motivate the definition of the LZ-polar body K°? (Definition 1.1) and prove
Theorem 1.2. In Section 3B, we establish the continuity of K°# in p (Lemma 3.6) and show that,
for p converging to 0, K°# converges either to R” or a half-space (Proposition 3.7). In Section 3C we
generalize (1-3) to a lower bound of M in terms of M, for all p > 0, for bodies with b(K) =0 (see (3-10)).
In Sections 3D and 3E calculations for M ([—1, 1]") and &, gy are carried out and used to numerically
approximate M, (Bl3), providing evidence that M, ([—1, 1]%) < M, (313) when p < oo (Figure 3).

3A. The LP-polar body.

3A1. Motivating the definition. The support function of a convex body is convex and 1-homogeneous
and hence its sublevel set
K°:={yeR" : hx(y) <1}

defines a convex body such that M(K) = Moo (K) = |K| [n e "k () dy = n!|K||K°|. This is special
for the case p = oo. To see why, first recall the definition (1-9), My (K) := | K| [on e~hr.K  Yet despite
the suggestive notation, for p € (0, 00), hp g is not the support function of a convex body since it is
not 1-homogeneous. On the other hand, by Lemma 2.1, &, g is convex and hence the sublevel set
thpk <1} :={y € R" : hp k(y) < 1} is a convex body. Nonetheless, the volume of {/, x < 1} is not
related to M, (K) since despite having

o0
/ e_hp,K(x)dx:/ e {hy x <1} dr;
n —OoQ

without 1-homogeneity it is not clear how {h, x <1} relates to {h, g < 1} for all 7.
In order to properly define the “L”-polar” body we replace &, g by a 1-homogeneous cousin. An
equivalent way of defining a convex body L is via its “norm”:

x|z :=inf{t >0:x etL}. (3-1)
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This is a norm only when L is symmetric, but it is always positively 1-homogeneous and subadditive
with L = {x € R" : || x| < 1} [Gruber 2007, Theorem 4.3]. Given such a “norm”, the volume of L can
be expressed as an integral over the sphere:

|L|=/ dx=/ r"Ldr du
{xeR":|x|L <1} {(r.u)€[0,00)xdBY:||IrullL <1}

1/ullL 1 d
= f / P ldrdu = —/ un . (3-2)
B2 Jr=0 n Jopr llullz

Looking at (3-2) one may be able to recover the “norm” of a convex body by writing its volume as an

integral over dBJ. Our aim is to define a convex body K°? with volume |K®?| = % / e~hr.K_ Starting
from the volume we guess its norm: we need to write | e~k a5 an integral on the sphere matching (3-2),

o0
|K°5P| — l/ e_hp,K(y) dy = l/ / e_hp‘K(ru)rn_l dr du
n! Jpn n! 0B% Jo
du

1

:_/ e (3-3)
n aBg [((n—ll)l .[000 r”l—le—hp,K(ru) dr) m ]n

This justifies the definition of || - ||go.» via (1-12) and K°? as the convex body associated to that “norm”
(Definition 1.1).

3A2. Proof of Theorem 1.2. In this subsection we conclude the proof of Theorem 1.2. We start with two
lemmas.

Lemma 3.1. Let 0 < p < q and recall (1-12). For a compact body K, || - | ge.r < | -|kxea <hg(-). In
particular, K° C K*9 C K°2.

Note the support function of a compact body coincides with the “norm” of the polar body (3-1),
hg () =1"llke, (3-4)
since y € K° if and only if hg (y) < 1 [Gruber 2007, p. 56]. Also, for convex bodies [Rockafellar 1970,
Corollary 13.1.1],
LcCK ifandonlyif |-||g <|-|lz ifandonlyif hgo(-)<hro(-). (3-5)
Lemma 3.2. Let p € (0,00]. For a convex body K C R", K°? is bounded (compact) if and only if
0eintK.

In particular, since K° has nonempty interior [Rockafellar 1970, Corollary 14.6.1], Lemma 3.1 shows
that K2 is nonempty and has nonempty interior.

Before proving Lemmas 3.1 and 3.2, let us recall an integral formula regarding 1-homogeneous
functions that will be useful throughout.

Claim 3.3. Let k € N. For a 1-homogeneous function f : R" — R and x € R" with f(x) # 0,

00 1!
/ rkle= /0¥ g = (k=D 1]3'.
0 f(x)
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Proof. By homogeneity of f, f(rx) =rf(x) for all r > 0. Setting p = rf(x),

k-1
/oork—le—f(rx)dr=[mrk—1e—rf(x)dr: * p _, dp
0

0 o ST F()
oo k—1)!
=i f, A=
as claimed. O

Proof of Lemma 3.1. Let p < q. By Lemma 2.2(v), hp x < hq k. Thus by (1-12),

x| go.r = : - P lemhp.k (r3) gy
' (n—1!Jo

1 o0
E ( / rn—le_hq.K(rx) dr) — ”x ||Ko,q . (3'6)
0

I =

N

(n—1)!

So, for x € K4, || x| go.» <||x| ko.« <1; thus x € K°-. In addition, by homogeneity of s g, Claim 3.3 gives

1 /oo n—1 —hK(rx) d 1 (3 7)
r e r = . -
(=1 Jo hg (x)"

Since by Lemma 2.2(v) hp x < hg, and by (3-4), (3-7) and a computation similar to (3-6) ||x||ge.r <
hg(x) = ||x|| ke, it follows that K° C K°? by (3-5). O

For the proof of Lemma 3.2, it is useful to know that the L?-polars of [—1, 1]” are bounded.
Claim 3.4. For p € (0, 00], we have ([—1, 1]")°? is bounded.

Proof. Since b([—1,1]") = 0, by Lemma 2.6, with A = 3,

ry n
h[—l,l]" (7) = hp,[—l,l]” (ry)+ ; log2

for all y € R” and r > 0. Thus by (1-12),

! g )"
”y”([—l,l]n)mp = ((n_ 1)' /0 Pt le Mo =110 Y dr)
[e'e)
> (( 1 1)' / rn_le_h[_"”n (r%)e%k)gz dr)
n— tJo

_ log2 __log2
_logZ( 1 )
= e p —— 7
hi-117(3)

by Claim 3.3, the homogeneity of /[_; y}», and (3-4). By (3-5),

3=

NI

e e »r
= —h _ n = — _ nyo,
5 h-in ) 5 vl =1,177)

log2 log2
([=1. 112 C2¢ 7 ([-1,1]")° =2e » B,
which is bounded. O
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Proof of Lemma 3.2. Assume 0 € int K and let r > 0 be such that [—r, r]* C K. Then,

1 dx 1 dx
hp,x (y) = —log(/ eP o) —) > —log(/ ePx) _)
’ P \K A N I5

_1 1og( [ e & =r.r)” |)
p [—=r,r ] |[_r» r]n| |K|

1 @2r)"
= h _ n —1 .
p,[—r,r] (y) + ) 0og |K|

(3-8)
Using this and (1-12),

1 1

1 o1 - w(oy)—Lloe @\ (2r)”

”y”K""’Z( 5 |t o= dp) e ] [
(n_ ) 0 |np

Thus, by (3-5),
1

| K|
1

2r)»

K%? C

(f=r.r")™”.

which is bounded by Claim 3.4.
For the converse, we claim that if 0 ¢ int K then K°? is unbounded. By Lemma 3.1, K° C K®? so it
is enough to show K° is unbounded. This is classical [Rockafellar 1970, Corollary 14.5.1]. O

Proof of Theorem 1.2. By Proposition A.1, || - ||geo.» is positively 1-homogeneous and subadditive. The
nonemptiness of the interior of K°? follows from Lemma 3.1 since K° has nonempty interior. It is also
closed and convex as the sublevel set of a continuous, convex function. Convexity of || - || go.» follows
from its 1-homogeneity and subadditivity: for x, y € R” and A € [0, 1],

(1 =2)x + Ayllge.r < [|(1=A)xllge.r + [Aylxe.r = (A =D)l|x][ker + Allylge.r.

If K is symmetric, i.e., —K = K, then

1 dx 1 dz 1 dz
hyx(—y) = — log/ ePx—y) - log/ eP(=z=y) = _ log/ ePEy) = g xO).
’ p K K| p -K K| p K K| 7

Therefore,

||—x||Ko.p:(/0 rn—le—hpx(—rwdr) :(/0 rn—le—hw«(mdr) = [lxxer.

making || - ||ge.» a norm, and K°? symmetric. Finally, (1-11) follows from (3-3) and the definition
of [| - [ xo.r. O

Remark 3.5. Ball showed that for a convex function ¢ : R” — R U {oo} and ¢ > 1, setting

o0 3
= rd=1e=0Y) gr
1y14.4
0

defines a positively 1-homogeneous, subadditive function that is also a norm when ¢ is even [Ball 1988,
Theorem 5]. Then, {y € R"” : ||y ||¢,4 < 1} defines a convex body (for even ¢ [Ball 1988, Theorem 5], for
general ¢ [Klartag 2006, Theorem 2.2]). In this notation, (1-12) reads || y[/%o., = (n —1)! ||y ”Z,),K,n' For
a statement and proof of Ball’s theorem, see Proposition A.1 below.
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3B. Continuity of M, and limiting cases. First, we translate (pointwise) convergence of L”-support
functions to convergence of the norms of the L?-polars.
Lemma 3.6. Let 0 < p < g < oo. For a compact body K C R", K*? C K°? and
lim [lx || go.r = || x[|goa.
p—>q
In particular, (o< p<q K&¥ = K.

Proof. By Corollary 2.7, hj, g increases to hg g as p increases to ¢. Therefore, one may use the monotone

convergence theorem [Folland 1999, §2.14] to take the limit under the integral in the definition of 4, g,
1

1 oo ~u
llm ||X||K0,p = llm rn_le_hp,K(rx) dr
p—=o0 p—~oo\ (n—1)! J,—o
1 oo —n
= (( o / lim (r"~'e~hr.k (X)) dr)

U (% ot hg k) g, )
= r"T e e KX dr) = ||x||go.a- O
((” — 1! /r=o
3B1. The cases p =0 and p = oco. By Lemma 3.6, as p — oo, K°? converges to the polar body K°

S|

in (1-1). In this subsection we focus on the other extreme case p = 0 and show that in the limit p — 0,
K°P converges either to R” or to a half-space, depending on whether h(K) = 0 or not.

Proposition 3.7. For a compact body K C R",
lim ||y[ge.r = (y.b(K))
p—0

and

U Kor =1y eR": (y.b(K)) < 1}.
>0
Proposition 3.7 and Lemma 3.6 imply the following inclusion for all K°?.

Corollary 3.8. For a compact body K C R", K®? C{y e R* : {y,b(K)) < 1} forall p € (0, c0].

The statement of Corollary 3.8 is trivial when p = oo because b(K) € K; thus, by the definition
of the polar, (y,b(K)) <1 for all y € K°. The proof of Proposition 3.7 follows from the fact that the
LP-support functions converge to a linear function as p — 0.

Lemma 3.9. For a compact body K C R" and y € R",
lim hp g (y) = (v, b(K)).
p—0

Proof. Expanding the exponential,
1 dx
() = 5 tog [ erte) S
d Pk K|

1 dx
= _ 0(p?) —
plog(/Kl—Fp(x,y)—i- (p) |K|)

_ %bg(l + p(y,b(K)) + 0(p?)).
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By L’Hopital’s rule,

log(1 ,b(K)) + O(p? ,b(K))+ O
fim ) = i QR ELOBENLOGN) _ o (G BENLOG) )
p—0 p—0 p p—0 1+ p(y,b(K))+ O(p?)
Alternative proof:
1 dx
lim A = lim —lo eP6y)
p—0 rk () p—0 p g/K IK]
(x, y)ep(x.y) dx d
= lim L N =[ (v ) = = (. B(K)).
p—> fKe > K] K | |
again by L’Hopital’s rule. O

Proof of Proposition 3.7. For y € R" with (y, b(K)) # 0, by the monotone convergence theorem [Folland
1999, §2.14] and Lemma 3.9,

1 n—1_—h N
1 op — i —1,—hp k(ry)
phn}) lvllxe-» z}m})((n— D! /(; r"~ e dr)

where Claim 3.3 was used on the 1-homogeneous y — (y, b(K)). If (y, b(K)) = 0, similarly,

S

NI

1
: 1 oo n—1 o
i Wyl = (g [ ar) T =0 =ty bi 0

Proposition 3.7 motivates the following definition.

Definition 3.10. For a compact body K C R”, let

K% :={y eR": (y,b(K)) <1}.
For a set A C R”, denote by
coA

its convex hull defined as the smallest convex set in R” containing A.

Example 3.11. The polar body of the standard 2-dimensional simplex A is given by the intersection of
two half-spaces
AS={(x,y)eR?*:x <landy <1}.

That is because A, = co{(0,0), (1,0), (0, 1)}; thus (x, y) € A° if and only if x = ((x, y), (1,0)) <1 and
y ={(x,y),(0,1)) < 1. In addition, |As| = %; thus the x-coordinate of the barycenter of A, is

1 1 1—x 1 1
— xdxdy=2/ / xdydx=2/ x(1—x)dx = =.
|A2] Ja, x=0Jy=0 0 3

Similarly, ﬁ Ja, ydy = 1, and hence b(A;) = (1. 1). As aresult,
A0 ={(x,y)eR*:x +y <3}
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By Lemma 3.6, {x <1} N{y <1} C (A2)>? C{x + y <3} for all p > 0. By direct calculation,

PX_1 _ ePY—1

1 e
st = Lo ),
S

from which we get Figure 2 in the Introduction. By Lemma 2.2(ii),

ePX—1  ePrV—1

1 Xy
hy Ap— =h —{((x,y),b(Ay)) = —log| 22X ___2¥ | _—_ -2,
. Aa—b(A2) (V) = hp A, —((x,Y).D(A2)) p Og( =3 373
leading to Figure 1, right, in the Introduction.
3C. Inequalities between My and M. By Lemma 2.2(v), hp x < hg for all p; thus
M(K) = Mp(K). (3-9)

In view of Lemma 2.6, a reverse inequality holds under the extra assumption of b(K) = 0.
Lemma 3.12. Let p € (0, 00). For a convex body K C R" with b(K) =0,

(#) Mp(K) < M(K).
p p

Hence, limp_ 0o Mp(K) = M(K).
Remark 3.13. Lemma 3.12 generalizes the Bergman kernel inequality (1-3) (recall (1-23)).
Proof. Assume b(K) = 0. Lemma 2.6 applies to give

ME) =1K] [ e ay=a-nFK] [ er Dy

= (l—A)ZA”|K|/ e KO dy = (1= 1) 7 1) My (K). (3-10)
Rl’l
It remains to maximize f(A):= (1 —A)YPA. The derivative
, 1 14 1 1_4( A
ffA)=——A=-1)7r A+(1A-)r=(1-2)r |——+1-2 (3-11)
p p
is positive for A € (0, #) and nonpositive for A € (#, 1), so plugging A = >4 in (3-10) proves the
claim.
Finally, note
. 14 . 1 1
lim ———— = lim _— — )=t
PR A4 T TN+ (L p) T
thus limp 00 Mp(K) = M(K). O

Remark 3.14. For convex K C R” with b(K) =0, and any A € (0, 1),

| o0 i
hk(y) = (—(n I /0 P lemhr(y) dr)

_1
5( 1 /°° rn-le—hp,K("{)Jr;1og(1—x)dr) " ||y||K°;1P 7
(n—=1!Jo (1—-1)7 A
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where we used Lemma 2.6 and Claim 3.3. So,

1 (1+p)'*>
K°C K*? C —K° C
(I1-1)7rA P
(optimizing over A as in the proof of Lemma 3.12). This yields inclusions independent of K or the
dimension. Thus for convex bodies with 5(K) = 0, all the L?-polars K°-? are “isomorphic” to (each

other and to) the classical polar body K°. They are also “isomorphic” to the sublevel sets of &1 k; see
[Klartag and Milman 2005, Lemma 2.2; 2012, p. 16]. Furthermore, the latter (at least in the symmetric
case) are “isomorphic” to the Lutwak—Zhang centroid bodies from Remark 1.7 [Klartag and Milman
2012, Lemma 2.3]. Nonetheless, “isomorphic” in this context means that inclusions in both directions
exist by dilations independent of dimension. Consequently, such equivalences are not typically helpful
when one is concerned with sharp lower bounds as in the Mahler conjectures. Given Lemma 3.12 and
the remarks in the Introduction, we believe that our L?-polars could be helpful in the pursuit of sharp
bounds, e.g., as in the Mahler conjectures.

3D. The cube. The next lemma computes the L?-Mahler volume of the cube.

n
dy) .

Lemma 3.15. For p € (0, c0),

_ ny _ yn l > 4
Mp([=1,1]") = 4 (p/O (sinh(y))

Mp([=1.11") = (Mp (1. 1])".

ST

Note that

in agreement with Remark 2.3.

Proof. By Lemma 2.8,

N =

(i) @

Mp([-1,11") = |[-1, 1]”|/ e Pp—1.1n(») dy = 2n/
Rn

rr ;o \sinh(py;)
1 1 n
PYi py 2
= 1 (it ) & =7 (o) )
l_[ sinh(py;) r \ sinh(py)
The claim follows from the evenness of py/sinh(py) and the change of variables z = py. O

In the notation of Section 1A, Blocki [2014, (7)]. obtained
=1, 10" P70 0,00 = (5)".
This agrees with our next corollary as M;(K) = (47)"|K|*Kr (0, 0) by (1-4).
Corollary 3.16. Mi([-1,11") = »2"
Proof. Setting p = 1 in Lemma 3.15,

Mi([-1,1]") = (Z/R sinh(y) dy) - (4/0 sinh(y) dy) '




LP-POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT 2203

20

Mp([=1.1])

L L L L L L L L L L L L L L L L L L p

20 40 60 80 100

Figure 4. M, ([—1,1]) for p € (0, 100) compared to M([—1, 1]) = 4.
because y/ sinh(y) is even. Using (1—x)"1 =372, x¥ for 0 < x < 1, expand the integrand

y 2y 2ye™> NS 2Ky _ N 5 (k1)
, = = =2yeyZe y=z2ye Y.
sinh(y) eY—e™ 1—e 2y = =

Therefore, by integration by parts

* — [ (k+1) o~ 2 % —@k+1)
_ dy = 2ye” Ydy = / e rd
/0 sinh(y) Y I;)/O Y Y Z k+1Jo Y

k=0
1 il i 1
222—222( 2 2)
= 2k +1) = k = (2k)
[e%e} [e¢] o0 2 2
1 1 1 3 1 37 T
=2 i — == — ==
(Xeile)=ire=re-1
k=1 k=1 k=0
and hence
o0 y n
Mi(=1, 1) = 4/ ) =, .
o sinh(y)

A numerical approximation of M, ([—1, 1]) gives Figure 4.

3E. Cube, diamond, and uniqueness of minimizers. Let Bl = [—1,1]" and B = (B},)° be the cube
and diamond (recall (1-13)). The LP?-support function of the cube was computed in Lemma 2.8 and its
LP?-Mahler volume is given by Lemma 3.15. Lemma 3.17 below is the considerably harder computation
of the L?-support function of the diamond.

Lemmas 3.15 and 3.17 allow the comparison of the L#?-Mahler volumes of the cube and the diamond.
We carried this out numerically for n = 3 and those computations lead to Figure 3 from the Introduction.
As discussed in Section 1C, this provides evidence that the cube is the unique minimizer for Conjecture 1.3.

Lemma 3.17. For p € (0, c0),

1 n! <&
hp.py (1) = log(ﬁ >

Jj=1

n=2(eP¥;j 1 (—1)te PYi
Vi e 4 (=1)ePY) ) 1)

D7 =D 07 =7 DO =) (07— 2
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The special case p = 1 of (3-12) was stated by Btocki [2015, pp. 96-97] in terms of Bergman kernels
without proof.
For the proof of Lemma 3.17 we require the following claim.

Claim 3.18. Forn > 2, and distinct y1, ..., yn € R,

S i =YD 0 = Y= 0 = i) - v 1. k=n—1.
Proof. Consider the rational function
Sk yjk

JiE=CUteo) 2 e ) Z(yj—Z)(yj—yz)~--(yj—yn)’

i.e., think of y; as a complex variable.

The claim is that f is a polynomial. It is enough to show that its poles at y,, ..., y, are removable
singularities. By symmetry, it is enough to do it for y,. There are only two terms involving (z — y») in
the denominator. Write their sum as

k Vk k vk 1

-1
z

(z=y2)---(z2— yn) (y2=2)-+-(y2=yn) ((Z—y3)---(z—yn) (yz—y3)~--(yz—yn)) z=y2

We claim the numerator can be written in the form (z — y») p(z) for some polynomial p. Indeed,

k
Zk )

(z—y3) - C—yn) (2—y3)- (y2—yn)

- 2 _ Vs N s B 5

(z=y3) - (z=yn) (E—=y3)-(z—yn) (@E—=y3)-(Z—=yn) 2—y3)-(y2—yn)

:(Z—yz)(zk‘1+'--+y§‘1)_yk(Z—ys)---(Z—yn)—(yz—ys)---(yz—yn)
(z—=y3)-(z—yn) 2 (z=y3) = yn)(y2—y3) - (y2—n)

_ )@ty (z=y2)p(2)
(z—y3) -+ (z—yn) 2(z=y3) - z=yn) (2 —y3) - (y2—yn)
Al gyt p(2)

= -y ,
z=y3)-C=yn) “2(z—y3) =y (2—y3)--- (y2—yn)
where p(z) is a polynomial such that
(z=y3)-(z=yn)—=(2—=y3)--- (2= yn) = (2= y2) p(2),
since the left-hand side is a polynomial that vanishes at y,. In sum, f is a polynomial. In addition,

0, k<n-—1

1. — 9 b
ATEO= k=0,
proving, by Liouville’s theorem [Ahlfors 1978, p. 122], that f is constant (as a bounded, entire function)
and equal to O when 0 <k <n—1,0or | whenk =n—1. O
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Proof of Lemma 3.17. Since BY is the union of 2" simplices of volume 1/(n!), |BY| =2"/(n!). In
addition, by splitting the integral into 2" integrals over the simplex,

n(2 d
P! () _ / etxy) ﬁ = n!/ cosh(xyy1)---cosh(x, y,) dx. (3-13)
1 1 n

The rest of the proof is by induction on 7.
For n = 2, by (3-13),

h Y
P "’B%(") = 2/ cosh(xyy1) cosh(xzyz) dxy dxo
As

1 1—x1 1 : h 1_
=2/ COSh(xlyl)/ cosh(x2y2) dxz dx; =/ cosh()ﬂ)ﬁ)sm (= x1)y2) d
0 0 0 Y2
B i[yl sinh(y1x1) sinh((1 — x1)y2) + y2 cosh(x1y1) cosh((1 —xl)yz)i|1
y2 -y x1=0
Cosh(yl)—cosh(yz) COsh(y1) cosh(y2)
-3 yi-y3  vi-yt’
where
h h(bx + d) — b cosh h(bx +d
[cosh(ax+c) sinh(bx +d)dx = asinh(@x + ¢) sinh(bx + ) b;os (ax + c) cosh(bx + d) +C
was used.
For n > 2, by (3-13),
R ()
— =/ cosh(xyy1) -+ cosh(Xp41yn+1) dx
(n+ 1! Apt1
1
=/ cosh(xn+1yn+1)/ cosh(xyyy1)---cosh(x,y,)dx
Xn4+1=0 1—xp4+1)An
. eph" a7 (“xniﬂ’y)
:/ cosh(xn+1yn+1) " (l—xn_H)” dx,,_H (3—14)
xn+1=0 n.

because by (3-13) and changing variables,
/ cosh(xqy1)---cosh(x,y,)dx
(I=xp+1)An

- fA c05((1 = X41)21 1) -+ cosh((1 = Xn 1)z ym) (1 = Xn 1" dz

ePhD,B’f((PXI;LI)y)
= oy (1 =2xn4+1)".
By induction, '
P () L g ()2 (U 0% (e (7))
Y 1—xp41\2(n—1
P (202 02y (522 02— y2 ) (02— 9)
nl n yn—Z(e(l—xn+1)y_j+(_1)ne—(1—xn+l)yj)
- nZ - 2_ .2 2_.2 72y O
(I =xp41) i=1 (y]' _y1)"'(y]' _y]'_1)(yj _y]'+1)"'(yj -y
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Therefore, by (3-14) and (3-15),

Yy
ot ) 2 oy 1y 1) (U7 4 (1ytem1m5n 0% ) dy

(n+1)! :]; 7 =D 07 =7 D07 =) - 07 —»2)

(3-16)

To complete the proof, compute

1 1
/ cosh(xXn41Yn4+1)e 40 dxy g = €77 / cosh(Xn41Ynt1)e "7 dxp41
0 0

1
— leJ’j / eXn+1n+1-;) +e—xn+1(yn+1+y/‘) dXpi1
0

— LoV _
2 Yn+1—Yj Ynt+1+Yj
1 (e)’n—i-l _eyj e_y}’l-'rl _eyj)

1 (eyn+1—yj —1 e Wn+1t+yj) _ 1)

2\ yny1—yj Yn+1+Yj
_yje¥’ —yj;cosh(yn+1) — Yynt18inh(yn41) 317
- 2 .2 ) ( - )
Vi = Vn+1
and hence, replacing y; by —y; in (3-17),
! —yie™Y/ + y; cosh — inh
/ Cosh(xn+lyn+1)e—(l—xn+1)yj dxn+1 — yjeé + Yj cos §J’n+;) Yn+1 81 (yn—l—l)‘ (3—18)
0 Vi = Vnt1
Therefore, by (3-17) and (3-18),
1
/ cosh(xn1) (€713 4 (—1)"e =807 dy 4
0
_yiel + (D" e (1= (=D")yjcosh(ynrr)  (L+(=D")ynt1sinh(ynt1) (3-19)

2 2 2 2 2 2
Yi =Y+ Yi = Vnt1 Yi = Vns1

By (3-16), (3-19) and Claim 3.18,
" yp 2 fo coshnpryn1) Xm0 (= 1)nem Um0 dgy

Lok () Z
(n+1)! = D7D OF=y7 D=y ) (v =r2)
n y]'-l_l(eyj +(_1)n+le—yj)

g D7 =D =27 D7 =y ) 7=y =via i)

j=1
(1) Z Y cosh(yn1)
= (y2—yD) - 02—y DOy E ) =D Ry, )

n n—2 .
Y7 " yn+1sinh(yn41)
—(1+(—1)n)2 2_ .2 2 2] nz 2 - 2 o2 2
j:1(yj_yl)"'(yj_yj_l)(yj_yj+1)"'(yj_yn)(yj_yn+1)
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Rt
+(1=(=1)") cosh(yn+1) e
n+1 ) “np1—Yi)

PN 1)
— 7D 7=y DTy ) =D 07—y

n—1
yn+1

+(1+(=1)")sinh(yn+1)

—Z

Y2 =) (02 —2)
PN (1 e

C(V2-yD) - Oy DORyE ) =y D (R -yE )

Vil
+(e+(=1)" ™) 2 :
V2D (02—
as desired. O

Therefore, in dimension n = 3, for distinct values of x, y and z,

h (v y.2) = ~lo [ 6 ( x sinh(px) y sinh(py) z sinh(pz) )}
poBE T P I\ ) (2 =) T 02— (07— T (-7 )

which smoothly extends to R3. In particular,

) [ 6 (p cosh(px) x2 +z2 sinh(px) n z sinh(pz) y
—log| —= x = z,
g | p3\ 2(x2-22) C(x2-z2)2 2y (x2 —72)2 Y
) [ 6 ( pcosh(px) x2 +y2 sinh(px) y sinh(py) y
Z log| — — x=z#y,
1 262=y2) T 2oy T (o2 g
hyga(x,y,2)=11  T6 (pcosh(py) y*>+x? sinh(py) xsnﬁKPX) _
s 208 B\ 522 x2)  (v2—x2)2 2 —x2)2 y=z#x,
PP\ 2007 =x%) (2 —=x?) v 07—
[ 6 (xpcosh(px)—sinh(px) 4+ x2 p? sinh(px)
—log| — 3 ) x=y=z#0,
| P 8x
0, x=y=z=0

4. The L?-Santal6 point

In this section, we prove Proposition 1.5.

First, let us elucidate the similarities and differences from the case p = co. The Santal6 point [1949,
(2.3)] of K is the unique point xoo ¢ € int K for which b((K — xx0,x)°) = 0. This is equivalent to
b(hg—xs x) = 0 since

b(hg) = (n+ 1)b(K°). 4-1)

However, since /1, g is not 1-homogeneous for p < oo, it is not in general true that b(K°-?) vanishes
when b(hp, k) does. To verify (4-1), first compute V(hg). Since hg is 1-homogeneous and hg = || || ke,
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by Claim 3.3 and (3-2),

oo
d
V(hK)=/ e_hK(y)dy=/ / rn_le_hK(r")drdu=(n—1)!/ ; L —nl|K°l (4-2)
R” aB% Jo 9B xu)

Another way to see (4-2) is to start with (1-9) and (1-11), i.e.,

V(hp,x) =n!|K>P], (4-3)
and take p — oo.
For the barycenters, compute in polar coordinates,

b(K*?) = ydy

IK®P| Jeliyligo.r <1}
1

|KP| Ji(ru)e(0,00)x0B2 Irull go.p <1}

1 1/llullgo.r
= — / / r"udr du
|K*P| Jamy Jr=0

_ 1 1 u d
TIKoP 41 Jogn uEL
2 Ke-r

rur™ 1 dr du

1 1 1 00 n;l
= —_— u(—/ = le=ho.x (ru) dr) du. (4-4)
I/l+1 |K0,p| aBg (I’l—l)' 0
In addition, by (4-3),
b(hp k) = L ye k() gy = ! l/ u /‘00 e e k(1) qp qy . (4-5)
P V(hp,k) Jrn |[K*P|n! Jopr — Jo

For p = oo, since hoo,k = hk is homogeneous. Claim 3.3 gives

n+1

Y N 1 ; 1 R e
n— —ngl\ru d — - - @00 n,—np g\ru d , 4_6
((n—l)!/o e r) (hK(m") G n!/o e r &0

so (4-1) follows from (4-4)—(4-6), but without homogeneity such a relation does not hold.

Remark 4.1. While (4-1) does not hold for all p, one can show a weaker inequality of the form

n+1

1

00 7 —hp k|1 00

(( 1 1)' / rn—le—hp![((ru) dr) S (l’l _|_ 1) ||€ P KIHOO i'/ rne—hp,]((ru) dr,
n—1): Jo (l’l')ﬁ n:Jo

by using [Brazitikos et al. 2014, Lemma 2.2.4].

The proof of Proposition 1.5 is based on three key lemmas, proved in Sections 4A and 4B.
Lemma 4.2. Let p € (0, 00]. For a convex body K C R", M,(K —x) < oo if and only if x € int K.
Lemma 4.3. Let p € (0, 00]. For a convex body K C R" and x¢ € 0K,

lim Mp,(K —x) = oo.

X—>X0
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Lemma 4.4. Let p € (0,00). For a convex body K C R", x = Mp(K —x), x € intK, is twice
differentiable and strictly convex with Vx Mp(K —x) = Mp(K —x)b(hp x—x).

Proof of Proposition 1.5. Since, by Lemmas 4.2 and 4.4, x = M, (K — x) is strictly convex in int K and
blows up on R" \ int K, it must have a unique minimum at some x, x € int K. This is a critical point and
therefore, by Lemma 4.4,

Thus b(hp,k—x, ) = 0. O

We call x, g the L?-Santal6 point of K. For future reference we record its characterization:
Corollary 4.5. Let p € (0, 00]. For a convex body K C R", there exists a unique x, g € R" such that
b(hp,k—x, ) =0.

It is not clear to us how to directly prove Corollary 4.5 if not by Proposition 1.5. In general, for a
convex function ¢ : R” — R U {oo} with b(¢) € R”, it is not hard to see that there is an x € R” such that
under the translation

Ty :R" > R", yr>y—x,
the pull-back of ¢
TIp(y):=¢(y—x)

has its barycenter at the origin, b(7;¢) = 0. This is because

_ dy _ dy _ dy
b(T*¢) = / TI6(y) _ / ye—dO=x) (y + x)e—*O) b(e) + x.
* R V(g) " V@) Jw V)
so it is enough to choose x = —b(¢). However, functional translation of %, g does not correspond

to the translation of the body. That is, in general, T hy, k # hp k—x. In fact, by Lemma 2.2(ii),
hp,k—x(y) = hp,k (y) — (y, x), and hence
_ dy —h dy
blhy k) = / yehrK—x®) _ / yehn k0D vx) ,
P * R” V(hp,K—x) R” V(hp,K—x)
from which is not clear what x should be so that b(h, x—x) = 0.
Remark 4.6. While we discuss lack of translation-invariance of some quantities, it will be helpful to note
how M,, transforms under the GL(n, R)-action. For p > 0, a convex body K C R", and A € GL(n, R),
by Lemma 2.2(iii),

1

[ore} - 00 . _%
”x”(AK)O-T’ — (/ rn—le—hp,AK(I‘X) dr) — (/ rn—le—hp,K(rA Xx) d}") — ”ATX”KO.p;
0 0

hence
(AK)>? = (A" HTK° @7

In sum:

Lemma 4.7. Let p € (0, 0o]. For a compact body K C R" and A € GL(n, R), Mp(AK) = Mp(K).
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This GL(n, R)-invariance will be useful in several places, e.g., in the proof of Claim 4.8 below and in
proving Theorem 1.6 when we deal with Steiner symmetrization.
4A. Finiteness of M p. Lemma 4.2 follows from the following two claims.
Claim 4.8. Let p € (0, 00]. For a convex body K C R" with 0 € int K, and r > 0 such that [-r,r]" C K,

| |1+%

Mp(K) = Mp([=1.11%).

Qr)"ts

In particular, M,(K) < oo.

Proof. Since 0 € int K, there is r > 0 such that [—r, r]" C int K. By (3-8),

My(K) = |K| [ hrx 0y
R/‘l

5 1+1
< |K| e—hﬂ,[—r.r]n (y)ﬂ dy — |I(|—Z(2r)n\/‘ e_hﬁ.[—r.r]" (62) dy
R (2}"); (2r)n+5 R7
K| Mp([=r,r]") LS I+ M, ([—1,1]™)
=tz =rr = n -1, 5
@t @ryts”

where we used Lemma 4.7. By Lemma 3.12, since b([—1, 1]*) =0,

H_% " 1+% n
Mp([-1.1]") = (%) M(-1,1]") = (%) na

concluding the proof. O
Claim 4.9. Let p € (0, 0o]. For a convex body K C R" with 0 ¢ int K, Mp,(K) = oo.
Proof. By convexity of K, since 0 ¢ int K, there is a hyperplane through the origin

ut = {x eR": (x,u) =0}

such that K C {x € R" : (x,u) > 0}. In particular, (x, —u) < 0 for all x € K, and hence

c:=/ e”<x’_”)d—x<1.
K |K|

If it was exactly equal to 1, then (x,u) = 0 for all x € K, that is, K C u=, which is a contradiction
because K has nonempty interior. Let U C dB} be an open neighborhood of —u such that

d 1
/ eP(X:0) é < —;C <1 forallveU.
K

Forr>1andv e U, x € K, since p{x,v) <0, we have rp(x,v) < p{x,v). Thus

/erp(x,v)d_xff ep(x,v)d_xf l+c <1, veU r>1. (4-8)
K K|~ Jk |K| 2
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In polar coordinates, by (4-8),

d
Mp(K) = IK| [ e ay = K] L
R" R (fK ep(x,y)de)E

) K|
r"~tdrdv
= |K]| T

0B% f erp{x v)_ dx) Iz

" ldr dv
> |K]| i
UJ1 erp(x,v) 1 dx)f

() s :

Proof of Lemma 4.3. As hp g < hg (Lemma 2.2(v)), [(K —x)>?| > |(K — x)°| for all x € R"” and
p € (0, co]. It is therefore enough to prove the claim for p = co. By Lemma 4.2, M(K — x) = oo for
x ¢ int K. Hence, we may further restrict our attention to x € int K.

By rotating K we may take —e, as the outward-pointing unit normal of K at x¢. For x € int K, let
e = &(x) > 0 such that K —x C {x, > —¢}. Since K is bounded, there exists M > 0 such that K C M B .
Now, (K — x)° contains the cone

14 ¢eyn

C:= {(n,yn) eR"IxR:|p < . yn €10, —e_l]} C(K—x)°.

The volume of the cone is given by

0 Bn—l
= dndys = (1+ey Yy, = 12|
_1 J(1tevn ) pn—t n Mn 1 n T oaMr-lg
B M 2
As x — xg, £ = &(x9) — 0T; hence |(K — x)°| — oo. O
4B. Smoothness and convexity of M.
Proof of Lemma 4.4. Denote by ey, ..., e, the standard basis of R”. For x € int K there is r > 0 such

that x + 2rB} C int K. Using Lemma 2.2(ii), for 0 <& <7,

n!|[(K—x—ee;)>?|—n!|(K—x)>P|
€

_! / e~ K—v—se;0) _ g=hpk-2() gy
Rn

— l f e_hp.K—x(J’)e(seisy) _e_hp,K—x(y) dy
Rn

&vi
= / ¢ s gy, (4-9)
Rn

ForO<e<r,
e®i —1

o gMm— 1| -1 X my,,.|m
J’z |J71 1 r™|yil L iyl
< < - — — < "Vl

m! r
m=1 m=1
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hence
&yi _
e 1 < Lortvilg=hp k-
’

e_hp.K—x (62)

&

Uoril —hp k() _ 1 i O\ k)
—e' VileTtp K=x ) — eVl 4+ e Vi e tr k=X dy
R ¥ r Jrn—1 0 —00

r Jrn rJrn

and

1
=—(n![(K—x—re)>?|+n!|(K—x +re)>?|)
;

is finite by Lemma 4.2 as x 4+ re; and x — re; are both in the interior of K. Therefore, dominated
convergence applies to (4-9):

n!|(K—x—8e,-)°’1’|—n!|(K_x)°,p| . / i — 1
= lim -
e—0 n

lim

—hp. k—x(¥) d
e—>0 & e y

&

&Vi _
R

n e—>0 &
=/ yl.e_hp.K—x(J/) dy.
Rn

That is, x — |(K — x)°|, or equivalently x — M, (K — x), is differentiable in int K with gradient

ViMy(K —x) = | K| / ye hr k=) dy = M, (K —x)b(hp k),
Rn
as
ye—hp,fo(J’) dy.

_ dy 1
b(ho v :/ e . k—x () —
Up )= | ¥ Vi ko)~ 1K —x057] Ju

Similarly, one can show that the second-order derivatives exist and are continuous. Differentiating
under the integral sign,
32
dx; 0x;

MP(K—x)z |K|[ yl-yje_hl).K—x(y) dy
R7

Therefore, for v € R,
n
vIV2Z M, (K —x)v = |K]| Z / vivjyiyje_hl"’(—x(y) dy = |K|/ (v, y)2e kO qy > 0,
L R7 R7
i,j=1

with equality if and only if (y, v) = 0 for almost all y, or equivalently v = 0, proving strict convexity. [

5. The upper bound on M,

This section is dedicated to proving the L?-Santal6 theorem, Theorem 1.6. As expected, we use
symmetrization. However, there are a number of intricate details that need to be carefully dealt with, since
LP-polarity is a highly nonlocal operation compared to classical polarity. On the surface of it though,
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as in the case p = oo, the key estimate we need to prove is the monotonicity of volume under Steiner
symmetrization:

Proposition 5.1. Let p € (0, 00]. For a symmetric convex body K C R" and u € 0B}, let 0, K be the
Steiner symmetral of K (Definition 5.5). Then, |(0, K)%?| > | K®P|.

S5A. Outline of the proof of Proposition 5.1. Proposition 5.1 is proved in Section 5G. For n = 1,
oy K = K if K = —K. Thus, take n > 1 for the rest of the section. We follow a classical proof for the
case p = oo [Gruber 2007, Proposition 9.2; Artstein-Avidan et al. 2015, Proposition 1.1.15] and make
the appropriate modifications to p € (0, co). This involves comparing the volume of the “slices” of the
polar body perpendicular to the vector used for Steiner symmetrization. For a convex body K C R”, and
xn € R, denote by

K(xp) :={ €eR": (£, xy) € K} (5-1)

the slice of K at height x,. By Tonelli’s theorem [Folland 1999, §2.37], the volume of a convex body
may be expressed as an integral of the volume of its slices,

o0
K= [ ey = [ 1Ko dxa (5-2)
{(&.xn) R "I xR:E€K (x1)} —00
In view of (5-2), Proposition 5.1 follows from the next lemma. Denote by ey, ..., e, the standard basis

of R”,
Lemma 5.2. Let p € (0, 00]. For a symmetric convex body K C R", |(0¢, K)*? (xn)| > |K*? (x,)| for
all x, € R.

Lemma 5.2, in turn, follows from the Brunn—Minkowski inequality and the following monotonicity
property of the average of antipodal slices under Steiner symmetrization.
Lemma 5.3. Let p € (0, 00]. For a convex body K C R",

K*P(xp) + K*P(—xp) c (0¢, K)*? (xn) + (0¢, K)*P (—Xn)
2 2
The equality on the right-hand side holds because o, K, and hence (o,, K)°*” (Lemma 5.17), are by

= (Uen K)O’p(xn)- (5-3)

construction symmetric with respect to e,ﬂ-. Nonetheless, note that no symmetry on K is assumed for
Lemma 5.3, in contrast to Lemma 5.2. Applying the Brunn—Minkowski inequality on Lemma 5.3 gives

o 1 o 1 o 1
|0, K)¥P (en)| 77T = 5| K (x)|7=T + 5| K*P (—x) | 7T

Without any symmetry assumption on K, |K°?(x,)| and |K°®?(—x,)| may be unrelated. For symmetric
convex bodies, K (—x,) = —K®?(x,) (Claim 5.14) and hence |K°? (—x,)| = |K°? (x,)|, justifying
the symmetry assumption in Lemma 5.2. See Figure 5.

In order to obtain the inclusion of Lemma 5.3, we first obtain an inequality relating the norms before
and after symmetrization:

,xn
2

- (& xn) | ko.r + 15", —xn) | ko.r
(enK)°P 2

(5-4)
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(0, K) (1)

(0e, K)(=h)

Figure 5. Comparing the slices.

For p = o0, by (3-4), (5-4) reads
h ($+€, ) hK(g,Xn) +hK($/’_xn)
UenK ’ -xl’l =

2 = 2 ’ (5-5)

which is classical and simple to prove: any element of o¢, K is of the form (z, 55%) for (z,1), (z, s) € K,

O

(§.2) +xnt | (§.2) —ns

2 2
A, xn), (z,1)) n (', —xpn), (z.—5))
B 2 2
< hK(gv Xn) + hK(g/’ _xn)
=< > )

and (5-5) follows. One of our key estimates in this section is a 3-parameter (p, s, t) family generalization
of (5-5):

Lemma 5.4. Let p € (0, 00], and K C R" a convex body. For £,§ e R"™, x,, e Rand r,t,s > 0 with

2_1.,1
r_t+s’

E+¢& s t
hp,oenK(r 5 FXp ) = [+Shp,K(té§’txn)+mhp,K(sg/,_an)-

For p = oo, Lemma 5.4 is equivalent to (5-4). Lacking homogeneity, for p € (0, oo) this is no longer the
case. Notwithstanding, Lemma 5.4 is exactly the condition necessary to apply Ball’s Brunn—Minkowski
inequality for harmonic means (Theorem 5.20, proven in the Appendix) from which we deduce (5-4).
The next step in the proof of Proposition 5.1 is to use (5-4) to obtain Lemma 5.3. Finally, Lemma 5.3 and
a symmetry property for antipodal slices of symmetric bodies (Corollary 5.16) give Lemma 5.2 from
which Proposition 5.1 follows by (5-2).

The proof of Proposition 5.1 is organized as follows. Sections 5B and 5C are preparatory. In Section 5B
we recall a few basics of Steiner symmetrization. In Section 5C, Lemma 5.11 establishes the continuity
of M, in the Hausdorff topology (Definition 5.9). Section 5D establishes several symmetries between
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antipodal slices for symmetric convex bodies. Section 5E is dedicated to proving Lemma 5.4, and
Section 5F to proving Lemmas 5.3 and 5.2. In Section 5G, we complete the proofs of Proposition 5.1 and
Theorem 1.6.

5B. Steiner symmetrization. For a vector u € 0B} denote by
ut:={x eR": (x,u) =0}

the hyperplane through the origin that is normal to u. Let, also,

L R s ut, x e x—(x,u)u,

be the projection onto u~+. Given u € 0B, one may foliate any convex body K by a family of straight
line segments parametrized by a hyperplane 1. The Steiner symmetral o, K is the unique such foliation
for which the line segments have their midpoints in u= [Steiner 1838, pp. 286-287] (see also [Gruber
2007, §9; Artstein-Avidan et al. 2015, Definition 1.1.13]):

Definition 5.5. For K C R" a convex body and u € dBY, the Steiner symmetral in the u direction is
given by
oy(K) := {x +tu:xem, (K)and |t]| < %lKﬂ (x+ Ru)|}.

Steiner symmetrization produces a convex body that is symmetric with respect to u=L.

Definition 5.6. A convex body K C R” is symmetric with respect to a hyperplane u= if for all x € K
x—2{x,u)u € K.

Equivalently, K remains invariant under reflection with respect to u~. Steiner symmetrization also
preserves volume and convexity [Gruber 2007, Proposition 9.1]:

Lemma 5.7. For a convex body K C R" and u € 0B}, 0,,(K) is a convex body, symmetric with respect
to ut, with |0y, (K)| = |K]|.

Orthogonal transformations preserve volume and, by (4-7), commute with L?-polarity. The following
lemma then justifies working with u = e, throughout.

Lemma 5.8. For a convex body K CR", u € 0B}, and A € O(n),
ou(K) = A7 opu(AK).
In particular, |6y (K)| = |04 (AK)].

Proof. Since A € O(n) is invertible, it is enough to show A~ 104, (AK) C 0y, (K). Let x +1 Au € 0.4, (AK)
with
X € M gyL (AK) and |1] < 3[(AK) N (x + RAu)|.
First,
T(a)L (AK) = Am, 1 (K). (5-6)
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Indeed, for z € R",
Tyt (Az) = Az — (Az, Au)Au = Az — (z,u) Au = A(z — (z,u)u) = Am,1(2),

because, since A € O(n), we have (Az, Au) = (z, AT Au) = (z,u).
Second,
(AK) N (x + RAu) = A(K N (A 'x + Ru)). (5-7)

That is because, y € (AK) N (x + RAu) if and only if y € AK and y = x + sAu, x € K, s € R.
Equivalently, 7'y e Kand A7 'y = A" 'x +su €e A7 'x + Ru, ie., A7y € KN (A7 x + Ru).
Using (5-7) and as A € O(n) preserves volume, |K N (A~ 'x 4+ Ru)| = |(AK) N (x + RAu)|. Thus
A7 (x + tAu) = A7 'x + tu is such that A7 'x € A_IH(AM)L(AK) = A Y (An,1 (K)) = 7,1 (K)
(using (5-6)), and |r| < [(AK) N (x + RAu)| = 1K N (A7 x + Ru)|, that is, A1 (x + t4u) =
A7Ix +tu € oy (K). O

Recall the definition of the Hausdorff metric.

Definition 5.9. For K, I C R" two compact bodies, let
dg(K,L):=inf{e >0: K C L+¢B) and L C K + ¢B}}
be the Hausdorff distance between K and L.

Repeated Steiner symmetrizations Hausdorff converge to a 2-ball [Gross 1917; Gruber 2007, Theo-
rem 9.1].

Lemma 5.10. For a convex body K C R", there is p > 0 and a sequence of vectors uj € 0B} such that if
K; :=o0u;(Kj—1), where Ko := K, then K; — pB? in the Hausdorff metric.

5C. Hausdorff continuity of M p. The aim of this subsection is to verify that M, is continuous under
Hausdorff convergence (Lemma 5.11).

By Lemma 5.10, iterated applications of Steiner symmetrization dg-converge to a 2-ball. Therefore,
in order to obtain Theorem 1.6, it is necessary to show that M, is dg-continuous.

Lemma 5.11. Let p € (0,00] and {K;};>1 C R" be a sequence of convex bodies dy-converging to a
convex body K C R" with |K®?| < co. Then, Mp(K;) — Mp(K).

Lemma 5.11 follows from the next two claims. First, the volume of convex bodies is continuous under
the Hausdorff metric. Note this is not true without the convexity assumption, e.g., for space-filling curves.

Denote by
1, xeKk,
1g(x) := 0. x¢K

the indicator function of K.

Claim 5.12. Let {K;}j>1 C R" be a sequence of convex bodies dp-converging to K C R". Then,
|Kj| = |K].
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Proof. Since dg (K, K) — 0, there are ¢; > 0 such that K; C K+¢; B} and K+¢; B} C K;, withe; — 0.
In particular, {; };>1 is bounded. For simplicity, take &; < 1. In particular, K; C K+¢; B} C K+ BY; thus
1g; <1k py forall j. This allows for the use of dominated convergence. It is therefore enough to show

lim 1g, (x) =1g(x), x € (intK)U(R"\ K). (5-8)
j—o0
Then, by dominated convergence,

lim |K;|= lim [ 1k, :/ lim 1k, =/ 1g = |K|.
R” R R

j—o00 j—o0 n j—00

For (5-8), let x € int K. There is ¢ > 0 such that x + eBg C K. Since ¢; — 0, there is jo > 1 such that
gj <eforall j > jo. Therefore, x + eB) C K C K; +¢; B} C K; 4+ ¢B}. By the cancellation law for
the Minkowski sum of convex bodies [Gruber 2007, Theorem 6.1(i)], {x} C K}, i.e., x € K;. Therefore,
1g; (x) = 1 = 1g(x) for all j > jo.

For x € R" \ K, since K is closed, R" \ K is open. Thus there is & > 0 such that x +2¢B) C R" \ K,
ie,(x+2eB))NK =@. Let jo > 1 withe; <eforall j > jo. Then, K; C K 4 ¢BJ and hence

(x+eBy)NK; C(x+eBy)N(K+eBY) =2,

because, for y € (x +¢B}) N (K +¢B%), we have y = x +eu =z +¢v foru,v € B} and z € K. That
is,z = x +e(u—v) € x +2eBJ; thus z € KN (x +2¢B}) = @, a contradiction. Therefore, x ¢ K for
all j > jo,ie., 1g;(x) =0=1g(x) forall j > jo, proving (5-8). O

Second, the volume of the L?-polars is also continuous under Hausdorff convergence given that the
limit is a convex body with finite M, volume.

Claim 5.13. Let p € (0,00] and {K;}j>1 C R" be a sequence of convex bodies dg-converging to a
convex body K with |K°?| < co. Then, |K;’p| — |K%P|.

Proof. Since dg (K, K) — 0, there are ¢; > 0 such that K; C K +¢;B} and K C K; + ¢; B} with
g; — 0. In particular, {&;};>1 is bounded. For simplicity, take ¢; < % In particular,

K; CK+¢;B} C K+ B},

so K; are uniformly bounded. Let M > 0 such that [x| < M for all x € K; and all j. For y € R",

“Kj|ephp.Kj (Y)_|K|ephp,1<(y)| — ’/ oP(x:y) dx—/ PV 4y
K K

<

/ ePY) dx < |(Kj\K)U(K\K;)[ePMPI (5.9)
(K \K)U(K\K;)

Note that

Lk \k)uk\k)(¥) =1k, (y) =1k (Y],
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which converges to 0 almost everywhere by (5-8). By dominated convergence, [(K; \ K) U(K\ K;)| — 0.
Taking j — 0o in (5-9), |K;|e?"Ki ) — |K|ePh».k ). By Claim 5.12, |K;| — |K]; thus

lim hp g, (y) =hpx(y), yeR, (5-10)
j—oo

establishing the pointwise convergence.

The aim is to use dominated convergence on e K; , for which a uniform (independent of j) and
integrable upper bound is necessary. By assumption | K ®*?| < 0o, or equivalently, by Lemma 4.2, 0 € int K.
That is, there is 7 > 0 such that [-2r, 2r]" C K. Therefore, for large enough jo > 0, we have [-r, r]" C K
for all j > jo. In addition, by Claim 5.12, |[K;| — |K| > 0; thus there is M’ > 0 with |K;| < M’ for
all j. As a result,

1 dx 1 dx @2r)"

h ,K-(y)=—10g/ Pty —— >—10g/ P = [ (9) + log

PR p K; |KJ| [—r,r]" M’ pl=rr] M’
and hence

otk ) M’ oo rm ()
— @
The right-hand side is integrable since by (4-7)
- Mp([=r.r]")
hp—rn () gy = 222
ot ) gy — My (1,117,
/n |[=r.r]"| (2 P

which is finite by Lemma 3.12. The claim now follows from (5-10) and the dominated convergence
theorem. O
Proof of Lemma 5.11. By Claims 5.12-5.13, |K;| — |K| and |K;*”| — |K®P[; thus by (I-11),
lim; 00 Mp(K;) = limj o0 n! |[K;||K;P| = n! |K||K®P| = Mp(K). O

5D. Slice analysis of symmetric convex bodies.

5D1. Symmetry with respect to a hyperplane. Antipodal slices are related when —K = K: & € K(—x)
if and only if (¢, —xy) € K or — (&, —xp,) = (=&, x,) € K, i.e., if and only if —§ € K(x,). In sum:

Claim 5.14. For a symmetric convex body K C R", K(—x,) = —K(xp,) for all x, € R.

If, instead, one assumes K to be symmetric with respect to the hyperplane e , then antipodal slices are
exactly equal: note that £ € K(x,) if and only if (§, x,) € K, which by the symmetry of K with respect
to eJ- is equivalent to (¢, —x,) € K or § € K(—xy). Thus:

Claim 5.15. For a convex body K C R" symmetric with respect to e , K(—x,) = K(xp) forall x, € R.

5D2. LP-polarity preserves symmetries.

Corollary 5.16. Let p € (0, oo]. For a symmetric convex body K, K°P(—x,)=—K®?(x,) for all x, € R.

Proof. By Theorem 1.2, K°# is symmetric. Thus, by Claim 5.14, K®?(—x,) = —K%?(x,). O
In addition, K7 inherits symmetries with respect to hyperplanes from K.

Lemma 5.17. Let p € (0,00],u € B} and K a convex body symmetric with respect to uL. Then, K°P

is symmetric with respect to ut.
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Proof. By symmetry with respect to u=, m, (K)=Kn ut. There is concave f : K Nut — [0, 00)
such that
={x+rtu:xeKnNutand|f| < f(x)}

ForyeKﬂuJ-,se[R{,

! dz
hp,k (y +su) = — log(/ eP 2.y +su) )
’ P K K]

— l lOg(/ /f(x) pl{x+tu,y+su) dr dx)
V4 xeKnNut Jt f(x) |K|
fx) dr dx
(/ ep(x,y)/ ePts )
xeKNul t=—f(x) |K|

1 S(x) drd
_ 1 log(/ ep(x,y) / e PTS i) = hp’K(y —su),
p xeKnut =—f(x) |K|

by the change of variables t = —¢. As aresult, ||y + su| go.r = ||y —su|/ke.», and hence y + su € K°?
if and only if y —su € K°? as desired. O

= —log

By Lemma 5.7, 0., K is symmetric with respect to ej-; thus, by Lemma 5.17, (0¢, K)*? also is.
Therefore, by Claim 5.15 its antipodal slices are equal.

Corollary 5.18. Let p € (0,00]. For a convex body K C R", (0¢,K)*?(xn) = (0¢, K)*?(—xy) for
all x, € R.

5E. Proof of Lemma 5.4. The only two ingredients required for the proof of Lemma 5.4 are Holder’s
inequality and the log-convexity of sinh(¢)/¢ (Claim 5.19 below).

Proof of Lemma 5.4. Let f.g : 7,1 (K) > R, g < f, so that
K =1{(§ xn) € 1,1 (K) xR : g(§) = xn < f(§)}.
Then,
= {(6.xn) € 7,1 (K) xR [xn] = 5(f(§) — g ()}

In the integrals below it will be convenient to use slice-coordinates
(U,Yn)eaenl{a Wlth?’IE(O’enK)neli_, YnER-
Since |oe, K| = | K| and (e, K) Ne;r = JTeJ; (K),

E+¢ 1 / (rE5€ ), dndyn
h ’ — _1 PArs5=.n) oPTXnYn
paaenK (r 2 r‘xn Og o e |o_en K|

en
f(n)—g(n)
2 /
oPr{555) o prxnyn dyn dn)

/;G(O’enK)ﬂen yn—_f(n)zg(n) |K|
Sm—gm fm—gm

1
>l

= llog(/ ppr{EE el et d_n)
V4 kg i(K) PTrXn |K]|
1
>

log/ epr .n) 2 sinh(prng) ﬂ) (5-11)
7,1 (K) prn 2 K|
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Also,
1 dndyn
K([E tx ) = —log(/ eP (t&.m) PtxHYn )
P n » © |K|
f( )
llog(/ ! ePtE:M) pPtXn Y0 dyn d”)
p ™ L(K> yn=g(n) |K|
_1 log(/ eP1i&:m) (el’xntf(fl) epxnig(m)y 21 )
P 7,1 (K) pxnt K|
_! log( [ emten 2 s inh(pw 0 —g(n)) dy ) 51
P 7,1 (K) pXnt 2 K|)
because
ePXntf () _ ,pxntg(n) _ epxnlw(epxntw _ e_pxntf(r/)%(n))
— DpPXnt f(")-zi'g(n) Sinh(pxnl S ;g(n))‘
Similarly,

hp k(s&', —sxn)

= llog / eP(Sg/sﬂ)#e—Pxnsw Sinh p(_sx )f(n)_g(n) ﬂ
p 7,1 (K) P(=5Xn) " 2 K|

=llog / epS(S’,n)Le—PXnS;(m;g(m sinh( px SM d_n (5-13)
p 7,1 (K) PXns ! 2 K1)

By (5-12)—(5-13) and Holder’s inequality,
s
r+s

-5 log[(/ ePrlEm 2 pryr FED sinh(l’xntw) ﬂ) "
_tr
X(/ ePSE M 2 pmprxps HOFED G (pxns f(n) g(n) )t+s:|
7,1 (K) DPXnsS K|
2 l log(/ eptfifs (E:n) ( 2 )mep t_s f(n)+g(n) S ( f(n) g(n)) )
P 7, 1 (K) pxnt .

e
« P &) (L)’*Se—pxn,f; f(mﬂw( h(p )~ g(n)) ) )
pns K]
1
= —log(/ eptva(E—i_s 7’)_](77 t)tJrs J(;', S)l+v )
p Heyjl_(K) K

1
= —log(/ P (555 ) J(n, )7 J (1, s)t+v
p nJ_(K)

t
hp,K([s, txn) + mhp,[((ss,, —an)

(5-14)
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where

2
J(n,t):= . sinh(pxnz

n

f(m) —g(n))
)

By Claim 5.19 below, log J is convex in ¢, and therefore

s t 2ts
T(.0)F5 I (.5) = T (1, = J(n, = J(n.7). 5-15
(.07 I(n.5) (I+S+Hf) @tﬂ) ) 515
because z_f_s = r. Therefore, by (5-11), (5-14) and (5-15),
—h té, txy)+ —h s& —sx
s K (8 1Xn) +pﬂ$ n) 2 d
1 / _
= —10g(/ epr<§+5 ,n)_sinh(pxnrf(n) g(n)) _7))
p KNei- pXnr 2 K|
( E+E )
= hp,og,,K r ,rxnl,
2
as desired. -

Claim 5.19. Forany x >0, t — log( smh(tx)) t > 0, is convex.
Proof. Write

f@) := log(; sinh(tx)) = log(sinh(zx)) —log?.

Compute the derivatives

y, .~ _cosh(tx) _1
S0 =x sinh(tx) ¢
d
" "y = 5 sinh(tx) ,(cosh(tx))? 1 _2(; (cosh(tx))? 1
) =x sinh(zx) - (sinh(zx))? + 2" ( ~ (sinh(tx))2 (tx)z)
o 1 + (sinh(rx))? LY (1 1
‘xo_@mmw'ﬁmg‘xQMZGmww)z
because sinh(y) > y for all y > 0. O

5F. Slice analysis of K °*P under Steiner symmetrization.

5F1. A monotonicity property for the average of antipodal slices. For the proof of Lemma 5.3, we first
prove (5-4). The aim is to apply the following theorem due to [Ball 1986, Theorem 4.10] for F, G, H
appropriate exponentials of the L?-support functions.

Theorem 5.20. Let F, G, H : (0, 00) — [0, 00) be measurable functions, not almost everywhere 0, with

. 2 1 1
H(r)> F()™5G(s)™s  forall == e (5-16)
r N

Then, forq > 1,

1 1

2(/000 rq—lH(r)dr)_q < (/OOO tq_lF(t)dt)_q + (/Ooo sq‘lG(S)dS)_

Q=
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For the reader’s convenience, we give a proof in the Appendix. Applying Theorem 5.20 to prove (5-4)
becomes possible by Lemma 5.4.
Proof of Lemma 5.3. Set

F(t) := e_hD,K(tg,txn)’ G(s) := e_hp.K(SE/,_an)’ H(r) = e_hp,oenK(ré-gg/

,rx,,)'
By Lemma 5.4, for any ¢, s > 0 with % = % + %,

H(r) = F(5) 5 G(s)7;
thus, by Theorem 5.20 for ¢ = n,

1
’ 00 , —u
H (E —;E ’xn) B (( 11)' / P mhp.oen K (r 55 ren) dr)
(Uen K)°-p n—1): Jo

_1
1 1 a1 —hy x(tEtxn) "
— t e p.K Sv n dt
2\(n—=D!Jo

+ l( 1 /oo Sn_le_hp.l((sf/:_sxn) ds)_n
2\(n—D'Jo

1 1
=31 x)&er +FNE, —xn)lor-

IA

verifying (5-4).
For &£ € (K°?)(x,) and &’ € (K°P)(—x,), by definition (5-1), (£, x,) € K*? and (§/, —x,) € K2,
ie., |5, xn)|lgor < 1 and ||(§/, —xn)||ke.r < 1. By (5-4),

” (5;5/’%) _ NG xn)llker + I —xn)llker _ L

©@en K)oor 2 B
ie., (§+Tg,xn) € (0¢,K)>? or # € (0¢, K)®?(xy). Finally, by Corollary 5.18, (O’enL K)?P(xp) =
(GenL K)°?(—xp); hence we have the equality in the right-hand side of (5-3). O

5F2. Monotonicity of the volume of slices under Steiner symmetrization.

Proof of Lemma 5.2. By the Brunn—Minkowski inequality and Lemma 5.3,

1
_1 KoP + KoP(— 1
(06, K)*P (g7 = (K27 C0n) 4 KPP (200

2
o,p = 0.0 ()| 7T
> (K27 Cw)] 1+2|K ClTT_ | georp (),
because K is symmetric thus, by Corollary 5.16, K°?(—x,) = —K°?(x,), and hence their volumes are
equal |KP(—x,)| = | K*P (xp)]. d

5G. Proof of Theorem 1.6. We now complete the proofs of Proposition 5.1 and Theorem 1.6.
Proof of Proposition 5.1. Take for a moment u = e,. By (5-2) and Lemma 5.2,

|(0e, K)*7| =/ (0, K)*P (xn)| dxp 2/ [(K*P)(xn)| dxn = | K*P]. (5-17)
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In general, for u € dBZ, there is A € O(n) such that Au = e,,. By Lemma 5.8, 0, K = A7 (04, (AK)) =
A~Y(0e, (AK)). By (4-7), (04, K)*? = (A7 o, (AK))>P = AT (0., (AK))®P. Thus by (5-17),

|(0uK)>P| = |det AT || (0w, (AK))*"P|
> |det AT||(AK)*P| = [AT (AK)>P| = |K*P|,

because, again by (4-7), AT (AK)>P = (A"YAK)>P = K°P. O

Theorem 1.6 follows from Proposition 5.1 and the fact that repeated Steiner symmetrizations converge
to a dilated 2-ball (Lemma 5.10).

Proof of Theorem 1.6. There is p > 0 and a sequence {u; };j>1 C 0B} such that for
Ko:=K, Kj:=oy;K;-1,
K; — pB} in the Hausdorff metric [Artstein-Avidan et al. 2015, Theorem 1.1.16]. By Proposition 5.1,
Mp(Kj) = nt| K| |K3P| = nl [K| K|

<n![K||(0u; 1, KNP = n! |[K||K;2F | = Mp(Kj11).

In particular, M,(K) < M, (K;) for all j. Sending j — oo, K; — pB} in the Hausdorff metric, and
hence, by Lemmas 4.7 and 5.11, M, (K;) — Mp(pBY) = Mp(B%); thus My (K) < Mp(BY). O

6. A connection to Bourgain’s slicing problem

In this section we explore the relationship between the L? support functions /1, g (1-8) and the slicing
problem (Conjecture 1.8). The aim is to prove Theorem 1.9 and then illustrate how it implies a suboptimal
upper bound on the isotropic constant (Corollary 1.12) originally due to Milman and Pajor. We also
explain some interesting connections to and motivations from complex geometry.

In Section 6A2 we recall the definitions of the covariance matrix and the isotropic constant, and
relate these to /1, g (Lemma 6.3). In Section 6A3 we recall the definition of the Monge—Ampere
measure and its basic properties. Theorem 1.9 is proved in Section 6B. The proof consists of two parts:
using Jensen’s inequality to bound f log det Vzhl, x (Lemma 6.10), and then bounding f[R{” hi,kx dvp g
(Lemma 6.13). In Section 6C, we show log det V2h, g + p(n+ 1)h, k is convex, proving Theorem 1.11.
From Theorems 1.9 and 1.11 we then obtain an upper bound on the isotropic constant of order O(/n)
(Corollary 1.12). In Section 6D, we define the L? support functions of compactly supported probability
measures and show that Theorem 1.11 cannot be improved in that setting (Example 6.20). Finally, in
Section 6E we explain some novel connections of our work to complex geometry, in particular to Ricci
curvature, Fubini—Study metrics, Bergman metrics, Kobayashi’s theorem, and holomorphic line bundles.

6A. Preliminaries.

6A1. Affine-invariance of C. The isotropic constant is an affine invariant (e.g., [Brazitikos et al. 2014,
p. 77]); hence so is C. As we could not find precisely the following lemma in the literature, we include its
proof for completeness.
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Lemma 6.1. For K C R" and A € GL(n,R), b € R",
Cov(AK +b) = ACov(K)AT
where Cov(K) is defined in (1-16).

Proof. Write A = [A{ 17 =1 b= (b1,...,by) and T(x) = Ax + b. The Einstein summation convention
of summing over repeated indices is used. Changing variables y = T 'x = A7 1x — A7 1h, dy =
|det A™!|dx = |det A|~dx,

Covii (AK + b) / ox dx / . dx . dx
v _ Lo ax . a4
Y rxy T Jrao " ITEK) Jrao ™ 1TK)|

|det A| dy / |detA|dy/ |det A| dy
= [ (Ay+b)i(Ay+b b b
/K<y+>l<y+),|AK+b| Ay +bn s [ (4 +),|A,<+b|

_ k dy k I
= [ s+ bbb = [ Aberpo [ e o

dy dy dy
ZA?Aﬁ/J’kylm Akf)’km-i-bu‘l /yjm+bibj
dy dy dy
=t ) [ e g ot [ gyl [ gy i

dy dy dy
— Ak AL / /
i j( YVl T |K| yk|K| |K|

= AF AL Cov (K),

proving the claim. O
Let A € GL(n,R) and b € R”. By Lemma 6.1,

|AK+b1>  (detA)?[K]?  (detA)*|K|?
detCov(AK +b)  det(4 Cov(K)AT)  (det A)2 det Cov(K)

C(AK +b) = = ¢(K),

proving:
Corollary 6.2. C is an affine invariant.

6A2. LP-support functions and the isotropic constant. Next, we relate the functional C (1-18) to /i, g
(1-8) (for p =1 see [Klartag 2006, Lemma 3.1]).

Lemma 6.3. Let p > 0. For a convex body K C R", we have Vzhp,K(O) = p Cov(K) and

P"IK?
C(Ky=———.
(K) det V2hp, k (0)
Proof. By direct calculation,
x;ePY) dx
a2, hp,K()’) = —fK l
dyi fK eP{x.») dx
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and

92 I k() = pr xixj'eP(X,y) dx fK e P2 qx —pr xl.ep(x,y) dx fK xjep(x,y) dx
dy;ay; P = ([ er) d)? :

Since for y =0, [ e?x:0) dx = |K|,

0%hp K dx dx dx
’ (0)=p/x-x-——p/x~— xS pCovi 5 (K)
dyidy; k7 IK| x |K|Jk K| b

and )
n 1K

C(K)’
as claimed. O

det V2h,, k (0) = det(p Cov(K)) = p" detCov(K) = p

6A3. The Monge—Ampere measure. We review some basic details concerning the Monge—Ampere mea-
sure, following [Rauch and Taylor 1977]. Legendre duality is defined by f*(y) :=sup,cpn [(y, x)— f(x)].

Definition 6.4 [Rockafellar 1970, p. 215]. For a convex function ¢ : R* — R U {oo} and x € R”, the
subdifferential of ¢ at x is

dp(x):={y eR": p(2) = p(x) + (y,z — x) for all z € R"}.
Lemma 6.5 [Rockafellar 1970, Theorem 23.5]. For ¢ : R" — R convex, d¢(R") C {¢p* < oo}.
Proof. By definition of the subgradient, for y € d¢(x), we have ¢(z) > ¢p(x) + (y,z —x) for all z € R",
ie., (y,x)—¢(x) > (y,z) —¢(z). Taking supremum over all z € R",
¢*(¥) = (y.x) —p(x) < oo,
as claimed. O

Corollary 6.6. For all p € (0, c0),
ohg(R*) C K and 0h, g(R") C K.

Proof. Since hy = 1%, by Lemma 6.5, dhg (R") C {1¥ < oo} = K. Similarly, since h, g < hg, the
Legendre transform satisfies 1% = h; < h; x> thus, by Lemma 6.5,

Ohp,x (R") C {h, g < oo} C{1F <oo} =K. O
Definition 6.7 [Rauch and Taylor 1977, Definition 2.6]. For a convex function ¢, let
MAQ)(U) := |0¢(U)].
where the right-hand side denotes the Lebesgue measure of d¢(U) in R”.
Lemma 6.8. MA#h, k (R") < |K].
Proof. By definition, MAh, g (R") = |0h, g (R")| < |K| because 0h, g (R") C K by Corollary 6.6. [

Remark 6.9. In fact, equality holds in Lemma 6.8. In particular, /1, g is a smooth, strictly convex function
with Vi, g (R") = int K (see [Klartag 2006, Lemma 3.1] for the case p = 1). By the smoothness of
hp,x we also know the density of MA#h, g equals det Vzhp,K.
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6B. Conditional lower bounds on the isotropic constant. The proof of Theorem 1.9 relies on the
following observation. Assume that K satisfies (xpg) for some B > 0, i.e.,

up,k () :=logdet V:hy k() + Bh1 k(y)
is convex. Note that i1 g (0) = 0; thus ug g (0) = log det V2h; g (0). By Lemma 6.3,

K> IKP

_ _ — |K |2 4B.£(0) 6-1
detCov(K)  detV2hy k(0) IK[e ©0

C(K)

Since u g, g is convex by assumption, for a probability measure p with b(p) = 0, by Jensen’s inequality,
up,k(0) =up k (/R y du(y)) < /R up,k(y)du(y)

= [ todet s () du()+ B [ i) (o). 62)

By (6-1) and (6-2), in order to get bounds on C(K) it is enough to bound [logMA#h; g du and
f[R” hi,k du, for a suitable probability measure (.

Here, we consider the probability measures (1-21) for which we obtain the desired bounds (Lemmas 6.10
and 6.13). By Corollary 4.5, we may translate K to a suitable position in order to obtain estimates on
Jgn log MAhy g (y) dvp k (y) (Lemma 6.10(ii) and (iii)).

6B1. A bound on [logdetV2hy g in terms of LP-Mahler volumes.
Lemma 6.10. Let p > 0. For a convex body K C R", and vy k as in (1-21):
(i) We have

M (K) pn)

log det VZh d <log||K|?—22— 2.
[ toaet i k() avy k) < og(| e
P

(ii) If b(vp,x) = 0, then

2 Ke”
An logdet V=hy g(y)dvp g (¥) < log(fRn e—Phi k() dy)'

(iii) If b(K) = 0, then

LY
/ 1ogdetv2h1,1<(y)dvp,1<(y)SIOg( fon e POV dy )"
n R” ’

For the proof of Lemma 6.10 we need the following.

Claim 6.11. Let p > 0. For a convex body K C R",

Jan e~2Ph1.x () gy )

logdetVzhl,K(y) dvp k(y) < 103(|K|
/Rn 4 (fon €= PM.KO) dy)?
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Proof. By Jensen’s inequality and Cauchy—Schwarz,
1
| toedet V2 k(1) dup () =2 [ tog(det V() dup k()
n Rn

1
<2log » (det V2hy x(y))? dvp, k()

e~ Ph1.k(¥)

1
=21 det V2h 2 d
ox [ @V ot

Jean e~2Ph1.x () gy )%
(frun €~P1ED) dy)2

—2ph1.k(¥) 4
510g(|K| ik yz),
(f[R” e—Phik(y) dy)

< 2log( | det 92k ay
Rl’l

because by Lemma 6.8 and Remark 6.9, [, det V2hy k(y)dy = MAh; g (R") < |K]|. O
roof of Lemma 6.10. (i) In view of Claim 6.11, it is enough to compute the following two integrals,
P L 6.10. (i) In vi f Claim 6.11, it i gh pute the following integral
M (K
—2ph1 .k (») — ; _2Ph1.K(%) — —h1/2p).k(¥) — 1 L()
e dy e dy e dy ,
Rn 2p)" Jgn 2p)" Jgn @2p)" |K|1*2p
because by Lemma 2.2(i), 2ph1,K(%) = h1/@2p),k (y). Similarly,
Mi(K
e~ Phk () dy = i—%( )
" p* |K|+P
Therefore,
| fRn e~ 2Ph1 k(¥) dy _ K| Mﬁ(K) p2n|K|2+2p 1k 2p_n Mﬁ(K) 63
(fin e PP1.8O) dy)? Cp)"|K|'T2P M (K)? 2 My (K)?
V4 p

The claim follows from (6-3) and Claim 6.11.
(ii) Since b(vp k) =b(phi,k) =0, by Lemma 6.12 below, phy x(y) > phi,x(0) —n = —n. Therefore,

/ e—zphl.m)dy:/ e—phl,K(y)e—phl.K(y)dyien/ e~PMEO) gy (6-4)
R7 R7 R

The claim follows directly from (6-4) and Claim 6.11.
(iii) Since b(K) =0, [x(x,y)dx =0 for all y € R". As a result, by Jensen’s inequality,

dx dx dx
hl,K(y)zlog/ e(x’y)—Z/ loge(x’y)—=/ (x,y) — =0,
K K|~ Jk K| Jk |K|

ie., h1,x(y) = 0. Therefore, for p >0, 2phy x(y) > phi,k(y) and hence

/ e 2Ph1.k(¥) dy 5/ e~ Phk () dy. (6-5)
Rn Rn

The claim follows directly from (6-5) and Claim 6.11. O
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In the previous proof we made use of the following estimate of [Fradelizi 1997, Theorem 4], stated with-
out proof. We include a proof for the reader’s convenience (see also [Brazitikos et al. 2014, Theorem 2.2.2]).

Lemma 6.12. For a convex function ¢ : R" — R U {oo},
inf ¢(x) = ¢ (b(})) —n.
x€eR”

Proof. To begin with, it is enough to consider ¢ to be smooth, strictly convex, and bounded from
below by C|x|? for large |x|. That is because for a smooth, nonnegative, compactly supported mollifier

x :R" —[0,00) we know that
1
buri= o [ pte=a(2) oy
& R” &

is smooth, convex and decreases to ¢ as ¢ — 0. Let
IXI2

Pj.e(x) 1= e (x) + 5

smooth, convex functions that decrease to ¢ as ¢ — 0T and j — oo [Klimek 1991, Theorem 2.5.5]. In
addition, ¢; ¢(x) > C|x|? for large enough |x|, since ¢, can be estimated by a linear term due to convexity,
that is, ¢¢(x) > ¢¢(0) + (V¢ (0), x). By monotone convergence, b(¢; ) — b(¢) ase — 0 and j — oo.
By convexity, ¢(x) > ¢(b(¢)) + (3¢ (b(¢)), x — b(¢)) for all x, so if the claim holds for ¢; ,, then
0j,e(¥) = ¢j.e(b(9je)) —n
> ¢(b(gje)) —n
> ¢ (b(9)) + (09 (b(9)), b(d.e) —b()) —

because ¢ > ¢. Taking j — oo and & — 0 yields ¢(y) > ¢ (b(¢)) —n.
For ¢ smooth, strictly convex with ¢(x) > C|x|? for large |x|, by Jensen’s inequality,

(&) — —pr) I ) —p(r) I 6.6
poon =o( [ x5 ) < [ ptoee (66
By convexity, forall x, y e R"”, ¢(y) > ¢ (x)+ (Ve (x), y —x); thus, integrating with respect e —¢@) Vd()é)’
o (x) dx _ —¢(x) dx
600 = [ pet@ [ (Tp(0).y —x)e 4
_ o) X 9 e X
- /R p0e V(¢)+Z / @ e
—p(x) _dx 9 s dx
R Z / )= x) s
—pe0 dx —p(x) _dX
o PO Z/Rn V)
9t & 6-7)

vig)
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because, by integration by parts,

/ i(e_‘lb(x))(yi _Xi) dx = O—/ e—¢(x) dx,
R aX‘ R

1

since
lim €_¢(x)|yi —Xxi| < lim e_C|x|2|y —x|=0.
|xi|—>o00 Xj—>00
By (6-6) and (6-7), ¢ (b(¢)) < ¢(y) + n for all y € R”, from which the claim follows. O

6B2. A bound on fR" hi,x dvp k.
Lemma 6.13. Let p > 0. For a convex body K C R",

n
/ h k() dvp k() <.
R” p

Proof of Lemma 6.13. By Lemma 2.2(v), hj, g increases to hg with p. Therefore, by Lemma 2.2(i),

F(p):=log /[Ren e hr.x () dy = 10g/n e—%hl,K(py) dy

1 d 1
zlog/ne },hl.K(y)p_flzlog/ne $1.KO) 4y log p

is decreasing with p, and hence, its derivative must be nonpositive,

—L1p )
dF ae pLEDIp d n 1 n
0> :fR : 1.k (y) J’__=—2/ hi,g(y)dvi(y)——,
dp P2 [ e PMEO) gy p p” Jmn » p
and the lemma follows. O

6B3. Proof of Theorem 1.9.
Claim 6.14. Let p > 0. For a convex body K C R" with 0 € int K and |K| =1,

/ e~ Phk () dy > M(K_)_
Rn

n

Proof. Since hp g < hg, by homogeneity of A,

/ =Pl k) dyi[ o~ PhEG) dy:/ e~hE () gy
[Rﬂ Rn

Rl’l
Sy L L SR
R " p" p"
because |K| = 1; thus M(K) :=n!|K||K°| =n!|K"|. O

Proof of Theorem 1.9. By assumption, (*p) holds. Thus (6-2) applies for probability measures with
barycenter at the origin.

(i) In order to apply the estimate (6-2), it is necessary to have a measure with barycenter at the origin.
By Corollary 4.5, we may translate K so that b(v, x) = b(hy;, k) = 0. By Corollary 6.2, this does not
affect C(K). By (6-2) and Lemmas 6.13 and 6.10(i),

M (K)

p" Bn
uB,K(O) = 10g(|K|2m2_n) + 7
2
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As a result, by (6-1),

Choosing p = B,

(i1) Similarly, to apply (6-2) we need a measure w1th barycenter at the origin. By Corollary 4.5, we may
translate K so that b(vp, x) = b(h1/p,x) = 0. Also, rescale so that |K| = 1. By Corollary 6.2 this does
not affect C(K). By (6-2), Lemmas 6.13 and 6.10(ii),

©0) <1 e” N Bn <1 e p" N Bn
u o JEE 0 _,
RO = T ermicoray ) T = o ) T
where we used Claim 6.14 for the last inequality. As a result, by (6-1), since |K| =1,
M(K) _Bn

enpn €

We can now optimize over all p on the right-hand side. Setting

£(p) = pre0tm)

C(K) — e_uB,K(O) >

(6-8)

gives
f(p) = e”“f-[np"_l -p"- ?]= e p"=2(p - B),
and the second derivative gives
£"(p) = ne"t7 [nBp~2p" 2 (p— B) + (1~ 2)p" 3 (p—B) + p" 2]
ne"™7 p"*-nB(p— B) + (1~ 2)p(p— B) + p?.

so f"(B) =ne®*B" 2 > 0 as long as B > 0. This confirms p = B is a minimum. Thus, choosing
p=Bin (68),
M(K)

e2n pn :

C(K) =

(iii) Since K is symmetric, b(K) = b(vp,x) = 0. Rescale K so that |K| = 1. C(K) remains invariant
under rescaling by Corollary 6.2. By (6-2), Lemmas 6.13 and 6.10(iii), and Claim 6.14,

| Bn p" Bn
u 0)<lo +—-=lo T
B’K( )= g(f[Rn e~ Phix(y) dy) I (M(K))

As a result, by (6-1), since |K| =1,

M(K) —Bn
" '

M(K)
CK) = S

concluding the proof of Theorem 1.9 O

C(K) = e 5. K(O)
Thus, choosing p = B,
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Remark 6.15. It is enough to formulate Theorem 1.9 in terms of /7 g: By Lemma 2.2(i),

1
hp,x(y) = ;hl,K(py)-

Therefore V2hy, k(y) = pVZh1 k(py). As a result,

log det Vzhp’K(y) + pBhy g (y) = logdet V2hyi k(py) + Bhy g (py) +nlog p.

Thus, log det Vzhp,K(y) + pBhy k(y) is convex if and only if log det V2hy k(y) + Bhy g (y) is.

6C. A suboptimal bound. We prove Theorem 1.11, i.e., we show that logdet V2h, x + p(n + 1)hy g
is convex. Corollary 1.12 then follows from Theorem 1.9(ii).

Proof of Corollary 1.12. By Theorems 1.9(ii) and 1.11,

M(K) 7\ 1
= vy = (ﬁ) TS

By tensorization (replacing (n + 1)™" by n~" [Mastrantonis and Rubinstein 2022, Appendix A]),

c(K)> -2 " 0
~\2e2n )’
Proof of Theorem 1.11. Recall by the proof of Lemma 6.3,

V2h, k(y) = p(/ xix; dv”(x) —/ Xi dvy(x)/ X; dvy(x)) , (6-9)
K K K i
where

ePx.y) 1% (x)dx

[x eptx:y) Idel K|

dv? (x) :=

a probability measure that depends on y. Consider the (n+1) x (n+1) matrix

1 S x1dv?(x) - [g xpdv? (x)
Mo [x x1dvY (x)
o : [[x xix; dvy(x)]:.ij=1

[x xn dv? (x)
By row reduction and (6-9),
det M = p~" det Vh, k.

Note that for i, j € {0, 1,...,n}, we have M;j = (X, X;)2(qy»)> Where xo = 1. For
1 x%o) x’(10)

AO, . x®yi=det|: 0,

1 xi") x,S”)
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by Andréief’s formula [Forrester 2019, (1.7)],

2
| 1 x%o) x,(,o)
detM = m/ det| 1 dv? (x@) .. dp? (x ™)
n L JKnt+1
1 xi") x,S”)

1 5 p(x @, © eP(x™.y)
(n + 1)' Kn+1 .[K el’(x( ),¥) dx (0 .fK ep(x(”),y) dx(”)

__ 1! ! IA[2eP (T =0x77) 4O . gy
(n+1)! (fK eP(x.y) dx)”“ Knt1

da(x™)

Therefore,
log detVzhp,K(y) =nlog p +logdet M
=nlogp—logln+D!—(n+1) log/ PV dx 4+ log ¢ (»)
K

=nlogp—log(n +1)!—p(n+ Dhp x(y) +logd(y).
where

5(y) = f AP TimoxD5) 4O . g ).
Kn+1
Since log ¢ is convex (Lemma 6.16 below), and

logdet V2hp k (y) + p(n + Dhy g (y) = nlog p —log(n + 1)! + log ¢ (y),
the claim follows. O

Lemma 6.16. Let K C R" be a convex body, m € N, and [ : R"™ — [0, +00) a measurable function.
Then,

o(y) = log/ i f(x1,. ..,xm)e<x1+"'+x’"’y> dxy---dxy, yeR",
is convex. )
Proof. Write x = (x1,...,xXm) € R" and let A € (0, 1), y1, y2 € R™ Since
Fx)etx et =DyiHAye) ()o@ timy ) I=A( ) plrittamyal)h

by Holder’s inequality for p = ﬁ and g =

2

o=

1-A
f(x)e(xl+'"+xm,(1—/1)y1+ly2) dx S( f(x)e(x‘+"'+x’”’y‘) dx)

Km Km

A
( f(x)e<x1+'"+x’”’y2) dx) )
K"’l

Taking logarithms yields ¢((1 = A)y1 + Ay2) < (1 =A)p(y1) + A (¥2). O
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6D. More general probability measures and sharpness of B = n + 1. As just discussed, Theorem 1.11
falls short of proving the slicing conjecture because the best constant B we currently obtain is n + 1. It is
interesting to note that while in the setting of the uniform measure on K this constant could potentially
be improved, many of the results in this section extend to general probability measures and then the
constant n + 1 is in fact optimal. The purpose of this subsection is to spell this out.
Throughout this section the only properties of the measure
0o dX

KTk
used to obtain the estimates in Lemmas 6.10 and 6.13 were that it is a probability measure that is supported
on K. As aresult, it may be replaced by any probability measure

i

that is supported on K, i.e., for any measurable A C R?\ K, u(A4) =0, so that, in addition, co supp(u) = K.
For example, (6-2) was already obtained for any probability measure with barycenter at the origin. For a
convex body K C R” and a probability measure ;& whose convex hull of its support is K, let

1
hp,u(y) = ;10g/K€p(x’y) dp(x).

As in Lemma 6.3,

n

T2 _ — . | .
pV hp.(0) = Cov(u) := |:/K xixj du(x) /Kx, d,u(x)/Kx] du(x)i|

ij=1
For p > 0, let

f[R{” e~ Phiu(y) dy’

Then, Claim 6.11, Lemmas 6.10 and 6.13 generalize.

Lemma 6.17. Let p > 0. For a convex body K C R", i a probability measure with co supp(u) = K, and
Vp,u as in (6-10):

(1) We have

—2ph
X| Jan € 2ph1.u () gy )

logdet V2hy () dvy . (y) <lo (
/Rn g S sk g (.fR” o2l u () dy)z

(ii) If b(vp) =0, then

|Kle"
/ log det Vzhl,u(y) dvp,pu(y) = log(f e—Phiu(y) dy )
n R" '

(iii) If b(w) = 0, then

K|
/ log det V2h1,M(J’) dvpu(y) < log(/‘ e—Ph1.u () dy '
n R ’
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Lemma 6.18. Let p > 0. For a convex body K C R" and a probability measure j with co supp(u) = K,
n

f h1,u(y) dvp,u(y) <
R” p

Theorem 1.11 also generalizes.

Theorem 6.19. Let p > 0. For a probability measure (. on R" such that supp(u) is a convex body, the
function

logdet V2hy , (y) 4+ p(n + Dhp ()

is convex.
In fact, Theorem 6.19 is sharp: the next example shows B = n 4+ 1 cannot be improved.

Example 6.20. Consider

o 80+8e1 +"'+82n
o= n+1

’

the probability measure on the standard simplex A, that assigns mass ﬁ to each vertex. Then,

log det V2hp, 1, (y) + pBhyp,u(y)

is convex if and only if B > n + 1. To see this, compute

14+ ePYl 4o PV

! 1
hpu(v) = 7 log / P dp(x) =  log

n n—+1
For the gradient, by the chain rule,
8hp,u()_1 n—+1 d 14+ePV1 ... 4 oPIn
ayl- y _pl+epyl+.--+epynayi n+1

epyl

- 1+ePV1 ... ePVn’

(6-11)

Thus
(ePI1, ... eP¥n)

14+ ePYl 4 ...t eP¥n’

Vhp,u()’) =

For the Hessian, by the quotient rule on (6-11),

ath’u( - pePYisi (14 ePYl 4 ... 4 ePIn) — ePYi pePVi

8yl-8yj (1 4+ ePY1 4 ...+ eP¥n)2
_ p 5”epyi _ ep(yl+yj)
T 14 eVt foigepyn \ Y 1+ ePYl 4.ocqep¥n )
Thus
A ePOity;) n
V2hy u(y) = P §ijeP¥i —
’ 14+ePV1 ...+ ePVn 14+ePV1 ...+ ePVn ij=1

p

_ T
_1_|_epy1_|_..._|_epJ’n(D aa’),
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where D = diag(e?1,...,ePYn) and a = (1 4+ eP¥1 + ...+ eP¥n)"1/2(ePY1 _ ¢P¥n) Therefore,
n
2 _ 14 T
detV hp,u(y) - (l + eVl 4 ... _|_ePJ’n)n det(D aa )
pn
= (1—(D7'a,a))det D
(] + eN +..._|_ep)’n)n
_ pn - ePr1 4o+ ePn epy1+---+pyn
(1+er1 4. -+ ePVn)n 14+ePY1 ... 4 ePVn

n

B p
- (1 + eXt +...+ePJ’n)n+1

ePy1ttpyn (6-12)

Here we used the fact that, for u, v € R”, det(/ — uvT) = 1— (u, v), which follows from row reduction

1 of 1\ _ 1 yT o\ 1yTy 1+(x,y) 0T
det(o I—I—xyT)_det(O I—i—xyT)_det(—x I = det . 1)
As a result, by (6-12),

log det Vzhp,u(y) + pBhp () =nlog(p) + py1 + -+ pyn — (n + 1) log(1 + PV 4 ... 4 eP¥m)
14+ ePY1 4...4 ePrn

+ Blog n+1

= —n 1 10 1 +e +“' e
B g ! Py

which is convex if and only if B > n + 1 (because log(1 4 e?¥1 4 ...+ ¢PYn) is convex).
When B=n+1and p =1 we get

logdetvzhl,ﬂ +m+Dhiyp=y1+--+yn—@m+1)logn+1),

so that 1, solves the Monge—Ampere equation
\V/ 1 —(n+ Feeg
det zhl,u(y) - W@ (n 1)h1,uey1 n.

From here we can read off that |

We next look at a generalized isotropic constant, by defining
K|
det V2hy,,(0)
From the previous equation we then get, remembering that the volume of the unit simplex is 1/n!, that
e+ 1yn+1
(n!)?

The right-hand side here is of the order of magnitude ¢ n~

det V2hy ,,(0) =

C(p) := (6-13)

C(w)

" so we see that the “suboptimal” bound of

Corollary 1.12 is optimal in this generality.
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Interpreted benevolently, Example 6.20 means that our method is optimal in the sense that the best
possible choice of B gives the correct estimate for C(u). The natural question then arises, for which
measures i the constant B can be taken smaller so that we as a consequence get a better estimate of C(u).
One simple case when this is so is when pu is divisible, in the sense that we can write

L=V *v ke wp =K

as the k-fold convolution of another probability measure v with itself. In that case,
higy=khiy.
Applying Theorem 6.19 to /1, we then get that
log detVzhLv +(n+1Dhy,y
is convex, which implies that

1
log det Vzhl,ﬂ + %hl,u

is convex. This leads to the improved estimate

k n
C(n) = c" (—) .
n

This is however not so impressive since the same conclusion can be drawn directly from C(v) > ¢"/n" if
we note that the convex hull of the support of v is % This way we also see that it is not really necessary
that u can be written vk*: it is enough that y = f vk* | where f is bounded.

6E. A complex geometric approach to Theorems 1.11 and 6.19. In this section we outline a different
proof of Theorem 1.11 (and of its generalization, Theorem 6.19) which is a little more conceptual, but
presupposes a bit of complex geometry. It is based on a theorem by S. Kobayashi [1959, Theorem 4.4].
Kobayashi’s theorem deals with L2 spaces of holomorphic (1, 0)-forms on complex manifolds, but his
proof goes through in a much more general setting and applies in particular to the setting we will now
describe.

Let i be a compactly supported probability measure on R”. Let

H, = % f(z):= / e220) F(1) du(t), z € C" : f e L2(w).
Rn
H, is a space of entire functions on C" and we give it an inner product
(7.8 = [ S0z ) (6-14)

making H,, a Hilbert space, isomorphic to L?(w).
We require that p is not supported in any proper linear subspace of R”. This implies that for any
a € R" there is a function f such that

/fd,uzO and /(a,t)f(t)du(t);éO.
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Indeed, if this were not the case, any function orthogonal to 1 in L2 (1) would also be orthogonal to (a, t),
which would imply that (a,?) = ¢ on the support on u, contrary to assumption. In terms of functions
in Hy, this says that there is a function f which vanishes at the origin, with ) a;d; f not vanishing
there. Then, replacing f by e{70-1}/2 f(1) we see that the same thing goes for any point zo in C”. This
means that the conditions A.1 and A.2 in [Kobayashi 1959, pp. 271-2] are satisfied (we will see the
relevance of this shortly). Kobayashi’s condition A.1 says that for any point in C" there is a function
in H,, that does not vanish there — this is trivial in our case. Indeed, for zg € C", since p is compactly
supported, e~{201) € L2(11), and

/e_(zo’t)e<zo’t)dl/«(f) =/du(l) =1,

because p is a probability measure.
The (diagonal) Bergman kernel for H, is defined as

Bu(z):=  sup |f)P
{feHu:| flI=1}

By condition A.1, the Bergman kernel does not vanish anywhere. It follows directly from the definitions
that for

Ku(z, w) :=/e(z+zws’> du(r),
and f(z) = [ 502 f(t)du(r) € Hy, by (6-14),

(f Ku(- w)) = f f(0)e 0 du(r) = / F0)e> 0 du(r) = f(w),

i.e., K, enjoys a reproducing property, in addition to being holomorphic in the first variable and antiholo-

morphic in the second. These three properties characterize Bergman kernels [Mastrantonis and Rubinstein
2022, §3.2]; thus K, is the Bergman kernel of H . Therefore, on the diagonal, if z = x + iy,

Bu() = Kuz.2) = [ ) do),
i.e., coming back full circle to the ideas in Section 1A,

The Bergman metric associated to H, is the Kihler metric on C" defined by

2

8k -

B 0z;0Zk log By.

By (6-15), log B/, is convex in x, hence plurisubharmonic in z, and the matrix g = [gj ] is positive semidef-
inite, and it is a standard fact (that we omit) that the condition A.2 is precisely what is needed to make sure
it is strictly positive definite. (Alternatively, condition A.2 can verified by using (6-15), the computation
of Lemma 6.3, and the Cauchy—Schwarz inequality to note that 4, is strongly convex.) Kobayashi’s
theorem says that the Ricci curvature Ric g of the Bergman metric is bounded from above by (n + 1)g.
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At this point we need to make use of a standard formula for the Ricci curvature, valid for any Kéhler

metric. Let
A :=det[g ; il
be the density of the volume form of the metric g. Then the Ricci curvature form of g is given by
2
R.; =— log A.
T a0 8

Hence, Kobayashi’s estimate

[Rir] < (n+ g/l
translates to saying that
log A+ (n+1)log By

is plurisubharmonic. In our case, B, and log A depend only on x = Re(z), so

log A+ (n+1)log By

is actually a convex function of x. Moreover, log By, = h1,, and A =47" det V2h;, w (in the last equality

we used the relation between the complex Hessian and the real one on functions depending only on the

real part). Therefore
logdet V2hy  + (n + Dhiy

is convex, i.e., (* p) holds with B = n + 1, so we have proved Theorem 6.19, and, in particular, also

Theorem 1.11.

Appendix: A (near) norm associated to a convex function

In this section we give proofs for Proposition A.1 [Ball 1988, Theorem 5] and Theorem 5.20 [Ball 1986,
Theorem 4.10] (cf. [Busemann 1949; Milman and Pajor 1989, p. 90]). Let us start by using Theorem 5.20

to prove Proposition A.1.

Proposition A.1. For a convex function ¢ : R" — R U {oo} with 0 < [, e™? < oo,

o0
X (/ ple=¢(rx) dr)
0

is positively 1-homogeneous and subadditive (it is also a norm if ¢ is, in addition, even), and

1
_/ e ™ dx = |{x e R" : [x]l¢ < 1}].
n Jrn

S|

Proof of Proposition A.1. 1-homogeneity. Let x € R” and A > 0. By changing variables p = Ar,

foe) -1 oo n—1 -1
. n—1_—¢(rix) " — P —¢(ox) d_p !
IAx]lg : (/0 e dr) (fo T . )
00 _
_ A(/O pn—1€—¢(px) d,o) = Axlg.

Positivity of A is used in the last step.

N

(A-1)



LP-POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT 2239

Subadditivity. Let x,y € R" and r, ¢, s > 0 with 1 %(l + %), or equivalently,

r r
oS + %5 = 1. (6-2)

By (6-2) and convexity of ¢,
60 9) =325+ 3-257) £ 19200+ LB = g+ ). 6

Set
H(r) = e 00O 0 p(r) = 0@ Gs) = e 0@,

By (6-3), H(r) > F(1)*/®+9)G(s)!/+9 50 by Theorem 5.20 (with ¢ = n),

00 —% 00 _% o _%
Ix +yllg = (/ e HO) dr) < 1(/ ple PO dt) + 1(/ p1=1=G0) ds)
1 1
= 512xllg + 5112 llo = lIxllg + 1y ll4,

using the already established homogeneity of | - ||¢.
Volume equality. By (3-2),

1
|{xe[R":||x||¢§1}|——/ f / P 1e™0W qr du. (6-4)
oBY ||M||¢ 3B

Using polar coordinates this is - f e~ dy.

Norm. Assuming in addition that ¢ is even, for x € R”,

1 1

| —xllg = (/ Pl (7 X) dr) = (/ P le=0(x) dr) = [|x]¢.
0 0

Therefore, for A € R, |[Ax||¢ = [|[|A]x]l¢ = |A|[x| ¢, making || - || into a norm. This concludes the proof
of Proposition A.1. O

Next, we turn to proving Theorem 5.20. The proof involves three auxiliary lemmas. To begin with,
invert the variables; for ¢, s, r > 0, let

1 1 1
u:=—, v:i=—, and w:=-
t Os r
for some 6 > 0 to be chosen later. In the inverted coordinates, the condition % = %—i—% becomes w = #
Now, let
Aw) = Fu Hu @t)  Br):= GO v )=t (6-5)
and o
04+1\?
C(w) = (%) Hw Hw™@tD, (6-6)
The reason behind the multiplication by (9+1 ) ! will become apparent in the next lemma that translates

the (5-16) relation between F, G and H to one between A, B and C.
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Lemma 6.2. Let F, G, H as in Theorem 5.20, and 6 > 0. For A, B and C as in (6-5)—(6-6),

0 u v
C (u +2 v) > A(u)u+ov B(v)ui@v forallu,v > 0.
A straightforward change of variables expresses the integrals of F, G, and H in terms of integrals of
A, B, and C:
Lemma 6.3. Let F, G, H as in Theorem 5.20 and 0 > 0. For A, B and C as in (6-5) and (6-6),

/00<> A(u)du = /Ooo t97VF (1) dr,

/oo B(v)dv = 61 /oo s771G(s) ds,
0

0

00 B 0+1 qg+1 roo 1
/0 C(w)dw—(T) /0 r9="H(r)dr.

The following is a standard reduction:
Lemma 6.4. It is enough to prove Theorem 5.20 for F and G bounded.

Before proving Lemmas 6.2—6.4, let us show how they imply Theorem 5.20. For a function E :
(0, 00) — [0, 00), changing the order of integration,

00 oo rE(u) 1 Elloo 1 Eloo
/ E(u)du=/ / dzdu=/ / dudz=/ |E > z|dz, (6-7)
0 0 JO 0 {u:E(u)>z} 0

where || E || oo could potentially be infinite. Ball applies the 1-dimensional Brunn—Minkowski inequality
to the sets {E > z}.

Proof of Theorem 5.20. Step 1: the setup. Let

a:= (/Oootq_lF(l)dt)q, b:= (/Ooosq_lG(s)ds)q, ci= (/000 rq_lH(”)d”)q-

The aim is to show f=<gtpor equivalently,

- 2ab 6-8)
c . -
“a+b
By Lemma 6.3 and (6-7),
o0 lAlleo
a? = [ A(u)du = / |A>z|dz, (6-9)
0 0
00 1Blloo
(6b)4 =/ B(v)dv =f |B > z|dz, (6-10)
0 0

q+1 00 IClleo
(—0;—1) c? =/ C(w)dw =/ |C > z|dz. (6-11)
0 0
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Step 2: comparing the superlevel sets. Lemma 6.2 allows us to compare the superlevel sets of 4, B
and C, obtaining an inequality between «, b and c. In particular,

(czzotaza+ 8322 (6-12)

because foru € {4 >z} and v € {B > z},

C(u 4-291)) > A(u)ufgu B(v)uzvev > Zurevzuilév =z,

u+6v

i.e., “5—~ € {C > z}. By the 1-dimensional Brunn—Minkowski inequality,

C2zl> a2+ 2B 22| (6-13)
By (6-7) and (6-13),

g4 1\d+! ICloo ICloo IClIoo
(L) c4=/ |sz|d231/ |A22|dz+Q/ |A>z|dz.  (6-14)
2 0 2 Jo 2 Jo

Step 3: choosing 6. By Lemma 6.2, ||C ||co = min{|| 4|0, || Blloo}- In view of (6-9), (6-10) and (6-14),
we would like ||C|loo = max{||A|co, || Blloo}- The only way to achieve this is to have ||A|lcc = || B||co-
It is here that one needs to take F and G bounded so that || A||cc and || B||co are finite. By Lemma 6.4,
there is no loss in making such an assumption. Choosing

0 — Sup,-~o F(r)rq-H #
- \sup,5o G(r)ratl ’

gives
[ Alloo = sup F(r)ri*t! = sup G(r)(0r)?*!
r>0 r>0
=sup GO L Hu~Ut) = || B| .
u>0

Step 4: finishing the proof. By Lemma 6.2 and the choice of 0, ||C|loo = [|Allcc = || Blloo- By (6-9),
(6-10), and (6-14),

g +1\9H! lAlloo 1 Bllco q 4 ga+1pq
o+l cqzl/ |Azz|dz+Q/ |Bzz|dzzL.
2 2 Jo 2 Jo 2

2 V(1 6 2\ 1 o\
a a 0b) 0b
¢ Z((9+1) (1+9“ el ))Z(GH) (9+1“+9+1 )

because for g > 1, x — x? is convex and hence

That is,

(1T=x2+ Ay > ((1—-A)x +Ay)?
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for all x,y >0 and A € [0, 1]. Finally,
- 2(a + 62b) _ 2(a+b)(a+ 62b) . a? + 6%ab + ab + 6%b?

O T @b +12 T (@+bh@+1)2
_ 2(02 + Dab +a*+ 020> (0 + 1)%ab—20ab + a® + 6%b*
(a+b)(O+1)2 (@a+b)(O+1)2
_ 2(0 +1)%ab + (a — 6b)? _ 2ab 2(a — 60b)? - 2ab
(a+b)(O+1)2 a+b (a+b)O@+1)2 " a+b’
as desired. This concludes the proof of Theorem 5.20, modulo the proofs of Lemmas 6.2-6.4, which are
given below. O

Proof of Lemma 6.2. For t, s, r > 0 with % = % + %, by assumption,

S

H(r)> F(z)z+s(;(s)zf7 = (A(,—l)[—(q+1))z‘+%(3(9—1S—1)(9S)—(q+1)),iﬁ

= A(u) 75 B(v) s (1755 (0s) 75 ) T9HD. (6-15)
Since,
S u t Ov
= and = —
t+s u+6v t+s ut+6v

by (6-15) and the weighted AM-GM,

Ay B) T = A@) T B) s < H(r)(t7 (0s5)7) 7+

g+1 1\a+1 2rg \dF1
§H(r)( ts N GSZ) :(9+ ) H(r)( ts)
t+s t+s 2 t+s

0+1 q+1 P
=(5) Howrt=c(M52), (6-16)
2 2
because 1 = L 4L = 1y 4 1(gv) = utfv, -

Proof of Lemma 6.3. By changing variables, u = %,

/ Au) du:/ u—(q“)F(u—l)du:/ zq“F(z)t—2 =/ 197V (1) dr.
0 0 0 0

-1
For v = 5

o0

o0 o0 o0 dS
/ B(v)dv :/ v @GOy do :/ (071G (s) 7 = 9@/ s971G(s) ds.
0 0 0 Os 0

Finally, for w = %,

0o o] 1 q+1 00
/ Clw)dw = (L) / W=D (1) du
0 0

2
0+ 1\IF oo d 0+ 1\H oo
= (—+ ) / ratYH(r) —Z = (—+ ) / ri Y H(r)dr. O
2 0 r 2 0
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Proof of Lemma 6.4. For m € N, let

Fun®) 1= FOLipmy(t) and Gun(s) := G(5) LG <my(5)-

Then, Fy,, G, are both bounded by m. In addition, F > F, and G > G, thus for ¢,s,r > 0 with
2 _ 1,1
ro 1 + B s t s t

H(r) = F(t)75 G(s) 75 = Fp (1) 745 Gy (5) 7+ .

Under the assumption that Theorem 5.20 holds for bounded functions,

> q—1 * q—1 _é o q—1 _é
2(/0 r H(r)dr) 5(/0[ Fm(z)dt) +(/O s Gm(s)ds)

The claim follows from the monotone convergence theorem by taking m — oo. O

Q=
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