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PROJECTIVE EMBEDDING OF STABLY DEGENERATING SEQUENCES
OF HYPERBOLIC RIEMANN SURFACES

JINGZHOU SUN

Given a sequence of genus g ≥ 2 curves converging to a punctured Riemann surface with complete metric
of constant Gaussian curvature −1, we prove that the Kodaira embedding using an orthonormal basis of
the Bergman space of sections of a pluricanonical bundle also converges to the embedding of the limit
space together with extra complex projective lines.

1. Introduction

Let Mg be the moduli of a smooth compact Riemann surfaces of genus g. When g ≥ 2, the compactifi-
cation Mg, due to [Deligne and Mumford 1969], is the moduli of stable curves. Each smooth curve of
genus g carries a unique Poincaré metric with constant Gaussian curvature −1. If C ∈ Mg is a singular
stable curve, then by removing the nodes, the smooth part carries a unique complete hyperbolic metric
with constant Gaussian curvature −1. And if a holomorphic family π : C → D of compact smooth
curves Ct degenerates to C = C0, then the hyperbolic metrics are continuous on the vertical line bundle
[Wolpert 1990].

In this article, from the point view of the quantization framework in [Donaldson 2001; Donaldson
and Sun 2014], we are interested in the convergence of the pluricanonical Bergman embeddings of
the family of hyperbolic surfaces in the complex projective spaces. More precisely, let (C j , gj ) be a
sequence of genus g ≥ 2 Riemann surfaces with Riemannian metric gj of constant Gaussian curvature −1
that converges, in the pointed Gromov–Hausdorff topology, to a punctured Riemann surface (C0, g0)—
not necessarily connected — with a complete Riemannian metric g0 of constant Gaussian curvature −1.
Let KC j denote the canonical bundle of C j ; then KC j is endowed with a Hermitian metric h j defined by
the Kähler form ωj associated to gj . We consider the Bergman space Hj,k consisting of L2-integrable
holomorphic sections of K k

C j
. Then Hj,k is a finite-dimensional Hermitian space with the Hermitian

product defined by

⟨s, t⟩ =

∫
C j

(s, t)h jωj ,

where, by abuse of notation, we still use h j to denote the induced Hermitian metric on K k
C j

. For k large
enough, a basis of Hj,k will induce a Kodaira embedding of C j to CPNk , where Nk = dimHj,k − 1 is
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j → ∞

Figure 1. Degeneration of hyperbolic metrics.

independent of j ≥ 1. For j = 0, the dimension of Hj,k is smaller than that of j > 0. It is natural to
consider the embedding induced by an orthonormal basis for Hj,k , which can be considered as a bridge
from Kähler geometry to algebraic geometry [Donaldson and Sun 2017; Sun and Sun 2021]. It is worth
mentioning that after this article was finished, the author learned that Dong [2023] recently proved that
if a smooth family of hyperelliptic curves degenerate to a nodal curve, then their Bergman kernels also
converge to the Bergman kernel of the nodal curve.

As the Gaussian curvature is −1, the degeneration of metrics can only be “pinching a nontrivial
loop”, namely a sequence of surfaces with increasingly thinner and longer handles, with the central loops
degenerating to points. So C0 has d pairs of punctures, which will be called ends. And for k large enough,
the dimension of H0,k equals Nk + 1 − d . Now we can state our main theorem.

Theorem 1.1. For k large enough, we can choose an orthonormal basis for Hj,k for all j ≥ 0, so that, as
j → ∞, the image of the embedding

8j,k : C j → CPNk

induced by the orthonormal basis converges to the image of C0 under the embedding

80,k : C0 → CPNk−d
⊂ CPNk ,

attached with d pairs of complex projective lines. To each pair of the ends (pα, pα+d) a pair of complex
projective lines is associated, forming a connected chain between the images of these two points.

It is interesting to mention that during the process of taking the limit, the pair of complex projective lines
are developed as a pair of bubbles. We illustrate this process in Figures 1 and 2. Also, we should mention
that k depends only on the geometry of C0 and does not need to be too big by the results in [Sun 2017].
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j → ∞

CP1 CP1

Figure 2. Degeneration in CPNk .

The proof of this theorem makes heavy use of the methods we developed from [Sun and Sun 2021] to
[Sun 2017]. Just as in [Donaldson and Sun 2014], the main point is basically proving the convergence
of the Bergman kernels. We hope this result may shine a light on the study of the degeneration of
higher-dimensional projective manifolds [Honda et al. 2019; Song 2017; Sun 2019].

The structure of this article is as follows. We will first quickly recall the necessary background for this
article. Then we will calculate in the model for the thin handles, or “the collar”, of the Riemann surfaces
close to the limit. And in the end, we will finish the proof of the convergence of the pluricanonical
Bergman embeddings.

2. Punctured model

On the punctured disk D∗, the Poincaré metric is

ωP =
2i dz ∧ dz̄

|z|2(log |z|2)2
.

Taking the local section of the canonical bundle e = dz/z, the local potential is

ϕP = − log |e|2 = − log
(log 1/|z|2)2

2
.

We use the notation τ = − log |z|, which yields ϕP = − log(2τ 2). We are interested in the L2-norm of
the sections zaek+1 of K k+1

D∗ , a ∈ Z+. So we have the integrals

Ya =

∫
(2τ 2)k+1

|z|2aωP .
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Further, we have

Ya = 2k+2π

∫
∞

0
e−2aτ+2k log τ dτ.

Writing ga(τ )= −2aτ+2k log τ , we have g′′
a (t)= −2k/τ 2. So ga(τ ) is a concave function which attains

its only maximum at τa = k/a. We will use the following basic result from [Sun 2017, Lemma 2.6].

Lemma 2.1. Let f (x) be a concave function. Suppose f ′(x0) < 0, then we have∫
∞

x0

e f (x) dx ≤
e f (x0)

− f ′(x0)
.

We can use Laplace’s method and the lemma above to estimate

Ya ≈ 2k+2πe−2k+2k log(k/a)

√
kπ
2a2 .

Of course, we can directly calculate the integral to get

Ya = 2k+2π
(2k)!

(2a)2k+1 ,

but the idea of mass concentration is key to our arguments. The Bergman kernel of D∗ is then

ρ0,k+1 =
22kτ 2k+2

π(2k)!

∑
(a)2k+1

|z|2a.

Let C0 be a punctured Riemann surface obtained by removing 2d points {pα}1≤α≤2d from a compact
Riemann surface. C0 is endowed with a complete Poincaré metric ω with constant Gaussian curvature −1.
The metric ω defines a Hermitian metric h on the canonical bundle KC0 . Then, for any positive integer k,
we denote by Hk the space of holomorphic sections of K k

C0
that are L2-integrable, namely

∥s∥2
=

∫
C0

|s|2hω <∞.

For each pα, there is a neighborhood Uα with local coordinate z such that ω = ωP on Uα\pα. We can
assume that Uα contains the points satisfying |z| ≤ Rα. We note that the injective radius at the points
|z| = Rα is about π/(4(log Rα)2). For simplicity, we let R be the minimum of the Rα, 1 ≤ α ≤ 2d.
Clearly, for the complement of

⋃
1≤α≤2d Uα in C0, there is a positive lower bound λ0 for the injective

radius.
Let ρk+1 denote the Bergman kernel of C0 for the Bergman space Hk+1. The basic conclusion of [Sun

2017] (which is also an implication of [Sun 2013], although not explicitly stated there) is that, for k large
enough, in the “inside” of Uα, where τ = − log |z| >

√
k + 1, the Bergman kernel ρk+1 is very much

like ρ0,k+1, meaning that |ρk+1/ρ0,k+1 − 1| is o(1/k N ) for all N . We have shown in [Sun 2013; 2017]
that ρ0,k+1 is dominated by the terms ca|z|2a for a < k3/4, meaning that

ρ0,k+1∑k3/4

a=1 ca|z|2a
− 1 = o

(
1

k N

)
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for all N . In particular, ρ0,k+1 is dominated by c1|z|2 when τ ≥ k. The sections for C0 corresponding
to za in the model D∗ is constructed as follows. We let zα denote the local coordinate z on Uα. Let
eα = dzα/zα be the local frame of KC0 . Then za

αek+1
α , a ≥ 1, are local sections of K k+1

C0
. We choose and

fix a cut-off function χ(r) that equals 1 for r < 1
2 R and 0 for r > 2

3 R. Then we denote by χα the function
χ(|zα|) defined on C0. Then χαza

αek+1
α is a global smooth L2-integrable section of K k+1

C0
. We then take

the orthogonal projection of this section into the space Hk+1, and then normalize the holomorphic section
to be of norm 1, obtaining a section sα,a ∈ Hk+1. We write

V0 = {sα,a : 1 ≤ α ≤ 2d, 1 ≤ a < k3/4
}.

For k large enough, within r < 1
4 R, the sections sα,a are approximately equal to

√
caza with relative error

less than 1/k2.
We choose and fix an orthonormal basis W0 = {sj } for the orthogonal complement V ⊥

0 ⊂ Hk+1.

To obtain global sections of Lk from local ones, we will need to use Hörmander’s L2 estimate. The
following lemma is well known; see for example [Tian 1990].

Lemma 2.2. Suppose (M, g) is a complete Kähler manifold of complex dimension n and L is a line
bundle on M with hermitian metric h. If

⟨−2π i2h + Ric(g), v∧ v̄⟩g ≥ C |v|2g

for any tangent vector v of type (1, 0) at any point of M , where C > 0 is a constant and 2h is the
curvature form of h, then, for any smooth L-valued (0, 1)-form α on M with ∂̄α = 0 and

∫
M |α|

2 dVg

finite, there exists a smooth L-valued function β on M such that ∂̄β = α and∫
M

|β|
2 dVg ≤

1
C

∫
|α|

2 dVg,

where dVg is the volume form of g and the norms are induced by h and g.

In our setting, for a curve C j , j ≥ 0, with line bundle K k+1
C j

, the constant k is independent of j .

3. The collar model

Let fε be a function depending only on |z| satisfying the conditions

• fε > 0,

• fε(1)= ε2,

• f ′
ε(1)= 0,

• 1z log fε(|z|)= 2 fε/|z|2.

Clearly, such an fε exists and is unique in a neighborhood U of |z| = 1. Let

ωε =
fεi dz ∧ dz̄

2|z|2
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be the Kähler metric defined on U . Then our choice of fε makes the metric have constant Gaussian
curvature −1. Writing t = log |z| and abusing notation, we consider fε as a function of t . Then we have

1z log fε =
d2 log fε

dt2

1
|z|2

.

For simplicity, we will use f (t) to denote fε. Therefore, we have

(log f (t))′′ = 2 f (t).

The first fundamental form of the metric is

I = f (t) dt2
+ f (t) dθ2.

We use the arc-length parameter u for the t-curves. Then by the curvature condition, we have

f (t)= ε2 cosh2 u, u(0)= 0, and dt
du

=
1

ε cosh u
.

Therefore, we have

t =
1
ε

tan−1
[sinh u].

One can see that f can be extended to the annulus {z : −π/(2ε) < t < π/(2ε)}. It is worth noticing that
|u| → ∞ when t goes to the boundary |t | = π/(2ε), meaning fε → ∞. It is natural to use the notation

τε =
π

2ε
− t.

From now on, we will always assume that ε is very small compared to k−k . So the region where f is
defined is a large annulus. We will write

C∗

ε =

{
z : −

π

2ε
< t <

π

2ε

}
,

and we have our model C∗
ε = (C∗

ε, ωε).
We also use the frame e = dz/z for the canonical bundle KC∗

ε
, so we have

|e|2 =
2
f
.

So for a section of s = ge⊗(k+1) of K k+1
C∗
ε

, the L2-norm squared is

∥s∥2
=

∫
C∗
ε

(
2
f

)k+1

|g|
2ωε.

We are interested in the L2-norm of the sections zaek+1 of K k+1
C∗
ε

, a ∈ Z. So we have the integrals

Iε,a =

∫ (
2
f

)k+1

|z|2aωε.
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Further, we have

Iε,a = 2k+2π

∫ π/(2ε)

−π/(2ε)
e2at−k log f dt.

Writing ga(t)= 2at − k log f , we have g′′
a (t)= −2k f (t). So ga(t) is a concave function which attains

its only maximum at ta satisfying f ′(ta)/ f (ta)= 2a/k. Write ua = u(ta). Since f ′(t)/ f (t)= 2ε sinh u,
we have

ε sinh ua =
a
k
.

So sinh ua = a/(kε) is very large when a ≥ 1, and f (ta) = a2/k2
+ ε2 > a2/k2. When a is large, say

a ≥ k, we have that g′′
a (ta) is also large. The third derivative is

g(3)(t)= −4kε sinh u.

So g(3)(ta) = −8a, and, for |t − ta| < (
√

k log k)/a, we have that g(3)(t) is also O(a). Therefore, for
|t − ta|< (

√
k log k)/a,

g′′(t)
g′′(ta)

= 1 + O
(

log k
√

k

)
.

We can use Lemma 2.1 to estimate

Iε,a =

(
1 + O

(
log k
√

k

))
2k+2πe2ata−k log f (ta)

√
π

2k f (ta)
=

√
π

2k
2k+2π

(ε cosh ua)2k+1 e2ata .

We have that the mass of Iε,a is concentrated within the neighborhood {|t − ta|< (
√

k log k)/a} with
relative error less than k− log k+3/2, namely

Iε,a = (1 + O(k− log k+3/2))2k+2π

∫
|t−ta |<(

√
k log k)/a

e2at−k log f dt.

When a < k, we use the variable u to estimate the integral∫ π/(2ε)

−π/(2ε)
e2at−k log f dt =

∫
∞

−∞

e2at−log f du
ε cosh u

.

Let −G(u)= k log f − 2at − log cosh u be the exponent function. Then

G ′(u)= 2k
sinh u
cosh u

−
2a

ε cosh u
+

sinh u
cosh u

,

G ′′(u)=
2k

cosh2 u
+

2a sinh u

ε cosh2 u
+

1

cosh2 u
,

G(3)(u)= −
(4k + 2) sinh u

cosh3 u
+

2a(1 − sinh2 u)

ε cosh3 u
.

So G(u) is a convex function of u which attains its only minimum at u′
a satisfying

sinh u′

a =
2a

ε(2k + 1)
,
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and

G ′′(u′

a)=
(2k + 1)3ε2

+ 4a2(2k + 1)
4a2 + (2k + 1)2ε2 = 2k + 1 + O(ε2),

which is large. Further,

G(3)(u′

a)= −
2k + 1

[(2k + 1)2/(4a2)+ 1]3/2 + O(ε2).

So again, we can estimate

Iε,a =

(
1 + O

(
log k
√

k

))
2k+2π

ε cosh u′
a

e2at ′a−k log f (t ′a)
√

π

2k + 1

=

(
1 + O

(
log k
√

k

))√
π

2k + 1
2k+2π

(ε cosh u′
a)

2k+1 e2at ′a ,

where t ′
a = t (u′

a).
So for a ≥ k,

Iε,a+1

Iε,a
=

(
1 + O

(
log k
√

k

))
e2ata+1−ta

(
cosh ua

cosh ua+1

)2k+1

=

(
1 + O

(
log k
√

k

))
e2εk/a a2k+1

(a + 1)2k+1 =

(
1 + O

(
log k
√

k

))
a2k+1

(a + 1)2k+1 .

Since
ε sinh u′

a

ε sinh ua
= 1 +

1
2k
,

this approximation for Iε,a+1/Iε,a works for all a > 0.
Since sinh ua is very large, we can use the Taylor expansion of tan−1 around infinity to estimate

π

2
− εta =

εk
a

+ O
((
εk
a

)2)
and also

π

2
− εt ′

a =
ε(2k + 1)

2a
+ O

((
εk
a

)2)
.

Therefore, for k > a ≥ 1,

|z|2a

Iε,a
=

(
1 + O

(
log k
√

k

))√
2k2k−1

π3/2

(
e

2k + 1

)2k+1

a2k+1e−2aτε .

Notice that the term √
2k2k−1

π3/2

(
e

2k + 1

)2k+1

is independent of a.
Recall that the power series in the expression of ρ0,k+1 is also∑

a2k+1
|z|2a

=

∑
a2k+1e−2aτ
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By the same argument as in [Sun 2017, Theorem 1.1] and [Sun 2013, p. 5535, Case II], for t ∈ [0, t1], the
Bergman kernel is dominated by [

|z|2

Iε,1
+

1
Iε,0

](
2
f

)k+1

.

The idea of the argument is very simple: by the mass concentration property of the integral Iε,a , the
contribution of |z|2a/Iε,a to the Bergman kernel gets smaller and smaller when t moves further away
from ta . When a <

√
k/log k, we have that (a/(a + 1))2k+1 is very small, meaning that ta is already far

enough from ta+1 for the integral Iε,a+1, so that the contribution of |z|2(a+1)/Iε,a+1 to the Bergman kernel
at ta is negligible.

By symmetry, for t ∈ [t−1, 0], the Bergman kernel is dominated by[
|z|−2

Iε,−1
+

1
Iε,0

](
2
f

)k+1

.

In particular, we have the following:

Lemma 3.1. For any holomorphic section s of K k+1
C∗
ε

satisfying ∥s∥ = 1, we have

|s|2 < ε2
(√

e log ε
k

)2k

when

cosh u ∈

(
−1

2ε log ε
,

−1
ε log ε

)
.

Proof. By symmetry, we can assume t > 0. For the right end of the interval, we only need to estimate the
norms of

z
Iε,1

ek+1 and
1

Iε,0
ek+1

at t , where cosh u = −1/(ε log ε). For the first one, we have∣∣∣∣ z
Iε,1

ek+1
∣∣∣∣2

=

(
1 + O

(
log k
√

k

))√
2kε2

2kπ3/2

(
log ε

k

)2k

ek+1/2.

For the second one, notice that u′
a = 0 = t ′

a and

Iε,0 =

(
1 + O

(
log k
√

k

))√
π

2k + 1
2k+2π

ε2k+1 .

So we have ∣∣∣∣ 1
Iε,0

ek+1
∣∣∣∣2

=

(
1 + O

(
log k
√

k

)) √
2k

2π3/2 ε
2k+1(log ε)2k,

which is much smaller than the first one. For the left end of the interval, we have a smaller norm for the
section zek+1/Iε,1, and a still very small norm for the section ek+1/Iε,0. Combining these estimates, we
have proved the lemma. □
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Assume C j converges to C0 in the pointed Gromov–Hausdorff topology. For j big enough, C j has
exactly d closed geodesics whose arc length is less than 1

4λ0. We denote these circles by γj,α , 1 ≤ α ≤ d ,
and the arc length of γj,α by εj,α . Rearranging the points pα , we can assume that 2πεj,α converges to the
pair (pα, pα+d) as j → ∞. Also, for j large enough, there is a neighborhood Uj,α , usually referred to as
a collar, of each γj,α which is homeomorphic to an annulus. We define a map

h j,α : Uj,α → C∗

ε,

with ε= εj,α , as follows. Fix an isometry λ of γj,α to the circle |z| = 1 in C∗
ε . Then, passing through each

point q on γj,α , there is an unique geodesic lq orthogonal to γj,α . We define h j,α to be the map that sends
each such geodesic lq to the geodesic passing through λ(q), orthogonal to the unit circle, and preserving λ
and the orientation. Since both surfaces have constant Gaussian curvature −1, h j,α is an isometry so long
as the geodesics lq do not intersect each other. But since the curvature is negative, by the Gauss–Bonnet
theorem, these geodesics cannot intersect within Uj,α . Therefore, h j,α is also holomorphic, and we can use
the coordinate z from C∗

ε as the holomorphic coordinate of Uj,α . By switching pα and pα+d if necessary,
we can assume that the part |z| > 1 of Uj,α converges to a neighborhood of pα and the part |z| < 1
converges to that of pα+d . We can assume that Uj,α = {1/M ≤ |z| ≤ M}, and, for j large enough, we can
assume that the injective radius at |z| = M is larger than

π

4(log 3R/4)2
.

We denote by U+

j,α the part of Uj,α with |z|> 1 and similarly U−

j,α the part of Uj,α with |z|< 1. We then
define a map

ϕj,α : U+

j,α → Uα

by sending ε cosh u to 1/(2τ) while preserving the circles {u = constant}. Clearly, we are only preserving
the length of the circles. By symmetry, we also have

ϕj,α+d : U−

j,α → Uα+d .

By our assumption on the injective radius, the image of ϕj,α contains the circle |zα| =
3
4 R. On Uα, the

first fundamental form is

I0 =
1
τ 2 (dτ

2
+ dθ2).

The pullback

ϕ∗

j,α I0 = tanh2 u du2
+ (ε cosh u)2 dθ2

is almost isometric to the metric

Ij = du2
+ (ε cosh u)2 dθ2

when u is large. In particular, for the part where ε cosh u ≥ −1/log ε, we have that ϕj,α converges to an
isometry when j → ∞.
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Let Uα(r) denote the subset of Uα consisting of the points |zα|< r . Let F = C0\
⋃

1≤α≤2d Uα

( 2
3 R

)
,

and let ψj : F → C j be the diffeomorphism with its image. Since ψj converges to an isometry as j → ∞,
we can glue ψ−1

j with the ϕj,α — rotating ϕj,α if necessary — for j large enough, to get a map

G j : C j\
⋃
γj,α → C0

with the following properties:

• G j is a diffeomorphism of C j\
⋃
γj,α with its image.

• G j = ϕj,α for p ∈ ϕ−1
j,αUα

( 2
3 R

)
, 1 ≤ α ≤ 2d .

• G j is almost an isometry on C j\
⋃

1≤α≤2d ϕ
−1
j,αUα

( 2
3 R

)
and converges to an isometry when j → ∞.

For any conformal metric, the compatible complex structure J is just a counterclockwise rotation
by π

2 . We see that almost isometric implies almost holomorphic. Therefore G−1∗

j KC j converges to KC0 as
subbundles of TC0 ⊗ C. More precisely, let Jj be the complex structure compatible with the Riemannian
metric gj . If the pointwise norm

sup
v∈Tp,|v|g=1

|gj (v, v)− g(v, v)|< δ,

then we have
sup

v∈Tp,|v|g=1
|Jj (v)− J (v)|g < λδ

for some constant λ independent of p and g. We call the supremum above the pointwise distance from Jj

to J . Moreover, if gj converges to g in C2-norm, then Jj converges to J in C2-norm also. If we denote
by TJ the holomorphic tangent space with respect to J , then the orthogonal projection of TJj to TJ is close
to an isometry if Jj is close to J . We identify TJj with Tj via this orthogonal projection, and similarly
K j = T ∗

Jj
with K = T ∗

J , which we will also call an orthogonal projection for simplicity. Since the metric
on the canonical bundle is defined by the Kähler form ω and ωj converges to ω, we have that the Chern
connection ∇j on K j converges to the Chern connection ∇ on K .

4. Convergence of projective embedding

By assigning value 1 on γj,α , we glue together the pullbacks G∗

j χα and G∗

j χα+d to get a function denoted
by χ̃α for 1 ≤ α ≤ d . On each ϕj,α , we also consider the χ̃αza as global smooth sections of K k+1

C j
. Then

we repeat the construction of V0 by normalizing the orthogonal projection of χ̃αza onto Hj,k+1 and denote
the resulting section by sj,α,a , |a|< k3/4. Then we define

Vj = {sj,α,a : 1 ≤ α ≤ d, |a|< k3/4
}.

We should remark here that the choice of the upper bound k3/4 is not necessary, it is purely a habit from
[Sun and Sun 2021]. Notice that the number of sections of Vj is larger than that of V0 by the number d.
Those extra sections are {sj,α,0}1≤α≤d . We consider sj,α,a as a smooth section of G−1∗

j K k+1
C j

on image(G j ).
We then define a piecewise smooth section s̃j,α,a of K k+1

C0
which equals the orthogonal projection of sj,α,a

to K k+1
C0

on image(G j ), and equals 0 in the complement. For simplicity, we will say that sj,α,a converges
in some topology if s̃j,α,a converges in that topology.
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Proposition 4.1. The smooth section sj,α,a converges to sα,a for a > 0 and to sα+d,−a for a < 0, in
L2-norm, as j → ∞.

Proof. By symmetry, we only have to prove the result for a> 0. By taking j large enough, we can assume
that p ∈ C0\

⋃
Uα(ε( j, α)). When ε cosh u ≥ −1/log ε, we observe that tanh2 u = 1 − (ε log ε)2 is very

close to 1. So ϕj,α is very close to an isometry. For simplicity, we still use the notation ε for ε( j, α).
Then we look at the integral

Ij,α,a = 2k+2π

∫
χ̃2
α

1
(ε cosh u)2k e2at dt = 2k+2πeπa/ε

∫
χ̃2
α

1
(ε cosh u)2k e−2aτε dτε.

On C0, we have

Jα,a = 2k+2π

∫
χ2
ατ

2ke−2aτ dτ.

For Ij,α,a , by Lemma 2.1, we can truncate the part τε >− log ε by introducing a relative error < ε. Also
for Jα,a , we can truncate the part τ > − log ε by introducing a relative error < ε. Then for the part
τε ≤ − log ε,

χ̃2
α

1
(ε cosh u)2k e−2aτε

converges to χ2
ατ

2ke−2aτ uniformly. Therefore Ij,α,ae−πa/ε converges to Jα,a as j → ∞, and therefore
I −1/2

j,α,a za
α converges to J−1/2

α,a za as j → ∞. Also for this part, the 1-form dzα/zα converges uniformly
to dz/z. The way to get orthogonal projection onto holomorphic sections is to find the solutions of the
equations

∂̄v = ∂̄ J−1/2
α,a za

(
dz
z

)k+1

and ∂̄jvj = ∂̄j I −1/2
j,α,a za

α

(
dzα
zα

)k+1

,

where we denote by ∂̄j the ∂̄ operator on C j , with minimal L2-norms. Here the L2-norms of vj and v
are defined with vj and v considered as sections of K k+1

C j
and K k+1

C0
, respectively. In order to prove the

conclusion of the lemma, it suffices to prove that vj converges to v. Notice that ∂̄v is supported within
the annulus 2

3 R ≤ |z| ≤
3
4 R ⊂ Uα. By the mass concentration property of za , the mass satisfies

∥∂̄v∥<
1
k2 .

Therefore ∫
|v|2ω <

1
k3 ,

and v is holomorphic outside the support of ∂̄v. Since the Bergman kernel is dominated by |

√
Y −1

1 z|2 and∫
|z|<ε

Y −1
1 |z|2ω < ε,

we have ∫
|z|<ε

|v|2ω < ε
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in every Uα . We pull back the restriction v to C0\
⋃

Uα(ε( j, α)) by G j , and use cut-off functions κε near
the edges to get a global smooth section of G∗

j (K
k+1
C0

), which is then projected to a smooth section of K k+1
C j

,
called ṽj . More explicitly, we define the κε as a smooth function of τε that equals 1 for τε <− log ε, and
equals 0 for τε >−2 log ε. We can also assume that |κ ′

ε|< 2/(− log ε). We have

∇
∗
∇v = 2∂̄∗∂̄v+ (k + 1)v.

So ∫
|∇v|2ω =

∫
2|∂̄v|2ω+ (k + 1)

∫
|v|2ω <

3
k2 .

Therefore, ∫
|∇j ṽj |

2ωj <
4
k2 and

∫
C j

|∂̄j ṽj − ∂̄jvj |
2ωj = δj ,

where δj → 0 as j → ∞. Then we can solve the equation

∂̄j u = ∂̄j ṽj − ∂̄jvj

with minimal L2-norm, so that ∫
C j

|u|
2ωj ≤

1
k
δj .

Since vj is a minimal solution, ∫
|ṽj − u|

2ωj ≥

∫
|vj |

2ωj .

So ∫
|ṽj |

2ωj ≥

∫
|vj |

2ωj −

√
δj

k5 .

Conversely, for each vj , we first use the cut-off functions κε to make it vanish near the edges, then we
pull it back by G−1

j to C0. By orthogonal projection and extension by 0, we obtain a smooth section ṽ j

of K k+1
C0

. Similar to ṽj , by Lemma 3.1, we have∫
C0

|∂̄ ṽ j
− ∂̄v|2ωj = δ′j ,

where δ′j → 0 as j → ∞. Then by solving a ∂̄-equation again, we get∫
|ṽ j

|
2ω ≥

∫
|v|2ω−

√
δ′j

k5 .

Since the L2-norm of ṽj is close to that of v and∫
|ṽ j

|
2ω ≤

∫
|vj |

2ωj + δ′′j ,

where δ′j → 0 as j → ∞, we get ∫
|ṽj |

2ωj −

∫
|vj |

2ωj → 0
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as j → ∞. Then by the uniqueness of the minimal solution of the ∂̄-equation, we get∫
|ṽj − vj |

2ωj → 0

as j → ∞. Finally, since the L2-norm of sj,α,a on the area where

1
ε cosh u

<
−1

2 log ε

also goes to 0 as j → ∞, we have proved the theorem. □

The same ideas can be used for the sections in W0. For each s ∈ W0, we have∫
|z|<ε

|s|2ω < ε

in every Uα. We pull back the restriction s to C0\
⋃

Uα(ε( j, α)) by G j , and use cut-off functions κε
near the edges to get a global smooth section of G∗

j (K
k+1
C0

), which is then projected to a smooth section
of K k+1

C j
, called s̃j . Then we have ∫

C j

|∂̄j s̃j |
2ωj → 0

as j → ∞. So we can solve the equation
∂̄j u j = ∂̄j s̃j

with minimal L2-norm to get a holomorphic section s, j = u j + s̃j ∈ Hj,k+1 satisfying∫
C j

|s, j |
2ωj − 1 → 0 and s, j → s

in L2-norm as j → ∞. We have proved the following:

Lemma 4.2. For each s ∈ W0, we can find s, j ∈ Hj,k+1 such that s, j converges to s in the L2-norm and
∥s, j∥ → 1 as j → ∞.

We will denote by Wj the set of sections {s, j : s ∈ W0}. Notice that Wj is not an orthonormal set, but
gets closer as j gets larger. We fix an order on W0, then we order each Wj accordingly. We give each
Vj the dictionary order. Recall that sj,α,a corresponds to sα,a for a > 0 and sα+d,−a for a < 0. Then we
add 0 d times to V0, and order the obtained set Ṽ0 according to the correspondence to Vj , where each 0
corresponds to a section sj,α,0, 1 ≤ α ≤ d . Then we define the embedding

8j : C j → CPNk ,

where Nk =dimHj,k+1−1, by8j =[Vj ,Wj ], where [ · · · ] means the homogeneous coordinates. Similarly
we define the embedding

80 : C0 → CPNk

by 80 = [Ṽ0,W0].
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Let [Z0, . . . , Z N ] be the homogeneous coordinates of CPN . U0 = {[1, w], w ∈ CN
} is a coordinate

patch with wi = Zi/Z0. The Zi can be identified as generating sections in H 0(CPN ,O(1)). In particular,
Z0 is a local frame in U0. Then on U0, the Fubini–Study form ω =

1
2 i∂∂̄ log(1 + |w|

2) has the explicit
form

ω =
i
2
(1 + |w|

2)
∑

dwi
∧ dwi −

(∑
wi dwi

)(∑
wi dwi

)
(1 + |w|2)2

.

On each Uj,α, within the area 0 ≤ t ≤ t0 = π/(2ε)+ log ε, the image under 8j is dominated by the two
sections sj,α,0 and sj,α,1, since the contribution of other sections is of relative size < k2ε. We can estimate
the map [sj,α,0, sj,α,1, 0, . . . ] by the local sections [b0, b1z, 0, . . . ], with relative error < 1/k2, where

b−2
0 =

2k+2π3/2
√

2k
ε−2k−1 and b−2

1 =
2k+2π3/2

√
2k

eπ/εk2k+1.

So the map is simplified to

[1, e−π/(2ε)(εk)−k−1/2z, 0, . . . ],

and we can estimate the length of the image of γj,α — which is approximately 2πe−π/(2ε)(εk)−k−1/2 —
which goes to 0 as j → ∞. So the image of γj,α converges to [1, 0, . . . ] in the current ordering of
coordinates. Similarly, we can estimate the length of the image of the circle t0 = π/(2ε)+ log ε—
which is approximately (2π/ε)(εk)k+1/2 — which goes to 0 as j → ∞. Therefore, the image of the
circle t0 = π/(2ε)+ log ε converges to [0, 1, . . . ] in the current ordering of coordinates. Notice that
e−π/(2ε)(εk)−k−1/2

|z| goes to ∞ at t0, so the image of the area 0 ≤ t ≤ t0 = π/(2ε)+ log ε converges to
the complex projective line connecting the points [1, 0, 0, . . . ] and [0, 1, 0, . . . ] in the current ordering of
coordinates. This area is the bubble mentioned in the introduction. By symmetry, the image of the area
0 ≥ t ≥ −t0 also converges to a complex projective line.

For the part G−1
j

(
C0\

⋃
Uα(ε( j, α))

)
, the sections {sj,α,0}1≤α≤d are negligible. So the convergence of

the remaining sections in Vj and Wj in the L2 sense implies that the image of G−1
j

(
C0\

⋃
Uα(ε( j, α))

)
under 8j converges to the image of 80. To conclude the proof of the main theorem, we only have to
notice that although Vj ∪ Wj is not orthonormal, we can modify them. The sections in Wj are almost
orthonormal, so we can transform them to be orthonormal with a matrix Aj whose difference from the
identity matrix goes to 0 as j → ∞ in L∞-norm. And the modified sections still converge to sections
in W0 in L2. We first apply a Gram–Schmidt process to the set V0, then we apply a Gram–Schmidt
process following the order of V0 to the set Vj\{sj,α,0}1≤α≤d . Finally, since the sections {sj,α,0}1≤α≤d are
almost orthonormal and almost orthogonal to the other section in Vj , we can modify the new Vj again
with a matrix Bj whose difference from the identity matrix goes to 0 as j → ∞ in L∞-norm to get an
orthonormal set. And we have proved the main theorem.
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UNIQUENESS OF EXCITED STATES TO −1u + u − u3 = 0
IN THREE DIMENSIONS

ALEX COHEN, ZHENHAO LI AND WILHELM SCHLAG

We prove the uniqueness of several excited states to the ODE ÿ(t) + (2/t)ẏ(t) + f (y(t)) = 0, y(0) = b,
and ẏ(0) = 0, for the model nonlinearity f (y) = y3

− y. The n-th excited state is a solution with exactly
n zeros and which tends to 0 as t → ∞. These represent all smooth radial nonzero solutions to the PDE
1u + f (u) = 0 in H 1. We interpret the ODE as a damped oscillator governed by a double-well potential,
and the result is proved via rigorous numerical analysis of the energy and variation of the solutions. More
specifically, the problem of uniqueness can be formulated entirely in terms of inequalities on the solutions
and their variation, and these inequalities can be verified numerically.

1. Introduction

Consider the ODE

ÿ(t) +
2
t

ẏ(t) + f (y(t)) = 0, (1-1)

y(0) = b, ẏ(0) = 0. (1-2)

In this paper, we will only consider the model case f (y) = y3
− y, but it will be convenient to use the

more general notation for the nonlinearity. Smooth solutions to this ODE exist for all t ≥ 0 and any b ∈ R,
and they are unique. We denote them by yb, or simply y. The singular coefficient at t = 0 can be dealt
with by a power series ansatz, or by Picard iteration. Solutions to this ODE correspond to radial smooth
solutions of the PDE

1u + f (u) = 0 (1-3)

in three dimensions, under the identification t = r , the radial variable. Dynamics of (1-1) resemble particle
motion in a double well as in Figure 1, with time varying friction. The qualitative behavior exhibits a
trichotomy: we either have

• (yb(t), ẏb(t)) → (1, 0),

• (yb(t), ẏb(t)) → (−1, 0),

• (yb(t), ẏb(t)) → (0, 0);
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Figure 1. Potential function V (y) =
1
4 y4

−
1
2 y2.

see Section 3 below. A bound state is a nonzero solution with y(t) → 0. Only these solutions give rise
to nontrivial solutions u ∈ H 1(R3) of the elliptic PDE (1-3). A ground state is a positive bound state,
and an n-th excited state is a bound state with precisely n zero crossings. The 0-th bound state is the
ground state. Existence and uniqueness of these bound states have been investigated since the 1960s.
Using a variational characterization, [Ryder 1967, Theorem II] showed the existence of both ground
and excited states with any finite number of zero crossings. Coffman [1972, Section 6] related Ryder’s
characteristic values to degree theory in infinite dimensions and Lyusternik–Schnirelmann techniques.
Most importantly, [Coffman 1972] also established uniqueness of the ground state for the cubic case.
For more general nonlinearities, ground state uniqueness was then shown by [Kwong 1989; McLeod
and Serrin 1987; Peletier and Serrin 1983; 1986; Zhang 1991], and finally in greatest generality by
McLeod [1993]. Clemons and Jones [1993] gave a different proof of McLeod’s theorem based on the
Emden–Folwer transformation and unstable manifold theory. Berestycki and Lions [1983a; 1983b] solved
the existence problem of radial bound states for (1-3) for all H 1 subcritical nonlinearities f (u) in all
dimensions, see also the earlier work by Strauss [1977].

However, uniqueness of excited states in the radial class, i.e., for the ODE (1-1), remained open
for most nonlinearities. In fact, [Hastings and McLeod 2012, Chapter 19] list this problem as one of
three major open problems in nonlinear ODEs. We note that there has been some uniqueness results for
specific nonlinearities; [Troy 2005] proved the uniqueness of the first excited state for a piecewise linear
nonlinearity by analyzing the explicit solutions, and Cortázar, García-Huidobro, and Yarur [Cortázar et al.
2009] proved uniqueness of the first excited state with restrictions on y f ′(y)/ f (y). However, neither cover
the cubic nonlinearity. In this paper, we provide a rigorous computer-assisted proof of the uniqueness
of the first excited state for the cubic nonlinearity. The proof technique combines analytical dynamics
with the rigorous ODE solver VNODE-LP, see Section 2.3 and [Nedialkov 2011]. The latter works with
interval arithmetic and therefore does not compute precise solutions (which is impossible), but rather
intervals containing the solution at any given time. These inclusions accommodate all errors incurred
through floating point arithmetic, and are therefore themselves free of errors.

Theorem 1. The first twenty excited states of ODE (1-1)–(1-2) are unique for f (y) = −y + y3.
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Figure 2. Limiting position yb(T ) as T → ∞, plotted as a function of the initial
condition b up to b = 1200. The solid (red) dots represent bound states, and this graph
holds due to Theorem 1 and the rigorous numerical work done in this paper.

The method is robust, and extends to both more general nonlinearities as well as other dimensions. But
we will leave the verification of this claim for another paper. The code involved in the proof is publicly
available, see the GitHub repository https://github.com/alexander-cohen/NLKG-Uniqueness-Prover. The
readers can verify uniqueness of higher excited states beyond the 20-th using the arguments of this paper.
Computation time is the main obstacle to going further than the twentieth state, to which the authors chose
to limit themselves. See Figure 2 for a graph of the limiting position of yb(T ) as a function of b, up to
the twentieth excited state. The rigorous numerical work done in this paper proves that this graph holds.

The uniqueness property of the ground state soliton is of fundamental importance to the classification
of its long-term evolution under the nonlinear cubic Schrödinger or Klein–Gordon flows. See for
example [Cazenave 2003; Nakanishi and Schlag 2011]. The uniqueness property of the excited states
should therefore also be seen as a bridge to dynamical results. As a first step, one needs to determine the
spectrum of the linearized operator

H = −1 + 1 − 3φ2

in the radial subspace of L2(R3). Here φ is any radial bound state solution of the PDE (1-3). If
φ is the ground state, then it is known that the spectrum over the radial functions contains a unique
negative eigenvalue, and no other discrete spectrum up to and including zero energy (nonradially, due to the
translation symmetry, 0 is an eigenvalue of multiplicity 3); see [Nakanishi and Schlag 2011]. A particularly
delicate question pertains to the shape of the spectrum in the interval (0, 1], including the threshold 1 of the
(absolutely) continuous spectrum. This was settled in [Costin et al. 2012] for the ground state of the cubic
power in three dimensions. It turns out that (0, 1] is a spectral gap, including the threshold, which is not a
resonance. Due to the absence of an explicit expression of the ground state soliton, the method of [Costin
et al. 2012] depended on an approximation of this special solution. Note that without uniqueness such
an approximation has no meaning. The authors intend to investigate the spectral problem of excited states
in another publication using the methods of [Creek et al. 2017], which essentially require the uniqueness
property of the special solution φ (in the case of [Creek et al. 2017], φ is the so-called Skyrmion).

https://github.com/alexander-cohen/NLKG-Uniqueness-Prover
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Figure 3. Toy example function.

2. Overview of approach

2.1. Toy example: finding zeros of a function. Suppose we wish to find the number of zeros of the
function f as shown in Figure 3. Numerical computations make it clear that f has exactly 3 zeros — how
can we use a computer to prove this rigorously?

A first approach might be to find the approximate location of those zeros with reasonably high
precision, using floating point arithmetic. Say they lie at approximately y1, y2, y3. Then we can use
interval arithmetic to show rigorously that f is bounded away from zero everywhere but the three small
intervals

(
y1 −

1
100 , y1 +

1
100

)
,

(
y2 −

1
100 , y2 +

1
100

)
,
(
y3 −

1
100 , y3 +

1
100

)
. Then, by interval arithmetic

combined with the intermediate value theorem, f has at least one zero in each of these intervals. Finally,
to show that each of them contains at most one zero, we can apply the mean value theorem. If we prove
rigorously, using interval arithmetic, that f ′ is bounded away from zero in those intervals, then uniqueness
follows. Notice that if f has infinitely many zeros with a limit point, then f ′ must be zero at that limit
point. As expected, this method would break down in such a scenario.

2.2. Finding and isolating excited states. We apply a similar idea to the ODE (1-1). We now outline the
approach by means of the ground state. Suppose we find numerically that the unique ground state should
be at height b0 ≈ 4.3373. Using a rigorous ODE solver, we can prove that, for all b ∈ (1, b0 − 0.001),
yb(t) > 0 up to some time T and E(T ) < 0. This will imply by analytical arguments, see the next
section, that yb(t) → 1 and yb(t) is positive, so it is not a ground state. Similarly, we can show that, for
b ∈ (b0 + 0.001, 50), the solution passes over y = 0 and thus is not a ground state. It follows from a
connectedness argument that there is some ground state in the interval (b0 − 0.001, b0 + 0.001). To prove
that there is exactly one ground state in that interval, we find some large time T such that δb(T ), δ̇b(T ) < 0
for all b ∈ (b0 − 0.001, b0 + 0.001), where δb = ∂b yb. This means that if b∗

0 is the actual ground state
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(rather than an approximation) for any b > b∗

0 in our interval, then yb(T ) < yb∗

0
(T ) and ẏb(T ) < ẏb∗

0
(T ) by

the mean value theorem. One can then prove, assuming this condition, that yb(T ) crosses over zero and
lands in the second well, see Lemma 8. This will show that there is at most one ground state in the interval
(b0 − 0.001, b0 + 0.001). All that remains is showing that there is no ground state in the range (50, ∞).
To this end, we rescale the ODE (1-1) so that it takes the form ẅ + (2/t)ẇ +w3

− b−2w = 0, w(0) = 1,
ẇ(0) = 0. Again using VNODE-LP, we then show that the solution of this equation exhibits more than any
given number of zeros provided b is sufficiently large. This then implies the same for yb.

The same approach works just as well for excited states as it does for ground states.

2.3. Approximating solutions via interval arithmetic. We now outline our computational approach. Our
main tool is the VNODE-LP package for rigorous ODE solving. The supporting website is at [Nedialkov
2010], and the documentation is available at [Nedialkov 2006].

VNODE-LP uses exact interval arithmetic, a toolset which allows for rigorous numerical computations.
Rather than computing with floating point numbers as usual, interval arithmetic treats all values as
intervals of real numbers, of the form a = [a1, a2], where a1, a2 are machine representable floating
point numbers. All mathematical operations are rounded properly so that any input within the original
interval ends up within the output interval. The VNODE-LP package combines interval arithmetic with
ODE solving: given an initial value problem ẏ = f (y, t) with initial values in an interval b, a starting
time interval t1, and an ending time interval t2, the package outputs an interval y such that, for any b ∈ b,
we have t1 ∈ t1, t2 ∈ t2, yb,t1(t2) ∈ y.

A difficulty in applying VNODE-LP to our problem is that ODE (1-1) is singular at t = 0. To deal with
this, we approximate yb(t) near t = 0 by Picard iteration. We explicitly bound the error terms in this
approximation so that we can rigorously obtain an interval containing yb(t0), ẏb(t0) for t0 small. Then
VNODE-LP can be applied to this desingularized initial value problem, and we will have rigorous bounds
on our solutions and quantities defined in terms of the solutions.

Section 5 explains in detail how we use this software, and provides links to websites containing the
code and all supporting data needed in the proof of our theorem. This will hopefully allow the reader to
implement the methods of this paper in other related settings.

3. Analytical description of the damped oscillator dynamics

3.1. Basic properties of the ODE. It is an elementary property that smooth solutions of (1-1), (1-2) exist
for all times t ≥ 0; in fact, we will reestablish this fact below in passing. Taking it for granted, we note
that the energy

E(t) :=
1
2 ẏ2(t) + V (y(t)) =

1
2 ẏ2(t) +

1
4 y(t)4

−
1
2 y(t)2

satisfies

Ė(t) = −
2
t

ẏ2(t)

and thus E(t) ≤ E(0) = V (b) for all times. In fact, E(t) is strictly decreasing unless it is a constant, and
that can only happen for the unique stationary solutions (y, ẏ) equal to (0, 0) or (±1, 0). In particular,
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if V (b) ≤ 0, then E(t) < 0 for all t > 0 unless y(t) = 0 is a constant. We will see below that this
implies that (y(t), ẏ(t)) → (1, 0) as t → ∞ (recall that we are assuming b > 0). In other words, (y, ẏ)(t)
approaches the minimum of the potential well on the right of Figure 1, and so inft>0 yb(t) > 0. The range
of b here is 0 < b ≤

√
2.

On the other hand, if b >
√

2, then V (y(t)) ≤ E(t) < E(0) = V (b) for all t > 0, whence

y(t)2(y(t)2
− 2) ≤ b2(b2

− 2)

and thus |y(t)| ≤ b for all t ≥ 0. We will assume from now on that b >
√

2. Rewriting the initial value
problem (1-1), (1-2) in the form

d
dt

(t2 ẏ(t)) + t2 f (y(t)) = 0,

where f (y) = y3
− y throughout, we arrive at the integral equations

y(t) = b +

∫ t

0
ẏ(s) ds,

ẏ(t) = −

∫ t

0

s2

t2 f (y(s)) ds =

∫ t

0

s2

t2 y(s)(1 − y(s)2) ds.
(3-1)

For short times, we obtain a unique solution by the contraction mapping principle which is smooth
near t = 0. Picard iteration gives better constants, which is important for starting VNODE at some
positive time. We shall determine the quantitative bounds in Section 3.3. But first we recall the equation
of variation of (1-1) relative to the initial height b.

3.2. The equation of variation. We let

δb(t) :=
∂

∂b
yb(t).

Then differentiating (1-1), δb(t) satisfies the ODE

δ̈ +
2
t
δ̇ + f ′(y)δ = 0,

with initial conditions δ(0) = 1 and δ̇(0) = 0. Notice that the ODE for δ depends on the solution yb(t).
Altogether, we can make one ODE in four variables that includes y and δ:

d
dt


y
vy

δ

vδ

 =


vy

−
2
t vy − f (y)

vδ

−
2
t vδ − f ′(y)δ


with initial vector 

y
vy

δ

vδ

 (0) =


b
0
1
0

 .



UNIQUENESS OF EXCITED STATES TO −1u + u − u3
= 0 IN THREE DIMENSIONS 1893

Switching again to the variables t2 y(t) and t2δ(t), respectively, and writing the resulting ODE in integral
form, this is equivalent to

Z(t) :=


y
vy

δ

vδ

 (t) =


b
0
1
0

 +

∫ t

0


vy(s)

−t−2s2 f (y(s))
vδ(s)

−t−2s2 f ′(y(s))δ(s)

 ds

=


b
0
1
0

 +

∫ t

0


vy(s)

t−2s2 y(s)(1 − y(s)2)

vδ(s)
t−2s2(1 − 3y(s)2)δ(s)

 ds.

(3-2)

The first three Picard iterates of this system are

Z0(t) =


b
0
1
0

 , Z1(t) =


b

−
1
3 t f (b)

1
−

1
3 t f ′(b)

 , Z2(t) =


b −

1
6 t2 f (b)

−
1
3 t f (b)

1 −
1
6 t2 f ′(b)

−
1
3 t f ′(b)

 . (3-3)

3.3. Picard approximation. The purpose of this section is to compare the actual solution Z(t) in (3-2)
to the second Picard iterate Z2(t) in (3-3), which we denote in the form

Z2(t) =:


ỹ(t)
˙̃y(t)
δ̃(t)
˙̃
δ(t)

 =


ỹ(t)
ṽy(t)
δ̃(t)
ṽδ(t)

 . (3-4)

In fact, we will prove the following inequalities on each of the four entries of this vector.

Lemma 2. Suppose b ≥
√

2. Then, for all times t ≥ 0,

ỹ(t) ≤ y(t) ≤ ỹ(t) +
f (b) f ′(b)

120
t4

≤ ỹ(t) +
b5

40
t4,

˙̃y(t) ≤ ẏ(t) ≤ ỹ(t) +
f (b) f ′(b)

30
t3

≤ ˙̃y(t) +
b5

10
t3.

(3-5)

For all 0 ≤ t ≤ t∗ with

t∗ := min
(√

6(
√

3b − 1)
√

3b(b2 − 1)
,

log 4
√

3b

)
, (3-6)

one has

δ̃(t) ≤ δ(t) ≤ δ̃(t) +
1
8 b4t4 and ˙̃

δ(t) ≤ δ̇(t) ≤
˙̃
δ(t) +

1
2 b4t3. (3-7)

Proof. Since energy is decreasing and b ≥
√

2, we have |y(t)| ≤ b for all t ≥ 0. Note that

f (b) ≥ f (
√

2) >
2

3
√

3
,
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which is the absolute value of the local minima and maxima, so | f (y)| ≤ f (b) for all |y| ≤ b. Therefore
| f (y(t))| ≤ f (b) for all t ≥ 0. Substituting this bound into (3-1) yields

|ẏ(t)| ≤
1
3 t f (b), (3-8)

0 ≤ b − y(t) ≤
1
6 t2 f (b), (3-9)

for all times t ≥ 0. Leveraging these bounds, we now compare the actual solution to its second Picard
iterates as in (3-3). In view of (3-4),

ỹ(t) = b −
1
6 t2 f (b) and ˙̃y(t) = −

1
3 t f (b),

and we obtain via the mean value theorem that

0 ≤ ẏ(t) − ˙̃y(t) =

∫ t

0

s2

t2 [ f (b) − f (y(s))] ds ≤
f (b) f ′(b)

30
t3 and 0 ≤ y(t) − ỹ(t) ≤

f (b) f ′(b)

120
t4,

where we used that | f ′(y)| ≤ f ′(b) = 3b2
− 1 for all |y| ≤ b.

The last two rows of (3-2) imply that

|δ(t) − 1| ≤

∫ t

0
|δ̇(s)| ds,

|δ̇(t)| ≤ t−2 f ′(b)

∫ t

0
s2

|δ(s)| ds ≤
t
3

f ′(b) + t−2 f ′(b)

∫ t

0
s2

|δ(s) − 1| ds

≤ tb2
+ 3b2

∫ t

0
|δ(s) − 1| ds,

whence h(t) := |δ̇(t)| +µ|δ(t) − 1| with µ :=
√

3b satisfies

h(t) ≤ tb2
+ µ

∫ t

0
h(s) ds and h(t) ≤

b2

µ
(eµt

− 1). (3-10)

We infer from the last two rows of (3-2) and (3-4) that

δ(t) − δ̃(t) =

∫ t

0
(vδ(s) − ṽδ(s)) ds,

vδ(t) − ṽδ(t) = t−2
∫ t

0
s2( f ′(b) − f ′(y(s))δ(s)) ds

= t−2
∫ t

0
s2

[ f ′(b) − f ′(y(s)) + f ′(y(s))(1 − δ(s))] ds

(3-11)

as well as

1 − δ(t) = −

∫ t

0
vδ(s) ds, −vδ(t) = t−2

∫ t

0
s2 f ′(y(s))δ(s) ds. (3-12)

Let t∗ > 0 be such that f ′(y(t)) ≥ 0 and δ(t) ≥ 0 for all 0 ≤ t ≤ t∗. Then by (3-12), δ(t) ≤ 1 for those
times and thus by (3-11)

δ(t) − δ̃(t) ≥ 0, vδ(t) − ṽδ(t) ≥ 0



UNIQUENESS OF EXCITED STATES TO −1u + u − u3
= 0 IN THREE DIMENSIONS 1895

for all 0 ≤ t ≤ t∗. By (3-10), we have δ(t) ≥ 0 as long as

eµt
≤ 4, t ≤

log 4
√

3b
.

Moreover, f ′(y(t)) ≥ 0 as long as
√

3y(t) ≥ 1 which by (3-5) holds provided

√
3ỹ(t) ≥ 1, t ≤

√
6(

√
3b − 1)

√
3b(b2 − 1)

,

whence in summary we get (3-6) and the lower bounds in (3-7). For the upper bound, note that (3-12)
and (3-5), respectively, imply that

−vδ(t) ≤ tb2, 1 − δ(t) ≤
1
2 t2b2, b − y(t) ≤

1
6 t2b3.

Inserting these bounds into (3-11) yields, by the mean value theorem,

vδ(t) − ṽδ(t) ≤ t−2
∫ t

0
s2

(
b4s2

+ 3b4s2

2

)
ds ≤

1
2

b4t3,

δ(t) − δ̃(t) =

∫ t

0
(vδ(s) − ṽδ(s)) ds ≤

1
8

b4t4,

as claimed. □

3.4. The equation at infinity. As explained in Section 2.2, to prove uniqueness of the first excited state
we will need to show that all yb have at least two crossings for all sufficiently large b. For the second
excited state, we need to do the same with three crossings, and so on. This will be accomplished by
means of the following lemma.

Lemma 3. Let y(t) be a solution to ODE (1-1)–(1-2). Let w(s) = b−1 y(s/b). Then w satisfies

ẅ +
2
s
ẇ + w3

− β2w = 0, (3-13)

w(0) = 1, ẇ(0) = 0, (3-14)

where β := b−1.

Proof. The proof is immediate by scaling. □

We will analyse this initial value problem with VNODE-LP, but as before we can only start at positive
times rather than at t = 0. The analogue of Lemma 2 is the following. We only need to approximate the
ODE in (3-13). Indeed, since the initial condition is fixed, the equation of variations does not arise.

Lemma 4. Suppose 0 < β ≤
1
10 , and let w̃(t) := 1 −

1
6(1 −β2)t2 and ˙̃w(t) := −

1
3(1 −β2)t . Then, for all

times t ≥ 0,
w̃(t) ≤ w(t) ≤ w̃(t) +

1
40 t4,

˙̃w(t) ≤ ẇ(t) ≤ ˙̃w(t) +
1

10 t3.
(3-15)
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Proof. We write (3-13) in the form

d
dt

(t2ẇ(t)) = −t2 fβ(w(t)),

with

fβ(w) := w3
− β2w = w(w2

− β2).

Solutions are global, and the energy takes the form

Eβ(t) =
1
2ẇ2(t) + Vβ(w(t)), Vβ(w) =

1
4w4

−
1
2β2w2,

which is nonincreasing as before. Thus, Vβ(w(t)) ≤ Eβ(t) ≤ Vβ(1) =
1
4 −

1
2β2, whence |w(t)| ≤ 1 for all

times. The integral formulation of the initial value problem for w is of the form

w(t) = 1 +

∫ t

0
ẇ(s) ds,

ẇ(t) = −

∫ t

0

s2

t2 fβ(w(s)) ds =

∫ t

0

s2

t2 w(s)(β2
− w(s)2) ds.

(3-16)

Inserting w = 1 into the right-hand side of the second equation of (3-16) gives ˙̃w(t) := −
1
3 fβ(1)t , and w̃

is obtained by inserting this expression into the right-hand side of the first equation of (3-16). These are
precisely the approximate solutions appearing in the formulation of the lemma. The stated bounds are
now obtained as in Lemma 2, and we leave the details to the reader. □

3.5. Limit sets and convergence theorems. As we have already noted, an important quantity associated
with (1-1) is the energy E(y, ẏ) =

1
2 ẏ2

+ V (y), where V (y) =
∫ y

0 f (y) is the potential energy. Explicitly,
V (y) =

1
4 y4

−
1
2 y2 resembles a double well as in Figure 1. Were we to modify our ODE to ÿ + f (y) = 0,

then the energy would be preserved. The term (2/t)ẏ adds a time dependent frictional force, so energy
decreases monotonically:

Ė(t) = ẏ ÿ(t) + f (y(t))ẏ(t) = −
2ẏ2(t)

t
.

The interpretation of the radial form of the PDE (1-3) as a damped oscillator with the role of time being
played by the radial variable is of essential importance in this section. Tao [2006] emphasized this already
in his exposition of ground state uniqueness, but here we will rely on this interpretation even more
heavily. In particular, the proof of the long-term trichotomy given by the solution vector of the main
ODE approaching one of the three critical points of the potential follows the dynamical argument in the
damped oscillator paper [Cabot et al. 2009].

The following lemma determines the ω-limit set of every trajectory in phase space. The lemma
combined with the monotonicity of the energy will help us determine the desired long-term trichotomy.

Lemma 5. If y(t) = yb(t) is the global solution to the initial value problem (1-1), (1-2), then there exists
an increasing unbounded sequence {t j } such that (y(t j ), ẏ(t j )) → (0, 0) or (±1, 0) as j → ∞.
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Proof. From boundedness of the energy, we see that

∞∑
n=1

1
n

In ≤

∫
∞

0

ẏ(t)2

t
dt < ∞, In :=

∫ n

n−1
ẏ(t)2 dt.

Therefore, In j → 0 as j → ∞ for some subsequence. We can pick t j ∈ (n j − 1, n j ), so that ẏ(t j ) → 0.
Since E(t) and y(t) are bounded, ÿ is bounded, and differentiating (1-1), we then see that

...
y is also

bounded. Therefore In j → 0 implies that ÿ(t j ) → 0. This implies that

| f (y(t j ))| ≤ |ÿ(t j )| +
2
t
|ẏ(t j )| → 0,

so there must be a subsequence of y(tn j ) that converges either to 0 or 1. □

Next, we establish that each trajectory must converge to the point in its limit set, cf. the convergence
theorems in [Cabot et al. 2009].

Lemma 6. Either yb(t) → −1, or yb(t) → 0, or yb(t) → 1 as t → ∞. In all cases ẏ(t) → 0.

Proof. Since E(t) is monotonically decreasing, the limit limt→∞ E(t) exists as a real number, which is
either negative or nonnegative. In the former case, there must be a sequence t j such that (y(t j ), ẏ(t j )) →

(±1, 0) by Lemma 5. Monotonicity of the energy then implies that E(t) = E(yb(t), ẏb(t)) tends toward
the global minimum value of the potential energy, which means that (yb(t), ẏb(t)) → (±1, 0).

If the limit is nonnegative, then Lemma 5 implies that E(t) → 0 as t → ∞. Suppose y(t) does not
converge to 0. Let τ j denote the j-th time at which ẏ(τ j ) = 0, and if y(t) does not tend to 0, then {τ j } is
an infinite sequence. We will show that this leads to a contradiction since too much energy will be lost
in each oscillation. To do so, we first bound τ j+1 − τ j from above. Assume without loss of generality
that ẏ > 0 between τ j and τ j+1. We have V (y) ≤ −

1
4 y2 for y ∈ (−1, 1). Let τ j < t1 < t2 < τ j+1, so

that y(t1) = −1 and y(t2) = 1. In particular, the portion of the trajectory between t1 and t2 is the part of
the trajectory going over the hill in the potential, which should be the most time-consuming part of the
trajectory, and indeed,∫ t2

t1
1 dt =

∫ 1

−1

1
y′

dy =

∫ 1

−1

1
√

2(E(y) − V (y))
dy ≤ 2

∫ 1

0

1√
2E(t2) + y2/2

dy

≤ 2
∫ √

2E(t2)

0

1
√

2E(t2)
dy + 2

√
2

∫ 1

√
2E(t2)

1
y

dy ≲ − log E(t2), (3-17)

assuming that τ j is large enough that 0 < E(t2) ≪ 1. Note that from the energy, ẏ(t) can only reverse
sign if |y(t)| >

√
2. Since the energy is always positive,

E(t2) ≥

∫ τ j+1

t2

2ẏ(t)2

t
dt ≥

1
τ j+1

∫ √
2

1
2
√

2(E(y) − V (y)) dy ≳
1

τ j+1
.

Substituting this into (3-17), we find that

t2 − t1 ≲ log τ j+1. (3-18)
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Finally, we show that for small energy, the time spent by y(t) in one oscillation outside the interval
(−1, 1) is uniformly bounded by some constant. Fix some 0 < ε ≪

√
2 − 1 such that | f (y)| ≥ α > 0

for all y ∈ Bε(±
√

2), the ε-neighborhoods of ±
√

2. Then there exists a sufficiently large T such that
√

2 < |y(τ j )| <
√

2 + ε for all τ j > T and such that |2ẏ(t)|/t < 1
2α for all t > T . This means that if

τ j > T and ẏ(t) > 0 for t ∈ (τ j , τ j+1), then

ÿ(t) = − f (y(t)) −
2
t

ẏ(t) ≥
α

2
when y(t) ∈ Bε(−

√
2),

ÿ(t) = − f (y(t)) −
2
t

ẏ(t) ≤ −α when y(t) ∈ Bε(+
√

2).

In other words, between τ j and τ j+1, the initial acceleration and final deceleration are both uniformly
bounded from below. Then there is a uniform constant bounding the time spent by the part of the trajectory
in Bε(±

√
2). Outside both Bε(±

√
2) and the interval (−1, 1), the velocity is uniformly bounded from

below, so there is a uniform constant bounding the time in that region as well.
Therefore, (3-18) can in fact be improved to τ j+1 − τ j ≲ log τ j+1, so τ j ≲ j log τ j . One first reads

off τ j ≲ j2, and then applies this inequality once more to conclude

τ j ≲ j log j.

The cumulative loss in energy starting from some sufficiently large time τN is therefore∫
∞

τN

ẏ2(t)
t

dt ≥

∞∑
j=N

1
τ j+1

∫ τ j+1

τ j

ẏ2(t) dt ≳
∞∑

j=N

1
j log j

,

which is not finite, a contradiction. □

3.6. Passing over the saddle. We now turn to a lemma which establishes the following natural property:
consider the value 0 < y(T ) = ε ≪ 1 of a bound state solution with T large enough that y(t) > 0 for
all t > T . Then any other yb with yb(T ) ∈ (0, ε) and ẏb(T ) < ẏ(T ) needs to cross 0 after time T . For
simplicity, we prove the lemma for f (y)= y3

− y, but it is easy to see that it works for many nonlinearities
via the same argument.

Lemma 7. Suppose b∗
∈ (0, ∞) is a bound state, and assume yb∗(t) approaches 0 from the right without

loss of generality. That is, ẏb∗(t) < 0 for all t ≥ T , for some T . Then yb∗ has no more zero crossings after
time T , and, increasing T if necessary, we may assume 0 < yb∗(T ) ≤ 1/

√
3. If yb(t) is another solution

with 0 < yb(T ) < yb∗(T ) and ẏb(T ) < ẏb∗(T ), then yb(t) has a zero crossing after time T .

Proof. Let s(t) = yb∗(t) − yb(t). Then

s̈(t) +
2
t

ṡ(t) = f (yb(t)) − f (yb∗(t)). (3-19)

At t = T , we have s(T ) > 0 and ṡ(T ) > 0. If yb(t) does not cross zero for any t > T , then yb(t) → 0
or 1. This means that s(t) → 0 or −1. In either case, s(t) must reach a maximum after t = T , so there
exists a t∗ > T such that ṡ(t∗) = 0, s(t∗) > 0, and s̈(t∗) ≤ 0. Then by (3-19),

f (yb(t∗)) − f (yb∗(t∗)) ≤ 0. (3-20)
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It is clear that f (y) is strictly decreasing for y ∈ (0, 1/
√

3), so when s(t∗) > 0, (3-20) leads to a
contradiction with the assumption yb∗(T ) ≤ 1/

√
3. □

Note that the only property of f we used is that f ′(0) < 0, which holds for all nonlinearities associated
with a double-well potential.

The next lemma provides a sufficient condition under which the trajectory will pass over the hill and be
trapped in the following well. The underlying mechanism is the consumption of energy due to a necessary
oscillation around the left well. If this amount exceeds the energy present at the pass over the saddle
at y = 0, then the remaining energy is negative, ensuring trapping. The lemma will ensure that if yb∗(t) is
a bound state, then, for initial values b ∈ (b∗, b∗

+ε) for some small ϵ, we have that yb(t) will necessarily
fall into the following potential well.

Lemma 8. Suppose y(t) is a solution of (1-1), (1-2) such that, for some T > 0,

0 ≤ y(T ) < 1
2 , ẏ(T ) < 0, 0 < E(T ) < 1

4 , E(T )
(
T − 2 ln E(T ) +

3
2

)
< 3

8 .

Then if y(t) has a zero after (or at) time T , it must proceed to fall into the left well. That is, y(t) → −1,
and y(t) has no further zero crossings.

Proof. Suppose y(t) has another zero crossing, say the minimal time t ≥ T with this property is t0 ≥ T .
Then ẏ(t0) < 0 and there can be no reversal in the sign of ẏ(t) until after y(t) has passed −1. So we can
define T1 > T to be the first time after T at which y(T1) = −

1
2 .

Suppose y(t) does not fall into the left well; in this situation, E(T1) = α > 0. Then we must have
E(T ) > α. Let t (s), −

1
2 < s < 1

2 , be the nearest time after/before T such that y(t (s)) = s. Then we have(
recall 0 < α < 1

4

)
T1 − T <

∫ 1/2

−1/2

1
|ẏ(t (s))|

ds =

∫ 1/2

−1/2

1
√

2(E(t (s)) − V (s))
ds <

∫ 1/2

−1/2

1√
2α + s2 − s4/2

ds

<

∫ 1/2

−1/2

1√
2α + s2/2

ds < 2
∫ √

α

0

1
√

2α
ds + 2

√
2

∫ 1/2

√
α

1
s

ds

=
√

2 − 4 ln(2) − 2 ln(α) < −2 ln(α).

Thus T1 < T − 2 ln(α). Next, we observe that if the conditions of the lemma are satisfied, then more
than α energy is lost in going from y = −

1
2 to y = −1. Letting t (s) be as before and assuming y(t) does

not fall into the left well, E(t (s)) > 0 for −1 < s < −
1
2 . Using

d E
ds

=
1
ẏ

d E
dt

=
2|ẏ|

t
,

we have

1E = 2
∫

−1/2

−1

|ẏ(t (s))|
t (s)

ds = 2
∫

−1/2

−1

√
2(E(t (s)) − V (s))

t (s)
ds

> 2
∫

−1/2

−1

√
s2 − s4/2

t (s)
ds >

1
T2

∫
−1/2

−1
|s| ds =

3
8T2

,
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where T2 > T is the first time at which y = −1. Now we have

T2 − T1 =

∫
−1/2

−1

1
|ẏ(t (s))|

ds =

∫
−1/2

−1

1
√

2(E(t (s)) − V (s))
ds

<

∫
−1/2

−1

1√
y2 − y4/2

dy < 2
∫

−1/2

−1

1
|y|

dy <
3
2
.

Altogether, we have

1E >
3
8

1

T − 2 ln(α) +
3
2

,

and if 1E > α, then E(T2) < 0, and the particle falls into the left well. This occurs when

α
(
T − 2 ln(α) +

3
2

)
< 3

8 .

Because α < E(T ) and α ln(α) is monotone decreasing for 0 < α < 1
4 , in the situation of the lemma, if

T E(T ) − 2E(T ) ln E(T ) +
3
2 E(T ) < 3

8 ,

then the particle must fall into the left well if it crosses zero after time T . □

4. Proof of Theorem 1

4.1. Outline of proof. Theorem 1 is proved by running a C++ computer program which combines the
rigorous numerics of VNODE-LP with the analytical lemmas of the preceding section. This code is divided
into two parts: a planning section, and a proving section. The planning section of the code creates a
plan for proving the first several bound states are unique, and the proving section executes this plan and
outputs a rigorous proof of uniqueness. Separating these two sections is advantageous because only the
proving section must be mathematically rigorous, so only that part of the code needs to be checked for
correctness. The planning section can be modified without fear of compromising the rigor of the code.

In what follows we treat VNODE-LP as a black box that takes in an input interval b = (b1, b2) and a
time interval t = (t1, t2), and outputs an interval yb(t) = (y1, y2) × (ẏ1, ẏ2) × (δ1, δ2) × (δ̇1, δ̇2) which
contains yb(t) for any b ∈ (b1, b2) and t ∈ (t1, t2). We can also integrate the equation at infinity (3-13)
rigorously. To implement this functionality, we use the explicit error bounds given in Lemma 2 to move
past the singularity at t = 0. For instance, we may pick t0 = (0.1, 0.101) and then use those error bounds
to find y0 a vector of four intervals which contain any yb(t), b ∈ (b1, b2), and t ∈ (0.1, 0.101). At this
point we may input the starting intervals y0, t0 directly into VNODE-LP, which rigorously integrates to
the desired ending time. See Figure 4 for a depiction of VNODE-LP integration with solution intervals.

We now describe our procedure for the ground state and first excited state, before describing the
planning and proving sections in detail. Bound states can only occur in the range b ∈ (

√
2, ∞). To prove

the ground state is unique, we split this range into four intersecting intervals: I1, I2, I3, I4. For instance,
we can take

I1 = (1.4, 4.26), I2 = (4.25, 4.43), I3 = (4.42, 6.32), I4 = (6.31, ∞).



UNIQUENESS OF EXCITED STATES TO −1u + u − u3
= 0 IN THREE DIMENSIONS 1901

15.0

12.5

10.0

7.5

5.0

2.5

0.0

−2.5

y(
T

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time

Figure 4. VNODE-LP numerical integration with solution intervals scaled up ×100. The
“pinch points” of near zero y-uncertainty occur when δ = yb(t) ∼ 0, and although it is
not shown here, the ẏ-uncertainty is larger at these points.

Now, numerical evidence shows that the ground state occurs in the range I2. So, in the range I1, the
solution will eventually fall into the right energy well. We use VNODE-LP to prove this by splitting I1

into smaller chunks, and verifying that in each of these chunks the energy of the solution eventually falls
below zero. We deal with the range I3 in the same way, by showing, for all b ∈ I3, that yb(t) eventually
has negative energy. In the interval I4, the solution should always have at least one zero crossing. We
prove this using the equation at infinity (3-16) as discussed in Section 3.4. The infinite range b ∈ I4

corresponds to the finite range β ∈ (0, 0.16), so by splitting this range into small chunks and verifying
that in these chunks w(t) is eventually negative, we prove that yb(t) eventually crosses zero for all b ∈ I4.
Notice that we could have replaced the interval I4 by I3 ∪ I4, and it would still be true that in this range
there is at least one zero crossing. We treat I3 separately because the numerics of ODE (3-16) are delicate
near bound states, so I3 acts as a buffer interval.

The only range left is I2, which actually contains the ground state. We must show that I2 contains at
most one ground state, and that it contains no first or higher excited states. To this end, we use Lemmas 7
and 8, respectively. At some time T > 0, say T = 6, any yb(T ) for b ∈ I2 will be positive, moving in the
negative direction, and small in magnitude. We use VNODE-LP to prove that δb(T ), δ̇b(T ) < 0 for b ∈ I2.
Let b0 ∈ I2 be a ground state. Then for any b > b0, the mean value theorem implies that yb(T ) < yb0(T )

and ẏb(T ) < ẏb0(T ). By Lemma 7, yb(t) must cross zero. It follows that there is at most one ground state
in I2. Next, we check that the conditions of Lemma 8 are satisfied for all yb(T ), b ∈ I2. This implies that
if any solution yb(t) does cross zero, it must fall into the left energy well, and cannot be a higher excited
state. Altogether this shows that there is at most one ground state for the ODE (3-1), as desired. It also
follows from this analysis that the ground state exists, so we have successfully shown the ground state
exists and is unique.
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We note a subtlety in this argument. A pathological issue would be that, by time T = 6, yb(T ) crossed
all the way to the left well, came back to the right well, and then started to approach y = 0 from the right.
This would kill our later attempt to prove that the second excited state is unique, because we would miss
a second excited state in I2. To deal with this, we use energy considerations to bound |ẏb(t)|, and we
make small enough time steps with VNODE-LP so that the solution cannot cross zero twice in between
time steps. Then, we can be sure that the number of zero crossings observed by VNODE-LP up to some
time T is the actual number of zero crossings for all solutions in our initial interval b, up to time T .

To prove the ground state is unique, we split the range (
√

2, ∞) into subintervals to which we applied
three different proof methods. The method for I1 and I3 was FALL: we proved that the solution eventually
has negative energy and thus cannot be a bound state. The method for I4 was INFTY_CROSSES_MANY: we
used the equation at infinity to show that there are sufficiently many zero crossings and thus no ground
states. The method for I2 was BOUND_STATE_GOOD: we used the analytical Lemmas 7 and 8 to show that
there was at most one ground state and no other bound states. These are the same methods we use to
deal with higher excited states. We have used the same notation here as is used in the code, for ease of
verifying that the code follows the mathematical argument.

We extend our procedure to prove the first excited state is unique. We split up (
√

2, ∞) into six pieces:

I1 = (1.40, 4.26), I2 = (4.25, 4.43), I3 = (4.42, 14.10),

I4 = (14.09, 14.12), I5 = (14.11, 16.11), I6 = (16.10, ∞).

We apply the FALL method to I1, I3, I5, we apply the BOUND_STATE_GOOD method to I2, I4, and we
apply the INFTY_CROSSES_MANY method to I6. For the interval I4, our careful stepping procedure as
described above lets us find a time T > 0, for example T = 8, such that yb(T ) crosses zero exactly once
by time T for all b ∈ I4. We can also verify that ẏb(T ) > 0, δb(T ) > 0, and δ̇b(T ) > 0, so that the
conditions of Lemma 7 are satisfied and there is at most one first excited state in the interval I4. Next we
verify that the conditions of Lemma 8 are satisfied uniformly for b ∈ I4 at time T , so that there are no
second or higher excited states in I4. Altogether this shows that the first excited state exists and is unique,
and sets us up to prove subsequent excited states are unique as well.

4.2. Planning section. We now describe the planning section of the code. Given a value N ≥ 0, this
section outputs a list of intervals I1, I2, . . . , Ik , along with which method is to be used in each interval.
The proving section will use this plan to verify that all bound states up to the N -th (that is, all bound
states with ≤ N zero crossings, or in other words the first N excited states) are unique.

Let b0, b1, . . . , bN denote the locations of the first N excited states (assuming for now that they are
unique). We find their locations numerically with a binary search. To find bk , we keep track of a lower
bound l < bk and an upper bound u > bk , and at each iteration, check how many times ym(t) crosses
zero, m =

1
2(l + u). If ym(t) crosses zero more than k times, we set u := m, and if not we set l := m. We

iterate until we have a small enough interval (l, m) containing bk .
Next, we find small enough intervals around each bound state so that the BOUND_STATE_GOOD method

can run successfully for each bound state. We start with a large interval around bk , width 0.5, and then
keep on dividing the width by two until BOUND_STATE_GOOD succeeds.
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Third, we fill in the space between the bound states with FALL intervals. We include a buffer interval
above the last bound state so as to make INFTY_CROSSES_MANY run faster.

Finally, we create an interval β = (0, β) corresponding to the infinite interval (1/β, ∞), where we
will show the ODE crosses zero at least N + 1 times.

4.3. Proving section. The proving section receives a list of intervals and methods from the planning
section, and outputs a rigorous proof that the first N excited states are unique. The first step is to verify
that subsequent intervals intersect each other, so that every real number in the range (

√
2, ∞) is covered

by some interval. Next, the different methods are implemented as follows.
The FALL method receives an interval, e.g., (1.4, 4.2), and must prove that, for all b in that interval, yb(t)

eventually has negative energy. It begins by attempting to integrate with that potentially very large input
interval for b. Of course, VNODE-LP will likely fail to integrate with such a large input interval. If this hap-
pens, we bisect the interval into two halves, an upper and lower half, and recursively apply the FALL method
to each half. Once the starting intervals are small enough, VNODE-LP will successfully integrate and prove
that the energy is eventually negative. This bisection method allows us to use larger intervals away from
the bound states and smaller intervals closer to the bound states, where the computations are more delicate.

The BOUND_STATE_GOOD method receives an interval I which supposedly contains an n-th bound
state. It must prove that there is at most one n-th bound state, no lower bound states, and no higher bound
states in I . We use a careful stepping procedure to find some time T > 0 such that, for all b ∈ I , yb(t)
crosses zero exactly n times by time T . This already shows that I doesn’t contain any lower bound states.
Increasing T if necessary, we also verify that ẏb(T ), δb(T ), and δ̇b(T ) all have the opposite sign as yb(T )

uniformly in I . As discussed earlier, Lemma 7 then implies that there is at most one n-th bound state
in I . Finally, we verify that the conditions in Lemma 8 apply at time T , so there are no higher bound
states in I . Throughout we use interval arithmetic, never floating point arithmetic.

The INFTY_CROSSES_MANY method works similarly to the FALL method. We bisect the interval (0, β)

into smaller pieces, and in each of these small pieces we prove that w(t) has at least N + 1 crossings.
Altogether, these methods show that, if it exists, the n-th bound state (counting from n = 0) must be

unique and lie in the n-th BOUND_STATE_GOOD interval. This proves that all bound states up to the N -th
are unique, as desired. In fact, the code may also be used to show these bound states exist by counting
crossing numbers, but this is already known by synthetic methods [Hastings and McLeod 2012].

5. Using VNODE-LP and the data

The code and full output logs from the proof procedure can be found at https://github.com/alexander-
cohen/NLKG-Uniqueness-Prover, with 9cf63c06ca1838e64dd35fe11ca4fdfd45591714 the most recent
commit at the time of writing. The code is contained in the single C++ file “nlkg_uniqueness_prover.cc”,
and output logs are titled “uniqueness_output_N=*.txt”. The code proved the first 20 excited states are
unique in ∼ 4h running on a MacBook Pro 2017, 2.5 GHz. Time is the main limiting factor to proving
uniqueness of more excited states. We summarize the output of the proof for N = 3 excited states in
Table 1. Intervals are rounded for space; in actuality they have a nonempty intersection. See Figure 5 for
a visual representation of the same information.

https://github.com/alexander-cohen/NLKG-Uniqueness-Prover
https://github.com/alexander-cohen/NLKG-Uniqueness-Prover
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interval method details

[1.414, 4.266] FALL —

[4.266, 4.433] BOUND_STATE_GOOD bound state 0, used T = 1.921,
y(T ) ∈ [0.127, 0.277], ẏ(T ) ∈ [−0.342, −0.283],
δ ∈ [−0.374, −0.269], δ̇ ∈ [−0.139, −0.049]

[4.433, 14.095] FALL —

[14.085, 14.115] BOUND_STATE_GOOD bound state 1, used T = 2.855,
y(T ) ∈ −0.3[40, 43], ẏ(T ) ∈ 0.452[46, 55],
δ ∈ 0.15[59, 63], δ̇ ∈ 0.00[05, 12]

[14.115, 29.090] FALL —

[29.090, 29.174] BOUND_STATE_GOOD bound state 2, used T = 4.970,
y(T ) ∈ 0.1[05, 29], ẏ(T ) ∈ −0.1[34, 46],
δ ∈ −0.1[18, 26], δ̇ ∈ −0.0[57, 65]

[29.174, 49.339] FALL —

[49.339, 49.381] BOUND_STATE_GOOD bound state 3, used T = 5.908,
y(T ) ∈ −0.1[68, 76], ẏ(T ) ∈ [0.198, 0.202],
δ ∈ 0.07[31, 55], δ̇ ∈ 0.01[72, 91]

[49.381, 51.381] FALL —

[0.000, 0.019] INFTY_CROSSES_MANY —

Table 1. Output of the proof summarized for N = 3 excited states.
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Figure 5. Graph showing the first three excited states and how the b-axis is partitioned
by different proof methods.
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ON THE SPECTRUM OF NONDEGENERATE MAGNETIC LAPLACIANS

LAURENT CHARLES

We consider a compact Riemannian manifold with a Hermitian line bundle whose curvature is nonde-
generate. Under a general condition, the Laplacian acting on high tensor powers of the bundle exhibits
gaps and clusters of eigenvalues. We prove that for each cluster the number of eigenvalues that it contains
is given by a Riemann–Roch number. We also give a pointwise description of the Schwartz kernel of
the spectral projectors onto the eigenstates of each cluster, similar to the Bergman kernel asymptotics of
positive line bundles. Another result is that gaps and clusters also appear in local Weyl laws.

1. Introduction

Consider a Hermitian line bundle L on a compact Riemannian manifold with a connection ∇ whose
curvature is nondegenerate. We will be concerned with the eigenvalues and eigenstates of the Bochner
Laplacians 1k =

1
2∇

∗
∇ + kV acting on positive tensor powers Lk of the bundle, V being a real function,

in the limit where k tends to infinity. Physically, k−21k is a magnetic Schrödinger operator with k the
inverse of the Planck’s constant, ∇ the magnetic potential and k−1V the electric potential.

A very particular case is the ∂̄-Laplacian of high powers of a positive line bundle on a complex manifold.
Its ground states are the holomorphic sections which play obviously a central role in algebraic/complex
geometry, but also in mathematical physics: in Kähler quantization, the space of holomorphic sections
is the quantum space and the large k limit is the semiclassical limit. Starting from [Guillemin and
Uribe 1988], it has been understood that for a manifold that is not necessarily complex, the holomorphic
sections can be replaced by the bounded states of the Bochner Laplacian 1k , where the potential V is
suitably defined; bounded here means that the eigenvalues are bounded independently of k. These “almost”
holomorphic sections have been used with success in various problems on symplectic manifolds from their
projective embeddings to their quantizations [Borthwick and Uribe 1996; 2000; Ma and Marinescu 2007].

In the larger regime where we consider all the eigenvalues smaller than k3, with 3 arbitrary large
but independent of k, few results are known: a general Weyl law was established in [Demailly 1985],
which we will recall later, and for a specific class of connection ∇, [Faure and Tsujii 2015] showed that
the spectrum of 1k exhibits some gaps and clusters, the first cluster consisting of the bounded states of
[Guillemin and Uribe 1988].

A natural question is to determine the number of eigenvalues in each cluster. For the first cluster, in
the case of holomorphic sections of a positive line bundle, the answer is provided by the Riemann–Roch–
Hirzebruch theorem and the Kodaira vanishing theorem. More generally, when k is sufficiently large,
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the number of bounded states of the Bochner Laplacian of [Guillemin and Uribe 1988] is still given by
the Riemann–Roch number of Lk. One of our main results is that the number of eigenvalues in each
higher cluster is given as well by a Riemann–Roch number, associated to Lk tensored with a convenient
auxiliary bundle F defined in terms of the cluster.

We are also concerned with results of local nature: we show that gaps and clusters appear as well
in the local Weyl laws of 1k ; local here means that each eigenvalue is counted with a weight given by
the square of the pointwise norm of the corresponding eigensection. Furthermore we give a pointwise
description of the Schwartz kernel of the spectral projectors associated to each cluster, generalizing the
Bergman kernel asymptotics for positive line bundles.

The picture emerging from these results is that the restriction of the Bochner Laplacian 1k to each
cluster is essentially a Berezin–Toeplitz operator with principal symbol an endomorphism of the auxiliary
bundle F.

1A. The magnetic Laplacian. Let us turn to precise statements. Let M2n be a closed manifold equipped
with a Riemannian metric g, a volume form µ, a Hermitian line bundle L with a connection compatible
with the metric, a Hermitian vector bundle A over M having an arbitrary rank r with a connection, and a
section V ∈ C∞(M,End A) such that V (x) is Hermitian for any x ∈ M. Define the Laplacian

1k =
1
2∇

∗
∇ + kV : C∞(Lk

⊗ A)→ C∞(Lk
⊗ A). (1)

Here k ∈ N, ∇ is the covariant derivative of Lk
⊗ A, ∇

∗ is its adjoint, the scalar products of sections of
Lk

⊗ A or Lk
⊗ A ⊗ T ∗M are defined by integrating the pointwise scalar products against the volume

form µ. The metric of T ∗M is induced by the Riemannian metric.
We have introduced the bundle A with the endomorphism-valued section V to include some important

Laplacians as the ∂̄-Laplacian acting on p-forms or the square of some Dirac operators. Furthermore our
results hold for a slightly more general class of operators than (1), which are defined in Section 3 and are
locally of the form (B).

Since 1k is a formally self-adjoint elliptic operator on a compact manifold, it is essentially self-adjoint,
its spectrum sp(1k) is a discrete subset of [k inf V1,+∞[ and consists only of eigenvalues with finite
multiplicities, and the eigenfunctions are smooth sections of Lk

⊗ A. Here V1(x) is the lowest eigenvalue
of V (x).

The curvature of L has the form ω/ i , with ω ∈�2(M,R) a closed form. Let us assume that

ω is nondegenerate at each point of M. (A)

Thus ω is a symplectic form. Associated to ω is the Liouville volume form µL = ωn/n! . We will assume
that µ= µL. This is not a restrictive assumption because if we multiply µ by a positive function ρ and
the metric of A by ρ−1, we do not change the scalar products of C∞(Lk

⊗ A) and �1(Lk
⊗ A). Working

with µL will simplify several statements.

1B. Pointwise data. We now introduce several pointwise data that will enter in our asymptotic description
of the spectrum of 1k . Denote by jB the section of End(T M) such that ω(ξ, η)= g( jBξ, η). Then M
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has an almost-complex structure j compatible with ω defined by

jy := | jB,y|
−1 jB,y for all y ∈ M.

So the vector bundle T 1,0 M = Ker( j − i idT M⊗C) ⊂ T M ⊗ C has a Hermitian metric h given by
h(ξ, η)= ω(ξ, η̄)/ i .

Moreover, the complexification of jB,y/ i restricts to a positive endomorphism of (T 1,0
y M, h y). Denote

its eigenvalues by 0< B1(y)⩽ · · ·⩽ Bn(y). We introduce an orthonormal basis (ui ) of (T 1,0
y M, h y) such

that jB,yui = i Bi (y)ui .
Consider the space D(Ty M)= C[T 0,1

y M] of antiholomorphic polynomials of Ty M. If (zi ) are the linear
complex coordinates of Ty M dual to the ui , then D(Ty M)= C[z̄1, . . . , z̄n]. Define the endomorphism

□y =

∑
i

Bi (y)
(
a†

i ai +
1
2

)
+ V (y) : D(Ty M)⊗ Ay → D(Ty M)⊗ Ay, (2)

where ai and a†
i are the endomorphisms of D(Ty M) acting by derivation with respect to z̄i and multipli-

cation by z̄i respectively.
We introduce an eigenbasis (ζj ) of V (y): V (y)ζi = Vi (y)ζi , with V1(y) ⩽ · · · ⩽ Vr (y). Then □y is

diagonalizable, with eigenbasis (z̄α ⊗ ζj , (α, j) ∈ Nn
× {1, . . . , r}),

□y(z̄α ⊗ ζj )=

(∑
i

Bi (y)
(
α(i)+ 1

2

)
+ Vj (y)

)
z̄α ⊗ ζj .

Let λ1(y)⩽ λ2(y)⩽ · · · be the eigenvalues of □y ordered and repeated according to their multiplicities.
The operators □y depend smoothly on y even if it is not obvious from (2), because in general there is

no local smooth frame (ui ) of T 1,0 M which is an eigenbasis of jB,y at each y. The various eigenvalues
Bi (y), Vj (y) and λℓ(y) depend continuously on y.

1C. Weyl laws. Demailly [1985] proved a Weyl law for the operators k−11k . It says roughly that in
the semiclassical limit k → ∞, the spectrum of k−11k is an aggregate of the spectra of the □y . More
precisely, we introduce the counting functions Ny(λ)= ♯{ℓ : λℓ(y)⩽ λ} of the □y and the one of k−11k

N (λ, k)= ♯ sp(k−11k)∩ ]−∞, λ].

Here and in the sequel, an eigenvalue with multiplicity m is counted m times. Let v : R → R be the
nondecreasing function v(λ) :=

∫
M Ny(λ) dµL(y). Let D be the set of discontinuity points of v. Then

for any λ ∈ R \ D, we have

N (λ, k)=

(
k

2π

)n

v(λ)+ o(kn) (3)

as k tends to infinity. We have slightly reformulated the original result [Demailly 1985, Theorem 0.6],
which holds more generally for ω not necessarily nondegenerate and M not necessarily compact.

The subset D is in general nonempty. As an easy example, if jB = j and V = 0, then D =
1
2 n + N,

v is locally constant on R \ D and, for any ℓ ∈ N,

v
(n

2
+ ℓ+ 0

)
= v

(n
2

+ ℓ− 0
)

+ rµL(M)
(n+ℓ−1
ℓ−1

)
.
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Our goal is to understand the corrections to the Weyl law (3), in other words what is hidden in the
remainder o(kn). For instance, if the function v is constant on a compact interval J, then (3) implies
that ♯ sp(k−11k)∩ J = o(kn). Actually, as we will see, in this situation, when k is sufficiently large, J
contains no eigenvalue of k−11k . Furthermore, the numbers of eigenvalues between such intervals is
given by Riemann–Roch numbers.

To state our results, we introduce the set 6 =
⋃

j λj (M). 6 is a locally finite union of closed disjoint
intervals. The function v is locally constant on R \6 and 6 is the support of the Lebesgue–Stieltjes
measure dv; see Section 2D for a proof of these statements.

If B is complex vector bundle of M, we denote by RR(B) the Riemann–Roch number of B, that is,
the integral of the product of the Chern character of B by the Todd form of (M, j).

Theorem 1.1. Let a, b ∈ R \6, with a < b. Then when k is sufficiently large,

♯ sp(k−11k)∩ [a, b] =

{
RR(Lk

⊗ F) if [a, b] ∩6 ̸= ∅,
0 otherwise,

(4)

where F is the vector bundle with fibers Fy = Im 1[a,b](□y), y ∈ M.

The assumption that a, b ∈ R \6 guarantees that the number of eigenvalues of □y in [a, b] is constant,
so that F is a genuine smooth vector bundle. RR(Lk

⊗ F) depends polynomially on k, with leading term

RR(Lk
⊗ F)= (rank F)

(
k

2π

)n

µL(M)+O(kn−1).

The result is consistent with the Weyl law (3) because when a, b ∈ R\6 we have Ny(b)= Ny(a)+rank F
for any y ∈ M.

Theorem 1.1 holds not only for the magnetic Laplacians (1), but also for other remarkable geometric
operators, as for instance the holomorphic Laplacians or the square of spin-c Dirac operators. The
corresponding results are stated in Theorems 3.4 and 3.6. In these cases, 6 = N, so the spectrum of
k−11k consists of clusters at nonnegative integers, the dimension of each cluster being given by the
Riemann–Roch number RR(Lk

⊗ F), where F is a sum of tensor products of symmetric and exterior
powers of T 1,0 M ; see part (3) of Theorem 3.6.

Theorem 1.1 is relevant only when 6 has several components. Note that the set of (ω, g, V ) such that
6 is not connected is open in C0-topology. Let us discuss some examples where the fiber bundle F can
be made explicit.

First if j = jB and V = 0, the set 6 is 1
2 n + N, and for a =

1
2(n − 1)+ ℓ, with ℓ ∈ N and b = a + 1,

the bundle F in Theorem 1.1 is Symℓ(T 1,0 M)⊗ A. More generally, suppose that B1 = · · · = Bn , that is,
jB = B j , with B ∈ C∞(M,R>0). Then 6 ⊂

⋃
ℓ∈N[σ−

ℓ , σ
+

ℓ ], where

σ−

ℓ = inf
(

B
(
ℓ+

n
2

)
+ V1

)
, σ+

ℓ = sup
(

B
(
ℓ+

n
2

)
+ Vr

)
.

Assume there exist a, b ∈ R, such that σ+

ℓ−1 < a < σ−

ℓ and σ+

ℓ < b < σ−

ℓ+1 for some ℓ ∈ N. Then
Theorem 1.1 holds and F = Symℓ(T 1,0 M)⊗ A.
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Since 6 is the support of the Lebesgue–Stieltjes measure dv, the Weyl law (3) implies that, for any
λ ∈6, the distance d(λ, sp(k−11k)) tends to 0 as k → ∞. To the contrary, if λ /∈6, by the second case
of (4), there exists ϵ > 0 such that d(λ, sp(k−11k))⩾ ϵ when k is sufficiently large.

The following theorem gives more precise estimates.

Theorem 1.2. For any 3> 0, there exists C > 0 such that, for any λ⩽3,

λ ∈6 =⇒ dist(λ, sp(k−11k))⩽ Ck−1/2, (5)

λ ∈ sp(k−11k) =⇒ dist(λ,6)⩽ Ck−1/2. (6)

When the bundle F of Theorem 1.1 has a definite parity, see Remark 7.3, (6) can be slightly improved.
For instance, if as above jB = B j and there exist a, b such that σ+

ℓ−1 < a < σ−

ℓ and σ+

ℓ < b < σ−

ℓ+1, then
sp(k−11k)∩ [a, b] ⊂ [σ−

ℓ , σ
+

ℓ ] +O(k−1).
Interestingly, some local Weyl laws hold with a similar gapped structure. Instead of 6, the local law

at y ∈ M involves the spectrum 6y = {λi (y) : i ∈ N} of □y , which is a discrete subset of R. Clearly,
6 =

⋃
y 6y .

For any k ∈ N, choose an orthonormal eigenbasis (9k,i )i∈N of k−11k such that k−11k9k,i = λk,i9k,i ,
with λ0,k ⩽ λ1,k ⩽ · · · . For any y ∈ M and real numbers a < b, define

N (y, a, b, k)=

∑
i :λk,i ∈[a,b]

|9k,i (y)|2,

so we count the eigenvalues in [a, b] with weights given by the square of the pointwise norm at y of the
corresponding eigenvectors.

Theorem 1.3. For any 3 ∈ R \6, y ∈ M and a, b ∈ ]−∞,3] \6y such that a < b, the following holds:
If [a, b] ∩6y is empty, then N (y, a, b, k)= O(k−∞). Otherwise we have an asymptotic expansion

N (y, a, b, k)=

(
k

2π

)n ∑
λ∈6y∩[a,b]

∞∑
ℓ=0

mℓ,λk−ℓ
+O(k−∞), (7)

where the coefficients mℓ,λ do not depend on a, b, k. In particular, m0,λ is the multiplicity of the
eigenvalue λ of □y .

We believe that the same result holds without the assumption that a, b are smaller than 3 ∈ R \6.
Observe that the first-order term

∑
λ∈[a,b]

m0,λ in (7) is merely the number of eigenvalues of □y in
[a, b]. In particular we recover the same structure as in the counting law (4) of Theorem 1.2: when the
leading-order term is zero, N (y, a, b, k)= O(k−∞). We interpret this as a gap in the local Weyl law.

Besides these gaps and clusters, another notable aspect in Theorems 1.1 and 1.3 is that we have full
asymptotic expansions. For the Laplace–Beltrami operators or the Schrödinger operator without magnetic
fields, the remainders in Weyl laws have a completely different behavior; see for instance the survey
[Zelditch 2008, Section 8]. Another situation where clusters and gaps occur is for the pseudodifferential
operators with a principal symbol having a periodic Hamiltonian flow. This has been studied in many
papers; see for instance [Weinstein 1977; Colin de Verdière 1979], [Dozias 1997] for a semiclassical result
and [Boutet de Monvel 1980; Boutet de Monvel and Guillemin 1981, Section 1] for earlier results, with
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Riemann–Roch numbers already. For our magnetic Laplacians, the gaps are also connected to periodic
Hamiltonians: the quantum harmonic oscillators a†

i ai of (2). In dimension 2, this lies at the origin of the
cyclotron motion or resonance of a charged particle in a magnetic field.

1D. Schwartz kernels of spectral projectors. Another result we would like to emphasize in this introduc-
tion is the asymptotic description of the Schwartz kernel of g(k−11k), where g : R → C is a bounded
function with compact support satisfying some assumptions. These Schwartz kernels are by definition
given at (x, y) ∈ M2 by

g(k−11k)(x, y)=

∑
i

g(λk,i )9k,i (x)⊗9k,i (y) ∈ Lk
x ⊗ Ax ⊗ Lk

y ⊗ Ay .

We will prove that g(k−11k) belongs to the operator algebra L(A) introduced in [Charles 2024]. Let us
recall the main characteristics of L(A); the complete definition will be given in Section 5.

L(A) consists of families (Pk)k∈N such that, for any k, Pk is an endomorphism of C∞(M, Lk
⊗ A)

having a smooth Schwartz kernel in C∞(M2, (Lk
⊗ A)⊠ (Lk

⊗ A)) satisfying the following conditions.
First, for any compact subset K of M2 not intersecting the diagonal, for any N, we have Pk(x, y)=O(k−N )

uniformly on K . Second, for any open set U of M identified with a convex open set of R2n through a
diffeomorphism, let F ∈ C∞(U 2, L ⊠ L) be the unitary frame such that F(x, y)= u ⊗ v̄, where v is any
vector in L y with norm 1 and u ∈ L x is the parallel transport of v along the path t ∈ [0, 1] → y + t (x − y).
We introduce a unitary trivialization of A on U and identify accordingly the sections of A⊠ A over U 2

with the functions of C∞(U 2,Cr
⊗ Cr ). Then the Schwartz kernel of Pk has the following asymptotic

expansion on U 2: for any N ∈ N, for any x ∈ U and ξ ∈ TxU such that x + ξ ∈ U,

Pk(x + ξ, x)=

(
k

2π

)n

Fk(x + ξ, x)e−k|ξ |2x/4
N∑
ℓ=0

k−ℓaℓ(x, k1/2ξ)+O(kn−(N+1)/2), (8)

where |ξ |2x = ωx(ξ, jxξ), the coefficients aℓ(x, · ) are polynomial maps Tx M → Cr
⊗ Cr depending

smoothly on x , and the O is uniform when (x + ξ, x) runs over any compact set of U 2.
Such an operator P = (Pk) has a symbol σ0(P), which at y ∈ M is the endomorphism of D(Ty M)⊗ Ay

defined by

(σ0(P)(y))( f )(u)= (2π)−n
∫

Ty M
e(u−v)·v̄a0(y, u − v) f (v) dµy(v).

Here, the scalar product u · v̄ and the measure µy are defined in terms of linear complex coordinates
zi : Ty M → C associated to an orthonormal frame of (T 1,0

y M, h y) by u · v̄ =
∑

zi (u)zi (v) and µy =

|dz1 · · · dzndz̄1 · · · dz̄n|.
As a result, for any (Pk) ∈ L(A), we have ∥Pk∥ = O(1) and

∥Pk∥ = O(k−1/2) ⇐⇒ σ0(P)(y)= 0 for all y ∈ M ⇐⇒ a0(y, · )= 0 for all y ∈ M.

Furthermore L(A) is closed under composition and the map σ0 is an algebra morphism. Here the product
of the symbols at y is the composition of endomorphisms of D(Ty M)⊗ Ay , which is not commutative.
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Theorem 1.4. (1) For any a, b ∈ R\6, the spectral projector5k := 1[a.b](k−11k) and k−11k5k belong
to L(A) and their symbols at y are equal to 1[a,b](□y) and □y1[a,b](□y) respectively.

(2) For any 3 ∈ R \6, for any g ∈ C∞(R,C) such that supp g ⊂ ]−∞,3], (g(k−11k))k belongs to
L(A) and its symbol at y is g(□y).

The second assertion is actually a generalization of the first one because choosing 3 > b such that
[b,3]∩6=∅, one has 1[a,b] = g on an open neighborhood of 6 with g ∈ C∞(R) supported in ]−∞,3],
and by Theorem 1.1, 1[a,b](λ)= g(λ) for any λ ∈ sp(k−11k) when k is sufficiently large.

1E. Comparison with earlier results. This work started as a collaboration with Yuri Kordyukov and
some of the results presented here appeared also in [Kordyukov 2022]: the existence of spectrum gaps, that
is, (4) when [a, b]∩6=∅, and a weak version of (6) with a O(k−1/4) instead of the O(k−1/2) are proved
in [loc. cit., Theorem 1.2]. Moreover, under the assumption of Theorem 1.4, the Schwartz kernel of the
spectral projector 5k = 1[a,b](k−11k) is described in [loc. cit., Theorem 1.6] in a way similar to our result.

In the case where jB = j and V is constant, the existence of spectrum gaps, that is, (4) when
[a, b] ∩6 = ∅, was proved in [Faure and Tsujii 2015, Theorem 10.2.2]. Our proof will follow the same
line as in that work and is similar to the proof in [Kordyukov 2022].

In the case again where jB = j and V = 0, the first gap and the asymptotic description of the first
cluster has a long history. When j is integrable so that M is a complex manifold and ω is Kähler,
the gap follows from Kodaira vanishing theorem, the first cluster consists of the holomorphic sections
of Lk, its dimension is given by the Riemann–Roch–Hirzebruch theorem, and the Schwartz kernel of the
corresponding spectral projector is the Bergman kernel, whose asymptotic can be deduced from [Boutet
de Monvel and Sjöstrand 1976] and which has been used in many papers starting from [Zelditch 1998].
The extension to almost-complex structure was done in [Guillemin and Uribe 1988; Borthwick and Uribe
2007; Ma and Marinescu 2008]. Parallel results for spin-c Dirac operators were proved in [Borthwick
and Uribe 1996; Ma and Marinescu 2002; 2007].

The main tool we use in this paper is the algebra L(A) introduced in [Charles 2024]; a first weaker
version was proposed in [Charles 2016]. The asymptotic expansions (8) or similar versions have been
used before by several authors to describe the spectral projector on the first cluster and corresponding
Toeplitz operators, [Shiffman and Zelditch 2002; Charles 2003; Ma and Marinescu 2007] for instance. In
[Charles 2024], besides establishing the main properties of L(A), we considered some projectors (5k) in
L(A) whose symbol at y ∈ M is the projector onto the m-th level of a Landau Hamiltonian

∑
a†

i ai . In
particular we computed the rank of 5k as a Riemann–Roch number and we studied the corresponding
Toeplitz algebra. By the results of the current paper, particular instances of such projectors are the spectral
projectors on the m-cluster of a magnetic Laplacian with jB = j and V = 0.

In a different context, many works have been devoted to the magnetic Schrödinger operator in Rn; see
[Raymond 2017] for a general overview. The most significant result is a semiclassical description of the
bottom of the spectrum in terms of effective operators whose principal symbols are the functions we
denoted by λi ; see for instance [Ivrii 1998, Theorem 6.2.7], [Raymond and Vũ Ngo. c 2015, Theorem 1.6]
or [Morin 2020, Theorem 2] for a statement in the manifold setting. These works differ in at least two ways
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from the current paper: The global gap assumption is generally replaced by a confinement hypothesis;
typically the function we denote by λ0 is assumed to have a nondegenerate minimum. Moreover, the
general strategy is to put the Schrödinger operator on a normal form by conjugating it with a convenient
Fourier integral operator.

1F. Outline of the paper. The main idea in the first part of the paper is to approximate the Laplacian 1k

locally by a family of Laplacians 1y,k , y ∈ M, obtained from 1k by “freezing” the coordinates at y. In
Section 2 we introduce these operators, recall the basic results regarding their spectrum and explain the
relationship with the operators □y of Section 1B. In Section 3, we introduce a class of Laplacians slightly
more general than the magnetic Laplacians 1k and which are well-approximated by the 1y,k . This
class contains the holomorphic Laplacians and some of their generalizations without integrable complex
structure. In Section 4, we prove a weak version of Theorem 1.2 which says that sp(k−11k)→6 in the
limit k → ∞, by constructing on one hand some peaked sections which are approximate eigenmodes
of 1k , and on the other hand, by inverting λ− k−11k up to a O(k−1/4) when λ /∈6.

In the second part of the paper, Sections 5 and 6, we introduce the algebra L(A) and prove that the
spectral projector 1[a,b](k−11k) belongs to L(A) when a, b ∈ R \6. The proof is divided into three
steps: From the resolvent estimate of Section 4, we deduce that any operator of L(A) having symbol
1[a,b](□) is an approximation of 1[a,b](k−11k) up to a O(k−1/4). We then prove that L(A)/O(k−∞) has
a unique self-adjoint projector having symbol 1[a,b](□) and commuting with 1k . Finally we prove that
this operator is indeed the spectral projector.

In the last part, Section 7, we establish some spectral properties for the Toeplitz operators associated to
the projectors of L(A), including a sharp Gårding inequality and the functional calculus. Then we deduce
Theorems 1.1 and 1.3 and the second part of Theorem 1.4.

2. The linear pointwise data

In this section we consider a compact manifold M2n equipped with a symplectic form ω and a Riemannian
metric g. Let A → M be a Hermitian vector bundle with a section V of C∞(M,End A) such that V (x) is
Hermitian for any x ∈ M. We choose a point y ∈ M.

2A. The complex structure. Let jB,y be the endomorphism of Ty M such that ωy(ξ, η)= gy( jB,yξ, η).
It will be useful to work with the following normal form.

Lemma 2.1. There exists 0< B1(y)⩽ · · · ⩽ Bn(y) such that Ty M has a basis (ei , fi ) satisfying

ωy(ei , ej )= ωy( fi , f j )= 0, ωy(ei , f j )= δi j ,

jB,yei = Bi (y) fi , jB,y fi = −Bi (y)ei .

The vectors ui =
1

√
2
(ei − i fi ), ūi =

1
√

2
(ei + i fi ) are a basis of Ty M ⊗ C and

1
i
ωy(ui , u j )=

1
i
ω(ūi , ū j )= 0, 1

i
ω(ui , ū j )= δi j ,

jB,yui = i Bi (y)ui , jB,y ūi = −i Bi (y)ūi .
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Proof. Since jB,y is a gy-antisymmetric invertible endomorphism of Ty M, there exists a gy-orthonormal
basis (ẽi , f̃i ) such that jB,y ẽi = Bi (y) f̃i and jB,y f̃i = −Bi (y)ẽi , where the Bi (y) are positive. We set
ei = (Bi (y))−1/2ẽi and fi = (Bi (y))−1/2 f̃i , and the result follows by direct computations. □

We can interpret this result as follows: first, jB,y/ i is C-diagonalizable with only nonzero real
eigenvalues, denoted by ±Bi (y). Second, the subspace W of Ty M ⊗ C spanned by the ui is the sum of
the eigenspaces of jB,y/ i with a positive eigenvalue. W is Lagrangian and the sesquilinear form h y of
Ty M ⊗ C given by h y(u, v)= ωy(u, v̄)/ i is positive on W. Equivalently the endomorphism jy of Ty M
such that jy = i on W is a complex structure of Ty M compatible with ωy . So from now on, we will
denote W = Ker( jy − i) by T 1,0

y M, and by the definition of jy , the restriction of jB,y/ i to T 1,0
y M is a

positive endomorphism of (T 1,0
y M, h y) with eigenvalues the Bi (y). Hence the vectors (ui ) in Lemma 2.1

are nothing else than a h y-orthonormal eigenbasis of T 1,0
y M.

An important remark is that jy depends smoothly on y, so it defines an almost complex structure
of M. Indeed, the space T 1,0

y M depends smoothly on y because jB,y/ i being invertible, no eigenvalue
can cross 0. Another reason is that jy = | jB,y|

−1 jB,y , where | jB,y| is the positive square root of the
gy-positive endomorphism − j2

B,y . Actually, the construction of j is the classical proof of the fact that
any symplectic manifold admits a compatible almost-complex structure; see [McDuff and Salamon 2017,
Proposition 2.5.6].

To the contrary, in general, we cannot choose a local continuous symplectic frame (ei , fi ) of T M
such that jBei = Bi fi , jB fi = −Bi ei , even if we renumber the eigenvalues Bi (y) in a way depending
on y. Indeed, as is well known, it is not possible in general to diagonalize smoothly a symmetric matrix,
the symmetric matrix being −( jB,y)

2 in our case. More specifically, consider on R2
⊗ R2 with its usual

Euclidean structure the endomorphism jB(s, t)= M(s, t)⊗ j2, where

M(s, t)=

(
1+s t

t 1−s

)
, j2 =

(
0 −1
1 0

)
,

with s and t parameters in a neighborhood of 0. Then jB is nondegenerate and antisymmetric, and we
can choose for each (s, t) a basis (ei , fi ) satisfying the previous conditions, but not continuously with
respect to (s, t). Indeed, − j2

B(s, t) = M2(s, t)⊗ id and for s = 0, t small nonzero, the eigenspaces of
M(s, t) are (1, 1)R and (1,−1)R, whereas for t = 0 and s small nonzero, they are (1, 0)R and (0, 1)R.

This example appears on R4 equipped with its usual Euclidean metric and the closed form

ω = (1 + p1) dp1 ∧ dq1 + (1 − p2) dp2 ∧ dq2 + q1 dq1 ∧ dp2 − q2 dp1 ∧ dq2,

which is symplectic on a neighborhood of the origin. On the plane {p1 = p2 : q1 = q2}, the matrix of jB

is M(p1, q1)⊗ j2.
We have also to be careful that the metric g̃ determined by (ω, j),

g̃y(ξ, η) := ωy(ξ, jyη)= gy(| jB,y|ξ, η), (9)

is equal to gy only when B1(y)= · · · = Bn(y)= 1, that is, when jB,y is itself a complex structure.
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2B. The scalar Laplacian of Ty M. Consider now the covariant derivative

∇ = d +
1
i
α : C∞(Ty M)→�1(Ty M), (10)

where α ∈�1(Ty M,R) is given by αξ (η)=
1
2ωy(ξ, η). Since dα = ωy , the curvature of ∇ is ωy/ i . We

then define the scalar Laplacian of Ty M by

1scal
y :=

1
2∇

∗
∇ : C∞(Ty M)→ C∞(Ty M). (11)

Here the scalar products of C∞(Ty M) and �1(Ty M) are defined by integrating the pointwise scalar
products against a fixed constant volume form, the pointwise scalar product of �1(Ty M) is defined from
the metric gy .

We can explicitly compute the spectrum and eigenfunctions of 1scal
y as follows. We introduce a basis

(ei , fi ) of Ty M as in Lemma 2.1. This basis is gy-orthogonal and gy(ei , ei )= gy( fi , fi )= Bi (y)−1, so
we have

1scal
y = −

1
2

n∑
i=1

Bi (y)(∇2
ei

+ ∇
2
fi
)=

n∑
i=1

Bi (y)
(
−∇ui ∇ūi +

1
2

)
,

where ui =
1

√
2
(ei − i fi ), ūi =

1
√

2
(ei + i fi ). Denote by zi the linear complex coordinates dual to the ui .

If (pi , qi ) are the real linear coordinates of Ty M in the basis (ei , fi ), then zi =
1

√
2
(pi + iqi ). Since

ωy = i
∑

dzi ∧ dz̄i , we have

∇ = d +
1
2

n∑
i=1

(zi dz̄i − z̄i dzi ).

We introduce the function s(ξ) := exp(−|ξ |2y/4), ξ ∈ Ty M, where

|ξ |2y =

∑
i

(p2
i + q2

i )= 2
∑

i

|zi |
2
= g̃y(ξ, ξ).

Since s = exp(−|z|2/2), we have ∇ūi s = 0, so s is ∇-holomorphic.
Let us consider C∞(Ty M) as the space of sections of the trivial line bundle over Ty M and let us use s

as a global frame. We introduce the operators

ai = ∂z̄i , a†
i = z̄i − ∂zi . (12)

Then ∇ūi ( f s)= (ai f )s and ∇ui ( f s)= −(a†
i f )s, so that

1scal
y ( f s)= (□̃scal

y f )s, with □̃scal
y :=

n∑
i=1

Bi (y)
(
a†

i ai +
1
2

)
. (13)

Let P(Ty M) be the space of polynomial functions Ty M → C, not necessarily holomorphic or antiholomor-
phic. With the coordinates (zi ), P(Ty M)= C[z1, . . . , zn, z̄1, . . . , z̄n]. Observe that ai and a†

i preserve
P(Ty M) and the same holds for □̃scal

y .
Since the ai , a

†
i satisfy the so-called canonical commutation relations

[ai , aj ] = [a†
i , a

†
j ] = 0, [ai , a

†
j ] = δi j ,
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we deduce by a classical argument that the endomorphisms a†
i ai of P(Ty M) are mutually commuting endo-

morphisms, each of them diagonalizable with spectrum N; see for instance [Charles 2024, Proposition 4.1].
So we have a decomposition into joint eigenspaces

P(Ty M)=

⊕
α∈Nn

Lα, with Lα =

n⋂
i=1

Ker(a†
i ai −α(i)). (14)

Furthermore, L0 = C[z1, . . . , zn] and Lα = (a†)αL0 for all α ∈ Nn where (a†)α = (a†
1)
α(1)

· · · (a†
n)
α(n).

Consequently □̃scal
y is a diagonalizable endomorphism of P(Ty M) with spectrum 6scal

y given by

6scal
y =

{ n∑
j=1

Bj (y)
(
α( j)+ 1

2

)
: α ∈ Nn

}
. (15)

Moreover the eigenspace E(λ) of the eigenvalue λ ∈ 6y is the sum of the Lα, where α runs over the
multi-indices of Nn such that

∑
Bi (y)

(
α(i)+ 1

2

)
= λ.

We can deduce from these algebraic facts the L2-spectral theory of 1scal
y . First of all, the space

exp(−|ξ |2y/4)P(Ty M) is dense in L2(Ty M) by the same proof that Hermite functions are dense. So we
deduce from (14) a decomposition of L2(Ty M) in a Hilbert sum of orthogonal subspaces,

L2(Ty M)=

⊕
α∈Nn

Kα, Kα = e−|ξ |2y/4Lα
L2(Ty M) for all α ∈ Nn (16)

Let G be the subspace of L2(Ty M) consisting of the ψ having a decomposition
∑
ψα in (16) such

that
∑

|α|
2
∥ψα∥

2 is finite. As a differential operator, 1scal
y acts on the distribution space C−∞(Ty M)

and in particular on L2(Ty M). It is not difficult to see that G consists of the ψ ∈ L2(Ty M) such that
1scal

y ψ ∈ L2(Ty M).

Lemma 2.2. (1scal
y ,G) is a self-adjoint unbounded operator of L2(Ty M), which is the closure of

(1scal
y , e−|ξ |2y/4P(Ty M)). Its spectrum is 6y and consists only of eigenvalues, the eigenspace of λ ∈6y

being the closure of exp(−|ξ |2y/4)E(λ).

This follows from (16), (14) and (13) by elementary standard arguments; see for instance [Davies
1995, Lemma 1.2.2]. Even if we won’t need this in the sequel, it can be useful to note that

• the eigenspace K0 is the Bargmann space: ψ ∈ K0 if and only if ψ ∈ L2(Ty M) and ψ =

e−|ξ |y/4 f (z1, . . . , zn) with f holomorphic.

• G is different from the Sobolev space H 2
=

{
ψ ∈ L2(Ty M) :

∑
(∂2

pi
+∂2

qi
)ψ ∈ L2

}
. Actually, H 2

∩G=

G ∩G = H 2
iso(Ty M), the isotropic Sobolev space defined as

{
ψ ∈ H 2(Ty M) :

∑
(pi

2
+ qi

2)ψ ∈ L2
}
.

2C. The Ay-valued Laplacian 1 y. We now consider the full Laplacian

1y :=1scal
y + V (y) : C∞(Ty M, Ay)→ C∞(Ty M, Ay). (17)
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We deduce from the properties of 1scal
y that (1y,G ⊗ Ay) is a selfadjoint unbounded operator of

L2(Ty M)⊗ Ay with discrete spectrum

6y =

{ n∑
j=1

Bj (y)
(
α( j)+ 1

2

)
+ Vℓ(y) : α ∈ Nn, ℓ= 1, . . . , r

}
, (18)

where V1(y) ⩽ · · · ⩽ Vr (y) are the eigenvalues of V (y). Let (ζℓ) be an eigenbasis of V (y), V (y)ζℓ =

Vℓ(y)ζℓ. Then any λ ∈ 6y is an eigenvalue of 1y with eigenspace the closure of the sum of the
exp(−|ξ |2y/4)E(λ′)⊗ Cζℓ such that λ′

+ Vℓ(y)= λ.
In the sequel, we will mainly work with

□̃y = e|ξ |2y/41ye−|ξ |2y/4 = □̃scal
y + V (y) (19)

acting on P(Ty M)⊗ Ay .

2D. The set 6 and the function v. Denote by λ1(y)⩽ λ2(y)⩽ · · · the eigenvalues of □y ordered and
repeated according to their multiplicities. Let

6 =

⋃
y∈M

6y =

⋃
ℓ

λℓ(M).

We introduce for any y ∈ M the counting function Ny(λ)= ♯{ℓ : λℓ(y)⩽ λ} of □y . Let v : R → R be the
nondecreasing function v(λ) :=

∫
M Ny(λ) dµL(y).

Lemma 2.3. The functions λℓ are continuous. 6 is locally a finite union of closed bounded intervals; it is
the support of the Lebesgue–Stieltjes measure dv.

Proof. First the functions Bi and Vj are continuous, so, for any α ∈ Nn and j , fα, j :=
∑

i Bi
(
α(i)+ 1

2

)
+Vj

is continuous as well. Since M is compact, c := infy∈M B1(y) is positive. Then fα, j ⩾ c|α|+ inf V1, with
|α| = α(1)+ · · · + α(n). Thus, for any 3 ∈ R, fα, j ⩾ 3 except for a finite number of (α, j). Since
6 =

⋃
α, j fα, j (M) and fα, j (M) is compact, this proves that 6 ∩ ]−∞,3] is a finite union of closed

bounded intervals. By the same reason, for any y ∈ M and 3 ∈ R, fα, j (y)=3 only for a finite number
of (α, j). From this we deduce readily that the functions λℓ are continuous.

For any λ, the function y → Ny(λ) takes only integral values. It is measurable because, for any ℓ,
{y : Ny(λ)= ℓ} = {λℓ ⩽ λ} ∩ {λℓ+1 > λ} is the intersection of an open set with a closed set. So v(λ) is
well-defined. Then v is clearly nondecreasing, and the associated Lebesgue–Stieltjes measure ν = dv is
defined by ν([a, b])= ν(b+)− ν(a−).

Now λ /∈ supp(ν) if and only if v is constant on a neighborhood of λ. If λ /∈ 6, then there exists
ℓ and ϵ > 0 such that λℓ ⩽ λ− ϵ and λ+ ϵ ⩽ λℓ+1; thus, for any y, Ny(λ− ϵ) = Ny(λ+ ϵ) and so
v(λ− ϵ) = v(λ+ ϵ), giving λ /∈ supp ν. Conversely, if, for some ϵ > 0, v(λ− ϵ) = v(λ+ ϵ), then
Ny(λ− ϵ)= Ny(λ+ ϵ) for any y ∈ A, where M \ A has measure zero. Since A is dense, this implies that
λℓ ⩽ λ− ϵ and λℓ+1 ⩾ λ+ ϵ, with ℓ= Ny(λ), so λ /∈6. □

2E. The restriction □ y of □̃ y to antiholomorphic polynomials. Since the spaces Lα in (14) are infinite-
dimensional, the eigenvalues of □̃y are infinitely degenerate. We can avoid this degeneracy by replacing
P(Ty M) by the subspace D(Ty M)⊂P(Ty M) of antiholomorphic polynomials. With the coordinates (zi )
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introduced previously, D(Ty M)= C[z̄1, . . . , z̄n]. This point is central in our treatment since it will lead
us to the definition of the fiber bundle F of Theorem 1.1.

First, the annihilation and creation operators ai , a
†
i preserve the subspace D(Ty M) in which they act

respectively by ∂z̄i and z̄i . Moreover the joint eigenspaces Lα of the a†
i ai satisfy Lα∩D(Tx M)= C z̄α. So

□̃y preserves D(Ty M)⊗ Ay and its restriction □y ∈ End(D(Ty M)⊗ Ay) has the same spectrum as □̃y .
For any eigenvalue λ, the corresponding eigenspaces of □̃y and □y are

⊕
Lα ⊗ Cζℓ and

⊕
Cz̄α ⊗ Cζℓ

respectively, where in both cases we sum over the (α, ℓ) such that
∑

Bi (y)
(
α(i)+ 1

2

)
+ Vℓ(y)= λ.

For any p ∈ N, the endomorphism □y preserves the subspace D⩽p(Ty M) of D(Ty M) of polynomials
with degree smaller than p. These spaces are obviously finite-dimensional and their union D⩽p(T M)=⋃

y D⩽p(Ty M) is a genuine vector bundle over M. Moreover y 7→ □y|D⩽p(Ty M) is a smooth section of
End(D⩽p(T M)).

Lemma 2.4. (1) For any3> 0, there exists p ∈ N such that, for any y ∈ M and λ ∈ sp(□y)∩]−∞,3],
the eigenspace Ker(□y − λ) is contained in D⩽p(Ty M)⊗ Ay .

(2) For any compact interval I whose endpoints do not belong to 6, the spaces

Fy =

⊕
λ∈sp(□y)∩I

Ker(λ−□y), y ∈ M,

are the fibers of a subbundle F of D⩽p(T M)⊗ A, with p a sufficiently large integer.

Proof. As in the beginning of the proof of Lemma 2.3,
∑

Bi (y)
(
α(i) +

1
2

)
+ Vℓ(y) ⩽ 3 implies

c|α| ⩽ 3− inf V1, with c = inf B1 > 0, which proves the first assertion with p any integer larger than
c−1(3− inf V1).

Since I is bounded, by the first part, Fy ⊂ D⩽p(Ty M)⊗ Ay for any y, when p is sufficiently large.
The projector of End(D⩽p(Ty M)⊗ Ay) onto Fy is given by the Cauchy integral formula

(2π i)−1
∫
γ

(λ−□y,p)
−1 dλ, (20)

where □y,p is the restriction of □y to D⩽p(Ty M)⊗ Ay and γ is a loop of C \6y which encircles I. By
the assumption that the endpoints of I do not belong to 6, we can choose γ independent of y. Hence
(20) depends smoothly on y and its image Fy as well. □

3. A class of magnetic Laplacians

Consider a compact Riemannian manifold (M, g) equipped with a Hermitian line bundle L with a
connection ∇ of curvature ω/ i , and a Hermitian vector bundle A with a section V ∈ C∞(M,End(A))
such that V (x) is Hermitian for any x ∈ M.

The results we will prove later hold for families of differential operators

(1k : C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A), k ∈ N)
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having the following local form: for any coordinate chart (U, xi ) of M and trivialization A|U ≃ U × A,
we have on U by identifying C∞(U, Lk

⊗ A) with C∞(U, Lk
⊗ A) that

1k = −
1
2

∑
gi j

∇i,k∇j,k + kV +

∑
ai∇i,k + b, (B)

where gi j
= g(dxi , dx j ), ∇i,k is the covariant derivative of Lk with respect to ∂x i , and ai , b are in

C∞(U,End(A)) and do not depend on k.
In this section, we will prove that various operators have the form (B): the magnetic Laplacians (1)

defined in the Introduction, the holomorphic Laplacians and also some generalized Laplacians associated
to semiclassical Dirac operators.

3A. About Assumption (B). The proof that some operators satisfy Assumption (B) consists in each
case of establishing a Weitzenböck-type formula. Since we don’t need to give a geometric definition of
the coefficients ai and b in (B), the computations will be rather simple once we know which terms to
neglect. To give a systematic treatment and to have a better understanding of the approximations we do,
we will introduce noncommutative symbols for the differential operator algebra generated by the ∇i,k and
C∞(U,End A). Instead of the full algebra, we will only work with second-order operators. Everything in
this section works without assuming that ω is degenerate, the dimension of M could be odd as well, but
we will not insist on that.

Let (ei ) be a frame of T M on an open set U of M and A be a Hermitian vector space. Let ∇i,k be the
covariant derivation of C∞(U, Lk) with respect to ei . For any y ∈ M, let ∇y,i be the covariant derivative
of C∞(Ty M) for the connection (10) with respect to ei (y).

We say that a family P = (Pk : C∞(U, Lk
⊗ A)→ C∞(U, Lk

⊗ A), k ∈ N) of differential operators
belongs to G2 if it has the form

Pk =

∑
i⩽ j

di j∇i,k∇j,k + kc +

∑
bi∇i,k + a (21)

for some coefficients di j , c, bi , a ∈ C∞(U,End A) independent of k. For such a family, we define

σ2(P)(y)=

∑
i⩽ j

di j (y)∇y,i∇y, j + c(y) : C∞(Ty M,A)→ C∞(Ty M,A).

Similarly we define the subspaces G0 and G1 of G2 and the corresponding symbols as follows. Assume
that P satisfies (21). Then

P ∈ G1 ⇐⇒ di j = c = 0, σ1(P)(y)=

∑
bi (y)∇y,i ,

P ∈ G0 ⇐⇒ di j = c = bi = 0, σ0(P)(y)= a(y).

The basic property we need is the following.

Lemma 3.1. Let P ∈ GN , P ′
∈ GN ′ , with N + N ′ ⩽ 2. Then

• P∗
:= (P∗

k ) belongs to GN and σN (P∗)(y)= (σN (P)(y))∗.

• P P ′
:= (Pk P ′

k) ∈ GN+N ′ and σN+N ′(P P ′)(y)= σN (P)(y) ◦ σN ′(P ′)(y).
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Here the formal adjoints P∗

k are defined with respect to any volume form µ of U which is independent
of k, whereas the adjoint of σN (P)(y) is defined with respect to any constant volume form of Ty M.

Proof. This is easily proved, let us emphasize the main points. First ∇
∗

i,k = −∇i,k + divµ(ei ), so (∇∗

i,k)

belongs to G1 and σ1(∇
∗

i,k)(y) = −∇y,i = ∇
∗

y,i . Second ∇i,ka = a∇i,k +Lei a, so (∇i,ka) belongs to G1

and has symbol σ1(∇i,ka)(y)= a(y)∇y,i = ∇y,i a(y). Third

∇i,k∇j,k = ∇j,k∇i,k +
k
i
ω(ei , ej )

so when i > j , (∇i,k∇j,k) belongs to G2 and

σ2(∇i,k∇j,k)(y)= ∇y, j∇y,i +
1
i
ω(ei , ej )(y)= ∇y,i∇y, j . □

Remark 3.2. Viewing k−1 as a semiclassical parameter, we can consider the algebra generated by the
∇i,k and C∞(U ) as a semiclassical algebra. But the order and the symbol that we use here are different
from the semiclassical ones. A first reason is that the product of the σN (P) is not abelian. Let us compare
the order of the generators.

If we define the order of (Pk) ∈ GN as N, the covariant derivatives ∇i,k have order 1, multiplication
by k has order 2 and multiplication by a function f has order 0. In particular k has twice the order of ∇i,k .

In contrast, let us trivialize L over an open set U so that C∞(U, Lk)≃ C∞(U ) and ∇
Lk

= d + kα/ i ,
with α ∈�1(U,R) the connection 1-form. We introduce the semiclassical parameter h̄ = k−1. Then the
operators (ik)−1

∇i,k = h̄∂ei / i −α(ei ) and multiplication by f are semiclassical differential operators of
order 0. So ∇i,k and k have the same order as semiclassical differential operators. □

Notice that for any vector field X of U, (∇Lk

X ) belongs to G1 with symbol at y given by the covariant
derivative of C∞(Ty M) with respect to X (y). Using this and Lemma 3.1, we deduce that GN and σN do
not depend on the choice of the frame (ei ). Let us make the dependence with respect to (U,A) explicit,
so we write GN (U,A) instead of GN .

Using again Lemma 3.1, we see that if u ∈ C∞(U,End A) is invertible at each point, then, for any P ∈

GN (U,A), u Pu−1 belongs to GN (U,A) and σN (u Pu−1)(y)= u(y)σN (P)(y)u(y)−1. So we can define
GN (A) as the space of differential operator families (Pk) such that for any k, Pk acts on C∞(M, Lk

⊗ A)
and for any trivialization A|U ≃ U × A, the local representative of (Pk) belongs to GN (U,A). The
corresponding symbol σN (P)(y) is invariantly defined as a differential operator of C∞(Ty M, Ay).

It is also useful to consider differential operators from C∞(M, Lk
⊗ A) to C∞(M, Lk

⊗ B), where B is
a second auxiliary Hermitian vector bundle. To handle these operators, we define the subspace GN (A, B)
of GN (A⊕ B) consisting of the (Pk) such that, for any k, Im Pk ⊂ C∞(M, Lk

⊗ B)⊂ Ker Pk . The symbol
at y of an element of GN (A, B) is a differential operator C∞(Ty M, Ay)→ C∞(Ty M, By).

Observe now that assumption (B) has the reformulation

(1k) ∈ G2(A) and σ2(1k)(y)=1scal
y + V (y) for all y ∈ M. (B’)

3B. Magnetic Laplacian. The simplest example of an operator satisfying condition (B) is the magnetic
Laplacian defined in Section 1A. So besides the line bundle L with its connection, the Riemannian
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metric g and the section V ∈ C∞(M,End A), we introduce a connection on A not necessarily preserving
the Hermitian structure and a volume form µ on M. Set

1k =
1
2(∇

Lk
⊗A)∗∇Lk

⊗A
+ kV : C∞(M, Lk

⊗ A)→ C∞(M, Lk
⊗ A),

where the formal adjoint of ∇
Lk

⊗A is defined from the scalar product obtained by integrating pointwise
scalar products against µ.

Proposition 3.3. (1k) satisfies assumption (B).

Proof. This follows from Lemma 3.1 and the fact that (∇Lk
⊗A) belongs to G1(A, A ⊗ T ∗M) with symbol

at y equal to the covariant derivative ∇ of C∞(Ty M) tensored with the identity of Ay . To see this, write
locally

∇
Lk

⊗A
=

∑
i

ϵ(e∗

i )∇
Lk

⊗A
ei

=

∑
i

ϵ(e∗

i )(∇i,k + γi ),

where (e∗

i ) is the dual frame of (ei ), ϵ(e∗

i ) is the exterior product by e∗

i and the γi ∈ C∞(U,End A) are
the coefficients of the connection 1-form of ∇

A in a trivialization A|U ≃ U × A. □

3C. Holomorphic Laplacian. Assume that M is a complex manifold and L , A are holomorphic Hermitian
bundles, L being positive in the sense that the curvature of its Chern connection if ω/ i , where ω∈�1,1(M),
is a Kähler form. Equip T 0,1 M with the metric |u|

2
= ω(ū, u)/ i , u ∈ T 0,1 M, and let µ= ωn/n! be the

Liouville volume form. Define the holomorphic Laplacian

1′′

k = (∂̄Lk⊗A)
∗∂̄Lk⊗A : C∞(M, Lk

⊗ A)→ C∞(M, Lk
⊗ A).

By Hodge theory, Ker1′′

k is isomorphic with the Dolbeault cohomology space H 0(Lk
⊗ A). When k is

sufficiently large, the dimension of H 0(Lk
⊗ A) is the Riemann–Roch number RR(Lk

⊗ A) defined as
the evaluation of the product of the Chern character of Lk

⊗ A by the Todd class of M. Additionally, 1′′

k
satisfies assumption (B), which leads to the following description of its spectrum.

Theorem 3.4. For any 3 > 0, there exists C > 0 such that sp(k−11′′

k ) ∩ [0,3] is contained in
N + Ck−1

[−1, 1]. For any m ∈ N,

♯ sp(k−11′′

k )∩
[
m −

1
2 ,m +

1
2

]
= RR(Lk

⊗ A ⊗ Symm(T 1,0 M)),

when k is sufficiently large.

Notice that the first eigenvalue cluster is degenerate in the sense that sp(1′′

k )∩
[
0, 1

2

]
⊂ {0} when k is

sufficiently large.

Proof. Now ∂̄Lk⊗A belongs to G1(A, A ⊗ (T ∗M)0,1) and its symbol at y is the (0, 1)-component of
the connection ∇ defined in (10). Using the same notation (ui ) and (zi ) as in Section 2B, ∇

0,1
=∑

ϵ(dz̄i )⊗∇ūi . Since the adjoint of ϵ(dz̄i ) is the interior product by ūi , we have ϵ(dz̄i )
∗ϵ(dz̄i )= 1 so that

σ2(1
′′

k )(y)= −

∑
i

∇ui ∇ūi .

Thus1′′

k satisfies assumption (B) with V (y)=−
1
2 n and6y =N. The result follows now from Corollary 7.2

with k−1 instead of k−1/2 by Remark 7.3. □
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Similarly we can consider the Laplacian acting on (0, q)-forms and prove the same result where N is
replaced by q + N and the number of eigenvalues in q + m +

[
−

1
2 ,

1
2

]
is the Riemann–Roch number of

Lk
⊗ A ⊗ ∧

0,q(T ∗M)⊗ Symm(T 1,0 M).
We can also generalize this to the case where the complex structure is not integrable. So assume

that (M, ω) is a symplectic manifold with a compatible almost-complex structure j , that L → M is a
Hermitian line bundle with a connection of curvature ω/ i and that A a Hermitian vector bundle with a
connection. Then Theorem 3.4 holds with the operator

1′′

k = ((∇Lk
⊗A)(0,1))∗(∇Lk

⊗A)(0,1) : C∞(Lk
⊗ A)→ C∞(Lk

⊗ A)

and the proof is exactly the same. However, it is no longer true that the first eigenvalue cluster is
nondegenerate. Using Dirac operators, one can generalize the previous result and still have the degeneracy
of the first cluster, as explained in the next section.

3D. Semiclassical Dirac operators. In this section, (M, ω, j) is a symplectic manifold with an almost
complex structure, (L ,∇) is a Hermitian line bundle on M with a connection having curvature ω/ i and
A is an auxiliary Hermitian vector bundle.

Let S =∧
0,•T ∗M be the spinor bundle and S+, S− be the subbundles of even and odd forms respectively.

For any y ∈ M, extend the covariant derivative ∇ defined in (10) to �•(Ty M) in the usual way and denote
by ∇

0,1 the restriction of its (0, 1)-component to �0,•(Ty M)= C∞(Ty M ⊗ Sy).

Definition 3.5. A semiclassical Dirac operator is a family (Dk) ∈ G1(A ⊗ S) with symbol

σ1(Dk)(y)= ∇
0,1

+ (∇0,1)∗ :�0,•(Ty M)→�0,•(Ty M) for all y ∈ M

such that for any k, Dk is formally self-adjoint and odd.

Such an operator can be constructed as follows: we introduce a connection on S preserving S+ and S−

and a connection on A and set

Dk =

∑
i

ϵ(θ̄i )∇
Lk

⊗A⊗S
ūi

+ (ϵ(θ̄i )∇
Lk

⊗A⊗S
ūi

)∗,

where (ui ) is any orthonormal frame of T 1,0 M, (θi ) is the dual frame of (T ∗M)1,0 and the exterior
product ϵ(θ̄i ) acts on S. Another example is provided by spin-c Dirac operators; see [Duistermaat 1996:
Ma and Marinescu 2007, Section 1.3]. Observe as well that the semiclassical Dirac operator is unique up
to a self-adjoint odd operator of G0(A ⊗ S). We denote by

D±

k : C∞(Lk
⊗ A ⊗ S±)→ C∞(Lk

⊗ A ⊗ S∓)

the restrictions of Dk and observe that D−

k is the formal adjoint of D+

k .

Theorem 3.6. Let (Dk) be a semiclassical Dirac operator. Then the operator 1k = D−

k D+

k satisfies:

(1) For any 3> 0, there exists C > 0 such that sp(k−11k)∩ [0,3] is contained in N + Ck−1/2
[−1, 1].

(2) sp(k−11k)∩
[
0, 1

2

]
⊂ {0} and Ker1k has dimension RR(Lk

⊗ A) when k is sufficiently large.
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(3) For any m ∈ N, when k is sufficiently large,

♯ sp(k−11k)∩
[
m −

1
2 ,m +

1
2

]
= RR(Lk

⊗ Am),

where Am =
⊕

(ℓ,p) A ⊗ Symℓ(T 1,0 M)⊗∧
2p(T 1,0 M), the sum being over the (ℓ, p) ∈ N2 such that

ℓ+ 2p = m and p ⩽ n.

Proof. As in Section 2B, let (ui ) be an orthonormal basis of T 1,0
y M and (zi ) be the associated linear

complex coordinates. We have ∇
∗

ūi
= −∇ui , ϵ(dz̄i )

∗
= ι(ūi ) so that

σ1(Dk)(y)=

∑
ϵ(dz̄i )∇ūi − ι(ūi )⊗ ∇ui .

A standard computation using that ∇ui , ∇ūi commute with ϵ(dz̄ j ), ι(ū j ) and [∇ui ,∇u j ] = [∇ūi ,∇ū j ] = 0,
[∇ui ,∇ū j ] = δi j leads to

σ2(D2
k )(y)=

∑
(−∇ui ∇ūi + ϵ(dz̄i )ι(ūi ))=1scal

y −
n
2

+ Ny,

where Ny is the number operator of Sy , that is, Nyα = (degα)α. Restricting to S+, we deduce that (1k)

satisfies assumption (B) with V (y)= −
1
2 n +Ny . So 6y = N and the first assertion of the theorem follows

from the second part of Corollary 7.2.
In the same way, (D+

k D−

k ) has the form (B) with V (y)= −
1
2 n + Ny as well, but the number operator

takes odd value on S−. Thus
sp(k−1 D+

k D−

k )⊂ [1 − Ck−1/2,∞[

for some positive C . Since, for any λ ̸= 0, D+

k is an isomorphism between Ker(D−

k D+

k − λ) and
Ker(D+

k D−

k − λ), this proves that sp(k−11k)∩
]
0, 1

2

]
is empty when k is sufficiently large and the first

part of the second assertion follows.
The second part of the second assertion and the third assertion follow from Corollary 7.2. Indeed, for

V (y)= −
1
2 n +Ny acting on Ay ⊗ S+

y , the bundle F with fiber Fy = ker(□y −m) is isomorphic to Am as
a complex vector bundle. □

4. Spectral estimates

Let (1k : C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A)) be a differential operator family satisfying (B). We assume
that the curvature ω/ i is nondegenerate. We assume as well that 1k is formally self-adjoint, where the
scalar product of C∞(M, Lk

⊗ A) is defined from the measure µ= ωn/n! .
For any y ∈ M, by the Darboux lemma, there exists a coordinate system (U, xi ) of M centered at

y such that ω is constant in these coordinates, that is, ω =
1
2

∑
ωi j dxi ∧ dx j , with ωi j = ω(∂xi , ∂x j )

constant functions. We identify U with a neighborhood of the origin of Ty M through these coordinates.
We assume that this neighborhood is convex.

We introduce a unitary section Fy of L → U such that, for any ξ ∈ U, Fy is flat on the segment [0, ξ ].
Then

∇Fy =
1
2i

∑
i, j

ωi, j xi dx j ⊗ Fy . (22)
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Indeed ∇Fy = (α/ i)⊗ Fy with α satisfying dα = ω and
∫
[0,ξ ] α = 0 for any ξ ∈ U. We easily see that

these conditions determine a unique α and that they are satisfied by α =
1
2

∑
ωi j xi dx j .

So trivializing L on U by using this frame Fy , L|U ≃ U × C and ∇ becomes the linear connection
defined in (10). Moreover trivializing Lk on U with Fk

y , the covariant derivative ∇j,k of Lk with respect
to ∂x j is

∇j,k = ∂x j +
ik
2

∑
i

ωi, j xi . (23)

Now we introduce the Laplacian1y,k of C∞(Ty M, Ay) associated to this covariant derivative, the constant
metric gy of Ty M and the constant potential kV (y), that is,

1y,k = −
1
2

∑
gi j

y ∇i,k∇j,k + kV (y). (24)

For k = 1, we recover the Laplacian 1y defined in (17).
We introduce a trivialization of the auxiliary vector bundle A|U = U × Ay so that C∞(U, Lk

⊗ A)≃

C∞(U, Ay). Then assumption (B) tells us that

1k −1y,k =

∑
i, j

ai j∇i,k∇j,k +

∑
i

ai∇i,k + kc + b, (25)

where ai j = −
1
2 gi j

+
1
2 gi j

y and c = V − V (y) are both equal to zero at the origin y. The identity (25) will
be used later to compare the spectra of 1k and 1y,k ; see the proofs of Proposition 4.1 and Lemma 4.4.

Before that, let us compute the spectrum of 1y,k . The Laplacian k−11y,k is unitarily conjugated to 1y .
Indeed, we introduce the rescaling map

Sk : C∞(Ty M, Ay)→ C∞(Ty M, Ay), Sk( f )(x)= kn/2 f (k1/2x). (26)

Then, from the formula (23), we easily check that

k1/2Sk∇i = ∇i,k Sk, k−11y,k Sk = Sk1y . (27)

Consequently, the spectrum of k−11y,k is 6y for any k.

4A. Peaked sections. As above, we identify a neighborhood U of y with a neighborhood of the origin in
Ty M through Darboux coordinates, we introduce the frame Fy of L on U with covariant derivative given
by (22), and we work with a trivialization A|U ≃ U × Ay . Choose a function ψ ∈ C∞

0 (U,R) such that
ψ = 1 on a neighborhood of y. Then to any polynomial f ∈ P(Ty M)⊗ Ay , we associate the smooth
section 8k( f ) of Lk

⊗ A defined on U by

8k( f )(ξ)= kn/2 Fk
y (ξ)e

−k|ξ |2y/4 f (k1/2ξ)ψ(ξ) (28)

and equal to 0 on M \ U.

Proposition 4.1. We have

(1) ∥8k( f )∥2
=

∫
Ty M e−|ξ |2y/2| f (ξ)|2 dµy(ξ)+O(e−C/k), with µy = ωn

y/n! the Liouville form of Ty M,

(2) k−11k8k( f )=8k(g)+O(k−1/2), with g = □̃y( f ).
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The peaked sections of [Charles 2024] are defined without using the Darboux coordinates, and for this
reason the O(e−k/C) in the norm estimate is replaced by a O(k−1/2). Actually, the Darboux coordinates
are not essential in this subsection, they only simplify slightly some estimates, whereas in Sections 4B
and 4C it will be necessary to use them.

Proof. Since 8k( f ) is supported in U, we can view it as a function of Ty M, so

8k( f )= ψSk(s f ),

where s(ξ)= e−|ξ |2y/4 as in Section 2B and Sk is the rescaling map (26). Since we work with Darboux
coordinates, the volume form µ of M coincide on U with µy . So

∥8k( f )∥2
=

∫
Ty M

|Sk(s f )|2ψ2 dµy .

We will need several times to estimate an integral having the form

Ik(ψ̃)=

∫
Ty M

|Sk(s f )|2ψ̃ dµy = kn
∫

Ty M
e−k/2|ξ |2y | f (k1/2ξ)|2 ψ̃(ξ) dµy(ξ),

with ψ̃ ∈ C∞(Ty M) satisfying ψ̃(ξ)=O(|ξ |m) on Ty M for m ⩾ 0. We claim that Ik(ψ̃)=O(k−m/2) and
in the case where ψ̃ = 0 on a neighborhood of the origin, Ik(ψ̃)= O(e−k/C) for some C > 0.

The first claim follows from the change of variable
√

kξ = ξ ′. For the second one, we use that
e−k|ξ |2y/2ψ̃(ξ)= O(e−k/C

|ξ |me−k|ξ |2y/4) and do the same change of variable.
The first assertion of the proposition is an immediate consequence of the second claim with ψ̃ = 1−ψ2.

For the second assertion, we start from (25) and using that [∇i,k, ψ] = ∂xiψ repetitively, we obtain

1kψ = ψ
(
1y,k + ai j∇

k
i ∇

k
j + b̃i∇i + kc + c̃), (29)

where ai j , c are the same functions as in (25), and b̃i and c̃ do not depend on k.
Now, by (29), 1k(ψSk(s f )) is a sum of five terms, the first one being

ψ1y,k Sk( f s)= kψSk(1y(s f ))= k8k(g), with sg =1y(s f ),

by (27). We will prove that the four other terms are in O(k1/2), which will conclude the proof.
Each time, we will apply the preliminary integral estimate with the convenient function ψ̃ . First since

|ψ c̃| is bounded, ψ c̃ Sk(s f ) = O(1). Second, c vanishes at the origin, |ψ(ξ)c(ξ)|2 = O(|ξ |2) so that
ψc Sk(s f )= O(k−1/2). Third, by (27),

∇i,k Sk(s f )= k1/2Sk(∇i (s f ))= k1/2Sk(s fi ),

with a new polynomial fi , and since ψ b̃i is bounded, we get

ψ b̃i ∇i,k Sk(s f )= O(k1/2).

Similarly, ∇i,k∇j,k Sk(s f )= kSk(s fi j ) with new polynomials fi j , and ai j vanishing at the origin, so we
obtain

ψai j∇i,k∇j,k Sk(s f )= O(k1/2)

as was to be proved. □
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Theorem 4.2. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Then, if
λ ∈6y , there exists C(y, λ) such that

dist(λ, sp(k−11k))⩽ C(y, λ)k−1/2 for all k.

Furthermore, for any 3> 0, C(y, λ) stays bounded when (y, λ) runs over M × ]−∞,3].

This proves the first assertion of Theorem 1.2.

Proof. By Section 2B, any eigenvalue λ of □̃y has an eigenfunction f ∈ P(Ty M)⊗ Ay . Normalizing
conveniently f , we get by Proposition 4.1,

∥8k( f )∥ = 1 +O(e−k/C), k−11k8k( f )= λ8k( f )+O, (k−1/2),

which proves that dist(λ, sp(k−11k))= O(k−1/2). To get a uniform O when λ⩽3, remember that by
the first assertion of Lemma 2.4, we can choose f ∈ D⩽p(Ty M)⊗ Ay , where p is sufficiently large and
independent of y ∈ M. Furthermore, for any p ∈ N, the O’s in Proposition 4.1 are uniform with respect
to f describing the compact set { f ∈D⩽p(T M)⊗ A : ∥ f ∥= 1}. Here we can use any metric of D⩽p(T M),
the natural one in our situation being ∥ f ∥

2
=

∫
Ty M e−|ξ |2y/2| f (ξ)|2 dµy(ξ) for f ∈ D(Ty M). □

4B. A local approximate resolvent. Recall that k−11y,k = Sk1y S∗

k so that k−11y,k has the same spectrum
6y as 1y . For any λ ∈ C \6y , we denote by

Ry,k(λ) := (λ− k−11y,k)
−1

: L2(Ty M)⊗ Ay → L2(Ty M)⊗ Ay

the resolvent. We will need the following basic elliptic estimates.

Proposition 4.3. For any λ ∈ C \6y , the resolvent Ry,k(λ) sends C∞

0 to C∞ and satisfies

∥k−1/2
∇i,k Ry,k(λ)∥ ⩽ C3d−1, ∥k−1

∇i,k∇j,k Ry,k(λ)∥ ⩽ C3d−1 (30)

if |λ| ⩽3 with d = dist(λ,6y) and the constant C3 independent of k.

Here and in the sequel, the norm ∥ · ∥ is the operator norm associated to the L2-norm.

Proof. The first assertion follows from elliptic regularity: for any distribution ψ of Ty M, if (λ−k−11y,k)ψ

is smooth then ψ is smooth.
Since Ry,k(λ)= Sk Ry,1(λ)S∗

k and k−1/2
∇i,k = Sk∇i S∗

k , it suffices to prove the inequalities (30) for k = 1.
We can assume that the frame (∂/∂xi ) is g-orthonormal at y, so gi j

y = δi j , so 1y = −
1
2

∑
i ∇

2
i + V (y).

Since ⟨1yu, u⟩ =
1
2

∑
∥∇i u∥

2
+ ⟨V (y)u, u⟩, we have by the Cauchy–Schwarz inequality

∥∇i u∥
2 ⩽ C∥u∥(∥1yu∥ +∥u∥). (31)

Since [∇i ,∇j ] = ωi, j/ i , we have

∥∇i∇j u∥
2
= ⟨∇j∇

2
i ∇j u, u⟩ = ⟨∇

2
i ∇

2
j u, u⟩ +

2
i
ωj i ⟨∇i∇j u, u⟩

= ⟨∇
2
j u,∇2

i u⟩ +
2
i
ωi j ⟨∇j u,∇i u⟩. (32)
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Moreover,
1
4

∑
i, j

⟨∇
2
i u,∇2

j u⟩ = ∥1yu − V (y)u∥
2 ⩽ C(∥1yu∥ +∥u∥)2. (33)

Estimating the first term of (32) with (33) and the second one with (31), it comes that

∥∇i∇j u∥
2 ⩽ C(∥1yu∥ +∥u∥)2. (34)

To conclude the proof, we use that the norm of Ry(λ)= (λ−1y)
−1 is d−1 and1y Ry(λ)= λRy(λ)− id

so when |λ| ⩽3,

∥1y Ry(λ)∥ ⩽3d−1
+ 1 ⩽ C3d−1

because d stays bounded when λ is. Hence it follows from (31) and (34) that

∥∇i Ry(λ)v∥ ⩽ C3d−1
∥v∥, ∥∇j∇i Ry(λ)v∥ ⩽ C3d−1

∥v∥,

which corresponds to (30) for k = 1. □

Recall that we identified a neighborhood of y ∈ M with a neighborhood U of the origin of Ty M through
Darboux coordinates. We introduce a smooth function χ : Ty M → [0, 1] such that χ(ξ)= 1 when |ξ |⩽ 1
and χ(ξ)= 0 when |ξ | ⩾ 2. Define χr (ξ) := χ(ξ/r). In the sequel we assume that r is sufficiently small
so that χr is supported in U. Then for any differential operator P acting on C∞(U ), χr P and Pχr are dif-
ferential operators with coefficients supported in U, so we can view them as operators acting on C∞(Ty M).

In the following lemma, we prove that the resolvent Ry,k(λ) of k−11y,k is a local right-inverse of
(λ− k−11k) up to some error.

Lemma 4.4. For any λ ∈ C \6y such that |λ| ⩽3, we have with d = d(λ,6y)

∥(λ− k−11k)χr Ry,k(λ)−χr∥ ⩽ C3F(r, k−1, d), (35)

where F(r, h̄, d)= (r + h̄1/2
+ h̄r−2

+ h̄1/2r−1)d−1.

Proof. We compute

(λ− k−11k)χr Ry,k(λ)−χr = −k−1
[1k, χr ]Ry,k(λ)+χr (λ− k−11k)Ry,k(λ)−χr

= −k−1
[1k, χr ]Ry,k(λ)+χr k−1(1y,k −1k)Ry,k(λ). (36)

To estimate the first term, we start from assumption (B), which gives us

[1k, χr ] = −
1
2 gi j

[∇i,k∇j,k, χr ] + aj [∇j,k, χr ]

= −
1
2 gi j((∂j∂iχr )+ (∂iχr )∇j,k + (∂jχr )∇i,k

)
+ aj (∂jχr ).

Applying the estimates (30), we deduce that

∥k−1
[1k, χr ]Ry,k(λ)∥ ⩽ C(k−1r−2d−1

+ k−1/2r−1d−1
+ k−1r−1d−1)

⩽ C(k−1r−2
+ k−1/2r−1)d−1.
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To estimate the second term of (36), we use the expression (25) and the fact that the ai j and c vanish at
the origin so that |χr ai j | ⩽ Cr and |χr c| ⩽ Cr . By (30) it follows that

∥χr k−1(1k −1y,k)Ry,k(λ)∥ ⩽ C(r + k−1/2
+ k−1)d−1 ⩽ C(r + k−1/2)d−1,

which concludes the proof. □

4C. Globalization. The local approximation of the resolvent at y in the previous section was based on a
choice of Darboux coordinates. To globalize this, we will first choose such coordinate charts depending
smoothly on y. All the constructions to come depend on an auxiliary Riemannian metric. For any y ∈ M
and r > 0 let By(r) be the open ball {ξ ∈ Ty M : ∥ξ∥< r}.

Lemma 4.5. There exist r0 > 0 and a smooth family of embeddings (9y : By(r0)→ M, y ∈ M) such that,
for any y ∈ M, 9y(0)= y, T09y = idTy M and 9∗

yω is constant on By(r0).

The family (9y, y ∈ M) is smooth in the sense that the map 9(ξ) = ψy(ξ), ξ ∈ By(r0), from the
open set

⋃
y∈M By(r0) of T M to M, is smooth.

Lemma 4.6. There exist N ∈ N, r1 > 0 and for any 0 < r < r1 a finite subset I (r) of M such that the
open sets 9y(By(r)), y ∈ I (r), form a covering of M with multiplicity bounded by N.

The multiplicity of a covering
⋃

i∈I Ui ⊃ M is the maximal number of Ui with nonempty intersection.
The proofs of Lemmas 4.5 and 4.6 are standard and postponed to Section 8.

Recall that 6 =
⋃
6y . So, for any λ ∈ C\6, the resolvents Ry,k(λ) : C∞

0 (Ty M, Ay)→ C∞(Ty M, Ay)

are well-defined. As previously, we introduce a section Fy of L → 9y(By(r)) satisfying (22) and a
trivialization of A on 9y(By(r)), from which we identify C∞(9y(By(r)), Lk

⊗ A)≃ C∞(By(r), Ay). Let

R̃y,k(λ) : C∞

0 (9y(By(r)), Lk
⊗ A)→ C∞(9y(By(r)), Lk

⊗ A)

be the map corresponding to Ry,k(λ) under these identifications.
For r sufficiently small, define the function χy,r supported in 9y(By(r0)) and such that χy,r (9y(ξ))=

χ(ξ/r). We introduce a partition of unity (ψr,y , y ∈ I (r)), subordinated to the cover (9y(By(r)), y ∈ I (r)).
Then define the operator Rr

k(λ) acting on C∞(M, Lk
⊗ A) by

Rr
k(λ) :=

∑
y∈I (r)

χy,r R̃y,k(λ)ψr,y . (37)

Theorem 4.7. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Then,
for any |λ| ⩽3,

∥(λ− k−11k)Rr
k(λ)− 1∥ ⩽ C3F(r, k−1, d), (38)

with d = dist(λ,6) and F the same function as in Lemma 4.4.

Proof. Let (Ui ) be a covering of M with multiplicity N = supx |{i/x ∈ Ui }|. Then:

(1) If vi is a family of sections such that supp vi ⊂ Ui for any i , then
∥∥∑

vi
∥∥2

⩽ N
∑

∥vi∥
2.

(2) For any section u,
∑

∥u∥
2
Ui

⩽ N∥u∥
2.
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To prove the first claim,
∥∥∑

vi
∥∥2

=
∑

i, j Mi j ⟨vi , vj ⟩⩽
∑

Mi j∥vi∥∥vj∥, where Mi, j =1 when Ui ∩Uj ̸=∅
and 0 otherwise. By Schur test applied to the matrix M, ⟨Ma, a⟩ ⩽ N∥a∥

2 and the result follows. To
prove the second claim, set m(x)=

∑
1Ui (x), which is bounded by N by assumption. Then

∑
∥u∥

2
Ui

=∫
M |u(x)|2m(x) dµ(x)⩽ N∥u∥

2.
We now apply this to the covering 9y(By(r)), y ∈ I (r). By Lemma 4.4, for any u ∈ C∞(M, Lk), we

have ∥Sr
y,kψy,r u∥ ⩽ C F∥ψy,r u∥, where

Sr
y,k = (λ− k−11k)χy,r R̃y,k(λ)−χy,r ,

F = F(r, k−1, d) and the constant C can be chosen independently of y because everything depends
continuously on y and M is compact. Since Rr

k(λ)− 1 =
∑

y∈I (r) Sy,kψy,r , we have

∥Rr
k(λ)u − u∥

2 ⩽ N
∑

y∈I (r)

∥Sr
y,kψy,r u∥

2 ⩽ N (C F)2
∑

y∈I (r)

∥ψy,r u∥
2

⩽ N (C F)2
∑

y∈I (r)

∥u∥
2
9y(By(r)) ⩽ (NC F)2∥u∥

2,

which proves (38). □

Recall basic facts pertaining to the spectral theory of 1k ; see for instance [Shubin 1987, Section 8.3].
As an elliptic formally self-adjoint differential operator of order 2 on a compact manifold, 1k is a
self-adjoint unbounded operator with domain the Sobolev space H 2(M, Lk

⊗ A). Its spectrum sp(1k) is
a discrete subset of R bounded from below and consists only of eigenvalues with finite multiplicities.

Corollary 4.8. For any 3> 0, there exists C > 0 such that for any k we have

sp(k−11k)∩ ]−∞,3] ⊂6+ Ck−1/4
[−1, 1]. (39)

So any λ ∈ C satisfying |λ|⩽3 and d(λ,6)⩾ Ck−1/4 does not belong to sp(k−11k). Moreover, for any
such λ,

∥Rrk
k (λ)− (λ− k−11k)

−1
∥ ⩽ Cd(λ,6)−2k−1/4, (40)

with rk = k−1/4.

Equation (39) shows the second assertion of Theorem 1.2 with k−1/4 instead of k−1/2. The improvement
with k−1/2 will be proved in Corollary 7.2.

Proof. First, since ∥R̃y,k(λ)∥ ⩽ d(λ,6y)
−1 ⩽ d−1 with d = d(λ,6), we deduce from the first part of the

proof of Theorem 4.7 that
∥Rr

k(λ)∥ ⩽ Cd−1, (41)

where C does not depend on r , λ and k. From now on assume that r = k−1/4. So F(r, k−1, d) ⩽
C ′k−1/4d−1. By Theorem 4.7, as soon as C3C ′k−1/4d−1 ⩽ 1

2 , we have (λ− k−11k)Rr
k(λ) is invertible,

so R̃k := Rr
k(λ)((λ− k−11k)Rr

k(λ))
−1 is a bounded operator of L2 satisfying

(λ− k−11k)R̃k = id (42)

and by (41),
∥R̃k − Rr

k(λ)∥ ⩽ 2∥Rr
k(λ)∥∥(λ− k−11k)Rr

k(λ)− 1∥ ⩽ C ′′d−2k−1/4.
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We claim that R̃k is actually continuous L2
→ H 2. Indeed, by classical result on elliptic operators [Shubin

1987, Theorem 5.1], there exists a pseudodifferential operator Pk of order −2 which is a parametrix of
λ− k−11k ; that is, Pk(λ− k−11k)= id + Sk , where Sk is a smoothing operator. Then multiplying by R̃k ,
we obtain Pk = R̃k + Sk R̃k , so R̃k = Pk − Sk R̃k . Now, since Pk is of order −2 and Sk is smoothing, they
are both continuous L2

→ H 2, so the same holds for R̃k .
To finish the proof, we assume that λ is real. Then k−11k − λ is a Fredholm operator from H 2 to L2

with index 0, because it is formally self-adjoint; see [Shubin 1987, Theorem 8.1]. By (42), λ− k−11k

sends H 2 onto L2, so its kernel is trivial, and thus λ is not an eigenvalue. □

5. The operator class L(A)

5A. Symbol spaces. Let E be an n-dimensional Hermitian space. As we did in Section 2B for E = Ty M,
consider the spaces P(E), D(E) consisting respectively of polynomial maps and antiholomorphic polyno-
mial maps from E to C. We will introduce two subalgebras S(E) and S̃(E) of End(D(E)) and End(P(E))
respectively. These algebras will be used later to define the symbols of the operators in the class L.

First we equip P(E) with the scalar product

⟨ f, g⟩ = (2π)−n
∫

E
e−|z|2 f (z) g(z) dµE(z), (43)

where µE is the measure
∏

dzi dz̄i if (zi ) are linear complex coordinates associated to an orthonormal
basis of E. The Gaussian weight e−|z|2 appeared already in Section 2B through the pointwise norm of the
frame s = exp(−|z|2/2).

Choose linear complex coordinates (zi ) as above. Then the family |α⟩ := (α!)−1/2 z̄α, α ∈ Nn, is an
orthonormal basis of D(E). For any α, β ∈ Nn, we introduce the endomorphism ραβ := |α⟩⟨β| of D(E).
Here we use the physicist notation, so ραβ(z̄γ )= 0 when γ ̸= β and ραβ(|β⟩)= |α⟩.

Consider the creation and annihilation operators ai , a
†
i defined in (12) as endomorphisms of P(E).

Note that with the scalar product (43), a†
i is the formal adjoint of ai . We introduce the endomorphism ρ̃αβ

of P(E)
ρ̃αβ := (α!β!)−1/2(a†)αρ̃00a

β,

where aβ = a
β(1)
1 · · · a

β(n)
n , (a†)α = (a†

1)
α(1)

· · · (a†
n)
α(n) and ρ̃00 is the orthogonal projector onto the

subspace L0 of P(E) consisting of holomorphic polynomials.
Observe that the restriction of ρ̃αβ to D(E) is ραβ . Furthermore, in the decomposition into orthogonal

subspaces P(E)=
⊕

α Lα considered in (14), ρ̃αβ is zero on Lγ with γ ̸=β and restricts to an isomorphism
from Lβ to Lα. Also ρ̃αα is the orthogonal projector onto Lα.

The algebras S(E) and S̃(E) are defined as the subalgebras of End(D(E)) and End(P(E)) with basis
the families (ρα,β, α, β ∈ Nn) and (ρ̃αβ, α, β ∈ Nn) respectively. As the notation suggests, these algebras
do not depend on the coordinate choice. This follows from the following Schwartz kernel description.

Let Op : P(E)→ End(P(E)) be the linear map defined by

Op(q)( f )(u)= (2π)−n
∫

E
eu·v̄−|v|2q(u − v) f (v) dµE(v), (44)
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where u · v̄ is the scalar product of u and v. By [Charles 2024, Lemma 4.3], ρ̃α,β = Op(pα,β), where pαβ
is the polynomial

pα,β := (α!β!)−1/2(z̄ − ∂z)
α(−z)β, α, β ∈ Nn. (45)

Since these polynomials form a basis of P(E), Op is an isomorphism from P(E) to S̃(E). Furthermore,
the map sending q ∈ P(E) to Op(q)|D(E) is an isomorphism from P(E) to S(E).

In the sequel we will tensor the space P(E) with an auxiliary vector space A and extend the map Op
from P(E)⊗ End A to S̃(E)⊗ End A.

5B. Eigenprojectors of Landau Hamiltonian. Choose now E = Ty M and recall that, for a convenient
choice of complex coordinate (zi ), the associated Landau Hamiltonian □̃y is given by

□̃y = e|ξ |2y/41ye−|ξ |2y/4 =

∑
Bi (y)

(
a†

i ai +
1
2

)
+ V (y) (46)

acting on P(Ty M)⊗ Ay . Its spectrum 6y and its eigenspaces were described in Section 2C in terms of
the Lα and an eigenbasis (ζℓ) of V (y), V (y)ζℓ = Vℓ(y)ζℓ. Consequently if I is any bounded subset of R,
the spectral projector of □̃y for the eigenvalues in I is Op(σ I (y)), where

σ I (y)=

∑
(α,ℓ)∈Iy

pαα ⊗ |ζℓ⟩⟨ζℓ|,

and Iy =
{
(α, ℓ) ∈ Nn

× {1, . . . , r}/
∑

i Bi (y)
(
α(i)+ 1

2

)
+ Vℓ(y) ∈ I

}
.

The map y 7→ σ I (y) is a section of the infinite-rank vector bundle P(T M), not smooth in general, not
even continuous. In the sequel we will assume that

I is a compact interval with endpoints not belonging to 6. (C)

Let P⩽p(E) be the subspace of P(E) of polynomials with degrees in z and in z̄ smaller than p. Let
P⩽p(T M) be the vector bundle over M with fiber at y equal to P⩽p(Ty M).

Lemma 5.1. If I satisfies (C) and p is sufficiently large, then y 7→ σ I (y) is a smooth section of
P⩽p(T M)⊗ End A.

Proof. Recall from Section 2E that □y is the restriction of □̃y to D(Ty M). By Lemma 2.4, the spaces

Fy := Im 1I (□y)= Span(z̄α ⊗ ζℓ, (α, ℓ) ∈ Iy) (47)

are the fibers of a subbundle of D⩽p(T M) ⊗ A if p is sufficiently large. So the projector onto Fy

depends smoothly on y; in other words, the map y → Op(σ I (y))|D(Ty M)⊗Ay is a smooth section of
End(D⩽p(T M)⊗ A).

Now we have an isomorphism

P⩽p(E)
Opp

−−→ End(D⩽p(E)), q 7→ the restriction of Op(q) to D⩽p(E).

Indeed, on one hand (pαβ , |α|, |β|⩽ p) is a basis of P⩽p(C
n) and on the other hand (ραβ , |α|, |β|⩽ p) is a

basis of EndD⩽p(C
n). This gives a vector bundle isomorphism P⩽p(T M)⊗End A≃End(D⩽p(T M)⊗A),

and concludes the proof. □
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Let S(T M) be the infinite-rank vector bundle over M with fibers S(Ty M) defined as in Section 5A. A
section U of S(T M)⊗ End A is smooth if it has the form

U (y)= Op(q(y))|D(Ty M)⊗Ay , (48)

where y → q(y) is a smooth section of P⩽p(T M)⊗End A for some p. By Lemma 5.1, for any interval I
satisfying (C), we have a symbol π I

∈ C∞(M,S(T M)⊗ End A) defined at y by

π I (y)= 1I (□y)= Op(σ I (y))|D(Ty M)⊗Ay , (49)

which is the projector of D(Ty M)⊗ Ay onto the subspace Fy defined in Lemma 2.4.

5C. Operators. The operator class L(A) was introduced in [Charles 2024]. It depends on (M, ω, j), the
prequantum bundle L , that is, L with its metric and connection, and the auxiliary Hermitian bundle A.

L(A) consists of families of operators (Pk : C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A), k ∈ N) having smooth
Schwartz kernels satisfying the following conditions. First, Pk(x, y) is in O(k−∞) outside the diagonal.
More precisely, for any compact subset K of M2

\ diag M and for any N, there exists C > 0 such that

|Pk(x, y)| ⩽ Ck−N for all k ∈ N, for all (x, y) ∈ K .

Second, for any open set U of M identified through a diffeomorphism with a convex open set of R2n and
any unitary trivialization A|U ≃ U × Cr, we have on U 2 for any positive integers N, k

Pk(x + ξ, x)=

(
k

2π

)n

Fk(x + ξ, x)e−k|ξ |2x/4
N∑
ℓ=0

k−ℓaℓ(x, k1/2ξ)+ rN ,k(x + ξ, x), (50)

where the section F : U 2
→ L ⊠ L is defined as in Section 1D, the coefficients aℓ(x, ξ) ∈ Cr

⊗Cr depend
smoothly on x and polynomialy on ξ , with degree bounded independently of x , and the remainder rN ,k is
in O(kn−(N+1)/2) uniformly on any compact subset of U 2.

The subspace L+(A) of L(A) consists of the operator families (Pk) where the coefficients aℓ in the
local expansions (50) satisfy aℓ(x,−ξ)= (−1)ℓaℓ(x, ξ). The symbol map is the application σ0 : L →

C∞(M,S(T M)⊗ End A) given locally by

σ0(P)(x)= Op(a0(x, · ))|D(Tx M) ∈ S(Tx M)⊗ End Ax , (51)

where we view a0(x, ξ) in Cr
⊗ Cr

≃ End Cr
≃ End Ax .

Recall that for any compact interval I of R, we denote by 5I
k the corresponding spectral projector

of k−11k . The central result of this paper is the following theorem.

Theorem 5.2. Let (5I
k ) be the spectral projector of a formally self-adjoint operator family (1k) of the

form (B) with I satisfying (C). Then (5I
k ) belongs to L+(A) and has symbol π I.

The proof is given in Section 6. We will actually prove a stronger result where we describe the Schwartz
kernel derivatives as well.
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5D. The class L∞(A). We need first a few definitions. Consider a real number N. We say that a
sequence ( fk) of C∞(U ) with U an open set of M is in O∞(k−N ) if, for any m ∈ N, for any vector fields
X1, . . . , Xm of U, for any compact subset K of U, there exists C > 0 such that

|X1 · · · Xm fk(x)| ⩽ Ck−N+m for all x ∈ K , k ∈ N.

Let s = (sk ∈ C∞(M, Lk
⊗ A), k ∈ N). We say that s ∈ O∞(k−N ) if, for any unitary frames u and

(vj )
r
j=1 of L and A defined over the same open set U of M, the local representative sequences ( fk, j )

such that sk =
∑

f j,kuk
⊗ vj , are in O∞(k−N ). We say that s belongs to O∞(k∞) (resp. O∞(k−∞)) if

s ∈ O∞(k−N ) for some N (resp. for any N ). So

O∞(k−∞)⊂ O∞(k−N )⊂ O∞(k−N ′

)⊂ O∞(k∞) if N ⩾ N ′.

Replacing M, L and A by M2, L ⊠ L and A⊠ A, we can apply these definitions to Schwartz kernels of
operator families (Pk : C∞(M, Lk

⊗ A)→ C∞(M, Lk
⊗ A), k ∈ N).

By definition, L∞(A) and L∞
∞
(A) are the subspaces of L(A) consisting of operator families with

a Schwartz kernel in O∞(k∞) and O∞(k−∞) respectively. By [Charles 2024, Proposition 6.3], the
difference between L∞(A) and L(A) is rather small because for any P ∈ L(A), there exists P ′

∈ L∞(A)
such that the Schwartz kernel of P − P ′ is in O(k−∞), that is, Pk(x, x ′)= P ′

k(x, x ′)+O(k−N ) for any N,
with O uniform on M2. Furthermore P ′ is unique modulo L∞

∞
(A).

By [Charles 2024, Proposition 6.3], for any (Pk) ∈ L∞(A) the asymptotic expansion (50) holds with a
remainder rN ,k in O∞(kn−(N+1)/2).

Theorem 5.3. Under the same assumptions as in Theorem 5.2, (5I
k ) belongs to L∞(A).

The proof will be given in Section 6. To end this section, let us state the following corollary of
Theorems 5.2, 5.3 and Lemma 6.3.

Corollary 5.4. Under the same assumptions as in Theorem 5.2, (k−11k5
I
k ) belongs to L+(A)∩L∞(A)

and has symbol σ0(k−11k5k)= □ ◦π I.

So the first part of Theorem 1.4 follows from Theorem 5.2 and Corollary 5.4.

6. Proof of Theorems 5.2 and 5.3

The first step, Lemma 6.1, is to show that any operator in L(A) with symbol π I is an approximation of5I
k

up to O(k−1/4). This will follow from the resolvent estimate given in Corollary 4.8 and the Cauchy–Riesz
formula. The second step, Lemma 6.2, is the construction of a formal projector (Pk) ∈ L+(A) with
symbol π I which almost commutes with 1k . The third step, Section 6C, is to show that this formal
projector (Pk) is equal to 5I

k up to O(k−∞) and even up to O∞(k−∞) when (Pk) ∈ L∞(A).

6A. A first approximation.

Lemma 6.1. Under the same assumptions as in Theorem 5.2, 5I
k = Pk +O(k−1/4) for any (Pk) in L(A)

with symbol π I.
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Proof. Step 1: The proof starts from the resolvent approximation given in Corollary 4.8. Choose a loop γ
of C \6 which encircles I. When k is sufficiently large, by Corollary 4.8, γ does not meet the spectrum
of k−11k . So by Riesz projection formula and (40),

5I
k =

1
2iπ

∫
γ

(λ− k−11k)
−1 dλ=

1
2iπ

∫
γ

Rrk
k (λ) dλ+O(k−1/4), (52)

with rk = k−1/4. Since Rr
k(λ) :=

∑
y∈I (r) χy,r R̃y,k(λ)ψr,y , we get

5I
k =

∑
y∈I (rk)

χy,rk P̃ I
y,kψrk ,y +O(k−1/4), (53)

where for any y

P̃ I
y,k =

1
2iπ

∫
γ

R̃y,k(λ) dλ.

Recall that R̃y,k(λ) is the restriction of the resolvent (λ− k−11y,k)
−1 to C∞

0 (By(r),Cr ) identified with
C∞

0 (9y(By(r)), Lk
⊗ A). So by Riesz projection formula again, P̃ I

y,k is the restriction of the spectral
projection

P I
y,k =

1
2iπ

∫
γ

(λ− k−11y,k)
−1 dλ.

Step 2: Let d : M2
→ R⩾0 be a distance locally equivalent to the Euclidean distance in each chart

and set mk(x ′, x) := kn exp(−kcd(x ′, x)2) with c > 0. Then by Schur test, any operator family (Qk :

C∞(M, Lk
⊗ A)→ C∞(M, Lk

⊗ A), k ∈ N) having a continuous Schwartz kernel satisfying |Qk(x ′, x)| =
O(mk(x ′, x)) uniformly with respect to x, x ′ and k, has a bounded operator norm; see [Charles 2024,
proof of Lemma 5.1] for more details. Given this and (53), it suffices now to prove that

Pk(x ′, x)=

∑
y∈I (r)

χy,rk (x
′)P̃ I

y,k(x
′, x)ψrk ,y(x)+ (mk(x ′, x)+ 1)O(k−1/4). (54)

In the sequel, we will allow the constant c entering in the definition of mk to decrease from one line to an-
other. With this convention, for any p>0, we can replace any O(d p(x ′, x)mk(x ′, x)) by O(k p/2mk(x ′, x)).

Step 3: Equation (54) follows from

Pk(x ′, x)= P̃ I
y,k(x

′, x)+ (mk(x ′, x)+ 1)O(k−1/4) (55)

for all (x ′, x) ∈9y(By(2r))×9y(By(2r)), with O uniform with respect to all the variables, y included.
Indeed, since suppψr,y ⊂9y(By(r))⊂ {χy,r = 1}, we have

χy,r (x ′)ψr,y(x)= ψr,y(x)+O(d(x ′, x)r−1) for all x, x ′
∈9y(By(2r)).

Recall that by [Charles 2024, Lemma 5.1], Pk(x ′, x)= O(mk(x ′, x))+O(k−N ) for any N. Applying this
to N =

1
4 and using that mkd = O(k−1/2mk) as explained above, we obtain

χy,r (x ′)Pk(x ′, x)ψr,y(x)= Pk(x ′, x)ψr,y(x)+O(k−1/2mk(x ′, x)r−1)+O(k−1/4).
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Assume now that (55) holds. Multiplying (55) by χy,r (x ′)ψr,y(x) and using the last equality, we obtain

Pk(x ′, x)ψr,y(x)= χy,r (x ′)P̃ I
y,k(x

′, x)ψr,y(x)+O(k−1/2mk(x ′, x)r−1)+O(k−1/4),

which holds for all x ′, x ∈ M. Recall that the covering
⋃
9y(By(r)), y ∈ I (r), has a multiplicity bounded

independently on r . So we can sum these estimates without multiplying the remainder by the number
of summands and we obtain

Pk(x ′, x)=

∑
y∈I (r)

χy,r (x ′)P̃ I
y,k(x

′, x)ψr,y(x)+O(k−1/2mk(x ′, x)r−1)+O(k−1/4).

This proves (54) because rk = k−1/4.

Step 4: We give a formula for the Schwartz kernel of the spectral projector P I
y,k . First, by the rescaling

(26), (27), we have

P I
y,k(ξ, η)= kn P I

y (k
1/2ξ, k1/2η), (56)

with P I
y := P I

y,1. Second, the Schwartz kernel of P I
y is given by

P I
y (η+ ξ, η)= (2π)−ne(i/2)ωy(η,ξ)−|ξ |2y/4π I (y, ξ). (57)

Indeed, by (46), P I
y = e−|ξ |y/4 Op(σ I (y))e|ξ |y/4 and it follows from (44) that

P I
y (ξ, η)= (2π)−ne−|u|

2/2+u·v̄−|v|2/2σ I (y, u − v)

= (2π)−ne(u·v̄−ū·v)/2−|u−v|2/2σ I (y, u − v), (58)

with (ui ), (vi ) the complex coordinates of ξ and η defined as in Section 2B, in particular |ξ |2y =
1
2 |u|

2

and |η|2y =
1
2 |v|2. Since ωy = i

∑
i dui ∧ dūi , (57) follows from (58). Inserting (57) into (56), we get

P I
y,k(η+ ξ, η)=

(
k

2π

)n

Fk
y (η+ ξ, η)e−k|ξ |2y/4σ I (y, k1/2ξ), (59)

with Fy(η + ξ, η) = e(i/2)ωy(η,ξ). Fy has the same characterization as the section F entering in the
expansion (50), that is, Fy(η, η)= 1 and R ∋ t → Fy(η+ tξ, η) is flat for any ξ , η.

Step 5: The Schwartz kernel of Pk has the local expansion (50). By [Charles 2024, Lemma 5.1], the
remainder rN ,k is in O(k−N/2mk)+O(k−N ′

) for any N ′. So in particular,

Pk(x + ξ, x)=

(
k

2π

)n

Fk(x + ξ, x)e−k|ξ |2x/4σ I (x, k1/2ξ)+ (mk + 1)O(k−1/4). (60)

Step 6: We now prove (55) by comparing (59) and (60). So let x, x ′
∈9y(By(2r)) and ξ = x ′

− x . We
will use several times that

d(x, y)⩽ Cr, C−1d ⩽ |ξ | ⩽ Cd, where d := d(x ′, x).
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Let8y :9y(By(r0))→ Ty M be the inverse of9y . We have to compare Pk(x +ξ, x) with P̃ I
y,k(x +ξ, x)=

P I
y,k(η+ ξ̃ , η), where

η =8y(x), η+ ξ̃ =8y(x + ξ).

We claim that

ξ̃ = ξ +O(rd + d2). (61)

To see this, write ξ̃ =8y(x + ξ)−8y(x)= L y(x, ξ)ξ , where L y(x, 0)= Tx8y . Since L y(y, 0)= idTy M ,
we have

L y(x, ξ)= L y(x, 0)+O(|ξ |)= idTy M +O(d(x, y)+ |ξ |).

So ξ̃ = ξ +O(|ξ |(d(x, y)+ |ξ |))= ξ +O(d(r + d)).
Consider now a smooth function (x, ξ)→q(x, ξ) which is polynomial homogeneous in ξ with degree ℓ.

Then

q(x, ξ)= q(y, ξ)+O(d(x, y)|ξ |ℓ)= q(y, ξ)+O(rdℓ)

and by (61), q(y, ξ)= q(y, ξ̃ )+O(dℓ(r + d)). So

q(x, k1/2ξ)= q(y, k1/2ξ̃ )+O((k1/2d)ℓ(r + d)). (62)

Consequently

σ I (x, k1/2ξ)= σ I (y, k1/2ξ̃ )+O(r + d)
∑

(k1/2d)ℓ, (63)

where the sum on the right is over ℓ and finite.
By [Charles 2016, Section 2.6], the section E(x+ξ, x) := F(x+ξ, x)e−|ξ |2x/4 depends on the coordinate

choice up to a section vanishing to third order along the diagonal. So

E(x + ξ, x)= Fy(η+ ξ̃ , η)e−|ξ̃ |x/4eO(d
3)

= Ey(η+ ξ̃ , η)eO(d
3
+d2r),

with Ey(η+ ξ̃ , η) := Fy(η+ ξ̃ , η)e−|ξ̃ |y/4 because |ξ̃ |2y = |ξ |2x + O(d2(r + d)) by (62). So using that
|ez

− 1| ⩽ |z|e| Re z| and that kn Ek(x + ξ, x)= O(mk), we have

kn(Ek(x + ξ, x)− Ek
y(η+ ξ̃ , η))= O(d2(d + r)mk)ekCd2(d+r)

= O(d2(d + r)mk)ekCd2(d+r)

= O(k−5/4mk)ekCd2(d+r)
= O(k−5/4mk), (64)

where we have used that d and r are both in O(k−1/4), and always the same convention that the con-
stant c in mk can change from one line to another so that d pmk = O(k−p/2mk). Using again that
kn Ek(x + ξ, x)= O(mk), it follows from (63),

kn Ek(x + ξ, x)σ I (x, k1/2ξ)= kn Ek(x + ξ, x)σ I (y, k1/2ξ̃ )+O(k−1/4mk)

= kn Ek
y(η+ ξ̃ , η)σ I (y, k1/2ξ̃ )+O(k−1/4mk)

by (64), which ends the proof of (55). □
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6B. A formal projector. This section is devoted to the proof of the following lemma.

Lemma 6.2. Under the same assumptions as in Theorem 5.2, there exists (Pk) ∈ L∞(A)∩L+(A) unique
modulo L∞

∞
(A) such that σ0(Pk) = π I, Pk = P∗

k for any k, Pk ≡ P2
k modulo L∞

∞
(A) and [1k, Pk] ≡ 0

modulo L∞
∞
(A).

To show this, we will construct (Pk) by successive approximations. We introduce the filtration

L∞

p (A) := L∞(A)∩O∞(k−p/2),

p ∈ N. For any p ∈ N, we have a symbol map

σp : L∞

p (A)→ C∞(M,S(T M)⊗ End A)

such that σp(P) = σ0(k p/2 P), where σ0 was defined in (51). By [Charles 2024, Proposition 2.1 and
Theorem 2.2], σp is onto, Ker σp =L∞

p+1(A) and for any sequence (Q p) of L∞(A) such that Q p ∈L∞
p (A)

for any p, there exists Q ∈ L∞(A) such that Q = Q0 + · · ·+ Q p modulo L∞

p+1(A) for any p. Moreover:

(1) If Q and Q′ belong to L∞
p (A) and L∞

p′ (A) respectively, then their product belongs to L∞

p+p′(A).
Furthermore, at any x ∈ M, σp+p′(Q Q′)(x) is the product of σp(Q)(x) and σp′(Q′)(x).

(2) If Q belongs to L∞
p (A), then its adjoint Q∗ belongs to L∞

p (A) with symbol σp(Q∗)(x)= σp(Q)(x)∗.

By [Charles 2024, Theorem 2.5], L+(A) is a subalgebra of L(A).

Lemma 6.3. For any Q in L∞
p (A), (k

−11k Qk) and (k−1 Qk1k) both belong to L∞
p (A) and their symbols

at x are □x ◦ σp(Q)(x) and σp(Q)(x) ◦ □x . If Q ∈ L+(A) then the same holds for (k−11k Qk) and
(k−1 Qk1k).

Proof. By [Charles 2024, Proposition 6.3, Assertion 3c and 3d], (k−11k Qk) and (k−1 Qk1k) both belong to
L∞

p (A). To compute the symbol, we can use the peaked sections of Section 4A. Indeed, if8k( f ) is defined
by (28), with f ∈ D(Tx M)⊗ Ax and (Pk) ∈ L0(A) then by [Charles 2024, Proposition 2.4], Pk8k( f )=

8k(g)+O(k−1/2) with g = σ0(Pk)(x) f . So the symbol of any operator of Lp(A) is characterized by its
action on the peaked sections. Proposition 4.1 tells us how k−11k acts on the peaked section and the
first part of the result follows. To show that the composition with k−11k preserves the subspace L+(A)
of even operators, one uses instead of the asymptotic expansion (50) the alternative expansion

Pk(x, y)=

(
k

2π

)n

Ek(x, y)
∑

k−ℓ/2bℓ(x, y)+O(k−∞);

see [Charles 2024, equation (45) and Proposition 5.6]. The fact that (Pk) is even means that bℓ = 0 when ℓ
is odd. When (Pk) ∈ L∞(A), this expansion holds for the C∞ topology, so we can compute the Schwartz
kernel of k−11k Pk by letting k−11k act on each term of the expansion. Doing this with the expression (B),
no half power of k appears so k−11k Pk is even. The same argument works for k−1 Pk1k . □
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In the sequel, to lighten the notation, we write π instead of π I. Let L1 and L2 be the endomorphisms
of C∞(M,S(T M)⊗ End A) defined by

L1( f )(x)= π(x) ◦ f (x)+ f (x) ◦π(x)− f (x),

L2( f )(x)= [□x , f (x)].

Assuming that I satisfies (C), π ∈ C∞(M,End(D⩽p0(T M)⊗ End A) for some p0, so that L1 is well-
defined, meaning that L1( f ) is a smooth section of S(T M)⊗ End A when f is.

Lemma 6.4. The following sequence is exact:

0 → Symb L
−→ Symb ⊕ Symb L ′

−→ Symb → 0, (65)

where Symb = C∞(M,S(T M)⊗ End A), L( f )= (L1( f ), L2( f )) and L ′( f1, f2)= L2( f1)− L1( f2).

Proof. L ′
◦ L = 0 is equivalent to L1 ◦ L2 = L2 ◦ L1, which follows from [□, π] = 0. Indeed [□, π] = 0

implies that [□, f π ] = [□, f ]π and [□, π f ] = π [□, f ] so that

L2(L1( f ))= [□, f π +π f − f ]

= [□, f ]π +π [□, f ] − [□, f ] = L1(L2( f )).

Recall that Symb =
⋃

p∈N Symbp, with Symbp = C∞(M,End(D⩽p(T M)⊗ A)). L2 preserves each
Symbp and the same holds for L1 when p is larger than p0. So we have to prove that, for any p ⩾ p0,
the sequence (65) with Symb replaced by Symbp is exact.

By Lemma 2.4, the image of π is a subbundle F of D⩽p(T M) ⊗ A. Let F⊥ be the orthogonal
subbundle, so that D⩽p(T M)⊗ A = F ⊕ F⊥. Write the elements of Symbp as block matrices according
to this decomposition. The restrictions of π and □ to Symbp have the particular forms

π =

(
1 0
0 0

)
, □ =

(
□in 0
0 □out

)
Writing

f =

(
a b
c d

)
we have

L1( f )=

(
a 0
0 −d

)
, L2( f )=

(
[□in, a] E1(b)
E2(c) [□out, d]

)
,

with
E1(b)= □inb − b□out, E2(c)= □outc − c□in = −E1(c∗)∗.

Let us prove that E1 and E2 are invertible endomorphisms of the spaces C∞(M,Hom(F⊥, F)) and
C∞(M,Hom(F, F⊥)) respectively. For any y ∈ M, we introduce an orthonormal eigenbasis (ei ) of the
restriction of □y to D⩽p(Ty M)⊗ Ay . So □yei = λi ei and Fy (resp. F⊥

y ) is spanned by the ei such that
λi ∈ I (resp. λi /∈ I ). Now the endomorphism

Hom(F⊥

y , Fy)→ Hom(F⊥

y , Fy), b(y) 7→ □in(y)b(y)− b(y)□out(y), (66)
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is diagonalizable with eigenvectors |ei ⟩⟨ej | and eigenvalues λi − λj , where λi ∈ I and λj /∈ I. Since
λi − λj ̸= 0, (66) is invertible for any y, so the same holds for E1. The proof for E2 is similar.

From this, we deduce easily that the sequence is exact. In particular if L ′( f1, f2)= 0 with

fi =

(
ai bi

ci di

)
for i = 1 or 2,

then ( f1, f2)= L( f ) with

f =

(
a1 E−1

1 (b2)

E−1
2 (c2) −d1

)
.

Observe as well that f1 = f ∗

1 and f2 = − f ∗

2 imply that f = f ∗. □

Proof of Lemma 6.2. Let P ∈ L∞(A) be self-adjoint with symbol σ0(P)= π . Then R1 := P2
− P and

R2 := k−1
[1k, P] both belong to L∞

1 (A). Indeed their σ0-symbols are respectively π2
−π and [□, π],

and both of them vanish.
Let us prove by induction on m ⩾ 1 that there exists P as above such that R1 and R2 are in L∞

m (A).
Define P ′

= P + S with S ∈ L∞
m (A). Assume that R1 and R2 are in L∞

m (A). Then

(P ′)2 − P ′
= R1 + S P + P S − S mod L∞

m+1(A),

[k−11k, P ′
] = R2 + [k−11k, S].

So (P ′)2 − P ′ and [k−11k, P ′
] belong to Lm(A) and their σm-symbols are respectively f1 + L1( f ) and

f2 + L2( f ) with f = σm(S), f1 = σm(R1) and f2 = σm(R2). Let us prove that we can choose f so
that f1 + L1( f ) = 0 and f2 + L2( f ) = 0. By Lemma 6.4, it suffices to check that L1( f2) = L2( f1).
But L2( f1) is the σm-symbol of [k−11k, R1], L1( f2) is the σm-symbol of P R2 + R2 P − R2, and these
operators are equal as shows a direct computation. So f exists. Furthermore f = f ∗ by the remark at the
end of the proof of Lemma 6.4. So we can choose S self-adjoint.

We conclude the proof with the convergence property with respect to the filtration Lm(A) recalled
above. Observe also that if we start with P ∈ L+(A), then we end with a formal projector in L+(A). □

6C. Operator norm and pointwise estimates. Let us choose an operator (Pk) satisfying the conditions of
Lemma 6.2. Recall that for any operator Q ∈ Lm(A), Qk =O(k−m/2) in the sense that the operator norm
of Qk is in O(k−m/2). So Pk is self-adjoint, it is an almost projector P2

k = Pk +O(k−∞) and it almost
commutes with1k in the sense that [1k, Pk]=O(k−∞). Furthermore, by Lemma 6.1, Pk =5I

k +O(k−1/4).

Lemma 6.5. Pk =5I
k +O(k−∞).

Proof. We omit the index k to simplify the notation. Let H+ = Ran5I and H− be its orthogonal in
L2(M, Lk

⊗ A). We introduce the corresponding block decomposition of P

P =

(
P++ P+−

P−+ P−−

)
.

We first prove that P−+ and P+− are in O(k−∞).



ON THE SPECTRUM OF NONDEGENERATE MAGNETIC LAPLACIANS 1941

By Corollary 4.8 and assumption (C), there exists ϵ such that when k is sufficiently large

dist(I, sp(k−11k) \ I )⩾ ϵ.

Let ξλ and ξµ be two eigenfunctions of k−11k with eigenvalues λ and µ respectively. Then

(λ−µ)⟨Pξλ, ξµ⟩ = k−1(⟨P1kξλ, ξµ⟩ − ⟨Pξλ,1kξµ⟩)

= k−1
⟨[P,1k]ξλ, ξµ⟩

= O(k−∞)∥ξλ∥ ∥ξµ∥ (67)

because [P,1k]=O(k−∞). Now for any ξ+ ∈H+ and ξ− ∈H−, write their decompositions into eigenvec-
tors ξ+ =

∑
ξλ and ξ− =

∑
ξµ. So ∥ξ+∥

2
=

∑
∥ξλ∥

2, ∥ξ−∥
2
=

∑
∥ξµ∥

2 and ⟨Pξ−, ξ+⟩ =
∑

⟨Pξλ, ξµ⟩.
So by (67),

|⟨Pξ−, ξ+⟩| ⩽ ϵ−1O(k−∞)
∑

∥ξλ∥ ∥ξµ∥ ⩽ ϵ−1O(k−∞)∥ξ−∥ ∥ξ+∥

by the Cauchy–Schwarz inequality. This proves that P+− = O(k−∞). The same holds for its adjoint P−+.
Now the fact that P2

= P +O(k−∞) implies P2
++

= P++ +O(k−∞) and the same for P−−. Indeed,

(5I P5I )2 =5I P5I P5I

=5I P25I
+O(k−∞) (because P−+ = O(k−∞))

=5I P5I
+O(k−∞) (because P2

= P +O(k−∞)).

By Lemma 6.1, P =5I
+O(k−1/4), so P−− = O(k−1/4). Then P2

−−
= P−− +O(k−∞) implies

P−− = O(k−∞).

In the same way, (idH+
−P++)

2
= idH+

−P+++O(k−∞) and idH+
−P++ =O(k−1/4) imply idH+

−P++ =

O(k−∞). So

P++ = idH+
+O(k−∞),

which concludes the proof. □

Lemma 6.6. For any ℓ, m ∈ N, we have 1ℓk(Pk −5I
k )1

m
k = O(k−∞).

Proof. On one hand, we have

1ℓk Pk = O(kℓ), 1ℓk5
I
k = O(kℓ), (68)

where the first estimate is a consequence of ((k−11k)
ℓPk) ∈ L∞(A), and the second one is merely that

5I
k is the spectral projector of k−11k for the bounded interval I.
On the other hand, since for any Q ∈ L∞

∞
(A), 1ℓk Q1m

k belongs to L∞
∞
(A) as well, we have

1ℓk P2
k 1

m
k =1ℓk Pk1

m
k +O(k−∞),

1ℓk[k
−11k, Pk]1

m
k = O(k−∞).

(69)
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By the first equality, 1ℓk Pk1
m
k =1ℓ+m

k Pk +O(k−∞). Since [1k,5
I
k ] = 0, it suffices to prove the final

result for m = 0, that is, 1ℓk(Pk −5I
k )= O(k−∞). We have

1ℓk(Pk −5I
k )

(69)
= 1ℓk(P

2
k −5I

k )+O(k−∞)

= 1ℓk Pk(Pk −5I
k )+1

ℓ
k(Pk5

I
k )−1

ℓ
k5

I
k +O(k−∞)

(69)
= 1ℓk Pk(Pk −5I

k )+ Pk1
ℓ
k5

I
k −1ℓk5

I
k +O(k−∞)

= 1ℓk Pk(Pk −5I
k )+ (Pk −5I

k )1
ℓ
k5

I
k +O(k−∞) = O(kℓ)O(k−∞)

by (68) and Lemma 6.5. □

We are now ready to conclude the proof of Theorems 5.2 and 5.3: we will show that the Schwartz
kernel of Pk −5I

k is in O∞(k−∞), in the sense of Section 5D.
Choose two open sets U and U ′ of M equipped both with a set of coordinates and unitary trivializations

of L and A, so that we can identify the sections of Lk
⊗ A on U with functions. Let ϕ ∈ C∞

0 (U ),
ϕ′

∈ C∞

0 (U
′). Then ϕ(Pk −5I

k )ϕ
′ can be viewed as an operator of R2n. We introduce the differential

operator

3k = 1 − k−2
2n∑

i=1

∂2
xi

acting on C∞(R2n).

Lemma 6.7. For any ℓ ∈ N,

3ℓk ϕ(Pk −5I
k )ϕ

′3ℓk = O(k−∞). (70)

Consequently, the Schwartz kernel of ϕ(Pk −5I
k )ϕ

′ is in O∞(k−∞).

Proof. We will use basic results on semiclassical pseudodifferential operators of R2n , with the semiclassical
parameter usually denoted by h equal here to k−1. Choose ψ1, ψ2 ∈ C∞

0 (U ) such that suppϕ ⊂ {ψ1 = 1}

and suppψ1 ⊂ {ψ2 = 1}. The operator ψ1(1+ (k−21k)
ℓ), viewed as an operator of R2n, is a semiclassical

differential operator with principal symbol ψ1(H ℓ
+ 1), where H is the symbol of 1k , so

H(x, ξ)=

∑
gi j (x)(ξi +αi (x))(ξj +αj (x)),

with −i
∑
αi dxi the connection 1-form of L in the trivialization used to identify sections with functions.

The operator ϕ3ℓk is also a semiclassical differential operator with symbol ϕ(x)⟨ξ⟩2ℓ. Since the symbol
ψ1(H ℓ

+ 1) is elliptic on suppϕ× Rn , we can factorize

3ℓkϕ = Qkψ1(1 + (k−21k)
ℓ)+ Sk,

with Qk a zero-order semiclassical pseudodifferential operator and Sk in the residual class. To do this,
we only need the pseudodifferential calculus in the usual class Sk

1,0(T
∗R2n) of symbols; see for instance

[Dyatlov and Zworski 2019, Section E.1.5]. Composing with ψ2,

3ℓkϕ = Qkψ1(1 + (k−21k)
ℓ)+ Skψ2. (71)
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Similarly, we have
ϕ′3ℓk = ψ ′

1(1 + (k−21k)
ℓ)Q′

k +ψ ′

2S′

k . (72)

Now by Lemma 6.6,
(1 + (k−21k)

ℓ)(Pk −5I
k )(1 + (k−21k)

m)= O(k−∞), (73)

and by the usual result on boundedness of pseudodifferential operators, see [Dyatlov and Zworski 2019,
Proposition E.19], Qk, Q′

k = O(1) and Sk, S′

k = O(k−∞). We deduce (70) easily with (71), (72) and (73).
Now let H m

k be the Sobolev space H m(R2n) with the k-dependent norm ∥u∥Hm
k

= ∥⟨k−1ξ⟩û(ξ)∥L2(R2n).
Then 3ℓk is an isometry H m

k → H m−2ℓ
k . So (70) tells us that the operator norm H−2ℓ

k → H 2ℓ
k of

Rk = ϕ(Pk −5I
k )ϕ

′ is in O(k−∞). Since the Schwartz kernel of Rk at (x, y) is equal to δx(Rkδy) and the
Dirac δx belongs to H−m

k with a norm in O(k2n) for any m > n, we have Rk(x, y)= O(k−∞). Similarly,
∂αx ∂

β
y Rk(x, y) = O(k−∞) for any α, β ∈ N2n because the H−m

k -norm of ∂αδx is a O(k2n) as soon as
m ⩾ n + |α|. □

7. Toeplitz operators

Let F be a vector subbundle of D⩽p(T M)⊗ A for some p. Let (5k) ∈ L(A) such that, for each k, 5k

is a self-adjoint projector of C∞(M, Lk
⊗ A) and, for any x ∈ M, the symbol π(x) = σ0(5k)(x) is the

orthogonal projector onto Fx . Let Hk be the image of 5k .
The corresponding Toeplitz operators are the (Pk) ∈ L(A) such that 5k Pk5k = Pk . The symbol

σ0(P)(x) of such an operator satisfies

π(x)σ0(P)(x)π(x)= σ0(P)(x).

So σ0(P)(x)= f (x)π(x), with f (x)∈ End Fx . This section f of End F can be considered as the Toeplitz
symbol of (Pk).

We will establish several spectral results for these Toeplitz operators. Applied to the spectral projector
5k = 1[a,b](k−11k) and Pk = k−11k5k , this will complete the proofs of Theorems 1.1, 1.2, 1.3 and 1.4
stated in the Introduction.

7A. Global spectral estimates.

Theorem 7.1. (1) When k is sufficiently large, dimHk = RR(Lk
⊗ F).

(2) For any (Pk) ∈ L(A) such that P∗

k = Pk and 5k Pk5k = Pk for any k, we have for any 9 ∈ Hk with
∥9∥ = 1 that

inf
M

f− +O(k−1/2)⩽ ⟨Pk9,9⟩ ⩽ sup
M

f+ +O(k−1/2), (74)

where the O’s are uniform with respect to 9 and, for any x ∈ M, f−(x) and f+(x) are the smallest
and largest eigenvalues of the restriction of σ0(P)(x) to Fx .

The proof is based on the generalized ladder operators introduced in [Charles 2024]: if (A′, F ′,5′

k,H
′

k)

is a second set of data satisfying the same assumption as (A, F,5k,Hk) and F, F ′ are isomorphic vector
bundles, then there exist isomorphisms Uk : Hk → H′

k when k is sufficiently large. Then defining H′

k
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as the kernel of a well-chosen spin-c Dirac operator, dimH′

k is given by the Atiyah–Singer theorem,
which will prove the first statement. For the second one, choose H′

k so that F ′
= A′, Uk PkU∗

k is equal to
a Toeplitz operator 5′

k f5′

k up to a O(k−1/2). The inspiration here comes from the proof of the sharp
Gårding inequality for semiclassical pseudodifferential operator.

Proof. Consider a second self-adjoint projector 5′
∈ L(A′) with σ0(5

′) the orthogonal projector onto a
vector bundle F ′ of D⩽p(T M)⊗ A′. Assume that F and F ′ are isomorphic vector bundles. Then there
exists u ∈ C∞(M,Hom(F, F ′)) such that, for any x ∈ M, u(x) is a unitary isomorphism from Fx to F ′

x .
Extending u(x) to a map D(Tx M)⊗ Ax →D(Tx M)⊗ A′

x which is zero on the orthogonal of Fx , we have

u∗(x)u(x)= σ0(5)(x), u(x)u∗(x)= σ0(5
′)(x).

So if (Uk) ∈ L(A, A′) has symbol u, then

U∗

k Uk =5k +O(k−1/2), UkU∗

k =5′

k +O(k−1/2). (75)

Furthermore replacing Uk by 5′

kUk5k does not modify the symbol of Uk so the same property holds and
moreover 5′

kUk5k = Uk . Consequently Uk restricts to an isomorphism from Hk to the image H′

k of 5′

k ,
when k is sufficiently large.

Hence for large k, the dimension of Hk only depends on the isomorphism class of F. To compute
it, we introduce a spin-c Dirac operators Dk acting on Lk

⊗ A′ with A′
= F ⊗

∧0,•T ∗M and define
H′

k as the kernel of Dk . Then by a vanishing theorem [Borthwick and Uribe 1996; Ma and Marinescu
2002], dimH′

k is equal to the index of D+

k when k is sufficiently large. By Atiyah–Singer index theorem,
dimH′

k = RR(Lk
⊗ F). Furthermore, it follows from [Ma and Marinescu 2007] that the projector (5′

k)

belongs to L(A′), and σ0(5
′

k) is the projector onto C ⊗ F ⊗ C. Alternatively the vanishing theorem and
the fact that (5′

k) ∈ L(A′) follows also from Corollary 4.8 and Theorem 5.2 applied to D−

k D+

k as in the
proof of Theorem 3.6.

To prove the second part, we choose A′
= F ′

= F, that is, (5′

k) belongs to L(F) and its symbol is the
projection onto D0(T M)⊗ F. For instance, we can choose 5′

k = 1I (k−11k) with I =
1
2 n +

[
−

1
2 ,

1
2

]
and

1k the magnetic Laplacian acting on C∞(M, Lk
⊗ F) defined from any connection of F and the metric

ω( · , j · ) so that 6 =
1
2 n + N.

Now let P ∈L(A) be selfadjoint and such that5k Pk5k = Pk . Then the symbol σ0(P)(x) is self-adjoint
and has the form σ0(P)(x)= f (x)π(x) with f (x) ∈ End Fx . So σ0(P)(x)= u∗(x) f (x)u(x), and thus

Pk = U∗

k f Uk +O(k−1/2), (76)

where f acts on C∞(M, Lk
⊗ F) by pointwise multiplication. For any 9 ′

∈ C∞(M, Lk
⊗ F),

(inf
M

f−)∥9 ′
∥

2 ⩽ ⟨ f9 ′, 9 ′
⟩ ⩽ (sup

M
f+)∥9 ′

∥
2,

where f−(x) and f+(x) are the smallest and largest eigenvalues of f (x) for any x . We conclude the
proof by setting 9 ′

= Uk9 and using (75) and (76). □
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Corollary 7.2. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Let
a, b ∈ R \6, with a < b. Then when k is sufficiently large

♯ sp(k−11k)∩ [a, b] =

{
RR(Lk

⊗ F) if [a, b] ∩6 ̸= ∅,
0 otherwise,

(77)

with F the bundle with fibers Fx = 1[a,b](□x). Furthermore

sp(k−11k)∩ [a, b] ⊂ [a, b] ∩6+O(k−1/2). (78)

Proof. When [a, b]∩6 is empty, we already know by Corollary 4.8 that sp(k−11k)∩[a, b] is empty when
k is sufficiently large. When [a, b] ∩6 ̸= ∅, by Theorem 5.2, the spectral projector 5k = 1[a,b](k−11k)

belongs to L(A) with symbol π = 1[a,b](□). So the dimension of Im5k is given in the first assertion of
Theorem 7.1.

Moreover, by Corollary 5.4, (k−11k)5k belongs to L(A) and its symbol is □1[a,b](□). By the second
assertion of Theorem 7.1,

sp(k−11k)∩ [a, b] = sp(k−11k5k)⊂ [inf f−, sup f+] +O(k−1/2)

where f is the restriction of □ to F = Imπ .
This proves the inclusion (78) when [a, b] ∩6 is connected. Indeed,

[a, b] ∩6y = [ f−(y), f+(y)] ∩6y .

So on one hand, M being compact, inf f− = f (y−) and sup f+ = f (y+) belongs to [a, b] ∩6. On the
other hand [a, b] ∩6 ⊂ [inf f−, sup f+]. Consequently [a, b] ∩6 = [inf f−, sup f+].

To treat the general case, we use that [a, b] ∩6 is a finite union of mutually disjoint compact intervals
I1, . . . , Iℓ. So there exists a1 = a < a2 < · · · < aℓ+1 = b in R \6 such that Ii = [ai , ai+1] ∩6 and by
what we have proved, sp(k−11k)∩ [ai , ai+1] ⊂ Ii +O(k−1/2). □

Remark 7.3. Decompose D(T M) into even and odd subspaces

D+(T M)=

⊕
p∈N

D2p(T M), D−(T M)=

⊕
p∈N

D2p+1(T M).

Let us assume that (5k) is even and that F has a definite parity in the sense that F is a subbundle of
Dϵ(T M)⊗ A for ϵ = + or −. Then (74) and (78) hold with k−1 instead of k−1/2.

Indeed, by [Charles 2024, Theorem 2.5], the σp-symbol of Pk ∈ L+
p (A) has the same parity of p,

meaning that σp(Pk) sends Dϵ(T M) ⊗ A into Dϵ′

(T M) ⊗ A with ϵ′
= (−1)pϵ. So if an operator

(Pk) ∈ L+

1 (A) is such that 5k Pk5k = Pk , then its symbol σ1(Pk) is odd and has the form gπ for some
g ∈ End F. So g is odd, but F has a definite parity, so g = 0. Consequently (Pk) ∈ L+

2 (A). Moreover, by
[Charles 2024, Theorem 3.4], we can construct (Uk)∈L(A, F) such that UkU∗

k = id when k is sufficiently
large and (Uk) has the same parity as F. So if (Pk) ∈ L+(A), then (Uk PkU∗

k ) ∈ L+(F). Then in the proof
of Theorem 7.1, we can replace the O(k−1/2) in (75) and (76) by a O(k−1). □
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7B. Local spectral estimates.

Theorem 7.4. Let (Pk) ∈ L(A) be such that 5k Pk5k = Pk and P∗

k = Pk . Let f ∈ C∞(M,End F) be the
restriction of σ0(Pk) to F.

(1) For any compact subsets C of M and I of R such that I ∩ sp( f (x))= ∅ for any x ∈ C , we have for
any N

(5k1I (Pk)5k)(x, x)= O(k−N ) for all x ∈ C,

with a O uniform with respect to x.

(2) For any g ∈ C∞(R,C), (5k g(Pk)5k) belongs to L(A) and its σ0-symbol is (g ◦ f )π . Moreover, if
(5k) and (Pk) are in L+(A), then the same holds for (5k g(Pk)5k).

Proof. Let U be the open set {x ∈ M : sp( f (x)) ∩ I = ∅}. Let ϕ ∈ C∞

0 (U ) and λ ∈ I. Observe that
ϕ( f − λ)−1

∈ C∞(M,End F). So if (Qk) ∈ L(A) has symbol ϕ( f − λ)−1π , we have

5k Qk5k(Pk − λ5k)=5kϕ5k − Rk, (79)

with (Rk) ∈ L1(A). Let us improve this to obtain (Rk) ∈ L∞(A).
We need the following notion of support: for any S ∈ L(A), supp S is the closed set of M such that

x /∈ supp S if and only if Sk(y, z)=O(k−∞) on a neighborhood of (x, x). Using that the Schwartz kernel
of S ∈ L(A) is in O(k−∞) on compact subsets of M2

\ diag M and in O(kn) on M2, we prove that for
any S, S′

∈ L(A) we have supp(SS′)⊂ (supp S)∩ (supp S′).
Assume now that (Qk) ∈ L(A) has the symbol ϕ( f − λ)−1π as above and is supported in U. Then

(Rk) ∈ Lp(A) with p ⩾ 1, 5k Rk5k = Rk so that the symbol r = σp(Rk) satisfies πrπ = r . Furthermore,
(Rk) is supported in U, so the same holds for r , so that r( f −λ)−1

∈ C∞(M,End F). Let (Q′

k) ∈ Lp(A)
be supported in U and have symbol σp(Q′

k)= r( f −λ)−1π . Then if we replace Qk in (79) by Qk + Q′

k ,
we have now (Rk) ∈ Lp+1(A). We deduce the existence of (Qk) such that (79) holds with (Rk) ∈ L∞(A),
so the operator norm of Rk is in O(k−∞).

We claim that this construction can be realized so that we obtain an O(k−∞) uniform with respect to
λ ∈ I. To do this, we consider families

(Sk(λ)) ∈ L(A), λ ∈ I, (80)

such that in the kernel expansion (50), the coefficients aℓ depend continuously on λ and the remainders rN ,k

are in O(kn−(N+1)/2) on compact subsets of U 2 with an O independent of λ. Then if (S′

k(λ)) is another
family depending continuously on λ in the same sense, the same holds for the product (S′

k(λ)Sk(λ)).
Furthermore, if (Sk(λ)) ∈ Lp(A) for any λ ∈ I, the operator norm of Sk(λ) is in O(k−p/2) with an O
independent of λ. The proof of these claims is the same as the proof of the same facts without λ. Later
in (85), we will use these results again with the parameter λ describing a compact subset of C.

Now we deduce from (79) with ∥Rk∥ = O(k−∞) that, for any k, any normalized 9 ∈ Hk such that
Pk9 = λ9 with λ∈ I satisfies ⟨ϕ9,9⟩ =O(k−∞) with an O independent of λ and 9. For any x ∈ U, we
can choose ϕ equal to 1 on a neighborhood of x and we deduce the existence of a compact neighborhood V
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of x , such that any 9 as above satisfies∫
V

|9(x)|2 dµ(x)= O(k−∞).

Writing9=5k9 and using that the Schwartz kernel of5k is in O(kn) on M2 and in O(k−∞) on compact
subsets of M2 not intersecting the diagonal, we get that on a neighborhood of x the pointwise norm of 9
is in O(k−∞). Since (5k1I (Pk)5k)(x, x) is the sum of the |9ℓ(x)|2, where (9ℓ) is an orthonormal basis
of Hk ∩ Im 1I (Pk) consisting of eigenvectors of Pk , and dimHk = O(kn), we deduce that

(5k1I (Pk)5k)(x, x)= O(k−∞) for all x ∈ U,

with an O uniform on compact subsets of U. This ends the proof of the first assertion.
For the second assertion, since the operator norm of Pk is bounded independently of k, we can assume

that g ∈ C∞

0 (R,C). We will apply the Helffer–Sjöstrand formula, which we already used in a similar
context for the functional calculus of Toeplitz operators [Charles 2003, Proposition 12]. So for P̃k the
restriction of Pk to Hk , we have

g(P̃k)=
1

2π

∫
C

(∂z̄ g̃)(z)(z − P̃k)
−1

|dz dz̄|, (81)

where g̃ ∈ C∞

0 (C,C) is an extension of g such that ∂z̄ g̃ vanishes to infinite order along the real axis
[Zworski 2012, Theorem 14.8].

In the same way we proved (79), we can construct, for any z ∈ C \ R, (Qk(z)) ∈ L(A) such that
5k Qk(z)5k = Qk(z) and

Qk(z)(z − Pk)=5k − Rk(z), (82)

with (Rk(z)) ∈ L∞(A). At the first step we set Qk(z) = 5k Q̃k5k , with Q̃k(z) in L(A) having sym-
bol (z − f )−1π . We obtain (82) with (Rk(z)) ∈ L1(A). Then if (Rk(z)) ∈ Lp(A) and has symbol
σp(Rk(z))= r(z), we add to Qk the operator 5k Q′

k(z)5k , where (Q′

k(z)) is an operator of Lp(A) with
symbol σ(Q′

k(z))= r(z)(z − f )−1π .
To apply this in (81), we need to control carefully the dependence with respect to z. For U an open set

of M, we introduce the space FC∞(U ) consisting of family ( f (z, · ), z ∈ C\R) of C∞(U ) having the form

g(z, x)=

∑
m am(x)zm∑
m bm(x)zm

where the sums are finite, the coefficients am and bm belong to C∞(U ), and for any x the poles of g( · , x)
lie on the real axis. Since FC∞(U ) is a C∞(U )-module, we can define FC∞(U, B) for any auxiliary
bundle B as the space of z-dependent section of B on U with local representatives in FC∞(U ) for any
z-independent frame of B on U.

Having in mind the construction of Qk(z) in (82), observe that (z − f )−1 belongs to FC∞(M,End F).
Moreover, FC∞(U ) being closed under product, for any r(z)∈FC∞(M,End F), we have r(z)(z− f )−1

∈

FC∞(M,End F).
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Now we introduce the space FL(A) consisting of families (Pk(z), z ∈ C \ R) of L(A) such that in the
asymptotic expansion (50) satisfied by the Schwartz kernel of Pk(z), the coefficients have the form

aℓ(z, x, ξ)=

∑
aℓ,α(z, x)ξα, (83)

with aℓ,α ∈FC∞(U,End Cr ), and each remainder rN ,k is in O(kn−(N+1)/2) uniformly on K ∩((C\R)×U 2),
where K is any compact subset of C × U 2. We claim that we can choose Qk(z) ∈ FL(A) in (82). To
see this, it suffices to prove that

S(z) ∈ FL(A) =⇒ 5k Sk(z)5k(z − Pk) ∈ FL(A), (84)

and then to use what we said before on r(z) ◦ (z − f )−1. To prove (84), it suffices to show that, for any
S(z) ∈ FL(A) and T ∈ L(A) independent of z, T S(z) and S(z)T belong to FL(A). To prove this, we
can assume that the Schwartz kernel of T (z) is contained in a compact subset of U 2 independent of k
and z, where we have the expansion (50), and we can treat each term of the expansion independently
of the others. Suppose we only have aℓ(z, x, ξ). Then by (83), S(z) =

∑
Sαaℓ,α(z, · ), where the sum

is finite, Sα ∈ Lℓ(A) and does not depend on z. Since T S(z)=
∑
(T Sα)aℓ,α(z, · ) and T Sα ∈ Lℓ(A), for

any α, T S(z) belongs to FLℓ(A). The product S(z)T is more delicate to handle. By the same proof as
[Charles 2016, Lemma 5.11], for any compact set K of U, there exists a family (Tβ, β ∈ N2n) such that
Tβ ∈ L|β|(A), and for any f ∈ C∞

K (U ) we have f T =
∑

|β|⩽N Tβ(∂β f ) modulo LN+1(A). Consequently

S(z)T =

∑
α

Sα(aℓ,α(z, · )T )=

∑
α,|β|⩽N

SαTβ(∂βaℓ,α(z, · ))|vtw

modulo LN+1(A). To conclude we use that SαTβ ∈ Lℓ+|β|(A) and ∂βaℓ,α ∈ FC∞(U,End Cr ).
Now the function ξ(z)= (Im z)−1∂z̄ g̃(z) vanishes to infinite order along the real axis and its support

is contained in the compact set K = supp g̃. For any f ∈ FC∞(U ), the product ξ(z) f (z, · ) extends
smoothly to C. We deduce that there exists a family (Sk(z)) of L(A) depending continuously of z ∈ K
in the same sense as (80), and such that

5k Sk(z)5k = Sk(z), Sk(z)(z − Pk)= ξ(z)5k +O(k−∞), (85)

with an O uniform with respect to z. Since ∥(z − P̃k)
−1

∥ = O(| Im z|−1), multiplying the last equality
by (Im z)(z − P̃k)

−1, we obtain

∂z̄ g̃(z)(z − P̃k)
−15k = (Im z)Sk(z)+ Rk(z), (86)

with Rk(z) = O(k−∞). Since 5k Rk(z)5k = Rk(z) and the Schwartz kernel of 5k is in O(kn), this
implies that the Schwartz kernel of Rk(z) is in O(k−∞) uniformly with respect to z. Inserting (86)
in (81), it comes that (g(P̃k)5k) belongs to L(A). To see this, we simply have to integrate with respect
to z the coefficients aℓ(z, x, ξ) in the expansion (50) of the Schwartz kernel of (Im z)Sk(z). Since
σ0((Im z)Sk(z))= ∂z̄ g̃(z)(z − f )−1π , we deduce also that

σ0(g(P̃k)5k)=
1

2π

∫
C

∂z̄ g̃(z)(z − f )−1π |dz dz̄| = g( f )π,

which concludes the proof. □
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Corollary 7.5. Let (1k) be a family of formally self-adjoint differential operators of the form (B). Let
3 ∈ R \6. Then for any g ∈ C∞(R,C) supported in ]−∞,3], (g(k−11k)) belongs to L+(A) and has
symbol g(□).

Proof. Since g is supported in ]−∞,3], we have g(k−11k) = 5k g(k−11k5k)5k where 5k =

1]−∞,3](k−11k). By Theorem 5.2 and Corollary 5.4, (5k) and k−11k5k belong to L+(A) with symbols
π = 1]−∞,3](□) and f = g(□). So the result follows from the second assertion of Theorem 7.4. □

This proves the second part of Theorem 1.4. We end this section with the proof of the local Weyl laws,
Theorem 1.3. The proof works for any (1k) of the form (B).

Proof of Theorem 1.3. We use the same notation as in Corollary 7.5 and its proof. Let a, b ∈ ]−∞,3]\6y .
We have sp( f (y)) = 6y ∩ ]−∞,3]. When [a, b] ∩6y is empty, the first part of Theorem 7.4 implies
that N (y, a, b, k) = O(k−∞). To the contrary, assume that [a, b] ∩6y = {λ}. Then choose a function
g ∈ C∞

0 (]a, b[,R) which is equal to 1 on ]λ−ϵ, λ+ϵ[ for some ϵ > 0. Since N (y, a, λ−ϵ, k)=O(k−∞)

and N (y, λ+ ϵ, b, k)= O(k−∞) by the first part of the proof,

N (y, a, b, k)= g(k−11k)(y, y)+O(k−∞).

Since g(k−11k) is in L+(A) and has symbol g(□), we have by [Charles 2024, Theorem 2.2, Assertion 5
and Proposition 5.6]

g(k−11k)(y, y)=

(
k

2π

)n ∞∑
ℓ=0

mℓ,λk−ℓ
+O(k−∞),

with m0,λ = tr g(□)(y), so m0,λ is the multiplicity of λ as an eigenvalue of □y . □

8. Miscellaneous proofs

Proof of Lemma 4.5. This is essentially Darboux lemma with parameters. We can adapt the proof presented
in [McDuff and Salamon 2017, Section 3.2]. A more efficient approach based on [Bursztyn et al. 2019]
is as follows. First, if r is sufficiently small, for any y, the exponential map expy : Ty M → M restricts to
an embedding from By(r) into M. Identify U = expy(By(r)) with an open set of Ty M. We are looking
for a diffeomorphism ϕ defined on a neighborhood of the origin of Ty M such that ϕ(0)= 0, T0ϕ = id
and ϕ∗ω is constant. The important point is to define ϕ in such a way that it depends smoothly on y.

Let α be the primitive of ω on U obtained by radial homotopy. So

αx(v)=

∫ 1

0
ωt x(t x, v) dt, x ∈ U, v ∈ Ty M, (87)

and dα = ω. Let X be the vector field of U such that ιXω = 2α. By the Poincaré lemma, LXω = 2ω.
Furthermore, linearizing α at the origin, we see that X = E +O(2), with E the Euler vector field of
Ty M. Since Z = X − E vanishes to second order at the origin, the family Z t(x) := Z(t x)/t2 extends
smoothly at t = 0. Let ϕt be the flow of the time-dependent vector field Z t of U, that is, ϕ0(x) = x
and ϕ̇t(x) = Z t(ϕt(x)). Since Z t is zero at the origin, ϕ1 is a germ of a diffeomorphism of (Ty M, 0).
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By the proof of Lemma 2.4 in [Bursztyn et al. 2019], ϕ∗

1 X = E , where the pull-back is defined by
ϕ∗

1 X = (ϕ−1
1 )∗X . So LXω = 2ω implies that LEϕ

∗

1ω = 2ϕ∗

1ω. So ϕ∗

1ω is constant.
To conclude, observe that ϕ1 depends smoothly on y because α given in (87) depends smoothly on y,

so the same holds for X and Z t , and the solution of a first-order differential equation depending smoothly
on a parameter, is smooth with respect to the parameter. Finally the radius r0 is chosen so that ϕ1 is
defined on By(r0). Since M is compact, we can choose r0 > 0 independent of y. □

Proof of Lemma 4.6. Let d be the geodesic distance of M associated to our Riemannian metric. Starting
from d(y, expy(ξ))= ∥ξ∥ when ξ is sufficiently close to the origin, we get

C−1
∥ξ∥ ⩽ d(y, 9y(ξ))⩽ C∥ξ∥ (88)

for any ξ ∈ By(r1) with r1 sufficiently small. So if B(y, r) is the open ball of the metric space (M, d),
then 9y(By(r))⊂ B(y, rC)) and B(y, r)⊂9y(By(rC)). Define

v−(ϵ)= inf{vol(B(y, ϵ)) : y ∈ M}, v+(ϵ)= sup{vol(B(y, ϵ)) : y ∈ M}.

Then, replacing C by a larger constant if necessary, when ϵ is sufficiently small, C−1ϵ2n ⩽ v−(ϵ) and
v+(ϵ)⩽ Cϵ2n.

For any ϵ > 0, choose a maximal subset J (ϵ) of M such that the balls B(y, ϵ/2), y ∈ J (ϵ), are mutually
disjoint. From the maximality, M ⊂

⋃
y∈J (ϵ) B(y, ϵ) so that the sets Uy(ϵ) := 9y(By(ϵC)), y ∈ J (ϵ),

cover M. For any x ∈ M, let N (x, ϵ) be the number of y ∈ J (ϵ) such that x ∈Uy(ϵ). If x ∈Uy(ϵ), by triangle
inequality, B(y, ϵ/2)⊂ B(x, ϵ(1+C2)). Since the balls B(y, ϵ/2), y ∈ J (ϵ) are mutually disjoint, we have

N (x, ϵ)v−(ϵ/2)⩽ vol(B(x, ϵ(1 + C2)))⩽ v+(ϵ(1 + C2))

So N (x, ϵ)⩽ C2(2(1 + C2))2n . Thus the multiplicity of the cover Uy(ϵ), y ∈ J (ϵ), is bounded indepen-
dently of ϵ. □
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Szegő”, pp. 123–164 in Journées: Équations aux Dérivées Partielles de Rennes (Rennes, France, 1975), edited by J. Camus,
Astérisque 34-35, Soc. Math. France, Paris, 1976. MR Zbl

[Bursztyn et al. 2019] H. Bursztyn, H. Lima, and E. Meinrenken, “Splitting theorems for Poisson and related structures”, J. Reine
Angew. Math. 754 (2019), 281–312. MR Zbl

[Charles 2003] L. Charles, “Berezin–Toeplitz operators: a semi-classical approach”, Comm. Math. Phys. 239:1-2 (2003), 1–28.
MR Zbl

[Charles 2016] L. Charles, “Quantization of compact symplectic manifolds”, J. Geom. Anal. 26:4 (2016), 2664–2710. MR Zbl
[Charles 2024] L. Charles, “Landau levels on a compact manifold”, Ann. Henri Lebesgue 7 (2024), 69–121.
[Colin de Verdière 1979] Y. Colin de Verdière, “Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques”,
Comment. Math. Helv. 54:3 (1979), 508–522. MR Zbl

[Davies 1995] E. B. Davies, Spectral theory and differential operators, Cambridge Stud. Adv. Math. 42, Cambridge Univ. Press,
1995. MR Zbl

[Demailly 1985] J.-P. Demailly, “Champs magnétiques et inégalités de Morse pour la d ′′-cohomologie”, Ann. Inst. Fourier
(Grenoble) 35:4 (1985), 189–229. MR Zbl

[Dozias 1997] S. Dozias, “Clustering for the spectrum of h-pseudodifferential operators with periodic flow on an energy surface”,
J. Funct. Anal. 145:2 (1997), 296–311. MR Zbl

[Duistermaat 1996] J. J. Duistermaat, The heat kernel Lefschetz fixed point formula for the spin-c Dirac operator, Progr.
Nonlinear Diff. Eq. Appl. 18, Birkhäuser, Boston, 1996. MR Zbl

[Dyatlov and Zworski 2019] S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, Grad. Stud. in Math.
200, Amer. Math. Soc., Providence, RI, 2019. MR Zbl

[Faure and Tsujii 2015] F. Faure and M. Tsujii, Prequantum transfer operator for symplectic Anosov diffeomorphism, Astérisque
375, Soc. Math. France, Paris, 2015. MR Zbl

[Guillemin and Uribe 1988] V. Guillemin and A. Uribe, “The Laplace operator on the nth tensor power of a line bundle:
eigenvalues which are uniformly bounded in n”, Asymptotic Anal. 1:2 (1988), 105–113. MR Zbl

[Ivrii 1998] V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer, 1998. MR Zbl
[Kordyukov 2022] Y. A. Kordyukov, “Semiclassical spectral analysis of the Bochner–Schrödinger operator on symplectic
manifolds of bounded geometry”, Anal. Math. Phys. 12:1 (2022), art. id. 22. MR Zbl

[Ma and Marinescu 2002] X. Ma and G. Marinescu, “The Spinc Dirac operator on high tensor powers of a line bundle”, Math. Z.
240:3 (2002), 651–664. MR Zbl

[Ma and Marinescu 2007] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progr. Math. 254,
Birkhäuser, Basel, 2007. MR Zbl

[Ma and Marinescu 2008] X. Ma and G. Marinescu, “Generalized Bergman kernels on symplectic manifolds”, Adv. Math. 217:4
(2008), 1756–1815. MR Zbl

[McDuff and Salamon 2017] D. McDuff and D. Salamon, Introduction to symplectic topology, 3rd ed., Oxford Univ. Press,
2017. MR Zbl

[Morin 2020] L. Morin, “Spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle with constant rank
curvature”, preprint, 2020. arXiv 2010.00226

[Raymond 2017] N. Raymond, Bound states of the magnetic Schrödinger operator, EMS Tracts in Math. 27, Eur. Math. Soc.,
Zürich, 2017. MR Zbl
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VARIATIONAL METHODS FOR THE KINETIC FOKKER–PLANCK EQUATION
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We develop a functional-analytic approach to the study of the Kramers and kinetic Fokker–Planck equations
which parallels the classical H 1 theory of uniformly elliptic equations. In particular, we identify a function
space analogous to H 1 and develop a well-posedness theory for weak solutions in this space. In the case of
a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We
prove new functional inequalities of Poincaré- and Hörmander-type and combine them with basic energy
estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the C∞ regularity
of weak solutions. We also use the Poincaré-type inequality to give an elementary proof of the exponential
convergence to equilibrium for solutions of the kinetic Fokker–Planck equation which mirrors the classic dis-
sipative estimate for the heat equation. Finally, we prove enhanced dissipation in a weakly collisional limit.
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1. Introduction

1A. Motivation and informal summary of results. We develop a well-posedness and regularity theory
for weak solutions of the hypoelliptic equation

−1v f + v · ∇v f + v · ∇x f + b · ∇v f = f ∗ in Td
× Rd . (1-1)

The unknown function f (x, v) is a function of the position variable x ∈ Td and the velocity variable v ∈ Rd.
The PDE (1-1) is sometimes called the Kramers equation. We also consider the time-dependent version
of this equation, namely

∂t f −1v f + v · ∇v f + v · ∇x f + b · ∇v f = f ∗ in (0,∞)× Td
× Rd , (1-2)

which is often called the kinetic Fokker–Planck equation.
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These equations were first studied in [Kolmogorov 1934] and were the main motivating examples for
the general theory of [Hörmander 1967] of hypoelliptic equations. They are of physical interest due to
their relation with the Langevin diffusion process formally defined by

Ẍ = b(X)− Ẋ + Ḃ, (1-3)

where Ẋ, Ẍ stand respectively for the first and second time derivatives of X, a stochastic process taking
values in Rd, and Ḃ denotes a white noise process. Equation (1-3) can be interpreted as Newton’s law
of motion for a particle subject to the force field b(X), friction and thermal noise. This process can be
recast as a Markovian evolution for the pair (X, V ) evolving according to{

Ẋ = −V,
V̇ = −b(X)− V − Ḃ.

The infinitesimal generator of this Markov process is the differential operator appearing on the left side
of (1-1).

Kolmogorov [1934] gave an explicit formula for the fundamental solution of (1-2) in the case b = 0 and
U = Rd, which gives the existence of smooth solutions of (1-1) and (1-2) and implies that the operators
on the left sides of (1-1) and (1-2) are hypoelliptic—that is, if f is a distributional solution of either
of these equations and f ∗ is smooth, then f is also smooth. This result is extended to more general
equations in the celebrated paper [Hörmander 1967], where he gave an essentially complete classification
of hypoelliptic operators. In the case of the particular equations (1-1) and (1-2), his arguments yield a
more systematic proof of Kolmogorov’s results and, in particular, interior regularity estimates.

The study of hypoelliptic equations often falls back on the theory of pseudodifferential operators;
see for example Kohn’s proof [1973] of Hörmander’s classical result [1967], which is included in the
monograph [Hörmander 1985]. The purpose of this paper is rather to present a functional-analytic and
variational theory for (1-1) and (1-2) which has strong analogies to the familiar theory of uniformly
elliptic equations. In particular, in this paper we

• identify a function space H 1
hyp based on the natural energy estimates and develop a notion of weak

solutions in this space;

• prove functional inequalities for H 1
hyp, for instance a Poincaré-type inequality, which implies uniform

coercivity of our equations and holds not just on the spatial domain Td but on any C1 domain;

• develop a well-posedness theory of weak solutions based on the minimization of a uniformly convex
functional;

• develop a regularity theory for weak solutions, based on an iteration of energy estimates, which implies
that weak solutions are smooth;

• prove dissipative estimates for solutions of (1-2), using the coercivity of the variational structure, which
imply an exponential decay to equilibrium.

Such a theory has until now remained undeveloped, despite the attention these equations have received
in the last half century. The definition of the space H 1

hyp is not new: it and variants of it have been
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studied previously in [Baouendi and Grisvard 1968; Papanicolaou and Varadhan 1985; Carrillo 1998].
However, the functional inequalities and other key properties which are required to work with this space
are established here. A robust notion of weak solutions and corresponding well-posedness theory—besides
allowing one to prove classical results for (1-1) and (1-2) in a different way—is important because it
provides a natural framework for studying the stability of solutions (i.e., proving that a sequence of
approximate solutions converges to a solution). In fact, it is just such an application—namely, developing
a theory of homogenization for (1-2)—which motivated the present work. Furthermore, we expect that
the theory developed here will provide a closer link between the hypoelliptic equations (1-1) and (1-2)
and the classical theory of uniformly elliptic and parabolic equations, allowing, for example, for a more
systematic development of regularity estimates for solutions of the former by analogy to the latter. For
instance, it would be interesting to investigate a possible connection between the functional-analytic
framework proposed in this paper and the recent works [Wang and Zhang 2009; 2011; Golse et al. 2019;
Mouhot 2018], which develop De Giorgi–Nash-type Hölder estimates for generalizations of the kinetic
Fokker–Planck equations with measurable coefficients.1

In the first part of the paper, we address the well-posedness of (1-1) under a weak formulation based
on the Sobolev-type space H 1

hyp(T
d), defined below in (1-10). In the case in which b is a potential field,

we provide two proofs of well-posedness. The first relies on the abstract Lax–Milgram theorem, while
the second identifies a uniformly convex functional that has the sought-after weak solution as its unique
minimizer. The identification of the correct convex functional is inspired by [Brezis and Ekeland 1976a;
1976b] on variational formulations of parabolic equations (see also the more recent [Ghoussoub 2009;
Armstrong et al. 2018]). The proof that our functional is coercive relies on a new Poincaré-type inequality
for H 1

hyp; see Theorem 1.3 below. The Poincaré inequality in fact holds in a much more general setting
than the periodic setting in which we consider (1-1). Our convex-analytic arguments for well-posedness
can be immediately adapted to cover nonlinear equations such as those obtained by replacing 1v f in
(1-1) with ∇v · (a(x, v,∇v f )) for p 7→ a(x, v, p) a Lipschitz and uniformly maximal monotone operator
(uniformly over x ∈ Td and v ∈ Rd ).

Roughly speaking, the norm ∥ · ∥H1
hyp(U )

is a measure of the size of the vector fields ∇v f and v ·∇x f , but
crucially, the former is measured in a strong L2

x L2
v-type norm and the latter in a weaker L2

x H−1
v -type norm

(see (1-10) below). The importance of measuring the vector fields ∇v f and v ·∇x f using different norms
also features prominently in other works including [Bouchut 2002], but only spaces of positive regularity
are considered there. Measuring the term v · ∇x f in a space of negative regularity in the v-variable is
related to the idea of velocity averaging, the idea that one should expect better control of the spatial
regularity of a solution of (1-1) or (1-2) after averaging in the velocity variable. This concept is therefore
wired into the definition of the H 1

hyp norm, allowing us to perform velocity averaging in a systematic
way. Once we have proved the existence of weak solutions to (1-1) in H 1

hyp, we are interested in showing
that these solutions are in fact smooth. It is elementary to verify that the differential operators ∇v and
v · ∇x satisfy Hörmander’s bracket condition, and therefore, as exposed in [Hörmander 1967], a control

1We refer to [Guerand and Imbert 2022; Anceschi and Rebucci 2022], which appeared after the first version of the present
paper.
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of both ∇v f and v · ∇x f in L2
x L2

v would yield control of the seminorm of the function f in a fractional
Sobolev space of positive regularity, namely H 1/2

x L2
v . However, since the natural definition of the function

space H 1
hyp(U ) provides us only with control of v · ∇x f in a space of negative regularity in v, we are

forced to revisit the arguments of [Hörmander 1967]. A key step there is an interpolation-type inequality
which converts the L2

x H−1
v control on v · ∇x f (i.e., “velocity averaged” regularity) and L2

x H 1
v regularity

on f into L2
x L2

v regularity for a type of “fractional derivative” (v · ∇x)
1/2 f .2 With this interpolation in

hand, we then prove a functional inequality (see Theorem 1.4 below) which asserts that the H 1
hyp(U )

norm controls exactly one-third of a derivative in arbitrary x-directions in the space L2
x L2

v in a weaker
(Besov) sense, and almost one-third of a derivative in a stronger (Sobolev) sense. The one-third exponent
is identical to that in Hörmander’s paper and is sharp.3

Once we have proved that an arbitrary H 1
hyp function possesses at least a fractional derivative in

the x-variable, we are in a position to iterate the estimate by repeatedly differentiating the equation a
fractional number of times to obtain higher regularity (and eventually smoothness, under appropriate
assumptions on b and f ∗) of weak solutions. In order to perform this iteration, we again depart from the
original arguments of [Hörmander 1967] and subsequent treatments and rely on an appropriate version
of the Caccioppoli inequality (i.e., the basic L2 energy estimate) for (1-1). This avoids any recourse
to sophisticated pseudodifferential operators and once again mimics the classical functional-analytic
arguments in the uniformly elliptic setting.

The developments described above and even the variational structure identified for (1-1) are not restricted
to the time-independent setting. Indeed, we show that they can be adapted in a very straightforward
way to the kinetic Fokker–Planck equation (1-2), the main difference being that the first-order part in
a “sum-of-squares” representation of the differential operator is now ∂t + v · ∇x instead of just v · ∇x .
The adaptation thus consists in replacing the latter by the former throughout; the natural function space
associated with (1-2), denoted by H 1

kin, is defined in (6-2)–(6-3). We also prove a Poincaré inequality
for functions in H 1

kin which implies the uniform coercivity of the variational structure with respect to the
H 1

kin norm. This allows us to give a rather direct and natural proof of exponential long-time decay to
equilibrium for solutions of (1-2) with constant-in-time right-hand sides. This result (stated in Theorem 1.6
below) can be compared with the celebrated results of exponential convergence to equilibrium for kinetic
Fokker–Planck equations on Rd with confining potentials; see in particular [Desvillettes and Villani 2001;
Hérau and Nier 2004; Helffer and Nier 2005; Eckmann and Hairer 2003; Desvillettes and Villani 2005;
Villani 2009; Baudoin 2017; Dolbeault et al. 2015]; see also [Camrud et al. 2022; Talay 1999; 2002;

2The analogous estimate for the heat equation is f ∈ H1/2
t L2

x .
3When translating [Hörmander 1967] into the present setting, the vector field is X0 = ∂t +v ·∇x , and for simplicity we consider

the “flat case” in which X1 = ∇v . The regularity along X0 is of index 1
2 , while the regularity along X1 is of index 1. Then

Theorem 4.3 of [Hörmander 1967] gives regularity along the commutator ∇x = [X1, X0] of index 1
3 , since 1/

( 1
3
)
= 1/1+1/

( 1
2
)
.

In addition, the exponent 1
3 arises naturally in the following way: consider ∂t f + v · ∇x f − ε1v f = 0 on R+ × Rd

× Rd.
Dimensionally speaking, [ f ] = M , [x] = L , [v] = L/T , and [ε] = L2/T 3. The above PDE has a two-parameter scaling
symmetry which keeps ε fixed, namely, f → ρ f (λ2/3t, λx, λ1/3v), λ, ρ > 0. Here, ε is considered “dimensionless”: [ε] = 1,
that is, we identify L2

∼ T 3. In this convention, the unique exponent α for which ∥(−1)
α/2
x f ∥L2

t,x,v
has the same dimensions as

∥∇v f ∥L2
t,x,v

is α =
1
3 . Furthermore, the “flat case” is the formal limit of (1-2) upon “zooming in.”
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Grothaus and Stilgenbauer 2015] for a probabilistic approach. Compared to previous approaches, our
proof of exponential convergence is once again closer to the classical dissipative argument for the heat
equation based on differentiating the square of the spatial L2 norm of the solution. Informally, our method
is based on the idea that hypocoercivity is simply coercivity with respect to the correct norm.

1B. Statements of the main results. We begin by introducing the Sobolev-type function space H 1
hyp

associated with (1-1). We let U ⊆ Rd either be a bounded C1 domain with boundary, or we consider the
boundary-less settings of Rd itself or the torus Td with periodic boundary conditions. While we do not
prove unique solvability in H 1

hyp of the Dirichlet problem in bounded C1 domains, we nonetheless can
prove the Poincaré inequality, so we study the two settings (with and without boundary) in tandem. We
denote by γ the standard Gaussian measure on Rd, defined by

dγ (v) := (2π)−d/2 exp
(
−

1
2 |v|2

)
dv. (1-4)

For each p ∈ [1,∞), we denote by L p
γ := L p(Rd , dγ ) the Lebesgue space with norm

∥ f ∥L p
γ

:=

(∫
Rd

| f (v)|p dγ (v)
)1/p

,

and by H 1
γ the Banach space with norm

∥ f ∥H1
γ

:= (∥ f ∥
2
L2
γ
+ ∥∇ f ∥

2
L2
γ
)1/2.

The dual space of H 1
γ is denoted by H−1

γ . By abuse of notation, we typically denote the canonical pairing
⟨ · , · ⟩H1

γ ,H
−1
γ

between f ∈ H 1
γ and f ∗

∈ H−1
γ by∫

Rd
f f ∗ dγ := ⟨ f, f ∗

⟩H1
γ ,H

−1
γ
. (1-5)

Concerning the vector field b, we shall often make the following assumption. Throughout the rest of
the paper, we shall remind the reader when this assumption is in effect, or when we take more general
vector fields b.

Assumption 1.1. There exists W ∈ C0,1(U ; R) such that b(x)= −∇W (x) for almost every x ∈ U.

Under the above assumption, we denote by dσ the measure on U defined by

dσ(x) := exp(−W (x)) dx (1-6)

and by dm the measure on U × Rd defined by

dm(x, v) := dσ(x) dγ (v)= exp
(
−W (x)− 1

2 |v|2
)

dx dv. (1-7)

A consequence of this definition and integration by parts is the equality∫∫
Td×Rd

(v · ∇x f (x, v)+ b(x) · ∇v f (x, v)) dm = 0 (1-8)

for all smooth Td -periodic functions f .
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Given p ∈ [1,∞), U ⊆ Rd and an arbitrary Banach space X, we denote by L p(U ; X) the Banach
space consisting of measurable functions f : U → X with norm

∥ f ∥L p(U ;X) :=

(∫
U

∥ f (x, · )∥p
X dx

)1/p

.

It will occasionally be convenient to consider the space L p
σ (U ; X), which contains functions for which

the norm

∥ f ∥L p
σ (U ;X) :=

(∫
U

∥ f (x, · )∥p
X dσ

)1/p

is finite. Notice that, on bounded domains, the above norms induced by dx and dσ are equivalent under
Assumption 1.1.

We define the space H 1
hyp(U ) by

H 1
hyp(U ) := { f ∈ L2(U ; H 1

γ ) : v · ∇x f ∈ L2(U ; H−1
γ )} (1-9)

and equip it with the norm

∥ f ∥H1
hyp(U )

:= (∥ f ∥
2
L2(U ;H1

γ )
+ ∥v · ∇x f ∥

2
L2(U ;H−1

γ )
)1/2. (1-10)

When b satisfies Assumption 1.1, it is natural to define the H 1
hyp norm with ∥v · ∇x f + b · ∇v f ∥L2

σ (U ;H−1
γ )

replacing ∥v · ∇x f ∥L2(U ;H−1
γ ) in (1-9). The two norms are evidently equivalent on a bounded domain.

Given a bounded domain U ⊆ Rd and a vector field b ∈ L∞(U × Rd)d, we say that a function
f ∈ H 1

hyp(U ) is a weak solution of (1-1) in U × Rd if,

for all h ∈ L2(U ; H 1
γ ),

∫
U×Rd

∇vh · ∇v f dx dγ =

∫
U×Rd

h( f ∗
− v · ∇x f − b · ∇v f ) dx dγ.

As in (1-5), the precise interpretation of the right side is∫
U
⟨h(x, · ), ( f ∗

− v · ∇x f − b · ∇v f )(x, · )⟩H1
γ ,H

−1
γ

dx . (1-11)

As mentioned previously, we assume throughout that the domain U ⊆ Rd is bounded and has a C1

boundary, or that U = Td with periodic boundary conditions or U = Rd. In the case U ̸= Td,Rd, we
denote by nU the outward-pointing unit normal to ∂U and define the hypoelliptic boundary of U by

∂hypU := {(x, v) ∈ ∂U × Rd
: v · nU (x) < 0}.

We denote by H 1
hyp,0(U ) the closure in H 1

hyp(U ) of the set of smooth functions with compact support in
U × Rd which vanish on ∂hypU.

We give a first demonstration that H 1
hyp(U ) is indeed the natural function space on which to build a

theory of weak solutions of (1-1) by presenting a well-posedness result for the Kramers equation.

Theorem 1.2 (well-posedness of the Kramers equation). Let b satisfy Assumption 1.1, and let f ∗
∈

L2(Td
; H−1

γ ) be such that
∫∫

Td×Rd f ∗(x,v)dm=0. Then there exists a unique weak solution f ∈ H 1
hyp(T

d)
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to the Kramers equation

−1v f + v · ∇v f + v · ∇x f + b · ∇v f = f ∗ in Td
× Rd , (1-12)

with
∫∫

Td×Rd f (x, v) dm = 0. Furthermore, there exists a constant C(b, d) <∞ such that f satisfies the
estimate

∥ f ∥H1
hyp(T

d ) ⩽ C∥ f ∗
∥L2(Td ;H−1

γ ). (1-13)

We next give an informal discussion regarding how one could naively guess that H 1
hyp is the “correct”

space for solving (1-1), and how our proof of Theorem 1.2 will work. We take the simpler case of matrix
inversion in finite dimensions as a starting point. Given two matrices A and B with B skew-symmetric
and a vector f ∗, consider the problem of finding f such that

(A∗ A + B) f = f ∗, (1-14)

where A∗ denotes the transpose of A. We propose to approach this problem by looking for a minimizer
of the functional

f 7→ inf
{1

2(A f − g, A f − g) : A∗ g = f ∗
− B f

}
,

where ( · , · ) denotes the underlying scalar product. It is clear that the infimum is nonnegative, and if f is
a solution to (1-14), then choosing g = A f shows that this infimum is actually zero (null). Moreover,
since B is skew-symmetric, whenever ( f, g) satisfy the constraint in the infimum above, we have

1
2(A f − g, A f − g)=

1
2(A f, A f )+ 1

2(g, g)− ( f, f ∗). (1-15)

The latter quantity is clearly a convex function of the pair ( f, g). The point is that under very mild
assumptions on A and B, it will in fact be uniformly convex on the set of pairs ( f, g) satisfying the
(linear) constraint A∗ g = f ∗

− B f . Informally, the functional in (1-15) is coercive with respect to the
seminorm ( f, g) 7→ |A f | + |g| + |A(A∗ A)−1 B f |.

With this analogy in mind, and assuming that b vanishes for simplicity, we rewrite the problem of
finding a solution to (1-1) (with b ≡ 0) as that of finding a null minimizer of the functional

f 7→ inf
{∫

Td×Rd

1
2 |∇v f − g|

2 dx dγ : ∇
∗

v g = f ∗
− v · ∇x f

}
, (1-16)

where ∇
∗
v F := −∇v · F + v · F is the formal adjoint of ∇v in L2

γ . It is clear that the infimum above is
nonnegative, and if we are provided with a solution f to (1-1) (with b ≡ 0), then choosing g = ∇v f
reveals that this infimum vanishes at f . This functional gives strong credence to the definition of the
space H 1

hyp(U ) given in (1-9). Using convex-analytic arguments, we show that the mapping in (1-16) is
uniformly convex, and that its infimum is null. This implies the well-posedness of the problem (1-1) with
b ≡ 0. The proof of coercivity relies on the following Poincaré-type inequality for H 1

hyp(U ).
For every f ∈ L1(U ; L1

γ ), we define ( f )U := |U |
−1

∫
U×Rd f (x, v) dσ(x) dγ (v). For the purposes of

the Poincaré inequality, we may set U = Td or U ⊆ Rd a general C1 domain. See Proposition 3.3 and
[Cao et al. 2023] for an extension to the case U = Rd with a confining potential.
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Theorem 1.3 (Poincaré inequality for H 1
hyp). For U = Td or U ⊆ Rd a general bounded C1 domain,

there exists a constant C(U, d) <∞ such that, for every f ∈ H 1
hyp(U ), we have

∥ f − ( f )U ∥L2(U ;L2
γ )
⩽ C(∥∇v f ∥L2(U ;L2

γ )
+ ∥v · ∇x f ∥L2(U ;H−1

γ )). (1-17)

Moreover, if in addition f ∈ H 1
hyp,0(U ), then we have

∥ f ∥L2(U ;L2
γ )
⩽ C(∥∇v f ∥L2(U ;L2

γ )
+ ∥v · ∇x f ∥L2(U ;H−1

γ )). (1-18)

The inequality (1-17) asserts that, up to an additive constant, the full H 1
hyp(U ) norm of a function f is

controlled by the seminorm

[[ f ]]H1
hyp(U )

:= ∥∇v f ∥L2(U ;L2
γ )

+ ∥v · ∇x f ∥L2(U ;H−1
γ ).

In particular, any distribution f with [[ f ]]H1
hyp(U )

<∞ is actually a function, which moreover belongs
to L2

x L2
γ . The inequality (1-18) is a then simple extension which shows that for functions which vanish

on the hypoelliptic boundary, the full H 1
hyp norm is controlled by the seminorm.

The proof of Theorem 1.3 thus necessarily uses the Hörmander bracket condition, although in this case
the way it is used is rather implicit. If we follow Hörmander’s ideas more explicitly, then we obtain more
information, namely some positive (fractional) regularity in the x-variable. This is encoded in the following
functional inequality, which we call the Hörmander inequality. The definitions of the fractional Sobolev
spaces Hα used in the statement are given in Section 3B; see (3-30). The Besov space Q1/3

∇x
(U ) is defined

in (2-13) in Section 2C and measures difference quotients in the spatial variable x of fractional order 1
3 .

Theorem 1.4 (Hörmander inequality for H 1
hyp). Let α ∈

[
0, 1

3

)
, and let U = Td or U = Rd . There exists a

constant C(α, d) <∞ such that, for every f ∈ H 1
hyp(U ), we have the estimate

∥ f ∥Hα(U ;L2
γ )
⩽ C∥ f ∥H1

hyp(U )
. (1-19)

For α =
1
3 , we have the estimate

∥ f ∥Q1/3
∇x (U )

⩽ C∥ f ∥H1
hyp(U )

. (1-20)

The inequality (1-19) gives control over a norm with nonnegative regularity in x and v. The estimate
should be considered as an interior estimate in x ; in other words, for U a general domain and any f ∈

H 1
hyp(U ), we can apply the inequality (1-19) after multiplying f by a smooth cutoff function which

vanishes for x near ∂U.
Our next main result asserts that weak solutions of (1-1) are actually smooth. This is accomplished by

an argument which closely parallels the one for obtaining H k regularity for solutions of uniformly elliptic
equations. We first obtain a version of the Caccioppoli inequality, that is, a reverse Poincaré inequality,
which states that the H 1

hyp seminorm of a solution of (1-1) can be controlled by its L2 oscillation (see
Lemma 5.1 for the precise statement). Combined with Theorem 1.4, this tells us that a fractional spatial
derivative of a solution of (1-1) can be controlled by the L2 oscillation of the function itself. This estimate
can then be iterated: we repeatedly differentiate the equation a fractional amount to obtain estimates of
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the higher derivatives of the solution in the x-variable; we then obtain estimates for derivatives in the
v-variable relatively easily.

Notice that the following statement implies that solutions of (1-1) are C∞ in both variables (x, v)
provided that the vector field b is assumed to be smooth. For convenience, in the statement below we use
the convention C−1,1

= L∞.

Theorem 1.5 (interior Sobolev regularity for (1-1)). Let k ∈ N, r ∈ (0,∞) and b ∈ Ck−1,1(Br × Rd
; Rd).

There exists a constant C <∞ depending on

(d, k, r, ∥b∥Ck−1,1(Br ×Rd ;Rd ))

such that, for every f ∈ H 1
hyp(Br ) and f ∗

∈ L2(Br ; H−1
γ ) satisfying

−1v f + v · ∇v f + v · ∇x f + b · ∇v f = f ∗ in Br × Rd , (1-21)

the following holds: if ∂α f ∗
∈ L2(Br ; H−1

γ ) for all multi-indices α ∈ Nd
× Nd with |α|⩽ k, then we have

∂α f ∈ H 1
hyp(Br/2) and the estimate

∥∂α f ∥H1
hyp(Br/2)

⩽ C(∥ f − ( f )Br ∥L2(Br ;L2
γ )

+

∑
|β|⩽k

∥∂β f̃ ∗
∥L2(Br ;H−1

γ ))

for all multi-indices α ∈ Nd
× Nd with |α| ⩽ k.

The results stated above are for the time-independent Kramers equation (1-1). In Section 6, we develop
an analogous theory for the time-dependent kinetic Fokker–Planck equation (1-2) with an associated
function space H 1

kin (defined in (6-2)–(6-3)) in place of H 1
hyp. In particular, we obtain analogues of the

results above for (1-2) which are stated in Section 6.
The long-time behavior of solutions of (1-2) has been studied by many authors in the last two

decades: see [Desvillettes and Villani 2001; Hérau and Nier 2004; Helffer and Nier 2005; Eckmann and
Hairer 2003; Desvillettes and Villani 2005; Villani 2009]. Most of these papers consider the case in
which b(x)= −∇W (x) for a potential W which has sufficient growth at infinity, in which case dm is an
explicit invariant measure, and solutions of (1-2) can be expected to converge exponentially fast to the
constant which is the integral of the initial data with respect to the invariant measure. This setting is in
a certain sense easier than the Dirichlet problem, since one does not have to worry about the boundary.
While our methods could also handle this setting, we formulate a result for the exponential convergence
of a solution of the Cauchy–Dirichlet problem with constant-in-time right-hand side to the solution of the
time-independent problem.

Theorem 1.6 (convergence to equilibrium). Let U ⊆ Rd be a C1 domain and b ∈ L∞(U ; C0,1(Rd))d.
There exists λ(∥b∥L∞(U×Rd ),U, d) > 0 satisfying the following property. Let f ∗

∈ L2(U ; H−1
γ ). Suppose

that f∞ ∈ H 1
hyp,0(U ) solves (1-12), and that, for every T ∈ (0,∞), f ∈ H 1

kin((0, T )× U ) solves{
∂t f −1v f + v · ∇v f + v · ∇x f + b · ∇v f = f ∗ in (0, T )× U × Rd ,

f = 0 on (0, T )× ∂hypU,
(1-22)



1962 DALLAS ALBRITTON, SCOTT ARMSTRONG, JEAN-CHRISTOPHE MOURRAT AND MATTHEW NOVACK

where the boundary condition is satisfied in the sense that f ∈ H 1
kin,||((0, T )× U ).4 Then, for every t ⩾ 0,

we have

∥ f (t, · )− f∞∥L2(U ;L2
γ )
⩽ 2 exp(−λt)∥ f (0, · )− f∞∥L2(U ;L2

γ )
. (1-23)

Notice that interior regularity estimates immediately upgrade the L2 convergence in (1-23) to conver-
gence in spaces of higher regularity (at least in the interior) with the same exponential rate.

Unlike previous arguments establishing the exponential decay to equilibrium of solutions of (1-2)
which are based on differentiation of perhaps nontransparent quantities involving the solution and several
(possibly mixed) derivatives in both x and v, the proof of Theorem 1.6 we give here is elementary and
close to the classical dissipative estimate for uniformly parabolic equations. The essential idea is to
differentiate the square of the L2 norm of the solution and then apply the Poincaré inequality. We cannot
quite perform the computation exactly like this, and so we use a finite difference instead of the time
derivative and apply a version of the Poincaré inequality adapted to the kinetic equation in a thin cylinder
(see Proposition 6.2). Unlike previous approaches, our method therefore relates the positive constant λ
in (1-23) to the optimal constant in a Poincaré-type inequality. One caveat of Theorem 1.6 is that, while
we have a hypoelliptic Poincaré inequality in the above setting, we do not yet have a well-posedness
theory in H 1

kin except when U = Td.
Finally, we prove an enhanced dissipation estimate for solutions to the kinetic Fokker–Planck equation

on the torus Td with no right-hand side and b ≡ 0 in a weakly collisional limit ε→ 0+. The PDE satisfied
by f when initial data fin is given then becomes{

∂t f + v · ∇x f = ε(1v f − v · ∇v f ) in (0,∞)× Td
× Rd ,

f |t=0 = fin.
(1-24)

The spatial averages favg(t, v) :=
∫

Td f (t, x, v) dx satisfy

∂t favg = ε(1v favg − v · ∇v favg) (1-25)

and decay only on the dissipative timescale Td ∼ ε−1, as can be seen by rescaling t in (1-25). In the
setting of (1-24), enhanced dissipation is the observation that f − favg decays on the faster timescale
Te ∼ ε−1/3:

Theorem 1.7 (enhanced dissipation). There exist constants C(d) <∞ and c(d) > 0 such that, for every
ε ∈ (0, 1], initial data fin ∈ L2(Td

; L2
γ ) satisfying∫

Td
fin(x, v) dx = 0 for all v ∈ Rd , (1-26)

and for f the unique solution of (1-24) constructed in Proposition 6.10, we have

∥ f (t, · , · )∥L2(Td ;L2
γ )
⩽ C∥ fin∥L2(Td ;L2

γ )
exp(−cε−1/3t). (1-27)

4 H1
kin,||((0, T )× U ) is defined to be the closure of test functions C∞([0, T ]; U ) vanishing on the lateral part of the

hypoelliptic boundary; see Section 6E.
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When enhancement cannot be extracted directly from an explicit solution formula, it is often approached
by hypocoercivity techniques, which were developed in [Villani 2009] in the context of kinetic theory;
see also [Guo 2002]. These methods were adapted to the context of fluid dynamics in work of Gallagher,
Gallay, and Nier [Gallagher et al. 2009], Beck and Wayne [2013], and Bedrossian and Coti Zelati [2017].
In joint work of the first and last authors with Beekie [Albritton et al. 2022], we demonstrated enhancement
for solutions of certain advection-diffusion equations (passive scalars in shear flows) by methods which
adhered more closely to Hörmander’s original paper [1967]. In particular, the H 1

hyp framework presented
here was readily extended to problems requiring more brackets to span the tangent space. Theorem 1.7,
which is inspired by [Albritton et al. 2022], follows from an appropriate time- and ε-dependent version of
the Hörmander inequality from Theorem 1.4.

In principle, one may also prove (1-27) with b satisfying Assumption 1.1; see Remark 6.14. It would
be interesting to understand this method in the context of the Boltzmann and Landau equations.

1C. On unique solvability of the Dirichlet problem. There is a subtle point in the analysis of the Dirichlet
problem for (1-1) on general domains U which is due to the fact that we should prescribe the boundary
condition only on part of the boundary, namely ∂hypU := {(x, v) ∈ ∂U × Rd

: v · nU (x) < 0}, where nU

denotes the outer normal to U. There is a difficulty coming from the possibly wild behavior of the trace of
an H 1

hyp function near the singular set {(x, v) ∈ ∂U × Rd
: v · nU (x)= 0}, sometimes called the grazing

set. The following question remains open:5

Question 1.8. Does there exist C(U, d) <∞ such that, for every f ∈ C∞
c (U × Rd),∫

∂U×Rd
f 2

|v · nU | dx dγ ⩽ C∥ f ∥
2
H1

hyp(U )
?

In the case of one spatial dimension (d = 1), this difficulty has been previously overcome and the
well-posedness result was already proved in [Baouendi and Grisvard 1968]. A generalization to higher
dimensions was announced in [Carrillo 1998], but we think that the argument given there is incomplete
because the difficulty concerning the boundary behavior was not satisfactorily treated. This is explained
in more detail in Appendix A of the original version [Armstrong and Mourrat 2019] of the present work.
A different way to phrase the main difficulty is discussed in Remark 4.3.

The original version [Armstrong and Mourrat 2019] of this paper contained an error in the treatment
of the Dirichlet and Cauchy–Dirichlet problems for the Kramers and kinetic Fokker–Planck equations,
respectively.6 We were unable to repair the proof; see Remark 4.3 below. In this version, we only prove
unique solvability on the torus. It remains an interesting open question whether unique solvability holds
with boundary in the natural H 1

hyp class.
In the intervening years, we succeeded in improving the results in other ways. Foremost, we sharpened

the Hörmander-type inequality from α =
1
6− to α =

1
3− without cutoffs in the velocity variable. The

second and third authors view this as a significant strengthening of the paper, essentially due to the first

5It is not difficult to define a pointwise a.e. trace away from the singular set, see Lemma 4.3 in the original version [Armstrong
and Mourrat 2019] of this paper on arXiv, but apparently this has limited usefulness.

6See two equations below (4.20) in the original version on arXiv (“Arguing as in for the last term in (4.19). . . ”).
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and fourth authors. This allows us to prove enhanced relaxation to equilibrium, which was not contained
in the first version of the paper. There have also been many works revisiting [Hörmander 1967] and
at least partially inspired by the first version; see [Bedrossian et al. 2022; Bedrossian and Liss 2021;
Armstrong et al. 2018; Guerand and Imbert 2022; Anceschi and Rebucci 2022; Brigati 2023; Cao et al.
2023; Lu and Wang 2022].

1D. Outline of the paper. In the next section we present the function space H 1
hyp(U ) and its important

properties, as well as the Besov spaces used in the Hörmander inequality. In Section 3 we prove the
functional inequalities stated in Theorems 1.3 and 1.4 and establish the compactness of the embedding
of H 1

hyp(U ) into L2(U ; L2
γ ). In Section 4 we give two proofs of Theorem 1.2 on the well-posedness of

the Dirichlet problem for the Kramers equation. The interior regularity of solutions, and in particular
Theorem 1.5, is obtained in Section 5. Finally, in Section 6 we prove the analogous results for the kinetic
Fokker–Planck equation (1-2) as well as the exponential decay to equilibrium (Theorem 1.6) and the
enhancement estimate (Theorem 1.7).

2. Function space basics

In this section, we establish some basic properties of the function space H 1
hyp(U ) defined in (1-9)–(1-10)

and introduce several Besov-type spaces which will be necessary for the proof of the Hörmander inequality.

2A. Properties of H1
γ and H−1

γ . We start by setting up some notation that will be used throughout the
paper. We denote the formal adjoint of the operator ∇v by ∇

∗
v ; that is, for every F ∈ (H 1

γ )
d, we define

∇
∗

v F := −∇v · F + v · F. (2-1)

This definition can be extended to any F ∈ (L2
γ )

d, in which case ∇
∗
v F ∈ H−1

γ and we have, for every f ∈ H 1
γ ,∫

Rd
f ∇

∗

v F dγ =

∫
Rd

∇v f · F dγ.

Recall that the left side above is shorthand notation for the duality pairing between H 1
γ and H−1

γ . We
denote the average of a function f ∈ L1

γ by

⟨ f ⟩γ :=

∫
Rd

f dγ. (2-2)

Since 1 ∈ H 1
γ , the definition of ⟨ f ⟩γ can be extended to arbitrary f ∈ H−1

γ . The Gaussian Poincaré
inequality states that, for every f ∈ H 1

γ ,

∥ f − ⟨ f ⟩γ ∥L2
γ
⩽ ∥∇v f ∥L2

γ
.

We can thus replace ∥ f ∥L2
γ

by |⟨ f ⟩γ | in the definition of H 1
γ and have an equivalent norm:

|⟨ f ⟩γ |
2
+ ∥∇ f ∥

2
L2
γ
⩽ ∥ f ∥

2
H1
γ
⩽ 2|⟨ f ⟩γ |

2
+ 3∥∇ f ∥

2
L2
γ
.

This comparison of norms has the following counterpart for the dual space H−1
γ .
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Lemma 2.1 (identification of H−1
γ ). There exists a universal constant C<∞ such that, for every f ∗

∈H−1
γ ,

C−1
∥ f ∗

∥H−1
γ

⩽ |⟨ f ∗
⟩γ | + inf{∥h∥L2

γ
: ∇

∗

v h = f ∗
− ⟨ f ∗

⟩γ } ⩽ C∥ f ∗
∥H−1

γ
. (2-3)

Proof. The bilinear form

( f, g) 7→ ⟨ f ⟩γ ⟨g⟩γ +

∫
Rd

∇v f · ∇vg dγ

is a scalar product for the Hilbert space H 1
γ . By the Riesz representation theorem, for every f ∗

∈ H−1
γ ,

there exists g ∈ H 1
γ such that,

for all f ∈ H 1
γ ,

∫
Rd

f f ∗ dγ = ⟨ f ⟩γ ⟨g⟩γ +

∫
Rd

∇v f · ∇vg dγ.

(Recall that the integral on the left side is convenient notation for the canonical pairing between H 1
γ

and H−1
γ .) We clearly have ⟨g⟩γ = ⟨ f ∗

⟩γ , and thus

|⟨g⟩γ |
2
+

∫
Rd

|∇vg|
2 dγ ⩽ ∥g∥H1

γ
∥ f ∗

∥H−1
γ
.

This implies that ∥∇vg∥L2
γ
⩽ C∥ f ∗

∥H−1
γ

, and since ∇
∗
v∇vg = f ∗

− ⟨ f ∗
⟩γ , this proves the rightmost

inequality in (2-3). Conversely, for any h ∈ L2
γ , if

f ∗
= ⟨ f ∗

⟩γ + ∇
∗

v h,

then, for every f ∈ H 1
γ , ∣∣∣∣∫

Rd
f f ∗ dγ

∣∣∣∣ ⩽ |⟨ f ⟩γ ||⟨ f ∗
⟩γ | + ∥∇ f ∥L2

γ
∥h∥L2

γ
,

and thus the leftmost inequality in (2-3) holds. □

We often work with the dual pair of Banach spaces L2(U ; H 1
γ ) and L2(U ; H−1

γ ). With the identification
given by Lemma 2.1, we have

∥ f ∗
∥L2(U ;H−1

γ ) ≃ ∥⟨ f ∗
⟩γ ∥L2(U ) + inf{∥g∥L2(U ;L2

γ )
: ∇

∗

v g = f ∗
− ⟨ f ∗

⟩γ }, (2-4)

in the sense that the norms on each side are equivalent.
For convenience, for every f ∈ L1(U ; L1

γ ), we use the shorthand notation

( f )U := |U |
−1

∫
U×Rd

f (x, v) dσ(x) dγ (v). (2-5)

We will occasionally also use this notation in the case when f depends only on the space variable x , in
which case we simply have ( f )U = |U |

−1
∫

U f dσ(x).
In the proof of the Hörmander inequality, it will be beneficial to understand which type of finite

differences are controlled by ∥ f ∥H1
γ
. Recall that

dγ (v) := (2π)−d/2 exp
(
−

1
2 |v|2

)
dv.
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The fundamental issue is that γ ( · + h) is not comparable to γ , above and below, uniformly in v. For
instance, while the translation of the measure γ by a fixed vector y ∈ Rd is absolutely continuous with
respect to γ , the associated Radon–Nikodym derivative is unbounded (unless y = 0). This distinguishes
Gaussians from e−⟨x⟩, for example, and changes the finite difference characterization of the space

∥∇vu∥L2(U ;L2
γ )
,

since its finite difference characterization is not in the seminorm

sup
h>0

h−1
∥u(x, v+ h)− u(x, v)∥L2(U ;L2

γ )
.

Towards an appropriate characterization, we first note that a consequence of the logarithmic Sobolev
inequality and the Gaussian Poincaré inequality is the estimate

∥|v|u∥L2(U ;L2
γ )
≲ ∥∇vu∥L2(U ;L2

γ )
(2-6)

for functions u satisfying ⟨u⟩γ = 0; the reader may consult (3-35) and the ensuing discussion for details.
The inequality (2-6), together with the product rule, gives

∥∇v(uγ 1/2)∥L2(U ;L2(Rd )) ≲ ∥∇vu∥L2(U ;L2
γ (R

d )),

and since the left-hand side has a finite difference characterization, we have

sup
h∈Rd\{0}

|h|
−1

∥u(x, v+ h)γ 1/2(v+ h)− u(x, v)γ 1/2(v)∥L2(U ;L2(Rd )) ≲ ∥∇vu∥L2(U ;L2
γ )
. (2-7)

We refer to [Lunardi 2018] for further discussion.

2B. Density of smooth functions in H1
hyp. We show that the set of smooth functions is dense in H 1

hyp.

Proposition 2.2. The set C∞
c (U × Rd) of smooth functions with compact support in U × Rd is dense in

H 1
hyp(U ).

Proof. We focus on the case when U ⊆ Rd is a bounded C1 domain. When U = Td, the proof can be
done more simply by cutting off in v and mollifying.

We decompose the proof into three steps.

Step 1: In this step, we show that it suffices to consider the case when U satisfies a convenient quantitative
form of the star-shape property. For every z ∈ ∂U, there exist a radius r > 0 and a C1 function
9 ∈ C1(Rd−1

; R) such that, up to a relabelling of the axes, we have

U ∩ B(z, r)= {x = (x1, . . . , xd) ∈ B(z, r) : xd >9(x1, . . . , xd−1)}.

Since 9 is a C1 function, there exists δ > 0 such that for every x ∈ U ∩ B(z, r), we have the cone
containment property {

x + y :
yd

|y|
⩾ 1 − δ

}
∩ B(z, r)⊆ U. (2-8)
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Setting
z′

= z +

(
0, . . . , 0, r

2

)
∈ Rd ,

and reducing δ > 0 if necessary, we claim that, for every x ∈ U ∩ B(z, δ2) and ε ∈ (0, 1], we have

B(x − ε(x − z′), δ2ε)⊆ U. (2-9)

Assuming the contrary, let y ∈ Rd be such that

x + y ∈ B(x − ε(x − z′), δ2ε) \ U.
Then

|y + ε(x − z′)| ⩽ δ2ε,

and therefore ∣∣∣y − ε
(

0, . . . , 0, r
2

)∣∣∣ ⩽ ∣∣∣y + ε(x − z)− ε
(

0, . . . , 0, r
2

)∣∣∣ + ε|x − z|

⩽ |y + ε(x − z′)| + ε|x − z| ⩽ 2δ2ε.

Taking δ > 0 sufficiently small, we arrive at a contradiction with the cone property (2-8). Now that (2-9)
is proved for every x in a relative neighborhood of z, and up to a further reduction of the value of δ > 0 if
necessary, it is not difficult to show that one can find an open set U ′ containing z and z′ and such that
(2-9) holds for every x ∈ U ∩ U ′.

Summarizing, and using the fact that U is a bounded set, we have shown that there exist families of
bounded open sets U1, . . . ,UM ⊆ Rd, points x1, . . . , xM ∈ Rd and a parameter r > 0 such that

U =

M⋃
k=1

Ui

and for every k ∈ {1, . . . ,M}, x ∈ Uk and ε ∈ (0, 1],

B(x − ε(x − xk), rε)⊆ Uk .

By using a partition of unity, we can reduce our study to the case when this property is satisfied for the
domain U itself (in place of each of the Uk’s). By translation, we may assume that the reference point xk

is at the origin, and by scaling, we may also assume that this property holds with r = 1. That is, from
now on, we assume that, for every x ∈ U and ε ∈ (0, 1], we have

B((1 − ε)x, ε)⊆ U. (2-10)

Step 2: Let f ∈ H 1
hyp(U ). We aim to show that f belongs to the closure of the set C∞

c (U × Rd) in
H 1

hyp(U ). Without loss of generality, we may assume that f is compactly supported in U × Rd. Indeed, if
χ ∈ C∞

c (R
d
; R) is a smooth function with compact support and such that χ ≡ 1 in a neighborhood of the

origin, then the function (x, v) 7→ f (x, v)χ(v/M) belongs to H 1
hyp(U ) and converges to f in H 1

hyp(U )
as M tends to infinity.

Let ζ ∈ C∞
c (R

d
; R) be a smooth function with compact support in B(0, 1) and such that

∫
Rd ζ = 1.

For each ε > 0 and x ∈ Rd, we write
ζε(x) := ε−dζ(ε−1x), (2-11)
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and we define, for each ε ∈
(
0, 1

2

]
, x ∈ U and v ∈ Rd,

fε(x, v) :=

∫
Rd

f ((1 − ε)x + y, v)ζε(y) dy.

Note that this definition makes sense by the assumption of (2-10). The goal of this step is to show that f
belongs to the closure in H 1

hyp(U ) of the convex hull of the set
{

fε : ε ∈
(
0, 1

2

]}
. By Mazur’s lemma (see

[Ekeland and Temam 1976, page 6]), it suffices to show that fε converges weakly to f in H 1
hyp(U ). Since

it is elementary to show that fε converges to f in the sense of distributions, this boils down to checking
that fε is bounded in H 1

hyp(U ). By Jensen’s inequality,

∥∇v fε∥2
L2(U ;L2

γ )
⩽

∫
U×Rd

∫
Rd

|∇v f |
2((1 − ε)x + y, v)ζε(y) dy dx dγ (v)

⩽ (1 − ε)−d
∥∇v f ∥

2
L2(U ;L2

γ )
.

In order to evaluate ∥v · ∇x fε∥L2(U ;H−1
γ ), we compute, for every ϕ ∈ L2(U ; H 1

γ ),∫
U×Rd

v · ∇x fε ϕ dx dγ = (1 − ε)

∫
U×Rd

∫
Rd
v · ∇x f ((1 − ε)x + y, v)ζε(y)ϕ(x, v) dy dx dγ (v)

= (1 − ε)1−d
∫

U×Rd

∫
Rd
v · ∇x f (x + y, v)ζε(y) ϕ

(
x

1 − ε
, v

)
dy dx dγ (v)

=

∫
U×Rd

∫
Rd
v · ∇x f (y, v)ζε(y − x) ϕ

(
x

1 − ε
, v

)
dy dx dγ (v).

Since, by Jensen’s inequality,∫
U×Rd

∣∣∣∣∫
U
ζε(y − x)ϕ

(
x

1 − ε
, v

)
dx

∣∣∣∣2

dy dγ (v)⩽ (1 − ε)−d
∥ϕ∥

2
L2(U ;L2

γ )
,

as well as ∫
U×Rd

∣∣∣∣∫
U
ζε(y − x)∇vϕ

(
x

1 − ε
, v

)
dx

∣∣∣∣2

dy dγ (v)⩽ (1 − ε)−d
∥∇vϕ∥

2
L2(U ;L2

γ )
,

we deduce that ∫
U×Rd

v · ∇x fε ϕ dx dγ ⩽ (1 − ε)1−3d/2
∥v · ∇x f ∥L2(U ;H−1

γ )∥ϕ∥L2(U ;H1
γ )
,

and therefore

∥v · ∇x fε∥L2(U ;H−1
γ ) ⩽ (1 − ε)1−3d/2

∥v · ∇x f ∥L2(U ;H−1
γ ).

This completes the proof that the set
{

fε : ε ∈
(
0, 1

2

]}
is bounded in H 1

hyp(U ), and thus that f belongs to
the closed convex hull of this set.

Step 3: It remains to be shown that for each fixed ε ∈
(
0, 1

2

]
, the function fε belongs to the closure in

H 1
hyp(U ) of the set C∞

c (U × Rd). For every η ∈ (0, 1], we define

fε,η(x, v) :=

∫
Rd

fε(x, w)ζη(v−w) dw

=

∫
Rd

∫
Rd

f (y, w)ζε(y − (1 − ε)x)ζη(v−w) dy dw.
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From the last expression, we see that fε,η belongs to C∞
c (U × Rd) (recall that f itself has compact

support in U × Rd ). Moreover, since ∇v fε ∈ L2(U ; L2
γ ) and

∇v fε,η(x, v)=

∫
Rd

∇v fε(x, v−w)ζη(w) dw,

it is classical to verify that ∇v fε,η converges to ∇v fε in L2(U ; L2
γ ) as η tends to 0. By the definition of

fε and the fact that fε is compactly supported, we have that v · ∇x fε ∈ L2(U ; L2
γ ). The same reasoning

as above thus gives that v · ∇x fε,η converges to v · ∇x fε in L2(U ; L2
γ ), and thus a fortiori in L2(U ; H−1

γ )

as η tends to 0. This shows that
lim
η→0

∥ fε,η − fε∥H1
hyp(U )

= 0

and thus completes the proof of the proposition. □

2C. Besov spaces. We shall use the following Besov-type spaces in the proof of the Hörmander inequality.
The first of these spaces measures fractional regularity along the vector field v · ∇x , while the second
measures fractional regularity along ∇x . As the Hörmander inequality is an interior estimate, we only
consider these spaces in the cases that U = Rd or U = Td. To lighten the notation, we may frequently
write ∥ · ∥Q1/2

v·∇x
rather than ∥ · ∥Q1/2

v·∇x (U )
, as the choice of U = Rd,Td plays no role in the argument. The Q

stands for “quotient”.

Definition 2.3. For measurable f : U × Rd
→ R, we define

∥ f ∥
2
Q1/2
v·∇x (U )

:= sup
0<η<∞

1
η2

∫∫
U×Rd

( f (x + η2v, v)− f (x, v))2 dγ (v) dx . (2-12)

Definition 2.4. For measurable f : U × Rd
→ R, we define

∥ f ∥
2
Q1/3

∇x (U )
:= sup

0<η<∞

x ′
∈Sd−1

1
η2

∫∫
U×Rd

( f (x + η3x ′, v)− f (x, v))2 dγ (v) dx . (2-13)

3. Functional inequalities for H1
hyp

In this section we present the proofs of Theorems 1.3 and 1.4.

3A. The Poincaré inequality for H1
hyp. We begin with the proof of Theorem 1.3, the Poincaré-type

inequality for the space H 1
hyp(U ). The proof requires the following fact regarding the equivalence (up to

additive constants) of the norms ∥h∥L2(U ) and ∥∇h∥H−1(U ).

Lemma 3.1. Let U be a Lipschitz domain or U = Td. Then there exists C(U, d) <∞ such that, for every
h ∈ L2(U ),

∥h − (h)U ∥L2(U ) ⩽ C∥∇h∥H−1(U ).

Proof. We begin by considering the case U is a Lipschitz domain. Without loss of generality, we assume
(h)U = 0. We consider the problem {

∇ · f = h in U,
f = 0 on ∂U.

(3-1)
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Bogovskii’s operator [1980] (see also [Galdi 2011, Section III.3]) guarantees the existence of a solution f
with components in H 1

0 (U ) satisfying the estimate

∥ f ∥H1(U ) ⩽ C∥h∥L2(U ). (3-2)

Then we have

∥h∥
2
L2(U ) =

∫
U

h ∇ · f = −

∫
U

∇h · f ⩽ ∥∇h∥H−1(U )∥ f ∥H1(U ).

The conclusion then follows by (3-2). In the case U = Td, the estimate follows from classical Littlewood–
Paley estimates, and we omit the details. □

Proof of Theorem 1.3. Let f ∈ H 1
hyp(U ). In view of Proposition 2.2, we can without loss of generality

assume that f is a smooth function. We decompose the proof into five steps.

Step 1: We show that
∥ f − ⟨ f ⟩γ ∥L2(U ;L2

γ )
⩽ ∥∇v f ∥L2(U ;L2

γ )
. (3-3)

By the Gaussian Poincaré inequality, we have for every x ∈ U that

∥ f (x, · )− ⟨ f ⟩γ (x)∥L2
γ
⩽ ∥∇v f (x, · )∥L2

γ
.

This yields (3-3) after integration over x ∈ U.

Step 2: We show that

∥∇⟨ f ⟩γ ∥H−1(U ) ⩽ C(∥∇v f ∥L2(U ;L2
γ )

+ ∥v · ∇x f ∥L2(U ;H−1
γ )). (3-4)

We select ξ1, . . . , ξd ∈ C∞
c (R

d) satisfying∫
Rd
vξi (v) dγ (v)= ei , (3-5)

and, for each test function φ ∈ H 1
0 (U ) and i ∈ {1, . . . , d}, we compute∫

U
∂xiφ(x)⟨ f ⟩γ (x) dx

=

∫
U×Rd

v · ∇xφ(x)⟨ f ⟩γ (x)ξi (v) dx dγ (v)

=

∫
U×Rd

v · ∇xφ(x) f (x, v)ξi (v) dx dγ (v)+
∫

U×Rd
v · ∇xφ(x)( f (x, v)− ⟨ f ⟩γ (x))ξi (v) dx dγ (v).

To control the first term on the right side, we perform an integration by parts to obtain∣∣∣∣∫
U×Rd

v · ∇xφ(x) f (x, v)ξi (v) dx dγ (v)
∣∣∣∣ =

∣∣∣∣∫
U×Rd

φ(x)ξi (v) v · ∇x f (x, v) dx dγ (v)
∣∣∣∣

⩽ C∥φξi∥L2(U ;H1
γ )

∥v · ∇x f ∥L2(U ;H−1
γ )

⩽ C∥φ∥L2(U )∥ξi∥H1
γ
∥v · ∇x f ∥L2(U ;H−1

γ )

⩽ C∥φ∥L2(U )∥v · ∇x f ∥L2(U ;H−1
γ ).
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To control the second term, we use (3-3) and the fact that ξi has compact support:∣∣∣∣∫
U×Rd

v · ∇xφ(x)( f (x, v)− ⟨ f ⟩γ (x))ξi (v) dx dγ (v)
∣∣∣∣

⩽ C
∫

U×Rd
|v||ξi (v)||∇xφ(x)|| f (x, v)− ⟨ f ⟩γ (x)| dx dγ (v)

⩽ C∥φ∥H1(U )∥∇v f ∥L2(U ;L2
γ )
.

Combining the above displays and taking the supremum over φ ∈ H 1
0 (U ) with ∥φ∥H1(U ) ⩽ 1 yields (3-4).

Step 3: We deduce from Lemma 3.1, (3-3) and (3-4) that

∥ f − ( f )U ∥L2(U ;L2
γ )
⩽ ∥ f − ⟨ f ⟩γ ∥L2(U ;L2

γ )
+ ∥⟨ f ⟩γ − ( f )U ∥L2(U )

⩽ ∥ f − ⟨ f ⟩γ ∥L2(U ;L2
γ )

+ C∥∇⟨ f ⟩γ ∥H−1(U )

⩽ C(∥∇v f ∥L2(U ;L2
γ )

+ ∥v · ∇x f ∥L2(U ;H−1
γ )).

This completes the proof of (1-17).

Step 4: The remaining steps are specific to the case with boundary. To complete the proof of (1-18), we
must show that, under the additional assumption that U ̸= Td and f ∈ H 1

hyp,0(U ), we have

|( f )U | ⩽ C(∥∇v f ∥L2(U ;L2
γ )

+ ∥v · ∇x f ∥L2(U ;H−1
γ )). (3-6)

Let f1 be a test function belonging to C∞
c (U × Rd), to be constructed below, which satisfies

f1 = 0 on (∂U × Rd) \ ∂hyp(U ), (3-7)

/
∫

U

∫
Rd
v · ∇x f1 dγ dx = 1 (3-8)

and, for some constant C(U, d) <∞,

∥v · ∇x f1∥L2(U ;L2
γ )
⩽ C. (3-9)

The test function f1 is constructed in Step 5 below. We first use it to obtain (3-6). We proceed by
using (3-8) to split the mean of f as

( f )U = /
∫

U

∫
Rd

f v · ∇x f1 dγ dx − /
∫

U

∫
Rd
( f − ( f )U )v · ∇x f1 dγ dx

and estimate the two terms on the right side separately. For the first term, we have∣∣∣∣ /
∫

U

∫
Rd

f v · ∇x f1 dγ dx
∣∣∣∣ =

∣∣∣∣− /
∫

U

∫
Rd

f1 v · ∇x f dγ dx +
1

|U |

∫
∂U

∫
Rd
(v · nU ) f f1 dγ dx

∣∣∣∣
=

∣∣∣∣ /
∫

U

∫
Rd

f1v · ∇x f dγ dx
∣∣∣∣,

where we used that (v · nU ) f f1 vanishes on ∂U × Rd to remove the boundary integral. (Recall that by
the definition of H 1

hyp,0(U ), we can assume without loss of generality that the function f is smooth, so
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the justification of the integration by parts above is classical.) We thus obtain∣∣∣∣ /
∫

U

∫
Rd

f1v · ∇x f dγ dx
∣∣∣∣ ⩽ 1

|U |
∥ f1∥L2(U ;H1

γ )
∥v · ∇x f ∥L2(U ;H−1

γ ).

This completes the estimate for the first term. For the second term, we use (3-9) to get∣∣∣∣ /
∫

U

∫
Rd
( f − ( f )U ) v · ∇x f1 dγ dx

∣∣∣∣ ⩽ ∥ f − ( f )U ∥L2(U ;L2
γ )

∥v · ∇x f1∥L2(U ;L2
γ )

⩽ C∥ f − ( f )U ∥L2(U ;L2
γ )
,

which is estimated using the result of Step 3. Putting these together yields (3-6).

Step 5: We construct the test function f1 ∈ C∞
c (U × Rd) satisfying (3-7), (3-8) and (3-9). Fix x0 ∈ ∂U,

where nU (x0) is well-defined. Since the unit normal nU is continuous at x0, there exist v0 ∈ Rd and
r > 0 such that for every x, v ∈ Rd satisfying (x, v) ∈ (Br (x0)∩∂U )× Br (v0), we have v · nU (x) > 0. In
other words, every (x, v) ∈ (Br (x0)∩ ∂U )× Br (v0) is such that (x, v) ∈ ∂hypU. Observe that, for every
f1 ∈ C∞

c (R
d
× Rd), we have

/
∫

U

∫
Rd
v · ∇x f1 dγ dx =

1
|U |

∫
∂U

∫
Rd
(v · nU ) f1 dγ dx .

We select a function f1 ∈ C∞
c (R

d
× Rd) with compact support in Br (x0)× Br (v0) and such that f1 ⩾ 0

and f1(x0, v0) = 1. In this case, the integral on the right side above is nonnegative, since f1 vanishes
whenever v · nU ⩽ 0. In fact, since f1 is positive on a set of positive measure on ∂U × Rd (in the sense of
the product of the (d−1)-dimensional Hausdorff and Lebesgue measures), the integral above is positive.
Up to multiplying f1 by a positive scalar if necessary, we can thus ensure that (3-8) holds. It is clear that
this construction also ensures that (3-7) and (3-9) hold. □

Remark 3.2. As the argument above reveals, for the inequality (1-18) to hold, the assumption of f ∈

H 1
hyp,0(U ) can be weakened: it suffices that f vanishes on a relatively open piece of the boundary ∂U ×Rd.

The constant C in (1-18) then depends additionally on the identity of this piece of the boundary where f
is assumed to vanish.

3A1. Poincaré inequality with confining potential. It is also interesting to understand Theorem 1.3 in the
global setting with confining potential.7

Only in this subsection, we redefine H 1
hyp(R

d) according to the norm

∥ f ∥H1
hyp(R

d ) = ∥ f ∥L2
σ (R

d ;H1
γ )

+ ∥v · ∇x f + b · ∇v f ∥L2
σ (R

d ;H−1
γ ), (3-10)

and when b satisfies Assumption 1.1 with U = Rd, and f ∈ L1
σ (R

d
; L1

γ ), we use the notation

( f )Rd :=

∫
f dm.

7A proof is also contained in [Cao et al. 2023] following the methods in the original version of this paper, which only
discussed bounded domains.
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Proposition 3.3 (Poincaré with confining potential). Suppose that b satisfies Assumption 1.1 with U = Rd,
the potential W satisfies W ∈ C1,1(Rd), and there exists a constant CW < ∞ such that the following
weighted Poincaré inequality holds for all h ∈ H 1

σ (R
d) with (h)Rd = 0:∫

U
|∇x W |

2
|h|

2 dσ ⩽ CW

∫
U

|∇x h|
2 dσ. (3-11)

Then there exists a constant C(W, d) <∞ such that, for all f ∈ H 1
hyp(R

d), defined according to (3-10),
with ( f )Rd = 0,

∥ f ∥L2
σ (R

d ;L2
γ )
⩽ C(∥∇v f ∥L2

σ (R
d ;L2

γ )
+ ∥v · ∇x f + b · ∇v f ∥L2

σ (R
d ;H−1

γ )).

First, we require an analogue of Lemma 3.1.

Lemma 3.4 (auxiliary lemma). Under the assumptions of Proposition 3.3, there exists C(W, d) <∞

such that, for every h ∈ L2
σ ,

∥h − (h)Rd ∥L2
σ
⩽ C∥∇x h∥H−1

σ
.

Proof. Without loss of generality, we assume that (h)Rd = 0. Consider the operators

Ã = ∇x , Ã∗
= − divx −b · .

We consider the problem
Ã∗ g = h in Rd , (3-12)

where we seek g ∈ H 1
σ . The problem can be solved by defining g = Ã f and solving

Ã∗ Ã f = h in Rd , (3-13)

with ( f )Rd = 0. By the Lax–Milgram lemma, there exists a solution f ∈ H 1
σ with ( f )Rd = 0 and

∥ f ∥H1
σ
⩽ C∥h∥H−1

σ
⩽ C∥h∥L2 . To demonstrate that g ∈ H 1

σ , we commute a derivative ∂i through (3-13):

Ã∗ Ã∂i f = −1x∂i f − b · ∇x∂i f = ∂i h + ∂i b · ∇x f =: F, (3-14)

where F is a forcing term in H−1
σ . Clearly, ∥∂i h∥H−1

σ
⩽ C∥h∥L2

σ
.8 For the commutator term, we have

∥∂i b · ∇x f ∥L2
σ
⩽ ∥∂i b∥L∞∥∇x f ∥L2

σ
⩽ C∥h∥H−1

σ
,

where C depends on the C1,1 regularity of W. By the Lax–Milgram lemma (or energy estimates) applied
to (3-14) for each i , we have

∥∇x g∥L2
σ
⩽ C∥∇

2
x f ∥L2

σ
⩽ C∥F∥H−1

σ
⩽ C∥h∥L2

σ
. (3-15)

While g may not have zero average, it was already controlled in L2
σ . Finally, we have

∥h∥
2
L2
σ

=

∫
Rd

h ∇ · g dσ = −

∫
Rd

∇h · g dσ ⩽ ∥∇h∥H−1
σ

∥g∥H1
σ
.

The conclusion then follows by (3-15). □

8This follows from integration by parts against a test function g ∈ H1
σ and the Poincaré inequality in (3-11), which controls

the term
∫
∂i Wgh dσ appearing when ∂i hits the weight.
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Proof of Proposition 3.3. Let f ∈ H 1
hyp(R

d); see (3-10). By applying an approximation procedure with
smooth cut-off in x and v and mollifying, we can without loss of generality assume that f is a compactly
supported, smooth function. Again, we decompose the proof into three steps. Step 1 is identical, so we
skip to the next step.

Step 2: We show that

∥∇⟨ f ⟩γ ∥H−1
σ (Rd ) ⩽ C(∥∇v f ∥L2

σ (R
d ;L2

γ )
+ ∥(v · ∇x + b · ∇v) f ∥L2

σ (R
d ;H−1

γ )). (3-16)

We select ξ1, . . . , ξd ∈ C∞
c (R

d) satisfying∫
Rd
vξi (v) dγ (v)= ei ,

and, for each test function φ ∈ H 1
σ (R

d) and i ∈ {1, . . . , d}, we compute∫
φ∂xi ⟨ f ⟩γ dm =

∫
φξi (v)v ·∇x ⟨ f ⟩γ dm = −

∫
φξiv ·∇x( f −⟨ f ⟩γ ) dm +

∫
φξiv ·∇x f dm. (3-17)

We expand the second term on the right-hand side as∫
φξiv · ∇x f dm =

∫
φξi (v · ∇x + b · ∇v) f dm −

∫
φξi b · ∇v( f − ⟨ f ⟩γ ) dm, (3-18)

where we use that b · ∇v⟨ f ⟩γ = 0. Combining (3-17) and (3-18), we have∫
φ∂xi ⟨ f ⟩γ dm =

∫
φξi (v · ∇x + b · ∇v) f dm −

∫
φξi (v · ∇x + b · ∇v)( f − ⟨ f ⟩γ ) dm = I + II.

For I, we have∣∣∣∣∫ φξi (v · ∇x + b · ∇v) f dm
∣∣∣∣ ⩽ C∥φξi∥L2

σ (R
d ;H1

γ )
∥(v · ∇x + b · ∇v) f ∥L2

σ (R
d ;H−1

γ ).

For II, we integrate by parts across the measure dm:

−

∫
φξi (v·∇x +b·∇v)( f −⟨ f ⟩γ ) dm =

∫
v·∇xφξi ( f −⟨ f ⟩γ ) dm+

∫
φb·∇vξi ( f −⟨ f ⟩γ ) dm = IIa+IIb.

For IIa , we use ∣∣∣∣∫ v · ∇xφξi ( f − ⟨ f ⟩γ ) dm
∣∣∣∣ ⩽ C∥vξi∥L∞

γ
∥φ∥L2

σ
∥ f − ⟨ f ⟩γ ∥L2

σ (R
d ;L2

γ )
.

For IIb, we use∣∣∣∣∫ φb · ∇vξi ( f − ⟨ f ⟩γ ) dm
∣∣∣∣ ⩽ ∥|∇W ||φ|∥L2

σ
∥∇vξi∥L∞

γ
∥ f − ⟨ f ⟩γ ∥L2

σ (R
d ;L2

γ )
.

We use the assumed Poincaré inequality (3-11) to control ∥|∇W ||φ|∥L2
σ

by ∥φ∥H1
σ
. Then using (3-3)

concludes the proof of (3-16).
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Step 3: We deduce from Lemma 3.4, (3-3) and (3-16) that

∥ f − ( f )U ∥L2
σ (R

d ;L2
γ )
⩽ ∥ f − ⟨ f ⟩γ ∥L2

σ (R
d ;L2

γ )
+ ∥⟨ f ⟩γ − ( f )Rd ∥L2

σ

⩽ ∥ f − ⟨ f ⟩γ ∥L2
σ (R

d ;L2
γ )

+ C∥∇⟨ f ⟩γ ∥H−1
σ

⩽ C(∥∇v f ∥L2
σ (R

d ;L2
γ )

+ ∥(v · ∇x + b · ∇v) f ∥L2
σ (R

d ;H−1
γ )). □

3B. Interpolation and Hörmander inequalities for H1
hyp. In this subsection, we use the Hörmander

bracket condition to obtain a functional inequality which provides some interior spatial regularity for
general H 1

hyp functions. Both the statement and proof of the inequality follow closely the ideas of
[Hörmander 1967]. Other variants of Hörmander’s inequality have been previously obtained; see in
particular [Bouchut 2002; Albritton et al. 2022]. We remind the reader that our initial estimates are
phrased in terms of the Besov-type norms defined in Section 2C and are thus valid for U = Td ,Rd.

Proposition 3.5 (interpolation). For every δ > 0, there exists C(d, δ) <∞ such that for U = Td ,Rd and
any smooth function u : U × Rd

→ R, we have

∥u∥Q1/2
v·∇x (U )

⩽ C(∥u∥L2(U ;H1
γ )

+ ∥v · ∇x u∥L2(U ;H−1
γ ))+ δ∥u∥Q1/3

∇x (U )
. (3-19)

Proof. Step 1: Let φ ∈ C∞

0 ((−1, 1)d) be a smooth, positive, radial function with unit L1 norm. For
t ∈ (0,∞), we define φt u(x, v) by

φt u(x, v)=

∫
Rd

u(x + t3x ′, v)φ(x ′) dx ′,

where in the case U = Td we have periodically extended u to a function defined on all of Rd. Using
Jensen’s inequality, we calculate that

∥φt u(x, v)− u(x, v)∥2
L2(U ;L2

γ )
=

∫∫
Rd×U

(∫
Rd
φ(x ′)(u(x + t3x ′, v)− u(x, v)) dx ′

)2

dx dγ (v)

⩽
∫∫∫

Rd×U×Rd
φ(x ′)(u(x + t3x ′, v)− u(x, v))2 dx ′ dx dγ (v)

=

∫∫∫
Rd×U×Rd

φ(x ′)t2 1
t2 (u(x + t3x ′, v)− u(x, v))2 dx ′ dx dγ (v)

⩽
∫

Rd
φ(x ′)t2

∥u∥
2
Q1/3

∇x

dx ′,

and thus we see that
∥φt u(x, v)− u(x, v)∥2

L2(U ;L2
γ )
⩽ t2

∥u∥
2
Q1/3

∇x (U )
. (3-20)

Step 2: Let
f (t)= ∥u(x + t2v, v)− u(x, v)∥2

L2(U ;L2
γ )
.

For t ∈ (0,∞), it will suffice to show that

f (t)⩽ t2(C(∥u∥L2(U ;H1
γ )

+ ∥v · ∇x u∥L2(U ;H−1
γ ))+ δ∥u∥Q1/3

∇x (U )

)2
. (3-21)
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Moreover, for t ⩾ 1, we have the obvious estimate f (t)⩽ 4∥u∥
2
L2(U ;L2

γ )
, so we consider only t ∈ (0, 1).

We may write that

f (t)⩽ ∥φδt u(x + t2v, v)− u(x + t2v, v)∥2
L2(U ;L2

γ )

+ ∥φδt u(x + t2v, v)−φδt u(x, v)∥2
L2(U ;L2

γ )
+ ∥φδt u(x, v)− u(x, v)∥2

L2(U ;L2
γ )
. (3-22)

By Step 1, the first and third terms of (3-22) are bounded by

δ2t2
∥u∥

2
Q1/3

∇x

.

Step 3: It remains to estimate the second term in (3-22). For t ∈ (0, 1) and 0 ⩽ τ ⩽ t2, consider

F(τ )= ∥φδt u(x + τv, v)−φδt u(x, v)∥2
L2(U ;L2

γ )
, (3-23)

where F(t2) is precisely the second term in (3-22). Since F(0) = 0, it will suffice to show that there
exists C(d, δ) <∞ such that

F ′(τ )⩽ C2(∥u∥
2
L2(U ;H1

γ )
+ ∥v · ∇x u∥

2
L2(U ;H−1

γ )
)+ δ2

∥u∥
2
Q1/3

∇x

.

We have

F ′(τ )= 2
∫∫

Rd×U
(φδt u(x + τv, v)−φδt u(x, v))v · ∇x(φδt u)(x + τv, v) dx dγ (v)

= 2
∫∫

Rd×U
(φδt u(x, v)−φδt u(x − τv, v))v · ∇x(φδt u)(x, v) dx dγ (v).

Since [v · ∇x , φδt ]u = [∇v, φδt ]u = 0 and we have a bound on ∥v · ∇x u∥L2(U ;H−1
γ ), we will achieve the

desired estimate for F ′(τ ) if we can bound

(φδt u(x, v)−φδt u(x − τv, v)) (3-24)

in L2(U ; H 1
γ ). The only nontrivial estimate comes when the ∇v lands on the x-coordinate of the second

term in (3-24), which we may write out as∫
Rd

−τ∇x u(x+(δt)3x ′
−τv,v)φ(x ′)dx ′

= −

∫
Rd

τ

(δt)3
∇x ′u(x+(δt)3x ′

−τv,v)φ(x ′)dx ′

=

∫
Rd

τ

(δt)3
u(x+(δt)3x ′

−τv,v)∇x ′φ(x ′)dx ′

=

∫
Rd

τ

(δt)3
(u(x+(δt)3x ′

−τv,v)−u(x−τv,v))∇x ′φ(x ′)dx ′.

But by Step 1, this is bounded in L2(U ; L2
γ ) by a constant multiple of

τ

(δt)3
|t |∥u∥Q1/3

∇x
⩽

1
δ3 ∥u∥Q1/3

∇x
,

where we have used the assumption that τ ⩽ t2. Note that in order to absorb the 1/δ3 in the denominator,
we may appeal to the Cauchy–Schwarz and Young inequalities in front of ∥v · ∇x u∥L2

x (U ;H−1
γ ), which

leads to the estimate (3-19) after modifying δ to absorb any implicit constants. □
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With Proposition 3.5 in hand, we can now prove a Hörmander inequality which provides regularity
in the x-variable, measured in the Q1/3

∇x
space. The Hα estimate in Theorem 1.4 for α < 1

3 will be an
immediate corollary, and essentially amounts to converting B1/3

2,∞-type regularity to Bα2,2-type regularity.
Following [Hörmander 1967], the proof of Theorem 1.4 is based on the splitting of a first-order finite
difference in the x-variable into finite differences which are either in the v-variable, or in the x-variable
in the direction of v. Explicitly, we have

f (x + t3 y, v)− f (x, v)= f (x + t3 y, v)− f (x + t3 y, v− t y)

+ f (x + t3 y, v− t y)− f (x + t3 y + t2(v− t y), v− t y)

+ f (x + t2v, v− t y)− f (x + tv, v)

+ f (x + t2v, v)− f (x, v). (3-25)

Notice that the right side consists of four finite differences, two for each of the derivatives ∇v and v · ∇x

which we can expect to control by the L2(U ; H 1
γ ) and Q1/2

v·∇x
norms, respectively. The fact that the

increment on the left is of size t3 and those on the right side are of sizes t and t2 suggests that we may
expect to have one-third derivative in the statement of Theorem 1.4, which we are able to obtain in a
Besov sense with the Q1/3

∇x
norm. The exponent 1

3 is optimal, although it may be possible to improve the
endpoint regularity from B1/3

2,∞-type to B1/3
2,2 using more advanced microlocal techniques.

The relation (3-25) is a special case of Hörmander’s bracket condition introduced in [Hörmander 1967],
which for the particular equation we consider here is quite simple to check. Indeed, let X1, . . . , Xd ,
V1, . . . , Vd denote the canonical vector fields and X0 be the vector field (x, v) 7→ (v, 0). Then the
Hörmander bracket condition is implied by the identity

[Vi , X0] = X i . (3-26)

This is a local version of the identity (3-25). More precisely, for every vector field Z , if we denote by
t 7→ exp(t Z) the flow induced by the vector field Z on Rd

× Rd, then

exp(−tVi ) exp(−t X0) exp(tVi ) exp(t X0)(x, v)= (x, v)+ t2
[Vi , X0](x, v)+ o(t2), t → 0. (3-27)

For the vector fields of interest, Z ∈ {X0, X1, . . . , Xd , V1, . . . , Vd}, the flows take the very simple form

exp(t Z)(x, v)= (x, v)+ t Z(x, v),

the relation (3-27) becomes an identity (that is, the term o(t2) is actually zero), and loosely, this identity
can be rephrased in the form of (3-25). The only difference is that, to exploit that our functions have only
1
2 derivatives in the v · ∇x direction, it is advantageous to flow in the direction v · ∇x with speed t rather
than unit speed.

Proposition 3.6 (Besov–type Hörmander inequality). There exists a dimensional constant C(d) <∞

such that, for U = Td ,Rd and any smooth function u : U × Rd
→ R, we have the estimate

∥u∥Q1/3
∇x (U )

⩽ C(∥u∥Q1/2
v·∇x (U )

+ ∥u∥L2
x (U ;H1

γ )
). (3-28)
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Proof of Proposition 3.6. Let f (x, v)= u(x, v)γ 1/2(v), and choose η ∈ (0,∞) and x ′
∈ Sd−1. Then we

may write

∥u(x + η3x ′, v)− u(x, v)∥L2(U ;L2
γ )

= ∥ f (x + η3x ′, v)− f (x, v)∥L2(U ;L2)

and

f (x + η3x ′, v)− f (x, v)= f (x + η3x ′, v)− f (x + η3x ′, v− ηx ′)

+ f (x + η3x ′, v− ηx ′)− f (x + η3x ′
+ η2(v− ηx ′), v− ηx ′)

+ f (x + η2v, v− ηx ′)− f (x + η2v, v)

+ f (x + η2v, v)− f (x, v). (3-29)

Dividing by η, integrating in L2(U ; L2(Rd)), and appealing to (2-7) bounds the first term:

1
η2

∫∫
Rd×U

( f (x + η3x ′, v)− f (x + η3x ′, v− ηx ′))2 dx dv ⩽ C∥∇vu∥
2
L2(U ;L2

γ )
,

with a similar bound holding for the third term. Dividing again by η and integrating in L2(U ; L2(Rd))

yields the bound

1
η2

∫∫
Rd×U

(
f (x + η3x ′, v− ηx ′)− f (x + η3x ′

+ η2(v− ηx ′), v− ηx ′)
)2 dx dv ⩽ ∥u∥

2
Q1/2
v·∇x (U )

,

with a similar bound holding for the fourth term. Appealing to (3-19) with a suitably small choice of δ
concludes the proof. □

To obtain the statements in Theorem 1.4 for α < 1
3 , we must work in Hα

x rather than (Bα2,∞)x spaces of
fractional differentiability, and so we introduce the Banach space-valued fractional Sobolev spaces, defined
as follows: for every domain U ⊆ Rd, α ∈ (0, 1), Banach space X with norm ∥·∥X and u ∈ L2(U ; X),
we define the seminorm

[[u]]Hα(U ;X) :=

(∫
U

∫
U

∥u(x)− u(y)∥2
X

|x − y|d+2α dx dy
)1/2

(3-30)

and the norm

∥u∥Hα(U ;X) := (∥u∥
2
L2(U ;X) + [[u]]

2
Hα(U ;X))

1/2.

We then define the fractional Sobolev space

Hα(U ; X) := {u ∈ L2(U ; X) : ∥u∥Hα(U ;X) <∞}. (3-31)

The space Hα(U ; X) is a Banach space under the norm ∥·∥Hα(U ;X). We understand that H 0(U ; X) =

L2(U ; X). We also set

∥u∥H1+α(U ;X) := (∥u∥
2
L2(U ;X) + ∥∇u∥

2
Hα(U ;X))

1/2,

and define the Banach space H 1+α(U ; X) as in (3-31). We may now use Proposition 3.6 to prove the
non-endpoint estimates from Theorem 1.4.



VARIATIONAL METHODS FOR THE KINETIC FOKKER–PLANCK EQUATION 1979

Proof of Theorem 1.4. Recall that we consider the domain U = Rd or U = Td. We have that, for α < 1
3 ,

[[u]]
2
Hα(U ;L2

γ )
=

∫∫
U×U

∥u(x, ·)−u(y, ·)∥2
L2
γ

|x−y|d+2α dx dy

=

∫∫
U×U

∥u(x ′
+y, ·)−u(y, ·)∥2

L2
γ

|x ′|d+2α dx ′ dy

=

∫∫
{|x ′|<1}×U

∥u(x ′
+y, ·)−u(y, ·)∥2

L2
γ

|x ′|d+2α dy dx ′
+

∫∫
{|x ′|⩾1}×U

∥u(x ′
+y, ·)−u(y, ·)∥2

L2
γ

|x ′|d+2α dy dx ′

⩽
∫

{|x ′|<1}

|x ′
|
2/3

∥u∥
2
Q1/3

∇x

|x ′|d+2α dx ′
+ C(α)∥u∥

2
L2(U ;L2

γ )

⩽C(α)(∥u∥
2
L2(U ;H1

γ )
+∥v·∇x u∥

2
L2(U ;H−1

γ )
)⩽C(α)∥u∥

2
H1

hyp(U )
,

concluding the proof. □

For the purposes of interpolation, we also need to consider fractional Sobolev spaces in the velocity
variable. As discussed in the arguments leading to (2-7), the relevant spaces are weighted by the measure γ ,
which is strongly inhomogeneous. Because of this difficulty, we use the following definition. For each
f ∈ L2

γ and t > 0, we set

K (t, f ) := inf{∥ f0∥L2
γ
+ t∥ f1∥H1

γ
: f = f0 + f1, f0 ∈ L2

γ , f1 ∈ H 1
γ },

and, for every α ∈ (0, 1), we define

∥ f ∥Hα
γ

:=

(∫
∞

0
(t−αK ( f, t))2 dt

t

)1/2

. (3-32)

We also define H−α
γ to be the space dual to Hα

γ .
We may utilize interpolation to obtain embeddings into other similar spaces of positive regularity in

both variables. In particular, appealing to Theorem 1.4 and the interpolation inequality

∥ f ∥H θβ (U ;H1−θ
γ ) ⩽ ∥ f ∥

θ
Hβ (U ;L2

γ )
∥ f ∥

1−θ

L2(U ;H1
γ )
, θ ∈ [0, 1], U = Td ,Rd ,

immediately implies the following estimate.

Corollary 3.7 (Hörmander inequality for H 1
hyp). Let α ∈

[
0, 1

3

)
and U = Td ,Rd. There exists a con-

stant C(α, d) <∞ such that, for every θ ∈ [0, 1] and every f ∈ H 1
hyp(U ), we have the estimate

∥ f ∥H θα(U ;H1−θ
γ ) ⩽ C∥ f ∥H1

hyp(U )
.

Observe that, by introducing a cutoff function in the spatial variable, we also obtain analogous
embeddings for bounded domains U ⊆ Rd, such as

H 1
hyp(U ) ↪→ Hα(Uδ; L2

γ ),

valid for every α < 1
3 and δ > 0, where Uδ := {x ∈ U : dist(x, ∂U ) > δ}.
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3C. Compact embedding of H1
hyp into L2(U; L2

γ ). Using the results of the previous subsection, we
show that the embedding H 1

hyp(U ) ↪→ L2(U ; L2
γ ) is compact. In this section, we assume that U ⊆ Rd is

a bounded C1 domain or Td.

Proposition 3.8 (compact embedding of H 1
hyp(U ) into L2(U ; L2

γ )). The inclusion map H 1
hyp(U ) ↪→

L2(U ; L2
γ ) is compact.

The proof is straightforward on Td. First, approximate by functions in C∞

0 (T
d
× Rd). Next, we use

the embedding H 1
hyp(T

d)⊆ Hα(Td
× Bv0) for all v0 ∈ [1,+∞). Finally, we apply the standard Rellich

compactness theorem. Hence, we focus only on bounded C1 domains U ⊆ Rd below.
Before we give the proof of Proposition 3.8, we need to review some basic facts concerning the

logarithmic Sobolev inequality and a generalized Hölder inequality for Orlicz norms. The logarithmic
Sobolev inequality states that, for some C <∞,∫

Rd
f 2(v) log(1 + f 2(v)) dγ (v)⩽ C

∫
Rd

|∇ f |
2 dγ (v) for all f ∈ H 1

γ with ∥ f ∥L2
γ

= 1. (3-33)

Let F : R → [0,∞) denote the (strictly) convex function

F(t) := |t | log(1 + |t |).

Let F∗ denote its dual convex conjugate function, defined by

F∗(s) := sup
t∈R

(st − F(t)).

Then (F, F∗) is a Young pair (see [Rao and Ren 1991]), that is, both F and F∗ are nonnegative, even,
convex, and satisfy F(0)= F∗(0)= 0, as well as

lim
|t |→∞

|t |−1 F(t)= lim
|s|→∞

|s|−1 F∗(s)= ∞.

Moreover, both F and F∗ are strictly increasing on [0,∞) and in particular vanish only at t = 0. Given
any measure space (X, ω), the Orcliz spaces L F (X, ω) and L F∗(X, ω), which are defined by the norms

∥g∥L F (X,ω) := inf
{

t>0 :

∫
X

F(t−1g)dω⩽F(1)
}
, ∥g∥L F∗ (X,ω) := inf

{
t>0 :

∫
X

F∗(t−1g)dω⩽F∗(1)
}
,

are dual Banach spaces and the following generalized version of the Hölder inequality is valid (see [Rao
and Ren 1991, Proposition 3.3.1]):∫

X
|gg∗

| dω ⩽ ∥g∥L F (X,ω)∥g∗
∥L F∗ (X,ω) for all g ∈ L F (X, ω), g∗

∈ L F∗(X, ω).

The logarithmic Sobolev inequality (3-33) may be written in terms of the Orcliz norm as

∥ f 2
∥L F (Rd ,γ ) ⩽ C(|⟨ f ⟩γ |

2
+ ∥∇ f ∥

2
L2
γ
) for all f ∈ H 1

γ .

The previous two displays imply(∫
U×Rd

g| f |
2 dx dγ (v)

)1/2

⩽ C∥g∥
1/2
L F∗ (U×Rd ,dxdγ )∥ f ∥L2(U ;H1

γ )
. (3-34)
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We do not identify F∗ with an explicit formula, although we notice that the inequality

s(t + 1)⩽ exp(s)+ t log(1 + t) for all s, t ∈ (0,∞)

implies
F∗(s)⩽ exp(s)− s.

This allows us in particular to obtain from (3-34) that(∫
U×Rd

|v|2 | f |
2 dx dγ (v)

)1/2

⩽ C∥ f ∥L2(U ;H1
γ )
. (3-35)

We also point out that (3-35) also implies the existence of C(d,U )<∞ such that, for every f ∈ L2(U ; L2
γ ),

∥∇v f ∥L2(U ;H−1
γ ) ⩽ C∥ f ∥L2(U ;L2

γ )
. (3-36)

We now turn to the proof of Proposition 3.8.

Proof of Proposition 3.8. For each θ > 0, we define

Uθ := {x : dist(x, ∂U ) < θ}. (3-37)

Since U is a C1 domain, we can extend the outer normal nU to a globally C0 function on U. We can
moreover assume that, for some θ0(U ) > 0, this extension nU coincides with the gradient of the mapping
x 7→ − dist(x, ∂U ) in Uθ0 .

By Proposition 2.2, we may work under the qualitative assumption that all of our H 1
hyp(U ) functions

belong to C∞
c (U × Rd). Select ε > 0 and a sequence { fn}n∈N ⊆ H 1

hyp(U ) satisfying

sup
n∈N

∥ fn∥H1
hyp(U )

⩽ 1.

We will argue that there exists a subsequence { fnk } such that

lim sup
k→∞

sup
i, j⩾k

∥ fni − fn j ∥L2(U ;L2
γ )
⩽ ε. (3-38)

The proposition may then be obtained by a diagonalization argument.

Step 1: We claim that there exists v0 ∈ [1,∞) such that, for every f ∈ H 1
hyp(U ),(∫

U

∫
Rd\Bv0

| f (x, v)|2 dx dγ (v)
)1/2

⩽ ε

3
∥ f ∥H1

hyp(U )
.

Indeed, applying (3-34), we find that(∫
U

∫
Rd\Bv0

| f (x, v)|2 dx dγ (v)
)1/2

⩽ C∥1U×(Rd\v0)∥
1/2
L F∗ (U×Rd ,dxdγ )∥ f ∥H1

hyp(U )
.

Taking v0 sufficiently large, depending on ε, ensures that

C∥1U×(Rd\v0)∥
1/2
L F∗ (U×Rd ,dxdγ ) ⩽

ε

3
.

Step 2: We next claim that there exists δ ∈
(
0, 1

2

]
such that, for every f ∈ H 1

hyp(U ),(∫
U

∫
Rd

| f (x, v)|21{|nU ·v|<δ} dx dγ (v)
)1/2

⩽ ε

3
∥ f ∥H1

hyp(U )
.
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The argument here is similar to the estimate in Step 1, above. We simply apply (3-34) after choosing δ
small enough that

C∥1{|nU ·v|<δ}∥
1/2
L F∗ (U×Rd ,dxdγ ) ⩽

ε

3
.

Step 3: We next show that, for every δ > 0, there exists θ > 0 such that, for every function f ∈ H 1
hyp(U ),(∫

U

∫
Rd

| f (x, v)|21{|nU ·v|⩾δ}1{dist(x,∂U )<θ} dx dγ (v)
)1/2

⩽ ε

3
∥ f ∥H1

hyp(U )
. (3-39)

For θ ∈
(
0, 1

2θ0
]

to be taken sufficiently small in terms of δ > 0 in the course of the argument, we let
ϕ ∈ C1,1(U ) be defined by

ϕ(x) := −η(dist(x, ∂U )),

where η ∈ C∞
c ([0,∞)) satisfies

0 ⩽ η ⩽ 2θ, 0 ⩽ η′ ⩽ 1, η(x)= x on [0, θ], η′
= 0 on [2θ,∞).

We have −2θ ⩽ ϕ ⩽ 0. Moreover, by the definition of θ0 below (3-37), its gradient ∇ϕ is proportional
to nU in U, it vanishes outside of U2θ , and ∇ϕ = nU in Uθ . We next select another test function
χ ∈ C∞

c ([0,∞)) satisfying

0 ⩽ χ ⩽ 1, χ ≡ 0 on
[
0, 1

2δ
]
, χ ≡ 1 on [δ,∞), |χ ′

| ⩽ δ−1,

and define
ψ±(x, v) := χ((v · nU (x))±),

where for r ∈ R, we use the notation r− := max(0,−r) and r+ := max(0, r). Observe that

|∇vψ±(x, v)| = |χ ′((v · nU (x))±)||nU (x)| ⩽ Cδ−1.

Therefore

∥ϕ fψ±∥L2(U ;H1
γ )
⩽ C(∥ϕ fψ±∥L2(U ;L2

γ )
+ ∥ϕ∇v( fψ±)∥L2(U ;L2

γ )
)

⩽ Cθ(∥ f ∥L2(U ;L2
γ )

+ ∥∇v f ∥L2(U ;L2
γ )

+ ∥ f ∇vψ±∥L2(U ;L2
γ )
)

⩽ Cθδ−1
∥ f ∥L2(U ;H1

γ )
,

and hence ∣∣∣∣∫
U×Rd

ϕ fψ±v · ∇x f dx dγ (v)
∣∣∣∣ ⩽ Cθδ−1

∥ f ∥
2
H1

hyp(U )
.

On the other hand,∫
U×Rd

ϕ fψ±v · ∇x f dx dγ (v)= −
1
2

∫
U×Rd

f 2v · ∇x(ϕψ±) dx dγ (v)

= −
1
2

∫
U×Rd

ϕ f 2v · ∇xψ± dx dγ (v)− 1
2

∫
U×Rd

ψ± f 2v · ∇ϕ dx dγ (v).

Since |v · ∇xψ±(x, v)| ⩽ Cδ−1
|v|2, we have, by (3-35),∣∣∣∣∫

U×Rd
ϕ f 2v · ∇xψ± dx dγ (v)

∣∣∣∣ ⩽ Cθδ−1
∫

U×Rd
|v|2 f 2 dx dγ (v)⩽ Cθδ−1

∥ f ∥
2
H1

hyp(U )
.
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We deduce that ∣∣∣∣∫
U×Rd

ψ± f 2v · ∇ϕ dx dγ (v)
∣∣∣∣ ⩽ Cθδ−1

∥ f ∥
2
H1

hyp(U )
.

Finally, we observe from the properties of ϕ and ψ± that∫
U

∫
Rd

| f (x, v)|21{|nU ·v|⩾δ}1{dist(x,∂U )<θ} dx dγ (v)

⩽ δ−1
(∣∣∣∣∫

U×Rd
ψ+ f 2v · ∇ϕ dx dγ (v)

∣∣∣∣ + ∣∣∣∣∫
U×Rd

ψ− f 2v · ∇ϕ dx dγ (v)
∣∣∣∣)

⩽ Cθδ−2
∥ f ∥

2
H1

hyp(U )
.

Taking θ = cε2δ2 for a sufficiently small constant c > 0 yields the claimed inequality (3-39).

Step 4: By the results of the previous three steps, to obtain (3-38) it suffices to exhibit a subsequence
{ fnk } satisfying

lim sup
k→∞

sup
i, j⩾k

∫
Uθ×Bv0

| fni − fn j |
2 dx dγ (v)= 0.

This is an immediate consequence of Corollary 3.7 and the compactness of the embedding

H 1/10(Uθ ; H 1/3
γ ) ↪→ L2(Uθ ; L2

γ (Bv0))

(see for instance [Adams and Fournier 2003, Theorem 2.32]). □

4. The Kramers equation

In this section, we present two proofs of the existence of weak solutions in H 1
hyp(T

d) to the Kramers
equation

−1v f + v · ∇v f + v · ∇x f + b · ∇v f = g∗, (4-1)

where g∗
∈ L2(Td

; H−1
γ ) satisfies

∫∫
Td×Rd g∗ dm = 0 (recall that the weighted mean of g∗ is well-defined

by duality since the function 1 belongs to L2(Td
; H 1

γ )). The first proof uses the abstract Lions–Lax–
Milgram theorem and a modification of (4-1) with a penalization term ν f . The hypoelliptic energy
estimates are used in sending the parameter ν to zero. This approach is partly inspired by [Carrillo 1998].
The second proof uses a dual variational approach which characterizes the weak solutions of (4-1) as the
minimizers of a natural energy under an appropriate constraint, in analogy with the discussion following
the statement of Theorem 1.2. In both cases, the Poincaré inequality from Theorem 1.3 provides the
necessary coercivity.

Throughout this section, the force field b(x) = −∇W (x) is as in Assumption 1.1. In particular, b
depends only on x and is conservative. Let dm be as defined in (1-7).

4A. The Lions–Lax–Milgram approach. We recall the abstract version of Lions’ representation theorem
from [Showalter 1997, Theorem 3.1, p. 109].

Lemma 4.1 (Lions’ representation theorem). Let H be a Hilbert space and 8 a pre-Hilbert space. Let
E : H ×8→ R be a bilinear form satisfying the continuity criterion

E( · , φ) ∈ H∗ for all φ ∈8. (4-2)
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Then the following two properties are equivalent:

• (coercivity) We have

inf
∥φ∥8=1

sup
∥h∥H⩽1

|E(h, φ)| ⩾ c > 0. (4-3)

• (solvability) For each L ∈8∗, there exists f ∈ H such that

E( f, φ)= L(φ) for all φ ∈8. (4-4)

Notice that uniqueness and stability estimates are not guaranteed by Lemma 4.1 itself; they are
concluded a posteriori.

Proof of Theorem 1.2. We split the argument into steps; in the first step, we solve a penalized problem,
and in the second, we send the penalization parameter ν to zero.

Step 1: Consider the penalized problem

(v · ∇x + b · ∇v) f + ν f = g∗
+1 f − v · ∇v f (4-5)

posed on the torus Td, where ν ∈ (0, 1]. We define the following objects:

(1) the test function space

8= C∞

0 (T
d
× Rd)

with inner product

(φ, ψ)=

∫∫
Td×Rd

∇vφ · ∇vψ dm +

∫∫
Td×Rd

φψ dm, (4-6)

(2) the solution space

H = {h ∈ L2
σ (T

d
; H 1

γ ) : (h)Td = 0},

with inner product (4-6),

(3) the penalized bilinear form

E(h, φ)=

∫∫
Td×Rd

∇vh · ∇vφ dm + ν

∫∫
Td×Rd

hφ dm −

∫∫
Td×Rd

h(v · ∇x + b · ∇v)φ dm,

(4) and the linear functional

L = g∗
∈ L2

σ (T
d
; H−1

γ ), with (g∗)Td = 0.

It is not difficult to verify that E is continuous (4-2) and coercive (4-3). Indeed, the key features are that the
antisymmetric operator v ·∇x +b ·∇v hits the test function φ, and the penalization term ν

∫∫
Td×Rd |φ|

2 dm
controls the “lower part” (L2(Td

; L2
γ )) of the norm after testing with φ. Hence, Lemma 4.1 guarantees

the existence of a solution f ∈ H to (4-4), which is the distributional formulation of the penalized
equation (4-5).
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From the equation itself, we recover that (v ·∇x +b·∇v) f ∈ L2
σ (T

d
; H−1

γ ), and therefore, f ∈ H 1
hyp(T

d)

qualitatively. By the density of smooth functions in H 1
hyp(T

d), this is enough regularity9 to multiply (4-5)
by f and integrate by parts to demonstrate the basic energy estimate:∫∫

Td×Rd
|∇v f |

2 dm + ν

∫∫
Td×Rd

| f |
2 dm ⩽ Cν−1

∥g∗
∥

2
L2
σ (T

d ;H−1
γ )
, (4-7)

which guarantees that the solution is unique.10 From the equation itself, we have

∥(v · ∇x + b · ∇v) f ∥L2
σ (T

d ;H−1
γ ) ⩽ C∥A∗ A f ∥L2

σ (T
d ;H−1

γ ) + ∥g∗
∥L2(Td ;H−1

γ ) + Cν∥ f ∥L2
σ (T

d ;H−1
γ )

(4-7)
⩽ C∥g∗

∥L2
σ (T

d ;H−1
γ ), (4-8)

where the constant C changes from line to line. Then (4-7), (4-8), and the hypoelliptic Poincaré inequality
for mean-zero functions imply

∥ f ∥H1
hyp(T

d ) ⩽ C∥g∗
∥L2

σ (T
d ;H−1

γ ).

Step 2: Next, we consider ν → 0+. Let f ν denote the unique solution of the penalized problem (4-5).
Subtracting two solutions f ν1 and f ν2 , we have that the difference f̃ ν1,ν2 solves the equation

(v · ∇x + b · ∇v) f̃ ν1,ν2 + (ν1 f ν1 − ν2 f ν2)= (1− v · ∇v) f̃ ν1,ν2 . (4-9)

We may regard ν1 f ν1 −ν2 f ν2 as a forcing term which is O(ν1 +ν2) in L2
σ (T

d
; H−1

γ ). By the hypoelliptic
energy estimates for (4-9), we have

∥ f̃ ν1,ν2∥H1
hyp(T

d ) = O(ν1 + ν2).

Choosing ν= 2−k , the sequence ( fk) of solutions to (4-5) with penalization ν= 2−k is Cauchy in H 1
hyp(T

d)

and therefore converges to a solution f in H 1
hyp(T

d) with ( f )Td = 0. By passing to the distributional limit
in each term in (4-5), we find that f solves (4-1) in the sense of distributions. □

Remark 4.2 (role of the penalization). The above proof requires a coercive bilinear form E which, in
particular, controls the L2 norm. The a priori estimates for solutions of (4-1) do indeed control the L2 part
of the norm through the hypoelliptic Poincaré inequality, but the control of ∥(v · ∇x + b · ∇v) f ∥L2(Td ;H−1

γ )

is encoded by the PDE itself rather than the bilinear form E , which only encodes the energy estimate.
This is why we include the penalization ν f . In some sense, control of ∥(v · ∇x + b · ∇v) f ∥L2(Td ;H−1

γ ) is
concluded a posteriori.

In the time-dependent case, one can skip the penalization by instead considering the equation satisfied
by et f ; see Proposition 6.10.

Remark 4.3 (difficulty with boundary). Consider (4-1) in a bounded C1 domain U with force f ∗ and zero
Dirichlet condition on ∂hypU. What goes wrong with the proof? One can demonstrate that there exists a
solution f ν ∈ H 1

hyp(U ) of the penalized equations which satisfies f ν |∂hypU = 0 away from the singular set.
However, we do not know how to justify that f ν ∈ H 1

hyp,0(U ). That is, we cannot characterize H 1
hyp,0(U )

9To justify this, one may use the density of test functions demonstrated in Proposition 2.2.
10The estimate (4-7) can be made more convenient, without the factor ν−1, if ⟨g∗

⟩γ ≡ 0.
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as consisting of H 1
hyp(U ) functions which vanish on ∂hypU away from the singular set. Consequently,

we cannot justify the integration by parts that would generate the energy estimates that would imply
uniqueness of f ν and allow us to send ν → 0+.

4B. The dual variational approach. Define

B f := v · ∇x f + b · ∇v f. (4-10)

Consider the functional

J [ f, j ] =

∫∫
Td×Rd

1
2 |∇v f − j |2 dσ(x) dγ (v) (4-11)

evaluated at pairs ( f, j) ∈ H 1
hyp(T

d)× (L2(Td
; L2

γ ))
d satisfying

∇
∗

v j = g∗
− B f = g∗

− (v · ∇x f + b · ∇v f ), ( f )Td = 0. (4-12)

In the remainder of this section, we always consider f ∈ H 1
hyp(T

d) satisfying the second condition. We
seek a null minimizer of J restricted to such pairs, which, if it exists, will satisfy the implication

∇v f = j =⇒ ∇
∗

v j = ∇
∗

v∇v f = g∗
− B f,

which is precisely (4-1).

Proposition 4.4 (solvability of the Kramers equation). Under Assumption 1.1 and the assumption that∫∫
Td×Rd

g∗ dγ (v) dσ(x)= 0,

there exists a unique solution f to (4-1) such that ( f )Td = 0, and f is given as the null minimizer of the
functional J [ f, j ] over pairs ( f, j) satisfying the constraint (4-12).

Before proving Proposition 4.4, we argue that one may assume that ⟨g∗
⟩γ = 0 as a function of x . For

this, we require:

Lemma 4.5. Let h ∈ L2(Td) be given with (h)Td :=
∫

Td h(x) dσ(x)= 0. Then there exists g ∈ H 1
hyp(T

d)

with (g)Td = 0 such that

⟨v · ∇x g + b(x) · ∇vg⟩γ (x)= h(x), ∥g∥H1
hyp(T

d ) ⩽ C∥h∥L2(Td ). (4-13)

Suppose that we can solve (4-1) under the simplification ⟨g∗
⟩γ = 0. By Lemma 4.5 with h = ⟨g∗

⟩γ ,
we can find g ∈ H 1

hyp(T
d) such that ⟨v · ∇x g + b · ∇vg⟩γ = h. Then, since ⟨−1vg + v · ∇vg⟩γ = 0, we

can solve

−1v f + v · ∇v f + v · ∇x f + b · ∇v f = g∗
− (−1vg + v · ∇vg + v · ∇x g + b · ∇vg),

so f + g solves (4-1). We now show that such a g exists, and in the argument below we always work
under the assumption that ⟨g∗

⟩γ = 0. We shall occasionally use the notation g∗
∈ L2(Td

; Ḣ−1
γ ) to signify

that ⟨g∗
⟩γ = 0.
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Proof of Lemma 4.5. Let f ∈ H 1(Td
; Rd) be a solution to the problem11

∇x · f (x)+ b(x) · f (x)= h(x).

Let ξ(s) : R → R be a compactly supported, smooth, odd function of a single variable such that∫
R
ξ(s)s ds ̸= 0. Define ξi : Rd

→ R by

ξi (v)= ξ(vi )
∏
i ′ ̸=i

ξ ′(vi ′),

so that ξi is odd in vi and even in all other vi ′ for i ′
̸= i . Under an appropriate normalization, we find that∫

Rd
∂v j ξi (v) dγ (v)=

∫
Rd
v jξi (v) dγ (v)= δi j ,

since v jξi (v)dγ (v) is odd in vi unless i = j , in which case it is even in all components of v. Define

g(x, v)= fi (x)ξi (v),

where we have used the summation convention over repeated indices. By the smoothness of the ξi ’s and
the H 1(Td) regularity of f, it is clear that g ∈ H 1

hyp(T
d) with norm controlled by the sum of the respective

H 1 norms of f and ξ . Furthermore, (g)Td = 0 since, for 1 ⩽ i ⩽ d , ξi is odd in vi . Now we may compute

⟨Bg⟩γ (x)=

∫
Rd
(v j∂x j g(x, v)+ b j (x)∂v j g(x, v)) dγ (v)

=

∫
Rd
(v j∂x j fi (x)ξi (v)+ b j fi (x)∂v j ξi (v)) dγ (v)

= ∂i fi (x)+ bi (x) fi (x)= h(x). □

Proof of Proposition 4.4. We split the argument into five steps.

Step 1: In this step, we show that the functional J is not uniformly equal to +∞ and is uniformly convex
on pairs ( f, j) satisfying the constraint (4-12). Let us denote the set of pairs satisfying the constraint by

A(g∗) := {( f, j) ∈ H 1
hyp(T

d)× (L2(Td
; L2

γ ))
d

: ∇
∗

v j = g∗
− B f, ( f )Td = 0}.

First, since g∗
∈ L2(Td

; Ḣ−1
γ ), there exists j ∈ L2(Td

; L2
γ ) such that g∗

= A∗ j . The pair (0, j) belongs
to A(g∗), and J (0, j) <+∞.

We now demonstrate uniform convexity. Since, for every ( f ′, j ′) ∈ A(g∗) and ( f, j) ∈ A(0),

1
2J [ f ′

+ f, j ′
+ j ] +

1
2J [ f ′

− f, j ′
− j ] −J [ f ′, j ′

] = J [ f, j ], (4-14)

it suffices to show that there exists C(d) <∞ such that, for every ( f, j) ∈ A(0),

J [ f, j ] ⩾ C−1(∥ f ∥
2
H1

hyp(T
d )

+ ∥ j∥2
L2(Td ;L2

γ )
). (4-15)

11For example, one could argue as in the proof of Lemma 3.4 to produce f via the Lax–Milgram theorem satisfying the
bound ∥ f ∥H1(Td ) ⩽ C∥h∥L2(Td ).
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Expanding the square and using that ∇
∗
v j = −B f , we find

J [ f, j ] =

∫∫
Td×Rd

( 1
2 |∇v f |

2
+

1
2 | j |2 + f B f

)
dm.

Moreover, by (1-8), the term
∫∫

Td×Rd f B f dm vanishes. Finally, from −B f = ∇
∗
v j , we have ⟨B f ⟩γ = 0,

and thus
∥v · ∇x f ∥L2(Td ;H−1

γ ) ⩽ ∥B f ∥L2(Td ;H−1
γ ) + ∥b(x) · ∇v f ∥L2(Td ;H−1

γ )

⩽ C∥ j∥L2(Td ;L2
γ )

+ C∥∇v f ∥L2(Td ;L2
γ )
.

Combining the last displays and Theorem 1.3 yields (4-15), and thus also the uniform convexity of the
functional in (4-11).

Step 2: In this step, we rephrase the problem in terms of a perturbed convex minimization problem.
Denote by ( f1, j1) the unique minimizing pair of the functional J over A(g∗). We obviously have

J [ f1, j1] ⩾ 0.

We now show that there is a one-to-one correspondence between solutions f of the Kramers equation
and null minimizers ( f, j) of J satisfying the constraint (4-12): for every f ∈ H 1

hyp(T
d) with ( f )Td = 0,

we have
f solves (4-1) ⇐⇒ J [ f, j1] = 0.

Indeed, the implication =⇒ is clear, since if f solves (4-1), then

( f,∇v f ) ∈ A(g∗) and J [ f,∇v f ] = 0.

Conversely, if J [ f1, j1] = 0, then by convexity we have f = f1 (assuming the mean-zero constraint from
(4-12)), and

∇v f1 = j1 a.e. in Td
× Rd .

Then since ∇
∗
v j1 = g∗

− B f1, we recover that f = f1 is indeed a solution of (4-1). In particular, the fact
that there is at most one solution to (4-1) is clear.

To complete the proof, it thus remains to show that given the unique minimizing pair ( f1, j1), we have

J [ f1, j1] ⩽ 0. (4-16)

We phrase this as a perturbed convex minimization problem for the functional G, which is defined for
every f ∗

∈ L2(Td
; H−1

γ ) with ( f ∗)Td = 0 by

G( f ∗) := inf
f ∈H1

hyp(T
d )

( f )
Td =0

(∫∫
Td×Rd

f f ∗ dm + inf
j∈L2(Td )

( f, j)∈A( f ∗
+g∗)

J [ f, j ]
)
.

To complete the proof, we must show that G(0)⩽ 0. We decompose the argument into the next three steps.

Step 3: In this step, we show that G is convex and reduce the problem to showing that the convex dual
of G is nonnegative. For every pair ( f, j) satisfying ( f, j) ∈ A( f ∗

+ g∗), we have

∇
∗

v j = f ∗
+ g∗

− B f, ( f )Td = 0, (4-17)
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and so utilizing (1-8) we find that∫∫
Td×Rd

f f ∗ dm +J [ f, j ] =

∫∫
Td×Rd

f f ∗ dm +

∫∫
Td×Rd

1
2 |∇v f − j |2 dm

=

∫∫
Td×Rd

f f ∗ dm +

∫∫
Td×Rd

1
2 |∇v f |

2
+

1
2 | j |2 − f ∇

∗

v j dm

=

∫∫
Td×Rd

f f ∗ dm +

∫∫
Td×Rd

1
2 |∇v f |

2
+

1
2 | j |2 − f ( f ∗

+ g∗
− B f ) dm

=

∫∫
Td×Rd

1
2 |∇v f |

2
+

1
2 | j |2 − g∗ f dm.

Taking the infimum over all ( f, j) satisfying the affine constraint ( f, j) ∈ A( f ∗
+ g∗), we obtain the

quantity G( f ∗). We thus infer that G is convex in the variable f ∗. By Lemma 4.5, given f ∗
∈ L2(Td

; H−1
γ )

with vanishing mean, we may find f0 ∈ H 1
hyp(T

d) such that ⟨B f0⟩γ = ⟨ f ∗
+ g∗

⟩γ = ⟨ f ∗
⟩γ . Then since

⟨ f ∗
+ g∗

− B f0⟩γ = 0, we may find j ∈ (L2(Td
; L2

γ ))
d such that ∇

∗
v j = f ∗

+ g∗
− B f0, and we see that

the function G is also locally bounded above. These two properties imply that G is lower semicontinuous;
see [Ekeland and Temam 1976, Lemma I.2.1 and Corollary I.2.2]. We denote by G∗ the convex dual
of G, defined for every h ∈ L2(Td

; H 1
γ ) with (h)Td = 0 by

G∗(h) := sup
f ∗

∈L2(Td
;H−1

γ )

( f ∗)
Td =0

(
−G( f ∗)+

∫∫
Td×Rd

h f ∗ dm
)
,

and by G∗∗ the bidual of G. Since G is lower semicontinuous, we have G∗∗
= G (see [Ekeland and

Temam 1976, Proposition I.4.1]), and, in particular,

G(0)= G∗∗(0)= sup
h∈L2(Td

;H1
γ )

(h)
Td =0

(−G∗(h)).

In order to prove that G(0)⩽ 0, it therefore suffices to show that,

for all h ∈ L2(Td
; H 1

γ ) with (h)Td = 0, G∗(h)⩾ 0. (4-18)

Step 4: In this step we show that

G∗(h) <+∞ =⇒ h ∈ H 1
hyp(T

d). (4-19)

We rewrite G∗(h) in the form

G∗(h)= sup
{∫∫

Td×Rd

(
−

1
2 |∇v f − j |2 − f f ∗

+ h f ∗
)

dm
}
, (4-20)

where the supremum is over every f ∈ H 1
hyp(T

d), j ∈ L2(Td
; L2

γ )
d and f ∗

∈ L2(Td
; H−1

γ ) satisfying
the constraint (4-17). Given f with ( f )Td = 0, we choose to restrict the supremum above to f ∗

:= B f
and j = j0 the solution of ∇

∗
v j0 = g∗. Recall that such a j0 ∈ L2(Td

; L2
γ )

d exists since ⟨g∗
⟩γ = 0. With
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such choices of f ∗ and j , the constraint (4-17) is satisfied, and we obtain

G∗(h)⩾ sup
{∫∫

Td×Rd

(
−

1
2 |∇v f − j0|2 − f B f + h B f

)
dm : f ∈ H 1

hyp(T
d), ( f )Td = 0

}
.

Recalling that
∫∫

f B f dm = 0, and using that C∞

0 (T
d
× Rd) is dense in H 1

hyp(T
d), we deduce

G∗(h)⩾ sup
{∫∫

Td×Rd

(
−

1
2 |∇v f − j0|2 + h B f

)
dm : f ∈ C∞

c (T
d
× Rd), ( f )Td = 0

}
.

Then the assumption of G∗(h) <∞ implies

sup
{∫∫

Td×Rd
h B f dm : f ∈ C∞

c (T
d
× Rd), ( f )Td = 0, ∥ f ∥L2(Td ;H1

γ )
⩽ 1

}
<∞.

This then shows that the distribution Bh belongs to the dual of L2(Td
; H 1

γ ), which is L2(Td
; H−1

γ ). Since

v · ∇x h = Bh − b · ∇vh,

the proof of (4-19) is complete.

Step 5: In place of (4-18), we have left to show that,

for all h ∈ H 1
hyp(T

d) with (h)Td = 0, G∗(h)⩾ 0. (4-21)

Since B f ∈ L2(Td
; H−1

γ ), we may replace f ∗ by f ∗
+ B f in the variational formula (4-20) for G∗ to get

G∗(h)= sup
{∫∫

Td×Rd

(
−

1
2 |∇v f − j |2 + (h − f )( f ∗

+ B f )
)

dm
}
, (4-22)

where the supremum is now over every f ∈ H 1
hyp(T

d), j ∈ L2(Td
; L2

γ )
d and f ∗

∈ L2(Td
; H−1

γ ) satisfying
the constraint

∇
∗

v j = f ∗
+ g∗, ( f )Td = 0. (4-23)

Setting f = h in (4-22), we find that

G∗(h)⩾ sup
{∫∫

Td×Rd
−

1
2 |∇vh − j |2 dm

}
,

with the supremum ranging over all f ∗
∈ L2(Td

; H−1
γ ) and j ∈ L2(Td

; L2
γ )

d satisfying the constraint
(4-23). We now simply select j = ∇vh ∈ L2(Td

; L2
γ )

d and

f ∗
= ∇

∗

v j − g∗
∈ L2(Td

; H−1
γ ),

at which point we conclude that G∗(h)⩾ 0. □

5. Interior regularity of solutions

In this subsection, we use energy methods to obtain interior regularity estimates for solutions of the
equation

−1v f + v · ∇v f + v · ∇x f + b · ∇v f + c f = f ∗. (5-1)
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In analogy to the classical theory for uniformly elliptic equations (such as the Laplace or Poisson equations),
we obtain an appropriate version of the Caccioppoli inequality, apply it iteratively to obtain H 1

hyp estimates
on all spatial derivatives of the solution, and then apply the Hörmander and Sobolev inequalities to obtain
pointwise estimates. In particular, we obtain higher regularity estimates — strong enough to imply that
our weak solutions are C∞ — without resorting to sophisticated theory for pseudodifferential operators.

We begin with a version of the Caccioppoli inequality for (5-1).

Lemma 5.1 (Caccioppoli inequality). Suppose r > 0, b ∈ L∞(Br ; L∞(Rd
; Rd)), c ∈ L∞(Br ; L∞(Rd)),

and the pair ( f, f ∗) ∈ L2(Br ; H 1
γ )× L2(Br ; H−1

γ ) satisfies the equation

−1v f + v · ∇v f + v · ∇x f + b · ∇v f + c f = f ∗ in Br × Rd . (5-2)

Then f ∈ H 1
hyp(Br ), and there exists C(d, r, ∥b∥L∞(Br ;L∞(Rd )), ∥c|L∞(Br ;L∞(Rd ))) <∞ such that

∥∇v f ∥L2(Br/2;L2
γ )

+ ∥v · ∇x f ∥L2(Br/2;H−1
γ ) ⩽ C∥ f ∥L2(Br ;L2

γ )
+ C∥ f ∗

∥L2(Br ;H−1
γ ). (5-3)

Proof. The PDE (5-2) guarantees that f ∈ L2(Br ; H 1
γ ) belongs qualitatively to H 1

hyp(Br ).

Step 1: We show that there exists C(d) <∞ such that

∥∇v f ∥L2(Br/2;L2
γ )
⩽C

(1
r

+∥b∥L∞(Br ×Rd )+∥c∥1/2
L∞(Br ×Rd )

)
∥ f ∥L2(Br ;L2

γ )
+C(1+r)∥ f ∗

∥L2(Br ;H−1
γ ). (5-4)

Select a smooth cutoff function φ ∈ C∞
c (Br ) which is compactly supported in Br and satisfies 0 ⩽ φ ⩽ 1

in Br , φ ≡ 1 on Br/2 and ∥∇φ∥L∞(Br ) ⩽ 8r−1. Testing (5-2) with (x, v) 7→ φ2(x) f (x, v) yields∫
Br ×Rd

φ2
|∇v f |

2 dx dγ =

∫
Br ×Rd

φ2 f f ∗ dx dγ −

∫
Br ×Rd

φ2 f v · ∇x f dx dγ

−

∫
Br ×Rd

φ2 f b · ∇v f dx dγ −

∫
Br ×Rd

φ2c f 2 dx dγ. (5-5)

We estimate each of the terms on the right-hand side of (5-5) separately.
For the first term on the right side of (5-5), we use∣∣∣∣∫

Br ×Rd
φ2 f f ∗ dx dγ

∣∣∣∣ ⩽ ∥φ2 f ∥L2(Br ;H1
γ )

∥ f ∗
∥L2(Br ;H−1

γ )

⩽
(
∥φ2

∇v f ∥L2(Br ;L2
γ )

+ ∥ f ∥L2(Br ;L2
γ )

)
∥ f ∗

∥L2(Br ;H−1
γ ) (5-6)

and then apply Young’s inequality to obtain∣∣∣∣∫
Br ×Rd

φ2 f f ∗ dx dγ
∣∣∣∣ ⩽ 1

6

∫
Br ×Rd

φ2
|∇v f |

2 dx dγ

+
C
r2

∫
Br ×Rd

f 2 dx dγ + C(1 + r2)∥ f ∗
∥

2
L2(Br ;H−1

γ )
. (5-7)
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For the second term on the right side of (5-5), we integrate by parts to find

−

∫
Br ×Rd

φ2 f v · ∇x f dx dγ = −

∫
Br ×Rd

φ2v · ∇x
( 1

2 f 2) dx dγ

=

∫
Br ×Rd

φ∇xφ · v f 2 dx dγ

=

∫
Br ×Rd

φ(x)∇xφ(x) · v exp
(
−

1
2 |v|2

)
f 2(x, v) dx dv

= −

∫
Br ×Rd

2 f φ∇xφ · ∇v f dx dγ.

Thus, by Young’s inequality,∣∣∣∣∫
Br ×Rd

φ2 f v · ∇x f dx dγ
∣∣∣∣ ⩽ 1

6

∫
Br ×Rd

φ2
|∇v f |

2 dx dγ + C
∫

Br ×Rd
f 2

|∇xφ|
2 dx dγ

⩽ 1
6

∫
Br ×Rd

φ2
|∇v f |

2 dx dγ +
C
r2

∫
Br ×Rd

f 2 dx dγ. (5-8)

For the third term on the right side of (5-5), we use Young’s inequality to obtain∣∣∣∣∫
Br ×Rd

φ2 f b · ∇v f
∣∣∣∣ dx dγ ⩽ 1

6

∫
Br ×Rd

φ2
|∇v f |

2 dx dγ + C
∫

Br ×Rd
φ2 f 2

|b|
2 dx dγ

⩽ 1
6

∫
Br ×Rd

φ2
|∇v f |

2 dx dγ + C∥b∥
2
L∞(Br ×Rd )

∫
Br ×Rd

f 2 dx dγ. (5-9)

To conclude, we combine (5-5)–(5-9) and the obvious estimate on the final term to obtain∫
Br ×Rd

φ2
|∇v f |

2 dx dγ ⩽ 2
3

∫
Br ×Rd

φ2
|∇v f |

2 dx dγ +
C
r2

∫
Br ×Rd

f 2 dx dγ + C(1 + r2)∥ f ∗
∥

2
L2(Br ;H−1

γ )

+ C(∥b∥
2
L∞(Br ×Rd )

+ ∥c∥L∞(Br ×Rd ))

∫
Br ×Rd

f 2 dx dγ.

The first term on the right may now be reabsorbed on the left. Using that φ=1 on Br/2, we thus obtain (5-4).
The analysis in Step 1 is enough to conclude that f ∈ H 1

hyp(Br/2) and the gradient bound in (5-3).

Step 2: We show that there exists C(d) <∞ such that

∥v · ∇x f ∥L2(Br/2;H−1
γ ) ⩽ C(1 + ∥b∥L∞(Br/2×Rd ))∥∇v f ∥L2(Br/2;L2

γ )

+ C∥c∥L∞(Br/2×Rd )∥ f ∥L2(Br/2;L2
γ )

+ C∥ f ∗
∥L2(Br/2;H−1

γ ). (5-10)

This estimate may be combined with (5-4) to obtain the bound for the second term in (5-3), which
completes the proof of the lemma.

To obtain (5-10), we test (5-2) with w ∈ L2(Br/2; H 1
γ ) to find that∫

Br ×Rd
w (v·∇x f ) dx dγ =−

∫
Br ×Rd

∇v f ·(∇vw+wb) dx dγ+

∫
Br ×Rd

w f ∗ dx dγ−

∫
Br ×Rd

cw f dx dγ.
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We deduce that∣∣∣∣∫
Br ×Rd

w(v·∇x f )dx dγ
∣∣∣∣⩽ ∥∇v f ∥L2(Br/2;L2

γ )
(∥∇vw∥L2(Br/2;L2

γ )
+∥b∥L∞(Br/2×Rd )∥w∥L2(Br/2;L2

γ )
)

+∥w∥L2(Br/2;H1
γ )

∥ f ∗
∥L2(Br/2;H−1

γ )+∥c∥L∞(Br ×Rd )∥ f ∥L2(Br ;L2
γ )

∥w∥L2(Br ;L2
γ )
.

Taking the supremum over w ∈ L2(Br/2; H 1
γ ) with ∥w∥L2(Br/2;H1

γ )
⩽ 1 yields (5-10).

The combination of (5-4) and (5-10) yields (5-3). □

In the next lemma, under appropriate regularity conditions on the coefficients, we differentiate (5-1)
with respect to xi to obtain an equation for ∂xi f , and then apply the previous lemma to obtain an
interior H 1

hyp estimate for ∂xi f . We need to essentially differentiate the equation a fractional number of
times (see [Mingione 2007; 2011]).

Lemma 5.2 (differentiating in x). Fix r ∈ (0,∞) and coefficients b ∈ C0,1(Br × Rd
; Rd), c ∈

C0,1(Br × Rd
; R). Suppose that f ∗

∈ H 1(Br ; H−1
γ ) and f ∈ H 1

hyp(Br ) satisfy

−1v f + v · ∇v f + v · ∇x f + b · ∇v f + c f = f ∗ in Br × Rd . (5-11)

Then, for each i ∈ {1, . . . , d}, the function h := ∂xi f belongs to H 1
hyp(Br ′) for all r ′

∈ (0, r) and satisfies

−1vh + v · ∇vh + v · ∇x h + b · ∇vh + ch = ∂xi f ∗
− ∂xi b · ∇v f − ∂xi c f in Br ′ × Rd . (5-12)

Moreover, there exists C(d, r, ∥b∥C0,1(Br ×Rd ), ∥c∥C0,1(Br ×Rd )) <∞ such that

∥∂xi f ∥H1
hyp(Br/2)

⩽ C∥ f ∥L2(Br ;L2
γ )

+ C∥ f ∗
∥H1(Br ;H−1

γ ). (5-13)

Proof. The argument is by induction on the fractional exponent of differentiability of f in the spatial
variable x . Essentially, we want to differentiate the equation a fractional amount (almost 1

3 times), apply
the Caccioppoli inequality to the fractional derivative, and then iterate until we have one full spatial
derivative.

Step 1: We first prove that, for every ( f, f ∗) ∈ H 1
hyp(Br )× H 1(Br , H−1

γ ) satisfying (5-11), there ex-
ists C(d, r, ∥b∥C0,1(Br ×Rd ), ∥c∥C0,1(Br ×Rd )) < ∞ such that f belongs to H 1(Br/2; H 1

γ ) and satisfies the
estimate

∥∇x f ∥L2(Br/2;H1
γ )
⩽ C∥ f ∥L2(Br ;L2

γ )
+ C∥ f ∗

∥H1(Br ;H−1
γ ). (5-14)

Suppose that α0 ∈ [0, 1) is such that the following statement is valid: For every α ∈ [0, α0], r > 0,
and pair ( f, f ∗) ∈ H 1

hyp(Br ) × Hα(Br , H−1
γ ) satisfying (5-11), we have f ∈ Hα(Br/2; H 1

γ ) and, for
C(d, r, ∥b∥C0,1(Br ×Rd ), ∥c∥C0,1(Br ×Rd ), α) <∞, the estimate

∥ f ∥Hα(Br/2;H1
γ )
⩽ C∥ f ∥L2(Br ;L2

γ )
+ C∥ f ∗

∥Hα(Br ;H−1
γ ). (5-15)

We argue that the statement is also valid for min
(
α0 +

1
3 − δ, 1

)
in place of α0 for all δ ∈

(
0, 1

3

)
. Note that

this statement is clearly valid for α0 = 0 by the Caccioppoli inequality (Lemma 5.1).
Fix α ∈ [0, α0] and a pair

( f, f ∗) ∈ H 1
hyp(Br )× Hα(Br , H−1

γ )
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satisfying (5-11), an index i ∈ {1, . . . , d}, and a cutoff function φ ∈ C∞
c (Br/2) with 0 ⩽ φ ⩽ 1 and φ ≡ 1

on Br/4. Define the functions
f̃ := φ2 f,

f̃ ∗
:= φ2 f ∗

+ 2 f φ v · ∇xφ.

Observe that f̃ ∈ H 1
hyp(R

d) and f̃ ∗
∈ Hα(Rd

; H−1
γ ) are compactly supported in Br and satisfy

∥ f̃ ∥Hα(Rd ;L2
γ )
⩽ C∥ f ∥Hα(Br ;L2

γ )
,

∥ f̃ ∗
∥Hα(Rd ;H−1

γ ) ⩽ C(∥ f ∗
∥Hα(Br ;H−1

γ ) + ∥ f ∥Hα(Br ;L2
γ )
),

and the PDE (5-1) in Rd
× Rd.

Next, we mollify. This step ensures that the function qualitatively belongs to good enough spaces to
justify the computations (the analogous step in Nirenberg’s method is finite differences). Define

f̄ = f̃ ∗x ψ
ε,

f̄ ∗
= f̃ ∗

∗x ψ
ε
− [ψε∗x , b·]∇v f̃ − [ψε∗x , c] f̃ ,

where ψε is an appropriate mollification at scale ε. Then ( f̄ , f̄ ∗) satisfies the PDE (5-1) in Rd
× Rd. We

have
∥(1 −1x)

α/2 f̄ ∥L2(Rd ;L2
γ )
⩽ C∥ f̃ ∥Hα(Rd ;L2

γ )
, (5-16)

∥(1 −1x)
α/2 f̄ ∗

∥L2(Rd ;H−1
γ ) ⩽ C∥ f̃ ∗

∥Hα(Rd ;H−1
γ ) + C∥ f̃ ∥Hα(Rd ;L2

γ )
, (5-17)

since [ψε∗x , b·] and [ψε∗x , c] are Hα(Rd
; H−1

γ )-bounded for all α ∈ [0, 1], while b and c are Lipschitz.
We apply (1 −1x)

α/2 to the PDE (5-1) satisfied by ( f̄ , f̄ ∗) and define fα = (1 −1x)
α/2 f̄ . We have that

fα satisfies the equation

−1v fα+v·∇v fα+v·∇x fα+b·∇v fα+c fα = (1−1)α/2 f̄ ∗
−[(1−1)α/2, b·]∇v f̄ −[(1−1)α/2, c] f̄

in Rd
×Rd . The Cacciopoli inequality for fα ∈ L2(Rd

; H 1
γ ), the Hörmander inequality, and (5-16)–(5-17)

give
∥ fα∥H1/3−δ(Rd ;L2

γ )
+ ∥ fα∥L2(Rd ;H1

γ )
⩽ C∥ f̃ ∥Hα(Rd ;L2

γ )
+ C∥ f̃ ∗

∥Hα(Rd ;H−1
γ ) (5-18)

for all δ ∈
(
0, 1

3

)
, where C depends on δ. Sending the mollification parameter ε to 0+ completes the

induction and the proof. We emphasize that this induction demonstrates that ∂xi f ∈ L2(Br ′; H 1
γ ) for all

r ′ < r , where f is a function satisfying the hypotheses of Lemma 5.2. Once this is known, one may
plainly differentiate the equation in ∂xi and apply Caccioppoli’s inequality to conclude. □

Lemma 5.3 (differentiating in v). Fix r ∈ (0,∞) and coefficients b ∈ C0,1(Br × Rd
; Rd), c ∈

C0,1(Br × Rd
; R). Suppose that f ∗

∈ H 1(Br ; L2
γ ) and f ∈ H 1

hyp(Br ) satisfy

−1v f + v · ∇v f + v · ∇x f + b · ∇v f + c f = f ∗ in Br × Rd . (5-19)

Then, for each i ∈ {1, . . . , d}, the function h := ∂vi f belongs to H 1
hyp(Br ′) for all r ′

∈ (0, r) and satisfies

−1h + v · ∇vh + v · ∇x h + b · ∇vh + (c + 1)h = h∗ in Br ′ × Rd , (5-20)
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where
h∗

:= ∂vi f ∗
− ∂xi f − (∂vi b) · ∇v f − (∂vi c) f. (5-21)

Moreover, there exists C(d, r, ∥b∥C0,1(Br ×Rd ), ∥c∥C0,1(Br ×Rd )) <∞ such that

∥∂vi f ∥H1
hyp(Br/2)

⩽ C∥ f ∥L2(Br ;L2
γ )

+ C∥ f ∗
∥H1(Br ;L2

γ )
. (5-22)

Proof. The standard procedure is to differentiate the equation and apply Caccioppoli’s inequality. This
introduces a forcing term h∗, defined in (5-21), which contains ∂xi f , and this is why we improve the
spatial regularity beforehand in Lemma 5.2. That is, we already know

∥ f ∥H1
hyp(Br ′ ) + ∥∂xi f ∥L2(Br ′ ;H1

γ )
⩽ C(∥ f ∥L2(Br ;L2

γ )
+ ∥ f ∗

∥H1(Br ;H−1
γ )),

as in Lemma 5.2, where r ′
= 7r/8. In addition to this observation, we require a cut-off and mollification

procedure to compensate for the fact that we did not assume qualitatively that ∂vi f ∈ L2(Br ; H 1
γ ), which

would be enough to make the energy estimate rigorous.
For ℓ⩾ 1, consider a standard cut-off function ϕℓ in v at scale ℓ. Define

f̃ = ϕℓ f,

f̃ ∗
= ϕℓ f ∗

− 2∇v f · ∇vϕ
ℓ
− f1vϕℓ + f (v · ∇vϕ

ℓ
+ b · ∇vϕ

ℓ),

where we suppress the dependence on ℓ in the notation. Then ( f̃ , f̃ ∗) solves (5-1) in Br ′ × Rd, and it is
not difficult to verify that

∥ f̃ ∥L2(Br ′ ;H1
γ )
⩽ C∥ f ∥L2(Br ′ ;H1

γ )
,

∥∂xi f̃ ∥L2(Br ′ ;L2
γ )
⩽ ∥∂xi f ∥L2(Br ′ ;L2

γ )
,

∥ f̃ ∗
∥L2(Br ′ ;L2

γ )
⩽ C(∥ f ∥L2(Br ′ ;H1

γ )
+ ∥ f ∗

∥L2(Br ′ ;L2
γ )
).

Next, we mollify. Let ψε be a standard mollification function in v at scale 0< ε≪ 1. Define

f̄ = ψε ∗v f̃ ,

f̄ ∗
= ψε ∗v f̃ ∗

− [ψεv∗v, v·](∇v f̃ + ∇x f̃ )− ([ψε∗v, b·]∇v f̃ )− [ψε∗v, c] f̃ , (5-23)

where again we suppress the dependence on ℓ, ε in the notation. Then ( f̄ , f̄ ∗) is well-defined in Br ′ ×Rd

and solves (5-1) there.
We highlight a few features of the cut-off and mollification procedure. Translations of L2

γ functions
may not belong to L2

γ , due to the superexponential nature of the weight (compare with exponential
weights e−c⟨v⟩). Hence, mollification is not well-behaved on L2

γ . The velocity cut-off ϕℓ tames this issue.
This cut-off has the additional benefit of taming commutators with v which occur naturally in the force
term f̄ ∗.

We claim
lim sup
ε→0+

∥ f̄ ∥L2(Br ′ ;H1
γ )
⩽ ∥ f̃ ∥L2(Br ′ ;H1

γ )
,

lim sup
ε→0+

∥∂xi f̄ ∥L2(Br ′ ;L2
γ )
⩽ ∥∂xi f̃ ∥L2(Br ′ ;L2

γ )
,

(5-24)
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and, more subtly,

lim sup
ε→0+

∥ f̄ ∗
∥L2(Br ′ ;L2

γ )
⩽ C(∥ f̃ ∥L2(Br ′ ;H1

γ )
+ ∥ f̃ ∗

∥L2(Br ′ ;L2
γ )
), (5-25)

where (5-24) and (5-25) are for fixed ℓ. Both estimates in (5-24) are evident due to the support properties
of f̃ , so we focus on (5-25). For each fixed ℓ, we have

∥([ψε∗v, b·]∇v f̃ )+ [ψε∗v, c] f̃ ∥L2(Br ′ ;L2
γ )

→ 0

as ε→ 0+.12 Here, we use that the coefficients are Lipschitz and f̃ is compactly supported. It remains
to analyze the second term in (5-23). From the compact support, we may replace v by ϕ2ℓv. Then

∥[ψεv∗v, (ϕ
2ℓv)·](∇v f̃ )∥L2(Br ′ ;L2

γ )
→ 0, (5-26)

∥[ψεv∗v, (ϕ
2ℓv)·](∇x f̃ )∥L2(Br ′ ;L2

γ )
→ 0 (5-27)

as ε→ 0+ for fixed ℓ.
Finally, we define h̄ = ∂vi f̄ and

h̄∗
:= ∂vi f̄ ∗

− ∂xi f̄ − (∂vi b) · ∇v f̄ − (∂vi c) f̄ , (5-28)

which solve (5-20) in Br ′ × Rd and satisfy

∥h̄∥L2(Br ′ ;L2
γ )
⩽ ∥ f̄ ∥L2(Br ′ ;H1

γ )
,

∥h̄∗
∥L2(Br ′ ;H−1

γ ) ⩽ C(∥ f̄ ∗
∥L2(Br ′ ;L2

γ )
+ ∥∂xi f̄ ∥L2(Br ′ ;L2

γ )
+ ∥ f̄ ∥L2(Br ′ ;H1

γ )
).

These, in turn, are estimated by the aforementioned inequalities for f̄ , f̃ , and f . Applying Caccioppoli’s
inequality and sending ε→ 0+ and ℓ→ +∞ completes the proof. □

Theorem 1.5 concerning the interior regularity, jointly in the variables x and v, is obtained by differen-
tiating the equation and repeatedly applying Lemmas 5.2 and 5.3, and we omit the details.

6. The kinetic Fokker–Planck equation

In this last section, we study the time-dependent kinetic Fokker–Planck equation

∂t f − ε(1v f − v · ∇v f )+ v · ∇x f + b · ∇v f = f ∗. (6-1)

The parameter ε is only relevant for the enhancement estimate, and one may imagine that ε = 1 until the
final subsection. As with the Kramers equation, we prove a Poincaré inequality for bounded domains
V ⊆ R × Rd which are either C1 or cylindrical products I × U where I ⊆ R is a bounded interval and U
is a bounded C1 domain, but we consider the initial value problem only for U = Td.

12One may verify this by writing out the commutator explicitly and using the fundamental theorem of calculus for the
difference terms that arise, such as c(x, v− v′)− c(x, v) if the mollification variable is v′.
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6A. Function spaces. We define the function space

H 1
kin(V ) := { f ∈ L2(V ; H 1

γ ) : ∂t f + v · ∇x f ∈ L2(V ; H−1
γ )}, (6-2)

equipped with the norm

∥ f ∥H1
kin(V )

:= ∥ f ∥L2(V ;H1
γ )

+ ∥∂t f + v · ∇x f ∥L2(V ;H−1
γ ). (6-3)

We denote the unit exterior normal to V by nV ∈ L∞(∂V ; Rd+1). If V is a C1 domain, then nV (t, x)
is well-defined for every (t, x) ∈ ∂V ; if V is of the form I × U, then nV (t, x) is well-defined unless
(t, x) ∈ ∂ I × ∂U, in which case we take the convention that nV (t, x) = 0. We define the hypoelliptic
boundary of V ⊆ R × Rd as

∂kin(V ) :=

{
((t, x), v) ∈ ∂V × Rd

:

(1
v

)
· nV (t, x) < 0

}
.

We denote by H 1
kin,0(V ) the closure in H 1

kin(V ) of the set of smooth functions which vanish on ∂kinV.

Proposition 6.1 (density of smooth functions). Let V ⊆ R × Rd be a bounded C1 domain or cylindrical
product I ×U, where U is a bounded C1 domain. The set C∞

c (V × Rd) of smooth functions with compact
support in V × Rd is dense in H 1

kin(V ).

Proof. Mimicking the first step of the proof of Proposition 2.2, which only uses that the domain is Lipschitz,
we see that we can assume without loss of generality that, for every z ∈ V and ε ∈ (0, 1], we have

B((1 − ε)z, ε)⊆ V .

Here we use z to denote a generic variable in R × Rd ; in standard notation, z = (t, x). Let ζε be a
(1+d)-dimensional version of the mollifier defined in (2-11), and let f ∈ H 1

kin(V ). We define, for every
ε ∈

(
0, 1

2

]
, z ∈ V and v ∈ Rd,

fε(z, v) :=

∫
R1+d

f ((1 − ε)z + z′, v)ζε(z′) dz′.

We then show as in Step 2 of the proof of Proposition 2.2 that f belongs to the closed convex hull of
the set

{
fε : ε ∈

(
0, 1

2

]}
, and then, as in Step 3 of this proof, that for each ε > 0, we have that fε belongs

to the closure of the set C∞
c (V × Rd). □

6B. Functional inequalities for H1
kin. We next show a Poincaré inequality for H 1

kin(V ). For the sake
of generality, we allow for more flexible boundary conditions than in Theorem 1.3, in the spirit of
Remark 3.2.

Proposition 6.2 (Poincaré inequality). Let V ⊆ R × Rd be a bounded C1 domain or a cylindrical product
I × U, where U is a bounded C1 domain.

(1) There exists a constant C(V, d) <∞ such that, for every f ∈ H 1
kin(V ), we have

∥ f − ( f )V ∥L2(V ;L2
γ )
⩽ C(∥∇v f ∥L2(V ;L2

γ )
+ ∥v · ∇x f + ∂t f ∥L2(V ;H−1

γ )).
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(2) Let W be a relatively open subset of ∂V × Rd. There exists a constant C(V,W, d) <∞ such that
for every f ∈ C∞

c (V × Rd) that vanishes on W, we have

∥ f ∥L2(V ;L2
γ )
⩽ C(∥∇v f ∥L2(V ;L2

γ )
+ ∥v · ∇x f + ∂t f ∥L2(V ;H−1

γ )).

Proof of Proposition 6.2. The proof is similar to that of Theorem 1.3. By Proposition 6.1, we can assume
that f ∈ C∞

c (W × Rd). We start by using the Gaussian Poincaré inequality to assert that

∥ f − ⟨ f ⟩γ ∥L2(V ;L2
γ )
⩽ ∥∇v f ∥L2(V ;L2

γ )
.

Paralleling the second step of the proof of Theorem 1.3, we then aim to gain control on a negative Sobolev
norm of the derivatives of ⟨ f ⟩γ . Here we treat the time and space variables on an equal footing, and
thus are interested in controlling ∂t ⟨ f ⟩γ and ∇⟨ f ⟩γ in the H−1(V ) norm. The precise claim is that there
exists C(d, V ) <∞ such that for every test function φ ∈ C∞

c (V ) satisfying

∥φ∥L2(V ) + ∥∇φ∥L2(V ) + ∥∂tφ∥L2(V ) ⩽ 1, (6-4)

we have∣∣∣∣∫
V
φ ∂t ⟨ f ⟩γ

∣∣∣∣ + d∑
i=1

∣∣∣∣∫
V
φ ∂xi ⟨ f ⟩γ

∣∣∣∣ ⩽ C(∥∇v f ∥L2(V ;L2
γ )

+ ∥v · ∇x f + ∂t f ∥L2(V ;H−1
γ )). (6-5)

We start by showing that the first term on the left side of (6-5), which refers to the time derivative of ⟨ f ⟩γ ,
is estimated by the right side of (6-5). We select a smooth function ξ0 ∈ C∞

c (R
d) such that∫

Rd
ξ0(v) dγ (v)= 1 and

∫
Rd
vξ0(v) dγ (v)= 0, (6-6)

and observe that, using these properties of ξ0, we can write∫
V
∂tφ(t, x) ⟨ f ⟩γ (t, x) dt dx =

∫
V ×Rd

ξ0(v)(∂tφ(t, x)+ v · ∇xφ(t, x))⟨ f ⟩γ (t, x) dt dx dγ (v)

=

∫
V ×Rd

ξ0(v)(∂t + v · ∇x)φ(t, x) f (t, x, v) dt dx dγ (v)

+

∫
V ×Rd

ξ0(v)(∂t + v · ∇x)φ(t, x)(⟨ f ⟩γ (t, x)− f (t, x, v)) dt dx dγ (v).

Using (6-4) and the fact that ξ0 has compact support, we can bound the second integral above by

C∥ f − ⟨ f ⟩γ ∥L2(V ;L2
γ )
⩽ C∥∇v f ∥L2(V ;L2

γ )
.

By integration by parts, the absolute value of the first integral is equal to∣∣∣∣∫
V ×Rd

ξ0(v)φ(t, x)(v · ∇x + ∂t) f (t, x, v) dt dx dγ (v)
∣∣∣∣ ⩽ C∥v · ∇x f + ∂t f ∥L2(V ;H−1

γ ).

This completes the proof of the estimate in (6-5) involving the time derivative. To estimate the terms
involving the space derivatives, we fix i ∈ {1, . . . , d} and use a smooth function ξi ∈ C∞

c (R
d) satisfying∫

Rd
ξi (v) dγ (v)= 0 and

∫
Rd
vξi (v) dγ (v)= ei
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to get∫
V
∂xiφ(t, x) ⟨ f ⟩γ (t, x) dt dx =

∫
V ×Rd

ξi (v)(v · ∇xφ(t, x)+ ∂tφ(t, x))⟨ f ⟩γ (t, x) dt dx dγ (v).

The rest of the argument is then identical to the estimate involving the time derivative, and thus (6-5) is
proved. The remainder of the proof is then identical to that for Theorem 1.3. Note that we need to invoke
Lemma 3.1, which allows Lipschitz regularity, for the domain V. □

6C. The Hörmander inequality for H1
kin. For the Hörmander inequality, we recall the parameter ε from

(6-1) and assume that the spatial/temporal domain is V = [0, ε−1/3
] × Td, although a similar estimate

would hold for V = [0, ε−1/3
]× Rd. We emphasize that we have included this particular factor of ε due

to the fact that the a priori estimates for (6-1) control only ε1/2
∇v f , and also due to the scaling between

the regularity exponent we shall be able to obtain for ∇x f and the a priori estimate. This inequality
for H 1

kin(V ) is proved in an almost identical way to the one for H 1
hyp(T

d); the only difference is that
the time variable is not periodic as is the space variable. So a bit of care must be taken with the finite
differences corresponding to the vector field ∂t + v · ∇x . We track the parameter ε throughout the proof
for the purposes of the enhancement estimate later on. The version of (3-25) we use here is

f (t, x + η3ε1/2x ′, v)− f (t, x, v)

= f (t, x + η3ε1/2x ′, v)− f (t, x + η3ε1/2x ′, v− ηε1/2x ′)

+ f (t, x + η3ε1/2x ′, v− ηε1/2x ′)− f (t + η2, x + η3ε1/2x ′
+ η2(v− ε1/2ηx ′), v− ηε1/2x ′)

+ f (t + η2, x + η2v, v− ηε1/2x ′)− f (t + η2, x + η2v, v)

+ f (t + η2, x + η2v, v)− f (t, x, v). (6-7)

As before, we must define the following Besov spaces based on finite differences in the ∇x and
Dt = ∂t +v ·∇x directions. The Besov space measuring fractional regularity in the x variable now depends
fundamentally on ε and t , and so we denote this space Q1/3,ε

∇x
. To lighten the notation, in the context of

proofs in which ε is always fixed, we sometimes shall substitute the notation Q1/3
∇x

instead of the more
cumbersome Q1/3,ε

∇x
, and similarly for Q1/2,ε

Dt
.

Definition 6.3. For measurable u : (0, ε−1/3)× Td
× Rd

→ R, we define

∥u∥
2
Q1/2,ε

Dt

:= sup
0<η⩽

√
ε−1/3/2

1
η2

(∫∫∫
(0,ε−1/3/2)×Rd×Td

(u(t+η2, x+η2v,v)−u(t, x,v))2 dx dγ (v)dt

+

∫∫∫
(ε−1/3/2,ε−1/3)×Rd×Td

(u(t−η2, x−η2v,v)−u(t, x,v))2 dx dγ (v)dt
)
. (6-8)

We define

∥u∥
2
Q1/3,ε

∇x

:= sup
0<η⩽

√
ε−1/3/2

x ′
∈Sd−1

1
η2

∫∫∫
(0,ε−1/3)×Rd×Td

(u(t, x + ε1/2η3x ′, v)− u(t, x, v))2 dx dγ (v) dt. (6-9)
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Notice that the quantity ε1/2η3 is of order 1 if η2 takes its maximum value of ε−1/3/2. Then by iterating
the finite differences, the norm in (6-9) is equivalent to one in which the supremum is taken over values
of η at least as large as the diameter of Td, at which point the norm is equivalent to one including all
positive values of η.

To streamline the proof of the enhancement estimate later, we assume in the following proposition
that ⟨∂t u + v · ∇x u⟩γ ≡ 0 (a condition which will be satisfied in the enhancement context). Then from
Lemma 2.1, the L2

t,x H−1
γ norm of ∂t u + v · ∇x u may be obtained via duality against the gradients (in v)

of L2
t,x H 1

γ functions which have vanishing means ⟨ · ⟩γ . Thus the inequality (6-10) does not require
the L2

t,x L2
γ norm of u on the right-hand side; one could easily adjust the statement in the case that

⟨∂t u + v · ∇x u⟩γ ̸= 0 by including the necessary term.

Lemma 6.4 (interpolation). For every δ > 0, there exists a constant C(δ, d) <∞ (not depending on ε)
such that, for any smooth function u satisfying ⟨∂t u + v · ∇x u⟩γ ≡ 0,

∥u∥
2
Q1/2,ε

Dt

⩽ δ∥u∥
2
Q1/3,ε

∇x

+C(δ)(ε∥∇vu∥
2
L2((0,ε−1/3)×Td ;L2

γ )
+ε−1

∥∂t u +v ·∇x u∥
2
L2((0,ε−1/3)×Td ;H−1

γ )
). (6-10)

Remark 6.5. The factors of ε ensure that the right-hand side remains of order 1 as ε → 0 and arise
naturally when deriving the a priori estimates for solutions to (6-1); see Section 6F for more details.

Proof. The proof is similar for both halves of (6-8), i.e., the forward and backward differences, and so we
focus on the case of the forward difference.

Step 1: Let φ ∈ C∞

0 ((−1, 1)d) be a smooth, positive, radial function with unit L1 norm. For ζ > 0, we
define φζu(t, x, v) by

φζu(t, x, v)=

∫
Rd

u(t, x + ζ 3ε1/2x ′, v)φ(x ′) dx ′.

Analogously to Step 1 from the proof of Theorem 1.4, we have

∥φζu(t, x, v)− u(t, x, v)∥2
L2((0,ε−1/3)×Td ;L2

γ )
⩽ ζ 2

∥u∥
2
Q1/3

∇x

. (6-11)

Step 2: Let
f (η)= ∥u(t + η2, x + η2v, v)− u(t, x, v)∥2

L2((0,ε−1/3/2)×Td ;L2
γ )
.

We may write

f (η)≲ ∥φδηu(t + η2, x + η2v, v)− u(t + η2, x + η2v, v)∥2
L2((0,ε−1/3/2)×Td ;L2

γ )

+ ∥φδηu(t + η2, x + η2v, v)−φδηu(t, x, v)∥2
L2((0,ε−1/3/2)×Td ;L2

γ )

+ ∥φδηu(t, x, v)− u(t, x, v)∥2
L2((0,ε−1/3/2)×Td ;L2

γ )
, (6-12)

where the implicit constant is independent of η, δ, and u. By Step 1 with ζ = δη, the first and third terms
are bounded by

δ2η2
∥u∥

2
Q1/3

∇x

.

Step 3: It remains to estimate the second term in (6-12). For η ∈ (0,
√
ε−1/3/2) and 0 ⩽ τ ⩽ η2, consider

F(τ )= ∥φδηu(t + τ, x + τv, v)−φδηu(t, x, v)∥2
L2((0,ε−1/3/2)×Td ;L2

γ )
. (6-13)
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The term in question is F(η2). Since F(0)= 0, it suffices to estimate F ′(τ ). We have

F ′(τ )

= 2
∫∫∫

(0,ε−1/3/2)×Rd×Td
(φδηu(t+τ, x+τv,v)−φδηu(t, x,v))·Dt(φδηu)(t+τ, x+τv,v)dx dγ (v)dt

= 2
∫∫∫

(τ,ε−1/3/2+τ)×Rd×Td
(φδηu(t, x,v)−φδηu(t−τ, x−τv,v))·Dt(φδηu)(t, x,v)dx dγ (v)dt. (6-14)

From [Dt , φδη]u = [∇v, φδη]u = 0, the assumption ⟨∂t u + v · ∇x u⟩γ ≡ 0, and our control of

∥∂t u + v · ∇x u∥L2((0,ε−1/3)×Td ;H−1
γ ),

we will achieve the desired estimate for F ′(τ ) if we can bound

∇v(φδηu(t, x, v)−φδηu(t − τ, x − τv, v))

in L2((τ, ε−1/3/2+τ)×Td
; L2

γ ). Notice that after obtaining these bounds, we apply the Cauchy–Schwarz
inequality with a prefactor of ε in front of one term and ε−1 in front of the other in order to obtain (6-10).
The only nontrivial estimate comes when the ∇v lands on the x-coordinate of the second term, which we
may write out as∫

Td
−τ∇x u(t − τ, x + (δη)3ε1/2x ′

− τv, v)φ(x ′) dx ′

= −

∫
Td

τ

(δη)3ε1/2 ∇x ′u(t − τ, x + (δη)3ε1/2x ′
− τv, v)φ(x ′) dx ′

=

∫
Td

τ

(δη)3ε1/2 u(t − τ, x + (δη)3ε1/2x ′
− τv, v)∇x ′φ(x ′) dx ′

=

∫
Td

τ

(δη)3ε1/2 (u(t − τ, x + (δη)3ε1/2x ′
− τv, v)− u(t − τ, x − τv, v))∇x ′φ(x ′) dx ′.

But slight adjustments to the argument from Step 1 show that this is bounded in L2((τ, ε1/2/2 + τ)×

Td
; L2

γ ) by a constant independent of δ times

τ

(δη)3ε1/2 δη∥u∥Q1/3
∇x

⩽
1

δ2ε1/2 ∥u∥Q1/3
∇x
,

where here we have used the assumption that τ ⩽ η2. Using the Cauchy–Schwarz and Young inequalities
to absorb the negative powers of ε and δ with the L2

t,x H−1
γ norm concludes the proof. □

We may now state and prove the following proposition. As with the interpolation, in the case that
⟨∂t u + v · ∇x u⟩γ ̸= 0, one could adjust the statement of the second inequality to include the necessary
L2

t,x L2
γ norm of u.

Proposition 6.6 (Hörmander inequality). There exists C(d) <∞ (not depending on ε) such that for every
smooth function u satisfying ⟨∂t u + v · ∇x u⟩γ ≡ 0, we have

∥u∥Q1/3,ε
∇x

⩽ C(ε1/2
∥∇vu∥L2((0,ε−1/3)×Td ;L2

γ )
+ ∥u∥Q1/2,ε

Dt
)

⩽ C(ε1/2
∥∇vu∥L2((0,ε−1/3)×Td ;L2

γ )
+ ε−1/2

∥∂t u + v · ∇x u∥L2((0,ε−1/3)×Td ;H−1
γ )). (6-15)
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Proof of Proposition 6.6. Set

g(t, x, v)= f (t, x, v)γ 1/2(v),

and choose η2
∈ (0, ε−1/3

] and x ′
∈ Sd−1. Then we may write

∥ f (t, x + ε1/2η3x ′, v)− f (t, x, v)∥L2((0,ε−1/3/2)×Td ;L2
γ )

= ∥g(t, x + ε1/2η3x ′, v)− g(t, x, v)∥L2((0,ε−1/3/2)×Td ;L2(Rd ))

and
g(t, x + η3ε1/2x ′, v)− g(t, x, v)= g(t, x + η3ε1/2x ′, v)− g(t, x + η3ε1/2x ′, v− ηε1/2x ′)

+ g(t, x + η3ε1/2x ′, v− ηε1/2x ′)

− g(t + η2, x + η3ε1/2x ′
+ η2(v− ε1/2ηx ′), v− ηε1/2x ′)

+ g(t + η2, x + η2v, v− ηε1/2x ′)− g(t + η2, x + η2v, v)

+ g(t + η2, x + η2v, v)− g(t, x, v). (6-16)

Dividing by η, integrating in L2((0, ε−1/3/2) × Td
; L2(Rd)), and appealing to (2-7) as in the time-

independent case yields

1
η
∥ f (t, x + ε1/2η3x ′, v)− f (t, x, v)∥L2((0,ε−1/3)×Td ;L2

γ )
≲ ε1/2

∥∇v f ∥L2((0,ε−1/3)×Td ;L2
γ )

+ ∥ f ∥Q1/2
Dt
.

For the other half of the time interval, it is easy to rewrite (6-16) with a backwards difference in the
∂t + v · ∇x direction by first adding ηε1/2x ′ in the v-variable and then subtracting η2 in the t-variable and
η2(v+ ε1/2ηx ′) in the x-variable. Arguing as for the forward differences produces an identical estimate.
Then using Lemma 6.4 and absorbing the ∥ f ∥

2
Q1/3

∇x

factor required to bound ∥ f ∥Q1/2
Dt

from the right-hand
side onto the left-hand side gives the result. □

Remark 6.7. From the embedding Q1/3
∇x
↪→ L2((0, ε−1/3)× Td

; L2
γ ) for functions with vanishing x-mean

⟨u⟩(t, v)=
∫

Td u(t, x, v) dx (see, for example, [Albritton et al. 2022]), we obtain the ε-dependent Poincaré
inequality

∥u∥L2((0,ε−1/3)×Td ;L2
γ )
⩽ Cε−1/6

∥u∥Q1/3
∇x
. (6-17)

Note that to obtain this inequality, we have rescaled out the factors of ε used in the finite differences of
the Q1/3

∇x
norm and then appealed to an ε-independent function space embedding.

Remark 6.8 (regularity in time). By an interpolation argument, the result of Proposition 6.6 implies some
time regularity for a function f ∈ H 1

kin(V ) for V = (0, ε−1/3)× Td. Indeed, by the definition of the norm
∥ · ∥H1

kin
, we have

∥ f ∥L2((0,ε−1/3)×Td ;H1
γ )
⩽ ∥ f ∥H1

kin((0,ε
−1/3)×Td ).

By interpolation and (6-15), for every θ ∈ [0, 1] and α ∈
[
0, 1

3

)
,

∥ f ∥L2((0,ε−1/3);H θα(Td ;H1−2θ
γ )) ⩽ C∥ f ∥H1

kin((0,ε
−1/3)×Td ).
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We also have, by (6-15), for any α ∈
[
0, 1

3

)
,

∥ f ∥H1((0,ε−1/3);Hα−1(Td ;H−1
γ )) ⩽ ∥ f ∥L2((0,ε−1/3);Hα−1(Td ;H−1

γ )) + ∥∂t f ∥L2((0,ε−1/3);Hα−1(Td ;H−1
γ ))

⩽ ∥ f ∥L2((0,ε−1/3);L2(Td ;H−1
γ )) + ∥∂t f − v · ∇x f ∥L2((0,ε−1/3);L2(Td ;H−1

γ ))

+ ∥v · ∇x f ∥L2((0,ε−1/3);Hα−1(Td ;H−1
γ ))

⩽ C∥ f ∥H1
kin((0,ε

−1/3)×Td ).

By interpolation of the previous two displays, we obtain, for any θ, σ ∈ [0, 1] and α ∈
[
0, 1

3

)
,

∥ f ∥Hσ ((0,ε−1/3);H θα−σ(1−α+θα)(Td ;H1−2(θ+σ−θσ )
γ ))

⩽ C∥ f ∥H1
kin((0,ε

−1/3)×Td ). (6-18)

Each of the constants C above depends only on (α, d). Note that all three exponents can be made
simultaneously positive, for example taking α = θ =

1
4 and σ =

1
32 yields

∥ f ∥H1/32((0,ε−1/3);H1/32(Td ;H7/16
γ ))

⩽ C∥ f ∥H1
kin((0,ε

−1/3)×Td ). (6-19)

By (6-19) and an argument very similar to the proof of Proposition 3.8, which we omit, we obtain the
following compact embedding statement.

Proposition 6.9 (compact embedding of H 1
kin into L2). For any bounded C1 domain V ⊆ R × Rd or

cylindrical product I ×U where U is a bounded C1 domain, the inclusion map H 1
kin(V ) ↪→ L2(V ; L2

γ ) is
compact.

6D. Well-posedness of the Cauchy problem.

Proposition 6.10 (solvability of the kinetic Fokker–Planck equation). Let T ∈ (0,+∞], fin ∈ L2
m , and

g∗
∈ L2(Td

× (0, T ); H−1
γ ). Under Assumption 1.1, there exists a unique solution

f ∈ C([0, T ]; L2
m(T

d
× Rd))∩ H 1

kin((0, T )× Td) (6-20)

to the kinetic Fokker–Planck equation (6-1) with initial data fin and forcing term g∗.

Proof. Let T ∈ (0,+∞]. Let fin ∈ L2
m and g∗

∈ L2((0, T ); L2
σ (T

d
; H−1

γ ))). A function g solves the
kinetic Fokker–Planck equation if and only if f (t, x, v)= g(t, x, v)et solves

∂t f + (v · ∇x + b · ∇v) f + f = f ∗
+ ε(1 f − v · ∇v f ), (6-21)

where f ∗
= et g∗. We solve (6-21) on (0, T )× Td

× Rd by applying Lemma 4.1 with an appropriate
functional setup:

(1) the test function space

8= C∞

0 (T
d
× Rd

× [0, T )) (6-22)

with inner product

(φ, ψ)=

∫ T

0

∫
Td×Rd

∇vφ · ∇vψ dm dt +

∫ T

0

∫
Td×Rd

φψ dm dt, (6-23)
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(2) the solution space
H = L2(0, T ; L2

σ (T
d
; H 1

γ ))

with inner product (6-23),

(3) the bilinear form

E(h,φ)= ε
∫ T

0

∫
Td×Rd

∇vh·∇vφ dm dt+
∫ T

0

∫
Td×Rd

hφ dm dt−
∫ T

0

∫
Td×Rd

h(∂t+v·∇x+b·∇v)φ dm dt,

(4) and the linear functional

Lφ =

∫
Td×Rd

finφ(x, v, 0) dm + g∗(φ).

As before, in the Kramers equation, one may verify that E is continuous (4-2) on H for each fixed
φ ∈ 8. We now verify coercivity (4-3) and mention two essential new features: (i) the initial data fin

is built into the linear function L , and (ii) test functions φ ∈8 vanish at t = T but are not required to
vanish at t = 0 (which is necessary for them to “detect” the initial data). After integrating by parts in all
variables, we have

E(φ, φ)= ε

∫ T

0

∫
Td×Rd

|∇vφ|
2 dm dt +

∫ T

0

∫
Td×Rd

|φ|
2 dm dt +

1
2

∫
Td×Rd

|φ(x, v, 0)|2 dm ⩾ ε(ψ,ψ)H .

Lemma 4.1 generates a weak solution f ∈ H to E( f, φ)= Lφ for all φ ∈8. In particular, choosing φ ∈8

that additionally vanish near t = 0 guarantees that the PDE (6-21) is satisfied in the sense of distributions.
From the PDE itself, we recover that f ∈ H 1

kin(T
d
×(0, T )) and, in particular, f ∈ C([0, T ]; L2

σ (T
d
; L2

γ ));
see Lemma 6.12. This is enough regularity to justify that the initial data is fin and the basic energy
estimate which guarantees uniqueness. □

We do not include a proof of the following statement in this paper, since the argument is a close
adaptation of the one of Theorem 1.5. We define Vr := (−r, r)× Br and denote by ∇t,x the full gradient
in t and x , that is, ∇t,x = (∂t ,∇x).

Proposition 6.11 (interior regularity, kinetic Fokker–Planck). Let b ∈ Ck−1,1(Vr × Rd
; Rd), k ∈ N and

r ∈ (0,∞). There exists a constant C <∞ depending on

(d, k, r, ∥b∥Ck−1,1(Vr ×Rd ;Rd ))

such that, for every f ∈ H 1
kin(Vr ) and f ∗

∈ L2(Vr ; H−1
γ ) satisfying

∂t f −1v f + v · ∇v f + v · ∇x f + b · ∇v f = f ∗ in Vr × Rd , (6-24)

the following holds: if ∂α f ∗
∈ L2(Br ; H−1

γ ) for all multi-indices α ∈ N × Nd
× Nd satisfying |α| ⩽ k,

then we have ∂α f ∈ H 1
kin(Vr/2) and the estimate

∥∂α f ∥H1
kin(Vr/2)

⩽ C
(
∥ f − ( f )Vr ∥L2(Vr ;L2

γ )
+

∑
|β|⩽k

∥∂β f̃ ∗
∥L2(Vr ;H−1

γ )

)
for all multi-indices α ∈ N × Nd

× Nd satisfying |α| ⩽ k.
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6E. Exponential decay in time. For each bounded interval I = (I−, I+)⊆ R and bounded C1 domain U,
we denote by H 1

kin,||(I × U ) the closure in H 1
kin(I × U ) of the set of smooth functions which vanish

on I × ∂hypU. Note that in particular, we allow the trace of f ∈ H 1
kin,||(I × U ) on the initial time slice

{I−} × U to be nonzero. In this section, we show that a solution to the kinetic Fokker–Planck equation
with zero right-hand side and belonging to H 1

kin,||(I × U ) decays to zero exponentially fast in time. We
start with a preliminary classical lemma.

Lemma 6.12 (continuity in L2). Every function in H 1
kin,||(I × U ) can be identified (up to a set of null

measure) with an element of C(I ; L2(U ; L2
γ )).

Proof. If f is a smooth function which vanishes on I × ∂hypU, then, for every t ∈ I, we have

∂t∥ f (t, · )∥2
L2(U ;L2

γ )
+

∫
∂U×Rd

f 2(t, x, v)(v · nU (x))+ dx dγ (v)

= 2
∫

U×Rd
( f (∂t f + v · ∇x f ))(t, x, v) dx dγ (v),

where we recall that (r)+ := max(0, r). Since the second integral on the left side is nonnegative, we
deduce that, for every s, t ∈ I,∣∣∥ f (t, · )∥2

L2(U ;L2
γ )

− ∥ f (s, · )∥2
L2(U ;L2

γ )

∣∣ ⩽ 2∥ f ∥L2((s,t)×U ;H1
γ )

∥∂t f + v · ∇x f ∥L2((s,t)×U ;H−1
γ ),

and thus, for a constant C(I ) <∞,

sup
t∈I

∥ f (t, · )∥L2(U ;L2
γ )
⩽ C∥ f ∥H1

kin(I×U ).

For a general f ∈ H 1
kin,||(I × U ), there exists a sequence ( fn) of smooth functions which vanish on

I × ∂hypU and such that fn converges to f in H 1
kin(I × U ). It follows from the inequality above that fn

converges to f with respect to the L∞(I ; L2(U ; L2
γ )) norm; in particular, f ∈ C(I ; L2(U ; L2

γ )). □

We finally turn to the proof of Theorem 1.6, which is restated in the following proposition. Notice that,
by linearity, it suffices to prove the theorem in the case f ∗

= 0 and f∞ = 0.

Proposition 6.13 (exponential decay to equilibrium). Let U ⊆ Rd be a bounded C1 domain and
b ∈ L∞(U × Rd)d. There exists λ(∥b∥L∞(U×Rd ),U, d) > 0 such that, for every T ∈ (0,∞) and
f ∈ H 1

kin,||((0, T )× U ) satisfying

∂t f −1v f + v · ∇v f + v · ∇x f + b · ∇v f = 0 in (0, T )× U × Rd ,

we have, for every t ∈ (0, T ),

∥ f (t, · )∥L2(U ;L2
γ )
⩽ 2 exp(−λt)∥ f (0, · )∥L2(U ;L2

γ )
.

Proof. For every 0 ⩽ s < t , we compute

1
2(∥ f (t, · )∥2

L2(U ;L2
γ )

− ∥ f (s, · )∥2
L2(U ;L2

γ )
)⩽ −∥∇v f ∥

2
L2((s,t)×U ;L2

γ )
.

In particular,
the mapping t 7→ ∥ f (t, · )∥L2(U ;L2

γ )
is nonincreasing. (6-25)
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Since

−∇
∗

v∇v f = ∂t f + v · ∇x f + b · ∇v f,

we have

∥∂t f + v · ∇x f ∥L2((s,t)×U ;H−1
γ ) ⩽ ∥∂t f + v · ∇x f + b · ∇v f ∥L2((s,t)×U ;H−1

γ ) + ∥b · ∇v f ∥L2((s,t)×U ;H−1
γ )

⩽ C∥∇v f ∥L2((s,t)×U ;L2
γ )
,

and thus

−(∥ f (t, · )∥2
L2(U ;L2

γ )
− ∥ f (s, · )∥2

L2(U ;L2
γ )
)

⩾ 1
C
(∥∇v f ∥

2
L2((s,t)×U ;L2

γ )
+ ∥∂t f + v · ∇x f ∥

2
L2((s,t)×U ;H−1

γ )
). (6-26)

We aim to appeal to Proposition 6.2 to conclude. We define

V := [0, 1] × U. (6-27)

For every t ⩾ 0, we write

Vt := (t, 0)+ V = {(t + s, x) ∈ R × Rd
: (s, x) ∈ V }.

Inequality (6-26) implies that, for every t ⩾ 0,

−(∥ f (t + 1, · )∥2
L2(U ;L2

γ )
− ∥ f (t, · )∥2

L2(U ;L2
γ )
)⩾ 1

C
(∥∇v f ∥

2
L2(Vt ;L2

γ )
+ ∥∂t f − v · ∇x f ∥

2
L2(Vt ;H−1

γ )
).

Proposition 6.2 yields

−(∥ f (t + 1, · )∥2
L2(U ;L2

γ )
− ∥ f (t, · )∥2

L2(U ;L2
γ )
)⩾ 1

C
∥ f ∥

2
L2(Vt ;L2

γ )
.

Using (6-25) and (6-27), we deduce

−(∥ f (t + 1, · )∥2
L2(U ;L2

γ )
− ∥ f (t, · )∥2

L2(U ;L2
γ )
)⩾ 1

C
∥ f (t + 1, · )∥2

L2(U ;L2
γ )
.

This implies exponential decay of the mapping t 7→ ∥ f (t, · )∥L2(U ;L2
γ )

along integer values of t , and we
then obtain the conclusion of the proposition by using (6-25) once more. □

6F. Enhancement. Finally, we prove Theorem 1.7. Recall that f is assumed to be a solution to

∂t f + v · ∇x f = ε(1v f − v · ∇v f ) in (0,∞)× Td
× Rd . (6-28)

Proof of Theorem 1.7. After multiplying (6-28) by f and integrating over (0, ε−1/3)×Td
×Rd, we obtain

the a priori estimates

ε∥∇v f ∥
2
L2((0,ε−1/3)×Td×Rd )

⩽ ∥ fin∥
2
L2(Td ;L2

γ )
− ∥ f (ε−1/3, · , · )∥2

L2(Td ;L2
γ )
,

ε−1
∥∂t f + v · ∇x f ∥

2
L2((0,ε−1/3)×Td (H−1

γ ))
≲ ∥ fin∥

2
L2(Td ;L2

γ )
− ∥ f (ε−1/3, · , · )∥2

L2(Td ;L2
γ )
.
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Applying the inequality in (6-15) from Proposition 6.6, which is justified since ⟨∂t f + v · ∇x f ⟩γ =

ε⟨1v f − v · ∇v f ⟩γ ≡ 0, we obtain

∥ f ∥
2
Q1/3

∇x

≲ ε∥∇v f ∥
2
L2((0,ε−1/3)×Td ;L2

γ )
≲ ∥ fin∥

2
L2(Td ;L2

γ )
− ∥ f (ε−1/3, · , · )∥2

L2(Td ;L2
γ )
.

From (6-17) and the observation that the mean-zero in x condition from (1-26) is propagated forward in
time, we then obtain

∥ f ∥
2
L2((0,ε−1/3)×Td ;L2

γ )
≲ ε−1/3

∥ f ∥
2
Q1/3

∇x

≲ ε2/3
∥∇v f ∥

2
L2((0,ε−1/3)×Td ;L2

γ )

≲ ε−1/3(∥ fin∥
2
L2(Td ;L2

γ )
− ∥ f (ε−1/3, · , · )∥2

L2(Td ;L2
γ )
).

Translating in time and iterating this procedure yields exponential decay with rate exp(−cε−1/3t) along
integer multiples of ε−1/3, similarly to the proof of Proposition 6.13. Applying (6-25), which holds as
well for solutions to (6-28), we obtain (1-27). □

Remark 6.14. In principle, one can also incorporate a conservative b satisfying Assumption 1.1 into the
enhancement estimate, since [b(x) · ∇v, ∂vi ] = 0 for all i = 1, . . . , d .
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IMPROVED ENDPOINT BOUNDS FOR
THE LACUNARY SPHERICAL MAXIMAL OPERATOR

LAURA CLADEK AND BENJAMIN KRAUSE

We prove new endpoint bounds for the lacunary spherical maximal operator and as a consequence
obtain almost everywhere pointwise convergence of lacunary spherical means for functions locally in
L log log log L(log log log log L)1+ϵ for any ϵ > 0.

1. Introduction

Let d ≥ 2 be a fixed dimension; all constants in this paper are allowed to depend on d. We use the
asymptotic notation X ≲ Y , Y ≳ X , or X = O(Y ) to denote the estimate |X | ≤ CY for a constant C that
can depend on d , and X ≈ Y for X ≲ Y ≲ X .

Define the lacunary spherical maximal operator M by

M f (x) := sup
k∈Z

| f ∗ σk(x)|,

where σk denotes the (L1-normalized) surface measure on the (d−1)-sphere of radius 2k centered at the
origin.

Throughout this paper, log = log2 denotes the logarithm to base 2, and we define the iterated logarithms

Log(t) := log(100 + t), Log3(t) := Log Log Log t,

Log2(t) := Log Log t, Log4(t) := Log Log Log Log t.

It was shown by C. Calderón [1979] and Coifman and Weiss [1978] that M extends to a bounded
operator on L p(Rd) for p > 1, which implies almost everywhere pointwise convergence of lacunary
spherical means for functions in L p(Rd) for p > 1. An alternate proof of this result was later given
in [Duoandikoetxea and Rubio de Francia 1986]. It has remained open, however, as to whether M is
weak-type (1, 1), or equivalently, whether almost everywhere pointwise convergence of lacunary spherical
means holds for functions in L1(Rd).

Christ and Stein [1987] showed using an extrapolation argument that M f ∈ L1,∞(Rd) for functions f
on Rd supported in a cube Q satisfying f ∈ L Log L(Q). Christ [1988] also proved that M maps the
Hardy space H 1(Rd) to L1,∞(Rd). More recently, Seeger, Tao, and Wright [Seeger et al. 2003; 2004]
showed that M maps the space L Log2 L(Rd) to L1,∞(Rd). In this paper we prove that M maps all
characteristic functions in L Log3 L(Rd) boundedly to L1,∞(Rd), and more generally maps the entire

MSC2020: 42B15.
Keywords: harmonic analysis, Calderón–Zygmund theory, geometric maximal functions.
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space L Log3 L Log1+ϵ
4 L(Rd) to L1,∞(Rd) for every ϵ > 0, thus obtaining almost everywhere pointwise

convergence of lacunary spherical means for functions locally in L Log3 L Log1+ϵ
4 L(Rd).

Proposition 1.1 (lacunary spherical maximal inequality for indicator functions). For all measurable
indicator functions f = χE and all α > 0 we have

|{M f > α}| ≲ 1
α

∫
| f (x)| Log3

| f (x)|

α
dx . (1-1)

Here and in the sequel we use |E | to denote the Lebesgue measure of a subset E of Rd .

Proposition 1.2 (lacunary spherical maximal inequality for arbitrary functions). For every ϵ > 0, all
measurable f and all α > 0 we have

|{M f > α}| ≤ Cϵ
1
α

∫
| f (x)| Log3

| f (x)|

α
Log1+ϵ

4
| f (x)|

α
dx (1-2)

for some constant Cϵ depending only on ϵ.

By the usual limiting and truncation arguments we obtain the following corollary.

Theorem 1.3 (almost everywhere convergence of lacunary spherical means). Let ϵ > 0, and let f be
locally in L Log3 L Log1+ϵ

4 L(Rd). Then
f ∗ σk(x) → f (x)

for almost every x ∈ Rd .

Before we proceed with the proofs, we briefly outline the argument. In [Seeger et al. 2003], the
restricted version of the argument relied crucially on a decomposition of the function f = χE on Whitney
cubes into characteristic functions of sets called “generalized boxes”, which had properties called “length”
and “thickness”. As the name suggests, in two dimensions such sets are a generalization of rectangular
boxes, for which the length and thickness correspond to the long and short sides respectively of the
rectangle. In the case of two dimensions, convolution of a rectangular box with the measure σk has
measure equal to 2k times the length of the box. Similarly, the length of a generalized box determines for
how many scales k one may throw away the support of σk convolved with the characteristic function of
the generalized box. Conversely, the thickness of the box determines what L2 estimates one may obtain
for σk convolved with the characteristic function of the generalized box.

The argument of [Seeger et al. 2003] proceeded by combining standard Calderón–Zygmund techniques
along with this decomposition of E into generalized boxes on Whitney cubes, and by leveraging L2 and
exceptional set size estimates via the properties of length and thickness for each generalized box. Our
argument will also make use of a similar decomposition, but there will be many new ingredients involved,
and in general our argument will more closely use the geometry of the sphere.

For example, we exploit the geometry of caps on spheres to introduce a fairly involved algorithm for
defining exceptional sets, and we throw away more exceptional sets than in [Seeger et al. 2003]. These
exceptional sets are defined by covering Rd with collections of rotated grids of rectangles,1 where the

1In higher dimensions d > 2, by a “rectangle” we refer to a rotated box of some dimensions c × · · · × c × c′, with one side c′

shorter than the other sides c.
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dimensions of the rectangles are determined by an iterative relationship between the dimensions of a
given generalized box and the cap structure of the spherical measure. On fixing a particular direction
in Sd−1 which determines the orientation of the rectangular grids to be considered, we then subdivide
the generalized box into rectangular pieces where the generalized box has sufficiently high “mass”, and
throw away as an exceptional set the sumset of this rectangular box and a piece of the cap on the sphere
with normals pointing in similar directions as the short side of the rectangular box, so that such a set is
contained in a translation of the fattening of the spherical cap by an amount comparable to the short side
of the rectangular box.

We then decompose the kernel σk ∗σk into linear combinations of characteristic functions of rectangles
with dimensions corresponding to the caps that appear in our algorithm for defining exceptional sets. The
L2 estimates for each such piece of the kernel convolved with a given rectangular piece in a grid with
similar orientation is determined by the mass of the generalized box on that rectangular piece. There
are essentially double-logarithmically (in the relevant parameter) many such different sizes of caps that
appear, which alone would lead to the desired L2 estimates with an additional double-logarithmic factor.
However, we are able to throw away triple-logarithmically many “intermediate scales”; that is, we may
sum in L1 the convolutions of characteristic functions of parts of the generalized boxes with intermediate
masses with the associated cap measures. After doing so, we improve the L2 estimates for the remaining
“light scales” by the needed double-logarithmic factor, and also improve the support size estimates for the
remaining “heavy scales” by a double-logarithmic factor.

2. Preliminary reductions

In Calderón–Zygmund theory, weak-type estimates are often established by a combination of L1 and
L2 estimates outside of an exceptional set, and our arguments will be no exception to this strategy. It is
convenient to introduce some notation to abstract this strategy.

Definition 2.1 (Calderón–Zygmund control). Let α, V > 0. A Calderón–Zygmund term of threshold α

and measure V is a measurable function F : Rd
→ R of one of the following types:

(type L0) F is a function supported on a set of measure O(V ).

(type L1) F is an L1 function with ∥F∥1 ≲ αV .

(type L2) F is an L2 function with ∥F∥
2
2 ≲ α2V .

Here and in the sequel we use ∥ · ∥p to denote the usual L p(Rd) norms. A function F is Calderón–
Zygmund controlled with threshold α and measure V if |F | can be pointwise dominated by a sum of
boundedly many Calderón–Zygmund terms F1, . . . , Fn , with n = O(1), and each Fi a Calderón–Zygmund
term (of type L0, L1, or L2) of threshold α and measure V.

A model example of a Calderón–Zygmund controlled term to keep in mind is a simple function αχE ,
where E is of measure O(V ). The type-L1 terms are in fact redundant as they can be easily split into the
sum of a type-L0 and a type-L2 term, but we find it conceptually convenient to retain this intermediate
term for our arguments.
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We record some convenient properties of Calderón–Zygmund controlled functions:

Lemma 2.2 (basic properties of Calderón–Zygmund controlled functions). Let α > 0.

(a) (Chebyshev inequality) If F is Calderón–Zygmund controlled with threshold α and some measure
V > 0, then |{|F | > α}| ≲ V.

(b) (triangle inequality for bounded sums) If F, F1, F2 obey the bounds |F | ≲ |F1| + |F2| and F1, F2 are
Calderón–Zygmund controlled with threshold α and some measure V1, V2 > 0 respectively, then F is
Calderón–Zygmund controlled with threshold α and measure V1 + V2.

(c) (triangle inequality for square functions and unbounded sums) If (Fq)q∈Q is a collection of functions,
with each Fq Calderón–Zygmund controlled with threshold α and some measure Vq > 0, then the square
function

(∑
q∈Q |Fq |

2
)1/2 is Calderón–Zygmund controlled with threshold α and measure

∑
q∈Q Vq . If

the Fq are Calderón–Zygmund terms of type L0 or L1 of the threshold α and measure Vq , then
∑

q∈Q Fq

is also Calderón–Zygmund controlled at threshold α and measure
∑

q∈Q Vq ; but if the Fq were instead
L2 terms of threshold α and measure Vq , then

∑
q∈Q Fq can only be said to be an L2 term of threshold α

and measure
(∑

q∈Q V 1/2
q

)2.

Proof. For (a), we bound |F | ≤ F1 + · · · + Fn by the sum of Calderón–Zygmund terms Fi of threshold α

and measure V. By Chebyshev’s inequality (in the type-L1 and type-L2 cases) we have

{Fi > α/n} ≲ V

for all i = 1, . . . , n; summing, we obtain the claim.
The claim (b) is immediate from the triangle inequality, as is (c), after using the trivial bound(∑

q∈Q |Fq |
2
)1/2

≤
∑

q∈Q |Fq | to handle type-L1 terms arising from the square function. □

Most of this paper will be devoted to the proof of the following variant of Propositions 1.1 and 1.2.
Call a function f : Rd

→ R granular if it is a finite linear combination of indicator functions of dyadic
cubes. As in [Seeger et al. 2003], it is convenient for minor technical reasons to restrict attention to
granular functions.

Proposition 2.3 (bounding the lacunary spherical maximal function). Let 0 ≤ α ≤ 1, and let f be a
granular function taking values in [0, 1]. Then M f is Calderón–Zygmund controlled with threshold α

and measure (Log3(1/α)/α)∥ f ∥1.

By Lemma 2.2(a) we see that the conclusion of Proposition 2.3 implies the bound

|{x ∈ Rd
: M f (x) > α}| ≲

Log3(1/α)

α
∥ f ∥1 (2-1)

for granular f taking values in [0, 1]; the granularity hypothesis can then be removed by a standard
limiting argument. It is then clear that Proposition 2.3 implies Proposition 1.1 as a special case. Let us
now also see why it implies Proposition 1.2:
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Proof of Proposition 1.2. Without loss of generality we may assume that f is nonnegative. Since we
have the pointwise estimate M f ≤ M( f χ f ≥α/2)+α/2, we may assume without loss of generality (after
replacing α with α/2) that f (x) ≥ α for all x in the support of f . We then have the pointwise bound

M f (x) ≤

∞∑
k=1

M( f χLog3( f/α)≈2k )

and hence

|{M f > α}| ≤

∞∑
k=1

∣∣∣∣{M( f χLog3( f/α)≈2k )(x) >
α

Cϵk1+ϵ

}∣∣∣∣
for a sufficiently large constant Cϵ . By (2-1) and a simple rescaling we have∣∣∣∣{M( f χLog3( f/α)≈2k ) >

α

Cϵk1+ϵ

}∣∣∣∣ ≤ C ′

ϵ(k
1+ϵ2k/α)

∫
Rd

f (x)χLog3( f (x)/α)≈2k dx

for some quantity C ′
ϵ depending only on ϵ. Summing in k, we obtain the claim. □

It remains to establish Proposition 2.3.

Reductions using Calderón–Zygmund theory. Similarly to [Seeger et al. 2003], we first make some
standard reductions using Calderón–Zygmund theory. By the L2 boundedness of the lacunary spherical
maximal function, any expression of the form Mg with ∥g∥

2
2 ≲ α∥ f ∥1 will be a Calderón–Zygmund

term of type L2, threshold α, and measure (1/α)∥ f ∥1, and can thus be neglected. In particular, if we
define the standard Calderón–Zygmund exceptional set

� := {MH L( f ) ≥ α},

where MH L is the Hardy–Littlewood maximal operator, then f is bounded almost everywhere outside
of � by α, so in particular

∥ f χRd\�∥
2
2 ≤ α∥ f ∥1.

Thus the M( f χRd\�) gives a negligible contribution, and it suffices (by Lemma 2.2(b)) to control the
contribution M( f χ�) arising from the set �.

By the Whitney decomposition, we may partition � (up to null sets) by a family Q of essentially
disjoint cubes q on which

∫
q f ≲ α|q|; setting fq := f χq , each fq is granular, and we conclude

that f χ� =
∑

q∈Q fq almost everywhere, and by the Hardy–Littlewood maximal inequality one has∑
q |q| ≲ (1/α)∥ f ∥1. By arguing as in the start of [Seeger et al. 2003, §3] we may partition Q into a

bounded number of families Qi such that the cubes q in each Qi have their doubles 2q pairwise disjoint.
By the triangle inequality (Lemma 2.2(b)), it suffices to show that for each i , the expression M

∑
q∈Qi

fq

is Calderón–Zygmund controlled at threshold α and measure Log3(1/α) ·
∑

q∈Qi
|q|.

Henceforth we fix i and omit the constraint q ∈ Qi from summations for sake of brevity. Following
[Seeger et al. 2003], we now introduce some cancellation, by defining the projection operator 5q to be the
projection operator onto a certain space of polynomials. That is, let {Pj }

L
j=1 be an orthonormal basis for
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the space of polynomials of degree ≤ 100d on the unit cube
[
−

1
2 , 1

2

]d. If q is a cube with center xq and
sidelength l(q), define

5q [h](x) := χq(x)

L∑
j=1

Pj

(
x − xq

l(q)

) ∫
q

h(y)Pj

(
y − xq

l(q)

)
dy

l(q)d .

Introduce the “bad functions”
bq := fq − 5q [ fq ].

Since
|5q [ fq ](x)| ≲ αχq ,

we have ∥∥∥∥∑
q

5q [ fq ]

∥∥∥∥2

2
≲ α2

∑
q

|q|,

and so by the L2-boundedness of the lacunary spherical maximal operator, the contribution of M
∑

q5q [ fq]
is a type-L2 Calderón–Zygmund term of threshold α and measure

∑
q |q|. Thus it remains to obtain

Calderón–Zygmund control on the contribution

sup
k

∣∣∣∣∑
q

bq ∗ σk

∣∣∣∣
of the bad functions bq .

The contributions of those k with 2k
≤ l(q) are contained in

⋃
q 3q , and are thus acceptable Calderón–

Zygmund terms of type L0. For the remaining k, we will replace the sup by an ℓ2 norm; thus we will
show that (∑

k

∣∣∣∣ ∑
q: 2k>l(q)

bq ∗ σk

∣∣∣∣2)1/2

is Calderón–Zygmund controlled at threshold α and measure
∑

q∈Qi
|q|. Expanding out the square and

using the triangle inequality, it suffices to establish this claim for the diagonal contribution(∑
q

∑
k: 2k>l(q)

|bq ∗ σk |
2
)1/2

(2-2)

and for the off-diagonal contribution(∑
k

∑
q ̸=q ′: 2k>l(q),l(q ′)

(bq ∗ σk)(bq ′ ∗ σk)

)1/2

. (2-3)

The off-diagonal expression (2-3) can be handled by existing arguments. Indeed, since∥∥∥∥(∑
k

∑
q ̸=q ′: 2k>l(q),l(q ′)

(bq ∗ σk)(bq ′ ∗ σk)

)1/2∥∥∥∥2

2
≤

∑
k

∑
q ̸=q ′

|⟨bq ∗ σk, bq ′ ∗ σk⟩|,

it would suffice (by the definition of a type-L2 term) to show that∑
k

∑
q ̸=q ′

|⟨bq ∗ σk, bq ′ ∗ σk⟩| ≲ α2
∑

q

|q|,
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which can be proven as in [Seeger et al. 2003, (4.17)] by exploiting the smoothness of the kernel σk ∗ σk

and the cancellation of bq (and the hypothesis that the doubles 2q of q ∈ Qi are disjoint). Since the proof
is nearly identical to that given in [Seeger et al. 2003], we omit it here.

It remains to control the diagonal contribution (2-2). It is easy to see that∑
q

∑
k: 2k>l(q)

∥5q [ fq ] ∗ σk∥
2
2 ≲

∑
q

∑
k: 2k>l(q)

∥αχq ∗ σk∥
2
2

≲
∑

q

∑
k: 2k>l(q)

α22−k(d−1)ℓ(q)2d−1 ≲ α2
∑

q

|q|.

Thus
(∑

q
∑

k:2k>l(q) |5q [ fq ] ∗ σk |
2
)1/2 is a type-L2 term of the required threshold and measure, and so

by the triangle inequality we may replace (2-2) with(∑
q

∑
k:2k>l(q)

| fq ∗ σk |
2
)1/2

.

To show that this expression is Calderón–Zygmund controlled at threshold α and measure
∑

q |q|, it
suffices by Lemma 2.2 to show that the inner square functions

(∑
k:2k>l(q) | fq ∗ σk |

2
)1/2 are Calderón–

Zygmund controlled at threshold α and measure |q| for each cube q. A simple scaling argument shows
that we may then normalize q to be a unit cube. We have thus reduced matters to establishing:

Proposition 2.4 (bounding the lacunary spherical maximal function of fq ). Let 0 < α < 1, and let fq be
a granular function supported on a unit cube q taking values in [0, 1] with

∫
q fq ≲ α. Then the expression(∑

k>0

| fq ∗ σk |
2
)1/2

(2-4)

is Calderón–Zygmund controlled at threshold α and measure Log3(1/α).

The remainder of this paper will be devoted to the proof of this proposition.

Structural decomposition of fq . Let q, fq , α be as in Proposition 2.4. In [Seeger et al. 2003], the support
of fq was decomposed into structures referred to as “generalized boxes”, which behaved in a certain way
like 1-dimensional sets and which had associated quantities referred to as “length” and “thickness”, the
former which governed support size estimates and the latter which controlled L2 bounds. We describe a
decomposition of fq that is in a similar spirit.

Lemma 2.5 (structural decomposition lemma). Let q, fq , α be as in Proposition 2.4. List the dyadic
numbers between α2 and 1 in increasing order as

α2 < γ0 < γ1 < · · · < γJ = 1;

thus J ≈ Log(1/α). Then we can take the decomposition

fq =

J∑
j=0

f γ j
q (2-5)
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such that, for each j , f γ j
q is a granular function taking values in [0, 1] that is supported on a finite union

of cubes Q in q whose total “length” λ( f γ j
q ) :=

∑
Q l(Q) obeys the estimates∫

f γ j
q ≈ γ j · λ( f γ j

q ) (2-6)

if j > 0, with just the upper bound ∫
f γ j
q ≲ γ j · λ( f γ j

q ) (2-7)

for j = 0. Furthermore, one has ∫
Q

f γ j
q ≲ γ j l(Q) (2-8)

for every cube Q. We refer to γ j as the critical density of f γ j
q .

We will use the decomposition (2-5) in an essential way throughout the rest of the paper, as well as
the key properties (2-6), (2-7) and (2-8). In [Seeger et al. 2003], the analog of (2-7) is that for every
generalized box B of thickness γ and length λ, we have |B| ≲ γ · λ.

Proof. We perform a greedy algorithm, extracting the “heaviest” cubes first. Given a (nonnegative)
function f and a cube Q, we define the weight

wtQ[ f ] :=
1

l(Q)

∫
Q

f.

The symbol Q will always be understood to be a dyadic cube. We then inductively define

EγJ
q :=

⋃
Q⊂q: wtQ [ fq ]≥γJ

Q;

note that from the trivial bound wtQ[ fq ] ≤ wtQ[χq ] there are only finitely many cubes Q that can
contribute here. For 1 < j < J , we define

Eγ j
q :=

⋃
Q⊂q: wtQ [ fqχ

q\
⋃

l> j E
γl
q

]≥γ j

Q; (2-9)

again, this is a finite union of dyadic cubes. Set

Eγ0
q := q \

( ⋃
1≤ j≤N

Eγ j
q

)
.

If we then set

f γ j
q := fqχE

γ j
q \

⋃
j<l≤J E

γl
q
,

we obtain (2-5), and the fq are clearly granular. For j > 0, let Q j be a maximal cover of Eγ j
q by dyadic

cubes Q ⊂ q obeying the stated condition

wtQ[ fqχq\
⋃

l> j E
γl
q
] ≥ γ j ,
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and set
λ( f γ j

q ) :=

∑
Q∈Q j

l(Q). (2-10)

Then f γ j
q is supported on

⋃
Q∈Q j

Q, and the required claims (2-6), (2-8) follow from the construction of
the f γ j

q and (2-9) (and the upper bound fq ≤ χq , in the j = J case). For j = 0, we still have (2-8), and
the claim (2-7) follows by taking Q0 to consist just of the unit cube q . □

It remains to show that the expression(∑
k>0

∣∣∣∣∑
γ

f γ
q ∗ σk

∣∣∣∣2)1/2

(2-11)

is Calderón–Zygmund controlled of threshold α and measure Log3(1/α), where γ is implicitly restricted
to γ0, . . . , γJ .

Further reductions. We record the basic L0, L1, L2 estimates on f γ
q ∗ σk (which were already implicit

in [Seeger et al. 2003]):

Lemma 2.6 (L0, L1, L2 estimates). Let k > 0 and γ ≥ γ0.

(L0) f γ
q ∗ σk is a type-L0 Calderón–Zygmund term of threshold α and measure 2k(d−1)λ( f γ

q ).

(L1) f γ
q ∗ σk is a type-L1 Calderón–Zygmund term of threshold α and measure (1/α)∥ f γ

q ∥1.

(L2) f γ
q ∗ σk is a type-L2 Calderón–Zygmund term of threshold α and measure

2−k(d−1)γ

α2 Log
2k(d−1)

γ
· ∥ f γ

q ∥1.

Proof. For the L0 estimate, we decompose f γ
q into functions f γ

q χQ supported on cubes Q with
∑

Q l(Q)=

λ( f γ
q ). A geometric calculation shows that f γ

q χQ ∗ σk is supported on an annular region of measure
O(2k(d−1)l(Q)), and the claim follows by summing in Q.

The L1 estimate is immediate from Young’s inequality, so we turn to the L2 estimate. Using the
well-known pointwise estimate

σk ∗ σk(x) ≲
2−k(d−1)

|x |
χ|x |≤2k+1, (2-12)

we may expand

∥ f γ
q ∗ σk∥

2
2 = ⟨ f γ

q , σk ∗ σk ∗ f γ
q ⟩

≲ 2−k(d−1)

∫
f γ
q (x)

( ∑
l≤k+1

2−l
∫

y: |x−y|≈2l
f γ
q (y) dy

)
dx

≲ 2−k(d−1)
∥ f γ

q ∥1 sup
x

∑
l≤k+1

2−l
∫

y: |x−y|≈2l
f γ
q (y) dy.

From (2-8) and the pointwise bound f γ
q ≤ f ≤ 1 we have∫

y:|x−y|≈2l
f γ
q (y) dy ≲ min(γ 2l, 2dl) (2-13)
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and thus
∥ f γ

q ∗ σk∥
2
2 ≲ 2−k(d−1)

∥ f γ
q ∥1

∑
l≤k+1

min(γ, 2(d−1)l).

The summand is equal to γ for O(Log(2k(d−1)/γ )) terms, and decays geometrically otherwise, giving
the claim. □

From the L2 case of this lemma we see that f γ0
q ∗σk is a type-L2 Calderón–Zygmund term of threshold α

and measure

α−22−k(d−1)γ0 Log
2k(d−1)

γ0
· ∥ f γ0

q ∥1 ≲ 2−k(d−1)α Log
2k(d−1)

α2

since γ0 ≈ α2 and ∥ f γ0
q ∥1 ≤ ∥ fq∥1 ≲ α. Summing over all positive k using Lemma 2.2(c), we conclude

that (∑
k>0

| f γ0
q ∗ σk |

2
)1/2

is Calderón–Zygmund controlled of threshold α and measure O(α Log(1/α)), which is acceptable. Thus
we may delete the γ0 term from (2-11) and focus attention on(∑

k>0

∣∣∣∣∑
γ>γ0

f γ
q ∗ σk

∣∣∣∣2)1/2

. (2-14)

From the L0 case of this lemma and Lemma 2.2(c), followed by (2-6), we see that(∑
k>0

∣∣∣∣ ∑
γ>γ0: k(d−1)<log(γ /α)

f γ
q ∗ σk

∣∣∣∣2)1/2

is a type-L0 Calderón–Zygmund term of threshold α and measure∑
k>0

∑
γ>γ0: k(d−1)<log(γ /α)

2k(d−1)λ( f γ
q ) ≲

∑
γ>γ0

γ

α
λ( f γ

q ) ≈
1
α

∑
γ>γ0

∥ f γ
q ∥1 ≤

∥ fq∥1

α
≲ 1,

giving the claim. Thus the contribution of the “small scales” with k(d − 1) < log(γ /α) is acceptable.
Next, we claim that the contribution of the “nearly small scale” case

log
γ

α
≤ k(d − 1) < log

γ

α
+ 100 Log3

1
α

(2-15)

is also acceptable. Indeed, from the L1 case of Lemma 2.6 and Lemma 2.2(c), we see that(∑
k>0

∣∣∣∣ ∑
γ>γ0:(2-15)

f γ
q ∗ σk

∣∣∣∣2)1/2

is a type-L1 Calderón–Zygmund term of threshold α and measure∑
k>0

∑
γ>γ0: (2-15)

1
α

∥ f γ
q ∥1 ≲

Log3(1/α)

α

∑
γ>γ0

∥ f γ
q ∥1 ≤

Log3(1/α)

α
∥ fq∥1 ≲

Log3(1/α)

α

giving the claim.
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Furthermore, as in [Seeger et al. 2003], we claim that the contribution of terms σk ∗ f γ
q in the “large

scale” case
k(d − 1) ≤ log

γ

α
+ 100 Log2

1
α

(2-16)

is also acceptable (with some room to spare). Indeed, from Cauchy–Schwarz one has∑
γ>γ0: (2-16)

f γ
q ∗ σk ≲

( ∑
γ>γ0: (2-16)

(
k(d − 1) − log

γ

α

)2

| f γ
q ∗ σk |

2
)1/2

and from this, the L2 case of Lemma 2.6 and Lemma 2.2(c) we see that(∑
k>0

∣∣∣∣ ∑
γ>γ0: (2-16)

f γ
q ∗ σk

∣∣∣∣2)1/2

is a type-L2 Calderón–Zygmund term of threshold α and measure∑
k>0

∑
γ>γ0: (2-16)

(k(d − 1) − log(γ /α))2

α2 2−k(d−1)γ Log
2k(d−1)

γ
· ∥ f γ

q ∥1

≲
∑
γ>γ0

Log2
2(1/α)

α2

(
γ

α
Log100 1

α

)−1

γ Log2
1
α

· ∥ f γ
q ∥1 ≲

1
α

∑
γ>γ0

∥ f γ
q ∥1 ≤

∥ fq∥1

α
≲ 1

as required.
We have now treated all scales k except for those in the “medium-scale” range Kγ defined by

Kγ :=

{
k > 0 : log

γ

α
+ 100 Log3

1
α

≤ k(d − 1) ≤ log
γ

α
+ 100 Log2

1
α

}
. (2-17)

We have thus reduced Proposition 2.4 to the following.

Proposition 2.7. Let 0 < α < 1, and let fq be a granular function on a unit cube q taking values in [0, 1]

with ∫
q

fq ≲ α. (2-18)

Let f γ
q be as in Lemma 2.5, and Kγ be given by (2-17). Then the expression(∑

k>0

∣∣∣∣ ∑
γ>γ0: k∈Kγ

f γ
q ∗ σk

∣∣∣∣2)1/2

(2-19)

is Calderón–Zygmund controlled at threshold α and measure Log3(1/α).

Remark 2.8. If we were willing to replace Log3(1/α) by of Log2(1/α) in the measure parameter of the
conclusion then we could use the previous “nearly small scale” argument to express (2-19) as a type-L1

term, recovering the results of [Seeger et al. 2003] (with essentially the same proof). The main innovation
of this paper is to treat these medium-scale contributions by a more sophisticated argument than this
simple L1 argument, in particular constructing some additional exceptional sets outside of which one can
establish good L2 estimates at “light” scales.
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3. Proof of Proposition 2.7

Let α, q, fq , f γ
q be as in the above proposition. To prove Proposition 2.7, we will identify an exceptional

set to hold the “heavy” terms of type L0, then split the remaining portions of (2-19) into “intermediate”
terms that will be of type L1, and finally “light” terms that will be of type L2 outside of the previously
identified exceptional set. To construct these terms we need to introduce some additional scales, and
identify certain rectangles on which the f γ

q are unusually “heavy”.

Defining double-logarithmically many scales. Let us temporarily fix a critical density γ with α2
≤ γ ≤ 1.

For each such density we associate a key radius

r = rγ := max(1, (γ /α)1/(d−1)) (3-1)

and note that the constraint (2-17) ensures that 2k is a little bit larger than r :

2k
≥ r Log100/(d−1)

2
1
α

for all k ∈ Kγ . (3-2)

With the density γ fixed, we identify O(Log2(1/α)) many natural scales

γ 1/(d−1)
= c0 ≤ c1 ≤ · · · ≤ cN ≤ r

between γ 1/(d−1) and r in our problem that will lead us to our L Log3 L result. They will be defined
recursively by initializing

c0 := γ 1/(d−1)
≤ 1 ≤ r

and then taking iterated geometric means with r ; thus

ci :=
√

ci−1r (3-3)
for all i ≥ 1. More explicitly, we have

ci = (γ 1/(d−1)/r)2−i
r = max(γ 2−i /(d−1), γ 1/(d−1)α−(1−2−i )/(d−1)) (3-4)

for all i ≥ 0. Geometrically, each ci for i ≥ 1 arises (up to constants) as the diameter of a spherical cap of
thickness ci−1 on a sphere of radius r ; see Figure 1. These scales are motivated by a decomposition of
the kernel σk ∗ σk into linear combinations of characteristic functions of rectangles, which will appear
later in the paper.

We terminate the sequence of scales ci at the first N = Nγ for which

cN ≥ 2−10r.

Since α2 < γ ≤ 1, we have 1 ≤ r/γ ≤ α−O(1), and hence N ≲ Log2(1/α).

Throwing away exceptional sets at each scale. We can now define some exceptional sets.

Definition 3.1. Let the parameters k, γ be fixed as above, and define the scales c0 ≤ · · · ≤ cN as in the
previous section. Let 1 ≤ i ≤ N. Let M > 0 be a dyadic number.

(1) Define {8 j,i } j∈Ji to be a maximal set of (ci−1/ci )-separated directions 8 j,i in Sd−1, so that the
number of directions is ≈ (ci/ci−1)

d−1.
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c0
c1 c1

c2

c2

c3

Figure 1. The scales ci . Here c0 = γ 1/(d−1) and the circle has radius 2k for some k with
2k somewhat larger than r .

(2) For each direction 8 j,i in the above set, partition Rd into ci × ci × · · ·× ci × ci−1 parallel rectangles
that belong to some fixed grid, with the short direction parallel to the direction 8 j,i . Define R j,i,M to be
the collection of all such rectangles R such that∫

R
| f γ

q | ≥ ci−1 Mγ. (3-5)

(3) We then define our exceptional set as

SM,k,q,γ :=

N⋃
i=1

⋃
j∈Ji

supp(σk, j,i ∗ χ⋃
R∈R j,i,M

100R),

where σk, j,i is the restriction of σk to a spherical cap on the sphere of radius 2k of angular width 100ci−1/ci

centered at 2k8 j,i .

Observe that the sets SM,k,q,γ decrease as M increases. We claim the crucial upper bound on the size
of the exceptional sets defined above.

Lemma 3.2 (maximal inequality). With the notation of Definition 3.1, we have the bound

|SM,k,q,γ | ≲
2k(d−1)

M
λ( f γ

q ).

A key point here is that we do not lose a factor of N (which can be as large as Log2(1/α)) on the
right-hand side, by taking advantage of how the rectangles associated to different scales ci nest within
(dilates of) each other. This inequality can be viewed as a complicated variant of the Hardy–Littlewood
maximal inequality.

Before we proceed with the proof of Lemma 3.2, we say a few words to motivate the previous
definitions. We note that in some sense the support of σk, j,i is “adapted” to translates of rectangles
in R j,i,M , in the sense that convolution with characteristic functions of rectangles effectively fattens it by
ci−1 and translates it. Thus we note that for each R ∈ R j,i , the set supp(σk, j,i ∗χ100R) is contained in a
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1000ci−1-neighborhood of a translate of (a slightly wider version of) the cap supp(σk, j,i ). The rectangles
R ∈R j,i,M that are sufficiently “heavy” in the sense of (3-5) correspond to (more or less) poor L2 estimates
for σk, j,i ∗ χR , and so we would like to remove the supports of σk, j,i ∗ χR . Since the support of this is
essentially contained in a ci−1-fattening of the cap supp(σk, j,i ), the heavier the rectangles we consider (the
larger M is) the fewer number of such rectangles there can be, so the smaller the total size of exceptional
sets thrown away. Thus using a pigeonholing argument, we can obtain the bound from Lemma 3.2.

Proof of Lemma 3.2. We need to impose a partial order relation on the directions 8 j,i . For any i, i ′ with
i > i ′, we will say that a direction 8 j,i is an ancestor of 8 j ′,i ′ and write ( j ′, i ′) ≺ ( j, i) if the ball of
radius 10ci ′−1/ci ′ centered at 8 j ′,i ′ is contained in the ball of radius 10ci−1/ci centered at 8 j,i . This is
easily seen to be a partial order, and every 8 j ′,i ′ has at least one ancestor 8 j,i at generation i .

By definition, SM,k,q,γ is contained in a set of the form⋃
1≤i≤N

⋃
j∈Ji

⋃
R∈R j,i,M

supp(σk, j,i ∗ χ1000R),

where each R ∈ R j,i,M is a ci × ci × · · · × ci × ci−1 rectangle with short side pointing in direction 8 j,i

satisfying ∫
R

f γ
q ≥ ci−1 Mγ. (3-6)

Moreover, if ( j, i) ≺ ( j ′, i ′) then for any R ∈R j,i,M and any R′
∈R j ′,i ′,M , if R ∩ R′

̸=∅ then R ⊂ 100R′.
It follows that we can choose subcollections R̃ j,i,M ⊂ R j,i,M satisfying

SM,k,q,γ ⊂

⋃
1≤i≤N

⋃
j∈Ji

⋃
R∈R̃ j,i,M

supp(σk, j,i ∗ χ10000R),

so that for given any direction 8 j1,1, a chain of ancestors

8 j1,1 ≺ 8 j2,2 ≺ · · · ≺ 8 jN ,N (3-7)

satisfies the property that the rectangles in the collections R̃ ji ,i,M , 1 ≤ i ≤ N, are all pairwise disjoint.
Indeed, we can choose R̃ j,i,M to be the collection of rectangles R ∈ R j,i,M which are maximal in the
sense that they do not intersect any R′

∈ R j ′,i ′,M for some ancestor ( j ′, i ′) ≻ ( j, i).
Since σk, j,i ∗ χ10000R is essentially supported in a ci−1-fattening of (a slightly wider version of) the

cap supp(σk, j,i ∗ χ10000R), the measure of its support is ≲ 2k(d−1)cd
i−1/cd−1

i . We can thus bound

|SM,k,q,γ | ≲

∣∣∣∣ ⋃
1≤i≤N

⋃
j∈Ji

⋃
R∈R̃ j,i,M

supp(σk, j,i ∗ χ10000R)

∣∣∣∣ ≲ N∑
i=1

∑
j∈Ji

2k(d−1)
cd

i−1

cd−1
i

· card(R̃ j,i,M).

By the disjointness property mentioned above and (3-6), for a chain of ancestors as in (3-7), we have the
bound ∫

f γ
q ≥

∑
1≤i≤N

∑
R∈R̃ ji ,i,M

∫
R

| f γ
q | ≥

∑
1≤i≤N

ci−1 Mγ · card(R̃ ji ,i,M) (3-8)
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and hence by (2-6) ∑
1≤i≤N

ci−1 card(R̃ ji ,i,M) ≲
λ( f γ

q )

M
.

Since each direction 8 j,i is the ancestor of ≲ ((ci−1/ci ) · (c1/c0))
d−1 many directions 8 j ′,i ′ with i ′

= 1,
it follows that

|SM,k,q,γ | ≲
∑

i

∑
j

2k(d−1)
cd

i−1

cd−1
i

· card(R̃ j,i,M)

≲ 2k(d−1)
∑

j1

∑
j,i : ( j,i)≻( j1,1)

2k(d−1)
cd

i−1

cd−1
i

·

(
ci−1

ci
·

c1

c0

)1−d

· card(R̃ j,i,M)

≲ 2k(d−1)
∑

j1

∑
j,i : ( j,i)≻( j1,1)

ci−1

(
c0

c1

)d−1

· card(R̃ j,i,M)

≲ 2k(d−1)

(
c0

c1

)d−1 ∑
j1

λ( f γ
q )

M
≲

2k(d−1)

M
· λ( f γ

q ). □

For a given choice of k and γ , we define the upper height M+(k, γ ) by the formula

log2 M+(k, γ ) :=

⌊
k(d − 1) + log α

γ
+ Log3

1
α

⌋
(3-9)

and the lower height M−(k, γ ) by the formula

log2 M−(k, γ ) :=

⌊
k(d − 1) + log α

γ
− 100 Log3

1
α

⌋
. (3-10)

The exceptional set associated to the upper height M+(k, γ ) is of acceptable size:

Lemma 3.3. We have the bound ∣∣∣∣⋃
k,γ

SM+(k,γ ),k,q,γ

∣∣∣∣ ≲ 1.

In particular, any component of (2-19) that is supported in
⋃

k,γ SM+(k,γ ),k,q,γ is a type-L0 Calderón–
Zygmund term of threshold α and measure 1.

Proof. By Lemma 3.2, (2-6), and (3-9), we have

|SM+(k,γ ),k,q,γ | ≲
2k(d−1)

M+(k, γ )
λ( f γ

q ) ≲
1

α Log2(1/α)
∥ f γ

q ∥1.

Summing over k ∈ Kγ using the fact that |Kγ | ≲ Log2(1/α), and then summing over γ , we obtain the
desired bound thanks to (2-18). □

A decomposition of f γ
q ∗ σk. Recall that f is granular, and hence f =

∑
l clχωl , where each ωl is a

δ-grain, i.e., a dyadic cube of small sidelength δ > 0, which we can take to be smaller than (say) α100. We
now associate a natural spherical measure to each δ-grain ωl , defined so that it is supported on those caps
where there exists a “heavy” rectangle containing ωl with short side essentially pointing in the direction
normal to the corresponding cap.
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Definition 3.4. For each δ-grain ωl and for a given height M, define σ
M,γ

k,ωl
to be the restriction of σk to

N⋃
i=1

⋃
j∈Ji : ∃R∈R j,i,M (ωl∩R ̸=∅)

supp(σk, j,i ),

where n ranges over 1 ≤ n ≤ N. Observe that these measures are decreasing as M increases.

Recall that the parameter i corresponds to the “height”, in a sense, of the spherical measure σ
i,γ
k,ωl

. We
now decompose the function f γ

q ∗ σk into different “heights” as follows. For a given height M, define the
“projection of f γ

q ∗ σk onto height M” as

gM,γ

k :=

∑
δ−grains ωl

σ
M,γ

k,ωl
∗ ( f γ

q χωl ). (3-11)

Then we have the telescoping decomposition

f γ
q ∗ σk∗ = f γ

q ∗ σk − gM−(k,γ ),γ

k +

∑
M≥M−(k,γ )

(gM,γ

k − g2M,γ

k ). (3-12)

As previously mentioned, we will see that we have efficient (even when summing over γ and over the
relevant range of k) L2 estimates for the term f γ

q ∗ σk − gM−(k,γ ),γ

k . This term represents the “projection
of f γ

q ∗ σk onto low heights”.

Discarding the heavy terms via exceptional sets. We can easily dispose of the “heavy” terms in which
M ≥ M+(k, γ ).

Proposition 3.5. The terms gM,γ

k − g2M,γ

k for M ≥ M+(k, γ ) are supported in SM+(k,γ ),k,q,γ , and thus
collectively contribute an acceptable L0 Calderón–Zygmund term thanks to Lemma 3.3.

Proof. For all δ-grains ωl which appear in the expression defining gM,γ

k for some M ≥ M+(k, γ ), there
is a “heavy” rectangle R containing ωl such that supp(σk, j,n ∗χR) is contained in SM,k,q,γ and hence in
SM+(k,γ ),k,q,γ . □

Handling the intermediate terms via L1 estimates. Now we dispose of the “intermediate” terms in which
M−(k, γ ) ≤ M < M+(k, γ ).

Proposition 3.6. The contribution of the terms gM,γ

k − g2M,γ

k with M−(k, γ ) ≤ M < M+(k, γ ) to (2-19)
is an acceptable L1 Calderón–Zygmund term.

Proof. We need to establish the bound∥∥∥∥(∑
k≥0

∣∣∣∣ ∑
γ>γ0: k∈Kγ

∑
M−(k,γ )≤M<M+(k,γ )

gM,γ

k − g2M,γ

k

∣∣∣∣2)1/2∥∥∥∥
1
≲ α Log3

1
α

.

Bounding the ℓ2 norm by the ℓ1 norm, we can bound the left-hand side by∑
k≥0

∑
γ>γ0: k∈Kγ

∑
M−(k,γ )≤M<M+(k,γ )

∥gM,γ

k − g2M,γ

k ∥1.
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Writing M = 2 j M−(k, γ ) for some 0 ≤ j ≲ Log3(1/α), it suffices to show that∑
k≥0

∑
γ>γ0: k∈Kγ

∥g2 j M−(k,γ ),γ

k − g2k+1 M−(k,γ ),γ

k ∥1 ≲ α

for each such j .
Fix j . Since ∑

γ

∥ f γ
q ∥1 ≤ ∥ f ∥1 ≲ α,

it will suffice to show that ∑
k∈Kγ

∥g2 j M−(k,γ ),γ

k − g2k+1 M−(k,γ ),γ

k ∥1 ≲ ∥ f γ
q ∥1.

By (3-11) and Young’s inequality, it suffices to show that∑
k∈Kγ

∥σ
2 j M−(k,γ ),γ

k,ωl
− σ

2 j+1 M−(k,γ ),γ

k,ωl
∥ ≲ 1

for each grain ωl , where ∥ · ∥ denotes the total variation norm.
Fix ωl . By rescaling all the spheres supporting σk to a common sphere, it suffices to show that the

angles subtended by the spherical cap supporting each of the measures

σ
2 j M−(k,γ ),γ

k,ωl
− σ

2 j+1 M−(k,γ ),γ

k,ωl

are disjoint as k varies. But this follows directly from the definition of these measures, the telescoping
nature of the decomposition, and the fact that d−1 ≥ 1 ensures that for different values of k, the differences
of these measures live at different “heights”, and the differences of measures at consecutive heights isolate
the height at which a certain angular piece first occurs. □

Estimating the L2 norm of the light term. In view of the preceding calculations and Lemma 2.2(b), it
will suffice to show that (∑

k≥0

∣∣∣∣ ∑
γ>γ0: k∈Kγ

f γ
q ∗ σk − gM−(k,γ ),γ

k

∣∣∣∣2)1/2

is a type-L2 Calderón–Zygmund term of threshold α and measure 1 (we will no longer need to lose the
additional factor of Log3(1/α)). Because each k is associated to O(Log2(1/α)) values of γ , it suffices
by Cauchy–Schwarz to show that(∑

k≥0

∑
γ>γ0: k∈Kγ

∣∣∣∣ f γ
q ∗ σk − gM−(k,γ ),γ

k

∣∣∣∣2)1/2

is a type-L2 Calderón–Zygmund term of threshold α and measure Log−1
2 (1/α). We rearrange this

expression as (∑
γ>γ0

∑
k∈Kγ

| f γ
q ∗ σk − gM−(k,γ ),γ

k |
2
)1/2

.

Since ∑
γ>γ0

∥ f γ
q ∥1 ≤ ∥ fq∥1 ≲ α,
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it then suffices by Lemma 2.2(c) to show that, for each γ > γ0 and k ∈ Kγ , the quantity

f γ
q ∗ σk − gM−(k,γ ),γ

k

is a type-L2 Calderón–Zygmund term of threshold α and measure

Log−2
2 (1/α)

α
∥ f γ

q ∥1.

In other words, it remains to establish the bound

∥ f γ
q ∗ σk − gM−(k,γ ),γ

k ∥
2
2 ≲ α Log−2

2
1
α

· ∥ f γ
q ∥1. (3-13)

The first step is to write

∥ f γ
q ∗ σk − gM−(k,γ ),γ

k ∥
2
2 =

∥∥∥∥ ∑
δ-grains ωl

(σk − σ
M−(k,γ ),γ

k,ωl
) ∗ f γ

q χωl

∥∥∥∥2

L2

≲
∑

δ-grains ωl

⟨(σk − σ
M−(k,γ ),γ

k,ωl
) ∗ f γ

q χωl , σk ∗ f γ
q ⟩

=

∑
δ-grains ωl

⟨ f γ
q χωl , σk ∗ (σk − σ

M−(k,γ ),γ

k,ωl
) ∗ f γ

q ⟩. (3-14)

Domination of the kernel σk ∗ σk by linear combinations of characteristic functions of rectangles. Recall
from (2-12) that we have the pointwise estimate

σk ∗ σk(x) ≲ 2−k(d−1)
|x |

−1χBk (x),

where Bk := {|x | ≤ 2k+1
} is the ball of radius 2k+1 around the origin. Inside this ball, we isolate the

annulus
Aγ := {x : γ 1/(d−1)

≤ |x | ≤ 2−100rγ },

where we recall that the radius rγ was defined in (3-1).
Thus the kernel σk ∗ σk can essentially be decomposed as follows. Fix q and γ , and let {ci }

N
i=0 be the

enumeration of the scales described earlier in (3-4). For 1 ≤ i ≤ N, let Ri be a collection of (ci/ci−1)
d−1

many rectangles of dimensions ci × ci × · · ·× ci × ci−1 centered at the origin, with short sides pointing
in equally spaced directions, where {ci }

N
i=1 are the scales described earlier. We may dominate

2−k(d−1)
|x |

−1χAγ
(x) ≲

N∑
i=1

2−k(d−1)c−(d−1)
i cd−2

i−1

∑
R∈Ri

χR. (3-15)

Indeed, for each i , c−(d−1)
i cd−2

i−1
∑

r∈Ri
χR is essentially of size c−1

i for |x | ≈ ci , since for |x | ≈ ci the
rectangles are essentially disjoint in the case that d = 2, and for general d there are

≈ c−d
i × (ci/ci−1)

d−1
× cd−1

i ci−1 ≈ (ci/ci−1)
d−2

many rectangles that intersect a given x . By similar reasoning, one sees that for ci−1 ≤ |x | ≤ ci , we also
have c−(d−1)

i cd−2
i−1

∑
r∈Ri

χR is essentially of size |x |
−1.
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Figure 2. Domination of the kernel σk ∗ σk in the sphere of radius 2−100rγ centered at the origin.

From (3-15) and (2-12) we have the bound

σk ∗ σk(x) ≲
N∑

i=1

2−k(d−1)c−(d−1)
i cd−2

i−1

∑
R∈Ri

χR + 2−k(d−1)
|x |

−1χBk\Aγ
(x); (3-16)

see Figure 2.

Eliminating bad rectangles. Now fix some i with 1 ≤ i ≤ N, and suppose that R is a rectangle in Ri such
that ∫

ωl+R
f γ
q > ci−1γ M−(k, γ ).

Then by definition, the support of σ
M−(k,γ ),γ

k,ωl
contains a spherical cap of angular width 50ci−1/ci with

some normal parallel to the short side of R. This implies that σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside

of the set
(R)1 :=

{
x ∈ R : x ≥

1
10 ci

}
.

Indeed, for any x ∈ R in the support of σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) with |x | ≥

1
10 ci , we require there to

exist y on the sphere of radius 2k centered at the origin such that x − y is also on the sphere of radius 2k

centered at the origin, but outside the cap of angular width 50ci−1/ci with some normal parallel to the
short side of R. Suppose toward a contradiction that x ∈ R ∩

{
z :

1
10 ci ≤ |z| ≤ 10ci

}
. But for any such

x − y, we have that (x − y) + (R)1 lies outside the sphere of radius 2k, since R will be transverse to the
boundary of the sphere at x − y (see Figure 3). Thus we have verified our claim that σk ∗(σk −σ

M−(k,γ ),γ

k,ωl
)

is supported outside of the set (R)1.
Repeating this process, if ∫

ωl+(R\(R)1)

f γ
q > ci−1γ M−(k, γ ),

then by definition, the support of σ
M−(k,γ ),γ

k,ωl
contains a spherical cap of angular width 50 · 2ci−1/ci with

some normal parallel to the short side of R. As before, this implies that σk ∗(σk −σ
m(k,q,γ ),γ

k,ωl
) is supported
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50ci−1/ci

x − y

Figure 3. The two blue rectangles represent the set x − y + (R)1.

outside of the set
(R)2 :=

{
x ∈ R : |x | ≥

1
20 ci

}
.

Repeating again, if ∫
ωl+(R\(R)2)

f γ
q > ci−1γ M−(k, γ ),

then σ
M−(k,γ ),γ

k,ωl
contains a spherical cap of angular width 50 · 4ci−1/ci with some tangent parallel to the

long side of R. This implies that σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside of the set (R)3, where we

define
(R)3 :=

{
x ∈ R : |x | ≥

1
40 ci

}
.

We continue this process until some stage L when∫
(ωl+(R\(R)L ))

f γ
q > ci−1γ M−(k, γ ),

and σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside of the set

(R)L :=

{
x ∈ R : |x | ≥

1
2L−1 × 10

ci

}
.

(Note that this must eventually happen if σk − σ
M−(k,γ ),γ

k,ωl
is not identically 0, since the set (R)L can

potentially increase by continuing this process up to {x ∈ R : |x | ≥ 10ci−1}, which would imply that
σk − σ

m(k,q,γ ),γ

k,ωl
is identically 0.)

For convenience, we summarize the above argument in the following lemma.

Lemma 3.7. Fix a δ-grain ωl . For any rectangle R ∈ Ri , there is a subset (R)L ⊂ R such that∫
ωl+(R\(R)L )

| f γ
q | ≲ ci−1γ M−(k, γ )

and σk ∗ (σk − σ
M−(k,γ ),γ

k,ωl
) is supported outside of the set (R)L .
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Finishing up the proof. Lemma 3.7 and (3-16) implies that, for each δ-grain ωl and each rectangle R ∈Ri ,
there is a function h R with

∫
|h R| ≤ ci−1 M−(k, γ )γ so that by (3-14) we may dominate

∥ f γ
q ∗ σk − gM−(k,γ ),γ

k ∥
2
2 ≲

∑
δ−grains ωl

⟨ f γ
q χωl , σk ∗ (σk − σ

M−(k,γ ),γ

k,ωl
) ∗ f γ

q ⟩

≲
∑

δ−grains ωl

⟨ f γ
q χωl , 2−k(d−1)

|x |
−1χBk\Aγ

∗ f γ
q ⟩

+

∑
δ−grains ωl

N∑
i=1

2−k(d−1)
cd−2

i−1

cd−1
i

∑
R∈Ri

⟨ f γ
q χωl , χR ∗ h R⟩. (3-17)

It is not difficult to show that

⟨ f γ
q χωl , 2−k(d−1)

|x |
−1χBk\Aγ

∗ f γ
q ⟩ ≲ α Log−2

2
1
α

∥ f γ
q χωl ∥1. (3-18)

Indeed, by Young’s inequality it would suffice to show that

2−k(d−1)

∫
|x−y|∈Bk\Aγ

f γ
q (y)

|x − y|
dy ≲ α Log−2

2
1
α

(3-19)

for any x . From (2-13) we have ∫
|x−y|≈2l

f γ
q (y)

|x − y|
dy ≲ min(γ, 2l(d−1))

so by dyadic decomposition we may bound the left-hand side of (3-19) by

2−k(d−1)

( ∑
2l≲γ 1/(d−1)

2l(d−1)
+

∑
rγ≲2l≲2k

γ

)
,

which we can sum to

≲ 2−k(d−1)γ Log
2k

rγ

≲ 2−k(d−1)γ Log
2k(d−1)

γ /α

thanks to (3-1). By (3-2), we have
2k(d−1)

γ /α
≥ Log100

2
1
α

,

giving (3-18) as claimed.
This gives a satisfactory bound for the first term occurring in the right-hand side of (3-17). To bound

the second term, we observe that since
∫

|h R| ≲ ci−1 M−(k, γ )γ , we have

⟨ f γ
q χωl , χR ∗ h R⟩ ≲ ci−1 M−(k, γ )γ ∥ f γ

q χωl ∥1. (3-20)

Combining (3-17), (3-18), and (3-20) and summing over all i and all δ-grains ωl , using the fact that the
cardinality of Ri is ≲ (ci/ci−1)

d−1 and N ≲ Log2(1/α), and recalling the definition (3-10) of M−(k, γ ),
we obtain

∥ f γ
q ∗ σk − gM−(k,γ ),k,γ

k ∥
2
2 ≲ α Log−2

2
1
α

∥ f γ
q ∥1,

which is the desired L2 bound. This completes the proof of (3-13), and hence Propositions 1.1, 1.2, and
Theorem 1.3.
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GLOBAL WELL-POSEDNESS FOR A SYSTEM OF
QUASILINEAR WAVE EQUATIONS ON A PRODUCT SPACE

CÉCILE HUNEAU AND ANNALAURA STINGO

We consider a system of quasilinear wave equations on the product space R1+3
×S1, which we want to see

as a toy model for the Einstein equations with additional compact dimensions. We show global existence of
solutions for small and regular initial data with polynomial decay at infinity. The method combines energy
estimates on hyperboloids inside the light cone and weighted energy estimates outside the light cone.

1. Introduction

We address the problem of global existence of small solutions to a certain class of quasilinear systems of
wave equations on the product space R1+3

× S1. Let □x,y = −∂2
t +1x + ∂2

y denote the d’Alembertian
operator in the (t, x, y)-variables, where t ∈ R is the time coordinate, x = (x1, x2, x3) ∈ R3 are the
Cartesian coordinates and y ∈ S1 is the periodic coordinate. The system we consider has the form{

□x,yu + u∂2
y u =

∑
1≤i, j≤2 N1(wi , w j ),

□x,yv+ u∂2
yv =

∑
1≤i, j≤2 N2(wi , w j ),

(t, x, y) ∈ R1+3
× S1, (1-1)

with initial conditions set at time t0 = 2

(u, v)(2, x, y)= (φ0, ψ0)(x, y), (∂t u, ∂tv)(2, x, y)= (φ1, ψ1)(x, y). (1-2)

The nonlinearities N1( · , · ), N2( · , · ) are linear combinations of the quadratic null forms

Q0(φ, ψ)= ∂tφ ∂tψ − ∇xφ · ∇xψ,

Qi j (φ, ψ)= ∂xiφ ∂x jψ − ∂x jφ ∂xiψ, 1 ≤ i < j ≤ 3,

Q0i (φ, ψ)= ∂tφ ∂xiψ − ∂xiφ ∂tψ, 1 ≤ i ≤ 3,

(1-3)

and w1, w2 = {u, v} denote the two-component solutions.
The main result we present in this paper asserts the global existence of solutions to (1-1) when the

initial data are small and localized real functions. Our result also extends to semilinear interactions of the
form ∂wi · ∂yw j with ∂ being any of the derivatives in the (t, x, y)-variables.

1A. Notation. Below is a summary of some notation we will use throughout:

• r = |x | is the radial coordinate in the x-variables.

• We use the Einstein summation convention and take the sum over repeated indexes.

MSC2020: 35Q75.
Keywords: Kaluza–Klein, general relativity, wave equations.
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• ∂ j denotes the derivative ∂x j in the j-th direction for j = 1, 3. Sometimes we may use the notation
∂0 for ∂t and ∂4 for ∂y .

• ∇x = (∂1, ∂2, ∂3) denotes the gradient in the spatial variable x , ∇xy = (∂1, ∂2, ∂3, ∂4) denotes the
gradient in the full set of spatial variables (x, y).

• ∂x denotes any of the derivatives in {∂ j : j = 1, 3}.

• ∂xy denotes any of the derivatives in {∂ j : j = 1, 4}. Analogously for ∂t x and ∂t xy . We will use ∂ and ∂t xy

interchangeably.

• □x,y = −∂2
t +1x + ∂2

y and □x = −∂2
t +1x .

• Given a multi-index α = (α0, α1, . . . , α4) ∈ N5, its length is computed classically as |α| =
∑4

i=0 αi and
∂α = ∂

α0
0 ∂

α1
1 ∂

α2
2 ∂

α3
3 ∂

α4
4 . We use the notation ∂αx for ∂α1

1 ∂
α2
2 ∂

α3
3 and it is then clear what ∂αxy or ∂αt x stand for.

• More generally, given a family of vector fields {01, . . . , 0n} and a multi-index α = (α1, . . . , αn) ∈ Nn ,
0α = 0

α1
1 · · ·0

αn
n . Sometimes we make an abuse of notation and write 0k (resp. 0≤k) instead of∑

α:|α|=k 0
α (resp.

∑
α:|α|≤k 0

α).

1B. Motivation and a brief history. Our interest in studying nonlinear wave equations on product spaces
comes from the theory of supergravity (SUGRA) in physics and more precisely from the Kaluza–Klein
theory, which represents the classical approach to the unification of general relativity with electromagnetism
and more generally with gauge fields; see the original works [Kaluza 1921; Klein 1926]. The Kaluza–Klein
approach considers general relativity in 3 + 1 + d dimensions with space-time factorizing as

M (3+1+d)
= R1+3

× K ,

where K is a compact d-manifold referred to as internal space. In the simplest case d = 1-dimensional
gravity is compactified on a circle (K = S1) to obtain at low energies a coupled Einstein–Maxwell
scalar system in 3+1 space-time dimensions. Kaluza–Klein space-times R1+3

×S1 have been studied the
influential work [Witten 1982], where he proves instability at the semiclassical level but provides heuristic
arguments for classical stability. The first result proving the classical stability of the Kaluza–Klein theory
is obtained in [Wyatt 2018], where only perturbations depending on the noncompact coordinates are
considered, using tools developed in [Lindblad and Rodnianski 2010]. More general space-times with
supersymmetric compactifications M = R1+n

× K have recently been studied by Andersson, Blue, Wyatt,
and Yau [Andersson et al. 2023]. The space-times M are equipped with the metric

ĝ = ηR1+n + k,

where ηR1+n is the Minkowski metric in R1+n and k is such that (K , k) is a compact Ricci-flat Riemannian
manifold having a cover that admits a spin structure and a nonzero parallel spinor. A global stability
result is proved in [Andersson et al. 2023] under the assumption n ≥ 9 and for Cauchy data that are
Schwarzschild near infinity, but it is conjectured that these conditions can be relaxed and that space-times
with a supersymmetric compactification and n = 3 are nonlinearly stable. We also briefly mention a
result on the stability of cosmological Kaluza–Klein space-times (where the Minkowski space-time is



GLOBAL WELL-POSEDNESS FOR A SYSTEM OF QUASILINEAR WAVE EQUATIONS ON A PRODUCT SPACE 2035

replaced by the four-dimensional Milne universe) under zero-modes perturbations by Branding, Fajman
and Kröncke [Branding et al. 2019] and a stability result for semilinear wave equations on the cosmological
Kaluza–Klein background in [Wang 2021].

In both the aforementioned works [Wyatt 2018; Andersson et al. 2023], as well as in many other
works concerning the global stability problem for Einstein equations, the use of the so-called wave-
coordinates allows one to write the Einstein equations as a system of quasilinear wave equations on the
metric g = (gαβ)αβ

gαβ∂α∂βgµν = Pµν(∂g, ∂g)+ Gµν(g)(∂g, ∂g), (1-4)

where the sum is taken over repeated indexes, Pµν are quadratic forms and Gµν(g)(∂g, ∂g) contain
cubic terms. In the present paper we focus on a toy model for the Einstein equations on R1+3

× S1 that
only keeps a selection of terms from (1-4), precisely the semilinear terms with null structure and the
quasilinear term gyy∂2

y where y is the periodic coordinate on S1. Our goal here is in fact to study the
global well-posedness for quasilinear wave equations on the product space R1+3

× S1 without having to
make use of the full structure of the Einstein equations. The unknown u in system (1-1) plays the role of
the coefficient gyy and the unknown v encodes any other metric coefficient gµν .

We mention here that wave equations on product spaces also appear in other contexts, for instance
when studying the propagation of waves along infinite homogeneous waveguides; see [Lesky and Racke
2003; Metcalfe et al. 2005; Metcalfe and Stewart 2008; Ettinger 2015].

One key observation when studying the small data global well-posedness problem for wave equations
on product spaces of the form R1+3

× Td is that they are closely related to infinite systems coupling wave
and Klein–Gordon equations on the flat space R1+3. In fact, if W = W (t, x, y) is solution to

□x,y W = F, (t, x, y) ∈ R1+3
× Td ,

for some source term F, its Fourier modes in the periodic direction {Wk(t, x)}k∈Z solve the following
equations on the flat space R1+3:

(−∂2
t +1x)Wk − |k|

2Wk =
1

Vol(Td)

∫
Td

e−iy·k F dy, (t, x) ∈ R1+3.

In particular, the zero-mode W0 is a solution to a wave equation and any other nonzero mode Wk solves a
Klein–Gordon equation of mass |k|.

The global well-posedness for systems coupling a finite number of wave and Klein–Gordon equations
on the flat 3+1 space-time with small data have largely been studied. We cite the initial results by
Georgiev [1990] and Katayama [2012], followed by LeFloch and Ma [2014], Wang [2015; 2020] and
Ionescu and Pausader [2019], who study such systems as a model for the full Einstein–Klein–Gordon
equations; the global stability of the full problem is successively proved in [LeFloch and Ma 2016;
Ionescu and Pausader 2022]. In [LeFloch and Ma 2014; Wang 2015] global well-posedness is proved
for compactly supported initial data and quadratic quasilinear nonlinearities that satisfy some suitable
conditions, including the null condition of [Klainerman 1986] for self-interactions between the wave
components of the solution. An idea used in these works is that of employing hyperbolic coordinates in
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the forward light cone; this was first introduced in [Klainerman 1985] for Klein–Gordon equations and in
[Tataru 2002] in the wave context, and later reintroduced in [LeFloch and Ma 2014] under the name of
hyperboloidal foliation method. In [Ionescu and Pausader 2019] global regularity and scattering is proved
in the case of small smooth initial data that decay at a suitable rate at infinity and nonlinearities that do
not verify the null condition but present a particular resonant structure. We also cite [Dong and Wyatt
2020a], which proves global well-posedness for a quadratic semilinear interaction in which there are no
derivatives on the massless wave component. Other related results are [Bachelot 1988; Ozawa et al. 1995;
Tsutaya 1996; Tsutsumi 2003a; 2003b; Klainerman et al. 2020; Dong et al. 2021] and see [Ma 2017a;
2017b; 2017c; 2020; 2021; Stingo 2023; Ifrim and Stingo 2019; Dong and Wyatt 2020b] for results about
wave-Klein–Gordon systems in lower dimensions.

Our goal in this paper is to prove the global stability for (1-1) in the case where the initial data are not
compactly supported but only have a mild polynomial decay at infinity. Our approach makes use of the
vector field method in [Christodoulou and Klainerman 1993] and follows [LeFloch and Ma 2016] in that
a big portion of the estimates recovered for the solution in the interior of the cone {t = r + 1} × S1 are
estimates on hyperboloids. The main difference with [LeFloch and Ma 2014] is that the interior estimates
need to be coupled with exterior estimates in the region outside the cone. Those are weighted energy
estimates, also used in [Lindblad and Rodnianski 2010], that we have to propagate in time.

1C. The main result. In order to describe the initial data we consider for our problem we introduce the
energy space H 0 endowed with the norm

∥(u[t], v[t])∥2
H 0 := ∥u∥

2
H1

xy
+ ∥ut∥

2
L2 + ∥v∥2

H1
xy

+ ∥vt∥
2
L2

and the higher-order energy spaces H n for n ≥ 1 endowed with the norm

∥(u[t], v[t])∥2
H n :=

∑
|α|≤n

∥(∂αxyu[t], ∂αxyv[t])∥
2
H 0 .

In the above definition, ∂αxy is a short notation for ∂α1
x1
∂α2

x2
∂α3

x3
∂α4

y given α = (α1, . . . , α4) and we use the
following notation for the Cauchy data in (1-2) at time t :

(u[t], v[t]) := (u(t), ut(t), v(t), vt(t)).

The global well-posedness result that is the object of this paper is proved under some decay assumptions
on the initial data. A preliminary version of our main theorem states the following:

Theorem 1. Assume that the initial data (u[2], v[2]) for (1-1) satisfy
5∑

|α|=0

∥⟨x⟩
≤|α|+κ/2∂αxy(u[2], v[2])∥H 0 ≤ ϵ ≪ 1

for some positive fixed κ and ⟨x⟩ =
√

1 + |x |2. Then the system (1-1) is globally well-posed in the
space H 5.

We remark here that our choice to set the initial data at time t0 = 2 over the conventional t0 = 0 is
more convenient for our computations and comes at no expense as the system (1-1) is invariant under
time translations.
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1D. The wave-Klein–Gordon structure. The Cauchy problem (1-1)–(1-2) can be written in a more
compact form as a vector equation for the unknown W = (u, v)T

□x,y W + u∂2
y W = N(W,W ), (1-5)

with data

W |t=2 =80, ∂t W |t=2 =81, (1-6)

where 80 = (φ0, ψ0)
T and 81 = (φ1, ψ1)

T and

N(W,W )=

∑
1≤i, j≤2

(
N1(wi , w j )

N2(wi , w j )

)
.

The projection of W onto the periodic direction y reveals the nature of (1-5) as a system coupling one
(vector) wave equation with an infinite sequence of (vector) Klein–Gordon equations of variable mass
|k|

√
1 + u0 with k ∈ Z∗. If we denote by Wk = (uk, vk)

T the projection of W onto the k-th frequency

Wk(t, x)=

∫
S1

e−iky W (t, x, y)
dy
2π
, k ∈ Z,

we see that the functions {Wk}k satisfy the coupled system{
(−∂2

t +1x)Wk − |k|
2(1 + u0)Wk =

∫
S1

e−iky N(W,W )
dy
2π

−

∫
S1

e−iky(u − u0)∂
2
y W

dy
2π
,

k ∈ Z.

The zero mode W0 is solution to a wave equation, while any other nonzero mode Wk is solution to a
Klein–Gordon equation of variable mass |k|

√
1 + u0. This distinction will be fundamental for our analysis

and we will often work throughout the paper with the decomposition of W

W = W0 + W, W(t, x, y)=

∑
k ̸=0

eiky Wk(t, x), (1-7)

so that (1-5) is equivalent to the system
(−∂2

t +1x)W0 =

∫
S1

N(W,W )
dy
2π

+

∫
S1
∂yu ∂yW

dy
2π
,

(−∂2
t +1x)W + (1 + u) ∂2

y W = N(W,W )−

∫
S1

N(W,W )
dy
2π

−

∫
S1
∂yu ∂yW

dy
2π
.

(1-8)

Observe that the source term F0 in the equation of W0 does not contain mixed interactions:

F0 = N(W0,W0)+

∫
S1

N(W, W)
dy
2π

+

∫
S1
∂yu · ∂yW

dy
2π
. (1-9)

We are now able to state a more precise version of the main theorem.

Theorem 2. Assume that for some positive fixed κ the initial data for (1-5) satisfy
5∑

|α|=0

∥x≤|α|+κ/2∂αxy W [2]∥H 0 ≤ ϵ ≪ 1.
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Then the solution W to (1-5)–(1-6) exists globally in time in H 5 and the two components of the solution,
W0 =

∫
S1 W (dy/2π) and W = W − W0, satisfy the pointwise bounds

|∂αt x W0(t, x)| ≲ ϵ⟨t + |x |⟩
−1

⟨t − |x |⟩
−1/2, |α| = 1, 3,

∥∂ j
y ∂
α
t xW(t, x, · )∥L2

y(S
1) ≲ ϵ⟨t + |x |⟩

−3/2, j = 0, 1, |α| = 0, 1,

∥∂ j
y ∂
α
t xW(t, x, · )∥L2

y(S
1) ≲ ϵ⟨t + |x |⟩

−1
⟨t − |x |⟩

−1/2, j = 0, 1, |α| = 2.

1E. Vector fields. In order to describe the global bounds and decay properties of the solution W = (u, v)T

to (1-5)–(1-6) we need to introduce the family of Killing vector fields associated to our problem. Those
are the vector fields that exactly commute with □x,y :

∂0, ∂1, ∂2, ∂3, ∂4, (1-10)

�i j = x j∂i − xi∂ j , 1 ≤ i < j ≤ 3, (1-11)

�0i = t∂i + xi∂t , i = 1, 3. (1-12)

The expressions in (1-10) correspond to the translations in the coordinate directions; (1-11) correspond to
the Euclidean rotations in the x-coordinates; (1-12) are the hyperbolic rotations, also called boosts. We
also introduce the conformal scaling vector field

S = t∂t + x · ∇x , (1-13)

which is not Killing for (1-5) but will appear later in the analysis of the problem. We refer to (1-11) and
(1-12) as Klainerman vector fields and generally denote them by Z :

Z := {�i j , �0i }.

We denote the full set of admissible vector fields for □x,y as

Z := {∂0, ∂1, ∂2, ∂3, ∂4, �i j , �0i } (1-14)

and for any multi-index γ = (α, β) we define

Z γ
= ∂αZβ .

For any two nonnegative integers k, n with k ≤ n we say that the multi-index γ = (α, β) is of type (n, k)
if |γ | = |α| + |β| ≤ n and |β| ≤ k, in other words if there are at most k Klainerman vector fields among
the |γ | admissible vector fields in the product Z γ.

1F. The null structure. The nonlinearities we consider in this work are linear combinations of the
classical quadratic null forms (1-3). An important feature of the null forms is that they are combinations
of three types of products and can be expressed schematically as

N(φ, ψ)= ∂̄φ · ∂ψ + ∂φ · ∂̄ψ +
t − r

t
∂φ · ∂ψ, (1-15)

where ∂̄ j = t−1�0 j are the rescaled hyperbolic rotations, or also as

N(φ, ψ)= T φ · ∂ψ + ∂φ · T ψ, (1-16)
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where T j = ∂ j + (x j/r)∂t for j = 1, 3 are the vector fields tangent to the cones {t − r = const}. The T

vector fields are related to the boosts in general via the relation

T j =
1
t
�0 j +

(t − r)
t

x j

r
∂t .

We will often make use of the two representations (1-15) and (1-16) to recover suitable pointwise and
energy estimates for the solution, as they allow us to recover additional decay for the W0 ×W0 interactions.

1G. The interior and exterior region. The proof of our main theorem is based on the combination of a
classical local existence result with a bootstrap argument. We will perform such argument separately in
the two regions in which we decompose our space-time:

interior region D in
:= {(t, x) : t ≥ 2 and |x |< t − 1} × S1,

exterior region Dex
:= {(t, x) : t ≥ 2 and |x | ≥ t − 1} × S1.

In order to describe our bootstrap assumptions we first introduce some notation. Given any hyperboloid Hs

in R1+3
× S1 we denote by H in

s (resp. H ex
s ) the branch of Hs contained in the interior region D in (resp.

in the exterior region Dex):
Hs = {(t, x) : s2

= t2
− |x |

2
} × S1,

H in
s :=

{
(t, x, y) ∈ Hs : t ≥ 2 and |x |< 1

2(s
2
− 1)

}
,

H ex
s :=

{
(t, x, y) ∈ Hs : t ≥ 2 and |x | ≥

1
2(s

2
− 1)

}
.

Moreover we denote by H in
[2,s] the hyperbolic interior region above H in

2 and below H in
s , and by H ex

[2,s]
the portion of the exterior region below H ex

s for any s ≥ 2 (see Figure 1 and Figure 2, which is displayed
in Section 3):

H in
[2,s] := {(t, x, y) ∈ D in

: 2 ≤ t2
− |x |

2
≤ s2

},

H ex
[2,s] := {(t, x, y) ∈ Dex

: t2
− |x |

2
≤ s2

}.

In the interior region the bootstrap assumptions will be energy bounds on the truncated hyperboloids H in
s

for s ≥ 2 and pointwise bounds on the Z -derivative of the zero mode of the solution. The local wellposed-
ness theory for this problem ensures the existence and smallness of the solution W = (u, v)T to (1-5)–(1-6)
up to the interior hyperboloid H in

2 ; hence our goal will be to propagate the bootstrap assumptions in the
hyperbolic interior region above H in

2

H in
[2,∞) := {(t, x, y) ∈ D in

: 2 ≤ t2
− |x |

2
}.

In the exterior region the bootstrap assumptions will instead be weighted energy bounds on the constant
time slices 6ex

t which foliate Dex for t ≥ 2,

6ex
t := {x ∈ R3

: |x | ≥ t − 1} × S1.

We warn the reader that throughout the paper we will work with functions defined on the product space
R1+3

× S1 as well as with functions not depending on the y-variable and defined on the flat space R1+3.
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r

t

H in
s

s -

H in
[2,s]

2 -

1 -

t = r+1 t = r

Figure 1. Vertical section of the region H in
[2,s] projected onto R1+3.

With the purpose of keeping notation as light as possible, a region in R1+3
× S1 and its projection onto

R1+3 will have the same name.

1H. The energy functionals. In the interior region we aim to propagate a priori energy bounds on trun-
cated hyperboloids. The interior energy functional on H in

s associated to the linear counterpart of (1-5) is

E in(s,W ) :=
1

2π

∫∫
H in

s

(s
t

)2
|∂t W |

2
+ |∂̄W |

2
+ |∂y W |

2 dx dy

=
1

2π

∫∫
H in

s

(s
t

)2
|∂x W |

2
+ t−2

|S W |
2
+ t−2

∑
1≤i< j≤3

|�i j W |
2
+ |∂y W |

2 dx dy,
(1-17)

where |∂̄W |
2 stands for

∑3
i=1 |∂̄i W |

2. The above functional hence controls the square of the norms

∥(s/t)∂W∥L2(H in
s )
, ∥∂̄W∥L2(H in

s )
, ∥∂y W∥L2(H in

s )
, t−1

∥S W∥L2(H in
s )
, t−1

∥Z W∥L2(H in
s )
.

From Parseval’s identity we have the decomposition

E in(t,W )= E in(t,W0)+ E in(t, W),

where E in(t, W) is defined by replacing W with W in (1-17) and

E in(s,W0) :=

∫
H in

s

(s
t

)2
|∂t W0|

2
+ |∂̄W0|

2 dx

=

∫
H in

s

(s
t

)2
|∂x W0|

2
+ t−2

|S W0|
2
+ t−2

∑
1≤i< j≤3

|�i j W0|
2 dx .

We also introduce and work with the conformal energy functional on truncated hyperboloids associated
to the linear flat wave equation on R1+3. This is the functional defined as

Ec,in(s,W0) :=

∫
H in

s

1
t2 |K W0 + 2tW0|

2
+

s2

t2

3∑
i=1

|�0i W0|
2 dx, (1-18)
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where K = (t2
+ r2)∂t + 2r t∂r is the Morawetz multiplier. Since �i j = (xi/t)�0 j − (x j/t)�0i , this

functional controls the square of the norms

t−1
∥K W0 + 2W0∥L2(H in

s )
and ∥(s/t)Z W0∥L2(H in

s )
.

We point out that conformal energies on hyperboloids have also been used in other works; see for instance
[Ma and Huang 2017; Wong 2017].

In the exterior region we will describe the evolution of (1-5) by means of the weighted energy functional

Eex,κ(t,W )=
1

2π

∫∫
6ex

t

(2 + r − t)κ+1
[|∂t W |

2
+ |∇x W |

2
+ |∂y W |

2
] dx dy (1-19)

and of stronger norm X ex,κ
T0

∥W∥
2
X ex,κ

T0
:= sup

t∈[2,T0]

Eex,κ(t,W )+
(1 + κ)

2π

∫ T0

2

∫∫
6ex

t

(2 + r − t)κ(|T W |
2
+ |∂y W |

2) dx dy dt, (1-20)

where |T W |
2 stands for

∑3
i=1 |Ti W |

2. The bootstrap assumptions in this region will be energy bounds
on the X ex,κ

T0
norm of the solution for any arbitrarily fixed T0 > 2 and κ > 0. This norm not only controls

the weighted energy of the solution but also the weighted L2 space-time norm of its good derivatives: the
tangential derivatives T to the cones {t − r = const} and the derivative along the periodic direction ∂y .

As a result of the global energy bounds that will be proved to hold in the exterior region (see Section 4)
we also obtain a control on the energy of W on the exterior hyperboloids

Eex,h(s,W )=
1

2π

∫∫
H ex

s

(s
t

)2
|∂t W |

2
+ |∂̄W |

2
+ |∂y W |

2 dx dy

=
1

2π

∫∫
H ex

s

(s
t

)2
|∂x W |

2
+ t−2

|S W |
2
+ t−2

∑
1≤i< j≤3

|�i j W |
2
+ |∂y W |

2 dx dy, (1-21)

as well as on the exterior conformal energy of W0 on constant time slices 6ex
t

Ec,ex(t,W0) :=

∫
6ex

t

|S W0 + 2W0|
2
+

3∑
i=1

|�0i W0|
2 dx . (1-22)

1I. The quasilinear energies. Equation (1-5) is quasilinear and in order to propagate both the afore-
mentioned interior and exterior a priori energy bounds we need to consider a cubic modification of the
energies introduced in the previous subsection. Such quasilinear energies are defined as

E in
quasi(s,W ) := E in(s,W )+

1
2π

∫∫
H in

s

u|∂y W |
2 dx dy,

Eex,κ
quasi(t,W ) := Eex,κ(t,W )+

1
2π

∫∫
6ex

t

(2 + r − t)κ+1u|∂y W |
2 dx dy,

Eex,h
quasi(s,W ) := Eex,h(s,W )+

1
2π

∫∫
H ex

s

u|∂y W |
2 dx dy.
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We also introduce the quasilinear modification of the stronger norm X ex,κ
T0

∥W∥
2
X ex,κ

quasi,T0
:= sup

t∈[2,T0]

Eex,κ
quasi(t,W )+

(1 + κ)

2π

∫ T0

2

∫∫
6ex

t

(2 + r − t)κ(|T W |
2
+ (1 + u)|∂y W |

2) dx dy dt.

We immediately observe that under smallness assumptions on u, e.g., |u| ≤
1
10 , our starting energies are

equivalent to their corresponding quasilinear counterparts; i.e., for any E = {E in, Eex,κ , Eex,h
}

9
10 E(t,W )≤ Equasi(t,W )≤

11
10 E(t,W ).

The same holds true for the stronger norms X ex,κ
T0

and X ex,κ
quasi,T0

.

1J. Higher-order norms. We use the vector fields introduced before to define the higher-order counter-
parts of the energy functionals and of the stronger exterior norm X ex,κ

T0

En(s,W ) :=

∑
|γ |≤n

E(s,Z γW ), E = {E in, Eex,κ , Eex,h
},

∥W∥Xn,κ
T0

:=

∑
|γ |≤n

∥Z γW∥X ex,κ
T0
.

The higher-order energies of W0 and W are defined analogously. We observe that the above higher-order
energies control the high Sobolev regularity of the solution in the interior and exterior regions respectively
and also keep track of the Z vector fields applied to the solution in addition to usual derivatives. In the
interior region it will be important to keep track of the precise number of Klainerman vector fields acting
on the W-component of the solution and to that purpose we also introduce the energy

E in
n,k(s, W) :=

∑
In,k

E in(s,Z γ W),

where In,k denotes the set of indexes of type (n, k). We finally introduce the higher-order counterparts
of the conformal energy functionals (1-18) and (1-22) in order to control the conformal energies of pure
products of Klainerman vector fields acting on W0

Ec,in
n (s,W0) :=

∑
|β|≤n

Ec,in(s, ZβW0), Ec,ex
n (t,W0) :=

∑
|β|≤n

Ec,ex(s, ZβW0).

2. Overview of the proof

The proof of our main theorem is based on the combination of a classical local well-posedness result
for (1-5) with a bootstrap argument. We will perform this argument separately in the interior region D in

and the exterior region Dex in which we divide the space-time R1+3
× S1.

The bootstrap assumptions in the exterior region Dex are uniform-in-time energy bounds on the
higher-order stronger norm X5,κ

T0
of the solution W for any arbitrarily fixed T0 > 2 and κ > 0:

∥W∥
2
X5,κ

T0

≤ 2C2
0ϵ

2. (2-1)

The result we want to prove in the exterior region is the following:
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Proposition 2.1. There exists a constant C0 > 0 sufficiently large and a constant ϵ0 > 0 sufficiently small
such that for every 0<ϵ < ϵ0 if W = (u, v)T is a solution to (1-5)–(1-6) in an interval [2, T0] and satisfies
the energy bounds (2-1) then actually

∥W∥
2
X5,κ

T0

≤ C2
0ϵ

2.

In the above proposition the time T0 is arbitrary; therefore the solution W exists globally in Dex and
satisfies the energy bound (2-1) for all times T0 > 2. In particular, we have

∥Z ≤5W∥X ex,κ
∞

:= lim
T0→∞

∥Z ≤5W∥X ex,κ
T0

≤ 2C2
0ϵ

2. (2-2)

We also observe that, as a consequence of (2-1), there exists an integrable function l ∈ L1([2, T0]) and
the following bounds hold true for all t ∈ [2, T0]:

∥(2 + r − t)(κ+1)/2∂Z ≤5W (t)∥L2(6ex
t )

≤
√

2C0ϵ, (2-3)

∥(2 + r − t)κ/2T Z ≤5W∥L2(6ex
t )

+ ∥(2 + r − t)κ/2∂yZ
≤5W∥L2(6ex

t )
≤ C0ϵ

√
l(t). (2-4)

The bootstrap assumptions in the interior region D in are higher-order energy bounds on hyperboloids
for the W0- and W-components of the solution and pointwise bounds on the Z derivative of W0. Given an
arbitrarily fixed s0 > 2, these are

E in
5 (s,W0)≤ 2A2ϵ2, (2-5)

E in
5,k(s, W)≤ 2A2ϵ2s2δk , k = 0, 5, (2-6)

for all s ∈ [2, s0] and
|Z W0(t, x)| ≤ 2Bϵt−1sσ , (t, x) ∈ H in

[2,s0]
. (2-7)

In the above inequalities the parameters σ,δk are fixed small universal constants satisfying 0<σ≪δk ≪δk+1

for k = 1, 4, δ0 = 0 and A and B are large universal constants which we will improve as a part of the
conclusion of the proof. The result we want to prove in this region requires the global exterior energy
bounds (2-2) and can be stated as follows:

Proposition 2.2. There exist two constants A, B > 0 sufficiently large, 0< ϵ0, σ, δk ≪ 1 sufficiently small
with δ0 = 0 and σ ≪ δk ≪ δk+1 for k = 1, 4 such that for every 0< ϵ < ϵ0 if W = (u, v)T is a solution
to (1-5)–(1-6) in the region H in

[2,s0]
∪ Dex and satisfies the global exterior energy bounds (2-2) as well as

the interior bounds (2-5)–(2-7) for all s ∈ [2, s0], then it actually satisfies the enhanced interior bounds

E in
5 (s,W0)≤ A2ϵ2,

E in
5,k(s, W)≤ A2ϵ2s2δk , k = 0, 5,

|Z W0(t, x)| ≤ Bϵt−1sσ

for all s ∈ [2, s0] and all (t, x) ∈ H in
[2,s0]

.

In the above proposition the hyperbolic time s0 is arbitrary, which implies the global existence of the
solution in the interior region D in.
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The proof of Propositions 2.1 and 2.2 are classical in that they are built around two main steps:
(i) pointwise bounds derived from the a priori energy estimates and (ii) vector field energy estimates.
Some important remarks:

(a) As for wave-Klein–Gordon systems, the fact that (1-1) is not scaling-invariant prevents us from using
Klainerman–Sobolev inequalities on constant time slices, which foliate the entire space-time and would
yield pointwise bounds for the solution without distinguishing between interior and exterior regions. Such
inequalities

(1 + t + |x |)2(1 + |t − |x |)|W (t, x, y)|2 ≤

∑
|α|≤3

∥0αW (t, · )∥2
L2(R3×S1)

, 0 ∈ {�i j , �0 j ,S },

require, in fact, a good control on the L2 norm of S W and its higher-order derivatives, which we do not
have since S does not commute with the linear part of our system. For solutions arising from compactly
supported data and hence supported in the interior of the cone t = r + 1 this problem is overcome by
the fact that Klainerman–Sobolev inequalities on hyperboloids — which entirely foliate this region — do
not involve the scaling vector field and only require a good control of the L2 norm of the hyperbolic
derivatives of the solution (see Lemma 5.1). In the case of data that are not compactly supported and only
have a mild decay at infinity, however, one also needs to treat the exterior region. The use of the scaling
vector field in this region is avoided by recurring to weighted Sobolev inequalities in which the weight is a
function of the distance to the cone (see Section 4A). This motivates our decomposition of the space-time
into interior and exterior regions and the fact that the proof is done separately in these two regions.

(b) The second step of our proof, i.e., the propagation of the a priori vector field energy estimates, consists
in writing a higher-order (interior and exterior respectively) energy inequality for the solution and in using
the pointwise bounds previously obtained to perturbatively estimate the source terms (commutator terms
and null terms) appearing in the equation of Z γW for |γ | ≤ 5. The quadratic null interactions satisfy
good (i.e., integrable in time) L2 estimates thanks to their representation via (1-15) or (1-16). Some
commutator terms, on the contrary, only show a slow decay in time that is at the limit of integrability. Let
us look for instance at the product Zβu0 ·∂2

y W, which appears in the equation of Z γ W from the commutator
[Z γ , u∂2

y ]W when γ is a multi-index of type (k, k), i.e., when Z γ
= Zβ is a pure product of Klainerman

vector fields, after decomposing u according to (1-7). In the interior region, the L2 norm of such a
term can only be controlled in terms of the (square root of the) conformal energy Ec,in

k−1(s,W0), but even
assuming the sharp bounds

Ec,in
k−1(s,W0)≲ ϵ

2s and sup
H in

s

|∂2
y W| ≲ ϵ2s−3/2,

we are not able to recover a better L2 bound than

∥Zβu0 · ∂2
y W∥L2

xy(H
in

s )
≤ Ec,in

k−1(s,W0)
1/2

∥∂2
y W∥L∞(H in

s )
≲ ϵ2s−1.

These problematic commutator terms — which are absent in the equation of Z γW0 — prevent us from
obtaining uniform-in-time energy bounds for W, which explains why we distinguish between the energies
of W0 and of W in Proposition 2.2 and do not propagate uniform-in-time energy bounds for the latter. In
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the exterior region the commutator terms are treated using a weighted Hardy inequality (see Lemma 4.5)
and do not lead to the same type of issue discussed above thanks to the weights; see step (2b) in the proof
of Proposition 2.1.

(c) As observed in the previous point, it is important to have a sharp decay ∥W∥L∞ ≲ s−3/2 when estimating
some of the commutator terms arising in the equation of Z γ W. However, the pointwise bounds that
we obtain from the energy in the interior region by means of Klainerman–Sobolev inequalities are not
optimal due to the slow growth in time assumed in (2-6); see estimates (5-3). Therefore, we need to study
the equation satisfied by W in order to recover more suitable pointwise bounds; see Proposition 5.4. We
also point out that, since Klainerman–Sobolev inequalities only yield pointwise bounds for the usual
derivatives of W0, we also need to recover L∞-L∞ estimates for Z W0 using the equation it satisfies in
order to propagate (2-7).

(d) The interior and exterior energy inequalities will be obtained from the integration of the relation (3-6)
over the interior and exterior regions respectively, which share a boundary (let us call it here C ) along the
cone t = r + 1. From Stokes’ theorem, these inequalities will both involve a boundary term (an integral
over the region C that is controlled given the behavior of the solution in the exterior region) which feeds
information from the exterior to the interior region.

The paper is structured as follows. In Section 3 we derive the energy inequalities for the linearized
equation, both in the exterior and the interior regions. We also derive the conformal energy inequalities.
In Section 4 we prove the global existence of the solution in the exterior region. In Section 5 we recover
the pointwise estimates for W and W0 in the interior region. Finally, in Section 6 we improve the energy
estimates in the interior region, concluding the proof of Theorem 1.

3. The linearized equation

The purpose of this section is to write the energy inequality and the conformal energy inequality for the
linearized equation associated to (1-5) in both the interior and exterior regions D in and Dex. This set of
inequalities will repeatedly be used in the following sections when propagating the higher-order energy
assumptions, as the equations satisfied by the differentiated unknown will be cast in the form (3-1).

We will look at the linear inhomogeneous equation

(−∂2
t +1x)W + (1 + u)∂2

y W = F, (t, x, y) ∈ R × R3
× S1, (3-1)

where u is assumed to be a sufficiently small function, e.g. |u| ≤
1
10 . We start by proving a weighted

energy inequality on the exterior constant time slices 6ex
t for general linear inhomogeneous equations of

the above form. In the following proposition the lifespan T0 > 2 is arbitrary, Dex
T0

denotes the portion of
exterior region in the time strip [2, T0] and C[2,T0] is its null boundary

Dex
T0

= {(t, x, y) ∈ Dex
: 2 ≤ t ≤ T0},

C[2,T0] = {(t, x, y) ∈ Dex
: 2 ≤ t ≤ T0, r = t − 1}.
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Proposition 3.1. Let W be a solution to (3-1) and l ∈ L1([2, T0]). Suppose that u is a function satisfying
the following pointwise bounds in the exterior region Dex

T0
:

∥u∥L∞(Dex
T0
) ≤

1
10 , (3-2)

∥(2 + r − t)1/2∂yu(t, x, · )∥L∞(S1) ≲ ϵ
√

l(t), (3-3)

∥(2 + r − t)∂u(t, x, · )∥L∞(S1) ≲ ϵ. (3-4)

For any fixed κ > 0 the following inequality holds true:

∥W∥
2
X ex,κ

T0
+

∫∫
C[2,T0]

(2 + r − t)κ+1(|T W |
2
+ |∂y W |

2) d S

≲ Eex,κ(2,W)+ ∥(2 + r − t)(κ+1)/2 F∥L1
t L2

xy(D
ex
T0
)∥W∥X ex,κ

T0
, (3-5)

where d S is the surface element of C[2,T0].

We remark that the result of Proposition 3.1 can be proved for any positive and increasing weight
ω = ω(r − t) only depending on the distance from the cone {t = r} if the hypotheses on the function u
are changed appropriately.

Proof. From the smallness assumption on u it will be enough to prove the inequality in the statement with
Eex,κ(t,W) and ∥W∥X ex,κ

T0
replaced by Eex,κ

quasi(t,W) and ∥W∥X ex,κ
quasi,T0

respectively. A simple computation
shows that for any positive weight ω = ω(r − t) one has

ω(r − t)∂t W [□x,y W + u ∂2
y W ]

= −
1
2∂t [ω(r − t)((∂t W)2 + |∇x W |

2
+ (1 + u)(∂y W)2)]

+ divx(ω(r − t)∂t W ∇x W)+ ∂y(ω(r − t)(1 + u)∂t W∂y W)

−
1
2ω

′(r − t)(|T W |
2
+ (1 + u)(∂y W)2)−ω(r − t)

(
∂yu ∂t W∂y W −

1
2∂t u(∂y W)2

)
. (3-6)

We consider the case ω(z)= (2+ z)κ+1 and integrate the above equality over the exterior region Dex
T0

. We
use Stokes’ theorem when integrating in the (t, x)-variables, with normal vectors

n6ex
T0

= (1, 0, 0, 0), n6ex
2

= −n6ex
T0
, nC[2,T0]

=

(
1,− x

r

)
. (3-7)

We observe that

(∂t W)2 + |∇x W |
2
+ 2 x

r
· ∇x W∂t W = |T W |

2

and hence recover

∥W∥
2
X ex,κ

quasi,T0
+

∫∫
C[2,T0]

(2 + r − t)κ+1
[|T W |

2
+ (1 + u)|∂y W |

2
] d S

≤ Eex,κ
quasi(2,W)+

1
π

∫∫
Dex

T0

(2 + r − t)κ+1(
|F ∂t W | + |∂yu ∂t W∂y W | +

1
2 |∂t u| (∂y W)2

)
dx dy dt. (3-8)

We remark that the above inequality holds actually true for any index κ >−1. The smallness of u ensures
that the integral in the above left-hand side is equivalent to the one in the left-hand side of inequality (3-5).
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r

t H ex
s
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2

H ex
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0 r

t H ex
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6ex
2

C[2,Ts ]

•
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0

Figure 2. Vertical section of the region H ex
[2,s] and its foliation projected onto R1+3. In

the left picture, s =
√

3; in the right one, s >
√

3 and the two bullets delimit the later
boundary C[2,Ts ]. The dashed lines represent the cones t = r and t = r + 1.

We also see, from the assumption (3-3) and the Cauchy–Schwarz inequality, that∫∫
Dex

T0

(2 + r − t)κ+1
|∂yu∂t W∂y W | dx dy dt ≲ ∥(2 + r − t)(κ+1)/2∂yu ∂y W∥L1

t L2
xy(D

ex
T0
)∥W∥X ex,κ

T0

≲ ∥(2 + r − t)1/2∂yu∥L2
t L∞

xy(D
ex
T0
)∥(2 + r − t)κ/2∂y W∥L2

t xy(D
ex
T0
)∥W∥X ex,κ

T0

≲ ϵ∥
√

l( · )∥L2
t
∥W∥

2
X ex,κ

T0
≲ ϵ∥W∥

2
X ex,κ

T0

and from (3-4)∫∫
Dex

T0

(2 + r − t)κ+1
|∂t u|(∂y W)2 dx dy dt ≲ ϵ

∫∫
Dex

T0

(2 + r − t)κ(∂y W)2 dx dy dt ≲ ϵ∥W∥
2
X ex,κ

T0
;

hence the above two integrals can be absorbed in the left-hand side of (3-8) if ϵ ≪ 1 is sufficiently small.
Finally, from the Cauchy–Schwarz inequality we also have∫∫

Dex
T0

(2 + r − t)κ+1
|F∂t W | dx dy dt ≤ ∥(2 + r − t)(κ+1)/2 F∥L1

t L2
xy(D

ex
T0
)∥W∥X ex,κ

T0
. □

If we assume that the function u satisfies the pointwise bounds (3-2)–(3-4) in the whole exterior
region Dex we can also recover an inequality for the energy on exterior truncated hyperboloids H ex

s for
any s > 0, that is, on any branch of hyperboloid contained in the exterior region. We observe that H ex

[2,s]
corresponds to the portion of exterior region delimited by Hs and 6ex

2 whenever 0< s ≤
√

3 and by H ex
s ,

C[2,Ts ] and 6ex
2 whenever s >

√
3, where Ts =

1
2(s

2
+ 1). We remind the definition the stronger norm

∥ · ∥X ex,κ
∞

over the interval [2,∞)

∥W∥X ex,κ
∞

:= lim
T →∞

∥W∥X ex,κ
T
.
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Proposition 3.2. Assume that W is solution to the linear inhomogeneous equation (3-1) with u satisfying
the decay properties (3-2)–(3-4) in the whole region Dex. For any s > 0

Eex,h(s,W)+δs>
√

3

∫∫
C[2,Ts ]

|T W |
2
+|∂y W |

2 d S ≲ Eex,0(2,W)+ϵ∥W∥
2
X ex,0

∞

+∥F∥L1
t L2

xy(H
ex

[2,s])
∥W∥X ex,0

∞
,

where δs>
√

3 = 0 if s ≤
√

3 and is 1 otherwise.

Proof. From the smallness assumption on u it will be enough to prove the statement with Eex,h(t,W) and
Eex,0(2,W) replaced by Eex,h

quasi(t,W) and Eex,0
quasi(2,W) respectively. We integrate the relation (3-6) in the

case where ω≡ 1 over the region H ex
[2,s] and use Stokes’s theorem when integrating in the (t, x)-variables,

with normal vectors given in (3-7) and nH ex
s

= (1,−x/t). We obtain

Eex,h
quasi(s,W)+ δs>

√
3

∫∫
C[2,Ts ]

|T W |
2
+ (1 + u)|∂y W |

2 d S

≤ Eex,0
quasi(2,W)+

1
π

∫∫
H ex

[2,s]

|∂yu ∂t W∂y W | +
1
2
|∂t u| (∂y W)2 + |F∂t W | dx dy dt.

We foliate H ex
[2,s] by the constant time slices 6s

t for t ≥ 2 (see Figure 2), where

6s
t =

{
x ∈ R3

: r ≥ max(t − 1,
√

t2 − s2)
}
× S1,

and from the Cauchy–Schwarz inequality, the assumptions (3-3), (3-4) and the definition of the norm X ex,0
∞

we immediately see ∫∫
H ex

[2,s]

|∂yu ∂y W ∂y W | +
1
2 |∂t u|(∂y W)2 dx dy dt ≲ ϵ∥W∥

2
X ex,0

∞

.

Furthermore ∫∫
H ex

[2,s]

|F∂t W | dx dy dt ≤ ∥F∥L1
t L2

xy(H
ex

[2,s])
∥W∥X ex,0

∞
. □

We now prove the interior energy inequality for (3-1). In the following proposition the hyperbolic
lifespan s0 > 2 is arbitrary and C[2,s] will denote the later boundary of the hyperbolic region H in

[2,s], which
is included in C[2,Ts ] for Ts =

1
2(s

2
+ 1):

C[2,s] =
{
(r + 1, x) :

1
2 ≤ r ≤

1
2(s

2
− 1)

}
× S1

=
{
(t, t − 1) :

3
2 ≤ t ≤

1
2(s

2
+ 1)

}
× S2

× S1.

Proposition 3.3. Let W be a solution to (3-1) and suppose that u is a function that satisfies the following
bounds in the hyperbolic region H in

[2,s0]

∥u∥L∞(H in
[2,s0]

) ≤
1
10 , (3-9)

|∂t u0(t, x)| ≲ ϵt−1/2s−1, (3-10)

∥∂u(t, x, · )∥L∞(S1) ≲ ϵt−3/2+δ (3-11)
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for some small δ > 0, where u0 =
∫

S1 u(t, x, y) dy and u = u − u0. Then

E in(s,W)≲ E in(2,W)+

∫∫
C[2,s]

|T W |
2
+ |∂y W |

2 d S +

∫ s

2
∥F∥L2

xy(H
in
τ )

E in(τ,W)1/2 dτ (3-12)

for all s ∈ [2, s0].

Proof. For any fixed s ∈ [2, s0], we integrate the equality (3-6) with ω ≡ 1 over the region H in
[2,s] (see

Figure 1), which we foliate for hyperboloids H in
τ with τ ∈ [2, s]. We use Stokes’ theorem when integrating

in the variables (t, x), with normal vectors given by

nH in
s

=

(
1,− x

t

)
, nH in

2
= −nH in

s
, nC[2,s] =

(
−1, x

r

)
(3-13)

and obtain

E in
quasi(s,W)≤ E in

quasi(2,W)+

∫∫
C[2,s]

|T W |
2
+(1+u)|∂y W |

2 d S

+
1
π

∫ s

2

∫
H in
τ

(
τ

t

)
|∂yu ∂t W∂y W |+

1
2

(
τ

t

)
|∂t u|(∂y W)2+

(
τ

t

)
|F∂t W |dx dy dτ. (3-14)

The integral on the null boundary C[2,s] in the above right-hand side is bounded by its counterpart in the
right-hand side of (3-12) thanks to the smallness assumption (3-9). From the assumption (3-11) and the
fact that τ ≤ t we derive∫ s

2

∫
H in
τ

(
τ

t

)
|∂yu ∂t W∂y W | +

1
2

(
τ

t

)
|∂tu| (∂y W)2 dx dy dτ

≲
∫ s

2
∥∂u∥L∞(H in

τ )
E in(τ,W) dτ ≲ ϵ

∫ s

2
τ−3/2+δE in(τ,W) dτ,

while from (3-10) we have∫ s

2

∫
H in
τ

1
2

(
τ

t

)
|∂t u0| (∂y W)2 dx dy dτ ≲ ϵ

∫ s

2
τ−3/2 E in(τ,W) dτ.

The Cauchy–Schwarz inequality yields∫ s

2

∫
H in
τ

(
τ

t

)
|F∂t W | dx dy dτ ≤

∫ s0

2
∥F∥L2

xy(H
in
τ )

E in(τ,W)1/2 dτ,

and finally the use of the Gronwall inequality concludes the proof of the statement. □

As detailed in Section 6, it will be important to distinguish between the two components W0 and W
of the solution W to (1-5), in particular to show that the energies associated to the zero mode W0 are
uniformly bounded in time. We will make use of the following classical result about the energy on interior
truncated hyperboloids of solutions of linear inhomogeneous wave equations on the flat space R1+3.

Proposition 3.4. Let W0 be a solution of the linear inhomogeneous wave equation

(−∂2
t +1x)W0 = F0, (t, x) ∈ R × R3. (3-15)

For all s ∈ [2, s0] we have the energy inequality

E in(s,W0)≤ E in(2,W0)+

∫
C[2,s]

|T W0|
2 d S + 2

∫ s

2
∥F0∥L2

x (H
in
τ )

E in(τ,W0)
1/2 dτ.
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We also prove below the interior and exterior conformal energy inequalities for linear inhomogeneous
wave equations on R1+3. We will, in fact, need to control the higher-order conformal energies of the
zero-mode W0 of our solution W in order to recover pointwise bounds for W0 and Z W0 later in the paper.

Proposition 3.5. Let W0 be a solution to (3-15). Then

Ec,in(s,W0)≤ Ec,in(2,W0)+

∫ s

2
∥τ F0∥L2(H in

τ )
Ec,in(τ,W0)

1/2 dτ

+

∫
C[2,s]

|(t+r)(∂t W0+∂r W0)+2W0|
2
+(t−r)2(|∇x W0|

2
−(∂r W0)

2)d S.

Proof. Let K = (t2
+ r2)∂t + 2r t∂r denote the Morawetz multiplier. We have the equality

−(K W0 + 2tW0)□x W0

= ∂t
[ 1

2(t
2
+ r2)(|∂t W0|

2
+ |∇x W0|

2)+ 2r t∂t W0∂r W0 + 2tW0∂t W0 − W2
0
]

− divx [(t2
+ r2)∂t W0∇x W0 + 2r t∂r W0∇x W0 + t x(|∂t W0|

2
− |∇x W0|

2)+ 2tW0∇x W0], (3-16)

which we integrate over the interior hyperbolic region H in
[2,s]. We apply Stokes’ theorem (recall the normal

vectors listed (3-13)). First, we compute the contribution to the integral on H in
s . Algebraic computations

show that

1
2(t

2
+ r2)(|∂t W0|

2
+ |∇x W0|

2)+ 2r t∂t W0∂r W0

+ [(t2
+ r2)∂t W0∇x W0 + 2r t∂r W0∇x W0 + t x(|∂t W0|

2
− |∇x W0|

2)] ·
x
t

=
1

2t2 |K W0|
2
+

s2

2t2

3∑
i=1

|�0i W0|
2

and

2tW0∂t W0 − W2
0 + 2tW0∇x W0 ·

x
t

=
2
t

W0 K W0 −
r
t
�0r (W2

0 )− W2
0 ,

where �0r = r∂t + t∂r . The parametrization of H in
s by the hyperbolic angle θ , i.e.,

H in
s = {(s cosh θ, s sinh θ) : θ ∈ [θ1, θ2]}

for some suitable θ1, θ2, and the change of variables r = s sinh θ allows us to see that∫
H in

s

r
t
�0r (W0)

2 dx =

∫ (s2
−1)/2

0

∫
S2

r
t
�0r (W0)

2r2 dr dσ

=

∫ θ2

θ1

∫
S2

sinh θ
cosh θ

∂θ (W0)
2s3 sinh2 θ cosh θ dθ dσ

= −3
∫ θ2

θ1

∫
S2

W2
0 s3 sinh2 θ cosh θ dθ dσ +

[∫
S2

W2
0 s3 sinh3 θ dσ

]θ=θ2

θ=θ1

= −3
∫

H in
s

W2
0 dx +

[∫
S2

W2
0 r3 dσ

]r=r2

r=r1

,
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where r1 = s sinh θ1 =
1
2 and r2 = s sinh θ2 =

1
2(s

2
−1). Therefore the integral on the boundary H in

s equals∫
H in

s

1
2t2 |K W0|

2
+

s2

2t2

3∑
i=1

|�0i W0|
2
+

2
t

W0 K W0 + 2W2
0 dx −

[∫
S2

W2
0 s3 sinh3 θ dσ

]θ=θ2

θ=θ1

=

∫
H in

s

1
2t2 |K W0 + 2W0|

2
+

s2

2t2

3∑
i=1

|�0i W0|
2 dx −

[∫
S2

W2
0 s3 sinh3 θ dσ

]θ=θ2

θ=θ1

.

We now compute the contributions to the integral on C[2,s]. Algebraic computations show that

1
2(t

2
+ r2)(|∂t W0|

2
+ |∇x W0|

2)+ 2r t∂t W0∂r W0

+ [(t2
+ r2)∂t W0∇x W0 + 2r t∂r W0∇x W0 + t x(|∂t W0|

2
− |∇x W0|

2)] ·
x
r

=
1
2(t + r)2(∂t W0 + ∂r W0)

2
+

1
2(|∇x W0|

2
− (∂r W0)

2)

and

2tW0∂t W0 − W2
0 + 2tW0∇x W0 ·

x
r

= 2tW0(∂t W0 + ∂r W0)− W2
0

= 2(t + r)W0(∂t W0 + ∂r W0)− 2r W0(∂t W0 + ∂r W0)− W2
0 .

In the coordinates (u, v)= (t − r, t + r) we have that ∂t + ∂r = ∂v and moreover the lateral boundary can
be expressed as

C[2,s] =

{(
v+1

2
,
v−1

2
, σ

)
: 2 ≤ v ≤ s2, σ ∈ S2

}
.

Using polar coordinates and then the change of coordinates r =
1
2(v− 1), we see that∫

C[2,s]

2r W0(∂t W0 + ∂r W0) d6s =

∫ r2

r1

∫
S2
(∂t + ∂r )(W2

0 )r
3 dr dσ =

∫ s2

2

∫
S2
∂v(W0)

2
(
v−1

2

)3 dv
2

dσ

= −3
∫ s2

2

∫
S2

W2
0

(
v−1

2

)2 dv
2

dσ +

[∫
S2

W2
0

(
v−1

2

)3
dσ

]v=s2

v=2

= −3
∫

C[2,s]

W2
0 d6s +

[∫
S2

W2
0 r3 dσ

]r=r2

r=r1

.

Therefore, the integral on the lateral boundary C[2,s] equals to the opposite of∫
C[2,s]

1
2
(t + r)2(∂t W0 + ∂r W0)

2
+ 2(t + r)W0(∂t W0 + ∂r W0)+ 2W2

0 d6s

+
1
2

∫
C[2,s]

(|∇x W0|
2
− (∂r W0)

2) d6s +

[∫
S2

W2
0 r3 dσ

]r=r2

r=r1

=
1
2

∫
S2

|(t + r)(∂t W0 + ∂r W0)+ 2W0|
2
+ (|∇x W0|

2
− (∂r W0)

2) d6s +

[∫
S2

W2
0 r3 dσ

]r=r2

r=r1

.

Summing everything up proves the result of the statement. □
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Proposition 3.6. Let W0 be a solution to (3-15). Then

Ec,ex(T,W0)+

∫
C[2,T ]

|(t + r)(∂t W0 + ∂r W0)+ 2W0|
2
+ (t − r)2(|∇W0|

2
− (∂r W0)

2) d S

≤ Ec,ex(2,W0)+

∫ T

2
∥(t + r)F0∥L2

x (6
ex
t )

Ec,ex(t,W0)
1/2 dt.

Proof. The result of the proposition follows from the integration of equality (3-16) over the region Dex
T

combined with Stokes’ theorem and the equality

K W0 + 2tW0 = t (S W0 + 2W0)+ r�0r W0. □

In the interior region we will recover pointwise bounds on Z W0 from the higher-order conformal
energies of W0 via Klainerman–Sobolev inequalities on hyperboloids (see Lemma 5.1). This will require
a control on the conformal energy of the solution on a portion of the hyperboloid Hs in the exterior
region Dex that in turn will be obtained from a control on the conformal energy on the flat hypersurfaces6s

t

defined below. We hence state the following modification of the conformal energy inequality.

Proposition 3.7. For any s, T1, T2 with 2 ≤ s < T1 < T2 and any t ∈ [T1, T2], let

6s
t := {x ∈ R3

: |x | ≥

√
t2 − s2}

and

Ec,ex
s (t,W0) :=

∫
6s

t

|S W0 + 2W0|
2
+

3∑
i=1

|�0i W0|
2 dx .

Then

Ec,ex
s (T2,W0)+

∫
Hs∩[T1,T2]

1
t2 |K W0 + 2tW0|

2
+

s2

t2

3∑
i=1

|�0i W0|
2 dx

≤ Ec,ex
s (T1,W0)+

∫ T2

T1

∥(t + r)F0∥L2
x (6

s
t )

Ec,ex
s (t,W0)

1/2 dt.

Proof. The result of the statement follows by integrating (3-16) over the region bounded by 6s
T2

, 6s
T1

and
Hs ∩ [T1, T2], which can be foliated by the hypersurfaces 6s

t for t ∈ [T1, T2]. □

4. Global existence in the exterior region

The main goal of this section is to prove Proposition 2.1, that is, the propagation of the a priori energy
bounds on the weighted higher-order exterior energies of the solution. This in turn will imply the global
existence of the solution to the Cauchy problem (1-1)–(1-2) under the assumptions of Theorem 1.

The proof of Proposition 2.1 unfolds in two main steps:

(1) We recover sharp pointwise bounds from the energy assumptions (2-1).

(2) We compute the equation satisfied by the differentiated variable Z γW and compare it to the inhomo-
geneous linear equation (3-1) in order to use the energy inequality of Proposition 3.1. We use the energy
assumptions and the pointwise bounds obtained in step (1) to perturbatively estimate the source terms.
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The main tools used in steps (1) and (2) are weighted Sobolev and Hardy inequalities, with weights depend-
ing on the distance from the light cone. We mention here that these inequalities already played an important
role in the proof of [Lindblad and Rodnianski 2010] of the global stability of the Minkowski space-time
for the vacuum Einstein equations. We also observe that, as a result of proving global energy bounds in
the exterior region, we obtain bounds for the higher-order conformal energy Ec,ex

5 (t,W ) for all t ≥ 2 and
a uniform-in-time control of the higher-order energies Eex,h

5 (s,W ) on exterior hyperboloids, for all s ≥ 2.
This section is organized as follows: in Sections 4A and 4B we prove weighted Sobolev and Hardy

inequalities; in Section 4C we recover the aforementioned pointwise bounds; in Section 4D we finally
propagate the bounds (2-1).

4A. Weighted Sobolev inequalities.

Lemma 4.1. Let β ∈ R. For any sufficiently smooth function w we have

sup
6ex

t

(2+r − t)βr2
|w(t, x, y)|2 ≲

∫∫
6ex

t

(2+r − t)β+1(∂rZ
≤2w)2 +(2+r − t)β−1(Z ≤2w)2 dx dy. (4-1)

Proof. Let (r, σ ) be the spherical coordinates in R3, r = |x | and σ = x/|x | ∈ S2. We begin by observing
that the Sobolev embedding H 2(S2

× S1)⊂ L∞(S2
× S1) implies

sup
S2×S1

|w(t, r, σ, y)|2 ≤

∑
0≤l+k≤2

∫
|∇

l
σ ∂

k
yw(t, r, σ, y)|2 dσ dy.

We then remark that for any function v and (t, x, y) ∈6ex
t

∂r [(2 + r − t)βr2 v(t, x, y)2] = 2(2 + r − t)βr2 v∂rv+β(2 + r − t)β−1r2v2
+ 2(2 + r − t)βrv2

≥ 2(2 + r − t)βr2v∂rv+β(2 + r − t)β−1r2v2,

so if v is compactly supported in x we can write

(2 + r − t)βr2 v(t, x, y)2 = −

∫
∞

r
∂ρ[(2 + ρ− t)βρ2 v(t, x, y)2] dρ

≲β

∫
∞

r
(2 + ρ− t)β |v∂ρv|ρ2 dρ+

∫
∞

r
(2 + ρ− t)β−1v2ρ2 dρ

≲β

∫
∞

r
(2 + ρ− t)β+1(∂ρv)

2 ρ2 dρ+

∫
∞

r
(2 + ρ− t)β−1v2ρ2 dρ. (4-2)

By replacing v with ∇
l
σ ∂

k
yw(t, r, σ, y) for k + l ≤ 2 we obtain (4-1) in the case where w is compactly

supported. In the general case where w is not compactly supported we consider a cut-off function
χ ∈ C∞

0 (R) and apply the inequality (4-1) to χ(ϵr)w for any ϵ > 0

sup
6ex

t

(2 + r − t)βr2
|χ(ϵr)w|

2 ≲
∑

k+l≤2

∫∫
6ex

t

(2 + r − t)β+1(∂r∇
k
σ ∂

l
yw)

2
+ (2 + r − t)β−1(∇k

σ ∂
l
yw)

2 dx dy

+

∑
k+l≤2

∫∫
6ex

t

(2 + r − t)β+1ϵ2
|χ ′(ϵr)|2(∇k

σ ∂
l
yw)

2 dx dy.
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On the intersection of 6ex
t with the support of χ ′(ϵr) we have that (2 + r − t)2ϵ2 ≲ 1 so∫∫

6ex
t

(2 + r − t)β+1ϵ2
|χ ′(ϵr)|2(∇k

σ ∂
l
yw)

2 dx dy ≲
∫∫

6ex
t

(2 + r − t)β−1(∇k
σ ∂

l
yw)

2 dx dy.

By letting ϵ → 0 we derive (4-1) also in the case of noncompactly supported w. □

Slight modifications of the above proof yield the following three results.

Lemma 4.2. Let β ∈ R. For a sufficiently regular function w we have

sup
6ex

t

(2 + r − t)βr2
|w(t, x, y)|2 ≲

∫∫
6ex

t

(2 + r − t)β((∂rZ
≤2w)2 + (Z ≤2w)2) dx dy. (4-3)

Proof. It follows by estimating v and ∂ρv in (4-2) with the same weight and using the fact that 2+r − t ≥ 1
on 6ex

t . □

Lemma 4.3. Let β ∈ R. For any sufficiently regular function w we have

sup
6ex

t

(2 + r − t)βr2
∥w(t, r, · )∥2

L2(S2×S1)
≲

∫∫
6ex

t

(2 + r − t)β+1(∂rw)
2
+ (2 + r − t)β−1w2 dx dy. (4-4)

Proof. The inequality (4-4) follows by replacing v with the L2(S2
× S1) norm of w in the left- and

right-hand sides of inequality (4-2). □

Lemma 4.4. Let β ∈ R. For any sufficiently regular function w we have

sup
6ex

t

(2 + r − t)βr2
∥w(t, r, · )∥2

L4(S2×S1)
≲

∫∫
6ex

t

(2 + r − t)β(∂≤1
r Z ≤1w)2 dx dy. (4-5)

Proof. The inequality (4-5) follows by estimating v and ∂ρv in (4-2) with the same weight, then applying
the inequality with v replaced by the L4(S2

× S1) norm of w and finally using the Sobolev injection
H 1(S2

× S1)⊂ L4(S2
× S1). □

4B. Weighted Hardy inequality.

Lemma 4.5. Let β >−1. For any sufficiently regular function w for which the integral in the following
left-hand side is finite we have∫∫

6ex
t

(2 + r − t)βw2 dx dy ≲
∫∫

6ex
t

(2 + r − t)β+2(∂rw)
2 dx dy.

Proof. A simple computation shows that for any β ∈ R and (t, x, y) ∈6ex
t

∂r [r2(2 + r − t)β+1
] = 2r(2 + r − t)β+1

+ (β + 1)r2(2 + r − t)β ≥ (β + 1)r2(2 + r − t)β .
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Consequently, if β >−1 and w is a compactly supported function∫
r≥t−1

(2+r−t)βw2 dx =

∫
∞

t−1

∫
S2
(2+r−t)βr2w2 dr dσ ≤

1
β+1

∫
∞

t−1

∫
S2
∂r (r2(2+r−t)β+1)w2 dr dσ

= −
2

β+1

∫
r≥t−1

(2+r−t)β+1w∂rw r2 dr dσ−
1

β+1

[∫
S2×S1

w2r2 dσ
]

r=t−1

≲

(∫
r≥t−1

(2+r−t)βw2 dx
)1/2(∫

r≥t−1
(2+r−t)β+2(∂rw)

2 dx
)1/2

,

and the inequality of the statement follows after further integration on S1.
Let now w be any sufficiently regular function, not necessarily compactly supported, and χ be any

fixed cut-off function. For any ϵ > 0, we apply the inequality of the statement to the compactly supported
function χ(ϵr)w and obtain∫∫

6ex
t

(2 + r − t)βχ(ϵr)2w2 dx dy ≲
∫∫

6ex
t

(2 + r − t)β+2
[χ(ϵr)2(∂w)2 + ϵ2χ ′(ϵr)2w2

] dx dy.

On the support of χ ′(ϵr) we have ϵ2(2 + r − t)2 ≲ 1. Using that

lim
ϵ→0

∫
r≥1/ϵ

(2 + r − t)βw2 dx = 0,

we obtain the result of the statement by passing to the limit ϵ → 0. □

4C. Pointwise bounds.

Proposition 4.6. Assume that the solution W = (u, v)T to (1-5)–(1-6) satisfies the a priori energy bounds
(2-1) for some fixed T0 > 2 and κ > 0. There exists an integrable function l ∈ L1([2, T0]) such that the
following pointwise estimates hold true in Dex

T0
:

sup
S1

|W | ≲ ϵ, (4-6)

sup
S1

|∂Z ≤2W | ≲ C0ϵr−1(2 + r − t)−(κ+1)/2, (4-7)

sup
S1

|T Z ≤2W | + |∂yZ
≤2W | + |Z ≤2W| ≲ C0ϵr−1

√
l(t)(2 + r − t)−κ/2, (4-8)

sup
S1

|ZZ ≤2W | ≲ C0ϵr−1(2 + r − t)−κ/2. (4-9)

Proof. The bounds (4-7) and (4-8) follow immediately from Lemma 4.2 with β = κ + 1 and β = κ

respectively, from (2-4), the Poincaré inequality and the energy bounds (2-3), (2-4). The pointwise bound
(4-9) follows instead applying Lemma 4.1 with β = κ and Lemma 4.5 with β = κ − 1 to write that∫∫

6ex
t

(2 + r − t)κ−1(ZZ ≤4W )2 dx dy ≲
∫∫

6ex
t

(2 + r − t)κ+1(∂Z ≤5W )2 dx dy.

Finally, the bound (4-6) on W is obtained from the integration of (4-7) along the direction ∂q = ∂r − ∂t

until the initial time slice t0 = 2 and from the smallness assumption on the initial data. □
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A trivial consequence of the decomposition (1-7) and the bounds (4-8)–(4-9), that will be useful later
in Section 5, is the following estimate for the zero-mode W0 of the solution:

sup
S1

|ZZ ≤1W0| ≲ C0ϵr−1(2 + r − t)−κ/2. (4-10)

4D. Propagation of the exterior energy bounds. We start by considering any multi-index γ with |γ | =

n ≤ 5 and compare the system satisfied by the differentiated function W γ
= (uγ , vγ )T — which is a

shorthand notation for Z γW = (Z γ u,Z γ v)— to the inhomogeneous linear equation (3-1). Here the
variable that plays the role of the linear variable W is W γ. We remind the reader that all vector fields Z

in the family (1-14) are related to the geometry of the problem and are the generators of the Lorentz
transformations of the Minkowski space R1+3. In particular, they preserve the structure of system (1-1)
and equivalently of (1-5).

The equation satisfied by W γ is obtained by commuting Z γ to (1-5)

(−∂2
t +1x)W γ

+ (1 + u)∂2
y W γ

= Fγ , (4-11)

where the inhomogeneous term Fγ is given by

Fγ = −[Z γ , u∂2
y ]W +

∑
|γ1|+|γ2|≤|γ |

N(W γ1,W γ2),

[Z γ , u∂2
y ]W = δγ

∑
|γ1|+|γ2|=|γ |

|γ2|<|γ |

uγ1∂2
y W γ2,

(4-12)

where δγ = 0 if |γ | = 0, and δγ = 1 otherwise. The nonlinear term N( · , · ) in the right-hand side of
(4-12) is a two-vector of new linear combinations of the quadratic null forms introduced in (1-3), which
arise from the commutation of the Klainerman vector fields with N1 and N2.

We have seen in Proposition 4.6 that under the a priori energy assumption (2-1) the solution W satisfies
the pointwise bounds (4-6) and (4-7). The hypotheses of Proposition 3.1 are then fulfilled and we have

∥W γ
∥

2
X ex,κ

T0
+

∫∫
C[2,T0]

(2 + r − t)κ+1(|T W γ
|
2
+ |∂y W γ

|
2) d S

≲ Eex,κ(2,W γ )+ ∥(2 + r − t)(κ+1)/2 Fγ ∥L1
t L2

xy(D
ex
T0
)∥W γ

∥X ex,κ
T0
. (4-13)

Proof of Proposition 2.1. It is enough for our purpose to estimate the weighted norm of the source term Fγ

and prove that for every |γ | ≤ 5

∥(2 + r − t)(κ+1)/2 Fγ ∥L2
xy(6

ex
t )

≲ C2
0ϵ

2(t − 1)−(κ+1)/2
√

l(t), (4-14)

where l ∈ L1([2, T0]). In fact, if we plug (4-14) and a priori energy bound (2-1) into (4-13) we obtain
that there exists some universal positive constant C so that

∥W∥
2
X5,κ

T0

+

∑
|γ |≤5

∫∫
C[2,T0]

(2 + r − t)κ+1(|T W γ
|
2
+ |∂y W γ

|
2) d S ≤ C Eex,κ

5 (2,W )+ 2CC3
0ϵ

3.

For any fixed constant K > 1 (e.g. K = 2) we then choose C0 > 0 sufficiently large so that

Eex,κ
5 (2,W )≤

C2
0ϵ

2

C K
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and ϵ0 > 0 sufficiently small so that 2CC2
0ϵ < 1/K for ϵ ≤ ϵ0 to finally obtain

∥W∥
2
X5,κ

T0

+

∑
|γ |≤5

∫∫
C[2,T0]

(2 + r − t)κ+1(|T W γ
|
2
+ |∂y W γ

|
2) d S ≤

2C0ϵ
2

K
.

We estimate the different contributions to Fγ separately. In all the estimates that follow we will use
the a priori energy bound (2-1) and the fact that r > t − 1 in the exterior region.

(1) The null terms: We use here the null form representation via the formula (1-16)

N(W γ1,W γ2)∼ T W γ1 · ∂W γ2 + ∂W γ1 · T W γ2 .

The products in the above right-hand side are equivalent given the range of γ1 and γ2 and we only focus
on the analysis of the first one. We distinguish between the different values that γ1 and γ2 can take and
remind the reader that |γ1| + |γ2| ≤ |γ | = n ≤ 5.

(a) The case |γ1| = 0: Here γ2 = γ and we immediately obtain from (4-8) that

∥(2 + r − t)(κ+1)/2T W · ∂W γ
∥L2

xy
≤ ∥T W∥L∞

xy
∥W γ

∥X ex,κ
T0

≲ C2
0ϵ

2(t − 1)−1
√

l(t).

(b) The case |γ2| = 0: Here γ1 = γ and we obtain from (4-7) that

∥(2 + r − t)(κ+1)/2T W γ
· ∂W∥L2

xy
≤ ∥(2 + r − t)1/2∂W∥L∞

xy
∥(2 + r − t)κ/2T W γ

∥L2
xy

≲ C2
0ϵ

2(t − 1)−1
√

l(t).

(c) The case |γ1|, |γ2|> 0: We use spherical polar coordinates and the Cauchy–Schwarz inequality to
bound the weighted L2

xy(6
ex
t ) norm of T W γ1 · ∂W γ2 as follows:

∥(2 + r − t)(κ+1)/2T W γ1 · ∂W γ2∥
2
L2

xy
=

∫
∞

t−1

∫∫
S2×S1

(2 + r − t)κ+1
|T W γ1 |

2
|∂W γ2 |

2 r2 dr dσ dy

≲
∫

∞

t−1
(2 + r − t)κ+1

∥T W γ1∥
2
L4(S2×S1)

∥∂W γ2∥
2
L4(S2×S1)

r2 dr.

In the case where |γ1| ≤ n −2 we apply the inequality (4-5) to T W γ1 with β = κ and Sobolev’s injection
H 1(S2

× S1)⊂ L4(S2
× S1) to ∂W γ2 . We derive that∫

∞

t−1
(2 + r − t)κ+1

∥T W γ1∥
2
L4(S2×S1)

∥∂W γ2∥
2
L4(S2×S1)

r2 dr

≲ ∥(2 + r − t)κ/2T Z ≤nW∥
2
L2

xy(6
ex
t )

∫
∞

t−1
(2 + r − t)r−2

∥∂Z ≤nW∥
2
L2(S2×S1)

r2 dr

≲ (t − 1)−2
∥(2 + r − t)κ/2T Z ≤nW∥

2
L2

xy(6
ex
t )

∥(2 + r − t)(κ+1)/2∂Z ≤nW∥
2
L2

xy(6
ex
t )
.
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In the remaining case where |γ1| = n−1 and |γ2| = 1 we apply the inequality (4-5) to ∂W γ2 with β = κ+1
and the injection H 1(S2

× S1)⊂ L4(S2
× S1) to T W γ1 . We get∫

∞

t−1
(2 + r − t)κ+1

∥T W γ1∥
2
L4(S2×S1)

∥∂W γ2∥
2
L4(S2×S1)

r2 dr

≲ ∥(2 + r − t)(κ+1)/2∂Z ≤nW∥
2
L2

xy(6
ex
t )

∫∫
6ex

t

r−2
|T Z ≤nW |

2 dx dy

≲ (t − 1)−2
∥(2 + r − t)κ/2T Z ≤nW∥

2
L2

xy(6
ex
t )

∥W∥
2
Xn,κ

T0
.

In both scenarios we obtain

∥(2 + r − t)(κ+1)/2T W γ1 · ∂W γ2∥L2
xy
≲ C2

0ϵ
2(t − 1)−1

√
l(t).

(2) The commutator terms: Since |γ1| ≥ 1, we can write uγ1 = Z uγ̃1 for some |γ̃1| = |γ1|−1. We can also
write ∂2

y W γ2 = ∂y W γ̃2 for some other γ̃2 such that |γ̃2| = |γ2| + 1 and observe that then |γ̃1| + |γ̃2| = n.
Depending on γ1 = (α1, β1) we can distinguish two cases:

(a) The case |α1|> 0: Here we choose γ̃1 so that Z uγ̃1 = ∂uγ̃1 . The products ∂uγ̃1 · ∂y W γ̃2 have the same
behavior of the null terms treated in case 1.

(b) The case |α1| = 0: Here Z γ1 = Zβ1 is a pure product of Klainerman vector fields and Z uγ̃1 = Zuγ̃1 .
We choose the exponents (p1, p2) using

(p1, p2)=


(2,∞) if |γ̃1| = n − 1,
(∞, 2) if |γ̃2| = n,
(4, 4) otherwise

and will place the two factors in L p1(S2
× S1) and L p2(S2

× S1) respectively. We use the Sobolev
injections H 2(S2

× S1)⊂ L∞(S2
× S1) and H 1(S2

× S1)⊂ L4(S2
× S1) to derive

∥(2 + r − t)(κ+1)/2 Zuγ̃1∂y W γ̃2∥
2
L2

xy
≲

∫
∞

t−1
(2 + r − t)κ+1

∥Zuγ̃1∥
2
L p1 (S2×S1)

∥∂y W γ̃2∥
2
L p2 (S2×S1)

r2 dr

≲
∫

∞

t−1
(2 + r − t)κ+1

∥ZZ ≤4u∥
2
L2(S2×S1)

∥∂yZ
≤5W∥

2
L2(S2×S1)

r2 dr.

Applying the inequality (4-4) to ZZ ≤4u with β = κ and successively the weighted Hardy inequality
proved in Lemma 4.5 with β = κ − 1 we find

sup
r≥t−1

(2 + r − t)κr2
∥ZZ ≤4u∥

2
L2(S2×S1)

≲ ∥(2 + r − t)(κ+1)/2∂rZ
≤5u∥

2
L2

xy(6
ex
t )

+ ∥(2 + r − t)(κ−1)/2 ZZ ≤4u∥
2
L2

xy(6
ex
t )

≲ ∥(2 + r − t)(κ+1)/2∂Z ≤5u∥
2
L2

xy(6
ex
t )
.

We can therefore continue the previous chain of inequalities

≲ ∥(2 + r − t)(κ+1)/2∂rZ
≤5u∥

2
L2

xy(6
ex
t )

∫
∞

t−1
(2 + r − t)r−2

∥∂yZ
≤5W∥

2
L2(S2×S1)

r2 dr

≲ (t − 1)−1−κ
∥W∥

2
X5,κ

T0

∥(2 + r − t)κ/2∂yZ
≤5W∥

2
L2

xy(6
ex
t )
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and finally conclude that∑
|γ1|+|γ2|=n

|γ1|≥1

∥(2 + r − t)(κ+1)/2uγ1 · ∂2
y W γ2∥L2

xy
≲ C2

0ϵ
2(t − 1)−(κ+1)/2

√
l(t). □

As a byproduct of the above proof we have also obtained that, for any fixed K > 1, there exist C0 > 0
sufficiently large and ϵ0 > 0 sufficiently small such that∑

|γ |≤5

∫∫
C[2,T0]

(2 + r − t)κ+1(|T Z γW |
2
+ |∂yZ

γW |
2) d S ≤

2C0ϵ
2

K
. (4-15)

An immediate consequence of the global energy bounds (2-2) obtained from Proposition 2.1 is the fol-
lowing estimate on the higher-order energies of the solution W on the truncated exterior hyperboloids H ex

s

for any s > 0.

Proposition 4.7. Let W = (u, v)T be the global solution of the Cauchy problem (1-5)–(1-6) in the exterior
region Dex. There exists a constant C > 0 such that for any s > 0

Eex,h
5 (s,W )+ δs>

√
3

∑
|γ |≤5

∫∫
C[2,Ts ]

|T Z γW |
2
+ |∂yZ

γW |
2 d S ≤ CC2

0ϵ
2, (4-16)

where δs>
√

3 = 0 if s ≤
√

3, 1 otherwise and Ts =
1
2(s

2
+ 1).

Proof. The result follows by applying Proposition 3.2 with W = W γ and F = Fγ for any multi-index γ
such that |γ | ≤ 5 and then using the global energy bound (2-2), the estimate (4-14) of the source term Fγ

and the fact that

∥Fγ ∥L1
t L2

xy(H
ex

[2,s])
≲

∫
∞

2
∥Fγ ∥L2

xy(6
ex
t )

dt ≲ C2
0ϵ

2. □

We conclude this section with the derivation of a bound for the higher-order exterior conformal energy
of W0 as well as for the higher-order conformal energy on portions of the hyperboloid Hs in the exterior
region Dex.

Proposition 4.8. Assume the solution W = (u, v)T of the Cauchy problem (1-5)–(1-6) satisfies the a priori
exterior energy bounds (2-1). Then∑
|γ |≤4

∫
C[2,T0]

|(t + r)(∂t W
γ

0 + ∂r W γ

0 )+ 2W γ

0 |
2
+ (t − r)2(|∇x W γ

0 |
2
− (∂r W γ

0 )
2) d S

+ sup
[2,T0]

Ec,ex
4 (t,W0)≲ C2

0ϵ
2 ln T0, (4-17)

where the implicit constant only depends on C0.

Proof. Let us fix |γ | ≤ 4. By integrating (4-11) over the sphere S1 we obtain that W γ

0 is solution of the
linear inhomogeneous wave equation

(−∂2
t +1x)W

γ

0 = Fγ0 , (4-18)
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with source term

Fγ0 =

∫
S1

Fγ
dy
2π

−

∫
S1

[Z γ , u∂2
y ]W

γ dy
2π

=

∑
|γ1|+|γ2|≤|γ |

∫
S1

N(W γ1,W γ2)
dy
2π

+

∑
|γ1|+|γ2|=|γ |

∫
S1
∂yuγ1 · ∂y W γ2

dy
2π
. (4-19)

When applying Proposition 3.6 with W0 = W γ

0 and F0 = Fγ0 , we derive that for all T ∈ [2, T0]

Ec,ex(T,W γ

0 )+

∫
C[2,T ]

|(t + r)(∂t W
γ

0 + ∂r W γ

0 )+ 2W γ

0 |
2
+ (t − r)2(|∇x W γ

0 |
2
− (∂r W γ

0 )
2) d S

≤ Ec,ex(2,W γ

0 )+

∫ T

2
∥(t + r)Fγ0 ∥L2

x (6
ex
t )

Ec,ex(t,W γ

0 )
1/2 dt, (4-20)

where

∥(t + r)Fγ0 ∥L2
x (6

ex
t )

≤

∑
|γ1|+|γ2|≤|γ |

∥(t + r)N(W γ1,W γ2)∥L2
xy

+

∑
|γ1|+|γ2|=|γ |

∥(t + r)∂yuγ1 · ∂y W γ2∥L2
xy
.

We estimate the different contributions to Fγ0 separately. We start by observing that since |γ1| + |γ2| ≤ 4,
at least one of the two multi-indexes has length less than or equal to 2. We call this index γ j and will
place the factor carrying it in L∞, and the other one in L2.

(1) The commutator terms: We use the pointwise bound (4-8) and the energy bound (2-4)

∥(t + r)∂yuγ1 · ∂y W γ2∥L2
xy(6

ex
t )

≲ C0ϵ
√

l(t)∥∂yZ
≤4W∥L2

xy(6
ex
t )

≲ C2
0ϵ

2l(t).

(2) The null terms: Here we use the null form representation via the formula (1-15) and the relation
∂̄ = t−1 Z to write

N(W γ1,W γ2)=
1
t

Z W γ1 · ∂W γ2 +
1
t
∂W γ1 · Z W γ2 +

t−r
t
∂W γ1 · ∂W γ2 . (4-21)

The first two products in the above right-hand side are equivalent given the range of γ1 and γ2 so we will
just analyze the first one. In the case where |γ1| ≤ 2 we deduce from the pointwise bound (4-9) that

∥(t + r)t−1 Z W γ1 · ∂W γ2∥L2
xy(6

ex
t )

≲ C0ϵ∥(t + r)r−1t−1∂W γ2∥L2
xy(6

ex
t )

≲ C0ϵt−1 Eex,0
4 (t,W )1/2.

In the case where |γ1| ≥ 3, we bound ∂W γ2 using (4-7) and decompose W γ1 according to (1-7). We apply
the Poincaré inequality to obtain

∥(t + r)t−1 ZWγ1 · ∂W γ2∥L2
xy(6

ex
t )

≲ C0ϵ∥(t + r)r−1t−1∂y ZWγ1∥L2
xy(6

ex
t )

≲ C0ϵt−1 Eex,0
5 (t,W )1/2

and use Lemma 4.5 with β = κ − 1 to get

∥(t + r)t−1 Z W γ1
0 · ∂W γ2∥L2

xy(6
ex
t )

≲ C0ϵ∥(t + r)t−1r−1(2 + r − t)−κ+(κ−1)/2 Z W γ1
0 ∥L2

xy(6
ex
t )

≲ C0ϵt−1 Eex,κ
5 (t,W )1/2.
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The last quadratic term in the right-hand side of (4-21) is estimated using again (4-7),

∥(t + r)(t − r)/t ∂W γ1 · ∂W γ2∥L2
xy(6

ex
t )

≲ C0ϵt−1
∥(2 + r − t)(1−κ)/2∂Z ≤4W∥L2

xy(6
ex
t )

≲ C0ϵt−1 Eex,0
4 (t,W )1/2,

which gives

∥(t + r)N(W γ1,W γ2)∥L2
xy(6

ex
t )

≲ C0ϵt−1 Eex,κ
5 (t,W )1/2.

The combination of steps (1) and (2) with the energy bound (2-1) yields

∥(t + r)Fγ0 ∥L2
xy(6

ex
t )

≲ C2
0ϵ

2l(t)+ C2
0ϵ

2t−1, (4-22)

which plugged into (4-20) for all |γ | ≤ 4 gives

Ec,ex
4 (T,W0)+

∑
|γ |≤4

∫
C[2,T ]

|(t + r)(∂t W
γ

0 + ∂r W γ

0 )+ 2W γ

0 |
2
+ (t − r)2(|∇x W γ

0 |
2
− (∂r W γ

0 )
2) d S

≲ Ec,ex
4 (2,W0)+

∫ T

2
(C2

0ϵ
2l(t)+ C2

0ϵ
2t−1)Ec,ex

4 (t,W0)
1/2 dt

≲ Ec,ex
4 (2,W0)+ C2

0ϵ
2 sup

[2,T0]

Ec,ex
4 (t,W0)+ C2

0ϵ
2 ln T .

If ϵ ≪ 1 is sufficiently small we get

sup
[2,T0]

Ec,ex
4 (t,W0)+

∑
|γ |≤4

∫
C[2,T0]

|(t + r)(∂t W
γ

0 + ∂r W γ

0 )+ 2W γ

0 |
2
+ (t − r)2(|∇x W γ

0 |
2
− (∂r W γ

0 )
2) d S

≲ Ec,ex
4 (2,W0)+ C2

0ϵ
2 ln T0,

so the result of the proposition follows from the smallness of the conformal energy at the initial time,
which in turn follows from the assumptions on the initial data. □

Lemma 4.9. Let s ≥ 2 and 2 < T1 < T2 be such that the portion of hyperboloid Hs in the time strip
[T1, T2] is entirely contained in the exterior region Dex. Assume W = (u, v)T is the solution to the Cauchy
problem (1-5)–(1-6) in Dex satisfying the global energy bounds (2-1). Then there exists a constant C > 0
such that for all |γ | ≤ 4∥∥∥1

t
K W γ

0 + 2W γ

0

∥∥∥2

L2(Hs∩[T1,T2])
+

3∑
i=1

∥∥∥s
t
�0i W

γ

0

∥∥∥2

L2(Hs∩[T1,T2])
≤ CC2

0ϵ
2 ln T2.

Proof. We apply Proposition 3.7 with W0 = W γ and |γ | ≤ 4. It follows from the hypotheses that 6s
t ⊂6ex

t

and hence that Ec,ex
s (t,W0) ≤ Ec,ex(t,W0) for all t ∈ [T1, T2]. Therefore, the result is obtained using

estimates (4-17) and (4-22). □

5. Pointwise estimates in the interior region

The goal of this section is to recover pointwise estimates for solutions W = (u, v)T to (1-5) in the interior
hyperbolic region H in

[2,s0]
under the a priori assumptions (2-5)–(2-7) and to propagate the a priori pointwise

estimate (2-7) on Z W0.
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5A. Pointwise estimates from Klainerman–Sobolev inequalities. A first subset of pointwise estimates
for W0 and W is immediately obtained from (2-5) and (2-6) via the following Sobolev inequality on
hyperboloids, whose proof can be found in [LeFloch and Ma 2018].

Lemma 5.1. Let W = W(t, x) be a sufficiently regular function in the cone C = {t > r}. For all (t, x)∈ C ,
let s =

√
t2 − r2 and B

(
x, 1

3 t
)

be the ball centered at x with radius 1
3 t . Then

|W(t, x)|2 ≤ Ct−3
∑
|γ |≤2

∫
B(x,t/3)

|Zγ W(
√

s2 + |ξ |2, ξ)|2 dξ,

where C is a positive universal constant and Z j = x j∂t + t∂ j , j = 1, 3.

We remind the reader that we proved uniform-in-time energy bounds (4-16) for the solution on exterior
truncated hyperboloids H ex

s as well as the exterior pointwise bound (4-10) on Z W0. We can then think
of the a priori energy bounds (2-5), (2-6) as being valid not only on H in

s for s ≥ 2 but on all (branches of)
hyperboloids contained in the upper half plane t ≥ 2. It is analogous for the pointwise bound (2-7), which
can be thought to hold true for every (t, x, y) such that t ≥ 2 and t2

− r2
≤ s2

0 . Therefore, the following
lemma provides us with pointwise estimates for the solution on the portion of the interior light cone below
the hyperboloid Hs0 , which we denote by H[2,s0],

H[2,s0] := {(t, x) : t ≥ 2 and t2
− r2

≤ s2
0} × S1.

Lemma 5.2. Let In,k denote the set of multi-indexes of type (n, k). Under the a priori energy bounds
(2-5) and (2-6) we have the following pointwise estimates in H[2,s0]:

|∂Z ≤3W0(t, x)| ≲ ϵt−1/2s−1, (5-1)

|∂̄Z ≤3W0(t, x)| ≲ ϵt−3/2, (5-2)∑
I3,k

∥Z γ W(t, x, · )∥L∞(S1) + ∥∂≤1
y Z γ W(t, x, · )∥L2(S1) ≲ ϵt−3/2sδk+2, k = 0, 3, (5-3)∑

|γ |=3

∥∂t xZ γ W(t, x, · )∥L2(S1) ≲ ϵt−1/2s−1+δ5, (5-4)

and ∑
I2,k

∥∂̄∂≤1
y Z γ W(t, x, · )∥L2(S1) ≲ ϵt−5/2sδk+3, k = 0, 2, (5-5)∑

I1,k

∥∂̄2∂≤1
y Z γ W(t, x, · )∥L2(S1) ≲ ϵt−7/2sδk+4, k = 0, 1, (5-6)

∥∂̄2∂t xZ W(t, x, · )∥L2(S1) ≲ ϵt−5/2s−1+δ5 . (5-7)
Moreover

sup
H[2,s0]

|W | ≲ ϵ. (5-8)

Proof. The estimates (5-1), (5-2) and (5-4) are immediate consequence of Lemma 5.1, the energy
assumptions (2-5), (2-6) and the fact that |[Z , (s/t)]W | ≲ |W | for any W. The same is for the estimate
of ∂yZ

γ W in (5-3), while the remaining norms of Z γ W there are obtained using also the Sobolev
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injection on S1 (for the L∞ norm) and the Poincaré inequality (for the L2 norm). The estimates on
the ∂̄ derivatives of W are deduced from (5-3) and (5-4) using the fact that ∂̄ = t−1 Z . Finally, if we set
W̃0(s, x)= W0(

√
s2 + r2, x), we see that

|W̃0(s, x)− W̃0(2, x)| ≤

∫ s

2
|∂τ W̃0(τ, x)| dτ =

∫ s

2

τ

t
|∂t W0(

√
τ 2 + x2, x)| dτ ≲ ϵ

and hence derive from the smallness of the initial data that

|W0(t, x)| ≲ |W̃0(s, x)− W̃0(2, x)| + |W̃0(2, x)| ≲ ϵ.

The combination of the above estimate with (5-3) yields (5-8). □

5B. Improved pointwise estimates on the nonzero modes. The bounds for the nonzero mode W of the
solution obtained in Lemma 5.2 via Sobolev embeddings are affected by the small growth in s of the
energies and are not sharp. However, they can be improved if one studies more closely the equation
satisfied by W. Enhancing such bounds and particularly (5-3) will be fundamental to propagate the a priori
pointwise bound (2-7) later in Proposition 5.6. We make use of the following result, which is motivated
by [Klainerman 1985] and whose proof is an adaptation of a similar estimate for Klein–Gordon equations
initially proved in [LeFloch and Ma 2016], later revisited in [Dong and Wyatt 2020a] in the case of
Klein–Gordon equations with variable mass.

Proposition 5.3. Assume W is a solution of the equation

□x,y W + u1y W = F, (t, x, y) ∈ R1+3
× S1, (5-9)

such that
∫

S1 W dy =0. For every fixed (t, x) in the region C ={t> r}, let s =
√

t2 − r2 and Yt x , At x , Bt x :

R+
\ {0} → R+ be the functions defined as

Y 2
t x(λ): =

∫
S1
λ
∣∣ 3

2 Wλ + (S W)λ
∣∣2

+ λ3(1 + uλ)|∂y Wλ|
2 dy, (5-10)

At x(λ): = sup
S1

1
2λ

|(S u)λ| + sup
S1

|∂yuλ|, (5-11)

B2
t x(λ)=

∫
S1
λ−1

|(RW)λ|
2 dy, (5-12)

where fλ(t, x, y)= f (λt/s, λr/s, y) and

RW(t, x, y)= s2∂̄ i ∂̄i W + x i x j ∂̄i ∂̄ j W +
3
4 W + 3x i ∂̄i W − s2 F.

Then W satisfies the following inequality in the hyperbolic region H[2,∞):

s3/2(∥W∥L2(S1) + ∥∂y W∥L2(S1))+ s1/2
∥S W∥L2(S1) ≲

(
Yt x(2)+

∫ s

2
Bt x(λ) dλ

)
e
∫ s

2 At x (λ) dλ.

Proof. For every fixed (t, x, y) ∈ H[2,∞) we define ωt xy(λ) := λ3/2W(λt/s, λx/s, y) to be the evaluation
of W on the hyperboloid Hλ dilated by factor λ3/2. We have

ω̇t xy(λ)= λ1/2( 3
2 Wλ + (S W)λ

)
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and

ω̈t xy(λ)= λ−1/2(PW)λ,

where

PW =
3
4 W + 3(t∂t W + x i∂i W)+ (t2∂2

t W + 2t x i∂i∂t W + x i x j∂i∂ j W).

Using (5-9) we derive that ωt xy satisfies the equation

ω̈t xy − (1 + uλ)∂2
yωt xy = −λ3/2 Fλ + λ−1/2(s2∂̄ i ∂̄i W + x i x j ∂̄i ∂̄ j W +

3
4 W + 3x i ∂̄i W

)
λ

= λ−1/2(RW)λ.

We drop the lower indexes in ωt xy(λ) in order to have lighter notation and simply denote it by ω(λ) in
what follows. We multiply the above equation by ∂λω and integrate over S1:∫

S1
∂λω(∂

2
λω− (1 + uλ)∂2

yω) dy

=
d

dλ

(
1
2

∫
S1

|∂λω|
2 dy

)
+

∫
S1
(1 + uλ)∂yω ∂y∂λω dy +

∫
S1
∂λω ∂yuλ ∂yω dy

=
d

dλ

(
1
2

∫
S1

|∂λω|
2
+ (1 + uλ)|∂yω|

2 dy
)

−
1
2

∫
S1
∂λuλ |∂yω|

2 dy +

∫
S1
∂λω ∂yuλ ∂yω dy.

We obtain
d

dλ
Y 2

t x(λ)≲ At x(λ)Y 2
t x(λ)+ Bt x(λ)Yt x(λ),

with At x , Bt x , Yt x as in the statement and from the Gronwall lemma

Yt x(s)≲
(

Yt x(2)+
∫ s

2
Bt x(λ) dλ

)
e
∫ s

2 At x (λ) dλ.

Finally, from the definition of Yt x , the Poincaré inequality and the fact that s ≥ 2 we get

s3/2(∥W∥L2(S1) + ∥∂y W∥L2(S1))+ s1/2
∥S W∥L2(S1) ≲ Yt x(s). □

Proposition 5.4. Under the a priori assumptions (2-5)–(2-7) we have

sup
H[2,s0]

t3/2(∥∂ j W∥L2(S1) + ∥∂y∂
j W∥L2(S1))+ sup

H[2,s0]

t3/2s−1
∥S ∂ j W∥L2(S1) ≲ ϵ, j = 0, 1, (5-13)

sup
H[2,s0]

t3/2(∥ZW∥L2(S1) + ∥∂y ZW∥L2(S1))+ sup
H[2,s0]

t3/2s−1
∥S ZW∥L2(S1) ≲ ϵsσ , (5-14)

and

sup
H[2,s0]

st1/2(∥∂2W∥L2(S1) + ∥∂y∂
2W∥L2(S1))+ sup

H[2,s0]

t1/2
∥S ∂2W∥L2(S1) ≲ ϵ, (5-15)

sup
H[2,s0]

st1/2(∥∂ZW∥L2(S1) + ∥∂y∂ZW∥L2(S1))+ t1/2
∥S ∂ZW∥L2(S1) ≲ ϵsσ . (5-16)

Proof. For any fixed j = 0, 2 and k = 0, 1 we compare the equation satisfied by the differentiated functions
∂ j W and ∂k ZW respectively with (5-9) and apply the result of Proposition 5.3. A simple computation
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shows that
□x,y∂

j W + u∂2
y∂

j W = F j
1 , j = 0, 2,

□x,y∂
k ZW + u∂2

y∂
k ZW = Fk

2 , k = 0, 1,
with source terms given by

F0
1 = N(W,W )−

∫
S1

N(W,W )
dy
2π

+

∫
S1
∂yu · ∂yW

dy
2π
,

F j
1 = ∂ j F0

1 −

∑
1≤h≤ j

∂hu · ∂2
y∂

j−hW, j = 1, 2,

and
F0

2 = Z F0
1 − Zu · ∂2

y W,

F1
2 = ∂Z F0

1 − ∂Zu · ∂2
y W − ∂u · ∂2

y ZW − Zu · ∂2
y∂W.

From Proposition 5.3 we have

s3/2(∥W∥L2(S1) + ∥∂y W∥L2(S1))+ s1/2
∥S W∥L2(S1) ≲

(
Yt x(2)+

∫ s

2
Bt x(λ) dλ

)
e
∫ s

2 At x (λ) dλ,

with W ={∂ j W, ∂k ZW : j =0, 2, k =0, 1} and corresponding source term F ={F j
1 , Fk

2 : j =0, 2, k =0, 1}.
In order to obtain the bounds in the statement we need to estimate the quantities Yt x(2), At x(λ) and
Bt x(λ) defined in (5-10), (5-11), (5-12) for all the different values of W and F.

(1) The At x(λ) term: This is the same for all values of W. Here we take the decomposition u = u0 + u
and rewrite the scaling vector field as

S = (t − r)∂t + (r − t)∂r + (t∂r + r∂t). (5-17)

Using the pointwise bounds (5-1)–(5-3) as well as the assumption (2-7) and the fact that s/t ≤ 1 in the
interior of the light cone, we derive that

At x(λ)≲ sup
y∈S1

s
t+r

|(∂u)λ| + λ−1
|(Zu)λ| + |(∂yu)λ| ≲ ϵλ−3/2+δ2

and consequently ∫ s

1
At x(λ)dλ≲ ϵ. (5-18)

(2) The Yt x(2) term: The functions appearing here are evaluated on the hyperboloid H2. From the bound
(5-3) on W, the smallness of u given by (5-8) and the decomposition (5-17) it follows that for all values of
W under consideration

|Yt x(2)| ≲ ∥W2∥L2(S1) + ∥(S W)2∥L2(S1) + ∥1 + u2∥L∞(S1)∥(∂y W)2∥L2(S1) ≲ ϵ (s/t)3/2. (5-19)

(3) The Bt x(λ) term: These are the only ones for which we need to distinguish between the different
values of W and hence of F. Let us remark here that if G is any linear combination of the products

∂Z γ1 W · ∂Z γ2W,
∫

S1
∂Z γ1W · ∂Z γ2W dy, |γ1| + |γ2| ≤ 2,

∂Z γ1u0 · ∂2
yZ γ2W, |γ1| + |γ2| ≤ 1,

Z γ1u · ∂2
yZ γ2W, |γ1| + |γ2| ≤ 2, |γ2|< 2,

(5-20)
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then from (5-1) and (5-3)

∥λ−1/2(s2G)λ∥L2(S1) = λ3/2
∥Gλ∥L2(S1) ≲ ϵ

2λ−3/2+2δ4(s/t)2. (5-21)

(a) The case W = Z ≤1W: From the pointwise bounds (5-3), (5-5) and (5-6) we immediately obtain the
estimate∥∥λ−1/2(s2∂̄ i ∂̄i W + x i x j ∂̄i ∂̄ j W +

3
4 W + 3x i ∂̄i W

)
λ

∥∥
L2(S1)

≲ λ3/2(1 + r2/s2)∥(∂̄2W)λ∥L2(S1) + λ
1/2rs−1

∥(∂̄W)λ∥L2(S1) + λ
−1/2

∥Wλ∥L2(S1)

≲ ϵλ−2+δ5(s/t)3/2. (5-22)

In the case where W = ∂≤1W, the corresponding F satisfies (5-21), yielding∫ s

2
Bt x(λ) dλ≲ ϵ(s/t)3/2, (5-23)

and the combination of (5-18), (5-19), (5-23) gives (5-13). In the case where W = ZW, the only quadratic
term in F = Z F0

1 that is not in (5-20) is Zu0 · ∂2
y W. For this we apply the a priori bound (2-7) and the

enhanced bound (5-13) and get

∥Zu0 · ∂2
y W∥L2(S1) ≲ ϵ

2t−5/2sσ .

Therefore

λ3/2
∥(F0

2 )λ∥L2(S1) ≲ ϵ
2λ−3/2+2δ4(s/t)2 + ϵ2λ−1+σ (s/t)5/2 ≲ ϵ2λ−1+σ (s/t)2,

which combined with (5-22) implies ∫ s

2
Bt x(λ) dλ≲ ϵsσ (s/t)3/2.

The above estimate, together with (5-18) and (5-19), gives (5-14).

(b) The case W = {∂2W, ∂ZW}: Here the bounds (5-3), (5-5) and (5-7) give∥∥λ−1/2(s2∂̄ i ∂̄i W +
3
4 W + 3x i ∂̄i W)λ

∥∥
L2(S1)

≲ λ3/2
∥(∂̄2W)λ∥L2(S1) + λ

1/2rs−1
∥(∂̄W)λ∥L2(S1) + λ

−1/2
∥Wλ∥L2(S1)

≲ ϵλ−2+δ5(s/t)3/2 (5-24)

and

∥λ−1/2(x i x j ∂̄i ∂̄ j W)λ∥L2(S1) ≲ ϵλ
−2+δ5(s/t)1/2. (5-25)

In the case W = ∂2W, the corresponding F = F2
1 satisfies (5-21), which summed up with the above

estimates yields ∫ s

2
Bt x(λ) dλ≲ ϵ(s/t)1/2

and therefore (5-15). In the case W = ∂ZW, the only term in F = F1
2 that is not in (5-20) is Zu0 · ∂2

y∂W.
For this we apply the a priori bound (2-7) and the enhanced bound (5-15)

∥Zu0 · ∂2
y∂W∥L2(S1) ≤ ∥Zu0∥L∞(S1)∥∂

2
y∂W∥L2(S1) ≲ ϵ

2t−3/2s−1+σ .
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Therefore

λ3/2
∥(F1

2 )λ∥L2(S1) ≲ ϵ
2λ−3/2+2δ4(s/t)2 + ϵ2λ−1+σ (s/t)3/2 ≲ ϵ2λ−1+σ (s/t)3/2,

which combined with (5-24), (5-25) implies∫ s

2
Bt xy(λ) dλ≲ ϵsσ (s/t)1/2. □

5C. The propagation of the a priori pointwise bound. In order to propagate the a priori bound (2-7) we
use L∞-L∞-type estimates. For this we give a closer look to the wave equation satisfied by Z W0 and use
the enhanced pointwise bounds recovered in the previous subsection to estimate the nonlinear terms. We
will make use of the following lemma, due to [Alinhac 2006].

Lemma 5.5. Let W0 be the solution to □t x W0 = F0 with zero initial data and suppose that F0 is spatially
compactly supported satisfying the pointwise bound

|F0(t, x)| ≤ Ct−2−ν(t − |x |)−1+µ

for some fixed µ, ν > 0 and some positive constant C. Then

|W0(t, x)| ≲
C
µν
(t − |x |)µ−ν t−1.

Proposition 5.6. There exists a constant B > 0 sufficiently large and ϵ0 sufficiently small such that for any
0< ϵ < ϵ0 if W = (u, v)T is solution of the Cauchy problem (1-5)–(1-6) and satisfies the a priori bounds
(2-5)–(2-7) in the interior region H[2,s0], together with the global energy bounds (2-1) in the exterior
region Dex, then in H[2,s0] it actually satisfies the enhanced pointwise bound

|Z W0(t, x)| ≤ Bϵt−1sσ .

Proof. We consider a cut-off function χ ∈ C∞

0 (R) such that χ(z)= 1 for |z| ≤ 1
2 and χ(z)= 0 for |z|> 1,

and decompose W0 into the sum W a
0 + W b

0 , where W a
0 and W b

0 solve to the Cauchy problems

□x W a
0 = χ

((
r +

1
2

)
/t

)
F0, (W a

0 , ∂t W a
0 )|t=2 = (0, 0),

□x W b
0 =

(
1 −χ

((
r +

1
2

)
/t

))
F0, (W b

0 , ∂t W b
0 )|t=2 = (W0, ∂t W0)|t=2,

with F0 given by

F0 =

∫
S1

N(W,W )
dy
2π

+

∫
S1
∂yu · ∂yW

dy
2π
.

The scope of such decomposition is to estimate Z W a
0 and Z W b

0 separately. We aim to apply Lemma 5.5
to Z W a

0 , since it is solution to a wave equation with zero data and source term supported in the interior
of the cone

{
t = r +

1
2

}
,

□x Z W a
0 = χ

((
r +

1
2

)
/t

)
Z F0 −

[
Z , χ

((
r +

1
2

)
/t

)]
F0, (Z W a

0 , ∂t Z W a
0 )|t=2 = (0, 0),

and Klainerman–Sobolev embeddings to estimate Z W b
0 .
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We start by estimating F0 and Z F0 on the support of χ
((

r +
1
2

)
/t

)
, after observing the uniform

boundedness of the commutator term
[
Z , χ

((
r +

1
2

)
/t

)]
and the fact that F0 does not contain mixed

interactions, i.e.,

F0 = N(W0,W0)+

∫
S1

N(W, W)
dy
2π

+

∫
S1
∂yu · ∂yW

dy
2π
.

On the one hand, we use the null structure representation (1-15) of N for the quadratic interactions
W0 × W0 and apply (5-1), (5-2) to deduce that

|Z≤1 N(W0,W0)| ≲ |∂̄Z≤1W0||∂W0| + |∂Z≤1W0||∂̄W0| +
s2

t2 |∂Z≤1W0||∂W0| ≲ ϵ
2t−2s−1.

On the other hand, from the improved bounds (5-13), (5-16) we get∫
S1

|Z≤1 N(W, W)| dy +

∫
S1

|Z≤1(∂yu · ∂yW)| dy ≲ ∥∂Z≤1W∥L2(S1)∥∂W∥L2(S1) ≲ ϵ
2t−2s−1+σ .

Therefore, on the support of χ(r/t) and for t ≥ 2

|F0(t, x)| ≲ ϵ2t−5/2
⟨t − r⟩

−1/2 and |Z F0(t, x)| ≲ ϵ2t−5/2+σ/2
⟨t − r⟩

−1/2+σ/2.

Lemma 5.5 yields then
|Z W a

0 (t, x)| ≤ Cϵ2t−1(t − r)σ

for some constant C = C(A, B) that depends quadratically on A and B.
The remaining term Z W b

0 to analyze is estimated via the Klainerman–Sobolev inequality of Lemma 5.1.
Observe that for points (t, x) ∈ H in

s close to the boundary of H in
s , the ball B

(
x, 1

3 t
)

also intersects the
exterior region and we get

t1/2s|Z W b
0 (t, x)| ≲ Ec,in

2 (s,W b
0 )

1/2
+

∑
|γ |≤2

∥(s/t)ZZ γW b
0 ∥L2

x (Hs∩[T s
1 ,T

s
2 ]),

where s2
= t2

− r2, T s
1 =

1
2(s

2
+ 1) is the time the hyperboloid Hs intersects the cone t = r + 1 and

T s
2 =

√
s2 + |ξ |2 with |ξ − x | =

1
3 t (the second term in the above right-hand side should be omitted when

T s
2 ≤ T s

1 ). The support of the source term in the equation satisfied by W b
0 is contained in the exterior

region and hence it is that in the equation of Z γW b
0 for any |γ | ≤ 2. From Proposition 3.5 applied to

W0 = Z γW b
0 with |γ | ≤ 2, the inequality (4-17) (which is valid also for W b

0 ) with T0 =
1
2(s

2
+ 1), and

the smallness assumption on the initial data, we deduce that

Ec,in
2 (s,W b

0 )≤ Ec,in
2 (2,W b

0 )+ C2
0ϵ

2 ln s ≲ C2
0ϵ

2 ln s.

Moreover, from Lemma 4.9 with T j = T s
j for j = 1, 2 and the observation that ln T s

2 ≲ ln s, we also
derive that ∑

|γ |≤2

∥(s/t)ZZ γW b
0 ∥L2

x (Hs∩[T s
1 ,T

s
2 ]) ≲ C2

0ϵ
2 ln s.

This gives
|Z W b

0 (t, x)| ≤ C̃C0ϵt−1/2s−1+σ
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for a universal constant C̃ and therefore

|Z W0(t, x)| ≤ |Z W a
0 (t, x)| + |Z W b

0 (t, x)| ≤ C̃C0ϵt−1/2s−1+σ
+ Cϵ2t−1(t − r)σ ≤ Bϵt−1sσ

if we choose B sufficiently large so that B ≥ 2C̃C0 and ϵ0 sufficiently small so that 2Cϵ ≤ B. □

6. Energy estimates in the interior region

The goal of this section is to propagate the interior energy bounds (2-5) and (2-6) on the two components
W0 and W of the solution W to the Cauchy problem (1-5)–(1-6). We remind the reader that for any
multi-index γ the differentiated function W γ

= (uγ , vγ ) is a solution to (4-11) with source term (4-12),
while its zero-mode W γ

0 solves the inhomogeneous wave equation (4-18) with source term (4-19).
We first start by recovering an energy bound for the higher-order conformal energies of W0. Such a

bound follows from (2-5) and (2-6) as well as from the pointwise estimates obtained in Section 5. It will
be necessary for the propagation of (2-6) and the computations that lead to it will be useful in the proof
of Proposition 6.2.

Proposition 6.1. Assume the solution W = (u, v)T to (1-5)–(1-6) satisfies the a priori estimates (2-5)–(2-7)
in the region H[2,s0] as well as the global exterior energy bounds (2-1) in the exterior region Dex. Then

sup
[2,s]

Ec,in
k (s,W0)≤ Cϵs1+2µk , s ∈ [2, s0], k = 0, 4, (6-1)

where µk = δk if k ≤ 3 and µ4 = δ2 + δ4.

Proof. We consider here only multi-indices γ of type (k, k), i.e., γ = (0, β) with |β| = k and Z γ
= Zβ,

and apply Proposition 3.5 with W0 = W γ

0 and F0 = Fγ0 . We derive

sup
τ∈[2,s]

Ec,in(τ,W γ

0 )≤ Ec,in(2,W γ

0 )+

∫ s

2
∥τ Fγ

0 ∥L2(H in
τ )

Ec,in(τ,W γ

0 )
1/2 dτ

+

∫
C[2,s]

|(t+r)(∂t W
γ

0 +∂r W γ

0 )+2W γ

0 |
2
+(t−r)2(|∇W γ

0 |
2
−(∂r W γ

0 )
2)d S. (6-2)

The integral over the boundary C[2,s] equals the integral in the left-hand side of (4-17) when T0 =
1
2(s

2
+1);

hence ∫
C[2,s]

|(t + r)(∂t W
γ

0 + ∂r W γ

0 )+ 2W γ

0 |
2
+ (t − r)2(|∇W γ

0 |
2
− (∂r W γ

0 )
2) d S ≲ ϵ2 ln s. (6-3)

The different contributions to the inhomogeneous term Fγ0 , which we remind are only pure interactions
W0 × W0 and W × W (see (1-9)), are estimated separately below:

(1) The pure nonzero modes interactions: After a Cauchy–Schwarz inequality in the y-variable, we will
place the factor whose index has length smaller than 1

2 k in L2
y L∞

x and the remaining one in L2
xy . We use

the pointwise bound (5-3) in the case where |γ1| = |γ2| = 2 (which appears only if k = 4)

∥∂Wγ1 · ∂Wγ2∥L1
y L2

t x (H
in
τ )

≲ ϵτ−3/2+δ4 E in
2 (τ,W )1/2,
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the enhanced pointwise bound (5-13) whenever one of the two multi-indexes has length 0

∥∂W · ∂Wγ2∥L1
y L2

t x (H
in
τ )

≲ ϵτ−3/2 E in
k (τ,W )1/2,

and (5-16) otherwise
∥∂W · ∂Wγ2∥L1

y L2
t x (H

in
τ )

≲ ϵτ−3/2+σ E in
k−1(τ,W )1/2.

We get∑
|γ1|+|γ2|≤k

∥∂Wγ1 ∂Wγ2∥L1
y L2

x (H
in
τ )

≲ ϵτ−3/2
[E in

k (τ,W )1/2 + τ σ E in
k−1(τ,W )1/2 + ν4τ

δ4 E in
2 (τ,W )1/2],

where ν4 = 1 if k = 4 and 0 otherwise.

(2) The pure zero modes interactions: We use the representation formula (1-15)

N(W γ1
0 ,W γ2

0 )= ∂̄W γ1
0 · ∂W γ2

0 + ∂W γ1
0 · ∂̄W γ2

0 +
t−r

t
∂W γ1

0 · ∂W γ2
0

and estimate all terms in the above right-hand side using (5-1) and (5-2) as follows:

∥N(W γ1
0 ,W γ2

0 )∥L2
x (H

in
τ )

≲ ∥(t/τ)∂̄Z ≤3W0∥L∞
x (H

in
τ )

∥(τ/t)∂Z ≤k W0∥L2
x (H

in
τ )

+ ∥∂̄Z ≤k W0∥L2
x (H

in
τ )

∥∂Z ≤3W0∥L∞
x (H

in
τ )

≲ ϵτ−3/2 E in
k (τ,W )1/2.

We combine the estimates in step (1) and (2) with the a priori energy bounds (2-5), (2-6) and choose
σ, δk−1 small so that σ + δk−1 ≤ δk to get

∥Fγ0 ∥L2
x (H

in
τ )

≲ ϵ2τ−3/2+µk , with µk =

{
δk if k ≤ 3,
δ4 + δ2 if k = 4.

(6-4)

We finally plug (6-3) and (6-4) into (6-2) and use the smallness assumptions on the initial data to derive

sup
[2,s]

Ec,in
k (τ,W0)≲ Ec,in

k (2,W0)+ ϵ
2s2Cϵ ln s +

∫ s

2
ϵ2τ−1/2+µk Ec,in

k (τ,W0)
1/2 dτ

≲ ϵ2s1+2µk + ϵ2 sup
[2,s]

Ec,in
k (τ,W0)

and obtain the result of the proposition by choosing ϵ sufficiently small. □

As a result of the exterior bound (4-9) and the combination of Lemma 5.1 with the conformal energy
bound (6-1) and Lemma 4.9 with T1 =

1
2(s

2
+ 1) and T2 =

√
s2 + |y|2 for |y − x | =

1
3 t , we have the

following additional pointwise bound for the Z derivatives of W0 in the whole region H[2,s0]:

|Z Z j W0(t, x)| ≲ ϵt−1/2s−1/2+µ j+2 for j = 0, 2, where µk =

{
δk if k ≤ 3,
δ4 + δ2 if k = 4.

(6-5)

We now have all the ingredients to propagate the a priori energy bounds (2-5) and (2-6).

Proposition 6.2. There exists a constant A > 0 sufficiently large, some small parameters σ ≪ δk ≪ δk+1

for k = 1, 4 and ϵ0 > 0 sufficiently small such that, if for any 0< ϵ < ϵ0 the solution W = (u, v)T to the
Cauchy problem (1-5)–(1-6) satisfies the a priori bounds (2-5)–(2-7) in the interior region H in

[2,s0]
and the
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global exterior energy bounds (2-1) in the exterior region Dex, then it also satisfies the enhanced energy
bound

E in
5 (s,W0)≤ A2ϵ2, s ∈ [2, s0]. (6-6)

Proof. For any |γ | ≤ 5, equation (4-18) satisfied by W γ

0 has the same structure as the inhomogeneous
wave equation (3-15); therefore Proposition 3.4 with W0 = W γ

0 and F0 = Fγ0 implies

E in(s,W γ

0 )≲ E in(2,W γ

0 )+

∫
C[2,s]

|T W γ

0 |
2 d S +

∫ s

2
∥Fγ0 ∥L2

x (H
in
τ )

E in(τ,W γ

0 )
1/2 dτ

for all s ∈ [2, s0]. The implicit constant in the above right-hand side is independent of s0.
The fact that the integral over the boundary C[2,s] is finite and small is a consequence of (4-16) and an

estimate for the source term Fγ0 when |γ | ≤ 4 has already been obtained in (6-4). When |γ | = 5 we simply
use the estimate (5-3) on the one hand, and (5-1), (5-2) and the null structure on the other hand, to deduce∑

|γ1|+|γ2|≤5

∥∂Wγ1 · ∂Wγ2∥L1
y L2

x (H
in
τ )

≲ ϵτ−3/2+δ4 E in
5 (t,W )1/2,

∑
|γ1|+|γ2|≤5

∥N(W γ1
0 ,W γ2

0 )∥L1
y L2

x (H
in
τ )

≲ ϵτ−3/2 E in
5 (s,W )1/2

and therefore get ∑
|γ |≤5

∥Fγ0 ∥L2
x (H

in
τ )

≲ ϵτ−3/2+δ4 E in
5 (τ,W )1/2. (6-7)

From the a priori energy bound (2-6) and the exterior energy bound (4-15) we obtain that, for some fixed
K > 1 and some universal constant C > 0,

E in
5 (s,W0)≤ E in

5 (2,W0)+
C2

0ϵ
2

K
+

∫ s

2
A2Cϵ3τ−3/2+δ4+δ5 dτ

≤ E in
5 (2,W0)+

C2
0ϵ

2

K
+ A2Cϵ3.

The desired improved energy bound then follows choosing K = 3, ϵ0 small such that 3Cϵ2
0 < 1 and

A ≥ C0 sufficiently large so that

E in
5 (2,W0)≤

A2ϵ2
0

3
. □

Proposition 6.3. There exists a constant A > 0 sufficiently large, some small parameters σ ≪ δk ≪ δk+1

for k = 1, 4 and ϵ0 > 0 sufficiently small such that, if for any 0 < ϵ < ϵ0 the solution W = (u, v)T to
the Cauchy problem (1-5)–(1-6) satisfies the a priori bounds (2-5)–(2-7) in the hyperbolic region H in

[2,s0]

and the global exterior energy bounds (2-1) in the exterior region Dex, then it also satisfies the enhanced
energy bound

E in
5,k(s, W)≤ A2ϵ2 s2δk , s ∈ [2, s0]. (6-8)
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Proof. We start by considering a multi-index γ of type (n, k) with k ≤ n ≤ 5 and compare the equation
satisfied by Wγ = (uγ , vγ )T with the linear inhomogeneous equation (3-1)

□x,yWγ + u ∂2
y Wγ = Fγ − Fγ0 , (t, x, y) ∈ R1+3

× S1,

so applying Proposition 3.3 with W = Wγ and F = Fγ − Fγ0 we derive the inequality

E in(s, Wγ )≲ E in(2, Wγ )+
∫∫

C[2,s]

|T Wγ |2 +|∂yWγ |2 d6s +

∫ s

2
∥Fγ − Fγ0 ∥L2

xy(H
in
τ )

E in(τ, Wγ )1/2 dτ. (6-9)

The integral over the boundary C[2,s] is finite and small as a consequence of the exterior energy estimate
(4-15). The pure zero-mode interactions with null structure and the pure nonzero modes interactions have
been already examined; see estimate (6-7). The contributions to the source term Fγ − Fγ0 that have not
been estimated yet are the following types of quadratic terms:

∂W γ1
0 · ∂Wγ2 for |γ1| + |γ2| ≤ |γ |,

uγ1
0 · ∂2

y W γ2 for |γ1| + |γ2| = |γ |, |γ2|< |γ | and γ1 = (0, β1).

From the pointwise bounds (5-1) and (5-3) we immediately deduce∑
|γ1|+|γ2|≤|γ |

∥∂W γ1
0 · ∂Wγ2∥L2

xy(H
in
τ )

≲ C0ϵτ
−3/2+δ5 E in

5 (τ,W )1/2.

The products uγ1
0 ·∂2

y W γ2 with γ1 = (0, β1) and such that Z γ1 = Zβ1 is a pure product of Klainerman vector
fields are estimated separately depending on the values of γ1 and γ2. Let k1 := |γ1|. Then k1 + |γ2| = n
and k1 ≤ k and we distinguish the following cases:

• When k1 = n and |γ2| = 0 we have k = n and use the pointwise bound (5-13) and the conformal energy
bound (6-1) to derive

∥uγ1
0 · ∂2

y W∥L2
xy(H

in
τ )

≲ ∥(t/τ)∂2
y W∥L2

y L∞
x (H

in
τ )

Ec,in
n−1(τ,W0)

1/2 ≲ ϵ2τ−1+µk−1 .

• When k1 = n − 1 and |γ2| = 1 we have n − 1 ≤ k ≤ n and use (5-15), (5-16), (6-1)

∥uγ1
0 · ∂2

y Wγ2∥L2
xy(H

in
τ )

≲ ∥(t/τ)∂2
y Wγ2∥L2

y L∞
x (H

in
τ )

Ec,in
n−2(τ,W0)

1/2 ≲ ϵ2τ−1+µk−1+σ .

• When k1 = n − 2 and |γ2| = 2 we have n − 1 ≤ k ≤ n. This case only appears when 3 ≤ n ≤ 5. If
Z γ2 = {∂2, ∂Z} or if Z γ2 = ∂Z and n = 4, 5 we apply (5-3) and (6-1):

∥uγ1
0 · ∂2

y Wγ2∥L2
xy(H

in
τ )

≲ ∥(t/τ)∂2
y Wγ2∥L2

y L∞
x (H

in
τ )

Ec,in
n−3(τ,W0)

1/2 ≲ ϵ2τ−1+µk−2+δ3,

while if Z γ2 = ∂Z and n = 3 (in which case k = 2) we use (2-6) and (2-7):

∥uγ1
0 · ∂2

y Wγ2∥L2
xy(H

in
τ )

≲ ∥Zu0∥L∞(H in
τ )

E in
3,1(τ,W )1/2 ≲ ϵ2τ−1+σ+δk−1 .

• When k1 = 1 and |γ2| = n − 1 for n = 4, 5, the a priori bounds (2-6) and (2-7) give

∥uγ1
0 · ∂2

y Wγ2∥L2
xy(H

in
τ )

≲ ∥Zu0∥L∞(H in
τ )

E in
n,k−1(τ,W )1/2 ≲ ϵ2τ−1+σ+δk−1,
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and in the last case k1 = 2, |γ2| = 3 — which only appears when n = 5 — the bounds (2-6) and (6-5) yield

∥uγ1
0 · ∂2

y Wγ2∥L2
xy(H

in
τ )

≲ ∥Z2u0∥L∞(H in
τ )

E in
4,k−2(τ,W )1/2 ≲ ϵ2τ−1+2δk−2 .

Choosing appropriately σ ≪ δk ≪ δk+1 for k = 1, 4 so that δk+1 is bigger than some linear combination
of σ and δ j with j ≤ k, we then obtain

∥uγ1
0 · ∂2

y Wγ2∥L2
xy(H

in
τ )

≲ ϵ2τ−1+δk ,

with an implicit constant that depends on A and B. The same bound holds then true for Fγ − Fγ0 so
plugging it into (6-9) together with the exterior energy estimate (4-15), and the a priori energy bounds
(2-6), gives us

E in
5,k(s, W)≤ C E in

5,k(2, W)+
CC2

0ϵ
2

2
+

∫ s

2
A2Cϵ3τ−1+2δk dτ.

The end of the proof follows finally by choosing appropriately the constants A and ϵ0. □
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EXISTENCE OF RESONANCES
FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE

DAVID BORTHWICK AND YIRAN WANG

We prove existence results and lower bounds for the resonances of Schrödinger operators associated to
smooth, compactly support potentials on hyperbolic space. The results are derived from a combination of
heat and wave trace expansions and asymptotics of the scattering phase.

1. Introduction

This article is devoted to establishing lower bounds on the resonance count for Schrödinger operators
on the hyperbolic space Hn+1. Although such results are well known in Euclidean scattering theory,
the literature for Schrödinger operators on hyperbolic space is comparatively sparse. Upper bounds on
resonances for such operators were considered in [Borthwick 2010; Borthwick and Crompton 2014]. Most
other recent papers dealing with Schrödinger operators on hyperbolic space have focused on applications
to nonlinear Schrödinger equations [Anker and Pierfelice 2009; Banica 2007; Banica et al. 2008; 2009;
Borthwick and Marzuola 2015; Ionescu et al. 2012; Ionescu and Staffilani 2009]. As far as we are aware,
the literature contains no general existence results for resonances in this context.

Let1 denote the positive Laplacian operator on Hn+1. For V ∈ C∞

0 (H
n+1,R), the Schrödinger operator

1+ V has continuous spectrum
[1

4 n2,∞
)
. The resolvent of 1+ V is defined for Re s > 1

2 n by

RV (s) := (1+ V − s(n − s))−1. (1-1)

As an operator on weighted L2 spaces, RV (s) admits a meromorphic extension to s ∈ C, with poles
of finite rank, as described in Section 2. The resonance set RV associated to V consists of the poles
of RV (s), repeated according to the multiplicity given by

mV (ζ ) := rank Resζ RV (s). (1-2)

There are no eigenvalues embedded in the continuous spectrum, and no resonances on the line Re s =
1
2 n

except possibly at 1
2 n. For a proof, see, for example, [Borthwick and Marzuola 2015, Theorem 1]. The

discrete spectrum of 1+ V is therefore finite and lies below 1
4 n2. An eigenvalue λ corresponds to a

resonance ζ ∈
( 1

2 n, n
)

such that λ= ζ(n − ζ ).
The resonance counting function,

NV (r) := #
{
ζ ∈ RV :

∣∣ζ −
1
2 n

∣∣ ≤ r
}
, (1-3)
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satisfies a polynomial bound as r → ∞:

NV (r)= O(rn+1). (1-4)

This estimate is covered by the more general result of [Borthwick 2008, Theorem 1.1], but with Hn+1

as the background metric one could also give a simpler proof following the approach that Guillopé and
Zworski [1995] used for n = 1. A sharp constant for the bound (1-4), depending on the support of the
potential, was obtained in [Borthwick 2010]. The corresponding lower bound was shown to hold in a
generic sense in [Borthwick and Crompton 2014], but the existence question was not resolved.

The existence problem for resonances looks quite different in even and odd dimensions. In even
dimensions, R0 contains resonances at negative integers, with multiplicities such that the polynomial
bound (1-4) is already saturated for V = 0. Therefore our goal in even dimensions is to distinguish RV

from R0. On the other hand, R0 is empty for odd dimensional hyperbolic space. In that case we seek
lower bounds on RV itself.

In the present paper, we will prove the following:

Theorem 1.1. Let RV denote the set of resonances of 1+ V for V ∈ C∞

0 (H
n+1,R), with NV (r) the

corresponding counting function.

(1) If the dimension is even or equal to 3, then RV = R0 only if V = 0.

(2) For even dimension ≥ 6, if V ̸= 0 then RV and R0 differ by infinitely many points. This conclusion
holds also if

∫
V dg ≥ 0 for dim = 2, and if

∫
V dg ̸= 0 for dim = 4.

(3) In all odd dimensions, if RV is not empty then the resonance set is infinite and NV (r) ̸= O(r).

In even dimensions, we also show that the resonance set determines the scattering phase and wave
trace completely, and in particular fixes all of the wave invariants. See Section 9 for the full set of inverse
scattering results.

Theorem 1.1 is derived from the asymptotic expansions of the scattering phase and heat and wave
traces. In the context of potential scattering in hyperbolic space, these expansions do not seem to have
not been studied in the literature, so we give a full account of their adaptation to this setting. The explicit
formulas for the wave invariants are stated in Proposition 6.4.

The organization of the paper is as follows. After reviewing some facts on the resolvent and its kernel
in Section 2, we use the spectral resolution to define distributional traces in Section 3. In Section 4 we
establish the Birman–Krein formula relating these traces to the scattering phase. The Poisson formula
expressing the wave trace as a sum over resonances is proven in Section 5. In Section 6 the asymptotic
expansion of the wave trace at t = 0 is established. The corresponding heat trace expansion is worked out
in Section 7, which is then used to study asymptotics of the scattering phase in Section 8. Finally, in
Section 9 these tools are applied to derive the existence results.

2. The resolvent

The resolvent of the free Laplacian on Hn+1 is traditionally written with spectral parameter s(n − s) as
in (1-1). Derived by Patterson [1989, Proposition 2.2], the resolvent kernel is given by the well-known



EXISTENCE OF RESONANCES FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE 2079

hypergeometric formula

R0(s; z, w)=
π−n/22−2s−10(s)

0
(
s −

1
2 n + 1

) cosh−2s( 1
2 d(z, w)

)
F

(
s, s −

1
2(n − 1), 2s − n + 1; cosh−2( 1

2 d(z, w)
))
,

where d(z, w) is the hyperbolic distance. Using hypergeometric identities [NIST 2010, §14.3(iii)], we
can rewrite this formula as

R0(s; z, w)= (2π)−(n+1)/2 0(s)
sinhµ d(z, w)

Qµ
ν (cosh d(z, w)), (2-1)

where ν := s −
1
2(n + 1), µ :=

1
2(n − 1), and Qµ

ν denotes the normalized Legendre function:

Qµ
ν (x) :=

e−iπµ

0(µ+ ν+ 1)
Qµ
ν (x).

(Under this convention Qµ
ν (x) is entire as a function of both indices.) The factor 0(s) in (2-1) has poles

at negative integers, but these yield resonances only for n + 1 even. In odd dimensions the poles are
canceled by zeroes of Qµ

ν .
Let (r, ω) ∈ [0,∞)× Sn denote geodesic polar coordinates on Hn+1. We will take

ρ :=
1

cosh r

as a boundary defining function for the radial compactification of Hn+1 into a ball. The hypergeometric
formula for Qµ

ν (x) [Erdélyi et al. 1953, §3.2(5)] yields an expansion of the resolvent kernel:

R0(s; z, w)= π−n/22−s−1 0(s)

0
(
s −

1
2 n + 1

) ∞∑
k=0

ak(s)
(cosh d(z, w))s+2k , (2-2)

with a0(s)= 1. In particular,

R0(s; z, w)= O(e−sd(z,w)) as d(z, w)→ ∞, (2-3)

which shows that R0(s) extends meromorphically to s ∈ C as a bounded operator ρN L2(Hn+1) →

ρ−N L2(Hn+1) for Re s >−N +
1
2 n.

For V ∈ C∞

0 (H
n+1,R), the resolvent RV (s) defined in (1-1) is related to R0(s) by the identity

R0(s)= RV (s)(1 + V R0(s)). (2-4)

The operator 1 + V R0(s) is invertible by Neumann series for Re s sufficiently large, and it follows
from (2-3) that the operator V R0(s) is compact on ρN L2(Hn+1) for Re s >−N +

1
2 n. Hence the analytic

Fredholm theorem yields a meromorphic inverse (1 + V R0(s))−1, with poles of finite rank, which is
bounded on ρN L2(Hn+1) for Re s > −N +

1
2 n. We thus obtain a meromorphic extension of RV (s) by

setting
RV (s)= R0(s)(1 + V R0(s))−1,

which is bounded as an operator ρN L2(Hn+1)→ ρ−N L2(Hn+1) for Re s >−N +
1
2 n.
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We can see from (2-2) that the free resolvent kernel R0(s; z, z′) is polyhomogeneous as a function
of ρ(z′) as ρ(z′)→ 0, with leading term of order ρ(z′)s. It follows from (2-4) that the kernel of RV (s) has
the same property. The Poisson kernel is defined as the leading coefficient in the expansion as ρ(z′)→ 0:

EV (s; z, ω′) := lim
r ′→∞

ρ(z′)−s RV (s; z, z′). (2-5)

Interpreting this function as an integral kernel, with respect to the standard sphere metric, defines the
Poisson operator

EV (s) : C∞(Sn)→ L2(Hn+1).

The Poisson operator maps boundary data to solutions of the generalized eigenfunction equation

(1+ V − s(n − s))u = 0.

By Stone’s formula, the continuous part of the spectral resolution of 1+ V is given by the restriction
of the operator RV (s)− RV (n − s) to the line Re s =

1
2 n. This is related to the Poisson operator by the

identity
RV (s)− RV (n − s)= (n − 2s)EV (s)EV (n − s)t (2-6)

as operators C∞

0 (H
n+1)→ L2(Hn+1), meromorphically for s ∈ C. The proof of (2-6) is essentially the

same as in the case n = 1 presented in [Borthwick 2016, Proposition 4.6].

3. Traces

Given V ∈ C∞

0 (H
n+1,R) and f ∈ S(R), the operator f (1+ V )− f (1) is of trace class. In fact, the map

f 7→ tr[ f (1+ V )− f (1)] (3-1)

defines a tempered distribution. For the proof, see [Dyatlov and Zworski 2019, Theorem 3.50], which
applies to the hyperbolic setting with only minor modifications.

The spectral theorem gives the representation

f (1+ V )= lim
ε→0

1
2π i

∫
∞

−∞

[(1+ V − λ− iε)−1
− (1+ V − λ+ iε)−1

] f (λ) dλ,

with the limit taken in the operator-norm topology. We can separate the contributions from the discrete
and continuous spectrum, and write the continuous part in terms of RV (s) by setting s(n − s)= λ± iε.
The result is

f (1+ V )= lim
ε→0

1
2π i

∫
∞

−∞

[
RV

(1
2

n − iξ + ε
)

− RV

(1
2

n + iξ + ε
)]

f
(1

4
n2

+ ξ 2
)
ξ dξ

+

d∑
j=1

f (λj )φj ⊗ φ̄j , (3-2)

where the λ1, . . . , λd are the eigenvalues of 1+ V , with corresponding normalized eigenvectors φj .
The self-adjointness of 1+ V implies an estimate

∥(1+ V − s(n − s))u∥ ≥ |Im s(n − s)|∥u∥
2.
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This shows that a pole of RV (s) at s =
1
2 n could have at most second-order. (This argument is analogous

to the Euclidean case; see [Dyatlov and Zworski 2019, Lemma 3.16].) A pole of order 2 can occur only
if 1

4 n2 is an eigenvalue, which is ruled out by [Bouclet 2013, Corollary 1.2]. Therefore RV (s) has at
most a first-order pole at 1

2 n. The integrand in (3-2) is thus continuous at ε = 0 in the operator topology
because a pole would be canceled by the extra factor of ξ . Taking the limit ε→ 0 gives

f (1+ V )=
1

2π i

∫
∞

−∞

[
RV

(1
2

n − iξ
)

− RV

(1
2

n + iξ
)]

f
(1

4
n2

+ ξ 2
)
ξ dξ +

d∑
j=1

f (λj )φj ⊗ φ̄j .

Let us define the integral kernel of the spectral resolution as

KV (ξ ; z, w) :=
ξ

2π i

[
RV

(1
2

n − iξ ; z, w
)

− RV

(1
2

n + iξ ; z, w
)]
. (3-3)

For V = 0 this kernel can be written explicitly using (2-1) and the Legendre connection formula [NIST
2010, §14.9(iii)]:

Qµ

−ν−1(x)

0(µ+ ν+ 1)
−

Qµ
ν (x)

0(µ− ν)
= cos(πν)P−µ

ν (x).

The result is
K0(ξ ; z, w) := cn(ξ)(sinh r)−µP−µ

−1/2+iξ (cosh r), (3-4)

where µ=
1
2(n − 1), r = d(z, w), and

cn(ξ) := (2π)−µξ sinh(πξ)0
( 1

2 n + iξ
)
0

( 1
2 n − iξ

)
.

The hypergeometric expansion [NIST 2010, (14.3.9)] of P−µ
ν (x) near x = 1 shows that K0(ξ ; z, w) is

smooth for all z, w ∈ Hn+1
× Hn+1.

For the Schrödinger operator case, we note that (2-4) yields the identity

RV (s)− RV (n − s)= (1 − RV (s)V )(R0(s)− R0(n − s))(1 − V RV (n − s)).

Since R0(s)− R0(n − s) has a smooth kernel for Re s =
1
2 n, V ∈ C∞

0 (H
n+1,R), and RV (s) is a pseudo-

differential operator of order −2, the identity implies that RV (s)− RV (n − s) also has a smooth kernel
for Re s =

1
2 n, s ̸=

1
2 n. The kernel KV (ξ ; · , · ) is thus continuous for ξ ∈ R and smooth as a function on

Hn+1
× Hn+1.

In [Borthwick and Marzuola 2015, Proposition 6.1], it was shown that Im RV
(1

2 n + iξ ; z, w
)

satisfies
a polynomial bound as a function of ξ ∈ R, uniformly in Hn+1

× Hn+1, provided there is no resonance
at s =

1
2 n. This restriction can be removed for the KV estimate because of the extra factor of ξ in (3-3),

since, as noted above, RV (s) has at most a first-order pole at s =
1
2 n. We can thus use the spectral

resolution formula to write the kernel of f (1+ V ) as

f (1+ V )(z, w)=

∫
∞

−∞

KV (ξ ; z, w) f
( 1

4 n2
+ ξ 2) dξ +

d∑
j=1

f (λj )φj (z)φ̄j (w). (3-5)

Since f (1+ V )− f (1) is trace-class and has a continuous kernel, the trace can be computed as an
integral over the kernel by Duflo’s theorem [1972, Theorem V.3.1.1]. This proves the following:
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Proposition 3.1. For V ∈ C∞

0 (H
n+1,R),

tr[ f (1+ V )− f (1)] =

∫
Hn+1

∫
∞

−∞

[KV (ξ ; z, z)− K0(ξ, z, z)] f
( 1

4 n2
+ ξ 2) dξ dg(z)+

d∑
j=1

f (λj ).

4. Birman–Krein formula

The Birman–Krein formula relates the spectral resolution of 1+ V to the scattering matrix. This formula
provides the crucial link between the traces discussed in Section 3 and the resonance set. The formula for
the hyperbolic case is analogous to the Euclidean version [Dyatlov and Zworski 2019, Theorem 3.51].

The scattering matrix associated to V is defined as follows. The Poisson operator maps a function
f ∈ C∞(Sn) to a generalized eigenfunction EV (s) f , which admits an asymptotic expansion with leading
terms

(2s − n)EV (s) f ∼ ρn−s f + ρs f ′, (4-1)

where f ′
∈ C∞(Sn) for Re s =

1
2 n, s ̸=

1
2 n. The structure of this expansion is well known and can be

deduced from the resolvent identity (2-4).
The scattering matrix SV (s) is a family of pseudodifferential operators SV (s) on Sn that intertwines

the leading coefficients of (4-1):
SV (s) : f 7→ f ′.

For appropriate choices of s, we can interpret f as incoming boundary data, and f ′ as the corresponding
outgoing data. By the meromorphic continuation of the resolvent, SV (s) extends meromorphically to s ∈ C.
The identities

SV (s)−1
= SV (n − s) (4-2)

and
EV (n − s)SV (s)= −EV (s), (4-3)

which follow from (4-1), hold meromorphically in s.
The integral kernel of the scattering matrix (with respect to the standard sphere metric) can be derived

from the resolvent by a boundary limit analogous to (2-5):

SV (s;ω,ω′) := (2s − n) lim
ρ,ρ′→0

(ρρ ′)−s RV (s; z, z′)

for ω ̸= ω′. We can thus see from (2-4) that

SV (s)= S0(s)− (2s − n)EV (s)V E0(s).

This gives a formula for the relative scattering matrix

SV (s)S0(s)−1
= I + (2s − n)EV (s)V E0(n − s). (4-4)

Since (2s − n)EV (s)V E0(n − s) is a smoothing operator, SV (s)S0(s)−1 is of determinant class. We can
thus define the relative scattering determinant

τ(s) := det[SV (s)S0(n − s)].
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By (4-2), the scattering determinant satisfies

τ(s)τ (n − s)= 1. (4-5)

Also, since SV (s) is unitary on the critical line, |τ(s)| = 1 for Re s =
1
2 n.

We can evaluate τ
( 1

2 n
)

by noting that

SV
( 1

2 n
)
= −I + 2P, (4-6)

where P is an orthogonal projection of rank mV
( 1

2 n
)
. (See [Borthwick 2016, Lemma 8.9] for the

argument.) This implies that

τ
( 1

2 n
)
= (−1)mV (n/2).

The scattering phase σ(ξ) for ξ ∈ R is defined as

σ(ξ) :=
i

2π
log

τ
( 1

2 n + iξ
)

τ
( 1

2 n
) ,

with the branch of logarithm chosen continuously from σ(0) := 0. The reflection formula (4-5) implies

σ(−ξ)= −σ(ξ).

We will be particularly interested in the derivative of the scattering phase. By [Gohberg and Kreı̆n 1969,
§IV.1],

τ ′

τ
(s)= tr

[
(SV (s)S0(n − s))−1 d

ds
(SV (s)S0(n − s))

]
= tr[SV (n − s)S′

V (s)− S0(s)S′

0(n − s)],

where S′

V (s) := ∂s SV (s). For the scattering phase this gives

σ ′(ξ)= −
1

2π
tr
[

SV

(1
2

n − iξ
)

S′

V

(1
2

n + iξ
)

− S0

(1
2

n + iξ
)

S′

0

(1
2

n − iξ
)]
. (4-7)

Theorem 4.1 (Birman–Krein formula). For V ∈ L∞
cpt(H

n+1,R) and f ∈ S(R),

tr[ f (1+ V )− f (1)] =

∫
∞

0
σ ′(ξ) f

( 1
4 n2

+ ξ 2) dξ +

d∑
j=1

f (λj )+
1
2 mV

(1
2 n

)
f
(1

4 n2),
where λ1, . . . , λd are the eigenvalues of 1+ V and mV

( 1
2 n

)
is the multiplicity of 1

2 n as a resonance
of 1+ V.

Proof. For convenience, let us assume that the discrete spectrum of 1+ V is empty, since the contribution
to the trace from λ1, . . . , λd is easily dealt with. Under this assumption, Proposition 3.1 gives

tr[ f (1+ V )− f (1)] =

∫
Hn+1

∫
∞

−∞

[KV (ξ ; z, z)− K0(ξ, z, z)] f
( 1

4 n2
+ ξ 2) dξ dg(z).
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If the integral over z is restricted to the set {ρ(z)≥ ε}, then switching the order of integration is justified
by the uniform polynomial bounds on KV . We can thus write

tr[ f (1+ V )− f (1)] = lim
ε→0

∫
∞

−∞

Iε(ξ) f
( 1

4 n2
+ ξ 2) dξ, (4-8)

where

Iε(ξ) :=

∫
{ρ≥ε}

[KV (ξ ; z, z)− K0(ξ, z, z)] dω′ dg(z).

To compute Iε(ξ), we first use (2-6) to write KV in terms of EV :

Iε(ξ) := −
(2s − n)2

4π

∫
{ρ≥ε}

∫
Sn

[
EV (s; z, ω′)EV (n − s; z, ω′)

−E0(s; z, ω′)E0(n − s; z, ω′)
]

dω′ dg(z), (4-9)

where dω′ is the standard sphere measure. We are using the identification s =
1
2 n + iξ freely here, to

simplify notation where possible. The next step is to apply a Maass–Selberg identity as described in the
proof of [Borthwick 2016, Proposition 10.4]. Because EV (s) satisfies the eigenvalue equation, we can
write

EV (s ′)E(n − s)t =
1

s(n − s)− s ′(n − s ′)
[EV (s ′)1E(n − s)t −1EV (s ′)E(n − s)t ].

Applying this to (4-9) yields

Iε(ξ) := −
1

4π
lim
s′→s

2s − n
s ′ − s

∫
{ρ≥ε}

∫
Sn

[
EV (s ′

; z, ω′)1EV (n − s; z, ω′)

−1EV (s ′
; z, ω′)EV (n − s; z, ω′)− E0(s ′

; z, ω′)1E0(n − s; z, ω′)

− E0(s ′
; z, ω′)1E0(n − s; z, ω′)

]
dω′ dg(z),

with 1 acting on the z variable. By Green’s formula applied to the region {ρ = ε},

Iε(ξ) :=
1

4π
lim
s′→s

2s − n
s ′ − s

∫
{ρ=ε}

∫
Sn

[
EV (s ′

; z, ω′)∂r EV (n − s; z, ω′)

− ∂r EV (s ′
; z, ω′)EV (n − s; z, ω′)− E0(s ′

; z, ω′)∂r E0(n − s; z, ω′)

− E0(s ′
; z, ω′)∂r E0(n − s; z, ω′)

]
sinhn r dω′ dω,

where z = (r, ω) in geodesic polar coordinates. The same calculation with s = s ′ yields zero, so we can
evaluate the limit s ′

→ s as a derivative:

Iε(ξ)=
2s − n

4π

∫
Sn

∫
Sn

[
E ′

V (s; z, ω′)∂r EV (n − s; z, ω′)

− ∂r E ′

V (s; z, ω′)EV (n − s; z, ω′)− E ′

0(s; z, ω′)∂r E0(n − s; z, ω′)

+ ∂r E ′

0(s; z, ω′)E0(n − s; z, ω′)
]

sinhn r dω′ dω
∣∣∣
r=cosh−1(1/ε)

,

where E ′

V = ∂s EV . The integrand can be simplified using the identity (4-2) and the distributional
asymptotic

(2s − n)EV (s; z, ω′)∼ ρn−sδω(ω
′)+ ρs SV (s;ω,ω′),
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which follows from (4-1). After cancelling terms between EV (s) and E0(s), we find

Iε(ξ)= −
1

4π
tr
[

SV

(1
2

n−iξ
)

S′

V

(1
2

n+iξ
)
−S0

(1
2

n−iξ
)

S′

0

(1
2

n+iξ
)]

+
ε−2iξ

8π iξ
tr
[

SV

(1
2

n−iξ
)
−S0

(1
2

n−iξ
)]

−
ε2iξ

8π iξ
tr
[

SV

(1
2

n+iξ
)
−S0

(1
2

n+iξ
)]

+o(ε). (4-10)

The first trace in (4-10) reduces to 1
2σ

′(ξ) by (4-7). Thus, applying (4-10) in (4-8) gives

tr[ f (1+V )− f (1)]= 1
2

∫
∞

−∞

σ ′(ξ) f
(1

4
n2

+ξ 2
)

dξ+ lim
a→∞

∫
∞

−∞

[
eiξa

8π iξ
ϕ(ξ)−

e−iξa

8π iξ
ϕ(−ξ)

]
dξ, (4-11)

where we have substituted ε = e−a/2 and

ϕ(ξ) := tr
[
SV

( 1
2 n − iξ

)
− S0

(1
2 n − iξ

)]
f
( 1

4 n2
+ ξ 2). (4-12)

To evaluate the limit a → ∞ in (4-11), we need to control the growth of ϕ(ξ). We can argue as in
[Borthwick and Crompton 2014, Lemma 3.3] that, for χ ∈ C∞

0 (H) equal to 1 on the support of V ,

SV (s)− S0(s)= −(2s − n)E0(s)tχ(1 + V R0(s)χ)−1V E0(s).

The Hilbert–Schmidt norms of the cutoff factors χE0
( 1

2 n±iξ
)

are O(|ξ |−1) by [Borthwick and Crompton
2014, Lemma 3.3]. The operator norm of(

1 + V R0
( 1

2 n ± iξ
)
χ

)−1

is O(1) by the cutoff resolvent bound from [Guillarmou 2005, Proposition 3.2]. Therefore the trace
in (4-12) has at most polynomial growth, and ϕ is integrable over ξ ∈ R.

The Riemann–Lebesgue lemma gives

lim
a→∞

∫
|ξ |>1

[
eiξa

8π iξ
ϕ(ξ)−

e−iξa

8π iξ
ϕ(−ξ)

]
dξ = 0

as well as

lim
a→∞

∫ 1

−1

e±iξa

8π iξ
[ϕ(±ξ)−ϕ(0)] dξ = 0.

We can thus drop the portion of the integral with |ξ |> 1 and replace ϕ(±ξ) by ϕ(0) for |ξ | ≤ 1 before
taking the limit. This reduces the final term in (4-11) to

lim
a→∞

∫
∞

−∞

[
eiξa

8π iξ
ϕ(ξ)−

e−iξa

8π iξ
ϕ(−ξ)

]
dξ = lim

a→∞

∫ 1

−1

sin(ξa)
4πξ

ϕ(0) dξ

= ϕ(0)
∫

∞

−∞

sin(ξ)
4πξ

dξ =
1
4
ϕ(0).

To complete the argument, we note that (4-6) implies

tr
[
SV

( 1
2 n

)
− S0

( 1
2 n

)]
= 2mV

( 1
2 n

)
. □
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5. Poisson formula

The Poisson formula expresses the trace of the wave group as a sum over the resonance set. The relative
wave trace,

2V (t) := tr
[
cos

(
t
√
1+ V −

1
4 n2

)
− cos

(
t
√
1−

1
4 n2

)]
, (5-1)

is defined distributionally as in Section 3. That is, for ψ ∈ C∞

0 (R),

(2V , ψ) := tr[ f (1+ V )− f (1)],

where

f (x) := χ(x)
∫

∞

−∞

cos
(

t
√

x −
1
4 n2

)
ψ(t) dt, (5-2)

with χ a smooth cutoff which equals 1 on the spectrum of 1+ V −
1
4 n2 and vanishes on (−∞, c] for

some c < 0. The cutoff is a technicality, included so that f ∈ S(R).

Theorem 5.1 (Poisson formula). For a potential V ∈ C∞

0 (H
n+1,R),

tn+12V = tn+1
[

1
2

∑
ζ∈RV

e(ζ−n/2)|t |
− u0(t)

]
(5-3)

as a distribution on R, where

u0(t) :=

{
cosh(t/2)

(2 sinh(t/2))n+1 for n + 1 even,

0 for n + 1 odd.

A more general version of the Poisson formula for resonances for compactly supported black-box
perturbations of Hn+1 was stated in [Borthwick 2010, Theorem 3.4], with the proof omitted because of its
similarity to the argument of [Guillopé and Zworski 1997]. Zworski has recently noted that the proof in
that paper glossed over certain technical details concerning the computation of the distributional Fourier
transform of the spectral resolution. Furthermore, the optimal factor of tn+1 was not obtained in these
previous versions.

The technicalities of this proof are now worked out in [Dyatlov and Zworski 2019, Chapter 3], including
the t prefactor. The proof of [Dyatlov and Zworski 2019, Theorem 3.53] relies only on a global upper
bound on the counting function, as in (1-4), and a factorization formula for the scattering determinant,
which we state as Proposition 5.2 below. It therefore essentially applies to Theorem 5.1.

However, there are some structural differences in the hyperbolic case, due to the shifted spectral
parameter z = s(1 − s) and the nontrivial background contribution of Hn+1 in even dimensions. For the
sake of completeness, we will include a hyperbolic version of the proof.

The starting point is to apply the Birman–Krein formula (Theorem 4.1) to the relative wave trace. The
relation (5-2) implies that

f
( 1

4 n2
+ ξ 2)

=
1
2 [ψ̂(ξ)+ ψ̂(−ξ)].
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Using this, and the fact that σ ′(ξ) is even, reduces the Birman–Krein formula to

(2V , ψ)=
1
2

∫
∞

−∞

σ ′(ξ)ψ̂(ξ) dξ +

d∑
j=1

f (λj )+
1
2

mV

(1
2

n
)
ψ̂(0). (5-4)

To evaluate the integral in (5-4), we need some additional facts about the scattering determinant. Given
the polynomial bound on the resonance counting function (1-4), we can define the Hadamard product

HV (s) := smV (0)
∏

ζ∈RV \{0}

E
( s
ζ
, n + 1

)
,

where

E(z, p) := (1 − z)ez+z2/2+···+z p/p.

This yields an entire function with zeros located at the resonances.
The following factorization formula provides the connection between the Birman–Krein formula and

the resonance set.

Proposition 5.2. The relative scattering determinant admits a factorization

τ(s)= (−1)mV (n/2)eq(s) HV (n − s)
HV (s)

H0(s)
H0(n − s)

,

where q is a polynomial of degree at most n + 1 satisfying q(n − s)= −q(s).

Proposition 5.2 is a special case of [Borthwick 2010, Proposition 3.1], which applies to black-box
perturbations of Hn+1. That statement did not include the symmetry condition on q(s), which follows
from (4-5) once the parity of mV

( 1
2 n

)
has been factored out. An analogous result for metric perturbations

was given in [Borthwick 2008, Proposition 7.2], without the estimate on the degree of q(s). These
previous versions contained a typo in the Hadamard product, in that the ζ = 0 term should always be
treated as a separate factor sm(0).

In view of (3-1), Theorem 4.1 implies that the derivative σ ′ defines a tempered distribution. We will
need the following estimate of its rate of growth.

Proposition 5.3. For V ∈ C∞

0 (H
n+1,R), the derivative of the scattering phase satisfies

|σ ′(ξ)| ≤ CV (1 + |ξ |)n−1

for ξ ∈ R.

The fact that σ ′ has at most polynomial growth follows from Proposition 5.2 by a general argument
given in [Guillopé and Zworski 1997, Lemma 4.7], which in turn is based on a method introduced by
Melrose [1988]. The explicit growth rate of Proposition 5.3 was proven in [Borthwick and Crompton
2014, Proposition 3.1].

With these ingredients in place, the strategy for the proof of the Poisson formula is essentially to
compute the Fourier transform of σ ′.
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Proof of Theorem 5.1. Let us first show that the right-hand side of (5-3) defines a distribution. Indeed, if
we exclude the finite number of terms with Re ζ > 1

2 n, which have exponential growth, the remaining
sum gives a tempered distribution. To see this, consider a test function ψ ∈ S(R). Repeated integration
by parts can be used to estimate, for Re ζ > 1

2 n,∣∣∣∣∫ ∞

−∞

tn+1e(ζ−n/2)tψ(t) dt
∣∣∣∣ ≤

C(
1 +

∣∣ζ −
1
2 n

∣∣)n+2

n+1∑
k=0

sup
t∈R

|⟨t⟩n+3ψ (k)(t)|.

It then follows from the polynomial bound (1-4) that the sum

tn+1
∑

Re ζ<n/2

e(ζ−n/2)|t |

defines a tempered distribution on R. The right-hand side of (5-3) is thus well defined as a distribution,
since there are only finitely many terms with Re ζ ≥

1
2 n.

Let 2sc denote the tempered distribution defined by

(2sc, ψ) :=
1
2

∫
∞

−∞

σ ′(ξ)ψ̂(ξ) dξ (5-5)

for ψ ∈ S(R). This distribution accounts for the contributions to the Birman–Krein formula (5-4) from the
continuous spectrum. The sum over the discrete spectrum can be rewritten as a sum over the resonances
with Re s > 1

2 n, using the fact that

cos
(

t
√
λ−

1
4 n2

)
= cosh

(
t
(
ζ −

1
2 n

))
for ζ ∈

( 1
2 n,∞

)
and λ= ζ(n − ζ ). The Birman–Krein formula then becomes

2V (t)=2sc(t)+
∑

Re ζ>n/2

cosh
(
t
(
ζ −

1
2 n

))
+

1
2 mV

( 1
2 n

)
. (5-6)

Since 2sc is tempered, it suffices to evaluate (5-5) under the assumption that ψ̂ ∈ C∞

0 (R). From
Proposition 5.2 we calculate

τ ′

τ
(s)= q ′(s)−

H ′

V

HV
(n − s)−

H ′

V

HV
(s)+

H ′

0

H0
(s)+

H ′

0

H0
(n − s).

The Hadamard product derivatives are given by

H ′

V

HV
(s)=

mV (0)
s

+

∑
ζ∈RV \{0}

[
1

s − ζ
+

1
ζ

+ · · · +
sn

ζ n+1

]
.

Hence we can write

H ′

V

HV
(n − s)+

H ′

V

HV
(s)=

∑
ζ∈RV

[
n − 2ζ

(n − s − ζ )(s − ζ )
+ pζ (s)

]
,

where pζ (s) is a polynomial of degree n for ζ ̸= 0, and p0(s) := 0.
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Switching to a ξ derivative for σ gives

σ ′(ξ)= −
1

2π
τ ′

τ

(1
2

n + iξ
)
,

which evaluates to

σ ′(ξ)= −
1

2π
q ′

(1
2

n + iξ
)

+
1

2π

∑
ζ∈RV

[
n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 + pζ
(1

2
n + iξ

)]
−

1
2π

∑
ζ∈R0

[
n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 + pζ
(1

2
n + iξ

)]
, (5-7)

where pζ is a polynomial of degree at most n. The convergence is uniform on compact intervals. Note
that there is no pole corresponding to the possible resonance at ζ =

1
2 n, because a zero at this point would

cancel out of HV (s)/HV (n − s).
Assuming that ψ̂ is compactly supported, the contributions of (5-7) to (tn+12sc, ψ) can be evaluated

term by term. Under the Fourier transform, the factor tn+1 becomes (−i∂ξ )n+1, which knocks out all of
the polynomial terms. Hence, after integrating by parts,

(tn+12sc, ψ)=
1

4π

∑
ζ∈RV

∫
∞

−∞

n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 (i∂ξ )
n+1ψ̂(ξ) dξ

−
1

4π

∑
ζ∈R0

∫
∞

−∞

n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 (i∂ξ )
n+1ψ̂(ξ) dξ.

By a straightforward contour integration,∫
∞

−∞

e−iξ t n − 2ζ

ξ 2 +
(
ζ −

1
2 n

)2 dξ =

{
−2πe−(ζ−n/2)|t |, Re ζ > 1

2 n,

2πe(ζ−n/2)|t |, Re ζ < 1
2 n.

Using this calculation in the formula for (tn+12sc, ψ) gives

(tn+12sc, ψ)=
1
2

∫
∞

−∞

tn+1
( ∑

ζ∈RV
Re ζ<n/2

e(ζ−n/2)|t |
−

∑
ζ∈RV

Re ζ>n/2

e−(ζ−n/2)|t |
−

∑
ζ∈R0

e(ζ−n/2)|t |
)
ψ(t) dt. (5-8)

This calculation contains no contribution from a resonance at ζ =
1
2 n, because a zero at this point cancels

out of the formula for τ(s).
To remove the restriction of compact support for ψ̂ , we note that the right-hand side of (5-8) defines a

tempered distribution by the remarks at the beginning of the proof. Since2sc is also tempered and C∞

0 (R)

is dense in S(R), it follows that (5-8) holds for all ψ ∈ S(R).
Combining this computation of tn+12sc with the formula (5-6) now yields the formula

tn+12V =
1
2

tn+1
[ ∑
ζ∈RV

e(ζ−n/2)|t |
−

∑
ζ∈R0

e(ζ−n/2)|t |
]
.

Note that the constant term 1
2 mV

( 1
2 n

)
from (5-6) is now incorporated into the sum over RV . This completes

the proof for n + 1 odd, because R0 is empty. If n + 1 is even, then R0 is equal to −N0 as a set, with
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multiplicities given by the dimensions of spaces of spherical harmonics of degree k,

m0(−k)= (2k + n)
(k + 1) · · · (n + k − 1)

n!
.

The resulting sum over R0 was computed in [Guillarmou and Naud 2006, Lemma 2.4],

1
2

∞∑
k=0

m0(−k)e−(k+n/2)|t |
=

cosh(t/2)
(2 sinh(t/2))n+1 . □

6. Wave trace expansion

In this section, we compute the expansion at t = 0 of the relative wave trace distribution 2V , as defined
in (5-1), and determine the first two wave invariants explicitly. Although the existence of the wave-trace
expansion is considered to be well known, we are not aware of any direct proof for Schrödinger operators
in the literature. For the odd-dimensional Euclidean case, [Melrose 1995, §4.1] is generally cited, but this
source does not include a proof. Because the hyperbolic setting leads to differences from the familiar
Euclidean formulas, we will include the argument here.

To set up the expansion formula, we recall that |t |β is well defined as a meromorphic family of
distributions on R, with poles at negative odd integers. The residues at these poles are given by delta
distributions. Dividing by 0

( 1
2(β + 1)

)
cancels the poles and defines a holomorphic family

ϑβ(t) :=
|t |β

0
( 1

2(β + 1)
) , (6-1)

where

ϑ−1−2 j (t)= (−1) j j !
(2 j)!

δ(2 j)(t)

for j ∈ N0 (see, e.g., [Kanwal 2004, §4.4, (52)]).

Theorem 6.1. Let V ∈ C∞

0 (H
n+1) with n ≥ 1. For each integer N >

[ 1
2(n + 1)

]
, there exist constants

ak(V ) (the wave invariants) such that

2V (t)=

N∑
k=1

ak(V )ϑ−n+2k−1(t)+ FN (t),

with FN ∈ C2N−n−1(R) and FN (t)= O(|t |2N−n) as t → 0.

The proof is adapted from [Bérard 1977] and relies on the Hadamard–Riesz construction of a parametrix
for the wave kernel [Hadamard 1923; Riesz 1949]. For V ∈ C∞

0 (H
n+1), let

PV :=1+ V −
1
4 n2.

We denote by eV the fundamental solution of the Cauchy problem for the wave equation

(∂2
t + PV )eV (t; z, w)= 0,

eV (0; z, w)= δ(z −w),

∂t eV (0; z, w)= 0,

(6-2)

for t ∈ R and z, w∈ Hn+1. In other words, eV (t; · , · ) is the integral kernel of the wave operator cos(t
√

PV ).
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For α ∈ C, we define the holomorphic family of distributions

χα
+

:=
xα
+

0(α+ 1)

using the notation of [Hörmander 1983, §3.2]. This family satisfies the derivative identity

d
dx
χα

+
= χα−1

+
.

Since χ0
+

= x+, it follows that χα
+

is a point distribution at negative integers:

χ−m
+

= δ(m−1)(x).

For z, w ∈ Hn+1, we set r := d(z, w) and denote by χα
+
(t2

− r2) the pullback of χα
+

by the smooth
map Hn+1

× Hn+1
× R → R given by (z, w, t) 7→ t2

− d(z, w)2. Since χα
+

is classically differentiable
for Reα >−1, derivatives of χα

+
(t2

− r2) can be computed directly in this region, and then extended by
analytic continuation. Hence the formulas

∂t [χ
α
+
(t2

− r2)] = 2tχα−1
+

(t2
− r2),

∂r [χ
α
+
(t2

− r2)] = −2rχα−1
+

(t2
− r2)

(6-3)

are valid for all α.
Following [Bérard 1977, §D], we seek to construct the parametrix as a sum of the distributions

|t |χα
+
(t2

− r2) with increasing values of α. The starting point for the expansion is dictated by the initial
conditions in (6-2), so we need to understand the distributional limit of |t |χα

+
(t2

− r2) as t → 0.

Lemma 6.2. For ψ ∈ C∞

0 (H
n+1),

lim
t→0

(|t |χα
+
(t2

− d(z, · )2), ψ)=

{
πn/2ψ(z), α = −

1
2 n − 1,

0, α >−
1
2 n − 1

(6-4)

and
lim
t→0

(∂t [|t |χα+(t
2
− d(z, · )2)], ψ)= 0 (6-5)

for α = −
1
2 n − 1 and α >−

1
2(n + 1).

Proof. The distribution is even in the variable t , so it suffices to consider t > 0. The first formula of (6-3)
gives, for k ∈ N,

χα
+
(t2

− r2)=

(
1
2t
∂t

)k

χα+k
+

(t2
− r2),

which can be used to shift the computation to the integrable range. For t > 0 and Reα+ k >−1, we have

(χα
+
(t2

− d(z, · )2), ψ)=
1

0(α+ k + 1)

(
1
2t
∂t

)k ∫ t

0
(t2

− r2)α+kψ̃(r)rn dr,

where in geodesic polar coordinates (r, ω) centered at z,

ψ̃(r) :=
sinhn r

rn

∫
Sn
ψ(r, ω) dω.
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Rescaling r → tr in the integral gives

(χα
+
(t2

− d(z, · )2), ψ)=
1

0(α+ k + 1)

(
1
2t
∂t

)k[
t2(α+k)+n+1

∫ 1

0
(1 − r2)α+kψ̃(tr)rn dr

]
. (6-6)

Since ψ̃ is the spherical average of ψ centered at z, and the linear term in a Taylor approximation of ψ
at z cancels out in this average,

ψ̃(r)= Vol(Sn)ψ(z)+ O(r2)=
2π (n+1)/2

0
( 1

2(n + 1)
)ψ(z)+ O(r2).

For the same reason, ∂r ψ̃(r)= O(r). Higher radial derivatives are bounded on {r > 0}. Hence, in the
leading term from (6-6), all of the t derivatives are applied to the factor preceding the integral, which
gives (

1
2t
∂t

)k

[t2(α+k)+n+1
] =

0
(
α+ k +

1
2(n + 3)

)
0

(
α+

1
2(n + 3)

) t2α+n+1.

The leading contribution from the r integration can be calculated from Euler’s beta function formula
[NIST 2010, (5.12.1)]: ∫ 1

0
(1 − r2)α+krn dr =

0
(
α+ k + 1

)
0

( 1
2(n + 1)

)
20

(
α+ k +

1
2(n + 3)

) .

Combining these results in (6-6) gives, for t > 0,

(χα
+
(t2

− d(z, · )2), ψ)=
π (n+1)/2

0
(
α+

1
2(n + 3)

) t2α+n+1ψ(z)+ O(t2α+n+3). (6-7)

This proves (6-4) once the extra factor of t has been inserted.
To establish (6-5), we note that

∂t [tχα+(t
2
− r2)] = χα

+
(t2

− r2)+ 2t2χα−1
+

(t2
− r2)

by (6-3). We thus obtain from (6-7),

(∂t [tχα+(t
2
− d(z, · )2)], ψ)= π (n+1)/2 2α+ n + 2

0
(
α+

1
2(n + 3)

) t2α+n+1ψ(z)+ O(t2α+n+3),

and (6-5) follows. □

We take the following ansatz for the parametrix:

eV,N (t, z, w) := π−n/2
N∑

k=0

uV,k(z, w)|t |χ
−n/2+k−1
+ (t2

− r2), (6-8)

where uV,0(z, z) = 1 and the higher coefficients uV,k are to be chosen such that, in the expression for
(∂2

t + PV )eV,N (t, z, · ), the coefficients of |t |χ−n/2+k−1
+ (t2

− r2) cancel for k ≤ N . Lemma 6.2 implies
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that the initial conditions are satisfied:

eV,N (0; z, w)= δ(z −w),

∂t eV,N (0; z, w)= 0.
(6-9)

To work out the equations for the coefficients, we will compute the action of (∂2
t + PV ) on each term.

As above, it suffices to compute for t > 0 by evenness, and we will use the temporary abbreviations

uV,k(z, · )⇝ uk, χα
+
(t2

− r2)→ χα
+

to simplify the formulas. The time derivatives are calculated from (6-3):

∂2
t [tχα

+
] = 6tχα−1

+
+ 4t3χα−2

+
.

Using the geodesic polar coordinate form of the Laplacian

1= −∂2
r − n coth r ∂r + sinh−2 r 1Sn , (6-10)

we also compute
PVχ

α
+

= (2 + 2nr coth r)χα−1
+

− 4r2χα−2
+

.

Putting these together gives

(∂2
t + PV )[uk tχα

+
] = (PV uk)tχα+ + 4r(∂r uk)tχα−1

+
+ (8 + 2nr coth r)uk tχα−1

+
+ 4uk t (t2

− r2)χα−2
+

.

The final term simplifies:
(t2

− r2)χα−2
+

= (α− 1)χα−1
+

,

which reduces the formula to

(∂2
t + PV )[uk tχα

+
] = (PV uk)tχα+ + [4r∂r uk + (4(α+ 1)+ 2nr coth r)uk]tχα−1

+
.

After setting α = −
1
2 n + k − 1 as in (6-8), we obtain, for t > 0,

(∂2
t + PV )[uk tχ−n/2+k−1

+ ] = [4r∂r uk +(2n(r coth r −1)+4k)uk]tχ
−n/2+k
+ +(PV uk)tχ

−n/2+k−1
+ . (6-11)

The calculation (6-11) shows the cancelling of terms in (∂2
t + PV )eV,N (t, z, · ) is ensured by the

transport equations
[4r∂r + 2n(r coth r − 1)]uV,0(z, · )= 0,

[4r∂r + 2n(r coth r − 1)+ 4k]uV,k(z, · )= −PV uV,k−1(z, · ).
(6-12)

To solve (6-12) we define

φ(r) :=

(
sinh r

r

)−n/2

, (6-13)

and then set
uV,0(z, w)= φ(r),

uV,k+1(z, w)= −
1
4
φ(r)

∫ 1

0

sk

φ(sr)
PV uV,k(z, γ (s)) ds,

(6-14)
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where γ is the geodesic from z to w, parametrized by s ∈ [0, 1], and PV acts on the second variable
of uV,k . The coefficients uV,k are smooth for all k.

Proposition 6.3. With eV,N defined as above, set

qV,N (t, z, w) := eV (t, z, w)− eV,N (t, z, w).

For m ∈ N, we have qV,N ∈ Cm for N sufficiently large and

|qV,N (t, z, w)| = O(|t |−n+N−1)

as t → 0, uniformly in z, w.

Proof. From (6-8), (6-11), and the transport equations (6-12), we observe that

(∂2
t + PV )eV,N (t, z, · )= fN (t, z, · ),

where
fN (t, z, · )= π−n/2 PV uV,N (z, · )|t |χ

−n/2+N−1
+ (t2

− r2), (6-15)

with PV acting on the second variable. Since eV,N satisfies the same initial conditions (6-9) as eV , this
gives

(∂2
t + PV )qV,N (t; z, w)= fN (t, z, w),

qV,N (0; z, w)= 0,

∂tqV,N (0; z, w)= 0.

The coefficients uV,k are smooth, by (6-14), and |t |χα
+
(t2

− r2) is C l for α > l + 1. Hence, by (6-15),
fN ∈ C l for l < N −

1
2 n − 2 and has support in {r ≤ t}. It follows that qV ∈ Cm for N sufficiently large.

For any b > 0, the Sobolev norms of fN (t, z, · ) can be estimated by O(|t |b) for N sufficiently large.
These estimates are uniform in z, since φ depends only on r and V has compact support. Standard
regularity estimates for hyperbolic PDEs (see, for example, [Trèves 1975, Chapter 47]) then show that,
for N1 sufficiently large,

|qV,N1(t, z, w)| = O(|t |2N−n−1),

uniformly in z, w. The estimate of qV,N as t → 0 is then derived from

qV,N (t, z, w)= π−n/2
N1∑

k=N+1

uV,k(z, w)|t |χ
−n/2+k−1
+ (t2

− r2)+ qV,N1(t, z, w). □

With this estimate on the parametrix, we are now prepared to establish the wave trace expansion.

Proof of Theorem 6.1. For ψ ∈ C∞

0 (R), we write the integral kernel of the trace-class operator∫
∞

−∞

[cos(t
√

PV )− cos(t
√

P0)]ψ(t) dt

as ∫
∞

−∞

[eV (t, z, w)− e0(t, z, w)]ψ(t) dt,



EXISTENCE OF RESONANCES FOR SCHRÖDINGER OPERATORS ON HYPERBOLIC SPACE 2095

which is smooth and compactly supported. Taking the trace gives

(2V , ψ)=

∫
Hn+1

(∫
∞

−∞

[eV (t, z, w)− e0(t, z, w)]ψ(t) dt
)∣∣∣∣

z=w
dg(z). (6-16)

The wave kernel parametrices can be substituted into (6-16) and the contributions from the terms
k = 0, . . . , N evaluated separately.

For Reα sufficiently large, we can verify directly that

|t |χα
+
(t2

− r2)
∣∣
r=0 = ϑ2α+1(t),

and this formula extends to all α ∈ C by analytic continuation. It follows from (6-16) and Proposition 6.3
that

2V (t)= π−n/2
N∑

k=1

(∫
Hn+1

[uV,k(z, z)− u0,k(z, z)] dg(z)
)
ϑ−n+2k−1(t)+ FN (t),

where

FN (t) :=

∫
Hn+1

[qV,N (t, z, z)− q0,N (t, z, z)] dg(z). □

The proof of Theorem 6.1 yields a formula for the wave invariants:

ak(V )= π−n/2
∫

Hn+1
[uV,k(z, z)− u0,k(z, z)] dg(z). (6-17)

This formula can be simplified somewhat using the transport equations. By (6-12), we have

(L + 4) · · · (L + 4k)uV,k(z, · )= (−1)k PV uV,0(z, · ), (6-18)

where, in geodesic polar coordinates centered at z, L is the differential operator

L := 4r∂r + 2n(r coth r − 1).

Note that, for any smooth function f , L f vanishes at r = 0. Therefore, evaluating (6-18) at the point z
yields

uV,k(z, z)=
(−1)k

4kk!
Pk

V uV,0(z, z), (6-19)

where uV,0(z, w)= φ(d(z, w)) and Pk
V acts on the second variable. In principle, (6-19) can be used to

derive explicit formulas for all of the wave invariants. The first two are relatively simple.

Proposition 6.4. For V ∈ C∞

0 (H
n+1,R),

a1(V )= −
1
4
π−n/2

∫
Hn+1

V (z) dg(z)

and

a2(V )=
1

32
π−n/2

∫
Hn+1

[
2n − n2

6
V (z)+ V (z)2

]
dg(z).
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Proof. Since uV,0(z, z)= 1 and PV − P0 = V , we see immediately from (6-19) that

uV,1(z, z)− u0,1(z, z)= −
1
4 V (z).

This gives the formula for a1(V ).
For the second invariant, we use (6-19) to write

uV,2(z, z)− u0,2(z, z)=
1
32(P

2
Vφ− P2

0 φ)|r=0 =
1
32 [2V (z)P0φ(0)+1V (z)+ V (z)2],

where r is the radius for geodesic polar coordinates centered at z, and we have used the facts that φ(0)= 1
and ∂rφ(0)= 0. From (6-10) and (6-13) we compute

P0φ(0)=
n(n + 1)

6
−

n2

4
=

2n − n2

12
.

This gives

uV,2(z, z)− u0,2(z, z)=
1

32

[
2n − n2

6
V (z)+ V (z)2 +1V (z)

]
.

When substituted into the formula for a2(V ), the term 1V (z) integrates to zero because V has compact
support. □

7. Heat trace

The relative heat trace associated to a potential V ∈ C∞

0 (H
n+1,R) is defined by applying the distribu-

tion (3-1) to the function f (x)= χ(x)e−t (x−n2/4) for t > 0, where χ is a smooth cutoff which equals 1
on the spectrum of PV :=1−

1
4 n2

+ V and vanishes on (−∞, c] for some c < 0. The Birman–Krein
formula (Theorem 4.1) gives

tr[e−t PV − e−t P0] =

∫
∞

0
σ ′(ξ)e−ξ2t dξ +

d∑
j=1

et (n2/4−λj ) +
1
2 mV

( 1
2 n

)
. (7-1)

We have no analog of the Poisson formula of Theorem 5.1 for the heat trace. This is because the values
of

(
ζ −

1
2 n

)2 are spread over the full complex plane, so there is no apparent regularization of the heat
trace as a sum over the resonance set.

The asymptotic expansion of the heat trace at t = 0 can be derived by a variety of methods. The
simplest route for us is via the wave trace expansion.

Theorem 7.1. As t → 0, the relative heat trace admits an asymptotic expansion

tr[e−t PV − e−t P0] ∼ π−1/2
∞∑

k=1

ak(V )(4t)−(n+1)/2+k, (7-2)

where ak(V ) are the wave invariants from Theorem 6.1.

Proof. Since 2sc(s) is tempered, the definition (5-5) gives

1
√

4π t

∫
∞

−∞

2sc(s)e−s2/4t ds =

∫
∞

0
σ ′(ξ)e−ξ2t dξ
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for t > 0. It then follows from (5-6) and (7-1) that

tr[e−t PV − e−t P0] =
1

√
4π t

∫
∞

−∞

2V (s)e−s2/4t ds (7-3)

even when 2V (s) is not tempered.
For Reβ sufficiently large, we compute

1
√

4π t

∫
∞

−∞

ϑβ(s)e−s2/4t ds = π−1/2(4t)β/2,

and this formula extends to all β ∈ C by analytic continuation. Theorem 6.1 thus yields the expansion

tr[e−t PV − e−t P0] = π−1/2
N∑

k=1

ak(V )(4t)−(n+1)/2+k
+

1
√

4π t

∫
∞

−∞

FN (s)e−s2/4t ds

for N >
[1

2(n+2)
]
, where FN (s)= O(|s|2N−n) as s → 0. From (5-6) we also see that FN (s)= O(en|s|/2)

as |s| → ∞. It follows that
1

√
4π t

∫
∞

−∞

FN (s)e−s2/4t ds = O(t−n/2+N ). □

Note that coefficients in (7-2) are not quite the usual heat invariants because of the shift −n2/4 in the
definition of PV . This shift gives an extra factor of e−n2t/4 in (7-2), so the traditional heat invariants could
be computed as finite linear combinations of the ak(V ).

The behavior of the heat kernel as t → ∞ is also of interest to us. According to (7-1), this behavior
is dominated by exponential terms corresponding to eigenvalues and a constant term from the possible
resonance at s =

1
2 n. If these contributions are absent, then the heat kernel decays at a rate independent

of the dimension.

Proposition 7.2. For the potential V ∈ C∞(Hn+1,R), suppose that PV has no eigenvalues and no
resonance at 1

2 n. Then the following bound holds uniformly for t ∈ (0,∞) and z, w in H:

e−t PV (t; z, w)≍ t−3/2e−r2/(4t)−(nr)/2
(

1 +
r + 1

t

)n/2−1

(1 + r), (7-4)

where r = d(z, w) and ≍ means that the ratio of the two sides is bounded above and below by positive
constants.

In the case V = 0, (7-4) was proven in [Davies and Mandouvalos 1988, Theorem 3.1]. There is no
factor e−n2t/4 in (7-4) because of the shift −

1
4 n2 in the definition of PV . These estimates were generalized

in [Chen and Hassell 2020, Theorem 5] to asymptotically hyperbolic Cartan–Hadamard manifolds with
no eigenvalues and no resonance at s =

1
2 n by methods that allow for the inclusion of a C∞

0 potential. The
power t−3/2, independent of dimension, corresponds to the vanishing of the spectral resolution KV (ξ ; · , · )

to order ξ 2 at ξ = 0 under the assumption of no resonance at 1
2 n.

Proposition 7.2 implies a bound on the heat trace by the argument from [Sá Barreto and Zworski 1996,
Proposition 3.1].
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Corollary 7.3. For a potential V satisfying the hypotheses of Proposition 7.2,

tr[e−t PV − e−t P0] = O(t−1/2)

as t → ∞.

Proof. Duhamel’s principle gives the trace estimate

|tr[e−t PV − e−t P0]| ≤

∫ t

0

∫
Hn+1

∫
Hn+1

e−(t−s)P0(w, z)e−s PV (z, w)|V (z)| dg(z) dg(w) ds. (7-5)

The uniform bound (7-4) implies in particular that

e−s PV (z, w)≤ CV e−s P0(z, w),

so we can use the semigroup property to estimate∫
Hn+1

e−(t−s)P0(w, z)e−s PV (z, w) dg(w)≤ CV e−t P0(z, z)≤ CV t−3/2

as t → ∞, uniformly in z. Applying this to (7-5) gives

|tr[e−t PV − e−t P0]| ≤ CV t−1/2
∥V ∥L1 . □

8. Scattering phase asymptotics

The Birman–Krein formula allows us to connect the wave-trace invariants to corresponding asymptotic
expansions for the scattering phase and its derivative. For Schrödinger operators in the odd-dimensional
Euclidean setting, the asymptotic expansion of the scattering phase was established by Colin de Verdière
[1981], Guillopé [1981], and Popov [1982], via formulas relating the scattering determinant to regularized
determinants of the cutoff resolvent. An argument based on expansion of the scattering matrix is given
in [Yafaev 2010, Theorem 9.2.12], and a semiclassical version is given in [Dyatlov and Zworski 2019,
Theorem 3.62].

For hyperbolic space we have the following version of these results:

Theorem 8.1. For V ∈ C∞

0 (H
n+1,R) the function σ ′(ξ) admits a full asymptotic expansion as ξ → +∞.

If the dimension n + 1 is odd, then

σ ′(ξ)∼

∞∑
k=1

ck(V )ξ n−2k.

For n + 1 even, the expansion is truncated:

σ ′(ξ)=

[n/2]∑
k=1

ck(V )ξ n−2k
+ O(ξ−∞).

The coefficients are related to the wave invariants by

ck(V )=
2−n+2k

π1/20
( 1

2(n + 1)− k
)ak(V ).
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Before proving the theorem, we start by establishing the existence of the scattering phase expansion.
The coefficients are relatively easy to calculate once this is known.

Proposition 8.2. For V ∈ C∞

0 (H
n+1,R) the function σ ′(ξ) admits an asymptotic expansion of the form

σ ′(ξ)∼

∞∑
j=0

bjξ
n− j−1 (8-1)

as ξ → ∞.

Proof. Of the approaches mentioned above, the ray expansion method from [Yafaev 2010, §8.4] is the
most easily adapted to the hyperbolic setting. In our context, the idea is to expand EV (s; z, ω′) in powers
of s and then apply this expansion to the scattering phase.

To develop the approximation formula, we first consider z ∈ Hn+1 with ω′
= ∞. In standard hyperbolic

coordinates z = (x, y) ∈ Rn
× R+,

1= −y2∂2
y + (n − 1)y∂y + y21x , (8-2)

and the unperturbed generalized eigenfunction has the form (see, e.g., [Borthwick 2010, §4])

E0(s; z,∞)= 2−2s−1π−1/2 0(s)

0
(
s −

1
2 n + 1

) ys. (8-3)

In geodesic coordinates y = e−r, so this is the analog of a Euclidean plane wave with frequency ξ = Im s.
Following the construction in [Yafaev 2010, §8.1], we define an approximate plane wave using the

ansatz

ψN (s; z)=

N∑
j=0

s− j yswj (z), (8-4)

with w0(z)= 1. From (8-2), we have

[1+ V − s(n − s)](yswj )= ys(1+ V )wj − 2sys−1∂ywj .

We can thus cancel coefficients up to order s N by imposing the transport equation

2y∂yw j+1 = (1+ V )wj .

The solutions are given recursively by

w j+1(z) :=
1
2

∫ 0

−∞

(1+ V )wj (x, et y) dt (8-5)

for j ≥ 1. With these coefficients, the function (8-4) satisfies

[1+ V − s(n − s)]ψN (s; z)= s−N yswN (z). (8-6)

In (8-5), the point (x, et) can be interpreted geometrically as the translation of z = (x, y) by distance t
along the vertical geodesic through z. Returning to the geodesic polar coordinates z = (r, ω) ∈ R+ × Sn
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used to define EV (s), we let φz,ω′(t) denote the unique geodesic through z with limit point ω′
∈ Sn

as t → 0. Let w0(z, ω′)= 1 and define wj (z, ω′) for j ≥ 1 by

w j+1(z, ω′) :=
1
2

∫ 0

−∞

(1+ V )wj (φz,ω′(t)) dt.

For the approximate Poisson kernel

EV,N (s; z, ω′) :=

N∑
j=0

s− jwj (z, ω′)E0(s, z, ω′), (8-7)

the calculation of (8-6) shows that

[1+ V − s(n − s)]EV,N (s; z, ω′) := s−N E0(s, z, ω′)(1+ V )wN (z, ω′).

The coefficients of (8-7) have support properties analogous to the approximate plane waves in the
Euclidean case. That is, for j ≥ 1, wj (z, ω′) vanishes unless z lies on a geodesic connecting a point in
supp V to the limit point ω′. One can thus repeat the argument from [Yafaev 2010, Theorem 8.4.3] using
the cutoff resolvent bound from [Guillarmou 2005, Proposition 3.2] in place of its Euclidean counterpart.
The result is that

EV (s; z, ω′)= EV,N (s; z, ω′)+ qn(s; z, ω′), (8-8)

where, for Re s =
1
2 n,

∥qn(s; · , ω′)∥L2(B) = O(sn/2−N ),

with B a ball in Hn+1 containing supp V . The shift in the power in the error estimate comes from the
0 factors in the normalization of (8-3). The same error estimate applies when (8-8) is differentiated with
respect to s.

The approximation (8-8) can be applied to the scattering phase through the formula (4-4), which gives

τ(s)= det(1 + T (s)),

where
T (s) := (2s − n)EV (s)V E0(n − s).

By the definition of the scattering phase and the fact that 1 + T
( 1

2 n + iξ
)

is unitary for ξ ∈ R,

σ ′(ξ)= −
1

2π
tr
[(

1 + T
(1

2
n + iξ

)∗)
T ′

(1
2

n + iξ
)]
. (8-9)

The kernels of T (s) and T ′(s) are smooth, and (8-8) gives uniform asymptotic expansions of their kernels
for Re s =

1
2 n, with leading term of order at most ξ n−1. We can thus deduce the expansion of σ ′(ξ)

from (8-9). □

Although the leading term in (8-1) matches the growth estimate of Proposition 5.3, this coefficient
vanishes and the leading order is actually ξ n−2. Computing coefficients through the construction of
Proposition 8.2 is rather cumbersome, however. Comparison to the heat trace expansion via the Berman–
Krein formula yields a much easier method.
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Proof of Theorem 8.1. By a straightforward calculus argument (see [Dyatlov and Zworski 2019,
Lemma 3.65]), the expansion (8-1) yields the corresponding expansion∫

∞

0
σ ′(ξ)e−ξ2t dξ ∼

1
2

n−1∑
j=0

0
(1

2
(n − j)

)
bj t−(n− j)/2

−
1
2

∞∑
l=0

(−1)l

l!
bn+2l t l log t

+
1
2

∞∑
l=0

0
(
−l −

1
2

)
bn+2l+1t l+1/2

+ g(t)

as t → 0+, where g ∈ C∞
[0,∞). The function g is not determined by the coefficients bj . On the other

hand, by (7-1) and Theorem 7.1 we have∫
∞

0
σ ′(ξ)e−ξ2t dξ ∼ π−1/2

∞∑
k=1

ak(V )(4t)−(n+1)/2+k
+ h(t), (8-10)

where h ∈ C∞
[0,∞) is given by

h(t) :=

d∑
j=1

et (n2/4−λj ) +
1
2 mV

( 1
2 n

)
.

If n + 1 is odd, then comparing these expansions shows that bj = 0 if j is even and

b2k−1 =
2−n+2k

π1/20
( 1

2(n + 1)− k
)ak(V ) (8-11)

for k ∈ N. For n + 1 even the heat trace expansion contains only integral powers of t . This implies that
bj = 0 for all j ≥ n and also for even values of j < n. For odd values of j < n, the coefficients are given
by (8-11). □

Integrating the asymptotic expansion from Theorem 8.1 yields the following:

Corollary 8.3. The scattering phase admits a full asymptotic expansion as ξ → 0. If the dimension n + 1
is odd, then

σ(ξ)∼

[n/2]∑
k=1

ck(V )
n − 2k + 1

ξ n−2k+1
+ d +

1
2 mV

( 1
2 n

)
+

∑
k>[n/2]

ck(V )
n − 2k + 1

ξ n−2k+1,

where d is the number of eigenvalues. For n + 1 even,

σ(ξ)=

[n/2]∑
k=1

ck(V )
n − 2k + 1

ξ n−2k+1
+ d +

1
2 mV

( 1
2 n

)
+ O(ξ−∞).

Proof. By Theorem 8.1, the function

t 7→

∫
∞

0

[
σ ′(x)−

[n/2]∑
k=1

ck(V )xn−2k
]

e−x2t dx
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is continuous for t ∈ [0,∞). By (8-10), taking the limit as t → 0+ yields∫
∞

0

[
σ ′(x)−

[n/2]∑
k=1

ck(V )xn−2k
]

dx = d +
1
2 mV

( 1
2 n

)
.

Splitting the integral at x = ξ then gives, since σ(0)= 0,

σ(ξ)=

[n/2]∑
k=1

ck(V )
n − 2k + 1

ξ n−2k+1
+ d +

1
2 mV

( 1
2 n

)
−

∫
∞

ξ

[
σ ′(x)−

[n/2]∑
k=1

ck(V )xn−2k
]

dx .

By Theorem 8.1, for n + 1 odd the final integral on the right can be integrated to produce an asymptotic
expansion in ξ . For n + 1 even, this integral gives an error term O(ξ−∞). □

9. Existence of resonances

The asymptotic expansions of the wave trace and scattering have significantly different behavior in odd
and even dimensions, so we will consider the two cases separately.

Even dimensions. For n + 1 even, all of the singularities in the wave trace expansion of Theorem 6.1
are detectable for t ̸= 0. It thus follows immediately from Theorem 5.1 that, for V ∈ C∞

0 (H
n+1,R), the

resonance set RV determines all of the wave invariants ak(V ). In particular, since the vanishing of the
first two wave invariants implies V = 0 by the formulas of Proposition 6.4, we obtain the following:

Theorem 9.1. For V ∈ C∞

0 (H
n+1,R) with n + 1 even, if RV = R0 then V = 0.

We can also deduce a lower bound on the resonance counting function from the wave trace in even
dimensions. Note that 2V (t)= O(t−n+1) by Theorem 6.1, whereas the R0 contribution in (5-3) satisfies

u0(t)∼
1

tn+1

as t → 0. It thus follows from (5-3) that ∑
ζ∈RV

e(ζ−n/2)t
∼

2
tn+1 . (9-1)

The lower-bound argument from [Guillopé and Zworski 1997, Theorem 1.3] (see also [Borthwick 2016,
§12.2]) can be applied to (9-1), yielding the following:

Theorem 9.2. For n + 1 even, the counting function for RV satisfies

NV (r)≥ crn+1

for some constant c > 0 that depends only on n and the radius of supp V.

Proof. Choose φ ∈ C∞

0 (R+) with φ ≥ 0 and φ(1) > 0, and set

φλ(t) := λφ(λt).
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By (9-1) we have ∫
∞

0

( ∑
ζ∈RV

e(ζ−n/2)t
)
φλ(t) dt ≥ cnλ

n+1,

where cn does not depend on V . Using the Fourier transform to evaluate the right-hand side gives∑
ζ∈RV

φ̂

(
i
(
ζ −

1
2 n

)
λ

)
≥ cnλ

n+1. (9-2)

Since φ̂(ξ) is rapidly decreasing, we can estimate φ̂(ξ) = O(|ξ |−n−2) in particular. In terms of the
counting function, (9-2) then implies

cnλ
n+1

≤

∫
∞

0

(
1 + r
λ

)−n−2

d NV (r)= (n + 2)
∫

∞

0
(1 + r)−n−3 NV (λr) dr.

Splitting the integral at r = a and adjusting the constant gives

cnλ
n+1

≤ NV (λa)+
∫

∞

a
(1 + r)−n−3 NV (λr) dr. (9-3)

If V has support in a ball of radius R, then [Borthwick 2010, Theorem 1.1] gives an upper bound

NV (r)≤ CRrn+1.

Applying this estimate to (9-3) gives

NV (λa)≥ cnλ
n+1

− CRλ
n+1a−1.

We can then set a = 2CR/cn and rescale λ to obtain

NV (λ)≥
1
2

cn

(
cn

2CR

)n+1

λn+1. □

The existence of a lower bound in even dimensions is not surprising, since the optimal order of growth
is already attained for V = 0. It is more interesting to examine the difference between RV and the
background resonance set. Note that when n +1 is even, the expansion of Theorem 8.1 contains only odd
powers of ξ . Since σ ′(ξ) is an even function, this creates a discrepancy that we can exploit.

Theorem 9.3. For n + 1 even, suppose that V1, V2 ∈ C∞

0 (H
n+1,R). If the resonance sets RV1 and RV2

differ by only finitely many points (counting multiplicities), then:

(1) The corresponding scattering phases σV1 and σV2 differ by a constant.

(2) The sets RV1\RV2 and RV2\RV1 are contained in (0, n) and invariant under the reflection s 7→ n − s.

(3) The wave invariants satisfy ak(V1)= ak(V2) for k = 1, . . . , 1
2(n − 1).

Furthermore, if RV1 = RV2 (with multiplicities), then 2V1 =2V2 , and hence all of the wave invariants
match.
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Proof. Under the assumption that RV1 and RV2 differ by only finitely many points, the factorization of
Proposition 5.2 implies that

τV1(s)
τV2(s)

= (−1)mV1 (n/2)−mV2 (n/2)ep(s)
∏

ζ∈RV1\RV2

n − s − ζ

s − ζ

∏
ζ∈RV2\RV1

s − ζ

n − s − ζ
, (9-4)

where p is a polynomial with degree at most n+1 satisfying p(s)= p(n−s). It follows that σ ′

V1
(ξ)−σ ′

V2
(ξ)

is an even, rational function of ξ . Since the expansion formula from Theorem 8.1 contains only odd powers
of ξ plus an O(ξ−∞) remainder, this implies that σ ′

V1
(ξ)= σ ′

V2
(ξ). The equality of the wave invariants for

k = 1, . . . ,
[ 1

2 n
]

then follows from the matching of expansion coefficients. Since σ ′

V1
= σ ′

V2
also implies

that τV1(s)/τV2(s) is constant, the characterization of RV1\RV2 and RV2\RV1 follows from (9-4).
If RV1 = RV2 , then the same argument shows that the scattering phases are equal. It then follows

from (5-6) that 2V1 =2V1 . □

Let us apply Theorem 9.3 to compare RV to R0. The hypothesis that RV and R0 differ by finitely
many points implies that σ ′(ξ)= 0 and ak(V )= 0 for k ≤

1
2(n −1). Since R0 ∩ (0, n)=∅, it also implies

that RV is the union of R0 with a possible resonance at ζ =
1
2 n plus a finite set of pairs of the form

ζ =
1
2 n ±

√
1
4 n2

− λj ,

where λj is an eigenvalue.
As noted at the start of this section, the vanishing of the first two wave invariants implies that V = 0.

From Theorem 9.3 we thus immediately obtain the following:

Corollary 9.4. Let V ∈ C∞

0 (H
n+1,R) with n + 1 even and n ≥ 5. If V ̸= 0 then RV differs from R0 by

infinitely many points (counting multiplicities).

For n ≤ 3, we cannot fully control the first two wave invariants. However, we can derive some extra
information from the heat trace. If σ ′(ξ)= 0, we see from (7-1) and (7-2) that

d∑
j=1

et (n2/4−λj ) +
1
2 mV

( 1
2 n

)
∼

∞∑
k=(n+1)/2

2−n+2k−1π−1/2ak(V )t−(n+1)/2+k (9-5)

as t → 0. Matching the coefficients in the expansion leads to a set of relationships between the discrete
eigenvalues λj , the multiplicity mV

( 1
2 n

)
, and the wave invariants.

Corollary 9.5. For V ∈ C∞

0 (H
2,R), if V ̸= 0 and

∫
V dg ≥ 0, then RV differs from R0 by infinitely many

points. The same conclusion holds for V ∈ C∞

0 (H
4,R), provided

∫
V dg ̸= 0.

Proof. Assume that RV differs from R0 by finitely many points. For n = 1, the t0 term in (9-5) gives

d +
1
2

mV

(1
2

n
)

= −
1

4π

∫
H2

V (z) dg(z).

Hence
∫

V dg ≥ 0 implies RV = ∅, which gives V = 0 by Theorem 9.1.
For n = 3, the assumption that RV differs from R0 by finitely many points gives a1(V ) = 0 by

Theorem 9.3. This means
∫

V dg = 0. □
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Assuming a finite discrepancy between RV and R0, the expansion (9-5) also implies a set of relations
between eigenvalues and wave invariants. For n = 1, we have

1
(k − 1)!

d∑
j=1

(1
4

− λj

)k−1
= 4k−1π−1/2ak(V )

for k ≥ 2. If n = 3,
d +

1
2 mV

( 3
2

)
= π−1/2a2(V )

and
1

(k − 2)!

d∑
j=1

(9
4

− λj

)k−2
= 4k−2π−1/2ak(V )

for k ≥ 3. Although these relations seem rather delicate, they do not lead to any obvious contradictions.

Odd dimensions. In odd dimensions, the primary limitation to drawing implications from the wave trace
is the fact that the terms in the expansion of Theorem 6.1 with k ≤

1
2 n are distributions supported only

at t = 0. Hence the trace formula of Theorem 5.1 yields no information about the first 1
2 n wave invariants.

In the Euclidean case, [Sá Barreto and Zworski 1996] exploited the decay of the heat trace as t → ∞

to prove an existence result. In the hyperbolic case, the corresponding decay rate from Corollary 7.3 is
merely O(t−1/2), independent of the dimension. Hence this approach fails and we obtain an existence
result only for dimension three.

Theorem 9.6. For V ∈ C∞

0 (H
3,R), if V ̸= 0 then RV is not empty.

Proof. For n = 2, if RV = ∅ then Theorems 5.1 and 6.1 show that ak(V )= 0 for k ≥ 2. By the formula
from Proposition 6.4,

a2(V )=
1

32π

∫
H3

V (z)2 dg(z),

so a2(V )= 0 implies V = 0 when n = 2. □

As long as at least one resonance exists, we can use the Poisson formula to show that there are infinitely
many. The arguments from [Christiansen 1999, Theorem 1] and [Sá Barreto 2001, Theorem 1.3] can then
be applied to produce a lower bound on the count.

Theorem 9.7. For V ∈ C∞

0 (H
n+1,R) with n + 1 odd, either RV = ∅ or RV is infinite and the counting

function satisfies

lim sup
r→∞

NV (r)
r

> 0.

Proof. Suppose that RV is finite. By Theorem 5.1 the wave trace is given by a finite sum:

2V (t)=
1
2

∑
ζ∈RV

e(ζ−n/2)|t |

for t ̸= 0. Hence
lim
t→0

2V (t)=
1
2 #RV .
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Since the wave trace expansion of Theorem 6.1 has no term of order t0 for n + 1 odd, this shows that
RV = ∅.

Now assume that RV is infinite. Since R0 = ∅ in odd dimensions, the factorization formula of
Proposition 5.2 reduces to

τ(s)= (−1)mV (n/2)eq(s) HV (n − s)
HV (s)

.

This is completely analogous to the factorization in the Euclidean case, once we shift the spectral parameter
by setting s =

1
2 n + iξ .

Suppose that NV (r)= O(r). Then, the scattering phase expansion of Corollary 8.3 allows us to apply
[Sá Barreto 2001, Theorem 1.2] to deduce that∣∣∣∣ ∑

|ξj |<r

1
ξj

∣∣∣∣ ≤ C

for all r > 0. The argument from the proof of [Sá Barreto 2001, Theorem 1.3] then yields a contradiction
to the fact the asymptotic expansion from Corollary 8.3 has only integral powers of ξ . □
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CHARACTERIZATION OF RECTIFIABILITY
VIA LUSIN-TYPE APPROXIMATION

ANDREA MARCHESE AND ANDREA MERLO

We prove that a Radon measure µ on Rn can be written as µ =
∑n

i=0 µi , where each of the µi is an
i-dimensional rectifiable measure if and only if, for every Lipschitz function f : Rn

→ R and every ε > 0,
there exists a function g of class C1 such that µ({x ∈ Rn

: g(x) ̸= f (x)}) < ε.

1. Introduction

A fundamental yet simple consequence of Rademacher’s theorem and Whitney’s theorem is the fact that
Lipschitz functions on the Euclidean space admit a Lusin-type approximation with C1-functions, namely,
for every Lipschitz function f : Rn

→ R and every ε > 0, there exists a function g : Rn
→ R of class C1

such that

L n({x ∈ Rn
: g(x) ̸= f (x)}) < ε,

where L n denotes the Lebesgue measure; see [Simon 1983, Theorem 5.3]. This fact has a central role in
many pivotal results in geometric measure theory, including the existence of the approximate tangent
space to a rectifiable set [Simon 1983, Lemma 11.1] and the validity of area and coarea formulas [Simon
1983, § 12].

On the one hand, this approximation property does not only hold for the Lebesgue measure: for instance
it holds trivially for a Dirac delta. It is not difficult to see that the same property holds for any rectifiable
measure, and clearly the class of Radon measures for which the property holds is closed under finite sums.

On the other hand, it is known that there are measures µ for which Lipschitz functions do not admit
a Lusin-type approximation with respect to µ with functions of class C1; see [Marchese 2017]. In this
note we completely classify those measures, proving that the validity of such an approximation property
characterizes rectifiable measures, in the following sense.

Theorem 1.1. Let µ be a positive Radon measure on Rn . The measure µ can be written as µ=
∑n

i=0 µi ,
where each of the µi is an i-dimensional rectifiable measure if and only if , for every Lipschitz function
f : Rn

→ R and every ε > 0, there exists a function g of class C1 such that

µ({x ∈ Rn
: g(x) ̸= f (x)}) < ε. (1)
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The proof of the “only if” part of Theorem 1.1 is a simple application of Whitney’s theorem. The proof
of the “if” part exploits some tools introduced in [Alberti and Marchese 2016], including the notion of the
decomposability bundle of a measure µ: a map x 7→ V (µ, x) which detects the maximal subspaces along
which Lipschitz functions are differentiable µ-almost everywhere [Alberti and Marchese 2016, § 2.6].
For the purposes of this paper, we need to refine the result [Alberti and Marchese 2016, Theorem 1.1(ii)]
on the existence of Lipschitz functions which are nondifferentiable along directions which do not belong
to the decomposability bundle. In that paper, such nondifferentiability is proved by finding a Lipschitz
function f and for µ-almost every point x a sequence of points yi := x + tiv ∈ Rn converging to x along a
direction v ̸∈ V (µ, x), such that the corresponding incremental ratios ( f (yi )− f (x))/ti do not converge.
Here we need to find a function f such that there exist points yi as above, with the additional requirement
that yi ∈ supp(µ); see Proposition 3.1. For a nonrectifiable measure µ, the existence of a µ-positive
set of points x for which there are points yi ∈ supp(µ) approaching x along a direction v ̸∈ V (µ, x) is
guaranteed by Lemma 2.1.

We plan to investigate similar questions in Carnot groups, exploiting tools and techniques introduced
in [De Philippis et al. 2022]. In this setting, similar questions have already attracted some interest. For
instance, in [Julia et al. 2023] the authors proved a suitable extension of Lusin’s approximation-type
theorem for the surface measure of 1-codimensional C1

H-rectifiable surfaces in the Heisenberg groups Hn ,
n ≥ 2, and where the regular approximation of Lipschitz functions are found in the class of C1

H-regular
functions. The authors also prove that in H1 there is a regular surface and a Lipschitz function that cannot
be approximated by C1

H-regular functions. This different behavior is connected to the algebraic structure
of the tangents to 1-codimensional regular surfaces in the Heisenberg groups Hn when n = 1 or n ≥ 2.

2. Notation and preliminaries

We denote by U (x, r) the open ball in Rn with center x and radius r and by B(x, r) the closed ball. In
addition, for a Borel set E and a δ > 0, we define B(E, δ) :=

⋃
y∈E B(y, δ). The unit sphere is denoted

by Sn−1.
Given a Radon measure µ and a (possibly vector-valued) function f , we denote by f µ the measure

f µ(A) :=

∫
A

f dµ for every Borel set A.

For a measure µ and a Borel set E we denote by µ ⌞ E the restriction of µ to E , namely the measure
defined by

µ ⌞ E(A) := µ(A ∩ E) for every Borel set A.

The support of a positive Radon measure µ, denoted supp(µ), is the intersection of all closed sets C such
that µ(Rn

\ C)= 0. For 0 ≤ k ≤ n, the symbol H k denotes the k-dimensional Hausdorff measure on Rn .

Definition (rectifiable sets and measures). For 0 ≤ k ≤ n, a set E ⊂ Rn is k-rectifiable if there are sets Ei

(i = 1, 2, . . .) such that

(i) Ei is a Lipschitz image of Rk for every i ;

(ii) H k
(
E \

⋃
i≥1 Ei

)
= 0.
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A Radon measure is said to be k-rectifiable if it is absolutely continuous with respect to H k ⌞ E for some
k-rectifiable set E .

As usual, the symbol Gr(k, n) denotes the Grassmannian of k-planes in Rn , and we define Gr :=⋃
0≤k≤n Gr(k, n). We endow Gr with the topology induced by the distance

d(V,W ) := dH (V ∩ U (0, 1),W ∩ U (0, 1)),

where dH is the Hausdorff distance. We recall the following definition; see [Alberti and Marchese 2016,
§2.6, §6.1 and Theorem 6.4].

Definition (decomposability bundle). Given a positive Radon measure µ on Rn , its decomposability
bundle is a map V (µ, · ) taking values in the set Gr defined as follows. A vector v ∈ Rn belongs to
V (µ, x) if and only if there exists a vector-valued measure T with div T = 0 such that

lim
r→0

M((T − vµ) ⌞ B(x, r))
µ(B(x, r))

= 0,

where M((T −vµ)⌞ B(x, r)) denotes the total variation of the vector-valued measure (T −vµ)⌞ B(x, r).

Definition (tangent measures). We define the map Tx,r (y) = (y − x)/r , and we denote by Tx,rµ the
pushforward of µ under Tx,r , namely Tx,rµ(A) := µ(x + r A) for every Borel set A. Given a measure µ
and a point x , the family of tangent measures Tan(µ, x), introduced in [Preiss 1987], consists of all
the possible nonzero limits (with respect to the weak* convergence of measures) of ci Tx,riµ for some
sequence of positive real numbers ci and some sequence of radii ri → 0. We know thanks to [Preiss 1987,
Theorem 2.5] that Tan(µ, x) is nonempty µ-almost everywhere.

Definition (cone over a k-plane). For any k ∈ {1, . . . , n −1}, 0<ϑ < 1, x ∈ Rn and V ∈ Gr(k, n), we let

X (x, V, ϑ) := x + {v ∈ Rn
: |pV (v)| ≥ ϑ |v|},

where pV denotes the orthogonal projection onto V . For notational convenience, for k = 0 and for every
0< ϑ < 1, we define X (x, 0, ϑ) := {x}.

Definition (FK distance between measures). Given φ and ψ two Radon measures on Rn , and given
K ⊆ Rn a compact set, we define

FK (φ, ψ) := sup
{∣∣∣∫ f dφ−

∫
f dψ

∣∣∣ : f ∈ Lip+

1 (K )
}
, (2)

where Lip+

1 (K ) denotes the class of 1-Lipschitz nonnegative functions with support contained in K . We
also write Fx,r for FB(x,r).

Lemma 2.1. Let µ be a Radon measure on Rn with dim(V (µ, x))= k < n for µ-almost every x. Assume
that µ(R)= 0 for every k-rectifiable set R. Then, for every 0< ϑ < 1 and for every ε > 0,

supp(µ)∩ B(x, ε) \ X (x, V (µ, x), ϑ) ̸= ∅ (3)

for µ-almost every x.
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Proof. Assume by contradiction that there exists a Borel set E with µ(E) > 0 such that, for every x ∈ E ,
there exists ε > 0 such that (3) fails. We claim that this implies that, for µ-almost every x ∈ E , every
tangent measure ν ∈ Tan(µ, x) satisfies

supp(ν)⊂ X (0, V (µ, x), ϑ). (4)

In order to prove (4), fix x ∈ E such that Tan(µ, x) is nonempty and consider any open ball U (y, ρ)⊂

Rn
\ X (0, V (µ, x), ϑ). Notice that since (3) fails, we have Tx,rµ(U (y, ρ))= µ(U (x + r y, rρ))= 0 for

every r <ε/(|y|+ρ), which we conclude in view of [De Lellis 2008, Proposition 2.7]. Thanks to [Del Nin
and Merlo 2022, Proposition 2.9] we infer that supp(ν)⊂ V (µ, x) and in particular ν = cH k ⌞ V (µ, x)
for some c > 0. For every W ∈ Gr(k, n), define

EW := {x ∈ Rn
: (k + 1)F0,1(H

k ⌞ V (µ, x),H k ⌞ W ) < 20−k−4
}.

By the compactness of the Grassmannian, there exists W ∈ Gr(k, n) such that µ(EW ) > 0. On the other
hand, by [Preiss 1987, §4.4(5)] and by the locality of tangent measures, see [Preiss 1987, §2.3(4)], we
conclude that µ ⌞ EW is supported on a k-rectifiable set. This however contradicts the assumption that
µ(R)= 0 for every k-rectifiable set R. □

Definition (cone-null sets). For any e ∈ Sn−1 and θ ∈ (0, 1), we let the one-sided cone of axis e and
amplitude θ be the set

C(e, θ) := {v ∈ Rn
: ⟨v, e⟩ ≥ θ |v|}.

In the following we denote by 0(e, θ) the family of Lipschitz curves γ : E ⊆ R → Rn such that γ ′(t) ∈

C(e, θ) for L1-almost every t ∈ E . Finally, a Borel set B is said to be C(e, θ)-null if H 1(im(γ )∩ B)= 0
for any γ ∈ 0(e, θ).

Proposition 2.2. Let E be a compact set in Rn . Let W ∈ Gr(k, n), with k < n, and suppose that there
exists θ0 ∈ (0, 1) such that, for any e ∈ W ⊥, the set E is C(e, θ0)-null. Then, for any θ0 ≤ θ < 1 and
ε > 0, there exists δ0 > 0 such that

H 1(im(γ )∩ B(E, δ0))≤ ε

for any γ ∈ 0(e, θ). For any θ0 ≤ θ < 1, 0< δ < δ0 and any e ∈ W ⊥, consider the function

ωe,θ,δ(x) := sup
γ∈0(e,θ)
γ (b)=x+λe

H 1(B(E, δ)∩ im(γ ))− λ|e|. (5)

Then the following properties hold:

(i) 0 ≤ ωe,θ,δ(x)≤ ε for any x ∈ Rn ,

(ii) ωe,θ,δ(x)≤ωe,θ,δ(x +se)≤ωe,θ,δ(x)+s|e| for every s> 0 and any x ∈ Rn . Moreover, if the segment
[x, x + se] is contained in B(E, δ), then ωe,θ,δ(x + se)= ωe,θ,δ(x)+ s|e|,

(iii) |ωe,θ,δ(x + v)−ωe,θ,δ(x)| ≤ θ(1 − θ2)−1/2
|v| for every v ∈ V := e⊥,

(iv) ωe,θ,δ is (1 + (n − 1)θ(1 − θ2)−1/2)-Lipschitz.
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Proof. The first part of the proposition is an immediate consequence of Step 1 in the proof of [Alberti and
Marchese 2016, Lemma 4.12]. On the other hand, the construction of the function ωe,θ,δ was performed
in the second step of that proof. □

3. Construction of nondifferentiable functions

In this section we prove the existence of some suitable Lipschitz functions which are nondifferentiable
along directions that are quantitatively far away from the decomposability bundle. Given a measure µ as
in Lemma 2.1, we prove that there are many functions which are nondifferentiable on a set of positive
µ-measure with the additional property that the nondifferentiability is “detected” by the points in the
support of µ; see Proposition 3.1.

In this section we fix k ∈ {0, . . . , n − 1} and let µ be a Radon measure such that dim(V (µ, x))= k for
µ-almost every x ∈ Rn and µ(R)= 0 for any k-rectifiable set R. Thanks to the strong locality principle,
see [Alberti and Marchese 2016, Proposition 2.9(i)], and Lusin’s theorem, we can assume, up to restriction
to a compact subset K̃ ⊂ supp(µ) of positive µ-measure, that V (µ, x) is uniformly continuous on K̃ . Up
to restricting to a subset where the oscillation of V is small, we can assume that there are n continuous
vector fields e1, . . . , en : Rn

→ Sn−1 such that

V (µ, x)= span{e1(x), . . . , ek(x)} and V (µ, x)⊥ = span{ek+1(x), . . . , en(x)} for every x ∈ K̃ .

The aim of this section is to prove the following.

Proposition 3.1. Let µ and K̃ be as above. There exists a Lipschitz function f : Rn
→ R and a Borel set

E ⊆ K̃ of positive µ-measure such that, for µ-almost every x ∈ E , there exists a direction v ̸∈ V (µ, x)
and a sequence of points yi = yi (x) ∈ K̃ such that

yi − x
|yi − x |

→ v and lim sup
i→∞

f (yi )− f (x)
|yi − x |

− lim inf
i→∞

f (yi )− f (x)
|yi − x |

> 0.

Writing α = 1/
√

n, we apply Lemma 2.1 with the choice ϑ =
√

1 −α2 to find a compact subset Kα

of K̃ with positive measure, where

supp(µ)∩ B(x, r) \ X (x, V (µ, x),
√

1 −α2) ̸= ∅ for any r > 0 and every x ∈ Kα. (6)

Lemma 3.2. Let µ and Kα be as above. Then, we can find a compact set K ⊆ Kα of positive µ-measure
and a continuous vector field e : Rn

→ Sn−1 such that e(x) is orthogonal to V (µ, x) at µ-almost every
x ∈ Rn and such that

supp(µ)∩ B(x, r)∩ C(e(x), (n − k)−1α) \ X (x, V (µ, x),
√

1 −α2) ̸= ∅

for any r > 0 and for every x ∈ K . (7)

Proof. By the choice of α, the cones

C(ek+1(x), (n−k)−1α), . . . ,C(en(x), (n−k)−1α),C(−ek+1(x), (n−k)−1α), . . . ,C(−en(x), (n−k)−1α)
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cover Rn
\ X (0, V (µ, x),

√
1 −α2) for every x ∈ Kα. Hence there exists one vector field, which we

denote by e, among the ek+1, . . . , en,−ek+1, . . . ,−en for which the set of those x ∈ Kα where (7) holds
has positive µ-measure. □

Definition. Throughout the rest of this section we will let α0 be as in (6) and we fix 0 < α < α0. We
also fix the compact set K and the continuous vector field e : Rn

→ Sn−1 yielded by Lemma 3.2. We let
e1, . . . , ek : Rn

→ Sn−1 be continuous orthonormal vector fields spanning V (µ, x) at every x ∈ K and
we complete {e1, . . . , ek, e} to a basis of Rn of orthonormal continuous vector fields that we denote by
{e1, . . . , ek, e, ek+1, . . . , en−1}.

Fix a ball B(0, r) such that K ⊂ B(0, r − 1). For any β ∈ (0, 1), we denote by Xβ the family of
Lipschitz functions f : B(0, r)→ R such that

|De f (x)| ≤ 1 and |De j f (x)| ≤ β for any j = 1, . . . , n − 1, (8)

for L n-almost every x ∈ Rn . We metrize Xβ with the supremum norm and note that this make Xβ a
complete and separable metric space. Note also that Xβ is nontrivial as it contains all the β-Lipschitz
functions.

In the following definition we introduce some quantities which measure the incremental ratios “detected”
by points in the support of µ, at fixed scales and along directions which are outside a cone whose axis is
the decomposability bundle.

Definition. For any β > 0 and any 0 ≤ σ ′ < σ < 1, we can define on Xβ the maps

T +

σ ′,σ f : x 7→ max
{

sup
{

f (x + v)− f (x)
|v|

: σ ′ < |v| ≤ σ

and x + v ∈ supp(µ) \ X (x, V (µ, x),
√

1 −α2)

}
,−n

}
,

T −

σ ′,σ f : x 7→ min
{

inf
{

f (x + v)− f (x)
|v|

: σ ′ < |v| ≤ σ

and x + v ∈ supp(µ) \ X (x, V (µ, x),
√

1 −α2)

}
, n

}
.

Proposition 3.3. For any 0 ≤ σ ′ < σ < 1, the functionals

U±

σ ′,σ f :=

∫
K

T ±

σ ′,σ f (z) dµ(z)

are Baire class 1 on Xβ .

Proof. As a first step we show that the T +

σ ′,σ
: Xβ → L1(µ ⌞ K ) are continuous whenever 0< σ ′ < σ < 1.

The functions T +

σ ′,σ f belong to L1(µ ⌞ K ) since K has finite measure and

|T +

σ ′,σ f | ≤ Lip( f )+ n.

In addition, it is immediate to see that

|T +

σ ′,σ f (x)− T +

σ ′,σ g(x)| ≤
2∥ f − g∥∞

σ ′
for µ-almost every x ∈ Rn,
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thanks to the fact that if at some x ∈ Rn we have

(B(x, σ ) \ B(x, σ ′))∩ (supp(µ) \ X (x, V (µ, x),
√

1 −α2))= ∅,

then Tσ ′,σ f (x)= −n for any f ∈ Xβ . Integrating with respect to µ, we infer that

∥T +

σ ′,σ f (x)− T +

σ ′,σ g(x)∥L1(µ⌞K ) ≤
2µ(K )
σ ′

∥ f − g∥∞.

This implies in particular that U+

σ ′,σ is a continuous functional on Xβ . Following verbatim the argument
above, one can also prove the continuity of the functionals T −

σ ′,σ and U−

σ ′,σ .
In order to prove that U±

0,σ is of Baire class 1, thanks to [Kechris 1995, §24.B] we just need to show
that, for any f ∈ Xβ , we have

lim
j→∞

U±

j−1,σ
f = U±

0,σ f. (9)

This is an immediate consequence of the dominated convergence theorem since the sequence (T ±

j−1,σ
f ) j

converges pointwise to T ±

0,σ f and is dominated by the function constantly equal to n. □

We are now ready to prove the main result of the section, namely the fact that Xβ contains plenty of
Lipschitz functions whose nondifferentiability at some points of K is “detected” by points in the support
of µ.

Proposition 3.4. Let β < (8n2)−1α. Then, for every σ > 0, the continuity points of U±

0,σ are contained
in the set

L±(σ ) :=

{
f ∈ Xβ : ±U±

0,σ f ≥
α

16n
µ(K )

}
.

In particular both L+(σ ) and L−(σ ) are residual in Xβ .

Let us briefly explain here the idea of the proof. In our reduction, for every point x ∈ K at any small
scale, there is a point y ∈ supp(µ) such that y − x is far away from V (µ, x); see Lemma 3.2. Hence the
point y is not reached by Lipschitz curves passing through x and lying inside supp(µ). By Proposition 2.2,
we can find a Lipschitz function ω with small supremum norm which “jumps” with high derivative along
the segment [x, y] for any such point y. Assuming by contradiction that at a continuity point g ∈ Xβ the
value of U+

0,σ is below a certain threshold, we reach a contradiction perturbing g by adding ω, so that the
value of U+

0,σ increases significantly.

Proof. We prove the result just for U+

0,σ . The argument to prove the analogous statement for U−

0,σ can be
obtained following verbatim that for U+

0,σ while making suitable changes of sign.
Assume for contradiction that g is a continuity point for U+

0,σ contained in Xβ \L+(σ ). It is easy to
see by convolution that smooth functions are dense in Xβ . Since g is a continuity point for U+

0,σ , for any
ℓ ∈ N, we can find a smooth function hℓ ∈ Xβ such that

∥g − hℓ∥∞ ≤ 2−ℓ and U+

0,σhℓ ≤ αµ(K )/(8n),

and, for any x ∈ Rn , we have

|Dehℓ(x)| ≤ 1 and |De j hℓ(x)| ≤ β for any j = 1, . . . , n − 1.
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Let

A := {y ∈ K : T +

0,σhℓ(y)≤ α/(8n)}.

Thanks to Besicovitch’s covering theorem and [Alberti and Marchese 2016, Lemma 7.5], we can cover
µ-almost all A with countably many closed and disjoint balls {B(y j , r j )} j∈N such that, for 0< η, χ <
(n210ℓ)−1β2,

(i) r j ≤ 2−ℓ, µ(A ∩ B(y j , r j ))≥ (1 − η)µ(B(y j , r j )) and µ(∂B(y j , r j ))= 0,

(ii) for any z ∈ B(y j , r j ),

|e(z)− e(y j )| + |∇hℓ(y j )− ∇hℓ(z)| +
∣∣∣∣hℓ(z)− hℓ(y j )

|z − y j |
− ∇hℓ(z)

[
z − y j

|z − y j |

]∣∣∣∣ ≤ χ4,

(iii) for any j ∈ N, we can find 0< ρ j < (n2ℓ)−1β2 and a compact subset Ã j of A ∩ B(y j , (1 − 2ρ j )r j )

such that µ( Ã j )≥ (1 − 2η)µ(B(y j , r j )) and Ã j is C(e(y j ), 2−10ℓχ2)-null.

For any j ∈ N, we let φ j be a smooth 2(ρ jr j )
−1-Lipschitz function such that 0 ≤ φ j ≤ 1, φ j = 1 on

B(y j , (1 − ρ j )r j ) and it is supported on B(y j , r j ). Now fix 0< ε < βχ2. Thanks to Proposition 2.2 we
can find δ j ≤ 2− jρ jr j and a function ω j such that:

(1) 0 ≤ ω j (x)≤ εβρ jr j for any x ∈ Rn .

(2) ω j (x) ≤ ω j (x + se(y j )) ≤ ω j (x)+ s for every s > 0 and any x ∈ Rn . Moreover, if the segment
[x, x + se(y j )] is contained in B( Ã j , δ j ), then ω j (x + se(y j ))= ω j (x)+ s.

(3) |ω j (x + v)−ω j (x)| ≤ 2−9ℓχ2
|v| for every v ∈ e(y j )

⊥.

(4) ω j is 1 + 2−9ℓχ2-Lipschitz.

We thus define the function gℓ as

gℓ := (1 − 2χ)
(

hℓ +

∑
j∈N

[−⟨∇hℓ(y j ), e(y j )⟩ + 1]φ jω j

)
. (10)

First we estimate the supremum distance

∥g − gℓ∥∞ ≤ ∥g − hℓ∥∞ + 2χ∥hℓ∥∞ + (1 − 2χ)∥hℓ − (1 − 2χ)−1gℓ∥∞

≤ 2−ℓ
+χ(∥g∥∞ + 2−ℓ)+ (1 − 2χ)

∥∥∥∥∑
j∈N

(1 − ⟨∇hℓ(y j ), e(y j )⟩)

∥∥∥∥
∞

≤ 2−ℓ(2 + ∥g∥∞ + (1 + (n − 1)β2)1/2)≤ 2−ℓ(4 + ∥g∥∞), (11)

where the last inequality follows from the choice of β. The above computation shows that the sequence gℓ
converges in the supremum distance.

Let us now prove that gℓ ∈ Xβ . If z ̸∈
⋃

j B(y j , r j ), then the functions hℓ and gℓ and their gradients
coincide at z and hence gℓ satisfies (8) on

(⋃
j B(y j , r j )

)c. If on the other hand z ∈
⋃

j B(y j , r j ), there
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exists a unique j ∈ N such that z ∈ B(y j , r j ). In particular, differentiating (10) we get

∇gℓ(z)= (1 − 2χ)
[
∇hℓ(z)+ [−⟨∇hℓ(y j ), e(y j )⟩ + 1]∇φ j (z)ω j (z)

+ [−⟨∇hℓ(y j ), e(y j )⟩ + 1]φ j (z)∇ω j (z)
]
,

so that, for L n-almost every x ∈ Rn , we have

|⟨∇gℓ(z), e(z)⟩| ≤ (1 − 2χ)|⟨∇hℓ(z), e(z)⟩ + [−⟨∇hℓ(y j ), e(y j )⟩ + 1]φ j (z)⟨∇ω j (z), e(z)⟩| + 2εβ,

where in the estimate above we have used the facts that

|−⟨∇hℓ(y j ), e(y j )⟩ + 1| ≤ 2, ∥∇φ∥L∞(L n) ≤ 2(ρ jr j )
−1 and ∥ω j∥∞ ≤ εβρ jr j .

Now we replace z with y j in the first addendum, by means of the estimate (ii), obtaining

|⟨∇gℓ(z), e(z)⟩| ≤ 3(1 − 2χ)χ2
+ (1 − 2χ)

∣∣⟨∇hℓ(y j ), e(y j )⟩(1 −φ j (z)⟨∇ω j (z), e(z)⟩)

+φ j (z)⟨∇ω j (z), e(z)⟩
∣∣ + 2εβ.

Finally, substituting z with y j in the argument of the vector field e, we deduce thanks to (ii) that

|⟨∇gℓ(z), e(z)⟩| ≤ 3(1 − 2χ)χ2
+ 2εβ + 6(1 − 2χ)(1 + 2−9ℓχ)χ2

+ (1 − 2χ)|⟨∇hℓ(y j ), e(y j )⟩(1 −φ j (z)⟨∇ω j (z), e(y j )⟩)+φ j (z)⟨∇ω j (z), e(y j )⟩|

≤ 3(1 − 2χ)χ2
+ 2εβ + 6(1 − 2χ)(1 + 2−9ℓχ)χ2

+ (1 − 2χ)≤ 1,

where the last inequality follows from the choice of χ, β, ε. Furthermore, for any q = 1, . . . , n − 1, we
infer similarly that

|gℓ(z + teq(z))− gℓ(z)|

≤ (1 − 2χ)|hℓ(z + teq(z))− hℓ(z)|

+ (1 − 2χ)|[1 − ⟨∇hℓ(y j ), e(y j )⟩](φ j (z + teq(z))−φ j (z))ω j (z)|

+ (1 − 2χ)|[1 − ⟨∇hℓ(y j ), e(y j )⟩]φ j (z)(ω j (z + teq(y j ))−ω j (z))|

+ (1 − 2χ)|[1 − ⟨∇hℓ(y j ), e(y j )⟩]φ j (z)(ω j (z + teq(z))−ω j (z + teq(y j )))| + o(|t |)

≤ (1 − 2χ)β|t | + 4(1 − 2χ)(βερ jr j )(ρ jr j )
−1

|t | + 3 · 2−9ℓ(1 − 2χ)χ2
|t |

+ 3(1 − 2χ)(1 + 2−9ℓχ)χ4
|t | + o(|t |)

≤ (1 − 2χ)(β + 4βε+ 4 · 2−9ℓχ2
+ 4(1 + 2−9ℓχ)χ4)|t |

≤ (1 − 2χ)(1 + 10χ2)β|t | + o(|t |) < β|t |,

provided |t | is chosen sufficiently small (depending on z) and where the second to last inequality holds
thanks to the choice of χ, ε and for ℓ large enough that 2−ℓ

≤ β. The above bound implies that, in
particular,

|⟨∇gℓ(z), eq(z)⟩| ≤ β for L n-almost every x ∈ Rn . (12)

This concludes the proof that, for ℓ sufficiently large, we have gℓ ∈ Xβ .
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The next step in the proof is to show that the functions gℓ satisfy the inequality U+

0,σ gℓ ≥ αµ(K )/(8n)
for ℓ sufficiently large, which contradicts the continuity of U+

0,σ at g (recall that we supposed U+

0,σ g ≥

αµ(K )/(16n)). In order to see this, we first estimate from below the partial derivative of gℓ along e on
the points of Ã j for any j . So, let us fix for any j ∈ N a point z ∈ Ã j . Then, let 0 < λ0 < δ j be small
enough that φ j (z + λe(z))= 1 for any 0< λ < λ0, and note that

⟨gℓ(z + λe(z))− gℓ(z), e(z)⟩

≥ (1 − 2χ)[(hℓ(z + λe(z))− hℓ(z))+ [1 − ⟨∇hℓ(y j ), e(y j )⟩](ω j (z + λe(z))−ω j (z))]

≥ (1 − 2χ)[−χ2λ+ λ⟨∇hℓ(z), e(z)⟩ + [1 − ⟨∇hℓ(y j ), e(y j )⟩]λ]

≥ λ(1 − 2χ)(1 − 4χ2)≥ (1 − 6χ)λ.

This implies in particular that, for any unit vector v ∈ C(e(z), (n − k)−1α) and for any λ > 0, we have

gℓ(z +λv)− gℓ(z)≥ gℓ(z +λv)− gℓ(z +λ⟨e(z), v⟩e(z))+ gℓ(z +λ⟨e(z), v⟩e(z))− gℓ(z)

≥ α(n − k)−1(1−6χ)λ−β
√

n −1λ≥
α

2(n − k)
λ−βnλ > α

λ

4(n − k)
, (13)

where the last inequality follows from the choice of β. However, thanks to the choice of K , see (7), we
infer that

T +

0,σ gℓ(z)≥
α

4(n − k)
for any z ∈

⋃
j

Ã j .

This allows us to infer that

U+

0,σ gℓ =

∫
A

T +

0,σ gℓ dµ+

∫
K\A

T +

0,σ gℓ dµ≥

∫
A

T +

0,σ gℓ dµ+αµ(K \ A)

=

∫
A\

⋃
j Ã j

T +

0,σ gℓ dµ+

∑
j∈N

∫
A j

T +

0,σ gℓ dµ+αµ(K \ A)

≥ −µ

(
A \

⋃
j∈N

A j

)
Lip(gℓ)+

α

4(n − k)
µ

(⋃
j∈N

A j

)
+αµ(K \ A)

≥ −2µ
(

A \

⋃
j∈N

A j

)
+

α

4(n − k)
µ

(
(K \ A)∪

⋃
j∈N

A j

)
≥ −4ηµ(K )+

α

4(n − k)
(1 − 2η)µ(K )≥

α

8n
µ(K )

for ℓ sufficiently large.

Since the functional U+

0,σ is of Baire class 1, thanks to [Oxtoby 1971, Chapter 7] we know that the
set of the continuity points of U+

0,σ is residual. However, since, thanks to the above argument, L+(σ )

contains the continuity points of U+

0,σ , we conclude that L+(σ ) is residual in Xβ . □

Proof of Proposition 3.1. Let β := (16n2)−1α and let c(α) := α/(16n). Note that since the count-
able intersection of residual sets is residual, we can find a Lipschitz function f in Xβ such that
f ∈

⋂
σ∈Q∩(0,1)(L+(σ )∩L−(σ )). In particular, for any σ > 0, we have

U−

0,σ f ≤ −c(α)µ(K ) < c(α)µ(K )≤ U+

0,σ f.
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Letting 1Tσ f (z) := T +

0,σ f (z)− T −

0,σ f (z) and Cσ := {z ∈ K :1Tσ (z) > c(α)}, we have

2c(α)µ(K )≤

∫
K
1Tσ (z) dµ ⌞ K (z)≤ µ(K \ Cσ )c(α)+ 2 Lip( f )µ(Cσ ).

Thanks to the above computation we infer in particular that µ(Cσ )≥ c(α)µ(K )/(2 Lip( f )) for any σ > 0.
Thus, defining E :=

⋂
j∈N

⋃
l≥ j C1/ l , Fatou’s lemma implies that

c(α)µ(K )
2 Lip( f )

≤ lim sup
p→∞

µ(C1/p)≤

∫
lim sup

p→∞

1C1/p dµ= µ(E),

where 1C1/p denotes the indicator function of the set C1/p. Therefore, E is a Borel set of positive
µ-measure such that, for µ-almost every z ∈ E , there exists a sequence of natural numbers (depending
on z) such that p → ∞ and 1T1/p > c(α). In particular, for µ-almost every z ∈ E , we have

c(α) < lim inf
p→∞

(T +

0,1/p f (z)− T −

0,1/p f (z))= lim
p→∞

(T +

0,1/p f (z)− T −

0,1/p f (z)), (14)

where the last identity comes from the fact that p 7→ T +

0,1/p f (z) is decreasing and p 7→ T −

0,1/p f (z) is
increasing for any z. However, thanks to the definitions of T +

0,1/p f and T −

0,1/p f , it is immediate to see
that, for µ-almost every z ∈ E , we can find a sequence

yi = yi (z) ∈ supp(µ)∩ B(z, i−1) \ X (0, V (µ, x),
√

1 −α2)

such that
yi − z

|yi − z|
→ v and lim sup

i→∞

f (yi )− f (z)
|yi − z|

− lim inf
i→∞

f (yi )− f (z)
|yi − z|

>
c(α)

2
. □

4. Proof of Theorem 1.1

Without loss of generality we can restrict our attention to finite measures. Assume that µ is a finite sum
of rectifiable measures. For every ε > 0, there exist finitely many disjoint, compact submanifolds S j

for j = 1, . . . , N of class C1 (of any dimension between 0 and n) such that, defining K :=
⋃N

j=1 S j , we
have µ(Rn

\ K ) < 1
2ε. Consider now any Lipschitz function f : Rn

→ R. By [Alberti and Marchese
2016, Theorem 1.1(i)] and Lusin’s theorem, we can find a closed subset C ⊂ K such that µ(K \ C) < 1

2ε

and, for every x ∈ C , the differential dV (µ,x) f (x), see [Alberti and Marchese 2016, §2.1], exists and is
continuous. Let d : C → Rn be obtained by extending dV (µ,· ) f to be zero in the directions orthogonal
to V (µ, · ). By [Alberti and Marchese 2016, Proposition 2.9(iii)] and since the S j ’s have positive mutual
distances, we can apply Whitney’s extension theorem, see [Evans and Gariepy 1992, Theorem 6.10],
deducing that there exists a function g : Rn

→ R of class C1 such that g = f and dg = d on C . Hence
Lipschitz functions admit a Lusin-type approximation with respect to µ with functions of class C1.

Assume now that µ is not a finite sum of rectifiable measures, and write µ=
∑n

k=0 µ ⌞ Ek , where

Ek := {x ∈ Rn
: dim(V (µ, x))= k}.

Then there exists k ∈ {0, . . . , n − 1} such that µ ⌞ Ek is not a k-rectifiable measure: the case k = n
can be excluded by combining [Alberti and Marchese 2016, Theorem 1.1(i)] and [De Philippis and
Rindler 2016, Theorem 1.14] so as to ensure that a measure on Rn whose decomposability bundle has
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dimension n is absolutely continuous with respect to the Lebesgue measure L n . Let ν be the supremum
of all k-rectifiable measures σ ≤ µ ⌞ Ek , and let E be any Borel set such that ν = µ ⌞ (Rn

\ E). We claim
that µ ⌞ E satisfies the assumptions of Lemma 2.1.

To prove the claim, consider a k-dimensional surface S that is the graph of some function h : W → W ⊥

of class C1, where W ∈ Gr(k, n). Assume for contradiction that η := µ ⌞ (E ∩ S) is nonzero. If

G = {µt := H 1 ⌞ Et }t∈I ∈ Fη

is a family as in [Alberti and Marchese 2016, Proposition 2.8(ii)], then supp(µt)⊂ S for almost every t ∈ I .
Since both V (η, x) and Tan(S, x) are k-dimensional, this implies that V (η, x)= Tan(S, x) for η-almost
every x . Fix now a point y ∈ supp(η), and observe that the family {H 1 ⌞ pW (Et)}t∈I belongs to F(pW )♯η

(as (pW )♯µt is absolutely continuous with respect to H 1 ⌞ pW (Et) for any t) and that V ((pW )♯η, · ) is
k-dimensional (pW )♯η-almost everywhere. By [De Philippis and Rindler 2016, Corollary 1.12], we infer
that (pW )♯η is absolutely continuous with respect to H k ⌞ W . Finally, since pW is locally bi-Lipschitz
from S to W , this implies that η is absolutely continuous with respect to H k ⌞ S, which contradicts the
maximality of σ . Hence µ ⌞ E satisfies the assumptions of Lemma 2.1.

Let f : Rn
→ R be the Lipschitz function obtained from Proposition 3.1. Clearly there exists no

function g : Rn
→ R of class C1 which coincides with f on a set of positive µ ⌞ E measure, hence

Lipschitz functions do not admit a Lusin-type approximation with respect to µ with functions of class C1.

Remarks. (1) It is evident from the last lines in the proof of Theorem 1.1 that the condition that g is of
class C1 can be replaced by the condition that g is differentiable everywhere.

(2) In Theorem 1.1 the condition (1) can be strengthened to

µ({x ∈ Rn
: g(x) ̸= f (x) or dV g(x) ̸= dV f (x)}) < ε, (15)

where dV denotes the “tangential differential” defined in [Alberti and Marchese 2016, Theorem 1.1].
This follows immediately from [De Philippis et al. 2022, Proposition 6.2]; see also [Julia et al. 2023,
Theorem B]. On the other hand one cannot replace (1) with the condition

µ({x ∈ Rn
: dV g(x) ̸= dV f (x)}) < ε, (16)

since the latter does not force any geometric structure on µ. More precisely, for every Radon measure µ
and every Lipschitz function f , for every ε > 0, one can find a function g of class C1 such that (16)
holds; see [Marchese and Schioppa 2019, Theorem 2.1].
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ON THE ENDPOINT REGULARITY IN ONSAGER’S CONJECTURE

PHILIP ISETT

Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible
Euler flows with Hölder regularity below 1

3 . This conjecture was recently solved by the author, yet the
endpoint case remains an interesting open question with further connections to turbulence theory. In
this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler
equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and
containing the entire range of exponents

[
0, 1

3

)
.

Our construction improves the author’s previous result towards the endpoint case. To obtain this
improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex
integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration.
This goal is achieved using localization techniques of Isett and Oh (Arch. Ration. Mech. Anal. 221:2
(2016), 725–804) to modify the convex integration scheme.

We also prove results on general solutions at the critical regularity that may not conserve energy. These
include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute
structure functions satisfying the Kolmogorov–Obukhov scaling for any p > 3 if their singular supports
have space-time Lebesgue measure zero.

1. Introduction

We consider the endpoint regularity in Onsager’s conjecture for the incompressible Euler equations
on R × T3, which we write in conservation form as

∂tv
ℓ
+ ∇j (v

jvℓ)+ ∇
ℓ p = 0,

∇jv
j
= 0,

(E)

using the summation convention for summing repeated indices. We are concerned mainly with weak
solutions to the incompressible Euler equations, which are defined most generally as a locally square-
integrable vector field v (called the velocity field) and scalar function p (called the pressure) that together
satisfy (E) in the sense of distributions.

Onsager’s conjecture states that for any Hölder exponent α < 1
3 there exist periodic weak solutions

to the three-dimensional incompressible Euler equations that belong to the Hölder class v ∈ L∞
t Cα

x and
fail to conserve the total kinetic energy 1

2

∫
T3 |v(t, x)|2 dx . The endpoint case of the conjecture is that

the same statement should hold for α =
1
3 . The above statements originate from [Onsager 1949] on the

statistical theory of hydrodynamic turbulence, where he postulated that dissipation of energy may occur
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in the absence of viscosity1 through the mechanism of an energy cascade modeled by the incompressible
Euler equations.

Onsager’s argument predicts that such energy dissipation should be possible for incompressible Euler
flows with regularity exactly 1

3 . Specifically, Onsager argued that the energy cascade occurring in a
turbulent flow will result in an energy spectrum with a statistical power law consistent with exactly the
(Besov or Hölder) regularity 1

3 in the inertial range of frequencies, which agrees with the scaling laws
of turbulence predicted by Kolmogorov’s theory [1941]. (See also [De Lellis and Székelyhidi 2013a;
Eyink and Sreenivasan 2006] for more detailed reviews of these statements and computations.) On the
other hand, Onsager asserted that conservation of energy must hold for every incompressible Euler flow
v ∈ L∞

t Cα
x (I × T3) with Hölder regularity α strictly above 1

3 . A strengthening of this latter assertion was
proved in [Constantin et al. 1994] after initial work in [Eyink 1994], with the sharpest known result being
that conservation of energy holds for weak solutions in the Besov class v ∈ L3

t B1/3
3,c0(N)

[Cheskidov et al.
2008]. These results leave open the possibility that energy dissipation as considered by Onsager may
be possible for solutions to incompressible Euler with exactly the critical regularity 1

3 (e.g., for weak
solutions in the class v ∈ CtC

1/3
x ), while the construction in [Eyink 1994] of initial data with critical

regularity and nonzero energy flux provides further evidence that dissipation of energy for weak solutions
at the critical regularity should indeed exist.

The existence of weak solutions to incompressible Euler equations in the class v ∈ L∞
t Cα

x (R × T3)

that fail to conserve energy has been established by the author for all α < 1
3 in [Isett 2018]. The solutions

are constructed using the method of convex integration, which was first introduced to the incompressible
Euler equations by De Lellis and Székelyhidi [2009; 2013b; 2014] and was further developed towards
improved partial results towards Onsager’s conjecture in [Buckmaster et al. 2015; 2016; Isett 2017a]. The
proof in [Isett 2018] relies also on the use of Mikado flows introduced in [Daneri and Székelyhidi 2017]
to implement convex integration in combination with a new “gluing approximation” technique.

In the present work, we improve upon the result in [Isett 2018] to construct solutions with borderline
regularity that approaches the endpoint case at small length scales while failing to conserve energy. Our
main result is the following.

Theorem 1.1. There exists a weak solution (v, p) to the incompressible Euler equations that has nonempty,
compact support in time on R×T3 and belongs to the class v ∈

⋂
α<1/3 Cα

t,x . Moreover, one may arrange
that v also satisfies an estimate of the form

|v(t, x +1x)− v(t, x)| ≤ C |1x |
1/3−B

√
(log log |1x |−1)/(log |1x |−1) (1)

for some constants C and B and for all (t, x) ∈ R × T3 and all |1x | ≤ 10−2.

The theorem is significant for the following reasons:

• Theorem 1.1 demonstrates how close the method of convex integration can come to achieving the
self-similar L∞

t C1/3
x regularity that corresponds to the Kolmogorov theory.

1A related and important open question is whether such energy dissipating solutions arise as zero viscosity limits of solutions
to the Navier–Stokes equations.
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• The theorem is the first result proved by convex integration that approaches the endpoint regularity and
avoids the strictly positive gap in regularity from the endpoint faced by previous results. In particular, we
have that v ∈

⋂
α<1/3 Cα

t,x rather than having regularity bounded strictly below the limiting exponent (i.e.,
v ∈ C1/3−ϵ

t,x for some ϵ > 0).

• The proof of Theorem 1.1 is based on a new algorithm that optimizes the regularity coming from
a convex integration construction, which may be useful for future numerical simulations of convex
integration solutions. This algorithm also apparently identifies an evident barrier towards achieving the
endpoint regularity exactly using the convex integration method.

• The proof of Theorem 1.1 clarifies which techniques in the literature yield the sharpest regularity.

The constant B, which determines2 the rate at which the regularity 1
3 is approached at small scales, can be

taken to be B = 2
√

2
3 +o(1), and this bound can be improved to B =

4
3 +o(1) by combining our methods

with the approach to the gluing approximation taken in [Buckmaster et al. 2019a] (see Sections 11–12
below). For comparison, note that inequality (1) with

O
(√

log log |1x |
−1

log |1x |−1

)
replaced by O

(
1

log |1x |−1

)
would correspond to exactly the endpoint regularity L∞

t C1/3
x .

The algorithm we develop to prove Theorem 1.1, presented in Sections 11–12, is the main novelty
of our paper relating to the construction of solutions. Later on we will discuss theorems that elaborate
a general theory of endpoint solutions. We expect that our algorithm can be adapted to give similar
borderline regularity results in any known convex integration construction of Hölder-continuous solutions
in which loss of powers in the frequency in the estimates can be avoided. In particular, the method is
likely to generalize to isometric embeddings as in [Conti et al. 2012] (but not [De Lellis et al. 2018]), to
nondegenerate active scalar equations [Isett and Vicol 2015], to the two-dimensional Monge–Ampère
equation [Lewicka and Pakzad 2017], and to the surface quasigeostrophic (SQG) equation [Buckmaster
et al. 2019b]. In these cases, there is no logarithmic loss in the main lemma and the log log |1x |

−1 term
appearing in (1) should be replaced by a large constant. (In the present case, the gluing technique gives
rise to a logarithmic loss.) It is hopeful that our algorithm for optimizing the regularity may also be useful
for potential applications to simulating convex integration solutions.

To achieve solutions with borderline regularity, it is necessary that the proof avoids losses of powers
of the frequency in the estimates of the iteration scheme. An important point in this regard is that the
approach to the gluing construction taken in [Isett 2018] obtains estimates that lose only a power of
the logarithm of the frequency. These estimates require extending the timescale of the gluing beyond
the standard timescale in the local existence theory for incompressible Euler, which would be inversely
proportional to some Cα norm of the initial velocity gradient. (We note in contrast that the approach taken
in [Buckmaster et al. 2019a] leads to loss of powers in the frequency at several points in the proof. These
occur both in the gluing and convex integration in parts of the proof where local well-posedness theory,

2Note that changing the value of B in (1) corresponds to an inequivalent norm.
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Schauder estimates and Calderón–Zygmund commutator estimates are employed.) Still there is one point
in the proof in [Isett 2018], which occurs during the convex integration step, where one encounters a
loss of powers in the frequency, and it is necessary to modify the convex integration part of the proof to
obtain our borderline result. This loss of powers occurs specifically when solving the divergence equation
∇j R jℓ

= U ℓ for a symmetric tensor R jℓ.
To avoid this power loss, we adapt the strategy of [Isett and Oh 2016b] for localizing the convex

integration method, which relies on two main modifications to the construction to gain the necessary
estimate. The first point is to modify the construction using waves that are localized to small length
scales and are each forced to obey the conservation of angular momentum in addition to the conservation
of linear momentum. The second point is to make use of a family of operators developed in [Isett and
Oh 2016b] that give compactly supported, symmetric solutions to the divergence equation when the
necessary conditions for solving the symmetric divergence equation are satisfied. In combination, these
modifications allow one to avoid the loss of powers in the frequency that had been present in [Isett 2017a]
while enabling the authors to extend previous work of [Isett 2017a] on

( 1
5 − ϵ

)
-Hölder Euler flows to the

nonperiodic setting of R × R3. Here we adapt these ideas to the present scheme to achieve an analogous
improvement in our bounds. We note that it is important for this gain that we rely on the approach to
the nonstationary phase estimate based on a parametrix and nonlinear phase functions introduced in
[Isett 2017a].

Obtaining the endpoint case of Onsager’s conjecture will require further new ideas, and it is of interest
to study the behavior of potential energy nonconserving solutions with endpoint regularity and possible
approaches to constructing them. A convex integration approach to the endpoint regularity would be
possible if something sufficiently close to an “ideal” main lemma can be proven where one has neither
logarithmic nor loss of powers in the frequency and the constant in the frequency growth is equal to
Ĉ = 1 (as in a remark of [Isett and Oh 2016b]) or approaches Ĉ = 1 asymptotically at a rate such that∑

k log Ĉ(k) converges.
Such a construction appears to be presently out of reach; however, it may be considered favorable

that convex integration constructions are able in general to yield solutions whose singularities occupy
regions of space with positive volume. As the following theorem demonstrates, singularities with positive
Lebesgue measure are necessary for any energy nonconserving solution with critical regularity to exist
provided the integrability exponent for this regularity is greater than 3.

Theorem 1.2 (intermittency theorem). A weak solution (v, p) to incompressible Euler on I ×Td or I ×Rd

that dissipates or otherwise fails to conserve energy cannot belong to an endpoint class v ∈ Lr
t B1/3

r,∞ ∩ L2
t,x

with an integrability exponent r > 3 if its singular support has space-time Lebesgue measure zero.

Here singular support is in the sense of distributions — the closed set whose complement is the largest
set on which v is locally C∞. In fact, the precise theorem we obtain is a sharper result where singular
support is improved to singular support relative to the conservative Onsager critical space L3

t Ḃ1/3
3,c(N) —

that is, the closed set whose complement is the largest open set on which v is locally represented by an
L3

t Ḃ1/3
3,c(N) function (see Section 3).
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Theorem 1.2 has a special significance in terms of intermittent scaling exponents in turbulence. The
K41 theory [Kolmogorov 1941] predicts a scaling law of the form ⟨|v(x +1x)− v(x)|p

⟩
1/p

∼ |1x |
1/3

for absolute structure functions (the Kolmogorov–Obukhov law), which mathematically corresponds
to B1/3

p,∞ control of the velocity field. The idea that “intermittency” (deviations from self-similarity and
homogeneity) in the energy dissipation and singular structure of turbulence can lead to the failure of
this scaling law for p ̸= 3 was first attributed to Landau by Kolmogorov in the 1940’s (see [Frisch 1991,
Section 5]). Moreover, experimental studies have found evidence of such intermittency in the energy
dissipation of turbulent flows accompanied by deviations from the Kolmogorov–Obukhov law arising from
a multifractal structure [Meneveau and Sreenivasan 1987; 1991; Meneveau et al. 1990]. Theorem 1.2 and
its proof provide a rigorous sense in which lower dimensional singularities or energy dissipation in fact
logically imply deviations from the Kolmogorov–Obukhov law, thus reinforcing the experimental findings.

Theorem 1.2 is a consequence of two facts that are also new remarks in the literature, which are a local
version of the sharp energy conservation criterion in [Cheskidov et al. 2008] and a result on integrability
of the energy dissipation measure (see Theorems 3.1 and 3.2 below). One would most likely expect that
energy nonconserving solutions exist for the entire spectrum of endpoint spaces above, including the
endpoint case of L∞

t C1/3
x . For a more precise formulation of Theorem 1.2, we refer to Section 3. We

also note the works [Buckmaster et al. 2021; Cheskidov and Shvydkoy 2014; 2023; De Rosa and Haffter
2023; Luo and Shvydkoy 2015; Novack and Vicol 2023; Shvydkoy 2018] for further mathematical results
related to intermittency.

In addition to having the endpoint regularity, Onsager’s paper [1949] describes Euler flows that
furthermore have decreasing kinetic energy. Related to this point, we state the following Theorem.

Theorem 1.3. If (v, p) are a weak solution to (E) on I × Td , d ≥ 2, with v ∈ CtC
1/3
x (or more generally

with v ∈ Ct B1/3
3,∞) then the total kinetic energy e(t)=

∫
Td

1
2 |v(t, x)|2 dx is C1 in time.

Theorem 1.3 implies that the task of finding an energy dissipating solution in the class v ∈ CtC
1/3
x

can be reduced to finding any example of a solution in this class that fails to satisfy energy conservation.
Such a solution would have total kinetic energy that is either strictly increasing or strictly decreasing
on some open interval of time. After possibly reversing time one obtains a solution with a decreasing
energy profile on an open interval. For α < 1

3 , the existence of energy-dissipating solutions in CtCα
x was

proven in [Buckmaster et al. 2019a] by introducing an additional idea in the convex integration part of the
proof to prescribe the energy profile of the solutions. We expect that this technique3 should be possible to
extend to the class described by (1) for example by modifying the statement of our main lemma in a way
similar to the analysis in [Isett and Oh 2016b; 2017].

The proof of Theorem 1.3, presented in Section 2 below, suggests that the failure of energy conservation
for solutions in the critical space v ∈ CtC

1/3
x should be very common. The proof reduces the existence of

an energy-dissipating solution to solving the Euler equations with appropriate initial data in the desired
critical space for a short time. However, one must be cautious that the Euler equations are ill-posed

3A related technical point is that the approach to prescribing the energy profile in [Buckmaster et al. 2019a] involves requiring
the stress tensor R jℓ to be trace-free in addition to being symmetric. It is also possible to prescribe the energy profile without
imposing the trace-free requirement on R jℓ; see [Isett and Oh 2016b; 2017].
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in CtCα
x or in Ct Bα3,∞ for all α < 1, as has been shown in [Bardos and Titi 2010; Cheskidov and Shvydkoy

2010], which presents a significant difficulty for constructing solutions in these spaces. Complementing
these negative results, our proof of Theorem 1.3 yields as a byproduct a necessary condition for a given
divergence-free vector field to be the initial datum of a solution in the class v ∈ Ct B1/3

3,∞.
With regard to energy dissipation and solving the Cauchy problem, a natural question is whether there

is a simple, Onsager-critical function space in which local dissipation of energy is guaranteed along with
total kinetic energy dissipation if one can solve the Cauchy problem in that space with the appropriate
initial data. A simple criterion of this type is provided in Theorem 3.3 of Section 3A. The regularity
condition imposed to maintain local dissipation in this criterion is notably stronger than that assumed
to control total kinetic energy in Theorem 1.3, as our Theorem 3.3 involves solutions in the function
space CtC

1/3
x rather than assuming only Besov regularity in space.

We now summarize the organization of the paper and the proof of our borderline result, Theorem 1.1.
The general theory of endpoint solutions, including Theorems 1.2–3.3, is contained in Sections 2–3A. We
then summarize notation for the main body of the paper in Section 4. Sections 5–10 contain the main
lemma of the paper and our modification of the convex integration construction of [Isett 2018]. These
sections assume familiarity with the convex integration construction in that paper. Section 11 explains the
proof of Theorem 1.1 using the main lemma, and presents our new method for optimizing the regularity in
a general convex integration scheme. Section 12 outlines how to combine our methods with the approach
to the gluing approximation taken in [Buckmaster et al. 2019a] to improve the rate of convergence to the
critical exponent in the estimate (1).

2. Regularity of kinetic energy at the critical exponent

We start with a proof of Theorem 1.3 on the C1 regularity of the kinetic energy profile for solutions of
class Ct B1/3

3,∞. In the next section we prove Theorem 1.2. We will use the summation convention for
summing repeated upper and lower spatial indices, so that vℓvℓ = |v|2 and ∇ℓv

ℓ
= div v.

The proof of Theorem 1.3 is an extension of the argument of [Constantin et al. 1994] for proving energy
conservation for weak solutions in the class v ∈ L3

t B1/3+ϵ

3,∞ and of a remark in [Isett 2023] on the endpoint
case. Namely, suppose that (v, p) is a weak solution to (E) with velocity of class v ∈ Ct B1/3

3,∞(I × Td),
d ≥ 2, with I an open interval. Let ηϵ be a standard mollifier in Rd at length scale ϵ, and let vℓϵ = ηϵ ∗ vℓ

denote the mollification of v in the spatial variables. Then, as in [Constantin et al. 1994], one has (using
v ∈ Ct L2

x ) that
d
dt

∫
Td

|v|2(t, x)
2

dx = lim
ϵ→0

d
dt

∫
Td

|vϵ |
2(t, x)
2

dx = − lim
ϵ→0

∫
Td

∇j (vϵ)ℓR jℓ
ϵ (t, x) dx, (2)

R jℓ
ϵ (t, x) := v j

ϵ (t, x)vℓϵ(t, x)− ηϵ ∗ (v jvℓ)(t, x),

where the convergence in (2) holds in D′(I ). (See [Isett and Oh 2016a, Proof of Theorem 2.2] for a
detailed presentation of this point.) The rightmost term in (2) gives rise to the family of trilinear forms
Tϵ[v, v, v](t) :=

∫
Td ∇j (vϵ)ℓR jℓ

ϵ (t, x) dx that satisfy, uniformly in ϵ, the bound

|Tϵ[u, v, w]|(t)≲ ∥u(t, · )∥B1/3
3,∞

∥v(t, · )∥B1/3
3,∞

∥w(t, · )∥B1/3
3,∞
, (3)
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by the commutator estimate of [Constantin et al. 1994]. Using (3), we have that the family of functions
Tϵ[v, v, v](t) are both uniformly bounded and equicontinuous on every compact subinterval of I , as they
satisfy

|Tϵ[v, v, v](t)− Tϵ[v, v, v](t0)| ≲ ∥v(t, · )− v(t0, · )∥B1/3
3,∞

∥v∥2
Ct B1/3

3,∞
,

and their moduli of continuity can therefore be bounded uniformly in ϵ in terms of the modulus of
continuity of v(t, · ) into B1/3

3,∞(T
d) and local bounds for ∥v(t, · )∥B1/3

3,∞
. Consequently, the convergence

in (2) is actually uniform-in-t on every open interval J with compact closure in I , as the weak limit
in D′(J ), which is unique, must also be achieved uniformly along subsequences by Arzelà–Ascoli. (If the
convergence were not uniform, there would exist a subsequence converging uniformly to a continuous
function different from (2), which contradicts the weak convergence.) The energy flux in (2), a priori
in D′(I ), is thus continuous in t on I , and the kinetic energy profile is therefore C1 in t on I .

Note that one would typically expect the energy flux given by the right-hand side of (2) to be nonzero
at any given time t0 for a vector field with v(t0, · ) ∈ C1/3

x , as examples of divergence-free initial data
v0(x) ∈ C1/3 for which this limit can be positive are given in [Cheskidov et al. 2008; Eyink 1994].

We note also that our argument provides a necessary condition for a vector field v0(x) ∈ B1/3
3,∞

to be realized as the initial datum of an Euler flow in the class v ∈ Ct B1/3
3,∞, which is that the limit

limϵ→0 Tϵ[v0, v0, v0] on the right-hand side of (2) must exist and must also be independent of the chosen
mollifying kernel ηϵ , so that the instantaneous rate of energy dissipation is well defined at time 0.

We now turn to the proof of Theorem 1.2.

3. Singularities of dissipative solutions with critical regularity

We now establish Theorem 1.2 on the necessity of positive measure singularities of Onsager critical
solutions with integrability exponent p>3 that do not conserve energy, which is an immediate consequence
of Theorems 3.1 and 3.2 below. Both theorems are stated in terms of Besov spaces whose basic properties
we recall within the proofs. We state the first Theorem 3.1 in a sharp, critical space to make clear the
severity of the singularity that is implicitly discussed in Theorem 1.2.

Theorem 3.1. Let (v, p) be a weak solution to the incompressible Euler equations of class v ∈ L3
t,x on

I × Td or I × Rd , with I an open interval. Then the distribution

−D[v, p] := ∂t
( 1

2 |v|2
)
+ ∇j

((1
2 |v|2 + p

)
v j)

has support contained in the singular support of v relative to the critical space L3
t B1/3

3,c0(N)
.

Here we define the singular support of v relative to the space L3
t B1/3

3,c0(N)
to be the complement of those

points q = (t, x) for which there exists an open neighborhood Oq of q on which v is represented by a
distribution of class L3

t B1/3
3,c0(N)

. We recall the standard characterization of the B1/3
r,∞ norm of a vector field

on an open set � in Rd , which is given by ∥v∥Lr (�) + suph∈Rd
\{0} |h|

−1/3
∥v( · − h)− v( · )∥Lr

x (�∩(�+h)),
and we also recall that C∞(�) is dense in B1/3

r,c0(N)
(�) with respect to the B1/3

r,∞ norm. It is clear that the
singular support of v relative to L3

t B1/3
3,c0(N)

is a subset of the usual singular support of v as a distribution.
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Related restrictions on the support of D[v, p] under different hypotheses and with different proofs are
given in [Cheskidov and Shvydkoy 2014, Theorem 4.3], [Drivas and Nguyen 2018, Theorem 1] and
[Bardos et al. 2019, Theorem 3.1].

Our second theorem asserts that weak solutions of class v ∈ Lr
t B1/3

r,∞ for integrability exponents r > 3
possess integrability for their corresponding energy dissipation measure D[v, p]. The assumptions are
given in a way that is sufficient for our application to proving Theorem 1.2.

Theorem 3.2. Let (v, p) be a weak solution to incompressible Euler of class v ∈ Lr
t B1/3

r,∞ for some r ≥ 3
on I × Td or I × Rd , with I an open interval. Then the distribution D[v, p] above is a (signed) measure.
If furthermore r > 3, this measure is absolutely continuous with respect to the Lebesgue measure, and its
Radon–Nikodym derivative is of class D[v, p] ∈ Lr/3

t,x .

It will be clear that the proof of Theorem 3.2 does not give absolute continuity in the case r = 3.
For example, the proof would apply to many other equations such as Burgers’, where shock solutions
give examples of L∞

t B1/3
3,∞ solutions for which the corresponding energy dissipation measure is not

absolutely continuous. There also exist time-independent divergence-free vector fields demonstrating that
our approach would not yield absolute continuity in the r = 3 case.4

Proof of Theorem 1.2. Let us observe now that Theorem 1.2 follows from Theorems 3.1 and 3.2, focusing
on the case of I × Rd . Namely, if a weak solution (v, p) is of class v ∈ L3

t,x ∩ L2
t,x and does not

conserve kinetic energy (meaning that the distribution e(t) :=
1
2

∫
Rd |v|2(t, x) dx is not a constant), then

the distribution D[v, p] is well defined and cannot be the 0 distribution. This statement can be checked
by verifying that, for any test function ψ ∈ C∞

c (I ), by dominated convergence one has

⟨ψ(t), e′(t)⟩D′(I ) = lim
R→∞

⟨ψ(t)χR(x),−D[v, p]⟩D′(I×Rd )

:= −

∫
I
ψ ′(t)e(t) dt

= − lim
R→∞

∫
I×Rd

[
ψ ′(t)χR(x)

|v|2

2
+ψ(t)∇jχR(x)

(
|v|2

2
+ p

)
v j

]
dt dx,

where χR(x)= χ(x/R) is a rescaled bump function that is equal to 1 in a growing neighborhood of the
origin that encompasses the whole space as R → ∞. We use here that

(1
2 |v|2 + p

)
v j and 1

2 |v|2 are both
in L1

t,x(I ×Rd) as v ∈ L2
t,x ∩ L3

t,x and p =1−1
∇j∇ℓ(v

jvℓ) ∈ L3/2
t,x by Calderón–Zygmund theory,5 which

implies that 1−1
∇j∇ℓ acts as a bounded operator on L3/2

t,x mapping two-tensors to scalars. In fact the
weaker condition (1 + |x |)−1

( 1
2 |v|2 + p

)
v j

∈ L1
t,x suffices for this proof.

For a solution of class v ∈ Lr
t B1/3

r,∞ with r > 3, we have by Theorem 3.2 that D[v, p] is of class Lr/3
t,x .

For D[v, p] to be nonzero, the support of D[v, p] as a distribution must then occupy a closed set with
positive Lebesgue measure. From Theorem 3.1, the nontrivial support of D[v, p] gives a lower bound for
the singular support of v as a distribution, which implies Theorem 1.2. □

4R. Shvydkoy, personal communication.
5The case of Td appears to be less standard than the Rd case but can be deduced from the Rd case using the local Calderón–

Zygmund theory in Rd as in [Wang 2003]. See, e.g., [Isett 2017b, Proof of Theorem 6.2].
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We now prove Theorem 3.1 along with Theorem 3.2. The proof is a local version of the energy
conservation criteria of [Cheskidov et al. 2008; Constantin et al. 1994]. The observation that the proof of
energy conservation in [Constantin et al. 1994] can be localized is originally due to [Duchon and Robert
2000] and has recently been of use to several authors in the context of bounded domains [Bardos and Titi
2018; Bardos et al. 2019; Drivas and Nguyen 2018]. Some issues that are not central to our goals here
have been avoided as our hypotheses suffice to guarantee p =1−1

∇j∇ℓ(v
jvℓ) ∈ L3/2

t,x . The norms and
function space in what follows refer to the entire space I × Td or I × Rd unless otherwise stated. We will
focus on the Rd cases in what follows as the results for Td follow from the same proofs.

Proof of Theorems 3.2 and 3.1. Let (v, p) be a weak solution of class v ∈ Lr
t B1/3

r,∞ ∩ L2
t,x for some r ≥ 3.

Then

v ∈ Lr
t,x ∩ L2

t,x and p =1−1
∇j∇ℓ(v

jvℓ) ∈ Lr/2
t,x

by Calderón–Zygmund theory as before. The key formula we use is the analogue of the formula from
[Duchon and Robert 2000] involving the commutator of [Constantin et al. 1994]:

−D[v, p] = ∂t
( 1

2 |v|2
)
+ ∇j

[(1
2 |v|2 + p

)
v j]

= lim
ϵ→0

∇jvϵℓR jℓ
ϵ , (4)

R jℓ
ϵ = ηϵ ∗ (v jvℓ)− v j

ϵ v
ℓ
ϵ ,

where vℓϵ = ηϵ ∗ vℓ is a standard mollification of vℓ in the spatial variables at length scale ϵ, and the
limit (4) holds for any fixed test function on I × Rd or I × Td .

We first prove Theorems 3.2 and 3.1 assuming (4). By Hölder’s inequality with 3/r = 1/r + 2/r and
the commutator estimates of [Constantin et al. 1994], one has the following bound uniformly in ϵ:

∥∇jvϵℓR jℓ
ϵ ∥Lr/3

t,x
≤ ∥∇jvϵℓ∥Lr

t,x ∥R jℓ
ϵ ∥Lr/2

t,x
≲ (ϵ−1+1/3

∥v∥Lr
t B1/3

r,∞
)∥R jℓ

ϵ ∥Lr/2
t,x

≲ (ϵ−1+1/3
∥v∥Lr

t B1/3
r,∞
)ϵ2/3

∥v∥2
Lr

t B1/3
r,∞

≲ ∥v∥3
Lr

t B1/3
r,∞
. (5)

The sequence ∇jvϵℓR jℓ
ϵ is therefore uniformly bounded in Lr/3

t,x independent of ϵ > 0.
As a consequence, using r ≥ 3, the weak limit D[v, p] = limϵ→0 ∇jvϵℓR jℓ

ϵ is a Radon measure. That
is, by (5) and Hölder’s inequality (with the characteristic function of K as one of the factors), for any
compact set K and any test function φ(t, x) supported in K , one has

|⟨φ, D[v, p]⟩D′(I×Rd )| ≤ CK ∥φ∥C0∥v∥3
Lr

t B1/3
r,∞
.

Moreover, for r > 3, the measure D[v, p] is absolutely continuous with density function in Lr/3
t,x by

the duality characterization of the latter space, thus confirming Theorem 3.2. Namely, if s ∈ (1,∞) is the
dual exponent with 1/s + 3/r = 1, we have

|⟨φ, D[v, p]⟩D′(I×Rd )| ≤ C∥φ∥Ls
t,x

∥v∥3
Lr

t B1/3
r,∞
.

From the density of test functions in Ls
t,x , we have that D[v, p] is in the dual of Ls

t,x , which is the
space Lr/3

t,x .
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The proof of Theorem 3.1 is more subtle as the statement concerns the function space L3
t B1/3

3,c0(N)
and is

more local in nature. In particular, our approach is local as compared to the Fourier-analytic approach of
[Cheskidov et al. 2008]; the details in the presentation below are similar to those of [Isett and Oh 2016a].

Let v ∈ L3
t,x be a weak solution, so that p ∈ L3/2

t,x , and let q be a point in the complement of the
singular support of v relative to L3

t B1/3
3,c0(N)

. That is, there is an open neighborhood of q that can be
taken to have the form J × Bq with J a finite open subinterval of I and Bq a spatial ball such that
v ∈ L3

t B1/3
3,c0(N)

(J × Bq). Let φ ∈ C∞
c (J × Bq) be a fixed test function and B ′

q ⊆ Bq be a smaller spatial
ball such that suppφ ⊆ J × B ′

q . From (4), we have

⟨φ,−D[v, p]⟩ = lim
ϵ→0

∫
J

∫
B ′

q

φ(t, x)∇jvϵℓR jℓ
ϵ dx dt,

where by assumption v ∈ L3
t B1/3

3,c0(N)
(J × Bq). Then as in the proof of (5) one has that

|⟨φ,−D[v, p]⟩| ≤ lim sup
ϵ→0

∥φ∥C0

∫
J
∥∇vϵ(t, · )∥L3(B ′

q )
∥R jℓ

ϵ (t, · )∥L3/2(B ′
q )

dt, (6)

and that the dt integrand is bounded uniformly in ϵ by C∥v(t, · )∥3
B1/3

3,∞(Bq )
, which is integrable over J .

Moreover, for almost every t ∈ J , one has that v(t, · ) ∈ B1/3
3,c0(N)

belongs to the closure of C∞(Bq) in
the B1/3

3,∞ norm. For each such t , the improved bound

lim sup
ϵ→0

ϵ1−1/3
∥∇vϵ(t, · )∥L3(B ′

q )
= 0

holds, as can be seen by a smooth approximation argument. Combined with ∥R jℓ
ϵ (t, · )∥L3/2(B ′

q )
≤ Ctϵ

2/3

on the same set of t , we have the convergence to zero for almost every t in (6), which implies the limit
in (6) is zero by the Lebesgue dominated convergence theorem.

The last remaining point is to justify the limit in (4) for any fixed test function, which we prove using
the definition of a weak solution following details similar to [Isett and Oh 2016a]. Let (v, p) be a weak
solution of class v ∈ L3

t,x , so that p ∈ L3/2
t,x on I × Rd as before. Let φ ∈ C∞

c be a test function on I × Rd

and Vφ be an open set with compact closure in I × Rd that contains suppφ. Let ηϵ(h) = ϵ−dη(h/ϵ)
and ζδ(τ ) = δ−1ζ(τ/δ) be even mollifying kernels in the space and time variables, respectively, with
respective supports supp ηϵ ⊆ Bϵ(0) in Rd and supp ζδ ⊆ Bδ(0) in R. Define ηϵδ(τ, h)= ζδ(τ )ηϵ(h) and
the vector field ωℓϵδ = ηϵδ ∗ (φηϵδ ∗v

ℓ), where the convolution is in both space and time. We will write ∗x

or ∗t to mean convolution in only the space or time variables. Taking ωℓϵδ as our test function in the weak
formulation of Euler (i.e., multiplying the equation and integrating by parts) gives

−

∫
I×Rd

[vℓ∂tηϵδ ∗ (φηϵδ ∗ vℓ)+ v
jvℓ∇jηϵδ ∗ (φηϵδ ∗ vℓ)+ p∇

ℓηϵδ ∗ (φηϵδ ∗ vℓ)] dx dt = 0.

Using the self-adjointness of ηϵδ∗ and the divergence-free property of ηϵδ ∗ vℓ, one obtains

−

∫
I×Rd

[
∂tφ(t, x)

|ηϵδ ∗ vℓ|2

2
+ (v jvℓ)ηϵδ ∗ ∇j [φηϵδ ∗ vℓ] + pηϵδ ∗ (∇ℓφηϵδ ∗ vℓ)

]
dx dt = 0.
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As v ∈ L3
t,x ∩ L2

t,x(Vφ) and p ∈ L3/2
t,x (Vφ), we may safely let δ → 0 at this point with ϵ > 0 fixed using

uniform-in-δ boundedness of the convolution operators in the formula (including the operators ∇jηϵδ∗ that
appear from the product rule) and the strong convergence of ηϵδ∗vℓ→ vℓϵ :=ηϵ∗x v

ℓ in L2
t,x ∩L3

t,x(suppφ)
for each fixed ϵ > 0. Taking the δ→ 0 limit, we may replace each appearance of ηϵδ∗ = ηϵ ∗x [ζδ ∗t · ] in
the formula with ηϵ∗x , which we now write more simply as ηϵ∗ := ηϵ∗x .

Using the self-adjointness of ηϵ∗ and the divergence-free property of vℓϵ , which are justified by the
same limiting argument, one then obtains

−

∫
I×Rd

[
∂tφ(t, x)

|ηϵ∗v
ℓ
|
2

2
+∇jφ(t, x)

(
|vϵ |

2

2
v j
ϵ +ηϵ∗ pv j

ϵ

)]
dx dt =

∫
I×Rd

φ(t, x)∇jvϵℓR jℓ
ϵ dx dt+Zϵ,

Zϵ :=

∫
I×Rd

∇jφR jℓ
ϵ vϵℓ dx dt.

Note that the left-hand side of the first equation tends to exactly ⟨φ,−D[v, p]⟩D′(I×Rd ) as ϵ → 0, using
that vℓϵ = ηϵ ∗ vℓ → vℓ in L3

t,x ∩ L2
t,x(Vφ) and that p ∈ L3/2

t,x again. Thus formula (4) will be proven once
it is shown that limϵ→0 Zϵ = 0.

To this end, write R jℓ
ϵ in terms of bilinear operators R jℓ

ϵ = Bϵ[v j , vℓ], where the operators Bϵ are
defined for smooth u j and wℓ by Bϵ[u j , wℓ] := ηϵ ∗ (u jwℓ)− ηϵ ∗ u jηϵ ∗wℓ. One has then that

∥Bϵ[u, w]∥L3/2
t,x (Vφ)

→ 0 as ϵ → 0

whenever u j and wℓ are smooth vector fields on I × Rd , and that

∥Bϵ[u, w]∥L3/2
t,x (Vφ)

≤ C∥u∥L3
t,x

∥w∥L3
t,x (I×Rd )

uniformly in ϵ > 0. Combining these properties and using the density of smooth vector fields in
L3

t,x(I × Rd), we obtain that ∥R jℓ
ϵ ∥L3/2

t,x (Vφ)
→ 0 as ϵ → 0, and Zϵ → 0 as well by applying Hölder’s

inequality with vϵ bounded in L3
t,x(Vφ). □

3A. Stability of local energy dissipation in a critical class. In this section we prove Theorem 3.3, which
provides a simple function space criterion from which one can deduce local dissipation on an open interval
of time from local dissipation at time 0.

Theorem 3.3. Let v̄ be a divergence-free vector field of class v̄ ∈ C1/3(Td) for which the local energy
dissipation is everywhere bounded by a strictly negative constant. Then any weak solution (v, p) of class
v ∈ CtC1/3(I × Td) that obtains the initial data v̄ must satisfy the local energy inequality D[v, p]< 0 on
some open time interval containing t = 0.

The precise condition on the initial data v̄ will be specified in line (8) of the proof below.

Proof. Let v̄ be as above and let (v, p) be a weak solution to the Euler equations of class v∈CtC1/3(I ×Td)

on an open interval of time containing t = 0 with initial data v̄(x). Let Ĩ be an open subinterval of I
containing t = 0, and let φ ∈ C∞

c ( Ĩ × Td) be a nonnegative test function supported in t ∈ Ĩ . As in the
previous sections, we have

⟨φ, D[v, p]⟩ = lim
δ→0

∫
Ĩ

∫
Td
φ(t, x)Tδ[v](t, x) dx dt, Tδ[v](t, x)= ∇jvδℓR jℓ

δ (t, x),
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where Tδ is the trilinear form from Section 2 and D[v, p] is as in the previous sections. We write

⟨φ, D[v, p]⟩ = lim
δ→0

∫
Ĩ

∫
Td
φ(t, x)(Tδ[v](t, x)− Tδ[v](0, x)) dx dt

+ lim
δ→0

∫
Ĩ

∫
Td
φ(t, x)Tδ[v](0, x) dx dt. (7)

The precise assumption placed on the initial condition v̄ is that

lim
δ→0

Tδ[v](0, x)= lim
δ→0

∇j v̄δℓR jℓ
δ (0, x)≤ −ε < 0 (8)

in the sense of distributions on Td for some constant ε > 0. Integrating (8) against the nonnegative test
function

φ̃(x)=

∫
Ĩ
φ(t, x) dt ∈ C∞(Td),

we have that

second term of (7) ≤ −ε

∫
Td

[∫
Ĩ
φ(t, x) dt

]
dx .

For a sufficiently small time interval Ĩ , we can obtain the bound

sup
δ>0

∥Tδ[v](t, x)− Tδ[v](0, x)∥L∞( Ĩ×Td ) ≤
1
2ε

using that the Tδ are uniformly bounded trilinear forms mapping C1/3 to L∞, the assumption that
v ∈ CtC

1/3
x is continuous in time with values in C1/3, and the commutator estimate of [Constantin et al.

1994] to control the bilinear term. Combining these estimates with the sign condition on φ gives

⟨φ, D[v, p]⟩ ≤ ∥φ∥L1( Ĩ×Td )

ε

2
− ε

∫
Ĩ

∫
Td
φ(t, x) dx dt

≤ −
ε

2

∫
Ĩ

∫
Td
φ(t, x) dx dt

for all nonnegative φ ∈ C∞
c ( Ĩ × Td). This bound shows that D[v, p] ≤ −

1
2ε < 0 as a distribution when

restricted to Ĩ × Td , which concludes the proof of Theorem 3.3. □

With Theorems 1.2–3.3 now proven, we turn to the notation that will be used for the remainder of the
paper and the proof of Theorem 1.1.

4. Notation

We will follow the same notational conventions as introduced in [Isett 2018, Section 2]. In particular,
multi-indices will be represented in vector notation. For example, if a⃗ = (a1, a2, a3) is a multi-index
of order |a⃗| = 3, each ai ∈ {1, 2, 3}, then ∇a⃗ = ∇a1∇a2∇a3 denotes the corresponding third-order partial
derivative operator. We use suppt f to indicate the time support of a function f with domain in R × T3

(i.e., the closed set of times for which {t} × T3 intersects the usual support).
We recall the definitions of an Euler–Reynolds flow and frequency-energy levels.
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Definition 4.1. A vector field vℓ : R × T3
→ R3, function p : R × T3

→ R and symmetric tensor field
R jℓ

: R × T3
→ R3

⊗ R3 satisfy the Euler–Reynolds equations if the equations

∂tv
ℓ
+ ∇j (v

jvℓ)+ ∇
ℓ p = ∇j R jℓ,

∇jv
j
= 0

hold on R × T3. Any solution to the Euler–Reynolds equations (v, p, R) is called an Euler–Reynolds
flow. The symmetric tensor field R jℓ is called the stress tensor.

Definition 4.2. Let (v, p, R) be a solution of the Euler–Reynolds equation, 4≥ 3 and ev ≥ eR > 0 be
positive numbers. We say that (v, p, R) have frequency-energy levels bounded by (4, ev, eR) to order L
in C0 if v and R are of class CtC L

x and the following estimates hold:

∥∇a⃗v∥C0 ≤4|a⃗|e1/2
v for all 1 ≤ |a⃗| ≤ L ,

∥∇a⃗ R∥C0 ≤4|a⃗|eR for all 0 ≤ |a⃗| ≤ L .

Here ∇ refers only to derivatives in the spatial variables.

5. The main lemma

The first goal of the paper will be to improve on the main lemma in [Isett 2018], so that we remove the
need for a double exponential growth of frequencies. The main lemma of our paper states the following:

Lemma 5.1 (main lemma). Let L = 3. There exists constants Ĉ and CL such that the following holds.
Let (v, p, R) be any solution of the Euler–Reynolds equation with frequency-energy levels bounded by
(4, ev, eR) to order L in C0, and let J be an open subinterval of R such that

suppt v ∪ suppt R ⊆ J.

Define the parameter 4̂=4(ev/eR)
1/2. Let N be any positive number obeying the condition

N ≥ (ev/eR)
1/2. (9)

Then there exists a solution (v1, p1, R1) of Euler–Reynolds with frequency-energy levels bounded by

(4′, e′

v, e′

R)=

(
Ĉ N4, (log 4̂)eR, (log 4̂)5/2

e1/2
v e1/2

R

N

)
(10)

to order L in C0 such that

suppt v1 ∪ suppt R1 ⊆ N (J ;4−1e−1/2
v )

and such that the correction V = v1 − v obeys the estimate

∥V ∥C0 ≤ CL(log 4̂)1/2e1/2
R . (11)

The crucial difference between the main lemma above as compared to [Isett 2018, Lemma 2.1] is
that we do not require any lower bound of the form N ≥4η for the frequency growth parameter N in
inequality (9). This difference enables us to avoid double exponential growth of frequencies in constructing
solutions as in [Isett and Oh 2016b]. Likewise, the constants Ĉ and CL in the estimates do not depend on
such a parameter η.
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We establish Lemma 5.1 by modifying the proof of the convex integration lemma, [Isett 2018,
Lemma 3.3], as the proof of this lemma contains the only step in which the assumption N ≥4η is used.

6. The improved convex integration lemma

As in [Isett 2018], we will establish Lemma 5.1 by combining a gluing approximation lemma and a
convex integration lemma. In Lemma 6.1 below, we summarize the result of combining the regularization
lemma and the gluing approximation lemma from [Isett 2018, Section 3]. (Here we have renamed the
Euler–Reynolds flow that were (ṽ, p̃, R̃) to be (v, p, R).)

Lemma 6.1 (gluing approximation lemma). There are absolute constants C1 ≥ 2 and δ0 ∈
(
0, 1

25

)
such

that the following holds. Let (v0, p0, R0) be an Euler–Reynolds flow with frequency-energy levels bounded
by (4, ev, eR) to order 3 in C0 such that suppt v0 ∪ suppt R0 ⊆ J . Define the parameters

N̂ := (ev/eR)
1/2, 4̂ := N̂4= (ev/eR)

1/24.

Then, for any 0<δ≤ δ0, there exist a constant Cδ ≥ 1, a constant θ > 0, a sequence of times {t (I )}I∈Z ⊆ R

and an Euler–Reynolds flow (v, p, R), R =
∑

I∈Z RI , that satisfy the support restrictions

suppt v ∪ suppt R ⊆ N (J ; 3−14−1e−1/2
v ), (12)

2−1δ(log 4̂)−24−1e−1/2
v ≤ θ ≤ δ(log 4̂)−24−1e−1/2

v , (13)

suppt RI ⊆
[
t (I )− 1

2θ, t (I )+ 1
2θ

]
, (14)⋃

I

⋃
I ′ ̸=I

[t (I )− θ, t (I )+ θ ] ∩ [t (I ′)− θ, t (I ′)+ θ ] = ∅, (15)

and the estimates
∥v− v0∥C0 ≤ C1e1/2

R ,

∥∇a⃗v∥C0 ≤ C14
|a⃗|e1/2

v , |a⃗| = 1, 2, 3, (16)

sup
I

∥∇a⃗ RI ∥C0 ≤ Cδ N̂ (|a⃗|−2)+4|a⃗| log 4̂eR, |a⃗| = 0, 1, 2, 3, (17)

sup
I

∥∇a⃗(∂t + v · ∇)RI ∥C0 ≤ Cδ(log 4̂)34e1/2
v 4|a⃗|eR, |a⃗| = 0, 1, 2.

Our improved convex integration lemma may then be stated as follows.

Lemma 6.2 (convex integration lemma). There exists an absolute constant b0 such that, for any C1,Cδ≥1
and δ > 0, there is a constant C̃ = C̃δ,C1,Cδ for which the following holds. Suppose J is a subinterval of R

and (v, p, R) is an Euler–Reynolds flow, R =
∑

I RI , that satisfy the conclusions (12)–(15) and (16)–(17)
of Lemma 6.1 for some (4, ev, eR), some θ > 0 and some sequence of times {t (I )}I∈Z ⊆ R. Also suppose

|θ |∥∇v∥C0 ≤ b0. (18)

Let N ≥ (ev/eR)
1/2. Then there is an Euler–Reynolds flow (v1, p1, R1) with frequency-energy levels in

the sense of Definition 4.2 bounded by

(4′, e′

v, e′

R)=

(
C̃ N4, (log 4̂)eR, (log 4̂)5/2

e1/2
v e1/2

R

N

)
(19)
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such that
suppt v1 ∪ suppt R1 ⊆ N (J ;4−1e−1/2

v ),

∥v1 − v∥C0 ≤ C̃(log 4̂)1/2e1/2
R .

Lemma 5.1 now follows by combining Lemmas 6.1 and 6.2 as explained in [Isett 2018, Section 3].
(Here Lemma 6.1 is applied with (v0, p0, R0) taken to be the (v, p, R) given in the assumptions of
Lemma 5.1.) The only important difference in the present case is that we have removed the assumption
N ≥4η and the constants Ĉ and CL (which can be set equal if desired) do not depend on η.

We now explain how to prove Lemma 6.2 by modifying the proof of [Isett 2018, Lemma 3.3].

7. Modifying the convex integration

We now proceed with the proof of Lemma 6.2. The construction will be based on the proof of [Isett 2018,
Lemma 3.3] implementing convex integration with the Mikado flows of [Daneri and Székelyhidi 2017],
but modified to adapt the localization strategy of [Isett and Oh 2016b] to our setting.

Let (v, p, R), R =
∑

I RI be given as in the assumptions of Lemma 6.2, which are the conclusions of
Lemma 6.1. We will use the symbol ≲ to denote inequalities involving explicit constants that are allowed
to depend on the parameters C1, δ and Cδ, but never on (4, ev, eR), N , θ, 4̂, etc.

We obtain the new Euler–Reynolds flow (v1, p1, R1) of Lemma 6.2 by adding carefully designed
corrections vℓ1 = vℓ+V ℓ and p1 = p+ P to the velocity and pressure, respectively, and using the resulting
equation for (v1, p1) to construct the appropriate R1. The correction V ℓ will be a sum of divergence-free,
high-frequency vector fields indexed by a set J :

V ℓ
=

∑
J∈J

V ℓ
J , ∇ℓV ℓ

J = 0 for all J ∈ J .

The index J ∈ J will have several components, J = (I, J1, J2, J3, f ), that together specify the time
interval and spatial location in which VJ will be supported as well as the direction in which VJ takes
values. Specifically, we choose an even integer 5 ∈ [34, 64] ∩ 2Z of size comparable to 4 and define

J := Z × (Z/5Z)3 × F, F := {ei ± ej : 1 ≤ i < j ≤ 3}.

Each VJ , J = (I, J1, J2, J3, f ), will be supported in a time interval of length ∼ θ around time t (I ), and
initially at time t (I ) will be supported in a ball of size ∼4−1 around the point

x0(J ) :=5−1(J1, J2, J3) ∈ (R/Z)3.

The component f ∈ F specifies which of the #F = 6 directions in R3 in which V ℓ
J approximately takes

values.
As in [Isett 2017a, Section 12], let vϵ = ηϵ ∗v be the coarse scale velocity field obtained by mollification

in space at scale ϵ. Let 8s : R × R × T3
→ R × T3 be the coarse scale flow (the flow map of vϵ)

8s(t, x)= (t + s,8i
s(t, x)), d

ds
8i

s(t, x)= vi
ϵ(8s(t, x)), 80(t, x)= (t, x), (20)
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and let 0I : R × T3
→ T3 be the back-to-labels map associated to vϵ from the initial time t (I ):

(∂t + vi
ϵ∇i )0I (t, x)= 0,

0I (t (I ), x)= x .
(21)

We also define the coarse scale advective derivative Dt := (∂t + vϵ · ∇).
To localize the waves VJ , we construct a smooth, quadratic partition of unity initiating from each

time t (I ) that follows the flow of vϵ and has length scale ∼4−1. The elements of this partition of unity
are functions χ(I,[k]) : R × T3

→ R that are indexed by (I, [k]) ∈ Z × (Z/5Z)3, and they satisfy∑
[k]∈(Z/5Z)3

χ2
(I,[k])(t, x)= 1 for all I ∈ Z, (t, x) ∈ R × T3, (22)

Dtχ(I,[k])(t, x)= 0 for all (I, [k]) ∈ Z × (Z/5Z)3, (t, x) ∈ R × T3. (23)

To construct the initial data for the partition of unity, choose a smooth χ̄ : R3
→ R with support in[

−
3
4 ,

3
4

]3 such that
∑

m∈Z3 χ̄2(h − m)= 1 for all h ∈ R3, then periodize and rescale to define

χ(I,[k])(t (I ), x) :=

∑
m∈Z3

χ̄(5x − [k] −5m). (24)

Observe that χ(I,[k])(t (I ), x) does not depend on how we represent the equivalence classes of x ∈ (R/Z)3

or [k] ∈ (Z/5Z)3, and that (22) holds at time t (I ). The same identity holds for all time t ∈ R by (23) and
uniqueness of solutions to the transport equation. Observe also, since 34≤5≤ 64, that the initial data
for χ(I,[k])(t (I ), · ) is supported in a ball of radius 4−1 around 5−1

[k] in (R/Z)3, and satisfies estimates
of the form ∥∇a⃗χ(I,[k])(t (I ), · )∥C0 ≲|a⃗| 4

|a⃗|.

7A. Localizing the convex integration construction. Unlike the scheme in [Isett 2018], our scheme will
involve many Mikado flow based waves at any given time that are supported within overlapping regions.
In general, interference between overlapping Mikado flows would produce error terms that cannot be
controlled for the iteration. We avoid this interference by “threading” the Mikado flows together, so that,
at the initial time, the main terms of the waves VJ will have disjoint support. The support then remains
disjoint as the Mikado flows are advected along the coarse scale flow.

To accomplish this construction, let f ∈ F and let [k] ∈ (Z/2Z)3. Choose an r0 > 0 and choose disjoint,
periodic lines ℓ( f,[k]) = {p( f,[k]) + t f : t ∈ R} that are separated from each other by a distance greater
than 6r0 in the torus (R/Z)3. Choose smooth functions ψ( f,[k]) : T3

→ R of the form ψ( f,[k])(X) =

g(dist(X, ℓ( f,[k]))), supp g( · )⊆
[ 1

2r0, r0
]
, such that∫

T3
ψ( f,[k])(X) d X = 0,

∫
T3
ψ2
( f,[k])(X) d X = 1. (25)

With these choices, the functions ψ( f,[k]) have disjoint support and have gradients orthogonal to f :

∇ℓψ( f,[k])(X) f ℓ = 0,

suppψ( f,[k]) ∩ suppψ( f̃ ,[k̃]) = ∅ if f ̸= f̃ or [k] ̸= [k̃] in (Z/2Z)3.

(26)
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Conditions (26) and (25) imply that ψ( f,[k])(X) f ℓ is divergence-free with mean zero, which implies that
there is6 a smooth tensor field

�
αβ

( f,[k]) : T3
→ R3

⊗ R3

that is antisymmetric in αβ and satisfies

∇α�
αβ

( f,[k])(X)= ψ( f,[k])(X) f β,
∫

T3
�
αβ

( f,[k])(X) d X = 0 for all 1 ≤ α, β ≤ 3.

Since all components of the �αβ( f,[k]) have mean zero on the torus, we can further construct tensor fields

�̃
αβγ

( f,[k]) : T3
→ R3

⊗ R3
⊗ R3,

also antisymmetric in αβ, such that

∇γ �̃
αβγ

( f,[k])(X)=�
αβ

( f,[k])(X),
∫

T3
�̃
αβγ

( f,[k])(X) d X = 0 for all 1 ≤ α, β, γ ≤ 3.

For example, we can take

�̃
αβγ

( f,[k]) := ∇
γ1−1�

αβ

( f,[k]).

These second-order potentials will be used to impose local conservation of angular momentum similar to
the use of double-curl form waves in [Isett and Oh 2016b].

For J = (I, J1, J2, J3, f ), let [J ] := [(J1, J2, J3)]. We define the corrections V ℓ
J to have the form

V ℓ
J = V̊ ℓ

J + δV ℓ
J , V̊ ℓ

J = vℓJψJ (t, x), ψJ (t, x) := ψ( f,[J ])(λ0I (t, x)). (27)

The amplitudes vℓJ have the same form as in [Isett 2018, Section 13] except they incorporate the partition
of unity χJ . In particular, they take values orthogonal to the gradient of the oscillatory functions ψJ :

vℓJ = χJ [e
1/2
I (t)γ(I, f )(t, x)(∇0−1

I )ℓa f a
], (28)

suppt e1/2
I (t)⊆ [t (I )− θ, t (I )+ θ ], (29)

χJ (t, x)= χ(I,[J1,J2,J3])(t, x), J = (I, J1, J2, J3, f ),

vℓJ ∇ℓψJ = 0. (30)

Note in particular that by construction the main terms of each wave have disjoint supports

supp V̊J ∩ supp V̊K = ∅ if J ̸= K . (31)

Indeed, if J = (J0, J1, J2, J3, f ) and K = (K0, K1, K2, K3, f ′) are not equal and J0 ̸= K0, then V ℓ
J

and V ℓ
K live on different time intervals. If J0 = K0 = I , one has either f ̸= f ′ or (J1, J2, J3) ̸= (K1, K2, K3)

mod 2, either case implying suppψJ ∩ suppψK = ∅, or f = f ′ and (J1, J2, J3)= (K1, K2, K3) mod 2.
In the last case, one has suppχJ ∩ suppχK = ∅ unless J = K .

6We can take for instance �αβ
( f,[k])

= ∇
α1−1

[ψ( f,[k]) f β ] −∇
β1−1

[ψ( f,[k]) f α].
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The correction V ℓ
J is made to be divergence-free and to have the form (27) by making V ℓ

J the divergence
of an antisymmetric tensor built from the Lie transport of the potentials �̃αβγ( f,[k]) above:

V ℓ
J = λ−2

∇a∇c[χJ (∇0
−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )�̃
αβγ

J ], (32)

δV ℓ
J = δvℓJ,αβ�

αβ

J + δvℓJ,αβγ �̃
αβγ

J ,

�
αβ

J (t, x) :=�
αβ

( f,[J1,J2,J3])
(λ0I ),

�̃
αβγ

J (t, x) := �̃
αβγ

( f,[J1,J2,J3])
(λ0I ),

δvℓJ,αβ := λ−1
∇a[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβe1/2

I (t)γ(I, f )],

δvℓJ,αβγ := λ−2
∇a∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )].
(33)

Note that the main term V̊ ℓ
J in (27)–(28) appears when the derivatives ∇a and ∇c both fall on �̃αβγJ .

Since V ℓ
J has the form V ℓ

J =∇aW aℓ
J , where W aℓ

J is antisymmetric in aℓ, we have that V ℓ
J is divergence-free.

The amplitudes constructed here are related to those constructed in [Isett 2018, Section 13] (which are
indexed by (I, f ) ∈ Z × F and do not involve spatial cutoffs) by the formula

vℓJ = χJv
ℓ
(I, f ), J = (I, J1, J2, J3, f ). (34)

This comparison allows us to see that the parameter ϵ = ϵv in the mollification of v 7→ vϵ can be chosen to
have the same value ϵv = cvN−1/24−1 as in [Isett 2018, Section 16], which is based on the requirement

∥v− vϵ∥C0 max
J

∥|vJ ||ψJ |∥C0 ≤ (log 4̂)1/2
e1/2
v e1/2

R

500N
.

Since we have chosen the same parameter in the mollification v 7→ ϵv as that chosen in [Isett 2018],
we obtain the same estimates for vϵ :

∥∇a⃗vϵ∥C0 ≲|a⃗| N (|a⃗|−2)+/24|a⃗|e1/2
v if |a⃗| ≥ 1, (35)

where the implicit constant is equal to 1 for |a⃗| = 1. From this fact we will see in the following Section 8
that all the remaining estimates for the components of the construction coincide with those in the proof of
[Isett 2018, Lemma 3.3].

8. Estimates for components of the construction

Here we summarize the estimates for the components of the construction, which coincide with those of
[Isett 2018]. The following elementary lemma will be convenient:

Lemma 8.1. For u ≥ 0, an integer M ≥ 0 and for g : T3
→ R, define ( for N ≥ 1, 4 > 0)

HM,u[g] := max
0≤|a⃗|≤M

∥∇a⃗g∥C0

N (|a⃗|−u)+/24|a⃗|
. (36)

Then, for λ≥ N 1/24, we have for any first-order partial derivative ∇a

HM,u[λ
−1

∇ag] ≤ HM+1,u[g],

HM,u[4
−1

∇ag] ≤ HM+1,u+1[g].
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We also have the triangle inequality HM,u[g(1) + g(2)] ≤ HM,u[g(1)] + HM,u[g(2)] and product estimate

HM,u[g(1)g(2)] ≲M HM,u[g(1)]HM,u[g(2)]. (37)

All the properties follow quickly from the definition (36). Inequality (37) follows from the expansion

∇a⃗(g(1)g(2))=

∑
|a⃗1|+|a⃗2|=|a⃗|

ca⃗1,a⃗2∇a⃗1 g(1)∇a⃗2 g(2),

the bound
∥∇a⃗i g(i)∥C0 ≤ N (|a⃗i |−u)+/24HM,u[g(i)]

and the inequality (|a⃗1| − u)+ + (|a⃗2| − u)+ ≤ (|a⃗| − u)+.
The estimates for the construction may now be summarized as follows. Here we use the fact that the

frequency λ := BλN4 is larger than N 1/24 to conclude that the lower-order terms δvℓJ,αβγ obey the same
bounds as the δvℓJ,αβ .

Proposition 8.2. The following bounds hold with constants depending only on |a⃗|:

∥∇a⃗γ(I, f )∥C0 + ∥∇a⃗(∇0
−1
I )∥C0 ≲ N (|a⃗|−1)+/24|a⃗|, (38)

∥∇a⃗ Dtγ(I, f )∥C0 + ∥∇a⃗ Dt(∇0
−1
I )∥C0 ≲ (log 4̂)24e1/2

v N (|a⃗|−1)+/24|a⃗|, (39)

sup
t∈R

(e1/2
I (t)+ θ |∂t e

1/2
I (t)|)≲ (log 4̂)1/2e1/2

R , (40)

∥∇a⃗χJ ∥C0 ≲ N (|a⃗|−1)+/24|a⃗|, (41)

∥∇a⃗v
ℓ
J ∥C0 ≲ (log 4̂)1/2 N (|a⃗|−1)+/24|a⃗|e1/2

R , (42)

∥∇a⃗ Dtv
ℓ
J ∥C0 ≲ (log 4̂)5/2 N (|a⃗|−1)+/24|a⃗|e1/2

R , (43)

∥∇a⃗δv
ℓ
J,αβ∥C0 + ∥∇a⃗δv

ℓ
J,αβγ ∥C0 ≲ λ−1(log 4̂)1/2 N |a⃗|/241+|a⃗|e1/2

R , (44)

∥∇a⃗ Dtδv
ℓ
J,αβ∥C0 + ∥∇a⃗ Dtδv

ℓ
J,αβγ ∥C0 ≲ λ−1(log 4̂)5/2 N |a⃗|/24|a⃗|+2e1/2

v e1/2
R . (45)

Proof. Inequalities (38)–(40) follow from the bounds in [Isett 2018, Section 17.1]. Inequality (41) for
|a⃗| = 0 follows from the maximum principle for DtχJ = 0. To obtain (41), we apply [Isett 2017a,
Proposition 17.4] in the case of order L = 2 frequency-energy levels to obtain

EM [χJ ](8s(t, x))≤ eCM4e1/2
v |s|EM [χJ ](t (I ), x),

EM [χJ ](t, x) :=

∑
0≤|a⃗|≤M

4−2|a⃗|N−(|a⃗|−1)+ |∇a⃗∇χJ (t, x)|2,

(46)

and we use the fact that, by the construction in (24),

EM [χJ ](t (I ), x)≲M

∑
0≤|a⃗|≤M

4−2|a⃗|N−(|a⃗|−1)+(4|a⃗|+1)2 ≲M 42.

We have 4e1/2
v |s| ≤4e1/2

v θ ≤ 1 on the support of the time cutoff e1/2
I from (29), so (46) yields

∥∇a⃗χJ ∥C0 ≲ N (|a⃗|−2)+/24|a⃗|,

which implies (41).
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The proofs of estimates (42)–(45) for vℓJ and for δvℓJ,αβγ are exactly as in [Isett 2018, Section 17.1]
with the addition of the cutoff function χJ . For instance, note that

χJ (∇0
−1
I )aα and Dt [χJ (∇0

−1
I )aα] = χJ Dt(∇0

−1
I )aα

obey the same bounds as (∇0−1
I )aα and Dt(∇0

−1
I )aα , respectively, up to constants, so we may absorb the

cutoff χJ into the first factor of (∇0−1) in estimating formulas (28) and (33) while repeating the proofs
in [Isett 2018, Section 17.1].

It remains to check (42)–(45) for the lower-order term δvℓJ,αβγ . Applying Lemma 8.1, we obtain

λ4−1δvℓJ,αβγ =4−1λ−1
∇a∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )],

λ4−1 HM,0[δv
ℓ
J,αβγ ] ≲M HM+1,1[λ

−1
∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]

≲M HM+2,1[χJ (∇0
−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]

≲M e1/2
I (t)HM+2,1[χJ ]HM+2,1[(∇0

−1
I )]3 HM+2,1[γ(I, f )], (47)

HM,0[δv
ℓ
J,αβγ ] ≲M λ−1(log 4̂)1/24e1/2

R . (48)

Here every term in (47) is bounded by ≲M 1 except e1/2
I (t). Note that (48) is equivalent to (44).

To prove (45), we proceed similarly by commuting in the advective derivative weighted by the parameter
θ ∼ (log 4̂)−24−1e−1/2

v :

(λ4−1θ)Dtδv
ℓ
J,αβγ =4−1λ−1

∇a∇c[θDt [χJ (∇0
−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]] (49)

− θ(∇av
i
ϵ)4

−1λ−1
∇i∇c[χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )] (50)

−4−1
∇a[∇cv

i
ϵλ

−1
∇i [χJ (∇0

−1
I )aα(∇0

−1
I )ℓβ(∇0

−1
I )cγ e1/2

I (t)γ(I, f )]]. (51)

The terms (50) and (51) may be estimated using Lemma 8.1 as in the proof of (47)–(48) to obtain

HM,0[(50)] + HM,0[(51)] ≲M e1/2
I (t)HM+1,1[θ∇vϵ]HM+2,1[χJ ]HM+2,1[(∇0

−1
I )]3 HM+2,1[γ(I, f )]

(35)−(41)
≲M e1/2

I (t)≲ (log 4̂)1/2e1/2
R .

For (49), apply the product rule for θDt and apply Lemma 8.1 repeatedly to obtain

HM,0[(49)] ≲M (e1/2
I (t)+ θ |∂t e

1/2
I (t)|)HM+2,1[χJ ] · (HM+2,1[(∇0

−1
I )] + θHM+2,1[Dt(∇0

−1
I )])3

· (HM+2,1[γ(I, f )] + θHM+2,1[Dtγ(I, f )]).

Since
θHM+2,1[Dtγ(I, f )] and θHM+2,1[Dt(∇0

−1
I )]

are bounded by ≲M 1 from (38)–(39), we have

HM,0[δvJ,αβγ ] ≤ θ−1λ−14(HM,0[(49)] + HM,0[(50)] + HM,0[(51)])

≲M θ−1λ−14(e1/2
I (t)+ θ |∂t e

1/2
I (t)|)

≲ θ−1λ−14(log 4̂)1/2e1/2
R .

This bound is equivalent to the desired bound (45) for δvJ,αβγ . □
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As (42)–(45) are the same bounds for the components of the correction as those proven for vℓ(I, f ) and
δvℓ(I, f ),αβ in [Isett 2018, Section 17], we have the following bounds from [Isett 2018, Proposition 17.3].

Proposition 8.3 (correction estimates). For 0 ≤ |a⃗| ≤ 3, we have

sup
J

∥∇a⃗ V̊J ∥C0 ≲ (BλN4)|a⃗|(log 4̂)1/2e1/2
R ,

sup
J

∥∇a⃗δVJ ∥C0 ≲ (BλN4)|a⃗|−14(log 4̂)1/2e1/2
R ,

∥V ∥C0 ≲ (BλN4)|a⃗|(log 4̂)1/2e1/2
R , (52)

suppt V ⊆

⋃
I

suppt eI ⊆

⋃
I

[t (I )− θ, t (I )+ θ ].

For the estimate (52), we use that at most a bounded number (say 23) distinct V ℓ
J are supported at any

given point (t, x). This detail will be explained following (76) below. We now consider the error terms
and their estimates.

9. The error terms

Given the Euler–Reynolds flow (v, p, R), the new velocity field vℓ1 = vℓ + V ℓ, with

V ℓ
=

∑
J

V ℓ
J =

∑
J

V̊ ℓ
J + δV ℓ

J ,

and pressure p1 = p + P will solve the Euler–Reynolds equations when coupled to a new Reynolds stress
tensor R jℓ

1 . The new stress tensor R jℓ
1 will be composed of terms that solve

R jℓ
1 = R jℓ

M + R jℓ
T + R jℓ

S + R jℓ
H , (53)

R jℓ
M = (v j

− v j
ϵ )V

ℓ
+ V j (vℓ − vℓϵ)+ (R

jℓ
− R jℓ

ϵ ),

∇j R jℓ
T = ∂t V ℓ

+ ∇j (v
j
ϵ V ℓ

+ V jvℓϵ), (54)

R jℓ
S =

∑
J,K∈J

δV j
J V̊ ℓ

K + V̊ j
J δV ℓ

K + δV j
J δV ℓ

K ,

∇j R jℓ
H = ∇j

[∑
J∈J

V̊ j
J V̊ ℓ

J + Pδ jℓ
+ R jℓ

ϵ

]
. (55)

In writing (55), we have made the crucial observation that all of the off-diagonal terms in the summation∑
J,K∈J V̊ j

J V̊ ℓ
K vanish due to the disjointness of support stated in (31).

Our construction has been designed in such a way that∑
J∈J

v
j
Jv
ℓ
J + Pδ jℓ

+ R jℓ
ϵ = 0. (56)

From (27) and (56), equation (55) reduces to

∇j R jℓ
H = ∇j

[∑
J∈J

v
j
Jv
ℓ
J (ψ

2
J − 1)

]
. (57)
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To verify (56), note that, for each I ∈ Z and J (I ) := {I }×(Z/5Z)3 ×F, we have from (22) and (34) that∑
J∈J (I )

v
j
Jv
ℓ
J =

∑
[k]∈(Z/5Z)3

∑
f ∈F

χ2
(I,[k])v

j
(I, f )v

ℓ
(I, f ) =

∑
f ∈F

v
j
(I, f )v

ℓ
(I, f ), (58)

where v(I, f ) are the amplitudes from the construction in [Isett 2018]. The equality∑
I∈Z

∑
f ∈F

v
j
(I, f )v

ℓ
(I, f ) + Pδ jℓ

+ R jℓ
ϵ = 0

proved in [Isett 2018, Sections 14–15] now implies the equality (56) in the present construction using (58).
It now remains to show that, when R jℓ

T and R jℓ
H are chosen appropriately, the tensor R jℓ

1 defined by (53)
satisfies the bounds required by Lemma 6.2.

10. Solving the symmetric divergence equation

To estimate the error tensor R1 defined in (53), the only terms that require a different treatment from
[Isett 2018] are the terms RT and RH . Namely, since our choice of vϵ and Rϵ and our estimates for V̊J

and δVJ also coincide with those of that paper, Proposition 17.4 there shows that

∥RM∥C0 + ∥RS∥C0 ≤ (log 4̂)
e1/2
v e1/2

R

10N
, (59)

∥∇a⃗ RM∥C0 + ∥∇a⃗ RS∥C0 ≲ (BλN4)|a⃗|(log 4̂)
e1/2
v e1/2

R

N
, 1 ≤ |a⃗| ≤ 3,

suppt RM ∪ suppt RS ⊆

⋃
I

[t (I )− θ, t (I )+ θ ],

provided we choose the constant Bλ in the definition of λ= BλN4 to be larger than a certain, absolute
constant Bλ.

The tensors RT and RH are defined as summations of the form

R jℓ
T =

∑
J∈J

R jℓ
T,J , R jℓ

H =

∑
J∈J

R jℓ
H,J , (60)

where each term is symmetric and is localized both in space and in time around the support of V ℓ
J .

We expand the terms (54) and (57) (using the orthogonality v j
J ∇jψJ = 0 stated in (30) in the case

of RH , and using ∇jv
j
ϵ = ∇j V

j
J = 0 in the case of RT ) to obtain the equations

∇j R jℓ
T,J = ∂t V ℓ

J + ∇j (v
j
ϵ V ℓ

J + V j
J v

ℓ
ϵ), (61)

∇j R jℓ
T,J = uℓT JψJ + uℓT J,αβ�

αβ

J + uℓT J,αβγ �̃
αβγ

J , (62)

∇j R jℓ
H,J = uℓH J (ψ

2
J − 1), (63)

uℓH J = ∇j [v
j
Jv
ℓ
J ],

uℓT J := Dtv
ℓ
J + v

j
J ∇jv

ℓ
ϵ ,

uℓT J,αβ := Dtδv
ℓ
J,αβ + δv

j
J,αβ∇jv

ℓ
ϵ ,

uℓT J,αβγ := Dtδv
ℓ
J,αβγ + δv

j
J,αβγ∇jv

ℓ
ϵ .
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By the construction in Section 7A, each of the functions ψJ , (ψ2
J − 1), �αβJ and �̃αβγJ have the form

ω(λ0I (t, x)), where ω : T3
→ R belongs to a finite set of smooth functions of mean zero on T3. We may

therefore apply the following proposition, which is similar to [Isett 2018, Proposition 17.6] and is proven
in Section 10A below using the same parametrix expansion technique.

Proposition 10.1 (nonstationary phase). If U ℓ
: R × T3

→ R3 is a smooth vector field of the form
U ℓ

= uℓω(λ0I ), where ω : T3
→ R is a smooth function of mean zero, then, for any D ≥ 1, there exist a

smooth, symmetric tensor field Q jℓ
(D) : R × T3

→ R3
⊗ R3 and a vector field U ℓ

(D) satisfying

U ℓ
= ∇j Q jℓ

(D) + U ℓ
(D),

sup
0≤|a⃗|≤3

λ−|a⃗|
∥∇a⃗ Q jℓ

(D)∥C0 ≲ λ−1 sup
0≤|a⃗|≤D+3

∥∇a⃗uℓ∥C0

N |a⃗|/24|a⃗|
,

sup
0≤|a⃗|≤3

λ−|a⃗|
∥∇a⃗U ℓ

∥C0 ≲ B−1
λ N−D/2 sup

0≤|a⃗|≤D+3

∥∇a⃗uℓ∥C0

N |a⃗|/24|a⃗|
,

supp Q jℓ
(D) ∪ supp U ℓ

(D) ⊆ supp U ℓ,

where the implicit constant depends only on ω and D.

We apply Proposition 10.1 to each of the terms in (62) and (63) and use the estimates

HD+3,0[uℓT J ] + HD+3,0[uℓT J,αβ] + HD+3,0[uℓT J,αβγ ] + HD+3,0[uℓH J ] ≲ (log 4̂)5/24e1/2
v e1/2

R ,

HD+3,0[u] := sup
0≤|a⃗|≤D+3

∥∇a⃗uℓ∥C0

N |a⃗|/24|a⃗|
,

which follow from (42)–(45) and Lemma 8.1 (and are saturated only by uℓT J ), to obtain the decompositions

(62) = ∇j Q jℓ
T J,(D) + U ℓ

T J,(D), (63) = ∇j Q jℓ
H J,(D) + U ℓ

H J,(D), (64)

where the symmetric tensors QT J,(D) and Q H J,(D) and remainder terms UT J,(D) and UH J,(D) satisfy

sup
0≤|a⃗|≤3

λ−|a⃗|(∥∇a⃗ Q jℓ
T J,(D)∥C0 + ∥∇a⃗ Q jℓ

H J,(D)∥C0)≲D λ
−1(log 4̂)5/24e1/2

v e1/2
R

≲D B−1
λ (log 4̂)5/2

e1/2
v e1/2

R

N
, (65)

sup
0≤|a⃗|≤3

λ−|a⃗|(∥∇a⃗U jℓ
T J,(D)∥C0 + ∥∇a⃗U jℓ

H J,(D)∥C0)≲D B−1
λ N−D/2(log 4̂)5/24e1/2

v e1/2
R , (66)

supp UT J,(D) ∪ supp UH J,(D) ∪ supp QT J,(D) ∪ supp Q H J,(D) ⊆ suppχJ · e1/2
I (t). (67)

To complete the construction of R jℓ
T,J and R jℓ

H J to (62)–(63), we construct solutions to the equations

∇j R jℓ
T J,(D) = U ℓ

T J,(D), ∇j R jℓ
H J,(D) = U ℓ

H J,(D) (68)

that are localized around space-time cylinders containing the supports of vJ by using the inverses for the
symmetric divergence equation that were constructed in [Isett and Oh 2016b]. We first recall the notions
of Lagrangian and Eulerian cylinders from that paper.
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Definition 10.2. Let 8s be the flow map associated to vϵ as defined in (20). Given a point in space-time
(t0, x0)∈ R×T3 and positive numbers τ, ρ > 0, we define the vϵ-adapted Eulerian cylinder Ĉ(τ, ρ; t0, x0)

with duration 2τ and base radius ρ as well as the vϵ-adapted Lagrangian cylinder 0̂(τ, ρ; t0, x0) with
duration 2τ and base radius ρ to be

Ĉ(τ, ρ; t0, x0) := {8s(t0, x0)+ (0, h) : 0 ≤ |s| ≤ τ, 0 ≤ |h| ≤ ρ},

0̂(τ, ρ; t0, x0) := {8s(t0, x0 + h) : 0 ≤ |s| ≤ τ, 0 ≤ |h| ≤ ρ}.

The two notions are related (see [Isett and Oh 2016b, Lemma 5.2]) by

(t ′, x ′) ∈ Ĉ(τ, ρ; t0, x0) ⇐⇒ (t, x) ∈ 0̂v(τ, ρ; t ′, x ′), (69)

0̂(τ, e−τ∥∇vϵ∥C0ρ; t0, x0)⊆ Ĉ(τ, ρ; t0, x0)⊆ 0̂(τ, eτ∥∇vϵ∥C0ρ; t0, x0). (70)

It follows that the amplitudes constructed in Section 7A are supported in an Eulerian cylinder

suppχJ · e1/2
I (t)⊆ 0̂(θ,5−1

; t (I ), x0(J ))⊆ Ĉ(θ, eθ∥∇vϵ∥C05−1
; t (I ), x0(J ))

⊆ Ĉ(θ,4−1
; t (I ), x0(J )), (71)

and the remainder terms U ℓ
T J,(D) and U ℓ

H J,(D) are supported in the same Eulerian cylinder by (67).
Before we can obtain symmetric tensors that solve the equations in (68), we must check that the

necessary orthogonality conditions∫
R3

U ℓ(t, x) dx = 0,
∫

R3
(x jU ℓ

− xℓU j )(t, x) dx = 0, 1 ≤ j, ℓ≤ 3 (72)

are satisfied, where U ℓ is the (nonperiodic restriction of) U ℓ
T J,(D) or U ℓ

H J,(D). To check condition (72),
note that U ℓ

H J,(D) is by construction in (57) and (64) the divergence of a smooth symmetric tensor with
compact support, and that U ℓ

T J,(D) has the form ∇a∇c[T acℓ
J ]+∇jU

jℓ
J (using (32), (61), (64)), where U jℓ

J
is symmetric and both T acℓ

J and U jℓ
J have compact support in the cylinder (71). Integrating by parts, one

obtains the conditions (72) for the nonperiodic restrictions of both U ℓ
T J,(D) and U ℓ

H J,(D).
We now have the necessary inputs to solve the symmetric divergence equation with good control over

the support and boundedness properties of the solution map. We recall7 the following result of [Isett and
Oh 2016b, Section 10] (in particular Lemmas 10.3 and 10.4).

Lemma 10.3. Suppose U is a smooth vector field on R × Rd with support in an Eulerian cylinder
Ĉ(θ, ρ; t0, x0) relative to a smooth vector field v̄. If U is orthogonal at all times to the rotation and
translation vector fields on Rd in the sense of (72), then there is a symmetric tensor field R jℓ

U that is also
supported in the same Eulerian cylinder and that solves ∇j R jℓ

U = U ℓ. The solution can be taken to depend
linearly on U and to satisfy the bounds

∥∇a⃗ RU ∥C0 ≲ ρ
∑

a⃗1+a⃗2=a⃗

ρ−|a⃗1|∥∇a⃗2U∥C0 .

7Here we do not need to use the additional advective derivative estimates that were used in [Isett and Oh 2016b] since we
only need to bound spatial derivatives.
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Applying this lemma, we obtain symmetric tensors solving (68) such that

supp R jℓ
T J,(D) ∪ supp R jℓ

H J,(D) ⊆ Ĉ(θ,4−1
; t (I ), x0(J )), (73)

∥R jℓ
T J,(D)∥C0 + ∥R jℓ

H J,(D)∥C0 ≲ 4−1(∥U ℓ
T J,(D)∥C0 + ∥U ℓ

H J,(D)∥C0)

(66)
≲ B−1

λ N−D/2(log 4̂)5/2e1/2
v e1/2

R , (74)

∥∇a⃗ R jℓ
T J,(D)∥C0 + ∥∇a⃗ R jℓ

H J,(D)∥C0 ≲|a⃗| 4
−1

∑
|b⃗|≤|a⃗|

4|a⃗|−|b⃗|(∥∇b⃗U ℓ
T J,(D)∥C0 + ∥∇b⃗U ℓ

H J,(D)∥C0). (75)

We now set D = 2 and define

R jℓ
T J = Q jℓ

T J,(D) + R jℓ
T J,(D) and R jℓ

H J = Q jℓ
H J,(D) + R jℓ

H J,(D).

Combining (65), (67), (73), and (74) into (60), we obtain the estimate

∥RT ∥C0 + ∥RH∥C0 ≲ B−1
λ (log 4̂)5/2

e1/2
v e1/2

R

N
. (76)

To sum the estimates we have also used the fact that the number of distinct cylinders of the form (73) that
can intersect at a given point in space-time (t, x) is bounded by an absolute constant. To check this fact,
note that if two cylinders indexed by J and J ′ intersect at a point (t∗, x∗) ∈ R × T3, then

(t∗, x∗) ∈ Ĉ(θ,4−1
; t (I ), x0(J ))∩ Ĉ(θ,4−1

; t (I ′), x0(J ′)) ⇒

I = I ′ and (t (I ), x0(J )), (t (I ), x0(J ′))
(69)
∈ 0̂(θ,4−1

; t∗, x∗)

(70)
∈ Ĉ(θ, eθ∥∇vϵ∥C04−1

; t∗, x∗)⊆ Ĉ(θ, 34−1
; t∗, x∗).

The number of indices J = (I, f ) for which (t (I ), x0(J )) can belong to a given ball of radius 34−1 ≲5−1

is bounded by an absolute constant by the construction of the cutoff functions.
We can now take Bλ to be a sufficiently large number such that the right-hand side of (76) is bounded

by (log 4̂)5/2e1/2
v e1/2

R /(20N ) (and so that λ= BλN4 ∈ Z is an integer). This choice achieves our desired
bound for ∥R1∥C0 when combined with (59). The desired bounds for higher derivatives

∥∇a⃗ RT ∥C0 + ∥∇a⃗ RH∥C0 ≲ (N4)|a⃗|(log 4̂)5/2
e1/2
v e1/2

R

N
, 1 ≤ |a⃗| ≤ 3,

now follow from (65), (66), (75) and the observations concerning the overlaps of the cylinders (73). The
assertions about the desired support of R jℓ

1 asserted in Lemma 6.2 are clear from construction.
The proof of Lemma 6.2 will now be complete after explaining the proof of Proposition 10.1.

10A. The parametrix expansion. We now prove Proposition 10.1 using the argument in the proof of
[Isett 2018, Proposition 17.6]. Let U ℓ

= uℓω(λ0I ) be given as in the assumptions of Proposition 10.1.
By Fourier-expanding ω(X) as a function on T3, we have

U ℓ
=

∑
m ̸=0

ω̂(m)eiλξm(t,x)uℓ(t, x), (77)
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where m ∈ Z3 and ξm(t, x) := m ·0I (t, x). Following the proof of [Isett 2018, Proposition 17.6], we set

Q jℓ
(D) =

∑
m ̸=0

ω̂(m)Q jℓ
(D),m, Q jℓ

(D),m := λ−1
D∑

k=1

eiλξm q jℓ
(k),m . (78)

The amplitudes q jℓ
(k),m are constructed inductively with a sequence of amplitudes uℓ(k),m such that

i∇jξmq jℓ
(k),m = uℓ(k−1),m,

uℓ(k),m = −λ−1
∇j q

jℓ
(k),m

(79)

and uℓ(0),m = uℓ. By (77), (79) and induction on D, we then obtain

U ℓ
= ∇j Q jℓ

(D) + U ℓ
(D),

U ℓ
(D) =

∑
m ̸=0

ω̂(m)eiλξm uℓ(D),m .
(80)

More specifically, to solve (79) we first choose smooth functions q̄ jℓ
a (p) of a variable p ∈ R3

\ {0},
symmetric in jℓ, such that each q̄ jℓ

a (p) is degree −1 homogeneous (q̄ jℓ
a (αp)= α−1q̄ jℓ

a (p) if α ∈ R \ {0})
and such that i pj q̄

jℓ
a (p) = δℓa for all p ̸= 0. See [Isett 2018, Proposition 17.6] for an explicit example.

We then set q jℓ
(k),m := q̄ jℓ

a (∇ξm)ua
(k−1),m , so that (79) is satisfied.

From this construction we see that both Qℓ
(D) and U ℓ

(D) have support contained in supp uℓ. We obtain
the desired estimates for Qℓ

(D) and U ℓ
(D) stated in Proposition 10.1 from the formulas (78) and (80) by

using the bounds

∥∇a⃗q jℓ
(k),m∥C0 ≲ N−(k−1)/2 N |a⃗|/24|a⃗|HD+3,0[u] for all 0 ≤ |a⃗| ≤ D − k + 4, 1 ≤ k ≤ D,

∥∇a⃗uℓ(k),m∥C0 ≲ B−1
λ N−k/2 N |a⃗|/24|a⃗|HD+3,0[u] for all 0 ≤ |a⃗| ≤ D − k + 3, 1 ≤ k ≤ D,

from the proof of [Isett 2018, Proposition 17.6] (where HD+3,0[u] is written simply as H ), and by using
the rapid decay of |ω̂(m)| ≲ (1 + |m|)−40 to ensure convergence in the summation over m ∈ Z3. (The
main point in the estimate is that each spatial derivative of the sum costs at most a factor of λ.)

11. Iterating the main lemma

We now explain the proof of Theorem 1.1. Similar to other convex integration constructions, the
theorem will be proven by repeatedly applying Lemma 5.1 to obtain a sequence of Euler–Reynolds
flows (v(k), p(k), R(k)) indexed by k (with frequency-energy levels bounded by (4(k), ev,(k), eR,(k))) that
will converge uniformly to the solution v stated in Theorem 1.1. Unlike previous works, we introduce
here a new and sharper approach to estimating the regularity and to optimizing the choice of parameters
governing the growth of frequencies.

To initialize the construction, we construct a smooth Euler–Reynolds flow (v(1), p(1), R(1)) with
compact support in time that satisfies

sup
x∈T3

v(1)(0, x)≥ 10 (81)
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and has frequency-energy levels (to order 3 in C0) bounded by (4(1), eR,(1), eR,(1)), where 4(1) = 4̂(1)

and eR,(1) are large and small parameters, respectively, that remain to be chosen. One way to produce such
an Euler–Reynolds flow is to apply the main lemma in the convex integration scheme of [Isett 2017a] (as
was done in [Isett 2018]). This approach has some added benefits such as the ability to obtain arbitrarily
large increases in energy within an arbitrarily small time interval [Isett 2017a]. For the present purpose it
will suffice to take a simpler approach.

We take v(1) to have the form vℓ(1) = ψ(B−1t)U ℓ, where ψ is a smooth cutoff with ψ(0) = 1 and
0 ≤ ψ(t)≤ 1 for all t , B is a large parameter, and U ℓ

: T3
→ R3 is a smooth vector field that satisfies∫

T3
U ℓ(x) dx = 0, ∇ℓU ℓ

= 0, ∇j (U jU ℓ)= 0, sup
x∈T3

U ℓ(x)≥ 10.

For example, one can take a sufficiently large Mikado flow for U ℓ(x). We then take p(1) = 0 and R(1) to
be a symmetric tensor that solves

∇j R jℓ
(1) = ∂tv

ℓ
(1) = B−1ψ ′(B−1t)U ℓ(X) (82)

by applying an appropriate, degree −1 Fourier-multiplier to the right-hand side of (82). The Euler–
Reynolds flow (v(1), p(1), R(1)) obtained in this way has frequency-energy levels (to order 3 in C0)
bounded by (4, 1, eR,(1)), where 4 depends only on U ℓ, and where eR,(1) ≲ B−1 can be made arbitrarily
small by taking B large depending on U ℓ. It follows from Definition 4.2 that (v(1), p(1), R(1)) also have
frequency-energy levels bounded by

(4(1), ev,(1), eR,(1)) := (4e−1/2
R,(1), eR,(1), eR,(1)),

where we have now fixed our choice of 4(1) :=4e−1/2
R,(1) in terms of the small parameter eR,(1) that remains

to be chosen.

11A. Heuristics and deriving the optimization problem for the parameters. The sequence of frequency-
energy levels (4, ev, eR)(k) and Euler–Reynolds flows will now be determined by repeatedly applying
Lemma 5.1, so that the following rules hold. (Here Ĉ and CL denote the two constants of Lemma 5.1
and 4̂(k) := (ev/eR)

1/2
(k)4(k).)

4(k+1) = Ĉ N(k)4(k), (83)

ev,(k+1) = (log 4̂(k))eR,(k), (84)

eR,(k+1) =
eR,(k)

g(k)
, (85)

N(k) = (log 4̂(k))A
(

ev
eR

)1/2

(k)
g(k), A :=

5
2 . (86)

The sequence g(k) > 1 describes the “gain” in the size of the error after stage k, and the sequence of
frequency growth parameters N(k) is determined by inequality (10) in Lemma 5.1, so that this choice
of N(k) achieves the desired gain. To work with the estimate (11), it will also be useful to impose that

(log 4̂(k+1))
1/2e1/2

R,(k+1) ≤
1
2(log 4̂(k))1/2e1/2

R,(k) for all k ≥ 1. (87)
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The Euler–Reynolds flows constructed by repeatedly applying Lemma 5.1 using the above choice of
parameters N(k) will converge uniformly to the velocity field vℓ = vℓ(1) +

∑
∞

k=1 V ℓ
(k). Assuming (87),

which is verified in Proposition 11.1 below, this solution will be nontrivial and continuous for eR,(1)

chosen small enough (depending on 4, Ĉ and CL ) thanks to (81) and

∞∑
k=1

∥V ℓ
(k)∥C0

(11),(87)
≤

∞∑
k=0

CL(log 4̂(1))1/2eR,(1)2−k
≤ 5. (88)

As R(k) converges uniformly to 0, one has from the Euler–Reynolds system that the associated sequence
of pressures p(k) =1−1

∇j∇ℓ(R
jℓ
(k) − v

j
(k)v

ℓ
(k)) converge weakly in D′(R × T3) to p = −1−1

∇j∇ℓ(v
jvℓ),

and that the pair (v, p) form a weak solution to the Euler equations.
Our goal is now to choose g(k) that optimize the regularity of the solution v. The key evolution rule

that isolates 1
3 as the limiting regularity and plays a key role in our analysis will be the following:

δ(k)
( 1

3 log 4̂(k) + 1
2 log eR,(k)

)
=

( 1
3 A +

1
6

)
log log 4̂(k) + log Ĉ . (89)

Here δ(k)[ f(k)] = f(k+1)− f(k) is the discrete differencing operator and A =
5
2 . A crucial point is that (89)

holds for all possible choices of g(k).
With the goal of computing regularity in mind, suppose 1x ∈ R3 with, say, 0< |1x | ≤ 10−2. Writing

v = v(k̄) +
∑
k≥k̄

V(k) and Lk := log 4̂(k),

we can bound |v(t, x +1x)− v(t, x)| using (87) by

|v(t, x +1x)− v(t, x)| ≤ ∥∇v(k̄)∥C0 |1x | +

∑
k≥k̄

2∥V(k)∥C0 ≤4(k̄)e
1/2
v,(k̄)

|1x | + 4CL(log 4̂(k̄))
1/2e1/2

R,(k̄)

≤ 4CL L k̄(4̂(k̄)|1x | + 1)e1/2
R,(k̄)

. (90)

The estimate is optimized by choosing k̄ to be the largest value k for which 4̂(k)|1x | ≤ 1. Now assuming k̄
has been chosen as this value, the estimate (90) leads to

|v(t, x +1x)− v(t, x)| ≤ 8CL L k̄e1/2
R,(k̄)

= 8CL L k̄4̂
−1/3
(k̄)

exp
( 1

3 log 4̂(k̄) +
1
2 log eR,(k̄)

)
≲ L k̄4̂

−1/3
(k̄+1)

exp
( 1

3δ(k) log 4̂(k)
∣∣
k=k̄ +

1
3 log 4̂(k) + 1

2 log eR,(k)
)

≲ |1x |
1/3L k̄ exp

(1
3δ(k) log 4̂(k)

∣∣
k=k̄ +

1
3 log 4̂(k) + 1

2 log eR,(k)
)
. (91)

Using (89) to expand 1
3 log 4̂(k) + 1

2 log eR,(k), we minimize the right-hand side of (91) if we minimize

Hk̄ :=

(
1
3
(log 4̂(k̄+1) − log 4̂(k̄))+

k̄−1∑
k=1

(log log 4̂(k) + log Ĉ)
)
. (92)

The expression (92) now reveals the optimization problem for choosing g(k). Namely, to control the
term δ(k) log 4̂(k), the frequencies should not grow too quickly. However, a slow growth of frequencies
produces a long summation and a poor estimate for the sum as the construction is iterated many times
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before achieving a given length scale. Intuitively, the best estimate should be achieved if the two terms are
balanced, which suggests the parameters Lk = log 4̂(k) should satisfy the discrete version of the equation

d L
dk

= 3
∫ k

1
(log L(κ)+ c) dκ,

whose solutions grow like Lk = (3 + o(1))k2 log k at infinity.
We will see that the regularity is optimal precisely when Lk are chosen to have this growth.

11B. Parameter asymptotics and optimization. With this motivation, we take g(k) = eγ k log k , where
γ > 0 is a parameter that will be chosen to optimize the regularity. To simplify the algebra we can
restrict to k ≥ 2 by assuming that the Euler–Reynolds flows (v(1), p(1), R(1))= (v(2), p(2), R(2)) and their
frequency-energy levels are equal.

Before estimating the regularity, we wish to fix our choice of the parameter eR,(1) that dictates the
initial frequency-energy levels. We therefore verify the assumption (87) (restricting now to γ ≥ 2).

Proposition 11.1. If γ ≥ 2 and eR,(1) is small enough depending on Ĉ , then (87) holds for all k ≥ 2.

Proof. Taking logs of (87), it suffices to bound the quantity

1
2δ(k) log log 4̂(k) + 1

2δ(k) log eR,(k) =
1
2δ(k) log log 4̂(k) − 1

2 log g(k) (93)

by − log 2 uniformly in k.
Towards this goal, we set Zk := Ĉ(log 4̂(k))A+1/2 to be the lower-order factor from (83) and (86).

Linearizing log( · ) around Lk := log 4̂(k) and using (83)–(86) and concavity, we have

δ(k) log log 4̂(k) = log(log 4̂(k) + log(Zk g3/2
(k) ))− log log 4̂(k) ≤

log(Zk g3/2
(k) )

log 4̂(k)
. (94)

We now substitute (94) into (93) and take eR,(1) small enough to ensure that 4̂(k) ≥4(k) ≥4(1) =4e−1/2
R,(1)

is large enough so that the following bound holds for all k ≥ 2:

(93) ≤
log Zk

log 4̂(k)
−

1
3

log g(k). (95)

Taking eR,(1) smaller and hence 4(1) larger, we can ensure that the function

f (4) :=
log(Ĉ(log4)A+1/2)

log4

is decreasing in 4 on the interval 4 ∈ [4(1),∞). From 4̂(k) ≥4(1) and (95) we obtain

(95) ≤
log(Ĉ(log4(1))A+1/2)

log4(1)
−

1
3

log g(2) for all k ≥ 2. (96)

We have that −
1
3 log g(2) = −

2
3γ log 2 ≤ −

4
3 log 2. Taking eR,(1) small and thus 4(1) large, we can bound

(96) and therefore (93) by − log 2, which establishes Proposition 11.1. □



2152 PHILIP ISETT

At this point, we choose eR,(1) sufficiently small (depending on Ĉ and CL ) to satisfy the assumptions
of Proposition 11.1 and such that (88) holds.

With the initial frequency-energy levels determined, we now turn to the asymptotics of the frequency-
energy levels for large k. These asymptotics are summarized as follows.

Proposition 11.2. For all k ≥ 3 and the above choice of g(k), we have the asymptotics

− log eR,(k) =
γ k2

2
log k + O(k log k), (97)

1
2

log
(

ev
eR

)
(k)

=
1
2
γ k log k + O(log k), (98)

δ(k) log 4̂(k) =
3
2
γ k log k + O(log k), (99)

log 4̂(k) =
3
2
γ k2

2
log k + O(k log k), (100)

log log 4̂(k) = 2 log k + O(1), (101)

1
3

log 4̂(k) +
1
2

log eR,(k) = 2
( A

3
+

1
6

)
k log k + O(k), (102)

4(k) = exp
(

3γ k2

4
log k + O(k log k)

)
, (103)

together with the bounds
( log 4̂(k))−1

= O(k−2(log k)−1), (104)

log log 4̂(k) = O(log k). (105)

Here the implicit constants in the O( · ) notation depend only on Ĉ, γ , 4(1), eR,(1) and A =
5
2 .

The proof will proceed by induction on k ≥ 3 and will use some extra notation for the induction.
We write C(97), . . . ,C(105) to refer to the implicit constants in the O( · ) notation in the proposition. For
example the term in (105) is bounded by |O(log k)| ≤ C(105) log k. We assume at the onset that all the
constants C(97), . . . ,C(105) are sufficiently large depending on 4(1) and eR,(1) = ev,(1) such that the bounds
(97)–(105) hold for k = 3. The proof will make use of the Taylor expansion formula

f (X + Y )= f (X)+ Y
∫ 1

0
f ′(X +σY ) dσ = f (X)+ f ′(X)Y + Y 2

∫ 1

0
(1 −σ) f ′′(X +σY ) dσ. (106)

Proof of (97). The equality follows from the evolution rule log eR,(k+1) = − log g(k) + log eR,(k) and∑
1≤I≤k

log g(I ) =
∑

1≤I≤k

γ I log I =
γ k2

2
log k + O(k log k), k ≥ 3

(where the constant above depends on γ ). □

Proof of (104). From log 4̂(k+1) ≥ log g(k) + log 4̂(k), we have

k2 log k ≲
∑

3≤I≤k

log g(I ) ≤ log 4̂(k). □
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Proof of (105). Let Lk := log 4̂(k) and Zk = Ĉ(log 4̂(k))A+1/2. Then for some A0 ≥ 1 and all k ≥ 3,

δ(k) log log 4̂(k) = log(Lk + log(Zk g3/2
(k) ))− log Lk

≤ L−1
k (log Zk + log g3/2

(k) )≤ A0C(104)(k−2(log k)−1 log log 4̂(k) + k−1).

Choose k∗
= k∗(C(104)) large enough that A0C(104)k−2

≤ 10−1δ(k) log k for all k ≥ k∗, and assume
that C(105) is large enough that (105) holds for k ≤ k∗.

We now proceed by induction on k to obtain (105) for k > k∗. Assuming (105) for k, we have

δ(k) log log 4̂(k) ≤ 10−1C(105)δ(k) log k + A0C(104)k−1
≤ C(105)δ(k) log k for k ≥ k∗

if C(105) is sufficiently large, which implies (105) for k + 1, and thus for all k ≥ k∗ by induction. □

Proof of (98). The equality follows from (105) and

1
2

log
(

ev
eR

)
(k+1)

=
1
2
(log g(k) + log log 4̂(k)). □

Proof of (99)–(100). For k ≥ 3, we have by (98) and (105)
(
for A =

5
2

)
δ(k) log 4̂(k) =

1
2

log
(

ev
eR

)
(k+1)

+ log g(k) + A log log 4̂(k)

=
3γ
2

k log k + O(log k)=
3γ
2
δ(k)

[k2

2
log k

]
+ O(δ(k)[k log k]),

which implies both (99) and (100) after summing over k. □

Proof of (101). Again writing Lk = log 4̂(k) and Zk = Ĉ(log 4̂(k))A+1/2, we have by Taylor expansion

δ(k) log log 4̂(k) = log(Lk + log(Zk g3/2
(k) ))− log Lk

= (log 4̂(k))−1 log(Zk g3/2
(k) )−

∫ 1

0
dσ
(log(Zk g3/2

(k) ))
2(1 − σ)

(Lk + σ log(Zk g3/2
(k) ))

2
.

The main term is

(log 4̂(k))−1 log g3/2
(k) = 2k−1

+ O(k−2)= 2δ(k) log k + O(k−2)

by (100). The remaining terms are of size O(k−2) by (105) and (100) again. Summing over k gives the
desired result (101). □

Proof of (102). Equation (102) follows from (89), (101) and summation over k. □

Proof of (103). Equation (103) follows from

log4(k) = log 4̂(k) −
1
2

log
(

ev
eR

)
(k)
,

equation (100) and (98). □
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We now return to analyzing the regularity estimate (91). From (100), (99), (102), and by the definitions
of k̄ and 4̂(k̄), we obtain (using (106) with f (X)= X−1 or log X ) that, for all |1x | ≤ 10−2,

k̄2 log k̄ ≲ log 4̂(k̄) ≤ log |1x |
−1

≤ log 4̂(k̄+1) ≲ k̄2 log k̄,

3γ
4

k̄2 log k̄ = log |1x |
−1

+ O(k̄ log k̄), (107)

(log |1x |
−1)−1

=

(
4

3γ
+ O(k̄−1)

)
k̄−2(log k̄)−1,

log(k̄2)= log log |1x |
−1

+ O(log log k̄). (108)

To bound (91) purely in terms of |1x |, we first estimate the logarithm of the term L k̄ exp(Hk̄) appearing
in (91)–(92) (using A =

5
2 and 1

3 A +
1
6 = 1) by

(log |1x |
−1)−1

· (Hk̄ + log L k̄)=

(
4

3γ
(1 + O(k̄−1))(k̄2 log k̄)−1

)
·

((
γ

2
+ 2

)
k̄ log k̄ + O(k̄)

)
=

4
3γ

(
γ

2
+ 2

)
k̄−1

+ O(k̄−1(log k̄)−1)

=
4

3γ

(
γ

2
+ 2

)
(k̄2 log k̄)−1/2(log k̄)1/2 + O(k̄−1(log k̄)−1)

= 2−1/2
(

4
3γ

)(
γ

2
+ 2

)
(k̄2 log k̄)−1/2(log log |1x |

−1)1/2

+ O
(

log log k̄
(k̄2 log k̄)1/2(log log |1x |−1)1/2

)
.

In the last line we used (108) and (106) with f (X)= X1/2. From (107) and (106) we then have

(log |1x |
−1)−1

· (Hk̄ + log L k̄)= 2−1/2
(

4
3γ

)1/2(
γ

2
+ 2

)
(log |1x |

−1)−1/2(log log |1x |
−1)1/2

+O
(

log log log |1x |
−1

(log |1x |−1)1/2(log log |1x |−1)1/2

)
. (109)

The bound (109) is optimized by taking γ = 4, which is precisely the value that leads to the asymptotic
log 4̂(k) = (3 + o(1))k2 log k predicted by the heuristics at the conclusion of Section 11A. Substituting
into (91), we finally obtain

|v(t, x +1x)− v(t, x)| ≲ |1x |
1/3−B

√
(log log |1x |−1)/(log |1x |−1), (110)

where one can take the constant B = 2
√

2
3 at the expense of introducing the additional lower-order term8

from (109). In particular, v belongs to
⋂
α<1/3 L∞

t Cα
x , and therefore belongs to

⋂
α<1/3 Cα

t,x by the results
in [Isett 2023]. To check that v has compact support in time, note that the time support in each iteration
grows by at most a factor

4−1
(k)e

−1/2
v,(k) = 4̂−1

(k)e
−1/2
R,(k) = 4̂

−2/3
(k) exp

(
−

1
3 log 4̂(k) − 1

2 log eR,(k)
)
.

8The derivation of (92) suggests that taking g(k) =
(∑k

I=1(log log 4̂(I ) + log Ĉ)
)
+ (log log 4̂k/2) would optimize the

lower-order terms as well, although this alternative choice would not affect the leading-order terms.



ON THE ENDPOINT REGULARITY IN ONSAGER’S CONJECTURE 2155

Using (100) and (102), we conclude that the series
∑

k 4
−1
(k)e

−1/2
v,(k) converges, and hence the limiting

solution is supported on a finite time interval. This calculation concludes the proof of Theorem 1.1.

12. Improving the borderline estimate

In this section, we sketch roughly how the value of the B appearing in the regularity estimate (110) can be
improved by combining with the approach to the gluing lemma introduced in [Buckmaster et al. 2019a].

Recall that, in the notation of [Isett 2018], the gluing lemma is proved by introducing, for a given
Euler–Reynolds flow (v, p, R), corrections

yℓ =

∑
I

ηI yℓI and p̄ =

∑
I

ηI p̄I

to the velocity and pressure such that the new velocity field ṽℓ = vℓ + yℓ and pressure p̃ = p + p̄ solve
the Euler–Reynolds system with a new Reynolds stress R̃ that is supported in disjoint time intervals of
width θ ∼ (log 4̂)−24−1e−1/2

v . The new stress R̃ is constructed in terms of symmetric tensors r jℓ
I that

solve ∇jr
jℓ
I = yℓI , which are obtained by solving the following initial value problem:9

(∂t + vi
∇i )r

jℓ
I = R jℓ

[∇i [∇av
irab

I ] − yi
I ∇iv

b
] − y j

I yℓI − p̄I δ
jℓ

− R jℓ,

r jℓ
I (t (I ), x)= 0.

(111)

Here R jℓ is an order −1 operator that inverts the divergence equation in symmetric tensors, and the
identity ∇jr

jℓ
I = yℓI can be checked using the equation

∂t yℓI + vi
∇i yℓI + yi

I ∇iv
ℓ
+ ∇j (y

j
I yℓI )+ ∇

ℓ p̄I = −∇j R jℓ,

∂t yℓI + vi
∇i yℓI + yi

I ∇i uℓI + ∇
ℓ p̄I = −∇j R jℓ,

(112)

where uℓI = vℓ+ yℓI is the classical solution to incompressible Euler equations with initial data vℓ(t0(I ), x).
In [Buckmaster et al. 2019a], a different approach to solving and estimating solutions of the equation

∇jr
jℓ
I = yℓI is taken. There, one first considers the potential z̃ I =1−1

∇ × yI , which solves ∇ × z̃ I = yI ,
div z̃ I =0, and turns out to satisfy an evolution equation that (like (111)) has a good structure. From z̃ I , one
then obtains a symmetric antidivergence for yI by applying a zeroth-order operator (e.g., r jℓ

I =R jℓ
[∇×z̃ I ]),

which is estimated using Schauder and commutator estimates for Calderón–Zygmund operators (CZOs).
(We note that, conversely, estimates for z̃ I can be deduced from those of r jℓ

I above by similar zeroth-order
commutator estimates.) The key simplification comes in treating the term 1−1

∇ × [yI · ∇v] that is
analogous to the term R jℓ

[yI · ∇v] in (111), the latter of which had been treated by a decomposition into
frequency increments in [Isett 2018]. For the present applications, the estimates employed in [Buckmaster
et al. 2019a], which apply the classical local well-posedness theory for Euler and Schauder and commutator
estimates for CZOs, are not strong enough as they lose small powers of the frequency 4, which restricts
the regularity to 1

3 − ϵ for some ϵ > 0. However, as we now explain, combining the techniques in

9Here we have simplified the equations by combining the equations for the ρ jℓ
I and z jℓ

I from [Isett 2018] into one equation.
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[Buckmaster et al. 2019a] and [Isett 2018] leads to a logarithmic improvement in the timescale of the
gluing and hence a logarithmic improvement in the main estimate of the iteration.

The approach of [Buckmaster et al. 2019a] can be extended to any dimension using the antisymmetric
potential10 defined by

ψab
I = Bab

[yI ] :=1−1(∇a yb
I − ∇

b ya
I ),

which solves the Hodge system11

∇aψ
ab

= yb
I , (∇ ∧ψ)abc

:= ∇
aψbc

− ∇
bψac

+ ∇
cψab

= 0,
∫

T3
ψ(x) dx = 0. (113)

Using the antisymmetry of ψab
I , one obtains the identity

yi
I ∇iv

ℓ
= ∇a[ψ

ai
I ∇iv

ℓ
]. (114)

Using (114) and ψab
I = Bab

[y j
I ] = Bab

∇i [r
i j
I ] can provide an alternative approach to treating the low-

frequency part of the term R jℓ
[yi

I ∇iv
b
] in (111) and the analogous term in the pressure.

Towards improving the timescale of the gluing, apply (112) along with the calculus identity (which we
express in both index and invariant notation)

1ψab
= (∇ ∧ [∇¬ψ])ab

+ (∇¬[∇ ∧ψ])ab,

∇i [∇
iψab

] = (∇a
[∇jψ

jb
] −∇

b
[∇jψ

ja
])+ ∇i [∇

iψab
+ ∇

bψ ia
+ ∇

aψbi
],

to derive the following equation for the potentialψab
I , generalizing [Buckmaster et al. 2019a, Section 3.3]:12

1[(∂t + vi
∇i )ψ

jk
I ] = ∇a∇i [(ψ

jk
I ∧ ∇

a)vi
] −∇

j
∧ [∇a(ψ

ai
I ∇iv

k)+ ∇a[ya
I yk

I ] +∇i Rik
]

+ ∇
j
∧ [∇i [∇av

iψak
I ]],

(115)

ψ
jk
I ∧ ∇

avi
:= ψ

jk
I ∇

avi
−ψak

I ∇
jvi

+ψ
aj
I ∇

kvi .

This derivation relies on (113) and ∇
j
∇

k p̄I − ∇
k
∇

j p̄I = 0, and uses that ∇iv
i
= 0 to maintain the

divergence form. The convention above for ∇
j
∧ applied to a vector field is ∇

j
∧ uk

:= ∇
j uk

− ∇
ku j ,

while (ψ jk
I ∧ ∇

a)vi indicates a sum over cyclic permutations of jka in ψ jk
I ∇

avi .
One may now couple (115) to (111) while writing

R jℓ
[yi

I ∇iv
ℓ
] = R jℓ

∇a[ψ
ai
I ∇iv

ℓ
]

and similarly for the analogous term 1−1
∇ℓ[yi

I ∇iv
ℓ
] appearing in the pressure p̄I . By considering a

weighted norm h(t)= hI (t) such that
(
setting N̂ := (ev/eR)

1/2 and, for instance, α =
1
7

)
∥∇a⃗rI ∥C0 + ∥∇a⃗ψI ∥C0 + 4̂−α(∥∇a⃗rI ∥Ċα + ∥∇a⃗ψI ∥Ċα )≤ N̂ (|a⃗|−2)+4|a⃗|(4e1/2

v )−1eRh(t),

∥∇a⃗ yI ∥C0 + 4̂−α
∥yI ∥Ċα ≤ N̂ (|a⃗|−2)+4|a⃗|e1/2

R h(t) for 0 ≤ |a⃗| ≤ 3,

10We write ψab to agree with the usual stream function ψ in dimension 2, which is related by ψab
= ψϵab, where the

two-dimensional volume element ϵab is the unique antisymmetric tensor with ϵ12
= 1.

11We caution the reader that our normalizations for wedge products are taken to elucidate the present calculations, but do not
agree with all standard normalizations, which can differ up to multiplication by constants.

12A slight departure from [Buckmaster et al. 2019a] is the isolation of quadratic terms of the form y j
I yℓI , which would be

estimated jointly in yi
I ∇iv

ℓ
+ ∇i (yi

I yℓI )= yi
I ∇i uℓI in the approach of that paper. The y j

I yℓI terms are kept separate here in order
to avoid a resulting additional derivative loss in the estimates.
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and following the Littlewood–Paley approach to the gluing estimates in [Isett 2018], we obtain the bound

h(t)≲ (log 4̂)4e1/2
v

∫ t

0
(1 + h(τ ))2 dτ. (116)

The prefactor in (116) improves the analogous prefactor in [Isett 2018, Proposition 10.1] by a factor
of (log 4̂)−1, which thus improves the timescale θ by a logarithmic factor to θ ∼ (log 4̂)−1(4e1/2

v )−1.
What this improvement in timescale yields is that the time cutoff factors of η′

I in the terms of the
form ∼ η′

I r jℓ
I that compose the new stress error R̃ have become smaller by a factor (log 4̂)−1 in size,

while the antidivergence terms r jℓ
I have increased in size by a factor of (log 4̂) over the elongated

time scale.
Although the estimate ∥R̃∥C0 ≲ (log 4̂)eR on the stress does not improve, the estimate on the advective

derivative improves logarithmically to

∥Dt R̃∥C0 ≲ (log 4̂)24e1/2
v eR.

The bound (19) for the new frequency-energy levels in the main lemma similarly improves by one power
of log 4̂ to become

(4′, e′

v, e′

R)=

(
C̃ N4, (log 4̂)eR, (log 4̂)A e1/2

v e1/2
R

N

)
, A =

3
2
. (117)

(One can alternatively pursue an approach closer to [Buckmaster et al. 2019a] wherein the equation for
ψab

I is coupled to the evolution equation13 for a different, symmetric antidivergence such as

r̃ jℓ
I :=1−1(∇ j yℓI + ∇

ℓy j
I ).

Implementing this alternative approach requires additional, sharper commutator estimates.)
The improvement in the power A =

3
2 of log 4̂ in (117) then leads to an improvement in the constant B

in the leading-order term of the regularity estimate (110). Namely, repeating the analysis of Section 11
but with A =

3
2 instead of 5

2 improves the leading-order term in (102), which leads to a factor of
(1

2γ +
4
3

)
in (109) in place of

( 1
2γ + 2

)
. After choosing γ =

8
3 to optimize (109), one obtains a leading-order

constant of B =
4
3 = 2

( 2
3

)
instead of B = 2

√
2
3 . Note that, with the improved constant, the function space

implicitly defined by the estimate (110) is strictly contained in the one with the larger value of B, and the
corresponding norms are not comparable to each other.
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EXTREME TEMPORAL INTERMITTENCY
IN THE LINEAR SOBOLEV TRANSPORT

ALMOST SMOOTH NONUNIQUE SOLUTIONS

ALEXEY CHESKIDOV AND XIAOYUTAO LUO

We revisit the notion of temporal intermittency to obtain sharp nonuniqueness results for linear transport
equations. We construct divergence-free vector fields with sharp Sobolev regularity L1

t W 1,p for all p < ∞

in space dimensions d ≥ 2 whose transport equations admit nonunique weak solutions belonging to L p
t Ck

for all p < ∞ and k ∈ N. In particular, our result shows that the time-integrability assumption in the
uniqueness of the DiPerna–Lions theory is essential. The same result also holds for transport-diffusion
equations with diffusion operators of arbitrarily large order in any dimensions d ≥ 2.

1. Introduction

We consider the linear transport equation on the torus Td
:= Rd/Zd with d ≥ 2:{

∂tρ + u · ∇ρ = 0,

ρ|t=0 = ρ0,
(1-1)

where ρ : Td
×[0, T ] → R is a scalar density function and u : Td

×[0, T ] → Rd is a given incompressible
vector field, i.e., div u = 0 and ρ0 : Td

→ R is a given initial datum. The linearity of the equation allows
us to prove the existence of weak solutions — even for very rough vector fields — that satisfy the equation
in the sense of distributions∫

Td
ρ0ϕ( · , 0) dx =

∫ T

0

∫
Td

ρ(∂tϕ + u · ∇ϕ) dx dt for all ϕ ∈ C∞

c (Td
× [0, T )). (1-2)

In this paper, we focus on the issue of the uniqueness/nonuniqueness of weak solutions satisfying (1-2)
with ρ ∈ L1

t,x and ρu ∈ L1
t,x , for vector fields with Sobolev regularity. The celebrated DiPerna–Lions

theory provides natural criteria for the uniqueness of the weak solutions for Sobolev vector fields:

Theorem 1.1 [DiPerna and Lions 1989]. Let p, q ∈[1,∞], and let u ∈ L1(0,T ;W 1,q(Td)) be a divergence-
free vector field. For any ρ0 ∈ L p(Td), there exists a unique renormalized solution ρ ∈ C([0, T ]; L p(Td))

to (1-1). Moreover, if
1
p

+
1
q

≤ 1, (1-3)

then this solution ρ is unique among all weak solutions in the class L∞(0, T ; L p(Td)).
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© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2024.17-6
https://doi.org/10.2140/apde.2024.17.2161
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2162 ALEXEY CHESKIDOV AND XIAOYUTAO LUO

In recent years, there has been a growing interest [Brué et al. 2021; Cheskidov and Luo 2021; Modena
and Sattig 2020; Modena and Székelyhidi 2018] in showing the (possible) sharpness of the DiPerna–Lions
condition (1-3), but so far the nonuniqueness constructions have not reached the full complement of (1-3)
in the class of L∞

t L p solutions. In this paper, we show that the time-integrability assumption in the
DiPerna–Lions uniqueness theorem is essential. More precisely, we show the following.

Theorem 1.2. For any dimension d ≥ 2, there exists u : Td
× [0, T ] → Rd , a divergence-free velocity

vector field, satisfying u ∈ L1(0, T ; W 1,p(Td)) for all p < ∞ such that the uniqueness of (1-1) fails in
the class

ρ ∈

⋂
p<∞

k∈N

L p(0, T ; Ck(Td)) and ρu ∈ L1(Td
× [0, T ]).

This result is proved by the convex integration technique, which was brought to fluid dynamics by the
pioneering work [De Lellis and Székelyhidi 2009] and has seen applications to the transport equation in
[Brué et al. 2021; Cheskidov and Luo 2021; Modena and Sattig 2020; Modena and Székelyhidi 2018].
More details on the background and historical development will be discussed shortly. The key ingredient
in the proof of Theorem 1.2 is the use of temporal intermittency, introduced in our previous works
[Cheskidov and Luo 2021; 2022; 2023]. In particular, it improves our previous result [Cheskidov and
Luo 2021] in terms of the integrability in time of the solution ρ and the spatial regularity of u and ρ.
Moreover, Theorem 1.2 is sharp in the following two ways:

(1) The vector field cannot be L1
t W 1,∞ for which any L1

t,x solution of (1-1) with ρu ∈ L1
t,x must coincide1

a.e. with the Lagrangian solution.

(2) The density class cannot have any L∞
t Ck regularity for k ∈ N due to the DiPerna–Lions condition (1-3).

Background and comparison. While the classical method of characteristics implies the well-posedness
of (1-1) for Lipschitz vector fields, for non-Lipschitz vector fields, the method of characteristics no longer
applies, and the well-posedness of (1-1) becomes challenging. The renormalization theory of [DiPerna
and Lions 1989] provides powerful well-posedness of (1-1) under suitable Sobolev regularity assumptions
on the vector field, and the renormalized solutions are shown to be unique in the regime (1-3).

Since Aizenman’s example [1978], there have been examples of nonuniqueness at the Lagrangian level
[Alberti et al. 2019; Colombini et al. 2003; Depauw 2003; Drivas et al. 2022; Yao and Zlatoš 2017], that
is, constructions of vector fields whose flow maps exhibit degeneration. However, for a long time, the
existence of nonunique (Eulerian) weak solutions of (1-1) for divergence-free Sobolev vector fields u ∈

L1
t W 1,p was unknown. To our knowledge, the first Eulerian construction of nonuniqueness was obtained

in [Crippa et al. 2015] using the framework of [De Lellis and Székelyhidi 2009] for bounded vector fields.
Inspired by the spatially intermittent construction in [Buckmaster and Vicol 2019], the breakthrough

result [Modena and Székelyhidi 2018] gave the first example of a Sobolev vector field with nonunique
weak solutions to (1-1) and led to a lot of interest in improving nonuniqueness constructions to larger
functional classes. Below we list the regimes where the nonuniqueness has been achieved:

1For instance, by a duality argument using estimates of the flow as in [Ambrosio et al. 2005, Proposition 8.1.7].
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(1) [Modena and Székelyhidi 2018; 2019]: ρ ∈ Ct L p when u ∈ Ct W 1,q for 1/p + 1/q > 1 + 1/(d − 1)

and d ≥ 3.

(2) [Modena and Sattig 2020]: ρ ∈ Ct L p when u ∈ Ct W 1,q for 1/p + 1/q > 1 + 1/d .

(3) Bruè, Colombo, and De Lellis [Brué et al. 2021]: positive2 ρ ∈ Ct L p when u ∈ Ct W 1,q for
1/p + 1/q > 1 + 1/d .

(4) [Cheskidov and Luo 2021]: ρ ∈ L1
t L p when u ∈ L1

t W 1,q for 1/p + 1/q > 1 and d ≥ 3.

In summary, in the class of L∞
t L p densities, the nonuniqueness has been achieved in the regime

1/p + 1/q > 1 + 1/d, while nonuniqueness in the regime 1/p + 1/q > 1 is possible if one settles for
L1

t L p densities. However, it was not known whether 1/p +1/q = 1 is still the critical threshold for L1
t L p

densities.
Our main goal here is to show that the DiPerna–Lions scaling 1/p + 1/q = 1 becomes irrelevant once

the time integrability of ρ is slightly weakened. In particular, Theorem 1.2 follows from the following
convex integration construction.

Theorem 1.3. Let d ≥ 2, ε > 0, and N ∈ N. Let ρ̃ ∈ C∞(Td
× R) be such that suppt ρ̃ ⊂ (0, T ) and

/
∫

Td ρ(x, t) dx = 0 for all t ∈ R.
Then there exist a divergence-free vector field u : Td

×[0, T ] → Rd and a density ρ : Td
×[0, T ] → R

such that all of the following hold:

(1) u ∈ L1(0, T ; W 1,p(Td)) and ρ ∈ L p(0, T ; Ck(Td)) for all 1 ≤ p < ∞ and k ∈ N.

(2) ρu ∈ L1(Td
× [0, T ]) and (ρ, u) is a weak solution to (1-1) in the sense of (1-2).

(3) The deviation of ρ in C N (Td) norm is small: ∥ρ − ρ̃∥L N
t C N ≤ ε.

(4) ρ has a compact temporal support: suppt ρ ⊂ suppt ρ̃.

Remarks. (1) Here our initial data is always zero and attained in the classical sense. It is also easy to
show that the obtained solution ρ is continuous in time in the sense of distributions (see Lemma 7.7
in [Cheskidov and Luo 2021] for details).

(2) Theorem 1.3 continues to hold for the transport-diffusion equation with a parabolic regularization
1mρ of arbitrary order in the same regularity classes (ρ, u) ∈ L p

t Ck
× L1

t W 1,p, see Theorem 6.1.
To our knowledge, this is the first example of a PDE where parabolic regularization does not provide
any additional rigidity for the uniqueness of a class of weak solutions.

(3) The nonunique solutions ρ must change their signs — it is known by [Caravenna and Crippa 2021,
Corollary 5.4] that any sign-definite solution ρ ∈ L1

t,x of L1
t W 1,d+ vector fields is Lagrangian, see

also [Brué et al. 2021, Section 8.2].

(4) By the linearity of (1-1), for any initial data ρ0 ∈ L p(Td), the constructed vector field gives nonunique
solutions in the class ρ ∈ Lq

t L p for any q < ∞. Indeed, one can add the constructed solution on top
of the renormalized solution associated to ρ0.

2Well-posedness for positive ρ can go beyond the DiPerna–Lions range, see [Brué et al. 2021, Theorem 1.5].
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Strategy of the proof. We conclude with some final remarks on the proof. As said, we used the convex
integration technique brought to fluid dynamics by the pioneering work of [De Lellis and Székelyhidi
2009]. The groundbreaking technique of that work resulted in breakthroughs in the fluids community over
the last decade, and we refer readers to [Buckmaster et al. 2019; Buckmaster and Vicol 2019; De Lellis
and Székelyhidi 2009; 2013; Isett 2018; Modena and Székelyhidi 2018] for a complete account.

The construction follows the same framework of temporal intermittency in our previous work [Cheski-
dov and Luo 2021]. A key difference is the regularity L p

t Ck for the density, which requires extreme
intermittency in time when progressing to high frequencies. Since the density does not enjoy any
“reasonable” L∞

t regularity, from the duality ρu ∈ L1
t,x we can gain a surprising regularity of almost

L1
t Lipschitz of the vector field. As in that previous work, this extreme temporal intermittency necessitates

the use of stationary building blocks, as otherwise, the error produced by the large acceleration of the
density becomes insurmountable with the non-Lipschitzness of the vector field, see Lemma 4.1 below.
Once extreme intermittency in time is achieved, a little deduction of the time regularity of the density
from L∞

t to L p
t allows us to gain essentially infinitely many derivatives in space for the density.

Finally, since the density enjoys essentially infinite many derivatives in space, the same construction
also holds for transport-diffusion equations with diffusion operators of arbitrarily large order in any
dimension d ≥ 2. Surprisingly, even in dimension d = 2 a diffusion of an arbitrarily high order is not
able to provide uniqueness for this class of weak solutions.

Organization. The rest of the paper is organized as follows.

• We prove the main theorem stated in the introduction in Section 2 by assuming Proposition 2.1,
whose proof is the main content of this paper.

• In Section 3, we first introduce temporal intermittency into the construction, which is essential for
our scheme. Next, we recall Mikado densities and Mikado flows as spatial building blocks. Finally,
we use these temporal and spatial building blocks to define the density and velocity perturbations.

• In Section 4, we first specify the oscillation and concentration parameters and obtain estimates on
the velocity and density perturbations claimed in Proposition 2.1.

• Section 5 is devoted to deriving the new defect field and its estimates, finishing the proof of
Proposition 2.1.

• In Section 6, we show that the same nonuniqueness holds for transport-diffusion equations with
arbitrarily high order of diffusion as well.

• In the Appendix, we recall some (now standard) technical tools in convex integration, namely the
improved Hölder inequalities and antidivergence operators.

2. The main proposition and proof of Theorem 1.3

Notations. Throughout the paper, we fix the spatial domain Td
= Rd/Zd , identified with a periodic

box [0, 1]
d . Average over Td is denoted by /

∫
f =

∫
Td f . Functions on Td are identified as periodic ones
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in Rd , and we say f is σ−1Td -periodic if

f (x + σ−1k) = f (x) for any k ∈ Zd .

Spatial Lebesgue norms are denoted by ∥ · ∥L p = ∥ · ∥L p(Td ), while we write ∥ · ∥L p
t,x

for Lebesgue
norms taken in the space-time domain Td

×[0, T ]. If a function f is time-dependent, we write ∥ f (t)∥L p

to indicate that the spatial norm is taken at a time slice t ∈ [0, T ]. For a Banach space X , we use the
notation ∥ · ∥L p

t X to denote the norm on Bochner spaces L p([0, T ]; X), such as ∥ · ∥L1
t W k,p and ∥ · ∥L p

t Ck .
The differentiation operations such as ∇, 1, and div are meant for differentiation in space only.
We use the notation X ≲ Y , which means X ≤ CY for some constant C > 0. The notation X ∼ Y

means both X ≲ Y and Y ≲ X at the same time.

Continuity-defect equation. As in [Modena and Székelyhidi 2018], we consider the continuity-defect
equation to obtain approximate solutions to the transport equation{

∂tρ + div(ρu) = div R,

div u = 0,
(2-1)

where R : Td
× [0, T ] → Rd is called the defect field. In what follows, a triple (ρ, u, R) will denote a

smooth solution to (2-1). Recall that for a function f ∈ L1
t,x , its temporal support suppt f is the closure

of the set

{t ∈ [0, T ] : ∥ f ( · , t)∥L1(Td ) > 0}.

We now state the main proposition of the paper and use it to prove Theorem 1.3.

Proposition 2.1. Let d ≥ 2. There exists a universal constant M > 0 such that the following holds.
Suppose (ρ, u, R) is a smooth solution of (2-1) on [0, 1] such that suppt R ⊂ (0, 1). Then, for any

1 ≤ p ∈ N and any 0 < δ < 1
2 , there exists another smooth solution (ρ1, u1, R1) of (2-1) on [0, 1] such that

the density perturbation θ := ρ1 − ρ and the vector field perturbation w = u1 − u satisfy the following:

(1) Both θ and w have zero spacial mean and

suppt θ ⊂ suppt R. (2-2)

(2) θ and w satisfy the estimates

∥θ∥L p
t C p ≤ δ, (2-3)

∥w∥L1
t W 1,p ≤ δ, (2-4)

∥θw + θu + ρw∥L1
t,x

≤ M∥R∥L1
t,x

. (2-5)

(3) The new defect field R1 satisfies

suppt R1 ⊂ suppt R (2-6)

and the estimate

∥R1∥L1
t,x

≤ δ. (2-7)
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Proof of Theorem 1.3. We assume T = 1 without loss of generality. We will construct a sequence
(ρn, un, Rn), n = 1, 2, . . . of solutions to (2-1) as follows. For n = 1, we set

ρ1(t) := ρ̃,

u1(t) := 0,

R1(t) := R(∂t ρ̃),

where R = 1−1
∇ is the inverse divergence in the Appendix. Then (ρ1, u1, R1) solves (2-1) trivially by

the constant mean assumption on ρ̃.
Next, we apply Proposition 2.1 inductively to obtain (ρn, un, Rn) for n = 2, 3, . . . as follows. Given

(ρn, un, Rn), we apply Proposition 2.1 with parameters

pn = N2n, δn = ε2−n,

to obtain a new triple (ρn+1, un+1, Rn+1). Then the perturbations θn := ρn+1 − ρn and wn := un+1 − un

and the defect field Rn satisfy

∥θn∥L pn
t C pn ≤ δn, ∥wn∥L1

t W 1,pn ≤ δn, (2-8a)

∥Rn+1∥L1
t,x

≤ δn, (2-8b)

∥θnwn + θnun + ρnwn∥L1
t,x

≤ M∥Rn∥L1
t,x

, (2-8c)

for all n = 1, 2, . . . . In addition, due to (2-6) and (2-2), we have

suppt θn ⊂ suppt ρ̃ for all n ∈ N. (2-9)

Hence by (2-8a) there exists (ρ, u) ∈ L p
t C p

× L1
t W 1,p for all p ∈ N such that

ρn → ρ in L p
t C p and un → u in L1

t W 1,p for all p ∈ N. (2-10)

Moreover, suppt ρ ⊂ suppt ρ̃ due to (2-9). Since pn ≥ N and the time interval is of length 1,

∥ρ − ρ̃∥L N
t C N ≤

∑
n≥1

∥θn∥L N
t C N ≤

∑
n≥1

∥θn∥L pn
t C pn ≤ ε.

It remains to show (ρ, u) is a weak solution. We first prove that ρu ∈ L1
t,x and ρnun → ρu in L1

t,x .
Using (2-8c),

∥ρn+1un+1 − ρnun∥L1
t,x

≤ Mδn−1 for n ≥ 2. (2-11)

Thus the sequence ρnun is Cauchy in L1
t,x , and consequently there is G ∈ L1

t,x such that ρnun → G in L1
t,x .

Now we claim that G = ρu. Thanks to (2-11), passing to subsequences and dropping subindices, we
get ρn → ρ and un → u a.e. in Td

× [0, 1]. So ρnun → G a.e. in Td
× [0, 1], and hence ρu = G and

ρnun → ρu in L1
t,x . Since in addition Rn → 0 in L1

t,x by (2-8b), it is standard to show that (ρ, u) is a
weak solution to (1-1). □



EXTREME TEMPORAL INTERMITTENCY IN THE LINEAR SOBOLEV TRANSPORT 2167

3. Temporal intermittency, building blocks, and perturbations

The rest of the paper is devoted to the proof of Proposition 2.1. In this section, we introduce the temporal
and spatial building blocks and use them to define the density and velocity perturbations.

Summary of parameters. Given arbitrarily large p ∈ N as in the statement of Proposition 2.1, we will fix
three exponents in Lemma 4.1 below: r > 1 very close to 1, 0 < α ≪ 1, and 0 < γ ≪ 1. These exponents
are used to define three large parameters: the concentrations κ, µ ≥ 1 and oscillation σ ∈ N. These
three large parameters satisfy the hierarchy 1 ≪ σ ≪ µ ≪ κ — whose meaning will be made precise in
Section 4 — but their exact values will be fixed at the end depending on the given solution (ρ, u, R).

Temporal functions g̃k and gk. We start with defining the intermittent oscillatory functions g̃k and gk

that lie at the heart of our scheme. First, we fix a profile function G̃ ∈ C∞
c ((0, 1)) such that∫

[0,1]

G̃2 dt = 1,

∫
[0,1]

G̃ dt = 0, ∥G̃∥L∞ ≤ 2, (3-1)

and, for k = 1, . . . , d, define Gk to be the 1-periodic extension of G̃(κ(t − tk)), where tk ∈ [0, 1] are
chosen such that Gk have disjoint supports for different k. In other words, Gk(t) =

∑
n∈Z G̃(n+κ(t − tk)).

We will refer to κ ≥ 1 as the temporal concentration parameter.
Next, for a large oscillation parameter σ ∈ N and a small exponent 0 < α < 1 to be fixed later, we

define σ−1-periodic functions

g̃k(t) = καGk(σ t), gk(t) = κ1−αGk(σ t). (3-2)

We will use g̃κ to oscillate the densities 8k , and gκ to oscillate the vectors Wk , defined in the following
section. Note that, by (3-1), ∫

[0,1]

g̃k gk dt = 1, (3-3)

and by definitions of g̃k and gk ,

∥g̃k∥Lq ([0,1]) ∼ κα−1/q , ∥g̃′

k∥Lq ([0,1]) ∼ (κσ )κα−1/q , ∥gk∥Lq ([0,1]) ∼ κ1−α−1/q . (3-4)

Temporal correction function hk. Now we define a σ−1-periodic function hk : R → R by

hk(t) := σ

∫ t

0
(g̃k gk − 1) dτ, (3-5)

so that
σ−1∂t hk = g̃k gk − 1. (3-6)

Thanks to (3-3), we have
∫
[0,σ−1]

g̃k gk dt = σ−1. Since g̃k gk ≥ 0 by their definitions, it follows that hk is
well-defined and satisfies the estimate

∥hk∥L∞[0,1] ≤ 1. (3-7)

The function hk will be used to design the temporal corrector θo in (3-17).
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Mikado densities and flows. Here we recall the spatial building blocks for our convex integration
construction; the Mikado densities and Mikado flows introduced in [Daneri and Székelyhidi 2017] and
[Modena and Székelyhidi 2018]. These are periodic objects supported on pipes with a small radius. Note
that we do not require them to have disjoint supports in space — each Mikado object will be coupled with
a temporal function g̃k or gk to achieve disjoint supports in space-time.

For k = 1, . . . , d , we denote each standard Euclidean basis vector by ek = (0, . . . , 1, . . . , 0). For any
x ∈ Rd and k = 1, . . . , d , we write x ′

k ∈ Rd−1 for the vector x ′

k = (x1, x2, . . . , xk−1, xk+1, . . . , xd).
Let d ≥ 2 be the spatial dimension. We fix a vector field � ∈ C∞

c (Rd−1) and a scalar density
φ ∈ C∞

c (Rd−1) such that

supp � ⊂ (0, 1)d−1, div � = φ,

∫
Rd−1

φ2
= 1. (3-8)

For each k = 1, . . . , d, we define the nonperiodic Mikado objects

8̃k(x) = φ(µx ′

k),

�̃k(x) = µ−1�(µx ′

k),

W̃k(x) = µd−1φ(µx ′

k)ek,

(3-9)

define the 1-periodic objects �k : Td
→ Rd , 8k : Td

→ R, and Wk : Td
→ Rd as the 1-periodic extensions

of (3-9), and then rescale them by a large oscillation factor σ ∈ N:

8k(x) = 8k(σ x), �k(x) = �k(σ x), Wk(x) = Wk(σ x). (3-10)

We now summarize the properties of the constructed building blocks �k , 8k , and Wk in the following
theorem.

Theorem 3.1. For all σ ∈ N and µ≥ 1, the density 8k , potential �k , and vector field Wk defined by (3-10)
satisfy the following for every k = 1, . . . , d:

(1) Wk : Td
→ Rd , 8k : Td

→ R, and �k : Td
→ Rd are smooth σ−1Td -periodic functions, and Wk, 8k

have zero mean on Td .

(2) div Wk = div(8k Wk) = 0, and the density 8k is the divergence of the potential σ−1�k :

div �k = σ8k . (3-11)

(3) For any 1 ≤ p ≤ ∞ and s ≥ 0,

∥�k∥L p ≲ µ−1−(d−1)/p, (3-12a)

∥8k∥W s,p ≲ (σµ)sµ−d−1/p, (3-12b)

∥Wk∥W s,p ≲ (σµ)sµ(d−1)(1−1/p). (3-12c)

(4) The following identity holds:

/
∫

Td
8k(x)Wk(x) dx = ek . (3-13)
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Proof. The first two points are direct consequences of the definitions while the last point follows from (3-8).
When s = 0, the bounds (3-12a)–(3-12c) follow from the small supports of the nonperiodic objects

8̃k, �̃k, W̃k : the support set is a cylinder of radius ∼ µ−1 and length 1. The general case s > 0 can be
obtained by interpolation between the cases s ∈ N. □

Density and velocity perturbations. Here we define perturbations (θ, w) given a defect field R as in
Proposition 2.1.

Recall that the concentration parameters µ, κ ≥ 1 and the oscillation parameter σ ∈ N introduced so
far will be specified in Lemma 4.1 below. The velocity perturbation is defined by

w :=

∑
1≤k≤d

gk Wk . (3-14)

For the density perturbation, first we decompose the defect field

R(x, t) =

∑
1≤k≤d

Rk(x, t)ek, (3-15)

where the ek are the standard Euclidean basis as before. We define the density perturbation as the sum of
the zero-mean projection of the principal part and a small oscillation correction:

θ = P ̸=0θp + θo,

where P̸=0 f = f − /
∫

f is the projection removing the spatial mean, and

θp := −

∑
1≤k≤d

g̃k Rk8k, (3-16)

θo = σ−1 div
∑

1≤k≤d

hk Rk ek . (3-17)

Note that div w = 0 for all t since Wk is divergence-free, which also implies that

div([P ̸=0θp]w) = div(θpw).

By definitions, suppt θ ⊂ suppt R as required in (2-2) of Proposition 2.1.

4. Estimates of the density and velocity perturbations

The goal of this section is to obtain estimates (2-3), (2-4), and (2-5) on θ and w claimed in Proposition 2.1.

Choice of parameters. Now we specify all the oscillation and concentration parameters in the perturbation
as explicit powers of a large frequency number λ > 0 that will be fixed in the end.

(1) Oscillation σ ∈ N:
σ = ⌈λ2γ

⌉.

Without loss of generality, we only consider values of λ such that σ = λ2γ
∈ N in what follows.

(2) Concentration κ, µ ≥ 1:
µ = λ, κ = λ(d−2γ )/α.
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Lemma 4.1. For any p ∈ N, there exist constants α > 0, 0 < γ < 1
4 , and r > 1 such that the following

holds:
(σµ)pκα−1/p

≤ λ−γ (θp ∈ L p
t C p), (4-1)

κ−α(σµ)1µ(d−1)(1−1/p)
≤ λ−γ (w ∈ L1

t W 1,p), (4-2)

καµ−1−(d−1)/r
≤ λ−γ (acceleration error). (4-3)

Proof. We first fix γ > 0. Condition (4-2) in terms of power of λ reads

d−1
p

≥ 5γ.

Since p < ∞, this condition is satisfied for 0 < γ < 1
4 sufficiently small. Expressing (4-1) in terms of

power of λ gives

α ≤
1
p

d − 2γ

(2pγ + p + d − γ )
.

Since 0 < γ < 1
4 , this condition on α is automatically satisfied when

α <
d −

1
2

2p2 + 2dp
.

We then fix α > 0 according to this condition.
For condition (4-3), taking r = 1, the left-hand side becomes

λd−2γ−1−d+1
= λ−2γ .

Therefore, by continuity, (4-3) holds for r > 1 close enough to 1. □

We remark that Lemma 4.1 cannot hold for p = ∞ from its proof — the conditions (4-2) and (4-3)
become incompatible when p = ∞. This is consistent with the L1

t,x unconditional uniqueness of L1
t W 1,∞

vector fields as in [Ambrosio et al. 2005, Proposition 8.1.7].

Estimates for the perturbations. In what follows, CR will stand for a large constant that only depends on
the triple (ρ, u, R) provided as the input by Proposition 2.1. It is important that CR can never depend on
the free parameters σ , µ, and κ in the building blocks that we used to define θ and w.

Lemma 4.2 (estimate on θ ). The density perturbation θ satisfies

∥θ∥L p
t C p ≤ CRλ−γ .

Proof. For the principle part θp, since the space C p(Td) is an algebra, using Hölder’s inequality, (3-4),
and (3-12b), we obtain

∥θp∥L p
t C p ≤

∑
1≤k≤d

∥g̃k∥L p∥Rk∥L∞
t C p∥8k∥L∞

t C p ≤ CR(σµ)pκα−1/p
≤ CRλ−γ ,

where the last inequality holds due to condition (4-1).
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For the temporal corrector θ0 defined in (3-17), by Hölder’s inequality and (3-7), we have

∥θo∥L∞
t C p ≤ σ−1

∑
1≤k≤d

∥hk∥L∞([0,1])∥ div(Rk ek)∥L∞
t C p ≤ CRσ−1, (4-4)

and the final bound holds by the definition of σ . □

Lemma 4.3 (estimate on w). The velocity perturbation w satisfies

∥w∥L1
t W 1,p ≲ λ−γ .

Proof. Using Hölder’s inequality, (3-4), and (3-12c), we obtain

∥w∥L1
t W 1,p ≤

∑
1≤k≤d

∥gk∥L1∥Wk∥W 1,p ≲ κ−α(σµ)µ(d−1)(1−1/p).

The conclusion holds thanks to (4-2). □

Lemma 4.4 (estimate on θw). The following estimate holds:

∥θw + θu + ρw∥L1
t,x
≲ ∥R∥L1

t,x
+ CRλ−γ .

Proof. Taking the L1 norm in space and using Lemma A.1 and the fact that 8k Wk is σ−1Td -periodic in
space, we obtain

∥θ(t)w(t)∥L1 ≤

∑
1≤k≤d

|g̃k(t)gk(t)|∥Rk(t)8k Wk∥L1

≲
∑

1≤k≤d

|g̃k(t)gk(t)|∥8k Wk∥L1(∥Rk(t)∥L1 + σ−1
∥Rk(t)∥C1)

≲
∑

1≤k≤d

|g̃k(t)gk(t)|(∥Rk(t)∥L1 + σ−1
∥Rk∥C1

t,x
),

where we used ∥8k Wk∥L1
x
= 1 by (3-12b) and (3-12c) in the last step. Now taking the L1 norm in time,

using Lemma A.1 together with σ -periodicity of gk(t)gk(t) and the smoothness of t 7→ ∥Rk(t)∥L1 , and
recalling that ∥gk gk∥L1 = 1, we arrive at

∥θw∥L1
t,x
≲

∑
1≤k≤d

∥g̃k gk∥L1(∥Rk∥L1
t,x

+ σ−1CR) ≲
∑

1≤k≤d

(∥Rk∥L1
t,x

+ σ−1CR) ≲ ∥R∥L1
t,x

+ CRσ−1,

where the implicit constant does not depend on the parameter λ or the given solution (ρ, u, R).
The estimates for the other two terms θu and ρw follow from Lemmas 4.2 and 4.3. Indeed, Hölder’s

inequality gives

∥θu∥L1
t,x

≤ ∥θ∥L1
t,x

∥u∥L∞
t,x ≤ CRλ−γ

and

∥ρw∥L1
t,x

≤ ∥w∥L1
t,x

∥ρ∥L∞
t,x ≤ CRλ−γ . □
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5. The new defect field R1 and its estimates

We continue with the proof of Proposition 2.1. Our next goal is to define a suitable defect field R1 such
that the new density ρ1 and vector field u1,

ρ1 := ρ + θ, u1 := u + w,

solve the continuity-defect equation

∂tρ1 + u1 · ∇ρ1 = div R1. (5-1)

The defect field R1 will consist of three parts,

R1 = Rosc + Rlin + Rcor,

each solving the corresponding divergence equation

div Rosc = ∂tθ + div(θpw + R),

div Rlin = div(θu + ρw),

div Rcor = div(θow).

So we define the linear error Rlin = θu +ρw and the correction error Rcor = θow in the usual way and
the oscillation error Rosc in the following important lemma. Recall that R and B are the antidivergence
operators defined in the Appendix.

Definition of the oscillation error.

Lemma 5.1 (space-time oscillations). The following identity holds:

∂tθ + div(θpw + R) = div(Rosc,x + Rosc,t + Racc),

where Rosc,x is the spatial oscillation error

Rosc,x = −

∑
1≤k≤d

g̃k gkB
(
∇ Rk,

(
8k Wk − /

∫
Td

8k Wk

))
,

Rosc,t is the temporal oscillation error

Rosc,t = σ−1
∑

1≤k≤d

hk∂t Rk ek,

and Racc is the acceleration error

Racc = −

∑
1≤k≤d

B(∂t(g̃k Rk), 8k).

Proof. By definition of θp and w, using the disjointedness of supports of g̃k and gk′ for k ̸= k ′, we obtain

div(θpw) = −

∑
1≤k≤d

g̃k gk div(Rk8k Wk). (5-2)
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Thanks to div(8k Wk) = 0, for each k,

div(Rk8k Wk) = ∇ Rk · P̸=0(8k Wk) + div(Rk ek)

such that from (5-2) we have the decomposition

∂tθ + div(θpw + R) = O1 + O2 + O3, (5-3)

with
O1 := ∂t P ̸=0θp,

O2 := −

∑
1≤k≤d

g̃k gk∇ Rk · P ̸=0(8k Wk),

O3 := ∂tθo −

∑
1≤k≤d

g̃k gk div(Rk ek) + div R.

By the definitions of Racc and R, the first term O1 = div Racc since 8k has zero mean.
For the second term O2, by definition of B and (A-2), we observe that

/
∫

Td
Rk div(8k Wk) + ∇ Rk ·

(
8k Wk − /

∫
Td

8k Wk

)
= divB

(
∇ Rk,

(
8k Wk − /

∫
Td

8k Wk

))
, (5-4)

where the meaning of the vector-valued argument is that B is applied to each of its components. So (5-4)
implies O2 = div Rosc,x.

Finally, for the last term O3, by the definition of θo (3-17), (3-6), and (3-3),

∂tθo = σ−1
∑

1≤k≤d

h′

k div(Rk ek) + σ−1
∑

1≤k≤d

hk div(∂t Rk ek)

= (g̃κ gκ − 1)
∑

1≤k≤d

div(Rk ek) + σ−1
∑

1≤k≤d

hk div(∂t Rk ek),

which implies O3 = div Rosc,t. □

Estimates of the new defect error. In the remainder of this section, we finish the proof of Proposition 2.1.
Given δ > 0, we will show that the sum of L1

t,x norms of each error is less than CRλ−γ . This concludes
the proof provided λ is chosen large enough.

Racc estimate. Taking advantage of the potential �k as in (3-11), we obtain

∥Racc∥L1
t,x

= σ−1
∥B(∂t(g̃k Rk), div �k)∥L1

t,x

≲ CRσ−1
∥g̃k∥W 1,1∥R div �k∥L1 (by Lemma A.2)

≲ CRσ−1
∥g̃k∥W 1,1∥�k∥Lr (by boundedness of R in Lr )

≲ CRκαµ−1−(d−1)/r (by (3-4) and (3-12a))

≲ CRλ−γ (by (4-3)).

(5-5)
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Rosc,x estimate. By Hölder’s inequality, Lemma A.2, and the bounds ∥g̃k gk∥L1
t
= 1 and ∥8k Wk∥L1 = 1,

we obtain

∥Rosc,x∥L1
t,x

≤

∑
1≤k≤d

∥g̃k gk∥L1∥B(∇ Rk, P ̸=0(8k Wk))∥L∞
t L1 ≲ CR

∑
1≤k≤d

∥RP̸=0(8k Wk)∥L1 ≤ CRλ−γ .

Rosc,t estimate. By (3-7),

∥Rosc,t∥L1
t,x

=

∥∥∥∥σ−1
∑

1≤k≤d

hk∂t Rk ek

∥∥∥∥
L1

t,x

≤ CRσ−1
∑

1≤k≤d

∥hk∥L1 ≤ CRλ−γ .

Rlin estimate. We start with Hölder’s inequality

∥Rlin∥L1
t,x

≤ ∥θ∥L1
t,x

∥u∥L∞
t,x + ∥ρ∥L∞

t,x ∥w∥L1
t,x

.

It suffices to show ∥θ∥L1
t,x

≤ CRλ−γ and ∥w∥L1
t,x

≤ CRλ−γ . These follow from Lemmas 4.2 and 4.3
since p ≥ 1.

Rcor estimate. By Hölder’s inequality,

∥Rcor∥L1
t,x

≤ ∥θo∥L∞
t,x ∥w∥L1

t,x
.

Since ∥θo∥L∞
t,x ≤ CRλ−γ from its definition (or by (4-4) from Lemma 4.2), by Lemma 4.3 we also have

∥Rcor∥L1
t,x

≤ CRλ−γ .

Conclusion of the proof of Proposition 2.1. The first point is proved in Section 3 while the second point
is proved in Section 4 provided λ is sufficiently large. For the last point, (2-6) follows from the definition
of the new defect error R1, and the estimate follows from the ones in the subsection above by choosing λ

sufficiently large once again. Hence Proposition 2.1 is proved.

6. Extension to transport-diffusion equations

In this section, we extend the main results to general transport-diffusion equations{
∂tρ − Lρ + u · ∇ρ = 0,

ρ|t=0 = ρ0,
(6-1)

where L is a given constant coefficient differential operator of order k ∈ N. Weak solutions to (6-1) can
be defined analogously to (1-2) by the adjoint of L , and we impose the minimum regularity ρ ∈ L1

t,x and
ρu ∈ L1

t,x as before.
The following nonuniqueness result holds for (6-1).

Theorem 6.1. Let d ≥ 2 and L be any constant coefficient differential operator of order k ≥ 1. There exists
a divergence-free velocity vector field u ∈ L1(0, T ; W 1,p(Td)) for all p < ∞ such that the uniqueness
of (6-1) fails in the class

ρ ∈

⋂
p<∞

k∈N

L p(0, T ; Ck(Td)) and ρu ∈ L1(Td
× [0, T ]).
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Proof. We only need to check that Proposition 2.1 holds for (6-1). It suffices to check that the linear
term Lρ results in a small error, which is defined as

RL := RL
∑

1≤k≤d

g̃k Rk8k .

Indeed, by L1 boundedness of R,

∥RL∥L1
t,x
≲ CR

∑
1≤k≤d

∥g̃k∥L1∥8k∥W k,1,

where k ≥ 1 is the order of the linear operator L . Since we only need to prove the results for p large, we
can assume k ≤ p, so that, as in the proof of Lemma 4.2,

∥RL∥L1
t,x
≲ CRκα−1(σµ)p

≤ CRλ−γ .

Hence there is no additional constraint coming from the diffusion. □

Appendix: Standard tools in convex integration

In this section, we recall several technical results that are now standard in convex integration.

Improved Hölder’s inequality on Td . We recall the following result due to [Modena and Székelyhidi
2018, Lemma 2.1], which was inspired by [Buckmaster and Vicol 2019, Lemma 3.7].

Lemma A.1. Let d ≥ 2, r ∈ [1, ∞], and a, f : Td
→ R be smooth functions. Then, for every σ ∈ N,∣∣∥a f (σ · )∥Lr (Td ) − ∥a∥Lr (Td )∥ f ∥Lr (Td )

∣∣ ≲ σ−1/r
∥a∥C1(Td )∥ f ∥Lr (Td ). (A-1)

Note that the error term on the right-hand side can be made arbitrarily small by increasing the oscillation
factor σ .

Antidivergence operators R and B. We will use the standard antidivergence operator 1−1
∇ on Td ,

which will be denoted by R. We write C∞

0 (Td) for the space of smooth functions with zero mean on Td .
It is well known that, for any f ∈ C∞(Td), there exists a unique u ∈ C∞

0 (Td) such that

1u = f − /
∫

f.

For any smooth scalar function f ∈ C∞(Td), the standard antidivergence operator R : C∞(Td) →

C∞

0 (Td , Rd) can be defined as
R f := 1−1

∇ f,

which satisfies
div(R f ) = f − /

∫
Td

f for all f ∈ C∞(Td).

It is well known (see for instance [Modena and Székelyhidi 2018, Lemma 2.2]) that R is bounded on
Sobolev spaces W k,p(Td) for all k ∈ N and that R div is a Calderón–Zygmund operator:

∥R(div u)∥Lr (Td ) ≲ ∥u∥Lr (Td ) for all u ∈ C∞(Td , Rd) and 1 < r < ∞.
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Recall the following useful fact about R:

R f (σ · ) = σ−1R f for any f ∈ C∞

0 (Td) and any positive σ ∈ N.

We will also use its bilinear counterpart B : C∞(Td) × C∞(Td) → C∞(Td , Rd), defined by

B(a, f ) := aR f −R(∇a ·R f ).

It is easy to see that B is a left-inverse of the divergence:

div(B(a, f )) = a f − /
∫

Td
a f dx provided that f ∈ C∞

0 (Td), (A-2)

which can be proved easily using integration by parts. The following estimate is a direct consequence of
the boundedness of R on Sobolev spaces W k,p(Td).

Lemma A.2. Let d ≥ 2 and 1 ≤ r ≤ ∞. Then, for any a, f ∈ C∞(Td),

∥B(a, f )∥Lr (Td ) ≲ ∥a∥C1(Td )∥R f ∥Lr (Td ).
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This article introduces Lp versions of the support function of a convex body K and associates to
these canonical Lp-polar bodies Kı;p and Mahler volumes Mp.K/. Classical polarity is then seen
as L1-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler
conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers
for each p 2 .0;1/. We settle the upper bound by demonstrating the existence and uniqueness of an
Lp-Santaló point and anLp-Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–
Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization,
and a systematic study of the Mp functionals. Using our results on the Lp-Santaló point and a new
observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced
to lower bounds on the Lp-Mahler volume coupled with a certain conjectural convexity property of the
logarithm of the Monge–Ampère measure of the Lp-support function. We derive a suboptimal version
of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this
approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler
conjecture is instead precisely an approach to the L1-Mahler conjecture.
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introduce the associated one-parameter generalization of the Mahler volume Mp and conjectures, and
establish some of their fundamental properties. As we explain in detail and back up with explicit
computations, minimizers should be unique (see Figure 3 and the discussion surrounding it). This is a
subtle, but perhaps crucial, advantage, as compared to Mahler’s original conjecture. To quote [Tao 2007]
(see also [Błocki 2015, p. 90]),

In my opinion, the main reason why this conjecture is so difficult is that unlike the upper bound,
in which there is essentially only one extremiser up to affine transformations (namely the ball),
there are many distinct extremisers for the lower bound. . .

As an application of the theory of Lp-polarity, we develop a connection between these new objects
(Lp-support functions and Lp-Mahler volumes) and Bourgain’s slicing conjecture, e.g., making contact
with Kobayashi’s theorem on the Ricci curvature of Bergman metrics. Finally, we explain how Nazarov’s
and Błocki’s work on a complex-analytic approach to the classical Mahler conjecture fits in, being
precisely an approach to the L1-Mahler conjecture.

Our approach is loosely motivated by complex geometry, but the article in its entirety can be read
with no knowledge of complex methods. As is probably clear from the text, the authors are novices in
the study of the Mahler and Bourgain conjectures and are sorry for any omission in accrediting results
properly. The motivation for this article lies not so much in the particular results as in showing the link
between complex geometry and this beautiful area. It should also be stressed that the list of references is
far from complete. We have tried to make the text accessible to both convex and complex analysts and so
perhaps included a bit more background than usual.

1A. Motivation from Bergman kernels. Denote by

Kı WD fy 2 Rn W hx; yi � 1 for all x 2Kg (1-1)

the polar body associated to a convex body (compact and convex with nonempty interior) K � Rn. A key
step in Nazarov’s complex-analytic approach to the Bourgain–Milman inequality [1987, Theorem 1] is a
bound on the Mahler volume

M.K/ WD nŠ jKjjKıj (1-2)

of a symmetric (i.e., �KDK) convex bodyK from below by a multiple of the Bergman kernel KTK .z; w/
of the tube domain TK WD RnC

p
�1K over K, evaluated on the diagonal at the origin [Nazarov 2012,

p. 338]. This was generalized by Hultgren [2013, Lemma 11] and two of us [Mastrantonis and Rubinstein
2022, Proposition 6] to any convex body K:

�njKj2KTK .
p
�1b.K/;

p
�1b.K//�M.K � b.K//; (1-3)

where
b.K/ WD

Z
K

x
dx
jKj

is the barycenter of K.
This article, however, is not about Bergman kernels (though we come back to Bergman kernels in

Sections 1F and 6E). Nonetheless, the Lp-Mahler volumes introduced below are partly motivated by (1-3).
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In order to prove (1-3) one uses Jensen’s inequality together with an explicit formula for the Bergman
kernels of tube domains evaluated on the diagonal, due to [Rothaus 1960, Theorem 2.6; Korányi 1962,
Theorem 2; Hsin 2005, (1.2)], that as observed recently can be expressed as [Mastrantonis and Rubinstein
2022, Remark 36]

KTK .0; 0/D
1

.4�/n

Z
Rn
e�h1;K.y/

dy
jKj

; (1-4)

where, following [Mastrantonis and Rubinstein 2022, Definition 13], we denote by

h1;K.y/ WD log
Z
K

ehx;yi
dx
jKj

(1-5)

the logarithmic Laplace transform of the convex indicator function 11K (11K is 0 on K and 1 other-
wise). Therefore, the left-hand side of (1-3) becomes �njKj

R
Rn
e�h1;K�b.K/.y/ dy, bearing a curious

resemblance to the standard formula for the Mahler volume (1-2),

M.K/D jKj

Z
Rn
e�hK.y/ dy (1-6)

(see (4-2) below), where

hK.y/ WD sup
x2K

hx; yi (1-7)

is the (classical) support function of K.

1B. Lp-support function, -polarity, and -Mahler volume. Motivated by the preceding discussion and
[Mastrantonis and Rubinstein 2022, Remark 36], we introduce the Lp-support function of a compact
body (compact with nonempty interior) K � Rn for all p > 0,

hp;K.y/ WD log
�Z
K

ephx;yi
dx
jKj

�1
p

; y 2 Rn; (1-8)

unifying and interpolating between (1-5) and (1-7) (notice that h1;K WD limp!1 hp;K D hK by
Corollary 2.7). These are convex functions in y, monotone increasing in p, and take the Cartesian
product of bodies to the sum of the respective Lp-support functions (Lemma 2.2). Less obviously, they
also enjoy a convexity property in p (Lemma 2.4), and a “concavity” property in K (Lemma 2.5).

Generalizing (1-6), we introduce the Lp-Mahler volume,

Mp.K/ WD jKj

Z
Rn
e�hp;K.y/ dy: (1-9)

The functional Mp shares many (but not all) of the properties of M DM1 (by Corollary 2.7), e.g.,
invariance under the action of GL.n;R/ (Lemma 4.7), tensoriality (Remark 2.3), existence and uniqueness
of a Santaló point (Proposition 1.5), and a Santaló inequality for symmetric bodies (Theorem 1.6).

It is natural to ask whether there is an analogue of (1-2) for Mp , i.e., is there a canonically associated
body to K for which Mp can be expressed as the volume of a product body in R2n? We answer this
affirmatively. To that end, we introduce the following:
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(middle), the 2-simplex centered at the origin (right) for p D 1
2

(green), p D 1 (orange),
p D 10 (red) and p D 100 (blue).

Definition 1.1. Let K � Rn. Define the Lp-polar body of K by

Kı;p WD

�
y 2 Rn W

Z 1
0

rn�1e�hp;K.ry/ dr � .n� 1/Š
�
: (1-10)

Our first result answers the aforementioned question.

Theorem 1.2. Let p 2 .0;1�. For a convex bodyK �Rn, Kı;p is convex, closed, has nonempty interior,
and

Mp.K/D nŠ jKjjK
ı;p
j: (1-11)

It is compact (bounded) if and only if 0 2 intK. For K symmetric, Kı;p is symmetric.

Theorem 1.2 justifies the notation

kykKı;p WD

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ry/ dr
�� 1

n

(1-12)

(the power serves to homogenize), and Kı;p D fy 2 Rn W kykKı;p � 1g. For p D1 one recovers the
usual polar body, i.e., Kı;1 D Kı (Lemma 3.6). The case p D 0 is treated in Section 3B1. Figure 1
illustrates some explicit examples.

As p approaches 0, the Lp-polars of all three of the bodies pictured in Figure 1 increase to R2. In fact,
for any convex body K � Rn„ Kı;p increases to fy W hy; b.K/i � 1g as p! 0 (Proposition 3.7), so we
define Kı;0 to be exactly that (Definition 3.10). In particular, Kı;0 is either R2 or a half-space depending
on whether or not b.K/ vanishes. By Example 3.11, we may plot a few of the Lp-polars of the standard
simplex on the plane (1-14); see Figure 2. Note that �ı;02 is a half-space since b.�2/¤ 0.

The proof of Theorem 1.2 has several parts. To obtain (1-11) we rely on a result of Ball (Theorem 5.20)
that implies that (1-12) has all the properties of a norm, except that it is, in general, only positively
1-homogeneous, i.e., k�ykKı;p D �kykKı;p for � > 0. If K is symmetric then k � kKı;p is fully
1-homogeneous, i.e., a norm (then Kı;p is also symmetric). For completeness, we include a detailed and
self-contained proof of Ball’s result in the Appendix. In particular, k � kKı;p is convex and so is Kı;p.
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Figure 2. The boundary of .�2/ı;p for p D 0 (green), p D 2 (orange), p D 10 (red),
and p D1 (blue).

Equality (1-11) follows from a standard formula relating the volume of a convex body to the surface
integral of k�k�nKı;p over the unit sphere (see (3-2)). Nonemptiness of the interior follows fromKı�Kı;p

(Lemma 3.6). This inclusion also implies that Kı;p is unbounded when 0… intK. The converse is slightly
more subtle: when 0 2 intK one has a small cube Œ�"; "�n �K. For classical polarity this would be the
end of the argument; yet unlike classical polarity, Lp-polarity does not invert inclusions, so we cannot
simply argue that Kı;p � .Œ�"; "�n/ı;p. Instead, we use the existence of a small cube inside of K to
obtain a lower bound on hp;K in terms of hp;Œ�";"�n (see (3-8)), which then induces an upper bound on
Kı;p by a multiple of .Œ�"; "�n/ı;p. The latter can be shown to be bounded (Claim 3.4), from which the
boundedness of Kı;p follows by using yet another key estimate (Lemma 2.6).

1C. Lp-Mahler conjectures and uniqueness of minimizers. For q > 0, denote by

Bnq WD fx 2 Rn W jx1j
q
C � � �C jxnj

q
� 1g (1-13)

the (closed) n-dimensional q-ball, and denote by

�n WD fx 2 Œ0;1/
n
W x1C � � �C xn � 1g (1-14)

the standard simplex in Rn. We propose a 1-parameter generalization of Mahler’s conjectures. Mahler’s
original conjectures [1939a; 1939b, p. 96] amount to setting p D1 in the following statements.

Conjecture 1.3. Let p 2 .0;1�. For a symmetric convex body K � Rn,

Mp.Œ�1; 1�
n/�Mp.K/�Mp.B

n
2 /:

Conjecture 1.4. Let p 2 .0;1�. For a convex body K � Rn,

inf
x2�n

Mp.�n� x/�Mp.K/:

By Proposition 1.5 below, the infimum in Conjecture 1.4 is attained by a unique point.
By the Bourgain–Milman inequality [1987, Corollary 6.1], there is c > 0 independent of dimension

so that M.K/� cn for all convex bodies K � Rn. By Lemma 3.12 below, this induces a lower bound
on Mp for all p with the constant only depending on p. The best known constant for M in dimensions
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n � 4 with K symmetric is c D � [Kuperberg 2008, Corollary 1.6; Berndtsson 2021, Theorem 2.1].
The sharp bound c D 4 is due to [Mahler 1939a, (2)] in dimension nD 2 and [Iriyeh and Shibata 2020,
Theorem 1.1] in dimension nD 3 (see also [Fradelizi et al. 2022]). For generalK, the best known constant
is c D 2 for n D 3 and c D �

2
for n � 4 by the symmetric bound and a symmetrization trick (see, for

example, [Mastrantonis and Rubinstein 2022, Corollary 55]). In dimension nD 2 the sharp bound is due
to [Mahler 1939a, (1)]. One may also formulate other versions of Mahler’s original conjecture, e.g., to
zonoids [Reisner 1986] or unconditional bodies [Saint-Raymond 1981, §4] and generalize these to all p,
but in this article we focus on Conjectures 1.3 and 1.4. In the special case p D 1, using (1-4) one can
show that the lower bound of Conjecture 1.3 is equivalent to a conjecture of Błocki [2014, p. 56], while
Conjecture 1.4 reduces to a conjecture of [Mastrantonis and Rubinstein 2022, Conjecture 10], both stated
in terms of Bergman kernels of tube domains.

Conjectures 1.3 and 1.4 for all p 2 .0;1/ imply Mahler’s conjectures, as we show in Lemma 3.12. On
the surface, the former look harder to deal with. However, there is a subtle, perhaps crucial, advantage in
the “regularized” version of the symmetric Mahler conjecture (Conjecture 1.3 for p 2 .0;1/) compared
to the classical version (p D1) of that conjecture. This has to do with the nonuniqueness of minimizers
in the classical symmetric Mahler conjecture which has been pointed out by experts [Tao 2008, §1.3;
2007] (see, in particular, the comments in the latter) as one of the main obstacles to tackling it (see also
the quote by Tao in the Introduction). Let us elaborate on that.

Indeed, tensoriality of M DM1 together with its invariance under classical polarity leads to the
conjectured nonuniqueness of symmetric minimizers, referred to as Hanner polytopes (nonuniqueness
here is in the strong sense: after taking the quotient by GL.n;R/, i.e., there are minimizing bodies that
are in different GL.n;R/-orbits). Hanner polytopes are symmetric convex polytopes that are defined
inductively: Œ�1; 1� is the unique Hanner polytope in dimension nD 1. In higher dimensions, a Hanner
polytope is given either as the Cartesian product of two lower-dimensional Hanner polytopes, or as the
polar of such [Hanner 1956, Theorems 3.1–3.2, 7.1; Hansen and Lima 1981, Corollary 7.4]. For example,
in dimension nD 3 there are precisely two non-GL.n;R/ equivalent Hanner polytopes: the cube Œ�1; 1�3,
as the product of lower-dimensional Hanner polytopes, and its polar B31 [Hanner 1956, pp. 86–87].

By contrast, our Lp-polarity operation (1-10) is no longer a duality, i.e., .Kı;p/ı;p ¤K in general.
In fact, the Lp-polar always has a smooth boundary for p 2 .0;1/, and hence Lp-polarity is never a
duality operation among polytopes. By (1-11) this means Mp is not invariant under Lp-polarity. We
conjecture that for all p 2 .0;1/, up to the action of GL.n;R/, Mp is uniquely minimized by the cube
among symmetric convex bodies, and by the simplex, appropriately repositioned, among general convex
bodies. If true, this would give some motivation for studying Mp and show that the original Mahler
conjecture has (for better and for worse) additional invariance absent from our Lp-Mahler conjectures.
Figure 3 illustrates this symmetry-breaking property of Mp in nD 3:

We emphasize that the above discussion pertains to the symmetric case, since in the nonsymmetric
case, the simplex, appropriately repositioned, is already conjectured to be the unique (up to GL.n;R/)
minimizer for the classical nonsymmetric Mahler conjecture [Tao 2007]. That is, M should be minimized
by �n � b.�n/, where b.�n/ coincides with the Santaló point of �n. Note that .�n � b.�n//ı is
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a GL.n;R/ image of �n� b.�n/, so polarity does not produce a non-GL.n;R/ equivalent minimizer in
this case. The conjectured uniqueness of the minimizer in the nonsymmetric case (regardless of p) is
perhaps related to the fact that �n cannot be expressed as a product of polytopes of lower dimension.

1D. Lp-Santaló theorem. For a function f W Rn! R[f1g, denote by

V.f / WD

Z
Rn
e�f .x/ dx and b.f / WD

1

V.f /

Z
Rn
xe�f .x/ dx

its volume and barycenter respectively. This terminology is motivated by V.hK/D nŠ jKıj (see (4-2)),
and b.hK/ D .nC 1/b.Kı/ (see (4-1)). By Theorem 1.2, V.hp;K/ D nŠ jKı;pj. However, lacking
homogeneity, it is not clear how b.hp;K/ can be directly related to b.Kı;p/ (Section 4). Our next result
generalizes the Santaló point.

Proposition 1.5. Let p 2 .0;1�. For a convex body K � Rn there exists a unique xp;K 2 Rn with

Mp.K � xp;K/D inf
x2Rn

Mp.K � x/;

which is also the unique point such that b.hp;K�xp;K /D 0. Moreover, xp;K 2 intK.

Part of the proof of Proposition 1.5 is almost identical to Santaló’s proof [1949, §2] of the existence and
uniqueness of Santaló points. The idea is to show that the function x 7!Mp.K � x/ is1 for x … intK
(Lemma 4.2), and smooth and strictly convex for x 2 intK (Lemma 4.4). This forces the existence of a
unique minimum. The main difference is that we study

R
Rn
e�hp;K.y/ dy under translations of K, while

Santaló [1949, (1.1)] studied the surface integral
R
@Bn2

hK.u/
�n du.

One of our main results is a generalization of Santaló’s theorem, verifying the upper bound in
Conjecture 1.3:

Theorem 1.6. Let p 2 .0;1�. For a symmetric convex body K � Rn,

Mp.K/�Mp.B
n
2 /:

In particular, by taking p !1, one recovers Santaló’s inequality [1949, (1.3)] M.K/ �M.Bn2 /

(though, of course, for this purpose alone there are direct, easier, proofs, e.g., [Saint-Raymond 1981,
Theorem 14]).
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The Lp-polarKı;p (1-10) is central to the proof of Theorem 1.6. One idea behind the proof is standard:
for u 2 @Bn2 , the Steiner symmetrization with respect to a hyperplane through the origin

u? WD fx 2 Rn W hx; ui D 0g;

increases the volume of the Lp-polar j.�uK/ı;pj � jKı;pj (Proposition 5.1). Yet proving this seems
nonstandard and rather nontrivial. We achieve it by proving the estimate

1
2
.Kı;p \ .u?C tu//C 1

2
.Kı;p \ .u?� tu//� .�uK/

ı;p
\ .u?C tu/ for all t 2 R, (1-15)

which compares the slices of K and those of �uK over u?, and then using the (classical) Brunn–
Minkowski inequality. To obtain (1-15) we use Ball’s Brunn–Minkowski inequality for harmonic means
(Theorem 5.20), together with the convexity of x 7! log

�
1
t

sinh.t/
�

(Claim 5.19).

Remark 1.7. Theorem 1.6 is different from the Lp Santaló inequalities of Lutwak and Zhang, who
introduced the symmetrized Lp-centroid body �pK with support function given by

h�pK.y/ WD

�
1

cn;p

Z
K

jhx; yijp
dx
jKj

�1
p

(where cn;p is a constant that depends on n and p determined by �pBn2 D B
n
2 ) for which they proved

jKjj.�pK/
ıj� jBn2 j

2 [Lutwak and Zhang 1997]. Their construction is restricted to symmetric bodies since
�pK is always symmetric (regardless of whetherK is), and the large p limit does not recover the polar body
but rather the reflection body: limp!1 �pK DK [ .�K/ (since limp!1 h�pK.y/D supx2K jhx; yij).
Subsequently, Ludwig and Haberl–Schuster extended this to nonsymmetric bodies [Ludwig 2005, p. 4195;
Haberl and Schuster 2009, §3] introducing the Lp-centroid body MpKC whose support function is

hMpKC.y/ WD

�
Cn;p.nCp/

Z
K

maxfhx; yi; 0gp dx
�1
p

:

Note that as p!1, we have Kı;p!Kı (Lemma 3.6), while MpKC!K [Haberl and Schuster 2009,
p. 9]. Yet for fixed p, it is not apparent to us if there is a precise relation between MpKC and our Kı;p

(though the polar of former are “isomorphic” to the latter — see Remark 3.14). They seem to be distinct.
For example, �2K is the Legendre ellipsoid of the convex body; thus bounding jKjj.�2K/ıj from below
by a bound of the form cn, where c is a constant independent of dimension, would imply Bourgain’s
conjecture (Conjecture 1.8) [Lutwak and Zhang 1997, p. 14]. On the contrary, by Lemma 3.12 below, the
Bourgain–Milman inequality implies bounds of this type for Mp for all p > 0. It would be interesting
to investigate relations between these constructions and ours, as well as relations to the level-sets of
the logarithmic Laplace transform (see Remark 3.14), e.g., as in [Klartag and Milman 2012; Latała and
Wojtaszczyk 2008].

1E. Relation to the isotropic constant and Bourgain’s slicing conjecture. The Lp-support function
hp;K is related to the covariance matrix of a convex body (Lemma 6.3),

Covij .K/ WD
Z
K

xixj
dx
jKj
�

Z
K

xi
dx
jKj

Z
K

xj
dx
jKj

(1-16)
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via the identity
r
2hp;K.0/D p Cov.K/: (1-17)

This turns out to have an interesting connection to the slicing problem. Set

C.K/ WD
jKj2

det Cov.K/
: (1-18)

Note
C.K/D

1

L2nK
; (1-19)

where LK is the isotropic constant [Brazitikos et al. 2014, Definition 2.3.11]. Bourgain [1986, Remark,
p. 1470; 1991, (1.9)] conjectured the following.

Conjecture 1.8. There exists a constant c > 0 independent of dimension such that C.K/ � cn for all
n 2 N and all convex bodies K � Rn.

Let B > 0. We introduce the following convexity hypothesis:

uB;K WD log detr2h1;K CBh1;K is convex: (�B )

Note here that h1;K is twice differentiable (Lemma 4.4). We restrict to p D 1 since property (�B ) is
equivalent to a similar convexity property on hp;K (see Remark 6.15).

Theorem 1.9. Let K � Rn be a convex body for which (�B ) holds for some B > 0. Then:

(i) There is xK 2 intK with

C.K/�
M 1

B
.K � xK/

2

M 1
2B
.K � xK/

�
2

eB

�n
:

(ii) There is xK 2 intK with

C.K/�
M.K � xK/

e2nBn
�

�
�

2e2B

�n
:

(iii) If K is symmetric,

C.K/�
M.K/

enBn
�

�
�

eB

�n
:

Theorem 1.9 has the following consequence for Bourgain’s slicing conjecture.

Corollary 1.10. If there is a constant B > 0 independent of dimension such that (�B ) holds for all convex
bodies in all dimensions, then Conjecture 1.8 holds.

In this direction, we have the following partial progress:

Theorem 1.11. Property .�nC1/ holds for all convex bodies K � Rn.

As an immediate corollary of Theorems 1.9 and 1.11 we recover the so-called “folklore” bound on the
isotropic constant due to [Milman and Pajor 1989, p. 96].

Corollary 1.12. For a convex body K � Rn,

C.K/�
�

�

2e2n

�n
:
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Corollary 1.12 is equivalent to an upper bound on the isotropic constant,

LK � C
p
n (1-20)

for C D e
p
2=� , and hence is far from optimal: (1-20) holds with C D 2�e by Milman and Pajor,

LK � Cn
1=4 logn by [Bourgain 1991, Theorem 1.6], and LK � Cn1=4 by [Klartag 2006, Corollary 1.2],

while very recently Chen [2021] obtained LK � C1eC2
p

log.n/
p

log log.3n/ (in particular, LK � Cn" for
all " > 0); see also [Klartag and Lehec 2022, (1)]. On these foundations several authors improved this
to LK � C.log.n//q for various values of q [Klartag and Lehec 2022; Jambulapati et al. 2022; Klartag
2023]; Conjecture 1.8 remains open.

The proof of Theorem 1.9 starts with the observation (1-17). The convexity assumption (�B ) allows
for the application of Jensen’s inequality with respect to any probability measure �. Because of (1-17)
this will only be useful if � is centered at the origin, i.e.,

b.�/ WD

Z
Rn
y d�.y/D 0 2 Rn:

We use the family of log-concave measures given by the 1
p

-support functions,

�p;K WD
e�h1=p;K.y/dyR

Rn
e�h1=p;K.y/ dy

D
e�ph1;K.y/dyR

Rn
e�ph1;K.y/ dy

; (1-21)

and optimize over p (the equality in (1-21) follows from Lemma 2.2(i) below). Proposition 1.5 is crucial
here, since it ensures that K may be translated to a position for which b.�p;K/D 0 (Corollary 4.5). After
applying Jensen’s inequality for the measures �p;K , it remains to bound

R
Rn

log detr2h1;K d�p;K.y/
and

R
Rn
h1;K.y/ d�p;K.y/; this is done in Lemmas 6.10 and 6.13 respectively. The Lp-Mahler volumes

Mp figure quite prominently throughout the proofs.
The proof of Theorem 1.11 is based upon an explicit computation

log detr2hp;K.y/D�p.nC 1/hp;K.y/C log .y/; (1-22)

 being the determinant of a positive-definite matrix. This relies on writing detr2hp;K as the determinant
of the .nC1/� .nC1/ Gram matrix M of the first moments of the measure

ephx;yi

ephp;K.y/

11K .x/ dx
jKj

:

Each entry of M then involves an e�php;K.y/ term; thus detr2hp;K D detM D e�.nC1/php;K for a
positive  > 0. Taking the logarithm gives (1-22). For the remaining terms,  , being the sum of products
of nC 1 integrals over K, can be written as an integral over KnC1,

 .y/D C

Z
KnC1

j�.z/j2ephz;.y;:::;y/i dz;

from which the convexity of log can be deduced (Lemma 6.16), and hence the claim of Theorem 1.11.
Finally, we generalize Theorem 1.11 to the setting of a general probability measure — this is formulated

in Theorem 6.19. In this generality, we show that the constant BDnC1 is actually optimal. In Section 6E
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we give a completely different proof of both theorems using, surprisingly, Kobayashi’s theorem on the
Ricci curvature of Bergman metrics, coming back full circle to the point of departure of this article in
Section 1A: Bergman kernels.

1F. Perspective on the work on Nazarov and Błocki. Having presented Lp-polarity, it is perhaps worth-
while to revisit our original motivation for developing this theory: [Nazarov 2012; Blocki 2014; 2015].

Nazarov applied the theory of Bergman kernels of tube domains to tackle the symmetric Mahler
conjecture. The constant he obtained c D �3

16
in the inequality M.K/ � cn for symmetric convex

bodies K � Rn was suboptimal compared to the conjectured value of c D 4 (see Section 1C) but the
possibility remained open that perhaps a better choice of holomorphic L2 function and weight function
in Hörmander’s N@-technique would allow to tackle the Mahler conjectures, or that perhaps, as Nazarov
[2012, p. 337] suggested

. . . in order to get the Mahler conjecture itself on this way, one would have to work directly with
the Paley–Wiener space by either finding a good analogue of the Hörmander theorem allowing
to control the Paley–Wiener norm of the solution, or by finding some novel way to construct
decaying analytic functions of several variables.

Nazarov’s approach was subsequently revisited by Błocki [2014; 2015], Hultgren [2013], and ourselves
[Berndtsson 2022; Mastrantonis and Rubinstein 2022]. It became plausible after [Błocki 2015, p. 96] that
Nazarov’s approach might not yield Mahler’s conjectures. In view of the results in the present article (e.g.,
Lemma 3.12) it is now clear why this is so, and exactly how Nazarov’s approach fits in our story: it is an
approach to the case pD1 of Conjectures 1.3–1.4. It is a beautiful coincidence thatL1-Mahler volumes can
be expressed in terms of Bergman kernels (see Section 1A and [Mastrantonis and Rubinstein 2022, (42)]),

M1.K � b.K//D .4�/
n
jKj2KTK .

p
�1b.K/;

p
�1b.K//I (1-23)

but even if one had a complete understanding of the variation of such kernels among tube domains,
solving the classical Mahler conjectures would still require bridging the gap between L1 and L1.

Finally, we touch upon an observation encountered in [Błocki 2015, p. 96]:

This shows (although only numerically) that the Bergman kernel for tube domains does not
behave well under taking duals.

Indeed, the theory of Bergman kernels of tube domains corresponds to M1 and L1-polarity and the lack
of homogeneity of h1;K leads to incompatibility with L1-polarity, i.e., with classical polarity/duality.

Organization. In Section 2A basic properties of hp;K are laid out, namely the convexity of hp;K
(Lemma 2.1), its behavior under affine transformations ofK, Cartesian products, and its monotonicity with
respect to p (Lemma 2.2). Convexity properties of hp;K with respect to p or K are studied in Section 2B.
In Section 2C, an upper bound to the support function hp in terms of hp;K for bodies with barycenter at
the origin b.K/D 0 is given. Section 2D is dedicated to the explicit computation of hp;Œ�1;1�n for the
cube. In Section 3A the Lp-polar Kı;p is introduced, for which Mp.K/D nŠ jKjjK

ı;pj, Kı �Kı;p

and
T
p>0K

ı;p DKı. Inequalities relating M to Mp are established in Section 3C, and Section 3D is
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dedicated to computing Mp.Œ�1; 1�
n/. In Section 3E, the Lp-support of the diamond Bn1 is explicitly

computed in all dimensions and for all p (Lemma 3.17). Section 4 establishes the existence and uniqueness
of Santaló points for Mp (Proposition 1.5), and in Section 5 we prove a Santaló inequality for Mp for
symmetric convex bodies, showing that the 2-ball Bn2 is the maximizer (Theorem 1.6). In Section 6, we
study the isotropic constant and the relations between hp;K , Mp , and Bourgain’s conjecture. In particular,
we prove Theorem 1.9, Theorem 1.11, and its generalization, Theorem 6.19. We conclude by giving an
alternative proof of the latter using Bergman kernel methods and Kobayashi’s theorem. In the Appendix,
we verify that Kı;p is a convex body by proving Proposition A.1, and provide a detailed proof of Ball’s
Brunn–Minkowski inequality for the harmonic mean (Theorem 5.20).

2. Lp support functions

In this section we lay out basic properties for hp;K . In Section 2A we show convexity of y 7! hp;K.y/

(Lemma 2.1) and list several properties in Lemma 2.2, e.g., how hp;K transforms under affine transforma-
tions of K or with respect to Cartesian products. In Section 2B we study convexity properties of hp;K in
terms of convex combinations of p (Lemma 2.4) or K (Lemma 2.5). An upper bound for the support
function hK by hp;K for bodies with barycenter at the origin b.K/D 0 is given in Section 2C. Finally, in
Section 2D we carry out explicit computations for the cube.

2A. Basic properties of hp;K . The functions hp;K defined by (1-8) are convex, even if the underlying
body K is only compact.

Lemma 2.1. Let p 2 .0;1/. For a compact body K � Rn, hp;K.y/ is a convex function of y.

Proof. Let y; z 2 Rn and � 2 .0; 1/. By Hölder’s inequality,

hp;K..1��/yC�z/D
1

p
log
�Z
K

ephx;.1��/yC�zi
dx
jKj

�
D
1

p
log
�Z
K

.ephx;yi/1��.ephx;zi/�
dx
jKj

�
�
1

p
log
��Z

K

ephx;yi
dx
jKj

�1���Z
K

ephx;zi
dx
jKj

���
D
1��

p
log
�Z
K

ephx;yi
dx
jKj

�
C
�

p
log
�Z
K

ephx;zi
dx
jKj

�
D .1��/hp;K.y/C�hp;K.z/: �

Next, we list some properties of Lp-support functions that will be useful throughout.

Lemma 2.2. Let 0 < p < q <1. For compact bodies K � Rn, L� Rm, and A 2 GL.n;R/, a 2 Rn:

(i) hp;K.y/D 1
p
h1;K.py/.

(ii) hp;K�a.y/D hp;K.y/� ha; yi.

(iii) hp;AK.y/D hp;K.AT y/.
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(iv) hp;K�L.y; z/D hp;K.y/C hp;L.z/, y 2 Rn, z 2 Rm.

(v) hp;K � hq;K � hK .

Proof. (i) By definition,

hp;K.y/D
1

p
log

Z
K

ephx;yi
dx
jKj
D
1

p
log

Z
K

ehx;pyi
dx
jKj
D
1

p
h1;K.py/:

(ii) Changing variables x D u� a for x 2K � a, u 2K, and dx D du,

hp;K�a.y/D
1

p
log
�Z
K�a

ephx;yi
dx
jK � aj

�
D
1

p
log
�Z
K

ephu�a;yi
du
jKj

�
D
1

p
log
�Z
K

ephu;yi
du
jKj

e�pha;yi
�
D hp;K.y/� ha; yi:

(iii) For x D Au, dx D jdetAjdu,

hp;AK.y/D
1

p
log
�Z
AK

ephx;yi
dx
jAKj

�
D
1

p
log
�Z
K

ephAu;yi
jdetAjdu
jdetAjjKj

�
D
1

p
log
�Z
K

ephu;A
T yi du
jKj

�
D hp;K.A

T u/:

(iv) By Tonelli’s theorem [Folland 1999, §2.37; Mastrantonis and Rubinstein 2022, Claim 22],

hp;K�L.y; z/D
1

p
log
�Z
K�L

eph.x;u/;.y;z/i
dxdu
jK �Lj

�
D
1

p
log
�Z
K�L

ephx;yiephz;ui
dxdu
jKjjLj

�
D
1

p
log
��Z

K

ephx;yi
dx
jKj

��Z
L

ephz;ui
du
jLj

��
D
1

p
log
�Z
K

ephx;yi
dx
jKj

�
C
1

p
log
�Z
L

ephz;ui
du
jLj

�
D hp;K.y/C hp;L.z/:

(v) By (1-7),

hq;K.y/ WD
1

q
log
�Z
K

eqhx;yi
dx
jKj

�
�
1

q
log
�Z
K

eqhK.y/
dx
jKj

�
D
1

q
log eqhK.y/ D hK.y/:

By Hölder’s inequality (note q
p
> 1),

hp;K.y/D
1

p
log
�Z
K

ephx;yi
dx
jKj

�
�
1

p
log
��Z

K

e
q
p
phx;yi dx

jKj

�p
q
�Z
K

dx
jKj

�1�p
q
�

D
1

p

p

q
log
�Z
K

eqhx;yi
dx
jKj

�
D hq;K.y/: �
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Remark 2.3. One may wonder why we have a factor of nŠ in (1-2) and (1-11). The first reason is that
then one has (1-6) and (1-9). The second, more important, reason is that then Mp is tensorial. Indeed, by
Lemma 2.2(iv) and (1-9),

Mp.K �L/ WD jK �Lj

Z
Rn�Rm

e�hp;K�L.y;z/ dy dz

D jKjjLj

Z
Rn�Rm

e�hp;K.y/e�hp;L.z/ dy dz DMp.K/Mp.L/:

2B. Additional convexity properties. Lemma 2.1 states that y 7! hp;K.y/ is convex regardless of the
convexity of K. Regarding p and K as the variables, we show two more properties: Lemma 2.4 describes
convexity in p, and Lemma 2.5 shows an asymptotic (in p) concavity in K. These two lemmas are not
used elsewhere in the article and we state them for their independent interest.

Lemma 2.4. Let p; q 2 .0;1/. For a convex body K � Rn and � 2 .0; 1/,

h.1��/pC�q;K �
.1��/p

.1��/pC�q
hp;K C

�q

.1��/pC�q
hq;K :

Proof. By Hölder’s inequality,

h.1��/pC�q;K.y/D
1

.1��/pC�q
log
�Z
K

e..1��/pC�q/hx;yi
dx
jKj

�
D

1

.1��/pC�q
log
�Z
K

e.1��/phx;yie�qhx;yi
dx
jKj

�
�

1

.1��/pC�q
log
��Z

K

ephx;yi
dx
jKj

�1���Z
K

eqhx;yi
dx
jKj

���
D

.1��/p

.1��/pC�q

1

p
log
�Z
K

ephx;yi
dx
jKj

�
C

�q

.1��/pC�q

1

q
log
�Z
K

eqhx;yi
dx
jKj

�
D

.1��/p

.1��/pC�q
hp;K.y/C

�q

.1��/pC�q
hq;K.y/: �

Lemma 2.5. Let p 2 .0;1/. For convex bodies K;L� Rn and � 2 .0; 1/,

hp;.1��/KC�L � .1��/hp;K C�hp;L�
1

p
log
�
j.1��/KC�Lj

jKj1��jLj�

�
:

Proof. Fix y 2 Rn. Note that

1.1��/KC�L..1��/xC�z/eph.1��/xC�z;yi � .1K.x/ephx;yi/1��.1L.z/ephz;yi/�

for all x; z 2 Rn. Therefore, by the Prékopa–Leindler inequality [Prékopa 1973, Theorem 3],Z
.1��/KC�L

ephx;yi dx �
�Z
K

ephx;yi dx
�1���Z

L

ephx;yi dx
��
:
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As a result,

hp;.1��/KC�L.y/D
1

p
log
�Z

.1��/KC�L

ephx;yi
dx

j.1��/KC�Lj

�
�
1

p
log
��Z

K

ephx;yi dx
�1���Z

L

ephx;yi dx
�� 1

j.1��/KC�Lj

�
D
1

p
log
��Z

K

ephx;yi
dx
jKj

�1���Z
L

ephx;yi
dx
jLj

��
jKj1��jLj�

j.1��/KC�Lj

�
D .1��/hp;K.y/C�hp;K.y/�

1

p
log
�
j.1��/KC�Lj

jKj1��jLj�

�
;

as claimed. �

2C. A reverse inequality. By Lemma 2.2(v),
hp;K � hK

regardless of the position of K. A reverse inequality holds when the barycenter is at the origin:

Lemma 2.6. Let p 2 .0;1/. For a convex body K � Rn with b.K/D 0, and � 2 .0; 1/,

hK.y/� hp;K

�
y

�

�
�
n

p
log.1��/:

Proof. Let x 2K, y 2 Rn and � 2 .0; 1/. The aim is to use Jensen’s inequality to get an upper bound on
hx; yi. Since b.K/D 0,

hx; yi D

�
�x;

y

�

�
D

�
�xC .1��/b.K/;

y

�

�
D

�
�xC .1��/

Z
K

u
du
jKj

;
y

�

�
D

Z
K

�
�xC .1��/u;

y

�

�
du
jKj

: (2-1)

By convexity, .1� �/xC �u lies in K as x; u 2 K. Therefore, by (2-1), Jensen’s inequality, and the
change of variables v D �xC .1��/u,

hx; yi D log ehx;yi � log
�Z
K

eh�xC.1��/u;
y
�
i du
jKj

�
D log

�Z
�xC.1��/K

ehv;
y
�
i .1��/

�ndv
jKj

�
D log

�
1

.1��/n

Z
�xC.1��/K

ephv;
y
p�
i dv
jKj

�
� log

�
1

.1��/n

Z
K

ephv;
y
p�
i dv
jKj

�
D php;K

�
y

p�

�
�n log.1��/:

A supremum over x 2K gives hK.y/� phK;p
� y
p�

�
�n log.1��/. By a change of variable, hK.py/�

phK;p
�y
�

�
�n log.1��/. The lemma now follows from homogeneity of hK . �

Corollary 2.7. Let q 2 .0;1�. For a convex body K � Rn,

lim
p!q

hp;K.y/D hq;K.y/:
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Proof. First, let q 2 .0;1/. Since K is bounded, there exists M > 0 with jxj �M for all x 2 K. In
particular, ephx;yi � e2qM jyj for all x 2K and p� 2q. By dominated convergence [Folland 1999, §2.24],

lim
p!q

Z
K

ephx;yi
dx
jKj
D

Z
K

eqhx;yi
dx
jKj

:

Therefore,

lim
p!q

hp;K.y/D lim
p!q

�
1

p
log

Z
K

ephx;yi
dx
jKj

�
D
1

q
log

Z
K

eqhx;yi
dx
jKj
D hq;K.y/:

Next, consider qD1. By Lemma 2.2(v), hp;K.y/ is monotone increasing in p, with hp;K.y/�hK.y/.
Thus the limit exists with limp!1 hp;K.y/ � hK.y/; equivalently, limp!1Œhp;K.y/� hy; b.K/i� �
hK.y/� hy; b.K/i. By Lemma 2.2(ii), this is

lim
p!1

hp;K�b.K/.y/� hK�b.K/.y/:

On the other hand, as b.K � b.K//D 0, Lemma 2.6 applies:

hK�b.K/.y/D
hK�b.K/.�y/

�
�
hp;K�b.K/.y/

�
�
n

�p
log.1��/;

where we used the homogeneity of hK (here � can be taken as any fixed value in .0; 1/). Letting first
p!1 and then �! 1,

hK�b.K/.y/� lim
p!1

hp;K�b.K/.y/:

In conclusion, hK�b.K/.y/D limp!1 hp;K�b.K/.y/ and using Lemma 2.2(ii) again we obtain hK.y/D
limp!1 hp;K.y/. �

2D. The cube. We explicitly compute the Lp-support functions and Lp-Mahler volumes of the cube
Œ�1; 1�n. This will be useful in proving Lemma 4.2 later.

Lemma 2.8. For p 2 .0;1/,

hp;Œ�1;1�n.y/D
1

p

nX
iD1

log
�

sinh.pyi /
pyi

�
; y 2 Rn:

Proof. By Claim 2.9 below,

hp;Œ�1;1�n.y/D
1

p
log
�Z

Œ�1;1�n
ephx;yi

dx
jŒ�1; 1�nj

�
D
1

p
log
�
2n

nY
iD1

sinh.pyi /
pyi

1

2n

�
D
1

p

nX
iD1

log
�

sinh.pyi /
pyi

�
: �

Claim 2.9. For y 2 Rn, Z
Œ�1;1�n

ehx;yi dx D 2n
nY
iD1

sinh.yi /
yi

:
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Proof. This may be expressed as the product of integralsZ
Œ�1;1�n

ehx;yi dx D
nY
iD1

Z 1

�1

exiyi dxi ;

because ehx;yi D ex1y1 � � � exnyn and Œ�1; 1�n is the product of n copies of Œ�1; 1�. It is therefore enough
to take nD 1 and y 2 R. Suppose first that y ¤ 0. ThenZ 1

�1

exy dx D
�
exy

y

�1
xD�1

D
ey � e�y

y
D
2 sinh.y/

y
:

For y D 0, we have
R 1
�1 e

x�0 dx D 2. By L’Hôpital’s rule also

lim
y!0

2 sinh.y/
y

D lim
y!0

ey � e�y

y
D lim
y!0

ey C e�y

1
D 2;

verifying the formula for all y. �

3. Lp-polarity and Lp-Mahler volumes

In Section 3A, we motivate the definition of the Lp-polar body Kı;p (Definition 1.1) and prove
Theorem 1.2. In Section 3B, we establish the continuity of Kı;p in p (Lemma 3.6) and show that,
for p converging to 0, Kı;p converges either to Rn or a half-space (Proposition 3.7). In Section 3C we
generalize (1-3) to a lower bound of M in terms of Mp , for all p>0, for bodies with b.K/D0 (see (3-10)).
In Sections 3D and 3E calculations for Mp.Œ�1; 1�

n/ and hp;Bn1 are carried out and used to numerically
approximate Mp.B

3
1 /, providing evidence that Mp.Œ�1; 1�

3/ <Mp.B
3
1 / when p <1 (Figure 3).

3A. The Lp-polar body.

3A1. Motivating the definition. The support function of a convex body is convex and 1-homogeneous
and hence its sublevel set

Kı WD fy 2 Rn W hK.y/� 1g

defines a convex body such that M.K/DM1.K/D jKj
R

Rn
e�hK.y/ dy D nŠ jKjjKıj. This is special

for the case p D1. To see why, first recall the definition (1-9), Mp.K/ WD jKj
R

Rn
e�hp;K . Yet despite

the suggestive notation, for p 2 .0;1/, hp;K is not the support function of a convex body since it is
not 1-homogeneous. On the other hand, by Lemma 2.1, hp;K is convex and hence the sublevel set
fhp;K � 1g WD fy 2 Rn W hp;K.y/� 1g is a convex body. Nonetheless, the volume of fhp;K � 1g is not
related to Mp.K/ since despite havingZ

Rn
e�hp;K.x/ dx D

Z 1
�1

e�t jfhp;K � tgj dt I

without 1-homogeneity it is not clear how fhp;K � tg relates to fhp;K � 1g for all t .
In order to properly define the “Lp-polar” body we replace hp;K by a 1-homogeneous cousin. An

equivalent way of defining a convex body L is via its “norm”:

kxkL WD infft > 0 W x 2 tLg: (3-1)
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This is a norm only when L is symmetric, but it is always positively 1-homogeneous and subadditive
with LD fx 2 Rn W kxkL � 1g [Gruber 2007, Theorem 4.3]. Given such a “norm”, the volume of L can
be expressed as an integral over the sphere:

jLj D

Z
fx2RnWkxkL�1g

dx D
Z
f.r;u/2Œ0;1/�@Bn2 WkrukL�1g

rn�1 dr du

D

Z
@Bn2

Z 1=kukL

rD0

rn�1 dr duD
1

n

Z
@Bn2

du
kuknL

: (3-2)

Looking at (3-2) one may be able to recover the “norm” of a convex body by writing its volume as an
integral over @Bn2 . Our aim is to define a convex body Kı;p with volume jKı;pj D 1

nŠ

R
e�hp;K. Starting

from the volume we guess its norm: we need to write
R
e�hp;K as an integral on the sphere matching (3-2),

jKı;pj D
1

nŠ

Z
Rn
e�hp;K.y/ dy D

1

nŠ

Z
@Bn2

Z 1
0

e�hp;K.ru/rn�1 dr du

D
1

n

Z
@Bn2

du��
1

.n�1/Š

R1
0 rn�1e�hp;K.ru/ dr

�� 1
n
�n : (3-3)

This justifies the definition of k � kKı;p via (1-12) and Kı;p as the convex body associated to that “norm”
(Definition 1.1).

3A2. Proof of Theorem 1.2. In this subsection we conclude the proof of Theorem 1.2. We start with two
lemmas.

Lemma 3.1. Let 0 < p < q and recall (1-12). For a compact body K, k � kKı;p � k � kKı;q � hK. � /. In
particular, Kı �Kı;q �Kı;p.

Note the support function of a compact body coincides with the “norm” of the polar body (3-1),

hK. � /D k � kKı ; (3-4)

since y 2Kı if and only if hK.y/� 1 [Gruber 2007, p. 56]. Also, for convex bodies [Rockafellar 1970,
Corollary 13.1.1],

L�K if and only if k � kK � k � kL if and only if hKı. � /� hLı. � /: (3-5)

Lemma 3.2. Let p 2 .0;1�. For a convex body K � Rn, Kı;p is bounded (compact) if and only if
0 2 intK.

In particular, since Kı has nonempty interior [Rockafellar 1970, Corollary 14.6.1], Lemma 3.1 shows
that Kı;p is nonempty and has nonempty interior.

Before proving Lemmas 3.1 and 3.2, let us recall an integral formula regarding 1-homogeneous
functions that will be useful throughout.

Claim 3.3. Let k 2 N. For a 1-homogeneous function f W Rn! R and x 2 Rn with f .x/¤ 0,Z 1
0

rk�1e�f .rx/ dr D
.k� 1/Š

f .x/k
:
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Proof. By homogeneity of f , f .rx/D rf .x/ for all r > 0. Setting �D rf .x/,Z 1
0

rk�1e�f .rx/ dr D
Z 1
0

rk�1e�rf .x/ dr D
Z 1
0

�k�1

f .x/k�1
e��

d�
f .x/

D
1

f .x/k

Z 1
0

�k�1e�� d�D
.k� 1/Š

f .x/k
;

as claimed. �

Proof of Lemma 3.1. Let p � q. By Lemma 2.2(v), hp;K � hq;K . Thus by (1-12),

kxkKı;p D

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.rx/ dr
�� 1

n

�

�
1

.n� 1/Š

Z 1
0

rn�1e�hq;K.rx/ dr
�� 1

n

D kxkKı;q : (3-6)

So, for x2Kı;q, kxkKı;p�kxkKı;q�1; thus x2Kı;p. In addition, by homogeneity of hK , Claim 3.3 gives

1

.n� 1/Š

Z 1
0

rn�1e�hK.rx/ dr D
1

hK.x/n
: (3-7)

Since by Lemma 2.2(v) hp;K � hK , and by (3-4), (3-7) and a computation similar to (3-6) kxkKı;p �
hK.x/D kxkKı , it follows that Kı �Kı;p by (3-5). �

For the proof of Lemma 3.2, it is useful to know that the Lp-polars of Œ�1; 1�n are bounded.

Claim 3.4. For p 2 .0;1�, we have .Œ�1; 1�n/ı;p is bounded.

Proof. Since b.Œ�1; 1�n/D 0, by Lemma 2.6, with �D 1
2

,

hŒ�1;1�n

�
ry

2

�
� hp;Œ�1;1�n.ry/C

n

p
log 2

for all y 2 Rn and r > 0. Thus by (1-12),

kyk.Œ�1;1�n/ı;p D

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;Œ�1;1�n .ry/ dr
�� 1

n

�

�
1

.n� 1/Š

Z 1
0

rn�1e�hŒ�1;1�n.r
y
2
/e

n
p

log2 dr
�� 1

n

D e�
log2
p

�
1

hŒ�1;1�n
�y
2

�n�� 1n D e�
log2
p

2
hŒ�1;1�n.y/D

e�
log2
p

2
kyk.Œ�1;1�n/ı ;

by Claim 3.3, the homogeneity of hŒ�1;1�n , and (3-4). By (3-5),

.Œ�1; 1�n/ı;p � 2e
log2
p .Œ�1; 1�n/ı D 2e

log2
p Bn1 ;

which is bounded. �
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Proof of Lemma 3.2. Assume 0 2 intK and let r > 0 be such that Œ�r; r�n �K. Then,

hp;K.y/D
1

p
log
�Z
K

ephx;yi
dx
jKj

�
�
1

p
log
�Z

Œ�r;r�n
ephx;yi

dx
jKj

�
D
1

p
log
�Z

Œ�r;r�n
ephx;yi

dx
jŒ�r; r�nj

jŒ�r; r�nj

jKj

�
D hp;Œ�r;r�n.y/C

1

p
log

.2r/n

jKj
: (3-8)

Using this and (1-12),

kykKı;p �

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;Œ�r;r�n .�y/�
1
p

log .2r/
n

jKj d�
�� 1

n

D
.2r/

1
p

jKj
1
np

kyk.Œ�r;r�n/ı;p :

Thus, by (3-5),

Kı;p �
jKj

1
np

.2r/
1
p

.Œ�r; r�n/ı;p;

which is bounded by Claim 3.4.
For the converse, we claim that if 0 … intK then Kı;p is unbounded. By Lemma 3.1, Kı �Kı;p so it

is enough to show Kı is unbounded. This is classical [Rockafellar 1970, Corollary 14.5.1]. �

Proof of Theorem 1.2. By Proposition A.1, k � kKı;p is positively 1-homogeneous and subadditive. The
nonemptiness of the interior of Kı;p follows from Lemma 3.1 since Kı has nonempty interior. It is also
closed and convex as the sublevel set of a continuous, convex function. Convexity of k � kKı;p follows
from its 1-homogeneity and subadditivity: for x; y 2 Rn and � 2 Œ0; 1�,

k.1��/xC�ykKı;p � k.1��/xkKı;p Ck�ykKı;p D .1��/kxkKı;p C�kykKı;p :

If K is symmetric, i.e., �K DK, then

hp;K.�y/D
1

p
log

Z
K

ephx;�yi
dx
jKj
D
1

p
log

Z
�K

eph�z;�yi
dz
jKj
D
1

p
log

Z
K

ephz;yi
dz
jKj
D hp;K.y/:

Therefore,

k� xkKı;p D

�Z 1
0

rn�1e�hp;K.�rx/ dr
�� 1

n

D

�Z 1
0

rn�1e�hp;K.rx/ dr
�� 1

n

D kxkKı;p ;

making k � kKı;p a norm, and Kı;p symmetric. Finally, (1-11) follows from (3-3) and the definition
of k � kKı;p . �

Remark 3.5. Ball showed that for a convex function � W Rn! R[f1g and q � 1, setting

kyk�;q WD

�Z 1
0

rq�1e��.ry/ dr
�� 1

q

defines a positively 1-homogeneous, subadditive function that is also a norm when � is even [Ball 1988,
Theorem 5]. Then, fy 2 Rn W kyk�;q � 1g defines a convex body (for even � [Ball 1988, Theorem 5], for
general � [Klartag 2006, Theorem 2.2]). In this notation, (1-12) reads kyknKı;p D .n�1/Š kyk

n
hp;K ;n

. For
a statement and proof of Ball’s theorem, see Proposition A.1 below.
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3B. Continuity of Mp and limiting cases. First, we translate (pointwise) convergence of Lp-support
functions to convergence of the norms of the Lp-polars.

Lemma 3.6. Let 0 < p < q �1. For a compact body K � Rn, Kı;p �Kı;q and

lim
p!q
kxkKı;p D kxkKı;q :

In particular,
T
0<p<q K

ı;p DKı;q .

Proof. By Corollary 2.7, hp;K increases to hq;K as p increases to q. Therefore, one may use the monotone
convergence theorem [Folland 1999, §2.14] to take the limit under the integral in the definition of hp;K ,

lim
p!1

kxkKı;p D lim
p!1

�
1

.n� 1/Š

Z 1
rD0

rn�1e�hp;K.rx/ dr
�� 1

n

D

�
1

.n� 1/Š

Z 1
rD0

lim
p!q

.rn�1e�hp;K.rx// dr
�� 1

n

D

�
1

.n� 1/Š

Z 1
rD0

rn�1e�hq;K.rx/ dr
�� 1

n

D kxkKı;q : �

3B1. The cases p D 0 and p D1. By Lemma 3.6, as p!1, Kı;p converges to the polar body Kı

in (1-1). In this subsection we focus on the other extreme case p D 0 and show that in the limit p! 0,
Kı;p converges either to Rn or to a half-space, depending on whether b.K/D 0 or not.

Proposition 3.7. For a compact body K � Rn,

lim
p!0
kykKı;p D hy; b.K/i

and [
p>0

Kı;p D fy 2 Rn W hy; b.K/i � 1g:

Proposition 3.7 and Lemma 3.6 imply the following inclusion for all Kı;p.

Corollary 3.8. For a compact body K � Rn, Kı;p � fy 2 Rn W hy; b.K/i � 1g for all p 2 .0;1�.

The statement of Corollary 3.8 is trivial when p D 1 because b.K/ 2 K; thus, by the definition
of the polar, hy; b.K/i � 1 for all y 2Kı. The proof of Proposition 3.7 follows from the fact that the
Lp-support functions converge to a linear function as p! 0.

Lemma 3.9. For a compact body K � Rn and y 2 Rn,

lim
p!0

hp;K.y/D hy; b.K/i:

Proof. Expanding the exponential,

hp;K.y/D
1

p
log

Z
K

ephx;yi
dx
jKj

D
1

p
log
�Z
K

1Cphx; yiCO.p2/
dx
jKj

�
D
1

p
log.1Cphy; b.K/iCO.p2//:
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By L’Hôpital’s rule,

lim
p!0

hp;K.y/D lim
p!0

log.1Cphy; b.K/iCO.p2//
p

D lim
p!0

hy; b.K/iCO.p/

1Cphy; b.K/iCO.p2/
D hy; b.K/i:

Alternative proof :

lim
p!0

hp;K.y/D lim
p!0

1

p
log

Z
K

ephx;yi
dx
jKj

D lim
p!0

R
Khx; yie

phx;yi dx
jKjR

K e
phx;yi dx

jKj

D

Z
K

hx; yi
dx
jKj
D hy; b.K/i;

again by L’Hôpital’s rule. �

Proof of Proposition 3.7. For y 2Rn with hy; b.K/i ¤ 0, by the monotone convergence theorem [Folland
1999, §2.14] and Lemma 3.9,

lim
p!0
kykKı;p D lim

p!0

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ry/ dr
�� 1

n

D

�
1

.n� 1/Š

Z 1
0

rn�1e�rhy;b.K/i dr
�� 1

n

D hy; b.K/i;

where Claim 3.3 was used on the 1-homogeneous y 7! hy; b.K/i. If hy; b.K/i D 0, similarly,

lim
p!0
kykKı;p D

�
1

.n� 1/Š

Z 1
0

rn�1 dr
�� 1

n

D 0D hy; b.K/i: �

Proposition 3.7 motivates the following definition.

Definition 3.10. For a compact body K � Rn, let

Kı;0 WD fy 2 Rn W hy; b.K/i � 1g:

For a set A� Rn, denote by
coA

its convex hull defined as the smallest convex set in Rn containing A.

Example 3.11. The polar body of the standard 2-dimensional simplex �2 is given by the intersection of
two half-spaces

�ı2 D f.x; y/ 2 R2 W x � 1 and y � 1g:

That is because �2D cof.0; 0/; .1; 0/; .0; 1/g; thus .x; y/ 2�ı if and only if xD h.x; y/; .1; 0/i � 1 and
y D h.x; y/; .0; 1/i � 1. In addition, j�2j D 1

2
; thus the x-coordinate of the barycenter of �2 is

1

j�2j

Z
�2

x dx dy D 2
Z 1

xD0

Z 1�x

yD0

x dy dx D 2
Z 1

0

x.1� x/ dx D 1

3
:

Similarly, 1
j�2j

R
�2
y dy D 1

3
, and hence b.�2/D

�
1
3
; 1
3

�
. As a result,

�ı;0 D f.x; y/ 2 R2 W xCy � 3g:
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By Lemma 3.6, fx � 1g\ fy � 1g � .�2/ı;p � fxCy � 3g for all p � 0. By direct calculation,

hp;�2.x; y/D
1

p
log
� epx�1

px
�
epy�1
py

p x�y
2

�
;

from which we get Figure 2 in the Introduction. By Lemma 2.2(ii),

hp;�2�b.�2/.y/D hp;�2 � h.x; y/; b.�2/i D
1

p
log
� epx�1

px
�
epy�1
py

p x�y
2

�
�
x

3
�
y

3
;

leading to Figure 1, right, in the Introduction.

3C. Inequalities between Mp and M. By Lemma 2.2(v), hp;K � hK for all p; thus

M.K/�Mp.K/: (3-9)

In view of Lemma 2.6, a reverse inequality holds under the extra assumption of b.K/D 0.

Lemma 3.12. Let p 2 .0;1/. For a convex body K � Rn with b.K/D 0,�
p

.1Cp/1C
1
p

�n
Mp.K/�M.K/:

Hence, limp!1Mp.K/DM.K/.

Remark 3.13. Lemma 3.12 generalizes the Bergman kernel inequality (1-3) (recall (1-23)).

Proof. Assume b.K/D 0. Lemma 2.6 applies to give

M.K/D jKj

Z
Rn
e�hK.y/ dy � .1��/

n
p jKj

Z
Rn
e�hp;K.

y
�
/ dy

D .1��/
n
p �njKj

Z
Rn
e�hp;K.y/ dy D ..1��/

1
p �/nMp.K/: (3-10)

It remains to maximize f .�/ WD .1��/1=p�. The derivative

f 0.�/D�
1

p
.1��/

1
p
�1�C .1��/

1
p D .1��/

1
p
�1

�
�
�

p
C 1��

�
(3-11)

is positive for � 2
�
0; p
pC1

�
and nonpositive for � 2

� p
pC1

; 1
�
, so plugging �D p

pC1
in (3-10) proves the

claim.
Finally, note

lim
p!1

p

.1Cp/1C
1
p

D lim
p!1

�
1

.1Cp/
1
p

�
1

.1Cp/1C
1
p

�
D 1I

thus limp!1Mp.K/DM.K/. �

Remark 3.14. For convex K � Rn with b.K/D 0, and any � 2 .0; 1/,

hK.y/D

�
1

.n� 1/Š

Z 1
0

rn�1e�hK.ry/ dr
�� 1

n

�

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.
ry
�
/C n

p
log.1��/ dr

�� 1
n

D
kykKı;p

.1��/
1
p �
;
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where we used Lemma 2.6 and Claim 3.3. So,

Kı �Kı;p �
1

.1��/
1
p �
Kı �

.1Cp/1C
1
p

p
Kı

(optimizing over � as in the proof of Lemma 3.12). This yields inclusions independent of K or the
dimension. Thus for convex bodies with b.K/D 0, all the Lp-polars Kı;p are “isomorphic” to (each
other and to) the classical polar body Kı. They are also “isomorphic” to the sublevel sets of h1;K ; see
[Klartag and Milman 2005, Lemma 2.2; 2012, p. 16]. Furthermore, the latter (at least in the symmetric
case) are “isomorphic” to the Lutwak–Zhang centroid bodies from Remark 1.7 [Klartag and Milman
2012, Lemma 2.3]. Nonetheless, “isomorphic” in this context means that inclusions in both directions
exist by dilations independent of dimension. Consequently, such equivalences are not typically helpful
when one is concerned with sharp lower bounds as in the Mahler conjectures. Given Lemma 3.12 and
the remarks in the Introduction, we believe that our Lp-polars could be helpful in the pursuit of sharp
bounds, e.g., as in the Mahler conjectures.

3D. The cube. The next lemma computes the Lp-Mahler volume of the cube.

Lemma 3.15. For p 2 .0;1/,

Mp.Œ�1; 1�
n/D 4n

�
1

p

Z 1
0

�
y

sinh.y/

�1
p

dy
�n
:

Note that
Mp.Œ�1; 1�

n/D .Mp.Œ�1; 1�//
n;

in agreement with Remark 2.3.

Proof. By Lemma 2.8,

Mp.Œ�1; 1�
n/D jŒ�1; 1�nj

Z
Rn
e�hp;Œ�1;1�n .y/ dy D 2n

Z
Rn

nY
iD1

�
pyi

sinh.pyi /

�1
p

dy

D 2n
nY
iD1

Z
R

�
pyi

sinh.pyi /

�1
p

dy D 2n
�Z

R

�
py

sinh.py/

�1
p

dy
�n
:

The claim follows from the evenness of py=sinh.py/ and the change of variables z D py. �

In the notation of Section 1A, Błocki [2014, (7)]. obtained

jŒ�1; 1�nj2KTŒ�1;1�n .0; 0/D
�
�
4

�n
:

This agrees with our next corollary as M1.K/D .4�/
njKj2KTK .0; 0/ by (1-4).

Corollary 3.16. M1.Œ�1; 1�
n/D �2n.

Proof. Setting p D 1 in Lemma 3.15,

M1.Œ�1; 1�
n/D

�
2

Z
R

y

sinh.y/
dy
�n
D

�
4

Z 1
0

y

sinh.y/
dy
�n
;
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.Œ
�
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�/

Figure 4. Mp.Œ�1; 1�/ for p 2 .0; 100/ compared to M.Œ�1; 1�/D 4.

because y= sinh.y/ is even. Using .1� x/�1 D
P1
kD0 x

k for 0 < x < 1, expand the integrand

y

sinh.y/
D

2y

ey � e�y
D

2ye�y

1� e�2y
D 2ye�y

1X
kD0

e�2ky D

1X
kD0

2ye�.2kC1/y :

Therefore, by integration by partsZ 1
0

y

sinh.y/
dy D

1X
kD0

Z 1
0

2ye�.2kC1/y dy D
1X
kD0

2

2kC 1

Z 1
0

e�.2kC1/y dy

D 2
X
kD0

1

.2kC 1/2
D 2

� 1X
kD1

1

k2
�

1X
kD1

1

.2k/2

�

D 2

� 1X
kD1

1

k2
�
1

4

1X
kD1

1

k2

�
D
3

2

1X
kD0

1

k2
D
3

2

�2

6
D
�2

4
;

and hence

M1.Œ�1; 1�
n/D

�
4

Z 1
0

y

sinh.y/
dy
�n
D �2n: �

A numerical approximation of Mp.Œ�1; 1�/ gives Figure 4.

3E. Cube, diamond, and uniqueness of minimizers. Let Bn1 D Œ�1; 1�
n and Bn1 D .B

n
1/
ı be the cube

and diamond (recall (1-13)). The Lp-support function of the cube was computed in Lemma 2.8 and its
Lp-Mahler volume is given by Lemma 3.15. Lemma 3.17 below is the considerably harder computation
of the Lp-support function of the diamond.

Lemmas 3.15 and 3.17 allow the comparison of the Lp-Mahler volumes of the cube and the diamond.
We carried this out numerically for nD 3 and those computations lead to Figure 3 from the Introduction.
As discussed in Section 1C, this provides evidence that the cube is the unique minimizer for Conjecture 1.3.

Lemma 3.17. For p 2 .0;1/,

hp;Bn1 .y/D
1

p
log
�
nŠ

pn

nX
jD1

yn�2j .epyj C .�1/ne�pyj /

.y2j �y
2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/

�
: (3-12)
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The special case p D 1 of (3-12) was stated by Błocki [2015, pp. 96–97] in terms of Bergman kernels
without proof.

For the proof of Lemma 3.17 we require the following claim.

Claim 3.18. For n� 2, and distinct y1; : : : ; yn 2 R,

nX
jD1

ykj

.yj �y1/ � � � .yj �yj�1/.yj �yjC1/ � � � .yj �yn/
D

�
0; 0� k < n� 1;
1; k D n� 1:

Proof. Consider the rational function

f W C! C[f1g; z 7!
zk

.z�y2/ � � � .z�yn/
C

nX
jD2

ykj

.yj � z/.yj �y2/ � � � .yj �yn/
;

i.e., think of y1 as a complex variable.
The claim is that f is a polynomial. It is enough to show that its poles at y2; : : : ; yn are removable

singularities. By symmetry, it is enough to do it for y2. There are only two terms involving .z�y2/ in
the denominator. Write their sum as

zk

.z�y2/ � � �.z�yn/
C

yk2
.y2�z/ � � �.y2�yn/

D

�
zk

.z�y3/ � � �.z�yn/
�

yk2
.y2�y3/ � � �.y2�yn/

��1 1

z�y2
:

We claim the numerator can be written in the form .z�y2/p.z/ for some polynomial p. Indeed,

zk

.z�y3/ � � � .z�yn/
�

yk2
.y2�y3/ � � � .y2�yn/

D
zk

.z�y3/ � � � .z�yn/
�

yk2
.z�y3/ � � � .z�yn/

C
yk2

.z�y3/ � � � .z�yn/
�

yk2
.y2�y3/ � � � .y2�yn/

D
.z�y2/.z

k�1C � � �Cyk�12 /

.z�y3/ � � � .z�yn/
�yk2

.z�y3/ � � � .z�yn/� .y2�y3/ � � � .y2�yn/

.z�y3/ � � � .z�yn/.y2�y3/ � � � .y2�yn/

D
.z�y2/.z

k�1C � � �Cyk�12 /

.z�y3/ � � � .z�yn/
�yk2

.z�y2/p.z/

.z�y3/ � � � .z�yn/.y2�y3/ � � � .y2�yn/

D
zk�1C � � �Cyk�12

.z�y3/ � � � .z�yn/
�yk2

p.z/

.z�y3/ � � � .z�yn/.y2�y3/ � � � .y2�yn/
;

where p.z/ is a polynomial such that

.z�y3/ � � � .z�yn/� .y2�y3/ � � � .y2�yn/D .z�y2/p.z/;

since the left-hand side is a polynomial that vanishes at y2. In sum, f is a polynomial. In addition,

lim
z!1

f .z/D

�
0; k < n� 1;

1; k D n� 1;

proving, by Liouville’s theorem [Ahlfors 1978, p. 122], that f is constant (as a bounded, entire function)
and equal to 0 when 0 < k < n� 1, or 1 when k D n� 1. �
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Proof of Lemma 3.17. Since Bn1 is the union of 2n simplices of volume 1=.nŠ/, jBn1 j D 2
n=.nŠ/. In

addition, by splitting the integral into 2n integrals over the simplex,

e
php;Bn

1
. y
p
/
D

Z
Bn1

ehx;yi
dx
jBn1 j

D nŠ

Z
�n

cosh.x1y1/ � � � cosh.xnyn/ dx: (3-13)

The rest of the proof is by induction on n.
For nD 2, by (3-13),

e
ph
p;B2

1
. y
p
/
D 2

Z
�2

cosh.x1y1/ cosh.x2y2/ dx1 dx2

D 2

Z 1

0

cosh.x1y1/
Z 1�x1

0

cosh.x2y2/ dx2 dx1 D
Z 1

0

cosh.x1y1/
sinh..1� x1/y2/

y2
dx1

D
1

y2

�
y1 sinh.y1x1/ sinh..1� x1/y2/Cy2 cosh.x1y1/ cosh..1� x1/y2/

y21 �y
2
2

�1
x1D0

D
cosh.y1/� cosh.y2/

y21 �y
2
2

D
cosh.y1/
y21 �y

2
2

C
cosh.y2/
y22 �y

2
1

;

whereZ
cosh.axC c/ sinh.bxC d/ dx D

a sinh.axC c/ sinh.bxC d/� b cosh.axC c/ cosh.bxC d/
a2� b2

CC

was used.
For n� 2, by (3-13),

e
ph
p;B

nC1
1

. y
p
/

.nC 1/Š
D

Z
�nC1

cosh.x1y1/ � � � cosh.xnC1ynC1/ dx

D

Z 1

xnC1D0

cosh.xnC1ynC1/
Z
.1�xnC1/�n

cosh.x1y1/ � � � cosh.xnyn/ dx

D

Z 1

xnC1D0

cosh.xnC1ynC1/
e
php;Bn

1
.
.1�xnC1/y

p
/

nŠ
.1� xnC1/

n dxnC1 (3-14)

because by (3-13) and changing variables,Z
.1�xnC1/�n

cosh.x1y1/ � � � cosh.xnyn/ dx

D

Z
�n

cos..1� xnC1/z1y1/ � � � cosh..1� xnC1/znyn/.1� xnC1/n dz

D
e
php;Bn

1
.
.1�xnC1/y

p
/

nŠ
.1� xnC1/

n:

By induction,

e
php;Bn

1
.
.1�xnC1/y

p
/
D
nŠ

pn

nX
jD1

� .1�xnC1/yj
p

�n�2
.e.1�xnC1/yj C .�1/ne�.1�xnC1/yj /�1�xnC1

p

�2.n�1/
.y2j �y

2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/

D
nŠ

.1� xnC1/n

nX
jD1

yn�2j .e.1�xnC1/yj C .�1/ne�.1�xnC1/yj /

.y2j �y
2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/
: (3-15)
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Therefore, by (3-14) and (3-15),

e
ph
p;B

nC1
1

. y
p
/

.nC 1/Š
D

nX
jD1

yn�2j

R 1
0 cosh.xnC1ynC1/.e.1�xnC1/yj C .�1/ne�.1�xnC1/yj / dxnC1
.y2j �y

2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/

: (3-16)

To complete the proof, computeZ 1

0

cosh.xnC1ynC1/e.1�xnC1/yj dxnC1 D eyj
Z 1

0

cosh.xnC1ynC1/e�xnC1yj dxnC1

D
1

2
eyj

Z 1

0

exnC1.ynC1�yj /C e�xnC1.ynC1Cyj / dxnC1

D
1

2
eyj

�
eynC1�yj � 1

ynC1�yj
�
e�.ynC1Cyj /� 1

ynC1Cyj

�
D
1

2

�
eynC1 � eyj

ynC1�yj
�
e�ynC1 � eyj

ynC1Cyj

�
D
yj e

yj �yj cosh.ynC1/�ynC1 sinh.ynC1/
y2j �y

2
nC1

; (3-17)

and hence, replacing yj by �yj in (3-17),Z 1

0

cosh.xnC1ynC1/e�.1�xnC1/yj dxnC1 D
�yj e

�yj Cyj cosh.ynC1/�ynC1 sinh.ynC1/
y2j �y

2
nC1

: (3-18)

Therefore, by (3-17) and (3-18),Z 1

0

cosh.xnC1/.e.1�xnC1yj /C .�1/ne�.1�xnC1/yj / dxnC1

D
yj e

yj C .�1/nC1yj e
yj

y2j �y
2
nC1

�
.1� .�1/n/yj cosh.ynC1/

y2j �y
2
nC1

�
.1C .�1/n/ynC1 sinh.ynC1/

y2j �y
2
nC1

: (3-19)

By (3-16), (3-19) and Claim 3.18,

1

.nC1/Š
e
ph
p;B

nC1
1

. y
p
/
D

nX
jD1

yn�2j

R 1
0 cosh.xnC1ynC1/.e.1�xnC1/yjC.�1/ne�.1�xnC1/yj /dxnC1

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/

D

nX
jD1

yn�1j .eyjC.�1/nC1e�yj /

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

�.1�.�1/n/

nX
jD1

yn�1j cosh.ynC1/

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

�.1C.�1/n/

nX
jD1

yn�2j ynC1 sinh.ynC1/

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/
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D

nX
jD1

yn�1j .eyjC.�1/nC1e�yj /

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

C.1�.�1/n/cosh.ynC1/
yn�1nC1

.y2nC1�y
2
1/ � � �.y

2
nC1�y

2
n/

C.1C.�1/n/sinh.ynC1/
yn�1nC1

.y2nC1�y
2
1/ � � �.y

2
nC1�y

2
n/

D

nX
jD1

yn�1j .eyjC.�1/nC1e�yj /

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

C.eyC.�1/nC1e�y/
yn�1nC1

.y2nC1�y
2
1/ � � �.y

2
nC1�y

2
n/
;

as desired. �

Therefore, in dimension nD 3, for distinct values of x; y and z,

hp;B31
.x; y; z/D

1

p
log
�
6

p3

�
x sinh.px/

.x2�y2/.x2� z2/
C

y sinh.py/
.y2� x2/.y2� z2/

C
z sinh.pz/

.z2� x2/.z2�y2/

��
;

which smoothly extends to R3. In particular,

hp;B31
.x; y; z/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

1

p
log
�
6

p3

�
p cosh.px/
2.x2� z2/

�
x2C z2

.x2� z2/2
sinh.px/
2x

C
z sinh.pz/
.x2� z2/2

��
; x D y ¤ z;

1

p
log
�
6

p3

�
p cosh.px/
2.x2�y2/

�
x2Cy2

.x2�y2/2
sinh.px/
2x

C
y sinh.py/
.x2�y2/2

��
; x D z ¤ y;

1

p
log
�
6

p3

�
p cosh.py/
2.y2� x2/

�
y2C x2

.y2� x2/2
sinh.py/
2y

C
x sinh.px/
.y2� x2/2

��
; y D z ¤ x;

1

p
log
�
6

p3

�
xp cosh.px/� sinh.px/C x2p2 sinh.px/

8x3

��
; x D y D z ¤ 0;

0; x D y D z D 0:

4. The Lp-Santaló point

In this section, we prove Proposition 1.5.
First, let us elucidate the similarities and differences from the case p D1. The Santaló point [1949,

(2.3)] of K is the unique point x1;K 2 intK for which b..K � x1;K/ı/ D 0. This is equivalent to
b.hK�x1;K /D 0 since

b.hK/D .nC 1/b.K
ı/: (4-1)

However, since hp;K is not 1-homogeneous for p <1, it is not in general true that b.Kı;p/ vanishes
when b.hp;K/ does. To verify (4-1), first compute V.hK/. Since hK is 1-homogeneous and hK D k �kKı ,
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by Claim 3.3 and (3-2),

V.hK/D

Z
Rn
e�hK.y/ dy D

Z
@Bn2

Z 1
0

rn�1e�hK.ru/ dr duD .n� 1/Š
Z
@Bn2

du
hK.u/n

D nŠ jKıj: (4-2)

Another way to see (4-2) is to start with (1-9) and (1-11), i.e.,

V.hp;K/D nŠ jK
ı;p
j; (4-3)

and take p!1.
For the barycenters, compute in polar coordinates,

b.Kı;p/D
1

jKı;pj

Z
fkykKı;p�1g

y dy

D
1

jKı;pj

Z
f.r;u/2.0;1/�@Bn2 WkrukKı;p�1g

rurn�1 dr du

D
1

jKı;pj

Z
@Bn2

Z 1=kukKı;p

rD0

rnu dr du

D
1

jKı;pj

1

nC 1

Z
@Bn2

u

kuknC1Kı;p

du

D
1

nC 1

1

jKı;pj

Z
@Bn2

u

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ru/ dr
�nC1

n

du: (4-4)

In addition, by (4-3),

b.hp;K/D
1

V.hp;K/

Z
Rn
ye�hp;K.y/ dy D

1

jKı;pj

1

nŠ

Z
@Bn2

u

Z 1
0

rne�hp;K.ru/ dr du: (4-5)

For p D1, since h1;K D hK is homogeneous. Claim 3.3 gives�
1

.n�1/Š

Z 1
0

rn�1e�hK.ru/ dr
�nC1

n

D

�
1

hK.u/n

�nC1
n

D
1

hK.u/nC1
D
1

nŠ

Z 1
0

rne�hp;K.ru/ dr; (4-6)

so (4-1) follows from (4-4)–(4-6), but without homogeneity such a relation does not hold.

Remark 4.1. While (4-1) does not hold for all p, one can show a weaker inequality of the form�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ru/ dr
�nC1

n

� .nC 1/
ke�hp;Kk

1
n
1

.nŠ/
1
n

1

nŠ

Z 1
0

rne�hp;K.ru/ dr;

by using [Brazitikos et al. 2014, Lemma 2.2.4].

The proof of Proposition 1.5 is based on three key lemmas, proved in Sections 4A and 4B.

Lemma 4.2. Let p 2 .0;1�. For a convex body K � Rn, Mp.K � x/ <1 if and only if x 2 intK.

Lemma 4.3. Let p 2 .0;1�. For a convex body K � Rn and x0 2 @K,

lim
x!x0

Mp.K � x/D1:
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Lemma 4.4. Let p 2 .0;1�. For a convex body K � Rn, x 7! Mp.K � x/, x 2 intK, is twice
differentiable and strictly convex with rxMp.K � x/DMp.K � x/b.hp;K�x/.

Proof of Proposition 1.5. Since, by Lemmas 4.2 and 4.4, x 7!Mp.K � x/ is strictly convex in intK and
blows up on Rn n intK, it must have a unique minimum at some xp;K 2 intK. This is a critical point and
therefore, by Lemma 4.4,

0DrxMp.K � xp;K/DMp.K � xp;K/b.hp;K�xp;K /:

Thus b.hp;K�xp;K /D 0. �

We call xp;K the Lp-Santaló point of K. For future reference we record its characterization:

Corollary 4.5. Let p 2 .0;1�. For a convex body K � Rn, there exists a unique xp;K 2 Rn such that
b.hp;K�xp;K /D 0.

It is not clear to us how to directly prove Corollary 4.5 if not by Proposition 1.5. In general, for a
convex function � W Rn! R[f1g with b.�/ 2 Rn, it is not hard to see that there is an x 2 Rn such that
under the translation

Tx W R
n
! Rn; y 7! y � x;

the pull-back of �
T �x �.y/ WD �.y � x/

has its barycenter at the origin, b.T �x �/D 0. This is because

b.T �x �/D

Z
Rn
ye�T

�
x �.y/

dy
V.�/

D

Z
Rn
ye��.y�x/

dy
V.�/

D

Z
Rn
.yC x/e��.y/

dy
V.�/

D b.�/C x;

so it is enough to choose x D �b.�/. However, functional translation of hp;K does not correspond
to the translation of the body. That is, in general, T �x hp;K ¤ hp;K�x . In fact, by Lemma 2.2(ii),
hp;K�x.y/D hp;K.y/� hy; xi, and hence

b.hp;K�x/D

Z
Rn
ye�hp;K�x.y/

dy
V.hp;K�x/

D

Z
Rn
ye�hp;K.y/ehy;xi

dy
V.hp;K�x/

;

from which is not clear what x should be so that b.hp;K�x/D 0.

Remark 4.6. While we discuss lack of translation-invariance of some quantities, it will be helpful to note
how Mp transforms under the GL.n;R/-action. For p > 0, a convex body K � Rn, and A 2 GL.n;R/,
by Lemma 2.2(iii),

kxk.AK/ı;p WD

�Z 1
0

rn�1e�hp;AK.rx/ dr
�� 1

n

D

�Z 1
0

rn�1e�hp;K.rA
T x/ dr

�� 1
n

D kAT xkKı;p I

hence
.AK/ı;p D .A�1/TKı;p: (4-7)

In sum:

Lemma 4.7. Let p 2 .0;1�. For a compact body K � Rn and A 2 GL.n;R/, Mp.AK/DMp.K/.
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This GL.n;R/-invariance will be useful in several places, e.g., in the proof of Claim 4.8 below and in
proving Theorem 1.6 when we deal with Steiner symmetrization.

4A. Finiteness of Mp. Lemma 4.2 follows from the following two claims.

Claim 4.8. Let p 2 .0;1�. For a convex body K � Rn with 0 2 intK, and r > 0 such that Œ�r; r�n �K,

Mp.K/�
jKj1C

1
p

.2r/nC
n
p

Mp.Œ�1; 1�
n/:

In particular, Mp.K/ <1.

Proof. Since 0 2 intK, there is r > 0 such that Œ�r; r�n � intK. By (3-8),

Mp.K/ WD jKj

Z
Rn
e�hp;K.y/ dy

� jKj

Z
Rn
e�hp;Œ�r;r�n .y/

jKj
1
p

.2r/
n
p

dy D
jKj1C

1
p

.2r/nC
n
p

.2r/n
Z

Rn
e�hp;Œ�r;r�n .y/ dy

D
jKj1C

1
p

.2r/nC
n
p

Mp.Œ�r; r�
n/D

jKj1C
1
p

.2r/nC
n
p

Mp.Œ�1; 1�
n/;

where we used Lemma 4.7. By Lemma 3.12, since b.Œ�1; 1�n/D 0,

Mp.Œ�1; 1�
n/�

�
.1Cp/1C

1
p

p

�n
M.Œ�1; 1�n/D

�
.1Cp/1C

1
p

p

�n
4n;

concluding the proof. �

Claim 4.9. Let p 2 .0;1�. For a convex body K � Rn with 0 … intK, Mp.K/D1.

Proof. By convexity of K, since 0 … intK, there is a hyperplane through the origin

u? WD fx 2 Rn W hx; ui D 0g

such that K � fx 2 Rn W hx; ui � 0g. In particular, hx;�ui � 0 for all x 2K, and hence

c WD

Z
K

ephx;�ui
dx
jKj

< 1:

If it was exactly equal to 1, then hx; ui D 0 for all x 2 K, that is, K � u?, which is a contradiction
because K has nonempty interior. Let U � @Bn2 be an open neighborhood of �u such thatZ

K

ephx;vi
dx
jKj
�
1C c

2
< 1 for all v 2 U:

For r � 1 and v 2 U , x 2K, since phx; vi< 0, we have rphx; vi � phx; vi. ThusZ
K

erphx;vi
dx
jKj
�

Z
K

ephx;vi
dx
jKj
�
1C c

2
< 1; v 2 U; r � 1: (4-8)
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In polar coordinates, by (4-8),

Mp.K/D jKj

Z
Rn
e�hp;K.y/ dy D jKj

Z
Rn

dy�R
K e

phx;yi 1
jKj

dx
� 1
p

D jKj

Z
@Bn2

Z 1
0

rn�1 dr dv�R
K e

rphx;vi 1
jKj

dx
� 1
p

� jKj

Z
U

Z 1
1

rn�1 dr dv�R
K e

rphx;vi 1
jKj

dx
� 1
p

� jKj

�
1C c

2

�� 1
p
Z
U

Z 1
1

rn�1 dr D1: �

Proof of Lemma 4.3. As hp;K � hK (Lemma 2.2(v)), j.K � x/ı;pj � j.K � x/ıj for all x 2 Rn and
p 2 .0;1�. It is therefore enough to prove the claim for p D1. By Lemma 4.2, M.K � x/D1 for
x … intK. Hence, we may further restrict our attention to x 2 intK.

By rotating K we may take �en as the outward-pointing unit normal of K at x0. For x 2 intK, let
"D ".x/ > 0 such that K�x � fxn ��"g. Since K is bounded, there exists M >0 such that K �MBn2 .
Now, .K � x/ı contains the cone

C WD

�
.�; yn/ 2 Rn�1 �R W j�j �

1C "yn

M
; yn 2 Œ0;�"

�1�

�
� .K � x/ı:

The volume of the cone is given by

jC j D

Z 0

� 1
"

Z
. 1C"yn

M
/Bn�12

d� dyn D
jBn�12 j

M n�1

Z 0

� 1
"

.1C "yn/
n�1 dyn D

jBn�12 j

nM n�1"
:

As x! x0, "D ".x0/! 0C; hence j.K � x/ıj !1. �

4B. Smoothness and convexity of Mp.

Proof of Lemma 4.4. Denote by e1; : : : ; en the standard basis of Rn. For x 2 intK there is r > 0 such
that xC 2rBn2 � intK. Using Lemma 2.2(ii), for 0 < " < r ,

nŠ j.K � x� "ei /
ı;pj �nŠ j.K � x/ı;pj

"
D
1

"

Z
Rn
e�hp;K�x�"ei .y/� e�hp;K�x.y/ dy

D
1

"

Z
Rn
e�hp;K�x.y/eh"ei ;yi� e�hp;K�x.y/ dy

D

Z
Rn

e"yi � 1

"
e�hp;K�x.y/ dy: (4-9)

For 0 < " < r ,ˇ̌̌̌
e"yi � 1

"

ˇ̌̌̌
�

1X
mD1

"m�1jyi j
m

mŠ
�

1X
mD1

rm�1jyi j
m

mŠ
D
1

r

1X
mD1

rmjyi j
m

mŠ
�
1

r
erjyi jI
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hence ˇ̌̌̌
e"yi � 1

"
e�hp;K�x.y/

ˇ̌̌̌
�
1

r
erjyi je�hp;K�x.y/;

and Z
Rn

1

r
erjyi je�hp;K�x.y/ D

1

r

Z
Rn�1

�Z 1
0

eryi C

Z 0

�1

e�ryi
�
e�hp;K�x.y/ dy

�
1

r

Z
Rn
eryi e�hp;K�x.y/ dyC

1

r

Z
Rn
e�ryi e�hp;K�x.y/ dy

D
1

r

�
nŠ j.K � x� rei /

ı;p
jCnŠ j.K � xC rei /

ı;p
j
�

is finite by Lemma 4.2 as x C rei and x � rei are both in the interior of K. Therefore, dominated
convergence applies to (4-9):

lim
"!0

nŠ j.K � x� "ei /
ı;pj �nŠ j.K � x/ı;pj

"
D lim
"!0

Z
Rn

e"yi � 1

"
e�hp;K�x.y/ dy

D

Z
Rn

lim
"!0

e"yi � 1

"
e�hp;K�x.y/ dy

D

Z
Rn
yie
�hp;K�x.y/ dy:

That is, x 7! j.K � x/ıj, or equivalently x 7!Mp.K � x/, is differentiable in intK with gradient

rxMp.K � x/D jKj

Z
Rn
ye�hp;K�x.y/ dy DMp.K � x/b.hp;Kx /;

as

b.hp;K�x/D

Z
Rn
ye�hp;K�x.y/

dy
V.hp;K�x/

D
1

nŠ j.K � x/ı;pj

Z
Rn
ye�hp;K�x.y/ dy:

Similarly, one can show that the second-order derivatives exist and are continuous. Differentiating
under the integral sign,

@2

@xi @xj
Mp.K � x/D jKj

Z
Rn
yiyj e

�hp;K�x.y/ dy:

Therefore, for v 2 Rn,

vTr2xMp.K � x/v D jKj

nX
i;jD1

Z
Rn
vivjyiyj e

�hp;K�x.y/ dy D jKj
Z

Rn
hv; yi2e�hp;K�x.y/ dy � 0;

with equality if and only if hy; vi D 0 for almost all y, or equivalently v D 0, proving strict convexity. �

5. The upper bound on Mp

This section is dedicated to proving the Lp-Santaló theorem, Theorem 1.6. As expected, we use
symmetrization. However, there are a number of intricate details that need to be carefully dealt with, since
Lp-polarity is a highly nonlocal operation compared to classical polarity. On the surface of it though,



Lp -POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT 2213

as in the case p D1, the key estimate we need to prove is the monotonicity of volume under Steiner
symmetrization:

Proposition 5.1. Let p 2 .0;1�. For a symmetric convex body K � Rn and u 2 @Bn2 , let �uK be the
Steiner symmetral of K (Definition 5.5). Then, j.�uK/ı;pj � jKı;pj.

5A. Outline of the proof of Proposition 5.1. Proposition 5.1 is proved in Section 5G. For n D 1,
�uK DK if K D�K. Thus, take n > 1 for the rest of the section. We follow a classical proof for the
case p D1 [Gruber 2007, Proposition 9.2; Artstein-Avidan et al. 2015, Proposition 1.1.15] and make
the appropriate modifications to p 2 .0;1/. This involves comparing the volume of the “slices” of the
polar body perpendicular to the vector used for Steiner symmetrization. For a convex body K � Rn, and
xn 2 R, denote by

K.xn/ WD f� 2 Rn�1 W .�; xn/ 2Kg (5-1)

the slice of K at height xn. By Tonelli’s theorem [Folland 1999, §2.37], the volume of a convex body
may be expressed as an integral of the volume of its slices,

jKj D

Z
f.�;xn/2Rn�1�RW�2K.xn/g

d� dxn D
Z 1
�1

jK.xn/j dxn: (5-2)

In view of (5-2), Proposition 5.1 follows from the next lemma. Denote by e1; : : : ; en the standard basis
of Rn.

Lemma 5.2. Let p 2 .0;1�. For a symmetric convex body K � Rn, j.�enK/
ı;p.xn/j � jK

ı;p.xn/j for
all xn 2 R.

Lemma 5.2, in turn, follows from the Brunn–Minkowski inequality and the following monotonicity
property of the average of antipodal slices under Steiner symmetrization.

Lemma 5.3. Let p 2 .0;1�. For a convex body K � Rn,

Kı;p.xn/CK
ı;p.�xn/

2
�
.�enK/

ı;p.xn/C .�enK/
ı;p.�xn/

2
D .�enK/

ı;p.xn/: (5-3)

The equality on the right-hand side holds because �enK, and hence .�enK/
ı;p (Lemma 5.17), are by

construction symmetric with respect to e?n . Nonetheless, note that no symmetry on K is assumed for
Lemma 5.3, in contrast to Lemma 5.2. Applying the Brunn–Minkowski inequality on Lemma 5.3 gives

j.�enK/
ı;p.xn/j

1
n�1 �

1
2
jKı;p.xn/j

1
n�1 C

1
2
jKı;p.�xn/j

1
n�1 :

Without any symmetry assumption on K, jKı;p.xn/j and jKı;p.�xn/j may be unrelated. For symmetric
convex bodies, Kı;p.�xn/D�Kı;p.xn/ (Claim 5.14) and hence jKı;p.�xn/j D jKı;p.xn/j, justifying
the symmetry assumption in Lemma 5.2. See Figure 5.

In order to obtain the inclusion of Lemma 5.3, we first obtain an inequality relating the norms before
and after symmetrization:��C � 02

; xn

�
.�enK/

ı;p

�
k.�; xn/kKı;p Ck.�

0;�xn/kKı;p

2
: (5-4)
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K.h/

K.�h/

.�enK/.h/

.�enK/.�h/

Figure 5. Comparing the slices.

For p D1, by (3-4), (5-4) reads

h�enK

�
�C � 0

2
; xn

�
�
hK.�; xn/C hK.�

0;�xn/

2
; (5-5)

which is classical and simple to prove: any element of �enK is of the form
�
z; t�s

2

�
for .z; t/; .z; s/ 2K,

so ��
�C � 0

2
; xn

�
;

�
z;
t � s

2

��
D

�
�C � 0

2
; z

�
C xn

t � s

2

D
h�; ziC xnt

2
C
h� 0; zi � xns

2

D
h.�; xn/; .z; t/i

2
C
h.� 0;�xn/; .z;�s/i

2

�
hK.�; xn/C hK.�

0;�xn/

2
;

and (5-5) follows. One of our key estimates in this section is a 3-parameter (p; s; t ) family generalization
of (5-5):

Lemma 5.4. Let p 2 .0;1�, and K � Rn a convex body. For �; � 0 2 Rn�1, xn 2 R and r; t; s > 0 with
2
r
D

1
t
C
1
s

,

hp;�enK

�
r
�C � 0

2
; rxn

�
�

s

t C s
hp;K.t�; txn/C

t

t C s
hp;K.s�

0;�sxn/:

For pD1, Lemma 5.4 is equivalent to (5-4). Lacking homogeneity, for p 2 .0;1/ this is no longer the
case. Notwithstanding, Lemma 5.4 is exactly the condition necessary to apply Ball’s Brunn–Minkowski
inequality for harmonic means (Theorem 5.20, proven in the Appendix) from which we deduce (5-4).
The next step in the proof of Proposition 5.1 is to use (5-4) to obtain Lemma 5.3. Finally, Lemma 5.3 and
a symmetry property for antipodal slices of symmetric bodies (Corollary 5.16) give Lemma 5.2 from
which Proposition 5.1 follows by (5-2).

The proof of Proposition 5.1 is organized as follows. Sections 5B and 5C are preparatory. In Section 5B
we recall a few basics of Steiner symmetrization. In Section 5C, Lemma 5.11 establishes the continuity
of Mp in the Hausdorff topology (Definition 5.9). Section 5D establishes several symmetries between
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antipodal slices for symmetric convex bodies. Section 5E is dedicated to proving Lemma 5.4, and
Section 5F to proving Lemmas 5.3 and 5.2. In Section 5G, we complete the proofs of Proposition 5.1 and
Theorem 1.6.

5B. Steiner symmetrization. For a vector u 2 @Bn2 denote by

u? WD fx 2 Rn W hx; ui D 0g

the hyperplane through the origin that is normal to u. Let, also,

�u? W R
n
! u?; x 7! x� hx; uiu;

be the projection onto u?. Given u 2 @Bn2 , one may foliate any convex body K by a family of straight
line segments parametrized by a hyperplane u?. The Steiner symmetral �uK is the unique such foliation
for which the line segments have their midpoints in u? [Steiner 1838, pp. 286–287] (see also [Gruber
2007, §9; Artstein-Avidan et al. 2015, Definition 1.1.13]):

Definition 5.5. For K � Rn a convex body and u 2 @Bn2 , the Steiner symmetral in the u direction is
given by

�u.K/ WD
˚
xC tu W x 2 �u?.K/ and jt j � 1

2
jK \ .xCRu/j

	
:

Steiner symmetrization produces a convex body that is symmetric with respect to u?.

Definition 5.6. A convex body K � Rn is symmetric with respect to a hyperplane u? if for all x 2K

x� 2hx; uiu 2K:

Equivalently, K remains invariant under reflection with respect to u?. Steiner symmetrization also
preserves volume and convexity [Gruber 2007, Proposition 9.1]:

Lemma 5.7. For a convex body K � Rn and u 2 @Bn2 , �u.K/ is a convex body, symmetric with respect
to u?, with j�u.K/j D jKj.

Orthogonal transformations preserve volume and, by (4-7), commute with Lp-polarity. The following
lemma then justifies working with uD en throughout.

Lemma 5.8. For a convex body K � Rn, u 2 @Bn2 , and A 2O.n/,

�u.K/D A
�1�Au.AK/:

In particular, j�u.K/j D j�Au.AK/j.

Proof. SinceA2O.n/ is invertible, it is enough to showA�1�Au.AK/��u.K/. Let xCtAu2�Au.AK/
with

x 2 �.Au/?.AK/ and jt j � 1
2
j.AK/\ .xCRAu/j:

First,
�.Au/?.AK/D A�u?.K/: (5-6)
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Indeed, for z 2 Rn,

�.Au/?.Az/D Az� hAz;AuiAuD Az� hz; uiAuD A.z� hz; uiu/D A�u?.z/;

because, since A 2O.n/, we have hAz;Aui D hz; ATAui D hz; ui.
Second,

.AK/\ .xCRAu/D A.K \ .A�1xCRu//: (5-7)

That is because, y 2 .AK/ \ .x C RAu/ if and only if y 2 AK and y D x C sAu, x 2 K, s 2 R.
Equivalently, A�1y 2K and A�1y D A�1xC su 2 A�1xCRu, i.e., A�1y 2K \ .A�1xCRu/.

Using (5-7) and as A 2 O.n/ preserves volume, jK \ .A�1xCRu/j D j.AK/\ .xCRAu/j. Thus
A�1.x C tAu/ D A�1x C tu is such that A�1x 2 A�1�.Au/?.AK/ D A�1.A�u?.K// D �u?.K/

(using (5-6)), and jt j � 1
2
j.AK/ \ .x C RAu/j D 1

2
jK \ .A�1x C Ru/j, that is, A�1.x C tAu/ D

A�1xC tu 2 �u.K/. �

Recall the definition of the Hausdorff metric.

Definition 5.9. For K;L� Rn two compact bodies, let

dH .K;L/ WD inff" > 0 WK � LC "Bn2 and L�KC "Bn2 g

be the Hausdorff distance between K and L.

Repeated Steiner symmetrizations Hausdorff converge to a 2-ball [Gross 1917; Gruber 2007, Theo-
rem 9.1].

Lemma 5.10. For a convex body K � Rn, there is � > 0 and a sequence of vectors uj 2 @Bn2 such that if
Kj WD �uj .Kj�1/, where K0 WDK, then Kj ! �Bn2 in the Hausdorff metric.

5C. Hausdorff continuity of Mp. The aim of this subsection is to verify that Mp is continuous under
Hausdorff convergence (Lemma 5.11).

By Lemma 5.10, iterated applications of Steiner symmetrization dH -converge to a 2-ball. Therefore,
in order to obtain Theorem 1.6, it is necessary to show that Mp is dH -continuous.

Lemma 5.11. Let p 2 .0;1� and fKj gj�1 � Rn be a sequence of convex bodies dH -converging to a
convex body K � Rn with jKı;pj<1. Then, Mp.Kj /!Mp.K/.

Lemma 5.11 follows from the next two claims. First, the volume of convex bodies is continuous under
the Hausdorff metric. Note this is not true without the convexity assumption, e.g., for space-filling curves.
Denote by

1K.x/ WD
�
1; x 2K;

0; x …K

the indicator function of K.

Claim 5.12. Let fKj gj�1 � Rn be a sequence of convex bodies dH -converging to K � Rn. Then,
jKj j ! jKj.
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Proof. Since dH .Kj ; K/!0, there are "j >0 such thatKj �KC"jBn2 andKC"jBn2 �Kj , with "j!0.
In particular, f"j gj�1 is bounded. For simplicity, take "j �1. In particular,Kj �KC"jBn2 �KCB

n
2 ; thus

1Kj � 1KCBn2 for all j . This allows for the use of dominated convergence. It is therefore enough to show

lim
j!1

1Kj .x/D 1K.x/; x 2 .intK/[ .Rn nK/: (5-8)

Then, by dominated convergence,

lim
j!1

jKj j D lim
j!1

Z
Rn

1Kj D
Z

Rn
lim
j!1

1Kj D
Z

Rn
1K D jKj:

For (5-8), let x 2 intK. There is " > 0 such that xC "Bn2 �K. Since "j ! 0, there is j0 � 1 such that
"j < " for all j � j0. Therefore, xC "Bn2 �K �Kj C "jB

n
2 �Kj C "B

n
2 . By the cancellation law for

the Minkowski sum of convex bodies [Gruber 2007, Theorem 6.1(i)], fxg �Kj , i.e., x 2Kj . Therefore,
1Kj .x/D 1D 1K.x/ for all j � j0.

For x 2 Rn nK, since K is closed, Rn nK is open. Thus there is " > 0 such that xC 2"Bn2 � Rn nK,
i.e., .xC 2"Bn2 /\K D∅. Let j0 � 1 with "j < " for all j � j0. Then, Kj �KC "Bn2 and hence

.xC "Bn2 /\Kj � .xC "B
n
2 /\ .KC "B

n
2 /D∅;

because, for y 2 .xC "Bn2 /\ .KC "B
n
2 /, we have y D xC "uD zC "v for u; v 2 Bn2 and z 2K. That

is, z D xC ".u� v/ 2 xC 2"Bn2 ; thus z 2K \ .xC 2"Bn2 /D∅, a contradiction. Therefore, x …Kj for
all j � j0, i.e., 1Kj .x/D 0D 1K.x/ for all j � j0, proving (5-8). �

Second, the volume of the Lp-polars is also continuous under Hausdorff convergence given that the
limit is a convex body with finite Mp volume.

Claim 5.13. Let p 2 .0;1� and fKj gj�1 � Rn be a sequence of convex bodies dH -converging to a
convex body K with jKı;pj<1. Then, jKı;pj j ! jK

ı;pj.

Proof. Since dH .Kj ; K/! 0, there are "j > 0 such that Kj � K C "jBn2 and K � Kj C "jBn2 with
"j ! 0. In particular, f"j gj�1 is bounded. For simplicity, take "j � 1

2
. In particular,

Kj �KC "jB
n
2 �KCB

n
2 ;

so Kj are uniformly bounded. Let M > 0 such that jxj �M for all x 2Kj and all j . For y 2 Rn,

ˇ̌
jKj je

php;Kj .y/�jKjephp;K.y/
ˇ̌
D

ˇ̌̌̌Z
Kj

ephx;yi dx�
Z
K

ephx;yi dx
ˇ̌̌̌

�

Z
.Kj nK/[.KnKj /

ephx;yi dx � j.Kj nK/[.KnKj /jepM jyj: (5-9)

Note that

1.Kj nK/[.KnK/.y/D j1Kj .y/� 1K.y/j;
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which converges to 0 almost everywhere by (5-8). By dominated convergence, j.Kj nK/[.K nKj /j! 0.
Taking j !1 in (5-9), jKj je

php;Kj .y/! jKjephp;K.y/. By Claim 5.12, jKj j ! jKj; thus

lim
j!1

hp;Kj .y/D hp;K.y/; y 2 Rn; (5-10)

establishing the pointwise convergence.
The aim is to use dominated convergence on e�hp;Kj , for which a uniform (independent of j ) and

integrable upper bound is necessary. By assumption jKı;pj<1, or equivalently, by Lemma 4.2, 02 intK.
That is, there is r >0 such that Œ�2r; 2r�n�K. Therefore, for large enough j0>0, we have Œ�r; r�n�Kj
for all j � j0. In addition, by Claim 5.12, jKj j ! jKj > 0; thus there is M 0 > 0 with jKj j �M 0 for
all j . As a result,

hp;Kj .y/D
1

p
log

Z
Kj

ephx;yi
dx
jKj j

�
1

p
log

Z
Œ�r;r�n

ephx;yi
dx
M 0
D hp;Œ�r;r�n.y/C log

.2r/n

M 0
;

and hence
e
�hp;Kj .y/ �

M 0

.2r/n
e�hp;Œ�r;r�n .y/:

The right-hand side is integrable since by (4-7)Z
Rn
e�hp;Œ�r;r�n .y/ dy D

Mp.Œ�r; r�
n/

jŒ�r; r�nj
D

1

.2r/n
Mp.Œ�1; 1�

n/;

which is finite by Lemma 3.12. The claim now follows from (5-10) and the dominated convergence
theorem. �

Proof of Lemma 5.11. By Claims 5.12–5.13, jKj j ! jKj and jKı;pj j ! jK
ı;pj; thus by (1-11),

limj!1Mp.Kj /D limj!1 nŠ jKj jjK
ı;p
j j D nŠ jKjjK

ı;pj DMp.K/: �

5D. Slice analysis of symmetric convex bodies.

5D1. Symmetry with respect to a hyperplane. Antipodal slices are related when �K DK: � 2K.�xn/
if and only if .�;�xn/ 2K or �.�;�xn/D .��; xn/ 2K, i.e., if and only if �� 2K.xn/. In sum:

Claim 5.14. For a symmetric convex body K � Rn, K.�xn/D�K.xn/ for all xn 2 R.

If, instead, one assumes K to be symmetric with respect to the hyperplane e?n , then antipodal slices are
exactly equal: note that � 2K.xn/ if and only if .�; xn/ 2K, which by the symmetry of K with respect
to e?n is equivalent to .�;�xn/ 2K or � 2K.�xn/. Thus:

Claim 5.15. For a convex body K � Rn symmetric with respect to e?n , K.�xn/DK.xn/ for all xn 2 R.

5D2. Lp-polarity preserves symmetries.

Corollary 5.16. Let p2 .0;1�. For a symmetric convex bodyK, Kı;p.�xn/D�Kı;p.xn/ for all xn2R.

Proof. By Theorem 1.2, Kı;p is symmetric. Thus, by Claim 5.14, Kı;p.�xn/D�Kı;p.xn/. �

In addition, Kı;p inherits symmetries with respect to hyperplanes from K.

Lemma 5.17. Let p 2 .0;1�; u 2 @Bn2 and K a convex body symmetric with respect to u?. Then, Kı;p

is symmetric with respect to u?.
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Proof. By symmetry with respect to u?, �u?.K/ D K \ u
?. There is concave f W K \ u?! Œ0;1/

such that
K D fxC tu W x 2K \u? and jt j � f .x/g:

For y 2K \u?, s 2 R,

hp;K.yC su/D
1

p
log
�Z
K

ephz;yCsui
dz
jKj

�
D
1

p
log
�Z

x2K\u?

Z f .x/

tD�f .x/

ephxCtu;yCsui
dt dx
jKj

�
D
1

p
log
�Z

x2K\u?
ephx;yi

Z f .x/

tD�f .x/

epts
dt dx
jKj

�
D
1

p
log
�Z

x2K\u?
ephx;yi

Z f .x/

�D�f .x/

e�p�s
d� dx
jKj

�
D hp;K.y � su/;

by the change of variables � D�t . As a result, kyC sukKı;p D ky� sukKı;p , and hence yC su 2Kı;p

if and only if y � su 2Kı;p as desired. �

By Lemma 5.7, �enK is symmetric with respect to e?n ; thus, by Lemma 5.17, .�enK/
ı;p also is.

Therefore, by Claim 5.15 its antipodal slices are equal.

Corollary 5.18. Let p 2 .0;1�. For a convex body K � Rn, .�enK/
ı;p.xn/ D .�enK/

ı;p.�xn/ for
all xn 2 R.

5E. Proof of Lemma 5.4. The only two ingredients required for the proof of Lemma 5.4 are Hölder’s
inequality and the log-convexity of sinh.t/=t (Claim 5.19 below).

Proof of Lemma 5.4. Let f; g W �e?n .K/! R; g � f , so that

K D f.�; xn/ 2 �e?n .K/�R W g.�/� xn � f .�/g:

Then,
�enK D

˚
.�; xn/ 2 �e?n .K/�R W jxnj �

1
2
.f .�/�g.�//

	
:

In the integrals below it will be convenient to use slice-coordinates

.�; yn/ 2 �enK ; with � 2 .�enK/\ e
?
n ; yn 2 R:

Since j�enKj D jKj and .�enK/\ e
?
n D �

?
en
.K/,

hp;�enK

�
r
�C � 0

2
; rxn

�
D
1

p
log
�Z

�enK

ephr
�C�0

2
;�ieprxnyn

d� dyn
j�enKj

�
D
1

p
log
�Z

�2.�enK/\e
?
n

Z f.�/�g.�/
2

ynD�
f.�/�g.�/

2

eprh
�C�0

2
;�ieprxnyn

dyn d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

eprh
�C�0

2
;�i e

prxn
f.�/�g.�/

2 � e�prxn
f.�/�g.�/

2

prxn

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

eprh
�C�0

2
;�i 2

prxn
sinh

�
prxn

f .�/�g.�/

2

�
d�
jKj

�
: (5-11)



2220 BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

Also,

hp;K.t�; txn/D
1

p
log
�Z
K

epht�;�ieptxnyn
d� dyn
jKj

�
D
1

p
log
�Z

�
e?n
.K/

Z f .�/

ynDg.�/

epth�;�ieptxnyn
dyn d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

epth�;�i
1

pxnt
.epxntf .�/� epxntg.�//

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

epth�;�i
2

pxnt
epxnt

f.�/Cg.�/
2 sinh

�
pxnt

f .�/�g.�/

2

�
d�
jKj

�
; (5-12)

because
epxntf .�/� epxntg.�/ D epxnt

f.�/Cg.�/
2 .epxnt

f.�/�g.�/
2 � e�pxnt

f.�/�g.�/
2 /

D 2epxnt
f.�/Cg.�/

2 sinh
�
pxnt

f .�/�g.�/

2

�
:

Similarly,

hp;K.s�
0;�sxn/

D
1

p
log
�Z

�
e?n
.K/

ephs�
0;�i 2

p.�sxn/
e�pxns

f.�/Cg.�/
2 sinh

�
p.�sxn/

f .�/�g.�/

2

�
d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

epsh�
0;�i 2

pxns
e�pxns

f.�/Cg.�/
2 sinh

�
pxns

f .�/�g.�/

2

�
d�
jKj

�
: (5-13)

By (5-12)–(5-13) and Hölder’s inequality,

s

t C s
hp;K.t�; txn/C

t

t C s
hp;K.s�

0;�sxn/

D
1

p
log
��Z

�
e?n
.K/

epth�;�i
2

pxnt
epxnt

f.�/Cg.�/
2 sinh

�
pxnt

f .�/�g.�/

2

�
d�
jKj

� s
tCs

�

�Z
�
e?n
.K/

epsh�
0;�i 2

pxns
e�pxns

f.�/Cg.�/
2 sinh

�
pxns

f .�/�g.�/

2

�
d�
jKj

� t
tCs
�

�
1

p
log
�Z

�
e?n
.K/

ep
ts
tCs
h�;�i

�
2

pxnt

� s
tCs

epxn
ts
tCs

f.�/Cg.�/
2

�
sinh

�
pxnt

f .�/�g.�/

2

� s
tCs
�

� ep
ts
tCs
h�0;�i

�
2

pxns

� t
tCs

e�pxn
ts
tCs

f.�/Cg.�/
2

�
sinh

�
pxns

f .�/�g.�/

2

� t
tCs
�

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

ep
ts
tCs
h�C�0;�iJ.�; t/

s
tCs J.�; s/

t
tCs

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

eprh
�C�0

2
;�iJ.�; t/

s
tCs J.�; s/

t
tCs

d�
jKj

�
; (5-14)
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where

J.�; t/ WD
2

pxnt
sinh

�
pxnt

f .�/�g.�/

2

�
:

By Claim 5.19 below, logJ is convex in t , and therefore

J.�; t/
s
tCs J.�; s/

t
tCs � J

�
�;

s

t C s
t C

t

t C s
s

�
D J

�
�;
2ts

t C s

�
D J.�; r/; (5-15)

because 2ts
tCs
D r . Therefore, by (5-11), (5-14) and (5-15),

s

t C s
hp;K.t�; txn/C

t

t C s
hp;K.s�

0;�sxn/

�
1

p
log
�Z
K\e?n

eprh
�C�0

2
;�i 2

pxnr
sinh

�
pxnr

f .�/�g.�/

2

�
d�
jKj

�
D hp;�enK

�
r
�C � 0

2
; rxn

�
;

as desired. �
Claim 5.19. For any x > 0, t 7! log

�
1
t

sinh.tx/
�
, t > 0, is convex.

Proof. Write

f .t/ WD log
�
1

t
sinh.tx/

�
D log.sinh.tx//� log t:

Compute the derivatives

f 0.t/D x
cosh.tx/
sinh.tx/

�
1

t

and

f 00.t/D x2
sinh.tx/
sinh.tx/

� x2
.cosh.tx//2

.sinh.tx//2
C
1

t2
D x2

�
1�

.cosh.tx//2

.sinh.tx//2
C

1

.tx/2

�
D x2

�
1�

1C .sinh.tx//2

.sinh.tx//2
C

1

.tx/2

�
D x2

�
1

.tx/2
�

1

.sinh.tx//2

�
� 0;

because sinh.y/� y for all y � 0. �

5F. Slice analysis of Kı;p under Steiner symmetrization.

5F1. A monotonicity property for the average of antipodal slices. For the proof of Lemma 5.3, we first
prove (5-4). The aim is to apply the following theorem due to [Ball 1986, Theorem 4.10] for F;G;H
appropriate exponentials of the Lp-support functions.

Theorem 5.20. Let F;G;H W .0;1/! Œ0;1/ be measurable functions, not almost everywhere 0, with

H.r/� F.t/
s
tCsG.s/

t
tCs for all

2

r
D
1

t
C
1

s
: (5-16)

Then, for q � 1,

2

�Z 1
0

rq�1H.r/ dr
�� 1

q

�

�Z 1
0

tq�1F.t/ dt
�� 1

q

C

�Z 1
0

sq�1G.s/ ds
�� 1

q

:
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For the reader’s convenience, we give a proof in the Appendix. Applying Theorem 5.20 to prove (5-4)
becomes possible by Lemma 5.4.

Proof of Lemma 5.3. Set

F.t/ WD e�hp;K.t�;txn/; G.s/ WD e�hp;K.s�
0;�sxn/; H.r/ WD e�hp;�enK.r

�C�0

2
;rxn/:

By Lemma 5.4, for any t; s > 0 with 2
r
D

1
t
C
1
s

,

H.r/� F.t/
s
tCsG.s/

t
tCs I

thus, by Theorem 5.20 for q D n,��C � 02
; xn

�
.�enK/

ı;p

D

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;�enK.r
�C�0

2
;rxn/ dr

�� 1
n

�
1

2

�
1

.n� 1/Š

Z 1
0

tn�1e�hp;K.t�;txn/ dt
�� 1

n

C
1

2

�
1

.n� 1/Š

Z 1
0

sn�1e�hp;K.s�
0;�sxn/ ds

�� 1
n

D
1

2
k.�; xn/kKı;p C

1

2
k.� 0;�xn/kKı;p :

verifying (5-4).
For � 2 .Kı;p/.xn/ and � 0 2 .Kı;p/.�xn/, by definition (5-1), .�; xn/ 2Kı;p and .� 0;�xn/ 2Kı;p,

i.e., k.�; xn/kKı;p � 1 and k.� 0;�xn/kKı;p � 1. By (5-4),��C � 02
; xn

�
.�enK/

ı;p

�
k.�; xn/kKı;p Ck.�

0;�xn/kKı;p

2
� 1;

i.e.,
� �C�0
2
; xn

�
2 .�enK/

ı;p or �C�
0

2
2 .�enK/

ı;p.xn/. Finally, by Corollary 5.18, .�e?n K/
ı;p.xn/ D

.�e?n K/
ı;p.�xn/; hence we have the equality in the right-hand side of (5-3). �

5F2. Monotonicity of the volume of slices under Steiner symmetrization.

Proof of Lemma 5.2. By the Brunn–Minkowski inequality and Lemma 5.3,

j.�enK/
ı;p.xn/j

1
n�1 �

jKı;p.xn/CK
ı;p.�xn/j

1
n�1

2

�
jKı;p.xn/j

1
n�1 CjKı;p.�xn/j

1
n�1

2
D jKı;p.xn/j

1
n�1 ;

because K is symmetric thus, by Corollary 5.16, Kı;p.�xn/D�Kı;p.xn/, and hence their volumes are
equal jKı;p.�xn/j D jKı;p.xn/j. �

5G. Proof of Theorem 1.6. We now complete the proofs of Proposition 5.1 and Theorem 1.6.

Proof of Proposition 5.1. Take for a moment uD en. By (5-2) and Lemma 5.2,

j.�enK/
ı;p
j D

Z 1
�1

j.�enK/
ı;p.xn/j dxn �

Z 1
�1

j.Kı;p/.xn/j dxn D jKı;pj: (5-17)
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In general, for u2 @Bn2 , there is A2O.n/ such that AuD en. By Lemma 5.8, �uK DA�1.�Au.AK//D
A�1.�en.AK//. By (4-7), .�uK/ı;p D .A�1�en.AK//

ı;p D AT .�en.AK//
ı;p. Thus by (5-17),

j.�uK/
ı;p
j D jdetAT jj.�en.AK//

ı;p
j

� jdetAT jj.AK/ı;pj D jAT .AK/ı;pj D jKı;pj;

because, again by (4-7), AT .AK/ı;p D .A�1AK/ı;p DKı;p. �

Theorem 1.6 follows from Proposition 5.1 and the fact that repeated Steiner symmetrizations converge
to a dilated 2-ball (Lemma 5.10).

Proof of Theorem 1.6. There is � > 0 and a sequence fuj gj�1 � @Bn2 such that for

K0 WDK; Kj WD �ujKj�1;

Kj ! �Bn2 in the Hausdorff metric [Artstein-Avidan et al. 2015, Theorem 1.1.16]. By Proposition 5.1,

Mp.Kj /D nŠ jKj jjK
ı;p
j j D nŠ jKjjK

ı;p
j j

� nŠ jKjj.�ujC1Kj /
ı;p
j D nŠ jKjjK

ı;p
jC1j DMp.KjC1/:

In particular, Mp.K/ �Mp.Kj / for all j . Sending j !1, Kj ! �Bn2 in the Hausdorff metric, and
hence, by Lemmas 4.7 and 5.11, Mp.Kj /!Mp.�B

n
2 /DMp.B

n
2 /; thus Mp.K/�Mp.B

n
2 /. �

6. A connection to Bourgain’s slicing problem

In this section we explore the relationship between the Lp support functions hp;K (1-8) and the slicing
problem (Conjecture 1.8). The aim is to prove Theorem 1.9 and then illustrate how it implies a suboptimal
upper bound on the isotropic constant (Corollary 1.12) originally due to Milman and Pajor. We also
explain some interesting connections to and motivations from complex geometry.

In Section 6A2 we recall the definitions of the covariance matrix and the isotropic constant, and
relate these to hp;K (Lemma 6.3). In Section 6A3 we recall the definition of the Monge–Ampère
measure and its basic properties. Theorem 1.9 is proved in Section 6B. The proof consists of two parts:
using Jensen’s inequality to bound

R
log detr2h1;K (Lemma 6.10), and then bounding

R
Rn
h1;K d�p;K

(Lemma 6.13). In Section 6C, we show log detr2hp;KCp.nC1/hp;K is convex, proving Theorem 1.11.
From Theorems 1.9 and 1.11 we then obtain an upper bound on the isotropic constant of order O.

p
n/

(Corollary 1.12). In Section 6D, we define the Lp support functions of compactly supported probability
measures and show that Theorem 1.11 cannot be improved in that setting (Example 6.20). Finally, in
Section 6E we explain some novel connections of our work to complex geometry, in particular to Ricci
curvature, Fubini–Study metrics, Bergman metrics, Kobayashi’s theorem, and holomorphic line bundles.

6A. Preliminaries.

6A1. Affine-invariance of C. The isotropic constant is an affine invariant (e.g., [Brazitikos et al. 2014,
p. 77]); hence so is C. As we could not find precisely the following lemma in the literature, we include its
proof for completeness.
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Lemma 6.1. For K � Rn and A 2 GL.n;R/, b 2 Rn,

Cov.AKC b/D ACov.K/AT

where Cov.K/ is defined in (1-16).

Proof. Write AD ŒAji �
n
i;jD1, b D .b1; : : : ; bn/ and T .x/DAxC b. The Einstein summation convention

of summing over repeated indices is used. Changing variables y D T �1x D A�1x � A�1b, dy D
jdetA�1jdx D jdetAj�1dx,

Covij .AKC b/D
Z
T.K/

xixj
dx
jT .K/j

�

Z
T.K/

xi
dx
jT .K/j

Z
T.K/

xj
dx
jT .K/j

D

Z
K

.AyCb/i .AyCb/j
jdetAj dy
jAKC bj

�

Z
K

.AyCb/i
jdetAj dy
jAKC bj

Z
K

.AyCb/j
jdetAj dy
jAKC bj

D

Z
K

.Aki ykC bi /.A
l
jyl C bj /

dy
jKj
�

Z
K

.Aki ykC bi /
dy
jKj

Z
K

.Aljyl C bj /;
dy
jKj

D Aki A
l
j

Z
K

ykyl
dy
jKj
C bjA

k
i

Z
K

yk
dy
jKj
C biA

l
j

Z
K

yj
dy
jKj
C bibj

�Aki A
l
j

Z
K

ykyl
dy
jKj
� bjA

k
i

Z
K

yk
dy
jKj
� biA

l
j

Z
K

yl
dy
jKj
� bibj

D Aki A
l
j

�Z
K

ykyl
dy
jKj
�

Z
K

yk
dy
jKj

Z
K

yl
dy
jKj

�
D Aki A

l
j Covkl.K/;

proving the claim. �

Let A 2 GL.n;R/ and b 2 Rn. By Lemma 6.1,

C.AKC b/D
jAKC bj2

det Cov.AKC b/
D

.detA/2jKj2

det.ACov.K/AT /
D

.detA/2jKj2

.detA/2 det Cov.K/
D C.K/;

proving:

Corollary 6.2. C is an affine invariant.

6A2. Lp-support functions and the isotropic constant. Next, we relate the functional C (1-18) to hp;K
(1-8) (for p D 1 see [Klartag 2006, Lemma 3.1]).

Lemma 6.3. Let p > 0. For a convex body K � Rn, we have r2hp;K.0/D p Cov.K/ and

C.K/D
pnjKj2

detr2hp;K.0/
:

Proof. By direct calculation,

@

@yi
hp;K.y/D

R
K xie

phx;yi dxR
K e

phx;yi dx
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and

@2

@yi@yj
hp;K.y/D

p
R
K xixj e

phx;yi dx
R
K e

phx;yidx�p
R
K xie

phx;yi dx
R
K xj e

phx;yi dx�R
K e

phx;yi dx
�2 :

Since for y D 0,
R
K e

phx;0i dx D jKj,

@2hp;K

@yi@yj
.0/D p

Z
K

xixj
dx
jKj
�p

Z
K

xi
dx
jKj

Z
K

xj
dx
jKj
D p Covi;j .K/

and

detr2hp;K.0/D det.p Cov.K//D pn det Cov.K/D pn
jKj2

C.K/
;

as claimed. �

6A3. The Monge–Ampère measure. We review some basic details concerning the Monge–Ampère mea-
sure, following [Rauch and Taylor 1977]. Legendre duality is defined by f �.y/ WD supx2Rn Œhy; xi�f .x/�.

Definition 6.4 [Rockafellar 1970, p. 215]. For a convex function � W Rn! R[ f1g and x 2 Rn, the
subdifferential of � at x is

@�.x/ WD fy 2 Rn W �.z/� �.x/Chy; z� xi for all z 2 Rng:

Lemma 6.5 [Rockafellar 1970, Theorem 23.5]. For � W Rn! R convex, @�.Rn/� f�� <1g.

Proof. By definition of the subgradient, for y 2 @�.x/, we have �.z/� �.x/Chy; z� xi for all z 2 Rn,
i.e., hy; xi ��.x/� hy; zi ��.z/. Taking supremum over all z 2 Rn,

��.y/� hy; xi ��.x/ <1;

as claimed. �

Corollary 6.6. For all p 2 .0;1/,

@hK.R
n/�K and @hp;K.R

n/�K:

Proof. Since h�K D 11K , by Lemma 6.5, @hK.Rn/ � f11K <1g DK. Similarly, since hp;K � hK , the
Legendre transform satisfies 11K D h

�
K � h

�
p;K ; thus, by Lemma 6.5,

@hp;K.R
n/� fh�p;K <1g� f1

1
K <1gDK: �

Definition 6.7 [Rauch and Taylor 1977, Definition 2.6]. For a convex function �, let

.MA�/.U / WD j@�.U /j;

where the right-hand side denotes the Lebesgue measure of @�.U / in Rn.

Lemma 6.8. MAhp;K.Rn/� jKj.

Proof. By definition, MAhp;K.Rn/D j@hp;K.Rn/j � jKj because @hp;K.Rn/�K by Corollary 6.6. �

Remark 6.9. In fact, equality holds in Lemma 6.8. In particular, hp;K is a smooth, strictly convex function
with rhp;K.Rn/ D intK (see [Klartag 2006, Lemma 3.1] for the case p D 1). By the smoothness of
hp;K we also know the density of MAhp;K equals detr2hp;K .
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6B. Conditional lower bounds on the isotropic constant. The proof of Theorem 1.9 relies on the
following observation. Assume that K satisfies (�B ) for some B > 0, i.e.,

uB;K.y/ WD log detr2h1;K.y/CBh1;K.y/

is convex. Note that h1;K.0/D 0; thus uB;K.0/D log detr2h1;K.0/. By Lemma 6.3,

C.K/D
jKj2

det Cov.K/
D

jKj2

detr2h1;K.0/
D jKj2e�uB;K.0/: (6-1)

Since uB;K is convex by assumption, for a probability measure � with b.�/D 0, by Jensen’s inequality,

uB;K.0/D uB;K

�Z
Rn
y d�.y/

�
�

Z
Rn
uB;K.y/ d�.y/

D

Z
Rn

log detr2h1;K.y/ d�.y/CB
Z

Rn
h1;K.y/ d�.y/: (6-2)

By (6-1) and (6-2), in order to get bounds on C.K/ it is enough to bound
R

log MAh1;K d� andR
Rn
h1;K d�, for a suitable probability measure �.

Here, we consider the probability measures (1-21) for which we obtain the desired bounds (Lemmas 6.10
and 6.13). By Corollary 4.5, we may translate K to a suitable position in order to obtain estimates onR

Rn
log MAh1;K.y/ d�p;K.y/ (Lemma 6.10(ii) and (iii)).

6B1. A bound on
R

log detr2h1;K in terms of Lp-Mahler volumes.

Lemma 6.10. Let p > 0. For a convex body K � Rn, and �p;K as in (1-21):

(i) We have Z
Rn

log detr2h1;K.y/ d�p;K.y/� log
�
jKj2

M 1
2p
.K/

M 1
p
.K/2

pn

2n

�
:

(ii) If b.�p;K/D 0, thenZ
Rn

log detr2h1;K.y/ d�p;K.y/� log
�

jKjenR
Rn
e�ph1;K.y/ dy

�
:

(iii) If b.K/D 0, thenZ
Rn

log detr2h1;K.y/ d�p;K.y/� log
�

jKjR
Rn
e�ph1;K.y/ dy

�
:

For the proof of Lemma 6.10 we need the following.

Claim 6.11. Let p > 0. For a convex body K � Rn,Z
Rn

log detr2h1;K.y/ d�p;K.y/� log
�
jKj

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2�:
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Proof. By Jensen’s inequality and Cauchy–Schwarz,Z
Rn

log detr2h1;K.y/ d�p;K.y/D 2
Z

Rn
log.detr2h1;K.y//

1
2 d�p;K.y/

� 2 log
Z

Rn
.detr2h1;K.y//

1
2 d�p;K.y/

D 2 log
Z

Rn
.detr2h1;K.y//

1
2

e�ph1;K.y/R
Rn
e�ph1;K.y/ dy

dy

� 2 log
�Z

Rn
detr2h1;K.y/ dy

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2�12
� log

�
jKj

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2�;
because by Lemma 6.8 and Remark 6.9,

R
Rn

detr2h1;K.y/ dy DMAh1;K.Rn/� jKj. �

Proof of Lemma 6.10. (i) In view of Claim 6.11, it is enough to compute the following two integrals,Z
Rn
e�2ph1;K.y/ dy D

1

.2p/n

Z
Rn
e�2ph1;K.

y
2p
/ dy D

1

.2p/n

Z
Rn
e�h1=.2p/;K.y/ dy D

1

.2p/n

M 1
2p
.K/

jKj1C2p
;

because by Lemma 2.2(i), 2ph1;K
� y
2p

�
D h1=.2p/;K.y/. Similarly,Z

Rn
e�ph1;K.y/ dy D

1

pn

M 1
p
.K/

jKj1Cp
:

Therefore,

jKj

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2 D jKj M 1
2p
.K/

.2p/njKj1C2p
p2njKj2C2p

M 1
p
.K/2

D jKj2
pn

2n

M 1
2p
.K/

M 1
p
.K/2

: (6-3)

The claim follows from (6-3) and Claim 6.11.

(ii) Since b.�p;K/D b.ph1;K/D 0, by Lemma 6.12 below, ph1;K.y/�ph1;K.0/�nD�n. Therefore,Z
Rn
e�2ph1;K.y/ dy D

Z
Rn
e�ph1;K.y/e�ph1;K.y/ dy � en

Z
Rn
e�ph1;K.y/ dy: (6-4)

The claim follows directly from (6-4) and Claim 6.11.

(iii) Since b.K/D 0,
R
Khx; yi dx D 0 for all y 2 Rn. As a result, by Jensen’s inequality,

h1;K.y/D log
Z
K

ehx;yi
dx
jKj
�

Z
K

log ehx;yi
dx
jKj
D

Z
K

hx; yi
dx
jKj
D 0;

i.e., h1;K.y/� 0. Therefore, for p > 0, 2ph1;K.y/� ph1;K.y/ and henceZ
Rn
e�2ph1;K.y/ dy �

Z
Rn
e�ph1;K.y/ dy: (6-5)

The claim follows directly from (6-5) and Claim 6.11. �
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In the previous proof we made use of the following estimate of [Fradelizi 1997, Theorem 4], stated with-
out proof. We include a proof for the reader’s convenience (see also [Brazitikos et al. 2014, Theorem 2.2.2]).

Lemma 6.12. For a convex function � W Rn! R[f1g,

inf
x2Rn

�.x/� �.b.�//�n:

Proof. To begin with, it is enough to consider � to be smooth, strictly convex, and bounded from
below by C jxj2 for large jxj. That is because for a smooth, nonnegative, compactly supported mollifier
� WRn! Œ0;1/ we know that

�".x/ WD
1

"n

Z
Rn
�.x�y/�

�
y

"

�
dy

is smooth, convex and decreases to � as "! 0. Let

�j;".x/ WD �".x/C
1

j

jxj2

2
;

smooth, convex functions that decrease to � as "! 0C and j !1 [Klimek 1991, Theorem 2.5.5]. In
addition, �j;".x/�C jxj2 for large enough jxj, since �" can be estimated by a linear term due to convexity,
that is, �".x/� �".0/Chr�".0/; xi. By monotone convergence, b.�j;"/! b.�/ as "! 0 and j !1.
By convexity, �.x/� �.b.�//Ch@�.b.�//; x� b.�/i for all x, so if the claim holds for �j;", then

�j;".y/� �j;".b.�j;"//�n

� �.b.�j;"//�n

� �.b.�//Ch@�.b.�//; b.�j;"/� b.�/i �n;

because �j;" � �. Taking j !1 and "! 0 yields �.y/� �.b.�//�n.
For � smooth, strictly convex with �.x/� C jxj2 for large jxj, by Jensen’s inequality,

�.b.�//D �

�Z
Rn
xe��.x/

dx
V.�/

�
�

Z
Rn
�.x/e��.x/

dx
V.�/

: (6-6)

By convexity, for all x; y 2Rn, �.y/��.x/Chr�.x/; y�xi; thus, integrating with respect e��.x/ dx
V.�/

,

�.y/�

Z
Rn
�.x/e��.x/

dx
V.�/

C

Z
Rn
hr�.x/; y � xie��.x/

dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

C

nX
iD1

Z
Rn

@�

@xi
.x/.yi � xi /e

��.x/ dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

�

nX
iD1

Z
Rn

@

@xi
.e��.x//.yi � xi /

dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

�

nX
iD1

Z
Rn
e��.x/

dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

�n; (6-7)
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because, by integration by parts,Z
R

@

@xi
.e��.x//.yi � xi / dx D 0�

Z
R

e��.x/ dx;

since
lim
jxi j!1

e��.x/jyi � xi j � lim
xi!1

e�C jxj
2

jy � xj D 0:

By (6-6) and (6-7), �.b.�//� �.y/Cn for all y 2 Rn, from which the claim follows. �

6B2. A bound on
R

Rn
h1;K d�p;K .

Lemma 6.13. Let p > 0. For a convex body K � Rn,Z
Rn
h1;K.y/ d�p;K.y/�

n

p
:

Proof of Lemma 6.13. By Lemma 2.2(v), hp;K increases to hK with p. Therefore, by Lemma 2.2(i),

F.p/ WD log
Z

Rn
e�hp;K.y/ dy D log

Z
Rn
e�

1
p
h1;K.py/ dy

D log
Z

Rn
e�

1
p
h1;K.y/

dy
pn
D log

Z
Rn
e�

1
p
h1;K.y/ dy �n logp

is decreasing with p, and hence, its derivative must be nonpositive,

0�
dF
dp
D

R
Rn
e�

1
p
h1;K.y/h1;K.y/ dy

p2
R

Rn
e�

1
p
h1;K.y/ dy

�
n

p
D

1

p2

Z
Rn
h1;K.y/ d� 1

p
.y/�

n

p
;

and the lemma follows. �

6B3. Proof of Theorem 1.9.

Claim 6.14. Let p > 0. For a convex body K � Rn with 0 2 intK and jKj D 1,Z
Rn
e�ph1;K.y/ dy �

M.K/

pn
:

Proof. Since hp;K � hK , by homogeneity of hK ,Z
Rn
e�ph1;K.y/ dy �

Z
Rn
e�phK.y/ dy D

Z
Rn
e�hK.py/ dy

D

Z
Rn
e�hK.v/

dv
pn
D
nŠ jKıj

pn
D

M.K/

pn
;

because jKj D 1; thus M.K/ WD nŠ jKjjKıj D nŠ jKıj. �

Proof of Theorem 1.9. By assumption, (�B ) holds. Thus (6-2) applies for probability measures with
barycenter at the origin.

(i) In order to apply the estimate (6-2), it is necessary to have a measure with barycenter at the origin.
By Corollary 4.5, we may translate K so that b.�p;K/D b.h1=p;K/D 0. By Corollary 6.2, this does not
affect C.K/. By (6-2) and Lemmas 6.13 and 6.10(i),

uB;K.0/� log
�
jKj2

M 1
2p
.K/

M 1
p
.K/2

pn

2n

�
C
Bn

p
:
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As a result, by (6-1),

C.K/�
M 1

p
.K/2

M 1
2p
.K/

2n

pn
e�

Bn
p :

Choosing p D B ,

C.K/�
M 1

B
.K/2

M 1
2B
.K/

2n

Bn
e�n:

(ii) Similarly, to apply (6-2) we need a measure with barycenter at the origin. By Corollary 4.5, we may
translate K so that b.�p;K/D b.h1=p;K/D 0. Also, rescale so that jKj D 1. By Corollary 6.2 this does
not affect C.K/. By (6-2), Lemmas 6.13 and 6.10(ii),

uB;K.0/� log
�

enR
Rn
e�ph1;K.y/ dy

�
C
Bn

p
� log

�
enpn

M.K/n

�
C
Bn

p
;

where we used Claim 6.14 for the last inequality. As a result, by (6-1), since jKj D 1,

C.K/D e�uB;K.0/ �
M.K/

enpn
e�

Bn
p : (6-8)

We can now optimize over all p on the right-hand side. Setting

f .p/ WD pne.1C
B
p
/n

gives

f 0.p/D enC
nB
p �

�
npn�1�pn �

nB

p2

�
D nenCn

B
p pn�2.p�B/;

and the second derivative gives

f 00.p/D nenC
nB
p Œ�nBp�2pn�2.p�B/C .n� 2/pn�3.p�B/Cpn�2�

D nenC
nB
p pn�4Œ�nB.p�B/C .n� 2/p.p�B/Cp2�;

so f 00.B/ D ne2nBn�2 > 0 as long as B > 0. This confirms p D B is a minimum. Thus, choosing
p D B in (6-8),

C.K/�
M.K/

e2nBn
:

(iii) Since K is symmetric, b.K/D b.�p;K/D 0. Rescale K so that jKj D 1. C.K/ remains invariant
under rescaling by Corollary 6.2. By (6-2), Lemmas 6.13 and 6.10(iii), and Claim 6.14,

uB;K.0/� log
�

1R
Rn
e�ph1;K.y/ dy

�
C
Bn

p
� log

�
pn

M.K/

�
C
Bn

p
:

As a result, by (6-1), since jKj D 1,

C.K/D e�uB;K.0/ �
M.K/

pn
e�

Bn
p :

Thus, choosing p D B ,

C.K/�
M.K/

enBn
;

concluding the proof of Theorem 1.9 �
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Remark 6.15. It is enough to formulate Theorem 1.9 in terms of h1;K : By Lemma 2.2(i),

hp;K.y/D
1

p
h1;K.py/:

Therefore r2hp;K.y/D pr2h1;K.py/. As a result,

log detr2hp;K.y/CpBhp;K.y/D log detr2h1;K.py/CBh1;K.py/Cn logp:

Thus, log detr2hp;K.y/CpBhp;K.y/ is convex if and only if log detr2h1;K.y/CBh1;K.y/ is.

6C. A suboptimal bound. We prove Theorem 1.11, i.e., we show that log detr2hp;K Cp.nC 1/hp;K
is convex. Corollary 1.12 then follows from Theorem 1.9(ii).

Proof of Corollary 1.12. By Theorems 1.9(ii) and 1.11,

C.K/�
M.K/

e2n.nC 1/n
�

�
�

2e2

�n 1

.nC 1/n
:

By tensorization (replacing .nC 1/�n by n�n [Mastrantonis and Rubinstein 2022, Appendix A]),

C.K/�
�

�

2e2n

�n
: �

Proof of Theorem 1.11. Recall by the proof of Lemma 6.3,

r
2hp;K.y/D p

�Z
K

xixj d�y.x/�
Z
K

xi d�y.x/
Z
K

xj d�y.x/
�
i;j

; (6-9)

where

d�y.x/ WD
ephx;yiR

K e
phx;yi dx

jKj

11K .x/dx
jKj

;

a probability measure that depends on y. Consider the .nC1/� .nC1/ matrix

M WD

26664
1

R
K x1 d�y.x/ � � �

R
K xn d�y.x/R

K x1 d�y.x/
:::R

K xn d�y.x/

�R
K xixj d�y.x/

�n
i;jD1

37775 :
By row reduction and (6-9),

detM D p�n detr2hp;K :

Note that for i; j 2 f0; 1; : : : ; ng, we have Mij D hxi ; xj iL2.d�y/, where x0 D 1. For

�.x.0/; : : : ; x.n// WD det

2641 x
.0/
1 � � � x

.0/
n

:::
:::

: : :
:::

1 x
.n/
1 � � � x

.n/
n

375 ;
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by Andréief’s formula [Forrester 2019, (1.7)],

detM D
1

.nC 1/Š

Z
KnC1

0B@det

2641 x
.0/
1 � � � x

.0/
n

:::
:::

: : :
:::

1 x
.n/
1 � � � x

.n/
n

375
1CA
2

d�y.x.0// � � � d�y.x.n//

D
1

.nC 1/Š

Z
KnC1

j�j2
ephx

.0/;yiR
K e

phx.0/;yi dx.0/
d�.x.0// � � �

ephx
.n/;yiR

K e
phx.n/;yi dx.n/

d�.x.n//

D
1

.nC 1/Š

1�R
K e

phx;yi dx
�nC1 Z

KnC1
j�j2eph

Pn
jD0 x

.j/;yi dx.0/ � � � dx.n/:

Therefore,

log detr2hp;K.y/D n logpC log detM

D n logp� log.nC 1/Š� .nC 1/ log
Z
K

ephx;yi dxC log�.y/

D n logp� log.nC 1/Š�p.nC 1/hp;K.y/C log�.y/;

where

�.y/ WD

Z
KnC1

j�j2eph
Pn
jD0 x

.j/;yi dx.0/ � � � dx.n/:

Since log� is convex (Lemma 6.16 below), and

log detr2hp;K.y/Cp.nC 1/hp;K.y/D n logp� log.nC 1/ŠC log�.y/;

the claim follows. �

Lemma 6.16. Let K � Rn be a convex body, m 2 N, and f W Rnm! Œ0;C1/ a measurable function.
Then,

�.y/ WD log
Z
Km

f .x1; : : : ; xm/e
hx1C���Cxm;yi dx1 � � � dxm; y 2 Rn;

is convex.

Proof. Write x D .x1; : : : ; xm/ 2 Rnm and let � 2 .0; 1/; y1; y2 2 Rn. Since

f .x/ehx1C���Cxm;.1��/y1C�y2i D .f .x/ehx1C���Cxm;y1i/1��.f .x/ehx1C���Cxm;y2i/�;

by Hölder’s inequality for p D 1
1��

and q D 1
�

,Z
Km

f .x/ehx1C���Cxm;.1��/y1C�y2i dx �
�Z
Km

f .x/ehx1C���Cxm;y1i dx
�1��

�Z
Km

f .x/ehx1C���Cxm;y2i dx
��
:

Taking logarithms yields �..1��/y1C�y2/� .1��/�.y1/C��.y2/. �
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6D. More general probability measures and sharpness of B D n C 1. As just discussed, Theorem 1.11
falls short of proving the slicing conjecture because the best constant B we currently obtain is nC 1. It is
interesting to note that while in the setting of the uniform measure on K this constant could potentially
be improved, many of the results in this section extend to general probability measures and then the
constant nC 1 is in fact optimal. The purpose of this subsection is to spell this out.

Throughout this section the only properties of the measure

11K
dx
jKj

used to obtain the estimates in Lemmas 6.10 and 6.13 were that it is a probability measure that is supported
on K. As a result, it may be replaced by any probability measure

�

that is supported onK, i.e., for any measurableA�RnnK, �.A/D0, so that, in addition, co supp.�/DK.
For example, (6-2) was already obtained for any probability measure with barycenter at the origin. For a
convex body K � Rn and a probability measure � whose convex hull of its support is K, let

hp;�.y/ WD
1

p
log

Z
K

ephx;yi d�.x/:

As in Lemma 6.3,

1

p
r
2hp;�.0/D Cov.�/ WD

�Z
K

xixj d�.x/�
Z
K

xi d�.x/
Z
K

xj d�.x/
�n
i;jD1

:

For p > 0, let

�p;� WD
e�ph1;�.y/dyR

Rn
e�ph1;�.y/ dy

: (6-10)

Then, Claim 6.11, Lemmas 6.10 and 6.13 generalize.

Lemma 6.17. Let p > 0. For a convex body K � Rn, � a probability measure with co supp.�/DK, and
�p;� as in (6-10):

(i) We have Z
Rn

log detr2h1;�.y/ d�p;�.y/� log
�
jKj

R
Rn
e�2ph1;�.y/ dy�R

Rn
e�ph1;�.y/ dy

�2�:
(ii) If b.�p;�/D 0, thenZ

Rn
log detr2h1;�.y/ d�p;�.y/� log

�
jKjenR

Rn
e�ph1;�.y/ dy

�
:

(iii) If b.�/D 0, thenZ
Rn

log detr2h1;�.y/ d�p;�.y/� log
�

jKjR
Rn
e�ph1;�.y/ dy

�
:
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Lemma 6.18. Let p > 0. For a convex body K � Rn and a probability measure � with co supp.�/DK,Z
Rn
h1;�.y/ d�p;�.y/�

n

p
:

Theorem 1.11 also generalizes.

Theorem 6.19. Let p > 0. For a probability measure � on Rn such that supp.�/ is a convex body, the
function

log detr2hp;�.y/Cp.nC 1/hp;�.y/

is convex.

In fact, Theorem 6.19 is sharp: the next example shows B D nC 1 cannot be improved.

Example 6.20. Consider

� WD
ı0C ıe1 C � � �C ıen

nC 1
;

the probability measure on the standard simplex �n that assigns mass 1
nC1

to each vertex. Then,

log detr2hp;�.y/CpBhp;�.y/

is convex if and only if B � nC 1. To see this, compute

hp;�.y/D
1

p
log

Z
�n

ephx;yi d�.x/D
1

p
log

1C epy1 C � � �C epyn

nC 1
:

For the gradient, by the chain rule,

@hp;�

@yi
.y/D

1

p

nC 1

1C epy1 C � � �C epyn

@

@yi

�
1C epy1 C � � �C epyn

nC 1

�
D

epyi

1C epy1 C � � �C epyn
: (6-11)

Thus

rhp;�.y/D
.epy1 ; : : : ; epyn/

1C epy1 C � � �C epyn
:

For the Hessian, by the quotient rule on (6-11),

@2hp;�

@yi@yj
.y/D

pepyi ıij .1C e
py1 C � � �C epyn/� epyipepyj

.1C epy1 C � � �C epyn/2

D
p

1C epy1 C � � �C epyn

�
ıij e

pyi �
ep.yiCyj /

1C epy1 C � � �C epyn

�
:

Thus

r
2hp;�.y/D

p

1C epy1 C � � �C epyn

�
ıij e

pyi �
ep.yiCyj /

1C epy1 C � � �C epyn

�n
i;jD1

D
p

1C epy1 C � � �C epyn
.D� aaT /;



Lp -POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT 2235

where D D diag.epy1 ; : : : ; epyn/ and aD .1C epy1 C � � �C epyn/�1=2.epy1 ; : : : ; epyn/. Therefore,

detr2hp;�.y/D
pn

.1C ey1 C � � �C epyn/n
det.D� aaT /

D
pn

.1C ey1 C � � �C epyn/n
.1� hD�1a; ai/ detD

D
pn

.1C ey1 C � � �C epyn/n

�
1�

epy1 C � � �C epyn

1C epy1 C � � �C epyn

�
epy1C���Cpyn

D
pn

.1C ey1 C � � �C epyn/nC1
epy1C���Cpyn : (6-12)

Here we used the fact that, for u; v 2 Rn, det.I �uvT /D 1� hu; vi, which follows from row reduction

det
�
1 0T

0 ICxyT

�
D det

�
1 yT

0 ICxyT

�
D det

�
1 yT

�x I

�
D det

�
1Chx; yi 0T

�x I

�
:

As a result, by (6-12),

log detr2hp;�.y/CpBhp;�.y/D n log.p/Cpy1C � � �Cpyn� .nC 1/ log.1C epy1 C � � �C epyn/

CB log
1C epy1 C � � �C epyn

nC 1

D .B �n� 1/ log.1C epy1 C � � �C epyn/
Cpy1C � � �CpynCn logp�B log.nC 1/;

which is convex if and only if B � nC 1 (because log.1C epy1 C � � �C epyn/ is convex).
When B D nC 1 and p D 1 we get

log detr2h1;�C .nC 1/h1;� D y1C � � �Cyn� .nC 1/ log.nC 1/;

so that h1;� solves the Monge–Ampère equation

detr2h1;�.y/D
1

.nC 1/nC1
e�.nC1/h1;�ey1C���Cyn :

From here we can read off that

detr2h1;�.0/D
1

.nC 1/nC1
:

We next look at a generalized isotropic constant, by defining

C.�/ WD
jKj2

detr2h1;�.0/
: (6-13)

From the previous equation we then get, remembering that the volume of the unit simplex is 1=nŠ , that

C.�/D
.nC 1/nC1

.nŠ/2
:

The right-hand side here is of the order of magnitude cnn�n, so we see that the “suboptimal” bound of
Corollary 1.12 is optimal in this generality.
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Interpreted benevolently, Example 6.20 means that our method is optimal in the sense that the best
possible choice of B gives the correct estimate for C.�/. The natural question then arises, for which
measures � the constant B can be taken smaller so that we as a consequence get a better estimate of C.�/.
One simple case when this is so is when � is divisible, in the sense that we can write

�D � ? � ? � � �? � D �k?

as the k-fold convolution of another probability measure � with itself. In that case,

h1;� D kh1;� :

Applying Theorem 6.19 to h1;� we then get that

log detr2h1;� C .nC 1/h1;�

is convex, which implies that

log detr2h1;�C
nC 1

k
h1;�

is convex. This leads to the improved estimate

C.�/� cn
�
k

n

�n
:

This is however not so impressive since the same conclusion can be drawn directly from C.�/� cn=nn if
we note that the convex hull of the support of � is K

k
. This way we also see that it is not really necessary

that � can be written �k?; it is enough that �D f �k?, where f is bounded.

6E. A complex geometric approach to Theorems 1.11 and 6.19. In this section we outline a different
proof of Theorem 1.11 (and of its generalization, Theorem 6.19) which is a little more conceptual, but
presupposes a bit of complex geometry. It is based on a theorem by S. Kobayashi [1959, Theorem 4.4].
Kobayashi’s theorem deals with L2 spaces of holomorphic .n; 0/-forms on complex manifolds, but his
proof goes through in a much more general setting and applies in particular to the setting we will now
describe.

Let � be a compactly supported probability measure on Rn. Let

H� WD

�
Qf .z/ WD

Z
Rn
e
1
2
hz;tif .t/ d�.t/; z 2 Cn W f 2 L2.�/

�
:

H� is a space of entire functions on Cn and we give it an inner product

h Qf ; Qgi WD

Z
f .t/g.t/ d�.t/; (6-14)

making H� a Hilbert space, isomorphic to L2.�/.
We require that � is not supported in any proper linear subspace of Rn. This implies that for any

a 2 Rn there is a function f such thatZ
f d�D 0 and

Z
ha; tif .t/ d�.t/¤ 0:
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Indeed, if this were not the case, any function orthogonal to 1 in L2.�/ would also be orthogonal to ha; ti,
which would imply that ha; ti D c on the support on �, contrary to assumption. In terms of functions
in H�, this says that there is a function Qf which vanishes at the origin, with

P
aj @jf not vanishing

there. Then, replacing f by ehz0;ti=2f .t/ we see that the same thing goes for any point z0 in Cn. This
means that the conditions A.1 and A.2 in [Kobayashi 1959, pp. 271–2] are satisfied (we will see the
relevance of this shortly). Kobayashi’s condition A.1 says that for any point in Cn there is a function
in H� that does not vanish there — this is trivial in our case. Indeed, for z0 2 Cn, since � is compactly
supported, e�hz0;ti 2 L2.�/, andZ

e�hz0;tiehz0;ti d�.t/D
Z

d�.t/D 1;

because � is a probability measure.
The (diagonal) Bergman kernel for H� is defined as

B�.z/ WD sup
f Qf 2H�Wk Qf kD1g

j Qf .z/j2:

By condition A.1, the Bergman kernel does not vanish anywhere. It follows directly from the definitions
that for

K�.z; w/ WD
Z
eh
zC Nw
2
;ti d�.t/;

and Qf .z/D
R
ehz;ti=2f .t/ d�.t/ 2H�, by (6-14),

h Qf ;K�. � ; w/i D
Z
f .t/e

1
2
h Nw;ti d�.t/D

Z
f .t/e

1
2
hw;ti d�.t/D Qf .w/;

i.e., K� enjoys a reproducing property, in addition to being holomorphic in the first variable and antiholo-
morphic in the second. These three properties characterize Bergman kernels [Mastrantonis and Rubinstein
2022, §3.2]; thus K� is the Bergman kernel of H�. Therefore, on the diagonal, if z D xC iy,

B�.z/D K�.z; z/D
Z
ehx;ti d�.t/;

i.e., coming back full circle to the ideas in Section 1A,

logB� D h1;�: (6-15)

The Bergman metric associated to H� is the Kähler metric on Cn defined by

g
j Nk
WD

@2

@zj @ Nzk
logB�:

By (6-15), logB� is convex in x, hence plurisubharmonic in z, and the matrix gD Œg
j Nk
� is positive semidef-

inite, and it is a standard fact (that we omit) that the condition A.2 is precisely what is needed to make sure
it is strictly positive definite. (Alternatively, condition A.2 can verified by using (6-15), the computation
of Lemma 6.3, and the Cauchy–Schwarz inequality to note that hp;� is strongly convex.) Kobayashi’s
theorem says that the Ricci curvature Ricg of the Bergman metric is bounded from above by .nC 1/g.
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At this point we need to make use of a standard formula for the Ricci curvature, valid for any Kähler
metric. Let

� WD detŒg
j Nk
�

be the density of the volume form of the metric g. Then the Ricci curvature form of g is given by

R
j Nk
D�

@2

@zj @ Nzk
log�:

Hence, Kobayashi’s estimate
ŒRjk�� .nC 1/Œgjk�

translates to saying that
log�C .nC 1/ logB�

is plurisubharmonic. In our case, B� and log� depend only on x D Re.z/, so

log�C .nC 1/ logB�

is actually a convex function of x. Moreover, logB�D h1;� and �D 4�n detr2h1;� (in the last equality
we used the relation between the complex Hessian and the real one on functions depending only on the
real part). Therefore

log detr2h1;�C .nC 1/h1;�

is convex, i.e., (�B ) holds with B D nC 1, so we have proved Theorem 6.19, and, in particular, also
Theorem 1.11.

Appendix: A (near) norm associated to a convex function

In this section we give proofs for Proposition A.1 [Ball 1988, Theorem 5] and Theorem 5.20 [Ball 1986,
Theorem 4.10] (cf. [Busemann 1949; Milman and Pajor 1989, p. 90]). Let us start by using Theorem 5.20
to prove Proposition A.1.

Proposition A.1. For a convex function � W Rn! R[f1g with 0 <
R

Rn
e�� <1,

x 7!

�Z 1
0

rn�1e��.rx/ dr
�� 1

n

(A-1)

is positively 1-homogeneous and subadditive (it is also a norm if � is, in addition, even), and
1

n

Z
Rn
e��.x/ dx D jfx 2 Rn W kxk� � 1gj:

Proof of Proposition A.1. 1-homogeneity. Let x 2 Rn and � > 0. By changing variables �D �r ,

k�xk� WD

�Z 1
0

rn�1e��.r�x/ dr
�� 1

n

D

�Z 1
0

�n�1

�n�1
e��.�x/

d�
�

�� 1
n

D �

�Z 1
0

�n�1e��.�x/ d�
�� 1

n

D �kxk� :

Positivity of � is used in the last step.
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Subadditivity. Let x; y 2 Rn and r; t; s > 0 with 1
r
D

1
2

�
1
t
C
1
s

�
, or equivalently,

r

2t
C
r

2s
D 1: (6-2)

By (6-2) and convexity of �,

�.r.xCy//D �

�
r

2t
2txC

r

2s
2sy

�
�
r

2t
�.2tx/C

r

2s
�.2sy/D

s

t C s
�.2tx/C

t

t C s
�.2sy/: (6-3)

Set
H.r/ WD e��.r.xCy//; F .t/ WD e��.2tx/; G.s/ WD e��.2sy/:

By (6-3), H.r/� F.t/s=.tCs/G.s/t=.tCs/, so by Theorem 5.20 (with q D n),

kxCyk� D

�Z 1
0

rn�1e�H.r/ dr
�� 1

n

�
1

2

�Z 1
0

rn�1e�F.t/ dt
�� 1

n

C
1

2

�Z 1
0

rn�1e�G.s/ ds
�� 1

n

D
1

2
k2xk� C

1

2
k2yk� D kxk� Ckyk� ;

using the already established homogeneity of k � k� .

Volume equality. By (3-2),

jfx 2 Rn W kxk� � 1gj D
1

n

Z
@Bn2

du
kukn�

D
1

n

Z
@Bn2

Z 1
0

rn�1e��.ru/ dr du: (6-4)

Using polar coordinates this is 1
n

R
Rn
e��.x/ dx.

Norm. Assuming in addition that � is even, for x 2 Rn,

k� xk� D

�Z 1
0

rn�1e��.�rx/ dr
�� 1

n

D

�Z 1
0

rn�1e��.rx/ dr
�� 1

n

D kxk� :

Therefore, for � 2 R, k�xk� D kj�jxk� D j�jkxk� , making k � k� into a norm. This concludes the proof
of Proposition A.1. �

Next, we turn to proving Theorem 5.20. The proof involves three auxiliary lemmas. To begin with,
invert the variables; for t; s; r > 0, let

u WD
1

t
; v WD

1

�s
; and w WD

1

r

for some � >0 to be chosen later. In the inverted coordinates, the condition 2
r
D
1
t
C
1
s

becomeswD uC�v
2

.
Now, let

A.u/ WD F.u�1/u�.qC1/; B.v/ WDG.��1v�1/v�.qC1/ (6-5)

and

C.w/ WD

�
� C 1

2

�qC1
H.w�1/w�.qC1/: (6-6)

The reason behind the multiplication by
�
�C1
2

�qC1 will become apparent in the next lemma that translates
the (5-16) relation between F;G and H to one between A;B and C .
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Lemma 6.2. Let F;G;H as in Theorem 5.20, and � > 0. For A;B and C as in (6-5)–(6-6),

C

�
uC �v

2

�
� A.u/

u
uC�vB.v/

�v
uC�v for all u; v > 0:

A straightforward change of variables expresses the integrals of F;G, and H in terms of integrals of
A;B , and C :

Lemma 6.3. Let F;G;H as in Theorem 5.20 and � > 0. For A;B and C as in (6-5) and (6-6),Z 1
0

A.u/ duD
Z 1
0

tq�1F.t/ dt;Z 1
0

B.v/ dv D �q
Z 1
0

sq�1G.s/ ds;Z 1
0

C.w/ dw D
�
� C 1

2

�qC1 Z 1
0

rq�1H.r/ dr:

The following is a standard reduction:

Lemma 6.4. It is enough to prove Theorem 5.20 for F and G bounded.

Before proving Lemmas 6.2–6.4, let us show how they imply Theorem 5.20. For a function E W
.0;1/! Œ0;1/, changing the order of integration,Z 1

0

E.u/ duD
Z 1
0

Z E.u/

0

dz duD
Z kEk1
0

Z
fuWE.u/�zg

du dz D
Z kEk1
0

jE � zj dz; (6-7)

where kEk1 could potentially be infinite. Ball applies the 1-dimensional Brunn–Minkowski inequality
to the sets fE � zg.

Proof of Theorem 5.20. Step 1: the setup. Let

a WD

�Z 1
0

tq�1F.t/ dt
�1
q

; b WD

�Z 1
0

sq�1G.s/ ds
�1
q

; c WD

�Z 1
0

rq�1H.r/ dr
�1
q

:

The aim is to show 2
c
�
1
a
C
1
b

, or equivalently,

c �
2ab

aC b
: (6-8)

By Lemma 6.3 and (6-7),

aq D

Z 1
0

A.u/ duD
Z kAk1
0

jA� zj dz; (6-9)

.�b/q D

Z 1
0

B.v/ dv D
Z kBk1
0

jB � zj dz; (6-10)�
� C 1

2

�qC1
cq D

Z 1
0

C.w/ dw D
Z kCk1
0

jC � zj dz: (6-11)
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Step 2: comparing the superlevel sets. Lemma 6.2 allows us to compare the superlevel sets of A;B
and C , obtaining an inequality between a; b and c. In particular,

fC � zg �
1

2
fA� zgC

�

2
fB � zg; (6-12)

because for u 2 fA� zg and v 2 fB � zg,

C

�
uC �v

2

�
� A.u/

u
uC�vB.v/

�v
uC�v � z

u
uC�v z

�v
uC�v D z;

i.e., uC�v
2
2 fC � zg. By the 1-dimensional Brunn–Minkowski inequality,

jC � zj �
1

2
jA� zjC

�

2
jB � zj: (6-13)

By (6-7) and (6-13),�
� C 1

2

�qC1
cq D

Z kCk1
0

jC � zj dz � 1
2

Z kCk1
0

jA� zj dzC �
2

Z kCk1
0

jA� zj dz: (6-14)

Step 3: choosing � . By Lemma 6.2, kCk1 �minfkAk1; kBk1g. In view of (6-9), (6-10) and (6-14),
we would like kCk1 �maxfkAk1; kBk1g. The only way to achieve this is to have kAk1 D kBk1.
It is here that one needs to take F and G bounded so that kAk1 and kBk1 are finite. By Lemma 6.4,
there is no loss in making such an assumption. Choosing

� WD

�
supr>0 F.r/r

qC1

supr>0G.r/rqC1

� 1
qC1

;

gives

kAk1 D sup
r>0

F.r/rqC1 D sup
r>0

G.r/.� r/qC1

D sup
u>0

G.��1u�1/u�.qC1/ D kBk1:

Step 4: finishing the proof. By Lemma 6.2 and the choice of � , kCk1 � kAk1 D kBk1. By (6-9),
(6-10), and (6-14),�

� C 1

2

�qC1
cq �

1

2

Z kAk1
0

jA� zj dzC �
2

Z kBk1
0

jB � zj dz D
aqC �qC1bq

2
:

That is,

cq �

�
2

� C 1

�q� 1

1C �
aqC

�

1C �
.�b/q

�
�

�
2

� C 1

�q� 1

� C 1
aC

�

� C 1
�b

�q
;

because for q � 1, x 7! xq is convex and hence

.1��/xqC�yq � ..1��/xC�y/q
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for all x; y � 0 and � 2 Œ0; 1�. Finally,

c �
2.aC �2b/

.� C 1/2
D
2.aC b/.aC �2b/

.aC b/.� C 1/2
D 2

a2C �2abC abC �2b2

.aC b/.� C 1/2

D 2
.�2C 1/abC a2C �2b2

.aC b/.� C 1/2
D 2

.� C 1/2ab� 2�abC a2C �2b2

.aC b/.� C 1/2

D 2
.� C 1/2abC .a� �b/2

.aC b/.� C 1/2
D

2ab

aC b
C

2.a� �b/2

.aC b/.� C 1/2
�
2ab

aC b
;

as desired. This concludes the proof of Theorem 5.20, modulo the proofs of Lemmas 6.2–6.4, which are
given below. �

Proof of Lemma 6.2. For t; s; r > 0 with 2
r
D

1
t
C
1
s

, by assumption,

H.r/� F.t/
s
tCsG.s/

t
tCs D

�
A.t�1/t�.qC1/

� s
tCs
�
B.��1s�1/.�s/�.qC1/

� t
tCs

D A.u/
s
tCsB.v/

t
tCs
�
t
s
tCs .�s/

t
tCs
��.qC1/

: (6-15)

Since,
s

t C s
D

u

uC �v
and

t

t C s
D

�v

uC �v
;

by (6-15) and the weighted AM–GM,

A.u/
u

uC�vB.v/
�v
uC�v D A.u/

s
tCsB.v/

t
tCs �H.r/.t

s
tCs .�s/

t
tCs /qC1

�H.r/

�
ts

t C s
C
�st

t C s

�qC1
D

�
� C 1

2

�qC1
H.r/

�
2ts

t C s

�qC1
D

�
� C 1

2

�qC1
H.r/rpC1 D C

�
uC �v

2

�
; (6-16)

because 1
r
D

1
2t
C

1
2s
D

1
2
uC 1

2
.�v/D uC�v

2
. �

Proof of Lemma 6.3. By changing variables, uD 1
t
,Z 1

0

A.u/ duD
Z 1
0

u�.qC1/F.u�1/ duD
Z 1
0

tqC1F.t/
dt
t2
D

Z 1
0

tq�1F.t/ dt:

For v D 1
�s

,Z 1
0

B.v/ dv D
Z 1
0

v�.qC1/G.��1v�1/ dv D
Z 1
0

.�s/qC1G.s/
ds
�s2
D �q

Z 1
0

sq�1G.s/ ds:

Finally, for w D 1
r

,Z 1
0

C.w/ dw D
�
� C 1

2

�qC1 Z 1
0

w�.qC1/H.w�1/ dw

D

�
� C 1

2

�qC1 Z 1
0

rqC1H.r/
dr
r2
D

�
� C 1

2

�qC1 Z 1
0

rq�1H.r/ dr: �
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Proof of Lemma 6.4. For m 2 N, let

Fm.t/ WD F.t/1fF�mg.t/ and Gm.s/ WDG.s/1fG�mg.s/:

Then, Fm; Gm are both bounded by m. In addition, F � Fm and G � Gm, thus for t; s; r > 0 with
2
r
D

1
t
C
1
s

,

H.r/� F.t/
s
tCsG.s/

t
tCs � Fm.t/

s
tCsGm.s/

t
tCs :

Under the assumption that Theorem 5.20 holds for bounded functions,

2

�Z 1
0

rq�1H.r/ dr
�� 1

q

�

�Z 1
0

tq�1Fm.t/ dt
�� 1

q

C

�Z 1
0

sq�1Gm.s/ ds
�� 1

q

:

The claim follows from the monotone convergence theorem by taking m!1. �
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