Download this article
 Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
On the spectrum of nondegenerate magnetic Laplacians

Laurent Charles

Vol. 17 (2024), No. 6, 1907–1952
Abstract

We consider a compact Riemannian manifold with a Hermitian line bundle whose curvature is nondegenerate. Under a general condition, the Laplacian acting on high tensor powers of the bundle exhibits gaps and clusters of eigenvalues. We prove that for each cluster the number of eigenvalues that it contains is given by a Riemann–Roch number. We also give a pointwise description of the Schwartz kernel of the spectral projectors onto the eigenstates of each cluster, similar to the Bergman kernel asymptotics of positive line bundles. Another result is that gaps and clusters also appear in local Weyl laws.

Keywords
Bochner Laplacian, magnetic Laplacian, Riemann–Roch number, Weyl law
Mathematical Subject Classification
Primary: 35P20, 35Q40, 58J20, 58J50
Milestones
Received: 12 October 2021
Revised: 2 November 2022
Accepted: 7 March 2023
Published: 19 July 2024
Authors
Laurent Charles
Institut de Mathématiques de Jussieu-Paris Rive Gauche
Sorbonne Université, CNRS
Paris
France

Open Access made possible by participating institutions via Subscribe to Open.