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UNIFORM SKODA INTEGRABILITY AND CALABI–YAU DEGENERATION

YANG LI

We study polarised algebraic degenerations of Calabi–Yau manifolds. We prove a uniform Skoda-type
estimate and a uniform L∞-estimate for the Calabi–Yau Kähler potentials.

1. Introduction

Let (Y, ω) be a compact Kähler manifold, and let dµ be a measure on Y . We say (Y, ω, dµ) satisfies the
Skoda-type inequality, if, for any Kähler potential u ∈ PSH(Y, ω) normalised to sup u = 0,∫

Y
e−αu dµ ≤ A, (1)

where α and A are independent of u. A prototype theorem is:

Theorem 1.1 [Tian 1987]. On a fixed compact Kähler manifold (Y, ω), the Skoda-type inequality holds
for dµ = ωn .

Remark 1.2. Here the supremum of all such α is known as Tian’s alpha invariant and is important for
existence questions of Kähler–Einstein metrics.

We are interested in keeping track of the constants α and A as (Y, ω, dµ) varies. The main theme of
this paper is that oftentimes the Skoda constants can be chosen uniformly for quite flexible choices of
probability measures dµ, even when the complex structure degenerates severely. In the literature, α is
much studied, see [Guedj and Zeriahi 2005; Tian 1987], and a very recent preprint [Di Nezza et al. 2023]
made aware to the author after the completion of this work contains a uniform estimate for both α and A
in the related context of Kähler–Einstein manifolds.

Our main application is to algebraic degenerations of Calabi–Yau manifolds. We work over C. Let S
be a smooth affine algebraic curve, with a point 0 ∈ S. An algebraic degeneration family is given by a
submersive projective morphism π : X → S \ {0} with smooth connected n-dimensional fibres X t for
t ∈ S \ {0}. A polarisation is given by an ample line bundle L over X ; the sections of a sufficiently high
power of L induces an embedding X → CPN , and hence a Fubini–Study metric ωX on (X, L). For
0 < |t | ≪ 1, a fixed choice of ωX induces rescaled background metrics ωt = ωX |X t /

∣∣log|t |
∣∣ on X t in the

class c1(L)/
∣∣log|t |

∣∣.
A model of X is a normal flat projective S-scheme X which agrees with π : X → S \ {0} over the

punctured curve. It is called a semistable snc model if X is smooth, the central fibre over 0 ∈ S is reduced
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and is a simple normal crossing (snc) divisor in X . By the semistable reduction theorem [Kempf et al.
1973, Chapter 2], after finite base change to another smooth algebraic curve S′, we can always find some
semistable snc model for the degeneration family X ×S (S′

\ {0}). Everything here is quasiprojective.
We say the degeneration family is Calabi–Yau if there is a trivialising section � of the canonical

bundle K X . Over a small disc Dt around 0 ∈ S, this induces holomorphic volume forms �t on X t via
� = dt ∧ �t . The normalised Calabi–Yau measure on X t is the probability measure

dµt =
�t ∧ �t∫

X t
�t ∧ �t

. (2)

We are ready to state our main result.

Theorem 1.3 (uniform Skoda estimate). Given a polarised algebraic Calabi–Yau degeneration family
π : X → S \ {0} as above, there are uniform positive constants α and A independent of t for 0 < |t | ≪ 1
such that, for the normalised Calabi–Yau measures dµt ,∫

X t

e−αu dµt ≤ A for all u ∈ PSH(X t , ωt) with sup
X t

u = 0.

This is proved by reducing to the semistable snc model case and proving a general Skoda-type
estimate there (see Theorem 2.9). A major consequence, readily reaped using Kołodziej’s estimate (see
Theorem 3.1), follows.

Theorem 1.4 (uniform L∞-estimate). Let φt be the Kähler potential of the Calabi–Yau metric in the class
(X t , [ωt ]), namely

(ωt +
√

−1∂∂̄φ)n∫
X t

ωn
t

= dµt , sup
X t

φt = 0.

Then ∥φt∥L∞ ≤ C independently of t for 0 < |t | ≪ 1.

Remark 1.5. Applications of pluripotential theory to Calabi–Yau metrics when the Kähler class is
degenerating can be found in [Eyssidieux et al. 2008], which is used further in [Tosatti 2010]. Our main
results generalise certain aspects of [Li 2022] which focuses on degenerating projective hypersurfaces
near the large complex structure limit.

2. Uniform Skoda inequality

We work in the context of semistable simple normal crossing (snc) models. Concretely, let π : X → Dt

be a flat projective family of n-dimensional varieties over a small disc Dt such that the total space X
is smooth, π is a submersion over the punctured disc with connected fibres, and the central fibre X0 is
reduced and is an snc divisor in X . Denote the components of X0 by Ei with i ∈ I . We equip X with a
fixed background Kähler metric ωX , inducing a distance function dωX . This induces a family of rescaled
Kähler metrics ωt = ωX |X t /

∣∣log|t |
∣∣. We shall derive a uniform Skoda-type estimate (1) for (X t , ωt , dµt),

where dµt belongs to a natural class of measures. The main result is Theorem 2.9.
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Quantitative stratification and good test functions. There is a quantitative stratification on any smooth
fibre X t induced by the intersection pattern of Ei : for J ⊂ I such that E J =

⋂
i∈J Ei ̸=∅, the corresponding

stratum is

E0
J = {x ∈ X t | dωX (x, E J ) ≲ ϵ} \ {x ∈ X t | dωX (x, E J ′) ≲ ϵ for some J ′ ⊋ J },

namely a small “ϵ-tubular neighbourhood” of E J minus the deeper strata. For J = {i} we write E0
i = E0

{i}.
Here the disc Dt and the small parameter ϵ ≪ 1 can be shrunk for convenience; the essential thing is that
all parameters should be independent of the coordinate t .

It is useful to introduce local coordinates {zi }
n
0 around E J ⊂ X such that z0, . . . , z p with p = |J | − 1

are the local defining equations of E j for j ∈ J , and locally the fibration map is t = z0 · · · z p. Then up to
uniform equivalence, locally

ωX ∼

n∑
0

√
−1 dzi ∧ dz̄i .

The rest of this section is devoted to the construction of good test functions. Given any of these
divisors E0, we can find a nonnegative function h = hE0 on X such that:

• In the local charts near E0 with z0 being the defining function for E0,

h = |z0|
2h̃(z0, . . . , zn)

for some positive smooth function h̃.

• Away from E0, the function h is comparable to 1.

We observe that:

• The form ∂∂̄ log h = ∂∂̄ log h̃ extends smoothly.

• For |t |2 ≪ h ≲ δ ≪ 1 inside X t , so that |z0| ≫ |t |, by a local calculation near E J with 0 ∈ J ,

√
−1∂ log h ∧ ∂̄ log h ∧ ωX |

n−1
X t

≥

√
−1

2|z0|2
dz0 ∧ dz̄0 ∧ ωX |

n−1
X t

≳ min
{

1
|z0|2

, max
1≤i≤p

|zi |
−2

}
ωX |

n
X t

≳ min
{

1
h
, h1/p

|t |−2/p
}
ωX |

n
X t

≳ min
{

1
h
, h1/n

|t |−2/n
}
ωX |

n
X t

.

Here in the first inequality we need to fix δ ≪ 1 so that the effect of ∂ log h is dominated by d log z0.
The second inequality uses that, for 1 ≤ k ≤ p, the volume forms on X t satisfy

1
|z0|2

dz0 ∧ dz̄0 ∧

∏
j ̸=k,1≤ j≤n

√
−1 dz j ∧ dz̄ j ∼

1
|zk |

2

∏
1≤ j≤n

√
−1 dz j ∧ dz̄ j ,

and the third inequality uses |t | = |z0 · · · z p| ∼ h1/2
|z1 · · · z p|.

• On X t , we have that h ≳ |t |2. The region {|t |2 ∼ h} ⊂ X t can be identified as E0
0 , namely the vicinity

of E0 away from deeper strata. Here
√

−1∂ log h ∧ ∂̄ log h ∧ ωX |
n−1
X t

≥ 0 and
√

−1∂∂̄ log h ∧ ωX |
n−1
X t

≳ −ωX |
n
X t

.
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Lemma 2.1 (good test functions). Given the divisor E0, we can choose a C2 test function v on X t such
that the following hold uniformly for small t ̸= 0:

• v is zero for h ≥ δ.

• Globally, 0 ≤ v ≤ − log |t |.

• For any divisor E j intersecting E0, there is a subset of E0
j with measure at least C2 on which

√
−1∂∂̄v ∧ ωX |

n−1
X t

≥ C3ωX |
n
X t

.

• For C4|t |2 ≤ h ≤ δ, the form
√

−1∂∂̄v ∧ ωX |
n−1
X t

is greater than or equal to 0.

• For h ≤ C4|t |2, the form
√

−1∂∂̄v ∧ ωX |
n−1
X t

is greater than or equal to −C5ωX |
n
X t

.

Proof. We seek the test function in the form v = 8 ◦ log h for some convex, nonincreasing, nonnegative
C2-function 8. Compute

∂∂̄v = 8′′∂ log h ∧ ∂̄ log h + 8′(∂∂̄ log h̃),

and using the properties of h above,

√
−1∂∂̄v ∧ ωX |

n−1
X t

≥

{(
8′′C ′

1 min
{ 1

h , h1/n
|t |−2/n

}
+ 8′C ′

2

)
ωX |

n
X t

, |t |2 ≲ h ≤ δ,

C ′

38
′ωX |

n
X t

, h ≲ |t |2.

To satisfy our conditions on v, it is enough to have:

• 8(x) = 0 for x ≥ log δ.

• |8′(x)| ≲ 1 for 2 log |t | ≲ x ≤ log δ.

• For h = ex
≤ δ,

−
d

dx
log |8′

| =
8′′

|8′|
≥ C ′

4 max{h, h−1/n
|t |2/n

},

where C ′

4 > C ′

2/C ′

1. Moreover, for x < δ, we need 8′ < 0, so that
√

−1∂∂̄v ∧ ωX |
n−1
X t

has some
strict positivity for 1

2δ < h < δ. Notice convexity of 8 is a consequence of these conditions.

To construct such a 8, we can prescribe the behaviour near x = log δ by

8′(x) = −e1/(x−log δ)

for x < log δ and match this with a solution to

−
d

dx
log |8′

| = C ′

4 max{ex , e−x/n
|t |2/n

}, x < log δ,

for some large enough C ′

4 such that 8′ remains C1 at the matching point. Integration shows that |8′
|

remains uniformly bounded at h ∼ |t |2, or equivalently x ∼ 2 log |t |. □

Convexity. Consider u ∈ PSH(X t , ωt) normalised to supX t
u = 0. Equivalently, we can cover X t by a

bounded number of charts as before and use the local potentials of ωX to represent u as a collection of
local plurisubharmonic (psh) functions {uβ} with |uβ − u| ≤ C .



UNIFORM SKODA INTEGRABILITY AND CALABI–YAU DEGENERATION 2251

Lemma 2.2 (convexity). Let φ be any psh function on the open subset of

{1 < |zi | < 3, i = 1, . . . , p; |zk | < 1, k = p + 1, . . . , n} ⊂ (C∗)p
× Cn−p.

Then the function

φ̄(x1, . . . , x p) =
1

(2π)n

∫
{|zk |≤1 ∀k>p}

n∏
p+1

√
−1 dzk ∧ dz̄k

∫
T p

φ(ex1+iθ1, . . . , ex p+iθp) dθ1 · · · dθp

is convex.

Proof. For any choice of θi , the function φ(z1eiθ1, . . . , z peiθn , z p+1, . . . , zn) is psh, since the T p-action
on (C∗)p is holomorphic. Thus the average function φ̄ is also psh as a function of z1, . . . , z p. Any
T p-invariant psh function must be convex in the log coordinates because, for xi = log |zi |,

√
−1∂∂̄φ̄ =

1
4

∑ ∂2φ̄

∂xi∂x j

√
−1 d log zi ∧ d log z j ≥ 0. □

Harnack-type inequality.

Lemma 2.3 (almost maximum on top strata I). For u ∈ PSH(X t , ωt) normalised to supX t
u = 0, there is

some i ∈ I such that

sup
E0

i

u ≥ −C,

∫
E0

i

uωX |
n
X t

≥ −C ′.

Proof. Let the global maximum of u be achieved at q0 ∈ E0
J , and denote the local potential of u by uβ .

Without loss of generality, uβ ≤ 0. We have uβ(q0) ≥ −C since |u − uβ | ≤ C . Applying the mean
value inequality around q0, we find that the local average function ūβ produced in Lemma 2.2 satisfies
sup ūβ ≥ −C for another uniform constant C . By the convexity of ūβ , its supremum is almost achieved
at the boundary of the chart, which is contained in a union of less deep strata E0

J ′ , with J ′ ⊊ J . Thus we
can find a point q ′ with u(q ′) ≥ −C that belongs to a less deep stratum; an induction shows that there is
some i ∈ I such that supE0

i
u ≥ −C .

For the L1-bound we recall the following Harnack inequality argument. Suppose a coordinate ball
B(q, 3R) is contained in a local chart in a small neighbourhood of E0

i . Applying the mean value inequality
to the local psh function associated to u, we see, for y ∈ B(q, R), that

u(y) ≤ C + −

∫
B(y,2R)

u ≲ 1 + −

∫
B(q,R)

u.

Hence the Harnack inequality yields

−

∫
B(q,R)

|u| ≲ 1 + inf
B(q,R)

(−u).

Applying this to a chain of balls connecting any two points in E0
i gives the L1-bound

∫
E0

i
uωX |

n
X t

≥ −C ′;
the bound is uniform because the number of balls involved in the chain can be controlled independently
of t . □
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Proposition 2.4 (almost maximum on top strata II). There is a uniform lower bound for all |t | ≪ 1 and
all i ∈ I :

sup
E0

i

u ≥ −C,

∫
E0

i

uωX |
n
X t

≥ −C ′. (3)

Proof. The L1-estimate follows from the supremum estimate as above, so the real problem is to transfer
bounds between different E0

i . This is nontrivial because the necks connecting E0
i with each other are

highly degenerate.
Given one divisor E0 such that

∫
E0

0
uωX |

n
X t

≥ −C, we produce a good test function v by Lemma 2.1.
Integrating by parts, ∫

X t

v
√

−1∂∂̄u ∧ ωX |
n−1
X t

=

∫
X t

u
√

−1∂∂̄v ∧ ωX |
n−1
X t

.

The left-hand side is the difference between∫
X t

v(ωt +
√

−1∂∂̄u) ∧ ωX |
n−1
X t

and
∫

X t

vωt ∧ ωX |
n−1
X t

,

and since − log |t | ≳ v ≥ 0, both terms are bounded between 0 and C . Thus∣∣∣∣∫
X t

u
√

−1∂∂̄v ∧ ωX |
n−1
X t

∣∣∣∣ ≤ C.

Now the form
√

−1∂∂̄v ∧ ωX |
n−1
X t

can only be negative on {h ∼ |t |2} = E0
0 and is bounded below

by −CωX |
n
X t

. Thus the positive part of the signed measure u
√

−1∂∂̄v ∧ωX |
n−1
X t

has total mass controlled
by

∫
E0

0
|u|ωX |

n
X t

≤ C . Consequently, the negative part of the signed measure must also have total mass ≤ C .

By construction, for any divisor E j intersecting E0, there is a nontrivial amount of
√

−1∂∂̄v ∧ωX |
n−1
X t

-
measure inside E0

j . This forces supE0
j
u ≥ −C . To summarise, we have transferred the supremum bound

from E0
0 to any E0

j with E j ∩ E0 ̸= ∅. Since the central fibre X0 is connected, in at most |I | steps this
supremum bound is transferred to all E0

i with i ∈ I . □

Remark 2.5. This proof is inspired by the intersection-theoretic argument of [Boucksom et al. 2016,
Section 6.1], which can be viewed as a non-Archimedean analogue.

Local L1 estimate. For a given local chart on E0
J with C∗-coordinates z1, . . . , z p and C-coordinates

z p+1, . . . , zn , and a point q therein, we shall refer to the subregion{ 1
2 |zi (q)| ≲ |zi | ≲ 2|zi (q)|, 1 ≤ i ≤ p

}
as a log scale.

Lemma 2.6 (local L1-estimate). Within every log scale there is a uniform bound on the L1-average
integral:

−

∫
loc

|u|

p∏
1

√
−1 d log zi ∧ d log z̄i ∧

n∏
p+1

√
−1 dzk ∧ dz̄k ≤ C.
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Proof. For p = 0 this follows from Proposition 2.4. Given a depth p chart, we consider the local psh
function uβ associated to u and produce the convex average function ūβ as in Lemma 2.2. We claim
|ūβ | ≤ C in the chart. The upper bound holds as uβ is bounded above, and by convexity it suffices
to achieve a lower bound at the barycentre of the simplex. However, when we blow up the depth p
intersection E J , there is a new vertex in the dual complex corresponding to the new divisor component in
the central fibre. The dual complex is subdivided, and the new vertex is situated at the original barycentre.
The same argument in Proposition 2.4 then achieves a lower bound on the local average of the Kähler
potential near this new divisor, which amounts to the desired lower bound on ūβ at the barycentre, whence
the claim follows.

Within any log scale, by construction the local average −

∫
loc(uβ−ūβ) equals zero. But uβ ≤C since u ≤0,

and hence

−

∫
loc

|uβ − ūβ | ≲ −

∫
loc

(uβ − ūβ)+ ≤ C.

Using |u − uβ | ≤ C , we conclude the local L1-estimate on u. □

Local Skoda estimate. We recall a basic version of the Skoda inequality:

Proposition 2.7 [Zeriahi 2001, Theorem 3.1]. If φ is psh on B2 ⊂ Cn , with
∫

B2
|φ|ωn

E ≤ 1 with respect to
the standard Euclidean metric ωE , then there are dimensional constants α and C such that∫

B1

e−αφωn
E ≤ C.

Applying this along with Lemma 2.6, we get the following corollary.

Corollary 2.8 (local Skoda estimate). Within every log scale, there are uniform positive constants α

and C such that

−

∫
loc

e−αu
p∏
1

√
−1 d log zi ∧ d log z̄i ∧

n∏
p+1

√
−1 dzk ∧ dz̄k ≤ C.

Uniform global Skoda estimate. We are interested in the following class of measures, motivated by
Calabi–Yau measures (see Section 3). Let ai be nonnegative real numbers assigned to i ∈ I , with
min ai = 0. Let

m = max{|J | − 1 : E J ̸= ∅, ai = 0 for i ∈ J }.

We say the measures dµt on X t satisfy a uniform upper bound of class (ai ) if, on the local charts of
each E0

J ,

dµt ≤
C∣∣log|t |

∣∣m |z0|
2a0 · · · |z p|

2ap

p∏
1

√
−1 d log zi ∧ d log z̄i ∧

n∏
p+1

√
−1 dzk ∧ dz̄k . (4)

The normalisation factor ensures that
∫

X t
dµt ≤C independently of t by a straightforward local calculation.
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Theorem 2.9 (uniform Skoda estimate). Suppose the measures dµt on X t satisfy a uniform upper bound
of class (ai ). Then there are uniform positive constants α and A such that∫

X t

e−αu dµt ≤ A for all u ∈ PSH(X t , ωt) with sup
X t

u = 0.

Proof. We choose the charts so that each point on X t is covered by ≤ C log scales. Summing over the
local Skoda estimates from all log scales,

∫
X t

e−αu dµt is bounded by

C∣∣log|t |
∣∣m

∑
log scales

∫
loc

|z0|
2a0 · · · |z p|

2ap

p∏
1

√
−1 d log zi ∧ d log z̄i ∧

n∏
p+1

√
−1 dzk ∧ dz̄k ≤ C. □

3. Application to Calabi–Yau degeneration

We work in the setting of polarised algebraic degeneration of Calabi–Yau manifolds, as in the Introduction.

Calabi–Yau measure. The Calabi–Yau measure (2) is studied thoroughly in [Boucksom and Jonsson
2017], but it is illustrative to recall it explicitly on a semistable snc model X . The discussion is local
on the base, and we will follow the notations of Section 2, e.g., the components of the central fibre are
denoted by Ei for i ∈ I .

The canonical divisor KX =
∑

i ai Ei is supported on the central fibre, since K X is trivialised. Multiply-
ing � by a power of t , which does not change dµt , we may assume min ai = 0. In the local coordinates
around E J away from the deeper strata,

� = f J

p∏
0

zai
i dzi ∧

n∏
p+1

dz j

for some nowhere-vanishing local holomorphic function f J . Since t = z0 · · · z p,

�t = f J za0
0 · · · zap

p

p∏
1

d log zi ∧

n∏
p+1

dz j ,

and hence

√
−1

n2

�t ∧ �t = | f J |
2
|z0|

2a0 · · · |z p|
2ap

p∏
1

√
−1 d log zi ∧ d log zi ∧

n∏
p+1

√
−1 dz j ∧ dz̄ j .

The total measure
∫

X t

√
−1

n2

�t ∧ �t is of the order O
(∣∣log|t |

∣∣m)
, where

m = max{|J | − 1 : E J ̸= ∅, ai = 0 for i ∈ J }.

Thus dµt satisfies a uniform upper bound of class (ai ); see (4).

Uniform Skoda estimate. We now prove the main Theorem 1.3.

Proof. First we observe that the choice of the Fubini–Study metric ωX is immaterial. Given any two
choices, the relative Kähler potential between them is bounded by O

(∣∣log|t |
∣∣) for 0 < |t | ≪ 1 because the

pole order of a section near t = 0 must be finite. Thus the relative Kähler potential between two choices
of ωt is bounded by O(1) independent of t , which affects the Skoda constant A but not its uniform nature.
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We now pass to a finite base change and find a semistable reduction. The Calabi–Yau measure dµt

on X t is independent of the parametrisation of the base and is preserved under finite base change. Thus it
is enough to prove it assuming ωX agrees with a smooth Kähler metric on a semistable snc model X ; this
is a special case of Theorem 2.9. □

Uniform L∞-estimate. We recall the following result proved using Kołodziej’s pluripotential-theoretic
methods (see [Li 2022, Section 2.2] for an exposition based on [Eyssidieux et al. 2009; 2008]):

Theorem 3.1. Let (Y, ω) be a compact Kähler manifold, and let the Kähler potential φ solve the complex
Monge–Ampère equation

(ω +
√

−1∂∂̄φ)n∫
Y ωn = dµ, sup φ = 0.

Assume there are positive constants α and A such that the Skoda-type estimate (1) holds for (Y, ω, dµ):∫
Y

e−αu dµ ≤ A for all u ∈ PSH(Y, ω) with sup
Y

u = 0.

Then ∥φ∥C0 ≤ C(n, α, A).

The uniform L∞-estimate for the Calabi–Yau potentials in Theorem 1.4 is an immediate consequence.
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