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UNIQUE CONTINUATION FOR THE HEAT OPERATOR
WITH POTENTIALS IN WEAK SPACES

EUNHEE JEONG, SANGHYUK LEE AND JAEHYEON RYU

We prove the strong unique continuation property for the differential inequality

|(∂t +1)u(x, t)| ≤ V (x, t)|u(x, t)|,

with V contained in weak spaces. In particular, we establish the strong unique continuation property
for V ∈ L∞

t Ld/2,∞
x , which has been left open since the works of Escauriaza (2000) and Escauriaza

and Vega (2001). Our results are consequences of the Carleman estimates for the heat operator in the
Lorentz spaces.

1. Introduction

We consider the differential inequality

|(∂t +1)u(x, t)| ≤ |V (x, t)u(x, t)|, (x, t) ∈ Rd
× (0, T ). (1-1)

For a differential operator P on a domain �, the strong unique continuation property (abbreviated sucp
hereafter) for |Pu| ≤ |V u| means that a nontrivial solution u to |Pu| ≤ |V u| cannot vanish to infinite
order (in a suitable sense) at any point. The sucp for second-order parabolic operators has been studied by
many authors; see [Banerjee and Manna 2020; Chen 1998; Escauriaza 2000; Escauriaza and Fernández
2003; Escauriaza and Vega 2001; Fernández 2003; Koch and Tataru 2009; Lin 1990; Poon 1996; Sogge
1990]. In particular, the study of sucp for the heat operator with time-dependent potentials goes back to
Poon [1996] and Chen [1998], who considered bounded potentials. Escauriaza [2000] and Escauriaza
and Vega [2001] extended the results to unbounded potentials V under the parabolic vanishing condition:
for a given δ ∈ (0, 1) and any k ∈ N, there is a constant Ck such that

|u(x, t)| ≤ Ck(|x | +
√

t)ke(1−δ)|x |
2/(8t), (x, t) ∈ Rd

× (0, T ). (1-2)

The growth condition at infinity is necessary since there exists a nonzero solution u to (∂t +1)u = 0 such
that u vanishes to infinite order in the space-time variables at any point (x, 0), x ∈ Rd ; see, for example,
[Escauriaza 2000; John 1971].

The sucp for the Laplacian −1 is better understood. Since the pioneering work of [Carleman 1939],
most subsequent results were obtained using the Carleman weighted inequality. In particular, [Jerison
and Kenig 1985] proved the sucp for the Laplacian, with V ∈ Ld/2

loc , d ≥ 3. Their result was extended by
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Stein in the Appendix of [Jerison and Kenig 1985] to potentials V ∈ Ld/2,∞ under the assumption that
∥V ∥Ld/2,∞ is small enough. Here, ∥ · ∥p,r denotes the Lorentz space norm

∥ f ∥L p,r =

(
r
p

∫
∞

0
tr/p−1( f ∗(t))r dt

)1/r

<∞

for r ̸= ∞, and ∥ f ∥L p,∞ = supt>0 t1/p f ∗(t) <∞ for r = ∞, where f ∗ is the decreasing rearrangement
of f on Rd ; for example, see [Stein and Weiss 1971]. Later, [Wolff 1992] showed that the smallness
assumption is indispensable if V ∈ Ld/2,∞. By the aforementioned results due to Escauriaza [2000] and
Escauriaza and Vega [2001], the sucp for (1-1) is known when t1−d/(2r)−1/sV (x, t) ∈ Ls

t,locLr
x and r and s

satisfy
d
2r

+
1
s

≤ 1, 1 ≤ r, s ≤ ∞. (1-3)

However, in view of those results concerning the (abovementioned) sucp for the Laplacian, it seems
natural to expect that the class of potentials for which the sucp for (1-1) holds can be further expanded to
certain weak spaces.

In this paper, we extend the results in [Escauriaza 2000; Escauriaza and Vega 2001] to a larger class of
potentials, that is to say,

t1−d/(2r)−1/sV (x, t) ∈ Ls
t,locLr,∞

x ,
d
2r

+
1
s

≤ 1, d
2

≤ r ≤ ∞.

As in the Appendix of [Jerison and Kenig 1985], our result is a consequence of new Carleman estimates
for the heat operator in the Lorentz spaces.

Carleman estimate. Write Ls
t Lq,b

x = Ls
t (R+; Lq,b

x (Rd)). We consider the Carleman inequality for the
heat operator of the form

∥t−αe−|x |
2/(8t)g∥Ls

t Lq,b
x

≤ C∥t−α+1−(d/2)(1/p−1/q)−(1/r−1/s)e−|x |
2/(8t)(1+ ∂t)g∥Lr

t L p,a
x
, (1-4)

with C independent of α, which holds for g ∈ C∞
c (R

d+1
\ {(0, 0)}) under a suitable condition on the

exponents α, p, q, r, s, a, and b. For α ∈ R, we set

β = β(α, q, s)= 2α−
d
q

−
2
s
.

Estimate (1-4) was formerly considered with p = a and q = b. It was Escauriaza [2000] who first
obtained (1-4) for some p = a, q = b, r , and s. More precisely, he showed that (1-4) holds with the
Lebesgue spaces (i.e., a = p and b = q) for p, q satisfying q = p′ and 0 ≤ 1/p −1/q < 2/d when d ≥ 2,
and 0 ≤ 1/p − 1/q ≤ 1 when d = 1, provided that

dist(β,N0)≥ c

for some c > 0, where N0 := N ∪ {0}. Subsequently, estimate (1-4) was extended by [Escauriaza and
Vega 2001] to the exponents p, q which lie outside of the line of duality. They obtained (1-4) for

2d
d+2

≤ p ≤ 2 ≤ q ≤
2d

d−2
when d ≥ 3,

and for 1 ≤ p ≤ 2 ≤ q ≤ ∞ except (p, q, d) ̸= (1,∞, 2) when d = 1, 2.
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Figure 1. The regions of (p, q) and (r, s) for which (1-4) holds when d ≥ 3: the dark gray
square in the left figure represents the earlier result due to [Escauriaza and Vega 2001], and
the light gray region represents the newly extended range. In the right figure, O = (0, 0)
and D =

(
1, 1

2 d(1/p − 1/q)
)
.

We extend the previously known results not only to Lorentz spaces but also on a wider range of exponents
p and q . To present our result, for d ≥ 3 we define A = A(d), B = B(d), C = C(d) ∈

[ 1
2 , 1

]
×

[
0, 1

2

]
by

A =

(
d + 2

2d
,

1
2

)
, B =

(
d2

+ 2d − 4
2d(d − 1)

,
d − 2

2(d − 1)

)
, C =

(
d + 2

2d
,

d − 2
2d

)
.

By T we denote the closed pentagon with vertices
(1

2 ,
1
2

)
, A, B, B′, and A′ from which the two vertices

B and B′ are removed. Here, X ′
= (1 − b, 1 − a) (the dual point) if X = (a, b). See Figure 1.

Theorem 1.1. Let d ≥ 3 and (1/p, 1/q) ∈ T. Let 1 ≤ r ≤ s ≤ ∞ satisfy(1
r
,

1
s

)
̸=

(
1, d

2

( 1
p

−
1
q

))
,
(
1 −

d
2

( 1
p

−
1
q

)
, 0

)
and

0 ≤
1
r

−
1
s

≤ 1 −
d
2

( 1
p

−
1
q

)
. (1-5)

Suppose β /∈ N0. Then, if 1/p − 1/q < 2/d, p ̸= 2, and q ̸= 2, estimate (1-4) holds for 1 ≤ a = b ≤ ∞

with C depending only on p, q, a, b, r, s, and dist(β,N0); if

1
p

−
1
q

=
2
d
, (1-6)

the same estimate (1-4) holds for a = b = 2.

It is remarkable that Theorem 1.1 gives (1-4) for (1/p, 1/q) contained in the open line segment (B,B′)

(see Figure 1). The exponents p, q satisfying (1-6) constitute the critical case in that (1-4) is no longer
true if 1/p −1/q > 2/d . (See the remark on page 2270 and the condition (1-5).) Consequently, it is more
difficult to obtain estimate (1-4) for p, q with (1-6) than that for p, q with 1/p − 1/q < 2/d . Only esti-
mate (1-4) with (1/p, 1/q)= C, a = p, and b = q was previously shown by [Escauriaza and Vega 2001].
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If p, q satisfy (1-6) and r = s, then the estimate (1-4) implies the Carleman inequality for the Laplacian
(see [Escauriaza and Vega 2001]):

∥|x |
−σ f ∥Lq,b ≤ C∥|x |

−σ1 f ∥L p,a , f ∈ C∞

c (R
d
\ {0}) (1-7)

for σ > 0, with C > 0 depending on d, p, q, and dist(σ,N + d/q) (if dist(σ,N + d/q) > 0). By this
implication the estimates in Theorem 1.1 with p, q satisfying (1-6) give (1-7) for (1/p, 1/q) ∈ (B,B′).
However, it does not extend the previously known range of p, q for which (1-7) holds. When d ≥ 5, the
range of p, q coincides with that in [Kwon and Lee 2018], which was obtained by making use of the
sharp estimate for the spherical harmonic projection. The optimal range of p, q for (1-7) remains open.

To obtain sucp for potentials in Ls
t,locLr,∞

x , we need to obtain (1-4) with a = b. To this end, we are
basically relying on real interpolation to upgrade Lr

t L p
x -Ls

t Lq
x estimates to those of Lr

t L p,a
x -Ls

t Lq,b
x with

a = b. However, such an extension of the inequality (1-4) to the Lorentz spaces is not so straightforward as
in the Appendix of [Jerison and Kenig 1985], since real interpolation does not behave well in mixed-norm
spaces; see [Cwikel 1974]. We are only able to obtain (1-4) with a = b = 2 when p, q satisfy (1-6); also
see Lemma 4.1.

Theorem 1.1 provides estimate (1-4) for exponents on an extended range, but the problem of determining
the optimal range of p, q for which (1-4) holds remains open. When 1/p − 1/q < d/2, by Theorem 1.1,
estimate (1-4) holds for all a, b satisfying 1 ≤ a ≤ b ≤ ∞, since L p,r1 ⊂ L p,r2 if r1 ≤ r2. Because of
limitation of the real interpolation in the mixed-norm spaces, we have (1-4) only for 1 ≤ a ≤ 2 ≤ b ≤ ∞

when 1/p − 1/q = d/2. However, we expect that the same continues to be true even for p, q satisfying
1/p − 1/q = d/2.

Strong unique continuation property for the heat operator. Our extension of the Carleman estimate to
the Lorentz spaces (Theorem 1.1) allows a larger class of potentials for the strong unique continuation
property for the heat operator. In this regard we obtain Theorems 1.2 and 1.3, which improve the results
in [Escauriaza and Vega 2001]. Once we have the Carleman estimate (1-4), those theorems can be shown
by routine adaptation of the argument in that paper. We state them without providing the proofs.

Theorem 1.2. Let d ≥ 3, 0< T <∞, and r, s satisfy (1-3). Let (1/p, 1/q) ∈ T satisfy 1/p − 1/q = 1/r.
Suppose that u ∈ W 1,a((0, T ); W 2,p(Rd)), a ≤ min{2, s}, is a solution to the differential inequality (1-1),
and suppose that, for any k ∈ N, there is a constant Ck such that (1-2) holds for some δ > 0. Then u is
identically zero on Rd

× (0, T ) provided that ∥t1−d/(2r)−1/sV ∥Ls((0,T );Lr,∞
x (Rd )) is small enough.

Most significantly, Theorem 1.2 gives the sucp with V ∈ L∞((0, T ); Ld/2,∞
x (Rd)). This extends the

result obtained by [Escauriaza and Vega 2001] under the assumption that ∥V ∥L∞((0,T );Ld/2
x )

is small
enough. Using Wolff’s construction [1992], we can show that the smallness assumption is necessary in
general for V ∈ L∞((0, T ); Ld/2,∞(Rd)), or V ∈ Ld/2,∞(Rd

; L∞((0, T ))). Indeed, Wolff showed that
there is a bounded nonzero function w such that |1w| ≤ |V∗w| with V∗ ∈ Ld/2,∞ and which vanishes
to infinite order at the origin. Since the function w in [Wolff 1992] is bounded, by considering the
time independent function u(x, t) := w(x), it is easy to see that u(x, t) satisfies (1-2) and obviously the
differential inequality |1u + ∂t u| ≤ |V∗u|.
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We also have the following sucp result for a local solution.

Theorem 1.3. Let d ≥3 and r, s satisfy (1-3). Suppose that u is a continuous solution to |1u+∂t u|≤ |V u|

on B(0, 2)× (0, 2), and suppose that, for any k ∈ N, there is a constant Ck such that

∥e−|x |
2/(8t)u∥L2((0,ε);L2

x (B(0,2))) ≤ Ckε
k, 0< ε < 2.

Then u(x, 0) vanishes on B(0, 2) if ∥t1−d/(2r)−1/sV ∥Ls((0,2);Lr,∞
x (B(0,2))) is small enough.

Uniform resolvent estimate for the Hermite operator. We now consider the resolvent estimate for the
Hermite operator H = −1+ |x |

2 in Rd :

∥(H − z)−1 f ∥q ≤ C∥ f ∥p, z ∈ C \ (2N0 + d), (1-8)

with a constant C independent of z. The estimate has independent interest while it plays an important
role in proving Theorem 1.1; see Lemma 4.1. Since H has the discrete spectrum 2N0 + d, the points
z ∈ 2N0 + d are excluded. In contrast with the operator with a continuous spectrum, it is impossible
for (1-8) to hold with C independent of z, so we need to impose the assumption that

dist(z, 2N0 + d)≥ c (1-9)

for some 1 ≫ c> 0; see the remark on page 2265. Estimate (1-8) may be compared with the corresponding
estimate for the resolvent of the Laplacian which is due to Kenig, Ruiz, and Sogge [Kenig et al. 1987]. It
was shown in that paper that the estimate

∥(−1− z)−1 f ∥q ≤ C∥ f ∥p, z ∈ C \ (0,∞),

holds with C independent of z if and only if

1
p

−
1
q

=
2
d
,

2d
d+3

< p < 2d
d+1

, and d ≥ 3.

Also, see [Jeong et al. 2016] for the uniform estimates for more general second-order differential operators
and [Kwon and Lee 2020] for the sharp bounds which depend on z. Under the assumption (1-9), the uniform
resolvent estimate for H continues to hold with p, q away from the critical line 1/p−1/q = 2/d , whereas
this cannot be true for −1 because of scaling structure; see [Kenig et al. 1987; Kwon and Lee 2020].

The uniform estimate (1-8) was obtained by Escauriaza and Vega [2001] for

2d
d+2

≤ p ≤ 2 ≤ q ≤
2d

d−2
, d ≥ 3.

However, (1-8) fails to hold if 1/p − 1/q > 2/d (see the remark on page 2270), and the proof of (1-8) is
more involved when p, q satisfy (1-6). As for such (p, q) of the critical case, the estimate has been known
only for (p, q)= (2d/(d + 2), 2d/(d − 2)). In what follows we establish (1-8) for (1/p, 1/q) ∈ (B,B′)

under assumption (1-9). Those estimates in the expanded range are crucial for obtaining (1-4) with a = b
when p, q satisfy (1-6).

Theorem 1.4. Let d ≥ 3. Suppose (1/p, 1/q) ∈ T and (1-9) holds. Then there is a constant C > 0
such that estimate (1-8) holds. Furthermore, if (1/p, 1/q)= B or B′, we have the restricted weak-type
(uniform) estimate for (H − z)−1.
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The proof of (1-8) with (p, q) = (2d/(d + 2), 2d/(d − 2)) in [Escauriaza and Vega 2001] heavily
relies on the uniform bound on the spectral projection operator 5k , which is the projection onto the
k-th eigenspace of the Hermite operator H ; see Section 2. In fact, they also used interpolation along an
analytic family of operators which are motivated by Mehler’s formula for the Hermite function. However,
their argument is not enough to prove (1-8) for (1/p, 1/q) ∈ (B,B′). We develop a different approach
which is more direct and significantly simpler. We make use of a representation formula (2-1) for 5k

which was observed in [Jeong et al. 2022a] and an estimate for the Hermite–Schrödinger propagator
e−i t H f (see Proposition 2.1) which is a consequence of the representation formula and the endpoint
Strichartz estimate [Keel and Tao 1998].

Organization of the paper. The rest of this paper is organized as follows. In Section 2 we provide
useful properties of the Hermite operator H and the Hermite spectral projection operator 5k . We prove
boundedness of more general multiplier operators for the Hermite operator in Section 3, which implies
Theorem 1.4. Finally, the proof of the Carleman estimate for the heat operator is given in Section 4.

2. Properties of the Hermite operator

For any multi-index α ∈ Nd
0 , the L2-normalized Hermite function 8α, which is a tensor product of one

dimensional Hermite functions, is an eigenfunction of H with eigenvalue 2|α|+d . Here |α| :=α1+· · ·+αd .
The set {8α : α ∈ Nd

0} forms an orthonormal basis of L2(Rd). Thus, for any f ∈ L2(Rd), we have the
Hermite expansion f =

∑
α⟨ f,8α⟩8α.

We consider the Hermite spectral projection operator 5k which is defined by

5k f =

∑
α∈Nd

0 :|α|=k

⟨ f,8α⟩8α, f ∈ S(Rd).

Then, the Hermite–Schrödinger propagator is given by

e−i t H f =

∑
k∈N0

e−i t (2k+d)5k f, f ∈ S(Rd),

which is the solution to the Cauchy problem (i∂t − H)u = 0, u(x, 0)= f (x). If f ∈ S(Rd), it is easy to
see that 5k f decays rapidly in k, thus

∑
∞

k=0 e−i t (2k+d)5k f converges uniformly. Clearly,

5k f =

∑
k′∈N0

1
2π

(∫ π

−π

ei t (k−k′) dt
)
5k′ f.

Therefore, we obtain

5k f =
1

2π

∫ π

−π

ei t (2k+d−H)/2 f dt (2-1)

for f ∈ S(Rd). Meanwhile, the operator e−i t H has the kernel formula

e−i t H f (x)= Cd(sin(2t))−d/2
∫

Rd
ei((|x |

2
+|y|

2) cot(2t)/2−⟨x,y⟩ csc(2t)) f (y) dy (2-2)

for f ∈ S(Rd), which is shown by using Mehler’s formula [Sjögren and Torrea 2010; Thangavelu 1987].
Combining this with (2-1) gives an explicit expression of the kernel of 5k .



UNIQUE CONTINUATION FOR THE HEAT OPERATOR WITH POTENTIALS IN WEAK SPACES 2263

In order to prove the uniform resolvent estimate (Theorem 1.4), we make use of the following mixed-
norm estimate for e−i t H, which strengthens the uniform bound (2-4) in a different direction.

Proposition 2.1. Let d ≥ 3 and (1/p, 1/q)= B′. Then we have∥∥∥∥∫ π

−π

|e−i t H/2 f | dt
∥∥∥∥

q,∞
≤ C∥ f ∥p,1. (2-3)

Various authors [Jeong et al. 2022a; 2024; Karadzhov 1994; Koch and Tataru 2005; Thangavelu 1998]
studied the problem of characterizing the sharp asymptotic bound on the operator norm ∥5k∥p→q of 5k

from L p to Lq as k → ∞. In particular, [Karadzhov 1994] showed

∥5k∥p→q ≤ C (2-4)

for a constant C when p = 2 and q = 2d/(d − 2). By duality and the T T ∗ argument, the bound (2-4) with
(p, q) = (2d/(d + 2), 2) and (p, q) = (2d/(d + 2), 2d/(d − 2)) follows. Interpolating those estimates
with the trivial bound ∥5k∥2→2 ≤ 1, we have (2-4) for p, q satisfying

2d
d+2

≤ p ≤ 2 ≤ q ≤
2d

d−2
.

Recently, the authors showed in [Jeong et al. 2024, Theorem 1.6] that (2-4) holds on an extended
range of p, q for d ≥ 3; see [Jeong et al. 2022b] for a related result. By means of Proposition 2.1, we
can provide a simple alternative proof of this result. Indeed, by (2-1) and Proposition 2.1, it follows that
∥5k f ∥q,∞ ≤ C∥ f ∥p,1 if (1/p, 1/q)= B′. By duality, the same estimate also holds for (1/p, 1/q)= B.
Interpolating these estimates with the above mentioned estimate (2-4) for

2d
d+2

≤ p ≤ 2 ≤ q ≤
2d

d−2
gives the following. See Figure 1.

Corollary 2.2 [Jeong et al. 2024, Theorem 1.6]. Let d ≥ 3. For p, q satisfying (1/p, 1/q) ∈ T, there is a
constant C > 0, independent of k, such that (2-4) holds. Furthermore, the uniform restricted weak-type
estimate for 5k holds if (1/p, 1/q)= B or B′.

Proof of Proposition 2.1. We make use of the endpoint Strichartz estimate for e−i t H :

∥e−i t H/2 f ∥L2
t ([−π,π ];L

p0
x (Rd ))

≤ C∥ f ∥2, (2-5)

where p0 = 2d/(d − 2). By periodicity, one can easily show estimate (2-5) using the dispersive estimate
∥e−i t H/2 f ∥∞ ≲ |t |−d/2

∥ f ∥1, t ∈
(
0, π2

)
, which follows from (2-2) and the standard argument in [Keel

and Tao 1998]; for example, see [Sjögren and Torrea 2010]. We choose a smooth partition of unity, so
that

ψ0
+

∑
j≥4

(ψ(2 j t)+ψ(−2 j t)+ψ(2 j (t +π))+ψ(2 j (π − t)))= 1

for t ∈ (−π, π)\{0}. Here ψ ∈ C∞
c

([1
4 , 1

])
satisfy

∑
j ψ(2

j t)= 1 for t > 0, and ψ0 is a smooth function
which is supported in the interval [−π, π] and vanishes near 0, π , and −π .
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Set ψ±

j = ψ(±2 j
· ) and ψ±π

j = ψ(2 j (π − ± · )). Then, for σ = ±,±π , we have∫
|ψσj e−i t H/2 f | dt ≲ 2(d−2) j/2

∥ f ∥1

because |ψσj e−i t H/2 f |≲2d j/2
∥ f ∥1 by (2-2). Using (2-5) and Hölder’s inequality followed by Minkowski’s

inequality, we also obtain the estimate∥∥∥∥∫
|ψσj e−i t H/2 f | dt

∥∥∥∥
2d/(d−2)

≲ 2− j/2
∥ f ∥2.

In other words, for the sublinear operators T σ
j f =

∫
|ψσj e−i t H/2 f | dt , σ = ±,±π , two estimates

∥T σ
j f ∥qℓ ≲ 2 j (−1)ℓεℓ∥ f ∥pℓ, ℓ= 0, 1,

hold, where p0 = 1, q0 = ∞, ε0 =
1
2 d, and p1 = 2, q1 = 2d/(d − 2), ε1 =

1
2 . Note that the exponents

of 2 j in the two estimates have different signs. Thus, applying Bourgain’s summation trick (for example,
see [Jeong et al. 2024, Lemma 2.4]), we obtain∥∥∥∥∫ ∣∣∣∣∑

j

ψσj e−i t H/2 f
∣∣∣∣ dt

∥∥∥∥
q,∞

≤

∥∥∥∥∑
j

T σ
j

∥∥∥∥
q,∞

≲ ∥ f ∥p,1, σ = ±,±π,

for (1/p, 1/q) = B′. By a similar argument, it is easy to show
∥∥∫

|ψ0e−i t H/2 f | dt
∥∥

q ≲ ∥ f ∥p for
(1/p, 1/q)= B′. Hence, combining all of those estimates, we get (2-3). □

We now consider the L p-Lq estimate for the operator H−s, s > 0, which is defined by

H−s f =

∞∑
k=0

(2k + d)−s5k f.

The operator can also be written as

H−s f =
1
0(s)

∫
∞

0
t s−1e−t H f dt1

by making use of the heat semigroup e−t H associated to H. By means of the explicit kernel expression
of e−t H which is based on Mehler’s formula (see [Thangavelu 1993]), Bongioanni and Torrea [2006]
obtained L p-Lq boundedness for H−s. Sharpness of their result was later verified by [Nowak and Stempak
2013]. Thus, the results completely characterize L p-Lq boundedness of H−s.

Theorem 2.3 [Bongioanni and Torrea 2006, Theorem 8; Nowak and Stempak 2013, Theorem 3.1]. Let
d ≥ 1, 1< p, q <∞, and 0< s < 1

2 d. Then H−s is bounded from L p to Lq if and only if

−
2s
d
<

1
p

−
1
q

≤
2s
d
.

There are weak/restricted weak-type estimates in the borderline cases which are not included in the
above theorem, and we refer the readers to [Nowak and Stempak 2013] for more details regarding such
endpoint estimates.

1For a bounded function m on R+, the operator m(H) is formally defined by m(H)=
∑

k∈N0
m(2k + d)5k .
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3. Proof of Theorem 1.4

We consider the more general operator (H − z)−m, m ∈ N, which is given by

(H − z)−m f =

∞∑
k=0

5k f
(2k + d − z)m

= (−2)−m
∞∑

k=0

5k f
(iτ +β − k)m

,

with z = 2β + d + 2τ i , β ̸∈ N0, and τ ∈ R. We prove the following.

Theorem 3.1. Let d ≥ 3, and let m be a positive integer. Suppose that (1-9) holds for some constant c> 0.
If (1/p, 1/q) ∈ (B,B′), then there is a constant C = C(m), independent of z, such that

∥(H − z)−m f ∥q ≤ C(1 + | Im z|)1−m
∥ f ∥p. (3-1)

Furthermore, we have ∥(H − z)−m f ∥q,∞ ≤ C(1 + | Im z|)1−m
∥ f ∥p,1 if (1/p, 1/q)= B or B′.

While the estimates for m ≥ 2 are rather straightforward from (2-4), the proof of (3-1) for m = 1 is
more involved. This case is handled in Proposition 3.2 below.

Remark. The gap condition (1-9) is necessary for the uniform estimate (3-1) to hold. In fact,

∥(H − z)−m
∥p→q ≥

|2k + d − z|−m
∥ f ∥q

∥ f ∥p

if f is an eigenfunction with eigenvalue 2k + d. Therefore, the operator norm cannot be bounded as
z → 2k + d unless (1-9) holds.

For positive numbers B and t0, let C(B, t0) denote the class of functions which are contained in
C[(d+2)/2](R \ [−t0, t0]) and satisfy the following:

|G(n)| ≤ B, n ∈ Z, (3-2)
∞∑

k=1

|G(k)+ G(−k)| ≤ B, (3-3)

∞∑
k=1

|kG(k)− (k + 1)G(k + 1)| ≤ B, (3-4)∣∣∣( d
dt

)l
G(t)

∣∣∣ ≤ B(1 + |t |)−l−1, t0 < |t |, (3-5)

for 0 ≤ l ≤
1
2(d+2). Particular examples satisfying the conditions (3-2)–(3-5) are Gµ,τ (t)= 1/(iτ+t +µ),

where (µ, τ) ∈
(
−

1
2 ,

1
2

)
× R and |(µ, τ)| ≥ c for some small c > 0.

Proposition 3.2. Let d ≥ 3 and (1/p, 1/q) ∈ (B,B′). Suppose that G is in C(B, t0). Then, there is a
constant C , depending only on B and t0, such that∥∥∥G

(2n+d−H
2

)
f
∥∥∥

q
≤ C∥ f ∥p (3-6)

holds for every n ∈ N0. Furthermore, if (1/p, 1/q)= B or B′, the restricted weak-type (p, q) estimate
holds for G

( 1
2(2n + d − H)

)
with a uniform bound depending only on B and t0.
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Proof. Let p∗ and q∗ be given by (1/p∗, 1/q∗)= B′. In order to show Proposition 3.2, it is sufficient to
show the restricted weak-type (p∗, q∗) estimate for G

( 1
2(2n + d − H)

)
. Note that the adjoint operator

G
( 1

2(2n + d − H)
)∗ is given by

G
(2n+d−H

2

)∗

f =

∞∑
k=0

G(n − k)5k f.

Clearly G ∈C(B, t0). Hence, the same argument shows that the restricted weak-type (p∗, q∗) estimate holds
for G

( 1
2(2n+d−H)

)∗. This in turn gives the restricted weak-type estimate (q ′
∗
, p′

∗
) for G

( 1
2(2n+d−H)

)
by duality. Real interpolation between these two (restricted weak-type) estimates for G

( 1
2(2n + d − H)

)
yields the desired estimates for (1/p, 1/q) ∈ (B,B′).

No differentiability assumption is made on G for |t | ≤ t0. So, we handle the cases n ≥ n0 and n < n0

separately, where n0 is an integer satisfying n0 ≥ 2t0. We first consider the case n ≥ n0. Recalling

G
(2n+d−H

2

)
=

∞∑
k=0

G(n − k)5k,

we write the decomposition

G
(2n+d−H

2

)
=: Jn +Kn,

where

Jn :=

∞∑
k=0

G(n − k)φ
(n−k

n

)
5k and Kn :=

∞∑
k=0

G(n − k)
(
1 −φ

(n−k
n

))
5k .

Here, we choose a nonnegative smooth even function φ on R such that φ(t)= 1 on
[
−

1
2 ,

1
2

]
, φ = 0 if

1 ≤ |t |, and φ is nonincreasing on the half-line t > 0. This monotonicity assumption plays an important
role in obtaining a bound on a sum of trigonometric functions.

The sum Jn is the major contribution to the estimate (3-6) and is to be handled by the integral formula
for 5k and Proposition 2.1. The second sum Kn behaves like the operator H−1, which is actually bounded
from L p-Lq on a larger range of p, q . We consider Jn first.

We set

I1 =

n∑
k=1

G(k)φ
(k

n

)
(5n−k −5n+k) and I2 =

n∑
k=1

(G(−k)+ G(k))φ
(k

n

)
5n+k .

Since φ is an even function and supported in [−1, 1], after reindexing by (n − k)→ k, we see

Jn =

n∑
k=1

G(k)φ
(k

n

)
5n−k + G(0)5n +

n∑
k=1

G(−k)φ
(k

n

)
5n+k .

Thus,
Jn = I1 + I2 + G(0)5n.

By (3-2), (3-3), and the uniform restricted weak-type (p∗, q∗) estimate for 5λ in Corollary 2.2, it follows
that

∥G(0)5n f ∥q∗,∞ ≲ B∥ f ∥p∗,1 and ∥I2∥q∗,∞ ≲ B∥ f ∥p∗,1.
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So, it suffices to deal with I1. Using the formula (2-1), we note

5n−k f −5n+k f = −
i
π

∫ π

−π

sin(tk)ei t (2n+d−H)/2 f dt.

Thus, we have

I1 f =

∫ π

−π

ζn(t)e−i t H/2 f dt,

where

ζn(t)= −
i
π

ei t (2n+d)/2
n∑

k=1

G(k) sin(tk)φ
(k

n

)
, −π ≤ t ≤ π.

Using Proposition 2.1, it is sufficient to show

|ζn(t)| ≤ C, (3-7)

with C independent of n and G. By the property of φ, it is clear that

|ζn(t)| ≲
∣∣∣∣⌊n/2⌋∑

k=1

sin(tk)G(k)
∣∣∣∣ + ∣∣∣∣ n∑

k=⌊n/2⌋+1

sin(tk)G(k)φ
(k

n

)∣∣∣∣.
Boundedness of the second term is easy to show. Indeed, since the condition (3-5) holds for |t |> 1

2 n by
our choice of n0, we see∣∣∣∣ n∑

k=⌊n/2⌋+1

sin(tk)G(k)φ
(k

n

)∣∣∣∣ ≲ B
n∑

k=⌊n/2⌋+1

k−1φ
(k

n

)
≲ B.

So, for (3-7), we only have to show
∣∣∑n

k=1 sin(tk)G(k)
∣∣≲ 1 for any n. Setting σk(t)=

∑k
j=1 j−1sin( j t),

by summation by parts we write

n∑
k=1

sin(tk)G(k)=

n−1∑
k=1

σk(t)(kG(k)− (k + 1)G(k + 1))+ σn(t)nG(n).

Since |σk(t)| ≲ 1 for any k and t as can be shown by an elementary argument,2 by the conditions (3-4)
and (3-5) it follows that

∣∣∑n
k=1 sin(tk)G(k)

∣∣ ≲ 1.
We now turn to the operator Kn . Clearly, we may write Kn = H−1

◦ mn(H), where mn is given by

mn(t)= tG
(2n+d−t

2

)(
1 −φ

(2n+d−t
2n

))
,

which is in C∞(R). Using (3-2), (3-5), and the support property of φ, a simple calculation shows∣∣∣ dl

dt l mn(t)
∣∣∣ ≲ (1 + t)−l for l = 0, 1, 2, . . . , 1

2(d + 2)

whenever t > 0. Here the implicit constants are independent of n. Thus, the Marcinkiewicz multiplier
theorem [Thangavelu 1993, Theorem 4.2.1] implies that mn(H) is bounded on L p, 1< p<∞, uniformly

2This can be seen by approximating Dirichlet’s kernel, or again by summation by parts.



2268 EUNHEE JEONG, SANGHYUK LEE AND JAEHYEON RYU

in n. By Theorem 2.3, H−1 is also bounded from L p to Lq for 1< p, q <∞ satisfying 1/p −1/q = 2/d .
Hence, we have

∥Kn∥p→q ≤ ∥H−1
∥p→q∥mn(H)∥p→p ≲ 1,

with the implicit constant independent of n.
We now consider the case n < n0, which is much simpler to show than the case n ≥ n0. To prove (3-6),

we write the following decomposition for G
( 1

2(2n + d − H)
)
:

G
(2n+d−H

2

)
= J̃ n + K̃n,

where

J̃ n =

∞∑
k=0

G(n − k)φ
( k

2n0

)
5k and K̃n =

∞∑
k=0

G(n − k)
(
1 −φ

( k
2n0

))
5k .

Clearly, the multiplier

G
(2n+d− ·

2

)(
1 −φ

(2n+d− ·

2n0

))
of the operator K̃n satisfies the condition (3-5). So, in the same manner as in the above we obtain the
bound ∥K̃n∥p→q ≲ 1 if 1 < p, q <∞ and 1/p − 1/q = 2/d. By condition (3-2) and Corollary 2.2 it
follows that

∥J̃ n f ∥q∗,∞ ≤ B
2n0∑
k=0

∥5k f ∥q∗,∞ ≲ ∥ f ∥p∗,1

uniformly in n ≤ n0. This completes the proof of Proposition 3.2. □

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let p∗ and q∗ be given by (1/p∗, 1/q∗)=B′. As in the proof of Proposition 3.2, it
is enough to show the restricted weak-type (p∗, q∗) estimate for (H − z)−m with bound C(1+| Im z|)1−m,
since the adjoint operator of (H − z)−m is given by (H − z̄)−m. We can handle (H − z̄)−m in exactly the
same way to obtain the restricted weak-type (p∗, q∗) estimate for (H −z)−m with bound C(1+| Im z|)1−m.
By duality and interpolation, we get all the desired estimates.

By Corollary 2.2, we have the estimate ∥5k f ∥q∗,∞ ≤ C∥ f ∥p∗,1, with C independent of k. Using this
estimate, for m ≥ 2, we get

∥(H − z)−m f ∥q∗,∞ ≲
∞∑

k=0

|2k + d − z|−m
∥ f ∥p∗,1 ≲ (1 + | Im z|)1−m

∥ f ∥p∗,1

because
∞∑

k=0

|2k + d − z|−m
≤ Cm(1 + | Im z|)1−m,

with Cm independent of z for m ≥ 2 if (1-9) holds. Thus, we need only to show

∥(H − z)−1 f ∥q∗,∞ ≤ C∥ f ∥p∗,1. (3-8)
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If Re z > d − 1, we have z = 2(n +µ)+ d + 2iτ for some n ∈ N0, µ ∈
(
−

1
2 ,

1
2

)
, and τ ∈ R satisfying

|(µ, τ)| ≥
1
2 c because of (1-9). We note that

(H − z)−1
= Gµ,τ

(2n+d−H
2

)
,

where Gµ,τ (t) = 1/(iτ + t + µ). It is easy to see that Gµ,τ ∈ C(B, 1) for some B > 0 provided that
µ ∈

(
−

1
2 ,

1
2

)
and τ ∈ R satisfy |(µ, τ)| ≥

1
2 c. Indeed, since |k +µ| ≥ |µ| for k ∈ Z and µ ∈

(
−

1
2 ,

1
2

)
, it

follows that |Gµ,τ (k)| ≤ |µ+ iτ |−1
≤ 2/c for all k ∈ Z. Moreover, we have

∞∑
k=1

|Gµ,τ (k)+ Gµ,τ (−k)| ≲
∞∑

k=1

|iτ +µ|

k2 + τ 2 ≲ 1,

∞∑
k=1

|kGµ,τ (k)− (k + 1)Gµ,τ (k + 1)| ≤

∞∑
k=1

|iτ +µ|

|iτ + k +µ|2
≲ 1,

and, for 0 ≤ l ≤
1
2(d + 2), ∣∣∣( d

dt

)l
Gµ,τ (t)

∣∣∣ ≲ (1 + |t |)−l−1, |t | ≥ 1,

whenever µ ∈
(
−

1
2 ,

1
2

)
and τ ∈ R satisfy |(µ, τ)| ≥ 1

2 c. Obviously, the implicit constants are independent
of specific values of µ and τ . Hence, taking a sufficiently large constant B ≥ 2/c, we see Gµ,τ ∈ C(B, 1).

Thus, by Proposition 3.2, the estimate (3-8) holds uniformly in z. For the remaining case, i.e.,
Re z< d −1, we have that z clearly stays away from the eigenvalues of H , so (H −z)−1 behaves like H−1.
More precisely, we obtain the uniform estimate (3-8) repeating the same argument as in the case n < n0

of the proof of Proposition 3.2. This completes the proof. □

The uniform resolvent estimate in Theorem 1.4 is a special case of the following.

Corollary 3.3. Let d ≥ 3 and m be a positive integer, and let p, q be given as in Theorem 1.1. Then,
there is a constant C = C(m) such that

∥(H − z)−m f ∥q ≤ C(1 + | Im z|)d(1/p−1/q)/2−m
∥ f ∥p (3-9)

provided (1-9) holds. Furthermore, if (1/p, 1/q)= B or B′, we have the restricted weak-type estimate
for (H − z)−m with bound C(1 + | Im z|)d(1/p−1/q)/2−m.

Proof. By Theorem 3.1, we have estimate (3-9) for (1/p, 1/q) ∈ (B,B′). In view of interpolation, it is
enough to show (3-9) with (p, q)= (2, 2), (2d/(d + 2), 2), or (2, 2d/(d − 2)). These estimates are easy
to show by using orthogonality between the projection operators 5k . In fact, we have

∥(H − z)−m f ∥2 ≤

( ∞∑
k=0

|2k + d − z|−2m
∥5k f ∥

2
2

)1/2

.

So, taking the supremum over k of |2k + d − z|−2m, we obtain (3-9) when p = q = 2. We note that∑
∞

k=0 |2k + d − z|−2m
≤ C(1 + | Im z|)−2m+1 with C independent of z as long as (1-9) holds. Applying

the uniform L2d/(d+2)-L2 estimate in Corollary 2.2, we get (3-9) with p = 2d/(d + 2) and q = 2. Since
the adjoint of (H − z)−m is (H − z̄)−m, estimate (3-9) with (p, q) = (2d/(d + 2), 2) implies that with
(p, q)= (2, 2d/(d − 2)) by duality. □
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4. Proof of Theorem 1.1

We now prove the estimate (1-4) by adapting the argument in [Escauriaza and Vega 2001] (also see
[Escauriaza 2000]) which deduces the Carleman estimate for the heat operator from the uniform resolvent
estimate for the Hermite operator. We are basically relying on real interpolation as in the Appendix of
[Jerison and Kenig 1985]. However, there are some nontrivial issues which are related to a shortcoming
of the real interpolation in mixed-norm spaces.

Lemma 4.1. Let 1< p ≤ 2 ≤ q <∞, 1 ≤ r, s ≤ ∞, 1 ≤ a ≤ b ≤ ∞, and 0 ≤ γ ≤ 1, and let β /∈ N0 be a
real number. Suppose that the estimate∥∥∥∥ ∞∑

k=0

5k f
(τ i +β − k)m

∥∥∥∥
q,b

≤ Cm(1 + |τ |)γ−m
∥ f ∥p,a (4-1)

holds for positive integers m, with Cm independent of τ ∈ R and β, provided dist(β,N0)≥ c for some c>0.
Then, if dist(β,N0)≥ c for some c > 0, estimate (1-4) holds uniformly in β whenever the following hold:

• γ < 1, 0 ≤ 1/r − 1/s ≤ 1 − γ , and (1/r, 1/s) ̸= (1, γ ), (1 − γ, 0),

• γ = 1, a = b = 2, and 1< r = s <∞.

Lemma 4.1 was implicit in [Escauriaza and Vega 2001] with the Lebesgue spaces instead of the Lorentz
spaces. The extra condition a = b = 2 when γ = 1 is due to a limitation of the real interpolation in
mixed-norm spaces. Once we have Lemma 4.1, the proof of Theorem 1.1 is rather simple.

Proof of Theorem 1.1. Let (1/p, 1/q) be in T. By real interpolation between the estimates in Corollary 3.3
and inclusion relations between Lorentz spaces, we get (4-1) with γ =

1
2 d(1/p−1/q) for any 1≤a ≤b≤∞

if p ̸= 2 and q ̸= 2. Thus Lemma 4.1 gives estimate (1-4) in the Lorentz spaces if the exponents satisfy
the condition in Theorem 1.1. □

Estimate (1-4) is equivalent to the Sobolev-type inequality

∥h∥Ls(R;Lq,b
x )

≤ C∥(1− |x |
2
+ ∂t + 2β + d)h∥Lr (R;L p,a

x ), h ∈ C∞

c (R
d+1). (4-2)

One can easily see this by following the argument in [Escauriaza 2000]. In particular, if r = s, the
inequality (4-2) implies ∥ f ∥q ≤ C∥(1 − |x |

2
+ 2β + d) f ∥p for f ∈ C∞

c (R
d), which is, in fact, a

special case of (1-8), where z = 2β + d ̸∈ 2N0 + d. Indeed, let f1 be a compactly supported smooth
function on R with f1(0) = 1. Then the above estimate follows by applying (4-2) to the function
h(x, t)= f (x) f1(t/R)R−1/r, R > 1, and letting R → ∞.

Remark. When r = s, the implication from (4-2) to (1-8) with z = 2β + d ̸∈ 2N0 + d can be used to
show that the Carleman estimate (1-4) holds only if

1
p

−
1
q

≤
2
d
.

By the Marcinkiewicz multiplier theorem for the Hermite operator H [Thangavelu 1993, Theorem 4.2.1],
(H − z)−1 H with z = 2β+ d ̸∈ 2N0 + d is bounded on L p, 1< p <∞. Thus, we see that estimate (1-4)
implies ∥H−1u∥q ≲ ∥u∥p for u ∈ C∞

c (R
d). By Theorem 2.3, the inequality holds only if 1/p−1/q ≤ 2/d .
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Proof of Lemma 4.1. To prove Lemma 4.1, we basically rely on the argument in [Escauriaza 2000;
Escauriaza and Vega 2001], so we shall be brief. By scaling, it is easy to see that (1-4) is equivalent
to (4-2). See [Escauriaza 2000] for the details. Thus, we need to show (4-2) by replacing h with
(1− |x |

2
+ ∂t + 2β + d)−1g. Applying the projection operator 5λ in x-variables and taking the Fourier

transform in t , we see the operator Sβ := (1− |x |
2
+ ∂t + 2β + d)−1 is given by

Sβg(x, t)=

∫
R

Kβ(t − s)(g( · , s))(x) ds,

where the operator-valued kernel Kβ is given by

Kβ(t)( f )=
1
2

∫
R

e2π i tτ
∞∑

k=0

5k( f )
π iτ +β − k

dτ, f ∈ C∞

c (R
d).

To prove (1-4), it is enough to show

∥Sβg∥Ls(R;Lq,b
x )

≲ ∥g∥Lr (R;L p,a
x ), g ∈ C∞

c (R
d+1), (4-3)

with an implicit constant independent of β as long as dist(β,N0)≥ c for some c > 0.
We regard Sβ as a vector-valued convolution operator. Let us first consider the case γ <1 which is easier.

Let φ ∈ C∞
c ([−1, 1]) be such that φ(t)= 1 on

[
−

1
2 ,

1
2

]
. Breaking the integral with functions φ(tτ) and

1−φ(tτ) and using integration by parts and (4-1), it is easy to see that ∥Kβ(t)∥L p,a
x →Lq,b

x
≲min{|t |−γ , |t |−2

}.
Since γ < 1, for r and s satisfying 0 ≤ 1/r − 1/s ≤ 1 − γ and (1/r, 1/s) ̸= (1, γ ), (1 − γ, 0), we obtain
estimate (4-3) by Young’s convolution inequality and the Hardy–Littlewood–Sobolev inequality.

We now turn to the case γ = 1. We claim that the kernel Kβ satisfies the Hörmander condition

sup
s ̸=0

∫
|t |>2|s|

∥Kβ(t − s)− Kβ(t)∥L p,2→Lq,2 dt ≤ A <∞, (4-4)

where A depends only on the constant c > 0 such that dist(β,N0)≥ c. To show (4-4) it is sufficient to
show ∥K ′

β(t)∥L p,2→Lq,2 ≲ |t |−2. In fact, if ∥K ′

β(t)∥L p,2
x →Lq,2

x
≲ |t |−2, then

∥Kβ(t − s)− Kβ(t)∥L p,2
x →Lq,2

x
=

∥∥∥∥∫ t−s

t
K ′

β(σ ) dσ
∥∥∥∥

L p,2
x →Lq,2

x

≲ |s||t |−2.

This clearly yields (4-4). Integrating by parts, we have

(−2π i t)2K ′

β(t)= 22(π i)3
∫

∞

−∞

τe2π iτ t
∞∑

k=0

1
(πτ i +β − k)3

5k dτ.

The assumption (4-1) (with γ = 1) gives ∥|t |2K ′

β(t)∥L p,2→Lq,2 ≲ 1 uniformly in t and β satisfying
dist(β,N0) ≥ c, which proves the claim (4-4) (see [Escauriaza and Vega 2001] for details). Thanks
to (4-4) and the usual vector-valued singular integral theory, in order to prove (4-3) for 1< r = s <∞, it
suffices to obtain estimate (4-3) with r = s = 2 and a = b = 2.

For η ∈ C∞
c (R), we define η(Dt) by Ft(η(Dt)g)(x, τ )= η(τ)Ft g(x, τ ), where Ft denotes the Fourier

transform in t . We use the following Littlewood–Paley-type inequality in the Lorentz spaces.
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Lemma 4.2. Let 1 < p, r < ∞. Suppose η is a smooth function supported in [2−2, 1] which satisfies∑
∞

j=−∞
|η(2− j t)|2 ∼ 1 for all t > 0. Then we have

∥g∥Lr
t (R;L p,r

x ) ≲

∥∥∥∥(∑
j∈Z

|η(2− j
|Dt |)g|

2
)1/2∥∥∥∥

Lr
t (R;L p,r

x )

≲ ∥g∥Lr
t (R;L p,r

x ). (4-5)

Proof. It is sufficient to show the second inequality in (4-5) because the first inequality follows from the
second one via the standard polarization argument and duality. For every 1< p, r <∞, we have∥∥∥∥(∑

j∈Z

|η(2− j
|Dt |)g|

2
)1/2∥∥∥∥

Lr (R;L p(Rd ))

≲ ∥g∥Lr (R;L p(Rd ))

by means of the usual Littlewood–Paley inequality and the vector-valued singular integral theorem; see
[Escauriaza and Vega 2001, Lemma 2.1]. We interpolate these estimates using the real interpolation in
the mixed-norm spaces, in particular,

(L p0(R; Lq0), L p1(R; Lq1))θ,p = L p(R; Lq,p)

whenever p0, q0, p1, q1 ∈ [1,∞) and (1/p, 1/q)= (1−θ)(1/p0, 1/q0)= θ(1/p1, 1/q1) with θ ∈ (0, 1);
see [Cwikel 1974; Lions and Peetre 1964]. Therefore, we obtain the second inequality in (4-5). □

We now note that
ψ(2− j

|Dt |)Sβg(x, t)=

∫
R

Kβ, j (t − s)g( · , s)(x) dt,

where

Kβ, j (t) f (x) :=
1
2

∫
R

e2π i tτψ

(
|τ |

2 j

) ∞∑
k=0

1
π iτ +β − k

5k f (x) dτ.

Using (4-1) with a = b = 2 and integration by parts, we see that ∥Kβ, j (t)∥L p,2
x →Lq,2

x
≤ C2 j (1 + 2 j

|t |)−2,
with C independent of j and β if dist(β,N0)≥ c > 0. Thus, Young’s convolution inequality gives

∥ψ(2− j
|Dt |)Sβg∥L2(R;Lq,2

x )
≲ ∥g∥L2(R;L p,2

x )
, (4-6)

with the implicit constant independent of j and β. To get the desired (4-3) with r = s = 2, we combine
this inequality and Lemma 4.2. Since 2 ≤ q <∞, the space L(q/2),(2/2) is normable. So,∥∥∥∥(∑

j

|h j |
2
)1/2∥∥∥∥

Lq,2
x

≲

(∑
j

∥h j∥
2
Lq,2

x

)1/2

. (4-7)

Since Sβg =
∑

j∈Z ψ(2
− j

|Dt |)Sβg, applying Lemma 4.2 and then (4-7), we have

∥Sβg∥L2(R;Lq,2
x )

≲

(∑
j∈Z

∥ψ(2− j
|Dt |)Sβg∥

2
L2(R;Lq,2

x )

)1/2

.

Let ψ̃ ∈ Cc([2−2, 1]) such that ψψ̃ = ψ , so

ψ(2− j
|Dt |)Sβg = ψ(2− j

|Dt |)Sβψ̃(2− j
|Dt |)g.
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Using (4-6) followed by (4-5), we get

∥Sβg∥L2(R;Lq,2
x )

≲

(∑
j∈Z

∥ψ̃(2− j
|Dt |)g∥

2
L2(R;L p,2

x )

)1/2

.

By duality, the inequality (4-7) is equivalent to
(∑

j∥h j∥
2
L p,2

x

)1/2
≲

∥∥(∑
j |h j |

2
)1/2∥∥

L p,2
x

for 1 < p ≤ 2.
Thus, using Lemma 4.2, we get

∥Sβg∥L2(R;Lq,2
x )

≲

∥∥∥∥(∑
j∈Z

|ψ̃(2− j
|Dt |)g|

2
)1/2∥∥∥∥

L2(R;L p,2
x )

≲ ∥g∥L2(R;L p,2
x )
. □
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