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NONNEGATIVE RICCI CURVATURE
AND MINIMAL GRAPHS WITH LINEAR GROWTH

GIULIO COLOMBO, EDDYGLEDSON S. GAMA, LUCIANO MARI AND MARCO RIGOLI

We study minimal graphs with linear growth on complete manifolds Mm with Ric≥0. Under the further as-
sumption that the (m−2)-th Ricci curvature in radial direction is bounded below by Cr(x)−2, we prove that
any such graph, if nonconstant, forces tangent cones at infinity of M to split off a line. Note that M is not
required to have Euclidean volume growth. We also show that M may not split off any line. Our result par-
allels that obtained by Cheeger, Colding and Minicozzi for harmonic functions. The core of the paper is a
new refinement of Korevaar’s gradient estimate for minimal graphs, together with heat equation techniques.

1. Introduction

The theory of entire minimal graphs in Euclidean space Rm, that is, of functions u : Rm
→ R solving the

minimal (hyper-)surface equation

div
(

Du√
1 + |Du|2

)
= 0 (MSE)

is built upon the following foundational results:

(B1) The Bernstein theorem: solutions to (MSE) are all affine if and only if m ≤ 7.

(B2) For each m ≥ 2, positive solutions to (MSE) are constant.

(B3) For each m ≥ 2, solutions to (MSE) with at most linear growth on one side are affine (i.e., the
Hessian D2u ≡ 0).

Here, u is said to have at most linear growth on one side if, up to changing the sign of u,

u(x)≥ −C(1 + r(x))

holds on Rm for some constant C > 0, where r is the distance from a fixed origin. The validity of (B1)
is due, as well-known, to the combined effort of S. Bernstein [1915] (m = 2, see also [Mickle 1950;
Hopf 1950]), W. H. Fleming [1962] (still for m = 2), E. De Giorgi [1965] (m = 3), F. Almgren [1966]
(m = 4), J. Simons [1968] (m ≤ 7) and E. Bombieri, De Giorgi and E. Giusti [Bombieri et al. 1969a]
(counterexamples if m ≥ 8). On the other hand, (B2) and (B3) were both proved by Bombieri, De Giorgi
and M. Miranda [Bombieri et al. 1969b] for m ≥ 3; in particular, (B3) refines J. Moser’s theorem [1961],
which states that u is affine provided that |Du| ∈ L∞(M). Further properties of entire minimal graphs in
Euclidean space were obtained by Bombieri and Giusti [1972]: among them, we mention the fact that u is
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affine whenever m − 1 of its partial derivatives are bounded. The result was improved in recent years by
A. Farina [2015; 2018], who showed that u is affine if m − 7 partial derivatives of u are bounded on one
side. Further enhancements of Moser’s result, proving that D2u ≡ 0 by only assuming that |Du| = o(r)
as r(x)→ ∞, were obtained in [Caffarelli et al. 1988; Ecker and Huisken 1990; Simon 1989]. We also
mention the recent [Farina 2022], where the rigidity of a minimal graph is obtained by assuming that an
upper level set contains, or is contained in, a half-space.

In a Riemannian setting, it is natural to ask the following:

Question 1. For which classes of complete Riemannian manifolds M one could expect results like
(B1), (B2), (B3)?

The problem motivated our previous works [Bianchini et al. 2021b; Colombo et al. 2022], as well as
the present paper. Recall that a solution to (MSE) on a Riemannian manifold (Mm, σ ) gives rise to a graph

F : M → R × M, F(x)= (u(x), x),

which is minimal if the ambient space R × M is endowed with the product metric dt2
+ σ . Hereafter,

we say that the graph is entire if u is defined on the whole of M.
If M is close to hyperbolic space Hm, namely, M is a Cartan–Hadamard manifolds with suitably

pinched negative curvature, (B1), (B2), (B3) drastically fail, since each continuous function on the
boundary at infinity of M can be attained as the limit value of an entire minimal graph, which is therefore
bounded. An exhaustive literature on the problem can be found in the survey [Heinonen 2021]; see also
the introduction of [Bianchini et al. 2021a].

Denoting by g = F∗(dt2
+ σ) the graph metric and with 1g its Laplace–Beltrami operator, (MSE)

can be written as 1gu = 0, making contact with the theory of harmonic functions. In Euclidean space
M = Rm, (B2) and (B3) hold as well when considering harmonic functions instead of solutions to
(MSE), while the analogy fails for (B1) since there is no rigidity for entire harmonic functions without
imposing any growth condition. This suggests that, for (B2) and (B3), an answer to the above question
may be guided by the global behavior of harmonic functions on Riemannian manifolds, according to
which it is natural to consider the problem on manifolds satisfying either

Sec ≥ 0 or Ric ≥ 0, (1)

where Sec,Ric are the sectional and Ricci curvatures of (M, σ ). Indeed, if Ric ≥ 0, positive harmonic
functions on M are constant, by S.Y. Cheng and S.T. Yau’s gradient estimate [Yau 1975; Cheng and Yau
1975], while a harmonic function with linear growth forces any tangent cone at infinity of M to split, by
work of J. Cheeger, T. Colding and W. Minicozzi [Cheeger et al. 1995]. Furthermore, M itself splits off a
line if Ric ≥ 0 is strengthened to Sec ≥ 0 (see [Antonelli et al. 2022] for a complete proof), or if M is
parabolic (see [Li and Tam 1989] and Remark 5 below).

In view of the convergence theory developed in the past 50 years for manifolds with Sec ≥ 0 or Ric ≥ 0,
some of the tools used to prove the Bernstein theorem in Rm are available on manifolds satisfying (1),
making these assumptions a natural setting also for the study of (B1). However, much has to be done



NONNEGATIVE RICCI CURVATURE AND MINIMAL GRAPHS WITH LINEAR GROWTH 2277

and (B1) seems very challenging to prove even on manifolds with Sec ≥ 0. In fact, we are aware of no
results in this direction.

The situation is different for (B2) and (B3), for which, as we shall detail below, the main difficulty is
to prove the results by only requiring Ric ≥ 0, arguably the sharp condition for their validity (in this case,
however, (B3) has to be suitably weakened, see later).

Regarding (B2), after previous work by H. Rosenberg, F. Schulze and J. Spruck [Rosenberg et al.
2013], a complete answer was obtained by the first, third and fourth authors together with M. Magliaro
[Colombo et al. 2022], and independently by Q. Ding [2021a] with different methods:

Theorem 2 [Colombo et al. 2022; Ding 2021a]. Connected, complete manifolds M with Ric ≥ 0
satisfy (B2); that is, entire positive minimal graphs over M are constant.

In this paper, we address (B3). In view of the result in [Cheeger et al. 1995], it is reasonable to
formulate the following:

Conjecture 3. Let M be a connected, complete manifold with Ric ≥ 0 and possessing a nonconstant
entire minimal graph with at most linear growth on one side. Then, every tangent cone at infinity of M
splits off a line.

The problem seems to be considerably harder compared to the case of harmonic functions. We are
aware of only two results in the direction of Conjecture 3. Ding, J. Jost and Y. Xin [Ding et al. 2016]
proved that Rm is the only manifold satisfying the following assumptions:

Ric ≥ 0, lim
r→∞

|Br |

rm > 0, (2.α)

the curvature tensor decays quadratically (2.β)

and admits an entire, nonconstant minimal graph with at most linear growth on one side. Very recently,
Ding [2021b] posted on arXiv a paper where he proved Conjecture 3 on manifolds satisfying the
assumptions in (2.α). The bulk of his argument is to show the remarkable property that the isoperimetric
inequality, satisfied by (M, σ ) in view of (2.α), is inherited by the graph of u. This allowed Ding to
adapt, in a nontrivial way, tools from [Bombieri et al. 1969b; Bombieri and Giusti 1972] and from
Cheeger–Colding theory to reach the goal. We stress that his method heavily depends on the Euclidean
volume growth condition in (2.α).

In our work, we address Conjecture 3 without requiring the Euclidean volume growth assumption, but
rather a mild further curvature condition. To formulate our main result, we first recall the definition of the
ℓ-th Ricci curvature:

Definition 4. Let (M, σ ) be a manifold of dimension m ≥ 2. For ℓ∈ {1, . . . ,m −1}, the ℓ-th (normalized)
Ricci curvature is the function

v ∈ Tx M 7−→ Ric(ℓ)(v) .= inf
W≤v⊥

dimW=ℓ

(
1
ℓ

ℓ∑
j=1

Sec(v∧ ej )

)
,

where {ej } is an orthonormal basis of W .
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The function Ric(ℓ) interpolates between the sectional and Ricci curvatures, obtained respectively
for ℓ = 1 and, up to the normalization constant m−1 for ℓ = m − 1. In particular, with our chosen
normalization the following implications are immediate:

Sec ≥ c =⇒ Ric(ℓ−1)
≥ c =⇒ Ric(ℓ) ≥ c =⇒ Ric ≥ (m − 1)c.

Hereafter, given H ∈ C([0,∞)) and denoting by r the distance from a fixed origin o ∈ M, we use the
short-hand notation Ric(ℓ)(∇r)≥ −H(r) on M to mean the inequality

Ric(ℓ)(∇r(x))≥ −H(r(x)) for all x ∈ M\({o} ∪ cut(o)),

where cut(o) is the cut-locus of o.
A relevant class of manifolds for which rigidity holds without imposing any growth of u is that of

parabolic ones. Recall that a manifold M is said to be parabolic if every positive superharmonic function
on M is constant.

Remark 5. By work of N. Varopoulos [1981] and Li and Yau [1986], if Ric ≥ 0 the parabolicity of M is
equivalent to ∫

∞ s ds
|Bs |

= ∞, (3)

where Bs is a geodesic ball centered at a fixed origin o. Indeed, (3) is sufficient for the parabolicity of a
complete manifold, independently of any curvature requirement; see [Grigoryan 1999].

Lastly, we recall that a tangent cone at infinity for a complete (noncompact) manifold M is any metric
space obtained as a blow-down of M. More precisely, a pointed metric space (X∞, d∞, x∞), x∞ ∈ X∞,
is a tangent cone at infinity for (M, σ ) if, for some base point x ∈ M and some sequence {λn} of positive
real numbers such that λn → ∞, one has

(M, λ−1
n distσ , x)→ (X∞, d∞, x∞)

in the pointed Gromov–Hausdorff (pGH) sense. If (M, σ ) has nonnegative Ricci curvature, then tangent
cones at infinity exist based at any point x ∈ M, by Gromov’s precompactness theorem [2007].

We are ready to state:

Theorem 6. Let (M, σ ) be a connected, complete Riemannian manifold of dimension m ≥ 2 with

Ric ≥ 0,

and let u ∈ C∞(M) be a nonconstant entire solution to (MSE).

(i) If M is parabolic, then it admits a splitting M = N × R with the product metric σN + ds2 for some
complete manifold N with RicN ≥ 0 such that in the variables (y, s)∈ N ×R it holds u(y, s)= as+b
for some a, b ∈ R.

(ii) If M is nonparabolic and

• u has at most linear growth on one side,
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• there exists an origin o ∈ M such that, denoting by r the distance from o,

Ric(m−2)(∇r)≥ −
κ̄2

1 + r2 on M, (4)

for some constant κ̄ ≥ 0,

then every tangent cone at infinity of M splits off a line.

Remark 7. In case (i), the claimed splitting M = N × R for which u is independent of N may not be
the unique splitting of the manifold as a product of a line and a complete manifold, as the case of affine
graphs on M = R2 shows. In case (ii), since M is nonparabolic then necessarily m ≥ 3 (see below), so
Ric(m−2) is well-defined. In the statement of (ii), we also emphasize that tangent cones at infinity may be
based at any point of M, not necessarily at o.

Case (i) in Theorem 6 is easy to obtain, and might be well-known among specialists. We included it
for the sake of completeness. Regarding case (ii), the curvature condition in (4) is only used to infer that
u has bounded gradient on M. In other words, as a consequence of our proof we obtain a generalization
of Moser’s result [1961] to the following:

Theorem 8. Let M be a connected, complete manifold with Ric ≥ 0. If u is a nonconstant solution to
(MSE) and |Du| ∈ L∞(M), then every tangent cone at infinity of M splits off a line.

It was already observed in [Cheeger et al. 1995] that a manifold M with Ric ≥ 0 may not split off any
line despite each of its tangent cones at infinity does. A counterexample was constructed in [Kasue and
Washio 1990], and building on it we get the following result:

Proposition 9. For m ≥ 4, there exists a connected, complete manifold M with

Ric(2) ≥ 0, Ric> 0, |Sec | ≤ κ̄2

for some constant κ̄ > 0, which carries a nonconstant minimal graph u : M → R with |Du| ∈ L∞(M).

Note that Ric(m−2)
≥ 0 and that, having positive Ricci curvature, M does not split off any line. Whence,

in assumption (ii) of Theorem 6 the conclusion cannot be strengthened to a splitting of M itself, at least
if m ≥ 4.

When Sec ≥ 0, however, the above phenomenon does not happen. Leaving aside dimension m = 2,
covered by case (i) in Theorem 6, we obtain

Corollary 10. Let (M, σ ) be a connected, complete Riemannian manifold of dimension m ≥ 3 satisfying
Sec ≥ 0. If there exists a nonconstant entire solution u ∈ C∞(M) of (MSE) with at most linear growth on
one side, then M admits a splitting M = N×R with the product metric σN +ds2 for some complete manifold
N with SecN ≥ 0 such that in the variables (y, s) ∈ N × R it holds u(y, s)= as + b for some a, b ∈ R.

The corresponding problem for harmonic functions was also studied by A. Kasue [1990]. Corollary 10
relates to the results obtained by P. Li and J. Wang [2004]. There, the authors study connected, complete,
stable minimal hypersurfaces 6 → M properly immersed into a complete manifold M whose sectional
curvature is nonnegative, and prove that either6 has only one end or6 is a totally geodesic cylinder P×R,



2280 GIULIO COLOMBO, EDDYGLEDSON S. GAMA, LUCIANO MARI AND MARCO RIGOLI

for some compact manifold P with nonnegative sectional curvature. Our setting falls into their framework,
since a minimal graph in R × M is stable, properly embedded and M = R × M has nonnegative sectional
curvature. However, our conclusion is stronger, since it allows M to have only one end and it also implies
a splitting of M itself.

To conclude, we prove the next result for graphs with slower than linear growth on one side, that
should be compared to [Ding et al. 2016, Theorem 3.6; 2021b, Theorem 1.4].

Theorem 11. Let (M, σ ) be a connected, complete Riemannian manifold of dimension m ≥ 2 with Ric ≥ 0,
and let u ∈ C∞(M) solve (MSE) on M and satisfy

lim
r(x)→∞

u−(x)
r(x)

= 0, (5)

where u−(x)= max{−u(x), 0}. Assume that either

• M is parabolic, or

• M is nonparabolic and there exists an origin o ∈ M such that, denoting by r the distance from o,

Ric(m−2)(∇r)≥ −
κ̄2

1 + r2 on M,

for some constant κ̄ ≥ 0.

Then, u is constant.

Remark 12 (more general curvature bounds). It is natural to wonder whether conditions Ric≥0 or Sec≥0
can be weakened still allowing for some rigidity of u and M. In this respect we quote [Bianchini et al. 2021a,
Example 3.1], where the authors constructed a manifold M of dimension m ≥ 3 with two ends, satisfying

Sec ≥ −
κ̄2

1 + r2 , vol(Br )≤ Crm

for constants κ̄,C > 0 and supporting a nonconstant, bounded entire minimal graph. On the other hand,
the existence of such a solution to (MSE) is forbidden if M has asymptotically nonnegative sectional
curvature and only one end; see [Casteras et al. 2020]. An interesting class for which one might try to
obtain rigidity results is that of manifolds with quadratically decaying (or asymptotically nonnegative)
Ricci curvature and linear volume growth; see [Sormani 2000].

Strategy of the proof. Case (i) in Theorem 6 is a direct consequence of the parabolicity of (M, σ ), which
in our setting can be transplanted to the graph of u. In particular, since every surface with Ric ≥ 0 is
parabolic, the result holds if m = 2, so we focus on dimension m ≥ 3. In [Bombieri et al. 1969b], the
authors obtain (B3) in Rm via the following steps:

(a) a sharp gradient estimate, implying that a solution u ∈ C∞(Rm) to (MSE) with at most linear growth
on one side satisfies |Du| ∈ L∞(Rm);

(b) an argument of [Moser 1961]: since |Du| ∈ L∞(Rm), for each coordinate field ∂j the partial derivative
∂j u is a bounded solution to a uniformly elliptic PDE. The global Harnack inequality implies that
∂j u is constant, which implies that u is affine.
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Step (b) cannot be implemented on manifolds, which in general lack parallel fields. An alternative idea
was proposed in [Cheeger et al. 1995] to study harmonic functions, a blowdown argument which exploits
the convergence theory of manifolds with Ric ≥ 0. Our strategy closely follows the one in that work, and
can be split into the following steps:

(a) We prove that a solution u ∈ C∞(M) to (MSE) with at most linear growth on one side satisfies
|Du| ∈ L∞(M).

(b) For fixed x0 ∈ M, we show that the functions |Du| and |D2u| satisfy

lim
R→∞

1
|BR(x0)|

∫
BR(x0)

|Du|
2 dx = sup

M
|Du|

2, (6)

lim
R→∞

R2

|BR(x0)|

∫
BR(x0)

|D2u|
2 dx = 0, (7)

where BR(x0) is the geodesic ball of radius R and center x0 in (M, σ ).

(c) We use the blowdown argument to guarantee the splitting of any tangent cone at infinity with base
point x0.

To be more precise, step (a) will be achieved by assuming

Ric ≥ 0 and Ric(m−2)(∇r)≥ −
κ̄2

1 + r2 , (8)

while (b) will be shown by requiring

Ric ≥ 0 and |Du| ∈ L∞(M). (9)

Though the strategy is the same as that in [Cheeger et al. 1995], we emphasize that the techniques
in the current literature to prove (a) (respectively, (b)) do not apply under the sole assumptions in (8)
(respectively, in (9)). We shall justify this claim in the next sections. Our strategy to obtain (a) is to refine
a method due to N. Korevaar [1986], see Theorem 15 below, while to get (b) in our needed generality we
exploit heat equation techniques, inspired by works of P. Li [1986] and L. Saloff-Coste [1992]. In this
respect, we underline Theorem 27 below, yielding to (7), that in the stated generality seems to us new and
of an independent interest.

2. Preliminaries

We briefly review some formulas for minimal graphs that will be used later on. In local coordinates (x i )

on M, the background metric σ and the graph metric g = F∗(dt2
+ σ) can be written as

σ = σi j dx i
⊗ dx j , g = gi j dx i

⊗ dx j , du = ui dx i ,

and gi j = σi j + ui u j . Letting σ i j and gi j be the components of the inverse matrices of (σi j ), (gi j ),
respectively, it holds

gi j
= σ i j

−
ui u j

W 2 ,
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where W =
√

1 + |Du|2 and ui
= σ i j u j . In general, if φ ∈ C1(M) then the symbols Dφ and ∇φ will

denote the gradients of φ in the metrics σ and g, respectively, and in local notation we write

dφ = φi dx i , Dφ = φi∂xi ≡ σ i jφj∂xi , ∇φ = gi jφj∂xi .

Differentiating the upward-pointing unit normal vector n = W −1(∂t − ui ei ), the second fundamental
form II in the direction of n has components

IIi j =
ui j

W
, (10)

where ui j are the components of the Hessian D2u in the metric σ . Let H = gi j hi j be the mean curvature,
which we assume to vanish. Using the relation

0k
i j − γ k

i j =
ukui j

W 2

between the Christoffel coefficients 0k
i j of g and γ k

i j of σ , for every φ : M → R the Laplace–Beltrami
operator 1g of g can be written as

1gφ = gi jφi j −φkuk H
W

= gi jφi j ,

where we used the minimality of 6. Also, 1g has the local expression

1gφ =
1

√
|g|
∂x j (

√
|g|gi jφi )=

1
W

div(Wgi jφi∂x j ), (11)

where div is, as before, the divergence operator in (M, σ ) and |g| is the determinant of (gi j ). Next, for
every Killing field X defined in R × M, the angle function 2X

.
= ⟨n, X⟩ solves the Jacobi equation

1g2X + (∥II∥2
+ Ric(n, n))2X = 0, (12)

with Ric the Ricci curvature of R × M. This is the case, for instance, of the angle function

2∂t = ⟨n, ∂t ⟩ = W −1

associated to the Killing field ∂t . As a consequence, W satisfies

LW W = (∥II∥2
+ Ric(n, n))W, (13)

where we defined
LWφ

.
= W 2 divg(W −2

∇φ)=1gφ− 2⟨∇ log W,∇φ⟩.

Observe that, in terms of the metric σ ,

LWφ = W div(W −1gi jφi∂x j ). (14)

If X is a Killing field in (M, σ ) then we can extend it by parallel transport on R × M to a Killing field X
satisfying ⟨∂t , X⟩ = 0, with corresponding angle function

2X = ⟨n, X⟩ = −W −1σ(Du, X).
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Since (12) holds both for 2∂t and for 2X , it can be checked that the quotient

v
.
= −

2X

2∂y

= σ(Du, X)

is a solution to

LWv = 0. (15)

We next discuss the implications of ℓ-th Ricci curvature lower bounds. Hereafter, we set R+
= (0,∞)

and R+

0 = [0,∞).

Proposition 13. Let (M, σ ) be a connected, complete manifold of dimension m ≥ 2 satisfying

Ric(ℓ)(∇r)≥ −H(r) for ℓ= max{1,m − 2},

where r is the distance from a fixed origin o ∈ M, and 0 ≤ H ∈ C(R+

0 ). Let h ∈ C2(R+

0 ) solve
h′′

− Hh ≥ 0 on R+,

lim inf
t→0

(
h′

h
−

1
t

)
≥ 0.

(16)

Let u : M → R solve (MSE). Then, denoting by 1g the Laplacian in the graph metric g,

1gr ≤ m
h′(r)
h(r)

pointwise on M\({o} ∪ cut(o)) and in the barrier sense on M\{o}.

Proof. Outside of {o} ∪ cut(o), denote by {λj (D2r)} the eigenvalues of D2r in increasing order. The
comparison theorem in [Mari and Pessoa 2020, Proposition 7.4] guarantees that

m∑
j=2

λj (D2r)≤ (m − 1)
h′(r)
h(r)

(17)

pointwise on M\({o} ∪ cut(o)) and in the barrier sense on M\{o}. Note that the initial assumptions on h
therein are h(0)= 0, h′(0)≥ 1, but the same proof works for the more general (16). In this respect, note
that h′ > 0 on R+ follows from H ≥ 0.

To estimate 1gr = gi jri j , pick a point x where r is smooth. If Du(x) = 0, then gi j
= σ i j. In our

assumptions, the Ricci curvature satisfies

Ric(∇r,∇r)≥ −(m − 1)H(r),

so by the Laplacian comparison theorem and since h′ > 0,

1gr = Tr(D2r)≤ (m − 1)
h′(r)
h(r)

≤ m
h′(r)
h(r)

.

Assume that Du(x) ̸= 0, write ν = Du/|Du| in a neighborhood of x and complete it to a local
σ -orthonormal basis {ν, eα} with 2 ≤ α ≤ m. Note that gi j is diagonalized with eigenvalues W −2

≤ 1 in
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direction ν and 1 in directions {eα}. Expressing 1gr in the basis {eα, ν} we get

1gr =
1

W 2 D2r(ν, ν)+
m∑
α=2

D2r(eα, eα)

=
1

W 2

[
Tr(D2r)−

m∑
α=2

D2r(eα, eα)
]

+

m∑
α=2

D2r(eα, eα)

=
1

W 2 Tr(D2r)+
[

W 2
− 1

W 2

] m∑
α=2

D2r(eα, eα). (18)

By min-max and since the eigenvalues are ordered,

Tr(D2r)≤
m

m − 1

m∑
α=2

λα(D2r),
m∑
α=2

D2r(eα, eα)≤

m∑
α=2

λα(D2r).

Therefore,

1gr ≤

[
m

(m − 1)W 2 +
W 2

− 1
W 2

] m∑
α=2

λα(D2r)

≤

[
1

(m − 1)W 2 + 1
]
(m − 1)

h′(r)
h(r)

≤ m
h′(r)
h(r)

, (19)

as claimed. The validity of (17) in the barrier sense on the entire M\{o} easily follows by Calabi’s trick;
see [Mari and Pessoa 2020, Proposition 7.4]. □

Remark 14. In particular, letting κ̄ ∈ R+, for ℓ= max{1,m − 2} it holds

Ric(ℓ)(∇r)≥ −κ̄2
=⇒ 1gr ≤ mκ̄ coth(κ̄r),

Ric(ℓ)(∇r)≥ −
κ̄2

1 + r2 =⇒ 1gr ≤
m(1 +

√
1 + 4κ̄2)

2r

pointwise outside of {o}∪cut(o) and in the barrier sense on M\{o}. Indeed, it is enough to consider for h,
respectively, the functions

h(t)=
sinh(κ̄t)
κ̄

and h(t)= t κ̄
′

, where κ̄ ′
=

1 +
√

1 + 4κ̄2

2
.

3. Proof of Theorem 6(i)

Since Ric ≥ 0 and M is parabolic, by Remark 5 the manifold (M, σ ) satisfies∫
∞ s ds

|Bs |
= ∞. (20)

We apply an argument outlined in [Colding and Minicozzi 2011, p. 48] for minimal graphs in R3. First, a
calibration method in [Li and Wang 2001] (see also [Colding and Minicozzi 2011; Trudinger 1972] for
the case M = Rm) shows that the volume of the graph 6 = (M, g) inside an extrinsic ball Br ⊂ R × M
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centered at a point (u(o), o) satisfies

|6 ∩ Br | ≤ |Br | +
1
2 |B3r\Br | ≤ 2|B3r |.

Hence, the volume of a geodesic ball Bg
s in 6 centered at o is bounded by

|Bg
r | ≤ |6 ∩ Br | ≤ 2|B3r |, (21)

which implies ∫
∞ s ds

|Bg
s |

= ∞.

Therefore, by Remark 5, the graph 6 = (M, g) is parabolic. Because of the Jacobi equation

1g
1
W

= −(∥II∥2
+ Ric(n, n))

1
W
,

the bounded function 1/W is superharmonic on 6, and hence constant by parabolicity. Since Ric ≥ 0
implies Ric ≥ 0, again from the Jacobi equation we deduce II ≡ 0 and 6 is totally geodesic in M × R.
Equivalently, by (10), D2u ≡ 0 in M. As a consequence, since u is nonconstant, Du is a nonzero parallel
vector field. The flow of Du therefore splits M isometrically as a product N × R, and u is an affine
function of the R-coordinate alone.

4. A local gradient estimate

Let u : BR ⊂ M → R solve (MSE) on a geodesic ball BR = BR(x). The original argument in [Bombieri
et al. 1969b] to prove the gradient estimate in Euclidean setting (M = Rm)

|Du(x)| ≤ c1 exp
{

c2
u(x)− infBR u

R

}
(22)

for some constants cj = cj (m) makes use of the isoperimetric inequality, which does not hold for minimal
graphs over manifolds (M, σ ) with Ric ≥ 0 unless M has maximal volume growth compatible with the
Bishop–Gromov inequality, in the sense that (2.α) is satisfied. Indeed, the isoperimetric inequality forces
geodesic balls Bg

r in the graph 6 = (M, g) to satisfy |Bg
r | ≥ Crm, which coupled with (21) imply that M

has Euclidean volume growth.
The exponential bound in (22) is sharp; see [Finn 1963]. On the other hand, in their seminal paper

Bombieri and Giusti [1972] proved a different estimate for entire solutions: if u : Rm
→ R solves (MSE),

then for any x ∈ Rm and R > 0

|Du(x)| ≤ c1

{
1 +

supBR
|u|

R

}m

, (23)

where c1 = c1(m). Whence, for entire solutions, an exponentially growing bound in terms of |u| is not
sharp.

If M has Ric ≥ 0 and Euclidean volume growth, the validity of an isoperimetric inequality on entire
minimal graphs was recently shown in [Ding 2021b]; see also [Brendle 2023] for the case Sec ≥ 0. As a
consequence, in [Ding 2021b, Theorems 1.3 and 6.2] the author was able to extend (22) and (23) to such
manifolds.
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An alternative method to prove (22) in Euclidean setting was given by N. Trudinger [1972]. His strategy
hinges on a mean value inequality on 6 which, remarkably, is obtained without needing the isoperimetric
inequality and is therefore suited to apply to manifolds whose volume growth is not Euclidean. However,
to adapt the proof to minimal graphs over M, it seems that an upper bound on the sectional curvature of
M is necessary; see also the related [Ding et al. 2016]. Later, N. Korevaar [1986] gave new insight into
the problem, finding a striking argument to get gradient estimates that only requires lower bounds on
the curvatures of M. Exploiting Korevaar’s method, in [Rosenberg et al. 2013] the authors obtained the
slightly different estimate

|Du(x)| ≤ c1 exp
{

c2[1 + κ̄R coth(κ̄R)]
(u(x)− infBR u)2

R2

}
, (24)

provided that Ric ≥ 0 and Sec ≥ −κ̄2. Note that, unless κ̄ = 0, the estimate explodes as R → ∞ if
u : M → R is of linear growth. Extensions to more general ambient spaces were later given in [Casteras
et al. 2020; Dajczer and de Lira 2015; 2017], but they only consider graphs which are bounded on one
side or have logarithmic growth.

Inspecting the proofs in [Rosenberg et al. 2013; Dajczer and de Lira 2015; 2017; Ding et al. 2016], to
reach the inequality |Du(x)| ≤ C for solutions of linear growth, with C uniform with respect to x , the
bounds on Sec are instrumental to guarantee that the distance rx from x satisfies 1grx ≤ C1/rx for some
absolute constant C1. In view of the arbitrariness of the point x , assumption Sec ≥ 0 in [Rosenberg et al.
2013] seems therefore difficult to replace by a weaker control on Sec from below. For instance, if one
considers the inequality Sec ≥ −κ̄2/(1 + r2

o ) for some constant κ̄ > 0 and some origin o, comparison
theory and standard estimates for ODE would yield to a constant C1, hence C , that depends on the
distance of x from o and explodes as ro(x)→ ∞, making the estimate on 1grx insufficient to imply the
desired uniform gradient bound.

From a different perspective, we mention that a global gradient estimate for positive entire solutions
was obtained in [Colombo et al. 2022] under the sole curvature assumption

Ric ≥ −(m − 1)κ2, κ ∈ R+

0 ,

namely, a positive solution to (MSE) on the entire M shall satisfy√
1 + |Du(x)|2 ≤ eκu(x)

√
m−1 for all x ∈ M.

Note that (B2) directly follows if κ = 0. However, modifying the argument in [Colombo et al. 2022] to
allow for linearly growing solutions seems challenging.

Our first main result, Theorem 15, provides an improvement of Korevaar’s method that apply to the
more general assumption (8).

Theorem 15. Let (M, σ ) be a complete Riemannian manifold with dimension m ≥2. Let BR = BR(o)⊆ M
be a geodesic open ball of radius R > 0 centered at o ∈ M and let u ∈ C3(B R) be a nonconstant solution
to (MSE). Assume that

Ric ≥ −(m − 1)κ2, Ric(ℓ)(∇r)≥ −
κ̄2

1 + r2 on BR, ℓ= max{1,m − 2},
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for some κ, κ̄ ∈ R+

0 , where r denotes the distance from o. Let 0< R1 < R. Then,

√
1 + |Du(x)|2 ≤ max

{√
1 + a2

0(γ
∗)2,

√
a3

a3 − a2

}(
eL R(

√
ε2+1−ε)

− 1

eL R(
√
ε2+1−

√
ε2+r(x)2/R2−qγ (x)) − 1

)
for every x ∈ BR1(o), where

γ (x)=
u(x)− infBR u

R
, γ ∗

= sup
x∈BR1

γ (x)=

supBR1
u − infBR u

R
,

ε > 0 and τ ∈ (0, 1) are fixed arbitrarily, q, a0 ∈ R+ satisfy
√

1 + ε2 −
√
(R1/R)2 + ε2

γ ∗
> q >

1
√
τa0γ ∗

> 0

and L ∈ R+ satisfies

(1 − τ)

(
q2

−
1

τa2
0(γ

∗)2

)
L2

−
(m + 1)κ̄0L

εR
> (m − 1)κ2,

with κ̄0 = max{1, κ̄}. Finally, a2, a3 are defined by

a2 =
(m + 1)κ̄0L

εR
a3 = (1 − τ)

(
q2

−
1

τa2
0(γ

∗)2

)
L2

− (m − 1)κ2.

Remark 16. The assumption that u is nonconstant ensures that γ∗ > 0 by the maximum principle.

Before proving the theorem, we give some applications, starting from the case where κ = 0.

Corollary 17. Let (Mm, σ ) be a complete Riemannian manifold with Ric ≥ 0 and

Ric(ℓ)(∇r)≥ −
κ̄2

1 + r2 , ℓ= max{1,m − 2},

for some κ̄ ∈ R+

0 , where r denotes the distance from o. Let u ∈ C3(B R) solve (MSE). Then, for every
δ ∈ (0, 1) and for every R1 ∈ (0, δR),

sup
BR1

√
1 + |Du|2 ≤ C1 exp

(
C2mκ̄0

[supBR1
u − infBR u]

2

R2

)
, (25)

with κ̄0 = max{1, κ̄} and C1,C2 > 0 only depending on δ.

Proof. The desired inequality is trivial if u is constant, so assume that u is nonconstant. It suffices to
prove the claim for δ ∈

[ 1
2 , 1

)
. Let

γ ∗
=

supBR1
u − infBR u

R
.

Choose

τ =
1
2
, ε = δ, q =

1 − δ

2
√

2γ ∗
, a0 =

2
qγ ∗

, L =
8(m + 1)κ̄0

δRq2 .
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With this choice, we have
√

1 + ε2 −
√
(R1/R)2 + ε2

γ ∗
≥

√
1 + ε2 −

√
δ2 + ε2

γ ∗
=

√
1 + δ2 −

√
2δ

γ ∗
≥ 2q, (26)

where, from δ < 1, we used√
1 + δ2 −

√
2δ =

1 − δ2
√

1 + δ2 +
√

2δ
≥

1 − δ2
√

2 +
√

2δ
=

1 − δ
√

2
.

We also have

q2
−

1
a2

0(γ
∗)2τ

= q2
−

q2

2
=

q2

2

and then

a3 = (1 − τ)

(
q2

−
1

a2
0(γ

∗)2τ

)
L2

=
L2q2

4
= 2

(m + 1)κ̄0L
εR

= 2a2.

Hence, all assumptions of Theorem 15 are satisfied and for every x ∈ BR1 we have√
1 + |Du(x)|2 ≤ max

{√
1 + a2

0(γ
∗)2,

√
2
}
·

eL R(
√

1+ε2−ε)
− 1

eL R(
√

1+ε2−
√
(r(x)/R)2+ε2−qγ (x)) − 1

.

Note that, for every x ∈ BR1 and taking into account (26),√
1 + ε2 −

√
(r(x)/R)2 + ε2

− qγ (x)≥

√
1 + ε2 −

√
δ2 + ε2 − qγ ∗

≥ 2qγ ∗
− qγ ∗

= qγ ∗,

and also √
1 + ε2 − ε =

1
√

1 + ε2 + ε
≤

1
√

1 + ε2
=

1
√

1 + δ2
≤

1
√

2δ
=

2
δ(1 − δ)

qγ ∗.

Therefore, we can estimate

eL R(
√

1+ε2−ε)
− 1

eL R(
√

1+ε2−
√
(r(x)/R)2+ε2−qγ (x)) − 1

≤
eL R 2

δ(1−δ)
qγ ∗

− 1
eL Rqγ ∗

− 1
≤ C(δ)eL R( 2

δ(1−δ)
−1)qγ ∗

.

Here, we have exploited the fact that for every α ∈ R one has the validity of an inequality of the form

yα − 1
y − 1

≤ C(α)yα−1 for all y > 1

for a suitable constant C(α) > 0. Recalling that

a2
0(γ

∗)2 =
32(γ ∗)2

(1 − δ)2
, L Rqγ ∗

=
8(m + 1)κ̄0γ

∗

δq
=

16
√

2(m + 1)κ̄0

δ(1 − δ)
(γ ∗)2,

we obtain√
1 + |Du(x)|2 ≤ max

{√
1 +

32(γ ∗)2

(1 − δ)2
,
√

2
}

· C(δ) exp
(

16
√

2(m + 1)κ̄0

δ(1 − δ)

(
2

δ(1 − δ)
− 1

)
(γ ∗)2

)
and the conclusion follows. □
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Assuming that u has at most linear growth, we get:

Corollary 18. Let (Mm, σ ) be a connected, complete Riemannian manifold with Ric ≥ 0 and

Ric(ℓ)(∇r)≥ −
κ̄2

1 + r2 , ℓ= max{1,m − 2},

for some κ̄ ∈ R+

0 . If u ∈ C∞(M) solves (MSE) and has at most linear growth on one side, then
|Du| ∈ L∞(M).

Proof. Without loss of generality we can assume that the negative part of u has at most linear growth, so
that there exists a > 0 such that u(x)≥ −a(1 + r(x)) for every x ∈ M. Let R1 > 0 be fixed. Choosing
δ =

1
2 and letting R → ∞ in estimate (25) we get

sup
BR1

√
1 + |Du|2 ≤ C1 exp(C2mκ̄0a2),

where C1,C2 > 0 do not depend on R1. Since R1 > 0 was arbitrary, the conclusion follows. □

To prove Theorem 15, we need the following:

Lemma 19. Let (Mm, σ ) be a complete Riemannian manifold with

Ric(ℓ)(∇r)≥ −
κ̄2

1 + r2 , ℓ= max{1,m − 2},

for some κ̄ ∈ R+

0 , where r is the distance from a fixed origin o ∈ M, and let u ∈ C∞(BR) solve (MSE) on
a geodesic ball BR centered at o.

For any given a > 0, the function ψ =
√

a2 + r2 satisfies

|Dψ |< 1, 1gψ ≤ (m + 1)
max{1, κ̄}

a
in the barrier sense on BR and pointwise on BR \ cut(o).

Remark 20. By its very definition, a solution in the barrier sense is also a solution in the viscosity sense;
see [Mantegazza et al. 2014] for comments.

Proof. Outside of {o} ∪ cut(o), a direct computation yields |Dψ | = (r/ψ)|Dr |< 1 and

1gψ =
r1gr

√
a2 + r2

+
a2

∥∇r∥
2

(a2 + r2)3/2
.

From ∥∇r∥
2
= gi jrirj ≤ |Dr |

2
= 1 and Remark 14,

1gψ ≤
1

√
a2 + r2

(
m(1 +

√
1 + 4κ̄2)

2
+

a2

a2 + r2

)
and the conclusion follows by observing that 1/

√
a2 + r2 ≤ 1/a and that

m(1 +
√

1 + 4κ̄2)

2
+

a2

a2 + r2 ≤ m(1 + κ̄)+ 1 ≤ (m + 1)max{1, κ̄}.
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The validity of the inequality in the barrier sense can be proved by Calabi’s trick; see for instance [Mari
and Pessoa 2020, Proposition 7.4]. □

Proof of Theorem 15. Without loss of generality, we can assume infBR u = 0. Then

γ ∗
= sup

x∈BR1

γ (x)=

supBR1
u

R
.

As in the statement of the theorem, fix τ ∈ (0, 1) and ε > 0, choose q > 0 and a0 > 0 such that
√
ε2 + 1 −

√
(R1/R)2 + ε2

γ ∗
> q >

1
√
τa0γ ∗

(27)

and then L > 0, which satisfies

(1 − τ)

(
q2

−
1

τa2
0(γ

∗)2

)
L2

−
(m + 1)κ̄0L

εR
> (m − 1)κ2, (28)

where κ̄0 = max{1, κ̄}. Set
C = q L , δ = e−L R

√
ε2+1,

define the function
ψ =

√
ε2 R2 + r2,

where r(x)= distσ (o, x), and let

η = e−Cu−Lψ
− δ, z = Wη.

By writing

η = δ(eL R(
√
ε2+1−

√
ε2+(r/R)2−qu/R)

− 1),

we see that for every x ∈ BR1

η(x)≥ δ(eL R(
√
ε2+1−

√
ε2+r(x)2/R2−qγ (x))

− 1)

≥ δ(eL R(
√

1+ε2−
√
(R1/R)2+ε2−qγ ∗)

− 1) > 0

as a consequence of (27). Noting that, on ∂BR ,

η = δ(e−q Lu
− 1)≤ 0,

the set
�= {x ∈ B R : z(x) > 0} ≡ {x ∈ B R : η(x) > 0}

is nonempty and satisfies BR1 ⊆�⊆ BR . Therefore, there exists x0 ∈� such that

0< z(x0)= max
�

z.

The function z satisfies

1gz − 2⟨∇z,∇ log W ⟩ ≥

(
−(m − 1)κ2

∥∇u∥
2
+
1gη

η

)
z on �.
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The above inequality has to be interpreted in the viscosity sense, in case x0 is not a point where r (hence ψ)
is smooth. By the maximum principle, necessarily

−(m − 1)κ2
∥∇u∥

2
+
1gη

η
≤ 0 at x0 (29)

in the viscosity sense. We compute

1gη = (η+ δ)(−C1gu − L1gψ + ∥C∇u + L∇ψ∥
2).

We recall that W −2(σ i j )i, j ≤ (gi j )i, j ≤ (σ i j )i, j in the sense of quadratic forms; hence

∥C∇u + L∇ψ∥
2
= gi j (Cui + Lψi )(Cu j + Lψj )

≥
1

W 2σ
i j (Cui + Lψi )(Cu j + Lψj )

≥
1

W 2 |C Du + L Dψ |
2.

It follows that
1gη

η+ δ
≥ −C1gu − L1gψ +

1
W 2 |C Du + L Dψ |

2.

Using 1gu = 0 and Young’s inequality we obtain

1gη

η+ δ
≥ −L1gψ + (1 − τ)C2 |Du|

2

W 2 − L2 1 − τ

τ

|Dψ |
2

W 2 .

Taking into account Lemma 19 we infer

|Dψ |< 1, 1gψ ≤
(m + 1)κ̄0

εR
.

Substituting these estimates in the above inequality, we deduce

1gη

η+ δ
≥ (1 − τ)C2 |Du|

2

W 2 − L
(
(m + 1)κ̄0

εR
+

1 − τ

τ

L
W 2

)
.

If |Du(x0)| ≥ a0γ
∗ then

|Du(x0)|
2

W 2a2
0(γ

∗)2
≥

1
W 2 .

Thus, we can further estimate

1gη

η+ δ
≥ (1 − τ)

(
q2

−
1

τa2
0(γ

∗)2

)
L2 |Du|

2

W 2 −
(m + 1)κ̄0L

εR
at x0,

that is,
1gη

η+ δ
≥ a1∥∇u∥

2
− a2, (30)

with

a1 = (1 − τ)

(
q2

−
1

τa2
0(γ

∗)2

)
L2 > 0, a2 =

(m + 1)κ̄0L
εR

> 0.
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Since

a3 = a1 − (m − 1)κ2,

we have a1 ≥ a3 > 0 by condition (28). We claim that

|Du(x0)|
2

W 2(x0)
= ∥∇u(x0)∥

2
≤

a2

a3
,

that is,

W (x0)≤

√
a3

a3 − a2
. (31)

Indeed, assume by contradiction that

∥∇u(x0)∥
2 >

a2

a3
. (32)

Then, from (30) it follows
1gη

η+ δ
≥ a3∥∇u∥

2
− a2 > 0 at x0;

hence 1gη > 0 and, by (29) and (30) again,

(m − 1)κ2
∥∇u∥

2
≥
1gη

η
≥
1gη

η+ δ
≥ a1∥∇u∥

2
− a2 at x0,

leading to

a2 ≥ (a1 − (m − 1)κ2)∥∇u∥
2
= a3∥∇u∥

2 at x0,

which contradicts (32) and proves our claim.
On the other hand, if |Du(x0)| ≤ a0γ

∗, then

W (x0)≤

√
1 + a2

0(γ
∗)2. (33)

Since x0 is a global maximum point for z in �, we have z(x)≤ z(x0), that is,

W (x)≤ W (x0)
η(x0)

η(x)

for every x ∈ BR1 ⊆�. Note that

η(x0)

η(x)
=

eL R(
√
ε2+1−

√
ε2+r(x0)2/R2−qu(x0)/R)

− 1

eL R(
√
ε2+1−

√
ε2+r(x)2/R2−qu(x)/R) − 1

≤
eL R(

√
ε2+1−ε)

− 1

eL R(
√
ε2+1−

√
ε2+r(x)2/R2−qγ (x)) − 1

;

hence

W (x)≤ W (x0)

(
eL R(

√
ε2+1−ε)

− 1

eL R(
√
ε2+1−

√
ε2+r(x)2/R2−qγ (x)) − 1

)
.

The latter, together with (31) and (33), implies the desired estimate. □
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5. Uniformly elliptic operators on manifolds with Ric ≥ 0

Having shown that an entire minimal graph with at most linear growth on one side has globally bounded
gradient, we need to show (6) and (7). We shall prove both of them under the only conditions

Ric ≥ 0, |Du| ∈ L∞(M). (34)

In such generality, it seems difficult to apply the “elliptic” approach in [Cheeger et al. 1995], adapted in
[Ding et al. 2016; Ding 2021b]. To justify the statement, we observe that the method in [Cheeger et al.
1995] relies on the construction of a function ϱ satisfying

C−1r ≤ ϱ ≤ Cr, |Dϱ| ≤ C, 1gϱ ≤
C
ϱ

(35)

for some absolute constant C . When considering harmonic functions, the third condition is replaced by
1ϱ ≤ C/ϱ; thus by comparison theory the choice ϱ= r is admissible. On the contrary, to our knowledge,
for minimal graphs the existence of ϱ satisfying (35) is currently unknown under the sole assumptions (34).
If M has Euclidean volume growth, we mention that in [Ding et al. 2016; Ding 2021b] the authors used
as ϱ a reparametrization of the Green kernel of the Laplacian on M. Although the inequality 1gϱ ≤ C/ϱ
may not hold pointwise, the integral estimates for |D2ϱ| provided in [Colding and Minicozzi 1997] suffice
to estimate 1gϱ and apply the method in [Cheeger et al. 1995], as done in [Ding 2021b, Lemma 7.1].
However, to our knowledge, estimates like those in [Colding and Minicozzi 1997] are not yet (if ever)
available on manifolds with Ric ≥ 0 but whose volume growth is less than Euclidean.

For these reasons, inspired by [Li 1986; Saloff-Coste 1992] we choose a different approach via the
heat equation. Throughout this section, let (M, σ ) be a connected, complete Riemannian manifold of
dimension m ≥ 2 with Ric ≥ 0. Let L be the linear uniformly elliptic operator defined by

Lψ = div(ADψ), (36)

where A is a measurable section of T 1,1 M satisfying

α−1
|X |

2
≤ ⟨AX, X⟩ and |AX | ≤ α|X | for all X ∈ T M, (37)

for some constant α > 0. Hereafter, we shall assume that A is smooth, the general case being obtainable
by approximation.

We denote by HL(x, y, t) the minimal heat kernel associated to the parabolic operator ∂t − L , that is,
the unique continuous function on M × M ×R+ such that for every ψ ∈ C∞

0 (M) the function u defined by

u(t, x)=

∫
M

HL(x, y, t)ψ(y) dy for all (t, x) ∈ R+
× M

is a solution to
∂t u = Lu (38)

on R+
× M satisfying

(i) u(t, · )→ ψ pointwise on M as t ↘ 0,
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(ii) u ≤ v on (0, T )× M for every v ∈ C2([0, T )× M), T > 0, such that{
∂tv = Lv on (0, T )× M,
ψ ≤ v(0, · ) on M.

If the endomorphism A is self-adjoint with respect to ⟨ · , · ⟩, the minimal heat kernel HL is a symmetric
function of the space variables, that is,

HL(x, y, t)= HL(y, x, t) for all x, y ∈ M, for all t > 0. (39)

By [Saloff-Coste 1992], see Corollary 6.2 and Theorem 6.3, there exist positive constants Ci > 0, 1 ≤ i ≤ 6,
depending only on m and α such that, for every x, y ∈ M and t > 0,

C1
exp(−C2 dist(x, y)2/t)√

|B√
t(x)||B√

t(y)|
≤ HL(x, y, t)≤ C3

exp(−C4 dist(x, y)2/t)√
|B√

t(x)||B√
t(y)|

(40)

and

|∂t HL(x, y, t)| ≤
C5

t
exp(−C6 dist(x, y)2/t)

√

|B√
t(x)||B√

t(y)|
. (41)

Remarks on (40) will be given in the Appendix. We first need the following simple estimate on the
volume of geodesic balls.

Lemma 21. Let (Mm, σ ) be a complete manifold with Ric ≥ 0. For every x, y ∈ M and for every R > 0
it holds

|BR(x)|
(

1 +
dist(x, y)

R

)−
m
2

≤
√

|BR(x)||BR(y)| ≤ |BR(x)|
(

1 +
dist(x, y)

R

)m
2

.

Proof. By the Bishop–Gromov comparison theorem we have

|BR(x)|
|Br (x)|

≤

(
R
r

)m

, 0< r ≤ R <∞;

thus

|BR(y)| ≤ |BR+dist(x,y)(x)| ≤ |BR(x)|
(

1 +
dist(x, y)

R

)m

,

and the thesis follows. □

Next, we recall that L generates a diffusion which is stochastically complete (see [Grigoryan 1999]),
that is, the following holds:

Lemma 22. Let M be a complete manifold with Ric ≥ 0, and let A, L be as in (36)–(37), with A
self-adjoint and smooth. Then∫

M
HL(x, y, t) dy = 1 for all (t, x) ∈ R+

× M.

The result is stated with no proof in the discussion following [Saloff-Coste 1992, Theorem 7.4]. We
here provide an argument for the convenience of the reader.
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Proof. Since L is uniformly elliptic and M has polynomial volume growth as a consequence of Ric ≥ 0,
by Theorem 4.1 of [Alías et al. 2016] we have that for any λ > 0 the only entire bounded solution v of
Lv = λv on M is v ≡ 0. Then the conclusion follows by [Pigola et al. 2005, Theorem 3.11]. □

With the above preparation, we are ready to state the following asymptotic mean value theorem.
Our method is inspired by the one in [Li 1986], where the author considered the case L = 1, but
with a difference to be stressed. Indeed, in that work the author uses the Li–Yau differential Harnack
inequality to get rid of a boundary term at infinity. The inequality holds for solutions of the heat equation,
but in general it may fail for solutions of ∂t u = Lu, unless one has a uniform control on the gradient
of A on the entire M ; see for instance [Saloff-Coste 1992, p. 433]. As we will apply our results to
A = W Id−W −1 du⊗Du, with W =

√
1 + |Du|2, in our setting only an L∞ control on A is available. One

may therefore use De Giorgi-Nash-Moser theory to get Hölder estimates in space for u, see [Saloff-Coste
1992, Corollary 5.5], but these seem insufficient to treat the boundary term.

In view of the above, we shall modify the method in [Li 1986]. The main idea here is the use of upper
level sets of HL rather than geodesic balls. Note that we do not assume a Euclidean volume growth. We
start with the following:

Lemma 23. Let (Mm, ⟨ · , · ⟩) be a connected, complete, noncompact manifold with Ric ≥ 0 and let A, L
be as in (36)–(37), with A self-adjoint and smooth. If f ∈ C2(M)∩ L∞(M) satisfies L f ≤ 0 on M then
the function u : R+

× M → R given by

u(t, x)=

∫
M

f (y)HL(x, y, t) dy for all (t, x) ∈ R+
× M (42)

satisfies
∂t u ≤ 0 on R+

× M. (43)

Proof. Note that the integral on the right-hand side of (42) converges for every (t, x) ∈ R+
× M since

f ∈ L∞(M) and because of (40) and Lemma 21. Also note that HL is smooth as a consequence of the
regularity assumptions on A. By Lemma 22, u only varies by an additive constant if so does f ; hence
without loss of generality we can assume infM f = 0. Let (t, x) ∈ R+

× M be fixed. For notational
convenience, for every a > 0 we define

ϕa(y)= HL(x, y, t)− a for all y ∈ M, �a = {y ∈ M : ϕa(y) > 0}. (44)

Because of (40) it holds HL(x, y, t)→ 0 as y → ∞ in M ; hence the collection {�a}a>0 is an exhaustion
of M by relatively compact open subsets, with �a ⊆�b when a ≥ b. By (41) and boundedness of f , we
can apply Lebesgue’s dominated convergence theorem to get

∂t u(t, x)=

∫
M

f (y)∂t HL(x, y, t) dy = lim
a→0+

∫
�a

f (y)∂t HL(x, y, t) dy. (45)

Therefore, since L f ≤ 0 and ϕa > 0 on�a , (43) holds by monotone convergence if we prove the inequality∫
�a

f (y)∂t HL(x, y, t) dy ≤

∫
�a

ϕa(y)L f (y) dy. (46)
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Because of ∂t HL(x, y, t)= L y HL(x, y, t)= Lϕ(y)= Lϕa(y), we have∫
�a

f (y)∂t HL(x, y, t) dy =

∫
�a

f (y)L y HL(x, y, t) dy =

∫
�a

f (y)Lϕa(y) dy.

Since HL ∈ C∞(R+
× M), we have ϕ ∈ C∞(M) and for almost every a > 0 the set �a has smooth

boundary. Let a > 0 be a regular value for ϕ. By Green’s identity, since ϕa = 0 on ∂�a∫
�a

f (y)Lϕa(t, y) dy =

∫
�a

ϕa(t, y)L f (y) dy +

∫
∂�a

f (y)⟨ADϕa(y), ν⟩ dHm−1(y),

where ν = −Dϕa/|Dϕa| is the outward-pointing normal on ∂�a . Noting that f ≥ 0, that ϕa is nonin-
creasing in the direction of ν and that A is positive definite, we see that f ⟨ADϕa, ν⟩ ≤ 0 on ∂�a and
therefore the second integral is nonpositive, which implies the desired inequality (46). □

Proposition 24. Let (Mm, ⟨ · , · ⟩) be a connected, complete, noncompact manifold with Ric ≥ 0 and let
A, L be as in (36)–(37), with A self-adjoint and smooth. If f ∈ C2(M)∩ L∞(M) satisfies L f ≤ 0 on M,
then for any x ∈ M

lim
R→∞

1
|BR(x)|

∫
BR(x)

f (y) dy = inf
M

f. (47)

Proof. Without loss of generality, we assume infM f = 0. Let u : R+
× M → R be the function defined by

(42). Note that u is the minimal solution to the parabolic equation ∂t u = Lu on R+
× M corresponding

to the initial datum u(0+, · )= f . Hence, by the maximum principle and the monotonicity (43) we have

inf
M

f ≤ u(t, x)≤ f (x) for all (t, x) ∈ R+
× M.

In particular, the limit

u∞(x)= lim
t→∞

u(t, x)

is well-defined for every x ∈ M. The convergence u(t, · )→ u∞ is uniform on compact subsets, u∞ is
bounded and Lu∞ = 0. Since M is complete and has nonnegative Ricci curvature, the operator L enjoys
a Liouville property; see Theorem 7.4 of [Saloff-Coste 1992]. In particular, u∞ must be constant. Since
infM f ≤ u∞ ≤ f , it must be u∞ ≡ infM f = 0, that is,

lim
t→∞

u(t, x)= 0 for all x ∈ M. (48)

To conclude the proof of (47), we observe that

u(t, x)=

∫
M

HL(x, y, t) f (y) dy

≥
C1

|B√
t(x)|

∫
M

(
1 +

dist(x, y)
√

t

)−m/2

exp
(
−C2

dist(x, y)2

t

)
f (y) dy

=
C1

|B√
t(x)|

∫
∞

0

(
1 +

r
√

t

)−m/2

exp
(
−C2

r2

t

) ∫
∂Br (x)

f (y) dHm−1(y) dr
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≥
C1

|B√
t(x)|

∫ √
t

0

(
1 +

r
√

t

)−m/2

exp
(

−C2
r2

t

) ∫
∂Br (x)

f (y) dHm−1(y) dr

≥
2−m/2e−C2C1

|B√
t(x)|

∫ √
t

0

∫
∂Br (x)

f (y) dHm−1(y) dr

=
2−m/2e−C2C1

|B√
t(x)|

∫
B√

t (x)
f (y) dy.

Since f ≥ 0, by comparison we have

lim
t→∞

1
|B√

t(x)|

∫
B√

t (x)
f (y) dy = 0 = inf

M
f

as desired. □

From the above result, we also obtain information on the spherical mean of u. This follows from the
next variant of de L’Hôpital’s theorem.

Lemma 25. Let h, g ∈ L∞

loc(R
+) satisfy h ≥ 0, g > 0 a.e. and g ̸∈ L1(∞). Then,

ess lim inf
r→∞

h(r)
g(r)

≤ lim inf
r→∞

∫ r
0 h(t) dt∫ r
0 g(t) dt

. (49)

Proof. Denote by A and B, respectively, the left-hand side and right-hand side of (49). For A′ < A, fix
R0 such that h ≥ A′g a.e. on (R0,∞). Then, for each r > R0,∫ r

0 h(t) dt∫ r
0 g(t) dt

=

∫ R0
0 h(t) dt +

∫ r
R0

h(t) dt∫ R0
0 g(t) dt +

∫ r
R0

g(t) dt
≥

∫ R0
0 h(t) dt + A′

∫ r
R0

g(t) dt∫ R0
0 g(t) dt +

∫ r
R0

g(t) dt
.

Since g ̸∈ L1(∞), letting r → ∞ along a sequence realizing B we get B ≥ A′, and the thesis follows by
letting A′

↑ A. □

Corollary 26. Let (Mm, ⟨ · , · ⟩) be a complete (connected) Riemannian manifold with infinite volume. Let
0 ≤ f ∈ L1

loc(M) and x ∈ M and assume that

lim inf
R→∞

1
|BR(x)|

∫
BR(x)

f (y) dy = inf
M

f.

Then

ess lim inf
R→∞

1
|∂BR(x)|

∫
∂BR(x)

f (y) dHm−1(y) dy = inf
M

f.

Proof. The functions h and g defined by

h(t)=

∫
∂Bt (x)

f (y) dHm−1(y) and g(t)= |∂Bt(x)| for all t > 0
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satisfy the assumptions of the previous lemma (note that 1/g ∈ L∞

loc(R
+) by [Bianchini et al. 2013,

Proposition 1.6], since M is noncompact). The thesis follows from the next chain of inequalities:

inf
M

f ≤ ess lim inf
R→∞

1
|∂BR(x)|

∫
∂BR(x)

f (y) dHm−1(y) dy

≤ lim inf
R→∞

1
|BR(x)|

∫
BR(x)

f (y) dy ≤ inf
M

f. □

We are ready to state our second main result of the section, which will enable us to prove the Hessian
estimate (7). The argument below seems to be new.

Theorem 27. Let (Mm, ⟨ · , · ⟩) be a connected, complete manifold with Ric ≥ 0 and let A, L be as in
(36)–(37), with A self-adjoint and smooth. If f ∈ L∞(M) satisfies L f ≤ 0 on M, then for any x ∈ M

lim
R→∞

R2

|BR(x)|

∫
BR(x)

L f (y) dy = 0. (50)

Proof. Without loss of generality, we assume infM f = 0. Fix x ∈ M. We refer to the proof of Lemma 23
for notation, and in particular, for t > 0 and a> 0 we define ϕa(y) and �a as in (44). As already observed,
{�a} is an exhaustion of M, increasing as a decreases. Furthermore, for almost every a > 0 the boundary
∂�a is smooth. From the proof of Lemma 23 we get∫

�a

f (y)∂t HL(x, y, t) dy ≤

∫
�a

ϕa(y)L f (y) dy. (51)

On the other hand, since f ≥ 0, by (41) and Lemma 21 we can estimate∫
�a

f (y)∂t HL(x, y, t) dy ≥ −
C5

t
1

|B√
t(x)|

∫
�a

f (y)
(

1 +
dist(x, y)

√
t

)m
2

exp
(
−C6

dist(x, y)2

t

)
dy.

By (40) and Lemma 21 we also have the bounds

C1

|B√
t(x)|

(
1 +

dist(x, y)
√

t

)−
m
2

exp
(
−C2

dist(x, y)2

t

)
≤ HL(x, y, t)≤

C3

|B√
t(x)|

(
1 +

dist(x, y)
√

t

)m
2

exp
(
−C4

dist(x, y)2

t

)
.

Now, fix k > 1 large enough so that

C3(1 + s)
m
2 e−C4s2

≤
1
2C12−

m
2 e−C2 for all s ≥ k

and pick

a =
C12−

m
2 e−C2

2|B√
t(x)|

.

With this choice, we have {
ϕ ≤ a on M \ Bk

√
t(x),

ϕ ≥ 2a on B√
t(x);
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hence B√
t(x)⊆�a ⊆ Bk

√
t(x) and ϕa ≥ a on B√

t(x). Thus, using also (51) we can estimate

0 ≥
C12−

m
2 e−C2

2|B√
t(x)|

∫
B√

t (x)
L f (y) dy = a

∫
B√

t (x)
L f (y) dy

≥

∫
B√

t (x)
ϕa(y)L f (y) dy ≥

∫
�a

ϕa(y)L f (y) dy ≥

∫
�a

f (y)∂t HL(x, y, t) dy

≥ −
C5

t |B√
t(x)|

∫
�a

f (y)
(

1 +
dist(x, y)

√
t

)m
2

exp
(
−C6

dist(x, y)2

t

)
dy

≥ −
C7

t |B√
t(x)|

∫
Bk

√
t (x)

f (y) dy,

where
C7 = C5 sup{(1 + s)

m
2 e−C6s2

: s > 0}<∞.

Summing up, there exists a constant C > 0, depending only on Ci , 1 ≤ i ≤ 7, such that

0 ≥
t

|B√
t(x)|

∫
B√

t (x)
L f (y) dy ≥ −

C
|B√

t(x)|

∫
Bk

√
t (x)

f (y) dy.

Since f ≥ 0, by the Bishop–Gromov theorem we also have

0 ≥
t

|B√
t(x)|

∫
B√

t (x)
L f (y) dy ≥ −

Ckm

|Bk
√

t(x)|

∫
Bk

√
t (x)

f (y) dy.

By Proposition 24 we have that the right-hand side of this inequality converges to infM f = 0 as t → ∞,
and the conclusion follows. □

6. Proof of Theorem 6(ii)

Combining Corollary 18, Proposition 24 and Theorem 27, we get:

Proposition 28. Let (Mm, σ ) be a connected, complete Riemannian manifold with Ric ≥ 0 and

Ric(ℓ)(∇r)≥ −
κ̄2

1 + r2 , ℓ= max{1,m − 2},

for some κ̄ ∈ R+

0 and where r is the distance from a fixed origin. Let u ∈ C∞(M) be a nonconstant
solution to (MSE) which grows at most linearly on one side. Then, for each x ∈ M,

lim
R→∞

1
|BR(x)|

∫
BR(x)

|Du|
2 dx = sup

M
|Du|

2, (52)

lim
R→∞

R2

|BR(x)|

∫
BR(x)

|D2u|
2 dx = 0. (53)

Proof. Because of Corollary 18, in our assumptions |Du| ∈ L∞(M); hence by (11) the operator

Lφ .
= W1gφ = div(Wgi jφi∂x j )
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is uniformly elliptic on M. By the Jacobi equation, f = 1/W is a nonnegative solution to L f ≤−∥II∥2
≤ 0,

and therefore −W 2
∈ L∞(M) satisfies L(−W 2)≤ 0. Applying Proposition 24 to −W 2 and Theorem 27

to f we deduce

lim
R→∞

1
|BR(x)|

∫
BR(x)

W 2 dx = sup
M

W 2, (54)

lim sup
R→∞

R2

|BR(x)|

∫
BR(x)

∥II∥2 dx ≤ − lim
R→∞

R2

|BR(x)|

∫
BR(x)

L f dx = 0. (55)

From (54) we readily deduce (52). On the other hand, note that

∥II∥2
= W −2gikuk j g jluli = W −2

{
|D2u|

2
− 2

∣∣∣∣D2u
(

Du
W
, ·

)∣∣∣∣2

+

[
D2u

(
Du
W
,

Du
W

)]2}
.

If du(x) = 0, then ∥II∥2
≥ W −2

|D2u|
2. Otherwise, let e1 = Du/|Du| and choose a local orthonormal

frame {eα} for e⊥

1 around x , where 2 ≤ α ≤ m. Then,

|D2u|
2
− 2

∣∣∣∣D2u
(

Du
W
, ·

)∣∣∣∣2

+

[
D2u

(
Du
W
,

Du
W

)]2

=

∑
α,β

u2
αβ + 2

∑
α

u2
1α + u2

11 − 2
W 2

− 1
W 2

∑
j

u2
1 j +

(W 2
− 1)2

W 4 u2
11

=

∑
α,β

u2
αβ +

2
W 2

∑
α

u2
1α +

1
W 4 u2

11 ≥ W −4
|D2u|

2.

Summarizing, we have ∥II∥2
≥ W −6

|D2u|
2; thus from the boundedness of W and from (55) we con-

clude (53). □

We now conclude the proof of Theorem 6 with a blow-down procedure, for which we use some basic
convergence results in the theory of limit spaces and nonsmooth spaces with Ricci curvature bounded
below. All the tools needed herein can be found in [Honda 2015; Ambrosio and Honda 2017; 2018].

Fix o ∈ M, and write BR = BR(o). Because of Corollary 18 and Proposition 28,

lim
R→∞

1
|BR|

∫
BR

|Du|
2 dx = sup

M
|Du|

2, (56)

lim
R→∞

R2

|BR|

∫
BR

|D2u|
2 dx = 0. (57)

Consider a tangent cone at infinity M∞ for M based at o. By statement (2.1) in [De Philippis and Gigli
2018], the limit space M∞ also supports a Borel measure m∞ such that, up to a subsequence,

(M, λ−1
n distσ , λ−m

n dx, o) pmGH
−−−→ (M∞, d∞,m∞, o∞) (58)

in the pointed-measured-Gromov–Hausdorff (pmGH) sense. For the precise definition of pGH and pmGH
convergence we refer to [Gigli et al. 2015]. Here, {λn} ⊂ R+, λn → ∞ as n → ∞, and λ−1

n distσ is
the distance function induced by the rescaled metric σn

.
= λ−2

n σ . Denote with Dn and dxn the induced



NONNEGATIVE RICCI CURVATURE AND MINIMAL GRAPHS WITH LINEAR GROWTH 2301

connection and volume measure, and Bn
R the metric balls centered at o in (M, σn). Therefore, Bn

R = Bλn R .
Define un = u/λn . Then,

|Dnun|σn = |Du|, |D2
nun|σn = λn|D2u| (59)

and therefore, by the Arzelà–Ascoli theorem, up to subsequences un → u∞ ∈ Lip(M∞) locally uniformly;
hence un → u∞ strongly in L2 on B∞

R = Bd∞

R (x∞), that is,

lim
n→∞

∫
Bn

R

|un|
2 dxn =

∫
B∞

R

|u∞|
2 dm∞,

lim
n→∞

∫
Bn

R

unϕ dxn =

∫
B∞

R

u∞ϕ dm∞

for each ϕ bounded and continuous on a metric space Z in which (Bn
R, dn) and (B∞

R , d∞) are isometrically
embedded and converge in Hausdorff sense, with on → o∞ and on the center of Bn

R . From

Wn
.
=

√
1 + |Dnun|

2
σn

=

√
1 + |Du|2 = W.

Scaling (56) and (57) we therefore get, for each fixed R > 0,

lim
n→∞

1
|Bn

R|σn

∫
Bn

R

|Dnun|
2
σn

dxn = sup
M

|Du|
2, (60)

lim
n→∞

R2

|Bn
R|σn

∫
Bn

R

|D2
nun|

2
σn

dxn = 0. (61)

In particular, from Newton’s inequality |1nun|
2
≤ m|D2

nun|
2
σn

and the Bishop–Gromov theorem, |Bn
R|σn ≤

ωm−1 Rm/m we deduce ∫
Bn

R

|1nun|
2 dxn ≤

ωm−1 Rm

|Bn
R|σn

∫
Bn

R

|D2
nun|

2
σn

dxn → 0 (62)

as n → ∞, and therefore∫
Bn

R

ϕ1nun dxn ≤

(∫
Bn

R

ϕ2 dxn

)1
2
(∫

Bn
R

|1nun|
2 dxn

)1
2

≤ max |ϕ|

[
ωm−1 Rm

m

] 1
2
(∫

Bn
R

|1nun|
2 dxn

)1
2

→ 0. (63)

By (62) and (63), 1nun → 0 strongly in L2. Combining un → u∞ strongly in L2 with

sup
n

(∫
Bn

R

[|un|
2
+ |Dnun|

2
σn

+ (1nun)
2
] dxn

)
<∞,

we infer by [Ambrosio and Honda 2018, Theorem 4.4] that

(i) u∞ ∈ D(1, B∞

R ), the domain of the Laplacian on B∞

R ,

(ii) 1nun →1u∞ on Bn
R weakly in L2, so in particular 1u∞ = 0,

(iii) |Dnun|
2
σn

→ |D∞u∞|
2
∞

in L1-strongly in Bn
r for each r < R.



2302 GIULIO COLOMBO, EDDYGLEDSON S. GAMA, LUCIANO MARI AND MARCO RIGOLI

In particular, setting P .
= supM |Du|

2, from (59) and (60) we get

lim
n→∞

∫
Bn

R

∣∣|Dnun|
2
σn

− P
∣∣ dxn ≤

ωm−1 Rm

|Bn
R|σn

∫
Bn

R

(P − |Dnun|
2
σn
) dxn = 0.

Using (iii) and [Bruè et al. 2023, Proposition 1.27(i)] (see also [Ambrosio and Honda 2017]), we therefore
deduce |Dnun|

2
σn

− P → |D∞u∞|
2
∞

− P strongly in L1 on B∞
r for each r < R, and thus

0 = lim
n→∞

∫
Bn

r

∣∣|Dnun|
2
σn

− P
∣∣ dxn =

∫
B∞

r

∣∣|D∞u∞|
2
∞

− P
∣∣ dm∞.

Concluding, u∞ solves
1u∞ = 0, |D∞u∞|

2
= P ̸= 0

on the RCD(0,m) space (M∞, d∞,m∞, x∞). Bochner inequality (see [Honda 2015, Theorem 1.4])
guarantees that |D2u∞| ≡ 0 on M∞. One concludes that M∞ = N × R by using [Antonelli et al. 2019,
Lemma 1.21].

7. Proof of Theorem 11

If M is parabolic, clearly the result follows from Theorem 6. If M is nonparabolic, the argument goes as
in [Ding et al. 2016, Theorem 3.6], so we only sketch the main steps. In our assumptions, by Corollary 18,
|Du| ∈ L∞(M); hence L = W1g is uniformly elliptic. The Harnack inequality in [Saloff-Coste 1992]
together with (5) imply that |u(x)| = o(r(x)) as x diverges. By a standard cutoff argument using Lu = 0,
the next Caccioppoli inequality holds: for each ϕ ∈ Lipc(M)∫

M
ϕ2

|Du|
2 dx ≤ 4α2

∫
M

u2
|Dϕ|

2 dx . (64)

In particular, having fixed ε > 0, by condition u = o(r) we can also fix R0 = R0(ε) > 0 such that for
every R ≥ R0 we have u2

≤ εR2 on B2R . Considering the Lipschitz cutoff function ϕ which is 1 on BR ,
0 outside of B2R and satisfies |Dϕ| ≤ 1/R, we get∫

BR

|Du|
2 dx ≤

4α2

R2

∫
B2R\BR

u2 dx ≤ ε|B2R| ≤ Cε|BR|

for every R ≥ R0, where we used the doubling property on M coming from condition Ric ≥ 0. From (52)
we finally infer

sup
M

|Du|
2
= lim

R→∞

1
|BR|

∫
BR

|Du|
2 dx ≤ Cε,

and the thesis follows by letting ε→ 0.

8. Proof of Corollary 10

By Theorem 6, |Du| ∈ L∞(M) and any tangent cone at infinity of M splits off a line. It is a general fact
that, if Sec ≥ 0, a tangent cone splits if and only if M itself splits. A proof of this result can be found in
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[Antonelli et al. 2022, Theorem 4.6]. Therefore, it remains to prove that u only depends on the coordinate
of a split line. Write M = N m−1

× R with coordinates (y1, s1), for some complete manifold N m−1 with
Sec ≥ 0, and consider the function v1 = σ(Du, ∂s1), which by (15) satisfies Lv1 = 0 on M, where we set

Lφ .
= W −1LWφ = div(W −1gi jφi∂x j ).

Our gradient estimate guarantees that v1 is bounded and that L is uniformly elliptic on M, and therefore,
by [Saloff-Coste 1992, Theorem 7.4] we deduce that v1 is constant on M. Hence,

u(y1, s1)= a1s1 + b1 + u2(y1)
√

1 + a2
1

for some smooth function u2 : N m−1
→ R and some a1, b1 ∈ R. One easily checks that u2 solves

(MSE) on N m−1. Since u2 has at most linear growth on one side, and N m−1 has nonnegative sectional
curvature, by the first part of the proof we deduce that either u2 is constant or that N m−1

= N m−2
×R and

u2(y2, s2)=a2s2+b2+u3(y2)
√

1 + a2
2 . Iterating, we can write M = N m−k

×Rk for some k ∈{1, . . . ,m−2}

and for some complete manifold N m−k with Sec ≥ 0, and

u(z, (s1, . . . , sk))=

k∑
j=1

aj sj + b + uk+1(z)
√

1 + a2
k

for some ai , b ∈ R and uk+1 : N m−k
→ R. Indeed, we can continue the iteration procedure up until

either uk+1 is constant, or k = m − 2 and um−1 is nonconstant. In the latter case, observe that N 2 is a
complete surface with Sec ≥ 0; hence N 2 is parabolic. Being um−1 nonconstant, both N 2 and um−1 split
as indicated in Theorem 6(i). Summarizing, in each case we can conclude that M = N m−k

× Rk for some
k ∈ {1, . . . ,m − 1}, and that

u(z, (s1, . . . , sk))=

k∑
j=1

aj sj + b (65)

for some b ∈ R, as required. It is therefore sufficient to consider the splitting Rk
= Rk−1

× R along a line
in direction (a1, . . . , ak) to get the desired splitting M = N ×R of M in such a way that u(y, s)= as +b.

9. Proof of Proposition 9

The following example is essentially that in [Kasue and Washio 1990, p. 913]. Let m ≥ 4. We consider a
manifold (Pm−2, h) and smooth functions f, η ∈ C∞(R+) to be chosen later, and define the following
metric on M .

= R × R+
× P:

σ = f (r)2 dt2
+ dr2

+ η(r)2h.

To compute the curvatures of M, we use the index agreement 1 ≤ a, b, c, l ≤ m, 3 ≤ α, β, γ, δ ≤ m. Let
{θα} be a local orthonormal coframe on P, with associated connection forms ωαβ obeying the structure
equations {

dθα = −ωαβ ∧ θβ,

ωαβ = −ω
β
α
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and related curvature forms 2αβ = dωαβ +ωαγ ∧ω
γ

β . Then, a local orthonormal coframe {θ̄a
} on M is given

by
θ̄1

= f dt, θ̄2
= dr, θ̄α = ηθα,

where, as usual, pull-backs to M via the canonical projections onto R,R+ and P are implicit. Differenti-
ating, one checks that the forms

ω̄α1 = 0, ω̄α2 =
η′

η
θ̄α, ω̄αβ = ωαβ , ω̄2

1 = −
f ′

f
θ̄1

satisfy the structure equations on M for the coframe {θ̄a
}; hence they are the connection forms of {θ̄a

}.
The associated curvature forms 2a

b = dω̄a
b + ω̄a

c ∧ ω̄c
b are therefore

2α1 = −
η′ f ′

η f
θ̄α ∧ θ̄1, 2α2 =

η′′

η
θ̄2

∧ θ̄α,

2αβ =2αβ −

(
η′

η

)2

θ̄α ∧ θ̄β, 22
1 = −

f ′′

f
θ̄2

∧ θ̄1.

(66)

The components Rαβγ δ and Ra
bcl of the (3, 1) curvature tensors of, respectively, P and M, are given by the

identities
2αβ =

1
2 Rαβγ δθ

γ
∧ θ δ, 2a

b =
1
2 Ra

bcl θ̄
c
∧ θ̄ l,

and thus, from (66), we deduce

0 = R2
12α = R2

1α1 = R2
1αβ = Rα12β = Rα1γ δ = Rα2γ δ,

R2
121 = −

f ′′

f
, Rα1β1 = −

η′ f ′

η f
δαβ , Rα2β2 = −

η′′

η
δαβ ,

Rαβγ δ =
1
η2 Rαβγ δ −

(
η′

η

)2

[δαγ δβδ − δαδ δβγ ].

(67)

Assume that (P, h) is the round sphere with curvature 1, and let {eα} and {ēa} be, respectively, the dual
frames of {θα} and {θ̄a

}. From (67) we deduce that the curvature operator is diagonalized by the simple
planes {ēa ∧ ēb}, so for m ≥ 4 we get

|Sec(π)| ≤ max
{∣∣∣∣ f ′′

f

∣∣∣∣, ∣∣∣∣η′ f ′

η f

∣∣∣∣, ∣∣∣∣1 − (η′)2

η2

∣∣∣∣, ∣∣∣∣η′′

η

∣∣∣∣}.
In [Kasue and Washio 1990], the authors chose the following functions f, η: given α, β ∈ (0, 1) such that
m − 1 −β > 2 +α, let 0< ζ1, ζ2 ∈ C∞(R+) satisfy

ζ1(t)=

{
t if t ∈ (0, 1],

t−1−α if t ∈ [2,∞),
ζ2(t)=

∫
∞

t
ζ1(s) ds.

Then, for b, c ∈ R+ they defined

η(r)=
1
2

r +
1

2ζ2(0)

∫ r

0
ζ2(s) ds, f (r)= (b + r2)

β+3−m
2 + c.
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Note that with such a choice the metric extends in a C2 way at r = 0, giving rise to a complete manifold.
Since the curvature operator is diagonalized by {ēa ∧ ēb},

Ric(2) ≥ min
{
−

f ′′

f
+

1 − (η′)2

η2 ,−
f ′′

f
−
η′ f ′

η f
,−

f ′′

f
−
η′′

η
,

1 − (η′)2

η2 −
η′ f ′

η f
,

1 − (η′)2

η2 −
η′′

η
,−
η′′

η
−
η′ f ′

η f
,−2

η′ f ′

η f
,

2
1 − (η′)2

η2 ,−2
η′′

η

}
. (68)

By the expression of η, f , the four terms in the second line of (68) are positive, and it is easy to see that,
when b, c are large enough, the three terms in the first line are positive as well. The two terms in the third
line are positive except at r = 0. Whence, Ric(2) ≥ 0, and moreover |Sec| ≤ κ̄2 holds for a suitable κ̄ > 0.
Moreover, from the fact that Ric is diagonal in the basis {ēa} with

Ric11 =−
f ′′

f
−(m−3)

η′ f ′

η f
, Ric22 =−

f ′′

f
−(m−3)

η′′

η
, Ricαβ=

[
−
η′ f ′

η f
−
η′′

η
+(m−3)

1−(η′)2

η2

]
δαβ,

we deduce that Ric> 0 if b, c are chosen large enough. To construct linearly growing minimal graphs,
consider a function u : M → R of the coordinate t alone. It follows that du = ua θ̄

a with u1 = (∂t u)/ f
and ua = 0 for a ≥ 2. The components of the Hessian D2u obey the relation

uabθ̄
b
= dua − ucω̄

c
a,

and from the expression of ω̄c
a we get

u11 =
∂2

t u
f 2 , u21 = −

f ′

f 2 ∂t u, u1α = u22 = u2α = uαβ = 0.

In particular, setting W =
√

1 + |Du|2 =

√

1 + u2
1,

div
(

Du√
1 + |Du|2

)
=
1u
W

−
D2u(Du, Du)

W 3 =
∂2

t u
f 2W

−
(∂2

t u)u2
1

f 2W 3 =
∂2

t u
f 2W 3 .

It follows that any affine function u(t)= at + b gives rise to a minimal graph. Furthermore, |Du| = a/ f
is bounded on M since f is bounded below by a positive constant, thus u has at most linear growth.

Appendix

Let M be a connected, complete Riemannian manifold with nonnegative Ricci curvature, dim M = m, and
let A, L , HL be as in Section 5. In this Appendix, we discuss the two-sided bound in (40) for HL . While
the upper bound is shown in [Saloff-Coste 1992], the argument for the lower bound is merely indicated
with no proof. The approach relies on the following parabolic Harnack inequality in [Saloff-Coste 1992,
Corollary 5.4]: given p ∈ M, R > 0, T > 0 and δ ∈ (0, 1), if u is a positive solution to ∂t u = Lu on
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BR(p)× (0, T ), then

log
(

u(t, y)
u(s, x)

)
≤ C

(
dist(x, y)2

s − t
+

(
1
R2 +

1
t

)
(s − t)+ 1

)
(69)

for every x, y ∈ BδR(p) and 0< t < s < T, with C = C(m, δ, α) > 0. A note of warning: in [Saloff-Coste
1992, Corollary 5.4], the final +1 in brackets in (69) is missing. However, necessity of this correction
becomes apparent by direct inspection of Moser’s original proof [1964, pages 110–112] in Euclidean
setting (the analogue of (69) is [Moser 1964, Formula (1.5)]). For the reader’s convenience, we give a
proof that the lower bound in (40) follows from the upper one coupled with (69), along the lines of the
argument developed by Aronson and Serrin [1967] in the Euclidean case. A few observations are in order.

First, in view of Lemma 21 the upper bound in (40) implies

HL(x, y, t)≤
C ′

3

|B√
t(x)|

exp
(
−C ′

4
dist(x, y)2

t

)
for all x, y ∈ M, t > 0, (70)

with C ′

3,C ′

4 > 0 depending only on m and α (the ellipticity constant of A). Secondly, the differential
Harnack inequality (69) applied to u = HL(x, · , · ) yields

HL(x, y1, t1)≤ HL(x, y2, t2) exp
(

C
dist(y1, y2)

2

t2 − t1
+ C

t2
t1

)
(71)

for every y1, y2 ∈ M and 0< t1 < t2 <∞, with C = C(m, α) > 0. Lastly, note that if we have the validity
of a lower bound of the form

HL(x, y, t)≥
C ′

1

|B√
t(x)|

exp
(
−C ′

2
dist(x, y)2

t

)
for all x, y ∈ M, t > 0, (72)

with C ′

1,C ′

2 > 0 depending only on m and α, then, again by Lemma 21, a lower bound as that in (40)
holds for suitable constants C1 ∈ (0,C ′

1) and C2 > C ′

2 depending only on C ′

1, C ′

2 and m. Hence, we limit
ourselves to the proof that (72) follows from (70) and (71) under the assumption Ric ≥ 0.

Fix a constant c0 > 2 such that

γ
.
= mC ′

3

∫
+∞

√
c0

sm−1e−C ′

4s2
ds < 1. (73)

Let (x, y, t) ∈ M × M × R+ be given. By (71) we have

HL

(
x, x,

t
2

)
≤ HL(x, y, t) exp

(
2C

dist(x, y)2

t
+ 2C

)
(74)

and also

HL

(
x, z,

t
c0

)
≤ HL

(
x, x,

t
2

)
exp

(
c∗

0C
dist(x, z)2

t
+

c0

2
C
)

for every z ∈ M, with

c∗

0 =
2c0

c0 − 2
=

(
1
2

−
1
c0

)−1

.



NONNEGATIVE RICCI CURVATURE AND MINIMAL GRAPHS WITH LINEAR GROWTH 2307

Integrating on B√
t(x) we get∫

B√
t (x)

HL

(
x, z,

t
c0

)
dz ≤ e(c

∗

0+
1
2 c0)C |B√

t(x)|HL

(
x, x,

t
2

)
. (75)

Putting together (74) and (75) we obtain

HL(x, y, t)≥
e−(2+

1
2 c0+c∗

0)C

|B√
t(x)|

exp
(
−2C

dist(x, y)2

t

) ∫
B√

t (x)
HL

(
x, z,

t
c0

)
dz. (76)

From the upper bound (70) and the coarea formula we have∫
M\B√

t (x)
HL

(
x, z,

t
c0

)
dz ≤ C ′

3

∫
∞

√
t

|∂Br (x)|
|B√

t/c0
(x)|

exp
(
−c0C ′

4
r2

t

)
dr

= C ′

3

∫
∞

√
c0

√
t/c0|∂Bs

√
t/c0
(x)|

|B√
t/c0
(x)|

e−C ′

4s2
ds,

where we have changed variable s = r
√

c0/t . Since Ric ≥ 0 we have
√

t/c0|∂Bs
√

t/c0
(x)|

|B√
t/c0
(x)|

≤ sm−1

√
t/c0|∂B√

t/c0
(x)|

|B√
t/c0
(x)|

≤ msm−1,

where the first inequality follows by the Bishop–Gromov theorem and the second from the inequality
R|∂BR(x)| ≤ m|BR(x)|, holding for every R > 0 and for any base point x on a Riemannian manifold
with Ric ≥ 0; see for instance [Li 1986, Formula (19)]. Substituting in the above estimate and recalling
(73) and Lemma 22 we get∫

B√
t (x)

HL(x, z, t/c0) dz = 1 −

∫
M\B√

t (x)
HL(x, z, t/c0) dz ≥ 1 − γ > 0

and from (76) we obtain

HL(x, y, t)≥
C ′

1

|B√
t(x)|

exp
(
−2C

dist(x, y)2

t

)
,

where C ′

1 = (1 − γ )e−(2+c0/2+c∗

0)C > 0 only depends on m and α. This proves (72).
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