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NONLINEAR PERIODIC WAVES ON THE EINSTEIN CYLINDER

ATHANASIOS CHATZIKALEAS AND JACQUES SMULEVICI

Motivated by the study of small amplitude nonlinear waves in the anti-de Sitter spacetime and in particular
the conjectured existence of periodic in time solutions to the Einstein equations, we construct families of
arbitrary small time-periodic solutions to the conformal cubic wave equation and the spherically symmetric
Yang–Mills equations on the Einstein cylinder R×S3. For the conformal cubic wave equation, we consider
both spherically symmetric solutions and complex-valued aspherical solutions with an ansatz relying on the
Hopf fibration of the 3-sphere. In all three cases, the equations reduce to 1+1 semilinear wave equations.

Our proof relies on a theorem of Bambusi–Paleari for which the main assumption is the existence of a
seed solution, given by a nondegenerate zero of a nonlinear operator associated with the resonant system. For
the problems that we consider, such seed solutions are simply given by the mode solutions of the linearized
equations. Provided that the Fourier coefficients of the systems can be computed, the nondegeneracy
conditions then amount to solving infinite dimensional linear systems. Since the eigenfunctions for all
three cases studied are given by Jacobi polynomials, we derive the different Fourier and resonant systems
using linearization and connection formulas as well as integral transformation of Jacobi polynomials.

In the Yang–Mills case, the original version of the theorem of Bambusi–Paleari is not applicable because
the nonlinearity of smallest degree is nonresonant. The resonant terms are then provided by the next order
nonlinear terms with an extra correction due to backreaction terms of the smallest degree of nonlinearity,
and we prove an analogous theorem in this setting.
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1. Introduction

1A. Stability/instability of the anti-de Sitter spacetime. The anti-de Sitter (AdS) spacetime is the maxi-
mally symmetric solution to the vacuum Einstein equations with a negative cosmological constant:

Ric(g) = −3g, 3 < 0. (1-1)
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Given 3 < 0, this is the simplest, or trivial, solution to (1-1), in the sense that the Minkowski or de Sitter
spacetimes are the trivial solutions to the vacuum Einstein equation with 3 = 0 or 3 > 0. While the
stability properties of the Minkowski or de Sitter spacetimes are now well understood [Christodoulou and
Klainerman 1993; Friedrich 1986], the study of perturbations of AdS spacetime is still an active subject
of research. One important aspect is that the AdS spacetime, or more generally spacetimes which are
asymptotically AdS, are not globally hyperbolic. Hence, any evolution problem for these solutions is only
well-posed after boundary conditions are imposed at the conformal boundary. Two naturally opposite
classes of boundary conditions are the fully reflective and dissipative boundary conditions. In the reflective
case, we expect — as originally conjectured by Dafermos and Holzegel [2006] and independently by
Anderson [2006] — that the AdS spacetime is unstable. Strong evidence for this instability was first
presented by Bizoń and Rostworowski [2011], who pioneered the study of the spherically symmetric
Einstein–Klein–Gordon system using numerical and Fourier based analysis and proposed weak turbulence
as the nonlinear source of instability. A proof of instability for the spherically symmetric Einstein–Vlasov1

system was obtained in the work of Moschidis [2020; 2023] and is based on a physical space mechanism.
In the dissipative case, one has strong decay of solutions for the linearized Einstein equations [Holzegel
et al. 2020], and this should lead to stability even at the nonlinear level.

1B. The time-periodic solutions of Rostworowski–Maliborski. In the reflective case, parallel to the
study of the instability conjecture, an interesting class of solutions was introduced by Rostworowski and
Maliborski [2013], who constructed perturbatively and numerically small data, time-periodic solutions
of the spherically symmetric Einstein-scalar field system. They furthermore suggested, based on their
numerical analysis, that these solutions should enjoy stronger stability properties than the original AdS
spacetime. The present paper is directly motivated by this work. We prove the existence of arbitrary
small time-periodic solutions for various toy models, which mimic certain properties of nonlinear waves
in the AdS spacetime.

1C. The conformal wave and the Yang–Mills equations. More precisely, we study the conformal wave
and the Yang–Mills equations on the Einstein cylinder R × S3. The AdS spacetime is conformal to half
of the Einstein cylinder, so that solutions to the conformal wave and the Yang–Mill equations on the AdS
spacetime can be mapped to solutions on the entire Einstein cylinder with a certain reflection symmetry
at the equator. The conformal cubic wave equation on the Einstein cylinder can be written as

−∂2
t φ(t, ω)+ 1S3φ(t, ω)− φ(t, ω) = |φ(t, ω)|2φ(t, ω) (1-2)

for a scalar field φ : R × S3
→ C with φ = φ(t, ω). We will consider perturbations around the static

solution φ0 = 0 and, for simplicity, with zero initial velocity.
In the spherically symmetric case, the initial value problem for (1-2) reduces to{

(∂2
t + L)u = f (u), (t, x) ∈ R × (0, π),

(u(0, x), ∂t u(0, x)) = (u0(x), 0), x ∈ (0, π),
(1-3)

1Moschidis [2021] has further announced similar results for the spherically symmetric Einstein-scalar-field system.
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for a scalar field u : R × (0, π) → R with u = u(t, x) and

Lu := −1ss
S3u + u, −1ss

S3u = −
1

sin2(x)
∂x(sin2(x)∂x u), f (u) = −u3, (1-4)

where 1ss
S3 stands for the spherically symmetric Laplace–Beltrami operator on S3.

When the spherical symmetry assumption is removed [Ben Achour et al. 2016; Evnin 2021], we use
an ansatz based on Hopf coordinates2 (η, ξ1, ξ2) ∈

[
0, π

2

]
× [0, 2π) × [0, 2π) rather than the standard

spherical coordinates. The Laplace–Beltrami operator on S3 in these coordinates reads as

1S3

(η,ξ1,ξ2)
χ = ∂2

ηχ +

(
cos η

sin η
−

sin η

cos η

)
∂ηχ +

1

sin2 η
∂2
ξ1

χ +
1

cos2 η
∂2
ξ2

χ.

While in principle the Fourier expansion with respect to ξ1 and ξ2 of a solution χ(t, η, ξ1, ξ2) to (1-2)
may include all possible admissible frequencies, we will pick a fixed pair of frequencies (µ1, µ2) and
force the Fourier expansion to excite only this particular pair by implementing the ansatz

χ(t, η, ξ1, ξ2) = u(t, η)eiµ1ξ1eiµ2ξ2 . (1-5)

This leads us to consider the initial value problem{
(∂2

t + L(µ1,µ2))u = f(u), (t, η) ∈ R ×
(
0, π

2

)
,

(u(0, η), ∂t u(0, η)) = (u0(η), 0), η ∈
(
0, π

2

)
,

(1-6)

for a scalar field u : R ×
(
0, π

2

)
→ R with u = u(t, η) and

L(µ1,µ2)u = −∂2
ηu −

(
cos η

sin η
−

sin η

cos η

)
∂ηu +

(
µ2

1

sin2 η
+

µ2
2

cos2 η
+ 1

)
u, f(u) = −u3. (1-7)

Finally, we consider the spherically symmetric (equivariant) Yang–Mills equation for the SU(2) connec-
tion A on the Einstein cylinder R × S3 endowed with the metric

g(t, ω) = −dt2
+ dx2

+ sin2(x) dω2, (1-8)

where dω2 stands for the standard round metric on the 2-sphere. The connection Aµ = Aν
µτν is a 1-form that

takes values in the Lie algebra su(2). Here, τα stand for the generators of su(2) that satisfy [τa, τb]= iϵabcτc.
Furthermore, the curvature F is a (2, 0)-tensor defined by Fµν = ∇µ Aν − ∇ν Aµ + [Aµ, Aν]. The Euler–
Lagrange equations associated to the action∫

R×S3
tr(Fµν Fµν)

√
− det(g)

are provided by the Yang–Mills equation

∇µFµν
+ [Aµ, Fµν

] = 0. (1-9)

Following [Bizoń 1993; 2014; Bizoń and Mach 2017], we assume the spherically symmetric purely
magnetic ansatz

A = φ(t, x)η + τ3 cos(ϑ) dϕ, η = τ1 dϑ + τ2 sin(ϑ) dϕ,

2We would like to thank Oleg Evnin who suggested the Hopf coordinate ansatz.
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which yields

F = ∂tφ(t, x) dt ∧ η + ∂xφ(t, x) dx ∧ η − (1 − φ2(t, x))τ3 dϑ ∧ sin(ϑ) dϕ.

In this case, a straightforward computation shows that (1-9) reduce to

−∂2
t φ(t, x) + ∂2

x φ(t, x) +
φ(t, x)

sin2(x)
=

φ3(t, x)

sin2(x)
(1-10)

for a scalar field φ : R × (0, π) → R with φ = φ(t, x). We will study perturbations of the static solution
φ0 = 1 to the equation above [Bizoń 2014]. Writing φ(t, x) = 1 + sin2(x)u(t, x), we are led to the initial
value problem {

(∂2
t +L)u = f(x, u), (t, x) ∈ R × (0, π),

(u(0, x), ∂t u(0, x)) = (u0(x), 0), x ∈ (0, π),
(1-11)

where

Lu = −
1

sin4 x
∂x(sin4 x∂x u) + 4u, f(x, u) = −3u2

− sin2(x)u3. (1-12)

1D. Connection of the models to the fixed AdS spacetime. In the following lines, we discuss the
connection of the models (1-3), (1-6) and (1-11), and we consider two dynamical problems related to
the AdS spacetime. The Einstein static universe is the cylinder R × S3 endowed with the metric given
by (1-8), and the AdS spacetime is conformal to only the part of the entire Einstein cylinder which is
given by R × S3

+
, where S3

+
denotes the upper hemisphere of S3. Since both the cubic conformal wave

equation and the Yang Mills equation are conformally invariant, this implies that solutions to the cubic
conformal wave and Yang–Mills equations can be mapped to solutions of the same equations on R × S3

+
.

Depending on the choice of boundary conditions at the conformal infinity of the AdS spacetime, these
solutions can then be extended on the whole of the Einstein cylinder via a reflection symmetry; see for
example [Bizoń et al. 2017, Remark 1].

The models we consider here also preserve several key features of the Einstein–Klein–Gordon system in
spherical symmetry, and for which we have reliable numerical evidence for the existence of time-periodic
solutions due to [Maliborski and Rostworowski 2013] (see Section 1B). Indeed, in all cases, the spectrum
is completely resonant and the eigenfunctions to the linearized operators are weighted Jacobi polynomials.
As a consequence, the derivation and analysis of the Fourier and resonant systems share many properties.
In addition, although quasilinear, the Einstein–Klein–Gordon system in spherical symmetry has a cubic
leading-order nonlinearity as in the models we considered here. More importantly, the existence of the
time-periodic solutions we construct here depends on the so-called nondegeneracy condition (Section 7).
This is a system of infinitely many nonlinear conditions for oscillatory integrals that quantify the mode
couplings, relying on the analysis of the underlying Fourier system. In this paper, we develop a rigorous
and delicate analysis for the Fourier coefficients (Section 5) by establishing closed formulas, as well as
rigorous asymptotic analysis in the case where the closed formulas for these integrals are too complicated
to handle. Besides their strong numerical evidence, Rostworowski and Maliborski [2013] also suggest that
there should be an analogous nondegeneracy condition for the quasilinear Einstein–Klein–Gordon system
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in spherical symmetry. The computation and the analysis of the Fourier system for the Einstein–Klein–
Gordon system is a challenge in itself, see for example [Chatzikaleas 2024; Craps et al. 2014; 2015a;
2015b; Evnin and Jai-akson 2016], and we believe that the type of analysis for the Fourier coefficients
developed here should find applications there as well.

1E. Main results and general strategy. In the following, we use the abbreviations

• CW: conformal cubic wave equation in spherical symmetry, that is (1-3)–(1-4),

• CH: conformal cubic wave equation out of spherical symmetry in Hopf coordinates according to the
ansatz (1-5), that is (1-6)–(1-7),

• YM: Yang–Mills equation in spherical symmetry, that is (1-11)–(1-12),

and study the evolution of the perturbations

u : R × I → R, u = u(t, x), I =


(0, π) for CW,(
0, π

2

)
for CH,

(0, π) for YM,

driven by the partial differential equations

(∂2
t + L)u = f (x, u), (t, x) ∈ R × I, (1-13)

subject to the initial data u0(x) = u(0, x) with zero initial velocity u1(x) = ∂t u(0, x) = 0 for all x ∈ I .
Here, the linear operators and the nonlinearities are given, respectively, by

Lu =


−

1
sin2(x)

∂x(sin2(x)∂x u) + u for CW,

−∂2
x u −

(cos x
sin x

−
sin x
cos x

)
∂x u +

(
µ2

1
sin2 x

+
µ2

2
cos2 x

+ 1
)

u for CH,

−
1

sin4 x
∂x(sin4 x∂x u) + 4u for YM,

(1-14)

f (x, u) =

{
−u3 for CW and CH,

−3u2
− sin2(x)u3 for YM.

(1-15)

Associated to the linear operators given by (1-14), one can introduce natural Hilbert spaces, and with
suitable definitions for their domains (Section 3), the linear operators are then all self-adjoint operators
with compact resolvent. In order to simplify the presentation below, we denote by {en(x) : n ≥ 0} the set
of eigenfunctions of any of these operators3 and by {ω2

n : n ≥ 0} the set of corresponding eigenvalues.
Recall that, in all three models considered, the sequences {ωn : n ≥ 0} are all strictly increasing with
ωn ∼ n as n → +∞.

We also denote by 8t(ξ) the flow associated to any of the linearized equations with initial data
(ut=0, ∂t ut=0) = (ξ, 0). If we use ξn to denote the Fourier coefficients of ξ associated to the eigenbasis
{en(x) : n ≥ 0}, then

8t(ξ) =

∞∑
n=0

cos(tωn)ξnen(x). (1-16)

3Of course, the eigenfunctions are different for the different operators, so this is just a generic name.
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To state our result, we need to introduce a set of frequencies verifying a certain Diophantine condition
[Bambusi and Paleari 2001]. Given 0 < α < 1

3 , define

Wα =

{
ω ∈ R : |ω · l − ω j | ≥

α

l
∀(l, j) ∈ N2, l ≥ 1, ω j ̸= l

}
. (1-17)

According to [Bambusi and Paleari 2001, Remark 2.4] and [Schmidt 1980, p. 23], the set Wα contains
infinitely many irrationals, is uncountable and accumulates at 1 from above and below. Consider any
of the problems CW, CH or YM, and let eγ be one of the eigenfunctions to the corresponding linear
operator. In addition to α, the statements of our results depend on the constant γ ∈ N ∪ {0}, the index of
the eigenfunction, and s > 0, which defines the Sobolev space4 H s where the solutions will belong. Our
assumptions are slightly different depending on the problems addressed.

Assumptions 1.1. Specifically, we make the following assumptions:

• CW: We take γ ∈ {0, 1, 2, . . . } and s ∈ N with s ≥ 2.

• CH: We take γ ∈ {0, 1, 2, 3, 4, 5} and s ∈ N with s ≥ 2. Moreover, we assume that the parameters µ1

and µ2 appearing in (1-6) satisfy µ1 = µ2 = µ, with µ either sufficiently large, or µ ∈ {0, 1, 2, 3, 4, 5}.

• YM: We take γ ∈ {0, 1, 2, 3, 4, 5} and s ∈ N with s ≥ 3.

Remark 1.2 (range of γ ). We note that our proof is based on closed formulas for the Fourier coefficients,
integrals that quantify the mode couplings. Although we derive these formulas uniformly with respect
to γ (see Section 5), we also need to check the validity of particular nonlinear conditions depending on
the Fourier coefficients. On the one hand, for the CW model, the Fourier coefficients have a relatively
simple closed formula. Hence, there is no need to restrict the range of γ and we establish the validity
of the conditions needed uniformly with respect to γ . On the other hand, for the CH and YM models,
the complexity of the Fourier coefficients requires us to restrict the range of γ to any finite set. Since
the smaller the range the easier one can verify our computations, we fix γ ∈ {0, 1, 2, 3, 4, 5} solely
for the purpose of computing and verifying all computations in the manuscript by hand. However,
we believe that our result stated below also holds true for larger values of γ . The interested reader
can access our Mathematica notebooks as ancillary files posted with the present paper on arXiv at
https://arxiv.org/abs/2201.05447 to both easily verify our computations for small γ as well as derive and
verify the analogous closed formulas for larger values of γ .

Under Assumptions 1.1, we prove the following result.

Theorem 1.3 (main result 1: existence of time-periodic solutions to all three models bifurcating from
various 1-modes). Let (γ, s) ∈ (N ∪ {0}) × R satisfy Assumptions 1.1, and let eγ be the eigenfunction to
the corresponding linear operator. Also, let 0 < α < 1

3 and Wα be the corresponding set of frequencies,
defined in (1-17). Then, there exists a family {uϵ : ϵ ∈ Eα,γ } of time-periodic solutions to either CW, CH or
YM, where Eα,γ is an uncountable set that has 0 as an accumulation point. In addition, each element uϵ

has the following properties:

4The definition of the H s spaces is adapted to each problem; see Section 2.

https://arxiv.org/abs/2201.05447
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(1) uϵ has period Tϵ = 2π/ωϵ with ωϵ ∈ Wα being ϵ-close to 1.

(2) uϵ ∈ H 1([0, Tϵ]; H s).

(3) uϵ stays close to the solution to the linearized equation with initial data (ut=0, ∂t ut=0) = (ϵκγ eγ , 0)

for all times:
sup
t∈R

∥uϵ(t, · ) − 8tωϵ (ϵκγ eγ )∥H s ≲ ϵ2,

where κγ is a normalization constant.

Proof. The result follows by applying the original version of Bambusi–Paleari’s theorem (Theorem 2.4 for
CW and CH) and our modified version (Theorems 1.4 and 2.5 for YM) by verifying their main conditions;
see Sections 6 and 7. □

For the CW and CH models, the results above are proven using a theorem of Bambusi and Paleari
[2001], while for the YM model, the original version of their theorem (stated as Theorem 2.4 below)
is not applicable and we will adapt their work. To explain this, we follow [Bambusi and Paleari 2001]
and consider any of the models above in the Fourier space by projecting the equations on the eigenbasis
{en : n ≥ 0}, so that, schematically, the equations take the form

ü j (t) + (Au(t)) j
= ( f (u)) j (1-18)

for all integers j ≥ 0, where u = {u j
: j ≥ 0} denotes the array of the coefficients in the Fourier space, A is

a multiplication operator defined by (Au) j
= ω2

j u
j and ( f (u)) j are the coefficients of the nonlinearity

written in Fourier space, which takes the form of a polynomial in the u j . In addition, we assume that

f (u) = f (0)(u) + f (1)(u),

where f (0) is a homogeneous polynomial of degree r ≥ 2 and f (1) is a polynomial of degree at least r +1.
Then, one looks for solutions u(t) to (1-18), where u(t) belongs to the Hilbert space

l2
s = {u = {u j

: j ≥ 0} : |u|
2
s < ∞}, |u|

2
s =

∞∑
j=0

j2s
|u j |

2.

Besides some regularity considerations, the main theorem in [Bambusi and Paleari 2001] asserts that,
given any nondegenerate zero of the operator

Mξ = Aξ + ⟨ f (0)
⟩(ξ), ξ = {ξ j

: j ≥ 0} ∈ l2
s ,

where ⟨ f (0)
⟩(ξ) denotes the average in time of the nonlinearity f (0) along the linearized flow, one can

construct a family of small data periodic in time solutions, with properties similar to those stated in
Theorem 1.3. The operator M is in fact linked to the resonant system associated to the original equation.
If u(t) is periodic in time with frequency ω, let q be defined by u(t) = q(ωt), and let Lω be the operator

Lωq = ω2 d2

dt2 q + Aq.

The proof of [Bambusi and Paleari 2001] is based on a Lyapunov–Schmidt decomposition q = q⊥ + v,
with v ∈ ker L1 and q⊥ ∈ (ker L1)

⊥, together with the projections of the equations onto the range and
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kernel of L1, leading to the so-called P-equation and Q-equation, defined, respectively, as

Lϖ q⊥ = P f (v + q⊥), (1-19)

(1 − ω2)Av = Q f (v + q⊥). (1-20)

The Diophantine condition (1-17) is then used to solve the P-equation, while the nondegeneracy assump-
tion and an implicit function argument is used to solve the Q-equation.

For the CW and CH models, one easily verifies that the eigenfunctions κnen , where κn is an appropriate
rescaling, are all zeroes of M, so that the main difficulty is to establish the nondegeneracy condition,
i.e., to prove that the kernel of dM(κnen) is trivial. In the YM case, however, the nonlinearity contains
both quadratic and cubic terms, so that a priori, only the quadratic terms would contribute to the
definition of the operator M. On the other hand, it turns out that the average along the flow of the
quadratic terms actually vanishes identically, leading to a degenerate, linear operator M. Thus, we
introduce a replacement for the operator M that takes into account also the cubic terms. However, the
quadratic terms still play a role in this modified operator. Indeed, the solution to the P-equation roughly
takes the form q⊥(v) = q⊥,quadratic(v) + q⊥,cubic(v) + · · · , where the term q⊥,quadratic(v) arises from the
quadratic nonlinearity, and after substituting q⊥(v) into the Q-equation, these terms will generate new
additional cubic terms. Thus, in some sense, the backreaction of the quadratic terms into the Q-equation
must also be taken into account. This type of difficulty, where the contribution of the lowest degree
part of the nonlinearity is nonresonant, has been treated in some situations; see for instance [Berti
and Bolle 2003, Section 4.2] and [Berti and Bolle 2006, Section 1.2.3], where equations of the form
−∂t t u + ∂xx u = u2p

+ O(u2p+1) were considered. Here, we prove a modified abstract version of the
Bambusi–Paleari theorem which we then apply to the YM model.

Theorem 1.4 (main result 2: modification of the Bambusi–Paleari theorem for the YM model). Consider
the partial differential equation in the Fourier space

ü j (t) + (Au(t)) j
= (f(u(t))) j , j ≥ 0, (1-21)

where the dots stand for derivatives with respect to time and A is a positive multiplication self-adjoint
operator with pure point and resonant spectrum {ϖ 2

j > 0 : j ≥ 0}, with ϖ j ∼ j as j → ∞, defined by

A : D(A) ≃ l2
s+2 → l2

s , (Au) j
= ϖ 2

j u j ,

with D(A) being its maximal domain of definition.5 In addition, assume that the nonlinearity is given by

f(u) = f(2)(u) + f(3)(u),

where each f(k) is a homogeneous polynomial of order k which is well defined and smooth in l2
s , with f(2)

being nonresonant, that is

⟨f(2)
⟩(x) =

1
2π

∫ 2π

0
Φ t(f(2)(Φ t(x))) dt = 0 (1-22)

5Later, we will take l2
s+1 instead of l2

s as our base Hilbert space, so that we will consider A as an operator from l2
s+3 → l2

s+1.
This allows for the construction of classical solutions, instead of solutions defined via the Duhamel formula or duality.
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for all initial data x , where Φ t(x) denotes the solution to the linearized equation with initial data (x, 0).
Furthermore, define the modified operator

M±(ξ) = ±Aξ + ⟨f(3)
⟩(ξ) +F0(ξ),

where F0(ξ) is given by Lemma 2.13, and let ξ0 ∈ l2
s+3 be initial data such that

• ξ0 is a zero of M±,
M±(ξ0) = 0,

• and ξ0 satisfies the nondegeneracy condition

ker(dM±(ξ0)) = {0}.

Also, for some 0 < α < 1
3 , define Wα according to (1-17). Then, there exists a family {uϵ(t, · ) : ϵ ∈ Eα,γ }

of time-periodic solutions to (1-21), where Eα,γ is an uncountable set that has 0 as an accumulation point.
In addition, each element uϵ has the following properties:

(1) uϵ has period Tϵ = 2π/ωϵ , with ωϵ ∈ Wα being ϵ-close to 1.

(2) uϵ ∈ H 1([0, Tϵ]; l2
s ).

(3) uϵ stays close to the solution to the linearized equation with initial data (ut=0, ∂t ut=0) = (ϵξ0, 0) for
all times:

sup
t∈R

|uϵ(t, · ) − 8tωϵ (ϵξ0)|s ≲ ϵ2.

1F. Remarks. • Minimal periods: Theorems 1.3 and 1.4 give no information on the minimal periods Tϵ of
the time-periodic solutions uϵ(t, · ). However, one can relate Tϵ to the minimal period T0 of the solutions
to the linearized system with 1-mode initial data; see [Bambusi and Paleari 2001, Theorem 5.3].

• Cantor-like set: We emphasize that the time-periodic solutions we construct exist only when the small
perturbative parameter belongs to a Cantor-like set (of measure 0). This set together with the Diophantine
condition introduced in Theorem 1.3 are closely related to the presence of small divisors in the perturbation
series around equilibrium points, a classical topic in the context of Kolmogorov–Arnold–Moser (KAM)
theory in infinite dimensions. Although this type of condition is essential in proving the existence of
time-periodic solutions as in [Bambusi and Paleari 2001], it can be removed in some very special cases; see
for example [Chatzikaleas 2020]. On the other hand, we note that the numerical constructions [Choptuik
et al. 2018; Fodor et al. 2015; Maliborski and Rostworowski 2013] do not seem to see the small divisors
obstructions.

• Proof: The proof of Theorem 1.4 follows the general strategy of [Bambusi and Paleari 2001], the
main and essential difference being the backscattering contribution of the quadratic terms. An alternative
approach to ours would be to find a normal form, in the spirit of [Shatah 1985], that allows us to eliminate
the quadratic terms and then apply the original result of [Bambusi and Paleari 2001].

• The works of Berti and Bolle: In [Berti and Bolle 2003; 2004; 2006], a different strategy, based
on variational methods, was introduced to solve the Q-equation (1-20) instead of the implicit function
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theorem as in [Bambusi and Paleari 2001]. This in particular leads to a strong improvement in [Berti and
Bolle 2006] concerning the size of the frequency set, using an extra Nash–Moser iteration. We have not
implemented this here for simplicity and leave a possible implementation of this improvement for future
works. The works [Berti and Bolle 2004; 2006] also treat the case of nonresonant quadratic terms — as
we have here in the Yang–Mills case — in the specific case of the wave equation on an interval with
Dirichlet boundary conditions.

• Regularity of the solutions: The solutions constructed here are H 1 in time with values in H s , with s
arbitrarily large but fixed a priori. A posteriori, one can then use the equation to obtain additional regularity
properties of the solutions. For instance, one easily has ∂2

t u ∈ L2
t H s−1

x . Since some of the estimates
depend a priori on the value of s, we cannot directly take s = ∞, but it is likely that a refinement of the
methods presented would lead to such an improvement.

• Jacobi polynomials: One of the difficulties to proving Theorem 1.3 comes from the fact that the
eigenfunctions en(x) of the linearized operators are given by Jacobi polynomials instead of simpler
explicit functions. This fact is not specific to our model problem and is a general feature of nonlinear
wave equations on AdS-like background. In particular, in the CH and YM models,6 the computation
and the analysis of the Fourier coefficients associated to the resonant terms are nontrivial and constitute
one of the contributions of this paper. To this end, we use linearization and connection formulas as well
as particular Mellin transforms for the Jacobi polynomials. On the one hand, a linearization formula
(also called addition formula) represents a product of two orthogonal polynomials with some parameters
as a linear combination of orthogonal polynomials of the same kind with the same parameters. On
the other hand, a connection formula represents a single orthogonal polynomial with some parameters
as a linear combination of orthogonal polynomials of different kinds with new parameters. In both
cases, these are computationally efficient only in the case where the coefficients in the expansions are
known in closed formulas. These computations also motivate our choice of µ1 = µ2 = µ for the CH
model, since in this case, the eigenfunctions are reduced to Gegenbauer polynomials, a special class of
Jacobi polynomials with additional algebraic properties that lead to closed formulas for the linearization
and connection coefficients described above. Moreover, we also use particular Mellin transforms of
Gegenbauer polynomials. These are integral transforms that may be regarded as the multiplicative version
of the Laplace transform.

• Mathematica files: For the CH and YM models, Theorem 1.3 ensures the existence of time-periodic
solutions bifurcating only from finitely many 1-mode initial data. As stated in Remark 1.2, this is solely
for the purpose of computing and verifying all computations in the manuscript by hand. Furthermore,
one can use Mathematica to verify that our result still holds true also for larger values of γ . For the
convenience of the reader, our Mathematica notebooks — available as ancillary files to the present paper
on arXiv at https://arxiv.org/abs/2201.05447 — can help the reader to both easily verify our computations
for small γ as well as derive and verify the analogous computations for larger values of γ .

6The eigenfunctions for the CW case are given by Chebyshev polynomials of the second kind. The derivation of the resonant
system in this case had been previously addressed in [Bizoń et al. 2017].

https://arxiv.org/abs/2201.05447
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1G. Previous works. The conformal wave equation (1-2) was introduced as a toy problem for the study
of nonlinear waves in confined geometries in [Bizoń et al. 2017] and has been studied further in [Bizoń
et al. 2019; 2020; Chatzikaleas 2020]. In particular, [Chatzikaleas 2020] proved that solutions emanating
from the first mode e0 stay proportional to e0 for all times and are periodic in time. The fact these data do
not excite further modes is, however, specific to the first mode and to this equation.

Concerning the well-posedness theories for the different models, since we do not focus here on low
regularity solutions, we will simply recall that global well-posedness holds for the conformal cubic wave
equation in the energy space, while the Yang–Mills equations in curved geometry have been shown to be
globally well-posed in H 2

× H 1 [Choquet-Bruhat et al. 1983; Chruściel and Shatah 1997] and on AdS
with reflective boundary conditions [Choquet-Bruhat 1989]. We were motivated to study the Yang–Mills
model by [Bizoń 2014].

Since the pioneering work [Maliborski and Rostworowski 2013], there have been many investigations of
time-periodic solutions for nonlinear equations with completely resonant spectrum [Berti and Bolle 2003;
2004; 2006; Paleari et al. 2001]. For the conformal wave equations, there exist also several constructions
of time-periodic weak solutions via the variational techniques first introduced by Rabinowitz [1978a;
1978b]; see [Chang and Hong 1985; Zhou 1986].

1H. Organization of the paper. We split the paper into the following sections:

• Section 2: We describe the methods we are about to use. For CW and CH, we will use the original
version of Bambusi and Paleari’s theorem [2001] (Theorem 2.4). However, for YM, as explained above,
we need to revise the original version and establish an extension of their result (Theorem 2.5) as stated in
Theorem 1.4. In particular, we define the operators M and M±, which determine the “special” initial
data leading to time-periodic solutions.

• Section 3: We study the linear eigenvalue problems where the linearized operators are given by (1-14).
As it turns out, the associated eigenfunctions are given by Jacobi polynomials, which is a common feature
with the Einstein–Klein–Gordon system in spherical symmetry [Maliborski and Rostworowski 2013].

• Section 4: We express the partial differential equations (1-13) in the Fourier space and obtain infinite
dimensional systems of coupled harmonic oscillators.

• Section 5: We define and study the mode couplings given by the Fourier coefficients. Specifically, we
derive explicit closed formulas for all the Fourier coefficients on resonant indices.

• Section 6: We study 1-mode initial data. In particular, we show that these modes satisfy the resonant
systems (are zeros of the operators M and M± defined in Section 2). In addition, we derive their
differentials at these modes.

• Section 7: Firstly, we derive the crucial nondegeneracy conditions for the 1-mode initial data. As it
turns out, these are nonlinear conditions for the Fourier coefficients. Then, we use the analysis on the
Fourier coefficients from Section 5 to rigorously establish these conditions and prove the existence of
time-periodic solutions as stated in Theorem 1.3.
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1I. Notation. We use different notation for each of the models we consider, which we summarize here:

model CW CH YM
equation (1-3)–(1-4) (1-6)–(1-7) (1-11)–(1-12)

font standard serif fraktur

linearized operator L L(µ1,µ2) L

eigenvalues ωn ω
(µ1,µ2)
n ϖn

eigenfunctions en e
(µ1,µ2)
n en

inner product ( · | · ) ⟨ · | · ⟩ [ · | · ]

linear flow 8t φt Φ t

fourier coefficients C C(µ1,µ2) C,C

2. The method of Bambusi–Paleari revisited

In order to establish Theorem 1.3 and construct our time-periodic solutions, we rely on the method
of Bambusi and Paleari [2001]. This is an effective method to construct families of small amplitude
time-periodic solutions close to a resonant equilibrium point for semilinear partial differential equations.

2A. The original version of the theorem. Let s ≥ 0 be a real number, and define the Hilbert space l2
s to

be the space of sequences such that

u = {u j
: j ≥ 0}, |u|

2
s =

∞∑
j=0

| j su j
|
2 < ∞.

We endow l2
s with the natural inner product associated with the norm | · |s and consider the following

differential equation in l2
s :

ü j
+ (Au) j

= (f(u)) j , (Au) j
= ϖ 2

j u j , (2-1)

for all integers j ≥ 0, where the dots denote derivatives with respect to time. Here, A : D(A) → l2
s is a

positive multiplication self-adjoint operator with pure point and resonant spectrum {ϖ 2
j : j ≥ 0}, meaning

{ϖ j : j ≥ 0} ⊂ N, and D(A) stands for its maximal domain of definition endowed with the norm

∥u∥
2
D(A) = |u|

2
s + |Au|

2
s =

∞∑
j=0

j2s
|ξ j

|
2
+

∞∑
j=0

j2s
|ϖ 2

j ξ
j
|
2.

Moreover, we also assume that A and f verify the following conditions:

(1) The injection of (D(A), ∥ · ∥D(A)) into l2
s is compact.

(2) The nonlinearity f(u) can be decomposed into

f(u) = f(0)(u) + f(1)(u). (2-2)

(3) The lowest-degree term f(0)(u) is a homogeneous polynomial of order r ≥ 2 and is a bounded operator
from D(A) to D(A) with the domain D(A) being invariant under f(0).
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(4) The highest-degree term f(1)(u) (treated perturbatively as an error term) has a zero of order r + 1 at 0,
is differentiable in l2

s , and its differential is Lipschitz and satisfies the estimate

|df(1)(u1) − df(1)(u2)|s ≤ Cϵr−1
|u1 − u2|s

for all u1, u2 ∈ l2
s with |u1|s ≤ ϵ and |u2|s ≤ ϵ.

Remark 2.1. In our case, the conditions above are obtained by starting from any of the equations (1-3),
(1-6), (1-11) and projecting them on the eigenfunctions to the corresponding linear operator. Specifically,
condition (1) follows automatically from the fact that ϖ j ∼ j as j → ∞, while conditions (3) and (4),
which refer to the nonlinearities in the Fourier space, essentially follow from the facts that the original
nonlinearities are smooth and that the Sobolev spaces of sufficiently high regularity form an algebra;
see Section 2C.

Let en be the eigenfunctions to the associated linearized operators. On the Fourier side, these can be
identified with en = {δi

n : i ≥ 0} ∈ l2
s . Then, for any initial data ξ , we denote by

Φ t(ξ) = {ξ n cos(ϖnt) : n ≥ 0}, ξ = {ξ n
: n ≥ 0} =

∞∑
n=0

ξ nen

its linear flow, that is the solution to the initial value problem{
ün(t) + ϖ 2

n un(t) = 0, t ∈ R,

un(0) = ξ n, u̇n(0) = 0.

We note that Φ t(ξ) = Φ−t(ξ). Moreover, we define the operator

M(ξ) := Aξ + ⟨f(0)
⟩(ξ), ⟨f(0)

⟩(ξ) =
1

2π

∫ 2π

0
Φ−t

[f(0)(Φ t(ξ))] dt, (2-3)

where ⟨f(0)
⟩(ξ) is the average of f(0) along the linear flow. Here we note that the highest-degree term f(1)

in (2-2) does not contribute to the definition of the operator M. Bambusi and Paleari [2001] used a
Lyapunov–Schmidt decomposition together with averaging theory and established the existence of a
family of small amplitude time-periodic solutions with frequencies that satisfy the strong Diophantine
condition

ϖ ∈ Wα =

{
ϖ ∈ R : |ϖ · l − ϖ j | ≥

α

l
∀(l, j) ∈ N2, l ≥ 1, ϖ j ̸= l

}
. (2-4)

Remark 2.2 (accumulation to 1). For 0 < α < 1
3 , the set Wα is an uncountable Cantor-like set that

accumulates to 1 from above and below; see [Bambusi and Paleari 2001, Remark 2.4] and [Schmidt 1980,
p. 23].

Remark 2.3 (connection to Hurwitz’s theorem). According to Hurwitz’s theorem, for every irrational
number ϖ , there are infinitely many relatively prime integers ϖ j and l such that |ϖ · l −ϖ j | < 1/(

√
5l),

and moreover the constant
√

5 is optimal. Consequently, Wα = ∅ for α ≥ 1/
√

5. In this note, we pick a
suitable α with 0 < α < 1

3 .

The main result of [Bambusi and Paleari 2001] reads as follows.



2324 ATHANASIOS CHATZIKALEAS AND JACQUES SMULEVICI

Theorem 2.4 (original version of Bambusi and Paleari’s theorem [2001]). For 0 < α < 1
3 , define Wα

according to (2-4) and consider the operator M defined in (2-3). Assume that conditions (1)–(4) are
verified. Moreover, let ξ0 be a nondegenerate zero of M, that is

M(ξ0) = 0, ker(dM(ξ0)) = {0}.

Then, there exists a family {uϵ : ϵ ∈ Eα,γ } ⊂ H 1([0, Tϵ]; l2
s ) of time-periodic solutions to (2-1)–(2-2), where

Eα,γ is an uncountable set that has 0 as an accumulation point. In addition, each element uϵ has the
following properties:

(1) uϵ has period Tϵ = 2π/ϖϵ , and there exists ϖ⋆ > 0 such that the map

ϵ ∈ Eα,γ 7→ ϖϵ ∈ Wα ∩ [1, 1 + ϖ⋆)

is a monotone, one-to-one map that stays close to 1: |1 − ϖϵ | ≲ ϵr−1,

(2) uϵ stays close to the solution to the linearized equation with initial data (ut=0, ∂t ut=0) = (ϵξ0, 0) for
all times:

sup
t∈R

|uϵ(t, · ) − Φ tϖϵ (ϵξ0)|s ≲ ϵ2.

2B. A modified Bambusi–Paleari theorem. As we will see in Section 4C, in the case of the YM model,
the nonlinearity is given by

f(u) = f(2)(u) + f(3)(u), (2-5)

where

(1) the lowest-degree term f(2) is a homogeneous polynomial of order 2:

(f(2)({u j (t) : j ≥ 0}))m
= −3

∞∑
i, j=0

Ci jmui (t)u j (t), (2-6)

(2) the highest-degree term f(3) is a homogeneous polynomial of order 3:

(f(3)({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

Ci jkmui (t)u j (t)uk(t). (2-7)

Thus, according to the original version of Bambusi–Paleari’s theorem (Theorem 2.4), one may argue that
f(2) is the main nonlinearity and f(3) can be treated perturbatively. However, in this setting, the original
version of Bambusi–Paleari’s theorem would not be applicable, because f(2) is nonresonant (Lemma 6.5),
that is

⟨f(2)
⟩(ξ) =

1
2π

∫ 2π

0
Φ t(f(2)(Φ t(ξ))) dt = 0 (2-8)

for all initial data ξ , and therefore M(ξ) =Aξ leads to trivial zeros of the operator M. Consequently, we
need to revisit the theorem of Bambusi–Paleari in this context. Specifically, we consider (2-1)–(2-5)–(2-8),
replace f(0)(u) by f(2)(u) + f(3)(u) and establish the following theorem.
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Theorem 2.5 (modification of Bambusi–Paleari’s theorem for the YM model). Let 0 < α < 1
3 , and

define Wα according to (2-4). Let A be a positive multiplication self-adjoint operator with spectrum
{ϖ 2

j > 0 : j ≥ 0} such that {ϖ j : j ≥ 0} ⊂ N and ϖ j ≃ j as j → ∞, defined by

A : D(A) ≃ l2
s+2 → l2

s , (Au) j
= ϖ 2

j u j ,

with D(A) being its maximal domain of definition. Assume that f= f(2)
+ f(3), where f(2) and f(3) admit the

representations (2-6) and (2-7) respectively.7 Moreover, assume that both f(2) and f(3) are differentiable,
with Lipschitz differentials, and define the modified operator

M±(ξ) = ±Aξ + ⟨f(3)
⟩(ξ) +F0(ξ),

where F0(ξ) = {(F0(ξ))m
: m ≥ 0} is a bounded map on l2

s that is given by

(F0(ξ))m
=

9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi −ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν − (ϖi − ϖ j )2 ξ iξ jξ κ

∑
±

1(ϖi − ϖ j ± ϖκ ± ϖm = 0)

+
9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi +ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν − (ϖi + ϖ j )2 ξ iξ jξ κ

∑
±

1(ϖi + ϖ j ± ϖκ ± ϖm = 0).

Also, let ξ0 ∈ l2
s+3 be a nondegenerate zero of M±, that is

M±(ξ0) = 0, ker(dM±(ξ0)) = {0}.

Then, there exists a family {uϵ : ϵ ∈ Eα,γ } ⊂ H 1([0, Tϵ]; l2
s ]) of time-periodic solutions to (2-1)–(2-5)–(2-8),

where Eα,γ is an uncountable set that has 0 as an accumulation point. In addition, each element uϵ has
the following properties:

(1) uϵ has period Tϵ = 2π/ϖϵ where there exists ϖ⋆ > 0 such that the maps ϵ 7→ ϖϵ ∈ Wα ∩[1, 1 +ϖ⋆)

for M+ and ϵ 7→ ϖϵ ∈ Wα ∩ (1 − ϖ⋆, 1] for M−, are monotone, one-to-one maps that stay close to 1
with |1 − ϖϵ | ≲ ϵ,

(2) uϵ stays close to the solution to the linearized equation with the same initial data as above and zero
initial velocity:

sup
t∈R

|uϵ(t, · ) − Φ tϖϵ (ϵξ0)|s ≲ ϵ2.

The rest of this section is devoted to the proof of the theorem above.

2C. Preliminaries. The core of the proof follows that of [Bambusi and Paleari 2001]. Let 0 < α < 1
3

and pick a frequency ϖ ∈ Wα. We are looking for a solution to (2-1) with frequency ϖ , that is

u(t) = q(ϖ t). (2-9)

7For Theorem 2.5, we need very little information about the Fourier coefficients Ci jm . However, for the application of this
abstract theorem, see Section 7C and Proposition 7.6, we also need additional vanishing properties, see Lemma 5.8.
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For any integer k ≥ 0, we define the Banach space

Hk
s =

{
q ∈ H k([0, 2π ]; l2

s ) : q(t) =

∞∑
j=0

q j (t)e j =

∞∑
j=0

( ∞∑
l=0

ql j cos(lt)
)

e j , ∥q∥
2
Hk

s
< ∞

}
endowed with the norm

∥q∥
2
Hk

s
=

∞∑
j=0

j2s
(

2|q0 j
|
2
+

∞∑
l=1

|ql j
|
2(1 + l2)k

)
.

In particular, we aim to construct q in the Hilbert space H1
s . To do so, we substitute (2-9) into (2-1) and

obtain the nonlinear equation

Lϖ q = f (q), (2-10)

where

Lϖ : D(Lϖ ) ⊂ H1
s → H1

s , Lϖ q = ϖ 2 d2

dt2 q +Aq.

Now, we are looking for a solution with frequency close to 1. For this reason, we split H1
s into

H1
s = K ⊕ R, K = ker(L1), R = K ⊥,

and write

q ∈ H1
s , q = v + q⊥, v ∈ K , q⊥ ∈ R.

Taking into account the fact that K is generated by {cos(ϖ j t) : j ≥ 0}, since

v ∈ K ⇐⇒ v(t) = {v j (t) = c j cos(ϖ j t) : j ≥ 0}

for some constants c j , the latter simply means that we split q = {q j
: j ≥ 0} ∈ H1

s into

q j (t) = v j (t) + q j
⊥
(t), v j (t) = c j cos(ϖ j t), q j

⊥
(t) =

∑
l ̸=ϖ j

d jl cos(lt),

for some constants c j and d jl . In addition, we define the associated projections

P : H1
s → R, P(q) = P(v + q⊥) = q⊥, Q : H1

s → K , Q(q) = Q(v + q⊥) = v,

and project (2-10) onto R and K , respectively. We obtain the coupled nonlinear system

Lϖ q⊥ = P f (v + q⊥), (2-11)

−2βAv = Q f (v + q⊥), (2-12)

where we also set

ϖ 2
= 1 + 2β. (2-13)

As is usual in this setting, we refer to (2-11) and (2-12) as the P-equation and Q-equation, respectively.
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2D. Solution to the P-equation. As we will now see, the Diophantine condition ϖ ∈ Wα guarantees the
existence of a solution to the P-equation.

Lemma 2.6 (solution to the P-equation [Bambusi and Paleari 2001, Lemma 4.6]). Let 0 < α < 1
3 , and

pick ϖ ∈ Wα. Then, the operator Lϖ restricted to R admits a bounded inverse

L−1
ϖ : H1

s ∩ R → H1
s ∩ R, ∥L−1

ϖ ∥ ≤ c0α
−1,

for some positive constant c0. Moreover, there exists ρ = ρ(α) > 0 and a C1-function q⊥ : Bρ → R
with v 7→ q⊥(v) that solves the P-equation, where Bρ denotes the ball of radius ρ in K centered at 0.
Furthermore, we have the estimates

∥q⊥(v)∥H1
s
≲α ∥v∥

2
H1

s
, ∥q⊥(v) − L−1

ϖ Pf(2)(v)∥H1
s
≲α ∥v∥

3
H1

s
.

Proof. Apart from the C1 regularity of q⊥ (which is stated only as Lipschitz in [Bambusi and Paleari
2001]), the proof coincides with the one of Lemma 4.6 in the aforementioned paper, where the f (0) there
is replaced by f(2). Once a Lipschitz solution q⊥ has been found, one can read off the C1 regularity of q⊥

based on the regularity of f. However, for the convenience of the reader, we give a proof below of the
construction of q⊥. Let 0 < α < 1

3 , and pick ϖ ∈ Wα. The eigenvalues of Lϖ are given by

λ jl = ϖ 2
j − l2ϖ 2

= (ϖ j − lϖ)(ϖ j + lϖ). (2-14)

Then, for all (l, j) ∈ N2 with l ≥ 1 and l ̸= ϖ j , we have that |λ jl | ≥ (α/ l)(ϖ j + lϖ) ≥ αϖ ≥
1
2α.

Therefore, Lϖ |R has a bounded inverse and there exists a positive constant c0 such that ∥L−1
ϖ ∥ ≤ c0α

−1.
In addition, we let ϵ > 0 be sufficiently small, let ∥v∥H1

s
≤ ϵ, let δ > 0 be sufficiently large, define the

closed ball of radius δ∥v∥
3
H1

s
centered at L−1

ϖ Pf(2)(v), that is

B = {w ∈ H1
s : ∥w − L−1

ϖ Pf(2)(v)∥H1
s
≤ δ∥v∥

3
H1

s
},

and rewrite the P-equation in the fixed-point formulation as

q⊥ = F(q⊥) = L−1
ϖ [Pf(2)(v) + P(f(2)(v + q⊥) − f(2)(v)) + Pf(3)(v + q⊥)].

Next, we show that F maps the closed ball to itself. Indeed, for all w ∈ B, we have

∥w∥H1
s
≤ ∥w − L−1

ϖ Pf(2)(v)∥H1
s
+ ∥L−1

ϖ Pf(2)(v)∥H1
s
≤ δ∥v∥

3
H1

s
+ ∥L−1

ϖ ∥∥f(2)(v)∥H1
s

≤ δ∥v∥
3
H1

s
+ c0α

−1ks∥v∥
2
H1

s
≤ c1∥v∥

2
H1

s
,

and Lemma 4.5 implies

∥f(2)(v + w) − f(2)(v)∥H1
s
≤ ks(∥v + w∥H1

s
+ ∥v∥H1

s
)∥w∥H1

s
≤ ks(∥w∥H1

s
+ 2∥v∥H1

s
)∥w∥H1

s

≤ c1ks(c1∥v∥
2
H1

s
+ 2∥v∥H1

s
)∥v∥

2
H1

s
≤ c2∥v∥

3
H1

s
,

∥f(3)(v + w)∥H1
s
≤ ks∥v + w∥

3
H1

s
≲ ks(∥v∥

3
H1

s
+ c3

1∥v∥
6
H1

s
) ≤ c3∥v∥

3
H1

s
.
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Hence, we infer

∥F(w) − L−1
ϖ Pf(2)(v)∥H1

s
= ∥L−1

ϖ [P(f(2)(v + w) − f(2)(v)) + Pf(3)(v + w)]∥H1
s

≤ ∥L−1
ϖ ∥ [∥f(2)(v + w) − f(2)(v)∥H1

s
+ ∥f(3)(v + w)∥H1

s
]

≤ c0α
−1

[c2∥v∥
3
H1

s
+ c3∥v∥

3
H1

s
] ≤ δ∥v∥

3
H1

s

by choosing δ sufficiently large. The contraction property follows similarly. For the C1 regularity, we set
F(2)

= L−1
ϖ Pf(2) and, for v, v + h ∈ Bρ , we have

q⊥(v) = F(2)(v + q⊥(v)), q⊥(v + h) = F(2)(v + h + q⊥(v + h)),

so that

q⊥(v + h) = F(2)(v + q⊥(v)) + dF(2)
v+q⊥(v)(h + q⊥(v + h) − q⊥(v)) +O(h + q⊥(v + h) − q⊥(v))

= q⊥(v) + dF(2)
v+q⊥(v)(h + q⊥(v + h) − q⊥(v)) +O(h),

where we used that q⊥ is Lipschitz. Assuming that ρ is small enough, we can ensure that

∥dF(2)
v+q⊥(v)∥H1

s
≤ c∥v∥H1

s
< 1

2

uniformly in v, and hence

q⊥(v + h) = q⊥(v) + (Id − dF(2)
v+q⊥(v))

−1dF(2)
v+q⊥(v)(h) +O(h),

so that q⊥(v) is C1 with differential (Id − dF(2)
v+q⊥(v))

−1dF(2)
v+q⊥(v). □

2E. Solution to the Q-equation. Next, we turn our attention to the existence of a solution to the
Q-equation. Firstly, we define two Banach spaces of initial data

Q =

{
ξ =

∞∑
j=0

ξ j e j : ∥ξ∥
2
Q < ∞

}
≃ l2

s+1 ⊆ l2
s , D(A) =

{
ξ =

∞∑
j=0

ξ j e j : ∥ξ∥
2
D(A) < ∞

}
≃ l2

s+2 ⊆ l2
s ,

endowed with the norms

∥ξ∥
2
Q =

∞∑
j=0

j2s
|ξ j

|
2
+

∞∑
j=0

j2s
|ϖ jξ

j
|
2
≃

∞∑
j=0

j2(s+1)
|ξ j

|
2
= |ξ |

2
s+1,

∥ξ∥
2
D(A) = |ξ |

2
s + |Aξ |

2
s =

∞∑
j=0

j2s
|ξ j

|
2
+

∞∑
j=0

j2s
|ϖ 2

j ξ
j
|
2
≃

∞∑
j=0

j2(s+2)
|ξ j

|
2
= |ξ |

2
s+2,

since ϖ j ∼ j as j → ∞. We call the Hilbert space (Q, ∥ · ∥Q) the configuration space. In fact, Q is
isomorphic to K = ker(L1), and the isomorphism is given by the linear flow

I : Q → K , (I (x))(t) = Φ t(x).

Also, recall the Banach space of spacetime functions

Hk
s =

{
q(t) =

∞∑
j=0

q j (t)e j =

∞∑
j=0

( ∞∑
l=0

ql j cos(lt)
)

e j : ∥q∥
2
Hk

s
< ∞

}
⊆ H k([0, 2π ]; l2

s )
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endowed with the norm

∥q∥
2
Hk

s
=

∞∑
j=0

j2s
(

2|q0 j
|
2
+

∞∑
l=1

|ql j
|
2(1 + l2)k

)
.

Notice that, since

I (ξ)(t) =

∞∑
j=0

(I (ξ)(t)) j e j =

∞∑
j=0

(8t(ξ)) j e j =

∞∑
j=0

ξ j cos(ϖ j t)e j

and ϖ j ̸= 0 for all integers j ≥ 0, we have

∥I (ξ)∥2
H0

s
=

∞∑
j=0

j2s
|ξ j

|
2
= |ξ |

2
s ,

∥I (ξ)∥2
H1

s
=

∞∑
j=0

j2s
|ξ j

|
2(1 + ϖ 2

j ) =

∞∑
j=0

j2s(|ξ j
|
2
+ |ϖ jξ

j
|
2) ≃ |ξ |

2
s+1 ≃ ∥ξ∥

2
Q. (2-15)

Secondly, we prove the following averaging identity that generalizes the one in Lemma 4.7 in [Bambusi
and Paleari 2001] from vector fields F : Q → Q to F : Hk

s → Hk
s .

Lemma 2.7 (averaging identity). Let F : Hk
s → Hk

s be any vector field. Then, for all x ∈ l2
s , we have

⟨F⟩(x) =
1

2π

∫ 2π

0
Φ t

[F(Φ t(x))] dt =
1
2

I −1 Q[F(I (x))].

Proof. Let F : Hk
s → Hk

s be a vector field in Hk
s (not necessarily in Q), pick any x ∈ l2

s and set w = I (x).
By the definition of the Banach space Hk

s , we have

F(w) =

∞∑
m=0

(F(w))mem =

∞∑
m=0

( ∞∑
l=0

(F(w))m
l cos(lt)

)
em, (F(w))m

l =
1
π

∫ 2π

0
(F(w))m cos(lt) dt.

Then, the definition of the linear flow together with the definition of the projection Q yield

Q[F(w)] =

∞∑
m=0

(Q[F(w)])mem =

∞∑
m=0

(F(w))m
ωm

cos(ϖm t)em,

1
2

I −1 Q[F(w)] =
1
2

∞∑
m=0

(F(w))m
ϖm

em =
1
2

∞∑
m=0

(
1
π

∫ 2π

0
(F(w))m cos(ϖm t) dt

)
em

=
1

2π

∫ 2π

0

∞∑
m=0

((8t
[F(w)])mem) dt =

1
2π

∫ 2π

0
8t

[F(w)] dt = ⟨F⟩(x). □

Then, we express the Q-equation in the configuration space introduced above.

Lemma 2.8 (the Q-equation in the configuration space). Let ρ > 0 and q⊥ : Bρ ⊂ K → R be the solution
map to the P-equation derived in Lemma 2.6. Also, let x ∈ l2

s+2, and set v = I (x) ∈ Bρ . Then, the
Q-equation (2-12) for v is equivalent to

βAx + ⟨f⟩(x) = −
1
2 I −1 Q[f(I (x) + q⊥(I (x))) − f(I (x))]. (2-16)
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Proof. Let ρ > 0 and q⊥ : Bρ ⊂ K → R be the solution map to the P-equation derived in Lemma 2.6.
Also, let x ∈ Q, and set v = I (x) ∈ Bρ . Then, we rewrite the Q-equation given in (2-12), that is
−2β Av = Q f (v + q⊥), as

−2βAI (x) − Qf(I (x)) = Qf(I (x) + q⊥(I (x))) − Qf(I (x)).

Since AI (x) = IAx , by applying −
1
2 I −1 to both sides, we get

βAx +
1
2 I −1 Qf(I (x)) = −

1
2 I −1 Q[f(I (x) + q⊥(I (x))) − f(I (x))].

Now, the claim follows by the averaging identity due to Lemma 2.7. □

It remains to show that there exists a solution to (2-16). To this end, we define

x = ϵξ, |β| = ϵ2, (2-17)
and (2-16) becomes

±ϵ2A(ϵξ) + ⟨f⟩(ϵξ) = −
1
2 I −1 Q[f(I (ϵξ) + q⊥(I (ϵξ))) − f(I (ϵξ))].

On the one hand, (2-5) and (2-8) yield

±ϵ2A(ϵξ) + ⟨f⟩(ϵξ) = ±ϵ3Aξ + ϵ2
⟨f(2)

⟩(ξ) + ϵ3
⟨f(3)

⟩(ξ) = ϵ3(±Aξ + ⟨f(3)
⟩(ξ)).

On the other hand, (2-5), (2-8) and the averaging identity from Lemma 2.7 yield

1
2 I −1 Q[f(I (ϵξ) + q⊥(I (ϵξ))) − f(I (ϵξ))]

=
1
2 I −1 Q[f(2)(I (ϵξ) + q⊥(I (ϵξ)))] +

1
2 I −1 Q[f(3)(I (ϵξ) + q⊥(I (ϵξ))) − f(3)(I (ϵξ))]

=
1
2 I −1 Q[f(2)(I (ϵξ) + L−1

ϖ Pf(2)(I (ϵξ)))] + ϵ3Gϵ(ξ),

where we set

Gϵ(ξ) = ϵ−3[ 1
2 I −1 Q[f(2)(I (ϵξ) + q⊥(I (ϵξ))) − f(2)(I (ϵξ) + L−1

ϖ Pf(2)(I (ϵξ)))]

+
1
2 I −1 Q[f(3)(I (ϵξ) + q⊥(I (ϵξ))) − f(3)(I (ϵξ))]

]
. (2-18)

We apply the averaging identity and the notation from Lemma 2.7 to the map v → f(2)(v + L−1
1 Pf(2)(v)),

which is a vector field from H1
s to H1

s , to obtain

1
2 I −1 Q[f(I (ϵξ) + q⊥(I (ϵξ))) − f(I (ϵξ))]

=
1
2 I −1 Q[f(2)(I (ϵξ) + L−1

ϖ Pf(2)(I (ϵξ)))] + ϵ3Gϵ(ξ)

=
1
2 I −1 Q[f(2)(I (ϵξ) + L−1

1 Pf(2)(I (ϵξ)))] + ϵ3Gϵ(ξ) + ϵ3Rϵ(ξ, ϖ)

=
1
2

∫ 2π

0
8−t(f(2)(8t(ϵξ) + L−1

1 Pf(2)(8t(ϵξ)))
)

dt + ϵ3Gϵ(ξ) + ϵ3Rϵ(ξ, ϖ)

= ⟨f(2)(( · ) + L−1
1 Pf(2)( · ))⟩(ϵξ) + ϵ3Gϵ(ξ) + ϵ3Rϵ(ξ, ϖ) = ϵ3(Fϵ(ξ) +Gϵ(ξ) +Rϵ(ξ, ϖ)),

where we set

Rϵ(ξ, ϖ) = ϵ−3 1
2 I −1 Q[f(2)(I (ϵξ) + L−1

ϖ Pf(2)(I (ϵξ))) − f(2)(I (ϵξ) + L−1
1 Pf(2)(I (ϵξ)))],

Fϵ(ξ) = ϵ−3
⟨f(2)(( · ) + L−1

1 Pf(2)( · ))⟩(ϵξ).
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In conclusion, the Q-equation (2-16) can be written equivalently, for ϵ > 0 sufficiently small, as

±Aξ + ⟨f(3)
⟩(ξ) = −(Fϵ(ξ) +Gϵ(ξ) +Rϵ(ξ, ϖ)). (2-19)

However, instead of (2-19), we focus on a modified version, namely

±Aξ + ⟨f(3)
⟩(ξ) = −

(
Fϵ(ξ) +Gϵ(ξ) ±

2ϵ2

ϖ 2 − 1
Rϵ(ξ, ϖ)

)
. (2-20)

Notice that (2-19) coincides with (2-20) provided that ϖ 2
− 1 = ±2ϵ2.

Remark 2.9. Since f(2) is differentiable and quadratic, and ⟨f(2)
⟩(ξ) = 0 for all initial data ξ ∈ l2

s+3,
it follows that Fϵ(ξ) is differentiable and ∥Fϵ(ξ)∥Q ≲ 1. Later, in Section 2F, we compute the exact
expressions of F0(ξ) for general initial data (Lemma 2.13), Fϵ(ξ) for small ϵ close to zero and 1-mode
initial data (Lemma 2.14), as well as the differential dF0(ξ) at the 1-mode initial data (Lemma 2.15).

In the following, we estimate the error terms. To begin with, we estimate Rϵ(ξ, ϖ).

Lemma 2.10 (estimate for Rϵ(ξ, ϖ) and dξRϵ(ξ, ϖ)). Let 0 < α < 1
3 , and pick any ϖ ∈ Wα. Also, let

ξ ∈ l2
s+3 be any initial data. Then, we have

∥Rϵ(ξ, ϖ)∥Q ≲ |ϖ 2
− 1|, ∥dξRϵ(ξ, ϖ)[h]∥Q ≲ |ϖ 2

− 1||h|s+3.

Proof. Let 0 < α < 1
3 , and pick any ϖ ∈ Wα. Also, let ξ ∈ l2

s+3 be any initial data. Firstly, we pick any
ϵ > 0, set v = I (ϵξ) and compute

f(2)(v) =

∞∑
j=0

(f(2)(v)) j e j =

∞∑
j=0

( ∞∑
l=0

(f(2)(v))
j
l cos(lt)

)
e j ,

Pf(2)(v) =

∞∑
j=0

( ∞∑
l=0

l ̸=ϖ j

(f(2)(v))
j
l cos(lt)

)
e j ,

L−1
ϖ Pf(2)(v) =

∞∑
j=0

( ∞∑
l=0

l ̸=ϖ j

1
ϖ 2

j − l2ϖ 2
(f(2)(v))

j
l cos(lt)

)
e j ,

(L−1
ϖ − L−1

1 )Pf(2)(v) =

∞∑
j=0

( ∞∑
l=0

l ̸=ϖ j

(
1

ϖ 2
j − l2ϖ 2

−
1

ϖ 2
j − l2

)
(f(2)(v))

j
l cos(lt)

)
e j

=

∞∑
j=0

( ∞∑
l=0

l ̸=ϖ j

l2(ϖ 2
− 1)

(ϖ 2
j − l2ϖ 2)(ϖ 2

j − l2)
(f(2)(v))

j
l cos(lt)

)
e j .

Secondly, we note that

∥L−1
ϖ Pf(2)(I (ϵξ))∥H1

s
≲ ϵ2, ∥L−1

1 Pf(2)(I (ϵξ))∥H1
s
≲ ϵ2. (2-21)

These can be easily proved using the Diophantine condition, the elementary inequality |ϖ 2
j −l2

| ≥ 1 (since
ϖ ∈ Wα , both ϖ 2

j ≥ 1 and l2
≥ 0 are integers with ϖ j ̸= l), the Lipschitz estimate ∥f(2)(u)∥Hk

s
≲s ∥u∥

2
Hk

s
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for all u ∈ Hk
s with ∥u∥Hk

s
≤ ϵ (which follows from Lemma 4.5), together with (2-15). Indeed, we infer

∥L−1
ϖ Pf(2)(I (ϵξ))∥2

H1
s
=

∞∑
j=0

j2s
∞∑

l=0

∣∣∣∣ 1
ϖ 2

j − l2ϖ 2
(f(2)(I (ϵξ)))

j
l

∣∣∣∣2

(1 + l2)

≲α

∞∑
j=0

j2s
∞∑

l=0

|(f(2)(I (ϵξ)))
j
l |

2(1 + l2)

≤ ∥f(2)(I (ϵξ))∥2
H1

s
≲ ∥I (ϵξ)∥4

H1
s
= ϵ4

∥I (ξ)∥4
H1

s
= ϵ4

∥ξ∥
4
Q ≤ ϵ4

|ξ |
4
s+3,

∥L−1
1 Pf(2)(I (ϵξ))∥2

H1
s
=

∞∑
j=0

j2s
∞∑

l=0

∣∣∣∣ 1
ϖ 2

j − l2
(f(2)(I (ϵξ)))

j
l

∣∣∣∣2

(1 + l2)

≲
∞∑
j=0

j2s
∞∑

l=0

|(f(2)(I (ϵξ)))
j
l |

2(1 + l2)

≤ ∥f(2)(I (ϵξ))∥2
H1

s
≲ ∥I (ϵξ)∥4

H1
s
= ϵ4

∥I (ξ)∥4
H1

s
= ϵ4

∥ξ∥
4
Q ≤ ϵ4

|ξ |
4
s+3.

Next, we use the above together with the Lipschitz estimate for f(2) (see Lemma 4.5) and the fact that
I −1

: H1
s → Q to obtain

ϵ3
∥Rϵ(ξ, ϖ)∥Q =

∥∥1
2 I −1 Q[f(2)(I (ϵξ) + L−1

ϖ Pf(2)(I (ϵξ))) − f(2)(I (ϵξ) + L−1
1 Pf(2)(I (ϵξ)))]

∥∥
Q

≲ ∥f(2)(I (ϵξ) + L−1
ϖ Pf(2)(I (ϵξ))) − f(2)(I (ϵξ) + L−1

1 Pf(2)(I (ϵξ)))∥H1
s

≲ (∥I (ϵξ) + L−1
ϖ Pf(2)(I (ϵξ))∥H1

s
+ ∥I (ϵξ) + L−1

1 Pf(2)(I (ϵξ))∥H1
s
)

· ∥L−1
ϖ Pf(2)(I (ϵξ)) − L−1

1 Pf(2)(I (ϵξ))∥H1
s

≲ ϵ∥(L−1
ϖ − L−1

1 )Pf(2)(I (ϵξ))∥H1
s
.

Once again, the Diophantine condition, the elementary inequality |ϖ 2
j − l2

| ≥ 1, the Lipschitz estimate
∥f(2)(u)∥Hk

s
≲s ∥u∥

2
Hk

s
for all u ∈Hk

s with ∥u∥Hk
s
≤ ϵ (which follows from Lemma 4.5), together with (2-15)

imply that

∥(L−1
ϖ − L−1

1 )Pf(2)(I (ϵξ))∥2
H1

s

= |ϖ 2
− 1|

2
∞∑
j=0

j2s
∞∑

l=1

∣∣∣∣ l2

(ϖ 2
j − l2ϖ 2)(ϖ 2

j − l2)
(f(2)(I (ϵξ)))

j
l

∣∣∣∣2

(1 + l2)

≲α |ϖ 2
− 1|

2
∞∑
j=0

j2s
∞∑

l=1

|l2(f(2)(I (ϵξ)))
j
l |

2(1 + l2) ≲ |ϖ 2
− 1|

2
∞∑
j=0

j2s
∞∑

l=1

|(f(2)(I (ϵξ)))
j
l |

2(1 + l2)3

≤ |ϖ 2
− 1|

2
∥f(2)(I (ϵξ))∥2

H3
s
≲ |ϖ 2

− 1|
2
∥I (ϵξ)∥4

H3
s
= |ϖ 2

− 1|
2ϵ4

∥I (ξ)∥4
H3

s
≲ |ϖ 2

− 1|
2ϵ4

|ξ |
4
s+3.

Finally, putting this all together yields ∥Rϵ(ξ, ϖ)∥Q ≲ |ϖ 2
− 1|, which completes the first part of the

proof. The estimate for the differential follows similarly. □

Next, we estimate Gϵ(ξ) and its differential.
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Lemma 2.11 (estimate for Gϵ(ξ) and dξGϵ(ξ)). Let ξ ∈ l2
s+3 be any initial data. Then, Gϵ(ξ) is

continuously differentiable with respect to ξ , and we have

∥Gϵ(ξ)∥Q ≲ ϵ, ∥dξGϵ(ξ)[h]∥Q ≲ ϵ|h|s+3.

Proof. Let ξ ∈ l2
s+3 be any initial data, and recall the definition of Gϵ(ξ) from (2-18). The claim follows

by Lemmas 4.5 and 2.6 together with (2-15) and the fact that I −1
: H1

s → Q. Indeed, since

∥I (ϵξ)∥H1
s
≲ ϵ∥ξ∥Q, ∥q⊥(I (ϵξ))∥H1

s
≲ ∥I (ϵξ)∥2

H1
s
≲ ϵ2

∥ξ∥
2
Q, (2-22)

we can estimate∥∥1
2 I −1 Q[f(2)(I (ϵξ) + q⊥(I (ϵξ))) − f(2)(I (ϵξ) + L−1

ϖ Pf(2)(I (ϵξ)))]
∥∥
Q

≲ ∥f(2)(I (ϵξ) + q⊥(I (ϵξ))) − f(2)(I (ϵξ) + L−1
ϖ Pf(2)(I (ϵξ)))∥H1

s

≲ ϵ∥q⊥(I (ϵξ)) − L−1
ϖ Pf(2)(I (ϵξ))∥H1

s
≲ ϵ∥I (ϵξ)∥3

H1
s
≲ ϵ4

and∥∥1
2 I −1 Q[f(3)(I (ϵξ) + q⊥(I (ϵξ))) − f(3)(I (ϵξ))]

∥∥
Q

≲ ∥f(3)(I (ϵξ) + q⊥(I (ϵξ))) − f(3)(I (ϵξ))∥H1
s
≲ [∥I (ϵξ) + q⊥(I (ϵξ))∥2

H1
s
+ ∥I (ϵξ)∥2

H1
s
]∥q⊥(I (ϵξ))∥H1

s

≲ [∥I (ϵξ)∥2
H1

s
+ ∥q⊥(I (ϵξ))∥2

H1
s
]∥q⊥(I (ϵξ))∥H1

s
≲ ϵ4.

The estimate for the differential follows similarly. □

It remains to show that there exists a solution to (2-20), that is

±Aξ + ⟨f(3)
⟩(ξ) = −

(
Fϵ(ξ) +Gϵ(ξ) ±

2ϵ2

ϖ 2 − 1
Rϵ(ξ, ϖ)

)
⇐⇒ M±(ξ) = Hϵ(ξ), (2-23)

where we set

M±(ξ) = ±Aξ + ⟨f(3)
⟩(ξ) +F0(ξ), Hϵ(ξ) = F0(ξ) −Fϵ(ξ) −Gϵ(ξ) ∓

2ϵ2

ϖ 2 − 1
Rϵ(ξ, ϖ).

We refer to M± as the modified operator. Note that Lemmas 2.10 and 2.11 and the smoothness8 of Fϵ(ξ)

with respect to ϵ yield
∥Hϵ(ξ)∥Q ≲ ϵ, ∥dξHϵ(ξ)[h]∥Q ≲ ϵ|h|s+3.

The following result constitutes the main modification of Bambusi–Paleari’s theorem.

Lemma 2.12 (solution to the Q-equation). Define the modified operator

M±(x) = ±Ax + ⟨f(3)
⟩(x) +F0(x),

and let ξ0 ∈ l2
s+3 be a nondegenerate zero of M±, that is

M±(ξ0) = 0, ker(dM±(ξ0)) = {0}.

8In Lemma 2.13 we show that Fϵ(ξ) is smooth with respect to ϵ. As one can see in the proof of Lemma 2.13, Fϵ(ξ) is in fact
linear with respect to ϵ. See (2-25).
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Then, there exists a positive ϵ0 and a Lipschitz map ξ : [0, ϵ0)→ l2
s+3, ϵ 7→ ξ(ϵ) that solves the Q-equation

(2-19) with the plus sign. Furthermore, we have the estimate |ξ(ϵ) − ξ0|s+3 ≲ ϵ.

Proof. The proof follows from the implicit function theorem and is similar to the one of Proposition 4.8
in [Bambusi and Paleari 2001]. Let ξ0 ∈ l2

s+3 be a nondegenerate zero of the modified operator M±, and
define the map

G : R × l2
s+3 → H1

s , (ϵ, ξ) 7→ G(ϵ, ξ) = M±(ξ) −Hϵ(ξ),

and note that it is Lipschitz, differentiable at ϵ = 0 and it vanishes at (ϵ, ξ) = (0, ξ0). It remains to show
that its differential with respect to ξ at (0, ξ0), namely

dG(0, ξ0) : l2
s+3 → H1

s , X 7→ dG(0, ξ0)(X) = dM±(ξ0)(X),

is an isomorphism. Equivalently, this means that, for all Y ∈ H1
s , there exists X ∈ l2

s+3 that solves the
equation dM±(ξ0)(X) = Y , with

dM±(ξ0) = ±A+ d⟨f(3)
⟩(ξ0) + dF0(ξ0).

Now, the operator dM± is a Fredholm operator since it is the sum of a Fredholm and a compact operator
due to the facts that f(3) and Fϵ(ξ) are bounded on l2

s+3 and that they are differentiable with bounded
differential. Since the defect index of dM±(ξ0) is 0 from the nondegeneracy condition, it follows that it
is an isomorphism, and thus we can apply the implicit function theorem. Note finally, that the range of ϵ,
defined by ϵ0, does not depend on ϖ , since G depends continuously on ϖ and all the necessary bounds
hold uniformly with respect to ϖ . □

Finally, we prove Theorem 2.5.

Proof of Theorem 2.5. Let ϖ ∈Wα be fixed. Then, according to Lemmas 2.6 and 2.12, there exists ϵ0 > 0
such that the map [0, ϵ0) ∋ ϵ 7→

(
ϵ I (ξ(ϵ)), q⊥(ϵ I (ξ(ϵ)))

)
solves both the P-equation (2-11) and the

Q-equation (2-12). Furthermore, pick ϖ⋆ such that ϵ(ϖ⋆) = ϵ0. Then, the function ϵ2(ϖ) = ±
1
2(ϖ 2

−1)

solves (2-13), and the map ϖ 7→
(
ϵ I (ξ(ϵ(ϖ))), q⊥

(
ϵ I (ξ(ϵ(ϖ)))

))
defines a family of solutions to (2-10)

labeled by ϖ ∈ Wα ∩ [1, 1 + ϖ⋆] or ϖ ∈ Wα ∩ [1 − ϖ⋆, 1]. Finally, the map ϵ 7→ ϵ(ϖ) is one-to-one,
and hence this family can be also parametrized by

ϵ ∈ Eα,γ = ϵ(Wα ∩ [1, 1 + ϖ⋆]) or ϵ ∈ Eα,γ = ϵ(Wα ∩ [1 − ϖ⋆, 1]). □

2F. The function Fϵ(ξ). In Lemma 5.8, we prove that Ci jm = 0 for all integers i, j, m ≥ 0 with i + j < m.
Moreover, by its definition (2-6), Ci jm is also invariant under any permutation of the indices i, j, m. For
future reference, we now use these additional properties of the Fourier coefficient C to compute:

• F0(ξ) for general initial data (Lemma 2.13),

• Fϵ(ξ) for small ϵ close to zero and 1-mode initial data (Lemma 2.14),

• dF0(ξ) at the 1-mode initial data (Lemma 2.15).
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Lemma 2.13 (computation of F0(ξ) for general initial data). Let ξ = {ξm
: m ≥ 0} ∈ l2

s+3. Then, for all
integers m ≥ 0, we have

(F0(ξ))m
=

9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi −ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν − (ϖi − ϖ j )2 ξ iξ jξ κ

∑
±

1(ϖi − ϖ j ± ϖκ ± ϖm = 0)

+
9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi +ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν − (ϖi + ϖ j )2 ξ iξ jξ κ

∑
±

1(ϖi + ϖ j ± ϖκ ± ϖm = 0).

In addition, the function Fϵ is smooth with respect to ϵ.

Proof. Let ξ = {ξm
: m ≥ 0} ∈ l2

s+3 be any initial data, let ϵ > 0, set x = ϵξ and pick any integer m ≥ 0.
Then, we compute

(f(2)({uk
: k ≥ 0}))m

= −3
∑

i, j≥0

Ci jmui u j ,

(f(2)(Φ t(x)))m
= −3

∑
i, j≥0

Ci jm(Φ t(x))i (Φ t(x)) j
= −3

∑
i, j≥0

Ci jm x i x j cos(ϖi t) cos(ϖ j t)

= −
3
2

∑
i, j≥0

Ci jm x i x j cos((ϖi − ϖ j )t) −
3
2

∑
i, j≥0

Ci jm x i x j cos((ϖi + ϖ j )t).

Then, (Pf(2)(Φ t(x)))m is given by

−
3
2

[ ∑
i, j≥0

ϖi −ϖ j ̸=±ϖm

Ci jm x i x j cos((ϖi − ϖ j )t) +

∑
i, j≥0

ϖi +ϖ j ̸=±ϖm

Ci jm x i x j cos((ϖi + ϖ j )t)
]
,

and (L−1
ϖ Pf(2)(Φ t(x)))m reads

−
3
2

[ ∑
i, j≥0

ϖi −ϖ j ̸=±ϖm

Ci jm

λm,ϖi −ϖ j

x i x j cos((ϖi − ϖ j )t) +

∑
i, j≥0

ϖi +ϖ j ̸=±ϖm

Ci jm

λm,ϖi +ϖ j

x i x j cos((ϖi + ϖ j )t)
]
,

where we used the fact that the eigenvalues of Lϖ are given by λml = ϖ 2
m − l2ϖ 2. Hence, using the

above together with the symmetries of the Fourier coefficients Cκνm = Cνκm for all integers κ, ν, m ≥ 0,
we deduce that(
f(2)(Φ t(x) + L−1

1 Pf(2)(Φ t(x)))
)m

= −3
∑

κ,ν≥0

Cκνm(Φ t(x))κ(Φ t(x))ν − 6
∑

κ,ν≥0

Cκνm(Φ t(x))κ(L−1
1 Pf(2)(Φ t(x)))ν

− 3
∑

κ,ν≥0

Cκνm(L−1
1 Pf(2)(Φ t(x)))κ(L−1

1 Pf(2)(Φ t(x)))ν

and, by setting x = ϵξ , we infer that(
f(2)(Φ t(ϵξ) + L−1

1 Pf(2)(Φ t(ϵξ)))
)m

= ϵ2(f(2)(Φ t(ξ)))m
+ ϵ3(E(ξ))m

+ ϵ4(F(ξ))m, (2-24)
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where
(F(ξ))m

= −3
∑

κ,ν≥0

Cκνm(L−1
1 Pf(2)(Φ t(ξ)))κ(L−1

1 Pf(2)(Φ t(ξ)))ν,

(E(ξ))m
= −6

∑
κ,ν≥0

Cκνm(Φ t(ξ))κ(L−1
1 Pf(2)(Φ t(ξ)))ν

= −6
∑

κ,ν≥0

Cκνmξ κ cos(ϖκ t)(L−1
1 Pf(2)(Φ t(ξ)))ν .

We set (E(ξ))m
= (E(ξ))m

−
+ (E(ξ))m

+
, where

(E(ξ))m
±

= 9
∑

κ,ν≥0

Cκνm

∑
i, j≥0

|ϖi ±ϖ j |̸=|ϖν |

Ci jν

ϖ 2
ν − (ϖi ± ϖ j )2 ξ iξ jξ κ cos((ϖi ± ϖ j )t) cos(ϖκ t).

Next, we first apply the linear flow and then the average in time to obtain

(Fϵ(ξ))m
= ϵ−3(⟨f(2)(( · ) + L−1

1 Pf(2)( · ))⟩(ϵξ))m

=
ϵ−3

2π

∫ 2π

0

(
Φ t(f(2)(Φ t(ϵξ) + L−1

1 Pf(2)Φ t(ϵξ)))
)m dt

=
ϵ−1

2π

∫ 2π

0

(
Φ t(f(2)(Φ t(ξ)))

)m dt +
1

2π

∫ 2π

0
(Φ t(E(ξ)))m dt +

ϵ

2π

∫ 2π

0
(Φ t(F(ξ)))m dt

= ϵ−1
⟨f(2)

⟩(ξ) +
1

2π

∫ 2π

0
(Φ t(E(ξ)))m dt +

ϵ

2π

∫ 2π

0
(Φ t(F(ξ)))m dt

=
1

2π

∫ 2π

0
(Φ t(E(ξ)))m dt +

ϵ

2π

∫ 2π

0
(Φ t(F(ξ)))m dt, (2-25)

where we used the condition that f(2) is nonresonant (2-8). Then, since (E(ξ))m
= (E(ξ))m

−
+ (E(ξ))m

+
,

the latter at ϵ = 0 boils down to

F0(ξ) =
1

2π

∫ 2π

0
(Φ t(E(ξ)))m dt =

1
2π

∫ 2π

0
((E(ξ))m

−
+ (E(ξ))m

+
) cos(ϖm t) dt.

Finally, we use the facts that∫ 2π

0
cos((ϖi − ϖ j )t) cos(ϖκ t) cos(ϖm t) dt =

π

2

∑
±

1(ϖi − ϖ j ± ϖκ ± ϖm = 0)

to compute

1
2π

∫ 2π

0
(E(ξ))m

−
cos(ϖm t) dt

=
9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

|ϖi −ϖ j |̸=|ϖν |

Ci jν

ϖ 2
ν − (ϖi − ϖ j )2 ξ iξ jξ κ

∑
±

1(ϖi − ϖ j ± ϖκ ± ϖm = 0).

The term with the (E(ξ))m
+

follows similarly and completes the proof. □
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Lemma 2.14 (computation of Fϵ(ξ) for small ϵ close to zero and 1-mode initial data). Assume that
ϖn = n+2 for all integers n ≥ 0. Let γ ≥ 0 be an integer, Kγ ∈ R and ξ be the 1-mode initial data, that is,

ξm
= Kγ 1(m = γ ), m ≥ 0.

Then, for all integers m ≥ 0, we have

(Fϵ(ξ))m
= qγK

3
γ 1(m = γ ) +O(ϵ), qγ =

9
4

2γ∑
ν=0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1(ϖ 2

ν ̸= (2ϖγ )2)

ϖ 2
ν − (2ϖγ )2

)
.

Proof. Let γ ≥ 0 be an integer, and define ξ as the 1-mode initial data, that is ξm
= Kγ 1(m = γ ), for all

integers m ≥ 0. Then, for any integer m ≥ 0, we use the definition (2-6) to compute

(f(2)(Φ t(ξ)))m
= −3

∑
i, j≥0

Ci jm(Φ t(ξ))i (Φ t(ξ)) j

= −3
∑

i, j≥0

Ci jmξ iξ j cos(ϖi t) cos(ϖ j t)

= −3K2
γCγ γ m cos2(ϖγ t) = −

3
2K

2
γCγ γ m[1 + cos(2ϖγ t)].

Recall the definition of the eigenvalues ϖi = i + 2 for all integers i ≥ 0. Then, we have

ϖm ̸= 0 ⇐⇒ m ≥ 0 and ϖm ̸= 2ϖγ ⇐⇒ m ̸= 2γ + 2.

Hence, we infer

(Pf(2)(Φ t(ξ)))m
= −

3
2K

2
γCγ γ m[1 + 1(m ̸= 2γ + 2) cos(2ϖγ t)],

(L−1
ϖ Pf(2)(Φ t(ξ)))m

= −
3
2
K2

γCγ γ m

[
1

ϖ 2
m

+
1(m ̸= 2γ + 2)

ϖ 2
m − (2ϖγ )2ϖ 2 cos(2ϖγ t)

]
,

where we used the fact that the eigenvalues of Lϖ are given by (2-14), i.e., λml = ϖ 2
m − l2ϖ 2. In addition,

we set x = ϵξ , and
(
f(2)(Φ t(x) + L−1

1 Pf(2)(Φ t(x)))
)m is given by

−3
∑

κ,ν≥0

Cκνm(Φ t(ϵξ) + L−1
1 Pf(2)(Φ t(ϵξ)))κ(Φ t(ϵξ) + L−1

1 Pf(2)(Φ t(ϵξ)))ν

= −3
∑

κ,ν≥0

Cκνm[(Φ t(ϵξ))κ + (L−1
1 Pf(2)(Φ t(ϵξ)))κ ][(Φ t(ϵξ))ν + (L−1

1 Pf(2)(Φ t(ϵξ)))ν]

= −3
∑

κ,ν≥0

Cκνm
[
(Φ t(ϵξ))κ(Φ t(ϵξ))ν + (Φ t(ϵξ))κ(L−1

1 Pf(2)(Φ t(ϵξ)))ν

+ (Φ t(ϵξ))ν(L−1
1 Pf(2)(Φ t(ϵξ)))κ + (L−1

1 Pf(2)(Φ t(ϵξ)))κ(L−1
1 Pf(2)(Φ t(ϵξ)))ν

]
= −3

∑
κ,ν≥0

Cκνm(Φ t(ϵξ))κ(Φ t(ϵξ))ν − 6
∑

κ,ν≥0

Cκνm(Φ t(ϵξ))κ(L−1
1 Pf(2)(Φ t(ϵξ)))ν

− 3
∑

κ,ν≥0

Cκνm(L−1
1 Pf(2)(Φ t(ϵξ)))κ(L−1

1 Pf(2)(Φ t(ϵξ)))ν

= ϵ2(f(2)(Φ t(ξ)))m
+ ϵ3(E(ξ))m

+ ϵ4(F(ξ))m,
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where we set

(F(ξ))m
= −3

∑
κ,ν≥0

Cκνm(L−1
1 Pf(2)(Φ t(ξ)))κ(L−1

1 Pf(2)(Φ t(ξ)))ν,

(E(ξ))m
= −6

∑
κ,ν≥0

Cκνm(Φ t(ξ))κ(L−1
1 Pf(2)(Φ t(ξ)))ν

= 9K2
γ

∑
κ,ν≥0

Cκνmξ κ cos(ϖκ t)Cγ γ ν

[
1

ϖ 2
ν

+
1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2 cos(2ϖγ t)

]

= 9K3
γ

∑
ν≥0

Cγ νmCγ γ ν

[(
1

ϖ 2
ν

+
1
2

1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2

)
cos(ϖγ t) +

1
2

1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2 cos(3ϖγ t)

]
.

Now, we first apply the linear flow and then the average in time to obtain

Fϵ(ξ) = ϵ−3
⟨f(2)(( · ) + L−1

1 Pf(2)( · ))⟩(ϵξ)

=
ϵ−3

2π

∫ 2π

0

(
Φ t(f(2)(Φ t(ϵξ) + L−1

1 Pf(2)(Φ t(ϵξ)))
))m dt

=
ϵ−1

2π

∫ 2π

0

(
Φ t(f(2)(Φ t(ξ)))

)m dt +
1

2π

∫ 2π

0
(Φ t(E(ξ)))m dt +

ϵ

2π

∫ 2π

0
(Φ t(F(ξ)))m dt.

On the one hand, due to (2-8), we have

1
2π

∫ 2π

0

(
Φ t(f(2)(Φ t(ξ)))

)m dt = ⟨f(2)
⟩(ξ) = 0.

On the other hand, we use the orthogonality of the cosine function together with

ϖm = ϖγ ⇐⇒ m = γ and ϖm = 3ϖγ ⇐⇒ m = 3γ + 4

to compute

1
2π

∫ 2π

0
(Φ t(E(ξ)))m dt

=
1

2π

∫ 2π

0
(E(ξ))m cos(ϖm t) dt

= 9K3
γ

∑
ν≥0

Cγ νmCγ γ ν

[(
1

ϖ 2
ν

+
1
2

1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2

)
1

2π

∫ 2π

0
cos(ϖγ t) cos(ϖm t) dt

+
1
2

1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2

1
2π

∫ 2π

0
cos(3ϖγ t) cos(ϖm t) dt

]

= 9K3
γ

∑
ν≥0

Cγ νmCγ γ ν

[(
1

2ϖ 2
ν

+
1
4

1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2

)
1(m = γ ) +

1
4

1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2 1(m = 3γ + 4)

]

=
9
4
K3

γ

∑
ν≥0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1(ν ̸= 2γ + 2)

ϖ 2
ν − (2ϖγ )2

)
1(m = γ ) +

9
4
K3

γ

∑
ν≥0

ν ̸=2γ+2

Cγ,ν,3γ+4Cγ γ ν

ϖ 2
ν − (2ϖγ )2 1(m = 3γ + 4).
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Finally, we note that Cγ,ν,3γ+4Cγ γ ν = 0 for all integers γ ≥ 0 and ν ≥ 0. This follows immediately from
the fact that Ci jm = 0 for all integers i, j, m ≥ 0 with i + j < m due to Lemma 5.8 below. Specifically,
we have Cγ γ ν = 0 since ν > 2γ , and Cγ,ν,3γ+4 = 0 since

0 ≤ ν ≤ 2γ =⇒ γ + ν ≤ 3γ < 3γ + 4.

Consequently, we conclude that

1
2π

∫ 2π

0
(Φ t(E(ξ)))m dt =

9
4
K3

γ

2γ∑
ν=0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1

ϖ 2
ν − (2ϖγ )2

)
1(m = γ ). □

Finally, we compute the differential of F0(ξ) at the 1-mode initial data.

Lemma 2.15 (differential of F0(ξ) at the 1-mode initial data). Let γ ≥ 0 be an integer, Kγ ∈ R and ξ be
the 1-mode initial data, that is

ξm
= Kγ 1(m = γ ), m ≥ 0.

Then, for all h ∈ l2
s+3 and integers m ≥ 0, we have

(dF0(ξ)[h])m
= K2

γ [aγ mhm
+ 1(0 ≤ m ≤ 2γ )bγ mh2γ−m

],

where

aγ m =
9
2

m+γ∑
ν=0

(Cγ νm)2

ϖ 2
ν − (ϖm + ϖγ )2 +

9
2

m+γ∑
ν=0

ν ̸=±(m−γ )−2

(Cmγ ν)
2

ϖ 2
ν − (ϖm − ϖγ )2 +

9
4

2γ∑
ν=0

CmνmCγ γ ν

ϖ 2
ν

and

bγ m =
9
4

2γ∑
ν=0

C2γ−m,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2 +

9
2

m+γ∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmC2γ−m,γ,ν

ϖ 2
ν − (ϖ2γ−m − ϖγ )2 .

Proof. Let γ ≥ 0 be an integer, Kγ ∈ R and ξ to be the 1-mode initial data as above, and pick any h ∈ l2
s+3,

ϵ > 0 and integer m ≥ 0. Then, we set ξ̂ = ξ + ϵh, and according to Lemma 2.13, we have

(F0(ξ̂ ))m
= (F0−(ξ̂ ))m

+ (F0+(ξ̂ ))m,

where

(F0−(ξ̂ ))m
=

9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi −ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν − (ϖi − ϖ j )2 ξ̂ i ξ̂ j ξ̂ κ

∑
±

1(ϖi − ϖ j ± ϖκ ± ϖm = 0)

and

(F0+(ξ̂ ))m
=

9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi +ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν − (ϖi + ϖ j )2 ξ̂ i ξ̂ j ξ̂ κ

∑
±

1(ϖi + ϖ j ± ϖκ ± ϖm = 0).
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We expand9 F0±(ξ̂ ) = F0±(ξ) + ϵ · dF0±(ξ)[h] +O(ϵ2) and, using the definition of the 1-mode initial
data, we obtain

(dF0−(ξ)[h])m
=

9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi −ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν −(ϖi −ϖ j )2

· [hiξ jξ κ
+ξ i h jξ κ

+ξ iξ j hκ
]

∑
±

1(ϖi −ϖ j ±ϖκ ±ϖm = 0)

= K2
γ

{
9
4

∑
ν≥0

Cγ νm

∑
i≥0

ϖi −ϖγ ̸=±ϖν

Ciγ ν

ϖ 2
ν −(ϖi −ϖγ )2 hi

∑
±

1(ϖi −ϖγ ±ϖγ ±ϖm = 0)

+
9
4

∑
ν≥0

Cγ νm

∑
j≥0

ϖγ −ϖ j ̸=±ϖν

Cγ jν

ϖ 2
ν −(ϖγ −ϖ j )2 h j

∑
±

1(ϖγ −ϖ j ±ϖγ ±ϖm = 0)

+
9
4

∑
κ,ν≥0

Cκνm
Cγ γ ν

ϖ 2
ν −(ϖγ −ϖγ )2 hκ

∑
±

1(±ϖκ ±ϖm = 0)

}
.

Recall the definition of the eigenvalues ϖi = i+2 for all integers i ≥0 and also recall that m, i, j, κ, ν, γ ≥0.
Then, we have{

ϖi − ϖγ ± ϖγ ± ϖm = 0,

ϖi − ϖγ ̸= ±ϖν

⇐⇒


i = m and ν ̸= ±(m − γ ) − 2,

i = 2γ − m and m ≤ 2γ and ν ̸= ±(m − γ ) − 2,

i = 2γ + m + 4 and ν ̸= 2 + m + γ,{
ϖγ − ϖ j ± ϖγ ± ϖm = 0,

ϖγ − ϖ j ̸= ±ϖν

⇐⇒


j = 2γ + m + 4 and ν ̸= 2 + m + γ,

j = 2γ − m and m ≤ 2γ and ν ̸= ±(m − γ ) − 2,

j = m and ν ̸= ±(m − γ ) − 2,

±ϖκ ± ϖm = 0 ⇐⇒

{
m = −κ − 4,

m = κ,
⇐⇒ κ = m.

Therefore, we infer

K−2
γ (dF0−(ξ)[h])m

= hm
[

9
2

∞∑
ν=0

ν ̸=±(m−γ )−2

(Cmγ ν)
2

ϖ 2
ν − (ϖm − ϖγ )2 +

9
4

∞∑
ν=0

CmνmCγ γ ν

ϖ 2
ν

]

+ h2γ−m1(0 ≤ m ≤ 2γ )

[
9
2

∞∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmC2γ−m,γ,ν

ϖ 2
ν − (ϖ2γ−m − ϖγ )2

]

+ h2γ+m+4
[

9
2

∞∑
ν=0

ν ̸=2+m+γ

Cγ νmC2γ+m+4,γ,ν

ϖ 2
ν − (ϖ2γ+m+4 − ϖγ )2

]
.

9Here, the notation O(ϵ2) for a function of ξ or h refers to a function that is bounded by ϵ2 in the Q-norm using the ls+3-norm
of ξ or h.
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Similarly, using the definition of the 1-mode initial data, we obtain

(dF0+(ξ)[h])m
=

9
4

∑
κ,ν≥0

Cκνm

∑
i, j≥0

ϖi +ϖ j ̸=±ϖν

Ci jν

ϖ 2
ν −(ϖi +ϖ j )2

· [hiξ jξ κ
+ξ i h jξ κ

+ξ iξ j hκ
]

∑
±

1(ϖi +ϖ j ±ϖκ ±ϖm = 0)

= K2
γ

{
9
4

∑
ν≥0

Cγ νm

∑
i≥0

ϖi +ϖγ ̸=±ϖν

Ciγ ν

ϖ 2
ν −(ϖi +ϖγ )2 hi

∑
±

1(ϖi +ϖγ ±ϖγ ±ϖm = 0)

+
9
4

∑
ν≥0

Cγ νm

∑
j≥0

ϖγ +ϖ j ̸=±ϖν

Cγ jν

ϖ 2
ν −(ϖγ +ϖ j )2 h j

∑
±

1(ϖγ +ϖ j ±ϖγ ±ϖm = 0)

+
9
4

∑
κ,ν≥0

Cκνm
1(ϖγ +ϖγ ̸= ±ϖν)Cγ γ ν

ϖ 2
ν −(ϖγ +ϖγ )2 hκ

∑
±

1(ϖγ +ϖγ ±ϖκ ±ϖm = 0)

}
.

As before, recall the definition of the eigenvalues ϖi = i + 2 for all integers i ≥ 0 and also recall that
m, i, j, κ, ν, γ ≥ 0. Then, we have{

ϖi + ϖγ ± ϖγ ± ϖm = 0,

ϖi + ϖγ ̸= ±ϖν

⇐⇒

{
i = −4 + m − 2γ and m ≥ 4 + 2γ and ν ̸= ±(m − γ ) − 2,

i = m and ν ̸= 2 + m + γ,{
ϖγ + ϖ j ± ϖγ ± ϖm = 0,

ϖγ + ϖ j ̸= ±ϖν

⇐⇒

{
j = −4 + m − 2γ and m ≥ 4 + 2γ and ν ̸= ±(m − γ ) − 2,

j = m and ν ̸= 2 + m + γ,{
ϖγ + ϖγ ± ϖκ ± ϖm = 0,

ϖγ + ϖγ ̸= ±ϖν

⇐⇒


κ = −4 + m − 2γ and m ≥ 4 + 2γ and ν ̸= 2 + 2γ,

κ = 4 + m + 2γ and ν ̸= 2 + 2γ,

κ = 2γ − m and m ≤ 2γ and ν ̸= 2 + 2γ.

Therefore, we infer

K−2
γ (dF0+(ξ)[h])m

= hm
[

9
2

∞∑
ν=0

ν ̸=2+m+γ

(Cγ νm)2

ϖ 2
ν − (ϖm + ϖγ )2

]
+ h4+m+2γ

[
9
4

∞∑
ν=0

ν ̸=2+2γ

C4+m+2γ,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2

]

+h−4+m−2γ 1(m ≥ 4+2γ )

[
9
2

∞∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmCγ,−4+m−2γ,ν

ϖ 2
ν − (ϖγ + ϖ−4+m−2γ )2 +

9
4

∞∑
ν=0

ν ̸=2+2γ

C−4+m−2γ,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2

]

+ h2γ−m1(0 ≤ m ≤ 2γ )

[
9
4

∞∑
ν=0

ν ̸=2+2γ

C2γ−m,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2

]
.

Putting this all together yields that

K−2
γ (dF0(ξ)[h])m

= K−2
γ [(dF0−(ξ)[h])m

+ (dF0+(ξ)[h])m
]
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is equal to

hm
[

9
2

∞∑
ν=0

ν ̸=2+m+γ

(Cγ νm)2

ϖ 2
ν − (ϖm + ϖγ )2 +

9
2

∞∑
ν=0

ν ̸=±(m−γ )−2

(Cmγ ν)
2

ϖ 2
ν − (ϖm − ϖγ )2 +

9
4

∞∑
ν=0

CmνmCγ γ ν

ϖ 2
ν

]

+ h2γ−m1(0 ≤ m ≤ 2γ )

[
9
4

∞∑
ν=0

ν ̸=2+2γ

C2γ−m,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2 +

9
2

∞∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmC2γ−m,γ,ν

ϖ 2
ν − (ϖ2γ−m − ϖγ )2

]

+ h4+m+2γ

[
9
4

∞∑
ν=0

ν ̸=2+2γ

C4+m+2γ,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2 +

9
2

∞∑
ν=0

ν ̸=2+m+γ

Cγ νmC2γ+m+4,γ,ν

ϖ 2
ν − (ϖ2γ+m+4 − ϖγ )2

]

+h−4+m−2γ 1(m ≥ 4+2γ )

[
9
2

∞∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmCγ,−4+m−2γ,ν

ϖ 2
ν − (ϖγ + ϖ−4+m−2γ )2 +

9
4

∞∑
ν=0

ν ̸=2+2γ

C−4+m−2γ,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2

]
.

Finally, we simplify the formula above and show that

C4+m+2γ,ν,mCγ γ ν = Cγ νmC2γ+m+4,γ,ν = 0, (2-26)

Cγ νmCγ,−4+m−2γ,ν = C−4+m−2γ,ν,mCγ γ ν = 0, (2-27)

for all γ, ν, m ≥ 0 and all γ, ν ≥ 0 and m ≥ 2γ + 4, respectively. These follow immediately from the fact
that Ci jm = 0 for all integers i, j, m ≥ 0 with i + j < m (Lemma 5.8). Specifically, we have Cγ γ ν = 0
since ν > 2γ , C4+m+2γ,ν,m = 0 since

0 ≤ ν ≤ 2γ ⇐⇒ m + ν ≤ m + 2γ < 4 + m + 2γ,

as well as Cγ νm = 0 since ν > γ + m and C2γ+m+4,γ,ν = 0 since

0 ≤ ν ≤ γ + m ⇐⇒ γ + ν ≤ 2γ + m < 2γ + m + 4

which prove (2-26). Similarly, we have Cγ νm = 0 since m > γ + ν, Cγ,−4+m−2γ,ν = 0 since

0 ≤ m ≤ γ + ν ⇐⇒ −4 + m − 2γ + γ = −4 + m − γ ≤ −4 + ν < ν,

as well as Cγ γ ν = 0 since ν > 2γ and C−4+m−2γ,ν,m = 0 since

0 ≤ ν ≤ 2γ ⇐⇒ −4 + m − 2γ + ν ≤ −4 + m < m,

which prove (2-27). Using the same argument as above (Lemma 5.8), we also infer Cγ γ ν = 0 since ν > 2γ

and Cγ νm = 0 since ν > γ + m. Hence, the latter reduces to

hm
[

9
2

m+γ∑
ν=0

(Cγ νm)2

ϖ 2
ν − (ϖm + ϖγ )2 +

9
2

m+γ∑
ν=0

ν ̸=±(m−γ )−2

(Cmγ ν)
2

ϖ 2
ν − (ϖm − ϖγ )2 +

9
4

2γ∑
ν=0

CmνmCγ γ ν

ϖ 2
ν

]

+ h2γ−m1(0 ≤ m ≤ 2γ )

[
9
4

2γ∑
ν=0

C2γ−m,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2 +

9
2

m+γ∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmC2γ−m,γ,ν

ϖ 2
ν − (ϖ2γ−m − ϖγ )2

]
. □
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3. The linear eigenvalue problems

Next, we the study the linear eigenvalue problems where the linearized operators are given by (1-14). In all
three models, the associated eigenfunctions are given by Jacobi polynomials, which is a common feature
with the Einstein–Klein–Gordon system in spherical symmetry [Maliborski and Rostworowski 2013].

3A. Conformal cubic wave equation in spherical symmetry. We consider L2((0, π); sin2(x) dx), a
Hilbert space, and associate it with the inner product

( f | g) =
2
π

∫ π

0
f (x)g(x) sin2(x) dx .

For the conformal wave equation in spherical symmetry, the operator that governs the solutions to the
linearized equation is given by

Lu =−
1

sin2(x)
∂x(sin2(x)∂x u)+u, D(L)={u ∈ L2((0, π); sin2(x) dx) : Lu ∈ L2((0, π); sin2(x) dx)}.

The operator L is generated by the closed sesquilinear form a defined on (H 1((0, π); sin2(x) dx))2 that
is given by

a(u, v) =

∫ π

0
(∂x u∂xv + uv) sin2(x) dx

and a(u, u) ≃ ∥u∥
2
H1((0,π);sin2(x) dx)

. In particular, L is self-adjoint on D(L). Now, the eigenvalue problem
Lu = ω2u reads

∂x(sin2(x)∂x u) + (ω2
− 1) sin2(x)u = 0,

and, by setting u(x) = v(y) and y = cos(x), it becomes

(1 − y2)v′′(y) − 3yv′(y) + (ω2
− 1)v(y) = 0.

The latter has nontrivial solutions if and only if the solutions are given by the Chebyshev polynomials
of the second kind [Szegő 1975], that is v(y) = Un(y). Hence, the solutions to the eigenvalue problem
Lu = ω2u are given by

en(x) = Un(cos(x)), ω2
n = (n + 1)2, (3-1)

for all integers n ≥ 0. In addition, the set {en : n ≥ 0} forms an orthonormal and complete basis for
L2((0, π); sin2(x) dx). In fact, (en | em) = 1(n = m) for any n, m ≥ 0 due to the orthogonality of the
Chebyshev polynomials of the second kind.

3B. Conformal cubic wave equation out of spherical symmetry. We consider L2
((

0, π
2

)
; sin(2x) dx

)
, a

Hilbert space, and associate it with the inner product

⟨ f | g⟩ =

∫ π/2

0
f (x)g(x) sin(2x) dx .

For the conformal cubic wave equation out of spherical symmetry, the operator that governs the solutions
to the linearized equation is given by

L(µ1,µ2)u = −
1

sin(2x)
∂x(sin(2x)∂x u) +

(
µ2

1

sin2 x
+

µ2
2

cos2 x
+ 1

)
u
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endowed with the domain D(L(µ1,µ2)) defined by

D(L(µ1,µ2)) =
{
u ∈ L2((0, π

2

)
; sin(2x) dx

)
: L(µ1,µ2)u ∈ L2((0, π

2

)
; sin(2x) dx

)}
.

The operator L(µ1,µ2) is generated by the closed sesquilinear form a defined on
(
H 1

((
0, π

2

)
; sin(2x) dx

))2

that is given by

a(u, v) =

∫ π

0

(
∂x u∂xv +

(
µ2

1

sin2 x
+

µ2
2

cos2 x
+ 1

)
uv

)
sin(2x) dx,

and Hardy’s inequality yields a(u, u) ≃ ∥u∥H1((0,π/2);sin(2x) dx)2 . In particular, L(µ1,µ2) is self-adjoint on
D(L(µ1,µ2)). Now, the eigenvalue problem L(µ1,µ2)u = ω2u reads

∂2
x u +

(
cos x
sin x

−
sin x
cos x

)
∂x u −

(
µ2

1

sin2 x
+

µ2
2

cos2 x
+ 1 − ω2

)
u = 0,

and by setting u(x) = v(y), v(y) = (1 − y)µ1/2(1 + y)µ2/2w(y) and y = cos(2x), it becomes

(1 − y2)w′′(y) + [(µ2 − µ1) − (2 + µ1 + µ2)y]w′(y) +
1
4 [ω2

− (1 + µ1 + µ2)
2
]w(y) = 0.

The latter has nontrivial solutions if and only if the solutions are given by the Jacobi polynomial with
parameters (µ1, µ2) and degree n ≥ 0, that is w(y) = P (µ1,µ2)

n (y). Hence, the solutions to the eigenvalue
problem L(µ1,µ2)u = ω2u are given by

e(µ1,µ2)
n (x) = N(µ1,µ2)

n (1 − cos(2x))µ1/2(1 + cos(2x))µ2/2 P (µ1,µ2)
n (cos(2x)),

(ω(µ1,µ2)
n )2

= (2n + 1 + µ1 + µ2)
2,

(3-2)

for all integers n ≥ 0, where the normalization constant reads

N(µ1,µ2)
n =

√
ω

(µ1,µ2)
n

2µ1+µ2

0(n + 1)0(n + µ1 + µ2 + 1)

0(n + µ1 + 1)0(n + µ2 + 1)
. (3-3)

In addition, the set {e
(µ1,µ2)
n : n ≥ 0} forms an orthonormal and complete basis for L2

((
0, π

2

)
; sin(2x) dx

)
.

In fact,

⟨e(µ1,µ2)
n | e(µ1,µ2)

m ⟩ = 1(n = m)

for any n, m ≥ 0 due to the orthogonality of the Jacobi polynomials.

3C. Yang–Mills equation in spherical symmetry. We consider the Hilbert space L2((0, π); sin4(x) dx)

associated with the inner product

[ f |g] =

∫ π

0
f (x)g(x) sin4(x) dx .

For the Yang–Mills equation in spherical symmetry, the operator that governs the solutions to the linearized
equation is given by

Lu = −
1

sin4 x
∂x(sin4 x∂x u) + 4u, D(L) = {u ∈ L2((0, π); sin4 x dx) : Lu ∈ L2((0, π); sin4 x dx)}.
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The operator L is generated by the closed sesquilinear form a defined on (H 1((0, π); sin4 x dx))2 that is
given by

a(u, v) =

∫ π

0
(∂x u∂xv + 4uv) sin4(x) dx

and a(u, u) ≃ ∥u∥
2
H1((0,π);sin4 x dx)

. In particular, L is self-adjoint on D(L). Now, the eigenvalue problem
Lu = ϖ 2u reads

∂2
x u +

4
tan(x)

∂x u + (ω2
− 4)u = 0,

and by setting u(x) = w(y) and y = cos(x) it becomes

(1 − y2)w′′(y) − 5yw′(y) + (ω2
− 4)w(y) = 0.

The latter has nontrivial solutions if and only if the solutions are given by the Jacobi polynomials with
parameters

( 3
2 , 3

2

)
and degree n, that is w(y) = P (3/2,3/2)

n (y). Hence, the solutions to the eigenvalue
problem Lu = ϖ 2u are given by

en(x) = Nn P (3/2,3/2)
n (cos(x)), ϖ 2

n = (n + 2)2, (3-4)

for all integers n ≥ 0, where the normalization constant reads

Nn =

√
ϖn0(1 + n)0(4 + n)

2
√

20
( 5

2 + n
) . (3-5)

In addition, the set {en : n ≥ 0} forms an orthonormal and complete basis for L2((0, π); sin4(x) dx). In
fact, [en | em] = 1(n = m) for any n, m ≥ 0 due to the orthogonality of the Jacobi polynomials.

4. The PDEs in Fourier space

In this section, we express the partial differential equations (1-13),

(∂2
t + L)u = f (x, u), (t, x) ∈ R × I,

in the Fourier space to obtain infinite dimensional systems of coupled, nonlinear harmonic oscillators,
and we provide basic estimates for the nonlinearities. Here, the nonlinearities are given by (1-15), namely

f (x, u) =

{
−u3 for CW and WH,
−3u2

− sin2(x)u3 for YM.

Let u(t, · ) be a solution to any of the three models

CW: (1-3)–(1-4), WH: (1-6)–(1-7)–(1-5), YM: (1-11)–(1-12),

and recall that the sets of the associated eigenfunctions

CW: {en : n ≥ 0} by (3-1), WH: {e(µ1,µ2)
n : n ≥ 0} by (3-2), YM: {en : n ≥ 0} by (3-4)
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form an orthonormal and complete basis of the Hilbert spaces

CW: L2([0, π]; sin2(x) dx), WH: L2([0, π
2

]
; sin(2x) dx

)
, YM: L2([0, π]; sin4(x) dx).

Then, we expand u(t, · ) in terms of the eigenfunctions and substitute the expression into (1-13) to find
infinite systems of nonlinear harmonic oscillators.

4A. Conformal cubic wave equation in spherical symmetry. For the conformal cubic wave equation in
spherical symmetry, we expand

u(t, · ) =

∞∑
n=0

un(t)en, ei e j ek =

∞∑
m=0

Ci jkmem, (4-1)

to find the infinite system of nonlinear harmonic oscillators

üm(t) + (Au(t))m
= ( f ({u j (t) : j ≥ 0}))m (4-2)

for all integers m ≥ 0, where the dots denote derivatives with respect to time and

(Au(t))m
= ω2

mum(t), ( f ({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

Ci jkmui (t)u j (t)uk(t). (4-3)

4B. Conformal cubic wave equation out of spherical symmetry. For the conformal cubic wave equation
out of spherical symmetry, we expand

u(t, · ) =

∞∑
n=0

un(t)e(µ1,µ2)
n , e

(µ1,µ2)
i e

(µ1,µ2)
j e

(µ1,µ2)
k =

∞∑
m=0

C
(µ1,µ2)
i jkm e(µ1,µ2)

m (4-4)

to find the infinite system of nonlinear harmonic oscillators

üm(t) + (Au(t))m
= (f({u j (t) : j ≥ 0}))m (4-5)

for all integers m ≥ 0, where the dots denote derivatives with respect to time and

(Au(t))m
= (ω(µ1,µ2)

n )2um(t), (f({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

C
(µ1,µ2)
i jkm ui (t)u j (t)uk(t). (4-6)

4C. Yang–Mills equation in spherical symmetry. For the Yang–Mills equation in spherical symmetry,
we expand

u(t, ·) =

∞∑
n=0

un(t)en, ei (x)e j (x) =

∞∑
m=0

Ci jmem(x), sin2(x)ei (x)e j (x)ek(x) =

∞∑
m=0

Ci jkmem(x) (4-7)

to find the infinite system of nonlinear harmonic oscillators

üm(t) + (Au(t))m
= (f({u j (t) : j ≥ 0}))m (4-8)

for all integers m ≥ 0, where the dots denote derivatives with respect to time and

(Au(t))m
= ϖ 2

mum(t), (f({u j (t) : j ≥ 0}))m
= (f(2)({u j (t) : j ≥ 0}))m

+ (f(3)({u j (t) : j ≥ 0}))m,
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with

(f(2)({u j (t) : j ≥ 0}))m
= −3

∞∑
i, j=0

Ci jmui (t)u j (t), (4-9)

(f(3)({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

Ci jkmui (t)u j (t)uk(t). (4-10)

4D. Lipschitz bounds. Recall Section 2 where we define the Banach space

Hk
s =

{
q ∈ H k([0, 2π ]; l2

s ) : q(t) =

∞∑
j=0

q j (t)e j =

∞∑
j=0

( ∞∑
l=0

ql j cos(lt)
)

e j , ∥q∥
2
Hk

s
< ∞

}
endowed with the norm

∥q∥
2
Hk

s
=

∞∑
j=0

j2s
(

2|q0 j
|
2
+

∞∑
l=1

|ql j
|
2(1 + l2)k

)
=

1
π

∫ 2π

0

k∑
λ=0

|q(λ)(t)|2s dt,

where q(λ)(t) denotes the λ-th derivative of q(t) with respect to t . Next, we show that the nonlinear terms
we consider satisfy the following Lipschitz bounds, and we begin by considering the conformal cubic
wave equation in spherical symmetry.

Lemma 4.1 (Lipschitz bounds for the CW model). Let f be given by (4-3). Then, for all integers k ≥ 0
and s ≥ 2, there exists a positive constant (depending only on k and s) such that

∥ f (u) − f (v)∥Hk
s
≲ (∥u∥

2
Hk

s
+ ∥v∥

2
Hk

s
)∥u − v∥Hk

s
,

∥d f (u)[h] − d f (v)[h]∥Hk
s
≲ (∥u∥Hk

s
+ ∥v∥Hk

s
)∥h∥Hk

s
∥u − v∥Hk

s
,

for all u, v, h ∈ Hk
s with ∥u∥Hk

s
≤ ϵ, ∥v∥Hk

s
≤ ϵ and ∥h∥Hk

s
≤ ϵ.

Remark 4.2 (regularity of the initial data for the CW model). As stated above, for the CW model, we
require s ∈ N with s ≥ 2. This means that the space of initial data Q ≃ l2

s+1 is at least l2
3 (Theorem 2.4).

Proof. Let s ≥ 2 be an integer, and pick any u ={u j
: j ≥ 0} ∈ l2

s . We also denote by u(x) =
∑

∞

j=0 u j e j (x)

the corresponding function in the physical space and recall the definition of the linear operator L given in
Section 3A. On the one hand, for any integer s ≥ 1, we define the Sobolev space H s

CW for spherically
symmetric functions and find

∥u∥
2
H s

CW
=

∫ π

0
uLsu sin2 x dx =

+∞∑
j=0

ω2s
j |u j |

2
≃ |u|

2
s

since ω j ≃ j . On the other hand, note that, with a slight abuse of notation (we denote by u the original
variable as well as the spherically symmetric version of it), we have that the Sobolev space above is
equivalent to the standard Sobolev on S3:

∥u∥
2
H s

CW
≃ ∥u∥

2
H s(S3)

=

∫
S3

u(−1s
S3u) dvolS3 + ∥u∥

2
L2(S3)

.
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Here, 1S3 stands for the standard Laplacian on S3 for the round metric and the standard volume form
dvolS3 . This equivalence yields that H s

CW is an algebra since H s(S3) is an algebra provided that s > 3
2 .

Then, picking an integer s ≥ 2 and u, v ∈ l2
s and using the algebra property and the triangular inequality

together with Plancherel’s theorem yield

| f (u)|s = ∥u3
∥H s

CW
≲ ∥u∥

3
H s

CW
= |u|

3
s ,

| f (u) − f (v)|s = ∥u3
− v3

∥H s
CW

= ∥(u − v)(u2
+ uv + v2)∥H s

CW

≲ ∥u − v∥H s
CW

(∥u∥
2
H s

CW
+ ∥u∥H s

CW
∥v∥H s

CW
+ ∥v∥

2
H s

CW
)

≲ ∥u − v∥H s
CW

(∥u∥
2
H s

CW
+ ∥v∥

2
H s

CW
) = |u − v|s(|u|

2
s + |v|

2
s ),

|d f (u)[h] − d f (v)[h]|s = ∥d f (u)[h] − d f (v)[h]∥H s
CW

= ∥d(u3)[h] − d(v3)[h]∥H s
CW

= ∥3u2h − 3v2h∥H s
CW

≲ ∥u2
− v2

∥H s
CW

∥h∥H s
CW

≲ ∥u − v∥H s
CW

(∥u∥H s
CW

+ ∥v∥H s
CW

)∥h∥H s
CW

≲ |u − v|s(|u|s + |v|s)|h|s .

This proves the claim for k = 0. Finally, we present the proof for k = 1. In this case, Plancherel’s theorem
yields

∥ f (u)∥H1
s
= ∥ f (u)∥H1

t l2
s
= ∥ f (u)∥L2

t l2
s
+ ∥∂t f (u)∥L2

t l2
s
= ∥ f (u)∥L2

t H s
x
+ ∥∂t f (u)∥L2

t H s
x
.

Furthermore, the algebra property and Holder’s inequality together with the embedding H 1 ↪→ L∞ yield

∥ f (u)∥L2
t H s

x
= ∥u3

∥L2
t H s

x
=

∥∥∥u3
∥H s

x

∥∥
L2

t
≲

∥∥∥u∥
3
H s

x

∥∥
L2

t
≤

∥∥∥u∥
2
H s

x

∥∥
L∞

t

∥∥∥u∥H s
x

∥∥
L2

t

=
∥∥∥u∥H s

x

∥∥2
L∞

t

∥∥∥u∥H s
x

∥∥
L2

t
≲

∥∥∥u∥H s
x

∥∥2
H1

t

∥∥∥u∥H s
x

∥∥
L2

t
= ∥u∥

2
H1

t H s
x
∥u∥H0

t H s
x
≤ ∥u∥

3
H1

t H s
x
,

∥∂t f (u)∥L2
t H s

x
= ∥3u2∂t u∥L2

t H s
x
≃

∥∥∥u2∂t u∥H s
x

∥∥
L2

t
≲

∥∥∥u∥
2
H s

x
∥∂t u∥H s

x

∥∥
L2

t
≤

∥∥∥u∥
2
H s

x

∥∥
L∞

t

∥∥∥∂t u∥H s
x

∥∥
L2

t

=
∥∥∥u∥H s

x

∥∥2
L∞

t

∥∥∥∂t u∥H s
x

∥∥
L2

t
≲

∥∥∥u∥H s
x

∥∥2
H1

t

∥∥∥u∥H s
x

∥∥
H1

t
≤ ∥u∥

3
H1

t H s
x
,

and hence ∥ f (u)∥H1
s
≲ ∥u∥

3
H1

s
. All the other bounds follow similarly. □

Next, we consider the conformal cubic wave equation out of spherical symmetry.

Lemma 4.3 (Lipschitz bounds for the CH model). Let f be given by (4-6). Then, for all integers k ≥ 0
and s ≥ 2, there exists a positive constant (depending only on k and s) such that

∥f(u) − f(v)∥Hk
s
≲ (∥u∥

2
Hk

s
+ ∥v∥

2
Hk

s
)∥u − v∥Hk

s
,

∥df(u)[h] − df(v)[h]∥Hk
s
≲ (∥u∥Hk

s
+ ∥v∥Hk

s
)∥h∥Hk

s
∥u − v∥Hk

s
,

for all u, v, h ∈ Hk
s with ∥u∥Hk

s
≤ ϵ, ∥v∥Hk

s
≤ ϵ and ∥h∥Hk

s
≤ ϵ.

Remark 4.4 (regularity of the initial data for the CH model). As stated above, for the CH model, we
require s ∈ N with s ≥ 2. This means that the space of initial data Q ≃ l2

s+1 is at least l2
3 (Theorem 2.4).

Proof. The proof coincides with the one of Lemma 4.1. □

Finally, we consider the Yang–Mills equation in spherical symmetry.
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Lemma 4.5 (Lipschitz bounds for the YM model). Let f(2) and f(3) be given by (4-9) and (4-10), respec-
tively. Then, for all integers k ≥ 0 and s ≥ 3, there exists a positive constant (depending only on k and s)
such that

∥f(2)(u) − f(2)(v)∥Hk
s
≲ (∥u∥Hk

s
+ ∥v∥Hk

s
)∥u − v∥Hk

s
,

∥df(2)(u)[h] − df(2)(v)[h]∥Hk
s
≲ ∥h∥Hk

s
∥u − v∥Hk

s
,

∥f(3)(u) − f(3)(v)∥Hk
s
≲ (∥u∥

2
Hk

s
+ ∥v∥

2
Hk

s
)∥u − v∥Hk

s
,

∥df(2)(u)[h] − df(2)(v)[h]∥Hk
s
≲ (∥u∥Hk

s
+ ∥v∥Hk

s
)∥h∥Hk

s
∥u − v∥Hk

s
,

for all u, v, h ∈ Hk
s with ∥u∥Hk

s
≤ ϵ, ∥v∥Hk

s
≤ ϵ and ∥h∥Hk

s
≤ ϵ.

Remark 4.6 (regularity of the initial data for the YM model). As stated above, for the YM model, we
require s ∈ N with s ≥ 3. This means that the space of initial data l2

s+3 is at least l2
6 (Lemma 2.10,

Theorem 2.5).

Proof. Let s ≥ 3 be an integer and pick any u = {u j
: j ≥ 0} ∈ l2

s . We also denote by u(x) =
∑

∞

j=0 u je j (x)

the corresponding function in the physical space and recall the definition of the linear operator L given in
Section 3C. In the following, we claim that the operator

1YMu =
1

sin4(x)
∂x(sin4(x)∂x u)

coincides with the Laplace–Beltrami operator 1S5u on the sphere S5 ↪→ R6 restricted to a class of symmet-
ric functions. Indeed, we endow S5 with the round metric and consider the standard Eulerian coordinates
(x1 = x, x2, x3, x4, x5) ∈ (0, π)4

× (0, 2π), so that y = (y1, y2, y3, y4, y5, y6) ∈ S5 with y1
= cos x1,

yi
= cos xi

i−1∏
j=1

sin x j

for all i ∈ {2, 3, 4, 5} and y6
= sin x1 sin x2 sin x3 sin x4 sin x5. The metric element in these coordinates is

given by the standard round metric on S5. Then, for a function u defined on S5 that is invariant under
all rotations around the y6-axis, the operator 1YMu coincides with 1S5u. We call such functions on S5

“spherically symmetric”. Here, H s(S5) is an algebra provided that s > 5
2 . We pick an integer s ≥ 3, and

the rest of the proof coincides with the one of Lemma 4.1. □

5. The Fourier coefficients

Here we study the Fourier coefficients, as defined by (4-1), (4-4) and (4-7). Since the eigenfunctions are
given by Jacobi polynomials and since the Fourier coefficients involve products of the eigenfunctions,
these are a priori complicated integrals, depending on the indices of the eigenfunctions. Nonetheless, we
will derive here explicit closed formulas for the various Fourier coefficients on resonant indices.

5A. Conformal cubic wave equation in spherical symmetry. In this case, the Fourier coefficients are
given by (4-1). By taking the inner product ( · | · ), defined in Section 3A, in both sides of (4-1), we
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deduce that

Ci jkm =
2
π

∫ 1

−1
Ui (y)U j (y)Uk(y)Um(y)

√
1 − y2 dy,

where we also used the definition of the Chebyshev polynomials of the second kind:

en(x) = Un(cos(x)) =
sin(ωnx)

sin(x)

for all n ∈ {i, j, k, m}. Next, we call a quadruple (i, j, k, m) of indices resonant if

ωi ± ω j ± ωk ± ωm = 0 (5-1)

and study the Fourier coefficients on resonant indices.

Vanishing Fourier coefficients. Firstly, we show the Fourier coefficients vanish on some resonant indices.

Lemma 5.1 (vanishing Fourier coefficients on resonant indices). For any integers i, j, k, m ≥ 0 such that
(5-1) holds with only one minus sign, we have Ci jkm = 0.

Proof. Let i, j, k, m be positive integers such that ωi + ω j + ωk − ωm = 0. Then, m = 2 + i + j + k and,
according to the computation above, we have

Ci jkm =

∫ 1

−1
RN (y)Um(y)

√
1 − y2 dy, RN (y) =

2
π

Ui (y)U j (y)Uk(y),

where RN (y) is a polynomial of degree N = i + j +k < m, and hence the Fourier coefficient vanishes since
Um(y) forms an orthonormal and complete basis with respect to the weight

√
1 − y2. The other results

now follow immediately using the symmetries of the Fourier coefficients with respect to i, j, k, m. □

Nonvanishing Fourier coefficients. Secondly, we study the nonvanishing Fourier coefficients on resonant
indices. In order to deal with these constants, one needs a computationally efficient formula. In the
spherically symmetric case, where the basis consists of the Chebyshev polynomials, there exists the
addition formula [Szegő 1975]

Up(y)Uq(y) =

p+q∑
r=|q−p|

step 2

Ur (y) =

min(p,q)∑
s=0

U|q−p|+2s(y) (5-2)

for all p, q ≥ 0. Consequently, we implement the addition formula (5-2) together with the orthogonality
property of the Chebyshev polynomials with respect to the weight

√
1 − y2 to obtain

Ci jkm =
2
π

i+ j∑
r=| j−i |

step 2

m+k∑
s=|m−k|

step 2

∫ 1

−1
Ur (y)Us(y)

√
1 − y2 dy =

j+i∑
r=| j−i |

step 2

m+k∑
s=|m−k|

step 2

1(r = s). (5-3)

Next, we use (5-3) to derive closed formulas for the nonvanishing Fourier coefficients.

Lemma 5.2 (nonvanishing Fourier coefficients on resonant indices: closed formulas). For any integers
i, j, k, m ≥ 0 such that (5-1) holds with only two minus signs, we have Ci jkm = ωmin{i, j,k,m}.
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Proof. Let i, j, k, m ≥ 0 be integers such that ωi +ω j −ωk −ωm = 0. Hence m = i + j − k, and assume
for simplicity that i ≤ j , k ≤ m and i ≤ k. Then, setting r = i + j − p and s = i + j −q as well as t = 2p
and τ = 2q , equation (5-3) yields

Ci jkm =

2i∑
p=0

step 2

2k∑
q=0

step 2

1(p = q) =

i∑
t=0

k∑
τ=0

1(t = τ) =

i∑
t=0

i∑
τ=0

1(t = τ) = i + 1 = ωi .

All the other results follow immediately by the symmetries of the Fourier coefficients with respect to
i, j, k and m, □

5B. Conformal cubic wave equation out of spherical symmetry. In this case, the Fourier coefficients
are given by (4-4). By taking the inner product ⟨ · | · ⟩, defined in Section 3B, in both sides of (4-4), we
deduce that

C
(µ1,µ2)
i jkm =

1
2

∏
λ1∈{i, j,k,m}

N
(µ1,µ2)
λ1

∫ 1

−1
(1 − x)2µ1(1 + x)2µ2

∏
λ2∈{i, j,k,m}

P (µ1,µ2)
λ2

(x) dx,

where the normalization constant N(µ1,µ2)
λ1

is given by (3-3). As before, we call a quadruple (i, j, k, m) of
indices resonant if

ω
(µ1,µ2)
i ±ω

(µ1,µ2)
j ±ω

(µ1,µ2)
k ±ω(µ1,µ2)

m = 0 (5-4)

and study the Fourier coefficients on resonant indices.

Vanishing Fourier coefficients. Firstly, we show the Fourier coefficients vanish on some resonant indices.

Lemma 5.3 (vanishing Fourier coefficients on resonant indices). For any integers i, j, k, m ≥ 0 such that
(5-4) holds with only one minus sign, we have C

(µ1,µ2)
i jkm = 0.

Proof. The proof is similar to the one of Lemma 5.1. □

Nonvanishing Fourier coefficients. Next, we study the nonvanishing Fourier coefficients. In principle, in
order to deal with these constants, one needs a computationally efficient formula as in the spherically
symmetric case. However, out of spherical symmetry, where the basis consists of the Jacobi polynomials —
although there exists the addition formula

P (µ1,µ2)
p (x)P (µ1,µ2)

q (x) =

p+q∑
r=|p−q|

L(p, q, r)P (µ1,µ2)
r (x)

for all p, q ≥ 0, similar to (5-2) — the linearization coefficients L(p, q, r) remain unknown in closed form
for generic values of µ1 and µ2, and hence a closed formula similar to (5-3) is not available in general.
We note that Rahman10 [1981, p. 919] was able to prove that the linearization coefficients of Jacobi
polynomials can be represented as a well-posed hypergeometric function 9 F8(1). On the other hand, in
the special case where µ1 = µ2, the Jacobi polynomials reduce to Gegenbauer polynomials for which the

10According to [Cohl 2016], there was a minor typo in Rahman’s published result; in the linearization coefficient in [Rahman
1981], the term (−α −β − 2m) should be replaced by the Pochhammer symbol (−α −β − 2m)k . The corrected linearization
formula is given in [Cohl 2016].
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linearization coefficients are given by well-posed and closed formulas [NIST 2010; Sánchez-Ruiz 2001;
Szegő 1975]. Hence, we restrict ourselves to the case µ1 =µ2 =µ and also denote by γ the index referring
to the fixed choice of the 1-mode initial data. Then, we derive closed formulas for the nonvanishing
Fourier coefficients for a resonant pair of indices (i, j, k, m) by using the formula [Sánchez-Ruiz 2001,
(20)] for the Gegenbauer polynomials:

(C (µ+1/2)
m (x))2

=

m∑
λ=0

Lµm(λ)C (2µ+1/2)

2λ (x), (5-5)

where the coefficients are given by

Lµm(λ) =
(2µ + 1)m

0(m + 1)

( 1
2

)
λ

(1
2

)
m−λ

(
µ +

1
2

)
λ
(λ + 2µ + 1)m

0(m − λ + 1)(µ + 1)λ
(
2µ +

1
2

)
2λ

(
2λ + 2µ +

3
2

)
m−λ

, (5-6)

valid for any real x ∈ [−1, 1] and integers µ, m, λ ≥ 0, and (a)n = 0(a + n)/0(a) stands for the
Pochhammer’s symbol defined for any a ∈ R with a /∈ {0, −1, −2, . . . } and n ∈ N. Notice that (5-5) is a
combination of a linearization and a connection formula for Gegenbauer polynomials. Specifically, we
establish the following result.

Lemma 5.4 (nonvanishing Fourier coefficients on resonant indices: closed formulas). Let γ ≥ 0 and
m ≥ γ be any integers. Then, we have

C(µ,µ)
γ γ mm =

1
2

γ∑
λ=0

M(µ)
γ (λ)M(µ)

m (λ)ξλ(µ),

where

ξλ(µ) =
π21−4µ0(2λ + 4µ + 1)

(4λ + 4µ + 1)0(2λ + 1)
(
0

(
2µ +

1
2

))2 ,

M(µ)
m (λ) =

1
2π3/2

(4λ + 4µ + 1)0
(
λ +

1
2

)
0

(
2µ +

1
2

)
0

(
λ + µ +

1
2

)
0(λ + µ + 1)0(λ + 2µ + 1)

·
(2µ + 2m + 1)0

(
m − λ +

1
2

)
0(m + λ + 2µ + 1)

0(m − λ + 1)0
(
m + λ + 2µ +

3
2

) .

Proof. Let γ ≥ 1 be a fixed integer and pick any integer m ≥ γ . Then, by the definition of the Fourier
coefficient, the fact that the Jacobi polynomials with equal parameters can be written in terms of the
Gegenbauer polynomials [NIST 2010, 18.7.1],

P (µ,µ)
m (x) = w(µ)

m C (µ+1/2)
m (x), w(µ)

m =
0(2µ + 1)0(m + µ + 1)

0(µ + 1)0(m + 2µ + 1)
,

together with (5-5)–(5-6), we have

C(µ,µ)
γ γ mm =

1
2
(w(µ)

γ N(µ,µ)
γ )2(w(µ)

m N(µ,µ)
m )2

∫ 1

−1
(1−x2)2µ(C (µ+1/2)

γ (x))2(C (µ+1/2)
m (x))2 dx

=
1
2
(w(µ)

γ N(µ,µ)
γ )2(w(µ)

m N(µ,µ)
m )2

γ∑
ν=0

Lµγ (ν)

m∑
λ=0

Lµm(λ)

∫ 1

−1
(1−x2)2µC (2µ+1/2)

2ν (x)C (2µ+1/2)

2λ (x)dx .
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Now, the orthogonality of the Gegenbauer polynomials,∫ 1

−1
C (2µ+1/2)

2ν (x)C (2µ+1/2)

2λ (x)(1 − x2)2µ dx = ξλ(µ)1(ν = λ),

where ξλ(µ) is defined above, together with the fact that 0 ≤ γ ≤ m yields

C(µ,µ)
γ γ mm =

1
2
(w(µ)

γ N(µ,µ)
γ )2(w(µ)

m N(µ,µ)
m )2

γ∑
ν=0

Lµγ (ν)

γ∑
λ=0

Lµm(λ)ξλ(µ)1(ν = λ)

=
1
2
(w(µ)

γ N(µ,µ)
γ )2(w(µ)

m N(µ,µ)
m )2

γ∑
λ=0

Lµγ (λ)Lµm(λ)ξλ(µ)

=
1
2

γ∑
λ=0

M(µ)
γ (λ)M(µ)

m (λ)ξλ(µ).

Finally, setting M
(µ)
m (λ) = (w

(µ)
m N

(µ,µ)
m )2Lµm(λ), a direct computation using (3-3) and (5-6) yields the

closed formula for M(µ)
m (λ) stated above and completes the proof. □

Next, we show that the closed formulas we derived above are in fact monotone with respect to m.

Lemma 5.5 (monotonicity of M(µ)
m (λ)). Let γ ≥ 0, m ≥ γ and 0 ≤ λ ≤ γ be any integers. Then, the

function M
(µ)
m (λ) defined in Lemma 5.4 is decreasing with respect to m.

Proof. Let γ ≥ 0, m ≥ γ and 0 ≤ λ ≤ γ be any integers. The claim follows immediately by computing the
difference M(µ)

m+1(λ)−M
(µ)
m (λ). Indeed, the identity for the ratio of two Gamma functions, 0(x+1)= x0(x),

valid for all x ∈ R, yields that M(µ)

m+1(λ) −M
(µ)
m (λ) equals

−
(4λ + 4µ + 1)0

(
λ +

1
2

)
0

(
2µ +

1
2

)
0

(
λ + µ +

3
2

)
0

(
m − λ +

1
2

)
0(m + λ + 2µ + 1)

π3/20(λ + µ)0(λ + 2µ + 1)0(m − λ + 2)0
(
m + λ + 2µ +

5
2

) ,

which is strictly negative for all m, λ and µ, and hence M
(µ)
m (λ) is decreasing with respect to m for all λ

and µ, which completes the proof. □

Remark 5.6 (closed formulas for C
(µ,µ)
γ γ mm for small values of γ ). Finally, we note that one can use

Lemma 5.4 to find closed formulas for the Fourier coefficients provided that γ is sufficiently small. For
example, for γ ∈ {0, 1}, we find that

C
(µ,µ)

00mm =
1

2π
(2µ + 1)

(
0

(
µ +

1
2

)
0(µ + 1)

)2 (2µ + 2m + 1)0
(
m +

1
2

)
0(m + 2µ + 1)

0(m + 1)0
(
m + 2µ +

3
2

) ,

C
(µ,µ)

11mm =
1

8π
(µ + 1)(2µ + 1)(2µ + 3)

(
0

(
µ +

1
2

)
0(µ + 2)

)2

·
(2µ + 2m + 1)(−µ + 2m(2µ + m + 1) − 1)0

(
m −

1
2

)
0(m + 2µ + 1)

0(m + 1)0
(
m + 2µ +

5
2

) .

Figure 1 illustrates the Fourier coefficients C
(µ,µ)
γ γ mm for µ = 30 and γ ∈ {0, 1, 2}, respectively, as m varies

within {1, 2, . . . , 50}.
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0.8

1.0
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Figure 1. The Fourier coefficients C
(30,30)
γ γ mm for γ = 0 (blue/bottom), γ = 1 (orange/middle)

and γ = 2 (green/top) as m varies within the interval [1, 50]. They are all decreasing for
m ≥ 2γ + 1.

5C. Yang–Mills equation in spherical symmetry. In this case, the Fourier coefficients are given by (4-7).
By taking the inner product [ · | · ], defined in Section 3C, in both sides of (4-7), we deduce that

Ci jm =

∏
λ1∈{i, j,m}

Nλ1

∫ 1

−1
(1 − y2)3/2

∏
λ2∈{i, j,m}

P (3/2,3/2)
λ2

(y) dy,

Ci jkm =

∏
λ1∈{i, j,k,m}

Nλ1

∫ 1

−1
(1 − y2)5/2

∏
λ2∈{i, j,k,m}

P (3/2,3/2)
λ2

(y) dy,

where the normalization constant Nλ1 is given by (3-5). As before, we call a triple (i, j, m) or a quadruple
(i, j, k, m) of indices resonant if

ϖi ± ϖ j ± ϖm = 0, (5-7)

ϖi ± ϖ j ± ϖk ± ϖm = 0, (5-8)

respectively, and study the Fourier coefficients on resonant indices.

Vanishing Fourier coefficients. Firstly, we show the Fourier coefficients vanish on some resonant indices.

Lemma 5.7 (vanishing Fourier coefficients on resonant indices). For any integers i, j, m ≥ 0 such that
(5-7) holds with only one minus sign and for any integers i, j, k, m ≥ 0 such that (5-8) holds with only
one minus sign, we have Ci jm = 0 and Ci jkm = 0, respectively.

Proof. The proof is similar to the one of Lemma 5.1. □

Nonvanishing Fourier coefficients. Next, we study the nonvanishing Fourier coefficients. In order to deal
with these constants, one needs a computationally efficient formula as in the two previous cases. In the
spherically symmetric case we consider here, the basis consists of the Jacobi polynomials with equal



NONLINEAR PERIODIC WAVES ON THE EINSTEIN CYLINDER 2355

parameters, and these are weighted Gegenbauer polynomials [NIST 2010, 18.7.1]

C (2)
n (x) =

(4)n( 5
2

)
n

P (3/2,3/2)
n (x) =

√
π

8
0(n + 4)

0
(
n +

5
2

) P (3/2,3/2)
n (x)

for n ∈ {γ, m} and x ∈ [−1, 1]. The latter, together with the definition of the normalization constant
Nn from (3-5), expresses the normalized Jacobi polynomials in terms of the normalized Gegenbauer
polynomials as

Nn P (3/2,3/2)
n (x) = Nn

8
√

π

0
(
n +

5
2

)
0(n + 4)

C (2)
n (x) = wnC (2)

n (x), wn =

√
8
π

1
√

(n + 1)(n + 3)
,

for all n ∈ {γ, m}. Consequently, the Fourier coefficients can be written in terms of the Gegenbauer
polynomials as follows:

Ci jm = wiw jwm

∫ 1

−1
C (2)

i (y)C (2)
j (y)C (2)

m (y)(1 − y2)3/2 dy,

Ci jkm = wiw jwkwm

∫ 1

−1
C (2)

i (y)C (2)
j (y)C (2)

k (y)C (2)
m (y)(1 − y2)5/2 dy.

Then, we derive closed formulas for the nonvanishing Fourier coefficients for a resonant quadruple
(i, j, k, m) as follows:

• Whenever a Gegenbauer polynomial has an order µ such that the weight (1 − y2)µ−1/2 (with respect to
which it forms an orthonormal basis) does not coincide with the weights (1 − y2)p with p ∈

{ 3
2 , 5

2

}
(that

define the integrals above), we use the connection formula [NIST 2010, 18.18.16]

C (µ)
n (y) =

⌊n/2⌋∑
ℓ=0

αnµλ(ℓ)C
(λ)
n−2ℓ(y), αnµλ(ℓ) =

λ + n − 2ℓ

λ

(µ)n−ℓ

(λ + 1)n−ℓ

(µ − λ)ℓ

ℓ!
. (5-9)

In particular, we are going to use this only for λ = µ + 1. In this case, the latter is equivalent to the
recurrence relation [NIST 2010, 18.9.7]

C (µ)
n (x) =

µ

n + µ
(C (µ+1)

n (x) − C (µ+1)

n−2 (x)),

valid for all integers µ ≥ 0 and n ≥ 2.

• Whenever a Gegenbauer polynomial is multiplied by itself, we use the addition formula [NIST 2010,
18.18.22; Sánchez-Ruiz 2001, (19)]

(C (λ)
n (y))2

=

n∑
ℓ=0

βnλ(ℓ)C
(λ)
2ℓ (y), βnλ(ℓ) =

1
n!

(
n
ℓ

)
(2ℓ)! (λ)ℓ(λ)n−ℓ(2ℓ + 2λ)n−ℓ

ℓ! (ℓ + λ)ℓ(2ℓ + λ + 1)n−ℓ

. (5-10)

• Whenever two Gegenbauer polynomials of different degrees but of the same order are multiplied, we
use the addition formula [NIST 2010, 18.18.22]

C (λ)
m (y)C (λ)

n (y) =

min(m,n)∑
ℓ=0

ζmnλ(ℓ)C
(λ)
m+n−2ℓ(y), (5-11)
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where the coefficients are given by

ζmnλ(ℓ) =
(m + n + λ − 2ℓ)(m + n − 2ℓ)!

(m + n + λ − ℓ)ℓ! (m − ℓ)! (n − ℓ)!

(λ)ℓ(λ)m−ℓ(λ)n−ℓ(2λ)m+n−ℓ

(λ)m+n−ℓ(2λ)m+n−2ℓ

.

• Whenever a product of a monomial with a Gegenbauer polynomial is integrated, we use the formula
[NIST 2010, 18.17.37]∫ 1

0
x z−1C (λ)

n (x)(1 − x2)λ−1/2 dx =
π21−2λ−z0(n + 2λ)0(z)

n! 0(λ)0
( 1

2 +
1
2 n + λ +

1
2 z

)
0

( 1
2 +

1
2 z −

1
2 n

) , (5-12)

valid for all integers λ ≥ 0 and real numbers z > 0. Notice that this is the Mellin transform of the function
C (λ)

n (x)(1 − x2)λ−1/2 restricted to [0, 1].

In particular, we will only need to study Cγ,γ,2τ , Cγ,2τ+m−γ,m , Cm,2τ,m and Cγ γ mm for all integers
τ ∈ {0, 1, . . . , γ } and m ≥ 2γ + 1. To begin with, we focus on Ci jm for any integers i, j, m ≥ 0 and
establish the follow result.

Lemma 5.8 (nonvanishing Fourier coefficients Ci jm on resonant indices: closed formula). For any integers
i, j, m ≥ 0, we have

Ci jm =
(i + j − m + 2)(i − j + m + 2)(−i + j + m + 2)(i + j + m + 6)

4
√

2π(i + 1)(i + 3)( j + 1)( j + 3)(m + 1)(m + 3)

· 1(| j − m| ≤ i ≤ j + m)1(|i − m| ≤ j ≤ i + m)1(|i − j | ≤ m ≤ i + j)

· 1( j + m − i ∈ 2N ∪ {0})1(i + m − j ∈ 2N ∪ {0})1(i + j − m ∈ 2N ∪ {0}).

Proof. The result follows immediately from (5-11) together with the orthogonality of the Gegenbauer
polynomials, ∫ 1

−1
C (2)

n (y)C (2)
m (y)(1 − y2)3/2 dy =

π

8
(m + 1)(m + 3)1(m = n)

for all integers m, n ≥ 0. Indeed, for any integers i, j, m ≥ 0, we have

Ci jm = wiw jwm

min(i, j)∑
ℓ=0

ζi j2(ℓ)

∫ 1

−1
C (2)

i+ j−2ℓ(y)C (2)
m (y)(1 − y2)3/2 dy

=
π

8
(m + 1)(m + 3)wiw jwm

min(i, j)∑
ℓ=0

ζi j2(ℓ)1(2ℓ = i + j − m).

On the one hand, for all integers i , j and m such that i + j −m /∈ 2N∪{0}, the Fourier coefficient vanishes.
Furthermore, we have

0 ≤ i + j − m ≤ 2 min(i, j) ⇐⇒ |i − j | ≤ m ≤ i + j.

Consequently, for all integers i , j and m such that the condition |i − j | ≤ m ≤ i + j is not fulfilled, the
Fourier coefficient vanishes. On the other hand, for all i , j and m such that both i + j − m ∈ 2N ∪ {0}



NONLINEAR PERIODIC WAVES ON THE EINSTEIN CYLINDER 2357

and |i − j | ≤ m ≤ i + j hold true, we compute

Ci jm =
π

8
(m + 1)(m + 3)wiw jwmζi j2

(
i + j − m

2

) min(i, j)∑
ℓ=0

1(2ℓ = i + j − m)

=
(i + j − m + 2)(i − j + m + 2)(−i + j + m + 2)(i + j + m + 6)

4
√

2π(i + 1)(i + 3)( j + 1)( j + 3)(m + 1)(m + 3)
,

where we used the fact that
∑min(i, j)

l=0 1(2ℓ = i + j − m) = 1. Finally, using the symmetries of the Fourier
coefficient with respect to i , j and m completes the proof. □

Next, we apply the previous result to obtain closed formulas for the Fourier coefficient Ci jm on the
particular resonant indices we are interested in. Specifically, we establish the following result.

Lemma 5.9 (nonvanishing Fourier coefficients Ci jm on particular resonant indices: closed formulas). Let
γ, τ, m be integers such that γ ≥ 0, τ ∈ {0, 1, . . . , γ } and m ≥ 2γ + 1. Then, we have

Cγ,γ,2τ = 2

√
2
π

(τ + 1)2(γ − τ + 1)(γ + τ + 3)

(γ + 1)(γ + 3)
√

4τ(τ + 2) + 3
, Cm,2τ,m = 2

√
2
π

(τ + 1)2(m − τ + 1)(m + τ + 3)

(m + 1)(m + 3)
√

4τ(τ + 2) + 3
,

Cγ,2τ+m−γ,m = 2

√
2
π

(τ + 1)(γ − τ + 1)(m + τ + 3)(−γ + m + τ + 1)
√

(γ + 1)(γ + 3)(m + 1)(m + 3)(−γ + m + 2τ + 1)(−γ + m + 2τ + 3)
.

Proof. Let γ, τ, m be integers such that γ ≥ 0, τ ∈ {0, 1, . . . , γ } and m ≥ 2γ + 1. Firstly, notice that
all the indices of the Fourier coefficients above satisfy all the conditions in the Booleans in Lemma 5.8.
Then, the result follows immediately from Lemma 5.8 by direct substitution. □

Now, we focus on Cγ γ mm and derive the following result.

Lemma 5.10 (nonvanishing Fourier coefficients Cγ γ mm on resonant indices: closed formulas). Let γ ≥ 0
be a fixed integer. Then, for all m ≥ 2γ + 1, we have

Cγ γ mm = w2
γw

2
m

γ∑
ℓ2=0

ℓ2∑
ν2=0

δγ (ℓ2, ν2)Jm(ℓ2, ν2),

where

δγ (ℓ2, ν2) =
(ℓ2 +1)2(−1)ν2(γ −ℓ2 +1)(γ +ℓ2 +3)22(ℓ2−ν2)0(2ℓ2 −ν2 +2)

(4ℓ2(ℓ2 +2)+3)0(ν2 +1)0(2ℓ2 −2ν2 +1)
,

Jm(ℓ2, ν2) =
3
√

π(5ℓ2(3m(m +4)+1)+m(m +4)(4−15ν2)−5(ν2 −4))0
(
ℓ2 −ν2 +

1
2

)
80(ℓ2 −ν2 +5)

+

ℓ2−ν2+1∑
ℓ1=2

πℓ1(ℓ1 +1)2(2ℓ1 −1)4−ℓ2+ν2−2(ℓ1 −m −1)(ℓ1 +m +3)0(2ℓ2 −2ν2 +1)

0(−ℓ1 +ℓ2 −ν2 +2)0(ℓ1 +ℓ2 −ν2 +3)

−

ℓ2−ν2∑
ℓ1=2

π(ℓ1 +1)2(ℓ1 +2)(2ℓ1 +5)4−ℓ2+ν2−2(ℓ1 −m −1)(ℓ1 +m +3)0(2ℓ2 −2ν2 +1)

0(−ℓ1 +ℓ2 −ν2 +1)0(ℓ1 +ℓ2 −ν2 +4)
.
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Proof. Let γ ≥ 0 be a fixed integer and pick any integer m ≥ 2γ +1. Then, by the definition of the Fourier
coefficients, we have

Cγ γ mm = w2
γw

2
m

∫ 1

−1
(C (2)

γ (y))2(C (2)
m (y))2(1 − y2)5/2 dy.

On the one hand, we use the linearization formula (5-10) together with the special cases C (2)
0 (y) = 1 and

C (2)
2 (y) = 12y2

− 2 to obtain

(C (2)
m (y))2

=

m∑
ℓ1=0

βm2(ℓ1)C
(2)
2ℓ1

(y) =

m∑
ℓ1=0

(ℓ1+1)2(−ℓ1+m+1)(ℓ1+m+3)

4ℓ1(ℓ1+2)+3
C (2)

2ℓ1
(y)

=
1
3
(m+1)(m+3)+

4
15

m(m+4)(12y2
−2)+

m∑
ℓ1=2

(ℓ1+1)2(−ℓ1+m+1)(ℓ1+m+3)

4ℓ1(ℓ1+2)+3
C (2)

2ℓ1
(y).

Furthermore, for all ℓ1 ≥ 2, the connection formula (5-9) yields

C (2)
2ℓ1

(y) =

ℓ1∑
ν1=0

α2ℓ1,2,3(ν1)C
(3)
2(ℓ1−ν1)

(y) =

ℓ1∑
ν1=0

(2ℓ1 − 2ν1 + 3)(−1)ν10(2ℓ1 − ν1 + 2)

3ν1! (4)2ℓ1−ν1

C (3)
2(ℓ1−ν1)

(y)

=
(2ℓ1 + 3)(2)2ℓ1

3(4)2ℓ1

C (3)
2ℓ1

(y) −
(2ℓ1 + 1)(2)2ℓ1−1

3(4)2ℓ1−1
C (3)

2(ℓ1−1)(y) =
1

ℓ1 + 1
(C (3)

2ℓ1
(y) − C (3)

2(ℓ1−1)(y))

since (−1)ν1 = 0 for all ν1 ≥ 2. Consequently, we have

(C (2)
m (y))2

=
1
3(m + 1)(m + 3) +

4
15 m(m + 4)(12y2

− 2)

+

m∑
ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3
(C (3)

2(ℓ1−1)(y) − C (3)
2ℓ1

(y)).

On the other hand, the linearization formula (5-10) together with the definition of the Gegenbauer
polynomials

C (2)
2ℓ2

(y) =

ℓ2∑
ν2=0

dℓ2(ν2)y2(ℓ2−ν2), dℓ2(ν2) =
(−1)ν2(4ℓ2−ν20(2ℓ2 − ν2 + 2))

0(ν2 + 1)0(2ℓ2 − 2ν2 + 1)
,

yield

(C (2)
γ (y))2

=

γ∑
ℓ2=0

βγ 2(ℓ2)C
(2)
2ℓ2

(y) =

γ∑
ℓ2=0

βγ 2(ℓ2)

ℓ2∑
ν2=0

dℓ2(ν2)y2(ℓ2−ν2)

=

γ∑
ℓ2=0

ℓ2∑
ν2=0

δγ (ℓ2, ν2)y2(ℓ2−ν2),

where we set

δγ (ℓ2, ν2) = βγ 2(ℓ2)dℓ2(ν2) =
(ℓ2 + 1)2(−1)ν2(γ − ℓ2 + 1)(γ + ℓ2 + 3)22(ℓ2−ν2)0(2ℓ2 − ν2 + 2)

(4ℓ2(ℓ2 + 2) + 3)0(ν2 + 1)0(2ℓ2 − 2ν2 + 1)
.
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Now, putting this all together, we infer

Cγ γ mm = w2
γw

2
m

γ∑
ℓ2=0

ℓ2∑
ν2=0

δγ (ℓ2, ν2)

×

∫ 1

−1
y2(ℓ2−ν2)

[
1
3(m +1)(m +3)+ 4

15 m(m +4)(12y2
−2)

+

m∑
ℓ1=2

(ℓ1 +1)(ℓ1 −m −1)(ℓ1 +m +3)

4ℓ1(ℓ1 +2)+3
(C (3)

2(ℓ1−1)(y)−C (3)
2ℓ1

(y))

]
(1− y2)5/2 dy

= w2
γw

2
m

γ∑
ℓ2=0

ℓ2∑
ν2=0

δγ (ℓ2, ν2)Jm(ℓ2, ν2),

where

Jm(ℓ2, ν2) =
(m + 1)(m + 3)

3

∫ 1

−1
y2(ℓ2−ν2)(1 − y2)5/2 dy

+
4m(m + 4)

15

∫ 1

−1
y2(ℓ2−ν2)(12y2

− 2)(1 − y2)5/2 dy

+

m∑
ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3

∫ 1

−1
y2(ℓ2−ν2)C (3)

2(ℓ1−1)(y)(1 − y2)5/2 dy

−

m∑
ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3

∫ 1

−1
y2(ℓ2−ν2)C (3)

2ℓ1
(y)(1 − y2)5/2 dy.

We compute ∫ 1

−1
y2(ℓ2−ν2)(1 − y2)5/2 dy =

15
√

π0
(
ℓ2 − ν2 +

1
2

)
80(ℓ2 − ν2 + 4)

,∫ 1

−1
y2(ℓ2−ν2)(12y2

− 2)(1 − y2)5/2 dy =
15

√
π(5ℓ2 − 5ν2 − 1)0

(
ℓ2 − ν2 +

1
2

)
40(ℓ2 − ν2 + 5)

.

On the one hand, for all ℓ1 ≥ 2 with ℓ1 > ℓ2 − ν2 + 1, we have 2(ℓ2 − ν2) < 2(ℓ1 − 1), and hence∫ 1

−1
y2(ℓ2−ν2)C (3)

2(ℓ1−1)(y)(1 − y2)5/2 dy = 0

since the Gegenbauer polynomial in the integrand forms an orthonormal and complete basis with respect
to the weight (1− y2)5/2. On the other hand, for all 2 ≤ ℓ1 ≤ ℓ2 −ν2 +1, the identity C (3)

2λ (−y) = C (3)
2λ (y),

valid for all real y ∈ [−1, 1] and integers λ ≥ 0, yields∫ 1

−1
y2(ℓ2−ν2)C (3)

2(ℓ1−1)(y)(1 − y2)5/2 dy = 2
∫ 1

0
y2(ℓ2−ν2)C (3)

2(ℓ1−1)(y)(1 − y2)5/2 dy

=
π4−ℓ2+ν2−30(2ℓ1 + 4)0(2ℓ2 − 2ν2 + 1)

0(2ℓ1 − 1)0(−ℓ1 + ℓ2 − ν2 + 2)0(ℓ1 + ℓ2 − ν2 + 3)
,
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where we used (5-12) to compute the last integral. In other words, we have
m∑

ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3

∫ 1

−1
y2(ℓ2−ν2)C (3)

2(ℓ1−1)(y)(1 − y2)5/2 dy

=

ℓ2−ν2+1∑
ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3

∫ 1

−1
y2(ℓ2−ν2)C (3)

2(ℓ1−1)(y)(1 − y2)5/2 dy

=

ℓ2−ν2+1∑
ℓ1=2

πℓ1(ℓ1 + 1)2(2ℓ1 − 1)4−ℓ2+ν2−2(ℓ1 − m − 1)(ℓ1 + m + 3)0(2ℓ2 − 2ν2 + 1)

0(−ℓ1 + ℓ2 − ν2 + 2)0(ℓ1 + ℓ2 − ν2 + 3)
.

Similarly, on the one hand, for all ℓ1 ≥ 2 with ℓ1 > ℓ2 − ν2, we have 2(ℓ2 − ν2) < 2ℓ1, and hence∫ 1

−1
y2(ℓ2−ν2)C (3)

2ℓ1
(y)(1 − y2)5/2 dy = 0

since the Gegenbauer polynomial in the integrand forms an orthonormal and complete basis with respect
to the weight (1 − y2)5/2. On the other hand, for all 2 ≤ ℓ1 ≤ ℓ2 − ν2, the identity C (3)

2λ (−y) = C (3)
2λ (y),

valid for all real y ∈ [−1, 1] and integers λ ≥ 0, yields∫ 1

−1
y2(ℓ2−ν2)C (3)

2ℓ1
(y)(1 − y2)5/2 dy = 2

∫ 1

0
y2(ℓ2−ν2)C (3)

2ℓ1
(y)(1 − y2)5/2 dy

=
π4−ℓ2+ν2−30(2ℓ1 + 6)0(2ℓ2 − 2ν2 + 1)

0(2ℓ1 + 1)0(−ℓ1 + ℓ2 − ν2 + 1)0(ℓ1 + ℓ2 − ν2 + 4)
,

where we used once again (5-12) to compute the last integral. In other words, we have
m∑

ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3

∫ 1

−1
y2(ℓ2−ν2)C (3)

2ℓ1
(y)(1 − y2)5/2 dy

=

ℓ2−ν2∑
ℓ1=2

(ℓ1 + 1)(ℓ1 − m − 1)(ℓ1 + m + 3)

4ℓ1(ℓ1 + 2) + 3

∫ 1

−1
y2(ℓ2−ν2)C (3)

2ℓ1
(y)(1 − y2)5/2 dy

=

ℓ2−ν2∑
ℓ1=2

π(ℓ1 + 1)2(ℓ1 + 2)(2ℓ1 + 5)4−ℓ2+ν2−2(ℓ1 − m − 1)(ℓ1 + m + 3)0(2ℓ2 − 2ν2 + 1)

0(−ℓ1 + ℓ2 − ν2 + 1)0(ℓ1 + ℓ2 − ν2 + 4)
.

Putting this all together yields Jm(ℓ2, ν2) as stated above and completes the proof. □

Remark 5.11 (closed formulas for Cγ γ mm for small values of γ ). Finally, we note that one can use
Lemma 5.10 to find closed formulas for the Fourier coefficients provided that γ is sufficiently small. For
example, for γ ∈ {0, 1, 2}, we find

C00mm =
4(m(m + 4) + 5)

3π(m + 1)(m + 3)
, C11mm =

2(m(m + 4) + 7)

π(m + 1)(m + 3)
, C22mm =

8(5m(m + 4) + 49)

15π(m + 1)(m + 3)

for all m ≥ 2γ +1. Figure 2 illustrates the Fourier coefficients Cγ γ mm for γ ∈ {0, 1, 2}, respectively, as m
varies within {1, 2, . . . , 50}.
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Figure 2. The Fourier coefficients Cγ γ mm for γ = 0 (blue/bottom), γ = 1 (orange/middle)
and γ = 2 (green/top) as m varies within {1, 2, . . . , 50}. They are all decreasing for
m ≥ 2γ + 1.

6. 1-mode initial data

In this section, we study the operators M and M± (Section 2) for 1-mode initial data. Specifically, we
verify that all the 1-modes are zeros of the operators M (for CW and CH) and M− (for YM) and compute
the differentials dM and dM− at the 1-mode initial data.

6A. Conformal cubic wave equation in spherical symmetry. Recall that the eigenfunctions {en : n ≥ 0}

are given by (3-1) and the PDE in the Fourier space from (4-2) reads

üm(t) + (Au(t))m
= ( f ({u j (t) : j0}))m

for all integers m ≥ 0, where the dots denote derivatives with respect to time and

(Au(t))m
= ω2

mum(t), ( f ({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

Ci jkmui (t)u j (t)uk(t).

For any initial data u(0, · ), we denote by

8t(ξ) = {ξ n cos(ωnt) : n ≥ 0}, u(0, · ) =

∞∑
n=0

ξ nen, ξ = {ξ n
: n ≥ 0},

the linear flow, that is the solution to the linear problem

ün(t) + ω2
nun(t) = 0, (un(0), u̇n(0)) = (ξ n, 0),

for all times t ∈ R. For this model, we aim towards implementing the original version of Bambusi–Paleari’s
theorem (Theorem 2.4) and define

M(ξ) := Aξ + ⟨ f ⟩(ξ), ⟨ f ⟩(ξ) =
1

2π

∫ 2π

0
8t

[ f (8t(ξ))] dt.

To begin with, we show that the 1-modes are zeros of the operator M.
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Lemma 6.1 (zeros of the operator M). Let ξ = {ξm
: m ≥ 0} be the rescaled 1-mode initial data,

ξm
= Kγ 1(m = γ ), Kγ = ±2ωγ

√
2

3Cγ γ γ γ
, (6-1)

for all integers m ≥ 0. Then, we have M(ξ) = 0.

Proof. Let ξ = {ξm
: m ≥ 0} be given by (6-1), and pick any integer m ≥ 0. Then, we compute

(Aξ)m
= ω2

mξm
= Kγ ω2

γ 1(m = γ ),

(8t(ξ))m
= ξm cos(ωm t) = Kγ cos(ωγ t)1(m = γ ),

( f (8t(ξ)))m
= −

∑
i, j,k

Ci jkm(8t(ξ))i (8t(ξ)) j (8t(ξ))k
= −K 3

γ Cγ γ γ m cos3(ωγ t),

(8t
[ f (8t(ξ))])m

= ( f (8t(ξ)))m cos(ωm t) = −K 3
γ Cγ γ γ m cos3(ωγ t) cos(ωm t),

(⟨ f ⟩(ξ))m
= −

Cγ γ γ m

2π
K 3

γ

∫ 2π

0
cos3(ωγ t) cos(ωm t) dt

= −Cγ γ γ m K 3
γ

( 3
81(m = γ ) +

1
81(m = 3γ + 2)

)
= −

3
8Cγ γ γ γ K 3

γ 1(m = γ ),

(M(ξ))m
= (Aξ)m

+ (⟨ f ⟩(ξ))m
= Kγ

(
ω2

γ −
3
8Cγ γ γ γ K 2

γ

)
1(m = γ ) = 0,

where we used the facts that ωm + ωγ ̸= 0, ωm + 3ωγ ̸= 0,

ωm − ωγ = 0 ⇐⇒ m = γ and ωm − 3ωγ = 0 ⇐⇒ m = 3γ + 2,

as well as Cγ γ γ m = 0 for m = 3γ + 2 according to Lemma 5.1. □

Next, we derive the differential of M at the rescaled 1-modes.

Lemma 6.2 (differential of M at the 1-modes). Let ξ = {ξm
: m ≥ 0} be given by (6-1). Then, for all

h = {h j
: j ≥ 0} ∈ l2

s+3, we have that

Cγ γ γ γ (dM(ξ)[h])m
= [(ω2

mCγ γ γ γ − 2ω2
γ Cγ γ mm)hm

− ω2
γ Cγ,2γ−m,γ,mh2γ−m

]1(0 ≤ m ≤ γ − 1)

+ [−2ω2
γ Cγ γ γ γ hγ

]1(m = γ )

+ [(ω2
mCγ γ γ γ − 2ω2

γ Cγ γ mm)hm
− ω2

γ Cγ,2γ−m,γ,mh2γ−m
]1(γ + 1 ≤ m ≤ 2γ )

+ [(ω2
mCγ γ γ γ − 2ω2

γ Cγ γ mm)hm
]1(m ≥ 2γ + 1),

where Ci jkm are given in closed formulas in Lemma 5.2.

Proof. Let ξ = {ξm
: m ≥ 0} be given by (6-1), ϵ > 0, h = {h j

: j ≥ 0} ∈ l2
s+3, and pick any integer m ≥ 0.

Then, a similar computation with the one of Lemma 6.1 yields11

(⟨ f ⟩(ξ + ϵh))m
= (⟨ f ⟩(ξ))m

−
3ϵK 2

γ

2π

∑
i

Ciγ γ mhi
∫ 2π

0
cos2(ωγ t) cos(ωi t) cos(ωm t) dt +O(ϵ2).

11Here, the notation O(ϵ2) for a function of ξ or h refers to a function that is bounded by ϵ2 in the Q-norm using the
ls+3-norm of ξ or h.
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Therefore, we infer

(d⟨ f ⟩(ξ)[h])m
= −

3K 2
γ

2π

∑
i

Ciγ γ mhi
∫ 2π

0
cos2(ωγ t)cos(ωi t)cos(ωm t)dt

= −
3K 2

γ

8

∑
i

Ciγ γ mhi
∑
±

1(ωi±ωγ ±ωγ ±ωm = 0)

= −
3K 2

γ

8

[∑
i

Ciγ γ mhi 1(i = m)+
∑

i

Ciγ γ mhi 1(i = m)+
∑

i

Ciγ γ mhi 1(i = 2γ−m ≥ 0)

]

= −
3K 2

γ

8
[2Cmγ γ mhm

+C2γ−m,γ,γ,mh2γ−m1(0 ≤ m ≤ 2γ )]

= −
ω2

γ

Cγ γ γ γ

[2Cγ γ mmhm
+1(0 ≤ m ≤ 2γ )Cγ,2γ−m,γ,mh2γ−m

],

where we also used the fact that Ci jkm = 0 for ωi ± ω j ± ωk ± ωm = 0 with only 1 minus sign according
to Lemma 5.1; so we are left with ωi ±ω j ±ωk ±ωm = 0 with only 2 minus signs, and there are three
such terms in total, that is i = m, i = m and i = 2γ − m with i ≥ 0. Finally, we obtain

(dM(ξ)[h])m
= ω2

mhm
+ (d⟨ f ⟩(ξ)[h])m

=

[
ω2

m −
2ω2

γ Cγ γ mm

Cγ γ γ γ

]
hm

− 1(0 ≤ m ≤ 2γ )
ω2

γ Cγ,2γ−m,γ,m

Cγ γ γ γ

h2γ−m . □

6B. Conformal cubic wave equation out of spherical symmetry. We first recall that the eigenfunctions
{e

(µ1,µ2)
n : n ≥ 0} are given by (3-2) and the PDE in the Fourier space from (4-5) reads

üm(t) + (Au(t))m
= (f({u j (t) : j ≥ 0}))m

for all integers m ≥ 0, where the dots denote derivatives with respect to time and

(Au(t))m
= (ω(µ1,µ2)

n )2um(t), (f({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

C
(µ1,µ2)
i jkm ui (t)u j (t)uk(t).

For any initial data u(0, · ), we denote by

φt(ξ) = {ξ n cos(ω(µ1,µ2)
n t) : n ≥ 0}, u(0, · ) =

∞∑
n=0

ξ ne(µ1,µ2)
n , ξ = {ξ n

: n ≥ 0},

the linear flow, that is the solution to the linear problem

ün(t) + (ω(µ1,µ2)
n )2un(t) = 0, (un(0), u̇(0)) = (ξ n, 0),

for all times t ∈ R. For this model, we aim towards implementing the original version of Bambusi–Paleari’s
theorem (Theorem 2.4) and define

M(ξ) := Aξ + ⟨f⟩(ξ), ⟨f⟩(ξ) =
1

2π

∫ 2π

0
φt

[ f (φt(ξ))] dt.

To begin with, we show that the 1-modes are zeros of the operator M.
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Lemma 6.3 (zeros of the operator M). Let ξ = {ξm
: m ≥ 0} be the rescaled 1-mode initial data,

ξm
= K(µ1,µ2)

γ 1(m = γ ), K(µ1,µ2)
γ = ±2ω(µ1,µ2)

γ

√
2

3C (µ1,µ2)
γ γ γ γ

, (6-2)

for all integers m ≥ 0. Then, we have M(ξ) = 0.

Proof. The proof is similar to the one of Lemma 6.1. □

Next, we derive the differential of M at the rescaled 1-modes.

Lemma 6.4 (differential of M at the 1-modes). Let ξ = {ξm
: m ≥ 0} be given by (6-2). Then, for all

h = {h j
: j ≥ 0} ∈ l2

s+3, we have

C(µ1,µ2)
γ γ γ γ (dM(ξ)[h])m

= [(ω2
mC

(µ1,µ2)
γ γ γ γ −2ω2

γC
(µ1,µ2)
γ γ mm )hm

−ω2
γC

(µ1,µ2)
γ,2γ−m,γ,mh2γ−m

]1(0 ≤ m ≤ γ −1)

+[−2ω2
γC

(µ1,µ2)
γ γ γ γ hγ

]1(m = γ )

+[(ω2
mC

(µ1,µ2)
γ γ γ γ −2ω2

γC
(µ1,µ2)
γ γ mm )hm

−ω2
γC

(µ1,µ2)
γ,2γ−m,γ,mh2γ−m

]1(γ +1 ≤ m ≤ 2γ )

+[(ω2
mC

(µ1,µ2)
γ γ γ γ −2ω2

γC
(µ1,µ2)
γ γ mm )hm

]1(m ≥ 2γ +1),

where C
(µ1,µ2)
γ γ mm are given by closed formulas in Lemma 5.4.

Proof. The proof is similar to the one of Lemma 6.2 due to the fact that C(µ1,µ2)
i jkm = 0 for

ω
(µ1,µ2)
i ±ω

(µ1,µ2)
j ±ω

(µ1,µ2)
k ±ω(µ1,µ2)

m = 0

with only 1 minus sign according to Lemma 5.3; so we are left with

ω
(µ1,µ2)
i ±ω

(µ1,µ2)
j ±ω

(µ1,µ2)
k ±ω(µ1,µ2)

m = 0

with only 2 minus signs, and there are again the same three such terms in total, that is i = m, i = m and
i = 2γ − m with i ≥ 0, which completes the proof. □

6C. Yang–Mills equation in spherical symmetry. Recall that the eigenfunctions {en : n ≥ 0} are given
by (3-4) and the PDE in the Fourier space from (4-8) reads

üm(t) + (Au(t))m
= (f({u j (t) : j ≥ 0}))m

for all integers m ≥ 0, where the dots denote derivatives with respect to time and

(Au(t))m
= ϖ 2

n um(t), (f(u))m
= (f(2)(u))m

+ (f(3)(u))m,

with

(f(2)({u j (t) : j ≥ 0}))m
= −3

∞∑
i, j=0

Ci jmui (t)u j (t),

(f(3)({u j (t) : j ≥ 0}))m
= −

∞∑
i, j,k=0

Ci jkmui (t)u j (t)uk(t).

For any initial data u(0, · ), we denote by

Φ t(ξ) = {ξ n cos(ϖnt) : n ≥ 0}. u(0, · ) =

∞∑
n=0

ξ nen, ξ = {ξ n
: n ≥ 0},
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the linear flow, that is the solution to the linear problem

ün(t) + ϖ 2
n un(t) = 0, (un(0), u̇n(0)) = (ξ n, 0),

for all times t ∈ R. As a starting point, we show that the original version of Bambusi–Paleari’s theorem
(Theorem 2.4) is not applicable.

Lemma 6.5 (nonresonant f(2)). For all initial data ξ ∈ l2
s , we have

⟨f(2)
⟩(ξ) =

1
2π

∫ 2π

0
Φ t

[f(2)(Φ t(ξ))] dt = 0.

Proof. Let ξ = {ξm
: m ≥ 0} ∈ l2

s be any initial data, and pick an integer m ≥ 0. Then, similar computations
with the ones in Lemma 6.1 yield

⟨f(2)
⟩(ξ) = −

3
2π

∞∑
i, j=0

Ci jmξ iξ j
∫ 2π

0

∏
λ∈{i, j,m}

cos(ϖλt) dt = −
3
4

∞∑
i, j=0

Ci jmξ iξ j
∑
±

1(ϖi ±ϖ j ±ϖm = 0).

Now, notice that all the possible conditions are those with only 1 minus sign, and according to Lemma 5.7
the corresponding Fourier coefficients vanish. □

Consequently, for this model, we aim towards implementing the modified version of Bambusi–Paleari’s
theorem (Theorem 2.5) and define

M±(ξ) = ±Aξ + ⟨f(3)
⟩(ξ) +F0(ξ), ⟨f(3)

⟩(ξ) =
1

2π

∫ 2π

0
Φ t

[f(3)(Φ t(ξ))] dt,

where F0(ξ) is given for any initial data by Lemma 2.13 and for the 1-mode initial data by Lemma 2.14.
Also, recall the Diophantine condition ϖ ∈ Wα for some 0 < α < 1

3 from Theorem 2.5.
To begin with, we show that the 1-modes are zeros of the operator M−.

Lemma 6.6 (zeros of the operator M−). Let γ ∈ {0, 1, . . . , 5} and

qγ =
9
4

2γ∑
ν=0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1

ϖ 2
ν − (2ϖγ )2

)
.

Then, we have that 8qγ > 3Cγ γ γ γ . Moreover, let ξ = {ξm
: m ≥ 0} be the rescaled 1-mode initial data,

ξm
= Kγ 1(m = γ ), Kγ = ±2ωγ

√
2

8qγ −3Cγ γ γ γ
, (6-3)

for all integers m ≥ 0. Then, we have that M−(ξ) = 0.

Proof. Let γ ∈ {0, 1, . . . , 5}, define ξ = {ξm
: m ≥ 0} to be the rescaled 1-mode initial data given by (6-3)

and pick any integer m ≥ 0. Firstly, we compute −Aξ +⟨f(3)
⟩(ξ), and a similar computation with the one

in Lemma 6.1 yields

−(Aξ)m
+ (⟨f(3)

⟩(ξ))m
= −Kγ

(
ϖ 2

γ +
3
8Cγ γ γ γK

2
γ

)
1(m = γ ),

where we used the fact that ϖm + ϖγ ̸= 0, ϖm + 3ϖγ ̸= 0,

ϖm − ϖγ = 0 ⇐⇒ m = γ and ϖm − 3ϖγ = 0 ⇐⇒ m = 3γ + 4,
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Figure 3. The constants Kγ as γ varies within {0, 1, . . . , 10}. They are all real numbers.

as well as Cγ γ γ m = 0 for m = 3γ + 4 according to Lemma 5.7. Furthermore, we use the computation for
F0(ξ) at the 1-mode initial data we derived in Lemma 2.14, that is

(F0(ξ))m
= qγK

3
γ 1(m = γ ), qγ =

9
4

2γ∑
ν=0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1

ϖ 2
ν − (2ϖγ )2

)
,

to conclude that

(M−(ξ))m
= −(Aξ)m

+ (⟨f(3)
⟩(ξ))m

+ (F0(ξ))m

= −Kγ

(
ϖ 2

γ +
3
8Cγ γ γ γK

2
γ − qγK

2
γ

)
1(m = γ )

= −
1
8Kγ (8ϖ 2

γ + 3Cγ γ γ γK
2
γ − 8qγK

2
γ )1(m = γ ) = 0

provided that K2
γ = −8ϖ 2

γ /(3Cγ γ γ γ − 8qγ ). Finally, it remains to show that this choice is well defined,
that is Kγ ∈ R for all γ ∈ {0, 1, . . . , 10}. To this end, we fix γ ∈ {0, 1, . . . , 10} and use the definition of
the Fourier coefficients to compute each Kγ and verify that they are all real numbers. Figure 3 illustrates
the constants Kγ as γ varies within {0, 1, . . . , 10}. □

Next, we derive the differential of M− at the rescaled 1-modes.

Lemma 6.7 (differential of M− at the 1-modes). Let γ ∈ {0, 1, . . . , 10}, and let ξ = {ξm
: m ≥ 0} be

given by (6-3). Then, for all h = {h j
: j ≥ 0} ∈ l2

s+3, we have

−K−2
γ (dM−(ξ)[h])m

= 1(0 ≤ m ≤ γ − 1)[hmuγ m + h2γ−mvγ m] + 1(m = γ )[hγ (uγ γ + vγ γ )]

+ 1(γ + 1 ≤ m ≤ 2γ )[hmuγ m + h2γ−mvγ m] + 1(m ≥ 2γ + 1)[hmuγ m],

where

uγ m =

(
ϖm

Kγ

)2

+
3
4Cγ γ mm − aγ m, vγ m =

3
8Cγ,2γ−m,γ,m − bγ m,

and Ci jm and Cγ γ mm are given by Lemmas 5.8 and 5.10, respectively, whereas aγ m and bγ m are given by
Lemma 2.15.
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Proof. Let γ ∈ {0, 1, . . . , 10}, ξ = {ξm
: m ≥ 0} be given by (6-3), h = {h j

: j ≥ 0} ∈ l2
s+3, and pick any

integer m ≥ 0. Firstly, we use similar computations to the ones derived in Lemma 6.2 to obtain

(d⟨f(3)
⟩(ξ)[h])m

= −
3
8
K2

γ

∑
i

Ciγ γ mhi
∑
±

1(ϖi±ϖγ ±ϖγ ±ϖm = 0)

= −
3
8
K2

γ

[∑
i

Ciγ γ mhi 1(i = m)+
∑

i

Ciγ γ mhi 1(i = m)+
∑

i

Ciγ γ mhi 1(i = 2γ−m ≥ 0)

]
= −

3
8K

2
γ [2Cmγ γ mhm

+C2γ−m,γ,γ,mh2γ−m1(0 ≤ m ≤ 2γ )],

where we used the fact that Ci jkm = 0 for ϖi ± ϖ j ± ϖk ± ϖm = 0 with only 1 minus sign according to
Lemma 5.7; so we are left with ϖi ± ϖ j ± ϖk ± ϖm = 0 with only 2 minus signs, and there are three
such terms in total, that is i = m, i = m and i = 2γ − m with i ≥ 0. Then, we infer

−(dAξ [h])m
+ (d⟨f(3)

⟩(ξ)[h])m
= −ϖ 2

mhm
+ (d⟨f(3)

⟩(ξ)[h])m

= −ϖ 2
mhm

−
3
8K

2
γ [2Cγ γ mmhm

+ 1(0 ≤ m ≤ 2γ )Cγ,2γ−m,γ,mh2γ−m
]

= −
[
ϖ 2

m +
3
4K

2
γCγ γ mm

]
hm

− 1(0 ≤ m ≤ 2γ ) 3
8K

2
γCγ,2γ−m,γ,mh2γ−m .

Recall that the differential of F0 at the 1-modes, (dF0(ξ)[h])m , is given by Lemma 2.15. Putting this all
together yields that (dM−(ξ)[h])m is given by

−hm[
ϖ 2

m +K2
γ (ω)

( 3
4Cγ γ mm − aγ m

)]
− 1(0 ≤ m ≤ 2γ )h2γ−mK2

γ (ω)
[ 3

8Cγ,2γ−m,γ,m − bγ m
]
.

Finally, one can rewrite the latter as stated above, which completes the proof. □

7. Nondegeneracy conditions for the 1-modes

In this section, we derive and establish the crucial nondegeneracy conditions for 1-mode initial data
according to Theorem 2.4 (for CW and CH) and Theorem 2.5 (for YM).

7A. Conformal cubic wave equation in spherical symmetry. Firstly, we consider the conformal cubic
wave equation in spherical symmetry and derive the nondegeneracy condition for the 1-modes.

Lemma 7.1 (CW model: derivation of the nondegeneracy condition for the 1-modes). Let γ ≥ 0 be any
integer, and define ξ to be the rescaled 1-mode according to (6-1). Then, the nondegeneracy condition

ker(dM(ξ)) = {0}

is equivalent to {
ω2

mCγ γ γ γ − 2ω2
γ Cγ γ mm ̸= 0 for all m ≥ 2γ + 1,

Dγ n ̸= 0 for all n ∈ {0, 1, . . . , γ − 1},
(7-1)

where

Dγ n = [ω2
nCγ γ γ γ − 2ω2

γ Cγ γ nn][ω
2
2γ−nCγ γ γ γ − 2ω2

γ Cγ,γ,2γ−n,2γ−n] − [ω2
γ Cγ,2γ−n,γ,n]

2.
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Proof. Let γ ≥ 0 be any integer and define ξ to be the rescaled 1-mode according to (6-1). Furthermore,
pick any h = {h j

: j ≥ 0} ∈ l2
s+3 such that dM(ξ)[h] = 0, and fix an integer m ≥ 0. Then, according to

Lemma 6.2, we have that dM(ξ)[h] = 0 is equivalent to

(ω2
mCγ γ γ γ − 2ω2

γ Cγ γ mm)hm
− ω2

γ Cγ,2γ−m,γ,mh2γ−m
= 0 for 0 ≤ m ≤ γ − 1, (7-2)

(ω2
mCγ γ γ γ − 2ω2

γ Cγ γ mm)hm
− ω2

γ Cγ,2γ−m,γ,mh2γ−m
= 0 for γ + 1 ≤ m ≤ 2γ, (7-3)

(ω2
mCγ γ γ γ − 2ω2

γ Cγ γ mm)hm
= 0 for m ≥ 2γ + 1, (7-4)

coupled to

ω2
γ Cγ γ γ γ hγ

= 0. (7-5)

We will show that h = {hm
: m ≥ 0} = 0 is the unique solution to the linear system above if and only if

(7-1) holds. Firstly, (7-5) yields hγ
= 0 due to the fact that Cγ γ γ γ ̸= 0 and ωγ ̸= 0 for all γ ≥ 0, whereas,

for (7-4), one has that hm
= 0 for all integers m ≥ 2γ +1 if and only if ω2

mCγ γ γ γ −2ω2
γ Cγ γ mm ̸= 0 for all

integers m ≥ 2γ + 1. Next, we rearrange (7-2) and (7-3) by setting m = n and m = 2γ − n, respectively,
and obtain [

ω2
nCγ γ γ γ −2ω2

γ Cγ γ nn −ω2
γ Cγ,2γ−n,γ,n

−ω2
γ Cγ,n,γ,2γ−n ω2

2γ−nCγ γ γ γ −2ω2
γ Cγ,γ,2γ−n,2γ−n

] [
hn

h2γ−n

]
=

[
0
0

]
for all n ∈ {0, 1, . . . , γ − 1}. Observe that there are γ in total (2 × 2)-linear systems where the unknowns
are hm for m ∈ {0, 1, . . . , 2γ } \ {γ }. Finally, these systems have only the trivial solution hm

= 0 for all
m ∈ {0, 1, . . . , 2γ } \ {γ } if and only if the determinants Dγ n are nonzero for all n ∈ {0, 1, . . . , γ − 1},
which completes the proof. □

Next, we establish the nondegeneracy condition for this model.

Proposition 7.2 (nondegeneracy condition for the 1-modes and the CW model). Let γ ≥ 0 be any integer.
Then, the nondegeneracy condition (7-1) holds.

Proof. Let γ ≥ 0 be any integer. Also, pick any integers m ≥ 2γ + 1 and n ∈ {0, 1, . . . , γ − 1}. Then,
according to Lemma 5.2, we have that Ci jkm = ωmin{i, j,k,m} provided that either ωi + ω j − ωk − ωm = 0,
ωi −ω j +ωk −ωm = 0 or ωi −ω j −ωk +ωm = 0. One can easily show that all the indices (i, j, k, m) of
the Fourier coefficients that appear in Lemma 7.1 satisfy at least one of these conditions, and hence we
infer

Cγ γ γ γ = ωγ , Cγ γ nn = ωn, Cγ γ mm = ωγ , Cγ,γ,2γ−n,2γ−n = ωγ , Cγ,2γ−n,γ,n = ωn.

Putting this all together yields

ω2
mCγ γ γ γ − 2ω2

γ Cγ γ mm = ωγ (ω2
m − 2ω2

γ ) ≥ ωγ (ω2
2γ+1 − 2ω2

γ ) ≥ 2,

Dγ n = ωnω
2
γ (n − 3 − 4γ )(n − γ )2

̸= 0,

for all m ≥ 2γ + 1 and n ∈ {0, 1, . . . , γ − 1}, which completes the proof. □
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7B. Conformal cubic wave equation out of spherical symmetry. Next, we consider the conformal cubic
wave equation out of spherical symmetry and show that the nondegeneracy condition is a condition on
the Fourier coefficients.

Lemma 7.3 (derivation of the nondegeneracy condition for the 1-modes and the CH model). Let γ and
µ1, µ2 be any integers and define ξ according to (6-2). Then, the nondegeneracy condition

ker(dM(ξ)) = {0}

is equivalent to{
(ω(µ1,µ2)

m )2C
(µ1,µ2)
γ γ γ γ − 2(ω

(µ1,µ2)
γ )2C

(µ1,µ2)
γ γ mm ̸= 0 for all m ≥ 2γ + 1,

D
(µ1,µ2)
γ n ̸= 0 for all n ∈ {0, 1, . . . , γ − 1},

(7-6)

where

D(µ1,µ2)
γ n = [(ω(µ1,µ2)

n )2C(µ1,µ2)
γ γ γ γ −2(ω(µ1,µ2)

γ )2C(µ1,µ2)
γ γ nn ][(ω

(µ1,µ2)
2γ−n )2C(µ1,µ2)

γ γ γ γ −2(ω(µ1,µ2)
γ )2C

(µ1,µ2)
γ,γ,2γ−n,2γ−n]

− [(ω(µ1,µ2)
γ )2C

(µ1,µ2)
γ,2γ−n,γ,n]

2.

Proof. The proof is similar to the one of Lemma 7.1. □

Next, we establish the nondegeneracy condition for this model.

Proposition 7.4 (nondegeneracy condition for the 1-modes and the CH model). Let γ, µ1, µ2 ≥ 0 be any
integers with γ ∈ {0, 1, 2, 3, 4, 5} and

µ1 = µ2 =: µ,

where µ is either sufficiently small with µ ∈ {0, 1, 2, 3, 4, 5} or sufficiently large. Then, the nondegeneracy
condition (7-6) holds true.

Proof. Let γ, µ1, µ2 ≥ 0 be any integers with γ ∈ {0, 1, 2, 3, 4, 5} and µ1 = µ2 =: µ, where µ is either
sufficiently small with µ ∈ {0, 1, 2, 3, 4, 5} or sufficiently large. Also, pick any integer m ≥ 2γ +1. Recall
that, according to Lemma 5.4, we have that C(µ,µ)

γ γ γ γ and C
(µ,µ)
γ γ mm are given in terms of the function M

(µ)
m (λ)

that is also given in a closed formula. Moreover, according to Lemma 5.5, M(µ)
m (λ) is decreasing with

respect to m. In addition, recall that the eigenvalues are given by

(ω(µ,µ)
m )2

= (2m + 1 + 2µ)2

and they are clearly increasing with respect to m ≥ 0. In other words, the function

P(µ)
m (λ) =

M
(µ)
m (λ)

(ω
(µ,µ)
m )2

is decreasing with respect to m for all m ≥ γ as a product of two positive and decreasing functions. In
the following, we show that

(ω(µ,µ)
m )2C(µ,µ)

γ γ γ γ − 2(ω(µ,µ)
γ )2C(µ,µ)

γ γ mm
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Figure 4. The constants σγ with γ ∈ {1, 2, 3, 4, 5}. They are all strictly positive.

stays away from zero for all m ≥ 2γ + 1 and γ ∈ {0, 1, 2, 3, 4, 5} provided that µ is either sufficiently
small or sufficiently large. To this end, we use the monotonicity of P(µ)

m (λ) with respect to m to infer

(ω(µ,µ)
m )2C(µ,µ)

γ γ γ γ − 2(ω(µ,µ)
γ )2C(µ,µ)

γ γ mm

= (ω(µ,µ)
m )2(ω(µ,µ)

γ )2
[

C
(µ,µ)
γ γ γ γ

(ω
(µ,µ)
γ )2

− 2
C

(µ,µ)
γ γ mm

(ω
(µ,µ)
m )2

]
=

1
2
(ω(µ,µ)

m )2(ω(µ,µ)
γ )2

[ γ∑
λ=0

P(µ)
γ (λ)M(µ)

γ (λ)ξλ(µ) − 2
γ∑

λ=0

M(µ)
γ (λ)P(µ)

m (λ)ξλ(µ)

]

=
1
2
(ω(µ,µ)

m )2(ω(µ,µ)
γ )2

γ∑
λ=0

M(µ)
γ (λ)[P(µ)

γ (λ) − 2P(µ)
m (λ)]ξλ(µ)

≥
1
2
(ω(µ,µ)

m )2(ω(µ,µ)
γ )2

γ∑
λ=0

M(µ)
γ (λ)[P(µ)

γ (λ) − 2P(µ)

2γ+1(λ)]ξλ(µ) = (ω(µ,µ)
m )2S(µ)

γ ,

where we set

S(µ)
γ =

1
2
(ω(µ,µ)

γ )2
γ∑

λ=0

M(µ)
γ (λ)[P(µ)

γ (λ) − 2P(µ)

2γ+1(λ)]ξλ(µ).

On the one hand, for all γ ∈ {0, 1, 2, 3, 4, 5} and µ ∈ {0, 1, 2, 3, 4, 5}, we compute S
(µ)
γ and verify that all

S
(µ)
γ are strictly positive. On the other hand, for all γ ∈ {0, 1, 2, 3, 4, 5} and sufficiently large µ, we firstly

compute S
(µ)
γ in terms of µ and then derive its asymptotic expansion as µ → ∞. For γ = 0, we find

S
(µ)

0 =
4µ(2µ + 1)(10µ + 7)0

(
µ +

1
2

)2
0

(
µ +

5
2

)
π(2µ + 3)20(µ + 1)0

(
2µ +

5
2

) ,

which is strictly positive for all µ ≥ 0, and for γ ∈ {1, 2, 3, 4, 5}, we expand

S(µ)
γ = σγ µ1/2

+O(µ−1/2)

as µ → ∞ for some strictly positive constants σγ . Figure 4 above illustrates the constants σγ with
γ ∈ {1, 2, 3, 4, 5}.
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Consequently, in both cases, we can ensure that S(µ)
γ > 0, and hence we conclude that

(ω(µ,µ)
m )2C(µ,µ)

γ γ γ γ − 2(ω(µ,µ)
γ )2C(µ,µ)

γ γ mm ≥ (ω(µ,µ)
m )2S(µ)

γ ≥ (ω
(µ,µ)

2γ+1)
2S(µ)

γ > 0

for all m ≥ 2γ + 1. Finally, it remains to show that the determinants D
(µ,µ)
γ n are all nonzero for n ∈

{0, 1, . . . , γ −1}. To this end, for all γ ∈ {1, 2, 3, 4, 5} and n ∈ {0, 1, . . . , γ −1}, we firstly compute each
of the Fourier coefficients in the determinants above, find a closed formula for each of the determinants
in terms of µ, and then either compute the determinants when µ is sufficiently small or compute their
limits when µ → ∞. For example, for γ = 1, we have n = 0 and compute

D
(µ,µ)

10 = −
3·16µ−1

π2 (µ + 1)(2µ + 3)4(2µ + 5)(4µ + 7)

· (20µ4
+ 328µ3

+ 1029µ2
+ 1155µ + 435)

0
(
µ +

1
2

)2
0

(
µ +

3
2

)3
0

(
µ +

3
2

)
0(µ + 2)20

(
2µ +

9
2

)2 ,

which is clearly strictly negative for all integers µ ≥ 0. For all γ ∈ {1, 2, 3, 4, 5} and n ∈ {0, 1, . . . , γ −1},
we find either D(µ,µ)

γ n < 0 when µ is sufficiently small or D(µ,µ)
γ n → ±∞ when µ → ∞, which completes

the proof. □

7C. Yang–Mills equation in spherical symmetry. Finally, we consider the Yang–Mills equation in
spherical symmetry and show that the nondegeneracy condition is a condition on the Fourier coefficients.

Lemma 7.5 (derivation of the nondegeneracy condition for the 1-modes and the YM model). Let
γ ∈ {0, 1, 2, 3, 4, 5}, and define ξ according to (6-3). Then, the nondegeneracy condition

ker(dM−(ξ)) = {0}

is equivalent to 
uγ γ + vγ γ ̸= 0,

uγ m ̸= 0 for all m ≥ 2γ + 1,

Dγ n ̸= 0 for all n ∈ {0, 1, . . . , γ − 1},

(7-7)

where

Dγ n := uγ nuγ,2γ−n − vγ nvγ,2γ−n

and

uγ m =

(
ϖm

Kγ

)2

+
3
4
Cγ γ mm −

9
2

m+γ∑
ν=0

(Cγ νm)2

ϖ 2
ν − (ϖm + ϖγ )2

−
9
4

2γ∑
ν=0

CmνmCγ γ ν

ϖ 2
ν

−
9
2

m+γ∑
ν=0

ν ̸=±(m−γ )−2

(Cmγ ν)
2

ϖ 2
ν − (ϖm − ϖγ )2 , (7-8)

vγ m =
3
8
Cγ,2γ−m,γ,m −

9
4

2γ∑
ν=0

C2γ−m,ν,mCγ γ ν

ϖ 2
ν − (2ϖγ )2 −

9
2

m+γ∑
ν=0

ν ̸=±(m−γ )−2

Cγ νmC2γ−m,γ,ν

ϖ 2
ν − (ϖ2γ−m − ϖγ )2 . (7-9)
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Figure 5. The constants uγ γ + vγ γ for γ ∈ {0, 1, 2, 3, 4, 5}. They decrease and stay
away from zero.

Proof. Let γ ∈ {0, 1, 2, 3, 4, 5}, and define ξ according to (6-3). Furthermore, assume ker(dM−(ξ))={0},
and pick any h = {h j

: j ≥ 0} ∈ l2
s+3 such that dM−(ξ)[h] = 0. Also, fix any integer m ≥ 0. Then,

according to Lemma 6.7, we have that the system

uγ mhm
+ vγ mh2γ−m

= 0 for 0 ≤ m ≤ γ − 1, (7-10)

(uγ γ + vγ γ )hγ
= 0 for m = γ, (7-11)

uγ mhm
+ vγ mh2γ−m

= 0 for γ + 1 ≤ m ≤ 2γ, (7-12)

uγ mhm
= 0 for m ≥ 2γ + 1, (7-13)

has h = {hi
: i ≥ 0} = 0 as the unique solution, where uγ m and vγ m are given explicitly in terms of

the auxiliary sequences aγ m and bγ m as Lemma 6.7 states. Furthermore, aγ m and bγ m are given by
Lemma 2.15, and putting this all together yields the closed formulas (7-8) and (7-9) for uγ m and vγ m ,
respectively, as stated above. Now, (7-11) and (7-13) yield uγ γ +vγ γ ̸= 0 and uγ m ̸= 0 for all m ≥ 2γ +1.
Next, we rearrange (7-10) and (7-12) by setting m = n and m = 2γ − n, respectively, to obtain[

uγ n vγ n

vγ,2γ−n uγ,2γ−n

] [
hn

h2γ−n

]
=

[
0
0

]
for all n ∈ {0, 1, . . . , γ − 1}. Observe that there are γ in total (2 × 2)-linear systems where the unknowns
are hm for m ∈ {0, 1, . . . , 2γ } \ {γ }. Finally, these systems have only the trivial solution hm

= 0 for all
m ∈ {0, 1, . . . , 2γ } \ {γ } if and only if the determinants Dγ n are nonzero for all n ∈ {0, 1, . . . , γ − 1},
which completes the proof. □

Next, we establish the nondegeneracy condition for this model.

Proposition 7.6 (nondegeneracy condition for the 1-modes and the YM model). Let γ ∈ {0, 1, 2, 3, 4, 5}.
Then, the nondegeneracy condition (7-7) holds.

Proof. Let γ ∈ {0, 1, 2, 3, 4, 5}, α = 1/
√

6 and pick any frequency ϖ ∈ Wα with ϖ < 1. Also, pick
an integer m ≥ 2γ + 1, and define uγ m and vγ m according to (7-8) and (7-9), respectively. Firstly, we
show that uγ γ + vγ γ ̸= 0. In this case, all the sums in the definitions of uγ γ and vγ γ are finite as the
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index variable ν varies within {0, 1, . . . , 2γ }. Hence, we compute uγ γ + vγ γ for all γ ∈ {0, 1, 2, 3, 4, 5}

and verify that they are all nonzero. Figure 5 illustrates the constants uγ γ + vγ γ for γ ∈ {0, 1, 2, 3, 4, 5}.
Secondly, we show that uγ m ̸= 0 for m ≥ 2γ + 1. To this end, we note that Ci jm = 0 for all integers
i, j, m ≥ 0 with either m > i + j or |i − j | > m (Lemma 5.8). Specifically, for any integer m ≥ 2γ + 1,
we focus on

m+γ∑
ν=0

(Cγ νm)2

ϖ 2
ν − (ϖm + ϖγ )2 ,

m+γ∑
ν=0

ν ̸=±(m−γ )−2

(Cmγ ν)
2

ϖ 2
ν − (ϖm − ϖγ )2 ,

and note that we must have m − γ ≤ ν ≤ m + γ . Indeed, Cγ νm = 0 since m − γ = |m − γ | > ν, and
Cγ νm = 0 since ν > m +γ . In addition, for all such ν, the conditions ν ̸= ±(m −γ )−2 are satisfied since

ν ≥ m − γ =⇒ (m − γ ) − 2 < m − γ ≤ ν =⇒ ν ̸= (m − γ ) − 2
and

m ≥ 2γ + 1 =⇒ −(m − γ ) − 2 < 0 =⇒ ν ̸= −(m − γ ) − 2.

Consequently, for all m ≥ 2γ + 1, we have

uγ m =

(
ϖm

Kγ

)2

+
3
4
Cγ γ mm−

9
2

m+γ∑
ν=m−γ

(Cγ νm)2

ϖ 2
ν −(ϖm+ϖγ )2 −

9
4

2γ∑
ν=0

CmνmCγ γ ν

ϖ 2
ν

−
9
2

m+γ∑
ν=m−γ

(Cmγ ν)
2

ϖ 2
ν −(ϖm−ϖγ )2 ,

and by setting ν = σ + m − γ and ν = σ , respectively, we can rewrite the latter as

uγ m =

(
ϖm

Kγ

)2

+
3
4
Cγ γ mm −

9
2

2γ∑
σ=0

(Cγ,σ+m−γ,m)2

ϖ 2
σ+m−γ − (ϖm + ϖγ )2

−
9
4

2γ∑
σ=0

CmσmCγ γ σ

ϖ 2
σ

−
9
2

2γ∑
σ=0

(Cm,γ,σ+m−γ )2

ϖ 2
σ+m−γ − (ϖm − ϖγ )2

.

Now, recall from Lemma 6.6 that

K−2
γ =

3Cγ γ γ γ − 8qγ

−8ϖ 2
γ

= −
3

8ϖ 2
γ

Cγ γ γ γ +
1

ϖ 2
γ

qγ

= −
3

8ϖ 2
γ

Cγ γ γ γ +
9

4ϖ 2
γ

2γ∑
ν=0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1

ϖ 2
ν − (2ϖγ )2

)
,

which yields (
ϖm

Kγ

)2

= −
3ϖ 2

m

8ϖ 2
γ

Cγ γ γ γ +
9ϖ 2

m

4ϖ 2
γ

2γ∑
ν=0

(Cγ γ ν)
2
(

2
ϖ 2

ν

+
1

ϖ 2
ν − (2ϖγ )2

)
.

Putting this all together, we obtain

uγ m = −
3ϖ 2

m

8ϖ 2
γ

Cγ γ γ γ +
9ϖ 2

m

4ϖ 2
γ

2γ∑
σ=0

(Cγ γ σ )2
(

2
ϖ 2

σ

+
1

ϖ 2
σ − (2ϖγ )2

)
+

3
4
Cγ γ mm

−
9
2

2γ∑
σ=0

(Cγ,σ+m−γ,m)2

ϖ 2
σ+m−γ − (ϖm + ϖγ )2

−
9
4

2γ∑
σ=0

CmσmCγ γ σ

ϖ 2
σ

−
9
2

2γ∑
σ=0

(Cm,γ,σ+m−γ )2

ϖ 2
σ+m−γ − (ϖm − ϖγ )2

.



2374 ATHANASIOS CHATZIKALEAS AND JACQUES SMULEVICI

In addition, we also note that Ci jm = 0 for all integers i, j, m ≥ 0 with i + j −m /∈ 2N∪{0} (Lemma 5.8).
Specifically, we must have σ ∈ 2N ∪ {0}. Indeed,

Cγ γ σ = 0 since σ = σ + γ − γ /∈ 2N ∪ {0},

and
Cγ,σ+m−γ,m = Cm,γ,σ+m−γ = 0 since σ = γ + σ + m − γ − m /∈ 2N ∪ {0}.

Therefore, by setting σ = 2τ , we arrive at

uγ m = −
3ϖ 2

m

8ϖ 2
γ

Cγ γ γ γ +
9ϖ 2

m

2ϖ 2
γ

γ∑
τ=0

(Cγ,γ,2τ )
2

ϖ 2
2τ

+
9ϖ 2

m

4ϖ 2
γ

γ∑
τ=0

(Cγ,γ,2τ )
2

ϖ 2
2τ − (2ϖγ )2

+
3
4
Cγ γ mm

−
9
2

γ∑
τ=0

(Cγ,2τ+m−γ,m)2

ϖ 2
2τ+m−γ − (ϖm + ϖγ )2

−
9
4

γ∑
τ=0

Cm,2τ,mCγ,γ,2τ

ϖ 2
2τ

−
9
2

γ∑
τ=0

(Cm,γ,2τ+m−γ )2

ϖ 2
2τ+m−γ − (ϖm − ϖγ )2

.

Now, all the Fourier coefficients above are nonzero and, according to Lemma 5.9, we have Cγ,γ,2τ ,
Cm,2τ,m and Cγ,2τ+m−γ,m in closed formulas. These allow us to compute

γ∑
τ=0

(Cγ,γ,2τ )
2

ϖ 2
2τ

=
(γ + 2)(2γ + 3)(2γ + 5)

15π(γ + 1)(γ + 3)
,

γ∑
τ=0

Cm,2τ,mCγ,γ,2τ

ϖ 2
2τ

=
(γ + 2)(−γ (γ + 4) + 5m(m + 4) + 15)

15π(m + 1)(m + 3)
,

for all integers γ ≥ 0. Recall that Cγ γ mm and Cγ γ γ γ are also given by closed formulas (Remark 5.11).
Consequently, we rescale uγ m and obtain

uγ m

ϖ 2
m

= Iγ m +Eγ m, (7-14)

where Iγ m stands for the part that can be explicitly computed:

Iγ m = −
3

8ϖ 2
γ

Cγ γ γ γ +
9

2ϖ 2
γ

γ∑
τ=0

(Cγ,γ,2τ )
2

ϖ 2
2τ

+
9

4ϖ 2
γ

γ∑
τ=0

(Cγ,γ,2τ )
2

ϖ 2
2τ − (2ϖγ )2

+
3

4ϖ 2
m
Cγ γ mm −

9
4ϖ 2

m

γ∑
τ=0

Cm,2τ,mCγ,γ,2τ

ϖ 2
2τ

,

and Eγ m stands for the part that cannot be explicitly computed:

Eγ m = −
9

2ϖ 2
m

γ∑
τ=0

(Cγ,2τ+m−γ,m)2

ϖ 2
2τ+m−γ − (ϖm + ϖγ )2

−
9

2ϖ 2
m

γ∑
τ=0

(Cm,γ,2τ+m−γ )2

ϖ 2
2τ+m−γ − (ϖm − ϖγ )2

.

Now, using the elementary inequalities

|ϖ 2
2τ+m−γ − (ϖm + ϖγ )2

| = |4(γ − τ + 1)(m + τ + 3)| ≥ 4(m + 3),

|ϖ 2
2τ+m−γ − (ϖm − ϖγ )2

| = |4(τ + 1)(−γ + m + τ + 1)| ≥ 2(m + 3),
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for all 0 ≤ τ ≤ γ and γ ≥ 0, we estimate

|Eγ m | ≤
9

2ϖ 2
m

γ∑
τ=0

(Cγ,2τ+m−γ,m)2

|ϖ 2
2τ+m−γ −(ϖm +ϖγ )2|

+
9

2ϖ 2
m

γ∑
τ=0

(Cm,γ,2τ+m−γ )2

|ϖ 2
2τ+m−γ −(ϖm −ϖγ )2|

≤
9

2ϖ 2
m

1
4(m+3)

γ∑
τ=0

(Cγ,2τ+m−γ,m)2
+

9
2ϖ 2

m

1
2(m+3)

γ∑
τ=0

(Cγ,2τ+m−γ,m)2

=
9

2ϖ 2
m

(
1

4(m+3)
+

1
2(m+3)

) γ∑
τ=0

(Cγ,2τ+m−γ,m)2

=
9(γ +2)

70π(m+1)(m+2)2(m+3)2

[
−3γ 4

−24γ 3
−40γ 2

+32γ +7γ 2m2
+28γ m2

+35m2

+28γ 2m+112γ m+140m+105
]
= Pγ m,

where we used the closed formula for Cγ,2τ+m−γ,m from above. Hence, for all m ≥ 2γ + 1, we obtain

uγ m

ϖ 2
m

= Iγ m +Eγ ≥ Iγ m −Pγ m = Oγ m . (7-15)

Finally, for each γ ∈ {0, 1, 2, 3, 4, 5}, we use the closed formulas for Cγ γ mm and Cγ γ γ γ (see Remark 5.11)
to firstly explicitly compute Iγ m in terms of m and then explicitly compute Oγ m in terms of m. Once the
closed formula is derived, we show that Oγ m > 0 for all m ≥ 2γ + 1. For example, for γ = 0, we find

I0m =
m(m + 4)(5m(m + 4) + 29) + 66

12π(m + 1)(m + 2)2(m + 3)
,

and hence

O0m =
5m4

+ 40m3
+ 109m2

+ 8m − 42
12π(m + 1)(m + 2)2(m + 3)

,

which is greater than 10−3 provided that m ≥ 1. Similarly, for γ = 1, we compute

I1m =
(m2

+ 2)(m(m + 8) + 18)

4π(m + 1)(m + 2)2(m + 3)
,

and hence

O1m =
m(m4

+ 11m3
+ 44m2

− 32m − 348)

4π(m + 1)(m + 2)2(m + 3)2 ,

which is greater than 10−3 provided that m ≥ 3. For all the other cases with γ ∈ {2, 3, 4, 5}, we find

O2m =
109m5

+ 1199m4
+ 4523m3

− 30347m2
− 132936m + 107244

600π(m + 1)(m + 2)2(m + 3)2 ,

O3m =
43m5

+ 473m4
+ 1646m3

− 33554m2
− 129372m + 238248

300π(m + 1)(m + 2)2(m + 3)2 ,

O4m =
83m5

+ 913m4
+ 2851m3

− 139159m2
− 515982m + 1611198

700π(m + 1)(m + 2)2(m + 3)2 ,

O5m =
17m5

+ 187m4
+ 505m3

− 53329m2
− 194760m + 905292

168π(m + 1)(m + 2)2(m + 3)2
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Figure 6. The determinants Dγ n for γ = 5 (blue/bottom), γ = 6 (orange/middle) and
γ = 7 (green/top) for all n ∈ {0, 1, . . . , γ − 1}. They are all in fact nonzero.

and the claim follows similarly.12 Finally, it remains to show that the determinants

Dγ n := uγ nuγ,2γ−n − vγ nvγ,2γ−n

are all nonzero for n ∈ {0, 1, . . . , γ −1}, which follows by a direct computation using the definition of the
Fourier coefficients. Specifically, we compute Dγ n for all γ ∈{0, 1, 2, 3, 4, 5} and n ∈{0, 1, . . . , γ −1} and
verify that they are all strictly negative, which completes the proof. Figure 6 illustrates the determinants
Dγ n for γ ∈ {5, 6, 7} and n ∈ {0, 1, . . . , γ − 1}. □
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