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A FAST POINT CHARGE INTERACTING WITH
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We consider the long-time behavior of a fast, charged particle interacting with an initially spatially
homogeneous background plasma. The background is modeled by the screened Vlasov–Poisson equations,
whereas the interaction potential of the point charge is assumed to be smooth. We rigorously prove the
validity of the stopping power theory in physics, which predicts a decrease of the velocity V (t) of the
point charge given by V̇ ∼ −|V |

−3V, a formula that goes back to Bohr (1915). Our result holds for all
initial velocities larger than a threshold value that is larger than the velocity of all background particles
and remains valid until the particle slows down to the threshold velocity or the time is exponentially long
compared to the velocity of the point charge.

The long-time behavior of this coupled system is related to the question of Landau damping, which has
remained open in this setting so far. Contrary to other results in nonlinear Landau damping, the long-time
behavior of the system is driven by the nontrivial electric field of the plasma, and the damping only occurs
in regions that the point charge has already passed.
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1. Introduction

We consider the screened Vlasov–Poisson equation coupled to the motion of a point charge. Let F(t, x, v)
be a phase space density of the plasma on R3

× R3 and X (t), V (t) ∈ R3 be the position and velocity of
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the point charge. We are interested in the coupled system

∂t F + v · ∇x F + E · ∇vF = −e0∇8(x − X (t)) · ∇vF,

F(0, x, v)= µ(v),

ρ[F] =

∫
R3

F(x, v) dv, E(t, x)= −∇φ ∗x ρ[F],

Ẋ(t)= V (t), X (0)= 0,

V̇ (t)= −αe0 E(t, X (t)), V (0)= V0e1.

(1-1)

Here µ(v) is a probability density, determining the spatially homogeneous initial datum of the density F.
Moreover, the initial velocity of the point charge is V0 > 0, and oriented in direction of the first coordinate
vector e1, without loss of generality. The parameter α > 0 is related to the coupling strength, and e0 = ±1
distinguishes whether the interaction of the point charge with the background is attractive or repulsive.

We consider the screened Vlasov–Poisson equation, i.e., φ(x) is the screened Coulomb potential.
Moreover, 8 is a smooth decaying potential. We refer to Assumption 1.1 for details. The screened
potential φ takes into account the shielding of interactions beyond the Debye length. We refer to [Bardos
et al. 2018; Bouchut 1991; Boyd and Sanderson 2003] for details on this mechanism. The assumptions
on 8 are made for technical reasons. Note that by considering the screened Coulomb potential, we have
∇φ ∈ L1(R3) such that E is well-defined for homogeneous ρ and there is no need to subtract a constant
as for the unscreened potential

In this paper we rigorously prove that the large-time behavior of the system (1-1) is governed by
a deceleration of the point charge. More precisely, after some initial layer where the self-consistent
field approaches a traveling wave solution, we show that for |V (t)| sufficiently large, the friction force
experienced by the point charge is given by

−e0 E(t, X (t))∼ −
V (t)

|V (t)|3
. (1-2)

This means that for large initial velocity of the point charge, i.e., V0 ≫ 1, the particle decelerates on a
slow time scale V 3

0 τ = t .
The friction force of order |V (t)|−2 can be heuristically understood as follows: the swiftly moving

point charge induces a perturbation in the spatial density ρ[F] of the plasma. The perturbation will be
asymmetric with respect to the direction of motion, since the particle has affected the region behind it for
longer than the region ahead of it. For e0 = 1, i.e., if the charge attracts plasma particles, ρ[F] will be
larger behind the moving charge than in front of it, so that −e0 E(t, X (t)) is a friction force. For e0 = −1,
the argument is analogous.

The typical size of the perturbation is proportional to the time spent in a region of order 1, i.e., of
order |V (t)|−1. On the other hand, the force (1-2) acting on the point charge is of order |V (t)|−2 and
therefore much smaller. This is due to the fact that E(t, x) can be expressed through ∇e1ρ[F(t)]. As a
result of the swift motion of the charged particle, the characteristic length scale along the direction of
motion is stretched by |V (t)|; hence |∇e1ρ[F(t)]| ∼ |V (t)|−2. Consequently, very detailed estimates in
the vicinity of the point charge are required in order to make (1-2) rigorous.
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For a more precise description of (1-2), we proceed as follows: For t∗ > 1 and V∗ := V (t∗) ≫ 1,
we show that F(t∗, · ) is close to a travelling wave solution. More precisely, we write F = µ+ f and
show that for |x | ≪ V (t∗), ρ[ f ](t∗, X (t∗)+ x)≈ limt→∞ ρ[hV∗

](t, x), where hV∗
is the solution to the

linearized equation in the inertial frame of the point charge, namely

∂shV∗
+ (v− V∗) · ∇x hV∗

− ∇(φ ∗x ρ[hV∗
]) · ∇vµ= −e0∇8(x) · ∇vµ, hV∗

(0, · )= 0. (1-3)

This traveling wave solution hV∗
is explicitly computable in Fourier variables and satisfies the friction

relation (1-2).
The linearization (1-3) is only valid over time intervals where V (t) can be approximated by a fixed

value V∗. Hence (1-3) is only valid as a short-time linearization on a timescale much shorter than the
timescale on which we observe deceleration of the point charge. This allows us to get precise information
on the response of the plasma to the presence of the point charge.

In order to obtain estimates for the equation on the long timescale, we first perform a long-time
linearization. Here we cannot approximate the velocity of the point charge by a constant and pass to an
inertial frame. This is then only done in the short-time linearization that yields (1-3).

We show that the perturbation on the background induced by the point charge is (roughly) of order
|V (t)|−1 near the point charge and decays algebraically in the distance to the point charge in regions that
have not (yet) been penetrated by it. In order to bootstrap this argument, we show that in regions the point
charge has already passed, Landau damping occurs as a result of dispersion. A precise description of
Landau damping is necessary already for the long-time well-posedness of (1-1), which is a byproduct of
our result.

1A. Previous results. The model (1-1) and the resulting friction force (1-2) are widely studied in
plasma physics to describe the stopping of a fast ion passing through plasma, see for instance [Boine-
Frankenheim 1996; Grabowski et al. 2013; Peter and Meyer-ter-Vehn 1991]. The formula (1-2) (with
additional logarithmic corrections accounting for Coulomb interactions) goes back to [Bohr 1915].

The Vlasov(–Poisson) equation and its large-time behavior (Landau damping) is the subject of numerous
important mathematical works over the last decades. The celebrated paper [Mouhot and Villani 2011]
gave a first proof for Landau damping on the torus, while the analysis on the full space goes back to
[Bardos and Degond 1985; Glassey and Schaeffer 1994; 1995]. The analysis has since been significantly
extended and refined. For small (absolutely continuous) perturbations of the spatially homogeneous
plasma described by the screened Vlasov–Poisson equation, this was first achieved in [Bedrossian et al.
2018; Han-Kwan et al. 2021a]. Recently, sharp estimates for this problem have been proved in [Huang
et al. 2022; 2024]. Moreover, in [Ionescu et al. 2022], the results in [Bedrossian et al. 2018; Han-Kwan
et al. 2021a] have been extended to the Coulomb case for slowly decaying velocity profile µ.

The presence of a point charge gives rise to additional problems for the qualitative and quantitative
behavior. In particular, the coupled system enjoys much weaker dispersive properties, since the point
charge does not disperse at all. Due to these difficulties and its physical relevance, Vlasov-point charge
models have been extensively studied in recent years. Most results concern the coupled system (1-1)
with φ =8 given by the Coulomb potential. For existence and growth bounds for plasmas with density
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decaying for |x | → ∞, we refer to [Caprino et al. 2015; Caprino and Marchioro 2010; Chen et al. 2015a].
Let us point out that the result in [Caprino et al. 2015] does not require the spatial density to be integrable.
For the case of a plasma with finite mass, existence and growth-bounds for solutions can be found in
[Crippa et al. 2018; Desvillettes et al. 2015; Marchioro et al. 2011]. Global existence of weak solutions
has been shown in [Chen et al. 2015b] for a finite plasma and attractive Coulomb interaction.

The existing results assume some decay of the initial data f0(x, v) for |x | → ∞ in order to handle the
problem explained above. To our knowledge, the long-time existence of (1-1) for homogeneous plasmas
remained an open problem so far.

Even less is known on the asymptotic behavior of solutions. The publications [Arroyo-Rabasa and
Winter 2021; Pausader and Widmayer 2021] investigate the properties of radially symmetric Vlasov–
Poisson systems in interaction with a point charge at rest. For the spatially homogeneous plasma with
infinite mass and energy, existence and Debye screening for stationary solutions is shown in [Arroyo-
Rabasa and Winter 2021]. For small initial data with finite mass and finite energy of the plasma density,
the result in [Pausader and Widmayer 2021] gives a precise characterization of the asymptotic scattering.
A common feature of the asymptotic results in [Bedrossian et al. 2018; Han-Kwan et al. 2021a; Pausader
and Widmayer 2021] is the decay of the plasma’s electric field for t → ∞.

The key novelty and difficulty of the present paper is the analysis of the nontrivial long-time behavior
of the self-consistent electric field. This poses major difficulties, both for the long-time well-posedness
and the long-time behavior of the system (1-1). The system (1-1) combines the difficulties of lack of
dispersion of the point charge, and a plasma of infinite mass and energy. This results in the persistence of
the electric field

∥E f (t, · )∥L∞(R3) = O(1) for t ≫ 1, (1-4)

and a linear growth of the mass of the perturbation

∥ρ[ f (t)]( · )∥L1(R3) = O(t) for t ≫ 1. (1-5)

Due to (1-4) and (1-5), the characteristics of the system do not return to free transport or an explicitly
computable ODE for t ≫ 1. Instead, we derive stronger pointwise estimates (see (4-1)) for the perturbation,
which are strongly related to the scattering-geometry of plasma particles by the point charge (see
Definition 2.5). This allows us to separate characteristics which are close to free transport from those
which are nonexplicit; see Corollary 5.2.

1B. Statement of the main result.

Assumption 1.1 (potentials). In the following, let φ be the screened Coulomb potential. More precisely,
with the convention (1-14) for Fourier transforms,

φ̂(ξ)=
1

1 + |ξ |2
.

We assume 8 satisfies p8> 0 and, for some constants C8, c8 > 0,

(|8| + |∇8| + |∇
28|)(x)≤ C8e−c8|x |. (1-6)
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Assumption 1.2 (radial symmetry and regularity of µ). Let µ ∈ C∞(R3) be a radially symmetric
probability density which satisfies

|∇
kµ(v)| ≤ Cke−ck |v| (1-7)

for some ck > 0, Ck > 0.

We also assume that the initial distribution µ is monotone.

Assumption 1.3 (monotonicity of µ). We assume that µ(v) satisfies the monotonicity assumption

∇vµ(v)= −vψ(v) (1-8)

for some nonnegative function ψ ∈ C∞(R3).

Assumption 1.4 (Penrose stability). We assume µ satisfies the Penrose stability criterion. More precisely,
let a(z) for z ∈ C, ℑ(z)≤ 0 be defined by

a(z)= −

∫
∞

0
e−i pz pµ̂(pe1) dp. (1-9)

We then assume that µ is Penrose stable in the sense that there exists a constant κ > 0 such that

inf
ℑ(z)≤0,ξ∈R3

|1 − φ̂(ξ)a(z)| ≥ κ. (1-10)

Sufficient conditions for Penrose stability for screened Coulomb interactions can be found in [Bedrossian
et al. 2018]. Since we consider compactly supported densities µ(v) in this paper, we include a sufficient
criterion for this case, which is an adaptation of Proposition 2.7 in [Bedrossian et al. 2018]. The proof is
postponed to Appendix A.

Proposition 1.5 (Penrose criterion, compactly supported functions). Let µ satisfy Assumption 1.2. Then
there exists a constant C > 0, depending only on the constants Ck, ck , such that

µ(v) > 0 for all |v| ≤ C,

implies the Penrose stability criterion (1-10) for some κ > 0.

We will work with strong solutions F to (1-1) in the following function space.

Definition 1.6. For k > 0, let C1
k (R

3
× R3) be the space given by the norm

∥F∥C1
k (R

3×R3) := ∥⟨v⟩k F∥L∞ + ∥⟨v⟩k
∇x,vF∥L∞ . (1-11)

Our main result is the following theorem.

Theorem 1.7. Let φ,8,µ satisfy Assumptions 1.1–1.4. Then, there exist n, Amin, Amax > 0, V depending
only on the constants in Assumptions 1.1–1.4 such that for all V0>V and all α>0, the following holds true:

There exists T > 0 and a function F ∈ C([0, T ); C1
k (R

3
× R3))∩C1([0, T ); C(R3

× R3)) for all k > 3
and X, V ∈ C1([0, T )) uniquely solving the system (1-1) on (0, T ). Moreover, if µ has compact support,
then for all 8V −3/5

0 < t < T

−
αAmax

|V (t)|
≤ V̇ (t) · V (t)≤ −

αAmin

|V (t)|
, (1-12)
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and on (0, T )
(V 3

0 − 1 − 3αAmaxt)1/3 ≤ |V (t)| ≤ (V 3
0 + 1 − 3αAmint)1/3. (1-13)

Furthermore, at time T at least one of the following conditions holds:

(1) V (T )= V ,

(2) V (T )= logn V0,

(3) suppµ∩ Bc
V (T )/5 ̸= ∅.

A few comments are in order on the conditions at time T.

(1) The threshold velocity V is related to the critical velocity of the point charge which is necessary to
study the system perturbatively.

(2) We are only able to bootstrap the estimates as long as the velocity of the point charge still satisfies
a lower bound in terms of its initial velocity. This leads to the second condition, V (T )= logn V0. The
constant n arising from our proof could be made explicit, but we do not pursue to optimize this constant.

(3) The third condition, suppµ∩ Bc
V (T )/5 ̸= ∅, means that the theorem only makes a statement about

the deceleration of the point charge as long as the point charge remains faster than all the background
particles at time zero. We remark that the ball BV (T )/5 could be replaced by BθV (T ) for any fixed θ < 1
and we only choose θ =

1
5 for definiteness.

We also remark that the condition t > 8V −3/5
0 for the validity of (1-12) could be improved but we do

not pursue this question either. In the initial layer the velocity of the point charge does not significantly
change anyway. In (1-13), this is expressed by the term ±1 ≪ V 3

0 which could be further improved
without difficulty.

We believe Theorem 1.7 remains valid under more general assumptions. First of all, in Assumption 1.2,
it suffices to assume, for some n ∈ N sufficiently large, µ ∈ Cn(R3) and the bound (1-7) for all k ≤ n. All
proofs directly apply in this case.

Weakening the assumption of compact support of µ should be possible with the methods of this paper,
at least to super-exponential decay of µ. The assumption ensures that the collision time between the
point particle and background particles is bounded above. For µ with unbounded support, analogous
estimates on the characteristics as in Section 4 would grow exponentially in time for particles with
similar velocity to the point charge. Hence our argument can only work if the fraction of such particles is
super-exponentially small.

Due to the corresponding Grönwall estimates, it seems difficult to apply the current method for
profiles µ with only exponential or slower decay.

We assume 8 to be nonsingular at the origin. An appealing, and likely very challenging problem would
be the extension of Theorem 1.7 to the case where φ = 8 are both given by the (screened) Coulomb
potential. The main difficulty for treating the Coulomb singularity for8 is the lack of an a priori bound for
the exchanged momentum between plasma particles and the point charge in a collision. In particular, the
deviation of background particles by the point charge cannot be bounded by |V |

−1. Moreover, the presence
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of collisions with very small impact parameter formally leads to a logarithmic correction of the timescale
of deceleration of the point charge, known as Coulomb logarithm (see [Peter and Meyer-ter-Vehn 1991]).
An additional difficulty in treating the full Coulomb potential is due to its slow decay (for both φ and 8),
and the slow, logarithmic damping of perturbations. We refer to [Bedrossian et al. 2022; Han-Kwan et al.
2021b] for results on the linearized problem, and to [Ionescu et al. 2022] for proof of nonlinear Landau
damping around equilibria with very slow decay in velocities.

For the Vlasov–Poisson equation without a point charge, this has recently been treated in [Ionescu
et al. 2022]. However, this work crucially assumes slow polynomial decay for µ, which is in conflict
with our assumptions on µ.

In the case of a radially symmetric plasma with finite mass and energy and a point charge at rest,
a stability analysis has been achieved in [Pausader and Widmayer 2021] through a delicate geometric
argument.

The fact that we are only able to treat velocities V (T ) ≥ log2(V0) is related to errors that grow
logarithmically in time. This problem is also present in [Han-Kwan et al. 2021a] which precludes the
treatment of the 2-dimensional case there. The removal of these logarithmic errors by using suitable
Hölder-type norms has been achieved in [Huang et al. 2024] which appeared after the first version of the
present paper. In [Huang et al. 2022], the authors also deal with the 2-dimensional case, and these papers
thus open a perspective on removing the constraint V (T )≥ log2(V0) in our result.

More precisely, we make use of the fact that the perturbation induced by the moving point charge
disperses in the two-dimensional orthogonal complement to its direction of motion. However, the current
techniques fail to show global-in-time well-posedness of the screened Vlasov–Poisson equation in two
dimensions due to a logarithmic divergence (see [Han-Kwan et al. 2021a]).

Another challenge consists in the behavior of system (1-1) when V (t) becomes of order 1. This seems
a very hard problem because of the lack of any small parameter that allows for a linearization. For a large
range of physically relevant problems, it seems that there is a small parameter in front of the right-hand
side in the first line of (1-1), which corresponds to the ratio of the so-called effective charge of the ion
to the Debye number. If this parameter is small, a linearization is again formally possible (see, e.g.,
[Boine-Frankenheim 1996; Peter and Meyer-ter-Vehn 1991]), but we are currently not able to treat this
case rigorously.

1C. Outline of the rest of the paper. As indicated above, the main challenge of the analysis of the coupled
system (1-1) is to rigorously prove nonlinear Landau damping in this setting. Our basic strategy is inspired
by [Han-Kwan et al. 2021a] where Landau damping is shown using a Lagrangian approach for the screened
Vlasov–Poisson system in the whole space. The argument in [loc. cit.] roughly proceeds as follows:
First, the screened Vlasov–Poisson equation is reformulated as a linear system with a solution-dependent
source term. In a second step, estimates for the linear system are shown via Fourier analysis. Finally, the
solution-dependent source term is estimated by means of a bootstrap argument and a representation of the
solution through characteristics. This last step is accomplished by a careful analysis of the characteristics.
More precisely, it is shown that the characteristics can be well-approximated by rectilinear trajectories
(“straightening”) under the bootstrap assumption.
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Such a Lagrangian approach seems particularly suitable for the system (1-1) in order to quantify
dispersion, which only occurs after the point charge has passed a region and only acts in the directions
orthogonal to the trajectory of the point charge. However, our analysis is much more delicate than the one
in [Han-Kwan et al. 2021a] in several ways. For instance, the point charge induces a perturbation which
is large in the L1- and L∞-norms considered in the bootstrap argument of [loc. cit.] (see (1-5)). Instead
we need to consider a solution-dependent weighted norm adapted to the expected dispersive effects.

Moreover, it is not possible to globally straighten the characteristics as in [loc. cit.]: two background
particles with the same initial position but different initial velocities might attain the same position at
later time due to the influence of the point charge. The straightening argument therefore only applies to
background particles that are not scattered too much by the point charge.

The rest of the paper is organized as follows.
In Section 2, we collect some key ingredients for the proof of Theorem 1.7. The proof itself is given in

Section 2D.
In Section 3, we provide additional pointwise estimates for the linear equation already studied in

[loc. cit.].
Section 4 is devoted to estimates for the characteristics of the nonlinear equation, which leads to their

straightening in suitable regions in Section 5.
We gather the results of the preceding sections to estimate the source term in the linear formulation (in

Section 6), as well as the difference of the forces on the point charge corresponding to the system (1-1)
and its linearization (1-3) (in Section 7).

Finally, in Section 8, we show that the force corresponding to the linearized equation, (1-3) satis-
fies (1-2).

In Appendix A, we prove Proposition 1.5, a Penrose stability criterion for compactly supported velocity
distributions. Appendix B gathers two standard auxiliary lemmas.

1D. Some notation. To lighten the notation, we will set the constants from Assumptions 1.1 and 1.2
to 1, as well as the coupling strength α in (1-1), i.e.,

α = Ck = ck = C8 = c8 = 1.

The value of these constants does not affect any of the proofs.
Throughout the paper we will use the Japanese brackets defined for any a ∈ Rd , d > 0 by

⟨a⟩ :=

√
1 + |a|2.

For x ∈ R3, we introduce the orthogonal part x⊥
∈ R2 such that

x = (x1, x⊥).

We use the following conventions for the Fourier transform in space and space-time respectively

ĝ(ξ)=

∫
R3

e−i x ·ξg(x) dx, h̃(τ, ξ)=

∫
R

∫
R3

e−iτ t e−i x ·ξh(t, x) dx dt. (1-14)
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For radial functions we will use the convention

g(k)= g(|k|),

whenever there is no risk of confusion.
We use C for a constant that may change from line to line and use A ≲ B for A ≤ C B.

2. Outline of the proof of the main result

This section contains the proof of Theorem 1.7 and sets the structure of the remainder of the paper. We
start by giving estimates on the linearized friction force in Section 2A. We then reformulate (1-1) in terms
of the Green’s function of the linearized problem in Section 2B. In Section 2C, we introduce scattering
variables for the interaction of the plasma with the moving charged particle, as well as associated norms.
At this point we also state the estimates which are used for the bootstrap argument and are proved in the
remaining sections. Finally, in Section 2D we give the proof of Theorem 1.7.

2A. The force on the point charge for the linearized equation. As outlined in the Introduction, the
proof of the main result is based on a rigorous linearization of the equation.

The solution hV∗
to the linearized equation (1-3), has an integral representation through the space-time

Fourier transformation, which gives access to the force on the point charge corresponding to hV∗
. More

precisely, we prove the following proposition.

Proposition 2.1. Recall the function hV∗
defined in (1-3). For any 0 ̸= V∗ ∈ R3, the following limit exists

and is negative:

lim
s→∞

e0∇φ ∗x ρ[hV∗
(s, · )](0) · V∗ < 0. (2-1)

More precisely, there exists a constant A > 0 and c > 0 such that

lim
s→∞

∣∣A + |V∗|e0∇φ ∗x ρ[hV∗
(s, · )](0) · V∗

∣∣ ≲ e−c|V∗|. (2-2)

The proof of Proposition 2.1 will be given in Section 8.
Although the short-time linearized equation (1-3) in the inertial frame of the point charge is very

practical for computing this force, we rewrite it in the original coordinate frame to compare with the
nonlinear equation (1-1). It is then convenient to introduce the parameter R > 0 that will play the role of
a large time and consider the short-time linearized equation where the charged particle starts at position
X∗− RV∗ at time zero and moves with constant velocity V∗. More precisely, we define for R> 0, X∗ ∈ R3

gR,X∗,V∗
(t, x, v)= hV∗

(t, x − X∗ + (R − t)V∗, v).

Observe that gR,X∗,V∗
solves

∂s gR,X∗,V∗
+ v · ∇x gR,X∗,V∗

− ∇(φ ∗x ρ[gR,X∗,V∗
]) · ∇vµ= −e0∇8((x − X∗ + (R − s)V∗) · ∇vµ,

gR,X∗,V∗
(0, · )= 0.

(2-3)
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Then, on the one hand, we have the following relation of the forces:

lim
s→∞

∇φ ∗x ρ[hV∗
(s, · )](0)= lim

R→∞

∇φ ∗x ρ[gR,X∗,V∗
(R, · )](X∗).

On the other hand, for t∗ ≫ V −1
min and t ≈ t∗ such that V (t)≈ V∗, we expect gt∗,X (t∗),V (t∗)(t, · ) to be close

to the solution f = F −µ of (1-1).

2B. Representation of the solution through a Green’s function. Let F be a solution to (1-1). We
decompose F as

F(t, x, v)= µ(v)+ f (t, x, v).

Then f solves the equation

∂t f +v ·∇x f +∇x(e08( · − X (t))−(φ∗x ρ[ f ])) ·∇v f = ∇x((φ∗x ρ[ f ])−e08( · − X (t))) ·∇vµ,

f (0, · )= f0,

Ẋ(t)= V (t), V̇ (t)= e0∇(φ ∗x ρ[ f ])(X (t)), X (0)= 0, V (0)= V0,

(2-4)

with f0 = 0.
Since µ(v) is spatially homogeneous, the self-consistent force field E in (1-1) can be expressed as

E(t, x)= −(∇φ ∗x ρ[ f (t, · )])(x). (2-5)

We introduce the total force E , defined by

E(t, x)= E(t, x)+ e0∇8(x − X (t)).

Let Xs,t , Vs,t be the characteristics associated to E . More precisely, for x, v ∈ R3, 0 ≤ s ≤ t ,

d
ds

Xs,t(x, v)= Vs,t(x, v), X t,t(x, v)= x, (2-6)

d
ds

Vs,t(x, v)= E(s, Xs,t(x, v)), Vt,t(x, v)= v. (2-7)

Then, if f is sufficiently regular

f (t, x, v)= −

∫ t

0
E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v))−

∫ t

0
e0∇8(Xs,t(x, v)− X (s)) · ∇vµ(Vs,t(x, v)).

This we can rewrite as

f (t, x, v)=

∫ t

0
(∇φ ∗ ρ[ f ])(s, x − (t − s)v) · ∇µ(v)ds

+

∫ t

0
E(s, x − (t − s)v) · ∇µ(v)ds −

∫ t

0
E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v))

−

∫ t

0
e0∇8(Xs,t(x, v)− X (s)) · ∇vµ(Vs,t(x, v)),

and therefore the density ρ[ f ] solves the following integral equation for t ≥ 0:

ρ[ f ](t, x)=

∫ t

0

∫
R3
(∇φ ∗ ρ[ f ])(s, x − (t − s)v) · ∇µ(v) dv ds +S(t, x), (2-8)
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where S for t ≥ 0 is given by

S(t, x)= R(t, x)+ SP(t, x), (2-9)

R(t, x)=

∫ t

0

∫
R3

(
E(s, x − (t − s)v) · ∇vµ(v)− E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v))

)
dv ds, (2-10)

SP = −

∫ t

0

∫
R3

e0∇8(Xs,t(x, v)− X (s)) · ∇vµ(Vs,t(x, v)) dv ds. (2-11)

We will call S the source term, R the reaction term, and SP the contribution of the point charge.
We can write the solution to the short-time linearization of the equation in (2-3) analogously. Then, for

t ≥ 0, the density ρ[gR,X∗,V∗
] satisfies the equation

ρ[gR,X∗,V∗
](t, x)=

∫ t

0

∫
R3
(∇φ ∗ ρ[gR,X∗,V∗

])(s, x − (t − s)v) · ∇µ(v) dv ds + SR,X∗,V∗
(t, x), (2-12)

SR,X∗,V∗
(t, x)= −

∫ t

0

∫
R3

∇8(x − (t − s)v− (X∗ − (R − s)V∗)) · ∇vµ(v) dv ds. (2-13)

We extend both S and SR,X∗,V∗
by 0 for negative times.

Following [Han-Kwan et al. 2021a], we obtain a representation of ρ[ f ] and ρ[gR,X∗,V∗
] through a

Green’s function G of the form
ρ(t, x)= G ∗t,x S + S, (2-14)

with ρ = ρ[ f ] and S = S, respectively, ρ = ρ[gR,X∗,V∗
] and S = SR,X∗,V∗

. More precisely, corresponding
to [loc. cit., Theorem 2.1], we have the following proposition. In addition to [loc. cit., Theorem 2.1], we
show also pointwise estimates for G that will be needed later on.

Proposition 2.2. Let µ satisfy Assumptions 1.2 and 1.4 and let φ be given as in Assumption 1.1. Then,
for all S ∈ L1

loc(R; L2(R3)∩ L∞(R3)), there exists a unique solution ρ ∈ L1
loc(R; L2(R3)) to (2-8) that

can be expressed through (2-14) with a kernel G : R × R3
→ R that satisfies G(t, · )= 0 for t < 0 and

for t ≥ 0

∥G(t, · )∥L1 ≤
C

1 + t
. (2-15)

Moreover, for all t ≥ 0 and x ∈ R3, G satisfies the pointwise estimates

|G(t, x)| ≲
1

t4 + |x |4
, (2-16)

|∇G(t, x)| ≲
1

t5 + |x |5
. (2-17)

This proposition is proved in Section 3A.

2C. Bootstrap estimates. The proof of long-time well-posedness of the solution to (2-4) relies on local
well-posedness and a bootstrap argument. We start by stating the local well-posedness result, the proof of
which is a standard fixed-point argument and will be omitted for the sake of conciseness.
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Theorem 2.3 (local well-posedness). Let µ, φ and 8 satisfy the Assumptions 1.1, 1.4 and (1-6) respec-
tively and let V0 > 0. Further let k > 3, and f0 ∈ C1

k (R
3
× R3) (see (1-11)).

Then there exists a time T∗ > 0, a function f ∈ C([0, T∗); C1
k (R

3
× R3))∩ C1([0, T∗); C(R3

× R3))

and X, V ∈ C1([0, T∗)) uniquely solving the system (2-4). Moreover, T∗ = ∞ or

lim sup
t→T∗

∥ρ(t, · )∥W 1,∞ = ∞. (2-18)

Furthermore, for all 0 ≤ t < T∗

X (t) ∈ span{e1}. (2-19)

The relation (2-19) follows immediately from symmetry considerations.
The bootstrap argument consists in estimating ρ by S and vice versa in a weighted W 1,∞-norm which

is adapted to the scattering of the plasma by a fast moving charged particle. More precisely, we will
assign weights that reflect that we expect the following decay of both S and ρ:

• For regions with a large component orthogonal to the particle trajectory (i.e., x⊥
≫ 1): decay in x⊥

because the charged particle never reaches these regions.

• For regions in front of the charged particle (i.e., x1 > X1(t)): decay in terms of the distance x1 − X1(t);
the charged particle has not yet significantly disturbed these regions.

• For regions behind the charged particle (i.e., x1 < X1(t)): decay in terms of the time passed since
x1 = X1(s) due to dispersion.

In order to formalize this decay, we introduce several parameters that depend on the trajectory of
the charged particle. Because this trajectory is a priori only defined for short times, we first introduce
the following linear extension. First, for T < T∗, we define the minimum of the first component of the
velocity of the charged particle

Vmin(T ) := min
t∈[0,T ]

V1(t). (2-20)

Definition 2.4. Let 0< T < T∗, where T∗ is the maximal existence time from Theorem 2.3 and assume
that Vmin(T ) > 0. Then, we define

X T (t) :=


X (t) in [0, T ],

X (T )+ (t − T )V (T ) in [T,∞),

tV0 in (−∞, 0].

Definition 2.5. Given T > 0, and X T as in Definition 2.4 we introduce the following:

(i) Let x ∈ R3. Then, there exists a unique τx := τx1 ∈ (−∞,∞) such that

X T
1 (τx1)= x1,

which we call the passage time at x1. We also define

τ̌t,x = τ̌t,x1 := [t − τx1]+.
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x̌t,x,v
v

x

x⊥

ďt,y y

X (Tt,x,v) X (τx ) X (t) X (τy)

τ̌x

Tt,x,v τx t τy

Ťt,x,v

Figure 1. The quantities τx , τ̌t,x , Tt,x,v, qTt,x,v, x̌t,x,v and ďt,x .

(ii) For x ∈ R3, s ∈ R we denote the distance to the approaching charged particle with respect to the first
component by

ďs,x = ďs,x1 := [x1 − X T
1 (s)]+.

(iii) For 9 ∈ L1
loc((0, T ); W 1,1

loc (R
3)) we define the weighted norm

∥9∥YT = sup
s∈[0,T ],x∈R3

|9(s, x)|⟨τ̌ 2
s,x + ď2

s,x + |x⊥
|
2
⟩ + |∇9(s, x)|⟨τ̌ 3

s,x + ď3
s,x + |x⊥

|
3
⟩. (2-21)

The quantities τx , τ̌t,x and ďs,x are visualized in Figure 1 (together with further quantities that will be
defined later on): Point x lies behind and point y in front of the point charge at time t which is located
at X (t). Times τx and τy are then the times when the point charge has passed by x and will pass by y,
respectively.

On the one hand, the distance ďt,y is the distance between the point charge at time t and the first
coordinate of the position y. Note that by definition ďt,x = 0 as x lies behind the point charge at time t .
On the other hand τ̌t,x = t − τx is the time difference between the present time t and the passage time τx ,
i.e., the time the point charge needs to travel from the X (τx) to X (t). Note that by definition τ̌t,y = 0
as y lies in front of the point charge at time t .

We point out that in Figure 1 both time and the first space coordinate is visualized on the horizontal
line. However, since the point charge is very fast, the relative times are much smaller than the relative
distances, i.e., τ̌t,x ≪ X1(t)− X1(τx).

We mark quantities with ·̌ to indicate that they are differences of quantities inherent to the point charge
and external quantities. Consequently, those quantities appear in the norm ∥ · ∥YT which anticipates the
expected decay of the perturbation of the background density. For consistency, one could also replace x⊥

by x̌⊥
= x⊥

− X⊥(τx) in that norm, but we prefer not to further complicate the notation in this way.
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Note that τx , τ̌t,x and ďs,x all implicitly depend on T. Since the time T will always be fixed when
dealing with these quantities, no confusion will arise from this implicit dependence.

We will for simplicity mostly write τx , τ̌t,x and ďs,x and only use τx1 , τ̌t,x1 and ďs,x1 when we want to
emphasize that these quantities only depend on x1.

The quadratic and cubic weight in the definition of 9 are dictated by the expected dispersion. Indeed,
since the fast charged particle effectively creates a disturbance on the whole line, the dispersion only
takes place with respect to the orthogonal direction. Since the orthogonal space is 2-dimensional, this
gives rise to τ̌ 2

t,x and τ̌ 3
t,x in (2-21). The pointwise decay of the Green’s function dictates the powers in

ďs,x and x⊥ to be the same.

A consequence of Proposition 2.2 are the following estimates for the linear equation (2-14).

Corollary 2.6. There exists a constant C > 0 with the following property. Let T > 0, and X T as in
Definition 2.4 and assume in addition that Vmin(T )≥ 1. Then, for all S ∈ L1

loc(R; L2(R3)∩ L∞(R3)) the
unique solution ρ ∈ L1

loc(R; L2(R3) to (2-8) satisfies

∥ρ∥YT ≤ C log2(2 + T )∥S∥YT .

This corollary is proved in Section 3B.

To close a bootstrap argument, we need to estimate S (see (2-9)) in terms of ρ. This is the content of
the following proposition which contains two estimates: (2-22) gives control of the source term S on
the long time scale V 3

0 τ = t , and the estimate implicitly takes into account the trajectory of the charged
particle X (t). On the other hand, (2-23) allows us to approximate the force E(T, X (T )) on the charged
particle with the short-time linearization of the force. Note that, compared to (2-22), this requires a much
finer estimate of the error in the vicinity of X (T ).

Proposition 2.7. There exists 0< δ0 < 1, Vnl > 0, nnl > 0, C > 0 such that the following holds true. Let
T and X T be as in Definition 2.4. Then, if Vmin(T )≥ Vnl, suppµ⊂ BVmin(T )/5(0), Vmin(T )−1 < δ < δ0,
∥ρ[ f ]∥YT < δ and lognnl(2 + T ) < δ−1, then?

(i) The source S can be estimated by

∥S∥YT ≤ CVmin(T )−1
+ Cδ3/2. (2-22)

(ii) If in addition T ≥ 8Vmin(T )−3/5, then

lim
s→∞

|(∇φ ∗ ρ[hV (T )])(s, 0)+ E(T, X (T ))| ≤ Cδ13/6. (2-23)

The proof of Proposition 2.7 is the main technical part of the paper. Part (i) will be shown in Section 6D.
The proof of Proposition 2.7(ii) can be found in Section 7C.

The powers of δ in (2-22) and (2-23) are probably not optimal, neither the restriction T ≥ 8Vmin(T )−3/5.
Indeed, the two terms on the right-hand side of (2-22) correspond to the reaction term R and the
contribution of the point charge SP respectively (see (2-9)–(2-11)). The estimate of the contribution of SP

is given in Section 6C. It makes rigorous the heuristics that the point charge only induces a perturbation
of order Vmin since this is the order of the time that it can interact with any given point x where it passes
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by. On the other hand, one could expect R to be of order δ2. Indeed, the self-consistent force field E is
bounded by ∥ρ[ f ]∥YT < δ (see Lemma 2.8 below). Additionally, R is given by the difference obtained
by evaluating the same function on the true characteristics (Xs,t(x, v), Vs,t(x, v)) and on their rectilinear
counterparts x − (t − s)v, v. Since the error in the rectilinear approximation is due to the total force field
E = E + e0∇8( · − X), this yields additional smallness of order δ+ V −1

min ≲ δ.
Estimates on the characteristics will be given in Section 4. These allow us to straighten the characteristics

(see Section 5), except on a very small set.
Note that the forces whose difference is estimated in (2-23) can be rewritten as

E(T, X (T ))= −(∇φ ∗ (G ∗S +S))(t, X (t)),

lim
s→∞

∇φ ∗ ρ[hV (T )])(s, 0)= lim
R→∞

(∇φ ∗ (G ∗ SR,X (T ),V (T ) + SR,X (T ),V (T ))(R, X (T )). (2-24)

Therefore, it is enough to analyze the source term S and its counterpart SR,X∗,V∗
for the second part

of the above proposition, too. The estimate (2-23) cannot be valid for very small times, since the force
E(T, X (T )) vanishes at T = 0. Instead, we can at best expect the estimate to hold for times that are large
compared to the timescale of the point charge, i.e., T ≫ V (0)−1.

Once we have established estimates for ∇ρ, we immediately obtain estimates for the force field E and
its derivative. This convolution estimate is stated in the following lemma, the proof is elementary and
will be skipped.

Lemma 2.8. The force field E given by (2-5) and ∇E can be estimated by

|E(t, x)| + |∇E(t, x)| ≲
1

1 + τ̌ 3
t,x + ď3

t,x + |x⊥|3

(
sup
x∈R3

|∇ρ(t, x)|(1 + τ̌ 3
t,x + ď3

t,x + |x⊥
|
3)

)
. (2-25)

2D. Proof of Theorem 1.7.

Proof of Theorem 1.7. Let f , (X, V ) be the solution of (2-4) with maximal time of existence T∗ > 0.
Recall the maximal existence time T∗ from Theorem 2.3 and the constants nnl, δ0, Vnl from Proposition 2.7.
Define n = max{nnl, 8}, Vµ := 5 supv∈suppµ |v| and δ(t) := C0V (−n+2)/n

min (t). Then, for all C0 > 0 there
exists VC0 such that Vmin(t)−1 < δ(t) < δ0 provided Vmin(t) ≥ VC0 . Let V ≥ max{Vnl, VC0, 1}. The
constants C0, V will be chosen later.

Consider the time T > 0 given by

T := sup{t ∈ [0, T∗) : ∥ρ∥Yt ≤ δ(t), Vmin(t)≥ max{V , Vµ}}.

Then, by Corollary 2.6 and Proposition 2.7, for 0 ≤ t <min{T, eδ
−1/n(t)

− 2}

∥ρ∥Yt ≤ C log2(2 + t)∥S∥Yt ≤ C log2(2 + t)Vmin(t)−1
+ C log2(2 + t)∥ρ∥

3/2
Yt

≤ Cδ−2/n(t)V −1
min(t)+ Cδ−2/n(t)δ3/2(t)

≤
C
C0
δ(t)+ Cδ5/4(t).

Now pick C0 = 4C and choose V large enough such that the above estimate implies

∥ρ∥Yt ≤
1
2δ(t) for t <min{T, eδ

−(1/n)(t)
− 2}.
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By continuity of ∥ρ∥Yt and the blow-up criterion (2-18), we infer that one of the following statements
holds (after possibly further increasing V ):

• T ≥ eδ
−1/n(T )

− 2 ≥ eV 1/(2n)
min (T ).

• Vmin(T )= V .

• Vmin(T )= Vµ.

It remains to show (1-12)–(1-13), and that T ≥ eV 1/(2n)
min (T ) implies V (T )≤ log3n V0. We first show the

latter assuming that (1-13) holds. Indeed, by (1-13), if T ≥ eV 1/(2n)
min (T ), then

0 ≤ Vmin(T )= V (T )≤ (2V 3
0 − AmineV 1/(2n)

min (T ))1/3,

and thus (after possibly increasing V )

V (T )≤ (C + 3 log V0)
2n

≤ log3n V0.

It remains to show (1-12)–(1-13). We will first show the validity of (1-13) for t ∈ [0,min{8V −3/5
0 , T }].

Then, if T < 8V −3/5
0 , the proof is complete. Otherwise, we show the validity of (1-12) on [8V −3/5

0 , T ]

and how that implies (1-13) on in [8V −3/5
0 , T ] to conclude.

From (2-25) we get for all 0 ≤ t < T (after possibly further increasing V )

|V̇ (t)| ≤ Cδ(t)≤ 1.

In particular, we can estimate the velocity of the charged particle by

V0 − t ≤ V1(t)≤ V0 + t. (2-26)

This implies the validity of (1-13) for t ∈ [0,min{8V −3/5
0 , T }]. Moreover, we infer (after possibly further

increasing V and thus V0)
t ≥ 4V −3/5

min (t) for all t ∈ [8V −3/5
0 , T ],

where we first observe that the estimate follows immediately from the definition of T and V ≥ 4 if t ≥ 1,
and from the first inequality in (2-26) for t ∈ [8V −3/5

0 , 1]. Thus, combining Propositions 2.7 and 2.1
yields (1-12). Moreover, (2-26) and (1-12) yield that (1-13) holds on [0, T ]. □

3. Estimates for the Green’s function

In this section, we give the proofs of Proposition 2.2 and Corollary 2.6.

3A. Proof of Proposition 2.2. We start with a simple estimate for the function a defined in (1-9).

Lemma 3.1. The function a(r) defined in (1-9) satisfies a ∈ C∞(R) and for all j ∈ N∣∣∣∣a( j)(r)−
d j

d jr

(
1
r2

)∣∣∣∣ ≤
C j

|r |3+ j .

The proof is simply integration by parts and making use of µ̂(0)= 1 since µ is a probability density
by assumption.
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Proof of Proposition 2.2. The first part of the assertion, including the L1-estimate (2-15), is taken from
Theorem 2.1 in [Han-Kwan et al. 2021a].

It remains to prove (2-16) and (2-17). We only present the proof of (2-16). The proof of (2-17) is
similar and will be skipped for the sake of conciseness.

Step 1: formulation in space-time Fourier transform. We start with the Fourier representation taken from
(see [Han-Kwan et al. 2021a, equation (2.9)])

K̃ (τ, ξ) := φ̂(ξ)

∫
∞

0
e−iτ t iξ · y∇µ(tξ) dt = φ̂(ξ)a(τ/|ξ |),

G̃(τ, ξ)=
K̃ (τ, ξ)

1 − K̃ (τ, ξ)
,

where we used the rotational symmetry of µ. Now we define 9ξ (r) by

9ξ (r)=
a(r)

1 − φ̂(ξ)a(r)
, r ∈ R, (3-1)

and take ψ̂ξ (p) := (F−1
r 9ξ (r))(p) to be the Fourier transform in r .

Relying on Assumption 1.4 and the smoothness of a, we observe that ψ as defined in (3-1) satisfies

∣∣∣∣∇ j
ξ

dℓ

dℓ p
ψ̂ξ (p)

∣∣∣∣ ≲ j,l,M


1

1 + |ξ |2+ j

1
1 + |p|M for any M ∈ N, j ≥ 1,

1
1 + |p|M for any M ∈ N, j = 0.

(3-2)

This allows us to rewrite
pG(t, ξ)= φ̂(ξ)|ξ |ψ̂ξ (t |ξ |).

Step 2: the case t ≤ 1. We take η(ξ) to be a nonnegative bump function which takes value 1 on B1/2 and
vanishes outside of B1. We decompose pG into

pG(t, ξ)= η(|ξ |2)φ̂(ξ)|ξ |(ψ̂ξ (t |ξ |)− ψ̂ξ (0))+ η(|ξ |2)φ̂(ξ)|ξ |ψ̂ξ (0)+ (1 − η(|ξ |2))φ̂(ξ)|ξ |ψ̂ξ (t |ξ |)

= R(a)(ξ, t |ξ |)+ R(b)(ξ)+ R(c)(ξ, t |ξ |).

We have

R(a)(ξ, t |ξ |)= η(|ξ |2)φ̂(ξ)t |ξ |2
ψ̂ξ (t |ξ |)− ψ̂ξ (0)

t |ξ |
= η(|ξ |2)φ̂(ξ)t |ξ |2hξ (t |ξ |),

where h is a smooth function with bounded derivatives to any order. Hence, ∇
4
ξ (R

(a)(ξ, t |ξ |)) ∈ L1(R3),
uniformly for t ≤ 1, and thus we can bound

|F−1
ξ [R(a)(ξ, t |ξ |)](x)| ≲

1
1 + |x |4

for t ≤ 1.

Next,
R(b)(ξ)= η(|ξ |2)|ξ |e−|ξ |ψ̂0(0)+ η(|ξ |2)

(
φ̂(ξ)|ξ |ψ̂ξ (0)− |ξ |e−|ξ |ψ̂0(0)

)
. (3-3)
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The Fourier transform of the first term can be explicitly estimated using

|F−1
ξ (|ξ |e−|ξ |)(x)| ≲

∣∣∣∣1x

(
1

1 + |x |2

)∣∣∣∣ ≲ 1
1 + |x |4

.

We then use (3-2) and proceed much as we did for R(a) to estimate the second term on the right-hand
side of (3-3) and obtain a total bound

|F−1
ξ [R(b)(ξ)](x)| ≲

1
1 + |x |4

.

The contribution of R(c)(ξ, t |ξ |) can be estimated by

|F−1
ξ [R(c)(ξ, t |ξ |)](x)| ≲

1
|x |4

∥∥∇
4
ξ

(
(1 − η(|ξ |2))φ̂(ξ)|ξ |ψ̂ξ (t |ξ |)

)∥∥
L1
ξ

≲
1

|x |4,

due to (3-2). Similarly, we obtain the bound

|F−1
ξ [R(c)(ξ, t |ξ |)](x)| ≲

∥∥(
(1 − η(|ξ |2))φ̂(ξ)|ξ |ψ̂ξ (t |ξ |)

)∥∥
L1
ξ

≲
1
t4 ,

and we obtain the claim, (2-16), for t ≤ 1.

Step 3: the case t ≥ 1. We rewrite pG as

pG(t, ξ)=
φ̂(ξ)

t
ζξ (t |ξ |), ζξ (p)= |p|ψ̂ξ (|p|).

The Fourier transformation of ζ in ξ can be rewritten as

|F−1
ξ [ζξ (t |ξ |)](x)| =

1
t3 |Fξ [ζξ/t(|ξ |)](x/t)|.

Much as above, we now decompose the function ζ further into

ζξ/t(|ξ |)= |ξ |
(
ψ̂ξ/t(|ξ |)− ψ̂ξ/t(0)

)
η(|ξ |2)+ |ξ |ψ̂ξ/t(0)η(|ξ |2)+ |ξ |ψ̂ξ/t(|ξ |)(1 − η(|ξ |2))

= R(a)ξ/t(|ξ |)+ R(b)ξ/t(|ξ |)+ R(c)ξ/t(|ξ |).

Arguing as in Step 2, we obtain

|F−1
ξ (ζξ/t(|ξ |))(x)| ≲

1
1 + |x |4

.

We conclude

|G(t, x)| ≲
1
t

∣∣∣∣e−|x |

|x |
∗x Fξ [ζξ (t |ξ |)](x)

∣∣∣∣ ≲ 1
t4 + |x |4

t ≥ 1, x ∈ R3,

as claimed. □

3B. Proof of Corollary 2.6. We start with a simple observation on the passage time τx that we will use
frequently.

Lemma 3.2. Let T < T∗ from Theorem 2.3. Recall the passage time τx introduced in Definition 2.5. Then,
we have for all x ∈ R3

|∇xτx | ≤
1

Vmin(T )
. (3-4)
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The proof follows immediately from the definition of Vmin(T ) and τx .

Proof of Corollary 2.6. By the definition of ρ (see (2-14)) we have

ρ(t, x)= S(t, x)+
∫ t

0

∫
R3

G(t − s, x − y)S(s, y) dy ds.

To prove the assertion, it suffices to estimate the convolution. We first consider the integral over the region

Bt,x :=
{
(s, y) ∈ (0, t)× R3

: |t − s| + |x − y| ≤
1
2 max{1, τ̌t,x , ďt,x , |x⊥

|}
}
.

We observe that for s ≤ t , and all x, y ∈ R3

|x⊥
| − |y⊥

| ≤ |t − s| + |x − y|, τ̌t,x − τ̌s,y ≤ |t − s| + |x − y|, ďt,x − ďs,y ≤ |t − s| + |x − y|.

Indeed, the first inequality follows immediately from the reverse triangle inequality. For the second
inequality, we use in addition (3-4) and that Vmin ≥ 1 by assumption. For the third inequality, we use in
addition that ďt,x ≤ ďs,x for s ≤ t since Ẋ1 > 0 by assumption. Thus,

1 + τ̌s,y + ďs,y + |y⊥
| ≥

1
2 max{τ̌t,x , ďt,x , |x⊥

|} in Bt,x . (3-5)

Combining this with (2-15) and the definition of ∥ · ∥Yt (see (2-21)) yields∣∣∣∣∫
Bt,x

G(t − s, x − y)S(s, y) ds dy
∣∣∣∣ ≲ log(2 + t)∥S∥Yt

1 + τ̌ 2
t,x + ď2

t,x + |x⊥|2
.

It remains to estimate the excluded regions of the integral. By (2-16) we can estimate∣∣∣∣∫
Bc

t,x

G(t − s, x − y)S(s, y) ds dy
∣∣∣∣

≲
∥S∥Yt

1 + τ̌ 2
t,x + d2

t,x + |x⊥|2

∫ t

0

∫
R3

1|y⊥|≤|x⊥|/2 + 1|x⊥|/2≤|y⊥|≤2|x⊥| + 1|y⊥|≥2|x⊥|

(1 + (t − s)2 + |x − y|2)(1 + |y⊥|2)
dy ds

≲
∥S∥Yt

1 + τ̌ 2
t,x + d2

t,x + |x⊥|2

(∫ t

0

2 log(2 + |x⊥
|)

1 + (t − s)+ |x⊥|
ds +

∫ t

0

∫
R2

1
(1 + s + |y⊥|)(1 + |y⊥|2)

dy⊥ ds
)

≲
log2(2 + t)∥S∥Yt

1 + τ̌ 2
t,x + ď2

t,x + |x⊥|2
.

The last inequality follows by separating the cases |x⊥
| ≤ t , |x⊥

| ≥ t for the first term and the regions
|y⊥

| ≤ s, |y⊥
| ≥ s for the second term. Hence we have

|ρ(t, x)| ≲
log2(2 + t)∥S∥Yt

1 + τ̌ 2
t,x + ď2

t,x + |x⊥|2
.

For the gradient ∇xρ we observe again that by (2-15)∣∣∣∣∫
Bt,x

G(t − s, x − y)∇S(s, y) ds dy
∣∣∣∣ ≲ log(2 + t)∥S∥Yt

1 + τ̌ 3
t,x + ď3

t,x + |x⊥|3
.
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Again, it remains to estimate the convolution on the excluded region. Integrating by parts yields∣∣∣∣∫
Bc

t,x

G(t − s, x − y)∇S(s, y) ds dy
∣∣∣∣

≤

∣∣∣∣∫
Bc

t,x

∇G(t −s, x −y)S(s, y) ds dy
∣∣∣∣+∣∣∣∣∫ t

0

∫
|t−s|+|x−y|=max{1,τ̌t,x ,ďt,x ,|x⊥|}/2

G(t −s, x −y)S(s, y) dy ds
∣∣∣∣.

The first term on the right-hand side is estimated exactly as above. Moreover, by (2-16) and (3-5)∣∣∣∣∫ t

0

∫
|t−s|+|x−y|=max{1,τ̌t,x ,ďt,x ,|x⊥|}/2

G(t − s, x − y)S(s, y) ds dy
∣∣∣∣

≲
∫ t

0

∫
|t−s|+|x−y|=max{1,τ̌t,x ,ďt,x ,|x⊥|}/2

∥S∥Yt

1 + τ̌ 6
t,x + ď6

t,x + |x⊥|6
dy ds ≲

∥S∥Yt

1 + τ̌ 3
t,x + ď3

t,x + |x⊥|3
. □

4. Estimates on the characteristics

In this and the following sections we will always work under the following bootstrap assumptions: We
consider T > 0, δ > 0 as in Proposition 2.7. More precisely, recalling the maximal existence time T∗ from
Theorem 2.3, and the notation Vmin and ∥ · ∥YT from (2-20) and Definition 2.5, respectively, we assume

T < T∗, (B1)

V −1
min(T ) < δ <min{δ0, log−n(2 + T )}, (B2)

∥ρ[ f ]∥YT < δ, (B3)

suppµ⊂ BVmin(T )/5(0) (B4)

for some constants δ0, n > 0 to be chosen later. We will refer to (B1)–(B4) as the bootstrap assumptions.
In the following, we will often write Vmin instead of Vmin(T ).

We recall from Lemma 2.8 that ∥ρ[ f ]∥YT < δ implies for all 0 ≤ t ≤ T and all x ∈ R3

|E(t, x)| + |∇E(t, x)| ≤
δ

1 + τ̌ 3
t,x + ď3

t,x + |x⊥|3
. (4-1)

The objective of this section is to derive estimates for the characteristics defined in (2-6)–(2-7) which
in integrated form read

Xs,t(x, v)= x − (t − s)v+

∫ t

s
(σ − s)E(σ, Xσ,t(x, v)) dσ,

Vs,t(x, v)= v−

∫ t

s
E(σ, Xσ,t(x, v)).

Definition 4.1. We define W̃s,t , Ỹs,t as the functions given by

Vs,t(x, v)= v+ W̃s,t(x, v),

Xs,t(x, v)= x − (t − s)v+ Ỹs,t(x, v). (4-2)
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We are interested in the backwards characteristics, i.e., 0 ≤ s ≤ t < T. We distinguish estimates for
initial positions x “in front” and “behind” the point charge which are characterized by ďt,x > 0 and t ≥ τx ,
respectively.

We start by giving estimates for the characteristics for background particles which are in front of the
point charge at time t . This is the easiest case, since those particles stay in front of the point charge along
the backwards characteristics.

4A. Estimates on the characteristics for particles in front of the point charge.

Proposition 4.2. For all δ0, n > 0 sufficiently small and large, respectively, we have under the bootstrap
assumptions (B1)–(B4) for all 0 ≤ s ≤ t ≤ T and all x, v ∈ R3 with |v| ≤ Vmin/2 and x1 > X1(t)

|Ỹs,t(x, v)| + |∇x Ỹs,t(x, v)| ≲
δ(t − s)

1 + ď2
t,x + |x⊥|2

, |∇vỸs,t(x, v)| ≲
δ(t − s)

1 + ďt,x + |x⊥|
,

|W̃s,t(x, v)| + |∇x W̃s,t(x, v)| ≲
δ

1 + ď2
t,x + |x⊥|2

, |∇vW̃s,t(x, v)| ≲
δ

1 + ďt,x + |x⊥|
.

Proof. Since all the estimates are analogous, we only give the proof of for the estimate of Ỹ. By a
continuity argument, we have |Ỹ | ≤

1
2 for δ sufficiently small, i.e., for δ0 in (B2) sufficiently small.

Therefore, using |v| ≤ Vmin/2, for all σ ≤ t

⟨ďσ,Xσ,t (x,v)+|X⊥

σ,t(x, v)|⟩ = ⟨|x1−(t−σ)v1−X1(σ )+(Ỹσ,t)1(x, v)|+|x⊥
−(t−σ)v⊥

+Y ⊥

σ,t(x, v)|⟩

≳
〈
|x1−X1(t)|+ 1

4(t−σ)Vmin+
1
2 |x⊥

|−
3
4

〉
≳ ⟨ďt,x +(t−σ)Vmin+|x⊥

|⟩.

Starting from the definition (4-2) of Ỹ and using (4-1), we estimate

|Ỹs,t(x, v)| =

∣∣∣∣∫ t

s
(σ − s)E(σ, Xσ,t(x, v)) dσ

∣∣∣∣
≲

∫ t

s
(σ − s)

(
δ

⟨ďt,x + (t − σ)Vmin + x⊥⟩3
+ e−c⟨ďt,x+(t−σ)Vmin+|x⊥

|⟩

)
dσ

≲
δ(t − s)

1 + ď2
t,x + |x⊥|2

,

where we used V −1
min < δ by (B2). □

4B. Estimate on the characteristics for particles behind the point charge. For estimating the character-
istics behind the point charge we introduce further notation.

Definition 4.3. Let T be as in (B1), t ∈ [0, T ], x ∈ R3 and v ∈ BVmin/2(0).

(1) Recalling the definition X T from Definition 2.4, we define the collision time Tt,x,v := Tt,x1,v1 to be
the unique solution to

X T
1 (τ )= x1 − (t − τ)v1.
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We also define
qTt,x,v := qTt,x1,v1 := [t − Tt,x1,v1]+.

(2) Finally, we introduce
qxt,x,v := x − qTt,x,vv, (4-3)

and we will call qx⊥
t,x,v the impact parameter of the collision, following the convention in collisional

kinetic theory.

The quantities Tt,x,v, qTt,x,v and x̌t,x,v correspond to τx , τ̌t,x and x (see Definition 2.5): Instead of
considering relations between the point charge and a fixed point in space x , these new quantities are the
corresponding relations to the straight characteristic x − (t − s)v for a given velocity v. The quantities
Tt,x,v, qTt,x,v and x̌t,x,v are also visualized in Figure 1: The collision time Tt,x,v is the time where the
characteristic “collides” with the point charge with respect to the first coordinate. This is the time where
the distance between the point charge and the characteristic is minimized. The difference qTt,x,v is the time
passed since this collision. We emphasize that the collision time Tt,x,v can lie before or after the passage
time of τx depending on the sign of v1. Moreover, if v1 ≪ Vmin, then, contrary to the visualization in
Figure 1, the passage time and collision time are close in relation to the difference to the present time t ,
i.e., |τx − Tt,x,v| ≪ |t − τx |. In particular, τ̌x and Tt,x,v are of the same order (see (4-7) below).

Finally, x̌t,x,v is the position of the characteristic at the collision time. In particular (x̌t,x,v)1 = X1(Tt,x,v)

and therefore we will be mostly interested in the impact parameter x̌⊥
t,x,v.

Note that the collision time and impact parameters are defined with respect to the straight characteristics.
These will turn out to be sufficiently good approximations for the collision time and impact parameters
for the true characteristics for our purposes.

In order to estimate the error of the backwards characteristics to the straight characteristics for particles
in front of the point charge, it is suitable to consider the following error functions W, Y. Their definition
is inspired by the intuition that the error can be best expressed in terms of the particle positions at the
“collision”.

Definition 4.4. For 0 ≤ s ≤ t < T, with T as in (B1), and (x, v) ∈ R3
× R3 with τx ≤ t , we define the

error functions Y and W by

Ws,t(x − qTt,x1,v1v, v)= Vs,t(x, v)− v,

Ys,t(x − qTt,x1,v1v, v)= Xs,t(x, v)− (x − (t − s)v).

Using (4-6), we infer the representation

Ys,t(x, v)= Xs,t(x + τ̌t,xv, v)− (x + (s − τx)v),

and hence

Ys,t(x, v)=

∫ t

s
(σ − s)E(σ, x + (σ − τx)v+ Yσ,t(x, v)) dσ. (4-4)

Before we proof estimates for Y and W, we give some basic facts regarding the passage time, the
impact parameter and the collision time.
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Lemma 4.5. Recall the quantities τx , Tt,x,v introduced in Definitions 2.5 and 4.3. Then, we have the
following identities for all 0 ≤ s ≤ t ≤ T with T as in (B1) and all x, v ∈ R3 with |v| ≤ Vmin/2 provided
Vmin(T )≥ 4:

τx = Tt,x,0, τ̌t,x = qTt,x,0, (4-5)

Tt,x,v = τx−qTt,x,vv
provided qTt,x,v > 0. (4-6)

Moreover, we can estimate
1
2 τ̌t,x ≤ qTt,x,v ≤ 2τ̌t,x , (4-7)

and if qTt,x,v > 0

|∇x Ťt,x,v| ≤
2

Vmin
, (4-8)

|∇vŤt,x,v| ≲
Ťt,x,v

Vmin
. (4-9)

Furthermore, we have the lower bound

⟨τ̌s,x−(t−s)v⟩ ≳ ⟨s − Tt,x,v⟩ for all qTt,x,v > 0 and s ≥ Tt,x,v − 5. (4-10)

Finally, we have for s ≤ t

⟨(τx − s)Vmin + |x⊥
|⟩ ≲ ⟨ďs,x−(τx−s)v + |x⊥

− (τx − s)v⊥
|⟩ for s ≤ τx , (4-11)

⟨(Tt,x,v − s)Vmin + |x̌⊥

t,x,v|⟩ ≲ ⟨ďs,x−(t−s)v + |x⊥
− (t − s)v⊥

|⟩ for s ≤ Tt,x,v ≤ t, (4-12)

⟨ďt,x + (t − s)Vmin + |x⊥
|⟩ ≲ ⟨ďs,x−(t−s)v + |x⊥

− (t − s)v⊥
|⟩ for ďt,x > 0. (4-13)

Proof. The identities (4-5) and (4-6) follow immediately from the definition of these quantities, and (3-4)
and (4-8) are a consequence of Ẋ1 ≥ Vmin ≥ 2|v1|. Estimate (4-9) follows from the identity (4-6), estimate
(3-4) and the chain rule.

For (4-7), we first observe that τ̌t,x = 0 if and only if Ťt,x,v = 0. Otherwise, (4-7) follows from (4-6)
and (3-4). Regarding (4-10), we observe that the estimate trivially holds for Tt,x,v − 5 ≤ s ≤ Tt,x,v. For
s ≥ Tt,x,v use once again (4-6) and (3-4) to find

[s − τx−(t−s)v]+ ≥ [s − Tt,x,v]+ −
|v|

Vmin
|s − Tt,x1,v1 | ≥

1
2
(s − Tt,x,v).

Finally, we turn to (4-11)–(4-13). Observe that (4-11) follows from (4-12) by choosing t = τx . For the
proof of (4-12), we insert the definition of x̌t,x,v (see (4-3)) to rewrite

x − (t − s)v = x̌t,x,v − (Tt,x,v − s)v.

Therefore, using the definition of Tt,x,v and Vmin,

(x − (t − s)v− X (s))1 = (s − Tt,x,v)v1 + X1(Tt,x,v)− X1(s)≥ (Vmin − v1)(Tt,x,v − s).

Since |v1| + |v⊥
| ≤

√
2|v| ≤ Vmin/

√
2, this implies

ďs,x−(t−s)v + |x⊥
− (t − s)v⊥

| ≥ (Tt,x,v − s)Vmin + |x̌⊥

t,x,v| −
1

√
2
(Tt,x,v − s)Vmin,

which proves (4-12). The estimate (4-13) is shown analogously. □
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Proposition 4.6. For all δ0, n > 0 sufficiently small and large, respectively, the following estimates hold
under the bootstrap assumptions (B1)–(B4) for all 0 ≤ s ≤ t ≤ T, x, v ∈ R3 such that |v| ≤ Vmin/2 and
−∞< τx ≤ t :

(|Ys,t |+|∇x Ys,t |)(x,v)≲ δmin
{

1
⟨τ̌s,x ⟩+⟨x⊥⟩/⟨|v⊥|⟩

,
t−s

⟨τ̌s,x ⟩
2+⟨x⊥⟩2/⟨|v⊥|2⟩

}
for s ≥ τx−5, (4-14)

(|Ys,t |+|∇x Ys,t |)(x,v)≲
δ

1+⟨x⊥⟩/⟨v⊥⟩

(
τx−s

1+⟨x⊥⟩/⟨v⊥⟩
+min

{
1,

τ̌t,x

1+⟨x⊥⟩/⟨v⊥⟩

})
for s ≤ τx , (4-15)

|∇vYs,t(x,v)|≲ log(2+t)δmin
{

1,
t−s

⟨τ̌s,x ⟩+⟨x⊥⟩/⟨|v⊥|⟩

}
for s ≥ τx−5, (4-16)

|∇vYs,t(x,v)|≲ log(2+t)δ
(

τx−s
1+⟨x⊥⟩/⟨v⊥⟩

+min
{

1,
τ̌t,x

1+⟨x⊥⟩/⟨v⊥⟩

})
for s ≤ τx . (4-17)

Moreover,

|Ws,t(x, v)| + |∇x Ws,t(x, v)| ≲
δ

⟨τ̌s,x ⟩
2 + ⟨x⊥⟩2/⟨v⊥⟩2 for s ≥ 0,

|∇vWs,t(x, v)| ≲
δ

⟨τ̌s,x ⟩ + ⟨x⊥⟩/⟨v⊥⟩
for s ≥ 0.

Proof. We observe that for s ∈ [τx − 5, τx ], (4-14) and (4-16) follow from (4-15) and (4-17), respectively.
We prove (4-14) for s ≥ τx . For δ > 0 sufficiently small, the right-hand side of (4-14) is bounded

by 1. By a standard continuity argument we can therefore use |Ys,t |+ |∇x Ys,t | ≤ 1 for τx ≤ s ≤ t . We use
|v| ≤ Vmin/2 and (3-4) to find for all σ ∈ [s, t]

1 + τ̌σ,x+τ̌σ,xv+Yσ,t (x,v) ≳ 1 + τ̌σ,x . (4-18)

Moreover, |v| ≤ Vmin/2 and |X1(σ )− x1| ≥ Vminτ̌σ,x implies

|x + τ̌σ,xv− X (σ )| ≥
1
4 |x⊥

+ τ̌σ,xv
⊥
| +

1
2 |x1 + τ̌σ,xv1 − X1(σ )|

≥
1
4 |x⊥

| +
1
8 τ̌σ,x Vmin. (4-19)

Resorting to (4-4) and using estimates (4-1), (1-6), (4-18) and (4-19), we deduce

|Ys,t(x, v)| =

∣∣∣∣∫ t

s
(σ − s)E(σ, x + τ̌σ,xv+ Yσ,t(x, v)) dσ

∣∣∣∣
≲

∣∣∣∣∫ t

s
(σ − s)

(
δ

1 + τ̌ 3
σ,x + |x⊥ + τ̌σ,xv⊥|3

+ e−(|x⊥
|+τ̌σ,x Vmin)/8

)
dσ

∣∣∣∣.
Observing that for τx ≤ σ ≤ t (by distinguishing the cases |x⊥

| ≥ 2τ̌σ,x |v⊥
| and |x⊥

| ≤ 2τ̌σ,x |v⊥
|)

1 + τ̌σ,x + |x⊥
+ τ̌σ,xv

⊥
| ≳ 1 + τ̌σ,x +

⟨x⊥
⟩

⟨v⊥⟩
, (4-20)

we obtain

|Ys,t(x, v)| ≲
∫ t

s
(σ − s)

(
δ

1 + τ̌ 3
σ,x + ⟨x⊥⟩3/⟨v⊥⟩3 + e−(|x⊥

|+Vminτ̌σ,x )/8
)

dσ. (4-21)
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To conclude the estimate (4-14) for |Y |, we use∫ t

s
(σ − s)e−(|x⊥

|+Vminτ̌s,x )/8 dσ ≲ e−(|x⊥
|+Vminτ̌s,x )/8

∫ t

s
(σ − s)e−(σ−s)Vmin/8 dσ

≲ min
{

1
V 2

min
,

t − s
Vmin

}
e−(|x⊥

|+Vminτ̌s,x )/8,

similar considerations for the first term in (4-21) and we recall that V −1
min ≤ δ by (B2). The estimate of

|∇x Y | is analogous.
For the proof of (4-15), the continuity argument shows |Ys,t | + |∇x Ys,t | ≤ 1 + (τx − s). We then split

the integral

|Ys,t(x, v)| ≤

∣∣∣∣∫ τx

s
(σ − s)E(σ, x + (σ − τx)v+ Yσ,t(x, v)) dσ

∣∣∣∣
+

∣∣∣∣∫ t

τx

(σ − s)E(σ, x + τ̌σ,xv+ Yσ,t(x, v)) dσ
∣∣∣∣. (4-22)

Arguing much as we did for (4-11), we have for σ ≤ τx

⟨ďσ,x+(σ−τx )v+Yσ,t (x,v) + |x⊥
+ (σ − τx)v

⊥
|⟩ ≳ ⟨(τx − σ)Vmin + |x⊥

|⟩.

Using this, we can bound the first term in (4-22) as∣∣∣∣∫ τx

s
(σ − s)E(σ, x + (σ − τx)v+ Yσ,t(x, v)) dσ

∣∣∣∣
≲ (τx − s)

∫ τx

s

δ

⟨x⊥⟩3 + ((τx − σ)Vmin)3
+ e−(|x⊥

|+(τx−σ)Vmin)/8 dσ

≲ δ
τx − s
⟨x⊥⟩2 .

Therefore and using again (4-18) and (4-19), we can bound |Y | by

|Ys,t(x, v)| ≲
∣∣∣∣∫ t

τx

δ
(τx − s)

1 + τ̌ 3
σ,x + |x⊥ + τ̌σ,xv⊥|3

dσ
∣∣∣∣ + ∣∣∣∣∫ t

τx

δ
(σ − τx)

1 + τ̌ 3
σ,x + |x⊥ + τ̌σ,xv⊥|3

dσ
∣∣∣∣

+

∫ t

τx

(σ − s)e−(|x⊥
|+τ̌σ,x Vmin)/8 dσ + δ

τx − s
⟨x⊥⟩2 .

Using the inequality (4-20) as above to bound the remaining integrals yields the desired estimate.
The remaining inequalities are proved analogously. □

In the following it will sometimes be convenient to use the estimates above for the functions Ỹ, W̃
instead. They satisfy the relations

W̃s,t(x, v)= Ws,t(x − Ťt,x,vv, v),

Ỹs,t(x, v)= Ys,t(x − Ťt,x,vv, v).

Using Lemma 4.5, we then obtain the following corollary.
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Corollary 4.7. Recall the notation x̌t,x,v from (4-3). For all δ0, n > 0 sufficiently small and large,
respectively, the following estimates hold under the bootstrap assumptions (B1)–(B4) for all 0 ≤ s ≤ t ≤ T,
x, v ∈ R3 such that |v| ≤ Vmin/2 and −∞< τx ≤ t :

• If s ≥ Tt,x,v − 5,

|Ỹs,t(x, v)| + |∇x Ỹs,t(x, v)| ≲ δmin
{

1
⟨s − Tt,x,v⟩ + ⟨x̌⊥

t,x,v⟩/⟨v
⊥⟩
,

t − s
⟨s − Tt,x,v⟩

2 + ⟨x̌⊥
t,x,v⟩

2/⟨v⊥⟩2

}
,

|∇vỸs,t(x, v)| ≲ δ log(2 + t)min
{

1,
t − s

⟨s − Tt,x,v⟩ + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩

}
+ Ťt,x,v|∇x Ỹs,t(x, v)|.

• If s ≤ Tt,x,v,

|Ỹs,t(x, v)| + |∇x Ỹs,t(x, v)| ≲
δ

1 + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩

(
Tt,x,v − s

1 + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩
+ min

{
1,

Ťt,x,v

1 + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩

})
|∇vỸs,t(x, v)| ≲ δ log(2 + t)

(
Tt,x,v − s

1 + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩
+ min

{
1,

qTt,x,v

1 + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩

})
+ Ťt,x,v|∇x Ỹs,t(x, v)|.

• For the function W̃ we obtain for all 0 ≤ s ≤ t

(|W̃s,t | + |∇x W̃s,t |)(x, v)≲
δ

⟨[s − Tt,x,v]+⟩2 + ⟨x̌⊥
t,x,v⟩

2/⟨v⊥⟩2
,

|∇vW̃s,t(x, v)| ≲
δ

⟨[s − Tt,x,v]+⟩ + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩
.

4C. Some direct consequences of the error estimates of the characteristics. As a first consequence of
the estimates above, we deduce the following inequalities.

Corollary 4.8. For all δ0, n > 0 sufficiently small respectively large, under the bootstrap assumptions
(B1)–(B4) the following holds true for all x ∈ R3, 0 ≤ s ≤ t ≤ T and all v ∈ BVmin/2(0)

|Vs,t(x, v)− v| ≤ 1, ⟨Vs,t(x, v)⟩ ≥
1
2⟨v⟩,

⟨Xs,t(x, v)− X (s)⟩ ≥
1
2⟨x − (t − s)v− X (s)⟩, (4-23)

⟨ďs,Xs,t (x,v)⟩ ≳ ⟨ďs,x−(t−s)v⟩,

⟨τ̌s,Xs,t (x,v)⟩ ≳ ⟨τ̌s,x−(t−s)v⟩,

||X⊥

s,t(x, v)| − |x⊥
− (t − s)v⊥

|| ≲ δ⟨[t ∧ Tt,x,v − s]+⟩.

As a second consequence, we deduce that the support of f (t, x, · ) remains contained in BVmin/2 under
the bootstrap assumptions (B1)–(B4).

Corollary 4.9. For all δ0, n > 0 sufficiently small respectively large, under the bootstrap assumptions
(B1)–(B4) we have for all 0 ≤ s ≤ t ≤ T, x, v ∈ R3

|Vs,t(x, v)| ≥
1
5 Vmin for all |v| ≥

1
4 Vmin.

In particular, supp f (t, x, · )⊂ BVmin/4(0).
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Proof. Assume the contrary, i.e., |v| ≥ 1
4 Vmin and |Vs,t(x, v)| ≤ 1

5 Vmin. By continuity, there exist s ′
∈ [s, t]

and v′
∈ ∂BVmin/4(0) such that

Vs′,t(x, v)= v′, Xs′,t(x, v)= x ′, Vs,t(x, v)= Vs,s′(x ′, v′).

In particular we know that

|Vs,s′(x ′, v′)− v′
| ≥ ||Vs,s′(x ′, v′)| − |v′

|| ≥
1

20 Vmin.

However by the corollary above, we have

|Vs,s′(x ′, v′)− v′
| ≤ 1,

which is a contradiction for V −1
min < δ0 sufficiently small. □

To future reference, we summarize the decay of the background field in the following lemma.

Lemma 4.10. Under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small we have for
all 0 ≤ s ≤ t ≤ T and all x ∈ R3, v ∈ BVmin/2

|∇vµ(Vs,t(x, v))| + |∇
2
vµ(Vs,t(x, v))| ≲ e−|v|. (4-24)

Moreover,

(i) For ďt,x > 0

|E(s, x − (t − s)v)| + |∇E(s, x − (t − s)v)| + |E(s, Xs,t(x, v))| + |∇E(s, Xs,t(x, v))|

≲
δ

⟨ďt,x + (t − s)Vmin + |x⊥|⟩3
.

(ii) For ďt,x = 0 and s ≥ Tt,x,v − 5

|E(s, x − (t − s)v)| + |∇E(s, x − (t − s)v)| + |E(s, Xs,t(x, v))| + |∇E(s, Xs,t(x, v))|

≲
δ

⟨s − Tt,x,v⟩
3 + ⟨x⊥ − (t − s)v⊥⟩3 .

(iii) For ďt,x = 0 and s ≤ Tt,x,v

|E(s, x − (t − s)v)| + |∇E(s, x − (t − s)v)| + |E(s, Xs,t(x, v))| + |∇E(s, Xs,t(x, v))|

≲
δ

⟨Vmin(Tt,x,v − s)⟩3 + ⟨x̌⊥
t,x,v⟩

3
.

Proof. The estimate (4-24) follows immediately from the decay of µ from Assumption 1.2 together with
the estimate |W̃s,t(x, v)| ≲ 1 due to Proposition 4.2 and Corollary 4.7.

The estimates in items (i)–(iii) for the background field E along the straight characteristics x − (t − s)v
follow immediately from the decay of E , (4-1), together with the estimates (4-13), (4-10) and (4-12),
respectively. Finally, along the true characteristics, estimates analogous to (4-13), (4-10) and (4-12) also
hold which can be seen by combining them with the estimates from Corollary 4.8. □
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5. Straightening the characteristics

As explained in Section 2C, a key ingredient for the proof of Proposition 2.7 consists of straightening the
characteristics except for a small region which is the purpose of this section. As we will see, roughly
speaking, this straightening is possible in regions where both |Ỹs,t |, |∇vỸs,t | are small compared to
t − s. We distinguish four regions in which we can make use of this. In the following, we first give
the characterization and necessary estimates in these regions, then prove an abstract result about the
possibility of straightening the characteristics and finally apply the abstract result to those four regions.

(1) Due to Proposition 4.2, this is guaranteed in the region ďt,x > 0. More precisely, under the assumptions
of that proposition, we have

|Ỹs,t(x, v)| ≲
δ(t − s)

⟨ďt,x ⟩
2 + ⟨x⊥⟩2

, |∇vỸs,t(x, v)| ≲
δ(t − s)

⟨ďt,x ⟩ + ⟨x⊥⟩
. (5-1)

(2) Moreover, Corollary 4.7 provides sufficient estimates for straightening the characteristics on the set
given by τ̌t,x > 0 and s > Tt,x,v − 5.

More precisely, we have

|Ỹs,t(x, v)| ≲ δmin
{

t − s
⟨s − Tt,x,v⟩

2 + ⟨x̌⊥
t,x,v⟩

2/⟨v⊥⟩2
,

t − s
τ̌t,x

}
, (5-2)

|∇vỸs,t(x, v)| ≲
log(2 + t)δ(t − s)

⟨s − Tt,x,v⟩ + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩
. (5-3)

Here, we have used (4-7) and distinguished the cases t − s ≥ qTt,x,v/2 and t − s ≤ qTt,x,v/2 to obtain the
second term in the minimum of the right-hand side in (5-2). Moreover, regarding the estimate (5-3), we
have split the factor qTt,x,v = (t − s)+ (s − Tt,x,v) to estimate the term qTt,x,v|∇x Ỹs,t(x, v)|.

(3) The straightening is more subtle in the regions where τ̌t,x > 0 and s < Tt,x,v − 1. Indeed, since the
error ∇vỸ (due to the term qTt,x,v|∇x Ỹ |) grows linearly in (Tt,x,v − s)qTt,x,v, the straightening only works
well if this factor is balanced by a sufficiently large impact parameter x̌⊥

t,x,v.
This is the case if the time qTt,x,v (or equivalently τ̌t,x ) is small compared to |x⊥

| such that the impact
parameter x̌⊥

t,x,v is still comparable to x⊥. We therefore introduce

Ks,t,x :=
{
v : s < Tt,x,v − 1, |v|< δ−β, τ̌t,x ⟨v

⊥
⟩< 1

4⟨x⊥
⟩
}

(5-4)

for some β > 0.
Then, using (4-7), we observe that on Ks,t,x

⟨x̌⊥

t,x,v⟩ ≥
1
2⟨x⊥

⟩. (5-5)

Hence, Corollary 4.7 implies (recalling V −1
min ≤ δ) on Ks,t,x

|Ỹs,t(x, v)| ≲
δ(t − s)

1 + ⟨x⊥⟩2/⟨v⊥⟩2 ,

|∇vỸs,t(x, v)| ≲ log(2 + t)
δ(t − s)

1 + ⟨x⊥⟩/⟨v⊥⟩
.

(5-6)
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(4) If the time qTt,x,v is not small compared to |x⊥
|, there are still a lot of trajectories with large x̌⊥

t,x,v . To
characterize these, we introduce

v⊥

∗
(t, x, v1)=

x⊥

qTt,x1,v1

. (5-7)

Then, if v is far from v∗(t, x, v1), x̌⊥
t,x,v will be large. More precisely, by (4-7)

|x̌⊥
| = |x⊥

− qTt,x1,v1v
⊥
| = qTt,x1,v1 |v

⊥

∗
(t, x, v1)− v

⊥
| ≥

1
2 τ̌t,x |v

⊥

∗
(t, x, v1)− v

⊥
|. (5-8)

Therefore, we define for s < Tt,x1,v1 − 1

Fs,t,x :=
{
v ∈ R3

: s < Tt,x1,v1 − 1, |v|< δ−β, |v⊥

∗
(t, x, v1)− v

⊥
|τ̌t,x >

√
Tt,x1,v1 − s

}
. (5-9)

Let us assume that n from the bootstrap assumption (B2) satisfies n ≥ 1/β, and thus log(2 + t) ≤ δ−β.
Then, under the assumptions of Corollary 4.7, we find on Fs,t,x

|Ỹs,t(x, v)| ≲
δ1−3β

⟨x̌⊥
t,x,v⟩

(
1 +

Tt,x1,v1 − s
⟨x̌⊥

t,x,v⟩

)
≲

δ1−3β

⟨τ̌t,x |v⊥
∗
(t, x, v1)− v⊥|⟩

(
1 +

Tt,x1,v1 − s
⟨τ̌t,x |v⊥

∗
(t, x, v1)− v⊥|⟩

)
≲

δ1−3β

⟨
√
Tt,x1,v1 − s⟩

(
1 +

Tt,x1,v1 − s
⟨
√
Tt,x1,v1 − s⟩

)
≤ δ1−3β,

|∇vỸs,t(x, v)| ≲ δ1−3β
(

1 +

qTt,x1,v1

⟨τ̌t,x |v⊥
∗
(t, x, v1)− v⊥|⟩

)(
1 +

Tt,x1,v1 − s
⟨τ̌t,x |v⊥

∗
(t, x, v1)− v⊥|⟩

)
≲ δ1−3β

(
1 +

qTt,x1,v1

⟨
√
Tt,x1,v1 − s⟩

)
Tt,x1,v1 − s

⟨
√
Tt,x1,v1 − s⟩

.

(5-10)

We emphasize the right-hand sides above are bounded by δ1−3β(t − s) since t − s ≥ 1.
Notice that the derivative of the average velocity deviation ∇vỸs,t/(t − s) satisfies stronger estimates

than the derivative of the deviation ∇vW̃s,t . Intuitively, a deviation only significantly affects the average
velocity if Tt,x,v − s becomes large. This gain of decay will be crucial to our argument.

Lemma 5.1. Let x ∈ R3 be arbitrary and 0 ≤ s ≤ t . Suppose there are open sets �′′
⊂�′

⊂�⊂ R3 such
that

(i) for some 0< η < 1
2 , we have the estimate

sup
v∈�

|Ỹs,t(x, v)|
t − s

< η, sup
v∈�

|∇vỸs,t(x, v)|
t − s

≤
1
2
, (5-11)

(ii) and the following inclusions hold

{v ∈ R3
: dist(v,�′′)≤ η} ⊂�′, {v ∈ R3

: dist(v,�′)≤ η} ⊂�. (5-12)
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Then there exists an open set �′′
⊂�∗

⊂�, and a diffeomorphism 9s,t(x, · ) :�∗
→�′ such that for all

v ∈�∗

Xs,t(x, 9s,t(x, v))= x − (t − s)v.

Moreover, 9 satisfies the estimates

|9s,t(x, v)− v| ≤ 2
|Ỹs,t(x, v)|

t − s
,

|∇v9s,t(x, v)− Id | ≤ sup
w∈�′:|w−v|≤2|Ỹs,t (x,v)|/(t−s)

|∇vỸs,t(x, w)|
t − s

.

(5-13)

Proof. Let ζs,t,x(v) be the mapping defined by

ζs,t,x(v) := v−
Ỹs,t(x, v)

t − s
.

With this definition, Xs,t(x, v) can be rewritten as

Xs,t(x, v)= x − (t − s)ζs,t,x(v).

Due to the second inequality in (5-11), ζs,t,x(v) is injective on �′. Therefore, the function has an
inverse ψs,t(x, · ) on the set �∗

= ζ(�′) which satisfies �∗
⊂ � due to the first inequality in (5-11).

Moreover, for any w ∈�′′ the mapping

0 : Bη(w)→ Bη(w), v 7→ w+
Ỹs,t(x, v)

t − s
,

is a contraction and thus there exists v ∈ Bη(v∗)⊂�′ such that ζs,t,x(v)= w. Therefore �′′
⊂�∗

⊂�.
By (5-11), the inverse mapping 9s,t satisfies the estimate

|9s,t(x, v)− v| = |9s,t(x, v)− ζ(9s,t(x, v))| ≤
|Ỹs,t(x, 9s,t(x, v))|

t − s
≤

|Ỹs,t(x, v)|
t − s

+
1
2
|9s,t(x, v)− v|,

which yields (5-13). Similarly, we can estimate its derivative in v by

|∇v9s,t(x, v)− Id | ≲
|∇vỸs,t(x, 9s,t(x, v))|

t − s
≤ sup
w∈�′:|w−v|≤2|Ỹs,t (x,v)|/(t−s)

|∇vỸs,t(x, w)|
t − s

,

which finishes the proof. □

Corollary 5.2. For all β > 0, under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small,
respectively large, the following hold true for all 0 ≤ s ≤ t and x ∈ R3:

(1) Suppose ďt,x > 0. Then there exists an open set BVmin/4 ⊂ Gs,t,x ⊂ BVmin/2 and a diffeomorphism
9s,t(x, · ) : Gs,t,x → BVmin/3 such that

Xs,t(x, 9s,t(x, v))= x − (t − s)v. (5-14)

Moreover, 9 satisfies the estimates

|9s,t(x, v)− v| + |∇v9s,t(x, v)− Id| ≲
δ

(1 + ďt,x + |x⊥|)
.



A FAST POINT CHARGE INTERACTING WITH THE SCREENED VLASOV–POISSON SYSTEM 2481

(2) Suppose ďt,x = 0 and:

(a) s > Tt,x1,v1 − 5,
As,t,x : = {v ∈ BVmin/2 : s > Tt,x,v − 5},

A′

s,t,x : = {v ∈ BVmin/3 : s > Tt,x,v − 4},

A′′

s,t,x : = {v ∈ BVmin/4 : s > Tt,x,v − 3}.

Then, if τx ≤ t , there exists an open set A′′
s,t,x ⊂ As,t,x ⊂ As,t,x and a diffeomorphism 9s,t(x, · ) :

As,t,x → A′
s,t,x such that (5-14) holds. Moreover, 9 satisfies the estimate

|9s,t(x, v)− v| + |∇v9s,t(x, v)− Id| ≲
δ1−β

⟨s − Tt,x,v⟩ + ⟨x̌⊥
t,x,v⟩/⟨v

⊥⟩
.

(b) s < Tt,x1,v1 − 2.

(i) Next, let Ks,t,x be as in (5-4),

K ′

s,t,x : =
{
v : s < Tt,x1,v1 − 2, |v|< 1

2δ
−β, τ̌t,x ⟨v

⊥
⟩< 1

5⟨x⊥
⟩
}
,

K ′′

s,t,x : =
{
v : s < Tt,x1,v1 − 3, |v|< 1

3δ
−β, τ̌t,x ⟨v

⊥
⟩< 1

6⟨x⊥
⟩
}
.

Then, if τx ≤ t and ⟨x⊥
⟩δβ ≥ τ̌t,x , there exist an open set K ′′

s,t,x ⊂Ks,t,x ⊂ Ks,t,x and a diffeomorphism
9s,t(x, · ) : Ks,t,x → K ′

s,t,x such that (5-14) holds. Moreover, 9 satisfies the estimate

|9s,t(x, v)− v| + |∇v9s,t(x, v)− Id| ≲
δ1−2β

⟨x⊥⟩
.

(ii) Similarly, let Fs,t,x be as defined in (5-9) and recall the definition of v⊥
∗

= v⊥
∗
(t, x, v1) (see (5-7))

and define

F ′

s,t,x : =
{
v ∈ R3

: s < Tt,x1,v1 − 2, |v|< 1
2δ

−β, |v⊥
− v⊥

∗
|τ̌t,x > 2

√
Tt,x1,v1 − s

}
,

F ′′

s,t,x : =
{
v ∈ R3

: s < Tt,x1,v1 − 3, |v|< 1
3δ

−β, |v⊥
− v⊥

∗
|τ̌t,x > 3

√
Tt,x1,v1 − s

}
.

Then, if ⟨x⊥
⟩ ≤ τ̌t,xδ

−β there exists an open set F ′′
s,t,x ⊂ Fs,t,x ⊂ Fs,t,x and a diffeomorphism

9s,t(x, · ) : Fs,t,x → F ′
s,t,x which satisfies (5-14) and

|9s,t(x, v)− v| + |∇v9s,t − Id| ≲
δ1−3β

t − s

(
1 +

t − s
⟨τ̌t,x |v⊥ − v⊥

∗
|⟩

+
τ̌t,x(Tt,x1,v1 − s)
⟨τ̌t,x |v⊥ − v⊥

∗
|⟩2

)
.

Proof. We choose n ≥ β−1 and assume also that δ0 and n are chosen sufficiently small respectively
large such that we can apply Proposition 4.2 and Corollary 4.8 and such that in particular the estimates
(5-1)–(5-10) hold. We then apply Lemma 5.1 as follows.

Proof of (1). We apply Lemma 5.1 first in the case ďt,x > 0 to � = BVmin/2(0), �
′
= BVmin/3(0),

�′′
= BVmin/4(0). By (5-1), there is C > 0 such that we may choose η = Cδ to satisfy the assumptions of

Lemma 5.1 and the first assertion follows.
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Proof of (a). Next, we apply Lemma 5.1 to � = As,t,x , �′
= A′

s,t,x , �′′
= A′′

s,t,x . By (5-2), we may
choose η = Cδ/⟨τ̌t,x ⟩ to satisfy (5-11).

Using (4-9) and (4-7), we have for v, v′
∈ R3 with |v′

− v| ≤ η

|Ťt,x,v − Ťt,x,v′ | ≲
ητ̌t,x

Vmin
≲

δ

Vmin
, (5-15)

which guarantees that (5-12) is satisfied. Combining Lemma 5.1 with (5-2)–(5-3) yields the second
assertion.

Proof of (i). We apply Lemma 5.1 to �= Ks,t,x , �′
= K ′

s,t,x , �′′
= K ′′

s,t,x , with η = Cδ1−β/⟨x⊥
⟩ for

some C > 0 sufficiently large. Using (5-6) we verify (5-11). Since ⟨x⊥
⟩δβ ≥ τ̌t,x by assumption, (5-15),

and therefore (5-12), is satisfied. The estimate then follows from (5-6).

Proof of (ii). Finally, we choose � = Fs,t,x , �′
= F ′

s,t,x , �′′
= F ′′

s,t,x , and set η = Cδ1−3β/(t − s) ≤

Cδ1−3β/⟨τ̌t,x ⟩. Using (5-10) we verify that (5-11) is satisfied.
For the inclusions (5-12) we observe that for v, v′

∈ BVmin/2 with |v′
− v| ≤ η, (5-7), (4-9) and (4-7)

yield

τ̌t,x |v
⊥

∗
(t, x, v′)− v′⊥

| ≥ τ̌t,x |v
⊥

∗
(t, x, v)− v⊥

| − ητ̌t,x −
|x⊥

|η

Vmin

≥ τ̌t,x |v
⊥

∗
(t, x, v)− v⊥

| − Cδ1−3β
−

Cδ1−4β

Vmin
,

where we used the assumption ⟨x⊥
⟩ ≤ τ̌t,xδ

−β in the last inequality.
Note that by assumption we have

√
Tt,x1,v1 − s ≥ 1 in Fs,t,x . Hence, for δ sufficiently small, the last

two terms on the right-hand side are smaller than 1 and (5-12) follows. Combining the assertion of
Lemma 5.1 with (5-10) yields the desired estimates. □

6. Estimate of the direct contribution of the reaction term and the point charge

In the subsections below, we estimate the reaction term R (see (2-10)), which we rewrite as

R(t, x)= RL(t, x)− RNL(t, x),

where

RL(t, x)=

∫ t

0

∫
R3

E(s, x − (t − s)v) · ∇vµ(v),

RNL(t, x)=

∫ t

0

∫
R3

E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v)).

We need to estimate both R and ∇R. The general strategy is as follows. In regions where the change of
variables v 7→9s,t(x, v) is well-defined and 9s,t(x, v)≈ v, we can use cancellations between the linear
and nonlinear reaction terms. Here we rely on the analysis of 9s,t in the previous section. Otherwise, we
do not control well the deviations of the straightened characteristics from the linear characteristics, and
we cannot exploit cancellations between the linear and nonlinear reaction terms, RL and RNL. In that
case, the desired estimates will follow from “smallness” of these regions and from the decay of µ.



A FAST POINT CHARGE INTERACTING WITH THE SCREENED VLASOV–POISSON SYSTEM 2483

6A. Estimates for the reaction term R.

Proposition 6.1. For all γ ∈ (0, 1) there exists C > 0 such that the following estimate holds under the
bootstrap assumptions (B1)–(B4) for all δ0, n > 0 sufficiently small

|R(t, x)| ≤ C
δ1+γ

1 + τ̌ 2
t,x + ď2

t,x + |x⊥|2
.

Proof. Step 1: structure of the proof. It suffices to show that there exists M > 0 such that for all β > 0
(sufficiently small)

|R(t, x)| ≲
δ2−Mβ

1 + τ̌ 2
t,x + ď2

t,x + |x⊥|2
.

We use this peculiar reformulation for the sake of analogy of the parameter β with the one from
Corollary 5.2. We emphasize that throughout the proof (implicit) constants may depend on β. By
choosing n ≥ β−1, we can always absorb logarithmic errors in time due to (B2) by

log(2 + t)≤ δ−β . (6-1)

We split the proof into three different cases, depending on which of the terms in τ̌ 2
t,x , ďt,x , |x⊥

| is
dominant, and whether the point charge has already passed x , i.e., whether x1 ≥ X1(t).

In each of these cases, we will make use of the estimate

|R(t, x)| ≤

∫
Gk

|E(s, x − (t − s)v)||∇vµ(v)− ∇vµ(Vs,t(x, 9s,t(x, v))) det(∇v9s,t(x, v))| dv ds

+

∫
Bk

|E(s, x − (t − s)v)∇vµ(v)| + |E(s, Xs,t(x, v))∇vµ(Vs,t(x, v))| dv ds

=:

∫
Gk

rd(s, x, v) dv ds +

∫
Bk

rs(s, x, v) dv ds,

where the choice of Gk, Bk ⊂ [0, t] × R3 depends on the case k under consideration, k = 1, 2, 3, such
that the change of variables 9t,s(x, · ) from Corollary 5.2 is well-defined on Gs

k := {v : (s, v) ∈ Gk} and

Bs
k ∪ (Gs

k ∩9(Gs
k))⊃ BVmin/4(0), (6-2)

where we also set Bs
k := {v : (v, s) ∈ Bk}. Note that Corollary 4.9 together with the bootstrap equation

(B4) implies µ(v)= µ(Vs,t(x, v))= 0 for all v ∈ Bc
Vmin/4(0).

In the following we will only rely on the estimates in Lemma 4.10 with squares in the denominator of all
the estimates instead of cubes. This will prove useful for drawing analogies to the estimate of ∇R later on.

Step 2: the case ďt,x > 0. In this case, we choose Gs
1 =G from Corollary 5.2 and Bs

1 =∅. By Corollary 5.2,
we have (6-2). Combining (4-24) with the estimates from Corollary 5.2 and Proposition 4.2, we infer on G1

|∇vµ(v)− ∇vµ(Vs,t(x, 9s,t(x, v))) det(∇v9s,t(x, v))|

≲ (|9s,t(x, v)− v| + |W̃s,t(x, 9s,t(x, v))| + |1 − det(∇v9s,t(x, v))|)e−|v| ≲ δ
e−|v|

1 + ďt,x + |x⊥|
.



2484 RICHARD M. HÖFER AND RAPHAEL WINTER

Using now Lemma 4.10(i) yields∫
G1

rd(s, x, v) ds dv ≲
δ2

⟨ďt,x + |x⊥|⟩

∫
R3

∫ t

0

1

⟨ďt,x + (t − s)Vmin + |x⊥|)2
e−|v| ds dv ≲

δ3

⟨ďt,x + |x⊥|⟩2
,

where we used that V −1
min ≤ δ by the bootstrap assumption (B2). For future reference, we point out that,

had we used that E actually decays with the third power of ďt,x + |x⊥
|, we would have gained one power

more in the denominator.

Step 3: the case ďt,x = 0 and ⟨x⊥
⟩δβ ≤ τ̌t,x . Note that the assumption ⟨x⊥

⟩δβ ≤ τ̌t,x implies that it suffices
to show that ∫

G3

rd(s, x, v) dv ds +

∫
B3

rs(s, x, v) dv ds ≲
δ2−Mβ

τ̌ 2
t,x

for some M independent of β (note that there is no Japanese bracket in the denominator). We write
G3 = G3,1 ∪ G3,2 with

G3,1 := {(s, v) ∈ [0, t] × R3
: v ∈ Fs,t,x},

G3,2 := {(s, v) ∈ [0, t] × R3
: v ∈ As,t,x},

B3 := {(s, v) ∈ [0, t] × R3
: v ∈ BVmin/4 \ F ′′

s,t,x , s < Tt,x1,v1 − 3},

with the sets Fs,t,x , F ′′
s,t,x ,As,t,x as defined in Corollary 5.2. By Corollary 5.2, we have

As,t,x ∩9s,t(x,At,s,x)⊃ {v ∈ BVmin/4 : s > Tt,x1,v1 − 3}

and Fs,t,x ∩9s,t(x,Ft,s,x)⊃ F ′′
s,t,x . In particular, we verify the condition (6-2).

We first deal with the estimate on the set G3,2. By Corollaries 5.2 and 4.7 we have on G3,2

|∇vµ(v)− ∇vµ(Vs,t(x, 9s,t(x, v))) det(∇v9s,t(x, v))| ≲
δ1−β

⟨s − Tt,x1,v1⟩
e−|v|.

Combining with Lemma 4.10(ii) yields∫
G3,2

rd(s, x, v)≲
∫

BVmin/2

∫ t

[Tt,x1,v1−3]+

δ2−β

⟨s − Tt,x1,v1⟩

e−|v|

⟨s − Tt,x1,v1⟩
2 + ⟨x⊥ − (t − s)v⊥⟩2 ds dv. (6-3)

For τ̌t,x ≤ 1, the desired estimate follows immediately. If τ̌t,x ≥ 1, we split the time integral: We observe
that by (4-7), we have for |v| ≤ Vmin/2

s − Tt,x1,v1 = qTt,x1,v1 − (t − s)≥
1
2

qTt,x1,v1 ≥
1
4 τ̌t,x for all s ≥ t −

1
2

qTt,x1,v1 =: s∗

t,x,v1
.

Thus, changing variables w = x⊥
− (t − s)v⊥ for s < s∗

t,x,v1
, and using once more (4-7), we have∫

G3,2

rd(s, x,v)≲
1
τ̌ 2

t,x

∫ Vmin/2

−Vmin/2

∫ s∗
t,x,v1

∨0

(Tt,x1,v1−3)∨0

∫
BVmin/2(t−s)(x⊥)

δ2−β

⟨s−Tt,x1,v1⟩

e−|w−x⊥
|/(4|t−s|)e−|v1|/4

⟨w⟩2 dwds dv1

+
1
τ̌ 2

t,x

∫
BVmin/2

∫ t

s∗
t,x,v1

∨0

δ2−β

⟨s−Tt,x1,v1⟩
e−|v| dv ds ≲

δ2−2β

τ̌ 2
t,x

.

The last inequality follows by separating the region |w− x⊥
| ≥ |t − s| and its complement.
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We now turn to the estimate on the set G3,1. By definition of Fs,t,x ⊂ Fs,t,x we have the inclusion
G3,1 ⊂ {(s, v) : |v| ≤ Vmin/2, 0 < s < Tt,x1,v1 − 1}. In particular, if τ̌t,x ≥ 2t , we have by (4-7)
Tt,x1,v1 = t − qTt,x1,v1 ≤ 0 and thus G3,1 = 0. Therefore, it suffices to consider the case τ̌t,x ≤ 2t .

In this case, Corollary 5.2 implies that

G3,1 ⊂ {(s, v) ∈ [0, t] × R3
: v ∈ Fs,t,x}.

We introduce
w = δβ⟨τ̌t,x ⟩(v

⊥
− v⊥

∗
(t, x, v1)),

where v⊥
∗

= v⊥
∗
(t, x, v1) is defined as in (5-7). Since ⟨x⊥

⟩δβ ≤ τ̌t,x by the assumption in this step, we
can estimate δβ |v⊥

− v⊥
∗
| ≤ δβ(|v⊥

| + |v⊥
∗
|)≲ 1 on G3,1. Therefore, and by (5-8),

|w| ≲ ⟨τ̌t,x ⟩, ⟨w⟩ ≲ ⟨τ̌t,x(v
⊥

− v⊥

∗
)⟩,

⟨x̌⊥
t,x,v⟩

⟨v⊥⟩
≥ |w|.

Therefore Corollaries 5.2 and 4.7 imply on G3,1

|∇vµ(v)− ∇vµ(Vs,t(x, 9s,t(x, v))) det(∇v9s,t(x, v))| ≲
δ1−3β

t − s

(
1 +

t − s
⟨w⟩

+
τ̌t,x(Tt,x1,v1 − s)

⟨w⟩2

)
e−|v|.

We note also that by Lemma 4.10(iii), on G3,1

|E(s, x − (t − s)v)| ≤
δ

⟨|w| + (Tt,x1,v1 − s)Vmin⟩2 .

Combining the two preceding estimates, we obtain, using also (4-7) and Tt,x,v ≤ t due to the assumption
ďt,x = 0 in this step,∫

G3,1

rd(s, x, v) ds dv

≲ δ2−3β
∫

R3

∫ Tt,x1,v1−1

0

1|w|≤C⟨τ̌t,x ⟩

t − s

(
1 +

t − s
⟨w⟩

+
τ̌t,x(Tt,x1,v1 − s)

⟨w⟩2

)
e−|v|

⟨|w| + (Tt,x1,v1 − s)Vmin⟩2 ds dv

≲ δ2−3β
∫

R3

∫ t

1

1|w|≤C⟨τ̌t,x ⟩

qTt,x1,v1 + σ

(
1 +

qTt,x1,v1 + σ

⟨w⟩
+
τ̌t,xσ

⟨w⟩2

)
e−|v|

⟨|w| + σVmin⟩2 dσ dv

≲ δ2−4β
∫

R2

(
1

Vmin⟨w⟩⟨τ̌t,x ⟩
+

1
⟨w⟩2

)
1|w|≤C⟨τ̌t,x ⟩ dv⊥

≲
δ2−6β

⟨τ̌t,x ⟩
2

∫
R2

(
1

Vmin⟨w⟩⟨τ̌t,x ⟩
+

1
⟨w⟩2

)
1|w|≤C⟨τ̌t,x ⟩ dw ≲

δ2−5β

⟨τ̌t,x ⟩
2 ,

where we used in the last inequality that log(2 + τ̌t,x)≲ log(2 + t)≲ δ−β since we can assume τ̌t,x ≤ 2t
as argued above.

Finally, we turn to B3. We split B3 = B3,1 + B3,2, where

B3,1 = {(s, v) ∈ [0, t] × R3
: v ∈ BVmin/2 \ Bδ−β , s < Tt,x1,v1 − 3},

B3,2 = {(s, v) ∈ [0, t] × R3
: v ∈ Bδ−β \ F ′′

s,t,x , s < Tt,x1,v1 − 3}.

As above, we observe that (4-7) implies that B3,1 = B3,2 =∅ if τx1 <−t . If τx1 ≥ −t , and thus τ̌t,x1 ≤ 2t ,
the desired estimate on B3,1 is trivial, since the exponential decay of µ together with the choice of n, δ0

in (B2) gives e−δ−β
≤ Cδ2/⟨τ̌ ⟩2 for n sufficiently large and δ0 sufficiently small.
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On B3,2 we estimate using the definition of F ′′
s,t,x , Lemma 4.10(iii) and V 1−

min ≤ δ∫
B3,2

rs(s, x, v) dv ds ≲ δ
∫

R

∫
[Tt,x1,v1−3]+

0

∫
|v⊥−v⊥

∗ ||τ̌t,x |≤
√

Tt,x1,v1−s
dv⊥

1
⟨Vmin(Tt,x1,v1 − s)⟩2 dse−|v1| dv1

≲
δ2−β

|τ̌t,x |
2 .

Step 4: the case ďt,x = 0 and ⟨x⊥
⟩δβ ≥ τ̌t,x . Arguing as above, we write again G4 = G4,1 ∪ G4,2 and

G4,1 := {(s, v) ∈ [0, t] × R3
: v ∈ Ks,t,x},

G4,2 := {(s, v) ∈ [0, t] × R3
: v ∈ As,t,x},

B4 := {(s, v) ∈ [0, t] × R3
: v ∈ BVmin \ K ′′

s,t,x , s < Tt,x1,v1 − 3},

with the sets Ks,t,x , K ′′
s,t,x ,As,t,x as defined in Corollary 5.2.

We first turn to G4,2. Note that G4,2 = G3,2 so in particular (6-3) holds in G4,2. However, this time
we want to gain a factor ⟨x⊥

⟩
2 instead of the factor ⟨τ̌t,x ⟩

2 from the previous step. As above, the case
|x⊥

| ≤ 1 is straightforward and we therefore only consider |x⊥
| ≥ 1 in the following. We split G4,2

further and first consider

G1
4,2 := G4,2 ∩

{
(s, v) ∈ [0, t] × R3

: |v| ≥
|x⊥

|

2(qTt,x1,v1 + 5)

}
.

On this set, by (4-7), we have

e−|v| ≲
⟨τ̌ 2

t,x ⟩

|x⊥|2
e−|v|/2.

Inserting this estimate within (6-3) yields the desired estimate on G1
4,2.

On the other hand, on G2
4,2 := G1

4,2 \ G4,2 we have

|x⊥
− (t − s)v⊥

| ≥
1
2 |x⊥

| for all s ∈ [Tt,x1,v1 − 5, t].

Resorting to (6-3) leads again to the desired estimate.

We next turn to G4,1. By Corollary 5.2, we have

G4,1 ⊂ {(s, v) ∈ [0, t] × R3
: v ∈ Ks,t,x}.

Combining the estimates from Corollary 5.2 and Corollary 4.7 with (5-5) yields

|∇vµ(v)− ∇vµ(Vs,t(x, 9s,t(x, v))) det(∇v9s,t(x, v))| ≲
δ1−2β

⟨x⊥⟩
e−|v|.

By Lemma 4.10(iii) and (5-5) we have

|E(s, x − (s − t)v)| ≲
δ

⟨x⊥⟩2 + ⟨Tt,x1,v1 − s)|Vmin|⟩2 .

Therefore,∫
G4,1

rd(s, x, v) ds dv ≲
δ2−2β

⟨x⊥⟩

∫
R3

∫
[Tt,x1,v1−1]+

0

e−|v|

⟨x⊥⟩2 +
1
2⟨(Tt,x1,v1 − s)|Vmin|⟩2

ds dv ≲
δ2−2β

Vmin⟨x⊥⟩2 .



A FAST POINT CHARGE INTERACTING WITH THE SCREENED VLASOV–POISSON SYSTEM 2487

Regarding B4, we first argue

B4 ⊂ {(s, v) ∈ [0, t] × R3
: v ∈ BVmin/4 \ Bδ−β/6, s < Tt,x1,v1 − 3}.

Indeed, for (s, v)∈ B4 with s < Tt,x1,v1 −1 and |v| ≤ δ−β/6, we find, due to the assumption ⟨x⊥
⟩δβ ≥ τ̌t,x

that we made in this step, that

τ̌t,x ⟨v
⊥
⟩ ≤ τ̌t,x + τ̌t,x |v| ≤ ⟨x⊥

⟩δβ
(
1 +

1
6δ

−β
)
≤

1
6⟨x⊥

⟩,

and thus v ∈ K ′′
s,t,x . Moreover, as above, either B4 =∅ or τ̌t,x ≤ 2t ; the latter we assume in the following.

We split again, much as we did for G4,2,

B4,1 := B4 ∩

{
(s, v) ∈ [0, t] × R3

: |v| ≥
⟨x⊥

⟩

2⟨qTt,x1,v1⟩

}
.

On this set, by (4-7), we have for n ≥ 3β−1

e−|v| ≲ e−δ−β/18 ⟨τ̌t,x ⟩
3

⟨x⊥⟩3 e−|v|/3 ≲ e−δ−β/18 ⟨t⟩3

⟨x⊥⟩3 e−|v|/3 ≲
1

⟨x⊥⟩3 e−|v|/3. (6-4)

Combining this estimate with Lemma 4.10(iii) and using V −1
min ≤ δ yields∫

B4,1

rs(s, x, v) dv ds ≲
δ

⟨x⊥⟩3

∫
R3

∫
[Tt,x1,v1−3]+

0

e−|v|/3

⟨Vmin(Tt,x1,v1 − s)⟩2 dv ds ≲
δ2

⟨x⊥⟩3 .

Finally, on B4,2 := B4 \ B4,1, we estimate∫
B4,2

rs(s, x, v) dv ds ≲ δ
∫

BVmin/2\B
δ−β/6

∫
[Tt,x1,v1−3]+

0

e−|v|

⟨x⊥⟩2 + ⟨Vmin(Tt,x1,v1 − s)⟩2 dv ds ≲
δ2

⟨x⊥⟩2 ,

where we used e−δ−β ≲ δ/⟨t⟩2 for n sufficiently large. □

6B. Estimates for ∇R.

Proposition 6.2. For all 0<γ < 1 there exists C > 0 such that under the bootstrap assumptions (B1)–(B4)
with δ0, n > 0 sufficiently small we have for all t ≤ T

|∇R(t, x)| ≤ C
δ1+γ

1 + τ̌ 3
t,x + ď3

t,x + |x⊥|3
. (6-5)

Proof. The proof is in large parts analogous to the proof of Proposition 6.1. We therefore just highlight
the main differences. The main difficulty consists in extracting the third power in the denominator of
(6-5) in comparison with the second power obtained in Proposition 6.1. To this end we must exploit once
more the dispersion.

We will again distinguish the same three different cases as in the proof of Proposition 6.1. In the case
ďt,x > 0, the estimates are easiest, since the backwards characteristics do not come close to the point
charge. Therefore, the error estimates along the backwards characteristics are sufficient in this case.
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For ďt,x = 0, the estimates are more delicate. Let us briefly explain why we expect better decay for
∇xR than for R itself also in this case. Basically, for characteristics close to free transport, we can make
use of ∇x ∼ (1/t)∇v. More precisely, by integration by parts we find∫

∇x f0(x − tv)g(v) dv =
1
t

∫
f0(x − tv)∇g(v) dv.

This can also obtained through the following change of variables

∇x

∫
f0(x − tv)g(v) dv =

1
t
∇x

1
t3

∫
f0(w)g

(
x −w

t

)
dw

=
1
t4

∫
f0(w)∇g

(
x −w

t

)
dw =

1
t

∫
f0(x − tv)∇g(v) dv.

This argument still works well in our setting when we are close to free transport. We will thus manipulate
R(t, x) through a change of variables before taking the gradient. Roughly speaking, the change of
variables consists in replacing v by a point along the straightened backwards characteristics which
corresponds to a time after the (potential) “approximate collision” along this characteristics. By taking
the gradient after this change of variables we will gain the desired power. Indeed, we know that the time
after an approximate collision is τ̌t,x .

Moreover, if |x⊥
| is dominant over τt,x (and |v| is of order 1) the decay of E in |x⊥

| allows us to
choose ⟨x⊥

⟩ as this corresponding time. Indeed, in view of the estimates in Corollary 4.7, the error for
the backwards characteristics until times s ≥ t − |x⊥

| can still be controlled by δ log(2 + t), whereas for
larger times, this error grows linearly in s, just as if there was a collision at time t − |x⊥

|.

Step 1: the case ďt,x > 0. We have

∇R(t, x)=

∫ t

0

∫
R3

∇E(s, x − (t − s)v) · ∇vµ(v)− ∇E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v)) dv ds

−

∫ t

0

∫
R3

∇x Ỹs,t(x, v) · ∇E(s, Xs,t(x, v))∇vµ(Vs,t(x, v)) dv ds

−

∫ t

0

∫
R3

E(s, Xs,t(x, v))∇x W̃s,t(x, v) · ∇vµ(Vs,t(x, v)) dv ds

=: Ra +Rc +Rd .

The estimate of Ra works exactly as before. Indeed, as we pointed out above in Step 2 of the proof of
Proposition 6.1, we could have already gained three powers of ďt,x + |x⊥

| for R(t, x) in this case.
The terms Rc and Rd are estimated analogously, since the estimates of ∇W̃ and ∇Ỹ bring an additional

power of ďt,x + |x⊥
|. More precisely, combining Proposition 4.2 and Lemma 4.10(i) yields

|∇E(s, Xs,t(x, v))||∇x Ỹs,t(x, v)| ≲
δ log2(2 + t)

Vmin

1

⟨ďt,x + |x |⊥⟩2

t − s

⟨ďt,x + (t − s)Vmin + |x |⊥⟩3
,

and the same bound holds for |E(s, Xs,t(x, v))||∇x W̃s,t(x, v)|. Integrating this bound in s and using the
exponential decay of µ for the integration in v immediately yields the desired estimate.
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Step 2: the case ďt,x = 0 and ⟨x⊥
⟩δβ ≤ τ̌t,x . Much as in the proof of Proposition 6.1, in this case it suffices

to show

|∇R(t, x)| ≲
δ2−Mβ

τ̌ 3
t,x

for some M independent of β.
The key idea is to use the change of variables

ω = x̌t,x,v = x − qTt,x1,v1v ⇐⇒ v =
x −ω

t − τω
,

since by (4-6) τω = Tt,x,v. Performing this change of variables (and recalling the definition of the error
functions Y,W from 4.4) yields

RNL(x)=
∫ t

0

∫
R3

E(s, x−(t−s)v+Ys,t(x−qTt,x1,v1v,v))·∇vµ(v+Ws,t(x−qTt,x1,v1v,v))dv ds

=

∫ t

0

∫
R3

1
τ̌ 3

t,ω
E

(
s,ω−(τω−s)

x−ω

t−τω
+Ys,t

(
ω,

x−ω

t−τω

))
·∇vµ

(
x−ω

t−τω
+Ws,t

(
ω,

x−ω

t−τω

))
dωds.

Taking the gradient in x yields

∇xRNL(x)

=

∫ t

0

∫
R3

s − τω

τ̌ 4
t,ω

∇x E
(

s, ω−(τω−s)
x −ω

t − τω
+Ys,t

(
ω,

x −ω

t − τω

))
·∇vµ

(
x −ω

t − τω
+Ws,t

(
ω,

x −ω

t − τω

))
dω ds

+

∫ t

0

∫
R3

1
τ̌ 4

t,ω
E

(
s, ω− (τω − s)

x −ω

t − τω
+ Ys,t

(
ω,

x −ω

t − τω

))
· ∇

2
vµ

(
x −ω

t − τω
+ Ws,t

(
ω,

x −ω

t − τω

))
dω ds

+

∫ t

0

∫
R3

∇vYs,t(ω, (x −ω)/(t − τω))

τ̌ 4
t,ω

· ∇x E
(

s, ω− (τω − s)
x −ω

t − τω
+ Ys,t

(
ω,

x −ω

t − τω

))
· ∇vµ

(
x −ω

t − τω
+ Ws,t

(
ω,

x −ω

t − τω

))
dω ds

+

∫ t

0

∫
R3

∇vWs,t(ω, (x −ω)/(t − τω))

τ̌ 4
t,ω

· E
(

s, ω− (τω − s)
x −ω

t − τω
+ Ys,t

(
ω,

x −ω

t − τω

))
· ∇

2
vµ

(
x −ω

t − τω
+ Ws,t

(
ω,

x −ω

t − τω

))
dω ds,

and changing back to the original set of variables we obtain

∇xRNL(x)=

∫ t

0

∫
R3

s − Tt,x1,v1

qTt,x1,v1

∇x E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v)) dω ds

+

∫ t

0

∫
R3

1
qTt,x1,v1

E(s, Xs,t(x, v)) · ∇2
vµ(Vs,t(x, v)) dv ds

+

∫ t

0

∫
R3

∇vYs,t(x − qTt,x1,v1v, v)

qTt,x1,v1

· ∇x E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v)) dv ds

+

∫ t

0

∫
R3

∇vWs,t(x − qTt,x1,v1v, v)

qTt,x1,v1

· E(s, Xs,t(x, v)) · ∇2
vµ(Vs,t(x, v)) dv ds.
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Performing the same manipulations on the linear term leads to

∇R(t, x)=

∫ t

0

∫
R3

s − Tt,x1,v1

qTt,x1,v1

(∇x E(s, x − (t − s)v) · ∇vµ(v)− ∇x E(s, Xs,t(x, v)) · ∇vµ(Vs,t)) dv ds

+

∫ t

0

∫
R3

1
qTt,x1,v1

(E(s, x − (t − s)v) · ∇2
vµ(v)− E(s, Xs,t(x, v)) · ∇2

vµ(Vs,t(x, v))) dv ds

−

∫ t

0

∫
R3

∇vYs,t(x − qTt,x1,v1v, v)

qTt,x1,v1

∇x E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v)) dv ds

−

∫ t

0

∫
R3

∇vWs,t(x − qTt,x1,v1v, v)

qTt,x1,v1

E(s, Xs,t(x, v)) · ∇2
vµ(Vs,t(x, v)) dv ds

=: Ra +Rb +Rc +Rd .

The estimates of Ra and Rb are analogous to those in Proposition 6.1. The additional factor Tt,x1,v1 − s
in Ra does not pose a problem if one uses the third power of the decay of E instead of the second power
as in the proof of Proposition 6.1. More precisely, by Lemma 4.10(ii) and (iii) we have

|Tt,x1,v1 − s|(|∇x E(s, x − (t − s)v| + |∇x E(s, Xs,t(x, v)|)≲
δ

⟨s − Tt,x1,v1⟩
2 + ⟨x⊥ − (t − s)v⊥⟩2

and

|Tt,x1,v1 − s|(|∇x E(s, x − (t − s)v| + |∇x E(s, Xs,t(x, v)|)≲
δ

⟨Vmin(Tt,x1,v1 − s)⟩2 + ⟨x̌⊥
t,x,v⟩

2

for s ≥ Tt,x1,v1 − 5 and s ≤ Tt,x1,v1 respectively, which are precisely the estimates we used for E in the
proof of Proposition 6.1.

It remains to estimate Rc and Rd . We use the estimates from Proposition 4.6 for ∇vY, ∇vW. Since the
estimates for ∇vY are weaker than those for ∇vW, it suffices to show the desired estimates for Rc. We
write

Rc =:

∫ t

0

∫
R3

rc(s, x, v) dv ds.

Much as before, we split the integral in G̃3,1 := {(s, v) : |v| ≤ Vmin/4, 0 ≤ s ≤ Tt,x1,v1} and G̃3,2 := {(s, v) :
|v| ≤ Vmin/4, t ≥ s ≥ [Tt,x1,v1]+}.

We note that the identity (4-6) implies that we can use (4-16) in the set G̃3,2 to estimate the term
∇vYs,t(x − qTt,x1,v1v, v), and thus

|∇vYs,t(x − qTt,x1,v1v, v)| ≲ δ log(2 + t)≤ δ1−β,

where we used again (6-1).
Combining this estimate with Lemma 4.10(iii) and (4-7) yields on G̃3,2

|rc(s, x, v)| ≤
1
τ̌t,x

δ2−β

⟨(Tt,x1,v1 − s)3 + |x⊥ − (t − s)v⊥|3⟩
e−|v|.
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Then τ̌t,x
∫

G̃3,2
|rc(s, x, v)| is bounded by the right-hand side in (6-3). We thus the desired estimate by the

estimates after (6-3).
Similarly, on G̃3,1, Lemma 4.10 (ii) and (4-17) imply

|rc(s, x, v)| ≤
1
τ̌t,x

(
(Tt,x1,v1 − s)⟨v⊥

⟩

⟨x̌⊥
t,x,v⟩

+ 1
)

δ2 log(2 + t)
⟨(Vmin(Tt,x1,v1 − s))3 + |x̌⊥

t,x,v|
3⟩

e−|v|

≲
1
τ̌t,x

δ2−β

⟨(Vmin(Tt,x1,v1 − s))2 + |x̌⊥
t,x,v|

2⟩

1
⟨x̌⊥

t,x,v⟩
e−|v|.

We now proceed much as we did in the estimate on G3,1 in the proof of Proposition 6.1. We recall that
either G̃3,1 = ∅ or τx ≥ −t . Thus, using the change of variables

ω⊥
= x̌⊥

= x⊥
− qTt,x1,v1v

⊥,

and (4-7), we obtain the estimate∫
R3

∫
[Tt,x,v]+

0
rc(s, x, v) dv ds ≲

δ2−β

τ̌ 3
t,x

∫
∞

−∞

∫
R2

∫ Tt,x1,v1

0

1
⟨ω⊥⟩

e−|x⊥
−ω⊥

|/(4qTt,x,v)

(Tt,x1,v1 − s)2 + ⟨ω⊥⟩2 ds dω⊥e−|v1|/4 dv1

≲
δ2−β

τ̌ 3
t,x

∫
R2

1
⟨ω⊥⟩2 e−|x⊥

−ω⊥
|/τ̌t,x dω⊥ ≲

δ2−2β

τ̌ 3
t,x

.

Step 3: the case ďt,x = 0 and ⟨x⊥
⟩δβ ≥ τ̌t,x . In this case, we use a different change of variables before

taking the gradient. More precisely, for R > 0 (which we will later choose as R = ⟨x⊥
⟩), we write

v = (x −ω)/R to find

RNL(t, x)=
1
R3

∫ t

0

∫
R3

E
(

s, ω−(t−R−s)
x −ω

R
+Ỹ

(
x,

x −ω

R

))
∇vµ

(
x −ω

R
+W̃

(
x,

x −ω

R

))
dω ds.

Taking the gradient on this term as well as the corresponding linear term RL, then reverting the change
of variables and finally setting R = ⟨x⊥

⟩ yields

∇R(t, x)=

∫ t

0

∫
R3

t − s − ⟨x⊥
⟩

⟨x⊥⟩
(∇x E(s, x − (t − s)v) · ∇vµ(v)− ∇x E(s, Xs,t(x, v)) · ∇vµ(Vs,t)) dv ds

+

∫ t

0

∫
R3

1
⟨x⊥⟩

(E(s, x − (t − s)v) · ∇2
vµ(v)− E(s, Xs,t(x, v)) · ∇2

vµ(Vs,t(x, v))) dv ds

−

∫ t

0

∫
R3

(
∇x Ỹs,t(x, v)+

∇vỸs,t(x, v)
⟨x⊥⟩

)
· ∇x E(s, Xs,t(x, v)) · ∇vµ(Vs,t(x, v)) dv ds

−

∫ t

0

∫
R3

(
∇x W̃ +

∇vW̃s,t(x, v)
⟨x⊥⟩

)
· E(s, Xs,t(x, v)) · ∇2

vµ(Vs,t(x, v)) dv ds

=: Ra +Rb +Rc +Rd .

We argue that Ra +Rb can be estimated as in the proof of Proposition 6.1. For Rb this is obvious. For Ra ,
we consider the set

G̃4 :=

{
(s, v) ∈ [0, t] × BVmin/4(0) : |v| ≤

⟨x⊥
⟩

10⟨qTt,x1,v1⟩

}
.
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Then, on G̃4, we have, recalling that we are in the case ⟨x⊥
⟩δβ ≥ τ̌t,x and using (4-7),

|x̌⊥

t,x,v| ≳ |x⊥
|,

|x⊥
− (t − s)v| ≳ |x⊥

| for all Tt,s,x − 5 ≤ s ≤ t,

|(t − s)− ⟨x⊥
⟩| ≤ ⟨x⊥

⟩ + [Tt,x1,v1 − s]+.

(6-6)

Thus, by Lemma 4.10(ii) and (iii),

|(t − s)− ⟨x⊥
⟩|(|∇x E(s, x − (t − s)v| + |∇x E(s, Xs,t(x, v)|)≲

δ

⟨s − Tt,x1,v1⟩
2 + ⟨x⊥⟩2

and

|(t − s)− ⟨x⊥
⟩|(|∇x E(s, x − (t − s)v| + |∇x E(s, Xs,t(x, v)|)≲

δ1−β log(2 + t)
⟨Vmin(Tt,x1,v1 − s)⟩2 + ⟨x⊥⟩2

for s ≥ Tt,x1,v1 − 5 and s ≤ Tt,x1,v1 respectively. With these bounds at hand, the desired estimate follows
precisely as in the proof of Proposition 6.1.

We continue with the estimate on the set

B̃4 :=

{
(s, v) ∈ [0, t] × BVmin/4(0) : |v| ≥

⟨x⊥
⟩

10⟨qTt,x1,v1⟩

}
.

Notice that on this set we have |v| ≥
1

20δ
−β due to the assumption ⟨x⊥

⟩δβ ≥ τ̌t,x in the case under
consideration. This allows us to argue analogous to the estimate on B4,1 in the proof of Proposition 6.1:
Similar to how we obtained (6-4), we find on B̃4

e−|v| ≲
δe−|v|/3

⟨t⟩2⟨x⊥⟩3 ,

which allows us to deduce the desired estimate by just using the estimate |∇E | ≲ δ.

Regarding, Rc and Rd , we use the estimates from Corollary 4.7. Again, since the estimates on W̃ are
better than those on Ỹ, it suffices to estimate Rc. Moreover, since ∇vỸs,t(x, v) ≲ δt2, we can argue as
above on the set B̃4 and it therefore suffices to consider the set G̃4. Since by the assumption ⟨x⊥

⟩δβ ≥ τ̌t,x

and (4-7), we have qTt,x1,v1 ≤ ⟨x⊥
⟩, Corollary 4.7 and (6-6) yield on G̃4

|∇x Ỹs,t(x, v)| +
∣∣∣∣∇vỸs,t(x, v)

⟨x⊥⟩

∣∣∣∣ ≲

δ log(2 + t)⟨v⊥

⟩

⟨x⊥⟩

(
(Tt,x1,v1 − s)⟨v⊥

⟩

⟨x⊥⟩
+ 1

)
for 0< s < Tt,x1,v1,

δ log(2 + t)⟨v⊥
⟩

⟨x⊥⟩
for Tt,x1,v1 < s < t.

Combining again with the estimates from Lemma 4.10 and using |v⊥
|
2e−|v| ≲ e−|v|/2 yields on both G̃3,1

and G̃3,2

|rc(s, x, v)| ≲
δ2−β log(2 + t)2

⟨(Tt,x,v − s)2 + |x⊥|2⟩

e−|v|/2

⟨x⊥⟩2 .

Integrating over G̃3,1 and G̃3,2 yields the desired estimate. □
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6C. Contribution of the point charge. In this section we derive estimates for the function SP defined
in (2-11). For future reference, we also introduce the function SP(t, x) defined by

SP(t, x)= −

∫ t

−∞

∫
R3

∇8(x − (t − s)v− (X (t)− (t − s)V (t))) · ∇vµ(v) dv ds. (6-7)

Compared to SP, this corresponds to a linearization of both the characteristics and the trajectory of the
point charge and in addition to a extension to all negative times. In particular, SP resembles the function
SR,X∗,V∗

from (2-13).

Proposition 6.3. Under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small, we have
for all t ≤ T

|SP(t, x)| + |SP(t, x)| ≤
C

Vmin(1 + |x⊥|2 + ď2
t,x1

+ τ̌ 2
t,x1
)
, (6-8)

|∇SP(t, x)| ≤
C

Vmin(1 + |x⊥|3 + ď3
t,x1

+ τ̌ 3
t,x1
)
. (6-9)

Proof. Step 1: Proof of (6-8). Recall the definition of SP

SP(t, x)= −

∫ t

0

∫
R3

∇8(Xs,t − X (s)) · ∇vµ(Vs,t) dv ds.

We observe that by (4-23) and the definitions of Tt,x,v and v∗ = v∗(t, x, v1) from Definition 4.3 and (5-7),
for |v| ≤ Vmin/2

⟨Xs,t(x, v)− X (s)⟩ ≳ |s − Tt,x1,v1 |Vmin + |v⊥
− v⊥

∗
|Ťt,x1,v1 if ďt,x1 = 0, (6-10)

⟨Xs,t(x, v)− X (s)⟩ ≳ ďt,x1 + |x⊥
| + Vmin(t − s) if ďt,x1 > 0. (6-11)

Consider first the case ďt,x = 0, i.e., τx ≤ t . which by (4-7) is equivalent to Ťt,x1,v1 ≥ τ̌t,x/2 and thus
Ťt,x1,v1 > 0 is equivalent to τ̌t,x > 0. Then, by (6-10) and the decay of 8 (see (1-6)),

|SP(t, x)| ≲
∫ t

0

∫
R3

e−|s−Tt,x1,v1 |Vmin−|v⊥
−v⊥

∗ |Ťt,x1,v1 e−(|v1|+|v⊥
|)/4 dv ds ≲

1
Vmin(1 + τ̌ 2

t,x1
)
.

For the desired decay in |x⊥
|, we consider again the sets

G :=

{
v ∈ BVmin/2(0) : |v| ≤

⟨x⊥
⟩

2qTt,x1,v1

}
,

B :=

{
v ∈ BVmin/2(0) : |v| ≥

⟨x⊥
⟩

2qTt,x1,v1

}
.

For v ∈ G, we have ⟨|v⊥
− v⊥

∗
|Ťt,x1,v1⟩ = ⟨x⊥

− Ťt,x1,v1v
⊥
⟩ ≳ ⟨x⊥

⟩ and thus∫ t

0

∫
G

e−|s−Tt,x1,v1 |Vmin−|v⊥
−v⊥

∗ |Ťt,x1,v1 e−(|v1|+|v⊥
|)/4 dv ds ≲

1
Vmin(1 + |x⊥|2)

.
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Moreover, in B we use that e−|v| ≲ e−|v|/2τ̌ 2
t,x/⟨x

⊥
⟩

2 to deduce∫ t

0

∫
B

e−|s−Tt,x1,v1 |Vmin−|v⊥
−v⊥

∗ |Ťt,x1,v1 e−(|v1|+|v⊥
|)/4 dv ds ≲

τ̌ 2
t,x

Vmin(1 + τ̌ 2
t,x1
)⟨x⊥⟩2

≲
1

Vmin(1 + |x⊥|2)
.

Finally, if ďt,x > 0, we use (6-11) to deduce the following estimate for SP:

|SP(t, x)| ≲
1

Vmin(1 + ď2
t,x1

+ |x⊥|2
.

Collecting the above estimates, we obtain (6-8) for SP. The estimate for SP is analogous.

Step 2: Proof of (6-9). We observe that Proposition 4.2 and Corollary 4.7 gives

|∇x Xs,t | + |∇x Vs,t | ≲ 1 + |t ∧ Tt,x1,v1 − s|.

Since this term can be always absorbed by the exponential decay coming from ∇
28, the desired estimates

are analogous to the above in the case τ̌t,x1 ≤ 1 (so in particular for ďt,x > 0). On the other hand, if
τ̌t,x1 ≥ 1, then we rewrite SP similarly to Step 1 of the proof of Proposition 6.2 as

−SP(t, x)

=

∫ t

0

∫
R3

∇8(x−(t−s)v+Ys,t(x−qTt,x,vv,v)−X (s))∇vµ(v+Ws,t(x−qTt,x,vv,v))dv

=
1

(t−τω)3

∫ t

0

∫
R3

∇8

(
ω−(τω−s)

x−ω

t−τω
+Ys,t

(
ω,

x−ω

t−τω

)
−X (s)

)
∇vµ

(
x−ω

t−τω
+Ws,t

(
ω,

x−ω

t−τω

))
dω.

Taking the gradient in x we obtain (omitting the arguments of Ys,t and Ws,t )

|∇SP(t, x)|≲
∫ t

0

∫
R3

(τω−s)
(t−τω)4

∣∣∣∣∇28

(
ω−(τω−s)

x−ω

t−τω
+Ys,t−X (s)

)∣∣∣∣∣∣∣∣∇vµ(
x−ω

t−τω
+Ws,t

)∣∣∣∣dω

+

∫ t

0

∫
R3

1
(t−τω)4

∣∣∣∣∇28

(
ω−(τω−s)

x−ω

t−τω
+Ys,t−X (s)

)∣∣∣∣|∇vYs,t ||∇vµ

(
x−ω

t−τω
+Ws,t

)∣∣∣∣dω

+

∫ t

0

∫
R3

1
(t−τω)4

∣∣∣∣∇8(
ω−(τω−s)

x−ω

t−τω
+Ys,t−X (s)

)∣∣∣∣∣∣∣∣∇2
v µ

(
x−ω

t−τω
+Ws,t

)∣∣∣∣dω

+

∫ t

0

∫
R3

1
(t−τω)4

∣∣∣∣∇8(
ω−(τω−s)

x−ω

t−τω
+Ys,t−X (s)

)∣∣∣∣∣∣∣∣∇2
vµ

(
x−ω

t−τω
+Ws,t

)∣∣∣∣|∇vWs,t |dω.

We change variables back to v and find

|∇SP(t, x)| ≲
∫ t

0

∫
R3

|s − Tt,x1,v1 |

τ̌t,x
|∇

28(Xs,t − X (s))||∇vµ(Vs,t)| dv

+

∫ t

0

∫
R3

1
τ̌t,x

|∇
28(Xs,t − X (s))||∇vYs,t(x − qTt,x1,v1v, v)||∇vµ(Vs,t)| dv

+

∫ t

0

∫
R3

1
τ̌t,x

|∇8(Xs,t − X (s))||∇2
v µ(Vs,t)| dv

+

∫ t

0

∫
R3

1
τ̌t,x

|∇8(Xs,t − X (s))||∇2
vµ(Vs,t)||∇vWs,t(x − qTt,x1,v1v, v)| dv.
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By Proposition 4.6 and (4-6) we have, using log(2 + t)≤ δ,

|∇vYs,t(x − qTt,x1,v1v, v)| + |∇vWs,t(x − qTt,x1,v1v, v)| ≲ ⟨s − Tt,x1,v1⟩,

which can be absorbed again in the exponential decay coming from 8. The claim (6-9) then follows by
repeating the argument of Step 1. □

6D. Proof of Proposition 2.7(i). Resorting to the definition of S in (2-9) and the definition of the norm
∥ · ∥YT in Definition 2.5, the proof of Proposition 2.7(i) just consists of combining the estimates from
Propositions 6.1, 6.2 with γ =

1
2 with Proposition 6.3.

7. Error estimates for the friction force

In this section, we prove Proposition 2.7(ii) which asserts that the force acting on the point charge is
given, to the leading order, by the linearization of the system. To this end, we recall (2-9)–(2-14) and
rewrite for R > 0

E(t, X (t))= −∇(φ ∗ ρ(t, · ))(X (t))

= −∇(φ ∗ (G ∗s,x S +S))(X (t))

= F R(t)+ E R
1 (t)+ E2(t)+ E3(t),

where the linearized friction force F(t) and the error terms E R
1 , E2 and E3 are given by

F R(t)= −(∇φ∗ρ[gR,X (t),V (t)])(R, X (t)),

E R
1 (t)= −(∇φ∗(SP+G∗SP))(t, X (t))+(∇φ∗(SR,X (t),V (t)+G∗SR,X (t),V (t)))(R, X (t)), (7-1)

E2(t)= −(∇φ∗R)(t, X (t)), (7-2)

E3(t)= −(∇φ∗G∗R))(t, X (t)). (7-3)

7A. Contribution of the self-consistent field.

Lemma 7.1. Under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small respectively
large, the error term E2 (see (7-2)) can be estimated for all t ∈ [0, T ] by

|E2(t)| ≲ log(2 + t)δ2V −1/2
min .

Proof. Step 1: We start by rewriting R (see (2-10)) as

R(t, x)=

∫ t

0

∫
R3
(E(s, x − (t − s)v) · ∇vµ(v)− E(s, Xs,t) · ∇vµ(Vs,t)) dv ds

=

∫ t

0

∫
R3

div E(s, x − (t − s)v)(t − s)µ(v)− div E(s, Xs,t)(t − s)µ(Vs,t) dv ds

+

∫ t

0

∫
R3

E(s, Xs,t) · ∇vW̃s,t(x, v) · ∇vµ(Vs,t) dv ds

−

∫ t

0

∫
R3

∇x E(s, Xs,t) · ∇vỸs,t(x, v)µ(Vs,t) dv ds. (7-4)
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Step 2: We show that for |x − X (t)| ≤ V 1/2
min

|R(t, x)| ≲ log(2 + t)δ2V −1/2
min . (7-5)

We observe that |x − X (t)| ≤ V 1/2
min implies for |v|< Vmin/2 by (4-7) and (3-4)

|Ťt,x,v| ≤ 2|τ̌t,x | ≤ 2V −1/2
min ,

and thus by Lemma 4.10

|E(s, Xs,t)| + |∇E(s, Xs,t)| ≲


δ

⟨Vmin(t − s)⟩3 for s ≤ t − 4V −1/2
min ,

δ for s ≥ t − 4V −1/2
min ,

(7-6)

and by Proposition 4.2 and Corollary 4.7

|Ỹs,t(x, v)| + |W̃s,t(x, v)| + |∇vỸs,t(x, v)| + |∇vW̃s,t(x, v)| ≲ log(2 + t)δ⟨t − s⟩. (7-7)

The last two terms in (7-4) can thus be estimated by∫ t

0

∫
R3

|E(s, Xs,t) · ∇vW̃s,t(x, v) · ∇vµ(Vs,t)| + |∇x E(s, Xs,t) · ∇vỸs,t(x, v)µ(Vs,t)| dv ds

≲ log(2 + t)δ2
(∫ t

0

∫
R3

⟨t − s⟩e−|v|

⟨Vmin(t − s)⟩3 dv ds +

∫ t

t−4V −1/2
min

∫
R3

⟨t − s⟩e−|v| dv ds
)

≲ log(2 + t)δ2V −1/2
min . (7-8)

For the first term on the right-hand side of (7-4), we furthermore use that since φ is the fundamental
solution to −1+ 1, we have

div E = −(ρ ∗φ− ρ),

and in particular ∇ div E = E + ∇ρ Using the assumption (B3) together with Lemma 2.8, the same
arguments that lead to the estimates in Lemma 4.10 and thus to (7-6) also show uniformly for all λ∈ [0, 1]

|∇ div E(s, λ(x − (t − s)v)+ (1 − λ)Xs,t)| ≲


δ

⟨Vmin(t − s)⟩3 for s > t − 4V −1/2
min ,

δ for s < t − 4V −1/2
min .

Combining these inequalities with (7-6) and (7-7) and splitting the integral as in (7-8) we obtain∣∣∣∣∫ t

0

∫
R3

div E(s, x − (t − s)v)(t − s)µ(v)− div E(s, Xs,t)(t − s)µ(Vs,t) dv ds
∣∣∣∣ ≲ log(2 + t)δ2V −1/2

min ,

which finishes the proof of (7-5).

Step 3: conclusion of the proof. We insert the estimate (7-5) into the definition of E2(t) (see (7-2)) and
use the exponential decay of φ to find

|E2(t)| =
∣∣∣∣∫

R3
∇φ(y)∗R(X (t)−y)dy

∣∣∣∣
≤

∣∣∣∣∫
{|y|≤V 1/2

min }

∇φ(y)∗R(X (t)−y)dy
∣∣∣∣+∣∣∣∣∫

{|y|≥V 1/2
min }

∇φ(y)∗R(X (t)−y)dy
∣∣∣∣≲ log(2+t)δ2V −1/2

min ,
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where we used for the estimate of the second term that |R(X (t) − y)| ≤ 1 by Proposition 6.1 and
that V −1

min ≤ δ. □

Lemma 7.2. Under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small respectively
large, the error term E3 (see (7-3)) can be estimated for all t ∈ [0, T ] by

|E3(t)| = |(φ ∗ (∇R ∗t,x G))(X (t)| ≲ δ7/4V −1/2
min .

Proof. Let |z| ≤ V 1/2
min /8, and consider

(∇R ∗t,x G)(X (t)+ z)=

∫ t

0

∫
R3

∇R(t − s, X (t)+ z − y)G(s, y) dy ds.

We split the integral in the regions

A1 =
{
(s, y) ∈ [0, t] × R3

: |t − s| ≥ V −1/2
min , |y| ≤

1
4 V 1/2

min

}
, A2 = ([0, t] × R3) \ A1.

In the region A1 we have

ďt−s,X (t)+z−y ≥
1
2 V 1/2

min .

Using the a priori estimate on R from Proposition 6.2 together with (2-15) we therefore have for any
β ∈ (0, 1) ∣∣∣∣∫

A1

∇R(t − s, X (t)+ z − y)G(s, y) dy ds
∣∣∣∣ ≲ δ2−βV −3/2

min

∫ t

0

∫
B

V 1/2
min

|G(s, y)| dy

≲ log(2 + t)δ2−βV −3/2
min ≲ δ2−2βV −3/2

min , (7-9)

by using (B2) with n ≥ β−1.
On the complement of A1, we can use that |t − s| ≤ V −1/2

min or |y| ≥ V 1/2
min /4. Therefore using (2-15)

and (2-16) together with Proposition 6.2∣∣∣∣∫
Ac

1

∇R(t − s, X (t)+ z − y)G(s, y) dy ds
∣∣∣∣

≲δ2−β

(
V −1/2

min sup
0≤s≤t

∫
R3

|G(s, y)| dy+

∫ t

0

∫
Bc

V 1/2
min /4

1
1 + |z⊥ − y⊥|3

|G(s, y)| dy ds
)
≲δ2−βV −1/2

min . (7-10)

Choosing β =
1
8 and combining the estimates (7-9)–(7-10) yields for all |z| ≤ V 1/2

min

|(G ∗ ∇R)(t, X (t)+ z)| ≲ δ7/4V −1/2
min .

Moreover, combining Propositions 2.2 and 6.2 yields |(G ∗ ∇R)(t, X (t)+ z)| ≲ 1 for all z ∈ R3.
Combining these estimates with the decay of φ as in Step 3 of the previous proof yields the assertion. □

7B. Estimate of E R
1 . In order to estimate E R

1 , we will first provide separate estimates for SR − SP and
for SP − SP, where SP is defined in (6-7) and where we denote for shortness SR = SR,X (T ),V (T ).
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Lemma 7.3. Under the bootstrap assumptions (B1)–(B4) with δ0,n>0 sufficiently small respectively large,
the function SR = SR,X (T ),V (T ) defined in (2-13) can be estimated for all x ∈ R3 and all 0 ≤ t ≤ T ≤ R by

|SR(t, x)| ≲
1

Vmin⟨x⊥⟩2 .

Moreover, for all x ∈ R3 with |x − X (T )| ≤ V 2/5
min and all 0 ≤ t ≤ T ≤ R, we can estimate

(1) For t ≥ 4V −3/5
min

|SP(T − t, x)| + |SR(R − t, x)| ≲ e−ctVmin . (7-11)

(2) For t ≤ 4V −3/5
min

|SP(T − t, x)− SR(R − t, x)| ≲ δV −6/5
min . (7-12)

Proof. We rewrite SP and SR as

SP(T − t, x)= −

∫ R−t

−∞

∫
R3

∇8(x − X (T − t)− (R − t − s)(v− V (T − t))) · ∇µ(v) dv ds,

SR(R − t, x)= −

∫ R−t

0

∫
R3

∇8(x − X (T )− (R − t − s)v+ (R − s)V (T )) · ∇µ(v) dv ds.

For |v| ≤ Vmin/2 and s ≤ R − t , we have

|x − X (T − t)− (R − t − s)(v− V (T − t))|

≥

∣∣∣∣(R − t − s)V (T − t)+
∫ T

T −t
V (τ ) dτ

∣∣∣∣ − |x − X (T )| − |(R − t − s)v|

≥
1
2(R − s)Vmin − |x − X (T )|

and
|x − X (T )− (R − t − s)v+ (R − s)V (T )| ≥

1
2(R − s)Vmin − |x − X (T )|.

Since |x − X (T )| ≤ V 2/5
min and suppµ ⊂ BVmin/5, the integrands of both integrals above thus satisfy the

bound

|∇8(x − X (T − t)− (R − t − s)(v− V (T − t))| ≲ e−c(R−s)Vmin for R − s ≥ 4V −3/5
min ,

|∇8(x − X (T )− (R − t − s)v+ (R − s)V (T ))| ≲ e−c(R−s)Vmin for R − s ≥ 4V −3/5
min .

In particular, for t ≥ 4V −3/5
min we immediately (7-11). On the other hand, for s ≤ R

|x − X (T − t)− (R − t − s)(v− V (T − t))− (x − X (T )− (R − t − s)v+ (R − s)V (T ))|

≤

∫ T

T −t
|V (σ )− V (T − t)| dσ + (R − s)|V (T )− V (t − T )|

≤ t (t + R − s) sup |V̇ | ≤ Cδt (t + R − s),

where we used |V̇ | ≤ ∥E∥∞ ≤ δ by (4-1). Therefore, if t ≤ 4V −3/5
min , the difference is bounded by

|SP(T − t, x)− SR(R − t, x)| ≲ e−cV 2/5
min +

∫ R−t

R−4V −3/5
min

∫
R3

I8|∇µ(v)| dv ds,
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where by Taylor expansion of ∇8, I8 is given by

I8 := ∥∇
28∥L∞δ(4V −3/5

min )2 sup ≲ δV −6/5
min ,

and the claim (7-12) follows. Finally, the proof of 7.3 follows analogous to (6-8). □

The following lemma shows that SP is a good approximation for SP.

Lemma 7.4. Under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small, if T ≥ 4V −3/5
min ,

we have for all x ∈ R3 with |x − X (T )| ≤ V 2/5
min and all 0 ≤ t ≤ T :

(1) If t ≥ 4V −3/5
min , we have the estimate

|SP(T − t, x)| + |SP(T − t, x)| ≲ e−ctVmin . (7-13)

(2) If t ≤ 4V −3/5
min , we have the estimate

|SP(T − t, x)− SP(T − t, x)| ≲ log(2 + T )δV −6/5
min . (7-14)

Proof. The proof is largely analogous to the previous lemma and we only detail the differences. We first
observe that for |x − X (T )| ≤ V 2/5

min and T − s ≥ 4V −3/5
min , we have

|∇8(x − X (T − t)− (T − t − s)(v− V (T − t)))|+ |∇8(Xs,T −t(x, v)− X (s))| ≲ e−c(T −s)Vmin, (7-15)

and (7-13) follows as above.
It remains to show (7-14). Let t ≤ 4V −3/5

min . With the notation λ= T − s and omitting arguments of
Xs,λ and Vs,λ, we split the error into

|(SP−SP)(T −t, x)|

≤

∣∣∣∣∫ 0

−∞

∫
R3

∇8
(
x−X (λ)−(λ−s)(v−V (λ))

)
·∇vµ(v)dv ds

∣∣∣∣
+

∣∣∣∣∫ T−4V −3/5
min

0

∫
R3

∇8
(
x−X (λ)−(λ−s)(v−V (λ))

)
·∇vµ(v)−∇8(Xs,λ−X (s))·∇vµ(Vs,λ)dv ds

∣∣∣∣
+

∣∣∣∣∫ λ

T−4V −3/5
min

∫
R3

∇8
(
x−X (λ)−(λ−s)(v−V (λ))

)
·∇vµ(v)−∇8(Xs,λ−X (s))·∇vµ(Vs,λ)dv ds

∣∣∣∣. (7-16)

Relying on (7-15), the first two lines can be estimated as before, by∣∣∣∣∫ T −4V −3/5
min

0

∫
R3

[∇8(x−X (λ)−(λ−s)(v−V (λ)))·∇vµ(v)−∇8(Xs,λ−X (s))·∇vµ(Vs,λ)]dv ds
∣∣∣∣

+

∣∣∣∣∫ 0

−∞

∫
R3

∇8(x−X (λ)−(λ−s)(v−V (λ)))·∇vµ(v)dv ds
∣∣∣∣≲ e−cV 2/5

min .
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For the last term in (7-16), we first take a closer look at the velocity integral. We integrate by parts∫
R3

∇8(x − X (λ)− (λ− s)(v− V (λ))) · ∇vµ(v)− ∇8(Xs,λ − X (s)) · ∇vµ(Vs,λ) dv

= −

∫
R3
(λ− s)[18(x − X (λ)− (λ− s)(v− V (λ)))µ(v)−18(Xs,λ − X (s))µ(Vs,λ)] dv

+

∫
R3

∇8(Xs,λ − X (s)) · ∇vW̃s,λµ(Vs,λ) dv−

∫
R3

∇vỸs,λ∇
28(Xs,λ − X (s)) · ∇vµ(Vs,λ) dv

=: I1 + I2 + I3,

and estimate I1, I2, I3 separately. For I1 we use again |V̇ (s)| ≲ δ as well as the estimates from
Proposition 4.2 and Corollary 4.7 to deduce that, for |λ− s| ≤ 4V −3/5

min , we have

|x − X (λ)− (λ− s)(v− V (λ))− (Xs,λ − X (s))| + |v− Vs,λ| ≲ δ.

This yields the bound
|I1| ≲ ∥∇

38∥L∞(R3)V
−3/5
min δ.

For I2, I3 we observe that |x − X (T )| ≤ V 2/5
min and t ≤ 4V −3/5

min implies |Ťλ,x,v| ≲ V −3/5
min due to (4-8).

Combining this with Corollary 4.7 and Proposition 4.2 we obtain for λ− s ≤ V −3/5
min

|I2| + |I3| ≲ log(2 + T )δV −3/5
min .

Using these estimates in the last term in (7-16) finishes the proof. □

Inserting the estimates from Lemmas 7.3 and 7.4 into the definition of the error term E1 (see (7-1))
yields the following estimate.

Corollary 7.5. Under the bootstrap assumptions (B1)–(B4) with δ0, n > 0 sufficiently small, and if
T ≥ 4V −3/5

min , we have for all R ≥ T

|E R
1 (T )| ≲ δ log(2 + T )V −6/5

min .

Proof. We split E R
1 into

E R
1 = E1

1 + E2
1 ,

E1
1 (T ) := (∇φ ∗ SP)(T, X (T ))− (∇φ ∗ (SR))(R, X (T )),

E2
1 (T ) := (∇φ ∗ (G ∗ SP))(t, X (T ))− (∇φ ∗ (G ∗ SR))(R, X (T )).

Then the desired estimate for E1
1 follows directly from the decay of φ and Lemmas 7.3 and 7.4 applied

with t = 0.
To estimate E2

1 , we write S = SP − SP and first observe that we can split the convolution as

(∇φ ∗ (G ∗ S))(T, X (T ))=

∫ 4V −3/5
min

0
((∇φ) ∗ G(t, · ) ∗ S(T − t, · ))(X (T )) dt

+

∫
∞

4V −3/5
min

(φ ∗ (∇G(t, · )) ∗ S(T − t, · ))(X (T )) dt. (7-17)
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Defining B = BV 2/5
min /2

(0), using Proposition 6.3 and Lemma 7.4, as well as Proposition 2.2, we estimate
for |x | ≤ V 2/5

min /4∫ 4V −3/5
min

0
|(G(t)∗S(T −t))(X (T )−x)|dt

≤

∫ 4V −3/5
min

0

∫
B
|G(t, y)||S|(T −t, X (T )−x−y)dy dt+

∫ 4V −3/5
min

0

∫
Bc

|G(t, y)||S|(T −t, X (T )−x−y)dy dt

≲
∫ 4V −3/5

min

0
δ log(2+T )V −6/5

min dt+
∫ 4V −3/5

min

0

∫
Bc

1
|y|4

1
Vmin|y⊥|2

dy dt

≲ log(2+T )δV −7/5
min . (7-18)

Moreover, relying on the pointwise estimates for ∇G from Proposition 2.2, we find∫
∞

4V −3/5
min

|(∇G(t, · ) ∗ S(T − t, · ))(X (T )− x)| dt

≤

∫ T

4V −3/5
min

∫
B

|∇G(t, y)||S|(T − t, X (T )− x − y) dy dt

+

∫
∞

4V −3/5
min

∫
Bc

|∇G(t, y)||S|(T − t, X (T )− x − y) dy dt

≲
∫

∞

4V −3/5
min

∫
R3

1
|y|5 + t5 e−ctVmin dy dt +

∫
∞

0

∫
Bc

1
|y|5 + t5

1
Vmin⟨y⊥⟩2 dy dt ≲ V −11/5

min . (7-19)

For |x | ≥ V 2/5
min /4, Propositions 6.3 and 2.2 imply∫ 4V −3/5

min

0
|(G(t, · ) ∗ S(T − t, · ))(X (T )− x)| dt ≲ 1, (7-20)∫

∞

4V −3/5
min

|(∇G(t, · ) ∗ S(T − t, · ))(X (T )− x)| dt ≲ 1. (7-21)

Inserting (7-18)–(7-21) into (7-17) and using the exponential decay of φ yields

|(∇φ ∗ (G ∗ (SP − SP)))(T, X (T ))| ≲ δ log(2 + T )V −6/5
min . (7-22)

Similarly, relying on Lemma 7.3 yields

|(∇φ ∗ G ∗ SP)(T, X (T ))− (∇φ ∗ G ∗ SR)(R, X (T ))| ≲ δV −6/5
min . (7-23)

Combining (7-22)–(7-23) yields the desired bound for E2
1 (T ) which concludes the proof. □

7C. Proof of Proposition 2.7(ii). We recall the identities (2-12)–(2-14) and (2-24) to rewrite

lim
s→∞

|(∇φ ∗ ρ[hV (T )])(s, 0)+ E(T, X (T ))| ≤ sup
R≥T

|E R
1 (T )| + |E2(T )| + |E3(T )|.
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Now it remains to apply Corollary 7.5 for E R
1 , Lemma 7.1 for E2 and Lemma 7.2 for E3. Since we assume

T ≥ 4Vmin(T )−3/5 and we have V −1
min ≤ δ, we obtain

sup
R≥T

|E R
1 (T )|+|E2(T )|+|E3(T )|≲δ log(2+T )V −6/5

min +δ2 log(2+T )V −1/2
min +δ7/2V −1/2

min ≲δ11/5 log(2+T ).

Hence, by a suitable choice of δ0 and n, from (B2) we deduce

sup
R≥T

|E R
1 (T )| + |E2(T )| + |E3(T )| ≤ Cδ13/6,

which proves the claim.

8. The linearized friction force

Proof of Proposition 2.1. Fix V∗ ∈ R3, and recall the defining equation for h = hV∗
from (1-3):

∂sh + (v− V∗) · ∇x h − ∇(φ ∗x ρ[h]) · ∇vµ= −e0∇8(x) · ∇vµ, h(0, · )= 0.

We extend h by zero for negative times. The equation for h can be explicitly solved in space-time Fourier
variables. Let h̃(z, k, v) be given according to (1-14). Then

(τ + k · (v− V∗))h̃ − φ̂(k)ρ[h̃](τ, k)k · ∇vµ=
−e0 p8(k)k · ∇vµ

iτ

for negative imaginary part, ℑ(τ ) < 0. This yields the explicit representation

ρ[h̃](τ, k)=
−e0 p8(k)

iτε(τ, |k|, k̂ · V∗)

∫
R3

k · ∇vµ(v)

τ + k · (v− V∗)
dv =

−e0 p8(k)

iτε(τ, |k|, k̂ · V∗)

1 − ε(τ, |k|, k̂ · V∗)

φ̂(|k|)
,

where k̂ = k/|k|, k ̸= 0, and the dielectric function ε(τ, |k|, k̂ · V∗) is given by

ε(τ, r, k̂ · V∗)= 1 − φ̂(r)
∫

R3

k̂ · ∇vµ(v)

τ/r + k̂ · (v− V∗)
dv.

Notice that the integral indeed only depends on V∗ and k̂ through k̂ · V∗ since by (1-8)∫
R3

k̂ · ∇vµ(v)

τ/r + k̂ · (v− V∗)
dv =

∫
R3

−(k̂ · v)ψ(v)

τ/r + k̂ · v− k̂ · V∗

dv,

and ψ is radially symmetric by Assumption 1.2. We remark, that by elementary computation ε and a
(see (1-9)) are related by

ε(τ, |k|, k̂ · V∗)= 1 − φ̂(k)a(τ/|k| − k̂ · V∗).

The Penrose condition (1-10), and Assumption 1.2 then ensure a uniform bound for |ε|

0< κ ≤ |ε| ≤ C.
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We now compute the limit s → ∞ of the associated force. Using Lemma B.1 yields

lim
s→∞

(ρ[h(R, · )] ∗∇φ)(0)= lim
s→∞

1
(2π)3

∫
R3

ikρ̂[h(s, · )]φ̂ dk = lim
iτ→0+

iτ
(2π)3

∫
R3

ikρ[h̃](τ, k)φ̂ dk

= lim
iτ→0+

e0

(2π)3

∫
R3

ik p8(k) dk − lim
iτ→0+

e0

(2π)3

∫
R3

ik p8(k)

ε(τ, |k|, k̂ · V∗)
dk.

The first term vanishes since p8(k)= p8(−k), and we can simplify

lim
s→∞

(ρ[h(s, · )] ∗∇φ)(0)= lim
iτ→0+

−e0

(2π)3

∫
R3

ik p8(k)

ε(τ, |k|, k̂ · V∗)
dk

= lim
iτ→0+

−e0

(2π)3

∫
R3

ik p8(k)ε∗(τ, k)

|ε(τ, |k|, k̂ · V∗)|2
dk. (8-1)

By rotational symmetry of the potential φ, φ̂ is real. Thus, by Plemelj’s formula, Lemma B.2, for k ̸= 0,

lim
iτ→0+

ℑε∗(τ, |k|, k̂ · V∗)= φ̂(k) lim
iτ→0+

ℑ

∫
R3

k · ∇vµ(v)

k · (v− V∗)+ τ
dv

= φ̂(k) lim
iτ→0+

ℑ

∫
{w·k=0}

∫
R

k · ∇vµ(V∗ + λk̂ +w)

λ|k| + τ
dλ dw

= πφ̂(k)
∫

{w·k=0}

k̂ · ∇vµ(V∗ +w) dw.

By the radial symmetry of the potential 8, p8 is real. Since the left hand side of (8-1) is real, we can
simplify the above to

lim
s→∞

(ρ[h(s, · )] ∗∇φ)(0)= lim
iτ→0+

−e0

(2π)3

∫
R3

ik p8(k)ε∗(τ, k)

|ε(τ, |k|, k̂ · V∗)|2
dk

= lim
iτ→0+

e0

8π2

∫
R3

k p8(k)φ̂(k)
∫
{k·v=k·V∗}

k̂ · ∇vµ(v)

|ε(τ, |k|, k̂ · V∗)|2
dk. (8-2)

Recall Assumption 1.3, i.e., we have
∇vµ(v)= −vψ(v),

for some nonnegative, continuous, exponentially decaying, positive function ψ . This finally yields

lim
s→∞

e0(ρ[h(s, · )] ∗∇φ)(0) · V∗ = −
e2

0

8π2

∫
R3

p8(k)|k|φ̂(k)(k̂V∗)
2

|ε(−i0+, |k|, k̂ · V∗)|2
ϕ(k̂ · V∗) dk,

where ϕ(u) is a nonnegative, continuous, exponentially decaying function given by

ϕ(u)=

∫
{e1·v=u}

ψ(v) dv.

Since ψ is radial, nonnegative and not everywhere vanishing, we also have ϕ(0) > 0. In particular, since
φ̂ and p8 are both positive (see Assumption 1.1) (2-1) holds, i.e.,

lim
s→∞

e0(ρ[h(s, · )] ∗∇φ)(0) · V∗ < 0.
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It remains to determine the asymptotics of the integral for |V∗| → ∞. We rewrite the integral in terms of
the variable u = k̂ · pV∗. Multiplying with |V∗| we obtain

lim
s→∞

e0|V∗|(ρ[h(s, · )] ∗∇φ)(0) · V∗ = −
e2

0|V∗|

4π

∫
∞

0

∫ 1

−1

p8(r)r3φ̂(r)(u|V∗|)
2

|ε(−i0+, r, u|V∗|)|2
ϕ(u|V∗|) dr du

= −
1

4π

∫
∞

0

∫
|V∗|

−|V∗|

p8(r)r3φ̂(r)U 2

|ε(−i0+, r,U )|2
ϕ(U ) dr dU.

The integral converges exponentially fast to a positive limit for |V∗| → ∞. This establishes (2-2). □

Remark 8.1. The friction force is related to the Balescu–Lenard correction of the Landau equation. More
precisely, consider the case φ =8 in (8-2). We obtain

lim
s→∞

e0(ρ[h(s, · )] ∗∇φ)(0)= −
1

8π2

∫
R3

k|φ̂(k)|2
∫
{k·v=k·V∗}

k̂ · ∇vµ(v)

|ε(−i0+, |k|, k̂ · V∗)|2
dk

= −
1

8π2

∫
R3

∫
R3

δ(k · (v− v∗))|φ̂(k)|2(k ⊗ k) · ∇vµ(v)

|ε(−i0+, |k|, k̂ · V∗)|2
dk dv,

which gives the friction coefficient of the Balescu–Lenard equation

∂t G = LB(G),

LB(G)(v)= ∇v ·

(∫
R3

∫
R3

B(v, v− v∗; ∇G)(∇GG∗ − G∇∗G∗) dv∗

)
,

B(v, v− v∗; ∇G)=

∫
R3

δ(k · (v− v∗))|φ̂(k)|2(k ⊗ k)

|ε(−i0+, |k|, k̂ · v∗; ∇G)|2
dk,

ε(τ, r, k̂ · V∗; ∇G)= 1 − φ̂(r)
∫

R3

k̂ · ∇vG(v)

τ/r + k̂ · (v− V∗)
dv.

The equation was formally derived in [Balescu 1960; Lenard 1960]; for a recent well-posedness result
see [Duerinckx and Winter 2023]. Notice that we recover the Landau equation from the Balescu–Lenard
equation when we neglect collective effects, i.e., replace ε ≡ 1.

Appendix A: Proof of Proposition 1.5

Proof of Proposition 1.5. By Assumptions 1.1 and 1.2, the function a(z) defined in (1-9) decays for
|z| → ∞, ℑ(z)≤ 0. Therefore the infimum in (1-10) can be replaced by a minimum. This allows us to
argue by contradiction. For C > 0 given, assume there exist ξ∗

∈ R3, ℑ(z∗)≤ 0 such that

a(z∗)= (φ̂(k))−1 > 1. (A-1)

As in the proof of Proposition 2.7 in [Bedrossian et al. 2018], we use Penrose’s argument principle
[1960]: the function z 7→ a(z) is a holomorphic function on the lower half plane, vanishing for |z| → ∞.
The boundary behavior of the function is given by the curve γ : R → C given by

γ⃗ (x)= a(x − i0) := lim
ε→0

a(x − iε).

By the argument principle, (A-1) can only hold if the curve γ⃗ intersects the half-line {y ∈ R : y > 1}.
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Writing µ(v)= µ(|v|) by slight abuse of notation, we have the representation (see [Bedrossian et al.
2018, Appendix] and [Mouhot and Villani 2011, Section 3])

γ⃗ (x)= PV
∫

R

−2πuµ(|u|)

u − x
du − i2π2uµ(|u|).

By Assumption 1.2, there exists C > 0 such that∣∣∣∣PV
∫

R

−2πuµ(|u|)

u − x
du

∣∣∣∣< 1
2
, |x | ≥ C .

Now it suffices to observe that the imaginary part does not vanish if µ(v)> 0 for |v| ≤ C . This contradicts
the assumption for C large enough and finishes the proof. □

Appendix B: Two standard auxiliary lemmas

In this section, we recall two standard results which we use to compute the linearized force in Section 8.

Lemma B.1. Assume f ∈ C1
b(R), f = 0 in (−∞, 0] and let f̃ be it’s Fourier transform. Then,

lim
t→∞

f (t)= lim
z↓0

z f̃ (−i z),

whenever the limit on the right-hand side exists.

Proof. Provided the right-hand side above exists, we have

lim
z↓0

z f̃ (−i z)= lim
z↓0

∫
∞

0
f (t)ze−zt dt = lim

z↓0

∫
∞

0
f ′(t)e−zt dt − [ f e−zt

]
∞

0

= lim
z↓0

∫
∞

0
f ′(t)e−zt dt − [ f e−zt

]
∞

0 =

∫
∞

0
f ′(t) dt − f (0)= lim

t→∞
f (t).

as claimed. □

Lemma B.2 (Plemelj’s formula, e.g., [Muskhelishvili 1958]). For f ∈ L2(R)∩C1(R) we have the identity

lim
δ→0+

∫
R

f (y)
(x − y)± iδ

dy = ∓iπ f (x)+ lim
δ→0+

∫
{|x−y|≥δ}

f (y)
x − y

dy.
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