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The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group ELn(R),
generated by elementary matrices over a finitely generated commutative ring R, has Kazhdan’s prop-
erty (T) as soon as n ≥ 3. This is no longer true if the ring R is replaced by a commutative rng (a ring but
without the identity) due to nilpotent quotients ELn(R/Rk). We prove that even in such a case the group
ELn(R) satisfies a certain property that can substitute property (T), provided that n is large enough.

1. Introduction

We continue and extend the scope of the study of [Kaluba et al. 2019; 2021; Netzer and Thom 2015;
Nitsche 2020; Ozawa 2016], which develops the way of proving Kazhdan’s property (T) via sum of
squares methods. See [Bekka et al. 2008] for a comprehensive treatment of property (T). Let 0 = ⟨S⟩ be
a group together with a finite symmetric generating subset S. We denote by R[0] the real group algebra
with the involution ∗ that extends the inverse ∗ : x 7→ x−1 on 0. The positive elements in R[0] are sums
of (hermitian) squares,

62R[0] :=

{∑
i

ξ∗

i ξi : ξi ∈ R[0]

}
and the combinatorial Laplacian is

1 :=
1
2

∑
s∈S

(1 − s)∗(1 − s) = |S| −

∑
s∈S

s ∈ 62R[0].

It is proved in [Ozawa 2016] that the group 0 has property (T) if and only if there is ε > 0 that satisfies

12
− ε1 ∈ 62R[0].

Property (T) for the so-called universal lattice ELn(Z[t1, . . . , td ]), n ≥ 3, is proved in [Shalom 2006;
Vaserstein 2006; Ershov and Jaikin-Zapirain 2010]. See also [Mimura 2015] for a simpler proof and
[Kassabov and Nikolov 2006; Kaluba et al. 2019] for partial results. All the proofs (save for [Kaluba
et al. 2019]) rely on relative property (T) of certain semidirect products. Our interest in this paper is
in the infinite index subgroup ELn(Z⟨t1, . . . , td⟩) of ELn(Z[t1, . . . , td ]). Here R := Z⟨t1, . . . , td⟩ is the
commutative rng (i.e., a ring, but without assuming the existence of the identity; R is an ideal in the
unitization R1) of polynomials in t1, . . . , td with zero constant terms and ELn(R) ⊂ SLn(R1) denotes
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the group generated by the elementary matrices over the rng R. The elementary matrices are those
ei, j (r) ∈ SLn(R1) with 1’s on the diagonal, r ∈ R in the (i, j)-th entry, and zeros everywhere else. The
group ELn(R) does not have property (T), because it has infinite nilpotent quotients ELn(R/Rk). The
group does not seem to admit a good analogue of relative property (T) phenomenon, either. Still, we
prove via sum of squares methods that ELn(R) satisfies a property that can substitute property (T).

Main Theorem. Let d ∈ N and consider the commutative rng R := Z⟨t1, . . . , td⟩. Then there are n0 ∈ N

and ε > 0 such that, for every n ≥ n0, the combinatorial Laplacians

1 :=

∑
i ̸= j

d∑
r=1

(1 − ei, j (tr ))∗(1 − ei, j (tr ))

for ELn(R) and

1(2)
:=

∑
i ̸= j

d∑
r,s=1

(1 − ei, j (tr ts))∗(1 − ei, j (tr ts))

for ELn(R2) satisfy
12

− nε1(2)
∈ 62R[ELn(R)].

Here 62R[0] denotes the archimedean closure of 62R[0] (see Section 2). An upper bound for n0 in
the Main Theorem is in principle explicitly calculable, but we do not attempt to do that (nor attempt to
optimize the proof for a better estimate). We conjecture1 that the Main Theorem holds true with n0 = 3
(in particular n0 should not depend on d). Our proof is inspired by the work of Kaluba, Kielak and
Nowak [Kaluba et al. 2021] that proves property (T) for Aut(Fd) for d ≥ 5 via computer calculations and
an ingenious idea on stability. Our proof does not rely on computers, but instead on analysis by Boca
and Zaharescu [2005] on the almost Mathieu operators in the rotation C∗-algebras. In fact, there is no
known method of rigorously proving a result like the Main Theorem by computers. This is because the
conclusion is analytic in nature—the archimedean closure is indispensable. See discussions in Section 6.

The above theorem has a couple of corollaries. The first one is reminiscent of one of the standard
definitions of property (T) (see Definition 1.1.3 in [Bekka et al. 2008]).

Corollary A. For every d , if n is large enough, then for every κ > 0 there is δ > 0 satisfying the following
property. For every orthogonal representation π of ELn(Z⟨t1, . . . , td⟩) on a Hilbert space H and every
unit vector v ∈H with maxi, j,r ∥v −π(ei, j (tr ))v∥ ≤ δ, there is a vector w ∈H such that ∥v −w∥ ≤ κ and

lim
l→∞

max
i, j,r

∥w − π(ei, j (t l
r ))w∥ = 0.

We remark that a certain strengthening of the above corollary does not hold. Namely, there is an
orthogonal representation π of ELn(Z⟨t1, . . . , td⟩) that simultaneously admits asymptotically invariant
vectors vk and a sequence xl ∈ ELn(Z⟨t l

1, . . . , t l
d⟩) with π(xl) → 0 in the weak operator topology.

Corollary B. For every d, if n is large enough, then the group ELn(Z⟨t1, . . . , td⟩) has property (τ ) with
respect to the finite quotients of the form ELn(S), where S is a finite unital quotients of Z⟨t1, . . . , td⟩.

1NB: As the author is lame at the computer, no computer experiments have been carried out.
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Property (τ ) is a generalization of property (T) for finite quotients. See Section 7 for the definition and
the proofs of the above corollaries. Corollary B says {ELn(S) : S} forms an expander family with respect
to elementary generating subsets of fixed size. The novel point compared to the previously known case of
the universal lattice [Kassabov and Nikolov 2006] is that the generating subsets of the finite commutative
rings S need not contain the unit although the S are assumed unital. For example, for n large enough, the
Cayley graphs of SLn(Z/qZ) with respect to the generating subsets {ei, j (p) : i ̸= j} form an expander
family as relatively prime pairs (p, q) vary. The study of the expander property for SLn(Z/qZ) and alike
is a very active area. See [Breuillard and Lubotzky 2022; Helfgott 2019; Kowalski 2019] for recent
surveys on this.

2. Preliminaries

Let 0 = ⟨S⟩ be a group together with a finite symmetric generating subset S. We denote by R[0] the real
group algebra with the involution ∗ which is the linear extension of x∗

:= x−1 on 0. The identity element
of 0 as well as R[0] is simply denoted by 1. Recall the positive cone of sums of (hermitian) squares is
given by

62R[0] :=

{∑
i

ξ∗

i ξi : ξi ∈ R[0]

}
⊂ R[0]

her
:= {ξ ∈ R[0] : ξ = ξ∗

}.

The elements in 62R[0] are considered positive. For ξ, η ∈ R[0]
her, we write ξ ⪯ η if η − ξ ∈ 62R[0].

It is obvious that ξ ⪰ 0 implies ξ ≥ 0 in the full group C∗-algebra C∗
[0], that is to say, π(ξ) is positive

selfadjoint for every orthogonal (or unitary) representation π of 0 on a real (or complex) Hilbert space H.
The converse is true up to the archimedean closure:

62R[0] := {ξ ∈ R[0] : for all ε > 0 ξ + ε · 1 ⪰ 0} = {ξ ∈ R[0] : ξ ≥ 0 in C∗
[0]}.

See, e.g., [Cimprič 2009; Ozawa 2013; Schmüdgen 2009] for this. On this occasion, we recall the
basic fact that 0 ⪯ ξ ⪯ η (or 0 ≤ ξ ≤ η) need not imply 0 ≤ ξ 2

≤ η2. Note that since any orthogonal
representation of 0 dilates to an orthogonal representation of any supergroup 01 ≥ 0 by induction (i.e.,
C∗

[0] ⊂ C∗
[01] in short), whether ξ ≥ 0 or not does not depend on the ambient group. The same holds

true for ξ ⪰ 0, by the coset decomposition. The combinatorial Laplacian, with respect to the (symmetric)
generating subset S,

1 :=
1
2

∑
s∈S

(1 − s)∗(1 − s) = |S| −

∑
s∈S

s

satisfies, for every orthogonal representation (π,H) and a vector v ∈ H,

⟨π(1)v, v⟩ =
1
2

∑
s∈S

∥v − π(s)v∥
2.

3. Proof of the Main Theorem, prelude

For any rng R, we denote by ELn(R) ⊂ SLn(R1) the group generated by the elementary matrices over
the rng R. The elementary matrices are those ei, j (r) ∈ SLn(R1) with 1’s on the diagonal, r ∈ R in the
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(i, j)-th entry (i ̸= j), and zeros everywhere else. They satisfy the Steinberg relations:

• ei, j (r)ei, j (s) = ei, j (r + s).

• [ei, j (r), e j,k(s)] = ei,k(rs) if i ̸= k.

• [ei, j (r), ek,l(s)] = 1 if i ̸= l and j ̸= k.

We note that every rng homomorphism R → S induces by entrywise operation a group homomorphism
ELn(R) → ELn(S) and that ELn(R/Rk) is nilpotent for every k, where Rk

:= span{r1 · · · rk : ri ∈ R}.
To ease notation, we will write

Ei, j (r) := (1 − ei, j (r))∗(1 − ei, j (r)) = 2 − ei, j (r) − ei, j (r)∗ ∈ R[ELn(R)].

We now consider the case R = Z⟨t1, . . . , td⟩ and start proving the Main Theorem. Recall that the
combinatorial Laplacians with respect to the generating subset {ei, j (±tr )} are given by

1n :=

∑
i ̸= j

d∑
r=1

Ei, j (tr ) and 1(2)
n :=

∑
i ̸= j

d∑
r,s=1

Ei, j (tr ts).

We follow the idea of [Kaluba et al. 2021] about the stability with respect to n of the relation like
1

(2)
n ≪ 12

n . Here ξ ≪ η means that ξ ≤ Rη for some R > 0 in the full group C∗-algebra. For each n, put
En := {{i, j} : 1 ≤ i, j ≤ n, i ̸= j} and, for e, f ∈ En , write e ∼ f if |e∩f| = 1 and e ⊥ f if e∩f =∅. One has

1n =

∑
e∈En

1e,

where 1{i, j} :=
∑d

r=1 Ei, j (tr ) + E j,i (tr ). Thus

12
n =

∑
e

12
e +

∑
e∼f

1e1f +
∑
e⊥f

1e1f =: Sqn + Adjn + Opn .

The elements Sqn and Opn are positive, while Adjn is not and this causes trouble.
For m < n, we view ELm(R) as a subgroup of ELn(R) sitting at the left upper corner. The symmetric

group Sym(n) acts on ELn(R) by permutation of the indices. We note that

|Em | =
1
2 m(m − 1),

|{(e, f) ∈ E2
m : e ∼ f}| = m(m − 1)(m − 2),

|{(e, f) ∈ E2
m : e ⊥ f}| =

1
4 m(m − 1)(m − 2)(m − 3).

Hence, as it is proved in [Kaluba et al. 2021], one has∑
σ∈Sym(n)

σ(1(2)
m ) = m(m − 1) · (n − 2)! ·1(2)

n ,

∑
σ∈Sym(n)

σ(Adjm) = m(m − 1)(m − 2) · (n − 3)! · Adjn,∑
σ∈Sym(n)

σ(Opm) = m(m − 1)(m − 2)(m − 3) · (n − 4)! · Opn .
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Thus if we know there are m ∈ N, R > 0, and ε > 0 such that

Adjm +R Opm ≥ ε1(2)
m (♥)

holds true in C∗
[ELm(R)], then it follows

n − 2
m − 2

ε1(2)
n ≤ Adjn +

m − 3
n − 3

R Opn ≤ 12
n

for all n such that R(m − 3)/(n − 3) ≤ 1 and the Main Theorem is proved. This is Proposition 4.1 in
[Kaluba et al. 2021]. To apply this machinery, we further expand Adjm :

Adjm =

∑
r,s

∑
i, j,k distinct

(Ei, j (tr ) + E j,i (tr ))(E j,k(ts) + Ek, j (ts))

=

∑
r,s

∑
i, j,k distinct

(Ei, j (tr )E j,k(ts) + E j,k(ts)Ei, j (tr ) + Ei, j (tr )Ei,k(ts) + E j,k(ts)Ei,k(tr )).

Therefore, if there are m ∈ N, R > 0, ε > 0, and distinct indices i, j, k, l such that

Ei, j (tr )E j,k(ts) + E j,k(ts)Ei, j (tr ) + Ei, j (tr )Ei,l(ts) + E j,k(ts)El,k(tr ) + R Opm ≥ εEi,k(tr ts) (♦)

holds true, then we obtain (♥) (for different R > 0 and ε > 0) by summing up this over the Sym(m)-orbit
and over r, s. This is what we will prove in the next section.

4. The Heisenberg group and the rotation C∗-algebras

In this section, we will work entirely in the C∗-algebra setting. Let’s consider the integral Heisenberg
group

H :=


1 a c

1 b
1

 : a, b, c ∈ Z

 ∼= ⟨x, y : z := [x, y] is central⟩,

where

x =

1 1
1

1

 , y =

1
1 1

1

 , z =

1 1
1

1

 .

Note that every irreducible unitary representation of H sends the central element z to a scalar (multiplica-
tion operator) of modulus 1. For θ ∈ [0, 1), we consider the irreducible unitary representation πθ of H on
ℓ2(Z) or ℓ2(Z/qZ), depending on whether θ irrational or θ = p/q is rational with gcd(p, q) = 1, given by

πθ (x)δ j = exp(2 jπ ıθ)δ j , πθ (y)δ j = δ j+1, πθ (z) = exp(2π ıθ).

By convention, if θ = p/q is rational, then gcd(p, q) = 1 is assumed, and if θ is irrational, we consider
q = ∞, and Z/qZ means Z. Thus in either case πθ is a representation on ℓ2(Z/qZ). The C∗-algebra
Aθ := πθ (C∗

[H]) is called the rotation C∗-algebra.
We fix the notation used throughout this section. We define

X := (1 − x)∗(1 − x) = 2 − x − x∗
∈ C∗

[H]+, Xθ := πθ (X) ∈ Aθ ,
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and the same for y and z. Note that X+Y is the combinatorial Laplacian of H with respect to the generating
subset {x±, y±

}, that 0 ≤ X ≤ 4, and that the triplets (Xθ , Yθ , Zθ ), (Yθ , Xθ , Zθ ), and (X1−θ , Y1−θ , Z1−θ )

are unitarily equivalent. For a parameter λ > 0, the almost Mathieu operator on ℓ2(Z/qZ) is given by

Hθ,λ := πθ

(
λ

2
(x + x∗) + y + y∗

)
= (λ + 2) −

(
λ

2
Xθ + Yθ

)
.

We also write s = sin πθ , sm = sin 2mπθ , and cm = cos 2mπθ . In particular,

Zθ = 2(1 − cos 2πθ) = 4s2.

See [Boca 2001] for more information about the almost Mathieu operators and [Nitsche 2020] for some
discussion in connection with the semidefinite programming.

Eventually, we will prove a certain inequality (Theorem 9) about X , Y , and Z (in the full group
C∗-algebra of a higher-dimensional Heisenberg group) that leads to (♦) in the previous section. To prove
inequalities about X , Y , and Z , it suffices to work with Xθ , Yθ , and Zθ for each θ ∈

[
0, 1

2

]
separately,

thanks to the following well-known fact (Lemma 1). The critical estimate is the one for small θ > 0
(Corollary 4 and Lemma 6). The rest will work out anyway.

Lemma 1. For any dense subset I ⊂ [0, 1), the representation
⊕

θ∈I πθ is faithful on the full group
C∗-algebra C∗

[H].

Proof. For the readers’ convenience, we sketch the proof. Let τθ denote the tracial state on C∗
[H] associ-

ated with πθ . That is to say, if θ is irrational, then τθ arises from the canonical tracial state on the irrational
rotation C∗-algebra Aθ and it is given by τθ (x i y j )=0 for all (i, j) ̸= (0, 0). If θ = p/q is rational, then τθ is
given by trq ◦πθ , where trq is the tracial state on Mq(C), and it satisfies τθ (x i y j )=0 for all (i, j) ̸= (0, 0) in
(Z/qZ)2. It follows that θ 7→ τθ is continuous at irrational points and the assumption of the lemma implies
that τ :=

∫ 1
0 τθ dθ is a continuous state on

⊕
θ∈I πθ . It is not hard to see that τ coincides with the tracial

state associated with the left regular representation of H , that is to say, τ(x i y j zk) = 0 for all (i, j, k) ̸=

(0, 0, 0). Since H is amenable, the tracial state τ is faithful on the full group C∗-algebra C∗
[H]. □

Theorem 2 [Boca and Zaharescu 2005]. Let θ ∈
[
0, 1

2

)
. One has

∥Hθ,λ∥ ≤ λ + 2 −
2λ

λ + 2
sin πθ.

More precisely, for any real unit vector ξ in ℓ2(Z/qZ),

∥Hλ,θξ∥
2
= λ2

+ 4 + 2(1 − tan πθ)
〈
λ

2
πθ (x + x∗)ξ, πθ (y + y∗)ξ

〉
−

∑
m

|ξm−1 − ξm+1 − λsmξm |
2.

Proof. Because the statements are formulated in a different way in [Boca and Zaharescu 2005], we
replicate here the proof from that work:

∥Hλ,θξ∥
2
=

∑
m

|λcmξm+ξm−1+ξm+1|
2

= λ2
+4+

∑
m

(
−λ2s2

mξ 2
m−|ξm−1−ξm+1|

2
+2λcmξm(ξm−1+ξm+1)

)
= λ2

+4−

∑
m

|ξm−1−ξm+1−λsmξm |
2
−2λ

∑
m

sm(ξm−1−ξm+1)ξm+2λ
∑

m

cmξm(ξm−1+ξm+1).
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We continue with the computation,∑
m

cmξm(ξm−1 + ξm+1) =

∑
m

(cm−1 + cm)ξm−1ξm = 2 cos πθ
∑

m

ξm−1ξm cos(2m − 1)πθ

and similarly

−

∑
m

sm(ξm−1 − ξm+1)ξm =

∑
m

(sm−1 − sm)ξm−1ξm

= −2 sin πθ
∑

m

ξm−1ξm cos(2m − 1)πθ

= − tan θ
∑

m

cmξm(ξm−1 + ξm+1).

Thus one obtains the purported formula for ∥Hλ,θξ∥
2. We also observe that

∥Hλ,θξ∥
2
≤ λ2

+ 4 + 4λ(cos πθ − sin πθ)
∑

m

ξm−1ξm cos(2m − 1)πθ

≤ λ2
+ 4 + 4λ(1 − sin πθ).

This yields the purported estimate for ∥Hθ,λ∥. □

Corollary 3. In the full group C∗-algebra C∗
[H], one has

X + Y ≥
1
2

√
Z .

Proof. By Lemma 1, it suffices to show the assertion in Aθ for each θ ∈
[
0, 1

2

]
. It follows from Theorem 2

with λ = 2 that Xθ + Yθ = 4 − Hθ,2 ≥
1
2

√
Zθ . □

Since Z is central, X + Y ≥
1
2

√
Z is equivalent to 4(X + Y )2

≥ Z in C∗
[H]. However, there is no

R > 0 such that R(X + Y )2
⪰ Z in R[H]. We will elaborate this in Section 6.

Corollary 4. Let R ≥ 1, 0 < κ < 1, and

θ0 := min
{1

4
,

1
π

arcsin
(
κ

√
1−κ

R

)}
.

Then, for any θ ∈ [0, θ0], one has

R Xθ + Yθ ≥

√
(1 − κ)R

2

√
Zθ .

Proof. We write

s0 := sin πθ0, c := diagm cm = πθ

( x+x∗

2

)
= 1 −

1
2

Xθ , C =

√
(1 − κ)R.

Let θ ∈ [0, θ0] and a real unit vector ξ ∈ ℓ2(Z/qZ) be given. We need to prove ⟨(R Xθ + Yθ )ξ, ξ⟩ ≥ Cs.
For this, we may assume that ⟨πθ (x + x∗)ξ, πθ (y + y∗)ξ⟩ > 0 because otherwise

⟨(Xθ + Yθ )ξ, ξ⟩ ≥ 4 − ∥πθ (x + x∗
+ y + y∗)ξ∥ ≥ 4 − 2

√
2.
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Put ε := 1 − ∥cξ∥. If ε ≥ Cs/(2R), then ⟨R Xθξ, ξ⟩ ≥ 2Rε ≥ Cs and we are done. From now on, we
assume that ε < Cs/(2R). By Theorem 2 for λ := 2R/C , one has

∥Hλ,θξ∥
2
≤ λ2

+ 4 + 2λ(1 − s)⟨cξ, (Hθ,λ − λc)ξ⟩

≤ λ2
+ 4 + 2λ(1 − s)(1 − ε)∥Hθ,λξ∥ − 2λ2(1 − s)(1 − ε)2

and hence (
∥Hλ,θξ∥ − λ(1 − s)(1 − ε)

)2
≤ 4 + λ2(1 − 2(1 − s)(1 − ε)2

+ (1 − s)2(1 − ε)2)
= 4 + λ2(1 − (1 − s2)(1 − ε)2)

≤ 4 + λ2(s2
+ 2ε).

Thus
∥Hλ,θξ∥ ≤ 2 + λs

(1
4
λs0 +

1
2
λ
ε

s

)
+ λ(1 − s).

By our choices,

λs0 =
2R
C

·
κ
√

(1 − κ)
√

R
= 2κ

and λε/s ≤ 1. Therefore,

∥Hλ,θξ∥ ≤ λ + 2 −

(
1 −

1
4

· 2κ −
1
2

)
· 2

√
R

1−κ
s = λ + 2 − Cs.

Since λ + 2 − Hλ,θ = (λ/2)Xθ + Yθ ≤ R Xθ + Yθ , we are done. □

Proposition 5. In the full group C∗-algebra C∗
[H], one has

(X + Y )
√

Z +
1
2(XY + Y X) ≥ 0.

Proof. By Lemma 1, it suffices to show the same for the Xθ . We write bm := 1 − cm = 1 − cos 2mπθ =

2 sin2 mπθ . We observe that

Xθ =


. . .

2bm−1
2bm

. . .

 , Yθ =


. . .

2 −1
−1 2

. . .

 ,

1
2(XθYθ + Yθ Xθ ) =


. . .

4bm−1 −(bm−1+bm)

−(bm−1+bm) 4bm
. . .

 .

These are the sums of the following 2-by-2 matrices sitting at the (m−1)-to-m-th corners:

Xθ,m =

[
bm−1

bm

]
, Yθ,m =

[
1 −1

−1 1

]
,

1
2(XY + Y X)θ,m :=

[
2bm−1 −(bm−1+bm)

−(bm−1+bm) 2bm

]
.
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Thus, it suffices to show
Tθ,m := 2s(Xθ,m + Yθ,m) +

1
2(XY + Y X)θ,m

=

[
2(s + 1)bm−1 + 2s −(2s + bm−1 + bm)

−(2s + bm−1 + bm) 2(s + 1)bm + 2s

]
is positive in M2(C) for every m. We only need to calculate the determinant:

det(Tθ,m) ≥ 4bm−1bm + 4s(s + 1)(bm−1 + bm) + 4s2
− (2s + bm−1 + bm)2

= 4s2(bm−1 + bm) − (bm−1 − bm)2

= 8s2(sin2(m − 1)πθ + sin2 mπθ) − 4s2 sin2(2m − 1)πθ

≥ 0.

Here, we have used the formulas
bm = 2 sin2 mπθ,

bm−1 − bm = −2sθ sin(2m − 1)πθ,

| sin(2m − 1)πθ | ≤ | sin(m − 1)πθ | + | sin mπθ |. □

A similar calculation shows Z +
1
2(XY + Y X) ≥ 0 in C∗

[H]. In fact, it is a sum of squares:

Z +
1
2
(XY + Y X) =

1
4
(X + Y )Z +

1
8

∑
(1 − b)δ(1 − a)ε(1 − a)ε̄(1 − b)δ̄,

where
∑

is over the eight terms (a, b) ∈ {(x, y), (y, x)} and (ε, ε̄), (δ, δ̄) ∈ {(∗, · ), ( · , ∗)}.
Now, we consider the C∗-algebra Aθ ⊗Aθ on ℓ2(Z/qZ) ⊗ ℓ2(Z/qZ). We continue to view Zθ as a

scalar in Aθ ⊗Aθ . We want to find an inequality that leads to (♦). The following does the job for small
θ > 0. We note that it fails at θ0 =

1
2 .

Lemma 6. There are θ0 > 0, R > 1, and ε > 0 such that, for every θ ∈ [0, θ0], one has

R(Xθ ⊗ Yθ + Yθ ⊗ Xθ ) + Xθ ⊗ Xθ + Yθ ⊗ Yθ + (XθYθ + Yθ Xθ ) ⊗ 1 ≥ εZθ .

Proof. By Corollary 4, there are θ0 > 0 and R > 1 such that 1 ⊗ (R Xθ + Yθ ) ≥ 8s for every θ ∈ [0, θ0].
By Proposition 5 and Corollary 3, it follows that the left-hand side dominates

(Xθ + Yθ ) · 8s + XθYθ + Yθ Xθ ≥ (Xθ + Yθ ) · 4s ≥ Zθ ,

where we omitted writing ⊗1. □

To deal with the case θ ≥ θ0, we need a few more auxiliary lemmas on Aθ .

Lemma 7. For every θ ∈
[
0, 1

2

]
, one has

∥πθ ((1 − x)(1 − y))∥ ≤ 4 cos(πθ/2).
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Proof. The expansion of (1 − y)∗(1 − x)∗(1 − x)(1 − y) has 16 terms (counting multiplicity) and among
them are −(1 + z)x , −(1 + z)∗x∗ and x(zy∗

+ y) + x∗(z∗y∗
+ y). One has |1 + z| = 2 cos πθ and

∥x(zy∗
+ y) + x∗(z∗y∗

+ y)∥ ≤ ∥[xy∗ x∗y∗]∥

∥∥∥∥[
z + y2

z∗
+ y2

]∥∥∥∥
≤

√
2∥(z + y2)∗(z + y2) + (z∗

+ y2)∗(z∗
+ y2)∥1/2

= 4 cos πθ.

Hence ∥πθ ((1 − y)∗(1 − x)∗(1 − x)(1 − y))∥ ≤ 8 + 8 cos πθ = 16 cos2(πθ/2). □

For a positive operator A, we denote by PA≤δ (resp. PA>δ = 1 − PA≤δ) the spectral projection of A
corresponding to the spectrum [0, δ] (resp. (δ, ∞)). We also write PA≤δ ∧ B≤δ etc. for the orthogonal
projection onto ran PA≤δ ∩ ran PB≤δ etc. Note that if A and B commute, then so do their spectral
projections and PA≤δ ∧ B≤δ = PA≤δPB≤δ.

Lemma 8. For every θ ∈
(
0, 1

2

]
and 0 < δ < 2(1 − cos πθ), one has

PXθ≤δYθPXθ≤δ = 2PXθ≤δ,

the same with Xθ and Yθ interchanged, and

∥PYθ≤δPXθ≤δ∥ ≤

√
2

4 − δ
.

In particular, ℓ2(Z/qZ) is decomposed into a direct sum

ℓ2(Z/qZ) = ran PXθ≤δ + ran PYθ≤δ + ran PXθ>δ ∧ Yθ>δ

and the corresponding (not necessarily orthogonal) projections have norm at most
√

(4 − δ)/(2 − δ).

Proof. We observe that PXθ≤δ is the projection onto ℓ2(E) with

E := {m : 2(1 − cos 2mπθ) ≤ δ} ⊂ {m : mθ ∈ (−θ/2, θ/2) + Z}.

The set E does not contain consecutive numbers and the first assertion follows. The second follows from the
unitary equivalence of the pairs (Xθ , Yθ ) and (Yθ , Xθ ). Since Yθ ≤δPYθ≤δ+4(1−PYθ≤δ)=4−(4−δ)PYθ≤δ ,
one has

2PXθ≤δ ≤ 4PXθ≤δ − (4 − δ)PXθ≤δPYθ≤δPXθ≤δ

and ∥PYθ≤δPXθ≤δ∥
2
=∥PXθ≤δPYθ≤δPXθ≤δ∥≤2/(4−δ). This gives the desired estimate for ∥PYθ≤δPXθ≤δ∥.

We remark that this estimate can be improved to ≈ 1/
√

3 if θ is away from 1
2 and δ > 0 is small enough. In-

deed, the gaps of E will have length at least 2 and hence any unit vectors ξ ∈ ran PXθ≤δ and η∈PYθ≤δ satisfy

|⟨ξ, η⟩| ≈
∣∣〈ξ, 1

3πθ (1 + y + y∗)η
〉∣∣ =

∣∣〈1
3πθ (1 + y + y∗)ξ, η

〉∣∣ ≤
1

√
3
.

The projection onto the third subspace is orthogonal. On the other hand, any ξ+η∈ ran PXθ≤δ+ran PYθ≤δ

satisfies

∥ξ + η∥
2
≥ ∥ξ∥

2
+ ∥η∥

2
− 2∥PYθ≤δPXθ≤δ∥∥ξ∥∥η∥ ≥ (1 − ∥PYθ≤δPXθ≤δ∥

2)∥ξ∥
2.

This gives the desired norm estimate. □
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Now, we consider this time the cubic tensor product Aθ ⊗ Aθ ⊗ Aθ . This arises as an irreducible
representation of the higher dimensional Heisenberg group

H3 :=




1 ∗ ∗ ∗ ∗

1 0 0 ∗

1 0 ∗

1 ∗

1


 ⊂ SL(5, Z).

We put xi := e1,i+1(1), yi := ei+1,5(1), and z := e1,5(1) in H3, where we recall that ei, j (1) is the elementary
matrix defined in the beginning of the previous section. Note that [xi , yi ] = z and [xi , y j ] = 1 for i ̸= j .
Hence H3 is isomorphic to the quotient of H × H × H modulo z are identified. As before, we write
X i := (1 − xi )

∗(1 − xi ), etc. This should not be confused with Xθ in Aθ .

Theorem 9. There are R > 0 and ε > 0 such that

R(X1Y2 + Y1 X2 + X1Y3 + Y1 X3) + X1 X2 + Y1Y2 + X1Y1 + Y1 X1 ≥ εZ

holds in C∗
[H3].

Proof. By Lemma 1 (adapted to this case), it suffices to prove the assertion in Aθ ⊗Aθ ⊗Aθ for each
θ ∈

[
0, 1

2

]
. We write X i,θ for Xθ in the i-th tensor component. For a unit vector

ζ ∈ ℓ2(Z/qZ) ⊗ ℓ2(Z/qZ) ⊗ ℓ2(Z/qZ),

we need to prove〈(
R(X1,θY2,θ+Y1,θ X2,θ+X1,θY3,θ+Y1,θ X3,θ )+X1,θ X2,θ+Y1,θY2,θ+X1,θY1,θ+Y1,θ X1,θ

)
ζ,ζ

〉
≥ εZθ .

By Lemma 6, we are already done for θ ∈ [0, θ0]. To apply Lemma 8, fix 0 < δ < 2(1 − cos πθ0) small
enough and consider θ ∈

[
θ0,

1
2

]
. Since we may choose R > 1 arbitrarily large with respect to the fixed δ,

we may assume

max{∥PX1,θ Y2,θ>δ2ζ∥, ∥PY1,θ X2,θ>δ2ζ∥, ∥PX1,θ Y3,θ>δ2ζ∥, ∥PY1,θ X3,θ>δ2ζ∥} < δ.

As described in Lemma 8, we consider the decomposition

ζ = ξ + η + γ ∈ ran PX1,θ≤δ + ran PY1,θ≤δ + ran PX1,θ>δ ∧ Y1,θ>δ.

Note that max{∥ξ∥, ∥η∥, ∥γ ∥} ≤ 2. By writing ≈δ, we will mean that the difference is at most δ. Since
ζ ≈δ PX1,θ Y2,θ≤δ2ζ and PY2,θ>δ ∧ X1,θ Y2,θ≤δ2 ≤ PX1,θ≤δ ∧ Y2,θ>δ, one has

PY2,θ>δζ ≈δ PX1,θ≤δ ∧ Y2,θ>δζ.

It follows that

PY2,θ>δη + PY2,θ>δγ ≈δ PX1,θ≤δ ∧ Y2,θ>δ(ξ + η + γ ) − PY2,θ>δξ = PX1,θ≤δ ∧ Y2,θ>δη.

Since PY2,θ>δ leaves ran PX1,θ≤δ and ran PY1,θ≤δ invariant, this implies

PY2,θ>δη ≈δ PX1,θ≤δ ∧ Y2,θ>δη and PY2,θ>δγ ≈δ 0.
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Hence, in combination with Lemma 8 that PY1,θ≤δPX1,θ>δPY1,θ≤δ ≥
1
4 PY1,θ≤δ, one obtains

δ2
≥ ∥PX1,θ>δPY2,θ>δη∥

2
≥

1
4∥PY2,θ>δη∥

2,

that is,
η ≈2δ PY2,θ≤δη.

The same consideration on Y1,θ X2,θ yields

PX2,θ>δγ ≈δ 0 and ξ ≈2δ PX2,θ≤δξ.

Thus PY2,θ>δPX2,θ≤δγ ≈δ PY2,θ>δγ ≈δ 0 and, by Lemma 8 again,

∥γ ∥
2
≈δ2 ∥PX2,θ≤δγ ∥

2
≤ 4∥PY2,θ>δPX2,θ≤δγ ∥

2
≤ 16δ2.

Further, the same for X1,θY3,θ and Y1,θ X3,θ yields

ξ ≈2δ PX3,θ≤δξ and η ≈2δ PY3,θ≤δη.

Now a routine but tedious calculation with Lemma 8 yields

⟨X1,θ X2,θζ, ζ ⟩ ≈Cδ ⟨X1,θ X2,θPY1,θ≤δ ∧ Y2,θ≤δη, PY1,θ≤δ ∧ Y2,θ≤δη⟩ ≈16δ 4∥η∥
2

for some absolute constant C (e.g., C = 1000 should be enough), and likewise

⟨Y1,θY2,θζ, ζ ⟩ ≈Cδ 4∥ξ∥
2.

On the other hand, by Lemmas 7 and 8,

|⟨(X1,θY1,θ + Y1,θ X1,θ )ζ, ζ ⟩| ≈Cδ 2|⟨X1,θY1,θPX1,θ≤δ ∧ X2,θ≤δ ∧ X3,θ≤δξ, PY1,θ≤δ ∧ Y2,θ≤δ ∧ Y3,θ≤δη⟩|

≤ 2∥PY1,θ≤δπθ (1 − x∗

1 )∥∥πθ ((1 − x1)(1 − y1))∥∥πθ (1 − y∗

1 )PX1,θ≤δ∥

× ∥PX2,θ≤δPY2,θ≤δ∥∥PX3,θ≤δPY3,θ≤δ∥∥ξ∥∥η∥

≤ 16
(

cos πθ

2

)
·

2
4−δ

∥ξ∥∥η∥.

If we have chosen δ > 0 small enough, then

ε := 8 − 16
(

cos πθ0
2

)
·

2
4 − δ

> 4Cδ.

Observe that δ > 0 and ε > 0 depends on the absolute constants θ0 > 0 and C > 0, but not on θ ∈
[
θ0,

1
2

]
.

In the end,
|⟨(X1,θY1,θ + X1,θY1,θ )ζ, ζ ⟩| ≤ (8 − ε)∥ξ∥η∥ + Cδ

≤ 4(1 − ε/2)(∥ξ∥
2
+ ∥η∥

2) + Cδ

≤ ⟨(X1,θ X2,θ + Y1,θY2,θ )ζ, ζ ⟩ − ε + 3Cδ.

This completes the proof. We remark that the above proof for θ ∈
[
θ0,

1
2

]
is not as tight as it appears

(and ε > 0 can be “visible”), because if θ is around 1
2 , then cos 1

2πθ ≈
1

√
2
, and if θ is away from 1

2 , then
∥PXθ≤δPYθ≤δ∥ is bounded by ≈

1
√

3
. □
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5. Proof of the Main Theorem, postlude

Since R := Z⟨t1, . . . , td⟩ is commutative, we may apply Theorem 9 to x1 = e1,2(tr ), x2 = e1,3(ts),
x3 = e1,4(tr ), y1 = e2,5(ts), y2 = e3,5(tr ), y3 = e4,5(ts), and z = e1,5(tr ts) in EL5(R). This yields (♦) in
Section 3 and the proof of the Main Theorem is complete. □

The terms X1Y2 = E1,2(tr )E3,5(tr ) and Y1 X2 = E2,5(ts)E1,3(ts) are diagonal with respect to {tr , ts}.
This causes an annoying dependence of R on d in the formula (♥), which results in dependence of n0

on d in the Main Theorem.

6. Real group algebras and property HT

In this section, we continue the study of [Netzer and Thom 2013; 2015; Nitsche 2020; Ozawa 2013;
2016] about positivity in real group algebras. In addition to the notation from Section 2, we denote by

I [0] := span{1 − x : x ∈ 0} ⊂ R[0]

the augmentation ideal. We observe that 62 I [0] = I [0]∩62R[0] and hence there is no ambiguity about
the order ⪯ on I [0]. In [Ozawa 2016], it was observed that the combinatorial Laplacian 1 ∈ 62 I [0] is an
order unit for I [0] (more precisely for I [0]

her, but this abuse of terminology should not cause any problem).
That is to say, for every ξ ∈ I [0]

her, there is R > 0 such that ξ ⪯ R1. We will indicate this by ξ Î 1.
We review the relation between positive linear functionals on I [0] and 1-cocycles (with unitary

coefficients). A linear functional ϕ on I [0] is said to be positive if it is selfadjoint and ϕ(62 I [0]) ⊂ R≥0.
One has ϕ(1) = 0 if and only if ϕ = 0. Every positive linear functional ϕ gives rise to a semi-inner
product ⟨ξ, η⟩ := ϕ(ξ∗η) and the corresponding seminorm ∥ξ∥ := ϕ(ξ∗ξ)1/2 on I [0], with respect to
which the left multiplication by an element of 0 is orthogonal. This is the Gelfand–Naimark construction.
The map b : 0 → I [0], t 7→ 1 − t , is a 1-cocycle, i.e., it satisfies b(st) = b(s) + sb(t) for every s, t ∈ 0.
We note that ϕ(1 − t) =

1
2ϕ((1 − t)∗(1 − t)) =

1
2∥b(t)∥2 and ϕ(1) =

1
2

∑
s∈S ∥b(s)∥2. In fact, every

1-cocycle arises in this way. See, e.g., Appendix C in [Bekka et al. 2008] and Appendix D in [Brown and
Ozawa 2008] for a comprehensive treatment.

It is proved in [Ozawa 2016] that 62 I [0] = I [0]
her

∩ 62R[0]. That is to say,

62 I [0] := {ξ ∈ I [0]
her

: for all ε > 0, ξ + ε1 ⪰ 0}

= {ξ ∈ I [0]
her

: ϕ(ξ) ≥ 0 for every positive linear functional ϕ on I [0]}

= {ξ ∈ I [0]
her

: ξ ≥ 0 in C∗
[0]}.

We also record an easy consequence of the Hahn–Banach separation theorem (a.k.a. the Eidelheit–Kakutani
separation theorem in this context). For ξ, η ∈ I [0]

her (or in any real ordered vector space with an order
unit 1), the following are equivalent:

(1) ϕ(ξ) = 0 implies ϕ(η) ≤ 0 for every positive linear functional ϕ on I [0].

(2) −η ∈ 62 I [0] − Rξ .

(3) For all ε > 0, there exists R ∈ R such that Rξ − η + ε1 ⪰ 0.
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We observe that since

ϕ(12) = ⟨1, 1⟩ =

∥∥∥∥∑
s∈S

b(s)
∥∥∥∥2

,

one has ϕ(12) = 0 if and only if the corresponding 1-cocycle b is harmonic in the sense
∑

s∈S b(s) = 0.
This observation recovers Shalom’s theorem [2000] that every finitely generated group without property (T)
has a nonzero harmonic 1-cocycle. An essentially same proof was given in [Nitsche 2020].

We record the following well-known fact:

• If a 1-cocycle b vanishes on a normal subgroup N ◁0, then N acts trivially on span b(0) and hence
b factors through the quotient 0/N.

• If b is a harmonic 1-cocycle on 0, then the center Z(0) acts trivially on span b(0) and 0 acts trivially
on span b(Z(0)).

• Every harmonic 1-cocycle on an abelian group is an additive homomorphism.

The first assertion is not difficult to show. The second follows from the identity (1− x)b(z) = (1− z)b(x)

for x ∈ 0 and z ∈ Z(0). If b is harmonic, then
(
|S| −

∑
s∈S s

)
b(z) = 0 and, by strict convexity of a

Hilbert space, b(z) = sb(z) for s ∈ S and hence for all s ∈ 0.
An additive character χ : 0 → R can be viewed as a harmonic 1-cocycle. The corresponding positive

linear functional ϕχ : I [0] → R is given by ϕχ (1 − t) =
1
2χ(t)2. This should not be confused with the

linear extension χ : I [0] → R which is not even selfadjoint. The positive linear functional ϕχ factors
through the abelianization I [0ab

].
We denote the augmentation power by

I k
[0] := span(I [0]

k) ⊂ R[0].

It is well-known and easy to see from the formula

1 − xy = (1 − x) + (1 − y) − (1 − x)(1 − y) ∈ (1 − x) + (1 − y) + I 2
[0]

that I [0] is generated as a rng by {1 − s : s ∈ S} and that 0 ∋ x 7→ 1 − x ∈ I [0]/I 2
[0] is an additive

homomorphism. On the other hand, every additive homomorphism χ vanishes on I 2
[0], because

χ((1 − x)(1 − y)) = χ(1 − x − y + xy) = 0. Hence I 2
[0] =

⋂
χ ker χ , where the intersection is taken

over the additive characters χ on 0. We will see that 12
∈ 62 I 2

[0] need not be an order unit for I 4
[0],

but the element
□ :=

1
4

∑
s,t∈S

(1 − s)∗(1 − t)∗(1 − t)(1 − s) ∈ 62 I 2
[0]

is. Since □ = 12 in I [0ab
], one has ϕχ (□) = ϕχ (12) = 0 for every additive character χ . We will prove

later that the converse is also true.

Theorem 10. The element □ is an order unit for I 4
[0]. Namely

I 4
[0]

her
= {ξ ∈ R[0]

her
: ±ξ Î □} = span 62 I 2

[0]

and moreover I 4
[0] ∩62R[0] = 62 I 2

[0].
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Proof. We first prove that the left is contained the middle. The proof is similar to that for Lemma 2 in
[Ozawa 2016]. Since ξ∗η + η∗ξ ⪯ ξ∗ξ + η∗η for every ξ, η, it suffices to show that

(1 − x)∗(1 − y)∗(1 − y)(1 − x) Î □ for all x, y ∈ 0.

By using the inequality

(1 − x1x2)
∗(1 − y)∗(1 − y)(1 − x1x2) = ((1 − x1) + x1(1 − x2))

∗(1 − y)∗( )

⪯ 2(1 − x1)
∗(1 − y)∗( ) + 2(1 − x2)

∗(1 − x−1
1 yx1)

∗( ),

one can reduce this to the case x ∈ S, and similarly to the case y ∈ S, where the assertion is obvious. We
next show that ±ξ Î □ implies ξ ∈ span 62 I 2

[0]. There is R > 0 such that 0 ⪯ R□− ξ ⪯ 2R□. Thus it
remains to show

∑
i η∗

i ηi Î □ implies ηi ∈ I 2
[0]. Since ϕχ (□) = 0 for every additive character χ on 0,

one has

0 = ϕχ

(∑
i

η∗

i ηi

)
= −

1
2

∑
i,x,y

ηi (x)ηi (y)χ(x−1 y)2
=

∑
i

(∑
x

ηi (x)χ(x)

)2

,

or equivalently ηi ∈
⋂

χ ker χ = I 2
[0] for all i . □

Corollary 11. A positive linear functional ϕ on I [0] satisfies ϕ(□) = 0 if and only if the associated
1-cocycle is an additive homomorphism.

Proof. We have already noted that ϕχ (□) = 0 for all additive character χ . Conversely, suppose ϕ(□) = 0.
Since this implies ϕ(12) = 0, the 1-cocycle b associated with ϕ is harmonic. Moreover, since

1 − [x, y] = (xy − yx)x−1 y−1
= ((1 − x)(1 − y) − (1 − y)(1 − x))x−1 y−1

∈ I 2
[0],

Theorem 10 implies that b = 0 on the commutator subgroup [0, 0]. Thus b factors through 0ab and is an
additive homomorphism. □

We recall that a finitely generated group 0 is said to have Shalom’s property HT if every harmonic
1-cocycle on 0 is an additive homomorphism. Property HT coincides with Kazhdan’s property (T) for
groups with finite abelianization. It is observed in [Shalom 2004] that finitely generated nilpotent groups
have property HT. We conjecture that the group ELn(Z⟨t1, . . . , td⟩) has property HT. By the Hahn–Banach
separation theorem, one obtains the following characterization of property HT, which does not seem
useful though.

Corollary 12. The finitely generated group 0 has finite abelianization if and only if 1 Î □. The finitely
generated group 0 has property HT if and only if for every ε > 0 there is R > 0 such that □ ⪯ R12

+ ε1.

Property HT for nilpotent groups also follows from Corollary 3 that if a commutator z = [x, y] is
central, then (1 − z)∗(1 − z) ≪ 12 in C∗

[0]. It is tempting to conjecture that every finitely generated
nilpotent group 0 satisfies □ ≪ 12. Had it been true that □ Î 12 for a given group 0, it would have
been able to rigorously prove this by computer calculations because □ is an order unit for I 4

[0] (modulo
a quantitative estimate, see [Netzer and Thom 2015]). However, we will observe here that □ ̸Î 12
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in R[H]. Hence, unlike property (T), property HT is probably not characterized by a “simple”2 inequality
in the real group algebra. This spoils the current methods of proving something like the Main Theorem
by computer calculations. (Note that ELn(Z⟨t⟩) has the Heisenberg group Hn−2 as a quotient and the
analogous statement to the following proposition holds true for this group.)

Proposition 13. Let H be the integral Heisenberg group and z := [x, y] be as described in the beginning
of Section 4. Then (1 − z)∗(1 − z) ̸Î 12 in R[H]. Moreover,

62 I 2[H] ̸= I 4
[H]

her
∩ 62R[H].

The proof of 62 I [0] = I [0]
her

∩ 62R[0] given in [Ozawa 2016] is based on Schoenberg’s theorem
that any positive linear functional on I [0] is approximable by those that extend on R[0]. The above
proposition says there is no good enough analogue of Schoenberg’s theorem for augmentation powers. For
the proof of the proposition, we need a description of the graded vector space · · · ⊃ I 4

[H] ⊃ I 5
[H] ⊃ · · · .

To ease notation, we write x̄ := 1 − x etc. and observe that z̄ ∈ Z(R[H]) ∩ I 2
[H] and

ȳ x̄ = x̄ ȳ + z̄ − z̄ x̄ − z̄ ȳ + z̄ ȳ x̄ ∈ x̄ ȳ + z̄ + I 3
[H].

Lemma 14. For every n ∈ N, the set {x̄ i ȳ j z̄k
+ I n

[H] : i, j, k ≥ 0, i + j + 2k < n} forms a basis for
R[H]/I n

[H]. In particular

dim I n
[H]/I n+1

[H] = (⌊n/2⌋ + 1)(n − ⌊n/2⌋ + 1).

Proof. We first observe that the asserted set spans R[H]/I n
[H]. Indeed, this follows from the above

equation for ȳ x̄ and the general facts that

1 − uv = (1 − u) + (1 − v) − (1 − u)(1 − v),

1 − u−1
= −(1 − u) + (1 − u−1)(1 − u)

for every u, v ∈ H . It is left to show that the asserted set is also linearly independent. Suppose that

ξ :=

∑
i+ j+2k<n

αi, j,k x̄ i ȳ j z̄k
∈ I n

[H].

By considering the abelianization π ab
: C∗

[H] → C∗
[Z2

], one sees αi, j,k = 0 whenever k = 0. It follows
that ξ ∈ I n

[H] ∩ z̄R[H]. We claim that

I n
[H] ∩ z̄R[H] = z̄ I n−2

[H] for n ≥ 2.

Since z̄ is not a zero divisor in R[H] (e.g., because πθ (z̄) are invertible for θ ∈ (0, 1)), the lemma would
follow from this claim by induction.

The homomorphisms R[⟨x⟩] ↪→ R[H] and R[⟨y⟩] ↪→ R[H] extend to a linear injection

σ : R[⟨x⟩] ⊗ R[⟨y⟩] ↪→ R[H], ξ ⊗ η 7→ ξη,

with the left inverse
π ab

: R[H] → R[Z2
] ∼= R[⟨x⟩] ⊗ R[⟨y⟩].

2The quantifier elimination techniques, which the author is not familiar with, may be relevant.
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Since ȳ x̄ ∈ x̄ ȳ + z̄R[H] and likewise for x̄∗ and ȳ∗ (thanks to suitable symmetries x ↔ x−1 and y ↔ y−1

on H), one has
I n

[H] ∩ z̄R[H] ⊂ (ran σ + z̄ I n−2
[H]) ∩ ker π ab

= z̄ I n−2
[H].

This proves the claim. □

Proof of Proposition 13. We observe that in I 4
[H]/I 5

[H]

(x̄ x̄ ȳ ȳ)∗ = ȳ ȳ x̄ x̄ = ȳ x̄ ȳ x̄ + ȳ x̄ z̄ = x̄ ȳ x̄ ȳ + 3x̄ ȳ z̄ + 2z̄ z̄ = x̄ x̄ ȳ ȳ + 4x̄ ȳ z̄ + 2z̄ z̄.

We define a linear functional ϕ on I 4
[H]/I 5

[H] by

ϕ(x̄4) = ϕ(ȳ4) = 1, ϕ(z̄2) = −2, ϕ(x̄2 ȳ2) = −1, ϕ(x̄ ȳ z̄) = 1,

and zero on all the other basis elements. Then, the linear functional ϕ is selfadjoint. Moreover, with
respect to the basis {x̄ x̄, x̄ ȳ, ȳ x̄, ȳ ȳ} for I 2

[H]/I 3
[H], the bilinear form (ξ, η) 7→ ϕ(ξ∗η) is represented

by the matrix 
1 0 0 −1
0 1 0 0
0 0 1 0

−1 0 0 1

 .

Since this matrix is positive semidefinite, the linear functional is positive on I 4
[H], by Theorem 10. One

sees that ϕ(z̄∗ z̄) = −ϕ(z̄ z̄) = 2 > 0, ϕ(□) = 4, and

ϕ(12) = ϕ((x̄ x̄ + ȳ ȳ)(x̄ x̄ + ȳ ȳ)) = 0.

Therefore there cannot be R > 0 such that z̄∗ z̄ ⪯ R12
+

1
4□. It follows that 412

− z̄∗ z̄ /∈ 62 I 2[H], while
412

− z̄∗ z̄ ∈ I 4
[H]

her
∩ 62R[H] by Corollary 3. □

7. Property (τ)

We say a finitely generated group 0 = ⟨S⟩ has property (τ ) with respect to a family {0i } of finite quotients
0 ↠ 0i if there is δ > 0 such that any unitary representation π of 0 that factors through some 0 ↠ 0i

either admits a nonzero π(0)-invariant vector or admits no unit vector v such that maxs∈S ∥v−π(s)v∥≤ δ.
This is equivalent to that the Cayley graphs of {0i } with respect to the generating subset S form an
expander family. In case the family {0i }i is the set of all finite quotients of 0, it is simply said 0 has
property (τ ). See [Kowalski 2019] for a comprehensive treatment of expander graphs. By the Main
Theorem, ELn(S) has property (T) if S is a finitely generated irng (i.e., a rng which is idempotent, S = S2,
see [Monod et al. 2012]) and n is large enough. Corollaries A and B say this happens uniformly for finite
commutative irngs with a fixed number of generators.

Proof of Corollary A. Let n0 be as in the Main Theorem for Z⟨T1, . . . , Td , S1, . . . , Sd⟩ and n ≥ n0. By
the Main Theorem applied to Tr 7→ tk

r and Sr 7→ tk+1
r , there is ε > 0 such that

1k :=

∑
i ̸= j

d∑
r=1

(1 − ei, j (tk
r ))∗(1 − ei, j (tk

r )) ∈ R[ELn(Z⟨t1, . . . , td⟩)]
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(so 11 = 1) satisfy
(1k + 1k+1)

2
≥ ε(12k + 12k+1 + 12k+2)

for all k. We may also assume that ε > 0 satisfies 12
1 ≥ ε12.

Let π,H and v be given for ELn(Z⟨t1, . . . , td⟩) (but we will omit writing π to ease notation) and put

δ :=

(∑
i, j,r

∥v − ei, j (tr )v∥
2
)1/2

= ⟨1v, v⟩
1/2.

We assume δ <
( 1

2

)10 and put ρ := δ1/10. Recall that P1≤(δ/ρ)2 stands for the spectral projection of 1 for
the interval [0, (δ/ρ)2

]. For v0 := P1≤(δ/ρ)2v, one has ∥v − v0∥ ≤ ρ and

⟨(11 + 12)v0, v0⟩ ≤ δ2
+ ε−1(δ/ρ)4

=: δ2
0 .

Now, v1 := P11+12≤(δ0/ρ2)2v0 satisfies ∥v0 − v1∥ ≤ ρ2 and

⟨(12 + 13)v1, v1⟩ ≤ ε−1(δ0/ρ
2)4

=: δ2
1 .

We continue this and obtain v2 := P12+13≤(δ1/ρ3)2v1, . . . such that ∥vk − vk+1∥ ≤ ρk+2 and

⟨(12k + 12k+1)vk, vk⟩ ≤ ε−1(δk−1/ρ
k+1)4

=: δ2
k .

Then the vector w := limk vk satisfies ∥vk − w∥ ≤ ρk+1
(
as ρ < 1

2

)
. Moreover,

2−k
|log δk | = 2−(k−1)

|log δk−1| − 2−(k−1)(k + 1)|log ρ| + 2−(k+1) log ε

= |log δ0| −

( k∑
m=1

2−(m−1)(m + 1)

)
|log ρ| +

1
2(1 − 2−k) log ε

> 1
10 |log δ|

if δ > 0 is small enough compared to ε > 0. Hence δk → 0 at a double exponential rate.
We need to show liml maxi, j,r ∥w − ei, j (t l

r )w∥ = 0. We first observe that

∥w − ei, j (t2k

r )w∥ ≤ 2∥vk − w∥ + δk ≤ ρk
+ δk .

Let l be given. Take k = k(l) such that l ∈ [2k, 2k+1) and write l = 2k
+

∑k−1
m=0 a(m)2m with a(m) ∈ {0, 1}.

Then for b :=
∑⌊k/2⌋−1

m=0 a(m)2m, one has

∥ei, j (t l
r )w − ei, j (t2k

+b
r )w∥ ≤

k−1∑
m=⌊k/2⌋

a(m)(ρm
+ δm),

which tends to 0 as l → ∞. Observe that the recurrence relation

p0 := 2k−⌊k/2⌋, pm+1 := 2pm + a(⌊k/2⌋ − 1 − m)

gives p⌊k/2⌋ = 2k
+ b. Now by arguing as in the previous paragraph, but starting at vk−⌊k/2⌋ and using

(1pm + 1pm+1)
2
≥ ε(1pm+1 + 1pm+1+1), one obtains

∥vk−⌊k/2⌋ − ei, j (t2k
+b

r )vk−⌊k/2⌋∥ ≤ ρk−⌊k/2⌋
+ δk → 0.

Since ∥vk−⌊k/2⌋ − w∥ → 0 as l → ∞, this completes the proof. □



A SUBSTITUTE FOR KAZHDAN’S PROPERTY (T) FOR UNIVERSAL NONLATTICES 2559

We give a proof of the remark that was made after Corollary A. Let R := Z⟨t1, . . . , td⟩. Since
ELn(R/Rl) is nilpotent, there is a proper 1-cocycle bl (see Section 2.7 in [Bekka et al. 2008] or Section 12
in [Brown and Ozawa 2008]). We view bl as 1-cocycles on ELn(R) and consider b :=

∑
⊕

l bl , which we
may assume convergent pointwise on ELn(R). We denote by πk the Gelfand–Naimark representation
associated with the positive definite function ϕk(x) := exp

(
−

1
k ∥b(x)∥2

)
. Then, the representation π :=⊕

πk simultaneously admits asymptotically invariant vectors and a weak operator topology null sequence
xl ∈ ELn(Rl).

Proof of Corollary B. Let R1
:= Z[t1, . . . , td ] denote the unitization of R := Z⟨t1, . . . , td⟩. Any quotient

map R ↠ S with S unital gives rise to a group homomorphism ELn(R1) ↠ ELn(S) that extends
ELn(R)↠ELn(S). We need to show that an orthogonal representation of ELn(R1) which factors through
ELn(S) has a nonzero invariant vector, provided that it has almost ELn(R) invariant vector. Since we
know ELn(R1) has property (T), it suffices to show that every almost ELn(R) invariant vector is also
almost ELn(Z1) invariant. The latter is true when S is finite. Indeed, the vector w in Corollary A is
invariant under those ei, j (t

l0
r ) such that t l0

r is an idempotent in the quotient S. Since a finite commutative
ring is a direct sum of local rings (see, e.g., [Kassabov and Nikolov 2006]), the rng generated by such
idempotents contains the identity of S and hence w is invariant under ELn(Z1). □
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