ANALYSIS & PDEVolume 17No. 72024

NARUTAKA OZAWA

A SUBSTITUTE FOR KAZHDAN'S PROPERTY (T) FOR UNIVERSAL NONLATTICES

A SUBSTITUTE FOR KAZHDAN'S PROPERTY (T) FOR UNIVERSAL NONLATTICES

NARUTAKA OZAWA

The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group $\text{EL}_n(\mathcal{R})$, generated by elementary matrices over a finitely generated commutative ring \mathcal{R} , has Kazhdan's property (T) as soon as $n \ge 3$. This is no longer true if the ring \mathcal{R} is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients $\text{EL}_n(\mathcal{R}/\mathcal{R}^k)$. We prove that even in such a case the group $\text{EL}_n(\mathcal{R})$ satisfies a certain property that can substitute property (T), provided that n is large enough.

1. Introduction

We continue and extend the scope of the study of [Kaluba et al. 2019; 2021; Netzer and Thom 2015; Nitsche 2020; Ozawa 2016], which develops the way of proving Kazhdan's property (T) via sum of squares methods. See [Bekka et al. 2008] for a comprehensive treatment of property (T). Let $\Gamma = \langle S \rangle$ be a group together with a finite symmetric generating subset *S*. We denote by $\mathbb{R}[\Gamma]$ the real group algebra with the involution * that extends the inverse * : $x \mapsto x^{-1}$ on Γ . The positive elements in $\mathbb{R}[\Gamma]$ are sums of (hermitian) squares,

$$\Sigma^2 \mathbb{R}[\Gamma] := \left\{ \sum_i \xi_i^* \xi_i : \xi_i \in \mathbb{R}[\Gamma] \right\}$$

and the combinatorial Laplacian is

$$\Delta := \frac{1}{2} \sum_{s \in S} (1-s)^* (1-s) = |S| - \sum_{s \in S} s \in \Sigma^2 \mathbb{R}[\Gamma].$$

It is proved in [Ozawa 2016] that the group Γ has property (T) if and only if there is $\varepsilon > 0$ that satisfies

$$\Delta^2 - \varepsilon \Delta \in \Sigma^2 \mathbb{R}[\Gamma].$$

Property (T) for the so-called *universal lattice* $\text{EL}_n(\mathbb{Z}[t_1, \ldots, t_d])$, $n \ge 3$, is proved in [Shalom 2006; Vaserstein 2006; Ershov and Jaikin-Zapirain 2010]. See also [Mimura 2015] for a simpler proof and [Kassabov and Nikolov 2006; Kaluba et al. 2019] for partial results. All the proofs (save for [Kaluba et al. 2019]) rely on relative property (T) of certain semidirect products. Our interest in this paper is in the infinite index subgroup $\text{EL}_n(\mathbb{Z}\langle t_1, \ldots, t_d \rangle)$ of $\text{EL}_n(\mathbb{Z}[t_1, \ldots, t_d])$. Here $\mathcal{R} := \mathbb{Z}\langle t_1, \ldots, t_d \rangle$ is the commutative *rng* (i.e., a ring, but without assuming the existence of the identity; \mathcal{R} is an ideal in the unitization \mathcal{R}^1) of polynomials in t_1, \ldots, t_d with zero constant terms and $\text{EL}_n(\mathcal{R}) \subset \text{SL}_n(\mathcal{R}^1)$ denotes

MSC2020: primary 22D10; secondary 22D15, 46L89.

Keywords: Kazhdan's property (T), real group algebras, sum of hermitian squares.

^{© 2024} MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

NARUTAKA OZAWA

the group generated by the elementary matrices over the rng \mathcal{R} . The elementary matrices are those $e_{i,j}(r) \in SL_n(\mathcal{R}^1)$ with 1's on the diagonal, $r \in \mathcal{R}$ in the (i, j)-th entry, and zeros everywhere else. The group $EL_n(\mathcal{R})$ does not have property (T), because it has infinite nilpotent quotients $EL_n(\mathcal{R}/\mathcal{R}^k)$. The group does not seem to admit a good analogue of relative property (T) phenomenon, either. Still, we prove via sum of squares methods that $EL_n(\mathcal{R})$ satisfies a property that can substitute property (T).

Main Theorem. Let $d \in \mathbb{N}$ and consider the commutative rng $\mathcal{R} := \mathbb{Z}\langle t_1, \ldots, t_d \rangle$. Then there are $n_0 \in \mathbb{N}$ and $\varepsilon > 0$ such that, for every $n \ge n_0$, the combinatorial Laplacians

$$\Delta := \sum_{i \neq j} \sum_{r=1}^{d} (1 - e_{i,j}(t_r))^* (1 - e_{i,j}(t_r))$$

for $EL_n(\mathcal{R})$ and

$$\Delta^{(2)} := \sum_{i \neq j} \sum_{r,s=1}^{d} (1 - e_{i,j}(t_r t_s))^* (1 - e_{i,j}(t_r t_s))$$

for $EL_n(\mathcal{R}^2)$ satisfy

$$\Delta^2 - n\varepsilon \Delta^{(2)} \in \overline{\Sigma^2 \mathbb{R}[\mathrm{EL}_n(\mathcal{R})]}.$$

Here $\overline{\Sigma^2 \mathbb{R}[\Gamma]}$ denotes the archimedean closure of $\Sigma^2 \mathbb{R}[\Gamma]$ (see Section 2). An upper bound for n_0 in the Main Theorem is in principle explicitly calculable, but we do not attempt to do that (nor attempt to optimize the proof for a better estimate). We conjecture¹ that the Main Theorem holds true with $n_0 = 3$ (in particular n_0 should not depend on d). Our proof is inspired by the work of Kaluba, Kielak and Nowak [Kaluba et al. 2021] that proves property (T) for Aut(F_d) for $d \ge 5$ via computer calculations and an ingenious idea on stability. Our proof does not rely on computers, but instead on analysis by Boca and Zaharescu [2005] on the almost Mathieu operators in the rotation C*-algebras. In fact, there is no known method of rigorously proving a result like the Main Theorem by computers. This is because the conclusion is *analytic* in nature—the archimedean closure is indispensable. See discussions in Section 6.

The above theorem has a couple of corollaries. The first one is reminiscent of one of the standard definitions of property (T) (see Definition 1.1.3 in [Bekka et al. 2008]).

Corollary A. For every d, if n is large enough, then for every $\kappa > 0$ there is $\delta > 0$ satisfying the following property. For every orthogonal representation π of $\text{EL}_n(\mathbb{Z}\langle t_1, \ldots, t_d \rangle)$ on a Hilbert space \mathcal{H} and every unit vector $v \in \mathcal{H}$ with $\max_{i,j,r} \|v - \pi(e_{i,j}(t_r))v\| \leq \delta$, there is a vector $w \in \mathcal{H}$ such that $\|v - w\| \leq \kappa$ and

$$\lim_{l \to \infty} \max_{i, j, r} \| w - \pi(e_{i, j}(t_r^l)) w \| = 0.$$

We remark that a certain strengthening of the above corollary does not hold. Namely, there is an orthogonal representation π of $\text{EL}_n(\mathbb{Z}\langle t_1, \ldots, t_d \rangle)$ that simultaneously admits asymptotically invariant vectors v_k and a sequence $x_l \in \text{EL}_n(\mathbb{Z}\langle t_1^l, \ldots, t_d^l \rangle)$ with $\pi(x_l) \to 0$ in the weak operator topology.

Corollary B. For every d, if n is large enough, then the group $EL_n(\mathbb{Z}\langle t_1, \ldots, t_d \rangle)$ has property (τ) with respect to the finite quotients of the form $EL_n(S)$, where S is a finite unital quotients of $\mathbb{Z}\langle t_1, \ldots, t_d \rangle$.

¹NB: As the author is lame at the computer, no computer experiments have been carried out.

Property (τ) is a generalization of property (T) for finite quotients. See Section 7 for the definition and the proofs of the above corollaries. Corollary B says {EL_n(S) : S} forms an expander family with respect to elementary generating subsets of fixed size. The novel point compared to the previously known case of the universal lattice [Kassabov and Nikolov 2006] is that the generating subsets of the finite commutative rings S need not contain the unit although the S are assumed unital. For example, for n large enough, the Cayley graphs of SL_n($\mathbb{Z}/q\mathbb{Z}$) with respect to the generating subsets { $e_{i,j}(p) : i \neq j$ } form an expander family as relatively prime pairs (p, q) vary. The study of the expander property for SL_n($\mathbb{Z}/q\mathbb{Z}$) and alike is a very active area. See [Breuillard and Lubotzky 2022; Helfgott 2019; Kowalski 2019] for recent surveys on this.

2. Preliminaries

Let $\Gamma = \langle S \rangle$ be a group together with a finite symmetric generating subset *S*. We denote by $\mathbb{R}[\Gamma]$ the real group algebra with the involution * which is the linear extension of $x^* := x^{-1}$ on Γ . The identity element of Γ as well as $\mathbb{R}[\Gamma]$ is simply denoted by 1. Recall the positive cone of *sums of (hermitian) squares* is given by

$$\Sigma^2 \mathbb{R}[\Gamma] := \left\{ \sum_i \xi_i^* \xi_i : \xi_i \in \mathbb{R}[\Gamma] \right\} \subset \mathbb{R}[\Gamma]^{\text{her}} := \{ \xi \in \mathbb{R}[\Gamma] : \xi = \xi^* \}.$$

The elements in $\Sigma^2 \mathbb{R}[\Gamma]$ are considered positive. For $\xi, \eta \in \mathbb{R}[\Gamma]^{\text{her}}$, we write $\xi \leq \eta$ if $\eta - \xi \in \Sigma^2 \mathbb{R}[\Gamma]$. It is obvious that $\xi \geq 0$ implies $\xi \geq 0$ in the full group C*-algebra C*[Γ], that is to say, $\pi(\xi)$ is positive selfadjoint for every orthogonal (or unitary) representation π of Γ on a real (or complex) Hilbert space \mathcal{H} . The converse is true up to the *archimedean closure*:

$$\Sigma^2 \mathbb{R}[\Gamma] := \{ \xi \in \mathbb{R}[\Gamma] : \text{ for all } \varepsilon > 0 \ \xi + \varepsilon \cdot 1 \succeq 0 \} = \{ \xi \in \mathbb{R}[\Gamma] : \xi \ge 0 \text{ in } \mathbb{C}^*[\Gamma] \}.$$

See, e.g., [Cimprič 2009; Ozawa 2013; Schmüdgen 2009] for this. On this occasion, we recall the basic fact that $0 \leq \xi \leq \eta$ (or $0 \leq \xi \leq \eta$) need not imply $0 \leq \xi^2 \leq \eta^2$. Note that since any orthogonal representation of Γ dilates to an orthogonal representation of any supergroup $\Gamma_1 \geq \Gamma$ by induction (i.e., $C^*[\Gamma] \subset C^*[\Gamma_1]$ in short), whether $\xi \geq 0$ or not does not depend on the ambient group. The same holds true for $\xi \succeq 0$, by the coset decomposition. The *combinatorial Laplacian*, with respect to the (symmetric) generating subset *S*,

$$\Delta := \frac{1}{2} \sum_{s \in S} (1-s)^* (1-s) = |S| - \sum_{s \in S} s$$

satisfies, for every orthogonal representation (π, \mathcal{H}) and a vector $v \in \mathcal{H}$,

$$\langle \pi(\Delta)v, v \rangle = \frac{1}{2} \sum_{s \in S} \|v - \pi(s)v\|^2$$

3. Proof of the Main Theorem, prelude

For any rng \mathcal{R} , we denote by $EL_n(\mathcal{R}) \subset SL_n(\mathcal{R}^1)$ the group generated by the elementary matrices over the rng \mathcal{R} . The elementary matrices are those $e_{i,j}(r) \in SL_n(\mathcal{R}^1)$ with 1's on the diagonal, $r \in \mathcal{R}$ in the (i, j)-th entry $(i \neq j)$, and zeros everywhere else. They satisfy the Steinberg relations:

- $e_{i,j}(r)e_{i,j}(s) = e_{i,j}(r+s).$
- $[e_{i,j}(r), e_{j,k}(s)] = e_{i,k}(rs)$ if $i \neq k$.
- $[e_{i,j}(r), e_{k,l}(s)] = 1$ if $i \neq l$ and $j \neq k$.

We note that every rng homomorphism $\mathcal{R} \to \mathcal{S}$ induces by entrywise operation a group homomorphism $EL_n(\mathcal{R}) \to EL_n(\mathcal{S})$ and that $EL_n(\mathcal{R}/\mathcal{R}^k)$ is nilpotent for every k, where $\mathcal{R}^k := \operatorname{span}\{r_1 \cdots r_k : r_i \in \mathcal{R}\}$. To ease notation, we will write

$$E_{i,j}(r) := (1 - e_{i,j}(r))^* (1 - e_{i,j}(r)) = 2 - e_{i,j}(r) - e_{i,j}(r)^* \in \mathbb{R}[\mathrm{EL}_n(\mathcal{R})].$$

We now consider the case $\mathcal{R} = \mathbb{Z}\langle t_1, \dots, t_d \rangle$ and start proving the Main Theorem. Recall that the combinatorial Laplacians with respect to the generating subset $\{e_{i,j}(\pm t_r)\}$ are given by

$$\Delta_n := \sum_{i \neq j} \sum_{r=1}^d E_{i,j}(t_r) \text{ and } \Delta_n^{(2)} := \sum_{i \neq j} \sum_{r,s=1}^d E_{i,j}(t_r t_s)$$

We follow the idea of [Kaluba et al. 2021] about the stability with respect to *n* of the relation like $\Delta_n^{(2)} \ll \Delta_n^2$. Here $\xi \ll \eta$ means that $\xi \leq R\eta$ for some R > 0 in the full group C*-algebra. For each *n*, put $E_n := \{\{i, j\}: 1 \leq i, j \leq n, i \neq j\}$ and, for e, $f \in E_n$, write $e \sim f$ if $|e \cap f| = 1$ and $e \perp f$ if $e \cap f = \emptyset$. One has

$$\Delta_n = \sum_{\mathbf{e}\in\mathbf{E}_n} \Delta_{\mathbf{e}},$$

where $\Delta_{\{i,j\}} := \sum_{r=1}^{d} E_{i,j}(t_r) + E_{j,i}(t_r)$. Thus

$$\Delta_n^2 = \sum_{\mathbf{e}} \Delta_{\mathbf{e}}^2 + \sum_{\mathbf{e} \sim \mathbf{f}} \Delta_{\mathbf{e}} \Delta_{\mathbf{f}} + \sum_{\mathbf{e} \perp \mathbf{f}} \Delta_{\mathbf{e}} \Delta_{\mathbf{f}} =: \mathrm{Sq}_n + \mathrm{Adj}_n + \mathrm{Op}_n \,.$$

The elements Sq_n and Op_n are positive, while Adj_n is not and this causes trouble.

For m < n, we view $\text{EL}_m(\mathcal{R})$ as a subgroup of $\text{EL}_n(\mathcal{R})$ sitting at the left upper corner. The symmetric group Sym(n) acts on $\text{EL}_n(\mathcal{R})$ by permutation of the indices. We note that

$$|\mathbf{E}_m| = \frac{1}{2}m(m-1),$$

$$|\{(\mathbf{e}, \mathbf{f}) \in \mathbf{E}_m^2 : \mathbf{e} \sim \mathbf{f}\}| = m(m-1)(m-2),$$

$$|\{(\mathbf{e}, \mathbf{f}) \in \mathbf{E}_m^2 : \mathbf{e} \perp \mathbf{f}\}| = \frac{1}{4}m(m-1)(m-2)(m-3).$$

Hence, as it is proved in [Kaluba et al. 2021], one has

$$\sum_{\substack{\sigma \in \operatorname{Sym}(n) \\ \sigma \in \operatorname{Sym}(n)}} \sigma (\Delta dj_m) = m(m-1) \cdot (n-2)! \cdot \Delta_n^{(2)},$$

$$\sum_{\substack{\sigma \in \operatorname{Sym}(n) \\ \sigma \in \operatorname{Sym}(n)}} \sigma (\operatorname{Adj}_m) = m(m-1)(m-2) \cdot (n-3)! \cdot \operatorname{Adj}_n,$$

$$\sum_{\substack{\sigma \in \operatorname{Sym}(n) \\ \sigma \in \operatorname{Sym}(n)}} \sigma (\operatorname{Op}_m) = m(m-1)(m-2)(m-3) \cdot (n-4)! \cdot \operatorname{Op}_n.$$

Thus if we know there are $m \in \mathbb{N}$, R > 0, and $\varepsilon > 0$ such that

$$\operatorname{Adj}_m + R\operatorname{Op}_m \ge \varepsilon \Delta_m^{(2)} \tag{(\heartsuit)}$$

holds true in $C^*[EL_m(\mathcal{R})]$, then it follows

$$\frac{n-2}{m-2}\varepsilon\Delta_n^{(2)} \le \operatorname{Adj}_n + \frac{m-3}{n-3}R\operatorname{Op}_n \le \Delta_n^2$$

for all *n* such that $R(m-3)/(n-3) \le 1$ and the Main Theorem is proved. This is Proposition 4.1 in [Kaluba et al. 2021]. To apply this machinery, we further expand Adj_m :

$$Adj_{m} = \sum_{r,s} \sum_{i,j,k \text{ distinct}} (E_{i,j}(t_{r}) + E_{j,i}(t_{r}))(E_{j,k}(t_{s}) + E_{k,j}(t_{s}))$$

=
$$\sum_{r,s} \sum_{i,j,k \text{ distinct}} (E_{i,j}(t_{r})E_{j,k}(t_{s}) + E_{j,k}(t_{s})E_{i,j}(t_{r}) + E_{i,j}(t_{r})E_{i,k}(t_{s}) + E_{j,k}(t_{s})E_{i,k}(t_{r})).$$

Therefore, if there are $m \in \mathbb{N}$, R > 0, $\varepsilon > 0$, and distinct indices *i*, *j*, *k*, *l* such that

$$E_{i,j}(t_r)E_{j,k}(t_s) + E_{j,k}(t_s)E_{i,j}(t_r) + E_{i,j}(t_r)E_{i,l}(t_s) + E_{j,k}(t_s)E_{l,k}(t_r) + R\operatorname{Op}_m \ge \varepsilon E_{i,k}(t_r t_s) \quad (\diamondsuit)$$

holds true, then we obtain (\heartsuit) (for different R > 0 and $\varepsilon > 0$) by summing up this over the Sym(*m*)-orbit and over *r*, *s*. This is what we will prove in the next section.

4. The Heisenberg group and the rotation C*-algebras

In this section, we will work entirely in the C*-algebra setting. Let's consider the *integral Heisenberg* group

$$\boldsymbol{H} := \left\{ \begin{bmatrix} 1 & a & c \\ 1 & b \\ & 1 \end{bmatrix} : a, b, c \in \mathbb{Z} \right\} \cong \langle x, y : z := [x, y] \text{ is central} \rangle,$$

where

$$x = \begin{bmatrix} 1 & 1 \\ 1 & \\ & 1 \end{bmatrix}, \quad y = \begin{bmatrix} 1 & \\ 1 & 1 \\ & 1 \end{bmatrix}, \quad z = \begin{bmatrix} 1 & 1 \\ 1 & \\ & 1 \end{bmatrix}.$$

Note that every irreducible unitary representation of H sends the central element z to a scalar (multiplication operator) of modulus 1. For $\theta \in [0, 1)$, we consider the irreducible unitary representation π_{θ} of H on $\ell_2(\mathbb{Z})$ or $\ell_2(\mathbb{Z}/q\mathbb{Z})$, depending on whether θ irrational or $\theta = p/q$ is rational with gcd(p, q) = 1, given by

$$\pi_{\theta}(x)\delta_{j} = \exp(2j\pi\iota\theta)\delta_{j}, \quad \pi_{\theta}(y)\delta_{j} = \delta_{j+1}, \quad \pi_{\theta}(z) = \exp(2\pi\iota\theta).$$

By convention, if $\theta = p/q$ is rational, then gcd(p, q) = 1 is assumed, and if θ is irrational, we consider $q = \infty$, and $\mathbb{Z}/q\mathbb{Z}$ means \mathbb{Z} . Thus in either case π_{θ} is a representation on $\ell_2(\mathbb{Z}/q\mathbb{Z})$. The C*-algebra $\mathcal{A}_{\theta} := \pi_{\theta}(C^*[H])$ is called the *rotation* C*-algebra.

We fix the notation used throughout this section. We define

$$X := (1-x)^*(1-x) = 2 - x - x^* \in \mathbf{C}^*[\mathbf{H}]_+, \quad X_{\theta} := \pi_{\theta}(X) \in \mathcal{A}_{\theta},$$

NARUTAKA OZAWA

and the same for y and z. Note that X+Y is the combinatorial Laplacian of H with respect to the generating subset $\{x^{\pm}, y^{\pm}\}$, that $0 \le X \le 4$, and that the triplets $(X_{\theta}, Y_{\theta}, Z_{\theta})$, $(Y_{\theta}, X_{\theta}, Z_{\theta})$, and $(X_{1-\theta}, Y_{1-\theta}, Z_{1-\theta})$ are unitarily equivalent. For a parameter $\lambda > 0$, the *almost Mathieu operator* on $\ell_2(\mathbb{Z}/q\mathbb{Z})$ is given by

$$H_{\theta,\lambda} := \pi_{\theta} \left(\frac{\lambda}{2} (x + x^*) + y + y^* \right) = (\lambda + 2) - \left(\frac{\lambda}{2} X_{\theta} + Y_{\theta} \right).$$

We also write $s = \sin \pi \theta$, $s_m = \sin 2m\pi \theta$, and $c_m = \cos 2m\pi \theta$. In particular,

$$Z_{\theta} = 2(1 - \cos 2\pi\theta) = 4s^2.$$

See [Boca 2001] for more information about the almost Mathieu operators and [Nitsche 2020] for some discussion in connection with the semidefinite programming.

Eventually, we will prove a certain inequality (Theorem 9) about *X*, *Y*, and *Z* (in the full group C*-algebra of a higher-dimensional Heisenberg group) that leads to (\diamond) in the previous section. To prove inequalities about *X*, *Y*, and *Z*, it suffices to work with X_{θ} , Y_{θ} , and Z_{θ} for each $\theta \in [0, \frac{1}{2}]$ separately, thanks to the following well-known fact (Lemma 1). The critical estimate is the one for small $\theta > 0$ (Corollary 4 and Lemma 6). The rest will work out anyway.

Lemma 1. For any dense subset $I \subset [0, 1)$, the representation $\bigoplus_{\theta \in I} \pi_{\theta}$ is faithful on the full group C^* -algebra $C^*[H]$.

Proof. For the readers' convenience, we sketch the proof. Let τ_{θ} denote the tracial state on C*[H] associated with π_{θ} . That is to say, if θ is irrational, then τ_{θ} arises from the canonical tracial state on the irrational rotation C*-algebra \mathcal{A}_{θ} and it is given by $\tau_{\theta}(x^i y^j) = 0$ for all $(i, j) \neq (0, 0)$. If $\theta = p/q$ is rational, then τ_{θ} is given by tr_q $\circ \pi_{\theta}$, where tr_q is the tracial state on $\mathbb{M}_q(\mathbb{C})$, and it satisfies $\tau_{\theta}(x^i y^j) = 0$ for all $(i, j) \neq (0, 0)$ in $(\mathbb{Z}/q\mathbb{Z})^2$. It follows that $\theta \mapsto \tau_{\theta}$ is continuous at irrational points and the assumption of the lemma implies that $\tau := \int_0^1 \tau_{\theta} d\theta$ is a continuous state on $\bigoplus_{\theta \in I} \pi_{\theta}$. It is not hard to see that τ coincides with the tracial state associated with the left regular representation of H, that is to say, $\tau(x^i y^j z^k) = 0$ for all $(i, j, k) \neq (0, 0, 0)$. Since H is amenable, the tracial state τ is faithful on the full group C*-algebra C*[H].

Theorem 2 [Boca and Zaharescu 2005]. Let $\theta \in [0, \frac{1}{2})$. One has

$$\|H_{\theta,\lambda}\| \leq \lambda + 2 - \frac{2\lambda}{\lambda+2}\sin\pi\theta.$$

More precisely, for any real unit vector ξ *in* $\ell_2(\mathbb{Z}/q\mathbb{Z})$ *,*

$$\|H_{\lambda,\theta}\xi\|^{2} = \lambda^{2} + 4 + 2(1 - \tan \pi\theta) \left(\frac{\lambda}{2}\pi_{\theta}(x + x^{*})\xi, \pi_{\theta}(y + y^{*})\xi\right) - \sum_{m} |\xi_{m-1} - \xi_{m+1} - \lambda s_{m}\xi_{m}|^{2}.$$

Proof. Because the statements are formulated in a different way in [Boca and Zaharescu 2005], we replicate here the proof from that work:

$$\|H_{\lambda,\theta}\xi\|^{2} = \sum_{m} |\lambda c_{m}\xi_{m} + \xi_{m-1} + \xi_{m+1}|^{2}$$

= $\lambda^{2} + 4 + \sum_{m} (-\lambda^{2}s_{m}^{2}\xi_{m}^{2} - |\xi_{m-1} - \xi_{m+1}|^{2} + 2\lambda c_{m}\xi_{m}(\xi_{m-1} + \xi_{m+1}))$
= $\lambda^{2} + 4 - \sum_{m} |\xi_{m-1} - \xi_{m+1} - \lambda s_{m}\xi_{m}|^{2} - 2\lambda \sum_{m} s_{m}(\xi_{m-1} - \xi_{m+1})\xi_{m} + 2\lambda \sum_{m} c_{m}\xi_{m}(\xi_{m-1} + \xi_{m+1}).$

We continue with the computation,

$$\sum_{m} c_m \xi_m(\xi_{m-1} + \xi_{m+1}) = \sum_{m} (c_{m-1} + c_m) \xi_{m-1} \xi_m = 2 \cos \pi \theta \sum_{m} \xi_{m-1} \xi_m \cos(2m - 1)\pi \theta$$

and similarly

$$-\sum_{m} s_{m}(\xi_{m-1} - \xi_{m+1})\xi_{m} = \sum_{m} (s_{m-1} - s_{m})\xi_{m-1}\xi_{m}$$
$$= -2\sin\pi\theta \sum_{m} \xi_{m-1}\xi_{m}\cos(2m-1)\pi\theta$$
$$= -\tan\theta \sum_{m} c_{m}\xi_{m}(\xi_{m-1} + \xi_{m+1}).$$

Thus one obtains the purported formula for $||H_{\lambda,\theta}\xi||^2$. We also observe that

$$\|H_{\lambda,\theta}\xi\|^2 \le \lambda^2 + 4 + 4\lambda(\cos\pi\theta - \sin\pi\theta)\sum_m \xi_{m-1}\xi_m\cos(2m-1)\pi\theta$$

$$\le \lambda^2 + 4 + 4\lambda(1 - \sin\pi\theta).$$

This yields the purported estimate for $||H_{\theta,\lambda}||$.

Corollary 3. In the full group C^* -algebra $C^*[H]$, one has

$$X + Y \ge \frac{1}{2}\sqrt{Z}.$$

Proof. By Lemma 1, it suffices to show the assertion in \mathcal{A}_{θ} for each $\theta \in [0, \frac{1}{2}]$. It follows from Theorem 2 with $\lambda = 2$ that $X_{\theta} + Y_{\theta} = 4 - H_{\theta,2} \ge \frac{1}{2}\sqrt{Z_{\theta}}$.

Since Z is central, $X + Y \ge \frac{1}{2}\sqrt{Z}$ is equivalent to $4(X + Y)^2 \ge Z$ in C*[*H*]. However, there is no R > 0 such that $R(X + Y)^2 \ge Z$ in $\mathbb{R}[H]$. We will elaborate this in Section 6.

Corollary 4. Let $R \ge 1$, $0 < \kappa < 1$, and

$$\theta_0 := \min\left\{\frac{1}{4}, \frac{1}{\pi} \arcsin\left(\kappa \sqrt{\frac{1-\kappa}{R}}\right)\right\}.$$

Then, for any $\theta \in [0, \theta_0]$ *, one has*

$$RX_{\theta} + Y_{\theta} \ge \frac{\sqrt{(1-\kappa)R}}{2}\sqrt{Z_{\theta}}$$

Proof. We write

$$s_0 := \sin \pi \theta_0, \quad c := \operatorname{diag}_m c_m = \pi_\theta \left(\frac{x + x^*}{2}\right) = 1 - \frac{1}{2}X_\theta, \quad C = \sqrt{(1 - \kappa)R}$$

Let $\theta \in [0, \theta_0]$ and a real unit vector $\xi \in \ell_2(\mathbb{Z}/q\mathbb{Z})$ be given. We need to prove $\langle (RX_\theta + Y_\theta)\xi, \xi \rangle \ge Cs$. For this, we may assume that $\langle \pi_\theta(x + x^*)\xi, \pi_\theta(y + y^*)\xi \rangle > 0$ because otherwise

$$\langle (X_{\theta} + Y_{\theta})\xi, \xi \rangle \ge 4 - \|\pi_{\theta}(x + x^* + y + y^*)\xi\| \ge 4 - 2\sqrt{2}.$$

Put $\varepsilon := 1 - ||c\xi||$. If $\varepsilon \ge Cs/(2R)$, then $\langle RX_{\theta}\xi, \xi \rangle \ge 2R\varepsilon \ge Cs$ and we are done. From now on, we assume that $\varepsilon < Cs/(2R)$. By Theorem 2 for $\lambda := 2R/C$, one has

$$\|H_{\lambda,\theta}\xi\|^{2} \leq \lambda^{2} + 4 + 2\lambda(1-s)\langle c\xi, (H_{\theta,\lambda} - \lambda c)\xi \rangle$$

$$\leq \lambda^{2} + 4 + 2\lambda(1-s)(1-\varepsilon)\|H_{\theta,\lambda}\xi\| - 2\lambda^{2}(1-s)(1-\varepsilon)^{2}$$

and hence

$$\left(\|H_{\lambda,\theta}\xi\| - \lambda(1-s)(1-\varepsilon) \right)^2 \le 4 + \lambda^2 \left(1 - 2(1-s)(1-\varepsilon)^2 + (1-s)^2(1-\varepsilon)^2 \right)$$

= $4 + \lambda^2 (1 - (1-s^2)(1-\varepsilon)^2)$
 $\le 4 + \lambda^2 (s^2 + 2\varepsilon).$

Thus

$$\|H_{\lambda,\theta}\xi\| \leq 2 + \lambda s \left(\frac{1}{4}\lambda s_0 + \frac{1}{2}\lambda\frac{\varepsilon}{s}\right) + \lambda(1-s).$$

By our choices,

$$\lambda s_0 = \frac{2R}{C} \cdot \frac{\kappa \sqrt{(1-\kappa)}}{\sqrt{R}} = 2\kappa$$

and $\lambda \varepsilon / s \leq 1$. Therefore,

$$\|H_{\lambda,\theta}\xi\| \leq \lambda + 2 - \left(1 - \frac{1}{4} \cdot 2\kappa - \frac{1}{2}\right) \cdot 2\sqrt{\frac{R}{1-\kappa}}s = \lambda + 2 - Cs.$$

Since $\lambda + 2 - H_{\lambda,\theta} = (\lambda/2)X_{\theta} + Y_{\theta} \le RX_{\theta} + Y_{\theta}$, we are done.

Proposition 5. In the full group C^* -algebra $C^*[H]$, one has

$$(X+Y)\sqrt{Z} + \frac{1}{2}(XY+YX) \ge 0.$$

Proof. By Lemma 1, it suffices to show the same for the X_{θ} . We write $b_m := 1 - c_m = 1 - \cos 2m\pi\theta = 2\sin^2 m\pi\theta$. We observe that

$$X_{\theta} = \begin{bmatrix} \ddots & & & \\ & 2b_{m-1} & & \\ & & 2b_{m} & \\ & & \ddots \end{bmatrix}, \quad Y_{\theta} = \begin{bmatrix} \ddots & & & & \\ & -1 & 2 & \\ & & & \ddots \end{bmatrix},$$
$$\frac{1}{2}(X_{\theta}Y_{\theta} + Y_{\theta}X_{\theta}) = \begin{bmatrix} \ddots & & & & \\ & 4b_{m-1} & -(b_{m-1} + b_{m}) & \\ & -(b_{m-1} + b_{m}) & 4b_{m} & \\ & & \ddots \end{bmatrix}.$$

These are the sums of the following 2-by-2 matrices sitting at the (m-1)-to-*m*-th corners:

$$X_{\theta,m} = \begin{bmatrix} b_{m-1} \\ b_m \end{bmatrix}, \quad Y_{\theta,m} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix},$$
$$\frac{1}{2}(XY + YX)_{\theta,m} := \begin{bmatrix} 2b_{m-1} & -(b_{m-1} + b_m) \\ -(b_{m-1} + b_m) & 2b_m \end{bmatrix}.$$

2548

Thus, it suffices to show

$$T_{\theta,m} := 2s(X_{\theta,m} + Y_{\theta,m}) + \frac{1}{2}(XY + YX)_{\theta,m}$$

=
$$\begin{bmatrix} 2(s+1)b_{m-1} + 2s & -(2s+b_{m-1}+b_m)\\ -(2s+b_{m-1}+b_m) & 2(s+1)b_m + 2s \end{bmatrix}$$

is positive in $\mathbb{M}_2(\mathbb{C})$ for every *m*. We only need to calculate the determinant:

$$det(T_{\theta,m}) \ge 4b_{m-1}b_m + 4s(s+1)(b_{m-1}+b_m) + 4s^2 - (2s+b_{m-1}+b_m)^2$$

= $4s^2(b_{m-1}+b_m) - (b_{m-1}-b_m)^2$
= $8s^2(\sin^2(m-1)\pi\theta + \sin^2 m\pi\theta) - 4s^2\sin^2(2m-1)\pi\theta$
 $\ge 0.$

Here, we have used the formulas

$$b_m = 2\sin^2 m\pi\theta,$$

$$b_{m-1} - b_m = -2s\theta\sin(2m-1)\pi\theta,$$

$$|\sin(2m-1)\pi\theta| \le |\sin(m-1)\pi\theta| + |\sin m\pi\theta|.$$

A similar calculation shows $Z + \frac{1}{2}(XY + YX) \ge 0$ in C^{*}[*H*]. In fact, it is a sum of squares:

$$Z + \frac{1}{2}(XY + YX) = \frac{1}{4}(X + Y)Z + \frac{1}{8}\sum_{i=1}^{\delta}(1-b)^{\delta}(1-a)^{\varepsilon}(1-a)^{\varepsilon}(1-b)^{\overline{\delta}},$$

where \sum is over the eight terms $(a, b) \in \{(x, y), (y, x)\}$ and $(\varepsilon, \overline{\varepsilon}), (\delta, \overline{\delta}) \in \{(\ast, \cdot), (\cdot, \ast)\}$.

Now, we consider the C*-algebra $\mathcal{A}_{\theta} \otimes \mathcal{A}_{\theta}$ on $\ell_2(\mathbb{Z}/q\mathbb{Z}) \otimes \ell_2(\mathbb{Z}/q\mathbb{Z})$. We continue to view Z_{θ} as a scalar in $\mathcal{A}_{\theta} \otimes \mathcal{A}_{\theta}$. We want to find an inequality that leads to (\diamond). The following does the job for small $\theta > 0$. We note that it fails at $\theta_0 = \frac{1}{2}$.

Lemma 6. There are $\theta_0 > 0$, R > 1, and $\varepsilon > 0$ such that, for every $\theta \in [0, \theta_0]$, one has

$$R(X_{\theta} \otimes Y_{\theta} + Y_{\theta} \otimes X_{\theta}) + X_{\theta} \otimes X_{\theta} + Y_{\theta} \otimes Y_{\theta} + (X_{\theta}Y_{\theta} + Y_{\theta}X_{\theta}) \otimes 1 \ge \varepsilon Z_{\theta}$$

Proof. By Corollary 4, there are $\theta_0 > 0$ and R > 1 such that $1 \otimes (RX_{\theta} + Y_{\theta}) \ge 8s$ for every $\theta \in [0, \theta_0]$. By Proposition 5 and Corollary 3, it follows that the left-hand side dominates

$$(X_{\theta} + Y_{\theta}) \cdot 8s + X_{\theta}Y_{\theta} + Y_{\theta}X_{\theta} \ge (X_{\theta} + Y_{\theta}) \cdot 4s \ge Z_{\theta},$$

where we omitted writing $\otimes 1$.

To deal with the case $\theta \ge \theta_0$, we need a few more auxiliary lemmas on \mathcal{A}_{θ} .

Lemma 7. For every $\theta \in [0, \frac{1}{2}]$, one has

$$\|\pi_{\theta}((1-x)(1-y))\| \le 4\cos(\pi\theta/2).$$

Proof. The expansion of $(1 - y)^*(1 - x)^*(1 - x)(1 - y)$ has 16 terms (counting multiplicity) and among them are -(1 + z)x, $-(1 + z)^*x^*$ and $x(zy^* + y) + x^*(z^*y^* + y)$. One has $|1 + z| = 2\cos\pi\theta$ and

$$\begin{aligned} \|x(zy^*+y) + x^*(z^*y^*+y)\| &\leq \|[xy^* \ x^*y^*]\| \left\| \begin{bmatrix} z+y^2\\ z^*+y^2 \end{bmatrix} \right\| \\ &\leq \sqrt{2} \|(z+y^2)^*(z+y^2) + (z^*+y^2)^*(z^*+y^2)\|^{1/2} = 4\cos\pi\theta. \end{aligned}$$

Hence $\|\pi_{\theta}((1-y)^*(1-x)^*(1-x)(1-y))\| \le 8 + 8\cos\pi\theta = 16\cos^2(\pi\theta/2).$

For a positive operator *A*, we denote by $\mathbb{P}_{A \leq \delta}$ (resp. $\mathbb{P}_{A > \delta} = 1 - \mathbb{P}_{A \leq \delta}$) the spectral projection of *A* corresponding to the spectrum $[0, \delta]$ (resp. (δ, ∞)). We also write $\mathbb{P}_{A \leq \delta \land B \leq \delta}$ etc. for the orthogonal projection onto ran $\mathbb{P}_{A \leq \delta} \cap$ ran $\mathbb{P}_{B \leq \delta}$ etc. Note that if *A* and *B* commute, then so do their spectral projections and $\mathbb{P}_{A \leq \delta \land B \leq \delta} = \mathbb{P}_{A \leq \delta} \mathbb{P}_{B \leq \delta}$.

Lemma 8. For every $\theta \in \left(0, \frac{1}{2}\right]$ and $0 < \delta < 2(1 - \cos \pi \theta)$, one has

$$\mathbb{P}_{X_{\theta} \leq \delta} Y_{\theta} \mathbb{P}_{X_{\theta} \leq \delta} = 2\mathbb{P}_{X_{\theta} \leq \delta},$$

the same with X_{θ} and Y_{θ} interchanged, and

$$\|\mathbb{P}_{Y_{\theta}\leq\delta}\mathbb{P}_{X_{\theta}\leq\delta}\|\leq\sqrt{\frac{2}{4-\delta}}.$$

In particular, $\ell_2(\mathbb{Z}/q\mathbb{Z})$ is decomposed into a direct sum

$$\ell_2(\mathbb{Z}/q\mathbb{Z}) = \operatorname{ran} \mathbb{P}_{X_\theta \le \delta} + \operatorname{ran} \mathbb{P}_{Y_\theta \le \delta} + \operatorname{ran} \mathbb{P}_{X_\theta > \delta \land Y_\theta > \delta}$$

and the corresponding (not necessarily orthogonal) projections have norm at most $\sqrt{(4-\delta)/(2-\delta)}$.

Proof. We observe that $\mathbb{P}_{X_{\theta} \leq \delta}$ is the projection onto $\ell_2(E)$ with

$$E := \{m : 2(1 - \cos 2m\pi\theta) \le \delta\} \subset \{m : m\theta \in (-\theta/2, \theta/2) + \mathbb{Z}\}.$$

The set *E* does not contain consecutive numbers and the first assertion follows. The second follows from the unitary equivalence of the pairs (X_{θ}, Y_{θ}) and (Y_{θ}, X_{θ}) . Since $Y_{\theta} \leq \delta \mathbb{P}_{Y_{\theta} \leq \delta} + 4(1 - \mathbb{P}_{Y_{\theta} \leq \delta}) = 4 - (4 - \delta) \mathbb{P}_{Y_{\theta} \leq \delta}$, one has

$$2\mathbb{P}_{X_{\theta} \leq \delta} \leq 4\mathbb{P}_{X_{\theta} \leq \delta} - (4-\delta)\mathbb{P}_{X_{\theta} \leq \delta}\mathbb{P}_{Y_{\theta} \leq \delta}\mathbb{P}_{X_{\theta} \leq \delta}$$

and $\|\mathbb{P}_{Y_{\theta} \leq \delta} \mathbb{P}_{X_{\theta} \leq \delta}\|^2 = \|\mathbb{P}_{X_{\theta} \leq \delta} \mathbb{P}_{Y_{\theta} \leq \delta} \mathbb{P}_{X_{\theta} \leq \delta}\| \leq 2/(4-\delta)$. This gives the desired estimate for $\|\mathbb{P}_{Y_{\theta} \leq \delta} \mathbb{P}_{X_{\theta} \leq \delta}\|$. We remark that this estimate can be improved to $\approx 1/\sqrt{3}$ if θ is away from $\frac{1}{2}$ and $\delta > 0$ is small enough. Indeed, the gaps of *E* will have length at least 2 and hence any unit vectors $\xi \in \operatorname{ran} \mathbb{P}_{X_{\theta} \leq \delta}$ and $\eta \in \mathbb{P}_{Y_{\theta} \leq \delta}$ satisfy

$$\left|\langle \xi, \eta \rangle\right| \approx \left|\left\langle \xi, \frac{1}{3}\pi_{\theta}(1+y+y^*)\eta \right\rangle\right| = \left|\left\langle \frac{1}{3}\pi_{\theta}(1+y+y^*)\xi, \eta \right\rangle\right| \leq \frac{1}{\sqrt{3}}.$$

The projection onto the third subspace is orthogonal. On the other hand, any $\xi + \eta \in \operatorname{ran} \mathbb{P}_{X_{\theta} \leq \delta} + \operatorname{ran} \mathbb{P}_{Y_{\theta} \leq \delta}$ satisfies

$$\|\xi + \eta\|^{2} \ge \|\xi\|^{2} + \|\eta\|^{2} - 2\|\mathbb{P}_{Y_{\theta} \le \delta}\mathbb{P}_{X_{\theta} \le \delta}\|\|\xi\|\|\eta\| \ge (1 - \|\mathbb{P}_{Y_{\theta} \le \delta}\mathbb{P}_{X_{\theta} \le \delta}\|^{2})\|\xi\|^{2}.$$

This gives the desired norm estimate.

 \square

Now, we consider this time the cubic tensor product $\mathcal{A}_{\theta} \otimes \mathcal{A}_{\theta} \otimes \mathcal{A}_{\theta}$. This arises as an irreducible representation of the higher dimensional Heisenberg group

$$H_{3} := \left\{ \begin{bmatrix} 1 & * & * & * \\ 1 & 0 & 0 & * \\ & 1 & 0 & * \\ & & 1 & * \\ & & & 1 \end{bmatrix} \right\} \subset \mathrm{SL}(5, \mathbb{Z}).$$

We put $x_i := e_{1,i+1}(1)$, $y_i := e_{i+1,5}(1)$, and $z := e_{1,5}(1)$ in H_3 , where we recall that $e_{i,j}(1)$ is the elementary matrix defined in the beginning of the previous section. Note that $[x_i, y_i] = z$ and $[x_i, y_j] = 1$ for $i \neq j$. Hence H_3 is isomorphic to the quotient of $H \times H \times H$ modulo z are identified. As before, we write $X_i := (1 - x_i)^*(1 - x_i)$, etc. This should not be confused with X_{θ} in A_{θ} .

Theorem 9. There are R > 0 and $\varepsilon > 0$ such that

$$R(X_1Y_2 + Y_1X_2 + X_1Y_3 + Y_1X_3) + X_1X_2 + Y_1Y_2 + X_1Y_1 + Y_1X_1 \ge \varepsilon Z$$

holds in $C^*[H_3]$.

Proof. By Lemma 1 (adapted to this case), it suffices to prove the assertion in $\mathcal{A}_{\theta} \otimes \mathcal{A}_{\theta} \otimes \mathcal{A}_{\theta}$ for each $\theta \in [0, \frac{1}{2}]$. We write $X_{i,\theta}$ for X_{θ} in the *i*-th tensor component. For a unit vector

 $\zeta \in \ell_2(\mathbb{Z}/q\mathbb{Z}) \otimes \ell_2(\mathbb{Z}/q\mathbb{Z}) \otimes \ell_2(\mathbb{Z}/q\mathbb{Z}),$

we need to prove

$$\left\langle \left(R(X_{1,\theta}Y_{2,\theta}+Y_{1,\theta}X_{2,\theta}+X_{1,\theta}Y_{3,\theta}+Y_{1,\theta}X_{3,\theta})+X_{1,\theta}X_{2,\theta}+Y_{1,\theta}Y_{2,\theta}+X_{1,\theta}Y_{1,\theta}+Y_{1,\theta}X_{1,\theta}\right)\zeta,\zeta\right\rangle \geq \varepsilon Z_{\theta}.$$

By Lemma 6, we are already done for $\theta \in [0, \theta_0]$. To apply Lemma 8, fix $0 < \delta < 2(1 - \cos \pi \theta_0)$ small enough and consider $\theta \in [\theta_0, \frac{1}{2}]$. Since we may choose R > 1 arbitrarily large with respect to the fixed δ , we may assume

$$\max\{\|\mathbb{P}_{X_{1,\theta}Y_{2,\theta}>\delta^{2}}\zeta\|, \|\mathbb{P}_{Y_{1,\theta}X_{2,\theta}>\delta^{2}}\zeta\|, \|\mathbb{P}_{X_{1,\theta}Y_{3,\theta}>\delta^{2}}\zeta\|, \|\mathbb{P}_{Y_{1,\theta}X_{3,\theta}>\delta^{2}}\zeta\|\} < \delta.$$

As described in Lemma 8, we consider the decomposition

$$\zeta = \xi + \eta + \gamma \in \operatorname{ran} \mathbb{P}_{X_{1,\theta} \le \delta} + \operatorname{ran} \mathbb{P}_{Y_{1,\theta} \le \delta} + \operatorname{ran} \mathbb{P}_{X_{1,\theta} > \delta \land Y_{1,\theta} > \delta}$$

Note that $\max\{\|\xi\|, \|\eta\|, \|\gamma\|\} \le 2$. By writing \approx_{δ} , we will mean that the difference is at most δ . Since $\zeta \approx_{\delta} \mathbb{P}_{X_{1,\theta}Y_{2,\theta} \le \delta^2} \zeta$ and $\mathbb{P}_{Y_{2,\theta} > \delta \land X_{1,\theta}Y_{2,\theta} \le \delta^2} \le \mathbb{P}_{X_{1,\theta} \le \delta \land Y_{2,\theta} > \delta}$, one has

$$\mathbb{P}_{Y_{2,\theta} > \delta} \zeta \approx_{\delta} \mathbb{P}_{X_{1,\theta} \leq \delta \wedge Y_{2,\theta} > \delta} \zeta$$

It follows that

$$\mathbb{P}_{Y_{2,\theta}>\delta}\eta + \mathbb{P}_{Y_{2,\theta}>\delta}\gamma \approx_{\delta} \mathbb{P}_{X_{1,\theta}\leq\delta\wedge Y_{2,\theta}>\delta}(\xi + \eta + \gamma) - \mathbb{P}_{Y_{2,\theta}>\delta}\xi = \mathbb{P}_{X_{1,\theta}\leq\delta\wedge Y_{2,\theta}>\delta}\eta$$

Since $\mathbb{P}_{Y_{2,\theta} > \delta}$ leaves ran $\mathbb{P}_{X_{1,\theta} \leq \delta}$ and ran $\mathbb{P}_{Y_{1,\theta} \leq \delta}$ invariant, this implies

$$\mathbb{P}_{Y_{2,\theta} > \delta} \eta \approx_{\delta} \mathbb{P}_{X_{1,\theta} \leq \delta \land Y_{2,\theta} > \delta} \eta \quad \text{and} \quad \mathbb{P}_{Y_{2,\theta} > \delta} \gamma \approx_{\delta} 0.$$

Hence, in combination with Lemma 8 that $\mathbb{P}_{Y_{1,\theta} \leq \delta} \mathbb{P}_{X_{1,\theta} > \delta} \mathbb{P}_{Y_{1,\theta} \leq \delta} \geq \frac{1}{4} \mathbb{P}_{Y_{1,\theta} \leq \delta}$, one obtains

$$\delta^2 \geq \|\mathbb{P}_{X_{1,\theta} > \delta} \mathbb{P}_{Y_{2,\theta} > \delta} \eta\|^2 \geq \frac{1}{4} \|\mathbb{P}_{Y_{2,\theta} > \delta} \eta\|^2,$$

that is,

$$\eta \approx_{2\delta} \mathbb{P}_{Y_{2,\theta} \leq \delta} \eta$$

The same consideration on $Y_{1,\theta}X_{2,\theta}$ yields

 $\mathbb{P}_{X_{2,\theta} > \delta} \gamma \approx_{\delta} 0 \quad \text{and} \quad \xi \approx_{2\delta} \mathbb{P}_{X_{2,\theta} \leq \delta} \xi.$

Thus $\mathbb{P}_{Y_{2,\theta} > \delta} \mathbb{P}_{X_{2,\theta} \leq \delta} \gamma \approx_{\delta} \mathbb{P}_{Y_{2,\theta} > \delta} \gamma \approx_{\delta} 0$ and, by Lemma 8 again,

$$\|\gamma\|^2 \approx_{\delta^2} \|\mathbb{P}_{X_{2,\theta} \leq \delta}\gamma\|^2 \leq 4 \|\mathbb{P}_{Y_{2,\theta} > \delta}\mathbb{P}_{X_{2,\theta} \leq \delta}\gamma\|^2 \leq 16\delta^2.$$

Further, the same for $X_{1,\theta}Y_{3,\theta}$ and $Y_{1,\theta}X_{3,\theta}$ yields

 $\xi \approx_{2\delta} \mathbb{P}_{X_{3,\theta} \leq \delta} \xi$ and $\eta \approx_{2\delta} \mathbb{P}_{Y_{3,\theta} \leq \delta} \eta$.

Now a routine but tedious calculation with Lemma 8 yields

$$\langle X_{1,\theta} X_{2,\theta} \zeta, \zeta \rangle \approx_{C\delta} \langle X_{1,\theta} X_{2,\theta} \mathbb{P}_{Y_{1,\theta} \le \delta \land Y_{2,\theta} \le \delta} \eta, \mathbb{P}_{Y_{1,\theta} \le \delta \land Y_{2,\theta} \le \delta} \eta \rangle \approx_{16\delta} 4 \|\eta\|^2$$

for some absolute constant C (e.g., C = 1000 should be enough), and likewise

$$\langle Y_{1,\theta}Y_{2,\theta}\zeta,\zeta\rangle \approx_{C\delta} 4\|\xi\|^2$$

On the other hand, by Lemmas 7 and 8,

$$\begin{split} |\langle (X_{1,\theta}Y_{1,\theta}+Y_{1,\theta}X_{1,\theta})\zeta,\zeta\rangle| \approx_{C\delta} 2|\langle X_{1,\theta}Y_{1,\theta}\mathbb{P}_{X_{1,\theta}\leq\delta\wedge X_{2,\theta}\leq\delta\wedge X_{3,\theta}\leq\delta}\xi, \mathbb{P}_{Y_{1,\theta}\leq\delta\wedge Y_{2,\theta}\leq\delta\wedge Y_{3,\theta}\leq\delta}\eta\rangle| \\ &\leq 2\|\mathbb{P}_{Y_{1,\theta}\leq\delta}\pi_{\theta}(1-x_{1}^{*})\|\|\pi_{\theta}((1-x_{1})(1-y_{1}))\|\|\pi_{\theta}(1-y_{1}^{*})\mathbb{P}_{X_{1,\theta}\leq\delta}\|| \\ &\times\|\mathbb{P}_{X_{2,\theta}\leq\delta}\mathbb{P}_{Y_{2,\theta}\leq\delta}\|\|\mathbb{P}_{X_{3,\theta}\leq\delta}\mathbb{P}_{Y_{3,\theta}\leq\delta}\|\|\xi\|\|\eta\| \\ &\leq 16\Big(\cos\frac{\pi\theta}{2}\Big)\cdot\frac{2}{4-\delta}\|\xi\|\|\eta\|. \end{split}$$

If we have chosen $\delta > 0$ small enough, then

$$\varepsilon := 8 - 16\left(\cos\frac{\pi\theta_0}{2}\right) \cdot \frac{2}{4-\delta} > 4C\delta.$$

Observe that $\delta > 0$ and $\varepsilon > 0$ depends on the absolute constants $\theta_0 > 0$ and C > 0, but not on $\theta \in \left[\theta_0, \frac{1}{2}\right]$. In the end,

$$\begin{aligned} |\langle (X_{1,\theta}Y_{1,\theta} + X_{1,\theta}Y_{1,\theta})\zeta,\zeta\rangle| &\leq (8-\varepsilon) \|\xi\|\eta\| + C\delta \\ &\leq 4(1-\varepsilon/2)(\|\xi\|^2 + \|\eta\|^2) + C\delta \\ &\leq \langle (X_{1,\theta}X_{2,\theta} + Y_{1,\theta}Y_{2,\theta})\zeta,\zeta\rangle - \varepsilon + 3C\delta. \end{aligned}$$

This completes the proof. We remark that the above proof for $\theta \in [\theta_0, \frac{1}{2}]$ is not as tight as it appears (and $\varepsilon > 0$ can be "visible"), because if θ is around $\frac{1}{2}$, then $\cos \frac{1}{2}\pi\theta \approx \frac{1}{\sqrt{2}}$, and if θ is away from $\frac{1}{2}$, then $\|\mathbb{P}_{X_{\theta} \leq \delta}\mathbb{P}_{Y_{\theta} \leq \delta}\|$ is bounded by $\approx \frac{1}{\sqrt{3}}$.

5. Proof of the Main Theorem, postlude

Since $\mathcal{R} := \mathbb{Z}\langle t_1, \ldots, t_d \rangle$ is *commutative*, we may apply Theorem 9 to $x_1 = e_{1,2}(t_r)$, $x_2 = e_{1,3}(t_s)$, $x_3 = e_{1,4}(t_r)$, $y_1 = e_{2,5}(t_s)$, $y_2 = e_{3,5}(t_r)$, $y_3 = e_{4,5}(t_s)$, and $z = e_{1,5}(t_rt_s)$ in EL₅(\mathcal{R}). This yields (\diamondsuit) in Section 3 and the proof of the Main Theorem is complete.

The terms $X_1Y_2 = E_{1,2}(t_r)E_{3,5}(t_r)$ and $Y_1X_2 = E_{2,5}(t_s)E_{1,3}(t_s)$ are diagonal with respect to $\{t_r, t_s\}$. This causes an annoying dependence of *R* on *d* in the formula (\heartsuit), which results in dependence of n_0 on *d* in the Main Theorem.

6. Real group algebras and property H_T

In this section, we continue the study of [Netzer and Thom 2013; 2015; Nitsche 2020; Ozawa 2013; 2016] about positivity in real group algebras. In addition to the notation from Section 2, we denote by

$$I[\Gamma] := \operatorname{span}\{1 - x : x \in \Gamma\} \subset \mathbb{R}[\Gamma]$$

the *augmentation ideal*. We observe that $\Sigma^2 I[\Gamma] = I[\Gamma] \cap \Sigma^2 \mathbb{R}[\Gamma]$ and hence there is no ambiguity about the order \leq on $I[\Gamma]$. In [Ozawa 2016], it was observed that the combinatorial Laplacian $\Delta \in \Sigma^2 I[\Gamma]$ is an *order unit* for $I[\Gamma]$ (more precisely for $I[\Gamma]^{\text{her}}$, but this abuse of terminology should not cause any problem). That is to say, for every $\xi \in I[\Gamma]^{\text{her}}$, there is R > 0 such that $\xi \leq R\Delta$. We will indicate this by $\xi \ll \Delta$.

We review the relation between positive linear functionals on $I[\Gamma]$ and 1-cocycles (with unitary coefficients). A linear functional φ on $I[\Gamma]$ is said to be *positive* if it is selfadjoint and $\varphi(\Sigma^2 I[\Gamma]) \subset \mathbb{R}_{\geq 0}$. One has $\varphi(\Delta) = 0$ if and only if $\varphi = 0$. Every positive linear functional φ gives rise to a semi-inner product $\langle \xi, \eta \rangle := \varphi(\xi^*\eta)$ and the corresponding seminorm $\|\xi\| := \varphi(\xi^*\xi)^{1/2}$ on $I[\Gamma]$, with respect to which the left multiplication by an element of Γ is orthogonal. This is the Gelfand–Naimark construction. The map $b: \Gamma \to I[\Gamma]$, $t \mapsto 1-t$, is a 1-cocycle, i.e., it satisfies b(st) = b(s) + sb(t) for every $s, t \in \Gamma$. We note that $\varphi(1-t) = \frac{1}{2}\varphi((1-t)^*(1-t)) = \frac{1}{2}\|b(t)\|^2$ and $\varphi(\Delta) = \frac{1}{2}\sum_{s\in S} \|b(s)\|^2$. In fact, every 1-cocycle arises in this way. See, e.g., Appendix C in [Bekka et al. 2008] and Appendix D in [Brown and Ozawa 2008] for a comprehensive treatment.

It is proved in [Ozawa 2016] that $\overline{\Sigma^2 I[\Gamma]} = I[\Gamma]^{\text{her}} \cap \overline{\Sigma^2 \mathbb{R}[\Gamma]}$. That is to say,

$$\overline{\Sigma^2 I[\Gamma]} := \{ \xi \in I[\Gamma]^{\text{her}} : \text{for all } \varepsilon > 0, \ \xi + \varepsilon \Delta \succeq 0 \}$$
$$= \{ \xi \in I[\Gamma]^{\text{her}} : \varphi(\xi) \ge 0 \text{ for every positive linear functional } \varphi \text{ on } I[\Gamma] \}$$
$$= \{ \xi \in I[\Gamma]^{\text{her}} : \xi \ge 0 \text{ in } C^*[\Gamma] \}.$$

We also record an easy consequence of the Hahn–Banach separation theorem (a.k.a. the Eidelheit–Kakutani separation theorem in this context). For ξ , $\eta \in I[\Gamma]^{her}$ (or in any real ordered vector space with an order unit Δ), the following are equivalent:

- (1) $\varphi(\xi) = 0$ implies $\varphi(\eta) \le 0$ for every positive linear functional φ on $I[\Gamma]$.
- (2) $-\eta \in \overline{\Sigma^2 I[\Gamma] \mathbb{R}\xi}$.
- (3) For all $\varepsilon > 0$, there exists $R \in \mathbb{R}$ such that $R\xi \eta + \varepsilon \Delta \succeq 0$.

We observe that since

$$\varphi(\Delta^2) = \langle \Delta, \Delta \rangle = \left\| \sum_{s \in S} b(s) \right\|^2,$$

one has $\varphi(\Delta^2) = 0$ if and only if the corresponding 1-cocycle *b* is *harmonic* in the sense $\sum_{s \in S} b(s) = 0$. This observation recovers Shalom's theorem [2000] that every finitely generated group without property (T) has a nonzero harmonic 1-cocycle. An essentially same proof was given in [Nitsche 2020].

We record the following well-known fact:

- If a 1-cocycle *b* vanishes on a normal subgroup $N \triangleleft \Gamma$, then *N* acts trivially on span $b(\Gamma)$ and hence *b* factors through the quotient Γ/N .
- If *b* is a harmonic 1-cocycle on Γ , then the center $\mathcal{Z}(\Gamma)$ acts trivially on span $b(\Gamma)$ and Γ acts trivially on span $b(\mathcal{Z}(\Gamma))$.
- Every harmonic 1-cocycle on an abelian group is an additive homomorphism.

The first assertion is not difficult to show. The second follows from the identity (1-x)b(z) = (1-z)b(x) for $x \in \Gamma$ and $z \in \mathcal{Z}(\Gamma)$. If *b* is harmonic, then $(|S| - \sum_{s \in S} s)b(z) = 0$ and, by strict convexity of a Hilbert space, b(z) = sb(z) for $s \in S$ and hence for all $s \in \Gamma$.

An additive character $\chi : \Gamma \to \mathbb{R}$ can be viewed as a harmonic 1-cocycle. The corresponding positive linear functional $\varphi_{\chi} : I[\Gamma] \to \mathbb{R}$ is given by $\varphi_{\chi}(1-t) = \frac{1}{2}\chi(t)^2$. This should not be confused with the linear extension $\chi : I[\Gamma] \to \mathbb{R}$ which is not even selfadjoint. The positive linear functional φ_{χ} factors through the abelianization $I[\Gamma^{ab}]$.

We denote the augmentation power by

$$I^{k}[\Gamma] := \operatorname{span}(I[\Gamma]^{k}) \subset \mathbb{R}[\Gamma].$$

It is well-known and easy to see from the formula

$$1 - xy = (1 - x) + (1 - y) - (1 - x)(1 - y) \in (1 - x) + (1 - y) + I^{2}[\Gamma]$$

that $I[\Gamma]$ is generated as a rng by $\{1 - s : s \in S\}$ and that $\Gamma \ni x \mapsto 1 - x \in I[\Gamma]/I^2[\Gamma]$ is an additive homomorphism. On the other hand, every additive homomorphism χ vanishes on $I^2[\Gamma]$, because $\chi((1 - x)(1 - y)) = \chi(1 - x - y + xy) = 0$. Hence $I^2[\Gamma] = \bigcap_{\chi} \ker \chi$, where the intersection is taken over the additive characters χ on Γ . We will see that $\Delta^2 \in \Sigma^2 I^2[\Gamma]$ need not be an order unit for $I^4[\Gamma]$, but the element

$$\Box := \frac{1}{4} \sum_{s,t \in S} (1-s)^* (1-t)^* (1-t) (1-s) \in \Sigma^2 I^2[\Gamma]$$

is. Since $\Box = \Delta^2$ in $I[\Gamma^{ab}]$, one has $\varphi_{\chi}(\Box) = \varphi_{\chi}(\Delta^2) = 0$ for every additive character χ . We will prove later that the converse is also true.

Theorem 10. *The element* \Box *is an order unit for* $I^4[\Gamma]$ *. Namely*

$$I^{4}[\Gamma]^{\text{her}} = \{\xi \in \mathbb{R}[\Gamma]^{\text{her}} : \pm \xi \ll \Box\} = \operatorname{span} \Sigma^{2} I^{2}[\Gamma]$$

and moreover $I^4[\Gamma] \cap \Sigma^2 \mathbb{R}[\Gamma] = \Sigma^2 I^2[\Gamma]$.

Proof. We first prove that the left is contained the middle. The proof is similar to that for Lemma 2 in [Ozawa 2016]. Since $\xi^*\eta + \eta^*\xi \leq \xi^*\xi + \eta^*\eta$ for every ξ , η , it suffices to show that

$$(1-x)^*(1-y)^*(1-y)(1-x) \ll \Box$$
 for all $x, y \in \Gamma$.

By using the inequality

$$(1 - x_1 x_2)^* (1 - y)^* (1 - y)(1 - x_1 x_2) = ((1 - x_1) + x_1 (1 - x_2))^* (1 - y)^* (----)$$

$$\leq 2(1 - x_1)^* (1 - y)^* (----) + 2(1 - x_2)^* (1 - x_1^{-1} y x_1)^* (----),$$

one can reduce this to the case $x \in S$, and similarly to the case $y \in S$, where the assertion is obvious. We next show that $\pm \xi \ll \Box$ implies $\xi \in \text{span } \Sigma^2 I^2[\Gamma]$. There is R > 0 such that $0 \preceq R \Box - \xi \preceq 2R \Box$. Thus it remains to show $\sum_i \eta_i^* \eta_i \ll \Box$ implies $\eta_i \in I^2[\Gamma]$. Since $\varphi_{\chi}(\Box) = 0$ for every additive character χ on Γ , one has

$$0 = \varphi_{\chi} \left(\sum_{i} \eta_{i}^{*} \eta_{i} \right) = -\frac{1}{2} \sum_{i,x,y} \eta_{i}(x) \eta_{i}(y) \chi(x^{-1}y)^{2} = \sum_{i} \left(\sum_{x} \eta_{i}(x) \chi(x) \right)^{2},$$

or equivalently $\eta_i \in \bigcap_{\chi} \ker \chi = I^2[\Gamma]$ for all *i*.

Corollary 11. A positive linear functional φ on $I[\Gamma]$ satisfies $\varphi(\Box) = 0$ if and only if the associated 1-cocycle is an additive homomorphism.

Proof. We have already noted that $\varphi_{\chi}(\Box) = 0$ for all additive character χ . Conversely, suppose $\varphi(\Box) = 0$. Since this implies $\varphi(\Delta^2) = 0$, the 1-cocycle *b* associated with φ is harmonic. Moreover, since

$$1 - [x, y] = (xy - yx)x^{-1}y^{-1} = ((1 - x)(1 - y) - (1 - y)(1 - x))x^{-1}y^{-1} \in I^{2}[\Gamma],$$

Theorem 10 implies that b = 0 on the commutator subgroup $[\Gamma, \Gamma]$. Thus b factors through Γ^{ab} and is an additive homomorphism.

We recall that a finitely generated group Γ is said to have *Shalom's property* H_T if every harmonic 1-cocycle on Γ is an additive homomorphism. Property H_T coincides with Kazhdan's property (T) for groups with finite abelianization. It is observed in [Shalom 2004] that finitely generated nilpotent groups have property H_T. We conjecture that the group EL_n($\mathbb{Z}\langle t_1, \ldots, t_d \rangle$) has property H_T. By the Hahn–Banach separation theorem, one obtains the following characterization of property H_T, which does not seem useful though.

Corollary 12. The finitely generated group Γ has finite abelianization if and only if $\Delta \ll \Box$. The finitely generated group Γ has property H_T if and only if for every $\varepsilon > 0$ there is R > 0 such that $\Box \leq R\Delta^2 + \varepsilon \Delta$.

Property H_T for nilpotent groups also follows from Corollary 3 that if a commutator z = [x, y] is central, then $(1 - z)^*(1 - z) \ll \Delta^2$ in $C^*[\Gamma]$. It is tempting to conjecture that every finitely generated nilpotent group Γ satisfies $\Box \ll \Delta^2$. Had it been true that $\Box \ll \Delta^2$ for a given group Γ , it would have been able to rigorously prove this by computer calculations because \Box is an order unit for $I^4[\Gamma]$ (modulo a quantitative estimate, see [Netzer and Thom 2015]). However, we will observe here that $\Box \not\ll \Delta^2$

NARUTAKA OZAWA

in $\mathbb{R}[H]$. Hence, unlike property (T), property H_T is probably not characterized by a "simple"² inequality in the real group algebra. This spoils the current methods of proving something like the Main Theorem by computer calculations. (Note that $EL_n(\mathbb{Z}\langle t \rangle)$ has the Heisenberg group H_{n-2} as a quotient and the analogous statement to the following proposition holds true for this group.)

Proposition 13. Let H be the integral Heisenberg group and z := [x, y] be as described in the beginning of Section 4. Then $(1-z)^*(1-z) \not\ll \Delta^2$ in $\mathbb{R}[H]$. Moreover,

$$\overline{\Sigma^2 I^2[\boldsymbol{H}]} \neq I^4[\boldsymbol{H}]^{\text{her}} \cap \overline{\Sigma^2 \mathbb{R}[\boldsymbol{H}]}.$$

The proof of $\overline{\Sigma^2 I[\Gamma]} = I[\Gamma]^{\text{her}} \cap \overline{\Sigma^2 \mathbb{R}[\Gamma]}$ given in [Ozawa 2016] is based on Schoenberg's theorem that any positive linear functional on $I[\Gamma]$ is approximable by those that extend on $\mathbb{R}[\Gamma]$. The above proposition says there is no good enough analogue of Schoenberg's theorem for augmentation powers. For the proof of the proposition, we need a description of the graded vector space $\cdots \supset I^4[H] \supset I^5[H] \supset \cdots$. To ease notation, we write $\bar{x} := 1 - x$ etc. and observe that $\bar{z} \in \mathcal{Z}(\mathbb{R}[H]) \cap I^2[H]$ and

$$\bar{y}\bar{x} = \bar{x}\bar{y} + \bar{z} - \bar{z}\bar{x} - \bar{z}\bar{y} + \bar{z}\bar{y}\bar{x} \in \bar{x}\bar{y} + \bar{z} + I^3[\boldsymbol{H}].$$

Lemma 14. For every $n \in \mathbb{N}$, the set $\{\bar{x}^i \bar{y}^j \bar{z}^k + I^n[H] : i, j, k \ge 0, i + j + 2k < n\}$ forms a basis for $\mathbb{R}[H]/I^n[H]$. In particular

dim
$$I^{n}[\boldsymbol{H}]/I^{n+1}[\boldsymbol{H}] = (\lfloor n/2 \rfloor + 1)(n - \lfloor n/2 \rfloor + 1).$$

Proof. We first observe that the asserted set spans $\mathbb{R}[H]/I^n[H]$. Indeed, this follows from the above equation for $\bar{y}\bar{x}$ and the general facts that

$$1 - uv = (1 - u) + (1 - v) - (1 - u)(1 - v),$$

$$1 - u^{-1} = -(1 - u) + (1 - u^{-1})(1 - u)$$

for every $u, v \in H$. It is left to show that the asserted set is also linearly independent. Suppose that

$$\xi := \sum_{i+j+2k < n} \alpha_{i,j,k} \bar{x}^i \bar{y}^j \bar{z}^k \in I^n[\boldsymbol{H}].$$

By considering the abelianization $\pi^{ab} : C^*[H] \to C^*[\mathbb{Z}^2]$, one sees $\alpha_{i,j,k} = 0$ whenever k = 0. It follows that $\xi \in I^n[H] \cap \overline{z}\mathbb{R}[H]$. We claim that

$$I^{n}[H] \cap \overline{z}\mathbb{R}[H] = \overline{z}I^{n-2}[H] \quad \text{for } n \ge 2.$$

Since \bar{z} is not a zero divisor in $\mathbb{R}[H]$ (e.g., because $\pi_{\theta}(\bar{z})$ are invertible for $\theta \in (0, 1)$), the lemma would follow from this claim by induction.

The homomorphisms $\mathbb{R}[\langle x \rangle] \hookrightarrow \mathbb{R}[H]$ and $\mathbb{R}[\langle y \rangle] \hookrightarrow \mathbb{R}[H]$ extend to a linear injection

 $\sigma: \mathbb{R}[\langle x \rangle] \otimes \mathbb{R}[\langle y \rangle] \hookrightarrow \mathbb{R}[H], \quad \xi \otimes \eta \mapsto \xi \eta,$

with the left inverse

$$\pi^{\mathrm{ab}}: \mathbb{R}[\boldsymbol{H}] \to \mathbb{R}[\mathbb{Z}^2] \cong \mathbb{R}[\langle x \rangle] \otimes \mathbb{R}[\langle y \rangle].$$

²The quantifier elimination techniques, which the author is not familiar with, may be relevant.

Since $\bar{y}\bar{x} \in \bar{x}\bar{y} + \bar{z}\mathbb{R}[H]$ and likewise for \bar{x}^* and \bar{y}^* (thanks to suitable symmetries $x \leftrightarrow x^{-1}$ and $y \leftrightarrow y^{-1}$ on H), one has

$$I^{n}[\boldsymbol{H}] \cap \bar{z}\mathbb{R}[\boldsymbol{H}] \subset (\operatorname{ran} \sigma + \bar{z}I^{n-2}[\boldsymbol{H}]) \cap \ker \pi^{\mathrm{ab}} = \bar{z}I^{n-2}[\boldsymbol{H}].$$

This proves the claim.

Proof of Proposition 13. We observe that in $I^4[H]/I^5[H]$

$$(\bar{x}\bar{x}\bar{y}\bar{y})^* = \bar{y}\bar{y}\bar{x}\bar{x} = \bar{y}\bar{x}\bar{y}\bar{x} + \bar{y}\bar{x}\bar{z} = \bar{x}\bar{y}\bar{x}\bar{y} + 3\bar{x}\bar{y}\bar{z} + 2\bar{z}\bar{z} = \bar{x}\bar{x}\bar{y}\bar{y} + 4\bar{x}\bar{y}\bar{z} + 2\bar{z}\bar{z}.$$

We define a linear functional φ on $I^4[H]/I^5[H]$ by

$$\varphi(\bar{x}^4) = \varphi(\bar{y}^4) = 1, \quad \varphi(\bar{z}^2) = -2, \quad \varphi(\bar{x}^2 \bar{y}^2) = -1, \quad \varphi(\bar{x} \bar{y} \bar{z}) = 1,$$

and zero on all the other basis elements. Then, the linear functional φ is selfadjoint. Moreover, with respect to the basis $\{\bar{x}\bar{x}, \bar{x}\bar{y}, \bar{y}\bar{x}, \bar{y}\bar{y}\}$ for $I^2[H]/I^3[H]$, the bilinear form $(\xi, \eta) \mapsto \varphi(\xi^*\eta)$ is represented by the matrix

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Since this matrix is positive semidefinite, the linear functional is positive on $I^4[H]$, by Theorem 10. One sees that $\varphi(\bar{z}^*\bar{z}) = -\varphi(\bar{z}\bar{z}) = 2 > 0$, $\varphi(\Box) = 4$, and

$$\varphi(\Delta^2) = \varphi((\bar{x}\bar{x} + \bar{y}\bar{y})(\bar{x}\bar{x} + \bar{y}\bar{y})) = 0.$$

Therefore there cannot be R > 0 such that $\bar{z}^* \bar{z} \leq R \Delta^2 + \frac{1}{4} \square$. It follows that $4\Delta^2 - \bar{z}^* \bar{z} \notin \overline{\Sigma^2 I^2[H]}$, while $4\Delta^2 - \bar{z}^* \bar{z} \in I^4[H]^{\text{her}} \cap \overline{\Sigma^2 \mathbb{R}[H]}$ by Corollary 3.

7. Property (τ)

We say a finitely generated group $\Gamma = \langle S \rangle$ has *property* (τ) with respect to a family { Γ_i } of finite quotients $\Gamma \twoheadrightarrow \Gamma_i$ if there is $\delta > 0$ such that any unitary representation π of Γ that factors through some $\Gamma \twoheadrightarrow \Gamma_i$ either admits a nonzero $\pi(\Gamma)$ -invariant vector or admits no unit vector v such that $\max_{s \in S} ||v - \pi(s)v|| \le \delta$. This is equivalent to that the Cayley graphs of { Γ_i } with respect to the generating subset S form an expander family. In case the family { Γ_i } is the set of all finite quotients of Γ , it is simply said Γ has property (τ). See [Kowalski 2019] for a comprehensive treatment of expander graphs. By the Main Theorem, EL_n(S) has property (T) if S is a finitely generated *irng* (i.e., a rng which is idempotent, $S = S^2$, see [Monod et al. 2012]) and n is large enough. Corollaries A and B say this happens uniformly for *finite* commutative irngs with a fixed number of generators.

Proof of Corollary A. Let n_0 be as in the Main Theorem for $\mathbb{Z}\langle T_1, \ldots, T_d, S_1, \ldots, S_d \rangle$ and $n \ge n_0$. By the Main Theorem applied to $T_r \mapsto t_r^k$ and $S_r \mapsto t_r^{k+1}$, there is $\varepsilon > 0$ such that

$$\Delta_k := \sum_{i \neq j} \sum_{r=1}^{d} (1 - e_{i,j}(t_r^k))^* (1 - e_{i,j}(t_r^k)) \in \mathbb{R}[\mathrm{EL}_n(\mathbb{Z}\langle t_1, \dots, t_d \rangle)]$$

(so $\Delta_1 = \Delta$) satisfy

$$(\Delta_k + \Delta_{k+1})^2 \ge \varepsilon (\Delta_{2k} + \Delta_{2k+1} + \Delta_{2k+2})$$

for all k. We may also assume that $\varepsilon > 0$ satisfies $\Delta_1^2 \ge \varepsilon \Delta_2$.

Let π , \mathcal{H} and v be given for $\text{EL}_n(\mathbb{Z}(t_1, \ldots, t_d))$ (but we will omit writing π to ease notation) and put

$$\delta := \left(\sum_{i,j,r} \|v - e_{i,j}(t_r)v\|^2\right)^{1/2} = \langle \Delta v, v \rangle^{1/2}$$

We assume $\delta < (\frac{1}{2})^{10}$ and put $\rho := \delta^{1/10}$. Recall that $\mathbb{P}_{\Delta \leq (\delta/\rho)^2}$ stands for the spectral projection of Δ for the interval $[0, (\delta/\rho)^2]$. For $v_0 := \mathbb{P}_{\Delta \leq (\delta/\rho)^2} v$, one has $||v - v_0|| \leq \rho$ and

$$\langle (\Delta_1 + \Delta_2)v_0, v_0 \rangle \le \delta^2 + \varepsilon^{-1} (\delta/\rho)^4 =: \delta_0^2$$

Now, $v_1 := \mathbb{P}_{\Delta_1 + \Delta_2 \le (\delta_0/\rho^2)^2} v_0$ satisfies $||v_0 - v_1|| \le \rho^2$ and

$$\langle (\Delta_2 + \Delta_3)v_1, v_1 \rangle \leq \varepsilon^{-1} (\delta_0 / \rho^2)^4 =: \delta_1^2.$$

We continue this and obtain $v_2 := \mathbb{P}_{\Delta_2 + \Delta_3 \le (\delta_1/\rho^3)^2} v_1, \ldots$ such that $||v_k - v_{k+1}|| \le \rho^{k+2}$ and

$$\langle (\Delta_{2^k} + \Delta_{2^k+1}) v_k, v_k \rangle \le \varepsilon^{-1} (\delta_{k-1}/\rho^{k+1})^4 =: \delta_k^2$$

Then the vector $w := \lim_k v_k$ satisfies $||v_k - w|| \le \rho^{k+1}$ (as $\rho < \frac{1}{2}$). Moreover,

$$\begin{aligned} 2^{-k} |\log \delta_k| &= 2^{-(k-1)} |\log \delta_{k-1}| - 2^{-(k-1)} (k+1) |\log \rho| + 2^{-(k+1)} \log \varepsilon \\ &= |\log \delta_0| - \left(\sum_{m=1}^k 2^{-(m-1)} (m+1)\right) |\log \rho| + \frac{1}{2} (1-2^{-k}) \log \varepsilon \\ &> \frac{1}{10} |\log \delta| \end{aligned}$$

if $\delta > 0$ is small enough compared to $\varepsilon > 0$. Hence $\delta_k \to 0$ at a double exponential rate.

We need to show $\lim_{l} \max_{i,j,r} \|w - e_{i,j}(t_r^l)w\| = 0$. We first observe that

$$||w - e_{i,j}(t_r^{2^k})w|| \le 2||v_k - w|| + \delta_k \le \rho^k + \delta_k$$

Let *l* be given. Take k = k(l) such that $l \in [2^k, 2^{k+1})$ and write $l = 2^k + \sum_{m=0}^{k-1} a(m)2^m$ with $a(m) \in \{0, 1\}$. Then for $b := \sum_{m=0}^{\lfloor k/2 \rfloor - 1} a(m)2^m$, one has

$$\|e_{i,j}(t_r^l)w - e_{i,j}(t_r^{2^k+b})w\| \le \sum_{m=\lfloor k/2 \rfloor}^{k-1} a(m)(\rho^m + \delta_m)$$

which tends to 0 as $l \rightarrow \infty$. Observe that the recurrence relation

$$p_0 := 2^{k - \lfloor k/2 \rfloor}, \quad p_{m+1} := 2p_m + a(\lfloor k/2 \rfloor - 1 - m)$$

gives $p_{\lfloor k/2 \rfloor} = 2^k + b$. Now by arguing as in the previous paragraph, but starting at $v_{k-\lfloor k/2 \rfloor}$ and using $(\Delta_{p_m} + \Delta_{p_m+1})^2 \ge \varepsilon (\Delta_{p_{m+1}} + \Delta_{p_{m+1}+1})$, one obtains

$$\|v_{k-\lfloor k/2\rfloor} - e_{i,j}(t_r^{2^k+b})v_{k-\lfloor k/2\rfloor}\| \le \rho^{k-\lfloor k/2\rfloor} + \delta_k \to 0.$$

Since $||v_{k-\lfloor k/2 \rfloor} - w|| \to 0$ as $l \to \infty$, this completes the proof.

2558

We give a proof of the remark that was made after Corollary A. Let $\mathcal{R} := \mathbb{Z}\langle t_1, \ldots, t_d \rangle$. Since $\operatorname{EL}_n(\mathcal{R}/\mathcal{R}^l)$ is nilpotent, there is a *proper* 1-cocycle b_l (see Section 2.7 in [Bekka et al. 2008] or Section 12 in [Brown and Ozawa 2008]). We view b_l as 1-cocycles on $\operatorname{EL}_n(\mathcal{R})$ and consider $b := \sum_{l=1}^{\oplus} b_l$, which we may assume convergent pointwise on $\operatorname{EL}_n(\mathcal{R})$. We denote by π_k the Gelfand–Naimark representation associated with the positive definite function $\varphi_k(x) := \exp(-\frac{1}{k} ||b(x)||^2)$. Then, the representation $\pi := \bigoplus \pi_k$ simultaneously admits asymptotically invariant vectors and a weak operator topology null sequence $x_l \in \operatorname{EL}_n(\mathcal{R}^l)$.

Proof of Corollary B. Let $\mathcal{R}^1 := \mathbb{Z}[t_1, \ldots, t_d]$ denote the unitization of $\mathcal{R} := \mathbb{Z}\langle t_1, \ldots, t_d \rangle$. Any quotient map $\mathcal{R} \twoheadrightarrow S$ with S unital gives rise to a group homomorphism $\operatorname{EL}_n(\mathcal{R}^1) \twoheadrightarrow \operatorname{EL}_n(S)$ that extends $\operatorname{EL}_n(\mathcal{R}) \twoheadrightarrow \operatorname{EL}_n(S)$. We need to show that an orthogonal representation of $\operatorname{EL}_n(\mathcal{R}^1)$ which factors through $\operatorname{EL}_n(S)$ has a nonzero invariant vector, provided that it has almost $\operatorname{EL}_n(\mathcal{R})$ invariant vector. Since we know $\operatorname{EL}_n(\mathcal{R}^1)$ has property (T), it suffices to show that every almost $\operatorname{EL}_n(\mathcal{R})$ invariant vector is also almost $\operatorname{EL}_n(\mathbb{Z}^1)$ invariant. The latter is true when S is finite. Indeed, the vector w in Corollary A is invariant under those $e_{i,j}(t_r^{l_0})$ such that $t_r^{l_0}$ is an idempotent in the quotient S. Since a finite commutative ring is a direct sum of local rings (see, e.g., [Kassabov and Nikolov 2006]), the ring generated by such idempotents contains the identity of S and hence w is invariant under $\operatorname{EL}_n(\mathbb{Z}1)$.

Acknowledgments

The author is grateful to Professor Marek Kaluba for communications around the material of Section 6 and to Professor Nikhil Srivastava on the almost Mathieu operators. The author was partially supported by JSPS KAKENHI grant no. 20H01806.

References

- [Bekka et al. 2008] B. Bekka, P. de la Harpe, and A. Valette, *Kazhdan's property* (T), New Math. Monogr. **11**, Cambridge Univ. Press, 2008. MR Zbl
- [Boca 2001] F.-P. Boca, *Rotation C*-algebras and almost Mathieu operators*, Theta Series in Adv. Math. **1**, Theta Foundation, Bucharest, 2001. MR Zbl
- [Boca and Zaharescu 2005] F. P. Boca and A. Zaharescu, "Norm estimates of almost Mathieu operators", *J. Funct. Anal.* **220**:1 (2005), 76–96. MR Zbl
- [Breuillard and Lubotzky 2022] E. Breuillard and A. Lubotzky, "Expansion in simple groups", pp. 246–275 in *Dynamics*, *geometry*, *number theory: the impact of Margulis on modern mathematics*, edited by D. Fisher et al., Univ. Chicago Press, 2022. MR Zbl
- [Brown and Ozawa 2008] N. P. Brown and N. Ozawa, *C*-algebras and finite-dimensional approximations*, Grad. Stud. in Math. **88**, Amer. Math. Soc., Providence, RI, 2008. MR Zbl
- [Cimprič 2009] J. Cimprič, "A representation theorem for Archimedean quadratic modules on *-rings", *Canad. Math. Bull.* **52**:1 (2009), 39–52. MR Zbl
- [Ershov and Jaikin-Zapirain 2010] M. Ershov and A. Jaikin-Zapirain, "Property (T) for noncommutative universal lattices", *Invent. Math.* **179**:2 (2010), 303–347. MR Zbl
- [Helfgott 2019] H. A. Helfgott, "Growth and expansion in algebraic groups over finite fields", pp. 71–111 in *Analytic methods in arithmetic geometry* (Tucson, AZ, 2016), edited by A. Bucur and D. Zureick-Brown, Contemp. Math. **740**, Amer. Math. Soc., Providence, RI, 2019. MR Zbl

NARUTAKA OZAWA

- [Kaluba et al. 2019] M. Kaluba, P. W. Nowak, and N. Ozawa, "Aut(F₅) has property (T)", Math. Ann. 375:3-4 (2019), 1169–1191. MR Zbl
- [Kaluba et al. 2021] M. Kaluba, D. Kielak, and P. W. Nowak, "On property (T) for Aut(F_n) and SL_n(\mathbb{Z})", Ann. of Math. (2) 193:2 (2021), 539-562. MR Zbl
- [Kassabov and Nikolov 2006] M. Kassabov and N. Nikolov, "Universal lattices and property tau", Invent. Math. 165:1 (2006), 209-224. MR Zbl
- [Kowalski 2019] E. Kowalski, An introduction to expander graphs, Cours Spécial. 26, Soc. Math. France, Paris, 2019. MR Zbl
- [Mimura 2015] M. Mimura, "Superintrinsic synthesis in fixed point properties", preprint, 2015. arXiv 1505.06728
- [Monod et al. 2012] N. Monod, N. Ozawa, and A. Thom, "Is an irng singly generated as an ideal?", Int. J. Algebra Comput. 22:4 (2012), art. id. 1250036. MR Zbl
- [Netzer and Thom 2013] T. Netzer and A. Thom, "Real closed separation theorems and applications to group algebras", Pacific J. Math. 263:2 (2013), 435-452. MR Zbl
- [Netzer and Thom 2015] T. Netzer and A. Thom, "Kazhdan's property (T) via semidefinite optimization", Exp. Math. 24:3 (2015), 371–374. MR Zbl
- [Nitsche 2020] M. Nitsche, "Computer proofs for property (T), and SDP duality", preprint, 2020. arXiv 2009.05134
- [Ozawa 2013] N. Ozawa, "About the Connes embedding conjecture: algebraic approaches", Jpn. J. Math. 8:1 (2013), 147-183. MR Zbl
- [Ozawa 2016] N. Ozawa, "Noncommutative real algebraic geometry of Kazhdan's property (T)", J. Inst. Math. Jussieu 15:1 (2016), 85–90. MR Zbl
- [Schmüdgen 2009] K. Schmüdgen, "Noncommutative real algebraic geometry: some basic concepts and first ideas", pp. 325–350 in Emerging applications of algebraic geometry, edited by M. Putinar and S. Sullivant, IMA Vol. Math. Appl. 149, Springer, 2009. MR Zbl
- [Shalom 2000] Y. Shalom, "Rigidity of commensurators and irreducible lattices", Invent. Math. 141:1 (2000), 1–54. MR Zbl
- [Shalom 2004] Y. Shalom, "Harmonic analysis, cohomology, and the large-scale geometry of amenable groups", Acta Math. 192:2 (2004), 119–185. MR Zbl
- [Shalom 2006] Y. Shalom, "The algebraization of Kazhdan's property (T)", pp. 1283–1310 in Proceedings of the International Congress of Mathematicians, II (Madrid, 2006), edited by M. Sanz-Solé et al., Eur. Math. Soc., Zürich, 2006. MR Zbl
- [Vaserstein 2006] L. Vaserstein, "Bounded reduction of invertible matrices over polynomial rings by addition operations", preprint, 2006, available at https://personal.science.psu.edu/lxv1/pm2.pdf.
- Received 14 Sep 2022. Accepted 31 Mar 2023.

NARUTAKA OZAWA: narutaka@kurims.kyoto-u.ac.jp Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Analysis & PDE

msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot Cambridge University, UK c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu
Zbigniew Błocki	Uniwersytet Jagielloński, Poland zbigniew.blocki@uj.edu.pl	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
David Gérard-Varet	Université de Paris, France david.gerard-varet@imj-prg.fr	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Colin Guillarmou	Université Paris-Saclay, France colin.guillarmou@universite-paris-saclay.fr	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Peter Hintz	ETH Zurich, Switzerland peter.hintz@math.ethz.ch	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Vadim Kaloshin	Institute of Science and Technology, Austria vadim.kaloshin@gmail.com	András Vasy	Stanford University, USA andras@math.stanford.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Anna L. Mazzucato	Penn State University, USA alm24@psu.edu	Jim Wright	University of Edinburgh, UK j.r.wright@ed.ac.uk
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France merle@ihes.fr		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2024 is US \$440/year for the electronic version, and \$690/year (+\$65, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by $\operatorname{EditFlow}^{\circledast}$ from MSP.

PUBLISHED BY

nonprofit scientific publishing

http://msp.org/ © 2024 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 17 No. 7 2024

Uniform Skoda integrability and Calabi–Yau degeneration YANG LI	2247
Unique continuation for the heat operator with potentials in weak spaces EUNHEE JEONG, SANGHYUK LEE and JAEHYEON RYU	2257
Nonnegative Ricci curvature and minimal graphs with linear growth GIULIO COLOMBO, EDDYGLEDSON S. GAMA, LUCIANO MARI and MARCO RIGOLI	2275
Nonlinear periodic waves on the Einstein cylinder ATHANASIOS CHATZIKALEAS and JACQUES SMULEVICI	2311
Host–Kra factors for $\bigoplus_{p \in P} \mathbb{Z}/p\mathbb{Z}$ actions and finite-dimensional nilpotent systems OR SHALOM	2379
A fast point charge interacting with the screened Vlasov–Poisson system RICHARD M. HÖFER and RAPHAEL WINTER	2451
Haagerup's phase transition at polydisc slicing GIORGOS CHASAPIS, SALIL SINGH and TOMASZ TKOCZ	2509
A substitute for Kazhdan's property (T) for universal nonlattices NARUTAKA OZAWA	2541
Trigonometric chaos and X _p inequalities, I: Balanced Fourier truncations over discrete groups ANTONIO ISMAEL CANO-MÁRMOL, JOSÉ M. CONDE-ALONSO and JAVIER PARCET	2561
Beurling–Carleson sets, inner functions and a semilinear equation	2585