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TRIGONOMETRIC CHAOS AND X p INEQUALITIES, I:
BALANCED FOURIER TRUNCATIONS OVER DISCRETE GROUPS

ANTONIO ISMAEL CANO-MÁRMOL, JOSÉ M. CONDE-ALONSO AND JAVIER PARCET

We investigate L p-estimates for balanced averages of Fourier truncations in group algebras, in terms
of “differential operators” acting on them. Our results extend a fundamental inequality of Naor for the
hypercube (with profound consequences in metric geometry) to discrete groups. Different inequalities
are established in terms of “directional derivatives” which are constructed via affine representations
determined by the Fourier truncations. Our proofs rely on the Banach Xp nature of noncommutative
L p-spaces and dimension-free estimates for noncommutative Riesz transforms. In the particular case of
free groups we use an alternative approach based on free Hilbert transforms.

Introduction

This paper is motivated by a recent inequality due to Assaf Naor, which we now introduce. Let �= {±1}

be the cyclic group of two elements with multiplicative terminology (that we use for all groups unless
otherwise stated) and more generally �n

=�×�× · · · ×� be the hypercube. In both cases, we view
them as equipped with their normalized counting measure. �n is its own Pontryagin dual when equipped
with its natural discrete measure. If [n] := {1, 2, . . . , n}, every function f : �n

→ C admits a Fourier
expansion in terms of Walsh characters WA, which are defined by A-products of coordinate functions
ε 7→ εj for any A ⊂ [n]. Given a mean-zero f Naor proved in [19] the following inequality for each
p ≥ 2 and k ∈ [n]:

1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥∑
A⊂S

f̂ (A)WA

∥∥∥∥p

L p(�n)

≲p
k
n

n∑
j=1

∥∂j f ∥
p
L p(�n) +

(
k
n

)p
2

∥ f ∥
p
L p(�n). (Np)

The above S-truncations of the Walsh expansion of f are conditional expectations denoted by E[n]\S f , while
∂j f stands for the j -th directional (discrete) derivative of f , given by ε 7→ f (ε)− f (ε1, . . . ,−εj , . . . , εn),
so that ∂j WA = 1A( j)2WA. This inequality has groundbreaking applications in metric geometry. More
precisely, it implies the quantitatively optimal form of the so-called Xp inequality, introduced by Naor
and Schechtman in [20]. In turn, this gives a purely metric criterion to estimate the L p-distortion of a
metric space X from below. Its metric nature is very useful in solving nonlinear problems around the
nonembedability of Lq into L p for 2< q < p. This includes, beyond the scope of linear L p-embedding
theory, the optimal L p-distortion of (nonlinear) grids in ℓn

q or the critical L p snowflake exponent of Lq . In
conclusion, Naor’s inequality (Np) and subsequent Xp inequalities with sharp scaling parameter are a key
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contribution to the Ribe program, an effort to identify which properties from the local theory of Banach
spaces ultimately rely on purely metric considerations and not on the whole strength of the linear structure.

Naor’s inequality (Np) for functions with a linear Walsh expansion becomes a form of Rosenthal
inequality for symmetrically exchangeable random variables [6; 21]. More precisely, let 5k be the space
of sets S ⊂ [n] with |S| = k equipped with its normalized counting measure and define 6n,k =�n

⊗5k .
Then, if f̂ (A)= 0 when |A| ̸= 1, the left-hand side of (Np) becomes∥∥∥∥ n∑

j=1

f̂ ({ j})σj

∥∥∥∥p

L p(6n,k)

, with σj (ε, S)= εj ⊗ 1S.

Then, the linear model for Naor’s inequality, which is the one pertaining functions of the form f (ε)=∑
j f̂ ({ j})εj , follows from [6]∥∥∥∥ n∑

j=1

f̂ ({ j})σj

∥∥∥∥
L p(6n,k)

≍p

(
k
n

n∑
j=1

| f̂ ({ j})|p
)1

p

+

(
k
n

n∑
j=1

| f̂ ({ j})|2
)1

2

.

Its general form (Np) can be regarded as an extension for Rademacher chaos. Our primary goal in this
paper is to produce inequalities similar to (Np). This amounts to understanding the Walsh expansion of f
as a Fourier series with frequencies in the discrete predual group �n, with WA being regarded as a Fourier
character. In the general (nonabelian) case, this forces us to use the language of group von Neumann
algebras generated by the left regular representation. Indeed, Fourier series with frequencies on a general
discrete group G must be written in terms of its left regular representation λ : G →B(ℓ2(G)). The unitaries
λ(g) replace Walsh characters and we work with operators of the form

f =

∑
g∈G

f̂ (g)λ(g).

The “quantum” probability space where we place these operators is the group von Neumann algebra
L(G). The noncommutative L p space L p(L(G)) associated with L(G) is isometrically isomorphic to the
classical L p-space over the Pontryagin dual Ĝ of G whenever the group G is abelian. We shall make no
distinction between a function in L p(Ĝ) and the corresponding operator in L p(L(G)) throughout the paper.
Precise definitions of all the relevant objects are given below. Understanding how to replace Rademacher
chaos by some sort of “trigonometric chaos” has to do with identifying elementary generating families.
Our construction is somehow delicate and we start with a model case which originally motivated us.

Let Fn = Z ∗ Z ∗ · · · ∗ Z be the free group with n generators e1, e2, . . . , en . The unitaries λ(ej ) are an
archetype of Voiculescu’s free random variables, which play the role of coordinate functions εj above.
The tensor products ζj (S)= λ(ej )⊗ 1S( j) in 6′

n,k = L(Fn)⊗5k satisfy the inequality∥∥∥∥ n∑
j=1

f̂ (ej )ζj

∥∥∥∥
L p(6

′

n,k)

≍p

(
k
n

n∑
j=1

| f̂ (ej )|
p
)1

p

+

(
k
n

n∑
j=1

| f̂ (ej )|
2
)1

2

. (FRp)

The desired free form of Naor’s inequality looks as follows:

1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥ ∑
w∈FS

f̂ (w)λ(w)
∥∥∥∥p

p
≲p

k
n

n∑
j=1

∥∂j f ∥
p
p +

(
k
n

)p
2

∥ f ∥
p
p. (FNp)
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Here FS denotes the free subgroup with generators in S and

∂j f =

∑
w≥ej

f̂ (w)λ(w)+
∑
w≥e−1

j

f̂ (w)λ(w),

where w ≥ ej is used to pick those words starting with the subchain ek
j for some positive integer k when

written in reduced form. Let us briefly comment on the two inequalities above. The inequality (FRp)
follows from the noncommutative Burkholder/Rosenthal inequality [8; 9], while (FNp) reduces to (FRp)
when f lives in the linear span of the λ(ej ) as a consequence of the free Khintchine inequality [4]. It is
therefore an extension of the linear model for free chaos. A look at Naor’s original inequality shows that
both group elements and collections of generators (respectively denoted by A and S there) become subsets
of [n]. This curious coincidence in the hypercube must be decoupled for other discrete groups and our inner
sum in the left-hand side of (FNp) is taken over those wordsw with letters living in free coordinates located
in S. On the other hand, our choice for ∂j f comes from [13] and will be properly justified in due time. It is
worth mentioning that some nonlinear extensions of the free Rosenthal inequality were investigated in [10]
for free chaos, but none of them include a free form of Naor’s inequality along the lines suggested above.

The above reasoning settles a free model for Naor’s inequality and illustrates how trigonometric chaos
fits in for free groups. What happens if we take products of more general discrete groups? What about
discrete groups lacking a product structure? Answering these questions amounts to considering Fourier
truncations and somehow related differential operators over discrete groups. Other than lattices of Lie
groups, discrete groups fail to admit canonical differential structures. This difficulty was successfully
solved in [11; 13] with affine representations. More precisely, an orthogonal cocycle of G is a pair (α, β)
given by an orthogonal action α : G ↷ H into some R-Hilbert space together with a map β : G → H
satisfying the cocycle law

αg(β(h))= β(gh)−β(g).

The latter ensures that g 7→ αg( · )+ β(g) is an affine representation of G, so that the cocycle map β
establishes a good Hilbert space lift of G and one can expect to import the differential structure of H.
Naively, we “identify” the unitary λ(g) with the Euclidean character exp(2π i⟨β(g), · ⟩) and define
“H-directional derivatives” on L(G) as follows for any u ∈ H:

∂u(λ(g))= ⟨β(g), u⟩λ(g) and 1(λ(g))= ∥β(g)∥2λ(g).

We remark that we use the word “derivative” — in quotes, that we suppress after the Introduction — in
a loose way here. They are linear operators that do not satisfy Leibniz rules, so in general they are not
derivations. In the same vein, the correspondence between λ(g) and Euclidean characters that we take
as inspiration only holds for G = Zn with a particular choice of cocycle, that we shall detail below, and
should not be considered in a literal way. This strategy of construction of differential structures has been
extremely useful to establish L p-boundedness criteria for Fourier multipliers on group von Neumann
algebras. We now introduce the right setup for the problem. Given a discrete group G equipped with an
orthogonal cocycle (α, β) and a positive integer n, we say that

A = {BS ⊂ G : S ⊂ [n]}
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is an admissible family of Fourier truncations when we have:

•

∥∥∥∥∑
g∈BS

f̂ (g)λ(g)
∥∥∥∥

p
≤cb C p

∥∥∥∥∑
g∈G

f̂ (g)λ(g)
∥∥∥∥

p
for p ≥ 2.

• Pairwise β-orthogonality:

H =

n⊕
j=1

Hj , with β(BS), β(B−1
S )⊂

⊕
j∈S

Hj = HS.

Given an orthonormal basis (u jℓ)ℓ of Hj , define the j-th “gradients” as the first column vectors

Dj f =

∑
ℓ≥1

∂u jℓ f ⊗ eℓ1 so that |Dj f | =

(∑
ℓ≥1

|∂u jℓ f |
2
)1

2

.

Theorem A. Let G be a discrete group equipped with an orthogonal cocycle (α, β) whose associated
Laplacian1 has a positive spectral gap σ > 0. Let us consider an admissible family of Fourier truncations
A = {BS : S ⊂ [n]}. Then, given p ≥ 2 and k ∈ [n], the following inequality holds for any mean-zero f :

1(n
k

) ∑
|S|=k

∥∥∥∥∑
g∈BS

f̂ (g)λ(g)
∥∥∥∥p

L p(L(G))
≲p,σ

k
n

n∑
j=1

[∥|Dj ( f )|∥p
L p(L(G))+∥|Dj ( f ∗)|∥

p
L p(L(G))]+

(
k
n

)p
2

∥ f ∥
p
L p(L(G)).

Naor’s inequality follows as a particular case of Theorem A by taking G = �n equipped with an
adequate cocycle that we detail below in Remark 2.5. Said cocycle sends �n into the n-dimensional
space H = R × R × · · · × R, and we use the truncations BS = {A ⊂ S} = β−1(HS). The length ψ in this
example is the word length (the geodesic distance in the Cayley graph) as is the case in many of the
examples below. Recall that Dj = ∂j here since dimHj = 1. Moreover |∂j ( f )| = |∂j ( f ∗)| in the abelian
framework of the hypercube. Two generalizations of Naor’s inequality for large classes of discrete groups
follow from Theorem A:

(i) Direct products. If G = G1 × G2 × · · · × Gn is a direct product of discrete groups equipped with
orthogonal cocycles (αj , βj ), consider the product cocycle (α, β) and let BS be the subgroup of G
generated by group elements whose nontrivial entries lie in S. Then, the Fourier truncations become
(completely contractive) conditional expectations and we get an admissible family of Fourier truncations.
The gradients Dj correspond to the different factors and cocycles in the direct product above. One case
that we shall explore is G = Zn, which probably yields the most natural continuous generalization of (Np)
in the torus Tn. Our result in inequality (2-1) can be obtained using only commutative ingredients and
following the original argument. However, we shall deduce it from Theorem A and later improve it below
using our stronger result — in this case.

(ii) Equivariant decompositions. If G is a discrete group equipped with an orthogonal cocycle (α, β), any
direct sum decomposition of the Hilbert space H into α-equivariant subspaces gives rise to an admissible
family of Fourier truncations. More precisely, assume

H =

n⊕
j=1

Hj and αg(Hj )⊂ Hj for every (g, j) ∈ G × [n].
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Then, the family of sets

BS = β−1
(⊕

j∈S

Hj

)
are subgroups of G. In particular, the associated Fourier truncations are conditional expectations (hence-
forth L p-contractions) and the BS satisfy pairwise β-orthogonality. This more general construction does
not impose a direct product structure on the discrete group G.

Let A be an admissible family of Fourier truncations on G as defined above. Let us say that a group
element g ∈ G is an A-generator when β(g) ∈ Hj for some 1 ≤ j ≤ n. Theorem A may be regarded as a
nonlinear form of an inequality for linear combinations of A-generators

f =

n∑
j=1

∑
β(g)∈Hj

f̂ (g)λ(g)=

n∑
j=1

Aj ( f ).

This inequality controls balanced averages of S-truncations
∑

j∈S Aj ( f ) in terms of f and the j-th
gradients of Aj ( f ). This linear model seems to be new for general discrete groups/cocycles and Theorem A
gives a nonlinear generalization in terms of trigonometric chaos over A-generators.

Theorem A does not recover the conjectured free form of Naor’s inequality (FNp). Indeed, the free
inequality relies on the standard cocycle of Fn associated with the word length, which yields H≃ℓ2(Fn\{e})
and infinitely many “free derivatives” of the form

∂u f =

∑
w≥u

f̂ (w)λ(w) for any u ∈ Fn \ {e},

so the ∂u can be regarded as Fourier multipliers whose symbols take values on {0, 1}. However, we only
need to use n free directional derivatives which are defined as

∂j = ∂ej + ∂e−1
j
, with 1 ≤ j ≤ n,

and these are not coupled into a family of gradients, as we do in Theorem A. The key point to achieve this
is the fact that free derivatives associated to free generators include all free derivatives in the sense that

u ̸= e =⇒ u ≥ ej or u ≥ e−1
j for some 1 ≤ j ≤ n =⇒ ∂u ◦ ∂j = ∂j ◦ ∂u = ∂u .

In general, assume that A = {BS : S ⊂ [n]} is an admissible family of Fourier truncations in G with
respect to (α, β). We will say that J = {∂j : 1 ≤ j ≤ n} is a distinguished family of “derivatives” when
∂u ◦ ∂j = ∂u for any u ∈ Hj with 1 ≤ j ≤ n. Throughout the paper, we shall consistently use u for vectors
in H and j ∈ [n], so that no confusion should arise when using ∂u and ∂j . The following result refines
Theorem A when we can find such a family.

Theorem B. Let G be a discrete group equipped with an orthogonal cocycle (α, β) and an admissible
family of Fourier truncations A = {BS : S ⊂ [n]}. Assume that J = {∂j : 1 ≤ j ≤ n} is a distinguished



2566 ANTONIO ISMAEL CANO-MÁRMOL, JOSÉ M. CONDE-ALONSO AND JAVIER PARCET

family of derivatives. Then, given p ≥ 2 and k ∈ [n], the following inequality holds for any mean-zero f :

1(n
k

) ∑
|S|=k

∥∥∥∥∑
g∈BS

f̂ (g)λ(g)
∥∥∥∥p

p
≲p

k
n

n∑
j=1

∥∂j ( f )∥p
p + ∥∂j ( f ∗)∥p

p +

(
k
n

)p
2

∥ f ∥
p
p.

When the distinguished family of derivatives ∂j is a proper subset of the cocycle derivatives ∂u , it turns
out that Theorem B gives a stronger inequality (compared to that of Theorem A) at the cost of additional
assumptions, which fortunately hold in several important cases considered below. Note as well that the
spectral gap assumption is unnecessary under the presence of distinguished derivatives. Here are our
main applications of Theorem B:

(i) Free chaos. Our discussion on free derivatives illustrates how to apply Theorem B to obtain an
inequality which gets very close to (FNp). The extra term ∂j ( f ∗) is anyway removable due to a special
property of free groups, for which word-length derivatives become free forms of directional Hilbert
transforms [17]. This “good pathology” leads us to an even stronger inequality than the free analog of
Naor’s inequality (FNp), as can be seen comparing the statements of Theorem 3.1 and Corollary 3.2.
This could be useful in other directions of free harmonic analysis. We shall also explore the free products
Z2m ∗ Z2m ∗ · · · ∗ Z2m .

(ii) Continuous and discrete tori. We also analyze Tn
= Ẑ

n and Zn
m = Ẑ

n
m equipped with different

geometries. Theorem B is applicable for the Cayley graph metric and the resulting inequality improves the
one coming from the Euclidean metric. These forms of Naor’s inequality can be regarded as refinements
of the classical Poincaré inequality.

(iii) Infinite Coxeter groups. Any group presented by

G = ⟨g1, g2, . . . , gn | (gj gk)
s jk = e⟩,

with s j j = 1 and s jk ≥ 2 for j ̸= k, is called a Coxeter group. Bożejko proved in [1] that the word length is
conditionally negative for any infinite Coxeter group. The Cayley graph of these groups is more involved
and we will not construct here a natural orthonormal basis for the cocycle; we invite the reader to do it
and to derive inequalities along the lines of those in Theorems A and B.

Our proof of Theorems A and B streamlines Naor’s original argument. The key point in this general
setting is to identify the right notions, such as admissible families of Fourier truncations or distinguished
families of derivatives. Once this is done, the proof heavily relies on dimension-free estimates for
noncommutative Riesz transforms [13] in the same way Naor’s inequality did in terms of Lust-Piquard
results [16]. Another crucial point in our argument is the Banach Xp nature of noncommutative L p-spaces.
Generalizing previous work of Naor and Schechtman [20, Theorem 7.1], we shall establish it with a much
simpler argument based on Junge and Xu’s noncommutative Burkholder/Rosenthal inequalities [8; 9].
Of course, one could expect that Theorems A and B may lead to noncommutative Xp-type inequalities,
very much like in [19]. We have obtained some inequalities in this direction [2]. Our hope was to
deduce nontrivial bounds for L p-distortions of Schatten q-classes or other noncommutative Lq-spaces.
Unfortunately, our efforts so far have not been fruitful in this direction.
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1. Trigonometric chaos

1A. Harmonic analysis on discrete groups. Let G be a discrete group. The left regular representation
of G on ℓ2(G) is the unitary representation determined by

[λ(g)ϕ](h)= ϕ(g−1h), g, h ∈ G, ϕ ∈ ℓ2(G).

The group von Neumann algebra of G is denoted by L(G). It is the weak operator closure of the linear span
of {λ(g)}g∈G in B(ℓ2(G)). Its canonical trace τ is linearly determined by τ(λ(g))= ⟨λ(g)1{e}, 1{e}⟩ℓ2(G) =

δg=e. Every element f ∈ L(G) admits a Fourier series

f =

∑
g∈G

f̂ (g)λ(g), where f̂ (g)= τ(λ(g)∗ f ).

This shows that τ( f )= f̂ (e). For 1 ≤ p <∞, we denote by L p(L(G)) the associated noncommutative
L p space. We emphasize here that in the case G is abelian, its Pontryagin dual Ĝ is a compact abelian
group and we have

L p(L(G))≃ L p(Ĝ),

isometrically. Therefore, in that case L p(L(G)) is a classical (commutative) L p space. In all instances
below, we will consider all of our L p spaces as noncommutative ones so that we can give a unified
treatment to all the examples.

An orthogonal cocycle for G is a triple (H, α, β) given by a real Hilbert space H, an orthogonal action
α : G → O(H), and a map β : G → H satisfying the cocycle law

αg(β(h))= β(gh)−β(g).

Orthogonal cocycles are in one-to-one correspondence with length functions. We say that a map ψ :

G → R+ is a length function if it vanishes at the identity e, it is symmetric ψ(g) = ψ(g−1), and it is
conditionally negative ∑

g∈G

ag = 0 =⇒

∑
g,h∈G

āgahψ(g−1h)≤ 0

for any finitely supported family {ag}g∈G. Given a cocycle (H, α, β), the function ψ(g) = ∥β(g)∥2
H

is a length function. On the other hand, any length function ψ determines a Gromov form ⟨ · , · ⟩ψ , a
semidefinite positive form on

D[G] := R-span⟨1{g} : g ∈ G⟩,

given by

⟨1{g}, 1{h}⟩ψ =
ψ(g)+ψ(h)−ψ(g−1h)

2
.

Then, the Hilbert completion H of D[G]/Ker(⟨ · , · ⟩ψ), equipped with ⟨ · , · ⟩ψ , together with the map
β : g 7→ 1{g} + Ker(⟨ · , · ⟩ψ), and the orthogonal action αg(1{h}) = 1{gh} − 1{g} + Ker(⟨ · , · ⟩ψ) form a
cocycle. Moreover, Schoenberg’s theorem [22] claims that ψ : G → R+ is a length function if and only if
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the maps St : λ(g) 7→ e−tψ(g)λ(g) form a Markov semigroup (St)t≥0 on L(G); see [11; 13]. In this case
(St)t≥0 admits an infinitesimal generator

−1 := lim
t→0+

St − idL(G)

t
so that St = exp(−t1).

As is standard, we shall call the generator 1 the ψ-Laplacian on G. Since we have 1(λ(g))= ψ(g)λ(g)
for g ∈ G, it turns out that1 is an unbounded Fourier multiplier whose fractional powers can be defined by

1γ f :=

∑
g∈G

ψ(g)γ f (g)λ(g).

Let (H, α, β) be the orthogonal cocycle naturally associated to the length function ψ : G → R+ as
explained above. Given an orthonormal basis {uℓ}ℓ≥1 of H, we consider the corresponding directional
derivatives as follows:

∂uℓλ(g) := ⟨β(g), uℓ⟩ψλ(g) so that 1=

∑
ℓ≥1

∂2
uℓ .

The corresponding Riesz transforms associated to ψ are then defined as

Rℓ f = Ruℓ f := ∂uℓ1
−

1
2 f =

∑
g∈G

⟨β(g), uℓ⟩ψ
√
ψ(g)

f̂ (g)λ(g).

Riesz transforms act on elements of L p(L(G)) with null Fourier coefficients on the kernel of β. More
precisely, maps Rℓ are well-defined over the mean-zero subspaces

L◦

p(L(G))= { f ∈ L p(L(G)) : f̂ (g)= 0 if ψ(g)= 0}.

Dimension-free estimates for noncommutative Riesz transforms were studied in [13].

Theorem 1.1 [13, Theorem A1]. If 2 ≤ p <∞ and f ∈ L◦
p(L(G))

∥ f ∥p ≍p max
{∥∥∥∥(∑

ℓ≥1

|Rℓ( f )|2
)1

2
∥∥∥∥

p
,

∥∥∥∥(∑
ℓ≥1

|Rℓ( f ∗)|2
)1

2
∥∥∥∥

p

}
.

Finally, our Fourier truncations will be written in the form

E[n]\S f =

∑
g∈BS

f̂ (g)λ(g), with S ⊂ [n].

When BS is a subgroup of G, E[n]\S is a (L p-contractive) conditional expectation onto L(BS).

1B. Noncommutative L p-spaces are Banach X p spaces. Linear forms of Xp inequalities are vector-
valued extensions of Rosenthal inequality for symmetrically exchangeable random variables [6]. More
precisely, a Banach space X is said to satisfy a Banach Xp inequality if the inequality of Theorem 1.2
below is satisfied for vectors {x j } j∈[n] ⊂ X (and with norms taken in X). In [20, Theorem 7.1] Naor and
Schechtman proved such inequalities for Schatten p-classes. A noncommutative Burkholder martingale
inequality for the conditioned square function [8] led Junge and Xu to obtain noncommutative Rosenthal
inequalities for symmetric variables in [9]. The precise result that we use below is the following (see
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[9, Corollary 6.6]): let N and M be von Neumann algebras, with N abelian, and p ≥ 2. If {x j } j∈[n] ⊂

L p(M) satisfy that ∥∥∥∥ n∑
j=1

sj aπ( j) ⊗ x j

∥∥∥∥
L p(N⊗M)

≲

∥∥∥∥ n∑
j=1

aj ⊗ x j

∥∥∥∥
L p(N⊗M)

holds for all random signs s = (s1, s2, . . . , sn)∈�
n, all permutations π on [n] and coefficients {aj } j∈[n] ⊂

L p(N )— that is, the variables are symmetrically exchangeable — then∥∥∥∥ n∑
j=1

aj ⊗ x j

∥∥∥∥
p
∼

1

n
1
p

n∑
j, j ′=1

∥aj∥p∥x j ′∥p +
1

n
1
2

∥∥∥∥( n∑
j=1

x∗

j x j + x j x∗

j

)1
2
∥∥∥∥

p

∥∥∥∥( n∑
j=1

a2
j

)1
2
∥∥∥∥

p
. (1-1)

We use this result below to establish the Banach Xp nature of arbitrary noncommutative L p-spaces.
Naor/Schechtman’s argument can be extended to work as well for other noncommutative L p-spaces, but
our argument below is much shorter.

Theorem 1.2. Let (M, τ ) be a von Neumann algebra equipped with a normal semifinite faithful trace.
Then, if E denotes the expectation over independently equidistributed random signs ε = (ε1, ε2, . . . , εn)

and x j ∈ L p(M), the following inequality holds for any p ≥ 2 and k ∈ [n]:

1(n
k

) ∑
S⊆[n]

|S|=k

E

∥∥∥∥∑
j∈S

εj x j

∥∥∥∥p

L p(M)

≲p
k
n

n∑
j=1

∥x j∥
p
L p(M) +

(
k
n

)p
2

E

∥∥∥∥ n∑
j=1

εj x j

∥∥∥∥p

L p(M)

.

Proof. Define random variables σj ∈ 6n,k = �n
⊗5k as defined in the Introduction by σj (ε, S) =

ε j ⊗ 1S( j) for 1 ≤ j ≤ n and S ⊂ [n]. We claim that the variables σj are symmetrically exchangeable in
L p(6n,k ⊗M)= L p(5k; L p(�

n
; L p(M))), i.e., for any choice of signs sj = ±1 and any permutation π

of [n], there holds

A :=

∥∥∥∥ n∑
j=1

sjσπ( j) ⊗ x j

∥∥∥∥
L p(6n,k⊗M)

≲

∥∥∥∥ n∑
j=1

σj ⊗ x j

∥∥∥∥
L p(6n,k⊗M)

=: B.

Indeed, applying the noncommutative Khintchine inequality [15] in L p(M) twice

Ap
=

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥ ∑
π( j)∈S

επ( j) ⊗ sj x j

∥∥∥∥p

L p(�n;L p(M))

≍p
1(n
k

) ∑
S⊆[n]

|S|=k

max
{∥∥∥∥( ∑

π( j)∈S

x∗

j x j

)1
2
∥∥∥∥

L p(M)

,

∥∥∥∥( ∑
π( j)∈S

x j x∗

j

)1
2
∥∥∥∥

L p(M)

}

=
1(n
k

) ∑
S⊆[n]

|S|=k

max
{∥∥∥∥(∑

j∈S

x∗

j x j

)1
2
∥∥∥∥

L p(M)

,

∥∥∥∥(∑
j∈S

x j x∗

j

)1
2
∥∥∥∥

L p(M)

}
≍p Bp.

Hence, we can apply (1-1) (with the choice N = L∞(6n,k)) to get

Bp ≲p
1
n

n∑
j, j ′=1

∥σj∥
p
p∥x j ′∥

p
p +

(
1
n

)p
2
∥∥∥∥( n∑

j=1

x∗

j x j + x j x∗

j

)1
2
∥∥∥∥p

p

∥∥∥∥( n∑
j=1

σ 2
j

)1
2
∥∥∥∥p

p
.
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Now, we have

∥σj∥
p
L p(6n,k)

=
1(n
k

) ∑
S⊆[n]

|S|=k

1S( j)=
k
n
,

∥∥∥∥( n∑
j=1

σ 2
j

)1
2
∥∥∥∥p

L p(6n,k)

=
1(n
k

) ∑
S⊆[n]

|S|=k

( n∑
j=1

1S( j)
)p

2

= k
p
2 .

Therefore, we get

Bp ≲p
k
n

n∑
j=1

∥x j∥
p
L p(M) +

(
k
n

)p
2
∥∥∥∥( n∑

j=1

x∗

j x j + x j x∗

j

)1
2
∥∥∥∥p

L p(M)

≍p
k
n

n∑
j=1

∥x j∥
p
L p(M) +

(
k
n

)p
2

E

∥∥∥∥ n∑
j=1

εj x j

∥∥∥∥p

L p(M)

,

applying once again the noncommutative Khintchine inequality. This proves the result since the random
variables σj are chosen so that B equals the left-hand side in the inequality of the statement. □

Remark 1.3. Theorem 1.2 says that L p(M) is a Banach Xp space. The conclusion also holds in the
completely bounded setting since the constants that appear in the inequality of the statement do not
depend on the von Neumann algebra M.

1C. Proof of Theorem A. According to Theorem 1.1

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥∑
g∈BS

f̂ (g)λ(g)
∥∥∥∥p

p

=
1(n
k

) ∑
S⊆[n]

|S|=k

∥E[n]\S f ∥
p
p

≍p
1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥(∑
j∈[n]

ℓ≥1

|R jℓ(E[n]\S f )|2
)1

2
∥∥∥∥p

p
+

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥(∑
j∈[n]

ℓ≥1

|R jℓ((E[n]\S f )∗)|2
)1

2
∥∥∥∥p

p
=: A + B,

where R jℓ := Ru jℓ and {u jℓ : j ∈ [n], ℓ≥ 1} is the orthonormal basis of H considered before the statement
of Theorem A. Since β(BS)⊂HS, we observe that ⟨β(g), u jℓ⟩ψ = 0 whenever g ∈ BS and j /∈S. Moreover,
Fourier truncations commute with Riesz transforms — as both are Fourier multipliers — and we deduce

R jℓ ◦E[n]\S = 1S( j) E[n]\S ◦ R jℓ.

Using the complete L p-boundedness of our Fourier truncations, we get

A ≲p
1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥(∑
j∈S

[∑
ℓ≥1

|R jℓ f |
2
])1

2
∥∥∥∥p

p
≲p

1(n
k

) ∑
S⊆[n]

|S|=k

E

∥∥∥∥∑
j∈S

εj

[∑
ℓ≥1

|R jℓ f |
2
] 1

2
∥∥∥∥p

p
=: A′.

The last inequality follows from either the scalar (if G is abelian) or the noncommutative Khintchine
inequality [15] otherwise, applied to independent equidistributed signs εj = ±1. Next, we use the
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Banach Xp nature of either commutative or noncommutative L p-spaces. More precisely, applying
Theorem 1.2 we get

A′ ≲p
k
n

n∑
j=1

∥∥∥∥(∑
ℓ≥1

|R jℓ f |
2
)1

2
∥∥∥∥p

p
+

(
k
n

)p
2

E

∥∥∥∥ n∑
j=1

εj

[∑
ℓ≥1

|R jℓ f |
2
] 1

2
∥∥∥∥p

p
= A′

1 + A′

2.

Since R jℓ = ∂u jℓ1
−1/2

=1−1/2∂u jℓ , [7, Proposition 1.1.5] yields

A′

1 =
k
n

n∑
j=1

∥∥∥∥∑
ℓ≥1

R jℓ f ⊗ eℓ,1

∥∥∥∥p

Sp[L p(L(G))]
≲p,σ

k
n

n∑
j=1

∥∥∥∥∑
ℓ≥1

∂u jℓ f ⊗ eℓ,1

∥∥∥∥p

Sp[L p(L(G))]
=

k
n

n∑
j=1

∥Dj ( f )∥p
p.

Moreover, the Khintchine inequality and Theorem 1.1 give

A′

2 ≲p

(
k
n

)p
2
∥∥∥∥( n∑

j=1

∑
ℓ≥1

|R jℓ f |
2
)1

2
∥∥∥∥p

p
≲p

(
k
n

)p
2

∥ f ∥
p
p.

Therefore, the term A satisfies the expected estimate and it remains to justify the assertion for B. We now
analyze the behavior of our Fourier truncations under adjoints. Observe that

(E[n]\S f )∗ =

∑
g∈BS

f̂ (g)λ(g−1)=: E′

[n]\S( f ∗).

In particular, since E′

[n]\S commutes with R jℓ

R jℓ((E[n]\S f )∗)= E′

[n]\S(R jℓ( f ∗))= E[n]\S(R jℓ( f ∗)∗)∗.

This is the point where we need the condition β(B−1
S )⊂ HS, to make sure that the above terms vanish

when j /∈ S since we find the inner products ⟨β(g−1), u jℓ⟩ψ for g ∈ BS. Thus, we obtain∥∥∥∥(∑
j∈[n]

ℓ≥1

|R jℓ((E[n]\S f )∗)|2
)1

2
∥∥∥∥

p
=

∥∥∥∥∑
j∈[n]

∑
ℓ≥1

E[n]\S(R jℓ( f ∗)∗)⊗ e1,( j,ℓ)

∥∥∥∥
p

≲p

∥∥∥∥∑
j∈S

∑
ℓ≥1

R jℓ( f ∗)⊗ e( j,ℓ),1

∥∥∥∥
p
=

∥∥∥∥(∑
j∈S

∑
ℓ≥1

|R jℓ( f ∗)|2
)1

2
∥∥∥∥

p
.

Therefore, we may follow the above argument for A just replacing f by f ∗. □

Remark 1.4. A careful reading of the proof of Theorems A and B shows that we may use different Hilbert
space decompositions H = ⊕jHj = ⊕jKj for BS and its inverse — with β(BS)⊂ HS and β(B−1

S )⊂ KS —
as long as we can find an orthonormal basis {uℓ : ℓ≥ 1} of H satisfying that

for all ℓ≥ 1 there exists j1, j2 ∈ [n] such that uℓ ∈ H j1 ∩K j2 . (1-2)

More precisely, under this more flexible assumption we get

1(n
k

) ∑
|S|=k

∥∥∥∥∑
g∈BS

f̂ (g)λ(g)
∥∥∥∥p

p
≲p,σ

k
n

n∑
j=1

[∥Dj ( f )∥p
p + ∥D†

j ( f ∗)∥p
p] +

(
k
n

)p
2

∥ f ∥
p
p,

where D†
j :=

∑
uℓ∈Kj

∂uℓ( · )⊗ eℓ1 is the gradient over the basis vectors living in Kj .
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Remark 1.5. The constant depending on σ in Theorem A grows as σ−p/2. One can also track the depen-
dence on p of the constant. Using free generators in place of random signs — Theorem 1.2 holds as well —
we keep constants uniformly bounded replacing noncommutative by free Khintchine inequalities [4]. The
constants in Theorem 1.1 are bounded by p3/2, but it is still open whether this is optimal.

1D. Proof of Theorem B. Again Theorem 1.1 gives

1(n
k

) ∑
S⊆[n]

|S|=k

∥E[n]\S f ∥
p
p ≍p A + B

as in the proof of Theorem A. Following our argument there, we use our estimate A ≲p A′

1 + A′

2 and we
bound A′

2 in the same way. To estimate A′

1 we use our distinguished family of derivatives and Theorem 1.1
to deduce

A′

1 =
k
n

n∑
j=1

∥∥∥∥(∑
ℓ≥1

|Ru jℓ∂j f |
2
)1

2
∥∥∥∥p

p
≲p

k
n

n∑
j=1

∥∂j f ∥
p
p.

The estimate for B then follows by the same considerations as in Theorem A. □

2. Applications to abelian groups

We now focus our attention on concrete realizations of Theorems A and B for certain commutative group
algebras. In all the cases in this section, we choose E[n]\S of the form

E[n]\S f =

∑
g∈BS

f̂ (g)λ(g) for some subgroup BS of G.

Due to that fact, we know that they are conditional expectations, and therefore completely contractive
maps. This allows us to safely apply Theorems A and B without checking that hypothesis. We will give
the details for the cases G = Zn and G = Zn

2m , yielding inequalities in L p(T
n) and L p(Z

n
2m), respectively.

In this section, we must change to additive notation in our groups given their natural operations (and we
reserve the product notation for the usual product of integer/real numbers). The necessary adjustments
for the hypercube are discussed at the end of the section.

2A. Classical tori. Define
ψ1(g)= |g1| + · · · + |gn|,

ψ2(g)= g2
1 + g2

2 + · · · + g2
n,

with g = (g1, g2, . . . , gn) ∈ Zn. Both functions are symmetric and vanish at 0. Moreover, conditional
negativity follows easily. In the case of ψ1, it suffices to check it for each summand |gj | which is
conditionally negative from subordination with respect to g2

j . These functions are denoted as the word
and the Euclidean length respectively. We analyze balanced Fourier truncations using both geometries.

(A) The Euclidean length. The length ψ2 induces the standard cocycle (H, α, β), where H = Rn with the
usual Euclidean inner product, the trivial action and the canonical inclusion β = id. We use the standard
decomposition H =

⊕
j Hj , with Hj = Rej the subspace generated by the j-th element of the canonical
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basis. Therefore, given S ⊂ [n], denote by ZS the subgroup of elements with vanishing entries outside S

and consider the truncations

E[n]\S f (x)=

∑
g∈ZS

f̂ (g)e2π i⟨x,g⟩ for any f ∈ L p(T
n)≃ L p(L(Zn)),

where e2π i⟨ · ,g⟩
7→ λ(g) defines a trace-preserving ∗-homomorphism. The cocycle derivatives correspond

in this case |up to a multiplicative constant — to the classical derivatives (∂/∂x j ), and the infinitesimal
generator1 is the usual Laplacian (up to a universal constant) with spectral gap 1. Then, Theorem A yields

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥∑
g∈ZS

f̂ (g)e2π i⟨ · ,g⟩

∥∥∥∥p

L p(Tn)

≲p
k
n

n∑
j=1

∥∥∥∥ ∂

∂x j
f
∥∥∥∥p

L p(Tn)

+

(
k
n

)p
2

∥ f ∥
p
L p(Tn) (2-1)

for any mean-zero f ∈ L p(T
n). This seems to be the most natural generalization of Naor’s inequality for

classical tori, but it is not the most efficient. Indeed, using the same Hilbert space decomposition as above,
one can consider the alternative absorbent derivatives ∂jλ(g)= δgj ̸=0λ(g). In particular Theorem B yields

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥∑
g∈ZS

f̂ (g)e2π i⟨ · ,g⟩

∥∥∥∥p

L p(Tn)

≲p
k
n

n∑
j=1

∥∂j f ∥
p
L p(Tn) +

(
k
n

)p
2

∥ f ∥
p
L p(Tn), (2-2)

where, abusing notation, we define ∂j e2π i⟨ · ,g⟩
= δgj ̸=0e2π i⟨ · ,g⟩. This is a stronger inequality since

∥∂j f ∥L p(Tn) =
1

2π

∥∥∥∥∑
gj ̸=0

1
gj

(
∂

∂x j
f
)∧

(g)e2π i⟨ · ,g⟩

∥∥∥∥
L p(Tn)

≤ C p

∥∥∥∥ ∂

∂x j
f
∥∥∥∥

L p(Tn)

.

Indeed, the symbol m(g)= 1/gj defines an L p-bounded multiplier as a consequence of the K. de Leeuw
restriction theorem and the Hörmander–Mikhlin multiplier theorem [5; 14; 18]. As we shall see (2-2)
naturally appears using the word length.

Remark 2.1. Consider f : Tn
→ C with

f (x)=

∑
g∈Zn

f̂ (g)e2π i⟨x,g⟩ and f̂ (0)= 0.

Given S ⊂ [n], the classical Poincaré inequality gives

1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥ ∑
g∈ZS\{0}

f̂ (g)e2π i⟨ · ,g⟩

︸ ︷︷ ︸
fS

∥∥∥∥p

p
≤

1(n
k

) ∑
S⊂[n]

|S|=k

∥|∇ fS|∥p
p ≍

1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥∑
j∈S

εj
∂

∂x j
fS

∥∥∥∥p

p

=
1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥[∑
j∈S

εj
∂

∂x j
f
]
S

∥∥∥∥p

p

≤
1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥∑
j∈S

εj
∂

∂x j
f
∥∥∥∥p

p
=

∥∥∥∥ n∑
j=1

σj
∂

∂x j
f
∥∥∥∥p

p
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for σj (ε, S)= εj ⊗ 1S( j) as in the Introduction. Applying [6] gives

1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥∑
g∈ZS

f̂ (g)e2π i⟨ · ,g⟩

∥∥∥∥p

p
≲p

k
n

n∑
j=1

∥∥∥∥ ∂

∂x j
f
∥∥∥∥p

p
+

(
k
n

)p
2

∥|∇ f |∥
p
p.

Inequalities (2-1) and (2-2) improve the above inequality replacing |∇ f | by f .

(B) The word length. Let us now study which inequality do we get with the word length. The cocycle
associated to it is infinite-dimensional, with an orthonormal basis which can be described as oriented edges
in the coordinate axes of the Cayley graph of Zn. More precisely, the associated Gromov form on D[Zn

] is

⟨1{g}, 1{h}⟩ψ1 =
1
2(ψ1(g)+ψ1(h)−ψ1(h − g))=

n∑
j=1

min{|h j |, |gj |}δgj ·h j>0.

Given g ∈ Zn and j ∈ [n], define

g−

[ j] = g − sgn(gj )ej , with sgn(0)= 0.

Then, we may construct the following elements in D[Zn
]:

wg, j = 1{g} − 1
{g−

[ j]}
and u j (ℓ)= wℓej , j .

Below, it is convenient to keep in mind that u j (ℓ)= 1{ℓej } − 1{(ℓ−sgn(ℓ))ej }. If Hψ1 = D[Zn
]/Ker⟨ · , · ⟩ψ1 ,

the following properties define an orthonormal basis:

• ⟨u j (ℓ), u j (ℓ)⟩ψ1 = 1 for all ( j, ℓ) ∈ [n] × Z\{0}.

• ⟨u j (ℓ), u j ′(ℓ′)⟩ψ1 = 0 whenever j ̸= j ′ or ℓ ̸= ℓ′.

• wg, j = u j (ℓ) if gj = ℓej , since the difference belongs to Ker⟨ · , · ⟩ψ1 .

Altogether, this implies that the image in Hψ1 of the set

{u j (ℓ) : ( j, ℓ) ∈ [n] × Z \ {0}}

is an orthonormal basis for Hψ1 . We shall identify 1{g} and u j (ℓ) with their image in the quotient. The
cocycle map is given by β(g)= 1{g} and the orthogonal action α satisfies αg(1{h})= 1{g+h} − 1{g}. This
means that for any g ∈ Zn we have

αg(u j (ℓ))= 1{g+ℓej } − 1{g+ℓej −(sgn(ℓ))ej }.

Therefore, the subspaces Hψ1, j = span{u j (ℓ) : ℓ ∈ Z \ {0}} are α-invariant for j ∈ [n]. This proves that
the same conditional expectations E[n]\S considered before still define an admissible family of Fourier
truncations. The cocycle derivative associated to u j (ℓ) acts as follows:

∂u j (ℓ)λ(g)= ⟨u j (ℓ), 1{g}⟩ψ1λ(g)

= (min{|gj |, |ℓ|}δgj ·ℓ>0 − min{|gj |, |ℓ| − 1}δgj ·(ℓ−sgn(ℓ))>0)λ(g)

= δ{gj ·ℓ>0,|gj |≥|ℓ|}λ(g).
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The Laplacian is
1ψ1 f =

∑
g∈Zn

ψ1(g) f̂ (g)λ(g),

whose spectral gap is still σ = minj ψ1(ej )= 1. Theorem A yields

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥∑
g∈ZS

f̂ (g)e2π i⟨ · ,g⟩

∥∥∥∥p

L p(Tn)

≲p
k
n

n∑
j=1

∥|Dj f |∥
p
L p(Tn) +

(
k
n

)p
2

∥ f ∥
p
L p(Tn), (2-3)

with

∥|Dj ( f )|∥L p(Tn) = ∥|Dj ( f ∗)|∥L p(Tn) =

∥∥∥∥( ∑
ℓ∈Z\{0}

|∂u j (ℓ) f |
2
)1

2
∥∥∥∥

L p(Tn)

.

Remark 2.2. Note that |∂u j (ℓ)( f )| ̸= |∂u j (ℓ)( f ∗)|. Thus, nontrivial cocycle actions lead to noncommutative
phenomena even when working with abelian groups, as pointed out in [13]. In spite of that, observe that
⟨1{−g}, u j (ℓ)⟩ψ = ⟨1{g}, u j (−ℓ)⟩ψ , which implies ∥|Dj ( f )|∥p = ∥|Dj ( f ∗)|∥p as claimed above.

On the other hand, taking

∂jλ(g) := ∂u j (1)λ(g)+ ∂u j (−1)λ(g)= δgj ̸=0λ(g),

we get ∂u j (ℓ) ◦ ∂j = ∂u j (ℓ) for any ( j, ℓ) ∈ [n] × Z\{0}. Thus, Theorem B gives

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥∑
g∈ZS

f̂ (g)e2π i⟨ · ,g⟩

∥∥∥∥p

L p(Tn)

≲p
k
n

n∑
j=1

∥∂j f ∥
p
L p(Tn) +

(
k
n

)p
2

∥ f ∥
p
L p(Tn)

for any mean-zero f ∈ L p(T
n). Here, ∂j is the same as in (A), and so this recovers inequality (2-2) and

improves (2-3). Note that above, both ∂u j (ℓ) and ∂j are {0, 1}-valued multipliers.

2B. Discrete tori. Consider the word length |g| = min{g, 2m − g} in Z2m = Ẑ2m . Therefore, for us
Z2m = {0, 1, . . . , 2m − 1}. As shown in [12], | · | defines a conditionally negative symmetric length. In
particular the same holds for the corresponding length in the product Zn

2m

ψ(g)= |g1| + |g2| + · · · + |gn| for g = (g1, . . . , gn) ∈ Zn
2m .

This word length has many similarities with the previous one

⟨1{g}, 1{h}⟩ψ =
1
2
(ψ(g)+ψ(h)−ψ(h − g))=

1
2

n∑
j=1

|gj | + |h j | − |h j − gj |.

Given g ∈ Zn
2m and j ∈ [n], define

wg, j = 1{g} − 1{g−ej } and u j (ℓ)= wℓej , j for 1 ≤ ℓ≤ 2m.

If Hψ = D[Zn
2m]/Ker⟨ · , · ⟩ψ , we find that:

• ⟨u j (ℓ), u j (ℓ)⟩ψ = 1 for all ( j, ℓ) ∈ [n] × [m].

• ⟨u j (ℓ), u j ′(ℓ′)⟩ψ = 0 whenever j ̸= j ′ or ℓ ̸= ℓ′, ℓ′ + m.
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• wg, j = u j (ℓ) if gj = ℓej since the difference belongs to Ker⟨ · , · ⟩ψ .

• u j (ℓ)= −u j (ℓ+ m) since the difference belongs to Ker⟨ · , · ⟩ψ .

• ⟨1{ℓej }, 1{ℓ′ej }⟩ψ = min{ℓ, 2m − ℓ′,max{0,m − ℓ′ + ℓ}} for 1 ≤ ℓ≤ ℓ′ ≤ 2m.

Altogether, this implies that the set

{u j (ℓ) : ( j, ℓ) ∈ [n] × [m]}

is an orthonormal basis for Hψ . The cocycle map is given by β(g)= 1{g}, by which we mean again that
β(g) is the image of 1{g} in the quotient, and the orthogonal action α satisfies αg(1{h})= 1{g+h} − 1{g}.
This means that for any g ∈ Zn

2m we have

αg(u j (ℓ))= 1{g+ℓej } − 1{g+(ℓ−1)ej }.

Therefore, the subspaces Hψ, j = span{u j (ℓ) : ℓ ∈ [m]} give again an α-invariant splitting of Hψ with
j running over [n]. In particular, the conditional expectations E[n]\S over the subgroups ZS

2m define an
admissible family of Fourier truncations and the cocycle derivatives are given by

∂u j (ℓ)λ(g)= δ{ℓ≤gj<ℓ+m}λ(g).

The associated Laplacian has spectral gap equal to 1. As before, Theorem A yields a statement that
we omit because it can readily be improved. If we set as before ∂jλ(g) := δgj ̸=0λ(g) for j ∈ [n], we
immediately see that ∂u j (ℓ) ◦ ∂j = ∂u j (ℓ). Moreover, we can rewrite it as

∂jλ(g)= ∂u j (1)λ(g)+ ∂u j (m)λ(g)− δgj =mλ(g).

Next, note that we may write the last term as

δgj =mλ(g)= E{0,m}, j (∂u j (1)λ(g))=
1
2E{0,m}, j (∂u j (1)λ(g)+ ∂u j (m)λ(g)),

where E{0,m}, j is the conditional expectation onto Z
j−1
2m ×{0,m}× Z

n− j
2m . Then, after applying Theorem B

one gets the following for mean-zero f : Zn
2m → C:

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥ ∑
g∈ZS

2m

f̂ (g)e
π i
m ⟨ · ,g⟩

∥∥∥∥p

L p(Z
n
2m)

≲p
k
n

n∑
j=1

∥∂j f ∥
p
L p(Z

n
2m)

+

(
k
n

)p
2

∥ f ∥
p
L p(Z

n
2m)

≲
k
n

n∑
j=1

∥(∂u j (1) + ∂u j (m)) f ∥
p
L p(Z

n
2m)

+

(
k
n

)p
2

∥ f ∥
p
L p(Z

n
2m)
. (2-4)

As before, both derivatives ∂u j (ℓ) and ∂j turn out to be {0, 1}-valued multipliers.

Remark 2.3. It is natural to ask if the situation changes much when the cyclic groups under consideration
have odd cardinal. The function ψ(g)=

∑n
j=1 |gj |, with |gj | = min{gj , 2m + 1 − gj }, is a conditionally



TRIGONOMETRIC CHAOS AND Xp INEQUALITIES, I 2577

negative length on Zn
2m+1, and so there exists an associated cocycle induced by the Gromov form

⟨1{g}, 1{h}⟩ =
1
2(ψ(g)+ψ(h)−ψ(g − h))

=

n∑
j=1

min
{
gj , 2m + 1 − h j ,max

{
0,m − h j + gj +

1
2

}}
.

It defines a cocycle Hilbert space Hψ with dimension 2mn. Theorems A and B apply but calculating an
explicit expression for the orthonormal basis of Hψ is more tedious and we shall leave it to the interested
reader.

We end this subsection with a few comments on the case m = 1 of the above construction.

Remark 2.4. Inequality (2-4) for G = Zn
2m with m = 1 recovers Naor’s inequality (Np) for the hypercube.

Indeed, specializing the above computations in this case means that we take H = D[Zn
2]/Ker⟨ · , · ⟩ψ and

consider the trivial cocycle β0 given by {0, 1}
n

∋ g 7→ 1{g}, with the action

α0,g(ξ)= ((−1)g1ξ1, (−1)g2ξ2, . . . , (−1)gnξn).

With this construction, given L p(Z
n
2)∋ f =

∑
g∈Zn

2
f̂ (g) exp(π i⟨ · , g⟩), ∂1

j = 2∂2
j , where ∂1

j is the discrete
derivative used by Naor and ∂2

j is our choice of ∂j in (2-4) for m = 1.

Remark 2.5. One can also recover (Np) from Theorem A using multiplicative notation directly. This
however requires us to employ a nontrivial cocycle that we next describe. Set G =�n , e = (1, . . . , 1),
and define the cocycle β1 : G → Rn by G ∋ h 7→ e − h (the sum is the usual one in Rn). This satisfies the
cocycle law with respect to the — nontrivial — action

α1,h(ξ)= (h1ξ1, . . . , hnξn), ξ ∈ Rn.

One can see that if g ∈ Zn
2 is identified in the natural way with

h(g) := (exp(π ig1), . . . , exp(π ig1)) ∈�n,

then

β1(h(g))= 2β0(g).

Therefore, the cocycle derivatives are the same, up to a constant and modulo identification of characters,
and the application of Theorem A yields the same inequality in both cases.

Remark 2.6. We can consider weighted forms of Naor’s inequality by considering different measures on
the same group �n to get different cocycle representations. One could hope to get an improvement over
the result in [19] in this way, but we next show that this is not the case. We borrow the aforementioned
cocycle representations from the construction in Example B in [13, Section 1.4], that we use as follows:
Let G = {−1, 1}

n and equip 0 = Ĝ = {−1, 1}
n with the measure

µ=

n∑
j=1

αj 1{wj },
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with αj ≥ 0 and wj = (1, . . . , 1,−1, 1, . . . , 1) (change the sign in the j-th coordinate only) for j ∈ [n].
Viewing 0 as the power set of [n], we identify wj with { j}. We consider the conditionally negative length
function

ψ(A) := ∥1 − WA∥
2
L2(0,µ)

.

Then ψ may be represented by the cocycle (Hψ , α, β), with

Hψ = L2(0, µ), αA(u)= WA · u, β(A)= 1 − WA.

The map β is indeed a cocycle. Then {u j = α
−1/2
j 1{ j} : j ∈ [n]} is an orthonormal basis, and the cocycle

derivatives are given by

∂u j WA =
1

√
αj

⟨β(A), 1{ j}⟩ψWA = 2
√
αj 1A( j)WA =

√
αj∂j WA,

where ∂j denotes the j-th discrete derivative. Riesz transforms take the form

Ru j f =

∑
A⊂[n]

⟨β(A), 1{ j}⟩ψ√
αjψ(A)

f̂ (A)WA =

∑
A⊂[n]

j∈A

√
αj√∑
ℓ∈A αℓ

f̂ (A)WA.

Consider the decomposition Hψ, j = R1{ j}. Note αA(1{ j})= WA1{ j} = (−1)1A( j)1{ j}, so αA(Hψ, j )⊂Hψ, j

and the decomposition is equivariant. Therefore, the associated conditional expectation can be chosen to be

E[n]\S f =

∑
β(A)∈HS

f̂ (A)WA =

∑
A⊂S

f̂ (A)WA.

Then, Theorem A yields

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥∑
A⊂S

f̂ (A)WA

∥∥∥∥p

L p(�n)

≲
1
σ p/2

k
n

n∑
j=1

α
p
2
j ∥∂j f ∥

p
L p(�n) +

(
k
n

)p
2

∥ f ∥
p
L p(�n)

=
k
n

n∑
j=1

(
αj

mink∈[n] αk

)p
2

∥∂j f ∥
p
L p(�n) +

(
k
n

)p
2

∥ f ∥
p
L p(�n),

since σ = mink∈[n] ψ({k})= 4 mink∈[n] αk . Thus taking αj = 1 for all j , which corresponds to (Np), is
the optimal choice.

3. Applications to free products

We now explore applications of Theorem B after replacing the direct products in the previous section by
free products. Given a free product G = G1 ∗ G2 ∗ · · · ∗ Gn a general element g ∈ G can always be written
in reduced form g = gi1 gi2 · · · gis where gik ∈ Gik and i1 ̸= i2 ̸= · · · ̸= is . We shall be working with the
free group Fn = Z ∗ Z ∗ · · · ∗ Z and with the free product Z∗n

2m of n copies of Z2m . In both cases we shall
write e1, e2, . . . , en for the canonical generators and a generic element will be a word of the form

w = eℓ1
i1

eℓ2
i2

· · · eℓs
is
,

with i1 ̸= i2 ̸= · · · ̸= is and ℓk in Z or Z2m accordingly.
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3A. The free group. Define

|w| =

r∑
j=1

|ℓj | for w = eℓ1
i1

· · · eℓr
ir
.

Haagerup proved in [3] that it is conditionally negative. The cocycle structure naturally induced by the
word length | · | can be described through the Hilbert space orthonormaly generated by outgoing oriented
edges in its Cayley graph. To be more precise, let us consider the following partial order on Fn . Given
w1 = eℓ1

i1
· · · eℓr

ir
and w2 = et1

j1 · · · ets
js , with ℓj , tj ∈ Z \ {0}, we say that w1 ≤ w2 when

• r ≤ s,

• eℓk
ik

= etk
jk for 1 ≤ k ≤ r − 1,

• eir = e jr , ℓr tr > 0 and |ℓr | ≤ |tr |.

Any w1 ≤w2 is called an initial subchain of w2. As we did with elements of cyclic groups equipped with
their natural order structure, we can now define predecessors. If w = eℓ1

i1
· · · eℓr

ir
̸= e, we define

w−
= eℓ1

i1
· · · eℓr −sgn(ℓr )

ir
.

The Gromov form takes the following form in this case:

⟨1{w1}, 1{w2}⟩| · | =
1
2(|w1| + |w2| − |w−1

1 w2|)= |min{w1, w2}|,

where min{w1, w2} denotes the longest word which is an initial chain of both w1 and w2. Given w ̸= e
in Fn , we define uw = 1{w} −1{w−} ∈ D[Fn]. Very much like in the previous section, we find the following
properties:

• Ker(⟨ · , · ⟩| · |)= R1{e}.

• ⟨uw, uw⟩| · | = 1 for w ∈ Fn \ {e}.

• ⟨uw1, uw2⟩| · | = 0 for w1 ̸= w2 in Fn .

This proves that
{uw : w ∈ Fn \ {e}}

is an orthonormal basis of H| · | = D[Fn]/R1{e}. The cocycle map and the cocycle action are determined
as usual by β(w)= 1{w} and αw(1{w′})= 1{ww′} − 1{w}.The cocycle derivative in the direction of uw is

∂uwλ(w
′)= ⟨β(w′), uw⟩λ(w′)= δw≤w′λ(w′) =⇒ ∂uw f =

∑
w≤w′

f̂ (w′)λ(w′).

Next, we decompose H| · | as

H| · | =

n⊕
j=1

H| · |, j , with H| · |, j = span{uw : ej ≤ w or e−1
j ≤ w}.

This leads to consider the Fourier truncations

E[n]\S f :=

∑
w∈FS

f̂ (w)λ(w).
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Being conditional expectations, these Fourier truncations are completely contractive and pairwise β-
orthogonality holds since we trivially have β(FS)= β(F−1

S )⊂ H| · |,S. Define A{ j} ⊂ Fn to be the set of
reduced words that start with eℓj for some ℓ ∈ Z \ {0}, so that H| · |, j = span{uw : w ∈ A{ j}}. Taking the
derivatives

∂j := ∂uej
+ ∂u

e−1
j

for j ∈ [n],

we can readily check that ∂uw ◦ ∂ j = ∂uw whenever uw ∈ H| · |, j , so that ∂j is the projection onto words
in A{ j}. In conclusion, we have checked all the hypotheses to apply Theorem B for our family of Fourier
truncations. In this case we get

1(n
k

) ∑
S⊂[n]

|S|=k

∥∥∥∥ ∑
w∈FS

f̂ (w)λ(w)
∥∥∥∥p

p
≲p

k
n

n∑
j=1

[∥∂j ( f )∥p
p + ∥∂j ( f ∗)∥p

p] +

(
k
n

)p
2

∥ f ∥
p
p. (3-1)

Inequality (3-1) is very close to the conjectured free form of Naor’s inequality (FNp) in the Introduction,
with an extra adjoint term which we shall eliminate at the end of the paper by proving an even stronger
inequality.

3B. The free product Z∗n
2m. A similar analysis applies as well in this case. Given two reduced words

w1 = eℓ1
i1

· · · eℓr
ir

and w2 = et1
j1 · · · ets

js , with ℓj , tj ∈ [2m − 1], we say that w1 ≤ w2 if and only if

• r ≤ s,

• ik = jk for any k ∈ [r ] and ℓk = tk for any k ∈ [r − 1],

• either ℓr , tr ∈ [m] and ir ≤ jr , or ir , jr ∈ [2m − 1] \ [m − 1] and ir ≥ jr .

The map ψ : Z∗n
2m → R+ given by

w = eℓ1
i1

· · · eℓr
ir

7→ ψ(w)=

r∑
k=1

|eℓj
i j

| =

r∑
k=1

min{ℓk, 2m − ℓk}

is a conditionally negative length function [3], with associated Gromov form

⟨1{w1}, 1{w2}⟩ψ =
1
2(ψ(w1)+ψ(w2)−ψ(w

−1
1 w2))

= ψ(min{w1, w2})+
1
2(ψ(η1)+ψ(η2)−ψ(η

−1
1 η2)), (3-2)

where min{w1, w2} is again the longest common subchain and wj = min{w1, w2}ηj for j = 1, 2. The
second term above is always 0 in the free group Fn , but not necessarily in this case. Givenw=eℓ1

i1
· · · eℓr

ir
̸=e

we define w−
= eℓ1

i1
· · · eℓr −1

ir
and construct uw = 1{w} − 1{w−} as usual. Then, we find that:

• ⟨uw, uw⟩ψ = 1 for every w ∈ Z∗n
2m \ {e}.

• ⟨uw1, uw2⟩ψ = 0 when e ̸= w−1
1 w2 ̸= em

j for j ∈ [n].

• ⟨uw1, uw2⟩ψ = 0 when w−1
1 w2 = em

j and both w1, w2 end with e±1
j .

• If w = eℓ1
i1

· · · eℓr
ir

, then uw = −uwem
ir

in Hψ = D[Z∗n
2m]/Ker⟨ · , · ⟩ψ .
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This proves that
{uw : w = eℓ1

i1
· · · eℓr

ir
∈ Z∗n

2m \ {e} with ℓr ∈ [m]}

is an orthonormal basis of Hψ = D[Z∗n
2m]/Ker⟨ · , · ⟩ψ . We set as usual β(w) = 1{w} and αw(1{w′}) =

1{ww′} − 1{w}. Among the above properties it is perhaps convenient to justify the last one. Note that
⟨uw + uwem

ir
, uw + uwem

ir
⟩ψ = 0 if and only if ⟨uw, uwem

ir
⟩ψ = −1 but we have

⟨uw, uwem
ir
⟩ψ =

1
2(−ψ(e

m
ir
)+ψ((w−)−1wem

ir
)+ψ(em−1

ir
)−ψ((w−)−1wem−1

ir
))

=
1
2(−ψ(e

m
ir
)+ψ(em+1

ir
)+ψ(em−1

ir
)−ψ(em

ir
))

=
1
2(−m + m − 1 + m − 1 − m)= −1.

If w = eℓ1
i1

· · · eℓr
ir

with ℓr ∈ [m], derivatives are given by

∂uwλ(w
′)= ⟨β(w′), uw⟩ψλ(w

′)= δw′∈W (w)λ(w
′), (3-3)

where W (w) is the set of those words w′
= et1

j1 · · · ets
js satisfying

r ≤ s, ik = jk for k ≤ r, ℓk = tk for k ≤ r − 1 and ℓr ≤ tr ≤ ℓr + m − 1. (3-4)

Indeed, just write β(w′)= 1{w′} = uw′ + 1{w′−} = uw′ + uw′− + 1{w′−−
} and so on. The inner product with

uw will be 0 unless we find uw in our telescopic sum above just once, in which case we get the value 1.
Note that it could appear twice due to the identity uw = −uwem

ir
recalled above. In that case, they get

mutually canceled and we get 0. This happens when tr − ℓr ∈ [2m − 1] \ [m − 1].
It remains to consider Fourier truncations. As for the free group, our choice is the conditional expectation

into the subgroup Z∗S
2m = ⟨e j : j ∈ S⟩, which is the free group generated by ej for j ∈ S. Then we consider

the decomposition

Hψ =

n⊕
j=1

Hψ, j , with Hψ, j = span{uw : ej ≤ w or e−1
j ≤ w}.

Our Fourier truncations form an admissible family. Define

∂jλ(w)= ∂uej
λ(w)+ ∂uem

j
λ(w)− δ

e
ℓ1
i1

=em
j
λ(w) for any w = eℓ1

i1
· · · eℓr

ir
.

In other words, ∂jλ(w)= δi1= jλ(w) for w ̸= e and ∂uw ◦ ∂ j = ∂uw for uw ∈ Hψ, j . The construction above
yields the form of Theorem B on the von Neumann algebra of the free product Z∗n

2m

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥ ∑
w∈Z∗S

2m

f̂ (w)λ(w)
∥∥∥∥p

p
≲p

k
n

n∑
j=1

∥∂j ( f )∥p
p + ∥∂j ( f ∗)∥p

p +

(
k
n

)p
2

∥ f ∥
p
p.

3C. Free Hilbert transforms. Compared to (FNp), the form of Theorem B for free groups gives the
additional terms ∂j ( f ∗). These terms seem to be necessary in the general context of Theorem B, but they
are removable for free groups — in fact, we shall prove an even stronger inequality — due to a singular
behavior of word-length derivatives for free groups. Said behavior means in particular that word-length
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derivatives can be regarded as free forms of directional Hilbert transforms, which were recently investigated
by Mei and Ricard in [17]. The free Hilbert transforms for mean-zero f are defined as

Hε( f )=

n∑
j=1

εj∂j ( f ) for εj = ±1.

Mei and Ricard proved in [17] the crucial inequality

∥Hε f ∥L p(L(Fn)) ≍p ∥ f ∥L p(L(Fn)) for any 1< p <∞. (3-5)

Define

AS =

⋃
j∈S

A{ j}.

Theorem 3.1. If p ≥ 2 and k ∈ [n], every mean-zero f ∈ L p(L(Fn)) satisfies

1(n
k

) ∑
S⊆[n]

|S|=k

∥∥∥∥ ∑
w∈AS

f̂ (w)λ(w)
∥∥∥∥p

L p(L(Fn))

≲p
k
n

n∑
j=1

∥∂j ( f )∥p
L p(L(Fn))

+

(
k
n

)p
2

∥ f ∥
p
L p(L(Fn))

.

Proof. Define

h =

∑
w∈AS

f̂ (w)λ(w)=

∑
j∈S

∑
w∈A{ j}

f̂ (w)λ(w)=

∑
j∈S

∂j ( f ).

Applying inequality (3-5) we obtain

∥h∥p ≍p E∥Hε(h)∥p = E

∥∥∥∥∑
j∈S

εj∂j ( f )
∥∥∥∥

p
.

The result follows from Theorem 1.2 and another application of (3-5) for f . □

Corollary 3.2. Inequality (FNp) holds for p ≥ 2 and any mean-zero f ∈ L p(L(Fn)).

Proof. It follows from Theorem 3.1 and the boundedness of the conditional expectation from L(Fn)

to L(FS) ∥∥∥∥ ∑
w∈FS

f̂ (w)λ(w)
∥∥∥∥

p
=

∥∥∥∥ ∑
w∈FS

ĥ(w)λ(w)
∥∥∥∥

p
≤ ∥h∥p =

∥∥∥∥ ∑
w∈AS

f̂ (w)λ(w)
∥∥∥∥

p
,

where h is defined as in the proof of Theorem 3.1, since we note that FS ⊂ AS. □

Remark 3.3. It is conceivable that Theorem 3.1 or at least Corollary 3.2 could have been proved as well
from a generalized form of Theorem B in the line of Remark 1.4, but we have not found an argument
using such an approach.

Remark 3.4. Hilbert transforms can also be constructed on L(Z∗n
2m). They are L p-bounded maps as well

there, as shown in [17, Theorem 3.5]. Therefore, Theorem 3.1 can also be proved with this technique
replacing Fn by Z∗n

2m in the statement.
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