Download this article
 Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 10 issues

Volume 17, 10 issues

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
A substitute for Kazhdan's property (T) for universal nonlattices

Narutaka Ozawa

Vol. 17 (2024), No. 7, 2541–2560
Abstract

The well-known theorem of Shalom–Vaserstein and Ershov–Jaikin-Zapirain states that the group EL n(), generated by elementary matrices over a finitely generated commutative ring , has Kazhdan’s property (T) as soon as n 3. This is no longer true if the ring is replaced by a commutative rng (a ring but without the identity) due to nilpotent quotients EL n(k). We prove that even in such a case the group EL n() satisfies a certain property that can substitute property (T), provided that n is large enough.

Keywords
Kazhdan's property (T), real group algebras, sum of hermitian squares
Mathematical Subject Classification
Primary: 22D10
Secondary: 22D15, 46L89
Milestones
Received: 14 September 2022
Accepted: 31 March 2023
Published: 21 August 2024
Authors
Narutaka Ozawa
Research Institute for Mathematical Sciences
Kyoto University
Kyoto
Japan

Open Access made possible by participating institutions via Subscribe to Open.