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DYNAMICAL TORSION FOR CONTACT ANOSOV FLOWS

YANN CHAUBET AND NGUYEN VIET DANG

We introduce a new object, the dynamical torsion, which extends the potentially ill-defined value at 0 of
the Ruelle zeta function of a contact Anosov flow, twisted by an acyclic representation of the fundamental
group. We show important properties of the dynamical torsion: it is invariant under deformations among
contact Anosov flows, it is holomorphic in the representation and it has the same logarithmic derivative
as some refined combinatorial torsion of Turaev. This shows that the ratio between this torsion and the
Turaev torsion is locally constant on the space of acyclic representations.

In particular, for contact Anosov flows path-connected to the geodesic flow of some hyperbolic
manifold among contact Anosov flows, we relate the leading term of the Laurent expansion of ζ at the
origin, the Reidemeister torsion and the torsions of the finite-dimensional complexes of the generalized
resonant states of both flows for the resonance 0. This extends previous work of Dang, Guillarmou,
Rivière and Shen (Invent. Math. 220:2 (2020), 525–579) on the Fried conjecture near geodesic flows of
hyperbolic 3-manifolds, to hyperbolic manifolds of any odd dimension.

1. Introduction

Let M be a closed odd-dimensional manifold and (E,∇) be a flat vector bundle over M. The parallel
transport of the connection ∇ induces a conjugacy class of representation ρ∈Hom(π1(M),GL(Cd)) (every
representation of the fundamental group can be obtained in this way; see Section 11.1). Moreover, ∇ defines
a differential on the complex �•(M, E) of E-valued differential forms on M and thus cohomology groups
H •(M,∇)= H •(M, ρ) (note that we use the notation ∇ also for the twisted differential induced by ∇,
whereas it can be denoted by d∇ in other references). We will say that ∇ (or ρ) is acyclic if those
cohomology groups are trivial.

If ρ is unitary (or equivalently, if there exists a hermitian structure on E preserved by ∇) and acyclic,
Reidemeister [1935] introduced a combinatorial invariant τR(ρ) of the pair (M, ρ), the so-called Franz–
Reidemeister torsion (or R-torsion), which is a positive number. This allowed him to classify lens spaces
in dimension 3; this result was then extended in higher dimensions by Franz [1935] and de Rham [1936].

On the analytic side, Ray and Singer [1971] introduced another invariant τRS(ρ), the analytic torsion,
defined via the derivative at 0 of the spectral zeta function of the Laplacian given by the Hermitian metric
on E and some Riemannian metric on M. They conjectured the equality of the analytic and Reidemeister
torsions. This conjecture was proved independently by Cheeger [1979] and Müller [1978], assuming
only that ρ is unitary (both R-torsion and analytic torsion have a natural extension if ρ is unitary and not
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acyclic). The Cheeger–Müller theorem was extended to unimodular flat vector bundles by Müller [1993]
and to arbitrary flat vector bundles by Bismut and Zhang [1992].

In the context of hyperbolic dynamical systems, Fried [1987] was interested in the link between the
R-torsion and the Ruelle zeta function of an Anosov flow X , which is defined by

ζX,ρ(s)=

∏
γ∈G#

X

det(1 − εγρ([γ ])e−sℓ(γ )), Re(s)≫ 0,

where G#
X is the set of primitive closed orbits of X , ℓ(γ ) is the period of γ and εγ = 1 if the stable bundle

of γ is orientable and εγ = −1 otherwise. Using Selberg’s trace formula, Fried could relate the behavior
of ζX,ρ(s) near s = 0 with τR, as follows.

Theorem 1 [Fried 1986]. Let M = SZ be the unit tangent bundle of some closed oriented hyperbolic
manifold Z , and denote by X its geodesic vector field on M. Assume that ρ : π1(M)→ O(d) is an acyclic
and unitary representation. Then ζX,ρ extends meromorphically to C. Moreover, it is holomorphic near
s = 0 and

|ζX,ρ(0)|(−1)q
= τR(ρ), (1-1)

where 2q + 1 = dim M and τR(ρ) is the Reidemeister torsion of (M, ρ).

Fried [1987] conjectured that the same holds true for negatively curved locally symmetric spaces. This
was proved by Moscovici and Stanton [1991] and Shen [2018].

For analytic Anosov flows, the meromorphic continuation of ζX,ρ was proved by Rugh [1996] in
dimension 3 and by Fried [1995] in higher dimensions. Then Sánchez-Morgado [1993; 1996] proved in
dimension 3 that if ρ is acyclic, unitary, and satisfies that ρ([γ ])− ε

j
γ is invertible for j ∈ {0, 1} for some

closed orbit γ , then (1-1) is true.
For general smooth Anosov flows, the meromorphic continuation of ζX,ρ was proved by Giuletti,

Liverani and Pollicott [Giulietti et al. 2013] and alternatively by Dyatlov and Zworski [2016]. The
Axiom A case was treated by Dyatlov and Guillarmou [2018]. Quoting the commentary from Zworski
[2018] on Smale’s seminal paper [1967], equation (1-1) “would link dynamical, spectral and topological
quantities. [. . . ] In the case of smooth manifolds of variable negative curvature, equation (1-1) remains
completely open”. However in [Dyatlov and Zworski 2017], the authors were able to prove the following.

Theorem 2 (Dyatlov–Zworski). Suppose (6, g) is a negatively curved orientable Riemannian surface.
Let X denote the associated geodesic vector field on the unitary cotangent bundle M = S∗6. Then, for
some c ̸= 0, we have as s → 0

ζX,1(s)= cs|χ(6)|(1 +O(s)), (1-2)

where 1 is the trivial representation π1(S∗6) → C∗ and χ(6) is the Euler characteristic of 6. In
particular, the length spectrum {ℓ(γ ) : γ ∈ G#

X } determines the genus.

This result was generalized in the recent preprint [Cekić and Paternain 2020] to volume-preserving
Anosov flows in dimension 3.

In the same spirit and using similar microlocal methods, Guillarmou, Rivière, Shen and the second
author [Dang et al. 2020] showed:
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Theorem 3 (Dang–Rivière–Guillarmou–Shen). Let ρ be an acyclic representation of π1(M). Then the map

X 7→ ζX,ρ(0)

is locally constant on the open set of smooth vector fields which are Anosov and for which 0 is not a Ruelle
resonance, that is, 0 /∈ Res(L∇

X ). If X preserves a smooth volume form and dim(M)= 3, (1-1) holds true
if b1(M) ̸= 0 or under the same assumption used in [Sánchez-Morgado 1996].

Let us comment on the notion of Ruelle resonance to explain the assumptions in the above theorem.
All recent works on the analytic continuation of the Ruelle zeta function are important by-products of
new functional methods to study hyperbolic flows. They rely on the construction of spaces of anisotropic
distributions adapted to the dynamics, initiated by Kitaev [1999], Blank, Keller and Liverani [Blank et al.
2002], Baladi [2005; 2018], Baladi and Tsujii [2007], Gouëzel and Liverani [2006], Liverani [2005],
Butterley and Liverani [2007; 2013], and many others, where we refer to the recent book [Baladi 2018]
for precise references. These spaces allow one to define a suitable notion of spectrum for the operator
L∇

X = ∇ιX +ιX∇, where ι is the interior product, acting on�•(M, E). This spectrum is the set of so-called
Pollicott–Ruelle resonances Res(L∇

X ), which forms a discrete subset of C and contains all zeros and poles
of ζX,ρ . Faure, Roy and Sjöstrand [Faure et al. 2008] and Faure and Sjöstrand [2011] initiated the use
of microlocal methods to describe these anisotropic spaces of distributions giving a purely microlocal
approach to study Ruelle resonances. This was further developed by Dyatlov and Zworski to study Ruelle
zeta functions.

However, if 0 ∈ Res(L∇

X ) then the results of [Dang et al. 2020] no longer apply since the zeta
function ζX,ρ might have a pole or zero at s = 0 (recall zeros and poles of ζX,ρ are contained in Res(L∇

X )).
One goal of this article is to remove the assumption that 0 is not a Ruelle resonance. In the spirit of
Theorem 2 and the Fried conjecture, we can state a theorem which follows from more general results of
the present paper (see Section 2).

Theorem 4. Let (Z , g0) be a compact hyperbolic manifold of dimension q and ρ be the lift to S∗Z of
some acyclic unitary representation π1(Z)→ GL(Cd). Then, for every metric g which is path-connected
to g0 in the space of negatively curved metrics, there exists m(g, ρ) ∈ Z such that

|ζXg,ρ(s)|
(−1)q

= |s|(−1)q m(g,ρ) τR(ρ)︸ ︷︷ ︸
R-torsion

∣∣∣∣τ(C •(Xg0, ρ))

τ (C •(Xg, ρ))

∣∣∣∣(1 +O(s)), (1-3)

where Xg denotes the geodesic vector field of g and τ(C •(Xg, ρ)) is the refined torsion of the finite-
dimensional space of resonant states for the resonance 0 of (Xg, ρ).

In the above statement, the vector field Xg generates a contact Anosov flow on the contact manifold
S∗

g Z = {(x, ξ) ∈ T ∗Z : |ξ |g = 1}.1 The finite-dimensional torsion τ(C •(Xg, ρ)) will be described in
Section 2 below.

1This means concretely that changing the metric g on Z affects both the contact form ϑ and Reeb field X on S∗Z .
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2. Main results

There are two restrictions in Theorem 3 of [Dang et al. 2020]. The first restriction is that

|ζX,ρ(0)|(−1)r
= τR(ρ)

is an equality of positive real numbers and the representation ρ is unitary. For arbitrary acyclic represen-
tations ρ : π1(M)→ GL(Cd), one could wonder if the phase of the complex number ζX,ρ(0) contains
topological information. For instance, if it can be compared with some complex-valued torsion defined
for general acyclic representations ρ : π1(M)→ GL(Cd). The second restriction concerns the assumption
that 0 is not a Ruelle resonance. Apart from the low-dimension cases studied in [Dang et al. 2020], this
assumption is particularly hard to control and is difficult to check for explicit examples.

Our goal in the present work is to partially overcome these two obstacles. In the case where X induces
a contact flow, which means that X = Xϑ is the Reeb vector field of some contact form ϑ on M, we deal
with these difficulties by introducing a dynamical torsion τϑ(ρ) which is a new object defined for any
acyclic ρ and which coincides with ζX,ρ(0)±1 if 0 /∈ Res(L∇

X ). Before stating our main results, let us
introduce the two main characters of our discussion in the next two subsections.

2.1. Refined versions of torsion. The Franz–Reidemeister torsion τR is given by the modulus of some
alternate product of determinants and is therefore real-valued. One cannot get a canonical object by
removing the modulus since one has to make some choices to define the combinatorial torsion, and the
ambiguities in these choices affect the alternate product of determinants. To remove indeterminacies
arising in the definition of the combinatorial torsion, Turaev [1986; 1989; 1997] introduced in the
acyclic case a refined version of the combinatorial R-torsion, the refined combinatorial torsion. It is a
complex number τe,o(ρ) which depends on additional combinatorial data, namely an Euler structure e and
a homology orientation o of M, and which satisfies |τe,o(ρ)| = τR(ρ) if ρ is acyclic and unitary. We refer
the reader to Section 9.2 for precise definitions. Later, Farber and Turaev [2000] extended this object
to nonacyclic representations. In this case, τe,o(ρ) is an element of the determinant line of cohomology
det H •(M, ρ).

Motivated by the work of Turaev, but from the analytic side, Braverman and Kappeler [2007b; 2007c;
2008] introduced a refined version of the Ray–Singer analytic torsion called refined analytic torsion
τan(ρ). It is complex-valued in the acyclic case. Their construction heavily relies on the existence of a
chirality operator 0g, that is,

0g :�•(M, E)→�n−•(M, E), 02
g = Id,

which is a renormalized version of the Hodge star operator associated with some metric g. They showed
that the ratio

ρ 7→
τan(ρ)

τe,o(ρ)

is a holomorphic function on the representation variety given by an explicit local expression, up to a
local constant of modulus 1. This result is an extension of the Cheeger–Müller theorem. Simultaneously,
Burghelea and Haller [2007] introduced a complex-valued analytic torsion, which is closely related to
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the refined analytic torsion [Braverman and Kappeler 2007a] when it is defined; see [Huang 2007] for
comparison theorems.

2.2. Dynamical torsion. We now assume that X = Xϑ is the Reeb vector field of some contact form ϑ

on M. Let us briefly describe the construction of the dynamical torsion. In the spirit of [Braverman and
Kappeler 2007c], we use a chirality operator associated with the contact form ϑ ,

0ϑ :�•(M, E)→�n−•(M, E), 02
ϑ = Id,

see Section 6, analogous to the usual Hodge star operator associated with a Riemannian metric. Let
C •

⊂ D ′•(M, E) be the finite-dimensional space of Pollicott–Ruelle generalized resonant states of L∇

X for
the resonance 0, that is,

C •
= {u ∈ D ′•(M, E) : WF(u)⊂ E∗

u , there exists N ∈ N such that (L∇

X )
N u = 0},

where WF is the Hörmander wavefront set, E∗
u ⊂ T ∗M is the unstable cobundle of X ,2 see Section 5,

and D′(M, E) denotes the space of E-valued currents. Then ∇ induces a differential on C • which makes
it a finite-dimensional cochain complex. Then a result from [Dang and Rivière 2020b] implies that the
complex (C •,∇) is acyclic if we assume that ∇ is. Because 0ϑ commutes with L∇

X , it induces a chirality
operator on C •. Therefore we can compute the torsion τ(C •, 0ϑ) of the finite-dimensional complex
(C •,∇) with respect to 0ϑ , as described in [Braverman and Kappeler 2007c] (see Section 3). Then we
define the dynamical torsion τϑ as the product

τϑ(ρ)
(−1)q

= ± τ(C •, 0ϑ)
(−1)q︸ ︷︷ ︸

finite-dimensional torsion

× lim
s→0

s−m(X,ρ)ζX,ρ(s)︸ ︷︷ ︸
renormalized Ruelle zeta function at s=0

∈ C \ 0,

where the sign ± will be given later, m(X, ρ) is the order of ζX,ρ(s) at s = 0 and q = (dim(M)− 1)/2 is
the dimension of the unstable bundle of X . Note that the order m(X, ρ) ∈ Z is a priori not stable under
perturbations of (X, ρ), in fact both terms in the product may not be invariant under small changes of ϑ ,
whereas the dynamical torsion τϑ has interesting invariance properties as we will see below.

2.3. Statement of the results. We denote by Repac(M, d) the set of acyclic representations π1(M)→

GL(Cd) and by A ⊂ C∞(M, T M) the space of contact forms on M whose Reeb vector field induces an
Anosov flow. This is an open subset of the space of contact forms. For any ϑ ∈ A, we denote by Xϑ its
Reeb vector field. Recall that we want to study the value at 0 without taking the modulus. As in Fried’s
case, ζX,ρ(0) might be ill–defined since 0 ∈ Res(L∇

X ) and this was the reason for introducing the more
general object τϑ(ρ). Our goal is to compare this new complex number with the refined torsion. As a first
step towards this, our first result shows τϑ(ρ) is invariant by small perturbations of the contact form ϑ ∈A.

Theorem 5. Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov
flow. Let (ϑτ )τ∈(−ε,ε) be a smooth family in A. Then ∂τ log τϑτ (ρ)= 0 for any ρ ∈ Repac(M, d).

2The annihilator of Eu ⊕ RX where Eu ⊂ T M denotes the unstable bundle of the flow.
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Remark 2.1. In the case where the representation ρ is not acyclic, we can still define τϑ(ρ) as an element
of the determinant line det H •(M, ρ); see Remark 6.5. This element is invariant under perturbations of
ϑ ∈ A; see Remark 7.1.

This result implies that the map ϑ ∈ A 7→ τϑ(ρ) is locally constant for all ρ ∈ Repac(M, d). To apply
Theorem 3 in the case of contact Anosov flows, we need to make small perturbations near a contact
Anosov flow such that 0 /∈ Res(L∇

X ): if we have a C1 family of contact Anosov flows (X t)t∈[0,1] such that 0
is not a resonance of L∇

X0
and L∇

X1
but is a resonance of L∇

Xu
for some u ∈ ]0, 1[, then we cannot claim

that ζX0,ρ(0)= ζX1,ρ(0) using Theorem 3; however, we can claim that τϑ0(ρ)= τϑ1(ρ) with Theorem 5.
Our second result aims to compare τϑ with Turaev’s refined version of the Reidemeister torsion τe,o,

which depends on some choice of Euler structure e and a homology orientation o. An analog of the Fried
conjecture would be to prove the equality τϑ(ρ) = τe,o(ρ) for some (e, o) and for all ρ ∈ Repac(M, d)
(this would imply |τR(ρ)| = |ζX,ρ(0)|±1 if ρ is acyclic and unitary and if 0 /∈ Res(L∇

X )). We prove a
weaker result, which shows that the derivatives in ρ ∈ Repac(M, d) of log τϑ(ρ) and log τe,o(ρ) coincide.

Theorem 6. Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov
flow. Then ρ ∈ Repac(M, d) 7→ τϑ(ρ) is holomorphic3 and there exists an Euler structure e such that, for
any homology orientation o and any smooth family (ρu)u∈(−ε,ε) of Repac(M, d),

∂u log τϑ(ρu)= ∂u log τe,o(ρu).

Moreover, if dim M = 3 and b1(M) ̸= 0, the map ρ 7→ τϑ(ρ)/τe,o(ρ) is of modulus 1 on the connected
components of Repac(M, d) containing an acyclic and unitary representation.

In [Dang et al. 2020], for ρ acyclic, the authors proved that 0 /∈ Res(L∇

X ) implies that X 7→ ζX,ρ(0)
is locally constant. Then the equality |ζX,ρ(0)| = τR(ρ) was proved indirectly by working near analytic
Anosov flows in dimension 3 or near geodesic flows of hyperbolic 3-manifolds, where the equality is
known by the works of Sanchez Morgado and Fried, relying on the fact that ζX,ρ(0) remains constant by
small perturbations of the vector field X . Whereas in the above theorem, for any contact Anosov flow
in any odd dimension, we directly compare the log derivatives of the dynamical and refined torsions as
holomorphic functions on the representation variety. We do not need to work near some vector field X
for which the equality |ζX,ρ(0)| = τR(ρ) is already known.

Finally, our third result aims to describe how ∂u log τϑ(ρu) depends on the choice of the contact Anosov
vector field Xϑ .

Theorem 7. Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov
flow. Let (ρu)|u|⩽ε be a smooth family in Repac(M, d). Then, for any η ∈ A,

∂u log τη(ρu)= ∂u log τϑ(ρu)+ ∂u log det ρu(cs(Xϑ , Xη))︸ ︷︷ ︸
topological

as differential 1-forms on Repac(M, d) and where cs(Xϑ , Xη) ∈ H1(M,Z) is the Chern–Simons class of
the pair of vector fields (Xϑ , Xη).

3Repac(M, d) is a variety over C; see Section 11.2 for the right notion of holomorphicity.
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Here, by det ρu(cs(Xϑ , Xη)) we mean det ρu(c) where c ∈π1(M) is any element such that its homology
class [c] ∈ H1(M,Z) coincides with cs(Xϑ , Xη) (note that the value of the determinant does not depend
on the choice of c). This underbraced term is indeed topological as the Chern–Simons class cs(Xϑ , Xη) ∈
H1(M,Z) measures the obstruction to find a homotopy among nonsingular vector fields connecting Xϑ
and Xη. In particular, if ϑ and η are connected by some path in A, then cs(Xϑ , Xη)= 0, which yields
det ρ(cs(Xϑ , Xη)) = 1; hence ∂u log τη(ρu) = ∂u log τϑ(ρu) for any acyclic ρ. We refer the reader to
Section 9.1 for the definition of Chern–Simons classes.

Because the dynamical torsion is constructed with the help of the dynamical zeta function ζX,ρ , we
deduce from the above theorem some information about the behavior of ζX,ρ(s) near s = 0, as follows.

Corollary 8. Let M be a closed odd-dimensional manifold. Then, for all connected open subsets
U ⊂ Repac(M, d) and V ⊂ A, there exists a constant C such that, for every Anosov contact form ϑ ∈ V
and every representation ρ ∈ U ,

ζXϑ ,ρ(s)
(−1)q

= Cs(−1)q m(ρ,Xϑ )
τeXϑ ,o

(ρ)

τ (C •(ϑ, ρ), 0ϑ)
(1 +O(s)), (2-1)

where Xϑ is the Reeb vector field of ϑ , (Eρ,∇ρ) is the flat vector bundle over M induced by ρ, C •(ϑ, ρ)⊂

D ′•(M, Eρ) is the space of generalized resonant states for the resonance 0 of L∇ρ

Xϑ and m(Xϑ , ρ) is the
vanishing order of ζXϑ ,ρ(s) at s = 0.

2.4. Methods of proof. Let us briefly sketch the proof of Theorems 5 and 6, which relies essentially
on two variational arguments: we compute the variation of τϑ(∇) when we perturb the contact form ϑ

and the connection ∇. As we do so, the space C •(ϑ,∇) of Pollicott–Ruelle resonant states of L∇

Xϑ for
the resonance 0 may radically change. Therefore, it is convenient to consider the space C •

[0,λ](ϑ,∇)

instead, which consists of the generalized resonant states for L∇

Xϑ for resonances s such that |s| ⩽ λ,
where λ∈ (0, 1) is chosen so that {|s| = λ}∩Res(L∇

Xϑ )=∅. Then using [Braverman and Kappeler 2007c,
Proposition 5.6] and multiplicativity of torsion, one can show that

τϑ(∇)= ±τ(C •

[0,λ](ϑ,∇), 0ϑ)ζ
(λ,∞)
Xϑ ,ρ (0)

(−1)q , (2-2)

where ζ (λ,∞)
Xϑ ,ρ is a renormalized version of ζXϑ ,ρ (we remove all the poles and zeros of ζXϑ ,ρ within

{s ∈ C : |s| ≤ λ}); see Section 6. Thus we can work with the space C •

[0,λ](ϑ,∇), which behaves nicely
under perturbations of X thanks to Bonthonneau’s construction [Bonthonneau 2020] of uniform anisotropic
Sobolev spaces for families of Anosov flows, and also under perturbations of ∇.

Now consider a smooth family of contact forms (ϑt)t for |t|< ε such that their Reeb vector fields (X t)t

induce Anosov flows. Then Theorem 9 says that for any acyclic ∇, the map t 7→ τϑt(∇) is differentiable
and its derivative vanishes. This follows from a result of [Braverman and Kappeler 2007c] which allows
one to compute the variation of the torsion of a finite-dimensional complex when the chirality operator is
perturbed, and on a variation formula of the map t 7→ ζX t,ρ(s) for Re(s) big enough obtained in [Dang
et al. 2020].

Next, consider a smooth family of flat connections z 7→ ∇(z), where z is a complex number varying in
a small neighborhood of the origin and write ∇(z)= ∇ + zα+ o(z), where α ∈�1(M,End(E)). Then



2626 YANN CHAUBET AND NGUYEN VIET DANG

we show in Section 8, in the same spirit as before, that z 7→ τϑ(∇(z)) is complex differentiable and its
logarithmic derivative reads

∂z|z=0 log τϑ(∇(z))= −tr♭sαK e−εL∇

Xϑ ,

where ε > 0 is small enough, tr♭s is the super flat trace, see Section 4.4, and K :�•(M, E)→ D ′•(M, E)
is a cochain contraction, that is, it satisfies ∇K + K∇ = Id�•(M,E). On the other hand, we can compute,
using the formalism of [Dang and Rivière 2020a],

∂z|z=0 log τeϑ ,o(∇(z))= −tr♭sα K̃ e−εL∇

−X̃ −

∫
e

trα,

where eϑ is an Euler structure canonically associated with ϑ , K̃ is another cochain contraction, X̃ is
a Morse–Smale gradient vector field and e ∈ C1(M,Z) is a singular one-chain representing the Euler
structure eϑ ; see Section 9. Now using the fact that K and K̃ are cochain contractions, one can see that

α(K e−εL∇

Xϑ − K̃ e−εL∇

X̃ )= αRε + [∇, αGε],

where Rε is an operator of degree −1 whose kernel is, roughly speaking, the union of graphs of the
maps e−εXu , where (Xu)u is a nondegenerate family of vector fields interpolating Xϑ and X̃ , see Section 9.3,
and Gε is some operator of degree −2. Therefore we obtain by cyclicity of the flat trace

∂z|z=0 log
τϑ(∇(z))
τeϑ ,o(∇(z))

= tr♭sαRε −

∫
e

trα = 0, (2-3)

where the last equality comes from differential topology arguments. Using the analytical structure
of the representation variety, we may deduce from (2-3) the claim of Theorem 6. Theorem 7 then
follows from the invariance of the dynamical torsion under small perturbations of the flow, the fact that
τe,o(ρ)= τe′,o(ρ)⟨det ρ, h⟩ for any other Euler structure e′, where h ∈ H1(M,Z) satisfies e = e′ + h (we
have that H1(M,Z) acts freely and transitively on the set of Euler structures; see Section 9), and the fact
that, in our notation, eη − eϑ = cs(Xϑ , Xη) for any other contact form η.

2.5. Related works. Some analogs of our dynamical torsion were introduced by Burghelea and Haller
[2008b] for vector fields which admit a Lyapunov closed 1–form generalizing previous works by Hutchings
[2002] and Hutchings and Lee [1999a; 1999b] dealing with Morse–Novikov flows. In that case, the
dynamical torsion depends on a choice of Euler structure and is a partially defined function on Repac(M, d);
if d = 1, it is shown in [Burghelea and Haller 2008a] that it extends to a rational map on the Zariski
closure of Repac(M, 1), which coincides, up to sign, with Turaev’s refined combinatorial torsion (for the
same choice of Euler structure). This follows from previous works of Hutchings and Lee [1999a; 1999b]
who introduced some topological invariant involving circle-valued Morse functions. In both works, the
considered object has the form

dynamical zeta function(0)× correction term,

where the correction term is the torsion of some finite-dimensional complex whose chains are generated
by the critical points of the vector field. The chosen Euler structure gives a distinguished basis of the
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complex and thus a well-defined torsion. This is one of the main differences with our work since in the
Anosov case, there are no such choices of distinguished currents in C •. However, the chirality operator
allows us to overcome this problem as described above.

We also would like to mention the interesting related work [Rumin and Seshadri 2012], where the
authors relate some dynamical zeta function involving the Reeb flow and some analytic contact torsion
on 3-dimensional Seifert CR manifolds.

Finally, recently Spilioti [2020] and Müller [2020] were able to compare the Ruelle zeta function for odd-
dimensional compact hyperbolic manifolds with some of the complex-valued torsions mentioned above.

2.6. Plan of the paper. The paper is organized as follows. In Section 3, we give some preliminaries about
torsion of finite-dimensional complexes computed with respect to a chirality operator. In Section 4, we
present our geometrical setting and conventions. In Section 5, we introduce Pollicott–Ruelle resonances.
In Section 6, we compute the refined torsion of a space of generalized eigenvectors for nonzero resonances
and we define the dynamical torsion. In Section 7, we prove that our torsion is insensitive to small
perturbations of the dynamics. In Section 8, we compute the variation of our torsion with respect to the
connection. In Section 9, we introduce Euler structures which are some topological tools used to fix
ambiguities of the refined torsion. In Section 10, we introduce the refined combinatorial torsion of Turaev
using Morse theory and we compute its variation with respect to the connection. We finally compare it to
the dynamical torsion in Section 11.

3. Torsion of finite-dimensional complexes

We recall the definition of the refined torsion of a finite-dimensional acyclic complex computed with
respect to a chirality operator, following [Braverman and Kappeler 2007c]. Then we compute the variation
of the torsion of such a complex when the differential is perturbed.

3.1. The determinant line of a complex. For a nonzero complex vector space V, the determinant line of
V is the line defined by det(V )=

∧dim V V. We declare the determinant line of the trivial vector space {0}

to be C. If L is a 1-dimensional vector space, we will denote by L−1 its dual line. Any basis (v1, . . . , vn)

of V defines a nonzero element v1 ∧ · · · ∧ vn ∈ det(V ). Thus elements of the determinant line of det(V )
should be thought of as equivalence classes of oriented basis of V.

Let
(C •, ∂) : 0 ∂

−→ C0 ∂
−→ C1 ∂

−→ · · ·
∂

−→ Cn ∂
−→ 0

be a finite-dimensional complex, i.e., dim C j <∞ for all j = 0, . . . , n. We define the determinant line
of the complex C • by

det(C •)=

n⊗
j=0

det(C j )(−1) j
.

Let H •(∂) be the cohomology of (C •, ∂), that is,

H •(∂)=

n⊕
j=0

H j (∂), H j (∂)=
ker(∂ : C j

→ C j+1)

ran(∂ : C j−1 → C j )
.



2628 YANN CHAUBET AND NGUYEN VIET DANG

We will say that the complex (C •, ∂) is acyclic if H •(∂) = 0. In that case, det H •(∂) is canonically
isomorphic to C.

It remains to define the fusion homomorphism that we will later need to define the torsion of a finite-
dimensional based complex [Farber and Turaev 2000, §2.3]. For any finite-dimensional vector spaces
V1, . . . , Vr , we have a fusion isomorphism

µV1,...,Vr : det(V1)⊗ · · · ⊗ det(Vr )→ det(V1 ⊕ · · · ⊕ Vr )

defined by

µV1,...,Vr (v
1
1 ∧ · · · ∧ v

m1
1 ⊗ · · · ⊗ v1

r ∧ · · · ∧ vmr
r )= v1

1 ∧ · · · ∧ v
m1
1 ∧ · · · ∧ v1

r ∧ · · · ∧ vmr
r ,

where m j = dim V j for j ∈ {1, . . . , r}.

3.2. Torsion of finite-dimensional acyclic complexes. In the present paper, we want to think of torsion
of finite-dimensional acyclic complexes as a map ϕC• from the determinant line of the complex to C. We
have a canonical isomorphism

ϕC• : det(C •)−→∼ C, (3-1)

defined as follows. Fix a decomposition

C j
= B j

⊕ A j , j = 0, . . . , n,

with B j
= ker(∂) ∩ C j and B j

= ∂(A j−1) = ∂(C j−1) for every j . Then ∂|A j : A j
→ B j+1 is an

isomorphism for every j .
Fix nonzero elements c j ∈ det C j and a j ∈ det A j for any j . Let ∂(a j ) ∈ det B j+1 denote the image

of a j under the isomorphism det A j
→ det B j+1 induced by the isomorphism ∂|A j : A j

→ B j+1. Then,
for each j = 0, . . . , n, there exists a unique λ j ∈ C such that

c j = λ jµB j ,A j (∂(a j−1)⊗ a j ),

where µB j ,A j is the fusion isomorphism defined in Section 3.1. Then define the isomorphism ϕC• by

ϕC• : c0 ⊗ c−1
1 ⊗ · · · ⊗ c(−1)n

n 7→ (−1)N (C•)

n∏
j=0

λ
(−1) j

j ∈ C,

where

N (C •)=
1
2

n∑
j=0

dim A j (dim A j
+ (−1) j+1).

One easily shows that ϕC• is independent of the choices of a j [Turaev 2001, Lemma 1.3]. The number
τ(C •, c)= ϕC•(c) is called the refined torsion of (C •, ∂) with respect to the element c.

The torsion will depend on the choices of c j ∈ det C j . Here the sign convention (that is, the choice
of the prefactor (−1)N (C•) in the definition of ϕC•) follows [Braverman and Kappeler 2007c, §2] and is
consistent with [Nicolaescu 2003, §1]. This prefactor was introduced by Turaev and differs from [Turaev
1986]. See [Nicolaescu 2003] for the motivation for the choice of sign.

Remark 3.1. If the complex (C •, ∂) is not acyclic, we can still define a torsion τ(C •, c), which is this
time an element of the determinant line det H •(∂); see [Braverman and Kappeler 2007c, §2.4].
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3.3. Torsion with respect to a chirality operator. We saw above that torsion depends on the choice of an
element of the determinant line. A way to fix the value of the torsion without choosing an explicit basis
is to use a chirality operator as in [Braverman and Kappeler 2007c]. Take n = 2r + 1 an odd integer and
consider a complex (C •, ∂) of length n. We will call a chirality operator an operator 0 : C •

→ C • such
that 02

= IdC• , and
0(C j )= Cn− j , j = 0, . . . , n.

0 induces isomorphisms det(C j ) → det(Cn− j ) that we will still denote by 0. If ℓ ∈ L is a nonzero
element of a complex line, we will denote by ℓ−1

∈ L−1 the unique element such that ℓ−1(ℓ)= 1. Fix
nonzero elements c j ∈ det(C j ) for j ∈ {0, . . . , r} and define

c0 = (−1)m(C
•)c0 ⊗ c−1

1 ⊗ · · · ⊗ c(−1)r
r ⊗ (0cr )

(−1)r+1
⊗ (0cr−1)

(−1)r
⊗ · · · ⊗ (0c0)

−1,

where

m(C •)=
1
2

r∑
j=0

dim C j (dim C j
+ (−1)r+ j ).

Definition 3.2. The element c0 is independent of the choices of c j for j ∈ {0, . . . , r}; the refined torsion
of (C •, ∂) with respect to 0 is the element

τ(C •, 0)= τ(C •, c0).

We also have the following result, which is [Braverman and Kappeler 2007c, Lemma 4.7] in the acyclic
case about the multiplicativity of torsion.

Proposition 3.3. Let (C •, ∂) and (C̃ •, ∂̃) be two acyclic complexes of same length endowed with two
chirality operators 0 and 0̃. Then

τ(C •
⊕ C̃ •, 0⊕ 0̃)= τ(C •, 0)τ(C̃ •, 0̃).

3.4. Computation of the torsion with the contact signature operator. Let

B = 0∂ + ∂0 : C •
→ C •.

B is called the signature operator. Let B+ = 0∂ and B− = ∂0. Define

C j
± = C j

∩ ker(B∓), j = 0, . . . , n.

We have that B± preserves C •

±
. Note that B+(C

j
+)⊂ Cn− j−1

+ , so that B+(C
j
+ ⊕Cn− j−1

+ )⊂ C j
+ ⊕Cn− j−1

+ .
Note that if B is invertible on C •, B+ is invertible on C •

+
. If B is invertible, we can compute the refined

torsion of (C •, ∂) using the following:

Proposition 3.4 [Braverman and Kappeler 2007c, Proposition 5.6]. Assume that B is invertible. Then
(C •, ∂) is acyclic so that det(H •(∂)) is canonically isomorphic to C. Moreover,

τ(C •, 0)= (−1)r dim Cr
+ det(0∂|Cr

+
)(−1)r

r−1∏
j=0

det(0∂|C j
+⊕Cn− j−1

+

)(−1) j
,

where we recall that n = 2r + 1.
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3.5. Super traces and determinants. Let V •
=

⊕p
j=0 V j be a graded finite-dimensional vector space

and A : V •
→ V • be a degree-preserving linear map. We define the super trace and the super determinant

of A by

trs,V • A =

p∑
j=0

(−1) j trV j A, dets,V • A =

p∏
j=0

(detV j A)(−1) j
.

We also define the graded trace and the graded determinant of A by

trgr,V • A =

p∑
j=0

(−1) j j trV j A, detgr,V • A =

p∏
j=0

(detV j A)(−1) j j .

3.6. Analytic families of differentials. The goal of the present subsection is to give a variation formula
for the torsion of a finite-dimensional complex when we vary the differential. This formula plays a crucial
role in the variation formula of the dynamical torsion, when the representation is perturbed. Indeed, we
split the dynamical torsion as the product of the torsion τ(C •(ϑ, ρ), 0ϑ) of some finite-dimensional space
of Ruelle resonant states and a renormalized value at s = 0 of the dynamical zeta function ζX,ρ(s). Then
the following formula allows us to deal with the variation of τ(C •(ϑ, ρ), 0ϑ).

Let (C •, ∂) be an acyclic finite-dimensional complex of finite odd length n. If S : C •
: C • is a linear

operator, we will say that it is of degree s if S(Ck)⊂ Ck+s for any k. If S and T are two operators on C •

of degrees s and t respectively then the supercommutator of S and T by

[S, T ] = ST − (−1)st T S.

Cyclicity of the usual trace gives trs,C•[S, T ] = 0 for any S, T.
Let U be a neighborhood of the origin in the complex plane and ∂(z), z ∈ U, be a family of acyclic

differentials on C • which is real differentiable at z = 0, that is,

∂(σ )= ∂ + Re(σ )µ+ Im(σ )ν+ o(σ ), σ → 0, (3-2)

where µ, ν : C •
→ C • are degree-1 operators. Note that ∂(σ )◦∂(σ )= 0 implies that the supercommutator

[∂, a(σ )] = ∂a(σ )+ a(σ )∂ = 0, σ ∈ C, (3-3)

where a(σ )= Re(σ )µ+Im(σ )ν. We will denote by C •(z) the complex (C •, ∂(z)). Finally, let k :C •
→C •

be a cochain contraction, that is a linear map of degree 1 such that

∂k + k∂ = IdC• . (3-4)

The existence of such map is ensured by the acyclicity of (C •, ∂).

Lemma 3.5. In the above notation, for any chirality operator 0 on C •, the map z 7→ τ(C •(z), 0) is real
differentiable at z = 0 and, for any c ∈ det C •, one has

d
dt

∣∣∣
t=0

log τ(C •(tσ), 0)=
d
dt

∣∣∣
t=0

log τ(C •(tσ), c)= −trs,C•(a(σ )k).
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Note that this implies in particular that trs,C•(a(σ )k) does not depend on the chosen cochain contrac-
tion k. This is expected since if k ′ is another cochain contraction,

[∂, a(σ )kk ′
] = ∂a(σ )kk ′

+ a(σ )kk ′∂ = a(σ )(k − k ′)

by (3-3), and the supertrace of a supercommutator vanishes.

Proof. First note that for nonzero elements c, c′
∈ det C •, we have

τ(C •(z), c)= [c : c′
] · τ(C •(z), c′), (3-5)

where [c : c′
] ∈ C satisfies c = [c : c′

] · c′.
For every j = 0, . . . , n, fix a decomposition

C j
= A j

⊕ B j ,

where B j
= ker ∂ ∩ C j and A j is any complementary of B j in C j . Fix some basis a1

j , . . . , aℓ j
j of A j ;

then ∂a1
j , . . . , ∂aℓ j

j is a basis of B j+1 by acyclicity of (C •, ∂). Now let

c j = ∂a1
j−1 ∧ · · · ∧ ∂aℓ j−1

j−1 ∧ a1
j ∧ · · · ∧ aℓ j

j ∈ det C j

and
c = c0 ⊗ (c1)

−1
⊗ c2 ⊗ · · · ⊗ (cn)

(−1)n
∈ det C •.

Now by definition of the refined torsion, we have for |z| small enough

τ(C •(tσ), c)= ±

n∏
j=0

det(A j (tσ))(−1) j+1
, (3-6)

where the sign ± is independent of z and A j (z) is the matrix sending the basis

∂a1
j−1, . . . , ∂aℓ j−1

j−1 , a1
j , . . . , aℓ j

j

to the basis
∂(tσ)a1

j−1, . . . , ∂(tσ)a
ℓ j−1
j−1 , a1

j , . . . , aℓ j
j

(which is indeed a basis of C j for |z| small enough). Let k : C •
→ C • of degree −1 defined by

k∂am
j = am

j , kam
j = 0

for every j and m ∈ {0, . . . , ℓ j }. Then k∂ + ∂k = IdC• and

det A j (tσ)= det∂B j−1⊕B j (∂(tσ)k ⊕ Id).

Now (3-2) and (3-6) imply the desired result, because τ(C •(tσ), 0)= [c0 : c] · τ(C •(tσ), c) by (3-5). □

4. Geometrical setting and notations

We introduce here our geometrical conventions and notation. In particular, we adopt the formalism of
[Harvey and Polking 1979], which will be convenient to compute flat traces and relate the variation of the
Ruelle zeta function with topological objects.
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4.1. Twisted cohomology. We consider M an oriented closed connected manifold of odd dimension
n = 2r + 1. Let E → M be a flat vector bundle over M of rank d ⩾ 1. For k ∈ {0, . . . , n}, we will denote
the bundle 3k T ∗M by 3k for simplicity. We will denote by �k(M, E)= C∞(M,3k

⊗ E) the space of
E-valued k-forms. We set

�•(M, E)=

n⊕
k=0

�k(M, E).

Let ∇ be a flat connection on E . We view the connection as a degree-1 operator (as an operator of the
graded vector space �•(M, E))

∇ :�k(M, E)→�k+1(M, E), k = 0, . . . , n.

The flatness of the connection reads ∇
2
= 0 and thus we obtain a cochain complex (�•(M, E),∇). We

will assume that the connection ∇ is acyclic, that is, the complex (�•(M, E),∇) is acyclic, or equivalently,
the cohomology groups

H k(M,∇)=
{u ∈�k(M, E) : ∇u = 0}

{∇v : v ∈�k−1(M, E)}
, k = 0, . . . , n,

are trivial.

4.2. Currents and Schwartz kernels. Let

D ′•(M, E)=

n⊕
k=0

D ′(M,3k
⊗ E)

be the space of E-valued currents. Let E∨ denote the dual bundle of E . We will identify D ′k(M, E) and
the topological dual of �n−k(M, E∨) via the nondegenerate bilinear pairing

⟨α, β⟩ =

∫
M
α∧β, α ∈�k(M, E), β ∈�n−k(M, E∨),

where ∧ is the usual wedge product between E-valued forms and E∨-valued forms.
A continuous linear operator G :�•(M, E)→ D ′•(M, E) is called homogeneous if, for some p ∈ Z,

we have G(�k(M, E)) ⊂ D ′k+p(M, E) for every k = 0, . . . , n; the number p is called the degree
of G and is denoted by deg G. In that case, the Schwartz kernel theorem gives us a twisted current
G ∈ D ′n+p(M × M, π∗

1 E∨
⊗π∗

2 E) satisfying

⟨Gu, v⟩M = ⟨G, π∗

1 u ∧π∗

2 v⟩M×M , u ∈�k(M, E), v ∈�n−k−p(M, E∨),

where π1 and π2 are the projections of M × M onto its first and second factors respectively.

4.3. Integration currents. Let N be an oriented submanifold of M of dimension d, possibly with
boundary. The associated integration current [N ] ∈ D ′n−d(M) is given by

⟨[N ], ω⟩ =

∫
N

i∗

Nω, ω ∈�d(M),
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where iN : N → M is the inclusion. Note that Stokes’ formula yields

d[N ] = (−1)n−d+1
[∂N ]. (4-1)

For f ∈ Diff(M), we will set Gr( f ) = {( f (x), x) : x ∈ M} to be the graph of f . Note that Gr( f ) is
an n-dimensional submanifold of M × M which is canonically oriented since M is. Therefore, we can
consider the integration current over Gr( f ). By definition, we have for any α, β ∈�•(M)

⟨[Gr( f )], π∗

1α∧π∗

2β⟩ =

∫
M

f ∗α∧β.

In particular, [Gr( f )] is the Schwartz kernel of f ∗
:�•(M)→�•(M).

4.4. Flat traces. Let G :�•(M, E)→ D ′•(M, E) be an operator of degree 0. We denote its Schwartz
kernel by G and we define

WF′(G)= {(x, y, ξ, η) : (x, y, ξ,−η) ∈ WF(G)} ⊂ T ∗(M × M),

where WF denotes the classical Hörmander wavefront set; see [Hörmander 1990, §8]. We will also use
the notation WF(G)= WF(G) and WF′(G)= WF′(G). Assume that

WF′(G)∩1(T ∗M)= ∅, 1(T ∗M)= {(x, x, ξ, ξ) : (x, ξ) ∈ T ∗M}. (4-2)

Let ι : M → M × M, x 7→ (x, x), be the diagonal inclusion. Then by [Hörmander 1990, Theorem 8.2.4]
the pull back ι∗G ∈ D ′n(M, E∨

⊗ E) is well-defined and we define the super flat trace of G by

tr♭sG = ⟨tr ι∗G, 1⟩,

where tr denotes the trace on E∨
⊗ E . We will also use the notation

tr♭grG = tr♭s N G,

where N :�•(M, E)→�•(M, E) is the number operator, that is, Nω = kω for every ω ∈�k(M, E).
The notation tr♭s is motivated by the following. Let A : C∞(M, F)→ D ′(M, F) be an operator acting

on sections of a vector bundle F. If A satisfies (4-2), we can also define a flat trace tr♭ A as in [Dyatlov
and Zworski 2016, §2.4]. Now if G :�•(M, E)→ D ′•(M, E) is an operator of degree 0, it gives rise to
an operator Gk : C∞(M, Fk)→ D ′(M, Fk) for each k = 0, . . . , n, where Fk = 3k

⊗ E . Then the link
between the two notions of flat trace mentioned above is given by

tr♭sG =

n∑
k=0

(−1)k tr♭ Gk .

If 0 ⊂ T ∗M is a closed conical subset, we let

D ′•

0 (M, E)= {u ∈ D ′•(M, E),WF(u)⊂ 0} (4-3)

be the space of E-valued current whose wavefront set is contained in 0, endowed with its usual topology;
see [Hörmander 1990, §8]. If 0 is a closed conical subset of T ∗(M × M) not intersecting the conormal
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to the diagonal

N ∗1(T ∗M)= {(x, x, ξ,−ξ) : (x, ξ) ∈ T ∗M},

then the flat trace is continuous as a map D ′•

0 (M × M, π∗

1 E∨
⊗π∗

2 E)→ R.

4.5. Cyclicity of the flat trace. Let G, H :�•(M, E)→ D ′•(M, E) be two homogeneous operators. We
denote by G,H their respective kernels. If 0 ⊂ T ∗(M × M) is a closed conical subset, we define

0(1) = {(y, η) : there exists x ∈ M such that (x, y, 0, η) ∈ 0},

0(2) = {(y, η) : there exists x ∈ M such that (x, y,−η, 0) ∈ 0}.

Then under the assumption

WF(G)(2) ∩ WF(H)(1) = ∅,

the operator F = G ◦ H is well-defined by [Hörmander 1990, Theorem 8.2.14] and its Schwartz kernel F
satisfies the wavefront set estimate:

WF(F)⊂ {(x, y, ξ, η) : there exists (z, ζ ) such that (x, z, ξ, ζ ) ∈ WF′(G) and (z, y, ζ, η) ∈ WF(H)}.

If both compositions G ◦ H and H ◦ G are defined, we will denote by

[G, H ] = G ◦ H − (−1)deg G deg H H ◦ G

the graded commutator of G and H. We have the following:

Proposition 4.1. Let G, H be two homogeneous operators with deg G + deg H = 0 and such that both
compositions G ◦ H and H ◦ G are defined and satisfy the bound (4-2). Then we have

tr♭s[G, H ] = 0.

The above result follows from the cyclicity of the L2-trace, the approximation result [Dyatlov and
Zworski 2016, Lemma 2.8], the relation

tr♭s[G, H ] = tr♭[(−1)N G, H ],

where N is the number operator and tr♭ is the flat trace with the convention from [Dyatlov and Zworski
2016, §2.4] (see Section 4.4), and the fact that the map (G, H) 7→ G ◦ H is continuous

D ′•

0 (M × M, π∗

1 E∨
⊗π∗

2 E)×D ′•

0̃
(M × M, π∗

1 E∨
⊗π∗

2 E)→ D ′•

ϒ (M × M, π∗

1 E∨
⊗π∗

2 E)

for any closed conical subsets 0, 0̃ ⊂ T ∗(M × M) such that 0(2) ∩ 0̃(1) = ∅, and where ϒ is a closed
conical subset given in [Hörmander 1990, 8.2.14].

4.6. Perturbation of holonomy. Let γ : [0, 1] → M be a smooth curve and α ∈�1(M,End(E)). Let Pt

(resp. P̃t) be the parallel transport Eγ (0) → Eγ (t) of ∇ (resp. ∇̃ = ∇ +α) along γ |[0,t]. Then

P̃t = Pt exp
(
−

∫ t

0
P−τα(γ̇ (τ ))Pτ dτ

)
. (4-4)
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The above formula will be useful in some occasion. For simplicity, we will denote for any A ∈

C∞(M,End(E)) ∫
γ

A =

∫ t

0
P−τ A(γ (τ ))Pτ dτ ∈ End(Eγ (0)),

so that P̃1 = P1 exp
(
−

∫
γ
α(X)

)
.

5. Pollicott–Ruelle resonances

5.1. Anosov dynamics. Let X be a smooth vector field on M and denote by ϕt its flow. We will assume
that X generates an Anosov flow, that is, there exists a splitting of the tangent space Tx M at every x ∈ M

Tx M = RX (x)⊕ Es(x)⊕ Eu(x),

where Eu(x), Es(x) are subspaces of Tx M depending continuously on x and invariant by the flow ϕt,
such that for some constants C, ν > 0 and some smooth metric | · | on T M one has

|(dϕt)xvs | ⩽ Ce−νt
|vs |, t ≥ 0, vs ∈ Es(x),

|(dϕt)xvu| ⩽ Ce−ν|t |
|vu|, t ≤ 0, vu ∈ Eu(x).

We will use the dual decomposition T ∗M = E∗

0 ⊕ E∗
u ⊕ E∗

s , where E∗

0 , E∗
u and E∗

s are defined by

E∗

0(Es ⊕ Eu)= 0, E∗

s (E0 ⊕ Es)= 0, E∗

u(E0 ⊕ Eu)= 0. (5-1)

5.2. Pollicott–Ruelle resonances. Let ιX denote the interior product with X and

L∇

X = ∇ιX + ιX∇ :�•(M, E)→�•(M, E)

be the Lie derivative along X acting on E-valued forms. Locally, the action of L∇

X is given by the
following. Take U a domain of a chart and write ∇ = d+ A, where A ∈�1(M,End(E)). Take w1, . . . , wℓ

(resp. e1, . . . , ed ) some local basis of 3k (resp. E) on U. Then, for any 1 ⩽ i ⩽ ℓ and 1 ⩽ j ⩽ d,

L∇

X ( fwi ⊗ e j )= (X f )wi ⊗ e j + f (LXwi )⊗ e j + fwi ⊗ A(X)e j , f ∈ C∞(U ),

where LX is the standard Lie derivative acting on forms. In particular, L∇

X is a differential operator of
order 1 acting on sections of the bundle 3•T ∗M ⊗ E , whose principal part is diagonal and given by X .
This operator generates a transfer operator

etL∇

X :�•(M, E)→�•(M, E),

which is defined by the relation
d
dt
(etL∇

X u)= etL∇

X (L∇

X u).

For Re(s) big enough, the operator L∇

X + s acting on �•(M, E) is invertible with inverse

(L∇

X + s)−1
=

∫
∞

0
e−tL∇

X e−st dt, (5-2)
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as it follows by an integration by parts. The results of [Faure and Sjöstrand 2011] generalize to the
flat bundle case as in [Dang and Rivière 2020b, §3] and the resolvent (L∇

X + s)−1, viewed as a family
of operators �•(M, E)→ D ′•(M, E), admits a meromorphic continuation to s ∈ C with poles of finite
multiplicities; we will still denote by (L∇

X + s)−1 this extension. Those poles are the Pollicott–Ruelle
resonances of L∇

X , and we will denote this set by Res(L∇

X ).

5.3. Generalized resonant states. Let s0 ∈ Res(L∇

X ). By [Dyatlov and Zworski 2016, Proposition 3.3]
we have a Laurent expansion

(L∇

X + s)−1
= Ys0(s)+

J (s0)∑
j=1

(−1) j−1 (L
∇

X + s0)
j−15s0

(s − s0) j , (5-3)

where Ys0(s) is holomorphic near s = s0, and

5s0 =
1

2π i

∫
Cε(s0)

(L∇

X + s)−1 ds :�•(M, E)→ D ′•(M, E) (5-4)

is an operator of finite rank. Here Cε(s0) = {|z − s0| = ε} with ε > 0 small enough is a small circle
around s0 such that Res(L∇

X )∩ {|z − s0| ⩽ ε} = {s0}. Moreover the operators Ys0(s) and 5s0 extend to
continuous operators

Ys0(s),5s0 : D ′•

E∗
u
(M, E)→ D ′•

E∗
u
(M, E). (5-5)

The space
C •(s0)= ran(5s0)⊂ D ′•

E∗
u
(M, E)

is called the space of generalized resonant states of L∇

X associated with the resonance s0.

5.4. The twisted Ruelle zeta function. Fix a base point x⋆ ∈ M and identify π1(M) with π1(M, x⋆). Let
Per(X) be the set of periodic orbits of X . For every γ ∈ Per(X) we fix some base point xγ ∈ Im(γ ) and
an arbitrary path cγ joining xγ to x⋆. This path defines an isomorphism ψγ : π1(M, xγ )∼= π1(M) and we
can thus define for every γ ∈ Per(X)

ρ∇([γ ])= ρ∇(ψγ [γ ]).

The twisted Ruelle zeta function associated with the pair (X,∇) is defined by

ζX,∇(s)=

∏
γ∈GX

det(Id −εγρ∇([γ ])e−sℓ(γ )), Re(s) > C. (5-6)

Here GX is the set of all primitive closed orbits of X (that is, the closed orbits that generate their class in
π1(M)), ℓ(γ ) is the length of the orbit γ and C > 0 is some big constant depending on ρ and X , which
satisfies

∥ρ∇([γ ])∥ ⩽ exp(Cℓ(γ )), γ ∈ GX , (5-7)

for some norm ∥ · ∥ on End(Ex⋆). Finally εγ = 1 if Eu|γ is orientable, and −1 if not.
In what follows, we will denote by Pγ the linearized Poincaré return map of γ , that is,

Pγ = dxϕ
−ℓ(γ )

|Es(x)⊕Eu(x)
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for some x ∈ Im(γ ) (if we choose another point in Im(γ ), the new map will be conjugated to the first
one). Then one has

εγ = sgn det(Pγ |Es )= (−1)q
det(Id −Pγ )
|det(Id −Pγ )|

, where q = dim Es . (5-8)

Giuletti, Pollicott and Liverani [Giulietti et al. 2013] and Dyatlov and Zworski [2016] showed that
ζX,∇ has a meromorphic continuation to C whose poles and zeros are contained in Res(L∇

X ). In fact, a
consequence of the Guillemin trace formula [1977], together with (5-8) and the identity

det(Id −Pγ )=

n∑
k=0

(−1)k+1k tr3k dxϕ
−ℓ(γ ),

is that whenever Re(s) is large enough, we have, for every small ε > 0,

∂s log ζX,∇(s)= (−1)q+1tr♭gr((L
∇

X + s)−1e−ε(L∇

X +s)), (5-9)

where the flat trace makes sense, because the wavefront set of (L∇

X + s)−1e−ε(L∇

X +s) does not encounter
the conormal to the diagonal in T ∗(M × M) (see Section 8.4). In particular, one can see that the order
of ζX,∇ near a resonance s0 ∈ Res(L∇

X ) is given by

m(s0)= (−1)q+1
n∑

k=0

(−1)kkmk(s0), (5-10)

where mk(s0) is the rank of the spectral projector 5s0 |�k(M,E).4

5.5. Topology of resonant states. Since ∇ commutes with L∇

X , it induces a differential on the complexes
C •(s0) for any s0 ∈ Res(L∇

X ). It is shown in [Dang and Rivière 2020b] that the complexes (C •(s0),∇)

are acyclic whenever s0 ̸= 0. Moreover, for s0 = 0, the map

5s0=0 :�•(M,∇)−→ C •(s0 = 0)= C •

is a quasi-isomorphism, that is, it induces isomorphisms at the level of cohomology groups. Since we
assumed ∇ to be acyclic, the complex (C •,∇) is also acyclic.

6. The dynamical torsion of a contact Anosov flow

From now on, we will assume that the flow ϕt is contact, that is, there exists a smooth one form ϑ ∈�1(M)
such that ϑ ∧ (dϑ)r is a volume form on M, ιXϑ = 1 and ιX dϑ = 0. The purpose of this section is
to define the dynamical torsion of the pair (ϑ,∇). We first introduce a chirality operator 0ϑ acting on
�•(M, E), which is defined thanks to the contact structure. Then the dynamical torsion is a renormalized
version of the twisted Ruelle zeta function corrected by the torsion of the finite-dimensional space of the
generalized resonant states for resonance s0 = 0 computed with respect to 0ϑ .

This construction was inspired by the work of Braverman and Kappeler [2007c] on the refined analytic
torsion.

4 In [Dyatlov and Zworski 2016], the authors study the action of L∇
X on (3k T ∗M∩ker ιX )⊗E and they get

m(s0)= (−1)q
∑n−1

k=0(−1)km0
k(s0), where m0

k(s0) is the dimension of 5s0(�
k(M, E)∩ ker ιX ). Here we study the action of

L∇
X on the full bundle 3k T ∗M ⊗ E , which leads to (5-9) and (5-10).



2638 YANN CHAUBET AND NGUYEN VIET DANG

6.1. The chirality operator associated with a contact structure. Let VX → M denote the bundle T ∗M ∩

ker ιX . Note that for k ∈ {0, . . . , n}, we have the decomposition

3k T ∗M =3k−1VX ∧ϑ ⊕3k VX . (6-1)

Indeed, if α ∈3k T ∗M we may write

α = (−1)k+1ιXα∧ϑ︸ ︷︷ ︸
∈3k−1VX ∧ϑ

+α− (−1)k+1ιXα∧ϑ.︸ ︷︷ ︸
∈3k VX

Let us introduce the Lefschetz map

L :3•VX →3•+2VX , u 7→ u ∧ dϑ.

Since dϑ is a symplectic form on VX , the maps L r−k induce bundle isomorphisms

L r−k
:3k VX −→∼ 32r−k VX , k = 0, . . . , r; (6-2)

see for example [Libermann and Marle 1987, Theorem 16.3]. Using the above Lefschetz isomorphisms,
we are now ready to introduce our chirality operator.

Definition 6.1. The chirality operator associated with the contact form ϑ is the operator 0ϑ :3•T ∗M →

3n−•T ∗M defined by 02
ϑ = 1 and

0ϑ( f ∧ϑ + g)= L r−k g ∧ϑ + L r−k+1 f, f ∈3k−1VX , g ∈3k VX , k ∈ {0, . . . , r}, (6-3)

where we used the decomposition (6-1).

Note that in particular one has, for k ∈ {r + 1, . . . , n},

0ϑ( f ∧ϑ + g)= (L k−r )−1g ∧ϑ + (L k−1−r )−1 f.

6.2. The refined torsion of a space of generalized eigenvectors. The operator 0ϑ acts also on �•(M, E)
by acting trivially on E-coefficients. Since LXϑ = 0, 0ϑ and L∇

X commute so that 0ϑ induces a chirality
operator

0ϑ : C •(s0)→ Cn−•(s0)

for every s0 ∈ Res(L∇

X ). Recall from Section 5.5 that the complexes (C •(s0),∇) are acyclic. The following
formula motivates the upcoming definition of the dynamical torsion.

Proposition 6.2. Let s0 ∈ Res(L∇

X ) \ {0, 1}. We have

τ(C •(s0), 0ϑ)
−1

= (−1)Qs0 detgr,C•(s0)L
∇

X ,

where

Qs0 =

r∑
k=0

(−1)k(r + 1 − k) dim Ck(s0),

and τ(C •(s0), 0ϑ) ∈ C \ 0 is the refined torsion of the acyclic complex (C •(s0),∇) with respect to the
chirality 0ϑ ; see Definition 3.2.

Let us first admit the above proposition; the proof will be given in Sections 6.5 and 6.6.
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6.3. Spectral cuts. If I ⊂ [0, 1) is an interval, we set

5I =

∑
s0∈Res(L∇

X )

|s0|∈I

5s0, C •

I =

⊕
s0∈Res(L∇

X )

|s0|∈I

C •(s0) and QI =

∑
s0∈Res(L∇

X )

|s0|∈I

Qs0 . (6-4)

Note that L∇

X + s acts on C •(s0) for every s0 ∈ Res(L∇

X ) as −s0 Id +J, where J is nilpotent. We thus have
for s /∈ Res(L∇

X )

detgr,C•
I
(L∇

X + s)(−1)q+1
=

∏
s0∈Res(L∇

X )

|s0|∈I

(s − s0)
m(s0), (6-5)

where detgr is the graded determinant; see Section 3.5.
Let λ ∈ [0, 1) such that Res(L∇

X )∩ {s ∈ C : |s| = λ} = ∅. Now define the meromorphic function

ζ
(λ,∞)
X,∇ (s)= ζX,∇(s)detgr,C•

[0,λ]
(L∇

X + s)(−1)q . (6-6)

Then (5-10) and (6-5) show that ζ (λ,∞)
X,∇ has neither pole nor zero in {|s|⩽ λ}, so that the number ζ (λ,∞)

X,∇ (0)
is well-defined.

6.4. Definition of the dynamical torsion. Let 0< µ< λ < 1 such that, for every s0 ∈ Res(L∇

X ), one has
|s0| ̸= λ,µ. Using Propositions 3.3 and 6.2 we obtain, with notation of Section 6.3,

τ(C •

[0,λ], 0ϑ)= (−1)−Q(µ,λ](detgr,C•

(µ,λ]
L∇

X )
−1τ(C •

[0,µ]
, 0ϑ). (6-7)

This allows us to give the following:

Proposition/Definition 6.3 (dynamical torsion). The number

τϑ(∇)= (−1)Q[0,λ]ζ
(λ,∞)
X,∇ (0)(−1)q

· τ(C •

[0,λ], 0ϑ) ∈ C \ 0 (6-8)

is independent of the spectral cut λ ∈ (0, 1). We will call this number the dynamical torsion of the
pair (ϑ,∇).

Proof. Let 0 < µ < λ < 1 be such that |s0| ̸= λ,µ for each s0 ∈ Res(L∇

X ). Denote by τϑ(∇, λ) the
right-hand side of (6-8) and define τϑ(∇, µ) identically. Then we have, by (6-7),

τϑ(∇, λ)= (−1)Q[0,λ]ζ
(λ,∞)
X,∇ (0)(−1)q

· τ(C •

[0,λ], 0ϑ)

= (−1)Q[0,λ]ζ
(λ,∞)
X,∇ (0)(−1)q (−1)−Q(µ,λ](detgr,C•

(µ,λ]
L∇

X )
−1τ(C •

[0,µ]
, 0ϑ).

Now, we have Q[0,λ] − Q(µ,λ] = Q[0,µ] by (6-4); moreover

ζ
(λ,∞)
X,∇ (0)(−1)q (detgr,C•

(µ,λ]
L∇

X )
−1

= ζ
(µ,∞)
X,∇ (0)(−1)q

by (6-6). Thus τϑ(∇, λ)= τϑ(∇, µ), which concludes the proof. □

Remark 6.4. If cX,∇sm(0) is the leading term of the Laurent expansion of ζX,∇(s) at s = 0, then taking λ
small enough actually shows that

τϑ(∇)= (−1)Q0c(−1)q
X,∇ · τ(C •, 0ϑ). (6-9)
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In particular, if 0 /∈ Res(L∇

X ),
τϑ(∇)= ζX,∇(0)(−1)q . (6-10)

Note that we could have taken (6-9) as a definition of the dynamical torsion; however, (6-8) is more
convenient to study the regularity of the τϑ(∇) with respect to ϑ and ∇.

Remark 6.5. This definition actually makes sense even if ∇ is not acyclic. Indeed, in that case, formula
(6-8) defines an element of the determinant line det H •(C •

[0,λ]∇); see Remark 3.1. Under the identification
H •(M,∇)= H •(C •

[0,λ]∇) given by the quasi-isomorphism 5[0,λ] :�•(M, E)→ C •

[0,λ] (see Section 5.5),
we thus get an element of det H •(M,∇).

The rest of this section is devoted to the proof of Proposition 6.2, which computes the value of the torsion
τ(C •(s0), 0ϑ). The strategy goes at follows. First, we introduce the signature operator Bϑ =0ϑ∇ +∇0ϑ ,
and show that it is invertible on C •(s0) for s0 ̸= 0, 1 (Proposition 6.6). This property will allow us to use
Proposition 3.4 in order to compute τ(C •(s0), 0ϑ).

6.5. Invertibility of the contact signature operator. To prove Proposition 6.2 we shall use Section 3.4
and introduce the contact signature operator

Bϑ = 0ϑ∇ +∇0ϑ : D′•(M, E)→ D′•(M, E),

where 0ϑ acts trivially on E . We fix in what follows some s0 ∈ Res(L∇

X )\ {0, 1} and we denote C •(s0) by
C •(s0) for simplicity. We also set C •

0(s0)= C •(s0)∩ ker(ιX ).

Proposition 6.6. The operator Bϑ is invertible C •(s0)→ C •(s0).

Note that, as ∇
2
= 0 and 02

ϑ = Id, we have that Bϑ is invertible on C •(s0) if and only if

ker(0ϑ∇)∩ ker(∇0ϑ)= {0} (6-11)

on C •(s0). Indeed, assume that (6-11) holds and let β ∈ ker Bϑ . Set µ= 0ϑ∇β = −∇0ϑβ; we have

0ϑ∇µ= 0 = ∇0ϑµ,

hence µ= 0 by (6-11), and therefore β = 0, again by (6-11), yielding ker Bϑ = {0}.
In order to prove (6-11) (and thus Proposition 6.6) and Proposition 3.4, we introduce several notations

that will help us understand the action of the operator 0ϑ∇ restricted to ker(∇0ϑ). First, because ∇ does
not leave the decomposition (6-1) stable, we need to introduce an operator 9 : C •

0(s0)→ C •+1
0 (s0) which

mimics the action of ∇. More precisely, we define

9µ= ∇µ− (−1)kL∇

Xµ∧ϑ, µ ∈ Ck
0(s0). (6-12)

Because LX dϑ = 0, the map 9 satisfies the simple relation

9(µ∧ dϑ j )= (9µ)∧ dϑ j , µ ∈ C •

0(s0), j ∈ N, (6-13)

that is, 9 commutes with L . Also, observe that

92µ= −L∇

Xµ∧ dϑ, µ ∈ C •

0(s0). (6-14)
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Indeed, using the fact that L∇

X and ∇ commute,

92µ= ∇
(
∇µ− (−1)kL∇

Xµ∧ϑ
)
− (−1)k+1(L∇

X (∇µ− (−1)kL∇

Xµ∧ϑ)
)
∧ϑ

= ∇
2µ+ (−1)k+1

∇(L∇

Xµ∧ϑ)+ (−1)kL∇

X∇µ∧ϑ −L∇

X
2
µ∧ϑ ∧ϑ

= (−1)k+1(−1)kL∇

Xµ∧ dϑ.

For k ∈ {0, . . . , r}, we also define the operator Jk : Ck(s0)→ Ck(s0) by the formula

Jkβ = f ∧ϑ − (−1)k9 f (6-15)

for any β = f ∧ϑ + g ∈ Ck(s0), with f ∈ Ck−1
0 (s0). We finally set, as in Section 3.4,

C •

+
(s0)= C •(s0)∩ ker(∇0ϑ) and C •

−
(s0)= C •(s0)∩ ker(0ϑ∇).

Lemma 6.7. Jk is a projector and is valued in Ck
+
(s0).

Proof. Indeed, we have for any f ∈ Ck−1
0 (s0) and g ∈ Ck

0(s0),

∇0ϑ( f ∧ϑ+g)= ∇(g∧dϑr−k
∧ϑ+ f ∧dϑr−k+1)

=9g∧dϑr−k
∧ϑ+(−1)k g∧dϑr−k+1

+9 f ∧dϑr−k+1
+(−1)k+1L∇

X f ∧dϑr−k+1
∧ϑ,

which implies that β = f ∧ϑ + g lies in Ck
+
(s0) if and only if

(9g + (−1)k+1L∇

X f ∧ dϑ)∧ dϑr−k
= 0 and (9 f + (−1)k g)∧ dϑr−k+1

= 0. (6-16)

But now note that if β = f ∧ϑ + g = Jkβ
′
= f ′

∧ϑ − (−1)k9 f ′ for some β ′
= f ′

∧ϑ + g′ then f = f ′

and g = −(−1)k9 f , and thus β satisfies the second part of (6-16). We also obtain

9g = −(−1)k92 f = −(−1)kL∇

X f ∧ dϑ

by (6-14), so the first part of (6-16) is also satisfied. Therefore Jk : Ck(s0)→ Ck
+
(s0); it is clear that Jk is

a projector. □

We start by a lemma which tells us how (0ϑ∇)
2 acts on Ck

+
(s0) with k < r .

Lemma 6.8. Take k ∈ {0, . . . , r − 1}. Then, for any β ∈ Ck
+
(s0), one has

(0ϑ∇)
2β = L∇

X (L
∇

X − Id)β − (L∇

X − Id)Jkβ.

Proof. Since k < r we can write, thanks to (6-20),

0ϑ∇β = ∇β ∧ϑ ∧ dϑr−k−1
+ (−1)kιX∇β ∧ dϑr−k .

Therefore

∇0ϑ∇β = −(−1)k∇β ∧ dϑr−k
+ (−1)k∇ιX∇β ∧ dϑr−k

= (−1)k(L∇

X − Id)∇β ∧ dϑr−k

= (ιX∇ιX∇β − ιX∇β)∧ϑ ∧ dϑr−k
+ (−1)k(L∇

X − Id)(∇β − (−1)kιX∇β ∧ϑ)∧ dϑr−k,
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where we used ∇ιX∇β = L∇

X∇β and ιX∇ιX∇β = L∇

X ιX∇β. Since β ∈ Ck
+
(s0), one has with (6-20)

(∇β − (−1)kιX∇β ∧ϑ)∧ dϑr−k
= (ιXβ − ιX∇ιXβ)∧ dϑr−k+1.

This leads to

∇0ϑ∇β = (ιX∇ιX∇β − ιX∇β)∧ϑ ∧ dϑr−k
+ (−1)k(L∇

X − Id)(ιXβ − ιX∇ιXβ)∧ dϑr−k+1.

Since ιX∇ιX∇β − ιX∇β = (L∇

X − Id)ιX∇β and ιXβ − ιX∇ιXβ = (Id −L∇

X )ιXβ, we obtain

∇0ϑ∇β = (L∇

X − Id)ιX∇β ∧ϑ ∧ dϑr−k
+ (−1)k(L∇

X − Id)(Id −L∇

X )ιXβ ∧ dϑr−k+1,

and thus by the definition of 0ϑ

0ϑ∇0ϑ∇β = −(−1)k(Id −L∇

X )
2ιXβ ∧ϑ + (L∇

X − Id)ιX∇β. (6-17)

Now, writing β = f ∧ϑ + g, where ιX f = 0 and ιX g = 0, we have

∇β = ∇ f ∧ϑ − (−1)k f ∧ dϑ + ∇g,

ιX∇β = L∇

X f ∧ϑ + (−1)k∇ f +L∇

X g,

ιXβ ∧ϑ = −(−1)k f ∧ϑ.

(6-18)

Injecting those relations in (6-17) we get

0ϑ∇0ϑ∇β = L∇

X (L
∇

X − Id)( f ∧ϑ + g)− (L∇

X − Id)
(

f ∧ϑ − (−1)k(∇ f + (−1)kL∇

X f ∧ϑ)
)
,

which concludes in view of (6-12) and (6-15). □

We now deal with the case k = r .

Lemma 6.9. One has, for β ∈ Cr
+
(s0),

0ϑ∇β = (−1)r
(
(L∇

X − Id)β + (Id −Jr )β
)
.

Proof. We have
0ϑ∇β = L −1(

∇β − (−1)r ιX∇β ∧ϑ
)
+ (−1)r ιX∇β.

Since β ∈ Cr
+
(s0), we have with (6-20) that ∇β − (−1)r ιX∇β ∧ϑ = (ιXβ − ιX∇ιXβ)∧ dϑ . Therefore,

0ϑ∇β = (ιXβ − ιX∇ιXβ)∧ϑ + (−1)r ιX∇β.

We now conclude as in the previous lemma, using (6-18). □

Proof of Proposition 6.6. To prove that Bϑ is invertible on C •(s0), recall that it suffices to show that (6-11)
holds. Let β ∈ C •(s0) lying in the left-hand side of (6-11), and write

β =

2r+1∑
k=0

βk,

where βk ∈ Ck(s0). Then βk ∈ Ck
+
(s0)∩ Ck

−
(s0) for each k. Therefore, Lemma 6.8 yields, for k < r ,

0 = (0ϑ∇)
2βk = L∇

X (L
∇

X − Id)βk − (L∇

X − Id)Jkβk,
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that is, (L∇

X − Id)(L∇

Xβk − Jkβk)= 0, which gives

L∇

Xβk = Jkβk

since L∇

X − Id is invertible on C •(s0). However, writing βk = fk−1 ∧ϑ + gk , with fk−1, gk ∈ C •

0(s0), we
have by (6-15)

L∇

X fk−1 ∧ϑ +L∇

X gk = fk−1 ∧ϑ − (−1)k9 fk−1.

Therefore L∇

X fk−1 = fk−1 and L∇

X gk = −(−1)k9 fk−1 and fk−1 = 0 by invertibility of L∇

X − Id. Hence
gk = 0 by invertibility of L∇

X , and thus βk = 0. For k = r , Lemma 6.9 yields

L∇

Xβr = Jrβr ,

which gives, as above, βr = 0. Applying the above arguments to β̃ = 0ϑβ, which lies in the intersection
(6-11), yields βn−k = 0 for each k ⩽ r . Thus β = 0 and the equality (6-11) is proven. □

6.6. Proof of Proposition 6.2. We start from Proposition 3.4 which gives us, in view of Proposition 6.6,

τ(C •(s0), 0ϑ)= (−1)r dim Cr
+(s0) det(0ϑ∇|Cr

+(s0))
(−1)r

r−1∏
j=0

det(0ϑ∇|C j
+(s0)⊕Cn− j−1

+ (s0)
)(−1) j

. (6-19)

We first note that for k ∈ {0, . . . , r} and β ∈�k(M, E), one has

∇0ϑβ = L r−k(
∇β − (−1)kιX∇β ∧ϑ + L (ιX∇ιXβ − ιXβ)

)
∧ϑ

+ (−1)kL r−k+1(β − ∇ιXβ + (−1)kιX (β − ∇ιXβ)∧ϑ
)
,

0ϑ∇β = L r−k−1(
∇β − (−1)kιX∇β ∧ϑ

)
∧ϑ + (−1)kL r−k(ιX∇β),

(6-20)

where L j−r
= (L r− j

|3 j VX )
−1 for 0 ⩽ j ⩽ r . Indeed, using the decomposition (6-1),

0ϑβ = (−1)k+1ιXβ ∧ dϑr−k+1
+ (β + (−1)kιXβ ∧ϑ)∧ dϑr−k

∧ϑ

= (−1)k+1ιXβ ∧ dϑr−k+1
+β ∧ dϑr−k

∧ϑ,

which leads to

∇0ϑβ = (−1)k+1
∇ιXβ ∧ dϑr−k+1

+ ∇β ∧ dϑr−k
∧ϑ + (−1)kβ ∧ dϑr−k+1

= (−1)k+1((−1)k+1ιX∇ιXβ ∧ϑ ∧ dϑr−k+1)
+ (−1)k+1(

∇ιXβ + (−1)kιX∇ιXβ ∧ϑ
)
∧ dϑr−k+1

+
(
∇β − (−1)kιX∇β ∧ϑ

)
∧ dϑr−k

∧ϑ

+ (−1)k
(
β + (−1)kιXβ ∧ϑ

)
∧ dϑr−k+1

− ιXβ ∧ dϑr−k+1
∧ϑ,

which is exactly the first part of (6-20). The second part follows directly from the decomposition (6-1).
We will set, for 0 ⩽ k ⩽ n,

mk = dim Ck(s0), m0
k = dim Ck

0(s0), m±

k = dim Ck
±
(s0).
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First, take k ∈ {0, . . . , r − 1}. Because Bϑ is invertible on C •(s0), 0ϑ∇ induces an isomorphism
Ck

+
(s0)→ Cn−k−1

+ (s0). Take any basis γ of Ck
+
(s0). Then 0ϑ∇γ is a basis of Cn−k−1

+ and the matrix of
0ϑ∇|Ck

+(s0)⊕Cn−k+1
+ (s0)

in the basis γ ⊕0ϑ∇γ is(
0 [(0ϑ∇)

2
]γ

Id 0

)
, (6-21)

where [(0ϑ∇)
2
]γ is the matrix of (0ϑ∇)2|Ck

+(s0)
in the basis γ . Define

J̃k = Id −Jk : Ck
+
(s0)→ Ck

+
(s0).

Then J̃k is a projector (since Jk is by Lemma 6.7) and Jk (and thus J̃k) commutes with L∇

X (since 9
commutes with L∇

X ). Moreover one has

(0ϑ∇)
2
|ker J̃k

= (L∇

X − Id)2, (0ϑ∇)
2
|ran J̃k

= L∇

X (L
∇

X − Id).

As a consequence,

det((0ϑ∇)2|Ck
+(s0)

)= [s0(1 + s0)]
m+

k −m0
k−1(1 + s0)

2m0
k−1 = s0

m+

k −m0
k−1(1 + s0)

m+

k +m0
k−1,

because on C •(s0) (and in particular on Ck
+
(s0)), one has L∇

X = −s0 Id +ν, where ν is nilpotent, and one
has dim ker J̃k = dim ran Jk = m0

k−1. Indeed, by (6-15) we can view Jk as a map Ck−1
0 (s0)→ Ck

+
(s0),

which is of course injective. We finally obtain with (6-21)

det(0ϑ∇|Ck
+(s0)⊕Cn−k+1

+ (s0)
)= (−1)m

+

k s0
m+

k −m0
k−1(1 + s0)

m+

k +m0
k−1 . (6-22)

We now deal with the case k = r . Lemma 6.9 gives

0ϑ∇|ker J̃r
= (−1)r (L∇

X − Id), 0ϑ∇|ran J̃r
= (−1)rL∇

X .

As before, we obtain

det(0ϑ∇|Cr
+(s0))= (−1)rm+

r (−1)m
+
r s0

m+
r −m0

r−1(1 + s0)
m0

r−1 . (6-23)

Combining (6-19) with (6-22) and (6-23) we finally obtain

τ(C •(s0), 0ϑ)= (−1)J s0
K (1 + s0)

L , (6-24)

where

J =

r∑
k=0

(−1)km+

k , K =

r∑
k=0

(−1)k(m+

k − m0
k−1), L =

r−1∑
k=0

(−1)k(m+

k − m0
k).

Note that for 0⩽ k ⩽ r −1 one has by acyclicity and because 0ϑ induces isomorphisms Ck
+
(s0)≃ Cn−k

− (s0)

(since Bϑ is invertible),

m+

k = m−

n−k = dim ker(∇|Cn−k(s0))= dim ran(∇|Cn−k−1(s0))= mn−k−1 − m−

n−k−1.

Since mn−k−1 − m−

n−k−1 = mk+1 − m+

k+1, one obtains

m+

k + m+

k+1 = mk+1, 0 ⩽ k ⩽ r − 1, (6-25)
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which leads to m+

k + m+

k+1 = m0
k + m0

k+1. As a consequence, since m+

0 = m0 = m0
0, we get

m+

r − m0
r = −(m+

r−1 − m0
r−1)= · · · = (−1)r (m+

0 − m0
0)= 0.

This implies

m0
k = m+

k , 0 ⩽ k ⩽ r, (6-26)

which leads to L = 0. Moreover, since m0
k = m0

2r−k , we get

K =

r∑
k=0

(−1)k(m0
k − m0

k−1)=

2r∑
k=0

(−1)km0
k = −

n∑
k=0

(−1)kkmk = (−1)qm(s0),

where we used (5-10) in the last equality. Finally, again because m0
k = m0

2r−k ,

2J = (−1)r m0
r +

2r∑
k=0

(−1)km0
k = (−1)r m0

r −

n∑
k=0

(−1)kkmk .

We have

(−1)r m0
r =

r∑
k=0

(−1)kmk and
n∑

k=0

(−1)kkmk =

r∑
k=0

(−1)k(2k − n)mk,

where the first equality comes from (6-25) and (6-26) and the second from the fact that mk = mn−k . We
thus obtained

J =

r∑
k=0

(−1)k(r + 1 − k)mk = Qs0,

and finally by (6-24)

τ(C •(s0), 0ϑ)= (−1)Qs0 (−s0)
(−1)q m(s0).

But now recall from (6-5) that detgr,C•(L∇

X )
(−1)q+1

= (−s0)
m(s0). This completes the proof.

7. Invariance of the dynamical torsion under small perturbations of the contact form

In this section, we are interested in the behavior of the dynamical torsion when we deform the contact
form. Namely, we prove here:

Theorem 9. Assume that (ϑt)t∈(−δ,δ) is a smooth family of contact forms such that their Reeb vector
fields X t generate a contact Anosov flow for each t. Let (E,∇) be an acyclic flat vector bundle. Then the
map t 7→ τϑt(∇) is real differentiable and we have

d
dt
τϑt(∇)= 0.

Remark 7.1. In view of Remark 6.5, if ∇ is not assumed acyclic, then it is not hard to see that the proof
(given below) of Theorem 9 is still valid and we have that ∂tτϑt(∇)= 0 in det H •(M,∇).

We will thus consider a family of contact forms and set ϑ = ϑ0 and X = X0. We also fix an acyclic
flat vector bundle (E,∇).
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7.1. Anisotropic spaces for a family of vector fields. To study the dynamical torsion when the dynamics
is perturbed, we construct with the help of [Bonthonneau 2020] some anisotropic Sobolev spaces on which
each X t has nice spectral properties. We refer to Appendix B where we briefly recall the construction of
these spaces.

By Section B.4, the set
{(t, s) : s /∈ Res(L∇

X t
)}

is open in (−δ, δ)× C. Fix λ ∈ (0, 1) such that

Res(L∇

X )∩ {|s| ⩽ λ} ⊂ {0}. (7-1)

Then for t close enough to 0, we have Res(L∇

X t
)∩ {|s| = λ} = ∅ so that the spectral projectors

5t =
1

2iπ

∫
|s|=λ

(L∇

X t
+ s)−1 ds :�•(M, E)→ D ′•(M, E) (7-2)

are well-defined. The next proposition is a brief summary of the results from Appendix B. For any
C, ρ > 0, we will let

�(c, ρ)= {Re(s) > c} ∪ {|s| ⩽ ρ} ⊂ C. (7-3)

Proposition 7.2. There is c, ε0 > 0 such that for any ρ > 0 there exists anisotropic Sobolev spaces

�•(M, E)⊂ H•

1 ⊂ H•
⊂ D ′•(M, E),

each inclusion being continuous with dense image, such that the following hold:

(1) For each t ∈ [−ε0, ε0], the family s 7→ L∇

X t
+ s is a holomorphic family of (unbounded) Fredholm

operators H•

1 → H•

1 and H•
→ H• of index 0 in the region �(c, ρ). Moreover

L∇

X t
∈ C1([−ε0, ε0]t,L(H•

1,H
•)).

(2) For every relatively compact open region Z ⊂ int�(c, ρ) such that Res(L∇

X )∩Z = ∅, there exists
tZ > 0 such that

(L∇

X t
+ s)−1

∈ C0(
[−tZ , tZ ]t,Hol(Zs,L(H•

1,H
•))

)
.

(3) 5t ∈ C1([−ε0, ε0]t,L(H•,H•

1)).

We will thus fix such Hilbert spaces for some ρ > c + 1. We let C •

t = ran5t ⊂ H•, 5 = 5t=0 and
C •

= ran5.

7.2. Variation of the torsion part. Let 0t : C •

t → Cn−•

t be the chirality operator associated with X t; see
Section 6.1. The next lemma allows us to compute the variation of the finite-dimensional torsion part of
the dynamical torsion.

Lemma 7.3. We have that t 7→ τ(C •

t , 0t) is real differentiable and

d
dt
τ(C •

t , 0t)= −trs,C•
t
(5tϑtιẊ t

)τ (C •

t , 0t),

where Ẋ t = (d/dt)X t.
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Proof. By Proposition 7.2, the operator 5t|C• : C •
→ C •

t is invertible for t close enough to 0 and we will
denote by Qt its inverse. Then for t close enough to 0, one has

τ(C •

t , 0t)= τ(C •, 0̃t),

where 0̃t is defined by 0̃t =5Qt0t5t5, because ∇ and 5t commute and the image of a 0̃t-invariant basis
of C • by the projector 5t is a 0t-invariant basis of C •

t .
Therefore [Braverman and Kappeler 2007c, Proposition 4.9] gives

d
dt
τ(C •

t , 0t)=
1
2 trs,C•( ˙̃0t0̃t)τ (C •

t , 0t),

where ˙̃0t = (d/dt)0̃t : C •
→ C •. Since 0t and 5t commute, and by the two first points of Proposition 7.2,

we can apply (A-2) to get

0̃t =50t5+ t50̇5+ oC•→C•(t).

This leads to
˙̃00̃ =50̇0|C•,

where we removed the subscripts t to signify that we take all the t-dependent objects at t = 0. Therefore,

1
2 trs,C•( ˙̃00̃)=

1
2 trs,C•(50̇0).

Now notice that 02
t = 1 implies 00̇+ 0̇0 = 0. Therefore, for every k ∈ {0, . . . , r},

trCn−k 00̇ = trCk 000̇0 = trCk 0̇0 = − trCk 00̇.

Therefore we only need to compute trCk (00̇) for k ∈ {0, . . . , r} to get the full super trace trs,C•(0̇0).
Since n is odd, we have

1
2 trs,C•( ˙̃00̃)=

1
2 trC•((−1)N+1500̇)=

r∑
k=0

(−1)k+1 trCk (500̇).

Let k ∈ {0, . . . , r} and α ∈�k(M). Using the decomposition

α = (−1)k−1ιX tα∧ϑt + (α+ (−1)kιX tα∧ϑt),

we get by the definition of 0t

0tα = (−1)k−1ιX tα∧ (dϑt)
r−k+1

+ (α+ (−1)kιX tα∧ϑt)∧ (dϑt)
r−k

∧ϑt.

Therefore,
0̇tα = (−1)k−1ιẊ t

α∧ (dϑt)
r−k+1

+ (r − k + 1)(−1)k−1ιX tα∧ dϑ̇t ∧ (dϑt)
r−k

+ (−1)k
(
ιẊ t
α∧ϑt + ιX tα∧ ϑ̇t

)
∧ (dϑt)

r−k
∧ϑt

+
(
α+ (−1)kιX tα∧ϑt

)
∧ (dϑt)

r−k
∧ ϑ̇t

+ (r − k)
(
α+ (−1)kιX tα∧ϑt

)
∧ dϑ̇t ∧ (dϑt)

r−k−1
∧ϑt.
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Now we use the decompositions

dϑ̇t = −ιX tdϑ̇t ∧ϑt + (dϑ̇t + ιX tdϑ̇t ∧ϑt),

ϑ̇t = ϑ̇t(X t)ϑ + (ϑ̇t − ϑ̇t(X t)ϑ),

ιẊ t
α = (−1)kιX t ιẊ t

α∧ϑt + (ιẊ t
α+ (−1)k+1ιX t ιẊ t

α∧ϑt)

to get, again by definition,

00̇α = (−1)k−1(ιẊα+(−1)k+1ιX ιẊα∧ϑ)∧ϑ

+(−1)k−1(L r−k)−1((−1)kιX ιẊα∧(dϑ)r−k+1)
+(r −k+1)(L r−k+1)−1((−1)k−1ιXα∧(dϑ̇+ιX dϑ̇∧ϑ)∧(dϑ)r−k)

∧ϑ

−(r −k+1)((−1)k−1ιXα)∧ιX dϑ̇

+(−1)kιXα∧(ϑ̇−ϑ̇(X)ϑ)

+(L r−k+1)−1((α+(−1)kιXα∧ϑ)∧(dϑ)r−k
∧(ϑ̇−ϑ̇(X)ϑ)

)
∧ϑ

+(α+(−1)kιXα∧ϑ)ϑ̇(X)

+(r −k)(L r−k)−1((α+(−1)kιXα∧ϑ)∧(dϑ̇+ιX dϑ̇∧ϑ)∧(dϑ)r−k−1), (7-4)

where again we removed the subscripts t to signify that we take everything at t = 0. Now let Ak : Ck
0 → Ck

0
(note that here Ck

0 is Ck
∩ ker ιX , see Section 6.1, and not Ck

t at t = 0) defined by

Aku = (r − k)(L r−k)−1(u ∧ (dϑ̇ + ιX dϑ̇)∧ (dϑ)r−k−1).
Note that the maps defined by the second, the fourth, the fifth and the sixth terms of the right-hand side
of (7-4) are antidiagonal, that is, they have the form

(0
⋆
⋆
0

)
in the decomposition C •

= C •−1
0 ∧ ϑ ⊕ C •

0.
Therefore, since Ar = 0 (we also set A−1 = 0),

r∑
k=0

(−1)k+1 trCk (500̇)=

r∑
k=0

(−1)k+1(trCk 5ϑιẊ+trCk
0
5ϑ̇(X))+

r∑
k=0

(−1)k+1(trCk−1
0
5Ak−1+trCk

0
5Ak)

=

r∑
k=0

(−1)k+1(trCk 5ϑιẊ+trCk
0
5ϑ̇(X)). (7-5)

Here, the first and seventh terms of (7-4) correspond to the first sum of the right-hand side of the first equal-
ity of (7-5), while the third and eighth correspond to the second one. If α= f ∧ϑ+g ∈Ck−1

0 ∧ϑ⊕Ck
0 , then

ϑ ∧ ιẊα = ϑ(Ẋ)( f ∧ϑ)+ϑ ∧ ιẊ g.

This shows that for every k ∈ {0, . . . , n} one has

trCk 5ϑιẊ = trCk−1
0
5ϑ(Ẋ). (7-6)

Injecting this relation in (7-5) we obtain, with ϑ(Ẋ) = −ϑ̇(X) and the formula ϑ̇(X)|C2r−k
0

L r−k
=

L r−k ϑ̇(X)|Ck
0
,

r∑
k=0

(−1)k+1 trCk (500̇)=

r∑
k=0

(−1)k+1(trCk−1
0
5ϑ(Ẋ)− trCk

0
5ϑ(Ẋ))=

2r∑
k=0

(−1)k trCk
0
5ϑ(Ẋ).
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However by (7-6) we have
2r∑

k=0

(−1)k trCk
0
5ϑ(Ẋ)= trC•((−1)N+15ϑιẊ ),

which completes the proof. □

7.3. Variation of the rest. Let us now interest ourselves in the variation of t 7→ ζ
(λ,∞)
X t,∇

(0); see Section 6.3.
For t close enough to 0, let Pt : T M → T M be defined by

Pt : kerϑ ⊕ RX → kerϑ ⊕ RX t,

v + µX 7→ v + µX t.

For simplicity, we will still denote 3k(T Pt) :3k T ∗M →3k T ∗M by Pt.

Proposition 7.4 (variation of the dynamical zeta function with respect to the vector field). For any
relatively compact open set Z ⊂ C such that Z ∩ Res(L∇

X )= ∅, there is tZ > 0 so that t 7→ ζX t,∇(s) is C1

as a map
[−tZ , tZ ] → Hol(Z,C).

Moreover for each s /∈ Res(LX t) we have

∂t log ζX t,∇(s)= (−1)qs tr♭s(ϑtιẊ t
(L∇

X t
+ s)−1e−ε(L∇

Xt
+s)
). (7-7)

Proof. Take a relatively compact open set Z ⊂ C such that Z ∩ Res(L∇

X )= ∅. We denote by

Qt(s) ∈ D′ n(M × M, E∨ ⊠ E)

the Schwartz kernel of the operator (L∇

X t
+ s)−1e−ε(L∇

Xt
+s). Then it follows from [Dang et al. 2020,

Proposition 6.3] that there is tZ > 0 and a closed conical subset 0 not intersecting N ∗1 such that the
map (t, s) 7→ Qt(s) is bounded as a map

[−tZ , tZ ] ×Z → D′ n
0 (M × M, E∨ ⊠ E). (7-8)

In fact it is actually C2 as a map [−tZ , tZ ] ×Z → D′ n(M × M, E∨ ⊠ E) and from this it is not hard to
see that the map (7-8) is actually C1. Next, by (5-9) we have

ζX t,∇(s)= exp
(

tr♭gr

∫ s

∞

(L∇

X t
+ τ)−1e−(L∇

Xt
+τ) dτ

)(−1)q+1

for s ∈ Z , where ∞ means Re τ → +∞. The first part of the proposition follows.
Next we prove (7-7) for t = 0, the proof being the same for arbitrary t. Note that we have

∂t(L∇

X t
+ τ)−1

= −(L∇

X t
+ τ)−1LẊ t

(L∇

X t
+ τ)−1,

which leads to

∂t log ζX t,∇(s)= (−1)q
∫ s

∞

tr♭gr(L
∇

X t
+ τ)−1LẊ t

(L∇

X t
+ τ)−1e−ε(L∇

Xt
+τ) dτ

+ (−1)q+1
∫ s

∞

tr♭gr(L
∇

X t
+ τ)−1∂t e−ε(L∇

Xt
+τ) dτ. (7-9)
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By cyclicity of the trace, and using (L∇

X t
+ τ)−2

= −∂τ (L∇

X t
+ τ)−1, one gets

tr♭gr(L
∇

X t
+ τ)−1LẊ t

(L∇

X t
+ τ)−1e−ε(L∇

Xt
+τ)

= −∂τ tr♭gr L
∇

Ẋ t
(L∇

X t
+ τ)−1e−ε(L∇

Xt
+τ)

+ tr♭gr L
∇

Ẋ t
(L∇

X t
+ τ)−1∂τ e−ε(L∇

Xt
+τ)
.

Next, one has ∂τ e−ε(L∇

Xt
+τ)

= −ε e−ε(L∇

Xt
+τ) and moreover

∂t e−ε(L∇

Xt
+τ)

= −e−ε(L∇

Xt
+τ)

∫ ε

0
eu(L∇

Xt
+τ)L∇

Ẋ t
e−u(L∇

Xt
+τ) du

by Duhamel’s principle, and notice that the integral∫ s

∞

tr♭gr (L
∇

X t
+ τ)−1e−ε(LẊt+τ)

[
ε L∇

Ẋ t
−

∫ ε

0
eu(L∇

Xt
+τ)L∇

Ẋ t
e−u(L∇

Xt
+τ) du

]
dτ

vanishes by cyclicity of the trace. Thus by (7-9) one gets

∂t log ζX t,∇(s)= (−1)q+1tr♭gr L
∇

Ẋ t
(L∇

X t
+ s)−1e−ε(LẊt+s)

. (7-10)

Setting At = P−1
t Ṗt, one can verify that

ιX t = P−1
t ιX Pt,

which yields
L∇

Ẋ t
= −∇ AtιX t + ∇ιX t At − AtιX t∇ + ιX t At∇. (7-11)

Notice that if N is the number operator, we have

(−1)N N∇ = ∇(−1)N+1(N + 1) and (−1)N N ιX t = ιX t(−1)N−1(N − 1). (7-12)

Combining (7-11), (7-12) and the fact that ιX t and ∇ commute with L∇

X t
, one can show that

(−1)N NL∇

Ẋ t
(L∇

X t
+ s)−1e−ε(LẊt+s)

= (−1)N AtL∇

X t
(L∇

X t
+ s)−1e−ε(LẊt+s)

+ B, (7-13)

where B is a commutator. Note that At=0 = Ṗt=0 since Pt=0 = Id; therefore

Ṗt=0 = ϑ ∧ ιẊ .

Moreover we have L∇

X t
(L∇

X t
+ s)−1

= Id −s (L∇

X t
+ s)−1 and injecting those two last identities in (7-13)

one obtains, by (7-10),

∂t|t=0 log ζX t,∇(s)= (−1)qs tr♭s(ϑ ∧ ιẊ (L
∇

X + s)−1e−ε(LẊ +s)),

where we used that the flat trace of Ate
−ε(L∇

Xt
+s)

= 0 vanishes. □

Now we compute the variation of the [0, λ]-part of ζ (λ,∞)(s).

Lemma 7.5. We have

d
dt

log detgr,C•
t
(L∇

X t
+ s)= trs,C•

t
(5tϑtιẊ t

)− s trs,C•
t
(5tϑtιẊ t

(L∇

X t
+ s)−1).
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Proof. Again it suffices to prove the lemma for t = 0. We are in a position to apply Lemma A.2, which
gives

d
dt

log detgr,C•
t
(L∇

X t
+ s)(−1)q+1

= (−1)q+1trgr,C•
t
(5tL∇

Ẋ t
(L∇

X t
+ s)−1).

Now we may conclude as in the proof of Proposition 7.4, using that

(−1)N N5tL∇

Ẋ t
(L∇

X t
+ s)−1

= (−1)N5t AtL∇

X t
(L∇

X t
+ s)−1

+ C,

where C is a commutator. □

7.4. Proof of Theorem 9. Combining Proposition 7.4 and Lemma 7.5, we obtain, for s /∈ Res(L∇

X t
),

∂t log ζ (λ,∞)
X t,∇

(s)= (−1)q trs,C•
t
(5tϑtιẊ t

)

+ (−1)qs tr♭s
(
ϑt ∧ ιẊ t

(L∇

X t
+ s)−1e−ε(LẊ +s)(1 −5t)

)
+ (−1)qs trs,C•

t

(
5tϑtιẊ t

(L∇

X t
+ s)−1(e−ε(LẊ +s)

− Id)
)
.

Now it is a simple observation that the last two terms in the right-hand side of the above equality vanish
at s = 0; hence we get

∂t log ζ (λ,∞)
X t,∇

(0)= (−1)q trs,C•
t
(5tϑtιẊ t

).

Comparing this with Lemma 7.3, we obtain Theorem 9 by the definition of the dynamical torsion; see
Section 6.4.

8. Variation of the connection

In this section we compute the variation of the dynamical torsion when the connection is perturbed. This
formula will be crucial to compare the dynamical torsion and Turaev’s refined combinatorial torsion.

8.1. Real-differentiable families of flat connections. Let U ⊂ C be some open set and consider ∇(z),
z ∈ U, a family of flat connections on E . We will assume that the map z 7→ ∇(z) is C1,5 that is, there
exists continuous maps z 7→ µz, νz ∈�1(M,End(E)) such that for any z0 ∈ U one has

∇(z)= ∇(z0)+ Re(z − z0)µz0 + Im(z − z0)νz0 + o(z − z0), (8-1)

where o(z − z0) is understood in the Fréchet topology of �1(M,End(E)). We will denote for any σ ∈ C

αz0(σ )= Re(σ )µz0 + Im(σ )νz0 ∈�1(M,End(E)). (8-2)

Note that since the connections ∇(z) are assumed to be flat, we have

[∇(z), αz(σ )] = ∇(z)αz(σ )+αz(σ )∇(z)= 0. (8-3)

5Note that, even if in the following we will consider holomorphic families of representations ρ(z), |z| < δ, it is not clear
that we may find a holomorphic family of connections ∇(z), |z|< δ, such that ρ∇(z) = ρ(z), but only such real-differentiable
families; see Section 11.3. Therefore we need to consider the class of real-differentiable families of connections.
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8.2. A cochain contraction induced by the Anosov flow. For z ∈ U let

(L∇(z)
X + s)−1

=

J (0)∑
j=1

(−L∇(z)
X ) j−150(z)

s j + Y (z)+O(s) (8-4)

be the development (5-3) for the resonance s0 = 0. Let C •(0; z)= ran50(z). Recall from Section 5.5 that
since ∇(z) is acyclic, the complex (C •(0; z),∇(z)) is acyclic. Therefore there exists a cochain contraction
k(z) : C •(0; z)→ C •(0; z), i.e., a map of degree −1 such that

∇(z)k(z)+ k(z)∇(z)= IdC•(0;z) . (8-5)

We now define
K (z)= ιX Y (z)(Id −50(z))+ k(z)50(z) :�•(M, E)→ D ′•(M, E). (8-6)

A crucial property of the operator K is that it satisfies the chain homotopy equation

∇(z)K (z)+ K (z)∇(z)= Id�•(M,E), (8-7)

as follows from the development (8-4).

8.3. The variation formula. For simplicity, we will set for every z ∈ U

τ(z)= τϑ(∇(z)).

The operators K (z) defined above are involved in the variation formula of the dynamical torsion, as
follows.

Proposition 8.1. The map z 7→ τ(z) is real differentiable; we have for every z ∈ U and ε > 0 small
enough

d(log τ)zσ = −tr♭s(αz(σ )K (z)e−εL∇(z)
X ), σ ∈ C. (8-8)

The proof of the previous proposition is similar of that of the last subsection, i.e., we compute the
variation of each part of the dynamical torsion. The rest of this section is devoted to the proof of
Proposition 8.1.

8.4. Anisotropic Sobolev spaces for a family of connections. Fix some z0 ∈ U. Recall from Section 7.1
that we chose some anisotropic Sobolev spaces H•

1 ⊂ H•. Notice that

L∇(z)
X = L∇(z0)

X +β(z)(X), (8-9)

where β(z) ∈�1(M,End(E)) is defined by

∇(z)= ∇(z0)+β(z).

Therefore (8-1) implies that z 7→ L∇(z)
X −L∇(z0)

X is a C1 family of multiplication operators and thus forms
a C1 family of bounded operators H•

→ H• and H•

1 → H•

1 by construction of the anisotropic spaces
and standard rules of pseudodifferential calculus (see for example [Faure and Sjöstrand 2011]). As a
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consequence and thanks to Proposition 7.2, we are in position to apply [Kato 1976, Theorem 3.11]; thus
if δ is small enough we have that

Rρ = {(z, s) ∈ C2
: |z − z0|< δ, s ∈�(c, ρ), s /∈ σH•(L∇(z)

X )} is open, (8-10)

where σH•(L∇(z)
X ) denotes the resolvent set of L∇(z)

X on H•, and �(c, ρ) is defined in (7-3). Moreover
(8-1) and (8-9) imply that for any open set Z ⊂ �(c, ρ) such that Res(L∇(z0)

X ) ∩ Z = ∅, there exists
δZ > 0 such that for any j ∈ {0, 1},

(L∇(z)
X + s)−1

∈ C1(
{|z − z0|< δZ},Hol(Zs,L(H•

j ,H
•

j ))
)
. (8-11)

For all z, the map s 7→ (L∇(z)
X + s)−1 is meromorphic in the region�(c, ρ)with poles (of finite multiplicity)

which coincide with the resonances of L∇(z)
X in this region.

Moreover, the arguments from the proof of [Dyatlov and Zworski 2016, Proposition 3.4] can be made
uniformly for the family z 7→ (L∇(z)

X + s)−1 to obtain that for some closed conical set 0 ⊂ T ∗(M × M)
not intersecting the conormal to the diagonal and any ε > 0 small enough, the map

Z × {|z − z0|< δZ} → D′

0(M × M, π∗

1 E∨
⊗π∗

2 E), (s, z) 7→ K(s, z),

is bounded, where K(s, z) is the Schwartz kernel of the shifted resolvent (L∇(z)
X + s)−1e−εL∇(z)

X .

8.5. A family of spectral projectors. Fix λ ∈ (0, 1) such that

{s ∈ C : |s| ⩽ λ} ∩ Res(L∇(z0)
X )⊂ {0}. (8-12)

Thanks to (8-10), if z is close enough to z0,

{s ∈ C : |s| = λ} ∩ Res(L∇(z)
X )= ∅, (8-13)

by compactness of the circle. For z ∈ U we will denote by

5(z)=
1

2iπ

∫
|s|=λ

(L∇(z)
X + s)−1 ds (8-14)

the spectral projector of L∇(z)
X on generalized eigenvectors for resonances in {s ∈ C : |s| ⩽ λ}, and

C •(z)= ran5(z). It follows from (8-11), (8-13) and (8-14) that the map

5 : z 7→5(z) ∈ L(H•

j ,H
•

j )

is C1 for j = 0, 1. We can therefore apply A.3 to get, for δ small enough,

5 ∈ C1({|z − z0|< δ}z : L(H•,H•

1)). (8-15)

8.6. Variation of the finite-dimensional part. Because (C •(z0),∇(z0)) is acyclic, there exists a cochain
contraction k(z0) : C •(z0)→ C •−1(z0); see Section 3.6. The next lemma computes the variation of the
finite-dimensional part of the dynamical torsion.
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Lemma 8.2. The map z 7→ c(z)= τ(C •(z), 0) is real differentiable at z = z0 and

d(log c)z0σ = −trs,C•5(z0)αz0(σ )k(z0), σ ∈ C.

Note that here, az0(σ ) is identified with the map ω 7→ az0(σ )∧ω.

Proof. By continuity of the family z 7→5(z), we have that5(z)|C•(z0) :C •(z0)→C •(z) is an isomorphism,
for |z − z0| small enough, of inverse denoted by Q(z). For those z we denote by Ĉ •(z) the graded vector
space C •(z0) endowed with the differential

∇̂(z)= Q(z)∇(z)5(z) : C •(z0)→ C •(z0).

Then because 0 commutes with every 5(z) one has

τ(Ĉ •(z), 0)= τ(C •(z), 0). (8-16)

By (8-15) we can apply (A-2) in the proof of Lemma A.2 which gives, as σ → 0,

∇̂(z0 + σ)5(z0)=5(z0)∇(z0)5(z0)+5(z0)αz0(σ )5(z0)+ oC•(z0)→C•(z0)(σ ).

Therefore Lemma 3.5 implies the desired result. □

8.7. Variation of the zeta part. We give a first proposition which computes the variation of the Ruelle
zeta function in its convergence region.

Proposition 8.3 (variation of the dynamical zeta function with respect to the connection). For any relatively
compact open set Z ⊂ C such that Z ∩ Res(L∇(z0)

X )= ∅, there is δZ > 0 so that (z, s) 7→ ζX,∇(z)(s) is C1

as a map

{|z − z0|< δ} ×Z → C

and for every ε > 0 small enough it holds

dz(ζX,∇(z)(s))|z=z0σ = (−1)q+1e−εs tr♭s
(
αz0(σ )ιX (L

∇(z0)
X + s)−1e−εL∇(z0)

X
)
.

Proof. The proof is very similar to that of Proposition 7.4, using the identities

d
dt

∣∣∣
t=0
(L∇(z+tσ)

X + τ)−1
= −(L∇(z)

X + τ)−1az0(σ )(X)(L
∇(z)
X + τ)−1

and αz0(σ )(X)= [αz0(σ ), ιX ] = αz0(σ ) ◦ ιX + ιX ◦αz0(σ ), and we shall omit the details. □

The following lemma is a direct consequence of Lemma A.2 and the fact that50(z0)=5(z0) by (8-12).

Lemma 8.4. For s /∈ Res(L∇

X (z0)), the map z 7→ hs(z)= detgr,C•(z)(L∇(z)
X + s)(−1)q+1

is C1 near z = z0

and

d(log hs)z0σ = (−1)q+1trs,C•(z0)

(
50(z0)αz0(σ )ιX (L

∇(z0)
X + s)−1).
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8.8. Proof of Proposition 8.1. Combining the two lemmas of the preceding subsection we obtain that
for s /∈ Res(L∇(z0)

X ), the map z 7→ ζ
(λ,∞)
X,∇(z)(s)= gs(z)/hs(z) is real differentiable at z = z0 (and therefore

on U since we may vary z0). Moreover for every ε > 0 small enough

d
(
log

gs

hs

)
z
σ=(−1)q+1(e−εs tr♭sαz(σ)ιX (L∇(z)

X +s)−1e−εL∇(z)
X −trs,C•(z)50(z)αz(σ)ιX (L∇(z)

X +s)−1). (8-17)

Letting s → 0, this yields

(−1)q+1 d(log b)zσ = tr♭s
(
αz(σ )ιX Y (z)(Id −50(z))e−εL∇(z)

X
)
+ trs,C•(z)(50(z)αz(σ )ιX Qz(ε)),

where we set b(z)= ζ
(λ,∞)
X,∇(z)(0) and

Qz(ε)=

∑
n⩾1

(−ε)n

n!
(L∇(z)

X )n−1
: C •(z)→ C •(z).

Recall that if c(z)= τ(C •(z), 0) one has τ(z)= c(z)b(z)(−1)q. Therefore Lemma 8.2 gives, with what
precedes, and with K (z) given by (8-6),

d(log τ)zσ = −tr♭s(αz(σ )K (z)e−εL∇(z)
X )− trs,C•(z)

(
50(z)αz(σ )

(
k(z)(Id −e−εL∇(z)

X )+ ιX Qz(ε)
))
. (8-18)

Moreover, by using (8-3) and (8-7), we see that

αz(σ )K (z)L∇(z)
X e−εL∇(z)

X = αz(σ )K (z)[∇(z), ιX ]e−εL∇(z)
X

= αz(σ )ιX e−εL∇(z)
X + [αz(σ )K (z)ιX e−εL∇

X ,∇(z)],

and hence, by cyclicity of the trace, (d/dε)tr♭s(αz(σ )K (z)e−εL∇(z)
X )= 0. In particular, the last term in

the right-hand side of (8-18) does not depend on ε; since it goes to zero as ε → 0, it vanishes, and
Proposition 8.1 follows.

9. Euler structures, Chern–Simons classes

The Turaev torsion is defined using Euler structures, introduced by Turaev [1989], whose purpose is to
fix sign ambiguities of combinatorial torsions. We shall use however the representation in terms of vector
fields used by Burghelea and Haller [2006]. The goal of the present section is to introduce these Euler
structures, in view of the definition of the Turaev torsion.

9.1. The Chern–Simons class of a pair of vector fields. If X ∈ C∞(M, T M) is a vector field with isolated
nondegenerate zeros, we define the singular 0-chain

div(X)= −

∑
x∈Crit(X)

indX (x)[x] ∈ C0(M,Z),

where Crit(X) is the set of critical points of X and indX (x) denotes the Poincaré–Hopf index of x as a
critical point of X .6 Note also that div(−X)= −div(X) since M is odd-dimensional.

6indX (x)= (−1)dim Es (x) if x is hyperbolic and Es(x)⊂ Tx M is the stable subspace of x .
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Let X0, X1 be two vector fields with isolated nondegenerate zeros. Let p : M × [0, 1] → M be the
projection over the first factor and choose a smooth section H of the bundle p∗T M → M × [0, 1],
transversal to the zero section, such that H restricts to X i on {i} × M for i = 0, 1. Then the set
H−1(0)⊂ M × [0, 1] is an oriented smooth submanifold of dimension 1 with boundary (it is oriented
because M and [0, 1] are), and we denote by [H−1(0)] its fundamental class.

Definition 9.1. The class

p∗[H−1(0)] ∈ C1(M,Z)/∂C2(M,Z),

where p∗ is the pushforward by p, does not depend on the choice of the homotopy H relating X0 and X1;
see [Burghelea and Haller 2006, §2.2]. This is the Chern–Simons class of the pair (X0, X1), denoted by
cs(X0, X1).

We have the fundamental formulae

∂ cs(X0, X1)= div(X1)− div(X0),

cs(X0, X1)+ cs(X1, X2)= cs(X0, X2) (9-1)

for any other vector field with nondegenerate zeros X2. Notice also that if X0 and X1 are nonsingular
vector fields, then cs(X0, X1) defines a homology class in H1(M,Z).

9.2. Euler structures. Let X be a smooth vector field on M with nondegenerate zeros. An Euler chain
for X is a singular one-chain e ∈ C1(M,Z) such that ∂e = div(X). Euler chains for X always exist
because M is odd-dimensional and thus χ(M)= 0.

Two pairs (X0, e0) and (X1, e1), with X i a vector field with nondegenerate zeros and ei an Euler chain
for X i , i = 0, 1, will be said to be equivalent if

[e1] = [e0] + cs(X0, X1) ∈ C1(M,C)/∂C2(M,Z), (9-2)

where [ei ] is the class of ei in C1(M,C)/∂C2(M,Z) for i = 1, 2.

Definition 9.2. An Euler structure is an equivalence class [X, e] for the relation (9-2). We will denote by
Eul(M) the set of Euler structures.

There is a free and transitive action of H1(M,Z) on Eul(M) given by

[X, e] + h = [X, e + h], h ∈ H1(M,Z).

9.3. Homotopy formula relating flows. Let X0, X1 be two vector fields with nondegenerate zeros. Let
H be a smooth homotopy between X0 and X1 as in Section 9.1 and set X t = H(t, · ) ∈ C∞(M, T M). For
ε > 0 we define 8ε : M × [0, 1] → M × M × [0, 1] via

8ε(x, t)= (e−εX t(x), x, t), x ∈ M, t ∈ [0, 1].

We also set

Hε = {8ε(x, t) : (x, t) ∈ M × [0, 1]} ⊂ M × M × R.
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Then Hε is a submanifold with boundary of M × M × R which is oriented (since M and R are). Define

[Hε] = (8ε)∗([M] × [[0, 1]]) ∈ D ′n(M × M × R)

to be the associated integration current; see Section 4.3. Let g be any metric on M and let ρ > 0 be smaller
than its injectivity radius. Then for any x, y ∈ M with dist(x, y)⩽ρ, we denote by P(x, y)∈Hom(Ex , Ey)

the parallel transport by ∇ along the minimizing geodesic joining x to y. Then P is a smooth section of
π∗

1 E∨
⊗π∗

2 E defined in some neighborhood of the diagonal in M × M. Take ε small enough so that

dist(x, e−s X t(x))⩽ ρ, s ∈ [0, ε], t ∈ [0, 1], x ∈ M, (9-3)

so that suppπ∗[Hε] ⊂ {(x, y) : dist(x, y)⩽ ρ}. Here, π : M × M × R → M × M is the projection over
the two first factors and π∗ : D′n(M × M ×[0, 1])→ D′n−1(M × M) is the push-forward operator which
is simply defined by∫

M×M
π∗u ∧ v =

∫
M×M×[0,1]

u ∧π∗v, u ∈ D′n(M × M × [0, 1]), v ∈�n+1(M × M).

Then we define
Rε = −π∗[Hε] · P ∈ D ′n−1(M × M, π∗

1 E∨
⊗π∗

2 E).

Finally, we denote by Rε :�•(M, E)→ D ′•−1(M, E) the operator of degree −1 whose Schwartz kernel
is Rε.

Lemma 9.3. We have the homotopy formula

[∇, Rε] = ∇ Rε + Rε∇ = e−εL∇

X1 − e−εL∇

X0 . (9-4)

Proof. First note that because M is odd-dimensional, the boundary (computed with orientations) of the
manifold Hε is calculated using the Leibniz rule [Krantz and Parks 2008, (7.15), p. 190] as

∂Hε = ∂
(
(8ε)∗([M] × [[0, 1]])

)
= (−1)dim(M)(8ε)∗([M] × (∂[[0, 1]]))

= (−1)dim(M)(8ε)∗([M] × ({1} − {0}))= Gr(e−εX0)× {0} − Gr(e−εX1)× {1}.

Therefore we have, see (4-1),

(−1)n dM×Mπ∗[Hε] = π∗[∂Hε] = [Gr(e−εX0)] − [Gr(e−εX1)],

where [Gr(e−εX i )] denotes the integration current on the manifold Gr(e−εX i ) for i = 0, 1. Now note that
we have by construction ∇

E∨⊠E P = 0. Therefore

∇
E∨⊠ERε = (−1)n

(
[Gr(e−εX1)] − [Gr(e−εX0)]

)
⊗ P.

Note that by definition of e−L∇

Xi (see Section 5.2), the bound (9-3) and the flatness of ∇ imply that the
Schwartz kernel of e−εL∇

Xi is [Gr(e−εX i )] ⊗ P. This concludes because the Schwartz kernel of [∇, Rε] is
(−1)n∇E∨⊠ERε; see [Harvey and Lawson 2001, Lemma 2.2]. □

The next formula follows from the definition of the flat trace and the Chern–Simons classes. It will be
crucial for the topological interpretation of the variation formula obtained in Section 8.
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Lemma 9.4. We have for any α ∈�•(M,End(E)) such that trα is closed and ε > 0 small enough

tr♭s αRε = ⟨trα, cs(X0, X1)⟩. (9-5)

Here α is identified with the operator u 7→ α∧u. Note that because H is transverse to the zero section,
we have

WF(Rε)∩ N ∗1= ∅, (9-6)

where N ∗1 denotes the conormal to the diagonal 1 in M × M, so that the above flat trace is well-defined.

Proof. We denote by i : M ↪→ M × M the diagonal inclusion. Note that the Schwartz kernel of αRε is
(−1)nπ∗

2α∧Rε = −π∗

2α∧Rε since n is odd. From the definition of the super flat trace tr♭s, we find that

tr♭sαRε = ⟨tr i∗(π∗

2α∧π∗[Hε]·P), 1⟩, (9-7)

where π2 : M × M → M is the projection over the second factor. Of course we have i∗ P = IdE ∈

C∞(M,End(E)). We therefore have

tr i∗(π∗

2α∧π∗[Hε]·P)= trα∧ i∗π∗[Hε] = trα∧ p∗ j∗
[Hε],

where j : M × [0, 1] ↪→ M × M × [0, 1], (x, t) 7→ (x, x, t). Now, it holds j∗
[Hε] = [H−1(0)] and thus

p∗ j∗
[Hε] = cs(X0, X1). This finally leads to

tr♭sαRε = ⟨trα∧ cs(X0, X1), 1⟩ = ⟨trα, cs(X0, X1)⟩. □

10. Morse theory and variation of Turaev torsion

We introduce here the Turaev torsion which is defined in terms of CW decompositions. In the spirit of
the seminal work [Bismut and Zhang 1992] based on geometric constructions of [Laudenbach 1992], we
use a CW decomposition which comes from the unstable cells of a Morse–Smale gradient flow induced
by a Morse function. This allows us to interpret the variation of the Turaev torsion as a supertrace on the
space of generalized resonant states for the Morse–Smale flow. This interpretation will be convenient for
the comparison of the Turaev torsion with the dynamical torsion.

10.1. Morse theory and CW-decompositions. Let f be a Morse function on M and X̃ = − gradg f be
its associated gradient vector field with respect to some Riemannian metric g (the tilde notation is used to
make the difference with the Anosov flows we studied until now). For any a ∈ Crit( f ), we denote by

W s(a)=

{
y ∈ M : lim

t→∞
et X̃ y = a

}
, W u(a)=

{
y ∈ M : lim

t→∞
e−t X̃ y = a

}
,

the stable and unstable manifolds of a. Then it is well known that W s(a) (resp. W u(x)) is a smooth
embedded open disk of dimension n − ind f (a) (resp. ind f (a)), where ind f (a) is the index of a as a
critical point of f , that is, in a Morse chart (z1, . . . , zn) near a,

f (z1, . . . , zn)= f (a)− z2
1 − · · · − z2

ind f (a) + z2
ind f (a)+1 + · · · + z2

n.
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For simplicity, we will let
|a| = ind f (a)= dim W u(a),

and we fix an orientation of every W u(a).
We assume that X̃ satisfies the Morse–Smale condition, that is, for any a, b ∈ Crit( f ), the manifolds

W s(a) and W u(b) are transverse. Also, we assume that, for every a ∈ Crit( f ), the metric g is flat near a
and reads

∑n
i=1(dx i )2 in the Morse charts. This assumption on the metric is crucial to ensure one can

compactify the unstable and stable manifolds as smooth manifolds with corners. The existence of such a
compactification and of the CW structure is unknown without the flatness assumption. Let us summarize
some results from [Qin 2010, Theorems 3.2, 3.8 and 3.9] which apply to f . We would like to mention that
such results can be found in a slightly different form in [Laudenbach 1992] and are used in [Bismut and
Zhang 1992]. A difference is that Laudenbach only needs to compactify the unstable cells as C1-manifolds
with conical singularities (as opposed to C∞) to show that the unstable manifolds have finite mass near the
boundary — he is also able to obtain the CW-complex structure. On the other hand, Qin obtains a smooth
compactification as manifolds with corners which is stronger than the result of Laudenbach7 and hence
his results recover all those of [Laudenbach 1992]. In the work [Dang and Rivière 2020b], no assumption
is made on the flatness of the metric g and only the fact that X̃ is C1 linearizable near critical points is
needed. In this context, the unstable currents are resonant states for the Lie derivative LX̃ and belong to
some anisotropic Sobolev spaces. This allows to bound the wavefront set of the unstable currents. Yet this
method does not allow to show the finiteness of the mass as in the work of Laudenbach. This nevertheless
gives a spectral interpretation of the Morse complex, but this approach does not show that the unstable
manifolds form a CW-complex, and the latter is crucial in the topological approach of the torsion. Making
such strong assumptions on the pair ( f, g) in the present paper allows us to benefit from the best of both
worlds — we can use the results from [Dang and Rivière 2020b] together with those from [Qin 2010].

First, W u(a) admits a compactification to a smooth |a|-dimensional manifold with corner W u(a),
endowed with a smooth map ea : W u(a)→ M that extends the inclusion W u(a)⊂ M. Then the collection
W = {W u(a)}a∈Crit( f ) and the applications ea induce a CW-decomposition on M. Moreover, the boundary
operator of the cellular chain complex is given by

∂W u(a)=

∑
|b|=|a|−1

#L(a, b)W u(b),

where L(a, b) is the set of gradient lines joining a to b and #L(a, b) is the sum of the orientations induced
by the orientations of the unstable manifolds of (a, b); see [Qin 2010, Theorem 3.9].

10.2. The Thom–Smale complex. We set C•(W, E∨)=
⊕n

k=0 Ck(W, E∨), where

Ck(W, E∨)=

⊕
a∈Crit( f )

|a|=k

E∨

a , k = 0, . . . , n.

7As discussed in detail in https://mathoverflow.net/questions/346822/unstable-manifolds-of-a-morse-function-give-a-cw-
complex.

https://mathoverflow.net/questions/346822/unstable-manifolds-of-a-morse-function-give-a-cw-complex
https://mathoverflow.net/questions/346822/unstable-manifolds-of-a-morse-function-give-a-cw-complex
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We endow the complex C•(W, E∨) with the boundary operator ∂∇
∨

defined by

∂∇
∨

u =

∑
|b|=|a|−1

∑
γ∈L(a,b)

εγ Pγ (u), a ∈ Crit( f ), u ∈ E∨

a ,

where for γ ∈ L(a, b), Pγ ∈ End(E∨
a , E∨

b ) is the parallel transport of ∇
∨ along the curve γ and εγ = ±1

is the orientation number of γ ∈ L(a, b).
Then by [Laudenbach 1992] (see also [Dang and Rivière 2020b] for a different approach), there is a

canonical isomorphism
H•(M,∇∨)≃ H•(W,∇∨),

where H•(M,∇∨) is the singular homology of flat sections of (E∨,∇∨) and H•(W,∇∨) denotes the
homology of the complex C•(W, E∨) endowed with the boundary map ∂∇

∨

. Therefore this complex is
acyclic since ∇ (and thus ∇

∨) is.

10.3. The Turaev torsion. Fix some base point x⋆ ∈ M and, for every a ∈ Crit( f ), let γa be some path
in M joining x⋆ to a. Define

e =

∑
a∈Crit( f )

(−1)|a|γa ∈ C1(M,Z). (10-1)

Note that the Poincaré–Hopf index of X̃ near a ∈ Crit( f ) is −(−1)|a| so that

∂e = div(X̃) (10-2)

because
∑

a∈Crit( f )(−1)|a|
= χ(M) = 0 by the Poincaré–Hopf index theorem. Therefore e is an Euler

chain for X̃ and
e = [X̃ , e]

defines an Euler structure.
Next, choose some basis u1, . . . , ud of E∨

x⋆ . For each a ∈ Crit( f ), we propagate this basis via the
parallel transport of ∇ along γa to obtain a basis u1,a, . . . , ud,a of Ea . We choose an ordering of the cells
{W u(a)}; this gives us a homology orientation o, that is, an orientation on the line det H•(W,R) (see
[Farber and Turaev 2000, §6.3]). Moreover, this ordering and the chosen basis of E∨

a give us (using the
wedge product) an element ck ∈ det Ck(W, E∨) for each k, and thus an element c ∈ det C•(W, E∨).

The Turaev torsion of ∇ with respect to the choices e, o is then defined by [Farber and Turaev 2000,
§9.2, p. 218]

τe,o(∇)
−1

= ϕC•(W,∇∨)(c) ∈ C \ 0, (10-3)

where ϕC•(W,∇∨) : det C•(W,∇∨)≃ C \ 0 is the canonical isomorphism from [Farber and Turaev 2000,
§2.2] — the homology version of the isomorphism (3-1). Note that ∇

∨ (and not ∇) is involved in the
definition of τe,o(∇); indeed, we use here the cohomological version of Turaev’s torsion, which is more
convenient for our purposes, and which is consistent with [Braverman and Kappeler 2007b; 2008, p. 252].

10.4. Resonant states of the Morse–Smale flow. In [Dang and Rivière 2020b], it was shown that we can
define Ruelle resonances for the Morse–Smale gradient flow L∇

X̃
as described in Section 5 in the context
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of Anosov flows. More precisely, we have that the resolvent

(L∇

X̃ + s)−1
:�•(M, E)→ D ′•(M, E)

is well-defined for Re(s) ≫ 0 and has a meromorphic continuation to all s ∈ C. The poles of this
continuation are the Ruelle resonances of L∇

X̃
and the set of those will be denoted by Res(L∇

X̃
). In fact,

the set Res(L∇

X̃
) does not depend on the flat vector bundle (E,∇). It only depends on the Lyapunov

exponents of the Morse–Smale vector field at critical points. In fact Res(L∇

X̃
)⊂ Z⩾0 in the present case

since the Lyapunov exponents are only ±1 and the Ruelle spectrum was proved to be equal to integer
combinations of absolute values of Lyapunov exponents [Dang and Rivière 2020a, Theorem 6.3, p. 571].
Let λ > 0 be such that Res(L∇

X̃
)∩ {|s| ⩽ λ} ⊂ {0}; let

5̃=
1

2π i

∫
|s|=λ

(L∇

X̃ + s)−1 ds (10-4)

be the spectral projector associated with the resonance 0, and denote by

C̃ •
= ran 5̃⊂ D ′•(M, E)

the associated space of generalized eigenvectors for L∇

X̃
. Since ∇ and L∇

X̃
commute, ∇ induces a differential

on the complex C̃ •. Moreover, 5̃ maps D ′•

0 (M, E) to itself continuously, where

0 =

⋃
a∈Crit( f )

N ∗W u(a)⊂ T ∗M.

10.5. A variation formula for the Turaev torsion. Assume that we are given a C1 family of acyclic
connections ∇(z) on E as in Section 8. We denote by 5̃−(z) the spectral projector (10-4) associated
with ∇(z) and −X̃ , and set C̃ •

−
(z) = ran 5̃−(z). By [Dang and Rivière 2020b] we have that all the

complexes (C̃ •(z),∇(z)) are acyclic and there exists cochain contractions k̃−(z) : C̃ •

−
(z)→ C̃ •−1

− (z). As
in Section 8.3 we have a variation formula for the Turaev torsion.

Proposition 10.1. The map z 7→ τ̃ (z)= τe,o(∇(z)) is real differentiable on U and for any z ∈ U

d(log τ̃ )zσ = −trs,C̃•(z)(5̃−(z)αz(σ )k̃−(z))−
∫

e
trαz(σ ), σ ∈ C,

where αz(σ ) is given by (8-2) and e is given by (10-1).

The rest of this section is devoted to the proof of Proposition 10.1. For convenience, we will first study
the variation of z 7→ τe,o(∇(z)∨), in order to make computations on E instead of E∨ (indeed, τe,o(∇(z))
is defined with the dual connection ∇(z)∨; see (10-3)). Then a simple duality relation will allow us to
obtain the variation formula for z 7→ τe,o(∇(z)).

10.6. A preferred basis. Let a ∈ Crit( f ) and k = |a|. We denote by [W u(a)] ∈D ′n−k
0 (M) the integration

current over the unstable manifold W u(a) of X̃ ; it is a well-defined current far from ∂W u(a). We
also pick a cut-off function χa ∈ C∞(M) valued in [0, 1] with χa ≡ 1 near a and χa is supported in
a small neighborhood �a of a, with �a ∩ ∂W u(a) = ∅. Recall from Section 10.3 that we have a



2662 YANN CHAUBET AND NGUYEN VIET DANG

basis u1,a, . . . , ud,a of Ea . Using the parallel transport of ∇, we obtain flat sections of E over W u(a)
that we will still denote by u1,a, . . . , ud,a . Define

ũ j,a = 5̃(χa[W u(a)] ⊗ u j,a) ∈ C̃n−k, j = 1, . . . , d. (10-5)

By [Dang and Rivière 2020a] we have that {ũ j,a : a ∈ Crit( f ), 1 ⩽ j ⩽ d} is a basis of C̃ •. Adapting the
proof of [Dang and Rivière 2021, Theorem 2.6] to the bundle case, we obtain the following proposition
which will allow us to compute the Turaev torsion with the help of the complex C̃ •.

Proposition 10.2. The map 8 : C•(W,∇)→ C̃n−• defined by

8(u j,a)= ũ j,a, a ∈ Crit( f ), j = 1, . . . , d,

is an isomorphism and satisfies8

8 ◦ ∂∇
= (−1)•+1

∇ ◦8.

An immediate corollary of the above proposition and (10-3) is that (using the notation of Section 3.2)

τe,o(∇
∨)= ϕC•(W,∇)(u)

−1
= τ(C̃ •, ũ), (10-6)

where u ∈ det C•(W,∇) (resp. ũ ∈ det C̃ •) is the element given by the basis {u j,a} (resp. {ũ j,a}) and the
ordering of the cells W u(a).

10.7. Proof of Proposition 10.1. For any a ∈ Crit( f ) we denote by Pγa (z) ∈ Hom(Ex⋆, Ea) the parallel
transport of ∇(z) along γa . We set

u j,a(z)= Pγa (z)Pγa (z0)
−1u j,a

and
ũ j,a(z)= 5̃(z)(χa[W u(a)] ⊗ u j,a(z)),

where again we consider u j,a(z) as a ∇(z)-flat section of E over W u(a) using the parallel transport of ∇(z).
The construction of Ruelle resonances for Morse–Smale gradient flow follows from the construction of
anisotropic Sobolev spaces

�•(M, E)⊂H̃•

1 ⊂H̃•

⊂ D ′•(M, E),

see [Dang and Rivière 2019], on which L∇

X̃
+ s is a holomorphic family of Fredholm operators of index 0

in the region {Re(s) >−2}, and such that ∇(z) is bounded H̃•

1 →H̃•. Every argument made in Section 8.4
also stands here and z 7→ 5̃(z) is a C1 family of bounded operators H̃•

→H̃•

1.
Note that by continuity, 5̃(z) induces an isomorphism C̃ •(z0) → C̃ •(z) for z close enough to zero.

In fact, this isomorphism holds true for all z since we have an explicit description of the range of 5̃(z)
for all z using the basis of resonant states of L∇

X̃
. Let ũ(z) ∈ det C̃ •(z) be the element given by the basis

{ũ j,a(z)} and the ordering of the cells W u(a). Then by (10-6) and (3-5) we have

τe,o(∇(z)∨)= τ(C̃ •(z), ũ(z))= [ũ(z) : 5̃(z)ũ(z0)]τ(C̃ •(z), 5̃(z)ũ(z0)), (10-7)

8(−1)• comes from ∂ = (−1)deg +1 d comparing the boundary ∂ and De Rham differential d.
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where 5̃(z)ũ(z0) ∈ det C̃ •(z) is the image of ũ by the isomorphism det C̃ •(z0) → det C̃ •(z) induced
by 5̃(z), and ũ(z) = [ũ(z) : 5̃(z)ũ(z0)]5̃(z)ũ(z0). Doing exactly as in Section 8.6, we obtain that
z 7→ τ̂ (z)= τ(C̃ •(z), 5̃(z)ũ) is C1 and

d(log τ̂ )z0σ = −trs,C̃•5̃(z0)αz0(σ )k̃(z0). (10-8)

Therefore it remains to compute the variation of [ũ(z) : 5̃(z)ũ(z0)]. This is the purpose of the next
formula.

Lemma 10.3. We have

[ũ(z) : 5̃(z)ũ(z0)] =

∏
a∈Crit( f )

det(Pγa (z)Pγa (z0)
−1)(−1)n−|a|

.

Proof. By the definition of the basis {ua, j } in Section 10.3 it suffices to show that for z small enough

5̃(z)ũa,i =

d∑
j=1

A j
a,i (z)ũa, j (z), a ∈ Crit( f ), 1 ⩽ i, j ⩽ d, (10-9)

where the coefficients A j
a,i (z) are defined by ua,i (z0)(a)=

∑d
j=1 A j

a,i (z)ua, j (z)(a).
Everything relies on the fact that one has a decomposition of the projector

5̃(z)=

∑
a,i

⟨s̃a,i (z), · ⟩ũa,i (z)

which originates from [Harvey and Lawson 2001] and was also used in [Dang and Rivière 2019, Theo-
rem 2.4, p. 1409].

Consider the dual operator L∇(z)∨

−X̃
:�•(M, E∨)→�•(M, E∨). The above constructions, starting from

a dual basis s1, . . . , sd ∈ E∨
x⋆ of u1, . . . , ud , give a basis {sa,i (z)} of each 0(W s(a),∇(z)∨) (the space

of flat section of ∇(z)∨ over W s(a)), since the unstable manifolds of −X̃ are the stable ones of X̃ . Let
C̃ •

∨
(z) be the range of the spectral projector 5̃∨(z) from (10-4) associated with the vector field −X̃ and

the connection ∇(z)∨. We have a basis {s̃a,i (z)} of C̃ •

∨
(z) given by

s̃a,i (z)= 5̃∨(z)(χa[W s(a)] ⊗ sa,i (z)).

We will prove that for any a, b ∈ Crit( f ) with same Morse index we have, for any 1 ⩽ i, j ⩽ d ,

⟨s̃a, j (z), ũa,i (z0)⟩ =

{
⟨sa, j (z)(a), ua,i (z0)(a)⟩E∨

a ,Ea if a = b,
0 if a ̸= b.

(10-10)

First assume that a ̸= b. Then W u(a)∩ W s(b)= ∅ by the transversality condition, since a and b have
same Morse index. Therefore for any t1, t2 ⩾ 0, we have〈

e−t1L∇(z)∨

−X̃ (χb[W s(b)] ⊗ sb, j (z)), e−t2L
∇(z0)
X̃ (χa[W u(a)] ⊗ ua,i (z))

〉
= 0, (10-11)

since the currents in the pairing have disjoint support because they are respectively contained in W s(b)
and W u(a). Now notice that for Re(s) big enough, one has

(L∇(z)∨

−X̃
+ s)−1

=

∫
∞

0
e−tL∇(z)∨

−X̃ e−ts dt and (L∇(z0)

X̃
+ s)−1

=

∫
∞

0
e−tL∇(z0)

X̃ e−ts dt.
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Therefore the representation (10-4) of the spectral projectors and the analytic continuation of the above
resolvents imply with (10-11) that ⟨s̃b, j (z), ũa,i ⟩ = 0.

Next assume that a = b. Then W u(a)∩ W s(a)= {a}. Since the support of s̃a,i (z) (resp. ũa,i (z0)) is
contained in the closure of W s(a) (resp. W u(a)), we can compute〈
5̃∨(z)(χa[W s(a)]⊗ sa, j (z)), 5̃(χa[W u(a)]⊗ua,i (z0))

〉
=

〈
χa[W s(a)]⊗ sa, j (z), χa[W u(a)]⊗ua,i (z0)

〉
=

〈
[a], ⟨sa, j (z), ua,i (z0)⟩E∨,E

〉
,

where the first equality stands because s̃a(z) = [W s(a)] ⊗ sa, j (z) near a by [Dang and Rivière 2020a,
Proposition 7.1]. This gives (10-10).

This identity immediately yields (10-9) with A j
a,i (z)= ⟨sa, j (z)(a), ua,i (z0)(a)⟩E∨

a ,Ea since we have

5̃(z)=

∑
a,i

⟨s̃a, j (z), · ⟩ũa, j (z), (10-12)

completing the proof. □

Using the lemma, we obtain, if µ(z)= [ũ(z) : 5̃(z)ũ(z0)],

d(logµ)z0σ =

∑
a∈Crit( f )

(−1)n−|a| tr(Aγa (z0, σ )Pγa (z0)
−1),

where Aγa (z0, σ )= d(Pγa )z0σ . Since n is odd, we obtain by definition of e and (4-4)

d(logµ)z0σ =

∑
a∈Crit( f )

(−1)|a|

∫
γa

trαz0(σ )=

∫
e

trαz0(σ ).

This equation combined with (10-7) and (10-8) yields, if τ̃∨(z)= τe,o(∇(z)∨)

d(log τ̃∨)z0σ = −trs,C̃•5̃(z0)αz0(σ )k̃(z0)+

∫
e

trαz0(σ ).

The proof is almost finished. We first studied the variation of z 7→ τ(∇(z)∨); we now recover the
variation of z 7→ τ(∇(z)), which was the goal of Proposition 10.1. Let us introduce some notation.
Recall that the operator 5̃ is the spectral projector on the kernel of L∇

X̃
; now, we need to work with

the spectral projector on ker(L∇(z0)
∨

X̃
) (resp. L∇(z0)

−X̃
), which we denote by 5̃∨

+
(z0) (resp. 5̃−(z0)) — the

sign + (resp. −) emphasize the fact that we deal with +X̃ (resp. −X̃ ). Next, we have

∇(z)∨ = ∇(z0)
∨

−
T (αz0(z − z0))+ o(z − z0).

Therefore, applying what precedes to τ̃ (z) we get

d(log τ̃ )z0σ = −trs,C̃•
∨,+

(
5̃∨

+
(z0)(−

Tαz0(σ ))k̃
∨

+
(z0)

)
+

∫
e

tr(−Tαz0(σ )), (10-13)

where 5̃∨
+
(z0) is the spectral projector (10-4) associated with ∇(z0)

∨ and +X̃ , C̃ •

∨,+ = ran 5̃∨
+
(z0), and

k̃∨
+
(z0) is any cochain contraction on the complex (C̃ •

∨,+,∇(z0)
∨). Now, we have the identification

(C̃k
∨,+)

∨
≃ C̃n−k

−
,
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where C̃ •

−
is the range of 5̃−(z0), the spectral projector (10-4) associated with ∇(z0) and −X̃ . This

identification can be thought of as a chain level version of Poincaré duality, the coresonant states of
the resonant states for the operator L∇

X̃
acting on the sections of the flat bundle (E,∇) are nothing but

the resonant states of L∇
∨

−X̃
acting on the sections of the dual flat bundle (E∨,∇∨). Moreover, one can

show that under this identification, the operators (5̃∨
+
(Tαz0(σ ))k̃(z0))

∨ and 5̃−(z0)αz0(σ )k−(z0) coincide
modulo a supercommutator. More precisely, it holds

(5̃∨

+
(Tαz0(σ ))k̃(z0))

∨
= 5̃−(z0)αz0(σ )k−(z0)+ [5̃−(z0)αz0(σ ), k−(z0)],

where for any j ∈ {0, . . . , n} we set

k−(z0)|C̃n− j
−

= (−1) j+1(k̃∨

+
(z0)|C̃ j+1)

∨
: C̃n− j

− → C̃n− j−1
− .

The operator k−(z0) is a cochain contraction on the complex (C̃ •

−
,∇(z0)). As a consequence, since n is odd,

trs,C̃•
∨,+
(5̃∨

+
(z0)(−

Tαz0(σ ))k̃
∨

+
(z0))= trs,C̃•

−
5̃−(z0)αz0(σ )k−(z0).

This concludes the proof of Proposition 10.1 by (10-13) since tr(−Tβ)=− trβ for any β∈�1(M,End(E)).

11. Comparison of the dynamical torsion with the Turaev torsion

In this section we see the dynamical torsion and the Turaev torsion as functions on the space of acyclic
representations. This is an open subset of a complex affine algebraic variety. Therefore we can compute
the derivative of τϑ/τe,o along holomorphic curves, using the variation formulae obtained in Sections 8
and 10. From this computation we will deduce Theorem 6.

11.1. The algebraic structure of the representation variety. We describe here the analytic structure of
the space

Rep(M, d)= Hom(π1(M),GL(Cd))

of complex representations of degree d of the fundamental group. Since M is compact, π1(M) is generated
by a finite number of elements c1, . . . , cL ∈ π1(M) which satisfy finitely many relations. A representation
ρ ∈ Rep(M, d) is thus given by 2L invertible d × d matrices ρ(c1), . . . , ρ(cL), ρ(c−1

1 ), . . . ρ(c−1
L ) with

complex coefficients satisfying finitely many polynomial equations. Therefore the set Rep(M, d) has a
natural structure of a complex affine algebraic set. We will denote the set of its singular points by6(M, d).
In what follows, we will only consider the classical topology of Rep(M, d), and not the Zariski one.

For any ρ ∈ Rep(M, d), we define

Eρ = M̃ × Cd/∼ρ,

where M̃ is the universal cover of M and ∼ρ is the equivalence relation given by

(x̃, v)∼ρ (γ · x̃, ρ(γ ) · v), x̃ ∈ M, γ ∈ π1(M).

Then Eρ is vector bundle over M which we endow with the flat connection ∇ρ induced by the trivial
connection on M̃ × Cd.
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We will say that a representation ρ ∈Rep(M, d) is acyclic if ∇ρ is acyclic. We denote by Repac(M, d)⊂
Rep(M, d) the space of acyclic representations. This is an open set (in the Zariski topology, thus in the
classical one) in Rep(M, d); see [Burghelea and Haller 2006, §4.1]. For any ρ ∈ Repac(M, d) we set

τϑ(ρ)= τϑ(∇ρ), τe,o(ρ)= τe,o(∇ρ)

for any Euler structure e and any homology orientation o.

11.2. Holomorphic families of acyclic representations. Let ρ0 ∈ Repac(M, d) \6(M, d) be a regular
point. Take δ > 0 and ρ(z), |z|< δ, a holomorphic curve in Repac(M, d) \6(M, d) such that ρ(0)= ρ0.
Theorems 6 and 7 will be a consequence of the following

Proposition 11.1. Let X be a contact Anosov vector field on M. Let e = [X̃ , e] be the Euler structure
defined in Section 10.3. Note that − cs(−X̃ , X)+e is a cycle and defines a homology class h ∈ H1(M,Z).
Then z 7→ τϑ(ρ(z))/τe,o(ρ(z)) is complex differentiable and

d
dz

(
τϑ(ρ(z))
τe,o(ρ(z))

⟨det ρ(z), h⟩

)
= 0

for any homology orientation o.

Proposition 11.1 relies on the variation formulae given by Propositions 8.1 and 10.1, and Lemma 9.4,
which gives a topological interpretation of those.

11.3. An adapted family of connections. By [Braverman and Vertman 2017, Lemma 4.3], there exists a
flat vector bundle E over M and a C1 family of connections ∇(z), |z|< δ, in the sense of Section 8.1,
such that

ρ∇(z) = ρ(z) (11-1)

for every z; we can moreover ask the family ∇(z) to be complex differentiable at z = 0, that is,

∇(z)= ∇ + zα+ o(z), (11-2)

where ∇ = ∇(0) and α ∈�1(M,End(E)). Note that flatness of ∇(z) implies

[∇, α] = ∇α+α∇ = 0. (11-3)

11.4. A cochain contraction induced by the Morse–Smale gradient flow. Let

(L∇

−X̃ + s)−1
=
5̃−

s
+ Ỹ +O(s)

be the Laurent expansion of (L∇

−X̃
+ s)−1 near s = 0. The fact that s = 0 is a simple pole comes from

[Dang and Rivière 2019, Proposition 6.1, p. 1431], where it is proved that there are no Jordan blocks for
the resonance s = 0. As in Section 8.2, we consider the operator

K̃ = ι
−X̃ Ỹ (Id −5̃−)+ k̃−5̃− :�•(M, E)→ D ′•(M, E),
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where k̃− is any cochain contraction on C̃ •

−
= ran 5̃−. Note that we have the identity

[∇, K̃ ] = ∇ K̃ + K̃∇ = Id . (11-4)

The next proposition allows us to interpret the term trs,C̃•5̃−(z)αz(σ )k̃−(z) appearing in Proposition 10.1
as a flat trace similar to the one appearing in Proposition 8.1. This will be crucial for the comparison
between τϑ and τe,o.

Proposition 11.2. For ε > 0 small enough, the wavefront set of the Schwartz kernel of the operator
ι
−X̃ Ỹ (Id −5̃−)e

−εL∇

−X̃ does not meet the conormal to the diagonal in M × M and we have for any
α ∈�1(M,End(E))

tr♭s(αι−X̃ Ỹ (Id −5̃−)e
−εL∇

−X̃ )= 0.

Proof of Proposition 11.2. Fix ε > 0. We start from the Atiyah–Bott–Lefschetz trace formula [Atiyah and
Bott 1967], which gives

tr♭sαι−X̃ e(t+ε)X̃ = 0

for all t ⩾ 0 since the flat trace tr♭s localizes at the critical points of X̃ and the contribution from the term
αι

−X̃ vanishes at the critical points. Now we would like to integrate this equality in time t on [0,+∞)

and then connect with the resolvent (L
−X̃ + s)−1; we have to argue rigorously why we can interchange

the flat trace and the integral over time t . This relies in an essential way on some explicit bound of the
wavefront set of the resolvent that can be deduced from Lemma C.1 in Appendix C, where we bound the
wavefront of the propagator near the conormal of the diagonal. Assuming that the inversion is justified,
we obtain, for large Re(s),

0 =

∫
∞

0
e−ts tr♭s(αι−X̃ e(t+ε)X̃ ) dt =

∫
∞

0
e−ts tr♭s(ι−X̃ e(t+ε)X̃ (Id −5̃−)) dt

= tr♭s
(
αι

−X̃ (L−X̃ + s)−1(Id −5̃−)eεLX̃
)
,

where we used the fact that ι
−X̃5̃− = 0, which follows from the proof of [Dang and Rivière 2019,

Proposition 7.7, p. 1448]. Actually, both resonant and coresonant states of −X̃ are killed by the contraction
operator ι

−X̃ . Our wavefront bound implies that the above identity still makes sense for s near the origin;
we then conclude by noting that

tr♭s
(
αι

−X̃ (L−X̃ + s)−1(Id −5̃−)eεLX̃
)︸ ︷︷ ︸

0

= tr♭s(αι−X̃ Ỹ eεLX̃ )+O(s)

since Ỹ (Id −5̃−)= Ỹ . Thus letting s → 0 concludes the proof of the proposition, provided that we can
justify the interchange of the flat trace and the integration over t .

For a ∈ Crit( f ), take ca, 0a, χa as in Lemma C.1 proved in Appendix C. The proof of Lemma C.1
actually shows that for Re(s) >−ca , the integral

Gχa,ε,s =

∫
∞

0
e−tsχae(t+ε)X̃ (Id −5̃−)χa dt
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converges as an operator �•(M)→ D ′•(M). Moreover, its Schwartz kernel Gχa,ε,s is locally bounded in
D ′n
0a
(M × M) in the region {Re(s) >−ca}. We will need the following lemma, which is also proved in

Appendix C.

Lemma 11.3. For any µ > 0, there is ν > 0 with the following property. For every x ∈ M such that
dist(x,Crit( f ))⩾ µ, it holds

dist(x, e−(t+ε)X̃ (x))⩾ ν, t ⩾ 0.

By (10-12) we have suppK5̃−
∩1=Crit( f ), where K5̃−

is the Schwartz kernel of 5̃− and1 is the diag-
onal in M×M ; the same holds for e(t+ε)X̃5̃− =5̃− (see [Dang and Rivière 2021]). Moreover, Lemma 11.3
implies that if χ ∈ C∞(M, [0, 1]) satisfies χ ≡ 1 near 1 and has support close enough to 1, we have

χe(t+ε)X̃χ =

∑
a

χae(t+ε)X̃χa.

Let c = mina∈Crit( f ) ca . For Re(s) >−c,

Gχ,ε,s =

∫
∞

0
e−tsχe(t+ε)X̃ (Id −5̃−)χ dt

defines an operator �•(M)→ D ′•(M), whose Schwartz kernel Gχ,ε,s is locally bounded in D ′n
0 (M × M)

in the region {Re(s) >−c}, where 0 =
⋃

a∈Crit( f ) 0a .
Now for Re(s)≫ 0, we have as a consequence of the Hille–Yosida theorem applied to L

−X̃ acting
on suitable anisotropic spaces [Dang and Rivière 2021, 3.2.3]:

(L
−X̃ + s)−1

=

∫
∞

0
e−tset X̃ dt :�•(M)→ D ′•(M).

Therefore for Re(s)≫ 0, it holds

Gχ,ε,s = χ(L
−X̃ + s)−1(Id −5̃−)eε X̃χ.

Since both members are holomorphic in the region {Re(s) > −c} and coincide for Re(s) ≫ 0, they
coincide in the region Re(s) >−c. We may compute, for Re(s)≫ 0,

tr♭s
(
αι

−X̃ (L−X̃ + s)−1(Id −5̃−)eεLX̃
)
= tr♭sαι−X̃ Gχ,ε,s =

∫
∞

0
e−ts tr♭s

(
αι

−X̃ e(t+ε)X̃ (Id −5̃−)
)

dt.

By holomorphy this holds true for any s such that Re(s) >−c, which concludes the proof. □

As a consequence, we have the formula

trs,C̃•
−
5̃−αk̃− = tr♭sα K̃ e−εL∇

−X̃ . (11-5)

Indeed, since L∇

−X̃
5̃− = 0, we have 5̃−e−εL∇

−X̃ = 5̃−. Moreover, since the trace of finite-rank operators
coincides with the flat trace, we have trs,C̃•

−
5̃−αk̃− = trs,C̃•

−
5̃−αk̃−e−εL∇

−X̃ = tr♭sαk̃−5̃−e−εL∇

−X̃ . Therefore
we obtain with Proposition 11.2

trs,C̃•5̃−αk̃− = tr♭sαι−X̃ Ỹ (Id −5̃−)e
−εL∇

−X̃ + tr♭sαk̃−5̃−e−εL∇

−X̃ ,

which gives (11-5).
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11.5. Proof of Proposition 11.1. Note that we have by (11-1)

τϑ(ρ(z))= τϑ(∇(z)), τe,o(ρ(z))= τe,o(∇(z)).

We will set f (z)= τϑ(∇(z))/τe,o(∇(z)) for simplicity. Now we apply Propositions 8.1 and 10.1 to obtain
that z 7→ f (z) is real differentiable (since z 7→ ∇(z) is); moreover it is complex differentiable at z = 0 by
(11-2) and for ε > 0 small enough we have

d
dz

∣∣∣
z=0

log f (z)= −tr♭sαK e−εL∇

X + tr♭sα K̃ e−εL∇

−X̃ + ⟨trα, e⟩, (11-6)

where we used (11-5).

Lemma 11.4. It holds tr♭s[α(K e−εL∇

X − K̃ e−εL∇

−X̃ )]= tr♭sαRε, where Rε is the interpolator at time ε defined
in Section 9.3 for the pair of vector fields (−X̃ , X).

Let us admit the lemma for now (we shall prove it later). The identity [∇, α] = 0 also implies that
d trα = tr ∇

E⊗E∨

α = tr[∇, α] = 0. As a consequence we can apply (9-5) to obtain

tr♭sαRε = ⟨trα, cs(−X̃ , X)⟩.

Now note that ∂(− cs(−X̃ , X)+ e)= −(div(X)−div(−X̃))+ div(X̃)= 0 by (9-1) and (10-2) since X
is nonsingular. Therefore we obtain

d
dz

∣∣∣
z=0

log f (z)= ⟨trα, h⟩,

where h = [− cs(−X̃ , X)+ e] ∈ H1(M,Z). Finally, let us note that by (4-4),

d
dz

∣∣∣
z=0

log det ρ(z)(h)= −⟨trα, h⟩,

since ρ(z)= ρ∇(z). Therefore the proposition is proved for z = 0. However the same argument holds for
every z close enough to 0, which gives the conclusion of Proposition 11.1. It remains to prove Lemma 11.4.

Proof of Lemma 11.4. Using the identities (8-6), (9-4), (11-3) and (11-4) one can see that

[∇, α(K e−εL∇

X − K̃ e−εL∇

−X̃ + Rε)] = 0. (11-7)

Next, it is a general fact that, for a finite-dimensional acyclic cochain complex (C •, ∂) and an operator
b : C •

→ C • of order zero such that [∂, b] = 0, it holds trs,C• b = 0. Indeed, if k : C •
→ C • satisfies

k∂+∂k = IdC• , we have [∂, kb]= [∂, k]b = b since [∂, b]= b∂−∂b = 0. Thus b is a supercommutator and
its supertrace vanishes. Here (11-7) shows that we are in the same situation, with an infinite-dimensional
complex; we will use Hodge theory to obtain a cochain contraction J (that takes the role of k in the above
argument), and such that the composition J Bε, where

Bε = α(K e−εL∇

X − K̃ e−εL∇

−X̃ − Rε),

is well-defined. Let
1= ∇∇

⋆
+ ∇

⋆
∇ :�•(M, E)→�•(M, E)
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be the Hodge–Laplace operator induced by any metric on M and any Hermitian product on E . Because
∇ is acyclic, 1 is invertible and Hodge theory gives that its inverse 1−1 is a pseudodifferential operator
of order −2. Define

J = ∇
⋆1−1

: D ′•(M, E)→ D ′•−1(M, E).

We have of course
[∇, J ] = ∇ J + J∇ = IdD ′•(M,E) . (11-8)

As above, this gives Bε = [∇, J Bε]. Moreover, it follows from wavefront composition [Hörmander 1990,
Theorem 8.2.14] that WF(Gε)∩ N ∗1= ∅. Therefore, the operators ∇,Gε satisfy the assumptions of
Proposition 4.1 which gives tr♭s Bε = tr♭s[∇,Gε] = 0, which concludes the proof of Lemma 11.4. □

11.6. Proof of Theorems 6 and 7. By Hartogs’ theorem and Proposition 11.1, we have that the map

ρ 7→
τϑ(ρ)

τe,o(ρ)
⟨det ρ, h⟩ (11-9)

is locally constant on Repac(M, d) \6(M, d).
Moreover, we can reproduce all the arguments we made in the continuous category to obtain that

ρ 7→ τϑ(ρ)/τe,o(ρ) is actually continuous on Repac(M, d). Because Repac(M, d) \6(M, d) is open and
dense in Repac(M, d), we get that the map (11-9) is locally constant on Repac(M, d).

By [Farber and Turaev 2000, p. 211] we have, if e′ is another Euler structure, then τe′,o(ρ) =

⟨det ρ, e′ − e⟩τe,o(ρ). As a consequence, if we set eϑ = [−X, 0], which defines an Euler structure
since X is nonsingular (see Section 9.2), we have e− eϑ = h and we obtain that ρ 7→ τϑ(ρ)/τeϑ ,o(ρ) is
locally constant on Repac(M, d).

Now let η be another contact form inducing an Anosov Reeb flow and denote by Xη its Reeb flow.
Then if eη = [−Xη, 0], we have

eη − eϑ = cs(X, Xη)

by definition. Therefore τeϑ ,o(ρ)= τeη,o(ρ)⟨det ρ, eϑ−eη⟩= τeη,o(ρ)⟨det ρ, cs(Xη, X)⟩ and we obtain that

ρ 7→
τϑ(ρ)

τη(ρ)
⟨det ρ, cs(X, Xη)⟩

is locally constant on Repac(M, d). By Theorem 9 we thus obtain Theorem 7.
Finally assume that dim M = 3 and b1(M) ̸= 0. Take R a connected component of Repac(M, d) and

assume that it contains an acyclic and unitary representation ρ0. We invoke [Dang et al. 2020, Theorem 1]
and the Cheeger–Müller theorem [Cheeger 1979; Müller 1978] to obtain that 0 /∈ Res(L

∇ρ0
X ) and

|τϑ(ρ0)| = |ζX,∇ρ0
(0)|−1

= τRS(ρ0),

where the first equality comes from (6-10) (we have q = 1 since dim M = 3) and τRS(ρ0) is the Ray–Singer
torsion of (M, ρ0) [1971]. On the other hand, we have by [Farber and Turaev 2000, Theorem 10.2] that
τRS(ρ0) = |τe,o(ρ0)| since ρ0 is unitary. Therefore the map ρ 7→ τϑ(ρ)/τeϑ ,o(ρ) is of modulus 1 on R.
This concludes the proof of Theorem 6.
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Appendix A: Projectors of finite rank

A.1. Traces on variable finite-dimensional spaces. In what follows, we consider two Hilbert spaces
G ⊂H, the inclusion being dense and continuous. We will denote by L(H,G) the space of bounded linear
operators H → G endowed with the operator norm. Let δ > 0 and 5t, |t| ⩽ δ, be a family of finite-rank
projectors on H such that ran5t ⊂ G. Assume that t 7→5t is differentiable at t = 0 as a family of bounded
operators H → G, that is,

5t =5+ tP + oH→G(t) (A-1)

for some P ∈ L(H,G), where 5 = 50. Let Ct = ran5t and C = ran5. Note that by continuity,
5t|C : C → Ct is invertible for |t| small enough; we denote by Qt : Ct → C its inverse.

Lemma A.1. We have

(i) P =5P + P5,

(ii) Qt5t =55t + oH→G(t).

Proof. Using (A-1) and 52
t =5t we obtain (i). This implies

5t ◦5 ◦5t = (5+ tP + o(t))5(5+ tP + o(t))

=5+ t(P5+5P)+ o(t)=5+ tP + o(t)=5t + o(t),

where all the o(t) are taken in L(H,G). Therefore Qt ◦5t ◦5◦5t = Qt5t +o(t). Since Qt ◦5t ◦5=5

by definition, one obtains
Qt ◦5t =5 ◦5t + o(t),

which concludes the proof of the lemma. □

Lemma A.2. Let At, |t| ⩽ δ, be a C1 family of bounded operators G → H such that At commutes with 5t

for every t. Let A = A0. Then t 7→ trCt(At) is real differentiable at t = 0 and

d
dt

∣∣∣
t=0

trCt(At)= trC(5 Ȧ),

where Ȧt = (d/dt)At. If moreover A is invertible on C , we have

d
dt

∣∣∣
t=0

log detCt(At)= trC(5 Ȧ(A|C)
−1).

Proof. We start from
trCt(At)= trC(Qt At5t).

Now since At commutes with 5t we have by the second part of Lemma A.1

Qt At5t5=55t At5+ oC→C(t)

=5A5+ t5( Ȧ + P A5+5AP)5+ oC→C(t).

But now the first part of Lemma A.1 gives 5P5 = 0. We therefore obtain, because A and 5 commute,

Qt At5t5=5A5+ t5 Ȧ5+ oC→C(t), (A-2)
which concludes the proof. □
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A.2. Gain of regularity. Assume that we are given four Hilbert spaces E ⊂ F ⊂ G ⊂ H with continuous
and dense inclusions. Let 5t, |t|< δ, be a family of finite-rank projectors on H which is differentiable at
t = 0 as family of bounded operators G → H (note that this differs from the last subsection where we had
H → G instead), that is,

5t =5+ tP + oG→H(t) (A-3)

for some P ∈ L(G,H). We will write Ct = ran(5t)⊂ H and C = ran(5).

Lemma A.3. Under the above assumptions, assume that5t is bounded E →F and that5t is differentiable
at t = 0 as a family of L(E,F). Assume also that rank5t does not depend on t. Then P is actually
bounded G → F and

5t =5+ tP + oG→F (t).

Proof. Because E is dense in H we know that C ⊂ F . There exists ϕ1, . . . , ϕm
∈ E such that ϕ1

t , . . . , ϕ
m
t

is a basis of Ct for t small enough, where we set ϕ j
t =5t(ϕ

j ) ∈ F . Let ϕ̃ j
t =5(ϕ

j
t ) ∈ C . The family

t 7→ ϕ̃
j
t ∈ C is differentiable at t = 0. Let ν1

t , . . . , ν
m
t ∈ C∗ be the dual basis of ϕ̃1

t , . . . , ϕ̃
m
t . Because C is

finite-dimensional, 5 is actually bounded H → F . As a consequence the map

t 7→ ℓ
j
t = ν

j
t ◦5 ◦5t ∈ G′

is differentiable at t = 0. Noting that

5t =

m∑
j=1

ϕ
j
t ⊗ ℓ

j
t : G → F,

we finally obtain that t 7→5t ∈ L(G,F) is differentiable at t = 0. □

Appendix B: Continuity of the Pollicott–Ruelle spectrum

In this appendix, we describe the spaces used in Sections 7 and 8; everything in this appendix is more
or less folklore, but we chose to provide a short summary of the results that we use in the main body of
the article, because we did not find any satisfying presentation in the literature. In what follows, M is a
compact manifold, (E,∇) is a flat vector bundle on M and X0 is a vector field on M generating an Anosov
flow; see Section 5.1. We denote by T ∗M = E∗

u,0 ⊕ E∗

s,0 ⊕ E∗

0,0 its Anosov decomposition of T ∗M.

B.1. Bonthonneau’s uniform weight function. We state here [Bonthonneau 2020, Lemma 3]. This gives
us an escape function having uniform good properties for a family of vector fields. A consequence is that
one can define some uniform anisotropic Sobolev spaces on which each vector field of the family has
good spectral properties. In what follows, | · | is a smooth norm on T ∗M.

Lemma B.1. There exist conical neighborhoods Nu and Ns of E∗

u,0 and E∗

s,0, some constants C, β, T, η>0,
and a weight function m ∈ C∞(T ∗M, [0, 1]) such that the following hold. Let X be any vector field
satisfying ∥X − X0∥C1 < η, and denote by 8t its induced flow on T ∗M and by E∗

u and E∗
s its (dual)

unstable and stable bundles. Then:
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(1) For E∗
•

⊂ N•, for • = s, u and for any t > 0, ξu ∈ E∗
u and ξs ∈ E∗

s , one has

|8t(ξu)| ⩾
1
C

eβt
|ξu|, |8−t(ξs)| ⩾

1
C

eβt
|ξs |.

(2) For every t ⩾ T it holds

8t(∁Ns ∩ X⊥)⊂ Nu, 8−t(∁Nu ∩ X⊥)⊂ Ns,

where X⊥
= {ξ ∈ T ∗M : ξ · X = 0}.

(3) If X is the Lie derivative induced by 8t , then

m ≡ 1 near Ns, m ≡ −1 near Nu, X .m ⩾ 0.

B.2. Anisotropic Sobolev spaces. Take the weight function m of Lemma B.1. Define the escape function g
by

g(x, ξ)= m(x, ξ) log(1 + |ξ |), (x, ξ) ∈ T ∗M.

We set G = Op(g) ∈ 90+(M) for any quantization procedure Op. Then by [Zworski 2012, §8.3, 9.3,
14.2] we have exp(±µG) ∈9µ+(M) for any µ > 0. For any µ > 0 and j ∈ Z we define the spaces

H•

µG, j = exp(−µG)H j (M,3•
⊗ E)⊂ D ′•(M, E),

where H j (M,3•
⊗ E) is the usual Sobolev space of order j on M with values in the bundle 3•

⊗ E .
Note that any pseudodifferential operator of order m is bounded H•

µG, j → H•

µG, j−m for any µ,m, j .

B.3. Uniform parametrices. Let us consider a smooth family of vector fields X t, |t|< ε, perturbing X0.
For any c, ρ > 0 we will set

�(c, ρ)= {Re(s) > c} ∪ {|s| ⩽ ρ} ⊂ C.

The spaces defined in the last subsection yield a uniform version of [Dyatlov and Zworski 2016, Proposi-
tion 3.4], as follows.

Proposition B.2 [Bonthonneau 2020, Lemma 9]. Let Q be a pseudodifferential operator microlocally
supported near the zero section in T ∗M and elliptic there. There exists c, ε0 > 0 such that, for any ρ > 0
and J ∈ N, there is µ0, h0 > 0 such that the following holds. For each µ⩾ µ0, 0< h < h0, j ∈ Z such
that | j | ⩽ J and s ∈�(c, ρ) the operator

L∇

X t
− h−1 Q + s : H•

µG, j+1 → H•

µG, j

is invertible for |t| ⩽ ε0 and the inverse is bounded H•

µG, j → H•

µG, j independently of t.

B.4. Continuity of the Pollicott–Ruelle spectrum. We fix ρ, J ⩾4 andµ0, µ, h0, h, j as in Proposition B.2.
We first observe that

(L∇

X t
+ s)(L∇

X t
− h−1 Q + s)−1

= Id +h−1 Q(L∇

X t
− h−1 Q + s)−1. (B-1)
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Since Q is supported near 0 in T ∗M, it is smoothing and thus trace class on any H•

µG, j . By analytic
Fredholm theory, the family s 7→ K (t, s)= h−1 Q(L∇

X t
− h−1 Q + s)−1 is a holomorphic family of trace

class operators on H•

µG, j in the region �(c, ρ). We can therefore consider the Fredholm determinant

D(t, s)= detH•

µG, j
(Id +K (t, s)).

It follows from [Simon 2005, Corollary 2.5] that for each t, s 7→ D(t, s) is holomorphic on �(c, ρ).
Moreover (B-1) shows that its zeros coincide, on �(c, ρ), with the Pollicott–Ruelle resonances of L∇

X t
.

In addition, we have, for any s ∈�(c, ρ),

(L∇

X t
−h−1 Q+s)−1

−(L∇

X t′
−h−1 Q+s)−1

=−(L∇

X t
−h−1 Q+s)−1(L∇

X t
−L∇

X t′
)(L∇

X t′
−h−1 Q+s)−1. (B-2)

We have
L∇

X t
−L∇

X t′

t − t′ t→t′−−→ L∇

Ẋ t
in L(H•

µG, j+1,H
•

µG, j ), (B-3)

where Ẋ t = (d/dt)X t and L(H•

µG, j+1,H
•

µG, j ) is the space of bounded linear operators H•

µG, j+1 →H•

µG, j
endowed with the operator norm. We therefore obtain by Proposition B.2 and because Q is smoothing
(and thus trace class H•

µG, j → H•

µG, j ′ for any µ, j, j ′) that K (t′, s)→ K (t, s) as t′ → t in L1(H•

µG,0)

locally uniformly in s, where L1(H•

µG,0) is the space of trace class operators on H•

µG,0 endowed with its
usual norm. As a consequence, we obtain with [Simon 2005, Corollary 2.5]

D(t, s) ∈ C0(
[−ε0, ε0]t,Hol(�(c, ρ)s)

)
. (B-4)

B.5. Regularity of the resolvent. Let Z be an open set of C whose closure is contained in the interior of
�(c, ρ). We assume that Z ∩ Res(L∇

X0
)= ∅. Up to taking ε0 smaller, Rouché’s theorem and (B-4) imply

that there exists δ > 0 such that dist(Z,Res(L∇

X t
)) > δ for any |t| ⩽ ε0. As a consequence, we obtain that,

for every | j |⩽ J, the map (L∇

X t
+s)−1

:H•

µG, j → H•

µG, j is bounded independently of (t, s)∈[−ε0, ε0]×Z .
Noting that

(L∇

X t
+ s)−1

− (L∇

X t′
+ s)−1

t − t′
= −(L∇

X t
+ s)−1

L∇

X t
−L∇

X t′

t − t′
(L∇

X t′
+ s)−1, (B-5)

we obtain by (B-3) that t′ 7→ (L∇

X t′
+ s)−1 is continuous in L(H•

µG, j+1,H
•

µG, j ). Therefore, applying (B-5)
again, we get that

(L∇

X t
+ s)−1

∈ C1(
[−ε0, ε0]t,Hol(Zs,L(H•

µG, j+1,H
•

µG, j−2))
)
. (B-6)

Note that here we need | j − 2|, | j + 1| ⩽ J.

B.6. Regularity of the spectral projectors. Let 0< λ < 1 such that {|s| = λ} ∩ Res(L∇

X0
)= ∅. Applying

the last subsection with Z = {|s| = λ}, we get {|s| = λ}∩Res(L∇

X t
)=∅ for any |t|⩽ ε0. We can therefore

define for those t

5t =
1

2π i

∫
|s|=λ

(L∇

X t
+ s)−1 ds : H•

µG, j → H•

µG, j .
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Then (B-6) gives that 5t ∈ C1([−ε0, ε0]t,Zs,L(H•

µG, j+1,H
•

µG, j−2)). This is true for j = 3 and j = −1
because J ⩾ 4. Moreover by Rouché’s theorem, the number m of zeros of s 7→ D(t, s) does not depend
on t. Noting that

∂s K (t, s)(1 + K (t, s))−1
= −K (t, s)(L∇

X t
− h−1 Q + s)−1(1 + K (t, s))−1,

we obtain by [Dyatlov and Zworski 2019, Theorem C.11] and the cyclicity of the trace that m is equal to

1
2π i

tr
∫

|s|=λ
∂s K (t, s)(1 + K (t, s))−1 ds = −

1
2π i

tr
∫

|s|=λ
(L∇

X t
− h−1 Q + s)−1(1 + K (t, s))−1K (t, s) ds

=
1

2π i
tr

∫
|s|=λ

(L∇

X t
− h−1 Q + s)−1(1 + K (t, s))−1,

where we used that s 7→ (L∇

X t
− h−1 Q + s)−1 is holomorphic on {|s| ⩽ λ}. The last integral is equal to

tr5t = rank5t by (B-1). As a consequence we can apply Lemma A.3 to obtain that

5t ∈ C1(
[−ε0, ε0]t,L(H•

µG,0,H
•

µG,1)
)
. (B-7)

Appendix C: The wavefront set of the Morse–Smale resolvent

The purpose of this section is to prove the wavefront bound needed to conclude the proof of Proposition 11.2.
For simplicity we prove it for X̃ instead of −X̃ . We will denote by 5̂ the spectral projector (10-4) for the
trivial bundle (C, d). Recall that D′

0(M × M) denotes distributions whose wavefront set is contained in
the closed conic set 0 ⊂ T •(M × M). A family ( ft)t⩾0 of distributions will be OD′

0
(1) if it is bounded in

D′

0 in the sense of [Dang 2013, p. 31]. We will need the following:

Lemma C.1. Let ε > 0 and a ∈ Crit( f ). There exists c > 0, a closed conic set 0 ⊂ T ∗(M × M) with
0 ∩ N ∗1(T ∗M)= ∅ and χ ∈ C∞(M, [0, 1]) such that χ ≡ 1 near a such that

Kχ,t+ε = OD ′n
0 (M×M)(e

−tc),

where, for t ⩾ 0, Kχ,t is the Schwartz kernel of the operator χe−tLX̃ (Id −5̂)χ .

Proof. Because X̃ is C∞-linearizable, we can take U ⊂ Rn to be a coordinate patch centered in a so that,
in those coordinates, e−t X̃ (x)= e−t A(x), where A is a matrix whose eigenvalues have nonvanishing real
parts. Denoting (x1, . . . , xn) the coordinates of the patch, X̃ reads

X̃ =

∑
1⩽i, j⩽n

A j
i x i∂ j .

We have a decomposition Rn
= W u

⊕ W s stable by A such that A|W u (resp. A|W s ) have eigenvalues with
positive (resp. negative) real parts, du/s = dim W u/s , this induces a decomposition of the coordinates
x = (xs, xu). We will denote by Au = A|W u ⊕ 0W s , As = 0W u ⊕ A|W s and c > 0 such that

c < inf
λ∈sp(A)

|Re(λ)|,

where sp(A) is the spectrum of A.
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Let χ1, χ2 ∈�•(M) such that suppχi ⊂ suppχ for i = 1, 2. For simplicity, we identify e−t A and its
action on differential forms and currents given by the pull-back, δd(x) denotes the Dirac δ distribution at
0 ∈ Rd , π1, π2 are the projections M × M 7→ M on the first and second factors, respectively.

⟨Kχ,t , π∗

1χ1 ∧π∗

2χ2⟩ = ⟨χ2, e−t A(Id −5̂)χ1⟩

=

〈
χ2, e−t A

(
χ1 − δdu (xu) dxu

∫
W s
π∗

s,0χ1

)〉
= ⟨et Asχ2, e−t Auχ1⟩ −

(∫
W u
π∗

u,0χ2

)(∫
W s
π∗

s,0χ1

)
=

∫ 1

0

∫
U
∂τ (et Asπ∗

u,τχ2 ∧ e−t Auπ∗

s,τχ1) dτ,

where πu,τ , πs,τ : U → U are defined by πu,τ (xu, xs)= (xu, τ xs) and πs,τ (xu, xs)= (τ xu, xs). Now write
χ2 =

∑
|I |=k βI dx Is

s ∧ dx Iu
u . We have

∂τπ
∗

u,τχ2(xu, xs)= ∂τ
∑

I

τ |Is |βI (xu, τ xs) dx Iu
u ∧ dx Is

s

=

∑
I

|Is |τ
|Is |−1βI (xu, τ xs) dx Iu

u ∧ dx Is
s +

∑
I

τ |Is |(∂xsβI )(xu ,τ xs)(xs) dx Iu
u ∧ dx Is

s .

Therefore

∂τ et Asπ∗

u,τχ2 =

∑
I

(
|Is |τ

|Is |−1βI (xu, τet As xs)+ τ
|Is |(∂xsβI )(xu ,τ xs)(e

t As xs)
)
et As dx I .

Because |et As xs | = O(e−tc) and et As dx I
= O(e−ct |Is |), I = (Is, Iu) is a multi-index and repeating the

same argument for ∂τ e−t Auπ∗
s,τχ1, we obtain the bound

∂τ (et Asπ∗

u,τχ2 ∧ e−t Auπ∗

s,τχ1)= Oχ1,χ2(e
−tc). (C-1)

Replacing χ1 and χ2 by χ1ei⟨ξ,· ⟩ and χ2ei⟨η,· ⟩ with ξ, η ∈ Rn , one gets

⟨Kχ,t , π∗

1 (χ1ei⟨ξ,· ⟩)∧π∗

2 (χ2ei⟨η,· ⟩)⟩

=

∫ 1

0

∫
U
∂τ (et Asπ∗

u,τχ2 ∧ e−t Auπ∗

s,τχ1)ei⟨et As (xu ,τ xs),η⟩ei⟨e−t Au (τ xu ,xs),ξ⟩ dτ

+

∫ 1

0

∫
U

et Asπ∗

u,τχ2 ∧ e−t Auπ∗

s,τχ1∂τ (ei⟨et As (xu ,τ xs),η⟩ei⟨e−t Au (τ xu ,xs),ξ⟩) dτ.

Setting g(τ, xu, xs)= ei⟨et As (xu ,τ xs),η⟩ei⟨e−t Au (τ xu ,xs),ξ⟩, we have

∂τ g(τ, xu, xs)= i(⟨et As xs, ηs⟩ + ⟨e−t Au xu, ξu⟩)g(τ, xu, xs)= OC∞(M)(e−tc),

because |et As xs |, |e−t Au xu| =O(e−tc). Repeating the process that led to (C-1) but for derivatives of χ1, χ2

as test forms with successive integration by parts, we therefore obtain for any N ∈ N

|⟨Kχ,t , π∗

1 (χ1ei⟨ξ1,· ⟩)∧π∗

2 (χ2ei⟨ξ2,· ⟩)⟩|

⩽ CN ,χ1,χ2e−tc(1 + |et Asηs | + |e−t Auξu|)

∫ 1

0
(1 + |τet Asηs + ξs | + |τe−t Auξu + ηu|)

−N dτ,
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where ξ = (ξu, ξs) and η = (ηu, ηs). Now assume (ξ, η) is close to N ∗1(T ∗M), say∣∣∣∣ ξ|ξ | +
η

|η|

∣∣∣∣< ν and 1 − ν <
|ξ |

|η|
< 1 + ν

for some ν > 0. Then we have for any τ ∈ [0, 1]

|τet Asηs + ξs | + |τe−t Auξu + ηu| ⩾ (1 − e−tc(1 + ν))(|ξs | + |ηu|).

As a consequence, if ν > 0 is small enough so that (1 + ν)e−(t+ε)c < 1, for every t ⩾ 0, we obtain

|⟨Kχ,t+ε, π∗

1 (χ1ei⟨ξ,· ⟩)∧π∗

2 (χ2ei⟨η,· ⟩)⟩| ⩽ C ′

N ,χ1,χ2
(1 + |ξ | + |η|)−N ,

which concludes. □

To conclude the proof of Proposition 11.2, we also need to prove Lemma 11.3:

Proof of Lemma 11.3. We proceed by contradiction. Suppose that there is µ > 0 and sequences xm ∈ M
and tm ⩾ ε such that dist(xm, e−tm X̃ (xm)) → 0 as m → ∞ and dist(xm,Crit( f )) ⩾ µ. Extracting a
subsequence we may assume that xm → x , tm → ∞ (indeed if tm → t∞ <∞ then x is a periodic point
for X̃ , which does not exist) and, for any m,

e−t X̃ (xm)→ a and et X̃ (xm)→ b as t → ∞,

for some a, b ∈ Crit( f ). Since the space of broken curves L(a, b) is compact (see [Audin and Damian
2014]), we may assume that the sequence of curves γm = {et X̃ (xm) : t ∈ R} converges to a broken curve
ℓ= (ℓ1, . . . , ℓq) ∈ L(a, b), with ℓ j

∈ L(c j−1, c j ) for some c0, . . . , cq ∈ Crit( f ), with c0 = a and cq = b.
Because xm → x , the proof of [Audin and Damian 2014, Theorem 3.2.2] implies x ∈ ℓ j for some j so that
e−t X̃ x → c j−1 as t →∞. Therefore replacing x by e−t X̃ (x) for t big enough, we may assume that x is con-
tained in a Morse chart�(c j−1) near c j−1. Then c j−1 ̸=a. Indeed if it was not the case then we would have
e−tm X̃ xm → a as m → ∞ (since xm would be contained in �(a)∩W u(a) for big enough m and tm → ∞),
which is not the case since dist(x,Crit( f )) ⩾ µ =⇒ x ̸= a and dist(xm, e−tm X̃ (xm)) → 0 as m → ∞.
Therefore the flow line of xm exists�(c j−1) in the past. We therefore obtain, since e−tm X̃ xm → x , that there
is i < j −1 so that ci = c j−1. This is absurd since the sequence (ind f (ci ))i=0,...,q is strictly decreasing. □
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