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The celebrated Rauch–Taylor/Bardos–Lebeau–Rauch geometric control condition is central in the study of
the observability of the wave equation linking this property to high-frequency propagation along geodesics
that are the rays of geometric optics. This connection is best understood through the propagation properties
of microlocal defect measures that appear as solutions to the wave equation concentrate. For a sufficiently
smooth metric this propagation occurs along the bicharacteristic flow. If one considers a merely C 1-metric,
this bicharacteristic flow may however not exist. The Hamiltonian vector field is only continuous;
bicharacteristics do exist (as integral curves of this continuous vector field) but uniqueness is lost. Here,
on a compact manifold without boundary, we consider this low-regularity setting, revisit the geometric
control condition, and address the question of support propagation for a measure solution to an ODE with
continuous coefficients. This leads to a sufficient condition for the observability and equivalently the exact
controllability of the wave equation. Moreover, we investigate the stability of the observability property
and the sensitivity of the control process under a perturbation of the metric of regularity as low as Lipschitz.
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1. Introduction

The observability property for the wave equation has been intensively studied during the last decades
mainly because of its deep connection with the problem of exact controllability. Until the end of the
80s, most of the positive results of observability were established under a (global) geometric assumption,
the so-called 0-condition introduced by J.-L. Lions [1988], essentially based on and well-adapted to a
multiplier method. Later, following [Rauch and Taylor 1974], Bardos, Lebeau and Rauch [Bardos et al.
1992] established boundary observability inequalities under a geometric control condition (GCC for short),
linking the set on which the control acts and the generalized geodesic flow. Proofs of this result are based
on microlocal tools, such as the propagation in phase space of wavefront sets in [Bardos et al. 1992] or
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the propagation of microlocal defect measures in more modern proofs [Burq and Gérard 1997]. For the
latter approach, microlocal defect measures originate from the concentration phenomena for sequences of
waves if one assumes that observability does not hold. Away from boundaries one obtains

t Hpµ= 0, (1-1)

yielding the transport of the measureµ along the bicharacteristic flow in phase space. This flow is generated
by the Hamiltonian vector field Hp associated with the symbol of the wave operator p. However, note
that despite their high efficiency and robustness, these methods present the great disadvantage of requiring
too much regularity in the coefficients of the wave operator and the geometry. To define the generalized
bicharacteristic flow and prove the propagation properties mentioned above a minimal smoothness of
the metric and the boundary domain is needed. To our knowledge, the best result, in the context of C 2

metrics, was proven in [Burq 1997a], and barely misses the natural minimal smoothness required to define
the geodesic flow (W 2,∞) and thus the geometric control condition.

In this context, in the present article, we address the following natural question: how can one derive
observability estimate for the wave equation from optimal observation regions in the case of a nonsmooth
metric? This problem has already received some attention and answers by E. Zuazua and his collaborators,
in [Castro and Zuazua 2002], and more recently in [Fanelli and Zuazua 2015] (see also the result of
[Dehman and Ervedoza 2017]). More precisely, in [Castro and Zuazua 2002], the authors prove a lack of
observability of waves in highly heterogeneous media, that is, if the density is of low regularity. In [Fanelli
and Zuazua 2015], the authors establish observability with coefficients in the Zygmund class and also
observability with loss when the coefficients are log-Zygmund or log-Lipschitz. Furthermore, this result
is proven sharp since one observes an infinite loss of derivatives for a regularity lower than log-Lipschitz.
Note that these analyses are carried out in one space dimension. This calls for the following comments.
First, in this simplified framework, for smooth coefficients all the geodesics reach the observability region
in uniform time: captive geodesics are not an issue. Second, proofs are based on a sidewise energy estimate,
a technique that is specific to the one-dimensional setting; the underlying idea consists of exchanging the
roles of the time and space variables and, finally in proving hyperbolic energy estimates for waves with
rough coefficients. Unfortunately, such a method does not extend to higher space dimensions. Furthermore,
for the low regularity considered in these articles, the geodesic flow is not well-defined. Proving
propagation results for wavefront sets or microlocal defect measure appears quite out of reach in such cases.

The present work is the first in a series of three articles devoted to the question of observability (and
equivalently exact controllability) of wave equations with nonsmooth coefficients. Here, we initiate
this study on a compact Riemannian manifold with a rough metric, yet without boundary, while the
two forthcoming articles will present the counterpart analysis on manifolds with boundary (or bounded
domains of Rd) [Burq et al. 2024a; 2024b]. The presence of a boundary yields a much more involved
analysis and in [Burq et al. 2024a; 2024b] we develop Melrose–Sjöstrand generalized propagation theory
in a low-regularity framework. In the present article, our main result is the observability of the wave
equation with a C 1-metric, completed with the stability of the observability property for small Lipschitz
(W 1,∞) perturbations of the metric. More precisely, we first show that if the geometric control condition
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in time T holds for geodesics associated with a C 1-metric g, then the observability property holds for the
wave equation, and equivalently exact controllability. For this low-regularity case one has to carefully
consider the meaning of the geometric condition (or more generally the meaning of a geodesic) since the
metric does not define a natural geodesic flow: geodesics are not uniquely defined. Only their existence
is guaranteed. Second, we consider a reference C 1-metric g0 as above and we prove that observability
also holds for any Lipschitz metric g chosen sufficiently close to g0 (in the Lipschitz topology). It has to
be noticed that Lipschitz metrics are too rough to permit the use of microlocal tools and a direct proof of
the observability property. Even worse for such a metric, the geometric control condition itself does not
seem make sense (as the generating vector field is only L∞), and we have to use a perturbation argument
near the (not so) smooth C 1 reference metric.

Following the strategy of [Burq 1997a], we argue by contradiction and we prove a propagation result
for microlocal defect measures in a low-regularity setting. We prove that these measures are solutions to
the ODE (1-1) with here Hp having C 0-coefficients. Then, we deduce some general properties about their
support. Namely we show that their support is a union of integral curves of the vector field. This latter
step also follows from Ambrosio and Crippa’s superposition principle [2014]. Yet, we give a completely
different proof which is of interest since it can be extended to the case of a domain with a boundary [Burq
et al. 2024a; 2024b]. We have not been able to extend the approach of [Ambrosio and Crippa 2014] to that
case. To derive the ODE fulfilled by the microlocal defect measure, we heavily rely on some harmonic
analysis results due to R. Coifman and Y. Meyer [1978, Proposition IV.7] that express that the commutator
of a pseudodifferential operator of order 1 and a Lipschitz function is a bounded operator on L2.

Finally, going further in the analysis, we investigate another stability property with respect to perturba-
tions of the metric. We prove that the HUM optimal control associated with a fixed initial data is not
stable with respect to perturbations of the metric.

1A. Outline. The article is organized as follows. In Section 1B we set up the geometric framework we
shall use and in Section 1C we precisely recall the equivalence of observability and exact controllability
for the wave equation. In Section 1D we state the main results of the article.

In Section 2 we recall some geometric facts and the notions of pseudodifferential calculus and microlocal
defect (density) measures on a manifold. In addition, using bicharacteristics we state the geometric control
condition of [Bardos et al. 1992] in its classical form (C 2-metric) and generalized form (C 1-metric).

In Section 3 we recall what microlocal defect measures are and we show how, if associated with
sequences of solutions of PDEs, their support can be estimated and how a transport ODE can be derived,
in the particular context of low regularity of coefficients.

Section 4 is devoted to our proof of the support propagation for measures solutions of a ODE with
C 0-coefficients, Theorem 1.10.

In Section 5 we use the results of Section 3 and the propagation result of Theorem 1.10 to prove the
observability and controllability results for the wave equation, Theorems 1.11 and 1.12.

Finally, in Section 6 we prove the results related to stability properties of the HUM control process.

1B. Setting and well-posedness. Throughout the article, we consider M, a d-dimensional C ∞-compact
manifold, that is, a manifold without boundary with a topology that makes it compact, equipped with
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a C ∞-atlas. We assume that the topology is also given by a Riemannian metric g, to be chosen either
Lipschitz or of class C k for some value of k to be made precise below.1

We denote by µg the canonical positive Riemannian density on M, that is, the density measure
associated with the density function (det g)1/2. We also consider a positive Lipschitz or of class C k-
function κ and we define the density κµg.

The L2-inner product and norm are considered with respect to this density κµg, that is,

(u, v)L2(M) =

∫
M

uv̄ κµg, ∥u∥
2
L2(M)

=

∫
M

|u|
2 κµg. (1-2)

We denote by L2V (M) the space of L2-vector fields on M, equipped with the norm

∥v∥2
L2V (M)

=

∫
M

g(v, v̄) κµg, v ∈ L2V (M).

We recall that the Riemannian gradient and divergence are given by

g(∇g f, v)= v( f ) and
∫
M

f divg vµg = −

∫
M
v( f ) µg

for f a function and v a vector field, yielding in local coordinates

(∇g f )i =

∑
1≤ j≤d

gi j∂x j f, divg v = (det g)−1/2
∑

1≤i≤d

∂xi ((det g)1/2vi ),

with (gi j
x )= (gx,i j )

−1.
We introduce the elliptic operator A = Aκ,g = κ−1 divg(κ∇g), that is, in local coordinates

A f = κ−1(det g)−1/2
∑

1≤i, j≤d

∂xi (κ(det g)1/2gi j (x)∂x j f ).

Its principal symbol is simply a(x, ξ)= −
∑

1≤i, j≤d gi j
x ξiξj . Note that for κ = 1, one has A =1g, the

Laplace–Beltrami operator associated with g on M. Similarly to 1g, the operator A is unbounded on
L2(M). With the domain D(A)= H 2(M), one finds that A is self-adjoint, with respect to the L2-inner
product given in (1-2), and negative. Moreover, one has

(Au, v)L2(M) = −

∫
M

g(∇gu,∇g v̄) κµg, u ∈ H 2(M), v ∈ H 1(M).

Together with A we consider the wave operator Pκ,g = ∂2
t − Aκ,g + m, with m > 0 a constant and the

equation {
Pκ,g y = f in (0,+∞)×M,

y|t=0 = y0, ∂t y|t=0 = y1 in M.
(1-3)

It is well-posed in the energy space H 1(M)⊕ L2(M).

1Note that despite considering C k metrics with k <∞, we still impose the condition that underlying manifold is smooth.
This is due to our use of pseudodifferential techniques that are simple to introduce on a smooth manifold. See Section 2C.



MEASURE PROPAGATION ALONG A C 0-VECTOR FIELD 2687

Proposition 1.1. Consider κ and g both of Lipschitz class. Let (y0, y1) ∈ H 1(M)× L2(M) and let
f ∈ L2(0, T ; L2(M)) for any T > 0. There exists a unique

y ∈ C 0([0,+∞); H 1(M))∩ C 1([0,+∞); L2(M))

that is a weak solution of (1-3), that is, y|t=0 = y0 and ∂t y|t=0 = y1 and

Pκ,g y = f in D ′((0,+∞)×M).

Remark 1.2. At this level of regularity of κ and g, the well-posedness of the wave equation is classical.
For less regular coefficients we refer to [Colombini and Del Santo 2009; Colombini et al. 2013].

In what follows, for simplicity we shall consider the case m = 1, that is, for

Pκ,g = ∂2
t − Aκ,g + 1.

In this case, we denote by

Eκ,g(y)(t)=
1
2(∥y(t)∥2

H1(M)
+ ∥∂t y(t)∥2

L2(M)
)

=
1
2(∥y(t)∥2

L2(M)
+ ∥∇g y(t)∥2

L2V (M)
+ ∥∂t y(t)∥2

L2(M)
),

the energy of this solution at time t . For a weak solution y of (1-3), if f = 0, this energy is independent
of time t , that is,

Eκ,g(y)(t)= Eκ,g(y)(0)=
1
2(∥y0

∥
2
H1(M) + ∥y1

∥
2
L2(M)).

Remark 1.3. The equation we consider, with the constant m > 0, is often referred to the Klein–Gordon
equation. Here, we keep the name wave equation. We choose this equation instead of the classical wave
equation that corresponds to the case m = 0. In fact, on a compact manifold without boundary, constants
are eigenfunctions of the elliptic operator Aκ,g with 0 as an eigenvalue. Hence, constant functions are
solutions to the wave equation and are so-called invisible solutions, as far as the observability property
we are interested in is concerned. If one considers a manifold with boundary and say, homogeneous
Dirichlet conditions, this issue becomes irrelevant. We could have dealt with the case m = 0 (the usual
wave equation) at the cost of additional technical complications.

1C. Exact controllability and observability. Let ω be a nonempty open subset of M and T > 0. The
notion of exact controllability for the wave equation from ω at time T is stated as follows.

Definition 1.4 (exact controllability in H 1(M)⊕ L2(M)). One says that the wave equation is exactly
controllable from ω at time T > 0 if, for any (y0, y1)∈ H 1(M)×L2(M), there exists f ∈ L2((0, T )×M)

such that the weak solution y to

Pκ,g y = 1(0,T )×ω f, (y|t=0, ∂t y|t=0)= (y0, y1), (1-4)

as given by Proposition 1.1, satisfies (y, ∂t y)|t=T = (0, 0). The function f is called the control function
or simply the control.

Observability of the wave equation from the open set ω in time T is the following notion.
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Definition 1.5 (observability). One says that the wave equation is observable from ω at time T if there
exists Cobs > 0 such that for any (u0, u1) ∈ H 1(M)× L2(M) one has

Eκ,g(u)(0)≤ Cobs∥1(0,T )×ω ∂t u∥
2
L2(L) (1-5)

for u ∈ C 0([0, T ]; H 1(M))∩ C 1([0, T ]; L2(M)) the weak solution of Pκ,gu = 0 with u|t=0 = u0 and
∂t u|t=0 = u1 as given by Proposition 1.1; see [Lions 1988].

Proposition 1.6. Let ω be an open subset of M and T > 0. The wave equation is exactly controllable
from ω at time T if and only if it is observable from ω at time T.

Remark 1.7. In the case m = 0, the energy function is given by

Eκ,g(u)(t)=
1
2(∥∂t u(t)∥2

L2(M)
+ ∥∇gu(t)∥2

L2V (M)
).

It follows that a constant function u, a solution to the wave equation (∂2
t − A)u = 0, has zero energy. Since

∥1(0,T )×ω ∂t u∥
2
L2(L) also vanishes, one sees that such solutions are invisible for an observability inequality

of the form of (1-5). Possibilities to overcome this difficulty are to work in a quotient space or to change
the wave operator into the Klein–Gordon operator. Here, we chose for simplicity the latter option.

1D. Main results. We introduce the following spaces for the coefficients (κ, g) to distinguish various
levels of regularity:

X 2(M)= {(κ, g) : κ ∈ C 2(M) and g is a C 2-metric on M},

X 1(M)= {(κ, g) : κ ∈ C 1(M) and g is a C 1-metric on M},

Y(M)= {(κ, g) : κ ∈ W 1,∞(M) and g is a W 1,∞-metric on M}.

We start by recalling the controllability result known for regularity higher than or equal to C 2, under the
Rauch–Taylor geometric control condition.

Definition 1.8 (Rauch–Taylor, geometric control condition). Let g be a C k metric, k = 1 or 2, and let
ω be an open set of M and T > 0. One says that (ω, T ) fulfills the geometric control condition if all
maximal geodesics associated with g, traveled at speed 1, encounter ω for some time t ∈ (0, T ).

A second formulation of this geometric condition based on the dual notion of bicharacteristics is given
in Section 2B below.

Theorem 1.9 (exact controllability: C 2-regularity). Consider (κ, g) ∈ X 2(M), ω an open subset of M
and T > 0 such that (ω, T ) fulfills the geometric control condition of Definition 1.8. Then, the wave
equation is exactly controllable from ω at time T.

This result was first proven by Rauch and Taylor [1974] for a smooth metric. The case (κ, g)∈X 2(M)

was proven by the first author in [Burq 1997a]. On smooth open sets of Rd, or equivalently on manifolds
with boundary equipped with smooth (κ, g), for instance in the case of homogeneous Dirichlet boundary
conditions, this result is given in the celebrated articles [Bardos et al. 1988; 1992].

In the present article, we extend the result of Theorem 1.9 to cases of rougher coefficients. Our
extension is twofold: we treat the case (κ, g) ∈ X 1(M) and, we treat small perturbations in Y(M) of
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some (κ, g)∈X 1(M). Most importantly, these two results rely on the understanding of the structure of the
support of a nonnegative measure subject to a homogeneous transport equation with continuous coefficients.

1D1. Transport equation and measure support. Let O be an open set of a smooth manifold. We denote
by 1D ′(O) and 1D ′,0(O) the spaces of density distributions and density Radon measures on O.

Consider a continuous vector field X on O and let µ be a nonnegative measure density on O. Assume
that µ is such that tXµ= 0 in the sense of distributions, that is,

⟨
tXµ, a⟩1D ′(O),C ∞

c (O) = ⟨µ, Xa⟩1D ′,0(O),C 0
c (O) = 0, a ∈ C ∞

c (O). (1-6)

If X is moreover Lipschitz, one concludes that µ is invariant along the flow that X generates. However, if
X is not Lipschitz, there is no such flow in general. Yet, integral curves do exist by the Cauchy–Peano
theorem. The following theorem provides a structure of the support of µ.

Theorem 1.10. Let X be a continuous vector field on O and µ be a nonnegative density measure on O
that is a solution to tXµ= 0 in the sense of distributions. Then, the support of µ is a union of maximally
extended integral curves of the vector field X.

In other words, if m0
∈ O is in supp(µ), then there exist an interval I in R with 0 ∈ I and a C 1 curve

γ : I → O that cannot be extended such that γ (0)= m0 and

d
ds
γ (s)= X (γ (s)), s ∈ I,

and γ (I )⊂ supp(µ).
Theorem 1.10 can actually be obtained as a consequence of the superposition principle of L. Ambrosio

and G. Crippa [2014, Theorem 3.4]. Here, we provide an alternative proof that is of interest as it allows
one to extend this measure support structure result to the case of an open set or a manifold with boundary
[Burq et al. 2024b] as needed for our application to observability and controllability. Ambrosio and
Crippa’s proof is based on a smoothing-by-convolution argument. Extending this approach does not seem
to be straightforward in the context of a boundary.

Theorem 1.10 is proven in Section 4 and its proof is independent of the other sections of the article. A
reader only interested in our proof of Theorem 1.10 may thus head to Section 4 directly.

1D2. Exact controllability results. If (κ, g) ∈ X 2(M), x ∈ M and v ∈ TxM there is a unique geodesic
originating from x in direction v. In the case (κ, g)∈X 1(M) uniqueness is lost. Existence holds however
and maximal (here global, see below) geodesics can still be defined by the Cauchy–Peano theorem. In
particular, the geometric control condition of Definition 1.8 still makes sense. As announced above, our
first result is the following theorem.

Theorem 1.11 (exact controllability: C 1-regularity). Consider (κ, g) ∈ X 1(M), ω an open subset of M
and T > 0 such that (ω, T ) fulfills the geometric control condition of Definition 1.8. Then, the wave
equation is exactly controllable from ω at time T.

A second result is the following perturbation result.
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Theorem 1.12 (exact controllability: Lipschitz perturbation). Let (κ0, g0) ∈X 1(M), ω be an open subset
of M and T > 0 be such that (ω, T ) fulfills the geometric control condition of Definition 1.8 with respect
to the metric g0. There exists ε > 0 such that for any (κ, g) ∈ Y(M) satisfying

∥(κ, g)− (κ0, g0)∥Y(M) ≤ ε,

the wave equation associated with (κ, g) is exactly controllable by ω in time T.

Observe that Theorem 1.11 is a direct consequence of Theorem 1.12. We shall thus concentrate on this
second more general result. Its proof relies on the measure support structure result of Theorem 1.10.

The sequence of Theorems 1.9, 1.11, and 1.12 calls for the following important comment. Under the
assumption of Theorem 1.9, that is, (κ, g) ∈ X 2(M), there is a geodesic flow and the geometric condition
of Definition 1.8 is actually a condition on the flow. Under the assumption of Theorem 1.11, that is,
(κ, g) ∈ X 1(M), as pointed out above there is no geodesic flow in general. Yet, maximal geodesics are
still well-defined and, the geometric condition of Definition 1.8 makes sense because it does not refer to
a flow. However, under the assumption of Theorem 1.12, that is, (κ, g) ∈ Y(M), geodesics cannot be
defined in general. No geometric condition can be formulated. Yet, Theorem 1.12 is a perturbation result
and a geometric condition is expressed for a reference pair (κ0, g0) ∈ X 1(M) around which a (small)
neighborhood in Y(M) is considered.

The following remark further emphasizes that the perturbation is to be considered around a pair
(κ0, g0)∈X 1(M) for which the geometric control condition holds and not around a pair (κ0, g0)∈X 1(M)

for which exact controllability (or equivalently observability) holds.

Remark 1.13 (on the perturbation result). Having both our results, geometric control for C 1 metrics
and Lipschitz stability of exact controllability around a reference metric satisfying the geometric control
condition, a natural question is whether the exact controllability property is itself stable by perturbation. On
the one hand, it is classical that the exact controllability property is stable under lower-order perturbations
of the elliptic operator Aκ,g, but on the other hand, it is possible to show that it is not stable under (smooth)
perturbations of the geometry or the metric.

Let us illustrate this instability property with a quite simple example. Consider the wave equation on
the sphere

Sd
=

{
x ∈ Rd+1

:
∑

i
x2

i = 1
}
,

endowed with its standard metric and with control domain the open hemisphere

ω = {x ∈ Sd
: x1 > 0}.

Even though ω does not fulfill the geometric control condition of Definition 1.8 exact controllability
holds for this geometry by an unpublished result by G. Lebeau (see [Lebeau 1992, Section VI.B] and
[Zhu 2018] for extensions). Consider now the sphere endowed with the above standard metric, with the
smaller control domain

ωε = {x ∈ Sd
: x1 > ε}

for some ε > 0. This second geometry is ε-close to the Lebeau example in the C ∞-topology. Yet, for all
ε>0, exact controllability does not hold, because there exists a geodesic (the equator, {x ∈Sd

: x1 =0}) that



MEASURE PROPAGATION ALONG A C 0-VECTOR FIELD 2691

does not encounter ω̄ε. This shows that in Theorem 1.12, the assumption that the reference geometry should
satisfy the geometric control condition cannot be replaced by the weaker assumption that it should satisfy
the exact controllability property. This also shows that our perturbation argument will have to be performed
on the actual proof that geometric control implies exact controllability and not on the final property itself.

1D3. Further results on the control operator. We finish this section with results analyzing the influence
of some metric perturbations on the control process.

We introduce further levels of regularity for the coefficients by setting, for k ∈ N ∪ {+∞},

X k(M)= {(κ, g) : κ ∈ C k(M) and g is a C k-metric on M}.

First, we consider k ≥ 2. We recall the notation Pκ,g = ∂2
t − Aκ,g + 1 with Aκ,g = κ−1 divg(κ∇g), and we

assume that (κ, g)∈X k(M), and that (ω, T ) satisfies the geometric control condition of Definition 1.8 for
geodesics given by the metric g. Then, by Theorem 1.9, given (y0, y1) ∈ H 1(M)× L2(M), there exists
f ∈ L2((0, T )×ω) such that the solution to (1-4) satisfies y(T )= 0 and ∂t y(T )= 0. One can prove that
among all possible control functions there is one of minimal L2-norm. We denote by f y0,y1

κ,g this control
function usually named the HUM control function; see for instance [Lions 1988]. Moreover, the map

Hκ,g : H 1(M)⊕ L2(M)→ L2((0, T )×M), (y0, y1) 7→ f y0,y1

κ,g , (1-7)

is continuous. Note that f y0,y1

κ,g is actually a weak solution of the wave equation with initial data in
L2(M)× H−1(M), meaning that one moreover has f y0,y1

κ,g ∈ C 0([0, T ], L2(M)).

Theorem 1.14 (lack of continuity of the HUM-operator: the case k ≥ 2). Let k ≥ 2 and (κ, g) as
above. For any neighborhood U of (κ, g) in X k(M), there exist (κ̃, g̃) ∈ U and an initial data (y0, y1) ∈

H 1(M)× L2(M), with ∥y0
∥

2
H1 + ∥y1

∥
2
L2 = 1, such that the respective solutions y and ỹ of{

Pκ,g y = 1(0,T )×ω f y0,y1

κ,g in (0, T )×M,

(y, ∂t y)|t=0 = (y0, y1) in M,

{
Pκ̃,g̃ ỹ = 1(0,T )×ω f y0,y1

κ,g in (0, T )×M,

(ỹ, ∂t ỹ)|t=0 = (y0, y1) in M
(1-8)

are such that
Eκ,g(ỹ − y)(T )= Eκ,g(ỹ)(T )≥

1
2 . (1-9)

Moreover, there exists CT > 0 such that∥∥(Hκ,g − Hκ̃,g̃)(y0, y1)
∥∥

L2((0,T )×ω) = ∥ f y0,y1

κ,g − f y0,y1

κ̃,g̃ ∥
L2((0,T )×ω)

≥ CT (1-10)

for (y0, y1) as given above.

Remark 1.15. The result of Theorem 1.14 states that starting from the same initial data and solving the
two wave equations with the same control vector fκ,g associated with Pκ,g, a small perturbation of the
metric can induce a large error for the final state (y(T ), ∂t y(T )). In other words, the two dynamics are
no longer close. In particular, the map

X k(M)→ L
(
H 1(M)⊕ L2(M), L2((0, T )×M)

)
, (κ, g) 7→ Hκ,g,

is not continuous.
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Remark 1.16. The result of Theorem 1.14 can also be stated on open bounded smooth domains of Rn in
the case of homogeneous Dirichlet condition. In fact, as can be checked in what follows, its proof only
relies on basic properties of microlocal defect measures (support localization and propagation) that are
known to be valid in this framework; see [Burq 1997a].

Remark 1.17. In the statement of Theorem 1.14 if the neighborhood U of (κ, g) in X k is small enough,
the pair (ω, T ) also satisfies the geometric control condition of Definition 1.8 for (κ̃, g̃) and therefore
f y0,y1

κ̃,g̃ is well-defined. In particular, this is clear as in the case k ≥ 2 there is a well-defined and unique
geodesic flow.

The case k = 1 is quite different as there is no geodesic flow, as already mentioned above. However,
given (κ, g) ∈ X 1 and (ω, T ) if the Rauch–Taylor geometric control condition of Definition 1.8 holds for
(ω, T ) for the geodesics associated with g, given any neighborhood U of (κ, g) in X 1 one can still find
(κ̃, g̃) ∈ U such that

(1) the geometric control condition still holds for the geodesics associated with g̃,

(2) the result of Theorem 1.14 also holds.

Theorem 1.14′ (lack of continuity of the HUM-operator: the case k = 1). Let k = 1 and (κ, g) ∈ X 1 as
above. For any neighborhood U of (κ, g) in X 1(M), there exist (κ̃, g̃) ∈ U and an initial data (y0, y1) ∈

H 1(M)× L2(M), with ∥y0
∥

2
H1 +∥y1

∥
2
L2 = 1, such that the geometric control condition of Definition 1.8

for geodesics given by the metric g̃ holds and moreover the results listed in Theorem 1.14 hold.

The proofs of Theorems 1.14 and 1.14′ are given in Section 6A.
We finish this section with some remarks and some questions.

Remark 1.18. In all results above we have used 1(0,T )×ω as a control operator, that is, the characteristic
function of an open set. We could have also considered a control operator given by 1(0,T )(t)χ(x), with χ
a smooth function on M. The controlled wave equation then has the form

Pκ,g y = 1(0,T ) χ f, (y|t=0, ∂t y|t=0)= (y0, y1). (1-11)

In such case, the open set to be used in the geometric control condition is ω = {χ ̸= 0}. This is often
done this way, in particular since the smoothness of the function χ allows one to use some microlocal
techniques that require regularity in the operator coefficients. The results and proofs of the present article
can be written mutatis mutandis for this type of control operator.

1D4. Comparison with the smooth case and some open questions. Following on the previous remark,
with a smooth-in-space control operator, one can wonder above the smoothness of the HUM operator.
This question is addressed in the joint work of the second author [Dehman and Lebeau 2009]. In fact, a
gain of regularity in the initial data (y0, y1) yields an equivalent gain of regularity in the HUM control
function f y0,y1

κ,g . For instance, for (y0, y1) ∈ H 2(M)× H 1(M) one finds f y0,y1

κ,g ∈ C 0([0, T ], H 1(M)).
Note that the result of [Dehman and Lebeau 2009] is proven in the case of smooth coefficients, that is,
(κ, g) ∈ X∞. We thus consider this smooth case in the discussion that ends this introductory section.
Open questions around the results of Theorems 1.14 and 1.14′ are then raised.
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As we shall see in their proofs, the results of Theorems 1.14 and 1.14′ rely on the high-frequency behav-
ior of the solutions to (1-8). In the case of smooth coefficients and a smooth control operator, if we assume
smoother data (y0, y1) in the HUM control process, the result of Theorem 1.14 does not hold any more.
The HUM control process becomes regular with respect to (κ, g) as expressed in the following proposition.

Proposition 1.19 (HUM control process for smooth data). Consider (κ, g)∈X∞(M) and let χ ∈C ∞(M).
Set ω = {χ ̸= 0} and assume that (ω, T ) fulfills the geometric control condition of Definition 1.8 for the
geodesics associated with (κ, g). Let α ∈ (0, 1]. There exists Cα > 0 such that, for any (κ̃, g̃) ∈ X∞(M)

and any (y0, y1) ∈ H 1+α(M)× Hα(M), the respective solutions y and ỹ to{
Pκ,g y = 1(0,T ) χ f y0,y1

κ,g in (0, T )×M,

(y, ∂t y)|t=0 = (y0, y1) in M,

{
Pκ̃,g̃ ỹ = 1(0,T ) χ f y0,y1

κ,g in (0, T )×M,

(ỹ, ∂t ỹ)|t=0 = (y0, y1) in M
satisfy

Eκ,g(y − ỹ)(T )1/2 ≤ Cα∥(κ, g)− (κ̃, g̃)∥αX 1(M)
∥(y0, y1)∥H1+α(M)⊕Hα(M).

The proof of Proposition 1.19 is given in Section 6B.
In the above proposition coefficients are chosen smooth, quite in contrast with the rest of this article.

As explained above, and as the reader can check in the proof, this lies in the use of the regularity of the
HUM operator with respect to the data (y0, y1), a result proven for smooth coefficients in [Dehman and
Lebeau 2009]. The result of Proposition 1.19 raises the following natural questions:

(1) Does the HUM operator exhibit regularity with respect to the data (y0, y1) similar to what is proven
in [Dehman and Lebeau 2009] in the case of not so smooth coefficients?

(2) If so, if one increases the smoothness of the data (y0, y1) as in Proposition 1.19, does the HUM
control process also become regular with respect of the metric?

2. Geometric aspects and operators

We define the smooth manifold L = R ×M and T ∗L its cotangent bundle. We denote by π : T ∗L → L
the natural projection. Elements in T ∗L are denoted by (t, x, τ, ξ). One has π(t, x, τ, ξ)= (t, x).

Setting |ξ |2x = gx(ξ, ξ) the Riemannian norm in the cotangent space of M at x , we define

S∗L = {(t, x, τ, ξ) ∈ T ∗L : τ 2
+ |ξ |2x = 1},

the cosphere bundle of L. We shall also use the associated cosphere bundle in the spatial variables only,

S∗M =
{
(x, ξ) ∈ T ∗M : |ξ |2x =

1
2

}
.

For a C k-metric both S∗M and S∗L are C k-manifolds.
Consider a C ∞-atlas AM

= (CM
j )j∈J of M, #J <∞, with CM

j = (Oj , θj ), where Oj is an open set
of M and θj : Oj → Õj is a bijection for Õj an open set of Rd. For j ∈ J, we define Cj = (Oj , ϑj ) with
Oj = R × Oj and

ϑj : Oj → Õj , (t, x) 7→ (t, θj (x)),

with Õj = R × Õj . Then A = (Cj )j∈J is a C ∞-atlas for L.



2694 NICOLAS BURQ, BELHASSEN DEHMAN AND JÉRÔME LE ROUSSEAU

In what follows for simplicity we shall use the same notation for an element of T ∗L and its local
representative if no confusion arises.

2A. Hamiltonian vector field and bicharacteristics. Let (κ, g) ∈ X k, k = 1 or 2. The principal symbol
of the wave operator Pκ,g is given by

p(t, x, τ, ξ)= pκ,g(t, x, τ, ξ)= −τ 2
+ |ξ |2x , (t, x, τ, ξ) ∈ T ∗L. (2-1)

In local charts, one has
p(t, x, τ, ξ)= −τ 2

+

∑
1≤i, j≤d

gi j (x)ξiξj .

Note that (gi j (x))i, j is the inverse of (gi j (x))i, j , the latter being the local representative of the metric.
We denote by Hp the Hamiltonian vector field associated with p, that is, the unique vector field such that

{p, f } = Hp f for any smooth function f . Here, { · , · } denotes the Poisson bracket, that is, in local chart

{p, f } = ∂τ p ∂t f − ∂t p ∂τ f +

∑
1≤ j≤d

(∂ξj p ∂x j f − ∂x j p ∂ξj f ),

yielding
Hp = −2τ∂t + ∇ξ p · ∇x − ∇x p · ∇ξ ,

as p is in fact independent of the time variable t . The Hamiltonian vector field Hp is of class C k−1.
Observe that, for a function f of the variables (t, x, τ, ξ), one has

t Hp f = 2τ∂t f − divx( f ∇ξ p)+ divξ ( f ∇x p),

with which one deduces
t Hp = − Hp, (2-2)

even in the case (κ, g) ∈ X 1.
First, consider the case k = 2. Thus, Hp is a C 1-vector field. For ϱ ∈ T ∗L one denotes by s 7→ φs(ϱ)

the unique maximal solution to

d
ds
φs(ϱ)= Hp φs(ϱ), s ∈ R, and φs=0(ϱ)= ϱ, (2-3)

as given by the Cauchy–Lipschitz theorem. One calls (s, ϱ) 7→ φs(ϱ) the Hamiltonian flow map. Let
s 7→ γ (s) be an integral curve of Hp, that is, γ (s)= φs(ϱ) for some ϱ ∈ T ∗L. For any smooth function f
on T ∗L one has

d
ds

f ◦ γ (s)= Hp f (γ (s)).

Note that Hp τ = 0, meaning that the variable τ is constant along γ . Note also that the value of p remains
constant along γ since Hp p = {p, p} = 0. Hence, |ξ |2x = gx(ξ, ξ) is also constant. Thus, if γ (0) ∈ S∗L
then γ (s) remains in S∗L, and, for ϱ ∈ S∗L, the vector field Hp at ϱ is tangent to S∗L. Consequently, we
may consider Hp as a tangent vector field on the C 2-manifold S∗L. In particular Hp a makes sense if
a ∈ C 1

c (S
∗L). If moreover a ∈ C 2+ℓ

c (S∗L), ℓ≥ 0, one has Hp a ∈ C 1
c (S

∗L).
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Since Hp p = 0, the flow φs preserves Char(p) = p−1({0}), the characteristic set of p. As is done
classically, we call bicharacteristic an integral curve for which p = 0. Observe then that (2-3) defines a
flow on the C 2-manifold

Char(p)∩ S∗L =
{
(t, x, τ, ξ) : τ 2

=
1
2 and |ξ |2x =

1
2

}
.

Second, consider the case k = 1. Then Hp is only a continuous vector field. Thus, for any ϱ ∈ Char(p)
there exists a maximal bicharacteristic s 7→ γ (s) defined on R such that γ (0)= ϱ, that is,

d
ds
γ (s)= Hp(γ (s)), s ∈ R,

by the Cauchy–Peano theorem. Uniqueness is however not guaranteed and the notion of flow cannot be
used in the case k = 1. Since the value of |ξ |x remains constant and the manifold M is compact, maximal
bicharacteristics are actually defined globally.

As above, if γ (0) ∈ S∗L (resp. Char(p)∩ S∗L) one has γ (s) ∈ S∗L (resp. Char(p)∩ S∗L) for all s ∈ R.
The Hamiltonian vector field Hp can be viewed as a C 0-vector field on the C 1-manifold S∗L (resp. on
the C 1-manifold Char(p)∩ S∗L). For a ∈ C 1+ℓ

c (S∗L), ℓ≥ 0, one finds Hp a ∈ C 0
c (S

∗L).
Finally, connection between bicharacteristic and geodesics can be made. For this we recall that if

ξ ∈ T ∗
x M for some x ∈ M, one can define v ∈ TxM by v = ξ ♯, which reads in local coordinates

vi
=

∑
j gi j (x)ξj . In particular |v|2x = gx(v, v)= |ξ |x . If now ϱ0

= (t0, x0, τ 0, ξ 0) ∈ Char(p)∩ S∗L and
letting s 7→ ϱ(s) = (t (s), x(s), τ, ξ(s)) be a bicharacteristic such that ϱ(0) = ϱ0, one has τ = τ 0 and
t (s)= t0

− 2τ 0s. The map

X : t 7→ x
(

t0
− t

2τ 0

)
can be proven to be the geodesic originating from x0 in the direction given by v0

= (ξ 0)♯ and parametrized
by t .

We now compute the speed at which the geodesic is traveled. We have

d X
dt
(t)= −

1
2τ 0

dx(s)
ds

,

which yields
d X
dt
(t)= −

1
2τ 0 ∇ξ p(x(s), ξ(s))= −

ξ(s)♯

τ 0 .

It follows that ∣∣∣∣d X
dt
(t)

∣∣∣∣
x
=

|ξ(s)♯|x
|τ 0|

=
|ξ(s)|x
|τ 0|

=
|ξ 0

|x

|τ 0|
= 1,

since ϱ0
∈ Char(p). Hence, the projection of the bicharacteristic s 7→ γ (s) yields a geodesic traveled at

speed 1.

2B. Geometric control condition. As the projections of bicharacteristics onto L yield geodesics, in the
case k ≥ 2, we can state the Rauch–Taylor geometric control condition [1974] formulated in Definition 1.8
with the notion of Hamiltonian flow introduced above.
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Definition 1.8′ (geometric control condition, k ≥ 2). Let g be a C 2 metric and let ω be an open set of M
and T > 0. One says that (ω, T ) fulfills the geometric control condition if for all ϱ ∈ Char(p) one has
π(φs(ϱ)) ∈ (0, T )×ω for some s ∈ R.

In the case k = 1, since g is only C 1 there is no flow in general, one rather writes the geometric control
condition by means of maximal bicharacteristics.

Definition 1.8′′ (generalized geometric control condition, k = 1). Let g be a C 1 metric and let ω be an
open set of M and T > 0. One says that (ω, T ) fulfills the geometric control condition if for any maximal
bicharacteristic s 7→ γ (s) in Char(p) one has π(γ (s)) ∈ (0, T )×ω for some s ∈ R.

In other words, for all ϱ ∈ Char(p), all bicharacteristics that go through ϱ meet the cotangent bundle
above (0, T )×ω.

Naturally, Definitions 1.8′ and 1.8′′ coincide in the case k = 2 because of the uniqueness of a bicharac-
teristic going through a point of Char(p).

2C. Symbols and pseudodifferential operators. Here, we follow [Burq 1997b, Section 1.1] for the
notation. We denote by H k(X) or H k

loc(X), with X = M or L, the usual Sobolev space for complex
valued functions, endowed with its natural inner product and norm. In particular, the L2(X)-inner product
is denoted by ( · , · )L2(X).

Classical polyhomogeneous symbol classes on T ∗Rn
≃ Rn

× Rn are denoted by Sm
ph(R

n
× Rn) and the

classes of associated operators by 9m
ph(R

n). We recall that symbols in the class Sm
ph(R

n
× Rn) behave

well with respect to changes of variables, up to symbols in Sm−1
ph (Rn

× Rn); see [Hörmander 1985,
Theorem 18.1.17 and Lemma 18.1.18].

We define Sm
c,ph(T

∗L) as the set of polyhomogeneous symbols of order m on T ∗L with compact support
in the variables (t, x)∈L (note that compactness with respect to x ∈M is obvious). Having the manifold M
smooth is important for symbols and following pseudodifferential operators to be simply defined.

For any m, the restriction to the sphere

Sm
c,ph(T

∗L)→ C ∞

c (S∗L), a → a|S∗L, (2-4)

is onto. This allows one to identify a homogeneous symbol with a smooth function on S∗L with compact
support.

We denote by 9m
c,ph(L) the space of polyhomogeneous pseudodifferential operators of order m on L:

one says that Q ∈9m
c,ph(L) if Q maps C ∞

c (L) into D ′(L) and

(1) its kernel K (x, y) ∈ D ′(L×L) is such that supp(K ) is compact in L×L;

(2) K (x, y) is smooth away from the diagonal 1L = {(t, x; t, x) : (t, x) ∈ L};

(3) for any local chart Cj = (Oj , ϑj ) and all φ0, φ1 ∈ C ∞
c (Õj ) one has

φ1 ◦ (ϑ−1
j )∗ ◦ Q ◦ϑ∗

j ◦φ0 ∈ Op(Sm
c,ph(R

d+1
× Rd+1)).

For Q ∈ 9m
c,ph(L), we denote by σm(Q) ∈ Sm

c,ph(T
∗L) the principal symbol of Q; see [Hörmander

1985, Chapter 18.1]. Note that the principal symbol is uniquely defined in Sm
c,ph(T

∗L) because of the
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polyhomogeneous structure; see the remark following Definition 18.1.20 in [Hörmander 1985]. The
application σm enjoys the following properties:

(1) The map σm :9m
c,ph(L)→ Sm

c,ph(T
∗L) is onto.

(2) For all Q ∈9m
c,ph(L), σm(Q)= 0 if and only if Q ∈9m−1

c,ph (L).

(3) For all Q ∈9m
c,ph(L), σm(Q∗)= σm(Q).

(4) For all Q1 ∈9
m1
c,ph(L) and Q2 ∈9

m2
c,ph(L), one has Q1 Q2 ∈9

m1+m2
c,ph (L) with

σm1+m2(Q1 Q2)= σm1(Q1)σm2(Q2).

(5) For all Q1 ∈9
m1
c,ph(L) and Q2 ∈9

m2
c,ph(L), one has [Q1, Q2] = Q1 Q2 − Q2 Q1 ∈9

m1+m2−1
c,ph (L), with

σm1+m2−1([Q1, Q2])=
1
i
{σm1(Q1), σm2(Q2)}.

(6) If Q ∈9m
c,ph(L), then Q maps continuously H k

loc(L) into H k−m
comp(L). In particular, for m < 0, Q is

compact on L2
loc(L).

Given an operator Q ∈9m
c,ph(L), one sets

Char(Q)= Char(σm(Q))= {ϱ ∈ T ∗L : σm(Q)(ϱ)= 0}.

3. Microlocal defect measure and propagation properties

A defect measure is used to characterize locally the failure of a sequence to strongly converge, meaning
some concentration phenomenon. This characterization can be made finer by further considering microlocal
concentration phenomena.

3A. Microlocal defect density measures. We define M+(S∗L) as the set of positive density measures
on S∗L. For µ ∈ M+(S∗L) and a ∈ C 0

c (S
∗L), we shall write

⟨µ, a⟩S∗L =

∫
S∗L

a(ϱ)µ(dϱ)

for the duality bracket. This notation will also be used for a ∈ S0
c,ph(T

∗L) according to the identification
map (2-4).

Consider a sequence (uk)k∈N ⊂ L2
loc(L) that converges weakly to 0. Here, to define the L2-norm and

inner product on L we use a fixed (κ0, g0) chosen in X 1(M); see (1-2).
As a consequence of [Gérard 1991, Theorem 1], there exists a subsequence of (uk)k∈N (still denoted

by (uk)k∈N in what follows) and a density measure µ ∈ M+(S∗L) such that

lim
k→∞

⟨Quk, uk⟩L2
comp(L),L2

loc(L)
= ⟨µ, σ0(Q)⟩S∗L (3-1)

for any Q ∈ 90
c,ph(L). Recall that symbols in S0

c,ph(T
∗L) are compactly supported in time t here. We

also refer to [Tartar 1990; Burq 1997b]. One calls µ a microlocal defect (density) measure associated
with (uk)k∈N.
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Similarly, one can use the notion of H 1-microlocal defect density measure. Consider (uk)k∈N ⊂ H 1
loc(L)

that converges weakly to 0. Then, there exists a subsequence of (uk)k∈N (still denoted by (uk)k∈N ) and a
density measure µ ∈ M+(S∗L) such that for any Q ∈92

c,ph(L)

lim
k→∞

⟨Quk, uk⟩H−1
comp(L),H1

loc(L)
= ⟨µ, σ2(Q)⟩S∗L. (3-2)

Naturally, in either cases, the density measure µ depends on the choice made of (κ0, g0) ∈ X 1(M). In
what follows we shall make clear what choice is made.

3B. Local representatives. Consider a finite atlas A = (Cj )j∈J on L, as introduced in Section 2, with
Cj = (Oj , ϑj ). Consider a smooth partition of unity (χj )j∈J subordinated to the covering by the open
sets (Oj )j . We consider also χ̃j , χ̂j ∈ C ∞(L) supported in Oj such that χ̃j ≡ 1 on a neighborhood of
supp(χj ) and χ̂j ≡ 1 on a neighborhood of supp(χ̃j ). Set also χCj

j = (ϑ−1
j )∗χj , χ̃

Cj
j = (ϑ−1

j )∗χ̃j , and
χ̂
Cj
j = (ϑ−1

j )∗χ̂j . One has χCj
j , χ̃

Cj
j , χ̂

Cj
j ∈ C ∞

c (Õj ), with Õj = ϑj (Oj ).
Let (uk)k ⊂ H 1

loc(L) that converges weakly to 0, Q ∈92
c,ph(L), and j ∈ J. One can write

χj Q = χj Qχ̃j +χj Q(1 − χ̃j ).

Since χj Q(1 − χ̃j ) is a regularizing operator one finds

⟨µ, χjσ2(Q)⟩S∗L ∼ ⟨χj Quk, uk⟩H−1
comp(L),H1

loc(L)

∼ ⟨χj χ̃j Qχ̃jv
k
j , v

k
j ⟩H−1

comp(L),H1
loc(L)

as k → +∞,

for vk
j = χ̂j uk.

The operator Q j = (ϑ
−1
j )∗χ̃j Qχ̃j (ϑj )

∗ is a pseudodifferential operator of order 2 on Rd+1 with principal
symbol qj = χ̃2

j qC j
, where qC j

is the local representative of σ2(Q). Set also vk,Cj
j = (ϑ−1

j )∗vk
j . It converges

weakly to 0 in H 1(Rd+1). Associated with this sequence is a microlocal defect measure µj . If one writes

⟨χj χ̃j Qχ̃jv
k
j , v

k
j ⟩H−1

comp(L),H1
loc(L)

= ⟨χC j

j Q jv
k,Cj
j , v

k,Cj
j ⟩H−1

comp(Rd+1),H1
loc(R

d+1),

one obtains
⟨µ, χjσ2(Q)⟩S∗L = ⟨µj , χ

C j

j qj ⟩S∗ Õ j = ⟨µj , χ
C j

j qC j
⟩S∗ Õ j .

Note that here, the L2 and H s-norms on Rd+1 are based on the local representative of the density
measure κ0µg0 dt . One thus sees that the local representative of χjµ is precisely χC j

j µj , that is, χjµ=

ϑ∗

j (χ
C j

j µj )= χjϑ
∗

j µj . Summing up, we thus have

µ=

∑
j∈J

χjµ=

∑
j∈J

χjϑ
∗

j µj

and
⟨µ, σ2(Q)⟩S∗L =

∑
j∈J

⟨µ, χjσ2(Q)⟩S∗L =

∑
j∈J

⟨µj , χ
C j

j qC j
⟩S∗ Õ j .

Remark 3.1. Local properties of microlocal defect measures like µ can be deduced from the properties
of χC j

j µj . In what follows most results are of local nature. In such cases we shall work in local charts
and use Sections 2C and 3B to bring the analysis to open domains of Rd+1.
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3C. Operators with a low regularity. An important tool we use to handle low-regularity terms in what
follows is a result due to R. Coifman and Y. Meyer [1978, Proposition IV.7] and some of its consequences
that we list below.

Theorem 3.2 (Coifman–Meyer). Let Q ∈91
ph(R

n
×Rn). If m ∈ W 1,∞(Rn) the commutator [Q,m] maps

L2(Rn) into itself continuously. Moreover there exists C > 0 such that∥∥[Q,m]
∥∥

L2→L2 ≤ C∥m∥W 1,∞, m ∈ W 1,∞(Rn).

We deduce the following corollary.

Corollary 3.3. Let Q ∈ 91
ph(R

n
× Rn) be such that its kernel has compact support in Rn

× Rn . With
q ∈ S1

ph(R
n
× Rn) its principal symbol.

Let m ∈ C 1(Rn). There exist K1 and K2, compact operators on L2(Rn), with compactly supported
kernels, such that

[Q,m] =
1
i
∇x m · Op(∇ξq)+ K1 =

1
i

Op(∇ξq) · ∇x m + K2. (3-3)

Proof. Consider a sequence (mk)k∈N ⊂ C ∞(Rn) such that∑
|α|≤1

∥∂αx (m
k
− m)∥L∞ → 0 as k → +∞.

Classical symbolic calculus gives

[Q,mk
] =

1
i
∇x mk

· Op(∇ξq)+ K k
1 , (3-4)

with K k
1 = Op(r k

1 ) for some r k
1 ∈ S−1

ph , j = 1, 2. Thus, K k
1 is bounded from L2(Rn) into H 1(Rn). In

addition, since K k
1 has a kernel with compact supports in Rn

× Rn, it is compact on L2(Rn). Note that the
support of the kernel of K k

1 lies in a compact K of Rn
× Rn that is uniform with respect to k.

On the other hand, observe that

∇x mk
· Op(∇ξq)→ ∇x m · Op(∇ξq) in L (L2(Rn)).

Moreover, from Theorem 3.2 applied to mk
− m, one also has

[Q,mk
] → [Q,m] in L (L2(Rn)).

Using then (3-4) we deduce that (K k
1 )n∈N converges to some K 1 in L (L2(Rn)), and from the closedness

of the set of compact operators in L (L2(Rn)) we find that K 1 is compact. Moreover, K 1 has a kernel
supported in K. The limits above give the first equality in (3-3). The second equality follows similarly. □

Let � be a bounded open set of Rn and (κ0, g0) ∈X 1(�), with definition adapted from that of X 1(M).
The L2-inner product and norm are given by the density κ0µg0 . The following result is also a consequence
of Theorem 3.2.

Proposition 3.4. Let (uk)k∈N ⊂ H 1
loc(�) be a sequence that converges weakly to 0 and let µ be an

H 1-microlocal defect density measure on S∗� associated with the sequence (uk)k .
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Let b1 ∈ W 1,∞(Rn) and b2 ∈ C 0(Rn). Consider also Q1, Q2 ∈91
ph(R

n), both with kernels compactly
supported in �×�, with q1, q2 ∈ S1

ph(R
n
× Rn) for respective principal symbol. Then, one has

⟨b1 Q1 b2 Q2uk, uk⟩H−1
comp(�),H1

loc(�) k→+∞
−−−−→ ⟨µ, b1b2q1q2⟩S∗�. (3-5)

More generally, assume that (bk
1)k∈N ⊂ W 1,+∞(Rn) and (bk

2)k∈N ⊂ L∞(Rn), and (κk, gk)k∈N ⊂ Y(�)
with

∥bk
1 − b1∥W 1,+∞(Rn) + ∥bk

2 − b2∥L∞(Rn) + ∥(κk, gk)− (κ
0, g0)∥Y(�) → 0 as k → +∞.

Then
⟨bk

1 Q1 bk
2 Q2uk, uk⟩H−1

comp(�,κkµgk ),H
1
loc(�,κkµgk ) k→+∞

−−−−→ ⟨µ, b1b2q1q2⟩S∗�. (3-6)

Remark 3.5. Note that b1 is chosen in W 1,∞(Rn) because one cannot multiply an element in H−1 by a
bounded function. One derivative is needed.

Proof of Proposition 3.4. With Lemma 3.6 below we may replace the density κkµgk in the L2-inner
product by κ0µg0 and thus in the H−1

comp-H 1
loc duality.

We write

bk
1 Q1 bk

2 Q2 = b1 Q1 b2 Q2 + Rk, Rk
= b1 Q1 (bk

2 − b2) Q2 + (bk
1 − b1)Q1 bk

2 Q2.

Note that Rk maps H 1
loc(�) into H−1

comp(�) continuously. Moreover because of the convergences of bk
1

and bk
2, and the boundedness of (uk)k∈N in H 1

loc(�), one finds that Rkuk
→ 0 strongly in H−1

comp(�). Thus
we can write

⟨bk
1 Q1 bk

2 Q2uk, uk⟩H−1
comp(�),H1

loc(�)
= ⟨b1 Q1 b2 Q2uk, uk⟩H−1

comp(�),H1
loc(�)

+ o(1)k→+∞

and (3-6) follows if we prove (3-5).
According to Theorem 3.2 the commutator [b1, Q1] is bounded on L2(�) implying [b1, Q1] b2 Q2uk

is bounded in L2(�) yielding

⟨[b1, Q1] b2 Q2uk, uk⟩H−1
comp(�),H1

loc(�)
= ([b1, Q1] b2 Q2uk, uk)L2(�) k→+∞

−−−−→ 0,

since uk
→ 0 strongly in L2(�). We may thus assume that b1 = 1 without any loss of generality.

Let ε > 0 and let bε2 ∈ C ∞(�) be such that ∥b2 − bε2∥L∞ ≤ ε. Write

Q1 b2 Q2 = Q1 bε2 Q2 + Rε, Rε = Q1 (b2 − bε2) Q2.

One has |⟨Rεuk, uk⟩H−1
comp(�),H1

loc(�)
| ≤ Cε, and this leads to

⟨Q1 b2 Q2uk, uk⟩H−1
comp(�),H1

loc(�)
= ⟨Q1 bε2 Q2uk, uk⟩H−1

comp(�),H1
loc(�)

+ o(1)ε→0 + o(1)k→+∞. (3-7)

Since bε2 is smooth, by symbolic calculus one has

⟨Q1 bε2 Q2uk, uk⟩H−1
comp(�),H1

loc(�) k→+∞
−−−−→ ⟨µ, bε2q1q2⟩S∗�. (3-8)

Finally, since ⟨µ, bε2q1q2⟩S∗� → ⟨µ, b2q1q2⟩S∗� as ε→ 0, with (3-7) and (3-8) one concludes that (3-5)
holds. □
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Lemma 3.6. Assume that ∥(κk, gk)− (κ
0, g0)∥Y(�) → 0 and consider a sequence ( fk, hk)k∈N bounded

in L2
comp(�)⊕ L2

loc(�). Then

( fk, hk)L2(�,κkµgk )
= ( fk, hk)L2(�) + o(1)k→+∞.

If ( fk, hk)k∈N is bounded in H−1
comp(�)⊕ H 1

loc(�) then

⟨ fk, hk⟩H−1
comp(�,κkµgk ),H

1
loc(�,κkµgk )

= ⟨ fk, hk⟩H−1
comp(�),H1

loc(�)
+ o(1)k→+∞.

Here, Lemma 3.6 is written in the case of a bounded open set of the Euclidean space but the same
result holds in the case of a compact manifold.

Proof. One has µg0 = (det g0)1/2 dx and µgk = (det gk)
1/2 dx . Therefore κkµgk = αkκ

0µg0 , with

αk =
κk

κ0

(
det gk

det g0

)1/2

and αk → 1 in the Lipschitz norm. □

3D. Measures and partial differential equations. Microlocal defect measures associated with sequences
of solutions of partial differential equations with smooth coefficients can have properties such as support
localization in the characteristic set and invariance along the Hamiltonian flow. With the material developed
above, we extend these results to the case of C 1-coefficients. We focus on the case of wave operators.

Proposition 3.7. Let (κ0, g0) ∈ X 1(M) and set P0
= Pκ0,g0 . Denote by p0(x, τ, ξ)= −τ 2

+ g0
x(ξ, ξ) its

principal symbol. Let (κk, gk)k∈N ⊂ Y(M) be such that ∥(κk, gk)− (κ
0, g0)∥Y(M) → 0 as k → +∞ and

set Pk = Pκk ,gk .
Consider a sequence (uk)k∈N ⊂ H 1

loc(L) that converges to 0 weakly and µ an H 1-microlocal defect
density measure associated with (uk)k∈N.

Let T1 < T2. The following properties hold:

(1) If Pkuk
→ 0 strongly in H−1

loc ((T1, T2)×M) then

supp(µ)∩ S∗((T1, T2)×M)⊂ Char(p0). (3-9)

(2) If moreover Pkuk
→ 0 strongly in L2

loc((T1, T2)×M) then one has
t Hp0µ= 0 in the sense of distributions on S∗((T1, T2)×M), (3-10)

that is, ⟨µ,Hp0 q⟩S∗L = 0 for all q ∈ C ∞
c (S∗((T1, T2)×M)).

Since Hp0 is a tangent vector field on S∗L where µ lives (see Section 2A) note that t Hp0µ makes sense
in the second item of the proposition. Moreover note that Hp0 is a tangent vector field on S∗L∩Char(p0)

and one has supp(µ)∩S∗((T1, T2)×M)⊂Char(p0) by the first item of the proposition. Finally, notice that
for a Hamiltonian vector field, Hp0 = −

t Hp0 as recalled in Section 2A even in the case (κ0, g0) ∈X 1(M).
Naturally, Proposition 3.7 and its proof can be adapted to the other energy levels. We shall also need

the following result.

Proposition 3.7′. With the notation of Proposition 3.7, consider a sequence (uk)k∈N ⊂ L2
loc(L) that

converges to 0 weakly and µ an L2-microlocal defect density measure associated with (uk)k∈N.
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Let T1 < T2. The following properties hold.

(1) If Pkuk
→ 0 strongly in H−2

loc ((T1, T2)×M) then

supp(µ)∩ S∗((T1, T2)×M)⊂ Char(p0).

(2) If moreover Pkuk
→ 0 strongly in H−1

loc ((T1, T2)×M) then one has

t Hp0µ= 0 in the sense of distributions on S∗((T1, T2)×M).

Proof of Proposition 3.7. Consider B ∈90
c,ph(L)with kernel supported in ((T1, T2)×M)2 and b ∈ S0

c,ph(L)
its principal symbol. For the definition of the L2-inner product we use (κ0, g0). We also use the partition
of unity 1 =

∑
j∈J χj , with χj ∈ C ∞

c (Oj ) associated with the atlas A and the additional cutoff functions
χ̃j , χ̂j ∈ C ∞

c (Oj ) that are introduced in Section 3B and, as obtained in that section, we write

⟨B Pkuk, uk⟩H−1
comp(L),H1

loc(L)
=

∑
j∈J

⟨χj B Pkuk, uk⟩H−1
comp(L),H1

loc(L)

=

∑
j∈J

⟨χj χ̃j B Pk χ̃jv
k
j , v

k
j ⟩H−1

comp(L),H1
loc(L)

+ o(1)k→+∞, (3-11)

with vk
j = χ̂j uk . Associated with (ϑ−1

j )∗vk
j , the local representative of vk

j , is a microlocal defect measureµj

in ϑj (Oj )= Õj = R × Õj and χCj
j µj is the local representative of χjµ in this chart. See Section 3B.

Note that we use local representatives of the operators, functions, and measures without introducing
any new symbols. Yet to keep clear that the analysis is carried out in a local chart we use the notation
L2(Õj ), H s(Õj ) and not L2(L), H s(L). To further lighten notation we set κ̃k = (det gk)

1/2κk . One has

Pk = ∂2
t − (κ̃k)

−1
∑
p,q

∂pκ̃k g pq
k ∂q + 1 = P̃k −

∑
p,q

R p,q
k ,

with P̃k = ∂2
t −

∑
p,q ∂pg pq

k ∂q + 1 and R p,q
k = (κ̃k)

−1
[∂p, κ̃k]g

pq
k ∂q . Note that χ̃j B R p,q

k χ̃j defines a
sequence of bounded operators from H 1(L) into L2(L), uniformly with respect to k. Consequently, one has

⟨χj χ̃j B R p,q
k χ̃jv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= (χj χ̃j B R p,q
k χ̃jv

k
j , v

k
j )L2(Õj ) k→+∞

−−−−→ 0

since vk
j converges strongly to 0 in L2(Õj ). This leads to

⟨χj χ̃j B Pk χ̃jv
k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨χj χ̃j B P̃k χ̃jv
k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

+ o(1)k→+∞

= ⟨µj , χj bp0
⟩S∗(Õj )

+ o(1)k→+∞,

by Proposition 3.4. Since χjµj = χjµ locally, lifting back the analysis to the manifold level, with (3-11),
one finds

⟨B Pkuk, uk⟩H−1
comp(L),H1

loc(L)
=

∑
j∈J

⟨µ, χj bp0
⟩S∗(L) = ⟨µ, bp0

⟩S∗(L) + o(1)k→+∞.

Now, one has

⟨B Pkuk, uk⟩H−1
comp(L),H1

loc(L)
= ⟨Pkuk, tBuk⟩H−1

loc (L),H1
comp(L)

+ o(1)k→+∞,
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with the transpose operator tB bounded from H 1
loc(L) into H 1

comp(L) since B is itself bounded from
H−1

loc (L) into H−1
comp(L). If one assumes that Pkuk

→ 0 strongly in H−1
loc ((T1, T2)×M), one obtains

⟨B Pkuk, uk⟩H−1
comp(L),H1

loc(L) k→+∞
−−−−→ 0,

and thus
⟨µ, bp0

⟩S∗(L) = 0 for all b ∈ S0
c,ph(L) with supp(b)⊂ T ∗((T1, T2)×M),

and one obtains the support estimation (3-9).
We now prove the second item of the proposition. We assume that Pkuk lies in L2

loc((T1, T2)×) and
converges strongly to 0 in this space. Consider B ∈91

c,ph(L) with kernel supported in ((T1, T2)×M)2 and
b ∈ S1

c,ph(L) its principal symbol. We are interested in the limit of ⟨[Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
, which

makes sense since [Pk, B] is of order 2. We have [Pk, B]uk
= Pk Buk

− B Pkuk
∈ H−1((T1, T2)×M).

Since Pkuk lies in L2((T1, T2)×M) by assumption, B Pkuk lies in H−1((T1, T2)×M) and the same
holds for Pk Buk. We may thus write

⟨[Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
= ⟨Pk Buk, uk⟩H−1

comp(L),H1
loc(L)

− ⟨Pkuk, B∗uk⟩L2
loc(L),L2

comp(L),

where the adjoint is computed with respect to the L2-inner product associated with (k0, g0) here. As
B maps continuously L2

loc((T1, T2)× M) into H−1
comp((T1, T2)× M), we have B∗ maps continuously

H 1
loc(L) into L2

comp(L). Thus, one has

(Pkuk, B∗uk)L2(L) k→+∞
−−−−→ 0.

By Lemma 3.6 it is asymptotically equivalent to use (κ0, g0) or (κk, gk) for the definition of the L2-inner
product and H−1

comp-H 1
loc duality, that is,

⟨Pk Buk, uk⟩H−1
comp(L),H1

loc(L)
= ⟨Pk Buk, uk⟩H−1

comp(L,κkµgk dt),H1
loc(L,κkµgk dt) + o(1)k→+∞.

Since Pk is selfadjoint for this latter L2-inner product, one obtains

⟨Pk Buk, uk⟩H−1
comp(L),H1

loc(L)
= ⟨Buk, Pkuk⟩L2

comp(L,κkµgk dt),L2
loc(L,κkµgk dt) + o(1)k→+∞

= ⟨Buk, Pkuk⟩L2
comp(L),L2

loc(L)
+ o(1)k→+∞.

Using again that Pkuk
→ 0 strongly to 0 in L2

loc((T1, T2)×M), we obtain

⟨Pk Buk, uk⟩H−1
comp(L),H1

loc(L) k→+∞
−−−−→ 0,

and finally
⟨[Pk, B]uk, uk⟩H−1

comp(L),H1
loc(L) k→+∞

−−−−→ 0. (3-12)

As above, with the partition of unity 1 =
∑

j∈J χj we write

⟨[Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
=

∑
j∈J

⟨χj [Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
. (3-13)

For each term in the sum one has

⟨χj [Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
= ⟨χj [Pk, B̃j ]v

k
j , v

k
j ⟩H−1

comp(L),H1
loc(L)

+ o(1)k→+∞,
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with B̃j = χ̃j Bχ̃j . This allows one to work in a local chart and write

⟨[Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
=

∑
j∈J

⟨χj [Pk, B̃j ]v
k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

, (3-14)

with the (manifold-local chart) identifications described above. With Ak = Aκk ,gk , in the local chart Cj

one writes

χj [Pk, B̃j ] = χj [∂
2
t , B̃j ] −χj [Ak, B̃j ] = χj [∂

2
t , B̃j ] −

∑
1≤p,q≤d

(Q pq
1 + Q pq

2 + Q pq
3 + Q pq

4 ),

with
Q pq

1 = χj κ̃
−1
k ∂x p κ̃k g pq

k [∂xq , B̃j ], Q pq
2 = χj κ̃

−1
k ∂x p [κ̃k g pq

k , B̃j ]∂xq ,

Q pq
3 = χj κ̃

−1
k [∂x p , B̃j ]κ̃k g pq

k ∂xq , Q pq
4 = χj [κ̃

−1
k , B̃j ]∂x p κ̃k g pq

k ∂xq .

We now compute the limit of each term associated with this decomposition of [Pk, B̃j ] on the right-hand
side of (3-14). The principal symbol of χj [∂

2
t , B̃j ] is iχj {τ

2, b} and thus

⟨χj [∂
2
t , B̃j ]v

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨µj , iχj {τ
2, b}⟩S∗(Õj )

+ o(1)k→+∞.

Proposition 3.4 applies and yields

⟨Q pq
1 vk

j , v
k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨µj , iχj g0,pqξp∂xq b⟩S∗(Õj )
+ o(1)k→+∞,

⟨Q pq
3 vk

j , v
k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨µj , iχj g0,pq(∂x p b)ξq⟩S∗(Õj )
+ o(1)k→+∞.

With Theorem 3.2 one has [κ̃k g pq
k , B̃j ] → [κ̃0g0,pq , B̃j ] in L (L2(Õj )) as k → +∞. It follows that

⟨Q pq
2 vk

j , v
k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨Q pq
2,av

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

+ o(1)k→+∞,

with
Q pq

2,a = χj κ̃
−1
k ∂x p [κ̃

0g0,pq , B̃j ]∂xq .

With Corollary 3.3 one writes

[κ̃0g0,pq , B̃j ] = −
1
i
∇x(κ̃

0g0,pq) · Op(∇ξ (χ̃2
j b))+ K1,

with K1 a compact operator on L2(Rd+1), with compactly supported kernel. One thus obtains

⟨Q pq
2 vk

j , v
k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨Q pq
2,bv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

+ o(1)k→+∞,

with
Q pq

2,b = −
1
i
χj κ̃

−1
k ∂x p∇x(κ̃

0g0,pq) · Op(∇ξ (χ̃2
j b))∂xq .

Proposition 3.4 applies and yields

⟨Q pq
2 vk

j , v
k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨µj ,−iχjξpξq(κ̃
0)−1

∇x(κ̃
0g0,pq) · ∇ξb⟩S∗(Õj )

+ o(1)k→+∞.

We now treat the term associated with Q pq
4 . Note that one has

∑
p,q Q pq

4 = χj [κ̃
−1
k , B̃j ]κ̃k Ak . We

write, lifting temporarily the analysis back to the manifold,∑
p,q

⟨Q pq
4 , v⟩k

j v
k
j H−1

comp(Õj ),H1
loc(Õj )

= ⟨χj [κ̃
−1
k , B]κ̃k Akv

k
j , v

k
j ⟩H−1

comp(L),H1
loc(L)

= ⟨χj [κ̃
−1
k , B]κ̃k Akuk, uk⟩H−1

comp(L),H1
loc(L)

+ o(1)k→+∞.
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Setting f k
= (∂2

t − Ak)uk with f k
→ 0 strongly in L2

loc((T1, T2)×M), we thus find∑
p,q

⟨Q pq
4 vk

j , v
k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨χj [κ̃
−1
k , B]κ̃k∂

2
t uk, uk⟩H−1

comp(L),H1
loc(L)

− ⟨χj [κ̃
−1
k , B]κ̃k f k, uk⟩H−1

comp(L),H1
loc(L)

+ o(1)k→+∞

= ⟨χj [κ̃
−1
k , B̃j ]κ̃k∂

2
t v

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

+ o(1)k→+∞,

bringing again the analysis at the level of the local chart.
Using that κ̃k is independent of t , we may write

χj [κ̃
−1
k , B̃j ]κ̃k∂t = χj∂t [κ̃

−1
k , B̃j ]κ̃k +χj [κ̃

−1
k , E j ]κ̃k,

where E j = [∂t , B̃j ] ∈91
c,ph(Õj ), with ∂t b ∈ S1

c,ph(Õj ) for principal symbol. With Theorem 3.2 we see that
[κ̃−1

k , E j ] maps L2(Õj ) into itself continuously and moreover [κ̃−1
k , E j ] → [(κ̃0)−1, E j ] in L (L2(Õj )).

Thus we obtain

⟨χj [κ̃
−1
k , E j ]κ̃k∂tv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨χj [(κ̃
0)−1, E j ]κ̃k∂tv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

+ o(1)k→+∞ k→+∞
−−−−→ 0,

arguing as above. Similarly we write

⟨χj∂t [κ̃
−1
k , B̃j ]κ̃k∂tv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

∼k→+∞ ⟨χj∂t [(κ̃
0)−1, B̃j ]κ̃

0
k ∂tv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

.

Arguing as we did for the term associated with Q p,q
2 we thus find

⟨χj∂t [κ̃
−1
k , B̃j ]κ̃k∂tv

k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨µj ,−iχjτ
2κ̃0(∇x(κ̃

0)−1) · ∇ξb⟩S∗(Õj )
+ o(1)k→+∞.

Collecting the various estimates we found we obtain

⟨χj [Pk, B̃j ]v
k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= ⟨µj , χjσ ⟩S∗(Õj )
+ o(1)k→+∞, (3-15)

with

σ = i{τ 2, b}−i
∑
p,q

(
g0,pqξp∂xq b+g0,pq(∂x p b)ξq−ξpξq(κ̃

0)−1
∇x(κ̃

0g0,pq)·∇ξb
)
+iτ 2κ̃0(∇x(κ̃

0)−1)·∇ξb.

Recalling that p0
= −τ 2

+
∑

p,q g0,pqξpξq , one finds

σ = −i{p0, b} + i p0(κ̃0)−1
∇x(κ̃

0) · ∇ξb.

Since µ, and thus µj , is supported in Char(p0) by the first part of the proposition, one concludes that

⟨χj [Pk, B̃j ]v
k
j , v

k
j ⟩H−1

comp(Õj ),H1
loc(Õj )

= −i⟨µj , χj {p0, b}⟩S∗(Õj )
+ o(1)k→+∞.

Since χjµ= χjµj (see Section 3B), with (3-13)–(3-14) one obtains

⟨[Pk, B]uk, uk⟩H−1
comp(L),H1

loc(L)
= −i⟨µ, {p0, b}⟩S∗(L) + o(1)k→+∞.

With (3-12), this concludes the proof of the second part of the proposition since {p0, b} = Hp0 b. □
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4. Measure support propagation: proof of Theorem 1.10

Theorem 1.10 is stated on an open subset of a smooth manifold. Yet, its result is of a local nature. Using a
local chart we may assume that we consider an open of set � of Rd instead without any loss of generality.

The strategy we follow is very much inspired by the approach of Melrose and Sjöstrand [1978] to
the propagation of singularities and relies on careful choices of test functions allowing one to construct
sequences of points in the support of the measure relying on nonnegativity.2 Then, a limiting procedure
leads to the conclusion, in the spirit of the classical proof of the Cauchy–Peano theorem.

The proof of Theorem 1.10 is made of two steps that are stated in the following propositions.

Proposition 4.1. Let X be a C 0-vector field on� an open set of Rd. For a closed set F of �, the following
two properties are equivalent:

(1) The set F is a union of maximally extended integral curves of the vector field X.

(2) For any compact K ⊂� where the vector field X does not vanish,

∀ε > 0, ∃δ0 > 0, ∀x ∈ K ∩ F, ∀δ ∈ [−δ0, δ0], B(x + δX (x), δε)∩ F ̸= ∅.

Proposition 4.2. Let X be a C 0-vector field on � an open set of Rd. Consider a nonnegative measure µ
on � that is a solution to tXµ= 0 in the sense of distributions, that is,

⟨
tXµ, a⟩D ′(�),C ∞

c (�) = ⟨µ, Xa⟩D ′,0(�),C 0
c (�)

= 0, a ∈ C ∞

c (�). (4-1)

Then, the closed set F = supp(µ) satisfies the second property in Proposition 4.1.

Proof of Proposition 4.1. First, we prove that property (1) implies property (2) and consider a compact
set K of Rd such that K ⊂� and K ∩ F ̸= ∅.

There exists η > 0 such that K ⊂ Kη ⊂ � with Kη = {x ∈ � : dist(x, K ) ≤ η}. One has ∥X∥ ≤ C0

on Kη for some C0 > 0. Let x ∈ K and let γ (s) be a maximal integral curve defined on an interval ]a, b[,
a, b ∈ R and such that 0 ∈]a, b[ and γ (0)= x . If b<∞ then there exists s1

∈ ]0, b[ such that γ (s1) /∈ Kη.
Since γ (s) ∈ Kη if s < η/C0, one finds that b ≥ η/C0. Similarly, one has |a| ≥ η/C0. Consequently,
there exists S > 0 such that any maximal integral curve γ (s) of the vector field X with γ (0) ∈ K is
defined for s ∈ I = (−S, S).

Let us pick x ∈ K . According to property (1), there exists

γ : I → F such that γ̇ (s)= X (γ (s)) and γ (0)= x .

By uniform continuity of the vector field X in a compact neighborhood of K we have

γ (s)= γ (0)+
∫ s

0
γ̇ (s) ds = γ (0)+

∫ s

0
X (γ (s)) ds = x + s X (x)+ r(s), s ∈ (−S, S),

where lims→0 ∥r(s)∥/s = 0, uniformly with respect to x . We deduce that for any ε > 0 there exists
0< δ0 < S such that ∥r(s)∥ < sε for any s ∈ (−δ0, δ0), which implies

F ∋ γ (s) ∈ B(x + s X (x), sε).

2Of the measure in our case and of some operators for Melrose and Sjöstrand, via the Gårding inequality.
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Second, we prove that property (2) implies property (1). It suffices to prove that for any x ∈ F there
exist an interval I ∋ 0 and an integral curve

γ : I → F such that γ̇ (s)= X (γ (s)) and γ (0)= x .

Then, the standard continuation argument shows that this local integral curve included in F can be
extended to a maximal integral curve also included in F.

If X (x)= 0, then the trivial integral curve γ (s)= x , s ∈ R, is included in F. As a consequence, we
assume X (x) ̸= 0 and we pick a compact neighborhood K of x containing B(x, η) with η > 0 and where,
for some 0< cK < CK ,

cK ≤ ∥X (y)∥ ≤ CK , y ∈ K .

Let n ∈ N∗. Set xn,0 = x and ε= 1/n and apply property (2). One deduces that there exist 0<δn ≤ 1/n
and a point

xn,1 ∈ F ∩ B(xn,0 + δn X (xn,0), δn/n).

If xn,1 ∈ K , one can perform this construction again, starting from xn,1 instead of xn,0. If a sequence of
points xn,0, xn,1, . . . , xn,L+ is obtained in this manner, one has

xn,ℓ+1 ∈ F ∩ B(xn,ℓ + δn X (xn,ℓ), δn/n), ℓ= 0, . . . , L+
− 1. (4-2)

One can carry on the construction as long as xn,L+ ∈ K . We can perform the same construction for ℓ≤ 0,
with the property

xn,ℓ−1 ∈ F ∩ B(xn,ℓ − δn X (xn,ℓ), δn/n), |ℓ| = 0, . . . , L−
− 1. (4-3)

Having ∥X∥ ≤ CK on K and B(x, η)⊂ K ensures that we can construct the sequence at least for

L+
= L−

= Ln =

⌊
η

δn(CK + 1)

⌋
+ 1 ≤

⌊
η

δn(CK + 1/n)

⌋
+ 1,

where ⌊·⌋ denotes the floor function. With the points xn,ℓ, |ℓ| ≤ Ln , we have constructed we define the
following continuous curve γn(s) for |s| ≤ Lnδn:

γn(s)= xn,ℓ + (s − ℓδn)
xn,ℓ+1 − xn,ℓ

δn
for s ∈ [ℓδn, (ℓ+ 1)δn) and |ℓ| ≤ Ln − 1.

This curve and its construction is illustrated in Figure 1. Note that γn(s) remains in a compact set,
uniformly with respect to n. In this compact set X is uniformly continuous.

We set S = η/(CK + 1). Since S ≤ Lnδn , we shall in fact only consider the function γn(s) for |s| ≤ S
in what follows. Note that since xn,ℓ ∈ F for |ℓ| ≤ Ln , one has

dist(γn(s), F)≤ δn(CK + 1/n), |s| ≤ S. (4-4)

From (4-2), for ℓ≥ 0 and s ∈ (ℓδn, (ℓ+ 1)δn), we have

γ̇n(s)=
xn,ℓ+1 − xn,ℓ

δn
= X (xn,ℓ)+O(1/n).
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x0

x0

Figure 1. Top: iterative construction of the curve γn . Bottom: convergence of γn as n increases.

Similarly, from (4-3), for ℓ≤ 0 and s ∈ ((ℓ− 1)δn, ℓδn), we have

γ̇n(s)=
xn,ℓ − xn,ℓ−1

δn
= X (xn,ℓ)+O(1/n).

In any case, using the uniform continuity of the vector field X , we find

γ̇n(s)= X (γn(s))+ en(s),

where the error |en| goes to zero uniformly with respect to |s| ≤ S as n → +∞.
Since the curve γn is absolutely continuous (and differentiable except at isolated points), we find

γn(s)= γn(0)+
∫ s

0
γ̇n(σ ) dσ = x +

∫ s

0
X (γn(σ )) dσ +

∫ s

0
en(σ ) dσ. (4-5)

We now let n grow to infinity. With (4-5), the family of curves (s 7→ γn(s), |s| ≤ S)n∈N∗ is equicontinuous
and pointwise bounded; by the Arzelà-Ascoli theorem we can extract a subsequence (s 7→ γn p)p∈N that
converges uniformly to a curve γ (s), |s| ≤ S. Convergence is illustrated in Figure 1. Passing to the limit
n p → +∞ in (4-5) we find that γ (s) is solution to

γ (s)= x +

∫ s

0
X (γ (σ )) dσ.

From estimation (4-4), for any |s| ≤ S, there exists (yp)p ⊂ F such that limp→+∞ yp = γ (s). Since F is
closed we conclude that γ (s) ∈ F. □

Positivity argument and proof of Proposition 4.2. We consider a compact set K where the vector field X
does not vanish. By continuity of the vector field there exist 0< cK ≤CK such that 0< cK ≤∥X (x)∥ ≤CK

for all x ∈ K .
Let us consider x0

∈ K ∩ supp(µ). By performing a rotation and a dilation by a factor ∥X (x0)∥, we
can assume that X (x0)= (1, 0, . . . , 0) ∈ Rd. We shall write x = (x1, x ′) with x ′

∈ Rd−1.
Let χ ∈ C ∞(R) be given by

χ(s)= 1s<1 exp(1/(s − 1)), (4-6)
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and β ∈ C ∞(R) be such that

β ≡ 0 on ]−∞,−1], β ′ > 0 on
]
−1,− 1

2

[
, β ≡ 1 on

[
−

1
2 ,+∞

[
. (4-7)

We then set

qε,δ,x0 = (χ ◦ v)(β ◦w), gε,δ,x0 = (χ ′
◦ v)(β ◦w)Xv, hε,δ,x0 = (χ ◦ v)(β ′

◦w)Xw, (4-8)

with

v(x)=
1
2 − δ−1(x1 − x0

1)+ 8(εδ)−2
∥x ′

− x0 ′
∥

2
and w(x)= 2ε−1(1 − δ−1(x1 − x0

1))

for ε > 0 and δ > 0 both meant to be chosen small in what follows. We have Xqε,δ,x0 = gε,δ,x0 + hε,δ,x0 .
The function qε,δ,x0 is compactly supported. Indeed, in the support of β ◦w, one has w≥ −1, implying

x1 − x0
1 ≤ δ

(
1 +

1
2ε

)
,

while on the support of χ ◦ v one has v ≤ 1, which gives

−
1
2 + 8(εδ)−2

∥x ′
− x0 ′

∥
2
≤ δ−1(x1 − x0

1).

On the supports of qε,δ,x0 and (χ ′
◦ v)(β ◦w), one thus finds

−
1
2δ ≤ x1 − x0

1 ≤ δ
(
1 +

1
2ε

)
and 8(εδ)−2

∥x ′
− x0 ′

∥
2
≤

3
2 +

1
2ε. (4-9)

Similarly, on the support of β ′
◦w one has −1 ≤ w ≤ −

1
2

δ
(
1 +

1
4ε

)
≤ x1 − x0

1 ≤ δ
(
1 +

1
2ε

)
,

which implies that on the support of hε,δ,x0 one has

δ
(
1 +

1
4ε

)
≤ x1 − x0

1 ≤ δ
(
1 +

1
2ε

)
and 8(εδ)−2

∥x ′
− x0 ′

∥
2
≤

3
2 +

1
2ε. (4-10)

In particular, in the case ε ≤ 1, one finds

supp(hε,δ,x0)⊂ B(x0
+ δX (x0), εδ). (4-11)

These estimations of the supports of qε,δ,x0 and hε,δ,x0 are illustrated in Figure 2.

Lemma 4.3. For any 0< ε ≤ 1 there exists δ0 > 0 such that, for any x0
∈ K and 0< δ ≤ δ0, the function

gε,δ,x0 is nonnegative. Moreover, gε,δ,x0 is positive in a neighborhood of x0.

Proof. Let 0< ε ≤ 1. We have gε,δ,x0 = (χ ′
◦ v)(β ◦w)Xv. Since β ≥ 0 and χ ′ < 0, it suffices to prove

that Xv(x)≤ 0 for x in the support of (χ ′
◦ v)(β ◦w) for δ > 0 chosen sufficiently small, uniformly with

respect to x0
∈ K .

We write
X (x)− X (x0)= α1(x, x0)∂x1 +α′(x, x0) · ∇x ′,

with α1(x, x0) ∈ R and α′(x, x0) ∈ Rd−1. By (4-9), for x ∈ supp(χ ′
◦ v)(β ◦w) we have ∥x − x0

∥ ≲ δ.
From the uniform continuity of X in any compact set we conclude that

|α1(x, x0)| + ∥α′(x, x0)∥ = o(1) as δ → 0+, (4-12)
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x0

x ′

x1
X (x0)= ∂x1

1
2εδ

δ−
1
2δ

1
2εδ

x0

x ′

x1
X (x0) δ−

1
2δ

1
4εδ

εδ
1
2εδ

Figure 2. Estimation of the test function supports in the case ε≤ 1. Top: support of hε,δ,x0 .
Bottom: support of qε,δ,x0 .

uniformly3 with respect to x0
∈ K and x ∈ supp(χ ′

◦ v)(β ◦w). Using that X (x0) = ∂x1 and the form
of v given above, we write

Xv(x)= (X (x)v)(x)=
(
∂x1v+ (X (x)− X (x0))v

)
(x)

= −δ−1(1 +α1(x, x0)− 16ε−1(εδ)−1α′(x, x0) · (x ′
− x0 ′)

)
. (4-13)

Using again (4-9), we thus find for x ∈ supp(χ ′
◦ v)(β ◦w)

|α1(x, x0)− 16ε−1(εδ)−1α′(x, x0) · (x ′
− x0 ′)| ≲ |α1(x, x0)| + ε−1

∥α′(x, x0)∥.

With ε fixed above and with (4-12), we find that Xv(x) ∼ −δ−1 as δ → 0+ uniformly with respect to
x0

∈ K and x ∈ supp(χ ′
◦ v)(β ◦w).

Finally, we have gε,δ,x0(x0)= −δ−1χ ′
( 1

2

)
β(2ε−1) > 0 and thus gε,δ,x0 is positive in a neighborhood

of x0. □

We are now in a position to conclude the proof of Proposition 4.2. Note that it suffices to prove the
result for 0<ε≤ 1. We choose δ0> 0 as given by Lemma 4.3. Let then x0

∈ K ∩supp(µ). We apply (4-1)

3Observe that the change of variables made above for X (x0)= (1, 0, . . . , 0) does not affect uniformity since the dilation is
made by a factor in [cK ,CK ].
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to the family qε,δ,x0 of test functions with 0< δ ≤ δ0:

0 = ⟨µ, X (qε,δ,x0)⟩ = ⟨µ, gε,δ,x0⟩ + ⟨µ, hε,δ,x0⟩. (4-14)

By Lemma 4.3, gε,δ,x0 ≥ 0 and gε,δ,x0 is positive in a neighborhood of x0. As x0
∈ supp(µ) we find

⟨µ, gε,δ,x0⟩ > 0. Consequently, ⟨µ, hε,δ,x0⟩ ̸= 0. By the support estimate for hε,δ,x0 given in (4-11) the
conclusion follows: supp(µ)∩ B(x0

+ δX (x0), εδ) ̸= ∅. □

5. Exact controllability: proof of Theorem 1.12

Let (κ0, g0) ∈ X 1(M) and assume that (ω, T ) fulfills the geometric control condition of Definition 1.8′′.
Let also (κ, g) ∈ Y(M). With Proposition 1.6, the result of Theorem 1.12 follows if we prove that

there exists ε > 0 and Cobs > 0 such that

Eκ,g(u)(0)≤ Cobs∥1(0,T )×ω ∂t u∥
2
L2(L,κµgdt)

for any weak solution u of the wave equation associated with (κ, g) chosen such that

∥(κ, g)− (κ0, g0)∥Y(M) ≤ ε.

The L2-norm on the right-hand side is associated with (κ, g), that is,

∥1(0,T )×ω ∂t u∥
2
L2(L,κµgdt) =

∫ T

0

∫
ω

|∂t u|
2 κµg dt.

Yet, for ε > 0 chosen sufficiently small one has ∥ · ∥L2(L,κ0µg0 )
≂ ∥ · ∥L2(L,κµg)

, where A ≂ B means
c1 ≤ A/B ≤ c2 for some c1, c2 > 0. In other words, we have equivalence with constants uniform with
respect to (κ, g). In what follows, L2- and more generally H s-norms on M are chosen with respect to
κ0µg0 unless explicitly written. Our goal is thus to prove the observability inequality

Eκ0,g0(u)(0)≤ Cobs∥1(0,T )×ω ∂t u∥
2
L2(L). (5-1)

The Bardos–Lebeau–Rauch uniqueness compactness argument reduces the proof of (5-1) to the proof of
the weaker estimate

Eκ0,g0(u)(0)≤ C∥1(0,T )×ω ∂t u∥
2
L2(L) + C ′

∥∥(u(0), ∂t u(0))
∥∥2

L2(M)⊕H−1(M)
, (5-2)

which exhibits an additional compact term, and expresses observability for high frequencies. Low
frequencies are dealt with by means of a unique continuation argument.

To prove (5-2) we argue by contradiction and we assume that there exists a sequence (κk, gk)k∈N ⊂

Y(M) such that
lim

k→+∞

∥(κk, gk)− (κ
0, g0)∥Y(M) = 0, (5-3)

and yet for each k ∈ N the associated observability inequality does not hold. Thus, for each k ∈ N,
there exists a sequence of initial data (vk,p,0, vk,p,1)p∈N ⊂ H 1(M)× L2(M) with associated solution
(vk,p)p∈N, that is, {

Pkv
k,p

= 0 in (0,+∞)×M,

vk,p
|t=0 = vk,p,0, ∂tv

k,p
|t=0 = vk,p,1 in M,
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with Pk = Pκk ,gk , that moreover has the properties

Eκ0,g0(vk,p)(0)= 1 and ∥1(0,T )×ω ∂tv
k,p

∥L2(L) +
∥∥(vk,p,0, vk,p,1)

∥∥
L2(M)⊕H−1(M)

≤
1

p+1
.

We take p = k and we set(uk,0, uk,1)= (vk,k,0, vk,k,1) and uk
= vk,k ; one obtains Pkuk

= 0 in L and

Eκ0,g0(uk)(0)= 1 and ∥1(0,T )×ω ∂t uk
∥L2(L) +

∥∥(uk,0, uk,1)
∥∥

L2(M)⊕H−1(M)
≤

1
k+1

. (5-4)

From (5-4) one has uk ⇀ 0 weakly in H 1
loc(L). With (3-1)–(3-2), we can associate with (a subsequence

of) (uk)k an H 1-microlocal defect measure µ on S∗(L). Here, the measure is understood with respect to
L2(L, κ0µg0 dt).

From the second part of (5-4) one has

µ= 0 in S∗((0, T )×ω). (5-5)

In fact, for any ψ ∈ C ∞((0, T ) × ω) one has ∥ψ∂t uk
∥L2(L) ∼ 0 and thus ⟨µ, τ 2ψ2

⟩ = 0. Hence,
supp(µ)∩ S∗((0, T )×ω)⊂ {τ = 0}. Since {τ = 0}∩Char(p0)∩ S∗(L)=∅ with (3-9) one obtains (5-5).

With the first part of (5-4) one has the following lemma.

Lemma 5.1. The measure µ does not vanish on S∗(L).

A proof is given below.
We now use Proposition 3.7 to obtain a precise description of the measure µ. First, one has

supp(µ)∩ S∗((0, T )×M)⊂ Char(p0). Furthermore, one has t Hp0µ= 0 in the sense of distributions on
S∗((0, T )×M). Since Hp0 is a C 0-vector field on the manifold S∗L, Theorem 1.10 implies that supp(µ)
is a union of maximally extended bicharacteristics in S∗((0, T )×M).

Under the geometric control condition of Definition 1.8′′, any maximal bicharacteristic meets
S∗((0, T ) × ω) where µ vanishes by (5-5). Thus supp(µ) = ∅, yielding a contradiction with the
result of Lemma 5.1. We thus obtain that (5-1) holds. This concludes the proof of Theorem 1.12. □

Proof of Lemma 5.1. Let T1< T2 and φ ∈C ∞
c (R) nonnegative and equal to 1 on a neighborhood of [T1, T2].

On L, consider the elliptic operator Q = −∂2
t − Aκ0,g0 + 1 with symbol q = τ 2

+
∑

p,q g0 p,q(x)ξpξq .
Taking (3-2) and Lemma 3.6 into account one can write

⟨φ2 Quk, uk⟩H−1
comp(L),H1

loc(L)
∼

k→+∞

⟨µ, φ2q⟩S∗L. (5-6)

Integrating by parts one obtains

⟨φ2 Quk,uk⟩H−1
comp(L),H1

loc(L)
=

∫
L
φ(t)2

(
|∂t uk

|
2
+g0(∇g0uk,∇g0 ūk)+|uk

|
2)κ0µg0 dt+2(φ′φ ∂t uk,uk)L2(L)

=

∫
R

φ(t)2Eκ0,g0(uk)(t)dt+2(φ′φ ∂t uk,uk)L2(L).

Since the energy built on κ p, g p is preserved by the evolution given by Pp, we have by (5-4)

Eκ0,g0(uk)(t)= Eκk ,gk (uk)(t)+ o(1)= Eκk ,gk (uk)(0)+ o(1)= Eκ0,g0(uk)(0)+ o(1)= 1 + o(1) (5-7)
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and since (φ′φ ∂t uk, uk)L2(L) → 0 as uk
→ 0 strongly in L2

loc(L), one obtains

⟨φ2 Quk, uk⟩H−1
comp(L),H1

loc(L)
∼

k→+∞

∥φ∥
2
L2(R)

.

With (5-6) this proves that µ ̸= 0. □

6. Lack of continuity of the control operator with respect to coefficients

6A. Proof of Theorems 1.14 and 1.14′. We prove the result of both theorems, that is, in the case k ≥ 1.
In the case k = 1 we are simply required to prove additionally that the geometric control condition of
Definition 1.8 is fulfilled for geodesics given by the chosen metric g̃; see Remark 1.17.

Let ε > 0. We set g̃ = (1 + ε)g. Given any neighborhood U of (κ, g) in X k(M), for ε > 0 chosen
sufficiently small one has (κ, g̃) ∈ U .

Moreover, observe that, for ε > 0 chosen sufficiently small, geodesics associated with g̃ can be made
arbitrarily close to those associated with g uniformly in t ∈ [0, T ]. Hence, for such ε > 0 the geometric
control condition is fulfilled for geodesics associated with g̃.

Observe that one has
Char(pκ,g)∩ Char(pκ,g̃)∩ S∗L = ∅. (6-1)

We consider a sequence (yk,0, yk,1) ⇀ (0, 0) weakly in H 1(M)⊕ L2(M) such that

1
2(∥yk,0

∥
2
H1(M) + ∥yk,1

∥
2
L2(M))= 1.

L2- and H 1-norms are based on the κµg dt measure on L.
Setting f k

κ,g = Hκ,g(yk,0, yk,1) ∈ L2((0, T )×M) with Hκ,g defined in (1-7), one obtains a sequence
of control functions. According to the HUM method [Lions 1988], f k

κ,g is itself a (weak) solution to the
following free wave equation

Pκ,g f k
κ,g = 0, (6-2)

in the energy space L2(M) ⊕ H−1(M), that is, ( f k
κ,g(0), ∂t f k

κ,g(0)) ∈ L2(M) × H−1(M). More-
over, ( f k

κ,g(0), ∂t f k
κ,g(0)) depend continuously on (yk,0, yk,1). The function f k

κ,g is thus bounded in
C 0((T1, T2), L2(M)) uniformly with respect to k for any T1 < T2. Since the map Hκ,g is continuous,
f k
κ,g ⇀ 0 weakly in L2

loc(L). Up to extraction of a subsequence, it is associated with an L2-microlocal
defect measure µ f . With Proposition 3.7′ one has

supp(µ f )⊂ Char(pκ,g). (6-3)

We consider the sequences of solutions (yk)k and (ỹk)k to{
Pκ,g yk

= 1(0,T )×ω f k
κ,g in L,

(yk, ∂t yk)|t=0 = (yk,0, yk,1) in M,

{
Pκ,g̃ ỹk

= 1(0,T )×ω f k
κ,g in L,

(ỹk, ∂t ỹk)|t=0 = (yk,0, yk,1) in M.

Both are bounded and weakly converge to 0 in H 1
loc(L). Up to extraction of subsequences, both are

associated with H 1-microlocal defect density measures µ and µ̃ respectively. Since 1(0,T )×ω f k
κ,g ⇀ 0

weakly in L2
loc(L) we have 1(0,T )×ω f k

κ,g → 0 strongly in H−1
loc (L) and, with Proposition 3.7, one finds
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supp(µ̃)⊂ Char(pκ,g̃). Thus one has

supp(µ̃)∩ supp(µ f )= ∅. (6-4)

The sequence (∂t ỹk) converges to 0 weakly in L2
loc(L) and can be associated with an L2-microlocal defect

density measure whose support is given by supp(µ̃).

Lemma 6.1. One has (1(0,T )×ω f k
κ,g, ∂t ỹk)L2(L,κµg̃dt) → 0 as k → +∞.

A proof is given below.
Using the density of strong solutions of the wave equation, with integration by parts, one finds the

classical energy estimate

Eκ,g̃(ỹk)(T )− Eκ,g̃(ỹk)(0)= (1(0,T )×ω f k
κ,g, ∂t ỹk)L2(κµg̃dt).

With Lemma 6.1 one obtains
Eκ,g̃(ỹk)(T ) ∼

k→+∞

Eκ,g̃(ỹk)(0).

With the form of g̃ chosen above one has

Eκ,g(ỹk)(t)= (1 +O(ε))Eκ,g̃(ỹk)(t),

uniformly with respect to t ∈ [0, T ]. Choosing ε > 0 sufficiently small and k sufficiently large, the first
part of Theorem 1.14 follows since Eκ,g(ỹk)(0)= 1.

We use the values of ε and k chosen above. To prove (1-10), we write ỹk in the form ỹk
= v1 + v2,

where v1 and v2 are solutions to{
Pκ,g̃v1 = 1(0,T )×ω f k

κ,g̃ in L,
(v1, ∂tv1)|t=0 = (yk,0, yk,1) in M,

{
Pκ,g̃v2 = 1(0,T )×ω( f k

κ,g − f k
κ,g̃) in L,

(v2, ∂tv2)|t=0 = (0, 0) in M,
(6-5)

with f k
κ,g̃ = Hκ,g̃(yk,0, yk,1). A hyperbolic energy estimation for the solution v2 to the second equation in

(6-5) gives

Eκ,g̃(v2)(T )≤ CT ∥1(0,T )×ω( f k
κ,g − f k

κ,g̃)∥
2

L2(L)
.

Since one has (v1(T ), ∂tv1(T ))= (0, 0), because of the definition of f k
κ,g̃ one finds

Eκ,g̃(v2)(T )= Eκ,g̃(ỹk)(T )≥
1
2 ,

which gives the second result of Theorem 1.14. □

Proof of Lemma 6.1. The key point in the proof is the following lemma.

Lemma 6.2 [Gérard 1991, Proposition 3.1]. Assume that uk and vk are two sequences bounded in L2
loc

that converge weakly to zero and are associated with defect measures µ and ν respectively. Assume that
µ⊥ ν, that is, µ and ν are supported on disjoint sets. Then, for any ψ ∈ C 0

c ,

lim
k→+∞

(ψuk, vk)L2 = 0.
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To apply this result, we just need to exchange the rough cutoff 1(0,T )×ω for a smooth cutoff ψ(t, x).
First, note that one has

(1(0,T )×ω f k
κ,g, ∂t ỹk)L2(L,κµg̃dt) ∼

k→+∞

(1(0,T )×ω f k
κ,g, ∂t ỹk)L2(L,κµgdt).

We may thus simply consider the L2-norm and inner product associated with κµg dt .
Second, let δ > 0. Since ( f k

κ,g)k and (ỹk)k are both bounded in C 0((0, T ), L2(M)) uniformly with
respect to k, there exists 0< T1 < T2 < T and O ⋐ ω such that∫∫

K
| f k
κ,g||∂t ỹk |κµg dt ≤ δ,

with K = ((0, T )×ω)\ ((T1, T2)×O). Let ψ ∈ C ∞
c ((0, T )×ω) such that 0 ≤ψ ≤ 1 and equal to 1 in a

neighborhood of [T1, T2] ×O. One thus has

|(1(0,T )×ω f k
κ,g, ∂t ỹk)L2(L)| ≤ |(ψ f k

κ,g, ∂t ỹk)L2(L)| + |((1(0,T )×ω −ψ) f k
κ,g, ∂t ỹk)L2(L)|

≤ |(ψ f k
κ,g, ∂t ỹk)L2(L)| + δ.

With (6-4) and Lemma 6.2, one finds

(ψ f k
κ,g, ∂t ỹk)L2(L) k→+∞

−−−−→ 0, (6-6)

and the conclusion of the lemma follows. □

6B. Proof of Proposition 1.19. We consider first the case α=1. As proven in [Dehman and Lebeau 2009]
one has f y0,y1

κ,g ∈ C 0([0, T ], H 1(M)) and the estimate

∥ f y0,y1

κ,g ∥L∞(0,T ;H1(M)) ≲ ∥(y0, y1)∥H2(M)⊕H1(M).

With this regularity of the source term in the right-hand-side of the wave equations in (1-8), one finds
y, ỹ ∈ C 0([0, T ], H 2(M)). Computing the difference in (1-8) one writes

Pκ,g(y − ỹ)= (Aκ,g − Aκ̃,g̃)ỹ. (6-7)

A hyperbolic energy estimate yields

Eκ,g(y − ỹ)(T )1/2 ≲ ∥(Aκ,g − Aκ̃,g̃)ỹ∥L∞(0,T ;L2(M))
≲ ∥(κ, g)− (κ̃, g̃)∥X 1∥ỹ∥L∞(0,T ;H2(M))

≲ ∥(κ, g)− (κ̃, g̃)∥X 1∥ f y0,y1

κ,g ∥L∞(0,T ;H1(M))

≲ ∥(κ, g)− (κ̃, g̃)∥X 1∥(y0, y1)∥H2(M)⊕H1(M).

In the case α = 0, one writes

Eκ,g(y − ỹ)(T )1/2 ≲ Eκ,g(y)(T )1/2 + Eκ,g(ỹ)(T )1/2 ≲ Eκ,g(y)(T )1/2 + Eκ̃,g̃(ỹ)(T )1/2

≲ ∥(y0, y1)∥H1(M)⊕L2(M).

Finally, the result follows from interpolation between the two cases α = 0 and α = 1. □
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