
ANALYSIS & PDE

msp

Volume 17 No. 8 2024

ARUNIMA BHATTACHARYA

THE DIRICHLET PROBLEM
FOR THE LAGRANGIAN MEAN CURVATURE EQUATION



ANALYSIS AND PDE
Vol. 17 (2024), No. 8, pp. 2719–2736

DOI: 10.2140/apde.2024.17.2719 msp

THE DIRICHLET PROBLEM
FOR THE LAGRANGIAN MEAN CURVATURE EQUATION

ARUNIMA BHATTACHARYA

We solve the Dirichlet problem with continuous boundary data for the Lagrangian mean curvature equation
on a uniformly convex, bounded domain in Rn .

1. Introduction

We consider the Dirichlet problem for the Lagrangian mean curvature equation on a uniformly convex,
bounded domain �⊂ Rn given by{

F(D2u)=
∑n

i=1 arctan λi = ψ(x) in �,
u = φ on ∂�,

(1-1)

where the λi are the eigenvalues of the Hessian matrix D2u, ψ is the potential for the mean curvature
of the Lagrangian submanifold {(x, Du(x)) | x ∈ �} ⊆ Rn

× Rn , and φ is a given continuous function
on ∂�.

Our main result is the following:

Theorem 1.1. Suppose that φ ∈ C0(∂�) and ψ : � →
[
(n − 2)π2 + δ, n π2

)
is in C1,1(�), where �

is a uniformly convex, bounded domain in Rn and δ > 0. Then there exists a unique solution u ∈

C2,α(�)∩ C0(∂�) to the Dirichlet problem (1-1).

We also provide a viscosity-based proof for the following well-known result established in [Harvey
and Lawson 2009].

Theorem 1.2. Suppose that φ ∈ C0(∂�) and ψ : � →
(
−n π2 , n π2

)
is a constant, where � is a uni-

formly convex, bounded domain in Rn . Then there exists a unique solution u ∈ C0(�) to the Dirichlet
problem (1-1).

When the phase ψ is constant, denoted by c, we have that u solves the special Lagrangian equation
n∑

i=1

arctan λi = c, (1-2)

or equivalently,
cos c

∑
1≤2k+1≤n

(−1)kσ2k+1 − sin c
∑

0≤2k≤n

(−1)kσ2k = 0.
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Equation (1-2) originates in the special Lagrangian geometry of Harvey and Lawson [1982]. The
Lagrangian graph (x, Du(x)) ⊂ Rn

× Rn is called special when the argument of the complex number
(1 + iλ1) · · · (1 + iλn) or the phase ψ is constant, and it is special if and only if (x, Du(x)) is a (volume-
minimizing) minimal surface in (Rn

× Rn, dx2
+ dy2) [Harvey and Lawson 1982].

A dual form of (1-2) is the Monge–Ampère equation

n∑
i=1

ln λi = c.

This is the potential equation for special Lagrangian submanifolds in (Rn
× Rn, dx dy) as interpreted in

[Hitchin 1997]. The gradient graph (x, Du(x)) is volume-maximizing in this pseudo-Euclidean space as
shown in [Warren 2010]. Mealy [1989] showed that an equivalent algebraic form of the above equation is
the potential equation for his volume-maximizing special Lagrangian submanifolds in (Rn

×Rn, dx2
−dy2).

A key prerequisite for the smooth solvability of the Dirichlet problem for fully nonlinear, elliptic
equations is the concavity of the operator on the space of symmetric matrices. The arctangent operator
or the logarithmic operator is concave if u is convex, or if the Hessian of u has a lower bound λ ≥ 0.
Certain concavity properties of the arctangent operator are still preserved for saddle u. The concavity
of the arctangent operator in (1-1) depends on the range of the Lagrangian phase. The phase (n − 2)π2
is called critical because the level set {λ ∈ Rn

| λ satisfying (1-1)} is convex only when |ψ | ≥ (n − 2)π2
[Yuan 2006, Lemma 2.2]. The concavity of the level set is evident for |ψ | ≥ (n − 1)π2 since that implies
λ> 0 and then F is concave. For a supercritical phase |ψ | ≥ (n −2)π2 +δ the operator F can be extended
to a concave operator [Chen and Warren 2019; Collins et al. 2017].

The Dirichlet problem for fully nonlinear, elliptic equations of the form F(λ[D2u]) = ψ(x) was
studied by Caffarelli, Nirenberg, and Spruck in [Caffarelli et al. 1985], where they proved the existence of
classical solutions under various hypotheses on the function F and the domain. Their results extended the
work of Krylov [1983b], Ivochkina [1983], and their previous work [Caffarelli et al. 1984] on equations
of Monge–Ampère-type. For the Monge–Ampère equation, continuous boundary data leads to only
Lipschitz continuous solutions; Pogorelov [1978] constructed his famous counterexamples for the three
dimensional Monge–Ampère equation σ3(D2u)= det(D2u)= 1, which also serve as counterexamples
for cubic and higher-order symmetric σk equations. Trudinger [1995] proved a priori estimates and
existence of smooth solutions to fully nonlinear equations of the type of Hessian equations. In [Ivochkina
et al. 2004], Ivochkina, Trudinger, and Wang studied the Dirichlet problem for a class of fully nonlinear,
degenerate elliptic equations which depend only on the eigenvalues of the Hessian matrix. Harvey and
Lawson [2009] studied the Dirichlet problem for fully nonlinear, degenerate elliptic equations of the form
F(D2u)= 0 on a smoothly bounded domain in Rn . Interior regularity for viscosity solutions of (1-2) with
critical and supercritical constant phase |ψ | ≥ (n − 2)π2 was shown in [Warren and Yuan 2010; 2014].
For a subcritical phase |ψ |< (n − 2)π2 , singular solutions of (1-2) were constructed in [Nadirashvili and
Vlăduţ 2010; Wang and Yuan 2013]. The existence and uniqueness of continuous viscosity solutions to
the Dirichlet problem for (1-2) with continuous boundary data was shown in Yuan [2008]. Brendle and
Warren [2010] studied a second boundary value problem for the special Lagrangian equation.
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The Lagrangian mean curvature equation (1-1), which was introduced by Harvey and Lawson, is
far from being completely understood. This gives rise to several challenging problems concerning the
regularity of solutions and the well-posedness for general phase functions. Recently, regularity and
effective Hessian estimates for viscosity solutions of equation (1-1) were studied in [Bhattacharya 2021;
Bhattacharya and Shankar 2020; 2023] under certain assumptions on the regularity of the phase and
convexity properties of the solution. In [Collins et al. 2017], Collins, Picard, and Wu solved the Dirichlet
problem (1-1) on a compact domain with C4 boundary value under the assumption of the existence of a
subsolution and a supercritical phase restriction using techniques accumulated since the 1980s. In [Dinew
et al. 2019], Dinew, Do, and Tô showed the existence and uniqueness of a C0 solution to (1-1) on a
bounded C2 domain with C0 boundary value under the assumption of the existence of a subsolution and
a supercritical phase restriction.

The major difficulty in proving Theorem 1.1 is the unavailability of smooth boundary data: our
boundary value is merely C0. We use a standard continuity method and uniform approximation of the
C0 boundary value to overcome this. Another hurdle lies in estimating the double normal derivatives at
the boundary: we use Trudinger’s technique and a change of basis argument to construct a lower linear
barrier function for un . Once we obtain uniform C2,α estimates up to the boundary, we use the a priori
interior Hessian estimates proved in [Bhattacharya 2021] to approximate the C0 boundary value. Note
that we assume ψ ≥ (n − 2)π2 + δ since, by symmetry, ψ ≤ −(n − 2)π2 − δ can be treated similarly.

In Theorem 1.2, we consider all values of the constant Lagrangian phase, which include subcritical
values. The main difficulty here is the lack of uniform ellipticity and concavity. Harvey and Lawson [2009]
established the existence and uniqueness of continuous solutions of fully nonlinear, degenerate elliptic
equations of the form F(D2u) = 0 on a smoothly bounded domain in Rn under an explicit geometric
F-convexity assumption on the boundary of the domain. The key ingredients of their proof were the use
of subaffine functions and Dirichlet duality. As an application, the continuous solvability of the constant
phase equation (1-2) is obtained. Here in Theorem 1.2, we focus only on the continuous solvability of the
Dirichlet problem of equation (1-2) and provide a short proof that solely relies on a certain comparison
principle. Note that our methods of proving Theorem 1.2 are much different in nature than the proof
by Harvey and Lawson: our brief proof follows via Perron’s method using an idea that was introduced
in [Ishii 1989], and it requires comparison principles for strictly elliptic,1 nonconcave, fully nonlinear
equations [Yuan 2004].

Remark 1.3. For Theorem 1.1, an assumption weaker than C1 on ψ will lead to counterexamples with
continuous boundary data. For example, in two dimensions, we consider a boundary value problem
of (1-1) on the unit ball B1(0), where the phase is in Cα with α ∈ (0, 1):

ψ(x)=
π

2
− arctan(α−1

|x |
1−α) and u(x)=

∫
|x |

0
tα dt on ∂B1.

This problem admits a non-C2 viscosity solution u with gradient Du = |x |
α−1x , thereby proving a

contradiction. If the Lagrangian phase is subcritical, i.e., |ψ | < (n − 2)π2 , then even for the constant

1 F(D2u)= ψ is strictly elliptic in the sense that (Fui j (D
2u)) > 0
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phase equation (1-2) with analytic boundary data, C0 viscosity solutions may only be C1,ε0 but no more,
as shown in [Wang and Yuan 2013]. However, the existence of C2,α solutions to (1-1) with critical and
supercritical phase, i.e., |ψ | ≥ (n − 2)π2 , where ψ ∈ C1,ε0 , or even |ψ | ≥ (n − 2)π2 , where ψ ∈ C1,1, are
still open questions. As of now, it is also unknown if C0 viscosity solutions of (1-2) are Lipschitz for
subcritical phases.

Remark 1.4. In Theorem 1.2, if we replace the constant phase with any continuous function lying in the
subcritical or critical range, then the existence and uniqueness of C0 viscosity solutions of (1-1) remain
open questions. This is due to the lack of a suitable comparison principle for strictly elliptic, nonconcave,
fully nonlinear equations with a variable right-hand side. Harvey and Lawson [2019] introduced a
condition called “tameness” on the operator F , which is a little stronger than strict ellipticity and allows
one to prove comparison. Harvey and Lawson [2021] further proved that, for the Lagrangian mean
curvature equation, one can only show tamability in the supercritical phase interval. Cirant and Payne
[2021] established comparison for this equation when the range of the phase is restricted to the intervals(
(n − 2k)π2 , (n − 2(k − 1))π2

)
, where 1 ≤ k ≤ n. This in turn solves the Dirichlet problem on these

intervals, as shown in [Harvey and Lawson 2021, Theorem 6.2(C)]. For σk equations with a variable
right-hand side, results analogous to Theorem 1.2 exist. This is due to the fact that the linearized operator
has a positive lower bound in determinant unlike the Lagrangian mean curvature equation (1-1).

This article is divided into the following sections: in Section 2, we state some well-known algebraic
and trigonometric inequalities satisfied by solutions of (1-1). In Section 3, we prove C2,α estimates up
to the boundary assuming C4 boundary data. In Section 4, we first solve the Dirichlet problem with
C4 boundary data using the method of continuity and then combine it with the Hessian estimates proved
in [Bhattacharya 2021] to solve the Dirichlet problem with continuous boundary data. In Section 5,
we prove Theorem 1.2. In the Appendix, we state a well-known linear algebra lemma that we use in
estimating the Hessian of u on the boundary, and we provide the proof of a certain comparison principle
that is essential for the proof of Theorem 1.2.

2. Preliminaries

The induced Riemannian metric on the Lagrangian submanifold {(x, Du(x)) | x ∈ �} ⊂ Rn
× Rn is

given by
g = In + (D2u)2. (2-1)

On taking the gradient of both sides of the Lagrangian mean curvature equation (1-1), we get
n∑

a,b=1

gabu jab = ψj , (2-2)

where gab is the inverse of the induced Riemannian metric g. From [Harvey and Lawson 1982, (2.19)],
we see that the mean curvature vector H⃗ of this Lagrangian submanifold {(x, Du(x)) | x ∈�} is given
by H⃗ = J∇gψ , where ∇g is the gradient operator for the metric g and J is the complex structure, or the
π
2 rotation matrix in Rn

× Rn .
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Lemma 2.1. Suppose that the ordered real numbers λ1 ≥ λ2 ≥ · · · ≥ λn satisfy (1-1) with ψ ≥ (n − 2)π2 .
Then we have

(1) λ1 ≥ λ2 ≥ · · · ≥ λn−1 > 0, λn−1 ≥ |λn|,

(2) λ1 + (n − 1)λn ≥ 0,

(3) σk(λ1, . . . , λn)≥ 0 for all 1 ≤ k < n and n ≥ 2,

(4) if ψ ≥ (n − 2)π2 + δ, then D2u ≥ − cot(δ In).

Proof. Properties (1), (2), and (3) follow from [Wang and Yuan 2014, Lemma 2.1]. Property (4) follows
from [Yuan 2006, p. 1356]. □

3. C2,α estimate up to the boundary

We first prove the following C2,α estimate up to the boundary of �.

Theorem 3.1. Let φ ∈ C4(�) and ψ :�→
[
(n − 2)π2 + δ, n π2

)
be in C2,α(�), where � is a uniformly

convex domain in Rn with ∂� ∈ C2. Then there exists a universal constant α ∈ (0, 1) such that if
u ∈ C4,α(�) is a solution of (1-1), then

∥u∥C2,α(�) ≤ C(∥ψ∥C1,1(�), ∥φ∥C4(�), n, δ, ∂�). (3-1)

Proof. We first make the following observation, which will be used for Steps 1, 2, 3.2, and 3.3 below. We
pick an arbitrary boundary point x0 ∈ ∂�. By a rotation and translation, we choose a coordinate system
such that the chosen boundary point is the origin and � lies above the hyperplane {xn = 0}, with en as
the inner unit normal at 0. For such a domain, we can write

∂�=
{
(x ′, xn)

∣∣ xn = h(x ′)=
1
2(k1x2

1 + · · · + kn−1x2
n−1)+ o(|x ′

|
2)

}
, (3-2)

where the {ki }1≤i≤n denote the principal curvatures of ∂� at 0. At 0 ∈ ∂� the boundary value satisfies

φ(x ′, xn)= φ(x ′, h(x ′))

= φ(0)+φx ′(0) · x ′
+φxn (0)h(x

′)

+
1
2(x

′)Tφx ′x ′(0)x ′
+

1
2φx ′xn (0) · x ′h(x ′)+ 1

2φxn xn (0)h(x
′)h(x ′)+ o(|x ′

|
2
+ h2(x ′))

= Q(x)+ o(1)|x ′
|
2.

Without loss of generality, one may subtract the linear part in x ′ of the above Taylor expansion to get
C0 = C0(∥φ∥C2(∂�), n, k) such that

L−
= −C0xn ≤ φ ≤ C0xn = L+ on ∂�. (3-3)

We now prove estimate (3-1) in the following four steps. We will estimate all the boundary derivatives
of u at the origin.

Step 1: Bound for ∥u∥L∞(�).

Claim 1. We show the following:

∥u∥L∞(�) ≤ C(∥φ∥C2(�), n, |∂�|C2). (3-4)
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Proof. The function ψ :�→
[
(n −2)π2 +δ, n π2

)
is in C1,1(�), so there exists ε > 0 such that ψ < n π2 −ε.

Fixing this ε, we define ψ = (n − 2)π2 + δ and ψ = n π2 − ε. Recalling (3-3) we find constants c0 and C ′

0
depending on C0 above such that, on ∂�, we have

−c0|x |
2
+

1
2
|x |

2 tan
ψ

n
= −C ′

0|x |
2
≤ −C0xn ≤ φ ≤ C ′

0|x |
2
+

1
2
|x |

2 tan
ψ

n
. (3-5)

Using relation (3-2), we define

−Cxn +
1
2
|x |

2 tan
ψ

n
= B−, (3-6)

Cxn +
1
2
|x |

2 tan
ψ

n
= B+, (3-7)

where C = C(∥φ∥C2(∂�), n, ki ). We observe that

F(D2 B−)≥ F(D2u)≥ F(D2 B+) in �,

B−
≤ u ≤ B+ on ∂�, with equality holding at 0.

(3-8)

Using comparison principles we see that (3-4) holds. □

Step 2: Bound for ∥Du∥L∞(�).

Claim 2. We show the following:

∥Du∥L∞(�) ≤ C(∥ψ∥C1(�), ∥φ∥C2(�), n, δ, |∂�|C2). (3-9)

Proof. From Lemma 2.1, we see that u is semiconvex: D2u ≥ − cot(δ In). We modify u to the convex
function u(x)+cot(δ|x |

2/2). Since the gradient of this convex function, given by Du(x)+ x cot δ, attains
its supremum on the boundary of �, we get

sup
�

|Du(x)| ≤ sup
∂�

|Du(x)| + cot δ. (3-10)

For 1 ≤ i < n, we have ui = φi , so we only need to estimate un(0). Recalling (3-8), we again use
comparison principles, and on taking the normal derivative at 0, we get

|un(0)| ≤ C(∥ψ∥C1(�), ∥φ∥C2(�), n, |∂�|C2).

Combining (3-10) with the above we get (3-9). □

Step 3: Bound for ∥D2u∥L∞(�).

Claim 3. We prove the following:

∥D2u∥L∞(�) ≤ C(∥ψ∥C1,1(�), ∥φ∥C4(�), n, δ, |∂�|C4). (3-11)

The proof of the above claim is achieved by from the following steps.

Step 3.1: We first prove that the Hessian attains its supremum on the boundary of �. We show that

∥D2u∥L∞(�) ≤ C(∥ψ∥C1,1(�), ∥D2u∥L∞(∂�), δ). (3-12)
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Since the phase is supercritical, we can modify the operator F to a concave operator as shown in
[Collins et al. 2017, Lemma 2.2] or [Chen and Warren 2019, p. 347]. (For a detailed proof of this
fact, see [Collins et al. 2017, Lemma 2.2].) Following the notation used in [Chen and Warren 2019,
p. 347], we denote the modified concave operator by F̃ = − exp(−A(δ)F) and the modified phase by
ψ̃(λ)= − exp(−A(δ)ψ(λ)), where A(δ) is large enough. On differentiating (1-1) twice, we get

F̃ i j∂i j uee + F̃ i j,kl∂i j ue∂klue = ψ̃ee,

F̃ i j∂i j1u =1ψ̃ −

∑
e

F̃ i j,kl∂i j ue∂klue ≥1ψ̃,

where the last inequality follows from the concavity of the operator. Let p0 be an interior point of �. By
an orthogonal transformation, we assume D2u to be diagonalized at p0. We observe that

gi j∂i j
(
1u +

1
2C1|x |

2)(p0)≥ − C(∥ψ∥C1,1(�))+ C1

n∑
i=1

1
1 + λ2

i
> 0.

The last two inequalities follow from using the structure of the metric g (defined in (2-1)) and then
choosing a large enough constant C1 by exploiting the semiconvexity of u. The maximal principle implies
that |D2u| attains its supremum on the boundary. Next, we estimate the Hessian on the boundary in the
following steps: we first estimate the double tangential derivatives uT T (0), followed by the mixed tangent
normal derivatives uT N (0), followed by the double normal derivative uN N (0).

Step 3.2: The double tangential estimate. Denoting the second fundamental form by II , we observe that

D2(u −φ)|T (0)= −(u −φ)n(0)II |∂�(0),
where

(D2u)|T = {uTi Tj | 1 ≤ i, j < n}

is the Riemannian Hessian. By estimate (3-9) derived in Step 2, for 1 ≤ i, j < n, we get the estimate:

|ui j (0)| ≤ C(∥ψ∥C1(�), ∥φ∥C2(�), n, δ,�).

Step 3.3: The mixed tangent normal estimate. Observe that (1-1) is dependent only on the eigenvalues of
the Hessian and hence is invariant under rotation of coordinates. In light of [Caffarelli et al. 1985, p. 281],
we observe that, since xi∂j − x j∂i for i ̸= j is the infinitesimal generator of a rotation, we get

gi j∂i j (xi∂j − x j∂i )u = (xi∂j − x j∂i )ψ.

For i < n, we define the annular vector field

τ(x)= ∂i +

n−1∑
j=1

hi j (0)(x j∂n − xn∂j ),

where h is as defined in (3-2); τ(0) = ei for i < n. This is an approximated tangent vector up to the
second-order on the boundary. Indeed, at a point (x ′, h(x ′)) on ∂�, near the origin, we can write

τ(x)= ∂i + ∂i h(x ′)∂n + O(|x ′
|
2)∂n −

n−1∑
j=1

hi j (0)h(x ′)∂j .

Denoting the rotational derivative of u along the boundary by uτ , we get gi j∂i j uτ =ψτ in � and uτ = φτ

on ∂�.
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Replacing φ with φτ and repeating the argument in (3-3), we get the following on ∂�:

−Cxn ≤ φτ ≤ Cxn, (3-13)

where C = C(∥φτ∥C2(�), n, k). Repeating the argument in (3-5) and choosing c1 > 0 suitably, we get

−c1|x |
2
+

1
2
|x |

2 tan
ψ

n
= −C |x |

2
≤ φτ ≤ C |x |

2
+

1
2
|x |

2 tan
ψ

n
on ∂�.

We define u0 to be the subsolution

u0 = −Cxn +
1
2
|x |

2 tan
ψ

n
,

where C = C(∥φ∥C3(�), ∥ψ∥C1(�), n, |∂�|C2). Let w = u − u0. Since the phase lies in the supercritical
range, as before we extend the operator F to the concave operator F̃ and denote the corresponding
linearization by g̃i j . Using concavity, for some ε0 > 0, we get the following on a small ball of radius r
around the origin:

g̃i jwi j ≤ −ε0 inside �∩ Br (0),

w ≥ 0 on ∂(�∩ Br (0)),

w(0)= 0.

(3-14)

We now choose α and β large enough that

g̃i j∂i j (αw+β|x |
2
± uτ )≤ 0 in �∩ Br (0),

αw+β|x |
2
± uτ ≥ 0 on ∂(�∩ Br (0)).

(3-15)

Since w ≥ 0 on ∂(�∩ Br (0)), we only need to choose β large enough that

β|x |
2
± uτ ≥ 0 on ∂(�∩ Br (0)).

We observe that, on �∩ ∂Br (0), we have β ≥ C/r2, where C = C(∥ψ∥C1(�), ∥φ∥C2(�), δ, n, |∂�|C2)

is obtained by using the gradient estimate in (3-9). Using (3-13) we get the required value of β on
∂�∩ Br (0). Fixing the larger of the two values to be the constant β we now choose α such that (3-15)
holds. We have

g̃i j∂i j (αw+β|x |
2
± uτ )≤ −αε0 + C,

where C = C(β, |ψ |C1(�)). We now choose α large enough that −αε0 + C ≤ 0 and observe that
αw+β|x |

2
± uτ (0)= 0 at 0. Using Hopf’s lemma we see that

∂n(αw+β|x |
2
±uτ )(0)≥0 =⇒ ±uτn(0)≥∓∂n(αw+β|x |

2
±uτ )(0) =⇒ |uτn(0)|≤|αwn(0)|≤C.

Therefore, for 1 ≤ i < n, we have

|uin(0)| ≤ C(∥ψ∥C1,1(�), ∥φ∥C3(�), n, δ, |∂�|C2).

Step 3.4: The double normal estimate. By Lemma 2.1, D2u is bounded from below, so we only need to
prove an upper bound, which we find using an idea of Trudinger [1995].
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Let the unit normal direction vector be denoted by eγ . Denoting the eigenvalues of the (n−1)× (n−1)
matrix uT T by λ′, we write the Hessian as

D2u =

[
uT T uT γ

uγ T uγ γ

]
=

[
λ′ uT γ

uγ T uγ γ

]
.

Let x ′

0 be the minimal point of 2̃(λ′)|∂�, where

2̃(λ′)=

n−1∑
i=1

arctan λ′

i −ψ,

and we write λ′

0 = λ′(x ′

0).
Our goal is to find a lower linear barrier function for uγ at x ′

0. Then, with the help of a change of basis
technique, we find a lower linear barrier function for un at x ′

0. This leads us to find an upper bound of
unn(x ′

0) followed by an upper bound of unn(x) for all x ∈ ∂�. Now we estimate the lower bound of

tr(D2u)|T =

n−1∑
i=1

λ′

i .

Observe that 2̃(λ′)≥ 2̃(λ′

0) > ψ −
π
2 > (n − 3)π2 . So the level set {λ′

∈ Rn−1
| 2̃(λ′)= 2̃(λ′

0)} should
be convex. Heuristically, this property means the following:

⟨D2̃(λ′

0), λ
′
⟩ ≥ ⟨D2̃(λ′

0), λ
′

0⟩ = K0, with equality holding at x ′

0,

where K0 is a constant depending on |ψ |C1(�), |φ|C2(∂�), and δ. Writing[
∂2̃(D2u(x0))|T

∂D2u|T

]
= Ai j (λ

′

0),

where 1 ≤ i, j < n, we see that

tr(Ai j (λ
′

0))(D
2u(x)|T )≥ K0, with equality holding at x ′

0.

Again denoting the second fundamental form by II , we observe that

D2(u −φ)|T = (u −φ)γ II |∂� and

tr[Ai j (λ
′

0)(D
2φ|T −φγ II |∂� + uγ II |∂�)] ≥ K0, with equality holding at x ′

0.

Writing 2̃i (λ
′)= (∂/∂λ′

i )2̃(λ
′), we get

uγ ≥
1∑n−1

i=1 2̃i (λ
′

0)κi (x ′)
[K0 − tr(Ai j (λ

′

0)(D
2φ|T −φγ II |∂�))], with equality holding at x ′

0,

=⇒ uγ ≥ C(|φ|C4(�), |∂�|C4, |ψ |C1(�), δ), with equality holding at x ′

0,

(3-16)

where the last inequality follows from the observation that, for all the terms in the right-hand side of (3-16),
one can find a lower linear barrier function whose Lipschitz norm depends on the C3,1 norm of φ and the
C1 norm of ψ . Next, we consider a unit local basis at x ′

0 denoted by B = {en, eTα |1 ≤ α < n}, where en is
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used to denote the outward unit normal and eTα denotes vectors in the tangential direction at x ′

0. By a
change of basis, we write eγ = aen + beTα . A simple computation shows that

eγ =
⟨eγ , en⟩

1 − ⟨en, eTα ⟩
2 en −

⟨eγ , en⟩⟨en, eTα ⟩

1 − ⟨en, eTα ⟩
2 eTα ,

from which one can easily find a lower linear barrier for un at x ′

0. So far we have the following:

un ≥ L−

1 (x
′, xn) on ∂�, with equality holding at x ′

0, (3-17)
where

L−

1 (x
′, xn)= −C(|φ|C4, |∂�|C4, |ψ |C1(�), δ)xn ≥ −C |x |

2.

Now we choose coordinates such that x ′

0 is the origin and the (n−1)×(n−1)matrix uT T (0) is diagonalized.

Claim 4. We show that
unn(0)≤ C,

where C = C(∥ψ∥C1,1(�), ∥φ∥C4(�), n, δ, |∂�|C4).

To be clear, the notation en now denotes the outward unit normal unlike earlier in the proof where it
was used to denote the inner unit normal (see page 2723).

Proof. We repeat the process in Step 3.3. First observe that, on taking the gradient of both sides of (1-1)
in the direction en , we get

|gi j∂i j un| ≤ C(∥ψ∥C1(�)). (3-18)

We define w = u − B−, where B− is the subsolution defined in (3-6), and we see that w satisfies
condition (3-14). We choose α and β large enough that

gi j∂i j (αw+β|x |
2
+ un)≤ 0 in �∩ Br (0),

αw+β|x |
2
+ un ≥ 0 on ∂(�∩ Br (0)).

(3-19)

As w ≥ 0 on ∂(Br (0) ∩ �)), we first choose β. On ∂Br (0) ∩ �, we have β ≥ −C/r2, where C =

C(∥ψ∥C1(�), δ, ∥φ∥C2(�), n, |∂�|C2) is the constant from the estimates in (3-9) and (3-4). On ∂�∩ Br (0),
we find β using (3-17). Choosing the larger of the two values we get the required value of β. Fixing
this β, we choose α such that (3-19) holds. Using the constant C from (3-18), we choose α large enough
that −αε0 + C < 0, where C = C(β, ∥ψ∥C1(�)). Now since (αw+ β|x |

2
+ un)(0) = 0, using Hopf’s

lemma, we get

∂

∂n
(αw+β|x |

2
+ un)(0)≤ 0 =⇒ unn(0)≤ C(∥ψ∥C1,1(�), ∥φ∥C4(�), n, δ, |∂�|C4). □

Claim 5. If unn(0) is bounded from above, then unn(x) will be bounded from above for all x ∈ ∂�.

Proof. Suppose that unn(x p) ≥ K for some x p ∈ ∂�, where K is a large constant to be chosen shortly.
From Claim 4, we see that, at 0,

F(D2u + Nen × en)− F(D2u)= δ0(∥φ∥C4(∂�), ∥ψ∥C1,1(�)) > 0

=⇒ lim
a→∞

F(D2u + aen × en)≥ F(D2u + Nen × en)≥ F(D2u)+ δ0 = ψ + δ0.
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From Lemma A.1, we see that
n−1∑
i=1

arctan λ′

i (x p)≥ ψ + δ0 −
π

2
and

ψ = F(D2u)=

n−1∑
i=1

arctan λ′

i + o(1)+ arctan(unn + O(1))≥ ψ + δ0 −
π

2
−
δ0
2

+ arctan(unn + O(1)).

Now if we choose K large enough that

unn(x p) > tan
(
π

2
−
δ0
2

)
− O(1),

we arrive at a contradiction. Therefore, choosing

K ≤ tan
(
π

2
−
δ0
2

)
− O(1)= C(∥ψ∥C1,1(�), ∥φ∥C4(�), n, δ, |∂�|C4),

we see that unn(x)≤ K for all x ∈ ∂�. Combining all the estimates in Step 3 above we obtain (3-11). □

Step 4: Bound for ∥D2u∥Cα(�). This follows from the interior C2,α estimates in [Evans 1982; Krylov
1983a] and the boundary C2,α estimates in [Krylov 1983a, Theorem 4.1]. Therefore, combining all the
four steps above we obtain estimate (3-1). □

4. Proof of Theorem 1.1

In this section we use the C2,α estimate up to the boundary to solve the following Dirichlet problem using
the method of continuity.

Theorem 4.1. Suppose that φ ∈ C4(�) and ψ : � →
[
(n − 2)π2 + δ, n π2

)
is in C1,1(�), where � is a

uniformly convex, bounded domain in Rn and δ > 0. Then there exists a unique solution u ∈ C2,α(�) to
the Dirichlet problem (1-1).

Proof. For each t ∈ [0, 1], consider the family of equations{
F(D2u)= tψ + (1 − t)c0 in �,
u = φ on ∂�,

(4-1)

where c0 = (n − 2)π2 + δ and ψ ∈ C2,α(�). Let I = {t ∈ [0, 1] | ∃ut ∈ C4,α(�) solving (4-1)}. As a
consequence of the interior Hessian estimates proved by Wang and Yuan [2014, p. 482, second paragraph],
we have that 0 ∈ I . The fact that I is open is a consequence of the implicit function theorem and
invertibility of the linearized operator (2-2). The closedness of I follows from the a priori estimates.
Hence, 1 ∈ I . Now using a smooth approximation2 we solve (1-1) for ψ ∈ C1,1. Uniqueness follows
from the maximum principle for fully nonlinear equations. □

Remark 4.2. There exists a unique smooth solution to the Dirichlet problem (1-1) if all data is smooth
and if the phase lies in the supercritical range.

2When ψ is in C1,1(�), we can take a sequence of smooth functions ψk approximating ψ and a sequence of solutions uk
solving (1-1) with ψk as the right-hand side. Applying the uniform C2,α estimate and taking a limit solves the equation.
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Proof of Theorem 1.1. We approximate φ ∈ C0(∂�) uniformly on ∂� by a sequence {φk}k≥1 of C4

functions and solve {
F(D2uk)= ψ in �,
uk = φk on ∂�

using Theorem 4.1. Applying the interior Hessian estimates proved in [Bhattacharya 2021, Theorem 1.1]
and the compactness in C2 of bounded sets in C2,α along with maximum principles, we get convergence
of {uk} to the desired solution u ∈ C2,α on the interior and convergence of {φk} to the desired boundary
function φ ∈ C0 on the boundary. □

Remark 4.3. The above existence proof can be extended to prove the existence of a unique C0 viscosity
solution to (1-1), where ψ is in C0(�) and lies in the supercritical range. The existence part is based
on smooth solution approximations, with smooth approximations of the phase and the boundary data
in the C0 continuous norm: the C0 limit of smooth approximating solutions is a viscosity solution.
The uniqueness part follows from [Trudinger 1990, p. 155]: Trudinger’s condition is satisfied since the
minimum eigenvalue is bounded for a uniform, supercritical phase. Note that this existence proof is
different from the one shown in [Dinew et al. 2019, Theorem 40].

5. Proof of Theorem 1.2

Proof. We denote upper/lower semicontinuous functions by usc/lsc. We define

A = {u ∈ usc(�) | F(D2u)≥ ψ in �, u ≤ φ on ∂�},

w(x)= sup{u(x) | u ∈ A}.

Claim 6. The above function w is the unique continuous viscosity solution of (1-1), where ψ is a constant.

Remark 5.1. The proof follows from the following four steps. It is noteworthy that the first three steps
of the proof hold for any continuous function ψ . The fourth step requires a certain comparison principle
(see Theorem A.2 of the Appendix), which is only available for a constant right-hand side. As of now, it
is unknown if such a comparison principle holds for a continuous right-hand side. In order to highlight
this distinction, we present the first three steps of the proof assuming ψ is any continuous function. In
the final step, we assume ψ to be a constant, thereby proving Theorem 1.2.

Step 1: We define the functions

z(x)= lim
y→x

w(y),

z̄(x)= lim
y→x

w(y).

We first show that A is nonempty and w, z, z̄ are well defined. Since ψ ∈ C(�), there exists ε′ > 0 such
that −n π2 + ε′ <ψ(x) < n π2 − ε′ for all x ∈�. Fixing this ε′ we define the functions

ψ∗ = −n π2 + ε′ <ψ < n π2 − ε′
= ψ∗.
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Recalling (3-6) and (3-7), we define

w(x)= −Cxn +
1
2
|x |

2 tan
ψ∗

n
,

w(x)= Cxn +
1
2
|x |

2 tan
ψ∗

n
,

(5-1)

where C = C(∥φ∥C2(∂�), n, |∂�|C2). By definition w ∈ A, which shows that A is nonempty. Next,
max{u, w} is upper semicontinuous and still a subsolution of (1-1), so we replace u ∈ A by max{u, w}.
This shows u ≥ w and, therefore, w is well defined. Next, we observe that since w and w are sub- and
supersolutions of (1-1), respectively, we have

w ≤ u ≤ w,

which shows z and z̄ are well defined.

Step 2: We show that z is a subsolution of (1-1). Suppose not. Then we can find a quadratic polynomial P
such that P(x)≥ z(x) in Bρ(0), with equality holding at 0, such that F(D2 P) < ψ∗ in Bρ(0). Now we
choose ε > 0 such that

F(D2 P + 4ε I ) < ψ∗. (5-2)

From the definition of w and z, we can find sequences {uk} ⊂ A and {xk} ⊂�, with xk → 0, such that

z(0)= lim
y→0

w(y)= lim
xk→0

uk(xk).

For k large enough, we see that∣∣uk(xk)− P(xk)− 2ε|xk |
2∣∣ =

∣∣uk(xk)− P(0)+ P(0)− P(xk)− 2ε|xk |
2∣∣ = o(1) < ερ2.

On ∂Bρ(0), we see

uk(x)≤ w(x)≤ z(x)≤ P(x)+ 2ε|x |
2
− ερ2.

Using the definition of w and z, we see that, for any k, the following holds in Bρ(0):

Q(x)= P(x)+ 2ε|x |
2
≥ uk(x).

Fixing a k large enough, we observe the following. The functions uk(xk) and Q(xk) are less than ερ2

apart, but uk is at a distance of more than ερ2 below Q on ∂Bρ(0). So we drop Q at most ερ2 so that it
touches uk at a point inside Bρ(0) while still remaining above uk on ∂Bρ(0). So there exists γ ≤ ερ2

such that, in Bρ(0),

uk(x)≤ P(x)+ 2ε|x |
2
− γ,

with equality holding at an interior point of Bρ . Now since uk is a subsolution, we have

ψ ≤ F(D2 P + 4ε I ).

This contradicts (5-2). Noting that z is upper semicontinuous, we see that it is a subsolution of (1-1).



2732 ARUNIMA BHATTACHARYA

Step 3: We show that z̄ is a supersolution of (1-1). Suppose not. Then we can find a quadratic polynomial P
such that P(x)≤ z̄(x) in Bρ(0), with equality holding at 0, such that F(D2 P) >ψ∗ in Bρ(0). We choose
ε > 0 small enough that

F(D2 P − 2ε I ) > ψ∗. (5-3)

We have z̄ ≥ P − ε|x |
2. We define a new quadratic Q(x) = P(x)− ε|x |

2
+ ερ2. Observe that, since

z̄(0)= limxk→0w(xk), for k large enough, we have

w(xk)= z̄(0)+ o(1)= P(0)− P(xk)+ P(xk)+ o(1)

= P(xk)+ o(1)= Q(xk)− ερ
2
+ o(1) < Q(xk).

This contradicts the supremum definition of w since Q is a subsolution of (1-1) by (5-3). Noting that z̄ is
lower semicontinuous, we see that it is a supersolution of (1-1).

Step 4: We take care of the boundary value in this final step. This is where we assume (for the first time)
that ψ is a constant. Note that now we may assume the boundary value φ is in C2(∂�) since we can
always approximate φ by a sequence of smooth functions φδ that solve{

F(D2uδ)= ψ in �,
uδ = φδ on ∂�

and apply the comparison principle3 to get

max
�

|uδ1 − uδ2 | ≤ max
x→∂�

|(φδ1 −φδ2)(x)| → 0

as δ1, δ2 → 0. We have uδ → u in C0 as δ → 0. Next, we pick an arbitrary point x0 ∈ ∂� and recall
the construction of w and w from (5-1). Defining similar functions at x0 and on using the comparison
principle, we get w ≤ u ≤ w, with equality holding at x0 for all u ∈ A. Again, since max(u, w) ∈ A for
all u ∈ A, we can replace

w(x)= sup
u∈A

max(u, w).

We get w ≤ u ≤ w, with equality holding at x0, which shows

z̄(x0)= φ(x0)= z(x0).

Since x0 ∈ ∂� is arbitrary, we have z̄ = z = φ on ∂�. Combining the above steps and on using the
comparison principle, we see

z̄ = z = w ∈ C0(�)

is the desired solution. This proves the existence part of Claim 6. Uniqueness again follows from the
comparison principle. □

3See the Appendix.
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Appendix

We state the following linear algebra lemma that was used in proving the double normal estimate in
Step 3.4 of Section 3.

Lemma A.1 [Caffarelli et al. 1985, Lemma 1.2]. Consider the n × n symmetric matrix

M =


λ′

1 a1
. . .

...
λ′

n−1 an−1

a1 · · · an−1 a

 ,
where λ′

1, λ
′

2, . . . , λ
′

n−1 are fixed, |ai | < C for 1 ≤ i < n, and |a| → +∞. Then the eigenvalues
λ1, λ2, . . . , λn of M behave like

λ′

1 + o(1), λ′

2 + o(1), . . . , λ′

n + o(1), a + O(1),

where o(1) and O(1) are uniform as a → ∞.

For the sake of completeness we state and prove the following comparison principle for strictly elliptic
equations, which is well known to experts.4

Theorem A.2. Suppose that u is a usc subsolution and v is an lsc supersolution of the strictly elliptic
equation (1-2) in �⊂ Rn . If u ≤ v on ∂�, then u ≤ v in �.

Proof. Without loss of generality, we assume �= B1(0) and u ≤ v− 2δ on ∂B1 for some small δ > 0.
We rewrite (1-2) as

F(D2u)=

n∑
i=1

arctan λi − c = 0.

Let uε be an upper parabolic envelope5 satisfying

F(D2uε)≥ 0, D2uε ≥ −C/ε, ∥uε∥C0,1 ≤ C/ε

outside a measure-zero subset, where uε is punctually second-order differentiable and C is chosen such
that

uε − vε ≤ C − ε|x − x0|
2 on ∂B1,

with equality holding at x0 ∈ B1. We see that

0 ≤ uε(x)− u(x)≤ u(x∗)− u(x)+ ε,

4We learned this proof from [Yuan 2004]. Indeed, the arguments presented in [Caffarelli and Cabré 1995, p. 43–46] toward
the comparison principle for fully nonlinear, uniformly elliptic equations work for strictly elliptic equations as well.

5For ε > 0, we define the upper ε-envelope of u to be

uε(x0)= supx∈H {u(x)+ ε− |x − x0|
2/ε} for x0 ∈ H,

where H is an open set such that H ⊂ B1.
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where x∗
→ x as ε→ 0. By symmetry, the lower parabolic envelope vε satisfies

F(D2vε)≤ 0, D2vε ≤ C/ε, ∥vε∥C0,1 ≤ C/ε

and

0 ≥ vε(x)− v(x)≥ v(x∗)− v(x)− ε,

where x∗ → x as ε→ 0. Note that vε−uε ≤ L + (C/ε)|x − x0|
2 for x0 ∈ B1, where L is a linear function.

The convex envelope 0(vε − uε) is in C1,1. From the Alexandroff estimate, we have

sup
B1

(vε − uε)− ≤ C(n)
[∫

6

det D20

]1/n

,

where

6 = {x ∈ B1 | 0(x)= vε(x)− uε(x)}.

Now in 6, we have

0 ≤ D20 ≤ D2(vε − uε) or L(x)≤ vε(x)− uε(x)

near x0 ∈ 6. For K large, since uε + (K/ε)|x |
2 is convex and vε − (K/ε)|x |

2 is concave, we have the
following for a.e. x0 ∈ B1:

vε = 0+
K
ε

|x |
2
+ O(|x − x0|

2),

uε = 0+
K
ε

|x |
2
+ O(|x − x0|

2).

Again, since vε is a supersolution and uε is a subsolution, for a.e. x0 ∈ B1, we have

F(D2vε(x0))≤ 0, F(D2uε(x0))≥ 0, F(D2vε(x0))− F(D2uε(x0))≤ 0.

Also, a.e. x0 ∈ 0, we have D2vε(x0)− D2uε(x0) ≥ 0. However, F is strictly elliptic, so we must have
F(D2vε)− F(D2uε)≥ 0, which shows

F(D2vε(x0))= F(D2uε(x0)) a.e x0 ∈6.

Again, given that F is strictly elliptic, the line with the positive direction D2vε(x0)− D2uε(x0) intersects
the level set {F = C} only once, which implies D2vε(x0)= D2uε(x0). This shows supB1

(vε − uε)− ≤ 0,
which proves that

v ≥ vε ≥ uε ≥ u in B1. □
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[Nadirashvili and Vlăduţ 2010] N. Nadirashvili and S. Vlăduţ, “Singular solution to special Lagrangian equations”, Ann. Inst. H.
Poincaré C Anal. Non Linéaire 27:5 (2010), 1179–1188. MR Zbl

[Pogorelov 1978] A. V. Pogorelov, The Minkowski multidimensional problem, Winston, Washington, DC, 1978. MR Zbl

[Trudinger 1990] N. S. Trudinger, “The Dirichlet problem for the prescribed curvature equations”, Arch. Ration. Mech. Anal.
111:2 (1990), 153–179. MR Zbl

[Trudinger 1995] N. S. Trudinger, “On the Dirichlet problem for Hessian equations”, Acta Math. 175:2 (1995), 151–164. MR
Zbl

[Wang and Yuan 2013] D. Wang and Y. Yuan, “Singular solutions to special Lagrangian equations with subcritical phases and
minimal surface systems”, Amer. J. Math. 135:5 (2013), 1157–1177. MR Zbl

[Wang and Yuan 2014] D. Wang and Y. Yuan, “Hessian estimates for special Lagrangian equations with critical and supercritical
phases in general dimensions”, Amer. J. Math. 136:2 (2014), 481–499. MR Zbl

[Warren 2010] M. Warren, “Calibrations associated to Monge–Ampère equations”, Trans. Amer. Math. Soc. 362:8 (2010),
3947–3962. MR Zbl

[Warren and Yuan 2010] M. Warren and Y. Yuan, “Hessian and gradient estimates for three dimensional special Lagrangian
equations with large phase”, Amer. J. Math. 132:3 (2010), 751–770. MR Zbl

[Yuan 2004] Y. Yuan, “Linear and nonlinear elliptic equations”, unpublished lecture notes, Univ. Washington, 2004.

[Yuan 2006] Y. Yuan, “Global solutions to special Lagrangian equations”, Proc. Amer. Math. Soc. 134:5 (2006), 1355–1358.
MR Zbl

[Yuan 2008] Y. Yuan, “Special Lagrangian equations”, unpublished lecture notes, Int. Cent. Theoret. Phys., 2008.

Received 26 Feb 2022. Revised 7 Feb 2023. Accepted 27 Apr 2023.

ARUNIMA BHATTACHARYA: arunimab@unc.edu
Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

mathematical sciences publishers msp

https://doi.org/10.1016/j.anihpc.2010.05.001
http://msp.org/idx/mr/2683755
http://msp.org/idx/zbl/1200.35123
http://msp.org/idx/mr/478079
http://msp.org/idx/zbl/0387.53023
https://doi.org/10.1007/BF00375406
http://msp.org/idx/mr/1057653
http://msp.org/idx/zbl/0721.35018
https://doi.org/10.1007/BF02393303
http://msp.org/idx/mr/1368245
http://msp.org/idx/zbl/0887.35061
https://doi.org/10.1353/ajm.2013.0043
https://doi.org/10.1353/ajm.2013.0043
http://msp.org/idx/mr/3117304
http://msp.org/idx/zbl/1277.35125
https://doi.org/10.1353/ajm.2014.0009
https://doi.org/10.1353/ajm.2014.0009
http://msp.org/idx/mr/3188067
http://msp.org/idx/zbl/1288.35134
https://doi.org/10.1090/S0002-9947-10-05109-3
http://msp.org/idx/mr/2608392
http://msp.org/idx/zbl/1209.53041
https://doi.org/10.1353/ajm.0.0115
https://doi.org/10.1353/ajm.0.0115
http://msp.org/idx/mr/2666907
http://msp.org/idx/zbl/1221.35081
https://doi.org/10.1090/S0002-9939-05-08081-0
http://msp.org/idx/mr/2199179
http://msp.org/idx/zbl/1134.35355
mailto:arunimab@unc.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITOR-IN-CHIEF

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

BOARD OF EDITORS

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Zbigniew Błocki Uniwersytet Jagielloński, Poland
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