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LOCAL LENS RIGIDITY FOR MANIFOLDS OF ANOSOV TYPE
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The lens data of a Riemannian manifold with boundary is the collection of lengths of geodesics with
endpoints on the boundary, together with their incoming and outgoing vectors. We show that negatively
curved Riemannian manifolds with strictly convex boundary are locally lens rigid in the following sense:
if g0 is such a metric, then any metric g sufficiently close to g0 and with the same lens data is isometric
to g0, up to a boundary-preserving diffeomorphism. More generally, we consider the same problem for a
wider class of metrics with strictly convex boundary, called metrics of Anosov type. We prove that the
same rigidity result holds within that class in dimension 2 and in any dimension, further assuming that the
curvature is nonpositive.

1. Introduction 2737
2. Geometric and dynamical preliminaries 2744
3. Symmetric tensors and the normal operator 2760
4. Local lens rigidity, proof of the main result 2766
5. Smoothness of the scattering operator with respect to the metric 2771
Acknowledgements 2793
References 2793

1. Introduction

1A. The lens rigidity problem. Let (M, g) be a smooth compact connected Riemannian manifold with
strictly convex boundary (i.e., the second fundamental form is positive on ∂M). Let M := SM be the
unit tangent bundle of (M, g), and define the incoming (−) and outgoing (+) boundary of M as

∂±M := {(x, v) ∈ M | x ∈ ∂M, ±gx(v, ν(x)) > 0},

where ν is the unit outward-pointing normal vector to the boundary. For any (x, v)∈ ∂−M, the maximally
extended geodesic γ(x,v), with initial condition γ(x,v)(0) = x , γ̇(x,v) = v, is defined on a time interval
[0, ℓg(x, v)], where ℓg(x, v) ∈ R+ ∪ {∞}. When ℓg(x, v) <∞, we define

Sg(x, v) := (γ(x,v)(ℓg(x, v)), γ̇(x,v)(ℓg(x, v)))

to be the outgoing tangent vector at ∂+M; see Figure 1.
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Sg(x, v)

(x, v)

Figure 1. A surface with strictly convex boundary which is not lens rigid. Example
taken from [Croke and Herreros 2016].

Definition 1.1 (lens data). The map Sg : ∂−M \ {ℓg = ∞} → ∂+M is called the scattering map and the
function ℓg : ∂−M\{ℓg = ∞} → R+ the length map. The pair (ℓg, Sg) is the lens data of the Riemannian
manifold (M, g).

The lens data encodes the boundary data one can measure on the geodesic flow from “outside of the
manifold”. A natural inverse problem that arises from tomography consists in determining the geometry,
namely, the Riemannian metric g inside M , from the measurement of the lens data (ℓg, Sg). In geophysics,
this is related to recovering the speed of propagation of waves inside a domain such as the Earth, for
instance; see [Paternain et al. 2014]. When two metrics g and g′ agree on ∂M , it makes sense to say that
they have the same lens data as there is a natural identification between the boundary of their respective
unit tangent bundles via the unit disk bundle of the boundary; see Section 2A1 for further details. The
lens rigidity problem is concerned with the following question:

Question 1.2. Assume that (M, g) and (M ′, g′) are two Riemannian metrics with strictly convex boundary
such that there exists an isometry I ∈ Diff(∂M, ∂M ′) with I ∗(g′

|T ∂M ′)= g|T ∂M . Does the implication

(ℓg, Sg)= I ∗(ℓg′, Sg′) =⇒ there exists ψ ∈ Diffeo(M,M ′) such that ψ |∂M = I and ψ∗g′
= g

hold true?

We say that a manifold (M, g) is lens rigid if there is no other Riemannian manifold (up to isometry)
having the same lens data as (ℓg, Sg). In the following, in order to simplify the notation, we will assume
that M = M ′ and I = id.

There are simple counterexamples of manifolds for which lens rigidity does not hold: considering
certain perturbations of the flat cylinder S1

× [0, 1] (see Figure 1 and [Croke and Herreros 2016], where
this is further discussed), one can easily obtain nonisometric metrics with the same lens data. Such cases
have trapped geodesics, that is some maximally extended geodesics with infinite length, or equivalently
ℓg(x, v)= ∞ for some (x, v) ∈ ∂−M. It turns out that all existing counterexamples to lens rigidity have
trapped geodesics.
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1B. Lens rigidity for nontrapping manifolds. Even among manifolds without a trapped set, the lens
rigidity problem is still widely open. The closest result in this direction is the recent breakthrough of
Stefanov, Uhlmann and Vasy [Stefanov et al. 2021], showing lens rigidity in dimensions n ≥ 3 under
the additional assumption that the manifold (M, g) is foliated by strictly convex hypersurfaces. This
includes all simply connected nonpositively curved manifolds with strictly convex boundary. In the class
of real analytic metrics such that from each x ∈ ∂M there is a maximal geodesic free of conjugate points,
the lens rigidity was proved by Vargo [2009]. A local lens rigidity result was also proved near analytic
metrics by Stefanov and Uhlmann [2009] under certain assumptions on the conjugate points.

There is also a subclass of metrics that have attracted a lot of attention since the work of Michel [1981],
namely the class of simple manifolds, which are manifolds with strictly convex boundary that have no
trapped geodesics and no conjugate points. These manifolds are diffeomorphic to the unit ball in Rn . In
this case, knowing the lens data is equivalent to knowing the restriction dg|∂M×∂M of the Riemannian
distance function dg ∈ C0(M × M) to the boundary, also called the boundary distance. The lens rigidity
problem for this subclass of metrics is also called the boundary rigidity problem. In dimension n =2, it was
proved by Otal [1990b] (in negative curvature), Croke [1991] (in nonpositive curvature), and Pestov and
Uhlmann [2005] (in general) that simple surfaces are boundary rigid and thus lens rigid. We also mention
the results by Croke, Dairbekov and Sharafutdinov [Croke et al. 2000] and Stefanov and Uhlmann [2004]
for local boundary rigidity results, the work by Gromov [1983] and Burago and Ivanov [2010] for rigidity
results of flat and close to flat simple manifolds, and we finally refer more generally to the review article
by Croke [2004] and the recent book of Paternain, Salo and Uhlmann [Paternain et al. 2023] for an
overview of the boundary rigidity problem.

1C. Lens rigidity for manifolds with nonempty trapped set. Trapped geodesics appear in most situations
since all Riemannian manifolds (M, g) with strictly convex boundary and nontrivial topology, i.e.,
nontrivial fundamental group, always have trapped geodesics (and they even have closed geodesics in the
interior M◦). As far as manifolds with trapped geodesics are concerned, very little is known on the lens
rigidity problem. It is not even clear what would be the most general class of manifolds for which lens
rigidity could hold, and the example above in Figure 1 shows that it seems hopeless to consider general
manifolds with both trapped geodesics and conjugate points.

The only available result considering cases with both trapped geodesics and conjugate points seems
to be the local rigidity result of [Stefanov and Uhlmann 2009]. In dimensions n ≥ 3, under a certain
topological assumption, it is proved that if (M, g0) is real analytic,1 with strictly convex boundary, and for
each (x, v) ∈ SM there is w ∈ v⊥ such that the maximally extended geodesic tangent to w at x has finite
length (it is not trapped) and is free of conjugate points, then the following holds: if g is another metric
with ∥g − g0∥C N small enough for some N ≫ 1 and (ℓg, Sg)= (ℓg0, Sg0), then g and g0 are isometric via
a boundary-preserving diffeomorphism. On the other hand, it is not clear (geometrically speaking) what
type of manifolds are contained in this class and there are many interesting geometric cases not contained
in it. For example, there exist convex cocompact hyperbolic 3-manifolds M := 0\H3 (with constant

1Or more generally if a certain localized X-ray transform is injective.
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sectional curvature −1) whose convex core C has positive measure and totally geodesic boundary. Thus,
cutting the ends of such examples at a finite positive distance of C, one obtains a metric not satisfying the
assumptions of [Stefanov and Uhlmann 2009] due to the totally geodesic surfaces bounding C.

From our point of view, there is a very natural class of metrics with nontrivial trapped set where the
lens rigidity problem seems well-posed and interesting from a geometrical point of view. We call elements
of this class manifolds of Anosov type; it contains as a strict subclass the set of negatively curved metrics
with strictly convex boundary.

Definition 1.3. A compact Riemannian manifold (M, g) with boundary is of Anosov type if:

(1) It has strictly convex boundary.

(2) It has no conjugate points.

(3) The trapped set for the geodesic flow (ϕ
g
t )t∈R on M := SM , defined by

K g
:=

⋂
t∈R

ϕ
g
t (M◦)⊂ M◦,

is hyperbolic in the following sense. There exist a continuous flow-invariant splitting

for all y ∈ K g, TyM = RXg(y)⊕ E−(y)⊕ E+(y),

where Xg is the geodesic vector field, and constants ν,C > 0 such that,

for all ± t ≥ 0, for all y ∈ K g, for all v ∈ E∓(y), ∥dϕg
t (y)v∥ ≤ Ce−ν|t |

∥v∥ (1-1)

for an arbitrary choice of metric ∥ · ∥ on M.

Example 1.4. The main two examples of manifolds of Anosov type are

(1) Riemannian manifolds with negative sectional curvature and strictly convex boundary (see [Klingen-
berg 1995, Theorem 3.2.17 and Section 3.9]),

(2) strictly convex subdomains of closed Riemannian manifolds with Anosov geodesic flows.

Manifolds of Anosov type have a trapped set with fractal structure and zero Lebesgue measure. It
implies that almost-every point in M is reachable from geodesics with endpoints on ∂M. This case can
be interpreted as an intermediate rigidity problem between the length spectrum rigidity of manifolds with
Anosov geodesic flows, where one asks if the lengths of closed geodesics determine the metric up to
isometry, and the boundary rigidity problem of simple manifolds.

In the closed case, Vignéras [1980] exhibited counterexamples to the length spectrum rigidity: in
constant negative curvature, there are nonisometric metrics on surfaces with the same length spectrum.
The well-posed rigidity problem is rather that of the marked length spectrum problem, also known as
the Burns–Katok conjecture [Burns and Katok 1985]: on a manifold (M, g) with Anosov geodesic flow,
each free homotopy class of loops c on M contains a unique geodesic representative γc(g) whose length
is denoted by Lg(c); if g1 and g2 are two such Anosov metrics on M with Lg1(c)= Lg2(c) for all c, it
is then conjectured that g1 should be isometric to g2. This conjecture was proved in dimension 2 by
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Otal [1990a] and Croke [1990], and in all dimensions for pairs of metrics that are close enough in Ck

norm for k ≫ 1 large enough by the last two authors [Guillarmou and Lefeuvre 2019] (local rigidity).
However, it is still open in general.

Similarly, for manifolds with boundary and nontrivial topology, the same problem of “marking” of
geodesics is a serious difficulty. The first natural question one may consider is the following, known as
the marked lens rigidity or marked boundary rigidity problem for Riemannian manifolds of Anosov type.

Definition 1.5 (marked lens data). Let g1, g2 be two metrics of Anosov type on M . We say that g1 and g2

have the same marked lens data if, for each (x, v) ∈ ∂−M \ {ℓg = ∞}, one has (ℓg1(x, v), Sg1(x, v))=

(ℓg2(x, v), Sg2(x, v)) and the g1- and g2-geodesics with initial conditions (x, v) are homotopic via a
homotopy fixing the endpoints.

Technically, having the same marked lens data is the same as having same boundary distance function
on the universal cover M̃ (which is now a noncompact space). The following conjecture is somehow
similar to the Burns–Katok conjecture in the closed case and to the boundary rigidity problem of negatively
curved simple metrics.

Conjecture 1.6 (marked lens rigidity of manifolds of Anosov type). Let M be a smooth manifold with
boundary, and assume that g1, g2 are two smooth metrics of Anosov type on M in the sense of Definition 1.3
such that g1|T (∂M) = g2|T (∂M). If g1 and g2 have the same marked lens data, then there exists a smooth
diffeomorphism ψ , homotopic to the identity and equal to the identity on the boundary ∂M , such that
ψ∗g2 = g1.

In dimension 2, Conjecture 1.6 was recently solved by the third author with Erchenko in [Erchenko and
Lefeuvre 2024] (an earlier result had also been obtained by the second author together with Mazzuchelli in
[Guillarmou and Mazzucchelli 2018] for negatively curved surfaces using the method of Otal [1990a]). In
higher dimensions, the third author [Lefeuvre 2020] proved Conjecture 1.6 for pairs of negatively curved
metrics g1, g2 that are close enough in Ck norm for k ≫ 1 large enough (local marked lens rigidity). The
fact that there is no smooth 1-parameter family (gs)s∈(−1,1) of nonisometric negatively curved metrics
with the same marked lens data2 is called infinitesimal rigidity and was first proved by the second author
[Guillarmou 2017b].

In this paper, we consider the more difficult problem of lens rigidity in the class of manifolds of Anosov
type. Since, contrary to the closed case, there are still no counterexamples to lens rigidity, we make the
following conjecture of lens rigidity in the class of metrics of Anosov type.

Conjecture 1.7 (lens rigidity of manifolds of Anosov type). Let (M1, g1), (M2, g2) be two smooth
Riemannian manifolds of Anosov type such that (∂M1, g1|∂M1)= (∂M2, g2|∂M1). If (ℓg1, Sg1)= (ℓg2, Sg2),
then there exists a smooth diffeomorphism ψ , equal to the identity on the boundary, such that ψ∗g2 = g1.

There are already partial answers to Conjecture 1.7:

(1) In dimension 2, Croke and Herreros [2016] proved that negatively curved cylinders with strictly
convex boundary are lens rigid.

2In this case, having the same marked lens data is equivalent to having the same lens data.
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(2) In dimension 2, the second author shows in [Guillarmou 2017b] that the scattering map Sg determines
(M, g) up to conformal diffeomorphism fixing the boundary. Recovering the conformal factor of the
metric is still an open question.

(3) In dimensions n ≥ 3, Stefanov, Uhlmann and Vasy [Stefanov et al. 2021] prove that, for general
metrics with strictly convex boundary, the lens data determines the metric in a neighborhood of ∂M ;
applying this result in the setting of negatively curved manifolds, one can recover the metric outside
the convex core of the manifold (which contains the projection of the trapped set).

(4) In [Guedes-Bonthonneau et al. 2024], Guedes-Bonthonneau, Jézéquel, and the second author proved
Conjecture 1.7 under the extra assumption that (M1, g1), (M2, g2) are real analytic, but only using
the equality Sg1 = Sg2 of the scattering maps.

Our first result in this article is the following local rigidity result answering Conjecture 1.7 for metrics
close to each other.

Theorem 1.8. Let (M, g0) be a Riemannian manifold of Anosov type. Assume that either dim M = 2 or
that the curvature of g0 is nonpositive. Then there exist N ≫ 1, δ > 0 such that the following holds: for
any smooth metric g on M such that ∥g − g0∥C N < δ, if (ℓg, Sg)= (ℓg0, Sg0), then there exists a smooth
diffeomorphism ψ : M → M such that ψ |∂M = id and ψ∗g = g0.

More generally, Theorem 1.8 holds under the general assumption that g0 is of Anosov type and its
X-ray transform operator I g0

2 on divergence-free symmetric 2-tensors is injective; see (1-2) for a definition
of I g0

2 and Section 3A2 where this is further discussed. The fact that I g0
2 is injective on divergence-free

tensors was proved in [Guillarmou 2017b] in nonpositive curvature and in general on Anosov surfaces by
[Lefeuvre 2019a] (without any assumption on the curvature). It was also proved in [Guedes-Bonthonneau
et al. 2024] that I g0

2 is injective for real-analytic metrics g0 which implies that generic smooth metrics of
Anosov type have an injective X-ray transform operator I g0

2 ; generic injectivity of I g0
2 follows from the

work of the first and third authors [Cekić and Lefeuvre 2021] as well, admitting also Theorem 1.10 below.
As a corollary of Theorem 1.8, we obtain:

Corollary 1.9. Let (M, g0) be a negatively curved Riemannian manifold with strictly convex boundary.
Then, there exist N ≫ 1, δ > 0 such that the following holds: for any smooth metric g on M such that
∥g − g0∥C N < δ, if (ℓg, Sg)= (ℓg0, Sg0), then there exists a smooth diffeomorphism ψ : M → M such that
ψ |∂M = id and ψ∗g = g0.

We observe that Corollary 1.9 and Theorem 1.8 are not a consequence of [Stefanov and Uhlmann
2009] (nor of [Stefanov et al. 2021]) mentioned above since: (1) our result contains the case of surfaces
(dimension n = 2) and (2) the assumption on the trapped set in [Stefanov and Uhlmann 2009] does not
cover all hyperbolic trapped sets (typically, the example M =0\H3 mentioned above is not covered when
the boundary of the convex core C is totally geodesic), whereas we do not make any specific assumption
on the topology, and neither do we assume that g0 is analytic or that it has an injective localized X-ray
transform. Theorem 1.8 is also clearly stronger than the marked local rigidity result of the third author
[Lefeuvre 2020], since we are now able to remove the marking assumption on the lens data.
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Let us finally mention that there are interesting and related results for Euclidean billiards: Noakes and
Stoyanov [2015] show that the lens data for the billiard flow on Rn

\O (where O is a collection of strictly
convex domains) is rigid, and De Simoi, Kaloshin and Leguil [De Simoi et al. 2023] prove that the lengths
of the marked periodic orbits generically determine the obstacles under a Z2

× Z2 symmetry assumption.

1D. Removing the marking assumption, idea of proof. The removal of the marking assumption is
not simply a technical artifact: it is rather a crucial aspect in our work. Indeed, without the marking
assumption, one can no longer use the fact that the geodesic flows of g and g0 are conjugate with a
conjugacy preserving the Liouville measure. This conjugacy was a fundamental aspect of both proofs
of [Guillarmou and Mazzucchelli 2018; Lefeuvre 2020]. In the proof of Theorem 1.8, one has to rely
on a completely different argument, which is the linearization of the pair (ℓg, Sg). Nevertheless, since g
has a big set of trapped geodesics (typically a fractal set), this creates many singularities for (ℓg, Sg) and
its linearization. The analysis one has to perform is then quite involved. One needs to combine several
different key tools, in particular,

(1) the proof of the C2-regularity with respect to g of the operator Sg : C∞(∂+M)→ D′(∂−M) defined
by Sg f := f ◦ Sg,

(2) the exponential decay in t → ∞ of the volume of points (x, v) ∈ M = SM that remain trapped for
time t .

The first item is obtained by reproving certain results of [Dyatlov and Guillarmou 2016] on the resolvent
of an Axiom A vector field X , but now with an explicit control of the dependence with respect to the
vector field X . In particular, as a byproduct of this analysis we show the following result that could prove
useful for other applications such as Fried’s conjecture for manifolds with boundary, in the spirit of [Dang
et al. 2020].

Theorem 1.10. Let M be a smooth manifold with boundary, and let X0 be a smooth vector field so that
∂M is strictly convex for the flow of X0. Assume that the trapped set

K X0 :=

⋂
t∈R

ϕ
X0
t (M◦)

of the flow (ϕ
X0
t )t∈R of X0 is hyperbolic. Then, there exist δ > 0, N ≫ 1, such that, for all X ∈

C∞(M, TM) with ∥X − X0∥C N < δ, the following hold:

(1) The resolvent RX (z) := (−X + z)−1
: L2(M)→ L2(M), initially defined in the half-plane {z ∈ C |

ℜ(z)≫ 1}, extends meromorphically to C as a bounded operator RX (z) : C∞
c (M◦)→ D′(M◦).

(2) If z0 ∈ C is not a pole of RX0(z), then the map

C∞(M, TM) ∋ X 7→ RX (z0) ∈ L(C∞

c (M
◦),D′(M◦))

is C2-regular3 with respect to X.

Here, we denote by L(A, B) the space of continuous linear maps between functional spaces A and B.
The space L(C∞

c (M◦),D′(M◦)) can be naturally identified with D′(M◦
×M◦) via the Schwartz kernel

3Even though we only need C2, our proof actually shows it is Ck for all k ∈ N.



2744 MIHAJLO CEKIĆ, COLIN GUILLARMOU AND THIBAULT LEFEUVRE

theorem; the space D′(M◦
×M◦) is equipped with the standard topology on distributions. In fact, we

prove the result above in anisotropic Sobolev spaces, and refer to Theorem 5.14 for a more detailed
statement. We show that the scattering operator Sg has a Schwartz kernel that can be written as a restriction
of the Schwartz kernel of RXg (0) on ∂−M × ∂+M, implying that the map g 7→ Sg is C2-regular as
operators acting on some appropriate Sobolev spaces.

The strategy of the proof then goes as follows. First of all, we put the metric g in solenoidal gauge (with
respect to g0), namely we find a first diffeomorphism ψ ∈ Diff(M) such that ψ |∂M = id and g′

= ψ∗g is
divergence-free with respect to g0, see Lemma 3.6. Secondly, letting

I g0
2 : C∞(M,⊗2

ST ∗M)→ L∞

loc(∂−M \ {ℓg0 = ∞})

be the X-ray transform on symmetric 2-tensors with respect to g0, defined as

I g0
2 h(x, v) :=

∫ ℓg0 (x,v)

0
hγ (t)(γ̇ (t), γ̇ (t)) dt if ϕg0

t (x, v)= (γ (t), γ̇ (t)) ∈ M, (1-2)

we show in Section 4A the following key estimate: there are C, µ > 0 such that, if (ℓg0, Sg0)= (ℓg, Sg)

and ∥g′
− g0∥C N < δ for some small δ > 0, then

∥I g0
2 (g

′
− g0)∥H−6(∂−M) ≤ C∥g′

− g0∥
1+µ

C N (M,⊗2
S T ∗ M)

. (1-3)

The proof of this estimate is involved. It is based on some complex interpolation argument using the
holomorphic map

C ∋ z 7→ e−zℓg0 I g0
2 (g

′
− g0)

and the C2-smoothness of the scattering map g 7→Sg as a continuous map from C∞(∂+M) to H−6(∂−M).
This is established in Section 5. It also relies on some volume estimates on the set of geodesics trapped
for time t → ∞ that follow from [Guillarmou 2017b].

Finally, slightly extending (M, g0) to some (Me, g0e), using the mapping properties of the adjoint (I g0e
2 )∗,

interpolation arguments, and (1-3), one obtains, for h := g′
− g0,

∥h∥L2 ≤ C∥5
g0e
2 E0h∥H1 ≤ C∥h∥

1+µ

C N , (1-4)

where E0 is the zero extension operator to Me, 5g0e
2 = (I g0e

2 )∗ I g0e
2 is the normal operator, and the estimate

on the left is an elliptic estimate proved in Proposition 3.8. It is left to interpolate C N between L2 and C N ′

in (1-4), where N ′
≫ N , to get, for some 0< µ′ < µ,

∥h∥L2 ≤ C∥h∥L2∥h∥
µ′

C N ′ ≤ C∥h∥L2∥g − g0∥
µ′

C N ′ .

For ∥g − g0∥C N ′ small enough, this readily implies that g′
= φ∗g = g0, concluding the proof.

2. Geometric and dynamical preliminaries

Following [Guillarmou 2017b, Section 2], we describe the scattering and length maps in our geometric
setting, and relate them to the resolvent of the geodesic flow.
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2A. Unit tangent bundle and extensions.

2A1. Geometry of the unit tangent bundle. Let (M, g) be a smooth compact oriented Riemannian
manifold with strictly convex boundary (in the sense that the second fundamental form is positive),
and let Sg M = {(x, v) ∈ T M | |v|gx = 1} be the unit tangent bundle with projection on the base
denoted by π0 : Sg M → M . For a point y = (x, v) ∈ Sg M , we shall write −y := (x,−v). Denote by
ϕ

g
t : Sg M → Sg M the geodesic flow at time t ∈ R, and by Xg its generating vector field. Let α be the

canonical Liouville 1-form on Sg M , defined by α(x, v)(ξ) := gx(dπ0(x, v)ξ, v) for any ξ ∈ T(x,v)Sg M ,
and define µ := α∧ dαn−1, the associated Liouville volume form, which we will freely identify with the
Liouville measure. It satisfies LXgµ= 0, where LXg denotes the Lie derivative along Xg.

Recall that we introduced the incoming (−) and outgoing (+) boundaries as

∂±Sg M = {(x, v) ∈ ∂Sg M | ±gx(v, ν) > 0},

where ν is the outward-pointing unit normal to ∂M . Using the orthogonal decomposition

T∂M M = T (∂M)⊕⊥ Rν, (2-1)

the boundary ∂±Sg M can be naturally identified with the boundary ball

B(∂M) := {(x, v) ∈ T M | x ∈ ∂M, v ∈ Tx(∂M), |v|g ≤ 1}

by means of the orthogonal projection onto the first factor in (2-1). As a consequence, if g′ is any other
smooth metric on M such that g|T ∂M = g′

|T ∂M , the boundaries ∂±Sg M and ∂±Sg′

M can be naturally
identified and it makes sense to say that (ℓg, Sg)= (ℓg′, Sg′). When this equality holds, we say that the
manifolds (M, g) and (M ′, g′) have the same lens data.

When we consider a set of metrics g, the unit tangent bundles Sg M depend on g. For convenience, we
will thus fix the manifold

M := Sg0 M,

associated to an arbitrary metric of reference g0. We can always rescale the flow ϕ
g
t so that it becomes

defined on M. Indeed, define 8g0→g : Sg0 M → Sg M by

8g0→g(x, v) := (x, v/|v|g).

Then 8−1
g0→g ◦ϕ

g
t ◦8g0→g is a flow on M which we shall still denote by ϕg

t , and its vector field will also
be denoted by Xg for simplicity.

We shall always work with metrics g such that g|T ∂M = g0|T ∂M . The boundary of M splits into a
disjoint union

∂M = ∂−M∪ ∂+M∪ ∂0M, (2-2)

where ∂±M := {(x, v) ∈ ∂M | ±gx(v, ν) > 0} and ∂0M := {(x, v) ∈ ∂M | gx(v, ν)= 0}. Note that the
normal ν depends on g, and that the splitting (2-2) does not depend on the choice of g = g0 on T ∂M .
This will be important to compare for g ̸= g′ the length functions ℓg with ℓg′ and the scattering maps Sg

with Sg′ (see Definition 2.2 below).
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There is a symplectic form on ∂±M obtained by restricting ι∗∂dα to ∂±M, where ι∂ : ∂M → M is the
inclusion map. We denote by

µ∂ := |ι∗∂(iXgµ)| = |ι∗∂(dα)
n−1

|

the induced measure on ∂M, where iXg denotes the contraction with Xg. In what follows we will
write L p(∂±M) for the usual L p space with respect to any smooth Riemannian measure dvh on ∂M
(for some metric h on ∂M), while we will write L p(∂±M, µ∂) when we use the measure µ∂ . We note
that µ∂ = ω dvh , where ω ∈ C∞(∂M) is positive outside ∂0M and vanishes to order 1 at ∂0M, thus
L p(∂±M) ↪→ L p(∂±M, µ∂) continuously.

2A2. Extension of the manifold. It will be convenient to consider an embedding of M into a smooth
closed manifold N . This can be done by considering an embedding M ↪→ N , where N is a smooth
closed manifold (this is always possible by doubling the manifold M across its boundary for instance,
i.e., gluing M ⊔ M along ∂M by means of the identity map), then extending smoothly the metric g0 to N
(denoted by g0N ) and taking N := Sg0N N . If g0 is of Anosov type (see Definition 1.3), it will be also
convenient to have a slightly larger manifold with boundary Me at our disposal such that M ↪→ Me ↪→ N
and the extension of the metric g0 to Me, which we denote by g0e, is of Anosov type; see [Guillarmou
2017b, Section 2] where this is further discussed. Set Me := Sg0e Me. We have the successive embeddings
M ↪→ Me ↪→ N . For a metric g close to g0 in C N norm and such that g = g0 on T ∂M , we consider an
extension ge of Anosov type on Me. The map g 7→ ge can be chosen to be smooth and so that

∥ge − g0e∥C N (Me,⊗
2
S T ∗ Me)

≤ CN ∥g − g0∥C N (M,⊗2
S T ∗ M)

for all N ≥ 0 and some constants CN > 0, where ⊗
2
ST ∗M is the bundle of symmetric 2-tensors.

Definition 2.1. Let c ∈ R. We say that a level set {ρ = c} of a function ρ ∈ C∞(N ) is strictly convex
with respect to a vector field Y ∈ C∞(N , TN ) if, for all y ∈ {ρ = c}, one has

Yρ(y)= 0 =⇒ Y 2ρ(y) < 0.

We say that a smooth submanifold H ⊂ N is strictly convex with respect to Y if H is in a neighborhood
of H given by a level set {ρ = 0} of some function ρ, and this level set is strictly convex with respect
to Y . This is independent of the choice of ρ.

It can be easily checked that (M, g0) has strictly convex boundary in the Riemannian sense if and only
if ∂M is strictly convex with respect to the geodesic vector field Xg0 .

We now consider an arbitrary smooth extension X̃g0 of Xg0e |Me to N . Let ρ ∈ C∞(N ) be a global
boundary-defining function for M, i.e., such that ρ > 0 on the interior of M, ∂M = {ρ = 0} and ρ < 0
on N \M. Since Xg0 does not vanish on M = {ρ ≥ 0}, we can consider ρ0 > 0 small enough that X̃g0

does not vanish in {ρ >−2ρ0}. A continuity argument shows that, for all ρ0 > 0 small enough, the level
set {ρ = −ρ0} is strictly convex with respect to X̃g0 . We can assume that

Me =
{

x ∈ N
∣∣ ρ(x)≥ −

1
2ρ0

}
.
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{ψ = 0} = {ρ = −ρ0}

Xg Xge X̃g

M = {ρ ≥ 0}

Me = {ρ ≥ −ρ0/2}

{ρ ≥ −ρ0} N

−2ρ0 −ρ0 −
1
2ρ0

ψ

1

−1

ρ

Figure 2. One the left: the extension of the vector field Xg from M to Xge on Me, and
further to X̃g on N . The vector field X = ψ X̃g is complete on the set {ρ ≥ −ρ0} and
vanishes on {ρ = −ρ0}. On the right: the auxiliary function ψ as a function of ρ.

In the following, we will consider smooth perturbations X of the vector field Xg0 in M (small in the
C N -topology, for N ≫ 1 large enough). They will mostly be induced by a metric g close to g0, but it
might be better to have in mind a more general picture than just geodesic flows. It will be convenient
to extend the vector fields Xg to vector fields X̃g on N such that X̃g = X̃g0 on the set

{
ρ ≤ −

2
3ρ0

}
and

X̃g = Xge on Me. Moreover, it is possible to construct such an extension with, for any N ∈ N,

∥X̃g − X̃g0∥C N (N ,TN ) ≤ C∥Xg − Xg0∥C N (M,TM)

for some constant C > 0 (depending only on M, N , and N ). Also observe that strict convexity of the
boundary is stable by a C2-perturbation of the vector field.

We introduce the smooth function ψ ∈ C∞(N ) with values in [−1, 1] such that

• ψ = ρ+ ρ0 on the set
{
−ρ0 −

1
10ρ0 ≤ ρ ≤ −ρ0 +

1
10ρ0

}
,

• ψ = 1 on M = {ρ ≥ 0}, and ψ > 0 on {ρ >−ρ0},

• ψ = −1 on {ρ ≤ −2ρ0}, and ψ < 0 on {ρ <−ρ0}.

With some abuse of notation, we then denote by X and X0 the vector fields on N defined by X := ψ X̃g

and X0 := ψ X̃g0 , respectively. This construction ensures that the restriction of X to M is the original
vector field initially defined on M and that {ρ ≥ −ρ0} is preserved by all the flows (ϕX

t )t∈R for all t ∈ R,
and finally that each trajectory leaving M never comes back to M, with the same property for Me. See
Figure 2 for a visual summary of this construction.

2B. Scattering and length maps. For (x, v) ∈ M, the escape time τg(x, v) is defined to be the maximal
time of existence of the integral curve (ϕg

t (x, v))t≥0 in M:

τg : M → [0,∞], τg(x, v) := sup{t ≥ 0 | ϕ
g
t (x, v) ∈ M}.
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The forward (−) and backward (+) trapped sets 0g
± are defined by

0
g
± := {(x, v) ∈ M | τg(x,∓v)= ∞};

they are closed sets in M, and the trapped set is the closed invariant set

K g
:= 0

g
+ ∩0

g
− =

⋂
t∈R

ϕ
g
t (M).

Since ∂M is strictly convex, it is straightforward to check that 0g
∓ ∩ ∂±M = ∅ and K g

∩ ∂M = ∅. We
now recall the definition (see Definition 1.1) of the lens data.

Definition 2.2 (lens data). The length map ℓg : ∂−M\0
g
− → R+ and the scattering map Sg : ∂−M\0

g
− →

∂+M \0
g
+ are defined by

ℓg(x, v) := τg(x, v) and Sg(x, v) := ϕ
g
τg(x,v)(x, v).

The pair (ℓg, Sg) is called the lens data of (M, g).

When unnecessary, we will drop the index g in the notation. It will be convenient to view the scattering
map as acting on functions on ∂+M by pull-back. We define the scattering operator as

Sg : C∞

c (∂+M \0
g
+)→ C∞

c (∂−M \0
g
−), Sgω := ω ◦ Sg.

Under the assumption that µ∂((0
g
− ∪0

g
+)∩ ∂M)= 0, it is not difficult to show (see [Guillarmou 2017b,

Lemma 3.4]) that, for all f ∈ C∞
c (∂+M \0+), one has

∥Sg f ∥L2(∂−M,µ∂ )
= ∥ f ∥L2(∂+M,µ∂ )

,

and thus Sg extends continuously to an isometry L2(∂+M, µ∂)→ L2(∂−M, µ∂). The scattering opera-
tor Sg determines Sg, and conversely.

By the implicit function theorem (since ∂M is strictly convex), we also have that

τg ∈ C∞(M \ (0
g
− ∪ ∂0M)) and ℓg ∈ C∞(∂−M \0

g
−)

(here ∂−M = ∂0M∪ ∂−M); see [Sharafutdinov 1994, Lemmas 4.1.1 and 4.1.2] for further details. Since
we shall need the dependence of ℓg with respect to g, we first prove a result outside the trapped sets.

Lemma 2.3. Let (M, g0) be a smooth compact Riemannian manifold with strictly convex boundary, and
let p ∈ N. There exists ε > 0 small enough that the following holds: for all metrics g ∈ Ug0 , where

Ug0 := {g ∈ C p+2(M,⊗2
ST ∗M) | ∥g − g0∥C p+2 < ε, g|T ∂M = g0|T ∂M}, (2-3)

the following map is C p-regular:

ℓ : V → R+, (g, y) 7→ ℓg(y),

where V := {(g, y) ∈ Ug0 × ∂−M | y /∈ 0g
−}. Moreover, for all χ ∈ C∞

c (∂−M), there exists a constant
C > 0 (depending only on g0, p and χ ) such that, for all j ≤ p and h ∈ C∞(M,⊗2

ST ∗M),

for all (g, y) ∈ V, |χd j
y ℓg(y)| ≤ CeCℓg(y) and |χ∂ j

gℓg(y)(⊗ j h)| ≤ CeCℓg(y)∥h∥
j
C j+1 .
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Proof. We shall use the implicit function theorem. Let ρ be the boundary-defining function of M defined
in Section 2A2. As explained in this paragraph, for g close to g0, we can consider a vector field X on N
such that X vanishes (to first order) on {ρ = −ρ0}. For the sake of simplicity, we still denote by (ϕg

t )t∈R

the extended flow on N , and by Xg := X its generator.
We consider the C p-regular map

F : Ug0 × R+ → R, (g, y, t) 7→ ρ(ϕ
g
t (y)).

The function ℓg(y) satisfies the implicit equation F(g, y, ℓg(y)) = 0. Let us take a point (g0, y0) ∈ V
and differentiate, for (g, y) near (g0, y0),

∂t F(g, y, t)= (Xgρ)(ϕ
g
t (y)).

Notice that this is nonzero if y ∈ ∂−M, and ϕt(y) ∈ ∂+M by strict convexity of ∂M. Thus the implicit
function theorem guarantees that there are neighborhoods U ′

g0
⊂ Ug0 of g0 and By0(ε

′)⊂ ∂−M of y0 such
that (g, y) 7→ ℓg(y) is a well-defined C p(U ′

g0
× By0(ε

′)) function and

dyℓg(y)= −

dρ(ϕg
ℓg(y)(y)) ◦ (dϕ

g
ℓg(y))(y)

(Xgρ)(ϕ
g
ℓg(y)(y))

.

Notice in particular that this implies that V is an open set. By the Grönwall lemma, there is a constant
C > 0 uniform in g ∈ Ug0 such that, for each (g, y) ∈ V and all t > 0, where ∥ · ∥ denotes an arbitrary
fixed metric on N ,

∥dyϕ
g
t (y)∥ ≤ CeCt . (2-4)

The constant C > 0 provided by the Grönwall lemma is uniform in the metric g as long as it is C3-close
to g0. More generally, (2-4) holds for the j -th derivative d j

yϕ
g
t with a constant C > 0 uniform for g which

is C j+2-close to g0. On the other hand, we know that Xgρ ̸= 0 on ∂M \ ∂0M. So we obtain a constant
C > 0 such that,

for all (g, y) ∈ V, |χ(y)dyℓg(y)| ≤ CeCℓg(y).

Next, we compute the derivative with respect to g for some h ∈ C∞(M,⊗2
ST ∗M):

(∂gℓg .h)(y)= −

dρ(ϕg
ℓg(y)(y)) ◦ (∂gϕ

g
ℓg(y) .h)(y)

(Xgρ)(ϕ
g
ℓg(y)(y))

.

Again, by the Grönwall lemma, we obtain a constant C > 0 such that, for all t > 0, (g, y) ∈ V ,

∥(∂gϕ
g
t .h)(y)∥ ≤ CeCt

∥h∥C2, (2-5)

which provides the desired estimate for the C2-norm. (The C2-norm of h appears as the vector field Xg

involves the 1-derivative of g, so that Xg+sh is C1 for all s ∈ R small). The constant C > 0 is uniform
for g that is C3-close to g0. More generally, the bound |∂

j
gϕ

g
t (⊗

j h)(y)| ≤ CeCt
∥h∥

j
C j+1 holds with a

constant C > 0 depending on the C j+2-norm of g. The case of higher-order derivatives works exactly the
same way by differentiating as many times as needed the implicit equation defining ℓg(y) with respect
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to (g, y), and using that the derivatives of the flow satisfy the bounds ∥D jϕ
g
t (y)∥ ≤ CeCt (where D j

= ∂
j

g

or d j
y ) for some uniform C > 0 with respect to t > 0, y and g ∈ Ug0 . □

2C. Hyperbolic trapped set.

2C1. Axiom A property. We say that the trapped set is hyperbolic if there is a continuous flow-invariant
splitting of T (SM) restricted to K g into three subbundles:

for all y ∈ K g, TyM = RXg(y)⊕ Eg
s (y)⊕ Eg

u (y),

and C, ν > 0 such that, for all y ∈ K g and t ≥ 0,

v ∈ Eg
s (y) =⇒ ∥dϕg

t (y)v∥ ≤ Ce−νt
∥v∥,

v ∈ Eg
u (y) =⇒ ∥dϕg

−t(y)v∥ ≤ Ce−νt
∥v∥.

(2-6)

There is a continuous extension of the bundles Eg
s and Eg

u to the bundles Eg
− and Eg

+ over the sets 0g
−

and 0g
+, respectively, on which (2-6) is still satisfied; see [Dyatlov and Guillarmou 2016, Lemma 2.10].

For y ∈ K g, these bundles coincide with Eg
s and Eg

u , namely Eg
s (y)= Eg

−(y) and Eg
u (y)= Eg

+(y). We
define Ck

hyp(M,⊗
2
ST ∗M+) to be the set of Ck Riemannian metrics on M with strictly convex boundary

and hyperbolic trapped set. For such metrics, the geodesic flow is a typical example of what is known as
an Axiom A flow. Since these metrics could have conjugate points, this set is larger than the set of metrics
of Anosov type.

If g0 is some fixed metric on M and Me denotes the extension defined in Section 2A2 with ρ a
boundary-defining function of M, we can always choose ρ0 > 0 small enough that, for all |t | ≤ ρ0, the
level set {ρ = t} is strictly convex with respect to the extension g0e of g0 to Me. This also holds for any
metric g close to g0 in the C2-topology. Recall that we denote by ge the extension of g from M to Me.

Observe that if y ∈ ∂±M then
⋃

±t>0 ϕ
ge
t (y)⊂ N \M. The trapped sets of (M, g) and (Me, ge) then

coincide and 0g
± = 0

ge
± ∩M. Moreover, if (M, g) has no conjugate points, then by taking ρ0 > 0 small

enough (Me, ge) does not have conjugate points either; see [Guillarmou 2017b, Lemma 2.3].
Define the set of points that are trapped for time less than t ≥ 0 as

T g(t) := {y ∈ M | ∀s ∈ (0, t), ϕg
s (y) ∈ M◦

} = τ−1
g (t,∞).

It is proved in [Guillarmou 2017b, Proposition 2.4] that there exist Cg, Qg > 0 (depending on the metric g)
such that, for all t ≥ 0,

µ(T g(t))≤ Cge−Qg t . (2-7)

(Here µ is the Liouville measure for the fixed g0.) In particular, µ(0g
±)= 0. The quantity Qg is called

the escape rate and is given by −Qg = Pg(−J g
u ) < 0: the topological pressure of negative the unstable

Jacobian J g
u (y) := ∂t(det dϕg

t (y)|Eu(y))|t=0 of the flow (ϕ
g
t )t∈R. Recall that the topological pressure of a

Hölder potential V ∈ Cβ(Sg M) (for some β > 0) with respect to g can be defined as follows:

Pg(V ) := lim
T →∞

1
T

log
∑

γ∈P,Tγ∈[T,T +1]

exp
(∫

γ

V
)
,

where P is the set of periodic orbits of the geodesic flow (ϕ
g
t )t∈R, and Tγ is the period of γ ∈ P .



LOCAL LENS RIGIDITY FOR MANIFOLDS OF ANOSOV TYPE 2751

The following formula for f ∈ L1(M) is known as Santaló’s formula (see [Guillarmou 2017b,
Section 2.5]): ∫

M
f (y) dµ(y)=

∫
∂−M

∫
+∞

0
f (ϕg

t (y)) dt dµ∂(y). (2-8)

It implies, together with (2-7), that there is Cg > 0 such that, for all t > 0,

µ∂(ℓ
−1
g (t,∞))≤ Cge−Qg t . (2-9)

Using Cavalieri’s principle, estimates (2-7) and (2-9), it is straightforward to derive the following
bounds:

for all p ∈ [1,∞), τg ∈ L p(M), ℓg ∈ L p(∂−M),

for all λ ∈ (0, Qg), eλτg ∈ L1(M), eλℓg ∈ L1(∂−M).
(2-10)

Here note that ℓg is bounded near ∂0M, so that this region is trivial to deal with.

2C2. Robinson structural stability. In this paragraph, we recall some results about the stability of flows
with hyperbolic trapped set, due to [Robinson 1980, Theorem C]. First, the stable and unstable manifolds
of a point y ∈ K g are defined by

Ws(y) := {y′
∈ M | lim

t→+∞
d(ϕg

t (y
′), ϕ

g
t (y))→ 0},

Wu(y) := {y′
∈ M | lim

t→−∞
d(ϕg

t (y
′), ϕ

g
t (y))→ 0}.

They are smooth injectively immersed submanifolds. We also set

Wu(K g) :=

⋃
y∈K g

Wu(y) and Ws(K g) :=

⋃
y∈K g

Ws(y).

It is proved in [Guillarmou 2017b, Lemma 2.2] that

Ws(K g)= 0
g
− and Wu(K g)= 0

g
+. (2-11)

The tangent spaces to Ws(y) and Wu(y) are Es(y) and Eu(y), respectively. The flow satisfies the following
transversality property for the stable and unstable manifolds Ws(y) and Wu(y): for each y, y′

∈ K g and
z ∈ Ws(y)∩ Wu(y′)⊂ K g, we have

Tz(M)= Tz(Ws(y))⊕ Tz(Wu(y′))⊕ RXg(z).

Indeed, such z must belong to K g, and the identity of the tangent space can be rewritten as

Es(z)⊕ Eu(z)⊕ RXg(z)= Tz(M),

which holds since K g is assumed hyperbolic. For a Riemannian manifold with strictly convex boundary
and hyperbolic trapped set, the geodesic flow (ϕ

g
t )t∈R on M satisfies the following:

• The nonwandering set �⊂ K g is hyperbolic.

• The stable and unstable manifolds have the transversality property.

• The boundary is strictly convex with respect to the vector field Xg.
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Proposition 2.4 [Robinson 1980]. Let (M, g0) be a smooth Riemannian manifold with strictly convex
boundary and hyperbolic trapped set K g0 ⊂ M := SM. Then, there exists ε0 > 0 such that, for each
smooth vector field X on M with ∥X − Xg0∥C2(M) ≤ ε0, there is a homeomorphism h : M → M and
a ∈ C0(U ), where U = {(y, t) ∈ M× R | t ∈ [−τg0(−h(y)), τg0(h(y))]}, such that the following holds:
for all y ∈ M, we have that t 7→ a(y, t) is strictly increasing in t and satisfies

ϕ
Xg0
t (h(y))= h(ϕX

a(y,t)(y))

for all (y, t) ∈M×R such that ϕX
a(y,t)(y) ∈M. Moreover, for each δ > 0 there exists ε > 0 small enough

that if ∥X − Xg0∥C2(M) ≤ ε, then d(h(y), y) ≤ δ for y ∈ M, where d denotes a Riemannian distance
on M, that is, ∥h − idM ∥C0 ≤ δ.

Proof. This is a direct consequence of [Robinson 1980, Theorems A and C]. We note that Robinson’s
“quadratic external boundary conditions” are equivalent to our strict convexity of the boundary, and that
the chain-recurrent set (see [Robinson 1980] for the definition) is contained in the trapped set, which by
assumption has a hyperbolic structure with transversal stable and unstable manifolds. Finally, the last
statement about the continuity of h is stated in [Robinson 1980, Theorem A]. □

As a consequence, we see that, for g close enough to g0 in C3 norm, applying Proposition 2.4 with
X = Xg, we get

K g
= h−1(K g0) and h−1(0

g0
± )= 0

g
±,

and the trapped set varies continuously with respect to the metric.

2C3. Symplectic lift to the cotangent bundle. Recall that we introduced the vector field X on N in
Section 2A2. In Section 5, it will be convenient to work on the cotangent bundle T ∗N of the extended
manifold N . Denote by X the symplectic lift of the vector field X to T ∗N . It generates the flow

ϕX
t (y, ξ)= (ϕX

t (y), (dϕ
X
t (y))

−⊤ξ), (2-12)

where −⊤ stands for the inverse transpose. Note that this flow is linear in the second variable and thus
induces a flow on the spherical bundle S∗N := (T ∗N \{0})/R+. Let π : S∗N →N and κ : T ∗N → S∗N be
the natural projections, and still write π for the projection T ∗N →N . The dual subbundles (E X

±,0)
∗
⊂T ∗N

are defined as the following symplectic orthogonals:

(E X
0 )

∗(E X
+

⊕ E X
−
)= (E X

+
)∗(E X

+
⊕ E X

0 )= (E X
−
)∗(E X

−
⊕ E X

0 )= {0}.

With some abuse of notation, the spaces (E X
±,0)

∗ will be identified with the projections κ((E X
±,0)

∗)⊂ S∗N .
Eventually, we record the following definition to be found useful later:

6± :=

⋃
∥X−X0∥C2≤δ,±t≥0

ϕX
t (M), (2-13)

where δ > 0 is small enough. Finally, we note that the tails 0X
±

and the bundles (E X
±,0)

∗ admit an extension
to the set {ρ >−ρ0}.
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2D. Resolvent and X-ray transform. Since we will work with Sobolev spaces on the manifolds M
and ∂±M, let us clarify what this means as these are manifolds with boundary or open manifolds. First,
since M is a smooth manifold with boundary, the spaces H s(M) are defined intrinsically for s ≥ 0 (as the
restriction of H s-functions defined on N for instance). Set H s

0 (M)= C∞
c (M◦), where the closure is for

the H s norm, and write H−s(M) := (H s
0 (M))∗ for s > 0, where the upper star denotes the continuous

dual. For ∂±M, write H s(∂M) := H s(∂±M), where ∂±M := ∂±M∪ ∂0M is a smooth manifold with
boundary, and H−s(∂±M)= (H s

0 (∂±M))∗.
Define the resolvent of Xg to be the family of operators, for ℜ(z)≥ 0,

Rg(z) : C∞

c (M
◦
\0

g
−)→ C∞(M), Rg(z) f (y) := −

∫ τg(y)

0
e−zt f (ϕg

t (y)) dt. (2-14)

For z = 0, simply write Rg := Rg(0). It solves Xg Rg = 1 on C∞
c (M◦

\0
g
−) with boundary condition

(Rg f )|∂+M = 0.
Assuming that (M, g) has strictly convex boundary and hyperbolic trapped set, we have by [Guillarmou

2017b, Propositions 4.2 and 4.4] the following boundedness properties:

for all p ∈ [1,∞), Rg : L∞(M)→ L p(M), (2-15)

for all α ∈ (0, 1), there exists s > 0 such that Rg : Cα
c (M

◦)→ H s(M), (2-16)

for all s > 0, Rg : H s(M)→ H−s(M), (2-17)

where Cα(M) is the Hölder space of order α. Note that if ε > 0 is chosen small enough,

U :=

⋃
t∈(−ε,ε)

ϕ
g
t (∂−M)

is a neighborhood of ∂−M in Me which is diffeomorphic to (−ε, ε)× ∂−M by (t, y) 7→ ϕ
g
t (y), and

∂t(τg ◦ϕ
g
t )= −1 in U . Using (2-15), Santaló’s formula (2-8), and the fact that ℓg is smooth near ∂0M in

∂−M∪ ∂0M (see [Sharafutdinov 1994, Lemma 4.1.1]), we consequently obtain

ℓg = −(Rg1M)|∂−M ∈ L p(∂−M, µ∂) (2-18)

for all 1 ≤ p <∞. The X-ray transform is defined as the operator

I g
: C∞

c (M \0
g
−)→ C∞

c (∂−M \0
g
−), I g f := −(Rg f )|∂−M,

and, by [Guillarmou 2017b, Lemma 5.1], it extends as a bounded map for all p > 2:

I g
: L p(M)→ L2(∂−M, µ∂). (2-19)

We now show the following boundedness property.

Lemma 2.5. Let (M, g) be a compact Riemannian manifold with strictly convex boundary and hyperbolic
trapped set. Then, there exists s > 0 such that the operator I g is bounded as a map:

I g
: C2(M)→ H s(∂−M).
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Proof. First of all, if χ ∈ C∞(∂−M) is supported close to ∂0M, one can check that χ I g f ∈ C2(∂−M)

for f ∈ C2(M); see [Sharafutdinov 1994, Lemma 4.1.1]. It thus remains to analyze χ I g f when
χ ∈ C∞

c (∂−M). Let γ > 0 be a large enough constant (it will be determined later), ε ∈ (0, Qg/(2γ )),
and let 1h be the Riemannian Laplacian associated to an arbitrarily chosen smooth Riemannian metric h
on ∂−M, with Dirichlet condition at ∂0M. It is self-adjoint on H 1

0 (∂−M)∩ H 2(∂−M) with respect to
the Riemannian volume measure dvh . Note that dvh is smoothly equivalent to µ∂ on each compact set
of ∂−M as µ∂ vanishes to first order on the boundary ∂0M.

For f ∈ C2(M), consider the holomorphic map

{−ε ≤ ℜ(z)≤ 1 − ε} ∋ z 7→ u(z) := (1 +1h)
z+ε(e−zγ ℓgχ I g f ) ∈ D′(∂−M).

We are going to apply the Hadamard three-line theorem (see [Rudin 1987, Theorem 12.8]) to the
holomorphic family of distributions u(z). From (2-19), we have I g f ∈ L2(∂−M, µ∂), but we can also
write the pointwise bound,

for all y ∈ ∂−M \0−, |I g f (y)| ≤ ∥ f ∥L∞ℓg(y). (2-20)

From (2-10), we get, using that ε < Qg/(2γ ),

χeεγ ℓg I g f ∈ L2(∂−M, dvh).

Therefore on the line {ℜ(z)= −ε} with 0< ε < Qg/(2γ ), there exists a constant C > 0 independent of z
and f (but depending on χ ) such that

∥u(z)∥L2 ≤ ∥(1 +1h)
iℑ(z)

∥L2→L2∥χeεγ ℓg I g( f )∥L2 ≤ C∥ f ∥L∞, (2-21)

where L2
= L2(∂−M, dvh). Note that we used the spectral theorem for 1h in order to bound

∥(1 +1h)
iℑ(z)

∥L2→L2 ≤ 1.

Now, using that I g f (y) =
∫ ℓg(y)

0 f (ϕg
t (y)) dt , we obtain, using Lemma 2.3, (2-4), and (2-20), the

pointwise bound on ∂−M \0
g
−:

|1h(e−zγ ℓg I g f )(y)| ≤ C(1 + |z|2)∥ f ∥C2(M)e
(C0−γℜ(z))ℓg(y)

for some uniform constants C,C0 > 0 (depending only on the metric g). We therefore see that, for
ℜ(z)= 1 − ε, the function 1h(e−γ zℓgχ I g( f )) can be extended from ∂−M \0− continuously to ∂−M
by setting it to be 0 on 0− as long as γ (1 − ε) > C0. Here, we see that, in order to achieve this, we can
choose γ > 2022C0 at the very beginning (the constant C0 only depends on the metric g).

Claim 2.6. The continuous extension by 0 of 1h(e−zγ ℓgχ I g f ) on 0g
− matches with the distributional

derivative 1h(e−zγ ℓgχ I g f ) ∈ D′(∂−M).

The proof of this claim is postponed until below. Then 1h(e−zγ ℓgχ I g f ) ∈ L2(∂−M), and on the line
{ℜ(z)= 1 − ε} we have

∥u(z)∥L2 ≤ ∥(1 +1h)
iℑ(z)

∥L2→L2∥(1 +1h)(e−zγ ℓgχ I g f )∥L2 ≤ C(1 + |z|2)∥ f ∥C2 . (2-22)
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We can then use the Hadamard three-line interpolation theorem applied to the holomorphic function

{−ε ≤ ℜ(z)≤ 1 − ε} ∋ z 7→ v(z) :=

∫
∂−M

(1 + z)−2u(z)ψ dvh ∈ C,

where ψ ∈ C∞
c (∂−M) is arbitrary. Note that this is well defined and holomorphic in the strip ℜ(z) ∈

[−ε, 1 − ε] since we have the bound

|v(z)| ≤
1

(1 − ε)2
∥ψ∥H2(ℜ(z)+ε)∥eεγ ℓgχ Ig f ∥L2 ≤ C∥ψ∥H2∥ f ∥C2 .

From (2-21) and (2-22), we deduce the existence of a constant C > 0, independent of ψ , such that, for
all z with ℜ(z) ∈ [−ε, 1 − ε], one has

|v(z)| ≤ C∥ψ∥L2 .

This shows that u(z) ∈ L2(∂−M) for all such z with the bound |u(z)| ≤ C . In particular, taking z = 0,
we obtain that (1 +1h)

ε(χ I g f ) ∈ L2, thus showing the claimed result.
It thus remains to prove Claim 2.6 above. Denote by F the continuous extension of 1h(e−zγ ℓgχ I g( f ))

by 0 on 0g
−. We need to show that, for each ψ ∈ C∞

c (∂−M),∫
∂−M

χe−zγ ℓg I g( f )1hψ dvh =

∫
∂−M

Fψ dvh . (2-23)

Take θ ∈ C∞
c ([0, 2)) equal to 1 in [0, 1]. We write the left-hand side as

lim
T →∞

∫
∂−M

θ(ℓg/T )χe−zγ ℓg I g( f )1hψ dvh = lim
T →∞

∫
∂−M

1h(θ(ℓg/T )χe−zγ ℓg I g( f ))ψ dvh

= lim
T →∞

A1(T )+ A2(T ),

where

A1(T ) :=

∫
∂−M

1h(θ(ℓg/T ))χe−zγ ℓg I g( f )ψ dvh + 2
∫
∂−M

∇(θ(ℓg/T )) · ∇(χe−zγ ℓg I g( f ))ψ dvh,

A2(T ) :=

∫
∂−M

θ(ℓg/T )1h(χe−zγ ℓg I g( f ))ψ dvh =

∫
∂−M

θ(ℓg/T )Fψ dvh .

In order to show (2-23), it thus suffices to show that A1(T )→ 0 as T → ∞. The derivatives d j
y (θ(ℓg/T ))

of order j = 1, 2 are supported in {ℓg ∈ [T, 2T ]}, where we can use the pointwise bound of Lemma 2.3:

|d j
y (θ(ℓg(y)/T ))| ≤ CeC0ℓg(y) ≤ Ce2C0T

for some uniform C,C0 > 0. Since all terms in the integrand of A1 are multiplied by the weight
|e−γ zℓg(y)| ≤ e−γ (1−ε)T , we easily see, using Lemma 2.3 once again, that

A1(T )= O((1 + |z|)e(3C0−γ (1−ε))T ).

Taking γ > 6C0 at the beginning and ε < 1
2 , one obtains that A1(T )→ 0, and this proves our claim. □
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Note that, as a corollary of Lemma 2.5, we obtain that there is s > 0 such that

ℓg = I g(1M) ∈ H s(∂−M). (2-24)

2E. Scattering operator. Working with the scattering operator Sg has several advantages over working
directly with Sg. The main reason is that its Schwartz kernel can be expressed in terms of restriction of
the Schwartz kernel of the resolvent Rg of the geodesic vector field Xg. This is the content of Lemma 2.7
below. This will be important so that we can work in a good functional setting in order to apply the Taylor
expansion of the lens data with respect to g. We denote by Rge the resolvent on Me for the extension ge

(for the definition of ge recall Section 2A2), which has all the properties of Rg.

Lemma 2.7. Let (M, g) be a compact Riemannian manifold with strictly convex boundary and hyperbolic
trapped set. Let ι∂± : ∂±M → M be the inclusion map. The restriction (ι∂− × ι∂+)

∗ Rge of the Schwartz
kernel of the resolvent on ∂−M× ∂+M makes sense as a distribution, and the Schwartz kernel of Sg is
given by

Sg(y, y′)= −(ι∂− × ι∂+)
∗ Rge(y, y′), (y, y′) ∈ ∂−M× ∂+M.

Proof. First, we define the operator Eg : C∞
c (∂+M)→ H s(M) for s > 0 as follows: for δ > 0 small, let

�= {(x, v) ∈ ∂M | |gx(ν, v)| ≤ δ}; define �e = Me ∩
⋃

t∈R ϕ
ge
t (�) to be the flowout of � by ϕge

t ; and
let ψ ∈ C∞(Me,R+) such that ψ |�e∪∂−M = 0, ψ is supported in a small neighborhood of ∂+M\� and
Xgeψ = 0 in Me \M and near ∂+M. Then set, for ω ∈ C∞

c (∂+M),

Egω := ω̃ψ − Rge Xge(ω̃ψ) ∈ H s(Me)∩ L p(Me)∩ C∞(Me \ (0− ∪0+))

for some s > 0 and all p <∞ using (2-15) and (2-16), where ω̃ is defined on supp(ψ) by extending ω
from ∂+M to be constant on the flow lines of Xge . This can be done by using the diffeomorphism

9+ :
{
(t, y) ∈

(
−

1
2δ,∞

)
× (∂+M \�)

∣∣ t ≤ τge(y)
}

∋ (t, y) 7→ ϕ
ge
t (y) ∈ Me

and using that the flow ϕ
ge
t is the translation in t in these coordinates. One clearly has that Egω is smooth

near ∂+M and
XgeEgω = 0, (Egω)|∂+M = ψ |∂+Mω.

In particular, we see that, outside 0−, we have

(Egω)|∂−M\0−
= (Sg(ωψ |∂+M))|∂−M\0−

. (2-25)

On the other hand, using the diffeomorphism

9− :
{
(t, y) ∈

(
−∞, 1

2δ
)
× (∂−M \�)

∣∣ t ≥ −τge(−y)
}

∋ (t, y) 7→ ϕ
ge
t (y) ∈ Me

mapping to a neighborhood of ∂−M \�, we see that 9∗
−
Egω is independent of t and can be viewed

as a function in H s(∂−M)∩ L p(∂−M), i.e., the restriction (Egω)|∂−M makes sense as an H s(∂−M)∩

L p(∂−M) function. (This fact can also be proved using the Hörmander pull-back theorem for distributions
using wave-front analysis with the fact that X is transverse to ∂−M.) Sinceµ∂(0

g
−∩∂−M)=0, this implies

with (2-25) that (Egω)|∂−M = Sg(ωψ |∂+M). But this is also given by (Egω)|∂−M = −(Rge Xge(ω̃ψ))|∂−M.
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Since Xge Rge = Rge Xge = Id in C∞
c (M◦

e) (this follows for instance by analytic extension of the identity
Rge(z)(Xge − z) = (Xge − z)Rge(z) = Id on C∞

c (M
◦
e ) for ℜ(z) ≫ 1), one has (Xge Rge)(y, y′) = 0 and

(X ′
ge

Rge)(y, y′) in the distribution sense for y close to ∂−M \� and y′ close to ∂+M \�, where Xge

and X ′
ge

denotes the action of Xge on the left and right variable of Me ×Me, respectively. This implies
as above that the restriction (ι∂− × ι∂+)

∗ Rge makes sense and we can apply Green’s formula in the right
variable: if ω′

∈ C∞
c (∂−M),

−⟨ι∗∂−(Rge Xge(ω̃ψ)), ω
′
⟩ = −

∫
∂−M

∫
M

Rge(y, y′)Xge(ω̃ψ)(y
′)ω′(y) dµ(y′) dµ∂(y)

= −

∫
∂−M

∫
∂+M

Rge(y, y′)(ψω)(y′)ω′(y)iXge
dµ(y′) dµ∂(y),

where we used Xge(ω̃ψ)= 0 on Me \M and that (Xge Rge)(y, y′)= 0 for the interior term from Green’s
formula. This means, using iXge

dµ= dµ∂ at ∂+M, that

−⟨ι∗∂−(Rge Xge(ω̃ψ)), ω
′
⟩ = −⟨(ι∂− × ι∂+)

∗ Rge , ω
′
⊗ψ |∂+Mω⟩.

This shows that Sg(y, y′)ψ(y′)= −(ι∂− × ι∂+)
∗ Rg(y, y′)ψ(y′) as a distribution of (y, y′)∈ ∂−M×∂+M.

Since � can be chosen with δ > 0 arbitrarily small, we obtain the result by choosing ψ = 1 outside a 1
4δ

neighborhood of �∩ ∂+M in ∂+M. □

We will also need the following regularity bound.

Lemma 2.8. Let g ∈ C∞(M,⊗2
ST ∗M+) be a metric with strictly convex boundary and hyperbolic trapped

set, χ ∈ C∞
c (∂−M), f ∈ C∞(∂+M) and p ∈ N. Then:

(1) There exists β ≫ 0 large enough that, for all z ∈ iR +β, we have that χe−zℓgSg f extends by 0 on
0

g
− with an extension belonging to W p+1,∞(∂−M), and also that the weak distributional deriva-

tive (1 +1h)
(p+1)/2(χe−zℓgSg f ) ∈ D′(∂−M) coincides with the derivative of the W p+1,∞(∂−M)-

extension.

(2) The map
C p+1(∂+M) ∋ f 7→ e−zℓgSg f ∈ W p+1,∞(∂−M)

is bounded, and there exists a uniform constant C > 0 (independent of z) such that

∥(1 + z)−(p+1)χe−zℓgSg f ∥W p+1,∞(∂−M) ≤ C∥ f ∥C p+1(∂+M). (2-26)

(3) In particular, by the Sobolev embedding W p+1,∞(∂−M) ↪→ C p(∂−M), the function χe−zℓgSg f
extends to a C p-function with C p-norm bounded by (2-26).

Proof. The proof is rather similar to that of Lemma 2.5 so we will be more succinct. First, if ℜ(z) > 0 and
f ∈ C p+1(∂+M), the function Fz(y) := e−zℓg(y)(Sg f )(y) is C p+1 outside 0g

− and can be extended by
continuity by 0 on 0g

−. We compute its derivative on ∂−M \0
g
−: if Y is a smooth vector field on ∂−M,

then
Y Fz(y)= Fz(y)(−zdyℓg(y)Y + d fSg(y)(dϕ

g
ℓg(y)(y)Y + dyℓg(y)(Y )Xg(Sg(y)))).
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We can use Lemma 2.3 and the fact that ∥dyϕ
g
t ∥ ≤ CeC0|t | for some uniform C,C0 > 0 with respect to t :

this gives on supp(χ) that

|Y Fz(y)| ≤ C(1 + |z|)∥Y∥C0∥ f ∥C1e(C0−β)ℓg(y)

for some C,C0 > 0 uniform in y. In particular, if β > C0 we obtain that |Y (χFz)(y)| ≤ C(1+|z|)∥Y∥C0

almost everywhere. Now, we claim that this function is also equal to the weak distributional derivative
Y (χFz) ∈ H−1(∂−SM). As in the proof of Lemma 2.5, we need to show that, for each ψ ∈ C∞

c (∂−M),∫
∂−M

χe−zγ ℓgSg( f )Y (ψ) dvh = lim
T →∞

∫
∂−M

θ(ℓg/T )Y (e−zγ ℓgχSg( f ))ψ dvh,

where θ ∈ C∞
c ([0, 2)) is equal to 1 in [0, 1] and h is a smooth metric on ∂−M as in the proof of Lemma 2.5.

Since the proof of the equality is exactly the same as in the proof of Lemma 2.5, we do not repeat the
argument. This shows that χFz ∈ W 1,∞(∂−M) with bound

∥χFz∥W 1,∞(∂−M) ≤ C(1 + |z|)∥ f ∥C1

for some C uniform with respect to z. The bound ∥χFz∥C0(∂−M) ≤ C(1 + |z|)∥ f ∥C1 also follows
immediately by Sobolev embedding.

For higher-order derivatives, it suffices to repeat this argument, noting by Lemma 2.3 that there are
C > 0 and C0 > 0 such that, for j ≤ p + 1, we have

∥d j
y ℓg(y)∥ ≤ CeC0|t | and ∥d j

yϕ
g
t ∥ ≤ CeC0t

on (∂−M∩ supp(χ)) \0g
−. This means that, taking β > 0 large enough depending on C0, the argument

explained above works the same way. This proves the claimed result. □

Given χ ∈ C∞
c (∂−M), define the following function on ∂−M:

Lg(z) := χe−zℓg = (z(Rg(z)1M)|∂−M + 1)χ.

We will need the following regularity property.

Lemma 2.9. Let (M, g0) be a smooth compact Riemannian manifold with hyperbolic trapped set, and let
p ∈ 2N. There exists ε > 0 small enough and β ≫ 0 large enough that the following holds: setting

Ug0 := {g ∈ C p+2(M,⊗2
ST ∗M) | ∥g − g0∥C p+2 < ε, g|T ∂M = g0|T ∂M} (2-27)

as in Lemma 2.3, we have that, for ℜ(z)= β, the map

L : Ug0 × {ℜ(z)= β} ∋ (g, z) 7→ Lg(z)= e−zℓgχ ∈ L∞(∂−M)⊂ L2(∂−M)

is C p−1-regular. Moreover, there exists a uniform constant C > 0 such that, for all j ≤ p − 1,

for all h ∈ C p+2(M,⊗2
ST ∗M), ∥∂ j

gLg(z)(⊗ j h)∥L2 ≤ C(1 + |z|) j
∥h∥

j
C p+2 .
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Proof. First of all, note by [Guillarmou and Mazzucchelli 2018, Proposition 2.1] that all metrics in a
C2-neighborhood of g0 have hyperbolic trapped set and strictly convex boundary. Hence ε > 0 is chosen
so that this holds. Pick an arbitrary g′

0 ∈ Ug0 , and let h ∈ C p+2(M,⊗2
ST ∗M) such that gt := g′

0 + th ∈ Ug0

for t ∈ (−δ, 1 + δ) for some δ > 0 small. Consider the map

F : (−δ, 1 + δ)× ∂−M× {ℜ(z)= β} ∋ (t, y, z) 7→ Lgt (z)(y)= e−zℓgt (y)χ(y),

where by convention e−zℓgt (y) := 0 when ℓgt (y)= ∞. Lemma 2.3 implies that F is C p in the open set

O := {(t, y, z) ∈ (−δ, 1 + δ)× ∂−M× {ℜ(z)= β} | y /∈ 0gt
− },

and one can write ∂ j1
t ∂

j2
y ∂

j3
z Lgt (z)(y)= H(t, y, z, h)(⊗ j1h), where H(t, y, z, h) is a continuous function

on (−δ, 1+δ)×∂−M×C p+2(M,⊗2
ST ∗M)with values in j1-multilinear functions on C p+2(M,⊗2

ST ∗M)
and satisfying the following: there is C > 0 such that, for all j1 + j2 + j3 ≤ p and all (t, y, z) ∈ O,

|∂
j1

t ∂
j2
y ∂

j3
z Lgt (z)(y)| ≤ C(1 + |z|) j1+ j2e(C−β)ℓgt (y)∥h∥

j1
C p+2 . (2-28)

First, we observe that F is continuous on (−δ, 1 + δ)× ∂−M× {ℜ(z)= β}. Indeed, if (tn, yn)→ (t, y)
is a sequence such that ℓgtn

(yn)≤ T for some T <∞, by Proposition 2.4 we deduce that the trajectories
M∩

⋃
s≥0 ϕ

gtn
s (yn) converge to the trajectory M∩

⋃
s≥0 ϕ

gt
s (y) as n → ∞, and therefore ℓgt (y) <∞,

and so the limit point belongs to O. On the other hand, if there is no such T , this also implies that
ℓgtn

(yn)→ ∞, and in turn F(tn, yn, z)→ 0 as n → ∞, and (t, y, z) belongs to the set

S :=

⋃
t∈(−δ,1+δ)

({t} ×0
gt
− × {ℜ(z)= β}).

Since ℓgtn
(yn)→ ∞ if (tn, yn) converge to a point in S as n → ∞, we see from (2-28) that if β ≫ 1 is

large enough, the derivative H(t, y, z, h) of F on O converges to 0 when approaching S, and can thus be
extended from O by 0 as a continuous function on (−δ, 1+δ)×∂−M×{ℜ(z)= β}×C p+2(M,⊗2

ST ∗M).
Next, we are going to show that F is a C p−1 map, with ∂ j1

t ∂
j2
y ∂

j3
z F(t, y, z)= H(t, y, z, h)(⊗ j1h) and

with H the continuous extension by 0 on S just discussed, and that there exists C > 0 independent of h,
t , y, z such that, for all (t, y, z) ∈ (−δ, 1 + δ)× ∂−M× {ℜ(z)= β} and all j1 + j2 + j3 ≤ p − 1,

|∂
j1

t ∂
j2
y ∂

j3
z F(t, y, z)| ≤ C(1 + |z|) j1+ j2∥h∥

j1
C j1+1 . (2-29)

This would prove that the Gateaux derivatives of order p − 1 are continuous and thus the function L is
C p−1 and with the desired bounds on the derivatives.

We proceed in a way similar to the proof of Claim 2.6. We will show that, for each fixed h, the
distributional derivatives of F of order j ≤ p are bounded and coincide with the continuous extension of
H(t, y, z, h)(⊗ j1h) from O to W := (−δ, 1 + δ)× ∂−M× {ℜ(z) = β}. First we let 1 be a Laplacian
associated to a fixed smooth product metric ĝ := dt2

+ g− +ds2 on (−δ, 1+δ)×∂−M×{β+ is | s ∈ R}.
Let ψ ∈ C∞

c ((−δ, 1 + δ)× ∂−M× (β + iR)). We want to show that, for 2 j ≤ p,∫
W
χe−zℓgt1 jψ dvĝ =

∫
O
(1 j F)ψ dvĝ.
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Take θ ∈ C∞
c ([0, 2); [0, 1]) equal to 1 in [0, 1], and write the left-hand side as

lim
T →∞

∫
W
θ

(
ℓgt

T

)
χe−zℓg1 jψ dvĝ = lim

T →∞

A1(T )+ A2(T ), (2-30)

where

A1(T ) :=

2 j∑
k=1

∫
W

Pk

(
θ

(
ℓgt

T

))
Q2 j−k(χe−zℓgt )ψ dvĝ,

with Pk and Qk some differential operators of order k ≥ 1 in the variable (t, y, z) and such that Pk(1)=

Qk(1)= 0 and

A2(T ) :=

∫
W
θ

(
ℓgt

T

)
(1 j F)ψ dvĝ.

In order to show (2-30), it suffices to show that A1(T )→ 0 as T → ∞. The derivatives Dk
t,y,z(θ(ℓgt/T ))

of order k ∈ [1, 2 j] are supported in {ℓgt ∈ [T, 2T ]}, where we can use the pointwise bound of Lemma 2.3:
there exists C > 0 such that, for all (t, y, z) with ℓgt (y) ∈ [T, 2T ],

|Dk
t,y,z(θ(ℓgt (y)/T ))| ≤ CeCℓgt (y) ≤ Ce2CT .

Since all terms in the integrand of A1 are multiplied by the weight |e−βℓgt (y)| ≤ e−βT , we see using
Lemma 2.3 that

A1(T )= O(e(4C−β)T ).

Thus if β is chosen large enough we obtain that A1(T )→0 as T →∞. We thus deduce that F ∈ W p,∞
loc (W )

and by Sobolev embedding that F ∈C p−1,α(W ) for all α<1. Finally, the bound (2-29) follows from (2-28)
by continuity. □

3. Symmetric tensors and the normal operator

3A. Symmetric tensors. In this paragraph, we recall standard facts on symmetric tensors on Riemannian
manifolds. We refer to [Gouëzel and Lefeuvre 2021; Guillarmou 2017a; Heil et al. 2016] for further
details.

3A1. Definitions. Let (M, g) be a smooth connected Riemannian manifold with boundary. Let m ∈ Z≥0.
Let ⊗

m
S T ∗M → M be the vector bundle of symmetric tensors over M (for m = 0 we just take the trivial

line bundle R× M → M). We will also write ⊗
2
ST ∗M+ ⊂ ⊗

2
ST ∗M for the open convex subset consisting

of positive definite tensors (Riemannian metrics). Since ⊗
m
S T ∗M is a subbundle of the vector bundle

⊗
m T ∗M → M of m-tensors over M , it inherits the natural metric g⊗m . Define the pullback operator

π∗

m : L2(M,⊗m
S T ∗M)→ L2(M), π∗

m f (x, v) := fx(v
⊗m),

where M is equipped with the Riemannian volume, ⊗
m
S T ∗M with the metric g⊗m and M with the

Liouville measure µ. We denote by πm∗ the adjoint of π∗
m with respect to these scalar products and

volume forms.
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The symmetric covariant derivative

Dg : C∞(M,⊗m
S T ∗M)→ C∞(M,⊗m+1

S T ∗M)

is defined as Dg := σ ◦ ∇
g, where ∇

g is the Levi-Civita connection induced by g and σ : ⊗
m T ∗M →

⊗
m
S T ∗M is the symmetrization operator defined as:

σ(η1 ⊗ · · · ⊗ ηm) :=
1

m!

∑
π∈Sm

ηπ(1) ⊗ · · · ⊗ ηπ(m),

where η1, . . . , ηm ∈ T ∗M . The operator Dg is of gradient type, namely it has injective principal symbol.
Moreover, it is injective when m is odd and has kernel given by Rg⊗m/2 for even m. It satisfies the
relation

Xgπ
∗

m = π∗

m+1 Dg, (3-1)

where we recall that Xg is the geodesic vector field of g. We let

D∗

g : C∞(M,⊗m+1
S T ∗M)→ C∞(M,⊗m

S T ∗M)

be the formal adjoint of Dg, which is nothing more than the divergence D∗
gu = −Tr(∇gu), where Tr( · )

is the trace operator.
For m ≥ 1, k ≥ 0 and α ∈ (0, 1), there exists a unique decomposition

Ck,α(M,⊗m
S T ∗M)= Dg(C

k+1,α
0 (M,⊗m−1

S T ∗M))⊕⊥ ker D∗

g|Ck,α(M,⊗m
S T ∗ M), (3-2)

where Ck+1,α
0 (M,⊗m−1

S T ∗M) denotes the space of tensors of Hölder–Zygmund regularity k + 1 + α,
vanishing on the boundary, and the sum is orthogonal with respect to the L2-scalar product. The
decomposition (3-2) also holds in the scale of Sobolev spaces H s(M,⊗m

S T ∗M) for s ≥ 0. We call
potential tensors the tensors in ran Dg and solenoidal tensors (or divergence free tensors) those in ker D∗

g .

Lemma 3.1. For m ≥ 1, there exist bounded projections

πker D∗
g
: L2(M,⊗m

S T ∗M)→ L2(M,⊗m
S T ∗M)∩ ker D∗

g,

πran Dg : L2(M,⊗m
S T ∗M)→ L2(M,⊗m

S T ∗M)∩ ran Dg|H1
0
,

which are pseudodifferential operators of order 0 on M◦. Moreover, for all f ∈ L2(M,⊗m
S T ∗M), there

is a unique h ∈ H 1
0 (M,⊗

m−1
S T ∗M) and fs ∈ ker D∗

g ∩ L2 such that f = Dgh + fs , and it is given by
πker D∗

g
f = fs and πran Dg f = Dgh.

Proof. The Dirichlet Laplacian D∗
g Dg : H 2(M,⊗m

S T ∗M) ∩ H 1
0 (M,⊗

m
S T ∗M) → L2(M) is an elliptic

self-adjoint operator which is invertible since there are no symmetric Killing tensors vanishing at ∂M by
[Dairbekov and Sharafutdinov 2010]. Its inverse (D∗

g Dg)
−1

: H−1(M,⊗m
S T ∗M)→ H 1

0 (M,⊗
m
S T ∗M),

when restricted to C∞
c (M

◦), is a pseudodifferential operator of order −2 on M◦ by standard elliptic
microlocal analysis. We then set

πran Dg := Dg(D∗

g Dg)
−1 D∗

g, πker D∗
g
=: Id −πran Dg .

By construction, they satisfy the desired properties. □
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3A2. X-ray transform of tensors. We now further assume that the metric g is of Anosov type in the sense
of Definition 1.3. We introduce the X-ray transform of symmetric m-tensors.

Definition 3.2. The X-ray transform on the space of symmetric m-tensors is defined by I g
m := I g

◦π∗
m ,

where I g
m is a map from C∞(M,⊗m

S T ∗M) to L2(∂−M).

It is clear from (3-1) that the following inclusion holds:

Dg(C
k+1,α
0 (M,⊗m−1

S T ∗M))⊂ ker I g
m . (3-3)

Definition 3.3. The X-ray transform I g
m is said to be solenoidal injective on Ck,α(M,⊗m

S T ∗M) if (3-3)
is an equality.

In other words, I g
m is solenoidal injective if it is injective in restriction to solenoidal tensors, i.e., on the

second factor of the decomposition (3-2). When (M, g) is of Anosov type, solenoidal injectivity of the
X-ray transform has been proved so far in the following cases:

(1) In dimensions n ≥ 2, when g is of Anosov type with nonpositive sectional curvature, see [Guillarmou
2017b].

(2) On all surfaces of Anosov type; see [Lefeuvre 2019a].

(3) In dimensions n ≥ 2, on all real analytic manifolds of Anosov type, injectivity of I g
2 is proved in

[Guedes-Bonthonneau et al. 2024].

We conjecture that the following holds.

Conjecture 3.4 (solenoidal injectivity of the X-ray transform on manifolds of Anosov type). Let (M, g)
be a smooth Riemannian manifold of Anosov type in the sense of Definition 1.3. Then I g

m is solenoidal
injective.

Eventually, we conclude this paragraph by the following variational formula which relates the length
map and the X-ray transform on 2-tensors.

Lemma 3.5. Let (M, g0) be a compact Riemannian manifold with strictly convex boundary and hyperbolic
trapped set. Let (x, v) ∈ ∂−M\0

g0
− . Let (gt)t∈(−1,1) be a smooth family of metrics on M with gt |t=0 = g0,

and write h := ∂t gt |t=0. Then t 7→ ℓgt (x, v) is C2-regular for small t , and

∂tℓgt (x, v)|t=0 =
1
2 I g0

2 h(x, v)+αSg0 (x,v)(∂t Sgt (x, v)|t=0),

where we recall that α is the Liouville 1-form.

Proof. First, we use the fact that, for t small enough, gt must have hyperbolic trapped set by [Guillarmou
and Mazzucchelli 2018, Proposition 2.1]. Let c0(s) be a geodesic for g0 parametrize by arc-length, and
s 7→ ct(s) for t ∈ (−1, 1) be a C1 family of curves for s ∈ [0, ℓg0(c0)]. Let Y (s) := ∂t ct(s)|t=0 be the
vector field along c0(s) determined by the family (ct)t∈(−1,1). Define ġ := ∂t gt |t=0, and denote by ∇ the
Levi-Civita derivative defined by g0.
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By definition, ℓgt (ct)=
∫ ℓg0 (c0)

0
√

gt(∂sct(s), ∂sct(s)) ds, so differentiating we obtain

∂t(ℓgt (ct))|t=0 =
1
2

∫ ℓg0 (c0)

0

2g0(∇∂t ∂sct(s)|t=0, ∂sc0(s))+ ġ(∂sc0(s), ∂sc0(s))
|∂sc0(s)|g0

ds

=
1
2

∫ ℓg0 (c0)

0
ġ(∂sc0(s), ∂sc0(s)) ds

+

∫ ℓg0 (c0)

0

(
∂s(g0(∂t ct(s), ∂sct(s)))|t=0 − g0(∂t ct(s)|t=0,∇∂s∂sc0(s)︸ ︷︷ ︸

=0

)
)

ds

=
1
2

∫ ℓg0 (c0)

0
ġ(∂sc(s), ∂sc(s)) ds + g0(Y (s), ∂sc0(s))|

ℓg0 (c0)

0 . (3-4)

Here we used that |∂sc0(s)|g = 1 since the parametrization of c0 is by arc-length, and that ∇∂t ∂s = ∇∂s∂t

(this is seen on the pullback bundle c∗T M of the tangent bundle by the family c since the connection is
torsion-free and [∂t , ∂s] = 0). In the third line, we used the compatibility of g0 with ∇, and the last term
is zero since ∇∂s∂sc0(s)= 0 is the geodesic equation.

If (x, v) ∈ ∂−M \0
g0
− , then, for t small enough, (x, v) /∈ 0gt

− by Proposition 2.4 and ℓgt (x, v) is C2

near t = 0 by Lemma 2.3. Then we get, from (3-4),

∂tℓgt (x, v)|t=0 =
1
2 I g0

2 (ġ)(x, v)+ g0

(
∂t

(
π ◦ Sgt

(
x,

v

|v|gt

))∣∣∣∣
t=0︸ ︷︷ ︸

=dπ◦∂t Sgt (x,v)|t=0

, Sg0(x, v)
)

=
1
2 I g0

2 (ġ)(x, v)+αSg0 (x,v)(∂t Sgt (x, v)|t=0). □

3A3. Solenoidal gauge. The following lemma asserts that any metric in a neighborhood of a fixed
metric g0 can be put in a solenoidal gauge.

Lemma 3.6. Let (M, g0) be a smooth Riemannian manifold with metric of Anosov type, and let k ≥ 2 and
α ∈ (0, 1). There exists C, δ > 0 such that the following holds: for all metrics g such that ∥g −g0∥Ck,α < δ,
there exists a Ck+1,α-diffeomorphism ψ , with ψ |∂M = Id, such that ψ∗g is divergence-free with respect
to g0, namely D∗

g0
(ψ∗g − g0)= 0, and ∥ψ∗g − g0∥Ck,α ≤ C∥g − g0∥Ck,α .

Proof. The proof is contained in [Croke et al. 2000, Lemma 2.2]. □

3B. Normal operator. Let (M, g) be a smooth Riemannian manifold with metric g of Anosov type. The
normal operator on m-symmetric tensors is defined by

5g
m := (I g

m)
∗ I g

m .

It enjoys strong analytic properties, as proved in [Guillarmou 2017b]:

Proposition 3.7. The operator 5g
m ∈9−1(M◦,⊗m

S T ∗M◦) is a pseudodifferential operator of order −1
on M◦. It is elliptic on solenoidal tensors, in the sense that there exists pseudodifferential operators Q,
KL , K R on M◦ of orders 1, −∞, −∞, respectively, such that

Q5g
m = πker D∗

g
+ KL , 5g

m Q = πker D∗
g
+ K R,
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and the equalities hold when applied to all distributions f ∈ E ′(M◦,⊗m
S T ∗M◦) with compact support

in M◦. The operator Q can be taken to be properly supported in M◦. Moreover, 5g
m is solenoidal

injective, i.e., injective in restriction to ker D∗
g , if and only if the X-ray transform I g

m is solenoidal injective.

We now prove an elliptic estimate for the operator5g
m . Recall from Section 2C that (Me, ge)⊃ (M, g) is

a Riemannian extension of the manifold (M, g), which is also of Anosov type in the sense of Definition 1.3.
We will denote by

E0 : L2(M,⊗m
S T ∗M)→ L2(Me,⊗

m
S T ∗Me)

the operator of extension by 0.

Proposition 3.8. Let (M, g) be a manifold of Anosov type, and further assume that I g
2 is solenoidal

injective. Let (Me, ge) be an extension of Anosov type of (M, g). Then, there exists C > 0 such that, for
all f ∈ L2(M,⊗2

ST ∗M)∩ ker D∗
g ,

∥ f ∥L2(M) ≤ C∥5
ge
2 E0 f ∥H1(Me).

Proof. It will be convenient in the proof to consider a second extension of Anosov type (Mee, gee) ⊃

(Me, ge) and to work on it. The argument follows [Stefanov and Uhlmann 2004]. The operator 5gee
2

is a (not properly supported) pseudodifferential operator of order −1 on Mee
◦ which is elliptic on

solenoidal tensors. By Proposition 3.7, we can construct a properly supported pseudodifferential operator
Q ∈91(M◦

ee,⊗
2
ST ∗M◦

ee) such that

Q5gee
2 = πker D∗

gee
+ K ,

where K ∈ 9−∞(M◦
ee) is smoothing. We let ι : Me ↪→ Mee be the embedding. Observe that, taking a

cutoff function χ ∈ C∞
c (M

◦
e ) with value 1 in an open neighborhood of M , we get

ι∗Q5gee
2 E0 = ι∗πker D∗

gee
E0 + ι∗K E0

= πker D∗
ge

E0 +χ(ι∗πker D∗
gee

−πker D∗
ge
)χE0 + ι∗K E0 + (1 −χ)(ι∗πker D∗

gee
−πker D∗

ge
)E0.

By the pseudolocality of pseudodifferential operators (they preserve the singular support of distributions),
the term (ι∗πker D∗

gee
−πker D∗

ge
)E0 maps continuously L2 sections to sections that are smooth outside M ,

and thus

(1 −χ)(ι∗πker D∗
gee

−πker D∗
ge
)E0 : L2(M,⊗2

ST ∗M)→ L2(Me,⊗
2
ST ∗Me)

is a compact operator. As for the term χ(ι∗πker D∗
gee

−πker D∗
ge
)χ , we observe that it has Schwartz kernel

supported in the interior of Mee × Mee. It is a priori a pseudodifferential operator of order 0, but its
principal symbol vanishes (see Lemma 3.1) and thus it is a pseudodifferential operator of order −1, i.e., it
is compact as a map L2(Me)→ L2(Me). (We now drop the notation of the vector bundle in the functional
spaces in order to avoid repetition.) As a consequence, we see that, up to changing the compact remainder,

ι∗Q5gee
2 E0 = πker D∗

ge
E0 + K , (3-5)

where K is compact as a map L2(M)→ L2(Me).
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Given f ∈ L2(M)∩ker D∗
g , by Lemma 3.1 we may write E0 f = Dg p +h, where p ∈ H 1(Me, T ∗Me)

and p|∂Me = 0, h = πker D∗
ge

E0 f . Now, using (3-5), there is C > 0 independent of f such that

∥ f ∥L2(M) = ∥E0 f ∥L2(Me) ≤ ∥πker D∗
ge

E0 f ∥L2(Me) + ∥(Id −πker D∗
ge
)E0 f ∥L2(Me)

≤ ∥ι∗Q5gee
2 E0 f ∥L2(Me) + ∥K f ∥L2(Me) + ∥Dge p∥L2(Me)

≤ C(∥5gee
2 E0 f ∥H1(Mee) + ∥K f ∥L2(Me) + ∥Dge p∥L2(Me)). (3-6)

It remains now to bound the potential term Dge p. We have

∥Dge p∥L2(Me) ≤ ∥Dge p∥L2(�) + ∥Dg p∥L2(M), (3-7)

where � := Me \ M◦. We observe that, on �, Dg p = −h = −πker D∗
ge

E0 f . Hence, using (3-5), we get

∥Dge p∥L2(�) ≤ ∥ι∗Q5gee
2 E0 f ∥L2(�) + ∥K f ∥L2(�). (3-8)

The boundary ∂� = ∂Me ⊔ ∂M splits into two components. We define ν to be the outward-pointing
unit normal vector to ∂� and j := p|∂M . In M , we have D∗

g f = 0 = D∗
gh + D∗

g Dg p = 1D p, where
1D := D∗

g Dg is the (symmetric) Laplacian on 1-forms. Hence, in M , p satisfies the elliptic system
1D p = 0, p|∂M = j ∈ H 1/2(∂M,⊗2

ST ∗M) (by the trace theorem), so by standard elliptic estimates
[Taylor 2011, Chapter 5, Proposition 1.7], we get ∥p∥H1(M) ≲ ∥ j∥H1/2(∂M). Observe that the H 1-norm
in M can be defined by ∥p∥H1(M) := ∥p∥L2(M)+∥Dg p∥L2(M). As a consequence, using the boundedness
of the trace map H 1(�)→ H 1/2(∂�), we get (for some C uniform that can change from line to line)

∥Dg p∥L2(M) ≤ C∥p∥H1(M) ≤ C∥ j∥H1/2(∂M) ≤ C∥p∥H1(�) ≤ C(∥p∥L2(�) + ∥Dge p∥L2(�))

≤ C(∥p∥L2(�) + ∥ι∗Q5gee
2 E0 f ∥L2(�) + ∥K f ∥L2(�)) (3-9)

by (3-8). It remains to bound ∥p∥L2(�). Recall that Dg p = πran Dg E0 f , and by pseudolocality of
the pseudodifferential operator πran Dg (see Lemma 3.1) we get that p|� belongs to C∞(�, T ∗�).
For any point (x, v) ∈ S�, there is a uniformly bounded time τ(x, v) (possibly negative) such that
π(ϕτ(x,v)(x, v)) ∈ ∂Me, and using that p vanishes on ∂Me, we can thus write, using (3-1),

|π∗

1 p(x, v)| =

∣∣∣∣∫ τ(x,v)

0
(Xgeπ

∗

1 p)(ϕge
t (x, v)) dt

∣∣∣∣ =

∣∣∣∣∫ τ(x,v)

0
(π∗

2 Dge p)(ϕge
t (x, v)) dt

∣∣∣∣.
This equality implies that ∥p∥L2(�) ≤ C∥Dge p∥L2(�). Hence, combining (3-6) with (3-7)–(3-9), we get
that, for all f ∈ L2(M,⊗2

ST ∗M)∩ ker D∗
g , the following inequality holds for some uniform C > 0:

∥ f ∥L2(M) ≤ C(∥5gee
2 E0 f ∥H1(Mee) + ∥K f ∥L2(Me)),

where K : L2(M,⊗2
ST ∗M)→ L2(Me,⊗

2
ST ∗Me) is compact. The solenoidal injectivity of 5g

2 on M
implies that 5gee

2 E0 is also solenoidal injective (see [Lefeuvre 2019a, Proof of Lemma 2.3] for instance)
and thus by standard arguments, one can remove the compact remainder K from the previous inequality.
Hence there is uniform C > 0 such that

∥ f ∥L2(M) ≤ C∥5
gee
2 E0 f ∥H1(Mee).

The claimed estimate is proved by observing that in the above proof one can replace (Mee, gee) by
(Me, ge), and (Me, ge) by a slightly smaller manifold (M ′

e, g′
e) of Anosov type containing (M, g). □
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4. Local lens rigidity, proof of the main result

In this section, we prove the main Theorem 1.8.

4A. Key estimate. The goal of this paragraph is to show the following key estimate.

Proposition 4.1. Let g0 be of Anosov type. There exist C, ε, µ, N > 0 such that, for all smooth metrics g
such that g|∂M = g0|∂M , ∥g − g0∥C N < ε, and (ℓg, Sg)= (ℓg0, Sg0), we have

∥I g0
2 (g − g0)∥L2 ≤ C∥g − g0∥

1+µ

C N .

In order to prove Proposition 4.1, we are still missing one ingredient, namely, the following C2-regularity
of the scattering operator.

Proposition 4.2. Let (M, g0) be a smooth compact Riemannian manifold with strictly convex boundary
and hyperbolic trapped set. Let χ ∈ C∞

c (∂−M, [0, 1]) be a smooth cutoff function. Then, for each
ω ∈ C∞(∂+M), the map

C∞(M,⊗2
ST ∗M) ∋ g 7→ χSg(ω) ∈ H−6(∂−M)

is C2-regular near g0. As a consequence, there exists C, N > 0 large enough and δ > 0 such that, for all
g ∈ C∞(M,⊗2

ST ∗M) with ∥g − g0∥C N ≤ δ, the following holds:

∥χSg(ω)−χSg0(ω)+χ∂gSg(ω)|g=g0 .(g − g0)∥H−6(∂−M) ≤ C∥g − g0∥
2
C N (M,⊗2

S T ∗ M). (4-1)

Since this result is quite technical, its proof is postponed to Section 5. In the following, we will write
h := g − g0. Using a complex interpolation argument, Proposition 4.1 is actually a direct consequence of
the following technical lemma, which gives weighted estimates on the X -ray transform of g − g0.

Lemma 4.3. There exist C, ε, δ, β, N > 0 such that, for all smooth metrics g such that g|∂M = g0|∂M ,
∥g − g0∥C N < ε, and (ℓg, Sg)= (ℓg0, Sg0), we have, for h = g − g0,

∥(1 + z)−7e−zℓg0 I g0
2 h∥H−6(∂−M) ≤

{
C∥h∥C N for all z ∈ iR − δ,

C∥h∥
2
C N for all z ∈ iR +β.

(4-2)

We now show that Lemma 4.3 implies Proposition 4.1. The rest of Section 4A is devoted to the proof
of Lemma 4.3.

Proof of Proposition 4.1. By the Hadamard three-line theorem applied to the function

z 7→ (1 + z)−7e−zℓg0 I g0
2 (h)

(which is bounded in ℜ(z) ∈ [−δ, β] with values in L2(∂−M)⊂ H−6(∂−M)), Lemma 4.3 implies that

∥I g0
2 h∥H−6(∂−M) ≤ C∥h∥

1+µ

C N (M)

for some constants C, µ > 0 independent of h (note that µ depends on δ and β). By Lemma 2.5, there is
C > 0 and s > 0 depending on g0 such that (for N ≥ 2)

∥I g0
2 h∥H s(∂−M) ≤ C∥h∥C N (M).
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ℑ(z)

OH−6(∥h∥C N ) OH−6(∥h∥
1+µ

C N ) OH−6(∥h∥
2
C N )

−δ 0 β ≫ 1
ℜ(z)

Figure 3. Estimates on f (z)= e−zℓg0 I g0
2 h in (4-2). For z on the left blue line we have

a “volume estimate” of f (z), while for z on the right blue line we have a “microlocal
estimate” of f (z). For z on the middle red line, we have the interpolation estimate
obtained in Proposition 4.1.

Interpolating L2(∂−M) between H−6(∂−M) and H s(∂−M), we deduce that there exists µ′ > 0 and
C > 0 such that

∥I g0
2 h∥L2(∂−M) ≤ C∥h∥

1+µ′

C N (M). □

We now start with the proof of Lemma 4.3. See Figure 3: on {ℜ(z)= −δ} the bound will follow from
an estimate on the volume of long trajectories, while the estimate on the line {ℜ(z)= β} may be thought
of as a “microlocal estimate” since it crucially relies on the Taylor expansion of g 7→ Sg obtained in
Proposition 4.2.

The first bound in (4-2) for z ∈ iR − δ follows directly from the following stronger bound.

Lemma 4.4. There exists δ > 0 small enough and C > 0 (depending on δ) such that, for all h ∈

C0(M,⊗2
ST ∗M),

∥eδℓg0 I g0
2 h∥L2(∂−M) ≤ C∥h∥C0(M).

Proof. For y /∈ 0g0
− , we have |I g0

2 h(y)| ≤ ∥h∥C0 |ℓg0(y)|. Thus

∥eδℓg0 I g0
2 h∥L2(∂−M) ≤ ∥eδℓg0ℓg0∥L2(∂−M)∥h∥C0,

which gives the result by (2-10) if δ < 1
2 Qg0 . □

We now study the second bound in (4-2). Let χ ∈ C∞
c (∂−M, [0, 1]) be a smooth cutoff function. First

of all, near the boundary, we have the following:

Lemma 4.5. There exist C, ε > 0 and χ ∈ C∞
c (∂−M, [0, 1]) such that 1 − χ2 is supported near the

boundary of ∂−M, such that if ∥g − g0∥C N < ε and (ℓg, Sg)= (ℓg0, Sg0), then

∥(1 −χ2)I g0
2 h∥L∞(∂−M) ≤ C∥h∥

2
C1 .
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Proof. This follows from [Stefanov and Uhlmann 2004, Section 9] as we have the following Taylor
expansion for x, x ′

∈ ∂M close enough:

dg(x, x ′)= dg0(x, x ′)+ 1
2 I g0

2 h(x, x ′)+ Tg(x, x ′),

with the bound |Tg(x, x ′)| ≤ C∥h∥
2
C1dg0(x, x ′), where C > 0 is a uniform constant depending only on g0.

Since the metrics have the same lens data, they also have the same boundary distance function for
x, x ′

∈ ∂M close enough, that is, dg(x, x ′)= dg0(x, x ′), which easily implies the claimed estimate when
1 −χ2 is taken to have support near the boundary of ∂−M (i.e., close to short geodesics). □

Using the continuous embeddings L∞(∂−M) ↪→ L2(∂−M) ↪→ H−6(∂−M), from Lemma 4.5 we
deduce that

∥(1 + z)−7e−zℓg0 (1 −χ2)I g0
2 h∥H−6(∂−M) ≤ C∥h∥

2
C N (4-3)

for all z ∈ iR +β. It thus remains to prove the following estimate to deduce the second bound of (4-2).

Lemma 4.6. There exist C, ε, β, N > 0 such that if ∥g − g0∥C N < ε and (ℓg, Sg)= (ℓg0, Sg0), then, for
h := g − g0 and for all z ∈ iR +β,

∥(1 + z)−7e−zℓg0χ2 I g0
2 h∥H−6(∂−M) ≤ C∥h∥

2
C N .

Proof. We let ı∂− : ∂−M → M be the inclusion map. For β > 0, we consider the space

Eβ := C0
b(β + iR, L2(∂−M)), (4-4)

where C0
b denotes the vector space of bounded continuous functions, equipped with the L∞ norm. It is a

Banach space when equipped with the norm

∥F∥Eβ := sup
z∈β+iR

∥F(z)∥L2(∂−M).

Then, for z ∈ C with ℜ(z)= β large (it will be adjusted later), we define for Ug0 the neighborhood of g0

introduced in (2-3) (with p = N − 2):

F : Ug0 ∋ g 7→ F(g)(z) := (1 + z)−7χ2 (1 − e−zℓg )

z
∈ Eβ, (4-5)

where the value at z = 0 is set to be χ2ℓg.
First, the function F is C2 by Lemma 2.9 by taking N ≥ 5. We compute its Taylor expansion in the

space Eβ : for some N large enough, g close enough to g0, and h := g − g0,

F(g)(z)−F(g0)(z)=
χ2e−zℓg0

(1 + z)7
(∂gℓg)|g=g0 .h +OL2(∂−M)(∥h∥

2
C N )

=
χ2e−zℓg0

(1 + z)7

(1
2

I g0
2 (h)+αSg0 ( · )

(∂g Sg( · )|g=g0 .h)
)

+OL2(∂−M)(∥h∥
2
C N ), (4-6)

and the remainder is bounded uniformly in z (by Lemma 2.9 again), where we use Lemma 3.5 in the
second line (recall α is the Liouville 1-form). If ℓg = ℓg0 , we obtain in particular F(g)(z)−F(g0)(z)= 0,
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thus

sup
z∈β+iR

∥∥∥∥χ2e−zℓg0

(1 + z)7

(1
2

I g0
2 (h)+αSg0 ( · )

(∂g Sg( · )|g=g0 .h)
)∥∥∥∥

L2(∂−M)

≤ C∥h∥
2
C N . (4-7)

Note that, for ℜ(z)= β > 0, as a consequence of (2-19), we have χ2e−zℓg0 I g0
2 (h) ∈ L2(∂−M), thus, since

by Lemma 2.9 we know that ∂gF(g)(z)|g=g0 .h ∈ L2(∂−M) if β is large enough, we obtain that

χ2αSg0 ( · )
(∂g Sg( · )|g=g0 .h)e

−zℓg0 ∈ L2(∂−M).

We now claim the following lemma, the proof of which is deferred to the following paragraph.

Lemma 4.7. There exist C, ε, β, N > 0 such that if ∥g − g0∥C N < ε and (ℓg, Sg)= (ℓg0, Sg0), then, for
all z ∈ iR +β and h = g − g0,

∥(1 + z)−7χ2αSg0 ( · )
(∂g Sg0( · )|g=g0 .h)e

−zℓg0 ∥H−6(∂−M) ≤ C∥h∥
2
C N .

Using (4-7) and Lemma 4.7, we deduce that, for all ℜ(z)= β with β, N > 0 large enough,

sup
z∈β+iR

|1 + z|−7
∥χ2 I g0

2 (h)e
−zℓg0 ∥H−6(∂−M)

≤ sup
z∈β+iR

|1 + z|−7
∥χ2αSg0 ( · )

(∂g Sg0( · )|g=g0 .h)e
−zℓg0 ∥H−6(∂−M) + C∥h∥

2
C N ≤ C∥h∥

2
C N ,

where the constant C > 0 changes from line to line. This concludes the proof of Lemma 4.6. □

Proof of Lemma 4.7. Taking a finite cover of M =
⋃

i Ui , a partition of unity
∑

i χi = 1 subordinate to
that cover, we may write

α =

∑
i, j

α
( j)
i dy( j)

i , (4-8)

where α( j)
i , y( j)

i ∈ C∞(M) are smooth functions compactly supported inside Ui , and thus, for y ̸∈ 0
g0
− ,

we have

χ2αSg0 (y)(∂g Sg0(y)|g=g0 .h)e
−zℓg0 (y) = χ2

∑
i, j

α
( j)
i (Sg0(y))⟨dy( j)

i , ∂g Sg(y)|g=g0 .h⟩e−zℓg0 (y)

=

∑
i, j

χSg0(α
( j)
i )(y)e−zℓg0 (y) ·χ∂gSg(y

( j)
i )(y)|g=g0 .h. (4-9)

First, taking β > 0 large enough, we can ensure by Lemma 2.8 the existence of a constant C > 0 such
that, for all z ∈ iR +β and for all i, j , one has χS∗

g0
α
( j)
i e−zℓg0 ∈ C6(∂−M) with the uniform bound

∥(1 + z)−7χSg0(α
( j)
i )e−zℓg0 ∥C6(∂−M) ≤ C. (4-10)

We now let f ∈ C∞(M) be one of the functions y( j)
i in (4-8). By Proposition 4.2, we have

χSg f = χSg0 f +χ∂gSg f |g=g0 .h +OH−6(∂−M)(∥h∥
2
C N ).

(The constant in the O notation depends on the function f , but there are only finitely many functions y( j)
i

considered in the end so the constant will be uniform.) Now, using that the scattering relations are the
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same, i.e., Sg = Sg0 , we have χS∗
g f = χS∗

g0
f , where the equality holds in L∞(∂−M) and hence in

L2(∂−M)⊂ H−6(∂−M). As a consequence, we deduce that

∥χ∂gS∗

g y( j)
i |g=g0 .h∥H−6(∂−M) ≤ C∥h∥

2
C N . (4-11)

Using both (4-10) and (4-11) in (4-9) and the continuity of the multiplication

C6(∂−M)× H−6(∂−M) ∋ (u, v) 7→ uv ∈ H−6(∂−M),

we deduce that, for some C > 0,

∥(1 + z)−7αSg0 ( · )
(∂g Sg0( · )|g=g0 .h)e

−zℓg0 ∥H−6(∂−M) ≤ C∥h∥
2
C N .

This concludes the proof of Lemma 4.7. □

4B. End of the proof. We can now complete the proof of Theorem 1.8.

Proof of Theorem 1.8. Assume that (ℓg, Sg)= (ℓg0, Sg0) and g is close enough to g0 in the C N -topology.
By Lemma 3.6, we can find a diffeomorphism ψ such that ψ |∂M = Id∂M and g′

:=ψ∗g is solenoidal with
respect to g0. Moreover, (ℓg′, Sg′) = (ℓg, Sg) = (ℓg0, Sg0). Also note that ∥g′

− g0∥C N ≤ C∥g − g0∥C N

for some uniform C > 0 (depending on g0).
Writing h := g′

− g0, Proposition 4.1 implies that

∥I g0
2 h∥L2 ≤ C∥h∥

1+µ

C N . (4-12)

Now recall that, for any ε > 0, the adjoint (I g0e
2 )∗ : L2

→ L p(ε)
⊂ H−ε is bounded (here p(ε) < 2 and

p(ε)→ 2 as ε→ 0); see [Guillarmou 2017b, Lemma 5.1 and Equation (5.3)].
By (4-12), and since 5g0e

2 is of order −1 (by Proposition 3.7), and E0h has regularity H 1/2−ε for any
ε > 0, we conclude that, for any ε > 0, where C > 0 changes from line to line,

∥5
g0e
2 E0h∥H−ε = ∥(I g0e

2 )∗ I g0e
2 E0h∥H−ε ≤ C∥I g0e

2 E0h∥L2 ≤ C∥I g0
2 h∥L2 ≤ C∥h∥

1+µ

C N ,

∥5
g0e
2 E0h∥H3/2−ε ≤ C∥E0h∥H1/2−ε ≤ C∥h∥C N .

By interpolation in Sobolev spaces, we obtain from these two estimates that, for some (different) C, µ> 0,

∥5
g0e
2 E0h∥H1 ≤ C∥h∥

1+µ

C N .

Applying the elliptic stability estimate for solenoidal tensors of Proposition 3.8 (using that our assumption
implies that I g0

2 is solenoidal injective), we get

∥h∥L2 ≤ C∥5
g0e
2 E0h∥H1 ≤ C∥h∥

1+µ

C N .

By interpolation, we then obtain, for some (much larger) other integer N ∈ N,

∥h∥L2 ≤ C∥h∥L2∥h∥
µ

C N ≤ C∥h∥L2∥g − g0∥
µ

C N .

If ∥g − g0∥C N < (1/C)1/µ, this implies that h = 0, namely g′
= ψ∗g = g0. □
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5. Smoothness of the scattering operator with respect to the metric

The goal of this section is to prove Theorem 1.10 and to derive Proposition 4.2 as a corollary. Theorem 1.10
will follow directly from Theorem 5.14 and Lemma 5.21 below. The scattering operator Sg can be
expressed purely in terms of the resolvent Rge of Xge thanks to Lemma 2.7. Thus, in order to analyze
the map g 7→ Sg, we shall study the regularity of the map g 7→ Rge in adequate functional spaces. Since
working with ge or g is equivalent (they share exactly the same properties), we shall consider Rg for
simplicity of notation. The construction of Rg is done using microlocal methods as in [Dyatlov and
Guillarmou 2016], but we need to understand the g-dependence in the construction. We fix a metric of
Anosov type g0 on M and we denote by X0 its associated geodesic vector field on M. We will consider
the resolvent of X if X is any smooth vector field that is close enough to X0 in C2(M, TM). We refer
to Section 2C3, where the notation for the cotangent bundle is introduced.

5A. Construction of the uniform escape function. In this paragraph, we construct a uniform escape
function, i.e., an escape function4 for X0 which is also an escape function for all vector fields X that
are sufficiently close to X0. We will use an idea of [Bonthonneau 2020] in order to obtain an escape
function adapted to all flows X close to X0. Denote by S∗M := (T ∗M \ {0})/R+ (and similarly S∗N )
the spherical bundle, by κ : T ∗M → S∗M the quotient projection, by π : S∗N → N the footpoint map,
and recall that X is the generator of the symplectic lift of ϕt defined in (2-12). Finally, recall that ρ0 > 0
is the constant of Section 2A2 used to define the extension Me, and that X̃0 is some initial extension of
the vector field from M to N (which does not need to vanish at {ρ = −ρ0}).

Proposition 5.1. There exist a smooth function m ∈ C∞(S∗N , [−1, 1]), invariant by the antipodal map
(x, ξ) 7→ (x,−ξ), and δ > 0 such that, for all vector fields X ∈ C∞(M, TM) such that

∥X − X0∥C2(M,TM) ≤ δ,

the following hold:

(1) m = 1 in a neighborhood of (E X
−
)∗ ∩π−1(M).

(2) m = −1 in a neighborhood of (E X
+
)∗ ∩π−1(M).

(3) supp(m)∩π−1(M) is contained in a small conic neighborhood of (E X
−
)∗ and (E X

+
)∗.

(4) supp(m)⊂ {ρ >−2ρ0}.

(5) supp(m)∩ {ρ = −ρ0} ∩ {X̃0ρ = 0} = ∅.

(6) Xm ≤ 0.

The fact that X and X0 are C2-close will ensure that the structural stability Proposition 2.4 applies.
The function m will be constructed as

m = m− − m+ + η−1(π∗χ− −π∗χ+), (5-1)

4A function decreasing along the bicharacteristics of the symplectic lift of X to the cotangent bundle.
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m+

0+

K

Me

m−

χ+

0−

M

χ−

{ρ = −ρ0}

{ρ = −2ρ0}

Figure 4. A schematic representation of the various sets and functions appearing in
Lemmas 5.10 and 5.11. The disks represent (respectively, from the center to the outer
disk): the trapped set K of X0, the manifold M, the set {q = 0} (in light gray) defined
in Section 5B, the extended manifold Me, the set {ρ ≥ −ρ0}, the set {ρ ≥ −2ρ0}. The
support of the functions m+, χ+, m−, χ− are depicted, respectively, in: dark red, light
red, dark blue, light blue. The flowlines of X0 are represented in black with arrows
indicating the flow direction.

where m± are smooth functions with support near (E X
±
)∗ and taking value 1 on (E X

±
)∗, χ± are smooth

functions with compact support in a slightly larger neighborhood of 6± (defined in (2-13)), and η > 0
will be a small parameter chosen small enough in the end. We refer to Section 2C3 where all the previous
notation are defined. The proof being rather technical, we advise the reader to have in mind Figure 4,
where the various sets and functions of the construction are depicted.

Remark 5.2. More generally, one could construct a function m taking any positive (resp. negative)
constant value near (E X

−
)∗ (resp. (E X

+
)∗) but this will not be needed.
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5A1. Uniform cone contraction. We start with some technical lemmas on the contraction of cones
in T ∗M. In order to abbreviate notation, we will sometimes write X ∼ X0 if ∥X − X0∥C2 ≤ δ, where
δ > 0 is some small constant which will be chosen later. In what follows, we will use the notion of conic
neighborhoods of conic sets in T ∗N \ 0, which may be identified with neighborhoods on the spherical
bundle S∗N . First of all, we have:

Lemma 5.3. Let U be an open neighborhood of the trapped set K X0 . Then, there exists δ > 0 and T ≥ 0
such that, for all t ≥ T and all smooth vector fields X such that ∥X − X0∥C2(M,TM) < δ,

y, ϕX
−t(y), ϕ

X
t (y) ∈ Me =⇒ y ∈ U .

Taking X ∼ X0 close enough in the C2-topology, we can ensure that U is also an open neighborhood
of

⋃
X∼X0

K X by the structural stability Proposition 2.4.

Proof. We argue by contradiction. Assume that we can find sequences (T j ) j≥1 such that T j → +∞,
(X j ) j≥1 such that X j → X0 in C2(M, TM), and (y j ) j≥1 such that y j ∈ Me, ϕX j

−T j
(y j ) ∈ Me and

ϕX j
T j
(y j ) ∈ Me, but y j /∈ U . By compactness of Me, we can always assume, up to extraction, that

y j → y∞ ∈ Me. But then y∞ ∈ K X0 , which contradicts y∞ /∈ U . □

We now show the existence of small conic subsets in T ∗M, independent of the vector field X , on
which the differential of the flow (ϕX

t )t∈R is exponentially expanding/contracting. This may be compared
to [Dyatlov and Guillarmou 2016, Lemma 2.11].

Lemma 5.4. There exist δ > 0 small enough, constants C, T, λ > 0 and small open conic neighbor-
hoods U± of

⋃
X∼X0

(E X
±
)∗, such that, for all X with ∥X − X0∥C2 ≤ δ, the following holds: for all

(y, ξ) ∈ U±, for all t ≥ T such that y, ϕX
±t(y) ∈ Me,

for all s ∈ [0, t − T ], e±s X(y, ξ) ∈ U± and, for all s ∈ [0, t], |e±s X(y, ξ)| ≥ Ceλs
|ξ |.

Proof. We prove the lemma for the outgoing (+) direction, the proof being similar for the incoming (−)
direction. Fix arbitrary small conic neighborhoods Ũ (2)

+ ⋐ Ũ (1)
+ of (E X0

+ )∗. By hyperbolicity, there is a
T0>0 large enough such that the following holds: for all (y, ξ)∈ T ∗

0
X0
+
Me∩Ũ (1)

+ such that y, ϕX0
T0
(y)∈Me,

one has
eT0 X0(y, ξ) ∈ T ∗

0
X0
+

Me ∩ Ũ (2)
+ , |eT0 X0(y, ξ)| ≥ 10|ξ |.

By continuity, there exist small neighborhoods U ( j)
+ of Ũ ( j)

+ such that the following hold:

(1) The neighborhoods are chosen so that π(U (1)
+ )⋐ π(U (2)

+ ).

(2) Letting W := π(U (1)
+ ), one has U (2)

+ ∩ W ⋐fiber U (1)
+ ∩ W , in the sense that, for all y ∈ W , we have

U (2)
+ ∩ T ∗

y Me ⋐ U (1)
+ ∩ T ∗

y Me.

(3) For all (y, ξ) ∈ U (1)
+ such that y, ϕX0

T0
(y) ∈ Me,

eT0 X(y, ξ) ∈ U (2)
+ , |eT0 X(y, ξ)| ≥ 5|ξ |.

(4) There is a time T1 > T0 such that, if y ∈ π(U (2)
+ ) \π(U (1)

+ ), then ϕX0
t (y) /∈ Me for all t ≥ T1.
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By continuity, this can be achieved so that points (1-4) also hold for all smooth vector fields X such
that ∥X − X0∥C1 ≤ δ, where δ > 0 is chosen small enough. We will actually choose ∥X − X0∥C2 ≤ δ,
where δ > 0 is chosen small enough: by the structural stability Proposition 2.4, we can then ensure that
the neighborhoods U ( j)

+ also contain (E X
+
)∗ for X ∼ X0 in the C2-topology.

We set U+ := U (1)
+ and T := 3T1, and we claim that these satisfy the required properties. Take

(y, ξ) ∈ U+ such that y ∈ Me, ϕt(y) ∈ Me and t ≥ T . Write t = k1T1 + r1, with k1 ∈ Z≥1, r1 ∈ [0, T1),
and (k1 − 1)T1 = k0T0 + r0, with k0 ∈ Z≥0, r0 ∈ [0, T0), that is,

t = k0T0 + T1 + r1 + r0.

Note that T1 + r1 + r0 < 3T1 = T .
For all s ∈ [0, k0T0], one has ϕX

s (y, ξ) ∈ π(U (1)
+ ) and (y, ξ) ∈ U (1)

+ . Indeed, otherwise, we would get,
for some s⋆ ∈ [0, k0T0], that ϕX

s⋆ (y, ξ) ∈ π(U (2)
+ ) \π(U (1)

+ ), but then ϕX
s⋆+T1

(y) /∈ Me, which contradicts
the fact that ϕX

t (y) ∈ Me since

s⋆ + T1 ≤ (k1 − 1)T1 + T1 = kT1 ≤ t.

Then, using the uniform lower bound |e(T1+r0+r1)X(y, ξ)| ≥ C0|ξ |, we obtain

|et X(y, ξ)| = |e(T1+r0+r1)X(eT0 X)k0(y, ξ)| ≥ C05k0 |ξ | ≥ Ceλt
|ξ |

for some constant C > 0 and λ= log(5)/T0. □

We now let V+ be a small conic neighborhood of
⋃

X∼X0
(E X

+
)∗ contained inside U+, i.e., V+ ⋐U+. It

will be convenient to use the following operation on the category of fibered conic subsets: if V ⊂ T ∗N is
an open conic subset, define the fiberwise complement of V as

V ∁fiber := {(y, ξ) ∈ T ∗N | y ∈ π(V ), ξ ∈ V ∁
∩ T ∗

y N },

where the superscript ∁ denotes the set theoretic complement.

Lemma 5.5. There exists δ > 0 and T > 0, and V− := (W−)
∁fiber , where W− is a small conic neighborhood

of
⋃

X∼X0
(E X

−
)∗ ⊕ (E X

0 )
∗, such that, for all X with ∥X − X0∥C2(M,TM) ≤ δ, one has eT X V− ⋐ V+.

The same lemma can be proved by reversing the direction of X , i.e., by swapping the roles of E∗
−

and E∗
+

.

Proof. We fix an arbitrary open conic set Ṽ− near π−1(K X0) such that Ṽ− ∩ ((E X0
− )∗ ⊕ (E X0

0 )∗)= ∅. In
restriction to π−1(K X0), hyperbolicity ensures the existence of a time T > 0 such that

eT X0(Ṽ− ∩π−1(K X0))⋐ V+ ∩π−1(K X0).

By continuity, this also holds for an open conic neighborhood V− by taking π(V−) to be contained inside
a small neighborhood of K X0 (whose size depends on T ), and it also holds uniformly for all vector
fields X such that ∥X − X0∥C2 ≤ δ if δ > 0 is taken small enough (depending on T ) by using the stability
result of Proposition 2.4 and choosing δ > 0 small enough that

⋃
X∼X0

K X
⊂ π(V−). □
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In order to simplify notation, we will write ζ = (y, ξ) for a point in T ∗N and pX (x, ξ) := ξ(X) for
the principal symbol of −i X . From Lemmas 5.4 and 5.5, we deduce:

Lemma 5.6. Let � be a small conic neighborhood of
⋃

X∼X0
{pX = 0} in T ∗Me. There exist δ > 0 and

T > 0 such that, for all X with ∥X − X0∥C2(M,TM) ≤ δ and t ≥ T , if ζ, et X(ζ ) ∈�∩ T ∗Me \ {0}, then∫ t

0
1U+⊔U−

(es X(ζ )) ds ≥ t − T .

In other words, the flowline of ζ spends at least a time t − T in U+ ⊔U−, where there is some uniform
contraction/expansion.

Proof. We use the sets U± and V± defined in Lemmas 5.4 and 5.5. Note that π(V±) ⊂ π(U±) by
construction, and we set U := π(U+)∩π(U−). We introduce the following constants:

(1) Let T0 > 0 be the time provided by Lemma 5.3 applied with the open neighborhood U of K X0 and
such that, for all X with ∥X − X0∥C2 ≤ δ, for all t ≥ T0 and y ∈ Me such that ϕX

t (y) ∈ Me, one has

{ϕX
s (y) | s ∈ [T0, t − T0]} ⊂ U .

(2) Let T1 > 0 be the time provided by Lemma 5.4.

(3) Let T2 > 0 be the time provided by Lemma 5.5 such that eT2 X V− ⋐ V+.

Take a point ζ ∈�∩ T ∗Me \ {0} such that et X(ζ ) ∈ T ∗Me for some t ≥ 2T0, that is, ϕX
s (π(ζ )) ∈ U

for all s ∈ [T0, t − T0]. We treat different cases:

Case 1: Assume that eT0 X(ζ ) ∈ U−. If es X(ζ ) ∈ U− for all s ∈ [T0, t − T0], then the claim holds
for ζ and T = 2T0. If not, there is a time s⋆ ∈ [T0, t − T0] such that es⋆X(ζ ) ∈ V− and es X(ζ ) ∈ U−

if s ∈ [T0, s⋆]. By Lemma 5.5, we then deduce that ζ ′
:= e(s⋆+T2)X(ζ ) ∈ V+ ⋐ U+. Observe that

ζ ′
∈ U+ and e(t−(s⋆+T2))X(ζ ′) ∈ T ∗Me. If t − (s⋆ + T2) ≥ T1, from Lemma 5.4 we deduce that, for all

s ∈ [T0, s⋆] ∪ [s⋆ + T2, t − T1], we have es X(ζ ) ∈ U− ∪ U+, that is, the flowline of ζ spends at least
t − (T0 + T1 + T2) time in U− ∪U+. Thus, the claim holds with T := T0 + T1 + T2. If t − (s⋆+ T2)≤ T1,
then the flowline of ζ has spent a time at least s⋆ − T0 ≥ t − (T0 + T1 + T2) in U−, and the claim holds
with the same time T defined previously.

Case 2: Eventually, if eT0 X(ζ ) /∈ U−, then eT0 X(ζ ) ∈ V−, and the claim is also straightforward, following
the previous arguments. □

Eventually, we will need the following lemma.

Lemma 5.7. Let W− = W ′
−

∩ (W ′′
−
)∁fiber , where W ′

−
and W ′′

−
are conic neighborhoods of π−1(K X0)

and (E X0
+ )∗, respectively. Let W+ be a small conic neighborhood of (E X0

+ )∗. Then, there exists T > 0
such that, for all t ≥ T , we have e−t X0 W− ∩ W+ = ∅.

By small for W+, it is understood that W+ ∩ ((E X0
0 )∗ ⊕ (E X0

− )∗)= ∅.

Proof. This follows from the fact that there is a uniform time T > 0 such that, for each (y, ξ) ∈ W−, either
ρ(ϕ

X0
−t (y)) < 0 for all t > T , or e−t X0(y, ξ) belongs to a small conic neighborhood of (E X0

0 )∗ ⊕ (E X0
− )∗

for all t > T , by the same argument as in Lemma 5.5. □
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5A2. Construction of m±. In this paragraph, we construct the functions m± involved in the expression
(5-1) of the escape function m. We introduce a smooth function m0 ∈ C∞(S∗N , [0, 1]), invariant by the
antipodal map (x, ξ) 7→ (x,−ξ), such that m0 = 1 in a small neighborhood of κ((E X0

u )∗) over K X0 and
m0 = 0 on the complement of a slightly larger neighborhood of κ((E X0

u )∗). We will need the following.

Lemma 5.8. For all T > 0 large enough, the following holds:{
ζ, eT X0(ζ ) ∈ S∗Me

m0(ζ ) < 1
=⇒ for all t ∈ [T, 3T ], m0(e−t X0(ζ ))= 0.

Proof. We argue by contradiction. Assume that there exists

• an increasing sequence of values (T j ) j∈Z≥0 such that T j → +∞,

• a sequence of points (ζ j ) j∈Z≥0 such that ζ j , eT j X0(ζ j ) ∈ S∗Me and m0(ζ j ) < 1, and

• a sequence of values (S j ) j∈Z≥0 such that S j ≥ T j and m0(e−S j X0(ζ j )) > 0.

By compactness of S∗Me, up to extraction, we can always assume ζ j → ζ∞. Observe that ζ∞ ∈π−1(K X0)

as T j → +∞: indeed, since T j → ∞, we have that ζ∞ ∈ π−1(0X0
−
); if ζ∞ ∈ π−1(0X0

−
\ K X0), the exit

time from M in the past of ζ∞ is finite and since S j → +∞, m0(e−S j X0ζ j ) > 0 and m0 vanishes outside
of M, we would get a contradiction for j ≥ 0 large enough.

Since m0(ζ j ) < 1 and m0 = 1 near κ((E X0
u )∗), we can find V−, a small neighborhood of π−1(K X0)

whose closure is not intersecting (E X0
− )∗ and such that ζ∞ ∈ V−. Let V+ be a small neighborhood of

supp(m0). By Lemma 5.7, there is T > 0 such that, for all t ≥ T , e−t X0 V− ∩ V+ = ∅. In particular, for
j ≥ 0 large enough, ζ j ∈ V−, and thus e−S j X0(ζ j ) /∈ V+, that is, m0(e−S j X0(ζ j ))= 0. But this contradicts
m0(e−S j X0(ζ j )) > 0. □

We then set, for T > 0 large enough satisfying Lemma 5.8,

m1(ζ ) :=
1

2T

∫ 3T

T
m0(e−t X0(ζ )) dt. (5-2)

Lemma 5.9. The function m1 ∈ C∞(S∗N , [0, 1]) satisfies the following properties:

(1) m1 = 1 near (E X0
+ )∗ ∩π−1(Me).

(2) supp(m1)⊂ π−1(6+) and supp(m1) is contained in a small neighborhood of (E X0
+ )∗.

(3) X0m1 ≥ 0 on π−1(Me).

(4) There exist ε0, δ0 > 0 such that, if ζ ∈ π−1(Me) and
∣∣m1(ζ )−

1
2

∣∣ ≤ ε0, then X0m1(ζ )≥ δ0.

Proof. We prove each point separately.

(1) and (2) Taking T > 0 large enough in (5-2), the first two items are immediate to check.

(3) For ζ ∈ T ∗Me, we have

X0m1(ζ )=
1

2T
(m0(e−T X0(ζ ))− m0(e−3T X0(ζ ))),
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and we want to show that X0m1 ≥ 0 on π−1(Me). Observe that if m0(e−T X0(ζ )) = 1, then the claim
X0m1(ζ )≥ 0 is immediate. We can thus assume that m0(e−T X0(ζ )) < 1. If e−T X0(ζ ) /∈ π−1(Me), then
m0(e−T X0(ζ )) = 0 and, by convexity, m0(e−3T X0(ζ )) = 0 and X0m1(ζ ) = 0. If e−T X0(ζ ) ∈ π−1(Me),
we can apply Lemma 5.8 which implies that m0(e−3T X0(ζ ))= 0, and thus we also obtain X0m1(ζ )≥ 0.

(4) In order to show the last item, it suffices to show that, on the compact set

{X0m1 = 0} ∩π−1(Me),

one has
∣∣m1 −

1
2

∣∣ ≥ ε1 for some positive ε1 > 0, that is, the continuous function
∣∣m1 −

1
2

∣∣ does not vanish
on this set. Let ζ ∈ π−1(Me) be such that X0m1(ζ )= 0. Then m0(e−T X0ζ )= m0(e−3T X0ζ ).

Assume that m0(e−T X0ζ )< 1. If e−T X0ζ /∈π−1(Me), then, by convexity of Me, e−t X0(ζ ) /∈π−1(Me)

for all t ≥ T , and thus m1(ζ ) = 0, that is,
∣∣m1 −

1
2

∣∣ =
1
2 ̸= 0. We can thus assume that e−T X0(ζ ) ∈

π−1(Me). By Lemma 5.8, we get that m0(e−3T X0(ζ ))= 0 = m0(e−T X0(ζ )). Lemma 5.8 also gives us
that m0(e−t X(ζ ))= 0 for all t ∈ [2T, 3T ]. As a consequence,

m1(ζ )=
1

2T

∫ 3T

T
m0(e−t X0ζ ) dt =

1
2T

∫ 2T

T
m0(e−t X0ζ ) dt < 1

2 ,

so
∣∣m1(ζ )−

1
2

∣∣ ̸= 0.
We now assume that

m0(e−T X0(ζ ))= 1 = m0(e−3T X0(ζ )).

We claim that m0(e−t X0ζ ) = 1 for all t ∈ [T, 2T ]. Indeed, assume that there exists some t0 ∈ [T, 2T ]

such that ζ0 := e−t0 X0(ζ ) satisfies m0(ζ0) < 1. By Lemma 5.8, since ζ0, eT X0(ζ0) ∈ S∗Me, we obtain that
m0(e−t X0(ζ0))= 0 for all t ≥ T . Taking t1 := 3T − t0 ≥ T , we deduce that

m0(e−t1 X0(ζ0))= 0 = m0(e−(3T −t0)X0e−t0 X0(ζ ))= m0(e−3T X0(ζ )),

which is a contradiction. We then deduce that

m1(ζ ) >
1

2T

∫ 2T

T
m0(e−t X0(ζ )) dt =

1
2 ,

that is,
∣∣m1(ζ )−

1
2

∣∣ ̸= 0. This eventually proves the fourth item. □

We now introduce
m+ := χ(m1) ∈ C∞(S∗N , [0, 1]), (5-3)

where χ ∈ C∞(R) is a smooth cutoff function such that: χ ′
≥ 0, χ = 0 on

(
−∞,−1

2 − ε0
]
, and χ = 1 on[1

2 + ε0,+∞
)
, where ε0 > 0 is the constant provided by Lemma 5.9. By construction, this function takes

value 1 near (E X0
+ )∗. By the same process, one can also construct a function m− ∈ C∞(S∗N , [0, 1]) such

that m− = 1 near (E X0
− )∗.

Lemma 5.10. There exists δ > 0 small enough that, for all smooth vector fields X with

∥X − X0∥C2(M,TM) < δ,

the functions m± ∈ C∞(S∗N , [0, 1]) satisfy the following properties:
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(1) m± = 1 near (E X
±
)∗ ∩π−1(Me).

(2) supp(m±)⊂ π−1(6±) and supp(m±) is contained in a small neighborhood of (E X
±
)∗.

(3) There exists δ1 > 0 small such that

supp(m±)⊂ π−1({ρ >−(1 − δ1)ρ0}), (5-4)

supp(m±)∩π
−1(M∁)⊂ {±X̃0ρ <−δ1}. (5-5)

(4) ±Xm± ≥ 0 on π−1(Me).

We will argue on m+, as the proof is similar for m−.

Proof. We prove each item individually.

(1), (2) and (3) These are straightforward to check with δ1 > 0 small enough. The fact that X and X0 are
C2-close implies by the structural stability Proposition 2.4 that

⋃
X∼X0

(E X
±
)∗ are contained in a small

neighborhood of (E X0
±
)∗ where m± = 1.

(4) Observe that
Xm+ = Xm1χ

′(m1)= ((X − X0)m1 + X0m1)χ
′(m1).

The nonnegative function χ ′(m1)≥ 0 vanishes everywhere, except on the set
{∣∣m1 −

1
2

∣∣ ≤ ε0
}
. Observe

that, on
{∣∣m1 −

1
2

∣∣ ≤ ε0
}
, we have by Lemma 5.9 that

(X − X0)m1 + X0m1 ≥ δ0 − ∥X − X0∥C0∥m1∥C1 ≥
1
2δ0,

provided δ ≤ δ0/(2∥m1∥C1). As a consequence, we deduce that Xm+ ≥ 0 on π−1(Me). □

5A3. Construction of the bump functions χ±. In this paragraph, we construct the bump functions χ±

involved in the expression (5-1) of the escape function m.

Lemma 5.11. There exist δ1, δ > 0 small enough and cutoff functions χ± ∈ C∞(N , [0, 1]) such that, for
all smooth vector fields X such that ∥X − X0∥C1(M,TM) < δ, the following hold:

(1) supp(χ±)⊂ {−2ρ0 < ρ <−δ1} ∩ {±X̃0ρ <−δ1}.

(2) Xχ± ≥ 0.

(3) Xχ± >
1
2δ

3
1ρ0 on ({−(1 − δ1)ρ0 < ρ < 0} ∩ {±X̃0ρ <−δ1}) \Me.

Proof. We only deal with χ+, the proof being similar for χ−. First of all, for j = 1, 2, we define functions
χ j ∈ C∞(R) depending on some parameter δ1 > 0, which will be chosen small enough in the end. The
function χ1 ∈ C∞

c (R) is defined such that (see Figure 5)

• supp(χ1)⊂ {−2ρ0 < ρ <−δ1},

• χ1 ≥ 0, χ1(−ρ0)= 1, χ ′

1(−ρ0)= 0,

• χ ′

1 ≥ 0 on {−2ρ0 < ρ <−ρ0}, χ ′

1 ≤ 0 on {−ρ0 < ρ <−δ1},

• χ ′

1 ≤ −δ1 on {−ρ0(1 − δ1)≤ ρ ≤ −2δ1}.



LOCAL LENS RIGIDITY FOR MANIFOLDS OF ANOSOV TYPE 2779

χ2

χ1

−2ρ0 −ρ0

1

−ρ0(1 − δ1) −2δ1 −δ1 0

Figure 5. The cutoff functions χ1 and χ2.

The function χ2 ∈ C∞(R) is defined such that

• supp(χ2)⊂ (−∞,−δ1],

• χ2 ≥ 0,

• χ2 = 1 on (−∞,−2δ1].

We then set
χ+ := χ1(ρ)χ2(X̃0ρ), (5-6)

and we claim that it satisfies the required properties. Recall from Section 2C3 that X = ψ X̃ , where X̃ is
some smooth extension of the vector field X , initially defined on M to the closed manifold N .

We now study separately the three terms of

Xχ+ = Xρχ ′

1(ρ)χ2(X̃0ρ)+ (X X̃0ρ)χ1(ρ)χ
′

2(X̃0ρ)

= ψ · (X̃ρ)χ ′

1(ρ)χ2(X̃0ρ)+ψ · (X̃2
0ρ)χ1(ρ)χ

′

2(X̃0ρ)+ψ · ((X̃ − X̃0)X̃0ρ)χ1(ρ)χ
′

2(X̃0ρ). (5-7)

We study the first term in the last line of (5-7). On supp(χ2(X̃0ρ)), one has X̃0ρ≤−δ1. Thus, assuming
∥X − X0∥C0(M,TM)<δ is small enough (depending on δ1), we obtain that X̃ρ ≤ −

1
2δ1 on supp(χ2(X̃0ρ)).

As a consequence, we obtain (note that ψχ ′

1 ≤ 0)

ψ · (X̃ρ)χ ′

1(ρ)χ2(X̃0ρ)≥ −
δ1ψ

2
χ ′

1(ρ)χ2(X̃0ρ)≥ 0.

Moreover, on the set {−(1−δ1)ρ0 <ρ <−2δ1}∩{X̃0ρ <−δ1}, using that ψ = ρ+ρ0 near {ρ = −ρ0}

(so ψ ≥ δ1ρ0 on the former set) and that χ ′

1(ρ)≤ −δ1, we obtain that this can be bounded from below by:

ψ · (X̃ρ)χ ′

1(ρ)χ2(X̃0ρ)≥
δ2

1ψ

2
≥
δ3

1ρ0

2
> 0. (5-8)

We now deal with the second and third term. The strict convexity property of the level sets {ρ = c}
(for c ∈ [−2ρ0, 0]) with respect to X̃0 reads: X̃0ρ = 0 ⇒ X̃2

0ρ < 0. Since {X̃0ρ = 0}∩ {−2ρ0 ≤ ρ ≤ 0} is
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compact, we deduce that there exists δ1 > 0 small enough such that, on the set {|X̃0ρ| ≤ 2δ1}, one has
X̃2

0ρ ≤ −c< 0 for some constant c = c(δ1) > 0. Using that supp(χ ′

2(X̃0ρ)) has support in {|X̃0ρ| ≤ 2δ1}

and assuming ∥X − X0∥C0(M,TM) ≤ δ, we obtain the existence of some constant C > 0 (depending on δ1

but independent of δ > 0) such that

ψ · (X̃2
0ρ)χ1(ρ)χ

′

2(X̃0ρ)+ψ · ((X̃ − X̃0)X̃0ρ)χ1(ρ)χ
′

2(X̃0ρ)≥ (Cδ− c)ψχ1(ρ)χ
′

2(X̃0ρ).

Taking δ ≤ c/(2C) small enough (depending on δ1 > 0), we obtain that this last term is nonnegative.
Overall, we have thus proved (1) and (2), and (3) directly follows from (2) together with (5-8), since

we can take δ1 > 0 small enough that {ρ ≥ −2δ1} ⊂ Me. □

5A4. Piecing together the functions. The various sets appearing in the previous constructions and the
functions m±, χ± can be seen in Figure 4. We now piece together the previous constructions and prove
Proposition 5.1.

Proof of Proposition 5.1. Define m by (5-1), where m± and χ± are provided by Lemmas 5.10 and 5.11,
and the constant δ1 > 0 is chosen small enough that both Lemmas 5.10 and 5.11 hold.

Since χ± have support outside of M, m± = 1 near (E X
±
)∗ ∩π−1(M), and m = m− −m+ on π−1(M),

we get that points (1), (2) and (3) are verified. The fact that supp(m)⊂ {ρ >−2ρ0} is also straightforward
by Lemmas 5.10 and 5.11, which proves (4). Eventually, (5) is also immediate to verify.

We now show that (6) holds if we take η > 0 small enough. By Lemmas 5.10 (4) and 5.11 (2),
the condition Xm ≤ 0 holds on π−1(Me). On the set {ρ ≤ −ρ0(1 − δ1)}, we have m± = 0, and
thus, by Lemma 5.11, the inequality Xm ≤ 0 also holds. It remains to check the inequality on {ρ ≥

−ρ0(1 − δ1)} ∩ (Me)
∁. But there, we have, by Lemma 5.11 (3),

Xm = Xm− − Xm+ + η−1(π∗Xχ− −π∗Xχ+)≤ ∥m−∥C1 + ∥m+∥C1 − η−1 δ
3
1ρ0

2
≤ 0

if η > 0 is chosen small enough. □

5B. Meromorphic extension of the resolvent. We now study the meromorphic extension of the resolvent
on anisotropic Sobolev spaces and its dependence with respect to the vector field X . This is the main
difference with [Dyatlov and Guillarmou 2016]. We will be particularly interested by the resolvent at
z = 0, namely Rg, for our application.

5B1. Global resolvent on uniform anisotropic Sobolev spaces. In the following, we assume that an
arbitrary metric h was chosen on TN →N . This induces a metric h♯ on T ∗N →N and, for (y, ξ)∈ T ∗N ,
we will write ⟨ξ⟩ := (1 + h♯y(ξ, ξ))1/2 (the y is dropped from the Japanese bracket notation in order to
avoid repetition). For ϱ ∈

( 1
2 , 1

]
, we denote by Sk

ϱ(T
∗N ) the Fréchet space of symbols of order k, i.e.,

a ∈ Sk(T ∗N ), if, in local coordinates,

for all α, β, there exists C > 0 such that |∂αξ ∂
β
x a(y, ξ)| ≤ C⟨ξ⟩k−ϱ|α|+(1−ϱ)|β|,

and we denote by 9k
ϱ(N ) the space of pseudodifferential operators of order k obtained by quantization of

symbols in Sk
ϱ(T

∗N ). We shall remove the ϱ index from the notation when ϱ = 1. Note that k can be a
real number but also a variable order function; see [Faure et al. 2008, Appendix A] for further details.
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The function m ∈ C∞(S∗N , [−1, 1]) constructed in Section 5A yields a smooth, 0-homogeneous
function m ∈ C∞(T ∗N \ {0}, [−1, 1])— still denoted by m — which decreases along all flow lines of X ,
the Hamiltonian vector field induced by X (and X is close to X0). We can always modify m in a small
neighborhood of the 0-section in T ∗N to obtain a new function — still denoted by the same letter m to
avoid unnecessary notation — such that m ∈ C∞(T ∗N , [−1, 1]) and Xm(y, ξ)≤ 0 for all (y, ξ) ∈ T ∗N
such that ⟨ξ⟩> 1.

Define a regularity pair as a pair of indices r := (r⊥, r0), where r⊥ > r0 ≥ 0. Given such a regularity
pair r , we introduce (for all ε > 0 small enough)

Ar := Op(⟨ξ⟩(r⊥m(y,ξ)−r0)/2)∗ Op(⟨ξ⟩(r⊥m(y,ξ)−r0)/2) ∈9
r⊥m−r0
1−ε (N ). (5-9)

This is an elliptic and formally selfadjoint pseudodifferential operator belonging to an anisotropic class;
see [Faure et al. 2008, Appendix A] for further details. As a consequence, up to a modification by a
finite-rank formally selfadjoint smoothing operator, we can assume that Ar is invertible.

Definition 5.12. We define the scale of anisotropic Sobolev spaces with regularity r := (r⊥, r0), where
r⊥ > r0 ≥ 0, as

Hr
±
(N ) := A∓1

r (L2(N )), ∥ f ∥Hr
±(N ) := ∥A±1

r f ∥L2(N ).

Remark 5.13. (1) The spaces Hr
±
(N ) are Hilbert spaces, equipped with the scalar product

⟨ · , · ⟩Hr
±(N ) := ⟨A±1

r · , A±1
r · ⟩L2(N ).

(2) This scale of spaces is independent of the vector field X , as long as it is close enough to X0 in the
C2-topology, since the escape function m is independent of the vector field. This will be important when
studying the regularity of the meromorphic extension of the resolvent z 7→ RX

±
(z) (given by (5-10)) with

respect to the vector field X .

(3) Distributions in Hr
+
(N ) are microlocally in H r⊥−r0(N ) near (E X

−
)∗, H−r0(N ) near (E X

0 )
∗, and

H−r⊥−r0(N ) near (E X
+
)∗ (in the sense that, after application of an A ∈90(N ) with wavefront set in the

discussed region, they have the announced regularity). The choice of regularity is arbitrary here, and we
did not try to optimize it. The only crucial point is that distributions in Hr

+
(N ) have positive Sobolev

regularity near (E X
−
)∗, while they have negative Sobolev regularity near (E X

+
)∗.

We let q ∈ C∞(N , [0, 1]) be a smooth cutoff function such that

• supp(q) is contained in the complement of a small open neighborhood of M,

• q = 1 on the complement of some slightly larger open neighborhood of M,

• the closure of the set {q<1} is strictly convex with respect to all the vector fields X for ∥X−X0∥C2 ≤δ

small enough.

Given a regularity pair r := (r⊥, r0) and a constant ω > 0, we define, for X close enough to X0 and
ℜ(z)≫ 0 large enough,

RX
∓
(z) := −

∫
+∞

0
e−t ze−ω

∫ t
0 (ϕ

X
∓s)

∗q dse∓t X dt, (5-10)



2782 MIHAJLO CEKIĆ, COLIN GUILLARMOU AND THIBAULT LEFEUVRE

Although we do not indicate it in the notation, RX
∓
(z) does depend on a choice of ω. This satisfies the

identity on C∞(N ):
(∓X − z −ωq)RX

∓
(z)= 1N .

The constant ω > 0 will be fixed later.
The aim of this section is to study the meromorphic extension of the resolvent z 7→ RX

+
(z) for X close

to X0 in the anisotropic Sobolev spaces of Definition 5.12, and the dependence with respect to the vector
field X .

Theorem 5.14. There exists C⋆, δ⋆,3 > 0 such that the following holds. For all δ ≤ δ⋆, for all regularity
pairs r = (r⊥, r0), there exists a choice of constant ω := ω(r) > 0 large enough that, for all smooth
vector fields X on M such that ∥X − X0∥C2(M,TM) ≤ δ, the family

z 7→ RX
−
(z)= (−X − z −ω(r)q)−1

∈ L(Hr
+
),

initially defined for ℜ(z) ≫ 1 by (5-10) and holomorphic for ℜ(z) ≫ 1 large enough, extends to a
meromorphic family of operators on the half-space {ℜ(z) > −3(r⊥ − r0)+ C⋆δ}. The same holds for
RX

+
(z) on the space Hr

−
.

Moreover, if z0 ∈ {ℜ(z) > −3(r⊥ − (r0 + 2))+ C⋆δ} is not a pole of z 7→ RX0(z), then there exists
ε0 > 0 such that the map

C∞(N , TN )× D(z0, ε0) ∋ (X, z) 7→ RX (z) ∈ L(H(r⊥,r0)
+ ,H(r⊥,r0+2)

+ )

is C2-regular5 with respect to X and holomorphic in z, where D(z0, ε0)⊂ C is the disk centered at z0 of
radius ε0.

As usual, the poles do not depend on the choices made in the construction of the spaces. The rest
of Section 5B is devoted to the proof of Theorem 5.14. We note that Theorem 5.14 obviously implies
Theorem 1.10 stated in the introduction, since the resolvent on M can be expressed in terms of the
resolvent on N and the restriction to M (as in Lemma 5.21 below in the analogous case of geodesic
vector fields).

5B2. Parametrix construction. Denote by µ a smooth measure on N which restricts to the Liouville
measure on M. Note that X0 is volume-preserving on M and, up to minor modifications, we can also
assume that the extension of X0 to N is volume-preserving on Me (but not on N , since X0 vanishes on
{ρ = −ρ0}). In order to shorten notation, we will write L2(N ) := L2(N , µ).

For T > 0, consider a smooth cutoff function χT ∈ C∞
c (R+), depending smoothly on T , such that

χT = 1 on [0, T ], −2 ≤ χ ′

T ≤ 0, and χT = 0 on [T + 1,∞). For ℜ(z)≫ 1 and ω ≥ 1, the following
identity holds on C∞(N ):

−

∫
+∞

0
χT (t)e−t ze−

∫ t
0 (ϕ

X
−s)

∗(ωq) dse−t X dt (−X − z −ωq)

= 1 +

∫
+∞

0
χ ′

T (t)e
−t ze−

∫ t
0 (ϕ

X
−s)

∗(ωq) dse−t X dt. (5-11)

5Even though we only need C2, our proof actually shows it is Ck for all k ∈ N.
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We now fix once and for all a regularity pair r := (r⊥, r0) and set r := r0 + r⊥. The constant ω ≥ 1 will
be chosen to depend on r later. We conjugate the equality (5-11) by Ar . We obtain

−Ar

∫
+∞

0
χT (t)e−t ze−

∫ t
0 (ϕ

X
−s)

∗(ωq) dse−t X A−1
r dt Ar(−X − z −ωq)A−1

r

= 1 +

∫
+∞

0
χ ′

T (t)e
−t ze−t X et X Are−

∫ t
0 (ϕ

X
−s)

∗(ωq) ds A−1
r e−t X︸ ︷︷ ︸

:=B X
1 (t)

et X Are−t X A−1
r︸ ︷︷ ︸

:=B X
2 (t)

dt. (5-12)

Since the second term on the right-hand side of (5-12) is defined as an integral over time in the flow
direction e−t X , it is smoothing outside {pX = 0}. We let �′ ⋐� be two open nested conic neighborhoods
of {pX0 = 0} in T ∗N ∩ {ρ > −ρ0}. Note that, by continuity, these are also conic neighborhoods of
{pX = 0} for all X ∼ X0. We let e ∈ S0(T ∗N ) be a symbol of order 0 such that e = 0 outside � and e = 1
on �′, and we set E := Op(e). We then decompose the second term on the right-hand side of (5-12) as∫

+∞

0
χ ′

T (t)e
−t ze−t X B X

1 (t)B
X
2 (t) dt =

∫
+∞

0
χ ′

T (t)e
−t ze−t X E B X

1 (t)B
X
2 (t) dt + K X

1 (T, z), (5-13)

where

K X
1 (T, z) :=

∫
+∞

0
χ ′

T (t)e
−t ze−t X (1 − E)B X

1 (t)B
X
2 (t) dt

and K X
1 (T, z) ∈ 9−∞(N ). In order to prove that K X

1 (T, z) is smoothing, we remark that K X
1 (T, z) =

E ′K X
1 (T, z) for some E ′

∈ 90(N ) with microsupport that does not intersect a conic neighborhood of
{pX = 0}, and then show that X k K X

1 (T, z) ∈ L(L2) for all k ∈ N, using that X ke−t X
= (−∂t)

ke−t X and
integrating by parts in t , and finally use that E ′(C − X2)−1

∈ 9−2(N ) for some C ≫ 1 since C − X2

is elliptic on the microsupport of E ′. The dependence of K X
1 (T, z) on its parameters is holomorphic in

z ∈ C and smooth in the variables T ∈ R and X ∈ C∞(M, TM).
Below, we use the notation L(H) to denote continuous linear operators on a Hilbert space H, and

K(H) for compact operators.

Proposition 5.15. There exist C⋆, δ⋆,3 > 0 such that the following holds. For all regularity pairs r , there
exist C(r), ω(r) > 0 such that, for all smooth vector fields ∥X − X0∥C2 ≤ δ with δ ≤ δ⋆, for all t ≥ 0,
there exist (Fourier integral) operators M X (t) ∈ L(L2(N )) and SX (t) ∈ K(L2(N )) such that

e−t X E B X
1 (t)B

X
2 (t)= M X (t)+ SX (t)

and

∥M X (t)∥L2(N ) ≤ C(r)e(−3(r⊥−r0)+C⋆δ)t .

Moreover, the map

R × C∞(M, TM) ∋ (t, X) 7→ (M X (t), SX (t)) ∈ L(L2(N ))×K(L2(N ))

is smooth.
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The rest of this paragraph is devoted to the proof of Proposition 5.15. It is split into several sublemmas.
Given a regularity pair r = (r⊥, r0), in order to simplify notation we introduce

m r := r⊥m − r0. (5-14)

Lemma 5.16. For all t ∈ R and 1
2 < ϱ < 1, we have B X

1 (t), B X
2 (t) ∈90

ϱ(N ) with principal symbols

σB X
1 (t)
(y, ξ)= e−ω

∫ t
0 (ϕ

X
s )

∗(q)(y) ds, σB X
2 (t)
(y, ξ)=

⟨et X(y, ξ)⟩m r (et X (y,ξ))

⟨ξ⟩m r (y,ξ)
.

Proof. This follows directly from Egorov’s lemma; see [Lefeuvre 2019b, Section 2.4.1]. □

In particular, Lemma 5.16 shows that the integrand e−t X B X
1 (t)B

X
2 (t) on the right-hand side of (5-12)

is a Fourier integral operator (FIO). We let

aX (t)(y) := |det dϕX
−t(ϕ

X
t (y))|

−1/2, (5-15)

where the Jacobian is defined with respect to the measure dµ on N .

Lemma 5.17. For all t ∈ R, we have ∥e−t X (aX (t))−1
∥L(L2(N )) = 1. Moreover, for all y ∈ N and t ∈ R,

aX (t)(y)≤ exp
(∫ t

0
|divµ X |(ϕX

s (y)) ds
)
.

Proof. We have ∫
N

|e−t X ((aX (t))−1 f )|2 dµ=

∫
N
(aX (t))−2

| f |
2
|det dϕX

t | dµ= ∥ f ∥
2
L2 .

The estimate on aX (t)(y) follows directly from the fact that divµ X ◦ϕt = ∂t(log|det dϕX
t |). □

By Lemma 5.16, the operator aX (t)E B X
1 (t)B

X
2 (t) is a pseudodifferential operator of order 0. By the

Calderón–Vaillancourt theorem [Grigis and Sjöstrand 1994, Theorem 4.5], up to a compact remainder
in K(L2(N )), its norm on L2(N ) is given by the lim sup of its principal symbol as |ξ | → ∞. We now
bound the lim sup of its principal symbol.

Lemma 5.18. There exists δ⋆,C⋆,3>0 such that the following holds. For all regularity pairs r := (r⊥, r0),
there exists C(r), ω(r) > 0 such that, for all smooth vector fields X with ∥X − X0∥C2(M,TM) ≤ δ, where
δ ≤ δ⋆, for all t ≥ 0,

lim sup
(y,ξ)∈T ∗N ,|ξ |→∞

σaX (t)E B X
1 (t)B

X
2 (t)
(y, ξ)≤ C(r)e(−3(r⊥−r0)+C⋆δ)t .

Proof. For (y, ξ) ∈ T ∗N , we have, by Lemma 5.16,

σaX (t)E B X
1 (t)B

X
2 (t)
(y, ξ)= e(y, ξ) exp

(∫ t

0

(1
2

divµ X −ωq
)
(es X (y)) ds

)
⟨et X(y, ξ)⟩m r (et X (y,ξ))

⟨ξ⟩m r (y,ξ)
. (5-16)

Modulo the term e(y, ξ)≤ 1, which we can neglect, this is a cocycle over the flow of X , as it satisfies the
relation

σB X
1 (t

′)B X
2 (t

′)(e
t X(y, ξ))σB X

1 (t)B
X
2 (t)
(y, ξ)= σB X

1 (t
′+t)B X

2 (t
′+t)(y, ξ) (5-17)

for all t, t ′
∈ R.

First, we need the following lemma.
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Lemma 5.19. For all regularity pairs r = (r⊥, r0), there exist constants C(r), ω(r) > 0 such that, for all
(y, ξ) ∈ T ∗N , ω > ω(r) and for all t ≥ 0,

{es X(y, ξ) | s ∈ [0, t]} ⊂ π−1({q = 1}) =⇒ lim sup
(y,ξ)∈T ∗N ,|ξ |→∞

σaX (t)E B X
1 (t)B

X
2 (t)
(y, ξ)≤ C(r)e−r t ,

where r := r⊥ + r0.

Proof. Define ν := sup∥X−X0∥C2≤δ ∥ divµ X∥L∞(N ). We have, if q(ϕs(x))= 1 for s ∈ [0, t],

σaX (t)E B1(t)B2(t)(y, ξ)≤ eνt e−ωt ⟨e
t X(y, ξ)⟩m r (et X (y,ξ))

⟨ξ⟩m r (y,ξ)

= e(ν−ω)t ⟨et X(y, ξ)⟩m r (et X (y,ξ))−m r (y,ξ)
(

⟨et X(y, ξ)⟩
⟨ξ⟩

)m r (y,ξ)

.

By construction, m r is nonincreasing along the flow lines of X outside a neighborhood of the 0-section
in T ∗N ; see Proposition 5.1 (6). This implies that

lim sup
(y,ξ)∈T ∗N ,|ξ |→∞

⟨et X(y, ξ)⟩m r (et X (y,ξ))−m r (y,ξ) ≤ 1.

Moreover, there exist a uniform exponent λ > 0 and C > 0 (depending only on X0) such that, for all
X ∼ X0, for all t ≥ 0 and (y, ξ) ∈ T ∗N , one has

⟨et X(y, ξ)⟩ ≤ Ceλt
⟨ξ⟩. (5-18)

Using (5-18) and taking the lim sup as |ξ | → ∞, we then obtain

lim sup
(y,ξ)∈T ∗N ,|ξ |→∞

σaX (t)E B X
1 (t)B

X
2 (t)
(y, ξ)≤ C(r)e(ν−ω+rλ)t .

Taking ω(r) := ν+ r + rλ, we obtain the announced result. □

From now on, given a regularity pair r , the constant ω in (5-12) will always be taken to be fixed, equal
to ω := ω(r) > 0 provided by Lemma 5.19. Next we need the following lemma.

Lemma 5.20. There exists C⋆,31 > 0 such that the following holds. For all regularity pairs r , there
exists a constant C(r) > 0 such that, for all X with ∥X − X0∥C2 ≤ δ and (y, ξ) ∈ T ∗N , for all t ≥ 0,

(y, ξ), et X(y, ξ) ∈ T ∗Me =⇒ lim sup
|ξ |→∞

σaX (t)E B X
1 (t)B

X
2 (t)
(y, ξ)≤ C(r)e(−31(r⊥−r0)+C⋆δ)t .

Proof. We start with a preliminary observation: there exists a constant C⋆ > 0 such that, if y, ϕX
t (y) ∈Me

and ∥X − X0∥C2(M,TM) ≤ δ, then
aX (t)(y)≤ eC⋆δt . (5-19)

This simply follows from the fact that X0 is volume-preserving on Me (that is, aX0(t)= 1).
We now consider the sets U± given by Lemma 5.4. These sets can always be constructed so that

U± ⊂ {m = ±1}. We also consider the sets V± given by Lemma 5.5. Denote by T > 0 the time provided
by Lemma 5.6. If t ≤ T , namely if the time is uniformly bounded, then the claim is immediate as
aX (t)E B X

1 (t)B
X
2 (t) is of order 0 by Lemma 5.16 and depends continuously on time. If t ≥ T and
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(y, ξ), et X(y, ξ) ∈ T ∗Me ∩ WF(E), then the flow line {es X(y, ξ) | s ∈ [0, t]} passes at least a time t − T
in U+ ⊔ U−. We can thus introduce 0 ≤ s0 < s1 ≤ t such that, for all s ∈ [0, s0], we have es X(y, ξ) ∈ U−,
for all s ∈ [s1, t], we have es X(y, ξ) ∈ U+, and we have s0 + (t − s1)≥ t − T . Hence, using the cocycle
relation (5-17) and σE ∈ [0, 1],

σaX (t)E B X
1 (t)B

X
2 (t)
(y, ξ)≤ σaX (t−s1)B X

1 (t−s1)B X
2 (t−s1)

(es1 X(y, ξ))

· σaX (s1−s0)B X
1 (s1−s0)B X

2 (s1−s0)
(es0 X(y, ξ)) · σaX (s0)B X

1 (s0)B X
2 (s0)

(y, ξ). (5-20)

Note that it suffices to bound the terms on the right-hand side of (5-20) on WF(E), that is, on a conic
neighborhood of

⋃
X∼X0

{pX = 0}, since otherwise σE = 0 and the symbol on the left-hand side vanishes.
Since s1 − s0 ≤ T (independent of t) and σB X

1 (t)B
X
2 (t)

∈ 90
ϱ(N ) for all t ≥ 0 by Lemma 5.16, we get

that the middle term in (5-20) is bounded uniformly by some constant, that is,

σaX (s1−s0)B1(s1−s0)B2(s1−s0)(e
s0 X(y, ξ))≤ C(r) (5-21)

for some C(r) > 0 which is independent of the point (y, ξ) ∈ T ∗N and of the time t . As to the third
factor in (5-20), we have, using that m r = r⊥ − r0 on U−, that q vanishes in M, and (5-19),

σaX (s0)B1(s0)B2(s0)(y, ξ)≤ eC⋆δs0e−
∫ s0

0 ω(r)q(es X (y)) ds ⟨es0 X(y, ξ)⟩m r (es0 X (y,ξ))

⟨ξ⟩m r (y,ξ)

≤ C(r)eC⋆δs0

(
⟨es0 X(y, ξ)⟩

⟨ξ⟩

)r⊥−r0

.

(5-22)

Using the uniform contraction rate on U− of Lemma 5.4, we get that |es0 X(y, ξ)| ≤ Ce−λs0 |ξ | for some
uniform constants C, λ > 0 depending only on X0. Taking the lim sup as |ξ | → ∞ in (5-22), we thus
obtain

lim sup
|ξ |→∞

σaX (s0)B1(s0)B2(s0)(y, ξ)≤ C(r)eC⋆δs0e−λs0(r⊥−r0). (5-23)

Similarly, using the expansion rate on U+ of Lemma 5.4 and that m r = −r⊥ − r0 on U+, the first term
in (5-20) can be bounded by

lim sup
|ξ |→∞

σaX (t−s1)B1(t−s1)B2(t−s1)(e
s1 X(y, ξ))≤ C(r)eC⋆δ(t−s1)e−λ(t−s1)(r⊥+r0). (5-24)

Taking 31 := λ and combining (5-21), (5-23), (5-24) in (5-20) completes the proof. □

We can now end the proof of Lemma 5.18. Given (y, ξ) ∈ T ∗N , the flowline of (y, ξ) under et X can
be schematically described by one of the six following possibilities:

{q = 1}, (5-25)

Me, (5-26)

{q = 1} → {0< q < 1} → {q = 1}, (5-27)

{q = 1} → {0< q < 1} → Me, (5-28)

Me → {0< q < 1} → {q = 1}, (5-29)

{q = 1} → {0< q < 1} → Me → {0< q < 1} → {q = 1}. (5-30)
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Note that, for any flow line, there is a maximum time, bounded by some uniform constant T⋆ > 0, spent
in the region {0< q < 1}. As a consequence, if the flowline of (y, ξ) falls into one of the cases (5-25) or
(5-27), we get, using the cocycle relation (5-17) and Lemma 5.19,

lim sup
|ξ |→∞

σaX (t)E B1(t)B2(t)(y, ξ)≤ C(r)e−r t .

As to (5-26), (5-28), (5-29), the bound is obtained similarly to the bound for (5-30), which we now study.
So we assume that the flowline γ of (y, ξ) under et X passes successively through the six sets of (5-30).

Define the times s0, s1 ≥ 0 such that,

for all s ∈ [0, s0], ϕX
s (y) ∈ {q = 1},

for all s ∈ [s0, s1], ϕX
s (y) ∈ {q < 1} ∪Me,

for all s ∈ [s1, t], ϕX
s (y) ∈ {q = 1}.

Combining the cocycle relation (5-17) and Lemmas 5.19 and 5.20, we get, on WF(E),

lim sup
|ξ |→∞

σaX (t)E B1(t)B2(t)(y, ξ)

≤ lim sup
|ξ |→∞

σaX (t−s1)B1(t−s1)B2(t−s1)(e
s1 X(y, ξ))

· lim sup
|ξ |→∞

σaX (s1−s0)B1(s1−s0)B2(s1−s0)(e
s0 X(y, ξ)) · lim sup

|ξ |→∞

σaX (s0)B1(s0)B2(s0)(y, ξ)

≤ Cr e−r(t−s1) · Cr e(−(r⊥−r0)31+C⋆δ)(s1−s0) · Cr e−rs0 ≤ Cr e(−(r⊥−r0)3+C⋆δ)t

by taking 3 := min(1,31). This concludes the proof. □

We now complete the proof of Proposition 5.15.

Proof of Proposition 5.15. Write

e−t X E B1(t)B2(t)= e−t X (aX (t))−1aX (t)E B1(t)B2(t).

By Lemma 5.17, e−t X (aX (t))−1
∈ L(L2(N )) is unitary. By Lemma 5.18, aX (t)E B1(t)B2(t) is a pseu-

dodifferential operator of order 0 such that

lim sup
(y,ξ)∈T ∗N ,|ξ |→∞

σaX (t)E B1(t)B2(t)(y, ξ)≤ C(r)e(−(r⊥−r0)3+C⋆δ)t .

By the Calderón–Vaillancourt theorem [Grigis and Sjöstrand 1994, Theorem 4.5] for pseudodifferential
operators, we can thus write

aX (t)E B1(t)B2(t)= M X
0 (t)+ SX

0 (t),

where M X
0 (t) is a pseudodifferential operator of order 0 and SX

0 (t) is smoothing and

∥M X
0 (t)∥L(L2(N )) ≤ 2C(r)e(−(r⊥−r0)3+C⋆δ)t .

Moreover, it is straightforward to check that these operators can be constructed so that they depend
smoothly on the parameters t ∈ R and X ∈ C∞(M, TM) as aX (t), B1(t), B2(t) depend in an explicit (and
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smooth) fashion on X , and the decomposition in the Calderón–Vaillancourt Theorem depends smoothly
on the operator. As a consequence, setting

M X (t) := e−t X (aX (t))−1 M X
0 (t) and SX (t) := e−t X (aX (t))−1SX

0 (t),

we have

e−t X E B1(t)B2(t)= M X (t)+ SX (t),

and this concludes the proof. □

5B3. Meromorphic extension on the closed manifold. We now prove Theorem 5.14.

Proof of Theorem 5.14. Step 1: meromorphic extension. Fix r = (r⊥, r0) with r⊥> r0, and consider z ∈ C

such that ℜ(z) >−3(r⊥ − r0)+ C⋆δ. By Proposition 5.15, we can consider a time T > 0 large enough,
depending on r , so that,

for all t ≥ T, e−ℜ(z)t
∥M X (t)∥L(L2(N )) <

1
6 . (5-31)

Using (5-12) and (5-13), we thus obtain∫
+∞

0
χ ′

T (t)e
−t ze−t X B X

1 (t)B
X
2 (t) dt = B X (z)+ K X (z),

where

B X (z) :=

∫
+∞

0
χ ′

T (t)e
−t z M X (t) dt

and K X (z) ∈ 9−∞(N ) is the remainder. It is immediate to check that both B X (z) and K X (z) depend
holomorphically on z and smoothly on X ∈ C∞(M, TM) as operators in L(L2(N )).

Using that ∥χ ′

T ∥L∞ ≤ 2, we get

∥B X (z)∥L(L2(N )) ≤ 2
∫ T +1

T
e−ℜ(z)t

∥M X (t)∥L(L2(N )) dt ≤
1
3 < 1. (5-32)

The equality (5-12) then reads

−Ar

∫
+∞

0
χT (t)e−t ze−

∫ t
0 (ϕ

X
−s)

∗(ωq) dse−t X A−1
r dt Ar(−X − z −ωq)A−1

r︸ ︷︷ ︸
=:−P X −z

= 1 + B X (z)+ K X (z), (5-33)

and 1 + B X (z) is invertible while K X (z) is compact. Moreover, for ℜ(z)≫ 1, 1 + B X (z)+ K X (z) is
invertible on L(L2(N )) since the L2-norm of B X (z)+ K X (z) is exponentially decaying as ℜ(z)→ +∞.
By the Fredholm analytic theorem [Zworski 2012, Theorem D.4], we deduce that

z 7→ (1 + B X (z)+ K X (z))−1
∈ L(L2(N ))

is a meromorphic family of operators on {ℜ(z) >−3(r⊥ − r0)+ C⋆δ}. Equivalently,

z 7→ −X − z −ω(r)q,
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is a holomorphic family of Fredholm operators6 of index 0 on the anisotropic space Hr
+
(N ) that is

invertible for ℜ(z)≫ 1. Thus

z 7→ RX
−
(z)= (−X − z −ω(r)q)−1

∈ L(Hr
+
)

is a meromorphic family of operators on {ℜ(z) >−3(r⊥ − r0)+ C⋆δ}. This proves the first part of the
theorem; we next study the dependence in X and z.

Step 2: continuity of resonances. Assume z0 is not a pole of z 7→ RX0(z) and furthermore that it does not
have any poles in the closed disk D(z0, ε0)⊂ C (since the resolvent is meromorphic, such ε0 > 0 exists).
We first show that, for X sufficiently close to X0 in C N for some N large enough, the map z 7→ RX (z)
does not have any poles in D(z0, ε0). Let z ∈ D(z0, ε0); we will use the identity (5-33). We first claim
that we may pick the cutoff function χ suitably and T sufficiently large such that

ker(1 + B X (z)+ K X (z))|L2 = 0.

Note that, as we will see below, this kernel could be nonzero even if z is not a resonance of −X − qω;
we will show that generically this does not happen. We will argue by assuming that there is nonzero
u ∈ L2(N ) such that (1 + B X (z)+ K X (z))u = 0. Since K X (z) ∈9−∞(N ), we get

(1 + B X (z))u ∈ C∞(N )⊂ D(L2)= { f ∈ L2(N ) | X f ∈ L2(N )},

and since 1+ B X (z) is invertible on D(L2) (and on L2(N ), by construction), we conclude that u ∈D(L2).
Since P X

+z commutes with 1+B X (z)+K X (z), we have that P X
+z acts on ker(1+B X (z)+K X (z))|L2 ,

which is a finite-dimensional space by the Fredholm property shown above. Therefore, we can pick u
such that (P X

+ z + λ)u = 0 for some λ ∈ C; by assumption, we have λ ̸= 0. Write u = Arv for some
v ∈ Hr

+
. This implies

e−t Xv = e(z+λ)t e
∫ t

0 (ϕ
X
−s)

∗(qω) dsv for all t ∈ R,

and hence

0 = (1 + B X (z)+ Q X (z))u = −Ar

(
1 +

∫
+∞

0
χ ′

T (t)e
−t ze−

∫ t
0 (ϕ

X
−s)

∗(qω) dse−t X dt
)
v

= −

(
1 +

∫ T +1

T
χ ′

T (t)e
λt dt︸ ︷︷ ︸

F(χT ,λ):=

)
u.

If ℜ(λ)≤ 0, the integral in the last equality can be bounded by ∥χ ′

T ∥C0eT ℜ(λ); then

∥χ ′

T ∥C0eT ℜ(λ) < 1 ⇐⇒ ℜ(λ) <−
1
T

log(∥χ ′

T ∥C0). (5-34)

Moreover, integrating by parts once, we have∫ T +1

T
χ ′

T (t)e
λt dt = −

1
λ

∫ T +1

T
χ ′′

T (t)e
λt dt,

6Note that this is an unbounded family of operators. Since Fredholm operators are continuous by definition, one has to
consider the operators on their domain D(Hr

+
) := { f ∈ Hr

+
| X f ∈ Hr

+
}.
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which is in absolute value bounded by (1/|λ|)∥χ ′′

T ∥C0e(T +1)|ℜ(λ)|. Then

1
|λ|

∥χ ′′

T ∥C0e(T +1)|ℜ(λ)| < 1 ⇐⇒ |ℜ(λ)|<
log |λ| − log ∥χ ′′

T ∥C0

T + 1
. (5-35)

Using (5-34) and taking T large enough (changing χT in such a way that χT |[T,T +1] is the same as before
after a translation), we conclude 1 + F(χT , λ) has no zeroes (in λ) in {ℜ(λ) >−κ}, where κ = κ(T ) > 0
can be chosen arbitrarily small; we conclude that z + λ is a resonance of −X − qω. Using additionally
(5-35), we conclude that z + λ belongs to a finite set of resonances S ⊂ C of −X − qω (in the regions
defined by (5-34) and (5-35); note that there are no resonances with sufficiently large real part). Observe
that the set S depends only on T , ∥χ ′

T ∥C0 and ∥χ ′′

T ∥C0 . Enumerate elements of the set S−z by λ1, . . . , λk

for some k ≥ 0.
We now perturb χT by considering χT + sηT , where ηT ∈ C∞

c ((T, T + 1)) is a smooth cutoff function
and s ∈ R is small in absolute value. Assume F(χT , λ)= −1 and ℜ(eiℑ(λ)t) to be positive on an interval
(T1, T2)⊂ (T, T +1) (we argue similarly if it is negative), where λ∈S−z. Taking η ̸= 0 to be nonnegative
and supported on (T1, T2), there is an s > 0 small enough that

1 + F(χT + sη, λ)= −λs
∫ T +1

T
η(t)eλt dt ̸= 0.

Arguing inductively, we ensure that F(χ̃T , λi ) ̸= −1 for i = 1, . . . , k for some new cutoff function χ̃T

(satisfying all the previously set out conditions of χT ). We conclude that

ker(1 + B X (z)+ K X (z))|L2 = {0}

with these new choices of T and χT , proving the claim.
As previously explained, since B X (z′) and K X (z′) depend continuously on X and z′ in L(L2), there is

an ε(z)>0 small enough such that, for ∥X −X0∥C N <ε(z) and |z−z′
|<ε(z), we have 1+B X (z)+K X (z)

invertible on L2 (since it has empty kernel and is Fredholm of index 0). This implies that there are no
resonances in D(z, ε(z)) for z ∈ D(z0, ε0). By compactness of D(z0, ε0), we conclude that there is an
ε > 0 such that there are no resonances in D(z0, ε0) for ∥X − X0∥C N < ε, proving the desired claim.7

Step 3: smoothness of the resolvent. Now, using the following resolvent identity valid for z ∈ D(z0, ε0)

and X close to X0 in C N ,

RX
−
(z)− RX ′

−
(z)= RX ′

−
(z)(X − X ′)RX

−
(z),

we obtain that X 7→ RX
−
(z) is twice differentiable in X , uniformly in z ∈ D(z0, ε0), with

∂X (RX
−
(z)).Y = RX

−
(z)Y RX

−
(z), (5-36)

∂2
X (R

X
−
(z)).(Y, Y ′)= RX

−
(z)Y ′ RX

−
(z)Y RX

−
(z)+ RX

−
(z)Y RX

−
(z)Y ′ RX

−
(z), (5-37)

where Y, Y ′
∈ C∞(N , TN ).

7A different proof of this step can be found in [Bonthonneau 2020].
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Using the first part of Theorem 5.14, namely the boundedness of RX
−
(z) on the spaces Hr

+
for X close

to X0 in C2-norm, we deduce that the first derivative (5-36) is bounded as a map

H(r⊥,r0)
+

RX
−(z)

−−−→ H(r⊥,r0)
−

Y
−→ H(r⊥,r0+1)

−

RX
−(z)

−−−→ H(r⊥,r0+1)
− ,

and similarly the second derivative (5-37) is bounded as a map H(r⊥,r0)
− → H(r⊥,r0+2)

− , and this holds
for all X close enough to X0 in the C N -topology, with N ≫ 1 large enough, and for all z ∈ D(z0, ε0).
Moreover, the dependence on z in (5-36) and (5-37) is holomorphic. This completes the proof of
Theorem 5.14. □

5C. Smoothness of the scattering map with respect to the metric. The goal of this paragraph is to prove
Proposition 4.2. We start with the following lemma.

Lemma 5.21. If Rg and Rge are the resolvents defined in (2-14) for (M, g) and (Me, ge), we have, for
X = ψ X̃g defined in Section 2A2, that, for all z ∈ C,

Rg(z)= 1MRX
+
(z)1M and Rge(z)= 1Me RX

+
(z)1Me ,

when acting on C∞
c (M◦) and C∞

c (M◦
e), respectively.

Proof. This is an obvious consequence of the following fact: for f ∈ C∞
c (M◦), writing uz = (Rg(z) f )|M,

if ℜ(z)≫ 1, we have

uz(y)= −

∫ τg(y)

0
e−zt f (ϕg

t (y)) dt,

and similarly for Rge(z). Indeed, if y ∈M, the flow line γ :=
⋃

t≥0 ϕ
g
t (y) is contained in {ρ >−ρ0}, and

the convexity of M implies that γ ∩M =
⋃

t∈[0,τg(y)) ϕ
g
t (y). □

We can now complete the proof of Proposition 4.2.

Proof of Proposition 4.2. Let ω ∈ C∞(∂+M). Observe that, by Lemmas 2.7 and 5.21,

χSg(ω)= χ [Rge(χ̃ωδ∂+M)]|∂−M,

where χ̃ is some smooth cutoff function equal to 1 everywhere except in a neighborhood of ∂0M, and
where χ̃ωδ∂+M ∈ D′(N ) denotes the distribution defined by

⟨χ̃ωδ∂+M, ϕ⟩ :=

∫
∂+M

χ̃ωϕ dµ∂ .

Let u := χ̃ωδ∂+M. Since ∂+M is of codimension 1, we have that u ∈ H−1/2−ε(N ) for all ε > 0. Let
N ∗∂+M ⊂ T ∗

∂+MN be the conormal of ∂+M in N (i.e., N ∗∂+M(T ∂+M)= 0). By a standard argument
of distribution theory, the wavefront set of u satisfies WF(u)⊂ N ∗∂+M.

The escape function m provided by Proposition 5.1 can be constructed so that, over M, it has only
support in a small conic neighborhood of (E X0

− )∗ and (E X0
+ )∗. In particular, this construction can be

achieved so that
N ∗∂+M∩ supp(m)= ∅. (5-38)
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Indeed, a covector V ∗
∈ T ∗

∂+MN such that V ∗
∈ (E X0

+ )∗ must satisfy V ∗(X0) = 0 and V ∗(W ) for all
W ∈ T ∂+M, but since X0 is transverse to ∂−M, one gets V ∗

= 0. We now take a regularity pair
r := (r⊥, r0) with 1

2 < r0 < 1, r0 + 2< r⊥ < 3 and a small δ > 0 such that −3(r⊥ − (r0 + 2))+C⋆δ < 0.
By the previous discussion, u ∈ Hr

−
(N ), i.e., since Hr

−
(N ) is microlocally equivalent to H−r0 near

N ∗∂+M. Denote by θ ∈ C∞
c (M◦

e) a cutoff function equal to 1 near M. We claim that the map

C∞(M,⊗2
ST ∗M) ∋ g 7→ θRgeθ ∈ L(H(r⊥,r0)

− (N ),H(r⊥,r0+2)
− (N ))

is C2 for g close to g0. Indeed, similar to the proof of Theorem 5.14 (alternatively we could simply use
Theorem 1.10 along with the fact that g 7→ Xg is smooth; we give a direct argument instead), we can use
the resolvent identity (recall X = ψ X̃g and X0 = ψ X̃g0)

θRgeθ − θRg0eθ = θRX
+
(0)(X0 − X)RX0

+ (0)θ

to deduce that g 7→ θRgeθ is differentiable twice, with

∂gθRgeθ = −θRX
+
(0)(∂g X)RX

+
(0)θ, (5-39)

∂2
gθRgeθ = 2θRX

+
(0)(∂g X)RX

+
(0)(∂g X)RX

+
(0)θ − θRX

+
(0)(∂2

g X)RX
+
(0)θ. (5-40)

The first derivative (5-39) is bounded as a map

H(r⊥,r0)
−

RX
+(0)

−−−→ H(r⊥,r0)
−

∂g X
−−→ H(r⊥,r0+1)

−

RX
+(0)

−−−→ H(r⊥,r0+1)
− ,

and similarly the second derivative (5-40) is bounded as a map H(r⊥,r0)
− → H(r⊥,r0+2)

− , and this holds for
all g close enough to g0 in the C N -topology, with N ≫ 1 large enough.

As a consequence,

C∞(M,⊗2
ST ∗M) ∋ g 7→ θRgeθu = θRge u ∈ H(r⊥,r0+2)

− (N )

is C2-regular for g close to g0. Note that, as r⊥ + r0 + 2< 6,

H(r⊥,r0+2)
− (N ) ↪→ H−6(N ).

Moreover, it satisfies XgeθRge u =0 near ∂−M, so that WF(θRge u)⊂{pXge
=0}. Therefore, the restriction

χ [θRge u]|∂−M = χ [Rge u]|∂−M ∈ H−6(∂−M) is well defined and depends in a C2-fashion on the metric
g ∈ C N (M,⊗2

ST ∗M), proving the first part of Proposition 4.2.
Using (5-39) and (5-40), and writing g = g0 + h with ∥h∥C N ≤ δ for δ > 0 small and N chosen large,

we have as above, by Taylor expansion, for u = χ̃ωδ∂+M,

θRge u = θRg0e u − θRX0
+ (0)((∂g X)|g=g0 .h)R

X0
+ (0)u +

∫ 1

0
(1 − t)∂2

g(θRg0e+thu).(h, h) dt. (5-41)

Let Yg(h) := ∂g X (h) ∈ C∞(N , TN ) for any smooth metric g close to g0 in C N (M,⊗2
ST ∗M). For all

k ≥ 1, one has ∥Yg(h)∥Ck(N ,TN ) ≤ Ck∥h∥Ck+1 for some Ck > 0 depending uniformly on ∥g∥Ck+1 . Let
Zg(h, h) = ∂2

g X (h, h) ∈ C∞(N , TN ). One has ∥Zg(h, h)∥Ck(N ,TN ) ≤ Ck∥h∥
2
Ck+2 for some Ck > 0
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depending uniformly on ∥g∥Ck+2 . Then the remainder term in (5-41) satisfies, for ge(t) the extension of
g(t)= g0 + th (with t ∈ [0, 1]) and X (t)= ψ X̃g(t),

∂2
g(θRge(t)u)(h, h)= 2θRX (t)

+ (0)Yg(t)(h)R
X (t)
+ (0)Yg(t)(h)R

X (t)
+ (0)u − θRX (t)

+ (0)Zg(t)(h, h)RX (t)
+ (0)u.

By the analysis above, for δ > 0 small and N > 0 large enough, there exists a constant C > 0 such that,
for h = g(1)− g0 such that ∥h∥C N ≤ δ,

sup
t∈[0,1]

∥RX (t)
+ u∥H(r⊥,r0+ j)

− (N )
≤ C for all j ∈ {0, 1, 2},

sup
t∈[0,1]

∥Yg(t)(h)∥H(r⊥,r0+ j)
− →H(r⊥,r0+1+ j)

−

≤ C∥h∥C N for all j ∈ {0, 1},

sup
t∈[0,1]

∥Zg(t)(h, h)∥H(r⊥,r0)
− →H(r⊥,r0+2)

−

≤ C∥h∥
2
C N .

Combining the last inequalities with (5-41), this shows (4-1) by applying the restriction to ∂−M on the
left of (5-41). Note that, in turn, this gives an expression of ∂gSg|g=g0 in terms of RX0

+ (0) and ∂g X |g=g0 .
This concludes the proof. □
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