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We propose a new approach to the Fourier restriction conjectures. It is based on a discretization of the
Fourier extension operators in terms of quadratically modulated wave packets. Using this new point of view,
and by combining natural scalar and mixed norm quantities from appropriate level sets, we prove that all
the L2-based k-linear extension conjectures are true up to the endpoint for every 1� k � dC1 if one of the
functions involved is a full tensor. We also introduce the concept of weak transversality, under which we
show that all conjectured L2-based multilinear extension estimates are still true up to the endpoint, provided
that one of the functions involved has a weaker tensor structure, and we prove that this result is sharp. Under
additional tensor hypotheses, we show that one can improve the conjectured threshold of these problems in
some cases. In general, the largely unknown multilinear extension theory beyond L2 inputs remains open
even in the bilinear case; with this new point of view, and still under the previous tensor hypothesis, we
obtain the near-restriction target for the k-linear extension operator if the inputs are in a certain Lp space for
p sufficiently large. The proof of this result is adapted to show that the k-fold product of linear extension
operators (no transversality assumed) also “maps near restriction” if one input is a tensor. Finally, we exploit
the connection between the geometric features behind the results of this paper and the theory of Brascamp–
Lieb inequalities, which allows us to verify a special case of a conjecture by Bennett, Bez, Flock and Lee.
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1. Introduction

Given a compact submanifold S � RdC1 and a function f W RdC1 7! R, the Fourier restriction problem
asks for which pairs .p; q/ one has

k Of jSkLq.S/ . kf kLp.RdC1/;

where Of jS is the restriction of the Fourier transform Of to S . This problem arises naturally in the study
of certain Fourier summability methods and is known to be connected to questions in geometric measure
theory and in nonlinear dispersive PDEs. The interaction between curvature and the Fourier transform
has been exploited in a variety of contexts since the works [Hörmander 1973; Fefferman 1971; Stein
and Wainger 1978] in the study of oscillatory integrals. For a more detailed description of the restriction
problem we refer the reader to the classical survey [Tao 2004]. In this paper we work with the equivalent
dual formulation of the question above (known as the Fourier extension problem), and specialize to the
case where S is the compact piece of the paraboloid parametrized by �.x/ D .x; jxj2/ � RdC1 with
x 2 Œ0; 1�d. In this setting, the Fourier extension operator is initially defined on C.Œ0; 1�d / by

Edg.x1; : : : ; xd ; t /D
Z
Œ0;1�d

g.�1; : : : ; �d /e
�2�i.�1x1C���C�dxd /e�2�it.�

2
1C���C�

2
d
/ d�: (1)

E. Stein [1993, Chapter IX] proposed the following conjecture:

Conjecture 1.1. The inequality

kEdgkLq.RdC1/ .p;q;d kgkLp.Œ0;1�d / (2)

holds if and only if q > 2.dC1/
d

and q � .dC2/
d

p0.

Multilinear variants1 of Conjecture 1.1 arose naturally from the works [Klainerman and Machedon
1993; 1995; 1996] on wellposedness of certain PDEs. Given 2 � k � d C 1 compact and connected
domains Uj � Rd , 1� j � k, define

EUj g.x; t/ WD
Z
Uj

g.�/e�2�ix��e�2�it j�j
2

d�; .x; t/ 2 Rd �R: (3)

Taking the product of all k such operators associated to a set of transversal Uj leads to the following
conjecture (see Appendix A):

Conjecture 1.2 [Bennett 2014]. If the caps parametrized by Uj are transversal, then kY
jD1

EUj gj

p

.
kY

jD1

kgj k2 for all p �
2.d C kC 1/

k.d C k� 1/
:

Roughly, transversality means that any choice of one normal vector per cap is a set of linearly
independent vectors, as shown in Figure 1.

Remark 1.3. From now on, we shall refer to Conjecture 1.1 as the case k D 1. It was settled only for
d D 1 in [Fefferman 1970; Zygmund 1974]. In higher dimensions we highlight the case p D 2 solved in
[Strichartz 1977], which is equivalent to the Tomas–Stein theorem [Tomas 1975] in the restriction setting.

1Multilinear extension estimates also play a fundamental role in Bourgain and Demeter’s decoupling theory [2015].
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Figure 1. A choice of normal vectors to the caps parametrized by Uj via x 7! jxj2.

Progress beyond these two results was made in many works over the last decades through a diverse set of
techniques: localization, bilinear estimates, wave-packet decompositions and more recently polynomial
methods. We mention [Bourgain 1991; Tao and Vargas 2000; Tao 2003; Moyua et al. 1996; Wang 2018;
Guth 2018; Hickman and Rogers 2019]. Analogous problems for other manifolds were studied in [Wolff
2001; Strichartz 1977; Ou and Wang 2022].

Remark 1.4. Guth [2018] proved a weaker version of Conjecture 1.2 for all 2� k � d C 1 and up to the
endpoint, which is known as the k-broad restriction inequality. This estimate plays a central role in his
argument in [Guth 2018] to improve the range for which Conjecture 1.1 is known. In Lemma A.3 of
[Bourgain and Guth 2011], the authors proved an L2-based k-linear estimate for an exponent p slightly
larger than the conjectured threshold in Conjecture 1.2.

Only three cases of Conjecture 1.2 are well understood:

(i) Tao [2003] settled the case k D 2 up to the endpoint inspired by [Wolff 2001] for the cone. Lee
[2021] obtained the endpoint for k D 2.

(ii) Bennett, Carbery and Tao [Bennett et al. 2006] settled the case k D d C 1 up to the endpoint.

(iii) Bejenaru [2022] settled the case k D d up to the endpoint.

The goal of this paper is to propose a new approach to these problems based on a natural discretization
of the operators in terms of scalar products against quadratically modulated wave-packets. Our main
theorem reads as follows:

Theorem 1.5. Conjectures 1.1 and 1.2 hold up to the endpoint if one (any) of the functions involved is a
full tensor.2

Remark 1.6. The endpoint .p; q/D
�2.dC1/

d
; 2.dC1/

d

�
is not included in the range where (2) is supposed

to hold; therefore our main theorem implies the case k D 1 when g is a full tensor.

Remark 1.7. For 2 � k � d C 1, Theorem 1.5 can be proved if the caps are assumed to be weakly
transversal, which is defined in Section 3. We will prove that transversality implies weak transversality
(up to dividing the caps into finitely many pieces), the latter being what is actually exploited in this paper.

2A function g in d variables is a full tensor if it can be written as g.x1; : : : ; xd /D g1.x1/ � � � � �gd .xd /. We refer the reader
to [Igari 1986; Tanaka 2001] for other results related to the restriction problem involving tensors, and we thank Terence Tao for
pointing these papers out to us.
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Under weak transversality, Theorem 1.5 holds if one (any) of the functions has a weaker tensor structure.
This will be made precise in Section 9.

Remark 1.8. For 2� k � d C 1, Theorem 1.5 is sharp under weak transversality in the following sense:
if all functions g1; : : : ; gk are generic, it does not hold if the caps are assumed to be weakly transversal.
This is explained in Appendix A.

Remark 1.9. For 2 � k � d C 1 we do not use the tensor structure explicitly. It is used in an implicit
way when comparing the sizes of natural scalar and mixed norm quantities that appear in the proofs.

Remark 1.10. For 2� k � d , if all functions involved are full tensors, one has more estimates than those
predicted by Conjecture 1.2 assuming extra degrees of transversality, as proven in Section 11.

It is natural to try to generalize the statement of Conjecture 1.2 for Lp inputs rather than just L2. A
motivation for that is to deeply understand the role played by transversality; as we will see, the farther
our inputs are from L2, the less impact the configuration of the caps on the paraboloid has in the best
possible estimate (with a single exception to be detailed soon). The general statement of the k-linear
extension conjecture for the paraboloid is (as in [Bennett 2014]):

Conjecture 1.11. Let k � 2 and suppose that U1; : : : ; Uk parametrize transversal caps of the paraboloid
x 7! jxj2 in RdC1. If

1

q
<

d

2.d C 1/
;

1

q
�
d C k� 1

d C kC 1

1

p0
and

1

q
�
d � kC 1

d C kC 1

1

p0
C

k� 1

kC d C 1
;

then  kY
jD1

EUj gj

Lq=k.RdC1/

.p;q
kY

jD1

kgj kLp.Uj /:

For 2�k<dC1, to recover the interior of the conjectured range, it is enough3 to prove Conjecture 1.2 and kY
jD1

EUj gj

L2.dC1/=.kd/C".RdC1/

."
kY

jD1

kgj kL2.dC1/=d .Uj / (4)

for all " > 0.

Remark 1.12. Observe that (4) covers the case .p; q/ D
�2.dC1/

d
; 2.dC1/

d
C "

�
of Conjecture 1.11.

Notice also that this case would follow from the case .p; q/ D
�2.dC1/

d
; 2.dC1/

d
C "

�
of the linear

extension of Conjecture 1.1 and Hölder’s inequality. This means that the closer we get to the endpoint
extension exponent, the fewer improvements transversality yields in the multilinear theory. The exception
to this is the k D d C 1 case, for which L2 functions give the best possible output for the corresponding
multilinear operator (rather than L2.dC1/=d ). Indeed, when one function is a tensor, the best result in this
case is obtained in Section 10.

By adapting the argument that shows the case 2� k � d C 1 of Theorem 1.5, we are able to prove the
following weaker version of (4):

3The interior of the full range of estimates follows by interpolation between these two cases and the trivial bound
.p; q/D .1;1/.
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Theorem 1.13. Let 2� k < d C 1. If g1 is a tensor in addition to the hypotheses of Conjecture 1.11, the
following estimate holds: kY

jD1

EUj gj

L2.dC1/=.kd/C".RdC1/

."
kY

jD1

kgj kLp.k;d/.Uj / (5)

for all " > 0, where

p.k; d/D

8̂<̂
:
4.dC1/

dCkC1
if 2� k < d

2
;

4.dC1/

2d�kC1
if d
2
� k < d C 1:

Remark 1.14. Notice that 2.dC1/
d

< p.k; d/, so Theorem 1.13 is not optimal on the space of the input
functions. On the other hand, the output L2.dC1/=.kd/C" (for all " > 0) is the best to which one can hope
to map the multilinear operator on the left-hand side. The case k D d C1 of the theorem above coincides
with the case k D d C 1 of the L2-based theory, which is covered in Section 10.

Remark 1.15. Bounds such as the one from Theorem 1.13, i.e., in which one needs p big enough (and
not sharp) to map Lp inputs to a fixed Lq , are common in linear extension theory. For example, Wang
[2018] showed that E2 maps L1.Œ�1; 1�2/ to Lq.R3/ for q > 3C 3

13
. As mentioned in [Wang 2018],

this implies the (seemingly stronger) bound

kE2gkLq.R3/ .q kgkLq.Œ�1;1�2/

for q > 3C 3
13

via the factorization theory of Nikishin and Pisier (see [Bourgain 1991]).

Remark 1.16. The multilinear extension theory for inputs near L2.dC1/=d remains largely unknown in
general (except for the almost optimal result in the k D d C 1 case in [Bennett et al. 2006]). In fact, it is
not fully settled even in the k D 2, d > 1 case (whose L2-based analogue is known). We refer the reader
to [Oh 2023] for partial results in this direction.

Remark 1.17. As the reader may expect, any function can be taken to be the tensor in the statement of
Theorem 1.13.

The linear and multilinear theories studied in this paper meet very naturally once more in the context
of the techniques we use: the simplest multilinear variant of a linear operator T is given by the product
of a certain number of identical copies of it:

T.k/.g1; : : : ; gk/ WD

kY
jD1

Tgj :

Proving that T maps Lp.U / to Lq.V / is equivalent to proving that T.k/ maps Lp.U / to Lq=k.V /, as
one can easily check with Hölder’s inequality. Multilinearizing Ed without any regard to transversality
yields the operator

Ed;.k/.g1; : : : ; gk/ WD
kY

jD1

Edgj : (6)
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Combining the previous observation with the factorization theory of Nikishin and Pisier, Conjecture 1.1
follows from the bound  kY

jD1

Edgj

L2.dC1/=.kd/C"

."
kY

jD1

kgj kL1.Œ0;1�d /: (7)

The proof of Theorem 1.13 can be adapted to show the following:

Theorem 1.18. Let 2� k � d C 1. If g1 is a tensor, the inequality kY
jD1

Edgj

L2.dC1/=.kd/C".RdC1/

."
kY

jD1

kgj kL4.Œ0;1�d / (8)

holds for all " > 0.

Remark 1.19. Since the inputs gj are compactly supported, Theorem 1.18 implies (7).

Remark 1.20. Given that the proof of Theorem 1.18 has the L4-L4C" bound for E1 as its main building
block, it is not surprising that we have a product of L4 norms in the right-hand side of the statement above.

We finish this introduction by highlighting the close connection between our results and the theory of
linear and nonlinear Brascamp–Lieb inequalities. The concept of weak transversality that we introduce
can be characterized in terms of certain Brascamp–Lieb data, and by exploiting the geometric features
arising from this fact we are able to verify a special case of a conjecture by Bennett, Bez, Flock and Lee.

The paper is organized as follows: in Section 2 we present the linear and multilinear models that
we will work with in the proof of Theorem 1.5. We also highlight the main differences between the
linearized models that are used in most recent approaches and ours. In Section 3 we define the concepts
of transversality and weak transversality, and state in what sense the former implies the latter. Section 4
presents what we refer to as the building blocks of our approach. Sections 5, 6 and 7 establish these
building blocks: in Section 5 we revisit the case k D 1 and p D 2 for our model, in Section 6 we revisit
Zygmund’s argument and recover the case k D 1 for d D 1, and in Section 7 we deal with the case k D 2
and d D 1. In Section 8 we settle the case k D 1 of Theorem 1.5, and in Section 9 we show the cases
2� k � d C 1. Section 10 covers the endpoint estimate of the case k D d C 1. In Section 11 we discuss
how one can improve the bounds of Conjecture 1.2 under extra transversality and tensor hypotheses.
Theorem 1.13 (our partial result beyond the L2-based k-linear theory) is presented in Section 12 along
with its “nontransversal” counterpart Theorem 1.18. In Section 13 we establish a connection between the
classical theory of Brascamp–Lieb inequalities and our results, and give an application of this link to a
conjecture made in [Bennett et al. 2018]. In Section 14 we make a few additional remarks. Appendix A
contains examples that show that the range of p in Conjecture 1.2 is sharp, and also that one cannot obtain
this range in general under a condition that is strictly weaker than transversality. Appendix B contains
technical results used throughout the paper.

2. Discrete models

A common first step of the earlier works is to linearize the contribution of the quadratic phase x 7! jxj2.
One starts by studying Edg on a ball of radius R (hence j.x; t/j � R) and splits the domain of g into



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 2847

balls �k of radius R�1=2. Let us consider d D 1 here for simplicity. If

g�k WD g �'�k ;

where '�k is a bump adapted to ŒkR�1=2; .kC 1/R�1=2�, the quadratic exponential

ex;t .�/D e
2�ix�e2�it�

2

(9)

behaves in a similar way to a linear exponential ei#� when restricted to this interval. Indeed, the phase-
space portrait of ex;t is the (oblique if t ¤ 0) line

u 7! xC 2tu;

as is explained in more detail in Chapter 1 of [Muscalu and Schlag 2013b]. When we evaluate this line at
the endpoints of the support of g�k (taking into account that jt j�R), we see that the phase-space portrait of

'�k � ex;t

is a parallelogram that essentially coincides with the rectangle

I �J D ŒkR�
1
2 ; .kC 1/R�

1
2 �� ŒxC 2tkR�

1
2 ; xC 2tkR�

1
2 CR

1
2 �: (10)

Observe that I �J has area 1. On the other hand, the phase-space portrait of '�k is a Heisenberg box
of sizes R�1=2 and R1=2, and the linear modulation

e2�i�.xC2tkR
�1=2/ (11)

shifts it in frequency to J. The conclusion is that the phase-space portrait of

'�k � e
2�i�.xC2tkR�1=2/

is the Heisenberg box (10); hence the effect of the quadratic modulation ex;t in this setting is essentially
the same as the linear one in (11).

Using bumps such as '� to decompose the domain of g and expanding each g� into Fourier series
allows us to write

g.x/D
X

�2R�1=2Zd\Œ0;1�d

g� .x/‚ …„ ƒ
g.x/'� .x/ Q'� .x/D

X
�2R�1=2Zd\Œ0;1�d

X
�2R1=2Zd

g�;�.x/‚ …„ ƒ
c�;�e

2�ix��
Q'� .x/;

where Q'� is � 1 on the support of '� and decays very fast away from it. Applying Ed and using the
previous intuition gives rise to the wave packet decomposition

Edg D
X

.�;�/2R�1=2Zd\Œ0;1�d�R1=2Zd

Ed .g�;�/;

where Ed .g�;�/ is essentially supported on a tube in RdC1 of size R1=2� � � ��R1=2�R whose direction
is determined by � and that is translated by a parameter depending on �. With this linearized model at
hand, one can study the interference between these tubes pointing in different directions (both in the
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linear and multilinear settings) and take advantage of orthogonality both in space and in frequency. This
leads to local estimates of type

kEdgkLq.B.0;R// ." R"kf kp for all " > 0

and multilinear analogues of it that are later used to obtain global estimates via "-removal arguments (as
in [Tao 1999]). The reader is referred to [Guth 2016] for the details of the decomposition above. This
approach has given the current best Lp bounds for Ed .

In our case, we do not linearize the contribution of the quadratic phase. Instead, we consider a discrete
model that keeps the quadratic nature of Ed intact.

2A. The linear model (k D 1). We consider d D 1 for simplicity, but the discretization process is
analogous for all d > 1. Recall that the extension operator for the parabola defined for functions supported
on Œ0; 1� is given by

E1g.x; t/D
Z 1

0

g.�/e�2�ix�e�2�it�
2

d�: (12)

We can insert a bump ' in the integrand that is equal to 1 on Œ0; 1� and supported in a small neighborhood
of this interval. Tiling R2 with unit squares with vertices in Z2 and rewriting E1,

E1g.x; t/D
X
n;m2Z

�Z
g.u/'.u/e�2�ixue�2�itu

2

du
�
�n.x/�m.t/;

where �n WD �Œn;nC1/. For a fixed .x; t/, one can write

e�2�ix�e�2�it�
2

'.�/D e�2�in�e�2�im�
2

� e�2�i.x�n/�e�2�i.t�m/�
2

'.�/

D e�2�in�e�2�im�
2

�

X
u2Z

he�2�i.x�n/. � /e�2�i.t�m/. � /
2

; 'uŒ0;1�i �'
u
Œ0;1�.�/

D e�2�in�e�2�im�
2

�

X
u2Z

C n;m;x;tu �'uŒ0;1�.�/;

where we expanded e�2�i.x�n/�e�2�i.t�m/�
2

as a Fourier series at scale 1,

C n;m;x;tu WD he�2�i.x�n/. � /e�2�i.t�m/. � /
2

; 'uŒ0;1�i;

'uŒ0;1�.�/ WD 'Œ0;1�.�/ � e
�2�iu��

and 'Œ0;1� is a bump adapted to Œ0; 1� (and compactly supported) just like4 '. Plugging this in (12),

E1g.x; t/D
X
n;m2Z

�Z
g.�/'.�/e�2�ix�e�2�it�

2

d�
�
�n.x/�m.t/

D

X
n;m2Z

�Z
g.�/

�
e�2�in�e�2�im�

2

�

X
u2Z

C n;m;x;tu �'u.�/

�
d�
�
�n.x/�m.t/

D

X
u2Z

X
n;m2Z

C n;m;x;tu �

�Z
g.�/e�2�in�e�2�im�

2

�'u.�/ d�
�
�n.x/�m.t/:

4We will not distinguish between 'Œ0;1� and ' from now on.
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Figure 2. The phase-space portrait of 'n;m.

For the expression defining E1 to be nonzero, .n;m/ must satisfy jx�nj � 1 and jt�mj � 1; hence the
Fourier coefficients C n;m;x;tu decay like O.juj�100/. In addition, the extra factor 'u in the integral simply
shifts the integrand in frequency, and this does not affect in any way the arguments that follow. In order
to obtain the final form of our linear model, let us introduce the following notation: if ' is a compactly
supported bump (say, in a very small open neighborhood of Œ0; 1�d ) with ' � 1 on Œ0; 1�d, we set

'En;m.x/ WD '.x/e
2�ix�Ene2�i jxj

2m: (13)

Due to the fast decay of C n;xu and Cm;tv , it is then enough to bound the uD v D 0 piece of the sum
above, which leads to the discretized model:5

E1.g/D
X

.n;m/2Z2

hg; 'n;mi.�n˝�m/:

With the appropriate adaptations, one proceeds in the exact same way in dimension d to reduce matters
to the study of the following model operator:

Definition 2.1. Let Ed be defined on C.Œ0; 1�d / given by

Ed .g/D
X

En2Zd ;m2Z

hg; 'En;mi.�En˝�m/;

where �En and �m are the characteristic functions of the boxes Œn1; n1 C 1/ � � � � � Œnd ; nd C 1/ and
Œm;mC 1/, respectively.6

The wave packets (13) have a natural phase-space portrait that consist of parallelograms in the phase
plane. See Figure 2.

5There is a slight abuse of notation here: observe that Q�n.x/ Q�m.t/ WD C
n;m;x;t
0 ��n.x/�m.t/ is a smooth function supported

in Œn; nC1/� Œm;mC1/, which is all that is needed in the proof. We will continue to call it �n.x/�m.t/ to lighten the notation.
6Morally speaking, the discrete model and the original operator are “comparable”, but we were not able to prove that

rigorously. For that reason we included the proof of known extension estimates for Ed .
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By keeping the quadratic nature of Ed intact we take advantage of orthogonality in different ways.
For example, for a fixed m the wave packets 'n;m are almost orthogonal, as suggested by the fact that the
corresponding parallelograms are (almost) disjoint.

2B. The multilinear model .2� k� d C 1/. We recall the definition of the k-linear extension operator:

Definition 2.2. For QDfQ1; : : : ;Qkg a transversal set of cubes, the k-linear extension operator is given by

MEk;d .g1; : : : ; gk/ WD
kY

jD1

EQj gj ; (14)

where

EQj gj .x; t/D
Z
Qj

gj .�/e
�2�ix��e�2�it j�j

2

d�; .x; t/ 2 Rd �R:

By an analogous argument to the one we showed in Section 2A, it is enough to prove the corresponding
bounds for the following model operator:

Definition 2.3. Let MEk;d be defined on C.Q1/� � � � �C.Qk/ by

MEk;d .g1; : : : ; gk/ WD
X

.En;m/2ZdC1

kY
jD1

hgj ; '
j

En;m
i.�En˝�m/:

where

'
j

En;m
D

dO
lD1

'l;jnl ;m; 'l;jnl ;m.xl/D '
l;j .xl/e

2�inlxl e2�imx
2
l

and 'l;j .x/ is � 1 on the l-coordinate projection of the domain of gj defined above and decays fast away
from it.

Remark 2.4. It is clear that the discretization process does not depend on whether the collection Q is
made of transversal cubes or not. In particular, it will be of interest in Section 12B to study the operator
given by the right-hand side of (14), but without the assumption that the cubes Qj are transversal. The
model for such operator is also given by MEk;d , but without that hypothesis.

3. Transversality versus weak transversality

We recall the following definition from [Bennett 2014]:

Definition 3.1. Let 2�k�dC1 and c >0. A k-tuple S1; : : : ; Sk of smooth codimension-1 submanifolds
of RdC1 is c-transversal if

jv1 ^ � � � ^ vkj � c

for all choices v1; : : : ; vk of unit normal vectors to S1; : : : ; Sk , respectively. We say that S1; : : : ; Sk are
transversal if they are c-transversal for some c > 0.

In other words, if the k-dimensional volume of the parallelepiped generated by v1; : : : ; vk is bounded
below by some absolute constant for any choice of normal vectors vj , the submanifolds are transversal.
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From now on, we will say that a collection of k cubes in Rd is transversal if the associated caps defined
by them on the paraboloid are transversal in the sense of Definition 3.1.

One can assume without loss of generality that the Uj in the statements of Conjecture 1.2 are cubes
that parametrize transversal caps on Pd via the map x 7! jxj2. Even though these conjectures are known
to fail in general if one does not assume transversality between the caps (see Section AB), the theorem
that we will prove holds under a weaker condition, since one of the functions is a tensor.

Definition 3.2. Let QD fQ1; : : : ;Qkg be a collection of k (open or closed) cubes7 in Rd. The collection
Q is said to be weakly transversal with pivot Qj if there is a set of k�1 distinct directions Ej D

fei1 ; : : : ; eik�1g (depending on j ) of the canonical basis such that8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�i1.Qj /\�i1.Q1/D∅;
:::

�ij�1.Qj /\�ij�1.Qj�1/D∅;
�ij .Qj /\�ij .QjC1/D∅;

:::

�ik�1.Qj /\�ik�1.Qk/D∅;

(15)

where �l is the projection onto el . We say that Q is weakly transversal if it is weakly transversal with
pivot Qj for all 1� j � k.8

Remark 3.3. For each 1 � j � k, from now on we will refer to a set9 Ej above as a set of directions
associated to Qj . Notice that there could be many of such sets for a single j . Also, if j1 ¤ j2, it could
be the case that no set of directions associated to Qj1 is associated to Qj2 .

Let us give a few examples to distinguish between Definitions 3.1 and 3.2. Consider the case d D 2,
k D 3, Q1 D Œ0; 1�2, Q2 D Œ2; 3�2, and Q3 D Œ4; 5�2. The line y D x intersects Q1, Q2 and Q3; then it
follows from Definition 3.1 that they are not transversal. However, observe that�

�1.Q1/\�1.Q2/D∅;
�2.Q1/\�2.Q3/D∅;

so fe1; e2g is a set associated to Q1 (and similarly one can verify that it is also associated to Q2 and Q3).
This shows that the collection defined by Q1, Q2 and Q3 is weakly transversal.

Consider now the cubes K1 D Œ0; 1�2, K2 D Œ4; 5� � Œ0; 1� and K3 D Œ2; 3�2. Not only are they
transversal in the sense of Definition 3.1, but also weakly transversal.

This is not by chance: a given transversal collection of k cubes can be “decomposed” into finitely
many collections of k cubes that are also weakly transversal.

7The word cube will be used throughout the paper to refer to any rectangular box in Rd, regardless of the sizes of its edges,
and they always refer to the supports of the input functions of our linear and multilinear operators. In this paper, it will not be
relevant whether the sides of a box have the same length or not; therefore this slight abuse of terminology is harmless.

8The estimates that we will prove depend on the separation of the projections in Definition 3.2, just as they depend on the
behavior of c from Definition 3.1 in the general case for transversal caps.

9The typeface Ej is being used to distinguish this concept from the previously defined operators Ed and Ed .



2852 CAMIL MUSCALU AND ITAMAR OLIVEIRA

6

4

2

0 2 4 6

6

4

2

2 4 600

Figure 3. Transversality versus weak transversality.

Claim 3.4. Given a collection QD fQ1; : : : ;Qkg of transversal cubes, each Ql 2Q can be partitioned
into O.1/ many subcubes

Ql D
[
i

Ql;i

so that all collections zQ made of picking one subcube Ql;i per Ql

zQD f zQ1; : : : ; zQkg; zQl 2 fQl;igi ;

are weakly transversal.

Proof. See Claim B.4 in Appendix B. �

As a consequence of Claim 3.4, to prove the case 2� k � d C 1 of Theorem 1.5 it suffices to show it
for weakly transversal collections. To simplify the exposition, we will present our results for the cubes

Q1 D Œ0; 1�
d ;

Qj D Œ2; 3�
j�2
� Œ4; 5�� Œ0; 1�d�jC1; 2� j � k:

The associated directions to Q1 are fe1; : : : ; ek�1g, and we will use it as the pivot. Any other weakly
transversal collection of cubes can be dealt with in the same way.

4. Our approach and its building blocks

Notice that the operators Ed and MEk;d are pointwise bounded by Ed and MEk;d , respectively; therefore
we cannot directly conclude any result about the models from the fact that they hold for the original
operators. Some of these results will be reproven for the models in this paper, and they will act as building
blocks in the proof of Theorem 1.5, which is presented in Sections 8 and 9. More precisely, Theorem 1.5
relies on the following:

(1) Mixed norm Strichartz/Tomas–Stein (k D 1, p D 2). In Section 5 we show the following:

Proposition 4.1. For all p > 2.dC2/
d

,

kEdgkp .p kgk2:
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As a consequence, we have:

Corollary 4.2. For all " > 0,

kEd .g/kL2.d�lC2/=.d�l/C"xlC1;:::;xd ;t
L2x1;:::;xl

." kgk2: (16)

Proof. Apply Minkowski’s inequality and Proposition 4.1 in dimension d � l . Notice that, after taking
L2 norm in the first l variables, we can use Bessel to bound the left-hand side of (16) by� X
nlC1;:::;nd ;m

� X
n1;:::;nl

jhhg; 'nlC1;:::;nd ;mi; 'n1;:::;nl ;mij
2

�p0
2
� 1
p0

.
� X
nlC1;:::;nd ;m

khg; 'nlC1;:::;nd ;mik
p0
2

� 1
p0

; where p0 D
2.d � l C 2/

d � l
C ":

This is how we will use Corollary 4.2 in (56). �

We will use Corollary 4.2 in Conjecture 1.2 to prove Theorem 1.5 for 2� k � d C 1. It will not be
needed when k D d C 1.

(2) Extension conjecture for the parabola (k D 1, d D 1, p D 4). In Section 6 we prove the following:

Proposition 4.3. For all " > 0,

kE1gk4C" ." kgk4: (17)

One can show by interpolation that Proposition 4.3 implies Conjecture 1.1 for d D 1. We will use it in
Section 8 to settle the case k D 1 of Theorem 1.5.

(3) Bilinear extension conjecture for the parabola (k D 2, d D 1). In Section 7 we show that the model
ME2;1 in Definition 2.3 maps L2.Œ0; 1�/�L2.Œ4; 5�/ to L2.R2/.

Proposition 4.4. The following estimate holds:

kME2;1.f; g/k2 . kf k2 � kgk2: (18)

Transversality will be captured in Section 9 through (18).

By combining scalar and mixed norm stopping times10 performed simultaneously, we are able to put
together the key estimates (16), (17) and (18). In the 2� k � d C 1 case, the tensor structure is used in
an implicit way to allow us to better relate these scalar and mixed norm stopping times.

Remark 4.5. The tensor structure g D g1˝ � � �˝gd in the k D 1 case allows us to write

hg; 'En;mi D

dY
jD1

hgj ; 'nj ;mi: (19)

10This is not meant in a literal probabilistic sense; strictly speaking, the argument combines the level sets of various scalar
and mixed norm quantities that appear naturally in our analysis.
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We then obtain the following multilinear form by dualization:

ƒd .g1; : : : ; gd ; h/D hEd .g/; hi D
X

En2Zd;m2Z

dY
jD1

hgj ; 'nj ;mi � hh; �En˝�mi; (20)

The goal in the k D 1 case is to show that

jƒd .g1; : : : ; gd ; h/j. khkq �
dY
jD1

kgj kpj

for appropriate exponents pj and q. Interpolation theory shows that it suffices to obtain

jƒd .g1; : : : ; gd ; h/j." jF jdC1 �
dY
jD1

jEj j
j (21)

for all " > 0, jgj j � �Ej , jhj � �F ,11 Ej � Œ0; 1� and F �R3 measurable sets such that j .1� j � d/
and dC1 are in a small neighborhood of d

2.dC1/
and dC2

2.dC1/
C ", respectively.12 We refer the reader to

[Thiele 2006, Chapter 3] for a detailed account of multilinear interpolation theory. To keep the notation
simple, all restricted weak-type estimates we will prove in this paper will be for the centers of such
neighborhoods. For example, we will show that

jƒd .g1; : : : ; gd ; h/j." jF j
dC2
2.dC1/

C"
�

dY
jD1

jEj j
d

2.dC1/ (22)

for all " > 0, but it will be clear from the arguments that as long as we give this " > 0 away, a slightly
different choice of interpolation parameters yields (21). The restricted weak-type estimates that we will
prove in the 2� k � d C 1 case will also be for the centers of the corresponding neighborhoods.

5. Proof of Proposition 4.1: Strichartz/Tomas–Stein for Ed (kD 1, p D 2)

Our proof is inspired by the classical T T � argument. It is possible to prove the endpoint estimate directly
for the model Ed by repeating the steps of this argument (see for example [Muscalu and Schlag 2013a,
Section 11.2.2]), but we chose the following approach because of its similarity with the one we will use
to prove Theorem 1.5. By interpolation with the trivial bound for q D1, it is enough to prove the bound

kEdgk 2.dC2/
d
C"
." kgk2

for all " > 0.
We start by dualizing Ed to obtain a bilinear form ƒd :

ƒd .g; h/D hEd .g/; hi D
X

En2Zd ;m2Z

hg; 'En;mi � hh; �En˝�mi:

11There is an overlap of classical notation here that we hope will not compromise the comprehension of the paper: we chose
the typeface Ed to represent the discrete model of the official extension operator E . On the other hand, the classical theory of
restricted weak-type multilinear interpolation usually labels the measurable sets involved in the problems by Ej or Fj . The
context will make it clear which object we are referring to.

12Rigorously, this only verifies the case k D 1 near the endpoint
�2.dC1/

d
;
2.dC1/
d

�
, but this is known to imply the desired

estimates in the full range. For details, see [Mattila 2015, Theorem 19.8].
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Let E1 � Rd and E2 � RdC1 be measurable sets of finite measure with jgj � �E1 and jhj � �E2 .
Split ZdC1 in two ways:

ZdC1 D
[
l12Z

Al1 ; where .En; m/ 2 Al1() jhg; 'En;mij � 2
�l1 ;

ZdC1 D
[
l22Z

Bl2 ; where .En; m/ 2 Bl2() jhh; �En˝�mij � 2
�l2 :

Define Xl1;l2 WD Al1 \Bl2 and observe that

jƒd .g; h/j.
X
l1;l22Z

2�l12�l2 #Xl1;l2 :

Notice that, for all .En; m/ 2 Xl1;l2 ,

2�l1 .
Z

Rd
jg.x/jj'En;m.x/j dx �min fjE1j; 1g;

2�l2 .
Z

Rd
jh.x/jj�En˝�m.x/j dx �min fjE2j; 1g:

In particular, l1; l2 � 0 in the sum above. Now we bound #Xl1;l2 in two different ways and interpolate
between them:

(a) L1-type bound: Exploit h:

#Xl1;l2 � #Bl2 . 2l2
X

.En;m/2Bl2

jhh; �En˝�mij. 2
l2

X
.En;m/2ZdC1

Z
QEn;m

jhj D 2l2khk1 � 2
l2 jE2j; (23)

where QEn;m WD…
d
iD1Œni ; ni C 1�� Œm;mC 1�, EnD .n1; : : : ; nd /.

(b) L2-type bound: Exploit g:

#Xl1;l2 . 22l1
X

.En;m/2Xl1;l2

jhg; 'En;mij
2

D 22l1
ˇ̌̌̌� X
.En;m/2Xl1;l2

hg; 'En;mi'En;m; g

�ˇ̌̌̌

� 22l1 jE1j
1
2

 X
.En;m/2Xl1;l2

hg; 'En;mi'En;m


2„ ƒ‚ …

.�/

: (24)

For each set Xl1;l2 define �m WD fEn 2 Zd I .En; m/ 2 Xl1;l2g. Observe that

.�/2 D
X

mW�m¤∅

X
QmW� Qm¤∅

X
En2�m

X
Ek2� Qm

hg; 'En;mihg; ' Ek; Qmih'En;m; ' Ek; Qmi„ ƒ‚ …
U..hg;'En;mi/En2�m ;.hg;' Ek; Qmi/ Ek2� Qm

/
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We will estimate U in two ways. Let aEn;m WD hg; 'En;mi. First, by the triangle inequality and the
stationary phase Theorem B.3

jU..aEn;m/En2�m ; .a Ek; Qm/ Ek2� Qm
/j �

X
En2�m

X
Ek2� Qm

jhg; 'En;mij � jhg; ' Ek; Qmij
1

hm� Qmi
d
2

D
khg; ' �;mik`1.�m/ � khg; ' �; Qmik`1.� Qm/

hm� Qmi
d
2

:

Another possibility is

jU..aEn;m/En2�m ; .a Ek; Qm/ Ek2� Qm
/j

�

ˇ̌̌̌Z
Rd

� X
En2�m

hg; 'En;mie
2�i En�x

�� X
Ek2� Qm

hg; ' Ek;mie
2�i Ek�x

�
'.x/'.x/e2�i.m� Qm/jxj

2

dx
ˇ̌̌̌

. khg; ' �;mik`2.�m/ � khg; ' �; Qmik`2.� Qm/
by Cauchy–Schwarz and orthogonality on the sets �m and � Qm (recall thatm and Qm are fixed). Interpolating
between these bounds for 1� p � 2,

jU..aEn;m/En2�m ; .a Ek; Qm/ Ek2� Qm
/j.
khg; ' �;mik`p.�m/ � khg; ' �; Qmik`p.� Qm/

hm� Qmi
d
2
. 1
p
� 1
p0
/

:

Back to .�/:

.�/2 .
X

mW�m¤∅

X
QmW� Qm¤∅

khg; ' �;mik`p.�m/ � khg; ' �; Qmik`p.� Qm/

hm� Qmi
d
2
. 1
p
� 1
p0
/

D

X
mW�m¤∅

khg; ' �;mik`p.�m/
X
QmW� Qm¤∅

khg; ' �; Qmik`p.� Qm/

hm� Qmi
d
2
. 1
p
� 1
p0
/

� kkhg; ' �;mik`p.�m/k`p.Z/

 X
QmW� Qm¤∅

khg; ' �; Qmik`p.� Qm/

hm� Qmi
d
2
. 1
p
� 1
p0
/


`p
0
.Z/

� kkhg; ' �;mik`p.�m/k`p.Z/ � kkhg; ' �; Qmik`p.� Qm/k`p.Z/

D kkhg; ' �;mik`p.�m/k
2
`p.Z/;

as long as

1

p
�
1

p0
D 1�

d

2

�
1

p
�
1

p0

�
()

1

p
�
1

p0
D

2

dC2
()

2

p0
D

d

dC2
() p0 D

2dC4

d
;

by discrete fractional integration. Plugging this back in (24),

#Xl1;l2 . 22l1 jE1j
1
2 kkhg; ' �;mik`p.�m/k`p.Z/

D 22l1 jE1j
1
2

� X
.En;m/2Xl1;l2

jhg; 'En;mij
p

�1
p

. 22l1 jE1j
1
2 .2�pl1#Xl1;l2/

1
p ;

which implies
#Xl1;l2 . 2.2C

4
d
/l1 jE1j

1C 2
d : (25)
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Interpolating between (23) and (25):

jƒd .g; h/j.
X

l1;l2�0

2�l12�l2.2.2C
4
d
/l1 jE1j

1C 2
d /�1.2l2 jE2j/

�2

D

�X
l1�0

2�l1.1�.2C
4
d
/�1/

��X
l2�0

2�l2.1��2/
�
jE1j

.1C 2
d
/�1 jE2j

�2

. 2�Ql1.1�.2C
4
d
/�1/2�

Ql2.1��2/jE1j
.1C 2

d
/�1 jE2j

�2

.min fjE1j.1�.2C
4
d
/�1/; 1gmin fjE2j1��2 ; 1gjE1j.1C

2
d
/�1 jE2j

�2

. jE1j˛1.1�.2C
4
d
/�1/C.1C 2d /�1 jE2j

˛2.1��2/C�2

(26)

for all 0� ˛1; ˛2 � 1, �1C�2D 1, with 0�
�
2C 4

d

�
�1 <1, 0� �2 <1, where Ql1 is the smallest possible

value of l1 for which Al1 ¤∅ and Ql2 is defined analogously. Picking ˛1 D 1
2

, ˛2 D 0, �1 D d
2.dC2/

� "

and �2 D dC4
2.dC2/

C " gives
jƒd .g; h/j." jE1j

1
2 � jE2j

dC4
2.dC2/

C"

for all " > 0, which proves the proposition by restricted weak-type interpolation.

6. Proof of Proposition 4.3-Conjecture 1.1 for E1 (kD 1, d D 1, p D 4)

The following argument is inspired by Zygmund’s original proof of this case. Define

ˆn;m.s; t/ WD jt � sj
1
2'.s/'.t/e2�i.s�t/ne2�i.s

2�t2/m:

Claim 6.1. hˆn;m; ˆQn; Qmi DON

�
1

j.n� Qn/.m� Qm/jN

�
for any natural N if n¤ Qn and m¤ Qm.

Proof. We have

hˆn;m; ˆQn; Qmi D

“
Œ0;1�2

jt � sjj'.s/j2j'.t/j2e2�i.s�t/.n�Qn/e2�i.s
2�t2/.m� Qm/ ds dt

D

“
R

juj

juj
 .u; v/e2�iu.n�Qn/e2�iv.m� Qm/ du dv;

where R is the region that we obtain after making the change of variables s� t D u, s2� t2 D v, and

 .u; v/D '˝'

�
vCu2

u
;
v�u2

u

�
:

The claim follows by the nonstationary phase Theorem B.2. �

We now prove the following:

Lemma 6.2. For G smooth supported on Œ0; 1�� Œ0; 1�, X
n;m2Z

hG; 'n;m˝ N'n;mi.�n˝�m/


2

.
�“

Œ0;1�2

jG.s; t/j2

js� t j
ds dt

�1
2

:
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Proof. Define

zG.s; t/D
G.s; t/

js� t j
1
2

on Œ0; 1�2nf.x; x/I 0� x � 1g. Observe that X
n;m2Z

hG; 'n;m˝ N'n;mi.�n˝�m/

2
2

D

X
n;m2Z

jhG; 'n;m˝ N'n;mij
2
D

X
n;m2Z

jh zG;ˆn;mij
2 . k zGk22;

by the almost orthogonality of the ˆn;m proved in the previous claim. �

Remark 6.3. By the triangle inequality, X
n;m2Z

hG; 'n;m˝ N'n;mi.�n˝�m/


1

.
“
Œ0;1�2

jG.s; t/j ds dt:

Hence by interpolation we obtain X
n;m2Z

hG; 'n;m˝ N'n;mi.�n˝�m/


p

.
�“

Œ0;1�2

jG.s; t/jp
0

js� t jp
0�1

ds dt
� 1
p0

(27)

for 2� p �1.

Let E � Rd be a measurable set of finite measure with jgj � �E . Using Remark 6.3 and Lemma 6.2
for G D g˝ Ng, we have� X

n;m2Z

jhg; 'n;mij
4C"

� 2
4C"

D

�Z
R2

� X
n;m2Z

jhg; 'n;mij
4C".�n˝�m/

�� 2
4C"

�

�Z
R2

� X
n;m2Z

jhg; 'n;mij
2.�n˝�m/

�4C"
2
� 2
4C"

D

 X
n;m2Z

jhg; 'n;mij
2.�n˝�m/


2C "

2

.
�“

Œ0;1�2

jg.s/jp
0

jg.t/jp
0

js� t jp
0�1

ds dt
� 1
p0

; where p0 D
4C "

2C "
:

To bound this last integral, we proceed as follows:Z 1

0

Z 1

0

j�.s/j � j�.t/j

js� t j
ds dt D

Z 1

0

j�.t/j

Z 1

0

j�.s/j

js� t j
ds dt D

Z 1

0

j�.t/j �

�
j�j �

1

jsj

�
.t/ dt

D

j�j�j�j � 1

jsj

�
L1.dt/

� k�kLq.dt/

j�j � 1

jsj


Lp
0
.dt/
." k�k2p

if 1
p0
D

1
p
� .1� /, by Theorem B.1. In our case, �D jgjp

0

,  D p0� 1 and

pp0 D
.4C "/2

2.2C "/
> 4:
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Then�Z 1

0

Z 1

0

jg.s/jp
0

� jg.t/jp
0

js� t jp
0�1

ds dt
� 1
p0

.
�Z 1

0

jg.t/jpp
0

dt
� 2
pp0

D

�Z 1

0

jg.t/j4C.
.4C"/2

2.2C"/
�4/ dt

�4.2C"/
.4C"/2

.
�Z 1

0

jg.t/j4 dt
�4.2C"/
.4C"/2

D jEj
4.2C"/

.4C"/2 :

Observed that in the second line of the chain of inequalities above we used the fact that jgj � 1. Finally,

kE1gk4C" D

� X
n;m2Z

jhg; 'n;mij
4C"

� 1
4C"

. jEj
2.2C"/

.4C"/2 � jEj
1
4 :

This shows that E1 maps L4.Œ0; 1�/ to Lq.R2/ for any q > 4 by restricted weak-type interpolation.

7. Proof of Proposition 4.4-Conjecture 1.2 for ME2;1 (kD 2, d D 1)

The model to be treated is

ME2;1.f; g/ WD
X

.n;m/2Z2

hf; '1n;mi � hg; '
2
n;mi.�n˝�m/:

Since d D 1, we do not have to deal with the multivariable quantity

'
j

En;m
D

dO
lD1

'l;jnl ;m

from Definition 2.3, so we will simplify the notation by taking '1n;m WD '
1;1
n;m and '2n;m WD '

1;2
n;m. We also

replaced .g1; g2/ by .f; g/ here to reduce the number of indices carried through the section.
We provide a simple argument involving Bessel’s inequality. After a change of variables to move the

domain of '2 to be the same as the one of '1, we have

jME2;1.f; g/j.
X

.n;m/2Z2

jhf; '1n;mijjh.g/�4; '
1
nC8m;mij.�n˝�m/

D

X
.n;m/2Z2

jhf ˝ .g/�4; '
1
n;m˝ N'

1
nC8m;mij.�n˝�m/;

where13 .g/�4.y/D g.yC 4/. Observe that

hf ˝ .g/�4; '
1
n;m˝ N'

1
nC8m;mi

D

“
f .x/g.yC 4/'1.x/'1.y/e�2�inxe�2�imx

2

e2�i.nC8m/ye2�imy
2

dx dy

D

“
f .x/g.yC 4/e2�in.y�x/e2�im.y�x/.yCx/e16�imy dx dy

�

Z �Z
f

�
v�u

2

�
g

�
vCu

2
C 4

�
e2�imuve8�im.uCv/ dv

�
„ ƒ‚ …

Hm.u/

e2�inu duD yHm.�n/

13This was done to bring the support of '2n;m to the one of '1nC8m;m. The price to pay is the C4m shift in the linear
modulation index of the bump.
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Hence
kME2;1.f; g/k22 .

X
m2Z

X
n2Z

j yHm.�n/j
2
D

X
m2Z

kHmk
2
2;

by Bessel. On the other hand,

kHmk
2
2 D

Z ˇ̌̌̌Z
f

�
v�u

2

�
g

�
vCu

2
C 4

�
e2�imuve8�im.uCv/ dv

ˇ̌̌̌2
du

D

Z ˇ̌̌̌Z
f

�
v�u

2

�
g

�
vCu

2
C 4

�
„ ƒ‚ …

zHu.v/

e2�imv.uC4/ dv
ˇ̌̌̌2

duD
Z
j
yzHu.m.uC 4//j

2 du:

Transversality enters the picture here through the factor .uC 4/ above: the C4 shift in u comes from
the fact that the supports of '1 and '2 are disjoint and far enough from each other; hence uC 4� c > 0.
This way,

kME2;1.f; g/k22 .
Z �X

m2Z

j
yzHu.m.uC 4//j

2

�
du

.
“
j zHu.v/j

2 dv du. kf k22kgk
2
2;

by Bessel again.

8. Case kD 1 of Theorem 1.5

In this section we start the proof of Theorem 1.5. There are two main ingredients in the argument for the
case k D 1: Proposition 4.3 and the fact that the wave packets

'En;m.x/ WD '.x1/ � � � � �'.xd /e
2�ix�Ene2�i jxj

2m

are almost orthogonal for a fixed m and En varying in Zd. The latter fact will be exploited through Bessel’s
inequality whenever possible. Recall from Remark 4.5 that, since g D g1˝ � � �˝gd , it suffices to study
the multilinear form

ƒd .g1; : : : ; gd ; h/D
X

En2Zd;m2Z

dY
jD1

hgj ; 'nj ;mi � hh; �En˝�mi;

Now we focus on obtaining (22). Let Ej � Œ0; 1�; 1� j � d , and F � RdC1 be measurable sets for
which jgj j � �Ej and jhj � �F . Define the sets

A
lj
j WD f.nj ; m/ 2 Z2 W jhgj ; 'nj ;mij � 2

�lj g; 1� j � d:

BldC1 WD f.En; m/ 2 ZdC1 W jhh; �En˝�mij � 2
�ldC1g;

Xl1;:::;ldC1 WD f.En; m/ 2 ZdC1 W .nj ; m/ 2 A
lj
j ; 1� j � dg\BldC1 :

Hence,
jƒd .g1; : : : ; gd ; h/j.

X
l1;:::;ldC12Z

2�l1 � � � � � 2�ldC1#Xl1;:::;ldC1 :
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As in Section 5, we know that l1; : : : ; ldC1 � 0. We can estimate #Xl1;:::;ldC1 using the function h:

#Xl1;:::;ldC1 . 2ldC1
X

.En;m/2ZdC1

jhh; �En˝�mij. 2
ldC1 jF j: (28)

Alternatively, many bounds for #Xl1;:::;ldC1 can be obtained using the input functions g1; : : : ; gd :

#Xl1;:::;ldC1 .
X

.En;m/2ZdC1

1
A
l1
1

.n1; m/ � � � � �1
A
ld
d

.nd ; m/

D

X
m2Z

X
n12Z

� � �

X
nd�12Z

1
A
l1
1

.n1; m/ � � � � �1
A
ld�1
d�1

.nd�1; m/
X
nd2Z

1
A
ld
d

.nd ; m/„ ƒ‚ …
˛d;m

(29)

Observe that ˛d;m D #fnI .n;m/ 2 A
ld
d
g and .n;m/ 2 A

ld
d
) 1. 22ld jhgd ; 'n;mij2. Adding up in n,

˛d;m . 22ld
X

nW .n;m/2A
ld
d

jhgd ; 'n;mij
2 . 22ld jEd j

by orthogonality. Notice that this quantity does not depend on m; therefore we can iterate this argument
for d � 2 of the remaining d � 1 characteristic functions:

#Xl1;:::;ldC1 . 22ld jEd j
X
m2Z

X
n12Z

1
A
l1
1

.n1;m/�� � ��1
A
ld�2
d�2

.nd�2;m/
X

nd�12Z

1
A
ld�1
d�1

.nd�1;m/„ ƒ‚ …
˛d�1;m

. 22ld jEd j22ld�1 jEd�1j
X
m2Z

X
n12Z

1
A
l1
1

.n1;m/�� � ��1
A
ld�3
d�3

.nd�3;m/
X

nd�22Z

1
A
ld�2
d�2

.nd�1;m/

. 22ld 22ld�1 � � �22l2 jEd j � � � jE2j
X
m2Z

X
n12Z

1
A
l1
1

.n1;m/„ ƒ‚ …
#A
l1
1

: (30)

To bound #A
l1
1 we can use Proposition 4.3. For " > 0 we have

.n;m/ 2 A
l1
1 D) 1. 2.4C"/l1 jhg1; 'n;mij4C"

D) #A
l1
1 . 2

.4C"/l1
X

.n;m/2A
l1
1

jhg1; 'n;mij
4C" ." 2.4C"/l1 jE1j:

Using this above,

#Xl1;:::;ldC1 ." 22ld 22ld�1 � � � 22l22.4C"/l1 jEd j � � � jE2jjE1j: (31)

We could have used the L4-L4C" bound for any gj and a Bessel bound for the remaining ones. More
precisely, if � 2 Sd is a permutation, we have

#Xl1;:::;ldC1 ." 22l�.d/22l�.d�1/ � � � 22l�.2/2.4C"/l�.1/ jE�.d/j � � � jE�.2/jjE�.1/j: (32)
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This amounts to exactly d different estimates. Interpolating between all of them with equal weight 1
d

,
we obtain

#Xl1;:::;ldC1 ." 2
2.d�1/C4C"

d
l1 � � � 2

2.d�1/C4C"
d

ld jE1j � � � jEd j

D 2.2C
2
d
C "
d
/l1 � � � 2.2C

2
d
C "
d
/ld jE1j � � � jEd j: (33)

Finally, we interpolate between bounds (28) and (33):

jƒd .g1; : : :; gd ; h/j

.
X

l1;:::;ldC12ZC

2�l1 � � � � � 2�ldC1#Xl1;:::;ldC1

.
X

l1;:::;ldC12ZC

2�l1 � � � � � 2�ldC1.2.2C
2
d
C "
d
/l1 � � � 2.2C

2
d
C "
d
/ld jE1j � � � jEd j/

�1.2ldC1 jF j/�2

.
� X
ldC1�0

2�.1��2/ldC1 jF j�2
� dY
jD1

X
lj�0

2�.1�.2C
2
d
C "
d
/�1/lj jEj j

�1

. jE1j˛.1�.2C
2
d
C "
d
/�1/C�1 � � � jEd j

˛.1�.2C 2
d
C "
d
/�1/C�1 jF j�2

for any 0�˛�1. On the other hand, for several of the series above to converge we need
�
2C 2

d
C

"
d

�
�1>1.

By choosing the appropriate ˛ and �1 close to
�
2C 2

d

��1, one concludes this case.

9. Case 2� k� d C 1 of Theorem 1.5

Recall that we fixed a set of weakly transversal cubes Q D fQ1; : : : ;Qkg in Section 3 and let gj be
supported on Qj . The averaged k-linear extension operator14 in Rd is given by

ME
1
k

k;d
.g1; : : : ; gk/D

X
.En;m/2ZdC1

� kY
jD1

jhgj ; '
j

En;m
ij

�1
k

.�En˝�m/:

The conjectured bounds for it are

kME
1
k

k;d
.g1; : : : ; gk/kLp.RdC1/ .

kY
jD1

kgj k
1
k

L2.Qj /
for all p �

2.d C kC 1/

.d C k� 1/
: (34)

As done in the case k D 1, it’s enough to prove certain restricted weak-type bounds for its associated
form

zzƒk;d .g; h/ WD
X

.En;m/2ZdC1

� kY
iD1

jhgj ; '
j

En;m
ij

�1
k

hh; �En˝�mi; (35)

where g WD .g1; : : : ; gk/ by a slight abuse of notation.

14We consider this averaged version of MEk;d for technical reasons. The conjectured bounds for it have a Banach space as
target, as opposed to the quasi-Banach space (for most k and d ) L2.dCkC1/=.k.dCk�1// that is the target of Conjecture 1.2.
The fact that Lp for p � 2.d C kC 1/=.d C k� 1/ is Banach lets us use (49) effectively in the interpolation argument, since it
forces the final power  on jF j to be positive.

When kD d D 2, Conjecture 1.2 has L5=3 as target. We will discuss this case first to help digest the main ideas of the general
argument, and since this space is Banach, we can work directly with ME2;2 instead of considering the averaged operator ME1=22;2 .
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Remark 9.1. We will prove (34) up to the endpoint assuming that g1 is a full tensor, but the argument
can be repeated if any other gj is assumed to be of this type. As the reader will notice, the proof depends
on the fact that we can find k� 1 canonical directions associated to Qj , which is the defining property of
a weakly transversal collection of cubes with pivot Qj . In what follows, we are taking fe1; : : : ; ek�1g to
be the set of directions associated to Q1.

Remark 9.2. As we mentioned in Remark 1.7, under weak transversality alone we do not need g1 to be
a full tensor to prove the case 2� k � d of Theorem 1.5. In fact, the following structure is enough in this
section:

g1.x1; : : : ; xd /D g1;1.x1/ �g1;2.x2/ � � � � �g1;k�1.xk�1/ �g1;k.xk; : : : ; xd /:

Notice that we have k� 1 single-variable functions and one function in d � kC 1 variables. The single-
variable ones are defined along k� 1 canonical directions fe1; : : : ; ek�1g associated to Q1, and g1;k is a
function in the remaining variables.

In general, if we are given a weakly transversal collection zQ, for a fixed 1� j � k� 1 we have a set
of associated directions Ej D fei1 ; : : : ; eik�1g (see Definition 3.2). Denote by xE c

j
the vector of d �kC1

entries obtained after removing xi1 ; : : : ; xik�1 from .x1; : : : ; xd /. Assuming that the functions gl for
l ¤ j are generic and that gj has the weaker tensor structure

gj .x1; : : : ; xd /D gj;1.xi1/ � � � � �gj;k�1.xik�1/ �gE c
j
.xE c

j
/ (36)

will suffice to conclude Theorem 1.5 for zQ through the argument that we will present in this section.

Remark 9.3. As a consequence of Claim 3.4, a collection Q D fQ1; : : : ;Qkg of transversal cubes
generates finitely many subcollections zQ of weakly transversal ones (after partitioning each Ql into small
enough cubes and defining new collections with them). However, for a fixed 1� j � k, the associated
k� 1 directions in Ej can potentially change from one such weakly transversal subcollection to another,
and this is why we assume gj to be a full tensor under the transversality assumption.

In this section we will use the following conventions:

� The variables of gj are x1; x2; : : : ; xd , but we will split them in two groups: k�1 blocks of one variable
represented by xi , 1� i � k� 1, and one block of d � kC 1 variables Exk D .xk; xkC1; : : : ; xd�1; xd /.

� The index xi in h � ; � ixi indicates that the inner product is an integral in the variable xi only. For instance,

hgj ; 'ix1 WD

Z
R

gj .x1; : : : ; xd / � N'.x1; : : : ; xd / dx1 (37)

is now a function of the variables x2; : : : ; xd . The vector index Exk in h � ; � i Exk is understood analogously:

hgj ; 'i Exk WD

Z
Rd�kC1

gj .x1; : : : ; xd / � N'.x1; : : : ; xd / d Exk (38)
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� The expression khgj ; � ixik2 is the L2 norm of a function in the variables xl , 1� l � k� 1, l ¤ i . To
illustrate using (37),

khgj ; 'ix1k2 D

�Z
Rd�1

ˇ̌̌̌Z
R

gj .x1; : : : ; xd / � N'.x1; : : : ; xd / dx1

ˇ̌̌̌2
dx2 � � � dxd

� 1
2

:

The quantity khgj ; � i Exkk2 is defined analogously as

khgj ; 'i Exkk2 D

�Z
Rk�1

ˇ̌̌̌Z
Rd�kC1

gj .x1; : : : ; xd / � N'.x1; : : : ; xd / d Exk

ˇ̌̌̌2
dx1 � � � dxk�1

� 1
2

:

� For EnD .n1; : : : ; nd /, define the vector

Oni WD .n1; : : : ; ni�1; niC1; : : : ; nd /:

In other words, the hat on Oni indicates that ni was removed from the vector En. For f W Zd ! C, define

kf .En/k`1
Oni

WD

X
Oni2Zd�1

jf .En/j:

That is, kf .En/k`1
Oni

is the `1 norm of f over all n1; : : : ; nd , except for ni . Hence kf .En/k`1
Oni

is a function
of the remaining variable ni . The quantity kf .En/k`1

OEnk

is defined analogously as

kf .En/k`1
OEnk

WD

X
.n1;:::;nk�1/2Zk�1

jf .En/j:

Finally, the integral
R
g d Oxi meansZ

g.x1; : : : ; xd / d Oxi WD
Z
g.x1; : : : ; xd / dx1 � � � dxi�1 dxiC1 � � � dxd :

In what follows, let E1;1; : : : ; E1;k�1� Œ0; 1�, E1;k � Œ0; 1�d�kC1, Ej �Qj (2� j � k) and F �RdC1

be measurable sets such that jg1;l j � �E1;l for 1� l � k� 1, jg1;kj � �E1;k , jgj j � �Ej for 2� j � k
and jhj � �F . Furthermore, E1 WDE1;1 � � � � �E1;k�1 �E1;k .

A rough description of the argument in one sentence is: the proof is a combination of Strichartz in
some variables and bilinear extension in many pairs of the other variables. In order to illustrate that, we
will first present the simplest case in an informal way, which means that we will avoid the purely technical
aspects in this preliminary part. Once this is understood, it will be clear how to rigorously extend the
argument in general.

9A. Understanding the core ideas in the kD d D 2 case. Consider the model

ME2;2.g1; g2/D
X

.En;m/2Z3

hg1; '
1
En;m
ihg2; '

2
En;m
i.�En˝�m/
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and its associated trilinear form15

zzƒ2;2.g1; g2; h/D
X

.En;m/2Z3

hg1; '
1
En;m
ihg2; '

2
En;m
i.�En˝�m/:

Assuming that g1 D g1;1˝g1;2, we want to prove that

j
zzƒ2;2.g1; g2/j." jE1j

1
2 � jE2j

1
2 � jF j

2
5
C"

for all " > 0. The L2�L2 7!L5=3C" bound will then follow by multilinear interpolation and Remark 4.5.
Given the expository character of this subsection, we adopt the informal convention�

xC means xC ı, where ı > 0 is arbitrarily small,
x� means x� ı, where ı > 0 is arbitrarily small.

We will always be able to control how small the ı above is, so we do not worry about making it precise
for now.

The first step is to define the level sets of the scalar products appearing in ME2;2:

A
l1
1 D f.En; m/ W jhg1; '

1
En;m
ij � 2�l1g;

A
l2
2 D f.En; m/ W jhg2; '

2
En;m
ij � 2�l2g:

Transversality will be captured by exploiting the sizes of “lower-dimensional” information: in fact, we
want to make the operator ME2;1 appear, and this will be possible thanks to the interaction between the
quantities associated to the level sets

B
r1
1 D f.n1; m/ W khg1; '

1;1
n1;m
ix1k2 � 2

�r1g;

C
s1
1 D f.n1; m/ W khg2; '

1;2
n1;m
ix1k2 � 2

�s1g:

Since there is only one direction along which one can exploit transversality, we will use the L2 theory
for E1 (i.e., Strichartz) along the remaining one. In order to do that, the following level sets will be used:

B
r2
2 D f.n2; m/ W khg1; '

2;1
n2;m
ix2k2 � 2

�r2g;

C
s2
2 D f.n2; m/ W khg2; '

2;2
n2;m
ix2k2 � 2

�s2g:

The size of the scalar product involving h will be captured by the set

Dk D f.En; m/ W jhH;�En˝�mij � 2
�k
g:

We will also need to organize all the information above in appropriate “slices” and in a major set that
takes everything into account. The sets that do that are

Xl2;s1 WD A
l2
2 \f.En; m/I .n1; m/ 2 C

s1
1 g;

Xl2;s2 WD A
l2
2 \f.En; m/I .n2; m/ 2 C

s2
2 g;

X
El;Er;Es;k

D A
l1
1 \A

l2
2 \f.En; m/ W .n1; m/ 2 B

r1
1 \C

s1
1 ; .n2; m/ 2 B

r2
2 \C

s2
2 g\Dk;

15There is a slight abuse of notation here: we are using zzƒ2;2 for the form associated to ME2;2 and not for its averaged
version ME2;2, as established in the beginning of this section.
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where we are using the abbreviations El D .l1; l2/, Er D .r1; r2/ and Es D .s1; s2/. This gives us

j
zzƒ2;2.g1; g2; h/j.

X
El;Er;Es;k

2�l12�l22�k#X
El;Er;Es;k :

For the sake of simplicity, let us assume that g1D 1E1;1˝1E1;2 , g2D 1E2 and hD 1F .16 We will need
efficient ways of relating the scalar and mixed-norm quantities above. A direct computation (using the
definition of X

El;Er;Es;k) shows that

2�l1 D
2�r1 � 2�r2

jE1j
1
2

: (39)

Using Bessel along a direction, for .n1; n2; m/ 2 Xl2;s1 we have

1� 22l2 jhg2; '
2
En;m
ij
2
D) #X

l2;s1
.n1;m/

� 22l2
X

n22X
l2;s1
.n1;m/

jhg2; '
2
En;m
ij
2

D) #X
l2;s1
.n1;m/

. 22l2khg2; '1;2n1;mik
2
2

D) 2�l2 .
2�s1

.#X
l2;s1
.n1;m/

/
1
2

D) 2�l2 .
2�s1

k1Xl2;s1k
1
2

`1n1;m`
1
n2

; (40)

by taking the supremum in .n1; m/. Analogously,

2�l2 .
2�s2

k1Xl2;s2k
1
2

`1n2;m`
1
n1

: (41)

Relations (39), (40) and (41) play a major role in the proof. The last major piece is a way of bounding
#X
El;Er;Es;k that allows us to exploit transversality and Strichartz along the right directions, as well as the

dual function h. We start with the simplest one of them:

#X
El;Er;Es;k . 2k

X
.En;m/2Z3

jhh; �En˝�mij D 2
k
jF j: (42)

By dropping most of the indicator functions in the definition of X
El;Er;Es;k and using Hölder, we obtain

#X
El;Er;Es;k

�

X
.En;m/2Z3

1Xl2;s1 .En; m/ � 1B
r1
1 \C

s1
1

.n1; m/� k1Xl2;s1k`1n1;m`
1
n2

� k1
B
r1
1 \C

s1
1

k`1n1;m
:

The second factor of the inequality above will be bounded by the one-dimensional bilinear theory:

#B
r1
1 \C

s1
1 . 2

2r1C2s1
X

n1;m2Z

khg1; '
1;1
n1;m
ix1k

2
2 � khg2; '

1;2
n1;m
ix1k

2
2

D 22r1C2s1
“ � X

n1;m2Z

jhg1; '
1;1
n1;m
ix1 j

2
� jhg2; '

1;2
n1;m
ix1 j

2

�
dx2 d Qx2

D 22r1C2s1
“
kg1k

2
L2x1
� kg2k

2
L2x1

dx2 d Qx2 � 22r1C2s1kg1k22 � kg2k
2
2;

16These indicator functions actually bound g1 and g2, but this does not affect the core of the argument.
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by Proposition 4.4 since the supports of '1;1 and '1;2 are disjoint (this is equivalent to transversality in
dimension one). This gives us

#X
El;Er;Es;k

� k1Xl2;s1k`1n1;m`
1
n2

� 22r1C2s1 � jE1j � jE2j: (43)

Alternatively,

#X
El;Er;Es;k

�

X
.n2;m/2Z2

1
B
r2
2 \C

s2
2

.n2; m/
X
n12Z

1Xl2;s2 .En; m/ � 1B
r1
1

.n1; m/

� k1Xl2;s2k
1
2

`1n2;m`
1
n1

� k1
B
r1
1

k
1
2

`1m `
1
n1

� k1
B
r2
2 \C

s2
2

k`1n2;m
:

We can treat the last two factors appearing in the right-hand side above as follows: For a fixed m 2 Z,X
n12Z

1Br1 .n1; m/. 22r1
X
n12Z

khg1; '
1;1
n1;m
ix1k

2
2 � 2

2r1 � kg1k
2
2

by Bessel (recall that the modulated bumps '1;1n1;m are almost-orthogonal if n1 varies and m is fixed), and
then we take the supremum in m. As for the other factor, observe that17

#B
r2
2 \C

s2
2 . 2

5r2Cs2
X

n2;m2Z

khg1; '
2;1
n2;m
ix2k

5
2 � khg2; '

2;2
n2;m
ix2k2

. 25r2Cs2
� X
n2;m2Z

khg1; '
2;1
n2;m
ix2k

6
2

�5
6
� X
n2;m2Z

khg2; '
2;2
n2;m
ix2k

6
2

�1
6

� 25r2Cs2kg1k
5
2 � kg2k2

by Corollary 4.2. These last to estimates give the following bound on #X
El;Er;Es;k:

#X
El;Er;Es;k . k1Xl2;s2k

1
2

`1n2;m`
1
n1

� 2r1 � jE1j
1
2 � 25r2Cs2 � jE1j

5
2 � jE2j

1
2 : (44)

In what follows, we interpolate between (43), (44) and (42) with weights 2
5

�
, 1
5

�
and 2

5

C
, respectively.

We also take an appropriate of combination between (40) and (41), and use (39):

j
zzƒ2;2.g1; g2; h/j “. ”

X
Er;Es;k

2�r1 � 2�r2

jE1j
1
2

�
2�

4
5
s1

k1Xl2;s1k
2
5

`1n1;m`
1
n2

�
2�

1
5
s2

k1Xls;s2k
1
10

`1n2;m`
1
n1

� 2�k

�
�
k1Xl2;s1k`1n1;m`

1
n2

� 22r1C2s1 � jE1j � jE2j
� 2
5

�

�
�
k1Xl2;s2k

1
2

`1n2;m`
1
n1

� 2r1 � jE1j
1
2 � 25r2Cs2 � jE1j

5
2 � jE2j

1
2

� 1
5
�
� .2kjF j/

2
5

�

. jE1j
1
2 � jE2j

1
2 � jF j

2
5

C

;

which is the estimate that we were looking for.18

17Here we are also ignoring the fact that we do not prove the endpoint L2-L6 estimate for the model E1. It will not
compromise this preliminary exposition.

18This bound on zzƒ2;2 is of course informal, which is why we wrote “.”. Observe that we also removed the sum in El ; it
contributes with a term that depends on " in the formal argument. Later in the text we will see why we can assume Er; Es; k � 0 in
the sum above.
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9B. The general argument. Roughly, this is a one-paragraph outline of the proof: we split the sum in
(35) into certain level sets, find good upper bounds for how many points .En; m/ are in each level set using
the weak transversality and Strichartz information, and then average all this data appropriately.

First we will prove the bound

kME
1
k

k;d
.g/kL2.dCkC1/=.dCk�1/C".RdC1/ ."

kY
lD1

jE1;l j
1
2k �

kY
jD2

jEj j
1
2k (45)

for every " > 0. As we remarked at the end of Section 4, this is the restricted weak-type bound that will
be proved directly; all the other ones that are necessary for multilinear interpolation can be proved in a
similar way, as the reader will notice.

We will define several level sets that encode the sizes of many quantities that will play a role in the
proof. We start with the ones involving the scalar products in the multilinear form above:

A
lj
j WD f.En; m/ 2 ZdC1 W jhgj ; '

j

En;m
ij � 2�lj g; 1� j � k:

The sizes of the hgj ; 'En;mi are not the only information that we will need to control. As in the previous
subsection, some mixed-norm quantities appear naturally after using Bessel’s inequality along certain
directions, and we will need to capture these as well:

B
ri;1
i;1 WD f.ni ; m/ 2 Z2 W khg1; '

i;1
ni ;m
ixik2 � 2

�ri;1g; 1� i � k� 1;

B
ri;iC1
i;iC1 WD f.ni ; m/ 2 Z2 W khgiC1; '

i;iC1
ni ;m
ixik2 � 2

�ri;iC1g; 1� i � k� 1;

B
rk;j
k;j
WD f. Enk; m/ 2 Zd�kC2 W khgj ; '

k;j

Enk ;m
i Exk
k2 � 2

�rk;j g; 1� j � k:

Set B
ri;j
i;j WD ∅ for any other pair .i; j / not included in the above definitions. Observe that g1 (the

function that has a tensor structure) has k sets B associated to it: k� 1 sets B
ri;1
i;1 and one set B

rk;1
k;1

. The
other functions gj , j ¤ 1, have only two: one set B

rj�1;j
j�1;j and one set B

rk;j
k;j

for each 1 � j � k. The
idea behind the sets B

ri;1
i;1 and B

ri;iC1
i;iC1 is to isolate the “piece” of each function that encodes the weak

transversality information from the part that captures the Strichartz/Tomas–Stein behavior, which is in
the set B

rk;j
k;j

. For each 1 � i � k � 1, we will pair the information of the sets B
ri;1
i;1 and B

ri;iC1
i;iC1 and

use Proposition 4.4 to extract the gain yielded by weak transversality. The information contained in the
sets B

rk;j
k;j

will be exploited via Corollary 4.2.
The last quantity we have to control is the one arising from the dualizing function h:

Ct WD f.En; m/ 2 ZdC1 W jhh; �En˝�mij � 2
�t
g:

In order to prove some crucial bounds, at some point we will have to isolate the previous information
for only one of the functions gj . This will be done in terms of the following set:19

Xlj Iri;j D A
lj
j \f.En; m/ 2 ZdC1 W .ni ; m/ 2 B

ri;j
i;j g:

19Many of these sets are empty since we set B
ri;j
i;j D ∅ for most .i; j /, but only the nonempty ones will appear in the

argument.
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In other words, Xlj Iri;j contains all the .n1; : : : ; nd ; m/ whose corresponding scalar product hgj ; 'En;mi
has size about 2�lj and with .ni ; m/ being such that khgj ; '

i;j
ni ;mixik2 has size about 2�ri;j.

Finally, it will also be important to encode all the previous information into one single set. This will
be done with

X
El;R;t
WD

\
1�j�k

A
lj
j \

�
.En; m/ 2 ZdC1 W .ni ; m/ 2

\
j

B
ri;j
i;j ; 1� i � d

�
\Ct ;

where we are using the abbreviations ElD.l1; : : : ; lk/ andR WD.ri;j /i;j . Hence we can bound the form zzƒk;d
as follows:

j
zzƒk;d .g; h/j.

X
El;R;t�0

2�t
kY

jD1

2�
lj
k #X

El;R;t : (46)

Observe that we are assuming without loss of generality that lj ; ri;j ; t � 0. Indeed,

2�lj . jhgj ; 'jEn;mij � kgj k1 � k'k1 . 1;

so lj is at least as big as a universal integer. The argument for the remaining indices is the same.
The following two lemmas play a crucial role in the argument by relating the scalar and mixed-norm

quantities involved in the stopping-time above. Lemma 9.4 allows us to do that for the quantities associated
to g1, the function that has a tensor structure. We remark that this is the only place in the proof where the
tensor structure is used.

Lemma 9.4. If X
El;R;t ¤∅, then

2�l1 �
2�r1;1 � � � � � 2�rk;1

kg1k
k�1
2

;

Proof. Observe that

2�r1;1 � � � � � 2�rk;1 �

kY
iD1

khg1; '
i;1
ni ;m
ixik2 D

kY
iD1

khg1;1˝ � � �˝g1;k; '
i;1
ni ;m
ixik2

D

kY
iD1

jhg1;i ; '
i;1
ni ;m
ixi j � kg1;1˝ � � �˝ Og1;i ˝ � � �˝g1;kk2

D jhg1; '
1
En;m
ij � kg1k

k�1
2 � 2�l1 � kg1k

k�1
2 ;

and this proves the lemma. �

Lemma 9.5 gives us an alternative way of relating the quantities previously defined for the generic
functions g2; : : : ; gk .

Lemma 9.5. If X
El;R;t ¤∅, then

2�liC1 .
2�ri;iC1

k1
X
liC1Iri;iC1k

1
2

`1ni ;m`
1
Oni

; (47)

2�liC1 .
2�rk;iC1

k1
X
liC1Irk;iC1k

1
2

`1
Enk;m

`1
OEnk

(48)

for all 1� i � k� 1.
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Proof. Inequality (47) is a consequence of orthogonality: for a fixed .ni ; m/, define

X
liC1Iri;iC1
.ni ;m/

WD f Oni W .En; m/ 2 XliC1;ri;iC1g:

This way,

#X
liC1Iri;iC1
.ni ;m/

� 22liC1
X

Oni2X
liC1Iri;iC1
.ni ;m/

jhgiC1; '
iC1
En;m
ij
2

� 22liC1
X
Oni

ˇ̌̌̌Z
hgiC1; '

i;iC1
ni ;m
ixi � e

�2�im.
P
j¤i x

2
j
/
�

Y
j¤i

e�2�injxj d Oxi

ˇ̌̌̌2
� 22liC1

Z
khgiC1; '

i;iC1
ni ;m
ixi j

2 d Oxi

� 22liC1 � 2�2ri;iC1 ;

where we used Bessel’s inequality from the second to the third line. The lemma follows by taking the
supremum in .ni ; m/. Equation (48) is proven analogously. �

The following corollary gives a convex combination of the relations in Lemma 9.5 that will be used in
the proof.

Corollary 9.6. For 1� i � k� 1 we have

2�liC1 .
2�

2k
dCkC1

�ri;iC1

k1
X
liC1Iri;iC1k

k
dCkC1

`1ni ;m`
1
Oni

�
2�

.d�kC1/

.dCkC1/
�rk;iC1

k1
X
liC1Irk;iC1k

.d�kC1/
2.dCkC1/

`1
Enk;m

`1
OEnk

:

Proof. Interpolate between the bounds of Lemma 9.5 with weights

2k

d C kC 1
and

d � kC 1

d C kC 1
;

respectively. �

We now concentrate on estimating the right-hand side of (46) by finding good bounds for #X
El;R;t . The

following bound follows immediately from the disjointness of the supports of �En˝�m:

#X
El;R;t .

X
.En;m/2ZdC1

jhh; �En˝�mij. 2
t
jF j: (49)

By definition of the set X
El;R;t ,

#X
El;R;t
�

X
.En;m/2ZdC1

kY
jD1

1
A
lj

j

.En; m/ �
Y

i;j; B
ri;j

i;j
¤∅

1
B
ri;j

i;j

.ni ; m/: (50)

We will manipulate (50) in k different ways: k � 1 of them will exploit orthogonality (through the
one-dimensional bilinear theory after combining the sets B

ri;1
i;1 and B

ri;iC1
i;iC1 , 1� i � k�1) and the last one



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 2871

will reflect Strichartz/Tomas–Stein in an appropriate dimension. The following lemma gives us estimates
for the cardinality of X

El;R;t based on the sizes of some of its slices along canonical directions.20

Lemma 9.7. The bounds above imply:

(a) The orthogonality-type bounds:21

#X
El;R;t . k1

X
liC1Iri;iC1k`1ni ;m`

1
Oni

� 22ri;1C2ri;iC1 � kg1k
2
2 � kgiC1k

2
2; 1� i � k� 1: (51)

(b) The Strichartz-type bound:

#X
El;R;t .

kY
jD2

k1
X
lj Irk;j k

1
k

`1
Enk;m

`1
OEnk

�2
2
k

Pk�1
iD1 ri;1 �kg1k

2.k�1/
k

2 �2˛�rk;1C
Pk
lD2 ˇ �rk;l �kg1k

˛
2 �

kY
lD2

kglk
ˇ
2 ; (52)

where

˛:D
2.d C kC 1/

k.d � kC 1/
C ı �

.d C kC 1/

k.d � kC 3/
;

ˇ:D
2

k
C Qı �

.d � kC 1/

k.d � kC 3/
;

with ı; Qı > 0 being arbitrarily small parameters to be chosen later.22

Proof. For each 1� i � k� 1 we bound most of the indicator functions in (50) by 1 and obtain

#X
El;R;t
�

X
.En;m/2ZdC1

1
A
liC1
iC1

.En; m/ �1
B
ri;1
i;1

.ni ; m/ � 1B
ri;iC1
i;iC1

.ni ; m/

D

X
.En;m/2ZdC1

1
X
liC1Iri;iC1 .En; m/ � 1B

ri;1
i;1
\B

ri;iC1
i;iC1

.ni ; m/

D

X
ni ;m

1
B
ri;1
i;1
\B

ri;iC1
i;iC1

.ni ; m/
X
Oni

1
X
liC1Iri;iC1 .En; m/

� k1
X
liC1Iri;iC1k`1ni ;m`

1
Oni

� k1
B
ri;1
i;1
\B

ri;iC1
i;iC1

k`1ni ;m
: (53)

Transversality is exploited now: the cube Q1 with fe1; : : : ; ek�1g as associated set of directions satisfies
(15), which allows us to apply Proposition 4.4 for each 1� i �k�1 since weak transversality is equivalent
to transversality in dimension d D 1. By definition of the sets B

ri;1
i;1 and B

ri;iC1
i;iC1 , Fubini and Proposition 4.4

20The reader may associate this idea to certain discrete Loomis–Whitney or Brascamp–Lieb inequalities. While reducing
matters to lower-dimensional theory is at the core of our paper, we do not yet have a genuine “Brascamp–Lieb way” of bounding
#X
El;R;t for which our methods work. For instance, no “slice” of X

El;R;t given by fixing a few (or all) nj and summing over m
appears in our estimates, which breaks the Loomis–Whitney symmetry.

21Weak transversality enters the picture here.
22One should think of ı and Qı as being “morally zero”. They will be chosen as a function of the initially given " > 0, and the

only reason we introduce them is to make the appropriate up to the endpoint Strichartz exponent appear in (56). The main terms
of ˛ and ˇ are also chosen with that in mind.
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we have

k1
B
ri;1
i;1
\B

ri;iC1
i;iC1

k`1ni ;m
. 22ri;1C2ri;iC1

X
.ni ;m/2B

ri;1
i;1
\B

ri;iC1
i;iC1

khg1; '
i;1
ni ;m
ixik

2
2 � khgiC1; '

i;iC1
ni ;m
iyik

2
2

� 22ri;1C2ri;iC1
“ � X

.ni ;m/2Z2

jhg1; '
i;1
ni ;m
ixi j

2
� jhgiC1; '

i;iC1
ni ;m
iyi j

2

�
d Oxi d Oyi

� 22ri;1C2ri;iC1
Z Z

kg1k
2
L2xi
� kgiC1k

2
L2yi

d Oxi d Oyi

D 22ri;1C2ri;iC1 � kg1k
2
2 � kgiC1k

2
2:

Using this in (53) gives (a). As for (b), bound #X
El;R;t as follows:

#X
El;R;t
D

X
.En;m/2ZdC1

1
X
El;R;t .En; m/

�

X
.En;m/2ZdC1

kY
jD2

1
X
lj Irk;j .En; m/

k�1Y
iD1

1
B
ri;1
i;1

.ni ; m/ �

kY
lD1

1
B
rk;l
k;l

. Enk; m/

D

X
Enk ;m

kY
lD1

1
B
rk;l
k;l

. Enk; m/
X

n1;:::;nk�1

kY
jD2

1
X
lj Irk;j .En; m/

k�1Y
iD1

1
B
ri;1
i;1

.ni ; m/

�

X
Enk ;m

kY
lD1

1
B
rk;l
k;l

. Enk; m/

kY
jD2

k1
X
lj Irk;j .En; m/k

1
k

`1
OEnk

�

k�1Y
iD1

1
B
ri;1
i;1

.ni ; m/

 1k
`1
OEnk

�

kY
jD2

k1
X
lj Irk;j k

1
k

`1
Enk;m

`1
OEnk

�

k�1Y
iD1

k1
B
ri;1
i;1

k
1
k

`1m `
1
ni

�

 kY
lD1

1
B
rk;l
k;l


`1
Enk;m

; (54)

where we used Hölder’s inequality from the third to fourth line. Next, notice that

k1
B
ri;1
i;1

k`1m `
1
ni

. sup
m
22ri;1

X
ni

khg1; '
i;1
ni ;m
ixik

2
2

D sup
m
22ri;1

Z X
ni

jhg1; '
i;1
ni ;m
ixi j

2 d Oxi

. 22ri;1 � kg1k22 (55)

by orthogonality. Now let

pk;1 WD
k.d � kC 3/

.d C kC 1/
; pk;l WD

k.d � kC 3/

.d � kC 1/
for all 2� l � k

and notice that
kX
lD1

1

pk;l
D 1:
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This way, by definition of B
rk;l
k;l

and by Hölder’s inequality with these pk;l we have kY
lD1

1
B
rk;l
k;l


`1
Enk;m

.2˛�rk;1C
Pk
lD2ˇ �rk;l

X
. Enk ;m/

khg1;'
k;1

Enk ;m
i Exk
k
˛
2 �

kY
lD2

khgl ;'
k;l

Enk ;m
i Exk
k
ˇ
2

�2˛�rk;1C
Pk
lD2ˇ �rk;l

� X
. Enk ;m/

khg1;'
k;1

Enk ;m
i Exk
k
˛�pk;1
2

� 1
pk;1

�

kY
lD2

� X
. Enk ;m/

khgl ;'
k;l

Enk ;m
i Exk
k
ˇ �pk;l
2

� 1
pk;l

D2˛�rk;1C
Pk
lD2ˇ �rk;l

� X
. Enk ;m/

khg1;'
k;1

Enk ;m
i Exk
k

2.d�kC3/
.d�kC1/

Cı

2

� 1
pk;1

�

kY
lD2

� X
. Enk ;m/

khgl ;'
k;l

Enk ;m
i Exk
k

2.d�kC3/
.d�kC1/

CQı

2

� 1
pk;l

�2˛�rk;1C
Pk
lD2ˇ �rk;l �kg1k

˛
2 �

kY
lD2

kglk
ˇ
2 ; (56)

by the up to the endpoint mixed-norm Strichartz bound in Corollary 4.2.23 Using (55) and (56) in (54)
yields (b). �

Given " > 0 small,24 we interpolate between kC 1 bounds for #X
El;R;t with the following weights:258̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

�l D
1

d C kC 1
�
"

k
; 1� l � k� 1; for (51);

�k D
.d � kC 1/

2.d C kC 1/
�
"

k
for (52);

�kC1 D

�
1�

.d C k� 1/

2.d C kC 1/

�
C " for (49);

which leads to

j
zzƒk;d .g;h/j

.
X
El;R;t�0

2�t�

kY
jD1

2�
lj
k �

k�1Y
lD1

�
k1

X
llC1Irl;lC1k`1nl ;m`

1
Onl

�22rl;1C2rl;lC1 �kg1k
2
2�kglC1k

2
2

� 1
dCkC1

� "
k

�

� kY
jD2

k1
X
lj Irk;j k

1
k

`1
Enk;m

`1
OEnk

�2
2
k

Pk�1
iD1 ri;1 �kg1k

2.k�1/
k

2 �2˛�rk;1C
Pk
lD2ˇ �rk;l �kg1k

˛
2 �

kY
lD2

kglk
ˇ
2

� .d�kC1/
2.dCkC1/

� "
k

�.2t jF j/Œ1�
.dCk�1/
2.dCkC1/

�C";

23See the footnote related to Corollary 4.2.
24Perhaps it is helpful for the reader to think of ", ı and Qı as equal to zero to focus on the important parts of the proof. The pres-

ence of these parameters here is a mere technicality, except of course for the fact that "> 0makes us lose the endpoint in this case.
25Observe that

PkC1
lD1

�l D1. These weights are chosen so that the correct powers of the measures jEj j and jF j appear in (58).
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Using Lemma 9.4 and Corollary 9.6 to bound the 2�lj in the form zzƒk;d yields

j
zzƒk;d .g;h/j

.
X
El;R;t�0

2�t�2
� "

k2
l1
�

�
1

kg1k
k�1
2

kY
jD1

2�rj;1
�1
k
� "

k2

�

k�1Y
iD1

2
� "

k2
liC1
�

k�1Y
iD1

"
2�

2
dCkC1

�ri;iC1

k1
X
liC1Iri;iC1k

1
dCkC1

`1ni ;m`
1
Oni

�
2�

.d�kC1/
k.dCkC1/

�rk;iC1

k1
X
liC1Irk;iC1k

.d�kC1/
2k.dCkC1/

`1
Enk;m

`1
OEnk

#1� "
k

�

k�1Y
lD1

�
k1

X
llC1Irl;lC1k`1nl ;m`

1
Onl

�22rl;1C2rl;lC1 �kg1k
2
2�kglC1k

2
2

� 1
dCkC1

� "
k

�

� kY
jD2

k1
X
lj Irk;j k

1
k

`1
Enk;m

`1
OEnk

�2
2
k

Pk�1
iD1 ri;1 �kg1k

2.k�1/
k

2 �2˛�rk;1C
Pk
lD2ˇ �rk;l �kg1k

˛
2 �

kY
lD2

kglk
ˇ
2

� .d�kC1/
2.dCkC1/

� "
k

�.2t jF j/Œ1�
.dCk�1/
2.dCkC1/

�C";

Developing the expression above,

j
zzƒk;d .g; h/j.

X
El;R;t�0

2�t � 2
� "

k2
l1
�

� kY
jD1

2�rj;1
�1
k
� "

k2

� kg1k
.k�1/

k2
"� .k�1/

k

2

�

k�1Y
iD1

2
� "

k2
liC1
�

k�1Y
iD1

Œ2�
2

dCkC1
�ri;iC1 � 2�

.d�kC1/
k.dCkC1/

�rk;iC1 �1�
"
k

�

k�1Y
iD1

�
k1

X
liC1Iri;iC1k

1
dCkC1

�. "
k
�1/

`1ni ;m`
1
Oni

� k1
X
liC1Irk;iC1k

.d�kC1/
2k.dCkC1/

�. "
k
�1/

`1
Enk;m

`1
OEnk

�
�

�k�1Y
lD1

k1
X
llC1Irl;lC1k

1
dCkC1

� "
k

`1nl ;m`
1
Onl

�
�

�k�1Y
lD1

.2rl;1Crl;lC1/
2

dCkC1
� 2"
k

�
�kg1k

2.k�1/
dCkC1

�
2.k�1/"

k

2 �

k�1Y
lD1

kglC1k
2

dCkC1
� 2"
k

2

�

kY
jD2

k1
X
lj Irk;j k

1
k
�. .d�kC1/
2.dCkC1/

� "
k
/

`1
Enk;m

`1
OEnk

� .2
2
k

Pk�1
iD1 ri;1 � 2˛�rk;1C

Pk
lD2 ˇ �rk;l /

.d�kC1/
2.dCkC1/

� "
k

�kg1k
. 2.k�1/

k
C˛/�. .d�kC1/

2.dCkC1/
� "
k
/

2 �

kY
lD2

kglk
ˇ �. .d�kC1/

2.dCkC1/
� "
k
/

2

� .2t jF j/Œ1�
.dCk�1/
2.dCkC1/

�C":

At this point we set the values of ı and Qı (as functions of ") to be such that26

ı �

�
.d � kC 1/

k.d � kC 3/
�
.d C kC 1/"

k2.d � kC 3/

�
D
1

2

�
�
"

k2
C
2.d C kC 1/"

k2.d � kC 1/

�
;

Qı �

�
.d � kC 1/2

2k.d C kC 1/.d � kC 3/
�
.d � kC 1/"

k2.d � kC 3/

�
D
1

2

�
2"

k2
�
.d � kC 1/"

k2.d C kC 1/

�
:

26We emphasize that these particular choices are just for computational convenience, and we have not developed the
expressions because this is exactly how we use them to simplify the previous calculations.
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Simplifying (and using the expressions that define ˛ and ˇ in Lemma 9.7),

j
zzƒk;d .g;h/j.

�X
l1�0

2
� "

k2
l1

�
�

�k�1Y
jD1

� X
rj;1�0

2
�. 2"

k
C "

k2
/rj;1

��
�

� X
rk;1�0

2
�rk;1.� "

2k2
C
.dCkC1/
.d�kC1/

"

k2
/
�

�

�k�1Y
iD1

� X
liC1�0

2
� "

k2
liC1

��
�

�X
t�0

2�t.
.dCk�1/
2.dCkC1/

�"/
�

�

�k�1Y
iD1

� X
ri;iC1�0

2�
2"
k
.1� 1

dCkC1
/ri;iC1

��
�

�k�1Y
iD1

� X
rk;iC1�0

2
� "

k2
.1� .d�kC1/

2.dCkC1/
/rk;iC1

��

�

k�1Y
iD1

�
sup

liC1;ri;iC1

k1
X
liC1Iri;iC1k

� "
k
.1� 1

dCkC1
/

`1ni ;m`
1
Oni

� sup
liC1;rk;iC1

k1
X
liC1Irk;iC1k

� "

k2
.1� .d�kC1/

2.dCkC1/
/

`1
Enk;m

`1
OEnk

�
�kg1k

1
k
� 4"
k.d�kC1/

C "
k
� "

k2
�2"C 1

2
.� "

k2
C
2.dCkC1/
.d�kC1/

"

k2
/

2 �

kY
lD2

kglk
1
k
� 2"
k
C "

k2
. .d�kC1/
2.dCkC1/

�1/
2

�jF jŒ1�
.dCk�1/
2.dCkC1/

�C":
Observe that X

l1�0

2
� "

k2
l1 ." 2�

"

k2
Ql1 ;

where Ql1 is the smallest index l1 such that X
El;R;t ¤∅. Hence there exists some . Ek; Qm/ such that

2�
Ql1 � jhg1; '

1
Ek; Qm
ij � jE1j:

Therefore X
l1�0

2
� "

k2
l1 ." jE1j

"

k2 :

Notice also that X
rj;1�0

2
�. 2"

k
C "

k2
/rj;1 ." 2�.

2"
k
C "

k2
/Qrj;1 ;

where Qrj;1 is defined analogously. We can then find .nj ; m/ such that

2�rj;1 . khg1; 'j;1nj ;mixj k2 � jE1j
1
2 :

Therefore X
rj;1�0

2
�. 2"

k
C "

k2
/rj;1 ." jE1j

"
k
C "

2k2 :

We can estimate all other sums in the bound above analogously. Observe that since the cardinalities
appearing in

k�1Y
iD1

�
sup

liC1;ri;iC1

k1
X
liC1Iri;iC1k

� "
k
.1� 1

dCkC1
/

`1ni ;m`
1
Oni

� sup
liC1;rk;iC1

k1
X
liC1Irk;iC1k

� "

k2
.1� .d�kC1/

2.dCkC1/
/

`1
Enk;m

`1
OEnk

�
(57)
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are integers, the whole expression (57) isO.1/. Using these observations and the fact that jEj j<1 gives us

j
zzƒk;d .g; h/j." jF j1�

.dCk�1/
2.dCkC1/

C"
�

kY
jD1

jEj j
1
2k : (58)

To simplify our notation, set g WD .g1;1; g1;2; : : : ; g1;k�1; g1;k; g2; : : : ; gk/. To rigorously use multilinear
interpolation theory, one can run the argument above for the following averaged multilinearized version
of MEk;d :

eME
1
k

k;d .g/ WD
X

.En;m/2ZdC1

�k�1Y
lD1

jhg1;l ; '
l;1
nl ;m
ij

�1
k

� jhg1;k; '
k;1

Enk ;m
ij
1
k �

� kY
jD2

jhgj ; '
j

En;m
ij

�1
k

.�En˝�m/;

with associated dual form27

zƒk;d .g; h/ WD
X

.En;m/2ZdC1

�k�1Y
lD1

jhg1;l ; '
l;1
nl ;m
ij

�1
k

� jhg1;k; '
k;1

Enk ;m
ij
1
k

� kY
jD2

jhgj ; '
j

En;m
ij

�1
k

hh; �En˝�mi:

Hence (58) gives us

keME
1
k

k;d .g/kL2.dCkC1/=.dCk�1/C".RdC1/ ."
kY
lD1

jE1;l j
1
2k �

kY
jD2

jEj j
1
2k ; (59)

which is (45) for eMEk;d . Finally, observe that

keMEk;d .g/kL2.dCkC1/=.k.dCk�1//C".RdC1/

�

k times‚ …„ ƒ
keMEk;d .g/

1
k kL2.dCkC1/=.dCk�1/Ck".RdC1/ � � � � � k

eMEk;d .g/
1
k kL2.dCkC1/=.dCk�1/Ck".RdC1/

.
� kY
lD1

jE1;l j
1
2k �

kY
jD2

jEj j
1
2k

�k
D

kY
lD1

jE1;l j
1
2 �

kY
jD2

jEj j
1
2 ; (60)

which finishes the proof of the case 2� k � d C 1 by restricted weak-type interpolation.

10. The endpoint estimate of the case kD d C 1 of Theorem 1.5

Let g1 WQ1! R, gj WQj ! R for 2� j � d C 1 be continuous functions. Recall that the multilinear
model for k D d C 1 is given in Section 2 by

MEdC1;d .g1; : : : ; gdC1/ WD
X

.En;m/2ZdC1

dC1Y
jD1

hgj ; '
j

En;m
i.�En˝�m/;

27There is a slight difference between the forms zzƒk;d and zƒk;d : the latter is 2.k � 1/-linear, whereas the former is k-linear.
We cannot apply multilinear interpolation theory with inequality (58) directly, because all we proved is that it holds when g1 is a
tensor. In order to correctly place our estimates in the context of multilinear interpolation, we need to consider a form that has
the appropriate level of multilinearity, which is zƒk;d .
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where

'
j

En;m
D

dO
lD1

'l;jnl ;m; 'l;jnl ;m.xl/D '
l;j .xl/e

2�inlxl e2�imx
2
l ;

and 'l;j .x/ was defined in Section 2. From now on, we will assume without loss of generality that g1 is
the full tensor. To simplify our notation, set g WD .g1;1; : : : ; g1;d ; g2; : : : ; gdC1/. Define

eMEdC1;d .g/ WD
X

.En;m/2ZdC1

dY
lD1

hg1;l ; '
l;1
nl ;m
i

dC1Y
jD2

hgj ; '
j

En;m
i.�En˝�m/:

We will show that eMEdC1;d maps

L2.Œ0; 1�/� � � � �L2.Œ0; 1�/�L2.Q2/� � � � �L
2.QdC1/„ ƒ‚ …

2d times

to L2=d, which implies the endpoint estimate of the case k D d C 1 in Theorem 1.5.

Endpoint estimate of the case k D d C 1. Notice that we have d factors in the first product and d factors
in the second. We will pair them in the following way:

eMEdC1;d .g/ WD
X

.En;m/2ZdC1

dC1Y
jD2

hgj ; '
j

En;m
i � hg1;j�1; '

1;j�1
nj�1;m

i.�En˝�m/

Now observe that

keMEdC1;d .g/k
2
d
2
d

D

X
.En;m/2ZdC1

dC1Y
jD2

jhgj ˝ Ng1;j�1; '
j

En;m
˝ N'1;1nj�1;mij

2
d

�

dC1Y
jD2

� X
.En;m/2ZdC1

jhgj ˝ Ng1;j�1; '
j

En;m
˝ N'1;1nj�1;mij

2

�1
d

: (61)

Let us analyze the j D 2 scalar product inside the parentheses (the others are dealt with in a similar way):

hgj ˝ Ng1;1; '
2
En;m
˝ N'1;1n1;mi

D

Z
Rd�1
hg2;1˝ Ng1;1; '

1;2
n1;m
˝ N'1;1n1;mi

�Y
u�2

'u;2.xu/

�
e�2�im.

P
l�2 x

2
l
/e�2�i.

P
l�2 nlxl/cdx1

D yHn1;m.n2; : : : ; nd /;
where

Hn1;m.x2; : : : ; xd / WD hg2;1˝ Ng1;1; '
1;2
n1;m
˝ N'1;1n1;mi

�Y
u�2

'u;2.xu/

�
e�2�im.

P
l�2 x

2
l
/:

We can then use Plancherel if we sum over n2; : : : ; nd first:X
.En;m/2ZdC1

jhgj ˝ Ng1;j�1; '
j

En;m
˝ N'1;1nj�1;mij

2

D

X
n1;m

X
n2;:::;nd

j yHn1;m.n2; : : : ; nd /j
2
D

X
n1;m

kHn1;mk
2
2

D

Z
Rd�1

�Y
u�2

'u;2.xu/

��X
n1;m

jhg2˝ Ng1;1; '
1;2
n1;m
˝ N'1;1n1;mij

2

�cdx1:



2878 CAMIL MUSCALU AND ITAMAR OLIVEIRA

By our initial choice of cubes, supp.'1;1n1;m/\ supp.'1;2n1;m/D∅, so the sum in .n1; m/ is actually M2;1

(we are freezing d � 1 variables of g2 in this sum). Our results from Section 7 implyX
.En;m/2ZdC1

jhgj ˝ Ng1;j�1; '
j

En;m
˝ N'1;1nj�1;mij

2
D kg2˝ Ng1;1k

2
2:

Arguing like that for all 2� j � d C 1, (61) gives us

keMEdC1;d .g/k
2
d
2
d

�

dC1Y
jD2

kg2˝ Ng1;j�1k
2
d

2 D

dC1Y
jD1

kgj k
2
d

2

and the result follows. �

11. Improved k-linear bounds for tensors

In this section we investigate the following question: can one obtain better bounds than those of
Conjecture 1.2 if one is restricted to the class of tensors?28 The answer depends on the concept of
degree of transversality. The extra information that the input functions are supported on cubes that
have disjoint projections along many directions leads to new transversality conditions, and we can take
advantage of it in the full tensor case. This is the content of Theorem 11.2.

Let fej g1�j�d be the canonical basis of Rd . If Q � Rd is a cube, �j .Q/ represents the projection
of Q along the ej direction.

Definition 11.1. Let fQ1; : : : ;Qkg be a collection of k closed unit cubes in Rd with vertices in Zd. We
associate to this collection its transversality vector

� D .�1; : : : ; �d /;

where �j D 1 if there are at least two distinct intervals among the projections �j .Ql/, 1 � l � k, and
�j D 0 otherwise. The total degree of transversality of the collection fQ1; : : : ;Qkg is

j� j WD
X
1�l�d

�l :

The k-linear extension model for a set of cubes fQlg1�l�k as in Definition 11.1 is initially given on
C.Q1/� � � � �C.Qk/ by

MEQ1;:::;Qk
k;d

.g1; : : : ; gk/ WD
X

.En;m/2ZdC1

kY
jD1

hgj ; '
j

En;m
i.�En˝�m/; (62)

where the bumps 'j
En;m

are analogous to the ones in Section 9, but now adapted to the cubes Qk .
From now on we will assume that gj is a full tensor g1j ˝ � � � ˝ g

d
j for 1 � j � k and that the

transversality vector of the collection fQ1; : : : ;Qkg is � . To simplify the notation, we will replace the
superscripts Qj in (62) with � and define

g WD .g11; : : : ; g
d
1 ; : : : ; g

1
j ; : : : ; g

d
j ; : : : ; g

1
k; : : : ; g

d
k /:

28Extension estimates beyond the conjectured range have been verified in [Mandel and Oliveira e Silva 2023] for a certain
class of functions when the underlying submanifold is Sd�1; [Shao 2009] also contains results of this kind for the paraboloid.
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We are then led to consider

ME�k;d .g/ WD
X

.En;m/2ZdC1

kY
jD1

dY
lD1

hglj ; '
l;j
nl ;m
i.�En˝�m/; (63)

where

'l;jnl ;m.x/D '
l;j .x/e2�inlxe2�imx

2

; supp.'l;j /� �l.Qj /:

As was the case in Section 9, we will deal first with an averaged version of ME�
k;d

for technical reasons.
Define

eME�k;d .g/ WD
X

.En;m/2ZdC1

kY
jD1

dY
lD1

jhglj ; '
l;j
nl ;m
ij
1
k .�En˝�m/; (64)

and consider its dual form

zƒ�k;d .g; h/ WD
X

.En;m/2ZdC1

kY
jD1

dY
lD1

jhglj ; '
l;j
nl ;m
ij
1
k � hh; �En˝�mi:

Let Ej;l , 1 � j � k and 1 � l � d , be measurable sets such that jglj j � �Ej;l . Let F � RdC1 be a
measurable set such that jhj � �F . Under these conditions we have the following result:

Theorem 11.2. ME�
k;d

satisfies

kME�k;d .g/kLp.RdC1/ .p
kY

jD1

dY
lD1

kglj k2 for all p > p� WD
2.d Cj� jC 2/

k.d Cj� j/
:

Proof. It is enough to prove that

keME�k;d .g/kLp.RdC1/ .p
kY

jD1

dY
lD1

jEj;l j
1
2k ;

holds for every

p >
2.d Cj� jC 2/

.d Cj� j/
:

Define the level sets

A
rj;l
j;l
WD f.nl ; m/ 2 Z2 W jhglj ; '

l;j
nl ;m
ij � 2�rj;l g;

Bt WD f.En; m/ 2 ZdC1 W jhh; �En˝�mij � 2
�t
g:

Set R WD .ri;j /i;j and

XR;t WD

�
.En; m/ 2 ZdC1 W .nl ; m/ 2

k\
jD1

A
rj;l
j;l
; 1� l � d

�
\Bt :

We then have

j zƒ�k;d .g; h/j.
X
R;t�0

2�t �

kY
jD1

dY
lD1

2�
rj;l
k � #XR;t :
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As in the previous section, we can assume without loss of generality that rj;l ; t � 0. We can estimate
#XR;t using the function h:

#XR;t . 2t
X

.En;m/2ZdC1

jhh; �En˝�mij. 2
t
jF j: (65)

Alternatively, by the definition of XR;t ,

#XR;t �
X

.En;m/2ZdC1

kY
jD1

dY
lD1

1
A
rj;l

j;l

.nl ; m/ (66)

There are many ways to estimate the right-hand side above. We will obtain d different bounds for it,
each one arising from summing in a different order. Fix 1� l � d and leave the sum over .nl ; m/ for last:

#XR;t D
X

.nl ;m/2Z2

� kY
jD1

1
A
rj;l

j;l

.nl ; m/

�
�

dY
QlD1;Ql¤l

�X
nQl

kY
QjD1

1
A
r Qj;Ql

Qj;Ql

.nQl ; m/

�

�

X
.nl ;m/2Z2

� kY
jD1

1
A
rj;l

j;l

.nl ; m/

�
�

dY
QlD1;Ql¤l

kY
QjD1

�X
nQl

1
A
r Qj;Ql

Qj;Ql

.nQl ; m/

�
l; Qj;Ql

;

(67)

where we used Hölder’s inequality in the last line and 
l; Qj ;Ql

are generic parameters such that
kX
QjD1


l; Qj ;Ql
D 1 (68)

for all 1 � l; Ql � d with l ¤ Ql fixed. Let us briefly explain the labels in these parameters that we just
introduced:


l; Qj ;Ql
�!

8̂<̂
:
l indicates that the last variables to be summed are .nl ; m/,
Qj corresponds to the Qj -th function g Qj ,
Ql ¤ l corresponds to the Ql-th variable nQl .

We will not make any specific choice for the 
l; Qj ;Ql

since condition (68) will suffice. Now observe that
for a fixed m 2 Z we haveX

nQl

1
A
r Qj;Ql

Qj;Ql

.nQl ; m/� 2
2r Qj;Ql

X
nQl

jhg
Ql
Qj
; '
Ql; Qj
nQl ;m
ij
2
� 22r Qj;Ql � jE Qj ;Ql j (69)

by Bessel’s inequality. Using (69) back in (67):

#XR;t �

dY
QlD1;Ql¤l

kY
QjD1

22l; Qj;Qlr Qj;Ql �jE Qj ;Ql j

l; Qj;Ql �

X
.nl ;m/2Z2

� kY
jD1

1
A
rj;l

j;l

.nl ;m/

�
;

D

dY
QlD1; Ql¤l

kY
QjD1

22l; Qj;Qlr Qj;Ql �jE Qj ;Ql j

l; Qj;Ql �

X
.nl ;m/2Z2

� Y
.j1;j2/;j1¤j2

1
A
rj1;l

j1;l

.nl ;m/�1
A
rj2;l

j2;l

.nl ;m/

�
: (70)

We simply used the fact that 12 D 1 in the last line above. Our goal is to pair the scalar products in
(63) corresponding to the functions glj1 and glj2 . There are two kinds of such pairs:
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(a) A pair .j1; j2/ with j1 ¤ j2 is l-transversal if supp.'l;j1/\ supp.'l;j2/D∅.

(b) A pair .j1; j2/with j1¤j2 is non-l-transversal along the direction el if supp.'l;j1/\supp.'l;j2/¤∅.

Thus we have by Hölder’s inequality for generic parameters ˛l;j1;j2 and ˇl;j1;j2 ,

#XR;t �

dY
QlD1
Ql¤l

kY
QjD1

22l; Qj;Qlr Qj;Ql � jE Qj ;Ql j

l; Qj;Ql �

Y
.j1;j2/

l-transversal, j1¤j2

� X
.nl ;m/2Z2

1
A
rj1;l

j1;l

.nl ; m/ �1
A
rj2;l

j2;l

.nl ; m/

�̨
l;j1;j2

�

Y
.j1;j2/

non-l-transversal, j1¤j2

� X
.nl ;m/2Z2

1
A
rj1;l

j1;l

.nl ; m/ � 1
A
rj2;l

j2;l

.nl ; m/

�̌
l;j1;j2

: (71)

Define
˛l;j1;j2 D 0 if .j1; j2/ is non-l-transversal,

ˇl;j1;j2 D 0 if .j1; j2/ is l-transversal.

Hence Hölder’s condition is X
.j1;j2/

1�j1;j2�k
j1¤j2

˛l;j1;j2 Cˇl;j1;j2 D 2; (72)

since we are counting each ˛l;j1;j2 and ˇl;j1;j2 twice, for all 1� l � d . The labels in the parameters ˛
and ˇ track the following information:

˛l;j1;j2 and ˇl;j1;j2 �!
�
l indicates that we are summing over .nl ; m/,
j1 and j2 correspond to two distinct functions gj1 and gj2 .

We can then use Proposition 4.4 for the transversal pairs and a combination of one-dimensional
Strichartz/Tomas–Stein with Hölder for the nontransversal ones:

#XR;t �

dY
QlD1
Ql¤l

kY
QjD1

22l; Qj;Qlr Qj;Ql �jE Qj ;Ql j

l; Qj;Ql �

Y
.j1;j2/

l-transversal, j1¤j2

.22˛l;j1;j2 .rj1;lCrj2;l / �jEj1;l j
˛l;j1;j2 �jEj2;l j

˛l;j1;j2 /

�

Y
.j1;j2/

non-l-transversal, j1¤j2

.23ˇl;j1;j2 .rj1;lCrj2;l / � jEj1;l j
3
2
ˇl;j1;j2 � jEj2;l j

3
2
ˇl;j1;j2 /: (73)

As mentioned earlier in this section, we have d estimates like (73). We will interpolate between them
with weights �l :

#XR;t D

dY
lD1

.#XR;t /�l ;

with
dX
lD1

�l D 1: (74)

This yields

#XR;t .
kY

jD1

dY
lD1

2#j;l �rj;l � jEj;l j
#j;l
2 ; (75)
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where

#j;l D
�X
j1¤j

.2˛l;j;j1 C 3ˇl;j;j1/

�
� �l C

X
Ql¤l

2Ql;j;l � �Ql :

In order to prove an estimate like L2 � � � � �L2 7! Lp, we will need all these coefficients #j;l to be
equal. Let us call them all X for now and sum over j :

kX
jD1

X D

� kX
jD1

X
j1¤j

.2˛l;j;j1 C 3ˇl;j;j1/

�
� �l C

X
Ql¤l

2

� kX
jD1

Ql;j;l

�
� �Ql

By (68) and (72)

X D
1

k

�
6�

kX
jD1

X
j1¤j

˛l;j;j1

�
� �l C

X
Ql¤l

2

k
� �Ql (76)

for all 1 � l � d . Together with (74), (76) gives us a linear system of d equations in the d variables
�1; : : : ; �d . The solution is

�l D

� dX
QlD1

4�
Pk
jD1

P
j1¤j

˛l;j;j1

4�
Pk
jD1

P
j1¤j

˛Ql;j;j1

��1
: (77)

Plugging (77) back in (76) gives us

X D
2

k

�
1C

�X
QlD1

1�
4�

Pk
jD1

P
j1¤j

˛Ql;j;j1

���1�: (78)

To minimize X we must maximize
kX

jD1

X
j1¤j

˛Ql;j;j1
:

This is achieved by choosing ˇl;j1;j2 D 0 for all .j1; j2/ if there is at least one l-transversal pair
.j1; j2/. In other words, choose

ˇl;j1;j2 D 0 for all .j1; j2/ if �l D 1.

Hence by (72),
kX

jD1

X
j1¤j

˛Ql;j;j1
D

�
2 if �Ql D 1,
0 if �Ql D 0.

This choice of parameters gives us

X D
2.d Cj� jC 2/

k.d Cj� j/
;

which implies the following estimate for #XR;t :

#XR;t .
kY

jD1

dY
lD1

2X �rj;l � jEj;l j
X
2 ; (79)
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Finally, we interpolate between (79) with weight 1
k�X
� " and (65) with weight

�
1� 1

k�X

�
C " to bound

the form ƒ�
k;d

:

jƒ�k;d .g; h/j.
X
R;t�0

2�t �

kY
jD1

dY
lD1

2�
rj;l
k �

� kY
jD1

dY
lD1

2X �rj;l � jEj;l j
X
2

� 1
k�X
�"

� Œ2t jF j�.1�
1
k�X
/C":

Developing the right-hand side:

jƒ�k;d .g; h/j.
�X
t�0

2�.
1
k�X
�"/t

� kY
jD1

dY
lD1

� X
rj;l�0

2�"X �rj;l
�
�

� kY
jD1

dY
lD1

jEj;l j
1
2k
� "X
2

�
� jF j.1�

1
k�X
/C":

As in the previous section, these series are summable. We haveX
rj;l�0

2�"X �rj;l ." jEj;l j"X :

For the series in t we can just bound it by an absolute constant depending on ". This leads to

jƒ�k;d .g; h/j."
� kY
jD1

dY
lD1

jEj;l j
1
2k
C "X

2

�
� jF j.1�

1
k�X
/C" .

� kY
jD1

dY
lD1

jEj;l j
1
2k

�
� jF j.1�

1
k�X
/C";

since jEj;l j � 1, which finishes the proof by multilinear interpolation. �

Remark 11.3. If �l D 0 for 1� l � d , then

p� D
2.d C 2/

kd
;

which could have been proven in general with Hölder and Strichartz/Tomas–Stein. This is because there
is no transversality to exploit; therefore the best bounds we can hope for in the multilinear setting come
from the linear one.

Remark 11.4. If there are exactly k� 1 indices l such that �l D 1, then

p� D
2.d C kC 1/

k.d C k� 1/
;

which is consistent with Theorem 1.5.

Remark 11.5. Finally, if one has more than k� 1 indices l such that �l D 1, then

p� <
2.d C kC 1/

k.d C k� 1/
;

which clearly illustrates the point of this section. The extreme case is when �lD1 for 1� l�d , which gives

p� D
2.d C 1/

kd
:

This can be seen as an improvement upon the linear extension conjecture itself in the following sense: if
we take the product of k extensions EUj gj , 1� j � k, and combine the linear extension conjecture with
Hölder’s inequality, we obtain an operator that maps L2.dC1/=d � � � � �L2.dC1/=d to L2.dC1/=.kd/C".
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On the other hand, if we are in a situation in which we have as much transversality as possible and all
gj are full tensors, we obtain L2 � � � � �L2 to L2.dC1/=.kd/C".

12. Beyond the L2-based k-linear theory with and without transversality

Given a collection QDfQ1; : : : ;Qkg of cubes, the purpose of this section is to investigate near-restriction
k-linear estimates associated to Q. In other words, we study bounds of the form kY

jD1

EQj gj

L2.dC1/=.kd/C".RdC1/

."
kY

jD1

kgj kLp.Qj / (80)

for all " > 0 and for some p > 1. There are two cases of interest here:

� Q is a collection of transversal cubes.

� All cubes in Q are the same.

It will be clear that all cases in between these two can be studied in the same framework that we now
present.

12A. Near-restriction estimates with transversality. We start by restating (4). For 2 � k < d C 1,
to recover the whole range of the generalized k-linear extension conjecture, it is enough to prove
Conjecture 1.2 and  kY

jD1

EUj gj

L2.dC1/=.kd/C".RdC1/

."
kY

jD1

kgj kL2.dC1/=d .Uj / (81)

for all " > 0.
Let QD fQ1; : : : ;Qkg be our initially fixed set of cubes.29 In what follows, we recast the statement

of Theorem 1.13 in terms of this set:

Theorem 12.1. If Q is a collection of transversal cubes and g1 is a tensor, the operator MEk;d .g1; : : : ;gk/
satisfies

kMEk;d .g1; : : : ; gk/kL2.dC1/=.kd/C".RdC1/ ."
kY

jD1

kgj kLp.k;d/.Qj /; (82)

where

p.k; d/D

8̂̂<̂
:̂
4.d C 1/

d C kC 1
if 2� k <

d

2
;

4.d C 1/

2d � kC 1
if
d

2
� k < d C 1:

As anticipated in the Introduction, we prove it by adapting the argument from Section 9.

Remark 12.2. As in Section 9, the theorem above holds under the assumption that the given set of cubes
is weakly transversal and any other gj , j ¤ 1, can be assumed to be the tensor.

29See Section 3.
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Remark 12.3. Roughly speaking, the difference between the proof of Theorem 12.1 and the one done in
Section 9 is in the building blocks we use: instead of Strichartz/Tomas–Stein (in the form of Corollary 4.2),
we will use the best extension bound for the parabola (in the form of Proposition 4.3). One can think of
the argument in this section as a rigorous way of replacing the former piece by the latter in our machinery.

Proof of Theorem 12.1. We work in the same setting as in Section 9. Even though there are some slight
differences between the level sets from that section and the ones that we will define here, the approach is
very similar.

It is convenient to recall a few important points from Section 9:

� The form of interest here is (in its averaged form):

zzƒk;d .g; h/ WD
X

.En;m/2ZdC1

� kY
iD1

jhgj ; '
j

En;m
ij

�1
k

hh; �En˝�mi: (83)

� The tensor g1 has the structure g1 D g1;1˝ � � �˝g1;d .

� E1;1; : : : ; E1;d � Œ0; 1�, Ej �Qj (2�j �k) andF �RdC1 are measurable sets such that jg1;l j��E1;l
for 1� l � d , jgj j � �Ej for 2� j � k and jhj � �F . Furthermore, E1 WDE1;1 � � � � �E1;d .

We start by encoding the sizes of the scalar products appearing in (83):

A
lj
j WD f.En; m/ 2 ZdC1 W jhgj ; 'En;mij � 2

�lj g; 1� j � k:

Now we see the first difference between the argument in this section and the one in Section 9: the
mixed-norm quantities here are all of the same kind, in the sense that the inner products inside the
L2 norms are all one-dimensional:

B
ri;j
i;j WD f.ni ; m/ 2 Z2 W khgj ; '

i;j
ni ;m
ixik2 � 2

�ri;j g; 1� i � d; 1� j � k;

The remaining sets are defined just as in Section 9, and with the exact same purpose:

Ct WD f.En; m/ 2 ZdC1 W jhh; �En˝�mij � 2
�t
g;

Xlj Iri;j D A
lj
j \f.En; m/ 2 ZdC1 W .ni ; m/ 2 B

ri;j
i;j g;

X
El;R;t
WD

\
1�j�k

A
lj
j \

�
.En; m/ 2 ZdC1 W .ni ; m/ 2

\
1�j�k

B
ri;j
i;j ; 1� i � d

�
\Ct ;

where we are using the abbreviations El D .l1; : : : ; lk/ and R WD .ri;j /i;j . Hence,

j
zzƒk;d .g; h/j.

X
El;R;t

2�t
kY

jD1

2�
lj
k #X

El;R;t :

The analogue of Lemma 9.4 is the bound

2�l1 �
2�r1;1 � � � � � 2�rd;1

kg1k
d�1
2

; (84)



2886 CAMIL MUSCALU AND ITAMAR OLIVEIRA

which is proven in the same way. By an argument entirely analogous to that of Lemma 9.5, we can show

2�lj .
2�ri;j

k1
X
lj Iri;j k

1
2

`1ni ;m`
1
Oni

for all 1� i � d; 2� j � k: (85)

The following corollary of the estimates above will give us the appropriate convex combination of
such relations:30

Corollary 12.4. For 1� i � k� 1 we have

2�liC1 .
2�

k
dC1
�ri;iC1

k1
X
liC1Iri;iC1k

1
2.dC1/

`1ni ;m`
1
Oni

�

dY
uDk

2�
1

dC1
�ru;iC1

k1
X
liC1Iru;iC1k

1
2k.dC1/

`1nu;m`
1
Onu

:

Proof. Interpolate between the bounds in (85) with one weight equal to k
dC1

for .i; j / WD .i; i C 1/ and
d � kC 1 weights 1

dC1
for .i; j / WD .u; i C 1/, k � u� d . �

We can estimate #X
El;R;t using the function h:

#X
El;R;t .

X
.En;m/2ZdC1

jhh; �En˝�mij. 2
t
jF j: (86)

Alternatively,

#X
El;R;t
�

X
.En;m/2ZdC1

kY
jD1

1
A
lj

j

.En; m/

dY
iD1

kY
jD1

1
B
ri;j

i;j

.ni ; m/: (87)

Similarly to what was done in Section 9, we will manipulate the inequality above in d ways: k � 1
of them will exploit orthogonality (from the combination of the sets B

ri;1
i;1 and B

ri;iC1
i;iC1 , 1 � i � k � 1),

but now the other d � kC 1 ones will reflect the linear extension problem in dimension 1. The following
lemma is the appropriate analogue of Lemma 9.7 in this section:

Lemma 12.5. The bounds above imply:

(a) The orthogonality-type bounds: for all 1� i � k� 1,

#X
El;R;t . k1

X
liC1Iri;iC1k`1ni ;m`

1
Oni

� 22ri;1C2ri;iC1 � kg1k
2
2 � kgiC1k

2
2: (88)

(b) The extension-type bounds: for all k � u� d ,

#X
El;R;t .

kY
jD2

k1
X
lj Iru;j k

1
k

`1nu;m`
1
Onu

� 2
2
k

P
i¤u ri;1 � kg1k

2.d�1/
k

2

� 2˛�ru;1C
Pk
lD2 ˇ �ru;l �

�Y
j¤u

kg1;j k2

�̨
� kg1;uk

˛
4 �

kY
lD2

kglk
ˇ
4 ; (89)

where

˛ WD
2.kC 1/

k
C ı �

.kC 1/

2k
; ˇ WD

2

k
C Qı �

1

2k
;

with ı; Qı > 0 being arbitrarily small parameters to be chosen later.
30Notice that instead of using just two mixed quantities for each scalar one (as in Corollary 9.6), we are using d � kC 2

many of them here.
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Proof. Part (a) is the same as in Lemma 9.7(a). As for (b), fix k � u� d and bound #X
El;R;t as follows:

#X
El;R;t
D

X
.En;m/2ZdC1

1
X
El;R;t .En; m/

�

X
.En;m/2ZdC1

kY
jD2

1
X
lj Iru;j .En; m/

Y
i¤u

1
B
ri;1
i;1

.ni ; m/ �

kY
lD1

1
B
ru;l
u;l

.nu; m/

D

X
nu;m

kY
lD1

1
B
ru;l
u;l

.nu; m/
X
Onu

kY
jD2

1
X
lj Iru;j .En; m/

Y
i¤u

1
B
ri;1
i;1

.ni ; m/

�

X
nu;m

kY
lD1

1
B
ru;l
u;l

.nu; m/

kY
jD2

k1
X
lj Iru;j .En; m/k

1
k

`1
Onu

�

Y
i¤u

1
B
ri;1
i;1

.ni ; m/

 1k
`1
Onu

�

kY
jD2

k1
X
lj Iru;j k

1
k

`1nu;m`
1
Onu

�

Y
i¤u

k1
B
ri;1
i;1

k
1
k

`1m `
1
ni

�

 kY
lD1

1
B
ru;l
u;l


`1nu;m

; (90)

where we used Hölder’s inequality from the third to fourth line. Next, notice that

k1
B
ri;1
i;1

k`1m `
1
ni

. sup
m
22ri;1

X
ni

khg1; '
i;1
ni ;m
ixik

2
2

D sup
m
22ri;1

Z X
ni

jhg1; '
i;1
ni ;m
ixi j

2 d Oxi . 22ri;1 � kg1k22
(91)

by orthogonality. Now let

pu;1 WD
2k

.kC 1/
;

pu;l WD 2k for all 2� l � k
and notice that

kX
lD1

1

pu;l
D 1:

This way, by the definition of B
ru;l
u;l

and by Hölder’s inequality with these pu;l we have kY
lD1

1
B
ru;l
u;l


`1nu;m

. 2˛�ru;1C
Pk
lD2 ˇ �ru;l

X
.nu;m/

khg1; '
u;1
nu;m
ixuk

˛
2 �

kY
lD2

khgl ; '
u;l
nu;m
ixuk

ˇ
2

� 2˛�ru;1C
Pk
lD2 ˇ �ru;l

� X
.nu;m/

khg1; '
u;1
nu;m
ixuk

˛�pu;1
2

� 1
pu;1

�

kY
lD2

� X
.nu;m/

khgl ; '
u;l
nu;m
ixuk

ˇ �pu;l
2

� 1
pu;l

D 2˛�ru;1C
Pk
lD2 ˇ �ru;l

� X
.nu;m/

khg1; '
u;1
nu;m
ixuk

4Cı
2

� 1
pu;1

�

kY
lD2

� X
.nu;m/

khgl ; '
u;l
nu;m
ixuk

4CQı
2

� 1
pu;l

: (92)
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At this point we see another difference between this proof and the argument in Section 9: We do
not obtain a pure Lp norm when using the near-L4 extension analogue of Corollary 4.2 for l D d � 1.
Alternatively, we use Hölder in the term involving g1 once more:

khg1; '
u;1
nu;m
ixuk

4Cı
2 D

�Z �Y
j¤u

jg1;j j
2.xj /

�
� jhg1;u; '

u;1
nu;m
ixu j

2cdxu� 4Cı2
�

�Y
j¤u

kg1;j k2

�4Cı
� jhg1;u; '

u;1
nu;m
ixu j

4Cı :

For the remaining gl we simply use Hölder and the fact that they are compactly supported:31

khgl ; '
u;l
nu;m
ixuk

4CQı
2 . khgl ; 'u;lnu;mixuk

4CQı
4 :

These observations imply kY
lD1

1
B
ru;l
u;l


`1nu;m

. 2˛�ru;1C
Pk
lD2 ˇ �ru;l �

�Y
j¤u

kg1;j k2

�4Cı
pu;1

�

� X
.nu;m/

jhg1;u; '
u;1
nu;m
ixu j

4Cı

� 1
pu;1

�

kY
lD2

� X
.nu;m/

khgl ; '
u;l
nu;m
ixuk

4CQı
4

� 1
pu;l

� 2˛�ru;1C
Pk
lD2 ˇ �ru;l �

�Y
j¤u

kg1;j k2

�̨
� kg1;uk

˛
4 �

kY
lD2

kglk
ˇ
4 ; (93)

where we used Minkowski for norms and the L4-L4CQı one-dimensional extension estimate from the
second to third line above. Part (b) follows from applying (91) and (93) to (90). �

Given ">0, we bound the multilinear form zzƒk;d using the estimates from (84) and Corollary 12.4 (with
the appropriate "-losses for later convenience), and the ones from Lemma 12.5 with the following weights:8̂̂<̂

:̂
�l D

1

2.d C 1/
�
"

d
; 1� l � d for the d estimates in (88) and (89);

�dC1 D 1�
d

2.d C 1/
C " for (86):

Hence,

j
zzƒk;d .g; h/j.

X
El;R;t�0

2�t�2�
.dC1/"
2kd

l1�

�
1

kg1k
d�1
2

dY
jD1

2�rj;1
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31We use this crude estimate for the remaining gl because they do not have the same structure that allows “pulling out” the
one-dimensional functions g1;j , like g1 does. There is a clear loss here and it is reflected in the fact that p.k; d/ is not the best
exponent for which (82) holds.
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Developing the expression above,
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Observe that the product of the blue factors above (for k � u� d ) is32Y
k�u�d

�
kg1;uk4 �
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32Recall that jg1j D jg1;1˝ � � �˝g1;d j � 1E1;1 ˝ � � �˝1E1;d � 1E1 .
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Notice that the previous step was lossy, which also reflects in the suboptimal final exponent p.k; d/.
Now we set the values of ı and Qı (as functions of ") to be such that

ı �
.kC 1/

2k

�
1

2.d C 1/
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"

d

�
D
.d C 1/"

kd
;

Qı �
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�
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d

�
D

"

kd
:

Simplifying the expression above with this choice of ı and Qı,
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By considerations identical to the ones in the end of Section 9, this implies

j
zzƒk;d .g; h/j." jF j1�

d
2.dC1/

C"
� jE1j

2d�kC1
4k.dC1/

k�1Y
lD1

jElC1j
dCkC1
4k.dC1/ : (96)

To make all exponents of jEj j (1� j � k) the same, we have to take

1

Qp.k; d/
Dmin

�
2d � kC 1

4k.d C 1/
;
d C kC 1

4k.d C 1/

�
:

Again by the same considerations from Section 9, (96) implies33 Theorem 12.1. �

12B. Near-restriction estimates without transversality. To make the notation lighter, let us omit the
index Q and set Ed be the extension operator associated to a fixed cube Q � Rd . Recall the k-product

33Notice that we obtain something slightly better than Theorem 12.1 if one is looking for asymmetric estimates: (96) implies
a bound of type Lp1 �Lp2 �Lp2 � � � � �Lp2 ! L2.dC1/=.kd/C", p1 ¤ p2 and p1; p2 � p.k; d/, if g1 is a tensor.
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operator obtained from Ed defined in (6)

Ed;.k/.g1; : : : ; gk/D
kY

jD1

Edgj :

In this subsection we prove Theorem 1.18, which we restate here for the convenience of the reader.

Theorem 12.6. Let 2� k � d C 1. If g1 is a tensor, the inequality kY
jD1

Edgj

L2.dC1/=.kd/C".RdC1/

.Q;"
kY

jD1

kgj kL4.Q/ (97)

holds for all " > 0.

Remark 12.7. As in the previous subsection, the difference between the proof of Theorem 12.6 and the
one done in Section 9 is in the building blocks used: since there is no transversality to be exploited, we
only use the best extension bound for the parabola (in the form of Proposition 4.3).

Proof of Theorem 12.6. The framework is the exact same as in the proof of Theorem 12.1. We have to
bound #X

El;R;t to effectively estimate34

j
zzƒk;d .g; h/j.

X
El;R;t

2�t
kY

jD1

2�
lj
k #X

El;R;t

in terms of the measures of the sets E1;`, 1� `� d , Ej , 2� j � k, and F. This will be done by the
following analogue of Lemma 12.5:

Lemma 12.8. The two following extension-type bounds for the cardinality #X
El;R;t hold:

(a) For all 1� i � k� 1 and all35 � > 0,

#X
El;R;t . k1

X
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1
Oni

� 2.2C�/.ri;1Cri;iC1/ � kg1;ik
2C�
4 �

�Y
`¤i

kg1;`k
2C�
2C�

�
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4 : (98)

(b) If k < d C 1, for all k � u� d ,
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where

˛ WD
2.kC 1/

k
C ı �

.kC 1/

2k
; ˇ WD

2

k
C Qı �

1

2k
;

with ı; Qı > 0 being arbitrarily small parameters to be chosen later.

Remark 12.9. We highlight that (99) is only going to be used if k < d C 1. The argument that follows
will make it clear what changes in the case k D d C 1 if we only use (98).

34Rigorously, we are dealing with a different operator here, but we will keep the notation unchanged for simplicity.
35The parameter � will be chosen later. It should be regarded as morally zero, and we only introduce it to be able to use

Proposition 4.3 since it does not hold at the endpoint.
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Proof. We only prove (98), since (99) is identical to (89). From (53),
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We bound the second factor in the right-hand side above as follows:
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where we used Hölder’s inequality from the second to third lines, Fubini from the third to fourth, Hölder
again twice, Proposition 4.3 and the fact that g1 is a tensor. This finishes the proof of the lemma. �

As in the previous subsection, given " > 0, we bound zzƒk;d using the estimates from (84) and
Corollary 12.4, and the ones from Lemma 12.8 with the exact same weights36 we used in the proof of
Theorem 12.1:8̂̂<̂
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Hence,
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36If k D d C 1, we give weight 1
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to each one of the d estimates in (98) only.
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Developing the expression above37,
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Observe that we highlighted a few factors in red in (100); this is just to compare them to the red terms
in (94): the red terms are the only ones that differ in the right-hand sides of (94) and (100). On the other
hand, we will bound the product of the blue factors38 in (100) in a slightly better way than we did in the

37The products in the fourth and fifth lines above are void if k D d C 1. We can think of them as being 1.
38The seventh and eighth lines are void if k D d C 1, hence the blue factors do not contribute at all in this case.
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proof of Theorem 12.1:Y
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Setting ı and Qı exactly as in the previous subsection and using the observations we just made, we
conclude that the final bound for j zzƒk;d .g; h/j compares to (96) exactly as follows:

� The coefficients of the “rj;1 power” is now

2Œ�
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whereas in (96) it was
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On the other hand, still for 1� l � k�1, the red factors in (100) produce a power of jE1;l j that is exactly
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less than the one produced by the corresponding red factors in (94). If k < d C 1, these provide a net
gain of �

1

2k
�
�

4

�
�

�
1

2.d C 1/
�
"

d
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C
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in the final power of jE1;l j. If k D d C 1, we just lose (compared to (96)) (102) in the final power
of jE1;l j.

� For k � u� d , the powers of the measures jE1;uj are exactly the same in both (94) and in (100).

� For 2� l � k, the red factors in (100) produce a power of jEl j that is exactly

.2��/

4

�
1

2.d C 1/
�
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�
less than the one produced by the corresponding red factors in (94).

� All other factors are precisely the same.

39Here we are using the explicit choice of ı.
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By choosing � small enough compared to " and by the same considerations made in the end of Section 9,
this implies

j
zzƒk;d .g; h/j." jF j1�

d
2.dC1/
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2d�kC2
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for k < d C 1 and
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d
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C"
�

kY
lD1

jEl j
1
4k

for k D d C 1. Again by the same considerations from Section 9, these imply Theorem 12.6. �

13. Weak transversality, Brascamp–Lieb and an application

We were recently asked by Jonathan Bennett if there was a link between our results and the theory
of Brascamp–Lieb inequalities. The motivation for that comes from the fact that, assuming g1 D
g1;1˝ � � �˝g1;d , one can see the operator MEdC1;d as the 2d -linear object

T .g1;1; : : : ; g1;d ; g2; : : : ; gdC1/ WDMEdC1;d .g1;1˝ � � �˝g1;d ; g2; : : : ; gdC1/;

and given that such a link exists in the theory of MEdC1;d (see [Bennett 2014]), it is natural to wonder
if boundedness for T is related somehow to the finiteness condition of certain Brascamp–Lieb constants
BL.L;p/.

The purposes of this section are to make this connection clear and to give a modest application of our
results to the theory of restriction-Brascamp–Lieb inequalities.

13A. A link between weak transversality and Brascamp–Lieb inequalities. We start with some classical
background. Let Lj W Rn! Rnj be linear maps and pj � 0, 1� j �m. Inequalities of the formZ

Rn

mY
jD1

.fj ıLj /
pj .v/ dv � C

mY
jD1

�Z
R
nj

fj .yj / dyj

�pj
(103)

are called Brascamp–Lieb inequalities. Bennett, Carbery, Christ and Tao [Bennett et al. 2008] established
for which Brascamp–Lieb data .L;p/ the inequality above holds, where LD .L1; : : : ; Lm/ and p D

.p1; : : : ; pm/. The best constant for which (103) holds for all nonnegative input functions fj 2 L1.Rnj /
is denoted by BL.L;p/.

Theorem 13.1 [Bennett et al. 2008]. The constant BL.L;p/ in (103) is finite if and only if for all
subspaces V � Rn

dim.V /�
mX
jD1

pj dim.LjV / (104)

and
mX
jD1

pjnj D n: (105)

Remark 13.2. By taking VDRn in (104) it follows that eachLj must be surjective for (105) to hold as well.
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We will work with explicit maps Lj and use Theorem 13.1 to establish a link between the concept of
weak transversality and inequalities such as (103).40 These maps will be associated to the submanifolds
relevant to the problem at hand: the d -dimensional paraboloid Pd in RdC1 and some “canonical” two-
dimensional parabolas.

In order to define Lj , we fix standard parametrizations for the submanifolds mentioned above. Let

� W Rd �! RdC1; (106)

.x1; : : : ; xd / 7�!
�
x1; : : : ; xd ;

Pd
iD1 x

2
i

�
; (107)

parametrize Pd and

j W R �! RdC1; (108)

x 7�! .x � ı1j ; : : : ; x � ıdj ; x
2/; (109)

parametrize a parabola in the two-dimensional canonical subspace generated by ej and edC1 (ıij is the
Kronecker delta). Their differentials are given by

d� W Rd �!M.dC1/�d ; .x1; : : : ; xd / 7�!

2666664
1 0 : : : 0

0 1 : : : 0
:::

:::
: : :

:::

0 0 : : : 1

2x1 2x2 : : : 2xd

3777775
and

dj W R �!M.dC1/�1; x 7�! Œı1j ı2j � � � ıdj 2x�>:

For d C 1 points xj D .xj1 ; : : : ; x
j

d
/ 2 Rd , 1� j � d C 1, define the linear maps41

L
x1
`

`
WD .d`.x

1
` //
� for all 1� `� d;

Lx
`C1

dC` WD .d�.x
`C1
1 ; : : : ; x`C1

d
//� for all 1� `� d:

(110)

It is important to emphasize that LdC` depends on x`C1 (and similarly, L` depends on x1
`

). The main
result of this subsection is:

Theorem 13.3. Let QDfQ1; : : : ;QdC1g be a collection of closed cubes in Rd . If Q is weakly transversal
with pivot Q1, then for any choice of points xj D .xj1 ; : : : ; x

j

d
/ 2Qj , the linear maps in (110) satisfy

BL.L.x/;p/ <1 for L.x/D .L
x11
1 ; : : : ; L

xdC1

2d / and p D

�
1

d
; : : : ;

1

d

�
: (111)

Conversely, if (111) is satisfied by the linear maps in (110) for any choice of points xj D .xj1 ; : : : ; x
j

d
/ 2

Qj , then Q can be decomposed into O.1/ weakly transversal collections Q0 of dC1 cubes, each one
having a cube Q01 �Q1 as pivot.

40From now on, we will replace n by d C 1 when referring to the dimension of the euclidean space.
41We highlight that the superscript j in xji denotes the point, whereas the subscript i denotes the i-coordinate of the

corresponding point. Notice also that we are identifying the adjoint operator T � with the transpose of the matrix that represents T
in the canonical basis.
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Remark 13.4. If Q can be decomposed into O.1/ weakly transversal collections Q0 of dC1 cubes (in
the sense of Claim 3.4), each one having a cube Q01 �Q1 as pivot, then the conclusion of the first part of
the theorem above also holds for Q. Some important examples to keep in mind are the ones of transversal
configurations that are not weakly transversal by themselves, but that are decomposable into such: for
instance, fQ1;Q2;Q3g, where Q1 D Œ1; 4� � Œ2; 3�, Q2 D Œ0; 2� � Œ0; 1� and Q3 D Œ3; 5� � Œ0; 1� is a
transversal collection of cubes in R2, but not weakly transversal with pivot Q1 since �1.Q1/ intersects
both �1.Q2/ and �1.Q3/.

Remark 13.5. We can of course obtain a similar statement if Q is weakly transversal with any other
pivot Qj , j ¤ 1. The linear maps L` and LdC` would have to be changed accordingly.

Proof of Theorem 13.3. Suppose that Q is weakly transversal with pivot Q1. We can then assume without
loss of generality that 8̂<̂

:
�1.Q1/\�1.Q2/D∅;

:::

�d .Q1/\�d .QdC1/D∅:
(112)

The strategy is to apply Theorem 13.1. Condition (105) is trivially satisfied, so we just have to
check (104). Fix the points xj D .xj1 ; : : : ; x

j

d
/ 2 Qj , 1 � j � d . To avoid heavy notation, we will

omit the superscripts x1
`

and x`C1 when referring to L
x1
`

`
and Lx

`C1

dC`
, respectively, but these points will

be referenced whenever they play an important role. We emphasize that the maps L`, 1 � ` � d , are
being identified with the row vector

Œı1` ı2` : : : ıd` 2x
1
`
�;

whereas the maps LdC`, 1� `� d , are identified with the d � .dC1/ matrix26664
1 0 : : : 0 2x`C11

0 1 : : : 0 2x`C12:::
:::
: : :

:::
:::

0 0 : : : 1 2x`C1
d

37775 :
If V � RdC1 is a subspace of dimension k, we have to verify that

dk �

dX
jD1

dim.LjV /C
dX
`D1

dim.LdC`V /: (113)

Suppose that there are exactly m� 0 indices j 2 f1; : : : ; dg such that dim.LjV /D 0. If mD 0, we
must have LjV D R for all 1� j � d ; hence

dX
jD1

dim.LjV /D d: (114)

Surjectivity of LdC`, 1 � ` � d , implies dim.ker.LdC`// D 1, which gives the lower bound
dim.LdC`V /� k� 1. We then obtain

dX
`D1

dim.LdC`V /� d.k� 1/: (115)
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It is clear that (114) and (115) together verify (113) in the mD 0 case. If m� 1, assume without loss
of generality that

L1V D � � � D LmV D 0; (116)

LmC1V D : : :D LdV D R: (117)
This gives us

dX
jD1

dim.LjV /D d �m: (118)

We will show that
dX
`D1

dim.LdC`V /� .d �m/.k� 1/Cmk: (119)

Observe that (118) and (119) together verify (113) in the m� 1 case.
We claim that there are at least m maps L

j̀
among L`C1; : : : ; L2d such that dim.L

j̀
V /D k. If not,

there are d �mC1 maps L`1 ; : : : ; L`d�mC1 with dim.L
j̀
V /� k�1. Since dimV D k, the rank-nullity

theorem implies the existence of

0¤ v j̀ 2 ker.L
j̀
/\V; 1� j � d �mC 1: (120)

By (116),

Lrv j̀ D v j̀

r C 2x
1
r v

j̀

dC1
D 0; 1� r �m; (121)

and by (120) we have

L
j̀
v j̀ D

266664
1 0 : : : 0 2x j̀�dC1

1

0 1 : : : 0 2x j̀�dC1

2:::
:::
: : :

:::
:::

0 0 : : : 1 2x j̀�dC1

d

377775 �
266664
v j̀

1

v j̀

2:::

v j̀

dC1

377775D
266664
v j̀

1 C 2x
j̀�dC1

1 v j̀

dC1

v j̀

2 C 2x
j̀�dC1

2 v j̀

dC1:::

v j̀

d
C 2x j̀�dC1

d
v j̀

dC1

377775D 0 (122)

for 1� j � d �mC 1. For each 1� r �m, combining the information from (121) and (122) gives us

v j̀

dC1
� .x1r � x

j̀�dC1
r /D 0:

If v j̀

dC1
D 0, then (122) also implies v j̀

n D 0 for all n 2 f1; : : : ; dg; thus v j̀ D 0, which contradicts
(120). Then we must have

x1r D x
j̀�dC1
r ; 1� r �m:

Let us now see why this cannot happen. We have just shown that there are d �mC 1 values of ˛ for
which 8̂<̂

:
�1.Q1/\�1.Q˛/¤∅;

:::

�m.Q1/\�m.Q˛/¤∅:
(123)

On the other hand, (112) tells us that ˛ … f2; 3; : : : ; mC 1g; hence there are at most d �m possible
values for ˛ (we cannot have ˛ D 1 either), which is a contradiction.
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Hence there are at least m maps L
j̀

among L`C1; : : : ; L2d such that dim.L
j̀
V /D k. The remaining

d �m maps have kernels of dimension 1, so the image of V through them has dimension at least k� 1
(again by surjectivity of L

j̀
and the rank-nullity theorem). This verifies (119).

For the converse implication, suppose that (111) is satisfied by the linear maps in (110) for any choice
of points .xj1 ; : : : ; x

j

d
/2Qj . As a consequence of the proof of Claim B.4, eachQl 2Q can be partitioned

into O.1/ subcubes

Ql D
[
i

Ql;i

so that all collections zQ made of picking one subcube Ql;i per Ql

zQD f zQ1; : : : ; zQdC1g; zQl 2 fQl;igi ;

satisfy the following:

(a) For any two zQr ; zQs 2 zQ, either �j . zQr/\�j . zQs/D∅, or �j . zQr/D�j . zQs/, or �j . zQr/\�j . zQs/D
fpr;sg, where pr;s is an endpoint of both �j . zQr/ and �j . zQs/.

(b) All �j . zQs/ that intersect a given �j . zQr/ (but distinct from it) do so at the same endpoint.42

By a slight abuse of notation, let Q denote one such subcollection that has the two properties above.
Suppose, by contradiction, that Q is not weakly transversal with pivot Q1 (recall that this is a cube
obtained from the original Q1). The strategy now is to construct a subspace V � RdC1 that contradicts
(104) for a certain choice of one point per cube in Q. This construction will exploit a certain feature of a
special subset of Q, which is the content of Claim 13.6.

For simplicity of future references, let us say that a subset A�Q has the property (P) if:

(1) Q1 2A.

(2) A is not weakly transversal with pivot Q1.

We say that a subset A�Q is minimal if A0 �A has the property (P) if and only if A0 DA. It is clear
that, since Q has the property (P) itself, it must contain a minimal subset of cardinality at least 2.

Claim 13.6. Let ADfQ1; K2; : : : ; Kng be a minimal set of n cubes.43 There is a setD of d�nC2 canon-
ical directions v for which

�v.Q1/\�v.Kj /¤∅ for all 2� j � n: (124)

Proof of Claim 13.6. See Claim B.6 in Appendix B. �

We know that Q has a minimal subset of cardinality 2 � n � d C 1. By the previous claim and by
conditions (a) and (b) of our initial reductions, if A0 D fQ1; K2; : : : ; Kng is a minimal subset of Q, for

42In other words, all �j . zQs/ that intersect a given �j . zQr / (but distinct from it) do so on the same side. In short notation,
let Sj;r be the set of s for which �j . zQr / \ �j . zQs/ ¤ ∅. The conclusion is that there is some real number j such that
j 2 �j .Qr /\

T
s2Sj;r �j .Qs/.

43Observe that Q1 is the only “Q” cube in this collection. The others are labeled by Kj .
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every v 2D there is a number v such that

v 2 �v.Q1/\

n\
jD2

�v.Kj /:

Indeed, �v.Q1/ intersects each �v.Qj / “on the same side”, so the intersection above must be nonempty
(the existence of these v is the only reason why we may need to decompose the initial collection Q into
subcollections that satisfy (a) and (b)).

For simplicity and without loss of generality, assume that AD fQ1;Q2; : : : ;Qng is minimal44 and
D D fe1; : : : ; ed�nC2g. Consider the points

.1; : : : ; d�nC2; x
j

d�nC3
; : : : ; x

j

d
/ 2Qj ; 1� j � n;

.xl1; : : : ; x
l
d / 2Ql ; nC 1� l � d C 1:

By hypothesis, BL.L.x/;p/ <1 for the following collection of linear maps and exponents:

Lrr .v1; : : : ; vdC1/D vr C 2rvdC1; 1� r � d �nC 2;

L
x1s
s .v1; : : : ; vdC1/D vsC 2x

1
s vdC1; d �nC 3� s � d;

L
.1;:::;d�nC2;x

rC1
d�nC3

;:::;x
rC1
d

/

dCr
.v1; : : : ; vdC1/D

2666666664

v1C 21vdC1
:::

vd�nC2C 2d�nC2vdC1
vd�nC3C 2x

rC1
d�nC3

vdC1
:::

vd C 2x
rC1
d

vdC1

3777777775
; 1� r � n� 1;

Lx
lC1

dCl D

264v1C 2x
lC1
1 vdC1
:::

vd C 2x
lC1
d

vdC1

375 ; n� l � d; p D

�
1

d
; : : : ;

1

d

�
:

Define

V WD

d�nC2\
rD1

ker.Lrr /:

Observe that dim.V / D n� 1. Indeed, if we start with a vector v D .v1; : : : ; vdC1/ of d C 1 “free
coordinates”, we lose one degree of freedom for each kernel in the intersection above, since Lrr .v/D 0
gives a relation between vr and vdC1. We have d � nC 2 many of them; hence the total degree of
freedom is .d C 1/� .d � nC 2/D n� 1, which is the dimension of V . On the other hand, for every
v 2 V we have by definition

Lrr .v/D 0; 1� r � d �nC 2:

Hence
dX
jD1

dim.LjV /� n� 2:

44Here we are assuming Kj DQj , 2� j � n.
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Also,

L
.1;:::;d�nC2;x

rC1
d�nC3

;:::;x
rC1
d

/

dCr
.v/D

266666664

0
:::

0

vd�nC3C 2x
rC1
d�nC3

vdC1
:::

vd C 2x
rC1
d

vdC1

377777775
; 1� r � n� 1:

Thus
dim.LdCrV /� n� 2; 1� r � n� 1:

Since dim.V /D n� 1, we have the trivial bound

dim.LdClV /� n� 1; n� l � d:

Altogether, these bounds imply

1

d

� dX
jD1

dim.LjV /C
dX
`D1

dim.LdC`V /
�
�
1

d
Œ.n� 2/C .n� 1/.n� 2/C .d �nC 1/.n� 1/�

D
1

d
Œ.n� 1/d � 1� < n� 1D dim.V /:

Our initial hypothesis, however, is that BL.L.x/;p/ <1; therefore by Theorem 13.1 we must have

dim.V /�
1

d

� dX
jD1

dim.LjV /C
dX
`D1

dim.LdC`V /
�
;

which gives a contradiction. We conclude that Q is weakly transversal with pivot Q1. �

13B. An application to Restriction-Brascamp–Lieb inequalities. The following conjecture was proposed
in Bennett, Bez, Flock and Lee [Bennett et al. 2018]:

Conjecture 13.7. Suppose that, for each 1 � j �m, †j W Uj 7! Rn is a smooth parametrization of a
nj -dimensional submanifold Sj of Rn by a neighborhood Uj of the origin in Rnj . Let

Ejgj .�/ WD
Z
Uj

e�2�i��†j .x/gj .x/ dx

be the associated (parametrized) extension operator. If the Brascamp–Lieb constant BL.L;p/ is finite
for the linear maps Lj WD .d†j .0//� W Rn 7! Rnj, then provided the neighborhoods Uj of 0 are chosen to
be small enough, the inequality Z

Rn

mY
jD1

jEjgj j2pj .
mY
jD1

kgj k
2pj

L2.Uj /
(125)

holds for all gj 2 L2.Uj /, 1� j �m.

Remark 13.8. The weaker inequalityZ
B.0;R/

mY
jD1

jEjgj j2pj ." R"
mY
jD1

kgj k
2pj

L2.Uj /
(126)

involving an arbitrary " > 0 loss was established in [Bennett et al. 2018].
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Remark 13.9. Very few cases of Conjecture 13.7 are fully understood.45 Recently, Bennett, Nakamura
and Shiraki settled the rank-1 case n1 D � � � D nm D 1 as an application of their results on tomographic
Fourier analysis.46

Given their hybrid nature, estimates such as (125) are called restriction-Brascamp–Lieb inequalities.
Our goal here is to verify Conjecture 13.7 in a special case. We chose to state the main result of this

subsection in a way that does not emphasize the origin in the domains of †j . The reason for this choice
is that it brings to light key geometric features of the problem.

We will need a result from [Bennett et al. 2018] on the stability of Brascamp–Lieb constants47:

Theorem 13.10 [Bennett et al. 2018]. Suppose that .L0;p/ is a Brascamp–Lieb datum for which
BL.L0;p/ <1. Then there exists ı > 0 and a constant C <1 such that

BL.L;p/� C
whenever kL�L0k< ı.

Now we are ready to state and prove our result:

Theorem 13.11. Let � and j be the parametrizations from (106) and (108), respectively. If , for
xj D .x

j
1 ; : : : ; x

j

d
/ 2 Rd , the linear maps in (110) satisfy

BL.L.x/;p/ <1 for L.x/D .L
x11
1 ; : : : ; L

xdC1

2d / and p D

�
1

d
; : : : ;

1

d

�
; (127)

then there are small enough cube-neighborhoods Ui � R (1 � i � d ) of x1i and V` � Rd of x`

(2� `� d C 1) for which (125) holds.

Remark 13.12. Rephrasing Theorem 13.11 in terms of the original statement, it says that Conjecture 13.7
holds for48

†i D i � .ı1i � x
1
i ; : : : ; ıdi � x

1
i ; 0/; 1� i � d:

†` D � � .x
`�dC1; 0/; d C 1� `� 2d:

mD 2d; p D

�
1

d
; : : : ;

1

d

�
:

Proof of Theorem 13.11. The argument is just a matter of putting the pieces together. By (127) and
Theorem 13.10, there are small enough cube-neighborhoods Ui � R (1� i � d ) of x1i and V` � Rd of
x` (2� `� d C 1) for which (127) still holds49. Define

Q1 WD U1 � � � � �Ud ; Q` WD V `; 2� `� d C 1:

45Most of them being very elementary situations, as mentioned in [Bennett et al. 2018].
46See [Bennett and Nakamura 2021] for a more detailed exposition of this approach.
47Theorem 13.10 says that the map L 7! BL.L;p/ is locally bounded for a fixed p, and this is enough for our purposes. On

the other hand, it was shown in [Bennett et al. 2017] that the Brascamp–Lieb constant is continuous in L. It was later shown in
[Bennett et al. 2020] that BL.L;p/ is in fact locally Hölder continuous in L.

48Observe that we are just translating the domain of the †’s back to the origin.
49Our maps Lj are sufficiently smooth for the stability theorem to be applied. The entries of the matrices that represent them

are polynomials.
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Figure 4. Unveiling the geometric features of the problem when d D 2. The cubes we
find from Theorem 13.10 are weakly transversal, which gives us access to our earlier
results.

Now we apply Theorem 13.3 to conclude that the collection QDfQ1; : : : ;QdC1g can be decomposed
into O.1/ weakly transversal collections Q0 of d C 1 cubes, each one having a cube Q01 �Q1 as pivot.

To each such subcollection we apply the endpoint estimate from Section 10 (all we need to apply it is
weak transversality), which finishes the proof. �

14. Further remarks

Remark 14.1. It was pointed out to us by Jonathan Bennett that the d -dimensional estimates (2) for
tensors are equivalent to certain one-dimensional mixed norm bounds. We present this remark in the
following proposition:

Proposition 14.2 (Bennett). For all p; q � 1, the estimate

kEdgkLq
�1;:::;�dC1

. kgkp (128)

holds for tensors g.x/D g1.x1/ � � � � �gd .xd / if and only if

kE1f kLdq
�2
L
q

�1

. kf kp: (129)

holds.
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Proof. Assume first that (128) holds for tensors. Then

kE1f kLdq
�2
L
q

�1

D

�Z �Z
jE1f .�1; �2/jq d�1

�d
d�2

� 1
dq

D

�Z dY
jD1

�Z
jE1f .�j ; �2/jq d�j

�
d�2

� 1
dq

D

�Z dY
jD1

Z
jEd .f ˝ � � �˝f /.�1; : : : ; �d /jq dE� d�2

� 1
dq

D kEd .f ˝ � � �˝f /k
1
d
q . kf ˝ � � �˝f k

1
d
p . kf kp;

which proves (129). Conversely, assuming that (129) holds for all f 2 Lp.Œ0; 1�/ yields

kEd .g1˝ � � �˝gd /kqq D
Z
jE1g1.�1; �dC1/jq � � � � � jE1gd .�d ; �dC1/jq d�1 � � � � � d�dC1

D

Z dY
jD1

�Z
jE1gj .�j ; �dC1/jq d�j

�
:d�dC1

�

dY
jD1

�Z �Z
jE1gj .�j ; �dC1/jq d�j

�d
d�dC1

� 1
d

D

Y
j

kE1gj k
q

L
dq

�dC1
L
q

�j

.
dY
jD1

kgj k
q
p D kgk

q
p: �

Estimates such as (129) can be verified directly by interpolation. Taking sup in �2 gives

kE1f kL1
�2
L2
�1

." kf kL2.Œ0;1�/: (130)

Conjecture 1.1 for d D 1 follows from

kE1f kL4C"
�2;�1

." kf kL4.Œ0;1�/ (131)

for all " > 0. Using mixed-norm Riesz-Thorin interpolation with weights� d�1
dC1

for (130) and� 2
dC1

for
(131), one obtains (129) for p D 2.dC1/

d
and q D 2.dC1/

d
C "0, which shows (128) by the previous claim.

The reader will notice that our proof for the case k D 1 of Theorem 1.5 has a similar idea in its core:
we interpolate (at the level of the sets Xl1;:::;ld ) between two estimates similar to (130) and (131). On
the other hand, we have not found an extension of Bennett’s remark to the case 2� k � d C 1, in which
we still need to interpolate locally instead of globally and assume that only one function has a tensor
structure.

Remark 14.3. In [Tao et al. 1998] the authors obtain the following off-diagonal type bounds:

Theorem [Tao et al. 1998]. ME2;d satisfies

kME2;d .g1; g2/k2 . kg1k2 � kg2kdC1
d

;

kME2;d .g1; g2/k2 . kf kdC1
d

� kgk2:
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In general, under the extra hypothesis that either g1 or g2 is a full tensor, one can obtain all k-linear
off-diagonal type bounds like Lp1 � � � � �Lpk 7! L2 by a straightforward adaptation of the argument
presented in Section 9. We chose not to include them in this manuscript.

Remark 14.4. Under the assumption that gj are full tensors

gj .x1; : : : ; xd /D gj;1.x1/ � � � � �gj;d .xd /; 1� j � k;

the methods of this work allow to prove Conjecture 1.11. We will not cover the details of this result here,
but the idea is simply to interpolate between the p D 2 result and the case k D 1 for tensors.

Appendix A: Sharp examples

The goal of this first appendix is to discuss the sharpness of Theorems 1.5 and 11.2. We remark that sharp
examples already exist in the literature, notably in the context of the bilinear problem for the sphere in
[Foschi and Klainerman 2000], and in the multilinear case for surfaces of any signature in [Hickman and
Iliopoulou 2022]. Our examples, however, exploit different ideas than those present in those works in the
sense that they are robust enough to address weakly transversal configurations of caps and give sharp
results in such cases as well.

The first part of this appendix is about Theorem 11.2, whereas in the second one we prove that, to
attain the sharp range of Conjecture 1.2 in general, transversality cannot be replaced by the concept of
weak transversality that we introduce.

AA. Range optimality. The main result of this subsection is the following:

Proposition A.1. The condition

p �
2.d Cj� jC 2/

k.d Cj� j/

is necessary for Theorem 11.2 to hold.

Our examples are constructed based on one-dimensional considerations. For the benefit of simplifying
the notation, smoothing the exposition to the reader and to establish a clear link with Conjecture 1.2, we
present them in the j� j D k � 1 case, which is the smallest possible value for the corresponding j� j of
a given collection of transversal cubes (up to decomposing it into weakly transversal collections, see
Claim B.4). It will be clear, however, how to work out the general case of arbitrary j� j, and we will point
that out along the proof of Claim A.3.

Consider the caps that project onto the following transversal domains via x 7! jxj2:

U1 D Œ0; 1�
d ;

Uj D Œ2; 3�
j�2
� Œ4; 5�� Œ0; 1�d�jC1; 2� j � k:

Observe that these caps are transversal as well;50 therefore the following argument for the case
j� j D k� 1 of Proposition A.1 also shows that the range of Conjecture 1.2 is necessary.

50For general j� j we would have to start with a different collection of cubes with the appropriate total degree of transversality.
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Figure 5. Cases k D 3 and k D 4 when d D 3.

We present the examples separately to distinguish their features. For kDdC1we will take appropriately
placed cubes, whereas for 2� k � d we will take slabs (boxes with edges of two different scales).

Claim A.2. Let k D d C 1, ı > 0 small and let Aıj be given by

Aı1 D Œ0; ı�
d ;

Aıj D Œ2; 2C ı�
j�2
� Œ4; 4C ı�� Œ0; ı�d�jC1; 2� j � d C 1:

Define f ıj WD 1Aı
j

. Then QdC1
jD1 EUj f

ı
j


pQdC1

jD1 kf
ı
j k2

& ı
d.dC1/
2
� 1
p
.dC1/:

Therefore, letting ı ! 0 implies p � 2
d

is a necessary condition for the .dC1/-linear extension
conjecture to hold for this choice of the Uj and for all fj that are full tensors.

Claim A.3. Let 2� k < d C 1, ı > 0 small and let Bıj be given by

Bı1 D Œ0; ı
2�k�1 � Œ0; ı�d�kC1;

Bıj D Œ2; 2C ı
2�j�2 � Œ4; 4C ı2�� Œ0; ı2�k�j � Œ0; ı�d�kC1; 2� j � k:

Define gıj WD 1Bı
j

. Then Qk
jD1 EUj g

ı
j


pQk

jD1 kg
ı
j k2

& ı
k
2
.dCk�1/� 1

p
.dCkC1/:

Therefore, letting ı! 0 implies

p �
2.d C kC 1/

k.d C k� 1/

is a necessary condition for the k-linear extension conjecture to hold for this choice of the Uj and for all
gj that are full tensors.

Before proving the claims, we need the following lemma:
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Lemma A.4 (scale-1 phase-space portrait of e2�ix
2

). There exists a sequence of smooth bumps .'n/n2Z

such that

(i) supp.'n/� Œn� 1; nC 1�, n 2 Z,

(ii) j'.`/n .x/j � C` uniformly in n 2 Z and such that

e2�ix
2

D

X
n2Z

e4�inx'n.x/:

Proof. See [Muscalu and Schlag 2013b, Proposition 1.10, page 23]. �

Rescaling with t > 0, the corresponding phase space portrait of e2�itx
2

is

e2�itx
2

D e2�i.
p
tx/2
D

X
n2Z

e4�in
p
tx'n.

p
tx/:

Observe that Q't .x/ D 'n.
p
tx/ is adapted to the Heisenberg box

�
np
t
; nC1p

t

�
� Œ0;

p
t �, but strictly

supported on
�
n�1p
t
; nC1p

t

�
. This way, we can write

e2�itx
2

D

X
n2Z

ˆn;t .x/; (132)

where ˆn;t is adapted to the Heisenberg box
�
np
t
; nC1p

t

�
� Œ2n

p
t ; .2nC 1/

p
t �.

Proof of Claim A.2. Motivated by the uncertainty principle, the first step is to analyze the behavior of the
extension operator EUj applied to f ıj on a box whose sizes are reciprocal to the ones of supp.f ıj /. More
precisely, we will show that jEUj .f

ı
j /j& ı

d on such boxes.
If ı < 1p

t
,

EU1.f
ı
1 /.�1; : : : ; �d ; t /D

dY
jD1

�Z ı

0

e�2�i�jxj e�2�itx
2
j dxj

�

D

dY
jD1

�Z ı

0

e�2�i�jxj � Œˆ0;t .xj /Cˆ1;t .xj /� dxj

�
;

since supp.ˆn;t /\ Œ0; ı�D∅ if n 2 Znf0; 1g. If j�jxj j< 1
N

(N is a big number to be chosen later), we
then have

jEU1.f
ı
1 /.�1; : : : ; �d ; t /j

D

dY
jD1

ˇ̌̌̌Z ı

0

e�2��jxj � Œˆ0;t .xj /Cˆ1;t .xj /� dxj

ˇ̌̌̌
;

�

dY
jD1

�ˇ̌̌̌Z ı

0

Œˆ0;t .xj /Cˆ1;t .xj /� dxj

ˇ̌̌̌
�

ˇ̌̌̌Z ı

0

Œe�2��jxj � 1� � Œˆ0;t .xj /Cˆ1;t .xj /�

ˇ̌̌̌�
; (133)

where N is picked so that Œe�2��jxj � 1� is close enough to zero to make

Aj WD

ˇ̌̌̌Z ı

0

Œˆ0;t .xj /Cˆ1;t .xj /� dxj

ˇ̌̌̌
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dominate each factor above. Since Aj & ı
�
recall that ˆ0;t and ˆ1;t are adapted to Heisenberg boxes of

size 1p
t
�
p
t and ı < 1p

t

�
, we conclude that if j�j j. 1

ı
for 1� j � d and jt j< 1

ı2
, then

jEU1.f
ı
1 /.�1; : : : ; �d ; t /j � ı

d :

If � is a bump supported on Œ�1; 1�, we have just proved that

jEU1.f
ı
1 /.�1; : : : ; �d ; t /j& ı

d�ı.�1/ � � � � ��ı.�d /�ı2.t/; (134)

where �ı.�/ WD �.ıx/. Analogously, if ı < 1p
t
,

EU2.f
ı
2 /.�1; : : : ; �d ; t /

D

�Z 4Cı

4

e�2�i�1x1e�2�itx
2
1 dx1

�
�

dY
jD2

�Z ı

0

e�2�i�jxj e�2�itx
2
j dxj

�

D

�Z 4Cı

4

e�2�i�1x1
�X
n2Z

ˆn;t .x1/

�
dx1

�
„ ƒ‚ …

I1

�

dY
jD2

�Z ı

0

e�2�i�jxj � Œˆ0;t .xj /Cˆ1;t .xj /� dxj

�
„ ƒ‚ …

Ij

:

There are at most O.1/ integers n such that supp.ˆn;t /\ Œ4; 4C ı� ¤ ∅, and they cluster around
b4
p
tc. Without loss of generality, one can assume that nD 4

p
t so that the main contribution for I1

comes from ˆ4
p
t ;t whose Heisenberg box is

�
4; 4C 1p

t

�
� Œ8t; 8t C

p
t �. The modulation e�2�i�ixi

shifts this box vertically by ��1, and I1 is negligible if the boxes
�
4; 4C 1p

t

�
� Œ8t � �1; 8t C

p
t � �1�

and Œ0; ı��
�
0; 1
ı

�
are disjoint in frequency, so we need j�1� 8t j. 1

ı
to have a significant contribution

to I1. In that case,

jI1j&
ˇ̌̌̌Z 4Cı

4

e�2�i�1x1ˆ4
p
t ;t .x1/ dx1

ˇ̌̌̌
& ı:

The analysis of Ij for j � 2 is the same as the one for the factors of EU1.f
ı
1 /. We conclude that if

j�1� 8t j. 1
ı

, j�j j. 1
ı

for 2� j � d and jt j � 1
ı2

, then

jEU2.f
ı
2 /.�1; : : : ; �d ; t /j � ı

d :

As before,

jEU2.f
ı
2 /.�1; : : : ; �d ; t /j& ı

d�ı.�1� 8t/ ��ı.�2/ � � � � ��ı.�d /�ı2.t/:

The extensions EUj .f
ı
j / for 3 � j � d C 1 are treated in the same way we treated EU2.f ı2 /. The

conclusion is that

jEUj .f
ı
j /.�1; : : : ; �d ; t /j

& ıd�ı.�1� 4t/ � � � � ��ı.�j�2� 4t/ ��ı.�j�1� 8t/ ��ı.�j / � � � � ��ı.�d /�ı2.t/ (135)

for all 2� j � d C 1.
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Let � D .�1; : : : ; �d /. From (134) and (135) we obtain

dC1Y
jD1

jEUj .f
ı
j /.�; t/j& ı

d.dC1/

�
�ı2.t/

dY
lD1

�ı.�l/

�
�

� dY
jD2

�ı.�1�4t/� � � � ��ı.�j�2�4t/��ı.�j�1�8t/��ı.�j /� � � � ��ı.�d /�ı2.t/

�
: (136)

Now we analyze the support of the product of the right-hand side of (136). Notice that we have at least
one bump like �ı.�j / for every 1� j � d C 1, so j�j j. 1

ı
is a necessary condition for the product not to

be zero. On the other hand, the conditions

j�j j.
1

ı
; j�j � 8t j.

1

ı

together imply jt j. 1
ı

, which is much more restrictive than the jt j. 1
ı2

that comes from the support of
the bump �ı2.t/. We conclude that the right-hand side of (136) is supported on the box

R�ı D

�
.�1; : : : ; �d ; t / 2 RdC1 W jt j.

1

ı
; j�j j.

1

ı
; 1� j � d

�
:

Finally, QdC1
jD1 EUj f

ı
j


pQdC1

jD1 kf
ı
j k2

&
ıd.dC1/ � jR�

ı
j
1
p

ı
d.dC1/
2

& ı
d.dC1/
2
� 1
p
.dC1/ (137)

and the claim follows. �

Proof of Claim A.3. The outline of the following argument is the same as the one used in previous proof.
Let � D .�1; : : : ; �d /. If ı2 < 1p

t
,

EU1.g
ı
1/.�; t/D

k�1Y
jD1

�Z ı2

0

e�2�i�jxj e�2�itx
2
j dxj

�
�

dY
lDk

�Z ı

0

e�2�i�lxl e�2�itx
2
l dxl

�

D

k�1Y
jD1

�Z ı2

0

e�2�i�jxj Œˆ0;t .xj /Cˆ1;t .xj /�dxj

�
�

dY
lDk

�Z ı

0

e�2�i�lxl
�X
n2Z

ˆn;t .xl/

�
dxl

�
„ ƒ‚ …

.�/

;

since supp.ˆn;t /\ Œ0; ı2�D∅ if n 2 Znf0; 1g. If ı < 1p
t

�
which is stronger than the previous condition

ı2 < 1p
t

�
, we can eliminate most ˆn;t in .�/ as well:

EU1.g
ı
1/.�; t/

D

k�1Y
jD1

�Z ı2

0

e�2�i�jxj Œˆ0;t .xj /Cˆ1;t .xj /� dxj

�
�

dY
lDk

�Z ı

0

e�2�i�lxl � Œˆ0;t .xl/Cˆ1;t .xl/� dxl

�
;
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If j�jxj j< 1
N

(for N big enough), we then have

jEU1.g
ı
1/.�; t/j

D

k�1Y
jD1

ˇ̌̌̌Z ı2

0

e�2��jxj Œˆ0;t .xj /Cˆ1;t .xj /� dxj

ˇ̌̌̌
�

dY
lDk

ˇ̌̌̌Z ı

0

e�2��lxl � Œˆ0;t .xl/Cˆ1;t .xl/� dxl

ˇ̌̌̌
;

& ı2.k�1/C.d�kC1/ D ıdCk�1;

by the same argument presented when we analyzed (133). We conclude that if j�j j. 1
ı2

for 1� j � k�1,
j�l j. 1

ı
for k � l � d and jt j< 1

ı2
, then51

jEU1.g
ı
1/.�; t/j& ı

dCk�1:

Using the same notation from the proof of Claim A.2, we have just proved that

jEU1.g
ı
1/.�; t/j& ı

d�ı2.�1/ � � � � ��ı2.�k�1/�ı.xk/ � � � � ��ı.xd / ��ı2.t/; (138)

where �ı.�/ WD �.ıx/ and � is a bump supported on Œ�1; 1�. Analogously, if ı < 1p
t
,

EU2.g
ı
2/.�; t/

D

�Z 4Cı2

4

e�2�i�1x1e�2�itx
2
1 dx1

�
�

k�1Y
jD2

�Z ı2

0

e�2�i�jxj e�2�itx
2
j dxj

�
�

dY
lDk

�Z ı

0

e�2�i�lxl e�2�itx
2
l dxl

�

D

�Z 4Cı2

4

e�2�i�1x1
�X
n2Z

ˆn;t .x1/

�
dx1

�
„ ƒ‚ …

M1

�

k�1Y
jD2

�Z ı2

0

e�2�i�jxj �Œˆ0;t .xj /Cˆ1;t .xj /�dxj

�
„ ƒ‚ …

Mj

�

dY
lDk

�Z ı

0

e�2�i�lxl �Œˆ0;t .xl/Cˆ1;t .xl/�dxl

�
„ ƒ‚ …

Ml

: (139)

As in the proof of Claim A.2, the main contribution for M1 comes from ˆ4
p
t ;t , whose Heisenberg

box is
�
4; 4C 1p

t

�
� Œ8t; 8tC

p
t �. The modulation e�2�i�ixi shifts this box vertically by ��1, and M1 is

negligible if the boxes
�
4; 4C 1p

t

�
� Œ8t � �1; 8tC

p
t � �1� and Œ0; ı2��

�
0; 1
ı2

�
are disjoint in frequency,

so we need j�1� 8t j. 1
ı2

to have a significant contribution to M1. In that case,

jM1j&
ˇ̌̌̌Z 4Cı2

4

e�2�i�1x1ˆ2
p
t ;t .x1/ dx1

ˇ̌̌̌
& ı2:

The analyses of Mj for 2 � j � k � 1 and of Ml for k � l � d � kC 1 are the same as the one for
the factors of EU1.g

ı
1/. We conclude that if j�1 � 8t j . 1

ı2
, j�j j . 1

ı2
for 2 � j � k � 1, j�l j . 1

ı
for

k � l � d and jt j � 1
ı2

, then

jEU2.g
ı
2/.�; t/j � ı

dCk�1:

51For general j� j, we would have j� j conditions of type j�j j. 1
ı2

and .d � j� j/ like j�l j. 1
ı

.
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As before,

jEU2.g
ı
2/.�; t/j& ı

d�ı.�1� 8t/ ��ı2.�2/ � � � � ��ı2.�k�1/ ��ı.�k/ � � � � ��ı.�d /�ı2.t/:

The extensions EUj .g
ı
j / for 3� j � k are treated in the same way. The conclusion is that

jEUj .g
ı
j /.�; t/j& ı

d�ı.�1� 4t/ � � � � ��ı.�j�2� 4t/ ��ı.�j�1� 8t/ ��ı.�j / � � � � ��ı.�d /�ı2.t/ (140)

for all 2� j � k. From (138) and (140) we obtain

kY
jD1

jEUj .g
ı
j /.�; t/j

& ık.dCk�1/
�
�ı2.t/

k�1Y
lD1

�ı2.�l/ �

dY
nDk

�ı.�n/

�
�

� dY
jD2

�j�2Y
nD1

�ı2.�n� 4t/

�
��ı2.�j�1� 8t/ �

� k�1Y
mDj

�ı2.�m/

�
�

� dY
rDk

�ı.�r/

�
��ı2.t/

�
: (141)

Notice that we have at least one bump like �ı2.�j / for every 1� j � k� 1 and at least one �ı.�l/ for
k � l � d , so j�j j. 1

ı2
and j�l j. 1

ı
are necessary conditions for the product not to be zero. On the other

hand, the conditions

j�j j.
1

ı2
; j�j � 8t j.

1

ı2

together imply jt j. 1
ı2

, which does not add any new information compared to the one coming from the
bump �ı2.t/ (this is the main difference between the analysis in Claims A.2 and A.3). We conclude that
the right-hand side of (141) is supported on the box

S�ı D

�
.�1; : : : ; �d ; t / 2 RdC1 W jt j.

1

ı2
I j�j j.

1

ı2
; 1� j � k� 1I j�l j.

1

ı
; k � l � d

�
:

Finally, Qk
jD1 EUj g

ı
j


pQdC1

jD1 kg
ı
j k2

&
ı.dCk�1/k � jS�

ı
j
1
p

ı
.dCk�1/k

2

& ı
.dCk�1/k

2
�
.dCkC1/

p (142)

and the claim follows. �

AB. Transversality as a necessary condition in general. A natural question is: given k cubes Uj ,
1� j � k, is it possible to prove  kY

jD1

EUj gj

p

.
kY

jD1

kgj k2

for

p �
2.d C kC 1/

k.d C k� 1/

and all gj 2 L2.Uj /if the Uj are assumed to be weakly transversal?
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The answer is no and we will address it in this second part of the first appendix. As a consequence, we
conclude that Theorem 1.5 is sharp under weak transversality, as observed in Remark 1.8.

We will treat the case k D 3 and d D 2 for simplicity, but a similar construction holds in general. If
three boxes U1; U2; U3 �R2 are not transversal, there is a line that crosses them. Assume without loss of
generality that U1 D Œ0; 1�2, U2 D Œ2; 3�2 and U3 D Œ4; 5�2. We will show that

kEU1.h1/ �EU2.h2/ �EU3.h3/kp . kh1k2 � kh2k2 � kh3k2

only if p � 10
9

. The trilinear extension conjecture for d D 2 states that p � 1 is the sharp range under the
transversality hypothesis.

Claim A.5. Define the sets Dıj by

Dı1 D

�p
2� ı2

2
;

p
2C ı2

2

�
�

�
�
ı

2
;
ı

2

�
;

Dı2 D

�
5
p
2� ı2

2
;
5
p
2C ı2

2

�
�

�
�
ı

2
;
ı

2

�
;

Dı3 D

�
9
p
2� ı2

2
;
9
p
2C ı2

2

�
�

�
�
ı

2
;
ı

2

�
:

Define hıj WD 1Dı
j

. Then Q3
jD1 EDj h

ı
j


pQ3

jD1 kh
ı
j k2

& ı
9
2
� 5
p :

Proof. The proof is analogous to the ones of Claims A.2 and A.3. �

Let the rhombuses zDj be given by

zD1 D Conv
�
.0; 0/I

�p
2

2
;

p
2

2

�
I

�p
2

2
;�

p
2

2

�
I .
p
2; 0/

�
;

zD2 D Conv
�
.2
p
2; 0/I

�
5
p
2

2
;

p
2

2

�
I

�
5
p
2

2
;�

p
2

2

�
I .3
p
2; 0/

�
;

zD3 D Conv
�
.4
p
2; 0/I

�
9
p
2

2
;

p
2

2

�
I

�
9
p
2

2
;�

p
2

2

�
I .5
p
2; 0/

�
:

Observe thatDıj � zDj for ı >0 small enough. Extend the domain of hıj to zDj so that it is 0 on zDj nDıj .
Let T be a �

4
counterclockwise rotation and let

H ı
j .x/ WD h

ı
j ıT

�1.x/:

Notice that T takes zDj to Uj , as shown in the picture below.
Since Lp norms are invariant under rotations, we haveQ3

jD1 EUjH
ı
j


pQ3

jD1 kH
ı
j k2

& ı
9
2
� 5
p



A NEW APPROACH TO THE FOURIER EXTENSION PROBLEM FOR THE PARABOLOID 2913

Dd
1

D~1

Dd
2

D~2

Dd
3

D~3 U1

U2

U3

Figure 6. Left: The function hıj . Right: H ı
j is supported on Uj .

from Claim A.5. Letting ı! 0 shows that we need p � 10
9

, so the sharp range p � 1 cannot be obtained
if the boxes U1; U2; U3 are not transversal.

Remark A.6. As expected, the functions H ı
j do not have a tensor structure with respect to the canonical

basis. If this was the case, our methods would have allowed us to prove that the corresponding trilinear
extension operator maps L2 �L2 �L2 to L1.

Appendix B: Technical results

Here we collect a few technical results used throughout the paper.

Theorem B.1. For 0 <  < d , 1 < p < q <1, and 1
q
D

1
p
�
d�
d

, we have

kf � .jyj� /kLq.Rd / � Ap;q � kf kLp.Rd /: (143)

Proof. See Proposition 7.8 in [Muscalu and Schlag 2013a]. �

Theorem B.2 (nonstationary phase). Let a 2 C10 and

I.�/D

Z
Rd
e2�i��.�/a.�/ d�:

If r� ¤ 0 on supp(a), then
jI.�/j � C.N; a; �/��N

as �!1 for arbitrary N � 1.

Proof. See Lemma 4.14 in [Muscalu and Schlag 2013a]. �

Theorem B.3 (stationary phase). If r�.�0/D 0 for some �0 2 supp.a/, r� ¤ 0 away from �0 and the
Hessian of � at the stationary point �0 is nondegenerate, i.e., detD2�.�0/¤ 0, then for all �� 1

jI.�/j � C.N; a; �/��
d
2 :

Proof. See Lemma 4.15 in [Muscalu and Schlag 2013a]. �
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We now restate and prove the main claim from Section 3:

Claim B.4. Given a collection QD fQ1; : : : ;Qkg of transversal cubes, each Ql 2Q can be partitioned
into O.1/ many subcubes

Ql D
[
i

Ql;i

so that all collections zQ made of picking one subcube Ql;i per Ql

zQD f zQ1; : : : ; zQkg; zQl 2 fQl;igi ;

are weakly transversal.

Proof. For each 1� j � d , consider the set Aj of endpoints of the intervals �j .Q1/; : : : ; �j .Qk/. Using
these endpoints to partition this collection of intervals, one can assume that there are three cases for two
cubes Qr and Qs:

(1) �j .Qr/\�j .Qs/D∅.

(2) �j .Qr/D �j .Qs/.

(3) �j .Qr/\�j .Qs/D fpr;sg, where pr;s is an endpoint of both �j .Qr/ and �j .Qs/.

We can go one step further and assume that all �j .Qs/ that intersect a given �j .Qr/ (but distinct
from it) do so at the same endpoint. Indeed, if �j .Qs1/\�j .Qr/D fpg, �j .Qs2/\�j .Qr/D fqg and
�j .Qr/D Œp; q�, we can simply split �j .Qr/ in half and obtain intervals that satisfy this property.

Now we choose a point xj;r in every interval �j .Qr/:

(1) If �j .Qr/\�j .Qs/D∅ for all s ¤ r , let xj;r be cj;r , the center of �j .Qr/.

(2) If �j .Qr/ intersects some �j .Qs1/ at p, any other �j .Qs2/ that intersects �j .Qr/ also does it at p.
In this case choose xj;r D xj;s D p for all s such that �j .Qr/\�j .Qs/¤∅.

Let us now show that, after the reductions above, the transversal set of cubes Q is weakly transversal.
More precisely, for a fixed 1� l � k, we will show that there is a set of k�1 canonical directions that
together with Ql satisfy (15). Let Exi 2Qi for 1� i � k be given in coordinates by

Exi D .x1;i ; x2;i ; : : : ; xd;i /:

The normal vector to Pd at Exi is

Evi D .�2x1;i ;�2x2;i ; : : : ;�2xd;i ; 1/:

Then the cubes in Q are transversal if and only if the matrix0BBBBB@
�2x1;1 �2x1;2 � � � �2x1;k
�2x2;1 �2x2;2 � � � �2x2;k
:::

:::
: : :

:::

�2xd;1 �2xd;2 � � � �2xd;k
1 1 � � � 1

1CCCCCA
has rank k for all xj;i 2 �j .Qi /, 1� j � d , 1� i � k.
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By Lemma B.5 (proven at the end of this appendix), there are k�1 rows

Rin D .�2xin;1; : : : ;�2xin;k/

of the above matrix, 1� n� k� 1, such that8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

xi1;l ¤ xi1;1
:::

xil�1;l ¤ xil�1;l�1

xil ;l ¤ xil ;lC1
:::

xik�1;l ¤ xik�1;k :

Because of the choices we made, xin;l ¤ xin;r implies

�in.Ql/\�in.Qr/D∅;
which finishes the proof. �

Finally, we state and prove the auxiliary linear algebra lemma used in the proof of Claim B.4.

Lemma B.5. Let M be the .dC1/� k matrix

M D

0BBBBB@
a1;1 a1;2 � � � a1;k
a2;1 a2;2 � � � a2;k
:::

:::
: : :

:::

ad;1 ad;2 � � � ad;k
1 1 � � � 1

1CCCCCA
and assume that it has rank k. For each column Cj D .a1;j ; : : : ; ad;j ; 1/ there are k � 1 rows Ril D
.ail ;1; : : : ; ail ;k/, 1� l � k� 1, such that8̂̂̂<̂

ˆ̂:
ai1;j ¤ ai1;l1
ai2;j ¤ ai2;l2

:::

aik�1;j ¤ aik�1;lk�1 ;

where .l1; l2; : : : ; lk�1/ is some permutation of .1; 2; : : : ; j � 1; j C 1; : : : ; k/.

Proof. Let us first consider the case kDdC1. We have to show that for all columns Cj the first k�1 rows
satisfy the property of the lemma. Observe that the product

MAD

0BBBBB@
a1;1 a1;2 � � � a1;k
a2;1 a2;2 � � � a2;k
:::

:::
: : :

:::

ak�1;1 ak�1;2 � � � ak�1;k
1 1 � � � 1

1CCCCCA �
0BBBBBBB@

1 1 � � � 1 1 1

�1 0 � � � 0 0 0

0 �1 � � � 0 0 0
:::

:::
: : :

:::
:::
:::

0 0 � � � �1 0 0

0 0 � � � 0 �1 0

1CCCCCCCA
„ ƒ‚ …

k�k matrix A
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is a rank k matrix equal to0BBBBBBB@

.a1;1� a1;2/ .a1;1� a1;3/ � � � .a1;1� a1;k�1/ .a1;1� a1;k/ a1;1

.a2;1� a2;2/ .a2;1� a2;3/ � � � .a2;1� a2;k�1/ .a2;1� a2;k/ a2;1

.a3;1� a3;2/ .a3;1� a3;3/ � � � .a3;1� a3;k�1/ .a3;1� a3;k/ a3;1
:::

:::
: : :

:::
:::

:::

.ak�1;1� ak�1;2/ .ak�1;1� ak�1;3/ � � � .ak�1;1� ak�1;k�1/ .ak�1;1� ak�1;k/ ak�1;1
0 0 � � � 0 0 1

1CCCCCCCA
:

By computing the Laplace expansion with respect to the last row, we conclude that det .MA/ is equal to

det

0BBBBB@
.a1;1� a1;2/ .a1;1� a1;3/ � � � .a1;1� a1;k�1/ .a1;1� a1;k/

.a2;1� a2;2/ .a2;1� a2;3/ � � � .a2;1� a2;k�1/ .a2;1� a2;k/

.a3;1� a3;2/ .a3;1� a3;3/ � � � .a3;1� a3;k�1/ .a3;1� a3;k/
:::

:::
: : :

:::
:::

.ak�1;1� ak�1;2/ .ak�1;1� ak�1;3/ � � � .ak�1;1� ak�1;k�1/ .ak�1;1� ak�1;k/

1CCCCCA :

The entries of this matrix are

xi;j WD ai;1� ai;jC1; 1� i; j � k� 1:

The column C1 has the property of the lemma if and only if there is some permutation � of
.1; 2; : : : ; k� 1/ such that 8̂̂̂<̂

ˆ̂:
x1;�.1/ D a1;1� a1;�.1/C1 ¤ 0

x2;�.2/ D a2;1� a2;�.2/C1 ¤ 0
:::

xk�1;�.k�1/ D ak�1;1� ak�1;�.k�1/C1 ¤ 0:

If this was not the case, for all such permutations � of .1; 2; : : : ; k � 1/ at least one among x1;�.1/,
x2;�.2/; : : : ; xk�1;�.k�1/ would be zero. Hence

det .MA/D
X

�2Sk�1

sgn.�/ � x1;�.1/ � � � � � xk�1;�.k�1/ D 0;

a contradiction. A similar argument shows that any other column also has this property.
The case k < d C 1 can be reduced to the previous one. Indeed, the rank-k condition guarantees that

there is a k � k minor of M that has rank k. There are two possibilities:

(1) There is a k � k minor of rank k that has a row of 1s. This is identical to the case k D d C 1 and we
conclude that the rows that generate this minor are the ones that satisfy the property of the lemma.
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(2) No k � k minor of rank k has a row of 1’s. Here the rows of all nonsingular minors are among the
first d ones of M . Let Ril , 1� l � k, be k rows of M that generate such a minor zM :

zM D

0BBBBB@
ai1;1 ai1;2 � � � ai1;k
ai2;1 ai2;2 � � � ai2;k:::

:::
: : :

:::

aik�1;1 aik�1;2 � � � aik�1;k
aik ;1 aik ;2 � � � aik ;k

1CCCCCA :
Proceed as in the case k D d C 1 and multiply zM by the matrix A to obtain

zMAD

0BBBBBBB@

.ai1;1� ai1;2/ .ai1;1� ai1;3/ � � � .ai1;1� ai1;k/ ai1;1

.ai2;1� ai2;2/ .ai2;1� ai2;3/ � � � .ai2;1� ai2;k/ ai2;1

.ai3;1� ai3;2/ .ai3;1� ai3;3/ � � � .ai3;1� ai3;k/ ai3;1
:::

:::
: : :

:::
:::

.aik�1;1� aik�1;2/ .aik�1;1� aik�1;3/ � � � .aik�1;1� aik�1;k/ aik�1;1
.aik ;1� aik ;2/ .aik ;1� aik ;3/ � � � .aik ;1� aik ;k/ aik ;1

1CCCCCCCA
:

By computing the Laplace expansion along the last column of zMA, we conclude that at least one
.k�1/� .k�1/ minor obtained from the first k�1 columns of zMA is nonsingular. We argue again as
in the k D d C 1 case to find the k�1 rows that satisfy the property of the lemma for the column C1.
An analogous argument works for any other column of M , but these k�1 special rows may vary from
column to column. �

Let us recall some of the terminology from the proof of Theorem 13.3 in Section 13. A subset A�Q
has the property (P) if:

(1) Q1 2A.

(2) A is not weakly transversal with pivot Q1.

We say that A�Q is minimal if A0 �A has the property (P) if and only if A0 DA. Since Q itself has
the property (P), it must contain a minimal subset of cardinality at least 2.

Claim B.6. Let A D fQ1; K2; : : : ; Kng be a minimal set of n cubes.52 There is a set D of d�nC2
canonical directions v for which

�v.Q1/\�v.Kj /¤∅ for all 2� j � n: (144)

Proof of Claim B.6. If n D 2, then Q1 \K2 ¤ ∅ and the claim follows directly. If n > 2, observe
that A0 D fQ1; K2; : : : ; Kn�1g is weakly transversal with pivot Q1; otherwise A would not be minimal.
Hence there are 1� j1; : : : ; jn�2 � d distinct such that8̂<̂

:
�j1.Q1/\�j1.K2/D∅;

:::

�jn�2.Q1/\�jn�2.Kn�1/D∅:
(145)

52Observe that Q1 is the only “Q” cube in this collection. The others are labeled by Kj .
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Let D WD fe1; : : : ; ed gnfej1 ; : : : ; ejn�2g. In what follows, we will show that (144) holds for this set of
directions. Notice that if

�l.Q1/\�l.Kn/D∅ (146)

for some l 2D, then A would be weakly transversal with pivot Q1 (because (145) together with (146)
verify the definition of weak transversality), which is false by hypothesis. Hence (144) holds for j D n.

Let us argue by induction that, if (144) holds for 1�m< n� 1 cubes Kn; K˛1 ; : : : ; K˛m�1 , then it’s
possible to find a new one K˛m for which (144) also holds53 This will be achieved by the following
algorithm: consider the set

A00 WD fQ1; Kn; K˛1 ; : : : ; K˛m�1g:

By the minimality of A, we know A00 is weakly transversal with pivot Q1; hence there are 1 �
r1; : : : ; rm � d distinct such that 8̂̂̂<̂

ˆ̂:
�r1.Q1/\�r1.Kn/D∅;
�r2.Q1/\�r2.K˛1/D∅;

:::

�rm.Q1/\�rm.K˛m�1/D∅:

(147)

Property (P) for A implies r1 2 fj1; : : : ; jn�2g.54 Then there is jˇ1 such that r1 D jˇ1 ; therefore�
�jˇ1 .Q1/\�jˇ1 .Kˇ1C1/D∅;
�jˇ1 .Q1/\�jˇ1 .Kn/D∅:

(148)

Since Kˇ1C1 appears in (145), it is one among K2; : : : ; Kn�1; hence Kˇ1C1 ¤Kn. We are done if
Kˇ1C1 …A

00: indeed, if

�l.Q1/\�l.Kˇ1C1/D∅ (149)

for some l 2D, then 8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�j1.Q1/\�j1.K2/D∅;
:::

�jˇ1�1.Q1/\�jˇ1�1.Kˇ1/D∅;
�l.Q1/\�l.Kˇ1C1/D∅;
�jˇ1C1.Q1/\�jˇ1C1.Kˇ1C2/D∅;

:::

�jn�2.Q1/\�jn�2.Kn�1/D∅:
�jˇ1 .Q1/\�jˇ1 .Kn/D∅;

(150)

and A would be weakly transversal with pivot Q1 (by definition again), which contradicts property (P).
This way, we would find a new (not in A00) cube Kˇ1C1 for which (144) also holds.

53We are done if there are mD n� 1 for which (144) holds, therefore we assume the strict inequality m< n� 1.
54Otherwise we face the same problem that appeared in (146).
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On the other hand, ifKˇ1C1DK˛q1 for someK˛q1 2A
00nfKng, then we simply switch the projections

�jˇ1 and �rq1C1 in (145) (they are distinct because jˇ1 D r1 ¤ rq1C1) and consider the conditions8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�j1.Q1/\�j1.K2/D∅;
:::

�jˇ1�1.Q1/\�jˇ1�1.Kˇ1/D∅;
�rq1C1.Q1/\�rq1C1.K˛q1 /D∅;
�jˇ1C1.Q1/\�jˇ1C1.Kˇ1C2/D∅;

:::

�jn�2.Q1/\�jn�2.Kn�1/D∅
�jˇ1 .Q1/\�jˇ1 .Kn/D∅;

(151)

where the last condition is taken from (148). Since jˇ1 ¤ rq1C1, property (P) for A again implies that
rq1C1 D jˇ2 . Notice that ˇ2 ¤ ˇ1 because r1 D jˇ1 and r1 ¤ rq1C1. This way, from (145),�

�jˇ2 .Q1/\�jˇ2 .Kˇ2C1/D∅;
�jˇ2 .Q1/\�jˇ2 .K˛q1 /D∅:

(152)

The index jˇ2 is one of the elements in the set fj1; : : : ; jˇ1�1; jˇ1C1; : : : ; jn�2g; hence Kˇ2C1 is in
the set fK2; : : : ; Kˇ1 ; Kˇ1C2; : : : ; Kn�1g. As before, we are done if Kˇ2C1 …A

00. If not, Kˇ2C1DK˛q2
for some K˛q2 2A

00nfKn; K˛q1 g and we switch the projections �jˇ2 and �rq2C1 in (151) to find some
ˇ3 … fˇ1; ˇ2g such that �

�jˇ3 .Q1/\�jˇ3 .Kˇ3C1/D∅;
�jˇ3 .Q1/\�jˇ3 .K˛q2 /D∅:

(153)

We keep doing that until we find some Kˇ`C1 …A
00. This is guaranteed to happen since there are n�1

cubes Kj , but only m< n� 1 of them in A00. The conclusion is that

m< n� 1 cubes Kj satisfy (144) H) mC 1 cubes Kj satisfy (144)I

therefore (144) holds for 2� j � n. �
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MIHAJLO CEKIĆ, COLIN GUILLARMOU and THIBAULT LEFEUVRE

2797The rank-one theorem on RCD spaces
GIOACCHINO ANTONELLI, CAMILLO BRENA and ENRICO PASQUALETTO

2841A new approach to the Fourier extension problem for the paraboloid
CAMIL MUSCALU and ITAMAR OLIVEIRA

2923A Poincaré–Steklov map for the MIT bag model
BADREDDINE BENHELLAL, VINCENT BRUNEAU and MAHDI ZREIK

2971The weak null condition on Kerr backgrounds
HANS LINDBLAD and MIHAI TOHANEANU

A
N

A
LY

SIS
&

PD
E

Vol.17,
N

o.8
2024


	1. Introduction
	2. Discrete models
	2A. The linear model (k=1)
	2B. The multilinear model (2 <= k <= 2+1)

	3. Transversality versus weak transversality
	4. Our approach and its building blocks
	5. Proof of Proposition Proposition 4.1: Strichartz/Tomas–Stein for E_d (k=1, p=2)
	6. Proof of Proposition Proposition 4.3-Conjecture Conjecture 1.1 for E_1 (k=1, d=1, p=4)
	7. Proof of Proposition 4.4-Conjecture 1.2 for ME_{2,1} (k=2, d=1)
	8. Case k=1 of Theorem 1.5
	9. Case 2 <= k <= d+1 of Theorem 1.5
	9A. Understanding the core ideas in the k=d=2 case
	9B. The general argument

	10. The endpoint estimate of the case k=d+1 of Theorem 1.5
	11. Improved k-linear bounds for tensors
	12. Beyond the L^2-based k-linear theory with and without transversality
	12A. Near-restriction estimates with transversality
	12B. Near-restriction estimates without transversality

	13. Weak transversality, Brascamp–Lieb and an application
	13A. A link between weak transversality and Brascamp–Lieb inequalities
	13B. An application to Restriction-Brascamp–Lieb inequalities

	14. Further remarks
	Appendix A. Sharp examples
	AA. Range optimality
	AB. Transversality as a necessary condition in general

	Appendix B. Technical results
	Acknowledgements
	References
	
	

