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A POINCARÉ–STEKLOV MAP FOR THE MIT BAG MODEL
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The purpose of this paper is to introduce and study Poincaré–Steklov (PS) operators associated to the
Dirac operator Dm with the so-called MIT bag boundary condition. In a domain �⊂ R3, for a complex
number z and for Uz a solution of (Dm − z)Uz = 0, the associated PS operator maps the value of 0−Uz —
the MIT bag boundary value of Uz — to 0+Uz , where 0± are projections along the boundary ∂� and
(0− +0+)= t∂� is the trace operator on ∂�.

In the first part of this paper, we show that the PS operator is a zeroth-order pseudodifferential operator
and give its principal symbol. In the second part, we study the PS operator when the mass m is large, we
prove that it fits into the framework of 1/m-pseudodifferential operators, and we derive some important
properties, especially its semiclassical principal symbol. Subsequently, we apply these results to establish
a Krein-type resolvent formula for the Dirac operator HM = Dm + Mβ1R3\� for large masses M > 0 in
terms of the resolvent of the MIT bag operator on �. With its help, the large coupling convergence with a
convergence rate of O(M−1) is shown.
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1. Introduction

Motivation. Boundary integral operators have played a key role in the study of many boundary value
problems for partial differential equations arising in various areas of mathematical physics, such as
electromagnetism, elasticity, and potential theory. In particular, they are used as a tool for proving the
existence of solutions as well as for their construction by means of integral equation methods; see, e.g.,
[Fabes et al. 1978; Jerison and Kenig 1981a; 1981b; Verchota 1984].

The study of boundary integral operators has also been the motivation for the development of various
tools and branches of mathematics, e.g., Fredholm theory and singular integral and pseudodifferential
operators. Moreover, it turned out that the functional analytic and spectral properties of some of these
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operators are strongly related to the regularity and geometric properties of surfaces; see for example
[Hofmann et al. 2009; 2010]. A typical and well-known example which occurs in many applications is
the Dirichlet-to-Neumann (DtN) operator. In the classical setting of a bounded domain �⊂ Rd with a
smooth boundary, the DtN operator, N , is defined by

N : H 1/2(∂�)→ H−1/2(∂�), g 7→ N g = 0N U (g),

where U (g) is the harmonic extension of g (i.e., 1U (g)= 0 in � and 0DU = g on ∂�). Here 0D and 0N

denote the Dirichlet and the Neumann traces, respectively. In this setting, it is well known that the DtN
operator fits into the framework of pseudodifferential operators; see, e.g., [Taylor 1996]. Moreover, from
the point of view of the spectral theory, several geometric properties of the eigenvalue problem for the DtN
operator (such as isoperimetric inequalities, spectral asymptotics, and geometric invariants) are closely
related to the theory of minimal surfaces [Fraser and Schoen 2016] as well as the problem of determining
a complete Riemannian manifold with boundary from the Cauchy data of harmonic functions; see [Lassas
et al. 2003] (see also the survey [Girouard and Polterovich 2017] for further details).

The main goal of this paper is to introduce a Poincaré–Steklov map for the Dirac operator (i.e., an
analogue of the DtN map for the Laplace operator) and to study its (semiclassical) pseudodifferential
properties. Our main motivation for considering this operator is that it arises naturally in the study of the
well-known Dirac operator with the MIT bag boundary condition, HMIT(m), defined rigorously below.

Description of main results. In order to give a rigorous definition of the operator we are dealing with in
this paper and to go more into details, we need to introduce some notation. Given m > 0, the free Dirac
operator Dm on R3 is defined by Dm := −iα · ∇ + mβ, where

α j =

(
0 σ j

σ j 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 :=

(
1 0
0 1

)
,

and σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the family of Dirac and Pauli matrices. We use the notation α ·x =

∑3
j=1 α j x j for x = (x1, x2, x3)∈ R3.

We refer to the Appendix, where we recall some important properties of Dirac matrices for the convenience
of the reader. We recall that Dm is self-adjoint in L2(R3)4 with dom(Dm)= H 1(R3)4 (see, e.g., [Thaller
1992, Section 1.4]), and for the spectrum and the continuous spectrum, we have

Sp(Dm)= Spcont(Dm)= (−∞,−m] ∪ [m,+∞).

Let �⊂ R3 be a domain with a compact smooth boundary ∂�, let n be the outward unit normal to �,
and let 0± and P± be the trace mappings and the orthogonal projections, respectively, defined by

0± = P±0D : H 1(�)4 → P±H 1/2(∂�)4 and P± :=
1
2(I4 ∓ iβ(α · n(x))), x ∈ ∂�.

In the present paper, we investigate the specific case of the Poincaré–Steklov (PS for short) operator, Am ,
defined by

Am : P−H 1/2(∂�)4 → P+H 1/2(∂�)4, g 7→ Am(g)= 0+Uz,
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where z belongs to the resolvent set of the MIT bag operator on� (i.e., z ∈ρ(HMIT(m))) and Uz ∈ H 1(�)4

is the unique solution to the elliptic boundary problem{
(Dm − z)Uz = 0 in �,
0−Uz = g on ∂�.

(1-1)

Here and also in what follows, z or any complex number stands for z I , with I the identity.
We point out that, in the R-matrix theory and the embedding method for the Dirac equation, similar

operators linking on ∂� values of the upper and lower components of the spinor wave functions have
been studied in [Agranovich 2001; Agranovich and Rozenblum 2004; Bielski and Szmytkowski 2006;
Szmytkowski 1998]. There it corresponds to a different boundary condition (the trace of the upper/lower
components) which is not necessarily elliptic. As far as we know, such operators for the MIT bag boundary
condition have not been studied yet.

Let us now briefly describe the content of the present paper. Our results are mainly concerned with the
pseudodifferential properties of Am and their applications. Thus, our first goal is to show that Am fits into
the framework of pseudodifferential operators. In Section 4, we show that, when the mass m is fixed and
z ∈ ρ(Dm), the Poincaré–Steklov operator Am is a classical homogeneous pseudodifferential operator of
order 0, and that

Am = S ·

(
∇∂� ∧ n
√

−1∂�

)
P− mod OpS−1(∂�),

where S =
1
2 i(α ∧ α) is the spin angular momentum, ∇∂� and 1∂� are the surface gradient and the

Laplace–Beltrami operator on ∂� (equipped with the Riemann metric induced by the Euclidean one
in R3), respectively, and OpS−1 is the classical class of pseudodifferential operators of order −1 (see
Theorem 4.5 for details). For D∂� — the extrinsically defined Dirac operator introduced in Section 2D —
we also have

Am = D∂�(−1∂�)
−1/2 P− mod OpS−1(∂�).

The proof of the above result is based on the fact that we have an explicit solution of the system (1-1) for
any z ∈ ρ(Dm), and in this case the PS operator takes the following layer potential form:

Am = −P+β
( 1

2β + Cz,m
)−1 P−, (1-2)

where Cz,m is the Cauchy operator associated with (Dm −z) defined on ∂� in the principal value sense (see
Section 2B for the precise definition). So the starting point of the proof is to analyze the pseudodifferential
properties of the Cauchy operator. In this sense, we show that 2Cz,m is equal, modulo OpS−1(∂�), to
α · (∇∂�(−1∂�)

−1/2). Using this, the explicit layer potential description of Am , and the symbol calculus,
we then prove that Am is a pseudodifferential operator and catch its principal symbol (see Theorem 4.5).

The above strategy allows us to capture the pseudodifferential character of Am , but unfortunately it does
not allow us to trace the dependence on the parameter m, and it also imposes a restriction on the spectral
parameter z (i.e., z ∈ ρ(Dm)), whereas Am is well defined for any z ∈ ρ(HMIT(m)). In Section 5, we
address the m-dependence of the pseudodifferential properties of Am for any z ∈ ρ(HMIT(m)). Since we
are mainly concerned with large masses m in our application, we treat this problem from the semiclassical
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point of view, where h = 1/m ∈ (0, 1] is the semiclassical parameter. In fact, we show in Theorem 5.1
that A1/h admits a semiclassical approximation, and that

A1/h =
h D∂�√

−h21∂� + I + I
P− mod h Oph S−1(∂�).

The main idea of the proof is to use the system (1-1) instead of the explicit formula (1-2), and it is based
on the following two steps. The first step is to construct a local approximate solution for the pushforward
of the system (1-1) of the form

U h(x̃, x3)= Oph(Ah( · , · , x3))g =
1

(2π)2

∫
R2

Ah(x̃, hξ, x3)eiy·ξ ĝ(ξ) dξ, (x̃, x3) ∈ R2
× [0,∞),

where Ah belongs to a specific symbol class and has the asymptotic expansion

Ah(x̃, ξ, x3)∼

∑
j≥0

h j A j (x̃, ξ, x3).

The second step is to show that, when applying the trace mapping 0+ to the pullback of U h( · , 0), it
coincides locally with A1/h modulo a regularizing and negligible operator. At this point, the properties
of the MIT bag operator become crucial, in particular the regularization property of its resolvent which
allows us to achieve this second step, as we will see in Section 5. The MIT bag operator on � is the
Dirac operator on L2(�)4 defined by

HMIT(m)ψ = Dmψ for all ψ ∈ dom(HMIT(m)) := {ψ ∈ H 1(�)4 : 0−ψ = 0 on ∂�}.

It is well known that (HMIT(m), dom(HMIT(m)) is self-adjoint when � is smooth; see, e.g., [Ourmières-
Bonafos and Vega 2018]. In Section 3, we briefly discuss the basic spectral properties of HMIT(m),
when � is a domain with compact Lipschitz boundary (see Theorem 3.1). Moreover, in Theorem 3.4
we establish regularity results concerning the regularization property of the resolvent and the Sobolev
regularity of the eigenfunctions of HMIT. In particular, we prove that (HMIT(m)− z)−1 is bounded from
H n(�)4 into H n+1(�)4 ∩ dom(HMIT(m)) for all n ⩾ 1.

Motivated by the natural way in which the PS operator is related to the MIT bag operator and to
illustrate its usefulness, we consider in Section 6 the large mass problem for the self-adjoint Dirac operator
HM = Dm + Mβ1U , where U = R3

\�. Indeed, it is known that, in the limit M → ∞, every eigenvalue
of HMIT(m) is a limit of eigenvalues of HM ; see [Arrizabalaga et al. 2019; Moroianu et al. 2020] (see
also [Barbaroux et al. 2019; Benhellal 2019; Stockmeyer and Vugalter 2019] for the two-dimensional
setting). Moreover, it is shown in [Barbaroux et al. 2019; Benhellal 2019] that the two-dimensional
analogue of HM converges to the two-dimensional analogue of HMIT(m) in the norm resolvent sense with
a convergence rate of O(M−1/2).

The main goal of Section 6 is to address the following question: Let M0 > 0 be large enough
and fix M ⩾ M0 and z ∈ ρ(HMIT(m)) ∩ ρ(HM). Given f ∈ L2(R3)4 such that f = 0 in R3

\� and
U ∈ H 1(R3)4, what is the boundary value problem on � whose solutions closely approximate those of
(Dm + Mβ1R3\� − z)U = f ?
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It is worth noting that the answer to this question becomes trivial if one establishes an explicit formula
for the resolvent of HM . Having in mind the connection between the Dirac operators HM and HMIT(m),
this leads us to address the following question: for M sufficiently large, is it possible to relate the
resolvents of HM and HMIT via a Krein-type resolvent formula? In Theorem 6.2, which is the main
result of Section 6, we establish a Krein-type resolvent formula for HM in terms of the resolvent of
HMIT(m). The key point to establish this result is to treat the elliptic problem (HM − z)U = f ∈ L2(R3)4

as a transmission problem (where 0±U|� = 0±U|R3\� are the transmission conditions) and to use the
semiclassical properties of the Poincaré–Steklov operators in order to invert the auxiliary operator 9M(z)
acting on the boundary ∂� (see Theorem 6.2 for the precise definition). In addition, we prove an adapted
Birman–Schwinger principle relating the eigenvalues of HM in the gap (−(m + M),m + M) with a
spectral property of 9M(z). With their help, we show in Corollary 6.5 that the restriction of U on �
satisfies the elliptic problem 

(Dm − z)U|� = f in �,
0−U|� = BM0+ RMIT(z) f on ∂�,
0+U|� = 0+ RMIT(z) f + Am0−v on ∂�,

where BM is a semiclassical pseudodifferential operator of order 0. Here, the semiclassical parameter
is 1/M . Moreover, we show that the convergence of HM to HMIT(m) in the norm resolvent sense indeed
holds with a convergence rate of O(M−1), which improves previous works; see Proposition 6.9. The
most important ingredient in proving these results is the use of the Krein formula relating the resolvents
of HM and HMIT(m), as well as regularity estimates for the PS operators (see Proposition 6.4) and layer
potential operators (see Lemma 6.10 for details).

Organization of the paper. The paper is organized as follows. Sections 2 and 3 are devoted to preliminaries
for the sake of completeness and self-containedness of the paper. In Section 2, we set up some notation,
and we recall some basic properties of boundary integral operators associated with (Dm − z). Section 3
is devoted to the study of the MIT bag operator, where we gather its basic properties in Theorem 3.1
and we establish the regularization property of its resolvent in Theorem 3.4. In Section 4 we establish
Theorem 4.5, proving that the PS operator is a classical pseudodifferential operator. Then, in Section 5,
we study the PS operator from the point of view of semiclassical pseudodifferential operators, the main
result being Theorem 5.1. Finally, Section 6 is devoted to the study of the large mass problem for the
operator HM . There, we prove Theorem 6.2 regarding the Krein-type resolvent formula and we solve the
large mass problem, and we prove Proposition 6.9 on the resolvent convergence.

2. Preliminaries

In this section we gather some well-known results about boundary integral operators. We also recall some
properties of symbol classes and their associated pseudodifferential operators. Before proceeding further,
however, we need to introduce some notation that we will use in what follows.

2A. Notations. Throughout this paper we will write a ≲ b if there is C > 0 such that a ⩽ Cb. As usual,
the letter C stands for some constant which may change its value at different occurrences.
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For a bounded or unbounded Lipschitz domain � ⊂ R3, we write ∂� for its boundary, and we
denote by n and σ the outward-pointing normal to � and the surface measure on ∂�, respectively.
By L2(R3)4 := L2(R3

; C4) and L2(�)4 := L2(�,C4), we denote the usual L2-space over R3 and �,
respectively, and we let r� : L2(R3)4 → L2(�)4 be the restriction operator on� and e� : L2(�)4 → L2(R3)4

be its adjoint operator, i.e., the extension by zero outside of �.
For a function u ∈ L2(Rd), its Fourier transform is defined by the formula

û(ξ)=

∫
Rd

e−i x ·ξu(x) dx for all ξ ∈ Rd .

For s ∈ [0, 1], we define the usual Sobolev space H s(Rd)4 as

H s(Rd)4 :=

{
u ∈ L2(Rd)4 :

∫
Rd
(1 + |ξ |2)s |û(ξ)|2 dξ <∞

}
,

and we shall designate by H s(�)4 the standard L2-based Sobolev space of order s. We denote the
usual L2-space over ∂� by L2(∂�)4 := L2(∂�, dσ)4. If � is a C2-smooth domain with compact
boundary ∂�, then the Sobolev space of order s ∈ (0, 1] along the boundary, H s(∂�)4, is defined using a
local coordinate representation on the surface ∂�. As usual, we use the symbol H−s(∂�)4 to denote the
dual space of H s(∂�)4. We denote by t∂� : H 1(�)4 → H 1/2(∂�)4 the classical trace operator, and by
E� : H 1/2(∂�)4 → H 1(�)4 the extension operator, that is,

t∂�E�[ f ] = f for all f ∈ H 1/2(∂�)4.

Throughout the current paper, we denote by P± the orthogonal projections defined by

P± :=
1
2(I4 ∓ iβ(α · n(x))), x ∈ ∂�. (2-1)

We use the symbol H(α,�) for the Dirac–Sobolev space on a smooth domain � defined as

H(α,�)= {ϕ ∈ L2(�)4 : (α · ∇)ϕ ∈ L2(�)4}, (2-2)

which is a Hilbert space (see [Ourmières-Bonafos and Vega 2018, Section 2.3]) endowed with the scalar
product

⟨ϕ,ψ⟩H(α,�) = ⟨ϕ,ψ⟩L2(�)4 + ⟨(α · ∇)ϕ, (α · ∇)ψ⟩L2(�)4, ϕ, ψ ∈ H(α,�).

We also recall that the trace operator t∂� extends into a continuous map t∂� : H(α,�)→ H−1/2(∂�)4.
Moreover, if v ∈ H(α,�) and t∂�v ∈ H 1/2(∂�)4, then v ∈ H 1(�)4; see [Ourmières-Bonafos and Vega
2018, Propositions 2.1 and 2.16].

2B. Boundary integral operators. The aim of this part is to introduce boundary integral operators
associated with the fundamental solution of the free Dirac operator Dm and to summarize some of their
well-known properties.

For z ∈ ρ(Dm), with the convention that Im
√

z2 − m2 > 0, the fundamental solution of (Dm − z) is

φz
m(x)=

ei
√

z2−m2|x |

4π |x |

(
z + mβ + (1 − i

√
z2 − m2|x |)iα ·

x
|x |2

)
for all x ∈ R3

\ {0}. (2-3)
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We define the potential operator 8�z,m : L2(∂�)4 → L2(�)4 by

8�z,m[g](x)=

∫
∂�

φz
m(x − y)g(y) dσ(y) for all x ∈� (2-4)

and the Cauchy operator Cz,m : L2(∂�)4 → L2(∂�)4 as the singular integral operator acting as

Cz,m[ f ](x)= lim
ρ↘0

∫
|x−y|>ρ

φz
m(x − y) f (y) dσ(y) for σ -a.e. x ∈ ∂�, f ∈ L2(∂�)4. (2-5)

It is well known that 8�z,m and Cz,m are bounded and everywhere defined (see, for instance, [Arrizabalaga
et al. 2014, Section 2]) and that

((α · n)Cz,m)
2
= (Cz,m(α · n))2 = −

1
4 for all z ∈ ρ(Dm) (2-6)

holds in L2(∂�)4; see [Arrizabalaga et al. 2015, Lemma 2.2]. In particular, the inverse

C −1
z,m = −4(α · n)Cz,m(α · n)

exists and is bounded and everywhere defined. Since we have φz
m(y − x)∗ = φ z̄

m(x − y) for all z ∈ ρ(Dm),
it follows that C ∗

z,m and Cz̄,m are equal as operators in L2(∂�)4. In particular, Cz,m is self-adjoint in
L2(∂�)4 for all z ∈ (−m,m).

Next, recall that the trace of the single layer operator Sz associated with the Helmholtz operator
(−1+ m2

− z2)I4 is defined, for every f ∈ L2(∂�)4 and z ∈ ρ(Dm), by

Sz[ f ](x) :=

∫
∂�

ei
√

z2−m2|x−y|

4π |x − y|
f (y) dσ(y) for x ∈ ∂�.

It is well known that Sz is bounded from L2(∂�)4 into H 1/2(∂�)4 and it is a positive operator in L2(∂�)4

for all z ∈ (−m,m); see [Arrizabalaga et al. 2015, Lemma 4.2]. Now we define the operator 3z
m by

3z
m =

1
2β + Cz,m for all z ∈ ρ(Dm),

which is clearly a bounded operator from L2(∂�)4 into itself.
In the next lemma we collect the main properties of the operators 8�z,m , Cz,m , and 3z

m .

Lemma 2.1. Assume that � is C2-smooth. Given z ∈ ρ(Dm), let 8�z,m , Cz,m , and 3z
m be as above. Then

the following hold:

(i) The operator8�z,m is bounded from H 1/2(∂�)4 to H 1(�)4 and extends into a bounded operator from
H−1/2(∂�)4 to H(α,�). Moreover,

t∂�8�z,m[ f ] =
(
−

1
2 i(α · n)+ Cz,m

)
[ f ] for all f ∈ H 1/2(∂�)4. (2-7)

(ii) The operator Cz,m gives rise to a bounded operator Cz,m : H 1/2(∂�)4 → H 1/2(∂�)4.

(iii) The operator 3z
m : H 1/2(∂�)4 → H 1/2(∂�)4 is bounded invertible for all z ∈ ρ(Dm).
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Proof. (i) The proof of the boundedness of 8�z,m from H 1/2(∂�)4 into H 1(�)4 is contained in [Behrndt
and Holzmann 2020, Proposition 4.2], and the jump formula (2-7) is proved in [Arrizabalaga et al. 2014,
Lemma 3.3] in terms of the nontangential limit which coincides (almost everywhere in ∂�) with the trace
operator for functions in H 1(�)4. The boundedness of 8�z,m from H−1/2(∂�)4 to H(α,�) is established
in [Ourmières-Bonafos and Vega 2018, Theorem 2.2].

Since n is smooth, it is clear from (i) that Cz,m is bounded from H 1/2(∂�)4 into itself, which proves (ii).
As consequence we also obtain that3z

m is bounded from H 1/2(∂�)4 into itself. Now, the invertibility of3z
m

in H 1/2(∂�)4 for z ∈ C\R is shown in [Behrndt et al. 2019, Lemma 3.3 (iii)]; see also [Behrndt et al. 2020,
Lemma 3.12]. To complete the proof of (iii), note that if f ∈ L2(∂�)4 is such that 3z

m[ f ] ∈ H 1/2(∂�)4,
then a simple computation shows that

H 1/2(∂�)4 ∋ (3z
m)

2
[ f ] =

(1
4 + (Cz,m)

2
+ (m + zβ)Sz

)
[ f ],

which means that f ∈ H 1/2(∂�)4. From the above computation, we see that 3z
m is invertible from

H 1/2(∂�)4 into itself for all z ∈ (−m,m), since ((Cz,m)
2
+ (m + zβ)Sz) is a positive operator. □

Remark 2.2. Note that if � is a Lipschitz domain with a compact boundary, then, for all z ∈ ρ(Dm),
the operators Cz,m and 3z

m are bounded from L2(∂�)4 into itself (see, e.g, [Arrizabalaga et al. 2014,
Lemma 3.3]), and since 3z

m is an injective Fredholm operator (see the proof of [Benhellal 2022a,
Theorem 4.5]), it follows that it is also invertible in L2(∂�)4. Note also that, thanks to [Behrndt et al.
2021, Lemmas 5.1 and 5.2], we know the mapping 8�z,m defined by (2-4) is bounded from L2(∂�)4 to
H 1/2(�)4, t∂�8�z,m[g] ∈ L2(∂�)4, and the formula (2-7) still holds true for all g ∈ L2(∂�)4.

2C. Symbol classes and pseudodifferential operators. We recall here the basic facts concerning the
classes of pseudodifferential operators that will serve in the rest of the paper.

Let M4(C) be the set of 4×4 matrices over C. For d ∈ N∗, we let Sm(Rd
×Rd) be the standard symbol

class of order m ∈ R whose elements are matrix-valued functions a in the space C∞(Rd
× Rd

; M4(C))

such that

|∂αx ∂
β
ξ a(x, ξ)| ⩽ Cαβ(1 + |ξ |2)m−|β| for all (x, ξ) ∈ Rd

× Rd , for all α ∈ Nd , for all β ∈ Nd .

Let S (Rd) be the Schwartz class of functions. Then, for each a ∈ Sm(Rd
× Rd) and any h ∈ (0, 1], we

associate to it a semiclassical pseudodifferential operator Oph(a) : S (Rd)4 → S (Rd)4 via the standard
formula

Oph(a)u(x)=
1

(2π)d

∫
Rd

eiξ ·xa(x, hξ)û(ξ) dξ for all u ∈ S (Rd)4.

If a ∈ S0(Rd
×Rd), then the Calderón–Vaillancourt theorem (see, e.g., [Calderón and Vaillancourt 1972])

yields that Oph(a) extends to a bounded operator from L2(Rd)4 into itself, and there exists C, NC > 0
such that

∥Oph(a)∥L2→L2 ⩽ C max
|α+β|⩽NC

∥∂αx ∂
β
ξ a∥L∞ . (2-8)

By definition, a semiclassical pseudodifferential operator Oph(a), with a ∈ S0(Rd
× Rd), can also be

considered as a classical pseudodifferential operator Op1(ah), with ah = a(x, hξ), which is bounded with
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respect to h ∈ (0, h0), where h0 > 0 is fixed. Thus the Calderón–Vaillancourt theorem also provides the
boundedness of these operators in Sobolev spaces H s(Rd)4 = ⟨Dx ⟩

−s L2(Rd)4, where ⟨Dx ⟩ =
√

−1+ I .
Indeed, we have

∥Op1(ah)∥H s→H s = ∥⟨Dx ⟩
s Op1(ah)⟨Dx ⟩

−s
∥L2→L2, (2-9)

and since ⟨Dx ⟩
s Op1(ah)⟨Dx ⟩

−s is a classical pseudodifferential operator with a uniformly bounded
symbol in S0, we deduce that Oph(a) is uniformly bounded with respect to h from H s into itself.

Consider a C∞-smooth domain �⊂ R3 with a compact boundary 6 = ∂�. Then 6 is a 2-dimensional
parametrized surface, which, in the sense of differential geometry, can also be viewed as a smooth
2-dimensional manifold immersed into R3. Thus 6 can be covered by an atlas (i.e., a collection of smooth
charts)

A = {(U j , V j , ϕ j ) : j ∈ {1, . . . , N }}, where N ∈ N∗.

That is

6 =

N⋃
j=1

U j ,

and for each j ∈ {1, . . . , N }, we have that U j is an open set of 6, V j ⊂ R2 is an open set of the parametric
space R2, and ϕ j : U j → V j is a C∞-diffeomorphism. Moreover, by the definition of a smooth manifold,
if U j ∩ Uk ̸= ∅ then

ϕk ◦ (ϕ j )
−1

∈ C∞(ϕ j (U j ∩ Uk);ϕk(U j ∩ Uk)).

As usual, the pullback (ϕ−1
j )

∗ and the pushforward ϕ∗

j are defined by

(ϕ−1
j )

∗u = u ◦ϕ−1
j and ϕ∗

j v = v ◦ϕ j

for u and v functions on U j and V j , respectively. We also recall that a function u on 6 is said to be in
the class Ck(6) if, for every chart, the pushforward has the property (ϕ−1

j )
∗u ∈ Ck(V j ).

Following [Zworski 2012, Part 4], we define pseudodifferential operators on the boundary 6 as follows.

Definition 2.3. Let A : C∞(6)4 → C∞(6)4 be a continuous linear operator. Then A is said to be a
h-pseudodifferential operator of order m ∈ R on 6, and we write A ∈ Oph Sm(6), if,

(1) for every chart (U j , V j , ϕ j ), there exists a symbol a ∈ Sm such that

ψ1A (ψ2u)= ψ1ϕ
∗

j Oph(a)(ϕ−1
j )

∗(ψ2u)

for any ψ1, ψ2 ∈ C∞

0 (U j ) and u ∈ C∞(6)4,

(2) for all ψ1, ψ2 ∈ C∞(6) such that supp(ψ1)∩ supp(ψ2)= ∅ and for all N ∈ N, we have

∥ψ1Aψ2∥H−N (6)4→H N (6)4 = O(h∞).

For h fixed (for example h = 1), A is called a pseudodifferential operator.

Since the study of a given pseudodifferential operator on 6 reduces to a local study on local charts, we
recall below the specific local coordinates and surface geometry notation used in the rest of the paper.
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We always fix an open set U ⊂6, and we let χ : V → R be a C∞-function (where V ⊂ R2 is open) such
that its graph coincides with U . Here and in the following, we omit the possible composition with a rotation
that allows this, since changes of variables take h-pseudodifferential operators to h-pseudodifferential
operators modulo smoothing operators and leave the principal symbol invariant. Set ϕ(x̃)= (x̃, χ(x̃)).
Then for x ∈ U we write x = ϕ(x̃) with x̃ ∈ V . Here and also in what follows, ∂1χ and ∂2χ stand for the
partial derivatives ∂x̃1χ and ∂x̃2χ , respectively. Recall that the first fundamental form, I, and the metric
tensor G(x̃)= (g jk(x̃)), have the following forms:

I = g11 dx̃2
1 + 2g12 dx̃1 dx̃2 + g22 dx̃2

2 ,

G(x̃)= (g jk(x̃))=

(
g11 g12

g21 g22

)
(x̃) :=

(
1 + |∂1χ |

2 ∂1χ ∂2χ

∂1χ ∂2χ 1 + |∂2χ |
2

)
(x̃).

As G(x̃) is symmetric, it follows that it is diagonalizable by an orthogonal matrix. Indeed, let

Q(x̃) :=


|∂2χ |

|∇χ |

∂1χ ∂2χ

|∂2χ ||∇χ |

−
∂1χ ∂2χ

|∂2χ ||∇χ |

|∂2χ |

|∇χ |

(
1 0
0 g−1/2

)
(x̃), (2-10)

where g stands for the determinant of G. Then, it is straightforward to check that

QTG Q(x̃)= I2, Q QT(x̃)= G(x̃)−1
=: (g jk(x̃)), det(Q)= det(QT)= g−1/2. (2-11)

2D. Operators on the boundary 6 = ∂�. As above, we consider 6 = ∂� the boundary of a smooth
bounded domain �. On 6 equipped with the Riemann metric induced by the Euclidean one in R3, we
consider the Laplace–Beltrami operator −16 and the surface gradient ∇6 = ∇ −n(n ·∇), where n is the
unit normal to the surface pointing outside �. Note that, for (e1, e2) an orthonormal basis of the tangent
space, ∇6 = e1∇e1 + e2∇e2 , where ∇e j stands for the tangential derivative in the direction e j . With the
notation of the previous section, in local coordinates, −16 and ∇6 are pseudodifferential operators with
respective principal symbols

p−16 (x̃, ξ)= ⟨G(x̃)−1ξ, ξ⟩, p∇6 (x̃, ξ)= ξG :=

(
G(x̃)−1ξ

⟨∇χ(x̃),G(x̃)−1ξ⟩

)
. (2-12)

Let us now introduce D6 , the extrinsically defined Dirac operator. To any x ∈ R3 we associate the
matrix α(x)= α · x , where α = (α1, α2, α3). For H1, the mean curvature of 6, D6 , is given by

D6 = −α(n)α(∇6)+ 1
2 H1

(for more details see [Moroianu et al. 2020, Appendix B]). It is a pseudodifferential operator with principal
symbol

pD6
(x̃, ξ)= −iα(nϕ(x̃))α(ξG),

where nϕ = ϕ∗n. We now define the spin angular momentum S as

S · X = −γ5(α · X) for all X ∈ R3, where γ5 := −iα1α2α3 =

(
0 I2

I2 0

)
. (2-13)
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Using properties (A-1) and (A-2) and the fact that n · ξG = 0, we then have

pD6
(x̃, ξ)= −iα · nϕ(x̃)α · ξG = S · (ξG ∧ nϕ(x̃)).

Moreover, for ξ̄ :=

(
ξ

0

)
, we have ξ̄ = ξG + (ξ̄ · nϕ)nϕ . Thus, in local coordinates, the principal symbol

of D6 is also
pD6

(x̃, ξ)= S · (ξ̄ ∧ nϕ(x̃)). (2-14)

Let us also point out the relationship between the principal symbols of 16 and D6:

|ξ̄ ∧ nϕ(x̃)|2 = ⟨G(x̃)−1ξ, ξ⟩. (2-15)

3. Basic properties of the MIT bag model

In this section, we give a brief review of the basic spectral properties of the Dirac operator with the
MIT bag boundary condition on Lipschitz domains. Then, we establish some results concerning the
regularization properties of the resolvent and the Sobolev regularity of the eigenfunctions in the case of
smooth domains.

Let U ⊂ R3 be a Lipschitz domain with a compact boundary ∂U . Then, for m > 0, the Dirac operator
with the MIT bag boundary condition on U , (HMIT(m), dom(HMIT(m))), or simply the MIT bag operator,
is defined on the domain

dom(HMIT(m)) := {ψ ∈ H 1/2(U )4 : (α · ∇)ψ ∈ L2(U )4 and P−t∂ Uψ = 0 on ∂U }

by HMIT(m)ψ = Dmψ for all ψ ∈ dom(HMIT(m)) and where the boundary condition holds in L2(∂U )4.
Here P± are the orthogonal projections defined by (2-1).

The following theorem gathers the basic properties of the MIT bag operator. We mention that some of
these properties are well known in the case of smooth domains; see, e.g., [Arrizabalaga et al. 2017; 2019;
2023; Behrndt et al. 2020; Ourmières-Bonafos and Vega 2018].

Theorem 3.1. The operator (HMIT(m), dom(HMIT(m))) is self-adjoint, and we have

(HMIT(m)− z)−1
= rU (Dm − z)−1eU −8U

z,m(3
z
m)

−1t∂U (Dm − z)−1eU for all z ∈ ρ(Dm). (3-1)

Moreover, the following statements hold:

(i) If U is bounded, then Sp(HMIT(m))= Spdisc(HMIT(m))⊂ R \ [−m,m].

(ii) If U is unbounded, then Sp(HMIT(m))= Spess(HMIT(m))= (−∞,−m]∪[m,+∞). Moreover, if U
is connected, then Sp(HMIT(m)) is purely continuous.

(iii) Let z ∈ ρ(HMIT(m)) be such that 2|z|< m. Then, for all f ∈ L2(U )4,

∥(HMIT(m)− z)−1 f ∥L2(U )4 ≲
1
m

∥ f ∥L2(U )4 .

Proof. Let ϕ,ψ ∈ dom(HMIT(m)). Then by density arguments we get the Green formula

⟨(−iα · ∇)ϕ, ψ⟩L2(U )4 − ⟨ϕ, (−iα · ∇)ψ⟩L2(U )4 = ⟨(−iα · n)t∂Uϕ, t∂Uψ⟩L2(∂U )4 . (3-2)
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Since P−t∂Uϕ = P−t∂Uψ = 0 and P±(α · n)= (α · n)P∓ (see Lemma A.3), it follows that

⟨(−iα · ∇)ϕ, ψ⟩L2(U )4 − ⟨ϕ, (−iα · ∇)ψ⟩L2(U )4 = ⟨P+(−iα · n)P+t∂Uϕ, P+t∂Uψ⟩L2(∂U )4 = 0.

Consequently, we obtain

⟨HMIT(m)ϕ, ψ⟩L2(U )4 − ⟨ϕ, HMIT(m)ψ⟩L2(U )4 = ⟨Dmϕ,ψ⟩L2(U )4 − ⟨ϕ, Dmψ⟩L2(U )4

= ⟨(−iα · ∇)ϕ, ψ⟩L2(U )4 − ⟨ϕ, (−iα · ∇)ψ⟩L2(U )4 = 0.

Therefore (HMIT(m), dom(HMIT(m))) is symmetric. Now, thanks to [Benhellal 2022a, Proposition 4.3],
we know that the MIT bag operator defined on the domain

D = {ψ = u +8U
0,m[g], u ∈ H 1(U )4, g ∈ L2(∂U )4 : P−t∂Uψ = 0 on ∂U } (3-3)

by HMIT(m)(u +8U
0,m[g]) = Dmu for all (u +8U

0,m[g]) ∈ D is a self-adjoint operator. Since HMIT(m)
is symmetric on dom(HMIT(m)), we can deduce that dom(HMIT(m)) ⊂ D . Now, from Remark 2.2,
we also get that D ⊂ dom(HMIT(m)), which proves the equality D = dom(HMIT(m)), and thus that
(HMIT(m), dom(HMIT(m))) is self-adjoint. Next, we check the resolvent formula (3-1). Let f ∈ L2(U )4

and z ∈ ρ(Dm), and set

ψ = rU (Dm − z)−1eU f −8U
z,m(3

z
m)

−1t∂U (Dm − z)−1eU f.

Since (Dm − z)−1eU is bounded from L2(U )4 into H 1(R3)4 and (3z
m)

−1 is well defined by Remark 2.2,
it follows that

u := rU (Dm − z)−1eU f ∈ H 1(U )4 and g := −(3z
m)

−1t∂U (Dm − z)−1eU f ∈ L2(∂U )4,

which gives that ψ ∈ H 1/2(U )4 and that (α · ∇)ψ ∈ L2(U )4. Next, using Lemma 2.1(i) and Remark 2.2,
we easily get

t∂Uψ = t∂U (Dm − z)−1eU f +
( 1

2 i(α · n)− Cz,m
)(1

2β + Cz,m
)−1t∂U (Dm − z)−1eU f

= P+β(3
z
m)

−1t∂U (Dm − z)−1eU f,

thus P−t∂Uψ = 0 on ∂U , which means that ψ ∈ dom(HMIT(m)). Since (Dm − z)8U
z,m[g] = 0 in U , it

follows that (HMIT(m)− z)ψ = f , and formula (3-1) is proved.
We are now going to prove assertions (i) and (ii). First, note that, for ψ ∈ dom(HMIT(m)), a straight-

forward application of the Green formula (3-2) yields

∥HMIT(m)ψ∥
2
L2(U )4 = ∥(α · ∇)ψ∥

2
L2(U )4 + m2

∥ψ∥
2
L2(U )4 + m∥P+t∂Uψ∥

2
L2(∂U )4 . (3-4)

Thus ∥HMIT(m)ψ∥
2
L2(U )4 ⩾ m2

∥ψ∥
2
L2(U )4 , which yields Sp(HMIT(m)) ⊂ (−∞,−m] ∪ [m,+∞). Note

that this can be seen immediately from (3-1). Next, we show that {−m,m} /∈ Spdisc(HMIT(m)). Assume
that there is 0 ̸= ψ ∈ dom(HMIT(m)) such that (HMIT(m)− m)ψ = 0 in U . Then, from (3-4), we have

∥(−iα · ∇)ψ∥
2
L2(U )4 + m∥P+t∂Uψ∥

2
L2(∂U )4 = 0.
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Since m > 0, it follows that P+t∂Uψ = 0 and thus that t∂Uψ = 0. Using this and the above equation, an
integration by parts (using density arguments) gives

∥∇ψ∥L2(U )4 = ∥(−iα · ∇)ψ∥L2(U )4 = 0.

From this we conclude that ψ vanishes identically, which contradicts the fact that ψ ̸= 0, and thus
m /∈ Spdisc(HMIT(m)). Following the same lines as above we also get that −m /∈ Spdisc(HMIT(m)). Thus,
if U is bounded, then the above considerations and the fact that dom(HMIT(m))⊂ H 1/2(U )4 is compactly
embedded in L2(U )4 yield Sp(HMIT(m))= Spdisc(HMIT(m))⊂ R \ [−m,m], which shows assertion (i).

To finish the proof of (ii), suppose U is unbounded. We first show (−∞,−m] ∪ [m,+∞) is contained
in Spess(HMIT(m)) by constructing Weyl sequences as in the case of half-space; see [Benhellal 2022b,
Theorem 4.1]. As U is unbounded, there is R1>0 such that the half-space {x = (x1, x2, x3)∈ R3

: x3> R1}

is strictly contained in U and R3
\U ⊂ B(0, R1). Fix λ ∈ (−∞,−m)∪ (m,+∞), and let ξ = (ξ1, ξ2) be

such that |ξ |2 = λ2
− m2. We define the function ϕ : R3

→ C4 by

ϕ(x̄, x3)=

(
ξ1 − iξ2

λ− m
, 0, 0, 1

)t

eiξ ·x̄ , with x̄ = (x1, x2).

Clearly we have (Dm − λ)ϕ = 0. Now, fix R2 > R1, and let η ∈ C∞

0 (R
2,R) and χ ∈ C∞

0 (R,R) be such
that supp(χ)⊂ [R1, R2]. For n ∈ N⋆, we define the sequences of functions

ϕn(x̄, x3)= n−3/2ϕ(x̄, x3)η(x̄/n)χ(x3/n) for (x̄, x3) ∈ U .

Then, it is easy to check that ϕn ∈ H 1
0 (U )⊂ dom(HMIT(m)), (ϕn)n∈N⋆ converges weakly to zero, and

∥ϕn∥
2
L2(U )4 =

2λ
λ− m

∥η∥2
L2(R2)

∥χ∥
2
L2(R)

> 0,
∥(Dm − λ)ϕn∥L2(U )4

∥ϕn∥L2(U )4
n→∞

−−−→ 0;

for more details see the proof of [Benhellal 2022b, Theorem 4.1]. Therefore, Weyl’s criterion yields

(−∞,−m)∪ (m,+∞)⊂ Spess(HMIT(m)).

Since the spectrum of a self-adjoint operator is closed, we then get the first statement of (ii). Now, if we
assume in addition that U is connected, then using the same arguments as in the proof of [Arrizabalaga
et al. 2015, Theorem 3.7] (i.e., using Rellich’s lemma and the unique continuation property), one can
verify that HMIT(m) has no eigenvalues in R \ [−m,m]. As {−m,m} /∈ Spdisc(HMIT(m)), it follows that
HMIT(m) has a purely continuous spectrum.

Now we prove (iii). Letψ ∈dom(HMIT(m)). Then (3-4) yields that ∥HMIT(m)ψ∥
2
L2(�)4

⩾m2
∥ψ∥

2
L2(�)4

,
and thus

m∥ψ∥L2(U )4 ⩽ ∥HMIT(m)ψ∥L2(U )4 ⩽ ∥(HMIT(m)− z)ψ∥L2(U )4 + |z|∥ψ∥L2(U )4 .

Therefore, for 2|z|< m with z ∈ ρ(HMIT(m)), we get that ∥ψ∥L2(U )4 ⩽ 2m−1
∥(HMIT(m)− z)ψ∥L2(U )4 .

Thus, (iii) follows by taking ψ = (HMIT(m)− z)−1 f . □

Remark 3.2. We mention that the above statement on the self-adjointness can also be deduced from
[Behrndt et al. 2021, Theorem 5.4]. We also mention that the MIT bag operator defined on the domain D

given by (3-3) is still self-adjoint for less regular domains; see [Benhellal 2022a] for more details.
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Remark 3.3. Note that if U is in the class of Hölder’s domains C1,ω, with ω∈
( 1

2 , 1
)
, then HMIT(m) is self-

adjoint and dom(HMIT(m)) := {ψ ∈ H 1(U )4 : P−t∂Uψ = 0 on ∂U }; see [Benhellal 2022a, Theorem 4.3]
for example.

Now we establish regularity results concerning the regularization property of the resolvent and the
Sobolev regularity of the eigenfunctions of HMIT(m). The first statement of the following theorem will be
crucial in Section 5 when studying the semiclassical pseudodifferential properties of the Poincaré–Steklov
operator.

Theorem 3.4. Let k ⩾ 1 be an integer and assume that U is C2+k-smooth. Then the following statements
hold:

(i) The mapping (HMIT(m)−z)−1
: H k(U )4 → H k+1(U )4∩dom(HMIT(m)) is well defined and bounded

for all m > 0 and all z ∈ ρ(HMIT(m)). Moreover, for any compact set K ⊂ C, there exist m0,C > 0
such that, for all m ⩾ m0 and z ∈ K ,

∥(HMIT(m)− z)−1
∥H k−1(U )4→H k(U )4 ≤ Cmk−1.

(ii) If φ is an eigenfunction associated with an eigenvalue z ∈ Sp(HMIT(m)), i.e., (HMIT(m)− z)φ = 0,
then φ ∈ H 1+k(U )4. In particular, if U is C∞-smooth, then φ ∈ C∞(U )4.

To prove this theorem we need the following classical regularity result.

Proposition 3.5. Let k be a nonnegative integer. Assume that U is C3+k-smooth and u ∈ H 1(U ). If u
solves the Neumann problem

−1u = f ∈ H k(U ) and ∂nu = g ∈ H 1/2+k(∂U ),

then u ∈ H 2+k(U ).

Proof. First, assume that k = 0. As U is C3-smooth we know the Neumann trace ∂n : H 2(U )→ H 1/2(∂U )
is surjective. Thus, there is G ∈ H 2(U ) such that ∂nG = g in ∂U . Note that the function ũ = u − G
satisfies the homogeneous Neumann problem

−1ũ = f +1G in U and ∂n ũ = 0 on ∂U .

Therefore, ũ ∈ H 2(U ) by [Mikhailov 1978, Theorem 5, p. 217], which implies that u ∈ H 2(U ), and this
proves the result for k = 0. If k ⩾ 1, then the result follows by [Grisvard 1985, Theorem 2.5.1.1]. □

Proof of Theorem 3.4. We prove the theorem by induction on k. First, we show (i), so fix z ∈ ρ(HMIT(m))
and assume that k = 1. Let φ = (φ1, φ2)

⊤
∈ dom(HMIT(m)) be such that (Dm − z)φ = f in U , with

f = ( f1, f2)
⊤

∈ H 1(U )4. By assumption we have (1+m2
− z2)φ= (Dm + z) f in D′(U )4, and then also

in L2(U )4. We next prove that ∂nφ ∈ H 1/2(∂U )4. To this end, consider Uϵ := {x ∈ R3
: dist(x, ∂U ) < ϵ}

for ϵ > 0. Then, for δ > 0 small enough and 0< ϵ ⩽ δ, the mapping 9 : ∂U × (−ϵ, ϵ)→ Uϵ , defined by

9(x∂U , t)= x∂U + tn(x∂U ), x∂U ∈ ∂U, t ∈ (−ϵ, ϵ), (3-5)

is a C2-diffeomorphism and Uϵ := {x + tn(x) : x ∈ ∂U, t ∈ (−ϵ, ϵ)}.
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Let P̃− : L2(Uϵ ∩U )4 → L2(Uϵ ∩U )4 be the bounded operator defined by

P̃−ϕ(9(x, t))=
1
2(1 + iβ(α · n(x)))ϕ(9(x, t)), 9(x, t) ∈ Uϵ ∩ U .

Let x0
∂U be an arbitrary point on the boundary ∂U , fix 0< r < 1

2ϵ, and let ζ : R3
→ [0, 1] be a C∞-smooth

and compactly supported function such that ζ = 1 on B(x0
∂U , r) and ζ = 0 on R3

\ B(x0
∂U , 2r). We claim

that P̃−ζφ satisfies the elliptic problem{
−1(P̃−ζφ)= g in U,
t∂U (P̃−ζφ)= 0 on ∂U,

with g ∈ L2(U )4. Indeed, set B(x)= iβ(α · n(x)) for x ∈ ∂U , and observe that

(Dm − z)(P̃−ζφ)=
(
P̃−ζ f +

1
2 [Dm, ζ ]φ

)
+

1
2 [Dm, ζB]φ =: I (φ, f )+ 1

2 [Dm, ζB]φ.

Since n is C2-smooth, ζ is an infinitely differentiable scalar function, and φ, f ∈ H 1(U )4, it is clear
that I (φ, f ) ∈ H 1(U )4 and [Dm, ζB]φ ∈ L2(U )4. Now, applying (Dm + z) to the above equation yields
−1(P̃−ζφ)= g, with

g := (z2
− m2)P̃−ζφ+ (Dm + z)I (φ, f )+ 1

2 z[Dm, ζB]φ+
1
2 Dm[Dm, ζB]φ.

As before, it is clear that the first three terms are square integrable. Next, observe that

D0[D0, ζB]φ = {D0, [D0, ζB]}φ− [D0, ζB]D0φ = [−1, ζB]φ− [D0, ζB]((Dm − z)φ− (mβ − z)φ),

where {A, B} =: AB + B A is the anticommutator bracket. Using this, the smoothness assumption on n,
the facts that (Dm − z)φ = f ∈ H 1(U )4 and that [D0, ζB] and [−1, ζB] are first-order differential
operators, we easily see that D0[D0, ζB]φ ∈ L2(U )4. Hence, Dm[Dm, ζB]φ is square integrable, which
means that g ∈ L2(U )4. As P−t∂Uφ = 0 and t∂U (P̃−ζφ) = t∂Uζ P−t∂Uφ = 0 on ∂U , by [Gilbarg and
Trudinger 1983, Theorem 8.12], it follows that P̃−ζφ ∈ H 2(Uϵ ∩U )4, which implies

ζ(φ1 + i(σ · n)φ2) ∈ H 2(B(x0
∂U , 2r)∩ U )2 and ζ(−i(σ · n)φ1 +φ2) ∈ H 2(B(x0

∂U , 2r)∩U )2.

Consequently, we get

φ1 + i(σ · n)φ2 ∈ H 2(B(x0
∂U , r)∩U )2 and − i(σ · n)φ1 +φ2 ∈ H 2(B(x0

∂U , r)∩U )2. (3-6)

Since −i(σ · ∇)φ2 = (z − m)φ1 + f1 and −i(σ · ∇)φ1 = (z + m)φ2 + f2 hold in H 1(U )2, it follows
from (3-6) that

(σ · ∇)φ j ∈ H 1(B(x0
∂U , r))

2 and (σ · ∇)(σ · n)φ j ∈ H 1(B(x0
∂U , r))

2, j = 1, 2.

Using this and the fact that n is C2-smooth, we easily get

(σ · n)(σ · ∇)φ j + (σ · ∇)(σ · n)φ j = (n · ∇)φ j + F j ∈ H 1(B(x0
∂U , r))

2,

with F j ∈ H 1(B(x0
∂U , r)∩U )2. As a consequence, we get (n · ∇)φ j ∈ H 1(B(x0

∂U , r)∩U )2. Since this
holds true for all x0

∂U ∈ ∂U , using the compactness of ∂U , it follows that ∂nφ ∈ H 1/2(∂U )4. Therefore,
Proposition 3.5 yields φ ∈ H 2(U )4.



2938 BADREDDINE BENHELLAL, VINCENT BRUNEAU AND MAHDI ZREIK

Next, assume k ⩾ 2, U is C2+k-smooth, and φ, f ∈ H k(U )4. Since n is C1+k-smooth and 9 defined
by (3-5) is a C1+k-diffeomorphism, following the same arguments as above we then conclude that
∂nφ ∈ H k−1/2(∂U )4. Note also that −1φ = (z2

− m2)φ+ (Dm − z) f ∈ H k−1(U )4. Therefore, thanks to
Proposition 3.5, we conclude that φ ∈ H k+1(U )4, which proves the first statement of (i).

Now, the second statement of (i) is a consequence of the first one, Theorem 3.1(iii), and the Gårding-type
inequality

∥ϕ∥
2
H k+1(U )4 ≲ ∥ϕ∥

2
H k(U )4 + ∥D0ϕ∥

2
H k(U )4, (3-7)

which holds for any ϕ ∈ dom(HMIT(m))∩ H k+1(U )4, k ∈ N. Indeed, suppose for instance that (3-7)
holds true. Fix a compact set K ⊂ C, and let z ∈ K . Note that if z ∈ ρ(HMIT(m)) then, for ψ ∈ H k(U )4,
k ≥ 0, we have

∥D0(HMIT(m)− z)−1ψ∥H k(U )4 ≤ ∥ψ∥H k(U )4 + (m + |z|)∥(HMIT(m)− z)−1ψ∥H k(U )4 . (3-8)

Let us also remark that Theorem 3.1(iii) gives that there is m0 > 0 such that z ∈ ρ(HMIT(m)) for any
m ≥ m0 and, for any ψ ∈ H k(U )4, k ≥ 0,

∥D0(HMIT(m)− z)−1ψ∥L2(U )4 ≲ ∥ψ∥L2(U )4 ≤ ∥ψ∥H k(U )4 . (3-9)

Hence, by iterating the Gårding inequality and taking into account (3-8) and (3-9), we get

∥D0(HMIT(m)− z)−1ψ∥H k(U )4 ≲ mk
∥ψ∥H k(U )4,

and the conclusion follows by applying again the Gårding inequality. We now return to the proof of (3-7).
Let ϕ ∈ dom(HMIT(m)). Then [Arrizabalaga et al. 2017, Theorem 1.5] yields

∥D0ϕ∥
2
L2(U )4 = ∥∇ϕ∥

2
L2(U )4 +

∫
∂U

H1|t∂Uϕ|
2 dσ, (3-10)

where we recall that H1(x) is the mean curvature at x ∈ ∂U . Recall that, for any ϵ > 0, there is Cϵ > 0
such that

∥t∂Uϕ∥L2(∂U )4 ≤ ϵ∥∇ϕ∥
2
L2(U )4 + Cϵ∥ϕ∥

2
L2(U )4 for all ϕ ∈ H 1(U )4;

see [Barbaroux et al. 2019, Remark 1]. Using this inequality with ϵ sufficiently small and estimating
(3-10) we get, for all ϕ ∈ H 1(U )4,

∥ϕ∥
2
H1(U )4 = ∥ϕ∥

2
L2(U )4 + ∥∇ϕ∥

2
L2(U )4 ≲ ∥ϕ∥

2
L2(U )4 + ∥D0ϕ∥

2
L2(U )4,

which shows (3-7) for k = 0. Note that by local arguments one has

∥ϕ∥
2
H k+1(U )4 ≲ ∥ϕ∥

2
L2(U )4 +

∑
j

∥∂ jϕ∥
2
H k(U )4,

and since [∂ j , D0] = 0, (3-7) easily follows by induction for any k ≥ 1.
Finally, the proof of the first statement of (ii) follows the same lines as the one of (i). In particular, if U

is C∞-smooth, we then get φ ∈ H k+1(U )4 for any k ⩾ 0, which implies that φ is infinitely differentiable
in U , and the theorem is proved. □
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Remark 3.6. Note that the estimate in Theorem 3.4(i) is certainly not sharp, but it will be enough for our
purposes.

4. Poincaré–Steklov operators as pseudodifferential operators

The main purpose of this section is to introduce the Poincaré–Steklov operator Am associated with the
MIT bag operator and to prove that it fits into the framework of pseudodifferential operators.

Throughout this section, let � be a smooth domain with a compact boundary 6, and let P± be as
in (2-1). Let us start by giving the rigorous definition of the Poincaré–Steklov operator, which is the main
subject of this paper.

Definition 4.1 (PS operator). Let z ∈ ρ(HMIT(m)) and g ∈ P−H 1/2(6)4. We denote by E�m (z) :

P−H 1/2(6)4 → H 1(�)4 the lifting operator associated with the elliptic problem{
(Dm − z)Uz = 0 in �,
P−t6Uz = g on 6.

(4-1)

That is, E�m (z)g is the unique function in H 1(�)4 satisfying the equations (Dm − z)E�m (z)g = 0 in � and
P−t6E�m (z)g = g on 6. Then, the Poincaré–Steklov (PS) operator Am : P−H 1/2(6)4 → P+H 1/2(6)4

associated with the system (4-1) is defined by

Am(g)= P+t6E�m (z)g.

Recall the definitions of 8�z,m and 3z
m from Section 2B. Then, the following proposition justifies

the existence and the uniqueness of the solution to the elliptic problem (4-1), and gives in particular
the explicit formula of the PS operator in terms of the operator (3z

m)
−1 when z ∈ ρ(Dm). The second

assertion of the proposition will be particularly important in Section 5 when studying the PS operator
from the semiclassical point of view. In the last statement, we use the notation Am(z) to highlight the
dependence on the parameter z ∈ ρ(HMIT(m)).

Proposition 4.2. For any z ∈ ρ(HMIT(m)) and g ∈ P−H 1/2(6)4, the elliptic problem (4-1) has a unique
solution E�m (z)[g] ∈ H 1(�)4. Moreover, the following hold:

(i) (E�m (z))
∗
= −βP+t6(HMIT(m)− z̄)−1.

(ii) For any compact set K ⊂ C, there is m0 > 0 such that, for all m ⩾ m0, we have K ⊂ ρ(HMIT(m))
and, for all z ∈ K , we have

∥E�m (z)g∥L2(�)4 ≲
1

√
m

∥g∥L2(6)4 for all g ∈ P−H 1/2(6)4.

(iii) If z ∈ ρ(Dm), then E�m (z) and Am are explicitly given by

E�m (z)=8�z,m(3
z
m)

−1 P− and Am = −P+β(3
z
m)

−1 P−. (4-2)

(iv) Let z ∈ ρ(HMIT(m)), and let E�m (z) be as above. Then, for any ξ ∈ ρ(HMIT(m)), the operator E�m (ξ)
has the representation

E�m (ξ)= (I4 + (ξ − z)(HMIT(m)− ξ)−1)E�m (z). (4-3)
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In particular, we have

Am(ξ)− Am(z)= (z − ξ)β(E�m (ξ̄ ))
∗E�m (z). (4-4)

(v) For any z ∈ ρ(HMIT(m)), the operator E�m (z) extends into a bounded operator from P−H−1/2(6)4

to H(α,�).

Proof. We first show that the boundary value problem (4-1) has a unique solution. For this, assume that
u1 and u2 are both solutions of (4-1). Then (Dm − z)(u1 − u2)= 0 in � and P−t6(u1 − u2)= 0 on 6.
Thus, (u1 − u2) ∈ dom(HMIT(m)) holds by Remark 3.3, and since HMIT(m) is injective by Theorem 3.1
it follows that u1 = u2, which proves the uniqueness. Next, observe that the function

vg = E�(P−g)− (HMIT(m)− z)−1(Dm − z)E�(P−g)

is a solution to (4-1). Indeed, we have E�(P−g) ∈ H 1(�)4 and thus vg ∈ H 1(�)4, moreover, we clearly
have that P−t6vg = g and (Dm − z)vg = 0. Since we already know that the solution to (4-1) is unique,
it follows that vg is independent of the extension operator E�, and hence there is a unique solution in
H 1(�)4 to the elliptic problem (4-1).

Let us show the assertion (i). Let ψ ∈ P−H 1/2(6)4 and f ∈ L2(�)4. Then, using Green’s formula
and the fact that P+(−iα · n)= (−iα · n)P− = −βP−, we get

⟨E�m (z)ψ, f ⟩L2(�)4

= ⟨E�m (z)ψ, (HMIT(m)− z̄)(HMIT(m)− z̄)−1 f ⟩L2(�)4

= ⟨E�m (z)ψ, (Dm − z̄)(HMIT(m)− z̄)−1 f ⟩L2(�)4

= ⟨(Dm − z)E�m (z)ψ, (HMIT(m)− z̄)−1 f ⟩L2(�)4 + ⟨(−iα · n)t6E�m (z)ψ, t6(HMIT(m)− z̄)−1 f ⟩L2(6)4

= ⟨(−iα · n)P−t6E�m (z)ψ, P+t6(HMIT(m)− z̄)−1 f ⟩L2(6)4

= ⟨ψ,−βP+t6(HMIT(m)− z̄)−1 f ⟩L2(6)4,

which gives that −βP+t6(HMIT(m)− z̄)−1 is the adjoint of E�m (z) and proves (i).
Now we are going to show assertion (ii). So, let K be a compact set of C, and note that, for all

m > sup{|Re(z)| : z ∈ K }, we have that K ⊂ ρ(Dm)⊂ ρ(HMIT(m)). Hence v := E�m (z)g is well defined
for any z ∈ K and g ∈ P−H 1/2(6)4. Then a straightforward application of Green’s formula yields

0 = ∥(Dm −z)v∥2
L2(�)4

= ∥(iα ·∇−z)v∥2
L2(�)4

+m2
∥v∥2

L2(�)4
+m(⟨−i(α ·n)t6v, βt6v⟩L2(6)4 −2 Re(z)⟨v, βv⟩L2(�)4). (4-5)

Observe that

⟨−i(α · n)t6v, βt6v⟩L2(6)4 = ⟨(P+ − P−)t6v, t6v⟩L2(6)4 = ∥P+t6v∥2
L2(6)4

− ∥P−t6v∥2
L2(6)4

.

Since P−t6v = g and P+t6v = Am(g) hold by definition and

− Re(z)⟨v, βv⟩L2(�)4 ⩾ −|Re(z)|∥v∥2
L2(�)4
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holds by the Cauchy–Schwarz inequality, it follows from (4-5) that

∥g∥
2
L2(6)4

⩾ m∥v∥2
L2(�)4

− 2|Re(z)|∥v∥2
L2(�)4

+ ∥Am(g)∥2
L2(6)4

.

Thus, if we take m0 ⩾ 4 sup{|Re(z)| : z ∈ K }, then

∥Am(g)∥2
L2(6)4

+
1
2 m∥v∥2

L2(�)4
⩽ ∥g∥

2
L2(6)4

for any m ⩾ m0, which proves the desired estimate for E�m (z).
Let us now show the assertion (iii). Let z ∈ ρ(Dm), and recall that 8�z,m(3

z
m)

−1
: H 1/2(6)4 → H 1(�)4

is well defined and bounded by Lemma 2.1. Since φz
m is a fundamental solution of (Dm − z),

(Dm − z)8�z,m(3
z
m)

−1
[g] = 0 in L2(�)4 for all g ∈ H 1/2(6)4.

Now, observe that if g ∈ P−H 1/2(6)4, then a direct application of the identity (2-7) yields

t68�z,m(3
z
m)

−1
[g] =

(
−

1
2 i(α · n)+ Cz,m

)
(3z

m)
−1

[g] = g − P+β(3
z
m)

−1
[g].

Consequently, we get

P−t68�z,m(3
z
m)

−1
[g] = g and P+t68�z,m(3

z
m)

−1
[g] = −P+β(3

z
m)

−1
[g],

which means that E�m (z)[g] =8�z,m(3
z
m)

−1
[g] is the unique solution to the boundary value problem (4-1)

and proves the identity Am = −P+β(3
z
m)

−1 P−.
We now prove assertion (iv). Fix z, ξ ∈ ρ(HMIT(m)), and let g ∈ P−H 1/2(6)4. Then, by the definition

of E�m (z), we have

(Dm − ξ)(1 + (ξ − z)(HMIT(m)− ξ)−1)E�m (z)g

= (Dm − z)E�m (z)g − (ξ − z)E�m (z)g + (ξ − z)(Dm − ξ)(HMIT(m)− ξ)−1 E�m (z)g

= (ξ − z)E�m (z)g − (ξ − z)E�m (z)g = 0.

Since (HMIT(m) − ξ)−1 E�m (z)g ∈ dom(HMIT(m)), and hence P−t6(HMIT(m) − ξ)−1 E�m (z)g = 0, it
follows that P−t6(1 + (ξ − z)(HMIT(m)− ξ)−1)E�m (z)g = P−t6E�m (z)g = g, which prove identity (4-3).
Now, (4-4) follows by applying P+t6 to the representation (4-3) and using assertion (i).

It remains to prove item (v). We first consider the case z ∈ ρ(Dm). For z ∈ ρ(HMIT(m)) \ ρ(Dm), the
claim follows by the representation formula (4-3). Fix z ∈ ρ(Dm), and recall that the operators Cz,m

and 3z
m are bounded invertible in H 1/2(6)4 by Lemma 2.1(ii)–(iii) and (2-6). Since C ∗

z,m = Cz̄,m , by
duality it follows that 3z

m admits a bounded and everywhere defined inverse in H−1/2(6)4. This together
with Lemma 2.1(i) and item (iii) of this proposition show that E�m (z) admits a continuous extension from
P−H−1/2(6)4 to H(α,�). This completes the proof of the proposition. □

Remark 4.3. The proof above gives more, namely that, for all m0 > 0, K ⊂ ρ(Dm0) a compact set,
and z ∈ K , there is m1 ≫ 1 such that

sup
m⩾m1

∥Am∥P− H1/2(6)4→P+L2(6)4 ≲ 1.
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Remark 4.4. Thanks to Theorem 3.1 and Remark 2.2, if � is a Lipschitz domain, then E�m (z) is the
unique solution in H 1/2(�)4 to the system (4-1) for datum in L2(6)4. Moreover, the PS operator
Am = −P+β(3

z
m)

−1 P− is well defined and bounded as an operator from P−L2(6)4 to P+L2(6)4.

In the rest of this section, we will only address the case z ∈ ρ(Dm), and we show that the Poincaré–
Steklov operator Am from Definition 4.1 is a homogeneous pseudodifferential operators of order 0 and
capture its principal symbol in local coordinates. To this end, we first study the pseudodifferential
properties of the Cauchy operator Cz,m . Once this is done, we use the explicit formula of Am given
by (4-2) and the symbol calculus to obtain the principal symbol of Am .

Recall the definition of φz
m from (2-3), and observe that

φz
m(x − y)= kz(x − y)+w(x − y),

where

kz(x − y)=
ei

√
z2−m2|x−y|

4π |x − y|

(
z + mβ +

√
z2 − m2α ·

x − y
|x − y|

)
+ i

ei
√

z2−m2|x−y|
− 1

4π |x − y|3
α · (x − y),

w(x − y)=
i

4π |x − y|3
α · (x − y).

Using this, it follows that

Cz,m[ f ](x)= lim
ρ↘0

∫
|x−y|>ρ

w(x − y) f (y) dσ(y)+
∫
6

kz(x − y) f (y) dσ(y)

= W [ f ](x)+ K [ f ](x). (4-6)

As |kz(x − y)| = O(|x − y|
−1) when |x − y| → 0, using the standard layer potential techniques (see, e.g.,

[Taylor 2000, Chapter 3, Section 4] and [Taylor 1996, Chapter 7, Section 11]), it is not hard to prove
that the integral operator K gives rise to a pseudodifferential operator of order −1, i.e., K ∈ OpS−1(6).
Thus, we can (formally) write

Cz,m = W mod OpS−1(6), (4-7)

which means that the operator W encodes the main contribution in the pseudodifferential character of Cz,m .
So we only need to focus on the study of the pseudodifferential properties of W . The following theorem
makes this heuristic more rigorous. Its proof follows similar arguments as in [Ando et al. 2019; Miyanishi
2022; Miyanishi and Rozenblum 2019].

Theorem 4.5. Let Cz,m be as in (2-5), W as in (4-6), and Am as in Definition 4.1. Then Cz,m , W and Am

are homogeneous pseudodifferential operators of order 0, and we have

Cz,m =
1
2
α ·

∇6
√

−16
mod OpS−1(6),

Am =
1

√
−16

S · (∇6 ∧ n)P− mod OpS−1(6)=
D6

√
−16

P− mod OpS−1(6).
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Proof. We first deal with the operator W . Let ψk :6→ R, k = 1, 2, be a C∞-smooth function. Clearly, if
supp(ψ2)∩ supp(ψ1)= ∅, then ψ2Wψ1 gives rise to a bounded operator from H− j (6)4 into H j (6)4

for all j ⩾ 0.
Now, fix a local chart (U, V, ϕ) as in Section 2C, and recall the definition of the first fundamental form

I and the metric tensor G(x̃). That is, up to a rotation, for all x ∈ U , we have x = ϕ(x̃)= (x̃, χ(x̃)) with
x̃ ∈ V , where the graph of χ : V → R coincides with U . Notice that if we assume that ψk is compactly
supported with supp(ψk)⊂ U , then, in this setting, the operator ψ2Wψ1 has the form

ψ2W [ψ1 f ](x)= ψ2(x) p.v.
∫

V
iα ·

ϕ(x̃)−ϕ(ỹ)
4π |ϕ(x̃)−ϕ(ỹ)|3

ψ1(ϕ(ỹ)) f (ϕ(ỹ))
√

g(ỹ) dỹ

= ψ2(x)
√

g(x̃) p.v.
∫

V
iα ·

ϕ(x̃)−ϕ(ỹ)
4π |ϕ(x̃)−ϕ(ỹ)|3

ψ1(ϕ(ỹ)) f (ϕ(ỹ)) dỹ

+ψ2(x)
∫

V
iα ·

ϕ(x̃)−ϕ(ỹ)
4π |ϕ(x̃)−ϕ(ỹ)|3

f (ϕ(ỹ))(
√

g(ỹ)−
√

g(x̃)) dỹ, (4-8)

where g is the determinant of the metric tensor G. Since g( · ) is smooth, it follows that

|

√
g(ỹ)−

√
g(x̃)| ≲ |x̃ − ỹ|.

Therefore, the last integral operator on the right-hand side of (4-8) has a nonsingular kernel and does
not require us to write it as an integral operator in the principal value sense. Thus, a simple computation
using Taylor’s formula shows

|x − y|
2
= |ϕ(x̃)−ϕ(ỹ)|2 = ⟨x̃ − ỹ,G(x̃)(x̃ − ỹ)⟩(1 +O|x̃ − ỹ|),

where the definition of I was used in the last equality. It follows from the above computations that

|x − y|
−3

=
1

⟨x̃ − ỹ,G(x̃)(x̃ − ỹ)⟩3/2 + k1(x̃, ỹ),

where the kernel k1 satisfies |k1(x̃, ỹ)| = O(|x̃ − ỹ|
−2) when |x̃ − ỹ| → 0. Consequently, we get

x j − y j

|x − y|3
=


x̃ j − ỹ j

⟨x̃ − ỹ,G(x̃)(x̃ − ỹ)⟩3/2 + (x̃ j − ỹ j )k1(x̃, ỹ) for j = 1, 2,

⟨∇χ, x̃ − ỹ⟩

⟨x̃ − ỹ,G(x̃)(x̃ − ỹ)⟩3/2 + k2(x̃, ỹ) for j = 3,

with |k2(x̃, ỹ)| = O(|x̃ − ỹ|
−1) when |x̃ − ỹ| → 0. Note that this implies

α ·

(
x − y

|x − y|3

)
= α ·

(x̃ − ỹ, ⟨∇χ, x̃ − ỹ⟩)

⟨x̃ − ỹ,G(x̃)(x̃ − ỹ)⟩3/2 +O(|x̃ − ỹ|
−1).

Combining the above computations and (4-8), we deduce that

ψ2W [ψ1 f ](x)

= ψ2(x)
√

g(x̃) p.v.
∫

V
iα

(x̃ − ỹ, ⟨∇χ, x̃ − ỹ⟩)

4π⟨x̃ − ỹ,G(x̃)(x̃ − ỹ)⟩3/2 f (ϕ(ỹ)) dỹ +ψ2(x)L[ψ1 f ](x), (4-9)
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where L is an integral operator with a kernel l(x, y) satisfying

|l(x, y)| = O(|x − y|
−1) when |x − y| → 0.

Thus, similar arguments as the ones in [Taylor 1996, Chapter 7, Section 11] yield that L is a pseudodiffer-
ential operator of order −1. Now, for h ∈ L2(R2) and k = 1, 2, observe that if we set

Rk[h](x̃)=
i
√

g(x̃)
4π

∫
R2

rk(x̃, x̃ − ỹ)h(ỹ) d(ỹ),

where, for (x̃, τ ) ∈ R2
× R2

\ {0},

rk(x̃, τ )=
τk

⟨τ,G(x̃)τ ⟩3/2 .

Then the standard formula connecting a pseudodifferential operator and its symbol yields

Rk[h](x̃)=
1

(2π)2

∫
R2

∫
R2

ei(x̃−ỹ)·ξqk(x̃, ξ)h(ỹ) dξ dỹ,

where

qk(x̃, ξ)=
i
√

g(x̃)
4π

∫
R2

e−iω·ξrk(x̃, ω) dω.

Recall the definition of Q from (2-10) and set ω = Q(x̃)τ . Also recall that∫
R2

e−iω·ξ ωk

|ω|3
dω = −2π i

ξk

|ξ |
, k = 1, 2. (4-10)

Thus, the above change of variables together with the properties (2-11) and (4-10) yield

qk(x̃, ξ)=
i

4π

∫
R2

e−i(Q(x̃)τ )·ξ (Q(x̃)τ )k
|τ |3

dτ =
(G−1(x̃)ξ)k

2⟨G−1(x̃)ξ, ξ⟩1/2 =
gk1ξ1 + gk2ξ2

2⟨G−1(x̃)ξ, ξ⟩1/2 ,

which means that qk(x̃, ξ) is homogeneous of degree 0 in ξ . Therefore, Rk is a homogeneous pseudodif-
ferential operators of degree 0. From the above observation and (4-9) it follows that

ψ2Wψ1 = ψ2α · (R1, R2, ∂1χ(x̃)R1 + ∂2χ(x̃)R2)ψ1 +ψ2Lψ1.

Since L is a pseudodifferential operator of order −1, we deduce that W is a homogeneous pseudodiffer-
ential operator of order 0, and exploiting (2-12), we obtain

W =
1
2
α ·

∇6
√

−16
mod OpS−1(6). (4-11)

Thanks to (4-7) and (4-11), we deduce that the Cauchy operator Cz,m has the same principal symbol as
the operator W .

Now we are going to deal with the operator Am . Note that we have

1
2

(
β +α ·

∇6
√

−16

)2

= I4 (4-12)

and, as Am is given by the formula
Am = −P+β

( 1
2β + Cz,m

)−1 P−,
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using (4-12) and the standard mollification arguments, it follows from the product formula for calculus of
pseudodifferential operators that, in local coordinates, the symbol of Am denoted by qAm has the form

qAm (x̃, ξ)= −P+β

(
β +α ·

(
ξG

⟨G−1ξ, ξ⟩1/2

))
P− + p(x̃, ξ),

where p ∈ S−1(6) and ξG defined in (2-12) is the principal symbol of ∇6 . Therefore, we get

qAm (x̃, ξ)= −P+βα · ξG⟨G−1ξ, ξ⟩−1/2 P− + p(x̃, ξ).

Hence, using the fact that P± are projectors and Lemma A.3, we obtain

qAm (x̃, ξ)= −iα · nϕ(x̃)α · ξG⟨G−1ξ, ξ⟩−1/2 P− + p(x̃, ξ).

Finally, from results of Section 2D, we deduce

qAm (x̃, ξ)= S ·

(
ξG ∧ nϕ(x̃)
⟨G−1ξ, ξ⟩

)
P− + p(x̃, ξ)

and
Am =

D6
√

−16
P− mod OpS−1(6)=

1
√

−16
S · (∇6 ∧ n)P− mod OpS−1(6).

This satisfies the claim that Am is a homogeneous pseudodifferential operator of order 0 and completes
the proof of the theorem. □

5. Approximation of the Poincaré–Steklov operators for large masses

The technique used in the last section allows us to treat the layer potential operator Am as a pseudo-
differential operator and to derive its principal symbol. However, it does not allow us to capture the
dependence on m. The main goal of this section is to study the Poincaré–Steklov operator, Am , as an
m-dependent pseudodifferential operator when m is large enough. For this purpose, we consider h = 1/m
as a semiclassical parameter (for m ≫ 1) and use the system (4-1) instead of the layer potential formula
of Am . Roughly speaking, we will look for a local approximate formula for the solution of (4-1). Once
this is done, we use the regularization property of the resolvent of the MIT bag operator to catch the
semiclassical principal symbol of Am .

Throughout this section, we assume that m > 1, z ∈ ρ(HMIT(m)), and that � is smooth with a
compact boundary 6 := ∂�. Next, we introduce the semiclassical parameter h = m−1

∈ (0, 1], and
we set A h

:= Am . The following theorem is the main result of this section; it ensures that A h is an
h-pseudodifferential operator of order 0 and gives its semiclassical principal symbol.

Theorem 5.1. Let h ∈ (0, 1] and z ∈ ρ(HMIT(m)), and let A h be as above. Then, for any N ∈ N, there
exists an h-pseudodifferential operator of order 0, A h

N ∈ Oph S0(6), such that, for h sufficiently small
and any 0 ≤ l ≤ N +

1
2 ,

∥A h
− A h

N ∥H1/2(6)→H N+3/2−l (6) = O(h2l−1/2),

and

A h
N =

h D6√
−h216 + I + I

P− mod h Oph S−1(6).
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Figure 1. Change of coordinates

Let us consider A ={(Uϕ j , Vϕ j , ϕ j ) : j ∈ {1, · · · , N }} an atlas of6 and (Uϕ, Vϕ, ϕ)∈ A. As previously,
without loss of generality, we consider only the case where Uϕ is the graph of a smooth function χ , and
we assume that � corresponds locally to the side x3 > χ(x1, x2) (see Figure 1). Then, for

Uϕ = {(x1, x2, χ(x1, x2)) : (x1, x2) ∈ Vϕ}, ϕ((x1, x2, χ(x1, x2))= (x1, x2),

Vϕ,ε := {(y1, y2, y3 +χ(y1, y2)) : (y1, y2, y3) ∈ Vϕ × (0, ε)} ⊂�,

with ε sufficiently small, we have the homeomorphism

φ : Vϕ,ε → Vϕ × (0, ε), (x1, x2, x3) 7→ (x1, x2, x3 −χ(x1, x2)).

Then the pullback
φ∗

: C∞(Vϕ × (0, ε))→ C∞(Vϕ,ε), v 7→ φ∗v := v ◦φ

transforms the differential operator Dm restricted on Vϕ,ε into the following operator on Vϕ × (0, ε):

D̃ϕ
m := (φ−1)∗Dm(φ)

∗
= −i(α1∂y1 +α2∂y2 − (α1∂x1χ +α2∂x2χ −α3)∂y3)+ mβ

= −i(α1∂y1 +α2∂y2)+
√

1 + |∇χ |2(iα · nϕ)(ỹ)∂y3 + mβ,

where ỹ = (y1, y2) and nϕ = (ϕ−1)∗n is the pullback of the outward-pointing normal to � restricted
on Vϕ:

nϕ(ỹ)=
1√

1 + |∇χ |2

∂x1χ

∂x2χ

−1

 (y1, y2).

For the projectors P±, we have

Pϕ± := (ϕ−1)∗ P±(ϕ)
∗
=

1
2(I4 ∓ iβα · nϕ(ỹ)).

Thus, in the variable y ∈ Vϕ × (0, ε), equation (4-1) becomes{
(D̃ϕ

m − z)u = 0 in Vϕ × (0, ε),
0
ϕ
−u = gϕ = g ◦ϕ−1 on Vϕ × {0},

(5-1)

where 0ϕ± = Pϕ±t{y3=0}.
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By isolating the derivative with respect to y3 and using that (iα · nϕ)−1
= −iα · nϕ , the system (5-1)

becomes ∂y3u =
iα · nϕ(ỹ)√

1 + |∇χ(ỹ)|2
(−iα1∂y1 − iα2∂y2 + mβ − z)u in Vϕ × (0, ε),

0
ϕ
−u = gϕ on Vϕ × {0}.

(5-2)

Let us now introduce the matrix-valued symbols

L0(ỹ, ξ) :=
iα · nϕ(ỹ)√

1 + |∇χ(ỹ)|2
(α · ξ +β), L1(ỹ) :=

−i zα · nϕ(ỹ)√
1 + |∇χ(ỹ)|2

, (5-3)

with ξ = (ξ1, ξ2) identified with (ξ1, ξ2, 0). Then, for h = m−1, (5-2) is equivalent to{
h ∂y3u = L0(ỹ, h D ỹ)u + hL1(ỹ)u in Vϕ × (0, ε),
0
ϕ
−u = gϕ on Vϕ × {0}.

(5-4)

Before constructing an approximate solution of the system (5-4), let us give some properties of L0.

5A. Properties of L0. The following proposition will be used in the sequel; it gathers some useful
spectral properties of the matrix-valued symbol L0(ỹ, ξ) introduced in (5-3). The spectral properties
of l0(n, ξ) = i(α · n)(α · ξ + β) given in Proposition A.2 (from the Appendix) provides the following
properties for

L0(ỹ, ξ)=
1√

1 + |∇χ(ỹ)|2
l0(nϕ(ỹ), ξ).

Proposition 5.2. Let L0(ỹ, ξ) be as in (5-3). Then we have

L0(ỹ, ξ)=
1√

1 + |∇χ(ỹ)|2
(iξ · nϕ(ỹ)+ S · (nϕ(ỹ)∧ ξ)− iβ(α · nϕ(ỹ)))

= iξ · ñϕ(ỹ)+
λ(ỹ, ξ)√

1 + |∇χ(ỹ)|2
5+(ỹ, ξ)−

λ(ỹ, ξ)√
1 + |∇χ(ỹ)|2

5−(ỹ, ξ),

where

λ(ỹ, ξ) :=

√
|nϕ(ỹ)∧ ξ |2 + 1 =

√
⟨G(ỹ)−1ξ, ξ⟩ + 1,

ñϕ(ỹ) :=
1√

1 + |∇χ |2
nϕ(ỹ),

5±(ỹ, ξ) :=
1
2

(
I4 ±

S · (nϕ(ỹ)∧ ξ)− iβ(α · nϕ(ỹ))
λ(ỹ, ξ)

)
,

(5-5)

with G the induced metric defined in Section 2C.
In particular, the symbol L0(ỹ, ξ) is elliptic in S1 and it admits two eigenvalues ρ±( · , · ) ∈ S1 of

multiplicity two, which are given by

ρ±(ỹ, ξ)=
inϕ(ỹ) · ξ ± λ(ỹ, ξ)√

1 + |∇χ |2
, (5-6)
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and for which there exists c > 0 such that

(ρ+ − ρ−)(ỹ, ξ)
2

= ± Re ρ±(ỹ, ξ) > c⟨ξ⟩ (5-7)

uniformly with respect to ỹ. Moreover, 5±(ỹ, ξ), the projections onto Kr(L0(ỹ, ξ)−ρ±(ỹ, ξ)I4), belong
to the symbol class S0 and satisfy

Pϕ±5±(ỹ, ξ)P
ϕ
± = kϕ+(ỹ, ξ)P

ϕ
± and Pϕ±5∓(ỹ, ξ)P

ϕ
∓ = ∓2ϕ(ỹ, ξ)Pϕ∓, (5-8)

with

kϕ±(ỹ, ξ)=
1
2

(
1 ±

1
λ(ỹ, ξ)

)
, 2ϕ(ỹ, ξ)=

1
2λ(ỹ, ξ)

(S · (nϕ(ỹ)∧ ξ)). (5-9)

That is, kϕ+ is a positive function of S0, (kϕ+)
−1

∈ S0, and 2ϕ ∈ S0.

Remark 5.3. Thanks to property (5-8), a 4 × 4-matrix A is uniquely determined by Pϕ− A and 5+ A, and
we have

A = Pϕ− A + Pϕ+ A = Pϕ− A +
1

kϕ+
Pϕ+5+ Pϕ+ A =

(
I −

Pϕ+5+

kϕ+

)
Pϕ− A +

Pϕ+
kϕ+
5+ A.

Proof of Proposition 5.2. By definition it is clear that L0(ỹ, ξ) belongs to the symbol class S1, and all the
formulas follow from those of l0(n, ξ) proved in the Appendix (see Proposition A.2 and Lemma A.3),
mainly taking n = nϕ(ỹ) and multiplying by 1/

√
1 + |∇χ(ỹ)|2. Next, using (2-15),

± Re ρ±(ỹ, ξ)=

√
|nϕ ∧ ξ |2 + 1√

1 + |∇χ |2
=

√
⟨G(ỹ)−1ξ, ξ⟩ + 1√

1 + |∇χ |2
⩾ c(1 + |ξ |),

which gives (5-7) and shows that ρ± are elliptic in S1. Consequently, we also get that L0(ỹ, ξ) is elliptic
in S1 and that the functions 5±, kϕ+, (kϕ+)

−1 and 2ϕ belong to the symbol class S0. □

5B. Semiclassical parametrix for the boundary problem. In this section, we construct the approximate
solution of the system (1-1) mentioned in the introduction. For simplicity of notation, in the sequel we
will use y and P± instead of ỹ and Pϕ±, respectively.

We are going to construct a local approximate solution of the first order system{
h ∂τuh

= L0(y, h Dy)uh
+ hL1(y)uh in R2

× (0,+∞),

P−uh
= f on R2

× {0}.

To be precise, we will look for a solution uh in the form

uh(y, τ )= Oph(Ah( · , · , τ )) f =
1

(2π)2

∫
R2

Ah(y, hξ, τ )eiy·ξ f̂ (ξ) dξ, (5-10)

with Ah( · , · , τ ) ∈ S0 for any τ > 0 constructed inductively in the form

Ah(y, ξ, τ )∼

∑
j≥0

h j A j (y, ξ, τ ).
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The action of h ∂τ − L0(y, h Dy)− hL1(y) on Ah(y, h Dy, τ ) f is given by T h(y, h Dy, τ ) f , with

T h(y, ξ, τ )= h(∂τ A)(y, ξ, τ )− L0(y, ξ)A(y, ξ, τ )− h(L1(y)A(y, ξ, τ )− i ∂ξ L0(y, ξ) · ∂y A(y, ξ, τ )).

Here we exploited the particular form of L1 (independent of ξ ) and of L0 (first order polynomial in ξ ).
Then we look for A0 satisfying{

h ∂τ A0(y, ξ, τ )= L0(y, ξ)A0(y, ξ, τ ),
P−(y)A0(y, ξ, τ )= P−(y),

(5-11)

and, for j ≥ 1,{
h ∂τ A j (y, ξ, τ )= L0(y, ξ)A j (y, ξ, τ )+L1(y)A j−1(y, ξ, τ )−i ∂ξ L0(y, ξ)·∂y A j−1(y, ξ, τ ),
P−(y)A j (y, ξ, τ )= 0.

(5-12)
Let us introduce a class of parametrized symbols in which we will construct the family A j :

Pm
h := {b( · , · , τ ) ∈ Sm

: ∀(k, l) ∈ N2, τ k ∂ l
τb( · , · , τ ) ∈ hk−lSm−k+l

}, m ∈ Z.

More precisely, b ∈ Pm
h means that, for all (k, l) ∈ N2, the function (τ, h) 7→ (h−1τ)k(h ∂τ )lb( · , · , τ ) is

uniformly bounded with respect to (τ, h) ∈ (0,+∞)× (0, 1) in Sm−k+l .

Proposition 5.4. There exists A0 ∈ P0
h a solution of (5-11) given by

A0(y, ξ, τ )=
5−(y, ξ)P−(y)

kϕ+(y, ξ)
eh−1τρ−(y,ξ).

Proof. The solutions of the differential system h ∂τ A0 = L0 A0 are A0(y, ξ, τ )= eh−1τ L0(y,ξ)A0(y, ξ, 0).
By definition of ρ± and 5±, we have

eh−1τ L0(y,ξ) = eh−1τρ−(y,ξ)5−(y, ξ)+ eh−1τρ+(y,ξ)5+(y, ξ). (5-13)

It follows from (5-7) that A0 belongs to S0 for any τ > 0 if and only if5+(y, ξ)A0(y, ξ, 0)= 0. Moreover,
the boundary condition P− A0 = P− implies P−(y)A0(y, ξ, 0)= P−(y). Thus, thanks to Remark 5.3, we
deduce that

A0(y, ξ, 0)= P−(y)−
P+5+ P−

kϕ+
(y, ξ)= P−(y)+

P+5− P−

kϕ+
(y, ξ)=

5− P−

kϕ+
(y, ξ).

The properties of ρ−, 5−, P−, and k+ given in Proposition 5.2, imply that (kϕ+)
−15− P− ∈ S0 and that

eh−1τρ−(y,ξ) ∈ P0
h . This concludes the proof of Proposition 5.4. □

For the other terms A j , j ≥ 1, we have the following.

Proposition 5.5. Let A0 be defined by Proposition 5.4. Then, for any j ≥ 1, there exists A j ∈ h jP− j
h a

solution of (5-12) which has the form

A j (y, ξ, τ )= eh−1τρ−(y,ξ)
2 j∑

k=0

(h−1τ ⟨ξ⟩)k B j,k(y, ξ), (5-14)

with B j,k ∈ h jS− j .
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Proof. Let us prove the result by induction. Thanks to Proposition 5.4, the claimed property holds for
j = 0. Now, assume that there exists A j ∈ h jP− j

h , a solution of (5-12) satisfying the above property,
and let us prove that the same holds for A j+1. In order to be a solution of the differential system
h ∂τ A j+1 = L0 A j+1 + L1 A j − i ∂ξ L0 · ∂y A j , for A j+1 we have

A j+1 = eh−1τ L0 A j+1|τ=0 + eh−1τ L0

∫ τ

0
e−h−1sL0(L1 A j − i ∂ξ L0 · ∂y A j ) ds, (5-15)

where L1 A j has still the form (5-14), and we have

∂y A j = eh−1τρ−(h−1τ ∂yρ− + ∂y)

2 j∑
k=0

(h−1τ ⟨ξ⟩)k B j,k .

Thus, thanks to the properties of ρ− and B j,k , the quantity (L1 A j − i ∂ξ L0 · ∂y A j )(y, ξ, s) has the form

eh−1sρ−(y,ξ)
2 j+1∑
k=0

(h−1s⟨ξ⟩)k B̃ j,k(y, ξ), (5-16)

with B̃ j,k ∈ h jS− j . So, using the decomposition (5-13), for the second term of the right-hand side
of (5-15), we have

eh−1τ L0

∫ τ

0
e−h−1sL0(L1 A j − i ∂ξ L0 · ∂y A j ) ds = eh−1τρ−5− I j

−(τ )+ eh−1τρ+5+ I j
+(τ ) (5-17)

with

I j
±(τ )=

∫ τ

0
eh−1s(ρ−−ρ±)

2 j+1∑
k=0

(h−1s⟨ξ⟩)k B̃ j,k ds.

For I j
−, the exponential term is equal to 1, and by integration of sk , we obtain

I j
−(τ )=

2 j+1∑
k=0

(h−1τ ⟨ξ⟩)k+1 h⟨ξ⟩−1

k + 1
B̃ j,k . (5-18)

For I j
+, let us introduce Pk , the polynomial of degree k such that∫ τ

0
eλssk ds =

1
λk+1 (e

τλPk(τλ)− Pk(0))

for any λ ∈ C∗. With this notation in hand, we easily see that the term eτ
hρ+5+ I j

+(τ ) has the form

eτ
hρ+5+ I j

+(τ )=5+

2 j+1∑
k=0

h⟨ξ⟩k

(ρ− − ρ+)k+1 B̃ j,k(eτ
hρ− Pk(τ

h(ρ− − ρ+))− eτ
hρ+ Pk(0)), (5-19)

where τ h
:= h−1τ . Thus, combining (5-18) and (5-19) with (5-15), (5-17) and (5-13) yields

A j+1 = eh−1τρ+(5+ A j+1|τ=0 − B̃+

j+1)+ eh−1τρ−

(
5− A j+1|τ=0 +

2( j+1)∑
k=0

(h−1τ ⟨ξ⟩)k B̃−

j+1,k

)
,



A POINCARÉ–STEKLOV MAP FOR THE MIT BAG MODEL 2951

where

B̃+

j+1 =5+

2 j+1∑
k=0

h⟨ξ⟩k

(ρ− − ρ+)k+1 Pk(0)B̃ j,k ∈ h j+1S− j−1

and B̃−

j+1,k∈h j+1S− j−1 as a linear combination of products of5−∈S0, of h⟨ξ⟩−1 (or h⟨ξ⟩k(ρ−−ρ+)
−k−1)

belonging to hS−1, and of B̃ j,k ∈ h jS− j .
Now, in order to have A j+1 ∈ S0, we let the contribution of the exponentially growing term vanish by

choosing
5+ A j+1(y, ξ, 0)= B̃+

j+1(y, ξ).

Then, thanks to Remark 5.3, the boundary condition P−(y)A j+1(y, ξ, 0)= 0 gives

A j+1(y, ξ, 0)=
P+5+

kϕ+
B̃+

j+1(y, ξ).

Finally, we have

A j+1(y, ξ, τ )= eh−1τρ−(y,ξ)
(
5− P+5+

kϕ+
B̃+

j+1(y, ξ)+
2( j+1)∑

k=0

(h−1τ ⟨ξ⟩)k B̃−

j+1,k(y, ξ)
)
,

and Proposition 5.5 is proven with

B j+1,0 =
5− P+5+

kϕ+
B̃+

j+1 + B̃−

j+1,0,

and, for k ≥ 1, B j+1,k = B̃−

j+1,k . □

Remark 5.6. The computation of each term B j,0 can be done recursively, but this leads to complicated
calculations. For example B1,0 has the form

B1,0(y, ξ)= h
[
5+a0 +

5− P+5+a0

kϕ+

](
(z + iα · ∂y)

2λ
+

iα · ∂yρ−

4λ2

)
5− A0(y, ξ),

with a0(ỹ)= iα · ñϕ(ỹ).

Thanks to the relation (5-10), to any Ah
∈ P0

h we can associate a bounded operator from L2(R2) into
L2(R2

×(0,+∞)). The boundedness in the variable y ∈ R2 is a consequence of the Calderon–Vaillancourt
theorem (see (2-8)), and in the variable τ ∈ (0,+∞), it is essentially multiplication by an L∞-function.
Moreover, for A j of the form (5-14), we have the following mapping property which captures the Sobolev
space regularity.

Proposition 5.7. Let A j , j ≥ 0, be of the form (5-14). Then, for any s ≥ − j −
1
2 , the operator A j defined

by

A j : f 7→ (A j f )(y, y3)=
1

(2π)2

∫
R2

A j (y, hξ, y3)eiy·ξ f̂ (ξ) dξ

gives rise to a bounded operator from H s(R2) into H s+ j+1/2(R2
× (0,+∞)). Moreover, for any

l ∈
[
0, j +

1
2

]
we have

∥A j∥H s→H s+ j+1/2−l = O(hl−|s|). (5-20)
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Proof. First, let us prove the result for s = k − j −
1
2 , k ∈ N, between the semiclassical Sobolev spaces

H s
scl(R

2) := ⟨h Dy⟩
−s L2(R2),

H k
scl(R

2
× (0,+∞)) := {u ∈ L2

: ⟨h Dy⟩
k1(h ∂y3)

k2u ∈ L2 for (k1, k2) ∈ N2, k1 + k2 = k},

where ⟨h Dy⟩ =
√

−h21R2 + I . Then, for f ∈ H s(R2)4, we have

∥A j f ∥
2
H k

scl(R
2×(0,+∞))

=

∑
k1+k2=k

∥⟨h Dy⟩
k1(h ∂y3)

k2A j f ∥
2
L2(R2×(0,+∞))

=

∑
k1+k2=k

∫
+∞

0
∥⟨h Dy⟩

k1(h ∂y3)
k2(A j f )( · , y3)∥

2
L2(R2)

dy3. (5-21)

Thanks to the ellipticity property (5-7), for A j given by Proposition 5.5, we have

(h ∂y3)
k2 A j (y, ξ, y3)= h j b j (y, ξ ; y3)e−h−1 y3c⟨ξ⟩/2

⟨ξ⟩k2− j ,

with b j satisfying the following: for any (α, β) ∈ N2
× N2 there exists Cα,β > 0 such that

|∂αy ∂
β
ξ b j (y, ξ ; y3)| ≤ Cα,β for all (y, ξ ; y3) ∈ R2

× R2
× (0,+∞).

Consequently, thanks to the Calderón–Vaillancourt theorem (see (2-8)), we can write

⟨h Dy⟩
k1(h ∂y3)

k2A j = h jB j (y3)⟨h Dy⟩
k1+k2− j e−h−1 y3c⟨h Dy⟩/2,

with (B j (y3))y3>0 a family of bounded operators on L2(R2), uniformly bounded with respect to y3 > 0.
Then, for f ∈ H s(R2)4, we have

∥⟨h Dy⟩
k1(h ∂y3)

k2(A j f )( · , y3)∥
2
L2(R2)

≲ h j
∥⟨h Dy⟩

k1+k2− j e−h−1 y3c⟨h Dy⟩/2 f ∥
2
L2(R2)

,

and from (5-21) we deduce that

∥A j f ∥
2
H k

scl(R
2×(0,+∞))

≲ h2 j+1
∥⟨h Dy⟩

k− j−1/2 f ∥
2
L2(R2)

= h2 j+1
∥ f ∥

2
H k− j−1/2

scl (R2)
,

where we used that, for any l ∈ N and f ∈ H l−1/2
scl (R2),

∥⟨h Dy⟩
le−h−1 y3c⟨h Dy⟩/2 f ∥

2
L2(R2)

= ⟨e−h−1 y3c⟨h Dy⟩⟨h Dy⟩
l f, ⟨h Dy⟩

l f ⟩L2

= −
h
c
∂

∂y3

⟨e−h−1 y3c⟨h Dy⟩⟨h Dy⟩
l−1 f, ⟨h Dy⟩

l f ⟩L2 .

By interpolation arguments we thus deduce that, for any j ∈ N and s ≥ − j −
1
2 ,

∥A j∥H s
scl→H s+ j+1/2

scl
= O(h j+1/2).

This means that, for ȳ := (y, y3),

∥⟨h D ȳ⟩
s+ j+1/2A j ⟨h Dy⟩

−s
∥L2(R2)→L2(R2×(0,+∞)) = O(h j+1/2). (5-22)
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In order to prove (5-20) (in classical Sobolev spaces), let us estimate ⟨D ȳ⟩
s+ j+1/2−lA j ⟨Dy⟩

−s from
L2(R2) into L2(R2

× (0,+∞)). The inequalities, for all ξ ∈ Rd , d = 2, 3, and h ∈ (0, 1),

1 ≤ ⟨ξ⟩ ≤ h−1
⟨hξ⟩, ⟨ξ⟩−1

≤ ⟨hξ⟩−1, ⟨ξ⟩−1
≤ 1

imply, for j +
1
2 ≥ l, s+ = max(s, 0), and s− = s − s+, the estimates

⟨ξ⟩s+ j+1/2−l
≤ h− j−1/2+lh−s+⟨hξ⟩s+ j+1/2, ⟨ξ⟩−s

≤ hs−⟨hξ⟩−s .

We deduce

∥⟨D ȳ⟩
s+ j+1/2−lA j ⟨Dy⟩

−s
∥L2→L2 ≲ h− j−1/2+lh−s+hs−∥⟨h D ȳ⟩

s+ j+1/2A j ⟨h Dy⟩
−s

∥L2→L2 .

Then estimate (5-20) follows from (5-22) using s+ − s− = |s|. □

Proposition 5.8. Let f ∈ H s(R2) and A j , j ≥ 0, be as in Propositions 5.4 and 5.5. Then, for any
N ≥ −s −

1
2 , the function uh

N =
∑N

j=0 h jA j f satisfies{
h ∂τuh

N − L0(y, h Dy)uh
N − hL1(y)uh

N = hN+1Rh
N f in R2

× (0,+∞),

P−uh
N = f on R2

× {0},
(5-23)

with

Rh
N : f 7→

−1
(2π)2

∫
R2
(L1 AN − i ∂ξ L0 · ∂y AN )(y, hξ, τ )eiy·ξ f̂ (ξ) dξ

a bounded operator from H s(R2) into H s+N+1/2(R2
× (0,+∞)) satisfying, for any l ∈

[
0, N +

1
2

]
,

∥Rh
N ∥H s→H s+N+1/2−l = O(hl−|s|). (5-24)

Proof. By construction of the sequence (A j ) j∈{0,...,N−1}, we have the system (5-23) with

Rh
N = Oph(rh

N ( · , · , τ )) and rh
N (y, ξ, τ )= −(L1 AN − i ∂ξ L0 · ∂y AN )(y, ξ, τ )

(see the beginning of Section 5B). As in the proof of Proposition 5.5, rh
N has the form (5-16) (with j = N ).

Then, as in the proof of Proposition 5.7 we obtain the estimate (5-24). □

5C. Proof of Theorem 5.1. In this section, we apply the above construction in order to prove Theorem 5.1.
Let g ∈ P−H 1/2(∂�)4, let (Uϕ, Vϕ, ϕ) be a chart of the atlas A, and let ψ1, ψ2 ∈ C∞

0 (Uϕ). Then
f := (ϕ−1)∗(ψ2g) is a function of H 1/2(Vϕ)4 which can be extended by 0 to a function of H 1/2(R2)4.

Then, for h = 1/m and any N ∈ N, the previous construction provides a function uh
N ∈ H 1(R2

×(0,+∞))4

satisfying {
(D̃ϕ

m − z)uh
N = hN+1Rh

N f in R2
× (0, ε),

0−uh
N = f on R2

× {0},

with uh
N =

∑N
j=0 h jA j f (see Proposition 5.7) and Rh

N f ∈ H N+1(R2
× (0, ε)) with norm in H N+1−l ,

l ∈
[
0, N +

1
2

]
, bounded by O(hl−1/2). Consequently, vh

N := φ∗uh
N , defined on Vϕ,ε, satisfies{

(Dm − z)vh
N = hN+1φ∗(Rh

N f ) in Vϕ,ε,
0−v

h
N = ψ2g on Uϕ.



2954 BADREDDINE BENHELLAL, VINCENT BRUNEAU AND MAHDI ZREIK

Now, let E�m (z)[ψ2g] ∈ H 1(�)4 be as in Definition 4.1. Since 0−v
h
N = 0−E�m (z)[ψ2g] = ψ2g, the

following equality holds in Vϕ,ε:

vh
N − E�m (z)[ψ2g] = hN+1(HMIT(m)− z)−1φ∗(Rh

N (ϕ
−1)∗(ψ2g)).

From this, we deduce that

ψ1Amψ2(g) := ψ10+E�m (z)[ψ2g] = ψ10+v
h
N − hN+1ψ10+(HMIT − z)−1φ∗(Rh

N (ϕ
−1)∗(ψ2g)).

Since φ ⇂Uϕ
= ϕ, for any u ∈ H 1(Vϕ × (0, ε))4, we have that

0+φ
∗(u)= ϕ∗(P+u ⇂Vϕ×{0}), ψ10+v

h
N = ψ1ϕ

∗ Oph(ah
N )(ϕ

−1)∗ψ2g,

with

ah
N (ỹ, ξ)=

N∑
j=0

h j P+ A j (y, ξ, 0)=

N∑
j=0

h j P+B j,0(y, ξ),

where B j,0 ∈ h jS− j are introduced in Proposition 5.5. Thus, from Proposition 5.4, in local coordinates,
the principal semiclassical symbol of Am is given by

P+B0,0(y, ξ)= P+ A0(y, ξ, 0)=
P+5− P−

kϕ+
(y, ξ).

Thanks to property (5-8) it is equal to

−2ϕP−(y, ξ)=
S · (ξ ∧ nϕ(y))√

⟨G(y)−1ξ, ξ⟩ + 1 + 1
P−(y, ξ).

We conclude the proof of Theorem 5.1 from results of Section 2D and by proving the following lemma
which is a consequence of the above considerations, the regularity estimates from Theorem 3.1(iii),
Theorem 3.4(i), and Proposition 4.2.

Lemma 5.9. Let ψ1, ψ2 ∈ C∞(6) be such that supp(ψ1)∩ supp(ψ2)= ∅. Then, for m0 > 0 sufficiently
large, m ⩾ m0, and for any (k, N ) ∈ N∗

× N∗,

∥ψ1Amψ2∥P− H1/2(6)4→P+ H k(6)4 = O(m−N ).

Proof. Let ψ1, ψ2 ∈ C∞(6) with disjoint supports. Thanks to Theorem 3.1(iii) and Theorem 3.4(i),
to prove the lemma it suffices to show that, for any (N1, N2) ∈ N2, there exists CN1,N2 such that, for
g ∈ P−H 1/2(6)4,

∥(ψ1Amψ2)g∥P+ H N2+1/2(6)4 ≤
CN1,N2
√

m
(5

N2
i=0∥(HMIT(m)− z)−1

∥H i (�)4→H i+1(�)4)

× ∥(HMIT(m)− z)−1
∥

N1
L2(�)4→L2(�)4

∥g∥P− H1/2(6)4 . (5-25)

For this, let us introduce 81 ∈ C∞

0 (�) such that 81 = 1 near supp(ψ1) and 81 = 0 near supp(ψ2). Thus
for g ∈ P−H 1/2(6)4 and E�m (z)[ψ2g] ∈ H 1(�) as in Definition 4.1, the function u1,2 :=81 E�m (z)[ψ2g]

satisfies {
(Dm − z)u1,2 = [D0,81]E�m (z)[ψ2g] in �,
0−u1,2 =81⇂6ψ2g = 0 on 6.
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Then, u1,2 = (HMIT(m)− z)−1
[D0,81]E�m (z)[ψ2g], and, for any 8̃1 ∈ C∞

0 (�) equal to 1 near supp(ψ1),
we have

ψ1Amψ2(g)= ψ10+8̃1(HMIT(m)− z)−1
[D0,81]E�m (z)[ψ2g].

Moreover, by choosing 8̃1 such that 8̃1 ≺ 81, that is 81 = 1 on supp(8̃1), both functions 8̃1 and
[D0,81] have disjoint supports, and we can then apply the telescopic formula

8̃1(HMIT(m)− z)−1(1 −χ1)= 8̃1(HMIT(m)− z)−1
[D0, χJ ] · · · (HMIT(m)− z)−1

[D0, χ2]

× (HMIT(m)− z)−1(1 −χ1)

for (χi )1≤i≤J a family of compactly supported smooth functions such that 8̃1 ≺χJ ≺χJ−1 ≺· · ·≺χ1 ≺81,
J = N1 + N2. Since [D0,81] = (1 − χ1)[D0,81], the above telescopic formula allows us to write
ψ1Amψ2(g) as a product of J cutoff resolvents of HMIT(m). Now, by Proposition 4.2, we have

∥E�m (z)[ψ2g]∥L2(�)4 ≲
1

√
m

∥g∥L2(6)4 .

Thus, using the continuity of 0+ from H N2+1(�) to H N2+1/2(6), we then get the estimation (5-25),
finishing the proof of the lemma taking N2 = k and N1 such that N1 ≥ N +

1
2 N2(N2 − 1). □

Remark 5.10. Note that, for any m > 0 and z ∈ ρ(HMIT(m)), the parametrix we have constructed for Am

is valid from the classical pseudodifferential point of view. Actually, Lemma 5.9 is the only result where
the assumption that m is big enough has been assumed, and it is exclusively required to ensure that away
from the diagonal the operator Am is negligible in 1/m. In the same vein, if m is fixed then the proof of
Lemma 5.9 still ensures that away from the diagonal Am is regularizing. Consequently, we deduce that,
for any m > 0 and z ∈ ρ(HMIT(m)), the operator Am is a homogeneous pseudodifferential operator of
order 0, and that

Am =
D6

√
−16

P− mod OpS−1(6),

which is in accordance with Theorem 4.5.

Remark 5.11. If � is the upper half-plane {(x1, x2, x3) ∈ R3
: x3 > 0}, we easily obtain that Am is a

Fourier multiplier with symbol

am(ξ)= −
iα3(α · ξ − z)√
|ξ |2 + m2 + m

P−.

6. Resolvent convergence to the MIT bag model

In the whole section, �⊂ R3 denotes a bounded smooth domain, we set

�i =�, �e = R3
\�, and 6 = ∂�,

and we let n be the outward (with respect to �i ) unit normal vector field on 6.
Fix m > 0, and let M > 0. Consider the perturbed Dirac operator

HMϕ = (Dm + Mβ1�e)ϕ for all ϕ ∈ dom(HM) := H 1(R3)4,
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where 1�e is the characteristic function of �e. Using the Kato–Rellich theorem and Weyl’s theorem, it is
easy to see that (HM , dom(HM)) is self-adjoint and that

Spess(HM)= (−∞,−(m + M)] ∪ [m + M,+∞)

and

Sp(HM)∩ (−(m + M),m + M) is purely discrete.

Now, let HMIT(m) be the MIT bag operator acting on L2(�i )
4, that is

HMIT(m)v = Dmv for all v ∈ dom(HMIT(m)) := {v ∈ H 1(�i )
4
: P−t6v = 0 on 6},

where t6 and P± are the trace operator and the orthogonal projection from Section 2A.
The aim of this section is to use the properties of the Poincaré–Steklov operators carried out in the

previous sections to study the resolvent of HM when M is large enough. Namely, we give a Krein-type
resolvent formula in terms of the resolvent of HMIT(m), and we show that the convergence of HM toward
HMIT(m) holds in the norm resolvent sense with a convergence rate of O(1/M), which improves the
result of [Barbaroux et al. 2019].

Before stating the main results of this section, we need to introduce some notation and definitions.
First, we introduce the Dirac auxiliary operator

H̃M u = Dm+M u for all u ∈ dom(H̃M) := {u ∈ H 1(�e)
4
: P+t6u = 0 on 6}.

Notice that H̃M is the MIT bag operator on �e (the boundary condition is with P+ because the nor-
mal n is incoming for �e). Since �e is unbounded, Theorem 3.1 together with Remark 3.2 imply that
(H̃M , dom(H̃M)) is self-adjoint and that

Sp(H̃M)= Spess(H̃M)= (−∞,−(m + M)] ∪ [m + M,+∞).

In particular, ρ(HM)⊂ ρ(H̃M)). Let z ∈ ρ(HMIT(m))∩ρ(H̃M), g ∈ P−H 1/2(6)4, and h ∈ P+H 1/2(6)4.
We denote by E�i

m (z) : P−H 1/2(6)4 → H 1(�i )
4 the unique solution of the boundary value problem{

(Dm − z)v = 0 in �i ,

P−t6v = g in 6.
(6-1)

Similarly, we denote by E�e
m+M(z) : P+H 1/2(6)4 → H 1(�e)

4 the unique solution of the boundary value
problem {

(Dm+M − z)u = 0 in �e,

P+t6u = h in 6.
(6-2)

Define the Poincaré–Steklov operators associated to the above problems by

A i
m = P+t6E�i

m (z)P− and A e
m+M = P−t6E�e

m+M(z)P+.

Notation 6.1. In the sequel we shall denote by RM(z), R̃M(z), and RMIT(z) the resolvent of HM , H̃M ,
and HMIT(m), respectively. We also use the notation

• 0± = P±t6 and 0 = 0+r�i +0−r�e ,

• EM(z)= e�i E�i
m (z)P− + e�e E�e

m+M(z)P+,

• R̃MIT(z)= e�i RMIT(z)r�i + e�e R̃M(z)r�e .
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With these notations in hand, we can state the main results of this section. The following theorem is
the main tool to show the large coupling convergence with a rate of convergence of O(1/M).

Theorem 6.2. There is M0 > 0 such that, for all M > M0 and all z ∈ ρ(HMIT(m))∩ρ(HM), the operator
9M(z) := (I − A i

m − A e
m+M) is bounded invertible in H 1/2(6)4, the inverse is given by

9−1
M (z)= (I4 − A i

mA e
m+M − A e

m+MA i
m)

−1(I + A i
m + A e

m+M),

and the following resolvent formula holds:

RM(z)= R̃MIT(z)+ EM(z)9−1
M (z)0 R̃MIT(z). (6-3)

Remark 6.3. By Proposition 4.2(i), we have that

(E�i
m (z))

∗
= −β0+ RMIT(z̄) and (E�e

m+M(z))
∗
= −β0− R̃M(z̄)

for any z ∈ ρ(HMIT(m))∩ ρ(HM). Thus, the resolvent formula (6-3) can be written in the form

RM(z)= R̃MIT(z)− (β0 R̃MIT(z̄))∗9−1
M (z)0 R̃MIT(z).

Before going through the proof of Theorem 6.2, we first establish a regularity result that will play a
crucial role in the rest of this section. It concerns the dependence on the parameter M of the norm of an
auxiliary operator which involves the composition of the operators A i

m and A e
m+M .

Proposition 6.4. Let A i
m and A e

m+M be as above. Then, there is M0 > 0 such that, for every M > M0

and all z ∈ ρ(HMIT(m))∩ ρ(HM), the following hold:

(i) For any s ∈ R, the operator 4M(z) : H s(6)4 → H s(6)4 defined by

4M(z)= (I4 − A i
mA e

m+M − A e
m+MA i

m)
−1 (6-4)

is everywhere defined and uniformly bounded with respect to M.

(ii) The Poincaré–Steklov operator, A e
m+M , satisfies the estimate

∥A e
m+M∥P+ H s+1(6)4→P− H s(6)4 ≲ M−1 for all s ∈ R.

Proof. (i) Set τ := (m + M). Then the result essentially follows from the fact that 4M(z) is a 1/τ -
pseudodifferential operator of order 0. Indeed, fix z ∈ ρ(HMIT(m))∩ρ(HM) and set h = τ−1. Then, from
Theorem 4.5 and Remark 5.10, we know that A i

m is a homogeneous pseudodifferential operator of order 0.
Thus A i

m can also be viewed as a h-pseudodifferential operators of order 0. That is, A i
m ∈ Oph S0(6),

and, in local coordinates, its semiclassical principal symbol is given by

ph,A i
m
(x, ξ)=

S · (ξ ∧ n(x))P−

|ξ ∧ n(x)|
,

where we identify ξ ∈ R2 with ξ̄ = (ξ1, ξ2, 0)t ∈ R3, and, for x = ϕ(x̃) ∈6, we let n(x) stand for nϕ(x̃).
Similarly, thanks to Theorem 5.1, for h0 sufficiently small (and hence M0 big enough) and all h < h0, we
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also know that A e
m+M is a h-pseudodifferential operator and that

A e
m+M ∈ Oph S0(6), ph,A e

m+M
(x, ξ)= −

S · (ξ ∧ n(x))P+√
|ξ ∧ n(x)|2 + 1 + 1

.

Therefore, the symbol calculus yields, for all h < h0, that (I4 − A i
mA e

m+M − A e
m+MA i

m) is a 1/τ -
pseudodifferential operator of order 0. Now, Lemmas A.3 and A.1 yield

S · (ξ ∧ n(x))P±S · (ξ ∧ n(x))P∓

|ξ ∧ n(x)|(
√

|ξ ∧ n(x)|2 + 1 + 1)
=

|ξ ∧ n(x)|P∓√
|ξ ∧ n(x)|2 + 1 + 1

.

Thus

I4 − ph,A i
m
(x, ξ)ph,A e

m+M
(x, ξ)− ph,A e

m+M
(x, ξ)ph,A i

m
(x, ξ)

= I4 +
|ξ ∧ n(x)|√

|ξ ∧ n(x)|2 + 1 + 1
=

√
|ξ ∧ n(x)|2 + 1 + 1 + |ξ ∧ n(x)|√

|ξ ∧ n(x)|2 + 1 + 1
≳ 1.

From this, we deduce that (I4 − A i
mA e

m+M − A e
m+MA i

m) is elliptic in Oph S0(6). Thus, 4M(z) ∈

Oph S0(6), and, in local coordinates, its semiclassical principal symbol is given by

ph,4M (z)(x, ξ)=

√
|ξ ∧ n(x)|2 + 1 + 1√

|ξ ∧ n(x)|2 + 1 + 1 + |ξ ∧ n(x)|
.

As 4M(z) is an h-pseudodifferential operator of order 0, it follows from the Calderón–Vaillancourt
theorem (see (2-9)) that 4M(z) : H s(6)4 → H s(6)4 is well defined and uniformly bounded with respect
to M for any s ∈ R proving assertion (i) of the theorem.

The proof of assertion (ii) exploits also the Calderón–Vaillancourt theorem which shows that, for
any s ∈ R, any operator in h Oph S0(6) is uniformly bounded by O(h), with respect to h = τ−1

∈ (0, 1),
from H s+1(6)4 into H s(6)4 (see (2-9)). Thus, for any s ∈ R,∥∥∥A e

τ −
1
τ

D6(
√

−τ−216 + I + I )−1 P+

∥∥∥
H s+1(6)4→H s(6)4

≲ τ−1,

uniformly with respect to τ large enough. Then we conclude the proof of assertion (ii) by using that
(
√

−τ−216 + I + I )−1 is uniformly bounded from H s+1(6)4 into itself and that D6 is bounded from
H s+1(6)4 into H s(6)4 (as a first order differential operator). □

We can now give the proof of Theorem 6.2.

Proof of Theorem 6.2. Let M0 be as in Proposition 6.4 and M > M0. Fix z ∈ ρ(HMIT(m))∩ ρ(HM), and
let f ∈ L2(R3)4. We set

v = r�i RM(z) f and u = r�e RM(z) f.

Then u and v satisfy the system 
(Dm − z)v = f in �i ,

(Dm+M − z)u = f in �e,

P−t6v = P−t6u on 6,
P+t6v = P+t6u on 6.



A POINCARÉ–STEKLOV MAP FOR THE MIT BAG MODEL 2959

Since E�i
m (z) and E�e

m+M(z) give the unique solution to the boundary value problem (6-1) and (6-2),
respectively, and

0− RMIT(z)r�i f = 0 and 0+ R̃M(z)r�e f = 0,

if we let
ϕ = 0−u and ψ = 0+v,

then it is easy to check that {
v = RMIT(z)r�i f + E�i

m (z)ϕ,
u = R̃M(z)r�e f + E�e

m+M(z)ψ.
(6-5)

Hence, to get an explicit formula for RM(z), it remains to find the unknowns ϕ and ψ . For this, note that
from (6-5) we have {

ψ = 0+r�i RM(z) f = 0+ RMIT(z)r�i f +0+E�i
m (z)[ϕ],

ϕ = 0−r�e RM(z) f = 0− R̃M(z)r�e f +0−E�e
m+M(z)[ψ].

(6-6)

Substituting the values of ψ and ϕ (from (6-6)) into the system (6-5), we obtain

RM(z)= e�i RMIT(z)r�i + e�e R̃M(z)r�e + (e�i E�i
m (z)0−r�e + e�e E�e

m+M(z)0+r�i )RM(z)

= R̃MIT(z)+ EM(z)0RM(z). (6-7)

Note that, by definition of the Poincaré–Steklov operators, (6-6) is equivalent to{
ψ = 0+ RMIT(z)r�i f + A i

m(ϕ),

ϕ = 0− R̃M(z)r�e f + A e
m+M(ψ).

(6-8)

Thus, applying 0 to the identity (6-7) yields

0 R̃MIT(z)= (I − A i
m − A e

m+M)0RM(z)=9M(z)0RM(z).

Now, we apply (I + A i
m + A e

m+M) to the last identity and get

(I + A i
m + A e

m+M)0 R̃MIT(z)= (I − A i
mA e

m+M − A e
m+MA i

m)0RM(z)=: (4M(z))−10RM(z),

where 4M(z) is given by (6-4). Then, thanks to Proposition 6.4, we know that, for M > M0, the operator
(4M(z))−1 is bounded invertible from H 1/2(6)4 into itself, which actually means that 9M is bounded
invertible from H 1/2(6)4 into itself, and that

9−1
M =4M(z)(I + A i

m + A e
m+M).

From this, it follows that
0RM(z)=9−1

M (z)0 R̃MIT(z).

Substituting this into formula (6-7) yields

RM(z)= R̃MIT(z)+ EM(z)9−1
M (z)0 R̃MIT(z),

which achieves the proof of the theorem. □

As an immediate consequence of Theorem 6.2 and Proposition 6.4 we have the following.
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Corollary 6.5. There is M0 > 0 such that, for every M > M0 and all z ∈ ρ(HMIT(m)) ∩ ρ(HM), the
operators 4±

M(z) : P±H s(6)4 → P±H s(6)4 defined by

4+

M(z)= (I − A i
mA e

m+M)
−1 and 4−

M(z)= (I − A e
m+MA i

m)
−1

are everywhere defined and bounded for any s ∈ R, and

∥4±

M(z)∥P± H s(6)4→P± H s(6)4 ≲ 1

uniformly with respect to M > M0.
Moreover, if v ∈ H 1(R3)4 solves (Dm + Mβ1�e − z)v = e�i f , for some f ∈ L2(�i )

4, then r�iv

satisfies the boundary value problem
(Dm − z)r�iv = f in �i ,

0−v =4−

M(z)A
e

m+M0+ RMIT(z) f on 6,
0+v = 0+ RMIT(z) f + A i

m0−v on 6.
(6-9)

Proof. We first note that 4±

M(z) = P±4M(z)P±. Thus, the first statement follows immediately from
Proposition 6.4 . Now, let f ∈ L2(�i )

4, and suppose that v ∈ H 1(R3)4 solves (Dm + Mβ1�e −z)v= e�i f .
Thus (Dm − z)r�iv = f in �i , and if we set

ϕ = P−t6v and ψ = P+t6v,

then, from (6-8), we easily get

ϕ =4−

M(z)A
e

m+M0+ RMIT(z) f and ψ = 0+ RMIT(z) f + A i
mϕ,

which means that r�iv satisfies (6-9). □

Remark 6.6. Notice, from (6-8) and Corollary 6.5, we have(
0+r�i RM(z) f
0−r�e RM(z) f

)
=

(
4+

M(z) 0
0 4−

M(z)

)(
I4 A i

m
A e

m+M I4

)(
0+ RMIT(z)r�i f
0− R̃M(z)r�e f

)
.

With this observation, we remark that the resolvent formula (6-3) can also be written in the following
matrix form:(

r�i RM(z)
r�e RM(z)

)
=

(
RMIT(z)r�i

R̃M(z)r�e

)
+

(
E�i

m (z)4−

M(z)A
e

m+M E�i
m (z)4−

M(z)
E�e

m+M(z)4
+

M(z) E�e
m+M(z)4

+

M(z)A
i

m

)(
0+ RMIT(z)r�i

0− R̃M(z)r�e

)
.

An inspection of the proof of Theorem 6.2 shows that, for any M > 0, z ∈ ρ(HMIT(m))∩ρ(HM), and
f ∈ L2(R3)4, one has

0 R̃MIT(z) f =9M(z)0RM(z) f. (6-10)

When f runs through the whole space L2(R3)4, then the values of 0 R̃MIT(z) f and 0RM(z) f cover
the whole space H 1/2(6)4, which means that Rn(9M(z)) = H 1/2(6)4. Hence, if one proves that
Kr(9M(z))= {0}, then 9M(z) would be boundedly invertible in H 1/2(6)4, and thus (6-3) holds without
restriction on M > 0. The following theorem provides a Birman–Schwinger-type principle relating
Kr(HM − z) with Kr(9M(z)) and allows us to recover the resolvent formula (6-3) for any M > 0.
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Theorem 6.7. Let M > 0, and let 9M be as in Theorem 6.2. Then, the following hold:

(i) For any a ∈ (−(m + M),m + M)∩ ρ(HMIT(m)), we have a ∈ Spp(HM)⇔ 0 ∈ Spp(9M(a)) and

Kr(HM − a)= {EM(a)g : g ∈ Kr(9M(a))}.

In particular, dim Kr(HM − a)= dim Kr(9M(a)) for all a ∈ (−(m + M),m + M)∩ ρ(HMIT(m)).

(ii) The operator 9M(z) is boundedly invertible in H 1/2(6)4 for all z ∈ ρ(HMIT(m))∩ ρ(HM), and the
following resolvent formula holds:

RM(z)= R̃MIT(z)+ EM(z)9−1
M (z)0 R̃MIT(z). (6-11)

Proof. (i) Let us first prove the implication (⇒). Let a ∈ (−(m + M),m + M)∩ ρ(HMIT(m)) be such
that (HM − a)ϕ = 0 for some 0 ̸= ϕ ∈ H 1(R3)4. Set ϕ+ = ϕ|�i and ϕ− = ϕ|�e . Then, it is clear that ϕ+

solves the system (6-1) for z = a with g = 0−ϕ, and ϕ− solves the system (6-2) with h = 0+ϕ. Thus,
ϕ+ = E�i

m (a)0−ϕ and ϕ− = E�e
m+M(a)0+ϕ. Hence, ϕ = EM(a)t6ϕ and 0±ϕ ̸= 0, as otherwise ϕ would

be zero. Using this and the definition of the Poincaré–Steklov operators, we obtain

(I4 + A i
m)0−ϕ =: t6ϕ+ = t6ϕ = t6ϕ− := (I4 + A e

m+M)0+ϕ,

and, since t6ϕ ̸= 0, it follows that

9M(a)t6ϕ = (I4 − A i
m − A e

m+M)t6ϕ = 0,

which means that 0 ∈ Spp(9M(a)) and proves the inclusion Kr(HM − a)⊂ {EM(a)g : g ∈ Kr(9M(a))}.
Now, we turn to the proof of the implication (⇐). Let a ∈ (−(m + M),m + M)∩ ρ(HMIT(m)) and

assume that 0 is an eigenvalue of 9M(a). Then, there is g ∈ H 1/2(6)4 \ {0} such that 9M(a)g = 0 on 6.
Note that this is equivalent to

(P− + A i
m)g = (P+ + A e

m+M)g. (6-12)

Since a ∈ (−(m + M),m + M) ∩ ρ(HMIT(m)), the operators E�i
m (a) : P−H 1/2(6)4 → H 1(�i )

4 and
E�e

m+M(a) : P+H 1/2(6)4 → H 1(�e)
4 are well defined and bounded. Thus, if we let ϕ = EM(a)g =

(E�i
m (a)P−g, E�e

m+M(a)P+g), then ϕ ̸=0 and we have that (Dm −a)ϕ=0 in�i and that (Dm+M −a)ϕ=0
in �e. Hence, it remains to show that ϕ ∈ H 1(R3)4. For this, observe that, by (6-12), we have

t6E�i
m (a)P−g = (P− + A i

m)g = (P+ + A e
m+M)g = t6E�e

m+M(a)P+g.

Thanks to the boundedness properties of E�i
m (a) and E�e

m+M(a), it follows from the above computations
that ϕ = EM(a)g ∈ H 1(R3)4 \ {0} and ϕ satisfies the equation (HM − a)ϕ = 0. Therefore, a ∈ Spp(HM),
and the inclusion {EM(a)g : g ∈ Kr(9M(a))} ⊂ Kr(HM − a) holds, which completes the proof of (i).

(ii) Let z ∈ ρ(HMIT(m))∩ ρ(HM), and note that the self-adjointness of HM together with assertion (i)
imply that Kr(9M(z))= {0}, as otherwise Kr(HM − z) ̸= {0}. Since Rn(9M(z))= H 1/2(6)4 holds for
all z ∈ ρ(HMIT(m))∩ ρ(HM), it follows that 9M(z) admits a bounded and everywhere defined inverse
in H 1/2(6)4. Therefore, (6-10) yields 0RM(z) = 9−1

M (z)0 R̃MIT(z), and the resolvent formula (6-11)
follows from this and (6-7). □
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Remark 6.8. Note the different nature of Theorems 6.2 and 6.7: the second ensures the invertibility of9M

and yields the resolvent formula (6-11) without assumption, while the first is based on a largeness assump-
tion that allows us (thanks to the semiclassical properties of PS operators) to obtain the explicit formula
of the operator (9M)

−1. Note that in Theorem 6.7 we do not know a priori whether (9M)
−1 is uniformly

bounded when M is large, and hence (6-11) is not suitable for studying the large coupling convergence.

In the next proposition we prove the norm convergence of RM(z) toward RMIT(z) and estimate the
rate of convergence.

Proposition 6.9. For any compact set K ⊂ ρ(HMIT(m)), there is M0 > 0 such that, for all M > M0, we
have K ⊂ ρ(HM) and, for all z ∈ K , the resolvent RM admits an asymptotic expansion in L(L2(R3)4) of
the form

RM(z)= e�i RMIT(z)r�i +
1
M
(KM(z)+ L M(z)), (6-13)

where KM(z), L M(z) : L2(R3)4 → L2(R3)4 are uniformly bounded with respect to M and satisfy

r�i KM(z)e�i = 0 = r�e KM(z)e�e .

In particular,
∥RM(z)− e�i RMIT(z)r�i ∥L2(R3)4→L2(R3)4 = O

( 1
M

)
. (6-14)

Before giving the proof, we need the following estimates.

Lemma 6.10. Let K ⊂ C be a compact set. Then, there is M0 > 0 such that, for all M > M0, we have
K ⊂ ρ(H̃M) and, for every z ∈ K , the following estimates hold:

∥R̃M(z) f ∥L2(�e)4 +
1

√
M

∥0− R̃M(z) f ∥L2(6)4 ≲
1
M

∥ f ∥L2(�e)4 for all f ∈ L2(�e)
4,

∥0− R̃M(z) f ∥H−1/2(6)4 ≲
1
M

∥ f ∥L2(�e)4 for all f ∈ L2(�e)
4,

∥E�e
m+M(z)ψ∥L2(�e)4 ≲

1
√

M
∥ψ∥L2(6)4 for all ψ ∈ P+L2(6)4,

∥E�e
m+M(z)ψ∥L2(�e)4 ≲

1
M

∥ψ∥H1/2(6)4 for all ψ ∈ P+H 1/2(6)4.

Proof. Fix a compact set K ⊂ C, and note that, for M1 > supz∈K {|Re(z)|− m}, we have K ⊂ ρ(Dm+M1),
and hence, K ⊂ ρ(H̃M) for all M > M1. We next show the claimed estimates for R̃M(z) and 0− R̃M(z).
For this, let z ∈ K , and assume that M > M1. Let ϕ ∈ dom(H̃M). Then a straightforward application of
Green’s formula yields

∥H̃Mϕ∥
2
L2(�e)4

= ∥(α · ∇)ϕ∥
2
L2(�e)4

+ (m + M)2∥ϕ∥
2
L2(�e)4

+ (m + M)∥P−t6ϕ∥
2
L2(6)4

.

Using this and the Cauchy–Schwarz inequality we obtain

∥(H̃M − z)ϕ∥
2
L2(�e)4

= ∥H̃Mϕ∥
2
L2(�e)4

+ |z|2∥ϕ∥
2
L2(�e)4

− 2 Re(z)⟨H̃Mϕ, ϕ⟩L2(�e)4

⩾ ∥H̃Mϕ∥
2
L2(�e)4

+ |z|2∥ϕ∥
2
L2(�e)4

−
1
2∥H̃Mϕ∥

2
L2(�e)4

− 2|Re(z)|2∥ϕ∥
2
L2(�e)4

⩾
(1

2(m + M)2 + |Im(z)|2 − |Re(z)|2
)
∥ϕ∥

2
L2(�e)4

+
1
2 M∥P−t6ϕ∥

2
L2(6)4

.
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Therefore, taking R̃M(z) f =ϕ and M ⩾ M2 ⩾ supz∈K {
√

|Re(z)|2 − |Im(z)|2−m}, we obtain the inequality

∥R̃M(z) f ∥L2(�e)4 +
1

√
M

∥0− R̃M(z) f ∥L2(6)4 ≲
1
M

∥ f ∥L2(�e)4 .

Since 0− is bounded from L2(�e)
4 into H−1/2(6)4, it follows from the above inequality that

∥0− R̃M(z) f ∥H−1/2(6)4 ≲ ∥0−∥L2(�e)4→H−1/2(6)4∥R̃M(z) f ∥L2(�e)4 ≲
1
M

∥ f ∥L2(�e)4

for any f ∈ L2(�e)
4, which gives the second inequality.

Let us now turn to the proof of the claimed estimates for E�e
m+M(z). Let ψ ∈ P+L2(6)4. Then, from

the proof of Proposition 4.2, we have

∥ψ∥
2
L2(6)4

⩾ (m + M)∥E�e
m+M(z)ψ∥

2
L2(�e)4

− 2|Re(z)|∥E�e
m+M(z)ψ∥

2
L2(�e)4

.

Thus, for any M ⩾ M3 ⩾ supz∈K {4|Re(z)| − m}, we get

M∥E�e
m+M(z)ψ∥

2
L2(�e)4

⩽ 2∥ψ∥
2
L2(6)4

,

and this proves the first estimate for E�e
m+M(z). Finally, the last inequality is a consequence of the first

one and Proposition 4.2. Indeed, from Proposition 4.2(ii), we know that β0− R̃M(z̄) is the adjoint of
the operator E�e

m+M(z) : P+H 1/2(6)4 → L2(�e)
4. Using this and the estimate fulfilled by 0− R̃M(z̄), we

obtain

|⟨ f, E�e
m+M(z)ψ⟩L2(�e)4 | = |⟨0− R̃M(z̄) f, βψ⟩H−1/2(6)4,H1/2(6)4 |

⩽ ∥0− R̃M(z) f ∥H−1/2(6)4∥ψ∥H1/2(6)4 ≲
1
M

∥ f ∥L2(�e)4∥ψ∥H1/2(6)4 .

Since this is true for all f ∈ L2(�e)
4, by duality arguments, it follows that

∥E�e
m+M(z)ψ∥L2(�e)4 ≲

1
M

∥ψ∥H1/2(6)4 for all ψ ∈ P+H 1/2(6)4,

which proves the last inequality. Hence, the lemma follows by taking M0 = max{M1,M2,M3}. □

Proof of Proposition 6.9. We first show (6-14) for some M ′

0 > 0 and any z ∈ C \ R. So, let us fix such
a z, and let f ∈ L2(R3)4. Then, it is clear that z ∈ ρ(HMIT(m))∩ ρ(HM), and, from Theorem 6.2 and
Remark 6.6, we know that there is M ′

0 > 0 such that, for all M > M ′

0,

∥(RM(z)− e�i RMIT(z)r�i ) f ∥L2(R3)4

⩽ ∥E�i
m (z)4

−

M(z)A
e

m+M0+ RMIT(z)r�i f ∥L2(�i )4 + ∥E�i
m (z)4

−

M(z)0− R̃M(z)r�e f ∥L2(�i )4

+ ∥E�e
m+M(z)4

+

M(z)0+ RMIT(z)r�i f ∥L2(�e)4 + ∥E�e
m+M(z)4

+

M(z)A
i

m0− R̃M(z)r�e f ∥L2(�e)4

+ ∥R̃M(z)r�e f ∥L2(�e)4

=: J1 + J2 + J3 + J4 + J5.

From Lemma 6.10 we immediately get J5 ≲ M−1
∥ f ∥. Now notice that 0+ RMIT(z) : L2(�i )

4
→ H 1/2(6)4,

A i
m : H 1/2(6)4 → H 1/2(6)4 and E�i

m (z) : H−1/2(6)4 → H(α,�i )⊂ L2(�i )
4 (where H(α,�i ) is defined
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by (2-2)) are bounded operators and do not depend on M . Moreover, thanks to Corollary 6.5, we know
that, for all s ∈ R, there is C > 0 independent of M such that

∥4±

M(z)∥P± H s(6)4→P± H s(6)4 ⩽ C.

Using this and the above observation, for j ∈ {1, 2, 3, 4}, we can estimate Jk as follows:

J1 ≲ ∥E�i
m (z)∥P− H−1/2(6)4→L2(�i )4∥A e

m+M∥H1/2(6)4→H−1/2(6)4∥0+ RMIT(z)r�i f ∥H1/2(6)4,

J2 ≲ ∥E�i
m (z)∥H−1/2(6)4→L2(�i )4∥0− R̃M(z)r�e f ∥H−1/2(6)4,

J3 ≲ ∥E�e
m+M(z)∥H1/2(6)4→L2(�e)4∥0+ RMIT(z)r�i f ∥H1/2(6)4,

J4 ≲ ∥E�e
m+M(z)∥L2(6)4→L2(�e)4∥A i

m∥L2(6)4→L2(6)4∥0− R̃M(z)r�e f ∥L2(6)4 .

Therefore, Proposition 6.4(ii) together with Lemma 6.10 yield

Jk ≲
1
M

∥ f ∥L2(R3)4 for any j ∈ {1, 2, 3, 4}.

Thus, we obtain the estimate

∥(RM(z)− e�i RMIT(z)r�i ) f ∥L2(R3)4 ⩽
C
M

∥ f ∥L2(R3)4 . (6-15)

Moreover, the asymptotic expansion (6-13) holds with

L M(z)= M(e�e R̃M(z)r�e + e�i E�i
m (z)4

−

M(z)A
e

m+M0+ RMIT(z)r�i

+ e�e E�e
m+M(z)4

+

M(z)A
i

m0− R̃M(z)r�e),

and
KM(z)= M(e�i E�i

m (z)4
−

M(z)0− R̃M(z)r�e + e�e E�e
m+M(z)4

+

M(z)0+ RMIT(z)r�i ),

and we clearly see that r�i KM(z)e�i = 0 = r�e KM(z)e�e .
Finally, since (6-15) holds true for every z ∈ C \ R, for any fixed compact subset K ⊂ ρ(HMIT(m)),

one can show by arguments similar to those in the proof of [Barbaroux et al. 2019, Lemma A.1] that
there is M0 > M ′

0 such that K ⊂ ρ(HM). The proposition follows from the same arguments as before. □

6A. Comments and further remarks. In this part we discuss possible generalizations of our results and
comment on the usefulness of the pseudodifferential properties of the Poincaré–Steklov operators.

(1) First note that all the results in this article which are proved without the use of the (semi) classical
properties of the Poincaré–Steklov operator are valid when 6 is just C1,ω-smooth with ω ∈

( 1
2 , 1

)
, and

can also be generalized without difficulty to the case of local deformation of the plane R2
× {0} (see

[Benhellal 2022b] where the self-adjointness of HMIT(m) and the regularity properties of 8�z,m , Cz,m ,
and 3z

m were shown for this case). We mention, however, that in the latter case the spectrum of the MIT
bag operator is equal to that of the free Dirac operator; see [Benhellal 2022b, Theorem 4.1].

(2) It should also be noted that there are several boundary conditions that lead to self-adjoint realizations
of the Dirac operator on domains (see, e.g., [Arrizabalaga et al. 2023; Behrndt et al. 2020; Benhellal
2022a]) and for which the associated PS operators can be analyzed in a similar way as for the MIT
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bag model. In particular, one can consider the PS operator Bm(z) associated with the self-adjoint Dirac
operator

H̃MIT(m)v = Dmv for all v ∈ dom(H̃MIT(m)) := {v ∈ H 1(�i )
4
: P+t6v = 0 on 6}.

According to the previous considerations, this operator can be viewed as an analogue of the Neumann-to-
Dirichlet map for the Dirac operator. Moreover, the same arguments as in the proof of Theorem 4.5 show
that

Bm(z)=
1

√
−16

S · (∇6 ∧ n)P+ mod OpS−1(6)=
D6

√
−16

P+ mod OpS−1(6)

for all z ∈ ρ(Dm)∩ ρ(H̃MIT(m)).

(3) As already mentioned in the introduction, in [Barbaroux et al. 2019], it was shown that (in the two-
dimensional massless case) the norm resolvent convergence of HM to HMIT(m) holds with a convergence
rate of M−1/2. Their proof is based on two main ingredients: the first is a resolvent identity (see [Barbaroux
et al. 2019, Lemma 2.2] for the exact formula), and the second is the inequality

∥0− RM(z) f ∥L2(6)4 ≲
1

√
M

∥ f ∥L2(R3)4, (6-16)

which is a consequence of the lower bound

∥∇ψ∥
2
L2(�e)4

+ M2
∥ψ∥

2
L2(�e)4

⩾ (M − C)∥t6ψ∥
2
L2(6)4

,

which holds for all ψ ∈ H 1(R3)4 and M large enough (see [Stockmeyer and Vugalter 2019, Lemma 4]
for the proof in the two-dimensional case, and [Arrizabalaga et al. 2019, Proposition 2.1(i)] for the
three-dimensional case). Note that the resolvent formula (6-7) together with (6-16) yield the same result.
Indeed, from (6-6) and (6-16), we easily get the inequality

∥0+ RM(z) f ∥L2(6)4 ≲ ∥ f ∥L2(R3)4 .

This together with (6-7) and Lemma 6.10 yield

∥(RM(z)− e�i RMIT(z)r�i ) f ∥L2(R3)4

⩽ ∥E�i
m (z)0−r�e RM(z) f ∥L2(�i )4 + ∥R̃M(z)r�e f ∥L2(�e)4 + ∥E�e

m+M(z)0+r�i RM(z) f ∥L2(�e)4

≲
1

√
M

∥ f ∥L2(R3)4 .

(4) Finally, let us point out that a first order asymptotic expansion of the eigenvalues of HM in terms of
the eigenvalues of HMIT(m) was established in [Arrizabalaga et al. 2019] when M → ∞. In their proof,
the authors used the min-max characterization and optimization techniques. Note that it is also possible
to obtain such a result using the properties of the PS operator, the Krein formula from Theorem 6.2,
and the finite-dimensional perturbation theory (see [Kato 1966] for example); see, e.g., [Benhellal
2019; Bruneau and Carbou 2002] for similar arguments. Note also that the asymptotic expansion of the
eigenvalues of HM depends only on the term E�i

m (z)4−

M(z)A
e

m+M0+ RMIT(z)r�i . Indeed, let λMIT be



2966 BADREDDINE BENHELLAL, VINCENT BRUNEAU AND MAHDI ZREIK

an eigenvalue of HMIT(m) with multiplicity l, and let ( f1, . . . , fl) be an L2(�i )
4-orthonormal basis of

Kr(HMIT(m)− λMIT I4). Then, using the explicit resolvent formula from Remark 6.6, we see that

⟨RM(z)e�i fk, e�i f j ⟩L2(R3)4 = ⟨E�i
m (z)4

−

M(z)A
e

m+M0+ RMIT(z) fk, f j ⟩L2(�i )4

= ⟨4−

M(z)A
e

m+M0+ RMIT(z) fk,−β0+ RMIT(z̄) f j ⟩L2(6)4

=
1

(z − λMIT)2
⟨4−

M(z)A
e

m+M0+ fk,−β0+ f j ⟩L2(6)4,

which means that E�i
m (z)4−

M(z)A
e

m+M0+ RMIT(z)r�i is the only term that intervenes in the asymptotic
expansion of the eigenvalues of HM . Besides, recall that the principal symbol of 4−

M(z)A
e

m+M is given by

qM(x, ξ)= −
S · (ξ ∧ n(x))P+√

|ξ ∧ n(x)|2 + (m + M)2 + |ξ ∧ n(x)| + (m + M)
,

and, for M > 0 large enough, one has

qM(x, ξ)= −
1

2M
S · (ξ ∧ n(x))P+

∞∑
l=1

1
M l+1 pl(x, ξ)P+, pl ∈ S−l .

Using this, we formally deduce that, for sufficiently large M , HM has exactly l eigenvalues (λM
k )1⩽k⩽l

counted according to their multiplicities (in B(λMIT, η), with B(λMIT, η)∩ Sp(HMIT(m))= {λMIT}) and
these eigenvalues admit an asymptotic expansion of the form

λM
k = λMIT +

1
M
µk +

N∑
j=2

1
M j µ

j
k +O(M−(N+1)), (6-17)

where (µk)1⩽k⩽l are the eigenvalues of the matrix M with coefficients

mk j =
1
2⟨β Op(S · (ξ ∧ n(x)))0+ fk, 0+ f j ⟩L2(6)4 .

Appendix: Dirac algebra and applications

In this appendix, we recall the anticommutation relations of Dirac matrices and give formulas used in the
paper. Consider the 4 × 4-Hermitian Dirac matrices α j , j = 1, 2, 3, and β, whose possible representation
is given at the beginning of the paper. These Dirac matrices satisfy the anticommutation relations

{α j , αk} = 2δ jk I4, {α j , β} = 0, β2
= I4, j, k ∈ {1, 2, 3}, (A-1)

where we recall that { · , · } is the anticommutator bracket.
Recall the definition of the spin angular momentum S and the matrix γ5 (see (2-13)), and note that,

by (A-1), we have S = (iα2α3,−iα1α3, iα1α2).
Using the anticommutation relations (A-1), we easily get the following identities for all X, Y ∈ R3:

i(α · X)(α · Y )= i X · Y + S · (X ∧ Y ), [γ5, α · X ] = 0,

{S · X, α · Y } = −2(X · Y )γ5, [S · X, β] = 0.
(A-2)

Let us now give some relations we have used for n, a normal vector field to a smooth domain �⊂ R3,
and for τ , a tangent vector, in particular for τ = n ∧ ξ , where ξ is a Fourier variable.
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Lemma A.1. Let n ∈ R3, and let τ ∈ R3 be such that τ ⊥ n. Then the following identity holds:

(S · τ + i(α · n)β)2 = (|τ |2 + |n|
2)I4.

Proof. Using the relations (A-1) and (A-2), we get

(S · τ)2 = γ5(α · τ)γ5(α · τ)= (γ5)
2(α · τ)2 = |τ |2 I4.

Then we have

(S · τ + i(α · n)β)2 = |τ |2 I4 − ((α · n)β)2 + i{S · τ, (α · n)β} = (|τ |2 + |n|
2)I4 + i{S · τ, (α · n)β},

and since τ · n = 0, by (A-2), we obtain

{S · τ, (α · n)β} = {S · τ, α · n}β +α · n[S · τ, β] = 0,

and the conclusion follows. □

Proposition A.2. For ξ ∈ R3 and n ∈ R3 such that |n| = 1, we define the matrix-valued function

l0(n, ξ)= i(α · n)(α · ξ +β).

Then l0(n, ξ) has two eigenvalues given by

ρ±(n, ξ) := in · ξ ± λ(n, ξ), with λ(n, ξ)=

√
|n ∧ ξ |2 + 1.

The associated eigenprojections (onto Kr(l0(n, ξ)− ρ±(n, ξ)I4)) are given by

5±(n, ξ) :=
1
2

(
I4 ±

S · (n ∧ ξ)+ i(α · n)β
λ(n, ξ)

)
.

Proof. By applying (A-2) for (X, Y )= (n, ξ), we get

l0(n, ξ)= in · ξ I4 + S · (n ∧ ξ)+ i(α · n)β.

Thanks to Lemma A.1, the Hermitian matrix h(n, ξ) := S · (n ∧ ξ)+ i(α · n)β satisfies

h(n, ξ)2 = (|n ∧ ξ |2 + 1)I4 = λ(n, ξ)2 I4.

Therefore, h(n, ξ) has the eigenvalues ±λ(n, ξ), and the associated eigenprojections are given by

5±(n, ξ)=
1
2

(
I4 ±

h(n, ξ)
λ(n, ξ)

)
,

which proves the claimed results since l0(n, ξ)= in · ξ I4 + h(n, ξ). □

Lemma A.3. Given n ∈ R3 such that |n|= 1, let P± =5±(n, 0)= 1
2(I4±i(α ·n)β) be the eigenprojections

onto Kr(i(α · n)β ∓ I4). The following properties hold:

(i) For any τ ∈ R3 such that τ ⊥ n, we have

P±(S · τ)= (S · τ)P∓, P±(α · n)= (α · n)P∓ and P±β = βP∓.
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(ii) For any ξ ∈ R3, the projections 5±(n, ξ) defined in Proposition A.2 satisfy

P±5± P± = k+ P±, P∓5± P∓ = k− P± and P±5∓ P∓ = ∓2P∓, (A-3)
with

k±(n, ξ)=
1
2

(
1 ±

1
λ(n, ξ)

)
, 2(n, ξ)=

1
2λ(n, ξ)

S · (n ∧ ξ). (A-4)

Proof. The relations of (i) follow from (A-2). For the proof of (ii), let us write 5±(n, ξ) as

5±(n, ξ)= P± ±
1

2λ(x, ξ)
S · (n ∧ ξ)P∓ ±

i
2
(α · n)β

(
1

λ(n, ξ)
− 1

)
.

Then, using item (i) of this lemma (with τ = n ∧ ξ ) and the fact that P±i(α · n)β = ±P±, we get

P±5± = P± ±
1

2λ
S · (n ∧ ξ)P∓ +

1
2

(
1
λ

− 1
)

P± = k+ P± ±2P∓,

P∓5± = ±
1

2λ
S · (n ∧ ξ)P± −

1
2

(
1
λ

− 1
)

P∓ = k− P∓ ±2P±,

with k± and 2 as in (A-4). Hence, (A-3) directly follows from the above formulas and the fact that P±

are orthogonal projections. □
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