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1. Introduction

The semilinear system of wave equations in R1+3

□φ = Q[∂φ, ∂φ], φ|t=0 = φ0, ∂tφ|t=0 = φ1,

where Q is a quadratic form, for small initial data has been studied extensively. For the scalar equation, it
is known that the solution can blow up in finite time for □φ = (∂tφ)

2; see [John 1979]. On the other hand,
if the nonlinearity satisfies the null condition by Klainerman [1984], e.g., □φ = (∂tφ)

2
− |∂xφ|

2, it was
shown independently in [Christodoulou 1986] and [Klainerman 1986] that the solution exists globally.
This result was extended to quasilinear systems with multiple speeds, as well as the case of exterior
domains; see, for instance, [Metcalfe et al. 2005; Metcalfe and Sogge 2005; 2007; Hidano 2004; Lindblad
et al. 2013; Klainerman and Sideris 1996; Alinhac 2003; Lindblad 1992; 2008; Sideris and Tu 2001;
Facci and Metcalfe 2022]. There have also been many works for small data in the variable coefficient case.
Almost global existence for nontrapping metrics was shown in [Bony and Häfner 2010; Sogge and Wang
2010]. Global existence for stationary, small perturbations of Minkowski was shown in [Wang and Yu
2014], for nonstationary, compactly supported perturbations in [Yang 2013], and for large, asymptotically
flat perturbations that satisfy the strong local energy decay estimates in [Looi and Tohaneanu 2022]. In
the context of black holes, global existence was shown in [Luk 2013] for Kerr space-times with small
angular momentum, and in [Angelopoulos et al. 2020] for the Reissner–Nordström backgrounds.
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Written in harmonic coordinates, the Einstein equations take the form

□ggµν = P[∂µg, ∂νg] + Qµν[∂g, ∂g],

where □g is the wave operator on the background of the Lorentzian metric g, and P and Qµν are quadratic
forms with coefficients depending on the metric. Unfortunately the nonlinear terms do not satisfy the null
condition. Yet Christodoulou and Klainerman [1993] were able to prove global existence for Einstein
vacuum equations Rµν≡0 for small asymptotically flat initial data. Their proof avoids using coordinates
since it was believed the metric in harmonic coordinates would blow up for large times. However, later
Lindblad and Rodnianski [2003] noticed that Einstein’s equations in harmonic coordinates satisfy a
weak null condition, and subsequently used it to prove stability of Minkowski in harmonic coordinates
[Lindblad and Rodnianski 2005; 2010]. Whereas it is still unknown if general equations satisfying the
weak null condition have global existence for small initial data, there have been a number of results in
that direction, including detailed asymptotics of the solution; see for example [Alinhac 2003; Lindblad
1992; 2008; 2017; Keir 2018; Deng and Pusateri 2020; Yu 2021a; 2021b].

There has recently been a lot of activity in proving asymptotic stability of black holes. As a first step
people have proved decay of solutions to wave equations on Schwarzschild and Kerr background [Blue and
Soffer 2003; 2005; Blue and Sterbenz 2006; Marzuola et al. 2010; Dafermos and Rodnianski 2009; Tataru
and Tohaneanu 2011; Dafermos et al. 2016; Andersson and Blue 2015]. People have also studied semilinear
perturbations [Luk 2013; Ionescu and Klainerman 2015] satisfying the null condition, but apart from
our recent papers [Lindblad and Tohaneanu 2018; 2020], and a global existence result for the Maxwell–
Born–Infeld system on a Schwarzschild background [Pasqualotto 2019], little is known about quasilinear
perturbations or semilinear perturbations satisfying the weak null condition. There has more recently been
progress on the nonlinear stability of Schwarzschild and Kerr [Klainerman and Szeftel 2022a; 2022b;
2023; Dafermos et al. 2021; Giorgi et al. 2022]. These proofs are very long, using sophisticated geometric
constructions. We hope that studying models of Einstein’s equations in wave coordinates will simplify
the proofs and lead to a better understanding and extensions as it did for the stability of Minkowski space.

Finally we remark that there are several recent works on the cosmological case. Hintz and Vasy
[2018] proved the stability of Kerr–de Sitter with small angular momentum; see also [Fang 2021; 2022]
for an alternative proof. More recently there have been works on the wave equation on Kerr–de Sitter
background for large angular momentum assuming there are no growing modes [Peterson and Vasy 2021;
Mavrogiannis 2022].

1.0.1. The semilinear Einstein model. An example of a simple semilinear system satisfying the weak
null condition, but not the classical null condition, is the system

□φ1 = (∂tφ2)
2, □φ2 = 0.

It is trivial to see that this has global solutions, and moreover that φ1 decays slower than 1/t . A less
trivial example is the semilinear system

□φ1 = (∂tφ2)
2
+ Q1[∂φ, ∂φ], □φ2 = Q2[∂φ, ∂φ],
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where Q j are null forms. These systems have the advantage that the components φ1 and φ2 decouple to
highest order. For Einstein’s equations there is the additional difficulty that this decoupling can only be
seen in a null frame, and contractions with the frame do not commute with the wave operator as far as the
L2 estimate. Hence a more realistic model is the system is

□φµν = P[∂µφ, ∂νφ] + Qµν[∂φ, ∂φ],

where P is assumed to have a certain weak null structure. Contracting with a nullframe this resembles
the decoupled systems with φL L in place of φ1, where Lµ∂µ = ∂t − ∂r , and φ2 replaced by the other
components φT U , where T is tangential to the outgoing light cones. The only really bad component is
∂φL L but this one does not show up quadratically in P for Einstein’s equations. It shows up linearly but
multiplied with a component ∂φL L that has vanishing radiation field due to the wave coordinate condition.

With the goal of understanding Einstein’s equations in (generalized) harmonic coordinates close to Kerr
with small angular momentum, we will focus on the following system, which resembles the semilinear
part of Einstein’s equations:

□Kφµν = P[∂µφ, ∂νφ] + Qµν[∂φ, ∂φ], t̃ ≥ 0, φ|t̃=0 = φ0, T̃φ|t̃=0 = φ1. (1-1)

Here □K denotes the d’Alembertian with respect to the Kerr metric, and T̃ is a smooth, everywhere
timelike vector field that equals ∂t away from the black hole. The coordinate t̃ is chosen so that the slices
t̃ = const. are space-like and t̃ = t away from the black hole. For simplicity we will consider compactly
supported smooth initial data, but suitably weighted Sobolev spaces of large enough order would suffice.
Moreover, Qµν are null forms and P is a symmetric quadratic form:

P[φ,ψ] = Pαβγ δ(x/t̃ )φαβψγ δ,

with coefficients with a certain weak null structure. We remove the component ∂φL L by imposing the
condition

P L Lαβ(x/t̃ )= PαβL L(x/t̃ )= 0.

For this system we cannot have different energy estimates for different components because the null
structure is only seen in a null frame and contractions with the frame do not commute with the wave
operator. Because of this, one cannot get the decay estimates directly from the L2 estimates but one has
to use the equations again to get improved decay estimates. As a result, the proof is more involved. The
method we develop avoids boosts vector fields and combines local energy decay in a compact set with
estimates in characteristic coordinates at the light cone. It gives an essentially optimal decay of almost t̃−1,
which is an improvement over t̃−1/2, which can be obtained more easily from energy estimates. The
method in particular works close to Minkowski where it gives the optimal decay without using boosts.

Finally we remark that this system can be combined with the quasilinear system that we previously
studied [Lindblad and Tohaneanu 2018; 2020] (see also [Looi 2022] for improved pointwise bounds) to
resemble also the quasilinear part of Einstein’s equations

□g[φ]φµν = P[∂µφ, ∂νφ] + Qµν[∂φ, ∂φ],
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where

gαβ[φ] = K αβ
+ Hαβ

[φ], where Hαβ
[φ] = Hαβµν(x/t̃ )φµν and H L Lµν(x/t̃ )= 0.

1.0.2. Statement of the results. We are now ready to state our main result. We define r̃ to be some
function that equals r near the event horizon, and r∗

K away from it; see Section 2 for more details. We
also fix re satisfying r− < re < r+, and define ⟨x⟩ = (2 + |x |

2)1/2.

Theorem 1.1. Let R0 > re, and assume that φ0, φ1 are smooth and compactly supported in r̃ ≤ R0. Then
there exists a global classical solution to the system (1-1) (on a Kerr metric with |a| ≪ M) provided that,
for a certain ϵ0 ≪ 1 and large enough N, we have

EN (0)= ∥(φ0, φ1)∥H N+1×H N ≤ ϵ0.

Moreover, for some fixed positive integer m, independent of N, we have for any δ > 0

|φ≤N−m | ≲
EN (0)⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

⟨t̃⟩
, |∂φ≤N−m | ≲

EN (0)⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

r⟨t̃ − r̃⟩
,

|(∂φT U )≤N−m | ≲
EN (0)

r⟨t̃ − r̃⟩1−δ
.

Note that is an improvement of the decay estimates we previously proved essentially by a factor of t̃−1/2.
Note also the structure here, that a derivative decreases the homogeneity, but because the homogeneous
vector fields we can use together with the wave operator do not span the tangent space at the origin or at
the light cone, a derivative only improves by a power of r close to the origin and a power of t̃ − r̃ close to
the light cone. Note also that close to the light cone we have a better estimate for the good components
which is due to the weak null structure.

1.0.3. Structure of the proof. The starting point is the local energy estimate in Section 2. The local
energy scales like the energy, which is consistent with a decay t̃−1/2 of order −

1
2 for φ and −

3
2 for the

derivatives, and this is also the decay we were able to obtain in our previous paper from a bound of the
local energy applied to scaling and rotation vector fields; see Section 3. Assuming these decay estimates,
one can go back into the equation and get improved decay estimates. In fact from these decay estimates
the total decay of the inhomogeneous term would be −3, which would be consistent with a solution of
the wave equation with decay of order −1. We prove this using L∞ estimates for the wave operator from
Section 5. However the first improved estimates we obtain have the improved decay in r or t̃ − r̃ and we
need improved decay in t̃ . For this we have other estimates turn decay in r or t̃ − r̃ into decay in t̃ ; see
Section 4. The whole argument is put together in the last section.

The paper is structured as follows. In Section 2 we introduce the Kerr metric, the vector fields we will
use, and the local energy estimates which will play a key role in the proof. Sections 3, 4, 5, and 6 contain
various estimates that will allow us to extract the necessary pointwise bounds for (vector fields applied to)
the solution. Finally, Section 7 contains the bootstrap argument.
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2. The Kerr metric and local energy estimates

2.1. The Kerr metric. The Kerr geometry in Boyer–Lindquist coordinates is given by

ds2
= gK

tt dt2
+ gtφdtdφ+ gK

rr dr2
+ gK

φφdφ2
+ gK

θθdθ
2,

where t ∈ R, r > 0, (φ, θ) are the spherical coordinates on S2 and

gK
tt = −

1− a2 sin2 θ

ρ2 , gK
tφ = −2a

2Mr sin2 θ

ρ2 , gK
rr =

ρ2

1
,

gK
φφ =

(r2
+ a2)2 − a21 sin2 θ

ρ2 sin2 θ, gK
θθ = ρ2,

with
1= r2

− 2Mr + a2, ρ2
= r2

+ a2 cos2 θ.

Here M represents the mass of the black hole, and aM its angular momentum.
A straightforward computation gives us the inverse of the metric:

gt t
K = −

(r2
+ a2)2 − a21 sin2 θ

ρ21
, gtφ

K = −a
2Mr
ρ21

, grr
K =

1

ρ2 ,

gφφK =
1− a2 sin2 θ

ρ21 sin2 θ
, gθθK =

1
ρ2 .

The case a = 0 corresponds to the Schwarzschild space-time. We shall subsequently assume that a is
small 0< a ≪ M, so that the Kerr metric is a small perturbation of the Schwarzschild metric. Note also
that the coefficients depend only r and θ but are independent of φ and t . We denote the d’Alembertian
associated to the Kerr metric by □K .

In the above coordinates the Kerr metric has singularities at r = 0, on the equator θ =
π
2 , and at the

roots of 1, namely r± = M ±
√

M2 − a2. To remove the singularities at r = r± we introduce functions
r∗

K = r∗

K (r), v+ = t + r∗

K and φ+ = φ+(φ, r) so that (see [Hawking and Ellis 1973])

dr∗

K = (r2
+ a2)1−1 dr, dv+ = dt + dr∗

K , dφ+ = dφ+ a1−1 dr.

Note that when a = 0 the r∗

K -coordinate becomes the Schwarzschild Regge–Wheeler coordinate

r∗
= r + 2M log(r − 2M).

The Kerr metric can be written in the new coordinates (v+, r, φ+, θ),

ds2
= −

(
1 −

2Mr
ρ2

)
dv2

+
+ 2drdv+ − 4aρ−2 Mr sin2 θdv+dφ+ − 2a sin2 θdrdφ+ + ρ2dθ2

+ ρ−2
[(r2

+ a2)2 −1a2 sin2 θ ] sin2 θ dφ2
+
,

which is smooth and nondegenerate across the event horizon up to but not including r = 0. We introduce
the function

t̃ = v+ −µ(r),
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where µ is a smooth function of r . In the (t̃, r, φ+, θ)-coordinates the metric has the form

ds2
=

(
1 −

2Mr
ρ2

)
dt̃2

+ 2
(

1 − (1 −
2Mr
ρ2 )µ′(r)

)
dt̃ dr − 4aρ−2 Mr sin2 θ dt̃ dφ+

+

(
2µ′(r)−

(
1 −

2Mr
ρ2

)
(µ′(r))2

)
dr2

− 2a(1 + 2ρ−2 Mrµ′(r)) sin2 θ dr dφ+

+ ρ2 dθ2
+ ρ−2

[(r2
+ a2)2 −1a2 sin2 θ ] sin2 θ dφ2

+
.

On the function µ we impose the following two conditions:

(i) µ(r)≥ r∗

K for r > 2M, with equality for r > 5
2 M.

(ii) The surfaces t̃ = const. are space-like, i.e.,

µ′(r) > 0, 2 −

(
1 −

2Mr
ρ2

)
µ′(r) > 0.

As long as a is small, we can use the same function µ as in the case of the Schwarzschild space-time in
[Marzuola et al. 2010].

We also introduce

φ̃ = ζ(r)φ+ + (1 − ζ(r))φ,

where ζ is a cutoff function supported near the event horizon.
We fix re satisfying r− < re < r+. The choice of re is unimportant, and for convenience we may simply

use re = M for all Kerr metrics with a/M ≪ 1. Let M = {t̃ ≥ 0 : r ≥ re}, 6(T ) = M∩ {t̃ = T }, and
d6K be the induced volume element on 6(T ).

Let r̃ denote a smooth strictly increasing function (of r ) that equals r for r ≤ R and r∗

K for r ≥ 2R for
some large R. We will use the coordinates (t̃, x i ), where x i

= r̃ω. Note that, since r ≈ r̃ , we can use r k

and r̃ k interchangeably when defining our spaces of functions in what follows.

2.2. Vector fields and spaces of functions. Our favorite sets of vector fields will be

∂ ∈ {∂t̃ , ∂i }, � ∈ {x i∂ j − x j ∂i }, S = t̃ ∂t̃ + r̃ ∂r̃ ,

namely the generators of translations, rotations and scaling. We set Z = {∂,�, S}.
We also denote by ̸∂ the angular derivatives,

∂ j =
x i

r̃
∂r̃ + ̸∂ i

and let

∂̄ ∈ (∂v, ̸∂), ∂v = ∂t̃ + ∂r̃

denote the tangential derivatives. We also let L = ∂t̃ − ∂r̃ .
For a triplet α = (i, j, k), we define |α| = i + 3 j + 3k and

uα = ∂ i� j Sku, u≤m = (u3)|3|≤m .
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The notation is borrowed from [Lindblad and Tohaneanu 2018], and takes into account the loss of
derivatives that occurs when applying weak local energy estimates to vector fields.

Given a norm ∥ · ∥X , we write

∥u≤m∥X =

∑
|3|≤m

∥u3∥X .

We define the classes SZ (r k) of functions in R+
× R3 by

f ∈ SZ (r k) ⇐⇒ |Z j f (t, x)| ≤ c j ⟨r⟩
k, j ≥ 0.

Given a family of functions G, we will also use the notation

f ∈ SZ (r k)G

to mean that

f =

∑
hi gi , hi ∈ SZ (r k), gi ∈ G.

We will also use the notation U for an element of SZ (1)Z , and T for an element of SZ (1) ∂̄ .
An important observation is that, since

∂v =
t̃ − r̃

t̃
∂r̃ +

1
t̃

S, ̸∂φ ∈ SZ (r−1)�φ,

we have

|∂̄w| ≲
t̃ − r̃

r
|∂w| +

1
r
|�w|. (2-1)

Moreover, an easy computation gives

[□K , ∂]φ ∈ SZ (r−2) ∂∂≤1φ, [□K , �]φ ∈ SZ (r−2) ∂∂≤1φ,

[□K , S]φ ∈ SZ (1)□Kφ+ SZ (r−2+) ∂φ+ SZ (r−2+) ∂�φ+ SZ (r−2) ∂∂≤1φ,

and thus by induction we obtain that

[□K , Zα]φ = F1 + F2, F1 ∈ SZ (1)(□Kφ)≤|α|, F2 ∈ SZ (r−2+) ∂φ≤|α|. (2-2)

We now claim that

[Z , ∂̄] ∈ SZ (1)∂̄ + SZ (r−1) ∂. (2-3)

Indeed, we compute

[∂t̃ , ∂̄] = 0, [∂i , ∂v] = [̸∂ i , ∂r̃ ] ∈ SZ (r−1)̸∂, [∂i , ̸∂] ∈ SZ (r−1) ∂,

[�, ∂v] = 0, [�, ̸∂] ∈ SZ (1)̸∂, [S, ∂v] = ∂v, [S, ̸∂] ∈ SZ (1)̸∂.

This proves (2-3).
Given vector fields X and Y, we define

φXY = XαY βφαβ .



2978 HANS LINDBLAD AND MIHAI TOHANEANU

Similarly, we can write the coefficients P with respect to the vector frame {L, ∂̄} as

Pαβγ δ = P L Lγ δLαLβ +

∑
PT Uγ δT αUβ,

Pαβγ δ = PαβL L Lγ Lδ +

∑
PαβT U T γU δ.

The assumptions on the coefficients Pαβγ δ are the following:

Pαβγ δ ∈ SZ (1), (2-4)

P L Lαβ
= PαβL L

= 0. (2-5)

Equation (2-5) means that terms like LφL L ∂φ do not appear on the right-hand side of (1-1).
The assumption on the null forms Qµν is that

Qµν[∂φ, ∂φ] ∈ SZ (1) ∂φ∂̄φ. (2-6)

2.3. Local energy estimates. We consider a partition of R3 into the dyadic sets AR = {R ≤ ⟨r̃⟩ ≤ 2R}

for R ≥ 1.
We now introduce the local energy norm LE

∥u∥LE = sup
R

∥⟨r⟩
−1/2u∥L2(M∩R×AR),

∥u∥LE[0,1] = sup
R

∥⟨r⟩
−1/2u∥L2(M∩[0,1]×AR),

its H 1 counterpart
∥u∥LE1 = ∥∂u∥LE + ∥⟨r⟩

−1u∥LE,

∥u∥LE1
[0,1]

= ∥∂u∥LE[0,1] + ∥⟨r⟩
−1u∥LE[0,1],

as well as the dual norm
∥ f ∥LE∗ =

∑
R

∥⟨r⟩
1/2 f ∥L2(M∩R×AR),

∥ f ∥LE∗
[0,1] =

∑
R

∥⟨r⟩
1/2 f ∥L2(M∩[0,1]×AR).

We also define similar norms for higher Sobolev regularity

∥u≤m∥LE1 =

∑
|α|≤m

∥uα∥LE1,

∥u≤m∥LE1
[0,1]

=

∑
|α|≤m

∥uα∥LE1
[0,1]

,

∥u≤m∥LE[0,1] =

∑
|α|≤m

∥uα∥LE[0,1],

respectively,
∥ f ∥LE∗,k =

∑
|α|≤k

∥∂α f ∥LE∗,

∥ f ∥LE∗,k
[0,1]

=

∑
|α|≤k

∥∂α f ∥LE∗
[0,1].
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Finally, we introduce a weaker version of the local energy decay norm

∥u∥LE1
w

= ∥(1 −χps) ∂u∥LE + ∥∂r u∥LE + ∥⟨r⟩
−1u∥LE,

∥u∥LE1
w[0,1]

= ∥(1 −χps) ∂u∥LE[0,1] + ∥∂r u∥LE[0,1] + ∥⟨r⟩
−1u∥LE[0,1].

To measure the inhomogeneous term, we define

∥ f ∥LE∗
w

= inf
f1+ f2= f

∥ f1∥L1 L2 + ∥(1 −χps) f2∥LE∗,

∥ f ∥LE∗
w[0,1] = inf

f1+ f2= f
∥ f1∥L1[0,1]L2 + ∥(1 −χps) f2∥LE∗

[0,1].

Here χps is a smooth, compactly supported spatial cutoff function that equals 1 in a neighborhood of
the trapped set. We also define the higher-order weak norms as above.

We define the (nondegenerate) energy

E[u](t̃)=

(∫
6(t̃)

|∂u|
2 d6K

)1/2

.

We now fix some δ1 ≪ 1, and define, for a large enough constant R1 (so that in particular χps = 0
when r > R1):

EN (T )= sup
0≤t̃≤T

E[φ≤N ](t̃)+ ∥φ≤N ∥LE1
w[0,T ]

+ ∥⟨t̃ − r̃⟩
(−1−δ1)/2∂̄φ≤N ∥L2[0,T ]L2(r≥R1). (2-7)

We will need the following local energy estimates for the linear problem:

Lemma 2.1. Assume that □Kφ = F, and N is any nonnegative integer. We then have for any T ≥ 0 that

EN (T )≲ EN (0)+ ∥F≤N ∥LE∗
w[0,T ], (2-8)

where the implicit constant is independent of T.

Proof. We start by proving the base case N = 0, that is,

sup
0≤t̃≤T

E[φ](t̃)+ ∥φ∥LE1
w[0,T ]

+ ∥⟨t̃ − r̃⟩
(−1−δ1)/2∂̄φ∥L2[0,T ]L2(r≥R1) ≲ E[φ](0)+ ∥F∥LE∗

w[0,T ]. (2-9)

Theorem 4.1 from [Tataru and Tohaneanu 2011] gives the desired bound for the first two terms on the
left-hand side. On the other hand, Lemma 4.3 in [Lindblad and Tohaneanu 2018] and Cauchy–Schwarz
yield

∥⟨t̃ − r̃⟩
(−1−δ1)/2∂̄φ∥L2[0,T ]L2(r≥R1) ≲ ∥φ∥LE1

w[0,T ]
+ ∥F∥LE∗

w[0,T ].

We now commute the equation with the vector fields in Z . Applying the base case estimate (2-9) to φα
for some |α| = N yields

sup
0≤t̃≤T

E[φα](t̃)+ ∥φα∥LE1
w[0,T ]

+ ∥⟨t̃ − r̃⟩
(−1−δ1)/2∂̄φα∥L2[0,T ]L2(r≥R1)

≲ ∥φα∥LE1
w[0,T ]

+ ∥Fα∥LE∗
w[0,T ] + ∥[□K , Zα]φ∥LE∗

w[0,T ].
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We are left with bounding the last term on the right-hand side. By (2-2) we have

∥[□K , Zα]φ∥LE∗
w[0,T ] ≲ ∥F≤|α|∥LE∗

w[0,T ] + ∥r−2+ ∂φ≤|α|∥LE∗
w[0,T ] ≲ ∥F≤|α|∥LE∗

w[0,T ] + ∥φ≤|α|∥LE1
w[0,T ]

.

We now sum over all |α| = N. □

The first estimate of this kind was obtained by Morawetz for the Klein–Gordon equation [Morawetz
1968]. In the Schwarzschild case, similar estimates were shown in [Blue and Soffer 2003; 2005; Blue and
Sterbenz 2006; Dafermos and Rodnianski 2009; 2007; Marzuola et al. 2010]. The estimate for Kerr with
small angular momentum was proven in [Tataru and Tohaneanu 2011] (see also [Andersson and Blue
2015; Dafermos and Rodnianski 2013] for related works). For large angular momentum, see [Dafermos
et al. 2016] (|a|< M) and [Aretakis 2012] (|a| = M).

3. Pointwise estimates from local energy decay estimates

The goal of this section is to show how to extract (weak) pointwise estimates from local energy norms.
These bounds will serve as the starting point in an iteration that will yield strong enough pointwise bounds
to close the bootstrap argument in Section 7.

Let
CT = {T ≤ t̃ ≤ 2T : r̃ ≤ t̃}.

We use a double dyadic decomposition of CT with respect to either the size of t̃ − r̃ or the size of r ,
depending on whether we are close or far from the cone,

CT =

⋃
1≤R≤T/4

C R
T

⋃ ⋃
1≤U<T/4

CU
T ,

where for R,U > 1 we set

C R
T = CT ∩ {R < r < 2R}, CU

T = CT ∩ {U < t̃ − r̃ < 2U },

while for R = 1 and U = 1 we have

C R=1
T = CT ∩ {0< r < 2}, CU=1

T = CT ∩ {0< t̃ − r̃ < 2}.

The sets C R
T and CU

T represent the setting in which we apply Sobolev embeddings, which allow us to
obtain pointwise bounds from L2 bounds. Precisely, we have (see Lemma 3.8 from [Metcalfe et al. 2012]
and Lemma 6.2 in [Lindblad and Tohaneanu 2018]):

Lemma 3.1. For any function w and all T ≥ 1 and 1 ≤ R,U ≤
1
4 T we have

∥w∥L∞(C R
T )

≲
1

T 1/2 R3/2

∑
i≤1, j≤2

∥Si� jw∥L2(C R
T )

+
1

T 1/2 R1/2

∑
i≤1, j≤2

∥Si� j ∂w∥L2(C R
T )
, (3-1)

respectively,

∥w∥L∞(CU
T )

≲
1

T 3/2U 1/2

∑
i≤1, j≤2

∥Si� jw∥L2(CU
T )

+
U 1/2

T 3/2

∑
i≤1, j≤2

∥Si� j ∂w∥L2(CU
T )
. (3-2)
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Using the lemma above, we prove the following pointwise bound:

∥w∥L∞(CT ) ≲ ⟨t̃⟩−1
⟨t̃ − r̃⟩

1/2
∥w≤12∥LE1

[T,2T ]
. (3-3)

Indeed, in the region C R
T , this is an immediate application of (3-1). On the other hand, in the region CU

T
this follows from (3-2) and Hardy’s inequality; see (6.7) in [Lindblad and Tohaneanu 2018].

We also need an L∞ bound on the derivative that is better than (3-3) for large r . This is the content of
the following, which is essentially Proposition 3.5 in [Looi and Tohaneanu 2022]

Proposition 3.2. Let

µ := min(⟨t̃⟩, ⟨t̃ − r̃⟩)1/2.

Assume that φ solve (1-1) for t ∈ [T, 2T ]. Then for any dyadic region C ∈ {C R
T ,C R

U } and m ≥ 0 we have

∥∂φ≤m∥L∞(C) ≤ Cm
1
µ

(
1

⟨r⟩
+ ∥∂φ≤(m+10)/2∥L∞(C)

)
∥φ≤m+5∥LE1

[T,2T ]
. (3-4)

Here the crucial estimate was the following Klainerman–Sideris-type estimate; see Lemma 5.4 in
[Lindblad and Tohaneanu 2018] (for Schwarzschild) combined with the remarks after (5.13) in [Lindblad
and Tohaneanu 2020]:

Lemma 3.3. For any w and multiindex 3 we have in the region r ≥ 2R1 that

|∂2w3| ≲
t̃

r⟨t̃ − r̃⟩
|∂w≤|3|+3| +

t̃
⟨t̃ − r̃⟩

|(□Kw)≤|3||.

We now apply (3-2) to ∂φ3 for any |3| ≤ m. We obtain

∥∂φ3∥L∞(CU
T )

≲
1

T 3/2U 1/2

∑
i≤1, j≤2

∥Si� j ∂φ3∥L2(CU
T )

+
U 1/2

T 3/2

∑
i≤1, j≤2

∥Si� j ∂2φ3∥L2(CU
T )

≲
1

T U 1/2 ∥φ≤|3|+13∥LE1
[T,2T ]

+
1

(T U )1/2
∥(□Kφ)≤|3|+10∥L2(CU

T )
.

Since

|(□Kφ)≤|3|+10| ≲ |∂φ≤|3|/2+5||∂φ≤|3|+10|,

the conclusion follows in the region CU
T . A similar computation yields the result in C R

T .

4. Improved pointwise bounds

We will use three lemmas that will help us improve our pointwise bounds. The first one is Proposition 3.14
from [Metcalfe et al. 2012], which will allow us to turn r -decay into t-decay in the region r ≤

1
2 t .

Lemma 4.1. The following estimate holds for all m ≥ 0 and some fixed (m-independent) n:

∥u≤m∥LE1(C<T/2
T )

≲ T −1
∥⟨r⟩u≤m+n∥LE1(C<T/2

T )
+ ∥(□K u)≤m+n∥LE∗(C<T/2

T )
.
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The second lemma is a slight modification of Lemma 3.11 from [Metcalfe et al. 2012], the difference
being that we may not enlarge our regions in time. The role of the lemma is to gain a factor of t̃/(r⟨t̃ − r̃⟩)

for the derivative.
We let C̃ R

T and C̃U
T denote enlargements of C R

T and CU
T in space (but not in time) that contain all the

integral curves of the scaling vector field S (i.e., if (t, x) ∈ C R
T then (st, sx) ∈ C̃ R

T as long as T ≤ st ≤ 2T
and similarly for CU

T ). More precisely, let

C̃ R
T =

{
T ≤ t̃ ≤ 2T :

8
10

T
2R

≤
t̃
r̃

≤
12
10

2T
R

}
, C̃ R

T (τ )= C̃ R
T ∩ {t̃ = τ },

C̃U
T =

{
T ≤ t̃ ≤ 2T :

8
10

T
T − 2U

≤
t̃
r̃

≤
12
10

2T
2T − U

}
, C̃U

T (τ )= C̃U
T ∩ {t̃ = τ }.

An important observation here is that r̃ ≈ R and t̃ − r̃ ≈ U in C̃ R
T and C̃U

T respectively.

Lemma 4.2. For 1 ≪ U, R ≤
1
4 T we have

∥∂w∥L2(C R
T )

≲ R−1
∥w∥L2(C̃ R

T )
+ T −1(∥Sw∥L2(C̃ R

T )
+ ∥S2w∥L2(C̃ R

T )
)+ R∥□Kw∥L2(C̃ R

T )
, (4-1)

respectively,

∥∂w∥L2(CU
T )

≲ U−1(∥w∥L2(C̃U
T )

+ ∥Sw∥L2(C̃U
T )

+ ∥S2w∥L2(C̃U
T )
)+ T ∥□Kw∥L2(C̃U

T )
. (4-2)

Proof. The proof is similar to the one in Lemma 3.11 from [Metcalfe et al. 2012], except that we need to
estimate the boundary terms at t̃ = T and t̃ = 2T.

To keep the ideas clear we first prove the lemma with □K replaced by □. We consider a cutoff
function χ supported in

[ 8
20 ,

22
10

]
which equals 1 on

[ 9
20 ,

21
10

]
. Let

β(t̃, r̃)= χ

(
r̃
t̃

T
R

)
.

Note that β ≡ 1 on C R
T , and that the restriction of β to T ≤ t̃ ≤ 2T is supported in C̃ R

T .
Integrating 1

2β□w
2
= β(w□w+ mαβ ∂αw ∂βw) by parts twice gives∫ 2T

T

∫
β(|∂xw|

2
− |∂tw|

2) dx dt

=

∫ 2T

T

∫
□w ·βw dx dt −

1
2

∫ 2T

T

∫
(□β)w2 dx dt −

∫ (
βw∂tw−

1
2
βtw

2
)

dx
∣∣2T
T .

Since we can write wt = (Sw− x i∂iw)/t it follows after integration by parts that∫
βw∂tw dx =

1
t̃

∫
βwSw dx +

1
2t̃

∫
w2∂i (x iβ) dx .

Since |∂i (x iβ)| + t̃ |∂tβ| ≤ C on the support of β, it follows that the boundary terms are bounded by

CT −1(∥w(2T, · )∥2
L2(C̃ R

T (2T )) + ∥Sw(2T, · )∥2
L2(C̃ R

T (2T )) + ∥w(T, · )∥2
L2(C̃ R

T (T ))
+ ∥Sw(T, · )∥2

L2(C̃ R
T (T ))

).
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Let χ(t/T ) be another smooth cutoff such that χ(2)= 1 and χ(1)= 0. We write

w(2T, x)2 =

∫ 1

1/2

d
ds
(χw2)(s2T, sx) ds

=

∫ 1

1/2
S(χw2)(s2T, sx) ds

s
=

∫ 2T

T
S(χw2)

(
t, t x

2T

) dt
t

and thus

∥w(2T, · )∥2
L2(C̃ R

T (2T )) ≲
1
T

∥S(χw2)(t, x)∥2
L2(C̃ R

T )
≲ 1

T
(∥w∥

2
L2(C̃ R

T )
+ ∥Sw∥

2
L2(C̃ R

T )
).

A similar argument holds for 2T replaced by T, and for w replaced by Sw. Hence the boundary term can
be estimated by

1
T 2

2∑
j=0

∥S jw∥
2
L2(C̃ R

T )
.

To estimate ∂w we use the pointwise inequality

|∂w|
2
≤ C̃

1
(t̃ − r̃)2

|Sw|
2
+

t̃
t̃ − r̃

(|∂xw|
2
− |∂tw|

2), (4-3)

which is valid inside the cone C for a fixed large constant C̃ . Hence∫
β|∂w|

2 dx dt ≲
∫

1
(t̃ − r̃)2

β|Sw|
2
+

t̃
t̃ − r̃

|□β|w2
+

t̃
t̃ − r̃

β|□w||w| dx dt, (4-4)

where all weights have a fixed size in the support of β. The function β also satisfies |□β| ≲ R−2. Then
the conclusion of the lemma follows by applying Cauchy–Schwarz to the last term.

The argument for CU
T is similar. We now consider

β(t̃, r̃)= χ

(
t̃ − r̃

t̃
T
U

)
.

We multiply by βw and integrate by parts as above. The boundary terms are now controlled by

CU−1(∥w(2T, · )∥2
L2(C̃U

T (2T )) + ∥Sw(2T, · )∥2
L2(C̃U

T (2T )) + ∥w(T, · )∥2
L2(C̃U

T (T ))
+ ∥Sw(T, · )∥2

L2(C̃U
T (T ))

),

which in turn is controlled, by using the scaling S as above, by

1
T U

2∑
j=0

∥S jw∥
2
L2(C̃ R

T )
.

The estimate now follows from (4-4), using the fact that |□β| ≲ T −1U−1.
Now consider the above proof but with □ replaced by □K . Integrating

1
2β□Kw

2
= β(w□Kw+ gαβK ∂αw ∂βw)
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by parts twice gives

−

∫ 2T

T

∫
βgαβK ∂αw ∂βw

√
|gK | dx dt

=

∫ 2T

T

∫ (
βw□Kw−

1
2
(□Kβ)w

2
)√

|gK | dx dt −
1
2

∫
(βg0α

K ∂αw
2
− gα0

K w
2 ∂αβ)

√
|gK | dx

∣∣∣2T

T
.

First we estimate the boundary term. The terms with α = 0 are handled as before and so is the second
term with α > 0. For the first term with α > 0 we integrate by parts and see that it is bounded by a term
of the same form as the second term plus a term of the form

1
2

∫
β∂α(g0α

K

√
|gK |)w2 dx ≲

∫
βr−2w2 dx,

which can be estimated as above. To estimate the interior term we just note that√
|gK |gαβK ∂αw ∂βw = |∂xw|

2
− |∂tw|

2
+ O(r−1)|∂w|

2,

where the error term can be absorbed in the left of (4-3) for large enough R.
This finishes the proof of (4-1), and (4-2) follows in a similar manner. □

Applying Lemma 4.2 to wα for some multiindex α, and using (2-2), we obtain the higher-order version
of the estimates:

∥∂wα∥L2(C R
T )

≲ R−1
∥w|α|+n∥L2(C̃ R

T )
+ R∥(□Kw)|α|+n∥L2(C̃ R

T )
, (4-5)

∥∂wα∥L2(CU
T )

≲ U−1
∥w|α|+n∥L2(C̃U

T )
+ T ∥(□Kw)|α|+n∥L2(C̃U

T )
. (4-6)

Combining the two estimates above (4-5) and (4-6) with the Sobolev embeddings from Lemma 3.1
and the pointwise estimate for second-order derivatives in Lemma 3.3 we obtain:

Corollary 4.3. For all T ≥ 1 and 1 ≤ R,U ≤
1
4 T we have for some n independent of α

∥∂wα∥L∞(C R
T )

≲ 1
R

∥w≤|α|+n∥L∞(C̃ R
T )

+ R∥(□Kw)|α|+n∥L∞(C̃ R
T )
,

respectively,

∥∂wα∥L∞(CU
T )

≲ 1
U

∥w≤|α|+n∥L∞(C̃U
T )

+ T ∥(□Kw)|α|+n∥L∞(C̃U
T )
.

Finally, we will derive a sharp estimate for the bad first-order derivative, following [Lindblad 1990].

Lemma 4.4. Let Dt =
{

x : 0 ≤ t − |x | ≤
1
4 t

}
, Cq

t = {x : t − |x | = q}, and let w̄(q) be any positive
continuous function, where q = t − r . Suppose that □φ = F. Then the following holds in Dt , t ≥ 1:

t |∂φ(t, x)w̄(q)| ≲ sup
4q≤τ≤t

(
∥q∂φ(τ, · )w̄∥L∞(Cq

τ )
+

∑
|I |≤1

∥Z Iφ(τ, · )w̄∥L∞(Cq
τ )

)
+

∫ t

4q

(
⟨τ ⟩∥F(τ, · )w̄∥L∞(Cq

τ )
+

∑
|I |+|J |≤2

⟨τ ⟩−1
∥∂ I�Jφ(τ, · )w̄∥L∞(Cq

τ )

)
dτ.

Proof. We write

□φ = −
1
r
∂v ∂u(rφ)+

1
r2 △ωφ,
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where ∂u = ∂t − ∂r and ∂v = ∂t + ∂r . Hence in Dt

|∂v∂u(rφ)| ≲ |r□φ| + ⟨r⟩
−1

∑
|I |+|J |≤2

|∂ I�Jφ| ≲ |⟨t⟩□φ| + ⟨t⟩−1
∑

|I |+|J |≤2
|∂ I�Jφ|. (4-7)

Integrating this along the flow lines of the vector field ∂v from the boundary of D =
⋃
τ≥0 Dτ to any

point inside Dt for t ≥ 1. Using that w̄ is constant along the flow lines, and (4-7), we obtain

|∂u(rφ(t, x))w̄(q)|

≲ |∂u(rφ)(4q, 3q)w̄(q)| +
∫ t

4q

(
⟨τ ⟩∥F(τ, · )w̄∥L∞(Cq

τ )
+

∑
|I |+|J |≤2

⟨τ ⟩−1
∥∂ I�Jφ(τ, · )w̄∥L∞(Cq

τ )

)
dτ.

Moreover
t |∂uφ(t, x)w̄(q)| ≲ |∂u(rφ(t, x))w̄(q)| + |φ(t, x)w̄(q)|

and
|∂u(rφ)(4q, 3q)w̄(q)| ≲ |q∂uφ(4q, 3q)w̄(q)| + |φ(4q, 3q)w̄(q)|.

The last three inequalities yield

t |∂uφ(t, x)w̄(q)| ≲ sup
4q≤τ≤t

(∥q∂φ(τ, · )w̄∥L∞(Cq
τ )

+ ∥φ(τ, · )w̄∥L∞(Cq
τ )
)

+

∫ t

4q

(
⟨τ ⟩∥F(τ, · )w̄∥L∞(Cq

τ )
+

∑
|I |+|J |≤2

⟨τ ⟩−1
∥∂ I�Jφ(τ, · )w̄∥L∞(Cq

τ )

)
dτ.

The lemma follows from also using that r |∂φ| ≲ |r∂qφ| + |Sφ| + |�φ|. □

5. Pointwise estimates from the Minkowski fundamental solution

In this section, we translate pointwise bounds on the inhomogeneous terms into pointwise bounds for the
solution by using the fundamental solution of the Minkowski metric.

For any β, γ, η ∈ R, we define the weighted L∞ norms

∥G∥L∞

β,γ,η
= ∥⟨r⟩

β
⟨t⟩γ ⟨t − r⟩

ηH(t, r)∥L∞
t,r , H(t, r)=

2∑
0

∥�i G(t, rω)∥L2(S2).

We use the following lemma (see Section 6 of [Tohaneanu 2022]).

Lemma 5.1. Let ψ solve
□ψ = G, ψ(0)= 0, ∂tψ(0)= 0,

where G is supported in {|x | ≤ t + R0}. Assume also that 2 ≤ β ≤ 3 and η ≥ −
1
2 . We define, for any

arbitrary δ > 0,

η̃ =

{
η− δ− 2, η < 1,
−1, η > 1.

(i) If γ ≥ 0, we have

rψ(t, x)≲
1

⟨t − r⟩β+γ+η̃−1 ∥G∥L∞

β,γ,η
. (5-1)
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(ii) If γ < 0, we have

rψ(t, x)≲
⟨t⟩−γ

⟨t − r⟩β+η̃−1 ∥G∥L∞

β,γ,η
. (5-2)

(iii) If η > 1, we have

rψ(t, x)≲
〈
ln

⟨t⟩
⟨t − r⟩

〉
∥G∥L∞

2,0,η
. (5-3)

Proof. Note first that, after a translation in time, we may assume that R0 = 0.
We use the ideas from [Metcalfe et al. 2012]. Define

H(t, r)=

2∑
0

∥�i G(t, rω)∥L2(S2).

By Sobolev embeddings on the sphere, we have |G| ≲ H. Let v be the radial solution to

□v = H, v[0] = 0.

By the positivity of the fundamental solution, we have that |ψ | ≲ |v|. On the other hand, we can write
v explicitly:

rv(t, r)=
1
2

∫
Dtr

ρH(s, ρ) ds dρ,

where Dtr is the rectangle

Dtr = {0 ≤ s − ρ ≤ t − r, t − r ≤ s + ρ ≤ t + r}.

We partition the set Dtr into a double dyadic manner as

Dtr =

⋃
R≤t

DR
tr , DR

tr = Dtr ∩ {R < r < 2R}

and estimate the corresponding parts of the above integral.
We clearly have ∫

DR
tr

ρH ds dρ ≲ ∥G∥L∞

β,γ,η

∫
DR

tr

ρ1−β
⟨s⟩−γ ⟨s − ρ⟩

−η dρ ds.

We now consider two cases:

(i) R < 1
8(t − r). Here we have ρ ∼ R and s ≈ s − ρ ≈ ⟨t − r⟩; therefore we obtain∫

DR
tr

ρ1−β
⟨s⟩−γ ⟨s − ρ⟩

−η dρ ds ≲ R3−β
⟨t − r⟩

−γ−η,

and after summation, using that β ≤ 3, we obtain∑
R<(t−r)/8

∫
DR

tr

ρH dsdρ ≲
ln⟨t − r⟩⟨t − r⟩

3−β

⟨t − r⟩γ+η
≲

1
⟨t − r⟩β+η̃

,

which is the desired bound in all cases.
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(ii) 1
8(t − r) < R < t . Here we have ρ ∼ R and t ≥ s ≳ R. Let u = s − ρ.

Assume first that γ ≥ 0; then∫
DR

tr

ρ1−β
⟨s⟩−γ ⟨s − ρ⟩

−η dρ ds ≲ R2−β−γ

∫ t−r

0
⟨u⟩

−η du ≲ R2−β−γ
⟨t − r⟩

µ(η),

where

µ(η)=

{
1 − η, η < 1,
0, η > 1.

If β + γ > 2, we obtain after summation∑
R>(t−r)/8

∫
DR

tr

ρH ds dρ ≲ ⟨t − r⟩
2−β−γ+µ(η),

which is (5-1).
Assume now that β = 2 and γ = 0. Equation (5-3) is obvious when t ≤ 1. When t ≥ 1, we see that

there are ln(t/⟨t − r⟩) dyadic regions when 1
8(t − r) < R < t , so we obtain (5-3) after summation.

Finally, if γ < 0 we obtain∫
DR

tr

ρ1−β
⟨s⟩−γ ⟨s − ρ⟩

−η dρ ds ≲ R2−β
⟨t⟩−γ

∫ t−r

0
⟨u⟩

−η du ≲ R2−β
⟨t⟩−γ ⟨t − r⟩

µ(η).

Since β ≥ 2, we obtain after summation∑
R>(t−r)/8

∫
DR

tr

ρH ds dρ ≲ ⟨t⟩−γ ⟨t − r⟩
2−β+µ(η),

which is (5-2). □

6. Setup for pointwise estimates

In this section, we will slightly adjust □K to an operator closer to □ (with respect to the (t̃, x)-coordinates).
Indeed, we let

P = |gK |
1/4(−g t̃ t̃

K )
−1/2□K (−g t̃ t̃

K )
−1/2

|gK |
−1/4.

P is self-adjoint with respect to dt̃ dx . More importantly, a quick computation yields that

P = ∂α(g
αβ

K (−g t̃ t̃
K )∂β)+ V, V = |gK |

1/4(−g t̃ t̃
K )

−1/2□K ((−g t̃ t̃
K )

−1/2
|gK |

−1/4).

It is easy to see that V ∈ SZ (r−3).
Let us first consider the Schwarzschild metric. In this case we have that, for large r , −g t̃ t̃

S = gr∗r∗

S and
g t̃r∗

S = 0. We thus have

P = □+ Plr ,

where the long-range spherically symmetric part Plr has the form

Plr = glr (r)1ω + V, glr ∈ SZ (r−3), V ∈ SZ (r−3). (6-1)
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For the Kerr metric, we use the fact that the metric coefficients have the following properties:

gαβK − gαβS ∈ SZ (r−2), (6-2)

∂gK ∈ SZ (r−2), ∂2gK ∈ SZ (r−3). (6-3)

Using (6-1) and (6-2) we see that we can write

P = □+ Plr + Psr , (6-4)

where the short-range part Psr has the form

Psr = ∂αgαβsr ∂β, gαβsr ∈ SZ (r−2). (6-5)

Using (6-3) we see that for any function φ we have

Pφ = (−g t̃ t̃
K )□Kφ+ h1φ+ h2∂φ, h1 ∈ SZ (r−3), h2 ∈ SZ (r−2). (6-6)

Now pick any multiindex α. After commuting with vector fields, using (6-4), (6-1), and (6-5), we
obtain

Pφα ∈ SZ (1)(□Kφ)≤|α| + SZ (r−3)φ≤|α|+6 + SZ (r−2)∂φ≤|α|+5,

which in turn implies, using (6-4),

□φα ∈ SZ (1)(□Kφ)≤|α| + SZ (r−3)φ≤|α|+6 + SZ (r−2)∂φ≤|α|+5. (6-7)

Moreover, by finite speed of propagation, and the assumption on the support of the initial data, the
right-hand side is supported in the forward light cone {|x |< t̃ + R0}.

We will use (6-7) in the next section to extract more decay for the solution.

7. The bootstrap argument for the Einstein model

We now prove Theorem 1.1 by using a bootstrap argument. We first write

EN (0)= µNϵ,

where µN > 0 is a fixed, small N -dependent constant to be determined below (see (7-5), (7-6)).
Let N1 =

1
2 N . We will assume that the following a priori bounds hold for some large constant C̃

independent of ϵ and t̃ , and a fixed small δ > 0:

EN (t̃)≤ C̃µNϵ⟨t̃⟩δ, (7-1)

|φ≤N1+2| ≤
ϵ⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

⟨t̃⟩
, |∂φ≤N1+2| ≤

ϵ⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

r⟨t̃ − r̃⟩
, (7-2)

|(∂φT U )≤N1+2| ≤
ϵ

⟨t̃⟩
. (7-3)

Clearly (7-1), (7-2) and (7-3) hold for small times. We assume now that the bounds hold on some time
interval 0 ≤ t̃ ≤ T, and we improve the constants by 1

2 . By the continuity method this implies that the
solution exists globally, and that the bounds also hold globally.
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In order to improve (7-1), we show that, for small enough ϵ, there is CN independent of T so that

EN (t̃)≤ CN ⟨t̃⟩CN ϵEN (0), 0 ≤ t̃ ≤ T . (7-4)

If we now additionally take C̃ = 2CN and ϵ < δ/CN , we thus improve the a priori bound for EN (t̃) to

EN (t̃)≤
1
2 C̃µNϵ⟨t̃⟩δ.

In order to improve the pointwise bounds, we will show that, for some fixed positive integer m,
independent of N, we have

|φ≤N−m | ≲
EN (0)⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

⟨t̃⟩
, |∂φ≤N−m | ≲

EN (0)⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

r⟨t̃ − r̃⟩
, (7-5)

|(∂φT U )≤N−m | ≲
EN (0)

r⟨t̃ − r̃⟩1−δ
. (7-6)

We can now pick a small µN to improve (7-2) and (7-3).

7.1. The energy estimates. We will now use assumptions (7-2) and (7-3) to show (7-4) for small enough ϵ.
By Gronwall’s inequality and (2-8), it is enough to show that

∥(□Kφ)≤N ∥LE∗
w[0,t̃] ≲

∫ t̃

0

ϵ

⟨τ ⟩
EN (τ ) dτ + ϵEN (t̃). (7-7)

We can write, using (2-4), (2-5) and (2-6),

□Kφ ∈ SZ (1)(∂φT U )
2
+ SZ (1)∂φ∂̄φ.

After commuting with vector fields, and using (2-3), we also get that

(□Kφ)≤N ≲ (∂φT U )≤N1(∂φT U )≤N + ∂φ≤N1 ∂̄φ≤N + ∂̄φ≤N1∂φ≤N + r−1∂φ≤N1∂φ≤N−1. (7-8)

The first term is easy. By (7-3) we have

∥(∂φT U )≤N1(∂φT U )≤N ∥L1[0,t̃]L2 ≲
∫ t̃

0

ϵ

⟨τ ⟩
EN (τ ) dτ.

Similarly, the last term can be estimated in L1L2. Indeed, we note that (7-2) implies

|r−1∂φ≤N1 | ≲
ϵ

⟨t̃⟩
,

and thus

∥r−1∂φ≤N1∂φ≤N−1∥L1[0,t̃]L2 ≲
∫ t̃

0

ϵ

⟨τ ⟩
EN (τ ) dτ.

For the second term, we divide it into two parts. When r < R1 we have by (7-2)

∥∂φ≤N1 ∂̄φ≤N ∥L1[0,t̃]L2(r<R1)
≲

∫ t̃

0

ϵ

⟨τ ⟩
EN (τ ) dτ.
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When r > R1, we use (7-2) and the last term in (2-7):

∥∂φ≤N1 ∂̄φ≤N ∥
2
LE∗

[0,t] ≲
∫ t̃

0

∫
r>R1

ϵ2τ 2δ

r⟨τ − r̃⟩2+2δ |∂̄φ≤N |
2 dV

≲ ∥ϵ⟨τ − r̃⟩
(−1−δ1)/2∂̄φ≤N ∥

2
L2[0,t̃]L2(r≥R1)

≲ (ϵEN (t̃))2.

For the third term, note that (2-1) and (7-2) imply that

|∂̄φ≤N1 | ≲
ϵ

⟨t̃⟩
. (7-9)

Using (7-9) gives

∥∂̄φ≤N1∂φ≤N ∥L1[0,t̃]L2 ≲
∫ t̃

0

ϵ

⟨τ ⟩
EN (τ ) dτ.

Putting all these together we obtain (7-7).

7.2. The decay estimates. We now show that (7-5) and (7-6) hold.
The proof uses an iteration procedure. The most important part here is to obtain pointwise decay rates

of t̃−1 near the trapped set for all components. We start with a weak decay rate of t̃−1/2+Cϵ given by the
slow growth t̃Cϵ combined with the results of Section 3. We then use Lemma 5.1 to improve decay in r ,
followed by Corollary 4.3 to improve the decay of derivatives. Lemma 4.1 then allows us to turn the
r -decay into t̃-decay. This yields an improved global decay rate of t̃−1+Cϵ , which is barely not enough.
We then use Lemma 4.4 to improve the decay of the derivative of the good components ∂φT U to t̃−1 near
the cone. We can now go back to the iteration procedure, and use the improved bounds combined with
Lemma 5.1, Corollary 4.3 and Lemma 4.1 to improve the decay rate of all components to t̃−1 away from
the cone. This finishes the proof.

Let N2 = N − 13. We first note that (3-3) and (3-4), combined with the energy bounds (7-4), yield the
weak pointwise bounds

|∂φ≤N2 | ≲
⟨t̃⟩CϵEN (0)
r⟨t̃ − r̃⟩1/2

, |φ≤N2 | ≲
⟨t̃ − r̃⟩

1/2EN (0)
⟨t̃⟩1−Cϵ

. (7-10)

We now need to improve the decay of φ≤N−m and ∂φ≤N−m . To that extent, we will use Lemma 5.1,
followed by Lemma 4.1 and Corollary 4.3.

We cannot apply Lemma 5.1 directly. On one hand, we have no control on the solution for r ≪ 2M,
and on the other hand, the initial data is not trivial. Instead, let

χ = χ1(r̃)χ2(t̃).

Here χ1 ≡ 1 for r̃ ≥ R ≫ M and supported in r̃ ≥
1
2 R, while χ2 ≡ 1 for t̃ ≥ 1 and supported in t̃ ≥

1
2 .

We now consider ψαβ = χφαβ . Using (6-7), we see that ψ satisfies the system

□(ψ≤n)= Gn, Gn ∈ SZ (r−2)∂φ≤n+5 + SZ (r−3)φ≤n+6 + SZ (1)(∂φ≤n)
2,
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with trivial initial data, and Gn supported in the region r ≥
1
2 R. Using (7-10), we see that, for all

n ≤ N3 := N2 − 12, we have

Gn+6 ≲ EN (0)
(

⟨t̃⟩Cϵ

r3⟨t̃ − r̃⟩1/2
+

⟨t̃ − r̃⟩
1/2

r3⟨t̃⟩1−Cϵ
+

⟨t̃⟩Cϵ

r2⟨t̃ − r̃⟩

)
.

We now apply Lemma 5.1. The first term on the right-hand side is controlled by the other two terms.
For the second term we use (5-1) with β = 3, γ = 1 − Cϵ and η = −

1
2 . For the third term, we use (5-1)

with β = 2, γ = −Cϵ and η = 1 − Cϵ. We obtain

|φ≤N3 | ≲
⟨t̃⟩Cϵ

r
EN (0). (7-11)

We now plug in the bounds (7-11) and (7-10) into Corollary 4.3. We thus obtain for N4 = N3 − n
with n from Corollary 4.3:

∥∂φN4∥L∞(C R
T )

≲
1
R

T Cϵ

R
EN (0)+ R

(
T Cϵ

RT 1/2 EN (0)
)2

≲
T Cϵ

R2 EN (0),

∥∂φN4∥L∞(CU
T )

≲
1
U

T Cϵ

R
EN (0)+ T

(
T Cϵ

RU 1/2 EN (0)
)2

≲
T Cϵ

RU
EN (0).

The last two inequalities can be written as

|∂φ≤N4 | ≲
⟨t̃⟩1+Cϵ

r2⟨t̃ − r̃⟩
EN (0). (7-12)

We now use Lemma 4.1. Note that (7-11) and (7-12) yield

∥⟨r⟩φ≤N4∥LE1(C<T/2
T )

≲ T 1/2+CϵEN (0).

Moreover, (7-10) implies that

∥(□Kφ)≤N4∥LE∗(C<T/2
T )

≲ T −1/2+CϵEN (0).

The two inequalities above and Lemma 4.1 with N5 = N4 − n give us

∥φ≤N5∥LE1(C<T/2
T )

≲ T −1/2+CϵEN (0),

which combined with the Sobolev embeddings from Lemma 3.1 give for N6 = N5 − 13

|φ≤N6 | ≲ ⟨t̃⟩−1+CϵEN (0). (7-13)

We now plug in the bounds (7-13) and (7-10) into Corollary 4.3. We thus obtain for N7 = N6 − n

∥∂φ≤N7∥L∞(C R
T )

≲
1
R

T Cϵ

T
EN (0)+ R

(
T Cϵ

RT 1/2 EN (0)
)2

≲
T Cϵ

RT
EN (0).

Combined with (7-12), this gives

|∂φ≤N7 | ≲
⟨t̃⟩Cϵ

r⟨t̃ − r̃⟩
EN (0). (7-14)
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Note also that (2-1), (7-13) and (7-14) give

|∂̄φ≤N7−2| ≲
⟨t̃⟩Cϵ

r⟨t̃⟩
EN (0). (7-15)

Equations (7-13) and (7-14) almost finish the proof of (7-5), except that we need to replace ⟨t̃⟩Cϵ

by ⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩.
We now prove the fact that ψT U actually satisfies better decay estimates. Indeed, note first that

□(T αUβφαβ)− T αUβ□φαβ ∈ SZ (r−2)φ≤1.

Using (6-4) and (6-6) we obtain

□φT U ∈ SZ (1)(□Kφ)T U + SZ (r−2)φ≤6.

Moreover,
(□Kφ)T U ∈ SZ (1)∂φ∂̄φ,

and thus
□φT U ∈ SZ (1)∂φ∂̄φ+ SZ (r−2)φ≤6.

After commuting with vector fields (in particular using (2-3)) and applying the cutoff we thus obtain

□(ψT U )≤m = Hm, Hm ∈ SZ (r−2)φ≤m+6 + SZ (1)∂φ≤m ∂̄φ≤m + SZ (r−1)(∂φ≤m)
2.

Using (7-13), (7-14) and (7-15), we see that

|Hm | ≲
EN (0)

r2⟨t̃⟩1−Cϵ
, m ≤ N7 − 2. (7-16)

Let N8 = N7 − 6. We now apply Lemma 4.4 with w̄(q)= ⟨q⟩
1−δ to (ψT U )≤N8 . Note first that, due to

(7-14) and (7-13) we have

sup
4q≤τ≤t̃

(
∥q ∂φ≤N8(τ, · )w̄∥L∞(Cq

τ )
+

∑
|I |≤1

∥Z Iφ≤N8(τ, · )w̄∥L∞(Cq
τ )

)
≲ EN (0).

Moreover, (7-13) implies that∫ t̃

4q

∑
|I |≤2

⟨τ ⟩−1
∥�Iφ≤N8(τ, · )w̄∥L∞(Cq

τ )
dτ ≲

∫ t̃

4q
⟨τ ⟩−1 ⟨q⟩

1−δEN (0)
⟨τ ⟩1−Cϵ dτ ≲ EN (0).

Finally, we obtain by (7-16) that∫ t̃

4q
⟨τ ⟩∥Hm(τ, · )w̄∥L∞(Cq

τ )
≲

∫ t̃

4q
⟨τ ⟩

⟨q⟩
1−δEN (0)

⟨τ ⟩3−Cϵ dτ ≲ EN (0).

Lemma 4.4 thus implies, in conjunction with (7-14), that

|∂(ψT U )≤N8 | ≲
EN (0)

r⟨t̃ − r̃⟩1−δ
. (7-17)

This finishes the proof of (7-6).
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Finally, to obtain a decay rate of 1/t̃ in the interior, we see that, using (6-7) and (7-8), we can write
our system as

□(ψ≤m)= Jm,

Jm ∈ SZ (r−2)∂φ≤m+5 + SZ (r−3)φ≤m+6 + SZ (1)(∂φT U )
2
≤m + SZ (1)∂φ≤m ∂̄φ≤m + SZ (r−1)(∂φ≤m)

2,

and Jm is supported in the region
{
t̃ ≥

1
2 , r̃ ≥

1
2 R

}
. Due to the improved bounds (7-13), (7-14) and (7-17)

we obtain

|Jm+6| ≲ EN (0)
(

⟨t̃⟩Cϵ

r3⟨t̃ − r̃⟩
+

1
r2⟨t̃ − r̃⟩2−2δ

)
, m ≤ N9 := N8 − 8.

We now apply Lemma 5.1 and in particular (5-3) to control the last term. We obtain

|ψ≤N9 | ≲
⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

r
EN (0). (7-18)

Corollary 4.3 thus implies, with N10 = N9 − n,

|∂ψ≤N10 | ≲
⟨ln(⟨t̃⟩/⟨t̃ − r̃⟩)⟩

r⟨t̃ − r̃⟩
EN (0). (7-19)

Equations (7-18) and (7-19) finish the proof of (7-5) when r̃ ≥
1
2 t̃ .

All that is left is to replace r by t̃ in the region r̃ ≤
1
2 t̃ . Note first that (7-18) and (7-19), combined

with (7-13) and (7-14), yield the (relatively weak) bound

|φ≤N10 | ≲
1
r
EN (0), ∂φ≤N10 ≲

1
r2 EN (0), r̃ <

3t̃
4
. (7-20)

We now use Lemma 4.1. Note that (7-20) gives

∥⟨r⟩φ≤N10∥LE1(C<T/2
T )

≲ T 1/2EN (0).

Moreover, (7-14) implies that

∥(□Kφ)≤N10∥LE∗(C<T/2
T )

≲ T −1/2EN (0).

The two inequalities above and Lemma 4.1 give us, for N11 = N10 − n,

∥φ≤N11∥LE1(C<T/2
T )

≲ T −1/2EN (0),

which, combined with the Sobolev embeddings from Lemma 3.1 with N12 = N11 − 13, gives

|φ≤N12 | ≲
EN (0)
⟨t̃⟩

, r̃ ≤
t̃
2
.

Finally, one last application of Corollary 4.3 with N13 = N12 − n gives

|∂φ≤N13 | ≲
EN (0)
r⟨t̃⟩

, r̃ ≤
t̃
2
.

This finishes the proof of (7-5) if we pick N large enough so that N13 ≥ N1.
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