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ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

The relative heat content associated with a subset �⊂ M of a sub-Riemannian manifold is defined as the
total amount of heat contained in� at time t , with uniform initial condition on�, allowing the heat to flow
outside the domain. We obtain a fourth-order asymptotic expansion in the square root of t of the relative
heat content associated with relatively compact noncharacteristic domains. Compared to the classical
heat content that was studied by Rizzi and Rossi (J. Math. Pures Appl. (9) 148 (2021), 267–307), several
difficulties emerge due to the absence of Dirichlet conditions at the boundary of the domain. To overcome
this lack of information, we combine a rough asymptotics for the temperature function at the boundary,
coupled with stochastic completeness of the heat semigroup. Our technique applies to any (possibly
rank-varying) sub-Riemannian manifold that is globally doubling and satisfies a global weak Poincaré
inequality, including in particular sub-Riemannian structures on compact manifolds and Carnot groups.
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1. Introduction

We study the asymptotics of the relative heat content in sub-Riemannian geometry. The latter is a vast
generalization of Riemannian geometry; indeed a sub-Riemannian manifold M is a smooth manifold
where a metric is defined only on a subset of preferred directions Dx ⊂ Tx M at each point x ∈ M
(called horizontal directions). For example, D can be a sub-bundle of the tangent bundle, but we will
consider the most general case of rank-varying distributions. Moreover, we assume that D satisfies the
so-called Hörmander condition, which ensures that M is horizontally path connected, and that the usual
length-minimization procedure yields a well-defined metric.
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Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, let � ⊂ M be an open
relatively compact subset of M, with smooth boundary, and consider the Cauchy problem for the heat
equation in this setting

(∂t −1)u(t, x)= 0 for all (t, x) ∈ (0,∞)× M,

u(0, · )= 1� in L2(M, ω),
(1)

where 1� is the indicator function of the set �, and 1 is the sub-Laplacian, defined with respect to ω. By
classical spectral theory, there exists a unique solution to (1),

u(t, x)= et11�(x) for all x ∈ M, t > 0,

where et1 denotes the heat semigroup in L2(M, ω), associated with 1. The relative heat content is the
function

H�(t)=

∫
�

u(t, x) dω(x) for all t > 0.

This quantity has been studied in connection with geometric properties of subsets of Rn, starting from
the seminal work of De Giorgi [1954], where he introduced the notion of perimeter of a set in Rn and
proved a characterization of sets of finite perimeter in terms of the heat kernel. His result was subsequently
refined, using techniques of functions of bounded variation: it was proven in [Ledoux 1994] for balls
in Rn, and in [Miranda et al. 2007] for general subsets of Rn, that a borel set �⊂ Rn with finite Lebesgue
measure has finite perimeter à la De Giorgi if and only if

there exists lim
t→0

√
π

√
t
(|�| − H�(t))= P(�), (2)

where | · | is the Lebesgue measure and P is the perimeter measure in Rn. Notice that (2) is equivalent to
a first-order1 asymptotic expansion of H�(t). A further development in this direction was then obtained
in [Angiuli et al. 2013], where the authors extended (2) to an asymptotic expansion of order 3 in

√
t ,

assuming the boundary of �⊂ Rn to be a C1,1 set. For simplicity, we state here the result of [Angiuli
et al. 2013, Theorem 1.1] assuming ∂� is smooth:2

H�(t)= |�| −
1

√
π

P(�)t1/2
+
(n − 1)2

12
√
π

∫
∂�

(
H 2
∂�(x)+

2
(n − 1)2

c∂�(x)
)

dHn−1(x)t3/2
+ o(t3/2) (3)

as t → 0, where Hn−1 is the Hausdorff measure and, denoting by k∂�i (x) the principal curvatures of ∂�
at the point x ,

H∂�(x)=
1

n − 1

n−1∑
i=1

k∂�i (x), c∂�(x)=

n−1∑
i=1

k∂�i (x)2.

In the Riemannian setting, van den Berg and Gilkey [2015] proved the existence of a complete
asymptotic expansion for H�(t), generalizing (3), when ∂� is smooth. Moreover, they were able to
compute explicitly the coefficients of the expansion up to order 4 in

√
t . Their techniques are based

1Here and throughout the paper, the notion of order is computed with respect to
√

t .
2The statement of Theorem 1.1 in [Angiuli et al. 2013] differs from (3) by a sign in the third-order coefficient: the correct

sign appears a few lines below the statement, in the expansion of the function Kt (E, Ec).
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on pseudodifferential calculus and cannot be immediately adapted to the sub-Riemannian setting. In
particular, what is missing is a global parametrix estimate for the heat kernel pt(x, y), see [van den Berg
and Gilkey 2015, Section 2.3]: for any k ∈ N, there exist Jk,Ck > 0 such that∥∥∥∥pt(x, y)−

Jk∑
j=0

p j
t (x, y)

∥∥∥∥
Ck(M×M)

≤ Ck tk as t → 0, (4)

where p j
t (x, y) are suitable smooth functions, given explicitly in terms of the Euclidean heat kernel and

iterated convolutions. The closest estimate analogue to (4) in the sub-Riemannian setting is the one
proved recently in [Colin de Verdière et al. 2021, Theorem A] (see Theorem 2.9 for the precise statement),
where the authors show an asymptotic expansion of the heat kernel in an asymptotic neighborhood of
the diagonal, which is not enough to reproduce (4) and thus the argument of van den Berg and Gilkey.
Moreover, in this case, p j

t (x, y) is expressed in terms of the heat kernel of the nilpotent approximation
and iterated convolutions, thus posing technical difficulties for the explicit computations of the coefficients
(which would be no longer “simple” Gaussian-type integrals).

Under the assumption of not having characteristic points, we prove the existence of the asymptotic
expansion of H�(t), up to order 4 in

√
t , as t → 0. We remark that we include also the rank-varying case.

In order to state our main results, let us introduce the following operator, acting on smooth functions
compactly supported close to ∂�:

Nφ = 2g(∇φ,∇δ)+φ1δ,

where δ : M → R denotes the sub-Riemannian signed distance function from ∂�; see Section 4 for precise
definitions.

Theorem 1.1. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and let
�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, as t → 0,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

−
1

12
√
π

∫
∂�

(N (1δ)− 2(1δ)2) dσ t3/2
+ o(t2), (5)

where σ denotes the sub-Riemannian perimeter measure.

Remark 1.2. The compactness assumption in Theorem 1.1 is technical and can be relaxed by requiring,
instead, global doubling of the measure and a global Poincaré inequality; see Section 7 and in particular
Theorem 7.3. Some notable examples satisfying these assumptions are:

• M is a Lie group with polynomial volume growth, the distribution is generated by a family of left-
invariant vector fields satisfying the Hörmander condition and ω is the Haar measure. This family includes
also Carnot groups.

• M = Rn, equipped with a sub-Riemannian structure induced by a family of vector fields {Y1, . . . , YN }

with bounded coefficients together with their derivatives, and satisfying the Hörmander condition.

• M is a complete Riemannian manifold, equipped with the Riemannian measure, and with nonnegative
Ricci curvature.

See Section 7.1 for further details. In all these examples, Theorem 1.1 holds.
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The strategy of the proof of Theorem 1.1 follows a strategy similar to that of [Rizzi and Rossi 2021],
inspired by the method introduced in [Savo 1998], used for the classical heat content (6). However, as we
are going to explain in Section 1.1, new technical difficulties arise, the main one being related to the fact
that now u(t, · )|∂� ̸= 0. At order zero, we obtain the following result; see Section 2 for precise definitions.

Theorem 1.3. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω and let �⊂ M
be an open relatively compact subset, whose boundary is smooth and has no characteristic points. Let
x ∈ ∂� and consider a chart of privileged coordinates ψ : U → V ⊂ Rn centered at x such that
ψ(U ∩�)= V ∩ {z1 > 0}. Then,

lim
t→0

u(t, x)=

∫
{z1>0}

p̂x
1 (0, z) dω̂x(z)=

1
2

for all x ∈ ∂�,

where ω̂x denotes the nilpotentization of ω at x and p̂x
t denotes the heat kernel associated with the

nilpotent approximation of M at x and measure ω̂x.

This result can be seen as a partial generalization of [Capogna et al. 2013, Proposition 3], where the
authors proved an asymptotic expansion of u(t, x) up to order 1 in

√
t for x ∈ ∂� for a special class of

noncharacteristic domains in Carnot groups.

Remark 1.4. Our proof of Theorem 1.3 does not yield an asymptotic series for u(t, · )|∂� at order higher
than 0. Indeed a complete asymptotic series of this quantity seems difficult to achieve; see Section 6.

Remark 1.5. When ∂� has no characteristic points, the conormal bundle

A(∂�) := {λ ∈ T ∗M : ⟨λ, Tπ(λ)∂�⟩ = 0}

does not intersect the characteristic set and, as a consequence, the principal symbol of the sub-Laplacian
is elliptic near A(∂�). Thus, it is likely that microlocal analysis techniques in the spirit of [Colin de
Verdière et al. 2018] could yield the existence of a complete asymptotic expansion of the relative heat
content (but not an explicit expression and geometric interpretation of the coefficients). We thank Yves
Colin de Verdière and the anonymous referee for pointing out this fact.

1.1. Strategy of the proof of Theorem 1.1. To better understand the new technical difficulties in the study
of the relative heat content H�(t), let us compare it with the classical heat content Q�(t) and illustrate
the strategy of the proof of Theorem 1.1.

The classical heat content. We highlight the differences between the relative heat content H�(t) and the
classical one Q�(t): Let �⊂ M an open set in M. Then, for all t > 0, we have

H�(t)=

∫
�

u(t, x) dω(x), Q�(t)=

∫
�

u0(t, x) dω(x), (6)

where u(t, x) is the solution to (1) and u0(t, x) is the solution to the Dirichlet problem for the heat
equation, associated with �, i.e.,

(∂t −1)u0(t, x)= 0 for all (t, x) ∈ (0,∞)×�,

u0(t, x)= 0 for all (t, x) ∈ (0,∞)× ∂�,

u0(0, x)= 1 for all x ∈�.

(7)
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The crucial difference is that u0(t, · )|∂� = 0 for any t > 0, whereas u(t, · )|∂� ̸= 0 in general. Thus,
there is no a priori relation between H�(t) and Q�(t): the only relevant information is given by domain
monotonicity, which implies that

Q�(t)≤ H�(t) for all t > 0,

and clearly this does not give the asymptotics of the latter. See also [van den Berg 2013] for other
comparison results in the Euclidean setting.

Failure of Duhamel’s principle. In [Rizzi and Rossi 2021], we established a complete asymptotic
expansion of Q�(t), as t → 0, provided that ∂� has no characteristic points. The proof of this result relied
on an iterated application of the Duhamel’s principle and the fact that u0(t, x)|∂� = 0. Following the
same strategy, we apply Duhamel’s principle to a localized version of H�(t): Fix a function φ ∈ C∞

c (M),
compactly supported in a tubular neighborhood around ∂� and such that 0 ≤ φ ≤ 1 and φ is identically 1,
close to ∂�. Then, using off-diagonal estimates for the heat kernel, one can prove that

ω(�)− H�(t)= Iφ(t, 0)+ O(t∞) as t → 0, (8)

where Iφ(t, r) is defined for t > 0 and r ≥ 0 as

Iφ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x), (9)

where �r = {x ∈� : δ(x) > r}, with δ :�→ R denoting the distance function from the boundary. Hence,
the small-time behavior of H�(t) is captured by Iφ(t, 0). By Duhamel’s principle and the sub-Riemannian
mean value lemma, see Section 4 for details, we obtain

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y) (t − τ)−1/2 dτ + O(t) as t → 0. (10)

For the classical heat content, u0 satisfies Dirichlet boundary condition, see (7); hence (10) would give
the first-order asymptotics (and then one could iterate). On the contrary, in this case, we do not have
prior knowledge of u(t, y) as y ∈ ∂� and t → 0. Thus, already for the first-order asymptotics, Duhamel’s
principle alone is not enough, and we need some information on the asymptotic behavior of u(t, · )|∂�.

First-order asymptotics. We study the asymptotics of u(t, · )|∂�. Using the notion of nilpotent approxi-
mation of a sub-Riemannian manifold, see Section 2.3, we deduce the zero-order asymptotic expansion
of u(t, · )|∂� as t → 0, proving Theorem 1.3. This is enough to infer the first-order expansion of H�(t),
by means of (10). At this point, we iterate the Duhamel’s principle to obtain the higher-order terms of the
expansion of H�(t). However, already at the first iteration, we obtain the following formula for Iφ:

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, · ))φ dσ(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0

∫
∂�

(1 − u(τ̂ , · ))Nφ dσ((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ + O(t3/2) (11)

as t → 0. Therefore, the zero-order asymptotic expansion of u(t, · )|∂� no longer suffices for obtaining
the second-order asymptotics of H�(t).



3002 ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

The outside contribution I cφ. We mentioned that the crucial difference between H�(t) and Q�(t),
defined in (6), is related to the fact that u(t, · )|∂� ̸= 0, whereas u0(t, · )|∂� = 0 for any t > 0. From a
physical viewpoint, this distinction comes from the fact that, since the boundary ∂� is no longer insulated,
the solution to (1) can flow also outside of �, whereas the solution to the Dirichlet problem (7) is confined
in �, and the external temperature is 0. Hence, we can imagine that the asymptotic expansion of H�(t)
is affected by the boundary, both from the inside and from the outside of �.

Interpreting Iφ as the inside contribution to the asymptotics of H�, we are going to formalize the
physical intuition of having heat flowing outside of �, defining an outside contribution, I cφ, to the
asymptotics.3 The starting observation is the following simple relation: Setting

K�(t)=

∫
M\�

u(t, x) dω(x) for all t > 0,

we have, by the divergence theorem,

H�(t)+ K�(t)= ω(�) for all t > 0. (12)

Similarly to (9), for a suitable smooth function φ, one may define a localized version of K�(t), which we
call I cφ(t, r), so that

K�(t)= I cφ(t, 0)+ O(t∞) as t → 0; (13)

see Section 5.1 for precise definitions. Using (8), (12) and (13), we show the relation

Iφ(t, 0)− I cφ(t, 0)= O(t∞) as t → 0,

for a suitable smooth function φ. On the other hand, for the localized quantity Iφ(t, 0)− I cφ(t, 0) we
have a Duhamel’s principle, thanks to which we are able to study the asymptotic expansion, up to order 3,
of the integral of u(t, x) over ∂�; see Theorem 5.4. The limitation to the order 3 of the asymptotics is
technical and seems difficult to overcome; see Remark 5.5. Inserting this asymptotics in (11), we obtain
the asymptotics up to order 3 of the expansion of H�(t) as t → 0.

Fourth-order asymptotics. Since we have at disposal only the asymptotics of the integral of u(t, x)
over ∂�, up to order 3, we need a finer argument to obtain the fourth-order asymptotics of H�(t). The
simple but compelling relation is based once again on (8), (12) and (13), thanks to which we can write

ω(�)− H�(t)=
1
2(Iφ(t, 0)+ I cφ(t, 0))+ O(t∞) as t → 0.

Now for the sum of the contributions Iφ(t, 0)+ I cφ(t, 0), the Duhamel’s principle implies

Iφ(t, 0)+ I cφ(t, 0)

=
2

√
π
σ(∂�)t1/2

+
1

2π

∫ t

0

∫ τ

0

∫
∂�

(1 − 2u(τ̂ , x))Nφ(y) dσ(y)((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ + o(t).

3The notation “superscript c” stands for complement. Indeed the outside contribution is the inside contribution of the
complement of �, see Section 5.1.
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This time notice how the integral of u(t, x) over ∂� appears in a first-order term (as opposed to what
happened in (10) or (11)); thus its asymptotic expansion up to order 3 implies a fourth-order expansion
for H�(t), concluding the proof of Theorem 1.1.

1.2. From the heat kernel asymptotics to the relative heat content asymptotics. In [Colin de Verdière
et al. 2021, Theorem A], the authors proved the existence of small-time asymptotics of the hypoelliptic
heat kernel, pt(x, y); see Theorem 2.9 below for the precise statement. In Theorem 1.3 we are able to
exploit this result to obtain the zero-order asymptotics of the function

u(t, x)= et11�(x)=

∫
�

pt(x, y) dω(y) for all t > 0, x ∈ ∂�.

However, we are not able to extend Theorem 1.3 to higher-order asymptotics since, roughly speaking,
the remainder terms in Theorem 2.9 are not uniform as t → 0. If we had a better control on the
remainders, we could indeed integrate (in a suitable way) the small-time heat kernel asymptotics to
obtain the corresponding expansion for u(t, x). Finally, from such an expansion, the relative heat content
asymptotics would follow from the localization principle (8) and the (iterated) Duhamel’s principle (10).
This is done in Section 6.

1.3. Characteristic points. In order to prove our main results, we need the noncharacteristic assumption
on the domain �. We recall that for a subset �⊂ M with smooth boundary, x ∈ ∂� is a characteristic
point if Dx ⊂ Tx(∂�). As was the case for the classical heat content, see [Rizzi and Rossi 2021], the
noncharacteristic assumption is crucial to follow our strategy, since it guarantees the smoothness of the
signed distance function close to ∂�; see Theorem 4.1. Nevertheless, one might ask whether Theorem 1.1
holds for domains with characteristic points, at least formally.

On the one hand, the coefficients, up to order 2, are well-defined even in presence of characteristic
points; see [Balogh 2003]. While, for what concerns the integrand of the third-order coefficient, its
integrability, with respect to the sub-Riemannian induced measure σ , is related to integrability of the
sub-Riemannian mean curvature H, with respect to the Riemannian induced measure. The latter is a
nontrivial property, which has been studied in [Danielli et al. 2012], and holds in the Heisenberg group,
for surfaces with mildly degenerate characteristic points in the sense of [Rossi 2023].

On the other hand, differently from what happens in the case of the Dirichlet problem, the heat kernel
pt(x, y) associated with (1) is smooth at the boundary of � for positive times, even in presence of
characteristic points. Thus, in principle, there is no obstacle in obtaining an asymptotic expansion of
H�(t) also in that case. Moreover, in Carnot groups of step 2, a result similar to (2) holds; see [Bramanti
et al. 2012; Garofalo and Tralli 2023]. In particular, the characterization of sets of finite horizontal
perimeter in Carnot groups of step 2 is independent of the presence of characteristic points, indicating
that an asymptotic expansion such as (5) may still hold, dropping the noncharacteristic assumption.

1.4. Notation. Throughout the article, for a set U ⊂ M, we will use the notation C∞
c (U ), even in

the compact case, so that all the statements need not be modified in the noncompact case, when the
generalization is possible; see Theorem 7.3. Moreover, in the noncompact and complete case, the set
�⊂ M is assumed to be open and bounded.
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2. Preliminaries

We recall some essential facts in sub-Riemannian geometry, following [Agrachev et al. 2020].

2.1. Sub-Riemannian geometry. Let M be a smooth, connected finite-dimensional manifold. A sub-
Riemannian structure on M is defined by a set of N global smooth vector fields X1, . . . , X N , called a
generating frame. The generating frame defines a distribution of subspaces of the tangent spaces at each
point x ∈ M, given by

Dx = span{X1(x), . . . , X N (x)} ⊆ Tx M. (14)

We assume that the distribution satisfies the Hörmander condition, i.e., the Lie algebra of smooth vector
fields generated by X1, . . . , X N , evaluated at the point x , coincides with Tx M, for all x ∈ M. The
generating frame induces a norm on the distribution at x , namely

∥v∥g = inf
{ N∑

i=1

u2
i :

N∑
i=1

ui X i (x)= v

}
for all v ∈ Dx ,

which, in turn, defines an inner product on Dx by polarization, which we denote by gx(v, v). Let T > 0.
We say that γ : [0, T ] → M is a horizontal curve if it is absolutely continuous and

γ̇ (t) ∈ Dγ (t) for a.e. t ∈ [0, T ].

This implies that there exists u : [0, T ] → RN such that

γ̇ (t)=

N∑
i=1

ui (t)X i (γ (t)) for a.e. t ∈ [0, T ].

Moreover, we require that u ∈ L2([0, T ],RN ). If γ is a horizontal curve, then the map t 7→ ∥γ̇ (t)∥g is
integrable on [0, T ]. We define the length of a horizontal curve as

ℓ(γ )=

∫ T

0
∥γ̇ (t)∥g dt.

The sub-Riemannian distance is defined, for any x, y ∈ M, by

dSR(x, y)= inf{ℓ(γ ) : γ horizontal curve between x and y}.

By the Chow–Rashevsky theorem, the distance dSR : M × M → R is finite and continuous. Furthermore
it induces the same topology as the manifold one.

Remark 2.1. The above definition includes all classical constant-rank sub-Riemannian structures as in
[Montgomery 2002; Rifford 2014] (where D is a vector distribution and g a symmetric and positive tensor
on D), but also general rank-varying sub-Riemannian structures. Moreover, the same sub-Riemannian
structure can arise from different generating families.

2.2. The relative heat content. Let M be a sub-Riemannian manifold. Let ω be a smooth measure on M,
i.e., by a positive tensor density. The divergence of a smooth vector field is defined by

divω(X)ω = LXω for all X ∈ 0(T M),
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where LX denotes the Lie derivative in the direction of X . The horizontal gradient of a function
f ∈ C∞(M), denoted by ∇ f , is defined as the horizontal vector field (i.e., tangent to the distribution at
each point) such that

gx(∇ f (x), v)= v( f )(x) for all v ∈ Dx ,

where v acts as a derivation on f . In terms of a generating frame as in (14), one has

∇ f =

N∑
i=1

X i ( f )X i for all f ∈ C∞(M).

We recall the divergence theorem (we stress that M is not required to be orientable): Let �⊂ M be open
with smooth boundary. Then∫

�

( f divω X + g(∇ f, X)) dω = −

∫
∂�

f g(X, ν) dσ (15)

for any smooth function f and vector field X such that the vector field f X is compactly supported.
In (15), ν is the inward-pointing normal vector field to � and σ is the induced sub-Riemannian measure
on ∂� (i.e., the one whose density is σ = |iνω|∂�).

The sub-Laplacian is the operator1= divω ◦∇, acting on C∞(M). Again, we may write its expression
with respect to a generating frame (14), obtaining

1 f =

N∑
i=1

{X2
i ( f )+ X i ( f ) divω(X i )} for all f ∈ C∞(M). (16)

We denote by L2(M, ω), or simply by L2, the space of real functions on M which are square-integrable
with respect to the measure ω. Let �⊂ M be an open relatively compact set with smooth boundary. This
means that the closure � is a compact manifold with smooth boundary. We consider the Cauchy problem
for the heat equation on �; that is, we look for functions u such that

(∂t −1)u(t, x)= 0 for all (t, x) ∈ (0,∞)× M,

u(0, · )= 1� in L2(M, ω),
(17)

where u(0, · ) is a shorthand notation for the L2-limit of u(t, x) as t → 0. Notice that 1 is symmetric
with respect to the L2-scalar product and negative; moreover, if (M, dSR) is complete as a metric space,
it is essentially self-adjoint; see [Strichartz 1986]. Thus, there exists a unique solution to (17), and it can
be represented as

u(t, x)= et11�(x) for all x ∈ M, t > 0,

where et1
: L2

→ L2 denotes the heat semigroup, associated with 1. We remark that, for all ϕ ∈ L2, the
function et1ϕ is smooth for all (t, x)∈ (0,∞)×M, by the hypoellipticity of the heat operator, and there ex-
ists a heat kernel associated with (17), i.e., a positive function pt(x, y)∈C∞((0,+∞)×M×M) such that

u(t, x)=

∫
M

pt(x, y)1�(y) dω(y)=

∫
�

pt(x, y) dω(y). (18)
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Definition 2.2 (relative heat content). Let u(t, x) be the solution to (17). We define the relative heat
content, associated with �, as

H�(t)=

∫
�

u(t, x) dω(x) for all t > 0.

Remark 2.3. If we consider, instead of �, a set which is the closure of an open set, then the Cauchy
problem (17) has a unique solution and relative heat content is still well-defined.

We recall here a property of the solution to (17): it satisfies a weak maximum principle, meaning that

0 ≤ u(t, x)≤ 1 for all x ∈�, for all t > 0. (19)

This can be proven following the blueprint of the Riemannian proof (see [Grigoryan 2009, Theorem 5.11]).

Definition 2.4 (characteristic point). We say that x ∈ ∂� is a characteristic point, or tangency point, if
the distribution is tangent to ∂� at x , that is,

Dx ⊆ Tx(∂�).

We will assume that ∂� has no characteristic points. We say in this case that � is a noncharacteristic
domain.

2.3. Nilpotent approximation of M. We introduce the notion of nilpotent approximation of a sub-
Riemannian manifold; see [Jean 2014; Bellaïche 1996] for details. This will be used only in Sections 3
and 6.

Sub-Riemannian flag. Let M be an n-dimensional sub-Riemannian manifold with distribution D. We
define the flag of D as the sequence of subsheaves Dk

⊂ T M such that

D1
= D, Dk+1

= Dk
+ [D,Dk

] for all k ≥ 1,

with the convention that D0
= {0}. Under the Hörmander condition, the flag of the distribution defines an

exhaustion of Tx M for any point x ∈ M ; i.e., there exists r(x) ∈ N such that

{0} = D0
x ⊂ D1

x ⊂ · · · ⊂ Dr(x)−1
x ⊊ Dr(x)

x = Tx M. (20)

The number r(x) is called degree of nonholonomy at x . We set nk(x)= dimDk
x for any k ≥ 0. Then the

collection of r(x) integers
(n1(x), . . . , nr(x)(x))

is called growth vector at x , and we have nr(x)(x)= n = dim M. Associated with the growth vector, we
can define the sub-Riemannian weights wi (x) at x , setting for any i ∈ {1, . . . , n},

wi (x)= j if and only if n j−1(x)+ 1 ≤ i ≤ n j (x). (21)

A point x ∈ M is said to be regular if the growth vector is constant in a neighborhood of x , and singular
otherwise. The sub-Riemannian structure on M is said to be equiregular if all points of M are regular. In
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this case, the weights are constant as well on M. Finally, given any x ∈ M, we define the homogeneous
dimension of M at x as

Q(x)=

r(x)∑
i=1

i(ni (x)− ni−1(x))=

n∑
i=1

wi (x).

We recall that, if x is regular, then Q(x) coincides with the Hausdorff dimension of (M, dSR) at x ; see
[Mitchell 1985]. Moreover, Q(x) > n for any x ∈ M such that Dx ⊊ Tx M.

Privileged coordinates. Let M be a sub-Riemannian manifold with generating frame (14) and f be the
germ of a smooth function f at x ∈ M. We call nonholonomic derivative of order k ∈ N of f the quantity

X j1 · · · X jk f (x)

for any family of indices { j1, . . . , jk} ⊂ {1, . . . , N }. Then, the nonholonomic order of f at the point x is

ordx( f )= min{k ∈ N : there exists { j1, . . . , jk} ⊂ {1, . . . , N } such that X j1 · · · X jk f (x) ̸= 0}.

Definition 2.5 (privileged coordinates). Let M be a n-dimensional sub-Riemannian manifold and x ∈ M.
A system of local coordinates (z1, . . . , zn) centered at x is said to be privileged at x if

ordx(z j )= w j (x) for all j = 1, . . . , n.

Notice that privileged coordinates (z1, . . . , zn) at x satisfy the following property:

∂zi |x ∈ Dwi
x , ∂zi |x /∈ Dwi −1

x for all i = 1, . . . , n. (22)

A local frame of T M consisting of n vector fields {Z1, . . . , Zn} and satisfying (22) is said to be adapted
to the flag (20) at x . Thus, privileged coordinates are always adapted to the flag. In addition, given a
local frame adapted to the sub-Riemannian flag at x , say {Z1, . . . , Zn}, we can define a set of privileged
coordinates at x , starting from {Z1, . . . , Zn}, i.e.,

Rn
∋ (z1, . . . , zn) 7→ ez1 Z1 ◦ · · · ◦ ezn Zn (x). (23)

Moreover, in these coordinates, the vector field Z1 is exactly ∂z1 .

Nilpotent approximation. Let M be a sub-Riemannian manifold and let x ∈ M with weights as in (21).
Consider ψ = (z1, . . . , zn) : U → V a chart of privileged coordinates at x , where U ⊂ M is a relatively
compact neighborhood of x and V ⊂ Rn is a neighborhood of 0. Then, for any ε ∈ R, we can define the
dilation at x as

δε : Rn
→ Rn, δε(z)= (εw1(x)z1, . . . , ε

wn(x)zn). (24)

Using such dilations, we obtain the nilpotent (or first-order) approximation of the generating frame (14);
indeed setting Yi = ψ∗X i for any i = 1 . . . , N , define

X̂ x
i = lim

ε→0
εδ(1/ε)∗(Yi ) for all i = 1 . . . , N , (25)
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where the limit is taken in the C∞-topology of Rn. Notice that the vector field X̂ x
i is defined on the

whole Rn, even though Yi was defined only on V ⊂ Rn.

Theorem 2.6. Let M be a n-dimensional sub-Riemannian manifold with generating frame {X1, . . . , X N }

and consider its first-order approximation at x as in (25). Then, the frame {X̂ x
1 , . . . , X̂ x

N } of vector fields
on Rn generates a nilpotent Lie algebra of step r(x)= wn(x) and satisfies the Hörmander condition.

The proof of this theorem can be found in [Jean 2014]. Recall that a Lie algebra is said to be nilpotent
of step s if s is the smallest integer such that all the brackets of length greater than s are zero.

Definition 2.7 (nilpotent approximation). Let M be a sub-Riemannian manifold and let x ∈ M. Then,
Theorem 2.6 implies that the frame {X̂ x

1 , . . . , X̂ x
N } is a generating frame for a sub-Riemannian struc-

ture on Rn: we denote the resulting sub-Riemannian manifold by M̂ x. This is the so-called nilpotent
approximation of M at the point x .

Notice that the sub-Riemannian distance of M̂ x , denoted by d̂x , is 1-homogeneous with respect to the
dilations (24).

Remark 2.8. Up to isometries, the nilpotent approximation of M at x coincides with the Gromov–
Hausdorff metric tangent space of (M, dSR) at x . Moreover, M̂ x is isometric to a quotient of a Carnot
group. See [Gromov 1996; Bellaïche 1996; Montgomery 2002] for further details.

Nilpotentized sub-Laplacian. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω,
and let (z1, . . . , zn) be a set of privileged coordinates at x ∈ M. We will use the same symbol ω to denote
measure in coordinates. The nilpotentization ω̂x of ω at x is defined as

⟨ω̂x , f ⟩ = lim
ε→0

1
|ε|Q(x)

⟨δ∗εω, f ⟩ for all f ∈ C∞

c (R
n). (26)

Notice that, denoting by dz = dz1 · · · dzn the Lebesgue measure on Rn, we have

δ∗ε (dz)= |ε|Q(x)dz for all ε ̸= 0.

Thus, the limit in (26) exists. Finally, we can define the nilpotentized sub-Laplacian according to (16),
acting on C∞(Rn), i.e.,

1̂x
= divω̂x (∇̂x)=

N∑
i=1

(X̂ x
i )

2. (27)

We remark that in (27) there is no divergence term, since

divω̂x (X̂ x
i )= 0 for all i ∈ {1, . . . , N }.

As in the general sub-Riemannian context, in the nilpotent approximation M̂ x, we may consider the
Cauchy heat problem (17) in L2(Rn, ω̂x). We will the denote the associated heat kernel as

p̂x
t (z, z′) ∈ C∞((0,+∞)× Rn

× Rn).
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Heat kernel asymptotics. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω and
denote by pt(x, y) the heat kernel (18). We have the following result.

Theorem 2.9 [Colin de Verdière et al. 2021, Theorem A]. Let M be a sub-Riemannian manifold and let
ψ : U → V be a chart of privileged coordinates at x ∈ M. Then, for any m ∈ N,

|ε|Q(x) pε2τ (δε(z), δε(z
′))= p̂x

τ (z, z′)+

m∑
i=1

εi f x
i (τ, z, z′)+ o(|ε|m) as ε→ 0, (28)

in the C∞-topology of (0,∞) × V × V, where the f x
i are smooth functions satisfying the following

homogeneity property: for i = 0, . . . ,m,

|ε|Q(x)ε−i f x
i (ε

2τ, δε(z), δε(z′))= f x
i (τ, z, z′) for all (τ, z, z′) ∈ (0,∞)× Rn

× Rn, (29)

where, for i = 0, we set f x
0 (τ, z, z′) = p̂x

τ (z, z′). In (28), we are considering the heat kernel pt in
coordinates, with a little abuse of notation.

Remark 2.10. We will drop the dependence on the center of the privileged coordinates if there is no
confusion.

3. Small-time asymptotics of u(t, x) at the boundary

We prove here Theorem 1.3, regarding the zero-order asymptotics of u(t, · )|∂� as t → 0.

Theorem 3.1. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω and let
�⊂ M be an open subset, whose boundary is smooth and has no characteristic points. Let x ∈ ∂� and
consider a chart of privileged coordinatesψ :U → V ⊂Rn centered at x such thatψ(U∩�)= V ∩{z1>0}.
Then,

lim
t→0

u(t, x)=

∫
{z1>0}

p̂x
1 (0, z) dω̂x(z)=

1
2

for all x ∈ ∂�,

where ω̂x denotes the nilpotentization of ω at x and p̂x
t denotes the heat kernel associated with the

nilpotent approximation of M at x and measure ω̂x.

Remark 3.2. A chart of privileged coordinates such that ψ(U ∩�)= V ∩{z1> 0} always exists, provided
that ∂� has no characteristic points. Indeed, in this case, there exists a tubular neighborhood of the
boundary, see Theorem 4.1, which is built through the flow of ∇δ, namely

G : (−r0, r0)× ∂�→�
r0
−r0
, G(t, q)= et∇δ(q),

is a diffeomorphism such that G∗∂t = ∇δ and δ(G(t, q)) = t . Here δ : M → R is the signed distance
function4 from ∂� and�r0

−r0
={−r0<δ< r0}; see Section 4.1 for precise definitions. Therefore, choosing

4We warn the reader that δ without a subscript always denotes the signed distance function and should not be confused with
dilations δε .
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an adapted frame for the distribution at x , say {Z1, . . . , Zn}, where Z1 = ∇δ, we can define a set of
privileged coordinates as in (23):

Rn
∋ (z1, . . . , zn) 7→ ez1 Z1 ◦ ez2 Z2 ◦ · · · ◦ ezn Zn (x)︸ ︷︷ ︸

ϕ(z2,...,zn)

= G(z1, ϕ(z2, . . . , zn)). (30)

The resulting set of coordinates ψ satisfies ψ∗(∇δ)= ∂z1 and, denoting by V the neighborhood of 0 in Rn

where ψ is invertible, ψ(U ∩�) = {z1 > 0} ∩ V. Here, es X (q) denotes the flow of the vector field X ,
starting at q, evaluated at time s.

Proof of Theorem 3.1. Let pt(x, y) be the heat kernel of M. Then we may write

u(t, x)=

∫
�

pt(x, y) dω(y) for all x ∈ M.

For a fixed x ∈ M, denoting by U any relatively compact neighborhood of x , we have

u(t, x)=

∫
U∩�

pt(x, y) dω(y)+
∫
�\U

pt(x, y) dω(y)

=

∫
U∩�

pt(x, y) dω(y)+ O(t∞)

as t → 0. Indeed, since the heat kernel is exponentially decaying outside the diagonal, see [Jerison and
Sánchez-Calle 1986, Proposition 3],∫

�\U
pt(x, y) dω(y)≤ ω(� \ U )CU e−cU /t

= O(t∞) as t → 0. (31)

Now, for x ∈ ∂�, fix the set of privileged coordinates ψ : U → V ⊂ Rn, defined as in the statement, and
assume without loss of generality that δε(V ) ⊂ V for any |ε| ≤ 1, where δε is the dilation (24) of the
nilpotent approximation of M. Also set

Vε = δε(V ∩ {z1 > 0}) for all |ε| ≤ 1.

When the limits exist, we have

lim
t→0

u(t, x)= lim
t→0

∫
U∩�

pt(x, y) dω(y)= lim
t→0

∫
V1

pt(0, z) dω(z), (32)

where, in the last equation, we are considering the expression of the heat kernel and the measure in
coordinates. We want to apply (28) at order 1 in ε, so let us rephrase the statement as follows: for any
compact set K ⊂ V,

|ε|Q pε2τ (0, δε(z))= p̂τ (0, z)+ εR(ε, τ, z) as ε→ 0, (33)

where R is a smooth function such that

sup
ε∈[−1,1], z∈K

|R(ε, τ, z)| ≤ C(τ, K ), (34)

with C(τ, K ) > 0. Notice that (34) is not uniform in τ , in the sense that τ 7→ C(τ, K ) can explode as
τ → 0, in general. Moreover, without loss of generality and, up to restrictions of U, we can assume that
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(34) holds globally on V 1. For a fixed parameter L > 1, we set τ = 1/L and ε2
= t L in (33), obtaining

|t L|
Q/2 pt(0, δ√t L(z))= p̂1/L(0, z)+

√
t L R(

√
t L, 1/L , z) as t → 0,

where the remainder R is bounded as t → 0 on the compact sets of V, but with a constant depending
on L . Inserting the above expansion in (32), and writing the measure in coordinates dω(z)= ω(z) dz,
with ω( · ) ∈ C∞(V1), we have

u(t, x)=

∫
V1

pt(0, z)ω(z) dz + O(t∞)

=

∫
V√

t L

pt(0, z)ω(z) dz +

∫
V1\V√

t L

pt(0, z) dω(z)+ O(t∞)

=

∫
V1

|t L|
Q/2 pt(0, δ√t L(z))ω(δ

√
t L(z)) dz +

∫
V1\V√

t L

pt(0, z) dω(z)+ O(t∞)

=

∫
V1

(
p̂1/L(0, z)+

√
t L R

(√
t L, 1/L , z

))
ω(δ√t L(z)) dz (35)

+

∫
V1\V√

t L

pt(0, z) dω(z)+ O(t∞), (36)

where in the third equality we performed the change of variable z 7→ δ1/
√

t L(z) in the first integral. Let us
discuss the terms appearing in (35) and (36). First of all, for any L > 1, by definition of the nilpotentization
of ω given in (26), we get

lim
t→0

∫
V1

p̂1/L(0, z)ω(δ√t L(z)) dz =

∫
V1

p̂1/L(0, z) dω̂(z).

Moreover, for a fixed L > 1, the integral of R is bounded as t → 0; Therefore, using (34), we have∣∣∣∣√t L
∫

V1

R(
√

t L, 1/L , z) dω(z)
∣∣∣∣ ≤ CL

√
t for all t ≤ 1,

where CL > 0 is a constant depending on the fixed L . Secondly, by an upper Gaussian bound for the heat
kernel in compact sub-Riemannian manifold [Jerison and Sánchez-Calle 1986, Theorem 2], we obtain the
following estimate for (36):∫

V1\V√
t L

pt(0, z) dω(z)≤

∫
V1\V√

t L

C1e−β d2
SR(0,z)/t

tQ/2
dω(z), (37)

where C1, β > 0 are positive constants. Now, by the ball-box theorem [Jean 2014, Theorem 2.1], the
sub-Riemannian distance function at the origin is comparable with the sub-Riemannian distance of M̂ x,
denoted by d̂ . In particular, there exists a constant c > 0 such that

d2
SR(0, z)≥ c d̂2(0, z) for all z ∈ V . (38)

Since in (37) we are integrating over the set V1 \ V√
t L and d̂ is 1-homogeneous with respect to δε, we

conclude that
d2

SR(0, z)≥ c t L for all z ∈ V1 \ V√
t L .



3012 ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

Therefore, using also (38), the term (37) can be estimated as follows:∫
V1\V√

t L

pt(0, z) dω(z)≤ C1e−cβL/2
∫

V1

e−βd2
SR(0,z)/(2t)

tQ/2
dω(z)

≤ C1e−cβL/2
∫

V1

e−βc d̂2(0,z)/(2t)

tQ/2
ω(z) dz ≤ C̃e−cβL/2,

(39)

where C̃ > 0 is independent of t and L . The last inequality in (39) follows from the fact that, after a
change of variable z 7→ δ1/

√
t(z), the integral∫

V1

e−βcd̂2(0,z)/(2t)

tQ/2
ω(z) dz <+∞

is uniformly bounded with respect to t ∈ [0,∞).
Therefore, for any L > 1, we obtain the following estimates for the limit of u:

lim sup
t→0

u(t, x)≤

∫
V1

p̂1/L(0, z) dω̂(z)+ C̃e−cβL/2,

lim inf
t→0

u(t, x)≥

∫
V1

p̂1/L(0, z) dω̂(z)− C̃e−cβL/2.

(40)

In order to evaluate the limits in (40), let us firstly notice that, since p̂ enjoys upper and lower Gaussian
bounds (see for example [Colin de Verdière et al. 2021, Appendix C]), reasoning as we did for (39), we
can prove ∫

V1

p̂1/L(0, z) dω̂(z)=

∫
{z1>0}

p̂1/L(0, z) dω̂(z)+ O(e−β ′L). (41)

Secondly, thanks to (29) for p̂, we have the parity property

p̂t(0, z)= p̂t(0, δ−1(z)) for all t > 0, z ∈ Rn,

and, by the choice of privileged coordinates, δ−1({z1 > 0})= {z1 < 0}. Thus, using also the stochastic
completeness of the nilpotent approximation, we obtain, for any t ≥ 0,

1 =

∫
Rn

p̂t(0, z) dω̂(z)=

∫
{z1>0}

p̂t(0, z) dω̂(z)+
∫

{z1<0}

p̂t(0, z) dω̂(z)= 2
∫

{z1>0}

p̂t(0, z) dω̂(z),

having performed the change of variables z 7→ δ−1(z) in the last equality. Hence, the integral in (41) is∫
V1

p̂1/L(0, z) dω̂(z)=
1
2

+ O(e−β ′L).

Finally, we optimize the inequalities (40) with respect to L , taking L → ∞ and concluding the proof. □

Remark 3.3. In the noncompact case, if M is globally doubling and supports a global Poincaré inequality,
the proof above is still valid; see Theorem 7.3. Otherwise, a different proof is needed; see [Rossi 2021,
Appendix D] for details.
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4. First-order asymptotic expansion of H�(t)

In this section, we introduce the technical tools that allow us to prove the first-order asymptotic expansion
of the relative heat content starting from Theorem 3.1. The new ingredient is a definition of an operator I�,
which depends on the base set �.

4.1. A mean value lemma. Define δ : M → R to be the signed distance function from ∂�, i.e.,

δ(x)=

{
dSR(x, ∂�), x ∈�,

−dSR(x, ∂�), x ∈ M \�,

where dSR( · , ∂�) : M → [0,+∞) denotes the usual distance function from ∂�. Let us introduce the
following notation: for any a, b ∈ R, with a < b, we set

�b
a = {x ∈ M : a < δ(x) < b},

with the understanding that if b (or a) is omitted, it is assumed to be +∞ (or −∞), for example5

�r =�+∞

r = {x ∈ M : r < δ(x)}.

In the noncharacteristic case, [Franceschi et al. 2020, Proposition 3.1] can be extended without difficulties
to the signed distance function.

Theorem 4.1 (double-sided tubular neighborhood). Let M be a sub-Riemannian manifold and let �⊂ M
be an open relatively compact subset of M whose boundary is smooth and has no characteristic points.
Let δ : M → R be the signed distance function from ∂�. Then, we have:

(i) δ is Lipschitz with respect to the sub-Riemannian distance and ∥∇δ∥g ≤ 1 a.e.

(ii) There exists r0 > 0 such that δ :�
r0
−r0

→ R is smooth.

(iii) There exists a smooth diffeomorphism G : (−r0, r0)× ∂�→�
r0
−r0

such that

δ(G(t, y))= t and G∗∂t = ∇δ for all (t, y) ∈ (−r0, r0)× ∂�.

Moreover, ∥∇δ∥g ≡ 1 on �r0
−r0

.

In particular, the following coarea formula for the signed distance function holds:∫
�r

0

v(x) dω(x)=

∫ r

0

∫
∂�s

v(s, y) dσ(y) ds for all r ≥ 0, (42)

where σ is the induced measure on ∂�s , namely the positive measure with density |i∇δω||∂�s . From (42),
we deduce the sub-Riemannian mean value lemma; see [Rizzi and Rossi 2021, Theorem 4.1] for a proof.

5Notice that the set �+∞
−∞

is equal to M; thus omitting both indices can create confusion. We will never do that and � will
always denote the starting subset of M.
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Proposition 4.2. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, let
�⊂ M be an open subset of M with smooth boundary and no characteristic points and let δ : M → R be
the signed distance function from ∂�. Fix a smooth function v ∈ C∞(M) and define

F(r)=

∫
�r

v(x)dω(x) for all r ≥ 0. (43)

Then there exists r0 > 0 such that the function F is smooth on [0, r0) and, for 0 ≤ r < r0,

F ′′(r)=

∫
�r

1v(x) dω(x)−
∫
∂�r

v(y) divω(ν(y)) dσ(y),

where ν is the inward-pointing unit normal to �r , and σ is the induced measure on ∂�r .

Remark 4.3. If v ∈ C∞
c (M), then neither M nor � is required to be compact for Proposition 4.2 to be

true; indeed its proof relies on (42), which continues to hold, and the divergence theorem (15), which
applies if supp(v) is compact. Moreover, we remark that νr is equal to ∇δ up to sign. We prefer to keep
νr in (43), since we are going to apply it when the integral is performed over �r or its complement.

If we choose the function v in the definition of F to be 1 − u(t, x), where u(t, · ) = et11�, then
F satisfies a nonhomogeneous one-dimensional heat equation.

Corollary 4.4. Under the hypotheses of Proposition 4.2, the function

F(t, r)=

∫
�r

(1 − u(t, x)) dω(x) for all t > 0, r ≥ 0, (44)

where u(t, x)= et11�(x), satisfies the following nonhomogeneous one-dimensional heat equation:

(∂t − ∂2
r )F(t, r)=

∫
∂�r

(1 − u(t, · )) divω(ν) dσ , t > 0, r ∈ [0, r0). (45)

Here ν is the inward-pointing unit normal to �r , and σ is the induced measure on ∂�r .

Corollary 4.4 holds only for r ≤ r0; however, we would like to extend it to the whole positive half-line,
in order to apply a Duhamel’s principle. This can be done up to an error which is exponentially small.

4.2. Localization principle.

Proposition 4.5. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset of M, with smooth boundary. Moreover, let K ⊂ M be a closed set such that
K ∩ ∂�= ∅. Then

1�(x)− u(t, x)= O(t∞) uniformly for x ∈ K ,

where u(t, x)= et11�(x).

Proof. The statement is a direct consequence of the off-diagonal estimate for the heat kernel in compact
sub-Riemannian manifold (see [Jerison and Sánchez-Calle 1986, Proposition 3]):

pt(x, y)≤ Cae−ca/t for all x, y with d(x, y)≥ a, t < 1, (46)
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for suitable constants Ca, ca > 0, depending only on a. Now, since K ∩ ∂�= ∅, we can write K as a
disjoint union

K = K1 ⊔ K2, with K1 ⊂�, K2 ⊂ M \�.

At this point, for i = 1, 2, set ai = dSR(Ki , ∂�) > 0 by hypothesis, and let x ∈ K1. Then, using the
stochastic completeness of M, we have

|1�(x)− u(t, x)| = 1 − u(t, x)=

∫
M\�

pt(x, y) dω(y)≤ C1e−c1/tω(M \�), (47)

which is exponentially decaying, uniformly in K1. Analogously, if x ∈ K2, we have

|1�(x)− u(t, x)| = u(t, x)=

∫
M

pt(x, y)1�(y) dω(y)=

∫
�

pt(x, y) dω(y)≤ C2e−c2/tω(�),

uniformly in K2. □

Remark 4.6. In the noncompact case, Proposition 4.5 may fail. Indeed, on the one hand the off-diagonal
estimate (46) is not always available; on the other hand the measure of M \� appearing in (47) is infinite.
Under additional assumption on M, we are able to recover a localization principle; see Section 7.

Let M be compact. Thanks to Proposition 4.5, we can extend the function F defined in (44) to a
solution to a nonhomogeneous heat equation such as (45) on the whole half-line. More precisely, let
φ, η ∈ C∞

c (M) such that

φ+ η ≡ 1, supp(φ)⊂�
r0
−r0
, supp(η)⊂�−r0/2 ∪�r0/2, (48)

where r0 is defined in Proposition 4.2. We have then, for r ∈ [0, r0),

F(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x)+
∫
�r

(1 − u(t, x))η(x) dω(x)

=

∫
�r

(1 − u(t, x))φ(x) dω(x)+
∫

supp(η)∩�r

(1 − u(t, x))η(x) dω(x)

=

∫
�r

(1 − u(t, x))φ(x) dω(x)+ O(t∞), (49)

where we used Proposition 4.5 to deal with the second term, having set K = supp(η) ∩�r . For this
reason, we may focus on the first term in (49).

Definition 4.7. For all t>0 and r ≥0, we define the operators I�,3� :C∞
c (�

r0
−r0
)→C∞((0,∞)×[0,∞)),

associated with �, by

I�φ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x),

3�φ(t, r)= −∂r I�φ(t, r)= −

∫
∂�r

(1 − u(t, y))φ(y) dσ(y)

for any φ ∈ C∞
c (�

r0
−r0
), and where σ denotes the induced measure on ∂�r and u(t, · )= et11�( · ).
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Remark 4.8. We stress that, for every φ ∈ C∞
c (�

r0
−r0
), I�φ, 3�φ are indeed smooth in both variables

thanks to the choice of the parameter r0 > 0 as in Proposition 4.2, together with the smoothness of the
solution to the heat equation. Moreover, 3�φ is compactly supported in the r -variable.

Thanks to the localization principle, we can improve Corollary 4.4, obtaining a better result for
I�φ(t, r).

Lemma 4.9. Let L = ∂t − ∂2
r be the one-dimensional heat operator. Then, for any φ ∈ C∞

c (�
r0
−r0
),

L(I�φ(t, r))= I�1φ(t, r)+3�N�φ(t, r) for all t > 0, r ≥ 0,

where N� is the operator defined by

N�φ = 2g(∇φ, ν)+φ divω(ν) for all φ ∈ C∞

c (�
r0
−r0
), (50)

and ν is the inward-pointing unit normal to �.

4.3. Duhamel’s principle for I�φ. We recall for the convenience of the reader a one-dimensional version
of the Duhamel’s principle; see [Rizzi and Rossi 2021, Lemma 5.4].

Lemma 4.10 (Duhamel’s principle). Let f ∈ C((0,∞)×[0,∞)), v0, v1 ∈ C([0,∞)), such that f (t, · )
and v0 are compactly supported and assume that

there exists lim
t→0

f (t, r) for all r ≥ 0.

Consider the nonhomogeneous heat equation on the half-line:

Lv(t, r)= f (t, r) for t > 0, r > 0,

v(0, r)= v0(r) for r > 0,

∂rv(t, 0)= v1(t) for t > 0,

(51)

where L = ∂t − ∂2
r . Then, for t > 0 and r ≥ 0, the solution to (51) is given by

v(t, r)=

∫
∞

0
e(t, r, s)v0(s) ds +

∫ t

0

∫
∞

0
e(t − τ, r, s) f (τ, s) ds dτ −

∫ t

0
e(t − τ, r, 0)v1(τ ) dτ, (52)

where e(t, r, s) is the Neumann heat kernel on the half-line, that is,

e(t, r, s)=
1

√
4π t

(e−(r−s)2/(4t)
+ e−(r+s)2/(4t)). (53)

Finally, we apply Lemma 4.10 to obtain an asymptotic equality for I�φ. The main difference with the
result of [Rizzi and Rossi 2021, Theorem 5.6] is that the former will not be a true first-order asymptotic
expansion.

Corollary 4.11. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, for any
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function φ ∈ C∞
c (�

r0
−r0
),

I�φ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y)(t − τ)−1/2 dτ + O(t)

as t → 0, where u(t, · )= et11�( · ).

Proof. By Lemma 4.9, the function I�φ(t, r) satisfies the following Neumann problem on the half-line:

L I�φ(t, r)= f (t, r) for t > 0, r > 0,

I�φ(0, r)= 0 for r > 0,

∂r I�φ(t, 0)= −3�φ(t, 0) for t > 0,

where the source is given by f (t, r)= I�1φ(t, r)+3�N�φ(t, r). Thus, applying Duhamel’s formula
(52), we have

I�φ(t, 0)=

∫ t

0

∫
+∞

0
e(t − τ, 0, s) f (τ, s) ds dτ +

1
√
π

∫ t

0

1
√

t − τ
3�φ(t, 0) dτ.

Since the source is uniformly bounded by the weak maximum principle (19), the first integral is a
remainder of order t as t → 0, concluding the proof. □

Remark 4.12. We mention that a relevant role in the sequel will be played by the operators I�, see
Definition 4.7, associated with either � or its complement �c.

4.4. First-order asymptotics. In this section we prove the first-order asymptotic expansion of H�(t); see
Theorem 1.1 at order 1. We will use Corollary 4.11 for the inside contribution:

Iφ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x) for all t > 0, r ≥ 0, (54)

for any φ ∈ C∞
c (�

r0
−r0
), and where σ denotes the induced measure on ∂�r and u(t, · )= et11�( · ) is the

solution to (17). The quantity (54) is just Definition 4.7, applied with base set �⊂ M.

Theorem 4.13. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

+ o(t1/2) as t → 0.

Proof. Let φ ∈ C∞
c (�

r0
−r0
) be as in (48); namely

0 ≤ φ ≤ 1 and φ ≡ 1 in �r0/2
−r0/2.

Then, by the localization principle, see (49), we have that

ω(�)− H�(t)= Iφ(t, 0)+ O(t∞) as t → 0. (55)

Applying Corollary 4.11, we have

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y)(t − τ)−1/2 dτ + O(t) as t → 0. (56)
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Thus, to infer the first-order term of the asymptotic expansion we have to compute the following limit:

lim
t→0

Iφ(t, 0)
t1/2 = lim

t→0

1
t1/2√π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y)(t − τ)−1/2 dτ. (57)

Firstly, by the change of variable in the integral τ 7→ tτ , we rewrite the argument of the limit (57) as

1
√
π

∫ 1

0

∫
∂�

(1 − u(tτ, y))φ(y) dσ(y)(1 − τ)−1/2 dτ.

Secondly, we apply the dominated convergence theorem. Indeed, on the one hand, by Theorem 3.1 we
have pointwise convergence

(1 − u(tτ, y))φ(y) t→0
−−→

1
2φ(y) for all y ∈ ∂�, τ ∈ (0, 1),

and on the other hand, by the maximum principle∣∣∣∣∫
∂�

(1 − u(tτ, y))φ(y) dσ(y)(1 − τ)−1/2
∣∣∣∣ ≤

∫
∂�

|φ| dσ(1 − τ)−1/2
∈ L1(0, 1)

for any t > 0. Therefore, we finally obtain that

Iφ(t, 0)=

√
t
π

∫
∂�

φ(y) dσ(y)+ o(t1/2) as t → 0.

Recalling that φ|∂� ≡ 1, we conclude the proof. □

Remark 4.14. The above technique used to evaluate the first-order coefficient causes a loss of precision
in the remainder, with respect to the expression (56), where the remainder is O(t). This loss comes from
the application of Theorem 3.1, which does not contain any remainder estimate.

5. Higher-order asymptotic expansion of H�(t)

We iterate Duhamel’s formula (52) for the inside contribution to study the higher-order asymptotics of
H�(t). We obtain the following expression for Iφ at order 3:

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, · ))φ dσ(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0

∫
∂�

(1 − u(τ̂ , · ))Nφ dσ((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ + O(t3/2), (58)

where u(t, · )= et11�( · ) denotes the solution to (17) and N is the operator defined by

Nφ = 2g(∇φ,∇δ)+φ1δ for all φ ∈ C∞

c (�
r0
−r0
), (59)

with δ : M → R the signed distance function from ∂�. The computations for deriving (58) are technical.
We refer to the Appendix for further details, and in particular to Lemma A.6. Motivated by (58), we
introduce the following functional.
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Definition 5.1. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, let�⊂ M be a
relatively compact subset with smooth boundary and let v ∈ C∞((0,+∞)× M). Define the functional Gv ,
for any φ ∈ C∞

c (�
r0
−r0
) as

Gv[φ](t)=
1

2
√
π

∫ t

0

∫
∂�

v(τ, · )φ dσ(t − τ)−1/2 dτ for all t ≥ 0, (60)

where σ is the sub-Riemannian induced measure on ∂�.

Notice that the functional Gv is linear with respect to the subscript function v, by linearity of the
integral. Moreover, when the function v is chosen to be the solution to (17), we easily obtain the following
corollary of Theorem 3.1, which is just a rewording of (57).

Corollary 5.2. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and let
�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Let φ ∈ C∞

c (�
r0
−r0
).

Then,

Gu[φ](t)=
1

2
√
π

∫
∂�

φ(y) dσ(y)t1/2
+ o(t1/2) as t → 0.

Then, we can rewrite (58) in a compact notation:

Iφ(t, 0)= 2G1−u[φ](t)+
1

√
π

∫ t

0
G1−u[Nφ](t) dσ(t − τ)−1/2 dτ + O(t3/2). (61)

However, on the one hand, the application of Corollary 5.2 to (58) does not give any new information on
the asymptotics of H�(t), as the first term produces an error of o(t1/2). On the other hand, it is clear that
an asymptotic series of Gu is enough to deduce the small-time expansion of H�(t).

5.1. The outside contribution and an asymptotic series for Gu[φ]. In this section, we deduce an asymp-
totic series, at order 3, of Gu[φ](t) as t → 0. This is done by exploiting the fact that the diffusion of heat
is not confined in �, and as a result we can define an outside contribution, namely the quantity obtained
from Definition 4.7, applied with base set �c

⊂ M :

I cφ(t, r)=

∫
(�c)r

(1 − uc(t, x))φ(x) dω(x) for all t > 0, r ≥ 0, (62)

for any φ ∈ C∞
c (�

r0
−r0
), and where σ denotes the induced measure on the boundary of (�c)r and uc(t, x)=

et11�c(x). We remark that, since � and its complement share the boundary, then (�c)
r0
−r0

= �
r0
−r0

. It
is convenient to introduce (62), because it turns out that the quantity Iφ− I cφ, where Iφ is the inside
contribution (54), has an explicit asymptotic series in integer powers of t .

Proposition 5.3. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset with smooth boundary. Let φ ∈ C∞

c (�
r0
−r0
). Then, for any k ∈ N,

Iφ(t, 0)− I cφ(t, 0)=

k∑
i=1

ai (φ)t i
+ O(tk+1) as t → 0, (63)

where
ai (φ)=

∫
∂�

g(∇(1i−1φ),∇δ) dσ for i ≥ 1.



3020 ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

Proof. Recall that in the definition of the outside contribution (62), the integrand function involves
uc(t, x)= et11�c(x). Since M is compact, and hence stochastically complete, we have

1 − uc(t, x)= et11(x)− et11�c(x)= u(t, x) for all t > 0, x ∈ M,

having used the pointwise equality 1 − 1�c = 1� in M \ ∂�. Therefore, we can write the difference
Iφ(t, 0)− I cφ(t, 0) as follows:

Iφ(t, 0)− I cφ(t, 0)=

∫
�

(1 − u(t, · ))φ dω−

∫
�c
(1 − uc(t, · ))φ dω

=

∫
�

(1 − u(t, · ))φ dω−

∫
�c

u(t, · )φ dω

=

∫
�

φ(x) dω(x)−
∫

M
u(t, x)φ(x) dω(x). (64)

Since u(t, x) is the solution to (17), the function (64) is smooth as t ∈ [0,∞). Indeed, the smoothness in
the open interval is guaranteed by hypoellipticity of the sub-Laplacian. At t = 0, the divergence theorem,
together with the fact that φ has compact support in M, implies that

∂ i
t

(∫
M

u(t, x)φ(x) dω(x)
)

=

∫
M
∂ i

t (u(t, x)φ(x)) dω(x)=

∫
M
1i u(t, x)φ(x) dω(x)

=

∫
M

u(t, x)1iφ(x) dω(x) t→0
−−→

∫
�

1iφ(x) dω(x).

The previous limit shows that (64) is smooth at t = 0, and also that its asymptotic expansion at order k, as
t → 0, coincides with its k-th Taylor polynomial at t = 0. Finally, we recover (63), applying once again
the divergence theorem:∫

�

1iφ dω = −

∫
∂�

g(∇(1i−1φ), ν) dσ = −

∫
∂�

g(∇(1i−1φ),∇δ) dσ,

recalling that ν = ∇δ is the inward-pointing normal vector to � at its boundary. □

Applying the (iterated) Duhamel’s principle (52) to the difference Iφ − I cφ, we are able to obtain
relevant information on the functional Gu .

Theorem 5.4. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, for any
φ ∈ C∞

c (�
r0
−r0
),

Gu[φ](t)=
1

2
√
π

∫
∂�

φ dσ t1/2
+

1
8

∫
∂�

φ1δ dσ t+o(t3/2) as t → 0. (65)

Proof. Let us study the difference of the inside and outside contributions Iφ(t, 0)− I cφ(t, 0). On the
one hand, we have an iterated Duhamel’s principle, see Lemma A.7, which we report here:

(Iφ− I cφ)(t, 0)= 2G1−2u[φ](t)+ 1
2

∫
∂�

Nφ dσ t +
1

2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ− τ̂ )(t −τ))−1/2 d τ̂ dτ

+
1

4
√
π

∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ + O(t2), (66)
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where we recall that N is the operator acting on smooth functions compactly supported close to ∂�
defined by

Nφ = 2g(∇φ,∇δ)+φ1δ for all φ ∈ C∞

c (�
r0
−r0
).

Using Corollary 5.2 and the linearity of Gv with respect to v, we know that

G1−2u[φ](t)= o(t1/2) as t → 0, for all φ ∈ C∞

c (�
r0
−r0
). (67)

Therefore, applying (67) to the function N 2φ ∈ C∞
c (�

r0
−r0
), we obtain

1
2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ = o(t3/2) as t → 0. (68)

In addition, an application of Theorem 3.1 and the dominated convergence theorem implies that∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ = o(t3/2) as t → 0. (69)

Thus, using (68) and (69), we can improve (66), obtaining

Iφ(t, 0)− I cφ(t, 0)= 2G1−2u[φ](t)+ 1
2

∫
∂�

Nφ dσ t + o(t3/2). (70)

On the other hand, the quantity Iφ(t, 0)− I cφ(t, 0) has a complete asymptotic series by Proposition 5.3,
which at order 3 becomes

Iφ(t, 0)− I cφ(t, 0)=

∫
∂�

g(∇φ,∇δ) dσ t + o(t3/2) as t → 0. (71)

Comparing (70) and (71), we deduce that, as t → 0,

2G1−2u[φ](t)= −
1
2

∫
∂�

Nφ dσ t + o(t3/2)+

∫
∂�

g(∇φ,∇δ) dσ t + o(t3/2)

= −
1
2

∫
∂�

φ1δ dσ t + o(t3/2).

Finally, using the linearity of the functional Gv[φ] with respect to v, we conclude the proof. □

Remark 5.5. The asymptotics (65) for the functional Gu[φ](t) is the best result that we are able to achieve.
In the expression (66), the problematic term is given by (69), i.e.,∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ,

which cannot be expressed in terms of Gu ; hence the only relevant information is given by Theorem 3.1.
In conclusion, we cannot repeat the strategy of the proof of Theorem 5.4, replacing the series of Gu at
order 3 in (66) to deduce the higher-order terms.
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5.2. Fourth-order asymptotics. In this section we prove Theorem 1.1. We recall here the statement.

Theorem 5.6. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, as t → 0,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

−
1

12
√
π

∫
∂�

(2g(∇δ,∇(1δ))− (1δ)2) dσ t3/2
+ o(t2).

Before giving the proof of the theorem, let us comment on its strategy. Recall that, on the one hand,
for a cutoff function φ ∈ C∞

c (�
r0
−r0
) which is identically 1 close to ∂�, see (48), the localization principle

(55) holds, namely

ω(�)− H�(t)= Iφ(t, 0)+ O(t∞) as t → 0. (72)

Moreover, by the iterated Duhamel’s principle for Iφ(t, 0), see Lemma A.6, we can deduce expression
(61), namely

Iφ(t, 0)= 2G1−u[φ](t)+
1

√
π

∫ t

0
G1−u[Nφ](t) dσ(t − τ)−1/2 dτ + O(t3/2). (73)

On the other hand, we have an asymptotic series of the functional Gu at order 3; see Theorem 3.1.
Therefore, if we naively insert this series in (73), we can obtain, at most, a third-order asymptotic
expansion of the relative heat content H�(t), whereas we are interested in the fourth-order expansion.

Using the outside contribution, we are able to overcome this difficulty. In particular, applying
Proposition 5.3, for a function φ ∈ C∞

c (�
r0
−r0
) which is identically 1 close to ∂�, we have the following

asymptotic relation:

Iφ(t, 0)= I cφ(t, 0)+ O(t∞) as t → 0. (74)

Notice that (74) is a direct consequence of Proposition 5.3 since all the coefficients of the expansion
vanish. Therefore, thanks to (74), we can rephrase (72) as

ω(�)− H�(t)=
1
2(Iφ(t, 0)+ I cφ(t, 0))+ O(t∞) as t → 0. (75)

The advantage of (75) is that we can now apply the iterated Dirichlet principle for the sum Iφ+ I cφ; see
Lemma A.8. Already at order 3, we obtain

(Iφ+ I cφ)(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
+

1
√
π

∫ t

0
G1−2u[Nφ](τ )(t − τ)−1/2 dτ + O(t3/2), (76)

where N is the operator defined in (59). As we can see, in (76), the functional Gu occurs for the first time
in the second iteration of the Duhamel’s principle, as opposed to the expansion for Iφ, where it appeared
already in the first application; see (73). Hence we gain an order with respect to the asymptotic series
of Gu . More generally, if we were able to develop the k-th order asymptotics for Gu , this would imply the
(k+1)-th order expansion for H�(t).

Proof of Theorem 5.6. Following the discussion above, it is enough to expand the sum Iφ+ I cφ, with
φ ∈ C∞

c (�
r0
−r0
). For this quantity, Lemma A.8 holds, namely we have the following iterated version of
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Duhamel’s principle:

(Iφ+ I cφ)(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
+

1
√
π

∫ t

0
G1−2u[Nφ](τ )(t − τ)−1/2 dτ

+
1

6
√
π

∫
∂�

(41+ N 2)φ dσ t3/2

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−2u[N 3φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ

+
1

4
√
π

∫ t

0
G1−2u[(6N1− N 3

− 21N )φ](τ )(t − τ)1/2 dτ + O(t5/2), (77)

where N is defined in (59). Moreover, recall that by Theorem 5.4, the functional G1−2u[φ] has the
following expansion for any φ ∈ C∞

c (�
r0
−r0
):

G1−2u[φ](t)= −
1
4

∫
∂�

φ1δ dσ t + o(t3/2) as t → 0. (78)

Thus, replacing the term G1−2u[Nφ] in (77) with the expansion (78) for Nφ ∈ C∞
c (�

r0
−r0
), we obtain the

following asymptotic as t → 0:

Iφ(t, 0)+ I cφ(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
−

1
3
√
π

(∫
∂�

Nφ1δ dσ
)

t3/2

+
1

6
√
π

∫
∂�

(41+ N 2)φ dσ t3/2
+ o(t2) (79)

for any φ ∈ C∞
c (�

r0
−r0
). In particular, if we choose φ ∈ C∞

c (�
r0
−r0
) such that φ ≡ 1 close to ∂�, then on

the one hand, from (79), we obtain, as t → 0,

Iφ(t, 0)+ I cφ(t, 0)=
2

√
π
σ(∂�)t1/2

+
1

6
√
π

∫
∂�

(2g(∇δ,∇(1δ))− (1δ)2) dσ t3/2
+ o(t2).

On the other hand, the asymptotic relation (75) holds. □

Third-order vs. fourth-order asymptotics. We stress that we could have obtained the third-order asymp-
totic expansion of H�(t) without introducing the sum of the inside and outside contributions Iφ+ I cφ,
and only using the Duhamel’s principle for Iφ, see Lemma A.6, and the asymptotic series for Gu , see
Theorem 5.4. However, for the improvement to the fourth-order asymptotics, the argument of the sum of
contributions seems necessary.

5.3. The weighted relative heat content. Adapting the proof of Theorem 5.6, one can prove a slightly
more general result which we state here for completeness.

Proposition 5.7. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Let χ ∈ C∞

c (M)
and define the weighted relative heat content

Hχ
�(t)=

∫
�

u(t, x)χ(x) dω(x) for all t > 0.



3024 ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

Then, as t → 0,

Hχ
�(t)=

∫
�

χ dω−
1

√
π

∫
∂�

χ dσ t1/2
−

1
2

∫
∂�

g(∇χ,∇δ) dσ t

−

(
1

12
√
π

∫
∂�

(41+ N 2)χ dσ −
1

6
√
π

∫
∂�

(Nχ)1δ dσ
)

t3/2

−
1
2

∫
∂�

g(∇(1χ),∇δ) dσ t2
+ o(t2).

Proof. Let us consider a cutoff function φ as in (48). Then, applying the usual localization argument, see
(49), we have ∫

�

χ(x) dω(x)− Hχ
�(t)= I [φχ ](t, 0)+ O(t∞) as t → 0,

where now the function φχ ∈ C∞
c (�

r0
−r0
) and φχ = χ close to ∂�.

As we did in the proof of Theorem 5.6, we relate Hχ
�(t) with the sum of contributions. Applying

Proposition 5.3, we have the following asymptotic relation at order 4:

I [φχ ](t, 0)− I c
[φχ ](t, 0)=

∫
∂�

g(∇χ,∇δ) dσ t +

∫
∂�

g(∇(1χ),∇δ) dσ t2
+ o(t2),

as t → 0, having used the fact that φχ ≡ χ close to ∂�. Notice that this relation coincides with (74)
when χ ≡ 1 close to ∂�. Thus, we obtain∫
�

χ(x) dω(x)− Hχ
�(t)=

1
2
(I [φχ ](t, 0)+ I c

[φχ ](t, 0))

+

∫
∂�

g(∇χ,∇δ) dσ t +

∫
∂�

g(∇(1χ),∇δ) dσ t2
+ o(t2) as t → 0.

Finally, applying (79) for I [φχ ](t, 0)+ I c
[φχ ](t, 0), we conclude. □

Remark 5.8. We compare the coefficients of the expansions of H�(t) and Q�(t), defined in (6), respec-
tively. On the one hand, by [Rizzi and Rossi 2021, Theorem 5.8], the k-th coefficient of the expansion of
Q�(t) is of the form

−

∫
∂�

Dk(χ) dσ for all χ ∈ C∞

c (M),

where Dk is a differential operator acting on C∞
c (M) and belonging to spanR{1, N } as algebra of

operators. On the other hand, Proposition 5.7 shows that this is no longer true for the third coefficient of
the expansion of H�(t), as we need to add the operator multiplication by 1δ.

6. An alternative approach using the heat kernel asymptotics

As we can see by a first application of Duhamel’s principle, see (10), and its iterations, the small-time
asymptotics of u(t, · )|∂�, together with uniform estimates on the remainder with respect to x ∈ ∂�, would
be enough to determine the asymptotic expansion of the relative heat content, at any order.

In Theorem 3.1, we studied the zero-order asymptotics of u(t, · )|∂�. The technique used for its proof
does not work at higher-order, since the exponential remainder term in (40) would be unbounded as t → 0.
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In this section, we comment how such a higher-order asymptotics of u(t, · )|∂� can be obtained exploiting
the asymptotic formula for the heat kernel proved in [Colin de Verdière et al. 2021, Theorem A].

Let M be a compact sub-Riemannian manifold and �⊂ M an open subset with smooth boundary. For
x ∈ ∂�, let us consider ψ = (z1, . . . , zn) : U → V a chart of privileged coordinates centered at x , with U
a relatively compact set. Since the heat kernel is exponentially decaying outside the diagonal, see (31),

u(t, x)=

∫
�

pt(x, y) dω(y)=

∫
�∩U

pt(x, y) dω(y)+ O(t∞)

=

∫
V1

pt(0, z) dω(z)+ O(t∞), (80)

where V1 =ψ(U ∩�), and we denote with the same symbols ω and pt(0, z) the coordinate expression of
the measure and heat kernel, respectively. For example, if x ∈ ∂� is noncharacteristic, we may choose ψ
as in (30), and then V1 = V ∩{z1 > 0}. Recall the asymptotic expansion of the heat kernel of Theorem 2.9,
evaluated in (0, z): for any m ∈ N and compact set K ⊂ (0,∞)× V,

|ε|Q pε2τ (0, δε(z))= p̂τ (0, z)+
m∑

i=0

εi fi (τ, 0, z)+ o(|ε|m) as ε→ 0, (81)

uniformly as (τ, z) ∈ K , where Q, p̂ and the fi are defined in Section 2. We will omit the dependence on
the center of the privileged coordinates, x , it being fixed for the moment. At this point, we would like to
integrate (81) to get information of u(t, x) as t → 0. Proceeding formally, let us choose the parameters
ε, τ in (81) such that

ε2τ = t, ε = tα/(2α+1), τ = t1/(2α+1), (82)

for some α > 0 to be fixed. For convenience of notation, set

Vs = δs(V1) for all s ∈ [−1, 1].

Then, split the integral over V1 in (80) in two, so that the first one is computed on Vε and the second one is
computed on its complement in V1, i.e., V1 \ Vε. Notice that, by usual off-diagonal estimates, see [Jerison
and Sánchez-Calle 1986, Proposition 3] and our choice of the parameter ε as in (82), the following is a
remainder term, independent of the value of α:∫

V1\Vε
pt(0, z) dω(z)= O(e−βε2/t)= O(t∞) as t → 0.

Thus, writing the measure in coordinates dω(z)= ω(z) dz with ω( · ) ∈ C∞(V1), we have, as t → 0,

u(t, x)=

∫
Vε

pt(0, z)ω(z) dz + O(t∞)=

∫
V1

εQ pε2τ (0, δε(z))ω(δε(z)) dz + O(t∞)

=

∫
V1

(
p̂τ (0, z)+

m−1∑
i=0

εi fi (τ, 0, z)+ εm Rm(ε, τ, z)
)
ω(δε(z)) dz + O(t∞), (83)
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where Rm is a smooth function on [−1, 1] × (0,∞)× Rn such that

sup
ε∈[−1,1], z∈K

|Rm(ε, τ, z)| ≤ Cm(τ, K ) (84)

for any compact set K ⊂ Rn, according to (81). Up to restricting the domain of privileged coordinates U,
we can assume that (84) holds on V. By our choices (82), we would like the term

tmα/(2α+1)
∫

V1

|Rm(tα/(2α+1), t1/(2α+1), z)|ω(δtα/(2α+1)(z)) dz (85)

to be an error term of order greater than (m − 1)/2 as t → 0. Thus, assume for the moment that for all
K ⊂ V compact and, for all m ∈ N, there exist ℓ= ℓ(m, K ) ∈ N and Cm(K ) > 0 such that

sup
ε∈[−1,1]

z∈K

|Rm(ε, τ, z)| ≤
Cm(K )
τ ℓ

for all τ ∈ (0, 1). (H)

Thanks to assumption (H), choosing α large enough, we see that (85) is a o(t (m−1)/2). Performing the
change of variable z 7→ δ1/

√
τ (z) in (83), and exploiting the homogeneity properties of p̂ and fi , namely

(29), we finally obtain the following expression for u as t → 0:

u(t, x)=

∫
Vt−1/(2(2α+1))

(
p̂1(0, z)+

m−1∑
i=0

t i/2ai (z)
)
ω(δ√t(z)) dz + o(t (m−1)/2), (86)

having set ai (z) = fi (1, 0, z), for all i ∈ N. Therefore, we find an asymptotic expansion of u(t, x)
under assumption (H), which is crucial to overcome the fact that (81) is formulated on an asymptotic
neighborhood of the diagonal, and not uniformly as τ → 0. It is likely6 that (H) can be proven in the
nilpotent case, and more generally when the ambient manifold is M = Rn and the generating family of
the sub-Riemannian structure, {X1, . . . , X N } satisfies the uniform Hörmander polynomial condition; see
[Colin de Verdière et al. 2021, Appendix B] for details. Although this strategy could be used to prove
the existence of an asymptotic expansion of H�(t), we refrain to go in this direction since two technical
difficulties would arise nonetheless:

• Uniformity of the expansion of u(t, x) with respect to x ∈ ∂�. In the nonequiregular case, see Section 2.3
for details, the expansion (81) is not uniform as x varies in compact subsets of M ; hence the same would
be true for the expansion (86).

• Computations of the coefficients. The coefficients appearing in (86) depend on the nilpotent approxima-
tion at x ∈ ∂� and are not clearly related to the invariants of ∂�.

Our strategy avoids almost completely the knowledge of the small-time asymptotics of u(t, · )∂�, it
being based on an asymptotic series of the auxiliary functional Gu . Moreover, we stress that our method to
prove the asymptotics of H�(t) up to order 4, see Theorem 1.1, holds for any sub-Riemannian manifold,
including also the nonequiregular ones.

6Personal communication by Yves Colin de Verdière, Luc Hillairet and Emmanuel Trélat.
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Remark 6.1. In order to pass from (86) to the asymptotic expansion of H�(t), we would use Duhamel’s
formula, which holds under the noncharacteristic assumption. This means that, even though (81) of course
is true even in presence of characteristic points, we can’t say much about the asymptotics of H�(t) in the
general case.

7. The noncompact case

In the noncompact case, we have the following difficulties:

• The localization principle, see Proposition 4.5, may fail.

• Set u(t, x)= et11�(x) and uc(t, x)= et11�c(x). If the manifold is not stochastically complete, the
relation u(t, x)+ uc(t, x)= 1 does not hold.

• The Gaussian bounds for the heat kernel and its time-derivatives, à la [Jerison and Sánchez-Calle
1986, Theorem 3], may not hold; thus Lemma A.3 may not be true.

Definition 7.1. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω. We say that
(M, ω) is (globally) doubling if there exist constants CD > 0 such that

V (x, 2ρ)≤ CDV (x, ρ) for all ρ > 0, x ∈ M,

where V (x, ρ) = ω(Bρ(x)). We say that (M, ω) satisfies a (global) weak Poincaré inequality, if there
exist constants CP > 0 such that∫

Bρ(x)
| f − fx,ρ |

2 dω ≤ CPρ
2
∫

B2ρ(x)
∥∇ f ∥

2 dω, ρ > 0, x ∈ M,

for any smooth function f ∈ C∞(M). Here

fx,ρ =
1

V (x, ρ)

∫
Bρ(x)

f dω.

We refer to these properties as local whenever they hold for any ρ < ρ0.

Remark 7.2. If M is a sub-Riemannian manifold, equipped with a smooth globally doubling measure ω,
then it is stochastically complete, namely∫

M
pt(x, y) dω(y)= 1 for all t > 0, x ∈ M.

This is a straightforward consequence of the characterization given by [Sturm 1994, Theorem 4] on the
volume growth of balls.

Theorem 7.3. Let M be a complete sub-Riemannian manifold, equipped with a smooth measure ω.
Assume that (M, ω) is globally doubling and satisfies a global weak Poincaré inequality. Then, there
exist constants Ck, ck > 0 for any integer k ≥ 0, depending only on CD,CP , such that, for any x, y ∈ M
and t > 0,

|∂k
t pt(x, y)| ≤

Ck t−k

V (x,
√

t)
exp

(
−

d2
SR(x, y)

ck t

)
, (87)

where we recall V (x,
√

t)= ω(B√
t(x)).
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In addition, there exist constants Cℓ, cℓ > 0, depending only on CD,CP , such that, for any x, y ∈ M
and t > 0,

pt(x, y)≥
Cℓ

V (x,
√

t)
exp

(
−

d2
SR(x, y)

cℓt

)
. (88)

Proof. Define the sub-Riemannian Hamiltonian as the smooth function H : T ∗M → R,

H(λ)=
1
2

N∑
i=1

⟨λ, X i ⟩
2, λ ∈ T ∗M,

where {X1, . . . , X N } is a generating family for the sub-Riemannian structure. Then, following the notation
of [Sturm 1996], one can easily verify that

E(u, v)=

∫
M

2H(du, dv) dω for all u, v ∈ C∞

c (M),

where H is the sub-Riemannian Hamiltonian viewed as a bilinear form on fibers, defines a strongly local
Dirichlet form with domain dom(E)= C∞

c (M). Notice that the Friedrichs extension of E is exactly the
sub-Laplacian. Moreover, the intrinsic metric

dI (x, y)= sup{|u(x)− u(y)| : u ∈ C∞

c (M), |2H(du, du)| ≤ 1} for all x, y ∈ M

coincides with the usual sub-Riemannian distance, as |2H(du, du)| = ∥∇u∥
2; see [Barilari et al. 2016,

Chapter 2, Proposition 12.4]. Thus, E is also strongly regular and, by our assumptions on (M, ω),
[Saloff-Coste 1992, Theorem 4.3] holds true, proving (87). For the Gaussian lower bound (88), it is
enough to apply [Sturm 1996, Corollary 4.10]; see also [Saloff-Coste 1992, Theorem 4.2]. □

Remark 7.4. Theorem 7.3 ensures that the time-derivatives of the heat kernel satisfy Gaussian bounds,
which are sufficient to prove Lemma A.3 in the noncompact case. This lemma is crucial to obtain the
asymptotics expansion of H�(t) at order strictly greater than 1.

We prove now the noncompact analogue of Proposition 4.5.

Corollary 7.5. Under the assumptions of Theorem 7.3, let � ⊂ M be an open subset with smooth
boundary. Then, for any K ⊂ M closed subset of M such that K ∩ ∂�= ∅, we have

1�(x)− u(t, x)= O(t∞) as t → 0, uniformly for x ∈ K ,

where u(t, x)= et11�(x) is the solution to (17).

Proof. Let us assume that K ⊂� such that K ∩ ∂�= ∅. The other part of the statement can be done
similarly.

Since M is stochastically complete, see Remark 7.2, for any x ∈ K , we can write

1�(x)− u(t, x)= 1 − et11�(x)= et11(x)− et11�(x)=

∫
M\�

pt(x, y) dω(y).
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Thanks to Theorem 7.3, we can apply (87) for k = 0, obtaining∫
M\�

pt(x, y) dω(y)≤

∫
M\�

C0

V (x,
√

t)
exp

(
−

d2
SR(x, y)

c0t

)
dω(y)

for suitable constants C0, c0 > 0 not depending on x, y ∈ M, t > 0. Now, fix L > 1; since K ⊂� is closed
with empty intersection with ∂�, and thus well-separated from ∂�, we deduce there exists a = a(K ) > 0
such that dSR(x, y) > a for any x ∈ K , y ∈ M \�, and so∫

M\�

pt(x, y) dω(y)≤

∫
M\�

C0

V (x,
√

t)
exp

(
−

d2
SR(x, y)

c0t

)
dω(y)

≤ exp
(
−

C(a, L)
c0t

) ∫
M\�

C0

V (x,
√

t)
exp

(
−

d2
SR(x, y)
2Lc0t

)
dω(y), (89)

where C(a, L)= a2(2L
− 1)/2L > 0. Thus, if we prove that the integral in (89) is finite, we conclude.

Firstly, recall the Gaussian lower bound (88), which holds thanks to Theorem 7.3:

pt(x, y)≥
Cℓ

V (x,
√

t)
exp

(
−

d2
SR(x, y)

cℓt

)
(90)

for suitable constants Cℓ, cℓ > 0, not depending on x, y ∈ M, t > 0. Secondly, by the doubling property
of ω, it is well known that there exists C ′

D , s > 0 depending only on CD such that

V (x, R)≤ C ′

D

(
R
ρ

)s

V (x, ρ) for all ρ ≤ R. (91)

Therefore, choosing L > 1 so big that c̃2
= (2Lc0)/cℓ > 1 and applying (91) for ρ =

√
t and R = c̃

√
t ,

we have R > ρ and

V (x, c̃
√

t)≤ C̃V (x,
√

t) for all t > 0, (92)

having let C̃ = C ′

D c̃s > 0. Finally, using (92) and the Gaussian lower bound (90), we can estimate the
integral in (89) as follows:∫

M\�

1
V (x,

√
t)

exp
(
−

d2
SR(x, y)
2Lc0t

)
dω(y)≤

∫
M

C̃
V (x, c̃

√
t)

exp
(
−

d2
SR(x, y)

cℓc̃t

)
dω(y)

≤
C̃
Cℓ

∫
M

pt̃(x, y) dω(y)≤
C̃
Cℓ
,

where t̃ = c̃t . Since the resulting constant does not depend on x ∈ K , we conclude the proof. □

Using Corollary 7.5 and adopting the same strategy of the compact case, one can finally prove the
following result.

Theorem 7.6. Let M be a complete sub-Riemannian manifold, equipped with a smooth measure ω.
Assume that (M, ω) is globally doubling and satisfies a global weak Poincaré inequality. Let �⊂ M be
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an open and bounded subset whose boundary is smooth and has no characteristic points. Then, as t → 0,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

−
1

12
√
π

∫
∂�

(
2g(∇δ,∇(1δ))− (1δ)2

)
dσ t3/2

+ o(t2).

Remark 7.7. Theorem 7.6 holds true also for the weighted relative heat content; see Section 5.3. In both
cases, we do not know whether its assumptions are sharp in the noncompact case.

7.1. Notable examples. We list here some notable examples of sub-Riemannian manifolds satisfying the
assumptions of Theorem 7.3. For these examples Theorem 7.6 is valid.

• M is a Lie group with polynomial volume growth, the distribution is generated by a family of left-
invariant vector fields satisfying the Hörmander condition and ω is the Haar measure. This family includes
also Carnot groups. See for example [Varopoulos 1996; Saloff-Coste 1992; Gallagher and Sire 2012].

• M = Rn, equipped with a sub-Riemannian structure induced by a family of vector fields {Y1, . . . , YN }

with bounded coefficients together with their derivatives, and satisfying the Hörmander condition. Under
these assumptions, the Lebesgue measure is doubling, see [Nagel et al. 1985, Theorem 1], and the
Poincaré inequality is verified in [Jerison 1986]. We remark that these works provide the local properties
of Definition 7.1, with constants depending only on the Ck-norms of the vector fields Yi for i = 1, . . . , N.
Thus, if the Ck-norms are globally bounded, we obtain the corresponding global properties.

• M is a complete Riemannian manifold with metric g, equipped with the Riemannian measure, and with
nonnegative Ricci curvature.

We mention that a Riemannian manifold M with Ricci curvature bounded below by a negative constant
satisfies only locally Definition 7.1, i.e., for some ρ0 <∞, depending on the Ricci bound. Nevertheless,
we can prove Corollary 7.5 in this case, as [Li and Yau 1986, Corollary 3.1] provides an upper Gaussian
bound, and a lower bound as (88) holds; see [Bakry and Qian 1999, Corollary 2]. Thus, the first-order
asymptotic expansion of H�(t), see Theorem 4.13, is valid in this setting.

Appendix: Iterated Duhamel’s principle for I�φ(t, 0)

In this section, we study the iterated Duhamel’s principle for the I�φ; see Definition 4.7. The main result
is Lemma A.6, which will imply formulas (58), (66) and (77).

The next proposition is a version of the iterated Duhamel’s principle taken from [Rizzi and Rossi 2021,
Proposition A.1], which we recall here.

Proposition A.1. Let F ∈ C∞((0,∞)× [0,+∞)) be a smooth function compactly supported in the
second variable and let L = ∂t − ∂2

r . Assume that the following conditions hold:

(i) Lk F(0, r)= limt→0 Lk F(t, r) exists in the sense of distributions7 for any k ≥ 0.

(ii) Lk F(t, 0) and ∂r Lk F(t, 0) converge to a finite limit as t → 0 for any k ≥ 0.

7 Namely, for any ψ ∈ C∞([0,∞)), there exists finite limt→0
∫

∞

0 f (t, r)ψ(r) dr . With a slight abuse of notation, we define∫
∞

0 f (0, r)ψ(r) dr = limt→0
∫

∞

0 f (t, r)ψ(r) dr .
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Then, for all m ∈ N and t > 0, we have

F(t, 0)=

m∑
k=0

(
tk

k!

∫
∞

0
e(t, r, 0)Lk F(0, r) dr −

1
√
πk!

∫ t

0
∂r Lk F(τ, 0)(t − τ)k−1/2 dτ

)
+

1
m!

∫ t

0

∫
∞

0
e(t − τ, r, 0)Lm+1 F(τ, r)(t − τ)m dr dτ, (93)

where e(t, r, s) is the Neumann heat kernel on the half-line; see (53).

We want to apply Proposition A.1 to the function I�φ(t, 0); thus, we study in detail the operators
Lk I� for any k ≥ 1. Define iteratively the family of matrices of operators, acting on smooth functions,

Mk j =

(
Qk j Sk j

Pk j Rk j

)
,

as follows. Set

M10 =

(
1 −1N�
N� −N 2

�+1

)
and M11 =

(
0 N�
0 0

)
,

and, for all k ≥ 1 and 0 ≤ j ≤ k, set

Mk j = M10 Mk−1, j + M11 Mk−1, j−1, (94)

while Mk j = 0 for all other values of the indices, i.e., k < 0, j < 0 or k < j . Here N� is the operator
defined in (50), namely

N�φ = 2g(∇φ, ν)+φ divω(ν) for all φ ∈ C∞

c (�
r0
−r0
), (95)

where ν is the inward-pointing normal from �.
Recall the definition of I� and 3�: for any φ ∈ C∞

c (�
r0
−r0
) and for all t > 0, r ≥ 0,

I�φ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x),

3�φ(t, r)= −∂r I�φ(t, r)= −

∫
∂�r

(1 − u(t, y))φ(y) dσ(y),

where u(t, · )= et11�( · ). Iterations of Lk I�φ satisfy the following lemma.

Lemma A.2. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, and let �⊂ M
be an open relatively compact subset whose boundary is smooth and has no characteristic points. Then,
as operators on C∞

c (�
r0
−r0
), we have:

(i) L I� = I�1+3�N�.

(ii) L3� =3�(−N 2
� +1)+ ∂t I�N� − I�1N�.

(iii) For any k ∈ N,

Lk I� =

k∑
j=0

∂ j

∂t j (3�Pk j + I�Qk j ) and Lk3� =

k∑
j=0

∂ j

∂t j (3�Rk j + I�Sk j ).
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Here we mean that, for any φ ∈ C∞
c (�

r0
−r0
), the operator Lk acts on the functions I�φ(t, r), 3�φ(t, r).

Analogously the right-hand side when evaluated in φ is a function of (t, r).

Proof. The proof of items (i) and (ii) follows from Proposition 4.2 and the divergence theorem; see [Rizzi
and Rossi 2021, Lemma A.2]. We show how to recover the iterative law (94).

Consider the vector V = (I�,3�). Then by items (i) and (ii), we have

LV = (L I�, L3�)= V M10 + ∂t V M11. (96)

Notice that the operator Lk contains at most k derivatives with respect to t . Therefore we have

Lk V =

k∑
j=0

∂
j

t (V Mk j ) for all k ≥ 0.

On the other hand, we can evaluate Lk V, using (96),

Lk V = L(Lk−1V )=

k−1∑
j=0

L∂ j
t (V Mk−1, j )=

k−1∑
j=0

∂
j

t (LV Mk−1, j )

=

k−1∑
j=0

∂
j

t V M10 Mk−1, j +

k−1∑
j=0

∂
j+1

t V M11 Mk−1, j .

Reorganizing the sum, we find (94), concluding the proof. □

We want to apply Proposition A.1 to I�φ(t, r) for k ≥ 2, in order to obtain higher-order asymptotics.
However, Lemma A.2 shows that Lk I� for k ≥ 2, involves time derivatives of u(t, x) which are not
well-defined at ∂� as t → 0. Therefore, we consider the following approximation of I�φ and 3�φ,
respectively: fix ε > 0 and define, for any t > 0, r ≥ 0,

Iεφ(t, r)= =

∫
�r

(1 − uε(t, x))φ(x) dω(x),

3εφ(t, r)= −∂r Iεφ(t, r)=

∫
∂�r

(1 − uε(t, x))φ(y) dσ(y),

where uε(t, x)= et11�ε(x). We recall that, for any a ∈ R, �a = {x ∈ M : δ(x) > a}. Notice that, by the
dominated convergence theorem, we have

Iεφ(t, 0) ε→0
−−→ I�φ(t, 0) uniformly on [0, T ],

and, in addition, Lemma A.2 holds unchanged also for Iε and 3ε.

Lemma A.3. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and let
�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Letψ ∈C∞([0,∞)),
ε ∈ (0, r0) and define

ψ (−1)(r)=

∫ r

0
ψ(s) ds for all r ≥ 0.

Then, for any φ ∈ C∞
c (�

r0
−r0
), the following identities hold:
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(i) lim
t→0

∫
∞

0

∂ j

∂t j 3εφ(t, r)ψ(r) dr =

{∫
�ε0
φ(ψ ◦ δ) dω if j = 0,

−
∫
�ε
1 j (φ(ψ ◦ δ)) dω if j ≥ 1,

(ii) lim
t→0

∫
∞

0

∂ j

∂t j Iεφ(t, r)ψ(r) dr =

{∫
�ε0
φ(ψ (−1)

◦ δ) dω if j = 0,

−
∫
�ε
1 j (φ(ψ (−1)

◦ δ)) dω if j ≥ 1,

(iii) ∂ j

∂t j 3εφ(0, 0)=

{∫
∂�
φ dσ if j = 0,

0 if j ≥ 1,

(iv) ∂ j

∂t j Iεφ(0, 0)=

{
dω if j = 0,
−

∫
�ε
1 jφ dω if j ≥ 1,

where, we recall, �ε = {x ∈ M : δ(x) > ε} and �ε0 =� \�ε.

Remark A.4. The only difference with respect to [Rizzi and Rossi 2021, Lemma A.4] is item (iii), which
now holds only as t → 0 and not for all positive times.

Proof of Lemma A.3. We claim that, for any j ≥ 1,

lim
t→0

∫
�

φ(x)1 j uε(t, x) dω(x)=

∫
�ε

1 jφ(x) dω(x). (97)

Let us prove it by induction: For j = 1, applying the divergence theorem, we have∫
�

φ1uε dω = −

∫
∂�

φg(∇uε,∇δ) dσ +

∫
∂�

uεg(∇φ,∇δ) dσ +

∫
�

uε1φ dω. (98)

Let us discuss the first term in (98): By the divergence theorem applied with respect to the set �c, we
have ∫

∂�

φg(∇uε,∇δ) dσ =

∫
�c
φ1uε dω+

∫
∂�

uεg(∇φ,∇δ) dσ −

∫
�c

uε1φ dω. (99)

Then, using [Jerison and Sánchez-Calle 1986, Theorem 3] and noticing that dSR(x, y)≥ ε for any x ∈�ε

and y ∈�c, we conclude that in the limit as t → 0, (99) converges to 0. This proves (97) for j = 1. For
j > 1, proceeding by induction, we conclude. Finally, using the coarea formula (42), we complete the
proof of the statement as in the usual argument of [Savo 1998, Lemma 5.6]. □

Remark A.5. In the noncompact case, under the assumption of Theorem 7.3, the above lemma holds.
In particular, on the one hand, the divergence theorem holds since φ has compact support. On the other
hand, notice that the time derivative estimates (87) are enough to ensure that (99) converges to 0 as t → 0,
regardless of the compactness of the set of integration. The same is true for j > 1, where higher-order
time derivatives appear.

The next step is to apply the iterated Duhamel’s principle (93) to Iε, which now satisfies its assumptions,
then, pass to the limit as ε→ 0. The computations are long but straightforward: we report here the result
at order t5/2.
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Lemma A.6. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (�

r0
−r0
). Then, as t → 0, we have

I�φ(t, 0)= 2G1−u[φ](t)+
1

√
π

∫ t

0
G1−u[N�φ](τ )(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0
G1−u[N 2

�φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−u[N 3

�φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ

+
1

4
√
π

∫ t

0

∫
∂�

(1 − u(τ, · ))(41− N 2
�)φ dσ(t − τ)1/2 dτ

+
1

4
√
π

∫ t

0
G1−u[(6N�1− N 3

� − 21N�)φ](τ )(t − τ)1/2 dτ + O(t5/2),

(100)

where u(t, · ) = et11� and Gu[φ] is the functional defined in (60). We recall that N� is the operator
defined in (95).

The expression (58) is a direct consequence of A.6. Moreover, we can apply it, when the base set
is chosen to be �c. Then, evaluating the difference between I�φ(t, 0) and I�cφ(t, 0) we obtain the
asymptotic equality (66), which is proved in the next lemma. We use the shorthands I , I c for I� and I�c

respectively.

Lemma A.7. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (�

r0
−r0
). Then, as t → 0, we have

(Iφ− I cφ)(t, 0)= 2G1−2u[φ](t)+ 1
2

∫
∂�

Nφ dσ t

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ

+
1

4
√
π

∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ + O(t2),

where N is the operator given by

Nφ = 2g(∇φ,∇δ)+φ1δ for all φ ∈ C∞

c (�
r0
−r0
),

with δ : M → R the signed distance function from ∂�.

Proof. Firstly, we apply Lemma A.6 to Iφ: we obtain exactly the expression (100), with the operator
N� = N. Secondly, for the outside contribution, recall that we have the following equality of smooth
functions:

1 − uc(t, x)= 1 − et11�c(x)= et11�(x)= u(t, x) for all t > 0, x ∈ M.

Therefore, when we apply Lemma A.6 to I cφ, we replace 1 − uc(t, · )= 1 − et11�c with the function
u(t, · )= et11�( · ). Moreover, the operator N�c defined in (95), for the set �c, is equal to −N, since the
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inward-pointing normal to �c is −∇δ. Therefore, writing the difference of the two contributions, and
noticing that � and its complement share the boundary, we have

(Iφ− I cφ)(t, 0)= 2G1−2u[φ](t)+
1

√
π

∫ t

0
G1[Nφ](τ )(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1[N 3φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ (101)

+
1

4
√
π

∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ

+
1

4
√
π

∫ t

0
G1[(6N1− N 3

− 21N )φ](τ )(t − τ)1/2 dτ + O(t5/2). (102)

To conclude, it is enough to notice that the functional G1 can be explicitly computed:

G1[φ](t)=
1

√
π

∫
∂�

φ dσ t1/2 for all φ ∈ C∞

c (�
r0
−r0
).

Thus, the terms in (101) and (102) are remainder of order O(t2). □

Applying Lemma A.6 to the sum of I�φ(t, 0) and I�cφ(t, 0) instead, we obtain (77). The proof of
this result is not provided here, as it is similar to the proof of Lemma A.7.

Lemma A.8. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (�

r0
−r0
). Then, as t → 0, we have

(Iφ+ I cφ)(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
+

1
√
π

∫ t

0
G1−2u[Nφ](τ )(t − τ)−1/2 dτ

+
1

6
√
π

∫
∂�

(41+ N 2)φ dσ t3/2

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−2u[N 3φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ

+
1

4
√
π

∫ t

0
G1−2u[(6N1− N 3

− 21N )φ](τ )(t − τ)1/2 dτ + O(t5/2).
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