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OPTIMAL PRANDTL EXPANSION AROUND A CONCAVE BOUNDARY LAYER

DAVID GERARD-VARET, YASUNORI MAEKAWA AND NADER MASMOUDI

We show an optimal stability result for boundary layer solutions of the Navier—Stokes equation in a
half-plane, under a mild concavity condition on the boundary layer profile. The key point is the derivation
of sharp Gevrey estimates for the linearized Navier—Stokes equation in vorticity form, on a time interval
uniform in v. As the nonlocal boundary condition on the vorticity prevents us from deriving direct
estimates, we use a novel iteration scheme, similar to a splitting method in numerical analysis. Our result
is a big step forward compared to our previous work (Duke Math. J. 167 (2018), 2531-2631), where we
proved stability of boundary layer expansions of shear flow type. Indeed, the approach of the present
paper is much more robust than the one in that previous work, which was based on the Fourier transform
and hence only adapted to expansions independent of the tangential variable. Moreover, we are now able
to relax the assumption of strict concavity made in our previous work to obtain the optimal Gevrey %
stability, which was not satisfied by generic boundary layer expansions. We provide in this way the first
justification of unsteady boundary layer theory outside the analytic setting.
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1. Introduction

We are interested in the high Reynolds number dynamics of the Navier—Stokes equation in a half-plane:
o’ —vAu' +Vp'+u'-vu'=0, >0, xeT, y>0,
V-u'=0 t>0, xeT, y>0, (1-1)
u'ly=0=0, u"l=0 = uo,
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where v stands for the inverse Reynolds number. Note that we consider periodic boundary conditions in x,
but could consider decay conditions as well. As is well known, the Navier—Stokes solution u#" exhibits a
boundary layer near y = 0, that is a region of high velocity gradients generated by the no-slip condition.
A famous modeling of this boundary layer was provided by Prandtl. In modern language, he provided
approximate solutions of Navier—Stokes equations in the form of multiscale asymptotic expansions:

N N
v=) VVUB @ x )+ ) Ve 0L VOV x y V), (1-2)
i=0 i=0

where the profiles UZ+" = UE-i(¢, x, y) describe the flow away from the boundary, and the profiles
VbLi = ybli(s x| ¥) are boundary layer correctors that go to zero exponentially fast in variable ¥ = y/\/v.
We stress that there is a factor /v between the amplitudes of the horizontal and vertical components
of the boundary layer profiles: this is consistent with the divergence-free condition. In particular, the
leading order term U¥ := UF-Y solves the Euler equation, while the leading order boundary corrector
Vol .= Vb0 solves the modified Prandtl equation

WV + (UEL—o+ VHa VI + VP UE o+ (Y3,Uf |y—o + VIHay VP — 83V = 0,

3, VP 4oy VP — 0,
VPlly—o=-Ufl,—0, V=0, Y — 4oo.

Prandtl boundary layer theory has revealed much about the mechanism of vorticity generation in fluids
and has contributed to the quantitative understanding of some model problems, notably the description of
the Blasius flow near a flat plate. It can moreover be rigorously justified under strong symmetry conditions
on the flow and its perturbations; see for instance [Lopes Filho et al. 2008; Mazzucato and Taylor 2008].
Still, under generic perturbations, Navier—Stokes flows of type (1-2) are known to experience instabilities,
due to two main mechanisms:

» Boundary layer separation, which corresponds to a loss of monotonicity and concavity of the
boundary layer profile Vlbl, under an adverse pressure gradient. Mathematically, it corresponds to
some ill-posedness or blow-up of the Prandtl model.

» Hydrodynamic instabilities of Tollmien—Schlichting-type, experienced by concave boundary layer
flows.

These phenomena have crucial consequences in hydrodynamics and aerodynamics. From the mathematical
point of view, describing the stability/instability properties of flows v of type (1-2) is a difficult topic.
The evolution of the perturbation w = u" — v obeys the perturbed Navier—Stokes system
qw—vAw+Vg+v-Vw+w-Vvo=—w-Vw+r, t>0, xeT, y>0,
V-w=0, t>0, xeT, y=>0, (1-3)
wly—0 =0, wl;— = wo.

Here, r represents a remainder term due to the approximation v, while wy is a given initial perturbation of
the velocity. We will assume that » and wq are of the order O (V") in some norm with n > 1. In the case
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of r, this is realized by taking N large enough in (1-2). More precisely, one has to consider functional
frameworks such that the equations of both Prandtl-type and Euler-type are uniquely solvable at least
locally in time. Then, the point is to understand under which conditions one can obtain uniform (in v)
estimates of w in a suitable norm, that is justification of the Prandtl theory.

An important result in this direction is due to Sammartino and Caflisch [1998a; 1998b], who proved
local well-posedness of Euler and Prandtl equations, as well as stability results for (1-3) in the case
of analytic data. This stability result is then extended by [Fei et al. 2018; Kukavica et al. 2020; 2022;
Maekawa 2014; Wang and Wang 2020; Wang et al. 2017], all of which require the analyticity near the
boundary. This general analytic stability result is somehow optimal, in view of [Grenier 2000a]; see also
[Grenier and Nguyen 2019]. Grenier studied the case where the Prandtl expansion v in (1-2) is a shear
flow: this means that

v= (V' x,y/4/v),0), (1-4)

where Vlbl solves the heat equation
oV =V =0, VPllyoo=0. (1-5)

He proved that for some profiles Vlbl that have initially inflection points, the linearized version of (1-3)
admits growing perturbations of the form

1/2 - 1/2 ~
w'(t,x, y) e (y)

’

1/2 akt

with fixed & > 0. This shows that high frequencies k ~ 1/v'/“ in variable x may be amplified by e

In other words, to obtain a bound independent of v over a time 7 = O(1) will only be possible if those

modes k have amplitude less than e~

, with § < «T. This necessary exponential decay of the frequency
spectrum corresponds to analytic perturbations. Let us note that the result of Grenier relies on the so-called
Rayleigh instability, which is an inviscid instability mechanism for shear flows with inflection points. In
terms of hydrodynamics of the boundary layer, the appearance of inflection points corresponds to the
separation phenomenon. Hence, it is a framework in which various negative results exist for the Prandtl
equation itself [E and Engquist 1997; Gérard-Varet and Dormy 2010; Gérard-Varet and Nguyen 2012;
Kukavica et al. 2017].

The case without inflection points, corresponding to the nicer situation where the boundary layer
profile Vlbl is concave in variable Y, is much more involved. Again, the natural first step is to consider
the shear flow situation (1-4). The stability of shear flows within the Navier—Stokes equation is an old
topic of hydrodynamics, notably studied by Tollmien and Schlichting. See [Drazin and Reid 2004] for a
detailed account. They showed that generic concave shear flows, although stable in the Euler evolution,
exhibit instability in the Navier—Stokes one (albeit with a growth rate vanishing with viscosity). This is
the so-called Tollmien—Schlichting instability, revisited on a rigorous basis by Grenier, Guo and Nguyen
[Grenier et al. 2016]. Roughly, by using a proper rescaling of these unstable eigenmodes, one can
construct for the linearization of (1-3) solutions of the type

1/4 :..713/8 o
wv(t, X, y) ~ eat/v ezx/v wv(y).
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This time, high frequencies k ~ 1/v3/8 may be amplified by ¢***"' This is still not compatible with
Sobolev uniform bounds. More precisely, under the assumption that the spectral radius of the linearized
Navier—Stokes operator is given by the growth rate of the Tollmien—Schlichting instability, one can
obtain exponential bounds on the semigroup and from there show nonlinear Sobolev instability of Prandtl
expansions of shear flow type; see [Grenier and Nguyen 2017; 2024].

Nevertheless, in the setting of concave boundary layer flows, the class of data wg for which one can
hope to have uniform (in v) local (in time) control of w is larger than analytic: namely, one may expect
control for data whose Fourier spectrum in x decays like 0(e‘k2/3). This corresponds to the so-called
Gevrey class of exponent %

To show such optimal stability result for general “concave” Prandtl expansions is the main goal of the
present paper. It goes much beyond our result [Gérard-Varet et al. 2018], limited to the case when the
boundary layer is of shear type (1-4). See also the recent development [Chen et al. 2022], still on shear
flow expansions. Precise statements will be given in Section 2. Three preliminary remarks are in order:

o The approach in [Gérard-Varet et al. 2018] was very much based on the Fourier transform in x, made
easy because (1-4) is independent of x. It does not adapt to general Prandtl expansions. The approach in
the present paper relies on very different ideas.

o The main step in our approach is the derivation of stability estimates for the linearized equations
ow—vAw+Vg+v-Vw+w-Vo=f, t>0, xeT, y>0,
V.w=0, t>0, xeT, y>0, (1-6)
wly=0 =0, wl;=o = wp.

But to derive such bounds, we do not make any assumption on the spectral radius of the linearized
operator, in contrast with the works [Grenier and Nguyen 2017; 2024].

A strong point of our analysis is that it applies to boundary layer profiles Vlbl that are concave in Y but
not necessarily strictly concave. See Section 2 for detailed hypotheses. This is important for applications,
as can be seen from (1-5): there, 8% Vlbl vanishes at the boundary for ¥ = 0 at positive times. Despite
such possible degeneracies, we are able to reach Gevrey % stability: this was not the case in our previous
paper [Gérard-Varet et al. 2018], where our Gevrey exponent for stability was less than % for nonstrictly
concave flows.

The outline of the paper is as follows. Section 2 contains our main assumptions and stability results.
We notably explain how our assumptions are adapted to generic boundary layer expansions. Section 3
gives an overview of our proof. The key point is the analysis of system (1-6), expressed in vorticity form.
While this form allows to get rid of the pressure term, we face the difficulty that the vorticity w = curlv
satisfies an intricate nonlocal condition, which forbids good direct stability estimates. To overcome this
issue, we construct (and estimate) w through an iteration scheme, where each step of the iteration can be
split in two:

« In a first substep, we solve the linearized equation but with an artificial Neumann boundary condition
on . This change in boundary condition allows to obtain stability estimates through the use of weighted
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norms inspired by the analysis of the hydrostatic Euler equations and subsequent works [Brenier 1999;
Grenier 2000b]. This is where concavity is involved. These estimates, which would be wrong with the
Dirichlet conditions for the velocity, remain valid under this modified boundary condition.

« In the next substep, we solve the linearized equation with zero source term or initial data but with a
inhomogeneous Dirichlet condition on the velocity, correcting the error of the previous substep. This
time, as the forcing is only through the boundary, the corresponding solution is more localized and of a
parabolic nature. This allows for stabilizing effects.

More elements of the strategy are provided in Section 3. Afterwards, Section 4 details the estimates
useful for the first substep of the iteration scheme, and Section 5 details the construction of the boundary
corrector of the second substep. Eventually, Sections 6 and 7 provide the final linear and nonlinear
estimates respectively.

2. Statements of the results

To state our stability result, we first introduce our functional framework. Let p € [1, co], K > 1, and

v € (0, 1]. For simplicity we assume v~!/2 € N, but it is not at all essential to our argument. We set
172 |
, =3 —Kt(+D g 5i—h £, )
IfllGr, = ZO Gy S le Bidl 2 Fllroikicz ) 2-1)
izo VDT h=on

where
B, =x"0f. x()=1—e". (2-2)

Here « € (0, 1] is a fixed number, which will be taken small enough. We note that || f ||G§/2 depends on
v,k € (0,1] and K > 1, though we drop this dependence to simplify the notation. Note that for each
fixed v the norm || f ||G§/2 is of Sobolev-type, but if || f ||G§/2 is uniformly bounded in v, it implies a usual

-1/2

Gevrey % regularity for the C*° function f. The reason we can restrict to j < v in the sum above

is that, in (1-3), the stretching term Vv = O (v—1/2) creates at most an amplification O(ec"fl/zt ). For
1/2

j ~v~12 it is therefore balanced by the factor e~ X?U+D for large enough K. This means that we will

be able to close an estimate considering only derivatives up to order v=!/2.
Our main theorem is the following. Let us set H, , (T xRy)={f € Hj(TxR;)*|div f =0in Tx R},

the space of all H! solenoidal vector fields satisfying the no-slip boundary condition at ¥ = 0.

Theorem 2.1 (nonlinear stability of concave Prandtl expansions). Let v = v(t, x, ¥) be a divergence-free
vector field that fulfills the regularity and concavity conditions gathered in the Assumptions below but
is not necessarily of type (1-2). There exists ko > 0 such that the following statement holds for any
Kk € (0, ko]: there exist C >0, K >0, 9 > 0 such that, forall v < K2, ifre L?(0, 1/K; L*(T x [RQ)Z)
and wg € HOI’U (T x Ry) satisfy

9 il
[lwollGs, + [Irotwollgs, <dovs,  lrligz, =8ov+, (2-3)
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then the system (1-3) has a unique solution w € C([0, 1/K], HOI,U(T x R})) satisfying

_1 _1
lwlics, Jrvzlllfotwllcgc2 < Cv 2([lwollgs), + [lrotwollg,, +v 2IIFII(;g/Z)- (2-4)
Here rotw = 0, wy — dyw and
172 |
[wolly, = D =75 sup [18,0] Pwollz, -
s D7 jh=o,...j

To complete the statement of our theorem, it remains to describe the set of assumptions on v that
yield Theorem 2.1. Of course, these assumptions are designed to be satisfied by Prandtl expansions
of type (1-2), when Vlbl has some mild concavity. Due to the boundary layer variable Y, it is more
convenient to work with rescaled variables (7, X, Y) := p~1/2 (t, x,y). Accordingly, we shall express our
assumptions directly on

Vir,X,Y):=v(,x,y), >0, XeT,, Y>0.
Here, T, := v~ 1/2T. We set

Q=0xVo— 0y Vi, (2-5)
which describes the vorticity field of the approximation in the rescaled variables. We also set
=iy =1—e"7, (2-6)
Note that « € (0, 1] is fixed but taken small enough. Also, in the rescaled variables, our almost Gevrey
norm || - ||G§/2 becomes
12 1
—KTvli2(j i—j
IF, = Gy, Sup e KU DB L0y P Flsoyonyid e B = xE0y . 2-7)
=0 . J2=0,..., j

We state our key assumptions in terms of V and €.

Assumptions. (i) Divergence-free and Dirichlet condition on V :

oxVi+dyVo =0, V]y—o=0. (2-8)
Moreover, there exist constants Cy > 1 and C, C}, C5 > 0 such that the following statements hold for
anyv € (0,1]and K > 1:
(ii) Almost Gevrey L™ bounds for V_and V: For any k € (0, 1], we have

v—172

1 e .
Z (j)3/2vil2 SuP ~<”e By 12V1||L$.°x.y+’<
2= J

.....

J
e—Krv'/zj 8X V2
Xv

00
L‘[,X,Y

+v—f<j+1)f||e—K”'“fsza§;*”axv1||Lc;o AGHD e B o R0y Vi,

1+Y 1+Y ? —Ktv'/2j J=i
' 1+U1/2Y ” (1+v1/2Y) e szax ayﬂ

1

—1 —Ktv'/%j j=i
+v 2 e szax 8XQ

) <Cjy.
Lxy

Here LYy , = L0, 1/(Kv'/?); LY ).
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(iii) Derivative bounds for V_and Q2: We have

1% ~3|oxV L P ] AP,
VIiLe, , +v2llox Ve, , + EETEAAd) W Hv T Ay X .
7,X,Y 7,X,Y
1+Y 2 1 Y 2
1/2Y dy 2 . +v 2 l-H)—l/zY 00y 2 N
LI,XY Lr.X,Y
1| Y(1+4Y) 52 Y(147Y)>? .
Jasomeion] , +latmmyse],, e e
7,X,Y

(iv) Monotonicity of 2: Set p(Y) = C,((1 + Y/vl/4)72 + v1/2(1 +Y) 2+ v). Then we have

WQ+p=>0 (2-10)
and
oy 22,9 H Y(I+Y) 99 . 2-11)
v . -
L+v12Y /By Q+2p |1, (1+v12Y)? Joy e+ 2p 2

Remark 2.2 (link between the Prandtl expansions and the Assumptions). Let us explain how the set of
assumptions above relates to the Prandtl expansions as given in (1-2).

(i) The divergence-free and Dirichlet conditions are satisfied by Prandtl expansions of type (1-2). Fields
UE solve Euler or linearized Euler equations, while fields V®¥ solve Prandtl or linearized Prandtl
equations: in both cases, they are divergence-free. Moreover, they are constructed alternatively in order
to satisfy the Dirichlet boundary condition: once U is constructed, VP is constructed so that

bl,i

|y o+ V, ly=0=0.

Then, UZ-+! is constructed by solving an Euler-type equation with the nonpenetration condition

El+]|y_ +V |Y:0=0-

More precisely, one can construct (U £/, V®7) in this way for i < N — 1 and conclude with
UEN @, x,y) = O, =V, x,0)), VPV =0,

(i) Assumption (i) amounts essentially to a Gevrey 3 bound on solutions U+ and V' of Euler-like
and Prandtl-like equations, respectively. Such solutions exist locally in time. For the Euler equations, we
refer to [Kukavica and Vicol 2011]. For the Prandl equations, as mentioned before, the works [Kukavica
and Vicol 2013; Sammartino and Caflisch 1998a] provide local-in-time solutions for analytic data. These
local solutions being analytic, they belong to the Gevrey class % More recently, Gevrey local-in-time
well-posedness of the Prandtl equation has been established in [Dietert and Gérard-Varet 2019] (see
[Gerard-Varet and Masmoudi 2015; Li and Yang 2020] for preliminary partial results). Also, if v is given
by (1-2), as Va(7, X, Y) = v (¢, x, y) is zero at the boundary Y = 0, we can write

— ' ~ Yo E.0 bL,0 _ 1o 1 o
Vo= oy Vo & 2@V, "+ oy V, )+ )=002Y)=0 ;X,)(Y) atY =0,
0 0

so that (1/«)(V2/xy) is under control as required in (ii).



3132 DAVID GERARD-VARET, YASUNORI MAEKAWA AND NADER MASMOUDI

(iii)) Again, Assumption (iii) is satisfied by classical Prandtl expansions of type (1-2). To check that,
one has to keep in mind that 9, ~ V1725, 9y ~ v1/24,, so that for Prandtl expansions, which depend

smoothly on ¢ and x, any t- or X-derivative allows to gain v'/2

. This explains for instance the factor
v~1/2 in front of the second and fourth terms of (2-9), related to dxV and dx Q. In the same spirit, as
dy ~v!/? dy, for the Euler part of the Prandtl expansion (which depends smoothly on y), any Y -derivative
allows to gain v'/2. This remark does not apply to the boundary layer part of the expansion, as it depends
genuinely on Y. Still, this part has good decay in Y (typically like e~ or (1+Y)~" for large Y). This is
coherent with the weights (14 Y)/(1 + v12YY) or Y/(1 +v'/2Y) that can be found in (2-9) in front of
terms with Y derivatives: outside the boundary layer (¥ > 1), it yields a gain of v!/2, but in the boundary

layer (Y ~ 1), it yields some decay information on the boundary layer terms.

(iv) In the case when v is given by Prandtl expansions of type (1-2),
JyQ=0xyVa—0zVi= =RV +0W) + 0 v(1+7Y)?)

Here, the O(v) comes from the Euler part of the Prandtl expansion. The O (\/v(1 + Y)™?) corresponds
to the boundary layer profiles V®/, i > 1. The last two terms in the definition of the weight p allow to
control them for C, large enough. Hence, condition (2-10) is essentially a (nonstrict) concavity condition
on the leading term of the Prandtl boundary layer, V®! := V0 Moreover, by the addition of the sublayer
term (1+ (Y /v'/4))72 in the definition of p, we allow any sign for 8}2, Volfl in the sublayer 0 <Y < o'/,
and the concavity is only needed for ¥ > O(v'/4). In the original variables this sublayer is of the order
O (v3/*), which is typical order of Kolmogorov dissipation length in the theory of turbulence.

As regards (2-11), we notice that for Prandtl expansions:
2 _ 2y,bl 3 -2 26 __a3y/bl 3 1 -2
OxyQ2=—0x0y V) +00W2)+O0Ww(1+Y) ") and 0;Q=—-0;V] ++002)+0Ww2(1+Y) ).

Hence, by taking into account the bound 1/4/3y Q2+ 2p < 1/(C,v'/?), the condition (2-11) is essentially
verified if Vlbl satisfies

Yaxoz vy
V=2V 420, (1 + Y /01742

H Y(1+1v)a v
+
V=2V 4 2C, (1 + ¥ /u1/4)~2

<C < .
L%

<
NI—=

=)
LI‘X4Y

In the next section, we will explain the general strategy for the proof of our main stability theorem.
More precisely, we will briefly describe our stability analysis of the linearized equation (1-6) for f a
given force. This is the core of our paper: the transition from linear to nonlinear stability is more standard.
As explained before, we shall work with the rescaled variables (7, X, Y). We set

W, X, Y):=w(t, x,y), F@ X, Y):=ftxy, W(X,Y):=uwx,y)
(and still V (7, X, Y) = v(¢, x, y)). System (1-6) becomes

QW VAW AVQ+V . VWEW.-VV=F, >0, XeT,, ¥ >0,
V-W=0, >0, XeT,, Y>0, (2-12)
Wly=0=0, Wl—=W,.
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The main result on this linear system is:

Theorem 2.3. Suppose that the Assumptions hold. Then there exists ko € (0, 1] such that the following
statement holds for any k € (0, ko). There exists Ko = Ko(x, Cy, C;‘) > 1 such that if K > K then the
system (2-12) admits a unique solution W € C ([0, 1/(Kv1/2)]; HOI’U(TTU x Ry)) satisfying

1 1 1 5
W llloo + lllTot Wllleo < C((v™2 + K 2v™3)[[[Wolll + v [l|rot Woll1+ v * [ F[ll2). (2-13)
Hererot W = ox W, — oy W, and

12

1 .
[ Wolll = ————— sup [Bjdy "Woll2 .
]2:(:) (j1)3/2vil2 =0 27X Xy
and C is a universal constant.
As a consequence, we have the following result in the original variables. Note that, from F(z, X, Y) =

v2f (. x.,y), we have vV Flllp = v fllgs .

Theorem 2.4. Suppose that the Assumptions hold. Then there exists ko € (0, 1] such that the following
statement holds for any k € (0, kg]. There exists Ko = Ko(k, Cy, C;‘) > 1 such that if K > K then the
system (1-6) admits a unique solution w € C([0, 1/K]; Holy o (T x RY)) satisfying
1 _1 11 _1
||w||(;§></>2 +v2|rot w||(;§></>2 <Cv2((I + K2v#)[|wollgs, + [Irot wollgs, +v 2 ||f||G§/2). (2-14)
Here rotw = d,w, — dyw and

172

1 .
[wollos, = Y G S0P 1BRdY Pwoliz
=0 J: J2=0,...,j

and C is a universal constant.

3. General strategy

Estimates on system (2-12) will be performed at the level of the vorticity field w =rot W := dx W, — dy W;:

B4V -V—12A)wo+W.-VQ=r1otF, V-W=0, >0, XeT,, ¥>0,
Wly—o=0.

(-1
We recall that T = v~!/2¢: the point is to get estimates that are valid over time intervals of size v™!/2,
which is difficult due to the stretching term W - VQ. Classical estimates and Gronwall’s lemma would
only yield a control on time intervals O (1). We have to use both our Gevrey functional framework and
concavity condition.
Actually, several difficulties are already captured by the toy model

(3, — 2 Ao+ WedyQ =0, w=rotW, V-W=0, >0, XeT,, ¥ >0,
Wly=0=0,

where Q2 = Q(Y) (for simplicity, we assume no dependence on T and X). We shall stick to this model for

(3-2)

what follows.
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In the case of the inviscid equation
drw+ WrdyQ2=0, w=rotW, V-W=0, Wly_0=0

under the strict sign condition dy 2 > C > 0, a trick that goes back to [Grenier 2000b] is to test the
equation against w/(dy$2). By the cancellation

fW28Y98yﬂ_/W2rOtW_ 2/3x|W| =0,

one can obtain a uniform-in-time control on the weighted quantity ||w//dy 2| 2 ~ |lw|;2. However,

back to the model (3-2), we are facing two difficulties:

(1) Inspired by the case of Prandtl layers, we must consider situations where dy €2 vanishes or even
becomes slightly negative; see Assumption (iv).

(2) Even in the simpler case dy$2 > C > 0, the weighted estimate above is not compatible with the

introduction of viscosity and no-slip conditions.

We recall that these difficulties are not purely technical, as no uniform-in-v stability estimate is expected
below Gevrey % regularity. To overcome these issues, we shall proceed in two steps.

3A. First step: Gevrey estimates for artificial boundary conditions. The first step consists in deriving
Gevrey bounds for the same equation, but with pure slip instead of no-slip conditions. For the real vorticity
equation, this will be performed in Section 4. For our toy model, this means that we consider

(B — V2 Ao+ WodyQ=0, w=rotW, V-W=0, >0, XeT,, ¥>0, (33
Waly=0 = wly=0 =0.

The main point in this change of boundary conditions is that difficulty (2) mentioned above disappears:

the Dirichlet condition on w goes well with integration by parts, and in the case dy 2 > C > 0, one can

achieve again some good control on [Jw/+/dy 2| ;2. Still, we have to explain how to obtain stability under

the less stringent condition in Assumption (iv). Here, we need Gevrey regularity. Let us for simplicity

forget about Y -derivatives, which are not important for the toy model, and set
. _ 12, ; i . _ 12, ; i
w! = e KV U+1)8)j{w, Wi = KtV (]+1)8§W.
The point is to obtain a bound on

> S
(jH3/2pi2 " My

jev1
As Q = Q(Y), the equation satisfied by w/ is
(Kv' 2+ 1)+ 0, —vIA)w! + Wl oy Q=0. (3-4)
Roughly, the idea is to control a weighted Gevrey norm of the form

1
Z (j1)3/2vi/2

j=v12

a)j

A/ ayQ+2,0j

)
2
LX,Y
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where p; is added to compensate for possible degeneracies of dy 2. Testing (3-4) against w;/(dy 2+2p;),

we find
1o 2 1 d w 2
Kvi(j+1)|——— —_—
,/8y52+2p] ay9+2pj ,/8Yg2—|-2,0]
1 1 P i a)]
=2 [ V——— Voo’ — Wy 0y Q——r—
dy2+2p; Wy Q+2p;
VoyQ - Vp; o ; 20 .
— 7 —Yz.ija).I_FV% %.ijwj —i—/Wz]Lwﬂ (3-5)
(3yQ+2,0j) (8y9+2p]’) 8yQ+2pj

where we used again the cancellation property [ Wéi @’ = 0. One must then choose p ; so that the three
terms at the right are controlled by the left-hand side for K large enough. Roughly, this can be achieved
by taking p; in the form p;(Y) ~ p + (1 + AjY)_z, Aji=(j+ 1)!/2. To give an idea of why it works,
let us consider the first and last terms. As regards the first one, we write

<
D=

ViyQ . ;/ 1 YVyQ V' @’
_— . w W =V .
By 2+2p/)? r=1/0,) YNy Q+20; VoyQ+2p; VoyQ+2p; vy Q+2p;

(e )

The second term on the right side corresponds to the contribution of the region ¥ < 1/4;, for which the

VayQ+2p;

+v%0

L2

weight dy 2 +2p; is bounded from below and raises no issue (we further assumed here that 9y V<2 for
the sake of brevity). As regards the first term on the right side, for all Y > 1/ ;, we use the bounds

1 1 YVoyQ YVoyQ
and | Y £2| - | Y 2|

< <CAj < =
YNoyQ+2p; ~ Y/2p; ! VayQ+2p; ~ VayQ+2p

where we used Assumption (iv). We end up with

! ViyQ Volw! < Coba Vo' w’
vV —— = vo'w = (Vv i
By Q+2p))? "IVoy@+20; 2l Vor@+20; .12

which is absorbed by the left-hand side under the constraint A; < (j + 1)!/2. As regards the third term on
the right side of (3-5), we use the inequality

o= el

VayrQ+2p; ~ V2
to obtain
2 j c|w! j
/W2¢w1<C«/_||W .2 Y@ | == Y
Iy 2+2p; v3y§2+2,OJ Al Y 2l VoyQ+2p; Ml 12

=< C(\/_”WJ“LZ + ||3yW’ I ) H

oy Q2 —|—2pl

L2
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where the second line comes from Hardy’s inequality. Using that ||dy sz 72 = 19x le 72~ | le+1 72,
we have, for any sequence (a;),

! T LR PRS- j
Z Wﬂj”ang 2 ~ Z W‘”(l +D2a; 1 |[Willa.
J J

In other words, at Gevrey % regularity, a || dy sz lz2 behaves like w23+ 1)3/2aj_1 I le |lz2. Combining
this with a control of |W/|;. by lwj//0yS2+2p;l 2 and with a precise statement to be given in
Section 4, the previous bound is in the same spirit as

/ R B Vs Vil
2y Q+2p; Aj-1

i 2
a)]

VorQ+2p;

which allows a control by the left-hand side of (3-5) as soon as (j + /2 < A;. Hence the choice
=G+ DY

Of course, the elements above provide only glimpses of the approach carried out in the first step of
our stability study. The full study of the vorticity equation with artificial boundary conditions is given in

L2

Section 4.

3B. Recovery of the right boundary conditions. We give again a few elements on the toy model (3-2).
The analysis of the complete model is carried in Section 5. After the first step, one has a solution of
system (3-3), with the same initial condition and same boundary condition W5|y—o = 0 as in (3-2) but not
the same boundary condition on the tangential velocity: h := W) |y—¢ 7 0. Note that by the first step and
the trace theorem, one is able to get a Gevrey bound for /: as shown rigorously in the next sections, one
may get an estimate of the form

1 : C 1 ;
— § : J — E — A%

j=voi2 j<v-1r2

where Wy and w := rot Wy are the initial data for the velocity and vorticity, respectively.
Working in Gevrey regularity, the point is then to solve

(0 — v Ao+ WedyQ =0, w=rtotW, V-W=0, >0, XeT,, ¥>0,

(3-6)
Waly=0=0, Wily=o=h, W][=0=0.
The main idea is to use the following scheme:
Step (a): We solve the approximate Stokes equation
(O —v2A)w=0, w=rotW, V-W=0, 3

Waly=0=0, Wily=o=h, Wl;==0

and obtain in this way a solution W, = (W, 1, W, 2) = W,[h].
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Step (b): We correct the stretching term created by the previous approximation by considering the full
equation with artificial boundary condition:

(8, —VIA) 0+ WadyQ = —W,0dyQ, w=rotW, V-W =0,
Waly=0=0, oly=0=0, W|,==0.

(3-8)

We denote by W;, = W [h] the solution of such a system. It can be seen as a functional of & through W,,.

Step (c): At the end of the Steps (a) and (b), the function W — W, — W}, solves formally the same system
as W, replacing h by Ryc[h] := — W, 1[h]|y=0. The point is to show that, for K large enough,

I Roc[2]lllbe < 31 72lllbe, (3-9)

which allows us to solve (3-6) by iteration.

Obviously, to establish (3-9), one must have careful Gevrey stability estimates for systems (3-7)
and (3-8). The estimates for (3-8) follow from the same ideas as those described in Section 3A to
treat (3-3) (the initial condition is just replaced by a source term). As regards (3-7), the initial data being
zero, one can take the Laplace transform in 7 and the Fourier transform in X and solve explicitly the
resulting ordinary differential equation in Y. It leads to sharp L? estimates on W and its derivatives on
the Fourier-Laplace side, which transfer to L? estimates in the physical space by the Plancherel theorem.

All the analysis in the framework of the vorticity equation is provided in Section 5. In this setting,
the iteration scheme mentioned above has to be modified, because the advection term creates extra
difficulties. Namely, one has to add an intermediate step between Steps (a) and (b) above; see Section 5
for details.

Of course, we have indicated here key ideas for the stability analysis of the linearized system (1-6).
One has then to go from these estimates to the nonlinear Theorem 2.1. This will be achieved in Section 7.
Finally we introduce the simplified notation

IFI=110,. (fe)=(Feha,

for convenience.

4. Vorticity estimate under artificial boundary condition

In accordance with the strategy described in the previous section, we consider here the solution to the
system
VI Aw+ 0+ V -Vo+W-VQ=10t F+G, w=rotW, V-W=0,
>0, XeT,, Y>0, 41
Waly=o =wly=0=0, Wl=0 = Wp.

Here a given force term G € L?(0, 1/(Kv1/2); L*NH™! ), where H~!is the dual space of the homogeneous
Sobolev space I-'I(} (T, x R4) (the subscript 0 means the zero boundary trace), is also introduced for later
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use. As usual, the velocity W is given in terms of the stream function ¢, i.e.,

L dy¢
W=V ¢_(—3x¢)’ 4-2)
and ¢ € HOI (T x R4) is the unique solution to the Poisson equation —A¢ = w with the zero Dirich-
let boundary condition ¢|y—y = 0. This formulation is well defined, and the unique solvability of
(4-1) in the class w € C([0, 1/(Kv/2)]; LN H~1) N L2(0, 1/(Kv'/2); H}) is shown without difficulty
(under the regularity condition we impose on V, €2, and the forces). The reason why the regularity
w e C([0,1/(Kv'/?)]; H™") is preserved is that the term —V - Vo — W - VQ +rot F + G has a bound
in H! (in space) such as

=V -Vo-W.-VQ+4r1ot F+ Gl g1 < IVIiz=llollip2pz + 120z IWll 22 + 1 Fll 22 + 11Gll g2 -1

and also [[rot Wo|| -1 < ||Woll.> for the initial vorticity. Hence the space C([0, 1/(Kv'/?)]; H™') for
the vorticity field and the regularity ¢ (z, -) € HOI (T x R4) for the stream function are compatible in
our setting. By the parabolic regularity of the system, the v-dependent estimates for the higher-order
derivatives are easily obtained, and thus, our main interest here is the uniform estimate in time and v. To
this end, for j = (ji, jo) with j; + j» = j, we set

Wl = KVPUDR, a0y (V) = e KV UDR, iy, (4-3)
and similarly, (Aw)/ = e~ K™"?U+D B, 571 Aw. We also set
Vi=e Ko alty, vy = KB a0 va. (4-4)
From the first equation of (4-1), we observe that w’ satisfies, by setting [ = (I — [, Ip),

—V2(Aw) 4+ (B + KvI(+ D+ V-Vl +(Vig) - vQ
= —Va[Bj,, dyle K™ a)1
j-1 o
_ Z <J2>(J JZ)V]—I'(VQ))I
AVEA
1=0 max{0,/+ jo—j}<lr<min{/, j»}
j-l o
_ J2\(J )2 LN\ j-l
> (@G5t o
1=0 max{0,/+jo—j}<l,<min{l, j»}
. . 12 . .
trot F/ —[Bj,, 0y18) e K" "U+VF 4 G, (4-5)

Here the sum lez_ol is defined to be O for j = 0, and the definitions of F/ and G/ are straightforward.
To simplify notations let us introduce weighted seminorms; for a given nonnegative smooth function
§=§;(t,X,Y), we set

My jglol = sup ‘”"31'“’(]_””2)||Lé’(0,1/(1<u'/2);L%(,y) (4-6)
J2=Y, . J
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and also set, with the definition § = (§;)72,

v 2 e i oy
;o v (G+DV?P
WFIs = D —cmamyim Mg LF) 47)
j=0
Note that
Fer =MNFllee, 1=(1,1,...). (4-8)

The choice of &; is essential in the stability estimate for w’ . We will take

1
£ = ———, 4-9)
T Vv 20,
where
1 1 Y -2 |
pj=KiCi(1+(j+ 1)2Y)‘2+C*((1 + W) +v2(l +Y)‘2+v). (4-10)

See Section 3 for more on the origin of this weight. We also introduce the norm of the boundary trace as

o172

13y ply=ollloc = > _

Jj=0

V1/4(j 4 1)1/2

_ 12 ; ;
Gl b bl ol oy @D

The main result of this section is:

Proposition 4.1. There exists k1 € (0, 1] such that the following statement holds for any « € (0, k1].
There exists K1 = K («, Cy, C;‘) > 1 such that if K > K| then the system (4-1) admits a unique solution
w e C([0, 1/(Kv'/)]; L2N H=YN L0, 1/(Kv'/?); H)) satisfying

1 1 1
ol ¢ + K2 llolly ¢ + K5IVl 1 + K411y dly=olllbe
_ 1
=< C<||W0||L§” + v [lrot Woll1+ (C3 + Dy I FII g4
/ .
+ WWGHB’%@) + W”G||L2(0,1/(Kv1/2);H—‘))' (4-12)

Here C > 0 is a universal constant, while the weight €® is defined as

& °°
(i)
(J+D 2]
Remark 4.2. (1) From the bound 1/&; < (C} +8K'/4C,)!/? in (4-18) below, we have
3 3 1 1 1
K5 |||l < K16 (CT 48K *Co)2lolllye < K2 lolly (4-13)

if K is large enough further depending only on C} and C,. Estimates (4-13) and (4-12) gives the estimate
of K¥'lwll ;-
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(2) By the definition of (4-7), we have

o172

b1/
VI g, =0 Y S Gy = v Y
’ = GH = UHTRIEG+ D

Since §; <1/, /p; <1/ (Cv'/?) by the definitions (4-9)—(4-10) with the monotonicity condition (2-10),

we have
|||F|||2

VIFI g < oo

(4-14)

Before going into the details of the proof of Proposition 4.1, let us give a lemma for the weight &;
and p;, which will be used frequently. By the concavity condition on dy €2 in Assumption (iv) and the
definition of p; we have:

Lemma 4.3. There exists C > 0 such that the following estimates hold for any j > O:
1 1

= — Y >0,
5 C* maX{K1/4(l+(]+1)1/2Y) -2 v} forY >
1 4 (4-15)
_ . _1
,O_jSKl/4C* forO<Y =(j+D2.
In particular,
14012y 14012y
“—f +”—€j <C(j+D2. (4-16)
I+Y L Y Lo({Y=(j+1)~1/2))
Moreover,
Yoyp;
o)l <4KiC,, H Yhj <2 (4-17)
Pj =
and
1 * 1 1 SJ
— <(C{+8K2C,)2, sup §C. (4-18)
SJ L J>1 é] 1

The proof of Lemma 4.3 is a straightforward consequence of the definitions of &; and p;, so we omit
the details.

4A. Vorticity estimate for the modified system. In this subsection we collect lemmas for the solution
to (4-5) and give the estimate for the vorticity. The main result of this subsection is as follows.

Proposition 4.4. There exists k| € (0, 1] such that the following statement holds for any « € (0, k{].
There exists K| = K{(«, Cs, C;‘.‘) > 1 such that if K > K| then the system (4-1) admits a unique solution
w e C([0, 1/(Kv'/)]; L2N H=YN L2(0, 1/(Kv'/?); HY) satisfying

Vel

1
o Hllollh g + K2 lleollh

*

Cy+1 1
<C(v 2 [lrot Wolll+ =211l £, + mnmm;,gm+|||W|||’2,1). (4-19)

Here C > 0 is a universal constant.
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Since the unique solvability of the linear system (4-1) itself follows from the standard theory of
parabolic equations, we focus on establishing the estimate (4-19). Then the core part of the proof of
Proposition 4.4 consists of the calculation of the inner product for each term in (4-5) with S?wj , where
J = (Jj1, j2) with ji + j» = j and the weight &; is defined as in (4-9). Let us start from the following
lemma. The number 7 € (0, 1/(Kv'/?)] is taken arbitrarily below.

Lemma 4.5. There exists K11 = K1, 1(C7, Cyx) > 1 such that if K > K| | then we have
TO l . 2 .
(—v2(Aw), &0l ) dT
0
i 1,
= 0316 (Vo) I 1 = CVH 008 2 Ma gy [y 0 = C(C3+ DV G+ DI g 1o

Here C > 0 is a universal constant.

Proof. Let us write x/ = (x)(v'/?Y) = ke 'Y We will frequently use the identity

12+ 1
i vt eX
[Bj,, dy]l=—v2jox,Bj,—19y = ————""Bj,. (4-20)
v
Then we observe that
. 1/2:
. . v )
(Aw)’ = e*Krvl/Z(J+l)Bj28)](l Aw=V. (Vo) — ﬂ(ayw)l (4-21)
v
and
Vol = (Vo) + v%jle/)e—l(rlﬂﬂ(an)(jlajz—l)e2’ Wl = Xve_K”UZ(an)(jl,jz—l)' 422

Here e; = (0, 1). Hence integration by parts gives

fro 2 {((Aw), E207) dT
0

1

=2 /0 (16, (V)T |2 4+ 202 joe K" (6, (Vo) , 16 (Byw)I127D) + (V) - V(ED), o)) do

%

1 ; 1 1, S
T2 (V) 1720 012y = CV2 W02 ) 181 @) 27V, o)
7:0 . .
ot [l V@ ol
0

Here we have used [|§;/&;_1]L~ < C in the last line as stated in Lemma 4.3. When j, = 0, the term
(dy )27 is defined as 0 for convenience. It suffices to estimate ((Vw)/ - V(E}), w’). We have

V(EH) = ———— = 2 g3 (4-23)
/ VayQ+2p;
which yields
Q 2ay,0j 2 i
(V) - V(ED. o')] < & (Vw)’H(H o’ H gl ).
! «/3yQ+2,0] VoyQ+2p; ?
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To estimate ||(VyQ2/+/dyQ + 2pj)§2a)1 ||, we decompose the integral about ¥ into 0 <Y < (j +1)"1/2
and Y > (j +1)"!/2. Then we see from Lemma 4.3 with Sj /Ny Q+2p; = 53 < 1/,03/2

HJ—WYQ jo! : IVoy Q|
=32 YREWT [ L2({0<Y <(j+1)~1/2
ayQ+2pJ L2({0<Y <(j+1)-1/2}) /0;/2 Lo((0<Y <(j+1)-1/2)) ({0<Y<(j+1) D
- 2 Y V9,0 '
= (KVAC)2 | 1+vi2y "7
ES
L [loya’||.

< @
- (K1/4C*)3/2

Here we have used Assumption (iii) and the Hardy inequality lw/ /Y || < 4||dyw’||. Then by using (4-22)
for dyw’ and (4-18) we have

. , L -
[y ! || < |@yw)? || + V2 joll(dyw) V27D

||§/(3Ya))J I +Kv2]2 ||gj_1(3yw)(j1,jz—l)”

§illL £t
< C(Ci+ K7C)? (& @ya) || + mnns,»_] @y )V 270, (4-24)
On the other hand, we have from Assumption (iv) and (4-16) in Lemma 4.3,
H ViyQ o - H YVoyQ '1+v1/2Y . &0l |
v 3YQ+2P1 Ly=g+n-2y Il A+12Y)V 0y Q+2p; Y M eqr=genoey

koo 1 J'
= CGG+D2gje .

Next we estimate the term |[(2dyp;/+/ 9y 2 +2p j)éfa)j |. To this end we observe that

Y -3
Iaypjl52(j+1)%1(%0*(1+(j+1)%Y)‘3+2c*u%(1+Y)—3+2C*v <1+1—/4)
{2(J+1)2pj +2C,/Y, 0<Y<(]+1)
2+ Dip +20,/Y, Y= (+ D)

which gives, from Lemma 4.3,

N
Iy Q+2p;

3,0
%-ja)

£3 ]
%'a)f Pis;

<4<j+1>% I&jw! [|+2C,

+2|

L2({0<Y<(j+1)—1/2} L2{Y>(+1)~1/2))

2C,

W +2(J+1) ||5Jw1||

<43+ €0’ |+

Then we apply the Hardy inequality |’ /Y| <4 dyw’ || and then use (4-24). Collecting these, we obtain
(V) - V(E}), &)

C(CT+ 1)(C+ K42
(K1/4C*)3/2

(1€ By ) || + kv7 o |51 (Bye) 927D )

FCCI+ 1+ 1)5||s,-wf||).

< IE; (Vo) |
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Thus, by taking K large enough depending only on C} and C,, we obtain the desired estimate as stated
in Lemma 4.6. O

Lemma 4.6. There exists K1 > = K1 2(Cy, Cyx) > 1 such that if K > K| > then we have

K . .
/ (@ +KvI(G+ D+ V- Ve, &lel) de
0

> 1 j Lig.J (2 1g 3 N T
> 5§ (ro)lleY SlEj@ (O)IILZX‘Y+ Kv2(j+ Dl ”Lz(o,ro;L;Y)
*VI/Z

—W(”fi/(an)JﬂLz(m L2 )+(KW]) My 1 g [yol?).

Here C > 0 is a universal constant.

Proof. Integration by parts yields

TO . .
/ (@ +KvIG+ D+ V- Vo, gol) dr
0

— g J 2 _Lyg.J 2 (i I ATV
= 31gi0T @)l — 3180 O +KvIG+ DI G2 00n

— % / T°<af<s}) +V-VED, (@) dr

0

As for the term (3, (£}), (@/)?), we decompose the integral about ¥ into {0 < ¥ < (j +1)7'/?} and
{Y > (j 4+ 1)~'/?} and compute as follows:

(0 (€7), (@')?)]

Y 1\’ 14012y .
P - < J
<1+v1/2Y> Oeir 2 < Y )gfw

5l

1
E V2 <||(l+v2Y)$ ”L°°({0<Y<(]+l) I/Z})

2

LOO
2

14012y :
H (— £ €07 |12
Le{Y>(+1)~12)

C . _
Crvz <W [y’ |24+ CG+1)1E 0! ||2) (by the Hardy inequality and Lemma 4.3). (4-25)
E

IA

Next we have

. V.V@OyQ+2p;) .
VV 2 , J 2 < J cond 2
I{ (€7, (@) = H b+ 20, Lwlléjw l
Then we have from Assumption (iii) and Lemma 4.3,
Vidy dx Q2 Y(1+7Y) Vi(14v'72y)?
_— T3 027) 5 0x 9y Q2 _—
0y +20) || oo~ | (T4 012Y) el YA+Y)p; |
<Ch <H— +20Vi | ‘—w]/zy)z )<C(c*)2 2+1)
1 oo < V2(j .
AN FTCERTY PN Clya+ve; - !
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Here we have computed, using Vi|y—g =0,

Vi 1
o <oy VillLe | — + Vil '—
H Y(1+Y)pjl, PjllLoe((o<y <(j+1)-12) YA+ Y)pj lieqr=g+n-12p
<Ci(+D.
Similarly,
H Va2 (072 + 20y p)) “ Y(1+7Y)>2 Va(l+0'/2y)3 Va| || Yove
Q2+ 2p; (1+v1/2y)3 % ol YA+Y)20; [0 [ Y el 0 1
V17273
SCCT(H—Z —|  +1vali ‘—( ! )+zc;m%
3 1
SCCT(”aYVZHLOOH(l—l——Y)Zp' + | Vallz=v?2 ,0_ )+2CTU2
J 'L J L
< CCHCI+Dv2(j +1). (by Lemma 4.3).

Note that we have also used ||dy V||~ = ||0x Vil < C Tvl/ 2, Collecting these and applying the identity
(4-22) for dyw’ in (4-25) (that is, we use (4-24)), we obtain the desired estimate by taking K large enough
depending only on C7 and Ci. O

Lemma 4.7. It follows that

C(Rj,Lemma 4.7[V¢])2
vI2(j+1)

70 . . 1 .
/0 (Vi) - VQ, &lwl)|dT < + 5KV G+ DIEO 172 002, (426)

where

Rj,Lemma4.7[v¢]
_ Cik (K1/4C*)1/2
K1/2 K1/2

AR (K'?Cy)'/? M3 j 1[0y 4]
+ KZ)VZ (J + I)Mz,][VqS] + T(ijv—lﬁ_] W

Here
1 for0<j<v 121,

8jcv-ing = {0 for j = v12
Moreover, there exists K13 = K1 3(CY, Cy) > 1 such that if K > K3 then

o172

Rj,Lemma 4.7 [V¢] /
X(j) GG+ i < CllVella . (4-27)
J:

Here C > 0 is a universal constant.

Proof. 1t suffices to show

/ {(Bx$)! .l )| dT < 2607 jo (M ;[V$])?, (4-28)
0
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/O (o; (0x$) , E20 )] d

1 /M, i [0 1, 1 P . _1
amaw(M +/<vz<J+1>2Mz,j[V¢])||sjwf||Lz(o,,0;Lg”), 0<j<vi—1,
1

) . (j+D1/2 . . - (4-29)
C(K3Cy)2 M, ;[0xP]|§ e’ ”Lz(O,To;L%(,y)’ J=Vv 2,
and “
. . 1 1 ;
/ {0y §)! 0xQ, £’} dT < CCYv2(j +1)2 My, j[3y ] 1§00 I2200.70:22 - (4-30)
0 :
Let us start from (4-28). To compute ((dxp), w'), we first observe that
. . /2. .7 .
ol =V (V) - 2L (gy9)]. (4-31)
v
Then we have, from integration by parts and [B},, dy] = —((v1/2j2X;)/XU)Bj2,
. . . . l . . L .
((0x@), ') = —(V(3x9), (Vo)) —v2 jo((By )V TH27D 3/ (By¢)7)
. . 1 . . .
= —(0x (V). (V)') =207 jo(x, @y ) 127D By )
— 207 jo(x, (By )Y By p)).
Hence we have, from | x| ||~ = «,
KU . . 1
f ((@xp)’, w!)|dT < 2kv2 jaM> ;[dy$]*. (4-32)
0
To estimate [;° [(p;(3x¢)”, 5}wi )| dt, the key inequality from the definition (4-10) is
£ipj </p] <CKSiC)I(1+(j+ 1Y) +Cv2, (4-33)

where v!/2(j +1) <2 is used. Thus we have from the Hardy inequality
K . .
/ [(pj(0x9) . &7} dT
0

< /0 1€ (3xP)! &7 || dT

C(KV*CHV? ™| (axp) ; I : :
=< G+ 1)T/2 /0 1% ||§jwj |dr + Cv> ||(8X¢)J ||L2(0,r0;L2)||f§ij ||L2(0,r0;L2)
C(K'*c )2 . , 1 . .
< 110y (Ox D) 11 120,20 2 1€ @7 11 1200, 20:22) + CVZNOx D) 11 12(0,20:22) 1€ 07 11 120, 70222 -

= Gani
Then the desired estimate for 0 < j < v~!/2 —1 follows from Kzv!'/? <1 and
Oy (0x9)! = 57" 9y ) 402 joy By @)UY, (4-34)
On the other hand, the estimate for j = v~!/2 easily follows from

1€10;0x$)’ 1| < 11v/B7 L=l (Ox ) || < C(K3C)3 [ (Bxd) . (4-35)
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Finally we have, from Assumption (iii) and Lemma 4.3,

14+v'72y

Ay 0 -
X 1+Y

& () 92l < | — 2
5/ Y¢ X = 1+v1/2Y

gl 1Grd) I <CCivi(i+ 12 @),

L L

which gives

KU . . 1, 1 .
/ By )T 0x Q. £207) | dT < CCv2(j + 1)2 My [0y @11Ej007 | 12000012, -
; |

Collecting these, we obtain (4-26), for the identity

holds. The estimate (4-27) is verified from the definition

172

1/4( i1 1/2
3 vG+D
j=0

and
vol2_ 121

M j 1[0y @] _
2 (GDI20IRVAG+1)

v2( + DMy 11 [ V9]
(G + DYV £ 1)

j=0 j=0
o 04 My V)
j=1 '
Lemma 4.8. Let j, > 1. Then it follows that
70
—Ktv'2(j+1)qJ 2 L -
/0 |(ValBj., ay1e™ X 0 Voo, 20) dr < CCTv1 gl Iy pa - (436)

Here C > 0 is a universal constant.

Proof. The estimate directly follows from (4-20) and

Vax,l <

1
1Y X0l < I9x Vil Y x| < CTv2|Y x| < CCT X
LOO

by Assumption (iii) and kv!/?¥Ye~* vty < Cy, for a universal constant C > 0. O
Lemma 4.9. Let j > 1. It follows that

[IE 5 (s

=0 max{0,/+j>—j}<lp<min{l, j>}
where

dt

=<

= O

Rj,LemIna 4_9[60] ”Sjwj ||L2(OsTO;L§(y) ,

Jj—1 .
1 . .
Rjtemmasolw] =Y (j =1+ D} min{l +1, j — 1+ 1}({ )Noo, i VIMy 1 g [0,
=0
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and
i 4 V2
Noo jIVI:=sup | [IB;,dx " VillLe,1/kv12):L5,) T K :
=0, ' Xvo Lo 1/(KvI2):LE )
Moreover,
‘- R (]
j,Lemma 4.9 @ % ,
-Zo GG 1 iy = CCollelbe: (@37
j:
Here C > 0 is a universal constant.
Proof. We first observe that
2\(J—J2 J . .
and
#{l, e NU{0} | max{0,l+ j» — j} <lp <min{l, jo}} <min{{+1, j — [+ 1}. (4-39)

Hence we have

[IE s (s

1=0 max{0,/+jr— j}<lr<min(l, j»}
1

dt

~.

= (7) mintt+ 1, =1+ DI VI (0 120,002 16707 120 1
=0

From the definition of &;, we see, for0 </ < j —1,

C(j+I—12,

5. A+G+D2N2
& ~ A+I+D12y)=2 =

where C > 0 is a universal constant, and thus,

P . 1 P
16, VT (Vo) 20022 < CG 1= D2IEVIT (Vo) [l 120.0: 12)-
Next we have

& j—1 L+1.1
" IV e &1 0T 20 20 02
+1 1 Lo

< CNeo,j-1lVIM2 116, (@],

- ,
16 V] (Ox@) 1120020 12) <

and similarly,
v/

Xv

&

l1,h+1
™ €10 2N 2020 2)
+

L’JO

- ,
16 V5 ™ Oy @) I 120,0:22) < ‘
LOC

C
< ;Noo,j—l[V]Mz,erl,g,H[w],
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Here we have used from 9y V; + 8y V, =0 that VJ /X,, = 3y Vo)1 —hoa=h=1) — Vl(jlfl”q’jrlrl) for
Jj2 — I > 1, which satisfies ||VJ /X,,||Loo < CN,j—1[V]. The estimate (4-37) follows from

172 j—1
1 1
s 3 i I\ ! (Jj+1)/2
Zo(j!)3/zvj/2v1/4(j+1)1/z 12(;(] I+ D2 min{l+1, /= l+1}( ){(J DY+ DY
Jj= =
Neo,j—i[V] M3 41.5[w]
((J —DN32vU=D72 (1 + 1)1)3/2p+D/2
vo1/2 -1 3/2 . 1
. L . (L+1) (j =D
< —1+1)2 I+1,7—-1+1
_ggw + 1) min{l +1, j 1+ }(j+1)1/2(l+2)1/2< e
Nooj—ilV] VA +2)'2My 14 g0]
((J —DN3/2pG=D/2 (4 1)N3/2pU+D/2
—1/2J 1

Neo,j—i[V] A+ 2)V2M 41 g (0]
=€) T :

— = j— l)!)3/2v(j—l)/2 ((+ 1)!)3/2v(1+1)/2
Jj=

Here we have used, for j > 1,

1+1)32 i —DIN\2
Gl Diminl +1,j— 1+ 1)j— D ((J )

1
<C, 0<lI<j-—1, 4-40
G+ D20+ ! ) = == (40
with a universal constant C > 0. Here the key is the following estimate for each k =0, 1, 2, 3:
i — D!
(G—ntn - C
v T G+DH
Then we obtain (4-37) from the Young inequality by convolution in the /! space. U

forl+k<l<j—1—k. (4-41)

Lemma 4.10. Let j > 1. It follows that

/o< f 2 (B2 voi g a)’>

[=0 max{0,/+j,—j}<lr<min{/, j»}

dt

= CRj,Lemma 4.10[Vo] ”5ij ”LZ(O,'L'();L%(.Y)’

where
Rj,Lemma4.10[V¢]
L, L,
= Cyv2 j(Mp j[VPl+v2 My j-1[V])
Jj—2
1
FG+DE Y min( 41— 1) (] ) Now j I9RIMs 11 [y g1+ 050+ DM [V
=0 1 3
+v2(J + D2 Noo 1 [VQIM; j—1[0y @]
and
Noo,j—1[VS2]
‘= sup (H( )(ByQ)J +v72 || —————(0x )/ )
J2=0.... vl/2y L20.1/(Kv1 )L ) L+vl2y L2(0.1/(Kv!2):L% )
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Here the second term on the right-hand side is defined as zero when j = 1. Moreover,

172
Z Rj Lemma 4.10 V¢]
(Jy)3/2vj/2 1/4(J+1)1/2 -

< C(C5+CHIIVPIS 5- (4-42)

Proof. As in the proof of Lemma 4.9, we have, from (4-38) and (4-39),

/TO
0

Jj—1

DS N o (A LRI

=0 max{0,/4j2—j}<lr<min{l, j»}

j—1

< Z(f ) min{l + 1, j — 1+ L}I& (V) - (VR ™ 120,001 16707 | 120,20 12)-
[=0

Then we have, from Lemma 4.3,

(1+v 1+Y
1+Y Lol T+ 0172Y

. 1
< Cvf(] + 1)2Neo, j1[VQIM 1[0y ¢].

@x 7 1@y D) Nl 120,50:22)

18y ) Ox 2 " 120,0012) < ‘
LOO

Let j >2and 0 <] < j — 2. Then,

1€ (3x#) By 2 7l 120 20:12)
(1+v'27)g;
14+Y

1+v!/%2y
1+Y

————(3x9)"

1+7 .

( 2 ) Oy )i~

e \1+v!1/2Y L L2(0.70:L%)
. 1 1

< C(j+ 17 Noo j i [VRIN13y Ox D) Nl 120,0:22) + V2 1 @x ) 11200, 20: £2))-

where the Hardy inequality is applied in the last line. Then (4-34) gives

1€ (3x#) By 2 7l 12(0.20:12)
< C(+ 1) Noo [V (Mo 41 [0y p] +,02 (1 + DMy [V]), 0<1<j—2.

As for the case [ = j — 1, by recalling &§; < 1/4/0yQ + 2p, we compute

1+v!/2y

v ———(3x9)"

17 (Ox ) By 2 Ml 20.20:12) < H £ (3y Q)7

Y
I+vl2y L L2(0,79;L2)
%y Y peLIAY)

<C
- (Hl—l—vl/zY./ayQ—i—Z Lo Hl-l—vl/zY VoyQ+2p Loo>
1
x 18y @x D) | 220.70:22) + V21 @x D) | 12(0.10:22))-

Here we have used the Hardy inequality and that, when [ = j — 1, either (3yQ)/~! = 82, Q or x,32Q
Then, by using ||((1 +v'/2Y)/Y)x, |z~ < Cv'/2, Assumption (iii), and (4-34), we have

. 1 1 .
1€ (Ox ) By 27 7l 20,70 22) < CCIV2 (M1 [yl + kv (L + DM [VP]), [=j—1.
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Collecting these, we obtain the term R; 1 emma 4.10[ V] by noticing ;C; = j for [ = j — 1, as desired. The
estimate (4-42) is proved as in (4-37) but by also using the Young inequality for convolution in the /'
space together with the following estimates for j > 2:

G+DImin{l+1,7—1+1)

(I+1)3%? G-nn

(+ D121 4+2)1/2 j!
[+1 (=D

(j+1)1/2(l+1)1/2( J!

1
2

G+D2minfl+1,j—1+1)

1

2
) <C, 0<l<j-2.
Note that the condition [ < j — 2 is crucial here, for we apply (4-41). We omit the details. (I
Lemma 4.11. There exists K1 4 = K1 4(CY, Cy) > 1 such that, for K > K 4,

o Jj J1 —Ktv'2(j+1) 2
(rot F/ —[Bj,, dy]oy e F,§ol)dt
0

j L. . 1 ;
< C(C3 + DMoj g, IFIE (V) | 20 i1 V2 M1, [y ol + G+ D2 1807 | 20,0012.,)
and
0o .
/(; (G7, & wl)dt < Mz,j,gj[G]”gij ||L2(o,fo;L§(Yy)-
Here C > 0 is a universal constant.

Proof. The estimate about G/ is straightforward and we focus on the estimate about F/. Integration by
parts and also (4-20) yield

TO . . . .
/ (rot FJ —[By,, ay)ag e X7 UV €20 de
0

KU R . . Lo
= f (FI, VE(E207) + 02 plx, Fl &2 K" (3yw) 2Dy .,
0

The second term is bounded from above by CKv1/2j2||§j Flj”L2(O,r0;L2)M2,j—1,%'_,‘_1 [0y w], and thus we
focus on the first term:

TO . .
[ v gl
0
70 . . . . ; PR
= / (FI-VEED), f) + (FI, E2(VEw)) +v2 jo(F], 62 e K" (9ym) 127Dy de
0
To . . . 1
5/ (FJ'VL(-??),wJ)dT+M2,j,g,-[F]||§j(Vw)J l22(0,70:22) T CkV2 oMo j g [F1M2 1, [0y w].
0

Then, from Assumption (iv) and Lemma 4.3, and by recalling

VE0yQ+2p)) V5iayQ
———E = ——Sﬁ - 2(Vij)S?,

VEiED = -
/ VoayQ+2p; ! VoyQ+2p;
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we have

(F/-VHED, o)

< |lg;F7| H YV@yQ+20) o ‘1+v”2Y j
< 15; ; —w
(14+v12Y)VoyQ+2p; Loy <(j+1)-112)) Y L2({0<Y <(j+1)-172))
+H YVayQ ‘l—i—vl/zY T
— j@
A+ v12V)VIyQ+2p) leqr=grn-epl ¥ Le(y=(+1) 1)
2 ! J
+ 1Yoy p;&;llLe I &’ |l
Lo((Y=(j+1)~12)

wd

<C|i&F/|| (<C§||s}||Loo<{0<Y<( -2 F 1Yy p&7 | o1& ||Loo({0<Y<(j+1)-./z}>)

F(CE DG+ D) ||s,~wf||>

*
<C|&F7| ¢, : 1ye’ |+ (C 4+ D) + D2 107]]).
=lsj Kl4c, " (KUAc)z )" 2 i

Thus, the estimate (4-24) for dyw/ yields the desired estimate by taking K large enough depending only
on C} and C,. O

Proof of Proposition 4.4. We are now in position to prove Proposition 4.4. Lemmas 4.5-4.11 imply that,
by taking the supremum over j, =0, ..., j,

1 1 1
ViMy g [Vol+ Moo j g lo]l + (Kvzi(j+1))2Ma ¢ (o]
: L1,
< C( sup  [[§;0’ (0)|| +kvivijMy ;¢ [Vol
=0.....

Rj,Lemma 4.7 [V¢] K_l Rj,Lemma s9lw] + Rj,Lemma 4.10[V¢] + M2,j,§j [G]
v1/4(j+1)1/2 (Kv1/2(j+l))1/2

H(CE+ DV M, j,g_,[F]>

for j=0,1,...,v"'/2 Here K > 1 is taken large enough depending only on C, and C}“, while C > 0 is
—-1/2 .
a universal constant. Hence, by taking the sum Z'J’-:(; with the factor 1/((j 1)3/21i/2) | we obtain

1
IVell, g, + ol e + K2l ¢

—1/2 | C*
< C(Z (i, Sup ||sjwf<0>||+K|||Vw|||zgm+ ol e
j=0

,,,,,

Ci+C3 / ! =
{1+ = ) IVl + iy G o + =7 I 2o,

Thus we obtain (4-19) by first taking « > 0 small enough and then by taking K large enough, and also by
using £; < 1/(C,v'/2) <1/v1/2 to bound ||£;@7 (0)||. Note that the required smallness on « is independent
of v, K, C,, and C}k, while the required largeness of K depends only on k, C,, and C;.k. The proof of
Proposition 4.4 is complete. U
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4B. Estimate for the velocity in terms of the vorticity. In this subsection we give the estimate of the
stream function ¢ in terms of the vorticity w. We remind the reader that w = —A¢ with the boundary
condition ¢|y—g = 0.

Proposition 4.12. There exists k3 € (0, 1] such that, for any K > 1, « € (0, k2], and p € [1, o0,

1 1
VeIl 1 < CKEC+CDENII, ¢ +C/CPUTCON o1 koryre

X, Y)
Here C > 0 is a universal constant.
Proof. 1t suffices to show

o172

pl/CP) (4 /P

Jj=1 (jH3/2vir2 My, j1[Vo]
< C(K%C* + Cik)% |||a)|||;,,g + /e ||V¢(O'O) ||Lp(0’]/(Kvl/2);L§(,y). (4-43)
tjz 1, andletus recall that wl = e—KWI/Z(Hl) sz ai} jzw with w = —A¢. Computations similar to
those in (4-21) imply
a)j — —V'(V(b)j + pl/2 ]2)(,) (3y )J

v

Then integration by parts together with the identity

Vel = (Vo) +v2jaxie ™ (ay @)U Ve,
yields
(!, 1) = (V) |12+ 207 joe K" (4! (By )/ , (Byp)U— 22—y, (4-44)

1/2

¢’

§j

Then (w/, ¢7) < ||€;w’ ||l|¢7 /&, ||, and the definition of &; in (4-9) gives
1+v'2y
1+Y

< <cl)f<cuay¢f I+ v2 (167 1) + 205767 |-

Here we have used Assumption (iii) and the Hardy inequality. Next the definition of p; in (4-10) implies

+2]/pd |

1xvl2y

1+Y 2
= |VayQ+2p;¢7 || < dy 2

LOO

1 1 Yy \!
\/p_jsKéCf(l+(j+1>%Y)—1+cf((1+m) +vi(1+Y)—1+v%),
which gives, from the Hardy inequality, pl/ 2( j+1)<2,and K > 1,
j 1 % . _1 Jj % 1 Jj
lV/ojd! Il < CK3CL(j+ 1D 2||oye’ ||+ Civ2|¢! .
Thus we have

J . .
“”—_ < C(CF+KFC)2 |y |+ C(C + C)2v2 1.
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Thus (4-44) and the identity 0y¢/ = (dyd)! +v'/2jox e K™ (3y ) =721 finally give
(Vo) | < C(CF+ K5 C2 (1§07 [| + Chv? joll By d) I 227D | 4 w2 7).
Here C > 0 is a universal constant. Taking the supremum over j, =0, ..., j yields
M,y ;1[V] < C(C+ KiC)I M, j g [l + Ckv? jM,, ;1 1 [Vl + £v2 M, ;1 [6].

Thus we have, from M), ; 1[¢] <M, j_1.1[V¢land (j +1)/j <2 for j > 1,

o172

pl/CP (4 /P
(j)¥Pvil?

My j1[Vo]

= I 1y 5o 2O+ DY
< CKAC.+CD Il e + (Cr+ ) G M Vo)
Here C > 0 is a universal constant. By taking « small enough we obtain (4-43). ]

In view of the estimate in Proposition 4.12, our next task is to show the estimate of the zeroth-order
term V00,

Proposition 4.13. Let «; € (0, 1] be the number in Proposition 4.12. There exists Ky = K>(Cy, Cy) > 1
such that, for any K > K and k € (0, k2],

1 11,(0,0) v 0.0 K2vi(|Ve®©
Vi ||L2(O,1/(Kv‘/2);L§(.Y) +1Ve I|L°°(O,1/(Kv‘/2);L§(’Y) + K204V ||L2(0 1/(Kv'/2):L% )
1 1 )
= C(” W0||L§(,y + —K1/2v1/4 ”F||L2(O,1/(Kv1/2);L§(_Y) + —K1/2v1/4 ||G||L2(0,1/(Kv1/2);ﬂfl) + |||w|||2g) (4-45)

Here C > 0 is a universal constant.

Proof. 1t suffices to show
(0,0 0,0 e
viflo' )||L2(0,1/(Kv1/2);L§(.y) +1 Vo' )||L°°(0,1/(Kv1/2);L§(_Y) +K2vi]|ve©? ||L2(0 1/(Kv/2); L3 )

1
C<||WO||L§” + W”F”LZ(O’I/(KVI/Z);L%(,Y) + W”G”LZ(O,I/(KUI/Z);I-'I*I)
>)<

Kl/z 13y @l 1) (4-46)

Indeed, estimate (4-45) is a direct consequence of (4-46) and Proposition 4.12 by taking K large enough
depending only on C7 and C. To prove (4-45), let us go back to (4-1) and take the inner product with ng¢
for (4-1), where ng = n(Y/R) with a smooth cut-off n suchthat p =1for0 <Y <landpn=0for Y > 1.
Then, taking the limit R — oo after integration by parts verifies the identity

v 002 + ||V<z><0°>|| + K2 Ve 002

_ —(A¢(O 0), V. V¢(O 0)) <F(O’O), vJ.¢(0,0)> + (G(O'O), ¢(0,0)>, r>0. (4_47)



3154 DAVID GERARD-VARET, YASUNORI MAEKAWA AND NADER MASMOUDI

Note that [(F @9, vEp O < || F |||V @D | and (GOD, ¢ | < |G| -1V ®?|. Thus it suffices
to focus on the term —(A¢®9 | V. V¢©9) Integration by parts and V - V = 0 imply

—(AGOD Y. yp00)
= (9x¢ ", (3xV) - Vo2 0) + (3y @0, (3y V) - V)
= (9x¢ ., 9xV) - VOO — (300, (05 V2)dyd ) + 3y ¢, 3y V1)ox )
<2003 VOO + 3y, 3y Vi)axd®?).

Here we have used Assumption (ii). Then the last term is estimated as

- - 9 (0,0)
H1+ Ty Vi) 10reCl

1
< Cillay @O 1(Cl18%y o @O + v2 1 3xp @),

@y 0, (8y V1)axe®?) < Iy V)

Y

14012y
LV oo

Here we have used Assumption (ii) and the Hardy inequality. Hence, by taking K large enough depending
only on C}, we obtain

)2

— o 10x 0y eV I+ CUF I+ IGI

1 d
v2]|w®02 +5 - IVeO) +Kvi|| VP02 < 1)

Integrating about t shows (4-46), for v 12350y @02 »00 |||2 1)2 holds. [

L20,1/(Kv'2): L% ) = < (llloy

4C. Proof of Proposition 4.1. Propositions 4.12 and 4.13 yield
K31Vl < C(Kiudc* +CD2 ol g + 1Woll 2,
+ W”F”LZ(O,I/(KVI/Z);L%(,Y) + W”G”Lz(o,l/(lﬁ)lﬂ);ﬂ1))‘ (4-48)
Then (4-48) and Proposition 4.4 give
ol ¢ + K 2 ol + KNV Il5. g

= C(IIWolngﬂy +v[llrot Woll ]+ (C3 + v ™2 IFI g,

/
+ WIIIGIIIZ,@ + W||G||L2(o,1/(1<.,1/2);g—1)). (4-49)
It remains to estimate the boundary trace |||dy¢|y=olllbc. By the interpolation inequality we have

933y ®(x. X, 0)] < Cllag a7 (z. X. )| 5193y b (x. X. )1}

which implies
1 .
K+ “ 8Y¢(]’O)|Y=O||L2(0 1/(Kv1/2)'L2)

< CK3 [0}V 02 0y U0 2

L2(0,1/(Kv'/2);L3 )l L2(0,1/(Kv'/2); L% )

Lo 11 , 1
<C(Ki|wY )||L2(0,1/(KU1/2);L§(_Y))2 (Killayp"? ||L2(OJ/(KV1/2)?L§(,Y))2' (4-50)
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Here we used the Calderén—Zygmund inequality. Since (4-18) yields
U0 2 | < (CE4+8KiCy)I My ¢ [0]
L2(0,1/(Kv'/2);L% ) = \*1 * 2,j,§j )
we have from (4-49) that, by taking K further large enough if necessary,
1 1 11 1
K13y ly=olllbe < C(K2|lwll3 )2 (K [IVl 1)2

- _1
=< C(IIWolngw + v [lirot Woll1 + (C5 + 1)v ™2 IIIFIII/Q’gm

1
/
T K1/2p1/2 |”G”|2,§<2> + W”G”LZ(OJ/(KVUZ);H1))-

The proof of Proposition 4.1 is complete. U

5. Construction of the boundary corrector

In the previous section, we constructed a solution to the vorticity equation with arbitrary initial data
but artificial boundary conditions: we replaced condition W;|y—g = 0 by w|y—¢ = 0. Hence, to prove
Theorem 2.3, we still need to understand how to correct the Neumann condition, that is how to construct
solutions for systems of the following type:
1
—VIAw+ 0+ V -Vo+Viep-VQ=0, t>0, XeT,, Y>>0,
Ply=0=0, y@ly=o=h, ¢lr=0=0.

Here ¢ (7, -) is the stream function associated with the vorticity w(z, -), 1.e., ¢ € Hol (T, x Ry) is the

(5-1)

unique solution to —A¢ = w subject to the zero Dirichlet boundary condition. Such a construction will
be performed through an iteration, with first approximation given by the Stokes equation.

SA. Stokes estimate. In this subsection we consider the solution to the Stokes equations (in terms of the
stream function):

VI Aw+8,0=0, >0, XeT,, ¥>0,
@ly=0=0, 0y@ly=o=h, &l.=0=0.

Here ¢ € H(} (T, x Ry) is the stream function associated with w, and 4 is a given boundary data satisfying
h(t)=0fort=0and 7 > 1/(Kv1/2), and the norm |||/|||pc 1s defined as

(5-2)

vo12 v1/4(j+1)1/2 Kool 2(41) )
— E —Ktv J+ J _
|||h”|bC — (]')3/2Uj/2 ||€ 8Xh||L2(0’1/(KV1/2);L§() < OQ. (5 3)
Jj=0

Set ¢ = e K™'?UtDp/1g 0 < j; < j, with the zero extension for T <0, and let { = ¥ (A, a, Y) be the
Fourier (in X and t) transform of yr. Then, since —A¢ = w, the function 1& obeys the ODE
Yea2 228 Lo N
V2(0y —a) Y — (A +Kv2(j+1)(0y —a)yy =0, Y >0,

. . . (5-4)
Uly=0=0, dy¥ly—o=2gY",
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where A € R and U is the Fourier transform of gi1) := e=K7'*(U+D3/1y We note that
x=v2n, (5-5)

where n is the n-th Fourier mode in the original variable x € T. Assuming the decay of (|oz|1ﬁ, BY@) and
the boundedness of 1/7, we obtain the formula

. e VY _olaly
Yo, ¥V)=—— 5V ),

Y — lef (5-6)

i
14 =yj(k,a, v, K):\/Ol2+K(]+1)+m,
v
where the square root is taken so that the real part is positive, and it follows that
el < Ve + K(j+1) <Re(y) < ly| < V2Re(y). (5-7)
This inequality will be freely used. We can also check the identity
WP, ) =—e7"gW0, @) +sgn@ay (h,a, Y). (5-8)

We also have, from (5-6),
—@F —aH)P = (y +la)e 7" gV, (5-9)

This formula will be used in estimating the vorticity field.

Lemma 5.1. There exists k' € (0, 1] such that the following statement holds for any k € (0, k']. Let
j1=0,...,jand jo=j— ji. Then

N Cv72/2 i, | 8D 1 — e~ W—lahY
Byiali (0, v)| < S 2128 '(Ye—R“'(V)Y/2+e—'“/2 — ) (5-10)
2+l Y —la|
o Cv2/2 jl|gUn| Re(Y /2
|Bj,dy Yy (h, 0, Y)| < Té’_ Y72, (5-11)

Asa consequence,
1

~ ~ 2
( ) ||Bj2iaw(-,a,->||i§‘y+||B,28Yw<-,a,->||ii‘y)

aev!/27 |

Cvjz/ijg i 7
< 50U (. 2 ] 5.12
= K1/4(j+1)1/4(j2+ 1)( 21/2: g™ ( ,Ol)”L%) ( )
acv/Z

We also have

(X

acvl/27

1

2 \2 Cvi/2 i) 1
J2 5G0 (. o2 ]
) = K1/2(j+1)1/2(j2+1)( Z g™ ( ,Ol)IIL§> . (5-13)

2
Liy aevl2z

.
H_—YszlaW(',Olw)

Here C > 0 is a universal constant.
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Proof. We first show (5-10) for Bj,i mﬁ. It suffices to consider the case j, > 1, for the case j, =0 is
trivial from (5-6). We observe from (5-6) that

R g,(jl)xviz _ y , y
Bj,r = — (=9)2e™ = (—la2e™™)
Y — laf
oV — (—la V2 , o ] — e —laby
=_( Y) (—=lal) nge*VYg(Jl)+(_|a|)J2XI{2€*|a\Y§(J1) € ) (5-14)
Y — laf Y — laf
Since
Jjo—1 j
. . . X -
(=) = (—lah” = (=D Y (1) = la) el
=0

we have, from (2) < jo(, ") for0<lh < jo— 1,

!

i -1 .
J2 p—l—1 . jr—1 _——
512;)([2)|V_|0l||12 2 |Ol|12§JZZEO( I >|}/—|Ol||jz ) |Ot|12
h= -

= jo(ly = lel| + 1al)* ™" < pBly D2

‘(—y)f2 — (—la])”
Yy — la|

Here we have used || < |y| by (5-7). Then the inequality x, =1 — e—kv'?Y <kv'?y implies

"= (lab? o

=< ].2KU%Y(3K1)% |y|Y)j2—1e—Re(y)Y
v =l

< jokv22Y 32k Re(y)Y) 2~ le  REY  (by (5-7)).

From the bound r*e™" < (k/e)* and the Stirling bound (k/e)* < (2m)~'/2k=1/2k! for k € N, we have

1 2=l _Re(y)Y/2 (2 = D! .
5 Re(y)Y e <—| >2
(2 ’ ) V2 (jo—D1/? =

This gives, when 642« < %
. . /2
(2= (a2 5 y| L VPR, Repirs
y —lal ' ~(p+D

Similarly, we have, for j, > 1,

s ]221

.
|(_|a|)jzsze*|0l|Y| < Me*IaIY/Z.
b T+l
Hence (5-10) for Bj,i ouﬁ follows by collecting these with (5-14). The estimate for B, 8y1ﬁ is proved in
the same manner in view of (5-8), and we omit the details. Estimate (5-12) follows from (5-10) and the
Plancherel theorem, by observing the estimates for the multipliers

C
—Re(y)Y/2 - )
Y e™ e IILg = KIAG+ DA’ (5-15)
—_ o~ (y—=lahY
ael1Y/2 le— < ; (5-16)
y—lal |l = K7AGHDA
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Here C > 0 is a universal constant. Estimate (5-15) is a consequence of (5-7). As for (5-16), we divide
into two cases. (1) The case |a| < %Kl/z(j + 1)!/2: in this case we have, from (5-7),

oo + K'2(j + D)!/?

ly —la| = |y —la| >

C
with a universal constant C > 0, which gives
—ety2| 1= e~ labY c “lalY/2
ae — |l =< || I
y—lel |l 7 lel+ K20+ D2 v
Cla|'/? C

< < .
- |O{|—|-K1/2(j+1)1/2 - K1/4(j+1)1/4

(i1) The case |a| > %Kl/z(j + 1)!/2: in this case we used the bound

_ .2
sup <C,
Re(z)>0 <
which gives
— e~ (y—lahY
el 2| 12N gy, < C o ¢ ,
y—lol |l P ol 2 T KRG DA

The proof of (5-16) is complete, and (5-12) is proved. Estimate (5-13) is proved similarly by using (5-10),
the Plancherel theorem, and

Y o~ Re()Y/2 ¢ (5-17)
14+Y L2 - K3/4(j+1)3/4’
— e~ —lahY
Lefla\Yﬂ 16— < ; (5-18)
I+Y y—lal [l = K2 +DI2

Here C > 0 is a universal constant. Indeed, (5-17) is straightforward, while in (5-18), the estimate

becomes worse due to the case |a| < %K 12(j + 1)'/? with |a| <« 1, where we compute
— e~ (r—lahyY
1 o—lal¥/2 1 —e~r i - C 1 —lal¥ /2 - C .
1+Y y—lel 2 7 lel+ K2+ DYV 1+Y 2 K'Y+ D2
Here we essentially use the factor 1/(1 4 Y) to obtain the uniform estimate in «. (I

In Propositions 5.2 and 5.4 below we give estimates for the solution to (5-1) given by the formula
as above in terms of the Fourier transform. We always take « small enough such that « € (0, «'] as in
Lemma 5.1.

Proposition 5.2 (estimate for velocity). It follows that

v 4 1N3/4
VAGED 1 c
E )T Mz,j,l[v¢]+E (j!)3/2vj/2+1/4(j+1)1/2M2,j,1/(1+Y)[8X¢]f_K1/4|||h|||bc- (5-19)
j=0

12

Jj=0

Here C > 0 is a universal constant.
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Proof. Assume that M ; 1[V$] = (V)7 ||L2(0 (K23 ) for some j = (ji, j») with ji+ jo» = j. Note
that this j; depends on j, and we write ji[j] if necessary. By the Plancherel theorem the estimate (5-12)
implies

) CUJ Jl[/]/z(J —]1[]]) ” jl)“Lz(o1 (K 1/2)‘L2)’

xr) = KVAG 4+ DYA( = jilj1+1) R
K 2741

ROV = ¢~ KTV EGitD g i,

||(V¢)J ||L2(o 1/(Kv'/2); L2

Thus we have

v

1/4(]+1)3/4
—Mz 1[Vel
N3/2pi/2 oJs

= UHTR

—1/2 1 1
1 JUIN( T+ )
= K1/4 Z(] —JilJ] ) (j_jl[j]+1)( J! ) <j1[j]+1)

(L GTED g
(13 /2vilil/2 L200.1/(Kv1/2); L)

We decompose the summation in the right-hand side as ) _ iljj=j (€., j'ssuchthat0 < j <v —172

jiljl1=j) and Zjl[j]sjfl (i.e., j’ssuch that 0 < j <v~"2?and ji[j] < j —1). Then the sum of }_
is bounded from above by [||A|[|be, While the sum of ) A<j—1 is bounded as

> (4 I (jl[j]!)5< j+1 >5
2 \j-atit) G=a+o\ i ) Ui+

alil=j—1
y v1/4(jl[j]+1)1/ " (]
(il j1)3/2vili1/2

iyt (jlmz)i( j+1 )i
= 2 (i) G+ D\ Jt ) \G+1) ool

hljl=j—1
1)1/4(k+ 1)1/2
x W”h 201w

and

aljl=ij

||L2(0 1/(Kvl/2); LX)>

= Clli72]llbe-

Indeed, it suffices to use

iyt 1 AN+ N

Jiljl=j— nljl=j-1

Next we prove the estimate about M3 ; 1/(1+y)[0x¢]. Arguing as above, we have from (5-13) that, for
05] SU_1/2_19

CoU=nlidZz; — 4!

GiliD
My j1/a+v)[9x @] < K2+ D20 = 11+ 1) 10x 2™ P 20,1 ¢k w172y L2
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where j;[j] is taken similarly as in the above argument. Thus we have

o172
1
Z (j1)3/20i/2+1/4(j 1 1)1/2 Ma.jaya+v)[0x 9]
=0 v1/21 ( . . [ ])'
J —J1ilJ1): )
< K2 Z GO A+ ) = hl+ D) loxh ||L2(0,1/(Ku1/2);L§()
J=0 M j1/a+1)[0x @]
12 (GO3PoI ARG+ DI e
9 Y (j—iiljD! (ji+1D)
j= .
n V4G + 1D My, 1 [0x 9]
DR jmv i

The second term is bounded from above by (C/K U1k llbe, as we have shown above. As for the first
. . -12_1 .
term, we again decompose the summation Z;:O ! into > iiljl=; and > ilj1<j—1- a we have done

previously. Then the sum of ) = is bounded from above by C|||A||bc, While the sum of ) l<i—1

18 estimated as

Z _ G —hliD! [RGILHD
(jO3RvIli2HA G+ 1) (j — jilj1+ 1) L

0,1/(Kv'/2);L%)

alil=sj—1 |
- Z (j_jl[j])!(jl[j]+1)!<(jl[j]+l)!>2 1
=il J! J! (J+ DG+ DY2G = AlLiT+D
v Ak +1)12 G
<o \Trymrr Mo weia)
172
1 1)1/4(]{_’_ 1)1/2
(k)

=C Z G+ 132 0<ksfpl/2< (k)32 k72 172 ||L2(0,1/(Kv1/2);L§()> < Cll|Alllpe- O

=0 <ksv '

Next we show the estimate for the vorticity field. The argument is similar to the one for the velocity.

Lemma 5.3. There exists k" € (0, 1] such that the following statement holds for any k € (0, «"]. Let
Jj1=0,...,jand jo=j— ji. Then
1)1'2/2]'21
2+1

1B,,(8% —a®)Y (A, &, )|+ |Y Bj,dy (3% —a®) i (h, @, Y)| < |y e Re¥/2

18UV, (5-21)
As a consequence, for ' e [—%, 2],

( D IYHBL@F — e (el + 1Y BLa@ — o (el
wer'Z ' , o ]
+I1y>* szay<a%—a2)w(-,a,->||§%Y>
. 1 '
Cv2/2 j! . 2
50U (. 2 -
= KG’/2+1/4(j+1)9’/2+1/4(j2-|—1)( Z 187 ( ’O‘)”L§> . (5-22)

aecvl/27

Here C > 0 is a universal constant.



OPTIMAL PRANDTL EXPANSION AROUND A CONCAVE BOUNDARY LAYER 3161

Proof. Estimate (5-21) follows from (5-9) by arguing as in the proof of (5-10). Estimate (5-22) then
follows from (5-21), the Plancherel theorem, and

Y1+m —Re(y)Y/2
1Yyl 113 = tRegy Sy
< ¢ by (5-7
= (ol + K12(j + )/2ym+1/2 (by (5-7))
for m € [, 3]. The details are omitted here. O
Proposition 5.4 (estimate for vorticity). Let 6 € [0, 2]. It follows that
o172
G+HDY o C
> GV U+ D2 (M iyl + My j e [VoD) < g lillee (5-23)
— U!
and
—-1/2
G+DODE 9 M 9 € i 524
2(:) W( 2.j.y3e0 [0xw] V2 M j yspre[dyw]) < K9/2|” llbe- (5-24)
]:

Here C > 0 is a universal constant.

Proof. Estimate (5-23) is a consequence of (5-22) with 6’ = 0, by introducing j;[;] as in the proof of
Proposition 5.2. As for (5-24), we have from (5-22) with 8’ =6 — % that

VA 4+ 1)@-Dr2
()il

M, j ysn+o[dy Ap] < 17211l e

- K0/2
j=0

Next we have from M, ; ys+0[0x APl < C M ;4 y32+o[Ad] that

U_I/2—1 U_I/2—1

(j+ DOV (j+ DOV
Z WMQ’j’yWZHJ [aX A¢] S C Z WMZ,j+1,Y3/2+9 [A¢]
j=0 j=0

vo12] VA 4 1)3/2+6-D)2

=C ) : My iy o[ Ad]
1 N3/2,,(+1)/2 LJj+LY
= (GHDYRU

‘— pl/4j0/2+1
¢ Z WMZJ,Y»‘/ZH[AQ”.
— (j!

By arguing as in the proof of Proposition 5.2, the application of (5-22) gives

v v
1/4]9/2+1 Mo e[AG] < C Z VA4 1)12
(Jv)3/2 j2 %0y = go+1/2 (j1)3/2vil2

—Ktv'2(j+1)qJj
lle aXh”LZ(O,l/(Kvl/z);L%()’
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where the smoothing factor (j + 1)7/271/4 with ¢’ = 0 + 1 in (5-22) plays a key role. When j = v=1/2,
we have
(j+ DO
(j!)3/2])j/2+1/4
IA(j 4 1)@+D/2
(jH3/2vi2

M, j y3p+ro[0x AP

j=v—'/2

Mz’j’yz/zw [0x A¢]

j=v-1/2

_ C vo1/2 1)1/4(‘]-4_1)1/2
— K9/2 ' (j!)3/2vj/2
J

_ 1/2( i :
le™ T a3kl 20,1 kviyazy  (bY (5-22) with =6 — )

C
=< Wlllhlllbc- O

5B. Vorticity transport estimate. Propositions 5.2 and 5.4 of the previous paragraph reflect a strong
difference between the weighted fields (V¢)/ and (A¢)/ associated to the Stokes solution ¢ of (5-1):
the former is not localized near the boundary, while the latter is, at scale (K (j + 1))~"/2. This is due to a
harmonic nonlocalized part in ¢, see expression (5-6). As a consequence, as shown in Proposition 5.4,
for the vorticity field the weight Y9 gives a gain of (j 4+ 1)~%/2. In particular, the transport term V - VA¢
shares similar properties. When working in the Gevrey class %, this term can be seen to be formally of
the same size as the Stokes term v'/2A%¢ — 3, A¢. Hence, we need to add one step to our iteration in
which we solve the heat-transport equations

—ViAw+dhw+V -Vo=H, 1>0, XeT,, ¥>0,
Ply=0 =w|ly=0=0, ¢|;=0=0.

Here ¢ € H()l (T, x Ry) is the stream function associated with w, and the source term H € L2H ! will

(5-25)

be the transport term created by the Stokes approximation. A key point in dealing with this equation
rather than with the full vorticity equation is that we will be able to propagate weighted estimates with
weight Y7 which is crucial to have sharp bounds. In the last step of our iteration, we will correct nonlocal
stretching terms using the vorticity equation with artificial boundary conditions, using the bounds of
Section 4. The main result of this paragraph is:

Proposition 5.5. There exists K3 = K3(C}) > 1 such that if K > K3 then the system (5-25) admits a
unique solution € C ([0, 1/(Kv'/?)]; LN H~") N L*(0, 1/(Kv'/?); HY) satisfying, for 0 < j <v~'/2,
k€ (0,1],and 6 =0,1, 2,

VM, yo [Vl + Mao j yol@] + K203 (j + 1) My, yo[o]
1

K1/Ap1/4(j 4 1)1/4
i—1
1 ] .

5 omin{l 1, j =L+ 1) () ) Noo ji[VIMa 41 yo [w]). (5-26)
=0

< C(K'VijMz’j_LYG [VC()] + v%QMZ,j,Ye’l [C()] + M27j7ye+1/2[H]

+ K KY201/43 +1)

Here C > 0 is a universal constant.
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Remark 5.6. The solution w to (5-25) in Proposition 5.5 has the regularity

(0, —vIA)YPw e L2 ([0, 00); LXT, xR,)), 6=0,1,2,

loc

with the Dirichlet boundary condition. Hence, the maximal regularity for the heat equation implies
Y0, AY0) e L}, ([0, 00); LA(T, x Ry)).
To prove Proposition 5.5 let us recall that w/ = e~ w2+ g i 8)].(_].260 satisfies

1 . . 1 . .
—v2(Aw)! +0;0! + Kv2i(j+ Do’ +V - V!

j—1 . .
=—Va[B,. dyle K00l 3 3 (22 vl +mi. 527
[=0 max{0,/+j,—j}<lh<min{l, j>} 2 2

Then (5-26) is proved by taking the inner product in (5-27) with Y2 w/ for each # =0, 1, 2, and then by
taking the supremum over j, =0, ..., j and about 7y € (0, 1/(Kv'/?)]. Hence the proof proceeds as in
the proof of Proposition 4.4.

Lemma 5.7. There exists C > 0 such that, forany K > 1 and « € (0, 1],

oo ; ; 1 ; [
fo (—v2(a0) Y¥ o)y dt = 302 Y (Vo) 2 2 = CV203) My oy o[y o]
—COVI My j yo o]

Proof. The proof is similar to (and much simpler than) the one of Lemma 4.5. Indeed, the only difference
is the presence of the weight Y2? with 6 = 0, 1, 2, which creates the term

TO . .
291;5/ (Y2 (dyw)!, YO 1wl ) dr
0
after integration by parts. This is responsible for the last term in the estimate of this lemma. The details
are omitted. O

Lemma 5.8. There exists K32 = K32(CY) > 1 such that if K > K3 then

TO . . . . . .
(00! + Kvi(j+ ol +V Vol , Y ol) dv = 31 0! )P+ 3K G+ DI o 12, o
0 (,T()»Lx,y)

Proof. The proof is a simple modification of the one of Lemma 4.6. We note that the initial data is taken
as zero, and integration by parts gives

T C o0 i %)
/ (V.-Vo!,Y w’)dr§9‘7
0

0 jn2
LOO”Y w ||L2(0,ro;L2)'

Then the desired estimate follows by taking K large enough depending only on C} for [|[V2/Y |1~ <
10y Vallze = |10x Vil Lo < Ci“vl/z. The details are omitted. [l
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Lemma 5.9. Let j, > 1. It follows that

70
—Ktv'2(j+1)qJ 20 j Loove g2

f (=Va[Bj,, dyle K™ 7"UDal 6 Y¥wlydr < CCiv2 jp||Y O 2012

0 L%,

Here C > 0 is a universal constant.
Proof. The proof is similar to the one of Lemma 4.7. The details are omitted here. ]

Lemma 5.10. Ler j > 1. It follows that

T0 j_l . . .
— . . C
| <—Z > (2)GZ8)v? ’-<Vw>’,Y”w!>drs;R.,-,Lemma5.1o[w]M2,,-,ye[w],
0

=0 max{0,/+j>—j}<l<min{l, j»}

where
Jj—1 .

R emmasa0l@] = Y min{l 41, j =1+ 1)(] ) Now il VIMa 111 yol o]
=0

Here C > 0 is a universal constant, and N j—[V] is defined as in Lemma 4.9.
Proof. The proof is similar to the one of Lemma 4.9. The details are omitted here. ([

Lemma 5.11. Iz follows that

o, )
f (H, Y¥ o'y dt
0
- {CMZ, jyosp THI(My,j ys [By 0] + k02 My yo[VoD)2 (My j yolwD), 6 =0,
= 1 1
CM, j yor1p[HI(M; j yo-i1[w])2 (M j yo[w])?, 0=1,2.
Here C > 0 is a universal constant.

Proof. The estimate follows from the inequality
(HY, Y? )y < IYOT3HI YO 20/ | < YO HI YO o7 |2 Y0 |12
and the Hardy inequality for 6 = 0:
1Y "' | < Cllaye’ | < CUI(By @) || + 12 jall @y w) U270, O

Proof of Proposition 5.5. It suffices to show the estimate (5-26), but it follows from Lemmas 5.7-5.11 by
considering the cases 6 =0 and 6 = 1, 2 separately. The details are omitted here. O

Corollary 5.12. There exists 3 € (0, 1] such that the following statement holds for any « € (0, k3]. There
exists Kj = Ki(k, C§, CY) = 1 such that if K > K} then the system (5-25) admits a unique solution
w e C([0, 1/(Kv'/%)]; L2N H~YYN L2(0, 1/(Kv'/?); HY) satisfying, for6 =0, 1,2,

—1/2
o« G+ 1oLl
> S 0 M e VOl + Mo jolw] + K204+ 12 My, o w])

j=0
0 v—]/Z
1

C
< — - - - M, . yonp[H],  (5-28)
K1/4 e’go jg() (]!)3/2U]/2+1/4(] + 1)(1—00/2 2,7, Y0+
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and

1 v-12
1

C
IVl 1 + 19y dly=ollle < —=7 D Z GGy aen Me st HL(5:29)
6'=0 j=

Here C > 0 is a universal constant.
Proof. Let us first show (5-28). By virtue of Proposition 5.5 we have, for 6 =0, 1, 2,

(+)9/21/41 [N 1
ZZ (Jv)3/2w/2 e VM VOl + M o[l + K203 (j+ 12 My yrle])

1)0'/2—1/4
sy y U
— (iR

3 1 1
X <Kv4jM2’j_1’Yg/[Va)] —{—M@/sz yo-1 o] +

K1/4y 1/4(j+1)1/4M2,j,Y9'+1/2[H]

1 =
+KK1/2v1/4(j+1)1/2me{z+1 J—z+1}( ) ooj_,[v]Mz’Hl’Yg/[w])

o v " /2-1/4
(]+1)9/ 1
SCKGZO Zo Goevin VM Vel
/—| j=
0 ) 1/2 (]+1)6,—1/2—1/4 ) l
!/ = . ES
+CZQ ZO (j!)3/21)j/2 V4(]+1)2 z’j’ye’—l[a)]
Jj=
v 12 (j + 1072 1/4 |
+C92;)2<:) (j1)3/2vi/2 K1/4v1/4(j+1)1/4M2,j,Y6’+1/2[H]
/: j:
—1/2 ,
e iz (j+ D7 1
= (j!)3/2vj/2 K1/2 1/4(j+1)1/2
mem{lJrl J—l+1}< ) Noo j—ilVIM, 1 ywl@].  (5-30)
1=0

Here C > 0 is a universal constant. As for the last term in (5-30), arguing as at the end of the proof of
Lemma 4.9, we find that

V_]/2 . iy ] 1

(J+1)9/2 1/4 1
2 Gy K1/2v1/4(j+1)1/22m1n{l+1 J—z+1}( ) New VI 4 yorlo]
Jj=0

CCy "n GV,
KI/ZZ G vi(j+ DM, ; yolw].
=0

Hence (5-28) follows by taking « small enough that Ck < 5, and then by taking K large enough that
CCl/(kK) < 1.
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To show (5-29) let ¢ be the stream function associated to w, and it suffices to prove the embedding

inequality
172
G+DY 4 1
Vel <) GOV U+ D2 M99
j=0 "
—1/2
(+DYV* 1
SCZO GgiaY U+ DMy lo] (5-31)
J:
and the interpolation inequality
119y @1 y=olllbe
172

1/4, 1/2
v / (-] +1) / ||e—Krvl/2(j+1)8]

W Iy dly= O||L2(() 1/(Kv'/2);L

)
Jj=0
v—172 1 -2 1
G+D7V4 1 2 G+DY o 1 2
sC(Z i+ DMy ale]) (Y i+ DMy yle]) . (5-32)
J J

— (j)il — (j)IP

Then (5-29) follows from (5-28) with (5-31) and (5-32). The proof of (5-31) proceeds as in the proof of
Proposition 4.12. Indeed, from

ol ==V (V)] +
and integration by parts, we have
j j j . _ 1/2 . S
1V | = (07, ¢7) — 202 joe K77 (x/ By d)”, (By )V /2271y

nE 1 : o
<Yl ‘7 + 202 ok || (By @) ||| (Byp)V —72 27D

< CIY & [1y¢7 1+ 202 jorc | By @) I By @) =227 D).
Here the Hardy inequality is used in the last line. Then the identity
dyd? = @yp) +v2jaxle K (ayg) U
yields
1Y)/ 1l < CIY @ || +v2 ok |y )22~ D).
This estimate gives

1
G+DV* o 1
Z Wv4(]+1)2M2,j,l[v¢]
i=0

G+DYE 1
=C Z(:) (j!)B/ZVj/2v4(J + D2 (My jylo]l+v2 jeMs j—1,1[VP])
j:

vz /4 1/4
G+DV CGEDY L
<C Y Gpmagnt U+ DM ylel+Cr § Vi DA V),
j=0 :
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where C > 0 is a universal constant. This proves (5-31) if « is small enough that Cx < % As for (5-32),
we observe from (4-50) that

—KTv'2(j+1) qJ
le” ™" Ut )a;JgaY¢|Y:O||L2(0,1/(Kvl/2);L§()
. _1 (j,0) . 1 (j,0) 1
<C((j+D e ||L2(0,1/(Kv'/2);L§())2 ((J+1D*[oyo ||L2(0,1/(Kv1/2);L§())2v

which implies, from the Schwarz inequality,

172 1,12 1
G+DV 2 G+HDY* 2

19y @ly=olllbe = C(]X::O WV“(J +1D2M; jalo JZ::O W‘”(} +1D2M j1[Vel) .

Then (5-31) shows (5-32). U

Corollary 5.13. In Corollary 5.12, let H = —V - Vw; 1[h], where w; 1[h] is the solution to (5-2) in
Propositions 5.2 and 5.4. Then

e DI L ccy
Z W(V“Mz,j,yﬁ[vw] + My jyelol+ K2vi(j+1)2 M, ; ye[w]) < Wlllhlllbc (5-33)
j=0
and
/ CCy
[IVlllz.1 + oy @ly=olllbe < Wlllhlllbc. (5-34)
Moreover, we have
~12
; ! d CCS h 5-35
Z (j!)3/2v//2+1/4(j+1)1/2M2,j,1/(1+>')[ xP1 = 57z A le. (5-35)

j=0
Here C > 0 is a universal constant.

Proof. To show (5-33) and (5-34), it suffices to prove, for 8’ =0, 1, 2,

172

1
2 GG 4y e ]
j=0
! 172

1
*
=CG Z (j!)3/2vj/2(j_|_1)(1—6’)/2(
j=0

1
Mz,j,y3/2+0’ [0xwi1]+v2 Mz’j’y3/2+0’ [Oywri,1]). (5-36)

Then (5-33) and (5-34) follow from (5-28), (5-29), (5-24) and (5-36). To show (5-36), we observe that

J . ..
j__Z Z J2 J—Jz) -l l
A= (lz)(l—lz v (Vo)™
[=0 max{0,/+ j>—j}<l<min{l, j2}
Thus we have

1 .
Y2l |

J .
J j—1 349 j—1 349
=3()) > Uy V7 e 17 3 @xeon '+ oy V3 173 @y ).
1=0 max{0,/+j>—j} <l <min{l, j>}
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Set
) 1
Noo, j[VVII=(j +1)2 SUP (v 3| (@x Vi)Y [l L2

7.X,Y
J2=0,..

+@y Vi) I, ) (5-37)
Since
19y Vi i < 1100y Vi) L1 + k07 (o — L) [[ @y V) T 002720
<=1+ 1) I Nag i [VViT 4 k02 —1)2 Nag j_1-1 [V V1]
and similarly
10y V5l < 1@y V)~ 1 + k0% (o — 1) | By Vo) G112~ D o
= 10x Vi)l + 1007 (2 — D) (@x V) 0272
<V =1+ 1) 2 N j i [VVi 1+ 402 (j = ) Now 11 [V V],

we obtain

J
. . . _1 ., 1
My oy lHY < 2 () ) mingl4 1, j =141 =141 72 Ny [V Vi l4+K0E (=) Nog, 11 [V Vi)
=0 1
X (Mz,l,y3/2+ﬂ/ [anl,l] + Vsz’l’Ys/z#)/ [3ya)1,1]).

Then (5-36) follows from the Young inequality for convolution in the /! space. For example, using

(l + 1)(1—9/)/2

(G+DU=02(j — 14 1)1/2 <C for0'=0,1,2

and

1
D2
(%) minfl+1, j —1+1}<C,
]

we have

po12

j 1
1 i —DIT\? /
Zz(j+1)1—9’/2((J j') ) min{l + 1, j — [+ 1)(j — [+ D)2+ D=7
j=0 1=0 -

1 1
) <(<j G e ‘Z[VV1]> <(l!)3/2vl/2(l e Moty mx&”’”)

172

J
1
=¢ Z(((] —1)')3/2v<f l>/2N°°’”WV1]> <(l!)3/2vl/2(l+ Doz Masrse [axw1’1]>
=0 1=0
172

Z (]')3/21)//2(1 - M sl
j=

The other terms are handled in the same manner and we omit the details. The proof of (5-33)—(5-34) is
complete. Finally let us prove (5-35). The key is to apply the interpolation-type inequality proved in
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Proposition A.2. Indeed, Proposition A.2 implies, for the stream function ¢ associated with w,

v—172

1
J=

1 v121

1 |
<C § : G+ DY 1M,y o yrse[w]
iN3/24/2+1/4( ; 1/2 J+L

iz o bR G+D

|
1 1,
+C > G A DAY Moy (@] 4 Mo 11 [VED
Jj=0
1

+ (j!)3/2vf/2+1/4(j + 1)1/2

M j10+1)[0x ]

j=v-172

vo!/2 VU 4 1)0/243/4 vo2 VA 4 1)12

1
=€ 2y M@l €Y
=0 j= J=

My jy[w] +ClIVll 4

cc
< KT/Z”V””bc-

Here we have used (5-33) and (5-34) in the last line. O
5C. Full construction of boundary corrector. We set
Wapp,1 = wapp,l[h] = wy,1[h] + w1 2[A],

where w1 1[/] is the solution to (5-2) in Propositions 5.2-5.4, and w; 2[A] is the solution to (5-25) with
H = —V -V 1[h] as in Corollary 5.13. Then the approximate solution w,p, to the full system (5-1) is
constructed in the form

Wapp = Wapp,1 T w1,
which leads to the equations for @ = w;[h], as

—VIAG + 0B+ V VB + VG VR ==V VR, T>0, XeT,, ¥ >0, 5-38)

d1ly=0 = w1ly=0=0, @1|;==0.
Here qgl and ¢,pp, 1 are the stream functions associated with @; and w,pp, 1, respectively. Let us first give
the estimate for the force term —V-<¢pp 1 - V2.

Proposition 5.14. Let k3 € (0, 1] be the number in Corollary 5.12. For any « € (0, k3] there exists
K} = K;(k, Cy, C}“) > 1 such that, for any K > K},

1 / 1
K1/2V1/2|||V ¢app,l 'VQ”'Z,S(Z) + K1/2V1/4||V ¢app,1 'VQ”LZ(O’]/(KUI/Z);H—I)
172

1 1
j=0




3170 DAVID GERARD-VARET, YASUNORI MAEKAWA AND NADER MASMOUDI
Proof. Let us recall that

—5 IV bapp.1 - VLI,

1 /2 20

12

1 kel s
_ Z GO A+ I , sup & KT G+ )B aJ JZ(V Bapp,1 - V12001 /(K v112); 12,
----- J

Thus we consider the estimate of

_ 12 j—Jj
¢ Ktv (]-i—l)sza}J( JZ(VJ_¢app,1 . VQ)
j—1

PRRTS SN SRR O [ M

1=0 max{0,l+jo—j} <l <min{l, j»}

where j = (j — j2, j2) and I = (I — [,15). We observe that, from the definition of p; in (4-10),
Assumption (iii), and K > 1,

. dy ;
. '] = -_— J
||518X¢app,laYQ” - H 2+ 20, ax(l)app,1
| .
< Cll 13y Q17 + /p))dx iy 1 |
14y \2 1 1+v1/2Y
<c|(rer) e[ ol
1/4~ 11 J 2
+C(K C*)2 aX‘papp,l +C ’EU ”8X¢‘1PP1”
1
SC(CT+K1/4C*)7 3X¢app1 +C(CT +C)v2 95k, Il

On the other hand, we have
1+v!/%y
1+Y

1 1 .
< CCIvi(j+ D2y Papp, ) II-

1+Y

||f§j(3Y¢app,1)j3XQ|| < "maxg &j

11Dy Bapp. 1)
Lo L>®

Here we have used (4-16) and Assumption (iii). Thus we have, from C, > 1,
”%—] (V ¢app l)J VQ”LZ(O 1/(Kv1/2); LX v)
11 1, 1
= C(CT + K4C*)2M2,j,1/(1+Y)[aX¢app,1] + C(CT +Cv? (] + 1)21‘42,j,1[E)Y(l)app,l]- (5'40)

Next we see

j—1

5 SIS SN O (s I SO

[=0 max{0,/+ j,—j}<l,<min{l, j>}

—_

<=3() ) 16 (Vg - (VY|

l max{0,/4j>—j}<l<min{/, j>}

~.

I
=)
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and

1€/ (VEBapp.1)' - (V)T

1+Y 1\ . 1+vl2y 12 vl2y
. Oy SR j La}((ﬁ, 1
1+v12y el 1+Y ol 1+Y apP.
1+Y . L4 ol2y
— (@ | = 9 !
+H1+ 1/2Y( x§2) N e §j Loc||( ¥ Papp, 1) |l
<C(]+1)2 00, j— l((1+Y)/(1+vl/2Y))2[8YQ]H axqbappl +C\)2(]+1)2 o j I[VQ]||(V¢app1) I

Thus we have

j—1

5D SR (o o LS

=0 max{0,/4j2—j}<lr<min{/, j>}

L2(0,1/(Kv'/2);L} 3)

<C(i ljil . . J
<C(+D7 ) min{l+1,j =1+ 1}( ) Noo =1[VE]
=0 1
X (M21,17(147)[0x Papp, 1] +VZ2M2 1 1[Vapp1]).  (5-41)

‘We note that

1
i — D2
(j+1)émin{l+1,j—l+1}(¥> <C, 1=i<j-1
Jj!

Taking into account this uniform bound — by decomposing the sum Z{:_Ol into the “/ = 0” term and the

sum Z{;l —and collecting (5-40) and (5-41), we obtain, from the Young inequality for convolution in
the 1! space,

IV Gapp.1 - VI, 2

o172

1 1
=0

K12p1/2

where K has been taken large enough depending on Cy, C}, and C,.. As for the estimate of

V" app.1 - V20,1 /kv12),5-1)>
let us take any n € I-'I(} (T x R4+). Then we have

1+Y

L _
<V ¢3PP71 VQ, 77) _<1 +U1/2Y

VJ_(lszmp,l . VQ, L> + <vl¢app,1 . VQ,

V1/2Y7}
1+Y

140172y

1+Y n n n v12yy
_<1+v‘/2YV Pupp.1 - VEL, 1+Y>_<Q’V .tV Ty )|
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This implies

(V- app.1 - V2, )|

1+Y _, n 1+Y i 1+v!2y _ v12yy
<|——==V -VQ Qv \Y%
_H1+v1/2Y Papp.| H “H—Y oy Y Pt Ty 14012y
1+Y 1 1| 1+Y N
= HI‘H)—I/ZYV ¢app,1'VQHII3YnII+Cvz Ty 2V Gup | 1Vl
where the Hardy inequality was used several times. Hence we obtain
IV app,1 - VRl g1
14y _, o 14Y N
=Cli iy ¢app’1-VQH+Cv2 Ty 2V b
14Y 147 \? 1402y
< Cll——5=0xQ2 d +C||——5=) v —3
1 14+Y
+Cv2 1—1—1)—1/2YQ Loonvd)app,l”

1
= CCT(VZ ||V¢app,1 I+ ||8Y3X¢app,1 ||)
Then
1
17217a 1V Papp.1 - V&2 20,1k w2y 1)

*

1 1 1
=< K24 (V2| Vapp,1 ||L2(0,1/([(v1/2);L§(,Y) + 110x Oy Papp,1 ||L2(0,1/(Kv1/2);L§(,y)) = KA IV @app,1 |||/21 O
Propositions 4.1 and 5.14 yield:

Corollary 5.15. There exists k4 € (0, 1] such that the following statement holds for any k € (0, k4]. There
exists K4 = Kq(k, Cy, C}k) > 1 such that if K > K4 then the system (5-38) admits a unique solution
@ € C([0, 1/(Kv'/®)]; LN H~ ") N L*(0, 1/(Kv'/?); H}) satisfying

- 1o L 1 ~ 1
llo1llee e + K2 l@rllzg + K4 IVilly g + K419y dily=ollloe < w172 17 lbe. (5-43)
Proof. Propositions 4.1 and 5.14 give

~ Lo~ 1 ~ 1 ~
lld1llo.e + K2 Mlldnllz.e + K# IVl g + K*1l1dy dily=olllbe

b-172

C 1
< /4<Z GO PTG )] /zMz,,-,l/(HY)[axasapp,l]+|||V¢app,1|||’2,1).
j=0

Here C > 0 is a universal constant. Recall that ¢qpp 1[2] = ¢1,1[h] + ¢1,2[h], where ¢y ;[h] is the
stream function associated with w;_;[2]. Then the assertion follows from Proposition 5.2 for ¢ ;[A] and
Corollary 5.13 for ¢y 2[h]. |
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From the construction, the vorticity wapp = Wapp[h] = wapp,1[h] + @1[h] satisfies

—? Awapp + 0r@app + V - Vaupp + Vipapp - VR =0, 1>0, XeT,, ¥ >0,
¢app|Y:0 =0, 8Y¢app|Y:0 = h + Ryc[h], ¢app|t:0 =0.

Here ¢qpp is the stream function associated with wpp, and Ryc[#] is the linear operator defined as

(5-44)

Ruclh] = dy1 2[h]ly=o + dy d1[A]]y=o. (5-45)
We note that the operator Ry is well defined on the Banach space
1
Zoe = {h € L*(0,1/(Kv2); LY) | 1A 2, := lIAllbe < 00}. (5-46)

Proposition 5.16. There exists ks € (0, 1] such that the following statement holds for any k € (0, ks].
There exists Ks = Ks5(«, Cy, C;‘) > 1 such that if K > Ks then the map Ry : Zve —> Zpc defined by (5-45)
satisfies

Il RoclAlllbe < 5117 lbe- (5-47)
Hence, the operator I + Ry is invertible in Zy., and the map
Doelht] := Gapp[ (1 + Roc) "'h], € Ze, (5-48)
gives the solution to (5-1) and satisfies

IV PrclAlllly, 1 < Clillbe. (5-49)

Here C > 0 is a universal constant.

Proof. By the definition of Ry in (5-45), estimate (5-47) is a consequence of Corollaries 5.13 and 5.15,
by taking « small first and then K large enough depending only on C,, C ;’.‘, and Cy. In particular, we
have

I+ Roo) ™ ellloe < 20lAlllbe, 7 € Zoe. (5-50)

Then Proposition 5.2 and Corollaries 5.13-5.15 give (5-49). ]

6. Full estimate for linearization
We have constructed the solution to (2-12) of the form
W =V = VD + VEdyclh],  h = —3y Piply=0 € Zie, (6-1)
where Vlcbslip is the velocity field associated with the solution to (4-1) and
P[] = Papp,1[(1 + Roc) ™ h1+ @1 [+ Ro) " 1], Gupp,1 = d1,1 + 1.2

To simplify the notation we will write @upp, 1 for @app, 1[(1 + Ry.) ' h] below. So far we have the bound of
qubl’l only in the norm || - |||/2’1. To obtain the estimates of |||V |||s and |||w|||cc We need the extra work.
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Proposition 6.1. There exists k¢ € (0, 1] such that the following statement holds for any « € (0, kg].
There exists K¢ = K¢(Cj;, CY) > 1 such that if K > Kg then the solution to (2-12) constructed as in (6-1)
satisfies

1 11
V4II|w|||oo+K2v4|||V¢Illoo
C(Cy+CY)
< 3—(IIIV¢|||2 1H A @ —@app, DIll5, 1+l Aapp. 15, P)+C (K 2 [ Wolll+v S [lrot Woll 1+ Fl2)-

Here C > 0 is a universal constant.

The proof of Proposition 6.1 is similar to the one of Proposition 4.4, and we postpone it to Appendix B.
Admitting Proposition 6.1, we will now complete the proof of Theorem 2.3. Let us recall (6-1). We first
observe from Proposition 4.1 and Remark 4.2 that

_1 _3
I ADgipllly, g + IV Patiplllz, 1 + 19y Psiiply=ollloe < 75 (IWoll 2 +v 2 [llrot Woll 1+ v # [ Fll2) (6-2)

- KI/S
by taking K large enough. On the other hand, Proposition 5.16 (for V&), Corollary 5.15 and
Remark 4.2 (1) (for A(®pe — Papp.1) = A1), Proposition 5.4 and Corollary 5.13 (for Agapp.1 =
A¢11+ Ad12), and (6-2) give

IV @oellly, ; + 1A (Poe — Papp, DIl 1 + Il Adapp.11ll5 y

< C|||9y Pstiply=0lllbe

_1 _3
= i IWollz |+ v 2llirot Wolll + v Fll2). - (6-3)

Here C > 0 is a universal constant. By applying the estimate in Proposition 6.1 and by taking K large
enough, the proof of Theorem 2.3 is complete. (I

7. Nonlinear stability: proof of Theorem 2.1

Let us recall the nonlinear system (1-3). Theorem 2.1 is a consequence of Theorem 2.4 for the linear
system (1-6) and the bilinear estimate in Lemma 7.1 stated below. We observe that

—w-Vw=wrotw+ Vq

for any solenoidal vector field w, so the bilinear term we consider here is of the form f rot g. To this end
we fix K > 1 and v € (0, 1], and let X be the Banach space of solenoidal vector fields f = (fi, f») on
[0, 1/K] x R% defined as
1
={rec([o. & ] HiaTxRO) [ 171k =1 £llog, +vH ot flloz, < oo},
where || - ||G§</>2 is defined in (2-1) with p = oo.

Lemma 7.1. There exists a universal constant C > 0 such that, for any f, g € X,

c s
||fr0tgllc_g/2 =< x172” Hflxlglx. (7-1)
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Proof. We compute
172

1 -
If rotgllgs, <€ 3 =7z sup > )Ilf’(rotg)’ Npoaskicz,)
j:

l1=7 j<j
—1/2

1 j—1
K1/2 Z _]'3/2 sup Z( )”f (I'Otg)‘] ||L°°(0,1/K;L)2(qy)‘

||jl<j

As ( ) (llgl‘) and as, for all [ € N,

L =1, 1< j} =8, max(0, [ — j+ j2) < <min(jz, D} =min(l+1, j—1+1),

we end up with

II.f rotgllgz

32
~1/2

C 1
min(/ + 1, j—l+1)( )sup sup ||fl(rotg)k|| c0g2
K1/2 Z ]13/2 Z li=t k1 LY*Ly

b-172

C 1
<qmr 2 (l+1>() 1,3/2 sup 1, e e d ot oy,

j=0 0<iI<j/2

172

. 1
Km > X G-1+n(y) 21,3/2 sup | 315 z)wz sup [(rot §)¥ | v 2

j=0 jj2<I<] lkl=j—
c Y . |
< A
=KV ]Zo 0<12<;/2 (+DE72

1 1 1 1 1 1
x sup (10 o202 + 1 per2e2) 2 09y o2z + 18y fller212)2
12|=l C ’ : ’

1 k
X ————=> sup [[(rotg)"|l ep2
(J=DB? =j ro

—12
/ 1

o Y Y G-t () 2,,3/2 sup 111 RN L IVAL TR

J=0 j/2<l<j

1
X Gol+1Pn sup (]|, (rot g)* ||L°°L°°L2+||(r0tg) lLgerger2)-
- S k=

Here we have used the Sobolev embedding type inequality. By using the bound

sup (|| 9y f* ||L°°L2L2+||f ||L°°L2L2) (1105 9y f ||L°°L2L2 + 119y f! ||L°°L2L2)2
=t
1

1
- 2 1
<vi sup | ff leger2 + v+ sup 18y folleer
I=<|l|<i+1 ’ I<|l|<i+1 ’
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and by observing that there exists C > 0 such that, for ({)_1/2 (+1)°2 <Cfor0<l<1j, wehave

172

1
Gr Y Y ani(] ) T DR

j=0 0<i<j/2
1 1 3 I l 3
X sup |0y f Ml zeer2a + 11 Neger22)2 N0 dy fo I pgor2 2 + 119y fo Ml or212)2
1= : :
X G=Dp7 sup ||(ro &) Mrpera
Y

1
l k
= K1/2 1/4 Z Z (l+1)'3/2 sup 1 f Ml zeerz YG=DE SuP ||(r0tg) lrgerz

20 0<1=1/2 1<|l|<I+1
S/ —12 |
1 k
sup 13y Moy ———— sup ot g)¥ e
Kl/z JZO 0<IZ<1/2 U+ 1)'3/2 1<ll]=i+1 2 =DPR =i "
C Ul/4
< ol floglrotglog, + =z 19, Fllog, Irot oz,

where the discrete Young’s convolution inequality is applied in the last line together with the estimate
172
>, 757 S Ny [z, < €Iy llass,
j=0 : ljl=J

—1/2

Similarly, since (j — [+ 1)5/2({) < C for %j <1l < j, we have

b-172

D D DRTEN PRI O I R RN A

Jj=0 j/2<I<j

XW UP (||8 (rot g)¥ ||L°°L°°L2+||(r0tg) lLgerger2)
172

1
KWZ > ,msup(v A Ngerzzy + 0719y e r22)

j=0 j/2<l<j

1
X ——————  sup  [|(rotg)¥|| e peor2

=1+ DP? i< j—it1 rem
1/4

K12
Hence the result follows from Lemma C.1. |

C
< <l oz Irotglos, + =719, f oz, Irot gllass,

Proof of Theorem 2.1. Let C be the universal constant in Theorem 2.4. Then the standard fixed-point
theorem in the closed convex set

Xp={rec([o. 2] H.axRO) [I71x =R}, R=4C807,
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is applied by using Theorem 2.4 and Lemma 7.1, if v < K2 holds and if & is sufficiently small. We

9/4 11/4

note that the smallness condition [|wg|] + [|rot wo|] < Sov™/7, ||r ||G§/2 < dpv /7, is needed to close the

estimate. Since the argument is standard we omit the details. (I

Appendix A: Interpolation estimate for solutions to the Poisson equation

Lemma A.1. Assume that Y*w € L*(T, x Ry) fork=0,1,2. Let ¢ € Hol (T, x Ry) be the solution
to the Poisson equation —A¢ = w in T, X Ry with ¢|y—o = 0. Then there exists C > 0 such that, for

any j >0, we have

. _1 . 1
SuI()) g (. M2,y < CG+ D75 Yol 2, <, + G+ DY 0ll 207, xr ) (A-1)
Y>

Proof. The solution is given by the formula
! Y—vy—o)2 & _r—yn—a2) /7 "oy
¢(X,Y)=/ e” / e~V (L Yy dY dY .
0 ’

—Y(—ap'?

Here e is the Poisson semigroup. Then we have

Y poo
o Y)llz2cr,) 5/ / lo (Y 2cr,) dY” dY’.
0 JYy

min(Y,(j+1)"1/2} a de

By decomposing the integral fOY into |/, min(Y,(j+1)-112p We have, from the Holder

inequality,

. _1 . 1
sup [+, e,y <CU+ D 4 Yollr2q,xry +CG + D* ||Y20)||L2(Tva+)- U
Y>0

Lemma A.1 yields the following:

Proposition A.2. Let ¢ € HOI (T, x R4) be the solution to the Poisson equation —A¢ = w in T, x Ry
with ¢|y—o = 0. Then, for any j > 0, we have

M3 j1/a+v)[0x 9]
. _1 . 1 1,
<SCU+D" My j1ylol+CG +D3iM;y g y2lol + Crv2 j(Ma j—1 ylo] + Ma j-11[VPD.  (A-2)
Here C > 0 is a universal constant.

Proof. Since —Adx¢ = dxw, we have —(Ad X¢)j = dyw’. Then we use the commutator relation
_ X . . LX) Xy ;
—(A¢)) ==V - (Ve)’ +v2J2X—(3y¢)’ =—A¢’ +dy v2J2X—¢>’ +v212X—(3yd>)’-
v vV vV

Thus we have the following Poisson equation for ¢/:

/

!/
_AG =l —y (v%jzﬁd)f) —vt %oy
Xv Xv
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Then we decompose ¢j into @1 + 2.1 + ¢2.2, so that

/

. L. Xy g 1Xy j
—Ap=w!, —Apy1=—0y <U212—”¢’>, — Ao =—v2 =y ),
Xv Xv
subject to the Dirichlet boundary condition. Then Lemma A.1 implies, for dx ¢y,

. 1 ; . 1 i
sup [0x¢1 (-, V)llz2qr,y < CG 4+ D7HY9x0 121, ¢y + G+ DAY 0x0” [ 27, xRy (A-3)
Y>0
On the other hand, the simple energy estimate gives
X_‘/’qu

v

i 1, o
Vo1l <v2 )2 < k2 jo|| By ) 2D

As for ¢, 2, from
1 J— g K2 (92 (3 Gra=1) _ =K' (=) _ g2 g Gt ia—1)
E(ay(ﬁ) =e 0y ) =e (—w —dx¢ ),
the Hardy inequality, and integration by parts, we have
IVa.2ll < Civ? jo(IY 270 4 g2V,
Hence we obtain the desired estimate by taking the L? norm in time and by taking the supremum over j
such that |j| = . O
Appendix B: Proof of Proposition 6.1

Let us go back to (4-1) with G =0, but now we impose the no-slip boundary condition ¢|y—o =0y @|y=0 =0
in this appendix. Then we have

—v2(Aw) + @ + Kv2i(+ 1)l = —(V-Va) — (VEg-VQ) + (rot F) = (divH)Y, (B-1)

where
H=-—Vo—-QVié+ (F, —F).

The idea is to take the L? inner product with d.¢7, which gives the estimates of |||V |||l and ||| Ad|||lco
in terms of |||V¢|||/2’1. The most technical part is the computation of the viscous term ((Aw)/, 8;¢7)
when j, # 0, for which one needs to convert the vertical derivative 8)2,50 into the tangential ones by using
equation (B-1).

Lemma B.1. Forany k € (0, 1] and K > 1, we have
70 . .
/((ar+1<v$(j+1))w1,ar¢1>dr
0

> 310 (VO 20 0002, F LKvIG+ DY @)% = (V) )1

2l 13 . 2 I 2
Ck"Kv2ij(v2j2) Moo j—1,1[V@]" = C(kv2j) Mz ;11[0: V]~

Here C is a universal constant.
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Proof. Let us recall the identity

ol =—(Ap) = -V - (Vo) + v%j%(ayc/))f , (B-2)

which implies

v

1 ; i i oo x : . L .
(3 + Kv2(G+ 1)), 3:¢7) = 18: (Vo) |I* + 2v212<_var(3y¢)’, 31¢1> + 1KV + Do (Vo) |2
1 1 X! . ,
+2v2 pKv2(j+ 1)<—”(3y¢)’, 3f¢’>-
v
Then, from 3:¢7 = x,3; (e K" (3y ) U1-2=D) for j, > 1, we have

70 1 X/ . X
/ 2vzjz<—“ar<ay¢)f,ar¢f>dr
0 Xv
i 1, 1
> =1 19: (Vo) 1720012 — CUevZ )P (Mo j11[8: VP + (Kv2)* M ;11 [VT),
while we have, from integration by parts in time,
S Xy P A
202 HKVI(j+ D= (0y9), 0.9’ )dT
0 v
1 1 . P . ..
=202 oK v2(j + D K (! @y )T, (0y$) 27D (70) — (1, By ), (By)U127D)(0))
70 . ..
— 2v%j2Kv%(j +1) / einm(ar(ay(P)J» Xé(aY‘f’)(h’Jrl)) dt
0

1, 1 . _ 172 i A P SR
> 207 pKv2(j + D(e K™ (x! (yd)! (10), (By$) V27 (10)) — (x,(By ) (0), 3y )21 (0)))
— $19: By ) 1720 zys12) — C(Kievj*) 2 My, j 1 1[VHT.
We also observe that, for j, > 1,
(X, @y¢), (dyp)Ur-27D)
— e—KTV'/2 (Xf,)(v(ayay(ﬁ)(j]’jz_]), (ay¢)(j1’j2_l))

— 12 i, ih— i, ih— — 12 1. i1, j—
= =3¢~ By G x) @y )P0, @y ) I RTD) —e T2 (g — Dt 0y ) AT,

Thus we conclude also from Ktv!/? < 1 that

70 / X A
f 2v5121<v%<j+1)<ﬁ(ay¢)1,af¢l>dr
0 v
1 1 . . . .
> —CKv2(kv2 j)* (1l @y d) 27D (wo) 1> + By ) 271 (0) %)
— 110 @y @) 720,112 — C(Kkvj?) My j 1.1 [V]™.

Combining the above and M ;1 ; [V¢]2 < (Kv'/%)~1 My j—1.1 [V¢]2, we obtain the desired estimate. []
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Lemma B.2. Foranyk € (0, 1] and K > 1, we have

fo Cvbaw) . ep?)y dr = Lok (o ()2 — o (O)IP) — 1Mo 5[0, VT
—Ckv2 Y2 (M, 1 1[0: VPP + 2 (j = 1)) Ma, j_2.1[3: VT
— Ck207 (Mo j 1[0+ (07 j)2 Moo j—1.1[o0])
—CKV2j (k1?2 j )2 (Moo j—11 [V + 02 (= 1)) Meg ;2.1 [V ]?)

1 .
—C (M j ([H +(v2 j)* My j_1 1[HT).
Here C is a universal constant.

Proof. We observe from

/
(Aw)j =V. (Va))j — V%Ji&(ayw)j, X; _ Ke_Kv]/ZY’

v

. . 1 X’ . (B_3)
Vo ¢! =03: (Vo) +v2 =8¢ e,
v
and integration by parts that
/
(=03 (Aw), 3:7) = V2 (Vo)!, 3, (V)T) + zuj2<ﬁ(ayw)f ¢ >
Xv
Then the similar identities
/
(Vo) = Vol —v2 X0l e,,
! (B-4)

V-0, (Vo) = d,(A¢) + Vz]z—a (dy o),

together with integration by parts, yield

!/
(—vi(Aw), 8:¢7) = v2 (@, 8,0 — 2vjz<&

v

W, 3, (dyp)’ > +2vjz<%(3yw)j , 8: ¢ > (B-5)

Again from the above identities about the commutators we have, for j, > 1,

<X“w 3, (ay¢>)1> < Y (Byw)’, 0 ¢1>—UZ<X—NwJ 9 d)’>—v2(2]2—1)<<x”) w9 ¢>1>
Xv Xv Xv Xv

2 . .
Here ;) = — 2= Thus (B-5) is written as

/
(—v2(Aw), 3,¢7) =17 (!, d,07) +4vjz<ﬁ<ayw>f , 3: ¢ >

v

Vv v

1
+2v3]‘2<x—“wi, af¢f>+2v312(212— 1)<(X”) ', ¢’> (B-6)
X
Let us compute the term ((x,,/ ¥)@yw)d, 8;¢7). From the identity

XL(BYw)j = e‘KWI/Z(a%w)(j"jz_l) — e K" (Aw) 2D - 33 wlr27hy,
v
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we have
!
<%(amw, at¢>f> = e K (3 (M) T2 3Ty + (3w RTD 9 axd).
v

Since v!/2(Aw)Ur27D = (3, + Kv'/2j w2~ — (div H)U1-72=D  the identity (B-6) is written as
(=2 (Aw), 8:T) = v3 (@, B:0T) +4v2 e KT () (0 + Kv2 oD 9.7
— w3 e KT (div B 9. 89) o dvja (LTI ETD g 9y g

" N\ 2

+2v3]’2<x—”wf Y > 203 o (20 — 1)<(ﬁ> | el > (B-7)
% v

Next we compute the term vl/zjze_K”l/z(x{,@f + K2 j)plnin=h, d:¢7) in (B-7): from the identities

in (B-4), we have

K @+ Kv2 ot 0p7) = e (0 + K2 (V) R, 00 (V) )

2
4ot jze_Kw]/2<—(XU) (0 + K2 ) (y) 27D, af¢>f>

v

Fvre K (00, 4 KT )0y )0, 9, 7),
By setting (V(]ﬁ);_1 = e‘K”l/z(V¢)(j1’j2_l) for simplicity, we have

—Krv (Xv(a —|—KU2])CL)(JI 21 ) ¢J>
(x))*

=<x;af(V¢>f1,af(V¢>f>+2v%jz< 3, (dyd) . ¢1>+v%<x;’af<ay¢)fl,af¢f>

/)2

+Kv;j<(X,§(V¢)i1,3T(V¢)j>+2véj2<( @y¢)7 1. ¢f>+v2<x3<8y¢>’ ix ¢’>)

v
Since

8: (V) = £ (9 Vo) " = x,8y8: (V) " — 13 (o — 10 (V) ',
Be¢p? = 3 By ) !,

we then arrive at
v e K (00 + KvE i, 0, ¢)
=2 =0y O 10)0:(V9) ™, 8. (V)T ™) = v (2 = DI 0 (V) ™ (V) )

+202 jo{ ()8 By )T, 8 (y$) 1)+ 07 (3 By d) ", %0 By ) )

+ K2 (L (V) ), 8: (V) ) + 202 jo ()2 By ) ', 8. By ) ")
03 (1 0y 0 By ) ™))
> —Ccv? j2)[19: (Vo) |2
K2 (V) 7 8:(V9) V412 jode | 1) By d) P44 v20: (1 3y )~ By @) ™). (B-8)
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Here we have used the fact that it suffices to consider the case j, > 1, and C is a universal constant.
Hence, by going back to (B-7), we have
(—v2(Aw)’, 3:¢7)

>3, 90 ) — Cliev? j2)2[19: (Vo) |2

+ Kvjaj (O (V) ™, 00 (V@) ) + 02 jode [ By ) 1% + 1020, (x By ) ", xu By ) 1))

—4V%j26_KTVI/2<X1/)(diV H)(jl,jz—l)’ 31¢j> +4Vj2<Xl/,60(j1+1’j2_1), 813X¢j>

" \2
+2v3jz<x—“wf Y > +203 j5(2j2 — 1)<(ﬁ) !, 0.7 > (B-9)

v v
Here C is a universal constant. Next we observe from 8, ¢/ = x, 9, (dy¢)’/ ! that

1, _ 1/2 . P ; 1 i i — 1 i
—4v7 joe KT (div H)Ir27D 0, ¢Ty = —Ciev? o (|HI 270+ 1 HS D 110: 9y ) || (B-10)

and also
4vja (xL @27 5 v Ty > —Crevjp |l 2D 18,957 |, (B-11)
4 .
2v312<’;—“wf , 37 > > —Ck?v? jolla? || 18; By ) . (B-12)
vV

Finally let us compute the term vl/z((X;/XV)zwj, d:¢7) when j, > 1. If j, =1 then

() o)
Xv
V()2 KT By )00 o (K™ (9y ) 010)))
e Kov! Va ¢(11,0),V((XV)281(67KW/(8Y¢)(h,0)))>
v20c ) xe KT WAy g U0 I 4+ 20 (0 xle KT 0390, 3 (7K By ) )
2l e Wy 0RO = Citullw O 0: 0y ) . (B-13)

2
{e”

1
2

o
<

v
NI— NI—
<

If j» > 2 then

7\ 2
”<(§<<_) wf',ar¢"> O @) 0, 0,9), (B-14)

and then by using the identity

v%(Aw)(jl,jz—Z) = (3, + KU%(]' _ 1))60(./1,/'2—2) — (div H)(jl,jz—Z)’

I\ 2
"<(X_) o/, 3 > = () U2 5. p)
+e 2K G0 0 + Kva(j = D)o o, ])
— e 2K () (div HY UMD 8,.¢7). (B-15)
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As for the second term on the right-hand side of (B-15), we have, for j > j, > 2,

e KT ()2 (0r + K02 (j — D)2 3,47
= KO0 0+ K2 (j = 1)axd 7 9:0x)
— 1/2 L, 1/2 i i
— e KT ()2 (0 + Kv2(j — D) (K™ By ) T, 8. (dyd) )
P 1 P .
> — k(|8 0xpY 22| + K vz j[|ax gV 22| 19, x|
2 j—1 1. j—1 j—1
— (13 By )~ + K vz jll @y ) D N19: By ) .
Since it is straightforward to see that
—03 ()2 TH2EED g gy > i 23l D 5, (D) I,

_ |/ . . s . . 1’_2 ~’-_1 ’:_
—e 2K ()2 (div H) 2D gty = — 2(IH T2 HY 1 10, By )

we obtain, for j; > 2,

1 X/ 2 . .
p2<(_"> a)j, 3r¢1>
Xv

P 1 P 1 . . .
> —k2([|8:0xpY 22| + Kv2 j[|axg U272 4 v2 |0 T2 19, (9x ) |
e l . ~,_ . s . . 7_
— 12183 @y ) I+ K vz j 1@y~ + THT 272 4 1 HI 2P 19, By ) M. (B-16)
Collecting (B-9)—(B-12) with (B-13) (for j, = 1) and (B-16) (for j, > 2), we conclude the desired estimate
by using the bound

MZJ l[f = sup ”f ”LZ(O 1/([(])1/2) L
lil=J

1
S K])l/2 |Sl|.lp ”f ||LOO(0 1/(KV|/2) L2 Y)

1

= mMoo,j,l[f]z- O

As a consequence of Lemmas B.1 and B.2, we obtain:

Corollary B.3. There exists kg € (0, 1] such that, forany k € (0, kgl and K > 1,

p—1/2 —-1/2

1
v
j=0

(]+1)1/2 p=1/2

1 1
(J')3/—2]/2 My, j1lo] + K2vi Z m My ;1 [Vo]+ Z WMZ,‘/,I[(%VM,
=0

—12 12

v

<c(vs ! b VG ED 2 o P
<C(v Z Gynle’ ool + Z G 19 |r:0||+zo—(j!)3/2vj/2 2,1 [H]).
J:

Here C is a universal constant.
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‘We note that
172

v-172 1/4 .+11/2 ) 1 .
L el =C Y Gy (V9 le=oll = CLIVALe=oll
j=0

iN3/2pi/2
D
since j < v~!/2, By virtue of Corollary B.3, it remains to estimate

172

1
> Gy MaalH).
j=1

Recall that H = —Vw — QVLd) + (F>, —F1). Hence it suffices to show:

Lemma B.4. Foranyk € (0, 1] and K > 1, we have

172

1 C(CE+CY) ,
Y Gy MaaalVel = = IVel, (B-17)
j=0 "
172
C(C(T + CT) / 1
Y Gy MealVel = == r R UA@ = dup )l + ARl (B-18)
j=0 "

Here ¢app 1 = (1,1 +d12)[(1 + Rye) " 'h] with h = —y Pgliply=0, and C is a universal constant.

Proof. We give a sketch of the proof only for (B-18), for (B-17) is proved in a similar manner. Let |j| = j.
Then

172 v-172
1 1 VAYTSION,
- . - J—1
Z IS M [Vl < Z NEEnE Blli); Z(l )||V @’ N 20,17k v172); 12
j=1 j=0 1<j
Here VJ = ¢ K'"iB, 31V, while 0/ = e K7'"U+D B, 5116, Since 0 = —A(p — Pupp.1) — Adpapp.1

by virtue of the construction, we have

1 j-1
1V ! ™ Ml 20,1 /K v12): 12)
; i1 1 j—1
<V ||L00||(A(¢_¢app,l))J ||L2(0,]/(Ku1/2);L2)+ loy V ||Loo||Y(A¢app,l)J ||L2(0,1/(Ku1/2);L2).

By using (J) < (/) with I = |{|, we have

1 I\l j—1
e Z(Z )”V @' 20,17k w12 12)
) I<j

1
NG =D\ Mz, j—11[A(D — Gapp.1)] + M2 j—1 v [Aapp,1] ! !
= ;( il (G —HP2yG-D/2 1772 MUV e £ 18y V).

Next we observe that, for all [ € NU {0},

#HII =1, 1< j}=#l, max(0, | —j+ j2) <l <min(jz, D} =min((+1, j—1+1),
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which gives the bound of the form 3, _; < lezo min(/ 4+ 1, j —1 4+ 1). Hence we have

1 AT
e 2(1 )”V @l " 120,17k v1/2);12)
’ I<j

11 (j —DI\?2
I

" My ;1 1[A(D — Papp, )]+ M2 1 y[Aapp,1] 1
(j _1)13/21)(1'71)/2 113/2y)1/2

J
§Zmin(l+1,j—l+1)<
=0

max(IV' 2 410y V).

Since min(l 4 1, j — 14+ 1)({! (j —1)!/j")/? is uniformly bounded about 0 <[ < j, the Young inequality
for ! convolution gives the inequality

o172
1 PN
N Jj=l
2 EEYE f}}i’jZ(l)”V @ Nz
=07 1=j

V71/2
1 . .
7 o0 T 700
<C Y gy max (V7 o + 1y V)
= JlI=i
172

X D Sy WA (M2 (A = Gupp.)]+ Moy [Adupp.1D-

Jj=0

Then the desired estimate follows by noticing dy V/ = (3y V)/ 4+ v'/2 jx! (3y V)U/2=D and the bound
of the form ||| flll2 < v="* £IIl5 ;- O

Proposition 6.1 follows from Corollary B.3 and Lemma B.4.

Appendix C: Estimate of the Biot—Savart law

Lemma C.1. The following statement holds if « is sufficiently small. Assume that
feCq0,1/K); H' (T x R4)?)
satisfies div f =0 for y > 0 and f>]y—0 = 0. Then
IV fligy, < Clirot fllgy . pell,ool.
Here C is a universal constant.
Proof. We observe that 9, fi =rot f + 0, f> and 9, f> = —0, f1. Hence it suffices to show
19: fllgz, < Clirot [z,
Since f = V1¢ with the stream function ¢ and —A¢ = w with w =rot g and ¢| y=0 = 0, we have

—(A ) =l @ = KU )RRy i+ o=
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By virtue of the identity —(Ad ) = -V - (8, V) + jz()(//x)(ayax(b)j, integration by parts gives
(Vo) I +2jz<§(ayax¢>f, dv¢’ > =—(o’. 8}¢).

Since 3,¢7 = e Ky (8,0,¢)VU1727D we thus have

(V) | < Cllew? || + kj (3,8, ) 1271,

where C is a universal constant. This estimate implies |0, V¢>||Gg/2 < C(||a)||Gg/2 + K || 0y 3y¢||G§/2), and
thus, by taking « small enough, we obtain ||c')xV¢||G§/2 < C||a)||G§/2.
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