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In relatively nice geometric settings, in particular, on Lipschitz domains, absolute continuity of elliptic
measure with respect to the surface measure is equivalent to Carleson measure estimates, to square
function estimates, and to ε-approximability, for solutions to the second-order divergence-form elliptic
partial differential equations Lu = − div(A∇u) = 0. In more general situations, notably, in an open
set � with a uniformly rectifiable boundary, absolute continuity of elliptic measure with respect to the
surface measure may fail, already for the Laplacian. In the present paper, extending and clarifying our
previous work (Duke Math J. 165:12 (2016), 2331–2389), we demonstrate that nonetheless, Carleson
measure estimates, square function estimates, and ε-approximability remain valid in such �, for solutions
of Lu = 0, provided that such solutions enjoy these properties in Lipschitz subdomains of �.

Moreover, we establish a general real-variable transference principle, from Lipschitz to chord-arc
domains, and from chord-arc to open sets with uniformly rectifiable boundary, that is not restricted to
harmonic functions or even to solutions of elliptic equations. In particular, this allows one to deduce the
first Carleson measure estimates and square function bounds for higher-order systems on open sets with
uniformly rectifiable boundaries and to treat subsolutions and subharmonic functions.
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1. Introduction

In the setting of a Lipschitz domain � ⊂ Rn+1, n ≥ 1, for any divergence-form elliptic operator L =

− div(A∇) with bounded measurable coefficients, the following are equivalent:

(i) Every bounded solution u, of the equation Lu = 0 in �, satisfies the Carleson measure estimate (see
Definition 1.9 with F = |∇u|/∥u∥L∞(�)).
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(ii) Every bounded solution u, of the equation Lu = 0 in �, is ε-approximable for every ε > 0 (see
Definition 1.11).

(iii) The elliptic measure associated to L , ωL , is (quantitatively) absolutely continuous with respect to
the Lebesgue measure, ωL ∈ A∞(σ ) on ∂�.

(iv) Uniform square function/nontangential maximal function (“S/N”) estimates hold locally in “saw-
tooth” subdomains of � (see Definition 1.15).

Historically, Dahlberg [1980a] obtained an extension of Garnett’s ε-approximability result, observing
that (iv) implies (ii) in the harmonic case.1 The explicit connection of ε-approximability with the A∞

property of harmonic measure, i.e., that (ii) implies (iii), appears in [Kenig et al. 2000] (where this
implication is established not only for the Laplacian, but for general divergence-form elliptic operators).
That (iii) implies (iv) is proved for harmonic functions in [Dahlberg 1980b],2 and, for null solutions of
general divergence-form elliptic operators, in [Dahlberg et al. 1984]. Finally, Kenig, Kirchheim, Pipher
and Toro [Kenig et al. 2016] have recently shown that (i) implies (iii), whereas, on the other hand, (i)
may be seen, via good-lambda and John–Nirenberg arguments, to be equivalent to the local version of
one direction of (iv) (the “S < N” direction).3

The main goal of the present paper is to show that while (iii) may fail on general uniformly rectifiable
domains even for harmonic functions [Bishop and Jones 1990], or might be not applicable in the absence
of a suitable concept of elliptic measure (e.g., for systems), (i), (ii) and (iv) carry over from Lipschitz
domains to the complement of a uniformly rectifiable set. The novelty of the present work lies in the
fact that we develop a general transference principle, from Lipschitz domains to chord-arc domains and
thence to domains with uniformly rectifiable boundaries, that will allow us to carry out this program by a
purely real-variable mechanism. In particular, this both extends and clarifies our previous work [Hofmann
et al. 2016]. But let us start with more historical context.

In the past several decades, uniformly rectifiable sets have been identified as the most general geometric
setting in which many standard harmonic-analytic properties continue to hold. In particular, it was shown
in the early 90’s that uniform rectifiability of a set E is equivalent to boundedness of all sufficiently
nice singular integral operators with odd kernels in L2(E) [David and Semmes 1991], and, much more
recently, that uniform rectifiability is equivalent to boundedness of the Riesz transform in L2(E) (see
[Mattila et al. 1996] for the case n = 1 and [Nazarov et al. 2014] in general).

However, it seemed to be vital for many standard boundary estimates for solutions of elliptic PDEs in
a domain � that, in addition to uniform rectifiability of its boundary, � should possess some additional
topological features, ensuring a reasonably nice approach to the boundary. In some respects, this is indeed
true. In particular, it has been known that (i)–(iv) hold for harmonic functions on chord-arc domains, that
is, nontangentially accessible domains with Ahlfors–David regular boundaries (see Definitions 1.1 and
1.6 below, and [Jerison and Kenig 1982; Dahlberg et al. 1984; David and Jerison 1990]). Such domains

1This implication holds more generally for null solutions of divergence-form elliptic equations; see [Kenig et al. 2000;
Hofmann et al. 2015].

2And thus all four properties hold for harmonic functions in Lipschitz domains, by the result of [Dahlberg 1977].
3We will prove this fact in much greater generality in this paper.
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satisfy an interior and exterior corkscrew condition (quantitative openness) and a Harnack chain condition
(quantitative connectedness). At the same time, the counterexample of [Bishop and Jones 1990] showed
that absolute continuity of harmonic measure with respect to the Lebesgue measure (iii) may fail on a
general set with a uniformly rectifiable boundary: they construct a one-dimensional (uniformly) rectifiable
set E in the complex plane, for which harmonic measure with respect to�= C\E , is singular with respect
to Hausdorff H 1 measure on E . Much more recently, under the natural and rather minimal background
assumptions that � satisfies an interior corkscrew condition, and has an Ahlfors–David regular boundary,
quantitative absolute continuity of harmonic measure with respect to surface measure (either property (iii)
above, or the weak-A∞ property, i.e., property (iii) in the absence of doubling), has now been characterized
in the harmonic case, thus establishing the necessity of some connectivity assumption in this context:
property (iii) (respectively, its weaker nondoubling version) is equivalent to uniform rectifiability of ∂�,
along with some version of accessibility to the boundary, either the semiuniformity condition of [Aikawa
and Hirata 2008] in the doubling case [Azzam 2021], or respectively, the “weak local John condition”,
which gives access to an ample portion of the boundary, locally, from each interior point of � [Azzam
et al. 2020]. Thus, while some connectivity is indeed required to obtain property (iii), in [Hofmann et al.
2016] the authors proved that, nonetheless, Carleson measure estimates (i) and ε-approximability (ii) for
harmonic functions (and implicitly, for solutions of a certain more general class of elliptic equations)
remain valid on all domains with a uniformly rectifiable boundary, in the absence of any connectivity
assumption. Shortly thereafter, it was shown that, at least in the presence of interior corkscrew points,
each of the necessary properties (i) and (ii) is also sufficient for uniform rectifiability [Garnett et al. 2018].

The present paper introduces a new transference mechanism, which illustrates that for certain classes
of scale-invariant estimates (e.g., Carleson measure bounds, or square function/nontangential maximal
function estimates) the passage from such estimates on Lipschitz domains to analogous results on chord-
arc domains and further to the same bounds on all open sets with uniformly rectifiable boundaries is,
in fact, a real-variable phenomenon. That is, for a given function F defined in the complement of a
codimension 1, uniformly rectifiable set E ⊂ Rn+1, if one has suitable bounds for F on Lipschitz domains,
then these automatically carry over to Rn+1

\ E . This immediately gives a series of new results in very
general PDE settings (for solutions of second-order elliptic PDEs with coefficients satisfying a Carleson
measure condition, for solutions of higher-order systems, for nonnegative subsolutions), but clearly the
power of having a general, purely real-variable scheme, goes beyond these applications. Let us now
discuss the details. We begin by defining several basic concepts.

Definition 1.1 (ADR). We say that a set E ⊂ Rn+1 is n-dimensional Ahlfors–David regular (or simply
ADR) if it is closed, and if there is some uniform constant C ≥ 1 such that

C−1rn
≤ σ(1(x, r))≤ Crn for all r ∈ (0, diam(E)), x ∈ E, (1.2)

where diam(E)may be infinite. Here,1(x, r) := E∩B(x, r) is the surface ball of radius r , and σ := H n
|E

is the surface measure on E , where H n denotes n-dimensional Hausdorff measure.

Definition 1.3 (UR and UR character). An n-dimensional ADR (hence closed) set E ⊂ Rn+1 is n-
dimensional uniformly rectifiable (or simply UR) if and only if it contains big pieces of Lipschitz images
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of Rn (BPLI). This means that there are positive constants θ,M0 > 1 such that for each x ∈ E and each
r ∈ (0, diam(E)) there is a Lipschitz mapping ρ = ρx,r : Rn

→ Rn+1, with Lipschitz constant no larger
than M0, such that

H n(E ∩ B(x, r)∩ ρ({z ∈ Rn
: |z|< r})

)
≥ θ−1rn.

Additionally, the UR character of E is just the triple of constants (θ,M0,C), where C is the ADR constant;
or equivalently, the quantitative bounds involved in any particular characterization of uniform rectifiability.

Note that, in particular, a UR set is closed by definition, so that Rn+1
\ E is open, but need not be

connected.
We recall that n-dimensional rectifiable sets are characterized by the property that they can be covered,

up to a set of H n-measure 0, by a countable union of Lipschitz images of Rn; we observe that BPLI is a
quantitative version of this fact.

It is worth mentioning that there exist sets that are ADR (and that even form the boundary of an open
set satisfying interior corkscrew and Harnack chain conditions), but that are totally nonrectifiable (e.g.,
see the construction of Garnett’s “4-corners Cantor set” in [David and Semmes 1993, Chapter 1]).

Definition 1.4 (corkscrew condition). Following [Jerison and Kenig 1982], we say that an open set
� ⊂ Rn+1 satisfies the corkscrew condition if for some uniform constant C > 1 and for every surface
ball 1 :=1(x, r)= B(x, r)∩ ∂�, with x ∈ ∂� and 0< r < diam(∂�), there is a ball B(X1,C−1r)⊂

B(x, r)∩�. The point X1 ⊂ � is called a corkscrew point relative to 1. We note that we may allow
r < C ′ diam(∂�) for any fixed C ′ simply by adjusting the constant C.

Definition 1.5 (Harnack chain condition). Again following [Jerison and Kenig 1982], we say that an
open set � satisfies the Harnack chain condition if there is a uniform constant C ≥ 1 such that for every
pair of points X, X ′

∈� there is a chain of balls B1, B2, . . . , BN ⊂� with

N ≤ C
(

2 + log+

2
|X − X ′

|

min{dist(X, ∂�), dist(X ′, ∂�)}

)
,

X ∈ B1, X ′
∈ BN , Bk∩Bk+1 ̸=∅ for every 1≤k ≤ N−1, and C−1 diam(Bk)≤dist(Bk, ∂�)≤C diam(Bk)

for every 1 ≤ k ≤ N. The chain of balls is called a Harnack chain. We remark that in general, the estimate
for N can be worse than logarithmic, but as is well known, in the presence of an interior corkscrew
condition, it is necessarily logarithmic if it holds at all.

Definition 1.6 (NTA, 1-sided NTA, CAD, and 1-sided CAD). We say that an open set � ⊂ Rn+1 is
1-sided nontangentially accessible (or simply 1-sided NTA) if it satisfies the Harnack chain condition,
and � satisfies the (interior) corkscrew condition. Additionally, the 1-sided NTA character of � is just
the collection of constants involved in the fact that � is 1-sided NTA, that is, the (interior) corkscrew
constant, as well as the constant from the Harnack chain condition.

As in [Jerison and Kenig 1982], we say that an � ⊂ Rn+1 is nontangentially accessible (or simply
NTA) if it satisfies the Harnack chain condition, and if both � and �ext := Rn+1

\� satisfy the corkscrew
condition. The NTA character of � is the collection of constants involved in the fact that � is NTA, that
is, the interior and exterior corkscrew constants, as well as the constant from the Harnack chain condition.
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We say that an open set �⊂ Rn+1 is a 1-sided chord-arc domain, or simply 1-sided CAD, (resp. chord-
arc domain, or simply CAD) if it is 1-sided NTA (resp. NTA) and has ADR boundary. The 1-sided CAD
character (resp. CAD character) is the 1-sided NTA character (resp. NTA character) together with the
ADR constant.

Definition 1.7 (Lipschitz graph domain). We say that �⊂ Rn+1 is a Lipschitz graph domain if there is
some Lipschitz function ψ : Rn

→ R and some coordinate system such that

�= {(x ′, t) : x ′
∈ Rn, t >ψ(x ′)}.

We refer to M = ∥∇ψ∥L∞(Rn) as the Lipschitz constant of �.

Definition 1.8 (bounded Lipschitz domain). We say that an open connected set �⊂ Rn+1 is a bounded
Lipschitz domain if there exist r� > 0, M,C0,m ≥ 1, {x j }

m
j=1 ⊂ ∂�, {rj }

m
j=1, with C−1

0 r� < rj < C0r�
for every 1 ≤ j ≤ m, such that the following conditions hold. First, ∂�⊂

⋃m
j=1 B(x j , rj ). Second, for

each 1 ≤ j ≤ m there is some Lipschitz graph domain Vj , with x j ∈ ∂Vj and with Lipschitz constant at
most M, such that Uj ∩�= Uj ∩ Vj , where Uj is a cylinder of height 8(M + 1)rj , radius 2rj , and with
axis parallel to the t-axis (in the coordinates associated with Vj ). We refer to the triple (M,m,C0) as the
Lipschitz character of �.

As we pointed out above and as can be seen from the definitions, nontangentially accessible domains
possess certain quantitative topological features. One can show that a CAD satisfies a property analogous
to Definition 1.3, but using big pieces of Lipschitz subdomains, rather than big pieces of Lipschitz images
(see Proposition 3.20), the crucial difference being that in some sense a nice access to the boundary of a
Lipschitz domain is retained, contrary to the general UR case.

Finally, let us define the scale-invariant estimates at the center of this paper.

Definition 1.9 CME. Let � ⊂ Rn+1 be an open set and let F ∈ L2
loc(�). We say that F satisfies the

Carleson measure estimate (or simply CME) on � if

∥F∥CME(�) := sup
x∈∂�, 0<r<∞

1
rn

∫∫
B(x,r)∩�

|F(Y )|2 dist(Y, ∂�) dY <∞. (1.10)

Definition 1.11 (ε-approximable). Let � ⊂ Rn+1 be an open set. Let u ∈ L∞(�), with ∥u∥L∞(�) ≤ 1,
and let ε ∈ (0, 1). We say that u is ε-approximable on � if there is a constant Cε and a function
ϕ = ϕε ∈ W 1,1

loc (�) satisfying
∥u −ϕ∥L∞(�) < ε (1.12)

and
sup

x∈∂�, 0<r<∞

1
rn

∫∫
B(x,r)∩�

|∇ϕ(Y )| dY ≤ Cε. (1.13)

Let � be an open set. The cone with vertex at x ∈ ∂� and aperture κ > 0 is defined as

0�(x) := 0�,κ(x) := {Y ∈�∩ B(x, r) : |Y − x | ≤ (1 + κ) dist(Y, ∂�)}, x ∈ ∂�. (1.14)

Given r > 0, we write 0r
�(x) := 0�(x)∩ B(x, r) for the truncated cone. With a slight abuse of notation

if � is unbounded and ∂� bounded, our cones will be truncated. More precisely, in that scenario, we
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will write 0�( · ) to denote 0C diam(∂�)
� ( · ), where C ≥ 2 is a fixed harmless constant. In this way, when

∂� is bounded, so are the cones, all being contained in a C ′ diam(∂�)-neighborhood of ∂�. We will
sometimes refer to these cones as “traditional” to distinguish them from some dyadic cones which will be
introduced later; see (2.23).

Definition 1.15 (nontangential maximal function, area integral, and square function). Let � be an open
set. For H ∈ C(�) (i.e., H is a continuous function in�) we define the nontangential maximal function as

N∗,�H(x) := N∗,�,κH(x) := sup
Y∈0�,κ (x)

|H(Y )|, x ∈ ∂�; (1.16)

for G ∈ L2
loc(�), we define the area integral as

A�G(x) :=A�,κG(x) :=

(∫∫
0�,κ (x)

|G(Y )|2 dist(Y, ∂�)1−n dY
)1

2

, x ∈ ∂�; (1.17)

and, for u ∈ W 1,2
loc (�), we define the square function as

S�u(x) := S�,κu(x) :=

(∫∫
0�,κ (x)

|∇u(Y )|2 dist(Y, ∂�)1−n dY
)1

2

, x ∈ ∂�. (1.18)

For any r > 0, we write N r
∗,�, Ar

�, and Sr
� to denote the truncated nontangential maximal function, area

integral, and square function respectively, where 0�( · ) is replaced by the truncated cone 0r
�( · ).

Let us now list some highlights of the main results of this paper (see Corollary 3.1, Theorem 3.31 and
Theorem 3.6 for the precise statements in the body of the paper and also Notation 2.56). First, we have
that Carleson measure estimates on Lipschitz domains imply Carleson measure estimates in CAD, which,
in turn, imply Carleson measure estimates on the sets with UR boundaries, via the following formalism.

Theorem 1.19 (transference of Carleson measure estimates4). (i) Let D ⊂ Rn+1 be a chord-arc domain
and F ∈ L2

loc(D). If F satisfies the Carleson measure estimate on all bounded Lipschitz subdomains
of D then F satisfies the Carleson measure estimate on D as well.

(ii) Let E ⊂ Rn+1 be an n-dimensional uniformly rectifiable set and let F ∈ L2
loc(R

n+1
\ E). If F satisfies

the Carleson measure estimate on all bounded chord-arc subdomains of Rn+1
\ E , then F satisfies

the Carleson measure estimate on Rn+1
\ E as well.

(iii) Let E ⊂ Rn+1 be an n-dimensional uniformly rectifiable set and let F ∈ L2
loc(R

n+1
\ E). If F satisfies

the Carleson measure estimate on all bounded Lipschitz subdomains of Rn+1
\ E , then F satisfies

the Carleson measure estimate on Rn+1
\ E as well.

4In the statement we have omitted the dependence in the Carleson estimates on the various geometric parameters. The precise
statements (see Theorems 3.31 and 3.6) given in the body of the paper impose that the Carleson measure estimates hold for any
bounded Lipschitz (resp. chord-arc) subdomain with a bound depending on the Lipschitz (resp. CAD) character. The latter means
that for all subdomains with Lipschitz (resp. CAD) character controlled by some uniform quantity, say M, the corresponding
Carleson measure estimates hold with an associated uniform constant depending on M. The conclusions should also include
that the resulting Carleson estimates depend on the CAD character of D (resp. UR character of E), as well as on the Carleson
estimates of F in the subdomains.
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We remark that Theorem 1.19(ii) was already implicit in our previous work [Hofmann et al. 2016],
although in the present paper we give a proof of this result that is simpler than the corresponding argument
there. The main new ingredient in Theorem 1.19 is part (i); part (iii) is an immediate corollary of parts (i)
and (ii).

Next, in the class of open sets with UR or ADR boundary, or in the class of chord-arc domains or
1-sided chord-arc domains, the Carleson measure estimates are equivalent to local and global area integral
bounds (aka square function estimates).

Theorem 1.20. Let �⊂ Rn+1 be an open set with ADR boundary and suppose that we have a collection
{�′

}�′∈6 such that each �′
∈ 6 is an open subset of �, ∂�′ is ADR boundary, and also that all of its

local sawtooth subdomains (see Section 2) belong to 6. Let G ∈ L2
loc(�) and H ∈ C(�) and assume that(

1
rn

∫∫
B(X,r)

|G(Y )|2δ(Y ) dY
)1

2

≤ C∥H∥L∞(B(X,2r)) for all B(X, 2r)⊂�.

The following statements are equivalent:

(i) ∥G∥CME(�′) ≲ ∥H∥
2
L∞(�′) for all �′

∈6.

(ii) ∥A�′ G∥Lq (∂�′) ≤ C∥N∗,�′ H∥Lq (∂�′) for all �′
∈6 and for some 0< q <∞.

(iii) ∥A�′ G∥Lq (∂�′) ≤ C∥N∗,�′ H∥Lq (∂�′) for all �′
∈6 and for all 0< q <∞.

This result is a particular case of Theorem 4.8 (and Remarks 4.20, 2.37, and 2.38), which actually
contains considerably more detailed statements, as well as equivalence to local area integral bounds.

Finally, we discuss transference for the converse bounds on nontangential maximal function in terms of
the square function and their connection with ε-approximability. In this context, one has to tie up explicitly
the arguments of A and N∗. Our first result is a reduced version of the combination of Theorems 5.1
and 5.24 stated in Corollary 5.50. We do not explain in detail conditions (5.2) and (5.25) now, but let us
mention that, generally, they are harmless bounds on interior cubes, which, in the context of solutions of
elliptic PDE follow from well-known interior estimates.

Theorem 1.21. Let D ⊂ Rn+1 be a chord-arc domain. Let u ∈ W 1,2
loc (D)∩ C(D) so that (5.2) and (5.25)

hold for some p > 2. Assume that for every bounded Lipschitz subdomain �⊂ Rn+1
\ E

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C∥S�u∥L2(∂�) (1.22)

holds with a constant depending on n and the Lipschitz character of �, and where X+

� is any interior
corkscrew point of � at the scale of diam(∂�). Then, for every κ > 0, if ∂D is bounded

∥N∗,D,κ(u − u(X+

D))∥Lq (∂D) ≤ C ′
∥SD,κu∥Lq (∂D) for all 0< q <∞,

and if ∂D is unbounded and u(X)→ 0 as |X | → ∞ then

∥N∗,D,κu∥Lq (∂D) ≤ C ′
∥SD,κu∥Lq (∂D) for all 0< q <∞,

where C ′ depends on q , n, the CAD character of D, the implicit constants in (5.2) and (5.25), the
constant C in (1.22), and κ; and where X+

D is any interior corkscrew point of D at the scale of diam(∂D).
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We mention one further result that is stated in full detail below as Theorem 6.1. The interior bound (6.2)
is, again, a fairly harmless prerequisite which follows from known interior estimates in the context of
solutions of elliptic PDEs. We remark that the estimate (1.24) itself (see below) would not make much sense
for general uniformly rectifiable sets because of topological obstructions (there is no preferred component
for a corkscrew point in such a general context), and for that reason we pass directly to ε-approximability.

Theorem 1.23. Let E ⊂ Rn+1 be an n-dimensional uniformly rectifiable, and suppose that

u ∈ W 1,2
loc (R

n+1
\ E)∩ C(Rn+1

\ E)∩ L∞(Rn+1
\ E)

satisfies (6.2). Assume, in addition, that

∥∇u∥CME(Rn+1\E) ≤ C ′

0∥u∥L∞(Rn+1\E)

and that for every bounded chord-arc subdomain �⊂ Rn+1
\ E

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C∥S�u∥L2(∂�) (1.24)

holds with a constant depending on n and the CAD character of �, and where X+

� is any interior
corkscrew point of � at the scale of diam(∂�). Then u is ε-approximable on Rn+1

\ E , with the implicit
constants depending on n, the UR character of E , the constant in (6.2) and in C ′

0.

Theorem 1.23/Theorem 6.1 is simply a formalization of results that were implicit in [Hofmann et al.
2016], and we state it here, without proof, for the record.

Let us reiterate that the fact that our results provide a “black box” real-variable transference principle
allows one to use them considerably beyond the traditional scope. We can treat, for instance, subsolutions
and supersolutions of elliptic equations. Another example is higher-order elliptic systems. The best
available results to date in this context are restricted to Lipschitz domains [Dahlberg et al. 1997]. Here
we establish, for instance, the following estimates.

Let K ,m ∈N. Let E be an n-dimensional uniformly rectifiable set and u be a weak solution to the system

Lu =

K∑
k=1

∑
|α|=|β|=m

a jk
αβ∂

α∂βuk
= 0, j = 1, . . . , K ,

on Rn+1
\ E . Here, a jk

αβ , 1 ≤ α, β ≤ n + 1, 1 ≤ j, k ≤ K, α = (α1, . . . , αn+1) ∈ Nn+1
0 are real constant

symmetric coefficients satisfying the Legendre–Hadamard ellipticity condition (see (7.18)). Then u
satisfies the S < N estimates in Rn+1

\ E , that is,

∥SRn+1\E(∇
m−1u)∥L p(E) ≤ C∥N∗,Rn+1\E(|∇

m−1u|)∥L p(E), 0< p <∞.

Furthermore, if D ⊂ Rn+1 is a chord-arc domain with an unbounded boundary and ∇
m−1u vanishes at

infinity, we also have the converse estimate

∥N∗,D(∇
m−1u)∥Lq (∂D) ≤ C∥SD(∇

m−1u)∥Lq (∂D) for all 0< q <∞.

Similar results are valid locally and on bounded domains. We also obtain a version of ε-approximability
and Carleson measure estimates in this general context. The reader can consult Section 7 for a detailed
discussion of these results and other applications.
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Let us conclude this introduction with an outline of the organization of the paper. In Section 2, we
develop some preliminary material, including notation and definitions, and we state some known results
that will be useful in the sequel.

In Section 3, we give the proof of Theorem 1.19, showing first that Carleson measure estimates
(“CME”) may be transferred from Lipschitz subdomains to chord-arc domains (part (i)), and then from
chord-arc subdomains to the complement of a uniformly rectifiable set (part (ii)). As noted above, the
first step is new, while the second step is a very general version of a result whose proof was implicit in
[Hofmann et al. 2016], established here by a simpler argument than in that work. These results, along with
those in Section 5, comprise the main new contributions of the paper (although some of our applications
in Section 7 are also novel).

In Section 4, we prove Theorem 1.20/Theorem 4.8, in which, using the well-known technique of
good-λ inequalities, we show that abstract versions of CME are equivalent to abstract versions of so-called
“S < N” bounds (in the generality that we consider here, the notation A< N seems more appropriate),
which express the control of a square function by a nontangential maximal function, in L p norm.

In Section 5, we consider the reverse “N < S” bounds (see Theorem 1.21 above), and show that these
may be transferred from Lipschitz subdomains to chord-arc domains.

In Section 6, we state a detailed version of Theorem 1.23.
We note that the results in Sections 3–6 are of a purely real-variable nature, and we do not assume,

per se, that we are dealing with solutions (or sub/supersolutions) of a PDE, although at certain points we
do impose abstract versions of Caccioppoli’s inequality and/or Moser’s local boundedness.

Finally, in Section 7, we present several PDE applications of our abstract results.

2. Preliminaries

We start with some further notation and definitions.

• We use the letters c,C to denote harmless positive constants, not necessarily the same at each occurrence,
which depend only on dimension and the constants appearing in the hypotheses of the theorems (which
we refer to as the “allowable parameters”). We shall also sometimes write a ≲ b and a ≈ b to mean,
respectively, that a ≤ Cb and 0< c ≤ a/b ≤ C, where the constants c and C are as above, unless explicitly
noted to the contrary. At times, we shall designate by M a particular constant whose value will remain
unchanged throughout the proof of a given lemma or proposition, but which may have a different value
during the proof of a different lemma or proposition.

• Given a closed set E ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote points on E , and
capital letters X, Y, Z , etc., to denote generic points in Rn+1 (especially those in Rn+1

\ E).

• The open (n+1)-dimensional Euclidean ball of radius r will be denoted by B(x, r)when the center x lies
on E , or B(X, r) when the center X lies in Rn+1

\ E . A surface ball is denoted by 1(x, r) := B(x, r)∩ E
where unless otherwise specified we implicitly assume that x ∈ E .

• Given a Euclidean ball B or surface ball 1, its radius will be denoted rB or r1, respectively.
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• Given a Euclidean or surface ball B = B(X, r) or 1 = 1(x, r), its concentric dilate by a factor of
κ > 0 will be denoted by κB := B(X, κr) or κ1 :=1(x, κr).

• Given a (fixed) closed set E ⊂ Rn+1, for X ∈ Rn+1, we set δ(X) := dist(X, E).

• We let H n denote n-dimensional Hausdorff measure, and let σ := H n
|E denote the “surface measure”

on E .

• We will also work with open sets �⊂ Rn+1 in which case the previous notation and definitions easily
adapt by letting E := ∂�.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e., 1A(x)= 1 if x ∈ A,
and 1A(x)= 0 if x /∈ A.

• For a Borel set A ⊂ Rn+1, we let int(A) denote the interior of A.

• Given a Borel measure µ, and a Borel set A, with positive and finite µ measure, we set −

∫
A f dµ :=

µ(A)−1
∫

A f dµ.

• We shall use the letter I (and sometimes J ) to denote a closed (n+1)-dimensional Euclidean dyadic
cube with sides parallel to the coordinate axes, and we let ℓ(I ) denote the side length of I. If ℓ(I )= 2−k,
then we set kI := k. Given an ADR set E ⊂ Rn+1, we use Q to denote a dyadic “cube” on E . The latter
exist (see [David and Semmes 1991; Christ 1990]) and enjoy certain properties which we enumerate in
Lemma 2.1 below.

Lemma 2.1 (existence and properties of the “dyadic grid” [David and Semmes 1991; 1993; Christ 1990]).
Suppose that E ⊂ Rn+1 is an n-dimensional ADR set. Then there exist constants a0 > 0, γ > 0 and
C1<∞, depending only on dimension and the ADR constant, such that for each k ∈ Z there is a collection
of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying:

(i) E =
⋃

j Qk
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = ∅.

(iii) For each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) diam(Qk
j )≤ C12−k .

(v) Each Qk
j contains some “surface ball” 1(xk

j , a02−k) := B(xk
j , a02−k)∩ E.

(vi) H n({x ∈ Qk
j : dist(x, E \ Qk

j )≤ ϱ2−k
})≤ C1ϱ

γ H n(Qk
j ) for all k, j and for all ϱ ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been proved in [Christ 1990],
with the dyadic parameter 1

2 replaced by some constant δ ∈ (0, 1). In fact, one may always take δ=
1
2 (see

[Hofmann et al. 2017b, proof of Proposition 2.12]). In the presence of the Ahlfors–David property (1.2),
the result already appears in [David and Semmes 1991; 1993].
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• For our purposes, we may ignore those k ∈ Z such that 2−k ≳ diam(E), in the case that the latter is
finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j , i.e.,

D :=

⋃
k

Dk,

where, if diam(E) is finite, the union runs over those k such that 2−k ≲ diam(E). When E is bounded,
there exists a cube Q0 ∈ D(∂�) such that Q0 = ∂� and Q ∈ DQ0 for any Q ∈ D(∂�).

• For a dyadic cube Q ∈ Dk , we shall set ℓ(Q)= 2−k, and we shall refer to this quantity as the “length”
of Q. Evidently, ℓ(Q)≈ diam(Q).

• For a dyadic cube Q ∈ D, we let k(Q) denote the “dyadic generation” to which Q belongs, i.e., we set
k = k(Q) if Q ∈ Dk ; thus, ℓ(Q)= 2−k(Q).

• Given Q ∈ D we write Q̃ to denote the dyadic parent of Q, that is, the unique dyadic cube Q̃ with
Q ⊂ Q̃ and ℓ(Q̃)= 2ℓ(Q). Also, the children of Q are the dyadic cubes Q′

⊂ Q with ℓ(Q′)= ℓ(Q)/2.

• Properties (iv) and (v) imply that, for each cube Q ∈ D, there is a point xQ ∈ E , a Euclidean ball
B(xQ, r) and a surface ball 1(xQ, r) := B(xQ, r)∩ E such that cℓ(Q) ≤ r ≤ ℓ(Q) for some uniform
constant 0< c < 1 and

1(xQ, 2r)⊂ Q ⊂1(xQ,Cr) (2.2)

for some uniform constant C. We shall denote this ball and surface ball by

BQ := B(xQ, r), 1Q :=1(xQ, r), (2.3)

and we shall refer to the point xQ as the “center” of Q.

Definition 2.4. Let E ⊂ Rn+1 be an n-dimensional ADR set. By MD
= MD(E) we denote the dyadic

Hardy–Littlewood maximal function on E , that is, for f ∈ L1
loc(E)

MD f (x)= sup
x∈Q∈D(E)

−

∫
Q

| f (y)| dσ(y),

and, for 0< p <∞, we also write MD
p f = MD(| f |

p)1/p. Analogously, if Q0 ∈ D(E), we write MD
Q0

for
the dyadic Hardy–Littlewood maximal function localized to Q0,

MD
Q0

f (x)= sup
x∈Q∈DQ0

−

∫
Q

| f (y)| dσ(y),

where DQ0(E)= {Q ∈ D(E) : Q ⊂ Q0}, and, for 0< p <∞, we also write MD
Q0,p f = MD

Q0
(| f |

p)1/p.

Let � ⊂ Rn+1 be an open set so that ∂� is ADR. LetW =W(�) denote a collection of (closed)
dyadic Whitney cubes of �, so that the cubes inW form a pairwise nonoverlapping covering of �, which
satisfy

4 diam(I )≤ dist(4I, E)≤ dist(I, ∂�)≤ 40 diam(I ) for all I ∈W (2.5)
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(just dyadically divide the standard Whitney cubes, as constructed in [Stein 1970, Chapter VI], into cubes
with side length 1

8 as large) and also

1
4 diam(I1)≤ diam(I2)≤ 4 diam(I1),

whenever I1 and I2 touch.
Next, we choose a small parameter 0 < τ0 < 2−4 (depending only on dimension), so that for any

I ∈W, and any τ ∈ (0, τ0], the concentric dilate I ∗(τ ) := (1 + τ)I still satisfies the Whitney property

diam I ≈ diam I ∗(τ )≈ dist(I ∗(τ ), ∂�)≈ dist(I, ∂�), 0< τ ≤ τ0. (2.6)

Moreover, for τ ≤ τ0 small enough, and for any I, J ∈W, we have that I ∗(τ ) meets J ∗(τ ) if and only if
I and J have a boundary point in common, and that, if I ̸= J, then I ∗(τ ) misses 3J/4.

Definition 2.7 (Whitney-dyadic structure). Let � ⊂ Rn+1 be an open set so that ∂� is ADR. Let
W =W(�) denote a collection of (closed) dyadic Whitney cubes of � as in (2.5). Let D = D(∂�) be
the collection of dyadic cubes from Lemma 2.1 and given the parameters η < 1 and K > 1, set

W0
Q := {I ∈W : η

1
4 ℓ(Q)≤ ℓ(I )≤ K

1
2 ℓ(Q), dist(I, Q)≤ K

1
2 ℓ(Q)}, (2.8)

A Whitney-dyadic structure for � with parameters η and K is a family {WQ}Q∈D ⊂W satisfying the
following conditions:

(i) W0
Q ̸= ∅ for every Q ∈ D.

(ii) W0
Q ⊂WQ for every Q ∈ D.

(iii) There exists C ≥ 1 such that, for every Q ∈ D,

C−1η
1
2 ℓ(Q)≤ ℓ(I )≤ C K

1
2 ℓ(Q) for all I ∈WQ,

dist(I, Q)≤ C K
1
2 ℓ(Q) for all I ∈WQ .

(2.9)

In principle, for the previous definition, η and K are arbitrary, but we will typically need to assume
that η is sufficiently small and K is sufficiently large. We will do so and as a consequence the constant C
will be independent of η and K and will depend on dimension, ADR, and some other intrinsic constants
depending on the different scenarios on which we work. In particular, it is convenient to assume, and we
will do so, that K ≥ 402n so that given any I ∈W such that ℓ(I )≲ diam(E), if we write Q∗

I for (one)
nearest dyadic cube to I with ℓ(I )= ℓ(Q∗

I ) then I ∈W0
Q∗

I
⊂WQ∗

I
. Note that there can be more than one

choice of Q∗

I , but at this point we fix one so that in what follows Q∗

I is unambiguously defined.
Below we will discuss a few special cases depending on whether we have some extra information

about � or ∂�. The main idea consists in constructing some kind of “Whitney regions” which will allow
us to introduce some “Carleson boxes” and “sawtooth subdomains”. The construction of the Whitney
regions depends very much on the background assumptions, having extra information about � or ∂�
will allow us to augment the collectionsW0

Q to defineWQ so that we gain some connectivity on the
corresponding Whitney regions and hence the resulting subdomains would have better properties. We
consider four cases. In the first one, treated in Section 2.1, we assume only that �= Rn+1

\ E , where
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E is ADR (but is not necessarily UR) and we setWQ =W0
Q (here we do not gain any connectivity).

The second case is considered in Section 2.2 and deals with � = Rn+1
\ E, where E is UR, in which

case we can invoke Lemma 2.42 below and use the Lipschitz graphs associated to the good regimes so
that the augmented collectionWQ creates two nice Whitney regions, one each lying respectively above
and below the Lipschitz graph. Third, when � is a 1-sided CAD we can augmentW0

Q using that D is
Harnack chain connected so that the resulting collectionsWQ give some Whitney regions which produce
Carleson boxes and sawtooth subdomains which are 1-sided CAD; see Section 2.3. We repeat the same
construction in our last case in Section 2.4, where � is a CAD. The fact that � satisfies the exterior
corkscrew condition allows us to conclude that Carleson boxes and sawtooth subdomains are as well.

To continue with our discussion let �⊂ Rn+1 be an open set so that ∂� is ADR. LetW=W(�) and
D = D(∂�) be as above and let {WQ}Q∈D be a Whitney-dyadic structure for � with some parameters η
and K (we will assume that η is sufficiently small and K is sufficiently large). Fix 0< τ ≤ τ0/4 as above.
Given an arbitrary Q ∈ D, we may define an associated Whitney region UQ (not necessarily connected), as

UQ = UQ,τ :=

⋃
I∈WQ

I ∗(τ ). (2.10)

For later use, it is also convenient to introduce some fattened version of UQ

ÛQ = UQ,2τ :=

⋃
I∈WQ

I ∗(2τ). (2.11)

When the particular choice of τ ∈ (0, τ0] is not important, for the sake of notational convenience, we may
simply write I ∗ and UQ in place of I ∗(τ ) and UQ,τ .

We may also define the Carleson box relative to Q ∈ D, by

TQ = TQ,τ := int
( ⋃

Q′∈DQ

UQ,τ

)
, (2.12)

where
DQ := {Q′

∈ D : Q′
⊂ Q}. (2.13)

Let us note that we may choose K large enough so that, for every Q,

TQ,τ ⊂ TQ,τ0 ⊂ B∗

Q := B(xQ, Kℓ(Q)). (2.14)

We also observe that for any N ≥ 1 we have

BQ ∩�⊂ TQ,τ/N . (2.15)

To see this, let Y ∈ BQ ∩� = B(xQ, r)∩� (see (2.2), (2.3)) and pick I ∈W with I ∋ Y. Note that
ℓ(I )≤ dist(I, ∂�)/4 ≤ |Y − xQ |/4< r/4 ≤ ℓ(Q)/4. Take ŷ ∈ Q so that dist(Y, Q)= |Y − ŷ| and select
QY ∋ ŷ with ℓ(QY )= ℓ(I )≤ ℓ(Q)/4. Thus, QY ∈ DQ and

dist(I, QY )≤ |Y − ŷ| = dist(Y, Q)≤ |Y − xQ |< r ≤ ℓ(Q).

All these show that I ∈W0
Q ⊂WQ and consequently Y ∈ int(I ∗(τ/N ))⊂ TQ,τ/N as desired.
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It is convenient to introduce the Carleson box T1 relative to 1=1(x, r), with x ∈ ∂� and 0< r <
diam(∂�). Let k(1) denote the unique k ∈ Z such that 2−k−1 < 200r ≤ 2−k and set

D1
:= {Q ∈ Dk(1) : Q ∩ 21 ̸= ∅}.

We then define

T1 = T1,τ := int
( ⋃

Q∈D1

TQ

)
. (2.16)

Much as in [Hofmann and Martell 2014, (3.60)] if we write B1 = B(x, r) so that 1= B1 ∩ E , we have
by taking K possibly larger

5
4 B1 ∩�⊂ T1 ⊂ B(x, Kr)∩�. (2.17)

For future reference, we also introduce dyadic sawtooth regions as follows. Given a family F of
disjoint cubes {Q j } ⊂ D, we define the global discretized sawtooth relative to F by

DF := D \

⋃
F

DQ j , (2.18)

i.e., DF is the collection of all Q ∈ D that are not contained in any Q j ∈ F. Given some fixed cube Q,
the local discretized sawtooth relative to F by

DF ,Q := DQ \

⋃
F

DQ j = DF ∩ DQ . (2.19)

Note that we can also allow F to be empty in which case D∅ = D and D∅,Q = DQ .
Similarly, we may define geometric sawtooth regions as follows. Given a family F ⊂ D of disjoint

cubes as before, we define the global sawtooth and the local sawtooth relative to F by respectively

�F := int
( ⋃

Q′∈DF

UQ′

)
, �F ,Q := int

( ⋃
Q′∈DF ,Q

UQ′

)
. (2.20)

Note that �∅,Q = TQ . For the sake of notational convenience, we set

WF :=

⋃
Q′∈DF

WQ′, WF ,Q :=

⋃
Q′∈DF ,Q

WQ′, (2.21)

so that in particular, we may write

�F ,Q = int
( ⋃

I∈WF ,Q

I ∗

)
. (2.22)

Finally, for every x ∈ ∂�, we define nontangential approach regions, dyadic cones, as

0(x)=

⋃
Q∈D:Q∋x

UQ . (2.23)

Their local (or truncated) versions are given by

0Q(x)=

⋃
Q′∈DQ :Q′∋x

UQ′, x ∈ Q. (2.24)
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When ∂� is bounded, there exists a cube Q0 ∈D(∂�) such that Q0 = ∂� and Q ∈DQ0 for any Q ∈D(∂�).
In particular, 0Q( · )⊂ 0Q0( · )⊂ {X ∈� : dist(X, ∂�)≲ diam(∂�)} and all the cones are bounded.

Note that all the previous objects have been defined using the Whitney regions UQ (made out of dilated
Whitney cubes I ∗(τ )). One can analogously use the fattened Whitney regions ÛQ (composed of the union
of dilated Whitney cubes I ∗(2τ)). In that case we will use the notation T̂Q , T̂1, �̂F , �̂F ,Q , 0̂( · ), 0̂Q( · ).

We will always assume that K is large enough (say K ≥ 104n) so that 0̂�,1(x) ⊂ 0(x) (see (1.14))
for every x ∈ ∂�. Indeed, let Y ∈ 0�,1(x) and pick I ∈W with Y ∈ I. Take Q ∈ D with Q ∋ x and
ℓ(Q)= ℓ(I ). Then,

dist(I, Q)≤ |Y − x | ≤ 2 dist(Y, ∂�)≤ 2(diam(I )+ dist(I, ∂�))≤ 82 diam(I ) < 100
√

nℓ(Q).

Hence, I ∈W0
Q ⊂WQ provided 100

√
n ≤

√
K and thus I ⊂ UQ ⊂ 0(x) as desired.

Remark 2.25. It is convenient to introduce a condition on interior Whitney balls that is much weaker
than CME itself. Let �⊂ Rn+1 be an open set. For every F ∈ L2

loc(�) we set

∥F∥C0(�) := sup
X∈�

1
δ(X)n−1

∫∫
B(X,δ(X)/2)

|F(Y )|2 dY, (2.26)

where δ( · )= dist( · , ∂�).
Note that for any X ∈ � we have that B(X, δ(X)/2) ⊂ B(x̂, 3δ(X)/2) ∩ � with x̂ ∈ ∂� so that

δ(X)= |X − x̂ |, and δ(Y )≥ δ(X)/2 for every Y ∈ B(X, δ(X)/2). Hence,

∥F∥C0(�) ≤ 2
( 3

2

)n
∥F∥CME(�), (2.27)

and ∥F∥C0(�) <∞ is necessary for (1.10) to hold.
We note that in all applications to the CME for solutions of elliptic PDEs, ∥F∥C0(�) will be bounded

automatically, by Caccioppoli’s inequality (since F will be of the form ∇u or ∇
mu with u being a bounded

solution). We shall discuss this in more detail together with the corresponding applications.

We introduce a dyadic version of Definition 1.9. Given �⊂ Rn+1, an open set with ∂� being ADR,
let {WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with some parameters η and K. We define, for
every F ∈ L2

loc(�),

∥F∥CMEdyad(�) := sup
Q∈D(∂�)

1
σ(Q)

∫∫
TQ

|F(X)|2 dist(X, ∂�) d X. (2.28)

We are going to show that

∥F∥CME(�) ≲ ∥F∥CMEdyad(�) + ∥F∥C0(�). (2.29)

To obtain this, fix x ∈ ∂� and 0< r <∞. SetWx,r = {I ∈W(�) : I ∩ B(x, r) ̸=∅} and note that given
I ∈Wx,r , if we pick Z I ∈ I ∩ B(x, r), then (2.5) implies

diam(I )≤ dist(I, ∂�)≤ |Z I − x |< r. (2.30)

Set

W small
x,r = {I ∈Wx,r : ℓ(I ) < diam(∂�)/4}, Wbig

x,r = {I ∈Wx,r : ℓ(I )≥ diam(∂�)/4},
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with the understanding thatWbig
x,r =∅ if diam(∂�)= ∞. Using this notation and writing δ= dist( · , ∂�)

we have ∫∫
B(x,r)∩�

|F |
2δ d X ≤

∑
I∈Wsmall

x,r

∫∫
I
|F |

2δ d X +

∑
I∈Wbig

x,r

∫∫
I
|F |

2δ d X = I + II, (2.31)

where we understand that II = 0 ifWbig
x,r = ∅.

To estimate I we set r0 = min{r, diam(∂�)/4} and pick k2 ∈ Z so that 2k2−1
≤ r0 < 2k2 . Set

D1 = {Q ∈ D(∂�) : ℓ(Q)= 2k2, Q ∩ B(x, 3r) ̸= ∅}.

Given I ∈W small
x,r we pick y ∈∂� so that dist(I, ∂�)=dist(I, y). Hence there exists a unique Q I ∈D(∂�)

so that y ∈ Q I and ℓ(Q I )= ℓ(I ) < r0 ≤ diam(∂�)/4 by (2.30). Also,

dist(I, Q I )≤ dist(I, y)= dist(I, ∂�)≤ 40 diam(I )= 40
√

nℓ(Q).

This implies that I ∈W0
Q I

⊂WQ I , provided 0< η ≤ 1 and K ≥ 40
√

n. On the other hand, by (2.30)

|y − x | ≤ dist(y, I )+ diam(I )+ |Z I − x |< 3r;

hence there exists a unique Q ∈D1 so that y ∈ Q. Since ℓ(Q I ) < r0 < 2k2 = ℓ(Q), we conclude that
Q I ⊂ Q and consequently I ⊂ int(UQ I )⊂ TQ . In short we have shown that if I ∈W small

x,r , there exists
Q ∈D1 so that I ⊂ TQ . Thus,

I ≲
∑

Q∈D1

∫∫
TQ

|F |
2δ d X ≤ ∥F∥CMEdyad(�)

∑
Q∈D1

σ(Q)≲ ∥F∥CMEdyad(�)r
n,

where we have used the fact that D1 is a pairwise disjoint family, that
⋃

Q∈D1
Q ⊂ B(x,Cr)∩ ∂� (with

C depending on dimension and ADR), and that ∂� is ADR.
We now estimate II when nonempty, in which case diam(∂�)<∞. Using the properties of the Whitney

cubes and recalling (2.26) we arrive at

II ≲
∑

I∈Wbig
x,r

ℓ(I )
∫∫

I
|F |

2 d X ≲ ∥F∥C0(�)

∑
I∈Wbig

x,r

ℓ(I )n≤ ∥F∥C0(�)

∑
diam(∂�)/4≤2k<r

2kn#{I ∈Wbig
x,r : ℓ(I )= 2k

}.

To estimate the last term we observe that if Y ∈ I ∈W
big

x,r we have by (2.5)

|Y − x | ≤ diam(I )+ dist(I, ∂�)+ diam(∂�)≲ ℓ(I ).

This and the fact that Whitney cubes have nonoverlapping interiors imply

#{I ∈Wbig
x,r : ℓ(I )= 2k

} = 2−k(n+1)
∑

I∈Wbig
x,r :ℓ(I )=2k

|I |

= 2−k(n+1)
∣∣∣∣ ⋃

I∈Wbig
x,r :ℓ(I )=2k

I
∣∣∣∣ ≤ 2−k(n+1)

|B(x,C2k)| ≲ 1. (2.32)
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Therefore,

II ≲ ∥F∥C0(�)

∑
diam(∂�)/4≤2k<r

2kn ≲ ∥F∥C0(�)r
n.

Collecting the estimates for I and II we obtain (2.29).

Definition 2.33 (dyadic nontangential maximal function, area integral, and square function). Let�⊂Rn+1

be an open set with ∂� being ADR and let {WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with
some parameters η and K. For H ∈ C(�) (i.e., H is continuous function in �), we define the dyadic
nontangential maximal function as

N∗H(x) := sup
Y∈0(x)

|H(Y )|, x ∈ ∂�; (2.34)

for G ∈ L2
loc(�), we define the dyadic area integral as

AG(x) :=

(∫∫
0(x)

|G(Y )|2 dist(Y, E)1−n dY
)1

2

, x ∈ ∂�; (2.35)

and, for u ∈ W 1,2
loc (�), we define the dyadic square function as

Su(x) :=

(∫∫
0(x)

|∇u(Y )|2 dist(Y, ∂�)1−n dY
)1

2

, x ∈ ∂�. (2.36)

For any Q ∈ D(∂�), we write N Q
∗ , AQ , and SQ to denote the local (or truncated) dyadic nontangential

maximal function, area integral, and square function respectively, where 0( · ) is replaced by the local
cone 0Q( · ). Finally, N̂∗, Â, Ŝ or N̂ Q

∗ , ÂQ , ŜQ stand for the corresponding objects associated to the
fattened cones 0̂( · ) or their local versions 0̂Q( · ).

Remark 2.37. It is convenient to compare the two types of cones, the “traditional” and the dyadic (see
(1.14) and (2.23)). Fix a Whitney-dyadic structure {WQ}Q∈D(∂�) for � with parameters η and K. It is
straightforward to see that there exists κ such that the dyadic cones 0(x) are contained in 0�(x) for all
x ∈ ∂�. Indeed, if Y ∈ I ∗(2τ) with I ∈WQ and Q ∋ x then by (2.9)

|Y − x | ≤ diam(I ∗(2τ))+ dist(I, Q)+ diam(Q)≲ K
1
2 ℓ(Q)≲ K

1
2η−

1
2 ℓ(I )

≲ K
1
2η−

1
2 dist(I, ∂�)≤ K

1
2η−

1
2 dist(Y, ∂�);

hence Y ∈0�,K 1/2η−1/2(x). And we have shown that 0(x)⊂ 0̂(x)⊂0�,K 1/2η−1/2 . Conversely, given κ > 0,
there exist η and K (depending on κ) such that if {WQ}Q∈D(∂�) is a Whitney-dyadic structure for � with
parameters η and K then 0�,κ(x) ⊂ 0(x) for all x ∈ ∂�. As a matter of fact, given Y ∈ 0�,κ(x), let
I ∈W with I ∋ Y and pick Q ∈ D(∂�) with Q ∋ x and ℓ(I )= ℓ(Q) (recall that if ∂� is bounded we
have assumed that δ(Y )≲ diam(∂�), hence such a cube Q always exists). Then,

dist(I, Q)≤ |Y −x | ≤ (1+κ) dist(Y, ∂�)≤ (1+κ)(diam(I )+dist(I, ∂�))≲ (1+κ)ℓ(I )= (1+κ)ℓ(Q).

Thus, if K 1/2
≫ 1 + κ , then I ∈W0

Q ⊂WQ and Y ∈ I ⊂ UQ ⊂ 0(x) as desired.
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Remark 2.38. In the previous remark we were able to compare the dyadic and the traditional cones and
this gives comparisons between the associated nontangential maximal functions, area integrals, or square
functions by adjusting the different parameters. It is also convenient to see how to incorporate the “change
on the aperture” on the traditional cones via or on the dyadic cones. In the case of traditional cones this
amounts to considering different values of the aperture κ . For the dyadic cones one can “change the
aperture” using UQ = UQ,τ versus ÛQ = UQ,2τ , or even by considering Whitney-dyadic structures with
different parameters.

In the case of the traditional cones, one has, for every 0< p <∞ and κ, κ ′ and for every F ∈ C(�)
and G ∈ W 1,2

loc (�),

∥N∗,�,κF∥L p(∂�) ≈κ,κ ′ ∥N∗,�,κ ′ F∥L p(∂�), ∥A�,κG∥L p(∂�) ≲κ,κ ′ ∥A�,κ ′ G∥L p(∂�). (2.39)

The first estimate can be found in [Hofmann et al. 2010, Proposition 2.2]. For the second estimate we refer
to [Milakis et al. 2013, Proposition 4.5] in the case of � being a CAD, a simpler argument (valid also in
the former case) can be carried out by adapting [Martell and Prisuelos-Arribas 2017, Proposition 3.2(i)].
Further details are left to the interested reader.

For the dyadic cones, Remark 2.37 says that if {WQ}Q∈D(∂�) is a Whitney-dyadic structure for � with
parameters η≪ 1 and K ≫ 1 then 0(x)⊂ 0̂(x)⊂0�,κ(x) for some large κ > 0 and for every x ∈ ∂�. On
the other hand, let {W′

Q}Q∈D(∂�) be a Whitney-dyadic structure for � with parameters η′
≪ 1 and K ′

≫ 1
and we write 0′(x) for the associated dyadic cone. As observed before we have that 0�,1(x) ⊂ 0′(x).
Write N∗ and A (resp. N ′

∗
and A ′) as in (2.34) and (2.35) for the cones 0 (resp. 0′). These and (2.39)

allow us to obtain that for every 0< p <∞ and for every F ∈ C(�)

∥N∗F∥L p(∂�) ≤ ∥N̂∗F∥L p(∂�) ≤ ∥N∗,�,κF∥L p(∂�) ≲κ ∥N∗,�,1 F∥L p(∂�) ≤ ∥N ′

∗
F∥L p(∂�)

and, for every G ∈ W 1,2
loc (�),

∥AG∥L p(∂�) ≤ ∥ÂG∥L p(∂�) ≤ ∥A�,κG∥L p(∂�) ≲κ ∥A�,1G∥L p(∂�) ≤ ∥A ′G∥L p(∂�).

2.1. Case ADR. Here we assume that �= Rn+1
\ E , where E is merely ADR, but possibly not UR. Let

us setWQ =W0
Q (see (2.8)) and we clearly have (ii) and (iii) with C = 1 in Definition 2.7. For (i), we

see thatW0
Q is nonempty, provided that we choose η small enough, and K large enough, depending only

on dimension and the ADR constant of E . Indeed, given Q ∈ D(E), consider the ball BQ = B(xQ, r),
as defined in (2.2), (2.3), with r ≈ ℓ(Q), so that 1Q = BQ ∩ E ⊂ Q. By [Hofmann and Martell 2014,
Lemma 5.3], we have that, for some C = C(n, ADR),

|{Y ∈ Rn+1
\ E : dist(Y, E) < εr} ∩ BQ | ≤ Cεrn+1

for every 0 < ε < 1. Consequently, fixing 0 < ε0 < 1 small enough, there exists X Q ∈ BQ/2, with
dist(X Q, E)≥ ε0r . Thus, B(X Q, ε0r/2)⊂ BQ \ E . We shall refer to this point X Q as a “corkscrew point”
relative to Q, that is, relative to the surface ball 1Q (see (2.2) and (2.3)). Now observe that X Q belongs
to some Whitney cube I ∈W, which will belong toW0

Q for η small enough and K large enough. Hence,
{WQ}Q∈D(E) is a Whitney-dyadic structure for Rn+1

\ E .
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In [Hofmann et al. 2016] it was shown that the ADR property is inherited by all dyadic local sawtooths
and all Carleson boxes:

Proposition 2.40 [Hofmann et al. 2016, Proposition A.2]. Let E ⊂ Rn+1 be a closed n-dimensional ADR
set and let {WQ}Q∈D(E) be a Whitney-dyadic structure for Rn+1

\ E with parameters η≪ 1 and K ≫ 1.
Then all dyadic local sawtooths �F ,Q and all Carleson boxes TQ have n-dimensional ADR boundaries.
In all cases, the implicit constants are uniform and depend only on dimension, the ADR constant of E and
the parameters η, K, and τ .

2.2. Case UR. Here we assume that � = Rn+1
\ E, where we further assume that E is UR. Much as

before, since E is in particular ADR, if we take η≪ 1 and K ≫ 1 (depending on n and the ADR constant
of E), we can guarantee thatW0

Q ̸= ∅. In this case we will exploit the additional fact that E is UR to
construct some Whitney-dyadic structure with better properties. To do so, we would like to recall some
results from [Hofmann et al. 2016] but we first give a definition to then continue with the main geometric
lemma there.

Definition 2.41 [David and Semmes 1993]. . Let S ⊂ D(E). We say that S is “coherent” if the following
conditions hold:

(a) S contains a unique maximal element denoted by Q(S) which contains all other elements of S as
subsets.

(b) If Q belongs to S, and if Q ⊂ Q̃ ⊂ Q(S), then Q̃ ∈ S.

(c) Given a cube Q ∈ S, either all of its children belong to S, or none of them do.

We say that S is “semicoherent” if only conditions (a) and (b) hold.

Lemma 2.42 (the bilateral corona decomposition [Hofmann et al. 2016, Lemma 2.2]). Suppose that
E ⊂ Rn+1 is n-dimensional UR. Then given any positive constants η≪ 1 and K ≫ 1, there is a disjoint
decomposition D(E)= G∪B, satisfying the following properties.

(i) The “good” collection G is further subdivided into disjoint stopping time regimes such that each such
regime S is coherent (see Definition 2.41).

(ii) The “bad” cubes, as well as the maximal cubes Q(S) satisfy a Carleson packing condition:∑
Q′⊂Q,Q′∈B

σ(Q′)+
∑

S:Q(S)⊂Q

σ(Q(S))≤ Cη,Kσ(Q) for all Q ∈ D(E).

(iii) For each S, there is a Lipschitz graph 0S, with Lipschitz constant at most η, such that, for every
Q ∈ S,

sup
x∈1∗

Q

dist(x, 0S)+ sup
y∈B∗

Q∩0S

dist(y, E) < ηℓ(Q), (2.43)

where B∗

Q := B(xQ, Kℓ(Q)) and 1∗

Q := B∗

Q ∩ E.

As we have assumed that E is UR we make the corresponding bilateral corona decomposition of
Lemma 2.42 with η ≪ 1 and K ≫ 1. Our goal is to construct, for each stopping time regime S in
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Lemma 2.42, a pair of CAD domains �±

S , which provide a good approximation to E , at the scales
within S, in some appropriate sense. To be a bit more precise, �S := �+

S ∪�−

S will be constructed as
a sawtooth region relative to some family of dyadic cubes, and the nature of this construction will be
essential to the dyadic analysis that we will use below.

Given Q ∈ D(E), for this choice of η and K, we set as above B∗

Q := B(xQ, Kℓ(Q)), where we recall
that xQ is the center of Q (see (2.2), (2.3)). For a fixed stopping time regime S, we choose a coordinate
system so that 0S = {(z, ϕS(z)) : z ∈ Rn

}, where ϕS : Rn
→ R is a Lipschitz function with ∥ϕ∥Lip ≤ η.

Claim 2.44 [Hofmann et al. 2016, Claim 3.4]. If Q ∈ S, and I ∈W0
Q , then I lies either above or

below 0S. Moreover, dist(I, 0S) ≥ η1/2ℓ(Q) (and therefore, by (2.43), dist(I, 0S) ≈ dist(I, E), with
implicit constants that may depend on η and K ).

Next, given Q ∈ S, we augment W0
Q . We split W0

Q =W
0,+
Q ∪W

0,−
Q , where I ∈W

0,+
Q if I lies

above 0S, and I ∈W
0,−
Q if I lies below 0S. Choosing K large and η small enough, by (2.43), we

may assume that bothW0,±
Q are nonempty. We focus onW0,+

Q , as the construction forW0,−
Q is the same.

For each I ∈W
0,+
Q , let X I denote the center of I. Fix one particular I0 ∈W

0,+
Q , with center X+

Q := X I0 .
Let Q̃ denote the dyadic parent of Q (that is, the unique dyadic cube Q̃ with Q ⊂ Q̃ and ℓ(Q̃)= 2ℓ(Q)),
unless Q = Q(S); in the latter case we simply set Q̃ = Q. Note that Q̃ ∈ S, by the coherency of S. By
Claim 2.44, for each I inW0,+

Q , or inW0,+
Q̃

, we have

dist(I, E)≈ dist(I, Q)≈ dist(I, 0S),

where the implicit constants may depend on η and K. Thus, for each such I, we may fix a Harnack chain,
call it HI , relative to the Lipschitz domain

�+

0S
:= {(x, t) ∈ Rn+1

: t > ϕS(x)},

connecting X I to X+

Q . By the bilateral approximation condition (2.43), the definition ofW0
Q , and the

fact that K 1/2
≪ K, we may construct this Harnack chain so that it consists of a bounded number

of balls (depending on η and K ), and stays a distance at least cη1/2ℓ(Q) away from 0S and from E .
We let W∗,+

Q denote the set of all J ∈W which meet at least one of the Harnack chains HI , with
I ∈W

0,+
Q ∪W

0,+
Q̃

(or simply I ∈W
0,+
Q , if Q = Q(S)), i.e.,

W
∗,+
Q := {J ∈W : there exists I ∈W

0,+
Q ∪W

0,+
Q̃

for which HI ∩ J ̸= ∅},

where as above, Q̃ is the dyadic parent of Q, unless Q = Q(S), in which case we simply set Q̃ = Q (so
the union is redundant). We observe that, in particular, each I ∈W

0,+
Q ∪W

0,+
Q̃

meets HI , by definition,
and therefore

W
0,+
Q ∪W

0,+
Q̃

⊂W
∗,+
Q . (2.45)

Of course, we may constructW∗,−
Q analogously. We then set

W∗

Q :=W
∗,+
Q ∪W

∗,−
Q .
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It follows from the construction of the augmented collectionsW∗,±
Q that there are uniform constants c

and C such that
cη

1
2 ℓ(Q)≤ ℓ(I )≤ C K

1
2 ℓ(Q) for all I ∈W∗

Q,

dist(I, Q)≤ C K
1
2 ℓ(Q) for all I ∈W∗

Q .
(2.46)

It is convenient at this point to introduce some additional terminology.

Definition 2.47. Given Q ∈ G, and hence in some S, we shall refer to the point X+

Q specified above, as
the “center” of U+

Q (similarly, the analogous point X−

Q , lying below 0S, is the “center” of U−

Q ). We also
set Y ±

Q := X±

Q̃
, and we call this point the “modified center” of U±

Q , where as above Q̃ is the dyadic parent
of Q, unless Q = Q(S), in which case Q = Q̃, and Y ±

Q = X±

Q .

Observe thatW∗,±
Q and hence alsoW∗

Q have been defined for any Q that belongs to some stopping
time regime S, that is, for any Q belonging to the “good” collection G of Lemma 2.42. We now set

WQ :=

{
W∗

Q, Q ∈ G,

W0
Q, Q ∈ B,

(2.48)

and for Q ∈ G we shall henceforth simply writeW±

Q in place ofW∗,±
Q . Note that by (2.8) when Q ∈ B

and by (2.46) when Q ∈ G we clearly obtain (2.9) with C depending on n and the UR character of E . By
constructionW0

Q ⊂WQ . All these show that, provided η≪ 1 and K ≫ 1 (depending on n and the UR
character of E), {WQ}Q∈D(E) is a Whitney-dyadic structure for Rn+1

\ E with parameter η and K and
with C depending on n and the UR character of E .

Given an arbitrary Q ∈ D(E) and 0< τ ≤ τ0/4, we may define an associated Whitney region UQ (not
necessarily connected) as in (2.10) or the fattened version of ÛQ as in (2.11). In the present situation, if
Q ∈ G, then UQ splits into exactly two connected components

U±

Q = U±

Q,τ :=

⋃
I∈W±

Q

I ∗(τ ). (2.49)

We note that for Q ∈ G, each U±

Q is Harnack chain connected, by construction (with constants depending
on the implicit parameters τ, η and K ); moreover, for a fixed stopping time regime S, if Q′ is a child
of Q, with both Q′, Q ∈ S, then U+

Q′ ∪ U+

Q is Harnack chain connected, and similarly for U−

Q′ ∪ U−

Q .
We may also define the Carleson boxes TQ , global and local sawtooth regions �F , �F ,Q , cones 0,

and local cones 0Q as in (2.12), (2.20), (2.23), and (2.24).

Remark 2.50. We recall that, by construction (see (2.45), (2.48)), given Q ∈ G, one hasW0,±
Q̃

⊂WQ ,
where Q̃ is the dyadic parent of Q. Therefore, Y ±

Q ∈ U±

Q ∩ U±

Q̃
. Moreover, since Y ±

Q is the center of
some I ∈W

0,±
Q̃

, we have that dist(Y ±

Q , ∂U±

Q )≈ dist(Y ±

Q , ∂U±

Q̃
)≈ ℓ(Q) (with implicit constants possibly

depending on η and/or K )

Remark 2.51. Given a stopping time regime S as in Lemma 2.42, for any semicoherent subregime (see
Definition 2.41) S′

⊂ S (including, of course, S itself), we now set

�±

S′ = int
( ⋃

Q∈S′

U±

Q

)
, (2.52)
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and let �S′ := �+

S′ ∪�
−

S′ . Note that implicitly, �S′ depends upon τ (since U±

Q has such dependence).
When it is necessary to consider the value of τ explicitly, we shall write �S′(τ ).

The main geometric lemma for the associated sawtooth regions is the following.

Lemma 2.53 [Hofmann et al. 2016, Lemma 3.24]. Let S be a given stopping time regime as in Lemma 2.42,
and let S′ be any nonempty, semicoherent subregime of S. Then, for 0< τ ≤ τ0, with τ0 small enough,
each of �±

S′ is a CAD with character depending only on n, τ, η, K, and the UR character of E.

2.3. Case 1-sided CAD. Here we assume that � is a 1-sided CAD. In this case, we are basically in the
situation which is similar to being within one regimen S, at least as far as the construction ofWQ is
concerned.

With W = W(�) and D = D(∂�) as above, and for some give parameters η < 1, K > 1, we
considerW0

Q (see (2.8)). For any Q ∈ D we let X Q be a corkscrew point relative to Q, more specifically,
relative to 1Q (see (2.2), (2.3)). We note that in this scenario the existence of such point comes from the
fact that � satisfies the (interior) corkscrew condition). For η≪ 1 and K ≫ 1 depending on the CAD
character of � we can guarantee that for every Q ∈ D, if I ∈W is so that I ∋ X Q then I ∈W0

Q . We then
augmentW0

Q toW∗

Q as done in [Hofmann and Martell 2014, Section 3]. More precisely, use the fact
that one can construct a Harnack chain to connect X Q with any of the centers of the Whitney cubes in
W0

Q ∪W0
Q̃

, where Q̃ is the dyadic parent of Q. ThenW∗

Q is the family of all Whitney cubes which meet
at least one ball in all those Harnack chains. Note that in the case when E is UR and Q ∈ S we have used
a similar idea; the main difference is that the Harnack chain in that case comes from the fact that �+

0S
is a

Lipschitz domain, whereas here such property comes from the assumption that � is a 1-sided CAD and
hence the Harnack chain condition holds. Set thenWQ =W∗

Q and one can see that (with the appropriate
choice of a sufficiently small η and a sufficiently large K depending on n and the CAD character of D)
(2.9) holds. Moreover, the construction guarantees thatW0

Q ∪W0
Q̃

⊂WQ , that we can cover with the
Whitney cubes inWQ all the Harnack chains connecting X Q with any center of I ∈W0

Q ∪W0
Q̃

⊂WQ ,
and also that if I, J are such that I ∋ X Q and J ∋ X Q̃ then I, J ∈WQ . We note that by construction the
Harnack chain condition holds in each Whitney region UQ and so it does in UQ ∪ UQ̃ . In either case the
corresponding constant depends on the CAD character of D and the parameters η, K, τ .

In the present situation we have the following geometric result:

Lemma 2.54 [Hofmann and Martell 2014, Lemma 3.61]. Let � ⊂ Rn+1 be a 1-sided CAD and let
{WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with parameters η≪ 1 and K ≫ 1 as just constructed.
Then all of its dyadic sawtooths regions�F and�F ,Q and all Carleson boxes TQ and T1 are also 1-sided
CAD with character depending only on dimension, the 1-sided CAD character of �, and the parameters
η, K, and τ .

2.4. Case CAD. Here we assume that � is a CAD. This is, strictly speaking, a subcase of the case
of 1-sided CAD above, but the extra assumption that � has exterior corkscrews can be inferred to the
associated sawtooth regions and Carleson boxes.

With W = W(�) and D = D(∂�) as above, and for some give parameters η < 1, K > 1, we
consider W0

Q (see (2.8)) and construct WQ exactly as in the 1-sided CAD case since a CAD is in
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particular a 1-sided CAD. Hence, we have the very same properties, in particular, Lemma 2.54 applies.
But we can additionally obtain the exterior corkscrew condition:

Lemma 2.55. Let �⊂ Rn+1 be a CAD and let {WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with
parameters η≪ 1 and K ≫ 1 as just constructed. Then all of its dyadic sawtooths regions �F and �F ,Q
and all Carleson boxes TQ and T1 are also CAD with character depending only on dimension, the CAD
character of �, and the parameters η, K, and τ .

Proof. As mentioned above we can apply Lemma 2.54; hence all the �F , �F ,Q , TQ , and T1 are 1-sided
CAD domains. It remains to see that any of them satisfy the exterior corkscrew condition. Let �⋆
be one of these subdomains and take x⋆ ∈ ∂�⋆ and 0 < r < diam(∂�⋆). By construction ∂�⋆ ⊂ �

and we consider two cases 0 ≤ dist(x⋆, ∂�) ≤ r/2 and dist(x⋆, ∂�) > r/2. In the first scenario we
pick x ∈ ∂� so that |x⋆ − x | = dist(x⋆, ∂�) ≤ r/2 (notice that x = x⋆ if x⋆ ∈ ∂� ∩ ∂�⋆). Since � is
a CAD, it satisfies the exterior corkscrew condition; hence we can find X ∈ �ext = Rn+1

\� so that
B(X, c0r/2)⊂ B(x, r/2)∩�ext where c0 is the exterior corkscrew constant. Note that �⋆ ⊂�; hence
B(X, c0r/2) ⊂ (�⋆)ext. Also, B(X, c0r/2) ⊂ B(x, r/2) ⊂ B(x⋆, r). This shows that X is an exterior
corkscrew point relative to the surface ball B(x⋆, r)∩∂�⋆ for the domain�⋆ with constant c0/2. Consider
next the case on which dist(x⋆, ∂�) > r/2. Note that in particular x⋆ ∈� and therefore we can find two
Whitney cubes I, J ∈W so that x ∈ ∂ I ∗

∩ J, ∂ I ∩ ∂ J ̸= ∅, int(I ∗) ⊂ �⋆ and J is a Whitney cube
which does not belong to any of theWQ that define �⋆. Note that ℓ(J )≥ dist(x⋆, ∂�)/C > r/(2C) for
some uniform constant C ≥ 1, that I ∗ misses 3J/4 as observed before and that the center of J satisfies
X (J ) ∈ (�⋆)ext. It is then clear that the open segment joining x⋆ with X (J ) is contained in (�⋆)ext and
we pick X in that segment so that |X − x⋆| = r/(8C) and hence B(X, r/(16C))⊂ B(x⋆, r)∩�⋆. This
shows that X is an exterior corkscrew point relative to the surface ball B(x⋆, r)∩ ∂�⋆ for the domain �⋆
with constant 1/(16C). Therefore, we have shown that � satisfies the exterior corkscrew condition with
implicit constant uniformly controlled by the CAD character of �. □

2.5. Some important notation. To complete this section we introduce the following notation which will
be used in our main statements:

Notation 2.56. In the statements of our main results, we will assume that some estimates (e.g., Carleson
estimates, “A< N”, “N < S”, etc.) hold for a given family of subsets with constants depending on the
character of those subsets and our goal is to transfer those estimates to the original set. It is crucial to
explain how this dependence on the character is understood. To set the stage suppose that we are given
some set X ⊂ Rn+1 and a family SX := {Y}Y∈SX

, Y ⊂ X. We assume that associated with X there is
some collection of nonnegative parameters MX ∈ [1,∞)N1 called its character and also that each Y ∈ SX

has some associated character MY ∈ [1,∞)N2, a collection of nonnegative parameters. Using this notation
when we say that certain estimate holds for all Y ∈ SX with constant CY depending on the character of Y,
we mean that CY =2(MY) with 2 : [1,∞)N2 → (0,∞) being a nondecreasing function in each variable.
Implicit in the arguments to transfer the desired estimate to X, we will use only those sets Y ∈ SX whose
parameters in the character are all uniformly controlled by some constant M0 (which will depend on
the character of X), and then all the corresponding constants in the assumed estimates for those sets
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will be controlled by 2(M0, . . . ,M0) < ∞, and eventually the desired estimate on X will depend on
2(M0, . . . ,M0).

It is illustrative to present some examples explaining the previous abstract notation in some particular
cases. Suppose that the goal is to show that some function F satisfies the Carleson measure estimate (1.10)
in X = Rn+1

\ E , with E being UR (see the second part of Theorem 3.31). In this case MX ∈ [1,∞)3 is the
UR character of E , and we let SX be the collection of bounded chord-arc subdomains of X, in which case
MY ∈ [1,∞)4 is the CAD character of Y. With this in hand we show that there is a constant M0 (depending
only on MX, dimension, and the harmless discretionary parameters τ, η and K, and thus independent
of F ; see Lemma 2.53) so that the resulting estimate can be transferred from the collection of CAD with
parameters in the character at most M0, and hence the Carleson estimate (1.10) holds with a constant
depending only on 2(M0,M0,M0,M0), and other harmless parameters. Similarly, another example is
the case that X = D is a CAD, hence MX ∈ [1,∞)4 is its CAD character, and SX is some collection of
bounded Lipschitz chord-subdomains of X; then MY ∈ [1,∞)3 is the Lipschitz CAD character of Y.

3. Transference of Carleson measure estimates

In this section we show how to transfer CME estimates from Lipschitz to CAD (see Theorem 3.6) and
then from CAD to the complement of a UR set (see Theorem 3.31). These two independent results, each
interesting in its own right, can be combined to give immediately the following:

Corollary 3.1. Let E ⊂ Rn+1 be an n-dimensional UR set and let F ∈ L2
loc(R

n+1
\ E). If F satisfies the

Carleson measure estimate (1.10) for every bounded Lipschitz subdomain of Rn+1
\ E with constant

depending on the Lipschitz character (see Notation 2.56), then F satisfies the Carleson measure estimate
(1.10) in Rn+1

\ E as well. More precisely, there exists a large constant M0 (depending only n and the UR
character of E5) so that using the notation in (1.10) there holds

∥F∥CME(Rn+1\E) ≤ C sup
�⊂Rn+1\E

∥F∥CME(�), (3.2)

where the sup runs over all bounded Lipschitz subdomains �⊂ Rn+1
\ E with parameters in the Lipschitz

character at most M0, and C depends as before only on n, and the UR character of E.

Remark 3.3. The previous result (and also Theorem 3.31) easily yields a version of itself where everything
is localized to some open subset with UR boundary. More precisely, let �⊂ Rn+1 be an open set with
∂� being UR and let F ∈ L2

loc(�). Then

∥F∥CME(�) ≤ C sup
D⊂�

∥F∥CME(D), (3.4)

where the sup runs over all bounded Lipschitz subdomains D ⊂ � with parameters in the Lipschitz
character at most M0, and C depends only on n and the UR character of ∂�.

5Our estimates depend also on the discretionary parameters τ, η and K introduced above, but in turn each of these may be
chosen to depend at most on n and the UR character of E .
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To see this, write F� := F in � and F� = 0 in Rn+1
\� so that F ∈ L2

loc(R
n+1

\ ∂�). Since ∂� is UR
we can apply Corollary 3.1 to E = ∂� and (3.2) easily yields

∥F∥CME(�) = ∥F�∥CME(Rn+1\∂�) ≤ C sup
D⊂Rn+1\∂�

∥F�∥CME(D) = C sup
D⊂�

∥F�∥CME(D).

3.1. Transference of Carleson measure estimates: from Lipschitz to chord-arc domains. In this section
we present a method to transfer the CME estimates from Lipschitz domains to CAD. Our main result is
as follows:

Theorem 3.5. Let D ⊂ Rn+1 be a given CAD and assume that F ∈ L2
loc(D) satisfies (2.26). If F satisfies

the Carleson measure estimate (1.10) on all bounded Lipschitz subdomains of D with the constant C = C0

depending on the Lipschitz constants of the underlying domains only, then F satisfies the Carleson
measure estimate (1.10) in D as well, with the bound depending on C0, the constant in (2.26), the NTA
constants of D and the ADR constants of ∂D only.

Theorem 3.6. Let D ⊂ Rn+1 be a given CAD and let F ∈ L2
loc(D). If F satisfies the Carleson measure

estimate (1.10) for every bounded Lipschitz subdomain of D with constant depending on the Lipschitz
character (see Notation 2.56), then F satisfies the Carleson measure estimate (1.10) in D as well. More
precisely, there exists a large constant M0 (depending only n and the CAD character of D) so that using
the notation in (1.10) there holds

∥F∥CME(D) ≤ C sup
�⊂D

∥F∥CME(�), (3.7)

where the sup runs over all bounded Lipschitz subdomains � ⊂ D with parameters in the Lipschitz
character at most M0, and C depends as before only on n, and the CAD character of D.

Let us remark that in the course of the proof we ensure a suitable choice of a (sufficiently small) η
and a (sufficiently large) K is (2.8) which strictly speaking affect the constant in (3.7). However, as all
choices depend on dimension and the CAD character only, this does not affect the result as stated above.

In preparation to prove the previous result we start with the following version of the John–Nirenberg
inequality. It is a suitable modification of [Hofmann and Mayboroda 2009, Lemma 10.1] which, in turn,
was inspired by [Auscher et al. 2001, Lemma 2.14]. Here we present an alternative proof along the lines
in [Marín et al. 2020, Lemma A.1]. Given � an open set with an ADR boundary, let Q0 be either ∂�, in
which case DQ0 = D(∂�), or some fixed dyadic cube in D(∂�), in which case DQ0 is defined in (2.13).

Lemma 3.8. Let � be an open set with an ADR boundary, let Q0 be either ∂� or a fixed cube in D(∂�),
and for some given η ≪ 1 and K ≫ 1, consider a Whitney-dyadic structure {WQ}Q∈D(∂�) for � with
parameters η and K as in Definition 2.7. Let F ∈ L2

loc(�) and suppose that there exist 0 < α < 1 and
0< N <∞ such that

σ {x ∈ Q :AQ F(x) > N } ≤ ασ(Q) for all Q ∈ DQ0 . (3.9)

Then, for every 0< p <∞ there exists Cα,p depending only on p and α such that

sup
Q∈DQ0

−

∫
Q
AQ F(x)p dσ(x)≤ Cα,p N p. (3.10)
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Proof. We first claim that for all Q ∈ DQ0

AQ F(x)≤AQ′

F(x)+ inf
y∈Q̃′

AQ F(y) for all x ∈ Q′
∈ DQ \ {Q}, (3.11)

where Q̃′ is the dyadic parent of Q′. This follows easily from the fact that if x ∈ Q′
∈ DQ \ {Q} and

y ∈ Q̃′ then
0Q(x) \0Q′

(x)⊂

⋃
x∈P∈DQ\DQ′

UP =

⋃
Q̃′⊂P⊂Q

UP ⊂ 0Q(y).

Next, let us set

4(t) := sup
Q∈DQ0

σ(EQ(t))
σ (Q)

:= sup
Q∈DQ0

σ {x ∈ Q :AQ F(x) > t}
σ(Q)

, 0< t <∞. (3.12)

From (3.9) it follows that

σ(EQ(N )) := σ {x ∈ Q :AQ F(x) > N } ≤ ασ(Q) for all Q ∈ DQ0 . (3.13)

Fix now Q ∈ DQ0 , β ∈ (α, 1) (we will eventually let β → 1+) and, recalling the notation introduced in
Definition 2.4 with E = ∂�, set

FQ(N ) := {x ∈ Q : MD
Q(1EQ(N ))(x) > β}. (3.14)

Note that (3.13) ensures that

−

∫
Q

1EQ(N )(y) dσ(y)=
σ(EQ(N ))
σ (Q)

≤ α < β; (3.15)

hence we can extract a family of pairwise disjoint stopping-time cubes {Q j }j ⊂ DQ \ {Q} so that
FQ(N )=

⋃
j Q j and for every j

σ(EQ(N )∩ Q j )

σ (Q j )
> β;

σ(EQ(N )∩ Q′)

σ (Q′)
≤ β, Q j ⊊ Q′

∈ DQ . (3.16)

Fix t > N. Observe that EQ(t)⊂ EQ(N ) and

β < 1 = 1EQ(N )(x)≤ MD
Q(1EQ(N ))(x) for σ -a.e. x ∈ EQ(t). (3.17)

Hence,
σ(EQ(t))= σ(EQ(t)∩ FQ(N ))=

∑
j

σ(EQ(t)∩ Q j ).

For every j , by the second estimate in (3.16) applied to Q̃ j , the dyadic parent of Q j , we have

σ(EQ(N )∩ Q̃ j )/σ (Q̃ j )≤ β < 1;

therefore σ(Q̃ j \ EQ(N ))/σ (Q̃ j ) ≥ 1 − β > 0. In particular, we can pick x j ∈ Q̃ j \ EQ(N ). This and
(3.11) imply that for all x ∈ Q j

AQ F(x)≤AQ j F(x)+ inf
y∈Q̃ j

AQ F(y)≤AQ j F(x)+AQ j F(x j )≤AQ j F(x)+ N .

Consequently, AQ j F(x) > t − N for every x ∈ EQ(t)∩ Q j , which further implies

σ(EQ(t)∩ Q j )≤ σ {x ∈ Q j :AQ j F(x) > t − N } ≤4(t − N )σ (Q j ).



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3277

All these give

σ(EQ(t))=

∑
j

σ(EQ(t)∩ Q j )≤4(t − N )
∑

j

σ(Q j )

≤4(t − N )
1
β

∑
j

σ(EQ(N )∩ Q j )≤4(t − N )
1
β
σ(EQ(N ))≤4(t − N )

α

β
σ(Q), (3.18)

where we have used the first estimate in (3.16), that the cubes {Q j }j are pairwise disjoint and, finally,
(3.13). Dividing by σ(Q) and taking the supremum over all Q ∈ DQ0 we obtain

4(t)≤
α

β
4(t − N ), t > N . (3.19)

Since this estimate is valid for all β ∈ (α, 1), we can now let β → 1−, iterate the previous expression, and
use the fact that 4(t)≤ 1 to conclude that

4(t)≤ α−1e−(log(α−1)/N )t , t > 0.

We finally see how the just-obtained estimate implies (3.10): for any 0< p <∞,

−

∫
Q
AQ F(x)p dσ(x)= p

∫
∞

0

σ {x ∈ Q :AQ F(x) > t}
σ(Q)

t p dt
t

≤ p
∫

∞

0
4(t)t p dt

t
≤ pα−1

∫
∞

0
e−(log(α−1)/N )t t p dt

t

= pα−1
(

N
log(α−1)

)p ∫
∞

0
e−t t p dt

t
= Cα,p N p. □

To address the transference of the Carleson measure condition from Lipschitz to chord-arc domains
we shall use the fact that chord-arc domains contain interior big pieces of Lipschitz subdomains.

Proposition 3.20 [David and Jerison 1990]. Given �⊂ Rn+1, a CAD, there exist constants C ≥ 2 and
0 < θ < 1 such that for every surface ball 1(x, r) = B(x, r)∩ ∂�, x ∈ ∂�, 0 < r < diam(∂�), there
exists a bounded Lipschitz domain �′ for which we have the following conditions:

(i) H n(∂�∩ ∂�′
∩ B(x, r))≥ θH n(1(x, r))≈ θrn .

(ii) There exists X1 so that B(X1, r/C)⊂ B(x, r)∩�∩�′.

(iii) �′
⊂�∩ B(x, r).

The Lipschitz character of �′ as well as 0< θ < 1 and C ≥ 2 depend on n, the CAD character of D only
(and are independent of x, r ).

We remark that in [David and Jerison 1990], Proposition 3.20 is proved under weaker assumptions,
namely, ADR and an interior corkscrew condition, and a “weak exterior corkscrew condition” which
gives exterior disks rather than exterior balls, and with no hypothesis of Harnack chains — but if the
Harnack chain condition is assumed, [Azzam et al. 2017] yields the exterior corkscrew condition, hence
exterior disks implies exterior balls. Later on, in [Badger 2012], existence of big pieces of Lipschitz
subdomains was also proved for usual NTA domains, with no upper ADR assumption on ∂� (the lower
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ADR bound holds automatically in the presence of a two-sided corkscrew condition, by virtue of the
relative isoperimetric inequality). For the applications that we have in mind here, neither amelioration is
significant, and we will simply work with CAD domains in the sense of Definition 1.6.

For future reference we also would like to provide the following corollary.

Corollary 3.21. Let � ⊂ Rn+1 be a CAD. There exist constants C ≥ 2 and 0 < θ < 1 such that, for
every Q ∈ D(∂�), there exists a bounded Lipschitz domain �Q ⊂ � for which, using the notation
BQ = B(xQ, r), 1Q = BQ ∩ ∂�, with cℓ(Q)≤ r ≤ ℓ(Q) in (2.2), (2.3), we have the following:

(i) σ(∂�Q ∩ Q)≥ θσ (Q)≈ θℓ(Q)n .

(ii) For every Q′
∈ D(Q) such that there exists a point yQ′ ∈ Q′

∩ ∂�Q , there exists YQ′ so that
B(YQ′, ℓ(Q′)/C)⊂ B(yQ′, ℓ(Q′))∩�∩�Q , that is, YQ′ is a corkscrew relative to B(yQ′, ℓ(Q′))∩�

and ∂�, and B(yQ′, ℓ(Q′))∩ ∂�Q and �Q . Furthermore, with the appropriate choice of η and K
in (2.8), we have B(YQ′, ℓ(Q′)/C)⊂ UQ′ .

(iii) �Q ⊂�∩ BQ .

The Lipschitz character of �Q as well as 0< θ < 1, C ≥ 2, depend on n, and the CAD character of �
only (and are uniform in Q, Q′).

Proof. The corollary follows directly from Proposition 3.20. Indeed, for any Q ∈ D(∂�) there exists
1Q ⊂ Q as in (2.2), (2.3). One can then build a Lipschitz domain�Q from Proposition 3.20 corresponding
to 1Q , and then the conditions (i) and (iii) in Proposition 3.20 give (i) and (iii) in Corollary 3.21,
respectively. Condition (ii) in Corollary 3.21 follows from the fact that a Lipschitz domain �Q is, in
particular, a CAD, and hence, it has a corkscrew point relative to B(yQ′, r ′)∩ ∂�Q since r ′

≤ ℓ(Q′)≤

ℓ(Q)≈ diam(∂�Q) (the ≈ follows from (ii) and (iii) in Proposition 3.20). Using the fact that �Q ⊂�,
one can easily see that YQ is also a corkscrew point in � relative to B(yQ′, r ′)∩∂�. It remains to observe
that a suitable choice of η and K (uniform in Q′) ensures that such a corkscrew point always belongs
to UQ′ and moreover, B(YQ′,C−1ℓ(Q′))⊂ UQ′ . □

We are now ready to prove Theorem 3.6:

Proof of Theorem 3.6. By (2.29) and Remark 3.34 we can reduce matters to estimate ∥F∥CMEdyad(D). Fix
some Q ∈ D. According to Corollary 3.21 (along with the inner regularity property of the measure) there
exists a bounded Lipschitz domain �Q such that σ(∂�Q ∩ Q) ≥ θσ (Q), and the Lipschitz character
of �Q as well as 0 < θ < 1 depend only on n and the CAD character of D (and are uniformly in Q).
The domain �Q further satisfies properties (i)–(iii) in Corollary 3.21. Given x ∈ Q \ ∂�Q , since ∂�Q is
closed, there exists rx > 0 such that B(x, rx)∩∂�Q =∅. Pick then Qx ∈ D with ℓ(Qx)≪ min{ℓ(Q), rx}

so that x ∈ Qx . Then, x ∈ Q ∩ Qx and necessarily Qx ⊂ Q. Also, Qx ⊂ B(x, rx) since x ∈ Qx and
diam(Qx)≈ ℓ(Qx)≪ rx . Thus, Qx ⊂ Q \∂�Q and there exists a cube with maximal size Qmax

x ∈ DQ so
that Qmax

x ⊂ Q \∂�Q . Note that Qmax
x ⊊ Q since σ(∂�Q ∩ Q) > 0. Thus, by maximality, ∂�Q ∩ Q′

̸=∅
for every Q′ with Qmax

x ⊊ Q′
⊂ Q. Consider then F = {Q j }j ⊂ DQ \ {Q} the collection of such maximal

cubes. By construction, the cubes in F are pairwise disjoint and also Q \ ∂�Q =
⋃

j Q j . Associated
with F we build the corresponding local sawtooth �F ,Q (see (2.20)).
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Note that if Q′
⊂ Q j ∈ F, then Q′

⊂ Q j ⊂ Q \ ∂�Q ; hence ∂�Q ∩ Q′
= ∅. Conversely, if Q′

∈ DQ

is such that ∂�Q ∩ Q′
= ∅, then Q′

⊂ Q \ ∂�Q =
⋃

j Q j and there is Q j ∈ F such that Q′
∩ Q j ̸= ∅.

If Q j ⊊ Q′ then by the maximality of Q j we have ∂�Q ∩ Q′
̸= ∅, which is a contradiction. As a

result, necessarily Q′
⊂ Q j . All in one, for every Q′

∈ DQ , we have that Q′
⊂ Q j ∈ F if and only if

∂�Q ∩ Q′
= ∅. Equivalently, given Q′

∈ DQ , one has that Q′
∈ DF ,Q if and only if Q′

∩ ∂�Q ̸= ∅.
Let N ≥ 1 to be chosen and by Chebyshev’s inequality

σ {x ∈ ∂�Q ∩ Q :AQ F(x) > N } ≤
1

N 2

∫
∂�Q∩Q

∫∫
0Q(x)

|F(Y )|2δ(Y )1−n dY

≤
1

N 2

∑
Q′∈DQ

σ(∂�Q ∩ Q′)

∫∫
UQ′

|F(Y )|2δ(Y )1−n dY

≈
1

N 2

∑
Q′∈DF ,Q

σ(∂�Q ∩ Q′)

σ (Q′)

∫∫
UQ′

|F(Y )|2δ(Y ) dY

≲
1

N 2

∫∫
�F ,Q

|F(Y )|2δ(Y ) dY,

where we have used that δ(Y )≈ ℓ(Q′) for every Y ∈ U ′

Q and also that the family {U ′

Q}Q′∈D has bounded
overlap. We claim that

1
σ(Q)

∫∫
�F ,Q

|F(X)|2δ(X) d X ≤ C
(

sup
�⊂D

∥F∥CME(�) + ∥F∥C0(D)

)
, (3.22)

where the sup runs over all bounded Lipschitz subdomains � ⊂ D with parameters in the Lipschitz
character at most M0, and C depends as before only on n, and the CAD character of D. Assuming this
momentarily, and invoking (3.36), we conclude that

σ {x ∈ Q :AQ F(x) > N } ≤ σ(Q \ ∂�Q)+
C
N 2

∫∫
�F ,Q

|F(Y )|2δ(Y ) dY

≤ (1 − θ)σ (Q)+
C
N 2 sup

�⊂D
∥F∥CME(�)σ(Q)≤

(
1 −

θ

2

)
σ(Q),

provided N 2
= (2C/θ) sup�⊂D ∥F∥CME(�). Applying then the John–Nirenberg inequality, Lemma 3.8

with Q0 = E = ∂D, which is ADR by assumption, extending F as 0 in Rn+1
\ D, and with p = 2 we

then conclude that
sup

Q∈DQ0

−

∫
Q
AQ F(x)2σ(x)≲ sup

�⊂D
∥F∥CME(�).

In turn, this yields∫∫
TQ

|F |
2δ d X ≤

∑
Q′∈DQ

∫∫
UQ′

|F |
2δ d X ≈

∑
Q′∈DQ

σ(Q′)

∫∫
UQ′

|F |
2δ1−n d X

=

∑
Q′∈DQ

∫
Q′

(∫∫
UQ′

|F |
2δ1−n d X

)
dσ ≲

∫
Q

(∫∫
0Q(x)

|F |
2δ1−n dY

)
dσ(x)

=

∫
Q
AQ F(x)2σ(x)≲ σ(Q) sup

�⊂D
∥F∥CME(�).

Here we have used that δ( · )≈ ℓ(Q′) in UQ′ and the fact that the family {UQ}Q∈D has bounded overlap.
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We are then left with showing (3.22). To this end, let us write∫∫
�F ,Q

|F(X)|2δ(X) d X ≤

∑
Q′∈DF ,Q

∫∫
UQ′

|F(Y )|2δ(Y ) dY =

∑
Q′∈D1

F ,Q

· · · +

∑
Q′∈D2

F ,Q

· · · , (3.23)

where, for some ε > 0 to be chosen,

D1
F ,Q :=

{
Q′

∈ DF ,Q : dist(UQ′, ∂D)≤
1
ε

dist(UQ′, ∂�Q)
}
, D2

F ,Q := DF ,Q \ D1
F ,Q .

Note that, in principle, UQ′ can intersect ∂�Q . For later use it is convenient to record that ℓ(Q′) ≈

dist(UQ′, ∂D)≈ dist(UQ′, Q′) by (2.8), (2.6), (2.9), (2.10).
Let Q′

∈ D1
F ,Q , the fact that Q′

∈ DF ,Q implies that there exists y ∈ Q′
∩ ∂�Q ; hence

εℓ(Q′)≈ ε dist(UQ′, ∂D)≤ dist(UQ′, ∂�Q)

≤ dist(UQ′, y)≤ dist(UQ′, Q′)+ diam(Q′)≲ ℓ(Q′). (3.24)

In particular, for every Y ∈ UQ′ with Q′
∈ D1

F ,Q we have

δ(Y )= dist(Y, ∂D)≲ ℓ(Q′)+ dist(UQ′, ∂D)≲ ε−1 dist(UQ′, ∂�Q)≲ ε
−1 dist(Y, ∂�Q). (3.25)

Note also that since y′
∈ Q′

∩ ∂�Q ̸= ∅, according to Corollary 3.21 part (ii), we can find YQ′ so that
B(YQ′, ℓ(Q′)/C)⊂ B(yQ′, ℓ(Q′))∩�∩�Q ∩ UQ′ . Hence, �Q ∩ UQ′ ̸= ∅, and then due to (3.24) and
the fact that UQ′ is connected by construction, we conclude that UQ′ ⊂�Q . As a result,∑

Q′∈D1
F ,Q

∫∫
UQ′

|F(Y )|2δ(Y ) dY ≲ ε−1
∑

Q′∈D1
F ,Q

∫∫
UQ′

|F(Y )|2 dist(Y, ∂�Q) dY

≲
∫∫

�Q

|F(Y )|2 dist(Y, ∂�Q) dY ≤ σ(Q) sup
�⊂D

∥F∥CME(�),

(3.26)

where we used (3.25), the finite overlap property of the family {UQ′}Q′∈D, and the fact that �Q is
a bounded Lipschitz subdomain of D with character controlled by the CAD parameters in the last one.
Note that �Q ⊂ B(xQ,Cℓ(Q)) for some uniform constant C, which justifies the bound by σ(Q).

Consider next the family D2
F ,Q and we shall demonstrate that they satisfy a packing condition. Indeed,

recall from above that ℓ(Q′)≈ dist(UQ′, ∂D), so that in particular, if Q′
∈ D2

F ,Q , then

dist(UQ′, ∂�Q)≲ εℓ(Q′). (3.27)

It follows that for a suitably small ε depending on the implicit constant in (3.27) and τ , we can ensure
that fattened regions ÛQ′ corresponding to UQ′ (see (2.11)) necessarily intersect ∂�Q and, moreover,
H n(ÛQ′ ∩ ∂�Q)≈ ℓ(Q′)n , while the family {ÛQ′}Q′ still has finite overlap. Since the Lipschitz character
of ∂�Q depends on the CAD character of D, we have that H n(∂�Q)≈ diam(∂�Q)

n
≈ diam(�Q)

n
≈

ℓ(Q)≈ σ(Q), with implicit constants which are uniform in Q. Thus, all in all,∑
Q′∈D2

F ,Q

σ(Q′)≈

∑
Q′∈D2

F ,Q

ℓ(Q′)n ≈

∑
Q′∈D2

F ,Q

H n(ÛQ′ ∩ ∂�Q)≲ H n(∂�Q)≈ σ(Q). (3.28)
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Consequently, using that one can cover UQ′ by a uniform number of balls of the form B(X, δ(X)/2) with
X ∈ UQ′ (and hence δ(X)≈ ℓ(Q′)) we arrive at∑

Q′∈D2
F ,Q

∫∫
UQ′

|F(Y )|2δ(Y ) dY ≲ ∥F∥C0(D)

∑
Q′∈D2

F ,Q

σ(Q′)≲ σ(Q)∥F∥C0(D), (3.29)

simply recalling the notation introduced in (2.26).
Collecting (3.23), (3.26), and (3.29) we conclude as desired (3.22), completing the proof. □

3.2. Transference of Carleson measure estimates: from chord-arc domains to the complement of
a UR set. Let us now discuss the “transference” mechanism allowing one to pass from the Carleson
measure estimates on CAD to those open sets with UR boundaries. The main idea consists in showing
that if for some given F one can prove (1.10) on D ⊂ Rn+1

\ E , any bounded CAD, then (1.10) holds
for Rn+1

\ E . This was proved in [Hofmann et al. 2016, Theorem 1.1] for F = |∇u|/∥u∥L∞(Rn+1\E)

with u being a bounded harmonic function in Rn+1
\ E . On the other hand, it was already observed in

Remark 4.28 of that work that harmonicity is not really needed and that one could take for instance
F = |∇u|/∥u∥L∞(Rn+1\E) with u being a bounded solution of a second-order elliptic PDE or, more
generally, F = |∇

mu|/∥∇m−1u∥L∞(Rn+1\E) with u being a bounded solution of a 2m-th order elliptic
PDE, m ∈ N. We shall come back to this point with more details in Section 7, and for now try to keep the
discussion general for as long as possible.

Remark 3.30. There is a slightly glitchy point of notation point. For reasons of homogeneity, one might
prefer to normalize so that F = dist( · , E)|∇u|/∥u∥L∞(Rn+1\E). However, making the function F and
later on G and H in Section 4 depend on the open set (via its distance to the boundary) has its own
dangers and kills the beauty of the generality here.

The following result is stated in [Hofmann et al. 2016, Theorem 1.1] exclusively for harmonic functions,
but as noted in Remark 4.28 of that work, the same proof applies verbatim to any bounded function
satisfying Caccioppoli’s inequality along with CME in chord-arc subdomains. The argument further
extends to the following formulation with a few changes. For the sake of self-containment we present
below a somewhat different and more direct argument.

Theorem 3.31. Let E ⊂ Rn+1 be an n-dimensional UR set and let F ∈ L2
loc(R

n+1
\ E). Given η ≪ 1

and K ≫ 1, consider the decomposition D(E)= G∪B from Lemma 2.42, as well as a Whitney-dyadic
structure {WQ}Q∈D(E) for Rn+1

\ E with parameters η and K ; see Section 2.2. Then using the notation in
(1.10) and (2.26) there holds

∥F∥CME(Rn+1\E) ≤ C max
{
∥F∥C0(Rn+1\E), sup

S⊂G

∥F∥CME(�±

S )

}
, (3.32)

where �±

S is defined by (2.52) (with S′
= S) and where C depends only on n, the UR character of E , and

the choice of η, K , τ .
In particular, if F satisfies the Carleson measure estimate (1.10) for every bounded chord-arc subdo-

main D ⊂ Rn+1
\ E with constants depending on the CAD character (see Notation 2.56) then F satisfies
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the Carleson measure estimate (1.10) on Rn+1
\ E. More precisely, there exists a large constant M0

(depending only n and the UR character of E) so that using the notation in (1.10) there holds

∥F∥CME(Rn+1\E) ≤ C sup
D⊂Rn+1\E

∥F∥CME(D), (3.33)

where the sup runs over all bounded chord-arc subdomains D ⊂ Rn+1
\ E with parameters in the CAD

character at most M0, and C depends as before only on n and the UR character of E.

We note that much as in Remark 3.3 one can easily get a version of this result valid where everything
is localized to some open subset with UR boundary. The precise statement and the details are left to the
interested reader.

Remark 3.34. As already mentioned in Remark 2.25 and for PDE applications, the quantities ∥F∥C0(Rn+1\E)

or ∥F∥C0(D) are harmless terms since they are typically finite, whether or not F satisfies Carleson
measure estimates on some family of nice subdomains. However, one can also see that these terms
are under-controlled when one imposes Carleson measure estimates on bounded Lipschitz subdomains.
Let E ⊂ Rn+1 be an n-dimensional ADR set, write δ( · ) = dist( · , E), and let F ∈ L2

loc(R
n+1

\ E).
Note that �X = B(X, δ(X)) is a bounded Lipschitz subdomain of Rn+1

\ E with all the parameters in
the Lipschitz character bounded by Mn ≥ 1 which depends just on n. Also if Y ∈ B(X, δ(X)/2) then
dist(Y, ∂�X )≥ δ(X)/2 and Y ∈ B(z, 2δ(X)) for any z ∈ ∂�X . Thus, for any z ∈ ∂�X

1
δ(X)n−1

∫∫
B(X,δ(X)/2)

|F(Y )|2 dY ≤
2

δ(X)n

∫∫
B(z,2δ(X))

|F(Y )|2 dist(Y, ∂�X ) dY

and, consequently,

∥F∥C0(Rn+1\E) ≤ 2n+1 sup
D⊂Rn+1\E

∥F∥CME(D), (3.35)

where the sup runs over all bounded Lipschitz subdomains of Rn+1
\ E with all the parameters in the

Lipschitz character at most Mn ≥ 1. Analogously, if F ∈ L2
loc(�), where �⊂ Rn+1 is an open set with

∂� being n-dimensional ADR, then

∥F∥C0(�) ≤ 2n+1 sup
D⊂�

∥F∥CME(D), (3.36)

where the sup runs over all bounded Lipschitz subdomains of � with all the parameters in the Lipschitz
character at most Mn ≥ 1.

Proof. We write δ( · ) = dist( · , E) and Define βQ =
∫∫

UQ,τ/2
|F |

2δ d X for every Q ∈ D = D(E). Fix
Q0 ∈ D. Using the decomposition D(E)= G∪B from Lemma 2.42∫∫

TQ0,τ/2

|F(X)|2δ(X) d X ≤

∑
Q∈DQ0

βQ =

∑
Q∈DQ0∩B

βQ +

∑
Q∈DQ0∩G

βQ

=

∑
Q∈DQ0∩B

βQ +

∑
S:DQ0∩S ̸=∅

∑
Q∈DQ0∩S

βQ =:61 +62,
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and we estimate each term in turn. For 61 we observe that by construction the UQ,τ/2’s are uniformly
bounded unions of Whitney cubes of size of the order of ℓ(Q) and with distance to E of the order of
ℓ(Q) and it follows easily that βQ ≲ C0σ(Q), where the implicit constants depend only on n, the UR
character of E , and the choice of η, K , τ . Hence,

61 ≲ ∥F∥C0(Rn+1\E)

∑
Q∈DQ0∩B

σ(Q)≲ ∥F∥C0(Rn+1\E)σ(Q0), (3.37)

where in the last estimate we have used Lemma 2.42(ii).
Let us estimate 62. Fix S so that DQ0 ∩ S ̸= ∅ and write Q1 = Q1(S) = Q0 ∩ Q(S). Note that

if Q ∈ DQ0 ∩ S then Q ⊂ Q1 ⊂ Q(S) and by the coherency of S we conclude that Q1 ∈ S. Set
δ±S ( · ) = dist( · , ∂�±

S ) (see (2.52) with S′
= S). Note that �±

S is comprised of Whitney regions of the
form U±

Q = U±

Q,τ . Thus for X ∈ U±

Q,τ/2 with Q ∈ S, we have that δ(X) ≈ δ±S (X), where the implicit
constants depend on τ . This, the fact that the family {U±

Q }Q∈D has bounded overlap and (2.14) easily give

∑
Q∈DQ0∩S

βQ =

∑
Q∈DQ1∩S

βQ ≈

∑
Q∈DQ1∩S

∫∫
U±

Q

|F |
2δ±S d X ≲

∫∫
B∗

Q1
∩�±

S

|F |
2δ±S d X,

where B∗

Q1
:= B(xQ1, Kℓ(Q1)). Pick now X±

1 ∈ U±

Q1,τ/2 and choose x±

1 ∈ ∂�±

S so that |X±

1 − x±

1 | =

δ±S (X
±

1 )≈ δ(X±

1 )≈ ℓ(Q1). Therefore, B∗

Q1
⊂ B∗∗

Q1
= BQ1(x

±

1 ,Cℓ(Q1)), where C depends on n, the UR
character of E and η, K and τ . Thus,∑

Q∈DQ0∩S

βQ ≲
∫∫

B∗∗

Q1
∩�±

S

|F |
2δ±S d X ≲ ∥F∥CME(�±

S )
ℓ(Q1)

n
≈ ∥F∥CME(�±

S )
σ(Q1). (3.38)

Using this and recalling that Q1 = Q1(S)= Q0 ∩ Q(S), we can bound 62 as follows:

62 =

∑
S:DQ0∩S ̸=∅

∑
Q∈DQ0∩S

βQ ≲ sup
S⊂G

∥F∥CME(�±

S )

∑
S:DQ0∩S ̸=∅

σ(Q0 ∩ Q(S))

= sup
S⊂G

∥F∥CME(�±

S )

( ∑
S:Q(S)⊂Q0

σ(Q(S))+
∑

S:DQ0∩S ̸=∅
Q0⊊Q(S)

σ(Q0)

)
=:621 +622.

Using Lemma 2.42(ii) we easily obtain ∑
S:Q(S)⊂Q0

σ(Q(S))≲ σ(Q0),

where the implicit constant depends only on n, the UR character of E , and the choice of η, K , τ . For the
other term we note that the facts DQ0 ∩ S ̸= ∅ and Q0 ⊊ Q(S) imply that Q0 ∈ S by the coherency of S;
hence 622 = 0 if Q0 ∈ B. On the other hand, if Q0 ∈ G there is a unique S0 ⊂ G so that Q0 ∈ S0 and
DQ0 ∩ S = ∅ for every S ̸= S0 with Q0 ⊊ Q(S). This clearly implies that in this case∑

S:DQ0∩S ̸=∅
Q0⊊Q(S)

σ(Q0)= σ(Q0).
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If we finally collect all the obtained estimates we conclude that

∥F∥CMEdyad(Rn+1\E) = sup
Q∈D(E)

1
σ(Q)

∫∫
TQ,τ/2

|F(X)|2δ(X) d X

≤ C max
{
∥F∥C0(Rn+1\E), sup

S⊂G

∥F∥CME(�±

S )

}
, (3.39)

where C depends only on n, the UR character of E , and the choice of η, K , τ . Thus, the desired estimates
follows from (2.29).

To complete the proof we look at the second part of the statement. By (3.35) and the fact that bounded
Lipschitz domains are CAD with all the parameters in the CAD character by the Lipschitz character we
have ∥F∥C0(Rn+1\E) ≲ supD⊂Rn+1\E ∥F∥CME(D), where the sup runs over all bounded CAD subdomains
with character at most Mn . On the other hand, Lemma 2.53 establishes that all the �±

S ’s are CAD with
parameters in the CAD character all controlled by M ′

0 ≥ 1 (depending on the allowable parameters).
They are also bounded since every S has a maximal cube Q(S) and hence �±

S ⊂ B∗

Q(S) (see (2.14)).
Consequently,

sup
S⊂G

∥F∥CME(�±

S )
≤ sup

D
∥F∥CME(D),

where the second sup runs over all bounded CAD with character at most M ′

0. Taking M0 = max{Mn,M ′

0},
we easily see that (3.32) along with the above observations readily yield (3.33). □

4. Carleson estimates,A< N estimates and good-λ arguments

Given an open set �⊂ Rn+1 with ADR boundary we recall the definitions of the area integral A and the
nontangential maximal function N∗ from Definition 2.33 or the corresponding fattened versions Â and N̂∗

or the corresponding local versions. These are defined with respect to a {WQ}Q∈D, some Whitney-dyadic
structure for � with some implicit parameters η and K. Note that according to these definitions, the cones
are unbounded when ∂� is unbounded. On the other hand, when ∂� is bounded, so are the cones, all
being contained in a C diam(∂�)-neighborhood of ∂�. We note also that when ∂� is bounded, there
exists a cube Q0 ∈ D(∂�) such that Q0 = ∂� and for any Q ∈ D(∂�) we have Q ∈ DQ0 . It is, however,
particularly useful to work with local versions AQ and N̂ Q

∗ or ÂQ and N̂ Q
∗ .

Definition 4.1 (A< N estimates). Let�⊂Rn+1 be an open set with ∂� being ADR and let {WQ}Q∈D(∂�)

be a Whitney-dyadic structure for�with some parameters η and K. Consider also G ∈ L2
loc(�), H ∈C(�),

and 0< q <∞. We say that “A< N” estimates hold for G, H on Lq(∂�) if

∥AG∥Lq (∂�) ≤ C∥N̂∗H∥Lq (∂�), (4.2)

where the Lq norms are taken with respect to surface measure σ := H n
|∂�. Similarly, we will say that

“AD < N D” estimates hold for G, H on Lq(∂�) if

∥AQG∥Lq (Q) ≤ C∥N̂ Q
∗

H∥Lq (Q) for all Q ∈ D(∂�), (4.3)

with C independent of Q.
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Remark 4.4. We observe that by Remarks 2.37 and 2.38, A< N estimates imply an analogous estimate
for traditional cones, that is, for every κ > 0

∥A�,κG∥Lq (∂�) ≤ C∥N∗,�,κH∥Lq (∂�),

and the implicit constant depends on q, n, the ADR constant of ∂�, the choice of η, K , τ , the constant
in A < N, and κ . On the other hand AD < N D estimates imply also some local A < N estimates
with traditional cones. More precisely, for any x ∈ ∂� and 0 < r < 2 diam(∂�), using the notation in
Definition 1.15, there exists K ′ depending on n, the ADR constant of ∂�, the choice of η, K , τ , and the
constant in Definition 2.7(iii) such that for every κ > 0

∥Ar
�,κG∥Lq (1(x,r)) ≲ ∥N K ′r

∗,�,κH∥Lq (1(x,K ′r)), (4.5)

where 1(x, r)= B(x, r)∩ ∂�, and the implicit constant depends on q , n, the ADR constant of ∂�, the
choice of η, K , τ , the constant in AD < N D, and κ .

Fix then {WQ}Q∈D(∂�) a Whitney-dyadic structure for� with some parameters η and K. Given x ∈ ∂�

and 0< r < 2 diam(∂�), write 1=1(x, r) and B = B(x, r). We first consider the case r ≪ diam(∂�).
Note that for every y ∈1 we have 0r (y)⊂ 2B. Also, if 0�,1(z)∩ 2B ̸= ∅ then z ∈ 61. Recall that we
have always assumed that K is large enough (say K ≥ 104n) so that 0�,1(y)⊂ 0(y) for every y ∈ ∂�.
All these, together with Remark 2.38, give

∥Ar
�,κG∥Lq (1) ≤ ∥A�,κ(G12B)∥Lq (∂�) ≲ ∥A�,1(G12B)∥Lq (∂�) ≤ ∥A(G12B)∥Lq (61).

Let

D1 = {Q ∈ D(∂�) : Q ∩ 61 ̸= ∅, C(ηn)−1/2r/4 ≤ ℓ(Q) < C(ηn)−1/2r/2}, (4.6)

where C is the constant in (2.9) (it is here we use that r ≪ diam(∂�) so that C(ηn)−1/2r/2< diam(∂�),
thus D1 ̸= ∅). Suppose that Q ⊊ Q′ with Q ∈ D1 and let Y ∈ UQ′ . Then there is I ′

∈WQ′ with
Y ∈ ∂ I ∗(τ ) and by (2.5)

C(ηn)−
1
2 2−1r ≤ 2ℓ(Q)≤ ℓ(Q′)≤ Cη−

1
2 ℓ(I ′)≤ C(ηn)4−1 dist(4I ′, ∂�)≤ C(ηn)4−1 dist(Y, ∂�).

Hence, dist(Y, ∂�)≥ 2r and 0(y)∩2B ⊂0Q(y) for every y ∈ Q ∈D1. Thus theAD< N D estimates give

∥Ar
�,κG∥

q
Lq (1) ≲

∑
Q∈D1

∥A(G12B)∥
q
Lq (Q) ≤

∑
Q∈D1

∥AQG∥
q
Lq (Q) ≲

∑
Q∈D1

∥N Q
∗

H∥
q
Lq (Q).

Note next that for every y ∈ Q ∈D1 we have by (2.14) that 0Q(y)⊂ B(xQ, Kℓ(Q))∩�⊂ K ′B ∩�.
Hence, using again Remark 2.38 we have

∥Ar
�,κG∥Lq (1) ≲ ∥N∗(H1K ′ B)∥Lq (∂�) ≲ ∥N∗,�,min{1,κ}(H1K ′ B)∥Lq (∂�) ≤ ∥N 3K ′r

∗,�,κH∥Lq (3K ′1),

where we have used that 0�,1(z)∩ K ′B ̸= ∅ then z ∈ 3K ′1.
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To conclude we consider the case r ≈ diam(∂�). Hence ∂� is bounded and ∂� is itself a dyadic
cube Q0 and D(∂�)= DQ0 . Then we easily obtain using some of the previous observations

∥Ar
�,κG∥Lq (1) ≤ ∥A�,κG)∥Lq (∂�) ≲ ∥A�,1G∥Lq (∂�)

≤ ∥AQ0 G∥Lq (∂�) ≲ ∥N Q0
∗

H∥Lq (∂�)

≲ ∥N∗,�,κH∥Lq (∂�) = ∥N K ′r
∗,�,κH∥Lq (1(x,K ′r)), (4.7)

where the last estimate uses our convention that in the case � unbounded and ∂� bounded 0�( · ) is
indeed 0C diam(∂�)

� ( · ).

Theorem 4.8. Let � ⊂ Rn+1 be an open set with ∂� being ADR and let {WQ}Q∈D(∂�) be a Whitney-
dyadic structure for � with some parameters η and K. Given G ∈ L2

loc(�), H ∈ C(�), and 0< q <∞,
consider the following statements:

(A) Carleson measure estimate holds for F = G/∥H∥L∞(�) on �, that is, ∥G∥CME(�) ≲ ∥H∥
2
L∞(�)

(see (1.10)).

(A)D Dyadic Carleson measure estimate holds for F = G/∥H∥L∞(�) on �, that is, ∥G∥CMEdyad(�) ≲
∥H∥

2
L∞(�) (see (2.28)).

(Aloc) Carleson measure estimate holds on any (bounded) local sawtooth subdomain of �, in the
sense that for any Q ∈ D(∂�) and any pairwise disjoint family of cubes F ⊂ DQ , one has that
F = G/∥H∥L∞(�̂F ,Q)

satisfies the Carleson measure estimate on �̂F ,Q , that is,

sup
Q,F

∥G∥CME(�̂F ,Q)/∥H∥
2
L∞(�̂F ,Q)

<∞,

where the sup runs over all Q ∈ D(∂�) and all pairwise disjoint family of cubes F ⊂ DQ .

(B)q A< N on Lq(∂�) holds for G and H, in the sense of Definition 4.1, i.e., (4.2) is valid.

(Bloc)q A< N on Lq(∂�̂F ,Q) holds for G and H in the sense of Definition 4.1 for any Q ∈ D(∂�) and
any pairwise disjoint family of cubes F ⊂ DQ , i.e., (4.2) is valid in �̂F ,Q .

(B)Dq AD < N D on Lq(∂�) holds for G and H, in the sense of Definition 4.1, i.e., (4.3) is valid.

(Gλ) There exists θ > 0 such that for every ε, γ > 0 and for all α > 0

σ {x ∈ ∂� :AG(x) > (1 + ε)α, N̂∗H(x)≤ γα} ≤ C(γ /ε)θσ {x ∈ ∂� :AG(x) > α}. (4.9)

(Gλ)D There exists θ > 0 such that for every ε, γ > 0 and for all α > 0

σ {x ∈ Q :AQG(x) > (1 + ε)α, N̂ Q
∗

H(x)≤ γα}

≤ C(γ /ε)θσ {x ∈ Q :AQG(x) > α} for any Q ∈ D(∂�). (4.10)

Consider, in addition, the condition(
1

δ(X)n

∫∫
B(X,δ(X)/2)

|G(Y )|2δ(Y ) dY
)1/2

≤ C∥H∥L∞(B(X,3δ(X)/4)) for all X ∈�. (4.11)
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Then the following implications hold:

(Aloc) =⇒ (Gλ)D =⇒ (Gλ), (4.12)

(Aloc) =⇒ (B)Dq for all 0< q <∞, (4.13)

(B)Dq for some 0< q <∞ =⇒ (B)q , (4.14)

(B)Dq for some 0< q <∞ =⇒ (A)D, (4.15)

(A)D and (4.11) =⇒ (A), (4.16)

(Bloc)q for some 0< q <∞ =⇒ (A)D. (4.17)

In the previous implications the implicit constants of each of the conclusions depend on n, q , the ADR
character of ∂�, the choice of η, K , τ , the constant in Definition 2.7(iii), as well as the implicit constants
in the corresponding hypotheses.

Remark 4.18. In the previous result it is understood that (A) and (A)D are vacuous, unless H ∈ L∞(�).
Regarding (Aloc), if H /∈ L∞(�̂F ,Q), for some Q ∈ D(∂�) and for some pairwise disjoint family of
cubes F ⊂ DQ , then it is understood that F = G/∥H∥L∞(�̂F ,Q)

= 0 and ∥G∥CME(�̂F ,Q)/∥H∥L∞(�̂F ,Q)
= 0.

Hence, in the sup the only relevant sawtooths �̂F ,Q are those on which H is essentially bounded.

Remark 4.19. We note that the assumption (4.11) in (4.16) is only needed when � is unbounded and ∂�
is bounded because all dyadic cones are contained in a C diam(∂�)-neighborhood of E . Hence from
(A)D we only get information for F in that region. However, in all practical applications to solutions of
elliptic PDEs (4.11) is easily justified by Caccioppoli’s inequality.

Remark 4.20. It is possible to show the equivalence of previous conditions upon assuming that they hold
in some class of sets. To be more precise, let �⊂ Rn+1 be an open set with ADR boundary and suppose
that we have a collection {�′

}�′∈6 such that each �′
∈6 is an open subset of �, ∂�′ is ADR boundary,

and also that �̂F ,Q ∈6 for every Q ∈ D(∂�′) and any pairwise disjoint family of cubes F ⊂ DQ . Assume
further that (

1
rn

∫∫
B(X,r)

|G(Y )|2δ(Y ) dY
)1

2

≤ C∥H∥L∞(B(X,2r)) for all B(X, 2r)⊂�. (4.21)

Then, (A) holds on every �′
∈6 if and only if (B)Dq holds for every �′

∈6 and for all (some) 0< q <∞

if and only if (B)q holds for every �′
∈6 and for all (some) 0< q <∞; with the understanding that all

implicit constants in the statements above are uniform within 6. We have several examples of classes 6.
Suppose first that � = Rn+1

\ E , with E being UR (resp. ADR). In that case 6 is the class of open
sets �′

⊂ Rn+1
\ E with ∂� being UR (resp. ADR) and the implicit constant in each condition should

depend on the UR (resp. ADR) character of each �′. Another interesting example is that when � is some
given CAD (resp. 1-sided CAD) and 6 is the collection of chord-arc subdomains (resp. 1-sided chord-arc
subdomains) �′

⊂ �, in that case the implicit constant in each condition should depend on the CAD
(1-sided CAD) character of each �′.
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Lemma 4.22. Let � ⊂ Rn+1 be an open set with ∂� being ADR and let {WQ}Q∈D(∂�) be a Whitney-
dyadic structure for � with some parameters η and K. If (Aloc) holds for G ∈ L2

loc(�) and H ∈ C(�),
then

∥AQ0 G∥L2(F) ≤ Cσ(Q0)
1
2

(
sup
F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

) 1
2
∥N̂ Q0

∗
H∥L∞(F) (4.23)

for every Q0 ∈ D(∂�) and every Borel set F ⊂ Q0, and where the sup is taken over all families F ∈ DQ0

which are pairwise disjoint. The constant C depends on n, the ADR character of ∂�, the choice of η, K , τ ,
and the constant in Definition 2.7(iii).

Proof. We may assume without lost of generality that σ(F) > 0 and also that ∥N̂ Q0
∗ H∥L∞(F) < ∞.

Subdivide Q0 ∈ D(∂�) dyadically and stop the first time that Q ∩ F = ∅. This generates a possibly
empty maximal (hence pairwise disjoint) family F = {Q j }j ⊂ DQ0 \ {Q0}, so that Q j ∩ F = ∅ for every
Q j ∈ F, and Q ∩ F ̸= ∅ for every Q ∈ DF ,Q0 .

Let us observe that if Q ∩ F ̸= ∅ then necessarily Q ∈ DF ,Q0 ; otherwise Q ⊂ Q j ∈ F and hence
Q ∩ F = ∅, which is a contradiction. Recall that by construction for every Y ∈ UQ we have δ(Y ) ≈

ℓ(Q)≈ dist(Y, ∂�̂F ,Q0) since, as explained above, �̂F ,Q0 is composed of fattened Whitney regions ÛQ ,
which, in turn, have bounded overlap. Writing δ( · )= dist( · , ∂�), all these yield∫

F
AQ0 G(x)2 dσ(x)≤

∫
F

∑
x∈Q∈DQ0

∫∫
UQ

G(Y )2δ(Y )1−n dY dσ(x)

=

∑
Q∈DQ0

σ(F ∩ Q)
∫∫

UQ

G(Y )2δ(Y )1−n dY

≲
∑

Q∈DF ,Q0

∫∫
ÛQ

G(Y )2 dist(Y, ∂�̂F ,Q0) dY

≲
∫∫

�̂F ,Q0

G(Y )2 dist(Y, ∂�̂F ,Q0) dY.

Pick then y ∈ ∂�̂F ,Q0 and use (Aloc) in the sawtooth domain �̂F ,Q0 to conclude∫
F
AQ0G(x)2 dσ(x)≲

∫∫
B(y,2 diam(�̂F ,Q))∩�̂F ,Q0

G(Y )2 dist(Y, ∂�̂F ,Q0) dY

≲ ∥G∥CME(�̂F ,Q0 )
diam(�̂F ,Q0)

n
≤ C0∥H∥

2
L∞(�̂F ,Q)

diam(�̂F ,Q0)
n

≈ C0∥G∥CME(�̂F ,Q0 )
∥H∥

2
L∞(�̂F ,Q0 )

σ(Q0),

where

C0 = sup
F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

.

To conclude we observe that if Y ∈ �̂F ,Q0 , then Y ∈ ÛQ for some Q ∈ DF ,Q0 . The latter implies that we
can find z ∈ Q ∩ F ̸= ∅. Hence Y ∈ 0Q0(z) and |H(Y )| ≤ N̂ Q0

∗ H(z)≤ ∥N̂ Q0
∗ H∥L∞(F). As a result,∫

F
AQ0 G(x)2 dσ(x)≲ C0∥N̂ Q0

∗
H∥

2
L∞(F)σ(Q0). □
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4.1. Proof of Theorem 4.8: (Aloc) =⇒ (Gλ)D. Fix Q0 ∈ D = D(∂�) and for any α > 0, set

Eα = {x ∈ Q0 :AQ0 G(x) > α}, Fα = {x ∈ Q0 : N̂ Q0
∗

H(x)≤ α}.

Note that if Eα = ∅ then (4.10) (with Q = Q0) is trivial and there is nothing to prove. Assume then that
Eα ̸= ∅.

We momentarily suppose that Eα ⊊ Q0. Given x ∈ Eα , the monotone convergence theorem guarantees
that there exists kx ≥ 0 such that∫∫

⋃
x∈Q∈DQ0
ℓ(Q)≥2−kx

UQ

|G(Y )|2δ(Y )1−n > α2, (4.24)

where δ( · )= dist( · , ∂�).
Let Qx ∈ DQ0 be the unique cube with Qx ∋ x and ℓ(Qx)= 2−kx and note that for every y ∈ Qx

0Q0(y)=

⋃
y∈Q∈DQ0

UQ ⊃

⋃
Qx⊂Q∈DQ0

UQ =

⋃
x∈Q∈DQ0
ℓ(Q)≥2−kx

UQ .

This and (4.24) imply thatAQ0 G(y) > α. We have then show that for every x ∈ Eα there exists Qx ∈ DQ0

such that Qx ⊂ Eα . We can then take Qmax
x , with Qx ⊂ Qmax

x ⊂ Q0, the maximal cube so that Qmax
x ⊂ Eα .

Note that Qx ⊊ Q0 since Eα ⊊ Q0. Write then F = {Q j }j ⊂ DQ0 \ {Q0} for the collection of maximal
(hence pairwise disjoint) cubes Qmax

x with x ∈ Eα. By construction, Eα =
⋃

Q j ∈F
Q j and for every

Q j ∈ F, by maximality, we can find x j ∈ Q̃ j \ Eα, where Q̃ j is the dyadic parent of Q j . In the latter
scenario, if x ∈ Q j

0Q0(x)=

⋃
x∈Q∈DQ0

UQ =

( ⋃
x∈Q∈DQj

UQ

)
∪

( ⋃
Q j⊊Q⊂Q0

UQ

)
⊂ 0Q j (x)∪0Q0(x j )

and, consequently,

AQ0 G(x)≤AQ j G(x)+AQ0 G(x j )≤AQ j G(x)+α, x ∈ Q j .

Using this, for every ε > 0 we have

E(1+ε)α = E(1+ε)α ∩ Eα =

⋃
Q j ∈F

E(1+ε)α ∩ Q j ⊂

⋃
Q j ∈F

{x ∈ Q j :AQ j G(x) > εα}.

This holds under the assumption Eα ⊊ Q0 but it clearly extends to the case Eα ⊊ Q0 by setting F = {Q0}.
Hence, invoking Chebyshev’s inequality and Lemma 4.22 in every Q j , we arrive at

σ(E(1+ε)α ∩ Fγα)≤

∑
Q j ∈F

σ({x ∈ Q j :AQ j G(x) > εα} ∩ Fγα)

≤
1

(εα)2

∑
Q j ∈F

∫
Fγα∩Q j

AQ j G(x)2 dσ(x)

≲
1

(εα)2

(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

) ∑
Q j ∈F

∥N̂ Q0
∗

H∥
2
L∞(Fγα∩Q j )

σ(Q j )
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≤

(
γ

ε

)2(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

) ∑
Q j ∈F

σ(Q j )

=

(
γ

ε

)2(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

)
σ

( ⋃
Q j ∈F

Q j

)
=

(
γ

ε

)2(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

)
σ(Eα),

where the sup is taken over all Q0 ∈ D and over all families F ∈ DQ0 which are pairwise disjoint. □

4.2. Proof of Theorem 4.8: (Aloc)=⇒ (B)D
q for all 0 < q <∞. We start by observing that if G ∈ L2

loc(�)

then for every �′
⊂ � one has ∥G1�′∥CME(�̂F ,Q) ≤ ∥G∥CME(�̂F ,Q) for every Q ∈ D = D(∂�) and for

every family of pairwise disjoint cubes F ∈ DQ . This means that if (Aloc) holds for G and H then it also
does for G1�′ and H uniformly in �′. Therefore, from what we have proved so far, (Gλ)D holds for
G1�′ and H uniformly in �′.

Fix x0 ∈ ∂� and given k ∈ N set

�k = {X ∈ B(x0, k)∩� : |G(X)| ≤ k, δ(X)≥ k−1
}

and note that for every 0< q <∞ and for every x ∈ ∂�

A(G1�k )(x)
2
=

∫∫
0(x)∩�k

|G(Y )|2δ(Y )1−n dY ≤ kn+1
|B(x0, k)| ≈ k2(n+1).

On the other hand, suppose that x ∈ ∂� is so that 0(x)∩�k ̸= ∅. Pick Z ∈ 0(x)∩�k ̸= ∅, then Z ∈ I ∗

with I ∈WQ and x ∈ Q ∈ D. Using (2.9) it follows that

|x − x0| ≤ |x − xQ | + diam(Q)+ dist(I, Q)+ diam(I ∗)+ |Z − x0| ≲ ℓ(I )+ k

≈ δ(Z)+ k ≲ |X − z0| + k ≤ 2k.

As a consequence, suppA(G1�k ) ⊂ B(x0,C K ). These, together with the fact that AQ(G1�k )(x) ≤

A(G1�k )(x) for every x ∈ ∂�, allow us to conclude that A(G1�k ),A
Q(G1�k ) ∈ L∞

c (∂�) ⊂ Lq(∂�)

for every Q ∈ D, albeit with bounds that depend on k.
Using the previous observations and invoking (Gλ)D with G1�k and H (with constant that is indepen-

dent of k) we have for every Q ∈ D

∥AQ(G1�k )∥
q
Lq (Q)

= (1 + ε)q
∫

∞

0
qαqσ {x ∈ Q :AQ(G1�k )(x) > (1 + ε)α}

dα
α

≤ (1 + ε)q
∫

∞

0
qαqσ {x ∈ Q :AQ(G1�k )(x) > (1 + ε)α, N̂ Q

∗
H(x)≤ γα}

dα
α

+ (1 + ε)q
∫

∞

0
qαqσ {x ∈ Q : N̂ Q

∗
H(x) > γα}

dα
α

≤ C
(
γ

ε

)θ
(1 + ε)q

∫
∞

0
qαqσ {x ∈ Q :AQ(G1�k )(x) > α}

dα
α

+

(
1 + ε

γ

)q

∥N̂ Q
∗

H∥
q
Lq (Q)

= C
(
γ

ε

)θ
(1 + ε)q∥AQ(G1�k )∥

q
Lq (Q) +

(
1 + ε

γ

)q

∥N̂∗H∥
q
Lq (Q). (4.25)
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Pick ε= 1 and choose γ sufficiently small to ensure that Cγ θ2q < 1
2 . Using that ∥AQ(G1�k )∥

q
Lq (Q)<∞

we can hide this term on the left-hand side of (4.25) and conclude that

∥AQ(G1�k )∥
q
Lq (Q) ≲ ∥N̂ Q

∗
H∥

q
Lq (Q), (4.26)

with an implicit constant depending on n, the ADR character of ∂�, the choice of η, K , τ , the constant in
Definition 2.7(iii), q , and the implicit constant in (Gλ), but nonetheless independent of k. By the monotone
convergence theorem and the fact that |G(X)| <∞ for a.e. X ∈ �, since G ∈ L2

loc(�), it follows that
AQ(G1�k )(x)↗AQG(x). Then we can use the monotone convergence theorem to obtain from (4.26)

∥AQG∥
q
Lq (Q) = lim

k→∞

∥AQ(G1�k )∥
q
Lq (Q) ≲ ∥N̂ Q

∗
H∥

q
Lq (Q),

completing the proof. □

Remark 4.27. The previous arguments easily yield that for any 0< q <∞, one has that (Gλ)D ⇒ (Bloc)q

provided ∥AQG∥Lq (Q)<∞. A very similar argument gives that (Gλ)⇒ (B)q provided ∥AG∥Lq (∂�)<∞.
Details are left to the interested reader.

4.3. Proof of Theorem 4.8: (Gλ)D =⇒ (Gλ). We note that if ∂� is bounded, then ∂� itself is the largest
cube in D = D(∂�), say ∂�= Q0; hence (Gλ) is a particular case of (Gλ)D. Consider next the case ∂�
unbounded and for every k ∈ N write

0k(x)=

⋃
x∈Q∈D

ℓ(Q)≤2k

UQ, x ∈ ∂�,

and associated with these cones defineAk and N̂ k
∗

. Given Q ∈ D−k , i.e., ℓ(Q)= 2−k, one easily sees that
0Q0(x)= 0k(x) for every x ∈ Q0. Hence, for every k ∈ N, using (Gλ)D we obtain

σ {x ∈ ∂� :Ak G(x) > (1 + ε)α, N̂∗H(x)≤ γα}

≤ σ {x ∈ ∂� :Ak G(x) > (1 + ε)α, N̂ k
∗

H(x)≤ γα}

=

∑
Q∈D−k

σ {x ∈ Q :Ak G(x) > (1 + ε)α, N̂ k
∗

H(x)≤ γα}

=

∑
Q∈D−k

σ {x ∈ Q :AQG(x) > (1 + ε)α, N̂ Q
∗

H(x)≤ γα}

≲

(
γ

ε

)θ ∑
Q∈D−k

σ {x ∈ Q :AQG(x) > α} =

(
γ

ε

)θ ∑
Q∈D−k

σ {x ∈ Q :Ak G(x) > α}

=

(
γ

ε

)θ
σ {x ∈ ∂� :Ak G(x) > α} ≤

(
γ

ε

)θ
σ {x ∈ ∂� :AG(x) > α}. (4.28)

On the other hand, the monotone convergence theorem gives that Ak G(x)↗AG(x) as k → ∞ and for
every x ∈ ∂�. Hence, another use of the monotone convergence theorem and (4.28) yield

σ {x ∈ ∂� :AG(x) > (1 + ε)α, N̂∗H(x)≤ γα} = lim
k→∞

σ {x ∈ ∂� :Ak G(x) > (1 + ε)α, N̂∗H(x)≤ γα}

≲ (γ /ε)θσ {x ∈ ∂� :AG(x) > α}, □
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4.4. Proof of Theorem 4.8: (B)D
q for some 0 < q < ∞ =⇒ (B)q . We note that if ∂� is bounded, then

∂� itself is the largest cube in D = D(∂�), say ∂�= Q0; hence (B)q is a particular case of (Bloc)q . If
∂� is unbounded we use the same argument as in the previous proof:∫

∂�

Ak G(x)q dσ(x)=

∑
Q∈D−k

∫
Q
Ak G(x)q dσ(x)=

∑
Q∈D−k

∫
Q
AQG(x)q dσ(x)

≲
∑

Q∈D−k

∫
Q

N̂ Q
∗

H(x)q dσ(x)=

∑
Q∈D−k

∫
Q

N̂ k
∗

H(x)q dσ(x)

=

∫
∂�

N̂ k
∗

H(x)q dσ(x)≤

∫
∂�

N̂∗H(x)q dσ(x).

From here, we obtain the desired estimate from the monotone convergence theorem and the fact that
Ak G(x)↗AG(x) for every x ∈ ∂�, as k → ∞. □

4.5. Proof of Theorem 4.8: (B)D
q for some 0< q <∞=⇒ (A)D. Assume that (Bloc)q for some 0<q<∞

holds. We may assume that H ∈ L∞(�). Hence, for every Q ∈ D(∂�),∫
Q
AQG(x)q dσ(x)≤ Cq

q

∫
Q

Ñ Q
∗

H(x)q dσ(x)≤ Cq
q ∥H∥

q
L∞(�) σ(Q).

Writing F := G(21/qCq∥H∥L∞(�))
−1, we have by Chebyshev’s

σ {x ∈ Q :AQ F(x) > 1} ≤

∫
Q
AQ F(x)q dσ(x)≤

1
2σ(Q).

We then invoke Lemma 3.8 with p = 2 and obtain

sup
Q∈DQ0

−

∫
Q
AQ F(x)2 dσ(x)≲ 1.

On the other hand, writing δ( · )= dist( · , ∂�), and recalling that the family {UQ′}Q′∈D(∂�) has bounded
overlap, we see that∫∫

TQ

F2δ dY ≈

∑
Q′∈DQ

∫∫
UQ′

F2δ dY ≈

∑
Q′∈DQ

σ(Q′)

∫∫
UQ′

F2δ1−n dY

=

∫
Q

∑
x∈Q′∈DQ

∫∫
UQ′

F2δ1−n dY dσ(x)

≈

∫
Q

∫∫
0Q(x)

F2δ1−n dY dσ(x)=

∫
Q
AQ F(x)2 dσ(x), (4.29)

Thus,

∥F∥CMEdyad(�) = sup
Q∈DQ0

1
σ(Q)

∫∫
TQ

F(Y )2δ(X) dY ≲ 1. □

4.6. Proof of Theorem 4.8: (A)D and (4.11) =⇒ (A). This follows trivially from (2.29):

∥G∥CME(�) ≲ ∥G∥CMEdyad(�) + ∥G∥C0(�) ≲ ∥H∥
2
L∞(�),

which is the desired estimate. □
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4.7. Proof of Theorem 4.8: (Bloc)q for some 0 < q < ∞ =⇒ (A)D. Write D = D(∂�) and δ( · ) =

dist( · , ∂�). Assume (Bloc) and fix Q0 ∈ D. We may suppose that H ∈ L∞(�); otherwise there is nothing
to prove. Recall that T̂Q0 = �̂∅,Q0 ; hence (Bloc) implies that A < N on Lq(∂TQ0). Thus, Remark 4.4
yields for every κ > 0

∥A T̂Q0 ,κ
G∥

q
Lq (∂ T̂Q0 )

≲ ∥N
∗,T̂Q0 ,κ

H∥
q
Lq (∂ T̂Q0 )

≤ ∥H∥
q
L∞(�)H

n(∂TQ0)≲ ∥H∥
q
L∞(�) diam(∂TQ0)

n

≲ ∥H∥
q
L∞(�)ℓ(Q0)

n
≈ ∥H∥

q
L∞(�)σ(Q0)

n, (4.30)

where we have used that ∂TQ0 is upper ADR (see Remark A.2), (2.14), and that ∂� is ADR.
Let x ∈ Q0 and Y ∈ 0Q0(x). Then Y ∈ I ∗ with I ∈WQ with x ∈ Q ∈ DQ0 . Recalling that I ∗

= I ∗(τ )

and that T̂Q0 is defined using fattened Whitney cubes of the form J ∗(2τ) we clearly see that Y ∈TQ0 ⊂ T̂Q0

with δ(Y )≈ dist(Y, ∂ T̂Q0). Consequently,

|Y − x | ≤ diam(I )+ dist(I, Q)+ diam(Q)≲ ℓ(I )≈ δ(Y )≈ dist(Y, ∂ T̂Q0).

Then we can find κ depending on n, the ADR constants of ∂�, η, K, and the constant in Definition 2.7(iii)
such that Y ∈ 0T̂Q0 ,κ

(x). Since Q0 ⊂ ∂ T̂Q0 (see [Hofmann and Martell 2014, Proposition 6.1]), we then
obtain

AQ0 G(x)=

(∫∫
0Q0 (x)

|G(Y )|2δ(Y )1−n dY
)1

2

≈

(∫∫
0Q0 (x)

|G(Y )|2 dist(Y, ∂TQ0)
1−n dY

)1
2

≤

(∫∫
0T̂Q0

,κ (x)
|G(Y )|2 dist(Y, ∂TQ0)

1−n dY
)1

2

=A T̂Q0 ,κ
G(x).

This and (4.30) imply

−

∫
Q0

AQ0 G(x)q dσ(x)≲ −

∫
Q0

A T̂Q0 ,κ
G(x)q dσ(x)≤ C∥H∥

q
L∞(�).

Writing F = G(C∥H∥L∞(�))
−1, for N large enough, we obtain from Chebyshev’s inequality

σ {x ∈ Q0 :AQ0 F(x) > N } ≤ N−q
∫

Q0

AQ0 F(x)q dσ(x)≤
1
2σ(Q).

Since Q0 ∈ D is arbitrary we can apply Lemma 3.8 with p = 2 and obtain

sup
Q∈DQ0

−

∫
Q
AQ F(x)2 dσ(x)≲ 1.

This and (4.29) give

∥F∥CMEdyad(�) = sup
Q∈DQ0

1
σ(Q)

∫∫
TQ

F(Y )2δ(X) dY ≲ 1,

which is the desired estimate. □

5. Transference of N < S estimates: from Lipschitz to chord-arc domains

Before starting, we introduce some notation. Let D ⊂ Rn+1 be a bounded CAD. Given Q ∈ D(∂D) or
1=1(x, r), with x ∈ ∂D and 0< r ≲ diam(∂D), we will write X+

Q and X+

1 to denote respectively some
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interior corkscrew points relative to Q (that is, relative to 1Q , see (2.2)) and 1. When ∂D is bounded, we
write X+

D to denote a corkscrew point relative to a surface ball1(x, 3 diam(∂D)/2)= ∂D for some x ∈ ∂D.
Also, recall the dyadic Hardy–Littlewood maximal function from Definition 2.4. In addition, we will

be using its continuous analogue. Let E ⊂ Rn+1 be an n-dimensional ADR set. By M = ME we denote
the continuous (noncentered) Hardy–Littlewood maximal function on E , that is, for f ∈ L1

loc(E)

M f (x)= sup
1∋x

−

∫
1

| f (y)| dσ(y),

where the sup is taken over all 1, surface balls on E containing x . For 0 < p < ∞, we also write
Mp f = M(| f |

p)1/p. It is clear from (2.2) that MD f (x)≲ M f (x) for every x ∈ E . The converse might
fail pointwise, but both maximal functions are bounded in L p(E), p > 1.

We are now ready to state the main result of this section:

Theorem 5.1. Let D ⊂ Rn+1 be a CAD. Let u ∈ W 1,2
loc (D)∩ C(D) and assume that there exists C0 > 0

such that for any c ∈ R and for any cube I with 2I ⊂ D

sup
X∈I

|u(X)− c| ≤ C0

(
ℓ(I )−n−1

∫∫
2I

|u − c|2 d X
)1

2

. (5.2)

Suppose that the N < S estimates are valid on L2 on all bounded Lipschitz subdomains �⊂ D, that is,
for any bounded Lipschitz subdomain �⊂ D there holds

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C�∥S�u∥L2(∂�). (5.3)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� in (5.3)
depends on the Lipschitz character of �, the dimension n, the implicit choice of κ (the aperture of the
cones in N∗,� and S�), and the implicit corkscrew constant for the point X+

� .
Given η≪ 1 and K ≫ 1, consider {WQ}Q∈D(∂D) a Whitney-dyadic structure for D with parameters η

and K ; see Section 2.4. Then there exist 0< c0 ≪ 1 and C > 0, depending on n, the CAD character of D,
the choice of η, K , τ , such that for every ε > 0, for every 0 < γ < c0ε/C0, for all α > 0, and for all
Q ∈ D(∂D)

σ {x ∈ Q : N Q
∗
(u − u(X+

Q))(x) > (1 + ε)α, MD
Q0,2(Ŝ

Qu)(x)≤ γα}

≤ C∗

γ,εσ {x ∈ Q : N Q
∗
(u − u(X+

Q))(x) > α}, (5.4)

where C∗
γ,ε = (1 − θ + C(γ /ε)2) and θ ∈ (0, 1) is from Corollary 3.21 (hence depends on n and the CAD

character of D). Therefore

∥N Q
∗
(u − u(X+

Q))∥Lq (Q) ≤ C ′
∥ŜQu∥Lq (Q) for all q > 2, (5.5)

where C ′ depends on n, the CAD character of D, C0, the choice of η, K , τ , and q.
As a consequence, for any x ∈ ∂D and 0< r < 2 diam(∂D) there exists K ′ depending on n, the CAD

character of D such that for every κ > 0

∥N r
∗,D,κ(u − u(X+

1(x,r))∥Lq (1(x,r)) ≤ C ′′
∥SK ′r

D,κu∥Lq (1(x,K ′r)) for all q > 2, (5.6)
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where 1(x, r)= B(x, r)∩ ∂�, and where C ′′ depends on q , n, the CAD character of D, C0, and κ . In
particular, if ∂D is bounded

∥N∗,D,κ(u − u(X+

D))∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all q > 2 (5.7)

and if ∂D is unbounded and u(X)→ 0 as |X | → ∞ then

∥N∗,D,κu∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all q > 2. (5.8)

We remark that contrary to the previous sections, we do not consider general AG and N∗H anymore.
This is a necessity, as the argument of the area integral has to be the gradient of the argument of the
nontangential maximal function. The assumption (5.2) is a standard interior regularity estimate for
solutions of elliptic equations (also known as Moser’s local boundedness estimate). In principle, we need
a somewhat different version. Recall that ÛQ is a fattened version of the Whitney region UQ . We have

|u(YQ)− c| ≤ C0

(
ℓ(Q)−n−1

∫∫
ÛQ

|u − c|2 d X
)1

2

, (5.9)

where YQ is any point lying in UQ , so that there is a ball centered at YQ , of radius proportional to ℓ(Q),
which lies inside ÛQ . We note that if we assumed (5.2) or (5.9) without enlarging the integrals on the
respective right-hand sides, we could obtain a version of (5.4)–(5.5) without enlarging the “aperture of
cones” on the right-hand side (that is, with SQ in place of ŜQ). But that is minor and (5.2) looks a bit
more familiar and more in line with (6.2) below.

Proof. To start, write D = D(∂D) and δ( · ) = dist( · , ∂D). Fix η ≪ 1 and K ≫ 1 and consider
{WQ}Q∈D(∂D) a Whitney-dyadic structure for D with parameters η and K from Section 2.4. We claim that
for every Q ∈ D

sup
X,Y∈UQ

|u(X)− u(Y )| ≤ CC0 inf
z∈Q

ŜQu(z)≤ CC0−

∫
Q

ŜQu dσ, (5.10)

where C depends on n, η, K, τ , and the CAD character of D, and C0 is the constant in (5.2). To see this
observe that for every Q ∈ D and X ∈ UQ we have that X ∈ I ∗(τ ) for some I ∈WQ . Let IX ⊂ D be the
cube centered at X with side length τℓ(I ) so that 2IX ⊂ I ∗(2τ)⊂ ÛQ . Note that ℓ(IX )≈ ℓ(I )≈ ℓ(Q).
Then, (5.2) yields, for every c ∈ R,

|u(X)− c| ≤ C0

(
ℓ(IX )

−n−1
∫∫

2IX

|u − c|2 d X
)1

2

≲ C0

(
ℓ(Q)−n−1

∫∫
ÛQ

|u − c|2 d X
)1

2

. (5.11)

With this at hand, let Q ∈ D and X, Y ∈ UQ and z ∈ Q. Setting

cQ :=
1

|ÛQ |

∫∫
ÛQ

v d Z ,

we obtain

|u(X)− u(Y )| ≤ |u(X)− cQ | + |u(Y )− cQ | ≲ C0

(
ℓ(Q)−n−1

∫∫
ÛQ

|u − cQ |
2 d Z

)1
2

≲ C0

(
ℓ(Q)−n+1

∫∫
ÛQ

|∇u|
2 d X

)1
2

≈ C0

(∫∫
ÛQ

|∇u|
2δ1−n d X

)1
2

≤ C0 ŜQu(z),
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where the second inequality follows from (5.11), the third from Poincaré’s inequality in the context of
Whitney regions (see the argument in [Hofmann et al. 2017a, Proof of Lemma 3.1]), and the last from the
fact that δ( · )≈ ℓ(Q) in ÛQ . This proves our claim.

Let us fix Q0 ∈ D and write v := u − u(X+

Q0
), with X+

Q0
beginning the corkscrew relative to Q0, that

is, relative to the surface ball 1Q0 (see (2.2) and (2.3)). For every α > 0 we set

Eα := {x ∈ Q0 : N Q0
∗
v(x) > α}, Fα := {x ∈ Q0 : MD

Q0,2(Ŝ
Q0v)(x)≤ α},

where MD
Q,2 was defined in Definition 2.4. Our goal is to obtain for every α, γ, ε > 0 with 0< γ ≪ ε/C0

there holds

σ(E(1+ε)α ∩ Fγα)≤ C∗

γ,εσ(Eα), (5.12)

and we will me more specific about the constant C∗
γ,ε momentarily. With this goal in mind we fix

α, γ, ε > 0. We may assume that Eα ̸= ∅; otherwise (5.4) is trivial.
Let x ∈ Eα; then there exist Qx ∈ DQ0 with x ∈ Qx and Y ∈ UQx such that |v(Y )| > α. Note that

UQx ⊂0Q0(y) for every y ∈ Qx ; hence N Q0
∗ v(y)≥|v(Y )|>α and Qx ⊂ Eα . We can then take Qmax

x , with
Qx ⊂ Qmax

x ⊂ Q0, the maximal cube so that Qmax
x ⊂ Eα . Write then F = {Q j }j ⊂ DQ0 for the collection

of maximal (hence pairwise disjoint) cubes Qmax
x with x ∈ Eα. By construction, Eα =

⋃
Q j ∈F

Q j .
Given Q ∈F , invoke Corollary 3.21 and take a bounded Lipschitz domain�Q ⊂ D satisfying properties

(i)–(iii) in the statement. In particular, we set FQ := ∂�Q ∩ Q ⊂ Q such that σ(FQ)≥ θσ (Q). Our goal
is to show that

σ(E(1+ε)α ∩ Fγα ∩ FQ)≤ C
(
γ

ε

)2

C�Qσ(Q), (5.13)

where C�Q is the constant from (5.3); hence it depends on the Lipschitz character of �Q , which in turn
depends only on the CAD character of D, and C depends as well on the CAD character of D. Assuming
this momentarily, we obtain (5.4):

σ(E(1+ε)α ∩ Fγα)= σ(E(1+ε)α ∩ Eα ∩ Fγα)=

∑
Q∈F

σ(E(1+ε)α ∩ Eα ∩ Q)

≤

∑
Q∈F

(
σ(Q \ FQ)+ σ(E(1+ε)α ∩ Eα ∩ FQ)

)
≤

(
1 − θ + C

(
γ

ε

)2

sup
Q∈D

C�Q

) ∑
Q∈F

σ(Q)= C∗

γ,εσ(Eα),

where C∗
γ,ε = (1 − θ + C(γ /ε)2 supQ∈D C�Q ). Note that supQ∈D C�Q <∞ and ultimately depends on

the CAD character of D, since all the Lipschitz characters of the �Q are uniformly bounded depending
on the CAD character of D (see Corollary 3.21) and our assumption states that C�Q depends on the
Lipschitz character of �Q , the dimension n, and the choice of κ (the aperture of the cones).

Let us then obtain (5.13). We may assume that the left-hand side is nonzero; hence we can pick
zQ ∈ E(1+ε)α ∩ Fγα ∩ FQ . Let YQ be from Corollary 3.21(ii) whose existence is guaranteed by part (i)
and note that YQ ∈ UQ .
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We need to consider two separate cases. First assume that Q ⊊ Q0. By the maximality of Q ∈ F,
we can find x̃ ∈ Q̃ \ Eα, where Q̃ is the dyadic parent of Q. That is, N Q0

∗ v(x̃) ≤ α and, in particular,
|v(X)| ≤ α for every X ∈ UQ̃ since UQ̃ ⊂ 0Q0(x̃). Note then that if x ∈ Q, then

N Q0
∗
v(x)= sup

Y∈0Q0 (x)
|v(Y )| = max

{
sup

Y∈0Q(x)
|v(Y )|, max

Y∈UQ ,Q̃⊂Q⊂Q0

|v(Y )|
}

≤ max{N Q
∗
v(x), N Q0

∗
v(x̃)} ≤ max{N Q

∗
v(x), α}. (5.14)

Since |v(X)| ≤ α for every X ∈ UQ̃ , we have that |v(X+

Q̃
)| ≤ α, where X+

Q̃
is the interior corkscrew point

relative to Q̃ (with respect to D which is a CAD). Then, recalling that the construction ofWQ guarantees
that X+

Q̃
∈ UQ , and that YQ ∈ UQ , we have, by (5.10),

|v(X+

Q̃
)− v(YQ)| = |u(X+

Q̃
)− u(YQ)| ≤ CC0−

∫
Q

ŜQu dσ ≤ CC0−

∫
Q

ŜQ0u dσ

= CC0−

∫
Q

ŜQ0v dσ ≤ MD
Q0,2(Ŝ

Q0v)(zQ)≤ CC0γα, (5.15)

where we have used that zQ ∈ Q ∩ Fγα. As a consequence,

|v(YQ)| ≤ |v(YQ)− v(X+

Q̃
)| + |v(X+

Q̃
)| ≤ (1 + CC0γ )α ≤ (1 + ε/2)α, (5.16)

where C depends on the CAD character of D, and provided γ < (2CC0)
−1ε =: 2c0ε. As a result, using

(5.14), for every x ∈ E(1+ε)α we arrive at

(1 + ε)α < N Q0
∗
v(x)= N Q

∗
v(x)≤ N Q

∗
(v− v(YQ))(x)+ |v(YQ)| ≤ N Q

∗
(v− v(YQ))(x)+ (1 + ε/2)α,

and, consequently,

E(1+ε)α ∩ Fγα ∩ FQ ⊂ {x ∈ Fγα ∩ FQ : N Q
∗
(v− v(YQ))(x) > εα/2}, (5.17)

where we recall that we are currently considering the case Eα ⊊ Q.
In the second case Q = Q0; hence F = {Q} and Eα = Q. Since YQ, X+

Q0
∈ UQ0 we can invoke (5.10)

to obtain

|v(YQ)| = |u(YQ)− u(X Q0)
+
| ≤ CC0−

∫
Q0

ŜQ0u dσ = CC0−

∫
Q0

ŜQ0v dσ

≤ MD
Q0,2(Ŝ

Q0v)(zQ)≤ CC0γα ≤ (1 + CC0γ )α ≤ (1 + ε/2)α, (5.18)

where C depends on the CAD character of D, and provided γ < (2CC0)
−1ε =: 2c0ε. Consequently, for

every x ∈ E(1+ε)α we arrive at

(1 + ε)α < N Q0
∗
v(x)≤ N Q0

∗
(v− v(YQ))(x)+ |v(YQ)| ≤ N Q

∗
(v− v(YQ))(x)+ (1 + ε/2)α.

Thus, N Q
∗ (v− v(YQ))(x)= N Q0

∗ (v− v(YQ))(x) > εα/2 and (5.17) holds also in this case.
We can now merge the two cases. Pick x ∈ Fγα ∩ FQ = ∂�Q ∩ Q such that N Q

∗ (v − v(YQ))(x) >
εα/2. Then, there exist Q′

∈ DQ with Q′
∋ x and Y ∈ UQ′ such that |v(Y )− v(YQ)| > εα/2. Thus,

yQ′ := x ∈ Q′
∩ ∂�Q = FQ ∩ Q′ and applying once again condition (ii) of Corollary 3.21 we can find the
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corresponding YQ′ ∈ UQ′ so that

|YQ′ − yQ′ |< ℓ(Q′)≤ C dist(YQ′, ∂�Q) := (1 + κ) dist(YQ′, ∂�Q),

where C ≥ 2 is the constant from Corollary 3.21. This means that YQ′ ∈ 0�Q (yQ′)= 0�Q (x) (see (1.14)).
On the other hand, since Y, YQ′ ∈ UQ′ and x ∈ Fγα ∩ Q′, one can see that (5.10) yields

|v(Y )− v(YQ′)| = |u(Y )− u(YQ′)| ≤ CC0−

∫
Q′

ŜQ′

u dσ ≤ CC0−

∫
Q′

ŜQ0u dσ

= CC0−

∫
Q′

ŜQ0v dσ ≤ CC0 MD
Q0,2(Ŝ

Q0v)(x)≤ CC0γα ≤ εα/4, (5.19)

provided γ < c0ε = (4CC0)
−1ε. Hence,

εα/2< |v(Y )− v(YQ)| ≤ |v(Y )− v(YQ′)| + |v(Y ′

Q)− v(YQ)| ≤ εα/4 + |v(Y ′

Q)− v(YQ)|

and

N∗,�Q (v− v(YQ))(x)= sup
Z∈0Q(x)

|v(Y )− v(YQ)| ≥ |v(YQ′)− v(YQ)| ≥ εα/4.

All these yield

E(1+ε)α ∩ Fγα ∩ FQ ⊂ {x ∈ ∂�Q : N∗,�Q (v− v(YQ))(x) > εα/4}.

Use Chebyshev’s inequality and the assumption (5.3) we write

σ(E(1+ε)α ∩ Fγα ∩ FQ)≤ σ {x ∈ ∂�Q : N∗,�Q (v− v(YQ))(x) > εα/4}

≤

(
4
εα

)2 ∫
∂�Q

N∗,�Q (v− v(YQ))(x)2 d H n(x)

≲ C�Q

16
(εα)2

∫
∂�Q

(S�Qv(x))
2 d H n(x), (5.20)

where C�Q depends on n and the CAD of D, and so do all the implicit constants. Note that∫
∂�Q

(S�Qv(x))
2 d H n(x)=

∫
∂�Q

∫∫
|Y−x |≤(1+κ) dist(Y,∂�Q)

|∇v(Y )|2 dist(Y, ∂�Q)
1−n dY d H n(x)

≤

∫∫
�Q

|∇v(Y )|2 dist(Y, ∂�Q)
1−n H n(B(Y, (2 + κ) dist(Y, ∂�Q))∩ ∂�Q) dY

≲
∫∫

�Q

|∇v(Y )|2 dist(Y, ∂�Q) dY

≤

∫∫
TQ

|∇v(Y )|2δ(Y ) dY, (5.21)

where we have used that ∂�Q is ADR with constant depending on the CAD character of �G ; hence
ultimately on the CAD character of D, and the last inequality follows from the fact that�Q ⊂ D∩BQ ⊂ TQ



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3299

(see (iii) in Corollary 3.21 and (2.15)) and, in particular, dist(Y, ∂�Q) ≤ dist(Y, ∂D)= δ(Y ) for every
Y ∈�Q . Note that (4.29) with G̃ = |∇v| implies∫∫

TQ

|∇v|2δ dY ≈

∫
Q

∫∫
0Q(x)

|∇v|2δ1−n dY dσ(x)

=

∫
Q

ŜQv2 dσ ≤ MD
Q0,2(Ŝ

Q0v)(zQ)
2σ(Q)≤ (γ α)2σ(Q), (5.22)

where we have used that zQ ∈ Fγα. Thus, (5.20), (5.21), and (5.22) imply

σ(E(1+ε)α ∩ Fγα ∩ FQ)≲ C�Q (γ /ε)
2σ(Q),

which is (5.13).
To continue the proof, having at hand (5.4), an argument analogous to (4.25) yields (5.5). To be

specific, we show that taking ε > 0 small enough depending on n and the CAD character of D and then
taking γ > 0 small enough depending on the same parameters and ε, the estimate (5.4) yields (5.5). It is
here that we use a possibility to pick ε > 0 sufficiently small. Indeed, fix any q > 2, Q0 ∈ D and write
v := u − u(X Q0). Then, much as in (4.25), for every N > 1

IN :=

∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

= (1 + ε)q
∫ N/(1+ε)

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1 + ε)α}

dα
α

≤ (1 + ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1 + ε)α, MD

Q0,2(Ŝ
Q0v)(x)≤ γα}

dα
α

+

(
1 + ε

γ

)q

∥MD
Q0,2(Ŝ

Q0v)∥
q
Lq (Q0)

≤ C∗

γ,ε(1 + ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

+
(1 + ε)q

γ q ∥MD
Q0,2(Ŝ

Q0v)∥
q
Lq (Q0)

=

(
1 − θ + C

(
γ

ε

)2

sup
Q∈D

C�Q

)
(1 + ε)q IN +

(1 + ε)q

γ q ∥MD
Q0,2(Ŝ

Q0v)∥
q
Lq (Q0)

. (5.23)

At this point we first choose ε > 0 small enough so that (1 − θ)(1 + ε)q < 1
4 , and once ε is fixed we take

0< γ < c0ε/C0 small enough so that C(γ /ε)2 supQ∈D C�Q (1 + ε)q < 1
4 . With these choices and using

that IN ≤ N qσ(Q0) <∞, we can hide this term with IN on the left-hand side of (5.23) to obtain

IN ≤ 2(1 + ε)q/γ q
∥MD

Q0,2(Ŝ
Q0v)∥

q
Lq (Q0)

.

Noting that IN ↗ ∥N Q0
∗ v∥

q
Lq (Q0)

as N → ∞, and using that MD
Q0,2 is bounded on Lq(Q0) since q > 2,

we obtain as desired (5.5).
We next see how to obtain (5.6) using the ideas in Remark 4.4. Proceeding as there, once we have

fixed {WQ}Q∈D(∂D) a Whitney-dyadic structure for D with some parameters η and K. Given x ∈ ∂D and
0 < r < 2 diam(∂D), write 1 = 1(x, r) and B = B(x, r) and consider the case r ≪ diam(∂D). Then
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0r (y)⊂ 2B for every y ∈1, if z /∈ 61 then 0�,1(z)∩ 2B = ∅, and 0�,1(y)⊂ 0(y) for every y ∈ ∂D.
All these and with Remark 2.38 imply

∥N r
∗,D,κ(u − u(X+

1))∥Lq (1) ≤ ∥N∗,D,κ((u − u(X+

1))12B)∥Lq (∂D)

≲ ∥N∗,D,1((u − u(X+

1))12B)∥Lq (∂D) ≤ ∥N∗((u − u(X+

1))12B)∥Lq (61).

We introduceD1 as in (4.6). Let Q ∈D1 and note that δ(X+

Q)≈ℓ(Q)≈r ≈δ(X+

1) and also |X+

Q−X+

1|≲r .
Hence we can use the Harnack chain condition to find a collection of cubes I1, . . . , IN with N ≲ 1 so that
X+

Q ∈ I0, X+

1 ∈ IN , dist(4Ij , ∂D)≈ ℓ(Ij )≈ r ≈ ℓ(Q) for 1 ≤ j ≤ N, and there exists X j ∈ Ij ∩ I j+1 ̸=∅
for each 1 ≤ j ≤ N − 1. Write X0 = X Q+ , X N = X+

1, and note that for every 1 ≤ j ≤ N

dist(Ij ,Q)≤|X j−xQ |≤|X j−X+

Q |+|X+

Q−xQ|≲
j−1∑
k=0

|Xk−Xk+1|+ℓ(Q)≤
j−1∑
k=0

diam(Ik+1)+ℓ(Q)≈ℓ(Q).

Thus, there exist η′ and K ′ depending on n, the CAD character of D, and fixed parameters η and K such
that if {W ′

Q}Q∈D(∂D) is a Whitney-dyadic structure for D with parameters η′ and K ′, and if I ∈W with
I ∩ 2Ij ̸= ∅, then I ∈ (W ′

Q)
0
⊂W ′

Q . Consequently, 2I ⊂ U ′

Q (the Whitney region corresponding to Q
with the Whitney-dyadic structure {W ′

Q}Q∈D(∂D)). All these and (5.2) yield

|u(X+

Q)− u(X+

1)| = |u(X0)− u(X N )| ≤

N−1∑
j=0

|u(X j )− u(X j+1)|

≤

N−1∑
j=0

∣∣∣∣u(X j )− ℓ(2I j+1)
−n−1

∫∫
2I j+1

u dY
∣∣∣∣ + ∣∣∣∣u(X j+1)− ℓ(2I j+1)

−n−1
∫∫

2I j+1

u dY
∣∣∣∣

≲ sup
1≤ j≤N

sup
X∈Ij

∣∣∣∣u(X)− ℓ(2I j )
−n−1

∫∫
2I j

u dY
∣∣∣∣

≲ C0 sup
1≤ j≤N

(
ℓ(2I j )

−n−1
∫∫

2I j

∣∣∣∣u − ℓ(2I j )
−n−1

∫∫
2I j

u
∣∣∣∣2

dY
)1

2

≲ C0 sup
1≤ j≤N

ℓ(Ij )

(
ℓ(2I j )

−n−1
∫∫

2I j

|∇u|
2 dY

)1
2

≈ C0 sup
1≤ j≤N

(∫∫
2I j

|∇u|
2δ1−n dY

)1
2

≤ C0 sup
1≤ j≤N

(∫∫
U ′

Q

|∇u|
2δ1−n dY

)1
2

≤ C0 inf
y∈Q
A ′,Q(∇u)(y),

where A ′,Q is the local area integral to the cones 0′( · ) made up with the Whitney regions U ′

Q′ .
On the other hand for each Q ∈D1 we have much as before that

0(y)∩ 2B ⊂ 0Q(y)⊂ 0̂Q(y)⊂ B(xQ, Kℓ(Q))∩ D ⊂ K ′B ∩ D
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for every y ∈ Q ∈ D1. Taking K ′ even larger we also have that 0′,Q(y) ⊂ D ⊂ K ′B ∩ D for every
y ∈ Q ∈D1. Thus all the previous considerations, (5.5) for q > 2, and Remark 2.38 give

∥N r
∗,D,κ(u − u(X+

1))∥
q
Lq (1) ≲

∑
Q∈D1

∥N∗((u − u(X+

1))12B)∥
q
Lq (Q)

≤

∑
Q∈D1

(
∥N Q

∗
((u − u(X+

Q))12B)∥
q
Lq (Q) + |u(X+

Q)− u(X+

1)|
qσ(Q)

)
≲

∑
Q∈D1

(
∥ŜQu∥

q
Lq (Q) + C0 inf

y∈Q
A ′,Q(∇u)(y)qσ(Q)

)
≤ ∥Â(|∇u|1k′ B)∥

q
Lq (∂D) + C0∥A

′(|∇u|1k′ B)∥
q
Lq (∂D)

≲ (1 + C0)∥AD,min{1,κ}(|∇u|1k′ B)∥
q
Lq (∂D)

≲ (1 + C0)∥A
3K ′r
D,κ (|∇u)|∥q

Lq (3K ′1)

= (1 + C0)∥S3K ′r
D,κ u∥

q
Lq (3K ′1),

where we have used that 0�,1(z)∩ K ′B ̸= ∅ then z ∈ 3K ′1. This proves (5.6).
To complete the proof we observe that if ∂D is bounded then for any x ∈ ∂D we have that ∂D =

1(x, 3 diam(∂D)/2). Thus (5.7) readily follows from (5.6). On the other hand, to obtain for (5.8)
fix x0 =∈ ∂D and write 1R = 1(x0, R). Given ε > 0, there exist Rε such that |u(X)| < ε for every
|X − x0| ≥ Rε, with X ∈ D. By the corkscrew condition B(X+

1R
, R/C)⊂ B(x0, R) for some C > 1 and

then |X+

1R
− x0| ≥ R/C .

Fix y ∈ ∂D and let R> 2 max{C Rε, |y−x0|} so that B(x0, Rε)⊂ B(y, R) and |X+

1R
−x0| ≥ R/C > Rε.

Hence, |u(X+

1R
)|< ε, |u(Z)|< ε for every D \ B(y, R), and

|N∗,κu(y)− N R
∗,k(u − u(X+

1R
)(y)11R (y)| = |N∗,κu(y)− N∗,k((u − u(X+

1R
)1B(y,R)))(y)|

≤ |N∗,κ(u − (u − u(X+

1R
)1B(y,R)))(y)|

≤ |N∗,κ(u1D\B(y,R))(y)| + |u(X+

1R
)|< 2ε.

This shows that for every y ∈ ∂D

lim
R→∞

N R
∗,k(u − u(X+

1R
)(y)11R (y)= N∗,κu(y).

Thus Fatou’s lemma and (5.6) imply for every q > 2∫
∂D

N∗,κu(y)q dσ(y)≤ lim inf
R→∞

∫
1R

N R
∗,k(u − u(X+

1R
)(y)q dσ(y)

≤ C ′′ lim inf
R→∞

∫
K ′1R

SK ′ Ru(y)q dσ(y)≤ C ′′

∫
∂D

Su(y)q dσ(y). □

Our next goal is to extend the previous result so that we have the N < S estimates in all Lq. We
need to introduce some notation. Recall that if D is a CAD, we have constructed a Whitney-dyadic
structures {WQ}Q∈D(∂D) for D with parameters η and K ; see Section 2.4. In the following result we
will need to work with two different Whitney-dyadic structures associated with different parameters and
we need to introduce some notation to distinguish between the associated objects. More specifically, let
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{WQ}Q∈D(∂D) (resp. {W ′

Q}Q∈D(∂D)) be a Whitney-dyadic structure for D with parameters η ≪ 1 and
K ≫ 1 (resp. η′

≪ 1 and K ′
≫ 1). Associated with {WQ}Q∈D(∂D (resp. {W ′

Q}Q∈D(∂D)) we define the
Whitney regions UQ , the dyadic cones 0 and the local dyadic cones 0Q (resp. U ′

Q , 0′, 0′,Q) as in (2.10),
(2.23), or (2.24). With this we define N∗, N Q

∗ , S, SQ (resp. N ′
∗
, N ′,Q

∗ , S′, S′,Q) as in Definition 2.33.

Theorem 5.24. Let D ⊂ Rn+1 be a CAD. Let u ∈ W 1,2
loc (D)∩ C(D) be so that (5.2) holds and assume

that there exists C ′

0 > 0 and p > 2 such that for any cube I with 2I ⊂ D,(
ℓ(I )−n−1

∫∫
I
|∇u|

p d X
)1

p

≤ C ′

0

(
ℓ(I )−n−1

∫∫
2I

|∇u|
2 d X

)1
2

. (5.25)

Suppose that the N < S estimates are valid on L p on all bounded chord-arc subdomains �⊂ D, that is,
for any bounded chord-arc subdomain �⊂ D, there holds

∥N∗,�(u − u(X+

�))∥L p(∂�) ≤ C�∥S�u∥L p(∂�). (5.26)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� depends on
the CAD character of �, the dimension n, p, the implicit choice of κ (the aperture of the cones in N∗,�

and S�), and the implicit corkscrew constant for the point X+

� .
Given η≪ 1 and K ≫ 1, consider {WQ}Q∈D(∂D) a Whitney-dyadic structure for D with parameters η

and K ; see Section 2.4. Then, there exist η′
≪ η and K ′

≫ K (depending on n, the CAD character of D,
and the choice of η, K , τ ) so that if {W ′

Q}Q∈D(∂D) is a Whitney-dyadic structure for D with parameters η
and K, for every Q ∈ D(∂D),

∥N Q
∗
(u − u(X+

Q))∥Lq (Q) ≤ C ′
∥S′,Qu∥Lq (Q) for all 0< q <∞, (5.27)

where C ′ depends on n, the CAD character of D, C0, C ′

0, q , and the choice of η, K , τ . Here N Q
∗ is the

nontangential maximal function associated with the Whitney-dyadic structure {WQ}D(∂D), while S′,Q is
the square function with the associated with the Whitney-dyadic structure {W ′

Q}D(∂D).
As a consequence, for any x ∈ ∂D and 0< r < 2 diam(∂D) there exists K ′ depending on n, the CAD

character of D such that for every κ > 0

∥N r
∗,D,κ(u − u(X+

1(x,r))∥Lq (1(x,r)) ≤ C ′′
∥SK ′r

D,κu∥Lq (1(x,K ′r)) for all 0< q <∞, (5.28)

where 1(x, r)= B(x, r)∩ ∂�, and where C ′′ depends on q , n, the CAD character of D, C0, C ′

0, and κ .
In particular, if ∂D is bounded then

∥N∗,D,κ(u − u(X+

D))∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all 0< q <∞, (5.29)

and if ∂D is unbounded and u(X)→ 0 as |X | → ∞ then

∥N∗,D,κu∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all 0< q <∞. (5.30)

We note that (5.25) can be relaxed so that it suffices to assume that it holds for I = 2J with J ∈W(D).
We also note that the same proof allows us to work with 1-sided CAD. That is, if D is a 1-sided CAD



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3303

and (5.26) holds for all bounded 1-sided chord-arc subdomains then (5.27) and (5.29) hold for D. Further
details are left to the interested reader.

Proof. For starters we fix η ≪ 1 and K ≫ 1 and let {WQ}Q∈D be Whitney-dyadic structure for D
with parameters η and K. Let η′

≪ η be small enough and K ′
≫ K large enough to be chosen and

let {W ′

Q}Q∈D be Whitney-dyadic structure for D with parameters η′ and K ′. Taking into account (2.9)
if (η′)1/4 ≤ C−1η1/2 and (K ′)1/2 ≥ C K 1/2, then WQ ⊂ (W ′

Q)
0

⊂ W ′

Q for every Q ∈ D = D(∂D).
Consequently, 0̂Q(x)⊂ 0′

Q(x) and ŜQv(x)≤ S′,Qv(x) for every x ∈ ∂D, Q ∈ D, and v ∈ W 1,2
loc (D).

Much as in the proof of Theorem 5.1, matters can be reduced to showing that for every α, γ, ε > 0
with 0< γ ≪ ε/C0 and for any given Q0 ∈ D

σ {x ∈ Q0 : N Q0
∗
(u − u(X+

Q0
))(x) > (1 + ε)α, S′,Q0u(x)≤ γα}

≤ C∗

γ,εσ {x ∈ Q0 : N Q0
∗
(u − u(X+

Q0
))(x) > α}, (5.31)

and we will me more specific about the constant C∗
γ,ε momentarily.

Let us fix Q0 ∈ D and write v := u − u(X+

Q0
), with X+

Q0
begin the corkscrew relative to Q0, that is,

relative to the surface ball 1Q0 (see (2.2) and (2.3)). For every α > 0 we set

Eα := {x ∈ Q0 : N Q0
∗
v(x) > α}, F̃α := {x ∈ Q0 : S′,Q0v(x)≤ α}.

Our goal is to obtain
σ(E(1+ε)α ∩ F̃γα)≤ C∗

γ,εσ(Eα), (5.32)

where C∗
γ,ε = C(γ /ε)p(1 + C ′

0) supQ∈D,F̃ C�F̃ ,Q , where the sup runs over all Q ∈ D and all pairwise
disjoint families F̃ ⊂ DQ \ {Q}. Note that supQ∈D,F̃ C�F̃ ,Q <∞ and ultimately depends on the CAD
character of D, since all the sawtooth subdomains�F̃ ,Q are CAD with uniform constants (see Lemma 2.55)
and our assumption states that C�F̃ ,Q depends on the CAD character of �F̃ ,Q .

With this goal in mind we fix α, γ, ε > 0. We may assume that Eα ̸= ∅; otherwise (5.31) is trivial. As
in the proof of Theorem 5.1we can find F = {Q j }j ⊂ DQ0 , a family of maximal (hence pairwise disjoint)
cubes with respect to the property Q ⊂ Eα, so that Eα =

⋃
Q j ∈F

Q j . We then fix Q ∈ F and we just
need to see that

σ(E(1+ε)α ∩ F̃γα ∩ Q)≤ C∗

γ,εσ(Q), (5.33)

assuming that γ < c0ε with a suitably small c0 depending on n, the CAD character of D. We may assume
that σ(E(1+ε)α ∩ F̃γα ∩ Q) > 0 and pick zQ ∈ E(1+ε)α ∩ F̃γα ∩ Q. We follow the same argument of the
proof of Theorem 5.1taking into account that the set Fγα needs to be replaced by F̃γα. Here we do not
invoke Corollary 3.21 and we formally take FQ = Q. Also we take YQ = X+

Q , the corkscrew relative
to Q. We replace (5.15) by

|v(X+

Q̃
)− v(YQ)| = |u(X+

Q̃
)− u(YQ)| ≤ CC0 inf

z∈Q
ŜQu(z)≤ ŜQ0v(zQ)≤ S′,Q0v(zQ)≤ CC0γα,

where we have used (5.10) and the fact that zQ ∈ Q ∩ F̃γα . Thus, assuming that γ < (2CC0)
−1ε =: 2c0ε,

one arrives at (5.17) with F̃γα in place of Fγα and FQ = Q in the case Eα ⊊ Q. On the other hand, the
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same estimate holds in the case Q = Q0 since YQ = X+

Q = X+

Q0
; hence (5.18) becomes trivial. Thus we

have obtained that in either case

E(1+ε)α ∩ F̃γα ∩ Q ⊂ {x ∈ F̃γα ∩ FQ : N Q
∗
(v− v(YQ))(x) > εα/2} =: EQ . (5.34)

Let E ′

Q be an arbitrary closed subset of EQ with σ(E ′

Q) > 0. Let x ∈ Q \ E ′

Q . Since E ′

Q is closed there
exists rx > 0 such that B(x, rx)∩ E ′

Q = ∅. Pick any Qx ∈ D with Qx ∋ x and ℓ(Qx)≪ min{ℓ(Q), rx}.
Then, x ∈ Qx ∩Q and necessarily Qx ⊂ Q. Also Qx ⊂ B(x, rx) since x ∈ Qx and diam(Qx)≈ ℓ(Qx)≪ rx .
All in one, Qx ⊂ Q \ E ′

Q and there exists a maximal cube Qmax
x ∈ DQ so that Qmax

x ⊂ Q \ E ′

Q . Note
that Qmax

x ⊊ Q; otherwise E ′

Q = ∅ which contradicts the fact that σ(E(1+ε)α ∩ F̃γα ∩ Q) > 0. Let F̃
be the family of maximal (hence pairwise disjoint) cubes Qmax

x with x ∈ E ′

Q . Note that F̃ ⊂ DQ \ {Q}

and Q \ E ′

Q =
⋃

Q′∈F̃ Q′.
Let �⋆ = �̂F̃ ,Q . Let us write δ⋆( · ) = dist( · , ∂�⋆) and σ⋆ = H n

|∂�⋆ . We start with Chebyshev’s
inequality and the fact that E ′

Q ⊂ EQ

σ(E ′

Q)≤

(
2
εα

)p ∫
E ′

Q

N Q
∗
(v− v(YQ))(x)p dσ(x), (5.35)

and now change the cones from those used in N Q
∗ (dyadic, with respect to D) to the traditional ones

(1.14) with respect to �⋆. More precisely, let x ∈ E ′

Q = Q \
⋃

Q′∈F̃ Q′
⊂ ∂�⋆ ∩ ∂D (see [Hofmann and

Martell 2014, Proposition 6.1]) and Y ∈ 0Q(x). Then Y ∈ I ∗(τ ) with I ∈WQ′ with x ∈ Q′
∈ DQ and

|Y − x | ≤ diam(I )+ dist(I, Q′)+ diam(Q′)≲ ℓ(I ).

Note that Q′
∈ DF̃ ,Q ; otherwise Q′

⊂ Q′′
∈ F̃ and hence x ∈

⋃
Q′′∈F̃ Q′′

= Q \ E ′

Q . As a consequence,
int(I ∗(2τ)) ⊂ int(UQ′,2τ ) = int(ÛQ′) ⊂ �⋆ and δ⋆(Y ) ≳ ℓ(I ). All this shows that |Y − x | ≲ δ⋆(Y ) and
this means for some choice of κ (depending on the CAD character, and η and K ), Y ∈ 0�⋆,κ(x) (see
(1.14)). Thus, with the notation in (1.16),

N Q
∗
(v− v(YQ))(x)= sup

Y∈0Q(x)
|v(Y )− v(YQ)| ≤ sup

Y∈0�⋆,κ (x)
|v(Y )− v(YQ)| =: N∗,�⋆,κ(v− v(YQ))(x).

and (5.35) leads to

σ(E ′

Q)≤

(
2
εα

)p ∫
E ′

Q

N∗,�⋆,κ(v− v(YQ))(x)p dσ⋆(x)

≤

(
2
εα

)p ∫
∂�⋆

N∗,�⋆,κ(v− v(YQ))(x)p dσ⋆(x)

≲
1

(εα)p

∫
∂�⋆

N∗,�⋆,κ0(v− v(YQ))(x)p dσ⋆(x), (5.36)

where the last estimate follows from a change of aperture in the cones (see Remark 2.38). We remark
that YQ = X+

Q , which is a corkscrew point for Q with respect to D. By construction, if we take I ∈W

so that X+

Q ∈ I then I ∈WQ . Hence, much as before

δ(YQ)≈ ℓ(Q)≈ ℓ(I )≲ δ⋆(YQ)≤ δ(YQ).
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Hence YQ is an interior corkscrew of �⋆ at the scale diam(�⋆)≈ ℓ(Q) (see (2.14)). Note v( · )−v(YQ)=

u( · )− u(YQ) and ∇v = ∇u in D. This and the fact that �⋆ is a CAD (see Lemma 2.55) allow us to
invoke (5.26), which together with (5.36), yields

σ(E ′

Q)≲
1

(εα)p

∫
∂�⋆

N∗,�⋆,κ0(v−v(YQ))(x)p dσ⋆(x)

≤ C�⋆
1

(εα)p

∫
∂�⋆

S�⋆,κ0v(x)
p dσ⋆(x)

≲C�⋆
1

(εα)p

∫
∂�⋆

S�⋆,1v(x)
p dσ⋆(x)

= C�⋆
1

(εα)p

∫
E ′

Q

S�⋆,1v(x)
p dσ⋆(x)+C�⋆

1
(εα)p

∫
∂�⋆∩D

S�⋆,1v(x)
p dσ⋆(x)=: C�⋆(I+II), (5.37)

where the third estimate follows from a change of aperture in the cones (see Remark 2.38)) and the first
equality from [Hofmann and Martell 2014, Propositions 6.1 and 6.3].

To estimate the previous terms we first need to introduce some notation. Given x ∈ ∂�⋆ and for some
parameter N ≥ 1 (depending on the CAD character of D) to be chosen later we write

01
�⋆,1 := 0�⋆,1 ∩ {Y ∈�⋆ : δ(Y )≤ ℓ(Q)}, 02

�⋆,1 := 0�⋆,1 \01
�⋆,1.

To proceed let us observe that if Q′
∈ DF̃ ,Q , then one can find yQ′ ∈ Q′

∩ E ′

Q ; otherwise, Q′
∩ E ′

Q =∅ and
by construction there exists Q′′

∈ F̃ with Q′
⊂ Q′′, contradicting the fact that Q′

∈ DF̃ ,Q .
Given x ∈ ∂�⋆, let Y ∈ 02

�,1(x) ⊂ �⋆ = �̂F̃ ,Q . Then Y ∈ ÛQ′ for some Q′
∈ DF̃ ,Q . In particular,

Y ∈ 0̂Q′

(yQ′)⊂ 0̂Q0(yQ′). Also, ℓ(Q) < δ(Y )≈ ℓ(Q′)≤ ℓ(Q). This means that∫∫
02
�⋆,1(x)

|∇v|2δ1−n dY ≤

∑
Q′

∈DF̃ ,Q
ℓ(Q′)≈ℓ(Q)

∫∫
0̂Q0 (yQ′ )

|∇v|2δ1−n dY =

∑
Q′

∈DF̃ ,Q
ℓ(Q′)≈ℓ(Q)

ŜQ0v(yQ′)2

≤

∑
Q′

∈DF̃ ,Q
ℓ(Q′)≈ℓ(Q)

S′,Q0v(yQ′)2 ≤ (γ α)2#{Q′
∈ DQ : ℓ(Q′)≈ ℓ(Q)} ≲ (γ α)2. (5.38)

We next turn to estimate I. Let x ∈ E ′

Q ⊂ ∂�⋆∩∂D (see [Hofmann and Martell 2014, Proposition 6.1]).
Note first that if Y ∈ 0�,1(x), then δ(Y )≤ |Y − x | ≤ 2δ⋆(Y ) and thus (5.38) gives

Ŝ�⋆,1v(x)
2
=

∫∫
0�⋆,1(x)

|∇v|2δ1−n
⋆ dY ≲

∫∫
01
�⋆,1(x)

|∇v|2δ1−n dY +

∫∫
02
�⋆,1(x)

|∇v|2δ1−n dY

≲
∫∫

01
�⋆,1(x)

|∇v|2δ1−n dY + (γ α)2. (5.39)

Given Y ∈01
�,1(x)⊂�⋆ ⊂ D, one has Y ∈ IY for some IY ∈W. Pick then QY ∋ x with ℓ(IY )= ℓ(QY )

and note that by (2.5), and since K is large enough,

dist(QY , IY )≤ |x − Y | ≤ 2 dist(Y, ∂�⋆)≤ 2δ(Y )≤ 82 diam(IY )= 82
√

nℓ(QY )≤ K
1
2 ℓ(QY ).
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This means that IY ∈W0
QY

⊂WQY . Additionally,

ℓ(QY )= ℓ(IY )≤ dist(I, ∂D)≤ δ(Y )≤ ℓ(Q)/N ≤ ℓ(Q);

this together with the fact that x ∈ QY ∩ Q gives that QY ∈ DQ . Hence, Y ∈ IY ⊂ UQY ⊂0Q(x)⊂ 0̂Q0(x)
and eventually ∫∫

01
�⋆,1(x)

|∇v|2δ1−n dY ≤ ŜQ0v(x)2 ≤ S′,Q0v(x)2 ≤ (γ α)2, (5.40)

since x ∈ E ′

Q ⊂ EQ . This and (5.39) imply that

I ≲
(
γα

εα

)p

σ(E ′

Q)≤

(
γ

ε

)p

σ(Q). (5.41)

Turning to II, we start with the following:

Claim 5.42. We can take choose η′ small enough and K ′ large enough (depending on n, the CAD
character of D, and the choice of η, K , τ ) such that for any x ∈ ∂�⋆∩ D there exists yx ∈ E ′

Q such that if
J ∈W satisfies 4J ∩01

�⋆,1(x) ̸= ∅, then 4J ⊂ 0′,Q(yx) and, in particular, 01
�⋆,1(x)⊂ 0′,Q(yx).

Proof. Fix x ∈ ∂�⋆∩ D. Then x ∈ ∂ Î, where Î := I ∗(2τ)= (1 + 2τ)I with I ∈WQ′ , Q′
∈ DF̃ ,Q . In this

scenario we observed before that we can find pick yx = yQ′ ∩ EQ′ ∩ Q′.
Let Y ∈ 4J ∩ 01

�⋆,1(x) and assume first that |Y − x | ≥ ℓ(I )τ/(2
√

n). Pick Q′′
∈ D with yQ′ ∈ Q′′

and δ⋆(Y )/2< ℓ(Q′′) ≤ δ⋆(Y ). Note that ℓ(Q′′) ≤ δ⋆(Y ) ≤ δ(Y ) ≤ ℓ(Q) since Y ∈ 01
�⋆,1(x) and hence

Q′′
⊂ Q. Then, choosing N large enough, depending on n and the CAD character of D (recall that η, K

have been already fixed depending also on the CAD character of D),

dist(4J, Q′′)≤ |Y − yQ′ | ≤ |Y − x | + diam( Î )+ dist(I, Q′)+ diam(Q′)

≤ |Y − x | + C K
1
2η−

1
2 ℓ(I )≤ (1 + C K

1
2η−

1
2 τ−1)|Y − x |

≤
1
2 N |Y − x | ≤ Nδ⋆(Y )≤ Nℓ(Q′′),

where we have used (2.9). Note also that by (2.5)

ℓ(Q′′)≤ δ⋆(Y )≤ δ(Y )≤ diam(4J )+ dist(4J, ∂D)≤ 41 diam(J )= 41
√

nℓ(J )

and

ℓ(J )≤ dist(4J, ∂D)/
√

n ≤ dist(4J, Q′′)/
√

n ≤ Nℓ(Q′′).

All in one we have obtained that

N−1ℓ(J )≤ ℓ(Q′′)≤ 41
√

nℓ(J ), dist(4J, Q′′)≤ Nℓ(Q′′).

If we now take J ′
∈W with J ′

∩ 4J ̸= ∅, then the properties of the Whitney cubes guarantee that
ℓ(J ′)≈ ℓ(J ) and hence the previous estimates easily extend to J ′. This means that choosing η′ smaller
and K ′ larger (depending on the CAD character of D), we have that J ′

∈ (W ′

Q′′)
0
⊂W ′

Q′′ . Since yQ′ ∈ Q′′,
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we then have that

4J ⊂

⋃
J ′∈W;J ′∩4J ̸=∅

J ′
⊂

⋃
yQ′∈Q′′′∈DQ

( ⋃
J ′∈W ′

Q′′′

I ∗(τ )

)
=

⋃
yQ′∈Q′′′∈DQ

U ′

Q′′′ = 0′,Q(yQ′).

Consider finally the case on which Y ∈ 4J ∩ 01
�⋆,1(x) satisfies |Y − x | < ℓ(I )τ/(2

√
n) so that

Y ∈ (1 + 2τ I ) = I ∗(2τ) =: Î and ℓ(I ) ≈ δ(Y ) ≈ ℓ(J ). Note then that if J ′
∩ 4J ̸= ∅ we have

ℓ(J ′)≈ ℓ(J )≈ ℓ(I ). Since I ∈WQ′ , Q′
∈ DF̃ ,Q we have by (2.9) that

η
1
2 ℓ(Q′)≲ ℓ(I )≈ ℓ(J ′)≲ K

1
2 ℓ(Q),

and

dist(J ′, Q)≤ diam(J ′)+ diam(4J )+ |Y − x | + diam( Î )+ dist(I, Q)≲ ℓ(I )+ dist(I, Q)≲ K
1
2 ℓ(Q).

Thus, by taking η′ smaller and K ′ bigger, if needed, we obtain that J ′
∈ (W ′

Q′)
0. Much as before the fact

that yQ′ ∈ Q′ yields

4J ⊂

⋃
J ′∈W;J ′∩4J ̸=∅

J ′
⊂

⋃
yQ′∈Q′′′∈DQ

( ⋃
J ′∈W ′

Q′′′

I ∗(τ )

)
=

⋃
yQ′∈Q′′′∈DQ

U ′

Q′′′ = 0′,Q(yQ′). □

Let us now get back to the proof, specifically, to the estimate for II in (5.37). Let ϖ > 0 be small
enough to be chosen and set for every x ∈ ∂�⋆ ∩ D

03
�⋆,1(x)= {Y ∈ 01

�⋆,1(x) : δ⋆(Y )≥ϖδ(Y )}, 04
�⋆,1(x)= {Y ∈ 02

�⋆,1(x) : δ⋆(Y )≥ϖδ(Y )},

and
05
�⋆,1(x)= {Y ∈ 0�⋆,1(x) : δ⋆(Y ) < ϖδ(Y )}.

Thus

S�⋆,1v(x)
2
=

5∑
k=3

∫∫
0k
�⋆,1(x)

|∇v|2δ1−n
⋆ dY =:

5∑
k=3

gk(x)2. (5.43)

Note that for x ∈ ∂�⋆ ∩ D invoking Claim 5.42 we obtain

g3(x)2 ≤ϖ 1−n
∫∫

01
�⋆,1(x)

|∇v|2δ1−n dY ≤ϖ 1−n
∫∫

0′,Q(yx )

|∇v|2δ1−n dY =ϖ 1−n S′,Qu(yx)
2
≤ (γ α2).

Analogously, by (5.38)

g4(x)2 ≤ϖ 1−n
∫∫

01
�⋆,2(x)

|∇v|2δ1−n dY ≤ϖ 1−n
∫∫

0′,Q(x)
|∇v|2δ1−n dY ≲ (γ α)2.

As a result, ∫
∂�⋆∩D

(g p
3 + g p

4 ) dσ⋆ ≲ϖ
1
2 (1−n)p(γ α)pσ⋆(∂�⋆)

≲ϖ
1
2 (1−n)p(γ α)pℓ(Q)n ≈ϖ

1
2 (1−n)p(γ α)pσ(Q), (5.44)

where we have used that ∂�⋆ is ADR with diam(∂�⋆)≲ ℓ(Q) (see (2.14)).
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We next consider g5. Set W⋆ = {I ∈W : I ∩ ∂�⋆ ̸= ∅} and note that ∂�⋆ ∩ D ⊂
⋃

I∈W⋆
I. For

every x ∈ ∂�⋆ ∩ D we then have that x ∈ Ix ∈W⋆ and also that x ∈ ∂ Ĵx with Jx ∈WQx , Qx ∈ DF̃ ,Q . If
Y ∈ 05

�⋆,1(x) and ϖ < 1
4 , then

δ(Y )≤ |Y − x | + δ(x)≤ 2δ⋆(Y )+ δ(x) < 2ϖδ(Y )+ δ(x) < 1
2δ(Y )+ δ(x).

This and (2.5) yield

δ(Y )≤ 2δ(x)≤ 2(diam(4Jx)+ dist(4Jx , ∂D)) < 100 diam(Jx)

and, for ϖ small enough,

|Y − x | ≤ 2δ⋆(Y )≤ 2ϖδ(Y ) < 200ϖ diam(Jx) <
1
8τℓ(Jx).

Recalling that Ĵx := J ∗
x (2τ)with τ ≤ τ0 ≤2−4 it follows that Y ∈ J ∗

x (7τ/4)⊂2Jx and also Y ∈ B(x, ℓ(Jx)).
Hence, easy calculations lead to∫∫

05
�⋆,1(x)

δ
p

p−2 −n
⋆ dY ≤ max{2

p
p−2 −n

, 1}

∫∫
B(x,ℓ(Jx ))

|x − Y |
p

p−2 −n dY ≲ ℓ(Jx)
2 p−1

p−2 ≈ ℓ(Ix)
2 p−1

p−2 .

Using Hölder’s inequality with p/2 we arrive at

g5(x)=

(∫∫
05
�⋆,1(x)

|∇v|2δ1−n
⋆ dY

)1
2

≤

(∫∫
05
�⋆,1(x)

δ
p

p−2 −n
⋆ dY

)p−2
2p

(∫∫
05
�⋆,1(x)

|∇v|pδ−n
⋆ dY

)1
p

≲ ℓ(Ix)
p−1

p

(∫∫
2Jx∩B(x,2δ⋆(x))∩�⋆

|∇v|pδ−n
⋆ dY

)1
p

.

Next, for every I ∈W⋆ we set

W I
⋆ := {J ∈W : J = Jx for some x ∈ ∂�⋆ ∩ I, 2Jx ∩0�⋆,1(x) ̸= ∅}

and obtain∫
∂�⋆∩D

g p
5 dσ⋆ ≤

∑
I∈W⋆

∫
∂�⋆∩I

g p
5 dσ⋆

≤

∑
I∈W⋆

ℓ(I )p−1
∫
∂�⋆∩I

∫∫
2Jx∩B(x,2δ⋆(x))∩�⋆

|∇v(Y )|pδ⋆(Y )−n dY dσ⋆(x)

≤

∑
I∈W⋆

ℓ(I )p−1
∑

J∈W I
⋆

∫∫
2J∩�⋆

|∇v(Y )|pδ⋆(Y )−nσ⋆(∂�⋆ ∩ B(Y, 2δ⋆(x))) dY

≲
∑

I∈W⋆

ℓ(I )p−1
∑

J∈W I
⋆

∫∫
2J

|∇v(Y )|p dY

≲ C ′

0

∑
I∈W⋆

ℓ(I )p−1
∑

J∈W I
⋆

ℓ(J )(n+1) 2−p
2

(∫∫
4J

|∇v(Y )|2 dY
)p

2

≈ C ′

0

∑
I∈W⋆

ℓ(I )n
∑

J∈W I
⋆

(∫∫
4J

|∇v(Y )|2δ(Y )1−ndY
)p

2

, (5.45)
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where we have used that ∂�⋆ is ADR (see [Hofmann and Martell 2014, Lemma 3.61]), (5.25) (since
4J ⊂ D by (2.5)), that ℓ(Jx)≈ ℓ(I ) since x ∈ I ∩ ∂ Ĵx (hence I ∩ J ̸= ∅), and finally that δ( · )≈ ℓ(J )
in 4J by (2.5).

Suppose next that I ∈W⋆ with ℓ(I )≪ ℓ(Q). Note that if J = Jx with x ∈ ∂�⋆ ∩ I then x ∈ ∂ Ĵx ∩ I ;
hence ℓ(Jx)≈ ℓ(I )≪ diam(I ) and 4Jx ⊂{Y ∈ D : δ(Y )<ℓ(Q)}. Thus, if 2Jx ∩0�⋆,1(x) ̸=∅, necessarily
2Jx ∩01

�⋆,1(x) ̸= ∅. We can then invoke Claim 5.42 with J = Jx to find yx ∈ E ′

Q so that

∑
J∈W I

⋆

(∫∫
4J

|∇v|2δ1−ndY
)p

2

≤

(∫∫
0′,Q(yx )

|∇v|2δ1−ndY
)p

2

#{J ∈W : ∂ Ĵ ∩ I ̸= ∅}

≲ S′,Q(yx)
p
≤ S′,Q0(yx)

p
≤ (γ α)p. (5.46)

Consider next the case I ∈W⋆ with ℓ(I )≳ ℓ(Q). For every J ∈W I
⋆ we have that J = Jx for some

x ∈ ∂�⋆ ∩ I and there exists Z ∈ 2J ∩�⋆. As such J ∈WQx for some Qx ∈ DF̃ ,Q . In particular,
ℓ(Q) ≲ ℓ(I ) ≈ ℓ(J ) ≈ ℓ(Qx) ≤ ℓ(Q). Take then an arbitrary Y ∈ 4J ∩�⋆. Since Z ∈ 2J , one has
δ(Y ) ≈ ℓ(J ) ≈ ℓ(Q). Also, Z ∈ �⋆ = �̂F̃ ,Q ; then Z ∈ ÛQ′ for some Q′

∈ DF̃ ,Q and, as observed
above, the latter implies that one can find yQ′ ∈ Q′

∩ E ′

Q . We claim that 4J ⊂ 0′,Q(yx). To see this let
Y ∈ 4J ⊂ D and take IY ∈W with Y ∈ IY . Note that by (2.5) and (2.9), ℓ(IY )≈ δ(Y )≈ ℓ(J )≈ ℓ(Q) and

dist(IY , Q)≤ dist(Y, Q)≤ diam(4J )+ dist(J, Qx)≲ ℓ(Q)+ ℓ(Qx)≈ ℓ(Q).

Thus taking η′ smaller and K ′ larger if needed ((depending on n, the CAD character of D, and the choice
of η, K , τ ) we can ensure that IY ∈ (W ′

Q)
0
⊂W ′

Q and since yQ′ ∈ Q′
⊂ Q we conclude that Z ∈0′,Q(yx)

as desired. All these give an estimate similar to (5.38):∑
J∈W I

⋆

(∫∫
4J

|∇v(Y )|2δ(Y )1−ndY
)p

2

≤ #{J ∈W : ∂ Ĵ ∩ I ̸= ∅}

(∫∫
0′,Q(yx )

|∇v|2δ1−n dY
)p

2

≲ S′,Qv(yQ′)≤ S′,Q0v(yQ′)p
≤ (γ α)p. (5.47)

We finally combine (5.45), (5.46), and (5.47) to obtain∫
∂�⋆∩D

g p
5 dσ⋆ ≲ C ′

0(γ α)
p

∑
I∈W⋆

ℓ(I )n. (5.48)

To complete the proof we estimate the sum in the right-hand side. For every I ∈W⋆ pick Z I ∈ ∂�⋆ ∩ I
so that ℓ(I ) ≈ δ(Z I ) and let 1I

⋆ := B(Z I , δ(Z I )/2)∩ ∂�⋆, which is a surface ball with respect to �⋆.
The fact that Z I ∈ ∂�⋆ ⊂ ∩D implies that there exists I ′

∈WQ′ with Q′
∈ DF̃ ,Q and Z I ∈ ∂ Î. Then,

ℓ(I )≈ δ(Z I )≈ ℓ(I ′)≈ ℓ(Q′) ≤ ℓ(Q) by (2.5) and (2.9)). Note that Q ∈ DF̃ ,Q ; hence UQ ⊂ �⋆. Pick
IQ ∈WQ (which is nonempty by construction) and note that ℓ(IQ)≈ ℓ(Q) by (2.9) and IQ ⊂ UQ ⊂�⋆.
Hence ℓ(Q)≈ diam(IQ)≤ diam(�⋆)≲ ℓ(Q) by (2.14). All these show that δ(Z I )≲ diam(∂�⋆). Suppose
next that 1I

⋆ ∩1J
⋆ ̸= ∅ for some I, J ∈W⋆ and let Y belong to that intersection. Assume for instance

that ℓ(I )≤ ℓ(J ) and note that

δ(Z J )≤ |Z J − Y | + |Y − Z I | + δ(Z I )≤
1
2δ(Z J )+

3
2δ(Z I ).
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Hence, ℓ(J )≈ δ(Z J )≤ 3δ(Z I )≈ ℓ(I )≤ ℓ(J ) and

dist(I, J )≤ |Z I − Z J | ≤ |Z J − Y | + |Y − Z I | ≤
1
2δ(Z J )+

1
2δ(Z I )≈ ℓ(I )+ ℓ(J )≈ ℓ(I )≈ ℓ(J ).

As a consequence, the family {1I
⋆}I∈W⋆

has bounded overlap and therefore∑
I∈W⋆

ℓ(I )n ≈

∑
I∈W⋆

σ⋆(1
I
⋆)≲ σ⋆

( ⋃
I∈W⋆

1I
⋆

)
≤ σ⋆(∂�⋆)≲ diam(∂�⋆)n ≈ ℓ(Q)n ≈ σ(Q),

where we have used that ∂�⋆ is ADR (see [Hofmann and Martell 2014, Lemma 3.61]). This and (5.48)
eventually yield ∫

∂�⋆∩D
g p

5 dσ⋆ ≲ C ′

0(γ α)
pσ(Q).

This, (5.37), (5.43), and (5.44) give

II =
1

(εα)p

∫
∂�⋆∩D

S�⋆,1v
p dσ⋆ ≲

1
(εα)p

∫
∂�⋆∩D

(g p
3 + g p

4 + g p
5 ) dσ⋆ ≲ (1 + C ′

0)

(
γ

ε

)p

σ(Q).

We next combine this with (5.37) and (5.41) to arrive at

σ(E ′

Q)≲ C�⋆(1 + C ′

0)

(
γ

ε

)p

σ(Q).

Recalling that Let E ′

Q be an arbitrary closed subset of EQ with σ(E ′

Q) > 0, by inner regularity of the
Hausdorff measure, we therefore obtain that

σ(E(1+ε)α ∩ F̃γα ∩ Q)≤ σ(EQ)≲ C�⋆(1 + C ′

0)

(
γ

ε

)p

σ(Q).

We have then show (5.32) which in turn implies (5.31). With the latter estimate in hand and for any
0< q <∞, we proceed as in (5.23):

IN :=

∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

= (1+ ε)q
∫ N/(1+ε)

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1+ ε)α}

dα
α

≤ (1+ ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1+ ε)α, S′,Q0v(x)≤ γα}

dα
α

+

(
1+ ε

γ

)q

∥S′,Q0v∥
q
Lq (Q0)

≤ C∗

γ,ε(1+ ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

+
(1+ ε)q

γ q ∥S′,Q0v∥
q
Lq (Q0)

= C
(
γ

ε

)p

(1+C ′

0)
(

sup
Q∈D,F̃

C�F̃ ,Q
)
(1+ ε)q IN +

(1+ ε)q

γ q ∥S′,Q0v)∥
q
Lq (Q0)

. (5.49)

At this point we first choose ε = 1 and next take 0< γ < c0ε/C0 small enough so that

Cγ p(1 + C ′

0) sup
Q∈D

C�Q 2q < 1/1.
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With these choices and using that IN ≤ N qσ(Q0) <∞, we can hide this term on the left-hand side of
(5.49) to obtain

IN ≤ 2(1 + ε)q/γ q
∥S′,Q0v∥

q
Lq (Q0)

.

Noting that IN ↗ ∥N Q0
∗ v∥

q
Lq (Q0)

as N → ∞ we obtain as desired (5.27).
From (5.27) one can obtain (5.28), and hence (5.29) and (5.30) much as in the proof of Theorem 5.1

and we omit details. □

Combining Theorems 5.1 and 5.24 we can obtain the following:

Corollary 5.50. Let D ⊂ Rn+1 be a CAD. Let u ∈ W 1,2
loc (D)∩C(D) so that (5.2) and (5.25) hold for some

p > 2. Suppose that the N < S estimates are valid on L2 on all bounded Lipschitz subdomains �⊂ D
(see (5.3) in Theorem 5.1). Then (5.27)–(5.30) hold.

Proof. Let �⊂ D be an arbitrary bounded CAD. Since any bounded Lipschitz subdomain of � is also
a subdomain of D we can apply Theorem 5.1 to obtain (5.7) for � and for every q > 2. That is, we
have the N < S estimates are valid on all bounded chord-arc subdomains �⊂ D for q = p > 2. Hence,
Theorem 5.24 applies to obtain the desired conclusions. □

6. From N<S bounds on chord-arc domains to ε-approximability in the complement of a UR set

Recall the definition of ε-approximability (Definition 1.11). The second main result in [Hofmann et al.
2016], stated there for harmonic functions but proved in full generality, can be formulated as follows.

Theorem 6.1. Let E ⊂ Rn+1 be an n-dimensional UR set, Rn+1
\ E , and suppose that

u ∈ W 1,2
loc (R

n+1
\ E)∩ C(Rn+1

\ E)∩ L∞(Rn+1
\ E)

is such that for any cube I with 2I ⊂ Rn+1
\ E

sup
X,Y∈I

|u(X)− u(Y )| ≤ C0

(
ℓ(I )1−n

∫∫
2I

|∇u|
2 d X

)1
2

(6.2)

and

∥∇u∥CME(Rn+1\E) ≤ C ′

0∥u∥L∞(Rn+1\E).

Assume, in addition, that N < S estimates are valid on L2 on all bounded chord-arc subdomains
�⊂ Rn+1

\ E ; that is, for any bounded chord-arc subdomain �⊂ Rn+1
\ E , there holds

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C�∥S�u∥L2(∂�). (6.3)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� depends on
the CAD character of �, the dimension n, p, the implicit choice of κ (the aperture of the cones in N∗,�

and S�), and the implicit corkscrew constant for the point X+

� . Then u is ε-approximable on Rn+1
\ E ,

with the implicit constants depending only on n, the UR character of E , C0, and C ′

0.
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Strictly speaking, the previous result was proved in [Hofmann et al. 2016, Section 5] for harmonic
functions but it was observed in Remark 5.29 of that work that the same argument can be carried out
under the current assumptions.6 Let us note that one can weaken (6.2) by just assuming that for any
Q ∈ D(E) and for any connected component of U i

Q there holds

sup
X,Y∈U i

Q

|u(X)− u(Y )| ≤ C0

(
ℓ(Q)−n−1

∫∫
Û i

Q

|u|
2 d X

)1
2

. (6.4)

Also, in the course of the proof one uses (6.3) for the bounded chord-arc subdomains of the form �=�±

S
defined by (2.52) (with S′

= S). Further details are left to the interested reader.

7. Applications: solutions, subsolutions, and supersolutions of divergence-form elliptic equations
with bounded measurable coefficients

7.1. Estimates for solutions of second-order divergence-form elliptic operators with coefficients satisfy-
ing a Carleson measure condition. Given an open set � ⊂ Rn+1, consider a divergence-form elliptic
operator L := − div(A( · )∇), defined in �, where A is an (n+1)× (n+1) matrix with real bounded
measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition

λ−1
|ξ |2 ≤ A(X)ξ ·, ξ :=

n+1∑
i, j=1

Ai j (X)ξ jξi , |A(X)ξ · ζ | ≤ λ|ξ ||ζ |, (7.1)

for some λ ≥ 1, and for all ξ, ζ ∈ Rn+1, and for a.e. X ∈�. As usual, the divergence-form equation is
interpreted in the weak sense; i.e., we say that Lu = 0 in � if u ∈ W 1,2

loc (�) and∫∫
�

A(X)∇u(X) · ∇9(X) d X = 0 (7.2)

for all 9 ∈ C∞

0 (�).
Let us introduce some notation. Given an open set �⊂ Rn+1 and A, an (n+1)× (n+1) matrix defined

on Rn+1
\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity

condition (7.1), we say that A ∈ KP(�) (the Kenig–Pipher class) if |∇ A( · )| dist( · , ∂�) ∈ L∞(�) and
∥∇ A∥CME(�) <∞. It has been demonstrated in [Kenig and Pipher 2001] that if � is a Lipschitz domain
and A ∈ KP(�) then weak solutions to Lu satisfy square function/nontangential maximal function
estimates and Carleson measure estimates on �. Strictly speaking, the class of matrices is slightly smaller
and the details of the proof are only provided there for N < S direction (and only for p > 2), but all
ingredients are laid out for a reader to reconstruct a complete proof. One can also consult [David et al.
2019] for complete details presented in this and more general, higher codimensional, case. For the precise
case we are considering here, the following result can be found in [Hofmann et al. 2017a, Appendix A]:7

6In [Hofmann et al. 2016, Remark 5.29], we inadvertently neglected to mention that our proof utilized estimate (6.3); in
fact, it is utilized in an essential way. One should bear this in mind when comparing the statement of Theorem 6.1 with that
Remark 5.29. The former is correct.

7The argument in [Hofmann et al. 2017a, Appendix A] follows that of [Kenig and Pipher 2001] very closely.
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Let � be a Lipschitz domain and let A ∈ KP(�). Then, any weak solution
u ∈ W 1,2

loc (�)∩ L∞(�) to Lu = 0 in � satisfies ∥∇u∥CME(�) ≲ ∥u∥
2
L∞(�) with

implicit constant depending on n, the Lipschitz character of �, ellipticity, and
the implicit constants in A ∈ KP(�).

(7.3)

We also need the following auxiliary result (see [Kenig and Pipher 2001, Lemma 3.1]):

Lemma 7.4. Let E ⊂ Rn+1 be a closed set and let A be an (n+1)×(n+1) matrix defined on Rn+1
\E with

real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition (7.1). If
A ∈KP(Rn+1

\E) then A ∈KP(D) for any subset D ⊂Rn+1
\E. Moreover, ∥∇ A( · ) dist( · , ∂D)∥L∞(D)≤

∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E) and

∥∇ A∥CME(D) ≤ C(∥∇ A∥CME(Rn+1\E) + ∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E)),

where C depends only on dimension.

Proof. Note first that since D ⊂ Rn+1
\ E then dist(X, ∂D)≤ dist(X, E) for every X ∈ D. In particular,

one has ∥∇ A( · )| dist( · , ∂D)∥L∞(D) ≤ ∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E).
Next, we fix B(x, r) with x ∈ ∂D and 0< r <∞. We shall consider two cases. First, if dist(x, E)≤ 2r

we pick z ∈ E with dist(x, E)= |x − z| and observe that B(x, r)⊂ B(z, 3r). Then,∫∫
B(x,r)∩D

|∇ A(Y )|2 dist(Y, ∂D) dY ≤

∫∫
B(z,3r)∩D

|∇ A(Y )|2 dist(Y, E) dY ≤ (3r)n∥∇ A∥CME(Rn+1\E).

In the second case, dist(X, E) > 2r , we have dist(Y, E) > r and dist(Y, ∂D) ≤ |Y − x | < r for every
Y ∈ B(x, r)∩ D. Hence,∫∫

B(x,r)∩D
|∇ A(Y )|2 dist(Y, ∂D) dY ≤ ∥∇ A( · ) dist( · , E)∥2

L∞(Rn+1\E)

∫∫
B(z,r)∩D

dist(Y, ∂D)
dist(Y, E)2

dY

≤ ∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E)r

−1
|B(x, r)|

= cn∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E)r

n.

All these readily give the desired estimate. □

Theorem 7.5. Let E ⊂ Rn+1 be an n-dimensional UR set. Let A be an (n+1)× (n+1) matrix defined
on Rn+1

\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (7.1) and so that A ∈ KP(Rn+1

\ E). Then any weak solution u ∈ W 1,2
loc (R

n+1
\ E) to Lu = 0 in

Rn+1
\ E satisfies the S < N estimates

∥SRn+1\E u∥L p(E) ≤ C∥N∗,Rn+1\E u∥L p(E), 0< p <∞, (7.6)

∥Sr
Rn+1\E u∥L p(1(x,r)) ≲ ∥N K ′r

∗,Rn+1\E u∥L p(1(x,K ′r)), 0< p <∞, (7.7)

for any x ∈ E and 0< r < 2 diam(E), where 1(x, r)= B(x, r)∩ E , and where K ′ depends on n and the
UR character of E ; as well as its local dyadic analogue, for any Whitney-dyadic structure {WQ}Q∈D(E),
for Rn+1

\ E with parameters η and K,

∥SQu∥L p(Q) ≤ C∥N̂ Q
∗

u∥L p(Q), Q ∈ D(E), 0< p <∞. (7.8)
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If , in addition, bounded, u ∈ L∞(Rn+1
\ E) then the Carleson measure estimate

∥∇u∥CME(Rn+1\E) ≤ C∥u∥
2
L∞(Rn+1\E) (7.9)

holds and u is ε-approximable on Rn+1
\ E , in the sense of Definition 1.11. All constants depend on n, the

UR character of E , the ellipticity of A, ∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E), ∥∇ A∥CME(Rn+1\E), the aperture of
the cone κ implicit in (7.6), and the implicit parameters η, K , τ implicit in (7.8).

Proof. Fix A ∈ KP(Rn+1
\ E) with ellipticity constant λ and take any weak solution u ∈ W 1,2

loc (R
n+1

\ E)
to Lu = 0 in Rn+1

\ E .

Claim 7.10. For any �⊂ Rn+1
\ E with ∂� being UR there holds

∥∇u∥CME(�) ≲ ∥u∥
2
L∞(�),

with an implicit constants on n, the UR character of E , λ, and the implicit constants in A ∈ KP(Rn+1
\ E).

Assuming this momentarily, and taking �= Rn+1
\ E we readily obtain (7.9). On the other hand, given

an arbitrary Q ∈ D(E) and arbitrary pairwise disjoint family F ⊂ DQ , let G = ∇u ∈ L2
loc(R

n+1
\ E) and

H = u ∈ C(Rn+1
\ E). Note that Proposition A.11 says that �̂F ,Q is an open set with UR boundary and

with UR character depending on n and the UR character of E . Hence, Claim 7.10 says that

∥G∥CME(�̂F ,Q) = ∥∇u∥CME(�̂F ,Q) ≲ ∥u∥
2
L∞(�̂F ,Q)

= ∥H∥
2
L∞(�̂F ,Q)

,

with a constant which is independent of u, Q and F, and depends on n, the UR character of E , the
ellipticity of A, and the implicit constants in A ∈ KP(Rn+1

\ E). This means that (Aloc) in Theorem 4.8
holds for the open set Rn+1

\ E . As such (4.13), (4.14), and Remark 4.4 imply (7.6)–(7.8).

Proof of Claim 7.10. Take an arbitrary any open subset �⊂ Rn+1
\ E with ∂� being UR. We may assume

that 0< ∥u∥L∞(�) <∞; otherwise the desired estimate is trivial. Set A� := A in � and A� := Id (the
identity matrix) in Rn+1

\� which is an elliptic matrix with ellipticity constant at most λ. Note that
Lemma 7.4 gives

∥∇ A�∥CME(Rn+1\∂�) = sup
x∈∂�,0<r<∞

1
rn

∫∫
B(x,r)\∂�

|∇ A�(Y )|2 dist(Y, ∂�) dY

= sup
x∈∂�,0<r<∞

1
rn

∫∫
B(x,r)∩�

|∇ A(Y )|2 dist(Y, ∂�) dY

≤ ∥∇ A∥CME(�) ≤ Cn(∥∇ A∥CME(Rn+1\E) + ∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E))

and

∥∇ A� dist( · , ∂�)∥L∞(Rn+1\∂�) = ∥∇ A dist( · , ∂�)∥L∞(�) ≤ ∥∇ A dist( · , E)∥L∞(Rn+1\E).

Write also u� = u in � and u� := 0 in Rn+1
\�. Note that u� ∈ W 1,2

loc (R
n+1

\ ∂�) satisfies, in the weak
sense, − div(A�∇u�)= Lu = 0 in � and − div(A�∇u�)= 0 and Rn+1

\�= 0. This and the fact that �
is open imply that − div(A�∇u�)= 0 in Rn+1

\∂� in the weak sense. Note also that u� ∈ L∞(Rn+1
\∂�)

implies ∥u�∥L∞(Rn+1\∂�) = ∥u∥L∞(�) <∞.
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Fix D ⊂� an arbitrary bounded Lipschitz subdomain and F = ∇u�/∥u�∥
2
L∞(�). By Lemma 7.4, we

have that A� ∈ KP(�)⊂ KP(D) (with uniform bounds controlled by those of A� ∈ KP(�), and hence
ultimately on those of A ∈ KP(Rn+1

\ E)). By (7.3) applied to u� for the operator L� in D we obtain

∥F∥CME(D) =
∥∇u�∥CME(D)

∥u�∥
2
L∞(�)

≲
∥u�∥

2
L∞(D)

∥u�∥
2
L∞(�)

≤ 1,

with implicit constant depending on n, the Lipschitz character of D′, λ and the implicit constants of A ∈

KP(Rn+1
\ E). This and Corollary 3.1 (or Remark 3.3 for a more direct argument) to the UR set ∂� yield

∥∇u∥CME(�)

∥u∥
2
L∞(�)

=
∥∇u�∥CME(Rn+1\∂�)

∥u�∥
2
L∞(�)

= ∥F∥CME(�) ≲ sup
D⊂Rn+1\∂�

∥F∥CME(D) = sup
D⊂�

∥F∥CME(D) ≲ 1,

with implicit constants depending only on n, the UR character of ∂�, λ, and the implicit constants in
A ∈ KP(Rn+1

\ E). This completes the proof of (7.9). □

To continue with the proof of Theorem 7.5 we are left with showing that if we further assume that
u ∈ L∞(Rn+1

\ E) then u is ε-approximable on Rn+1
\ E . Firstly, all auxiliary estimates (5.2), (5.25),

and (6.2) hold for u in the open set Rn+1
\ E , and hence in any open subset �⊂ Rn+1

\ E , by the usual
interior estimates for solutions of elliptic PDEs (see, e.g., [Kenig 1994]). We point out again that N < S
estimates (5.3) on all bounded Lipschitz subdomains of � hold essentially by [Kenig and Pipher 2001].
More precisely, let D ⊂ Rn+1

\ E be an arbitrary chord-arc subdomain. For every a bounded Lipschitz
subdomain �⊂ D, by Lemma 7.4 it follows that A ∈ KP(�) with bounds that depend on the implicit
constants in A ∈ KP(Rn+1

\ E). In turn (7.3) and [Kenig et al. 2016] yield that the associated elliptic
measure belongs to the class A∞(∂�) with respect to surface measure. Thus, [Dahlberg et al. 1984]
allows us to obtain N < S estimates are valid on Lq, 0 < q <∞, on �. Corollary 5.50 readily gives
N < S on Lq, 0 < q <∞. This together with the fact that we have already shown (7.9) allows us to
invoke Theorem 6.1 to conclude as desired that u is ε-approximable with constants depending only on n,
the UR character of E , λ, and the implicit constants in A ∈ KP(Rn+1

\ E). □

7.2. Estimates for subsolutions and supersolutions of second-order divergence-form elliptic operators
with coefficients satisfying a Carleson measure condition. Our methods allow us to deal not only with
solutions but also with subsolutions (thus, also with supersolutions) of the operators considered in the
previous section. Before, stating the result let us recall that given an open set�⊂ Rn+1 and a second-order
divergence-form elliptic operators L :=− div(A( · )∇), defined in�, where A is an (n+1)×(n+1)matrix
with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition (7.1),
we say that u ∈ W 1,2

loc (�) is a weak L-subsolution (or, Lu ≤ 0) in � if∫∫
�

A(X)∇u(X) · ∇9(X) d X ≤ 0 (7.11)

for all 0 ≤ 9 ∈ C∞

0 (�). Analogously, u ∈ W 1,2
loc (�) is a weak L-supersolution (or, Lu ≥ 0) if −u is a

subsolution.
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We are now ready to state our main result in this section. We note that it applies in particular to the
Laplace operator; hence the obtained estimates are valid for any subharmonic or superharmonic functions.

Theorem 7.12. Let E ⊂ Rn+1 be an n-dimensional UR set. Let A be an (n+1)× (n+1) matrix defined
on Rn+1

\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (7.1) and so that A ∈ KP(Rn+1

\ E). Then any weak L-subsolution or L-supersolution
u ∈ W 1,2

loc (R
n+1

\ E) in Rn+1
\ E satisfies the S < N estimates

∥SRn+1\E u∥L p(E) ≤ C∥N∗,Rn+1\E u∥L p(E), 0< p <∞, (7.13)

∥Sr
Rn+1\E u∥L p(1(x,r)) ≲ ∥N K ′r

∗,Rn+1\E u∥L p(1(x,K ′r)), 0< p <∞, (7.14)

for any x ∈ E and 0< r < 2 diam(E), where 1(x, r)= B(x, r)∩ E , and where K ′ depends on n and the
UR character of E ; as well as its local dyadic analogue, for any Whitney-dyadic structure {WQ}Q∈D(E)

for Rn+1
\ E with parameters η and K,

∥SQu∥L p(Q) ≤ C∥N̂ Q
∗

u∥L p(Q), Q ∈ D(E), 0< p <∞. (7.15)

If , in addition, bounded, u ∈ L∞(Rn+1
\ E) then the following Carleson measure estimate holds:

∥∇u∥CME(Rn+1\E) ≤ C∥u∥
2
L∞(Rn+1\E). (7.16)

All constants depend on n, the UR character of E , the ellipticity of A, ∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E),
∥∇ A∥CME(Rn+1\E), the aperture of the cone κ implicit in (7.6), and the parameters η, K , τ implicit in (7.8).

Proof. We start observing that we just need to consider the case where u is a weak L-subsolution
(because if u is a weak L-supersolution then −u is a weak L-subsolution). We proceed much in the
proof of Theorem 7.12 and a careful reading shows that we just need a version of (7.3) valid for weak
L-subsolutions. That is, we need to obtain the following:

Let � be a Lipschitz domain and let A ∈ KP(�). Then, any weak L-subsolution
u ∈ W 1,2

loc (�) ∩ L∞(�) in � satisfies ∥∇u∥CME(�) ≲ ∥u∥
2
L∞(�) with implicit

constant depending on n, the Lipschitz character of �, ellipticity, and the implicit
constants in A ∈ KP(�).

(7.17)

With this goal in mind, fix then an arbitrary weak L-subsolution u ∈ W 1,2
loc (�)∩ L∞(�) in �. We

may suppose that u is a.e. nonnegative. Indeed, assume for the moment that we have proved (7.17) for
a.e. nonnegative weak L-subsolutions, and let u ∈ W 1,2

loc (�) be an arbitrary bounded weak L-subsolution,
so that ũ := u +∥u∥L∞(�) ∈ W 1,2

loc (�)∩ L∞(�) is an a.e. nonnegative weak L-subsolution in �. We then
observe that our assumption for a.e. nonnegative weak L-subsolutions yields the desired estimate for u:

∥∇u∥CME(�) = ∥∇ũ∥CME(�) ≲ ∥ũ∥
2
L∞(�) ≤ 2∥u∥

2
L∞(�).

Let us then verify (7.17) for an a.e. nonnegative weak L-subsolution u ∈ W 1,2
loc (�) ∩ L∞(�). We

observe that since A ∈ KP(�), by (7.3) and [Kenig et al. 2016], it follows that the elliptic measure ωL

belongs to A∞(σ ) with σ = H n
|∂�. With this in hand, we carefully follow the argument in [Cavero et al.

2020, proof of Theorem 1.1: (b) ⇒ (a)] with u being the fixed a.e. nonnegative weak L-subsolution in �
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in place of a solution and observing that Lipschitz domains are clearly 1-sided CAD. To justify that the
argument can be adapted to the present situation we just need two observations. First, that u satisfies
Caccioppoli’s estimate (the proof is a straightforward modification of the standard argument using that
u is a nonnegative a.e. weak L-subsolution). Second, in [Cavero et al. 2020, (3.64)] one has to replace
“= 0” by “≤ 0” because in the present scenario u is a nonnegative a.e. weak L-subsolution (in place of a
solution). With these two observations an interested reader could easily see that the argument goes through
and eventually show that ∥∇u∥CME(�) ≲ ∥u∥

2
L∞(�). Hence, (7.17) holds and this completes the proof. □

7.3. Higher-order elliptic equations and systems with constant coefficients. In [Dahlberg et al. 1997] the
authors obtained square function/nontangential maximal function estimates for higher-order elliptic equa-
tions and systems on bounded Lipschitz domains. These results have never been extended, even to CAD do-
mains, and here we present a generalization of Carleson measure estimates to the complements of UR sets.

For any multiindex α= (α1, . . . , αn+1) ∈ Nn+1
0 , we write |α| = α1 +· · ·+αn+1 and α! = α1! · · ·αn+1! ,

where 0! = 1. Also ∂α = ∂α1 . . . ∂αn+1 and for every Y ∈ Rn+1 we write Y α = Y α1
1 · · · Y αn+1

n+1 , where a0
= 1

for every a ∈ R. Finally, ∇
k, k ∈ N, stands for the vector of all partial derivatives of order k. For k = 0,

∇
0 is just the identity operator.
Let K ,m ∈ N. For every 1 ≤ j, k ≤ K, let L jk

=
∑

|α|=2m a jk
αβ∂

α, where α = (α1, . . . , αn+1) ∈ Nn+1
0 .

The coefficients a jk
αβ , 1 ≤ α, β ≤ n + 1, 1 ≤ j, k ≤ K are real constants. Given an open set � and

u = (u1, . . . , uK ), with u j ∈ W m,2
loc (�), 1 ≤ j ≤ K, we say that Lu = 0, if

K∑
k=1

L jkuk
=

K∑
k=1

∑
|α|=|β|=m

a jk
αβ∂

α∂βuk
= 0, j = 1, . . . , K ,

as usual, in the weak sense, similarly to (7.2). Here, W m,2(�) is the space of functions with all derivatives
of orders 0, . . . ,m in L2(�) and W m,2

loc (�) is the space of functions locally in W m,2(�). We assume, in
addition, that L is symmetric: L jk

= Lk j for 1 ≤ j, k ≤ K, and that the Legendre–Hadamard ellipticity
condition holds: there exists λ > 0 such that

K∑
j,k=1

∑
|α|=|β|=m

a jk
αβξ

αξβζjζk ≥ λ|ξ |2m
|ζ |2 for all ζ = (ζ1, . . . , ζK ) ∈ RK, ξ ∈ Rn+1. (7.18)

Theorem 7.19. Let E ⊂ Rn+1 be an n-dimensional UR set. Given K ,m ∈ N, let L be a symmetric
constant-coefficient 2m-order K × K system satisfying the Legendre–Hadamard ellipticity condition, as
above. Then any weak solution u ∈ [W m,2

loc (R
n+1

\ E)∩Cm−1(Rn+1
\ E)]K to Lu = 0 in Rn+1

\ E satisfies
the S < N estimates

∥SRn+1\E(∇
m−1u)∥L p(E) ≤ C∥N∗,Rn+1\E(|∇

m−1u|)∥L p(E), 0< p <∞, (7.20)

∥Sr
Rn+1\E(∇

m−1u)∥L p(1(x,r)) ≲ ∥N K ′r
∗,Rn+1\E(|∇

m−1u|)∥L p(1(x,K ′r)), 0< p <∞, (7.21)

for any x ∈ E and 0< r < 2 diam(E), where 1(x, r)= B(x, r)∩ E , and where K ′ depends on n and the
UR character of E , as well as its local dyadic analogue, for any Whitney-dyadic structure {WQ}Q∈D(E)
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for Rn+1
\ E with parameters η and K,

∥SQ(∇m−1u)∥L p(Q) ≤ C∥N̂ Q
∗
(|∇m−1u|)∥L p(Q), Q ∈ D(E), 0< p <∞. (7.22)

If u is, in addition, such that ∇
m−1u ∈ L∞(�), then the Carleson measure estimate

∥∇
mu∥CME(Rn+1\E) ≤ C∥∇

m−1u∥
2
L∞(Rn+1\E) (7.23)

holds. All constants depend on n, the UR character of E , the Legendre–Hadamard ellipticity constant,
sup j,k,α,β |a jk

αβ |, the aperture of the cone κ implicit in (7.20), and the implicit parameters η, K , τ implicit
in (7.22).

Remark 7.24. It is easy to see that from the previous result, one can also obtain analogous estimates
in any chord-arc domain D ⊂ Rn+1. To see this let us consider any weak solution u ∈ [W m,2

loc (D)]
K to

Lu = 0 in D. Let ũ := u in D and ũ = 0 ∈ Rn+1
\ D. Then ũ ∈ [W m,2

loc (R
n+1

\ ∂D)]K satisfies Lũ = 0
in Rn+1

\ ∂D in the weak sense. As such, and using the fact that since D is a CAD then ∂D is UR, we
obtain (7.20) for ũ in Rn+1

\ ∂D, which immediately gives the corresponding estimate for u in D. The
same occurs with (7.23). Further details are left to the interested reader.

Proof. The proof runs much as that of Theorem 7.5. One replaces (7.3) with the fact that for any bounded
Lipschitz domain�⊂Rn+1; it was shown in [Dahlberg et al. 1997, Theorem 2, p. 1455] that any weak solu-
tion u ∈[W m,2

loc (�)]
K to Lu =0 in�with ∇

m−1u ∈ L∞(�) satisfies ∥∇
mu∥CME(�)≲∥∇

m−1u∥
2
L∞(�). With

this at hand the proof can be carried out mutatis mutandis. Further details are left to the interested reader. □

We can now state a higher-order version of Theorems 5.1 and 5.24:

Theorem 7.25. Let D ⊂Rn+1 be a CAD, let K ,m ∈N and let u = (u1, . . . , uK )∈[W m,2
loc (D)∩Cm−1(D)]K.

(1) Assume that (5.2) holds with ∇
m−1u in place of u. Suppose that the (m−1)-th order N < S estimates

are valid on L2 on all bounded Lipschitz subdomains�⊂ D, that is, (5.3) holds for any bounded Lipschitz
subdomain �⊂ D with ∇

m−1u in place of u, and where the constant may also depend on m and K. Then
(5.4)–(5.8) hold replacing u by ∇

m−1u, and where all the constants may also depend on m and K.

(2) Assume that (5.2) holds with ∇
m−1u in place of u and that (5.25) hold with ∇

mu in place of ∇u for
some p > 2. Suppose that the (m−1)-th order N < S estimates are valid on L p on all bounded chord-arc
�⊂ D, that is, (5.26) holds for any bounded chord-arc subdomain �⊂ D with ∇

m−1u in place of u, and
where the constant may also depend on m and K. Then (5.27)–(5.30) hold with ∇

m−1u in place of u, and
where all the constants may also depend on m and K.

(3) Assume that (5.2) holds with ∇
m−1u in place of u and that (5.25) hold with ∇

mu in place of ∇u for
some p > 2. Suppose that the (m−1)-th order N < S estimates are valid on L2 on all bounded Lipschitz
subdomains � ⊂ D, that is, (5.3) holds for any bounded Lipschitz subdomain � ⊂ D with ∇

m−1u in
place of u, and where the constant may also depend on m and K. Then (5.27)–(5.30) hold replacing u
by ∇

m−1u, and where all the constants may also depend on m and K.

Proof. The proof is fairly easy. Consider the vector v = ∇
m−1u ∈ [W 1,2

loc (D)∩ C(D)]K (n−1)m−1
. Note that

our current assumptions in (i)–(iii) imply that v satisfies (5.2). Also, in items (ii), (iii) we will have that v
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satisfies (5.25). Note that (5.3) is satisfied by v in parts (i) and (iii), and (5.26) holds for v in part (ii).
We also know that Theorems 5.1 and 5.24, and Corollary 5.50 can be easily extended to vector-valued
functions u. With all these at hand, we readily obtain the corresponding estimates for v which translated
into those stated for u. Further details are left to the interested reader. □

One can also obtain a higher-order version of Theorem 6.1 using the same ideas:

Theorem 7.26. Let E ⊂ Rn+1 be an n-dimensional UR set, Rn+1
\ E , and let m, K ∈ N. Suppose that

u ∈ [W m,2
loc (R

n+1
\ E)∩Cm−1(Rn+1

\ E)∩ L∞(Rn+1
\ E)]K is such that for any cube I with 2I ⊂ Rn+1

\ E

sup
X,Y∈I

|∇
m−1u(X)− ∇

m−1u(Y )| ≤ C0

(
ℓ(I )1−n

∫∫
2I

|∇
mu|

2 d X
)1

2

(7.27)

and
∥∇

mu∥CME(Rn+1\E) ≤ C ′

0∥∇
m−1u∥L∞(Rn+1\E)

Assume, in addition, (m−1)-th order that N < S estimates are valid on L2 on all bounded chord-arc
subdomains �⊂ Rn+1

\ E , that is, for any bounded chord-arc subdomain �⊂ Rn+1
\ E , there holds

∥N∗,�(∇
m−1u − ∇

m−1u(X+

�))∥L2(∂�) ≤ C�∥S�(∇m−1u)∥L2(∂�). (7.28)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� depends on
the CAD character of �, the dimension n, m, K, p, the implicit choice of κ (the aperture of the cones in
N∗,� and S�), and the implicit corkscrew constant for the point X+

� . Then ∇
m−1u is ε-approximable on

Rn+1
\ E , with the implicit constants depending only on n, m, K, the UR character of E , C0, and C ′

0.

As a corollary of all these we can obtain N < S estimates and ε-approximability for solutions of a
symmetric constant-coefficient 2m-order K × K systems.

Theorem 7.29. Given K ,m ∈ N, let L be a symmetric constant-coefficient 2m-order K × K system,
satisfying the Legendre–Hadamard ellipticity condition, as above.

(i) If D ⊂ Rn+1 is a CAD, then any weak solution u ∈ [W m,2
loc (D)∩ Cm−1(D)]K to Lu = 0 in D satisfies

for any x ∈ ∂D and 0< r < 2 diam(∂D) and for every κ > 0

∥N r
∗,D,κ(∇

m−1u − ∇
m−1u(X+

1(x,r)))∥Lq (1(x,r))

≤ C∥SC ′r
D,κ(∇

m−1u)∥Lq (1(x,C ′r)), for all 0< q <∞, (7.30)

where 1(x, r)= B(x, r)∩ ∂�. Here C depends on n, q , K, m, the CAD character of D, the Legendre–
Hadamard ellipticity constant, sup j,k,α,β |a jk

αβ |, and the aperture of the cone κ , and C ′ depends on n and
the CAD character of D. In particular, if ∂D is bounded then

∥N∗,D,κ(∇
m−1u − ∇

m−1u(X+

D))∥Lq (∂D) ≤ C ′′
∥SD,κ(∇

m−1u)∥Lq (∂D) for all 0< q <∞, (7.31)

and if ∂D is unbounded and ∇
m−1u(X)→ 0 as |X | → ∞ then

∥N∗,D,κ(∇
m−1u)∥Lq (∂D) ≤ C ′′

∥SD,κ(∇
m−1u)∥Lq (∂D) for all 0< q <∞. (7.32)
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(ii) Let E ⊂ Rn+1 be an n-dimensional UR set. Then any weak solution

u ∈ [W m,2
loc (R

n+1
\ E)∩ Cm−1(Rn+1

\ E)∩ L∞(Rn+1
\ E)]K

to Lu =0 in Rn+1
\E satisfies that ∇

m−1u is ε-approximable in Rn+1
\E with implicit constants depending

on n, K, m, the UR character of E , the Legendre–Hadamard ellipticity constant, sup j,k,α,β |a jk
αβ |.

Proof. We aim to use Theorem 7.25(iii) and 7.26. To this end, we need to verify the interior estimates:
(5.2) with ∇

m−1u in place of u, (5.25) with ∇
mu in place of ∇u for some p > 2, and (7.27), and to

obtain (m−1)-th order N < S estimates on L2 on all bounded Lipschitz subdomains � and for any weak
solution u ∈ [W m,2

loc (�)∩ Cm−1(�)]K to Lu = 0 in �. That is, we need to show that (7.28) holds on all
bounded Lipschitz subdomains �. Let us start with the latter. To see this we introduce

Pm−1,X+

�
u(X)=

∑
|α|≤m−1

∂αu(X+

�)

α!
(X − X+

�)
α, X ∈�.

and observe that ∇k Pm−1,X+

�
u(X+

�)=∇
ku(X+

�) for 0≤k ≤m−2, ∇
m−1 Pm−1,X+

�
u( · )≡∇

m−1u(X+

�), and
∇

m Pm−1,X+

�
u ≡ 0. Thus if we write v= u − Pm−1,X+

�
u( · ), we have that v ∈ [W m,2

loc (�)∩Cm−1(�)]K is a
weak solution to Lv=0 in� satisfying ∇

kv(X+

�)=0 for all 0≤k ≤m−1, ∇m−1v=∇
m−1u−∇

m−1u(X+

�),
and ∇

mv = ∇
mu. As such we can invoke [Dahlberg et al. 1997, Theorem 3, p. 1456] to obtain that

∥N∗,�(∇
m−1u − ∇

m−1u(X+

�))∥L2(∂�) = ∥N∗,�(∇
m−1v)∥L2(∂�)

≲ ∥S�(∇m−1v)∥L2(∂�) = ∥S�(∇m−1u)∥L2(∂�).

Turning to interior estimates, we recall from [Barton 2016, Corollary 22, p. 384] that for all solutions
to Lu = 0 in 2I we have∫∫

I
|∇

j u|
2 d X ≤ Cℓ(I )−2 j

∫∫
2I

|u|
2 d X, j = 0, . . . ,m. (7.33)

In fact, [Barton 2016] pertains to much more general elliptic systems with bounded measurable coefficients.
It uses the weak Gårding inequality [Barton 2016, (10), p. 380]. To obtain the latter (with δ = 0) we
can see that Plancherel’s theorem, the fact that we are currently considering the case with real constant
coefficients, and the Legendre–Hadamard condition (7.18) easily yield, for every smooth compactly
supported function ϕ,

Re⟨∇mϕ, A∇
mϕ⟩Rn+1 = Re

∫∫
Rn+1

K∑
j,k=1

∑
|α|=|β|=m

∂αϕj (X)a
jk
αβ∂

βϕk(X) d X

=

K∑
j,k=1

∑
|α|=|β|=m

a jk
αβ Re

∫∫
Rn+1

(−2π iξ)α(2π iξ)β ϕ̃j (ξ) ϕ̃k(ξ) dξ

=

∫∫
Rn+1

K∑
j,k=1

∑
|α|=|β|=m

a jk
αβ(2πξ)

α(2πξ)β Re(ϕ̃j (ξ) ϕ̃k(ξ)) dξ

≥ λ

∫∫
Rn+1

(2π |ξ |)2m
|ϕ̃j (X)|2 d X = λ

∫∫
Rn+1

|∇
mϕj (ξ)|

2 dξ,

and so [Barton 2016] applies to our setting.
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Now, for constant-coefficient operators any derivative of a solution is still a solution, and, in fact, we
will use v := u − Pm−1,X I u( · ) built similarly to above, only using X I being the center of I in place
of X+

� . Clearly, ∇
mv = ∇

mu is a solution too, and so a repeated application of (7.33) yields∫∫
I
|∇

kv|2 d X ≤ Cℓ(I )−2(k−m)
∫∫

2I
|∇

mv|2 d X, k ≥ m. (7.34)

Taking k > m − 1 large enough, depending on the dimension only, so that the Sobolev space W k,2(I )
embeds into the Hölder space Cm−1,α(I ), α > 0, we can show that

sup
X,Y∈I

|∇
m−1u(X)− ∇

m−1u(Y )| = sup
X,Y∈I

|∇
m−1v(X)− ∇

m−1v(Y )|

≤ C
k∑

j=0

(
ℓ(I )−1−n+2( j−m+1)

∫∫
I
|∇

jv|2 d X
)1

2

.
(7.35)

For j > m we use (7.34) to descend to j = m. For j < m, we use the Poincaré inequality to ascend to
j = m, and all in all, the expression above is bounded by

C
(
ℓ(I )1+n

∫∫
2I

|∇
mv|2 d X

)1
2

= C
(
ℓ(I )1+n

∫∫
2I

|∇
mu|

2 d X
)1

2

,

as desired. This yields (7.27).
In order to obtain (5.2) with ∇

m−1u in place of u, we apply the same argument as above to v :=

∇
m−1u − c⃗ for some constant vector c⃗. The function v is also a solution of the initial system, and so

(7.34) still holds. Much as above, by the Morrey inequality (or generalized Sobolev embeddings), for
k large enough, depending on dimension only, we arrive at

sup
I

|v| ≤ C
k∑

j=0

(
ℓ(I )−1−n+2 j

∫∫
I
|∇

jv|2 d X
)1

2

≤ C
(
ℓ(I )−1−n

∫∫
2I

|v|2 d X
)1

2

, (7.36)

where we have used (7.33) and (7.34) for the second inequality.
Finally, the reverse Hölder inequality (5.25) with ∇

mu in place of ∇u was also proved in [Barton 2016,
Theorem 24].

With all the previous ingredients we are ready to invoke Theorem 7.25(iii) and then Theorem 7.26 to
obtain the desired estimates. □

Appendix: Sawtooths have UR boundaries

To start, recall from [Hofmann et al. 2016, Appendix A] the fact that the sawtooth regions and Carleson
boxes inherit the ADR property. In that Appendix we treated simultaneously the case that the set E is
ADR, but not necessarily UR, and also the case that E is UR. The point was that the Whitney regions in
the two cases (and thus also the corresponding sawtooth regions and Carleson boxes) were somewhat
different. In any case, the reader can easily see that, with the notation introduced in Definition 2.7,
the arguments in [Hofmann et al. 2016, Appendix A] can be carried out for any ADR set E and with
{WQ}Q∈D(E) any Whitney-dyadic structure for Rn+1

\ E with some parameters η and K. In turn, both if
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E happens to be merely an ADR set as in Section 2.1, or a UR set as in Section 2.2, the corresponding
constructions of Whitney-dyadic structure fit within the previous framework. Nonetheless, the same
applies to any other Whitney-dyadic structure (constructed in a different way) but retaining the same
properties.

Let us now recall some results from [Hofmann et al. 2016] that we shall use in the sequel.

Proposition A.1 [Hofmann et al. 2016, Proposition A.2]. Let E ⊂ Rn+1 be an n-dimensional ADR set
and let {WQ}Q∈D(E) be a Whitney-dyadic structure for Rn+1

\ E with some parameters η≪ 1 and K ≫ 1.
Then all dyadic local sawtooths �F ,Q and all Carleson boxes TQ have n-dimensional ADR boundaries.
In all cases, the implicit constants are uniform and depend only on dimension, the ADR constant of E ,
parameters η, K, and the constant C in Definition 2.7(iii).

Remark A.2. Let � ⊂ Rn+1 be an open set with ADR boundary and let {WQ}Q∈D(∂�) be a Whitney-
dyadic structure for � with parameters η and K. One can easily construct a Whitney-dyadic structure
{W ′

Q}Q∈D(∂�) for Rn+1
\ ∂� so that for every I ∈W(�) one has that I ∈WQ if and only if I ∈W ′

Q ,
that is, the new Whitney-dyadic structure remains the same for the Whitney cubes contained in �. To
construct such a Whitney-dyadic structure we define (W ′

Q)
0 as in (2.8) with the same parameters η

and K but for all the Whitney cubes I ∈W(Rn+1
\ ∂�). For every Q ∈ D(∂�) we the set W ′

Q :=

WQ ∪ ((W ′

Q)
0
∩W(Rn+1

\�)). It is straightforward to see that {W ′

Q}Q∈D(∂�) is a Whitney-dyadic
structure for Rn+1

\ ∂� with parameters η and K and agreeing with {WQ}Q∈D(∂�) when restricted to the
Whitney cubes contained in �. Note also that the constants in Definition 2.7(iii) are the same for both.

We then note by Proposition A.1 all the associated dyadic local sawtooths �′

F ,Q and all Carleson
boxes T ′

Q (contained in Rn+1
\ ∂�) have n-dimensional ADR boundaries. In turn the agreement of

{WQ}Q∈D(∂�) with {W ′

Q}Q∈D(∂�) inside � implies at the very least that all the associated dyadic local
sawtooths �F ,Q and all Carleson boxes TQ (contained now in �) have a boundary satisfying the upper
ADR condition (that is the upper estimate in (1.2)) with constant depending on the ADR constant of ∂�,
η, K and the constant in Definition 2.7(iii).

In what follows we assume that E is an ADR set and fix {WQ}Q∈D(E) a Whitney-dyadic structure
for Rn+1

\ E with some parameters η and K. As mentioned in Section 2, we always assume that if
{WQ}Q∈D(E) is a Whitney-dyadic structure for Rn+1

\ E with some parameters η and K, then K is
large enough (say K ≥ 402n) so that for any ℓ(I ) ≲ diam(E) we have I ∈W0

Q∗

I
⊂WQ∗

I
, where Q∗

I is
some fixed nearest dyadic cube to I with ℓ(I ) = ℓ(Q∗

I ). To simplify the notation, it is convenient to
find m0 ∈ Z+,C0 ∈ R+ (say 2m0 ≈ C max{K , η−1

}
1/2, C0 = C K 1/2, hence depending on η, K and the

constant C in Definition 2.7(iii)) such that

2−m0ℓ(Q)≤ ℓ(I )≤ 2m0ℓ(Q) and dist(I, Q)≤ C0ℓ(Q) for all I ∈WQ . (A.3)

From now, we will use these parameters m0 and C0, rather than η, K and the constant C in Definition 2.7(iii).
Let us recall some notation from [Hofmann et al. 2016, Appendix A]. Given a cube Q0 ∈ D and a

family F of disjoint cubes F = {Q j } ⊂ DQ0 (for the case F = ∅ the changes are straightforward and we
leave them to the reader, also the case F = {Q0} is disregarded since in that case �F ,Q0 is the null set).
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We write �⋆ =�F ,Q0 and 6 = ∂�⋆ \ E . Given Q ∈ D we set

RQ :=

⋃
Q′∈DQ

WQ′, and 6Q =6
⋂( ⋃

I∈RQ

I
)
.

Let C1 be a sufficiently large constant, to be chosen below, depending on n, the ADR constant of E ,
m0 and C0. Let us introduce some new collections:

F|| := {Q ∈ D \ {Q0} : ℓ(Q)= ℓ(Q0), dist(Q, Q0)≤ C1ℓ(Q0)},

F⊤ := {Q′
∈ D : dist(Q′, Q0)≤ C1ℓ(Q0), ℓ(Q0) < ℓ(Q′)≤ C1ℓ(Q0)},

F ∗

||
:= {Q ∈ F|| :6Q ̸= ∅} = {Q ∈ F|| : there exists I ∈ RQ such that 6 ∩ I ̸= ∅},

F ∗
:= {Q ∈ F :6Q ̸= ∅} = {Q ∈ F : there exists I ∈ RQ such that 6 ∩ I ̸= ∅}.

We also set
R⊥ =

⋃
Q∈F ∗

RQ, R|| =

⋃
Q∈F ∗

||

RQ, R⊤ =

⋃
Q∈F⊤

WQ .

Lemma A.4 [Hofmann et al. 2016, Lemma A.3]. SetW6 = {I ∈W : I ∩6 ̸= ∅} and define

W⊥

6 =

⋃
Q∈F ∗

W6,Q, W
||

6 =

⋃
Q∈F ∗

||

W6,Q, W⊤

6 = {I ∈W6 : Q∗

I ∈ F⊤},

where for every Q ∈ F ∗
∪F ∗

||
we set

W6,Q = {I ∈W6 : Q∗

I ∈ DQ},

and where we recall that Q∗

I is the nearest dyadic cube to I with ℓ(I )= ℓ(Q∗

I ) as defined above. Then

W6 =W⊥

6 ∪W
||

6 ∪W⊤

6, (A.5)

where
W⊥

6 ⊂ R⊥, W
||

6 ⊂ R||, W⊤

6 ⊂ R⊤. (A.6)

As a consequence,

6 =6⊥ ∪6|| ∪6⊤ :=

( ⋃
I∈W⊥

6

6 ∩ I
) ⋃( ⋃

I∈W||

6

6 ∩ I
) ⋃( ⋃

I∈W⊤

6

6 ∩ I
)
. (A.7)

Lemma A.8 [Hofmann et al. 2016, Lemma A.7]. Given I ∈W6 , we can find Q I ∈ D, with Q I ⊂ Q∗

I ,
such that ℓ(I )≈ ℓ(Q I ), dist(Q I , I )≈ ℓ(I ), and in addition,∑

I∈W6,Q

1Q I ≲ 1Q for any Q ∈ F ∗
∪F ∗

||
, (A.9)∑

I∈W⊤

6

1Q I ≲ 1B∗

Q0
∩E , (A.10)

where the implicit constants depend on n, the ADR constant of E , m0 and C0, and where B∗

Q0
=

B(xQ0,Cℓ(Q)) with C large enough depending on the same parameters.
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With the preceding results in hand, we turn to the main purpose of this appendix: to prove that uniform
rectifiability is also inherited by the sawtooth domains and Carleson boxes.

Proposition A.11. Let E ⊂ Rn+1 be an n-dimensional UR set and let {WQ}Q∈D(E) be a Whitney-dyadic
structure for Rn+1

\ E with some parameters η≪ 1 and K ≫ 1. Then all dyadic local sawtooths �F ,Q
and all Carleson boxes TQ have n-dimensional UR boundaries. In all cases, the implicit constants are
uniform and depend only on dimension, the UR character of E , and the parameters m0 and C0 (hence on
the parameters η, K, and the constant C in Definition 2.7(iii)).

The proof of this result follows the ideas from [Hofmann and Martell 2014, Appendix C], which in turn
uses some ideas from Guy David, and uses the following singular integral characterization of UR sets,
established in [David and Semmes 1991]. Suppose that E ⊂ Rn+1 is n-dimensional ADR. The singular
integral operators that we shall consider are those of the form

TE,ε f (x)= Tε f (x) :=

∫
E
Kε(x − y) f (y) d H n(y),

where Kε(x) :=K(x)8(|x |/ε), with 0 ≤8≤ 1, 8(ρ)≡ 1 if ρ ≥ 2, 8(ρ)≡ 0 if ρ ≤ 1, and 8 ∈ C∞(R),
and where the singular kernel K is an odd function, smooth on Rn+1

\ {0}, and satisfying

|K(x)| ≤ C0|x |
−n, (A.12)

|∇
mK(x)| ≤ Cm |x |

−n−m for all m ≥ 1. (A.13)

Then E is UR if and only if for every such kernel K , we have that

sup
ε>0

∫
E

|TE,ε f |
2 d H n

≤ CK

∫
E

| f |
2 d H n. (A.14)

We refer the reader to [David and Semmes 1991] for the proof. For K as above, set

TE f (X) :=

∫
E
K(X − y) f (y) d H n(y), X ∈ Rn+1

\ E . (A.15)

We define (possibly disconnected) nontangential approach regions ϒα(x) as follows. Set Wα(x) :=

{I ∈W : dist(I, x) < αℓ(I )}. Then we define

ϒα(x) :=

⋃
I∈Wα(x)

I ∗

(thus, roughly speaking, α is the “aperture” of ϒα(x)). Here I ∗
= I ∗(τ ) as in Section 2 with 0< τ ≤ τ0/4,

which is fixed. Note that these nontangential approach regions are slightly different that the ones introduced
in (2.23) since they do not use the Whitney regions UQ . For F ∈ C(Rn+1

\ E) we may then also define a
new nontangential maximal function (which is different than the one (2.34) although somehow comparable
much as in Remark 2.37)

N∗,αF(x) := sup
Y∈ϒα(x)

|F(Y )|.

We shall sometimes write simply N∗ when there is no chance of confusion in leaving implicit the
dependence on the aperture α. The following lemma is a standard consequence of the usual Cotlar
inequality for maximal singular integrals, and we omit the proof.
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Lemma A.16. Suppose that E ⊂ Rn+1 is an n-dimensional UR, and let TE be defined as in (A.15). Then,
for each 1< p <∞ and α ∈ (0,∞), there is a constant C p,α,K depending only on p, n, α,K and the UR
character of E such that ∫

E
(N∗,α(TE f ))p d H n

≤ Cα,K

∫
E

| f |
p d H n. (A.17)

Proof of Proposition A.11. Write σ = H n
|E . We fix Q0 ∈ D = D(E) and a family F of disjoint cubes

F = {Q j } ⊂ DQ0 (for the case F = ∅ the changes are straightforward and we leave them to the reader,
also the case F = {Q0} is disregarded since �F ,Q0 is the null set). We write �⋆ =�F ,Q0 , E⋆ = ∂�⋆, and
σ⋆ = H n

|E⋆ . We fix 0 ≤8 ≤ 1, 8(ρ)≡ 1 if ρ ≥ 2, 8(ρ)≡ 0 if ρ ≤ 1, and 8 ∈ C∞(R). According to
the previous considerations we fix ε0 > 0 and our goal is to show that TE⋆,ε0 is bounded on L2(E⋆) with
bounds that are independent of ε0. To simplify the notation we writeK0 =Kε0 and set, for every X ∈ Rn+1,

TE,0 f (X)=

∫
E
K0(X − y) f (y) dσ(y), TE⋆,0g(X)=

∫
E⋆
K0(X − y)g(y) dσ⋆(y).

We first observe that K0 is not singular and therefore, for any p, 1< p <∞, and for every f ∈ L p(E),
respectively g ∈ L p(E⋆), the previous operators are well-defined (by means of an absolutely convergent
integral) for every X ∈ Rn+1. Also for such functions it is easy to see that the dominated convergence
theorem implies that TE,0 f,TE⋆,0g ∈ C(Rn+1).

Remark A.18. We notice that K0 is an odd smooth function which satisfies (A.12) and (A.13) with
uniform constants (i.e., with no dependence on ε0) and therefore the fact that E is UR implies that (A.14)
and (A.17) hold with constants that do not depend on ε0.

We are going to see that TE,0 : L p(E)→ L p(E⋆) for every 1< p<∞. To do that we take f ∈ L p(E)
and write∫

E⋆
|TE,0 f (x)|p dσ⋆(x)=

∫
E⋆∩E

|TE,0 f (x)|p dσ⋆(x)+
∫

E⋆\E
|TE,0 f (x)|p dσ⋆(x)=: I + II.

The estimate for I follows from the fact that E is UR

I ≤

∫
E

|TE,0 f (x)|p dσ(x)=

∫
E

|TE,ε0 f (x)|p dσ(x)≤ CK

∫
E

| f (x)|p dσ(x),

where we have used (A.14) and the standard Calderón–Zygmund theory (taking place in the ADR set E)
and CK does not depend on ε0. For II we use that 6 = E⋆ \ E = ∂�⋆ \ E and invoke Lemmas A.4
and A.8; let Q I be the cube constructed in the latter, so that

II =

∑
I∈W6

∫
I∩6

|TE,0 f (x)|p dσ⋆(x)=

∑
I∈W6

−

∫
Q I

∫
I∩6

|TE,0 f (x)|p dσ⋆(x) dσ(y).

Note that if y ∈ Q I and x ∈ 6 ∩ I then dist(I, y) ≲ ℓ(Q I ) ≈ ℓ(I ). Then taking α > 0 large enough
we obtain that I ⊂Wα(y). Write F̃ = F ∗

∪F ∗

||
, and observe that by construction the cubes in F̃ are



3326 STEVE HOFMANN, JOSÉ MARÍA MARTELL AND SVITLANA MAYBORODA

pairwise disjoint. Then by the ADR property of E⋆, along with Lemmas A.4 and A.8,

II ≤

∑
I∈W6

σ⋆(6 ∩ I )−
∫

Q I

|N∗,α(TE,0 f )(y)|p dσ(y)

≲
∑
Q∈F̃

∑
I∈W6,Q

∫
Q I

|N∗,α(TE,0 f )(y)|p dσ(y)+
∑

I∈W⊤

6

∫
Q I

|N∗,α(TE,0 f )(y)|p dσ(y)

≲
∑
Q∈F̃

∫
Q

|N∗,α(TE,0 f )(y)|p dσ(y)+
∫

B∗

Q0
∩E

|N∗,α(TE,0 f )(y)|p dσ(y)

≲
∫

E
|N∗,α(TE,0 f )(y)|p dσ(y)≲

∫
E

| f (y)|p dσ(y),

where in the last estimate we have employed Lemma A.16 and Remark A.18, and the implicit constants
do not depend on ε0.

We have thus established that TE,0 : L p(E)→ L p(E⋆) for every 1< p<∞. Since K is odd, so is K0,
and by duality we therefore obtain that

TE⋆,0 : L p(E⋆)→ L p(E), 1< p <∞. (A.19)

Our goal is to show that TE⋆,0 : L2(E⋆)→ L2(E⋆) with bounds that do not depend on ε0. Note that TE⋆,0 f
is a continuous function for every f ∈ L2(E⋆) and therefore TE⋆,0 f |E⋆ = TE⋆,ε0 f everywhere on E⋆.

We take f ∈ L2(E⋆) and write as before∫
E⋆

|TE⋆,0 f (x)|2 dσ⋆(x)=

∫
E⋆∩E

|TE⋆,0 f (x)|2 dσ⋆(x)+
∑

I∈W6

∫
I∩6

|TE⋆,0 f (x)|2 dσ⋆(x)

=: I +

∑
I∈W6

III = I + II. (A.20)

For I we use (A.19) with p = 2 and conclude the desired estimate

I ≤

∫
E⋆∩E

|TE⋆,0 f (x)|2 dσ⋆(x)≤

∫
E

|TE⋆,0 f (x)|2 dσ(x)≤

∫
E⋆

| f (x)|2 dσ⋆(x). (A.21)

We next fix I ∈W6 and estimate each III . Let M > 2 be large parameter to be chosen below and set
ζI = ℓ(I )/M, ξI = Mℓ(I ). Write

K0(x)=K0(x)8
(

|x |

ξI

)
+K0(x)

(
8

(
|x |

ζI

)
−8

(
|x |

ξI

))
+K0(x)

(
1 −8

(
|x |

ζI

))
=:K0,ξI (x)+K0,ζI ,ξI (x)+K

ζI
0 (x). (A.22)

Corresponding to any of these kernels we respectively set the operators TE⋆,0,ξI , TE⋆,0,ζI ,ξI and T ζI
E⋆,0.

We start with TE⋆,0,ξI . Fix x ∈ 6 ∩ I. Write 1⋆,I = B(x, ξI ) ∩ E⋆ and split f = f1 + f2 :=

f 11⋆,I + f 1E⋆\1⋆,I . Then we use Remark A.18, the fact supp8 ⊂ [1,∞) and that E⋆ is ADR to
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easily obtain that for every y ∈ Q I , with Q I as in Lemma A.8,

|TE⋆,0,ξI f1(x)| + |TE⋆,0,ξI f1(y)|

≤

∫
1⋆,I

(
|K0(x − z)|8

(
|x − z|
ξI

)
+ |K0(y − z)|8

(
|y − z|
ξI

))
| f (z)| dσ⋆(z)

≲
1
ξ n

I

∫
1⋆,I

| f (y)| dσ⋆(z)≈ −

∫
1⋆,I

| f (y)| dσ⋆(z)≤ ME⋆ f (x), (A.23)

where ME⋆ is the Hardy–Littlewood maximal function on E⋆, and the constants are independent of ε0 and I.
On the other hand, much as before we have that K0,ξI is a Calderón–Zygmund kernel with constants

that are uniform in ε0 and ξI . Also, if M is taken large enough we have that 2|x − y|< Mℓ(I )≤ |x − z|
for every z ∈ E⋆ \1⋆,I , x ∈6 ∩ I and y ∈ Q I . Therefore using standard Calderón–Zygmund estimates
and the fact that E⋆ is ADR we obtain that for every and y ∈ Q I

|TE⋆,0,ξI f2(x)−TE⋆,0,ξI f2(y)| ≤

∫
E⋆\1⋆,I

|K0,ξI (x − z)−K0,ξI (y − z)|| f (z)| dσ⋆(z)

≲
∫

E⋆\1⋆,I

|x − y|

|x − z|n+1 | f (z)| dσ⋆(z)≲M ME⋆ f (x). (A.24)

We next use (A.23) and (A.24) to conclude that∣∣∣∣TE⋆,0,ξI f (x)− −

∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣ ≲ |TE⋆,0,ξI f1(x)| +−

∫
Q I

|TE⋆,0,ξI f1(y)| dσ(y)

+ −

∫
Q I

|TE⋆,0,ξI f2(x)−TE⋆,0,ξI f2(y)| dσ(y)≲ ME⋆ f (x),

which in turn yields∫
6∩I

∣∣∣∣TE⋆,0,ξI f (x)− −

∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣2

dσ⋆(x)≲
∫
6∩I

ME⋆ f (x)2 dσ⋆(x). (A.25)

We next introduce another operator

TE⋆,0,ξI f (y)=

∫
z∈E⋆:|y−z|≥ξI

K0(y − z) f (z) dσ⋆(z), y ∈ E .

We fix x ∈ 6 ∩ I and y ∈ Q I . We first observe that, for M large enough, Remark A.18 and the ADR
property for E⋆ imply that

|TE⋆,0,ξI f (y)− TE⋆,0,ξI f (y)| ≤

∫
E⋆

|K0(y − z)|
∣∣∣∣8(

|y − z|
ξI

)
− 1[1,∞)

(
|y − z|
ξI

)∣∣∣∣| f (z)| dσ⋆(z)

≲
1
ξ n

I

∫
z∈E⋆:|y−z|≤2ξI

| f (z)| dσ⋆(z)

≲
1
ξ n

I

∫
z∈E⋆:|x−z|≤3ξI

| f (z)| dσ⋆(z)≲ ME⋆ f (x).

On the other hand, we can introduce another decomposition

f = f3 + f4 := f 1B(y,ξI )∩E⋆ + f 1E⋆\B(y,ξI ),
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and then for every ȳ ∈ Q I

|TE⋆,0,ξI f (y)| = |TE⋆,0 f4(y)| ≤ |TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| + |TE⋆,0 f4(ȳ)|

≤ |TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| + |TE⋆,0 f (ȳ)| + |TE⋆,0 f3(ȳ)|. (A.26)

We estimate each term in turn. We first observe that, for M large enough, 2|y − ȳ|< Mℓ(I ) ≤ |y − z|
for every z ∈ E⋆ \ B(y, ξI ) and ȳ ∈ Q I . Therefore, using standard Calderón–Zygmund estimates and the
fact that E⋆ is ADR, we obtain that for every and ȳ ∈ Q I

|TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| ≤

∫
E⋆\B(y,ξI )

|K0(y − z)−K0(ȳ − z)|| f (z)| dσ⋆(z)

≲
∫

E⋆\B(y,ξI )

|y − ȳ|

|y − z|n+1 | f (z)| dσ⋆(z)≲ ME⋆ f (x), (A.27)

where we have used that, for M large enough, x ∈ B(y, ξI /2). Fix 1< p < 2. We next average (A.26)
on ȳ ∈ Q I and use (A.27) and (A.19) to obtain

|TE⋆,0,ξI f (y)| ≤ −

∫
Q I

(|TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| + |TE⋆,0 f (ȳ)| + |TE⋆,0 f3(ȳ)|) dσ(ȳ)

≲ ME⋆ f (x)+ ME(TE⋆,0 f )(y)+ σ(Q I )
−

1
p ∥TE⋆,0 f3∥L p(E)

≲ ME⋆ f (x)+ ME(TE⋆,0 f )(y)+ σ(Q I )
−

1
p ∥ f3∥L p(E⋆)

≲ ME⋆ f (x)+ ME(TE⋆,0 f )(y)+
(

1
ℓ(I )n

∫
B(y,ξI )∩E⋆

| f (z)|p dσ⋆(z)
)1

p

≲ ME⋆,p f (x)+ ME(TE⋆,0 f )(y), (A.28)

where ME is the Hardy–Littlewood maximal function on E and we also write ME⋆,p f = ME⋆(| f |
p)1/p.

Note that this estimate holds for every x ∈6 ∩ I and for every y ∈ Q I . Hence,∫
6∩I

∣∣∣∣−∫
Q I

TE⋆,0,ξI f (y)dσ(y)
∣∣∣∣2

dσ⋆(x)≲
∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)+
∫

Q I

ME(TE⋆,0 f )(y)2 dσ(y), (A.29)

where we have used that σ⋆(6 ∩ I )≲ ℓ(I )n. We now gather (A.25) and (A.29) to obtain that for every
I ∈W6∫
6∩I

|TE⋆,0,ξI f (x)|2 dσ⋆(x)

≲
∫
6∩I

∣∣∣∣TE⋆,0,ξI f (x)− −

∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣2

dσ⋆(x)+
∫
6∩I

∣∣∣∣−∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣2

dσ⋆(x)

≲
∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)+
∫

Q I

ME(TE⋆,0 f )(y)2 dσ(y). (A.30)

We next consider TE⋆,0,ζI ,ξI . Note that for every x ∈6 ∩ I and z ∈ E⋆ we have

|K0,ζI ,ξI (z − x)| = |K0(z − x)|
∣∣∣∣8(

|z − x |

ζI

)
−8

(
|z − x |

ξI

)∣∣∣∣ ≲ 1
|z − x |n

1ζI ≤|z−x |≤2ξI ≲
1
ζ n

I
1|z−x |≤2ξI ,
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and therefore∫
6∩I

|TE⋆,0,ζI ,ξI f (x)|2 dσ⋆(x)≲
∫
6∩I

(
1
ζ n

I

∫
B(x,2ξI )∩E⋆

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲M

∫
6∩I

ME⋆ f (x)2 dσ⋆(x). (A.31)

Let us finally address T ζI
E⋆,0. Observe first that

K
ζI
0 ( · )=K( · )8

(
| · |

ε0

)(
1 −8

(
| · |

ζI

))
.

We consider three different cases.

Case 1: ζI ≤ ε0/2. We have that K ζI
0 ≡ 0 and thus T ζI

E⋆,0 ≡ 0.

Case 2: ε0/2< ζI ≤ 2ε0. In this case for every x ∈6 ∩ I and z ∈ E⋆

|K
ζI
0 (x − z)| ≲

1
|x − z|n

1ε0≤|z−x |≤2ζI ≲
1
εn

0
1|z−x |≤4ε0,

and therefore ∫
6∩I

|T
ζI
|!E⋆,0 f (x)|2 dσ⋆(x)≲

∫
6∩I

(
1
εn

0

∫
B(x,4ε0)∩E⋆

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲
∫
6∩I

ME⋆ f (x)2 dσ⋆(x), (A.32)

where the implicit constants are independent of ε0 and ζI .

Case 3: ζI > 2ε0. In this case T ζI
E⋆,0 f is a double truncated integral whose smooth Calderón–Zygmund

kernel K ζI
0 is odd, smooth in Rn+1 and satisfies the estimates (A.12), (A.13). with uniform bounds (i.e.,

independent of ε0 and ζI ). Fix z I ∈6∩ I and notice that if x ∈6∩ I and z ∈ B(x, 2ζI )∩ E⋆ then, taking
M large enough, we have

|z − z I | ≤ |z − x | + |x − z I | ≤ 2ζI + diam(I )=
ℓ(I )
2M

+ diam(I ) < 3
2

diam(I )

and therefore the fact that suppK ζI
0 ⊂ B(0, 2ζI ) immediately gives T ζI

E⋆,0 f (x)= T
ζI

E⋆,0( f 11̃⋆,I )(x), where
1̃⋆,I := B̃⋆,I ∩ E⋆ := B(z I , 2 diam(I ))∩ E⋆. Note that (2.5) yields

4 diam(I )≤ dist(4I, E)≤ dist(z I , E)≤ dist(B̃⋆,I , E)+ 2 diam(I )

and therefore dist(B̃⋆,I , E)≥ 2 diam(I ). This implies that 3B̃⋆,I /2 ⊂ Rn+1
\ E . Also if J ∈W satisfies

that J ∗
∩ B̃⋆,I ̸= ∅ we can easily check that ℓ(I ) ≈ ℓ(J ) and dist(I, J ) ≲ ℓ(I ). This implies that only

a bounded number of J ’s have the property that J ∗ intersects B̃⋆,I . We recall that 6 = E⋆ \ E is a union
of portion of faces of fattened Whitney cubes J ∗. Thus we have

1̃⋆,I ⊂

M0⋃
m=1

Fm,I ,
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where M0 is a uniform constant and each Fm,I is either a portion of a face of some J ∗, or else Fm,I = ∅
(since M0 is not necessarily equal to the number of faces, but is rather an upper bound for the number
of faces.) Note also that I ⊂ B̃⋆,I and therefore we also have that

6 ∩ I ⊂

M0⋃
m=1

Fm,I .

Thus ∫
6∩I

|T
ζI

E⋆,0 f (x)|2 dσ⋆(x)=

∫
6∩I

|T
ζI

E⋆,0( f 11̃⋆,I )(x)|
2 dσ⋆(x)

≲
∑

1≤m,m′≤M0

∫
Fm,I

|T
ζI

E⋆,0( f 1Fm′,I
)(x)|2 dσ⋆(x).

In the case m = m′, we take the hyperplane Hm,I with Fm,I ⊂Hm,I and then∫
Fm,I

|T
ζI

E⋆,0( f 1Fm,I )(x)|
2 dσ⋆(x)≤

∫
Hm,I

|T
ζI
Hm,I ,0

( f 1Fm,I )(x)|
2 d H n(x)

≲
∫

Fm,I

| f (x)|2 d H n(x)=

∫
Fm,I

| f (x)|2 dσ⋆(x),

where, after a rotation, we have used the L2 bounds of Calderón–Zygmund operators with nice kernels
on Rn. For m ̸= m′ we consider two cases: either dist(Fm,I , Fm′,I ) ≈ ℓ(I ) or dist(Fm,I , Fm′,I )≪ ℓ(I ).
In the first scenario, using that K ζI

0 satisfies (A.12) uniformly we obtain that∫
Fm,I

|T
ζI

E⋆,0( f 1Fm′,I
)(x)|2 dσ⋆(x)≲

∫
Fm,I

(∫
Fm′,I

1
|x − z|n

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲
∫

Fm,I

(
1

ℓ(I )n

∫
B(x,Cℓ(I ))∩E⋆

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲
∫

Fm,I

ME⋆ f (x)2 dσ⋆(x).

Finally if dist(Fm,I , Fm′,I )≪ ℓ(I ), we have that Fm,I and Fm′,I are contained in respective faces which
either lie in the same hyperplane, or else meet at an angle of π

2 . In the first case we may proceed as in
the case m = m′. In the second case, after a possible rotation of coordinates, we may view F j

m ∪ F j
m′ as

lying in a Lipschitz graph with Lipschitz constant 1, so that we may estimate T ζI
E⋆,0 using an extension

of the Coifman–McIntosh–Meyer theorem:∫
Fm,I

|T
ζI

E⋆,0( f 1Fm′,I
)(x)|2 dσ⋆(x)≲

∫
Fm′,I

| f (x)|2 dσ⋆(x).

Gathering all the possible cases we may conclude that∫
6∩I

|T
ζI

E⋆,0 f (x)|2 dσ⋆(x)≲
∑

1≤m≤M0

∫
Fm,I

ME⋆ f (x)2 dσ⋆(x)

≲
∑

I ′∈W6 :I ′∩1̃⋆,I ̸=∅

∫
I ′∩6

ME⋆ f (x)2 dσ⋆(x). (A.33)
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We now gather (A.30), (A.31) and (A.33) to get the following estimate for SI after using (A.22):

III =

∫
6∩I

|TE⋆,0 f (x)|2 dσ⋆(x)

≲
∫
6∩I

|TE⋆,0,ξI f (x)|2 dσ⋆(x)+
∫
6∩I

|TE⋆,0,ζI ,ξI f (x)|2 dσ⋆(x)+
∫
6∩I

|T
ζI

E⋆,0|
2 dσ⋆(x)

≲
∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)+
∫

Q I

ME(TE⋆,0 f )(y)2 dσ(y)

+

∑
I ′∈W6 :I ′∩1̃⋆,I ̸=∅

∫
I ′∩6

ME⋆ f (x)2 dσ⋆(x). (A.34)

Note that since 1< p < 2 we have∑
I∈W6

∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)≤

∫
E⋆

ME⋆,p f (x)2 dσ⋆(x)≲
∫

E⋆
| f (x)|2 dσ⋆(x). (A.35)

On the other hand, recalling that F̃ = F ∗
∪F ∗

||
is comprised of pairwise disjoint cubes, Lemmas A.4

and A.8 then imply that∑
I∈W6

∫
Q I

ME(TE⋆,0 f )(y)2 dσ(y)

=

∑
Q∈F̃

∑
I∈W6,Q

∫
Q I

ME(TE⋆,0 f )(y)2 dσ(y)+
∑

I∈W⊤

6

∫
Q I

ME(TE⋆,0 f )(y)2 dσ(y)

≲
∑
Q∈F̃

∫
Q

ME(TE⋆,0 f )(y)2 dσ(y)+
∫

B∗

Q0
∩E

ME(TE⋆,0 f )(y)2 dσ(y)

≲
∫

E
ME(TE⋆,0 f )(y)2 dσ(y)≲

∫
E

|TE⋆,0 f (y)|2 dσ(y)≲
∫

E⋆
| f (y)|2 dσ⋆(y), (A.36)

where in the last estimate we have used (A.19) with p = 2.
Finally, by the nature of the Whitney boxes (see (2.5)), we have that the family {2I }I∈W has the

bounded overlap property and therefore∑
I∈W6

∑
I ′∈W6 :I ′∩1̃⋆,I ̸=∅

16∩I ′ ≲ sup
I ′∈W6

#{I ∈W6 : I ′
∩1⋆,I ̸= ∅},

which we claim that is uniformly bounded. Indeed, fix I ′
∈W6 and let I1, I2 ∈W6 with I ′

∩ 1̃⋆,I1 ̸=∅
and I ′

∩ 1̃⋆,I2 ̸= ∅. Recall that dist(B̃⋆,I , E)≥ 2 diam(I ) with B̃⋆,I = B(z I , 2 diam(I )) and z I ∈ I ∩6.
This implies that ℓ(I1)≈ ℓ(I ′)≈ ℓ(I2) and also dist(I1, I2)≲ ℓ(I1). This easily gives our claim. Using
this we conclude that∑

I∈W6

∑
I ′∈W6 :I ′∩1̃⋆,I ̸=∅

∫
I ′∩6

ME⋆ f (x)2 dσ⋆(x)≲
∫

E⋆
ME⋆ f (x)2 dσ⋆(x)≲

∫
E⋆

| f (x)|2 dσ⋆(x). (A.37)

We now combine (A.34), (A.35), (A.36) and (A.37) to obtain that

II =

∑
I∈W6

III ≲
∫

E⋆
| f (x)|2 dσ⋆(x).
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This, (A.20), and (A.21) give as desired that∫
E⋆

|TE⋆,0 f (x)|2 dσ⋆(x)≲
∫

E⋆
| f (x)|2 dσ⋆(x),

and the implicit constant does not depend on ε0. Hence, TE⋆,0 : L2(E⋆) → L2(E⋆) with bounds that
do not depend on ε0. Since TE⋆,0 f is a continuous function for every f ∈ L2(E⋆), we have that
TE⋆,0 f |E⋆ = TE⋆,ε0 f everywhere on E⋆. Thus, all these show that TE⋆,0 : L2(E⋆)→ L2(E⋆) uniformly
in ε. This in turn gives, by the aforementioned result of [David and Semmes 1991], that E⋆ is UR as
desired, and the proof is complete. □
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