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TRANSFERENCE OF SCALE-INVARIANT ESTIMATES FROM LIPSCHITZ TO
NONTANGENTIALLY ACCESSIBLE TO UNIFORMLY RECTIFIABLE DOMAINS

STEVE HOFMANN, JOSE MARIA MARTELL AND SVITLANA MAYBORODA

In relatively nice geometric settings, in particular, on Lipschitz domains, absolute continuity of elliptic
measure with respect to the surface measure is equivalent to Carleson measure estimates, to square
function estimates, and to e-approximability, for solutions to the second-order divergence-form elliptic
partial differential equations Lu = — div(AVu) = 0. In more general situations, notably, in an open
set 2 with a uniformly rectifiable boundary, absolute continuity of elliptic measure with respect to the
surface measure may fail, already for the Laplacian. In the present paper, extending and clarifying our
previous work (Duke Math J. 165:12 (2016), 2331-2389), we demonstrate that nonetheless, Carleson
measure estimates, square function estimates, and e-approximability remain valid in such €2, for solutions
of Lu = 0, provided that such solutions enjoy these properties in Lipschitz subdomains of €2.

Moreover, we establish a general real-variable transference principle, from Lipschitz to chord-arc
domains, and from chord-arc to open sets with uniformly rectifiable boundary, that is not restricted to
harmonic functions or even to solutions of elliptic equations. In particular, this allows one to deduce the
first Carleson measure estimates and square function bounds for higher-order systems on open sets with
uniformly rectifiable boundaries and to treat subsolutions and subharmonic functions.
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1. Introduction

In the setting of a Lipschitz domain  C R**!, n > 1, for any divergence-form elliptic operator L =
— div(AV) with bounded measurable coefficients, the following are equivalent:

(i) Every bounded solution u, of the equation Lu = 0 in €2, satisfies the Carleson measure estimate (see
Definition 1.9 with F' = [Vu|/|lu| L~ q))-
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(i) Every bounded solution u, of the equation Lu = 0 in €2, is e-approximable for every ¢ > 0 (see
Definition 1.11).

(iii) The elliptic measure associated to L, wy, is (quantitatively) absolutely continuous with respect to
the Lebesgue measure, w; € Ay (o) on 9€2.

(iv) Uniform square function/nontangential maximal function (“S/N’’) estimates hold locally in “saw-
tooth” subdomains of 2 (see Definition 1.15).

Historically, Dahlberg [1980a] obtained an extension of Garnett’s e-approximability result, observing
that (iv) implies (ii) in the harmonic case.! The explicit connection of e-approximability with the A,
property of harmonic measure, i.e., that (ii) implies (iii), appears in [Kenig et al. 2000] (where this
implication is established not only for the Laplacian, but for general divergence-form elliptic operators).
That (iii) implies (iv) is proved for harmonic functions in [Dahlberg 1980b],? and, for null solutions of
general divergence-form elliptic operators, in [Dahlberg et al. 1984]. Finally, Kenig, Kirchheim, Pipher
and Toro [Kenig et al. 2016] have recently shown that (i) implies (iii), whereas, on the other hand, (i)
may be seen, via good-lambda and John—Nirenberg arguments, to be equivalent to the local version of
one direction of (iv) (the “S < N” direction).?

The main goal of the present paper is to show that while (iii) may fail on general uniformly rectifiable
domains even for harmonic functions [Bishop and Jones 1990], or might be not applicable in the absence
of a suitable concept of elliptic measure (e.g., for systems), (i), (ii) and (iv) carry over from Lipschitz
domains to the complement of a uniformly rectifiable set. The novelty of the present work lies in the
fact that we develop a general transference principle, from Lipschitz domains to chord-arc domains and
thence to domains with uniformly rectifiable boundaries, that will allow us to carry out this program by a
purely real-variable mechanism. In particular, this both extends and clarifies our previous work [Hofmann
et al. 2016]. But let us start with more historical context.

In the past several decades, uniformly rectifiable sets have been identified as the most general geometric
setting in which many standard harmonic-analytic properties continue to hold. In particular, it was shown
in the early 90’s that uniform rectifiability of a set E is equivalent to boundedness of all sufficiently
nice singular integral operators with odd kernels in L?(E) [David and Semmes 1991], and, much more
recently, that uniform rectifiability is equivalent to boundedness of the Riesz transform in L2(E) (see
[Mattila et al. 1996] for the case n = 1 and [Nazarov et al. 2014] in general).

However, it seemed to be vital for many standard boundary estimates for solutions of elliptic PDEs in
a domain €2 that, in addition to uniform rectifiability of its boundary, 2 should possess some additional
topological features, ensuring a reasonably nice approach to the boundary. In some respects, this is indeed
true. In particular, it has been known that (i)—(iv) hold for harmonic functions on chord-arc domains, that
is, nontangentially accessible domains with Ahlfors—David regular boundaries (see Definitions 1.1 and
1.6 below, and [Jerison and Kenig 1982; Dahlberg et al. 1984; David and Jerison 1990]). Such domains

I This implication holds more generally for null solutions of divergence-form elliptic equations; see [Kenig et al. 2000;
Hofmann et al. 2015].

2And thus all four properties hold for harmonic functions in Lipschitz domains, by the result of [Dahlberg 1977].

3We will prove this fact in much greater generality in this paper.



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3253

satisfy an interior and exterior corkscrew condition (quantitative openness) and a Harnack chain condition
(quantitative connectedness). At the same time, the counterexample of [Bishop and Jones 1990] showed
that absolute continuity of harmonic measure with respect to the Lebesgue measure (iii) may fail on a
general set with a uniformly rectifiable boundary: they construct a one-dimensional (uniformly) rectifiable
set E in the complex plane, for which harmonic measure with respect to 2 = C\ E, is singular with respect
to Hausdorff H' measure on E. Much more recently, under the natural and rather minimal background
assumptions that €2 satisfies an interior corkscrew condition, and has an Ahlfors—David regular boundary,
quantitative absolute continuity of harmonic measure with respect to surface measure (either property (iii)
above, or the weak- A, property, i.e., property (iii) in the absence of doubling), has now been characterized
in the harmonic case, thus establishing the necessity of some connectivity assumption in this context:
property (iii) (respectively, its weaker nondoubling version) is equivalent to uniform rectifiability of 9<2,
along with some version of accessibility to the boundary, either the semiuniformity condition of [Aikawa
and Hirata 2008] in the doubling case [Azzam 2021], or respectively, the “weak local John condition”,
which gives access to an ample portion of the boundary, locally, from each interior point of 2 [Azzam
et al. 2020]. Thus, while some connectivity is indeed required to obtain property (iii), in [Hofmann et al.
2016] the authors proved that, nonetheless, Carleson measure estimates (i) and e-approximability (ii) for
harmonic functions (and implicitly, for solutions of a certain more general class of elliptic equations)
remain valid on all domains with a uniformly rectifiable boundary, in the absence of any connectivity
assumption. Shortly thereafter, it was shown that, at least in the presence of interior corkscrew points,
each of the necessary properties (i) and (ii) is also sufficient for uniform rectifiability [Garnett et al. 2018].

The present paper introduces a new transference mechanism, which illustrates that for certain classes
of scale-invariant estimates (e.g., Carleson measure bounds, or square function/nontangential maximal
function estimates) the passage from such estimates on Lipschitz domains to analogous results on chord-
arc domains and further to the same bounds on all open sets with uniformly rectifiable boundaries is,
in fact, a real-variable phenomenon. That is, for a given function F defined in the complement of a
codimension 1, uniformly rectifiable set £ C R"+1 if one has suitable bounds for F on Lipschitz domains,
then these automatically carry over to R"*!\ E. This immediately gives a series of new results in very
general PDE settings (for solutions of second-order elliptic PDEs with coefficients satisfying a Carleson
measure condition, for solutions of higher-order systems, for nonnegative subsolutions), but clearly the
power of having a general, purely real-variable scheme, goes beyond these applications. Let us now
discuss the details. We begin by defining several basic concepts.

Definition 1.1 (ADR). We say that a set E C R"*! is n-dimensional Ahlfors—David regular (or simply
ADR) if it is closed, and if there is some uniform constant C > 1 such that

C " <o (A(x,r)) <Cr" forall r € (0, diam(E)), x € E, (1.2)
where diam(E) may be infinite. Here, A(x, r) := ENB(x, r) is the surface ball of radius r, and 0 := H" |g
is the surface measure on E, where H" denotes n-dimensional Hausdorff measure.

Definition 1.3 (UR and UR character). An n-dimensional ADR (hence closed) set E ¢ R**! is n-
dimensional uniformly rectifiable (or simply UR) if and only if it contains big pieces of Lipschitz images
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of R" (BPLI). This means that there are positive constants 8, My > 1 such that for each x € E and each
r € (0, diam(E)) there is a Lipschitz mapping p = oy, : R* — R+ with Lipschitz constant no larger
than M, such that

H"(ENB(x,r)Np({zeR": |zl <r}))=07'r".

Additionally, the UR character of E is just the triple of constants (6, My, C), where C is the ADR constant;
or equivalently, the quantitative bounds involved in any particular characterization of uniform rectifiability.

Note that, in particular, a UR set is closed by definition, so that R+l \ E is open, but need not be
connected.

We recall that n-dimensional rectifiable sets are characterized by the property that they can be covered,
up to a set of H"-measure 0, by a countable union of Lipschitz images of R"; we observe that BPLI is a
quantitative version of this fact.

It is worth mentioning that there exist sets that are ADR (and that even form the boundary of an open
set satisfying interior corkscrew and Harnack chain conditions), but that are totally nonrectifiable (e.g.,
see the construction of Garnett’s “4-corners Cantor set” in [David and Semmes 1993, Chapter 1]).

Definition 1.4 (corkscrew condition). Following [Jerison and Kenig 1982], we say that an open set
Q c R+ satisfies the corkscrew condition if for some uniform constant C > 1 and for every surface
ball A := A(x,r) = B(x,r) NI, with x € 3Q and 0 < r < diam(dR), there is a ball B(XA, C~'r) C
B(x,r)N . The point X C 2 is called a corkscrew point relative to A. We note that we may allow
r < C'diam(32) for any fixed C’ simply by adjusting the constant C.

Definition 1.5 (Harnack chain condition). Again following [Jerison and Kenig 1982], we say that an
open set 2 satisfies the Harnack chain condition if there is a uniform constant C > 1 such that for every
pair of points X, X’ € Q there is a chain of balls By, B», ..., By C  with

N <C(2+1ogh X — X1
(0] 5
= 82 nin{dist(X, 0%, dist(X', 0%))

X e By, X' €By, BiNByy1 #D forevery | <k <N-—1, and C~! diam(By) < dist(By, 9Q) < C diam(By)
for every 1 <k < N. The chain of balls is called a Harnack chain. We remark that in general, the estimate

for N can be worse than logarithmic, but as is well known, in the presence of an interior corkscrew
condition, it is necessarily logarithmic if it holds at all.

Definition 1.6 (NTA, 1-sided NTA, CAD, and 1-sided CAD). We say that an open set Q C R+ s
1-sided nontangentially accessible (or simply 1-sided NTA) if it satisfies the Harnack chain condition,
and Q satisfies the (interior) corkscrew condition. Additionally, the 1-sided NTA character of €2 is just
the collection of constants involved in the fact that €2 is 1-sided NTA, that is, the (interior) corkscrew
constant, as well as the constant from the Harnack chain condition.

As in [Jerison and Kenig 1982], we say that an Q C R"*! is nontangentially accessible (or simply
NTA) if it satisfies the Harnack chain condition, and if both © and Qe := R"*!\ Q satisfy the corkscrew
condition. The NTA character of €2 is the collection of constants involved in the fact that 2 is NTA, that
is, the interior and exterior corkscrew constants, as well as the constant from the Harnack chain condition.
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We say that an open set Q@ C R"*! is a 1-sided chord-arc domain, or simply 1-sided CAD, (tesp. chord-
arc domain, or simply CAD) if it is 1-sided NTA (resp. NTA) and has ADR boundary. The 1-sided CAD
character (resp. CAD character) is the 1-sided NTA character (resp. NTA character) together with the
ADR constant.

Definition 1.7 (Lipschitz graph domain). We say that Q C R"*! is a Lipschitz graph domain if there is
some Lipschitz function ¢ : R* — R and some coordinate system such that

Q={(x',t): X' eR", t >y}
We refer to M = ||V || L~ wn) as the Lipschitz constant of .

Definition 1.8 (bounded Lipschitz domain). We say that an open connected set Q C R"*! is a bounded
Lipschitz domain if there exist rq > 0, M, Co, m > 1, {xj}’]’?:] C L2, {r; ’}1:1, with Co_lrg <rj < Corg
for every 1 < j < m, such that the following conditions hold. First, 02 C UT:] B(xj, rj). Second, for
each 1 < j <m there is some Lipschitz graph domain V;, with x; € 9V; and with Lipschitz constant at
most M, such that U; N Q2 = U; N'V;, where U; is a cylinder of height 8(M + 1)r;, radius 2r;, and with
axis parallel to the 7-axis (in the coordinates associated with V;). We refer to the triple (M, m, Cy) as the

Lipschitz character of Q.

As we pointed out above and as can be seen from the definitions, nontangentially accessible domains
possess certain quantitative topological features. One can show that a CAD satisfies a property analogous
to Definition 1.3, but using big pieces of Lipschitz subdomains, rather than big pieces of Lipschitz images
(see Proposition 3.20), the crucial difference being that in some sense a nice access to the boundary of a
Lipschitz domain is retained, contrary to the general UR case.

Finally, let us define the scale-invariant estimates at the center of this paper.

Definition 1.9 CME. Let Q C R"*! be an open set and let F € L2 (). We say that F satisfies the

loc
Carleson measure estimate (or simply CME) on 2 if

1
IFlleme == sup  —
x€d, 0<r<oo ¥

// |F (V)2 dist(Y, Q) dY < oo. (1.10)
B(x,r)NQ

Definition 1.11 (¢-approximable). Let 2 C R"*! be an open set. Let u € L>(Q), with ||u L) <1,
and let ¢ € (0, 1). We say that u is e-approximable on 2 if there is a constant C, and a function
¢ = ¢ € W,o(Q) satisfying
lu—opllLe@ <¢ (1.12)
and
sup l// IVo(Y)|dY < C,. (1.13)
x99, 0<r<oo I JJB(x,nne

Let 2 be an open set. The cone with vertex at x € €2 and aperture « > 0 is defined as
Fo(x) =Tq,(x)={Y eQNBx,r):|Y —x| < (1 +«k)dist(Y, 9Q)}, xe€dQ. (1.14)

Given r > 0, we write I' (x) :=I'q(x) N B(x, r) for the truncated cone. With a slight abuse of notation
if Q is unbounded and 9€2 bounded, our cones will be truncated. More precisely, in that scenario, we
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will write ' (- ) to denote ngiam(m)( -), where C > 2 is a fixed harmless constant. In this way, when
92 is bounded, so are the cones, all being contained in a C’ diam(9£2)-neighborhood of d2. We will
sometimes refer to these cones as “traditional” to distinguish them from some dyadic cones which will be
introduced later; see (2.23).

Definition 1.15 (nontangential maximal function, area integral, and square function). Let Q be an open
set. For H € C(2) (i.e., H is a continuous function in £2) we define the nontangential maximal function as

NieH((x) =Ny Hx):= sup |HT)|, xe€d; (1.16)
Yel'g «(x)

for G € leoc(Q)’ we define the area integral as

1
2
AqG(x) :=Ag G (x) = (// IG(Y) 2 dist(Y, asz)l—"dy) . xed; (1.17)
FQ‘K('K—)

and, foru € Wli)’CZ(Q), we define the square function as

Sou(x) = So cu(x) = (// IVu(Y)? dist(Y, 992)! " dY)z, x €9 (1.18)
FQ,K(X)

For any r > 0, we write N o, A, and Sg, to denote the fruncated nontangential maximal function, area
integral, and square function respectively, where I'q( - ) is replaced by the truncated cone I',(-).

Let us now list some highlights of the main results of this paper (see Corollary 3.1, Theorem 3.31 and
Theorem 3.6 for the precise statements in the body of the paper and also Notation 2.56). First, we have
that Carleson measure estimates on Lipschitz domains imply Carleson measure estimates in CAD, which,
in turn, imply Carleson measure estimates on the sets with UR boundaries, via the following formalism.

Theorem 1.19 (transference of Carleson measure estimates®). (i) Let D C R*t! be a chord-arc domain

and F € leoc(D)' If F satisfies the Carleson measure estimate on all bounded Lipschitz subdomains

of D then F satisfies the Carleson measure estimate on D as well.
(i) Let E C R be an n-dimensional uniformly rectifiable set and let F € LIZOC(R”H \ E). If F satisfies
the Carleson measure estimate on all bounded chord-arc subdomains of R"T!'\ E, then F satisfies

the Carleson measure estimate on R"*'\ E as well.
(iii) Let E C R"*! be an n-dimensional uniformly rectifiable set and let F € leoc([R”Jrl \ E). If F satisfies
the Carleson measure estimate on all bounded Lipschitz subdomains of R"'\ E, then F satisfies

the Carleson measure estimate on R"*'\ E as well.

4In the statement we have omitted the dependence in the Carleson estimates on the various geometric parameters. The precise
statements (see Theorems 3.31 and 3.6) given in the body of the paper impose that the Carleson measure estimates hold for any
bounded Lipschitz (resp. chord-arc) subdomain with a bound depending on the Lipschitz (resp. CAD) character. The latter means
that for all subdomains with Lipschitz (resp. CAD) character controlled by some uniform quantity, say M, the corresponding
Carleson measure estimates hold with an associated uniform constant depending on M. The conclusions should also include
that the resulting Carleson estimates depend on the CAD character of D (resp. UR character of E), as well as on the Carleson
estimates of F' in the subdomains.
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We remark that Theorem 1.19(ii) was already implicit in our previous work [Hofmann et al. 2016],
although in the present paper we give a proof of this result that is simpler than the corresponding argument
there. The main new ingredient in Theorem 1.19 is part (i); part (iii) is an immediate corollary of parts (i)
and (ii).

Next, in the class of open sets with UR or ADR boundary, or in the class of chord-arc domains or
1-sided chord-arc domains, the Carleson measure estimates are equivalent to local and global area integral
bounds (aka square function estimates).

Theorem 1.20. Let Q@ C R"*! be an open set with ADR boundary and suppose that we have a collection
{QYqex such that each Q' € X is an open subset of 2, Q' is ADR boundary, and also that all of its
local sawtooth subdomains (see Section 2) belong to X. Let G € L? (Q) and H € C(2) and assume that

loc

1
1 2
(’7 f/ |G(Y)|28(Y) dY) < C||H||z=@3x.2r) forall B(X,2r) C Q.
B(X,r)

The following statements are equivalent:
() IGleme@) S 1H 3wy, forall @ € .
(i) | A Gllra@we) < ClIN«qo Hl e forall Q' € X and for some 0 < g < oo.
(iii) | A GllLape) < ClIN«o HllLa@e) forall Q' € X and for all 0 < g < oo.
This result is a particular case of Theorem 4.8 (and Remarks 4.20, 2.37, and 2.38), which actually
contains considerably more detailed statements, as well as equivalence to local area integral bounds.
Finally, we discuss transference for the converse bounds on nontangential maximal function in terms of
the square function and their connection with g-approximability. In this context, one has to tie up explicitly
the arguments of A and N,. Our first result is a reduced version of the combination of Theorems 5.1
and 5.24 stated in Corollary 5.50. We do not explain in detail conditions (5.2) and (5.25) now, but let us

mention that, generally, they are harmless bounds on interior cubes, which, in the context of solutions of
elliptic PDE follow from well-known interior estimates.

Theorem 1.21. Let D C R"! be a chord-arc domain. Let u € W1’2(D) N C (D) so that (5.2) and (5.25)

loc

hold for some p > 2. Assume that for every bounded Lipschitz subdomain Q C R"*!1\ E

INe.o( —u(X) 1200) < CliSaull 20 (1.22)

holds with a constant depending on n and the Lipschitz character of 2, and where X g is any interior
corkscrew point of Q2 at the scale of diam(0S2). Then, for every k > 0, if d D is bounded

INw. D — (X)) ILe@py < C'lISpcttllLaopy  forall 0 < g < oo,
and if 0D is unbounded and u(X) — 0 as | X| — oo then
INepcttllLaony < C'lISpcullLapy forall 0 < g < oo,

where C' depends on q, n, the CAD character of D, the implicit constants in (5.2) and (5.25), the
constant C in (1.22), and «; and where X }S is any interior corkscrew point of D at the scale of diam(d D).
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We mention one further result that is stated in full detail below as Theorem 6.1. The interior bound (6.2)
is, again, a fairly harmless prerequisite which follows from known interior estimates in the context of
solutions of elliptic PDEs. We remark that the estimate (1.24) itself (see below) would not make much sense
for general uniformly rectifiable sets because of topological obstructions (there is no preferred component
for a corkscrew point in such a general context), and for that reason we pass directly to e-approximability.

Theorem 1.23. Let E C R™*! be an n-dimensional uniformly rectifiable, and suppose that

ue WLAR™N\ E)ynCR™\ E)NnL®R"\ E)

oc

satisfies (6.2). Assume, in addition, that

IVullemp®e+\ gy < Collull oo e\ )

and that for every bounded chord-arc subdomain Q@ C R"'\ E
INsa(u —u(X) 1200 < CllSaull2pq) (1.24)

holds with a constant depending on n and the CAD character of 2, and where X g is any interior
corkscrew point of Q at the scale of diam(3S2). Then u is e-approximable on R"+'\ E, with the implicit
constants depending on n, the UR character of E, the constant in (6.2) and in C,.

Theorem 1.23/Theorem 6.1 is simply a formalization of results that were implicit in [Hofmann et al.
2016], and we state it here, without proof, for the record.

Let us reiterate that the fact that our results provide a “black box” real-variable transference principle
allows one to use them considerably beyond the traditional scope. We can treat, for instance, subsolutions
and supersolutions of elliptic equations. Another example is higher-order elliptic systems. The best
available results to date in this context are restricted to Lipschitz domains [Dahlberg et al. 1997]. Here
we establish, for instance, the following estimates.

Let K, m eN. Let E be an n-dimensional uniformly rectifiable set and u be a weak solution to the system

K
Lu=Y" Y alg"efu* =0, j=1,....K,
k=1 |a|=|Bl=m
on R"+! \ E. Here, aég, l1<o,8<n+1,1<jk<K a=(a,...,0,41) € Ng“ are real constant
symmetric coefficients satisfying the Legendre—Hadamard ellipticity condition (see (7.18)). Then u

satisfies the S < N estimates in R"*! \ E, that is,
ISpre1y £ (V" )| Loy < CIN, goen\ g IV ul) ey, 0 < p < oo

Furthermore, if D C R"*! is a chord-arc domain with an unbounded boundary and V”~!y vanishes at
infinity, we also have the converse estimate

INe.p (V" )|l La@py < CISp(V" 'u) |l Laapy forall 0 < g < oo.

Similar results are valid locally and on bounded domains. We also obtain a version of ¢-approximability
and Carleson measure estimates in this general context. The reader can consult Section 7 for a detailed
discussion of these results and other applications.
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Let us conclude this introduction with an outline of the organization of the paper. In Section 2, we
develop some preliminary material, including notation and definitions, and we state some known results
that will be useful in the sequel.

In Section 3, we give the proof of Theorem 1.19, showing first that Carleson measure estimates
(“CME”) may be transferred from Lipschitz subdomains to chord-arc domains (part (i)), and then from
chord-arc subdomains to the complement of a uniformly rectifiable set (part (ii)). As noted above, the
first step is new, while the second step is a very general version of a result whose proof was implicit in
[Hofmann et al. 2016], established here by a simpler argument than in that work. These results, along with
those in Section 5, comprise the main new contributions of the paper (although some of our applications
in Section 7 are also novel).

In Section 4, we prove Theorem 1.20/Theorem 4.8, in which, using the well-known technique of
good-A inequalities, we show that abstract versions of CME are equivalent to abstract versions of so-called
“S < N” bounds (in the generality that we consider here, the notation A < N seems more appropriate),
which express the control of a square function by a nontangential maximal function, in L? norm.

In Section 5, we consider the reverse “N < §” bounds (see Theorem 1.21 above), and show that these
may be transferred from Lipschitz subdomains to chord-arc domains.

In Section 6, we state a detailed version of Theorem 1.23.

We note that the results in Sections 3—6 are of a purely real-variable nature, and we do not assume,
per se, that we are dealing with solutions (or sub/supersolutions) of a PDE, although at certain points we
do impose abstract versions of Caccioppoli’s inequality and/or Moser’s local boundedness.

Finally, in Section 7, we present several PDE applications of our abstract results.

2. Preliminaries

‘We start with some further notation and definitions.

o We use the letters ¢, C to denote harmless positive constants, not necessarily the same at each occurrence,
which depend only on dimension and the constants appearing in the hypotheses of the theorems (which
we refer to as the “allowable parameters”). We shall also sometimes write a < b and a ~ b to mean,
respectively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C are as above, unless explicitly
noted to the contrary. At times, we shall designate by M a particular constant whose value will remain
unchanged throughout the proof of a given lemma or proposition, but which may have a different value
during the proof of a different lemma or proposition.

« Given a closed set E C R*t!, we shall use lower case letters x, ¥, z, etc., to denote points on E, and
capital letters X, Y, Z, etc., to denote generic points in R"*! (especially those in R"*!\ E).

» The open (n+1)-dimensional Euclidean ball of radius  will be denoted by B(x, r) when the center x lies
on E, or B(X, r) when the center X lies in R"*!\ E. A surface ball is denoted by A(x,r):=B(x,r)NE
where unless otherwise specified we implicitly assume that x € E.

» Given a Euclidean ball B or surface ball A, its radius will be denoted rp or ra, respectively.
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o Given a Euclidean or surface ball B = B(X,r) or A = A(x, r), its concentric dilate by a factor of
k > 0 will be denoted by k B := B(X, kr) or k A := A(x, kr).
« Given a (fixed) closed set E C R"*!, for X € R*t1, we set §(X) := dist(X, E).

e We let H" denote n-dimensional Hausdorff measure, and let o := H"|g denote the “surface measure”
on E.

« We will also work with open sets Q C R"*! in which case the previous notation and definitions easily
adapt by letting E := 0€2.

« For a Borel set A C R"*! we let 14 denote the usual indicator function of A, i.e., lax)=1ifx € A,
and 14(x) =0if x ¢ A.

« For a Borel set A C R**!, we let int(A) denote the interior of A.

o Given a Borel measure u, and a Borel set A, with positive and finite ;. measure, we set fA fdpu:=
n(A)f, fdp.

o We shall use the letter / (and sometimes J) to denote a closed (rn+1)-dimensional Euclidean dyadic
cube with sides parallel to the coordinate axes, and we let £(/) denote the side length of 1. If £() = 27k
then we set k; := k. Given an ADR set E C R"*!, we use Q to denote a dyadic “cube” on E. The latter
exist (see [David and Semmes 1991; Christ 1990]) and enjoy certain properties which we enumerate in
Lemma 2.1 below.

Lemma 2.1 (existence and properties of the “dyadic grid” [David and Semmes 1991; 1993; Christ 1990]).
Suppose that E C R"! is an n-dimensional ADR set. Then there exist constants agp > 0, y > 0 and
C| < 00, depending only on dimension and the ADR constant, such that for each k € Z there is a collection
of Borel sets (“cubes”)
Di:={Q% CE:j e},
where Jj denotes some (possibly finite) index set depending on k, satisfying:
: _ k
(1) E= Uj Q] foreachk € Z.
(i) If m > k then either Q" C Q% or Q'N 0% = @.
(i) For each (j, k) and each m < k, there is a unique i such that Qj c Q.
(iv) diam(Q’;.) <Cp27k
(v) Each Ql; contains some “surface ball” A(xj?, ap2%) == B(xf, a2 NE.
(vi) H"({x e Qf s dist(x, E \ Qf) <027%) < Cro” H"(Qf) for all k, j and for all o € (0, ag).
A few remarks are in order concerning this lemma.

« In the setting of a general space of homogeneous type, this lemma has been proved in [Christ 1990],
with the dyadic parameter % replaced by some constant § € (0, 1). In fact, one may always take § = % (see
[Hofmann et al. 2017b, proof of Proposition 2.12]). In the presence of the Ahlfors—David property (1.2),
the result already appears in [David and Semmes 1991; 1993].
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« For our purposes, we may ignore those k € Z such that 2% > diam(E), in the case that the latter is
finite.

o We shall denote by D = D(FE) the collection of all relevant Qj? , 1.e.,
D= JDx,
k

where, if diam(E) is finite, the union runs over those k such that 27% < diam(E). When E is bounded,
there exists a cube Q¢ € D(9€2) such that Qg = 02 and Q € Dy, for any Q € D(92).

o For a dyadic cube Q € Dy, we shall set £(Q) =27 and we shall refer to this quantity as the “length”
of Q. Evidently, £(Q) ~ diam(Q).

 For a dyadic cube Q € D, we let k(Q) denote the “dyadic generation” to which Q belongs, i.e., we set
k =k(Q) if Q € Dy; thus, £(Q) =27+,

e Given Q € D we write é to denote the dyadic parent of Q, that is, the unique dyadic cube é with
0O C O and £(Q) = 2£(Q). Also, the children of Q are the dyadic cubes Q' C Q with £(Q") = £(Q)/2.

» Properties (iv) and (v) imply that, for each cube Q € D, there is a point xp € E, a Euclidean ball
B(xg, r) and a surface ball A(xgp,r) := B(xg, r) N E such that c£(Q) < r < £(Q) for some uniform
constant 0 < ¢ < 1 and

A(xg,2r) C Q C A(xg, Cr) 2.2)
for some uniform constant C. We shall denote this ball and surface ball by
Bg :=B(xg,r), Ag:=A(xg,r), (2.3)
and we shall refer to the point x¢ as the “center” of Q.

Definition 2.4. Let E C R"*! be an n-dimensional ADR set. By M = MP®) we denote the dyadic
Hardy—Littlewood maximal function on E, that is, for f € L (E)

loc

MPf(x)=sup ][Q If)ldo (),

xeQeD(E)

and, for 0 < p < oo, we also write M”pj’f =MP (| f|1)V/P. Analogously, if Qg € D(E), we write Mgo for
the dyadic Hardy-Littlewood maximal function localized to Qy,

M3 Fx)= sup ][Qlf(y)ldo(y),

xeQeDg,
where Do, (E) ={Q € D(E) : Q C Qo}, and, for 0 < p < 0o, we also write MBO’pf = Mgo(lflp)l/p.

Let @ ¢ R"*! be an open set so that Q2 is ADR. Let ‘W = W (Q2) denote a collection of (closed)
dyadic Whitney cubes of €2, so that the cubes in ‘W form a pairwise nonoverlapping covering of €2, which
satisfy

4 diam(/) < dist(41, E) <dist(I, 9Q2) <40diam(/) forall I € W 2.9
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(just dyadically divide the standard Whitney cubes, as constructed in [Stein 1970, Chapter VI], into cubes
with side length % as large) and also

1 diam(1y) < diam(h) < 4diam(l)),
whenever I; and > touch.
Next, we choose a small parameter 0 < 7y < 2™+ (depending only on dimension), so that for any
I € W, and any t € (0, 10], the concentric dilate /*(t) := (1 4 t)[ still satisfies the Whitney property

diam I ~ diam I*(t) ~ dist(I* (1), Q) ~ dist(/, 9Q), 0<7 < 10. (2.6)

Moreover, for 7 < 7y small enough, and for any I, J € W, we have that /*(r) meets J*(7) if and only if
I and J have a boundary point in common, and that, if / # J, then I*(7) misses 3J /4.

Definition 2.7 (Whitney-dyadic structure). Let Q@ C R"*! be an open set so that Q2 is ADR. Let
W = W(Q2) denote a collection of (closed) dyadic Whitney cubes of 2 as in (2.5). Let D = D(d€2) be
the collection of dyadic cubes from Lemma 2.1 and given the parameters n < 1 and K > 1, set

WG =1 € W:nil(Q) < &) < K2(Q), dist(], Q) < K>£(Q)), (238)

A Whitney-dyadic structure for Q with parameters  and K is a family {Wp}oep C W satisfying the
following conditions:

() "Wg # @ for every Q € D.
(ii) ’Wg C Wy forevery Q € D.
(iii) There exists C > 1 such that, for every Q € D,

C™'n70(Q) < £(I) < CK24(Q) forall I € Wy,

1 2.9
dist(/, Q) < CK?2£(Q) forall I € Wpy.

In principle, for the previous definition, n and K are arbitrary, but we will typically need to assume
that 7 is sufficiently small and K is sufficiently large. We will do so and as a consequence the constant C
will be independent of n and K and will depend on dimension, ADR, and some other intrinsic constants
depending on the different scenarios on which we work. In particular, it is convenient to assume, and we
will do so, that K > 40%n so that given any I € ‘W such that £(1) S diam(E), if we write Q7 for (one)
nearest dyadic cube to I with £(1) = £(Q7) then I € ‘W07 C "WQ;«. Note that there can be more than one
choice of Q7, but at this point we fix one so that in what follows Q7 is unambiguously defined.

Below we will discuss a few special cases depending on whether we have some extra information
about Q2 or 9€2. The main idea consists in constructing some kind of “Whitney regions” which will allow
us to introduce some “Carleson boxes” and “sawtooth subdomains”. The construction of the Whitney
regions depends very much on the background assumptions, having extra information about €2 or 92
will allow us to augment the collections WQO to define Wy so that we gain some connectivity on the
corresponding Whitney regions and hence the resulting subdomains would have better properties. We
consider four cases. In the first one, treated in Section 2.1, we assume only that 2 = R+l \ E, where



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3263

E is ADR (but is not necessarily UR) and we set Wy = (Wg (here we do not gain any connectivity).
The second case is considered in Section 2.2 and deals with Q = R"*!\ E, where E is UR, in which
case we can invoke Lemma 2.42 below and use the Lipschitz graphs associated to the good regimes so
that the augmented collection W) creates two nice Whitney regions, one each lying respectively above
and below the Lipschitz graph. Third, when €2 is a 1-sided CAD we can augment (Wg using that D is
Harnack chain connected so that the resulting collections Wy give some Whitney regions which produce
Carleson boxes and sawtooth subdomains which are 1-sided CAD; see Section 2.3. We repeat the same
construction in our last case in Section 2.4, where 2 is a CAD. The fact that 2 satisfies the exterior
corkscrew condition allows us to conclude that Carleson boxes and sawtooth subdomains are as well.
To continue with our discussion let  C R"*! be an open set so that 32 is ADR. Let W = W(Q) and
D = D(9£2) be as above and let {Wp}pen be a Whitney-dyadic structure for €2 with some parameters n
and K (we will assume that 5 is sufficiently small and K is sufficiently large). Fix 0 < t < t9/4 as above.
Given an arbitrary Q € ), we may define an associated Whitney region Ug (not necessarily connected), as

Up=Ug-:= | I"(¥). (2.10)
1 GWQ
For later use, it is also convenient to introduce some fattened version of Uy
Up=Ugar = | J I"2v). (2.11)
IEWQ

When the particular choice of t € (0, tp] is not important, for the sake of notational convenience, we may
simply write /* and Uy in place of /*(t) and Ug -.
We may also define the Carleson box relative to Q € D, by

To=To.: ::int( U UQ,T), (2.12)
Q/E[DQ
where

Do:={Q' eD:Q CQ}. (2.13)
Let us note that we may choose K large enough so that, for every Q,
To.: CTg.qy C By := B(xg, K£(Q)). (2.14)
We also observe that for any N > 1 we have
BoNQCToqyn. (2.15)

To see this, let Y € Bo N Q = B(xg,r) N (see (2.2), (2.3)) and pick I € W with I > Y. Note that
(1) <dist(1,92) /4 < |Y —x¢l|/4 <r/4 <£(Q)/4. Take y € Q so that dist(Y, Q) = |Y — J| and select
Qy >y with £(Qy) = £(I) < £(Q)/4. Thus, Qy € Dy and

dist(/, Qy) < |Y — J| =dist(Y, Q) < |Y — xg| <r < £(Q).

All these show that I € ”Wg C Wy and consequently Y € int(/*(z/N)) C Tp . y as desired.
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It is convenient to introduce the Carleson box Ta relative to A = A(x,r), withx € 0Q and 0 <r <
diam(d%2). Let k(A) denote the unique k € Z such that 27¥~! < 200r < 2% and set

DA :={Q € Dya) : QN2A # ).

Ta=Tax :=int( U TQ>. (2.16)

QebA
Much as in [Hofmann and Martell 2014, (3.60)] if we write BAo = B(x, r) so that A = Bx N E, we have
by taking K possibly larger

We then define

2BANQCTa CB(x,Kr)NQ. (2.17)

For future reference, we also introduce dyadic sawtooth regions as follows. Given a family ¥ of
disjoint cubes {Q;} C D, we define the global discretized sawtooth relative to F by

Dy =D\ | JDg,. (2.18)
7:‘

i.e., D is the collection of all Q € D that are not contained in any Q; € . Given some fixed cube Q,
the local discretized sawtooth relative to ¥ by

Dy, :=Dp\| Do, =Dy NDy. (2.19)
F
Note that we can also allow ¥ to be empty in which case Dy =D and Dg g = Dy.
Similarly, we may define geometric sawtooth regions as follows. Given a family # C D of disjoint
cubes as before, we define the global sawtooth and the local sawtooth relative to F by respectively

o ;=int( U UQ/>, Qm::im( U UQ,). (2.20)
Q'eDyr

Q/E[vaQ

Note that Q4 ¢ = Tp. For the sake of notational convenience, we set
Wr= | Wo. Wro= | Wp. (2.21)
0'eDy 0'eD# g

so that in particular, we may write

Q.o = int< U 1*). (2.22)
IeWg o
Finally, for every x € 9<2, we define nontangential approach regions, dyadic cones, as
rcoy= J o (2.23)
QeD:0>x

Their local (or truncated) versions are given by

r‘o= J Ug. xeo. (2.24)
Q'eDg:Q0'>x
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When 92 is bounded, there exists a cube Q¢ € D(9€2) such that Qo =0 and Q € Dy, for any Q € D(9€2).
In particular, ['p(-) CTg,(-) C {X € Q:dist(X, 022) < diam(d2)} and all the cones are bounded.

Note that all the previous objects have been defined using the Whitney regions Uy (made out of dilated
Whitney cubes 7*(7)). One can analogously use the fattened Whitney regions l?Q (composed of the union
of dilated Whitney cubes /*(27)). In that case we will use the notation fQ, TA, §7-, §7—',Q, f( ), fQ( ).

We will always assume that K is large enough (say K > 10*n) so that f‘\g,l(x) CI'(x) (see (1.14))
for every x € 9€2. Indeed, let Y € I'q 1(x) and pick / € ‘W with Y € I. Take Q € D with Q > x and
£(Q) =£(1). Then,

dist(1, Q) < |Y — x| < 2dist(Y, 9Q) < 2(diam(/) + dist(/, 9RQ)) < 82diam(/) < 100/n€(Q).
Hence, I € WQO C W)y provided 100/n < VK and thus I C Ugp C I'(x) as desired.

Remark 2.25. It is convenient to introduce a condition on interior Whitney balls that is much weaker

than CME itself. Let Q C R"*! be an open set. For every F € LIZOC(Q) we set
1

I Fllcy) = sup / / |F(Y)|*dY, (2.26)
o) xee 8" J Jpx.50x)2)

where §(-) = dist(-, 9R2).
Note that for any X € Q we have that B(X, §(X)/2) C B(x,38(X)/2) N Q with ¥ € dQ so that
8(X)=|X —x|,and 8(Y) > 8(X)/2 for every Y € B(X, §(X)/2). Hence,

IFllco) <2(3)" I Flleme) . (2.27)

and || F|lc () < oo is necessary for (1.10) to hold.

We note that in all applications to the CME for solutions of elliptic PDEs, || F'||c () Will be bounded
automatically, by Caccioppoli’s inequality (since F will be of the form Vu or V”u with u being a bounded
solution). We shall discuss this in more detail together with the corresponding applications.

We introduce a dyadic version of Definition 1.9. Given Q C R"*!, an open set with 32 being ADR,
let {Wp}oene) be a Whitney-dyadic structure for € with some parameters n and K. We define, for
every F € L2 (),

loc

1 .
I Fllempaad(q) := sup // |F(X)|*dist(X, 92) d X. (2.28)
0ene) 0(Q) JJ1,
We are going to show that
IFlleme@ S IF llempsa gy + 1 F llco@)- (2.29)

To obtain this, fix x e 9Q and 0 < r < oo. Set Wy, ={I € W(Q) : I N B(x, r) # J} and note that given
I € W, ,,if we pick Z; € I N B(x, r), then (2.5) implies

diam(/) < dist(1,0Q) < |Z; — x| <r. (2.30)
Set

WA = (T € Wy, : €(I) < diam(32)/4}, WDE ={I € W,, : £(]) > diam(3R) /4},
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with the understanding that (be,i,g = & if diam(d2) = oco. Using this notation and writing § = dist( -, €2)

we have
/f |FI?8dX < Z //|F|28dX+
B(x,r)NQ 1 /

small
TeW;ma

Z //|F|28dX:I+II, (2.31)
1

.
eW,F

where we understand that IT = 0 if be’i,g =a.
To estimate I we set rp = min{r, diam(9€2)/4} and pick k, € Z so that k=1 < o <2k Set

D ={0 eDOR): £(Q) =2, QN B(x,3r) # ).

Given I € "Wxsf;‘a” we pick y € 9€2 so that dist(/, 0€2) =dist(/, y). Hence there exists a unique Q; € D(9€2)
sothat y € Oy and £(Q) = €(I) < rg < diam(9€2)/4 by (2.30). Also,

dist(I, Q;) < dist(I, y) =dist(/, 3Q) < 40diam(]) = 40/nl(Q).
This implies that [ € ‘WQOI C Wp,, provided 0 < < 1 and K > 40,/n. On the other hand, by (2.30)
|y — x| <dist(y, I) +diam(I) + |Z; — x| < 3r;

hence there exists a unique Q € D so that y € Q. Since £(Q;) < ry < 2*2 = £(Q), we conclude that
Q; C Q and consequently I C int(Ug,) C Tg. In short we have shown that if I € W;f?““, there exists
Q € Dy sothat I C Ty. Thus,

1<y f/ |FI?8dX < | Fll oy D 0(Q) S IFlloppssgg)™
gen, 7 /1o 0eD,

where we have used the fact that 9 is a pairwise disjoint family, that UQ en, @ C B(x, Cr)N o2 (with
C depending on dimension and ADR), and that <2 is ADR.

We now estimate II when nonempty, in which case diam(0€2) < oo. Using the properties of the Whitney
cubes and recalling (2.26) we arrive at

ns ) e(l)/f|F|2dX5||F||co<m S S\ Fllewy Y. 2T e WPE o) =24,
1

Tew? Tew?e diam(9§2) /4<2k <r
To estimate the last term we observe thatif Y € I € be,i,g we have by (2.5)
|Y — x| < diam([/) + dist(Z, 92) + diam(32) < £(1).
This and the fact that Whitney cubes have nonoverlapping interiors imply

#(1 eWxtfi,gtﬁ(I)=2k}=2’k("+” Z 1]
TeWPEe(1)=2¢
_ 2—k(n+l) U 1| < 2_1‘("+1)|B(x, C2k)| ,5 1. (2.32)

TeWPS.0(1)=2k
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Therefore,

k
NS IFllce Y, 2" SIFlc@r"
diam(3§2) /4<2k <r

Collecting the estimates for I and II we obtain (2.29).

Definition 2.33 (dyadic nontangential maximal function, area integral, and square function). Let Q c R"+!
be an open set with 92 being ADR and let {Wy}pep@o) be a Whitney-dyadic structure for € with
some parameters 1 and K. For H € C(2) (i.e., H is continuous function in €2), we define the dyadic
nontangential maximal function as

N H(x):= sup |HY)|, xe0d; (2.34)
Yel(x)

for G € L?

ioc (§2), we define the dyadic area integral as

AG (x) := (f/ |G (Y)|? dist(Y, E)l_”dY)z, x €99 (2.35)
I'(x)

and, for u € WIL’CZ(Q), we define the dyadic square function as

Su(x) = (f/ IVu(Y)|* dist(Y, 89)1_"dY>2, x €9Q. (2.36)
Ir'(x)

For any Q € D(0€2), we write N*Q, AL, and S€ to denote the local (or truncated) dyadic nontangential
maximal function, area integral, and square function respectively, where I'( - ) is replaced by the local
cone '2(-). Finally, f\’;, ﬁ, Sor 1/\7*Q, ﬁQ, S2 stand for the corresponding objects associated to the
fattened cones f‘( -) or their local versions FQ( ).

Remark 2.37. It is convenient to compare the two types of cones, the “traditional” and the dyadic (see
(1.14) and (2.23)). Fix a Whitney-dyadic structure {Wy}oecn(ag) for 2 with parameters n and K. It is
straightforward to see that there exists x such that the dyadic cones I'(x) are contained in ' (x) for all
x € 0Q2. Indeed, if Y € I*(27) with I € Wy and Q > x then by (2.9)

Y — x| < diam(I*(27)) + dist(I, Q) + diam(Q) < K2£(Q) < K2n~24(I)
< Kzp~2dist(l, Q) < K272 dist(Y, 992);
hence Y € I'g g1/2,-12(x). And we have shown that I'(x) C f‘(x) C g k12y-112. Conversely, given k > 0,
there exist n and K (depending on «) such that if {Wp}oene) is a Whitney-dyadic structure for €2 with
parameters 1 and K then I'q ,(x) C I'(x) for all x € 9Q2. As a matter of fact, given ¥ € I'q ,(x), let

I € W with I oY and pick Q € D(92) with Q > x and £(I) = £(Q) (recall that if 92 is bounded we
have assumed that §(Y) < diam(d€2), hence such a cube Q always exists). Then,

dist(I, Q) < |Y —x| < (1+k) dist(Y, 3Q) < (1+k)(diam(I) +dist(Z, 32)) < (1+k)e(I) = (1 +x)€(Q).

Thus, if K'/2>> 14k, then I € (Wg CWpandY €l C Up C I'(x) as desired.
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Remark 2.38. In the previous remark we were able to compare the dyadic and the traditional cones and
this gives comparisons between the associated nontangential maximal functions, area integrals, or square
functions by adjusting the different parameters. It is also convenient to see how to incorporate the “change
on the aperture” on the traditional cones via or on the dyadic cones. In the case of traditional cones this
amounts to considering different values of the aperture . For the dyadic cones one can “change the
aperture” using Up = Ug,; versus ﬁQ = Ug 2, or even by considering Whitney-dyadic structures with
different parameters.

In the case of the traditional cones, one has, for every 0 < p < 0o and «, k" and for every F € C(2)
and G € W2(Q),

loc
IN« .« FllLroe) e INsoe Fllroo), I AeGlro) S 1A« Glliroo)- (2.39)

The first estimate can be found in [Hofmann et al. 2010, Proposition 2.2]. For the second estimate we refer
to [Milakis et al. 2013, Proposition 4.5] in the case of 2 being a CAD, a simpler argument (valid also in
the former case) can be carried out by adapting [Martell and Prisuelos-Arribas 2017, Proposition 3.2(i)].
Further details are left to the interested reader.

For the dyadic cones, Remark 2.37 says that if {Wy}ocpsg) is a Whitney-dyadic structure for £ with
parameters n < 1 and K >> 1 then I'(x) C /F\(x) C I'q « (x) for some large k > 0 and for every x € 0€2. On
the other hand, let {Wj} pen(se) be a Whitney-dyadic structure for € with parameters 7’ < 1 and K’ > 1
and we write I'(x) for the associated dyadic cone. As observed before we have that I'q 1 (x) C I (x).
Write N, and A (resp. N, and A’) as in (2.34) and (2.35) for the cones I" (resp. I'’). These and (2.39)
allow us to obtain that for every 0 < p < 0o and for every F € C(£2)

IN«FllLroo) < IN«FllLro) < 1N« Flleroo) Se INwo 1 Flleroo) < INLFllLroo)

and, for every G € WI’Z(Q),

loc

IAG | Lre) < IAGLroo) < 1A GllLroo) Sk IA1Grog) < IA'GllLrog)-

2.1. Case ADR. Here we assume that Q@ = R"*!\ E, where E is merely ADR, but possibly not UR. Let
us set Wy = (Wg (see (2.8)) and we clearly have (ii) and (iii) with C = 1 in Definition 2.7. For (i), we
see that ‘Wg is nonempty, provided that we choose n small enough, and K large enough, depending only
on dimension and the ADR constant of E. Indeed, given Q € D(E), consider the ball Bp = B(xg, 1),
as defined in (2.2), (2.3), with r & £(Q), so that Agp = Bp N E C Q. By [Hofmann and Martell 2014,
Lemma 5.3], we have that, for some C = C(n, ADR),

Y e R™\ E : dist(Y, E) < er}N Bp| < Cer"*!

for every 0 < ¢ < 1. Consequently, fixing 0 < &9 < 1 small enough, there exists Xp € Bgp/2, with
dist(X o, E) > gor. Thus, B(X g, gor/2) C Bp \ E. We shall refer to this point X o as a “corkscrew point”
relative to Q, that is, relative to the surface ball Ay (see (2.2) and (2.3)). Now observe that X o belongs
to some Whitney cube I € ‘W, which will belong to WQO for n small enough and K large enough. Hence,
{Woloen(E) is a Whitney-dyadic structure for R\ E.



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3269

In [Hofmann et al. 2016] it was shown that the ADR property is inherited by all dyadic local sawtooths
and all Carleson boxes:

Proposition 2.40 [Hofmann et al. 2016, Proposition A.2]. Let E C R"*! be a closed n-dimensional ADR
set and let {Wp} oep(k) be a Whitney-dyadic structure for R"1\ E with parameters n < 1 and K > 1.
Then all dyadic local sawtooths Q¢ o and all Carleson boxes Ty have n-dimensional ADR boundaries.
In all cases, the implicit constants are uniform and depend only on dimension, the ADR constant of E and
the parameters 1, K, and t.

2.2. Case UR. Here we assume that Q = R"*!\ E, where we further assume that E is UR. Much as
before, since E is in particular ADR, if we take n < 1 and K > 1 (depending on n and the ADR constant
of E), we can guarantee that WQO # &. In this case we will exploit the additional fact that £ is UR to
construct some Whitney-dyadic structure with better properties. To do so, we would like to recall some
results from [Hofmann et al. 2016] but we first give a definition to then continue with the main geometric
lemma there.

Definition 2.41 [David and Semmes 1993]. . Let S C D(E). We say that S is “coherent” if the following
conditions hold:

(a) S contains a unique maximal element denoted by Q(S) which contains all other elements of S as
subsets.

(b) If Q belongs to S, and if Q C O C O(S), then O € S.
(c) Given a cube Q € S, either all of its children belong to S, or none of them do.
We say that S is “semicoherent” if only conditions (a) and (b) hold.

Lemma 2.42 (the bilateral corona decomposition [Hofmann et al. 2016, Lemma 2.2]). Suppose that
E C R" is n-dimensional UR. Then given any positive constants n < 1 and K > 1, there is a disjoint
decomposition D(E) = G U B, satisfying the following properties.

(1) The “good” collection G is further subdivided into disjoint stopping time regimes such that each such
regime S is coherent (see Definition 2.41).
(i1) The “bad” cubes, as well as the maximal cubes Q(S) satisfy a Carleson packing condition:
Y 0@+ Y. o(Q(8) =Cuko(Q) forall Q € D(E).
Q'CcQ,0'eB S$:0(8)Co
(iii) For each S, there is a Lipschitz graph I's, with Lipschitz constant at most n, such that, for every
Qes,
sup dist(x, I's) + sup dist(y, E) < nl(Q), (2.43)
xeA*Q yeB*Qﬂl"s
where BE = B(xg, K£(Q)) and A*Q = B*é NE.

As we have assumed that £ is UR we make the corresponding bilateral corona decomposition of
Lemma 2.42 with n <« 1 and K > 1. Our goal is to construct, for each stopping time regime S in



3270 STEVE HOFMANN, JOSE MARIA MARTELL AND SVITLANA MAYBORODA

Lemma 2.42, a pair of CAD domains Q?, which provide a good approximation to E, at the scales
within S, in some appropriate sense. To be a bit more precise, Qg := Q; U Qg will be constructed as
a sawtooth region relative to some family of dyadic cubes, and the nature of this construction will be
essential to the dyadic analysis that we will use below.

Given Q € D(E), for this choice of n and K, we set as above B}, := B(xg, K£(Q)), where we recall
that x¢ is the center of Q (see (2.2), (2.3)). For a fixed stopping time regime S, we choose a coordinate
system so that I's = {(z, ¢s(2)) : z € R"}, where ¢g : R" — R is a Lipschitz function with [|¢||Lip < 7.

Claim 2.44 [Hofmann et al. 2016, Claim 3.4). If Q € S, and I € ‘W), then I lies either above or
below T's. Moreover, dist(I, T's) > n'/2£(Q) (and therefore, by (2.43), dist(I, I's) ~ dist(I, E), with
implicit constants that may depend on n and K).

Next, given Q € S, we augment WO We split WJ = (Wg’+ U (Wg’f, where [ € "WS’J“ if I lies
above I's, and I € W 0= if T lies below I's. Choosing K large and n small enough, by (2.43), we
may assume that both W 0% are nonempty. We focus on WO, as the constructlon for W is the same.
For each I € W , let X ;1 denote the center of /. Fix one particular Io e Wt , with center Xt 0= = Xy,.
Let Q denote the dyadic parent of Q (that is, the umque dyadic cube Q with Q C Q and Z(Q) 20(0)),
unless Q = Q(S); in the latter case we 51mply set Q Q. Note that Q € S, by the coherency of S. By
Claim 2.44, for each [ in WQ , Or in Wt g o we have

dist(1, E) ~ dist(I, Q) ~ dist(I, T),

where the implicit constants may depend on n and K. Thus, for each such I, we may fix a Harnack chain,
call it Hj, relative to the Lipschitz domain

Qf i={x. ) eR"™ 11> pg(x)},

connecting X; to X JQF By the bilateral approximation condition (2.43), the definition of ‘W9, and the
fact that K!/? « K, we may construct this Harnack chain so that it consists of a bounded number
of balls (depending on 1 and K), and stays a distance at least cn'/?£(Q) away from I's and from E.
We let W “* denote the set of all J € W which meet at least one of the Harnack chains #;, with
I e ‘W0+U’W9+ (or simply I € ‘W0+ if Q = Q(9)), i.e.,

Wyt :=1{J € W:there exists I € Wy " U (W%* for which H; N J # &},

where as above, Q is the dyadic parent of @, unless Q = Q(5), in which case we simply set Q =Q (so
the union is redundant). We observe that, in particular, each I € (Wg’“L U WQ9’+ meets H;, by definition,
and therefore

0,+ 0.+ *,+
Wy UW 5 C Wy (2.45)
Of course, we may construct "Wg’_ analogously. We then set

* . *,+ *,—
W= WyTUWS™.
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It follows from the construction of the augmented collections ”Wg’i that there are uniform constants ¢

and C such that

cn?t(Q) < £(I) < CK24(Q) forall I € W, 046
dist(1, Q) < CK*€(Q) forall I € W}, '

It is convenient at this point to introduce some additional terminology.

Definition 2.47. Given Q € G, and hence in some S, we shall refer to the point X ;, 1 specified above, as
the “center” of U, 1 (similarly, the analogous point X, o- lying below I, is the “center of Uj). We also
set ¥ *.= X and we call this point the “modified center” of U, = where as above Q is the dyadlc parent
of Q, unless Q Q(8), in which case Q = Q and Y = XjE

Observe that WQ and hence also ’Wé have been defined for any Q that belongs to some stopping
time regime S, that is, for any Q belonging to the “good” collection G of Lemma 2.42. We now set

W5, Qeg,
Wy = Q 2.48
¢ {wg, QeB, (2.48)

and for Q € G we shall henceforth simply write (Wéc in place of ”Wg’i. Note that by (2.8) when Q € B
and by (2.46) when Q € G we clearly obtain (2.9) with C depending on n and the UR character of E. By
construction ‘Wg C Wpy. All these show that, provided n < 1 and K > 1 (depending on n and the UR
character of E), {Wp}oen(k) is a Whitney-dyadic structure for R"*! \ E with parameter 7 and K and
with C depending on n and the UR character of E.

Given an arbitrary Q € D(E) and 0 < t© < 19/4, we may define an associated Whitney region Up (not
necessarily connected) as in (2.10) or the fattened version of ﬁQ as in (2.11). In the present situation, if
Q € G, then Uy splits into exactly two connected components

Uy =Ug5,= | Io. (2.49)
1 E’WQi
We note that for Q € G, each Uéc is Harnack chain connected, by construction (with constants depending
on the implicit parameters t, n and K); moreover, for a fixed stopping time regime S, if Q’ is a child
of Q, with both Q’, Q € S, then U}, U Uér is Harnack chain connected, and similarly for U é, U UQ_ .

We may also define the Carleson boxes Ty, global and local sawtooth regions Q#, Q# o, cones I,
and local cones I'? as in (2.12), (2.20), (2.23), and (2.24).

Remark 2.50. We recall that, by construction (see (2.45), (2.48)), given Q € G, one has W~ Cc W,
where Q is the dyadlc parent of Q. Therefore, Y, * e Up =N UZE. Moreover, since Y is the center of
some I € W , we have that dlSt(Yi, 8Ui) R dlSt(Yi, 8U:Qt) ~ £(Q) (with implicit constants possibly
depending on n and/or K)

Remark 2.51. Given a stopping time regime S as in Lemma 2.42, for any semicoherent subregime (see
Definition 2.41) 8’ C S (including, of course, S itself), we now set

Qs = int( U UQi), (2.52)
Qes’
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and let Qg = Q’; U Qg . Note that implicitly, €25 depends upon 7 (since UQjE has such dependence).
When it is necessary to consider the value of 7 explicitly, we shall write Qg (7).

The main geometric lemma for the associated sawtooth regions is the following.

Lemma 2.53 [Hofmann et al. 2016, Lemma 3.24]. Let S be a given stopping time regime as in Lemma 2.42,
and let S’ be any nonempty, semicoherent subregime of S. Then, for 0 < t < 1y, with ty small enough,
each of Q? is a CAD with character depending only on n, t, n, K, and the UR character of E.

2.3. Case 1-sided CAD. Here we assume that 2 is a 1-sided CAD. In this case, we are basically in the
situation which is similar to being within one regimen S, at least as far as the construction of W) is
concerned.

With W = W(Q) and D = D(92) as above, and for some give parameters n < 1, K > 1, we
consider WQO (see (2.8)). For any Q € D we let X be a corkscrew point relative to Q, more specifically,
relative to Ag (see (2.2), (2.3)). We note that in this scenario the existence of such point comes from the
fact that Q2 satisfies the (interior) corkscrew condition). For n <« 1 and K >> 1 depending on the CAD
character of ©2 we can guarantee that for every Q e D, if / € Wissothat / > Xp then / € WQO. We then
augment WQO to (Wé as done in [Hofmann and Martell 2014, Section 3]. More precisely, use the fact
that one can construct a Harnack chain to connect X o with any of the centers of the Whitney cubes in
WQO uUw 3, where Q is the dyadic parent of Q. Then ‘W is the family of all Whitney cubes which meet
at least one ball in all those Harnack chains. Note that in the case when E is UR and Q € S we have used
a similar idea; the main difference is that the Harnack chain in that case comes from the fact that QFS is a
Lipschitz domain, whereas here such property comes from the assumption that €2 is a 1-sided CAD and
hence the Harnack chain condition holds. Set then ‘W = W5 and one can see that (with the appropriate
choice of a sufficiently small n and a sufficiently large K depending on n and the CAD character of D)
(2.9) holds. Moreover, the construction guarantees that Wo U W~ C W)y, that we can cover with the
Whitney cubes in ‘W all the Harnack chains connecting X 0 w1th any center of [ € WO U W~ Cc W,
and also that if /, J are such that I > X and J > X5 then I, J € Wp. We note that by constructlon the
Harnack chain condition holds in each Whitney region Up and so it does in Up U Ug. In either case the
corresponding constant depends on the CAD character of D and the parameters 7, K, t.

In the present situation we have the following geometric result:

Lemma 2.54 [Hofmann and Martell 2014, Lemma 3.61]. Let @ C R"*! be a 1-sided CAD and let
{Woloenoa) be a Whitney-dyadic structure for Q with parameters n < 1 and K >> 1 as just constructed.
Then all of its dyadic sawtooths regions Qg and QF o and all Carleson boxes Tg and Tx are also 1-sided
CAD with character depending only on dimension, the 1-sided CAD character of 2, and the parameters
n, K, and t.

2.4. Case CAD. Here we assume that 2 is a CAD. This is, strictly speaking, a subcase of the case
of 1-sided CAD above, but the extra assumption that €2 has exterior corkscrews can be inferred to the
associated sawtooth regions and Carleson boxes.

With W = W(Q2) and D = D(d2) as above, and for some give parameters n < 1, K > 1, we
consider (WB (see (2.8)) and construct Wy exactly as in the 1-sided CAD case since a CAD is in
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particular a 1-sided CAD. Hence, we have the very same properties, in particular, Lemma 2.54 applies.
But we can additionally obtain the exterior corkscrew condition:

Lemma 2.55. Let Q C R"! be a CAD and let {Wo}oenwe) be a Whitney-dyadic structure for Q with
parameters 1 <K 1 and K > 1 as just constructed. Then all of its dyadic sawtooths regions Q& and Q o
and all Carleson boxes Tg and Tx are also CAD with character depending only on dimension, the CAD

character of <2, and the parameters n, K, and 7.

Proof. As mentioned above we can apply Lemma 2.54; hence all the Q#, Q& o, T, and Tx are 1-sided
CAD domains. It remains to see that any of them satisfy the exterior corkscrew condition. Let €2,
be one of these subdomains and take x, € 0€2, and 0 < r < diam(d€2,). By construction 92, C Q
and we consider two cases 0 < dist(x,, 02) < r/2 and dist(x,, 0€2) > r/2. In the first scenario we
pick x € 02 so that |x, — x| = dist(x,, 02) < r/2 (notice that x = x, if x, € 9Q N IR,). Since 2 is
a CAD, it satisfies the exterior corkscrew condition; hence we can find X € Qg = R ! \ Q so that
B(X, cor/2) C B(x,r/2) N Qex Where ¢y is the exterior corkscrew constant. Note that 2, C ©2; hence
B(X, cor/2) C (2)ext- Also, B(X, cor/2) C B(x,r/2) C B(x,,r). This shows that X is an exterior
corkscrew point relative to the surface ball B(x,, r) Nd<2, for the domain €2, with constant ¢y/2. Consider
next the case on which dist(x,, 0€2) > r/2. Note that in particular x, € €2 and therefore we can find two
Whitney cubes I, J € W sothat x € dI*NJ, dINJIJ # @, int(I*) C Q, and J is a Whitney cube
which does not belong to any of the W) that define €2,. Note that £(J) > dist(x,, dR2)/C > r/(2C) for
some uniform constant C > 1, that /™ misses 3J/4 as observed before and that the center of J satisfies
X (J) € (24)ext- It is then clear that the open segment joining x, with X (J) is contained in (£2,)ext and
we pick X in that segment so that | X — x,| =r/(8C) and hence B(X, r/(16C)) C B(x,, r) N 2. This
shows that X is an exterior corkscrew point relative to the surface ball B(x,, r) N d<2, for the domain 2,
with constant 1/(16C). Therefore, we have shown that €2 satisfies the exterior corkscrew condition with
implicit constant uniformly controlled by the CAD character of €. ]

2.5. Some important notation. To complete this section we introduce the following notation which will
be used in our main statements:

Notation 2.56. In the statements of our main results, we will assume that some estimates (e.g., Carleson
estimates, “A < N”, “N < S”, etc.) hold for a given family of subsets with constants depending on the
character of those subsets and our goal is to transfer those estimates to the original set. It is crucial to
explain how this dependence on the character is understood. To set the stage suppose that we are given
some set X C R"*! and a family Sx := {Y}yes,, Y C X. We assume that associated with X there is
some collection of nonnegative parameters My € [1, 00)M1 called its character and also that each Y € Sx
has some associated character My € [1, 00)™2, a collection of nonnegative parameters. Using this notation
when we say that certain estimate holds for all Y € Sx with constant Cy depending on the character of Y,
we mean that Cy = ®(My) with © : [1, 00)2 — (0, co) being a nondecreasing function in each variable.
Implicit in the arguments to transfer the desired estimate to X, we will use only those sets Y € Sy whose
parameters in the character are all uniformly controlled by some constant My (which will depend on
the character of X), and then all the corresponding constants in the assumed estimates for those sets
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will be controlled by ®(My, ..., Mp) < oo, and eventually the desired estimate on X will depend on
®(My, ..., My).

It is illustrative to present some examples explaining the previous abstract notation in some particular
cases. Suppose that the goal is to show that some function F satisfies the Carleson measure estimate (1.10)
inX=R"t!'\ E, with E being UR (see the second part of Theorem 3.31). In this case Mx €[1, 00)3 is the
UR character of E, and we let Sx be the collection of bounded chord-arc subdomains of X, in which case
My €1, 00)* is the CAD character of Y. With this in hand we show that there is a constant M (depending
only on My, dimension, and the harmless discretionary parameters t, n and K, and thus independent
of F; see Lemma 2.53) so that the resulting estimate can be transferred from the collection of CAD with
parameters in the character at most My, and hence the Carleson estimate (1.10) holds with a constant
depending only on ® (Mo, My, My, Mp), and other harmless parameters. Similarly, another example is
the case that X = D is a CAD, hence My € [1, co)* is its CAD character, and S is some collection of
bounded Lipschitz chord-subdomains of X; then My € [1, 00)? is the Lipschitz CAD character of Y.

3. Transference of Carleson measure estimates

In this section we show how to transfer CME estimates from Lipschitz to CAD (see Theorem 3.6) and
then from CAD to the complement of a UR set (see Theorem 3.31). These two independent results, each
interesting in its own right, can be combined to give immediately the following:

Corollary 3.1. Let E C R"™! be an n-dimensional UR set and let F € L} _(R"!'\ E). If F satisfies the
Carleson measure estimate (1.10) for every bounded Lipschitz subdomain of R"T'\ E with constant
depending on the Lipschitz character (see Notation 2.56), then F satisfies the Carleson measure estimate
(1.10) in R**1\ E as well. More precisely, there exists a large constant My (depending only n and the UR
character of E %) so that using the notation in (1.10) there holds

| Fllemew+n\gy <C  sup [ FlleME®)s (3.2)
QCRnr+1 \E
where the sup runs over all bounded Lipschitz subdomains Q@ C R"*!\ E with parameters in the Lipschitz
character at most My, and C depends as before only on n, and the UR character of E.

Remark 3.3. The previous result (and also Theorem 3.31) easily yields a version of itself where everything
is localized to some open subset with UR boundary. More precisely, let 2 C R"*! be an open set with
dQ being UR and let F € L2 (2). Then

loc

| Flleme) < C sup || FllcmEemD), (3.4)
DcCQ

where the sup runs over all bounded Lipschitz subdomains D C 2 with parameters in the Lipschitz
character at most My, and C depends only on 7 and the UR character of 9€2.

3Qur estimates depend also on the discretionary parameters t, n and K introduced above, but in turn each of these may be
chosen to depend at most on n and the UR character of E.
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To see this, write Fq := F in Q and Fo =0in R\ Q so that F € L} (R"™\ 9Q). Since 9Q is UR
we can apply Corollary 3.1 to £ = 02 and (3.2) easily yields

I Flleme) = [ FelleMew+va) <€ sup  [[Fallemem) = C sup [[FelleME®D)-
DCRr+1\9Q Dc
3.1. Transference of Carleson measure estimates: from Lipschitz to chord-arc domains. In this section
we present a method to transfer the CME estimates from Lipschitz domains to CAD. Our main result is
as follows:

Theorem 3.5. Let D C R be a given CAD and assume that F € leoc(D) satisfies (2.26). If F satisfies
the Carleson measure estimate (1.10) on all bounded Lipschitz subdomains of D with the constant C = Cy
depending on the Lipschitz constants of the underlying domains only, then F satisfies the Carleson
measure estimate (1.10) in D as well, with the bound depending on Cy, the constant in (2.26), the NTA
constants of D and the ADR constants of 0 D only.

Theorem 3.6. Let D C R"*! be a given CAD and let F € leoc(D)' If F satisfies the Carleson measure
estimate (1.10) for every bounded Lipschitz subdomain of D with constant depending on the Lipschitz
character (see Notation 2.56), then F satisfies the Carleson measure estimate (1.10) in D as well. More
precisely, there exists a large constant M (depending only n and the CAD character of D) so that using

the notation in (1.10) there holds
| Fllemepy < C sup || FlleME©)» (3.7
QcD

where the sup runs over all bounded Lipschitz subdomains Q2 C D with parameters in the Lipschitz
character at most My, and C depends as before only on n, and the CAD character of D.

Let us remark that in the course of the proof we ensure a suitable choice of a (sufficiently small) n
and a (sufficiently large) K is (2.8) which strictly speaking affect the constant in (3.7). However, as all
choices depend on dimension and the CAD character only, this does not affect the result as stated above.

In preparation to prove the previous result we start with the following version of the John—Nirenberg
inequality. It is a suitable modification of [Hofmann and Mayboroda 2009, Lemma 10.1] which, in turn,
was inspired by [Auscher et al. 2001, Lemma 2.14]. Here we present an alternative proof along the lines
in [Marin et al. 2020, Lemma A.1]. Given 2 an open set with an ADR boundary, let Q¢ be either 92, in
which case Do, = D(9€2), or some fixed dyadic cube in [D(9€2), in which case Dy, is defined in (2.13).

Lemma 3.8. Let Q be an open set with an ADR boundary, let Q be either 02 or a fixed cube in D(0S2),

and for some given n <K 1 and K > 1, consider a Whitney-dyadic structure {Wo}oenoa) for Q with

2
loc

parameters 1 and K as in Definition 2.7. Let F € L
0 < N < oo such that

() and suppose that there exist 0 < o < 1 and
o{x e Q:ﬂQF(x)>N}§ozG(Q) forall Q € Dy,. 3.9
Then, for every 0 < p < o0 there exists Cy, , depending only on p and o such that

sup ][&Z{QF(X)” do(x) < Cq ,NP. (3.10)
QEDQO Q
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Proof. We first claim that for all Q € Dy,

ACF(x) < AYF(x)+ inf ACF(y) forallx € Q' € Dy \{Q}, (3.11)

yegQ’
where Q' is the dyadic parent of Q". This follows easily from the fact that if x € Q" € Dy \ {Q} and
y € Q' then
rew\r¢mc |J ve= | Urcrlo.
XEPEDQ\DQ/ Q,CPCQ

Next, let us set

o(Eo®) _  ox€Q:AFX)>1)

2(f) = B , 0 . 3.12
W= "o "ol (0) shee G-12

From (3.9) it follows that
o(Eg(N)) :=a{er:ﬂQF(x)>N}§om(Q) forall Q € Dg,. (3.13)

Fix now Q € Dg,, B € (a, 1) (we will eventually let 8 — 17) and, recalling the notation introduced in
Definition 2.4 with E = 9€2, set

Fo(N):={x € Q: My(lg,w)(x) > B}. (3.14)
Note that (3.13) ensures that
o(Eg(N))
][Q Lram () do () = TR < < (3.15)

hence we can extract a family of pairwise disjoint stopping-time cubes {Q;}; C Dy \ {Q} so that
Fo(N) =J; Q; and for every j
o(Eg(N)NQ)) - B o(Eg(N)N Q)
o(Q)) ’ o(Q')
Fix t > N. Observe that Eg(t) C Eg(N) and

<B, Q;CQ eDy. (3.16)

B<1=lgymx) <M)(g,w)(x) foro-ae. xeEg®). (3.17)

Hence,
o(Eg(t) =0(Eg()NFo(N)) = ZG(EQ(I) NQj).
J
For every j, by the second estimate in (3.16) applied to é ;, the dyadic parent of Q;, we have
o (Eg(N)NQ))/o(0) < B <1;

therefore a(éj \ EQ(N))/O’(éj) > 1— B > 0. In particular, we can pick x; € éj \ Eg(N). This and
(3.11) imply that for all x € Q;

AYF(x) < A% F(x)+ inf ACF(y) < AYF(x)+AYF(xj) < A% F(x)+ N.

yEQ;

Consequently, AL F(x)>1t—N for every x € Eg(t) N Q;, which further implies
o(Eg()NQj) <ofx e Q;: AYF(x)>t—N} < E(t—N)o(Q)).
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All these give
o(Egt) =Y o(Eg(h)N Q) <E(—N)) o(Q))

J J
1 1 o
E(r— N)E ZU(EQ(N) NQj) <& - N)EG(EQ(N)) =E@-—- N)EG(Q), (3.18)
J
where we have used the first estimate in (3.16), that the cubes {Q;}; are pairwise disjoint and, finally,
(3.13). Dividing by o (Q) and taking the supremum over all Q € D¢, we obtain

IA

E(t)f%E(t—N), t>N. (3.19)

Since this estimate is valid for all 8 € («, 1), we can now let 8 — 17, iterate the previous expression, and
use the fact that E(¢) < 1 to conclude that

B(r) <o lemloel@ /Ny o

We finally see how the just-obtained estimate implies (3.10): for any 0 < p < oo,

00 . 9]
][ﬂQF(x)pda(x)zpf ofxeQ:A F(x)>t}tpﬂ
Q 0

o(Q) t
0 t 0 t
N P [ee)
=pa | s / ¢, N, 0
log(a—1) 0 ¢ .

To address the transference of the Carleson measure condition from Lipschitz to chord-arc domains
we shall use the fact that chord-arc domains contain interior big pieces of Lipschitz subdomains.

Proposition 3.20 [David and Jerison 1990]. Given Q2 C Rt 4 CAD, there exist constants C > 2 and
0 < 0 < 1 such that for every surface ball A(x,r) = B(x,r)N IR, x € 02, 0 < r < diam(02), there
exists a bounded Lipschitz domain Q' for which we have the following conditions:

1) H'"OQNIQL NB(x,r)) >0H"(A(x,r)) ~6r".
(ii) There exists X o so that B(Xa,r/C) C B(x,r)NQN Q.
(i) ' Cc QN B(x,r).

The Lipschitz character of Q' as well as 0 <0 < 1 and C > 2 depend on n, the CAD character of D only
(and are independent of x, r).

We remark that in [David and Jerison 1990], Proposition 3.20 is proved under weaker assumptions,
namely, ADR and an interior corkscrew condition, and a “weak exterior corkscrew condition” which
gives exterior disks rather than exterior balls, and with no hypothesis of Harnack chains— but if the
Harnack chain condition is assumed, [Azzam et al. 2017] yields the exterior corkscrew condition, hence
exterior disks implies exterior balls. Later on, in [Badger 2012], existence of big pieces of Lipschitz
subdomains was also proved for usual NTA domains, with no upper ADR assumption on 92 (the lower
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ADR bound holds automatically in the presence of a two-sided corkscrew condition, by virtue of the
relative isoperimetric inequality). For the applications that we have in mind here, neither amelioration is
significant, and we will simply work with CAD domains in the sense of Definition 1.6.

For future reference we also would like to provide the following corollary.

Corollary 3.21. Let Q@ C R"*! be a CAD. There exist constants C > 2 and 0 < 0 < 1 such that, for
every Q € D(0), there exists a bounded Lipschitz domain Qg C Q2 for which, using the notation
Bp =B(xg,r), Ag = BN, with cl(Q) <r < £(Q) in (2.2), (2.3), we have the following:

(1) 000N Q) > 00 (Q) =~ HL(0)".

(i) For every Q' € D(Q) such that there exists a point yo € Q' N 3R, there exists Yo' so that
B(Yg, £(Q")/C) C B(yg, L(Q')NQNQ, that is, Y is a corkscrew relative to B(yor, £(Q"))NQ
and 32, and B(y¢, £(Q)) N0 and Q. Furthermore, with the appropriate choice of n and K
in (2.8), we have B(Yg, £(Q")/C) C Ug..

(i) Qo C QN By.

The Lipschitz character of Qg aswell as 0 <0 <1, C > 2, depend on n, and the CAD character of 2
only (and are uniform in Q, Q).

Proof. The corollary follows directly from Proposition 3.20. Indeed, for any Q € D(9€2) there exists
A C Qasin(2.2),(2.3). One can then build a Lipschitz domain €2 from Proposition 3.20 corresponding
to Ag, and then the conditions (i) and (iii) in Proposition 3.20 give (i) and (iii) in Corollary 3.21,
respectively. Condition (ii) in Corollary 3.21 follows from the fact that a Lipschitz domain ¢ is, in
particular, a CAD, and hence, it has a corkscrew point relative to B(yor, rHn 082 since r'<£(Q) <
£(Q) ~ diam(0€2p) (the ~ follows from (ii) and (iii) in Proposition 3.20). Using the fact that Qo C €2,
one can easily see that Y is also a corkscrew point in € relative to B(y¢, r’) N9€2. It remains to observe
that a suitable choice of n and K (uniform in Q’) ensures that such a corkscrew point always belongs
to U and moreover, B(Yo, C™1¢(Q") C Uy O

We are now ready to prove Theorem 3.6:

Proof of Theorem 3.6. By (2.29) and Remark 3.34 we can reduce matters to estimate || F ||CMEdyz\d( D)- Fix
some Q € D. According to Corollary 3.21 (along with the inner regularity property of the measure) there
exists a bounded Lipschitz domain ¢ such that o (929 N Q) > 8o (Q), and the Lipschitz character
of Qo as well as 0 < 6 < 1 depend only on n and the CAD character of D (and are uniformly in Q).
The domain Q¢ further satisfies properties (i)—(iii) in Corollary 3.21. Given x € Q \ 929, since 982 is
closed, there exists r, > 0 such that B(x, r,) N0Q2p = <. Pick then Q, € D with £(Q,) < min{£(Q), 7y}
so that x € Q,. Then, x € Q N O, and necessarily O, C Q. Also, O, C B(x,ry) since x € Q and
diam(Qy) ~ £(Q) K ry. Thus, O, C Q\ 020 and there exists a cube with maximal size Q7** € Dy so
that Q" C 0\ 8€2¢. Note that Q7" C Q since 0 (329 N Q) > 0. Thus, by maximality, 3Qo N Q' # &
for every Q" with Q'™ C Q" C Q. Consider then ¥ = {Q;}; C D \ {Q} the collection of such maximal
cubes. By construction, the cubes in ¥ are pairwise disjoint and also Q \ 3Qp = |J ; Qj. Associated
with ¥ we build the corresponding local sawtooth Qg o (see (2.20)).
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Note that if Q" C Q; € 7, then Q' C Q; C 0\ 3Qp; hence Q29 N Q' = &. Conversely, if Q' € Dy
is such that 9Qp N Q' =@, then Q' C 0\ 3Ry = Uj Q; and there is Q; € ¥ such that Q' N Q; # @.
If Q; C Q' then by the maximality of Q; we have 9Q2p N Q" # @, which is a contradiction. As a
result, necessarily Q" C Q;. All in one, for every Q' € Dy, we have that Q' C Q; € ¥ if and only if
Q2o N Q' = @. Equivalently, given Q" € Dy, one has that Q" € D¢ ¢ if and only if Q' NIQ # .

Let N > 1 to be chosen and by Chebyshev’s inequality

olx€dpnQ: ﬂQF(x)>N}<— // |F(Y)[*8(Y)! " dY
9Qon0 J Jre(x)

5% > a(aﬁQﬂQ’)/f IF(Y)28() " dY

Q/EDQ
~ L U(aQQmQ)// F(Y)|?8(Y)dY
Nzg/e% 0 » |F(Y)]?8(Y)

1
< 2
N2 //ssz,g |F(Y)|"6(Y)dY,

where we have used that §(Y) ~ £(Q’) for every Y € Ué and also that the family {Ué}Qfe[D has bounded
overlap. We claim that

1
FOOPSX)dX < C( sup IF Flicyn ) 322
a(Q) /—/Qr,gl ("X dX = (gszlé% I Flleme) + |l ||CO(D)> (3.22)

where the sup runs over all bounded Lipschitz subdomains €2 C D with parameters in the Lipschitz
character at most My, and C depends as before only on n, and the CAD character of D. Assuming this
momentarily, and invoking (3.36), we conclude that

o{x € Q: A%F(x) > N} SU(Q\&QQ)-i-%// |F(Y)]?8(Y)dY
N2 ) o,

C 0
<(1-0)o(0)+ 2 Su% | FllcmE@)o (Q) < <1 - §>0(Q),
C

provided N? = (2C/6) supg cp IIFllcmE@)- Applying then the John—Nirenberg inequality, Lemma 3.8
with Qg = E = 8D, which is ADR by assumption, extending F as 0 in R**!\ D, and with p =2 we
then conclude that

sup ][ ACF ()20 (x) < sup [IF lewe.
Q

QEDQO QCD
In turn, this yields
// |FI?8dX < Z /f |FI?8dX ~ Z J(Q/)f/ |F?8' " dXx
To 0'eDy ¥ Ve 0'eh Uy
Q
= > f (// |F|281”dX)da§/(// |F|281”dY)do(x)
Q’ED U 0 FQ(X)

= f ALF (x)*0 (x) So(Q) sup ||Fllcme)-
[ QcDh

Here we have used that §(-) &~ £(Q’) in Uy and the fact that the family {Ugp}gep has bounded overlap.
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We are then left with showing (3.22). To this end, let us write

// [F(X)|?8(X)dX < Z // |F(Y)|?8(Y)dY = Z+ Z (3.23)
Qr.0 0?0

Q'eDy. Q'eDy , Q'eby ,

where, for some ¢ > 0 to be chosen,
DY o =0 €Dy g distWUg, D) < édist(UQ/, 120)]. D}, i=Dro\D),.

Note that, in principle, Uy can intersect d€2¢. For later use it is convenient to record that £(Q’) ~
dist(Ug, D) ~ dist(Ug, Q') by (2.8), (2.6), (2.9), (2.10).

Let Q' € ID;’ o> the fact that Q' € Dg o implies that there exists y € Q"N 92p; hence
e0(Q') ~ edist(Ug, dD) < dist(Ug', 982)

<dist(Ugr, y) < dist(Ug, Q) +diam(Q") < £(Q"). (3.24)
In particular, for every Y € Uy with Q' € [D;r’ o We have
8(Y) =dist(Y, dD) < £(Q") +dist(Ug, dD) < e dist(Ug/, 9R0) S e dist(Y, 8Q20).  (3.25)

Note also that since y' € Q' NdQp # &, according to Corollary 3.21 part (ii), we can find Y so that
B(Yg,£(Q")/C) C B(yp, (Q)NQNQyNUgy. Hence, 2p NUy # &, and then due to (3.24) and
the fact that Uy is connected by construction, we conclude that Uy C Q¢. As a result,

> // IFOPsydy et > // |F(Y)>dist(Y, 3Qp) dY
UQ/ UQ/

Q'eD} , Q'eDy (3.26)
N /f |F(Y)|*dist(Y, 3Q0) dY <o (Q) sup || Fllcme),
Qo QcD

where we used (3.25), the finite overlap property of the family {Ug/}orep, and the fact that Qg is

a bounded Lipschitz subdomain of D with character controlled by the CAD parameters in the last one.

Note that Qo C B(xg, C£(Q)) for some uniform constant C, which justifies the bound by o (Q).
Consider next the family |D2¢’ 0 and we shall demonstrate that they satisfy a packing condition. Indeed,

recall from above that £(Q") ~ dist(Uy, dD), so that in particular, if Q' € ID%U,Q, then

dist(Ug', 020) < ££(Q'). (3.27)

It follows that for a suitably small & depending on the implicit constant in (3.27) and 7, we can ensure
that fattened regions U o’ corresponding to Uy (see (2.11)) necessarily intersect d2p and, moreover,
H ”(ﬁQ/ NaRg) ~ £(Q")", while the family {ﬁQ/}Q/ still has finite overlap. Since the Lipschitz character
of 92¢p depends on the CAD character of D, we have that H"(0Q2¢p) ~ diam(3Q2p)" ~ diam(£2¢p)" ~
£(Q) =~ o (Q), with implicit constants which are uniform in Q. Thus, all in all,

doo@)x Y @)~ Yy H'UgNdQe) SH (02 ~0(Q).  (3.28)

Q'eb} , Q'eby Q'eb}
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Consequently, using that one can cover Ug’ by a uniform number of balls of the form B(X, §(X)/2) with
X € Uy (and hence §(X) ~ €£(Q")) we arrive at

> [ iEmrsmar SiFlae ¥ 0@ Se@1Flaw. (29
geny, " 0},
simply recalling the notation introduced in (2.26).
Collecting (3.23), (3.26), and (3.29) we conclude as desired (3.22), completing the proof. O

3.2. Transference of Carleson measure estimates: from chord-arc domains to the complement of
a UR set. Let us now discuss the “transference” mechanism allowing one to pass from the Carleson
measure estimates on CAD to those open sets with UR boundaries. The main idea consists in showing
that if for some given F one can prove (1.10) on D C R"*!\ E, any bounded CAD, then (1.10) holds
for R"*!\ E. This was proved in [Hofmann et al. 2016, Theorem 1.1] for F = [Vul/|lu|| oo qr+1\E)
with u being a bounded harmonic function in R"*!\ E. On the other hand, it was already observed in
Remark 4.28 of that work that harmonicity is not really needed and that one could take for instance
F = |Vul/||lull g e+ gy With u being a bounded solution of a second-order elliptic PDE or, more
generally, F = |[V"u|/|V" u|| Lo+ gy With u being a bounded solution of a 2m-th order elliptic
PDE, m € N. We shall come back to this point with more details in Section 7, and for now try to keep the
discussion general for as long as possible.

Remark 3.30. There is a slightly glitchy point of notation point. For reasons of homogeneity, one might
prefer to normalize so that F' = dist(-, E)|Vu|/|lull L~ g1\ ). However, making the function F and
later on G and H in Section 4 depend on the open set (via its distance to the boundary) has its own
dangers and kills the beauty of the generality here.

The following result is stated in [Hofmann et al. 2016, Theorem 1.1] exclusively for harmonic functions,
but as noted in Remark 4.28 of that work, the same proof applies verbatim to any bounded function
satisfying Caccioppoli’s inequality along with CME in chord-arc subdomains. The argument further
extends to the following formulation with a few changes. For the sake of self-containment we present
below a somewhat different and more direct argument.

Theorem 3.31. Let E C R"*! be an n-dimensional UR set and let F € L, (R"*'\ E). Given n < 1
and K > 1, consider the decomposition D(E) = GU B from Lemma 2.42, as well as a Whitney-dyadic

structure {Wo}oen (k) for R"T1\ E with parameters 1 and K ; see Section 2.2. Then using the notation in
(1.10) and (2.26) there holds

I Fllemersgy < € max{ IF ey g sup | Flleveas |- (3.32)
Scg ’

where Qgc is defined by (2.52) (with 8" = S) and where C depends only on n, the UR character of E, and
the choice of n, K, t.

In particular, if F satisfies the Carleson measure estimate (1.10) for every bounded chord-arc subdo-
main D C R"*'\ E with constants depending on the CAD character (see Notation 2.56) then F satisfies
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the Carleson measure estimate (1.10) on R"*'\ E. More precisely, there exists a large constant My
(depending only n and the UR character of E) so that using the notation in (1.10) there holds

I Fllemem+ney <€ sup || FllcMmE(D)s (3.33)
DCRrI\E
where the sup runs over all bounded chord-arc subdomains D C R"*'\ E with parameters in the CAD
character at most My, and C depends as before only on n and the UR character of E.

We note that much as in Remark 3.3 one can easily get a version of this result valid where everything
is localized to some open subset with UR boundary. The precise statement and the details are left to the
interested reader.

Remark 3.34. As already mentioned in Remark 2.25 and for PDE applications, the quantities || F'||c, g1\ )
or || F|lc,py are harmless terms since they are typically finite, whether or not F satisfies Carleson
measure estimates on some family of nice subdomains. However, one can also see that these terms
are under-controlled when one imposes Carleson measure estimates on bounded Lipschitz subdomains.
Let E C R"*! be an n-dimensional ADR set, write §(-) = dist(-, E), and let F € L} _(R""!'\ E).
Note that Qx = B(X, 6(X)) is a bounded Lipschitz subdomain of R"*1\ E with all the parameters in
the Lipschitz character bounded by M, > 1 which depends just on n. Also if Y € B(X, §(X)/2) then
dist(Y, 0Qx) > §(X)/2 and Y € B(z,25(X)) for any z € dQ2x. Thus, for any z € 0Q2x

1 2
—1// |F(Y)|?dY < f/ |F(Y)|?dist(Y, 9Q2x) dY
X" JBx.s00)/2) §(X)" J JBz28(x))

and, consequently,

IF ey <2"7" sup  IFlemED)- (3.35)
DCR"+I\E

where the sup runs over all bounded Lipschitz subdomains of R**! \ E with all the parameters in the

Lipschitz character at most M, > 1. Analogously, if F € L2 (), where Q@ C R"*! is an open set with

loc
d%2 being n-dimensional ADR, then
IFlleo@ < 2" sup [IFllemem), (3.36)
DCQ

where the sup runs over all bounded Lipschitz subdomains of €2 with all the parameters in the Lipschitz
character at most M, > 1.

Proof. We write §(-) = dist(-, E) and Define 8o = foQ o |F|?6§ dX for every Q € D = D(E). Fix
Qo € D. Using the decomposition D(E) = GU B from Lemma 2.42

//T IFOOPS(X)dX < Y Bo= Y. Bo+ Y, Bo
00.7/2

QEDQO QEDQOQB QGDQoﬂg

= > Bot ), Y. Bo=1Zi+3

0ebg,NB 8§:Dg,NS#Z QeDg, NS
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and we estimate each term in turn. For X; we observe that by construction the Ug ;/>’s are uniformly
bounded unions of Whitney cubes of size of the order of £(Q) and with distance to E of the order of
£(Q) and it follows easily that 8o < Coo (Q), where the implicit constants depend only on n, the UR
character of E, and the choice of 1, K, t. Hence,

S S IF lemeng Y. 0(Q) S IFllgym g0 (Qo), (3.37)
QEDQOHB

where in the last estimate we have used Lemma 2.42(ii).

Let us estimate ;. Fix § so that Do, NS # @ and write Q1 = Q1(S) = Qo N Q(S). Note that
if Q € Dg,NS then Q C Q1 C Q(S) and by the coherency of S we conclude that Q1 € S. Set
8?( -) =dist( -, 89?) (see (2.52) with 8’ = S). Note that Qf is comprised of Whitney regions of the
form Uéc = U:Qt’r. Thus for X € Uz)t,r/z with Q € S, we have that §(X) ~ 8§(X), where the implicit
constants depend on t. This, the fact that the family {UéE}QED has bounded overlap and (2.14) easily give

_ ~ 2ot < 2ot

> fo= X po~ Y [[ ressaxs [ iresgax,
QeDg,NS Qebg, NS QeDg, NS 0 0, s

where BZI = B(xg,, K£(Q1)). Pick now Xit € U:Qtl,r/2 and choose xljE € 8§2§E so that |X?E —xﬁ =

85 (X7) &~ 8(X{) &~ £(Q)). Therefore, B, C Bjy = By, (x{", C£(Q1)), where C depends on 1, the UR

character of E and n, K and 7. Thus,

Y. Bos /f IFIPSS dX S IF lempe L0 & I1F levp@s o (Q1). (3.38)
0eDg,NS 0,"%

Using this and recalling that O = Q1(S) = Qo N Q(S), we can bound X, as follows:

2= Z Z Po S ;‘ég Il emes) Z o(QoNQ(S))

$:Dg,NS#2 QeDg,NS S:Dg,NS#D

= sup ||F||CME<Q¢)( Yo e+ Y 0(Qo)> =: Ty + In.
Scg $:0(8)C Qo SDg,NS#
QoG 0Q(S)

Using Lemma 2.42(ii) we easily obtain

> Q) Qo).
$:0(8)CQo
where the implicit constant depends only on 7, the UR character of E, and the choice of 1, K, 7. For the
other term we note that the facts D, NS # & and Qo C Q(S) imply that Qg € S by the coherency of S;
hence X5, = 0 if Q¢ € B. On the other hand, if Q¢ € G there is a unique Sy C G so that Q¢ € Sy and
Do, NS = @ for every S # Sy with Qg € Q(S). This clearly implies that in this case

> o(Qo) =0 (Qo).
$:Dg,NS#2
00C0(S)
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If we finally collect all the obtained estimates we conclude that

1
I Fl dyad 1y gy = SUP // |F(X)|23(X)dX
CMEY*(Rr+1\ E) 0eD(E) O_(Q) TQYT/Z

< € max| I Fllcyrr > S0P I Fllemsa) |- (3.39)
ScG

where C depends only on n, the UR character of E, and the choice of , K, t. Thus, the desired estimates
follows from (2.29).

To complete the proof we look at the second part of the statement. By (3.35) and the fact that bounded
Lipschitz domains are CAD with all the parameters in the CAD character by the Lipschitz character we
have || Fllcym1\E) < sup pcrr\ g 1 FlleMED), where the sup runs over all bounded CAD subdomains
with character at most M,,. On the other hand, Lemma 2.53 establishes that all the Qf’s are CAD with
parameters in the CAD character all controlled by M; > 1 (depending on the allowable parameters).
They are also bounded since every S has a maximal cube Q(S) and hence Qf C BZ(S) (see (2.14)).
Consequently,

sup [ Fllemeqs) < sup [ F llemED),
Scg D

where the second sup runs over all bounded CAD with character at most M;). Taking My = max{M,, M},
we easily see that (3.32) along with the above observations readily yield (3.33). (I

4. Carleson estimates, A < N estimates and good-A arguments

Given an open set Q C R"*! with ADR boundary we recall the definitions of the area integral A and the
nontangential maximal function N, from Definition 2.33 or the corresponding fattened versions Aand N,
or the corresponding local versions. These are defined with respect to a {Wp} pen, some Whitney-dyadic
structure for 2 with some implicit parameters n and K. Note that according to these definitions, the cones
are unbounded when 9€2 is unbounded. On the other hand, when €2 is bounded, so are the cones, all
being contained in a C diam(0£2)-neighborhood of d€2. We note also that when 02 is bounded, there
exists a cube Qg € D(9€2) such that Qg = 92 and for any Q € [D(9€2) we have Q € Dy,. It is, however,
particularly useful to work with local versions A< and ]/V\*Q or A2 and ]/V\*Q .

Definition 4.1 (A < N estimates). Let Q C R"*! be an open set with 9€2 being ADR and let {Wp}oeno0)
be a Whitney-dyadic structure for 2 with some parameters n and K. Consider also G € LIZOC(SZ), HeC(Q),
and 0 < g < oo. We say that ““A < N” estimates hold for G, H on L9(92) if

IAG | Laae) < CIINLH || e o) (4.2)

where the L? norms are taken with respect to surface measure o := H"|jq. Similarly, we will say that
“AD < ND” estimates hold for G, H on L7(3Q) if

IALGIl a0y < CINCH |14y for all Q € D(3S), 4.3)

with C independent of Q.
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Remark 4.4. We observe that by Remarks 2.37 and 2.38, A < N estimates imply an analogous estimate
for traditional cones, that is, for every x > 0

A GllLape) < ClIN«o . HllLipo),

and the implicit constant depends on g, n, the ADR constant of d€2, the choice of n, K, 7, the constant
in A < N, and k. On the other hand A” < NP estimates imply also some local A < N estimates
with traditional cones. More precisely, for any x € 92 and 0 < r < 2diam(9€2), using the notation in
Definition 1.15, there exists K’ depending on n, the ADR constant of 92, the choice of 5, K, 7, and the
constant in Definition 2.7(iii) such that for every « > 0

IAG G llisacry SINEG cHllLoaw k) 4.5)

where A(x, r) = B(x, r) N a<2, and the implicit constant depends on ¢, n, the ADR constant of 9€2, the
choice of n, K, t, the constant in AL < NP and .

Fix then {Wp}oenve) a Whitney-dyadic structure for €2 with some parameters 1 and K. Given x € 92
and 0 < r < 2diam(9S2), write A = A(x, r) and B = B(x, r). We first consider the case r < diam(9£2).
Note that for every y € A we have I'"(y) C 2B. Also, if I'q 1(z) N 2B # @ then z € 6A. Recall that we
have always assumed that K is large enough (say K > 10%n) so that I'e.1(y) CT'(y) for every y € 052.
All these, together with Remark 2.38, give

[AG «GllLaa) < 1A (Glap) L) S IAQ.1(Gl2p) | Le@pe) < IA(G12p) | Le@a)-
Let
Da=1{0eD@R): QN6A # @, Cnn)~"*r/4 <€(Q) < C(yn)~"?r/2}, (4.6)

where C is the constant in (2.9) (it is here we use that r < diam(9€2) so that C(nn)_l/zr/Z < diam(0£2),
thus D # ). Suppose that Q C Q' with Q € Dp and let Y € Uy. Then there is I' € Wy with
Y € 0I*(7) and by (2.5)

Cm)~2271r < 20(0) < €(Q') < C24(I') < Cyn)4~ dist(41’, 32) < C(nn)4~= dist(Y, 9<).
Hence, dist(Y, 3Q) >2r and I'(y)N2B c T'¢(y) for every y € Q € Da. Thus the AP < NP estimates give

1AL Gl S Y. IAGLN ) < D IAGIL 0 S D INCHIL, )
0D (SN 0D

Note next that for every y € Q € D, we have by (2.14) that T'¢(y) C B(xg, KL(Q)NQC K'BNQ.
Hence, using again Remark 2.38 we have

I AG «Glliaay S IN(H1kp)llLeoe) S INwo.min(e) (H Lk p)llLeoe) < IN2S HllLagr a),

where we have used that ' 1(z) N K'B # @ then z € 3K'A.
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To conclude we consider the case r ~ diam(9€2). Hence 92 is bounded and 92 is itself a dyadic
cube Q¢ and D(0€2) = Dy,. Then we easily obtain using some of the previous observations

[AG  GllLea) < 1A G epe) S 1AQ1G Lape)
< IALG o) S INSHl oo

K/
SINeacHllLawo) = INco HllLaaw. k'r)> 4.7

where the last estimate uses our convention that in the case 2 unbounded and 92 bounded I'(-) is

indeed 'S MmO (.

Theorem 4.8. Let Q@ C R"*! be an open set with dQ being ADR and let {Wp}oeppay be a Whitney-
dyadic structure for Q2 with some parameters n and K. Given G € LIZOC(Q), HeC(),and0 < qg < o0,
consider the following statements:

(A) Carleson measure estimate holds for F = G /|| H||L~(q) on 2, that is, |G |lcmE©) S ||H||%OO(Q)
(see (1.10)).

(AP Dyadic Carleson measure estimate holds for F = G/||H |1~ on . that is, || G | cypond g <
IH (12 e g (see (2.28)).

(Ayoe) Carleson measure estimate holds on any (bounded) local sawtooth subdomain of 2, in the
sense that for any Q € D(0R2) and any pairwise disjoint family of cubes ¥ C D¢, one has that
F=G/IHlp~g, ) satisfies the Carleson measure estimate on §¢,Q, that is,

sup |G S Hl? 5 < 00,
Q,g 1Glleme@y o)/ | ||Loo(s2¢,Q)

where the sup runs over all Q € D(0K2) and all pairwise disjoint family of cubes ¥ C Dy.
(B)g A < N on L1(3K2) holds for G and H, in the sense of Definition 4.1, i.e., (4.2) is valid.

(Bioc)g A< N on L1 (8§¢,Q) holds for G and H in the sense of Definition 4.1 for any Q € D(92) and
any pairwise disjoint family of cubes ¥ C Dy, i.e., (4.2) is valid in ﬁ(,z-,Q.

(B)E) AP < NP on L1(0Q) holds for G and H, in the sense of Definition 4.1, i.e., (4.3) is valid.
(GL) There exists 6 > 0 such that for every ¢,y > 0 and for all o > 0

o{x €dQ: AG(x) > (1 +¢)a, ]V*H(x) <ya}< C(y/e)ea{x €0Q: AG(x) > a}. 4.9)
(GM)P There exists 0 > 0 such that for every e,y > 0 and for all « > 0

o{x € Q: AG(x) > (1 +e)a, NH(x) < ya}
<C(y/e)lo{x € Q:A%G(x) >a} forany Q e DOR). (4.10)

Consider, in addition, the condition

1 1/2
<—n // |G(Y)|28(Y) dY) < C||H||L°°(B(X,36(X)/4)) fOl" all X e Q. (411)
3(X) B(X,8(X)/2)
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Then the following implications hold:

(Ae) = (GMP = (Gn), (4.12)
(Aie) => (B)] forall0<gq < oo, (4.13)
(B)qu) forsome0) <g <oo = (B),, 4.14)
(B), forsome0<gq<oo = (A", (4.15)
(AP and 4.11) = (A), (4.16)
(Bioc)y forsome0<q<oo = (A" (4.17)

In the previous implications the implicit constants of each of the conclusions depend on n, q, the ADR
character of 0X2, the choice of n, K, t, the constant in Definition 2.7(iii), as well as the implicit constants

in the corresponding hypotheses.

Remark 4.18. In the previous result it is understood that (A) and (A)P are vacuous, unless H € L>®().
Regarding (Ajoc), if H ¢ L°°(§¢,Q), for some Q € D(d2) and for some pairwise disjoint family of
cubes ¥ C Dy, then it is understood that F' = GA/||H||LOO(§¢,Q) =0 and ||G||CME(§T,Q)/||HIILQQ(QT,Q) =0.
Hence, in the sup the only relevant sawtooths Q¢ o are those on which H is essentially bounded.

Remark 4.19. We note that the assumption (4.11) in (4.16) is only needed when €2 is unbounded and 92
is bounded because all dyadic cones are contained in a C diam(d€2)-neighborhood of E. Hence from
(A)P we only get information for F in that region. However, in all practical applications to solutions of
elliptic PDEs (4.11) is easily justified by Caccioppoli’s inequality.

Remark 4.20. It is possible to show the equivalence of previous conditions upon assuming that they hold
in some class of sets. To be more precise, let  C R"*! be an open set with ADR boundary and suppose
that we have a collection {Q'}qcx such that each Q' € X is an open subset of 2, 92" is ADR boundary,
and also that ﬁ(,r,Q € X for every Q € D(9€') and any pairwise disjoint family of cubes ¥ C D. Assume
further that

1 2
<r_” /f IG(Y)|*8(Y) dY) < C|H | L~x.2r)) Tforall B(X,2r)C . 4.21)
B(X,r)

Then, (A) holds on every ' € X if and only if (B);D holds for every ' € ¥ and for all (some) 0 < g < 0o
if and only if (B), holds for every ' € X and for all (some) 0 < ¢ < oo; with the understanding that all
implicit constants in the statements above are uniform within 3. We have several examples of classes X.
Suppose first that @ = R"*! \ E, with E being UR (resp. ADR). In that case ¥ is the class of open
sets Q' C R"™ !\ E with 32 being UR (resp. ADR) and the implicit constant in each condition should
depend on the UR (resp. ADR) character of each €. Another interesting example is that when € is some
given CAD (resp. 1-sided CAD) and X is the collection of chord-arc subdomains (resp. 1-sided chord-arc
subdomains) Q' C €, in that case the implicit constant in each condition should depend on the CAD
(1-sided CAD) character of each €'.
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Lemma 4.22. Let Q@ C R"*! be an open set with 3Q being ADR and let {Woloenoa) be a Whitney-
dyadic structure for Q with some parameters n and K. If (Aioc) holds for G € LIZOC(Q) and H € C(R2),
then

1
1 7~
AL Gll 2y < Co(Q0)? (s;p ||G||CME<@,E,QO>/||H||iw(§¢ygo)) INZH|lpery  (423)

for every Qo € D(0R2) and every Borel set F C Qq, and where the sup is taken over all families F € Dg,
which are pairwise disjoint. The constant C depends on n, the ADR character of 0€2, the choice of n, K, t,
and the constant in Definition 2.7(iii).

Proof. We may assume without lost of generality that o (F) > 0 and also that ||I/V\>,<Q°H | Loo(Fy < 00.
Subdivide Q¢ € D(9€2) dyadically and stop the first time that Q N F' = &. This generates a possibly
empty maximal (hence pairwise disjoint) family ¥ = {Q;}; C Do, \ {Qo}, so that Q; N F = & for every
Q;e¥F,and QNF # g forevery Q € Dy g,.

Let us observe that if Q N F # & then necessarily Q € D ¢,; otherwise Q C Q; € ¥ and hence
QN F = &, which is a contradiction. Recall that by construction for every ¥ € Uy we have §(Y) ~
£(Q) ~ dist(Y, Q. 0,) since, as explained above, Q. 0, 1s composed of fattened Whitney regions U 0
which, in turn, have bounded overlap. Writing §( - ) = dist( -, d€2), all these yield

[ﬂQOG(x)zda(x)ff Z // G(Y)*s(Y)' ™" dY do (x)
F F Uo

XEQEDQO

= > o(FﬂQ)// GY)’s(Y)' " dy
Uo

QEDQO

< Y ] 6w)Pdisuy, 9Qs g,) dY
QEDT,QO Yo

5//A G(Y)?dist(Y, 3Q ,) dY.
Q7 .0,
Pick then y € Bﬁﬁ 0, and use (Ajoc) in the sawtooth domain ﬁgr, 0, to conclude

/ AB(x)? do (x) < // G(Y)* dist(Y, BQT,QO) dy
F B(y,2diam(Qg,0)"Qy g,

. oy 2 . —~~
S G llemey. gy diam(@r.0,)" = Coll H I}« g, ,, diam (R 0,)"

~ —~ 2
~ COHG”CME(QT,QO)”H”Lw(ﬁ;c,QO)G(QO)’
where

— ~ 2
Co= S;P ||G”CME(Q?—‘QO)/”H”LOQ(QT,QO)'

To conclude we observe that if ¥ € ﬁ(,r,QO, then Y € ﬁQ for some Q € Dg o,. The latter implies that we
canfindz € QNF # @. Hence ¥ € T2(z) and [H(Y)| < N2 H(z) < |[N2°H | L~(r). As a result,

/ ALG(x)?do (x) S CollNZH |3 (75 (Q0).- O
F
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4.1. Proof of Theorem 4.8: (Ajoc) = (GA)P. Fix Qg € D = D(d2) and for any « > 0, set
Ey={x€Qy: ALGx)>a}, Fy={xcQo:NPH(x)<a).

Note that if £, = @ then (4.10) (with Q = Qy) is trivial and there is nothing to prove. Assume then that
Ey # 2.

We momentarily suppose that E, C Qg. Given x € E,, the monotone convergence theorem guarantees
that there exists k, > 0 such that

/ / IG)P8(Y)' ™" > o, (4.24)
Uxegeby, Vo

0Q)=2h
where §(-) = dist(-, 9£2).

Let O, € Dy, be the unique cube with O, 5 x and £(Q,) = 27k« and note that for every y € Qy

rem= J v |J o= |J Uo

yeQeDy, 0:CQeby, xeQebg,
0(Q)=27k

This and (4.24) imply that A2°G(y) > «. We have then show that for every x € E, there exists Q, € Do,
such that Q, C E,. We can then take Q7'*, with O, C Q™ C Qo, the maximal cube so that QT** C E,.
Note that O, C Qg since E, C Qp. Write then ¥ = {Q;}; C Dy, \ {Qo} for the collection of maximal
(hence pairwise disjoint) cubes Q¥** with x € E,. By construction, E, = 0jeF Q; and for every
Q; € F, by maximality, we can find x; € Q; \ E, where Q; is the dyadic parent of Q;. In the latter
scenario, if x € Q;

reow= |J vg= ( U UQ> u( U UQ> C % (x)uTr2(x;)
xeQeDg, xeQeDy, 0;C0CQo
and, consequently,
APG(x) < AYG(x) +AXG(x) <AYG(x)+a, x€Q;.
Using this, for every € > 0 we have
E(teye = E(l4e)a N Eq = U EqteaNQ; C U {xe Q;: AYG(x) > ea}.
Q;ef Q;ef

This holds under the assumption E, C Qo but it clearly extends to the case E, C Qg by setting ¥ = {Qo}.
Hence, invoking Chebyshev’s inequality and Lemma 4.22 in every Q;, we arrive at

0(EtonN Fra) < Y o(fx € Q) : AYG(x) > e} N Fyq)
Qj67:

1
< — Z/ AL G(x)? do (x)
(et) O Fran0;

1 2 T 2
S (m)z(g“f; ||G||CME@T’QO>/||H||Lm@m0)) >IN Hl k00,0 (2))
0>

Qje‘f'
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2
4
= (—) (sup 1G leme@, o/ I1H 3xa, o)) 2 ()
€ 5 QO Q cF
4
= (‘) (SUP ||G||CME(§¢VQ0)/||H||iOO(§T ) < U Q,)
€ Q0.7 @

2

4

= (;) (SUP ”G”CME(Q¢Q )/||H||LOO(Q >O(Ea)a
0.F

where the sup is taken over all Q¢ € D and over all families ¥ € Do, which are pairwise disjoint. ]
4.2. Proof of Theorem 4.8: (Ajoc) = (B)'D Jorall 0 < g <oo. We start by observing that if G € LIOC(Q)
then for every Q' C Q one has ||G19/||CME(QT_Q) < ||G||CME(Q¢<Q) for every Q € D = D(92) and for
every family of pairwise disjoint cubes ¥ € D¢. This means that if (Ajoc) holds for G and H then it also
does for Glg and H uniformly in €. Therefore, from what we have proved so far, (GM)P holds for
Glg and H uniformly in €.
Fix xo € 0Q2 and given k € N set
Q= (X € B(xo, ) NQ: |GX)| <k, 8(X) > k')

and note that for every 0 < g < oo and for every x € 92
ﬂ(Gle)(x)z = // |G(Y)|25(Y)17n dy < kn+l|B(xO, k)| %k2(11+1)‘
T (x)NS%

On the other hand, suppose that x € 02 is so that '(x) N A @. Pick Ze I'(x) N Q. # &, then Z € I*
with I € Wy and x € Q € D. Using (2.9) it follows that
lx —xo| < |x — xp|+diam(Q) +dist(I, Q) + diam([*) + |Z —xo| S €(I) +k
~8(Z)+k S |X —zol+k <2k.
As a consequence, supp A(Glg,) C B(xg, CK). These, together with the fact that ﬂQ(GIQk)(x) <
A(Glg,)(x) for every x € 012, allow us to conclude that A(Glg,), ﬂQ(GIQk) € L (02) C L1(0%2)
for every Q € D, albeit with bounds that depend on k.

Using the previous observations and invoking (GA)® with G1g, and H (with constant that is indepen-
dent of k) we have for every Q € D

IACG o)l 0,
=40 [ gatolx e Q:AG1a) ) > (14 e)a) &
0

<(1+s) /wqaqa{x €Q :ﬂQ(GIQk)(x) > (1+8)a, I/V\*QH(x) <ya} C{Ta
0

o
y

o
+(1+8)q/ galo{x € Q:NQH(x) >ya}6{7a
0

[% o0
) (1+8)qf galofx e Q:y(Q(Glgk)(x)>oz}—+<1;r ) INCHY, o)
0

m IR ® R

0
1+¢
)(1+e)ff||ﬂQ(G1m)||Lq(Q>+( ” ) INH 940 (4.25)
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Pick £ = 1 and choose y sufficiently small to ensure that Cy?29 < % Using that | A2(Glg,) ||C£q(Q) <00
we can hide this term on the left-hand side of (4.25) and conclude that

IAC (G140 S

SIN2H| (4.26)

q
Li(Q)’
with an implicit constant depending on n, the ADR character of 0<2, the choice of n, K, 7, the constant in
Definition 2.7(iii), ¢, and the implicit constant in (GA), but nonetheless independent of k. By the monotone
convergence theorem and the fact that |G(X)| < oo for a.e. X € €, since G € L? (), it follows that

loc
ALG Ig)(x) /7 ALG (x). Then we can use the monotone convergence theorem to obtain from (4.26)

IACG L, g, = lim [A(Gla)Lsg) S INCHIL, g

completing the proof. (I
Remark 4.27. The previous arguments easily yield that for any 0 < ¢ < oo, one has that (G1)” = (Bioc)g

provided || AL G| () < 00. A very similar argument gives that (GA) = (B), provided | AG|| L4 (s) < 0©.
Details are left to the interested reader.

4.3. Proof of Theorem 4.8: (GM)P = (GL). We note that if 92 is bounded, then 9<2 itself is the largest
cube in D = D(9Q2), say 02 = Qo; hence (GA) is a particular case of (G1)P. Consider next the case 92
unbounded and for every k € N write

‘= |J Up. xedq,

xeQeD
Q<2+

and associated with these cones define A* and ﬁf Given Q € D_y, i.e., £(Q) =27% one easily sees that
' (x) = I'*(x) for every x € Qo. Hence, for every k € N, using (GM)P we obtain
ofx €9Q: AG(x) > (1 + &), N H(x) < ya}

<ofx €dQ: AGCGKx) > (1+¢&)a, N'H(x) < ya}

= > olxreQ:AGCGH) > (+e)a, NN H(x) <ya)
Qeb_;

= > ofxeQ:A%Gx) > (1+e)a, NCH(x) < ya)
Qeb_

o 6
Y : AL (¥ .k
5(8) Zo{er.ﬂ G(x)>oz}—(8> Zo{er.ﬂG(x)>a}

QeD_ 0eD_y

0 0
= (%) olx €09 AG(x) > a) < (g) olx €99 : AG(x) > a). (4.28)

On the other hand, the monotone convergence theorem gives that A*G (x) /' AG(x) as k — oo and for
every x € 0S2. Hence, another use of the monotone convergence theorem and (4.28) yield

o{x €9 AG(x) > (1 + &), NoH (x) < ya} = lim o{x €9Q: AG(x) > (1 + &), NoH(x) < ya}

<(y/e)lo{x € 0Q: AG(x) > ), O
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4.4. Proof of Theorem 4.8: (B);D Jor some 0 < g < 00 = (B),. We note that if d$2 is bounded, then
0<2 itself is the largest cube in D = D(3€2), say 02 = Qo; hence (B), is a particular case of (Bjoc)q. If
0€2 is unbounded we use the same argument as in the previous proof:

AG(x) do (x) = Z /ﬂkG(x)qdo(x) Z fﬂQG(x)qda(x)

0% QeD_; QeD_;

/ NPHx)1do(x) = / N¥H (x)? do (x)
QebD_i

QElD
= / NYH(x)?do(x) < | N.H(x)?do(x).
a0 a0
From here, we obtain the desired estimate from the monotone convergence theorem and the fact that
AXG(x) /1 AG(x) for every x € 9L, as k — oo. O

4.5. Proof of Theorem 4.8: (B)E’for some ) <q <oco= (A)P. Assume that (Bioc)g for some 0 < g < 00
holds. We may assume that H € L°°(2). Hence, for every Q € D(9€2),

/QﬂQG(x)q do(x) < C{ /Q ]\7*QH(x)q do(x) < Cg||H||‘£m(Q)o(Q).
Writing F := G(2!/9C,||H||1(q)) ', we have by Chebyshev’s
ofx€ Q:A%F(x) > 1} 5/ ACF (x)1do(x) < 30 (0).
We then invoke Lemma 3.8 with p =2 and obtain ’

sup ][ ACF(x)*do(x) S 1.
QEDQO

On the other hand, writing 6( - ) = dist( -, d€2), and recalling that the family {Uo'}o'cp(9) has bounded

overlap, we see that
a(Q)// FX'nay
Uy

/f F25dY ~ Z // F25dY~
To Uy

Q'eDy Q'eDy

:/ /f F28'="dY do (x)
er’e[D Uy
f// F28'""dY do (x) = /ﬂQF(x)zda(x), (4.29)
e (x) (9]
Thus,
[l p—— su // F(Y)?8(X)dY <. O
M@ = e 0@ I,

4.6. Proof of Theorem 4.8: (A)P and (4.11) = (A). This follows trivially from (2.29):

2
1Glleme@) S I1G lloppivaqy + I1Gllicy@) S ITHH 170 q)»

which is the desired estimate. |
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4.7. Proof of Theorem 4.8: (Boc)q for some 0 < g < 00 = (A)P. Write D = D) and 8(-) =
dist( -, 0€2). Assume (Bj,c) and fix Qg € D. We may suppose that H € L*°(2); otherwise there is nothing
to prove. Recall that TQO = QQ,QO; hence (Bj,.) implies that A < N on L9(dTp,). Thus, Remark 4.4
yields for every k > 0

~ 9 @ < ~ .
||ﬂTQ0*KG||L‘1(3TQO) ~ ||N*,TQO,KH||L‘I(3TQO)

< IH % oy H" (3T0y) < 1 H |40 diam (3 Tg,)"
SNH () €(Q0)" & [ H (400 (Q0)" (4.30)
where we have used that 9T, is upper ADR (see Remark A.2), (2.14), and that 92 is ADR.
Letx € Qpand Y e 20 (x). Then Y € I* with [ € Wp with x € Q € Dg,. Recalling that [* = I*(1)

and that ?Qo is defined using fattened Whitney cubes of the form J*(27) we clearly see that Y € T, C ,fQo
with 8(Y) ~ dist(Y, 8Tp,). Consequently,

|Y — x| < diam(1) 4 dist(/, Q) 4+ diam(Q) < £(I) ~ §(Y) ~ dist(Y, 8Ty, ).

Then we can find « depending on n, the ADR constants of €2, , K, and the constant in Definition 2.7(iii)
such that Y € F’fQO’K(x). Since Qg C Eﬁ\QO (see [Hofmann and Martell 2014, Proposition 6.1]), we then
obtain

APG(x) = <// |G(Y)|28(Y)1_”dY>2 A (// |G(Y)|* dist(Y, aTQO)‘—"dY>2
% (x) FQ]O(x)

2
< (// |G(Y)|* dist(Y, 3Tp,)' ™ dY) = Az, 1 G(Y).
'z X)

TQO.I((

This and (4.30) imply

g ALG(x)! do(x) < ][Q Ay, G () do (x) < CI H [ -
0 0

Writing F = G(C||H||~q) ", for N large enough, we obtain from Chebyshev’s inequality

o{x € Qp: AXF(x) >N} < N4 [ ALF(x)1do(x) < 10(0).
Qo
Since Q¢ € D is arbitrary we can apply Lemma 3.8 with p =2 and obtain

sup ][ﬂQF(x)zda(x)§l.
QE[DQO Q
This and (4.29) give

1
| F || caqdsad oy = SUP /f F(Y)?8(X)dYy <1,
CMETHR) 0eby, 9(Q) JJ1,

which is the desired estimate. O

5. Transference of N < S estimates: from Lipschitz to chord-arc domains

Before starting, we introduce some notation. Let D C R"*+! be a bounded CAD. Given Q € D(dD) or
A=A(x,r),withx € 3D and 0 < r < diam(d D), we will write X JQF and X JAF to denote respectively some
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interior corkscrew points relative to Q (that is, relative to A g, see (2.2)) and A. When 9 D is bounded, we
write X g to denote a corkscrew point relative to a surface ball A(x, 3 diam(dD)/2) =09 D for some x €9 D.

Also, recall the dyadic Hardy-Littlewood maximal function from Definition 2.4. In addition, we will
be using its continuous analogue. Let E C R"*! be an n-dimensional ADR set. By M = Mg we denote

the continuous (noncentered) Hardy-Littlewood maximal function on E, that is, for f € Llloc(E )

Mfx) = Sup][ | flda(y),
AsxJ A
where the sup is taken over all A, surface balls on E containing x. For 0 < p < oo, we also write
M, f=M(fIP)!/P. Itis clear from (2.2) that MP f (x) < Mf(x) for every x € E. The converse might
fail pointwise, but both maximal functions are bounded in L?(E), p > 1.
We are now ready to state the main result of this section:

Theorem 5.1. Let D C R"™! be a CAD. Let u € Wl’z(D) N C (D) and assume that there exists Cy > 0

loc

such that for any ¢ € R and for any cube I with 21 C D

sup [u(X) — c| §C0<£(I)‘”‘1/ |u—c|2dX>2. (5.2)
21

Xel

Suppose that the N < S estimates are valid on L? on all bounded Lipschitz subdomains Q C D, that is,
for any bounded Lipschitz subdomain 2 C D there holds

[ Ns.o(u —u(XE)220) < CallSaullr20)- (5.3)

Here Xg is any interior corkscrew point of Q2 at the scale of diam(S2), and the constant Cgq in (5.3)
depends on the Lipschitz character of Q, the dimension n, the implicit choice of k (the aperture of the
cones in N, q and Sq), and the implicit corkscrew constant for the point X ;g

Given n < 1 and K > 1, consider {Wy}oenp) a Whitney-dyadic structure for D with parameters n
and K; see Section 2.4. Then there exist 0 < cy < 1 and C > 0, depending on n, the CAD character of D,
the choice of n, K, t, such that for every ¢ > 0, for every 0 <y < coe/Cy, for all @ > 0, and for all
0 eD@D)

olx e Q: N —uXp)(x) > (1 +e)a, Mg, ,(SCu)(x) < ya
<Cy.ofx € QN2 —u(Xp)(x) >a), (54

where C;’g =(1—-60+C(y/e)?) and 6 € (0, 1) is from Corollary 3.21 (hence depends on n and the CAD
character of D). Therefore

INE (@ — (X)) sy < C'ISullLacg) forallq > 2, (5.5)

where C’ depends on n, the CAD character of D, Cy, the choice of n, K, t, and q.
As a consequence, for any x € 9D and 0 < r < 2 diam(d D) there exists K' depending on n, the CAD
character of D such that for every k > 0

INZ o = u(X K Dllaacery < CTISH pullLoac.kry forallg > 2, (5.6)
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where A(x,r) = B(x,r) N0, and where C" depends on q, n, the CAD character of D, Cy, and k. In
particular, if D is bounded

I Ne, D (0 —u(X ) Laopy < C"|SpcutlliLaopy forall g >2 (5.7)
and if D is unbounded and u(X) — 0 as | X| — oo then
N« pcttlliLaopy < C"IISpulliLaapy forall g >2. (5.8)

We remark that contrary to the previous sections, we do not consider general AG and N, H anymore.
This is a necessity, as the argument of the area integral has to be the gradient of the argument of the
nontangential maximal function. The assumption (5.2) is a standard interior regularity estimate for
solutions of elliptic equations (also known as Moser’s local boundedness estimate). In principle, we need
a somewhat different version. Recall that UQ is a fattened version of the Whitney region Ugy. We have

|u(YQ>—c|sco(fz@)—"—l / /ﬁ |u—c|2dX>2, (5.9)
0

where Y is any point lying in Uy, so that there is a ball centered at Y, of radius proportional to £(Q),
which lies inside ﬁQ. We note that if we assumed (5.2) or (5.9) without enlarging the integrals on the
respective right-hand sides, we could obtain a version of (5.4)—(5.5) without enlarging the “aperture of
cones” on the right-hand side (that is, with S€ in place of §Q). But that is minor and (5.2) looks a bit
more familiar and more in line with (6.2) below.

Proof. To start, write D = D(dD) and §(-) = dist(-,dD). Fix n <« 1 and K > 1 and consider
{Wo}oenp) a Whitney-dyadic structure for D with parameters n and K from Section 2.4. We claim that
for every Q € D

sup |u(X)—u(Y)| < CCo inf S%u(z) < CC()][ S%udo, (5.10)
X,YeUp z€Q 0

where C depends on n, 1, K, 7, and the CAD character of D, and Cj is the constant in (5.2). To see this
observe that for every Q € D and X € Uy we have that X € I*(t) for some I € Wy. Let Ix C D be the
cube centered at X with side length 7£(/) so that 21y C I*(27) C ﬁQ. Note that £(Ix) =~ £(I) = £(Q).
Then, (5.2) yields, for every ¢ € R,

|u(X)—c|§C0<z(1X)—"—1// |u—c|2dX)2§C0(E(Q)_”_1 /A|u—c|2dX>2. (5.11)
20x Ug

With this at hand, let Q € D and X, Y € Up and z € Q. Setting

=
co = —— vdZ,
¢ 1001 o,
[u(X) —u(Y)| < [u(X) —col +|u(¥Y)—col| < co(fz(Qr”—1 //A |u —cQ|2dZ)2
Up

1 1
2 2 .
§Co(€(Q)_"+l fﬁ |Vu|2dX) ~Co</ﬁ |Vu|261—"dX) < CoS%u(2),
Uo Uo

we obtain
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where the second inequality follows from (5.11), the third from Poincaré’s inequality in the context of
Whitney regions (see the argument in [Hofmann et al. 2017a, Proof of Lemma 3.1]), and the last from the
fact that §(-) ~ £(Q) in ﬁQ. This proves our claim.

Let us fix Qg € D and write v :=u — u(X Jéo), with X JQFO beginning the corkscrew relative to Qg, that
is, relative to the surface ball A g, (see (2.2) and (2.3)). For every a > 0 we set

Eqi={x € Qo: N2v(x) > a}, Fyi={xeQo:Mp ,(8%v)(x) <al,

where M 8’2 was defined in Definition 2.4. Our goal is to obtain for every «, ¥, e > 0 with 0 < y <« &/Cy
there holds

U(E(1+£)a N Fyoz) =< C;,SO’(Ea)’ (5.12)

*
V,€

a, ¥, e > 0. We may assume that £, # &; otherwise (5.4) is trivial.

Let x € Ey; then there exist O, € Do, with x € O, and Y € Up,_ such that [v(Y)| > «. Note that
Up, C ' (y) forevery y € Q,; hence N*Qov(y) > |v(Y)| > o and Q, C E,. We can then take Q7'%*, with
Q. C 0P C Qo, the maximal cube so that Q7' C E,. Write then ¥ = {Q;}; C D, for the collection
of maximal (hence pairwise disjoint) cubes QT with x € Eq. By construction, Ey = o5 Q-

Given Q € F, invoke Corollary 3.21 and take a bounded Lipschitz domain 2y C D satisfying properties
(1)—(iii) in the statement. In particular, we set Fg := 3Qp N Q C Q such that o (Fp) > 0o (Q). Our goal
is to show that

and we will me more specific about the constant C} , momentarily. With this goal in mind we fix

2
U(E(1+8)aﬂFyamFQ) = C(g) CQQG(Q)a (5.13)

where Cgq,, is the constant from (5.3); hence it depends on the Lipschitz character of €2, which in turn
depends only on the CAD character of D, and C depends as well on the CAD character of D. Assuming
this momentarily, we obtain (5.4):

0(E(te)a N Fya) =0 (E(1e)a NEq N Fyy) = Z o(E(teaNELN Q)
QeF
<> (0(Q\ Fo) +0(Eqepa N EaN Fp))
QeF

2
< (1 9 +C(Z> sup CQQ> Y 6(0) = C} o (Eo).

€ QeD QeF

where C3 , = (1 -6+ C(y/e)? supgep Ca,)- Note that supyp Co, < 0o and ultimately depends on
the CAD character of D, since all the Lipschitz characters of the 2o are uniformly bounded depending
on the CAD character of D (see Corollary 3.21) and our assumption states that Cq, depends on the
Lipschitz character of 2, the dimension n, and the choice of « (the aperture of the cones).

Let us then obtain (5.13). We may assume that the left-hand side is nonzero; hence we can pick
20 € E(14e)a N Fyo N Fp. Let Yo be from Corollary 3.21(ii) whose existence is guaranteed by part (i)
and note that Yy € Up.
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We need to consider two separate cases. First assume that O C Q¢. By the maximality of O € F,
we can find X € O\ E,, where Q is the dyadic parent of Q. That is, N*Qov(i) < « and, in particular,
[u(X)| <« for every X € Ug since Uz C I'2(X). Note then that if x € Q, then

NZvw = sup [p)|=max| sup o), max )l
Yel'Q(x) Yel'Q(x) YeUp,0CQCQo
< max{N2v(x), N2v(%)} < max{NL2v(x), a}. (5.14)

Since |v(X)| < « for every X € U o we have that |v(X 5)| < a, where XL is the interior corkscrew point
relative to é (with respect to D which is a CAD). Then, recalling that the construction of ‘W guarantees
that XJQC € Up, and that Yy € Up, we have, by (5.10),

V(X5 —v(Yo)l = lu(XE) —u(¥o)| < CCO][ SCudo < CCOJ[ Sy do
0 0

= CCO][ $Pvdo < My ,(S%v)(zg) < CCoye, (5.15)
Q

where we have used that zp € Q N F),,. As a consequence,
lv(Yo)l < v(Yp) — v(XJQS)I + Iv(Xg)l =(1+CCy)a=(1+e/2)a, (5.16)

where C depends on the CAD character of D, and provided y < (2C Co)~'e =: 2cpe. As a result, using
(5.14), for every x € E(14¢)q We arrive at

(1+e&)a < N2v(x) = N2v(x) < N2(v—v(Y)(x) + |[v(Yp)| < N2(v —v(Yp) (x) + (1 +¢/2)a,
and, consequently,
Eqteya N Fyo N Fg C{x € Fye NFg: N2(v—v(Yp))(x) > eat/2}, (5.17)

where we recall that we are currently considering the case E, C Q.
In the second case Q = Qo; hence ¥ = {Q} and E, = Q. Since Yy, XJQF0 € Ug, we can invoke (5.10)
to obtain
W(Yp)| = lu(Yo) —u(Xp,) | < CC()][ S%ydo = CCOJ[ $%y do
Qo Qo
< Mg, ,(8%v)(z0) < CCoya < (1+CCoy)a < (1 +¢/2)a, (5.18)

where C depends on the CAD character of D, and provided y < (2CCo)~'e =: 2¢pe. Consequently, for
every x € E(14¢) We arrive at

(1+8e)a < N2v(x) < N2 —v(¥Yp)(x) + v(Yo)| < N2(v —v(Yp))(x) + (1 +&/2)a.

Thus, N2 (v — v(Yp))(x) = N2 (v — v(Y))(x) > ea/2 and (5.17) holds also in this case.

We can now merge the two cases. Pick x € F,, N Fgp = 929 N Q such that N*Q(v —v(Yp))(x) >
ea/2. Then, there exist Q" € Dy with Q" 5 x and Y € Uy such that [v(Y) —v(Yp)| > ea/2. Thus,
yo :=x € Q'NdQy = FpN Q" and applying once again condition (ii) of Corollary 3.21 we can find the
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corresponding Yo' € Uy so that
Yo —yor| < £(Q)) < Cdist(Ygr, 0Q¢) := (1 + k) dist(Yy, 9220),

where C > 2 is the constant from Corollary 3.21. This means that Yo € I'q, (yo/) = I'g, (x) (see (1.14)).
On the other hand, since Y, Yo € Uy and x € F,, N Q', one can see that (5.10) yields

/

w(Y) —v(Yo)| = [u(Y) —u(Yo)| < CCo][ S%udo < CCOJ[ Sy do

’

= CCOJ[ §%vdo < CCoMp, ,(§9v)(x) < CCoyer < ea/4, (5.19)

provided y < coe = (4CCp)~'e. Hence,
ea/2 < [v(Y) —v(Yo)| < [v(Y) —v(Yg)|+[v(Yp) —v(Yp)| < ea/4+[v(Yp) —v(Yp)]
and

Niq,(v—v(Y))(x) = ; S;lp( )Iv(Y) —v(Yp)| = [v(Yg) —v(Yg)| = ea/4.
€l oglx

All these yield
Eqtea NFyeNFo C{x €0dQp: N*’QQ('U —v(Yp))(x) > ea/4}.
Use Chebyshev’s inequality and the assumption (5.3) we write
0(E(4+ea NFyaNFp) <o{x €0Qgp: N*,QQ (v—v(¥p))(x) > ca/4}

4\2
=< (—) / Ny (v —v(Yg))(x)* dH" (x)
e 3Q0

16
< Cao (ex)?

/ (Sqov(x)?dH" (x), (5.20)
Q0

where Cq 0 depends on n and the CAD of D, and so do all the implicit constants. Note that
/ (Sqov(x) > dH" (x) = / f/ |Vu(Y)|? dist(Y, 820)' ™" dY d H" (x)
30 Q0 J J|Y —x|=(1+«) dist(Y,390)
< // (VoY) 2 dist(Y, 8Q20) ™" H"(B(Y, 2+ k) dist(Y, 8Q20)) N 9Q0) dY
Qg
< // IVu(Y) 2 dist(Y, 8Q29) dY
19%)

5// IVu(Y)|*8(Y) dY, (5.21)
To

where we have used that 92y is ADR with constant depending on the CAD character of Q2¢; hence
ultimately on the CAD character of D, and the last inequality follows from the fact that Qo C DNBo C Ty
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(see (iii) in Corollary 3.21 and (2.15)) and, in particular, dist(Y, 02¢) < dist(Y¥, dD) = §(Y) for every
Y € Q. Note that (4.29) with G = |Vv| implies

/f |Vv|28dY%/// V|28 dY do (x)
To 0JJrew)

- /Q $202 do < M3, ,(§%0)(20)%0 (0) < (ya) o (Q), (5.22)
where we have used that zp € F,. Thus, (5.20), (5.21), and (5.22) imply

0 (E(+ea N Fya N Fo) S Cap (v/6)°0(Q),
which is (5.13).

To continue the proof, having at hand (5.4), an argument analogous to (4.25) yields (5.5). To be
specific, we show that taking ¢ > 0 small enough depending on n and the CAD character of D and then
taking ¥ > 0 small enough depending on the same parameters and &, the estimate (5.4) yields (5.5). It is
here that we use a possibility to pick ¢ > O sufficiently small. Indeed, fix any ¢ > 2, Q¢ € D and write
v:=u—u(Xp,). Then, much as in (4.25), for every N > 1

N
Iy := / galo{x € Qp: N*Q(’v(x) > a} C{Ta
0
N/(1+¢) da
=(1 +8)q/ galof{x € Qp: N*Qov(x) > (1+8)a}—
0 a
N 0 D S0 do
<(+e)? galof{x € Qo: Nv(x) > (1 +¢)a, Mgy, 2(S%0)(x) < yo}—
0 ’ (07

1+¢e\¢ ~
+ (7) 1M0, 2(SPW) %4 00)

* q Y q - NQo da  A+8)7 W p S0
<C, .(1+¢) ; galof{x € Qp: Nv(x) > o} o + e 1M, 2S04 (0,
2
(I+¢)1 -
:<1 -0+ C(Z) sup CQQ)(l + )1y + ”Mgo,Z(SQOv)”[l{‘f(Qo)' (5.23)
€/ QeD 14

At this point we first choose ¢ > 0 small enough so that (1 —6)(1+¢)? < ‘l‘, and once ¢ is fixed we take
0 < ¥ < coe/Cy small enough so that C(y /¢)? suppep Cao (1 +6)7 < }‘. With these choices and using
that Iy < N70(Qp) < 0o, we can hide this term with /yon the left-hand side of (5.23) to obtain

Iy <2(1+8)7 /[y Mg, ,(S%0)[11, 0,

Noting that Iy ||N*Q°v||££q(Q0) as N — oo, and using that Mgo,z is bounded on L7(Qy) since g > 2,
we obtain as desired (5.5).

We next see how to obtain (5.6) using the ideas in Remark 4.4. Proceeding as there, once we have
fixed {Wp}oenp) a Whitney-dyadic structure for D with some parameters 1 and K. Given x € 9D and

0 <r < 2diam(d D), write A = A(x,r) and B = B(x, r) and consider the case r < diam(d D). Then
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I'(y) C2B forevery y e A,if z¢ 6A then I'q 1(z) N2B =@, and I'q 1 (y) C I'(y) for every y € 9D.
All these and with Remark 2.38 imply

INS b —u(X)La(a) < INx,puc (@ —u(X ) 128) [l Lo oD)
SN pa (@ —u(X N 12p)ILaapy < IIN«((u —u(X ) 128) | La6n)-

We introduce D as in (4.6). Let Q € D, and note that §(X ) ~£(Q) ~r~§(X ;) andalso |X ;=X | Sr.
Hence we can use the Harnack chain condition to find a collection of cubes I, ..., Iy with N <1 so that
X} €lo, X} € Iy, dist(41;, 3D) ~ £(I;) ~r ~ £(Q) for | < j < N, and there exists X ; € [; N 1| # &
foreach1 < j <N —1. Write Xo = Xp+, Xy = XX, and note that forevery 1 < j < N

Jj—1 j—1
dist(l;, Q) < |X;—xol < |IX; =X +IX 5—x0I Y IXk—Xps1 [+£(Q) < Y diam (I 1) +£(Q) ~ £(Q).
k=0 k=0

Thus, there exist " and K’ depending on n, the CAD character of D, and fixed parameters n and K such
that if {Wj,}gen(p) is a Whitney-dyadic structure for D with parameters ’ and K', and if / € W with
IN2I; #,then I € (‘Wé)0 - (Wé Consequently, 21 C Ué (the Whitney region corresponding to Q
with the Whitney-dyadic structure {‘Wé}QE@(a py)- All these and (5.2) yield

N-1
(X5 —u(XD)| = [u(Xo) —u(Xn) < Y (X)) —u(Xjs1)|

j=0
N—-1
=2
j=0

u(Xj)—z(21j+1)—"—1f/ udY‘ +
214
< sup sup u(X)—€(2Ij)_”_1// udY'
I<j<N Xel; 21;
< Co sup (z(zlj)“// u—@(zlj)“// u
ISJSN 21j 2]1'
1
2
< Cy sup z(lj)(z(zlj)—"—‘ // |Vu|2dY)
1<j<N 21
1
2
~ Cy sup (// |Vu|251—"dY)
1<j<N 21;
1

2
<Coy sup (// |Vu|251"dy) < Cy inf A"C(Vu)(y),
1<j<N U, yeQ

u(xj+1)—e(21,-+1)—"—1/f udY'
241

>\
dY)

where A" € is the local area integral to the cones I'’(-) made up with the Whitney regions U /Q,.
On the other hand for each Q € D, we have much as before that

T'(y)N2B cT9(y) cT¢(y) C B(xg, K&(Q)ND C K'BND
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for every y € Q € Da. Taking K’ even larger we also have that I"¢(y) ¢ D C K'B N D for every
y € Q € Da. Thus all the previous considerations, (5.5) for g > 2, and Remark 2.38 give

INZ o= XNy S D ING(@ = u(X ) 128) 40

0eDp

< Y (INE( = X ) 1ap) 44 ) + (X ) — u(X )90 (Q))
Q€D

< D0 (5%l ) + Co inf A" C(Vu)(y)10(Q))
0cD, yeQ

< ||ﬁ(|Vu|1k/B)||Zq(aD) + Coll A (IVullis)l 2 ap)
< (1 + COIAD min1.e) VUl L B) 1 L0 )

<(1+ C0)||ﬂ§f,;’(|Vu)| ||%q(3K’A)

= L+ CoISpS ullfusieays

where we have used that I'q 1 (z) N K'B # @ then z € 3K’A. This proves (5.6).

To complete the proof we observe that if 9D is bounded then for any x € dD we have that 0D =
A(x,3diam(dD)/2). Thus (5.7) readily follows from (5.6). On the other hand, to obtain for (5.8)
fix xo =€ dD and write Ag = A(xg, R). Given & > 0, there exist R, such that |u(X)| < ¢ for every
|X — xo| > R., with X € D. By the corkscrew condition B(XJAFR, R/C) C B(xg, R) for some C > 1 and
then [X} —xol = R/C.

Fix y € 9D and let R > 2 max{CR., |y —xo|} so that B(xo, R;) C B(y, R) and | X} —xo| = R/C > R,.
Hence, |u(XZR)| < ¢, |u(Z)| < e forevery D\ B(y, R), and

| Nowett () = NE = u(XE D)0 ag )] = [Nsjett(v) — No e (@t — u(XE ) Ly 0) ()]
< N (= (u —u(X 3 ) 1By, 8) (V)]
< INuw ul p\B(y, R) D]+ (XX )| < 2e.
This shows that for every y € D
Aim N = u (X)) ag (0) = N ().

Thus Fatou’s lemma and (5.6) imply for every g > 2
[ M) o) <timint [ V- uxg )00 do )
oD R— 00 AR ’

§C”liminf/ SKRu(y)? do (y) §C”/ Su(y)d do(y). a
K'Ag aD

R—o0
Our next goal is to extend the previous result so that we have the N < § estimates in all L?. We
need to introduce some notation. Recall that if D is a CAD, we have constructed a Whitney-dyadic
structures {Wyp}oenop) for D with parameters 7 and K; see Section 2.4. In the following result we
will need to work with two different Whitney-dyadic structures associated with different parameters and
we need to introduce some notation to distinguish between the associated objects. More specifically, let
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eD D) (resp. <D D)) be a Whitney-dyadic structure for D with parameters n < 1 an
(Wo)oepwon) (resp. [W))gen@py) be a Whitney-dyad; for D with p 1< 1and
K > 1 (resp. n’ < 1 and K’ >> 1). Associated with {Wp}pep@p (resp. {(Wé}Qe[D(aD)) we define the
Whitney regions Uy, the dyadic cones I" and the local dyadic cones T'? (resp. U}, I/, T-€) as in (2.10),
(2.23), or (2.24). With this we define N,, N*Q, S, S2 (resp. N, N;’Q, S, $"2) as in Definition 2.33.

Theorem 5.24. Let D C R"*! be a CAD. Let u € W,;2(D) N C(D) be so that (5.2) holds and assume
that there exists C, > 0 and p > 2 such that for any cube I with 2I C D,

(eur”*//wmpdx)p gcg(eu)—"—lf |Vu|2dX>2. (5.25)
1 21

Suppose that the N < S estimates are valid on L on all bounded chord-arc subdomains Q2 C D, that is,
for any bounded chord-arc subdomain Q2 C D, there holds

I Nuo( — u(X5)ILroe) < CallSautllLr@e)- (5.26)

Here X g; is any interior corkscrew point of 2 at the scale of diam(S2), and the constant Cg, depends on
the CAD character of <2, the dimension n, p, the implicit choice of k (the aperture of the cones in N, q
and Sgq), and the implicit corkscrew constant for the point X 5 .

Given n < 1 and K > 1, consider {Wy}oecnp)y a Whitney-dyadic structure for D with parameters n
and K ; see Section 2.4. Then, there exist n’ < n and K' > K (depending on n, the CAD character of D,
and the choice of n, K, t) so that if {(Wé}QeID(B p) is a Whitney-dyadic structure for D with parameters n
and K, for every Q € D(dD),

INZ (@ —u(X )iy < C'IIS"CullLag) forall 0 < g < oo, (5.27)

where C' depends on n, the CAD character of D, Cy, C(’), q, and the choice of n, K, t. Here N*Q is the
nontangential maximal function associated with the Whitney-dyadic structure {Wg}np), while S’ Qs
the square function with the associated with the Whitney-dyadic structure {(Wé}D(a D)-

As a consequence, for any x € 0D and 0 < r < 2diam(d D) there exists K' depending on n, the CAD
character of D such that for every k > 0

INL p (= (X A ) Lo a@ry) < C" ISy rullLaac.kry forall0 < g < oo, (5.28)

where A(x, r) = B(x, r) N3, and where C" depends on q, n, the CAD character of D, C, C(/), and k.
In particular, if 9D is bounded then

INw D —u(X ) sy < C"ISpcutllLappy forall 0 < g < oo, (5.29)
and if D is unbounded and u(X) — 0 as | X| — oo then
N« pcttllLaopy < C"ISpcullLaopy forall0 <gq < oo. (5.30)

We note that (5.25) can be relaxed so that it suffices to assume that it holds for I =2J with J € W(D).
We also note that the same proof allows us to work with 1-sided CAD. That is, if D is a 1-sided CAD
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and (5.26) holds for all bounded 1-sided chord-arc subdomains then (5.27) and (5.29) hold for D. Further
details are left to the interested reader.

Proof. For starters we fix n < 1 and K > 1 and let {Wp}pecp be Whitney-dyadic structure for D
with parameters n and K. Let n’ <« n be small enough and K’ >> K large enough to be chosen and
let {(Wé}Qe p be Whitney-dyadic structure for D with parameters 1’ and K'. Taking into account (2.9)
if ()4 < c—lnl/z and (K")'/? > CK'/?, then Wy C (W))? C W), for every Q € D = D@3D).
Consequently, T9(x) C I'y(x) and $%uv(x) < §"Qu(x) for every x € aD Q €D, and v e W2(D).

Much as in the proof of Theorem 5.1, matters can be reduced to showing that for every «, v, & > 0
with 0 < y « ¢/Cyp and for any given Qg € D

ofx € Qo: N2 —u(X} ) (x) > (1+e)e, S"Pu(x) < ya)
<Cjolx e Qo: NOw—u(Xp)(x) >a}, (531)

and we will me more specific about the constant C; . momentarily.
Let us fix Qg € D and write v :=u — u(X 50), with X JQFO begin the corkscrew relative to Q, that is,
relative to the surface ball Ag, (see (2.2) and (2.3)). For every o > 0 we set

Ey,:={xe€Qp: N*Qov(x) > al, Fa ={x € Qp: S”Qov(x) <a}.

Our goal is to obtain
G(E(1+e)a N Fyoz) =< C;’QO’(EG)’ (5.32)

where C* = C(y/s)”(l +C)) SUP e 7 CQT , where the sup runs over all Q € D and all pairwise
disjoint famlhes FcC Do \ {Q}. Note that sup,.p, & Ca- o <00 and ultimately depends on the CAD
character of D, since all the sawtooth subdomains Qg o are CAD with uniform constants (see Lemma 2.55)
and our assumption states that Cg, 7o depends on the CAD character of 2 .

With this goal in mind we fix «, ¥, ¢ > 0. We may assume that £, # &; otherwise (5.31) is trivial. As
in the proof of Theorem 5.1we can find ¥ = {Q;}; C Dy, a family of maximal (hence pairwise disjoint)
cubes with respect to the property Q C E,, so that E, = UQ_/, 7 Qj. We then fix Q € ¥ and we just
need to see that

0 (Eq1ea N Fpa N Q) < C} ,0(0), (5.33)

assuming that y < coe with a suitably small ¢y depending on n, the CAD character of D. We may assume
that o (E(14¢)a N ﬁ},a N Q) > 0 and pick zg € E(14¢)a N ﬁ},a N Q. We follow the same argument of the
proof of Theorem 5.1taking into account that the set F,, needs to be replaced by Fya. Here we do not
invoke Corollary 3.21 and we formally take Fp = Q. Also we take Yo = X 25, the corkscrew relative
to Q. We replace (5.15) by

V(X3 —v(¥o)l = [u(Xz) —u(¥o)| = CCy inf §%u(z) < §%v(zg) < 8" Pu(zg) < CCoya,

where we have used (5.10) and the fact that zp € O N ﬁya. Thus, assuming that y < (2CCo)~Le =: 2¢ye,
one arrives at (5.17) with fya in place of F),, and Fp = Q in the case E, C Q. On the other hand, the
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same estimate holds in the case Q = Qg since Yo = X t=X JQFO; hence (5.18) becomes trivial. Thus we
have obtained that in either case

EqseraNFaNQ Cl{x € FyNFp:N2(w—v(Yp)(x) > sa/2} =: Ep. (5.34)

Let E/ be an arbitrary closed subset of E¢ with a(E )>0.Letx € Q) E/ Since E /Q is closed there
exists r, > 0 such that B(x, r,) N E = . Pick any Qx e D with O, > x and £(Qy) <Kmin{l(Q), ry}.
Then, x € 0, N Q and necessarily Qx C Q. Also Q, C B(x, ry) since x € Q, and diam(Q,) ~ £(Qy) KL ry.
All in one, O, C O\ E/ and there exists a maximal cube Q7 € Dy so that Qmax C 0\ E/ Note
that Q1 C Q; 0therw1se E = @ which contradicts the fact that o (E(14¢)e N Fyo, N Q) > 0 Let 7
be the family of maximal (hence pairwise disjoint) cubes Q7 with x € E /Q Note that ¥ C Do\ {0}
and O\ E/ :,\UQ'G% Q.

Let 2, = Q;’Q. Let us write §,(-) = dist(-, 0€2,) and o, = H"|yq,. We start with Chebyshev’s
inequality and the fact that Ef, C Eg

p
(T(E/Q) < (i) N*Q(v —v(Yp))(x)P do(x), (5.35)
ea E/Q

and now change the cones from those used in N2 (dyadic, with respect to D) to the traditional ones
(1.14) with respect to 2,. More precisely, let x € E’Q =0\ UQ@; Q' C 92, NdD (see [Hofmann and
Martell 2014, Proposition 6.1]) and Y € I'(x). Then Y e I*(t) with I € Wy withx € Q' € Dy and

Y — x| < diam(/) + dist(, Q') + diam(Q’) < ¢(I).

Note that Q" € D ; otherwise Q/ C Q" € F and hence x € Ugres Q" = @\ Ej. As a consequence,
int(I*(27)) Cint(Ug2;) = 1nt(UQ) C Q, and 8,(Y) = £(I). All this shows that |Y —x] <68,(Y) and
this means for some choice of « (depending on the CAD character, and n and K), ¥ € I'g, ((x) (see
(1.14)). Thus, with the notation in (1.16),

N2 —v(Yo)(x)= sup [v(¥)—v(¥p)l< sup [v(¥)—v(Yp)|=:Nig,(v—v(Yp)(x).
Yel'Q(x) Yelq, «(x)

and (5.35) leads to

2 \?
o(Ep) < (_) Nig, (v —v(¥0))(x)” doy(x)
(0% E/Q

P
s(i) / Nogoo (v — 0(¥0)) () doa(x)
EX a0,

<
~ (ea)P

/ Ni,@,.u00 (v = (Y ) (X)P dou(x), (5.36)
082,

where the last estimate follows from a change of aperture in the cones (see Remark 2.38). We remark
that Yo = X 5, which is a corkscrew point for Q with respect to D. By construction, if we take [ € ‘W
so that X ’5 € I then I € ‘Wy. Hence, much as before

8(Yo) ® £(Q) = (1) S 8.(Yo) = 5(Yp).
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Hence Y is an interior corkscrew of €2, at the scale diam(£2,) ~ £(Q) (see (2.14)). Note v(-) —v(¥Yp) =
u(-) —u(Yp) and Vv = Vu in D. This and the fact that €2, is a CAD (see Lemma 2.55) allow us to
invoke (5.26), which together with (5.36), yields

o(Ep) S N0, 6 (V=v(¥)) (x)” do(x)

(ea)? Jyq,

/ Sa o 0(¥) doy (x)
092,

<C
= )P

SC
S~ g

/ S, 1v(x)’ do,(x)
I,

1 1
=Cgq, / Ssz,,lv(x)pdff«(x)-i-csz*—/ Sq,.1v(x)Pdo,(x) =: Cq, (+1D), (5.37)
(ea)? JE, (ea)? Jaq,np

where the third estimate follows from a change of aperture in the cones (see Remark 2.38)) and the first
equality from [Hofmann and Martell 2014, Propositions 6.1 and 6.3].

To estimate the previous terms we first need to introduce some notation. Given x € 92, and for some
parameter N > 1 (depending on the CAD character of D) to be chosen later we write

Pg 1 =Ta 1N{Y €eQ:8(Y)<€Q)}, T§ =T 1\Tg |

To proceed let us observe that if Q' € Dg ,, then one can find yor € Q'NE ' ; otherwise, Q'NE /Q =@ and
by construction there exists Q" € F with Q' c 0", contradicting the fact that Q' € D& o-

Giyefl X € BQ’:, letY € Fé’l(x) C Q, = ﬁf;’Q. Then Y € ﬁQ/ for some Q' € Dg - In particular,
Yer? (yo) C FQO(yQ/). Also, £(Q) < 8§(Y) ~ £(Q’) < £(Q). This means that

|Vu?8'"dy < // |Vo28' " dY = S0y (yp)?
/ /Fé L) Z T (yy) Z ¢
* s Q El]j)?—Q

: Q'ebgz
€(QH~L(Q) {(QH~L(Q)
< Y S%(p) = (ya) HQ € Do £(Q) A UQ) S (va)'. (5.38)
Q’EIDTN_Q
LQH~U(Q)

We next turn to estimate I. Let x € E ’Q C 02, N 3D (see [Hofmann and Martell 2014, Proposition 6.1]).
Note first that if ¥ € I'q 1(x), then 6(Y) < |Y — x| < 24,(Y) and thus (5.38) gives

Sq.1v(x)? = // Vo8 dY < // V28! dY—i—// IVo|?8' =" dy
Tg,,1(x) T () 3,100

< f/ V|28 dY + (ya)?. (5.39)
T, 1 ()

Given Y € F%M(x) C Q, C D,onehas Y € Iy for some Iy € W. Pick then Qy 3 x with £(Iy) =£(Qy)
and note that by (2.5), and since K is large enough,

dist(Qy, Iy) < |x — Y| < 2dist(Y, 8S2,) < 28(Y) < 82 diam(Iy) = 82/nl(Qy) < K2£(Qy).
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This means that Iy € WQOY C Wy, . Additionally,

£(Qy) =€(Iy) < dist(/, D) < 3(Y) < £(Q)/N < £(Q);
this together with the fact that x € Qy N Q gives that Qy € Dg. Hence, Y € Iy CUp, C réw) c Qo (x)
and eventually

// IVo28' " dY < §%v(x)? < §" Qv (x)? < (ya)?, (5.40)
Fl

Q01 )

since x € E, C Eg. This and (5.39) imply that

p P
IS (ﬂ) o(E}) < (Z) (). (5.41)
EA &

Turning to II, we start with the following:

Claim 5.42. We can take choose n' small enough and K' large enough (depending on n, the CAD
character of D, and the choice of 11, K, ©) such that for any x € 92, N D there exists y, € E’Q such that if
J € W satisfies 4J N ng*,l (x) # @, then 4J C T2(y,) and, in particular, Fslz,,l (x) C T2 (yy).

Proof. Fix x € 9Q, N D. Then x € 31, where [ := I*(27) = (1+21)I with I € Wy, Q' € D 5. In this
scenario we observed before that we can find pick y, = yo NEg N Q".

LetY e4J N Fslz*,l(x) and assume first that |Y — x| > £(I)7/(24/n). Pick Q" € D with ypr € Q"
and 8,(Y)/2 < £(Q") < 6,(Y). Note that £(Q") < 6,(Y) <8(Y) <£(Q) since Y € Fslz,,l(x) and hence
Q" C Q. Then, choosing N large enough, depending on n and the CAD character of D (recall that n, K
have been already fixed depending also on the CAD character of D),

dist4J, Q") <|Y —yo| < |Y — x|+ diam([l) + dist(1, Q') + diam(Q’)
<|Y —x|+CKIy2() < (1+CK 2t )Y — x|
< IN|Y —x| < N8.(Y) < Ne(Q"),
where we have used (2.9). Note also that by (2.5)

Q") <8,(Y) <8(Y) <diam(4J) +dist(4J, dD) < 41 diam(J) = 41/nt(J)
and
€(J) < dist(@J, dD)//n < dist(4J, Q") //n < NL(Q").
All in one we have obtained that
N_lﬁ(J) < (0" <41/ne(J), dist(d4J, Q") < Ne(Q").

If we now take J' € W with J' N4J # &, then the properties of the Whitney cubes guarantee that
£(J’) =~ £(J) and hence the previous estimates easily extend to J'. This means that choosing 1’ smaller
and K’ larger (depending on the CAD character of D), we have that J' € (W),,)° ¢ ‘W/),,. Since yo € 0",
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we then have that
4a7c |y 7 U ( U 1*(:)) = U Up=1r"%00p).
JeW, J'N4] #o Yor€Q"€Dg “J'eW,, Y¥or€Q" €Dy
Consider finally the case on which ¥ € 4J N FSIZ*,I(X) satisfies |Y — x| < £(I)t/(24/n) so that
Ye(d+2tl) =1I"Q2r) = [ and L(I) ~ §(Y) =~ £(J). Note then that if J' N4J # & we have
L(J") ~L(J)~L). Since [ € Wy, Q' € Dg , we have by (2.9) that
Q") S e~ L") S K2(Q),

and
dist(J', Q) < diam(J') +diam(4J) + |Y — x| +diam(f) +dist(Z, Q) < e(I) +dist(I, Q) < K%E(Q).

Thus, by taking 1’ smaller and K’ bigger, if needed, we obtain that J' € (‘W/,)°. Much as before the fact
that yo' € Q' yields

ac |y v U (U I*(r)): U o =T"C00. O
JeW: I/ N4] #2 Yo'€Q"eDg NJ'eW,), Yor€Q" €Dy

Let us now get back to the proof, specifically, to the estimate for II in (5.37). Let @ > O be small
enough to be chosen and set for every x € 02, N D

Py () ={Yely () :8X)=ws(Y)}, T (x)={Yelg ;(x):8.(Y)=ms1)},

and
I3 (x)={Y eTg,1(x):8.(Y) < w8V}
Thus
S 5
Sa. v ()’ =) // [VoPs,™"dY =) gi(x)’. (5.43)
k=3 1—‘]SEZ,(,I(X) k=3

Note that for x € 92, N D invoking Claim 5.42 we obtain

e <o [ wupstray <ot [ vepsay = s Cu < (e,
To,1() r2(y0)

Analogously, by (5.38)

@) <w!™ // IVu|?8' " dY <! // V281" dy < (ya)?.
T, () "2 (x)

As a result,
/ &) + gl do, <1 (ya)Po, (992)
aQ.ND | |
ST (ya)Pe(Q) w2 TP (ya)Po (Q), (5.44)

where we have used that 9€2, is ADR with diam(3€2,) < £(Q) (see (2.14)).
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We next consider gs. Set W, ={I € W :1NdQ, # I} and note that 92, N D C UIE(W, 1. For
every x € 92, N D we then have that x € I, € ‘W, and also that x € afx with J, e Wy, Oy € ID(,;’Q. If
Y e ng,,l(x) and w < %, then

S(Y) <Y —x|4+8(x) <26,(Y)+6(x) <2wm6(Y)+8(x) < %S(Y) +48(x).
This and (2.5) yield
8(Y) <26(x) <2(diam(4J,) +dist(4Jy, 0D)) < 100 diam(Jy)
and, for = small enough,
Y — x| <26,(Y) <2w6(Y) < 200w diam(Jy) < érﬁ(]x).

Recalling that fx =JQ2r)witht <79 < 2~%*it follows that Y € Ji(7t/4)C2Jandalso Y € B(x, £(Jy)).
Hence, easy calculations lead to

P 1

= —1 _
// 807 dY <max(27 7", 1}// x — Y[ dY S 0002 A L) .
g, 1) B(x,£(J))

Using Holder’s inequality with p/2 we arrive at

> N ;
gs(x) = (f/ |Vv|231—"dY) < (// 8 dY) (/f |Vv|P8;"dY)
T3, () T3, (%) T3,.1 ()

—1 P
§€(1x)pﬂ(// |Vv|f’3;"dy) .
2J:NB(x,28,(x))N2,

Next, for every I € W, we set

W!:={JeW:J=1J, forsomex € 9Q,NI, 2J, NTq, 1(x) # @)}

> [ e
0Q,NI

and obtain

/ 8§ do, <
0Q2,ND

IeW,
<> un! / / / IVu(N)I78,(Y) ™" dY do(x)
[ew. QNI J J27.NB(x,28,(x))N%
<Y ety f / IV(Y)|P8.(Y) "0, (852 N B(Y, 26, (x))) dY
[ew, Jew! 270R,
Sy ety // VoY) [P dY
IeW, Jew/] 2/ »
_ 2
SC YU Y ( / |Vv<Y>|2dY)
IeW, Jew! 4

~Ch YLD Y ( / /4 |Vv<Y)|25(Y)1"dY)2, (5.45)
J

IeW, Jew]
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where we have used that €2, is ADR (see [Hofmann and Martell 2014, Lemma 3.61]), (5.25) (since
4J C D by (2.5)), that £(J,) ~ £(I) since x € I N afx (hence I NJ # &), and finally that §(-) ~ £(J)
in 4J by (2.5).

Suppose next that I € ‘W, with £(I) < £(Q). Note that if J = J, with x € 92, N[ then x € fo NI,
hence £(J;) ~£(]) K diam(/) and 4J, C{Y € D:8(Y) <£(Q)}. Thus, if 2J,Nq, 1(x) # &, necessarily
2J,.N F}z*,l(x) # &. We can then invoke Claim 5.42 with J = J, to find y, € E/Q so that

> (// |Vv|251—"dy) < </f |Vu|251—"dy> #JeW:0JN1 + o)
4J 0 (y,)

Jew/!
<S8 L) < 8" (3)P < (ya)P. (5.46)

Consider next the case I € ‘W, with £(I) 2 £(Q). For every J € (W*I we have that J = J, for some
x € 982, NI and there exists Z € 2J N Q. As such J € Wy, for some Q, € Dg ;. In particular,
2(Q) <UD =~ L(J) =~ £(Q,) < £(Q). Take then an arbitrary Y € 4J N Q,. Since Z € 2J, one has
S(Y) = £(J) ~ £(Q). Also, Z € @, = ’Q%’Q; then Z € ﬁQ/ for some Q' € Df,Q and, as observed
above, the latter implies that one can find ypr € Q'N E’Q We claim that 4J C T2 (y,). To see this let
Y €4J C D and take Iy € ‘W with Y € Iy. Note that by (2.5) and (2.9), £(Iy) = §(Y) ~ £(J) = £(Q) and

dist(ly, Q) < dist(Y, Q) < diam(4J) +dist(J, Q) S €(Q) +£(Qx) ~ £(Q).

Thus taking " smaller and K’ larger if needed ((depending on n, the CAD character of D, and the choice
of n, K, ) we can ensure that Iy € ((Wé)O - (Wé and since yor € Q' C Q we conclude that Z € "2 (y,)
as desired. All these give an estimate similar to (5.38):

P

> (f/ |Vv(Y)|25(Y)1—"dy>2 <#H{JeW:dJNI # @}(// |Vv|28! " dY)2
47 € (yy)

JeWw!
< 8" %u(yp) < 8" Pu(yp)? < (ya)P. (5.47)

We finally combine (5.45), (5.46), and (5.47) to obtain

/ gl do, S Colya)? D L) (5.48)
aQ,ND Tew.

To complete the proof we estimate the sum in the right-hand side. For every I € ‘W, pick Z; € 02, N1
so that £(I) ~ §(Z;) and let Af = B(Z;,8(Z;)/2) N 0L2,, which is a surface ball with respect to €2,.
The fact that Z; € 92, C ND implies that there exists I’ € Wy with Q' € Dg o and Z; € 1. Then,
L)~ 8(Z)) ~ L)~ £(Q") <£(Q) by (2.5) and (2.9)). Note that Q € Dg o3 hence Ug C L,. Pick
Ip € Wy (which is nonempty by construction) and note that £(/g) ~ £(Q) by (2.9) and 1o C Uy C L2,.
Hence £(Q) ~ diam(/p) < diam(2,) < £(Q) by (2.14). All these show that §(Z;) < diam(9€2,). Suppose
next that AL N AY # & for some I, J € ‘W, and let Y belong to that intersection. Assume for instance
that £(I) < £(J) and note that

8(Zy) S|Zy =Y +1Y = Z1|+8(Z)) < 38(Zy) +38(Z)).
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Hence, ¢(J) ~ §(Z;) <35(Z;) =~ £(I) <£(J) and
dist(1, J) < |Z; = Zy| S| Zy = Y|+ 1Y — Z] < 58(Z)) + 58(Zp) =€)+ £(J) ~ £(I) ~ £(]).

As a consequence, the family {A!};cqy, has bounded overlap and therefore

Doy = )y oAl 50*( U Ai) <0,(0Q,) < diam(9Q.)" ~ £(Q)" ~ 7 (Q),

IE(W,( IG(W* IE(Wy

where we have used that 9€2, is ADR (see [Hofmann and Martell 2014, Lemma 3.61]). This and (5.48)
eventually yield

f ¢! do, < Ch(ya)’a (Q).
(’)Q*QD

This, (5.37), (5.43), and (5.44) give

1 / 1 Y
= Sq,.1vP do, < / (gp+gp+gp)d0*§(1+c/)<—) a(Q).
(ea)? Jaq,np (ea)? Jyquop 0 73 “\e

We next combine this with (5.37) and (5.41) to arrive at

p
6(Ep) < Ca,(1+ C())(g) a(Q).

Recalling that Let E ’Q be an arbitrary closed subset of £y with o (E ’Q) > 0, by inner regularity of the
Hausdorff measure, we therefore obtain that

N p
0(E(te)a N FaNQ) <0(Ep) SCq,(1+ Cé)(%) o(Q).

We have then show (5.32) which in turn implies (5.31). With the latter estimate in hand and for any
0 < g < oo, we proceed as in (5.23):

N
Iy := / galo{x e Qp: N*Qov(x) > o} ‘i{—a
0
N/(1+¢) do
=(1 —|—s)’1/ galof{x € Qp: N*Qov(x) > (14+¢e)a} o
0

N
+e
5(1+s)q/ qaqo{xeQo:Nfov(x)>(1+s)a,S/’Q°v(x)§ya}—+( v >||S/ Va0,
0

(1+8)

N
=Cy.a +e)q/0 qalo{x € Qp: N2v(x) > }— ———— 115" ®vl|74 g,

(1 +8)

P
:C<Z> (1+C6)< sup Cgf_Q>(l+s)qIN+
£ QelD,?T'

1" Co0) 134 0y (5.49)

At this point we first choose ¢ = 1 and next take 0 < y < coe/Cp small enough so that

Cy?(1+Cp) sup Cq,27 < 1/1.
QeD
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With these choices and using that Iy < N90(Qp) < oo, we can hide this term on the left-hand side of
(5.49) to obtain

Iy <2(148)7/y11S" |14 0,)-

Noting that Iy ||N*Q°v||[£q(Q0) as N — oo we obtain as desired (5.27).
From (5.27) one can obtain (5.28), and hence (5.29) and (5.30) much as in the proof of Theorem 5.1

and we omit details. U
Combining Theorems 5.1 and 5.24 we can obtain the following:

Corollary 5.50. Let D C R"*! be a CAD. Let u € W,\2(D) N C(D) so that (5.2) and (5.25) hold for some

p > 2. Suppose that the N < S estimates are valid on L? on all bounded Lipschitz subdomains Q@ C D
(see (5.3) in Theorem 5.1). Then (5.27)—(5.30) hold.

Proof. Let Q C D be an arbitrary bounded CAD. Since any bounded Lipschitz subdomain of €2 is also
a subdomain of D we can apply Theorem 5.1 to obtain (5.7) for Q and for every g > 2. That is, we
have the N < S estimates are valid on all bounded chord-arc subdomains 2 C D for ¢ = p > 2. Hence,
Theorem 5.24 applies to obtain the desired conclusions. ]

6. From N <S bounds on chord-arc domains to e-approximability in the complement of a UR set

Recall the definition of e-approximability (Definition 1.11). The second main result in [Hofmann et al.
2016], stated there for harmonic functions but proved in full generality, can be formulated as follows.

Theorem 6.1. Let E C R™*! be an n-dimensional UR set, R"T'\ E, and suppose that

ue WHARN\EyYnCR'™\ E)NL®®R"\ E)

loc

is such that for any cube I with 21 C R"T'\ E

sup |u(X)—u(Y)|§Co(K(I)1_” /f |Vu|2dX>2 (6.2)
21

X, Yel

and
IVullememeen gy < Collwll oo @n 1\ )

Assume, in addition, that N < S estimates are valid on L* on all bounded chord-arc subdomains
Q C R\ E; that is, for any bounded chord-arc subdomain Q C R"1\ E, there holds

[Ne.o( —u(XE) 1200 < CallSaullr2p0)- (6.3)

Here X g; is any interior corkscrew point of 2 at the scale of diam(S2), and the constant Cg, depends on
the CAD character of <2, the dimension n, p, the implicit choice of k (the aperture of the cones in N, ¢
and Sq), and the implicit corkscrew constant for the point Xg. Then u is e-approximable on R"*!\ E,
with the implicit constants depending only on n, the UR character of E, Cy, and C.
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Strictly speaking, the previous result was proved in [Hofmann et al. 2016, Section 5] for harmonic
functions but it was observed in Remark 5.29 of that work that the same argument can be carried out
under the current assumptions.® Let us note that one can weaken (6.2) by just assuming that for any
Q € D(FE) and for any connected component of Ué there holds

sup [u(X) — u(¥)| sco(fz(Qr"—1 / ﬁ | |u|2dX>2. 6.4)
0,

X,YeU’Q

Also, in the course of the proof one uses (6.3) for the bounded chord-arc subdomains of the form 2 = stE
defined by (2.52) (with S’ = §). Further details are left to the interested reader.

7. Applications: solutions, subsolutions, and supersolutions of divergence-form elliptic equations
with bounded measurable coefficients

7.1. Estimates for solutions of second-order divergence-form elliptic operators with coefficients satisfy-
ing a Carleson measure condition. Given an open set 2 C R"*!, consider a divergence-form elliptic
operator L := —div(A(-)V), defined in €2, where A is an (n+1) x (n+1) matrix with real bounded
measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition

n+1

EP < AXELE = > A(X)EE.  TACOE -] < AEIE, (7.1)
ij=I
for some A > 1, and for all £, ¢ € R"T!, and for a.e. X € Q. As usual, the divergence-form equation is

interpreted in the weak sense; i.e., we say that Lu =01in Q if u € Wl:)’cz(Q) and

// AX)Vu(X) - V¥ (X)dX =0 (7.2)
Q

for all W € C°(2).

Let us introduce some notation. Given an open set 2 C R"*+! and A, an (n+1) x (n+1) matrix defined
on R"*1\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (7.1), we say that A € KP(€2) (the Kenig—Pipher class) if [VA(-)| dist(-, 02) € L*(£2) and
IVA|cMmE@) < oo. It has been demonstrated in [Kenig and Pipher 2001] that if €2 is a Lipschitz domain
and A € KP(2) then weak solutions to Lu satisfy square function/nontangential maximal function
estimates and Carleson measure estimates on 2. Strictly speaking, the class of matrices is slightly smaller
and the details of the proof are only provided there for N < S direction (and only for p > 2), but all
ingredients are laid out for a reader to reconstruct a complete proof. One can also consult [David et al.
2019] for complete details presented in this and more general, higher codimensional, case. For the precise
case we are considering here, the following result can be found in [Hofmann et al. 2017a, Appendix A]:’

SIn [Hofmann et al. 2016, Remark 5.29], we inadvertently neglected to mention that our proof utilized estimate (6.3); in
fact, it is utilized in an essential way. One should bear this in mind when comparing the statement of Theorem 6.1 with that
Remark 5.29. The former is correct.

TThe argument in [Hofmann et al. 2017a, Appendix A] follows that of [Kenig and Pipher 2001] very closely.
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Let €2 be a Lipschitz domain and let A € KP(£2). Then, any weak solution
1€ Win ()N L¥(Q) to Lu = 0 in  satisfies [|Vullcme@) S llull? o g, With
implicit constant depending on 7, the Lipschitz character of €2, ellipticity, and

the implicit constants in A € KP(S2).

(7.3)

We also need the following auxiliary result (see [Kenig and Pipher 2001, Lemma 3.1]):

Lemma 7.4. Let E C R"! be a closed set and let A be an (n+1) x (n+1) matrix defined on R"*'\ E with
real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition (7.1). If
A KPR\ E) then A€ KP(D) for any subset D C R"*'\ E. Moreover, |[VA(-)dist(-, dD)||r(p) <
IVA(-)dist(-, E)|| pooq+1\g) and

IVAlleme) = CUIVAlleme®e+1\gy + IVA(-) dist( -, E)”ioo(RnJrl\E))’

where C depends only on dimension.

Proof. Note first that since D C R"*!\ E then dist(X, dD) < dist(X, E) for every X € D. In particular,
one has [VA(-)|dist(-, dD)| Loy < [VA(-)dist(-, E)|| poorti\g)-

Next, we fix B(x, r) with x € 0D and 0 < r < 0o. We shall consider two cases. First, if dist(x, £) <2r
we pick z € E with dist(x, E£) = |x — z| and observe that B(x, r) C B(z, 3r). Then,

// IVA(Y)|*dist(Y, dD) dY < // IVAY)|>dist(Y, E)dY < 3r)" VAl emp@e\g)-
B(x,r)ND B(z,3r)ND

In the second case, dist(X, E) > 2r, we have dist(Y, E) > r and dist(Y, 0D) < |Y — x| < r for every
Y € B(x,r) N D. Hence,

dist(Y, 0D
/ / VA dist(Y, dD) dY < [VA(C-) dist(-, E)I . g, / / GsU¥,0D) y
B(x,r)ND B(z,r)ND dist(Y, E)

< IVAC)dist(-, E)Joqguin gy~ 1B, 1)
= Cal VAC) dist(-, E)Faogusry gy
All these readily give the desired estimate. O

Theorem 7.5. Let E C R"*! be an n-dimensional UR set. Let A be an (n+1) x (n+1) matrix defined
on R\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (71.1) and so that A € KP(R"t'\ E). Then any weak solution u € Wll)’CZ([F\R”Jrl \E)toLu=0in
R"*t1\ E satisfies the S < N estimates

||S|Rn+l\EI/l”LI’(E) < C”N*’Rrﬁl\EM”LI’(E), 0 <p <o, (76)
K/
ISgsn gtllLracery SN g glllLeae.kr),  0<p<oo, (7.7)

forany x € E and 0 < r < 2diam(E), where A(x, r) = B(x, r) N E, and where K’ depends on n and the
UR character of E; as well as its local dyadic analogue, for any Whitney-dyadic structure {Wgp}oecn (k).
for R"1\ E with parameters n and K,

IISQulle(Q) < Cllﬁgulle(Q), QeD(E), O0<p<oo. (7.8)
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If, in addition, bounded, u € L°°([R§"+] \ E) then the Carleson measure estimate

IValleme@e ey < Clul g gy (7.9)

holds and u is s-approximable on R"+1'\ E, in the sense of Definition 1.11. All constants depend on n, the
UR character of E, the ellipticity of A, [[VA(-) dist(-, E)||po@m+1\gy» |V AllemE®e+1\E)» the aperture of
the cone k implicit in (7.6), and the implicit parameters n, K, t implicit in (7.8).

Proof. Fix A € KP(R*!\ E) with ellipticity constant A and take any weak solution u € WIL’CZ([RR"+1 \ E)
to Lu=0in R\ E.

Claim 7.10. For any Q C R"*!'\ E with 32 being UR there holds

2
|| Vu ”CME(Q) S ”l/l ”LOO(Q),
with an implicit constants on n, the UR character of E, \, and the implicit constants in A € KP([R{”‘H \ E).

Assuming this momentarily, and taking = R"*!\ E we readily obtain (7.9). On the other hand, given
an arbitrary Q € D(E) and arbitrary pairwise disjoint family F C Dy, let G = Vu € L12OC([R{’”rl \ E) and

H =u e C(R"!'\ E). Note that Proposition A.11 says that §T7Q is an open set with UR boundary and
with UR character depending on n and the UR character of E. Hence, Claim 7.10 says that

~ — ~ 2 _ 2
”G”CME(Q,F_Q) = ”VM”CME(QT’Q) N ||u||L:>o(§7__VQ) = ||H||Loo(§7__yg)’

with a constant which is independent of u, Q and ¥, and depends on n, the UR character of E, the
ellipticity of A, and the implicit constants in A € KP(R"*!\ E). This means that (Ajo.) in Theorem 4.8
holds for the open set R+l \ E. As such (4.13), (4.14), and Remark 4.4 imply (7.6)—(7.8).

Proof of Claim 7.10. Take an arbitrary any open subset Q C R"*!\ E with 9 being UR. We may assume
that O < ||u||L~(@) < 0o; otherwise the desired estimate is trivial. Set Ag := A in 2 and Aq :=1d (the
identity matrix) in R"*!\ Q which is an elliptic matrix with ellipticity constant at most A. Note that
Lemma 7.4 gives

1

IVAallcme®e+nae) = sup
x€dQ,0<r<o0 T

1

n

f/ IVAo(Y)|*dist(Y, 9Q) dY
B(x,r)\0%2

= sup
x€dQ,0<r<oco I

< IVAlleme@) < Co(IVAllememe+1\E) + IVA(-) dist( -, E)”ioo(Rn-H\E))

n

f/ IVA(Y)|? dist(Y, 9Q2) dY
B(x,r)NQ

and
||VAQ dlSt( L aQ)HLoo(RnH\aQ) = ”VA dlSt( L aQ)”LOO(Q) < ||VA dlSt( LI E) ”Loo(RnJr]\E).

Write also ug = u in Q and ug := 0 in R"*!\ Q. Note that ug € WIL’S(R”H \ 92) satisfies, in the weak
sense, —div(AqVug) = Lu=0in Q and — div(AqVug) =0 and R**!1\ Q = 0. This and the fact that Q
is open imply that — div(AqVug) =01in R+l \ €2 in the weak sense. Note also that ug € L® (R \0Q2)

implies |lug|l Lo gi+\ae) = lull @) < 0.
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Fix D C 2 an arbitrary bounded Lipschitz subdomain and F = Vug/|lug ||%30(Q). By Lemma 7.4, we
have that A € KP(Q2) € KP(D) (with uniform bounds controlled by those of Ag € KP(£2), and hence
ultimately on those of A € KP(R"*!\ E)). By (7.3) applied to ug for the operator L in D we obtain

2
IVugllemen) luallzep) -

| FllcmeD) =

—

2 ~ 2
”MQ”LOO(Q) ”uQ”Lw(Q)

with implicit constant depending on n, the Lipschitz character of D’, A and the implicit constants of A €
KP(R"+!\ E). This and Corollary 3.1 (or Remark 3.3 for a more direct argument) to the UR set 92 yield

IVulleme) — Vualemewe o)

5 = 5 =|Flleme) S sup | Fllememp) = sup | Fllemem) S 1,
||u||L00(Q) lug ”Loo(Q) DCR+1\3Q DcCQ

with implicit constants depending only on n, the UR character of €2, A, and the implicit constants in
A e KP(R"T!\ E). This completes the proof of (7.9). U

To continue with the proof of Theorem 7.5 we are left with showing that if we further assume that
u € L®(R" !\ E) then u is e-approximable on R"*!\ E. Firstly, all auxiliary estimates (5.2), (5.25),
and (6.2) hold for u in the open set R"*! \ E, and hence in any open subset Q@ C R"*!\ E, by the usual
interior estimates for solutions of elliptic PDEs (see, e.g., [Kenig 1994]). We point out again that N < §
estimates (5.3) on all bounded Lipschitz subdomains of €2 hold essentially by [Kenig and Pipher 2001].
More precisely, let D C R"*!\ E be an arbitrary chord-arc subdomain. For every a bounded Lipschitz
subdomain 2 C D, by Lemma 7.4 it follows that A € KP(€2) with bounds that depend on the implicit
constants in A € KP(R"*!\ E). In turn (7.3) and [Kenig et al. 2016] yield that the associated elliptic
measure belongs to the class A (9€2) with respect to surface measure. Thus, [Dahlberg et al. 1984]
allows us to obtain N < § estimates are valid on L%, 0 < g < 0o, on 2. Corollary 5.50 readily gives
N < Son L% 0 < q < oo. This together with the fact that we have already shown (7.9) allows us to
invoke Theorem 6.1 to conclude as desired that u is e-approximable with constants depending only on 7,
the UR character of E, X, and the implicit constants in A € KP(R"*!\ E). [l

7.2. Estimates for subsolutions and supersolutions of second-order divergence-form elliptic operators
with coefficients satisfying a Carleson measure condition. Our methods allow us to deal not only with
solutions but also with subsolutions (thus, also with supersolutions) of the operators considered in the
previous section. Before, stating the result let us recall that given an open set 2 C R"*! and a second-order
divergence-form elliptic operators L := — div(A(-)V), defined in €2, where A is an (n+1) x (n+1) matrix
with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition (7.1),
we say that u € ng’f(Q) is a weak L-subsolution (or, Lu < 0) in € if

// AX)Vu(X)-V¥(X)dX <0 (7.11)
Q

forall0 < ¥ e CSO(Q). Analogously, u € WIL’CZ(Q) is a weak L-supersolution (or, Lu > 0) if —u is a
subsolution.
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We are now ready to state our main result in this section. We note that it applies in particular to the
Laplace operator; hence the obtained estimates are valid for any subharmonic or superharmonic functions.

Theorem 7.12. Let E C R"*! be an n-dimensional UR set. Let A be an (n+1) x (n+1) matrix defined
on R"1\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (7.1) and so that A € KP(R"*! \ E). Then any weak L-subsolution or L-supersolution
u € WhA(RI\ E) in R\ E satisfies the S < N estimates

loc
| Spr+t\ gttllLr(E) < CIINy g\ g || Lr(E)s 0<p<oo, (7.13)
K/
ISty gl Lracery S IN, g gllLracekry, 0<p<oo, (7.14)

forany x € E and 0 < r < 2diam(E), where A(x, r) = B(x, r) N E, and where K’ depends on n and the
UR character of E; as well as its local dyadic analogue, for any Whitney-dyadic structure {Wp}oen(k)
for R™ 1\ E with parameters n and K,

1S9ullzrcg) < CINCullLrg). Q€D(E), 0<p < oo. (7.15)
If, in addition, bounded, u € L°°([R§"+1 \ E) then the following Carleson measure estimate holds:

IVatlleme@e\ gy < Clull7 oo gty - (7.16)

All constants depend on n, the UR character of E, the ellipticity of A, [[VA(-) dist(-, E) || g1\ E)s
VAl cmE@e+1\£)> the aperture of the cone k implicit in (7.6), and the parameters n, K, T implicit in (7.3).

Proof. We start observing that we just need to consider the case where u is a weak L-subsolution
(because if u is a weak L-supersolution then —u is a weak L-subsolution). We proceed much in the
proof of Theorem 7.12 and a careful reading shows that we just need a version of (7.3) valid for weak
L-subsolutions. That is, we need to obtain the following:

Let 2 be a Lipschitz domain and let A € KP(2). Then, any weak L-subsolution
€ W2 () N Lo(RQ) in Q satisfies ||Vullemp@) S llul12 g, With implicit
constant depending on n, the Lipschitz character of €2, ellipticity, and the implicit

constants in A € KP(2).

(7.17)

With this goal in mind, fix then an arbitrary weak L-subsolution u € Wli)’CZ(Q) N L*®(RQ) in 2. We
may suppose that u is a.e. nonnegative. Indeed, assume for the moment that we have proved (7.17) for
a.e. nonnegative weak L-subsolutions, and let u € WIL’CZ(Q) be an arbitrary bounded weak L-subsolution,
sothat it :=u + ||ull L~ € WI})’CZ(SZ) N L*°(L2) is an a.e. nonnegative weak L-subsolution in 2. We then
observe that our assumption for a.e. nonnegative weak L-subsolutions yields the desired estimate for u:

~ - 2
IVulleme@) = I Vitlleme@) < Nillze @) < 2ullz0q)-

Let us then verify (7.17) for an a.e. nonnegative weak L-subsolution u € Wlf)’cz(Q) N L>®(2). We
observe that since A € KP(2), by (7.3) and [Kenig et al. 2016], it follows that the elliptic measure w;
belongs to Ax(0) with 0 = H"|3. With this in hand, we carefully follow the argument in [Cavero et al.

2020, proof of Theorem 1.1: (b) = (a)] with u being the fixed a.e. nonnegative weak L-subsolution in €2
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in place of a solution and observing that Lipschitz domains are clearly 1-sided CAD. To justify that the
argument can be adapted to the present situation we just need two observations. First, that u satisfies
Caccioppoli’s estimate (the proof is a straightforward modification of the standard argument using that
u is a nonnegative a.e. weak L-subsolution). Second, in [Cavero et al. 2020, (3.64)] one has to replace
“=0" by “< 0” because in the present scenario u is a nonnegative a.e. weak L-subsolution (in place of a
solution). With these two observations an interested reader could easily see that the argument goes through
and eventually show that || Vu|lcme) S Ilu ||%oo @ Hence, (7.17) holds and this completes the proof. []

7.3. Higher-order elliptic equations and systems with constant coefficients. In [Dahlberg et al. 1997] the
authors obtained square function/nontangential maximal function estimates for higher-order elliptic equa-
tions and systems on bounded Lipschitz domains. These results have never been extended, even to CAD do-
mains, and here we present a generalization of Carleson measure estimates to the complements of UR sets.

For any multiindex o = («q, ..., ®y41) € Ng“, we write |o| =a;+- - 4oy and ol =ay! - oy !,
where 0!' = 1. Also 9% = 9% ... 9%+ and for every ¥ € R"*! we write Y* =Y - .. ¥,""}', where a® = 1

for every a € R. Finally, VX, k € N, stands for the vector of all partial derivatives of order k. For k = 0,
VY is just the identity operator.

Let K, m € N. For every 1 < j, k <K, let L* Z\al —om aaﬂa where o = (a1, ..., d,11) € N"Jrl
The coefficients a’ ﬂ, l1<a,B<n+1, 1< j,k <K are real constants. Given an open set 2 and
w=(uy, ... ug), withu; € Wh*(Q), 1 < j < K, we say that Lu =0, if

loc

K
ZLJ"" >3 aledPut =0, j=1,... K,

k=1 |a|=|B|=m

as usual, in the weak sense, similarly to (7.2). Here, W”2(2) is the space of functions with all derivatives
of orders 0, ..., m in L?(2) and WI'SCQ(Q) is the space of functions locally in W™ 2(Q). We assume, in

addition, that L is symmetric: L/* = L¥ for 1 < j, k < K, and that the Legendre—Hadamard ellipticity
condition holds: there exists A > 0 such that

K
YooY alE ey = AP forall g = (g, ..., k) €RK, £ e R (7.18)
jok=1la|=|pl=m

Theorem 7.19. Let E C R"! be an n-dimensional UR set. Given K, m € N, let L be a symmetric
constant-coefficient 2m-order K x K system satisfying the Legendre—Hadamard ellipticity condition, as

above. Then any weak solution u € [Wl'gc’z([Ri"Jrl \E)YNC" YR\ E)IX to Lu =0 in R"*'\ E satisfies
the S < N estimates
1Sy e (V" ) l1r(ey < CING g e (V" uDlieey,  0<p<oo,  (7.20)

1Sgs1y £ (V"™ "Wllrac S IV, Rn+1\E(|vm71M|)”L/’(A(x,l(’r))’ 0<p<oo, (7.21)

forany x € E and 0 < r < 2diam(E), where A(x, r) = B(x, r) N E, and where K’ depends on n and the
UR character of E, as well as its local dyadic analogue, for any Whitney-dyadic structure {Wp}oen(k)
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for R"*1\ E with parameters n and K,
1S2V™ W)Ly < CINZAV"  ublirg). QeD(E), 0<p<oo. (7.22)
If u is, in addition, such that vn—ly e L°(2), then the Carleson measure estimate
IV ullome@eig) < CIV" ™l oy gy (7.23)

holds. All constants depend on n, the UR character of E, the Legendre—Hadamard ellipticity constant,
SUD; k . p Iaéz |, the aperture of the cone k implicit in (7.20), and the implicit parameters n, K, t implicit
in (7.22).

Remark 7.24. It is easy to see that from the previous result, one can also obtain analogous estimates
in any chord-arc domain D C R"+1. To see this let us consider any weak solution u € [W{gc’z(D)]K to
Lu=0inD. Letii:=uin D and ii = 0 € R**'\ D. Then i € [W/;*(R"*' \ 9D)]X satisfies Lii =0
in Rt \ dD in the weak sense. As such, and using the fact that since D is a CAD then 0D is UR, we
obtain (7.20) for & in R"*!\ 3D, which immediately gives the corresponding estimate for u in D. The

same occurs with (7.23). Further details are left to the interested reader.

Proof. The proof runs much as that of Theorem 7.5. One replaces (7.3) with the fact that for any bounded
Lipschitz domain  C R"*!; it was shown in [Dahlberg et al. 1997, Theorem 2, p. 1455] that any weak solu-
tion u € [Win> (21X to Lu=0in Q with V" ~u € L (Q) satisfies || V"ullcmee) < V" 1112 - With
this at hand the proof can be carried out mutatis mutandis. Further details are left to the interested reader. [

We can now state a higher-order version of Theorems 5.1 and 5.24:
Theorem 7.25. Let D CR"™! be a CAD, let K, m €N and letu= (uy, ..., ug) € [W2*(D)NC" = (D).

(1) Assume that (5.2) holds with V" 'u in place of u. Suppose that the (m—1)-th order N < S estimates
are valid on L? on all bounded Lipschitz subdomains Q C D, that is, (5.3) holds for any bounded Lipschitz
subdomain Q C D with V"™ 'u in place of u, and where the constant may also depend on m and K. Then
(5.4)—(5.8) hold replacing u by V"™ 'u, and where all the constants may also depend on m and K.

(2) Assume that (5.2) holds with V"~ 'u in place of u and that (5.25) hold with V" u in place of Vu for
some p > 2. Suppose that the (m—1)-th order N < S estimates are valid on L? on all bounded chord-arc
Q C D, that is, (5.26) holds for any bounded chord-arc subdomain Q C D with V"~ 'u in place of u, and
where the constant may also depend on m and K. Then (5.27)—(5.30) hold with V" 'u in place of u, and
where all the constants may also depend on m and K.

(3) Assume that (5.2) holds with V"~ 'u in place of u and that (5.25) hold with V" u in place of Vu for
some p > 2. Suppose that the (m—1)-th order N < S estimates are valid on L? on all bounded Lipschitz
subdomains Q C D, that is, (5.3) holds for any bounded Lipschitz subdomain Q C D with V" 'y in
place of u, and where the constant may also depend on m and K. Then (5.27)—(5.30) hold replacing u
by V" Y, and where all the constants may also depend on m and K.

Proof. The proof is fairly easy. Consider the vector v = vy e [WI’Z(D) N C(D)]K(”_l)m_l. Note that

loc
our current assumptions in (i)—(iii) imply that v satisfies (5.2). Also, in items (ii), (iii) we will have that v
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satisfies (5.25). Note that (5.3) is satisfied by v in parts (i) and (iii), and (5.26) holds for v in part (ii).
We also know that Theorems 5.1 and 5.24, and Corollary 5.50 can be easily extended to vector-valued
functions u. With all these at hand, we readily obtain the corresponding estimates for v which translated
into those stated for u. Further details are left to the interested reader. O

One can also obtain a higher-order version of Theorem 6.1 using the same ideas:

Theorem 7.26. Let E C R"*! be an n-dimensional UR set, R"™'\ E, and let m, K € N. Suppose that
ue [W{[;f(R”“ \E)YNC™ LRI\ EYNL® @R\ E)1X is such that for any cube I with2I C R"T'\ E

sup [V lu(X) — v lu(y)) sco(z(l)‘—"f |V’”u|2dX> (7.27)

X,Yel 21

and
V™ ulleme®e\E) < C6||vm_1”||L°C(R”+'\E)
Assume, in addition, (imn—1)-th order that N < S estimates are valid on L? on all bounded chord-arc
subdomains Q@ C R"T\ E, that is, for any bounded chord-arc subdomain Q C R"'\ E, there holds
INw (V" u = V" (X)) 200) < CallSa (V" 1)l 120)- (7.28)

Here X ;g is any interior corkscrew point of Q2 at the scale of diam(S2), and the constant Cg, depends on
the CAD character of 2, the dimension n, m, K, p, the implicit choice of k (the aperture of the cones in
Ny q and Sgq), and the implicit corkscrew constant for the point X ;g . Then V" 'u is e-approximable on
R+l \ E, with the implicit constants depending only on n, m, K, the UR character of E, Cy, and C(/).

As a corollary of all these we can obtain N < § estimates and e-approximability for solutions of a
symmetric constant-coefficient 2m-order K x K systems.

Theorem 7.29. Given K, m € N, let L be a symmetric constant-coefficient 2m-order K x K system,
satisfying the Legendre—Hadamard ellipticity condition, as above.

G) IfD C R"*+! is a CAD, then any weak solution u € [W, loc (D) NC™ (D)X to Lu =0 in D satisfies

forany x € 0D and 0 < r < 2diam(d D) and for every k > 0

1N o (V" = V" (XK o)) o aceny
< cnsgr V" ') Laa.cryy,  forall0 < g < oo, (7.30)

where A(x,r) = B(x,r)N 0. Here C depends onn,q, K, m, the CAD character of D, the Legendre—
Hadamard ellipticity constant, sup; ; . g |aa}3| and the aperture of the cone k, and C' depends on n and
the CAD character of D. In particular, if 0 D is bounded then

[N« D« (V" u = V" (XD Leopy < C7ISpc (V" ') llLaopy forall0 <q <oo,  (7.31)
and if 3D is unbounded and V"™ 'u(X) — 0 as | X| — oo then

IN« D« (V" ')l a@py < C"1Sp o (V" ')l Laopy  forall 0 < q < oo, (7.32)
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(ii) Let E C R""! be an n-dimensional UR set. Then any weak solution

ue [Wm 2 Rn-‘rl \ E) N Cm I(R}'H-l \ E) mLOO(RI’H-l \ E)

loc

to Lu =0 in R"!\ E satisfies that V"~ 'u is e-approximable in R\ E with implicit constants dependmg
onn, K, m, the UR character of E, the Legendre—Hadamard ellipticity constant, sup; ; . g |aa/3|

Proof. We aim to use Theorem 7.25(iii) and 7.26. To this end, we need to verify the interior estimates:
(5.2) with V"~ 1y in place of u, (5.25) with V"u in place of Vu for some p > 2, and (7.27), and to
obtain (m—1)-th order N < S estimates on L? on all bounded Lipschitz subdomains €2 and for any weak
solution u € [ng(;z(Q) NC™1(Q)]1X to Lu =0 in Q. That is, we need to show that (7.28) holds on all
bounded Lipschitz subdomains €2. Let us start with the latter. To see this we introduce

m

P u(X) = Z m(X XY, XeQ

—1.Xg o a! '

le|<m—1
and observe that V¥ P, _ |- xpu(Xg S =Viu(X$) for0<k<m-2, v*-'p, X+u( )=V lu(Xd), and
V"P, _, X5U = (. Thus if we write v =u — Py xzu(-), we have that v € [W, (Q) NC" 1 (@)1X isa
weak solutlon to Lv=01in 2 satisfying Vkv(X+) =0forall0<k<m—1, V"~ lv =vrly—vmn- 1u(X$),
and V"v = V™u. As such we can invoke [Dahlberg et al. 1997, Theorem 3, p. 1456] to obtain that
1N (V" u = V" (XN 200 = N6 (V" )l 1200
SIS (V" W) 20 = 1S2(V ')l 12¢0)-

Turning to interior estimates, we recall from [Barton 2016, Corollary 22, p. 384] that for all solutions

to Lu = 01in 21 we have

/|vfu|2dX§cz(1)2f/ u)?>dX, j=0,...,m. (7.33)
1 21

In fact, [Barton 2016] pertains to much more general elliptic systems with bounded measurable coefficients.
It uses the weak Garding inequality [Barton 2016, (10), p. 380]. To obtain the latter (with § = 0) we
can see that Plancherel’s theorem, the fact that we are currently considering the case with real constant
coefficients, and the Legendre-Hadamard condition (7.18) easily yield, for every smooth compactly
supported function ¢,

Re(V"¢, AV" ¢)R»1+1—Re// . Z > % (XalsdPen(X) dX
R~

J.k=1|a|=|B|=m

S Y ke // (~2i&)* 2mi§)” §;(8) @u(8) d§

Jk=1la|=|Bl=m
K

2//%2 > alpre)@ne) Re(@;) gi()) dé

Jok=1la|=|B|=m

= [ emermigoorax=a [[ 9@,

and so [Barton 2016] applies to our setting.
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Now, for constant-coefficient operators any derivative of a solution is still a solution, and, in fact, we
will use v :=u — Py_; x,u(-) built similarly to above, only using X; being the center of I in place
of X ;g Clearly, Vv = V™u is a solution too, and so a repeated application of (7.33) yields

//Ivkv|2dX§C£(1)2(km)// V"2 dX, k>m. (7.34)
1 21

Taking k > m — 1 large enough, depending on the dimension only, so that the Sobolev space W*2(I)
embeds into the Holder space C"~1*(I), « > 0, we can show that

sup [V u(X) = V™" lu)| = sup V" u(X) — V" o))
X,Yel X,Yel

k 1
j=0 !

For j > m we use (7.34) to descend to j = m. For j < m, we use the Poincaré inequality to ascend to

(7.35)

j =m, and all in all, the expression above is bounded by

1 1

2 2

c(zu)”"/ |vmv|2dx) =c(z(1)1+"/ |Vmu|2dX) ,
21 21

as desired. This yields (7.27).

In order to obtain (5.2) with V”"~!y in place of u, we apply the same argument as above to v :=
Vv"=ly — ¢ for some constant vector ¢. The function v is also a solution of the initial system, and so
(7.34) still holds. Much as above, by the Morrey inequality (or generalized Sobolev embeddings), for
k large enough, depending on dimension only, we arrive at
k

sup |v| 502(13(1)“—"”]' //|v1u|2dx>2 SC(E(I)_I_"/ |v|2dX)2, (7.36)
1 1 21

j=0

where we have used (7.33) and (7.34) for the second inequality.

Finally, the reverse Holder inequality (5.25) with V"« in place of Vu was also proved in [Barton 2016,
Theorem 24].

With all the previous ingredients we are ready to invoke Theorem 7.25(iii) and then Theorem 7.26 to
obtain the desired estimates. O

Appendix: Sawtooths have UR boundaries

To start, recall from [Hofmann et al. 2016, Appendix A] the fact that the sawtooth regions and Carleson
boxes inherit the ADR property. In that Appendix we treated simultaneously the case that the set E is
ADR, but not necessarily UR, and also the case that E is UR. The point was that the Whitney regions in
the two cases (and thus also the corresponding sawtooth regions and Carleson boxes) were somewhat
different. In any case, the reader can easily see that, with the notation introduced in Definition 2.7,
the arguments in [Hofmann et al. 2016, Appendix A] can be carried out for any ADR set E and with
{Wo}oene) any Whitney-dyadic structure for R"*!\ E with some parameters 1 and K. In turn, both if
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E happens to be merely an ADR set as in Section 2.1, or a UR set as in Section 2.2, the corresponding
constructions of Whitney-dyadic structure fit within the previous framework. Nonetheless, the same
applies to any other Whitney-dyadic structure (constructed in a different way) but retaining the same
properties.

Let us now recall some results from [Hofmann et al. 2016] that we shall use in the sequel.

Proposition A.1 [Hofmann et al. 2016, Proposition A.2]. Let E C R"*! be an n-dimensional ADR set
and let {Wo}oen(E) be a Whitney-dyadic structure for R™ 1\ E with some parameters n < 1 and K > 1.
Then all dyadic local sawtooths Qg o and all Carleson boxes Tg have n-dimensional ADR boundaries.
In all cases, the implicit constants are uniform and depend only on dimension, the ADR constant of E,
parameters 1, K, and the constant C in Definition 2.7(iii).

Remark A.2. Let @ C R""! be an open set with ADR boundary and let {Wp}pepsq) be a Whitney-
dyadic structure for €2 with parameters n and K. One can easily construct a Whitney-dyadic structure
{(Wé}Qe[[)(ag) for R\ 9 so that for every I € W() one has that I € W) if and only if I € W),
that is, the new Whitney-dyadic structure remains the same for the Whitney cubes contained in 2. To
construct such a Whitney-dyadic structure we define ((Wé)0 as in (2.8) with the same parameters n
and K but for all the Whitney cubes I € WR*\ 9K). For every O € D(0€2) we the set "Wé =
Wo U (((Wé)0 NWR™\ Q)). It is straightforward to see that {(Wé}QED(g)Q) is a Whitney-dyadic
structure for R"T!\ 3Q with parameters  and K and agreeing with {Wo}oepo) when restricted to the
Whitney cubes contained in €2. Note also that the constants in Definition 2.7(iii) are the same for both.

We then note by Proposition A.1 all the associated dyadic local sawtooths Qif 0 and all Carleson
boxes Té (contained in R"*! \ 92) have n-dimensional ADR boundaries. In turn the agreement of
{Woloeppe) with {W)}oenpe) inside  implies at the very least that all the associated dyadic local
sawtooths Q¢ o and all Carleson boxes T (contained now in €2) have a boundary satisfying the upper
ADR condition (that is the upper estimate in (1.2)) with constant depending on the ADR constant of 9€2,
n, K and the constant in Definition 2.7(iii).

In what follows we assume that E is an ADR set and fix {Wy}oen(e) a Whitney-dyadic structure
for R"*!\ E with some parameters  and K. As mentioned in Section 2, we always assume that if
{Wo}oen(k) is @ Whitney-dyadic structure for R**! \ E with some parameters n and K, then K is
large enough (say K > 40°n) so that for any £(1) < diam(E) we have I € ‘W07 C Wy, where Q7 is
some fixed nearest dyadic cube to I with £(I) = £(Q7). To simplify the notation, it is convenient to
find mg € Z, Cy € Ry (say 2™ ~ C max{K, n~'}'/2, Cy = CK'/?, hence depending on 7, K and the
constant C in Definition 2.7(iii)) such that

27M0g(Q) < (1) <2™¢(Q) and dist(I, Q) < Cob(Q) forall I € Wp. (A.3)

From now, we will use these parameters mg and Cy, rather than n, K and the constant C in Definition 2.7(iii).

Let us recall some notation from [Hofmann et al. 2016, Appendix A]. Given a cube Qg € D and a
family 7 of disjoint cubes ¥ = {Q;} C Dy, (for the case ¥ = & the changes are straightforward and we
leave them to the reader, also the case ¥ = {Qo} is disregarded since in that case Qg o, is the null set).
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We write Q2, = Qg g, and ¥ =0, \ E. Given Q € D we set
RQ = U (WQ/, and EQ:EH(U I).
Q'eDg I1eRg

Let C; be a sufficiently large constant, to be chosen below, depending on n, the ADR constant of E,
mg and Cy. Let us introduce some new collections:

1:={0 € D\ {Qo}: £(Q) = £(Qo), dist(Q, Qo) = C1£(Qo)},

Fr:={Q €D :dist(Q’, Qo) < C1£(Qo), £(Qo) < £(Q") < C14(Qo)},

Fii:={0 €F|: Xp # 2} ={Q € | : there exists I € Rg such that ¥ N1 # o},
F*={QeF :Xp #2}={Q € F :there exists I € Ry such that ¥ N[ # &}.

Ri=|J Ro. Ry=[J Ro. Rr= ] Wo.

QeF* Qeﬁ’( QeFT

A

We also set

Lemma A.4 [Hofmann et al. 2016, Lemma A.3]. Set Wy ={I € W :INX # &} and define

W= J Wso. Wi=|J Wso. Wi={eWs:Q}eFr)
QeF* Qe?‘-’f‘k

where for every Q € F* U \T we set
(WZ,Q = {I € WE : Q? € DQ},
and where we recall that Q7 is the nearest dyadic cube to I with £(I) = £(Q7) as defined above. Then
Wy =WsUWLuw], (A.5)
where
W CcRy, WICR;,, WLcRr. (A.6)
As a consequence,
EzzLu&uzT::(U zm)U(U zm)U(U zm). (A7)
TeWi Ie"W% lew]

Lemma A.8 [Hofmann et al. 2016, Lemma A.7]. Given I € Wy, we can find Q; € D, with Q; C Q7,
such that £(1) ~ £(Qy), dist(Qy, I) ~ £(1), and in addition,

Z lo, Slo forany Q e F*UF, (A.9)
IE(WE,Q
> lo, Slsy e (A.10)
IeWy

where the implicit constants depend on n, the ADR constant of E, my and Cy, and where Bon =
B(xg,, C£(Q)) with C large enough depending on the same parameters.
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With the preceding results in hand, we turn to the main purpose of this appendix: to prove that uniform
rectifiability is also inherited by the sawtooth domains and Carleson boxes.

Proposition A.11. Let E C R"*! be an n-dimensional UR set and let {Wp}pen (k) be a Whitney-dyadic
structure for R"T1\ E with some parameters n < 1 and K > 1. Then all dyadic local sawtooths QF o
and all Carleson boxes Tg have n-dimensional UR boundaries. In all cases, the implicit constants are
uniform and depend only on dimension, the UR character of E, and the parameters mo and Cqy (hence on
the parameters 1, K, and the constant C in Definition 2.7(iii)).

The proof of this result follows the ideas from [Hofmann and Martell 2014, Appendix C], which in turn
uses some ideas from Guy David, and uses the following singular integral characterization of UR sets,
established in [David and Semmes 1991]. Suppose that E C R"*! is n-dimensional ADR. The singular
integral operators that we shall consider are those of the form

Tewf(0) =T, f(x) = /E Ko — ) f () dH (),

where K. (x) ;== K(x)P(|x|/e), with0< P <1, DP(p)=1if p>2, P(p)=0if p <1, and ® € C*(R),
and where the singular kernel X is an odd function, smooth on R"*!\ {0}, and satisfying

K (x)| < Colx|™", (A.12)
IVK(x)| < Cplx|™ ™ forallm > 1. (A.13)
Then E is UR if and only if for every such kernel K, we have that
sup/ \Te.o fI?dH" < C«f |fI>dH". (A.14)
e>0JE E

We refer the reader to [David and Semmes 1991] for the proof. For K as above, set
‘TEf(X)I=/W(X—y)f(y)dH"(y), X eR"\E. (A.15)
E

We define (possibly disconnected) nontangential approach regions Y, (x) as follows. Set W, (x) :=
{I € W:dist(l, x) < al(l)}. Then we define

Y, (x) = U I*
TeWy(x)
(thus, roughly speaking, « is the “aperture” of Y, (x)). Here I* = I*(7) as in Section 2 with 0 < t < 7¢/4,
which is fixed. Note that these nontangential approach regions are slightly different that the ones introduced
in (2.23) since they do not use the Whitney regions Ug. For F € C (R"*!'\ E) we may then also define a
new nontangential maximal function (which is different than the one (2.34) although somehow comparable
much as in Remark 2.37)

NioF(x):= sup |[F(Y)|.
YeT, (x)

We shall sometimes write simply N, when there is no chance of confusion in leaving implicit the
dependence on the aperture «. The following lemma is a standard consequence of the usual Cotlar
inequality for maximal singular integrals, and we omit the proof.
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Lemma A.16. Suppose that E C R"*! is an n-dimensional UR, and let T be defined as in (A.15). Then,
foreach 1 < p < oo anda € (0, 00), there is a constant C, o % depending only on p, n, o, K and the UR
character of E such that

f(N*,a(‘TEf))p dH" < Caﬂ(/ | fIPdH". (A.17)
E E

Proof of Proposition A.11. Write 0 = H"|g. We fix Qg € D = D(F) and a family ¥ of disjoint cubes
F =1{0Q,} C Dy, (for the case ¥ = & the changes are straightforward and we leave them to the reader,
also the case ¥ = {Qo} is disregarded since Q ¢, is the null set). We write Q, = Qr o,, E. = 0€2,, and
o =H"g, Wefix0<d<1,d(p)=1ifp=>2, (p)=0ifp <1, and ® € C*°(R). According to
the previous considerations we fix &g > 0 and our goal is to show that T, ., is bounded on L?*(E,) with
bounds that are independent of &y. To simplify the notation we write Ky = K, and set, for every X € R"*!,

7'E,of(X)=/E7<0(X—y)f(y)d0(y), TE”O‘g(X)sz Ko(X —y)g(y)do.(y).

We first observe that K is not singular and therefore, for any p, 1 < p < oo, and for every f € L?(E),
respectively g € L?(E,), the previous operators are well-defined (by means of an absolutely convergent
integral) for every X e R"*!. Also for such functions it is easy to see that the dominated convergence
theorem implies that 7z o f, T,.0g € C(R"*1).

Remark A.18. We notice that K is an odd smooth function which satisfies (A.12) and (A.13) with
uniform constants (i.e., with no dependence on gg) and therefore the fact that £ is UR implies that (A.14)
and (A.17) hold with constants that do not depend on &.

We are going to see that ¢ o : L (E) — LP(E,) forevery 1 < p < oo. To do that we take f € L?(E)
and write

fE (T5.0f (I do(x) = /

Th.0f (017 dow(x) + / T 0 f (1P dory(x) =t T+ 10,
E.NE

E\E

The estimate for I follows from the fact that £ is UR
I< / (0 f (O do (x) = / I Th.eo f ()17 dor(x) < Coe / I do(x),
E E E

where we have used (A.14) and the standard Calder6n—Zygmund theory (taking place in the ADR set E)
and Cg does not depend on gy. For II we use that ¥ = E, \ E = 9092, \ £ and invoke Lemmas A.4
and A.8; let Q; be the cube constructed in the latter, so that

1= Ti P do,(x) = 7, P do,(x) do ().
,ngm:lEOf(x)l o, (x) = Ie%][ meIE,of(xﬂ o, (x)do(y)

Note that if y € Q; and x € ¥ N I then dist(/, y) < €(Qp) =~ £(I). Then taking « > 0 large enough
we obtain that I C ‘W, (y). Write F=F*U H , and observe that by construction the cubes in F are
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pairwise disjoint. Then by the ADR property of E,, along with Lemmas A.4 and A.8,

< ) AWENDY WealTE0 NI doG)

IG"Wz

SY X [ WealTran 0 do+ / Neo Ti0 YOI dor ()
0eF IeWs o " 9! Tewy

<y / Neal TN o)+ [ N To O do )
oF By, NE

S/EIN*,a(‘TE,of)(y)I”dG(y)S/EIf(y)l”da(y),

where in the last estimate we have employed Lemma A.16 and Remark A.18, and the implicit constants
do not depend on &g.

We have thus established that 7¢ o : L?(E) — L?(E,) for every 1 < p < oo. Since K is odd, so is K,
and by duality we therefore obtain that

Te.0: LP(E,) — LP(E), 1< p<oo. (A.19)

Our goal is to show that T¢, ¢ : L*(E,) — L?(E,) with bounds that do not depend on gp. Note that 7¢, o f
is a continuous function for every f € L?(E,) and therefore 7%, o f |, = Tk, ¢, f everywhere on E,.
We take f € L?(E,) and write as before

[ Traserdeco= [ TiafoPdem+ Y [ 7@ dow

E.NE IeWs N

=1+ Z I, =I+1L (A.20)
IeWs

For I we use (A.19) with p = 2 and conclude the desired estimate
1< / | TE..0f () doy(x) < / T&,.0f (0 do (x) < / |fOPdou(x).  (A21)
E.NE E E,

We next fix I € Wy and estimate each II;. Let M > 2 be large parameter to be chosen below and set
Cr =)/ M, & = MLE(I). Write

x x x
Ko() = 7<o(x)<1>(' ') +7<0<x)< (' ') - cp(' ')) —|—7(0(x)< (U)>
& 9} & 9}
= Ko.e; (X) + Ko ey, (x) + K (x). (A22)
Corresponding to any of these kernels we respectively set the operators 7, o.¢,, TE, 0,¢,,¢, and 7’151 0

We start with 7¢, 0. Fix x € ¥ N 1. Write A,; = B(x,&;) N E, and split f = f; + f2 :=
f1a,, + flgaa,,;- Then we use Remark A.18, the fact supp ® C [1, 00) and that E, is ADR to
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easily obtain that for every y € Q;, with Q; as in Lemma A.8,
TE..0.6, 1O+ |TE, 08 [1(V)]

< f (|7<o<x —z>|<1>('x _Z') + 1%y —z>|<1><'y _Z|>>|f(Z)|dou(z)
Au g Sl 51

1
S —/A Lf (Wl dow(z) %][ |f I dow(z) = Mg, f(x), (A.23)

~ %';l A*,I

where Mg, is the Hardy-Littlewood maximal function on E,, and the constants are independent of ¢g and 1.

On the other hand, much as before we have that Kj ¢, is a Calderén—Zygmund kernel with constants
that are uniform in &g and &;. Also, if M is taken large enough we have that 2|x — y| < M£(I) < |x — z|
forevery z € E,\ A, j, x € NI and y € Q;. Therefore using standard Calderén—Zygmund estimates
and the fact that E, is ADR we obtain that for every and y € Q;

|TE,06, [2(X) —TE, 06 2V < / \ |Ko,e;, (x —2) — Koe, (v — DI f(2) doy(2)
EN\AL L

S/E\A %If(z)ldm(z) Sm Mg, f(x). (A.24)

We next use (A.23) and (A.24) to conclude that

TE,.06 f(x) —][Q TE..0.8 f(y)dff(y)‘ SITE, 0.8 f1(X)] +][ |TE,.0.6, 1M do(y)

(9]
+ ][Q Te. 06 f200) — TE 0.6 o) do () < M, £ (x),

which in turn yields
2

/ TE.0.6 f () —][ Te.08 f () do(y)| dow(x) S Mg, f(x)* do,(x). (A.25)
=N/ Q; =nI
We next introduce another operator
Te.06f ) = | Koy~ (@) o), yeE.
Z€E,:|y—z|=&;

We fix x € XN 1 and y € Q;. We first observe that, for M large enough, Remark A.18 and the ADR

property for E, imply that
ly —z| ly —zl
d>( ’ )—1[1,oo>< i )'If(Z)Ida*(z)
& &r

1
S |f ()| dou(z)
Z€E,:|y—z|<2&;

Te 06 £ O) = Trog f ()] < fE Koy —2)]

< —,,/ | f(2)|dou(z) S Mg, f(x).
&1 JicE x—z<3g

On the other hand, we can introduce another decomposition

f =+ fa=fleyepne, + Flenso.e)
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and then for every y € Q;

\TE, 06 f D= 1Te,.0faO)| = |TE,0fa(y) = TE, 0 faO |+ |TE, .0 f4(¥)]
<I|TE,.0f4(¥) = TE.0 fsO| +TE, .0 f D+ TE, 0 /3D (A.206)
We estimate each term in turn. We first observe that, for M large enough, 2|y — y| < ML) < |y — 2|

for every z € E, \ B(y, &;) and y € Q. Therefore, using standard Calderén—Zygmund estimates and the
fact that E, is ADR, we obtain that for every and y € Q;

Te.0 10 = Th. 0 fa()] < / Koy — 2) = Ko(5 — D1 £ ()] doa(2)
EN\B(y,&r) .
S / DN r ) dou) S Me f), (A2D)
ENB(.&) [V — 2]

where we have used that, for M large enough, x € B(y, £;/2). Fix 1 < p < 2. We next average (A.26)
on y € Q; and use (A.27) and (A.19) to obtain

I TE..0.6, f (V)] S][Q (17E.0f4(Y) =T 0 s+ TE0f DI+ 1TE, 03D do(¥)

< Mg, f(0) + Mg (TE. 0 () +0(01) P | TE. 0 fill o)
<M, f(0) +MpTE0 )0 +0 QD7 | Al

1

1 »
SME*f(x)‘FME((rE,,Of)(y)‘i‘<E(1)n /B( - If(z)lpda*(z)>
y,6)NE,
SMg, p f(xX)+Mg(TEg,0/)(y), (A.28)

where M is the Hardy—Littlewood maximal function on E and we also write Mg, , f = Mg, (| f1” Yy,
Note that this estimate holds for every x € £ NI and for every y € Q. Hence,
TE.08 f(y)do(y)

</Eﬁ1 0r

where we have used that o, (X N 1) < £(1)". We now gather (A.25) and (A.29) to obtain that for every
I e (Wz;

2

do,(x)S | Mg, ,f(x) do,(x)+ / Me(TE, 0f)(»)?do(y), (A.29)
NI 0

f T, 0.6, f () |* dow(x)
>N/

< / do,(x) + /
NI NI

< : IME,,pf(X)2d0*(X)+/Q Mg(TE, 0/)()* do(y). (A.30)
N 1

2 2

0 TEe,06 f(y)do(y)| do.(x)

TE, 08 f(x)— 0 TE, 06 f(y)do(y)

We next consider 7, o,¢,.¢,- Note that for every x € ¥ N[ and z € E, we have

|z — x| |z — x| 1 1
‘D( o )" N 5 S o] Ly <pz—xi<2g, S Ellz—XISZSN

K0.¢1.6, (2 = x)| = [Ko(z = x)|
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and therefore

1 2
/ |TE*,0,§1,$1f(x)|2d0’*(x)5/ (—n/ |f(Z)|d0*(Z)) do,(x)
olaV =n1 \&; JBx,2¢)NE.

<m Mg, f(x)*do,(x). (A31)
NI

Let us finally address 7?’ o- Observe first that

7<g'<->=7<(‘>q’(%><l_q)<%>>'

‘We consider three different cases.
Case 1: ¢; < eo/2. We have that ¥ =0 and thus ‘7}5{”0 =0.

Case 2: g9/2 < &7 < 2¢9. In this case forevery x € ¥ N[ and z € E,

1
Ky (=) < mlwi\z—ﬂiz{l S o lz—video:
0
and therefore
2
7'{1 2d < l d d
| |gE*,()f(x)| o,(x) S ) | f(2)| dow(2) 0, (x)
=NI =nI \ &gy JB(x,4e0)NE,
< Mg, f(x)* do.(x), (A.32)

NI
where the implicit constants are independent of &y and ¢;.

Case 3: {; > 2¢gp. In this case 7'E{’70 f is a double truncated integral whose smooth Calderén—-Zygmund
kernel ’KO{’ is odd, smooth in R"*! and satisfies the estimates (A.12), (A.13). with uniform bounds (i.e.,
independent of gy and ¢;). Fix z; € £ N1 and notice thatif x € ¥ N[ and z € B(x, 2¢;) N E, then, taking
M large enough, we have

eI
lz— 271 < |z — x|+ |x — 27| < 2¢; + diam(/) = % + diam(I) < %diam(l)

and therefore the fact that supp 7(5’ C B(0, 2¢;) immediately gives 7, EiI,O fx)= ‘7'1;:”0( f1x, )(x), where
A, =B, NE, := B(z;,2diam(I)) N E,. Note that (2.5) yields

4diam(]) < dist(41, E) <dist(z;, E) < dist(E,,,I, E) +2diam(J)

and therefore dist(§,,1, E) > 2diam(/). This implies that 3}1’1/2 C R\ E. Also if J € ‘W satisfies
that J* N E*,I # & we can easily check that £(I) =~ €(J) and dist(I, J) < £(I). This implies that only
a bounded number of J’s have the property that J* intersects E*, ;- We recall that ¥ = E, \ E is a union
of portion of faces of fattened Whitney cubes J*. Thus we have

My
A*,I C U Fm,Is
m=1
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where M is a uniform constant and each F,, ; is either a portion of a face of some J*, or else F,, ; = &
(since M is not necessarily equal to the number of faces, but is rather an upper bound for the number
of faces.) Note also that I C E*, ; and therefore we also have that
My
znic | Fns

m=1

Thus
/ T F ) doy(x) = / T (15, @) P doy ()
NI NI

S ) f 5 o(f 15, @) do(x).

ISWl,m’SMo Fm,l

In the case m = m’, we take the hyperplane H,, ; with F,, ; C H,, ; and then

/ 175! o (f 15, V@) dou(x) < / 175, 0 1R, VO dH" (x)

m, I

S / |fFO)PdH" (x) = / | £ () day (x),
Fm,I Fm,I
where, after a rotation, we have used the L? bounds of Calderén—Zygmund operators with nice kernels
on R". For m # m’ we consider two cases: either dist(F, 1, F,.;) ~ £(I) or dist(Fy, 1, Fpr.1) < £(1).
In the first scenario, using that ‘KO{’ satisfies (A.12) uniformly we obtain that

1 2
| Tt 0l e < | ( / nlf(z)ldo*(z)) do.(x)
Fou1 Fo.1 Fm/,l |-x - Z|

1 2
< — do, do,
~ /Fm., (E(I)" /B(x,CZ(I))ﬂE* /@)l do (Z)) (%)

< Mg, f(x)* do,(x).
Fm,l

Finally if dist(F,, 1, F,r.1) < £(I), we have that F,, ; and F,, ; are contained in respective faces which
either lie in the same hyperplane, or else meet at an angle of 7. In the first case we may proceed as in
the case m = m’. In the second case, after a possible rotation of coordinates, we may view F;, U F rfl as
lying in a Lipschitz graph with Lipschitz constant 1, so that we may estimate 7'E{”0 using an extension
of the Coifman—McIntosh—Meyer theorem:

/ T o (f 1y NP do(x) 5 f |f I don ().
Fm’] ' Fm’,I
Gathering all the possible cases we may conclude that

/ I‘TEi’,of(X)lzda*(X) < Z Mg f(x)*do,(x)
=nI F

ISmSMO m,I

< § Mg, f(x)?do,(x). (A.33)
~ Nz
I'eWs:I'NA, 1 #D
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We now gather (A.30), (A.31) and (A.33) to get the following estimate for S; after using (A.22):

I = / T 0f GO dou(x)
>Nl

< / |TE..0.6 f (0] do(x) + / &, 0.0.6 f @) * dow(x) + f T4 o> dou(x)
NIl NI

NI
< / M, pf (6) dow(x) + / Me(Ts.0 /) () do (y)
NI Qr
+ > Mg, f(x)?do.(x). (A34)

!
I'eWs:I'0A, | #£2 rnx
Note that since 1 < p <2 we have

Z / MEg, ,f(x) da*(x)<f Mg, ,f(x) dcr*(x)</ |f(x)| do,(x). (A.35)

IeWsy

On the other hand, recalling that F =F*UFFis comprised of pairwise disjoint cubes, Lemmas A.4
and A.8 then imply that

> f MEg(TE, 0f)(y)* do (y)

IE(W): Ql

=> > / Mg(Te, o)) do(y) + > / Me(Te,0f) () do (y)

Qe?’ IeWs o Q1 IGWT
S Z /;ME(TE*,Of)(y)Z a’a(y)+/* . M(TE.0f) ()2 do (y)
€7'- Q()m

< /E Me(TE,0f) () do(y) S /E 1Te,.0f WP do(y) S /E lf )P dou(y),  (A.36)

where in the last estimate we have used (A.19) with p = 2.
Finally, by the nature of the Whitney boxes (see (2.5)), we have that the family {2/};cy has the
bounded overlap property and therefore

>, S s S sup #HIeWs:I'NA #2),
1eWs I'eWs:I'NA, #0 rews

which we claim that is uniformly bounded. Indeed, fix I’ € Wy and let I1, I, € Wy with I'N A*, I =
and I' N A, j, # @. Recall that dist(B, ;, E) > 2diam(I) with B, ; = B(z;, 2diam(/)) and z; € I N 2.
This implies that £(17) ~ £(I") ~ £(I,) and also dist(I;, I) < £(I;). This easily gives our claim. Using
this we conclude that

> > Mg, f(x)? do,(x) < f Mg, f(x)? dou(x) < f |f @) dou(x). (A37)
IeWs 'eWs:I'NA, 1#2 rnx Ex E.
We now combine (A.34), (A.35), (A.36) and (A.37) to obtain that

UESDYR S f £ do(x).

IeWsy
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This, (A.20), and (A.21) give as desired that
/ 1T 0f ()P dou(x) < / | f () do(x),
E, E,

and the implicit constant does not depend on gy. Hence, T, o : L*(E,) — L?(E,) with bounds that
do not depend on gy. Since 7, of is a continuous function for every f € L?*(E,), we have that
Te.0f |, = Tk, ., f everywhere on E,. Thus, all these show that Tg, ¢ : L*>(E,) — L*(E,) uniformly
in e. This in turn gives, by the aforementioned result of [David and Semmes 1991], that E, is UR as
desired, and the proof is complete. (]
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