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RELATIVE HEAT CONTENT ASYMPTOTICS
FOR SUB-RIEMANNIAN MANIFOLDS

ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

The relative heat content associated with a subset �⊂ M of a sub-Riemannian manifold is defined as the
total amount of heat contained in� at time t , with uniform initial condition on�, allowing the heat to flow
outside the domain. We obtain a fourth-order asymptotic expansion in the square root of t of the relative
heat content associated with relatively compact noncharacteristic domains. Compared to the classical
heat content that was studied by Rizzi and Rossi (J. Math. Pures Appl. (9) 148 (2021), 267–307), several
difficulties emerge due to the absence of Dirichlet conditions at the boundary of the domain. To overcome
this lack of information, we combine a rough asymptotics for the temperature function at the boundary,
coupled with stochastic completeness of the heat semigroup. Our technique applies to any (possibly
rank-varying) sub-Riemannian manifold that is globally doubling and satisfies a global weak Poincaré
inequality, including in particular sub-Riemannian structures on compact manifolds and Carnot groups.
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1. Introduction

We study the asymptotics of the relative heat content in sub-Riemannian geometry. The latter is a vast
generalization of Riemannian geometry; indeed a sub-Riemannian manifold M is a smooth manifold
where a metric is defined only on a subset of preferred directions Dx ⊂ Tx M at each point x ∈ M
(called horizontal directions). For example, D can be a sub-bundle of the tangent bundle, but we will
consider the most general case of rank-varying distributions. Moreover, we assume that D satisfies the
so-called Hörmander condition, which ensures that M is horizontally path connected, and that the usual
length-minimization procedure yields a well-defined metric.
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Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, let � ⊂ M be an open
relatively compact subset of M, with smooth boundary, and consider the Cauchy problem for the heat
equation in this setting

(∂t −1)u(t, x)= 0 for all (t, x) ∈ (0,∞)× M,

u(0, · )= 1� in L2(M, ω),
(1)

where 1� is the indicator function of the set �, and 1 is the sub-Laplacian, defined with respect to ω. By
classical spectral theory, there exists a unique solution to (1),

u(t, x)= et11�(x) for all x ∈ M, t > 0,

where et1 denotes the heat semigroup in L2(M, ω), associated with 1. The relative heat content is the
function

H�(t)=

∫
�

u(t, x) dω(x) for all t > 0.

This quantity has been studied in connection with geometric properties of subsets of Rn, starting from
the seminal work of De Giorgi [1954], where he introduced the notion of perimeter of a set in Rn and
proved a characterization of sets of finite perimeter in terms of the heat kernel. His result was subsequently
refined, using techniques of functions of bounded variation: it was proven in [Ledoux 1994] for balls
in Rn, and in [Miranda et al. 2007] for general subsets of Rn, that a borel set �⊂ Rn with finite Lebesgue
measure has finite perimeter à la De Giorgi if and only if

there exists lim
t→0

√
π

√
t
(|�| − H�(t))= P(�), (2)

where | · | is the Lebesgue measure and P is the perimeter measure in Rn. Notice that (2) is equivalent to
a first-order1 asymptotic expansion of H�(t). A further development in this direction was then obtained
in [Angiuli et al. 2013], where the authors extended (2) to an asymptotic expansion of order 3 in

√
t ,

assuming the boundary of �⊂ Rn to be a C1,1 set. For simplicity, we state here the result of [Angiuli
et al. 2013, Theorem 1.1] assuming ∂� is smooth:2

H�(t)= |�| −
1

√
π

P(�)t1/2
+
(n − 1)2

12
√
π

∫
∂�

(
H 2
∂�(x)+

2
(n − 1)2

c∂�(x)
)

dHn−1(x)t3/2
+ o(t3/2) (3)

as t → 0, where Hn−1 is the Hausdorff measure and, denoting by k∂�i (x) the principal curvatures of ∂�
at the point x ,

H∂�(x)=
1

n − 1

n−1∑
i=1

k∂�i (x), c∂�(x)=

n−1∑
i=1

k∂�i (x)2.

In the Riemannian setting, van den Berg and Gilkey [2015] proved the existence of a complete
asymptotic expansion for H�(t), generalizing (3), when ∂� is smooth. Moreover, they were able to
compute explicitly the coefficients of the expansion up to order 4 in

√
t . Their techniques are based

1Here and throughout the paper, the notion of order is computed with respect to
√

t .
2The statement of Theorem 1.1 in [Angiuli et al. 2013] differs from (3) by a sign in the third-order coefficient: the correct

sign appears a few lines below the statement, in the expansion of the function Kt (E, Ec).
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on pseudodifferential calculus and cannot be immediately adapted to the sub-Riemannian setting. In
particular, what is missing is a global parametrix estimate for the heat kernel pt(x, y), see [van den Berg
and Gilkey 2015, Section 2.3]: for any k ∈ N, there exist Jk,Ck > 0 such that∥∥∥∥pt(x, y)−

Jk∑
j=0

p j
t (x, y)

∥∥∥∥
Ck(M×M)

≤ Ck tk as t → 0, (4)

where p j
t (x, y) are suitable smooth functions, given explicitly in terms of the Euclidean heat kernel and

iterated convolutions. The closest estimate analogue to (4) in the sub-Riemannian setting is the one
proved recently in [Colin de Verdière et al. 2021, Theorem A] (see Theorem 2.9 for the precise statement),
where the authors show an asymptotic expansion of the heat kernel in an asymptotic neighborhood of
the diagonal, which is not enough to reproduce (4) and thus the argument of van den Berg and Gilkey.
Moreover, in this case, p j

t (x, y) is expressed in terms of the heat kernel of the nilpotent approximation
and iterated convolutions, thus posing technical difficulties for the explicit computations of the coefficients
(which would be no longer “simple” Gaussian-type integrals).

Under the assumption of not having characteristic points, we prove the existence of the asymptotic
expansion of H�(t), up to order 4 in

√
t , as t → 0. We remark that we include also the rank-varying case.

In order to state our main results, let us introduce the following operator, acting on smooth functions
compactly supported close to ∂�:

Nφ = 2g(∇φ,∇δ)+φ1δ,

where δ : M → R denotes the sub-Riemannian signed distance function from ∂�; see Section 4 for precise
definitions.

Theorem 1.1. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and let
�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, as t → 0,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

−
1

12
√
π

∫
∂�

(N (1δ)− 2(1δ)2) dσ t3/2
+ o(t2), (5)

where σ denotes the sub-Riemannian perimeter measure.

Remark 1.2. The compactness assumption in Theorem 1.1 is technical and can be relaxed by requiring,
instead, global doubling of the measure and a global Poincaré inequality; see Section 7 and in particular
Theorem 7.3. Some notable examples satisfying these assumptions are:

• M is a Lie group with polynomial volume growth, the distribution is generated by a family of left-
invariant vector fields satisfying the Hörmander condition and ω is the Haar measure. This family includes
also Carnot groups.

• M = Rn, equipped with a sub-Riemannian structure induced by a family of vector fields {Y1, . . . , YN }

with bounded coefficients together with their derivatives, and satisfying the Hörmander condition.

• M is a complete Riemannian manifold, equipped with the Riemannian measure, and with nonnegative
Ricci curvature.

See Section 7.1 for further details. In all these examples, Theorem 1.1 holds.



3000 ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

The strategy of the proof of Theorem 1.1 follows a strategy similar to that of [Rizzi and Rossi 2021],
inspired by the method introduced in [Savo 1998], used for the classical heat content (6). However, as we
are going to explain in Section 1.1, new technical difficulties arise, the main one being related to the fact
that now u(t, · )|∂� ̸= 0. At order zero, we obtain the following result; see Section 2 for precise definitions.

Theorem 1.3. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω and let �⊂ M
be an open relatively compact subset, whose boundary is smooth and has no characteristic points. Let
x ∈ ∂� and consider a chart of privileged coordinates ψ : U → V ⊂ Rn centered at x such that
ψ(U ∩�)= V ∩ {z1 > 0}. Then,

lim
t→0

u(t, x)=

∫
{z1>0}

p̂x
1 (0, z) dω̂x(z)=

1
2

for all x ∈ ∂�,

where ω̂x denotes the nilpotentization of ω at x and p̂x
t denotes the heat kernel associated with the

nilpotent approximation of M at x and measure ω̂x.

This result can be seen as a partial generalization of [Capogna et al. 2013, Proposition 3], where the
authors proved an asymptotic expansion of u(t, x) up to order 1 in

√
t for x ∈ ∂� for a special class of

noncharacteristic domains in Carnot groups.

Remark 1.4. Our proof of Theorem 1.3 does not yield an asymptotic series for u(t, · )|∂� at order higher
than 0. Indeed a complete asymptotic series of this quantity seems difficult to achieve; see Section 6.

Remark 1.5. When ∂� has no characteristic points, the conormal bundle

A(∂�) := {λ ∈ T ∗M : ⟨λ, Tπ(λ)∂�⟩ = 0}

does not intersect the characteristic set and, as a consequence, the principal symbol of the sub-Laplacian
is elliptic near A(∂�). Thus, it is likely that microlocal analysis techniques in the spirit of [Colin de
Verdière et al. 2018] could yield the existence of a complete asymptotic expansion of the relative heat
content (but not an explicit expression and geometric interpretation of the coefficients). We thank Yves
Colin de Verdière and the anonymous referee for pointing out this fact.

1.1. Strategy of the proof of Theorem 1.1. To better understand the new technical difficulties in the study
of the relative heat content H�(t), let us compare it with the classical heat content Q�(t) and illustrate
the strategy of the proof of Theorem 1.1.

The classical heat content. We highlight the differences between the relative heat content H�(t) and the
classical one Q�(t): Let �⊂ M an open set in M. Then, for all t > 0, we have

H�(t)=

∫
�

u(t, x) dω(x), Q�(t)=

∫
�

u0(t, x) dω(x), (6)

where u(t, x) is the solution to (1) and u0(t, x) is the solution to the Dirichlet problem for the heat
equation, associated with �, i.e.,

(∂t −1)u0(t, x)= 0 for all (t, x) ∈ (0,∞)×�,

u0(t, x)= 0 for all (t, x) ∈ (0,∞)× ∂�,

u0(0, x)= 1 for all x ∈�.

(7)
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The crucial difference is that u0(t, · )|∂� = 0 for any t > 0, whereas u(t, · )|∂� ̸= 0 in general. Thus,
there is no a priori relation between H�(t) and Q�(t): the only relevant information is given by domain
monotonicity, which implies that

Q�(t)≤ H�(t) for all t > 0,

and clearly this does not give the asymptotics of the latter. See also [van den Berg 2013] for other
comparison results in the Euclidean setting.

Failure of Duhamel’s principle. In [Rizzi and Rossi 2021], we established a complete asymptotic
expansion of Q�(t), as t → 0, provided that ∂� has no characteristic points. The proof of this result relied
on an iterated application of the Duhamel’s principle and the fact that u0(t, x)|∂� = 0. Following the
same strategy, we apply Duhamel’s principle to a localized version of H�(t): Fix a function φ ∈ C∞

c (M),
compactly supported in a tubular neighborhood around ∂� and such that 0 ≤ φ ≤ 1 and φ is identically 1,
close to ∂�. Then, using off-diagonal estimates for the heat kernel, one can prove that

ω(�)− H�(t)= Iφ(t, 0)+ O(t∞) as t → 0, (8)

where Iφ(t, r) is defined for t > 0 and r ≥ 0 as

Iφ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x), (9)

where �r = {x ∈� : δ(x) > r}, with δ :�→ R denoting the distance function from the boundary. Hence,
the small-time behavior of H�(t) is captured by Iφ(t, 0). By Duhamel’s principle and the sub-Riemannian
mean value lemma, see Section 4 for details, we obtain

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y) (t − τ)−1/2 dτ + O(t) as t → 0. (10)

For the classical heat content, u0 satisfies Dirichlet boundary condition, see (7); hence (10) would give
the first-order asymptotics (and then one could iterate). On the contrary, in this case, we do not have
prior knowledge of u(t, y) as y ∈ ∂� and t → 0. Thus, already for the first-order asymptotics, Duhamel’s
principle alone is not enough, and we need some information on the asymptotic behavior of u(t, · )|∂�.

First-order asymptotics. We study the asymptotics of u(t, · )|∂�. Using the notion of nilpotent approxi-
mation of a sub-Riemannian manifold, see Section 2.3, we deduce the zero-order asymptotic expansion
of u(t, · )|∂� as t → 0, proving Theorem 1.3. This is enough to infer the first-order expansion of H�(t),
by means of (10). At this point, we iterate the Duhamel’s principle to obtain the higher-order terms of the
expansion of H�(t). However, already at the first iteration, we obtain the following formula for Iφ:

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, · ))φ dσ(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0

∫
∂�

(1 − u(τ̂ , · ))Nφ dσ((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ + O(t3/2) (11)

as t → 0. Therefore, the zero-order asymptotic expansion of u(t, · )|∂� no longer suffices for obtaining
the second-order asymptotics of H�(t).
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The outside contribution I cφ. We mentioned that the crucial difference between H�(t) and Q�(t),
defined in (6), is related to the fact that u(t, · )|∂� ̸= 0, whereas u0(t, · )|∂� = 0 for any t > 0. From a
physical viewpoint, this distinction comes from the fact that, since the boundary ∂� is no longer insulated,
the solution to (1) can flow also outside of �, whereas the solution to the Dirichlet problem (7) is confined
in �, and the external temperature is 0. Hence, we can imagine that the asymptotic expansion of H�(t)
is affected by the boundary, both from the inside and from the outside of �.

Interpreting Iφ as the inside contribution to the asymptotics of H�, we are going to formalize the
physical intuition of having heat flowing outside of �, defining an outside contribution, I cφ, to the
asymptotics.3 The starting observation is the following simple relation: Setting

K�(t)=

∫
M\�

u(t, x) dω(x) for all t > 0,

we have, by the divergence theorem,

H�(t)+ K�(t)= ω(�) for all t > 0. (12)

Similarly to (9), for a suitable smooth function φ, one may define a localized version of K�(t), which we
call I cφ(t, r), so that

K�(t)= I cφ(t, 0)+ O(t∞) as t → 0; (13)

see Section 5.1 for precise definitions. Using (8), (12) and (13), we show the relation

Iφ(t, 0)− I cφ(t, 0)= O(t∞) as t → 0,

for a suitable smooth function φ. On the other hand, for the localized quantity Iφ(t, 0)− I cφ(t, 0) we
have a Duhamel’s principle, thanks to which we are able to study the asymptotic expansion, up to order 3,
of the integral of u(t, x) over ∂�; see Theorem 5.4. The limitation to the order 3 of the asymptotics is
technical and seems difficult to overcome; see Remark 5.5. Inserting this asymptotics in (11), we obtain
the asymptotics up to order 3 of the expansion of H�(t) as t → 0.

Fourth-order asymptotics. Since we have at disposal only the asymptotics of the integral of u(t, x)
over ∂�, up to order 3, we need a finer argument to obtain the fourth-order asymptotics of H�(t). The
simple but compelling relation is based once again on (8), (12) and (13), thanks to which we can write

ω(�)− H�(t)=
1
2(Iφ(t, 0)+ I cφ(t, 0))+ O(t∞) as t → 0.

Now for the sum of the contributions Iφ(t, 0)+ I cφ(t, 0), the Duhamel’s principle implies

Iφ(t, 0)+ I cφ(t, 0)

=
2

√
π
σ(∂�)t1/2

+
1

2π

∫ t

0

∫ τ

0

∫
∂�

(1 − 2u(τ̂ , x))Nφ(y) dσ(y)((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ + o(t).

3The notation “superscript c” stands for complement. Indeed the outside contribution is the inside contribution of the
complement of �, see Section 5.1.
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This time notice how the integral of u(t, x) over ∂� appears in a first-order term (as opposed to what
happened in (10) or (11)); thus its asymptotic expansion up to order 3 implies a fourth-order expansion
for H�(t), concluding the proof of Theorem 1.1.

1.2. From the heat kernel asymptotics to the relative heat content asymptotics. In [Colin de Verdière
et al. 2021, Theorem A], the authors proved the existence of small-time asymptotics of the hypoelliptic
heat kernel, pt(x, y); see Theorem 2.9 below for the precise statement. In Theorem 1.3 we are able to
exploit this result to obtain the zero-order asymptotics of the function

u(t, x)= et11�(x)=

∫
�

pt(x, y) dω(y) for all t > 0, x ∈ ∂�.

However, we are not able to extend Theorem 1.3 to higher-order asymptotics since, roughly speaking,
the remainder terms in Theorem 2.9 are not uniform as t → 0. If we had a better control on the
remainders, we could indeed integrate (in a suitable way) the small-time heat kernel asymptotics to
obtain the corresponding expansion for u(t, x). Finally, from such an expansion, the relative heat content
asymptotics would follow from the localization principle (8) and the (iterated) Duhamel’s principle (10).
This is done in Section 6.

1.3. Characteristic points. In order to prove our main results, we need the noncharacteristic assumption
on the domain �. We recall that for a subset �⊂ M with smooth boundary, x ∈ ∂� is a characteristic
point if Dx ⊂ Tx(∂�). As was the case for the classical heat content, see [Rizzi and Rossi 2021], the
noncharacteristic assumption is crucial to follow our strategy, since it guarantees the smoothness of the
signed distance function close to ∂�; see Theorem 4.1. Nevertheless, one might ask whether Theorem 1.1
holds for domains with characteristic points, at least formally.

On the one hand, the coefficients, up to order 2, are well-defined even in presence of characteristic
points; see [Balogh 2003]. While, for what concerns the integrand of the third-order coefficient, its
integrability, with respect to the sub-Riemannian induced measure σ , is related to integrability of the
sub-Riemannian mean curvature H, with respect to the Riemannian induced measure. The latter is a
nontrivial property, which has been studied in [Danielli et al. 2012], and holds in the Heisenberg group,
for surfaces with mildly degenerate characteristic points in the sense of [Rossi 2023].

On the other hand, differently from what happens in the case of the Dirichlet problem, the heat kernel
pt(x, y) associated with (1) is smooth at the boundary of � for positive times, even in presence of
characteristic points. Thus, in principle, there is no obstacle in obtaining an asymptotic expansion of
H�(t) also in that case. Moreover, in Carnot groups of step 2, a result similar to (2) holds; see [Bramanti
et al. 2012; Garofalo and Tralli 2023]. In particular, the characterization of sets of finite horizontal
perimeter in Carnot groups of step 2 is independent of the presence of characteristic points, indicating
that an asymptotic expansion such as (5) may still hold, dropping the noncharacteristic assumption.

1.4. Notation. Throughout the article, for a set U ⊂ M, we will use the notation C∞
c (U ), even in

the compact case, so that all the statements need not be modified in the noncompact case, when the
generalization is possible; see Theorem 7.3. Moreover, in the noncompact and complete case, the set
�⊂ M is assumed to be open and bounded.
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2. Preliminaries

We recall some essential facts in sub-Riemannian geometry, following [Agrachev et al. 2020].

2.1. Sub-Riemannian geometry. Let M be a smooth, connected finite-dimensional manifold. A sub-
Riemannian structure on M is defined by a set of N global smooth vector fields X1, . . . , X N , called a
generating frame. The generating frame defines a distribution of subspaces of the tangent spaces at each
point x ∈ M, given by

Dx = span{X1(x), . . . , X N (x)} ⊆ Tx M. (14)

We assume that the distribution satisfies the Hörmander condition, i.e., the Lie algebra of smooth vector
fields generated by X1, . . . , X N , evaluated at the point x , coincides with Tx M, for all x ∈ M. The
generating frame induces a norm on the distribution at x , namely

∥v∥g = inf
{ N∑

i=1

u2
i :

N∑
i=1

ui X i (x)= v

}
for all v ∈ Dx ,

which, in turn, defines an inner product on Dx by polarization, which we denote by gx(v, v). Let T > 0.
We say that γ : [0, T ] → M is a horizontal curve if it is absolutely continuous and

γ̇ (t) ∈ Dγ (t) for a.e. t ∈ [0, T ].

This implies that there exists u : [0, T ] → RN such that

γ̇ (t)=

N∑
i=1

ui (t)X i (γ (t)) for a.e. t ∈ [0, T ].

Moreover, we require that u ∈ L2([0, T ],RN ). If γ is a horizontal curve, then the map t 7→ ∥γ̇ (t)∥g is
integrable on [0, T ]. We define the length of a horizontal curve as

ℓ(γ )=

∫ T

0
∥γ̇ (t)∥g dt.

The sub-Riemannian distance is defined, for any x, y ∈ M, by

dSR(x, y)= inf{ℓ(γ ) : γ horizontal curve between x and y}.

By the Chow–Rashevsky theorem, the distance dSR : M × M → R is finite and continuous. Furthermore
it induces the same topology as the manifold one.

Remark 2.1. The above definition includes all classical constant-rank sub-Riemannian structures as in
[Montgomery 2002; Rifford 2014] (where D is a vector distribution and g a symmetric and positive tensor
on D), but also general rank-varying sub-Riemannian structures. Moreover, the same sub-Riemannian
structure can arise from different generating families.

2.2. The relative heat content. Let M be a sub-Riemannian manifold. Let ω be a smooth measure on M,
i.e., by a positive tensor density. The divergence of a smooth vector field is defined by

divω(X)ω = LXω for all X ∈ 0(T M),
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where LX denotes the Lie derivative in the direction of X . The horizontal gradient of a function
f ∈ C∞(M), denoted by ∇ f , is defined as the horizontal vector field (i.e., tangent to the distribution at
each point) such that

gx(∇ f (x), v)= v( f )(x) for all v ∈ Dx ,

where v acts as a derivation on f . In terms of a generating frame as in (14), one has

∇ f =

N∑
i=1

X i ( f )X i for all f ∈ C∞(M).

We recall the divergence theorem (we stress that M is not required to be orientable): Let �⊂ M be open
with smooth boundary. Then∫

�

( f divω X + g(∇ f, X)) dω = −

∫
∂�

f g(X, ν) dσ (15)

for any smooth function f and vector field X such that the vector field f X is compactly supported.
In (15), ν is the inward-pointing normal vector field to � and σ is the induced sub-Riemannian measure
on ∂� (i.e., the one whose density is σ = |iνω|∂�).

The sub-Laplacian is the operator1= divω ◦∇, acting on C∞(M). Again, we may write its expression
with respect to a generating frame (14), obtaining

1 f =

N∑
i=1

{X2
i ( f )+ X i ( f ) divω(X i )} for all f ∈ C∞(M). (16)

We denote by L2(M, ω), or simply by L2, the space of real functions on M which are square-integrable
with respect to the measure ω. Let �⊂ M be an open relatively compact set with smooth boundary. This
means that the closure � is a compact manifold with smooth boundary. We consider the Cauchy problem
for the heat equation on �; that is, we look for functions u such that

(∂t −1)u(t, x)= 0 for all (t, x) ∈ (0,∞)× M,

u(0, · )= 1� in L2(M, ω),
(17)

where u(0, · ) is a shorthand notation for the L2-limit of u(t, x) as t → 0. Notice that 1 is symmetric
with respect to the L2-scalar product and negative; moreover, if (M, dSR) is complete as a metric space,
it is essentially self-adjoint; see [Strichartz 1986]. Thus, there exists a unique solution to (17), and it can
be represented as

u(t, x)= et11�(x) for all x ∈ M, t > 0,

where et1
: L2

→ L2 denotes the heat semigroup, associated with 1. We remark that, for all ϕ ∈ L2, the
function et1ϕ is smooth for all (t, x)∈ (0,∞)×M, by the hypoellipticity of the heat operator, and there ex-
ists a heat kernel associated with (17), i.e., a positive function pt(x, y)∈C∞((0,+∞)×M×M) such that

u(t, x)=

∫
M

pt(x, y)1�(y) dω(y)=

∫
�

pt(x, y) dω(y). (18)
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Definition 2.2 (relative heat content). Let u(t, x) be the solution to (17). We define the relative heat
content, associated with �, as

H�(t)=

∫
�

u(t, x) dω(x) for all t > 0.

Remark 2.3. If we consider, instead of �, a set which is the closure of an open set, then the Cauchy
problem (17) has a unique solution and relative heat content is still well-defined.

We recall here a property of the solution to (17): it satisfies a weak maximum principle, meaning that

0 ≤ u(t, x)≤ 1 for all x ∈�, for all t > 0. (19)

This can be proven following the blueprint of the Riemannian proof (see [Grigoryan 2009, Theorem 5.11]).

Definition 2.4 (characteristic point). We say that x ∈ ∂� is a characteristic point, or tangency point, if
the distribution is tangent to ∂� at x , that is,

Dx ⊆ Tx(∂�).

We will assume that ∂� has no characteristic points. We say in this case that � is a noncharacteristic
domain.

2.3. Nilpotent approximation of M. We introduce the notion of nilpotent approximation of a sub-
Riemannian manifold; see [Jean 2014; Bellaïche 1996] for details. This will be used only in Sections 3
and 6.

Sub-Riemannian flag. Let M be an n-dimensional sub-Riemannian manifold with distribution D. We
define the flag of D as the sequence of subsheaves Dk

⊂ T M such that

D1
= D, Dk+1

= Dk
+ [D,Dk

] for all k ≥ 1,

with the convention that D0
= {0}. Under the Hörmander condition, the flag of the distribution defines an

exhaustion of Tx M for any point x ∈ M ; i.e., there exists r(x) ∈ N such that

{0} = D0
x ⊂ D1

x ⊂ · · · ⊂ Dr(x)−1
x ⊊ Dr(x)

x = Tx M. (20)

The number r(x) is called degree of nonholonomy at x . We set nk(x)= dimDk
x for any k ≥ 0. Then the

collection of r(x) integers
(n1(x), . . . , nr(x)(x))

is called growth vector at x , and we have nr(x)(x)= n = dim M. Associated with the growth vector, we
can define the sub-Riemannian weights wi (x) at x , setting for any i ∈ {1, . . . , n},

wi (x)= j if and only if n j−1(x)+ 1 ≤ i ≤ n j (x). (21)

A point x ∈ M is said to be regular if the growth vector is constant in a neighborhood of x , and singular
otherwise. The sub-Riemannian structure on M is said to be equiregular if all points of M are regular. In
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this case, the weights are constant as well on M. Finally, given any x ∈ M, we define the homogeneous
dimension of M at x as

Q(x)=

r(x)∑
i=1

i(ni (x)− ni−1(x))=

n∑
i=1

wi (x).

We recall that, if x is regular, then Q(x) coincides with the Hausdorff dimension of (M, dSR) at x ; see
[Mitchell 1985]. Moreover, Q(x) > n for any x ∈ M such that Dx ⊊ Tx M.

Privileged coordinates. Let M be a sub-Riemannian manifold with generating frame (14) and f be the
germ of a smooth function f at x ∈ M. We call nonholonomic derivative of order k ∈ N of f the quantity

X j1 · · · X jk f (x)

for any family of indices { j1, . . . , jk} ⊂ {1, . . . , N }. Then, the nonholonomic order of f at the point x is

ordx( f )= min{k ∈ N : there exists { j1, . . . , jk} ⊂ {1, . . . , N } such that X j1 · · · X jk f (x) ̸= 0}.

Definition 2.5 (privileged coordinates). Let M be a n-dimensional sub-Riemannian manifold and x ∈ M.
A system of local coordinates (z1, . . . , zn) centered at x is said to be privileged at x if

ordx(z j )= w j (x) for all j = 1, . . . , n.

Notice that privileged coordinates (z1, . . . , zn) at x satisfy the following property:

∂zi |x ∈ Dwi
x , ∂zi |x /∈ Dwi −1

x for all i = 1, . . . , n. (22)

A local frame of T M consisting of n vector fields {Z1, . . . , Zn} and satisfying (22) is said to be adapted
to the flag (20) at x . Thus, privileged coordinates are always adapted to the flag. In addition, given a
local frame adapted to the sub-Riemannian flag at x , say {Z1, . . . , Zn}, we can define a set of privileged
coordinates at x , starting from {Z1, . . . , Zn}, i.e.,

Rn
∋ (z1, . . . , zn) 7→ ez1 Z1 ◦ · · · ◦ ezn Zn (x). (23)

Moreover, in these coordinates, the vector field Z1 is exactly ∂z1 .

Nilpotent approximation. Let M be a sub-Riemannian manifold and let x ∈ M with weights as in (21).
Consider ψ = (z1, . . . , zn) : U → V a chart of privileged coordinates at x , where U ⊂ M is a relatively
compact neighborhood of x and V ⊂ Rn is a neighborhood of 0. Then, for any ε ∈ R, we can define the
dilation at x as

δε : Rn
→ Rn, δε(z)= (εw1(x)z1, . . . , ε

wn(x)zn). (24)

Using such dilations, we obtain the nilpotent (or first-order) approximation of the generating frame (14);
indeed setting Yi = ψ∗X i for any i = 1 . . . , N , define

X̂ x
i = lim

ε→0
εδ(1/ε)∗(Yi ) for all i = 1 . . . , N , (25)
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where the limit is taken in the C∞-topology of Rn. Notice that the vector field X̂ x
i is defined on the

whole Rn, even though Yi was defined only on V ⊂ Rn.

Theorem 2.6. Let M be a n-dimensional sub-Riemannian manifold with generating frame {X1, . . . , X N }

and consider its first-order approximation at x as in (25). Then, the frame {X̂ x
1 , . . . , X̂ x

N } of vector fields
on Rn generates a nilpotent Lie algebra of step r(x)= wn(x) and satisfies the Hörmander condition.

The proof of this theorem can be found in [Jean 2014]. Recall that a Lie algebra is said to be nilpotent
of step s if s is the smallest integer such that all the brackets of length greater than s are zero.

Definition 2.7 (nilpotent approximation). Let M be a sub-Riemannian manifold and let x ∈ M. Then,
Theorem 2.6 implies that the frame {X̂ x

1 , . . . , X̂ x
N } is a generating frame for a sub-Riemannian struc-

ture on Rn: we denote the resulting sub-Riemannian manifold by M̂ x. This is the so-called nilpotent
approximation of M at the point x .

Notice that the sub-Riemannian distance of M̂ x , denoted by d̂x , is 1-homogeneous with respect to the
dilations (24).

Remark 2.8. Up to isometries, the nilpotent approximation of M at x coincides with the Gromov–
Hausdorff metric tangent space of (M, dSR) at x . Moreover, M̂ x is isometric to a quotient of a Carnot
group. See [Gromov 1996; Bellaïche 1996; Montgomery 2002] for further details.

Nilpotentized sub-Laplacian. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω,
and let (z1, . . . , zn) be a set of privileged coordinates at x ∈ M. We will use the same symbol ω to denote
measure in coordinates. The nilpotentization ω̂x of ω at x is defined as

⟨ω̂x , f ⟩ = lim
ε→0

1
|ε|Q(x)

⟨δ∗εω, f ⟩ for all f ∈ C∞

c (R
n). (26)

Notice that, denoting by dz = dz1 · · · dzn the Lebesgue measure on Rn, we have

δ∗ε (dz)= |ε|Q(x)dz for all ε ̸= 0.

Thus, the limit in (26) exists. Finally, we can define the nilpotentized sub-Laplacian according to (16),
acting on C∞(Rn), i.e.,

1̂x
= divω̂x (∇̂x)=

N∑
i=1

(X̂ x
i )

2. (27)

We remark that in (27) there is no divergence term, since

divω̂x (X̂ x
i )= 0 for all i ∈ {1, . . . , N }.

As in the general sub-Riemannian context, in the nilpotent approximation M̂ x, we may consider the
Cauchy heat problem (17) in L2(Rn, ω̂x). We will the denote the associated heat kernel as

p̂x
t (z, z′) ∈ C∞((0,+∞)× Rn

× Rn).
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Heat kernel asymptotics. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω and
denote by pt(x, y) the heat kernel (18). We have the following result.

Theorem 2.9 [Colin de Verdière et al. 2021, Theorem A]. Let M be a sub-Riemannian manifold and let
ψ : U → V be a chart of privileged coordinates at x ∈ M. Then, for any m ∈ N,

|ε|Q(x) pε2τ (δε(z), δε(z
′))= p̂x

τ (z, z′)+

m∑
i=1

εi f x
i (τ, z, z′)+ o(|ε|m) as ε→ 0, (28)

in the C∞-topology of (0,∞) × V × V, where the f x
i are smooth functions satisfying the following

homogeneity property: for i = 0, . . . ,m,

|ε|Q(x)ε−i f x
i (ε

2τ, δε(z), δε(z′))= f x
i (τ, z, z′) for all (τ, z, z′) ∈ (0,∞)× Rn

× Rn, (29)

where, for i = 0, we set f x
0 (τ, z, z′) = p̂x

τ (z, z′). In (28), we are considering the heat kernel pt in
coordinates, with a little abuse of notation.

Remark 2.10. We will drop the dependence on the center of the privileged coordinates if there is no
confusion.

3. Small-time asymptotics of u(t, x) at the boundary

We prove here Theorem 1.3, regarding the zero-order asymptotics of u(t, · )|∂� as t → 0.

Theorem 3.1. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω and let
�⊂ M be an open subset, whose boundary is smooth and has no characteristic points. Let x ∈ ∂� and
consider a chart of privileged coordinatesψ :U → V ⊂Rn centered at x such thatψ(U∩�)= V ∩{z1>0}.
Then,

lim
t→0

u(t, x)=

∫
{z1>0}

p̂x
1 (0, z) dω̂x(z)=

1
2

for all x ∈ ∂�,

where ω̂x denotes the nilpotentization of ω at x and p̂x
t denotes the heat kernel associated with the

nilpotent approximation of M at x and measure ω̂x.

Remark 3.2. A chart of privileged coordinates such that ψ(U ∩�)= V ∩{z1> 0} always exists, provided
that ∂� has no characteristic points. Indeed, in this case, there exists a tubular neighborhood of the
boundary, see Theorem 4.1, which is built through the flow of ∇δ, namely

G : (−r0, r0)× ∂�→�
r0
−r0
, G(t, q)= et∇δ(q),

is a diffeomorphism such that G∗∂t = ∇δ and δ(G(t, q)) = t . Here δ : M → R is the signed distance
function4 from ∂� and�r0

−r0
={−r0<δ< r0}; see Section 4.1 for precise definitions. Therefore, choosing

4We warn the reader that δ without a subscript always denotes the signed distance function and should not be confused with
dilations δε .
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an adapted frame for the distribution at x , say {Z1, . . . , Zn}, where Z1 = ∇δ, we can define a set of
privileged coordinates as in (23):

Rn
∋ (z1, . . . , zn) 7→ ez1 Z1 ◦ ez2 Z2 ◦ · · · ◦ ezn Zn (x)︸ ︷︷ ︸

ϕ(z2,...,zn)

= G(z1, ϕ(z2, . . . , zn)). (30)

The resulting set of coordinates ψ satisfies ψ∗(∇δ)= ∂z1 and, denoting by V the neighborhood of 0 in Rn

where ψ is invertible, ψ(U ∩�) = {z1 > 0} ∩ V. Here, es X (q) denotes the flow of the vector field X ,
starting at q, evaluated at time s.

Proof of Theorem 3.1. Let pt(x, y) be the heat kernel of M. Then we may write

u(t, x)=

∫
�

pt(x, y) dω(y) for all x ∈ M.

For a fixed x ∈ M, denoting by U any relatively compact neighborhood of x , we have

u(t, x)=

∫
U∩�

pt(x, y) dω(y)+
∫
�\U

pt(x, y) dω(y)

=

∫
U∩�

pt(x, y) dω(y)+ O(t∞)

as t → 0. Indeed, since the heat kernel is exponentially decaying outside the diagonal, see [Jerison and
Sánchez-Calle 1986, Proposition 3],∫

�\U
pt(x, y) dω(y)≤ ω(� \ U )CU e−cU /t

= O(t∞) as t → 0. (31)

Now, for x ∈ ∂�, fix the set of privileged coordinates ψ : U → V ⊂ Rn, defined as in the statement, and
assume without loss of generality that δε(V ) ⊂ V for any |ε| ≤ 1, where δε is the dilation (24) of the
nilpotent approximation of M. Also set

Vε = δε(V ∩ {z1 > 0}) for all |ε| ≤ 1.

When the limits exist, we have

lim
t→0

u(t, x)= lim
t→0

∫
U∩�

pt(x, y) dω(y)= lim
t→0

∫
V1

pt(0, z) dω(z), (32)

where, in the last equation, we are considering the expression of the heat kernel and the measure in
coordinates. We want to apply (28) at order 1 in ε, so let us rephrase the statement as follows: for any
compact set K ⊂ V,

|ε|Q pε2τ (0, δε(z))= p̂τ (0, z)+ εR(ε, τ, z) as ε→ 0, (33)

where R is a smooth function such that

sup
ε∈[−1,1], z∈K

|R(ε, τ, z)| ≤ C(τ, K ), (34)

with C(τ, K ) > 0. Notice that (34) is not uniform in τ , in the sense that τ 7→ C(τ, K ) can explode as
τ → 0, in general. Moreover, without loss of generality and, up to restrictions of U, we can assume that
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(34) holds globally on V 1. For a fixed parameter L > 1, we set τ = 1/L and ε2
= t L in (33), obtaining

|t L|
Q/2 pt(0, δ√t L(z))= p̂1/L(0, z)+

√
t L R(

√
t L, 1/L , z) as t → 0,

where the remainder R is bounded as t → 0 on the compact sets of V, but with a constant depending
on L . Inserting the above expansion in (32), and writing the measure in coordinates dω(z)= ω(z) dz,
with ω( · ) ∈ C∞(V1), we have

u(t, x)=

∫
V1

pt(0, z)ω(z) dz + O(t∞)

=

∫
V√

t L

pt(0, z)ω(z) dz +

∫
V1\V√

t L

pt(0, z) dω(z)+ O(t∞)

=

∫
V1

|t L|
Q/2 pt(0, δ√t L(z))ω(δ

√
t L(z)) dz +

∫
V1\V√

t L

pt(0, z) dω(z)+ O(t∞)

=

∫
V1

(
p̂1/L(0, z)+

√
t L R

(√
t L, 1/L , z

))
ω(δ√t L(z)) dz (35)

+

∫
V1\V√

t L

pt(0, z) dω(z)+ O(t∞), (36)

where in the third equality we performed the change of variable z 7→ δ1/
√

t L(z) in the first integral. Let us
discuss the terms appearing in (35) and (36). First of all, for any L > 1, by definition of the nilpotentization
of ω given in (26), we get

lim
t→0

∫
V1

p̂1/L(0, z)ω(δ√t L(z)) dz =

∫
V1

p̂1/L(0, z) dω̂(z).

Moreover, for a fixed L > 1, the integral of R is bounded as t → 0; Therefore, using (34), we have∣∣∣∣√t L
∫

V1

R(
√

t L, 1/L , z) dω(z)
∣∣∣∣ ≤ CL

√
t for all t ≤ 1,

where CL > 0 is a constant depending on the fixed L . Secondly, by an upper Gaussian bound for the heat
kernel in compact sub-Riemannian manifold [Jerison and Sánchez-Calle 1986, Theorem 2], we obtain the
following estimate for (36):∫

V1\V√
t L

pt(0, z) dω(z)≤

∫
V1\V√

t L

C1e−β d2
SR(0,z)/t

tQ/2
dω(z), (37)

where C1, β > 0 are positive constants. Now, by the ball-box theorem [Jean 2014, Theorem 2.1], the
sub-Riemannian distance function at the origin is comparable with the sub-Riemannian distance of M̂ x,
denoted by d̂ . In particular, there exists a constant c > 0 such that

d2
SR(0, z)≥ c d̂2(0, z) for all z ∈ V . (38)

Since in (37) we are integrating over the set V1 \ V√
t L and d̂ is 1-homogeneous with respect to δε, we

conclude that
d2

SR(0, z)≥ c t L for all z ∈ V1 \ V√
t L .
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Therefore, using also (38), the term (37) can be estimated as follows:∫
V1\V√

t L

pt(0, z) dω(z)≤ C1e−cβL/2
∫

V1

e−βd2
SR(0,z)/(2t)

tQ/2
dω(z)

≤ C1e−cβL/2
∫

V1

e−βc d̂2(0,z)/(2t)

tQ/2
ω(z) dz ≤ C̃e−cβL/2,

(39)

where C̃ > 0 is independent of t and L . The last inequality in (39) follows from the fact that, after a
change of variable z 7→ δ1/

√
t(z), the integral∫

V1

e−βcd̂2(0,z)/(2t)

tQ/2
ω(z) dz <+∞

is uniformly bounded with respect to t ∈ [0,∞).
Therefore, for any L > 1, we obtain the following estimates for the limit of u:

lim sup
t→0

u(t, x)≤

∫
V1

p̂1/L(0, z) dω̂(z)+ C̃e−cβL/2,

lim inf
t→0

u(t, x)≥

∫
V1

p̂1/L(0, z) dω̂(z)− C̃e−cβL/2.

(40)

In order to evaluate the limits in (40), let us firstly notice that, since p̂ enjoys upper and lower Gaussian
bounds (see for example [Colin de Verdière et al. 2021, Appendix C]), reasoning as we did for (39), we
can prove ∫

V1

p̂1/L(0, z) dω̂(z)=

∫
{z1>0}

p̂1/L(0, z) dω̂(z)+ O(e−β ′L). (41)

Secondly, thanks to (29) for p̂, we have the parity property

p̂t(0, z)= p̂t(0, δ−1(z)) for all t > 0, z ∈ Rn,

and, by the choice of privileged coordinates, δ−1({z1 > 0})= {z1 < 0}. Thus, using also the stochastic
completeness of the nilpotent approximation, we obtain, for any t ≥ 0,

1 =

∫
Rn

p̂t(0, z) dω̂(z)=

∫
{z1>0}

p̂t(0, z) dω̂(z)+
∫

{z1<0}

p̂t(0, z) dω̂(z)= 2
∫

{z1>0}

p̂t(0, z) dω̂(z),

having performed the change of variables z 7→ δ−1(z) in the last equality. Hence, the integral in (41) is∫
V1

p̂1/L(0, z) dω̂(z)=
1
2

+ O(e−β ′L).

Finally, we optimize the inequalities (40) with respect to L , taking L → ∞ and concluding the proof. □

Remark 3.3. In the noncompact case, if M is globally doubling and supports a global Poincaré inequality,
the proof above is still valid; see Theorem 7.3. Otherwise, a different proof is needed; see [Rossi 2021,
Appendix D] for details.
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4. First-order asymptotic expansion of H�(t)

In this section, we introduce the technical tools that allow us to prove the first-order asymptotic expansion
of the relative heat content starting from Theorem 3.1. The new ingredient is a definition of an operator I�,
which depends on the base set �.

4.1. A mean value lemma. Define δ : M → R to be the signed distance function from ∂�, i.e.,

δ(x)=

{
dSR(x, ∂�), x ∈�,

−dSR(x, ∂�), x ∈ M \�,

where dSR( · , ∂�) : M → [0,+∞) denotes the usual distance function from ∂�. Let us introduce the
following notation: for any a, b ∈ R, with a < b, we set

�b
a = {x ∈ M : a < δ(x) < b},

with the understanding that if b (or a) is omitted, it is assumed to be +∞ (or −∞), for example5

�r =�+∞

r = {x ∈ M : r < δ(x)}.

In the noncharacteristic case, [Franceschi et al. 2020, Proposition 3.1] can be extended without difficulties
to the signed distance function.

Theorem 4.1 (double-sided tubular neighborhood). Let M be a sub-Riemannian manifold and let �⊂ M
be an open relatively compact subset of M whose boundary is smooth and has no characteristic points.
Let δ : M → R be the signed distance function from ∂�. Then, we have:

(i) δ is Lipschitz with respect to the sub-Riemannian distance and ∥∇δ∥g ≤ 1 a.e.

(ii) There exists r0 > 0 such that δ :�
r0
−r0

→ R is smooth.

(iii) There exists a smooth diffeomorphism G : (−r0, r0)× ∂�→�
r0
−r0

such that

δ(G(t, y))= t and G∗∂t = ∇δ for all (t, y) ∈ (−r0, r0)× ∂�.

Moreover, ∥∇δ∥g ≡ 1 on �r0
−r0

.

In particular, the following coarea formula for the signed distance function holds:∫
�r

0

v(x) dω(x)=

∫ r

0

∫
∂�s

v(s, y) dσ(y) ds for all r ≥ 0, (42)

where σ is the induced measure on ∂�s , namely the positive measure with density |i∇δω||∂�s . From (42),
we deduce the sub-Riemannian mean value lemma; see [Rizzi and Rossi 2021, Theorem 4.1] for a proof.

5Notice that the set �+∞
−∞

is equal to M; thus omitting both indices can create confusion. We will never do that and � will
always denote the starting subset of M.
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Proposition 4.2. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, let
�⊂ M be an open subset of M with smooth boundary and no characteristic points and let δ : M → R be
the signed distance function from ∂�. Fix a smooth function v ∈ C∞(M) and define

F(r)=

∫
�r

v(x)dω(x) for all r ≥ 0. (43)

Then there exists r0 > 0 such that the function F is smooth on [0, r0) and, for 0 ≤ r < r0,

F ′′(r)=

∫
�r

1v(x) dω(x)−
∫
∂�r

v(y) divω(ν(y)) dσ(y),

where ν is the inward-pointing unit normal to �r , and σ is the induced measure on ∂�r .

Remark 4.3. If v ∈ C∞
c (M), then neither M nor � is required to be compact for Proposition 4.2 to be

true; indeed its proof relies on (42), which continues to hold, and the divergence theorem (15), which
applies if supp(v) is compact. Moreover, we remark that νr is equal to ∇δ up to sign. We prefer to keep
νr in (43), since we are going to apply it when the integral is performed over �r or its complement.

If we choose the function v in the definition of F to be 1 − u(t, x), where u(t, · ) = et11�, then
F satisfies a nonhomogeneous one-dimensional heat equation.

Corollary 4.4. Under the hypotheses of Proposition 4.2, the function

F(t, r)=

∫
�r

(1 − u(t, x)) dω(x) for all t > 0, r ≥ 0, (44)

where u(t, x)= et11�(x), satisfies the following nonhomogeneous one-dimensional heat equation:

(∂t − ∂2
r )F(t, r)=

∫
∂�r

(1 − u(t, · )) divω(ν) dσ , t > 0, r ∈ [0, r0). (45)

Here ν is the inward-pointing unit normal to �r , and σ is the induced measure on ∂�r .

Corollary 4.4 holds only for r ≤ r0; however, we would like to extend it to the whole positive half-line,
in order to apply a Duhamel’s principle. This can be done up to an error which is exponentially small.

4.2. Localization principle.

Proposition 4.5. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset of M, with smooth boundary. Moreover, let K ⊂ M be a closed set such that
K ∩ ∂�= ∅. Then

1�(x)− u(t, x)= O(t∞) uniformly for x ∈ K ,

where u(t, x)= et11�(x).

Proof. The statement is a direct consequence of the off-diagonal estimate for the heat kernel in compact
sub-Riemannian manifold (see [Jerison and Sánchez-Calle 1986, Proposition 3]):

pt(x, y)≤ Cae−ca/t for all x, y with d(x, y)≥ a, t < 1, (46)
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for suitable constants Ca, ca > 0, depending only on a. Now, since K ∩ ∂�= ∅, we can write K as a
disjoint union

K = K1 ⊔ K2, with K1 ⊂�, K2 ⊂ M \�.

At this point, for i = 1, 2, set ai = dSR(Ki , ∂�) > 0 by hypothesis, and let x ∈ K1. Then, using the
stochastic completeness of M, we have

|1�(x)− u(t, x)| = 1 − u(t, x)=

∫
M\�

pt(x, y) dω(y)≤ C1e−c1/tω(M \�), (47)

which is exponentially decaying, uniformly in K1. Analogously, if x ∈ K2, we have

|1�(x)− u(t, x)| = u(t, x)=

∫
M

pt(x, y)1�(y) dω(y)=

∫
�

pt(x, y) dω(y)≤ C2e−c2/tω(�),

uniformly in K2. □

Remark 4.6. In the noncompact case, Proposition 4.5 may fail. Indeed, on the one hand the off-diagonal
estimate (46) is not always available; on the other hand the measure of M \� appearing in (47) is infinite.
Under additional assumption on M, we are able to recover a localization principle; see Section 7.

Let M be compact. Thanks to Proposition 4.5, we can extend the function F defined in (44) to a
solution to a nonhomogeneous heat equation such as (45) on the whole half-line. More precisely, let
φ, η ∈ C∞

c (M) such that

φ+ η ≡ 1, supp(φ)⊂�
r0
−r0
, supp(η)⊂�−r0/2 ∪�r0/2, (48)

where r0 is defined in Proposition 4.2. We have then, for r ∈ [0, r0),

F(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x)+
∫
�r

(1 − u(t, x))η(x) dω(x)

=

∫
�r

(1 − u(t, x))φ(x) dω(x)+
∫

supp(η)∩�r

(1 − u(t, x))η(x) dω(x)

=

∫
�r

(1 − u(t, x))φ(x) dω(x)+ O(t∞), (49)

where we used Proposition 4.5 to deal with the second term, having set K = supp(η) ∩�r . For this
reason, we may focus on the first term in (49).

Definition 4.7. For all t>0 and r ≥0, we define the operators I�,3� :C∞
c (�

r0
−r0
)→C∞((0,∞)×[0,∞)),

associated with �, by

I�φ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x),

3�φ(t, r)= −∂r I�φ(t, r)= −

∫
∂�r

(1 − u(t, y))φ(y) dσ(y)

for any φ ∈ C∞
c (�

r0
−r0
), and where σ denotes the induced measure on ∂�r and u(t, · )= et11�( · ).
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Remark 4.8. We stress that, for every φ ∈ C∞
c (�

r0
−r0
), I�φ, 3�φ are indeed smooth in both variables

thanks to the choice of the parameter r0 > 0 as in Proposition 4.2, together with the smoothness of the
solution to the heat equation. Moreover, 3�φ is compactly supported in the r -variable.

Thanks to the localization principle, we can improve Corollary 4.4, obtaining a better result for
I�φ(t, r).

Lemma 4.9. Let L = ∂t − ∂2
r be the one-dimensional heat operator. Then, for any φ ∈ C∞

c (�
r0
−r0
),

L(I�φ(t, r))= I�1φ(t, r)+3�N�φ(t, r) for all t > 0, r ≥ 0,

where N� is the operator defined by

N�φ = 2g(∇φ, ν)+φ divω(ν) for all φ ∈ C∞

c (�
r0
−r0
), (50)

and ν is the inward-pointing unit normal to �.

4.3. Duhamel’s principle for I�φ. We recall for the convenience of the reader a one-dimensional version
of the Duhamel’s principle; see [Rizzi and Rossi 2021, Lemma 5.4].

Lemma 4.10 (Duhamel’s principle). Let f ∈ C((0,∞)×[0,∞)), v0, v1 ∈ C([0,∞)), such that f (t, · )
and v0 are compactly supported and assume that

there exists lim
t→0

f (t, r) for all r ≥ 0.

Consider the nonhomogeneous heat equation on the half-line:

Lv(t, r)= f (t, r) for t > 0, r > 0,

v(0, r)= v0(r) for r > 0,

∂rv(t, 0)= v1(t) for t > 0,

(51)

where L = ∂t − ∂2
r . Then, for t > 0 and r ≥ 0, the solution to (51) is given by

v(t, r)=

∫
∞

0
e(t, r, s)v0(s) ds +

∫ t

0

∫
∞

0
e(t − τ, r, s) f (τ, s) ds dτ −

∫ t

0
e(t − τ, r, 0)v1(τ ) dτ, (52)

where e(t, r, s) is the Neumann heat kernel on the half-line, that is,

e(t, r, s)=
1

√
4π t

(e−(r−s)2/(4t)
+ e−(r+s)2/(4t)). (53)

Finally, we apply Lemma 4.10 to obtain an asymptotic equality for I�φ. The main difference with the
result of [Rizzi and Rossi 2021, Theorem 5.6] is that the former will not be a true first-order asymptotic
expansion.

Corollary 4.11. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, for any
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function φ ∈ C∞
c (�

r0
−r0
),

I�φ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y)(t − τ)−1/2 dτ + O(t)

as t → 0, where u(t, · )= et11�( · ).

Proof. By Lemma 4.9, the function I�φ(t, r) satisfies the following Neumann problem on the half-line:

L I�φ(t, r)= f (t, r) for t > 0, r > 0,

I�φ(0, r)= 0 for r > 0,

∂r I�φ(t, 0)= −3�φ(t, 0) for t > 0,

where the source is given by f (t, r)= I�1φ(t, r)+3�N�φ(t, r). Thus, applying Duhamel’s formula
(52), we have

I�φ(t, 0)=

∫ t

0

∫
+∞

0
e(t − τ, 0, s) f (τ, s) ds dτ +

1
√
π

∫ t

0

1
√

t − τ
3�φ(t, 0) dτ.

Since the source is uniformly bounded by the weak maximum principle (19), the first integral is a
remainder of order t as t → 0, concluding the proof. □

Remark 4.12. We mention that a relevant role in the sequel will be played by the operators I�, see
Definition 4.7, associated with either � or its complement �c.

4.4. First-order asymptotics. In this section we prove the first-order asymptotic expansion of H�(t); see
Theorem 1.1 at order 1. We will use Corollary 4.11 for the inside contribution:

Iφ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x) for all t > 0, r ≥ 0, (54)

for any φ ∈ C∞
c (�

r0
−r0
), and where σ denotes the induced measure on ∂�r and u(t, · )= et11�( · ) is the

solution to (17). The quantity (54) is just Definition 4.7, applied with base set �⊂ M.

Theorem 4.13. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

+ o(t1/2) as t → 0.

Proof. Let φ ∈ C∞
c (�

r0
−r0
) be as in (48); namely

0 ≤ φ ≤ 1 and φ ≡ 1 in �r0/2
−r0/2.

Then, by the localization principle, see (49), we have that

ω(�)− H�(t)= Iφ(t, 0)+ O(t∞) as t → 0. (55)

Applying Corollary 4.11, we have

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y)(t − τ)−1/2 dτ + O(t) as t → 0. (56)
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Thus, to infer the first-order term of the asymptotic expansion we have to compute the following limit:

lim
t→0

Iφ(t, 0)
t1/2 = lim

t→0

1
t1/2√π

∫ t

0

∫
∂�

(1 − u(τ, y))φ(y) dσ(y)(t − τ)−1/2 dτ. (57)

Firstly, by the change of variable in the integral τ 7→ tτ , we rewrite the argument of the limit (57) as

1
√
π

∫ 1

0

∫
∂�

(1 − u(tτ, y))φ(y) dσ(y)(1 − τ)−1/2 dτ.

Secondly, we apply the dominated convergence theorem. Indeed, on the one hand, by Theorem 3.1 we
have pointwise convergence

(1 − u(tτ, y))φ(y) t→0
−−→

1
2φ(y) for all y ∈ ∂�, τ ∈ (0, 1),

and on the other hand, by the maximum principle∣∣∣∣∫
∂�

(1 − u(tτ, y))φ(y) dσ(y)(1 − τ)−1/2
∣∣∣∣ ≤

∫
∂�

|φ| dσ(1 − τ)−1/2
∈ L1(0, 1)

for any t > 0. Therefore, we finally obtain that

Iφ(t, 0)=

√
t
π

∫
∂�

φ(y) dσ(y)+ o(t1/2) as t → 0.

Recalling that φ|∂� ≡ 1, we conclude the proof. □

Remark 4.14. The above technique used to evaluate the first-order coefficient causes a loss of precision
in the remainder, with respect to the expression (56), where the remainder is O(t). This loss comes from
the application of Theorem 3.1, which does not contain any remainder estimate.

5. Higher-order asymptotic expansion of H�(t)

We iterate Duhamel’s formula (52) for the inside contribution to study the higher-order asymptotics of
H�(t). We obtain the following expression for Iφ at order 3:

Iφ(t, 0)=
1

√
π

∫ t

0

∫
∂�

(1 − u(τ, · ))φ dσ(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0

∫
∂�

(1 − u(τ̂ , · ))Nφ dσ((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ + O(t3/2), (58)

where u(t, · )= et11�( · ) denotes the solution to (17) and N is the operator defined by

Nφ = 2g(∇φ,∇δ)+φ1δ for all φ ∈ C∞

c (�
r0
−r0
), (59)

with δ : M → R the signed distance function from ∂�. The computations for deriving (58) are technical.
We refer to the Appendix for further details, and in particular to Lemma A.6. Motivated by (58), we
introduce the following functional.
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Definition 5.1. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, let�⊂ M be a
relatively compact subset with smooth boundary and let v ∈ C∞((0,+∞)× M). Define the functional Gv ,
for any φ ∈ C∞

c (�
r0
−r0
) as

Gv[φ](t)=
1

2
√
π

∫ t

0

∫
∂�

v(τ, · )φ dσ(t − τ)−1/2 dτ for all t ≥ 0, (60)

where σ is the sub-Riemannian induced measure on ∂�.

Notice that the functional Gv is linear with respect to the subscript function v, by linearity of the
integral. Moreover, when the function v is chosen to be the solution to (17), we easily obtain the following
corollary of Theorem 3.1, which is just a rewording of (57).

Corollary 5.2. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and let
�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Let φ ∈ C∞

c (�
r0
−r0
).

Then,

Gu[φ](t)=
1

2
√
π

∫
∂�

φ(y) dσ(y)t1/2
+ o(t1/2) as t → 0.

Then, we can rewrite (58) in a compact notation:

Iφ(t, 0)= 2G1−u[φ](t)+
1

√
π

∫ t

0
G1−u[Nφ](t) dσ(t − τ)−1/2 dτ + O(t3/2). (61)

However, on the one hand, the application of Corollary 5.2 to (58) does not give any new information on
the asymptotics of H�(t), as the first term produces an error of o(t1/2). On the other hand, it is clear that
an asymptotic series of Gu is enough to deduce the small-time expansion of H�(t).

5.1. The outside contribution and an asymptotic series for Gu[φ]. In this section, we deduce an asymp-
totic series, at order 3, of Gu[φ](t) as t → 0. This is done by exploiting the fact that the diffusion of heat
is not confined in �, and as a result we can define an outside contribution, namely the quantity obtained
from Definition 4.7, applied with base set �c

⊂ M :

I cφ(t, r)=

∫
(�c)r

(1 − uc(t, x))φ(x) dω(x) for all t > 0, r ≥ 0, (62)

for any φ ∈ C∞
c (�

r0
−r0
), and where σ denotes the induced measure on the boundary of (�c)r and uc(t, x)=

et11�c(x). We remark that, since � and its complement share the boundary, then (�c)
r0
−r0

= �
r0
−r0

. It
is convenient to introduce (62), because it turns out that the quantity Iφ− I cφ, where Iφ is the inside
contribution (54), has an explicit asymptotic series in integer powers of t .

Proposition 5.3. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset with smooth boundary. Let φ ∈ C∞

c (�
r0
−r0
). Then, for any k ∈ N,

Iφ(t, 0)− I cφ(t, 0)=

k∑
i=1

ai (φ)t i
+ O(tk+1) as t → 0, (63)

where
ai (φ)=

∫
∂�

g(∇(1i−1φ),∇δ) dσ for i ≥ 1.
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Proof. Recall that in the definition of the outside contribution (62), the integrand function involves
uc(t, x)= et11�c(x). Since M is compact, and hence stochastically complete, we have

1 − uc(t, x)= et11(x)− et11�c(x)= u(t, x) for all t > 0, x ∈ M,

having used the pointwise equality 1 − 1�c = 1� in M \ ∂�. Therefore, we can write the difference
Iφ(t, 0)− I cφ(t, 0) as follows:

Iφ(t, 0)− I cφ(t, 0)=

∫
�

(1 − u(t, · ))φ dω−

∫
�c
(1 − uc(t, · ))φ dω

=

∫
�

(1 − u(t, · ))φ dω−

∫
�c

u(t, · )φ dω

=

∫
�

φ(x) dω(x)−
∫

M
u(t, x)φ(x) dω(x). (64)

Since u(t, x) is the solution to (17), the function (64) is smooth as t ∈ [0,∞). Indeed, the smoothness in
the open interval is guaranteed by hypoellipticity of the sub-Laplacian. At t = 0, the divergence theorem,
together with the fact that φ has compact support in M, implies that

∂ i
t

(∫
M

u(t, x)φ(x) dω(x)
)

=

∫
M
∂ i

t (u(t, x)φ(x)) dω(x)=

∫
M
1i u(t, x)φ(x) dω(x)

=

∫
M

u(t, x)1iφ(x) dω(x) t→0
−−→

∫
�

1iφ(x) dω(x).

The previous limit shows that (64) is smooth at t = 0, and also that its asymptotic expansion at order k, as
t → 0, coincides with its k-th Taylor polynomial at t = 0. Finally, we recover (63), applying once again
the divergence theorem:∫

�

1iφ dω = −

∫
∂�

g(∇(1i−1φ), ν) dσ = −

∫
∂�

g(∇(1i−1φ),∇δ) dσ,

recalling that ν = ∇δ is the inward-pointing normal vector to � at its boundary. □

Applying the (iterated) Duhamel’s principle (52) to the difference Iφ − I cφ, we are able to obtain
relevant information on the functional Gu .

Theorem 5.4. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, for any
φ ∈ C∞

c (�
r0
−r0
),

Gu[φ](t)=
1

2
√
π

∫
∂�

φ dσ t1/2
+

1
8

∫
∂�

φ1δ dσ t+o(t3/2) as t → 0. (65)

Proof. Let us study the difference of the inside and outside contributions Iφ(t, 0)− I cφ(t, 0). On the
one hand, we have an iterated Duhamel’s principle, see Lemma A.7, which we report here:

(Iφ− I cφ)(t, 0)= 2G1−2u[φ](t)+ 1
2

∫
∂�

Nφ dσ t +
1

2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ− τ̂ )(t −τ))−1/2 d τ̂ dτ

+
1

4
√
π

∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ + O(t2), (66)
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where we recall that N is the operator acting on smooth functions compactly supported close to ∂�
defined by

Nφ = 2g(∇φ,∇δ)+φ1δ for all φ ∈ C∞

c (�
r0
−r0
).

Using Corollary 5.2 and the linearity of Gv with respect to v, we know that

G1−2u[φ](t)= o(t1/2) as t → 0, for all φ ∈ C∞

c (�
r0
−r0
). (67)

Therefore, applying (67) to the function N 2φ ∈ C∞
c (�

r0
−r0
), we obtain

1
2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ = o(t3/2) as t → 0. (68)

In addition, an application of Theorem 3.1 and the dominated convergence theorem implies that∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ = o(t3/2) as t → 0. (69)

Thus, using (68) and (69), we can improve (66), obtaining

Iφ(t, 0)− I cφ(t, 0)= 2G1−2u[φ](t)+ 1
2

∫
∂�

Nφ dσ t + o(t3/2). (70)

On the other hand, the quantity Iφ(t, 0)− I cφ(t, 0) has a complete asymptotic series by Proposition 5.3,
which at order 3 becomes

Iφ(t, 0)− I cφ(t, 0)=

∫
∂�

g(∇φ,∇δ) dσ t + o(t3/2) as t → 0. (71)

Comparing (70) and (71), we deduce that, as t → 0,

2G1−2u[φ](t)= −
1
2

∫
∂�

Nφ dσ t + o(t3/2)+

∫
∂�

g(∇φ,∇δ) dσ t + o(t3/2)

= −
1
2

∫
∂�

φ1δ dσ t + o(t3/2).

Finally, using the linearity of the functional Gv[φ] with respect to v, we conclude the proof. □

Remark 5.5. The asymptotics (65) for the functional Gu[φ](t) is the best result that we are able to achieve.
In the expression (66), the problematic term is given by (69), i.e.,∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ,

which cannot be expressed in terms of Gu ; hence the only relevant information is given by Theorem 3.1.
In conclusion, we cannot repeat the strategy of the proof of Theorem 5.4, replacing the series of Gu at
order 3 in (66) to deduce the higher-order terms.
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5.2. Fourth-order asymptotics. In this section we prove Theorem 1.1. We recall here the statement.

Theorem 5.6. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let �⊂ M be an open subset whose boundary is smooth and has no characteristic points. Then, as t → 0,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

−
1

12
√
π

∫
∂�

(2g(∇δ,∇(1δ))− (1δ)2) dσ t3/2
+ o(t2).

Before giving the proof of the theorem, let us comment on its strategy. Recall that, on the one hand,
for a cutoff function φ ∈ C∞

c (�
r0
−r0
) which is identically 1 close to ∂�, see (48), the localization principle

(55) holds, namely

ω(�)− H�(t)= Iφ(t, 0)+ O(t∞) as t → 0. (72)

Moreover, by the iterated Duhamel’s principle for Iφ(t, 0), see Lemma A.6, we can deduce expression
(61), namely

Iφ(t, 0)= 2G1−u[φ](t)+
1

√
π

∫ t

0
G1−u[Nφ](t) dσ(t − τ)−1/2 dτ + O(t3/2). (73)

On the other hand, we have an asymptotic series of the functional Gu at order 3; see Theorem 3.1.
Therefore, if we naively insert this series in (73), we can obtain, at most, a third-order asymptotic
expansion of the relative heat content H�(t), whereas we are interested in the fourth-order expansion.

Using the outside contribution, we are able to overcome this difficulty. In particular, applying
Proposition 5.3, for a function φ ∈ C∞

c (�
r0
−r0
) which is identically 1 close to ∂�, we have the following

asymptotic relation:

Iφ(t, 0)= I cφ(t, 0)+ O(t∞) as t → 0. (74)

Notice that (74) is a direct consequence of Proposition 5.3 since all the coefficients of the expansion
vanish. Therefore, thanks to (74), we can rephrase (72) as

ω(�)− H�(t)=
1
2(Iφ(t, 0)+ I cφ(t, 0))+ O(t∞) as t → 0. (75)

The advantage of (75) is that we can now apply the iterated Dirichlet principle for the sum Iφ+ I cφ; see
Lemma A.8. Already at order 3, we obtain

(Iφ+ I cφ)(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
+

1
√
π

∫ t

0
G1−2u[Nφ](τ )(t − τ)−1/2 dτ + O(t3/2), (76)

where N is the operator defined in (59). As we can see, in (76), the functional Gu occurs for the first time
in the second iteration of the Duhamel’s principle, as opposed to the expansion for Iφ, where it appeared
already in the first application; see (73). Hence we gain an order with respect to the asymptotic series
of Gu . More generally, if we were able to develop the k-th order asymptotics for Gu , this would imply the
(k+1)-th order expansion for H�(t).

Proof of Theorem 5.6. Following the discussion above, it is enough to expand the sum Iφ+ I cφ, with
φ ∈ C∞

c (�
r0
−r0
). For this quantity, Lemma A.8 holds, namely we have the following iterated version of
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Duhamel’s principle:

(Iφ+ I cφ)(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
+

1
√
π

∫ t

0
G1−2u[Nφ](τ )(t − τ)−1/2 dτ

+
1

6
√
π

∫
∂�

(41+ N 2)φ dσ t3/2

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−2u[N 3φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ

+
1

4
√
π

∫ t

0
G1−2u[(6N1− N 3

− 21N )φ](τ )(t − τ)1/2 dτ + O(t5/2), (77)

where N is defined in (59). Moreover, recall that by Theorem 5.4, the functional G1−2u[φ] has the
following expansion for any φ ∈ C∞

c (�
r0
−r0
):

G1−2u[φ](t)= −
1
4

∫
∂�

φ1δ dσ t + o(t3/2) as t → 0. (78)

Thus, replacing the term G1−2u[Nφ] in (77) with the expansion (78) for Nφ ∈ C∞
c (�

r0
−r0
), we obtain the

following asymptotic as t → 0:

Iφ(t, 0)+ I cφ(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
−

1
3
√
π

(∫
∂�

Nφ1δ dσ
)

t3/2

+
1

6
√
π

∫
∂�

(41+ N 2)φ dσ t3/2
+ o(t2) (79)

for any φ ∈ C∞
c (�

r0
−r0
). In particular, if we choose φ ∈ C∞

c (�
r0
−r0
) such that φ ≡ 1 close to ∂�, then on

the one hand, from (79), we obtain, as t → 0,

Iφ(t, 0)+ I cφ(t, 0)=
2

√
π
σ(∂�)t1/2

+
1

6
√
π

∫
∂�

(2g(∇δ,∇(1δ))− (1δ)2) dσ t3/2
+ o(t2).

On the other hand, the asymptotic relation (75) holds. □

Third-order vs. fourth-order asymptotics. We stress that we could have obtained the third-order asymp-
totic expansion of H�(t) without introducing the sum of the inside and outside contributions Iφ+ I cφ,
and only using the Duhamel’s principle for Iφ, see Lemma A.6, and the asymptotic series for Gu , see
Theorem 5.4. However, for the improvement to the fourth-order asymptotics, the argument of the sum of
contributions seems necessary.

5.3. The weighted relative heat content. Adapting the proof of Theorem 5.6, one can prove a slightly
more general result which we state here for completeness.

Proposition 5.7. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and
let�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Let χ ∈ C∞

c (M)
and define the weighted relative heat content

Hχ
�(t)=

∫
�

u(t, x)χ(x) dω(x) for all t > 0.
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Then, as t → 0,

Hχ
�(t)=

∫
�

χ dω−
1

√
π

∫
∂�

χ dσ t1/2
−

1
2

∫
∂�

g(∇χ,∇δ) dσ t

−

(
1

12
√
π

∫
∂�

(41+ N 2)χ dσ −
1

6
√
π

∫
∂�

(Nχ)1δ dσ
)

t3/2

−
1
2

∫
∂�

g(∇(1χ),∇δ) dσ t2
+ o(t2).

Proof. Let us consider a cutoff function φ as in (48). Then, applying the usual localization argument, see
(49), we have ∫

�

χ(x) dω(x)− Hχ
�(t)= I [φχ ](t, 0)+ O(t∞) as t → 0,

where now the function φχ ∈ C∞
c (�

r0
−r0
) and φχ = χ close to ∂�.

As we did in the proof of Theorem 5.6, we relate Hχ
�(t) with the sum of contributions. Applying

Proposition 5.3, we have the following asymptotic relation at order 4:

I [φχ ](t, 0)− I c
[φχ ](t, 0)=

∫
∂�

g(∇χ,∇δ) dσ t +

∫
∂�

g(∇(1χ),∇δ) dσ t2
+ o(t2),

as t → 0, having used the fact that φχ ≡ χ close to ∂�. Notice that this relation coincides with (74)
when χ ≡ 1 close to ∂�. Thus, we obtain∫
�

χ(x) dω(x)− Hχ
�(t)=

1
2
(I [φχ ](t, 0)+ I c

[φχ ](t, 0))

+

∫
∂�

g(∇χ,∇δ) dσ t +

∫
∂�

g(∇(1χ),∇δ) dσ t2
+ o(t2) as t → 0.

Finally, applying (79) for I [φχ ](t, 0)+ I c
[φχ ](t, 0), we conclude. □

Remark 5.8. We compare the coefficients of the expansions of H�(t) and Q�(t), defined in (6), respec-
tively. On the one hand, by [Rizzi and Rossi 2021, Theorem 5.8], the k-th coefficient of the expansion of
Q�(t) is of the form

−

∫
∂�

Dk(χ) dσ for all χ ∈ C∞

c (M),

where Dk is a differential operator acting on C∞
c (M) and belonging to spanR{1, N } as algebra of

operators. On the other hand, Proposition 5.7 shows that this is no longer true for the third coefficient of
the expansion of H�(t), as we need to add the operator multiplication by 1δ.

6. An alternative approach using the heat kernel asymptotics

As we can see by a first application of Duhamel’s principle, see (10), and its iterations, the small-time
asymptotics of u(t, · )|∂�, together with uniform estimates on the remainder with respect to x ∈ ∂�, would
be enough to determine the asymptotic expansion of the relative heat content, at any order.

In Theorem 3.1, we studied the zero-order asymptotics of u(t, · )|∂�. The technique used for its proof
does not work at higher-order, since the exponential remainder term in (40) would be unbounded as t → 0.
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In this section, we comment how such a higher-order asymptotics of u(t, · )|∂� can be obtained exploiting
the asymptotic formula for the heat kernel proved in [Colin de Verdière et al. 2021, Theorem A].

Let M be a compact sub-Riemannian manifold and �⊂ M an open subset with smooth boundary. For
x ∈ ∂�, let us consider ψ = (z1, . . . , zn) : U → V a chart of privileged coordinates centered at x , with U
a relatively compact set. Since the heat kernel is exponentially decaying outside the diagonal, see (31),

u(t, x)=

∫
�

pt(x, y) dω(y)=

∫
�∩U

pt(x, y) dω(y)+ O(t∞)

=

∫
V1

pt(0, z) dω(z)+ O(t∞), (80)

where V1 =ψ(U ∩�), and we denote with the same symbols ω and pt(0, z) the coordinate expression of
the measure and heat kernel, respectively. For example, if x ∈ ∂� is noncharacteristic, we may choose ψ
as in (30), and then V1 = V ∩{z1 > 0}. Recall the asymptotic expansion of the heat kernel of Theorem 2.9,
evaluated in (0, z): for any m ∈ N and compact set K ⊂ (0,∞)× V,

|ε|Q pε2τ (0, δε(z))= p̂τ (0, z)+
m∑

i=0

εi fi (τ, 0, z)+ o(|ε|m) as ε→ 0, (81)

uniformly as (τ, z) ∈ K , where Q, p̂ and the fi are defined in Section 2. We will omit the dependence on
the center of the privileged coordinates, x , it being fixed for the moment. At this point, we would like to
integrate (81) to get information of u(t, x) as t → 0. Proceeding formally, let us choose the parameters
ε, τ in (81) such that

ε2τ = t, ε = tα/(2α+1), τ = t1/(2α+1), (82)

for some α > 0 to be fixed. For convenience of notation, set

Vs = δs(V1) for all s ∈ [−1, 1].

Then, split the integral over V1 in (80) in two, so that the first one is computed on Vε and the second one is
computed on its complement in V1, i.e., V1 \ Vε. Notice that, by usual off-diagonal estimates, see [Jerison
and Sánchez-Calle 1986, Proposition 3] and our choice of the parameter ε as in (82), the following is a
remainder term, independent of the value of α:∫

V1\Vε
pt(0, z) dω(z)= O(e−βε2/t)= O(t∞) as t → 0.

Thus, writing the measure in coordinates dω(z)= ω(z) dz with ω( · ) ∈ C∞(V1), we have, as t → 0,

u(t, x)=

∫
Vε

pt(0, z)ω(z) dz + O(t∞)=

∫
V1

εQ pε2τ (0, δε(z))ω(δε(z)) dz + O(t∞)

=

∫
V1

(
p̂τ (0, z)+

m−1∑
i=0

εi fi (τ, 0, z)+ εm Rm(ε, τ, z)
)
ω(δε(z)) dz + O(t∞), (83)
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where Rm is a smooth function on [−1, 1] × (0,∞)× Rn such that

sup
ε∈[−1,1], z∈K

|Rm(ε, τ, z)| ≤ Cm(τ, K ) (84)

for any compact set K ⊂ Rn, according to (81). Up to restricting the domain of privileged coordinates U,
we can assume that (84) holds on V. By our choices (82), we would like the term

tmα/(2α+1)
∫

V1

|Rm(tα/(2α+1), t1/(2α+1), z)|ω(δtα/(2α+1)(z)) dz (85)

to be an error term of order greater than (m − 1)/2 as t → 0. Thus, assume for the moment that for all
K ⊂ V compact and, for all m ∈ N, there exist ℓ= ℓ(m, K ) ∈ N and Cm(K ) > 0 such that

sup
ε∈[−1,1]

z∈K

|Rm(ε, τ, z)| ≤
Cm(K )
τ ℓ

for all τ ∈ (0, 1). (H)

Thanks to assumption (H), choosing α large enough, we see that (85) is a o(t (m−1)/2). Performing the
change of variable z 7→ δ1/

√
τ (z) in (83), and exploiting the homogeneity properties of p̂ and fi , namely

(29), we finally obtain the following expression for u as t → 0:

u(t, x)=

∫
Vt−1/(2(2α+1))

(
p̂1(0, z)+

m−1∑
i=0

t i/2ai (z)
)
ω(δ√t(z)) dz + o(t (m−1)/2), (86)

having set ai (z) = fi (1, 0, z), for all i ∈ N. Therefore, we find an asymptotic expansion of u(t, x)
under assumption (H), which is crucial to overcome the fact that (81) is formulated on an asymptotic
neighborhood of the diagonal, and not uniformly as τ → 0. It is likely6 that (H) can be proven in the
nilpotent case, and more generally when the ambient manifold is M = Rn and the generating family of
the sub-Riemannian structure, {X1, . . . , X N } satisfies the uniform Hörmander polynomial condition; see
[Colin de Verdière et al. 2021, Appendix B] for details. Although this strategy could be used to prove
the existence of an asymptotic expansion of H�(t), we refrain to go in this direction since two technical
difficulties would arise nonetheless:

• Uniformity of the expansion of u(t, x) with respect to x ∈ ∂�. In the nonequiregular case, see Section 2.3
for details, the expansion (81) is not uniform as x varies in compact subsets of M ; hence the same would
be true for the expansion (86).

• Computations of the coefficients. The coefficients appearing in (86) depend on the nilpotent approxima-
tion at x ∈ ∂� and are not clearly related to the invariants of ∂�.

Our strategy avoids almost completely the knowledge of the small-time asymptotics of u(t, · )∂�, it
being based on an asymptotic series of the auxiliary functional Gu . Moreover, we stress that our method to
prove the asymptotics of H�(t) up to order 4, see Theorem 1.1, holds for any sub-Riemannian manifold,
including also the nonequiregular ones.

6Personal communication by Yves Colin de Verdière, Luc Hillairet and Emmanuel Trélat.
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Remark 6.1. In order to pass from (86) to the asymptotic expansion of H�(t), we would use Duhamel’s
formula, which holds under the noncharacteristic assumption. This means that, even though (81) of course
is true even in presence of characteristic points, we can’t say much about the asymptotics of H�(t) in the
general case.

7. The noncompact case

In the noncompact case, we have the following difficulties:

• The localization principle, see Proposition 4.5, may fail.

• Set u(t, x)= et11�(x) and uc(t, x)= et11�c(x). If the manifold is not stochastically complete, the
relation u(t, x)+ uc(t, x)= 1 does not hold.

• The Gaussian bounds for the heat kernel and its time-derivatives, à la [Jerison and Sánchez-Calle
1986, Theorem 3], may not hold; thus Lemma A.3 may not be true.

Definition 7.1. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω. We say that
(M, ω) is (globally) doubling if there exist constants CD > 0 such that

V (x, 2ρ)≤ CDV (x, ρ) for all ρ > 0, x ∈ M,

where V (x, ρ) = ω(Bρ(x)). We say that (M, ω) satisfies a (global) weak Poincaré inequality, if there
exist constants CP > 0 such that∫

Bρ(x)
| f − fx,ρ |

2 dω ≤ CPρ
2
∫

B2ρ(x)
∥∇ f ∥

2 dω, ρ > 0, x ∈ M,

for any smooth function f ∈ C∞(M). Here

fx,ρ =
1

V (x, ρ)

∫
Bρ(x)

f dω.

We refer to these properties as local whenever they hold for any ρ < ρ0.

Remark 7.2. If M is a sub-Riemannian manifold, equipped with a smooth globally doubling measure ω,
then it is stochastically complete, namely∫

M
pt(x, y) dω(y)= 1 for all t > 0, x ∈ M.

This is a straightforward consequence of the characterization given by [Sturm 1994, Theorem 4] on the
volume growth of balls.

Theorem 7.3. Let M be a complete sub-Riemannian manifold, equipped with a smooth measure ω.
Assume that (M, ω) is globally doubling and satisfies a global weak Poincaré inequality. Then, there
exist constants Ck, ck > 0 for any integer k ≥ 0, depending only on CD,CP , such that, for any x, y ∈ M
and t > 0,

|∂k
t pt(x, y)| ≤

Ck t−k

V (x,
√

t)
exp

(
−

d2
SR(x, y)

ck t

)
, (87)

where we recall V (x,
√

t)= ω(B√
t(x)).
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In addition, there exist constants Cℓ, cℓ > 0, depending only on CD,CP , such that, for any x, y ∈ M
and t > 0,

pt(x, y)≥
Cℓ

V (x,
√

t)
exp

(
−

d2
SR(x, y)

cℓt

)
. (88)

Proof. Define the sub-Riemannian Hamiltonian as the smooth function H : T ∗M → R,

H(λ)=
1
2

N∑
i=1

⟨λ, X i ⟩
2, λ ∈ T ∗M,

where {X1, . . . , X N } is a generating family for the sub-Riemannian structure. Then, following the notation
of [Sturm 1996], one can easily verify that

E(u, v)=

∫
M

2H(du, dv) dω for all u, v ∈ C∞

c (M),

where H is the sub-Riemannian Hamiltonian viewed as a bilinear form on fibers, defines a strongly local
Dirichlet form with domain dom(E)= C∞

c (M). Notice that the Friedrichs extension of E is exactly the
sub-Laplacian. Moreover, the intrinsic metric

dI (x, y)= sup{|u(x)− u(y)| : u ∈ C∞

c (M), |2H(du, du)| ≤ 1} for all x, y ∈ M

coincides with the usual sub-Riemannian distance, as |2H(du, du)| = ∥∇u∥
2; see [Barilari et al. 2016,

Chapter 2, Proposition 12.4]. Thus, E is also strongly regular and, by our assumptions on (M, ω),
[Saloff-Coste 1992, Theorem 4.3] holds true, proving (87). For the Gaussian lower bound (88), it is
enough to apply [Sturm 1996, Corollary 4.10]; see also [Saloff-Coste 1992, Theorem 4.2]. □

Remark 7.4. Theorem 7.3 ensures that the time-derivatives of the heat kernel satisfy Gaussian bounds,
which are sufficient to prove Lemma A.3 in the noncompact case. This lemma is crucial to obtain the
asymptotics expansion of H�(t) at order strictly greater than 1.

We prove now the noncompact analogue of Proposition 4.5.

Corollary 7.5. Under the assumptions of Theorem 7.3, let � ⊂ M be an open subset with smooth
boundary. Then, for any K ⊂ M closed subset of M such that K ∩ ∂�= ∅, we have

1�(x)− u(t, x)= O(t∞) as t → 0, uniformly for x ∈ K ,

where u(t, x)= et11�(x) is the solution to (17).

Proof. Let us assume that K ⊂� such that K ∩ ∂�= ∅. The other part of the statement can be done
similarly.

Since M is stochastically complete, see Remark 7.2, for any x ∈ K , we can write

1�(x)− u(t, x)= 1 − et11�(x)= et11(x)− et11�(x)=

∫
M\�

pt(x, y) dω(y).
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Thanks to Theorem 7.3, we can apply (87) for k = 0, obtaining∫
M\�

pt(x, y) dω(y)≤

∫
M\�

C0

V (x,
√

t)
exp

(
−

d2
SR(x, y)

c0t

)
dω(y)

for suitable constants C0, c0 > 0 not depending on x, y ∈ M, t > 0. Now, fix L > 1; since K ⊂� is closed
with empty intersection with ∂�, and thus well-separated from ∂�, we deduce there exists a = a(K ) > 0
such that dSR(x, y) > a for any x ∈ K , y ∈ M \�, and so∫

M\�

pt(x, y) dω(y)≤

∫
M\�

C0

V (x,
√

t)
exp

(
−

d2
SR(x, y)

c0t

)
dω(y)

≤ exp
(
−

C(a, L)
c0t

) ∫
M\�

C0

V (x,
√

t)
exp

(
−

d2
SR(x, y)
2Lc0t

)
dω(y), (89)

where C(a, L)= a2(2L
− 1)/2L > 0. Thus, if we prove that the integral in (89) is finite, we conclude.

Firstly, recall the Gaussian lower bound (88), which holds thanks to Theorem 7.3:

pt(x, y)≥
Cℓ

V (x,
√

t)
exp

(
−

d2
SR(x, y)

cℓt

)
(90)

for suitable constants Cℓ, cℓ > 0, not depending on x, y ∈ M, t > 0. Secondly, by the doubling property
of ω, it is well known that there exists C ′

D , s > 0 depending only on CD such that

V (x, R)≤ C ′

D

(
R
ρ

)s

V (x, ρ) for all ρ ≤ R. (91)

Therefore, choosing L > 1 so big that c̃2
= (2Lc0)/cℓ > 1 and applying (91) for ρ =

√
t and R = c̃

√
t ,

we have R > ρ and

V (x, c̃
√

t)≤ C̃V (x,
√

t) for all t > 0, (92)

having let C̃ = C ′

D c̃s > 0. Finally, using (92) and the Gaussian lower bound (90), we can estimate the
integral in (89) as follows:∫

M\�

1
V (x,

√
t)

exp
(
−

d2
SR(x, y)
2Lc0t

)
dω(y)≤

∫
M

C̃
V (x, c̃

√
t)

exp
(
−

d2
SR(x, y)

cℓc̃t

)
dω(y)

≤
C̃
Cℓ

∫
M

pt̃(x, y) dω(y)≤
C̃
Cℓ
,

where t̃ = c̃t . Since the resulting constant does not depend on x ∈ K , we conclude the proof. □

Using Corollary 7.5 and adopting the same strategy of the compact case, one can finally prove the
following result.

Theorem 7.6. Let M be a complete sub-Riemannian manifold, equipped with a smooth measure ω.
Assume that (M, ω) is globally doubling and satisfies a global weak Poincaré inequality. Let �⊂ M be
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an open and bounded subset whose boundary is smooth and has no characteristic points. Then, as t → 0,

H�(t)= ω(�)−
1

√
π
σ(∂�)t1/2

−
1

12
√
π

∫
∂�

(
2g(∇δ,∇(1δ))− (1δ)2

)
dσ t3/2

+ o(t2).

Remark 7.7. Theorem 7.6 holds true also for the weighted relative heat content; see Section 5.3. In both
cases, we do not know whether its assumptions are sharp in the noncompact case.

7.1. Notable examples. We list here some notable examples of sub-Riemannian manifolds satisfying the
assumptions of Theorem 7.3. For these examples Theorem 7.6 is valid.

• M is a Lie group with polynomial volume growth, the distribution is generated by a family of left-
invariant vector fields satisfying the Hörmander condition and ω is the Haar measure. This family includes
also Carnot groups. See for example [Varopoulos 1996; Saloff-Coste 1992; Gallagher and Sire 2012].

• M = Rn, equipped with a sub-Riemannian structure induced by a family of vector fields {Y1, . . . , YN }

with bounded coefficients together with their derivatives, and satisfying the Hörmander condition. Under
these assumptions, the Lebesgue measure is doubling, see [Nagel et al. 1985, Theorem 1], and the
Poincaré inequality is verified in [Jerison 1986]. We remark that these works provide the local properties
of Definition 7.1, with constants depending only on the Ck-norms of the vector fields Yi for i = 1, . . . , N.
Thus, if the Ck-norms are globally bounded, we obtain the corresponding global properties.

• M is a complete Riemannian manifold with metric g, equipped with the Riemannian measure, and with
nonnegative Ricci curvature.

We mention that a Riemannian manifold M with Ricci curvature bounded below by a negative constant
satisfies only locally Definition 7.1, i.e., for some ρ0 <∞, depending on the Ricci bound. Nevertheless,
we can prove Corollary 7.5 in this case, as [Li and Yau 1986, Corollary 3.1] provides an upper Gaussian
bound, and a lower bound as (88) holds; see [Bakry and Qian 1999, Corollary 2]. Thus, the first-order
asymptotic expansion of H�(t), see Theorem 4.13, is valid in this setting.

Appendix: Iterated Duhamel’s principle for I�φ(t, 0)

In this section, we study the iterated Duhamel’s principle for the I�φ; see Definition 4.7. The main result
is Lemma A.6, which will imply formulas (58), (66) and (77).

The next proposition is a version of the iterated Duhamel’s principle taken from [Rizzi and Rossi 2021,
Proposition A.1], which we recall here.

Proposition A.1. Let F ∈ C∞((0,∞)× [0,+∞)) be a smooth function compactly supported in the
second variable and let L = ∂t − ∂2

r . Assume that the following conditions hold:

(i) Lk F(0, r)= limt→0 Lk F(t, r) exists in the sense of distributions7 for any k ≥ 0.

(ii) Lk F(t, 0) and ∂r Lk F(t, 0) converge to a finite limit as t → 0 for any k ≥ 0.

7 Namely, for any ψ ∈ C∞([0,∞)), there exists finite limt→0
∫

∞

0 f (t, r)ψ(r) dr . With a slight abuse of notation, we define∫
∞

0 f (0, r)ψ(r) dr = limt→0
∫

∞

0 f (t, r)ψ(r) dr .



RELATIVE HEAT CONTENT ASYMPTOTICS FOR SUB-RIEMANNIAN MANIFOLDS 3031

Then, for all m ∈ N and t > 0, we have

F(t, 0)=

m∑
k=0

(
tk

k!

∫
∞

0
e(t, r, 0)Lk F(0, r) dr −

1
√
πk!

∫ t

0
∂r Lk F(τ, 0)(t − τ)k−1/2 dτ

)
+

1
m!

∫ t

0

∫
∞

0
e(t − τ, r, 0)Lm+1 F(τ, r)(t − τ)m dr dτ, (93)

where e(t, r, s) is the Neumann heat kernel on the half-line; see (53).

We want to apply Proposition A.1 to the function I�φ(t, 0); thus, we study in detail the operators
Lk I� for any k ≥ 1. Define iteratively the family of matrices of operators, acting on smooth functions,

Mk j =

(
Qk j Sk j

Pk j Rk j

)
,

as follows. Set

M10 =

(
1 −1N�
N� −N 2

�+1

)
and M11 =

(
0 N�
0 0

)
,

and, for all k ≥ 1 and 0 ≤ j ≤ k, set

Mk j = M10 Mk−1, j + M11 Mk−1, j−1, (94)

while Mk j = 0 for all other values of the indices, i.e., k < 0, j < 0 or k < j . Here N� is the operator
defined in (50), namely

N�φ = 2g(∇φ, ν)+φ divω(ν) for all φ ∈ C∞

c (�
r0
−r0
), (95)

where ν is the inward-pointing normal from �.
Recall the definition of I� and 3�: for any φ ∈ C∞

c (�
r0
−r0
) and for all t > 0, r ≥ 0,

I�φ(t, r)=

∫
�r

(1 − u(t, x))φ(x) dω(x),

3�φ(t, r)= −∂r I�φ(t, r)= −

∫
∂�r

(1 − u(t, y))φ(y) dσ(y),

where u(t, · )= et11�( · ). Iterations of Lk I�φ satisfy the following lemma.

Lemma A.2. Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, and let �⊂ M
be an open relatively compact subset whose boundary is smooth and has no characteristic points. Then,
as operators on C∞

c (�
r0
−r0
), we have:

(i) L I� = I�1+3�N�.

(ii) L3� =3�(−N 2
� +1)+ ∂t I�N� − I�1N�.

(iii) For any k ∈ N,

Lk I� =

k∑
j=0

∂ j

∂t j (3�Pk j + I�Qk j ) and Lk3� =

k∑
j=0

∂ j

∂t j (3�Rk j + I�Sk j ).
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Here we mean that, for any φ ∈ C∞
c (�

r0
−r0
), the operator Lk acts on the functions I�φ(t, r), 3�φ(t, r).

Analogously the right-hand side when evaluated in φ is a function of (t, r).

Proof. The proof of items (i) and (ii) follows from Proposition 4.2 and the divergence theorem; see [Rizzi
and Rossi 2021, Lemma A.2]. We show how to recover the iterative law (94).

Consider the vector V = (I�,3�). Then by items (i) and (ii), we have

LV = (L I�, L3�)= V M10 + ∂t V M11. (96)

Notice that the operator Lk contains at most k derivatives with respect to t . Therefore we have

Lk V =

k∑
j=0

∂
j

t (V Mk j ) for all k ≥ 0.

On the other hand, we can evaluate Lk V, using (96),

Lk V = L(Lk−1V )=

k−1∑
j=0

L∂ j
t (V Mk−1, j )=

k−1∑
j=0

∂
j

t (LV Mk−1, j )

=

k−1∑
j=0

∂
j

t V M10 Mk−1, j +

k−1∑
j=0

∂
j+1

t V M11 Mk−1, j .

Reorganizing the sum, we find (94), concluding the proof. □

We want to apply Proposition A.1 to I�φ(t, r) for k ≥ 2, in order to obtain higher-order asymptotics.
However, Lemma A.2 shows that Lk I� for k ≥ 2, involves time derivatives of u(t, x) which are not
well-defined at ∂� as t → 0. Therefore, we consider the following approximation of I�φ and 3�φ,
respectively: fix ε > 0 and define, for any t > 0, r ≥ 0,

Iεφ(t, r)= =

∫
�r

(1 − uε(t, x))φ(x) dω(x),

3εφ(t, r)= −∂r Iεφ(t, r)=

∫
∂�r

(1 − uε(t, x))φ(y) dσ(y),

where uε(t, x)= et11�ε(x). We recall that, for any a ∈ R, �a = {x ∈ M : δ(x) > a}. Notice that, by the
dominated convergence theorem, we have

Iεφ(t, 0) ε→0
−−→ I�φ(t, 0) uniformly on [0, T ],

and, in addition, Lemma A.2 holds unchanged also for Iε and 3ε.

Lemma A.3. Let M be a compact sub-Riemannian manifold, equipped with a smooth measure ω, and let
�⊂ M be an open subset whose boundary is smooth and has no characteristic points. Letψ ∈C∞([0,∞)),
ε ∈ (0, r0) and define

ψ (−1)(r)=

∫ r

0
ψ(s) ds for all r ≥ 0.

Then, for any φ ∈ C∞
c (�

r0
−r0
), the following identities hold:
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(i) lim
t→0

∫
∞

0

∂ j

∂t j 3εφ(t, r)ψ(r) dr =

{∫
�ε0
φ(ψ ◦ δ) dω if j = 0,

−
∫
�ε
1 j (φ(ψ ◦ δ)) dω if j ≥ 1,

(ii) lim
t→0

∫
∞

0

∂ j

∂t j Iεφ(t, r)ψ(r) dr =

{∫
�ε0
φ(ψ (−1)

◦ δ) dω if j = 0,

−
∫
�ε
1 j (φ(ψ (−1)

◦ δ)) dω if j ≥ 1,

(iii) ∂ j

∂t j 3εφ(0, 0)=

{∫
∂�
φ dσ if j = 0,

0 if j ≥ 1,

(iv) ∂ j

∂t j Iεφ(0, 0)=

{
dω if j = 0,
−

∫
�ε
1 jφ dω if j ≥ 1,

where, we recall, �ε = {x ∈ M : δ(x) > ε} and �ε0 =� \�ε.

Remark A.4. The only difference with respect to [Rizzi and Rossi 2021, Lemma A.4] is item (iii), which
now holds only as t → 0 and not for all positive times.

Proof of Lemma A.3. We claim that, for any j ≥ 1,

lim
t→0

∫
�

φ(x)1 j uε(t, x) dω(x)=

∫
�ε

1 jφ(x) dω(x). (97)

Let us prove it by induction: For j = 1, applying the divergence theorem, we have∫
�

φ1uε dω = −

∫
∂�

φg(∇uε,∇δ) dσ +

∫
∂�

uεg(∇φ,∇δ) dσ +

∫
�

uε1φ dω. (98)

Let us discuss the first term in (98): By the divergence theorem applied with respect to the set �c, we
have ∫

∂�

φg(∇uε,∇δ) dσ =

∫
�c
φ1uε dω+

∫
∂�

uεg(∇φ,∇δ) dσ −

∫
�c

uε1φ dω. (99)

Then, using [Jerison and Sánchez-Calle 1986, Theorem 3] and noticing that dSR(x, y)≥ ε for any x ∈�ε

and y ∈�c, we conclude that in the limit as t → 0, (99) converges to 0. This proves (97) for j = 1. For
j > 1, proceeding by induction, we conclude. Finally, using the coarea formula (42), we complete the
proof of the statement as in the usual argument of [Savo 1998, Lemma 5.6]. □

Remark A.5. In the noncompact case, under the assumption of Theorem 7.3, the above lemma holds.
In particular, on the one hand, the divergence theorem holds since φ has compact support. On the other
hand, notice that the time derivative estimates (87) are enough to ensure that (99) converges to 0 as t → 0,
regardless of the compactness of the set of integration. The same is true for j > 1, where higher-order
time derivatives appear.

The next step is to apply the iterated Duhamel’s principle (93) to Iε, which now satisfies its assumptions,
then, pass to the limit as ε→ 0. The computations are long but straightforward: we report here the result
at order t5/2.



3034 ANDREI AGRACHEV, LUCA RIZZI AND TOMMASO ROSSI

Lemma A.6. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (�

r0
−r0
). Then, as t → 0, we have

I�φ(t, 0)= 2G1−u[φ](t)+
1

√
π

∫ t

0
G1−u[N�φ](τ )(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0
G1−u[N 2

�φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−u[N 3

�φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ

+
1

4
√
π

∫ t

0

∫
∂�

(1 − u(τ, · ))(41− N 2
�)φ dσ(t − τ)1/2 dτ

+
1

4
√
π

∫ t

0
G1−u[(6N�1− N 3

� − 21N�)φ](τ )(t − τ)1/2 dτ + O(t5/2),

(100)

where u(t, · ) = et11� and Gu[φ] is the functional defined in (60). We recall that N� is the operator
defined in (95).

The expression (58) is a direct consequence of A.6. Moreover, we can apply it, when the base set
is chosen to be �c. Then, evaluating the difference between I�φ(t, 0) and I�cφ(t, 0) we obtain the
asymptotic equality (66), which is proved in the next lemma. We use the shorthands I , I c for I� and I�c

respectively.

Lemma A.7. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (�

r0
−r0
). Then, as t → 0, we have

(Iφ− I cφ)(t, 0)= 2G1−2u[φ](t)+ 1
2

∫
∂�

Nφ dσ t

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ

+
1

4
√
π

∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ + O(t2),

where N is the operator given by

Nφ = 2g(∇φ,∇δ)+φ1δ for all φ ∈ C∞

c (�
r0
−r0
),

with δ : M → R the signed distance function from ∂�.

Proof. Firstly, we apply Lemma A.6 to Iφ: we obtain exactly the expression (100), with the operator
N� = N. Secondly, for the outside contribution, recall that we have the following equality of smooth
functions:

1 − uc(t, x)= 1 − et11�c(x)= et11�(x)= u(t, x) for all t > 0, x ∈ M.

Therefore, when we apply Lemma A.6 to I cφ, we replace 1 − uc(t, · )= 1 − et11�c with the function
u(t, · )= et11�( · ). Moreover, the operator N�c defined in (95), for the set �c, is equal to −N, since the
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inward-pointing normal to �c is −∇δ. Therefore, writing the difference of the two contributions, and
noticing that � and its complement share the boundary, we have

(Iφ− I cφ)(t, 0)= 2G1−2u[φ](t)+
1

√
π

∫ t

0
G1[Nφ](τ )(t − τ)−1/2 dτ

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N 2φ](τ̂ )((τ − τ̂ )(t − τ))−1/2 d τ̂ dτ

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1[N 3φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ (101)

+
1

4
√
π

∫ t

0

∫
∂�

(1 − 2u(τ, · ))(41− N 2)φ dσ(t − τ)1/2 dτ

+
1

4
√
π

∫ t

0
G1[(6N1− N 3

− 21N )φ](τ )(t − τ)1/2 dτ + O(t5/2). (102)

To conclude, it is enough to notice that the functional G1 can be explicitly computed:

G1[φ](t)=
1

√
π

∫
∂�

φ dσ t1/2 for all φ ∈ C∞

c (�
r0
−r0
).

Thus, the terms in (101) and (102) are remainder of order O(t2). □

Applying Lemma A.6 to the sum of I�φ(t, 0) and I�cφ(t, 0) instead, we obtain (77). The proof of
this result is not provided here, as it is similar to the proof of Lemma A.7.

Lemma A.8. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (�

r0
−r0
). Then, as t → 0, we have

(Iφ+ I cφ)(t, 0)=
2

√
π

∫
∂�

φ dσ t1/2
+

1
√
π

∫ t

0
G1−2u[Nφ](τ )(t − τ)−1/2 dτ

+
1

6
√
π

∫
∂�

(41+ N 2)φ dσ t3/2

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−2u[N 3φ](s)((τ̂ − s)(τ − τ̂ )(t − τ))−1/2 ds d τ̂ dτ

+
1

4
√
π

∫ t

0
G1−2u[(6N1− N 3

− 21N )φ](τ )(t − τ)1/2 dτ + O(t5/2).
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MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS
WITH NONNEGATIVE RICCI CURVATURE

LUCA BENATTI, MATTIA FOGAGNOLO AND LORENZO MAZZIERI

We consider Riemannian manifolds of dimension at least 3, with nonnegative Ricci curvature and Eu-
clidean volume growth. For every open bounded subset with smooth boundary we establish the validity of
an optimal Minkowski inequality. We also characterise the equality case, provided the domain is strictly
outward minimising and strictly mean convex. Along with the proof, we establish in full generality
sharp monotonicity formulas, holding along the level sets of p-capacitary potentials in p-nonparabolic
manifolds with nonnegative Ricci curvature.

1. Introduction

1A. Statements of the main results. Given an open bounded convex domain with smooth boundary
�⊆ Rn , n ≥ 3, the classical Minkowski inequality, originally proven in [Minkowski 1903], gives a sharp
lower bound for the average of the mean curvature H of ∂� in terms of the inverse of its surface radius,
that is, (

|Sn−1
|

|∂�|

) 1
n−1

≤ /
∫
∂�

H
n − 1

dσ,

with the equality satisfied if and only if � is a ball. It was clear to many authors that such inequality
deserved to be further investigated. For example one would like to relax the convexity assumption on one
hand, and to prove that the inequality holds on more general ambient manifolds on the other.

The first question has been positively answered using techniques based on geometric flows [Huisken
2009], optimal transport [Chang and Wang 2013; Castillon 2010], and recently also nonlinear potential
theory [Fogagnolo et al. 2019; Agostiniani et al. 2022a]. The latter method actually provides the most
general statement available so far, namely the extended Minkowski inequality(

|∂�∗
|

|Sn−1|

)n−2
n−1

≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ (1-1)

holding for every open bounded domain � ⊆ Rn with smooth boundary. Here �∗ denotes the strictly
outward minimising hull of �. The precise definition of �∗ is reported in (4-12) below and analysed in
full detail in [Fogagnolo and Mazzieri 2022]. However, in this preliminary discussion, we just point out
that �∗ minimises the perimeter among bounded subsets containing �.
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Many improvements can be found in the literature also concerning the question of extending the
Minkowski inequality to more general settings. Firstly Gallego and Solanes [2005] established quer-
massintegral inequalities for convex domains in the hyperbolic space. Using the inverse mean curvature
flow (IMCF for short), de Lima and Girão [2016] extended the result to star-shaped and strictly mean-
convex domains lying in the same ambient manifold. The IMCF has been also employed to establish a
Minkowski-type inequality for outward minimising sets sitting in the Schwarzschild manifold by Wei
[2018], in the anti-de Sitter–Schwarzschild manifold by Brendle, Hung and Wang [Brendle et al. 2016],
and on asymptotically flat static manifolds by McCormick [2018].

A natural context in which to test the validity of a Minkowski inequality is provided by complete
noncompact Riemannian manifolds with nonnegative Ricci curvature. A very recent work [Brendle
2023] actually points in this direction. Indeed, choosing f = 1 in Corollary 1.5 of that work a nonsharp
Minkowski inequality can be deduced for complete Riemannian manifolds with nonnegative sectional
curvature and Euclidean volume growth. In the present paper, we prove the following theorem.

Theorem 1.1 (extended Minkowski inequality). Let (M, g) be a complete Riemannian manifold with
Ric ≥ 0 and Euclidean volume growth. Let �⊆ M be an open bounded set with smooth boundary. Then(

|∂�∗
|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ, (1-2)

where AVR(g) is the asymptotic volume ratio of (M, g), H is the mean curvature of ∂� with respect to
the outward normal unit vector and �∗ is the strictly outward minimising hull of �.

In the case a strictly outward minimising � ⊂ M with strictly mean-convex boundary achieves the
identity in (1-2), we show that M ∖� splits as a (truncated) cone.

Theorem 1.2 (rigidity for the Minkowski inequality). A bounded strictly outward minimising subset
�⊂ M with smooth strictly mean-convex boundary satisfies(

|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ

if and only if (M ∖�, g) is isometric to(
[ρ0,+∞)× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

.

Some comments are in order about the above statements. First, we recall for the reader’s convenience
that the asymptotic volume ratio of (M, g) is given by

AVR(g)= lim
r→+∞

|B(o, r)|
rn|Bn|

for some o ∈ M. The fact that, on complete manifolds with nonnegative Ricci curvature, the above limit is
well-defined and does not depend on the base point o, is a consequence of the classical Bishop–Gromov
volume comparison theorem. Moreover, one has that 0 ≤ AVR(g)≤ 1, with AVR(g)= 1 if and only if



MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS 3041

(M, g) is the standard n-dimensional Euclidean space. Beside the intrinsic fundamental role played by
manifolds with nonnegative Ricci curvature with Euclidean volume growth in geometric analysis, this class
includes a diversity of explicit manifolds naturally arising from different fields, such as asymptotically
locally Euclidean spaces (ALE for short) gravitational instantons. These are noncompact hyperkhäler
Ricci flat 4-dimensional manifolds playing a role in the study of Euclidean quantum gravity theory, gauge
theory and string theory (see [Hawking 1977; Eguchi and Hanson 1979; Kronheimer 1989a; 1989b;
Minerbe 2009; 2010; 2011]).

It is worth noticing that inequality (1-2) is sharp and it provides the optimal Minkowski inequality on
manifolds with nonnegative Ricci curvature for outward minimising subsets, see Corollary 4.6. These
subsets are mean-convex and satisfy |∂�∗

| = |∂�|, so that the Minkowski inequality reads(
|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

H
n − 1

dσ,

in this case. In addition to the Euclidean spaces, where it is immediately seen that balls achieve the identity
in (1-2), the sharpness of this inequality is checked in far greater generality, as specified in Remark 4.7
below.

Combining Theorem 1.1 with the sharp isoperimetric inequality for manifolds with nonnegative Ricci
curvature, first proved in dimension 3 in [Agostiniani et al. 2020, Theorem 1.4] and recently extended
to any dimension in [Brendle 2023] (see also [Fogagnolo and Mazzieri 2022; Johne 2021; Balogh and
Kristály 2023]), reading

|Sn−1
|
n

|Bn|n−1 AVR(g)≤
|∂�∗

|
n

|�∗|n−1 ,

we get the following sharp volumetric version of the Minkowski inequality.

Theorem 1.3 (volumetric Minkowski inequality). Let (M, g) be a complete Riemannian manifold with
Ric ≥ 0 and Euclidean volume growth. Let �⊆ M be an open bounded set with smooth boundary. Then(

|�|

|Bn|

)n−2
n

AVR(g)
2
n ≤

1
|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ, (1-3)

where AVR(g) is the asymptotic volume ratio of (M, g), H is the mean curvature of ∂� with respect to
the outward normal unit vector. Moreover, the equality is satisfied if and only if (M, g) is isometric to the
flat Euclidean space and � is a ball.

As for the extended Minkowski inequality, (1-3) is easily recognised to be sharp, while the rigidity
statement directly follows from the rigidity of the isoperimetric inequality. We finally point out that earlier
contributions to the volumetric Minkowski inequality were given in [Chang and Wang 2011; Qiu 2015],
holding in the flat Euclidean space and under stronger geometric assumptions on the boundary of �.

1B. Outline of the proof. We now describe the main features of our approach, which is in line with
[Agostiniani and Mazzieri 2020; Agostiniani et al. 2020; 2022a; Fogagnolo et al. 2019]. Given (M, g) a
Riemannian n-manifold, n ≥ 3, with nonnegative Ricci curvature, and an open bounded subset �⊆ M
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with smooth boundary we consider, for every 1< p < n, the p-capacitary potential associated to �. This
is the solution u to the problem 

1
(p)
g u = 0 on M ∖�,

u = 1 on ∂�,
u(x)→ 0 as dg(x, o)→ +∞,

(1-4)

where1(p)g is the p-Laplace operator associated with the metric g, and dg( · , o) is the distance induced by g
to some fixed reference point o. Provided the manifold (M, g) is p-nonparabolic (see Definition 2.5 below,
as well as [Holopainen 1990; 1999]), the solution to problem (1-4) exists and is unique. Such a solution
is commonly referred to as the p-capacitary potential associated with �. It is worth specifying that
manifolds with Euclidean volume growth (i.e., AVR(g) > 0) do satisfy the p-nonparabolicity assumption
for 1< p < n by the characterisation given in [Holopainen 1999, Proposition 5.10]. As a crucial step
in our method, we will establish families of monotonicity formulas, holding along the level sets of the
p-capacitary potentials associated with �. More precisely, for every t ∈ [1,+∞), we set

Fβp (t)= tβ
(n−1)(p−1)
(n−p)

∫
{u=1/t}

|Du|
(β+1)(p−1) dσ, (1-5)

and we show that for

β >
n − p

(p − 1)(n − 1)

the above quantity admits a nonincreasing C 1(1,+∞) representative.
Some remarks are mandatory at this stage. First of all, let us point out that the monotonicity statement

provided here for the functions Fβp holds in full generality and with no restriction on the geometry of �.
As such, it is also new for domains sitting in Rn, where the same conclusions were provided in [Fogagnolo
et al. 2019] only for convex domains, and in fact for smooth level sets flows. In the general case, it is
well known that the level sets flow of p-harmonic functions might present a much less regular behaviour
since no general bound is available for the Hausdorff dimension of the critical set. To overcome these
difficulties, the authors in [Agostiniani et al. 2022a] settled for the effective inequalities

lim
t→+∞

Fβp (t)≤ Fβp (1) and (Fβp )
′(1)≤ 0. (1-6)

The derivation of these two bounds, however, heavily relied on the compactness of the critical set of u,
that is a particular feature of spaces with finite topology, and as such it is not directly viable in our setting
(see [Menguy 2000]). In contrast with this, the present treatment provides the desired extension to the
nonlinear setting and to the general framework of nonnegatively Ricci curved p-nonparabolic manifolds
of the monotonicity formulas discovered in [Colding 2012; Colding and Minicozzi 2014b; Agostiniani
and Mazzieri 2020; Agostiniani et al. 2020] for harmonic functions. As a second remark, to let the
reader appreciate the C 1-regularity result, we observe that in principle even the fact that formula (1-5)
yields a well-posed definition is not granted for free. The most serious difficulty here is that the set of
singular values cannot be controlled through Sard’s theorem, since p-harmonic functions only enjoy a
mild — though optimal — C 1,β-regularity. We managed to solve these problems also taking advantage of
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recent insights given in [Gigli and Violo 2023]. The full statement of the monotonicity theorem is found
in Theorem 3.1 below.

Through the monotonicity of Fβp , with β = (p − 1)−1, we arrive at the following L p-Minkowski
inequality

Cp(�)
n−p−1

n−p AVR(g)
1

n−p ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣p

dσ, (1-7)

where Cp(�) is the normalised p-capacity of � defined in (2-5) below. A major advantage we draw out
of the full monotonicity of Fβp is the bypassing of the computation of its limit as t → +∞ when reaching
for (1-7). Indeed, this step is now replaced by a suitable contradiction argument that combines the full
monotonicity of our quantities with the sharp iso-p-capacitary inequality (see Theorem 4.1 below)

Cp(B
n)n

|Bn|n−p AVR(g)p
≤

Cp(�)
n

|�|n−p . (1-8)

Such a statement is of independent interest in our opinion and can be achieved by taking advantage of
the already-mentioned sharp isoperimetric inequality in manifolds with nonnegative Ricci curvature and
Euclidean volume growth, following rather classical arguments (see, e.g., [Jauregui 2012]).

With the L p-Minkowski inequality (1-7) at hand, the extended Minkowski inequality (1-7) simply
follows by letting p → 1+ since

lim
p→1+

Cp(�)=
|∂�∗

|

|Sn−1|
,

as proven in [Fogagnolo and Mazzieri 2022, Theorem 1.2]. This particular feature of our approach,
namely the fact that the Minkowski inequality is obtained as the limit of its L p-versions, makes the rigidity
statement a particularly nontrivial task, although we show that (1-7) holds with equality only on cones.
This leads us to prove the rigidity statement, Theorem 1.2, through an argument involving the study of the
IMCF starting at boundaries of domains that saturate the Minkowski inequality (1-1). More precisely, we
first show that the flow is smooth and given by constantly mean-curved totally umbilical hypersurfaces
for a short time. This crucially exploits the nonnegativity of the Ricci curvature (Lemma 4.8). Then,
a splitting procedure along such flow, inspired by [Huisken and Ilmanen 2001], shows that an outer
neighbourhood of ∂� is isometric to a truncated cone with the same volume ratio as AVR(g), and this
allows us to conclude (Lemma 4.9).

1C. Further monotonicity-rigidity results. Beside the monotonicity-rigidity properties of Fβp discussed
above, we also establish analogous ones for the function

F∞

p (t)= t
n−1
n−p sup

{u=1/t}
|Du|.

This is the content of Theorem 3.2, which is again proved in the general setting of p-nonparabolic
manifolds with nonnegative Ricci curvature, extending [Fogagnolo et al. 2019, Theorem 1.3]. As geometric
consequences of this statement, we provide a rigidity result under pinching conditions and a sphere
theorem for smooth boundaries in manifolds with Ric ≥ 0 (see Theorems 4.11 and 4.12 below) and
Euclidean volume growth. It is worth mentioning that the monotonicity of F∞

p also leads to a new insight
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on the critical set of the p-capacitary potential, which we believe deserves some further investigation.
Namely, it turns out that every level set of u displays some nonempty relatively open region, where Du
does not vanish, and where in particular u is smooth (see Corollary 3.3).

1D. Summary. In Section 2 we report, for the ease of the reader, some relevant facts from the theory
of p-harmonic functions on Riemannian manifolds, focussing on the regularity theory as well as on
the existence and uniqueness of solutions to (1-4). Some important — though already well known —
estimates and identities are also recalled in this section. Section 3 is devoted to the proof of monotonicity-
rigidity theorems (see Theorems 3.1 and 3.2). After having introduced a convenient conformally related
setting, we restate them in this framework and we conclude the section with their proofs. In Section 4,
after having provided (1-8), we make use of these tools to prove the L p-Minkowski inequality (see
Theorem 4.3), deduce the extended Minkowski inequality Theorem 1.1 and some rigidity results under
pinching conditions as consequences of the monotonicity-rigidity theorems.

2. The p-capacitary potential in Riemannian manifolds

We have collected here, for the sake of future reference, some substantially well-known results that will
be repeatedly applied in our arguments. Before considering the specific case of problem (1-4), we recall
the definition of p-harmonic functions, as well as their regularity estimates. We then analyse the existence
and uniqueness of the solution u p to (1-4) on complete Riemannian manifolds. It turns out that these
questions are intimately related to the notion of p-nonparabolicity, and p-nonparabolic manifolds will
then constitute the natural setting for the monotonicity-rigidity theorems. We afterwards recall some
global standard estimates on u p and its gradient as well as a Kato-type identity for p-harmonic functions.

2A. p-harmonic functions and regularity. Given an open subset U of a complete Riemannian manifold
(M, g), we say that v ∈ W 1,p(U ) is p-harmonic if∫

U

〈
|Dv|p−2Dv

∣∣ Dψ
〉
dµ= 0 (2-1)

for any test function ψ ∈ C ∞
c (U ). With ⟨ · | · ⟩ we denote as usual the scalar product induced by the

underlying Riemannian metric g on the tangent space at each point. Regularity results for p-harmonic
functions (see [Tolksdorf 1984; DiBenedetto 1983; Lieberman 1988]) ensure that v belongs to C

1,β
loc (U )

for some β ∈ (0, 1) and is smooth around each point where |Dv|> 0.
Since the C 1,β-regularity is not sufficient to employ Sard’s theorem, we are going to heavily rely on

the coarea formula. We report it here for ease of further references. The statement below follows from
[Maggi 2012, Lemma 18.5 and Theorem 18.1] coupled with standard approximation results.

Proposition 2.1 (coarea formula). Let (M, g) be a complete Riemannian manifold. Consider a locally
Lipschitz function v : U → [0,+∞) on some open subset U ⊆ M such that v−1([a, b]) is compact for
every [a, b] ⊂ (0,+∞). Then the following hold:

(1) |{v = t} ∩ Crit(v)| = 0 for almost every t ∈ [0,+∞).



MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS 3045

(2) For every measurable f such that f |Dv| ∈ L1
loc(U ) we have f ∈ L1({v = t}) for almost every

t ∈ (0,+∞) and ∫
U
ψ(v) f |Dv| dµ=

∫
+∞

0
ψ(t)

∫
{v=t}

f dσ dt (2-2)

for every ψ bounded measurable function compactly supported in (0,+∞). In particular,

t 7→

∫
{v=t}

f dσ ∈ L1
loc(0,+∞),

and its equivalence class does not depend on the representative of f .

Remark 2.2. If h ∈ L1
loc(U ) and h = 0 almost everywhere on Crit(v), the function f = h|Dv|−1, satisfies

the assumptions of Proposition 2.1(2). Clearly, if f ∈ L1(U ), then (2-2) holds for every ψ bounded
measurable, even without compact support.

With the idea of applying the previous result for f = |D|Dv|p−1
|, a higher integrability degree of

p-harmonic functions is required. We refer the reader to [Lou 2008, Lemma 2.1] for a self-contained
proof of the following lemma in the Euclidean case. The general case follows in the same way, as it
is ultimately due to a careful integration of the Bochner identity. Indeed, computations are the same
provided a lower bound on the Ricci tensor is in force, which is always true locally (see [Benatti 2022,
Appendix C] for a complete proof).

Lemma 2.3. Let (M, g) be a complete Riemannian manifold and U ⊆ M be an open subset. Given
v ∈ W 1,p(U ) a p-harmonic function, then |Dv|p−1

∈ W 1,2
loc (U ).

Given U ⊆ M with Lipschitz boundary, a p-harmonic function u ∈ W 1,p(U ) attains some Dirichlet
data g ∈ L p(∂U ) if u coincides with g on ∂U in the sense of the trace operator.

2B. p-nonparabolic manifolds and the p-capacitary potential. Given a noncompact Riemannian mani-
fold M, we consider the p-capacitary potential of a bounded set with smooth boundary �⊂ M, that is,
a function u ∈ W 1,p(M ∖�) solving (1-4). The function u belongs to C 1,β(M ∖�) (see [Lieberman
1988]) and it is smooth near the points where the gradient does not vanish. In particular, by the Hopf
maximum principle in [Tolksdorf 1983, Proposition 3.2.1] the datum on ∂� is attained smoothly.

We now focus on some classical sufficient conditions to ensure the existence of the p-capacitary
potential, which turns out to be related to the notion of p-Green’s function we are going to recall.

Definition 2.4 (p-Green’s function). Let (M, g) be a complete Riemannian manifold. Let Diag(M)=

{(x, x) ∈ M × M | x ∈ M}. For p ≥ 1, we say that G p : M × M ∖Diag(M)→ R is a p-Green’s function
for M if it weakly satisfies 1pG(o, · )= −δo for any o ∈ M, where δo is the Dirac delta centred at o, that
is, if it holds ∫

M

〈
|DG p(o, · )|p−2 DG p(o, · )

∣∣ Dψ
〉
dµ= ψ(o)

for any ψ ∈ C ∞
c (M).

The notion of p-Green’s function calls for that of p-nonparabolic Riemannian manifold.



3046 LUCA BENATTI, MATTIA FOGAGNOLO AND LORENZO MAZZIERI

Definition 2.5 (p-nonparabolicity). We say that a complete noncompact Riemannian manifold (M, g)
is p-nonparabolic if there exists a positive p-Green’s function G p : M × M ∖Diag(M)→ R. With the
expression p-Green function we are in fact referring to the positive minimal one.

The notion of p-nonparabolicity is intimately related to the existence of a solution to (1-4), in that
if the positive p-Green’s function of a p-nonparabolic Riemannian manifold vanishes at infinity, then
such a solution exists for any open bounded subset � ⊂ M with smooth boundary. A complete and
self-contained proof of this fact is provided in the Appendix of [Fogagnolo and Mazzieri 2022]. We
report the statement of such basic thought fundamental result.

Theorem 2.6 (existence of the p-capacitary potential). Let (M, g) be a complete noncompact p-
nonparabolic Riemannian manifold. Let � ⊂ M be an open bounded subset with smooth boundary.
Assume also that the p-Green’s function G p satisfies G p(o, x)→ 0 as dg(o, x)→ +∞ for some o ∈ M.
Then, there exists a unique solution u p to (1-4).

If (M, g) is a complete noncompact Riemannian manifold with Ric ≥ 0 and Euclidean volume growth,
then it is in fact p-nonparabolic for every 1< p < n and the p-Green’s function satisfies

G p(o, x)≤ C dg(o, x)−
n−p
p−1 (2-3)

for some constant C. This is a direct consequence of [Holopainen 1999, Proposition 5.10].
We find convenient to recall here the definition of p-capacity of an open bounded subset � ⊂ M

together with a normalised version of it which turns out to be more advantageous for our computations.

Definition 2.7 (p-capacity and normalised p-capacity). Let (M, g) be a complete noncompact Riemannian
manifold, and let � be an open bounded subset of M. For 1< p < n, the p-capacity of � is defined as

Capp(�)= inf
{∫

M
|Dv|p dµ

∣∣∣∣ v ∈ C ∞

c (M), v ≥ 1 on �
}
. (2-4)

On the other hand, the normalised p-capacity of � is defined as

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1

Capp(�). (2-5)

A function u solving (1-4) realises the p-capacity of the initial set �, and actually one can also
characterise such quantity with a suitable integral on ∂�. We resume these facts in the following statement.

Proposition 2.8. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold for some
1< p < n. Let �⊂ M be an open bounded subset with smooth boundary. Then the solution u p to (1-4)
realises

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1∫
M∖�

|Du p|
p dµ. (2-6)

Moreover, we have that

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1∫
{u p=1/t}

|Du p|
p−1 dσ (2-7)

holds for almost every t ∈ [1,+∞), including any 1/t that is a regular value for u p.
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Proof. The function u p can be approximated in W 1,p(M ∖�) by functions ϕ in C ∞
c (M) which satisfy

ϕ ≥ 1 on �. Then

Capp(�)≤

∫
M∖�

|Du p|
p dµ.

On the other hand, the weak formulation in (2-1) can be relaxed in duality with functions in W 1,p
0 (M∖�).

Hence, taking any competitor ψ ∈ C ∞
c (M) with ψ ≥ 1 on �, u p −ψ ∈ W 1,p

0 (M ∖�), we get that∫
M∖�

|Du p|
p dµ=

∫
M∖�

⟨|Du p|
p−2Du p,Du p⟩ dµ=

∫
M∖�

⟨|Du p|
p−2Du p,Dψ⟩ dµ.

Applying the Hölder inequality to the right-hand side, we are left with∫
M∖�

|Dv|p dµ≤

∫
M∖�

|Dψ |
p dµ

for every competitor ψ in (2-4), proving (2-6). Since |Du p| ∈ L p(M ∖�), applying the coarea formula
(2-2) with f = |Du p|

p−1 to (2-6) (see Remark 2.2) one can obtain that

Capp(�)=

∫ 1

0

∫
{u p=τ }

|Du p|
p−1 dσ dτ. (2-8)

Employing again the coarea formula (2-2) with f = |Du p|
p−1 and integration by parts we get∫ 1

0
ϕ′(τ )

∫
{u p=τ }

|Du p|
p−1 dσ dτ =

∫
M∖�

ϕ′(u p)|Du p|
p dµ= −

∫
M∖�

|Du p|
p−2

⟨Du p,D(ϕ(u p))⟩ dµ

=

∫
M∖�

ϕ(u p) div(|Du p|
p−2Du p) dµ= 0

for every ϕ ∈ C ∞
c (0, 1), which gives that

τ 7→

∫
{u p=τ }

|Du p|
p−1 dσ

admits a constant representative; that coupled with (2-8) yields (2-7), letting t = 1/τ . □

In particular, evaluating (2-7) at t = 1, which is a regular value by the Hopf maximum principle
[Tolksdorf 1983, Proposition 3.2.1], we have that

Cp(�)=
1

|Sn−1|

(
p − 1
n − p

)p−1∫
∂�

|Du p|
p−1 dσ.

Moreover, one can actually relate the capacity of �t = {u > 1/t} ∪� to the capacity of �. The proof
of the following lemma is contained in [Holopainen 1990, Lemma 3.8].

Proposition 2.9. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold for some
1 < p < n. Let � ⊂ M be an open bounded subset with smooth boundary. Then a solution u p to (1-4)
realises

Cp(�t)= t p−1Cp(�) (2-9)

for every t ∈ [1,+∞), where �t = {u > 1/t} ∪�. In particular, the map t 7→ Cp(�t) is smooth.
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2C. Li–Yau-type estimates. We provide a sharp lower estimate for the p-Green’s function, extending the
well-known

dg(o, x)2−n
≤ G2(o, x) (2-10)

holding true for any couple of points o, x belonging to a 2-nonparabolic Riemannian manifolds with
nonnegative Ricci curvature. The proof of (2-10) builds on the Laplacian comparison, which applies to
showing that

1 dg(o, · )2−n
≥ 0

in the sense of distributions. This amounts to saying that

−

∫
M

〈
Ddg(o, · )2−n

∣∣ Dψ
〉
dµ=

∫
M

dg(o, · )2−n1ψ dµ≥ 0 (2-11)

for any test function ψ ∈ C ∞
c (M). This leads to (2-10) substantially through the maximum principle. We

refer the reader to [Agostiniani et al. 2020, Lemma 2.12] for details. The nonlinear version of (2-10),
that, to our knowledge, has not been explicitly pointed out in literature yet, actually relies on (2-11) too.

Proposition 2.10 (sharp lower bound for the p-Green’s function). Let (M, g) be a complete p-nonparabolic
Riemannian manifold, 1< p < n, with Ric ≥ 0. Let o ∈ M. Then, we have

dg(o, x)−
n−p
p−1 ≤ G p(o, x) (2-12)

for any x ∈ M ∖ {o}.

Proof. Fix for simplicity o ∈ M, and let r(x)= dg(o, x). We first show that 1pr−(n−p)/(p−1)
≥ 0 holds in

the weak sense, that is, ∫
M

⟨|Dr−
n−p
p−1 |

p−2Dr−
n−p
p−1 ,Dψ⟩ dµ≤ 0

for any ψ ∈ C ∞
c (M). In fact, we have∫

M
⟨|Dr−

n−p
p−1 |

p−2Dr−
n−p
p−1 ,Dψ⟩ dµ= −

(
n − p
p − 1

)p−1∫
M

r1−n
⟨Dr,Dψ⟩ dµ

=
1

n − 2

(
n − p
p − 1

)p−1∫
M

⟨Dr2−n,Dψ⟩ dµ≤ 0,

where the last inequality is the Laplacian comparison theorem (2-11).
Let now be δ > 0. Since both r−(n−p)/(p−1) and G p vanish at infinity, we have r−(n−p)/(p−1)

≤

G p + δ on ∂B(o, R) for any R > 0 big enough. On the other hand, the general result [Serrin 1964,
Theorem 12] ensures that G p(o, x) is asymptotic to r(x)−(n−p)/(p−1) as dg(o, x)→ 0+, and thus we also
get r−(n−p)/(p−1)

≤ G p + δ on ∂B(o, ε) for any ε > 0 small enough. Thus, applying the comparison
principle to the subsolution r−(n−p)/(p−1) and to the solution G p + δ (with respect to the p-Laplacian), in
the annulus B(o, R)∖ B(o, ε), we get r−(n−p)/(p−1)

≤ G p + δ on such an annulus. Letting ε→ 0+ and
R → +∞, we deduce that the same holds on the whole M ∖ {o}. Finally, letting δ → 0+, we are left
with (2-12). □
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Coupling (2-3) and (2-12) with the comparison principle, we deduce the following important estimate
for the p-capacitary potential.

Theorem 2.11. Let (M, g) be a complete p-nonparabolic Riemannian manifold for some for some
1 < p < n, with Ric ≥ 0. Let � ⊂ M be a bounded subset with smooth boundary, and let u p be its
p-capacitary potential. Then, there exists a positive constant C1 such that

C1 dg(o, x)−
n−p
p−1 ≤ u p(x) (2-13)

for any x ∈ M ∖�. If in addition (M, g) has Euclidean volume growth, then there also exists another
positive constant C2 such that

u p(x)≤ C2 dg(o, x)−
n−p
p−1 . (2-14)

Proof. In light of (2-12) and (2-3), this one holding true if (M, g) satisfies the additional Euclidean
volume growth assumption, it suffices to show that there exist positive constants C1 and C2 such that
C1G p ≤ u p ≤ C2G p. Choose any C1 < 1/ sup∂� u p. Then, C1G p < u p on ∂�. Moreover, since both
u p and G p vanish at infinity, for any δ > 0 we have C1G p < u p + δ on ∂B(o, R) for any R big enough.
The comparison principle applied to the p-harmonic functions u p + δ and G p in B(o, R)∖� shows that
C1G p < u + δ in the latter subset. The radius R being arbitrarily big, this implies that, by passing to the
limit as R → +∞, that C1G p < u p + δ in the whole M ∖�. Letting δ→ 0+ leaves us with C1G p ≤ u p,
and consequently with (2-13). The inequality u p ≤ C2G p, yielding (2-14), is shown the same way. □

We now couple (2-13) with the general Cheng–Yau-type inequality for p-harmonic functions on
manifolds with nonnegative Ricci curvature provided in [Wang and Zhang 2011]. It asserts that a
p-harmonic function v, with 1 < p < n defined in a ball B(o, 2R) ⊂ M, where M is endowed with a
Riemannian metric such that Ric ≥ 0, satisfies the estimate

sup
B(o,R)

|Dv|
v

≤
C
R

(2-15)

for a constant C depending only on the dimension of the ambient manifold and p. With these tools we
immediately obtain:

Proposition 2.12. Let (M, g) be a p-nonparabolic Riemannian manifold for some 1 < p < n, with
Ric ≥ 0. Let �⊂ M be a bounded subset with smooth boundary, and let u p be its p-capacitary potential.
Then, there exists a positive constant C such that

|Du p|u
−

n−1
n−p

p ≤ C (2-16)

holds on the whole M ∖�.

Proof. By the C 1-regularity of u p, it clearly suffices to show that (2-16) holds outside some compact
set containing �. Let then o ∈� and R > 0 be such that �⊂ B(o, R), and let x ∈ M ∖ B(o, 4R). With
this choice, we have B(x, 2dg(o, x)− 2R) ⊂ M ∖ B(o, 2R). Thus, applying inequality (2-15) to the
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function u p, on B(x, dg(o, x)− R), we get

|Du p|

u
n−1
n−p
p

(x)≤ C
u p(x)

dg(o, x)− R
u

−
n−1
n−p

p (x)≤ 2C
u

−
p−1
n−p

p (x)
dg(o, x)

and the rightmost-hand side is bounded by means of (2-13). □

2D. Kato-type identity and a warped product splitting theorem. Finally, we give the statement of the
refined Kato-type identity for p-harmonic functions obtained in [Fogagnolo et al. 2019, Proposition 4.4],
which will be at the core of the monotonicity and rigidity of Fβp .

Definition 2.13 (geometry of level sets and orthogonal decomposition). Let (M, g) be a Riemannian
manifold and v be a smooth function on M. At any point where |Dv| ̸= 0 we denote by h and H respectively
the second fundamental form and the mean curvature of the level set of u with respect to the unit normal
Dv/|Dv| and g⊤ the metric induced by g on the level set of u. Finally, for a given differentiable function f ,
we denote by D⊤ f the tangential part of the gradient, according to the orthogonal decomposition

D⊥ f =

〈
D f,

Dv
|Dv|

〉
Dv
|Dv|

and D⊤ f = D f − D⊥ f.

In particular, the following formula holds:

|D|D f ||
2
= |D⊤

|D f ||
2
+ |D⊥

|D f ||
2.

We are now ready to state the Kato-type identity for p-harmonic function.

Proposition 2.14 (Kato-type identity). Let (M, g) be a Riemannian manifold and let v be a p-harmonic
function on some subset of M, p > 1. Then, in an open neighbourhood of a point where |Dv| ̸= 0, the
following identity holds:

|DDv|2 −

(
1 +

(p − 1)2

n − 1

)
|D|Dv||2 = |Dv|2

∣∣∣∣h −
H

n − 1
g⊤

∣∣∣∣2

+

(
1 −

(p − 1)2

n − 1

)
|D⊤

|Dv||2,

according to the notation in Definition 2.13. Moreover, if , for some t0 ∈ R, |Dv|> 0 and∣∣∣∣h −
H

n − 1
g⊤

∣∣∣∣2

= 0, |D⊤
|Dv||2 = 0

hold at each point of {v ≥ t0}, then the Riemannian manifold ({v ≥ t0}, g) is isometric to the warped
product ([t0,+∞)× {v = t0}, dt ⊗ dt + η2(t)g

{v=t0}), where the relation between v, η and t is given by

η(t)=

(
v′(t0)
v′(t)

)p−1
n−1

. (2-17)

3. Monotonicity-rigidity theorems

In this section we are going to prove our monotonicity formulas in the p-nonparabolic setting. The
results we present here are the natural extensions of the ones shown in [Agostiniani and Mazzieri 2020;
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Agostiniani et al. 2020], as well as of the ones obtained in [Fogagnolo et al. 2019; Agostiniani et al.
2022a]. In the first two mentioned papers the authors established the monotonicity in the case of the
harmonic potential, respectively in Rn and in a general 2-nonparabolic manifold with nonnegative Ricci
curvature, whereas an analogous theory has been developed in the case of the p-capacitary potential in the
Euclidean setting in the second two papers. More precisely, in [Fogagnolo et al. 2019], the authors worked
out the smooth computations and took advantage of the fact that the p-capacitary potential associated
with a convex domain is smooth and has no critical points (see [Colesanti et al. 2015; Lewis 1977]),
whereas the main technical achievement in [Agostiniani et al. 2022a] is the treatment of the general case,
when the critical points are present and even possibly arranged in sets of full measure. On the other hand,
the approach presented in that work only produces effective inequalities (1-6), that are anyway sufficient
to prove Theorem 1.1 in the flat setting, as mentioned in the Introduction. Here, we extend these results
to the setting of p-nonparabolic manifolds and we improve them, establishing the full monotonicity of
the integral quantities defined in (3-1) along the p-capacitary level sets flow.

As usual, the main difficulty amounts to ensuring that the monotonicity survives the singular values
of u, that, as far as we know, could even form a set of positive measure. Inspired by the analysis in [Gigli
and Violo 2023], where the authors were forced to face severe technical problems caused by the typical
low regularity of the nonsmooth setting, we compute the derivative of our integral quantities (3-1) in the
distributional sense, appealing to the full strength of the coarea formula in Proposition 2.1, and exploiting
the integrability properties of the p-harmonic functions in Lemma 2.3.

From now on, except where it is necessary, we fix 1 < p < n and we drop the subscript p when we
consider a solution u p to the problem (1-4).

3A. Statement of the monotonicity-rigidity theorems. Let u : M ∖�→ R be a solution of (1-4). For
β ∈ [0,+∞) we consider the function

Fβp (t)= tβ
(n−1)(p−1)
(n−p)

∫
{u=1/t}

|Du|
(β+1)(p−1) dσ (3-1)

defined for every t ≥ 1 such that |{u = 1/t}∩Crit(u)| = 0, which is fulfilled for almost every t ∈ [1,+∞)

by Proposition 2.1. We also set
F∞

p (t)= t
n−1
n−p sup

{u=1/t}
|Du|, (3-2)

which is defined on the whole [1,+∞). If 1/t is a regular value for u, then Fβp is differentiable at t for
every β ∈ [0,+∞) and its derivative is

(Fβp )
′(t)= −βtβ

(n−1)(p−1)
(n−p) −2

∫
{u=1/t}

|Du|
(β+1)(p−1)−1

(
H −

(n − 1)(p − 1)
(n − p)

|D log u|

)
dσ. (3-3)

As said before, the aim of this section is to prove monotonicity-rigidity theorems for t 7→ Fβp (t) and
t 7→ F∞

p (t).

Theorem 3.1 (monotonicity-rigidity theorem for Fβp ). Let (M, g) be a p-nonparabolic Riemannian
manifold with Ric ≥ 0. Let � ⊆ M be a bounded open subset with smooth boundary. Let Fβp be the
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function defined in (3-1) with
n − p

n − 1)(p − 1)
< β <+∞.

Then Fβp belongs to W 2,1(1,+∞) and the identity

(Fβp )
′(t)= −β

(
(n−2)(p−1)
(n−p)

)(β+1)(p−1)∫
{u≤1/t}∖Crit(u)

u2−β
(p−1)(n−1)
(n−p) |Du|

(β+1)(p−1)−1

×

{[
β−

(n−p)
(n−1)(p−1)

][
H−

[
(n−1)(p−1)
(n−p)

]
|Dlogu|

]2

+

∣∣∣∣h−
H

n−1
g⊤

∣∣∣∣2

+(p−1)
[
β+

p−2
p−1

]
|D⊤

|Du||
2

|Du|2
+Ric

(
Du
|Du|

,
Du
|Du|

)}
dµ (3-4)

holds for every t ∈ [1,+∞) and

(Fβp )
′′(t)=β

(
(n−2)(p−1)
(n−p)

)(β+1)(p−1)

tβ
(n−1)(p−1)
(n−p) −2

∫
{u=1/t}

|Du|
(β+1)(p−1)−2

×

{[
β−

(n−p)
(n−1)(p−1)

][
H−

[
(n−1)(p−1)
(n−p)

]
|Dlogu|

]2

+

∣∣∣∣h−
H

n−1
g⊤

∣∣∣∣2

+(p−1)
[
β+

p−2
p−1

]
|D⊤

|Du||
2

|Du|2
+Ric

(
Du
|Du|

,
Du
|Du|

)}
dµ (3-5)

holds for almost every t ∈ [1,+∞). In particular, Fβp admits a convex and monotone nonincreasing C 1

representative. Moreover, (Fβp )′(t0)= 0 at some t0 ≥ 1 such that 1/t0 is a regular value for u if and only
if ({u ≤ 1/t0}, g) is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g
{u=1/t0}

)
, where τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curvature in
(M ∖�, g).

We also highlight that the rigidity statement is expressed in terms of the derivative. However, if
Fβp (t)= Fβp (T ) for 1 ≤ t < T <+∞ such that 1/t and 1/T are regular values for u, the rigidity statement
still triggers. Indeed, since the set of regular values is open, monotonicity ensures the existence of a
decreasing sequence (t j ) j∈N such that t j → t as j → +∞, 1/t j is regular for u and (Fβp )′(t j )= 0. Since
t 7→ Fβp (t) is smooth in a neighbourhood of t , this implies that (Fβp )′(t) = 0; hence the splitting of
{u ≤ 1/t}.

Theorem 3.2 (monotonicity-rigidity theorem for F∞
p ). Let (M, g) be a p-nonparabolic Riemannian

manifold with Ric ≥ 0. Let � ⊆ M be a bounded open subset with smooth boundary. Let F∞
p be the

function defined in (3-2). Then F∞
p is a continuous monotone nonincreasing function. Furthermore, we
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have [
Hg −

(n − 1)(p − 1)
(n − p)

|D log u|g

]
(xt)= −(p − 1) ∂

∂νt
log

|Du|g

u
n−1
n−p

(xt)≥ 0, (3-6)

where xt ∈ {u = 1/t} is the point where sup{u=1/t}|Du|g/u(n−1)/(n−p) is achieved and νt = −Du/|Du|g is
the unit normal to {u = 1/t}. Moreover, F∞

p (t0)= F∞
p (T ) for some t0 < T or the equality holds in (3-6)

for some t0 such that 1/T and 1/t0 are regular for u if and only if ({u ≤ 1/t0}, g) is isometric to(
[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g
{u=1/t0}

)
, where τ0 =

(
|{u = 1/t0}|

AVR(g)|Sn−1|

) 1
n−1

.

In this case {u = 1/t0} is a connected totally umbilical hypersurface with constant mean curvature in
(M ∖�, g).

A direct consequence of the monotonicity of F∞
p is the following regularity theorem for the p-capacitary

potential.

Corollary 3.3. The function F∞
p is strictly positive. In particular, every level of u has at least one regular

point.

We want also to emphasise that these theorems can be applied in particular in Rn for every � open
bounded with smooth boundary, where they naturally extend the monotonicity-rigidity theorems in
[Fogagnolo et al. 2019; Agostiniani et al. 2022a].

We conclude this introduction by rewriting the functions Fβp and F∞
p defined in (3-1) and (3-2) in a

different formulation. We make use of this tool only to simplify computations, but as shown in [Agostiniani
and Mazzieri 2020; Fogagnolo et al. 2019; Agostiniani et al. 2022b] monotonicity-rigidity theorems have
their counterpart in this framework. Let (M, g) be a complete p-nonparabolic Riemannian manifold with
Ric ≥ 0 and u : M ∖�→ R be the solution of the problem (1-4). We consider the conformally related
Riemannian manifold (M ∖�, g̃), where g̃ is given by

g̃ = u2( p−1
n−p )g. (3-7)

It is also convenient to consider the new variable

ϕ = −
(p − 1)(n − 2)

(n − p)
log u, (3-8)

so that the metric g̃ can be equivalently rewritten as

g̃ = e−
2ϕ

n−2 g.

With the same formal computation as in [Fogagnolo et al. 2019], one can prove that 1p
g̃ϕ = 0 on

M ∖� where 1p
g̃ is the p-Laplace operator with respect to the metric g̃.

From now on, given (M, g) a p-nonparabolic manifold with Ric ≥ 0 and u a solution to (1-4), ϕ will
be the function obtained by u through (3-8), whereas g̃ will indicate the metric on M ∖� obtained from u
and g through (3-7).
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The gradient of ϕ is related to the one of u by

|∇ϕ|g̃ =
(n − 2)(p − 1)

(n − p)
|Du|g

u
n−1
n−p

, (3-9)

where ∇ is the Levi-Civita connection associated to the metric g̃. We can observe that if t is a regular
value for u then s = −[(p − 1)(n − 2)/(n − p)] log t is a regular value for ϕ, thanks to (3-8) and the
previous relation. Moreover, we recognise from the above expression and the estimate (2-16) that the
fundamental property of |∇ϕ|g̃ is uniformly bounded, that is, there exists a constant C such that

|∇ϕ|g̃ ≤ C (3-10)

on the whole M ∖�.
Using (3-9), the family of functions t 7→ Fβp (t) for β ∈ [0,+∞] defined in (3-1) and (3-2) can be

rewritten in terms of g̃ and ϕ obtained through (3-8) and (3-7). For any β ∈ [0,+∞) we can now consider
the function

8βp(s)=

∫
{ϕ=s}

|∇ϕ|
(β+1)(p−1)
g̃ dσg̃, (3-11)

whenever s ≥ 0 is such that |{ϕ = s} ∩ Crit(ϕ)|. Correspondingly we set

8∞

p (s)= sup
{ϕ=s}

|∇ϕ|g̃, (3-12)

which is defined on the whole [0,+∞). The function 8βp can be obtained from Fβp through a change of
variable, that is,

8βp(s)= Fβp (e
(n−p)

(p−1)(n−2) s).

For β <+∞ it thus holds that

(8βp)
′(s)=

(n − p)
(p − 1)(n − 2)

e
(n−p)

(p−1)(n−2) s(Fβp )
′(e

(n−p)
(p−1)(n−2) s)

for almost every s ∈ [0,+∞). The previous relations reveal how proving the monotonicity results for Fβp
and F∞

p , stated in Theorems 3.1 and 3.2, are equivalent to show the same one for 8βp and 8∞
p . The same

argument applies for the regularity of Fβp .

3B. Proof of monotonicity-rigidity theorems. A basic property we will need is the essential uniform
boundedness of 8βp of 8∞

p defined in (3-11) and (3-12).

Lemma 3.4. Let be 1< p < n, and (M, g) be a p-nonparabolic Riemannian manifold. Let �⊂ M be a
open bounded subset with smooth boundary. For every β ∈ [0,+∞), 8βp is essentially uniformly bounded,
namely 8βp(s) ≤ C for almost every s ∈ [0,+∞), including any s that is regular for ϕ. Moreover, the
function 8∞

p is uniformly bounded.
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Proof. It suffices to write 8βp as

8βp(s)=

∫
{ϕ=s}

|∇ϕ|
(β+1)(p−1)
g̃ dσg̃ ≤ Cβ(p−1)

∫
{ϕ=s}

|∇ϕ|
p−1
g̃ dσg̃

= Cβ(p−1)
[
(n − 2)(p − 1)

(n − p)

]p−1∫
{u=1/t}

|Du|
p−1 dσ,

where C is the constant in (3-10), the last identity is due to (3-9) and (3-8) taking

s = −

[
(p − 1)(n − 2)

n − p

]
log t.

By (2-7) we have that the integral on the rightmost-hand side coincides with Capp(�) for almost any t ,
including any of those such that 1/t is a regular value for u. This settles the boundedness of 8βp for
finite β. On the other hand the uniform boundedness of 8∞

p is a direct consequence of (3-10) alone. □

From now on, we will drop the subscript g̃ whenever it is clear to which metric we are referring.

Suppose by now that β ∈ [0,+∞) and consider the vector field

X = e−
(n−p)

(n−2)(p−1)ϕ|∇ϕ|
p−2(

∇|∇ϕ|
β(p−1)

+ (p − 2)∇⊥
|∇ϕ|

β(p−1)), (3-13)

defined in a neighbourhood of each point such that |∇ϕ|> 0, where the function ϕ is actually smooth,
being p-harmonic with respect to the metric g̃. This vector field is related to the derivative of 8βp through
the following identity.

Proposition 3.5. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. For every β ∈

[0,+∞), the function s 7→8
β
p(s) defined in (3-11) belongs to W 1,1

loc (0,+∞) and its derivative is given by

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)=

1
p − 1

∫
{ϕ=s}

〈
X,

∇ϕ

|∇ϕ|

〉
dσ (3-14)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3-13).

Before starting the proof, observe that the quantity appearing in the left-hand side of (3-14) is actually
well-defined for almost every s ∈ (0,+∞) even if X is a priori defined only where |∇ϕ|> 0. Indeed, by
Proposition 2.1 |Critϕ ∩ {ϕ = s}| = 0 for almost every s ∈ (0,+∞).

Proof. By the definition of X , it is easy to check that

e−
(n−p)

(n−2)(p−1)ϕ

〈
|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),
∇ϕ

|∇ϕ|

〉
=

1
p − 1

〈
X,

∇ϕ

|∇ϕ|

〉
holds around each point such that |∇ϕ| ̸= 0. Hence, it remains only to prove that 8βp(s) ∈ W 1,1

loc (0 +∞)

and that

(8βp)
′(s)=

∫
{ϕ=s}

〈
|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),
∇ϕ

|∇ϕ|

〉
dσ
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holds for almost any s ∈ (0,∞). Let η ∈ C ∞
c (0,+∞). Since |∇ϕ| ≤ C by (3-10), applying the coarea

formula (2-2) with f = |∇ϕ|
(β+1)(p−1) and the chain rule we obtain that∫

+∞

0
η′(s)8βp(s) ds =

∫
+∞

0
η′(s)

∫
{ϕ=s}

|∇ϕ|
(β+1)(p−1) dσ ds

=

∫
M∖�

η′(s)⟨∇ϕ,∇ϕ⟩|∇ϕ|
(β+1)(p−1)−1 dµ

=

∫
M∖�

⟨∇(η(ϕ)),∇ϕ⟩|∇ϕ|
(β+1)(p−1)−1 dµ.

Integrating by parts the right-hand side, 1(p)ϕ = 0 yields∫
+∞

0
η′(s)8βp(s) ds = −

∫
M∖�

η(ϕ)⟨|∇ϕ|
p−2

∇|∇ϕ|
β(p−1),∇ϕ⟩ dµ.

Thanks to (3-10) and Lemma 2.3, we are in position to apply the coarea formula in Proposition 2.1 with
f = ⟨|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),∇ϕ⟩/|∇ϕ| (see Remark 2.2) to get∫
+∞

0
η′(s)8βp(s) ds = −

∫ 1

0
η(s)

∫
{ϕ=s}

〈
|∇ϕ|

p−2
∇|∇ϕ|

β(p−1),
∇ϕ

|∇ϕ|

〉
dσ ds,

which ensures both that 8βp ∈ W 1,1
loc (0,+∞) and (3-14). □

The nonnegative divergence of X is what substantially rules the monotonicity of 8βp, and this is true
when β ranges in a suitable set of parameters.

Lemma 3.6 (divergence of X ). Let (M, g) be a p-nonparabolic manifold and X be the vector field defined
in (3-13). Then

div X = e−
(n−p)

(n−2)(p−1)ϕQ

holds at any point such that |∇ϕ|> 0, with

Q =β(p−1)|∇ϕ|
β(p−1)+p−2

{∣∣∣∣h−
H

n−1
g̃⊤

∣∣∣∣2

+(p−1)
[
β+

p−2
p−1

]
|∇

⊤
|∇ϕ||

2

|∇ϕ|2

+(p−1)2
[
β−

(n−p)
(p−1)(n−1)

]
|∇

⊥
|∇ϕ||

2

|∇ϕ|2
+Ricg

(
∇ϕ

|∇ϕ|2
,

∇ϕ

|∇ϕ|2

)}
, (3-15)

where h and H are respectively the second fundamental form and the mean curvature of the level sets of ϕ
with respect to the unit normal ∇ϕ/|∇ϕ|, ∇

⊤ is defined in Definition 2.13 and Ricg denotes the Ricci
tensor of the background metric. In particular,

div(X)≥ 0 for
n − p

(n − 1)(p − 1)
≤ β <+∞.

Proof. The proof follows the same lines of [Agostiniani et al. 2022a, Lemma 4.1], replacing accordingly
the vector fields W = |∇ϕ|

p−2
∇|∇ϕ|

β(p−1) and Z = (p − 2)|∇ϕ|
p−2

∇
⊥
|∇ϕ|

β(p−1). The Ricci curvature
term appears computing the divergence of W thanks to the Bochner identity for p-harmonic functions, as
the reader can see following [Fogagnolo et al. 2019, Proposition 4.3]. □
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Suppose that |∇ϕ| ̸= 0 everywhere. We can apply the divergence theorem in the domain {s < ϕ < S}

to obtain ∫
{ϕ=S}

〈
X,

∇ϕ

|∇ϕ|

〉
dσ −

∫
{ϕ=s}

〈
X,

∇ϕ

|∇ϕ|

〉
dσ =

∫
{s<ϕ<S}

div X dµ≥ 0. (3-16)

Using (3-14) we deduce that

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)≤ e−

(n−p)
(n−2)(p−1) S

(8βp)
′(S).

This almost concludes the proof of the monotonicity theorem for 8βp with

n − p
(n − 1)(p − 1)

< β <+∞,

assuming the absence of critical points. Indeed, by integrating it, monotonicity will follow as in [Fogagnolo
et al. 2019, Theorem 3.4]. This case lies in the same trail blazed in [Agostiniani and Mazzieri 2020] since
if |∇ϕ| ̸= 0, the p-Laplace operator is elliptic nondegenerate, and thus the techniques used for harmonic
functions fit perfectly.

If we want to pursue the previous path, even when the critical set of ϕ is not empty, we are first
committed to providing a version of (3-16) that holds even in presence of critical values. The main
issue is that div(X) does not belong to L1

loc a priori. Following the same lines of [Gigli and Violo 2023,
Proposition 4.6], testing s 7→ e−s(n−p)/((n−2)(p−1))(8

β
p)

′(s) against nonnegative functions η∈C ∞
c (0,+∞)

and using the coarea formula Proposition 2.1 for f = ⟨X,∇ϕ/|∇ϕ|⟩(1 −χCritϕ), one gets

(p − 1)
∫

+∞

0
η′(s)e−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds =

∫
M∖Crit(ϕ)

⟨X,∇[η(ϕ)]⟩ dµ.

We now would like to integrate by parts and use the nonnegativity of div(X) outside the critical set of ϕ.
In doing this, we are hampered by the fact that div(χM∖CritϕX) is actually a measure that is possibly
not absolutely continuous. Hence we can aim to prove that s 7→ e−s(n−p)/((n−2)(p−1))(8

β
p)

′(s) belongs to
BVloc(0,+∞), but not the absolute continuity. Differently from the nonsmooth case, we can here employ
the higher regularity of ϕ outside its critical set to refine the result.

Proposition 3.7. Let (M, g) be a p-nonparabolic Riemannian manifold with Ric ≥ 0. Let �⊆ M be an
open bounded subset with smooth boundary. For every

n − p
(n − 1)(p − 1)

< β <+∞,

the function s 7→e−s(n−p)/((n−2)(p−1))(8
β
p)

′(s) defined in (3-14) belongs to W 1,1
loc (0,+∞) and its derivative

is given by

(e−
(n−p)

(n−2)(p−1) s(8βp)
′(s))′ =

1
p − 1

∫
{ϕ=s}

div X
|∇ϕ|

dσ (3-17)

for almost every s ∈ [0,+∞), where X is the vector field defined in (3-13).

We remark again that the quantity appearing in the left-hand side of (3-17) is actually well-defined for
almost every s ∈ (0,+∞) even if X is a priori defined only where |∇ϕ|> 0. Indeed, by Proposition 2.1
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|Critϕ ∩ {ϕ = s}| = 0 for almost every s ∈ (0,+∞). Moreover, since ϕ ∈ C ∞ around each point where
|∇ϕ|> 0, the field X is smooth around such points; thus its divergence can be classically computed.

Proof. Proposition 3.7 follows if we prove that div(X)(1 −χCrit(ϕ)) belongs to L1
loc(M ∖�) and

(p − 1)
∫

+∞

0
η′(s)e−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds = −

∫
M∖Critϕ

η(ϕ) div X dµ (3-18)

holds for every η∈C ∞
c (0,+∞). By the coarea formula in Proposition 2.1, with f = div(X)(1−χCrit(ϕ)),

we would get ∫
M∖Critϕ

η(ϕ) div X dµ=

∫
+∞

0
η(s)

∫
{ϕ=s}

div X
|∇ϕ|

dσ dt,

which implies both that e−(n−p)s/(n−2)(p−1)(8
β
p)

′
∈ W 1,1

loc (0,+∞) and (3-17).

Step 1: proof for nonnegative η. Let η ∈ C ∞
c (0,+∞) be nonnegative. For any given ε > 0 consider the

smooth nonnegative cut-off function χε : [0,+∞)→ R defined as
χε(t)= 0 in t < 1

2ε,

0< χ ′
ε(t)≤ 2ε−1 in 1

2ε ≤ t ≤
3
2ε,

χε(t)= 1 in t > 3
2ε.

Consider accordingly the vector field Xε = χε(|∇ϕ|
β(p−1))X , where X is the vector field given in (3-13).

Let η ∈ C ∞
c (0,+∞) be nonnegative. We notice that |⟨Xε,∇ϕ⟩| ≤ |⟨X,∇ϕ⟩| which is in L2

loc(M ∖�) by
(3-10) and Lemma 2.3. Hence (3-14), the coarea formula with f = η′(ϕ)⟨X,∇ϕ/|∇ϕ|⟩ and the dominated
convergence theorem imply∫

+∞

0
η′(s)e−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds = lim
ε→0+

1
p − 1

∫
M
η′(ϕ)⟨Xε,∇ϕ⟩ dµ.

Employing the coarea formula in (2-2) with f = ⟨Xε,∇ϕ/|∇ϕ|⟩ and integration by parts, we obtain that∫
+∞

0
η′(s)

∫
{ϕ=s}

〈
Xε,

∇ϕ

|∇ϕ|

〉
dσ ds

=

∫
M
η′(ϕ)⟨Xε,∇ϕ⟩ dµ= −

∫
M

div(Xε)η(ϕ) dµ

= −

∫
M∖Nε/2

η(ϕ)χε(|∇ϕ|
β(p−1)) div X dµ−

∫
N3ε/2∖Nε/2

η(ϕ)χ ′

ε(|∇ϕ|
β(p−1))⟨X,∇|∇ϕ|

β(p−1)
⟩ dµ,

where Nδ = {|∇ϕ|
β(p−1) < δ} for every δ > 0. By the monotone convergence theorem, the first integral

in the rightmost-hand side gives

lim
ε→0+

∫
M∖Nε/2

η(ϕ)χε(|∇ϕ|
β(p−1)) div X dµ=

∫
M∖Crit(ϕ)

η(ϕ) div X dµ≥ 0.

To achieve Step 1, it thus remains to prove that the second integral vanishes as ε→ 0+. Observe that
the integral in question is always nonnegative, as ⟨X,∇|∇ϕ|

β(p−1)
⟩ ≥ 0, η ≥ 0 and χ ′

ε ≥ 0. Hence, we
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only need to estimate it from above with a quantity that vanishes as ε→ 0+. Since |∇ϕ|
β(p−1)

≥ ε/2 on
N3ε/2∖Nε/2, ϕ is smooth in such a region. The coarea formula in Proposition 2.1 and χ ′

ε ≤ 2/ε would give∫
N3ε/2∖Nε/2

η(ϕ)χ ′

ε(|∇ϕ|
β(p−1))⟨X,∇|∇ϕ|

β(p−1)
⟩dµ≤

2
ε

∫ 3ε/2

ε/2

∫
∂Ns

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ ds. (3-19)

However, to apply Proposition 2.1 without further specifications, the set N3ε/2∖Nε/2 should be compactly
contained in M ∖� for every ε > 0 small enough. Since |∇ϕ| > 0 on ∂� and ϕ ∈ C

1,β
loc (M ∖�), it is

clear that the set N3ε/2 ∖ Nε/2 does not touch ∂�. Nonetheless, it could be unbounded. This is not a real
issue since we are integrating η(ϕ), which has compact support. More rigorously, choose S > 0 such that
η(s)= 0 for every s ≥ S. Let ξ : R → [0, 1] be a smooth cut-off function such that ξ = 1 on [0, S] and
ξ = 0 on [2S,+∞). Observe that the function ξ(ϕ)|∇ϕ|

β(p−1)
+ (1 − ξ(ϕ)) is smooth outside Critϕ, its

sublevels Ñδ are compact for δ < 1 and its gradient coincides with ∇|∇ϕ|
β(p−1) on the support of η(ϕ).

Moreover, one can replace Nδ with Ñδ in both sides of (3-19) without changing the value of the integrals.
Indeed, such sets coincide on the support of η(ϕ), where integrations are actually performed. Hence,
(3-19) holds. Up to the end of this step, we will implicitly use this truncation argument when the coarea
formula is applied.

Let 0< R < 1 be a regular value for |∇ϕ|. Define H as

H(r)=

∫
∂Nr

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ ≥ 0

for every r ∈ (0, R) that is a regular value of |∇ϕ|, hence for almost every r ∈ (0, R) thanks to Sard’s
theorem applied to the smooth function |∇ϕ|. We claim that H(r) vanishes as r → 0+. This is enough
for Step 1, since it would give

2
ε

∫ 3ε/2

ε/2

∫
∂Ns

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ ds ≤ 2 sup

r∈[ ε2 ,
3ε
2 ]

H(r)→ 0

as ε→ 0+.
Let 0 < t < r < R be two regular values for |∇ϕ|, applying the divergence theorem to the smooth

vector field X on Nr ∖ Nt we get

H(r)−H(t)=

∫
∂Nr

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ −

∫
∂Nt

⟨η(ϕ)X,∇|∇ϕ|
β(p−1)

⟩

|∇|∇ϕ|β(p−1)|
dσ

=

∫
Nr∖Nt

div(η(ϕ)X) dµ=

∫
Nr∖Nt

η(ϕ) div(X) dµ+

∫
Nr∖Nt

⟨X,∇ϕ⟩η′(ϕ) dµ. (3-20)

Since Ric ≥ 0 and

|∇ϕ|
2
∣∣∣∣h −

H
n − 1

g⊤

∣∣∣∣2

≥ 0,
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by (3-15) we have that

div X ≥ β(p − 1)2e−
(n−p)

(p−1)(n−2)ϕ|∇ϕ|
β(p−1)+p−4

×

([
β +

p − 2
p − 1

]
|∇

⊤
|∇ϕ||

2
+ (p − 1)

[
β −

(n − p)
(p − 1)(n − 1)

]
|∇

⊥
|∇ϕ||

2
)

≥ Cβ2 p(p − 1)2e−
(n−p)

(p−1)(n−2)ϕ|∇ϕ|
β(p−1)+p−4(|∇⊥

|∇ϕ||
2
+ |∇

⊤
|∇ϕ||

2)

≥ C p e−
(n−p)

(p−1)(n−2)ϕ
|∇ϕ|

p−2
|∇|∇ϕ|

β(p−1)
|
2

|∇ϕ|β(p−1) ≥ C
⟨X,∇|∇ϕ|

β(p−1)
⟩

|∇ϕ|β(p−1) ,

where

C =
1
pβ

min
{[
β +

p − 2
p − 1

]
, (p − 1)

[
β −

(n − p)
(p − 1)(n − 1)

]}
> 0.

If we plug the above estimate into (3-20) and use the coarea formula in Proposition 2.1 with f =

|∇ϕ|
−β(p−1)+p−2

∣∣∇|∇ϕ|
β(p−1)

∣∣, we get

H(r)−H(t)−
∫

Nr∖Nt

⟨X,∇ϕ⟩η′(ϕ) dµ≥ C
∫ r

t

H(s)
s

ds. (3-21)

On the other hand, the map

t 7→ G(t)=

∫
Nt∖Critϕ

⟨X,∇ϕ⟩η′(ϕ) dµ

is a well-defined bounded function in C 0([0, R]). Indeed, η′(ϕ) has compact support and

|⟨X,∇ϕ⟩| ≤ β(p − 1)|∇ϕ|
β(p−1)

|∇|∇ϕ|
p−1

| ∈ L2
loc(NR ∖Critϕ)

by Lemma 2.3. Equation (3-21) states that t 7→H(t)−G(t) is monotonically increasing, whereas H(s)≥ 0
for almost every s ∈ (0, r). Thus, t 7→ H(t) = H(t)− G(t)+ G(t) admits a limit as t → 0+, being the
sum of a monotone and a continuous function. Denote by H(0) such a limit. Since G(t)→ 0 as t → 0+,
by dominated convergence theorem and H(0)≥ 0, we have

H(R)−G(R)≥ [H(R)−G(R)] − [H(0)−G(0)] ≥ C
∫ R

0

H(s)
s

ds.

Hence H(s)→ 0 as s → 0+; otherwise H(s)/s would not belong to L1(0, R), contradicting the bound-
edness of H(R)−G(R).

Step 2: conclusions. In the previous step we proved (3-18) for every nonnegative function η∈C ∞
c (0,+∞).

Let be K ⊂ M ∖�. Then, there exists an ηK ∈ C ∞
c (0,+∞), ηK ≥ 0, such that ηK (ϕ) ≥ 1 on K . In

particular, since div(X)≥ 0 outside Crit(ϕ) we have∫
K

div(X)(1 −χCrit(ϕ)) dµ≤

∫
M∖Crit(ϕ)

ηK (ϕ) div(X) dµ

= −(p − 1)
∫

+∞

0
η′

K (s)e
−

(n−p)
(n−2)(p−1) s(8βp)

′(s) ds,
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which is finite thanks to Proposition 3.5. This ensures that div(X)(1 −χCrit(ϕ)) belongs to L1
loc(M ∖�).

Approximating the positive and the negative part of a general η ∈ C ∞
c (0,+∞), that are nonnegative

Lipschitz with compact support, we can conclude. □

Proof of Theorem 3.1. We use an argument due to [Colding and Minicozzi 2014a]. By Propositions 3.7
and 3.5, 8βp is W 2,1

loc (0,+∞). By (3-17), s 7→ e−s(n−p)/((n−2)(p−1))(8
β
p)

′(s) is nondecreasing. Then for
every 0 ≤ s < S <+∞ we have

e
(n−p)

(n−2)(p−1) (S−s)
(8βp)

′(s)≤ (8βp)
′(S).

Integrating the above inequality, we get

(n − 2)(p − 1)
(n − p)

(e
(n−p)

(n−2)(p−1) (S−s)
− 1)(8βp)

′(s)≤8βp(S)−8
β
p(s) (3-22)

for every 0 ≤ s < S <+∞. Suppose, by contradiction, that (8βp)′(s) > 0 for some s ∈ [0,+∞). Passing
to the limit as S → +∞ in (3-22) we would get that 8βp(S)→ +∞ against the boundedness property
ensured by Lemma 3.4. Hence, (8βp)′(s)≤ 0 and in particular s 7→8

β
p(s) is nonincreasing. Notice that

8
β
p is a bounded, nonincreasing C 1(0,+∞) function. Then (8βp)′(s)→ 0 as s → +∞. Coupling this

with the coarea formula in Proposition 2.1 for f = div(X)(1 −χCrit(ϕ))/|∇ϕ| one gets that

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)= lim

S→+∞

e−
(n−p)

(n−2)(p−1) s(8βp)
′(s)− e−

(n−p)
(n−2)(p−1) S

(8βp)
′(S)

= lim
S→+∞

−

∫
{s≤ϕ≤S}∖Crit(ϕ)

div X dµ= −

∫
{ϕ≥s}∖Crit(ϕ)

div X dµ (3-23)

for almost every s ∈ [0,+∞), which also ensures that div X ∈ L1(M ∖ (�∪ Crit(ϕ))). We also observe
that (3-23) holds actually for every s ∈ [0,+∞) and this is why (3-4) is in turn true for every t ∈ [1,∞).
Indeed, the left-hand side is continuous by the statement. By the locality of the gradient, {ϕ = s} ∩ Critϕ
is negligible with respect to the volume measure µ, since ϕ is a C 1,β function. The integration in (3-23)
can be thus performed on {ϕ > s} ∩ Critϕ. This shows that the right-hand side is right-continuous (hence
continuous) by the monotone convergence theorem.

One can now obtain (3-4) rewriting (3-23) in terms of u. The proof proceeds through direct computations.
The main ones are contained in [Fogagnolo et al. 2019, Section 3.3], the only difference is the Ricci term
that can be computed as

Ric(∇ϕ,∇ϕ)=

[
(p − 1)(n − 2)

(n − p)

]2

u−2 n+p−2
n−p Ric(Du,Du).

Consequently, (3-5) follows by (3-4) and coarea formula.
For the rigidity statement, suppose that (Fβp )′(t0)= 0 for some t0 ∈ [1,+∞) regular for u. Then by (3-4)∣∣∣∣h −

H
n − 1

g⊤

∣∣∣∣
g
= 0 and |D⊤

|Du|g|g = 0

hold on {u ≤ 1/t0}∖Crit(u). By Proposition 2.14, ({u ≤ 1/t0}, g) splits to a warped product near the
level set {u = 1/t0}. In particular, the mean curvature H depends only on u. By (3-3) also |Du| depends
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only on u and
∂

∂u
|Du|g =

H
p − 1

=
n − 1
n − p

|Du|g

u
.

Integrating it, we get that for some A(t0) > 0 the identity

|Du|g = u
n−1
p−1 A(t0)

holds, which gives that |Du|g never vanishes on {u ≤ 1/t0} by the continuity of gradient. Recalling the
relation between u, η and t in (2-17), we obtain that η(t)= B(t0)t0t + (1 − B(t0)) for some B(t0) > 0.
If we define the new coordinate as

τ = t +
1 − B(t0)

B(t0)t0
and τ0 =

1
t0(B(t0)− 1)

,

we have that {τ ≥ τ0} = {u ≤ 1/t0}, η(t) = τ/τ0 and dτ = − dt . To sum up, we have proven that
({u ≤ 1/t0}, g) is isometric to(

[τ0,+∞)× {u = 1/t0}, dτ ⊗ dτ +

(
τ

τ0

)2

g{u=1/t0}

)
,

leaving us only to characterise τ0. Observe that, by the conical splitting, the measures of the level sets
of τ satisfy

|{τ = R}| =

(
R
τ0

)n−1

|{u = 1/t0}|.

One can easily prove that on a cone

1 = lim
R→+∞

|{τ ≤ R}|

|B(o, R)|
= lim

R→+∞

|{τ = R}|

|∂B(o, R)|
,

which can be used to compute the claimed value of τ0,

AVR(g)= lim
R→+∞

|{τ = R}|

Rn−1|Sn−1|
=

|{u = 1/t0}|

τ n−1
0 |Sn−1|

. □

We conclude this section by sketching the proof of the monotonicity-rigidity theorem for 8∞
p , which

does not require much more effort than in Rn [Fogagnolo et al. 2019].

Proof of Theorem 3.2. Lemma 5.1 in [Fogagnolo et al. 2019] holds also in this setting. The only difference
in proving that |∇ϕ|

p is a subsolution of the nondegenerate uniformly elliptic operator

L ( f )=1 f + (p − 2)∇∇ f
(

∇ϕ

|∇ϕ|
,

∇ϕ

|∇ϕ|

)
−

n − p
n − 2

⟨∇ f,∇ϕ⟩,

acting on smooth f in a neighbourhood of points such that |∇ϕ|> 0, is that the curvature term that appears
when the Bochner identity for p-harmonic functions is applied can be controlled by Ric ≥ 0. We claim that

|∇ϕ|(x)≤ sup
{ϕ=s}

|∇ϕ| (3-24)
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for every s ∈ [0,+∞) and x ∈ {ϕ ≥ s}, which is the main ingredient in the proof of [Fogagnolo et al.
2019, Theorem 3.5]. Firstly suppose that 8∞

p (s) > 0 and let be 0 < δ < 8∞
p (s). By (3-10), |∇ϕ| ≤ C

uniformly in M ∖�. For some S > s let

w = |∇ϕ|
p
− sup

{ϕ=s}
|∇ϕ|

p
− Cpe

n−p
(n−2)(p−1) (ϕ−S)

be defined on {s ≤ ϕ≤ S}∖Nδ , where Nδ = {|∇ϕ|<δ}. Since w≤ 0 on the boundary of {s ≤ ϕ≤ S}∖Nδ
and L (w)≥ 0 in its interior, by the maximum principle we have that

|∇ϕ|
p
≤ sup

{ϕ=s}
|∇ϕ|

p
+ Cpe

n−p
(n−2)(p−1) (ϕ−S) (3-25)

on {s ≤ ϕ ≤ S}∖ Nδ . Moreover, since |∇ϕ|< δ on Nδ , (3-25) is thus satisfied in the whole {s ≤ ϕ ≤ S}.
Passing to the limit as S → +∞, (3-24) is proven for s ∈ [0,+∞) such that 8∞

p (s) > 0.
We now prove Corollary 3.3, namely that 8βp(s) > 0 for every s ∈ [0,+∞), which in particular yields

(3-24) proving the monotonicity. Suppose by contradiction that 8∞
p (s)= 0 for some s ∈ [0,+∞). By

Proposition 2.1 there exists a sequence of (s j ) j∈N, s j → s as j → +∞ and 8∞
p (s j ) > 0. If, up to

a subsequence, we can assume that 8∞
p (s j ) → 0, then we can conclude. Indeed, 8∞

p (s j ) ≥ |∇ϕ|(x)
for every x ∈ {ϕ ≥ s} and 8∞

p (s j ) → 0 as j → +∞; hence |∇ϕ| = 0 on {ϕ ≥ s}, contradicting the
unboundedness of ϕ. Suppose now that every subsequence of 8∞

p (s j ) does not vanish. Then there would
be a δ > 0 and J ∈ N such that 8∞

p (s j ) > δ for every j ≥ J. Since level sets of ϕ are compact, 8βp(s j )

is actually achieved at some point xs j ∈ {ϕ = s j }. Moreover, (xs j ) j∈N is bounded, since it is contained
in {ϕ ≤ s}. Hence, we can assume that there exists x ∈ {ϕ ≤ s} such that xs j → x as j → +∞. Since
ϕ is C 1, we obtain that ϕ(x)= s and |∇ϕ|(x)≥ δ, contradicting the fact that 8∞

p (s)= 0.
Using a similar argument we can infer that s 7→8

β
p(s) is left continuous. Indeed, by contradiction there

would be a δ>0 such that8∞
p (s)≥8

∞
p (s0)+δ for any s< s0. Let xs ∈{ϕ= s} such that8∞

p (s)=|∇ϕ|(xs).
By the compactness of {ϕ ≤ s0}, there exists a sequence (s j ) j∈N and a point x ∈ {ϕ ≤ s0} such that
s j < s0, s j → s0 and xs j → x . Since ϕ ∈ C 1, we have ϕ(x)= s0 and |∇ϕ|(x)≥8∞

p (s0)+δ, contradicting
the definition of 8∞

p . To prove the right continuity it is the enough to prove that s 7→8∞
p (s) is lower

semicontinuous. Since 8∞
p > 0, the maximum of |∇ϕ| on {ϕ = s} is achieved at a regular point x . Let

(s j ) j∈N be a sequence such that s j → s as j → +∞. Seeing as |∇ϕ| is continuous, there exists a sequence
of points (xs j ) j∈N such that xs j ∈ {ϕ = s j } and xs j → x as j → +∞. Since |∇ϕ|(xs j ) ≤ 8∞

p (s j ) for
every j ∈ N, we complete the proof.

We turn to prove the second part of Theorem 3.2. Since xt is a point of maximum for the function
|Du|g/u(n−1)/(n−p) on {u ≤ 1/t}, its derivative with respect to the normal unit vector νt = −Du/|Du|g is
nonpositive. Hence (3-6) follows by direct computations. To conclude, both rigidity statements follow in
the same way as in [Fogagnolo et al. 2019, Theorem 3.5], since |Du|

p
g/u p(n−1)/(n−p) is also a subsolution

of L f = 0, thanks to (3-9). □

4. Geometric consequences of the monotonicity theorems

In this section, we prove the geometric implications of the monotonicity-rigidity theorems, which are
the Minkowski inequalities, a rigidity result under a pinching condition and a sphere theorem. The proof
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of these theorems follows, along with the monotonicity already mentioned, by a contradiction argument
that involves the iso-p-capacitary inequality, which we are going to state and prove immediately since
we believe it to be of independent interest.

4A. Iso- p-capacitary inequality. We provide the sharp iso-p-capacitary inequality in complete noncom-
pact Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume growth. As for the
standard iso-p-capacitary inequality in the Euclidean setting, the proof fully relies on the isoperimetric
inequality combined with a Pólya–Szegő principle. In particular, the sharpness of the inequality that
follows is a direct consequence of the sharp isoperimetric constant in this setting, which has been found
first in dimension 3 in [Agostiniani et al. 2020] and later extended to all dimensions in [Brendle 2023]. See
also [Fogagnolo and Mazzieri 2022; Balogh and Kristály 2023; Johne 2021] for related results. The proof
below is classical, and it is inspired by [Jauregui 2012], where it is illustrated for the 2-capacity in Rn.

Theorem 4.1 (iso-p-capacitary inequality). Let (M, g) be a complete, noncompact Riemannian manifold
with nonnegative Ricci curvature and Euclidean volume growth. Let be �⊆ M open bounded subset with
smooth boundary. Then

Capp(B
n)n

|Bn|n−p AVR(g)p
≤

Capp(�)
n

|�|n−p . (4-1)

Moreover, if the equality holds then (M, g) is isometric to the Euclidean space and � is a ball.

Proof. By (2-6) and the coarea formula in Proposition 2.1 we have that

Capp(�)=

∫
M∖�

|Du|
p dµ=

∫ 1

0

∫
{u=τ }

|Du|
p−1 dσ dτ. (4-2)

The Hölder inequality with exponents a = p and b = p/(p − 1) gives

|{u = τ }|p
≤

(∫
{u=τ }

|Du|
p−1 dσ

)(∫
{u=τ }

1
|Du|

dσ
)p−1

(4-3)

for almost every τ ∈ (0, 1]. Let V ′
: (0, 1] → R be defined as

V ′(τ )= −

∫
{u=τ }

1
|Du|

dσ. (4-4)

Moreover, let V : (0, 1] → R be the primitive of V ′(τ ) chosen as

V (τ )= |�| −

∫ 1

τ

V ′(s) ds = |�τ ∖Crit(u)|, (4-5)

where the second identity is obtained coupling (4-4) with the coarea formula (2-2) applied with f =

(1 −χCrit(u))|Du|
−1 (see Remark 2.2).

By the isoperimetric inequality in [Brendle 2023, Corollary 1.3] we have that

|{u = τ }| ≥ |∂�τ | ≥ |�τ |
n−1

n AVR(g)
1
n n|Bn

|
1
n ≥ V (τ )

n−1
n AVR(g)

1
n n|Bn

|
1
n . (4-6)
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Let R(τ ) be the radius of the ball in Rn which has volume V (τ ). Then V (τ ) = |Bn
|R(τ )n and

V ′(τ )= |Sn−1
|R(τ )n−1 R′(τ ). Coupling (4-6) with (4-2), (4-3) and (4-4) we obtain

Capp(�)≥

∫ 1

0

|{u = τ }|p

[−V ′(τ )]p−1 dτ ≥ n p(|Bn
| AVR(g))

p
n

∫ 1

0

V (τ )
p(n−1)

n

[−V ′(τ )]p−1 dτ

= |Sn−1
| AVR(g)

p
n

∫ 1

0

R(τ )n−1

[−R′(τ )]p−1 dτ.

Let now v : {|x | ≥ R(1)} ⊂ Rn
→ (0, 1] be the function which is τ on {|x | = R(τ )}. By (4-6) and (2-16)

there exists a positive constant C = C(p, n) such that

−V ′(τ )=

∫
{u=τ }

1
|Du|

dσ ≥ C|�|
n−1

n τ
n−p
p−1 .

Seeing as

|Dv| = −
1

R′(τ )
= −|Sn−1

|
Rn−1(τ )

V ′(τ )
,

the function v is locally Lipschitz. Since |Sn−1
|R(τ )n−1

= |{|x | = R(τ )}| = |{v = τ }|, by the coarea
formula (2-2) applied with f = |Dv|p−1(see Remark 2.2) we have

|Sn−1
| AVR(g)

p
n

∫ 1

0

R(τ )n−1

[−R′(τ )]p−1 dτ = AVR(g)
p
n

∫ 1

0

∫
{v=τ }

|Dv|p−1 dσ dτ

= AVR(g)
p
n

∫
{|x |≥R(1)}

|Dv|p dx ≥ AVR(g)
p
n Capp({|x |< R(1)}),

where the last one is by the definition of the p-capacity (2-4) in flat Rn . Using (2-9) and the fact that
|{|x | ≤ R(1)}| = V (1)= |�|, we finally obtain

AVR(g)
p
n Capp({|x |< R(1)})= AVR(g)

p
n Capp(B

n)R(1)n−p
= AVR(g)

p
n

Capp(B
n)

|Bn|
n−p

n

|�|
n−p

n ,

and consequently (4-1).
Clearly, if the equality holds in (4-1) then also the equality holds in the use of the isoperimetric

inequality, and [Brendle 2023, Theorem 1.2] forces the rigidity both of the ambient manifold and �. □

We conclude this subsection with the following remark, whose importance will be clarified in the
very proof of the L p-Minkowski inequality (Theorem 4.3 below), where a sharp lower bound for the
p-capacity of the superlevel sets of the p-capacitary potential of � will be needed.

Remark 4.2. We observe that, replacing � and u with �t = {u > 1/t} ∪� and ut = tu respectively and
defining V : (0, 1] → R in (4-5) as

V (τ )= |�t ∪ {ut = 1}| +

∫ 1

τ

∫
{ut=s}

1
|Dut |

dσ ds = |�τ/t ∖ (Crit(u)∩ {τ < ut < 1})|,

we obtain that
Capp(B

n)n

|Bn|n−p AVR(g)p
≤

Capp(�t)
n

|�t |
n−p

holds for every t ∈ [1,+∞).
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4B. Minkowski inequality. We are now ready to prove the L p-Minkowski inequality in our setting. Let
(M, g) be a noncompact, complete Riemannian manifold with Ric ≥ 0 and Euclidean volume growth.
Consider the function t 7→ Fp(t) defined in (3-1) as Fβp with β = 1/(p − 1). By (2-9) we can rewrite
Fp in a more geometric fashion as

Fp(t)= t
n−1
n−p

∫
{u=1/t}

|Du|
p dσ =

(
Cp(�t)

Cp(�)

)−
n−p−1

n−p
∫

{ut=1}

|Dut |
p dσ, (4-7)

where ut = tu and �t = {u > 1/t} ∪�.

Theorem 4.3 (L p-Minkowski inequality). Let (M, g) be complete Riemannian manifold with Ric ≥ 0
and Euclidean volume growth. Let �⊆ M be a open bounded subset with smooth boundary. Then, for
every 1< p < n, the following inequality holds:

Cp(�)
n−p−1

n−p AVR(g)
1

n−p ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣p

dσ. (4-8)

Moreover, the equality holds in (4-8) if and only if (M ∖�, g) is isometric to(
[ρ0,+∞)× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

.

Proof. We first show that

Cp(�)
n−p−1

n−p AVR(g)
1

n−p ≤
1

|Sn−1|

(
p − 1
n − p

)p ∫
∂�

|Du|
p dσ (4-9)

holds for any open subset �⊆ M with smooth boundary.
Let then θ < AVR(g) and suppose by contradiction that there exists an open subset � ⊆ M with

smooth boundary such that

Cp(�)
n−p−1

n−p θ
1

n−p ≥
1

|Sn−1|

(
p − 1
n − p

)p ∫
∂�

|Du|
p dσ.

Define τ = 1/t ∈ (0, 1]. By Theorem 3.1, the function τ 7→ Fp(τ ) is nondecreasing for τ ∈ (0, 1].
Exploiting this monotonicity as in (4-7) we have(

n − p
p − 1

)p

|Sn−1
|θ

1
n−p ≥ Cp(�)

−
n−p−1

n−p

∫
∂�

|Du|
p dσ ≥ Cp(�τ )

−
n−p−1

n−p

∫
{u=τ }

|Duτ |p dσ, (4-10)

where uτ = u/τ . The Hölder inequality with conjugate exponents a = (p + 1)/p and b = p + 1 yields

Capp(�τ )
p+1

p ≤

(∫
{u=τ }

|Duτ |p dσ
)(∫

{u=τ }

1
|Duτ |

dσ
)1

p

.

Therefore, plugging it into (4-10), we get

|Sn−1
|Cp(�τ )

n
n−p ≤

(
n − p
p − 1

)
θ

p
n−p

∫
{u=τ }

1
|Duτ |

dσ.
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Using (2-9) and integrating both sides we obtain

|Sn−1
|Cp(�)

n
n−p

∫ 1

τ

s−
n(p−1)

n−p −1 ds ≤

(
n − p
p − 1

)
θ

p
n−p

∫ 1

τ

∫
{u=s}

1
|Du|

dσ ds,

which, together with the coarea formula (2-2) with f = (1−χCrit(u))|Du|
−1 (see Remark 2.2), leaves us with

|Sn−1
|

n
(Cp(�τ )

n
n−p − Cp(�)

n
n−p )≤ θ

p
n−p |�τ ∖ (�∪ Crit(u))|

for every τ ∈ [0, 1). Applying the sharp iso-p-capacitary inequality (4-1) to the left-hand side we obtain

AVR(g)
p

n−p (|�τ | − Cp(�)
n

n−p )≤ θ
p

n−p |�τ |.

Dividing both sides by |�τ | and passing to the limit as τ → 0, we get a contradiction with θ < AVR(g),
proving that for any θ < AVR(g)

Cp(�)
n−p−1

n−p θ
1

n−p <
1

|Sn−1|

(
p − 1
n − p

)p ∫
∂�

|Du|
p dσ

holds for every any bounded open �⊂ M with smooth boundary. Letting θ → AVR(g)− yields (4-9).
To conclude observe that Theorem 3.1 implies (Fp)

′(1)≤ 0 and thus, thanks to (3-3), we have∫
∂�

(
p − 1
n − p

)
|Du|

p dσ ≤

∫
∂�

|Du|
p−1 H

n − 1
dσ.

By the Hölder inequality with conjugate exponents a = p/(p − 1) and b = p, we get∫
∂�

|Du|
p dσ ≤

(
n − p
p − 1

)p ∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣p

dσ, (4-11)

which coupled with (4-9) concludes the proof of (4-8).

If we now assume that the equality holds in (4-8), then the two sides of (4-11) are identical too. In
particular, by (3-3), F ′

p(1)= 0 and the rigidity statement in Theorem 3.1 applies. □

Remark 4.4 (a sharp bound on Fβp and other geometric inequalities). The previous proof combines a
lower bound on Fp(+∞) with F ′

p(1)≤ 0. Such an argument can be generalised for every

β ≥
n − p

(n − 1)(p − 1)
.

In fact, with a similar reasoning one can get

lim
t→+∞

Fβp (t)≥

(
n − p
p − 1

)β(p−1)

Cp(∂�)
1−β

p−1
n−p AVR(g)β

p−1
n−p ,

and couple it with (Fβp )′(1)≤ 0 to obtain the family of inequalities

Cp(∂�)
1−β

p−1
n−p AVR(g)β

p−1
n−p ≤

1
|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣(β+1)(p−1)

dσ
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depending on parameters

β ≥
n − p

(n − 1)(p − 1)
and 1< p < n

(see [Benatti 2022, Theorem 4.2.1] and its proof for the details). Among them, we have the above-
mentioned L p-Minkowski inequality for β = 1/(p − 1) and the Willmore-type inequality proved in
[Agostiniani et al. 2020, Theorem 1.1] for β = (n − p)/(p − 1).

In order to derive the extended Minkowski inequality we want to briefly recall the definition of outward
minimising sets and the notion of strictly outward minimising hull in accordance to [Huisken and Ilmanen
2001] and some related properties that the interested reader can find in [Fogagnolo and Mazzieri 2022].
We are denoting with ∂∗E the reduced boundary of a finite perimeter set E .

Definition 4.5 (outward minimising and strictly outward minimising sets). Let (M, g) be a complete
Riemannian manifold. Let E ⊂ M be a bounded measurable set with finite perimeter. E is outward
minimising if for any F ⊇ E we have |∂∗E | ≤ |∂∗F |, where by ∂∗F we denote the reduced boundary of
a set F. We say E is strictly outward minimising if it is outward minimising and whenever |∂∗E | = |∂∗F |

for some F ⊇ E we have that |F ∖ E | = 0.

We can define the strictly outward minimising hull �∗ of an open bounded subset � with smooth
boundary as

�∗
= Int E for some bounded E containing � such that |E | = inf

F∈SOMBE(�)
|F |, (4-12)

where by SOMBE(�) we denote the family of all bounded strictly outward minimising sets containing �
and Int E is the measure-theoretic interior of E . As a consequence of [Fogagnolo and Mazzieri 2022,
Theorem 1.1], if (M, g) is a manifold with nonnegative Ricci curvature and Euclidean volume growth,
then�∗ as defined above is unique and it is a maximal volume solution to the problem of area minimisation
with obstacle �, that is,

|∂∗�∗
| = inf{|∂∗F | | F is bounded and �⊆ F}.

Outward minimising sets can be characterised as those satisfying

|∂�| = |∂�∗
|. (4-13)

The relation between the strictly outward minimising hull of a bounded set with smooth boundary � and
its p-capacity in the family of manifolds we are working on is resumed in the limit

lim
p→1+

Cp(�)=
|∂�∗

|

|Sn−1|
.

Such a result is contained in the far more general [Fogagnolo and Mazzieri 2022, Theorem 1.2], having in
mind the relation between the p-capacity and the normalised p-capacity given in Definition 2.7. Letting
p → 1+ in the L p-Minkowski inequality (4-8) and employing the dominated convergence theorem
complete the proof of the extended Minkowski inequality of Theorem 1.1,(

|∂�∗
|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

∣∣∣∣ H
n − 1

∣∣∣∣ dσ. (4-14)
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Outward minimising sets are mean-convex, as a simple variational argument immediately shows, and
satisfy (4-13). As a corollary, the Minkowski inequality can be simplified for this particular class of
subsets as in the following statement.

Corollary 4.6 (Minkowski inequality for outward minimising sets). Let (M, g) be complete Riemannian
manifold with Ric ≥ 0 and Euclidean volume growth. Let � ⊆ M be a bounded outward minimising
subset with smooth boundary, then(

|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 ≤
1

|Sn−1|

∫
∂�

H
n − 1

dσ. (4-15)

Remark 4.7 (sharpness of the Minkowski inequality for outward minimising sets). The sharpness of
the Minkowski inequality for outward minimising sets (4-15) is not difficult to check even in nonflat
spaces. In fact, in a C 1-asymptotically conical manifold, where the metric g approaches the cone metric
dρ⊗ dρ+ ρ2gL in the C 1-topology, big level sets of ρ are outward minimising (see, e.g., [Benatti et al.
2024, Lemma 4.3]) and is straightforward to check that {ρ = R} saturates (4-15) in the limit as R → +∞.

Going beyond asymptotically conical spaces, one can infer the sharpness of the Minkowski inequal-
ity for outward minimising sets in manifolds of nonnegative Ricci curvature and Euclidean volume
growth of dimension n ≤ 7. Indeed, the proof of [Fogagnolo and Mazzieri 2022, Theorem 1.3] can
be readapted by exploiting (4-15) in place of the Willmore-type inequality [Agostiniani et al. 2022b,
Theorem 1.1]. This would allow showing that the infimum among all outward minimising smooth sets
of |∂�|

−(n−2)/(n−1)
∫
∂�

H is the lower bound given by (4-15), exactly in the same way [Fogagnolo and
Mazzieri 2022, Theorem 1.3] provides the sharpness of the Willmore-type inequality.

4C. Rigidity statement. We finally characterise the subsets � that saturate the inequality (4-14). We are
getting this rigidity result evolving ∂� by smooth IMCF, proving that, in an outer neighbourhood of ∂�,
the manifold is a truncated cone with the same volume ratio of (M, g). The conclusion then follows from
a generalisation of the Bishop–Gromov theorem.

Going into more detail, since ∂� is strictly mean-convex, we can consider a sequence of sets �t with
t ∈ [0, T ) such that ∂�t = Ft(∂�), where Ft : ∂�→ M satisfies

d
dt

Ft(∂�)=
1

Ht
νt , (4-16)

where νt and Ht are respectively the outer unit normal and the mean curvature of ∂�t . The conical
splitting we aim for is inspired by an argument contained in [Huisken and Ilmanen 2001, Section 8]. The
first step consists in the following fundamental lemma.

Lemma 4.8. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and 6 ⊆ M a totally umbilical
closed hypersurface such that Ric(ν, ν) = 0 where ν is the normal unit vector field to 6. Then 6 has
constant mean curvature.

Proof. The (traced) Codazzi–Mainardi equations and the totally umbilicity yield

Ric jν = Di hi j − D j H = −
n − 2
n − 1

D j H
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for any j = 1, . . . , n − 1. Consider, at a fixed point on 6, the vector ηλ = λD⊤H + ν, with λ ∈ R. Since
Ric(ν, ν)= 0, we have

0 ≤ Ric(ηλ, ηλ)= 2 Ric jν η
j
λη
ν
λ + Rici j η

i
λη

j
λ = −2λ

n − 2
n − 1

|D⊤H|
2
+ λ2 Rici j Di H D j H

for every λ ∈ R. This can happen only if |D⊤H| = 0, so that H is constant on 6. □

The following straightforward but very important consequence of the Bishop–Gromov monotonicity
ensures in particular that if an outer neighbourhood of a bounded open set with smooth boundary�⊂ M is
isometric to a truncated cone, then the whole complement of� is isometric to a truncated cone based at ∂�.

Lemma 4.9. Let (M, g) be a complete noncompact Riemannian manifold with Ric ≥ 0. Let K ⊂ M be
a bounded open set. Suppose there exists an outer neighbourhood A ⊂ M ∖ K of K such that (A, g) is
isometric to (

[ρ0, ρ1] × ∂K , dρ⊗ dρ+

(
ρ

ρ0

)2

g∂K

)
for 0< ρ0 < ρ1. Then

|∂K | ≥ ρn−1
0 |Sn−1

| AVR(g), (4-17)

and the equality holds if and only if (M ∖ K , g) is isometric to(
[ρ0,+∞)× ∂K , dρ⊗ dρ+

(
ρ

ρ0

)2

g∂K

)
.

Proof. Consider the cone (C, ĝ) given by(
(0, ρ1)× ∂K , dρ⊗ dρ+

(
ρ

ρ0

)2

g∂K

)
,

and the Riemannian manifold, with a conical singularity, obtained by gluing (C, ĝ) with (M∖(K ∪ A), g)
along {ρ = ρ1}. By our assumptions, such a manifold is well-defined with nonnegative Ricci curvature
outside of the tip o of C , and coincides with (M, g) in the complement of K. In C , the geodesic distance
from o is given by ρ, and in particular, by Bishop–Gromov monotonicity,

|{ρ = r}|

rn−1|Sn−1|
≥ AVR(g)

for any r ∈ (0, ρ1). Since |{ρ = ρ0}| = |∂K |, setting r = ρ0 proves (4-17). If equality holds, then,
by the rigidity statement in the Bishop–Gromov theorem for manifolds with a conical singularity, the
whole manifold we constructed is isometric to a cone, and in particular, (M ∖ K , g) splits as claimed.
This well-known, slightly enhanced version of the Bishop–Gromov rigidity statement can be readily
deduced from its classic proof, or seen as a very special case of its version for nonsmooth metric spaces
[De Philippis and Gigli 2016]. □

We finally have at our disposal all the tools we need to work out the splitting argument leading to
Theorem 1.2.
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Proof of Theorem 1.2. Suppose that some strictly outward minimising �⊂ M with strictly mean-convex
boundary satisfies (

|∂�|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ. (4-18)

Since ∂� is by assumption strictly mean-convex, we can evolve it by (smooth) IMCF ∂�t defined in
(4-16) for t ∈ [0, T ). By the [Huisken and Ilmanen 2001, Smooth Start Lemma 2.4], up to shortening
the time interval, we can assume that �t is strictly outward minimising for any t ∈ [0, T ). Indeed, since
� is strictly outward minimising, the flow coincides for a short time with the weak notion of IMCF,
which exists in our setting by [Mari et al. 2022, Theorem 1.7]. The sublevel sets of the weak IMCF being
strictly outward minimising is a basic and fundamental property illustrated in [Huisken and Ilmanen 2001,
Minimizing Hull Property 1.4]. Consider then the function Q : [0, T )→ R defined by

Q(t)= |∂�t |
−

n−2
n−1

∫
∂�t

Ht dσ.

By evolution equations for curvature flows derived for example in [Huisken and Polden 1999, Theorem 3.2],
a straightforward computation shows that

Q′(t)= −|∂�t |
−

n−2
n−1

∫
∂�t

|h̊t |
2
+ Ric(νt , νt)

Ht
dσ ≤ 0,

where by h̊t we denote the trace-free part of the second fundamental form ht of ∂�t . On the other hand,
the strict inequality for some t ∈ [0, T ) would result in a contradiction to the Minkowski inequality. Thus
Q′(t) vanishes for any t ∈ [0, T ) and, in particular ∂�t satisfies (4-18) for any t ∈ [0, T ). Hence, ∂�t

is totally umbilical and satisfies Ric(νt , νt) = 0 for every t ∈ [0, T ). By Lemma 4.8 ∂�t has constant
mean curvature for every t ∈ [0, T ).

On {0 ≤ t < T }, the solution to the weak level set formulation of the IMCF w, which in our smooth
case just means {w = t} = ∂�t , satisfies the relation

Ht = div
(

Dw
|Dw|

)
(xt)= |Dw|(xt)

at any xt ∈ ∂�t . Hence, since Ht > 0, a well-known extension of the Gauss’ lemma yields

g =
dw⊗ dw
|Dw|2

+ g∂�t
=

dt ⊗ dt
H2

t
+ g∂�t

. (4-19)

The evolution equation (see [Huisken and Polden 1999, Theorem 3.2(i)]) satisfied by g∂�t
is

∂

∂t
g∂�t

= 2
ht

Ht
g∂�t

=
2

n − 1
g∂�t

,

where the last identity is due to the total umbilicity of ∂�t . Integrating such equation we deduce

g∂�t
= e

2t
(n−1) g∂�. (4-20)
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On the other hand, the evolution equation for the mean curvature along the IMCF (see [Huisken and
Polden 1999, Theorem 3.2(v)]) gives

∂

∂t
Ht = −1∂�t

(
1

Ht

)
−

1
Ht

[|ht |
2
+ Ric(νt , νt)] = −

Ht

n − 1
,

where the last identity is due to the fact that ∂�t is totally umbilical, Ric(νt , νt) = 0 and the mean
curvature Ht of ∂�t depends only on t . Integrating it we obtain that

Ht = e−
t

n−1 H0, (4-21)

where H0 is the mean curvature of ∂�.
Plugging (4-20) and (4-21) into (4-19), we deduce that ({0 ≤ t < T }, g) is isometric to(

[0, T )× ∂�, e
2t

n−1
dt ⊗ dt

H2
0

+ e
2t

n−1 g∂�

)
.

Performing the change of variables

ρ =
(n − 1)

H0
e

t
(n−1) ,

the metric can be written as(
[ρ0, ρ(T ))× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(n − 1)
H0

.

On the other hand, since by assumption ∂� saturates the Minkowski inequality, that is, (4-18) holds, we
immediately get

ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

,

and we conclude by the rigidity statement in Lemma 4.9 that the whole M ∖� is isometric to a truncated
cone. □

In the following remark, we briefly discuss how the assumptions for the rigidity can be relaxed in
small dimensions.

Remark 4.10. In dimension 3 ≤ n ≤ 7, an open bounded subset � with smooth strictly mean-convex
boundary satisfying (

|∂�∗
|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ

is a priori strictly outward minimising, and thus, in this case, such an assumption can be dropped. Indeed, by
approximating � via mean curvature flow with smooth strictly outward minimising domains, as described
in [Huisken and Ilmanen 2001, Lemma 5.6], we deduce that (4-14) holds also for C 1,1-hypersurfaces.
In particular, the Minkowski inequality holds also for the strictly outward minimising hull of � (see
the regularity results recalled in [Huisken and Ilmanen 2001, Regularity Theorem 1.3] and [Fogagnolo
and Mazzieri 2022, Theorem 2.18]) for every � with smooth boundary, provided the dimensional bound
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holds. We can then argue by contradiction. Suppose that �∗ does not coincide with �. Then(
|∂�∗

|

|Sn−1|

)n−2
n−1

AVR(g)
1

n−1 =
1

|Sn−1|

∫
∂�

H
n − 1

dσ >
1

|Sn−1|

∫
∂�∗

H
n − 1

dσ,

where the last inequality is due to the fact that H = 0 on ∂�∗ ∖ ∂�. But this contradicts the Minkowski
inequality for �∗; hence �=�∗.

4D. A pinching condition and a sphere theorem. In this subsection, we exploit the monotonicity of
the function t 7→ F∞

p (t) defined in (3-2) to prove a couple of rigidity statements involving a pinching
condition on the mean curvature of ∂� and an a priori bound on the gradient of the p-capacitary potential
associated to �. These results without any convexity assumption are also new in Rn, and they constitute
the complete nonlinear generalisation of [Borghini et al. 2019, Corollary 1.4 and 1.9]. For convex subsets
of the Euclidean space they are the content of [Fogagnolo et al. 2019, Corollary 2.16 and 2.17].

Theorem 4.11. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 and Euclidean volume
growth. If there exists an open bounded subset �⊆ M with smooth boundary satisfying

−

[
AVR(g)
Cp(�)

] 1
n−p

≤
H

n − 1
≤

[
AVR(g)
Cp(�)

] 1
n−p

(4-22)

on every point of ∂�, then (M ∖�, g) is isometric to(
[ρ0,+∞)× ∂�, dρ⊗ dρ+

(
ρ

ρ0

)2

g∂�

)
, where ρ0 =

(
|∂�|

AVR(g)|Sn−1|

) 1
n−1

.

In this case ∂� is a connected totally umbilical hypersurface with constant mean curvature in (M ∖�, g).

Proof. We can argue by contradiction as in Theorem 4.3 to prove that(
n − p
p − 1

)[
AVR(g)
Cp(�)

] 1
n−p

≤ sup
∂�

|Du|.

Indeed, we can follow the same lines replacing the consequence of the monotonicity of Fp with the
corresponding of F∞

p , which thanks to (2-9) can be rewritten as

F∞

p (t)= t
n−1
n−p sup

{u=1/t}
|Du| =

(
Cp(�t)

Cp(�)

) 1
n−p

sup
{ut=1}

|Dut |,

where ut = tu and �t = {u > 1/t} ∪�. Accordingly, we employ the Hölder inequality with conjugate
exponents a = +∞ and b = 1, that is,

Capp(�t)
1
p ≤ sup

{u=1/t}
|Dut |

(∫
{u=1/t}

1
|Dut |

dσ
)1

p

.

In the end, by Theorem 3.2 we get

sup
∂�

|Du| ≤
(n − p)

(p − 1)(n − 1)
sup
∂�

|H|

and the equality holds if and only if (M ∖�, g) splits as in the statement. Condition (4-22) easily implies
the equality. □
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The above result is a rigidity theorem under a pinching condition on the mean curvature of ∂� with
respect to its p-capacity. From the proof above we can also get that

1
p − 1

[
AVR(g)
Cp(�)

] 1
n−p

≤ sup
∂�

∣∣∣∣ Du
n − p

∣∣∣∣ (4-23)

and the equality is satisfied only on metric cones. The previous inequality gives a lower bound on the
gradient of u on ∂� in terms of the p-capacity of � that, when attained, forces (M, g) to be (isometric
to) Rn with � a Euclidean ball.

Theorem 4.12. Let (M, g) be a complete Riemannian manifold with Ric ≥ 0 curvature and Euclidean
volume growth. Let � ⊆ M be an open bounded subset with smooth boundary, u the p-capacitary
potential associated to � and assume that

sup
∂�

∣∣∣∣ Du
n − p

∣∣∣∣ ≤
1

p − 1
AVR(g)

1
p−1

(
|Sn−1

|

|∂�|

) 1
n−1

. (4-24)

Then (M, g) is isometric to Rn with the Euclidean metric and � is a ball.

Proof. Under the assumption (4-24), we get

Cp(�)=

(
p − 1
n − p

)p−1 1
|Sn−1|

∫
∂�

|Du|
p−1 dσ ≤ AVR(g)

(
|Sn−1

|

|∂�|

)−
n−p
n−1

,

which yields(
|Sn−1

|

|∂�|

)n−p
n−1

≤
AVR(g)
Cp(�)

≤ (p − 1)n−p sup
∂�

∣∣∣∣ Du
n − p

∣∣∣∣n−p

≤ AVR(g)
n−p
p−1

(
|Sn−1

|

|∂�|

)n−p
n−1

, (4-25)

where we used (4-23) together with the condition (4-24). Thus, we obtain that AVR(g)= 1, and hence,
by the Bishop–Gromov theorem, that (M, g) is isometric to Rn with the Euclidean metric. Since all
inequalities in (4-25) become equalities, by the second one we can apply the rigidity statement in
Theorem 3.2 which ensures that ∂� is a compact connected and totally umbilical hypersurface of Rn ,
that is, � is a ball. □
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THE WILLMORE FLOW OF TORI OF REVOLUTION

ANNA DALL’ACQUA, MARIUS MÜLLER, REINER SCHÄTZLE AND ADRIAN SPENER

We study long-time existence and asymptotic behavior for the L2-gradient flow of the Willmore energy,
under the condition that the initial datum is a torus of revolution. We show that if an initial datum has
Willmore energy below 8π then the solution of the Willmore flow converges for t → ∞ to the Clifford
torus, possibly rescaled and translated. The energy threshold of 8π turns out to be optimal for such a con-
vergence result. We give an application to the conformally constrained Willmore minimization problem.

1. Introduction

Let f :6 → R3 be a smooth immersion of a two-dimensional manifold without boundary. Its Willmore
energy is

W( f )=
1
4

∫
6

|H⃗ |
2

dµ, (1-1)

where H⃗ denotes the mean curvature vector and dµ the induced Riemannian measure. Its critical points
are called Willmore immersions and satisfy

1H⃗ + Q( Å)H⃗ = 0, (1-2)

where 1 denotes the Laplace–Beltrami operator, Å is the trace-free second fundamental form and Q
is quadratic in Å (see (2-3)). If f (6) is orientable (or two-sided, which is equivalent in R3) then
H⃗ = (κ1 + κ2)N⃗, with κ1, κ2 the principal curvatures of f (6) and N⃗ a smooth normal vector field. The
L2-gradient flow of the Willmore functional with given initial datum f0, a smooth immersion, is

∂t f = −(1H⃗ + Q( Å)H⃗), (1-3)

with f (t = 0) = f0. This fourth-order quasilinear geometric evolution equation has been extensively
studied in [Kuwert and Schätzle 2001; 2002], where a blow-up criterion is formulated. With the aid of this
criterion the same authors proved in [Kuwert and Schätzle 2004] long-time existence and convergence for
the flow of spherical immersions under the assumption that the initial immersion f0 : S2

→ R3 satisfies
W( f0) < 8π . The energy threshold of 8π is shown to be sharp in [Blatt 2009] for the convergence of
spherical immersions.

In the classical work [Mayer and Simonett 2002] the Willmore flow is studied numerically, not only
for spheres but also for surfaces of different genus, such as tori. See also [Barrett et al. 2019] for other
numerical examples. In [Mayer and Simonett 2002, Section 8.1] it is stated that the flow converges for
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all tori that the authors looked at, which was astounding as this behavior differs fundamentally from the
surface diffusion flow, where the hole of all initial tori seems to close and the curvature blows up; see
[Mayer 2001; Barrett et al. 2019]. Our goal is to understand analytically what happens to tori along the
Willmore flow. In this article we only look at the special case of tori of revolution.

Definition 1.1. In the sequel we identify S1
= R/Z and set H2

:= R × (0,∞). We call an immersion
f : S1

×S1
→ R3 a torus of revolution if there exists an immersed curve γ ∈C∞(S1,H2), γ = (γ (1), γ (2)),

such that

f (u, v)=

 γ (1)(u)
γ (2)(u) cos(2πv)
γ (2)(u) sin(2πv)

 . (1-4)

We call γ profile curve and we will frequently denote f as in (1-4) by Fγ .

An essential element in our argument is that the property of being a torus of revolution is preserved
along the Willmore flow. Hence the evolution by Willmore flow can also be regarded as a time evolution
of the profile curves. In the arguments to come we will take advantage of an interplay between the
revolution symmetry and the blow-up-criterion developed in [Kuwert and Schätzle 2001; 2002]. With
this technique we have identified a geometric quantity whose boundedness ensures convergence. This
quantity is the hyperbolic length of the profile curves given by

LH2(γ ) :=

∫
S1

|γ ′(x)|
γ (2)(x)

dx, γ ∈ C∞(S1,R × (0,∞)).

Strikingly, the hyperbolic geometry of the curve evolution is decisive for the convergence behavior.
We recall that the hyperbolic plane H2

= R × (0,∞) is endowed with the metric g(x,y) = y−2 dx dy.
Now we can state our main convergence criterion:

Theorem 1.2. Let f : [0, T )× S1
× S1

→ R3 be a maximal evolution by Willmore flow such that f (0) is
a torus of revolution. Then f (t) is a torus of revolution for all t ∈ [0, T ). Suppose that (γ (t))t∈[0,T ) is a
collection of profile curves of f (t). If

lim inf
t→T

LH2(γ (t)) <∞, (1-5)

then T = ∞ and the Willmore flow converges (up to reparametrizations) in Ck for all k to a Willmore
torus of revolution f∞.

We remark that the concept of Ck-convergence that we impose is a geometric one; see Appendix C
(Definition C.7) for details. From now on, the term Ck-convergence is understood up to reparametrizations
as in Definition C.7.

That the hyperbolic geometry of the profile curve plays a role is not surprising — there is an interesting
correspondence between the Willmore energy of tori of revolution and the hyperbolic elastic energy of
curves, observed in [Langer and Singer 1984a]. With this correspondence one can for example show the
Willmore conjecture for tori of revolution; see [Langer and Singer 1984b]. Other applications of this
relationship include [Dall’Acqua et al. 2008; Mandel 2018]. To the authors’ knowledge, this is the first
time that this correspondence is used in a problem depending on time.
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The main question now is to identify which initial data generate evolutions with bounded hyperbolic
length. It turns out that the same energy threshold of 8π needed for spherical immersions (see [Kuwert
and Schätzle 2004]) is needed in the case of tori of revolution.

Theorem 1.3. Let f0 : S1
× S1

→ R3 be a torus of revolution satisfying W( f0) ≤ 8π . Let f :

[0, T )× (S1
×S1)→ R3 evolve by the Willmore flow with initial datum f0. Then T = ∞ and f converges

in Ck for all k ∈ N to the Clifford torus, possibly rescaled and translated in the direction (1, 0, 0).

Here the Clifford torus is the surface of revolution given by

(u, v) 7→

(
1

√
2

sin(2πu),
(
1 +

1
√

2
cos(2πu)

)
cos(2πv),

(
1 +

1
√

2
cos(2πu)

)
sin(2πv)

)
. (1-6)

Notice that it is not important which parametrization we choose since Ck-convergence is a geometric
concept. The Clifford torus arises from stereographic projection of the minimal surface 1

√
2
(S1

×S1)⊂ S3.
From the solution [Marques and Neves 2014] of the famous Willmore conjecture we know that the Clifford
torus is the global minimum of the Willmore energy among tori in R3 and the unique minimum modulo
smooth conformal transformations (of R3) and reparametrizations. Our method relies on a gap theorem
for Willmore tori of revolution, which is a consequence of [Müller and Spener 2020]; see Proposition 2.4.
This relates to the findings in [Mondino and Nguyen 2014].

The convergence result in Theorem 1.3 holds up to surprisingly little invariances. It is often ex-
pected that such convergence results can only be shown up to invariances of the Willmore energy, i.e.,
reparametrizations and conformal transformations. The fact that we do not have to apply conformal
transformations along the flow to achieve convergence is explained by the use of a Łojasiewicz–Simon
gradient inequality. This inequality is a purely analytical tool, so the invariances will not play a role. For
the limit immersion, we can rule out all conformal transformations that break the rotational symmetry
and even more — symmetry-preserving Möbius inversions can also be ruled out due to the fact that they
are not invariances of the Willmore flow equation. What remains is just scaling and translation in the
direction (1, 0, 0). This is not surprising since both transformations preserve the symmetry we consider
and also preserve solutions of the Willmore flow equation, possibly rescaling appropriately in time.

We also prove that the energy threshold of 8π is sharp by constructing explicit nonconvergent evolutions
with initial data f0 satisfying W( f0) > 8π . There are multiple reasons why this number could be a
universal threshold for any genus. The most striking is the inequality of Li and Yau that shows that
immersions of Willmore energy below 8π are embeddings; see [Li and Yau 1982, Theorem 6]. Another
property is that the metric of tori of energy ≤ 8π − δ, δ > 0, is uniformly controlled up to Möbius
transformations and reparametrizations; see [Schätzle 2013, Theorem 1.1] for details. As pointed
out in [Simon 1993, p. 282; Kuwert et al. 2010], there exist surfaces of arbitrary genus with energy
below 8π .

As already announced, we also show optimality of the energy bound of 8π .

Theorem 1.4. For any ε > 0 there exists a torus of revolution f0 : S1
×S1

→ R3 such that W( f0)< 8π+ε

and the maximal Willmore flow ( f (t))t∈[0,T ) develops a singularity (in finite or infinite time). More
precisely, one of the following phenomena occurs:
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(1) (Concentration of curvature) The second fundamental form (∥A(t)∥L∞(6))t∈[0,T ) is unbounded. This
singularity can occur in finite or infinite time.

(2) (Diameter blow-up in infinite time) T = ∞ and limt→∞ diam( f (t))(S1
× S1)= ∞.

In both cases the Willmore flow cannot converge in C2.

The singular behavior as described in Theorem 1.4 will actually occur for each initial immersion Fγ ,
as in Definition 1.1, with γ a curve of vanishing total curvature; see (3-20). This gives a class of singular
examples for the Willmore flow. The total curvature also plays a significant role in earlier constructions
of singular examples; see [Blatt 2009] for 6 = S2.

As a consequence of our main result we are able to show that each rectangular conformal class contains
a torus of revolution of energy below 8π . This result has far-reaching consequences for the minimization
of the Willmore energy with fixed conformal class, studied for example in [Kuwert and Schätzle 2013].
In this article the authors show that minimizers in a given conformal class exist under the condition that
the class contains an element of Willmore energy below 8π . By our result this condition is satisfied for
every rectangular conformal class.

This paper is organized as follows. In Section 2 we fix the notation and collect some useful facts on
elastic curves in the hyperbolic plane and on tori of revolution. Section 3 exploits the consequences of
the initial datum being a torus of revolution for the symmetry properties of the evolution, for the possible
singularities and the limit. It also contains the proofs of the main results and of the optimality results. In
the last section we give the application on existence of tori of revolution with energy below 8π in each
conformal class. Some useful results on smooth convergence (see Definition 2.1 below) and the Willmore
flow are collected in the Appendix.

2. Geometric preliminaries

2.1. Notation. We first recall some basic definitions from differential geometry. Let 6 be a two-
dimensional smooth manifold and f :6 → Rn be a smooth immersion. In this paper all manifolds are
assumed to have no boundary. If we talk about tori of revolution, we need to impose the restriction that
n = 3, but we will also discuss some results on the Willmore flow that remain valid in any codimension,
i.e., for all n ≥ 3. Let g be the induced Riemannian metric and ∇ the Levi-Civita connection on 6,
and denote the set of smooth vector fields on 6 by V(6). For X ∈ V(6) and h ∈ C∞(6,Rn) we define
DX h ∈ C∞(6,Rn) as

DX h :=

n∑
i=1

X (hi )e⃗i , whenever h =

n∑
i=1

hi e⃗i ∈ C∞(M; Rn),

and {e⃗1, e⃗2, e⃗3, . . . , e⃗n} is the canonical basis of Rn (see also Appendix B). The second fundamental form
of 6 is A : V(6)×V(6)→ C∞(6,Rn), given by

A(X, Y ) := DX (DY f )− D∇X Y f. (2-1)
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We remark that for all p ∈6 one has Ap(X, Y )∈ d fp(Tp6)
⊥; we say it takes values in the normal bundle.

Moreover Ap(X, Y ) only depends on X (p),Y (p). Its trace-free part Å is given by

Å(X, Y ) := A(X, Y )− 1
2 g(X, Y )H⃗ ,

where the mean curvature vector H⃗ is the trace of the bilinear form (2-1) and can be computed by

H⃗(p)= A(e1, e1)+ A(e2, e2),

with {e1, e2} being an orthonormal basis of Tp6. Similarly (see Appendix A for details) we have

|A|
2
=

2∑
i, j=1

⟨A(ei , ej ), A(ei , ej )⟩Rn .

With these definitions we may introduce the Willmore flow of a smooth immersion f0 :6 → Rn. We
say that a smooth family of smooth immersions f : [0, T )×6 → Rn, where T > 0, evolves by the
Willmore flow with initial datum f0 if f satisfies

∂t f = −(1H⃗ + Q( Å)H⃗) in (0, T )×6, (2-2)

with f (t = 0)= f0. Here, 1 denotes the normal Laplacian, i.e., for an orthonormal basis {e1, e2} that is
a basis of Tp6 with respect to f (t, · )∗gRn one has

1H⃗ =

2∑
i=1

(∇⊥)2 H⃗(ei , ei ),

where ∇
⊥

X Y = (DX Y )⊥ (see (B-2), (B-3) for details). With the same notation as above, the quadratic
operator Q is given by

(Q( Å)H⃗)(t, p)=

2∑
i, j=1

⟨ Å(ei , ej ), H⃗⟩Rn Å(ei , ej ). (2-3)

Since (2-2) is well-posed for smooth initial immersions f0 (see [Kuwert and Schätzle 2002, Proposi-
tion 1.1]) we will always assume that the evolution is maximal, i.e., nonextendable in the class of smooth
immersions.

To study the behavior of f (t) as t → T we use the following notion of smooth convergence on compact
sets from [Kuwert and Schätzle 2001, Theorem 4.2]; see also [Breuning 2015] and Appendix C.

Definition 2.1 (Smooth convergence of immersions). Let 6 and 6̂ be smooth two-dimensional manifolds
and ( f j )

∞

j=1 :6 → Rn and f̂ : 6̂ → Rn be smooth immersions. Define

6̂(m) := {p ∈ 6̂ : | f̂ (p)|< m}, m ∈ N. (2-4)

We say that f j converges to f̂ smoothly on compact subsets of Rn if for each j ∈ N there exists a
diffeomorphism φj : 6̂( j)→ Uj for some open Uj ⊂6, and a normal vector field u j ∈ C∞(6̂( j),Rn)

satisfying
f j ◦φj = f̂ + u j on 6̂( j), (2-5)
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as well as ∥(∇̂⊥)ku j∥L∞(6̂( j)) → 0 as j → ∞ for all k ∈ N0. Here ∇̂ is the Levi-Civita connection on
(6̂, g f̂ ) and (∇̂⊥)ku j is defined as in Appendix B. Additionally, we require that for each R > 0 there
exists j (R) ∈ N such that j ≥ j (R) implies that f −1

j (BR(0))⊂ Uj .

We exploit a fundamental correspondence between the Willmore energy of tori and the elastic energy
of curves in the hyperbolic plane already used in several works since its observation in [Langer and Singer
1984a].

2.2. Curves in the hyperbolic plane. We consider the hyperbolic half-plane H2
={(x (1), x (2))∈R×(0,∞)}

endowed with the metric

gH2(v,w)=
1
z2 ⟨v,w⟩R2, v, w ∈ TzH2,

and define |v|H2 =
√

gH2(v, v), v ∈ TzH2. For a smooth immersed curve γ = (γ (1), γ (2)) in H2, γ ∈

C∞(S1,H2), the length is as in the Introduction given by

LH2(γ ) :=

∫ 1

0

|γ ′(x)|R2

γ (2)(x)
dx =

∫ 1

0
ds, (2-6)

where ds = |∂xγ |H2 dx denotes the arc length parameter, and the derivative with respect to x is abbreviated
with the prime. As usual, ∂s = ∂x/|∂xγ |H2 denotes the arc length derivative. The curvature vector field
of γ is given by

κ[γ ] = ∇s∂sγ =

(
∂2

s γ
(1)

− (2/γ (2))∂sγ
(1)∂sγ

(2)

∂2
s γ

(2)
+ (1/γ (2))((∂sγ

(1))2 − (∂sγ
(2))2)

)
(2-7)

as an element of TzH2 [Dall’Acqua and Spener 2017, (12)]. Here ∇s denotes the covariant derivative
along γ with respect to the Levi-Civita connection on H2. We write κ = κ[γ ] if the curve is clear from
the context. The elastic energy E of γ is then defined to be

E(γ ) :=

∫
γ

|κ|2
H2 ds.

Its critical points are called free hyperbolic elastica and satisfy

(∇⊥

s )
2κ +

1
2 |κ|2

H2κ − κ = 0,

where ∇
⊥
s η = ∇sη− ⟨∇sη, ∂sγ ⟩H2∂sγ is the covariant derivative on the normal bundle of γ .

We collect some results connecting the length and the elastic energy of smooth closed curves in the
hyperbolic plane.

Theorem 2.2 [Müller and Spener 2020, Theorem 5.3]. For each ε > 0 there exists c(ε) > 0 such that

E(γ )
LH2(γ )

≥ c(ε)

for all immersed and closed curves γ ∈ C∞(S1,H2) such that E(γ )≤ 16 − ε.
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Note that the energy threshold of 16 is sharp for this result; see [Müller and Spener 2020].
We also fix the notion of the Euclidean length of the curve γ : S1

→ H2
⊂ R2, which is given by

LR2(γ ). We also consider the Euclidean curvature of γ : S1
→ R2, which we will denote by

κ⃗euc[γ ] :=
1

|γ ′|

d
dt

γ ′

|γ ′|
,

and the Euclidean scalar curvature κeuc[γ ] := (1/|γ ′
|
2)⟨γ ′′, n⟩R2 . To finish this section we discuss some

relations between Euclidean and hyperbolic length.

Lemma 2.3. Let γ ∈ C∞(S1,H2) and a, b ∈ [0, 1]. Then

γ (2)(b)e−L
H2 (γ ) ≤ γ (2)(a)≤ γ (2)(b)eLH2 (γ ) (2-8)

and

LH2(γ )≥
LR2(γ )

supS1 γ (2)
. (2-9)

Proof. For γ, a, b as in the statement, we find by (2-6)

LH2(γ )≥

∫ b

a

|(γ (2))′|

γ (2)
dx ≥ |log γ (2)(b)− log γ (2)(a)|,

and therefore log γ (2)(b) − LH2(γ ) ≤ log γ (2)(a) ≤ log γ (2)(b) + LH2(γ ). Taking exponentials (2-8)
follows. For (2-9) we simply estimate

LH2(γ )=

∫
S1

|γ ′(u)|
γ 2(u)

du ≥
1

supS1 γ (2)

∫
S1

|γ ′(u)| du =
LR2(γ )

supS1 γ (2)
. □

2.3. Tori of revolution in R3. Here we collect some basic facts about tori of revolution. More precisely
we express some geometric quantities associated to tori of revolution using only their profile curves. If
Fγ : S1

×S1
→ R3 is chosen as in Definition 1.1 we can compute the first fundamental form with respect

to the local coordinates (u, v) of S1
× S1. This yields the associated surface measure on the Riemannian

manifold (S1
× S1, g = F∗

γ gR3) given by

dµg = 2πγ (2)(u)|γ ′(u)|R2 du dv. (2-10)

As we have already announced, the Willmore energy of Fγ can also be expressed only in terms of γ
using the fundamental relationship

W(Fγ )=
π
2 E(γ ); (2-11)

see [Langer and Singer 1984a; Dall’Acqua and Spener 2018, Theorem 4.1]. Moreover, let κ be the
hyperbolic curvature vector field of γ in H2. Then

−⟨(∇⊥

s )
2κ +

1
2 |κ|2

H2κ − κ, n⟩H2 = 2(γ (2))4
(
1H + 2H

( 1
4 H 2

− K
))
, (2-12)

where n = (−∂sγ
(2), ∂sγ

(1)) is the normal vector field along γ (see [Dall’Acqua and Spener 2018,
Theorem 4.1]). In particular, Fγ is a Willmore torus of revolution if and only if γ is a hyperbolic elastica.
In Appendix A we discuss the relationship between (2-12) and (1-2).
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An immediate consequence of [Müller and Spener 2020, Proposition 6.5] (that builds on findings in
[Langer and Singer 1984b]) is the following.

Proposition 2.4 (A gap theorem for Willmore tori of revolution). Let f : S1
× S1

→ R3 be a Willmore
torus of revolution that satisfies W( f ) ≤ 8π . Then f is, up to reparametrization, the Clifford torus
possibly rescaled and translated in the direction (1, 0, 0)T.

Proof. Let f = Fγ be as in the statement with profile curve γ ∈ C∞(S1,H2). From (2-12) we know
that γ is a hyperbolic elastica. From (2-11) we can conclude that E(γ ) ≤ 16. By [Müller and Spener
2020, Proposition 6.5] we obtain that γ has to coincide (up to reparametrization) with the profile curve of
the Clifford torus up to isometries of H2. This however implies that f is, up to reparametrization, the
Clifford torus possibly rescaled and translated in the direction (1, 0, 0). □

Another important quantity for our discussion is the second fundamental form A[Fγ ], which we will
also express in terms of γ . A property which we will later make extensive use of is the fact that for a
torus of revolution f = Fγ , |A[Fγ ]|2 ∈ C∞(S1

× S1) is a function that depends only on u (a parameter
that describes the profile curve) and not on v (a parameter that describes the revolution). This is the
reason why curvature concentration is “passed along” the revolution. We will describe this more precisely
in Section 3.4. For this section it is enough to observe by a direct computation (see [Dall’Acqua and
Spener 2018, p. 118]) that with respect to the normal NFγ = (∂u Fγ × ∂vFγ )/|∂u Fγ × ∂vFγ | the principal
curvatures are given by

κ1[Fγ ](u, v)= −κeuc[γ ](u) and κ2[Fγ ](u, v)=
(γ (1))′(u)

|γ ′(u)|γ (2)(u)
.

With this at hand, one can derive a useful bound for the length of the profile curve in terms of surface
quantities.

Lemma 2.5. Suppose that f = Fγ : S1
× S1

→ R3 is a torus of revolution with profile curve γ . Then

LR2(γ )≤ µg f (S
1
× S1)1/2W( f )1/2.

Proof. We may without loss of generality assume that γ is parametrized with constant velocity, i.e.,
|γ ′

| = LR2(γ )=: L . Recall from Appendix A that H⃗(u, v)= (κ1(u, v)+ κ2(u, v))N f (u, v), where

N f (u, v)=
1

LR2(γ )

 (γ (2))′(u)
−(γ (1))′(u) cos(2πv)
−(γ (1))′(u) sin(2πv)

 with u, v ∈ S1.

We show next that

−2L =

∫
S1×[0,1/2]

H⃗ · e3 dµg f . (2-13)

Plugging in the quantities characterized in this section and using

(γ (1))′2 + (γ (2))′2 = L2 and (γ (1))′′(γ (1))′ + (γ (2))′′(γ (2))′ = 0



THE WILLMORE FLOW OF TORI OF REVOLUTION 3087

we obtain∫
S1×[0,1/2]

H⃗ ·e3 dµg f = 2π
∫ 1

0

∫ 1/2

0
(κ1(u, v)+κ2(u, v))(N f (u, v)·e3)|γ

′(u)|γ (2)(u) dv du

= 2π
∫ 1

0

∫ 1/2

0

(
−κeuc[γ ](u)+

(γ (1))′(u)
Lγ (2)(u)

)
[−(γ (1))′(u) sin(2πv)]γ (2)(u) dv du

= −[− cos(2πv)]1/2
0

∫ 1

0

(
(γ (1))′′(γ (2))′−(γ (2))′′(γ (1))′

L3 +
(γ (1))′

Lγ (2)

)
(γ (1))′γ (2) du

= −2
1
L3

∫ 1

0
((γ (1))′′(γ (1))′(γ (2))′−(γ (2))′′(γ (1))′2)γ (2) du−

2
L

∫ 1

0
(γ (1))′2 du

= −2
1
L3

∫ 1

0
(−(γ (2))′′(γ (2))′2−(γ (2))′′(γ (1))′2)γ (2) du−

2
L

∫ 1

0
(γ (1))′2 du

=
2
L3

∫ 1

0
(γ (2))′′L2γ (2) du−

2
L

∫ 1

0
(γ (1))′2 du

= −
2
L

∫ 1

0
(γ (2))′2 du−

2
L

∫ 1

0
(γ (1))′2 du,

where we have used integration by parts in the last step. Adding up the integrands and once again using
(γ (1))′2 + (γ (2))′2 = L2, we obtain (2-13). From (2-13) and the Cauchy–Schwarz inequality we also
conclude

2L ≤

∫
S1×S1

|H⃗ | dµg f ≤ 2W( f )1/2µg f (S
1
× S1)1/2. □

A quantity which we will also study is the diameter.

Lemma 2.6. Let f = Fγ : S1
× S1

→ R3 be a torus of revolution with profile curve γ . Then,

diam(Fγ (S1
× S1))≤

1
2LR2(γ )+ 2∥γ (2)∥L∞ .

Proof. Let (u, v), (u′, v′) ∈ S1
× S1 and f = Fγ be as in the statement. Without loss of generality we

can assume that γ (2)(u)≤ γ (2)(u′). We start proving

| f (u, v)− f (u′, v′)| ≤ |γ (u)− γ (u′)| +
√

2γ (2)(u)
√

1 − cos(2π(v− v′)).

First observe that | f (u, v)− f (u′, v′)| ≤ | f (u′, v′)− f (u, v′)|+| f (u, v′)− f (u, v)|. Using the definition
of the Euclidean distance we find | f (u′, v′)− f (u, v′)| = |γ (u)− γ (u′)|. Similarly,

| f (u, v′)− f (u, v)| = γ (2)(u)
√
(cos(2πv)− cos(2πv′))2 + (sin(2πv)− sin(2πv′))2

= γ (2)(u)
√

2 − 2 cos(2π(v− v′)).

Both computations imply the desired estimate, and the asserted diameter bound follows immediately. □
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3. The Willmore flow of tori of revolution

In this section we understand the interplay between the rotational symmetry and the curvature con-
centration criterion, which is able to detect singularities of the Willmore flow. This gives us a better
understanding of the singularities that can arise in our symmetric setting. We will then prove the main
theorems by excluding those singularities in certain circumstances.

3.1. Singularities of the Willmore flow. In this section we summarize what singularities of the Willmore
flow look like. The following result summarizes a list of results that have been obtained previously in other
articles on the Willmore flow. It exposes the diameter of appropriate parabolic rescalings as a quantity
whose control is sufficient for convergence. The appropriate rescaling is given by a concentration property
of the Willmore flow; see Appendix D. In the following discussion we will use the two parameters ε0

and c0 which have been introduced in Theorem D.1.

Theorem 3.1 (Convergence criterion of the Willmore flow; proof in Appendix D). Let 6 be a compact
two-dimensional manifold without boundary and let f : [0, T )×6 → Rn be a maximal evolution by the
Willmore flow with initial datum f0. Consider an arbitrary sequence (tj )j∈N ⊂ (0, T ) with tj → T. Then,
the concentration radii

rj := sup
{

r > 0 : for all x ∈ Rn one has
∫

f (tj )
−1(Br (x))

|A(tj )|
2 dµg f (tj )

≤ ε0

}
, (3-1)

j ∈ N, satisfy tj + c0r4
j < T for all j ∈ N. Further, the maps

f̃ j,c0 :6 → R3, f̃ j,c0 :=
f (tj + c0r4

j )

rj
,

are called concentration rescalings and one of the following alternatives occurs

Case 1: convergent evolution. There exists δ > 0 such that δ < rj < 1/δ. Then T = ∞. If additionally
(diam( f̃ j,c0))j∈N is uniformly bounded then the Willmore flow converges to a Willmore immersion. More
precisely there exists a Willmore immersion f∞ : 6 → Rn such that f (t)→ f∞ in Ck for all k ∈ N as
t → ∞.

Case 2: blow-up or blow-down. A subsequence of (rj )j∈N goes either to zero or to infinity. In this case
one has diam( f̃ j,c0)→ ∞ as j → ∞.

In particular, if (diam( f̃ j,c0))j∈N is uniformly bounded, then T = ∞ and the Willmore flow converges to a
Willmore immersion f∞ :6 → Rn in Ck for all k ∈ N.

In the coming sections we will study the relation between the diameter of the concentration rescalings
and the hyperbolic length of the profile curves. Having understood this we will finally be able to obtain
Theorems 1.2 and 1.3.

3.2. Dimension reduction. We have already announced that the rotational symmetry is preserved along
the flow. This section is devoted to the proof of this fact, see Lemma 3.3. In the proof of Lemma 3.3 we will
make use of an alternative characterization of tori of revolution, see Definition 1.1, which we state next.
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Proposition 3.2. Let f : S1
× S1

→ R3 be a smooth immersion. Then, f is a torus of revolution if and
only if

for all φ ∈ S1 f (u, v+φ)= R2πφ f (u, v), where Rz =

1 0 0
0 cos z − sin z
0 sin z cos z

 , (3-2)

for all u ∈ S1 f (3)(u, 0)= 0 and f (2)(u0, 0)≥ 0 for one value u0 ∈ S1. (3-3)

Proof. If f is a torus of revolution then (3-2) and (3-3) can be checked by direct computation. If (3-2)
and (3-3) hold for some immersion f : S1

× S1
→ R3 then one can define a smooth curve γ : S1

→ R2

by γ (u) := ( f (1)(u, 0), f (2)(u, 0)). Equation (1-4) is then easy to check, but it also needs to be shown
that γ (u) ∈ H2 for all u ∈ S1. So far we have

f (u, v)=
(
γ (1)(u), γ (2)(u) cos(2πv), γ (2)(u) sin(2πv)

)
for all (u, v) ∈ S1

× S1.

If now there exists a point u0 ∈ S1
× S1 such that γ (2)(u0)= 0 then one can compute

∂v f (u0, v)= (0, 0, 0)T for all v ∈ S1,

which is a contradiction to the fact that f is an immersion. Hence γ (2) may not change sign or attain the
value zero. As a consequence, γ (2) > 0 and the claim follows. □

In particular, given a torus of revolution its profile curve is given by γ (u) := ( f (1)(u, 0), f (2)(u, 0)).
Note that — by inspection of the previous proof — each immersion f : S1

× S1
→ R3 that fulfills (3-2),

as well as f (3)(u, 0)= 0 for all u ∈ S1, must satisfy f (2)( · , 0) ̸= 0. In particular it cannot change sign.
Thus, either f (2)( · , 0) > 0 or f (2)( · , 0) < 0. In the latter case f ( · , · + 1) defines a torus of revolution.
This shows also consistency of our definition with [Blatt 2009, Definition 2.2], whose results we will
need later.

When it comes to evolutions ( f (t))t≥0, we however want to work without reparametrizations of f (t)
along the flow and hence we specify γ (2) = f (2)( · , 0) > 0 (and we check that this remains satisfied along
the flow).

Lemma 3.3. Let f0 : S1
× S1

→ R3 be a torus of revolution and let ( f (t))t∈[0,T ) : S1
× S1

→ R3 evolve
by the Willmore flow with initial datum f0. Then ( f (t))t∈[0,T ) is a torus of revolution for all t ∈ [0, T ).

Proof. We prove that ( f (t))t∈[0,T ) satisfies (3-2) and (3-3) for all t ∈ [0, T ) so that the claim follows from
Proposition 3.2.

Let φ ∈ S1. We observe that R2πφ is an isometry in R3 and (u, v) 7→ (u, v+φ) is a diffeomorphism.
Hence (R−1

2πφ f (t)( · , · +φ))t∈[0,T ) : S1
× S1

→ R3 is an evolution by Willmore flow with initial value
R−1

2πφ f0( · , · + φ). Recall now that f0 satisfies (3-2), i.e., R−1
2πφ f0( · , · + φ) = f0. By the uniqueness

result for the Willmore flow, see [Kuwert and Schätzle 2002, Proposition 1.1], we obtain that

R−1
2πφ f (t)(u, v+φ)= f (t)(u, v) for all (u, v) ∈ S1

× S1,
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that is, (3-2). In particular, there exist smooth functions x, y, z : [0, T )× S1 such that

f (t)(u, v)= R2πv( f (t)(u, 0))= R2πv

x(t, u)
y(t, u)
z(t, u)

 . (3-4)

As an intermediate step for (3-3) we show that f (t)(3)(u, 0)= 0 for all t > 0 and u ∈ S1, i.e., z ≡ 0 on
[0, T )× S1. Set

S := sup{s ∈ [0, T ) : f (t) is a torus of revolution for all t ∈ [0, s]}.

We show that S = T. If S < T then observe that z(S, u)= 0 for all u ∈ S1 by smoothness of ( f (t))t∈[0,T )

and the fact that f (t)(3)(u, 0) = 0 for all t ∈ [0, S) and u ∈ S1. As additionally y(S, · ) is nonnegative
and f (S) is an immersion, f (S) is a torus of revolution by Proposition 3.2.

Restart the flow with f̃0 := f (S) (if S = 0 there is no need to restart). Choose now c0, ρ for f̃0 to be
as in Theorem D.1 and consider the time interval I := [S, S + (1/c0)ρ

4
]. The Willmore flow equation in

the local coordinates (u, v) of S1
× S1 reads

∂t f (t)= P(A(t),∇⊥ A(t), (∇⊥)2 A(t))N⃗ f (t),

where

N⃗ f (t) :=
∂u f (t)× ∂v f

|∂u f (t)× ∂v f (t)|

and P(A,∇⊥ A, (∇⊥)2 A) is a scalar quantity that can be bounded in terms of ∥g∥L∞(S1×S1) and
∥(∇⊥)k A∥L∞(S1×S1) (k = 0, 1, 2). All of those remain bounded in I by (D-1) and the explanation
afterwards. The idea now is to consider the evolution equation satisfied by z(t, u)2. Since

N⃗ f (t)(u, v)=
1

√
det(g(t))

R2πv

y(t, u)∂u y(t, u)+ ∂uz(t, u)z(t, u)
−y(t, u)∂u x(t, u)
−z(t, u)∂u x(t, u)

 ,
we find

∂t(z(t, u)2)= 2z(t, u)∂t z(t, u)= 2z(t, u)P(A(t),∇⊥ A(t), (∇⊥)2 A(t))N⃗ (3)
f (t)(u, 0)

= −2
1

√
det(g(t))

P(A(t),∇⊥ A(t), (∇⊥)2 A(t))∂u x(t, u)z(t, u)2.

By Theorem D.1 for fixed u ∈ S1 we have obtained{
∂t(z(t, u)2)≤ Cz(t, u)2, t ∈ I,
z(S, u)2 = 0,

and hence z(t, u)= 0 for all t ∈ I and all u ∈ S1, as u was chosen arbitrarily. Similar to before, again by
Proposition 3.2 and the discussion afterwards it can be shown that y(t, · ) > 0 for all t ∈ I. This is finally
a contradiction to the choice of S and thus S = T. The claim follows. □
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The previous lemma implies that for each Willmore evolution ( f (t))t≥0 starting at a torus of revolution
f0 : S1

× S1
→ R3 there exists a unique smooth evolution of curves (γ (t))t∈[0,T ) ⊂ C∞(S1,H2),

γ (t)(u)= f (t)(u, 0) such that

f (t)(u, v)=

 γ (1)(t)(u)
γ (2)(t)(u) cos(2πv)
γ (2)(t)(u) sin(2πv)

 , (3-5)

whereupon the flow can also be seen as an evolution of (γ (t))t∈[0,T ).

3.3. Symmetry of the limit immersion. Theorem 3.1 provides us with a general convergence criterion
for the Willmore flow and yields a smooth limit immersion f∞, which is a Willmore immersion. In this
section we need to check that the revolution symmetry is passed along to the limit; i.e., we will prove that
under certain conditions the limit immersion f∞ is a (Willmore) torus of revolution. Let us stress that this
not trivial because the notion of convergence is geometric, i.e., invariant with respect to reparametrization.
Hence classical results about pointwise convergence cannot be applied.

The arguments in this section make frequent use of the fact that to each torus of revolution f = Fγ :

S1
× S1

→ R3 one can easily associate a smooth orthonormal frame with respect to g f , given by

E1(u, v) :=
1

|γ ′(u)|
∂

∂u
, E2(u, v) :=

1
2πγ (2)(u)

∂

∂v
. (3-6)

This orthonormal frame also has some further interesting properties, for example that it diagonalizes
the second fundamental form A[ f ], and hence yields the principal curvatures of f . The first principal
curvature

κ1[ f ] = ⟨A[ f ](u,v)(E1, E1), N f ⟩R3 = −κeuc[γ ](u)

coincides up to a sign with the Euclidean scalar curvature of the profile curve, while the second principal
curvature

κ2[ f ] = ⟨A[ f ](u,v)(E2, E2), N f ⟩R3 =
(γ (1))′(u)

|γ ′(u)|γ (2)(u)

depends heavily on the distance of the profile curve to the revolution axis. This will be of great use when
it comes to explicit estimates involving the second fundamental form.

Lemma 3.4 (Revolution symmetry of the limit). Suppose that f : [0,∞)× (S1
× S1)→ R3 is a global

evolution by Willmore flow, convergent to some Willmore immersion f∞ : S1
× S1

→ R3 in Ck for all
k ∈ N. Suppose further that f (0) is a torus of revolution and (γ (t))t∈[0,∞) ⊂ C∞(S1,R2) is as in (3-5).
Then f∞ is (up to reparametrization) a Willmore torus of revolution. A profile curve γ∞ of f∞ can be
obtained by a Cm(S1,R2)-limit of appropriate reparametrizations of a sequence (γ (tj ))j∈N, tj → ∞.
Here m ∈ N is arbitrary. In particular γ∞ ∈ C∞(S1,H2) is a hyperbolic elastica.

Proof. Let (tj )j∈N ⊂ [0,∞) be an arbitrary sequence such that tj → ∞.

Step 1: bounds for the profile curves. After reparametrization we may assume without loss of generality
that (γ (tj ))j∈N is parametrized with constant Euclidean speed.
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Now fix m ∈ N arbitrary. To bound the W m,2-norm of (γ (tj ))j∈N we first bound ∥γ (tj )∥L∞(S1,R2). To
this end we observe by (3-5) that

∥γ (tj )∥L∞(S1,R2) = ∥ f (tj )∥L∞(S1×S1,R3).

Now ∥ f (tj )∥L∞ is uniformly bounded because it converges in Ck for all k ∈ N to f∞, whose image is a
compact subset of R3. Note that we have used here that the L∞-norm is not affected by reparametrization.
Next we bound LR2(γ (tj ))= ∥∂uγ (tj )∥L∞ . We use Lemmas 2.5 and D.7 to compute

LR2(γ (tj ))≤ W( f (tj ))
1/2µg f (tj )

(S1
× S1)1/2 ≤ diam( f (tj )(S

1
× S1))W( f (tj )).

Notice that diam( f (tj )(S
1

× S1)) ≤ 2∥ f (tj )∥L∞(S1×S1,R3), which is uniformly bounded in j . By
Lemma C.5 and the fact that S1

× S1 is compact we infer that W( f (tj )) → W( f∞) and hence
(W( f (tj )))j∈N is also uniformly bounded. We conclude the boundedness of (LR2(γ (tj )))j∈N.

Further, we bound second derivatives uniformly in j . To this end we introduce the following notation.
For a torus of revolution f : S1

× S1
→ R3 with profile curve γ ∈ C∞(S1,H2) we introduce the vector

field on S1
× S1

∂s |(u,v) =
1

|∂uγ (u)|euc

∂

∂u

∣∣∣
(u,v)

.

One easily checks that g f (∂s, ∂s)= 1 and(
−κ⃗euc[γ ](u)

0

)
= A(u,0)[ f ](∂s, ∂s) for all u ∈ S1.

By Remark D.4, ∥A[ f (tj )]∥L∞ is uniformly bounded in j . This is why

∥κ⃗euc[γ (tj )]∥L∞ ≤ ∥A[ f (tj )]∥L∞∥g f (tj )(∂s, ∂s)∥
2
L∞

is also uniformly bounded in j . We next control all higher-order arclength derivatives of the curvature of
γ (tj ) uniformly in j . Easy tensor calculus and ∂s = ∂u/|∂uγ (tj )(u)| implies with (B-4)

1
|∂uγ (tj )(u)|

(
−∂u κ⃗euc[γ (tj )](u)

0

)
= −D∂s

(
κ⃗euc[γ (tj )](u)

0

)
= D∂s A[ f (tj )](∂s, ∂s)

= ∇
⊥

∂s
A(∂s, ∂s)−

2∑
i=1

⟨A(∂s, ∂s), A(∂s, Ei )⟩R3 DEi [ f (tj )], (3-7)

where {E1, E2} is an arbitrary orthonormal basis of T(u,0)(S1
× S1) with respect to g f (tj ) and we have

used the (slightly ambiguous) shorthand notation A for A[ f (tj )]. Choosing E1 = ∂s and

E2(u, v)=
1

γ (tj )(2)(u)
∂

∂v

∣∣∣
(u,v)

,

we obtain with (B-3)

1
|∂uγ (tj )(u)|

(
−∂u κ⃗euc[γ (tj )](u)

0

)
= ∇

⊥

∂s
A(∂s,∂s)−|A(∂s,∂s)|

2 D∂s f (tj )

= ∇
⊥ A(∂s,∂s,∂s)+A(∇∂s∂s,∂s)+A(∂s,∇∂s∂s)−|A(∂s,∂s)|

2 D∂s f (tj )

= ∇
⊥ A(∂s,∂s,∂s)−|A(∂s,∂s)|

2 D∂s f (tj ), (3-8)
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where we have used in the last step that ∇∂s∂s = 0, which is an immediate consequence of the formula
d fp(∇X Y )= ∇

R3

d fp(X)(d f( · )(Y )) applied with f = f (tj ). Note that

D∂s f (u, 0)=
1

|γ ′(u)|
D∂u f =

1
|γ ′(u)|

(∂u f )

has Euclidean norm equal to 1. We obtain, since g f (tj )(∂s, ∂s)≤ 1, that

|∂u κ⃗euc[γ (tj )](u)|
|∂uγ (tj )(u)|

≤ ∥∇
⊥ A[ f (tj )]∥L∞ + ∥A∥

2
L∞ .

If we introduce the differential operator ∂arc
:= ∂u/|∂uγ (tj )| on S1, we have obtained

∥∂arcκ⃗euc[γ (tj )]∥L∞ ≤ ∥∇
⊥ A[ f (tj )]∥L∞ + ∥A∥

2
L∞ . (3-9)

Next we obtain by differentiating (3-8) and using the shorthand notation f = f (tj ), as well as ∇∂s∂s = 0,
again proceeding as in (3-7) and (3-8)(

−(∂arc)2κ⃗euc[γ (tj )](u)
0

)
=D∂s [∇

⊥ A(∂s,∂s,∂s)−|A(∂s,∂s)|
2 D∂s f ]

=D∂s ∇
⊥ A(∂s,∂s,∂s)−∂s(|A(∂s,∂s)|

2)D∂s f −|A(∂s,∂s)|
2 D∂s D∂s f

=∇
⊥

∂s
∇

⊥ A(∂s,∂s,∂s)−(∇
⊥A(∂s,∂s,∂s), A(∂s,∂s))D∂s f −∂s(|A(∂s,∂s)|

2)D∂s f −|A(∂s,∂s)|
2 D∂s D∂s f

=(∇⊥)2 A(∂s,∂s,∂s,∂s)−(∇
⊥A(∂s,∂s,∂s), A(∂s,∂s))D∂s f −∂s(|A(∂s,∂s)|

2)D∂s f −|A(∂s,∂s)|
2 D∂s D∂s f.

Note that since A is normal and ∇∂s∂s = 0 we have

∂s |A(∂s, ∂s)|
2
= 2(D∂s A(∂s, ∂s), A(∂s, ∂s))

= 2(∇⊥

∂s
A(∂s, ∂s), A(∂s, ∂s))= 2(∇⊥ A(∂s, ∂s, ∂s), A(∂s, ∂s)).

Moreover we have
D∂s D∂s f = (D∂s D∂s f )T + A(∂s, ∂s).

An easy computation1 now reveals that (D∂s D∂s f )T = 0 and we obtain(
−(∂arc)2κ⃗euc[γ (tj )](u)

0

)
= (∇⊥)2 A(∂s, ∂s, ∂s, ∂s)− 3(∇⊥ A(∂s, ∂s, ∂s), A(∂s, ∂s))D∂s f − |A(∂s, ∂s)|

2 A(∂s, ∂s).

For short we write(
−(∂arc)2κ⃗euc[γ (tj )](u)

0

)
= (∇⊥)2 A + ∇

⊥ A ∗ A ∗ D∂s f + A ∗ A ∗ A,

which implies

∥(∂arc)2κ⃗euc∥L∞ ≤ C[∥(∇⊥)2 A∥L∞ + ∥∇ A∥L∞ ∥A∥L∞ + ∥A∥
3
L∞].

1Recall that the normal to the curve γ coincides up to a sign with the normal to f (6).
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Inductively one shows that for all m ∈ N(
−(∂arc)m κ⃗euc[γ (tj )](u)

0

)
= (∇⊥)m A + P1(A,∇⊥ A, . . . , (∇⊥)m−1 A) ∗ D∂s f + P2(A,∇⊥ A, . . . , (∇⊥)m−2 A), (3-10)

where P1 is a real-valued polynomial of degree ≤ 2 and P2 is an R3-valued polynomial of degree ≤ 3.
We conclude from (3-10) that for all m ∈ N

∥∂m
u γ (tj )∥L∞ ≤ C(m)LR2(γ (tj ))

m
[
∥(∇⊥)m A∥L∞ +

m−1∑
i=0

∥(∇⊥)i A∥
3
L∞

]
. (3-11)

Hence for each fixed m ∈ N we can bound (γ (tj ))j∈N uniformly in W m+1,∞(S1,R2) and hence obtain a
convergent subsequence in Cm(S1,R2) for any m.

Step 2: the limit curve is a profile curve. By a diagonal argument we can also obtain a sequence tj →∞ (no
relabeling) and γ∞ ∈ C∞(S1,R2) such that γ (tj ) converges to γ∞ in Cm(S1,R2) for all m ∈ N (classical
convergence). Note also that γ∞ is parametrized with constant Euclidean speed and γ (2)∞ ≥ 0 on S1. We
next show that γ∞ ∈C∞(S1,H2), i.e., infS1 γ

(2)
∞ >0. Indeed, assume the opposite, i.e., there exists u0 ∈S1

such that γ (2)∞ (u0)= 0. Notice that this and γ (2)∞ ≥ 0 also yield (γ (2)∞ )′(u0)= 0. As a consequence, we
infer that there exist C > 0 and δ0> 0 such that 0 ≤ γ

(2)
∞ (u)≤ C |u−u0|

2 for all u ∈ (u0 −δ0, u0 +δ0). The
fact that γ∞ is parametrized with constant Euclidean velocity also yields that |(γ

(1)
∞ )′(u0)| =LR2(γ∞) > 0.

With this information we now estimate the following quantity for arbitrary δ ∈ (0, δ0):

Q :=

∫ 1

0

|(γ
(1)
∞ )′(u)|2

γ
(2)
∞ (u)

du ≥

∫ u0+δ

u0−δ

|(γ
(1)
∞ )′(u)|2

C |u − u0|2
du ≥

1
Cδ2

∫ u0+δ

u0−δ

|(γ (1)
∞
)′(u)|2 du.

Taking the limit δ → 0+ yields infinity on the right-hand side, since

1
2δ

∫ u0+δ

u0−δ

|(γ (1)
∞
)′(u)|2 du → |(γ (1)

∞
)′(u0)|

2
= LR2(γ∞)

2 > 0.

We infer that Q = ∞. On the other hand, Fatou’s lemma and the explicit formula for the second principal
curvature κ2 of a surface imply that

Q ≤ lim inf
j→∞

∫ 1

0

|(γ (tj )
(1))′|2

γ (tj )(2)
du = lim inf

j→∞

LR2(γ (tj ))

2π

∫ 1

0

∫ 1

0

2π |(γ (tj )
(1))′|2

γ (tj )(2)LR2(γ (tj ))
du dv

≤ lim inf
j→∞

LR2(γ (tj ))

2π

∫ 1

0

∫ 1

0
κ2[Fγ (tj )]

2
{2πγ (tj )

(2)LR2(γ (tj ))} du dv

≤ lim inf
j→∞

LR2(γ (tj ))

2π

∫
S1×S1

|A[Fγ (tj )]|
2 dµFγ (tj )

= lim inf
j→∞

LR2(γ (tj ))

2π

∫
S1×S1

|A[ f (tj )]|
2 dµ f (tj ) = lim inf

j→∞

2LR2(γ (tj ))

π
W( f (tj )),
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where the last identity is due to the Gauss–Bonnet theorem; see (A-4). Recall from estimates in Step 1
that LR2(γ (tj )) is uniformly bounded. As a consequence of this one infers that Q <∞, a contradiction.
We obtain therefore that γ∞ ∈ C∞(S1,H2).

Step 3: convergence of the associated surfaces. By the following proposition (Proposition 3.5), the tori
of revolution Fγ (tj ) converge to Fγ∞

classically in Ck for all k. Since Fγ (tj ) is a reparametrization of
f (tj ) for all j ∈ N, also f (tj ) converges to Fγ∞

in Ck for all k. By assumption however, f (tj ) also
converges to f∞ in Ck for all k (in general not anymore classically, but in the sense of Definition C.7).
Applying Corollary C.12 we infer that f∞ coincides up to reparametrization with Fγ∞

. In particular f∞
is (up to reparametrization) a torus of revolution. Since f∞ is also a Willmore immersion it must (up
to reparametrization) be a Willmore torus of revolution. By (2-12) we infer also that γ∞ is a hyperbolic
elastica. □

The following proposition is needed to complete the proof of the previous lemma.

Proposition 3.5. Let m ≥1 and suppose that (γj )j∈N ⊂C∞(S1,H2) converges in Cm(S1,R2) (classically)
to some immersed curve γ ∈ Cm(S1,H2). Then Fγj converges classically to Fγ in Cm(S1

× S1).

Proof. We will use without further notice the characterization of Cm-convergence in Proposition C.9. We
show the claim only for m = 1, the other cases follow by induction. We define wj : S1

× S1
→ R3 via

wj (u, v) := Fγj (u, v)− Fγ (u, v)=

 γ
(1)
j (u)− γ (1)(u)

(γ
(2)
j (u)− γ (2)(u)) cos(2πv)

(γ
(2)
j (u)− γ (2)(u)) sin(2πv)

 (3-12)

and we show that ∥wj∥L∞(S1×S1,ĝ), ∥Dwj∥L∞(S1×S1,ĝ) → 0 as j → ∞. Here ĝ = F∗
γ gR3 is the metric

induced by Fγ . The fact that ∥wj∥L∞ → 0 follows directly from (3-12) by the estimate

∥wj∥L∞ ≤ ∥γj − γ ∥L∞ → 0.

Let E1, E2 be the orthonormal frame as in (3-6). Then

∥Dwj∥L∞ = sup
S1×S1

sup
g(X,X)≤1

|Dwj (X)| = sup
S1×S1

sup
θ2

1 +θ2
2 ≤1

|Dwj (θ1 E1 + θ2 E2)|, (3-13)

and

|Dwj (E1)| =
1

|γ ′(u)|

∣∣∣∣∂wj

∂u

∣∣∣∣≤ 1
|γ ′(u)|

∥γ ′

j − γ ′
∥∞ ≤

1
infS1 |γ ′|

∥γ ′

j − γ ′
∥∞,

|Dwj (E2)| =
1

2πγ (2)(u)

∣∣∣∣∂wj

∂v

∣∣∣∣≤ 1
infS1 γ (2)

∥γj − γ ∥L∞ .

Note that infS1 |γ ′
|> 0 as γ is immersed and infS1 γ (2) > 0 since γ ∈ C∞(S1,H2) and S1 is compact.

The claim follows from (3-13) since γj → γ in C1. □

3.4. Rotational symmetry and concentration. In this section we will prove a lemma that controls the
distance of the concentration points to the axis of revolution. Here the revolution symmetry will play an
important role. The following lemma is the main observation that rules out Case 2 in Theorem 3.1.
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Lemma 3.6 (Distance control for concentration points). Let f : [0, T )× (S1
× S1)→ R3 be a maximal

evolution by Willmore flow such that f (0) is a torus of revolution. Suppose that tj → T. Let (rj )j∈N be as
in Theorem 3.1 and let x j ∈ R3 be such that∫

f (tj )−1(Brj (x j ))

|A[ f (tj )]|
2 dµg f (tj )

≥ ε0. (3-14)

Let h j ∈R, ρj >0 and σj ∈S1 such that x j/rj is expressed in cylindrical coordinates by 2 x j/rj = (h j , ρjσj ).
Then (ρj )j∈N is bounded.

Proof. We first use scaling properties to obtain that∫
( f (tj )/rj )−1(B1(x j/rj ))

∣∣∣∣A[ f (tj )

rj

]∣∣∣∣2 dµg f (tj )/rj
≥ ε0. (3-15)

Now write x j/rj = (h j , ρjσj ) as in the statement. Since f (tj )/rj has a revolution symmetry (see
Lemma 3.3), we conclude from (3-15) that the curvature concentration does not only happen at points but
actually on circles. More precisely,∫

( f (tj )/rj )−1(B1(h j ,ρjσ))

∣∣∣∣A[ f (tj )

rj

]∣∣∣∣2 dµg f (tj )/rj
≥ ε0 for all σ ∈ S1. (3-16)

Next, we define for each ρ > 0 the maximal number of disjoint closed balls of radius 1 needed to cover
the circle (0, ρS1)⊂ R3

N (ρ) := max
{
l ∈ N : there exist ω1, . . . , ωl ∈ S1

such that B1((0, ρω1)), . . . , B1((0, ρωl)) are pairwise disjoint
}
.

This number depends only on the radius of the circle and not on its position in R3. By compactness of S1,
N (ρ) is well-defined and finite. Moreover, using (3-16) on N (ρj ) disjoint balls that cover (h j , ρj S1)

and that preimages of disjoint sets are always disjoint, we infer∫
S1×S1

∣∣∣∣A[ f (tj )

rj

]∣∣∣∣2 dµg f (tj )/rj
≥ N (ρj )ε0.

Note that this implies by scaling properties and the Gauss–Bonnet theorem that

N (ρj )≤
1
ε0

∫
S1×S1

|A[ f (tj )]|
2 dµg f (tj )

=
1
ε0

W( f (tj ))≤
W( f0)

ε0
.

To infer that ρj is bounded it suffices now to show that N (ρ)→ ∞ as ρ→ ∞. To this end we prove that

N (ρ)≥
π

4 arccos(1 − 8/ρ2)
for ρ ≥ 4. (3-17)

2 That is, h j = x(1)j /rj ∈ R, ρj =

√
(x(2)j )2 + (x(3)j )2/rj ≥ 0 and σj = (x(2)j , x(3)j )/(ρj rj ) ∈ S1. We consider a cylinder with

axis in the direction (1, 0, 0).
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Let us first fix ρ ≥ 4. Note first that the squared Euclidean distance in R3 between (0, ρ cos(α), ρ sin(α))
and (0, ρ cos(β), ρ sin(β)) is given by

d2
α,β := 2ρ2(1 − cos(α−β)).

Also observe that the balls B1((0, ρ cos(α), ρ sin(α)), B1((0, ρ cos(β), ρ sin(β)) are disjoint if and only
if d2

α,β > 4. Hence it suffices to find distinct values α1, . . . , αÑ ∈ [0, 2π) such that for all i, j ∈ {1, . . . , Ñ }

one has
d2
αi ,αj

≥ 16 for all i, j ∈ {1, . . . , Ñ }.

We claim that the choice of αj := j arccos(1 − 8/ρ2), j = 1, . . . , Ñ, with

Ñ =

⌊
π

4 arccos(1 − 8/ρ2)

⌋
has the desired properties. Indeed, note that α1, . . . , αÑ ∈

[
0, π4

]
which implies that |αi − αj | ∈

[
0, π2

]
for all i, j . Using evenness of cos and monotonicity of cos in

[
0, π2

]
we obtain for all i, j ∈ {1, . . . , Ñ }

d2
αi ,αj

= 2ρ2(1 − cos(αi −αj ))= 2ρ2
(
1 − cos

(
|i − j | arccos

(
1 −

8
ρ2

)))
≥ 2ρ2

(
1 − cos

(
1 · arccos

(
1 −

8
ρ2

)))
= 16.

We have thus shown (3-17) and thus the claim follows. □

Remark 3.7. The lemma reveals an interesting property of the Willmore flow of tori of revolution. Suppose
that T < ∞. Then by Theorem 3.1 and in particular the property tj + c0r4

j < T, necessarily rj → 0.
Now let (x j )j∈N be a collection of points of concentration, i.e., points where (3-14) holds true. From the
previous lemma we know that the distance of x j/rj to the x-axis is bounded. Hence the distance (x j )j∈N

to the x-axis tends to zero. In other words, finite-time-concentration may only happen close to the x-axis.

3.5. Proof of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let f : [0, T )× S1
× S1

→ R3 be as in the statement. That f (t) is a torus of
revolution for all t ∈ [0, T ) follows from Lemma 3.3. Thus we can actually choose (γ (t))t∈[0,T ) as in the
statement; see also the discussion after Lemma 3.3. Let tj → T be such that LH2(γ (tj ))≤ M for some
M > 0 and let rj > 0 and f̃ j,c0 be as in Theorem 3.1. By Theorem 3.1 it is sufficient for the convergence
of the Willmore flow that (diam( f̃ j,c0))j∈N is bounded. Notice that we assume a bound on LH2 at tj and
we want a bound on the diameter at tj + c0r4

j . To this end we define f̃ j,0 := f (tj )/rj and choose for
all j ∈ N, x j as in (3-14). Such a choice of x j exists due to the definition of rj in Theorem 3.1. We
write x j/rj = (h j , ρjσj ), ρj > 0 and σj ∈ S1 as in Lemma 3.6 and infer from Lemma 3.6 that (ρj )j∈N is
bounded, say ρj ≤ C for all j ∈ N. Note that by the choice of x j , in particular (3-15), for all j ∈ N one
has dist(x j/rj , f̃ j,0(S

1
× S1))≤ 1. Now we look at γ̃j = γ (tj )/rj , which is clearly a profile curve of f̃ j,0

and satisfies also LH2(γ̃j )≤ M by scaling invariance of the hyperbolic length. By the distance estimate
we can find u j , vj ∈ S1 such that∣∣∣ 1

rj
[(x (2)j , x (3)j )− γ

(2)
j (u j )(cos(2πvj ), sin(2πvj ))]

∣∣∣≤ 1.
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Hence we infer that
γ̃
(2)
j (u j )≤ 1 +

∣∣∣ 1
rj
(x (2)j , x (3)j )

∣∣∣≤ 1 + ρj ≤ 1 + C.

From the bounded hyperbolic length and (2-8) we infer that

sup
S1
γ̃
(2)
j ≤ γ̃

(2)
j (u j )eLH2 (γ̃j ) ≤ (1 + C)eM .

This implies also by (2-9) that

LR2(γ̃j )≤ sup
S1
γ̃
(2)
j LH2(γ̃j )≤ M(1 + C)eM ,

and from Lemma 2.6 we now infer

diam( f̃ j,0)≤
1
2LR2(γ̃j )+ 2 sup

S1
γ̃
(2)
j ≤ D (3-18)

for some constant D ≥ 0. We now define f̃ j (s) := f (tj + sr4
j )/rj , s ∈ [0, c0], taking into account the

parabolic scaling. It is easy to see that then f̃ j is a solution of the Willmore flow equation and f̃ j (0)= f̃ j,0

and f̃ j (c0)= f̃ j,c0 . Hence we can estimate by Lemma D.6

diam( f j,c0)≤ C(W( f̃ j,0))(diam( f̃ j,0)+ c1/4
0 ).

Using that by scaling invariance W( f̃ j,0)= W( f (tj ))≤ W( f0) and (3-18) we obtain

diam( f j,c0)≤ C(W( f0))(D + c1/4
0 ). (3-19)

By Theorem 3.1 this implies that T = ∞ and ( f (t))t∈[0,∞) is a convergent evolution. It only remains to
show that the limit is a torus of revolution. This is however a direct consequence of Lemma 3.4. □

Proof of Theorem 1.3. Let ( f (t))t∈[0,T ) and (γ (t))t∈[0,T ) be as in the statement. We distinguish two cases.

Case 1: W( f0) < 8π . To show long-time existence and convergence of the evolution we apply
Theorem 1.2. To this end we need to show that

lim inf
t→T

LH2(γ (t)) <∞.

First we observe that (γ (t))t∈[0,T ) satisfies

E(γ (t))=
2
π
W(Fγ (t))=

2
π
W( f (t))≤

2
π
W( f0) < 16.

We apply Theorem 2.2 with ε := 16 −
2
π
W( f0) to find that for each t ∈ [0, T ) one has

LH2(γ (t))≤
1

c(ε)
E(γ (t))=

2
πc(ε)

W( f (t))≤
2

πc(ε)
W( f0),

and hence the hyperbolic length is uniformly bounded for t ∈ [0, T ). By Theorem 1.2 the evolution
converges in Ck for all k and the limit, say f∞ : S1

× S1
→ R3, is a Willmore torus of revolution. By the

gradient flow properties of the Willmore flow and Lemma C.3 we obtain that W( f∞) ≤ W( f0) < 8π .
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We obtain from Proposition 2.4 that f∞ is, up to reparametrization, a Clifford torus, possibly rescaled
and translated in the direction (1, 0, 0)T. The claim follows.

Case 2: W( f0)= 8π . We first claim that f0 is not a Willmore surface. Indeed, if it were then it would
by Proposition 2.4 be a rescaled and translated reparametrization of a Clifford torus. But the Willmore
energy of the Clifford torus is 2π2, contradicting W( f0)= 8π . Hence

d
dt

W( f (t))
∣∣∣
t=0

= −∥∇L2W( f0)∥
2
L2(6)

< 0,

which implies that there exists t0 > 0 such that W( f (t0)) < 8π . We restart the Willmore flow with f (t0)
which satisfies the assumptions of Case 1 and hence converges to a reparametrization of the Clifford
torus, possibly rescaled and translated in the direction (1, 0, 0)T. The claim follows. □

3.6. Optimality. We show that the upper bound of 8π on the Willmore energy of the initial datum in
Theorem 1.3 is sharp by proving Theorem 1.4. In the statement of this theorem, the geometric quantities
that may possibly degenerate along the flow are the second fundamental form or the diameter. On contrary,
the statement of Theorem 1.2 suggests another quantity which must degenerate — the hyperbolic length.
In the following we will construct the nonconvergent evolutions and study the relation between the
degenerating quantities.

Lemma 3.8 (The singular evolutions). For any ε > 0 there exists a torus of revolution f0 : S1
× S1

→ R3

such that W( f0) < 8π + ε, and the maximal Willmore flow ( f (t))t∈[0,T ) starting at f0 satisfies

lim
t→T

LH2(γ (t))= ∞.

The main idea is to start the flow with an immersed curve that has total curvature

T [γ ] :=
1

2π

∫
γ

κeuc[γ ] ds (3-20)

equal to zero. This quantity T [ · ] turns out to be a flow invariant and can hence be helpful to classify
possible limits of convergent evolution. This in turn can also be used to show that some evolutions cannot
be convergent.

Lemma 3.9. The total curvature T, defined on curves in W 2,2(S1,R2)imm := {γ ∈ W 2,2(S1,R2) :

γ immersed} is integer-valued and weakly continuous in the relative topology of W 2,2(S1,R2)imm. More-
over it is a flow invariant for the Willmore flow of tori of revolution; i.e., if ( f (t))t∈[0,T ) is an evolution by
the Willmore flow with profile curve (γ (t))t∈[0,T ) then T [γ (t)] = T [γ (0)] for all t ∈ [0, T ).

Proof. The fact that T [ · ] is integer-valued and an invariant with respect to regular homotopies is very
classical and follows from the Whitney–Graustein theorem. Since γ (t) = f (t)(u, 0) (see (3-5)) and
t 7→ f (t) is a regular homotopy, so is t 7→ γ (t). Hence we can also conclude that it is a Willmore flow
invariant. The weak W 2,2-continuity follows immediately from the formula

T [γ ] :=
1

2π

∫ 1

0

1
|γ ′|

((γ (2))′′(γ (1))′ − (γ (1))′′(γ (2))′) dx

and the compact embedding W 2,2 ↪→ C1. □
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Proof of Lemma 3.8. Fix ε > 0. By [Müller and Spener 2020, Corollary 6.4] there exists a curve γε
such that 16 ≤ E(γε) < 16 + ε and T [γε] = 0, where T [ · ] is given as in (3-20). Now start the flow with
f0 = Fγε : S1

×S1
→ R3 defined as in (1-4) with profile curve γε and let ( f (t))t∈[0,T ) be the corresponding

evolution by the Willmore flow. Assume that for (γ (t))t∈[0,∞) as in (3-5) one has

lim inf
t→T

LH2(γ (t)) <∞.

By Theorem 1.2 we obtain that then T = ∞ and ( f (t))t∈[0,∞) is convergent to a Willmore torus of
revolution f∞. Let now tj → ∞ be a sequence such that LH2(γ (tj )) ≤ M < ∞ for all j ∈ N. By
Lemma 3.4 we obtain that an appropriate reparametrization of γ (tj ) converges in Ck(S1,R2) to some
γ∞ ∈ C∞(S1,H2), which is a profile curve of f∞, i.e., up to a reparametrization one has f∞ = Fγ∞

. By
(2-12) we infer that γ∞ is a hyperbolic elastica.

Now we choose φj ∈ C4(S1,S1) such that γ (tj )◦φj converges to γ∞ classically in C4(S1,R2). Then,
by the previous lemma

T [γ∞] = lim
j→∞

T [γ (tj )] = T [γ (0)] = 0.

Hence γ∞ is a hyperbolic elastica with vanishing Euclidean total curvature. By [Müller and Spener 2020,
Corollary 5.8] there exist no hyperbolic elastica of vanishing total curvature. We obtain a contradiction
and the claim follows. □

As an important ingredient for case (2) in Theorem 1.4, we need to show that global evolutions under
the Willmore flow of tori of revolution with unbounded hyperbolic length and no curvature concentration
must have unbounded diameter.

Lemma 3.10 (Diameter blow-up). Let f0 : S1
× S1

→ R3 be a torus of revolution and let ( f (t))t∈[0,∞)

evolve by the Willmore flow with initial datum f0. Let γ (t)= f (t)( · , 0) be the profile curve of f (t) for
all t ≥ 0. Assume that (A(t))t∈[0,∞) is bounded in L∞(6) and limt→∞ LH2(γ (t))= ∞. Then

lim
t→∞

diam( f (t)(S1
× S1))= ∞.

Proof. We first introduce the constant D := supt∈[0,∞) ∥A(t)∥L∞ <∞. Next we assume for a contradiction
that there exists some tj → T = ∞ such that diam( f (tj )(S

1
× S1)) ≤ M < ∞ for all j ∈ N. Let

(rj )j∈N ⊂ (0,∞) be as in Theorem 3.1. Note that there exists x j ∈ R3

ε0 ≤

∫
f (tj )−1(Brj (x j ))

|A[ f (tj )]|
2 dµg f (tj )

≤ D2µg f (tj )
( f (tj )

−1(Brj (x j ))).

By (D-2) we have that

µg f (tj )
( f (tj )

−1(Brj (x j )))≤ CW( f (tj )))r2
j ≤ CW( f0)r2

j .

In particular we find by the previous two equations

r2
j ≥

ε0

D2CW( f0)
; (3-21)
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i.e., there exists δ >0 such that rj ≥ δ for all j ∈ N. Since we have assumed that diam( f (tj )(S
1
×S1))≤ M

we obtain that

diam
(

f (tj )

rj
(S1

× S1)

)
≤

1
rj

diam( f (tj )(S
1
× S1))≤

1
δ

M.

Now recall that f̃ j (s) := f (tj + sr4
j )/rj , s ∈ [0, c0], defines a solution of the Willmore flow, with

f̃ j (0)= f (tj )/rj and f̃ j (c0)= f̃ j,c0 , defined as in Theorem 3.1. With Lemma D.6 we obtain thus that

diam( f̃ j,c0)≤ C
(
W
(

f (tj )

rj

))(
diam

(
f (tj )

rj

)
+ c1/4

0

)
≤ C(W( f0))

(
M
δ

+ c1/4
0

)
,

which is uniformly bounded in j . This implies by Theorem 3.1 that there exists a Willmore immersion
f∞ : S1

× S1
→ R3 such that f (t)→ f∞ in Ck for all k ∈ N. By Lemma 3.4, f∞ is a Willmore torus of

revolution. In particular, up to reparametrization one has f∞ = Fγ∞
for some γ∞ ∈ C∞(S1,H2). We

next claim that there exists δ > 0 such that infS1 γ (t)(2) > δ for all t ∈ [0,∞). To this end observe

lim
t→∞

inf
S1
γ (t)(2) = lim

t→∞
inf

S1×S1

√
( f (t)(2))2 + ( f (t)(3))2

= inf
S1×S1

√
( f (2)

∞
)2 + ( f (3)

∞
)2 = inf

S1
γ (2)

∞
> 0,

since γ (2)∞ (u) > 0 for all u ∈ S1 and S1 is compact. Note that we have used here that the infimum
expression is independent of the parametrization of f (t). This and the fact that ( f (t))t∈[0,∞) is a smoothly
evolving family of tori of revolution implies infS1 γ (t)(2) > δ for all t ∈ [0,∞). Next we look at the
surface area of f (t), i.e.,

µg f (t)(S
1
× S1)= 2π

∫ 1

0
|γ (t)′(u)|γ (2)(t)(u) du,

and infer
µg f (tj )

(S1
× S1)≥ 2πδ2LH2(γ (tj ))→ ∞.

With Lemma D.7 it follows

M ≥ diam( f (tj )(S
1
× S1))≥

√
µg f (tj )

(S1 × S1)

W( f (tj ))
≥

√
µg f (tj )

(S1 × S1)

W( f0)
→ ∞.

A contradiction. We infer that limt→∞ diam( f (t)(S1
× S1))= ∞. □

In the proof we have used without further notice that the concept of tori of revolution in [Blatt 2009,
Definition 2.2] coincides with our definition in Definition 1.1, at least up to reparametrization. For details
recall Proposition 3.2 and the discussion afterwards.

Proof of Theorem 1.4. Let ε > 0 be as in the statement and f0 be as in Lemma 3.8. Then the evolution
( f (t))t∈[0,T ) satisfies limt→T LH2(γ (t)) = ∞. Next let tj ↑ T be a sequence. Let ε0 > 0, c0 > 0 and
(rj )j∈N be as in Theorem 3.1. We distinguish now two cases.

Case 1: there exists a subsequence of rj that converges to zero. We claim that then condition (1) in the state-
ment occurs. To this end assume that (∥A(t)∥L∞)t∈[0,T ) is bounded, say D := supt∈[0,T ) ∥A(t)∥L∞ <∞.
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Then one has by (3-1) that for all j ∈ N there exists x j ∈ R3 such that

ε0 ≤

∫
f (tj )−1(Brj (x j ))

|A(tj )|
2 dµg f (tj )

≤ D2µg f (tj )
( f (tj )

−1(Brj (x j )).

Using (D-2) we find that ε0 ≤ cW( f0)D2r2
j . This is a contradiction to the condition that up to a

subsequence rj → 0. Hence we have shown that (∥A(t)∥L∞(6))t∈[0,T ) is unbounded.

Case 2: there exists δ > 0 such that rj ≥ δ for all j ∈ N. First observe that in this case T = ∞ since
tj + c0r4

j < T by Theorem 3.1. If condition (1) in the statement holds true, i.e., (∥A(t)∥L∞(6))t≥0 is
unbounded, there is nothing to prove. Hence we may assume that (∥A(t)∥L∞(6))t≥0 is bounded. Since
limt→∞ LH2(γ (t)) = ∞, by Lemma 3.10 we find that limt→∞ diam( f (t))(S1

× S1) = ∞ and hence
condition (2) occurs. This proves the claim. □

4. An application: energy minimization among conformal constraints

A very vivid field of research is the minimization of the Willmore energy among all tori that are conformally
equivalent to a reference torus. Being conformally equivalent means that the surface can be parametrized
with a conformal immersion of the reference torus. Taking a reference torus of the form C/(Z +ωZ) one
can also associate to every torus its conformal class, defined as follows.

Definition 4.1 (Conformal class; see [Ndiaye and Schätzle 2015, p. 293]). Let S ⊂ R3 be a smooth torus.
Then there exists a unique ω ∈ C satisfying |ω| ≥ 1, Im(ω) > 0 and Re(ω) ∈

[
0, 1

2

]
such that there exists

a conformal smooth immersion
F :

C

Z +ωZ
→ S,

i.e.,

gF
i, j = e2uδi, j for some u ∈ C∞

(
C

Z +ωZ

)
. (4-1)

The value ω = ω(S) ∈ C is then called the conformal class of S. If ω is purely imaginary, we call the
torus rectangular.

As it turns out, all tori of revolution are rectangular (see also [Langer and Singer 1984a, Proposition 7]).

Proposition 4.2. Suppose that γ ∈ C∞(S1,H2). Then Fγ (S1
× S1), the torus with profile curve γ , has

conformal class

ω(Fγ (S1
× S1))=

{
iLH2(γ )/(2π), LH2(γ )≥ 2π,
i2π/LH2(γ ), LH2(γ ) < 2π.

In particular, each torus of revolution is rectangular and ω(Fγ (S1
× S1)) is a continuous function of

LH2(γ ).

Proof. Let γ̄ : R → R be the 1
2πLH2(γ )-periodic reparametrization of γ with constant hyperbolic

velocity 2π . If LH2(γ )≥ 2π we choose the smooth immersion

F :
C

Z + (iLH2(γ )/(2π))Z
→ Fγ (S1

× S1)
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by

F(s + i t)=

 γ̄ 1(t)
γ̄ 2(t) cos(2πs)
γ̄ 2(t) sin(2πs)

 . (4-2)

An easy computation shows gF
1,2 = gF

2,1 = 0 and

gF
1,1 = (γ̄ 1)′2 + (γ̄ 2)′2, gF

2,2 = 4π2(γ̄ 2)2.

Therefore by our choice of parametrization

gF
1,1

gF
2,2

=
(γ̄ 1)′2 + (γ̄ 2)′2

4π2(γ̄ 2(t))2
= 1.

Hence (4-1) is satisfied and F is a conformal immersion. Moreover one readily checks that ω =

iLH2(γ )/(2π) meets the requirements of Definition 4.1.
If LH2(γ ) < 2π we choose

F̃ :
C

Z + i(2π/LH2(γ ))Z
→ Fγ (S1

× S1)

to be given by

F̃(s + i t) := F
(
LH2(γ )

2π
t + i

LH2(γ )

2π
s
)
,

where F is as in (4-2) and the claim follows also in this case arguing as before. □

Remark 4.3. The conformal class of the Clifford torus is ω = i . Indeed, its defining curve is

γ (t)=

(
0
1

)
+

1
√

2

(
cos(t)
sin(t)

)
, t ∈ [−π, π).

From this we conclude with the residue theorem (more precisely [Freitag and Busam 2005, Proposi-
tion III.7.10]) that

LH2(γ )=

∫ π

−π

1
√

2 + sin(t)
dt =

∫ π

−π

1
√

2 + 2 cos(t/2) sin(t/2)
dt

=

∫ π

−π

1
√

2 + 2 tan(t/2)
1+tan2(t/2)

dt =

∫ π

−π

1 + tan2(t/2)
√

2(1 + tan2(t/2))+ 2 tan(t/2)
dt

= 2
∫

∞

−∞

1
√

2(1 + z2)+ 2z
dz = 2

∫
∞

−∞

1
√

2
(
z −

−1+i
√

2

)(
z −

−1−i
√

2

)
= 2(2π i)

∑
a:Im(a)>0

Res

(
−1

√
2
(
z −

−1+i
√

2

)(
z −

1−i
√

2

) , a

)
= 4π i

1
√

2
(

−1+i
√

2
−

−1−i
√

2

) = 2π.

An interesting problem is the minimization of the Willmore functional in each conformal class.
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Definition 4.4 (Conformally constrained Willmore minimization). For ω as in Definition 4.1 we set

M3,1(ω) := inf
{
W( f ) : f :

C

Z +ωZ
→ R3 conformal immersion

}
.

In [Ndiaye and Schätzle 2015, Proposition D.1] the authors show that there exists some b0 ≥ 1 such
that b ≥ b0 implies M3,1(ib) < 8π . Our first contribution in this context is the new insight that b0 = 1.
We prove the existence of tori of revolution with Willmore energy smaller than 8π in each conformal
class ω = ib, b ≥ 1, via the Willmore flow studied in Theorem 1.3. Note that C/(Z + ibZ) and S1

× S1

are diffeomorphic with diffeomorphism φ : S1
× S1

→ C/(Z + ibZ) being given by φ(u, v)= u + ibv.
Hence the results about the Willmore flow in Theorem 1.3 apply also for surfaces defined on C/(Z+ ibZ).

Theorem 4.5. For each b ≥ 1 there exists a torus of revolution Tb such that ω(Tb)= ib and W(Tb) < 8π .

Proof. From the construction in the proof of [Ndiaye and Schätzle 2015, Proposition D.1] follows that
there exists b0 > 1 such that for all b ≥ b0 there exists a torus Tb as in the statement. Note that actually
the authors construct only a C1,1-torus of revolution Tb, but by mollification of the profile curve one can
easily obtain a smooth torus of revolution that satisfies the same requirements and differs not too much in
the conformal class as the hyperbolic length depends continuously on γ .

It remains to prove the claim for b ∈ [1, b0). For this choose f0 : C/(Z + ib0Z)→ R3 to be a smooth
conformal parametrization of Tb0 and let ( f (t))t∈(0,∞) be the evolution of f0 by the Willmore flow, which
is global and smoothly convergent to the Clifford torus (possibly rescaled and translated in the direction
(1, 0, 0)) by Theorem 1.3. Moreover, f (t) is a torus of revolution for all t ≥ 0. Let γ (t) = f (t)( · , 0)
be the profile curve of f (t) for all t ≥ 0, i.e., f (t) = Fγ (t). By (3-5), t 7→ γ (t) is a smooth family of
curves for t ≥ 0 and in particular LH2(γ (t)) depends smoothly on t . By Proposition 4.2 one obtains that
t 7→ (1/ i)ω(Fγ (t)) is real-valued and depends continuously on t . We show next that along a subsequence
t 7→ (1/ i)ω(Fγ (t)) tends to 1 as t → ∞. By Lemma 3.4 we obtain that there exists some tj → ∞ such
that an appropriate reparametrization of γ (tj ) converges in C2(S1,R2) to γ∞ ∈ C∞(S1,H2), a profile
curve of the Clifford torus (possibly rescaled and translated in the direction (1, 0, 0)). Thus we have

2π = LH2(γ∞)= lim
j→∞

LH2(tj ), (4-3)

i.e., (1/ i)ω(Fγ (tj ))→ 1 as j → ∞. Since (1/ i)ω(Fγ (0))= b0, each value between 1 and b0 is attained
by the intermediate value theorem. From this the existence of a torus of revolution Tb for each b ∈ [1, b0)

follows. □

Remark 4.6. Theorem 4.5 can also be proven using the results in [Müller and Spener 2020] concerning
the elastic flow in H2 (which also dissipates the Willmore energy).

In [Kuwert and Schätzle 2013] the authors prove that the infimum in a conformal class ω is attained
once one can find a competitor with energy below 8π . For ω = ib our small energy tori serve as such
competitors and show that the infimum is attained.

Corollary 4.7. For each b ≥ 1 the infimum M3,1(ib) is attained and the map b → M3,1(ib) is continuous
on [1,∞).
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Proof. Theorem 7.3 and Proposition 5.1 in [Kuwert and Schätzle 2013] show that each b ≥ 1 where
M3,1(ib) < 8π is a point of continuity of b 7→ M3,1(ib) and a point where the infimum in the definition
of M3,1 is attained. The claim then follows directly from this result and Theorem 4.5. □

The symmetries of the Willmore energy might suggest that the infimum of the Willmore energy in
each class of rectangular tori (i.e., ω = ib) is attained at a torus of revolution. This is in general still
open. Far reaching results are obtained using a formulation of the Willmore energy in S3 by means of
the stereographic projection. Since the stereographic projection is conformal it does also not change
the conformal class. Looking at the Willmore energy in S3 one can find tori with a lot of symmetries:
For α ∈ (0, 1) one can look at αS1

+
√

1 −α2S1. The stereographic projections of all of these are
tori of revolution. In particular, these are good candidates for minimizers in their conformal classes
ω = i

√
1 −α2/α. For α =

1
√

2
we obtain the Clifford torus which is the global minimizer and hence

surely the minimizer in its conformal class. In [Ndiaye and Schätzle 2014; 2015] the authors show that
for conformal classes close to the Clifford torus one still gets minimizers of the form αS1

×
√

1 −α2S1.
More precisely, the result [Ndiaye and Schätzle 2015, Theorem 3.1] shows that there exists b1 > 1 such
that for all b ≤ b1 one has that M3,1(b) is attained by

6b := P
(

1
√

1 + b2
S1

×
b

√
1 + b2

S1
)
,

where P : S3
→ R3 denotes the stereographic projection. The authors also obtain that b1 < ∞. The

critical value b1 can be understood as a point where a symmetry of the minimizers breaks down. They
also note that this property has to break down for large conformal classes; see [Ndiaye and Schätzle 2015,
p. 293–294]. In the following we will be able to find an explicit upper bound on the symmetry-breaking
value b1. This result is now obtained by energy comparison. There are other (sharper) results using a
stability discussion of 6b in S3; see [Kuwert and Lorenz 2013].

Corollary 4.8. Let b1 ≥ 1 be such that for b ≤ b1 the minimizer for M3,1(b) is attained by

6b := P
(

1
√

1 + b2
S1

×
b

√
1 + b2

S1
)
,

where P : S3
→ R3 denotes the stereographic projection. Then

b1 <
4
π

+

√
16
π2 − 1 ≃ 2.06136. (4-4)

Proof. Let b > 1 be such that 6b is a minimizer and let Tb be the torus constructed in Theorem 4.5.
Then, necessarily, W(6b) ≤ W(Tb) < 8π . This inequality implies the claim once we have shown that
W(6b)= π2(b + 1/b).

For this according to [Topping 2000, equation (9)] for all f :6 → R3

W( f )=

∫
6

(1
4
|H̃ |

2
P−1( f ) + 1

)
dµ f ,
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where H̃ denotes the mean curvature of P−1( f ) in S3 and µ f denotes the surface measure in S3. By
[Ndiaye and Schätzle 2014, equation (2.3)] we have |H⃗R4 |

2
= |H̃ |

2
+ 4 and hence we obtain

W( f )=
1
4

∫
6

|H⃗R4(P−1( f ))|2 dµ f .

Having now arrived in R4 and using that

P−1(6b)=
1

√
1 + b2

S1
×

b
√

1 + b2
S1,

we can define r := 1/
√

1 + b2 and use the parametrization

F : S1
× S1

∋ (φ, θ) 7→


r cos(2πφ)
r sin(2πφ)

√
1 − r2 cos(2πθ)

√
1 − r2 sin(2πθ)

 ∈ R4.

A computation reveals that

g = 4π2
(

r2 0
0 1 − r2

)
.

We obtain that {
1

2πr
∂

∂φ
,

1

2π
√

1 − r2

∂

∂θ

}
is an orthonormal basis of T(φ,θ)(S1,S1) and hence

H⃗R4(F)=
1

4π2r2

∂2 F
∂φ2 +

1
4π2(1 − r2)

∂2 F
∂θ2 ,

which implies that

|H⃗R4(F)|2 =
1
r2 +

1
1 − r2 .

Also note that
√

det(g)= 4π2r
√

1 − r2. The Willmore energy then reads

W(6b)=
1
4

(
1
r2 +

1
1 − r2

)
4π2r

√
1 − r2 = π2

(√
1 − r2

r
+

r
√

1 − r2

)
and the claim follows using that by definition of r one has r = 1/

√
1 + b2. □

Appendix A: Consistency between extrinsic and intrinsic view

In literature there are multiple ways to define geometric quantities like curvature. This also leads to
different notions of the Willmore energy and its gradient flow. Here we want to convince the reader that
all those notions are consistent with the one we chose. For this we first have to do some computations
in local coordinates. Let M be a smooth two-dimensional manifold, f : M → R3 be an immersion
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and ψ : M → R2 be a chart for M with coordinates (u1, u2). Given vector field X = x i (∂/∂ui ) and
Y = y j (∂/∂u j ) then

A(X, Y )= x i y j
(

∂2 f
∂ui∂u j −0k

i, j
∂ f
∂uk

)
, (A-1)

where 0k
i, j are the Christoffel symbols defined using the metric gi j = ⟨(∂/∂ui ) f, (∂/∂u j ) f ⟩. In particular,

we see that the second fundamental form is symmetric.
If f : M → R3 is an isometric immersion then for each local chart (u1, u2) of M one can define a unit

normal field

N⃗ =
∂u1 f × ∂u2 f
|∂u1 f × ∂u2 f |

for (u1, u2) and rewrite

A(X, Y )= x i y j
(

∂2 f
∂ui∂u j − gkl

〈
∂2 f
∂ui∂u j ,

∂ f
∂ul

〉
R3

∂ f
∂uk

)
= x i y j

〈
∂2 f
∂ui∂u j , N⃗

〉
R3

N⃗ . (A-2)

If f : M → f (M)⊂ R3 is now an isometric embedding and f (M) is orientable, N⃗ is independent of the
chosen chart and (A-2) coincides with the usual definition of the second fundamental form.

Let us now choose normal coordinates (u1, u2) and fix e1 = ∂ f/∂u1 and e2 = ∂ f/∂u2. Then by (A-2)
we find

A(ei , ej )= h j
i N⃗ ,

where h j
i denote the usual coefficients of the Weingarten map. Then, the mean curvature (vector) and

Gauss curvature are given by

H⃗ = A(e1, e1)+ A(e2, e2)= (h1
1 + h2

2)N⃗ = H N⃗ ,

K := ⟨A(e1, e1), A(e2, e2)⟩R3 − ⟨A(e1, e2), A(e2, e1)⟩R3 = h1
1h2

2 − (h1
2)

2,

(A-3)

where H denotes the scalar mean curvature. For Q( Å)H , the “cubic”-term in the Willmore equation,
one easily derives

Q( Å)H⃗ =
1
2 H(H 2

− 4K ).

With similar computations,

|A|
2
= |H |

2
− 2K =

2∑
i, j=1

⟨A(ei , ej ), A(ei , ej )⟩R3,

and hence for each toroidal immersion f : S1
× S1

→ R3 one has by the Gauss–Bonnet theorem∫
6

|A|
2 dµ f = 4W( f ). (A-4)

Similarly, again in the case of tori, an easy computation shows that | Å|
2
=

1
2 H 2

− 2K and∫
6

| Å|
2 dµ f = 2W( f ).

Also, note that | Å|
2
≤ |A|

2.
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Appendix B: Tensor calculus

Throughout the article, we use a nonstandard notation for some differential geometric concepts involving
connections, derivatives and tensors. We discuss here that our notation is consistent with that used in
[Kuwert and Schätzle 2001; 2002; 2004], since many results cited there are used. Here we shall briefly
introduce these concepts and clarify their meaning. Let M be a smooth two-dimensional manifold and
f ∈ C∞(M; Rn) be an immersion. Moreover, let ∇ be the Levi-Civita connection on M. For a vector
field X ∈ V(M) we define the full derivative DX : C∞(M; Rn)→ C∞(M; Rn) via

DX G :=

n∑
i=1

X (Gi )e⃗i , whenever G =

n∑
i=1

Gi e⃗i ∈ C∞(M; Rn), (B-1)

and {e⃗1, e⃗2, . . . , e⃗n} is the canonical basis of Rn. We say that G ∈ C∞(M; Rn) is a normal vector field
if G(p)⊥ d fp(Tp M) for all p ∈ M. We define for short Np M := d fp(Tp M)⊥ and N M :=

⊔
p∈M Np M

the normal bundle. For such a normal vector field G ∈ C∞(M, N M) we define the normal connection
of G to be

∇
⊥

X G|p := πNp M(DX G|p)= DX G⊥, (B-2)

where πU denotes the orthogonal projection on U. A normal vector field that will be used very frequently
is Y = A(Z ,W ) for some Z ,W ∈ V(M). This is however not just a normal vector field but each of its
components is also a (2, 0)-tensor — we may think of p → Ap(Z ,W ) as a (2, 0)-tensor on M with values
in the normal bundle N M, i.e., a for each p ∈ M it is a multilinear map from Tp M2 to Np M. If we do
so, the standard concept of tensorial connections (see [Lee 2018, Lemma 4.6]) is not applicable, since
it is needed that the tensor takes values in R. One can however overcome this by using two different
connections, namely ∇ and ∇

⊥. More precisely, for a (k, 0)-tensor F : p 7→ (Fp : Tp Mk
→ Np M) on M

with values in the normal bundle N M we can define a (k + 1, 0)-tensor ∇
⊥F via

∇
⊥F(X1, . . . , Xk+1) := ∇

⊥

X1
F(X2, . . . , Xk+1)−

k+1∑
j=2

F(X2, . . . ,∇X1 X j , . . . , Xk+1) (B-3)

for X1, . . . , Xk+1 ∈ V(M). It can easily be checked that ∇
⊥F is indeed a (k+1)-tensor, i.e., ∇

⊥Fp

depends only on X1(p), . . . , Xk+1(p). Moreover, if F is a (0, 0)-tensor on M with values in N M, i.e.,
F ∈ C∞(M; N M), then the notation of ∇

⊥F coincides with the previous definition in (B-2). We remark
that in [Kuwert and Schätzle 2001; 2002; 2004], ∇

⊥ and ∇ are both denoted by ∇. The L∞(M)-norm of
a (k, 0)-tensor F on M with values in N M is defined to be

∥F∥L∞(M) := sup
p∈M

sup
{E1,E2} orthonormal basis of Tp M

2∑
i1,...,ik=1

|F(Ei1, . . . , Eik )|,

where | · | denotes the norm in Rn. We will also use very frequently [Kuwert and Schätzle 2002,
equation (2.7)], which we state here for the reader’s convenience. Let f ∈ C∞(M; Rn) be an immersion
with second fundamental form A and normal bundle N M. Then for each G ∈C∞(M; N M) and X ∈V(M)
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one has

DX G = ∇
⊥

X G −

2∑
i=1

⟨G, A(X, Ei )⟩Rn DEi f, (B-4)

where {E1, E2} is an arbitrary orthonormal basis of Tp M with respect to g f := f ∗gRn. We also remark
that we can define a tensorial version of D, treated as a tensor on M with values in Rn . The transformation
law we prescribe here is analogous to (B-3), namely if F is a (k, 0)-tensor on M with values in Rn, we
define for X1, . . . , Xk+1 ∈ V(M)

DF(X1, . . . , Xk+1) := DX1 F(X2, . . . , Xk+1)−

k+1∑
j=2

F(X2, . . . ,∇X1 X j , . . . , Xk+1).

As an important special case we obtain for f ∈ C∞(M,Rn)

D2 f (X, Y )= DX DY f − D∇X Y f.

If f is additionally an immersion, this formula yields exactly the second fundamental form (see (2-1)).
Hence one could also write A[ f ] = D2 f .

Appendix C: On the smooth convergence of surfaces

Here we present some useful results concerning smooth convergence on compact subsets of Rn , which
we will simply call smooth convergence.

We remark that smooth convergence, see Definition 2.1, actually takes place in the equivalence class
of surfaces that coincide up to reparametrization, more precisely

Remark C.1. Consider a sequence of immersions ( f j )j∈N, f j :6 → Rn , that converges to f̂ smoothly
on compact subsets of Rn and a sequence of diffeomorphisms (9j )j∈N, 9j :6j →6, with 6j a smooth
manifold without boundary. Then it follows from the definition of smooth convergence that f j ◦9j

converges to f̂ smoothly on compact subsets of Rn . Moreover if9 : 6̃→ 6̂ is yet another diffeomorphism
then f j also converges to f ◦9 smoothly on compact subsets of Rn .

Remark C.2. In general, smooth convergence is not topology-preserving, i.e., the topologies of 6̂ and 6
need not coincide; see [Breuning 2015, Figure 6]. The situation is better if 6 is connected and 6̂ has a
compact component C . Lemma 4.3 in [Kuwert and Schätzle 2001] gives that 6, 6̂ are diffeomorphic.
By the previous remark they can then also chosen to be equal.

Next we examine how relevant geometric quantities behave with respect to smooth convergence, for
instance the diameter.

Lemma C.3. Suppose that ( f j )
∞

j=1 :6 → Rn is a sequence that converges smoothly on compact subsets

of Rn to f̂ : 6̂ → Rn . Then

diam f̂ (6̂)≤ lim inf
j→∞

diam f j (6).
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Proof. Suppose that ( f̂ (pk))
∞

k=1, ( f̂ (qk))
∞

k=1 ⊂ f̂ (6̂) are sequences such that

| f̂ (pk)− f̂ (qk)| → diam f̂ (6̂).

Then, by Definition 2.1 for each k ∈ N there exists j (k) ∈ N such that pk, qk ∈ 6̂( j) for all j ≥ j (k).
Now (2-5) implies that for all j ≥ j (k)

| f̂ (pk)− f̂ (qk)| ≤ | f j ◦φj (pk)− f j ◦φj (qk)| + |u j (pk)− u j (qk)|

≤ diam f j (6)+ 2∥u j∥L∞(6̂( j)).

Letting first j → ∞ and then k → ∞ we obtain the claim. □

Now we study the lower semicontinuity with respect to smooth convergence of the Willmore energy.
As a first step we prove the following result.

Lemma C.4. Let ( f j )j∈N, f j :6 → Rn be a sequence of immersions that converges smoothly on compact
subsets of Rn to an immersion f̂ : 6̂ → Rn . Let (U, ψ) be a chart for 6̂ such that U ⊂ 6̂(J ) for some
J ∈ N and ĝiτ ◦ψ−1

∈ C1(ψ(U )) 0̂αiτ ◦ψ−1
∈ C0(ψ(U )) for all i, τ, α, and det(ĝ), ĝ11 are bounded from

below by some positive δ > 0, where ĝiτ and 0̂αiτ denote the metric and Christoffel’s symbols induced by f̂
on 6̂. Moreover we require that ∥D2 f̂ ∥L∞(U,g f̂ )

, ∥A[ f̂ ]∥L∞(U,g f̂ )
, ∥D A[ f̂ ]∥L∞(U,g f̂ )

<∞. Let (φj )
∞

j=1,
φj : 6̂→6, be a sequence of diffeomorphisms as in Definition 2.1. Let ĝ(m) be the first fundamental form
induced by fm ◦φm on U with respect to the chart (U, ψ) and H(m) := H fm◦φm be the mean curvature of
fm ◦φm .

Then, ĝ(m) ◦ψ−1 converges to ĝ ◦ψ−1 uniformly in ψ(U ) and H(m) ◦ψ−1 converges to H f̂ ◦ψ−1

uniformly in ψ(U ).

Proof. For m > J let um be as in Definition 2.1 such that on 6̂(m) one has

fm ◦φm + um = f̂ and ∥(∇̂⊥)kum∥L∞(6̂(m)) → 0, m → ∞. (C-1)

Let (y1, y2) be the local coordinates induced by (U, ψ); in particular for all h ∈ C∞(6; Rd), d ∈ N,
in particular observe that ∂h/∂yi

= (∂(h ◦ ψ−1)/∂ei ) ◦ ψ for all h ∈ C∞(6; Rd), d ∈ N. Our first
intermediate claim is that ∂um/∂yi and ∂2um/(∂yi ∂yτ ) converge to zero uniformly in U for all i, τ .

In the following we let E1, E2 ∈ V(U ) be the smooth orthonormal frame on (U, g f̂ ) which we obtain
by applying the Gram-Schmidt procedure on {∂/∂y1, ∂/∂y2

}, i.e.,

E1 =
1√
ĝ1,1

∂

∂y1 and E2 =
1√

ĝ1,1
√

det(ĝ)

(
ĝ11

∂

∂y2 − ĝ12
∂

∂y1

)
.

Note that by (B-4)

∂um

∂yi = D(∂/∂yi )um = ∇̂
⊥

(∂/∂yi )
um −

2∑
j=1

〈
um, A[ f̂ ]

(
∂

∂yi , E j

)〉
R3

DE j f̂

and hence on U we have∣∣∣∣∂um

∂yi

∣∣∣∣≤ ∥∇̂
⊥um∥L∞(U ) + 2∥A[ f̂ ]∥L∞(U )|ĝi,i |

1/2
∥um∥L∞(U ). (C-2)
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Estimating

∥∇̂
⊥um∥L∞(U )≤∥∇̂

⊥um∥L∞(6̂(m))→0, ∥um∥L∞(U )≤∥um∥L∞(6̂(m))→0, |ĝi,i |≤∥ĝi,i◦ψ
−1

∥L∞(ψ(U )),

we infer that ∂um/∂yi converges to zero uniformly on U. Next we compute for all i, τ , writing for short
A = A[ f̂ ],

∂2um

∂yτ∂yi = D∂/∂yτ D∂/∂yi um = D∂/∂yτ

(
∇̂

⊥

∂/∂yi um −

2∑
j=1

〈
um, A

(
∂

∂yi , E j

)〉
Rn

DE j f
)

= D∂/∂yτ ∇̂
⊥

∂/∂yi um −

2∑
j=1

D∂/∂yτ
[〈

um, A
(
∂

∂yi , E j

)〉
Rn

DE j f
]

= ∇̂
⊥

∂/∂yτ ∇̂
⊥

∂/∂yi um −

2∑
l=1

〈
∇̂

⊥

∂/∂yi um, A
(
∂

∂yτ
, El

)〉
Rn

DEl f

−

2∑
j=1

〈
∂um
∂yτ

, A
(
∂

∂yi , E j

)〉
Rn

DE j f̂ −

2∑
j=1

〈
um, D∂/∂yτ A

(
∂

∂yi , E j

)〉
Rn

DE j f

−

2∑
j=1

〈
um, A

(
∂

∂yi , E j

)〉
Rn

D∂/∂yτ DE j f̂

= (∇̂⊥)2um

(
∂

∂yτ
,
∂

∂yi

)
+ ∇̂

⊥um

(
∇̂∂/∂yτ

∂

∂yi

)
−

2∑
l=1

〈
∇̂

⊥um

(
∂

∂yi

)
, A
(
∂

∂yτ
, El

)〉
Rn

DEl f −

2∑
j=1

〈
∂um
∂yτ

, A
(
∂

∂yi , E j

)〉
Rn

DE j f̂

−

2∑
j=1

〈
um, D A

(
∂

∂yτ
,
∂

∂yi , E j

)
+ A

(
∇̂∂/∂yτ

∂

∂yi , E j

)
+ A

(
∂

∂yi , ∇̂∂/∂yτ E j

)〉
Rn

DE j f̂

−

2∑
j=1

〈
um, A

(
∂

∂yi , E j

)〉
Rn

[
D2 f̂

(
∂

∂yτ
, E j

)
+ D f̂ (∇̂∂/∂yτ E j )

]
.

All terms that appear here as arguments of tensors can be bounded in L∞-norm with quantities that we
assumed to be bounded. Notice that a bound on ∇̂∂/∂yτ ∂/∂yi needs the fact that the Christoffel symbols lie
in C0(ψ(U )). Bounding ∇̂∂/∂yτ E j in terms of the given quantities needs the explicit representation of E j

that we discussed above. Here we also need that det(ĝ), ĝ11 are bounded from below uniformly in U. We
obtain with a straightforward computation that ∂2um/(∂yτ∂yi ) converges to zero uniformly in U.

We now show that ĝ(m) converges to ĝ uniformly on U, which implies the convergence claimed in
the statement. First note that by (C-1) and (C-2)

∂( fm ◦φm)

∂yτ
=
∂ f̂
∂yτ

+ o(1),

where ∂ f̂ /∂yτ are bounded by assumption. Hence, ∂( fm ◦ φm)/∂yτ and ĝ(m) are uniformly bounded.
Now we can compute using (C-1)

ĝiτ =

〈
∂ f̂
∂yi ,

∂ f̂
∂yτ

〉
Rn

= ĝiτ (m)+
〈
∂( fm ◦φm)

∂yi ,
∂um

∂yτ

〉
Rn

+

〈
∂( fm ◦φm)

∂yτ
,
∂um

∂yi

〉
Rn

+

〈
∂um

∂yτ
,
∂um

∂yi

〉
Rn
.



3112 ANNA DALL’ACQUA, MARIUS MÜLLER, REINER SCHÄTZLE AND ADRIAN SPENER

By the arguments above, the last three terms are uniformly convergent to zero and so convergence of the
first fundamental form is shown. Note in particular that also ĝ−1(m) converges to ĝ−1 since we assumed
that det(ĝ) is strictly bounded from below.

Observe now that by (A-1) and (A-3)

H⃗ f̂ = ĝiτ
(
∂2 f̂
∂yi∂yτ

− 0̂αiτ
∂ f̂
∂yα

)
,

H⃗(m)= ĝiτ (m)
(
∂2( fm ◦φm)

∂yi∂yτ
− 0̂αiτ (m)

∂( fm ◦φm)

∂yα

)
,

where 0̂αiτ (m) denotes the Christoffel symbols of the immersion fm ◦φm with respect to the chart (U, ψ).
We have already discussed the uniform convergence of all terms that H(m) consists of except for the
Christoffel symbols. The convergence of those however follows analogously to the convergence of ĝ(m)
from the classical formula

0̂αiτ (m)= gαβ(m)
〈
∂2( fm ◦φm)

∂yi∂yτ
,
∂( fm ◦φm)

∂yβ

〉
Rn
. □

Lemma C.5. Suppose that ( f j )
∞

j=1 : 6 → Rn is a sequence of immersions that converges smoothly on
compact subsets of Rn to an immersion f̂ : 6̂ → Rn. Then

W( f̂ )≤ lim inf
j→∞

W( f j ).

Additionally, if 6̂ is compact then W( f̂ )= lim j→∞ W( f j ).

Proof. We start choosing a cover {(Up, ψp)}p∈6̂ of 6̂ such that Up is an open neighborhood of p. Since
each p is contained in some6(m p) for some m p ∈N and6(m p) is open, we may assume that Up ⊂6(m p)

by possibly shrinking Up. Let Vp be a neighborhood of p compactly contained in Up. Then in each chart
(Vp, ψp), ĝi t and 0αi t are bounded and det(ĝ) is uniformly bounded from below by some δ = δ(p) > 0.
By second countability there exist countably many points {pν}∞ν=1 such that {(Vpν , ψpν )}

∞

ν=1 is a cover of
6̂ and there exists a locally finite partition of unity (ην)∞ν=1 of smooth and compactly supported functions
that satisfy supp(ην)⊂ Vpν . Now we infer by Lemma C.4 (taking diffeomorphisms φm as in (C-1)) and
Fatou’s lemma∫

6̂

H 2
f̂

dµ f̂ =

∞∑
ν=1

∫
Vpν

ηνH 2
f̂

dµ f̂ =

∞∑
ν=1

∫
ψpν (Vpν )

(ην ◦ψ−1
pν )(H f̂ ◦ψ−1

pν )
2
√

det ĝ ◦ψ−1
pν dx

=

∞∑
ν=1

lim
m→∞

∫
ψpν (Vpν )

(ην ◦ψ−1
pν )(H fm◦φm ◦ψ−1

pν )
2
√

det ĝ(m) ◦ψ−1
pν dx

≤ lim inf
m→∞

∞∑
ν=1

∫
ψpν (Vpν )

(ην ◦ψ−1
pν )(H fm◦φm ◦ψ−1

pν )
2
√

det ĝ(m) ◦ψ−1
pν dx

= lim inf
m→∞

∞∑
ν=1

∫
Vpν

ηνH 2
fm◦φm

dµ fm◦φm = lim inf
m→∞

∫
6̂

H 2
fm◦φm

dµ fm◦φm .
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All in all we obtain W( f̂ )≤ lim infm→∞ W( fm ◦φm)= lim infm→∞ W( fm) as the Willmore energy does
not depend on the reparametrization. If 6̂ is compact then the partition of unity can be chosen to be finite
and the last claim follows then with the same techniques. □

Lemma C.6 [Breuning 2015, Corollary 1.4]. Suppose that f j :6 → Rn and f̂ : 6̂ → Rn are such that
f j converges to f̂ smoothly on compact subsets of Rn. Then the surface measures f ∗

j µgj converge in
C0(R

n)′ to f̂ ∗µ f̂ .

A second concept of convergence that is related to smooth convergence is the C l-convergence which
we also use throughout the article.

Definition C.7. We say that a sequence of immersions ( f j )j∈N, f j :6→Rn, defined on a two-dimensional
manifold 6 without boundary converges to f̂ :6 → Rn in C l(6), l ∈ N, if there exist diffeomorphisms
φj :6 →6 for all j ∈ N and u j :6 → N6 such that f j ◦φj + u j = f̂ on 6 and ∥(∇̂⊥)ku j∥L∞(6) → 0
as j → ∞ for all k ∈ {0, . . . , l}.

Remark C.8. The two concepts of convergence we discussed are obviously related. Indeed, if f j : 6̃→Rn

is a sequence that converges smoothly on compact subsets to some f̂ : 6̃ → Rn and 6̃ is compact, then
f j converges to f̂ in C l for all l ∈ N. We further say that a family ( f (t))t∈[0,∞) converges to f̂ in C l for
all l if for each sequence tj → ∞ one has f (tj )→ f̂ as j → ∞.

We will now present an alternative characterization of C l convergence in which we do not need to
require that u j are orthogonal. However we have to pay a price — in this case one needs to control the
full derivative. Even though we expect this result to be true even in higher codimension, we formulate it
only in the case of n = 3 for the sake of simplicity. This will be sufficient for our purposes.

Proposition C.9. Let 6 be a compact orientable two-dimensional manifold without boundary and
f j :6 → R3 be a sequence of immersions and k ≥ 2. Then f j converges to a limit immersion f̂ :6 → R3

in Ck if and only if there exist wj ∈ Ck(6,R3) and Ck-smooth diffeomorphisms ψj : 6 → 6 such that
for j large enough

f j ◦ψj = f̂ +wj on 6

and for all k ∈ N one has ∥Dkwj∥L∞(6,g f̂ )
→ 0 as j → ∞.

Proof. First assume that f j :6 → R3 converges to f̂ :6 → R3 in Ck(6). Then, for j large enough one
can find u j ∈ Ck(6, N6) and Ck-diffeomorphisms φj :6 →6 such that

f j ◦φj = f̂ + u j on 6

and for all k ∈ N one has ∥(∇̂⊥)ku j∥L∞ → 0 as j → ∞. Now we choose ψj := φj and wj := u j . It only
remains to show that ∥Dkwj∥L∞ → 0 as k → ∞. For k = 1 we observe that for each X ∈ V(M) one has
by (B-4)

DXwj = ∇̂
⊥

Xwj −

2∑
i=1

⟨wj , A[ f̂ ](X, Ei )⟩R3 DEi f = ∇̂
⊥

X u j −

2∑
i=1

⟨u j , A[ f̂ ](X, Ei )⟩R3 DEi f. (C-3)
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We obtain that

∥Dwj∥L∞ ≤ ∥∇̂
⊥u j∥L∞ + C∥u j∥L∞∥A[ f̂ ]∥L∞∥D f̂ ∥L∞ .

Since 6 is compact, ∥A[ f̂ ]∥L∞ and ∥D f̂ ∥L∞ are finite and thus ∥Dwj∥L∞ → 0 as j → ∞. The estimates
for k ≥ 2 follow easily by using iterated versions of (C-3).

For the converse, suppose we have diffeomorphisms ψj and wj as in the statement. We denote by
Ck(6; R) the set of all Ck-smooth real-valued maps from 6 of R equipped with the norm ∥ f ∥Ck(6;R) :=∑k

l=1 ∥∇̂
l f ∥L∞ , where ∇̂ here denotes the tensorial connection with respect to the Levi-Civita connection

on (6, g f̂ ); see [Lee 2018, Lemma 4.6]. We also endow Ck(6; R3) with the norm ∥ f ∥Ck(6;R3) =∑k
l=1 ∥Dl f ∥L∞ . Moreover we define Diffeok(6,6) to be the set of all Ck smooth diffeomorphisms

of 6. Note that Diffeok(6,6) is a smooth Banach manifold with the compact-open topology and for
all φ ∈ Diffeok(6) the tangent space Tφ Diffeok(6,6) can be identified with V(6). This fact follows
from [Wittmann 2019; Hirsch 1976, Chapter 2, Theorem 1.7]. Let now N f̂ be a smooth unit normal field
along f̂ . (Here orientability of 6 is needed). We now define for all k ∈ N the map

F : Diffeok(6,6)× Ck(6; R)→ Ck(6; R3), F(η, β) := ( f̂ +βN f̂ ) ◦ η. (C-4)

It is easy to show that for all X ∈ V(6) and α ∈ Ck(6; R) one has d(id,0)F(X, α)= DX f̂ +αN f̂ . Having
this formula, one checks that d(id,0)F : T(id,0)(Diffeok(6,6)×Ck(6; R))→ T f̂ (C

k(6; R3))≃Ck(6; R3)

is an isomorphism. As a consequence one can find a small neighborhood V of (id, 0) such that F |V is a
diffeomorphism. We conclude that for all k ∈ N there exists ε > 0 such that ∥g − f̂ ∥Ck(6;R3) < ε implies
that there exists η ∈ Diffeok and β ∈ Ck such that g = ( f̂ +βN f̂ )◦η. Next we look at g = f̂ +wj . For j
large enough one has that there exists ηj ∈ Diffeok and βj ∈ Ck such that

f̂ +wj = ( f̂ +βj N f̂ ) ◦ ηj

and thus we infer that

f j ◦φj = ( f̂ +βj N f̂ ) ◦ ηj .

We compose with η−1
j to obtain

f j ◦φj ◦ η−1
j = f̂ +βj N f̂ .

Defining ψj := φj ◦η
−1
j and u j := βj N f̂ we obtain that f j ◦ψj = f̂ +u j and u j ∈ Ck(6, N6). It remains

to show that ∥(∇̂⊥)lu j∥ → 0 for all l = 1, . . . , k. To do so we compute for any X ∈ V(6)

∇̂
⊥

X u j = ∇̂
⊥

X (βj N f )= X (βj )N f̂ +βj ∇̂
⊥

X N f̂ .

Note that X (βj )= ∇̂Xβj and thus

∥∇̂
⊥u j∥L∞ ≤ ∥βj∥C1(6,R)(1 + ∥∇̂

⊥N f̂ ∥L∞).

Observe that ∥∇̂
⊥N f̂ ∥L∞ is finite by the compactness of 6. Similarly one can show that

∥(∇̂⊥) j u j∥L∞ ≤ C(k, 6, f̂ )∥βj∥C j (6,R) for all j = 1, . . . , k. (C-5)
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Note that f̂ +wj → f̂ in Ck(6; R3) and the fact that F , defined in (C-4), is a local diffeomorphism
implies that (ηj , βj ) converges to (id, 0) in Diffeok(6,6)× Ck(6). Thus βj converges to 0 in Ck(6̂).
This and (C-5) verify Definition C.7 for l = k. The claim is shown. □

Also C l-convergence is not affected by reparametrizations and Remark C.1 can be formulated also
for the C l-convergence. This implies in particular that limits with respect to C l-convergence are not
unique. In the rest of this section we will however show that, in our setting, C l-limits are unique up to
reparametrizations. Let us first fix what we mean by classical C l convergence.

Definition C.10. We say that a sequence of immersions (h j )
∞

j=1, h j :6→ Rn , converges classically in C l

to some immersion h :6→ Rn if u j := h − h j :6→ Rn satisfies ∥Dku j∥L∞(6) → 0 for all k = 0, . . . , l.

Proposition C.11. Let ( f j )
∞

j=1 : S1
× S1

→ R3 be a sequence of smooth immersions and l ≥ 2. Let
f, h : S1

× S1
→ R3 be such that f j converges to f in C l and f j converges to h classically in C l. Then f

and h coincide up to reparametrization, i.e., there exists a C l-diffeomorphism φ : S1
× S1

→ S1
× S1

such that h = f ◦φ.

Proof. Since f j converges to f in C l there exist diffeomorphisms φj of S1
×S1 and maps u j :S1

×S1
→R3

such that
f j ◦φj + u j = f on S1

× S1, (C-6)

and ∥u j∥L∞, ∥Du j∥L∞ converge to zero. Moreover there exist vj such that

f j + vj = h on S1
× S1, (C-7)

and ∥vj∥L∞, ∥Dvj∥L∞ converge to zero.

Step 1: (φj )
∞

j=1 converges uniformly to some φ ∈ C0(S1
× S1) that satisfies h = f ◦φ. First note that

functions on S1
×S1 can be periodically extended on R2. Doing so and tacitly identifying all the functions

we defined above with their unique periodic extensions we infer that (C-6) and (C-7) hold on the whole
of R2. From both equations we infer that

h ◦φj − vj ◦φj + u j = f on R2. (C-8)

Since we deal now with functions in C1(R2
; R3), we can compute derivatives simply using the Jacobi

matrix. By the chain rule

(Dh(φj )− Dvj (φj ))Dφj + Du j = D f in R2. (C-9)

We claim that ∥Dφj∥L∞(R2×2) is bounded. For this assume that a subsequence (which we do not relabel)
satisfies ∥Dφj∥L∞ → ∞ and let pj ∈ S1

×S1 be such that |Dφj (pj )| = ∥Dφj∥L∞ , where | · | is a suitable
matrix norm. Evaluating (C-9) at pj and dividing by ∥Dφj∥L∞ we obtain(

Dh(φj (pj ))− Dvj (φj (pj ))
) Dφj (pj )

∥Dφj∥L∞

+
1

∥Dφj∥L∞

Du j (pj )=
1

∥Dφj∥L∞

D f (pj ). (C-10)

By the boundedness of φj : R2
→ S1

× S1 and the choice of pj one can choose a subsequence such that
(φj (pj ))

∞

j=1 converges to some q ∈ S1
× S1 and Dφj (pj )/∥Dφj∥L∞ converges to some B ∈ R2×2 that
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satisfies |B|=1. Note that by the requirements on u j , vj and the fact that the first fundamental forms of f, h
with respect to the local coordinates (u, v) are bounded one has ∥Du j∥L∞(R2,R2×3), ∥Dvj∥L∞(R2,R2×3) → 0
as j → ∞. Passing to the limit in (C-10) we obtain

Dh(q)B = 0.

This is a contradiction to h being an immersion and |B| = 1. Hence ∥Dφj∥L∞(R2,R2,2) is bounded. Note
also that φj : R2

→ S1
×S1 is uniformly bounded as it takes values only in S1

×S1. By the Arzelà–Ascoli
theorem there exists a subsequence (which we do not relabel) and φ ∈ C0(S1

× S1) such that φj → φ on
S1

× S1. We can now go back to (C-8) and pass to the limit there to obtain

h ◦φ = f on S1
× S1. (C-11)

Step 2: φ is a local C l diffeomorphism; i.e., φ is C l smooth and for all p ∈ S1
× S1 there exists an

open neighborhood U containing p such that φ|U is a diffeomorphism onto its image. To this end fix
p ∈ S1

× S1 and recall that, being h an immersion, there exists an open neighborhood W of φ(p) such
that h|W is a diffeomorphism onto its image V := h(W ). We denote by h̃ : V → W the inverse of h|W . By
(C-11) we obtain

φ = h̃ ◦ f on f −1(V ). (C-12)

Notice that since φ(p) ∈ W it follows that f (p)= h(φ(p)) ∈ V and hence p ∈ f −1(V ) so that f −1(V )
is an open neighborhood of p. Now there exists another open neighborhood G of p such that f|G is a
C l-diffeomorphism onto its image. Defining U = G ∩ f −1(V ) we obtain that φ|U is a C l-diffeomorphism
as a composition of two diffeomorphisms. Note in particular that Dφ(p) is invertible at each point
p ∈ S1

×S1. This implies in particular, as S1
×S1 is connected and φ ∈ C l that sgn(det(Dφ)) is constant.

Step 3: deg(φ)= ±1. Recall that the mapping degree of φ is given by

deg(φ) :=

∑
x∈φ−1({y})

sgn(det(Dφ(x))) (C-13)

for any choice of y ∈ S1
× S1. See [Outerelo and Ruiz 2009, Chapter 3] or [Guillemin and Pollack 1974,

Chapter 3, Section 3] for the well-definedness of deg, e.g., the independence of the definition of the
chosen y and finiteness of the sum in the definition. We make use of the degree-integration formula (see
[Guillemin and Pollack 1974, p. 188]) to compute deg(φ). Since φ : S1

× S1
→ S1

× S1 is sufficiently
smooth, one has for all differential forms ω on S1

× S1 that∫
S1×S1

φ∗ω = deg(φ)
∫

S1×S1
ω,

where φ∗ω is defined as in [Guillemin and Pollack 1974, p. 166]. Let η ∈ C∞

0 (R
3) be arbitrary. Take

ωη(u, v) := η(h(u, v))
√

det DhT Dh du ∧ dv. Then∫
S1×S1

ωη =

∫ 1

0

∫ 2π

0
η(h(u, v))

√
det(DhT Dh) du dv =

∫
η dh∗µh, (C-14)
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since DhT Dh is the first fundamental form of (S1
× S1, gh). Note that by Lemma C.6 f ∗µ f coincides

with h∗µh as both measures are C0(R
n)′-limits of f ∗

j µ f j . Hence by (C-14)∫
η d f ∗µ f =

∫
η dh∗µh =

∫
S1×S1

ωη. (C-15)

Using now that f = h ◦ φ we can also compute
∫
η d f ∗µ f in another way. Since s := sgn det Dφ is

constant, by definition of φ∗ωη we obtain∫
η d f ∗µ f =

∫ 1

0

∫ 1

0
η( f (u, v))

√
det(D f T D f ) du dv

=

∫ 1

0

∫ 1

0
η(h(φ(u, v)))

√
det(DhT Dh)|det(Dφ)| du dv

= s
∫ 1

0

∫ 1

0
η(h(φ(u, v)))

√
det(DhT Dh) det(Dφ) du dv

= s
∫

S1×S1
φ∗ωη = s · deg(φ)

∫
S1×S1

ωη.

This and (C-15) yields that deg(φ)= 1/s = ±1.

Conclusion: The fact that deg(φ) = ±1, sgn(det(Dφ)) is constant together with (C-13) imply that
φ−1({y}) must be a singleton for any choice of y ∈ S1

× S1. This proves the injectivity of φ. Surjectivity
follows directly from [Outerelo and Ruiz 2009, Chapter 3, Remark 1.5(2)]. We finally end up with a
surjective and injective local diffeomorphism. By this inverse function theorem, this is also a global
diffeomorphism. □

Corollary C.12. If ( f j )
∞

j=1 : S1
× S1

→ R3 converges in C l to some f : S1
× S1

→ R3 and also to some
h : S1

× S1
→ R3. Then there exists a C l diffeomorphism φ : S1

× S1
→ S1

× S1 such that f = h ◦φ.

Proof. If f j converges to h in C l then by Proposition C.9 there exists a sequence of diffeomorphisms
(ψj )

∞

j=1 of S1
×S1 such that f j ◦ψj converges to h classically in C l. Since (nonclassical) C l convergence

is not affected by reparametrizations, we infer that also f j ◦ψj converges to f in C l. By Proposition C.11
applied to f j ◦ψj we infer that f = h ◦φ for a C l-diffeomorphism φ of S1

× S1. □

Appendix D: On the Willmore flow

Here we mention some previous results on the Willmore flow, which we will use. Since we need the
precise formulations and constants we state them here for the readers convenience. We start with a short
time existence and uniqueness result. We remark that this result is not the only short time existence result
in the literature (see, e.g., [Simonett 2001]), but it is the most useful for the formulation we use.

Theorem D.1 [Kuwert and Schätzle 2002, Theorem 1.2]. Suppose that f0 :6→Rn is a smooth immersion.
Then there exist constants ε0 > 0, c0 <∞ that depend only on n such that for all ρ > 0 that satisfy

sup
x∈Rn

∫
f −1
0 (Bρ(x))

|A[ f0]|
2 dµ f0 ≤ ε0
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there exists a unique maximal smooth Willmore flow ( f (t))t∈[0,T ) starting at f0 that satisfies T ≥ c0ρ
4.

Moreover, for all m ≥ 0 there exists C = C(n,m, f0) such that

∥(∇⊥)m A[ f (t)]∥L∞(6) ≤ C for all t ∈ [0, c0ρ
4
]. (D-1)

Note that (D-1) is not in the statement of [Kuwert and Schätzle 2002, Theorem 1.2] but in its proof;
see [Kuwert and Schätzle 2002, equation (4.27)]. In fact the bound of the derivatives of the curvature are
crucial in the proof of the short time existence theorem. In addition to bounds on the curvature one also
needs a bound on the metric. Let us emphasize that this bound is (in finite time) implied by the curvature
bounds as part of a more general result; see [Hamilton 1982, Lemma 14.2]. Once short time existence is
shown one can look at long time existence. The most important blow up criterion obtained so far is the
one discussed in Theorem D.5 below. It says that if T <∞ then the curvature has to concentrate. One can
ask what happens to other quantities once the curvature degenerates. By Simon’s monotonicity formula,
the “density” will not degenerate. Indeed, in [Simon 1993, equation (1.3)], a local bound for the surface
measure is shown. A useful implication stated in [Kuwert and Schätzle 2001, Lemma 4.1] is that there
exists c> 0 such that for all proper immersions f :6 → Rn (6 compact and without boundary) one has

µ f ( f −1(Bρ(x0)))

ρ2 ≤ cW( f ) for all ρ > 0, (D-2)

where we further assume that 6 is a torus so that its Euler characteristic vanishes.
Up to this point, no examples of evolutions where the curvature degenerates are known, even though

there exists one candidate for this phenomenon; see [Mayer and Simonett 2002].
Close to local minimizers curvature concentration cannot occur and one deduces convergence with the

aid of a Łojasiewicz–Simon gradient inequality.

Theorem D.2 [Chill et al. 2009, Lemma 4.1]. Let fW :6 → Rn be a Willmore immersion of a compact
manifold 6 without boundary, and let k ∈ N, δ > 0. Then there exists ε = ε( fW ) > 0 such that the
following is true: suppose that ( f (t))t∈[0,T ) is a Willmore flow of 6 satisfying

∥ f0 − fW ∥W 2,2∩C1 < ε

and
W( f (t))≥ W( fW ) whenever ∥ f (t) ◦8(t)− fW ∥Ck ≤ δ, (D-3)

for some appropriate diffeomorphisms 8(t) :6 →6.
Then this Willmore flow exists globally, that is, T = ∞, and converges, after reparametrization by

appropriate diffeomorphisms 8̃(t) :6 →6, smoothly to a Willmore immersion f∞. That is,

f (t) ◦ 8̃(t)→ f∞ as t → ∞.

Moreover, W( f∞)= W( fW ) and ∥ f0 − fW ∥Ck < δ.

Remark D.3. Notice that ε in the statement does not change if instead of fW one considers the translated
Willmore surface fW + x̄ for x̄ ∈ Rn. Indeed, if f0 satisfies

∥ f0 − ( fW + x̄)∥W 2,2∩C1 < ε = ε( fW ),
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then clearly f0 − x̄ satisfies the assumptions on the initial datum stated in Theorem D.2 so that the
corresponding Willmore flow f̃ (t) converges. Due to the uniqueness of the solution for the Willmore
flow, f̃ (t)= f (t)− x̄ with f (t) the solution of the Willmore flow which starts in f0. Hence, also f (t)
converges.

Remark D.4. We also remark that in case that the Willmore flow converges in Ck for all k one obtains
uniform bounds on all derivatives of the second fundamental form, i.e., for all m ∈ N0 there exists
C = C(m, f0) such that

∥(∇⊥)m A[ f (t)]∥L∞ ≤ C for all t ∈ [0,∞).

Not every evolution of the Willmore flow is convergent. What one can however always obtain is a
Willmore concentration limit of appropriate parabolic rescalings. Below we will introduce the Willmore
concentration limit rigorously since we need to examine it for the proof of Theorem 3.1.

Theorem D.5 (Willmore concentration limit [Kuwert and Schätzle 2001, Section 4]). Let 6 be a compact
two-dimensional manifold without boundary and let f : [0, T )×6 → Rn be immersions evolving by the
Willmore flow with initial datum f0. Let ε0 > 0 and c0 be defined as in Theorem D.1.

Then for each sequence (tj )
∞

j=1 ↗ T there exist (x j )
∞

j=1 ⊂ Rn , (rj )
∞

j=1 ⊂ (0,∞) (defined as in (3-1))
and c0 > 0 such that

tj + c0r4
j < T for all j ∈ N (D-4)

and

f̃ j :=
1
rj
( f (tj + c0r4

j , · )− x j ) :6 → Rn (D-5)

converges smoothly on compact subsets of Rn to a proper Willmore immersion f̂ : 6̂→ Rn , where 6̂ ̸=∅
is a smooth two-dimensional manifold without boundary. Moreover

lim inf
j→∞

∫
Bj

|A(tj + c0r4
j )|

2 dµg(tj +c0r4
j )
> 0, (D-6)

where Bj = ( f (tj + c0r4
j ))

−1(Brj (x j )).

Now we are finally ready to prove Theorem 3.1.

Proof of Theorem 3.1. The first part of the statement follows from (D-4). From Theorem D.5 it follows
that there exists a sequence (x j )j∈N⊂ Rn and a proper Willmore immersion f̂ : 6̂ → Rn such that

f̃ j,c0 −
x j

rj
→ f̂ , (D-7)

smoothly as j → ∞. Now we examine the asymptotics of (rj )j∈N.
If there exists a subsequence of the radii rj that tends to zero or infinity. By [Chill et al. 2009,

Theorem 1.1], 6̂ is not compact. In particular diam( f̂ (6̂))= ∞ since otherwise f̂ (6̂) lies in a compact
set of Rn which is a contradiction to the properness of f̂ . By lower semicontinuity of the diameter, see
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Lemma C.3, we infer

∞ = diam( f̂ (6̂))≤ lim inf
j→∞

diam
(

f̃ j,c0 −
x j

rj

)
= lim inf

j→∞

diam( f̃ j,c0).

Hence we have shown that (2) occurs.
Suppose on contrary that (rj )j∈N has no subsequence that tends to zero or infinity. Then there exists

δ > 0 such that δ < rj < 1/δ for all j ∈ N and Case 1 occurs. Necessarily from (D-4) we see that T = ∞.
It remains to show that a bound on the diameter ensures full convergence to a Willmore immersion.

Suppose therefore that diam( f̃ j,c0)≤ M for all j ∈ N. Note that then - once again by lower semicontinuity,
see Lemma C.3,

diam( f̂ (6̂))≤ lim inf
j→∞

diam
(

f j,c0 −
x j

rj

)
= lim inf

j→∞

diam( f j,c0)≤ M.

Since f̂ is proper this ensures that 6̂ is compact. By [Kuwert and Schätzle 2001, Lemma 4.3] we infer
that 6̂ = S1

× S1 and the convergence in (D-7) is actually convergence in Ck for all k ∈ N. Now we
define

f̃ j : [0, c0] × S1
× S1

→ Rn, f̃ j (s) :=
f (tj + sr4

j )

rj
.

Note that by scaling properties of the Willmore gradient f̃ j solves the Willmore flow equation. By (D-7)
we can now fix j0 ∈ N and a smooth diffeomorphism 8 : S1

× S1
→ S1

× S1 such that∥∥∥∥ f̃ j0,c0 ◦8−
x j0

rj0
− f̂

∥∥∥∥
C2
< ε = ε( f̂ ), (D-8)

where ε( f̂ ) is chosen as in Theorem D.2. By Remark D.3 we also have ε( f̂ ) = ε( f̂ + x j0/rj0). We
infer by Theorem D.2 that the Willmore flow starting at f̃ j0,c0 ◦8 exists globally and converges (up to
reparametrization) to a Willmore immersion f∞ : S1

× S1
→ Rn. By geometric uniqueness of Willmore

evolutions we infer that f̃ j0 ◦8, first defined on [0, c0], extends to a global evolution, i.e., defined on
[0,∞), and converges (up to reparametrization) to f∞. Again by geometric uniqueness we infer that f̃ j0

extends to a global evolution converging (up to reparametrization) to f∞ ◦8−1. Using scaling properties
of the Willmore flow we infer that f extends to a global evolution by Willmore flow that converges to
rj0 f∞, which is again a Willmore immersion.

To show the last sentence of the claim we first observe that a uniform bound on the diameter implies
that Case 2 may not occur, in particular rj ∈ (δ, 1/δ) for some δ > 0. Then the fact that tj + c0r4

j < T for
all j and tj → T implies that T = ∞. Convergence follows then according to case (1) with the diameter
bound. □

With this theorem we have proved that boundedness of diam( f̃ j,c0) implies convergence. The fact that
the f̃ j,c0 need information about f (tj + c0r4

j ) and not just about f (tj ) adds a technical difficulty — the
time shift might cause geometric quantities to degenerate. Luckily, the diameter is not so much affected
by (bounded) time shifts, as we shall see in the following:
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Lemma D.6 (Evolution of diameter and area). Suppose that f : [0, T )×6 → Rn is a maximal evolu-
tion by Willmore flow. Then there exist constants C1 = C1(W( f (0))),C2 = C2(W( f (0))) depending
monotonically on W( f (0)) such that

µg f (t)(6)≤ µg f (0)(6)+ C1(W( f (0)))t1/2 (D-9)
and

diam( f (t)(6))≤ C2(W( f (0)))(diam( f (0)(6))+ t1/4).

Proof. First we remark that, since the Willmore flow is a gradient flow, for all s ≥ 0∫ s

0

∫
6

|∂t f (t)|2 dµg f (tj )
= W( f (0))−W( f (s))≤ W( f (0)). (D-10)

By [Kuwert and Schätzle 2002, equation (2.16)] we have∣∣∣ d
dt
µg f (t)(6)

∣∣∣= ∣∣∣∣∫
6

⟨H⃗ [ f (t)], ∂t f (t)⟩ dµg f (t)

∣∣∣∣
≤

(∫
6

|H⃗ [ f (t)]|2 dµg f (t)

)1/2(∫
6

|∂t f (t)|2 dµg f (t)

)1/2

≤ 2
√
W( f (t))

(∫
6

|∂t f (t)|2 dµg f (t)

)1/2

.

Integrating with respect to t and since t 7→ W( f (t)) is decreasing we obtain

|µg f (s)(6)−µg f (0)(6)| ≤ 2
√
W( f (0))

∫ s

0

(∫
6

|∂t f (t)|2 dµg f (t)

)1/2

dt

≤ 2
√
W( f (0))s1/2

(∫ s

0

∫
6

|∂t f (t)|2 dµg f (t) dt
)1/2

≤ 2W( f (0))s1/2,

using (D-10) in the last step. The estimate in (D-9) follows if we choose C1(W ) = 2W( f (0)). Next
we use a generalization of [Simon 1993, Lemma 1.1] (see the following lemma) for immersed surfaces
to obtain that there exists CS > 0 such that diam( f (6))2 ≤ CSW( f )µg f (6). Using this, (D-9) and
Lemma D.7 we obtain

diam( f (t)(6))2 ≤ CSW( f (t))µg f (t)(6)≤ CSW( f (0))(µg f (0)(6)+ 2W( f (0))t1/2)

≤ CSW( f (0))
(
W( f (0)) diam( f (0))2 + 2W ( f (0))t1/2).

≤ CSW( f (0))2(diam( f (0))2 + 2t1/2)

≤ 2CSW( f (0))2(diam( f (0))+ t1/4)2.

The choice of C2(W ) := 2CSW 2 does the job. □

In this proof we have used the following lemma, which generalizes [Simon 1993, Lemma 1.1].

Lemma D.7 (cf. [Simon 1993, Lemma 1.1]). There exists CS = CS(n) > 0 such that for all immersions
f :6 → Rn of a compact connected two-dimensional manifold without boundary 6 one has

µg f (6)

W( f )
≤ diam( f (6))2 ≤ CS(n)µg f (6)W( f ).
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Proof. Let 6 be as in the statement. By [Simon 1993, Lemma 1.1] we infer that for all n ∈ N there exists
c(n) > 0 such that for all embeddings f :6 → Rn one has

µg f (6)

W( f )
≤ diam( f (6))2 ≤ c(n)µg f (6)W( f ). (D-11)

We need to generalize this result to immersions. Let N ∈ N be such that each smooth two-dimensional
manifold can be smoothly embedded into RN. Such a constant N exists due to Nash’s embedding theorem
(or alternatively one can derive N = 4 explicitly using a handle decomposition). We will show that
the desired estimate is satisfied with the constant CS(n) := c(n + N ). To this end let f : 6 → Rn

be an immersion and ι : 6 → RN be an embedding. For fixed ε > 0 define fε : 6 → Rn+N via
fε(p) := ( f (p), ει(p))T. It is easy to check that fε is an embedding. We infer by (D-11) that

µg fε
(6)

W( fε)
≤ diam( fε(6))2 ≤ c(n + N )µg fε

(6)W( fε). (D-12)

Next we pass to the limit as ε→ 0. First we examine the diameter. Note that for all x, y ∈6 one has

| fε(x)− fε(y)|2 = | f (x)− f (y)|2 + ε2
|ι(x)− ι(y)|2.

From this one easily infers

diam( f (6))2 ≤ diam( fε(6))2 ≤ diam( f (6))2 + ε2 diam(ι(6)).

Since 6 is compact we find that diam(ι(6)) <∞. Hence

lim
ε→0

diam( fε(6))= diam( f (6)).

One readily checks that fε → ( f, 0) in Ck for all k. From Lemma C.5 one infers then that limε→0 W( fε)=
W(( f, 0))= W( f ). That W(( f, 0))= W( f ) can easily be checked since

A[( f, 0))](X, Y )= D2( f, 0)(X, Y )= (D2 f (X, Y ), 0),

where the last identity is due to the fact that D is defined componentwise; see (B-1). Using methods
similar to Lemma C.5 one can also check limε→0 µg fε

(6)= µg( f,0)(6)= µg f (6). This being shown, the
claim follows from (D-12) letting ε→ 0. □
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OPTIMAL PRANDTL EXPANSION AROUND A CONCAVE BOUNDARY LAYER

DAVID GÉRARD-VARET, YASUNORI MAEKAWA AND NADER MASMOUDI

We show an optimal stability result for boundary layer solutions of the Navier–Stokes equation in a
half-plane, under a mild concavity condition on the boundary layer profile. The key point is the derivation
of sharp Gevrey estimates for the linearized Navier–Stokes equation in vorticity form, on a time interval
uniform in ν. As the nonlocal boundary condition on the vorticity prevents us from deriving direct
estimates, we use a novel iteration scheme, similar to a splitting method in numerical analysis. Our result
is a big step forward compared to our previous work (Duke Math. J. 167 (2018), 2531–2631), where we
proved stability of boundary layer expansions of shear flow type. Indeed, the approach of the present
paper is much more robust than the one in that previous work, which was based on the Fourier transform
and hence only adapted to expansions independent of the tangential variable. Moreover, we are now able
to relax the assumption of strict concavity made in our previous work to obtain the optimal Gevrey 3

2
stability, which was not satisfied by generic boundary layer expansions. We provide in this way the first
justification of unsteady boundary layer theory outside the analytic setting.
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1. Introduction

We are interested in the high Reynolds number dynamics of the Navier–Stokes equation in a half-plane:

∂t uν − ν1uν + ∇ pν + uν · ∇uν = 0, t > 0, x ∈ T, y > 0,

∇ · uν = 0, t ≥ 0, x ∈ T, y > 0,

uν |y=0 = 0, uν |t=0 = u0,

(1-1)
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where ν stands for the inverse Reynolds number. Note that we consider periodic boundary conditions in x ,
but could consider decay conditions as well. As is well known, the Navier–Stokes solution uν exhibits a
boundary layer near y = 0, that is a region of high velocity gradients generated by the no-slip condition.
A famous modeling of this boundary layer was provided by Prandtl. In modern language, he provided
approximate solutions of Navier–Stokes equations in the form of multiscale asymptotic expansions:

v =

N∑
i=0

√
ν

iU E,i (t, x, y)+
N∑

i=0

√
ν

i
(V bl,i

1 (t, x, y/
√
ν),

√
νV bl,i

2 (t, x, y/
√
ν)), (1-2)

where the profiles U E,i
= U E,i (t, x, y) describe the flow away from the boundary, and the profiles

V bl,i
= V bl,i (t, x, Y ) are boundary layer correctors that go to zero exponentially fast in variable Y = y/

√
ν.

We stress that there is a factor
√
ν between the amplitudes of the horizontal and vertical components

of the boundary layer profiles: this is consistent with the divergence-free condition. In particular, the
leading order term U E

:= U E,0 solves the Euler equation, while the leading order boundary corrector
V bl

:= V bl,0 solves the modified Prandtl equation

∂t V bl
1 + (U E

1 |y=0 + V bl
1 )∂x V bl,1

+ V bl
1 ∂xU E

1 |y=0 + (Y ∂yU E
2 |y=0 + V bl

2 )∂Y V bl
1 − ∂2

Y V bl
1 = 0,

∂x V bl,1
+ ∂Y V bl

2 = 0,

V bl
1 |Y=0 = −U E

1 |y=0, V bl
→ 0, Y → +∞.

Prandtl boundary layer theory has revealed much about the mechanism of vorticity generation in fluids
and has contributed to the quantitative understanding of some model problems, notably the description of
the Blasius flow near a flat plate. It can moreover be rigorously justified under strong symmetry conditions
on the flow and its perturbations; see for instance [Lopes Filho et al. 2008; Mazzucato and Taylor 2008].
Still, under generic perturbations, Navier–Stokes flows of type (1-2) are known to experience instabilities,
due to two main mechanisms:

• Boundary layer separation, which corresponds to a loss of monotonicity and concavity of the
boundary layer profile V bl

1 , under an adverse pressure gradient. Mathematically, it corresponds to
some ill-posedness or blow-up of the Prandtl model.

• Hydrodynamic instabilities of Tollmien–Schlichting-type, experienced by concave boundary layer
flows.

These phenomena have crucial consequences in hydrodynamics and aerodynamics. From the mathematical
point of view, describing the stability/instability properties of flows v of type (1-2) is a difficult topic.
The evolution of the perturbation w = uν − v obeys the perturbed Navier–Stokes system

∂tw− ν1w+ ∇q + v · ∇w+w · ∇v = −w · ∇w+ r, t > 0, x ∈ T, y > 0,

∇ ·w = 0, t ≥ 0, x ∈ T, y > 0,
w|y=0 = 0, w|t=0 = w0.

(1-3)

Here, r represents a remainder term due to the approximation v, while w0 is a given initial perturbation of
the velocity. We will assume that r and w0 are of the order O(νn) in some norm with n ≫ 1. In the case
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of r , this is realized by taking N large enough in (1-2). More precisely, one has to consider functional
frameworks such that the equations of both Prandtl-type and Euler-type are uniquely solvable at least
locally in time. Then, the point is to understand under which conditions one can obtain uniform (in ν)
estimates of w in a suitable norm, that is justification of the Prandtl theory.

An important result in this direction is due to Sammartino and Caflisch [1998a; 1998b], who proved
local well-posedness of Euler and Prandtl equations, as well as stability results for (1-3) in the case
of analytic data. This stability result is then extended by [Fei et al. 2018; Kukavica et al. 2020; 2022;
Maekawa 2014; Wang and Wang 2020; Wang et al. 2017], all of which require the analyticity near the
boundary. This general analytic stability result is somehow optimal, in view of [Grenier 2000a]; see also
[Grenier and Nguyen 2019]. Grenier studied the case where the Prandtl expansion v in (1-2) is a shear
flow: this means that

v = (V bl
1 (t, x, y/

√
ν), 0), (1-4)

where V bl
1 solves the heat equation

∂t V bl
1 − ∂2

Y V bl
1 = 0, V bl

1 |Y=0 = 0. (1-5)

He proved that for some profiles V bl
1 that have initially inflection points, the linearized version of (1-3)

admits growing perturbations of the form

wν(t, x, y)≈ eαt/ν1/2
ei x/ν1/2

w̃ν(y),

with fixed α > 0. This shows that high frequencies k ≈ 1/ν1/2 in variable x may be amplified by eαkt .
In other words, to obtain a bound independent of ν over a time T = O(1) will only be possible if those
modes k have amplitude less than e−δk , with δ ≤ αT . This necessary exponential decay of the frequency
spectrum corresponds to analytic perturbations. Let us note that the result of Grenier relies on the so-called
Rayleigh instability, which is an inviscid instability mechanism for shear flows with inflection points. In
terms of hydrodynamics of the boundary layer, the appearance of inflection points corresponds to the
separation phenomenon. Hence, it is a framework in which various negative results exist for the Prandtl
equation itself [E and Engquist 1997; Gérard-Varet and Dormy 2010; Gérard-Varet and Nguyen 2012;
Kukavica et al. 2017].

The case without inflection points, corresponding to the nicer situation where the boundary layer
profile V bl

1 is concave in variable Y , is much more involved. Again, the natural first step is to consider
the shear flow situation (1-4). The stability of shear flows within the Navier–Stokes equation is an old
topic of hydrodynamics, notably studied by Tollmien and Schlichting. See [Drazin and Reid 2004] for a
detailed account. They showed that generic concave shear flows, although stable in the Euler evolution,
exhibit instability in the Navier–Stokes one (albeit with a growth rate vanishing with viscosity). This is
the so-called Tollmien–Schlichting instability, revisited on a rigorous basis by Grenier, Guo and Nguyen
[Grenier et al. 2016]. Roughly, by using a proper rescaling of these unstable eigenmodes, one can
construct for the linearization of (1-3) solutions of the type

wν(t, x, y)≈ eαt/ν1/4
ei x/ν3/8

w̃ν(y).
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This time, high frequencies k ≈ 1/ν3/8 may be amplified by eαk2/3t . This is still not compatible with
Sobolev uniform bounds. More precisely, under the assumption that the spectral radius of the linearized
Navier–Stokes operator is given by the growth rate of the Tollmien–Schlichting instability, one can
obtain exponential bounds on the semigroup and from there show nonlinear Sobolev instability of Prandtl
expansions of shear flow type; see [Grenier and Nguyen 2017; 2024].

Nevertheless, in the setting of concave boundary layer flows, the class of data w0 for which one can
hope to have uniform (in ν) local (in time) control of w is larger than analytic: namely, one may expect
control for data whose Fourier spectrum in x decays like O(e−k2/3

). This corresponds to the so-called
Gevrey class of exponent 3

2 .
To show such optimal stability result for general “concave” Prandtl expansions is the main goal of the

present paper. It goes much beyond our result [Gérard-Varet et al. 2018], limited to the case when the
boundary layer is of shear type (1-4). See also the recent development [Chen et al. 2022], still on shear
flow expansions. Precise statements will be given in Section 2. Three preliminary remarks are in order:

• The approach in [Gérard-Varet et al. 2018] was very much based on the Fourier transform in x , made
easy because (1-4) is independent of x . It does not adapt to general Prandtl expansions. The approach in
the present paper relies on very different ideas.

• The main step in our approach is the derivation of stability estimates for the linearized equations

∂tw− ν1w+ ∇q + v · ∇w+w · ∇v = f, t > 0, x ∈ T, y > 0,

∇ ·w = 0, t ≥ 0, x ∈ T, y > 0,
w|y=0 = 0, w|t=0 = w0.

(1-6)

But to derive such bounds, we do not make any assumption on the spectral radius of the linearized
operator, in contrast with the works [Grenier and Nguyen 2017; 2024].

• A strong point of our analysis is that it applies to boundary layer profiles V bl
1 that are concave in Y but

not necessarily strictly concave. See Section 2 for detailed hypotheses. This is important for applications,
as can be seen from (1-5): there, ∂2

Y V bl
1 vanishes at the boundary for Y = 0 at positive times. Despite

such possible degeneracies, we are able to reach Gevrey 3
2 stability: this was not the case in our previous

paper [Gérard-Varet et al. 2018], where our Gevrey exponent for stability was less than 3
2 for nonstrictly

concave flows.

The outline of the paper is as follows. Section 2 contains our main assumptions and stability results.
We notably explain how our assumptions are adapted to generic boundary layer expansions. Section 3
gives an overview of our proof. The key point is the analysis of system (1-6), expressed in vorticity form.
While this form allows to get rid of the pressure term, we face the difficulty that the vorticity ω = curl v
satisfies an intricate nonlocal condition, which forbids good direct stability estimates. To overcome this
issue, we construct (and estimate) ω through an iteration scheme, where each step of the iteration can be
split in two:

• In a first substep, we solve the linearized equation but with an artificial Neumann boundary condition
on ω. This change in boundary condition allows to obtain stability estimates through the use of weighted
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norms inspired by the analysis of the hydrostatic Euler equations and subsequent works [Brenier 1999;
Grenier 2000b]. This is where concavity is involved. These estimates, which would be wrong with the
Dirichlet conditions for the velocity, remain valid under this modified boundary condition.

• In the next substep, we solve the linearized equation with zero source term or initial data but with a
inhomogeneous Dirichlet condition on the velocity, correcting the error of the previous substep. This
time, as the forcing is only through the boundary, the corresponding solution is more localized and of a
parabolic nature. This allows for stabilizing effects.

More elements of the strategy are provided in Section 3. Afterwards, Section 4 details the estimates
useful for the first substep of the iteration scheme, and Section 5 details the construction of the boundary
corrector of the second substep. Eventually, Sections 6 and 7 provide the final linear and nonlinear
estimates respectively.

2. Statements of the results

To state our stability result, we first introduce our functional framework. Let p ∈ [1,∞], K ≥ 1, and
ν ∈ (0, 1]. For simplicity we assume ν−1/2

∈ N, but it is not at all essential to our argument. We set

∥ f ∥G p
3/2

=

ν−1/2∑
j=0

1
( j !)3/2

sup
j2=0,..., j

∥e−K t ( j+1)β j2∂
j− j2
x f ∥L p

t (0,1/K ;L2
x,y)
, (2-1)

where

β j2 = χ j2∂ j2
y , χ(y)= 1 − e−κy . (2-2)

Here κ ∈ (0, 1] is a fixed number, which will be taken small enough. We note that ∥ f ∥G p
3/2

depends on
ν, κ ∈ (0, 1] and K ≥ 1, though we drop this dependence to simplify the notation. Note that for each
fixed ν the norm ∥ f ∥G p

3/2
is of Sobolev-type, but if ∥ f ∥G p

3/2
is uniformly bounded in ν, it implies a usual

Gevrey 3
2 regularity for the C∞ function f . The reason we can restrict to j ≤ ν−1/2 in the sum above

is that, in (1-3), the stretching term ∇v = O(ν−1/2) creates at most an amplification O(eCν−1/2t). For
j ∼ ν−1/2, it is therefore balanced by the factor e−K t ( j+1) for large enough K . This means that we will
be able to close an estimate considering only derivatives up to order ν−1/2.

Our main theorem is the following. Let us set H 1
0,σ (T×R+)={ f ∈ H 1

0 (T×R+)
2
|div f =0 in T×R+},

the space of all H 1 solenoidal vector fields satisfying the no-slip boundary condition at Y = 0.

Theorem 2.1 (nonlinear stability of concave Prandtl expansions). Let v = v(t, x, y) be a divergence-free
vector field that fulfills the regularity and concavity conditions gathered in the Assumptions below but
is not necessarily of type (1-2). There exists κ0 > 0 such that the following statement holds for any
κ ∈ (0, κ0]: there exist C > 0, K > 0, δ0 > 0 such that, for all ν ≤ K −2, if r ∈ L2(0, 1/K ; L2(T×R+)

2)

and w0 ∈ H 1
0,σ (T × R+) satisfy

[|w0|]G3/2 + [|rotw0|]G3/2 ≤ δ0ν
9
4 , ∥r∥G2

3/2
≤ δ0ν

11
4 , (2-3)
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then the system (1-3) has a unique solution w ∈ C([0, 1/K ], H 1
0,σ (T × R+)) satisfying

∥w∥G∞

3/2
+ ν

1
2 ∥rotw∥G∞

3/2
≤ Cν−

1
2 ([|w0|]G3/2 + [|rotw0|]G3/2 + ν−

1
2 ∥r∥G2

3/2
). (2-4)

Here rotw = ∂xw2 − ∂yw1 and

[|w0|]G3/2 =

ν−1/2∑
j=0

1
( j !)3/2

sup
j2=0,..., j

∥β j2∂
j− j2
x w0∥L2

x,y
.

To complete the statement of our theorem, it remains to describe the set of assumptions on v that
yield Theorem 2.1. Of course, these assumptions are designed to be satisfied by Prandtl expansions
of type (1-2), when V bl

1 has some mild concavity. Due to the boundary layer variable Y , it is more
convenient to work with rescaled variables (τ, X, Y ) := ν−1/2(t, x, y). Accordingly, we shall express our
assumptions directly on

V (τ, X, Y ) := v(t, x, y), τ > 0, X ∈ Tν, Y > 0.

Here, Tν := ν−1/2T. We set
�= ∂X V2 − ∂Y V1, (2-5)

which describes the vorticity field of the approximation in the rescaled variables. We also set

χν = χ(ν
1
2 Y )= 1 − e−κν1/2Y . (2-6)

Note that κ ∈ (0, 1] is fixed but taken small enough. Also, in the rescaled variables, our almost Gevrey
norm ∥ · ∥G p

3/2
becomes

|||F |||p =

ν−1/2∑
j=0

1
( j !)3/2ν j/2 sup

j2=0,..., j
∥e−K τν1/2( j+1)B j2∂

j− j2
X F∥L p

τ (0,1/(Kν1/2);L2
X,Y )
, B j2 = χ j2

ν ∂
j2

Y . (2-7)

We state our key assumptions in terms of V and �.

Assumptions. (i) Divergence-free and Dirichlet condition on V :

∂X V1 + ∂Y V2 = 0, V |Y=0 = 0. (2-8)

Moreover, there exist constants C∗ ≥ 1 and C∗

0 ,C∗

1 ,C∗

2 > 0 such that the following statements hold for
any ν ∈ (0, 1] and K ≥ 1:

(ii) Almost Gevrey L∞ bounds for V and ∇�: For any κ ∈ (0, 1], we have
ν−1/2∑
j=0

1
( j !)3/2ν j/2 sup

j2=0,..., j

(
∥e−K τν1/2 j B j2∂

j− j2
X V1∥L∞

τ,X,Y
+κ

∥∥∥∥e−K τν1/2 j ∂
j
X V2

χν

∥∥∥∥
L∞

τ,X,Y

+ν−
1
2 ( j+1)

1
2 ∥e−K τν1/2 j B j2∂

j− j2
X ∂X V1∥L∞

τ,X,Y
+( j+1)

1
2 ∥e−K τν1/2 j B j2∂

j− j2
X ∂Y V1∥L∞

τ,X,Y

+ν−
1
2

∥∥∥∥ 1+Y
1+ν1/2Y

e−K τν1/2 j B j2∂
j− j2
X ∂X�

∥∥∥∥
L∞

τ,X,Y

+

∥∥∥∥( 1+Y
1+ν1/2Y

)2

e−K τν1/2 j B j2∂
j− j2
X ∂Y�

∥∥∥∥
L∞

τ,X,Y

)
≤C∗

0 .

Here L∞

τ,X,Y = L∞
τ (0, 1/(Kν1/2); L∞

X,Y ).
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(iii) Derivative bounds for V and �: We have

∥V ∥L∞

τ,X,Y
+ ν−

1
2 ∥∂X V ∥L∞

τ,X,Y
+

∥∥∥∥ 1 + Y
1 + ν1/2Y

∂Y V1

∥∥∥∥
L∞

τ,X,Y

+ ν−
1
2

∥∥∥∥ 1 + Y
1 + ν1/2Y

∂X�

∥∥∥∥
L∞

τ,X,Y

+

∥∥∥∥( 1 + Y
1 + ν1/2Y

)2

∂Y�

∥∥∥∥
L∞

τ,X,Y

+ ν−
1
2

∥∥∥∥( Y
1 + ν1/2Y

)2

∂τ∂Y�

∥∥∥∥
L∞

τ,X,Y

+ ν−
1
2

∥∥∥∥ Y (1 + Y )
(1 + ν1/2Y )2

∂2
XY�

∥∥∥∥
L∞

τ,X,Y

+

∥∥∥∥ Y (1 + Y )2

(1 + ν1/2Y )3
∂2

Y�

∥∥∥∥
L∞

τ,X,Y

≤ C∗

1 . (2-9)

(iv) Monotonicity of �: Set ρ(Y )= C∗((1 + Y/ν1/4)−2
+ ν1/2(1 + Y )−2

+ ν). Then we have

∂Y�+ ρ ≥ 0 (2-10)
and

ν−
1
2

∥∥∥∥ Y
1 + ν1/2Y

∂2
XY�

√
∂Y�+ 2ρ

∥∥∥∥
L∞

τ,X,Y

+

∥∥∥∥ Y (1 + Y )
(1 + ν1/2Y )2

∂2
Y�

√
∂Y�+ 2ρ

∥∥∥∥
L∞

τ,X,Y

≤ C∗

2 . (2-11)

Remark 2.2 (link between the Prandtl expansions and the Assumptions). Let us explain how the set of
assumptions above relates to the Prandtl expansions as given in (1-2).

(i) The divergence-free and Dirichlet conditions are satisfied by Prandtl expansions of type (1-2). Fields
U E,i solve Euler or linearized Euler equations, while fields V bl,i solve Prandtl or linearized Prandtl
equations: in both cases, they are divergence-free. Moreover, they are constructed alternatively in order
to satisfy the Dirichlet boundary condition: once U E,i is constructed, V bl,i is constructed so that

U E,i
1 |y=0 + V bl,i

1 |Y=0 = 0.

Then, U E,i+1 is constructed by solving an Euler-type equation with the nonpenetration condition

U E,i+1
2 |y=0 + V bl,i

2 |Y=0 = 0.

More precisely, one can construct (U E,i , V bl,i ) in this way for i ≤ N − 1 and conclude with

U E,N (t, x, y) := (0,−V bl,N−1
2 (t, x, 0)), V bl,N

:= 0.

(ii) Assumption (ii) amounts essentially to a Gevrey 3
2 bound on solutions U E,i and V bl,i of Euler-like

and Prandtl-like equations, respectively. Such solutions exist locally in time. For the Euler equations, we
refer to [Kukavica and Vicol 2011]. For the Prandl equations, as mentioned before, the works [Kukavica
and Vicol 2013; Sammartino and Caflisch 1998a] provide local-in-time solutions for analytic data. These
local solutions being analytic, they belong to the Gevrey class 3

2 . More recently, Gevrey local-in-time
well-posedness of the Prandtl equation has been established in [Dietert and Gérard-Varet 2019] (see
[Gerard-Varet and Masmoudi 2015; Li and Yang 2020] for preliminary partial results). Also, if v is given
by (1-2), as V2(τ, X, Y )= v2(t, x, y) is zero at the boundary Y = 0, we can write

V2 =

∫ Y

0
∂Y V2 ≈

∫ Y

0
(ν

1
2 (∂y V E,0

2 + ∂Y V bl,0
2 )+ · · · )= O(ν

1
2 Y )= O

(1
κ
χν(Y )

)
at Y = 0,

so that (1/κ)(V2/χν) is under control as required in (ii).
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(iii) Again, Assumption (iii) is satisfied by classical Prandtl expansions of type (1-2). To check that,
one has to keep in mind that ∂τ ∼ ν1/2∂t , ∂X ∼ ν1/2∂x , so that for Prandtl expansions, which depend
smoothly on t and x , any τ - or X -derivative allows to gain ν1/2. This explains for instance the factor
ν−1/2 in front of the second and fourth terms of (2-9), related to ∂X V and ∂X�. In the same spirit, as
∂Y ∼ ν1/2∂y , for the Euler part of the Prandtl expansion (which depends smoothly on y), any Y -derivative
allows to gain ν1/2. This remark does not apply to the boundary layer part of the expansion, as it depends
genuinely on Y . Still, this part has good decay in Y (typically like e−Y or (1 + Y )−N for large Y ). This is
coherent with the weights (1 + Y )/(1 + ν1/2Y ) or Y/(1 + ν1/2Y ) that can be found in (2-9) in front of
terms with Y derivatives: outside the boundary layer (Y ≫ 1), it yields a gain of ν1/2, but in the boundary
layer (Y ∼ 1), it yields some decay information on the boundary layer terms.

(iv) In the case when v is given by Prandtl expansions of type (1-2),

∂Y�= ∂2
XY V2 − ∂2

Y V1 = −∂2
Y V bl

1 + O(ν)+ O(
√
ν(1 + Y )−2)

Here, the O(ν) comes from the Euler part of the Prandtl expansion. The O(
√
ν(1 + Y )−2) corresponds

to the boundary layer profiles V bl,i , i ≥ 1. The last two terms in the definition of the weight ρ allow to
control them for C∗ large enough. Hence, condition (2-10) is essentially a (nonstrict) concavity condition
on the leading term of the Prandtl boundary layer, V bl

:= V bl,0. Moreover, by the addition of the sublayer
term (1+(Y/ν1/4))−2 in the definition of ρ, we allow any sign for ∂2

Y V P
0,1 in the sublayer 0 ≤ Y ≤ O(ν1/4),

and the concavity is only needed for Y ≥ O(ν1/4). In the original variables this sublayer is of the order
O(ν3/4), which is typical order of Kolmogorov dissipation length in the theory of turbulence.

As regards (2-11), we notice that for Prandtl expansions:

∂2
XY�= −∂X∂

2
Y V bl

1 + O(ν
3
2 )+ O(ν(1 + Y )−2) and ∂2

Y�= −∂3
Y V bl

1 + +O(ν
3
2 )+ O(ν

1
2 (1 + Y )−2).

Hence, by taking into account the bound 1/
√
∂Y�+ 2ρ ≤ 1/(C∗ν

1/2), the condition (2-11) is essentially
verified if V bl

1 satisfies

ν−
1
2

∥∥∥∥ Y ∂X∂
2
Y V bl

1√
−∂2

Y V bl
1 + 2C∗(1 + Y/ν1/4)−2

∥∥∥∥
L∞

τ,X,Y

+

∥∥∥∥ Y (1 + Y )∂3
Y V bl

1√
−∂2

Y V bl
1 + 2C∗(1 + Y/ν1/4)−2

∥∥∥∥
L∞

τ,X,Y

≤ C <∞.

In the next section, we will explain the general strategy for the proof of our main stability theorem.
More precisely, we will briefly describe our stability analysis of the linearized equation (1-6) for f a
given force. This is the core of our paper: the transition from linear to nonlinear stability is more standard.
As explained before, we shall work with the rescaled variables (τ, X, Y ). We set

W (τ, X, Y ) := w(t, x, y), F(τ, X, Y ) :=
√
ν f (t, x, y), W0(X, Y ) := w0(x, y)

(and still V (τ, X, Y )= v(t, x, y)). System (1-6) becomes

∂τW − ν
1
21W + ∇Q + V · ∇W + W · ∇V = F, τ > 0, X ∈ Tν, Y > 0,

∇ · W = 0, τ ≥ 0, X ∈ Tν, Y > 0,

W |Y=0 = 0, W |τ=0 = W0.

(2-12)
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The main result on this linear system is:

Theorem 2.3. Suppose that the Assumptions hold. Then there exists κ0 ∈ (0, 1] such that the following
statement holds for any κ ∈ (0, κ0]. There exists K0 = K0(κ,C∗,C∗

j ) ≥ 1 such that if K ≥ K0 then the
system (2-12) admits a unique solution W ∈ C([0, 1/(Kν1/2)]; H 1

0,σ (Tν × R+)) satisfying

|||W |||∞ + |||rot W |||∞ ≤ C((ν−
1
2 + K

1
2 ν−

1
4 )[∥W0∥] + ν−1

[∥rot W0∥] + ν−
5
4 |||F |||2). (2-13)

Here rot W = ∂X W2 − ∂Y W1 and

[∥W0∥] =

ν−1/2∑
j=0

1
( j !)3/2ν j/2 sup

j2=0,..., j
∥B j2∂

j− j2
X W0∥L2

X,Y
,

and C is a universal constant.

As a consequence, we have the following result in the original variables. Note that, from F(τ, X, Y )=
ν1/2 f (t, x, y), we have ν−5/4

|||F |||2 = ν−3/2
∥ f ∥G2

3/2
.

Theorem 2.4. Suppose that the Assumptions hold. Then there exists κ0 ∈ (0, 1] such that the following
statement holds for any κ ∈ (0, κ0]. There exists K0 = K0(κ,C∗,C∗

j ) ≥ 1 such that if K ≥ K0 then the
system (1-6) admits a unique solution w ∈ C([0, 1/K ]; H 1

0,σ (T × R+)) satisfying

∥w∥G∞

3/2
+ ν

1
2 ∥rotw∥G∞

3/2
≤ Cν−

1
2 ((1 + K

1
2 ν

1
4 )[|w0|]G3/2 + [|rotw0|]G3/2 + ν−

1
2 ∥ f ∥G2

3/2
). (2-14)

Here rotw = ∂xw2 − ∂yw1 and

[|w0|]G3/2 =

ν−1/2∑
j=0

1
( j !)3/2

sup
j2=0,..., j

∥β j2∂
j− j2
x w0∥L2

x,y
,

and C is a universal constant.

3. General strategy

Estimates on system (2-12) will be performed at the level of the vorticity field ω= rot W := ∂X W2−∂Y W1:

(∂τ + V · ∇ − ν
1
21)ω+ W · ∇�= rot F, ∇ · W = 0, τ > 0, X ∈ Tν, Y > 0,

W |Y=0 = 0.
(3-1)

We recall that τ = ν−1/2t : the point is to get estimates that are valid over time intervals of size ν−1/2,
which is difficult due to the stretching term W · ∇�. Classical estimates and Gronwall’s lemma would
only yield a control on time intervals O(1). We have to use both our Gevrey functional framework and
concavity condition.

Actually, several difficulties are already captured by the toy model

(∂τ − ν
1
21)ω+ W2∂Y�= 0, ω = rot W, ∇ · W = 0, τ > 0, X ∈ Tν, Y > 0,

W |Y=0 = 0,
(3-2)

where �=�(Y ) (for simplicity, we assume no dependence on τ and X ). We shall stick to this model for
what follows.
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In the case of the inviscid equation

∂τω+ W2∂Y�= 0, ω = rot W, ∇ · W = 0, W2|Y=0 = 0

under the strict sign condition ∂Y� ≥ C > 0, a trick that goes back to [Grenier 2000b] is to test the
equation against ω/(∂Y�). By the cancellation∫

W2∂Y�
ω

∂Y�
=

∫
W2 rot W = −

1
2

∫
∂X |W |

2
= 0,

one can obtain a uniform-in-time control on the weighted quantity ∥ω/
√
∂Y�∥L2 ∼ ∥ω∥L2 . However,

back to the model (3-2), we are facing two difficulties:

(1) Inspired by the case of Prandtl layers, we must consider situations where ∂Y� vanishes or even
becomes slightly negative; see Assumption (iv).

(2) Even in the simpler case ∂Y� ≥ C > 0, the weighted estimate above is not compatible with the
introduction of viscosity and no-slip conditions.

We recall that these difficulties are not purely technical, as no uniform-in-ν stability estimate is expected
below Gevrey 3

2 regularity. To overcome these issues, we shall proceed in two steps.

3A. First step: Gevrey estimates for artificial boundary conditions. The first step consists in deriving
Gevrey bounds for the same equation, but with pure slip instead of no-slip conditions. For the real vorticity
equation, this will be performed in Section 4. For our toy model, this means that we consider

(∂τ − ν
1
21)ω+ W2∂Y�= 0, ω = rot W, ∇ · W = 0, τ > 0, X ∈ Tν, Y > 0,

W2|Y=0 = ω|Y=0 = 0.
(3-3)

The main point in this change of boundary conditions is that difficulty (2) mentioned above disappears:
the Dirichlet condition on ω goes well with integration by parts, and in the case ∂Y�≥ C > 0, one can
achieve again some good control on ∥ω/

√
∂Y�∥L2 . Still, we have to explain how to obtain stability under

the less stringent condition in Assumption (iv). Here, we need Gevrey regularity. Let us for simplicity
forget about Y -derivatives, which are not important for the toy model, and set

ω j
:= e−K τν1/2( j+1)∂

j
Xω, W j

:= e−K τν1/2( j+1)∂
j
X W.

The point is to obtain a bound on ∑
j≤ν−1/2

1
( j !)3/2ν j/2 ∥ω j

∥L2
X,Y
.

As �=�(Y ), the equation satisfied by ω j is

(Kν1/2( j + 1)+ ∂τ − ν
1
21)ω j

+ W j
2 ∂Y�= 0. (3-4)

Roughly, the idea is to control a weighted Gevrey norm of the form∑
j≤ν−1/2

1
( j !)3/2ν j/2

∥∥∥∥ ω j
√
∂Y�+ 2ρ j

∥∥∥∥
L2

X,Y

,
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where ρ j is added to compensate for possible degeneracies of ∂Y�. Testing (3-4) against ω j/(∂Y�+2ρ j ),
we find

Kν
1
2 ( j + 1)

∥∥∥∥ ω j√
∂Y�+ 2ρ j

∥∥∥∥2

L2
+

1
2

d
dτ

∥∥∥∥ ω j√
∂Y�+ 2ρ j

∥∥∥∥2

L2
+ ν

1
2

∥∥∥∥ ∇ω j√
∂Y�+ 2ρ j

∥∥∥∥2

L2

= −ν
1
2

∫
∇

1
∂Y�+ 2ρ j

· ∇ω jω j
−

∫
W j

2 ∂Y�
ω j

∂Y�+ 2ρ j

= ν
1
2

∫
∇∂Y�

(∂Y�+ 2ρ j )2
· ∇ω jω j

+ ν
1
2

∫
∇ρ j

(∂Y�+ 2ρ j )2
· ∇ω jω j

+

∫
W j

2
2ρ j

∂Y�+ 2ρ j
ω j , (3-5)

where we used again the cancellation property
∫

W j
2 ω

j
= 0. One must then choose ρ j so that the three

terms at the right are controlled by the left-hand side for K large enough. Roughly, this can be achieved
by taking ρ j in the form ρ j (Y )≈ ρ+ (1 + λ j Y )−2, λ j := ( j + 1)1/2. To give an idea of why it works,
let us consider the first and last terms. As regards the first one, we write

ν
1
2

∫
∇∂Y�

(∂Y�+2ρ j )2
·∇ω jω j

= ν
1
2

∫
{Y≥1/λ j }

1

Y
√
∂Y�+2ρ j

Y∇∂Y�
√
∂Y�+2ρ j

·
∇ω j

√
∂Y�+2ρ j

ω j
√
∂Y�+2ρ j

+ν
1
2 O
(∥∥∥∥ ∇ω j

√
∂Y�+2ρ j

∥∥∥∥
L2

∥∥∥∥ ω j
√
∂Y�+2ρ j

∥∥∥∥
L2

)
.

The second term on the right side corresponds to the contribution of the region Y ≤ 1/λ j , for which the
weight ∂Y�+ 2ρ j is bounded from below and raises no issue (we further assumed here that ∂Y ∇� for
the sake of brevity). As regards the first term on the right side, for all Y ≥ 1/λ j , we use the bounds

1

Y
√
∂Y�+ 2ρ j

≤
1

Y
√

2ρ j
≤ Cλ j and

|Y∇∂Y�|
√
∂Y�+ 2ρ j

≤
|Y∇∂Y�|

√
∂Y�+ 2ρ

≤ C,

where we used Assumption (iv). We end up with

ν
1
2

∫
∇∂Y�

(∂Y�+ 2ρ j )2
· ∇ω jω j

≤ Cν
1
2λ j

∥∥∥∥ ∇ω j
√
∂Y�+ 2ρ j

∥∥∥∥
L2

∥∥∥∥ ω j
√
∂Y�+ 2ρ j

∥∥∥∥
L2
,

which is absorbed by the left-hand side under the constraint λ j ≲ ( j + 1)1/2. As regards the third term on
the right side of (3-5), we use the inequality

ρ j
√
∂Y�+ 2ρ j

≤

√
ρ j

√
2

≤ C
(
√
ν+

1
λ j Y

)
to obtain∫

W j
2

2ρ j

∂Y�+ 2ρ j
ω j

≤ C
√
ν∥W j

2 ∥L2

∥∥∥∥ ω j
√
∂Y�+ 2ρ j

∥∥∥∥
L2

+
C
λ j

∥∥∥∥W j
2

Y

∥∥∥∥
L2

∥∥∥∥ ω j
√
∂Y�+ 2ρ j

∥∥∥∥
L2

≤ C
(
√
ν∥W j

2 ∥L2 +
1
λ j

∥∂Y W j
2 ∥L2

)∥∥∥∥ ω j
√
∂Y�+ 2ρ j

∥∥∥∥
L2
,
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where the second line comes from Hardy’s inequality. Using that ∥∂Y W j
2 ∥L2 = ∥∂X W j

1 ∥L2 ≈ ∥W j+1
1 ∥L2 ,

we have, for any sequence (a j ),∑
j

1
( j !)3/2ν j/2 a j∥∂Y W j

2 ∥L2 ≈

∑
j

1
( j !)3/2ν j/2 ν

1
2 ( j + 1)

3
2 a j−1∥W j

1 ∥L2 .

In other words, at Gevrey 3
2 regularity, a j∥∂Y W j

2 ∥L2 behaves like ν1/2( j +1)3/2a j−1∥W j
1 ∥L2 . Combining

this with a control of ∥W j
∥L2 by ∥ω j/

√
∂Y�+ 2ρ j∥L2 and with a precise statement to be given in

Section 4, the previous bound is in the same spirit as∫
W j

2
2ρ j

∂Y�+ 2ρ j
ω j

≤ C
ν1/2( j + 1)3/2

λ j−1

∥∥∥∥ ω j
√
∂Y�+ 2ρ j

∥∥∥∥2

L2
,

which allows a control by the left-hand side of (3-5) as soon as ( j + 1)1/2 ≲ λ j . Hence the choice
λ j = ( j + 1)1/2.

Of course, the elements above provide only glimpses of the approach carried out in the first step of
our stability study. The full study of the vorticity equation with artificial boundary conditions is given in
Section 4.

3B. Recovery of the right boundary conditions. We give again a few elements on the toy model (3-2).
The analysis of the complete model is carried in Section 5. After the first step, one has a solution of
system (3-3), with the same initial condition and same boundary condition W2|Y=0 = 0 as in (3-2) but not
the same boundary condition on the tangential velocity: h := W1|Y=0 ̸= 0. Note that by the first step and
the trace theorem, one is able to get a Gevrey bound for h: as shown rigorously in the next sections, one
may get an estimate of the form

|||h|||bc :=

∑
j≤ν−1/2

1
( j !)3/2ν j/2 ∥h j

∥L2((0,1/(Kν1/2));L2
X )

≤
C

K 1/4

(
∥W0∥L2 + C

∑
j≤ν−1/2

1
( j !)3/2ν j/2 ∥ω

j
0∥L2

X,Y

)
,

where W0 and ω0 := rot W0 are the initial data for the velocity and vorticity, respectively.
Working in Gevrey regularity, the point is then to solve

(∂τ − ν
1
21)ω+ W2∂Y�= 0, ω = rot W, ∇ · W = 0, τ > 0, X ∈ Tν, Y > 0,

W2|Y=0 = 0, W1|Y=0 = h, W |t=0 = 0.
(3-6)

The main idea is to use the following scheme:

Step (a): We solve the approximate Stokes equation

(∂τ − ν
1
21)ω = 0, ω = rot W, ∇ · W = 0,

W2|Y=0 = 0, W1|Y=0 = h, W |t=0 = 0
(3-7)

and obtain in this way a solution Wa = (Wa,1,Wa,2)= Wa[h].
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Step (b): We correct the stretching term created by the previous approximation by considering the full
equation with artificial boundary condition:

(∂τ − ν
1
21)ω+ W2∂Y�= −Wa,2∂Y�, ω = rot W, ∇ · W = 0,

W2|Y=0 = 0, ω|Y=0 = 0, W |t=0 = 0.
(3-8)

We denote by Wb = Wb[h] the solution of such a system. It can be seen as a functional of h through Wa .

Step (c): At the end of the Steps (a) and (b), the function W − Wa − Wb solves formally the same system
as W , replacing h by Rbc[h] := −Wb,1[h]|Y=0. The point is to show that, for K large enough,

|||Rbc[h]|||bc ≤
1
2 |||h|||bc, (3-9)

which allows us to solve (3-6) by iteration.

Obviously, to establish (3-9), one must have careful Gevrey stability estimates for systems (3-7)
and (3-8). The estimates for (3-8) follow from the same ideas as those described in Section 3A to
treat (3-3) (the initial condition is just replaced by a source term). As regards (3-7), the initial data being
zero, one can take the Laplace transform in τ and the Fourier transform in X and solve explicitly the
resulting ordinary differential equation in Y . It leads to sharp L2 estimates on W and its derivatives on
the Fourier–Laplace side, which transfer to L2 estimates in the physical space by the Plancherel theorem.

All the analysis in the framework of the vorticity equation is provided in Section 5. In this setting,
the iteration scheme mentioned above has to be modified, because the advection term creates extra
difficulties. Namely, one has to add an intermediate step between Steps (a) and (b) above; see Section 5
for details.

Of course, we have indicated here key ideas for the stability analysis of the linearized system (1-6).
One has then to go from these estimates to the nonlinear Theorem 2.1. This will be achieved in Section 7.
Finally we introduce the simplified notation

∥ f ∥ = ∥ f ∥L2
X,Y
, ⟨ f, g⟩ = ⟨ f, g⟩L2

X,Y

for convenience.

4. Vorticity estimate under artificial boundary condition

In accordance with the strategy described in the previous section, we consider here the solution to the
system

−ν
1
21ω+ ∂τω+ V · ∇ω+ W · ∇�= rot F + G, ω = rot W, ∇ · W = 0,

τ > 0, X ∈ Tν, Y > 0,

W2|Y=0 = ω|Y=0 = 0, W |τ=0 = W0.

(4-1)

Here a given force term G ∈ L2(0, 1/(Kν1/2); L2
∩Ḣ−1), where Ḣ−1 is the dual space of the homogeneous

Sobolev space Ḣ 1
0 (Tν × R+) (the subscript 0 means the zero boundary trace), is also introduced for later
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use. As usual, the velocity W is given in terms of the stream function φ, i.e.,

W = ∇
⊥φ =

(
∂Yφ

−∂Xφ

)
, (4-2)

and φ ∈ Ḣ 1
0 (T × R+) is the unique solution to the Poisson equation −1φ = ω with the zero Dirich-

let boundary condition φ|Y=0 = 0. This formulation is well defined, and the unique solvability of
(4-1) in the class ω ∈ C([0, 1/(Kν1/2)]; L2

∩ Ḣ−1)∩ L2(0, 1/(Kν1/2); H 1
0 ) is shown without difficulty

(under the regularity condition we impose on V , �, and the forces). The reason why the regularity
ω ∈ C([0, 1/(Kν1/2)]; Ḣ−1) is preserved is that the term −V · ∇ω− W · ∇�+ rot F + G has a bound
in Ḣ−1 (in space) such as

∥−V · ∇ω− W · ∇�+ rot F + G∥L2 Ḣ−1 ≤ ∥V ∥L∞∥ω∥L2 L2 + ∥�∥L∞∥W∥L2 L2 + ∥F∥L2 L2 + ∥G∥L2 Ḣ−1

and also ∥rot W0∥Ḣ−1 ≤ ∥W0∥L2 for the initial vorticity. Hence the space C([0, 1/(Kν1/2)]; Ḣ−1) for
the vorticity field and the regularity φ(τ, · ) ∈ Ḣ 1

0 (T × R+) for the stream function are compatible in
our setting. By the parabolic regularity of the system, the ν-dependent estimates for the higher-order
derivatives are easily obtained, and thus, our main interest here is the uniform estimate in time and ν. To
this end, for j = ( j1, j2) with j1 + j2 = j , we set

ω j
= e−K τν1/2( j+1)B j2∂

j1
X ω, (∇φ) j

= e−K τν1/2( j+1)B j2∂
j1
X ∇φ, (4-3)

and similarly, (1ω) j
= e−K τν1/2( j+1)B j2∂

j1
X 1ω. We also set

V j
= e−K τν1/2 j B j2∂

j1
X V, (∇�) j

= e−K τν1/2 j B j2∂
j1
X ∇�. (4-4)

From the first equation of (4-1), we observe that ω j satisfies, by setting l = (l − l2, l2),

−ν
1
2 (1ω) j

+ (∂τ + Kν
1
2 ( j + 1)+ V · ∇)ω j

+ (∇⊥φ) j
· ∇�

= −V2[B j2, ∂Y ]e−K τν1/2( j+1)∂
j1
X ω

−

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
V j−l

· (∇ω)l

−

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
(∇⊥φ)l · (∇�) j−l

+ rot F j
− [B j2, ∂Y ]∂

j1
X e−K τν1/2( j+1)F1 + G j . (4-5)

Here the sum
∑ j−1

l=0 is defined to be 0 for j = 0, and the definitions of F j and G j are straightforward.
To simplify notations let us introduce weighted seminorms; for a given nonnegative smooth function

ξ j = ξ j (τ, X, Y ), we set

Mp, j,ξ j [ω] = sup
j2=0,..., j

∥ξ jω
( j− j2, j2)∥L p

τ (0,1/(Kν1/2);L2
X,Y )

(4-6)
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and also set, with the definition ξ = (ξ j )
∞

j=0,

|||F |||
′

p,ξ =

ν−1/2∑
j=0

ν1/(2p)( j + 1)1/p

( j !)3/2ν j/2 Mp, j,ξ j [F]. (4-7)

Note that

|||F |||
′

∞,1 = |||F |||∞, 1 = (1, 1, . . . ). (4-8)

The choice of ξ j is essential in the stability estimate for ω j . We will take

ξ j =
1

√
∂Y�+ 2ρ j

, (4-9)

where

ρ j = K
1
4 C∗(1 + ( j + 1)

1
2 Y )−2

+ C∗

((
1 +

Y
ν1/4

)−2

+ ν
1
2 (1 + Y )−2

+ ν

)
. (4-10)

See Section 3 for more on the origin of this weight. We also introduce the norm of the boundary trace as

|||∂Yφ|Y=0|||bc =

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥e−K τν1/2( j+1)∂
j
X∂Yφ|Y=0∥L2(0,1/(Kν1/2);L2

X )
. (4-11)

The main result of this section is:

Proposition 4.1. There exists κ1 ∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ1].
There exists K1 = K1(κ,C∗,C∗

j )≥ 1 such that if K ≥ K1 then the system (4-1) admits a unique solution
ω ∈ C([0, 1/(Kν1/2)]; L2

∩ Ḣ−1)∩ L2(0, 1/(Kν1/2); H 1
0 ) satisfying

|||ω|||
′

∞,ξ + K
1
2 |||ω|||

′

2,ξ + K
1
4 |||∇φ|||

′

2,1 + K
1
4 |||∂Yφ|Y=0|||bc

≤ C
(
∥W0∥L2

X,Y
+ ν−

[∥rot W0∥] + (C∗

2 + 1)ν−
1
2 |||F |||

′

2,ξ̃ (1)

+
1

K 1/2ν1/2 |||G|||
′

2,ξ̃ (2)
+

1
K 1/2ν1/4 ∥G∥L2(0,1/(Kν1/2);Ḣ−1)

)
. (4-12)

Here C > 0 is a universal constant, while the weight ξ̃ (k) is defined as

ξ̃ (k) =

(
ξ j

( j + 1)k/2

)∞

j=0
.

Remark 4.2. (1) From the bound 1/ξ j ≤ (C∗

1 + 8K 1/4C∗)
1/2 in (4-18) below, we have

K
3
16 |||ω|||

′

2,1 ≤ K
3
16 (C∗

1 + 8K
1
4 C∗)

1
2 |||ω|||

′

2,ξ ≤ K
1
2 |||ω|||

′

2,ξ (4-13)

if K is large enough further depending only on C∗

1 and C∗. Estimates (4-13) and (4-12) gives the estimate
of K 3/16

|||ω|||
′

2,1.
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(2) By the definition of (4-7), we have

ν−
1
2 |||F |||

′

2,ξ̃ (1)
= ν−

1
4

ν−1/2∑
j=0

M2, j,ξ j [F]

( j !)3/2ν j/2 , ν−
1
2 |||G|||

′

2,ξ̃ (2)
= ν−

1
4

ν−1/2∑
j=0

M2, j,ξ j [G]

( j !)3/2ν j/2( j + 1)1/2
.

Since ξ j ≤ 1/√ρ j ≤ 1/(C∗ν
1/2) by the definitions (4-9)–(4-10) with the monotonicity condition (2-10),

we have

ν−
1
2 |||F |||

′

2,ξ̃ (1)
≤

|||F |||2

C∗ν3/4 . (4-14)

Before going into the details of the proof of Proposition 4.1, let us give a lemma for the weight ξ j

and ρ j , which will be used frequently. By the concavity condition on ∂Y� in Assumption (iv) and the
definition of ρ j we have:

Lemma 4.3. There exists C > 0 such that the following estimates hold for any j ≥ 0:

ξ 2
j ≤

1
ρ j

≤
1

C∗ max{K 1/4(1 + ( j + 1)1/2Y )−2, ν}
for Y ≥ 0,

1
ρ j

≤
4

K 1/4C∗

for 0 ≤ Y ≤ ( j + 1)−
1
2 .

(4-15)

In particular, ∥∥∥∥1 + ν1/2Y
1 + Y

ξ j

∥∥∥∥
L∞

+

∥∥∥∥1 + ν1/2Y
Y

ξ j

∥∥∥∥
L∞({Y≥( j+1)−1/2})

≤ C( j + 1)
1
2 . (4-16)

Moreover,

∥ρ j∥L∞ ≤ 4K
1
4 C∗,

∥∥∥∥Y ∂Yρ j

ρ j

∥∥∥∥
L∞

≤ 2 (4-17)

and ∥∥∥∥ 1
ξ j

∥∥∥∥
L∞

≤ (C∗

1 + 8K
1
4 C∗)

1
2 , sup

j≥1

∥∥∥∥ ξ j

ξ j−1

∥∥∥∥
L∞

≤ C. (4-18)

The proof of Lemma 4.3 is a straightforward consequence of the definitions of ξ j and ρ j , so we omit
the details.

4A. Vorticity estimate for the modified system. In this subsection we collect lemmas for the solution
to (4-5) and give the estimate for the vorticity. The main result of this subsection is as follows.

Proposition 4.4. There exists κ ′

1 ∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ ′

1].
There exists K ′

1 = K ′

1(κ,C∗,C∗

j )≥ 1 such that if K ≥ K ′

1 then the system (4-1) admits a unique solution
ω ∈ C([0, 1/(Kν1/2)]; L2

∩ Ḣ−1)∩ L2(0, 1/(Kν1/2); H 1
0 ) satisfying

|||∇ω|||
′

2,ξ̃ (1)
+ |||ω|||

′

2,ξ + K
1
2 |||ω|||

′

2,ξ

≤ C
(
ν−

1
2 [∥rot W0∥] +

C∗

2 + 1
ν1/2 |||F |||

′

2,ξ̃ (1)
+

1
K 1/2ν1/2 |||G|||

′

2,ξ̃ (2)
+ |||W |||

′

2,1

)
. (4-19)

Here C > 0 is a universal constant.
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Since the unique solvability of the linear system (4-1) itself follows from the standard theory of
parabolic equations, we focus on establishing the estimate (4-19). Then the core part of the proof of
Proposition 4.4 consists of the calculation of the inner product for each term in (4-5) with ξ 2

j ω
j , where

j = ( j1, j2) with j1 + j2 = j and the weight ξ j is defined as in (4-9). Let us start from the following
lemma. The number τ0 ∈ (0, 1/(Kν1/2)] is taken arbitrarily below.

Lemma 4.5. There exists K1,1 = K1,1(C∗

1 ,C∗)≥ 1 such that if K ≥ K1,1 then we have∫ τ0

0
⟨−ν

1
2 (1ω) j , ξ 2

j ω
j
⟩ dτ

≥
1
2ν

1
2 ∥ξ j (∇ω)

j
∥

2
L2(0,τ0;L2

X,Y )
−Cν

1
2 (κν

1
2 j2)2 M2, j−1,ξ j−1[∂Yω]

2
−C(C∗

2 +1)ν
1
2 ( j +1)∥ξ jω

j
∥

2
L2(0,τ0;L2

X,Y )
.

Here C > 0 is a universal constant.

Proof. Let us write χ ′
ν = (χ ′)(ν1/2Y )= κe−κν1/2Y . We will frequently use the identity

[B j2, ∂Y ] = −ν
1
2 j2χ ′

νB j2−1∂Y = −
ν1/2 j2χ ′

ν

χν
B j2 . (4-20)

Then we observe that

(1ω) j
= e−K τν1/2( j+1)B j2∂

j1
X 1ω = ∇ · (∇ω) j

−
ν1/2 j2χ ′

ν

χν
(∂Yω)

j (4-21)

and

∇ω j
= (∇ω) j

+ ν
1
2 j2χ ′

νe
−K τν1/2

(∂Yω)
( j1, j2−1)e2, ω j

= χνe−K τν1/2
(∂Yω)

( j1, j2−1). (4-22)

Here e2 = (0, 1). Hence integration by parts gives∫ τ0

0
−ν

1
2 ⟨(1ω) j , ξ 2

j ω
j
⟩ dτ

= ν
1
2

∫ τ0

0

(
∥ξ j (∇ω)

j
∥

2
+ 2ν

1
2 j2e−K τν1/2

⟨ξ j (∇ω)
j , χ ′

νξ j (∂Yω)
( j1, j2−1)

⟩ + ⟨(∇ω) j
· ∇(ξ 2

j ), ω
j
⟩
)

dτ

≥
3
4ν

1
2 ∥ξ j (∇ω)

j
∥

2
L2(0,τ0;L2)

− Cν
1
2 (κν

1
2 j2)2∥ξ j−1(∂Yω)

( j1, j2−1)
∥

2
L2(0,τ0;L2)

− ν
1
2

∫ τ0

0
|⟨(∇ω) j

· ∇(ξ 2
j ), ω

j
⟩| dτ.

Here we have used ∥ξ j/ξ j−1∥L∞ ≤ C in the last line as stated in Lemma 4.3. When j2 = 0, the term
(∂Yω)

( j1, j2−1) is defined as 0 for convenience. It suffices to estimate ⟨(∇ω) j
· ∇(ξ 2

j ), ω
j
⟩. We have

∇(ξ 2
j )= −

∇∂Y�+ 2∇ρ j
√
∂Y�+ 2ρ j

ξ 3
j , (4-23)

which yields

|⟨(∇ω) j
· ∇(ξ 2

j ), ω
j
⟩| ≤ ∥ξ j (∇ω)

j
∥

(∥∥∥∥ ∇∂Y�
√
∂Y�+ 2ρ j

ξ 2
j ω

j
∥∥∥∥+

∥∥∥∥ 2∂Yρ j
√
∂Y�+ 2ρ j

ξ 2
j ω

j
∥∥∥∥).
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To estimate ∥(∇∂Y�/
√
∂Y�+ 2ρ j )ξ

2
j ω

j
∥, we decompose the integral about Y into 0 ≤ Y ≤ ( j + 1)−1/2

and Y ≥ ( j + 1)−1/2. Then we see from Lemma 4.3 with ξ 2
j /

√
∂Y�+ 2ρ j = ξ 3

j ≤ 1/ρ3/2
j ,∥∥∥∥ ∇∂Y�

√
∂Y�+ 2ρ j

ξ 2
j ω

j
∥∥∥∥

L2({0<Y<( j+1)−1/2})

≤

∥∥∥∥ 1

ρ
3/2
j

∥∥∥∥
L∞({0<Y<( j+1)−1/2})

∥∇∂Y�ω
j
∥L2({0<Y<( j+1)−1/2})

≤
2

(K 1/4C∗)3/2

∥∥∥∥ Y
1 + ν1/2Y

∇∂Y�

∥∥∥∥
L∞

∥∥∥∥ω j

Y

∥∥∥∥
≤

CC∗

1

(K 1/4C∗)3/2
∥∂Yω

j
∥.

Here we have used Assumption (iii) and the Hardy inequality ∥ω j/Y∥ ≤ 4∥∂Yω
j
∥. Then by using (4-22)

for ∂Yω
j and (4-18) we have

∥∂Yω
j
∥ ≤ ∥(∂Yω)

j
∥ + κν

1
2 j2∥(∂Yω)

( j1, j2−1)
∥

≤

∥∥∥∥ 1
ξ j

∥∥∥∥
L∞

∥ξ j (∂Yω)
j
∥ + κν

1
2 j2

∥∥∥∥ 1
ξ j−1

∥∥∥∥
L∞

∥ξ j−1(∂Yω)
( j1, j2−1)

∥

≤ C(C∗

1 + K
1
4 C∗)

1
2 (∥ξ j (∂Yω)

j
∥ + κν

1
2 j2∥ξ j−1(∂Yω)

( j1, j2−1)
∥). (4-24)

On the other hand, we have from Assumption (iv) and (4-16) in Lemma 4.3,∥∥∥∥ ∇∂Y�
√
∂Y�+2ρ j

ξ 2
j ω

j
∥∥∥∥

L2({Y≥( j+1)−1/2})

≤

∥∥∥∥ Y∇∂Y�

(1+ν1/2Y )
√
∂Y�+2ρ j

∥∥∥∥∥∥∥∥1+ν1/2Y
Y

ξ j

∥∥∥∥
L∞({Y≥( j+1)−1/2})

∥ξ jω
j
∥

≤ CC∗

2 ( j+1)
1
2 ∥ξ jω

j
∥.

Next we estimate the term ∥(2∂Yρ j/
√
∂Y�+ 2ρ j )ξ

2
j ω

j
∥. To this end we observe that

|∂Yρ j | ≤ 2( j + 1)
1
2 K

1
4 C∗(1 + ( j + 1)

1
2 Y )−3

+ 2C∗ν
1
2 (1 + Y )−3

+ 2C∗ν
−

1
4

(
1 +

Y
ν1/4

)−3

≤

{
2( j + 1)

1
2ρ j + 2C∗/Y, 0< Y < ( j + 1)−

1
2 ,

2( j + 1)
1
2ρ j + 2ρ j/Y, Y ≥ ( j + 1)−

1
2 ,

which gives, from Lemma 4.3,∥∥∥∥ 2∂Yρ j
√
∂Y�+2ρ j

ξ 2
j ω

j
∥∥∥∥

L2
≤ 4( j+1)

1
2 ∥ξ jω

j
∥+2C∗

∥∥∥∥ξ 3
j ω

j

Y

∥∥∥∥
L2({0<Y<( j+1)−1/2})

+2
∥∥∥∥ρ jξ

3
j ω

j

Y

∥∥∥∥
L2({Y≥( j+1)−1/2})

≤ 4( j+1)
1
2 ∥ξ jω

j
∥+

2C∗

(K 1/4C∗)3/2

∥∥∥∥ω j

Y

∥∥∥∥+2( j+1)
1
2 ∥ξ jω

j
∥.

Then we apply the Hardy inequality ∥ω j/Y∥ ≤ 4∥∂Yω
j
∥ and then use (4-24). Collecting these, we obtain

|⟨(∇ω) j
· ∇(ξ 2

j ), ω
j
⟩|

≤ ∥ξ j (∇ω)
j
∥

(
C(C∗

1 + 1)(C∗

1 + K 1/4C∗)
1/2

(K 1/4C∗)3/2
(∥ξ j (∂Yω)

j
∥ + κν

1
2 j2∥ξ j−1(∂Yω)

( j1, j2−1)
∥)

+ C(C∗

2 + 1)( j + 1)
1
2 ∥ξ jω

j
∥

)
.
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Thus, by taking K large enough depending only on C∗

1 and C∗, we obtain the desired estimate as stated
in Lemma 4.6. □

Lemma 4.6. There exists K1,2 = K1,2(C∗

1 ,C∗)≥ 1 such that if K ≥ K1,2 then we have∫ τ0

0
⟨(∂τ + Kν

1
2 ( j + 1)+ V · ∇)ω j , ξ 2

j ω
j
⟩ dτ

≥
1
2∥ξ jω

j (τ0)∥
2
L2

X,Y
−

1
2∥ξ jω

j (0)∥2
L2

X,Y
+

1
2 Kν

1
2 ( j + 1)∥ξ jω

j
∥

2
L2(0,τ0;L2

X,Y )

−
CC∗

1ν
1/2

K 1/4C∗

(∥ξ j (∂Yω)
j
∥

2
L2(0,τ0;L2

X,Y )
+ (κν

1
2 j)2 M2, j−1,ξ j−1[∂Yω]

2).

Here C > 0 is a universal constant.

Proof. Integration by parts yields∫ τ0

0
⟨(∂τ + Kν

1
2 ( j + 1)+ V · ∇)ω j , ξ 2

j ω
j
⟩ dτ

=
1
2∥ξ jω

j (τ0)∥
2
L2

X,Y
−

1
2∥ξ jω

j (0)∥2
L2

X,Y
+ Kν

1
2 ( j + 1)∥ξ jω

j
∥

2
L2(0,τ0;L2

X,Y )

−
1
2

∫ τ0

0
⟨∂τ (ξ

2
j )+ V · ∇(ξ 2

j ), (ω
j )2⟩ dτ.

As for the term ⟨∂τ (ξ
2
j ), (ω

j )2⟩, we decompose the integral about Y into {0 < Y < ( j + 1)−1/2
} and

{Y ≥ ( j + 1)−1/2
} and compute as follows:

|⟨∂τ (ξ
2
j ), (ω

j )2⟩|

≤

∥∥∥∥( Y
1+ν1/2Y

)2

∂τ∂Y�

∥∥∥∥
L∞

∥∥∥∥(1+ν1/2Y
Y

)
ξ 2

j ω
j
∥∥∥∥2

≤ C∗

1ν
1
2

(
∥(1+ν

1
2 Y )ξ 2

j ∥
2
L∞({0<Y<( j+1)−1/2})

∥∥∥∥ω j

Y

∥∥∥∥2

+

∥∥∥∥(1+ν1/2Y
Y

)
ξ j

∥∥∥∥2

L∞({Y≥( j+1)−1/2})

∥ξ jω
j
∥

2
)

≤ C∗

1ν
1
2

(
C

(K 1/4C∗)2
∥∂Yω

j
∥

2
+C( j +1)∥ξ jω

j
∥

2
)

(by the Hardy inequality and Lemma 4.3). (4-25)

Next we have

|⟨V · ∇(ξ 2
j ), (ω

j )2⟩| ≤

∥∥∥∥V · ∇(∂Y�+ 2ρ j )

∂Y�+ 2ρ j

∥∥∥∥
L∞

∥ξ jω
j
∥

2.

Then we have from Assumption (iii) and Lemma 4.3,∥∥∥∥ V1∂Y ∂X�

∂Y�+ 2ρ j

∥∥∥∥
L∞

≤

∥∥∥∥ Y (1 + Y )
(1 + ν1/2Y )2

∂X∂Y�

∥∥∥∥
L∞

∥∥∥∥V1(1 + ν1/2Y )2

Y (1 + Y )ρ j

∥∥∥∥
L∞

≤ C∗

1ν
1
2

(
2
∥∥∥∥ V1

Y (1 + Y )ρ j

∥∥∥∥
L∞

+ 2∥V1∥L∞

∥∥∥∥ (ν1/2Y )2

Y (1 + Y )ρ j

∥∥∥∥
L∞

)
≤ C(C∗

1 )
2ν

1
2 ( j + 1).
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Here we have computed, using V1|Y=0 = 0,∥∥∥∥ V1

Y (1 + Y )ρ j

∥∥∥∥
L∞

≤ ∥∂Y V1∥L∞

∥∥∥∥ 1
ρ j

∥∥∥∥
L∞({0<Y<( j+1)−1/2})

+ ∥V1∥L∞

∥∥∥∥ 1
Y (1 + Y )ρ j

∥∥∥∥
L∞({Y≥( j+1)−1/2})

≤ C∗

1 ( j + 1).

Similarly,∥∥∥∥V2(∂
2
Y�+ 2∂Yρ j )

∂Y�+ 2ρ j

∥∥∥∥
L∞

≤

∥∥∥∥ Y (1 + Y )2

(1 + ν1/2Y )3
∂2

Y�

∥∥∥∥
L∞

∥∥∥∥V2(1 + ν1/2Y )3

Y (1 + Y )2ρ j

∥∥∥∥
L∞

+

∥∥∥∥V2

Y

∥∥∥∥
L∞

∥∥∥∥Y ∂Yρ j

ρ j

∥∥∥∥
L∞

≤ CC∗

1

(∥∥∥∥ V2

Y (1 + Y )2ρ j

∥∥∥∥
L∞

+ ∥V2∥L∞

∥∥∥∥ (ν1/2Y )3

Y (1 + Y )2ρ j

∥∥∥∥
L∞

)
+ 2C∗

1ν
1
2

≤ CC∗

1

(
∥∂Y V2∥L∞

∥∥∥∥ 1
(1 + Y )2ρ j

∥∥∥∥
L∞

+ ∥V2∥L∞ν
3
2

∥∥∥∥ 1
ρ j

∥∥∥∥
L∞

)
+ 2C∗

1ν
1
2

≤ CC∗

1 (C
∗

1 + 1)ν
1
2 ( j + 1). (by Lemma 4.3).

Note that we have also used ∥∂Y V2∥L∞ = ∥∂X V1∥L∞ ≤ C∗

1ν
1/2. Collecting these and applying the identity

(4-22) for ∂Yω
j in (4-25) (that is, we use (4-24)), we obtain the desired estimate by taking K large enough

depending only on C∗

1 and C∗. □

Lemma 4.7. It follows that∫ τ0

0
|⟨(∇⊥φ) j

· ∇�, ξ 2
j ω

j
⟩| dτ ≤

C(R j,Lemma 4.7[∇φ])2

ν1/2( j + 1)
+

1
8 Kν

1
2 ( j + 1)∥ξ jω

j
∥

2
L2(0,τ0;L2

X,Y )
, (4-26)

where

R j,Lemma 4.7[∇φ]

:=

(
C∗

1

K 1/2 +
(K 1/4C∗)

1/2

K 1/2 + κ
1
2

)
ν

1
2 ( j + 1)M2, j [∇φ] +

(K 1/2C∗)
1/2

K 1/2 δ j≤ν−1/2−1
M2, j+1[∂Yφ]

( j + 1)1/2
.

Here

δ j≤ν−1/2−1 =

{
1 for 0 ≤ j ≤ ν−1/2

− 1,
0 for j = ν−1/2.

Moreover, there exists K1,3 = K1,3(C∗

1 ,C∗)≥ 1 such that if K ≥ K1,3 then

ν−1/2∑
j=0

R j,Lemma 4.7[∇φ]

( j !)3/2ν j/2ν1/4( j + 1)1/2
≤ C |||∇φ|||

′

2,1. (4-27)

Here C > 0 is a universal constant.

Proof. It suffices to show ∫ τ0

0
|⟨(∂Xφ)

j , ω j
⟩| dτ ≤ 2κν

1
2 j2(M2, j [∇φ])2, (4-28)
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0
|⟨ρ j (∂Xφ)

j , ξ 2
j ω

j
⟩| dτ

≤

C(K
1
4 C∗)

1
2

(
M2, j+1[∂Yφ]

( j+1)1/2 + κν
1
2 ( j + 1)

1
2 M2, j [∇φ]

)
∥ξ jω

j
∥L2(0,τ0;L2

X,Y )
, 0 ≤ j ≤ ν−

1
2 − 1,

C(K
1
4 C∗)

1
2 M2, j [∂Xφ]∥ξ jω

j
∥L2(0,τ0;L2

X,Y )
, j = ν−

1
2 ,

(4-29)

and ∫ τ0

0
|⟨(∂Yφ)

j∂X�, ξ
2
j ω

j
⟩| dτ ≤ CC∗

1ν
1
2 ( j + 1)

1
2 M2, j [∂Yφ]∥ξ jω

j
∥L2(0,τ0;L2

X,Y )
. (4-30)

Let us start from (4-28). To compute ⟨(∂Xφ)
j , ω j

⟩, we first observe that

ω j
= ∇ · (∇φ) j

−
ν1/2 j2χ ′

ν

χν
(∂Yφ)

j . (4-31)

Then we have, from integration by parts and [B j2, ∂Y ] = −((ν1/2 j2χ ′
ν)/χν)B j2 ,

⟨(∂Xφ)
j , ω j

⟩ = −⟨∇(∂Xφ)
j , (∇φ) j

⟩ − ν
1
2 j2⟨(∂Yφ)

( j1+1, j2−1), χ ′

ν(∂Yφ)
j
⟩

= −⟨∂X (∇φ)
j , (∇φ) j

⟩ − 2ν
1
2 j2⟨χ ′

ν(∂Yφ)
( j1+1, j2−1), (∂Yφ)

j
⟩

= −2ν
1
2 j2⟨χ ′

ν(∂Yφ)
( j1+1, j2−1), (∂Yφ)

j
⟩.

Hence we have, from ∥χ ′
ν∥L∞ = κ ,∫ τ0

0
|⟨(∂Xφ)

j , ω j
⟩| dτ ≤ 2κν

1
2 j2 M2, j [∂Yφ]

2. (4-32)

To estimate
∫ τ0

0 |⟨ρ j (∂Xφ)
j , ξ 2

j ω
j
⟩| dτ , the key inequality from the definition (4-10) is

ξ jρ j ≤
√
ρ j ≤ C(K

1
4 C∗)

1
2 (1 + ( j + 1)

1
2 Y )−1

+ Cν
1
2 , (4-33)

where ν1/2( j + 1)≤ 2 is used. Thus we have from the Hardy inequality∫ τ0

0
|⟨ρ j (∂Xφ)

j , ξ 2
j ω

j
⟩| dτ

≤

∫ τ0

0
∥ξ jρ j (∂Xφ)

j
∥∥ξ jω

j
∥ dτ

≤
C(K 1/4C∗)

1/2

( j + 1)1/2

∫ τ0

0

∥∥∥∥(∂Xφ)
j

Y

∥∥∥∥∥ξ jω
j
∥ dτ + Cν

1
2 ∥(∂Xφ)

j
∥L2(0,τ0;L2)∥ξ jω

j
∥L2(0,τ0;L2)

≤
C(K 1/4C∗)

1/2

( j + 1)1/2
∥∂Y (∂Xφ)

j
∥L2(0,τ0;L2)∥ξ jω

j
∥L2(0,τ0;L2) + Cν

1
2 ∥(∂Xφ)

j
∥L2(0,τ0;L2)∥ξ jω

j
∥L2(0,τ0;L2).

Then the desired estimate for 0 ≤ j ≤ ν−1/2
− 1 follows from K τν1/2

≤ 1 and

∂Y (∂Xφ)
j
= eK τν1/2

(∂Yφ)
( j1+1, j2) + ν

1
2 j2χ ′

ν(∂Yφ)
( j1+1, j2−1). (4-34)

On the other hand, the estimate for j = ν−1/2 easily follows from

∥ξ jρ j (∂Xφ)
j
∥ ≤ ∥

√
ρ j∥L∞∥(∂Xφ)

j
∥ ≤ C(K

1
4 C∗)

1
2 ∥(∂Xφ)

j
∥. (4-35)
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Finally we have, from Assumption (iii) and Lemma 4.3,

∥ξ j (∂Yφ)
j∂X�∥ ≤

∥∥∥∥ 1 + Y
1 + ν1/2Y

∂X�

∥∥∥∥
L∞

∥∥∥∥1 + ν1/2Y
1 + Y

ξ j

∥∥∥∥
L∞

∥(∂Yφ)
j
∥ ≤ CC∗

1ν
1
2 ( j + 1)

1
2 ∥(∂Yφ)

j
∥,

which gives ∫ τ0

0
|⟨(∂Yφ)

j∂X�, ξ
2
j ω

j
⟩| dτ ≤ CC∗

1ν
1
2 ( j + 1)

1
2 M2, j [∂Yφ]∥ξ jω

j
∥L2(0,τ0;L2

X,Y )
.

Collecting these, we obtain (4-26), for the identity

∂Y�ξ
2
j =

∂Y�

∂Y�+ 2ρ j
= 1 − 2ρ jξ

2
j

holds. The estimate (4-27) is verified from the definition

|||∇φ|||
′

2,1 =

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 M2, j [∇φ]

and
ν−1/2

−1∑
j=0

M2, j+1[∂Yφ]

( j !)3/2ν j/2ν1/4( j + 1)
=

ν−1/2
−1∑

j=0

ν1/2( j + 1)3/2 M2, j+1[∇φ]

(( j + 1)!)3/2ν( j+1)/2ν1/4( j + 1)

≤

ν−1/2∑
j=1

ν1/4 j1/2 M2, j [∇φ]

( j !)3/2ν j/2 ≤ |||∇φ|||
′

2,1. □

Lemma 4.8. Let j2 ≥ 1. Then it follows that∫ τ0

0
|⟨V2[B j2, ∂Y ]e−K τν1/2( j+1)∂

j1
X ω, ξ

2
j ω

j
⟩| dτ ≤ CC∗

1ν
1
2 j2∥ξ jω

j
∥

2
L2(0,τ0;L2

X,Y )
. (4-36)

Here C > 0 is a universal constant.

Proof. The estimate directly follows from (4-20) and

|V2χ
′

ν | ≤

∥∥∥∥V2

Y

∥∥∥∥
L∞

|Yχ ′

ν | ≤ ∥∂X V1∥L∞ |Yχ ′

ν | ≤ C∗

1ν
1
2 |Yχ ′

ν | ≤ CC∗

1χν

by Assumption (iii) and κν1/2Y e−κν1/2Y
≤ Cχν for a universal constant C > 0. □

Lemma 4.9. Let j ≥ 1. It follows that∫ τ0

0

∣∣∣∣〈 j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
V j−l

· (∇ω)l , ξ 2
j ω

j
〉∣∣∣∣ dτ

≤
C
κ

R j,Lemma 4.9[ω]∥ξ jω
j
∥L2(0,τ0;L2

X,Y )
,

where

R j,Lemma 4.9[ω] :=

j−1∑
l=0

( j − l + 1)
1
2 min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[V ]M2,l+1,ξl [ω],
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and

N∞, j [V ] := sup
j2=0,..., j

(
∥B j2∂

j− j2
X V1∥L∞(0,1/(Kν1/2);L∞

X,Y )
+ κ

∥∥∥∥∂ j
X V2

χν

∥∥∥∥
L∞(0,1/(Kν1/2);L∞

X,Y )

)
.

Moreover,
ν−1/2∑
j=0

R j,Lemma 4.9[ω]

( j !)3/2ν j/2ν1/4( j + 1)1/2
≤ CC∗

0 |||ω|||
′

2,ξ . (4-37)

Here C > 0 is a universal constant.

Proof. We first observe that ( j2
l2

)( j − j2
l−l2

)
≤

( j
l

)
, 0 ≤ j2 ≤ l2 ≤ l ≤ j, (4-38)

and

#{l2 ∈ N ∪ {0} | max{0, l + j2 − j} ≤ l2 ≤ min{l, j2}} ≤ min{l + 1, j − l + 1}. (4-39)

Hence we have∫ τ0

0

∣∣∣∣〈 j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
V j−l

· (∇ω)l , ξ 2
j ω

j
〉∣∣∣∣ dτ

≤

j−1∑
l=0

( j
l

)
min{l + 1, j − l + 1}∥ξ j V j−l

· (∇ω)l∥L2(0,τ0;L2)∥ξ jω
j
∥L2(0,τ0;L2).

From the definition of ξ j , we see, for 0 ≤ l ≤ j − 1,

ξ j

ξl
≤

√
1 +

(1 + ( j + 1)1/2Y )−2

(1 + (l + 1)1/2Y )−2 ≤ C( j + l − 1)
1
2 ,

where C > 0 is a universal constant, and thus,

∥ξ j V j−l
· (∇ω)l∥L2(0,τ0;L2) ≤ C( j + l − 1)

1
2 ∥ξl V j−l

· (∇ω)l∥L2(0,τ0;L2).

Next we have

∥ξl V
j−l

1 (∂Xω)
l
∥L2(0,τ0;L2) ≤

∥∥∥∥ ξl

ξl+1

∥∥∥∥
L∞

∥V j−l
1 ∥L∞∥ξl+1ω

(l1+1,l2)∥L2(0,τ0;L2)

≤ C N∞, j−l[V ]M2,l+1,ξl+1[ω],

and similarly,

∥ξl V
j−l

2 (∂Yω)
l
∥L2(0,τ0;L2) ≤

∥∥∥∥ ξl

ξl+1

∥∥∥∥
L∞

∥∥∥∥V j−l
2

χν

∥∥∥∥
L∞

∥ξl+1ω
(l1,l2+1)

∥L2(0,τ0;L2)

≤
C
κ

N∞, j−l[V ]M2,l+1,ξl+1[ω],
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Here we have used from ∂X V1 +∂Y V2 = 0 that V j−l
2 /χν = (∂Y V2)

( j1−l1, j2−l2−1)
= −V ( j1−l1+1, j2−l2−1)

1 for
j2 − l2 ≥ 1, which satisfies ∥V j−l

2 /χν∥L∞ ≤ C N∞, j−l[V ]. The estimate (4-37) follows from

ν−1/2∑
j=0

1
( j !)3/2ν j/2ν1/4( j + 1)1/2

j−1∑
l=0

( j − l + 1)
1
2 min{l + 1, j − l + 1}

( j
l

)
{( j − l)! (l + 1)!}

3
2 ν( j+1)/2

×
N∞, j−l[V ]

(( j − l)!)3/2ν( j−l)/2

M2,l+1,ξl [ω]

((l + 1)!)3/2ν(l+1)/2

≤

ν−1/2∑
j=0

j−1∑
l=0

( j − l + 1)
1
2 min{l + 1, j − l + 1}

(l + 1)3/2

( j + 1)1/2(l + 2)1/2

(
( j − l)! l!

j !

)1
2

×
N∞, j−l[V ]

(( j − l)!)3/2ν( j−l)/2

ν1/4(l + 2)1/2 M2,l+1,ξl [ω]

((l + 1)!)3/2ν(l+1)/2

≤ C
ν−1/2∑
j=0

j−1∑
l=0

N∞, j−l[V ]

(( j − l)!)3/2ν( j−l)/2

ν1/4(l + 2)1/2 M2,l+1,ξl [ω]

((l + 1)!)3/2ν(l+1)/2 .

Here we have used, for j ≥ 1,

( j − l + 1)
1
2 min{l + 1, j − l + 1}

(l + 1)3/2

( j + 1)1/2(l + 2)1/2

(
( j − l)! l!

j !

)1
2

≤ C, 0 ≤ l ≤ j − 1, (4-40)

with a universal constant C > 0. Here the key is the following estimate for each k = 0, 1, 2, 3:

( j − l)! l!
j !

≤
C

( j + 1)1+k for 1 + k ≤ l ≤ j − 1 − k. (4-41)

Then we obtain (4-37) from the Young inequality by convolution in the l1 space. □

Lemma 4.10. Let j ≥ 1. It follows that∫ τ0

0

∣∣∣∣〈 j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
(∇⊥φ)l · (∇�) j−l , ξ 2

j ω
j
〉∣∣∣∣ dτ

≤ C R j,Lemma 4.10[∇φ]∥ξ jω
j
∥L2(0,τ0;L2

X,Y )
,

where

R j,Lemma 4.10[∇φ]

:= C∗

2ν
1
2 j (M2, j [∇φ] + ν

1
2 j M2, j−1[∇φ])

+ ( j + 1)
1
2

j−2∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[∇�](M2,l+1[∂Yφ] + ν

1
2 (l + 1)M2,l[∇φ])

+ ν
1
2 ( j + 1)

3
2 N∞,1[∇�]M2, j−1[∂Yφ]

and

N∞, j−l[∇�]

:= sup
j2=0,..., j

(∥∥∥∥( 1 + Y
1 + ν1/2Y

)2

(∂Y�)
j
∥∥∥∥

L2(0,1/(Kν1/2);L2
X,Y )

+ ν−
1
2

∥∥∥∥ 1 + Y
1 + ν1/2Y

(∂X�)
j
∥∥∥∥

L2(0,1/(Kν1/2);L2
X,Y )

)
.
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Here the second term on the right-hand side is defined as zero when j = 1. Moreover,

ν−1/2∑
j=0

R j,Lemma 4.10[∇φ]

( j !)3/2ν j/2ν1/4( j + 1)1/2
≤ C(C∗

0 + C∗

2 )|||∇φ|||
′

2,1. (4-42)

Proof. As in the proof of Lemma 4.9, we have, from (4-38) and (4-39),∫ τ0

0

∣∣∣∣〈 j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
(∇⊥φ)l · (∇�) j−l , ξ 2

j ω
j
〉∣∣∣∣ dτ

≤

j−1∑
l=0

( j
l

)
min{l + 1, j − l + 1}∥ξ j (∇

⊥φ)l · (∇�) j−l
∥L2(0,τ0;L2)∥ξ jω

j
∥L2(0,τ0;L2).

Then we have, from Lemma 4.3,

∥ξ j (∂Yφ)
l(∂X�)

j−l
∥L2(0,τ0;L2) ≤

∥∥∥∥(1 + ν1/2Y )ξ j

1 + Y

∥∥∥∥
L∞

∥∥∥∥ 1 + Y
1 + ν1/2Y

(∂X�)
j−l
∥∥∥∥

L∞

∥(∂Yφ)
l
∥L2(0,τ0;L2)

≤ Cν
1
2 ( j + 1)

1
2 N∞, j−l[∇�]M2,l[∂Yφ].

Let j ≥ 2 and 0 ≤ l ≤ j − 2. Then,

∥ξ j (∂Xφ)
l(∂Y�)

j−l
∥L2(0,τ0;L2)

≤

∥∥∥∥(1 + ν1/2Y )ξ j

1 + Y

∥∥∥∥
L∞

∥∥∥∥( 1 + Y
1 + ν1/2Y

)2

(∂Y�)
j−l
∥∥∥∥

L∞

∥∥∥∥1 + ν1/2Y
1 + Y

(∂Xφ)
l
∥∥∥∥

L2(0,τ0;L2)

≤ C( j + 1)
1
2 N∞, j−l[∇�](∥∂Y (∂Xφ)

l
∥L2(0,τ0;L2) + ν

1
2 ∥(∂Xφ)

l
∥L2(0,τ0;L2)),

where the Hardy inequality is applied in the last line. Then (4-34) gives

∥ξ j (∂Xφ)
l(∂Y�)

j−l
∥L2(0,τ0;L2)

≤ C( j + 1)
1
2 N∞, j−l[∇�](M2,l+1[∂Yφ] + κν

1
2 (l + 1)M2,l[∇φ]), 0 ≤ l ≤ j − 2.

As for the case l = j − 1, by recalling ξ j ≤ 1/
√
∂Y�+ 2ρ, we compute

∥ξ j (∂Xφ)
l(∂Y�)

j−l
∥L2(0,τ0;L2) ≤

∥∥∥∥ Y
1 + ν1/2Y

ξ j (∂Y�)
j−l
∥∥∥∥

L∞

∥∥∥∥1 + ν1/2Y
Y

(∂Xφ)
l
∥∥∥∥

L2(0,τ0;L2)

≤ C
(∥∥∥∥ Y

1 + ν1/2Y
∂2

XY�
√
∂Y�+ 2ρ

∥∥∥∥
L∞

+

∥∥∥∥ Y
1 + ν1/2Y

χν∂
2
Y�

√
∂Y�+ 2ρ

∥∥∥∥
L∞

)
× (∥∂Y (∂Xφ)

l
∥L2(0,τ0;L2) + ν

1
2 ∥(∂Xφ)

l
∥L2(0,τ0;L2)).

Here we have used the Hardy inequality and that, when l = j − 1, either (∂Y�)
j−l

= ∂2
XY� or χν∂2

Y�.
Then, by using ∥((1 + ν1/2Y )/Y )χν∥L∞ ≤ Cν1/2, Assumption (iii), and (4-34), we have

∥ξ j (∂Xφ)
l(∂Y�)

j−l
∥L2(0,τ0;L2) ≤ CC∗

2ν
1
2 (M2,l+1[∂Yφ] + κν

1
2 (l + 1)M2,l[∇φ]), l = j − 1.
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Collecting these, we obtain the term R j,Lemma 4.10[∇φ] by noticing j Cl = j for l = j − 1, as desired. The
estimate (4-42) is proved as in (4-37) but by also using the Young inequality for convolution in the l1

space together with the following estimates for j ≥ 2:

( j + 1)
1
2 min{l + 1, j − l + 1}

(l + 1)3/2

( j + 1)1/2(l + 2)1/2

(
( j − l)! l!

j !

)1
2

≤ C, 0 ≤ l ≤ j − 2,

( j + 1)
1
2 min{l + 1, j − l + 1}

l + 1
( j + 1)1/2(l + 1)1/2

(
( j − l)! l!

j !

)1
2

≤ C, 0 ≤ l ≤ j − 2.

Note that the condition l ≤ j − 2 is crucial here, for we apply (4-41). We omit the details. □

Lemma 4.11. There exists K1,4 = K1,4(C∗

1 ,C∗)≥ 1 such that, for K ≥ K1,4,∫ τ0

0
⟨rot F j

− [B j2, ∂Y ]∂
j1
X e−K τν1/2( j+1)F1, ξ

2
j ω

j
⟩ dτ

≤ C(C∗

2 + 1)M2, j,ξ j [F](∥ξ j (∇ω)
j
∥L2(0,τ0;L2

X,Y )
+ κν

1
2 j M2, j−1,ξ j−1[∂Yω] + ( j + 1)

1
2 ∥ξ jω

j
∥L2(0,τ0;L2

X,Y )
)

and ∫ τ0

0
⟨G j , ξ 2

j ω
j
⟩ dτ ≤ M2, j,ξ j [G]∥ξ jω

j
∥L2(0,τ0;L2

X,Y )
.

Here C > 0 is a universal constant.

Proof. The estimate about G j is straightforward and we focus on the estimate about F j . Integration by
parts and also (4-20) yield∫ τ0

0
⟨rot F j

− [B j2, ∂Y ]∂
j1
X e−K τν1/2( j+1)F1, ξ

2
j ω

j
⟩ dτ

=

∫ τ0

0
⟨F j ,∇⊥(ξ 2

j ω
j )⟩ + ν

1
2 j2⟨χ ′

νF j
1 , ξ

2
j e−K τν1/2

(∂Yω)
( j1, j2−1)

⟩ dτ.

The second term is bounded from above by Cκν1/2 j2∥ξ j F j
1 ∥L2(0,τ0;L2)M2, j−1,ξ j−1[∂Yω], and thus we

focus on the first term:∫ τ0

0
⟨F j ,∇⊥(ξ 2

j ω
j )⟩ dτ

=

∫ τ0

0
⟨F j

· ∇
⊥(ξ 2

j ), ω
j
⟩ + ⟨F j , ξ 2

j (∇
⊥ω) j

⟩ + ν
1
2 j2⟨F j

1 , ξ
2
j χ

′

νe
−K τν1/2

(∂Yω)
( j1, j2−1)

⟩ dτ

≤

∫ τ0

0
⟨F j

· ∇
⊥(ξ 2

j ), ω
j
⟩ dτ + M2, j,ξ j [F]∥ξ j (∇ω)

j
∥L2(0,τ0;L2) + Cκν

1
2 j2 M2, j,ξ j [F]M2, j−1,ξ j−1[∂Yω].

Then, from Assumption (iv) and Lemma 4.3, and by recalling

∇
⊥(ξ 2

j )= −
∇

⊥(∂Y�+ 2ρ j )
√
∂Y�+ 2ρ j

ξ 3
j = −

∇
⊥∂Y�

√
∂Y�+ 2ρ j

ξ 3
j − 2(∇⊥ρ j )ξ

4
j ,
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we have

⟨F j
· ∇

⊥(ξ 2
j ), ω

j
⟩

≤ ∥ξ j F j
∥

(∥∥∥∥ Y∇(∂Y�+ 2ρ j )

(1 + ν1/2Y )
√
∂Y�+ 2ρ j

ξ 2
j

∥∥∥∥
L∞({0<Y<( j+1)−1/2})

∥∥∥∥1 + ν1/2Y
Y

ω j
∥∥∥∥

L2({0<Y<( j+1)−1/2})

+

∥∥∥∥ Y∇∂Y�

(1 + ν1/2Y )
√
∂Y�+ 2ρ j

∥∥∥∥
L∞({Y≥( j+1)−1/2})

∥∥∥∥1 + ν1/2Y
Y

ξ j

∥∥∥∥
L∞({Y≥( j+1)−1/2})

∥ξ jω
j
∥

+ ∥Y ∂Yρ jξ
2
j ∥L∞

∥∥∥∥ 1
Y

∥∥∥∥
L∞({Y≥( j+1)−1/2})

∥ξ jω
j
∥

)

≤ C∥ξ j F j
∥

((
C∗

2∥ξ 2
j ∥L∞({0<Y<( j+1)−1/2}) + ∥Y ∂Yρ jξ

2
j ∥L∞∥ξ j∥L∞({0<Y<( j+1)−1/2})

)∥∥∥∥ω j

Y

∥∥∥∥
+ (C∗

2 + 1)( j + 1)
1
2 ∥ξ jω

j
∥

)
≤ C∥ξ j F j

∥

((
C∗

2

K 1/4C∗

+
1

(K 1/4C∗)1/2

)
∥∂Yω

j
∥ + (C∗

2 + 1)( j + 1)
1
2 ∥ξ jω

j
∥

)
.

Thus, the estimate (4-24) for ∂Yω
j yields the desired estimate by taking K large enough depending only

on C∗

1 and C∗. □

Proof of Proposition 4.4. We are now in position to prove Proposition 4.4. Lemmas 4.5–4.11 imply that,
by taking the supremum over j2 = 0, . . . , j ,

ν
1
4 M2, j,ξ j [∇ω] + M∞, j,ξ j [ω] + (Kν

1
2 ( j + 1))

1
2 M2, j,ξ j [ω]

≤ C

(
sup

j2=0,..., j
∥ξ jω

j (0)∥ + κν
1
4 ν

1
2 j M2, j−1,ξ j−1[∇ω]

+
R j,Lemma 4.7[∇φ]

ν1/4( j + 1)1/2
+
κ−1 R j,Lemma 4.9[ω] + R j,Lemma 4.10[∇φ] + M2, j,ξ j [G]

(Kν1/2( j + 1))1/2
+(C∗

2 +1)ν−
1
4 M2, j,ξ j [F]

)
for j = 0, 1, . . . , ν−1/2. Here K ≥ 1 is taken large enough depending only on C∗ and C∗

j , while C > 0 is
a universal constant. Hence, by taking the sum

∑ν−1/2

j=0 with the factor 1/(( j !)3/2ν j/2), we obtain

|||∇ω|||
′

2,ξ̃ (1)
+ |||ω|||

′

∞,ξ + K
1
2 |||ω|||

′

2,ξ

≤ C

(
ν−1/2∑
j=0

1
( j !)3/2ν j/2 sup

j2=0,..., j
∥ξ jω

j (0)∥ + κ|||∇ω|||
′

2,ξ̃ (1)
+

C∗

0

K 1/2κ
|||ω|||

′

2,ξ

+

(
1 +

C∗

0 + C∗

2

K 1/2

)
|||∇φ|||

′

2,1 +
1

K 1/2ν1/2 |||G|||
′

2,ξ̃ (2)
+

C∗

2 + 1
ν1/2 |||F |||

′

2,ξ̃ (1)

)
.

Thus we obtain (4-19) by first taking κ > 0 small enough and then by taking K large enough, and also by
using ξ j ≤ 1/(C∗ν

1/2)≤ 1/ν1/2 to bound ∥ξ jω
j (0)∥. Note that the required smallness on κ is independent

of ν, K , C∗, and C∗

j , while the required largeness of K depends only on κ , C∗, and C∗

j . The proof of
Proposition 4.4 is complete. □
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4B. Estimate for the velocity in terms of the vorticity. In this subsection we give the estimate of the
stream function φ in terms of the vorticity ω. We remind the reader that ω = −1φ with the boundary
condition φ|Y=0 = 0.

Proposition 4.12. There exists κ2 ∈ (0, 1] such that, for any K ≥ 1, κ ∈ (0, κ2], and p ∈ [1,∞],

|||∇φ|||
′

p,1 ≤ C(K
1
4 C∗ + C∗

1 )
1
2 |||ω|||

′

p,ξ + Cν1/(2p)
∥∇φ(0,0)∥L p(0,1/(Kν1/2);L2

X,Y )
.

Here C > 0 is a universal constant.

Proof. It suffices to show

ν−1/2∑
j=1

ν1/(2p)( j + 1)1/p

( j !)3/2ν j/2 Mp, j,1[∇φ]

≤ C(K
1
4 C∗ + C∗

1 )
1
2 |||ω|||

′

p,ξ + Cν1/(2p)
∥∇φ(0,0)∥L p(0,1/(Kν1/2);L2

X,Y )
. (4-43)

Let j ≥ 1, and let us recall that ω j
= e−K τν1/2( j+1)B j2∂

j− j2
X ω with ω = −1φ. Computations similar to

those in (4-21) imply

ω j
= −∇ · (∇φ) j

+
ν1/2 j2χ ′

ν

χν
(∂Yφ)

j .

Then integration by parts together with the identity

∇φ j
= (∇φ) j

+ ν
1
2 j2χ ′

νe
−K τν1/2

(∂Yφ)
( j− j2, j2−1)e2

yields

⟨ω j , φ j
⟩ = ∥(∇φ) j

∥
2
+ 2ν

1
2 j2e−K τν1/2

⟨χ ′

ν(∂Yφ)
j , (∂Yφ)

( j− j2, j2−1)
⟩. (4-44)

Then ⟨ω j , φ j
⟩ ≤ ∥ξ jω

j
∥∥φ j/ξ j∥, and the definition of ξ j in (4-9) gives∥∥∥∥φ j

ξ j

∥∥∥∥= ∥
√
∂Y�+ 2ρ jφ

j
∥ ≤

∥∥∥∥( 1 + Y
1 + ν1/2Y

)2

∂Y�

∥∥∥∥1/2

L∞

∥∥∥∥1 + ν1/2Y
1 + Y

φ j
∥∥∥∥+

√
2∥

√
ρ jφ

j
∥

≤ (C∗

1 )
1
2 (C∥∂Yφ

j
∥ + ν

1
2 ∥φ j

∥)+
√

2∥
√
ρ jφ

j
∥.

Here we have used Assumption (iii) and the Hardy inequality. Next the definition of ρ j in (4-10) implies

√
ρ j ≤ K

1
8 C

1
2
∗ (1 + ( j + 1)

1
2 Y )−1

+ C
1
2
∗

((
1 +

Y
ν1/4

)−1

+ ν
1
4 (1 + Y )−1

+ ν
1
2

)
,

which gives, from the Hardy inequality, ν1/2( j + 1)≤ 2, and K ≥ 1,

∥
√
ρ jφ

j
∥ ≤ C K

1
8 C

1
2
∗ ( j + 1)−

1
2 ∥∂Yφ

j
∥ + C

1
2
∗ ν

1
2 ∥φ j

∥.

Thus we have ∥∥∥∥φ j

ξ j

∥∥∥∥≤ C(C∗

1 + K
1
4 C∗)

1
2 ∥∂Yφ

j
∥ + C(C∗

1 + C∗)
1
2 ν

1
2 ∥φ j

∥.
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Thus (4-44) and the identity ∂Yφ
j
= (∂Yφ)

j
+ ν1/2 j2χ ′

νe
−K τν1/2

(∂Yφ)
( j− j2, j2−1) finally give

∥(∇φ) j
∥ ≤ C(C∗

1 + K
1
4 C∗)

1
2 ∥ξ jω

j
∥ + Cκν

1
2 j2∥(∂Yφ)

( j− j2, j2−1)
∥ +

1
16ν

1
2 ∥φ j

∥.

Here C > 0 is a universal constant. Taking the supremum over j2 = 0, . . . , j yields

Mp, j,1[∇φ] ≤ C(C∗

1 + K
1
4 C∗)

1
2 Mp, j,ξ j [ω] + Cκν

1
2 j Mp, j−1,1[∇φ] +

1
16ν

1
2 Mp, j,1[φ].

Thus we have, from Mp, j,1[φ] ≤ Mp, j−1,1[∇φ] and ( j + 1)/j ≤ 2 for j ≥ 1,

ν−1/2∑
j=1

ν1/(2p)( j + 1)1/p

( j !)3/2ν j/2 Mp, j,1[∇φ]

≤ C(K
1
4 C∗ + C∗

1 )
1
2 |||ω|||

′

p,ξ +

(
Cκ +

1
8

) ν−1/2∑
j=0

ν1/(2p)( j + 1)1/p

( j !)3/2ν j/2 Mp, j,1[∇φ].

Here C > 0 is a universal constant. By taking κ small enough we obtain (4-43). □

In view of the estimate in Proposition 4.12, our next task is to show the estimate of the zeroth-order
term ∇φ(0,0).

Proposition 4.13. Let κ2 ∈ (0, 1] be the number in Proposition 4.12. There exists K2 = K2(C∗,C∗

1 )≥ 1
such that, for any K ≥ K2 and κ ∈ (0, κ2],

ν
1
4 ∥ω(0,0)∥L2(0,1/(Kν1/2);L2

X,Y )
+ ∥∇φ(0,0)∥L∞(0,1/(Kν1/2);L2

X,Y )
+ K

1
2 ν

1
4 ∥∇φ(0,0)∥L2(0,1/(Kν1/2);L2

X,Y )

≤ C
(
∥W0∥L2

X,Y
+

1
K 1/2ν1/4 ∥F∥L2(0,1/(Kν1/2);L2

X,Y )
+

1
K 1/2ν1/4 ∥G∥L2(0,1/(Kν1/2);Ḣ−1)+|||ω|||

′

2,ξ

)
. (4-45)

Here C > 0 is a universal constant.

Proof. It suffices to show

ν
1
4 ∥ω(0,0)∥L2(0,1/(Kν1/2);L2

X,Y )
+ ∥∇φ(0,0)∥L∞(0,1/(Kν1/2);L2

X,Y )
+ K

1
2 ν

1
4 ∥∇φ(0,0)∥L2(0,1/(Kν1/2);L2

X,Y )

≤ C
(
∥W0∥L2

X,Y
+

1
K 1/2ν1/4 ∥F∥L2(0,1/(Kν1/2);L2

X,Y )
+

1
K 1/2ν1/4 ∥G∥L2(0,1/(Kν1/2);Ḣ−1)

+
C∗

1

K 1/2 |||∂Yφ|||
′

2,1

)
. (4-46)

Indeed, estimate (4-45) is a direct consequence of (4-46) and Proposition 4.12 by taking K large enough
depending only on C∗

1 and C∗. To prove (4-45), let us go back to (4-1) and take the inner product with ηRφ

for (4-1), where ηR = η(Y/R) with a smooth cut-off η such that η= 1 for 0 ≤ Y ≤ 1 and η= 0 for Y ≥ 1.
Then, taking the limit R → ∞ after integration by parts verifies the identity

ν
1
2 ∥ω(0,0)∥2

+
1
2

d
dτ

∥∇φ(0,0)∥2
+ Kν

1
2 ∥∇φ(0,0)∥2

= −⟨1φ(0,0), V · ∇φ(0,0)⟩ + ⟨F (0,0),∇⊥φ(0,0)⟩ + ⟨G(0,0), φ(0,0)⟩, τ > 0. (4-47)
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Note that |⟨F (0,0),∇⊥φ(0,0)⟩| ≤ ∥F∥∥∇φ(0,0)∥ and |⟨G(0,0), φ(0,0)⟩| ≤ ∥G∥Ḣ−1∥∇φ(0,0)∥. Thus it suffices
to focus on the term −⟨1φ(0,0), V · ∇φ(0,0)⟩. Integration by parts and ∇ · V = 0 imply

−⟨1φ(0,0), V · ∇φ(0,0)⟩

= ⟨∂Xφ
(0,0), (∂X V ) · ∇φ(0,0)⟩ + ⟨∂Yφ

(0,0), (∂Y V ) · ∇φ(0,0)⟩

= ⟨∂Xφ
(0,0), (∂X V ) · ∇φ(0,0)⟩ − ⟨∂Yφ

(0,0), (∂X V2)∂Yφ
(0,0)

⟩ + ⟨∂Yφ
(0,0), (∂Y V1)∂Xφ

(0,0)
⟩

≤ 2C∗

1ν
1
2 ∥∇φ(0,0)∥2

+ ⟨∂Yφ
(0,0), (∂Y V1)∂Xφ

(0,0)
⟩.

Here we have used Assumption (ii). Then the last term is estimated as

⟨∂Yφ
(0,0), (∂Y V1)∂Xφ

(0,0)
⟩ ≤

∥∥∥∥ Y
1 + ν1/2Y

∂Y V1

∥∥∥∥
L∞

∥∂Yφ
(0,0)

∥

∥∥∥∥1 + ν1/2Y
Y

∂Xφ
(0,0)

∥∥∥∥
≤ C∗

1∥∂Yφ
(0,0)

∥(C∥∂2
XYφ

(0,0)
∥ + ν

1
2 ∥∂Xφ

(0,0)
∥).

Here we have used Assumption (ii) and the Hardy inequality. Hence, by taking K large enough depending
only on C∗

1 , we obtain

ν
1
2 ∥ω(0,0)∥2

+
1
2

d
dτ

∥∇φ(0,0)∥2
+ Kν

1
2 ∥∇φ(0,0)∥2

≤
C(C∗

1 )
2

Kν1/2 ∥∂X∂Yφ
(0,0)

∥
2
+ C(∥F∥

2
+ ∥G∥

2
Ḣ−1).

Integrating about τ shows (4-46), for ν−1/2
∥∂X∂Yφ

(0,0)
∥

2
L2(0,1/(Kν1/2);L2

X,Y )
≤ (|||∂Yφ

(0,0)
|||

′

2,1)
2 holds. □

4C. Proof of Proposition 4.1. Propositions 4.12 and 4.13 yield

K
1
4 |||∇φ|||

′

2,1 ≤ C
(

K
1
4 (K

1
4 C∗ + C∗

1 )
1
2 |||ω|||

′

2,ξ + ∥W0∥L2
X,Y

+
1

K 1/2ν1/4 ∥F∥L2(0,1/(Kν1/2);L2
X,Y )

+
1

K 1/2ν1/4 ∥G∥L2(0,1/(Kν1/2);Ḣ−1)

)
. (4-48)

Then (4-48) and Proposition 4.4 give

|||ω|||
′

∞,ξ + K
1
2 |||ω|||

′

2,ξ + K
1
4 |||∇φ|||

′

2,1

≤ C
(
∥W0∥L2

X,Y
+ ν−

[∥rot W0∥] + (C∗

2 + 1)ν−
1
2 |||F |||

′

2,ξ̃ (1)

+
1

K 1/2ν1/2 |||G|||
′

2,ξ̃ (2)
+

1
K 1/2ν1/4 ∥G∥L2(0,1/(Kν1/2);Ḣ−1)

)
. (4-49)

It remains to estimate the boundary trace |||∂Yφ|Y=0|||bc. By the interpolation inequality we have

|∂
j
X∂Yφ(τ, X, 0)| ≤ C∥∂

j
X∂

2
Yφ(τ, X, · )∥1/2

L2
Y
∥∂

j
X∂Yφ(τ, X, · )∥1/2

L2
Y
,

which implies

K
1
4 ∥∂Yφ

( j,0)
|Y=0∥L2(0,1/(Kν1/2);L2

X )

≤ C K
1
4 ∥∂2

Yφ
( j,0)

∥

1
2

L2(0,1/(Kν1/2);L2
X,Y )

∥∂Yφ
( j,0)

∥

1
2

L2(0,1/(Kν1/2);L2
X,Y )

≤ C(K
1
4 ∥ω( j,0)

∥L2(0,1/(Kν1/2);L2
X,Y )
)

1
2 (K

1
4 ∥∂Yφ

( j,0)
∥L2(0,1/(Kν1/2);L2

X,Y )
)

1
2 . (4-50)
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Here we used the Calderón–Zygmund inequality. Since (4-18) yields

∥ω( j,0)
∥L2(0,1/(Kν1/2);L2

X,Y )
≤ (C∗

1 + 8K
1
4 C∗)

1
2 M2, j,.ξ j [ω],

we have from (4-49) that, by taking K further large enough if necessary,

K
1
4 |||∂Yφ|Y=0|||bc ≤ C(K

1
2 |||ω|||

′

2,ξ )
1
2 (K

1
4 |||∇φ|||

′

2,1)
1
2

≤ C
(
∥W0∥L2

X,Y
+ ν−

[∥rot W0∥] + (C∗

2 + 1)ν−
1
2 |||F |||

′

2,ξ̃ (1)

+
1

K 1/2ν1/2 |||G|||
′

2,ξ̃ (2)
+

1
K 1/2ν1/4 ∥G∥L2(0,1/(Kν1/2);Ḣ−1)

)
.

The proof of Proposition 4.1 is complete. □

5. Construction of the boundary corrector

In the previous section, we constructed a solution to the vorticity equation with arbitrary initial data
but artificial boundary conditions: we replaced condition W1|Y=0 = 0 by ω|Y=0 = 0. Hence, to prove
Theorem 2.3, we still need to understand how to correct the Neumann condition, that is how to construct
solutions for systems of the following type:

−ν
1
21ω+ ∂τω+ V · ∇ω+ ∇

⊥φ · ∇�= 0, τ > 0, X ∈ Tν, Y > 0,

φ|Y=0 = 0, ∂Yφ|Y=0 = h, φ|τ=0 = 0.
(5-1)

Here φ(τ, · ) is the stream function associated with the vorticity ω(τ, · ), i.e., φ ∈ Ḣ 1
0 (Tν × R+) is the

unique solution to −1φ = ω subject to the zero Dirichlet boundary condition. Such a construction will
be performed through an iteration, with first approximation given by the Stokes equation.

5A. Stokes estimate. In this subsection we consider the solution to the Stokes equations (in terms of the
stream function):

−ν
1
21ω+ ∂τω = 0, τ > 0, X ∈ Tν, Y > 0,

φ|Y=0 = 0, ∂Yφ|Y=0 = h, φ|τ=0 = 0.
(5-2)

Here φ ∈ Ḣ 1
0 (Tν×R+) is the stream function associated with ω, and h is a given boundary data satisfying

h(τ )= 0 for τ = 0 and τ ≥ 1/(Kν1/2), and the norm |||h|||bc is defined as

|||h|||bc =

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥e−K τν1/2( j+1)∂
j
X h∥L2(0,1/(Kν1/2);L2

X )
<∞. (5-3)

Set ψ = e−K τν1/2( j+1)∂
j1
X φ, 0 ≤ j1 ≤ j , with the zero extension for τ ≤ 0, and let ψ̂ = ψ̂(λ, α, Y ) be the

Fourier (in X and τ ) transform of ψ . Then, since −1φ = ω, the function ψ̂ obeys the ODE

ν
1
2 (∂2

Y −α2)2ψ̂ − (iλ+ Kν
1
2 ( j + 1))(∂2

Y −α2)ψ̂ = 0, Y > 0,

ψ̂ |Y=0 = 0, ∂Y ψ̂ |Y=0 = ĝ( j1),
(5-4)
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where λ ∈ R and ĝ( j1) is the Fourier transform of g( j1) := e−K τν1/2( j+1)∂
j1
X h. We note that

α = ν
1
2 n, (5-5)

where n is the n-th Fourier mode in the original variable x ∈ T. Assuming the decay of (|α|ψ̂, ∂Y ψ̂) and
the boundedness of ψ̂ , we obtain the formula

ψ̂(λ, α, Y )= −
e−γY

− e−|α|Y

γ − |α|
ĝ( j1)(λ, α),

γ = γ j (λ, α, ν, K )=

√
α2 + K ( j + 1)+

iλ
ν1/2 ,

(5-6)

where the square root is taken so that the real part is positive, and it follows that

|α| ≤

√
α2

+ K ( j + 1)≤ Re(γ )≤ |γ | ≤
√

2 Re(γ ). (5-7)

This inequality will be freely used. We can also check the identity

∂Y ψ̂(λ, α, Y )= −e−γY ĝ( j1)(λ, α)+ sgn(α)αψ̂(λ, α, Y ). (5-8)

We also have, from (5-6),

−(∂2
Y −α2)ψ̂ = (γ + |α|)e−γY ĝ( j1). (5-9)

This formula will be used in estimating the vorticity field.

Lemma 5.1. There exists κ ′
∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ ′

]. Let
j1 = 0, . . . , j and j2 = j − j1. Then

|B j2 iαψ̂(λ, α, Y )| ≤
Cν j2/2 j2!|αĝ( j1)|

j2 + 1

(
Y e− Re(γ )Y/2

+ e−|α|Y/2
∣∣∣∣1 − e−(γ−|α|)Y

γ − |α|

∣∣∣∣), (5-10)

|B j2∂Y ψ̂(λ, α, Y )| ≤
Cν j2/2 j2!|ĝ( j1)|

j2 + 1
e− Re(γ )Y/2. (5-11)

As a consequence,( ∑
α∈ν1/2Z

∥B j2 iαψ̂( · , α, · )∥2
L2
λ,Y

+ ∥B j2∂Y ψ̂( · , α, · )∥
2
L2
λ,Y

)1
2

≤
Cν j2/2 j2!

K 1/4( j + 1)1/4( j2 + 1)

( ∑
α∈ν1/2Z

∥ĝ( j1)( · , α)∥2
L2
λ

)1
2

. (5-12)

We also have( ∑
α∈ν1/2Z

∥∥∥∥ 1
1+Y

B j2 iαψ̂( · , α, · )
∥∥∥∥2

L2
λ,Y

)1
2

≤
Cν j2/2 j2!

K 1/2( j+1)1/2( j2+1)

( ∑
α∈ν1/2Z

∥αĝ( j1)( · , α)∥2
L2
λ

)1
2

. (5-13)

Here C > 0 is a universal constant.
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Proof. We first show (5-10) for B j2 iαψ̂ . It suffices to consider the case j2 ≥ 1, for the case j2 = 0 is
trivial from (5-6). We observe from (5-6) that

B j2ψ̂ = −
ĝ( j1)χ

j2
ν

γ − |α|
((−γ ) j2e−γY

− (−|α|) j2e−|α|Y )

= −
(−γ ) j2 − (−|α|) j2

γ − |α|
χ j2
ν e−γY ĝ( j1) + (−|α|) j2χ j2

ν e−|α|Y ĝ( j1) 1 − e−(γ−|α|)Y

γ − |α|
. (5-14)

Since

(−γ ) j2 − (−|α|) j2 = (−1) j2
j2−1∑
l2=0

( j2
l2

)
(γ − |α|) j2−l2 |α|

l2,

we have, from
( j2

l2

)
≤ j2

( j2−1
l2

)
for 0 ≤ l2 ≤ j2 − 1,∣∣∣∣(−γ ) j2 − (−|α|) j2

γ − |α|

∣∣∣∣≤ j2−1∑
l2=0

( j2
l2

)∣∣γ − |α|
∣∣ j2−l2−1

|α|
l2 ≤ j2

j2−1∑
l2=0

( j2−1
l2

)∣∣γ − |α|
∣∣ j2−l2−1

|α|
l2

= j2
(∣∣γ − |α|

∣∣+ |α|
) j2−1

≤ j2(3|γ |) j2−1.

Here we have used |α| ≤ |γ | by (5-7). Then the inequality χν = 1 − e−κν1/2Y
≤ κν1/2Y implies∣∣∣∣(−γ ) j2 − (−|α|) j2

γ − |α|
χ j2
ν e−γY

∣∣∣∣≤ j2κν
1
2 Y (3κν

1
2 |γ |Y ) j2−1e− Re(γ )Y

≤ j2κν j2/2Y (3
√

2κ Re(γ )Y ) j2−1e− Re(γ )Y (by (5-7)).

From the bound r ke−r
≤ (k/e)k and the Stirling bound (k/e)k ≤ (2π)−1/2k−1/2k! for k ∈ N, we have(1

2 Re(γ )Y
) j2−1e− Re(γ )Y/2

≤
( j2 − 1)!

√
2π( j2 − 1)1/2

, j2 ≥ 2.

This gives, when 6
√

2κ ≤
1
2 ,∣∣∣∣(−γ ) j2 − (−|α|) j2

γ − |α|
χ j2
ν e−γY

∣∣∣∣≤ ν j2/2 j2!
( j2 + 1)

Y e− Re(γ )Y/2, j2 ≥ 1.

Similarly, we have, for j2 ≥ 1,

|(−|α|) j2χ j2
ν e−|α|Y

| ≤
ν j2/2 j2!
j2 + 1

e−|α|Y/2.

Hence (5-10) for B j2 iαψ̂ follows by collecting these with (5-14). The estimate for B j2∂Y ψ̂ is proved in
the same manner in view of (5-8), and we omit the details. Estimate (5-12) follows from (5-10) and the
Plancherel theorem, by observing the estimates for the multipliers

∥αY e− Re(γ )Y/2
∥L2

Y
≤

C
K 1/4( j + 1)1/4

, (5-15)∥∥∥∥αe−|α|Y/2
∣∣∣∣1 − e−(γ−|α|)Y

γ − |α|

∣∣∣∣∥∥∥∥
L2

Y

≤
C

K 1/4( j + 1)1/4
. (5-16)
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Here C > 0 is a universal constant. Estimate (5-15) is a consequence of (5-7). As for (5-16), we divide
into two cases. (i) The case |α| ≤

1
2 K 1/2( j + 1)1/2: in this case we have, from (5-7),

|γ − |α| ≥ |γ | − |α| ≥
|α| + K 1/2( j + 1)1/2

C
with a universal constant C > 0, which gives∥∥∥∥αe−|α|Y/2

∣∣∣∣1 − e−(γ−|α|)Y

γ − |α|

∣∣∣∣∥∥∥∥
L2

Y

≤
C

|α| + K 1/2( j + 1)1/2
∥αe−|α|Y/2

∥L2
Y

≤
C |α|

1/2

|α| + K 1/2( j + 1)1/2
≤

C
K 1/4( j + 1)1/4

.

(ii) The case |α| ≥
1
2 K 1/2( j + 1)1/2: in this case we used the bound

sup
Re(z)>0

∣∣∣1−e−z

z

∣∣∣≤ C,

which gives∥∥∥∥αe−|α|Y/2
∣∣∣∣1 − e−(γ−|α|)Y

γ − |α|

∣∣∣∣∥∥∥∥
L2

Y

≤ C∥αY e−|α|Y/2
∥L2

Y
≤

C
|α|1/2

≤
C

K 1/4( j + 1)1/4
.

The proof of (5-16) is complete, and (5-12) is proved. Estimate (5-13) is proved similarly by using (5-10),
the Plancherel theorem, and ∥∥∥∥ Y

1 + Y
e− Re(γ )Y/2

∥∥∥∥
L2

Y

≤
C

K 3/4( j + 1)3/4
, (5-17)∥∥∥∥ 1

1 + Y
e−|α|Y/2

∣∣∣∣1 − e−(γ−|α|)Y

γ − |α|

∣∣∣∣∥∥∥∥
L2

Y

≤
C

K 1/2( j + 1)1/2
. (5-18)

Here C > 0 is a universal constant. Indeed, (5-17) is straightforward, while in (5-18), the estimate
becomes worse due to the case |α| ≤

1
2 K 1/2( j + 1)1/2 with |α| ≪ 1, where we compute∥∥∥∥ 1

1 + Y
e−|α|Y/2

∣∣∣∣1 − e−(γ−|α|)Y

γ − |α|

∣∣∣∣∥∥∥∥
L2

Y

≤
C

|α| + K 1/2( j + 1)1/2

∥∥∥∥ 1
1 + Y

e−|α|Y/2
∥∥∥∥

L2
Y

≤
C

K 1/2( j + 1)1/2
.

Here we essentially use the factor 1/(1 + Y ) to obtain the uniform estimate in α. □

In Propositions 5.2 and 5.4 below we give estimates for the solution to (5-1) given by the formula
as above in terms of the Fourier transform. We always take κ small enough such that κ ∈ (0, κ ′

] as in
Lemma 5.1.

Proposition 5.2 (estimate for velocity). It follows that

ν−1/2∑
j=0

ν1/4( j+1)3/4

( j !)3/2ν j/2 M2, j,1[∇φ]+

ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j+1)1/2

M2, j,1/(1+Y )[∂Xφ] ≤
C

K 1/4 |||h|||bc. (5-19)

Here C > 0 is a universal constant.
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Proof. Assume that M2, j,1[∇φ] = ∥(∇φ) j
∥L2(0,1/(Kν1/2);L2

X,Y )
for some j = ( j1, j2) with j1 + j2 = j . Note

that this j1 depends on j , and we write j1[ j] if necessary. By the Plancherel theorem the estimate (5-12)
implies

∥(∇φ) j
∥L2(0,1/(Kν1/2);L2

X,Y )
≤

Cν j− j1[ j]/2( j − j1[ j])!
K 1/4( j + 1)1/4( j − j1[ j] + 1)

∥h( j1)∥L2(0,1/(Kν1/2);L2
X )
,

h( j1) = e−K τν1/2( j1+1)∂
j1
X h.

Thus we have

ν−1/2∑
j=0

ν1/4( j + 1)3/4

( j !)3/2ν j/2 M2, j,1[∇φ]

≤
C

K 1/4

ν−1/2∑
j=0

( j
j − j1[ j]

)−1 1
( j − j1[ j] + 1)

(
j1[ j]!

j !

)1
2
(

j + 1
j1[ j] + 1

)1
2

×

(
ν1/4( j1[ j] + 1)1/2

( j1[ j]!)3/2ν j1[ j]/2 ∥h( j1[ j])
∥L2(0,1/(Kν1/2);L2

X )

)
.

We decompose the summation in the right-hand side as
∑

j1[ j]= j (i.e., j’s such that 0 ≤ j ≤ ν−1/2 and
j1[ j] = j ) and

∑
j1[ j]≤ j−1 (i.e., j ’s such that 0 ≤ j ≤ ν−1/2 and j1[ j] ≤ j −1). Then the sum of

∑
j1[ j]= j

is bounded from above by |||h|||bc, while the sum of
∑

j1[ j]≤ j−1 is bounded as

∑
j1[ j]≤ j−1

( j
j − j1[ j]

)−1 1
( j − j1[ j] + 1)

(
j1[ j]!

j !

)1
2
(

j + 1
j1[ j] + 1

)1
2

×

(
ν1/4( j1[ j] + 1)1/2

( j1[ j]!)3/2ν j1[ j]/2 ∥h( j1[ j])
∥L2(0,1/(Kν1/2);L2

X )

)
≤

∑
j1[ j]≤ j−1

( j
j − j1[ j]

)−1 1
( j − j1[ j] + 1)

(
j1[ j]!

j !

)1
2
(

j + 1
j1[ j] + 1

)1
2

sup
0≤k≤ν−1/2

×

(
ν1/4(k + 1)1/2

(k!)3/2νk/2 ∥h(k)∥L2(0,1/(Kν1/2);L2
X )

)
≤ C |||h|||bc.

Indeed, it suffices to use∑
j1[ j]≤ j−1

( j
j − j1[ j]

)−1 1
( j − j1[ j] + 1)

(
j1[ j]!

j !

)1
2
(

j + 1
j1[ j] + 1

)1
2

≤ C
∑

j1[ j]≤ j−1

( j + 1)−
3
2 ≤ C. (5-20)

Next we prove the estimate about M2, j,1/(1+Y )[∂Xφ]. Arguing as above, we have from (5-13) that, for
0 ≤ j ≤ ν−1/2

− 1,

M2, j,1/(1+Y )[∂Xφ] ≤
Cν( j− j1[ j])/2( j − j1[ j])!

K 1/2( j + 1)1/2( j − j1[ j] + 1)
∥∂X h( j1[ j])

∥L2(0,1/(Kν1/2);L2
X )
,
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where j1[ j] is taken similarly as in the above argument. Thus we have

ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

M2, j,1/(1+Y )[∂Xφ]

≤
C

K 1/2

ν−1/2
−1∑

j=0

( j − j1[ j])!
( j !)3/2ν j1/2+1/4( j + 1)( j − j1[ j] + 1)

∥∂X h( j1)∥L2(0,1/(Kν1/2);L2
X )

+
M2, j,1/(1+Y )[∂Xφ]

( j !)3/2ν j/2+1/4( j + 1)1/2

∣∣∣∣
j=ν−1/2

≤
C

K 1/2

ν−1/2
−1∑

j=0

( j − j1[ j])!
( j !)3/2ν j1/2+1/4( j + 1)( j − j1[ j] + 1)

∥h( j1+1)
∥L2(0,1/(Kν1/2);L2

X )

+
ν1/4( j + 1)3/4 M2, j,1[∂Xφ]

( j !)3/2ν j/2

∣∣∣∣
j=ν−1/2

.

The second term is bounded from above by (C/K 1/4)|||h|||bc, as we have shown above. As for the first
term, we again decompose the summation

∑ν−1/2
−1

j=0 into
∑

j1[ j]= j and
∑

j1[ j]≤ j−1, as we have done
previously. Then the sum of

∑
j1[ j]= j is bounded from above by C |||h|||bc, while the sum of

∑
j1[ j]≤ j−1

is estimated as∑
j1[ j]≤ j−1

( j − j1[ j])!
( j !)3/2ν j1[ j]/2+1/4( j + 1)( j − j1[ j] + 1)

∥h( j1[ j]+1)
∥L2(0,1/(Kν1/2);L2

X )

≤

∑
j1[ j]≤ j−1

( j − j1[ j])! ( j1[ j] + 1)!
j !

(
( j1[ j] + 1)!

j !

)1
2 1
( j + 1)( j1[ j] + 1)1/2( j − j1[ j] + 1)

× sup
0≤k≤ν−1/2

(
ν1/4(k + 1)1/2

(k!)3/2νk/2 ∥h(k)∥L2(0,1/(Kν1/2);L2
X )

)
≤ C

ν−1/2∑
j=0

1
( j + 1)3/2

sup
0≤k≤ν−1/2

(
ν1/4(k + 1)1/2

(k!)3/2νk/2 ∥h(k)∥L2(0,1/(Kν1/2);L2
X )

)
≤ C |||h|||bc. □

Next we show the estimate for the vorticity field. The argument is similar to the one for the velocity.

Lemma 5.3. There exists κ ′′
∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ ′′

]. Let
j1 = 0, . . . , j and j2 = j − j1. Then

|B j2(∂
2
Y −α2)ψ̂(λ, α, Y )| + |Y B j2∂Y (∂

2
Y −α2)ψ̂(λ, α, Y )| ≤

Cν j2/2 j2!
j2 + 1

|γ |e− Re(γ )Y/2
|ĝ( j1)|. (5-21)

As a consequence, for θ ′
∈
[
−

1
2 , 2

]
,( ∑

α∈ν1/2Z

∥Y 1+θ ′

B j2(∂
2
Y −α2)ψ̂( · , α, · )∥2

L2
λ,Y

+ ∥Y 2+θ ′

B j2α(∂
2
Y −α2)ψ̂( · , α, · )∥2

L2
λ,Y

+ ∥Y 2+θ ′

B j2∂Y (∂
2
Y −α2)ψ̂( · , α, · )∥2

L2
λ,Y

)1
2

≤
Cν j2/2 j2!

K θ ′/2+1/4( j + 1)θ ′/2+1/4( j2 + 1)

( ∑
α∈ν1/2Z

∥ĝ( j1)( · , α)∥2
L2
λ

)1
2

. (5-22)

Here C > 0 is a universal constant.
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Proof. Estimate (5-21) follows from (5-9) by arguing as in the proof of (5-10). Estimate (5-22) then
follows from (5-21), the Plancherel theorem, and

∥Y 1+m
|γ |e− Re(γ )Y/2

∥L2
Y

≤
C

(Re(γ ))m+1/2

≤
C

(|α| + K 1/2( j + 1)1/2)m+1/2 (by (5-7))

for m ∈
[
−

1
2 , 3

]
. The details are omitted here. □

Proposition 5.4 (estimate for vorticity). Let θ ∈ [0, 2]. It follows that

ν−1/2∑
j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 (M2, j,Y [ω] + M2, j,Y 2[∇ω])≤

C
K 1/4 |||h|||bc (5-23)

and
ν−1/2∑
j=0

( j + 1)(θ−1)/2

( j !)3/2ν j/2+1/4 (M2, j,Y 3/2+θ [∂Xω] + ν
1
2 M2, j,Y 3/2+θ [∂Yω])≤

C
K θ/2 |||h|||bc. (5-24)

Here C > 0 is a universal constant.

Proof. Estimate (5-23) is a consequence of (5-22) with θ ′
= 0, by introducing j1[ j] as in the proof of

Proposition 5.2. As for (5-24), we have from (5-22) with θ ′
= θ −

1
2 that

ν−1/2∑
j=0

ν1/4( j + 1)(θ−1)/2

( j !)3/2ν j/2 M2, j,Y 3/2+θ [∂Y1φ] ≤
C

K θ/2 |||h|||bc.

Next we have from M2, j,Y 3/2+θ [∂X1φ] ≤ C M2, j+1,Y 3/2+θ [1φ] that

ν−1/2
−1∑

j=0

( j + 1)(θ−1)/2

( j !)3/2ν j/2+1/4 M2, j,Y 3/2+θ [∂X1φ] ≤ C
ν−1/2

−1∑
j=0

( j + 1)(θ−1)/2

( j !)3/2ν j/2+1/4 M2, j+1,Y 3/2+θ [1φ]

= C
ν−1/2

−1∑
j=0

ν1/4( j + 1)3/2+(θ−1)/2

(( j + 1)!)3/2ν( j+1)/2 M2, j+1,Y 3/2+θ [1φ]

= C
ν−1/2∑
j=1

ν1/4 j θ/2+1

( j !)3/2ν j/2 M2, j,Y 3/2+θ [1φ].

By arguing as in the proof of Proposition 5.2, the application of (5-22) gives

C
ν−1/2∑
j=1

ν1/4 j θ/2+1

( j !)3/2ν j/2 M2, j,Y 3/2+θ [1φ] ≤
C

K θ+1/2

ν−1/2∑
j=1

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥e−K τν1/2( j+1)∂
j
X h∥L2(0,1/(Kν1/2);L2

X )
,
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where the smoothing factor ( j + 1)−θ
′/2−1/4 with θ ′

= θ +
1
2 in (5-22) plays a key role. When j = ν−1/2,

we have

( j + 1)(θ−1)/2

( j !)3/2ν j/2+1/4 M2, j,Y 3/2+θ [∂X1φ]

∣∣∣∣
j=ν−1/2

≤
ν1/4( j + 1)(θ+1)/2

( j !)3/2ν j/2 M2, j,Y 3/2+θ [∂X1φ]

∣∣∣∣
j=ν−1/2

≤
C

K θ/2

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥e−K τν1/2( j+1)∂
j
X h∥L2(0,1/(Kν1/2);L2

X )

(
by (5-22) with θ ′

= θ −
1
2

)
≤

C
K θ/2 |||h|||bc. □

5B. Vorticity transport estimate. Propositions 5.2 and 5.4 of the previous paragraph reflect a strong
difference between the weighted fields (∇φ) j and (1φ) j associated to the Stokes solution φ of (5-1):
the former is not localized near the boundary, while the latter is, at scale (K ( j + 1))−1/2. This is due to a
harmonic nonlocalized part in φ, see expression (5-6). As a consequence, as shown in Proposition 5.4,
for the vorticity field the weight Y θ gives a gain of ( j + 1)−θ/2. In particular, the transport term V · ∇1φ

shares similar properties. When working in the Gevrey class 3
2 , this term can be seen to be formally of

the same size as the Stokes term ν1/212φ− ∂τ1φ. Hence, we need to add one step to our iteration in
which we solve the heat-transport equations

−ν
1
21ω+ ∂τω+ V · ∇ω = H, τ > 0, X ∈ Tν, Y > 0,

φ|Y=0 = ω|Y=0 = 0, φ|τ=0 = 0.
(5-25)

Here φ ∈ Ḣ 1
0 (Tν × R+) is the stream function associated with ω, and the source term H ∈ L2 Ḣ−1 will

be the transport term created by the Stokes approximation. A key point in dealing with this equation
rather than with the full vorticity equation is that we will be able to propagate weighted estimates with
weight Y θ , which is crucial to have sharp bounds. In the last step of our iteration, we will correct nonlocal
stretching terms using the vorticity equation with artificial boundary conditions, using the bounds of
Section 4. The main result of this paragraph is:

Proposition 5.5. There exists K3 = K3(C∗

1 ) ≥ 1 such that if K ≥ K3 then the system (5-25) admits a
unique solution ω ∈ C([0, 1/(Kν1/2)]; L2

∩ Ḣ−1)∩ L2(0, 1/(Kν1/2); H 1
0 ) satisfying, for 0 ≤ j ≤ ν−1/2,

κ ∈ (0, 1], and θ = 0, 1, 2,

ν
1
4 M2, j,Y θ [∇ω] + M∞, j,Y θ [ω] + K

1
2 ν

1
4 ( j + 1)

1
2 M2, j,Y θ [ω]

≤ C
(
κν

3
4 j M2, j−1,Y θ [∇ω] + ν

1
4 θM2, j,Y θ−1[ω] +

1
K 1/4ν1/4( j + 1)1/4

M2, j,Y θ+1/2[H ]

+
1

κK 1/2ν1/4( j + 1)1/2

j−1∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[V ]M2,l+1,Y θ [ω]

)
. (5-26)

Here C > 0 is a universal constant.
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Remark 5.6. The solution ω to (5-25) in Proposition 5.5 has the regularity

(∂τ − ν
1
21)Y θω ∈ L2

loc([0,∞); L2(Tν × R+)), θ = 0, 1, 2,

with the Dirichlet boundary condition. Hence, the maximal regularity for the heat equation implies

∂τY θω, 1(Y θω) ∈ L2
loc([0,∞); L2(Tν × R+)).

To prove Proposition 5.5 let us recall that ω j
= e−K τν1/2( j+1)B j2∂

j− j2
X ω satisfies

−ν
1
2 (1ω) j

+ ∂τω
j
+ Kν

1
2 ( j + 1)ω j

+ V · ∇ω j

=−V2[B j2, ∂Y ]e−K τν1/2( j+1)∂
j1
X ω−

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
V j−l

·(∇ω)l+H j . (5-27)

Then (5-26) is proved by taking the inner product in (5-27) with Y 2θω j for each θ = 0, 1, 2, and then by
taking the supremum over j2 = 0, . . . , j and about τ0 ∈ (0, 1/(Kν1/2)]. Hence the proof proceeds as in
the proof of Proposition 4.4.

Lemma 5.7. There exists C > 0 such that, for any K ≥ 1 and κ ∈ (0, 1],∫ τ0

0
⟨−ν

1
2 (1ω) j , Y 2θω j

⟩ dτ ≥
3
4ν

1
2 ∥Y θ (∇ω) j

∥
2
L2(0,τ0;L2

X,Y )
− Cν

1
2 (κν

j
2 )

2 M2, j−1,Y θ [∂Yω]
2

− Cθ2ν
1
2 M2, j,Y θ−1[ω]

2.

Proof. The proof is similar to (and much simpler than) the one of Lemma 4.5. Indeed, the only difference
is the presence of the weight Y 2θ with θ = 0, 1, 2, which creates the term

2θν
1
2

∫ τ0

0
⟨Y θ (∂Yω)

j , Y θ−1ω j
⟩ dτ

after integration by parts. This is responsible for the last term in the estimate of this lemma. The details
are omitted. □

Lemma 5.8. There exists K3,2 = K3,2(C∗

1 )≥ 1 such that if K ≥ K3,2 then∫ τ0

0
⟨∂τω

j
+ Kν

1
2 ( j +1)ω j

+ V ·∇ω j , Y 2θω j
⟩ dτ ≥

1
2∥Y θω j (τ0)∥

2
+

3
4 Kν

1
2 ( j +1)∥Y θω j

∥
2
L2(0,τ0;L2

X,Y )
.

Proof. The proof is a simple modification of the one of Lemma 4.6. We note that the initial data is taken
as zero, and integration by parts gives∫ τ0

0
⟨V · ∇ω j , Y 2θω j

⟩ dτ ≤ θ

∥∥∥∥V2

Y

∥∥∥∥
L∞

∥Y θω j
∥

2
L2(0,τ0;L2)

.

Then the desired estimate follows by taking K large enough depending only on C∗

1 for ∥V2/Y∥L∞ ≤

∥∂Y V2∥L∞ = ∥∂X V1∥L∞ ≤ C∗

1ν
1/2. The details are omitted. □
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Lemma 5.9. Let j2 ≥ 1. It follows that∫ τ0

0
⟨−V2[B j2, ∂Y ]e−K τν1/2( j+1)∂

j1
X ω, Y 2θω j

⟩ dτ ≤ CC∗

1ν
1
2 j2∥Y θω j

∥
2
L2(0,τ0;L2

X,Y )
.

Here C > 0 is a universal constant.

Proof. The proof is similar to the one of Lemma 4.7. The details are omitted here. □

Lemma 5.10. Let j ≥ 1. It follows that∫ τ0

0

〈
−

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
V j−l

·(∇ω)l,Y 2θω j
〉

dτ≤
C
κ

R j,Lemma 5.10[ω]M2, j,Y θ [ω],

where

R j,Lemma 5.10[ω] =

j−1∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[V ]M2,l+1,Y θ [ω].

Here C > 0 is a universal constant, and N∞, j−l[V ] is defined as in Lemma 4.9.

Proof. The proof is similar to the one of Lemma 4.9. The details are omitted here. □

Lemma 5.11. It follows that∫ τ0

0
⟨H j , Y 2θω j

⟩ dτ

≤

{
C M2, j,Y θ+1/2[H ](M2, j,Y θ [∂Yω] + κν

1
2 j M2, j−1,Y θ [∇ω])

1
2 (M2, j,Y θ [ω])

1
2 , θ = 0,

C M2, j,Y θ+1/2[H ](M2, j,Y θ−1[ω])
1
2 (M2, j,Y θ [ω])

1
2 , θ = 1, 2.

Here C > 0 is a universal constant.

Proof. The estimate follows from the inequality

⟨H j , Y 2θω j
⟩ ≤ ∥Y θ+

1
2 H j

∥∥Y θ−
1
2ω j

∥ ≤ ∥Y θ+
1
2 H j

∥∥Y θ−1ω j
∥

1
2 ∥Y θω j

∥
1
2

and the Hardy inequality for θ = 0:

∥Y −1ω j
∥ ≤ C∥∂Yω

j
∥ ≤ C(∥(∂Yω)

j
∥ + κν

1
2 j2∥(∂Yω)

( j1, j2−1)
∥). □

Proof of Proposition 5.5. It suffices to show the estimate (5-26), but it follows from Lemmas 5.7–5.11 by
considering the cases θ = 0 and θ = 1, 2 separately. The details are omitted here. □

Corollary 5.12. There exists κ3 ∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ3]. There
exists K ′

3 = K ′

3(κ,C∗

0 ,C∗

1 ) ≥ 1 such that if K ≥ K ′

3 then the system (5-25) admits a unique solution
ω ∈ C([0, 1/(Kν1/2)]; L2

∩ Ḣ−1)∩ L2(0, 1/(Kν1/2); H 1
0 ) satisfying, for θ = 0, 1, 2,

ν−1/2∑
j=0

( j + 1)θ/2−1/4

( j !)3/2ν j/2 (ν
1
4 M2, j,Y θ [∇ω] + M∞, j,Y θ [ω] + K

1
2 ν

1
4 ( j + 1)

1
2 M2, j,Y θ [ω])

≤
C

K 1/4

θ∑
θ ′=0

ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)(1−θ ′)/2 M2, j,Y θ ′+1/2[H ], (5-28)
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and

|||∇φ|||
′

2,1 + |||∂Yφ|Y=0|||bc ≤
C

K 3/4

1∑
θ ′=0

ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)(1−θ ′)/2 M2, j,Y θ ′+1/2[H ]. (5-29)

Here C > 0 is a universal constant.

Proof. Let us first show (5-28). By virtue of Proposition 5.5 we have, for θ = 0, 1, 2,

θ∑
θ ′=0

ν−1/2∑
j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2 (ν
1
4 M2, j,Y θ ′ [∇ω] + M

∞, j,Y θ ′ [ω] + K
1
2 ν

1
4 ( j + 1)

1
2 M2, j,Y θ ′ [ω])

≤ C
θ∑

θ ′=0

ν−1/2∑
j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2

×

(
κν

3
4 j M2, j−1,Y θ ′ [∇ω] + ν

1
4 θ ′M2, j,Y θ ′−1[ω] +

1
K 1/4ν1/4( j + 1)1/4

M2, j,Y θ ′+1/2[H ]

+
1

κK 1/2ν1/4( j + 1)1/2

j−1∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[V ]M2,l+1,Y θ ′ [ω]

)

≤ Cκ
θ∑

θ ′=0

ν−1/2
−1∑

j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2 ν
1
4 M2, j,Y θ ′ [∇ω]

+C
θ∑

θ ′=0

θ ′

ν−1/2∑
j=0

( j + 1)θ
′
−1/2−1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,Y θ ′−1[ω]

+ C
θ∑

θ ′=0

ν−1/2∑
j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2

1
K 1/4ν1/4( j + 1)1/4

M2, j,Y θ ′+1/2[H ]

+ C
θ∑

θ ′=0

ν−1/2∑
j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2

1
κK 1/2ν1/4( j + 1)1/2

×

j−1∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[V ]M2,l+1,Y θ ′ [ω]. (5-30)

Here C > 0 is a universal constant. As for the last term in (5-30), arguing as at the end of the proof of
Lemma 4.9, we find that

ν−1/2∑
j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2

1
K 1/2ν1/4( j + 1)1/2

j−1∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[V ]M2,l+1,Y θ ′ [ω]

≤
CC∗

0

κK 1/2

ν−1/2∑
j=0

( j + 1)θ
′/2−1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,Y θ ′ [ω].

Hence (5-28) follows by taking κ small enough that Cκ ≤
1
2 , and then by taking K large enough that

CC∗

0/(κK )≤
1
2 .
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To show (5-29) let φ be the stream function associated to ω, and it suffices to prove the embedding
inequality

|||∇φ|||
′

2,1 ≤

ν−1/2∑
j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,1[∇φ]

≤ C
ν−1/2∑
j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,Y [ω] (5-31)

and the interpolation inequality

|||∂Yφ|Y=0|||bc

:=

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥e−K τν1/2( j+1)∂
j
X∂Yφ|Y=0∥L2(0,1/(Kν1/2);L2

X )

≤ C
(ν−1/2∑

j=0

( j + 1)−1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,1[ω]

)1
2
(ν−1/2∑

j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,Y [ω]

)1
2

. (5-32)

Then (5-29) follows from (5-28) with (5-31) and (5-32). The proof of (5-31) proceeds as in the proof of
Proposition 4.12. Indeed, from

ω j
= −∇ · (∇φ) j

+
ν1/2 j2χ ′

ν

χν
(∂Yφ)

j

and integration by parts, we have

∥(∇φ) j
∥

2
= ⟨ω j , φ j

⟩ − 2ν
1
2 j2e−K τν1/2

⟨χ ′

ν(∂Yφ)
j , (∂Yφ)

( j− j2, j2−1)
⟩

≤ ∥Yω j
∥

∥∥∥∥φ j

Y

∥∥∥∥+ 2ν
1
2 j2κ∥(∂Yφ)

j
∥∥(∂Yφ)

( j− j2, j2−1)
∥

≤ C∥Yω j
∥∥∂Yφ

j
∥ + 2ν

1
2 j2κ∥(∂Yφ)

j
∥∥(∂Yφ)

( j− j2, j2−1)
∥.

Here the Hardy inequality is used in the last line. Then the identity

∂Yφ
j
= (∂Yφ)

j
+ ν

1
2 j2χ ′

νe
−K τν1/2

(∂Yφ)
( j− j2, j2−1)

yields
∥(∇φ) j

∥ ≤ C(∥Yω j
∥ + ν

1
2 j2κ∥(∂Yφ)

( j− j2, j2−1)
∥).

This estimate gives

ν−1/2∑
j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,1[∇φ]

≤ C
ν−1/2∑
j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 (M2, j,Y [ω] + ν

1
2 jκM2, j−1,1[∇φ])

≤ C
ν−1/2∑
j=0

( j + 1)1/4

( j !)3/2ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,Y [ω] + Cκ

ν−1/2∑
j=0

( j + 1)1/4

( j !)γ ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,1[∇φ],
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where C > 0 is a universal constant. This proves (5-31) if κ is small enough that Cκ ≤
1
2 . As for (5-32),

we observe from (4-50) that

∥e−K τν1/2( j+1)∂
j
X∂Yφ|Y=0∥L2(0,1/(Kν1/2);L2

X )

≤ C(( j + 1)−
1
4 ∥ω( j,0)

∥L2(0,1/(Kν1/2);L2
X )
)

1
2 (( j + 1)

1
4 ∥∂Yφ

( j,0)
∥L2(0,1/(Kν1/2);L2

X )
)

1
2 ,

which implies, from the Schwarz inequality,

|||∂Yφ|Y=0|||bc ≤ C
(ν−1/2∑

j=0

( j + 1)−1/4

( j !)γ ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,1[ω]

)1
2
(ν−1/2∑

j=0

( j + 1)1/4

( j !)γ ν j/2 ν
1
4 ( j + 1)

1
2 M2, j,1[∇φ]

)1
2

.

Then (5-31) shows (5-32). □

Corollary 5.13. In Corollary 5.12, let H = −V · ∇ω1,1[h], where ω1,1[h] is the solution to (5-2) in
Propositions 5.2 and 5.4. Then

ν−1/2∑
j=0

( j + 1)θ/2−1/4

( j !)3/2ν j/2 (ν
1
4 M2, j,Y θ [∇ω] + M∞, j,Y θ [ω] + K

1
2 ν

1
4 ( j + 1)

1
2 M2, j,Y θ [ω])≤

CC∗

0

K 1/4 |||h|||bc (5-33)

and

|||∇φ|||
′

2,1 + |||∂Yφ|Y=0|||bc ≤
CC∗

0

K 3/4 |||h|||bc. (5-34)

Moreover, we have

ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

M2, j,1/(1+Y )[∂Xφ] ≤
CC∗

0

K 3/4 |||h|||bc. (5-35)

Here C > 0 is a universal constant.

Proof. To show (5-33) and (5-34), it suffices to prove, for θ ′
= 0, 1, 2,

ν−1/2∑
j=0

1
( j !)3/2ν j/2( j + 1)(1−θ ′)/2 M2, j,Y θ ′+1/2[H ]

≤ CC∗

0

ν−1/2∑
j=0

1
( j !)3/2ν j/2( j + 1)(1−θ ′)/2 (M2, j,Y 3/2+θ ′ [∂Xω1,1] + ν

1
2 M2, j,Y 3/2+θ ′ [∂Yω1,1]). (5-36)

Then (5-33) and (5-34) follow from (5-28), (5-29), (5-24) and (5-36). To show (5-36), we observe that

H j
= −

j∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
V j−l

· (∇ω1,1)
l .

Thus we have

∥Y θ
′
+

1
2 H j

∥

≤

j∑
l=0

( j
l

) ∑
max{0,l+ j2− j}≤l2≤min{l, j2}

(∥∂Y V j−l
1 ∥L∞∥Y

3
2 +θ ′

(∂Xω1,1)
l
∥ +∥∂Y V j−l

2 ∥L∞∥Y
3
2 +θ ′

(∂Yω1,1)
l
∥).
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Set

N∞, j [∇V1] = ( j + 1)
1
2 sup

j2=0,..., j
(ν−

1
2 ∥(∂X V1)

j
∥L∞

τ,X,Y
+ ∥(∂Y V1)

j
∥L∞

τ,X,Y
). (5-37)

Since

∥∂Y V j−l
1 ∥L∞ ≤ ∥(∂Y V1)

j−l
∥L∞ + κν

1
2 ( j2 − l2)∥(∂Y V1)

( j1−l1, j2−l2−1)
∥L∞

≤ ( j − l + 1)−
1
2 N∞, j−l[∇V1] + κν

1
2 ( j − l)

1
2 N∞, j−l−1[∇V1]

and similarly

∥∂Y V j−l
2 ∥L∞ ≤ ∥(∂Y V2)

j−l
∥L∞ + κν

1
2 ( j2 − l2)∥(∂Y V2)

( j1−l1, j2−l2−1)
∥L∞

= ∥(∂X V1)
j−l

∥L∞ + κν
1
2 ( j2 − l2)∥(∂X V1)

( j1−l1, j2−l2−1)
∥L∞

≤ ν
1
2 (( j − l + 1)−

1
2 N∞, j−l[∇V1] + κν

1
2 ( j − l)

1
2 N∞, j−l−1[∇V1]),

we obtain

M2, j,Y θ ′+1/2[H ]≤

j∑
l=0

( j
l

)
min{l+1, j −l+1}(( j −l+1)−

1
2 N∞, j−l[∇V1]+κν

1
2 ( j −l)

1
2 N∞, j−l−1[∇V1])

× (M2,l,Y 3/2+θ ′ [∂Xω1,1] + ν
1
2 M2,l,Y 3/2+θ ′ [∂Yω1,1]).

Then (5-36) follows from the Young inequality for convolution in the l1 space. For example, using

(l + 1)(1−θ ′)/2

( j + 1)(1−θ ′)/2( j − l + 1)1/2
≤ C for θ ′

= 0, 1, 2

and (
( j − l)! l!

j !

)1
2

min{l + 1, j − l + 1} ≤ C,

we have

ν−1/2∑
j=0

j∑
l=0

1
( j + 1)1−θ ′/2

(
( j − l)! l!

j !

)1
2

min{l + 1, j − l + 1}( j − l + 1)−
1
2 (l + 1)(1−θ ′)/2

×

(
1

(( j − l)!)3/2ν( j−l)/2 N∞, j−l[∇V1]

)(
1

(l!)3/2νl/2(l + 1)(1−θ ′)/2 M2,l,Y 3/2+θ ′ [∂Xω1,1]

)

≤ C
ν−1/2∑
j=0

j∑
l=0

(
1

(( j − l)!)3/2ν( j−l)/2 N∞, j−l[∇V1]

)(
1

(l!)3/2νl/2(l + 1)(1−θ ′)/2 M2,l,Y 3/2+θ ′ [∂Xω1,1]

)

≤ CC∗

0

ν−1/2∑
j=0

1
( j !)3/2ν j/2( j + 1)(1−θ ′)/2 M2, j,Y 3/2+θ ′ [∂Xω1,1].

The other terms are handled in the same manner and we omit the details. The proof of (5-33)–(5-34) is
complete. Finally let us prove (5-35). The key is to apply the interpolation-type inequality proved in
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Proposition A.2. Indeed, Proposition A.2 implies, for the stream function φ associated with ω,

ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

M2, j,1/(1+Y )[∂Xφ]

≤ C
1∑
θ=0

ν−1/2
−1∑

j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

( j + 1)θ/2−
1
4 M2, j+1,Y 1+θ [ω]

+ C
ν−1/2

−1∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

κν
1
2 j (M2, j−1,Y [ω] + M2, j−1,1[∇φ])

+
1

( j !)3/2ν j/2+1/4( j + 1)1/2
M2, j,1/(1+Y )[∂Xφ]

∣∣∣∣
j=ν−1/2

≤ C
1∑
θ=0

ν−1/2∑
j=0

ν1/4( j + 1)θ/2+3/4

( j !)3/2ν j/2 M2, j,Y 1+θ [ω] + C
ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 M2, j,Y [ω] + C |||∇φ|||
′

2,1

≤
CCκ
K 3/4 |||h|||bc.

Here we have used (5-33) and (5-34) in the last line. □

5C. Full construction of boundary corrector. We set

ωapp,1 = ωapp,1[h] = ω1,1[h] +ω1,2[h],

where ω1,1[h] is the solution to (5-2) in Propositions 5.2–5.4, and ω1,2[h] is the solution to (5-25) with
H = −V · ∇ω1,1[h] as in Corollary 5.13. Then the approximate solution ωapp to the full system (5-1) is
constructed in the form

ωapp = ωapp,1 + ω̃1,

which leads to the equations for ω̃1 = ω̃1[h], as

−ν
1
21ω̃1 + ∂τ ω̃1 + V · ∇ω̃1 + ∇

⊥φ̃1 · ∇�= −∇
⊥φapp,1 · ∇�, τ > 0, X ∈ Tν, Y > 0,

φ̃1|Y=0 = ω̃1|Y=0 = 0, ω̃1|τ=0 = 0.
(5-38)

Here φ̃1 and φapp,1 are the stream functions associated with ω̃1 and ωapp,1, respectively. Let us first give
the estimate for the force term −∇

⊥φapp,1 · ∇�.

Proposition 5.14. Let κ3 ∈ (0, 1] be the number in Corollary 5.12. For any κ ∈ (0, κ3] there exists
K ′

3 = K ′

3(κ,C∗,C∗

j )≥ 1 such that, for any K ≥ K ′

3,

1
K 1/2ν1/2 |||∇

⊥φapp,1 · ∇�|||
′

2,ξ̃ (2)
+

1
K 1/2ν1/4 ∥∇

⊥φapp,1 · ∇�∥L2(0,1/(Kν1/2);Ḣ−1)

≤
1

K 1/4

(ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

M2, j,1/(1+Y )[∂Xφapp,1] + 2|||∇φapp,1|||
′

2,1

)
. (5-39)
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Proof. Let us recall that

1
ν1/2 |||∇

⊥φapp,1 · ∇�|||
′

2,ξ̃ (2)

=

ν−1/2∑
j=0

1
( j !)3/2ν j/2ν1/4( j + 1)1/2

sup
j2=0,..., j

∥ξ j e−K τν1/2( j+1)B j2∂
j− j2
X (∇⊥φapp,1 · ∇�)∥L2(0,1/(Kν1/2);L2

X,Y )
.

Thus we consider the estimate of

e−K τν1/2( j+1)B j2∂
j− j2
X (∇⊥φapp,1 · ∇�)

= (∇⊥φapp,1)
j
· ∇�+

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
(∇⊥φapp,1)

l
· (∇�) j−l ,

where j = ( j − j2, j2) and l = (l − l2, l2). We observe that, from the definition of ρ j in (4-10),
Assumption (iii), and K ≥ 1,

∥ξ j∂Xφ
j

app,1∂Y�∥ =

∥∥∥∥ ∂Y�
√
∂Y�+ 2ρ j

∂Xφ
j

app,1

∥∥∥∥
≤ C∥(|∂Y�|

1
2 +

√
ρ j )∂Xφ

j
app,1∥

≤ C
∥∥∥∥( 1 + Y

1 + ν1/2Y

)2

∂Y�

∥∥∥∥ 1
2

L∞

∥∥∥∥1 + ν1/2Y
1 + Y

∂Xφ
j

app,1

∥∥∥∥
+ C(K 1/4C∗)

1
2

∥∥∥∥ 1
1 + Y

∂Xφ
j

app,1

∥∥∥∥+ CC
1
2
∗ ν

1
2 ∥∂Xφ

j
app,1∥

≤ C(C∗

1 + K 1/4C∗)
1
2

∥∥∥∥ 1
1 + Y

∂Xφ
j

app,1

∥∥∥∥+ C(C∗

1 + C∗)
1
2 ν

1
2 ∥∂Xφ

j
app,1∥.

On the other hand, we have

∥ξ j (∂Yφapp,1)
j∂X�∥ ≤

∥∥∥∥ 1 + Y
1 + ν1/2Y

∂X�

∥∥∥∥
L∞

∥∥∥∥1 + ν1/2Y
1 + Y

ξ j

∥∥∥∥
L∞

∥(∂Yφapp,1)
j
∥

≤ CC∗

1ν
1
2 ( j + 1)

1
2 ∥(∂Yφapp,1)

j
∥.

Here we have used (4-16) and Assumption (iii). Thus we have, from C∗ ≥ 1,

∥ξ j (∇
⊥φapp,1)

j
· ∇�∥L2(0,1/(Kν1/2);L2

X,Y )

≤ C(C∗

1 + K
1
4 C∗)

1
2 M2, j,1/(1+Y )[∂Xφapp,1] + C(C∗

1 + C∗)ν
1
2 ( j + 1)

1
2 M2, j,1[∂Yφapp,1]. (5-40)

Next we see∥∥∥∥ξ j

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
(∇⊥φapp,1)

l
· (∇�) j−l

∥∥∥∥
≤

j−1∑
l=0

( j
l

) ∑
max{0,l+ j2− j}≤l2≤min{l, j2}

∥ξ j (∇
⊥φapp,1)

l
· (∇�) j−l

∥
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and

∥ξ j (∇
⊥φapp,1)

l
· (∇�) j−l

∥

≤

∥∥∥∥( 1 + Y
1 + ν1/2Y

)2

(∂Y�)
j−l
∥∥∥∥

L∞

∥∥∥∥1 + ν1/2Y
1 + Y

ξ j

∥∥∥∥
L∞

∥∥∥∥1 + ν1/2Y
1 + Y

∂Xφ
l
app,1

∥∥∥∥
+

∥∥∥∥ 1 + Y
1 + ν1/2Y

(∂X�)
j−l
∥∥∥∥

L∞

∥∥∥∥1 + ν1/2Y
1 + Y

ξ j

∥∥∥∥
L∞

∥(∂Yφapp,1)
l
∥

≤ C( j +1)
1
2 N∞, j−l,((1+Y )/(1+ν1/2Y ))2[∂Y�]

∥∥∥∥ 1
1 + Y

∂Xφ
l
app,1

∥∥∥∥+Cν
1
2 ( j +1)

1
2 N∞, j−l[∇�]∥(∇φapp,1)

l
∥.

Thus we have∥∥∥∥ξ j

j−1∑
l=0

∑
max{0,l+ j2− j}≤l2≤min{l, j2}

( j2
l2

)( j − j2
l−l2

)
(∇⊥φapp,1)

l
· (∇�) j−l

∥∥∥∥
L2(0,1/(Kν1/2);L2

X,Y )

≤ C( j + 1)
1
2

j−1∑
l=0

min{l + 1, j − l + 1}

( j
l

)
N∞, j−l[∇�]

× (M2,l,1/(1+Y )[∂Xφapp,1] + ν
1
2 M2,l,1[∇φapp,1]). (5-41)

We note that

( j + 1)
1
2 min{l + 1, j − l + 1}

(
( j − l)! l!

j !

)1
2

≤ C, 1 ≤ l ≤ j − 1.

Taking into account this uniform bound — by decomposing the sum
∑ j−1

l=0 into the “l = 0” term and the
sum

∑ j−1
l=1 — and collecting (5-40) and (5-41), we obtain, from the Young inequality for convolution in

the l1 space,

1
K 1/2ν1/2 |||∇

⊥φapp,1 · ∇�|||
′

2,ξ̃ (2)

≤
1

K 1/4

(ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

M2, j,1/(1+Y )[∂Xφapp,1] + |||∇φapp,1|||
′

2,1

)
, (5-42)

where K has been taken large enough depending on C∗, C∗

1 , and Cκ . As for the estimate of

∥∇
⊥φapp,1 · ∇�∥L2(0,1/(Kν1/2);Ḣ−1),

let us take any η ∈ Ḣ 1
0 (T × R+). Then we have

⟨∇
⊥φapp,1 · ∇�, η⟩ =

〈
1 + Y

1 + ν1/2Y
∇

⊥φapp,1 · ∇�,
η

1 + Y

〉
+

〈
∇

⊥φapp,1 · ∇�,
ν1/2Yη

1 + ν1/2Y

〉
=

〈
1 + Y

1 + ν1/2Y
∇

⊥φapp,1 · ∇�,
η

1 + Y

〉
−

〈
�,∇⊥φapp,1 · ∇

(
ν1/2Yη

1 + ν1/2Y

)〉
.
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This implies

|⟨∇
⊥φapp,1 · ∇�, η⟩|

≤

∥∥∥∥ 1 + Y
1 + ν1/2Y

∇
⊥φapp,1 · ∇�

∥∥∥∥∥∥∥∥ η

1 + Y

∥∥∥∥+

∥∥∥∥ 1 + Y
1 + ν1/2Y

�∇
⊥φapp,1

∥∥∥∥∥∥∥∥1 + ν1/2Y
1 + Y

∇

(
ν1/2Yη

1 + ν1/2Y

)∥∥∥∥
≤ C

∥∥∥∥ 1 + Y
1 + ν1/2Y

∇
⊥φapp,1 · ∇�

∥∥∥∥∥∂Yη∥ + Cν
1
2

∥∥∥∥ 1 + Y
1 + ν1/2Y

�∇
⊥φapp,1

∥∥∥∥∥∇η∥,
where the Hardy inequality was used several times. Hence we obtain

∥∇
⊥φapp,1 · ∇�∥Ḣ−1

≤ C
∥∥∥∥ 1 + Y

1 + ν1/2Y
∇

⊥φapp,1 · ∇�

∥∥∥∥+ Cν
1
2

∥∥∥∥ 1 + Y
1 + ν1/2Y

�∇
⊥φapp,1

∥∥∥∥
≤ C

∥∥∥∥ 1 + Y
1 + ν1/2Y

∂X�

∥∥∥∥
L∞

∥∂Yφapp,1∥ + C
∥∥∥∥( 1 + Y

1 + ν1/2Y

)2

∂Y�

∥∥∥∥
L∞

∥∥∥∥1 + ν1/2Y
1 + Y

∂Xφapp,1

∥∥∥∥
+ Cν

1
2

∥∥∥∥ 1 + Y
1 + ν1/2Y

�

∥∥∥∥
L∞

∥∇φapp,1∥

≤ CC∗

1 (ν
1
2 ∥∇φapp,1∥ +∥∂Y ∂Xφapp,1∥).

Then

1
K 1/2ν1/4 ∥∇

⊥φapp,1 · ∇�∥L2(0,1/(Kν1/2);Ḣ−1)

≤
CC∗

1

K 1/2ν1/4 (ν
1
2 ∥∇φapp,1∥L2(0,1/(Kν1/2);L2

X,Y )
+∥∂X∂Yφapp,1∥L2(0,1/(Kν1/2);L2

X,Y )
)≤

1
K 1/4 |||∇φapp,1|||

′

2,1. □

Propositions 4.1 and 5.14 yield:

Corollary 5.15. There exists κ4 ∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ4]. There
exists K4 = K4(κ,C∗,C∗

j ) ≥ 1 such that if K ≥ K4 then the system (5-38) admits a unique solution
ω̃1 ∈ C([0, 1/(Kν1/2)]; L2

∩ Ḣ−1)∩ L2(0, 1/(Kν1/2); H 1
0 ) satisfying

|||ω̃1|||
′

∞,ξ + K
1
2 |||ω̃1|||

′

2,ξ + K
1
4 |||∇φ̃1|||

′

2,1 + K
1
4 |||∂Y φ̃1|Y=0|||bc ≤

1
K 1/2 |||h|||bc. (5-43)

Proof. Propositions 4.1 and 5.14 give

|||ω̃1|||
′

∞,ξ + K
1
2 |||ω̃1|||

′

2,ξ + K
1
4 |||∇φ̃1|||

′

2,1 + K
1
4 |||∂Y φ̃1|Y=0|||bc

≤
C

K 1/4

(ν−1/2∑
j=0

1
( j !)3/2ν j/2+1/4( j + 1)1/2

M2, j,1/(1+Y )[∂Xφapp,1] + |||∇φapp,1|||
′

2,1

)
.

Here C > 0 is a universal constant. Recall that φapp,1[h] = φ1,1[h] + φ1,2[h], where φ1, j [h] is the
stream function associated with ω1, j [h]. Then the assertion follows from Proposition 5.2 for φ1,1[h] and
Corollary 5.13 for φ1,2[h]. □
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From the construction, the vorticity ωapp = ωapp[h] = ωapp,1[h] + ω̃1[h] satisfies

−ν
1
21ωapp + ∂τωapp + V · ∇ωapp + ∇

⊥φapp · ∇�= 0, τ > 0, X ∈ Tν, Y > 0,

φapp|Y=0 = 0, ∂Yφapp|Y=0 = h + Rbc[h], φapp|τ=0 = 0.
(5-44)

Here φapp is the stream function associated with ωapp, and Rbc[h] is the linear operator defined as

Rbc[h] = ∂Yφ1,2[h]|Y=0 + ∂Y φ̃1[h]|Y=0. (5-45)

We note that the operator Rbc is well defined on the Banach space

Zbc = {h ∈ L2(0, 1/(Kν
1
2 ); L2

X ) | ∥h∥Zbc := |||h|||bc <∞}. (5-46)

Proposition 5.16. There exists κ5 ∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ5].
There exists K5 = K5(κ,C∗,C∗

j )≥ 1 such that if K ≥ K5 then the map Rbc : Zbc → Zbc defined by (5-45)
satisfies

|||Rbc[h]|||bc ≤
1
2 |||h|||bc. (5-47)

Hence, the operator I + Rbc is invertible in Zbc, and the map

8bc[h] := φapp[(I + Rbc)
−1h], h ∈ Zbc, (5-48)

gives the solution to (5-1) and satisfies

|||∇8bc[h]|||
′

2,1 ≤ C |||h|||bc. (5-49)

Here C > 0 is a universal constant.

Proof. By the definition of Rbc in (5-45), estimate (5-47) is a consequence of Corollaries 5.13 and 5.15,
by taking κ small first and then K large enough depending only on C∗, C∗

j , and Cκ . In particular, we
have

|||(I + Rbc)
−1h|||bc ≤ 2|||h|||bc, h ∈ Zbc. (5-50)

Then Proposition 5.2 and Corollaries 5.13–5.15 give (5-49). □

6. Full estimate for linearization

We have constructed the solution to (2-12) of the form

W = ∇
⊥φ = ∇

⊥8slip + ∇
⊥8bc[h], h = −∂Y8slip|Y=0 ∈ Zbc, (6-1)

where ∇
⊥8slip is the velocity field associated with the solution to (4-1) and

8bc[h] = φapp,1[(I + Rbc)
−1h] + φ̃1[(I + Rbc)

−1h], φapp,1 = φ1,1 +φ1,2.

To simplify the notation we will write φapp,1 for φapp,1[(I + Rbc)
−1h] below. So far we have the bound of

∇
⊥φ1,1 only in the norm ||| · |||

′

2,1. To obtain the estimates of |||∇φ|||∞ and |||ω|||∞ we need the extra work.
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Proposition 6.1. There exists κ6 ∈ (0, 1] such that the following statement holds for any κ ∈ (0, κ6].
There exists K6 = K6(C∗

0 ,C∗

1 )≥ 1 such that if K ≥ K6 then the solution to (2-12) constructed as in (6-1)
satisfies

ν
1
4 |||ω|||∞ + K

1
2 ν

1
4 |||∇φ|||∞

≤
C(C∗

0 + C∗

1 )

ν1/4 (|||∇φ|||
′

2,1+|||1(φ−φapp,1)|||
′

2,1+|||1φapp,1|||
′

2,Y )+C(K
1
2 [∥W0∥]+ν

1
4 [∥rot W0∥]+|||F |||2).

Here C > 0 is a universal constant.

The proof of Proposition 6.1 is similar to the one of Proposition 4.4, and we postpone it to Appendix B.
Admitting Proposition 6.1, we will now complete the proof of Theorem 2.3. Let us recall (6-1). We first
observe from Proposition 4.1 and Remark 4.2 that

|||18slip|||
′

2,1 +|||∇8slip|||
′

2,1 +|||∂Y8slip|Y=0|||bc ≤
1

K 1/8 (∥W0∥L2
X,Y

+ν−
1
2 [∥rot W0∥]+ν

−
3
4 |||F |||2) (6-2)

by taking K large enough. On the other hand, Proposition 5.16 (for ∇8bc), Corollary 5.15 and
Remark 4.2 (1) (for 1(8bc − φapp,1) = 1φ̃1), Proposition 5.4 and Corollary 5.13 (for 1φapp,1 =

1φ1,1 +1φ1,2), and (6-2) give

|||∇8bc|||
′

2,1 + |||1(8bc −φapp,1)|||
′

2,1 + |||1φapp,1|||
′

2,Y

≤ C |||∂Y8slip|Y=0|||bc

≤
C

K 1/8 (∥W0∥L2
X,Y

+ ν−
1
2 [∥rot W0∥] + ν−

3
4 |||F |||2). (6-3)

Here C > 0 is a universal constant. By applying the estimate in Proposition 6.1 and by taking K large
enough, the proof of Theorem 2.3 is complete. □

7. Nonlinear stability: proof of Theorem 2.1

Let us recall the nonlinear system (1-3). Theorem 2.1 is a consequence of Theorem 2.4 for the linear
system (1-6) and the bilinear estimate in Lemma 7.1 stated below. We observe that

−w · ∇w = w rotw+ ∇q̃

for any solenoidal vector field w, so the bilinear term we consider here is of the form f rot g. To this end
we fix K ≥ 1 and ν ∈ (0, 1], and let X be the Banach space of solenoidal vector fields f = ( f1, f2) on
[0, 1/K ] × R2

+
defined as

X =

{
f ∈ C

([
0, 1

K

]
; H 1

0,σ (T × R+)
) ∣∣∣ ∥ f ∥X = ∥ f ∥G∞

3/2
+ ν

1
2 ∥rot f ∥G∞

3/2
<∞

}
,

where ∥ · ∥G∞

3/2
is defined in (2-1) with p = ∞.

Lemma 7.1. There exists a universal constant C > 0 such that, for any f, g ∈ X ,

∥ f rot g∥G2
3/2

≤
C

K 1/2 ν
−

3
4 ∥ f ∥X∥g∥X . (7-1)
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Proof. We compute

∥ f rot g∥G2
3/2

≤ C
ν−1/2∑
j=0

1
j !3/2

sup
| j |= j

∑
l≤ j

( j
l

)
∥ f l(rot g) j−l

∥L2(0,1/K ;L2
x,y)

≤
C

K 1/2

ν−1/2∑
j=0

1
j !3/2

sup
| j |= j

∑
l≤ j

( j
l

)
∥ f l(rot g) j−l

∥L∞(0,1/K ;L2
x,y)
.

As
( j

l
)
≤
(
| j |
|l|
)

and as, for all l ∈ N0,

♯{l, |l| = l, l ≤ j} = ♯{l2, max(0, l − j + j2)≤ l2 ≤ min( j2, l)} ≤ min(l + 1, j − l + 1),

we end up with

∥ f rot g∥G2
3/2

≤
C

K 1/2

ν−1/2∑
j=0

1
j !3/2

j∑
l=0

min(l + 1, j − l + 1)
( j

l

)
sup
|l|=l

sup
|k|= j−l

∥ f l(rot g)k∥L∞
t L2

x,y

≤
C

K 1/2

ν−1/2∑
j=0

∑
0≤l≤ j/2

(l + 1)
( j

l

)− 1
2 1

l!3/2
sup
|l|=l

∥ f l
∥L∞

t,x,y

1
( j − l)!3/2

sup
|k|= j−l

∥(rot g)k∥L∞
t L2

x,y

+
C

K 1/2

ν−1/2∑
j=0

∑
j/2<l≤ j

( j − l + 1)
( j

l

)− 1
2 1

l!3/2
sup
|l|=l

∥ f l
∥L∞

t L2
x L∞

y

1
( j − l)!3/2

sup
|k|= j−l

∥(rot g)k∥L∞
t L∞

x L2
y

≤
C

K 1/2

ν−1/2∑
j=0

∑
0≤l≤ j/2

(l + 1)
5
2

( j
l

)− 1
2 1
(l + 1)!3/2

× sup
|l|=l

(∥∂x f l
∥L∞

t L2
x L2

y
+ ∥ f l

∥L∞
t L2

x L2
y
)

1
2 (∥∂x∂y f l

∥L∞
t L2

x L2
y
+ ∥∂y f l

∥L∞
t L2

x L2
y
)

1
2

×
1

( j − l)!3/2
sup

|k|= j−l
∥(rot g)k∥L∞

t L2
x,y

+
C

K 1/2

ν−1/2∑
j=0

∑
j/2<l≤ j

( j − l + 1)
5
2

( j
l

)− 1
2 1

l!3/2
sup
|l|=l

∥ f l
∥

1
2
L∞

t L2
x L2

y
∥∂y f l

∥

1
2
L∞

t L2
x L2

y

×
1

( j − l + 1)!3/2
sup

|k|= j−l
(∥∂x(rot g)k∥L∞

t L∞
x L2

y
+ ∥(rot g)k∥L∞

t L∞
x L2

y
).

Here we have used the Sobolev embedding type inequality. By using the bound

sup
|l|=l

(∥∂x f l
∥L∞

t L2
x L2

y
+ ∥ f l

∥L∞
t L2

x L2
y
)

1
2 (∥∂x∂y f l

∥L∞
t L2

x L2
y
+ ∥∂y f l

∥L∞
t L2

x L2
y
)

1
2

≤ ν−
1
4 sup

l≤|l|≤l+1
∥ f l

∥L∞
t L2

x,y
+ ν

1
4 sup

l≤|l|≤l+1
∥∂y f l

∥L∞
t L2

x,y
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and by observing that there exists C > 0 such that, for
( j

l

)−1/2
(l + 1)5/2 ≤ C for 0 ≤ l ≤

1
2 j , we have

C
K 1/2

ν−1/2∑
j=0

∑
0≤l≤ j/2

(l + 1)
5
2

( j
l

)− 1
2 1
(l + 1)!3/2

× sup
|l|=l

(∥∂x f l
∥L∞

t L2
x L2

y
+ ∥ f l

∥L∞
t L2

x L2
y
)

1
2 (∥∂x∂y f l

∥L∞
t L2

x L2
y
+ ∥∂y f l

∥L∞
t L2

x L2
y
)

1
2

×
1

( j − l)!3/2
sup

|k|= j−l
∥(rot g)k∥L∞

t L2
x,y

≤
C

K 1/2ν1/4

ν−1/2∑
j=0

∑
0≤l≤ j/2

1
(l + 1)!3/2

sup
l≤|l|≤l+1

∥ f l
∥L∞

t L2
x,y

1
( j − l)!3/2

sup
|k|= j−l

∥(rot g)k∥L∞
t L2

x,y

+
Cν1/4

K 1/2

ν−1/2∑
j=0

∑
0≤l≤ j/2

1
(l + 1)!3/2

sup
l≤|l|≤l+1

∥∂y f l
∥L∞

t L2
x,y

1
( j − l)!3/2

sup
|k|= j−l

∥(rot g)k∥L∞
t L2

x,y

≤
C

K 1/2ν1/4 ∥ f ∥G∞

3/2
∥rot g∥G∞

3/2
+

Cν1/4

K 1/2 ∥∂y f ∥G∞

3/2
∥rot g∥G∞

3/2
,

where the discrete Young’s convolution inequality is applied in the last line together with the estimate

ν−1/2∑
j=0

1
j !3/2

sup
| j |= j

∥∂y f j
∥L∞

t L2
x,y

≤ C∥∂y f ∥G∞

3/2
.

Similarly, since ( j − l + 1)5/2
( j

l

)−1/2
≤ C for 1

2 j ≤ l ≤ j , we have

C
K 1/2

ν−1/2∑
j=0

∑
j/2<l≤ j

( j − l + 1)
5
2

( j
l

)− 1
2 1

l!3/2
sup
|l|=l

∥ f l
∥

1
2
L∞

t L2
x L2

y
∥∂y f l

∥

1
2
L∞

t L2
x L2

y

×
1

( j − l + 1)!3/2
sup

|k|= j−l
(∥∂x(rot g)k∥L∞

t L∞
x L2

y
+ ∥(rot g)k∥L∞

t L∞
x L2

y
)

≤
C

K 1/2

ν−1/2∑
j=0

∑
j/2<l≤ j

1
l!3/2

sup
|l|=l

(ν−
1
4 ∥ f l

∥L∞
t L2

x L2
y
+ ν

1
4 ∥∂y f l

∥L∞
t L2

x L2
y
)

×
1

( j − l + 1)!3/2
sup

j−l≤|k|≤ j−l+1
∥(rot g)k∥L∞

t L∞
x L2

y

≤
C

K 1/2ν1/4 ∥ f ∥G∞

3/2
∥rot g∥G∞

3/2
+

Cν1/4

K 1/2 ∥∂y f ∥G∞

3/2
∥rot g∥G∞

3/2
.

Hence the result follows from Lemma C.1. □

Proof of Theorem 2.1. Let C be the universal constant in Theorem 2.4. Then the standard fixed-point
theorem in the closed convex set

X R =

{
f ∈ C

([
0, 1

K

]
; H 1

0,σ (T × R+)
) ∣∣∣ ∥ f ∥X ≤ R

}
, R = 4Cδ0ν

7
4 ,
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is applied by using Theorem 2.4 and Lemma 7.1, if ν ≤ K −2 holds and if δ0 is sufficiently small. We
note that the smallness condition [|w0|] + [|rotw0|] ≤ δ0ν

9/4, ∥r∥G2
3/2

≤ δ0ν
11/4, is needed to close the

estimate. Since the argument is standard we omit the details. □

Appendix A: Interpolation estimate for solutions to the Poisson equation

Lemma A.1. Assume that Y kω ∈ L2(Tν × R+) for k = 0, 1, 2. Let φ ∈ Ḣ 1
0 (Tν × R+) be the solution

to the Poisson equation −1φ = ω in Tν × R+ with φ|Y=0 = 0. Then there exists C > 0 such that, for
any j ≥ 0, we have

sup
Y>0

∥φ( · , Y )∥L2(Tν) ≤ C(( j + 1)−
1
4 ∥Yω∥L2(Tν×R+)

+ ( j + 1)
1
4 ∥Y 2ω∥L2(Tν×R+)

). (A-1)

Proof. The solution is given by the formula

φ(X, Y )=

∫ Y

0
e−(Y−Y ′)(−∂2

X )
1/2
∫

∞

Y ′

e−(Y ′′
−Y ′)(−∂2

X )
1/2
ω( · , Y ′′) dY ′′ dY ′.

Here e−Y (−∂2
X )

1/2
is the Poisson semigroup. Then we have

∥φ( · , Y )∥L2(Tν) ≤

∫ Y

0

∫
∞

Y ′

∥ω(Y ′′)∥L2(Tν) dY ′′ dY ′.

By decomposing the integral
∫ Y

0 into
∫ min{Y,( j+1)−1/2

}

0 and
∫ Y

min{Y,( j+1)−1/2}
, we have, from the Hölder

inequality,

sup
Y>0

∥φ( · , Y )∥L2(Tν) ≤ C( j + 1)−
1
4 ∥Yω∥L2(Tν×R) + C( j + 1)

1
4 ∥Y 2ω∥L2(Tν×R+)

. □

Lemma A.1 yields the following:

Proposition A.2. Let φ ∈ Ḣ 1
0 (Tν × R+) be the solution to the Poisson equation −1φ = ω in Tν × R+

with φ|Y=0 = 0. Then, for any j ≥ 0, we have

M2, j,1/(1+Y )[∂Xφ]

≤ C( j + 1)−
1
4 M2, j+1,Y [ω] + C( j + 1)

1
4 M2, j+1,Y 2[ω] + Cκν

1
2 j (M2, j−1,Y [ω] + M2, j−1,1[∇φ]). (A-2)

Here C > 0 is a universal constant.

Proof. Since −1∂Xφ = ∂Xω, we have −(1∂Xφ)
j
= ∂Xω

j . Then we use the commutator relation

−(1φ) j
= −∇ · (∇φ) j

+ ν
1
2 j2
χ ′
ν

χν
(∂Yφ)

j
= −1φ j

+ ∂Y

(
ν

1
2 j2
χ ′
ν

χν
φ j
)

+ ν
1
2 j2
χ ′
ν

χν
(∂Yφ)

j .

Thus we have the following Poisson equation for φ j :

−1φ j
= ω j

− ∂Y

(
ν

1
2 j2
χ ′
ν

χν
φ j
)

− ν
1
2 j2
χ ′
ν

χν
(∂Yφ)

j .
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Then we decompose φ j into φ1 +φ2,1 +φ2,2, so that

−1φ1 = ω j , −1φ2,1 = −∂Y

(
ν

1
2 j2
χ ′
ν

χν
φ j
)
, −1φ2,2 = −ν

1
2 j2
χ ′
ν

χν
(∂Yφ)

j ,

subject to the Dirichlet boundary condition. Then Lemma A.1 implies, for ∂Xφ1,

sup
Y>0

∥∂Xφ1( · , Y )∥L2(Tν) ≤ C(( j + 1)−
1
4 ∥Y ∂Xω

j
∥L2(Tν×R+)

+ ( j + 1)
1
4 ∥Y 2∂Xω

j
∥L2(Tν×R+)

). (A-3)

On the other hand, the simple energy estimate gives

∥∇φ2,1∥ ≤ ν
1
2 j2

∥∥∥∥χ ′
ν

χν
φ j
∥∥∥∥≤ κν

1
2 j2∥(∂Yφ)

( j1, j2−1)
∥.

As for φ2,2, from

1
χν
(∂Yφ)

j
= e−K τν1/2

(∂2
Yφ)

( j1, j2−1)
= e−K τν1/2

(−ω( j1, j2−1)
− ∂2

Xφ
( j1, j2−1)),

the Hardy inequality, and integration by parts, we have

∥∇φ2,2∥ ≤ Cκν
1
2 j2(∥Yω( j1, j2−1)

∥ +∥∂Xφ
( j1, j2−1)

∥).

Hence we obtain the desired estimate by taking the L2 norm in time and by taking the supremum over j
such that | j | = j . □

Appendix B: Proof of Proposition 6.1

Let us go back to (4-1) with G =0, but now we impose the no-slip boundary condition φ|Y=0 =∂Yφ|Y=0 =0
in this appendix. Then we have

−ν
1
2 (1ω) j

+ (∂τ + Kν
1
2 ( j + 1))ω j

= −(V · ∇ω) j
− (∇⊥φ · ∇�) j

+ (rot F) j
= (div H) j , (B-1)

where
H = −Vω−�∇

⊥φ+ (F2,−F1).

The idea is to take the L2 inner product with ∂τφ j , which gives the estimates of |||∇φ|||∞ and |||1φ|||∞

in terms of |||∇φ|||
′

2,1. The most technical part is the computation of the viscous term ⟨(1ω) j , ∂τφ
j
⟩

when j2 ̸= 0, for which one needs to convert the vertical derivative ∂2
Yω into the tangential ones by using

equation (B-1).

Lemma B.1. For any κ ∈ (0, 1] and K ≥ 1, we have∫ τ0

0
⟨(∂τ + Kν

1
2 ( j + 1))ω j , ∂τφ

j
⟩ dτ

≥
1
2∥∂τ (∇φ)

j
∥

2
L2(0,τ0;L2

X,Y )
+

1
2 Kν

1
2 ( j + 1)(∥(∇φ) j (τ0)∥

2
− ∥(∇φ) j (0)∥2)

− Cκ2Kν
1
2 j (ν

1
2 j

3
2 )2 M∞, j−1,1[∇φ]

2
− C(κν

1
2 j)2 M2, j−1,1[∂τ∇φ]

2.

Here C is a universal constant.



OPTIMAL PRANDTL EXPANSION AROUND A CONCAVE BOUNDARY LAYER 3179

Proof. Let us recall the identity

ω j
= −(1φ) j

= −∇ · (∇φ) j
+ ν

1
2 j2
χ ′
ν

χν
(∂Yφ)

j , (B-2)

which implies

⟨(∂τ + Kν
1
2 ( j + 1))ω j , ∂τφ

j
⟩ = ∥∂τ (∇φ)

j
∥

2
+ 2ν

1
2 j2

〈
χ ′
ν

χν
∂τ (∂Yφ)

j , ∂τφ
j
〉
+

1
2 Kν

1
2 ( j + 1)∂τ∥(∇φ) j

∥
2

+ 2ν
1
2 j2Kν

1
2 ( j + 1)

〈
χ ′
ν

χν
(∂Yφ)

j , ∂τφ
j
〉
.

Then, from ∂τφ
j
= χν∂τ (e−K τν1/2

(∂Yφ)
( j1, j2−1)) for j2 ≥ 1, we have∫ τ0

0
2ν

1
2 j2

〈
χ ′
ν

χν
∂τ (∂Yφ)

j , ∂τφ
j
〉

dτ

≥ −
1
4∥∂τ (∇φ)

j
∥

2
L2(0,τ0;L2)

− C(κν
1
2 j)2(M2, j−1,1[∂τ∇φ]

2
+ (Kν

1
2 )2 M2, j−1,1[∇φ]

2),

while we have, from integration by parts in time,∫ τ0

0
2ν

1
2 j2Kν

1
2 ( j + 1)

〈
χ ′
ν

χν
(∂Yφ)

j , ∂τφ
j
〉

dτ

= 2ν
1
2 j2Kν

1
2 ( j + 1)(e−K τ0ν

1/2
⟨χ ′

ν(∂Yφ)
j , (∂Yφ)

( j1, j2−1)
⟩(τ0)− ⟨χ ′

ν(∂Yφ)
j , (∂Yφ)

( j1, j2−1)
⟩(0))

− 2ν
1
2 j2Kν

1
2 ( j + 1)

∫ τ0

0
e−K τν1/2

⟨∂τ (∂Yφ)
j , χ ′

ν(∂Yφ)
( j1, j2−1)

⟩ dτ

≥ 2ν
1
2 j2Kν

1
2 ( j + 1)(e−K τ0ν

1/2
⟨χ ′

ν(∂Yφ)
j (τ0), (∂Yφ)

( j1, j2−1)(τ0)⟩ − ⟨χ ′

ν(∂Yφ)
j (0), (∂Yφ)

( j1, j2−1)(0)⟩)

−
1
4∥∂τ (∂Yφ)

j
∥

2
L2(0,τ0;L2)

− C(Kκν j2)2 M2, j−1,1[∇φ]
2.

We also observe that, for j2 ≥ 1,

⟨χ ′

ν(∂Yφ)
j , (∂Yφ)

( j1, j2−1)
⟩

= e−K τν1/2
⟨χ ′

νχν(∂Y ∂Yφ)
( j1, j2−1), (∂Yφ)

( j1, j2−1)
⟩

= −
1
2 e−K τν1/2

⟨∂Y (χ
′

νχν)(∂Yφ)
( j1, j2−1), (∂Yφ)

( j1, j2−1)
⟩ − e−K τν1/2

ν
1
2 ( j2 − 1)∥χ ′

ν(∂Yφ)
( j1, j2−1)

∥
2.

Thus we conclude also from K τν1/2
≤ 1 that∫ τ0

0
2ν

1
2 j2Kν

1
2 ( j + 1)

〈
χ ′
ν

χν
(∂Yφ)

j , ∂τφ
j
〉

dτ

≥ −C Kν
1
2 (κν

1
2 j)2( j∥(∂Yφ)

( j1, j2−1)(τ0)∥
2
+ ∥(∂Yφ)

( j1, j2−1)(0)∥2)

−
1
4∥∂τ (∂Yφ)

j
∥

2
L2(0,τ0;L2)

− C(Kκν j2)2 M2, j−1,1[∇φ]
2.

Combining the above and M2, j−1,1[∇φ]
2
≤ (Kν1/2)−1 M∞, j−1,1[∇φ]

2, we obtain the desired estimate. □
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Lemma B.2. For any κ ∈ (0, 1] and K ≥ 1, we have∫ τ0

0
⟨−ν

1
2 (1ω) j , ∂τφ

j
⟩ dτ ≥

1
2ν

1
2 (∥ω j (τ0)∥

2
−∥ω j (0)∥2)− 1

4 M2, j,1[∂τ∇φ]
2

−C(κν
1
2 j)2(M2, j−1,1[∂τ∇φ]

2
+(ν

1
2 ( j −1))2 M2, j−2,1[∂τ∇φ]

2)

−Cκ2ν
1
2 (M∞, j,1[ω]

2
+(ν

1
2 j)2 M∞, j−1,1[ω])

−C Kν
1
2 j (κν

1
2 j

3
2 )2(M∞, j−1,1[∇φ]

2
+(ν

1
2 ( j −1))2 M∞, j−2,1[∇φ]

2)

−C(M2, j,1[H ]
2
+(ν

1
2 j)2 M2, j−1,1[H ]

2).

Here C is a universal constant.

Proof. We observe from

(1ω) j
= ∇ · (∇ω) j

− ν
1
2 j2
χ ′
ν

χν
(∂Yω)

j , χ ′

ν = κe−κν1/2Y ,

∇∂τφ
j
= ∂τ (∇φ)

j
+ ν

1
2 j2
χ ′
ν

χν
∂τφ

j e2,

(B-3)

and integration by parts that

⟨−ν
1
2 (1ω) j , ∂τφ

j
⟩ = ν

1
2 ⟨(∇ω) j , ∂τ (∇φ)

j
⟩ + 2ν j2

〈
χ ′
ν

χν
(∂Yω)

j , ∂τφ
j
〉
.

Then the similar identities

(∇ω) j
= ∇ω j

− ν
1
2 j2
χ ′
ν

χν
ω j e2,

∇ · ∂τ (∇φ)
j
= ∂τ (1φ)

j
+ ν

1
2 j2
χ ′
ν

χν
∂τ (∂Yφ)

j ,

(B-4)

together with integration by parts, yield

⟨−ν
1
2 (1ω) j , ∂τφ

j
⟩ = ν

1
2 ⟨ω j , ∂τω

j
⟩ − 2ν j2

〈
χ ′
ν

χν
ω j , ∂τ (∂Yφ)

j
〉
+ 2ν j2

〈
χ ′
ν

χν
(∂Yω)

j , ∂τφ
j
〉
. (B-5)

Again from the above identities about the commutators we have, for j2 ≥ 1,〈
χ ′
ν

χν
ω j , ∂τ (∂Yφ)

j
〉
= −

〈
χ ′
ν

χν
(∂Yω)

j , ∂τφ
j
〉
− ν

1
2

〈
χ ′′
ν

χν
ω j , ∂τφ

j
〉
− ν

1
2 (2 j2 − 1)

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉
.

Here χ ′′
ν = −κ2e−κν1/2Y . Thus (B-5) is written as

⟨−ν
1
2 (1ω) j , ∂τφ

j
⟩ = ν

1
2 ⟨ω j , ∂τω

j
⟩ + 4ν j2

〈
χ ′
ν

χν
(∂Yω)

j , ∂τφ
j
〉

+ 2ν
3
2 j2

〈
χ ′′
ν

χν
ω j , ∂τφ

j
〉
+ 2ν

3
2 j2(2 j2 − 1)

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉
. (B-6)

Let us compute the term ⟨(χ ′
ν/χν)(∂Yω)

j , ∂τφ
j
⟩. From the identity

1
χν
(∂Yω)

j
= e−K τν1/2

(∂2
Yω)

( j1, j2−1)
= e−K τν1/2

((1ω)( j1, j2−1)
− ∂2

Xω
( j1, j2−1)),
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we have 〈
χ ′
ν

χν
(∂Yω)

j , ∂τφ
j
〉
= e−K τν1/2

⟨χ ′

ν(1ω)
( j1, j2−1), ∂τφ

j
⟩ + ⟨χ ′

νω
( j1+1, j2−1), ∂τ∂Xφ

j
⟩.

Since ν1/2(1ω)( j1, j2−1)
= (∂τ + Kν1/2 j)ω( j1, j2−1)

− (div H)( j1, j2−1), the identity (B-6) is written as

⟨−ν
1
2 (1ω) j , ∂τφ

j
⟩ = ν

1
2 ⟨ω j , ∂τω

j
⟩ + 4ν

1
2 j2e−K τν1/2

⟨χ ′

ν(∂τ + Kν
1
2 j)ω( j1, j2−1), ∂τφ

j
⟩

− 4ν
1
2 j2e−K τν1/2

⟨χ ′

ν(div H)( j1, j2−1), ∂τφ
j
⟩ + 4ν j2⟨χ ′

νω
( j1+1, j2−1), ∂τ∂Xφ

j
⟩

+ 2ν
3
2 j2

〈
χ ′′
ν

χν
ω j , ∂τφ

j
〉
+ 2ν

3
2 j2(2 j2 − 1)

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉
. (B-7)

Next we compute the term ν1/2 j2e−K τν1/2
⟨χ ′
ν(∂τ + Kν1/2 j)ω( j1, j2−1), ∂τφ

j
⟩ in (B-7): from the identities

in (B-4), we have

e−K τν1/2
⟨χ ′

ν(∂τ + Kν
1
2 j)ω( j1, j2−1), ∂τφ

j
⟩ = e−K τν1/2

⟨χ ′

ν(∂τ + Kν
1
2 j)(∇φ)( j1, j2−1), ∂τ (∇φ)

j
⟩

+ 2ν
1
2 j2e−K τν1/2

〈
(χ ′
ν)

2

χν
(∂τ + Kν

1
2 j)(∂Yφ)

( j1, j2−1), ∂τφ
j
〉

+ ν
1
2 e−K τν1/2

⟨χ ′′

ν (∂τ + Kν
1
2 j)(∂Yφ)

( j1, j2−1), ∂τφ
j
⟩.

By setting (∇φ) j̃−1
= e−K τν1/2

(∇φ)( j1, j2−1) for simplicity, we have

e−K τν1/2
⟨χ ′

ν(∂τ + Kν
1
2 j)ω( j1, j2−1), ∂τφ

j
⟩

= ⟨χ ′

ν∂τ (∇φ)
j̃−1, ∂τ (∇φ)

j
⟩ + 2ν

1
2 j2

〈
(χ ′
ν)

2

χν
∂τ (∂Yφ)

j̃−1, ∂τφ
j
〉
+ ν

1
2 ⟨χ ′′

ν ∂τ (∂Yφ)
j̃−1, ∂τφ

j
⟩

+ Kν
1
2 j
(
⟨χ ′

ν(∇φ)
j̃−1, ∂τ (∇φ)

j
⟩ + 2ν

1
2 j2

〈
(χ ′
ν)

2

χν
(∂Yφ)

j̃−1, ∂τφ
j
〉
+ ν

1
2 ⟨χ ′′

ν (∂Yφ)
j̃−1, ∂τφ

j
⟩

)
.

Since
∂τ (∇φ)

j
= χν∂τ (∂Y ∇φ) j̃−1

= χν∂Y ∂τ (∇φ)
j̃−1

− ν
1
2 ( j2 − 1)χ ′

ν∂τ (∇φ)
j̃−1,

∂τφ
j
= χν∂τ (∂Yφ)

j̃−1,

we then arrive at

ν
1
2 j2e−K τν1/2

⟨χ ′

ν(∂τ + Kν
1
2 j)ω( j1, j2−1), ∂τφ

j
⟩

= ν
1
2 j2
{
−

1
2⟨∂Y (χ

′

νχν)∂τ (∇φ)
j̃−1, ∂τ (∇φ)

j̃−1
⟩ − ν

1
2 ( j2 − 1)⟨(χ ′

ν)
2∂τ (∇φ)

j̃−1, ∂τ (∇φ)
j̃−1

⟩

+ 2ν
1
2 j2⟨(χ ′

ν)
2∂τ (∂Yφ)

j̃−1, ∂τ (∂Yφ)
j̃−1

⟩ + ν
1
2 ⟨χ ′′

ν ∂τ (∂Yφ)
j̃−1, χν∂τ (∂Yφ)

j̃−1
⟩

+ Kν
1
2 j
(
⟨χ ′

ν(∇φ)
j̃−1, ∂τ (∇φ)

j
⟩ + 2ν

1
2 j2⟨(χ ′

ν)
2(∂Yφ)

j̃−1, ∂τ (∂Yφ)
j̃−1

⟩

+ ν
1
2 ⟨χ ′′

ν (∂Yφ)
j̃−1, χν∂τ (∂Yφ)

j̃−1
⟩
)}

≥ −C(κν
1
2 j2)2∥∂τ (∇φ) j̃−1

∥
2

+Kν j2 j
(
⟨χ ′

ν(∇φ)
j̃−1, ∂τ (∇φ)

j
⟩+ν

1
2 j2∂τ∥χ ′

ν(∂Yφ)
j̃−1

∥
2
+

1
2ν

1
2 ∂τ ⟨χ

′′

ν (∂Yφ)
j̃−1, χν(∂Yφ)

j̃−1
⟩
)
. (B-8)
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Here we have used the fact that it suffices to consider the case j2 ≥ 1, and C is a universal constant.
Hence, by going back to (B-7), we have

⟨−ν
1
2 (1ω) j , ∂τφ

j
⟩

≥ ν
1
2 ⟨ω j , ∂τω

j
⟩ − C(κν

1
2 j2)2∥∂τ (∇φ) j̃−1

∥
2

+ Kν j2 j
(
⟨χ ′

ν(∇φ)
j̃−1, ∂τ (∇φ)

j
⟩ + ν

1
2 j2∂τ∥χ ′

ν(∂Yφ)
j̃−1

∥
2
+

1
2ν

1
2 ∂τ ⟨χ

′′

ν (∂Yφ)
j̃−1, χν(∂Yφ)

j̃−1
⟩
)

− 4ν
1
2 j2e−K τν1/2

⟨χ ′

ν(div H)( j1, j2−1), ∂τφ
j
⟩ + 4ν j2⟨χ ′

νω
( j1+1, j2−1), ∂τ∂Xφ

j
⟩

+ 2ν
3
2 j2

〈
χ ′′
ν

χν
ω j , ∂τφ

j
〉
+ 2ν

3
2 j2(2 j2 − 1)

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉
. (B-9)

Here C is a universal constant. Next we observe from ∂τφ
j
= χν∂τ (∂Yφ)

j̃−1 that

−4ν
1
2 j2e−K τν1/2

⟨χ ′

ν(div H)( j1, j2−1), ∂τφ
j
⟩ ≥ −Cκν

1
2 j2(∥H ( j1+1, j2−1)

1 ∥ +∥H j
2 ∥)∥∂τ (∂Yφ)

j̃−1
∥ (B-10)

and also
4ν j2⟨χ ′

νω
( j1+1, j2−1), ∂τ∂Xφ

j
⟩ ≥ −Cκν j2∥ω( j1+1, j2−1)

∥∥∂τ∂Xφ
j
∥, (B-11)

2ν
3
2 j2

〈
χ ′′
ν

χν
ω j , ∂τφ

j
〉
≥ −Cκ2ν

3
2 j2∥ω j

∥∥∂τ (∂Yφ)
j̃−1

∥. (B-12)

Finally let us compute the term ν1/2
⟨(χ ′

ν/χν)
2ω j , ∂τφ

j
⟩ when j2 ≥ 1. If j2 = 1 then

ν
1
2

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉

= ν
1
2 ⟨(χ ′

ν)
2e−K τν1/2

(∂Yω)
( j1,0), ∂τ (e−K τν1/2

(∂Yφ)
( j1,0))⟩

= ν
1
2 ⟨e−K τν1/2

∇∂Yφ
( j1,0),∇((χ ′

ν)
2∂τ (e−K τν1/2

(∂Yφ)
( j1,0)))⟩

=
1
2ν

1
2 ∂τ∥χ

′

νe
−K τν1/2

∇∂Yφ
( j1,0)∥2

+ 2ν⟨χ ′′

ν χ
′

νe
−K τν1/2

∂2
Yφ

( j1,0), ∂τ (e−K τν1/2
(∂Yφ)

( j1,0))⟩

≥
1
2ν

1
2 ∂τ∥χ

′

νe
−K τν1/2

∇∂Yφ
( j1,0)∥2

− Cκ3ν∥ω( j1,0)∥∥∂τ (∂Yφ)
j̃−1

∥. (B-13)

If j2 ≥ 2 then

ν
1
2

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉
= e−2K τν1/2

ν
1
2 ⟨(χ ′

ν)
2(∂2

Yω)
( j1, j2−2), ∂τφ

j
⟩, (B-14)

and then by using the identity

ν
1
2 (1ω)( j1, j2−2)

= (∂τ + Kν
1
2 ( j − 1))ω( j1, j2−2)

− (div H)( j1, j2−2),

we have

ν
1
2

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉
= −ν

1
2 ⟨(χ ′

ν)
2ω( j1+2, j2−2), ∂τφ

j
⟩

+ e−2K τν1/2
⟨(χ ′

ν)
2(∂τ + Kν

1
2 ( j − 1))ω( j1, j2−2), ∂τφ

j
⟩

− e−2K τν1/2
⟨(χ ′

ν)
2(div H)( j1, j2−2), ∂τφ

j
⟩. (B-15)
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As for the second term on the right-hand side of (B-15), we have, for j ≥ j2 ≥ 2,

e−2K τν1/2
⟨(χ ′

ν)
2(∂τ + Kν

1
2 ( j − 1))ω( j1, j2−2), ∂τφ

j
⟩

= e−2K τν1/2
⟨(χ ′

ν)
2(∂τ + Kν

1
2 ( j − 1))∂Xφ

( j1, j2−2), ∂τ∂Xφ
j
⟩

− e−2K τν1/2
⟨(χ ′

ν)
2(∂τ + Kν

1
2 ( j − 1))(e2K τν1/2

(∂Yφ)
j̃−1), ∂τ (∂Yφ)

j̃−1
⟩

≥ −κ2(∥∂τ∂Xφ
( j1, j2−2)

∥ + Kν
1
2 j∥∂Xφ

( j1, j2−2)
∥)∥∂τ∂Xφ

j
∥

− κ2(∥∂τ (∂Yφ)
j̃−1

∥ + Kν
1
2 j∥(∂Yφ)

j̃−1
∥)∥∂τ (∂Yφ)

j̃−1
∥.

Since it is straightforward to see that

−ν
1
2 ⟨(χ ′

ν)
2ω( j1+2, j2−2), ∂τφ

j
⟩ ≥ −κ2ν

1
2 ∥ω( j1+1, j2−2)

∥∥∂τ (∂Xφ)
j
∥,

−e−2K τν1/2
⟨(χ ′

ν)
2(div H)( j1, j2−2), ∂τφ

j
⟩ ≥ −κ2(∥H ( j1+1, j2−2)

1 ∥ +∥H ( j1, j2−1)
2 ∥)∥∂τ (∂Yφ)

j̃−1
∥,

we obtain, for j2 ≥ 2,

ν
1
2

〈(
χ ′
ν

χν

)2

ω j , ∂τφ
j
〉

≥ −κ2(∥∂τ∂Xφ
( j1, j2−2)

∥ + Kν
1
2 j∥∂Xφ

( j1, j2−2)
∥ + ν

1
2 ∥ω( j1+1, j2−2)

∥)∥∂τ (∂Xφ)
j
∥

− κ2(∥∂τ (∂Yφ)
j̃−1

∥ + Kν
1
2 j∥(∂Yφ)

j̃−1
∥ +∥H ( j1+1, j2−2)

1 ∥ +∥H ( j1, j2−1)
2 ∥)∥∂τ (∂Yφ)

j̃−1
∥. (B-16)

Collecting (B-9)–(B-12) with (B-13) (for j2 = 1) and (B-16) (for j2 ≥ 2), we conclude the desired estimate
by using the bound

M2, j,1[ f ]
2
= sup

| j |= j
∥ f j

∥
2
L2(0,1/(Kν1/2);L2

X,Y )

≤
1

Kν1/2 sup
| j |= j

∥ f j
∥

2
L∞(0,1/(Kν1/2);L2

X,Y )

=
1

Kν1/2 M∞, j,1[ f ]
2. □

As a consequence of Lemmas B.1 and B.2, we obtain:

Corollary B.3. There exists κB ∈ (0, 1] such that, for any κ ∈ (0, κB] and K ≥ 1,

ν
1
4

ν−1/2∑
j=0

1
( j !)3/2ν j/2 M∞, j,1[ω] + K

1
2 ν

1
4

ν−1/2∑
j=0

( j + 1)1/2

( j !)3/2ν j/2 M∞, j,1[∇φ] +

ν−1/2∑
j=0

1
( j !)3/2ν j/2 M2, j,1[∂τ∇φ],

≤ C
(
ν

1
4

ν−1/2∑
j=0

1
( j !)3/2ν j/2 ∥ω j

|τ=0∥+ K
1
2

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥(∇φ) j
|τ=0∥+

ν−1/2∑
j=0

1
( j !)3/2ν j/2 M2, j,1[H ]

)
.

Here C is a universal constant.
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We note that

ν−1/2∑
j=0

ν1/4( j + 1)1/2

( j !)3/2ν j/2 ∥(∇φ) j
|τ=0∥ ≤ C

ν−1/2∑
j=0

1
( j !)3/2ν j/2 ∥(∇φ) j

|τ=0∥ = C[∥∇φ|τ=0∥]

since j ≤ ν−1/2. By virtue of Corollary B.3, it remains to estimate

ν−1/2∑
j=1

1
( j !)3/2ν j/2 M2, j,1[H ].

Recall that H = −Vω−�∇
⊥φ+ (F2,−F1). Hence it suffices to show:

Lemma B.4. For any κ ∈ (0, 1] and K ≥ 1, we have

ν−1/2∑
j=0

1
( j !)3/2ν j/2 M2, j,1[�∇φ] ≤

C(C∗

0 + C∗

1 )

ν1/4 |||∇φ|||
′

2,1, (B-17)

ν−1/2∑
j=0

1
( j !)3/2ν j/2 M2, j,1[Vω] ≤

C(C∗

0 + C∗

1 )

ν1/4 (|||1(φ−φapp,1)|||
′

2,1 + |||1φapp,1|||
′

2,Y ). (B-18)

Here φapp,1 = (φ1,1 +φ1,2)[(I + Rbc)
−1h] with h = −∂Y8slip|Y=0, and C is a universal constant.

Proof. We give a sketch of the proof only for (B-18), for (B-17) is proved in a similar manner. Let | j | = j .
Then

ν−1/2∑
j=1

1
j !3/2ν j/2 M2, j,1[Vω] ≤

ν−1/2∑
j=0

1
j !3/2ν j/2 max

| j |= j

∑
l≤ j

( j
l

)
∥V lω j−l

∥L2(0,1/(Kν1/2);L2).

Here V j
= e−K τν1/2 j B j2∂

j1
X V , while ω j

= e−K τν1/2( j+1)B j2∂
j1
X ω. Since ω = −1(φ− φapp,1)−1φapp,1

by virtue of the construction, we have

∥V lω j−l
∥L2(0,1/(Kν1/2);L2)

≤ ∥V l
∥L∞∥(1(φ−φapp,1))

j−l
∥L2(0,1/(Kν1/2);L2) + ∥∂Y V l

∥L∞∥Y (1φapp,1)
j−l

∥L2(0,1/(Kν1/2);L2).

By using
( j

l
)
≤
( j

l

)
with l = |l|, we have

1
j !3/2ν j/2

∑
l≤ j

( j
l

)
∥V lω j−l

∥L2(0,1/(Kν1/2);L2)

≤

∑
l≤ j

(
l! ( j − l)!

j !

)1
2 M2, j−l,1[1(φ−φapp,1)] + M2, j−l,Y [1φapp,1]

( j − l)!3/2ν( j−l)/2

1
l!3/2νl/2 max

|l|=l
(∥V l

∥L∞ + ∥∂Y V l
∥L∞).

Next we observe that, for all l ∈ N ∪ {0},

#{l | |l| = l, l ≤ j} = #{l2, max(0, l − j + j2)≤ l2 ≤ min( j2, l)} ≤ min(l + 1, j − l + 1),



OPTIMAL PRANDTL EXPANSION AROUND A CONCAVE BOUNDARY LAYER 3185

which gives the bound of the form
∑

l≤ j ≤
∑ j

l=0 min(l + 1, j − l + 1). Hence we have

1
j !3/2ν j/2

∑
l≤ j

( j
l

)
∥V lω j−l

∥L2(0,1/(Kν1/2);L2)

≤

j∑
l=0

min(l + 1, j − l + 1)
(

l! ( j − l)!
j !

)1
2

×
M2, j−l,1[1(φ−φapp,1)] + M2, j−l,Y [1φapp,1]

( j − l)!3/2ν( j−l)/2

1
l!3/2νl/2 max

|l|=l
(∥V l

∥L∞ + ∥∂Y V l
∥L∞).

Since min(l + 1, j − l + 1)(l! ( j − l)!/ j !)1/2 is uniformly bounded about 0 ≤ l ≤ j , the Young inequality
for l1 convolution gives the inequality

ν−1/2∑
j=0

1
j !3/2ν j/2 max

| j |= j

∑
l≤ j

( j
l

)
∥V lω j−l

∥L2(0,1/(Kν1/2);L2)

≤ C
ν−1/2∑
j=0

1
j !3/2ν j/2 max

| j |= j
(∥V j

∥L∞ + ∥∂Y V j
∥L∞)

×

ν−1/2∑
j=0

1
j !3/2ν j/2 max

| j |= j
(M2, j,1[1(φ−φapp,1)] + M2, j,Y [1φapp,1]).

Then the desired estimate follows by noticing ∂Y V j
= (∂Y V ) j

+ ν1/2 j2χ ′
ν(∂Y V )( j1, j2−1) and the bound

of the form ||| f |||2 ≤ ν−1/4
||| f |||

′

2,1. □

Proposition 6.1 follows from Corollary B.3 and Lemma B.4.

Appendix C: Estimate of the Biot–Savart law

Lemma C.1. The following statement holds if κ is sufficiently small. Assume that

f ∈ C([0, 1/K ); H 1(T × R+)
2)

satisfies div f = 0 for y > 0 and f2|y=0 = 0. Then

∥∇ f ∥G p
3/2

≤ C∥rot f ∥G p
3/2
, p ∈ [1,∞].

Here C is a universal constant.

Proof. We observe that ∂y f1 = rot f + ∂x f2 and ∂y f2 = −∂x f1. Hence it suffices to show

∥∂x f ∥G p
3/2

≤ C∥rot f ∥G p
3/2
.

Since f = ∇
⊥φ with the stream function φ and −1φ = ω with ω = rot g and φ|y=0 = 0, we have

−(1∂xφ)
j
= ∂xω

j , ω j
= e−K t ( j+1)χ j2∂ j2

y ∂
j1
x ω, j1 + j2 = j.
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By virtue of the identity −(1∂xφ)
j
= −∇ · (∂x∇φ)

j
+ j2(χ ′/χ)(∂y∂xφ)

j , integration by parts gives

∥(∇∂xφ)
j
∥

2
+ 2 j2

〈
χ ′

χ
(∂y∂xφ)

j , ∂xφ
j
〉
= −⟨ω j , ∂2

xφ
j
⟩.

Since ∂xφ
j
= e−K tχ(∂y∂xφ)

( j1, j2−1), we thus have

∥(∇∂xφ)
j
∥ ≤ C(∥ω j

∥ + κ j∥(∂y∂xφ)
( j1, j2−1)

∥),

where C is a universal constant. This estimate implies ∥∂x∇φ∥G p
3/2

≤ C(∥ω∥G p
3/2

+ κ∥∂x∂yφ∥G p
3/2
), and

thus, by taking κ small enough, we obtain ∥∂x∇φ∥G p
3/2

≤ C∥ω∥G p
3/2

. □
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II: HARNACK INEQUALITIES

MORITZ KASSMANN AND MARVIN WEIDNER

Local boundedness and Harnack inequalities are studied for solutions to parabolic and elliptic inte-
grodifferential equations whose governing nonlocal operators are associated with nonsymmetric forms.
We present two independent proofs, one based on the De Giorgi iteration and the other on the Moser
iteration technique. This article is a continuation of work of Kassmann and Weidner (2022), where Hölder
regularity and a weak Harnack inequality are proved in a similar setup.
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1. Introduction

The aim of this work is to prove local boundedness estimates and a Harnack inequality for weak solutions
to parabolic equations of type

∂t u − Lu = f in IR(t0) × B2R ⊂ Rd+1, (PDE)

where B2R ⊂ � is some ball, IR(t0) := (t0 − Rα, t0 + Rα) ⊂ R, and f ∈ L∞(IR(t0) × B2R). Equation
(PDE) is governed by a linear nonlocal operator of the form

−Lu(x) = 2 p.v.

∫
Rd

(u(x) − u(y))K (x, y) dy. (1-1)

Such operators are determined by jumping kernels K : Rd
× Rd

→ [0, ∞], which are allowed to be
nonsymmetric. We also investigate solutions to the equation

∂t u − L̂u = f in IR(t0) × B2R ⊂ Rd+1, (P̂DE)

which is driven by the dual operator L̂ associated with L .
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In this work, we prove local boundedness of weak solutions to (PDE) and (P̂DE) via an adaptation of
the De Giorgi method to nonlocal operators with nonsymmetric jumping kernels. We also provide an
alternative proof of local boundedness via the Moser iteration. Finally, combined with the weak Harnack
inequality from [Kassmann and Weidner 2022], we obtain a full Harnack inequality.

The novelty of our result consists in the lack of symmetry of the underlying operator. Let us write the
decomposition K = Ks + Ka , where the symmetric part Ks and antisymmetric part Ka are given by

Ks(x, y) =
1
2 K (x, y) + K (y, x), Ka(x, y) =

1
2 K (x, y) − K (y, x), x, y ∈ Rd .

Note that the nonnegativity of K implies

|Ka(x, y)| ≤ Ks(x, y). (1-2)

We can write for the nonsymmetric bilinear form associated with L

E(u, v) := 2
∫

Rd

∫
Rd

(u(x) − u(y))v(x)K (x, y) dy dx =: EKs (u, v)+ EKa (u, v),

where

EKs (u, v) =

∫
Rd

∫
Rd

(u(x) − u(y))(v(x) − v(y))Ks(x, y) dy dx,

EKa (u, v) =

∫
Rd

∫
Rd

(u(x) − u(y))(v(x) + v(y))Ka(x, y) dy dx .

In order to treat the antisymmetric part of the bilinear form, a refinement of the existing techniques for
symmetric operators is required.

We have in mind the following three prototypes of kernels K for α ∈ (0, 2):

K1(x, y) = g(x, y)|x − y|
−d−α, (1-3)

where g : Rd
× Rd

→ [λ, 3] is a suitable nonsymmetric function for 0 < λ ≤ 3 < ∞,

K2(x, y) = |x − y|
−d−α

+ (V (x) − V (y))1{|x−y|≤L}(x, y)|x − y|
−d−α, (1-4)

where L ∈ (0, ∞] and V : Rd
→ Rd is a suitable function, and

K3(x, y) = |x − y|
−d−α1D(x − y) + |x − y|

−d−β1C(x − y), (1-5)

where C ⊂ Rd is a cone, D ⊂ Rd is a double-cone such that C ∩ D = ∅, and 0 < β < 1
2α.

1.1. Main results. Our first main result is the following Harnack inequality for weak solutions to (PDE).
We state and discuss our assumptions in Section 2.

Theorem 1.1. Assume (K2), (cutoff), (K ≤

loc), (Sob), and (Poinc) for some α ∈ (0, 2). Let f ∈ L∞(I ×�).

(i) Assume that (K1loc) holds for some θ ∈ [d/α, ∞]. Then there exist c > 0 and 0 < c1 < c2 < c3 < c4 ≤ 1
such that, for every 0 < R ≤ 1 and every nonnegative, weak solution u to (PDE) in IR(t0) × B2R ,

sup
(t0−c2 Rα,t0−c1 Rα)×BR/4

u

≤ c inf
(t0+c1 Rα,t0+c4 Rα)×BR/2

u + c sup
(t0−c3 Rα,t0−c1 Rα)

TailK ,α(u, R) + cRα
∥ f ∥L∞, (1-6)

where B2R ⊂ � ⊂ Rd .
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(ii) Assume that (K1glob) holds for some θ ∈ (d/α, ∞]. Then there exist c >0 and 0<c1 <c2 <c3 <c4 ≤1
such that, for every 0 < R ≤ 1 and every nonnegative, weak solution u to (P̂DE) in IR(t0) × B2R ,

sup
(t0−c2 Rα,t0−c1 Rα)×BR/4

u

≤ c inf
(t0+c1 Rα,t0+c4 Rα)×BR/2

u + c sup
(t0−c3 Rα,t0−c1 Rα)

T̂ailK ,α(u, R) + cRα
∥ f ∥L∞ . (1-7)

The aforementioned Harnack inequality for nonnegative weak solutions u to (PDE) is a direct conse-
quence of a weak Harnack inequality as it was proved in [Kassmann and Weidner 2022] (see Theorem 6.3)
and an L∞-L1-estimate of the form (see Theorem 3.6 or Theorem 4.8)

sup
(t0−(R/8)α,t0)×BR/2

u ≤ c
(

−

∫
(t0−(R/4)α,t0)×BR

u + sup
(t0−(R/4)α,t0)

TailK ,α(u, R) + Rα
∥ f ∥L∞

)
. (1-8)

Therefore large parts of this paper are dedicated to proving (1-8). Given 0 < R ≤ 1, the nonlocal tail term
is defined as

TailK ,α(v, R, x0) := Rα

∫
B2R(x0)\BR/2(x0)

|v(y)|

|x0 − y|d+α
dy + sup

x∈B3R/2(x0)

∫
B2R(x0)c

|v(y)|K (x, y) dy.

For a detailed discussion of nonlocal tail terms, we refer the reader to Section 2.3.

Remark 1.2 (time-inhomogeneous kernels). It is possible to extend Theorem 1.1 to time-inhomogeneous
jumping kernels k : I × Rd

× Rd
→ [0, ∞] by following an approach similar to that in [Kassmann and

Weidner 2022]. For ks , we may assume pointwise comparability with a time-homogeneous jumping
kernel satisfying (cutoff), (E≥), and (K ≤

loc). In place of the first estimate in (K1loc), we need∥∥∥∥∫
B2r

|ka( · ; · , y)|2

J ( · , y)
dy

∥∥∥∥
Lµ,θ

t,x (Ir ×B2r )

≤ C

for a suitable symmetric jumping kernel J : Rd
× Rd

→ [0, ∞]. The parameters (µ, θ) have to satisfy
the compatibility condition

d
αθ

+
1
µ

< 1. (CP)

Then, if suitable time-inhomogeneous analogs to (K2) and (UJS), or (ÛJS), hold, we can prove a Harnack
inequality of the form (1-6) and (1-7) for nonnegative, weak solutions to the corresponding parabolic
equations (PDE) and (P̂DE), respectively. For solutions to (PDE) we can also allow for equality in (CP)
if θ > d/α. The range of exponents prescribed by (CP) align with the important classical results from the
local theory; see [Aronson and Serrin 1967; Ivanov et al. 1966; Ladyzhenskaya et al. 1968]. Note that, by
scaling arguments, one can see d/(αθ) + 1/µ = 1 is the limit case for regularity results in Hölder spaces.

Remark 1.3. We observe that there is a positive distance of size 2(1 − 2−α)Rα between the two time
intervals in the estimates (1-6) and (1-7). The existence of such time delay in the parabolic Harnack
inequality comes from the method of proof we employ; see [Moser 1964]. For nonlocal equations, as for
example the fractional heat equation, it can be neglected; see [Bonforte et al. 2017; Dier et al. 2020].
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The second main result of this article concerns the corresponding stationary problems

−Lu = f in B2R, (ell-PDE)

−L̂u = f in B2R, (ell-P̂DE)

where f ∈ L∞(B2R). We obtain the following elliptic Harnack inequality for weak solutions.

Theorem 1.4. Assume (K2), (cutoff), and (E≥) for some α ∈ (0, 2). Let f ∈ L∞(�).

(i) Assume that (K1loc) and (UJS) hold for some θ ∈ [d/α, ∞]. Then there exists c > 0 such that, for
every 0 < R ≤ 1 and every nonnegative, weak solution u to (ell-PDE) in B2R ,

sup
BR/4

u ≤ c
(

inf
BR/2

u + Rα
∥ f ∥L∞

)
, (1-9)

where B2R ⊂ � ⊂ Rd .

(ii) Assume that (K1glob) and (ÛJS) hold for some θ ∈ (d/α, ∞]. Then there exists c > 0 such that, for
every 0 < R ≤ 1 and every nonnegative, weak solution u to (ell-P̂DE) in B2R , estimate (1-9) holds.

As in (1-9), for elliptic equations, we are able to estimate the supremum of u by local quantities only.
To this end, we prove a suitable estimate of the nonlocal tail term (see Corollary 5.3).

In the parabolic case, the situation is more complicated since we require the tail estimate to be uniform
in t . The same difficulty occurs in the symmetric case. We comment on possible corresponding extensions
of Theorem 1.1 in Section 6.3.

Remark 1.5. All constants in Theorems 1.1 and 1.4 depend only on d , α, θ and the constants in (K1loc),
(K2), (cutoff), (Poinc), (Sob), (UJS), (K ≤

loc), (E≥).

Remark 1.6. Theorems 1.1 and 1.4 remain valid for solutions u to (PDE), (P̂DE), and (ell-PDE), (ell-P̂DE)
if f ∈ L∞(IR(t0); L2(B2R)) and f ∈ L2(B2R), respectively, for some θ ∈ (d/α, ∞) with only marginal
manipulations in the proofs. We exclude more general source terms in this work.

The contributions of this work can be summarized as follows:

(i) The main accomplishment is the extension of elliptic and parabolic regularity results — including
full Harnack inequalities — for nonlocal problems to operators with nonsymmetric jumping kernels. In
light of example (1-4), the operators under consideration include nonlocal counterparts of second-order
differential operators in divergence form with a drift term

−Lu = −∂i (ai, j∂ j u) + bi∂i u and − L̂u = −∂i (ai, j∂ j u + bi u),

respectively. Our results align with the corresponding theory for local operators; see [Aronson and Serrin
1967; Gilbarg and Trudinger 1983; Ladyzhenskaya et al. 1968; Stampacchia 1965].

(ii) As nonsymmetric kernels require a careful treatment, several parts of the energy methods for nonlocal
operators are refined in this work. For instance, we give a new proof of local boundedness using the
Moser iteration for positive exponents (see Section 4).
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Moreover, as illustrated in example (1-5), nonsymmetric jumping kernels might naturally involve terms
of lower-order, causing a difference between the growth behavior at zero and infinity. We introduce tail
terms which take into account this phenomenon (see Section 2.3).

(iii) Technical issues of minor importance in other works are clarified, e.g., the treatment of Steklov
averages (see the Appendix).

1.2. Related literature. The study of Harnack inequalities for symmetric nonlocal operators has become
an active field of research in the past 20 years. It has been observed that a classical elliptic Harnack
inequality of the form

sup
Br

u ≤ c inf
Br

u (1-10)

fails even for harmonic functions u with respect to the fractional Laplacian (−1)α/2 in B2r if one merely
assumes u to be nonnegative in the solution domain B2r ; see [Kassmann 2007]. Indeed, due to the
nonlocality it is necessary either to assume u to be globally nonnegative — as in [Riesz 1938] and in this
article — or to add the nonlocal tail of u− to the right-hand side of (1-10). Such an estimate was proposed
in [Kassmann 2011]. We refer to both estimates as a Harnack inequality in the context of this article.

A lot of research activity has centered around the challenge to establish a Harnack inequality for a
larger class of nonlocal operators. First, we comment on corresponding elliptic regularity results for
symmetric nonlocal operators related to energy forms. A Harnack inequality and Hölder estimates were
proved in [Di Castro et al. 2014; 2016] for operators with a jumping kernel that is pointwise comparable
to the kernel of the fractional p-Laplacian by a nonlocal De Giorgi-type iteration. This method was
refined in [Cozzi 2017] to allow for more general nonlinearities. [Schulze 2019] considers a class of
linear integrodifferential operators governed by jumping kernels satisfying an average integral bound
instead of a pointwise lower bound.

However, it is well known that for the deduction of interior Hölder regularity estimates a weak Harnack
inequality (see Theorem 6.3) is sufficient. Such inequalities hold for a much larger class of operators.
In fact, only comparability of the energy forms to the Hα/2-seminorm on small scales and a suitable
upper bound for the probability of large jumps are required; see [Dyda and Kassmann 2020]. That is
why operators with singular jumping measures that may be anisotropic (see [Chaker and Kassmann 2020;
Chaker et al. 2019]) also satisfy Hölder regularity estimates. However, the Harnack inequality may fail
for singular operators as was already observed in [Bogdan and Sztonyk 2005]. Hence it is an exciting
(and still open) question to find equivalent conditions on the jumping kernel for which a (weak) elliptic
Harnack inequality will hold. For α-stable translation-invariant operators, conditions on the jumping
kernel are established in [Bogdan and Sztonyk 2005] that are equivalent to a Harnack inequality.

Second, we comment on parabolic Harnack inequalities of the form

sup
I ⊖
r ×Br

u ≤ c inf
I ⊕
r ×Br

u (1-11)

for globally nonnegative solutions u to (PDE). Note that such results imply corresponding estimates for
weak solutions to the stationary equation (ell-PDE). So far, parabolic Harnack inequalities have not been
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obtained via purely analytic methods, not even in the symmetric case. A major challenge in the parabolic
case seems to be the correct treatment of the time-dependence in the nonlocal tail terms. For a discussion
of this issue, we refer the reader to Section 2 and Section 6.3.

Parabolic Hölder estimates and local boundedness have been obtained via an adaptation of the nonlocal
De Giorgi method in [Ding et al. 2021; Kim 2019; 2020; Strömqvist 2019b]. A proof of Hölder estimates
based on Moser’s technique can be found in [Felsinger and Kassmann 2013].

Using the corresponding Hunt process and its heat kernel, parabolic Harnack inequalities of the
form (1-11) were first proved for symmetric Dirichlet forms with jumping measures pointwise comparable
to the α-stable kernel in [Bass and Levin 2002; Chen and Kumagai 2003]. The authors also obtain two-
sided heat kernel bounds. Numerous articles have analyzed the exact relationship between parabolic and
elliptic Harnack inequalities, heat kernel bounds, and Hölder regularity estimates for nonlocal operators
in connection to the geometry of the underlying metric measure space. Such a program was carried out in
a series of papers [Chen et al. 2019; 2020; Grigor’yan et al. 2014; 2015; 2018]. On Rd it turns out that
(1-11) is equivalent to a Poincaré inequality (see (Poinc)), a pointwise upper bound of the jumping kernel,
and (UJS).

In contrast to the symmetric case, for nonlocal operators associated with nonsymmetric forms, pointwise
estimates have not yet been studied systematically. Some results have been obtained making use of a
sector-type condition. Well-posedness of the Dirichlet problem is proved in [Felsinger et al. 2015]. In
the present article and in [Kassmann and Weidner 2022], we provide Harnack inequalities and interior
Hölder regularity estimates for nonlocal operators that contain a nonlocal drift term of lower-order. These
results can be regarded as nonlocal counterparts of the famous regularity results for local equations by
Aronson and Serrin [1967] and Ladyzhenskaya, Solonnikov, and Ural’tceva [Ladyzhenskaya et al. 1968]
in the linear case. Hölder estimates for kinetic integrodifferential equations including certain nonlocal
operators with nonsymmetric jumping kernels are established in [Imbert and Silvestre 2020] using an
adaptation of the De Giorgi iteration. The class of nonsymmetric kernels in their work does not contain
the class of kernels in our work, and vice versa.

Note that, as an application of the regularity estimates in [Kassmann and Weidner 2022], it is possible
to establish Markov chain approximation results not only for diffusion processes with drift terms, but
also for certain nonsymmetric jump processes; see [Weidner 2023]. In light of [Chen et al. 2020] and
[Grigor’yan et al. 2018], we consider it an interesting problem to establish heat kernel estimates for
nonlocal operators associated with nonsymmetric forms, and to investigate their stability on general
doubling metric measure spaces, as well as their connection to Harnack inequalities.

1.3. Outline. This article is structured as follows: In Section 2 we state and discuss our assumptions and
the notion of a weak solution to (PDE) and (P̂DE). A Caccioppoli-type estimate for nonsymmetric forms
and an a priori L∞-L2-estimate involving the nonlocal tail is proved in Section 3 using a nonsymmetric
version of the De Giorgi iteration. An analogous result is established in Section 4 using a nonlocal
adaptation of the Moser iteration technique for large positive exponents. Note that Sections 3 and 4 are
fully independent of one another. In Section 5 we establish an upper bound for the nonlocal tails of
supersolutions to (PDE) and (P̂DE). Our two main results, Theorems 1.1 and 1.4, are proved in Section 6.
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2. Preliminaries

In this section we state and discuss the assumptions in our main results (see Section 2.1). Moreover, we
provide the notion of a super- or subsolution to (PDE) and (P̂DE), as well as the corresponding stationary
equations (ell-PDE) and (ell-P̂DE) (see Section 2.2). Another goal of this section is to introduce nonlocal
tail terms which suit the class of nonsymmetric operators under consideration and are designed in such a
way that they are compatible with the iteration techniques carried out in the remainder of this article (see
Section 2.3).

We introduce the following notation: First of all, given a, b ∈ R, we write a ∧ b = min{a, b} and
a ∨ b := max{a, b}. Moreover, given a set M ⊂ Rd

× Rd , we write

EM(u, v) :=

∫∫
M

(u(x) − u(y))v(x)K (x, y) dx dy.

Analogously, we define EKs
M and EKa

M . If M := Br × Br for a ball Br ⊂ Rd , we write EBr = EBr ×Br .

2.1. Discussion of main assumptions. In this section, we list and discuss the assumptions which are
imposed on the jumping kernels K in the course of this article. Except for (UJS), all other assumptions
have already been discussed in detail in [Kassmann and Weidner 2022].

First, we assume throughout this article that Ks satisfies the Lévy-integrability condition(
x 7→

∫
Rd

(|x − y|
2
∧ 1)Ks(x, y) dy

)
∈ L1

loc(R
d). (2-1)

In the following, let � ⊂ Rd be an open set. Let us now fix α ∈ (0, 2) and θ ∈ [d/α, ∞]. The first two
assumptions were introduced and discussed in [Kassmann and Weidner 2022].

Assumption (K1). Let J : Rd
× Rd

→ [0, ∞] be a symmetric jumping kernel satisfying (cutoff) and let
θ ∈ [d/α, ∞].

• K satisfies (K1loc) if there is C > 0 such that, for every ball B2r ⊂ � with r ≤ 1,∥∥∥∥∫
B2r

|Ka( · , y)|2

J ( · , y)
dy

∥∥∥∥
Lθ (B2r )

≤ C, E J
B2r

(v, v) ≤ CEKs
B2r

(v, v) for all v ∈ L2(B2r ). (K1loc)

• K satisfies (K1glob) if there is C > 0 such that, for every ball B2r ⊂ � with r ≤ 1,∥∥∥∥∫
Rd

|Ka( · , y)|2

J ( · , y)
dy

∥∥∥∥
Lθ (Rd )

≤ C, E J
B2r

(v, v) ≤ CEKs
B2r

(v, v) for all v ∈ L2(B2r ). (K1glob)

Assumption (K2). There exist C > 0, D < 1, and a symmetric jumping kernel j such that, for every ball
B2r ⊂ � with r ≤ 1 and every v ∈ L2(B2r ) with EKs

B2r
(v, v) < ∞,

K (x, y) ≥ (1 − D) j (x, y) for all x, y ∈ B2r , EKs
B2r

(v, v) ≤ CE j
B2r

(v, v). (K2)

Remark 2.1. (i) (K1loc) ensures that the quantities in (2-6) and (PDE) are well defined (see Lemma 2.9)
and simultaneously requires that EKa is a term of lower-order. It gives rise to a nonlocal drift,
analogous to (b, ∇u), where b ∈ L2θ (Rd) with θ ∈

[ 1
2 d, ∞

]
.
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(ii) (K2) is only needed in the proof of the weak Harnack inequality (see Theorem 6.3). It ensures that
the symmetric kernel Ks − |Ka| is locally coercive with respect to EKs .

(iii) For a detailed discussion of (K1loc) and (K2) including their redundancy, we refer the reader to
[Kassmann and Weidner 2022]. Equations (K1loc) and (K2) are verified for the examples K1, K2,
and K3 from above in Section 8 of that paper.

(iv) In the simplest case, (K1loc) (and (K1glob)) and (K2) hold with J = j = Ks . However, allowing for
general symmetric kernels J and j significantly increases the class of admissible operators.

The following two assumptions on K only depend on the symmetric part. They are standard in the
regularity for nonlocal operators associated with symmetric forms.

Assumption (cutoff). There is c > 0 such that, for every 0 < ρ ≤ r ≤ 1 and z ∈ � such that Br+ρ(z) ⊂ �,
there is a radially decreasing function τ = τz,r,ρ centered at z ∈ Rd with supp(τ ) ⊂ Br+ρ(z), 0 ≤ τ ≤ 1,
τ ≡ 1 on Br (z), |∇τ | ≤

3
2ρ−1, and

sup
x∈Br+ρ(z)

0Ks (τ, τ )(x) ≤ cρ−α, (cutoff)

where

0Ks (τ, τ )(x) :=

∫
Rd

(τ (x) − τ(y))2Ks(x, y) dy

is the carré du champ associated with EKs .

Note that 0Ks (τ, τ ) can be interpreted as the density of the energy EKs (τ, τ ). Such an object is often
called “carré du champ” in the literature.

Assumption (E≥). There exists c > 0 such that, for every ball B2r ⊂ � and every v ∈ L2(B2r ),

EKs
B2r

(v, v) ≥ c[v]
2
Hα/2(B2r )

. (E≥)

Remark 2.2. (i) A sufficient condition for (cutoff) to hold for every τz,r,ρ is (see [Kassmann and
Weidner 2022]): there is c > 0 such that, for every 0 < ζ ≤ ρ ≤ r ≤ 1 and z ∈ Rd with Br+ρ(z) ⊂ �,

sup
x∈Br+ρ(z)

(∫
Rd\Bζ (x)

Ks(x, y) dy
)

≤ cζ−α. (2-2)

(ii) (E≥) is a classical coercivity condition on Ks . It is significantly weaker than a pointwise lower bound
of the form Ks(x, y) ≥ c|x − y|

−d−α since it allows for non-fully-supported kernels such as K3 (see
(1-5)).

(iii) Under (E≥), we have the following Poincaré and Sobolev inequalities: there is c > 0 such that, for
every ball Br+ρ ⊂ � with 0 < ρ ≤ r ≤ 1 and v ∈ L2(Br+ρ),

∥v2
∥Ld/(d−α)(Br )

≤ cEKs
Br+ρ

(v, v)+ cρ−α
∥v2

∥L1(Br+ρ), (Sob)∫
Br

(v(x) − [v]Br )
2 dx ≤ crαEKs

Br
(v, v), (Poinc)
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where [v]Br = −

∫
Br

v(x) dx . Equation (Poinc) is not explicitly needed in any of the proofs of this
article. Nevertheless it is required for Theorem 6.3 to hold and therefore appears in the assumptions
of our main result Theorem 1.1.

The following assumption did not appear in [Kassmann and Weidner 2022] and is designed to estimate
nonlocal tails of supersolutions to (PDE) from above. It is required for the proof of the Harnack inequality.

Assumption (UJS). • K satisfies (UJS) if there exists c > 0 such that, for every x, y ∈ Rd and every
r ≤

(1
4 ∧

1
4 |x − y|

)
with Br (x) ⊂ �,

K (x, y) ≤ c −

∫
Br (x)

K (z, y) dz. (UJS)

• K satisfies (ÛJS) if there exists c > 0 such that, for every x, y ∈ Rd and every r ≤
( 1

4 ∧
1
4 |x − y|

)
with Br (x) ⊂ �,

K (y, x) ≤ c −

∫
Br (x)

K (y, z) dz. (ÛJS)

Remark 2.3. (i) If K satisfies both conditions (ÛJS) and (UJS), then Ks satisfies (UJS).

(ii) Also for symmetric kernels the conditions (cutoff), (Poinc), and (Sob) are known to be insufficient
for a Harnack inequality to hold; see [Bogdan and Sztonyk 2005].

(iii) Analogs to (UJS) for symmetric jumping kernels appeared in [Chen et al. 2020; Schulze 2019]. A
pointwise version of (UJS) was considered in [Bass and Kassmann 2005].

Remark 2.4. (i) (UJS) clearly holds if K (x, y) is pointwise comparable to |x − y|
−d−α for every

x, y ∈ Rd . However, (UJS) neither implies nor is implied by (E≥).

(ii) Assume a global version of (K2), namely

|Ka(x, y)| ≤ DKs(x, y) for all x ∈ �, y ∈ Rd . (2-3)

Then (1 − D)Ks ≤ K ≤ 2Ks , and therefore (UJS) is equivalent to

Ks(x, y) ≤ c −

∫
Br (x)

Ks(z, y) dz

for x, y ∈ Rd and r ≤
(1

4 ∧
1
4 |x − y|

)
with Br (x) ⊂ �, i.e., it remains to verify (UJS) for Ks .

(iii) In [Schulze 2019] it was proved that kernels of the form

Ks(x, y) = 1S(x − y)|x − y|
−d−α

satisfy (UJS) if S = −S, and there exists c > 0 such that, for every x ∈ S and r ≤
( 1

4 |x | ∧
1
4

)
, we

have that |Br (x)| ≤ c|Br (x) ∩ S|.

We provide sufficient conditions for (UJS) to hold for the examples K1, K2, K3 in (1-3)–(1-5).
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Example 2.5. (i) Let K1(x, y) = g(x, y)|x − y|
−d−α be as in (1-3). It was shown in [Kassmann and

Weidner 2022] that (2-3) holds for K1 with D = (3 − λ)/(3 + λ) < 1. As

2Ks(x, y) = (g(x, y) + g(y, x))|x − y|
−d−α,

it follows that (UJS) holds for K .

(ii) Let K2 be as in (1-4). Then, the antisymmetric part of K2 is given by

Ka(x, y) = (V (x) − V (y))1{|x−y|≤L}(x, y)|x − y|
−d−α

≤ Ks(x, y) = |x − y|
−d−α.

Therefore, (UJS) holds if there exists c > 0 such that, for every x, y ∈ Rd and r ≤
( 1

4 |x − y| ∧
1
4

)
with Br (x) ⊂ �,

1 + (V (x) − V (y))1{|x−y|≤L} ≤ c −

∫
Br (x)

1 + (V (z) − V (y))1{|z−y|≤L} dz. (2-4)

(iii) We claim that (UJS) holds for K3. Let us prove the following more general statement: Let S ⊂ Rd

with 0 ∈ S and c > 0 such that, for every x ∈ S and r < 1
4 , we have |S ∩ Br (x)|/rd

≥ c. Then,

K (x, y) = 1S(x − y)|x − y|
−d−α

satisfies (UJS) and (ÛJS).
In fact it suffices to prove that

1S(x − y) ≤ c −

∫
Br (x)

1S(z − y) dz (2-5)

in order to deduce (UJS). Note that (ÛJS) follows by consideration of −S. We compute

1S(x − y) ≤ c
|Br (x − y) ∩ S|

rd = c
|Br (x) ∩ (y + S)|

rd = c −

∫
Br (x)

1S(z − y) dz.

Finally, we introduce the assumption of an upper bound of the jumping kernel which will be used
only to prove an L∞-L2

+ Tail estimate (see Theorem 3.6) and is not required for the proof of the main
theorems. However it follows from (UJS) and (cutoff).

Assumption (K ≤

loc). There exists c > 0 such that, for every ball B2r ⊂ � with r ≤ 1 and every x, y ∈ B2r ,

K (x, y) ≤ c|x − y|
−d−α. (K ≤

loc)

Remark 2.6. Note that (K ≤

loc) follows from (UJS) and (cutoff). Indeed, for any x, y ∈ Rd with |x − y| ≤ 4
and r =

1
16 |x − y| ≤

(1
4 ∧

1
4 |x − y|

)
, we have Br (x) ⊂ Br (y)c, and therefore

K (x, y) ≤ c1 −

∫
Br (x)

K (z, y) dz ≤ c2r−d
∫

Br (y)c
K (z, y) dz ≤ c3r−d−α

≤ c4|x − y|
−d−α

for some constants c1, c2, c3, c4 > 0.
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2.2. Weak solution concept. We introduce the following function spaces for � ⊂ Rd :

V (�|Rd) = {v : Rd
→ R s.t. v|� ∈ L2(�) and (v(x) − v(y))K 1/2

s (x, y) ∈ L2(� × Rd)},

H�(Rd) = {v ∈ V (Rd
|Rd) s.t. v = 0 on Rd

\ �}

equipped with

∥v∥
2
V (�|Rd )

= ∥v∥
2
L2(�)

+

∫
�

∫
Rd

(v(x) − v(y))2Ks(x, y) dy dx,

∥v∥
2
H�(Rd )

= ∥v∥
2
L2(Rd )

+ EKs (v, v).

We emphasize that both spaces are completely determined by the symmetric part of the jumping kernel Ks .
Moreover, for α ∈ (0, 2), we define V α(�|Rd) and Hα

�(Rd) as the corresponding function spaces
associated with Ks(x, y) = |x − y|

−d−α.
We are ready to define the notion of a weak solution to (PDE) and (P̂DE). Let us define θ ′

:= θ/(θ −1)

as the Hölder conjugate exponent of θ .

Definition 2.7. Let � ⊂ Rd be a bounded domain, I ⊂ R a finite interval, and f ∈ L∞(I × �).

(i) We say that u ∈ L2
loc(I ; V (�|Rd)) is a weak supersolution to (PDE) in I × � if the weak L2(�)-

derivative ∂t u exists, ∂t u ∈ L1
loc(I ; L2(�)), and

(∂t u(t), φ)+ E(u(t), φ) ≤ ( f (t), φ) for all t ∈ I and for all φ ∈ H�(Rd) with φ ≤ 0. (2-6)

We call u a weak subsolution if (2-6) holds for every φ ≥ 0. We call u a weak solution, if it is a
supersolution and a subsolution.

(ii) We say that u ∈ L2
loc(I ; V (�|Rd)∩ L2θ ′

(Rd)) is a weak supersolution to (P̂DE) in I ×� if the weak
L2(�)-derivative ∂t u satisfies the same properties as before and

(∂t u(t), φ)+ Ê(u(t), φ) ≤ ( f (t), φ) for all t ∈ I and for all φ ∈ H�(Rd) with φ ≤ 0.

Weak (sub-)solutions to (P̂DE) are defined in analogy with (i).

Next, we introduce the solution concept for stationary equations.

Definition 2.8. Let � ⊂ Rd be a bounded domain and f ∈ L∞(�).

(i) We say that u ∈ V (�|Rd) is a weak supersolution to (ell-PDE) in � if

E(u, φ) ≤ ( f, φ) for all φ ∈ H�(Rd) with φ ≤ 0. (2-7)

We call u a weak subsolution if (2-7) holds for every φ ≥ 0. We call u a weak solution if it is a
supersolution and a subsolution.

(ii) We say that u ∈ V (�|Rd) ∩ L2θ ′

(Rd) is a weak supersolution to (ell-P̂DE) in � if

Ê(u, φ) ≤ ( f, φ) for all φ ∈ H�(Rd) with φ ≤ 0.

(Sub)solutions to (ell-P̂DE) are defined in analogy with (i).
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Let us point out that the solution concept also makes sense under much weaker assumptions on u
without any change in the proofs being needed; see [Felsinger and Kassmann 2013]. In particular, one
can drop the condition that the weak time derivative ∂t u exists.

We will only consider solutions on special time-space cylinders IR(t0)× B2R , where B2R ⊂ � is a ball,
IR(t0) = (t0 − Rα, t0 + Rα), 0 < R ≤ 1, and t0 ∈ R. Moreover,

I ⊖

R (t0) := (t0 − Rα, t0), I ⊕

R (t0) := (t0, t0 + Rα).

Recall the following lemma, which was proved in [Kassmann and Weidner 2022]. It ensures that the
expressions in Definitions 2.7 and 2.8 are well defined.

Lemma 2.9 [Kassmann and Weidner 2022, Lemma 2.2]. Let 0 < ρ ≤ r ≤ 1 and B2r ⊂ �.

(i) Assume that one of the following is true:
• (K1loc) holds with θ = ∞,
• (K1loc) holds with θ ∈ [d/α, ∞) and (Sob) holds.

Then E(u, φ) is well defined for u ∈ V (Br+ρ |Rd) and φ ∈ HBr+ρ
(Rd).

(ii) Assume that (K1glob) holds with θ ∈ [d/α, ∞]. Then Ê(u, φ) is well defined for φ ∈ HBr+ρ/2(R
d) and

u ∈ V (Br+ρ/2 |Rd) ∩ L2θ ′

(Rd).

The following lemma is of central importance in the proofs of the Caccioppoli estimates for nonsym-
metric nonlocal operators. Note that the proof in the special case θ = ∞ is trivial.

Lemma 2.10 [Kassmann and Weidner 2022, Lemma 2.4]. (i) Assume that (K1loc) holds for some
θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Then, there exists c1 > 0 such that, for every
δ > 0, there is C(δ) > 0 such that, for every v ∈ L2(Br+ρ) with supp(v) ⊂ Br+ρ/2 and every ball
B2r ⊂ � with 0 < ρ ≤ r ≤ 1, we have∫

Br+ρ

v2(x)

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx ≤ δEKs

Br+ρ
(v, v)+ c1(C(δ) + δρ−α)∥v2

∥L1(Br+ρ). (2-8)

Moreover, if θ ∈ (d/α, ∞], the constant C(δ) has the following form:

C(δ) =

{
∥W∥L∞(Br+ρ), θ = ∞,

δd/(d−θα)
∥W∥

θα/(θα−d)

Lθ (Br+ρ)
, θ ∈ (d/α, ∞),

where W (x) :=

∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy. (2-9)

(ii) Assume that (K1glob) holds for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Then (2-8)
and (2-9) hold with∫

Rd

|Ka(x, y)|2

J (x, y)
dy instead of

∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy.

2.3. Nonlocal tail terms. Due to the nonlocality of the problems under consideration, certain nonlocal
tail terms naturally enter the picture. For references concerning the treatment of tail terms in the study of
symmetric nonlocal operators, we refer the reader to [Chen et al. 2020; Di Castro et al. 2014; 2016]. It is
crucial for our analysis to make sure that the respective tail terms are finite for any weak solution under
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reasonable assumptions on K and that the tail terms are compatible with the iteration techniques carried
out in the remainder of this article.

Given any ball B2r (x0) ⊂ �, a function v ∈ V (B2r (x0)|R
d), and 0 < r1 < r2 ≤ 2r , we define

TailK (v, r1, r2, x0) := sup
x∈Br1 (x0)

∫
Br2 (x0)c

|v(y)|K (x, y) dy,

T̂ailK (v, r1, r2, x0) := sup
x∈Br1 (x0)

∫
Br2 (x0)c

|v(y)|K (y, x) dy.

Remark 2.11. (i) For 0 < ρ1 ≤ r1 and 0 < ρ2 ≤ r2, we have TailK (v, ρ1, r2) ≤ TailK (v, r1, ρ2).

(ii) Note that TailK has been introduced in [Schulze 2019] for symmetric kernels.

We would like to point out that TailK will naturally appear in the proofs of the Caccioppoli estimates
in Sections 3 and 4. However, it is not suitable for De Giorgi-type and Moser-type iteration arguments.
Therefore, we introduce another nonlocal tail term defined as follows:

TailK ,α(u, R, x0) := Rα

∫
B2R(x0)\BR/2(x0)

|u(y)|

|x0 − y|d+α
dy + sup

x∈B3R/2(x0)

∫
B2R(x0)c

|u(y)|K (x, y) dy,

T̂ailK ,α(u, R, x0) := Rα

∫
B2R(x0)\BR/2(x0)

|u(y)|

|x0 − y|d+α
dy + sup

x∈B3R/2(x0)

∫
B2R(x0)c

|u(y)|K (y, x) dy.

TailK ,α can be regarded as a hybrid between a tail term for general kernels introduced in [Schulze
2019] and a tail term for rotationally symmetric kernels as in [Chen et al. 2020; Di Castro et al. 2016].

The advantage of TailK ,α is that it fits the iteration schemes, since, for short connections, the weight
is a radial function. Moreover, it still takes into account the correct decay of the jumping kernel K for
long jumps, which might be of lower-order due to the presence of a nonlocal drift term (see K3 in (1-5)).
Since we do not want to impose any pointwise upper bound on K for long jumps, the second summand
contains the supremum in x .

We have the following connection between TailK and TailK ,α.

Lemma 2.12. Assume (K ≤

loc). Let 0 < ρ ≤ r ≤ r + ρ ≤ R ≤ 1, x0 ∈ Rd , and v ∈ V (BR(x0)|R
d). Then

we have

TailK (v, r, r + ρ, x0) ≤ cρ−α

(
r + ρ

ρ

)d

TailK ,α(u, R, x0), (2-10)

T̂ailK (v, r, r + ρ, x0) ≤ cρ−α

(
r + ρ

ρ

)d

T̂ailK ,α(u, R, x0). (2-11)

Proof. We use that, for

x ∈ Br (x0), y ∈ Br+ρ(x0)
c
∩ B2R(x0), and z ∈ Br+ρ(x0)

c
∩ B2R(x0)

c
= B2R(x0)

c,

we have

|y − x0| ≤
r + ρ

ρ
|y − x |, |z − x0| ≤ 2|z − x |,
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which implies upon (K ≤

loc) that, for every x ∈ Br (x0),∫
Br+ρ(x0)c

v(y)K (x, y) dy

≤

∫
Br+ρ(x0)c∩B2R(x0)

v(y)K (x, y) dy +

∫
B2R(x0)c

v(z)K (x, z) dz

≤ c1

(
r + ρ

ρ

)d+α ∫
Br+ρ(x0)c∩B2R(x0)

v(y)|x0 − y|
−d−α dy + c1

∫
B2R(x0)c

v(z)K (x, z) dz

≤ c2ρ
−α

(
r + ρ

ρ

)d

TailK ,α(v, R),

where c1, c2 > 0. This proves (2-10), as desired. The proof of (2-11) works in the same way. □

Moreover, TailK ,α(u, R, x0) and T̂ailK ,α(u, R, x0) are finite for any u ∈ V (B2R(x0)|R
d) under natural

and nonrestrictive assumptions on K . This property is of some importance to us since it allows us to
work with the natural function space V (B2R(x0)|R

d) associated with K .

Lemma 2.13. Assume (cutoff) and (E≥).

(i) If (UJS) holds, then TailK ,α(u, R, x0) < ∞ for every u ∈ V (B2R(x0)|R
d),

(ii) If (ÛJS) holds, then T̂ailK ,α(u, R, x0) < ∞ for every u ∈ V (B2R(x0)|R
d).

Proof. We restrict ourselves to proving (i). The proof of (ii) follows via analogous arguments. By (cutoff),
it clearly suffices to prove that∫

B2R(x0)\BR/2(x0)

|u(y)|2|x0 − y|
−d−α dy + sup

x∈B3R/2(x0)

∫
B2R(x0)c

|u(y)|2K (x, y) dy < ∞. (2-12)

We start by proving finiteness of the first summand. This can be achieved by the same argument as in the
proof of Proposition 12 in [Dyda and Kassmann 2019]. Since |x − y| ≤ 3|x0 − y| for every x ∈ BR/4(x0)

and y ∈ Rd
\ BR/4(x0), we compute∫

B2R(x0)\BR/2(x0)

|u(y)|2|x0 − y|
−d−α dy

≤ 3
∫

B2R(x0)\BR/2(x0)

−

∫
BR/4(x0)

|u(y)|2|x − y|
−d−α dx dy

≤ c
∫

B2R(x0)

−

∫
BR/4(x0)

|u(y) − u(x)|2|x − y|
−d−α dx dy

+ c −

∫
BR/4(x0)

|u(x)|2
(∫

B2R(x0)\BR/2(x0)

|x − y|
−d−α dy

)
dx

≤ cR−dEα
B2R(x0)

(u, u) + c −

∫
BR/4(x0)

|u(x)|2
(∫

BR/4(x)c
|x − y|

−d−α dy
)

dx

≤ cR−dEα
B2R(x0)

(u, u) + cR−d−α
∥u∥

2
L2(BR/4(x0))

< ∞.

Finiteness of the quantity on the right follows from (E≥) and since u ∈ V (B2R(x0)|R
d).
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For the second summand in (2-12), we estimate using (UJS) and (cutoff) that, for every x ∈ B3R/2(x0),∫
B2R(x0)c

|u(y)|2K (x, y) dy

≤

∫
B2R(x0)c

−

∫
BR/4(x)

|u(y)|2K (z, y) dz dy

≤ cR−d
∫

B2R(x0)c
−

∫
B2R(x0)

|u(y) − u(z)|2Ks(z, y) dz dy + 2 −

∫
BR/4(x)

|u(z)|2
(∫

B2R(x0)c
Ks(z, y) dy

)
dz

≤ cR−d
[u]

2
V (B2R(x0)|Rd )

+ c −

∫
BR/4(x)

|u(z)|2
(∫

BR/4(z)c
Ks(z, y) dy

)
dz

≤ cR−d
[u]

2
V (B2R(x0)|Rd )

+ cR−d−α
∥u∥

2
L2(B2R(x0))

< ∞.

Here we used that BR/4(x) ⊂ B2R(x0) for every x ∈ B3R/2(x0). □

Remark 2.14. Note that (UJS) and (ÛJS) are not necessary for TailK ,α(u, R, x0) and T̂ailK ,α(u, R, x0)

to be finite, respectively. Consider for example a jumping kernel K whose symmetric part satisfies global
versions of (E≥) and (K ≤

loc), namely;

EKs (u, u) ≥ c[u]
2
Hα/2(Br )

for all v ∈ L2(Br ), r > 0, K (x, y) ≤ c|x − y|
−d−α for all x, y ∈ Rd ,

then we have that V (B2R |Rd) = V α(B2R |Rd). Therefore,

TailK ,α(u, R, x0)≤ c Tailα(u, R, x0)= Rα

∫
BR/2(x0)

|u(y)||x0− y|
−d−α dy <∞ for all u ∈ V (B2R |Rd).

Remark 2.15. (i) Later, we will require finiteness of TailK ,α(u, R, x0) and T̂ailK ,α(u, R, x0) in order
to deduce local boundedness of weak solutions to (ell-PDE) and (ell-P̂DE) from Theorem 3.6 and
Theorem 4.8, respectively. The above lemma shows that under the natural assumptions (cutoff), (E≥),
and (UJS) or (ÛJS), finiteness of the tail terms for weak solutions follows already from the solution
concept.

(ii) For parabolic equations, the aforementioned assumptions merely imply finiteness of

TailK ,α(u(t), R, x0) and T̂ailK ,α(u(t), R, x0)

for a.e. t , but do not yield a uniform upper bound in t .

(iii) Since parabolic tails of the form supt∈I TailK (u(t), r, r + ρ, x0) and supt∈I T̂ailK (u(t), r, r + ρ, x0)

naturally appear in the analysis of solutions to (PDE) and (P̂DE), respectively, it is an important
research question to investigate these quantities and to derive suitable estimates. First results have
been obtained in [Strömqvist 2019b], where an estimate for supt∈I TailK (u(t), r, r +ρ, x0) is derived
for global solutions u to (PDE) in the symmetric case under pointwise bounds for K . Another
attempt has been made in [Kim 2019] for solutions to a parabolic boundary value problem with
given continuous, bounded data. However, the proof of [Kim 2019, Lemma 5.3] is not complete.



3204 MORITZ KASSMANN AND MARVIN WEIDNER

3. Local boundedness via De Giorgi iteration

The goal of this section is to prove that the supremum of a weak subsolution u to (PDE), or to (P̂DE), can
locally be estimated from above by the L2-norm of u and a nonlocal tail term (see Theorem 3.6). Under
the assumption that the tail term is finite, this result is the key to proving the Harnack inequality. The
strategy of proof is based on the De Giorgi iteration for nonlocal operators, as adopted in [Cozzi 2017;
Di Castro et al. 2014; 2016].

3.1. Caccioppoli estimates. In this section nonlocal Caccioppoli estimates are established. They are
derived by testing the weak formulation of (PDE), or of (P̂DE), with a test function of the form τ 2(u−k)+.
The lack of symmetry of the jumping kernel K calls for a refinement of the existing proofs for symmetric
operators. The main technical ingredient is Lemma 2.10. Such estimates will be used in Section 3.2 to
set up a De Giorgi-type iteration scheme which allows us to prove Theorem 3.6.

The following lemma can be regarded as a generalization of Proposition 8.5 in [Cozzi 2017] to
nonsymmetric jumping kernels.

Lemma 3.1. Assume that (K1loc) and (cutoff) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if
θ < ∞. Then there exist c1, c2 > 1 such that, for every 0 < ρ ≤ r ≤ 1, every l ∈ R, and every function
u ∈ V (Br+ρ |Rd), we have

EKs
Br+ρ

(τw+, τw+) − EBr+ρ
(w−, τw+)

≤ c1E(u, τ 2w+) + c2ρ
−α

∥w2
+
∥L1(Br+ρ) + c2∥w+∥L1(Br+ρ) TailK

(
w+, r +

1
2ρ, r + ρ

)
, (3-1)

where B2r ⊂ �, w = u − l, and τ = τr,ρ/2.

Proof. Step 1: We claim that there exists a constant c > 0 such that

EKs
Br+ρ

(τw+, τw+) − EKs
Br+ρ

(w−, τw+) ≤ EKs
Br+ρ

(u, τ 2w+) + cρ−α
∥w2

+
∥L1(Br+ρ). (3-2)

Observe that by the algebraic identities

a − b = ((a − l)+ − (b − l)+) − ((a − l)− − (b − l)−),

(w1 − w2)(τ
2
1 w1 − τ 2

2 w2) = (τ1w1 − τ2w2)
2
− w1w2(τ1 − τ2)

2,

we have that

EKs
Br+ρ

(τw+, τw+) − EKs
Br+ρ

(w−, τw+)

= EKs
Br+ρ

(u, τ 2w+) +

∫
Br+ρ

∫
Br+ρ

w+(x)w+(y)(τ (x) − τ(y))2Ks(x, y) dy dx .

Thus, (3-2) follows immediately from (cutoff).

Step 2: For every δ > 0, there exists c > 0 such that

EKa
Br+ρ

(u, τ 2w+) ≥ −EKa
Br+ρ

(w−, τ 2w+) − δEKs
Br+ρ

(τw+, τw+) − cρ−α
∥w2

+
∥L1(Br+ρ). (3-3)

For the proof, we first observe the algebraic identity

(w1 − w2)(τ
2
1 w1 + τ 2

2 w2) = (τ 2
1 w2

1 − τ 2
2 w2

2) + w1w2(τ
2
2 − τ 2

1 ).
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Thus, we obtain

EKa
Br+ρ

(u, τ 2w+) = −EKa
Br+ρ

(w−, τ 2w+) +

∫
Br+ρ

∫
Br+ρ

(τ 2w2
+
(x) − τ 2w2

+
(y))Ka(x, y) dy dx

+

∫
Br+ρ

∫
Br+ρ

w+(x)w+(y)(τ 2(y) − τ 2(x))Ka(x, y) dy dx =: I1 + I2 + I3.

For I2, we estimate, using (K1loc) and (2-8),

I2 ≥ −
1
2δEKs

Br+ρ
(τw+, τw+) − c

∫
Br+ρ

τ 2(x)w2
+
(x)

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)

)
dx

≥ −δEKs
Br+ρ

(τw+, τw+) − cρ−α
∥w2

+
∥L1(Br+ρ).

For I3, using the standard estimate

(τ 2(x) − τ 2(y)) ≤ 2(τ (x) − τ(y))2
+ 2(τ (x) − τ(y))(τ (x) ∧ τ(y)), (3-4)

estimate (1-2), (cutoff), and (K1loc), we get

I3 ≥ −2
∫

Br+ρ

∫
Br+ρ

(w2
+
(x) ∨ w2

+
(y))(τ (x) − τ(y))2Ks(x, y) dy dx

− 2
∫

Br+ρ

∫
Br+ρ

(w2
+
(x) ∨ w2

+
(y))(τ (x) ∧ τ(y))|τ(x) − τ(y)||Ka(x, y)| dy dx

≥ −cρ−α
∥w2

+
∥L1(Br+ρ) −

∫
Br+ρ

τ 2(x)w2
+
(x)

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

≥ −cρ−α
∥w2

+
∥L1(Br+ρ) − δEKs

Br+ρ
(τw+, τw+).

This proves (3-3).

Step 3: Next, let us show how to prove

−E(Br+ρ×Br+ρ)c(u, τ 2w+) ≤ 2
(∫

Br+ρ

w+(x) dx
)

TailK
(
w+, r +

1
2ρ, r + ρ

)
. (3-5)

We estimate

−E(Br+ρ×Br+ρ)c(u, τ 2w+) = 2
∫

Br+ρ/2

∫
Bc

r+ρ

(u(y) − u(x))τ 2w+(x)K (x, y) dy dx

≤ 2
∫

Br+ρ/2

∫
Bc

r+ρ

(u(y) − u(x))+τ 2w+(x)K (x, y) dy dx

≤ 2
∫

Br+ρ/2

∫
Bc

r+ρ

(u(y) − l)+τ 2w+(x)K (x, y) dy dx

≤ 2
∫

Br+ρ/2

w+(x) sup
z∈Br+ρ/2

(∫
Bc

r+ρ

w+(y)K (z, y) dy
)

dx,

where we used that K is nonnegative and τ ≡ 0 in Bc
r+ρ/2.
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Step 4: We will now combine (3-2), (3-3), and (3-5). Observe

EKs
Br+ρ

(u, τ 2w+) = E(u, τ 2w+) − EKa
Br+ρ

(u, τ 2w+) − E(Br+ρ×Br+ρ)c(u, τ 2w+).

Altogether, we immediately obtain the desired result by choosing δ > 0 from Step 2 small enough. □

Note that −EBr+ρ
(w−, τ 2w+) ≥ 0 since K ≥ 0. Thus, we have the following corollary of Lemma 3.1.

Corollary 3.2. Assume that (K1loc) and (cutoff) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if
θ < ∞. Then there exist c1, c2 > 0 such that, for every 0 < ρ ≤ r ≤ 1, every l ∈ R, and every function
u ∈ V (Br+ρ |Rd), we have

EKs
Br+ρ

(τw+, τw+)

≤ c1E(u, τ 2w+) + c2ρ
−α

∥w2
+
∥L1(Br+ρ) + c2∥w+∥L1(Br+ρ) TailK

(
w+, r +

1
2ρ, r + ρ

)
, (3-6)

where B2r ⊂ �, w = u − l, and τ = τr,ρ/2.

Remark 3.3. Let us point out that both Caccioppoli-type inequalities (3-1) and (3-6) appear in the
literature for symmetric jumping kernels. Inequality (3-1) was introduced in [Cozzi 2017] (see also
[Caffarelli et al. 2011; Cozzi 2019]) and is used to prove Hölder estimates for small α. For our purposes,
inequality (3-6) is sufficient.

Next, we present a Caccioppoli inequality that is tailored to subsolutions to (P̂DE). Due to the different
shape of the bilinear form, we obtain an additional summand on the right-hand side of the estimate.

Lemma 3.4. Assume that (K1loc) and (cutoff) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if
θ < ∞. Then there exist c1, c2 > 1 such that, for every 0 < ρ ≤ r ≤ 1, every l ∈ R, and every function
u ∈ V (Br+ρ |Rd), we have

EKs
Br+ρ

(τw+, τw+) − EBr+ρ
(w−, τw+)

≤ c1Ê(u, τ 2w+) + cρ−α
∥w2

+
∥L1(Br+ρ) + c2l2ρ−α

[
|A(l, r + ρ)| + |Br+ρ |

(
|A(l, r + ρ)|

|Br+ρ |

)1/θ ′]
+ c2∥w+∥L1(Br+ρ) T̂ailK

(
u, r +

1
2ρ, r + ρ

)
, (3-7)

where B2r ⊂ �, w = u − l, τ = τr,ρ/2, and A(l, r + ρ) = {x ∈ Br+ρ : w+ > 0}.

Proof. The proof follows the structure of the proof of Lemma 3.1.

Step 1: As before, there exists a constant c > 0 such that

EKs
Br+ρ

(τw+, τw+) − EKs
Br+ρ

(w−, τw+) ≤ EKs
Br+ρ

(u, τ 2w+) + cρ−α
∥w2

+
∥L1(Br+ρ). (3-8)

Step 2: We claim that, for every δ > 0, there exists c > 0 such that

ÊKa
Br+ρ

(u, τ 2w+) ≥ −ÊKa
Br+ρ

(w−, τ 2w+) − δEKs
Br+ρ

(τw+, τw+) − cρ−α
∥w2

+
∥L1(Br+ρ)

− cl2ρ−α

[
|A(l, r + ρ)| + |Br+ρ |

(
|A(l, r + ρ)|

|Br+ρ |

)1/θ ′]
. (3-9)

This is the main part of the proof, and it differs from Step 2 in Lemma 3.1. First, we observe

ÊKa
Br+ρ

(u, τ 2w+) = EKa
Br+ρ

(τ 2w+, u) = −EKa
Br+ρ

(τ 2w+, w−) + EKa
Br+ρ

(τ 2w+, w+) + EKa
Br+ρ

(τ 2w+, l).
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To estimate the second term, observe

(τ 2
1 w1 − τ 2

2 w2)(w1 + w2) = (τ 2
1 w2

1 − τ 2
2 w2

2) + w1w2(τ
2
1 − τ 2

2 ).

Thus, we note that, for every δ > 0, there exists c > 0 such that

EKa
Br+ρ

(τ 2w+, w+) =

∫
Br+ρ

∫
Br+ρ

(τ 2w2
+
(x) − τ 2w2

+
(y))Ka(x, y) dy dx

+

∫
Br+ρ

∫
Br+ρ

w+(x)w+(y)(τ 2(x) − τ 2(y))Ka(x, y) dy dx

≥ −δEKs
Br+ρ

(τw+, τw+) − cρ−α
∥w2

+
∥L1(Br+ρ).

The estimate in the last step works exactly as in the estimation of I2 and I3 in the proof of Lemma 3.1.
The estimate of the remaining term EKa

Br+ρ
(τ 2w+, l) goes as follows:

EKa
Br+ρ

(τ 2w+, l) = 2l
∫

Br+ρ

∫
Br+ρ

(τ 2w+(x) − τ 2w+(y))Ka(x, y) dy dx

= 2l
∫

Br+ρ

∫
Br+ρ

(τ (x) − τ(y))(τw+(x) + τw+(y))Ka(x, y) dy dx

+ 2l
∫

Br+ρ

∫
Br+ρ

(τ (x) + τ(y))(τw+(x) − τw+(y))Ka(x, y) dy dx

=: J1 + J2.

To estimate J1, we apply (cutoff) and (2-8):

J1 ≥ −4l
∫

A(l,r+ρ)

∫
Br+ρ

|τ(x) − τ(y)|τw+(x)|Ka(x, y)| dy dx

≥ −cl2
∫

A(l,r+ρ)

0 J (τ, τ )(x) dx − c
∫

A(l,r+ρ)

∫
Br+ρ

τ 2w2
+
(x)

|Ka(x, y)|2

J (x, y)
dy dx

≥ −cρ−αl2
|A(l, r + ρ)| − δEKs

Br+ρ
(τw+, τw+) − cρ−α

∥w2
+
∥L1(Br+ρ).

J2 can also be estimated with the help of (cutoff) and (K1loc):

J2 ≥ −4l
∫

A(l,r+ρ)

∫
Br+ρ

(τ (x) + τ(y))|τw+(x) − τw+(y)||Ka(x, y)| dy dx

≥ −8l
∫

A(l,r+ρ)

∫
Br+ρ

|τ(x) − τ(y)||τw+(x) − τw+(y)||Ks(x, y)| dy dx

− 8l
∫

A(l,r+ρ)

∫
Br+ρ

(τ (x) ∧ τ(y))|τw+(x) − τw+(y)||Ka(x, y)| dy dx

≥ −cl2
∫

A(l,r+ρ)

0Ks (τ, τ )(x) dx − δEKs
Br+ρ

(τw+, τw+)

− δE J
Br+ρ

(τw+, τw+) − cl2
∫

A(l,r+ρ)

∫
Br+ρ

(τ 2(x) ∧ τ 2(y))
|Ka(x, y)|2

J (x, y)
dy dx

≥ −cδEKs
Br+ρ

(τw+, τw+) − cl2ρ−α
|A(l, r + ρ)| − cl2ρ−α

|Br+ρ |

(
|A(l, r + ρ)|

|Br+ρ |

)1/θ ′

.
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Here, we used that, by (K1loc) and Hölder’s inequality,

l2
∫

A(l,r+ρ)

∫
Br+ρ

(τ 2(x) ∧ τ 2(y))
|Ka(x, y)|2

J (x, y)
dy dx ≤ l2

∫
A(l,r+ρ)

τ 2(x)

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

≤ cl2
∥τ 2

∥Lθ ′
(A(l,r+ρ))

≤ cl2ρ−α
|Br+ρ |

(
|A(l, r + ρ)|

|Br+ρ |

)1/θ ′

,

since
1 ≤ c|Br+ρ |

−α/d+1−1/θ ′

≤ cρ−α
|Br+ρ |

1−1/θ ′

for some constant c > 0 because θ ≥ d/α, which implies that

−
α

d
+ 1 −

1
θ ′

∈

[
−

α

d
, 0

)
and ρ ≤ r ≤ 1.

Step 3: Next, let us demonstrate how to prove

−Ê(Br+ρ×Br+ρ)c(u, τ 2w+) ≤ 2
(∫

Br+ρ

w+(x) dx
)

T̂ailK
(
u, r +

1
2ρ, r + ρ

)
. (3-10)

We estimate

−Ê(Br+ρ×Br+ρ)c(u, τ 2w+)

= 2
∫

Bc
r+ρ

∫
Br+ρ/2

τ 2w+(y)u(x)K (x, y) dy dx − 2
∫

Br+ρ/2

∫
Bc

r+ρ

τ 2w+(x)u(x)K (x, y) dy dx

≤ 2
∫

Br+ρ/2

w+(y)

(∫
Rd\Br+ρ

u(x)K (x, y) dx
)

dy,

where we used that K is nonnegative and τ ≡ 0 in Bc
r+ρ/2. Note that the second summand in the first step

is negative since w+(x)u(x) ≥ 0, and can therefore be neglected.

Step 4: We will now combine (3-8), (3-9), and (3-10). Observe that

EKs
Br+ρ

(u, τ 2w+) = Ê(u, τ 2w+) − ÊKa
Br+ρ

(u, τ 2w+) − Ê(Br+ρ×Br+ρ)c(u, τ 2w+).

Altogether, we immediately obtain the desired result by choosing δ > 0 from Step 2 small enough. □

Corollary 3.5. Assume that (K1glob) and (cutoff) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob)
if θ < ∞. Then there exist c1, c2 > 0 such that, for every 0 < ρ ≤ r ≤ 1, every l ∈ R, and every function
u ∈ V (Br+ρ |Rd), we have

EKs
Br+ρ

(τw+, τw+)

≤ c1Ê(u, τ 2w+) + c2ρ
−α

∥w2
+
∥L1(Br+ρ) + c2l2ρ−α

[
|A(l, r + ρ)| + |Br+ρ |

(
|A(l, r + ρ)|

|Br+ρ |

)1/θ ′]
+ c2∥w+∥L1(Br+ρ) T̂ailK

(
w+, r +

1
2ρ, r + ρ

)
, (3-11)

where B2r ⊂ �, w = u − l, and τ = τr,ρ/2.
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3.2. Local boundedness. The following theorem is the main result of this section. It yields a priori local
boundedness of subsolutions to (PDE), or to (P̂DE), if the nonlocal tail is finite.

Theorem 3.6. Assume that (K ≤

loc), (cutoff), and (Sob) hold.

(i) Assume that (K1loc) holds for some θ ∈ [d/α, ∞]. Then there exists c > 0 such that, for every
0 < R ≤ 1, every δ ∈ (0, 1], and every nonnegative, weak subsolution u to (PDE) in I ⊖

R (t0) × B2R ,

sup
I ⊖

R/8×BR/2

u ≤ cδ−(d+α)/(2α)

(
−

∫
I ⊖

R/4

−

∫
BR

u2(t, x) dx dt
)1/2

+ δ sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + δRα
∥ f ∥L∞,

where B2R ⊂ �.

(ii) Assume that (K1glob) holds for some θ ∈ (d/α, ∞]. Then there exists c > 0 such that, for every
0 < R ≤ 1, every δ ∈ (0, 1], and every nonnegative, weak subsolution u to (P̂DE) in I ⊖

R (t0) × B2R ,

sup
I ⊖

R/8×BR/2

u ≤ cδ−κ̃ ′/2
(

−

∫
I ⊖

R/4

(
−

∫
BR

u2θ ′

(t, x) dx
)1/θ ′

dt
)1/2

+ δ sup
t∈I ⊖

R/4

T̂ailK ,α(u(t), R) + δRα
∥ f ∥L∞,

where B2R ⊂ � and κ̃ = 1 + α/d − 1/θ > 1.

Proof. We first explain how to prove (i). Let l > 0, and define wl := (u − l)+. Let r, ρ > 0 such that
1
2 R ≤ r ≤ R and ρ ≤ r ≤ r + ρ ≤ R. Let τ = τr,ρ/2. Moreover, we define χ ∈ C1(R) to be a function
satisfying

0 ≤ χ ≤ 1, ∥χ ′
∥∞ ≤ 16((r + ρ)α − rα)−1, χ(t0 − ((r + ρ)/4)α) = 0, χ ≡ 1 in I ⊖

r/4(t0).

Since u is a weak subsolution to (PDE), Lemma A.1 yields, for any t ∈ I ⊖

r/4(t0),∫
Br+ρ

χ2(t)τ 2(x)w2
l (t, x) dx +

∫ t

t0−((r+ρ)/4)α
χ2(s)E(u(s), τ 2wl(s)) ds

≤

∫ t

t0−((r+ρ)/4)α
χ2(s)( f (s), τ 2wl(s)) ds + 2

∫ t

t0−((r+ρ)/4)α
χ(s)|χ ′(s)|

∫
Br+ρ

τ 2(x)w2
l (s, x) dx ds

≤ ∥ f ∥L∞

∫
I ⊖

(r+ρ)/4

∥wl(s)∥L1(Br+ρ) ds + c1((r + ρ)α − rα)−1
∫

I ⊖

(r+ρ)/4

∥w2
l (s)∥L1(Br+ρ) ds

for some constant c1 > 0. Applying Corollary 3.2, we obtain

sup
t∈I ⊖

r/4

∫
Br

w2
l (t, x) dx +

∫
I ⊖

r/4

EKs
Br+ρ

(τwl(s), τwl(s)) ds

≤ c2(ρ
−α

∨ ((r + ρ)α − rα)−1)

∫
I ⊖

(r+ρ)/4

∥w2
l (s)∥L1(Br+ρ) ds

+ c2∥wl∥L1(I ⊖

(r+ρ)/4×Br+ρ)

(
sup

t∈I ⊖

(r+ρ)/4

TailK
(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

)
(3-12)
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for some c2 > 0. Recall κ = 1 + α/d > 1. Hölder interpolation and the Sobolev inequality (Sob) yield

∥w2
l ∥Lκ (I ⊖

r/4×Br )
≤

(
sup

t∈I ⊖

r/4

∥w2
l (t)∥

κ−1
L1(Br )

∫
I ⊖

r/4

∥w2
l (s)∥Ld/(d−α)(Br )

ds
)1/κ

≤ c3σ(r, ρ)∥w2
l ∥L1(I ⊖

(r+ρ)/4×Br+ρ)

+ c3∥wl∥L1(I ⊖

(r+ρ)/4×Br+ρ)

(
sup

t∈I ⊖

(r+ρ)/4

TailK
(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

)
, (3-13)

where c3 > 0 and we used that there is c > 0 such that

(ρ−α
∨ ((r + ρ)α − rα)−1) ≤ cρ−(α∨1)(r + ρ)(α∨1)−α

=: σ(r, ρ).

Furthermore, set

|A(l, r)| :=

∫
I ⊖

r/4

|{x ∈ Br : u(s, x) > l}| ds.

Then, by application of Hölder’s inequality, with κ and κ/(κ − 1) both in time and in space, and (3-13),

∥w2
l ∥L1(I ⊖

r/4×Br )

≤ |A(l, r)|1/κ ′

∥w2
l ∥Lκ (I ⊖

r/4×Br )

≤ c4|A(l, r)|1/κ ′

[
σ(r, ρ)∥w2

l ∥L1(I ⊖

(r+ρ)/4×Br+ρ)

+ ∥wl∥L1(I ⊖

(r+ρ)/4×Br+ρ)

(
sup

t∈I ⊖

(r+ρ)/4

TailK
(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

)]
, (3-14)

where c4 > 0 is a constant. Let now 0 < k < l be arbitrary. Then the following hold:

∥w2
l ∥L1(I ⊖

(r+ρ)/4×Br+ρ) ≤ ∥w2
k∥L1(I ⊖

(r+ρ)/4×Br+ρ),

∥wl∥L1(I ⊖

(r+ρ)/4×Br+ρ) ≤

∥w2
k∥L1(I ⊖

(r+ρ)/4×Br+ρ)

l − k
,

|A(l, r)| ≤

∥w2
k∥L1(I ⊖

(r+ρ)/4×Br+ρ)

(l − k)2 .

(3-15)

By combining (3-14) and (3-15), we obtain

∥w2
l ∥L1(I ⊖

r/4×Br )

≤ c5|A(l, r)|1/κ ′

(
σ(r, ρ)+

supt∈I ⊖

(r+ρ)/4
TailK

(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

l − k

)
∥w2

k∥L1(I ⊖

(r+ρ)/4×Br+ρ)

≤ c6(l − k)−2/κ ′

(
σ(r, ρ)+

supt∈I ⊖

(r+ρ)/4
TailK

(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

l − k

)
∥w2

k∥
1+1/κ ′

L1(I ⊖

(r+ρ)/4×Br+ρ)

for some c5, c6 > 0. The plan for the remainder of the proof is to iterate the above estimate. Recall (2-10),
which we will apply in the sequel. Let us now set up the iteration scheme. For this purpose, we define two
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sequences li = M(1 − 2−i ) and ρi = 2−i−1 R, i ∈ N, where M > 0 is to be determined later. We also set

r0 = R, ri+1 = ri − ρi+1 =
1
2 R

(
1 +

(1
2

)i+1)
, and l0 = 0.

Then ri ↘
1
2 R and li ↗ M as i → ∞.

Note that σ(ri , ρi ) ≤ c7 R−α22i for some c7 > 0. Define Ai = ∥w2
li ∥L1(I ⊖

ri /4×Bri )
. Then

Ai ≤ c8
1

(li − li−1)2/κ ′

(
σ(ri , ρi ) +

supt∈I ⊖

ri /4
TailK

(
u(t), ri +

1
2ρi , ri + ρi

)
+ ∥ f ∥L∞

li − li−1

)
A1+1/κ ′

i−1

≤ c9
1

(li − li−1)2/κ ′

(
σ(ri , ρi ) + ρ−α

i

(
ri

ρi

)d supt∈I ⊖

R/4
TailK ,α(u(t), R) + Rα

∥ f ∥L∞

li − li−1

)
A1+1/κ ′

i−1

≤ c10
22i/κ ′

M2/κ ′

(
22i

Rα
+

2(1+α+d)i

Rα

supt∈I ⊖

R/4
TailK ,α(u(t), R) + Rα

∥ f ∥L∞

M

)
A1+1/κ ′

i−1

≤
c11

Rα M2/κ ′
2γ i

(
1 +

supt∈I ⊖

R/4
TailK ,α(u(t), R) + Rα

∥ f ∥L∞

M

)
A1+1/κ ′

i−1 (3-16)

for c8, c9, c10, c11 > 0, γ > 1. Note that here we also applied (2-10). If, given δ ∈ (0, 1], we choose

M ≥ δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
then,

Ai ≤
c12

δRα M2/κ ′
C i A1+1/κ ′

i−1 ,

where C := 22/κ ′
+2 > 1 and c12 > 0. We choose

M := δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
+ Cκ ′2/2cκ ′/2

12 δ−κ ′/2 R−ακ ′/2 A1/2
0 .

It follows that

A0 ≤ c−κ ′

12 δκ ′

Rακ ′

M2C−κ ′2
=

(
c12

δRα M2/κ ′

)−κ ′

C−κ ′2
,

and therefore we know from Lemma 7.1 in [Giusti 2003] that Ai ↘ 0 as i → ∞, i.e.,

sup
I ⊖

R/8×BR/2

u ≤ M = δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
+ Cκ ′2/2cκ ′/2

12 δ−κ ′/2 R−ακ ′/2 A1/2
0

= δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
+ c13δ

−κ ′/2
(

R−ακ ′

∫
I ⊖

R/4

∫
BR

u2(t, x) dx dt
)1/2

for c13 > 0. Note that, by the definition of κ , we have ακ ′
= α + d . Therefore,

sup
I ⊖

R/8×BR/2

u ≤ δ sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + δRα
∥ f ∥L∞ + c14δ

−κ ′/2
(

−

∫
I ⊖

R/4

−

∫
BR

u2(t, x) dx dt
)1/2

for some c14 > 0. This proves (i).
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To prove (ii), observe that, instead of (3-12), applying Corollary 3.5 to a weak subsolution u to (P̂DE)
yields

sup
t∈I ⊖

r/4

∫
Br

w2
l (t, x) dx +

∫
I ⊖

r/4

EKs
Br+ρ

(τwl(t), τwl(t)) dt

≤c1σ(r, ρ)∥w2
l (t)∥L1(I ⊖

(r+ρ)/4×Br+ρ)+c1l2ρ−α

[
|A(l, r+ρ)|+|Br+ρ |

1/θ

∫
I ⊖

(r+ρ)/4

|Br+ρ∩{u(t, x)> l}|1/θ ′

dt
]

+ c1∥wl(t)∥L1(I ⊖

(r+ρ)/4×Br+ρ)

(
sup

t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

)
for some c1 > 0. Proceeding as in the proof of (i), we derive the following estimate as a replacement of
(3-14), where κ̃ := κ − 1/θ > 1:∫

I ⊖

r/4

∥w2
l (t)∥Lθ ′

(Br )
dt

≤ |A(l, r)|1/κ̃ ′

(∫
I ⊖

r/4

∥w2
l (t)∥

κ̃

L κ̃θ ′
(Br )

dt
)1/κ̃

≤ |A(l, r)|1/κ̃ ′

(
sup

t∈I ⊖

r/4

∥w2
l (t)∥

κ̃−1
L1(Br )

∫
I ⊖

r/4

∥w2
l (s)∥Ld/(d−α)(Br )

ds
)1/κ̃

≤ c2|A(l, r + ρ)|1/κ̃ ′

[
σ(r, ρ)∥w2

l ∥L1(I ⊖

(r+ρ)/4×Br+ρ)

+ l2ρ−α

[
|A(l, r + ρ)| + |Br+ρ |

1/θ

∫
I ⊖

(r+ρ)/4

|Br+ρ ∩ {u(t, x) > l}|1/θ ′

dt
]

+ ∥wl∥L1(I ⊖

(r+ρ)/4×Br+ρ)

(
sup

t∈I ⊖

(r+ρ)/4

TailK
(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

)]

≤c3|Br+ρ |
1/θ

|A(l, r+ρ)|1/κ̃ ′

[
σ(r, ρ)

(
1+

(
l

l − k

)2)
+

supt∈I ⊖

(r+ρ)/4
TailK

(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

l − k

]
×

∫
I ⊖

(r+ρ)/4

∥w2
k (t)∥Lθ ′

(Br+ρ) dt

≤ c4
|Br+ρ |

1/θ

(l − k)2/κ̃ ′

[
σ(r, ρ)

(
1 +

(
l

l − k

)2)
+

supt∈I ⊖

(r+ρ)/4
TailK

(
u(t), r +

1
2ρ, r + ρ

)
+ ∥ f ∥L∞

l − k

]
×

(∫
I ⊖

(r+ρ)/4

∥w2
k (t)∥Lθ ′

(Br+ρ) dt
)1+1/κ̃ ′

for some c2, c3, c4 > 0, and we used∫
I ⊖

(r+ρ)/4

|Br+ρ ∩ {u(t, x) > l}|1/θ ′

dt ≤ (l − k)−2
∫

I ⊖

(r+ρ)/4

∥w2
k (t)∥Lθ ′

(Br+ρ) dt (3-17)

and applied (3-15). From here, the proof basically proceeds as before. We define sequences (li ), (ρi ),
and (ri ) as before, write Ai =

∫
I ⊖

ri /4
∥wli (t)∥Lθ ′

(Bri )
dt , and deduce that, for any δ ∈ (0, 1], by choosing

M ≥ δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
,
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we deduce that

Ai ≤
c5

δRα−d/θ M2/κ̃ ′
C i A1+1/κ̃ ′

i−1 ,

where C > 1 and c5 > 0 are constants. We choose

M := δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
+ C κ̃ ′2/2cκ̃ ′/2

5 δ−κ̃ ′/2 R−(α−d/θ)κ̃ ′/2 A1/2
0 .

It follows that

A0 ≤ c−κ̃ ′

5 δκ̃ ′

R(α−d/θ)κ̃ ′

M2C−κ̃ ′2
=

(
c5

δRα−d/θ Md/κ̃ ′

)−κ̃ ′

C−κ̃ ′2
,

and therefore we know from Lemma 7.1 in [Giusti 2003] that Ai ↘ 0 as i → ∞, i.e.,

sup
I ⊖

R/8×BR/2

u ≤ M = δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
+ C κ̃ ′2/2cκ̃ ′/2

5 δ−κ̃ ′/2 R−(α−d/θ)κ̃ ′/2 A1/2
0

= δ
(

sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + Rα
∥ f ∥L∞

)
+ c6δ

−κ̃ ′/2
(

−

∫
I ⊖

R/4

(
−

∫
BR

u2θ ′

(t, x) dx
)1/θ ′

dt
)1/2

for c6 > 0, where we used (α − d/θ)κ̃ ′
= α + d/θ ′. □

Remark 3.7. Let us comment on the appearance of the L2,2θ ′

t,x -norm of u in the estimate (ii) for subsolutions
to (P̂DE). In fact, this term appears since we iterate the L2,2θ ′

t,x -norms of wli in the proof of (ii). In fact,
upon estimating

|Br+ρ |
1/θ

∫
I ⊖

(r+ρ)/4

|Br+ρ ∩ {u(t, x) > l}|1/θ ′

dt ≤ c|I ⊖

(r+ρ)/4 × Br+ρ |
1/θ

|A(l, r + ρ)|1/θ ′

,

instead of (3-17), we could iterate the L2,2-norms of wli as in the proof of (i), however, only as long as

µ :=
1
κ ′

−
1
θ

=
α

d + α
−

1
θ

> 0.

This means that we would have to restrict ourselves to the suboptimal range θ ∈ ((d + α)/α, ∞]. In the
local case, an analogous phenomenon appears in Chapter VI.13 in [Lieberman 1996].

Note that, for subsolutions (ell-P̂DE), the analogous condition reads µ := α/d −1/θ > 0, which allows
us to estimate the supremum of u by the L2-norm, as expected for the full range θ ∈ (d/α, ∞].

We now state the analog to Theorem 3.6 for stationary solutions.

Theorem 3.8. Assume that (K ≤

loc), (cutoff), and (Sob) hold.

(i) Assume that (K1loc) holds for some θ ∈ [d/α, ∞]. Then there exists c > 0 such that, for every
0 < R ≤ 1, every δ ∈ (0, 1], and every nonnegative, weak subsolution u to (ell-PDE) in B2R ⊂ �,

sup
BR/2

u ≤ cδ−d/(2α)

(
−

∫
BR

u2(x) dx
)1/2

+ δ TailK ,α(u, R) + Rα
∥ f ∥L∞ . (3-18)
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(ii) Assume that (K1glob) holds for some θ ∈ (d/α, ∞]. Then there exists c > 0 such that, for every
0 < R ≤ 1, every δ ∈ (0, 1], and every nonnegative, weak subsolution u to (ell-P̂DE) in B2R ⊂ �,

sup
BR/2

u ≤ cδ−1/(2µ)

(
−

∫
BR

u2(x) dx
)1/2

+ δ T̂ailK ,α(u, R) + Rα
∥ f ∥L∞,

where µ := α/d − 1/θ ∈ (0, α/d].

The first estimate can be read off from Theorem 3.6 (i). The proof of (ii) works similar to the proof of
Theorem 3.6 (ii) up to small modifications in the sense of the aforementioned remark. The factor δ−d/(2α)

in (3-18) stems from defining κ = d/(d − α) and κ ′
= d/α in the stationary case.

4. Local boundedness via Moser iteration

The goal of this section is to give another proof of Theorem 3.6 via the Moser iteration for positive
exponents (see Theorem 4.8). For our main result there is no need of a second proof. However, we
consider this independent approach interesting due to the wide range of applicability of the Moser iteration.
While local boundedness for symmetric nonlocal operators has been established in numerous works by
the De Giorgi iteration technique, the following proof of local boundedness (see Theorem 4.8) using a
Moser iteration scheme seems to be new.

The Moser iteration for positive exponents is arguably more complicated than for negative exponents
for the following two reasons: Roughly speaking, one would like to use test-functions of the form
φ = τ 2u2q−1 for q > 1. Unfortunately, φ a priori does not belong to the correct function space unless u is
bounded. Since boundedness of u is one of the main goals of this section, such an assumption is illegal.
Instead, we truncate the monomial u2q−1 in an adequate way, similar to [Aronson and Serrin 1967]. The
second reason concerns the appearance of nonlocal tail terms (see Section 3) due to the nonlocality of the
equation. These quantities require special treatment in order to make the iteration work.

Note that Sections 3 and 4 are fully independent of each other.

4.1. Algebraic estimates. The first step is to establish suitable algebraic estimates, which can be seen and
will be used as nonlocal analogs to the chain rule. Note that an estimate similar to (4-1) was established
in [Brasco and Parini 2016]. We also refer to [Kassmann and Weidner 2022], where the Moser iteration
schemes were established for negative and small positive exponents for the same class of nonsymmetric
nonlocal operators.

Lemma 4.1. Let g : [0, ∞) → [0, ∞) be continuously differentiable. Assume that g is increasing and
that g(0) = 0. Set G(t) :=

∫ t
0 g′(τ )1/2 dτ . Then, for every s, t ≥ 0,

(t − s)(g(t) − g(s)) ≥ (G(t) − G(s))2, (4-1)

(g(t) ∧ g(s))|t − s|
|G(t) − G(s)|

≤ G(t) ∧ G(s), (4-2)

|g(t) − g(s)|
|G(t) − G(s)|

≤ g′(t ∨ s)1/2. (4-3)
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Proof. Note that, by assumption, t 7→ G ′(t) = g′(t)1/2 is nonnegative. Let us assume without loss of
generality that s ≤ t . First, we compute, with the help of Jensen’s inequality,

(t − s)(g(t)− g(s)) = (t − s)
∫ t

s
g′(τ ) dτ = (t − s)

∫ t

s
G ′(τ )2 dτ ≥

(∫ t

s
G ′(τ ) dτ

)2

= (G(t)− G(s))2,

which proves (4-1). Next,
|G(t) − G(s)|

|t − s|
= −

∫ t

s
G ′(τ ) dτ ≥ G ′(s).

Moreover, we compute

g(s) =

∫ s

0
g′(τ ) dτ ≤ g′(s)1/2

∫ s

0
g′(τ )1/2 dτ = G ′(s)G(s).

This implies
|G(t) − G(s)|

|t − s|
≥

g(s)
G(s)

,

which proves (4-2). For (4-3), we compute, using the chain rule and again that G ′(t) = g′(t)1/2 is
nondecreasing,

|g(t) − g(s)|
|G(t) − G(s)|

=

∣∣∣∣−∫ G(t)

G(s)
[g ◦ G−1

]
′(τ ) dτ

∣∣∣∣ = −

∫ G(t)

G(s)
g′(G−1(τ ))1/2 dτ ≤ g′(t)1/2. □

The following lemma has already been established and applied in [Kassmann and Weidner 2022] (see
Lemma 3.2 therein).

Lemma 4.2. Let G : [0, ∞) → R. Then, for any τ1, τ2 ≥ 0 and t, s > 0,

(τ 2
1 ∧ τ 2

2 )|G(t) − G(s)|2 ≥
1
2 |τ1G(t) − τ2G(s)|2 − (τ1 − τ2)

2(G2(t) ∨ G2(s)), (4-4)

(τ 2
1 ∨ τ 2

2 )|G(t) − G(s)|2 ≤ 2|τ1G(t) − τ2G(s)|2 + 2(τ1 − τ2)
2(G2(t) ∨ G2(s)). (4-5)

From now on, let us define the functions g : [0, ∞) → [0, ∞) and G(t) =
∫ t

0 g′(s)1/2 ds for M > 0
and q ≥ 1 via

g(t) =

{
t2q−1, t ≤ M,

M2q−1
+ (2q − 1)M2q−2(t − M), t > M,

G(t) =


√

2q − 1
q

tq , t ≤ M,

√
2q − 1

q
Mq

+
√

2q − 1(t − M)Mq−1, t > M.

One easily checks that g is continuously differentiable, increasing, and satisfies g(0) = 0. Therefore g
satisfies the assumptions of Lemma 4.1. Moreover, note that g is convex.

The following lemma is a direct consequence of the definition of g.
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Lemma 4.3. For every t ≥ 0,

G ′(t) = g′(t)1/2
≤ q

G(t)
t

, (4-6)

g(t)t ≤
q2

2q − 1
G2(t). (4-7)

Proof. Let us start by proving the first estimate. In the case t ≤ M , a direct computation shows,

g′(t)1/2
=

√
2q − 1tq−1

= q
√

2q − 1
q

tq−1
= q

G(t)
t

.

For t > M , we use
√

2q − 1 ≤ q to compute

g′(t)1/2
=

√
2q − 1Mq−1

= q

√
2q−1
q (Mq

+ (t − M)Mq−1)

t

≤ q

√
2q−1
q Mq

+
√

2q − 1(t − M)Mq−1

t
= q

G(t)
t

.

This proves (4-6). For (4-7), in the case t ≤ M , we compute

g(t)t = t2q
=

q2

2q − 1
G2(t).

In the case t > M , we use
√

2q − 1 ≤ q to compute

g(t)t = t2 M2q−2
=

q2

2q − 1

(√
2q − 1

q
(Mq

+ (t − M)Mq−1)

)2

≤
q2

2q − 1
G2(t). □

Remark 4.4. Note that (4-6) already implies a slightly weaker version of the estimate in (4-7). Indeed,
by (4-6),

q2G2(t) ≥ (G ′(t)t)2
= g′(t)t2

≥ g(t)t,

where we used convexity and g(0) = 0 in the last estimate.

Lemma 4.5. Let q ≥ 1. Then, for every s, t ≥ 0, we have

(G(t) − G(s))2
↗

2q − 1
q2 (tq

− sq)2 as M ↗ ∞.

Proof. Clearly,

(G(t) − G(s))2
→

2q − 1
q2 (tq

− sq)2

as M → ∞, since, for t, s < M , we already have

(G(t) − G(s))2
=

2q − 1
q2 (tq

− sq)2.

It remains to prove that the convergence is monotone. Let us fix t > s > 0. First, we observe that
M 7→ (G(t) − G(s))2 is continuous. Now, clearly, for M < t < s, we have

(G(t) − G(s))2
= (2q − 1)M2q−2(t − s)2,
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which is increasing in M . In the case s < M < t ,

(G(t) − G(s))2
=

(√
2q − 1

q
Mq

+ (t − M)
√

2q − 1Mq−1
−

√
2q − 1

q
sq

)2

.

This expression is clearly monotone in M as long as t > M , since

d
dM

√
2q − 1

q
Mq

+ (t − M)
√

2q − 1Mq−1
= (q − 1)

√
2q − 1(t − M)Mq−2

≥ 0.

This proves the desired result. □

4.2. Caccioppoli estimates. Now, we are in the position to prove the following Caccioppoli-type estimate.
We emphasize that τ 2g(ũ) ∈ HBr+ρ

(Rd) in the lemma below, where ũ = u + Rα
∥ f ∥L∞ , whenever

u ∈ V (Br+ρ |Rd). This is a direct consequence of the definition of g.

Lemma 4.6. Assume that (K1loc) and (cutoff) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob)
if θ < ∞. Then there exist c1, c2 > 0 such that, for every 0 < ρ ≤ r ≤ 1, every nonnegative function
u ∈ V (Br+ρ |Rd), and every q ≥ 1, we have

EKs
Br+ρ

(τG(ũ), τG(ũ))

≤ c1E(u, τ 2g(ũ)) + c2ρ
−α

∥G(ũ)2
∥L1(Br+ρ) + c2∥g(ũ)∥L1(Br+ρ) TailK

(
u, r +

1
2ρ, r + ρ

)
,

where B2r ⊂ �, τ = τr,ρ/2, and ũ = u + Rα
∥ f ∥L∞ .

Proof. We define

M := {(x, y) ∈ Br+ρ × Br+ρ : u(x) > u(y)}.

Note that, for (x, y) ∈ M , we have g(u(x)) ≥ g(u(y)) and G(u(x)) ≥ G(u(y)). The proof is divided into
several steps.

Step 1: First, we claim that, for some c1, c2 > 0,

EBr+ρ
(u, τ 2g(ũ)) ≥ c1EKs

Br+ρ
(τG(ũ), τG(ũ)) − c2ρ

−α
∥G(ũ)2

∥L1(Br+ρ). (4-8)

For the symmetric part, we compute the following using the symmetry of Ks (see also Lemma 2.3 in
[Kassmann and Weidner 2022]):

EKs
Br+ρ

(u, τ 2g(ũ)) = 2
∫∫

M
(ũ(x) − ũ(y))(τ 2(x)g(ũ(x)) − τ 2(y)g(ũ(y)))Ks(x, y) dy dx

= 2
∫∫

M
(ũ(x) − ũ(y))(g(ũ(x)) − g(ũ(y)))τ 2(x)Ks(x, y) dy dx

+ 2
∫∫

M
(ũ(x) − ũ(y))g(ũ(y))(τ 2(x) − τ 2(y))Ks(x, y) dy dx

= Is + Js .
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For the nonsymmetric part, we compute, using the antisymmetry of Ka and with the help of Lemma 2.3
in [Kassmann and Weidner 2022],

EKa
Br+ρ

(u, τ 2g(ũ)) = 2
∫∫

M
(ũ(x) − ũ(y))(τ 2(x)g(ũ(x)) + τ 2(y)g(ũ(y)))Ka(x, y) dy dx

= 2
∫∫

M
(ũ(x) − ũ(y))(g(ũ(x)) − g(ũ(y)))τ 2(x)Ka(x, y) dy dx

+ 2
∫∫

M
(ũ(x) − ũ(y))g(ũ(y))(τ 2(x) + τ 2(y))Ka(x, y) dy dx

= Ia + Ja.

By adding Is + Ia and using (4-1), (4-4), as well as (cutoff), we obtain

Is + Ia = 2
∫∫

M
(ũ(x) − ũ(y))(g(ũ(x)) − g(ũ(y)))τ 2(x)K (x, y) dy dx

≥

∫∫
M

(G(ũ(x)) − G(ũ(y)))2(τ 2(x) ∧ τ 2(y))K (x, y) dy dx

≥
1
2E

Ks
Br+ρ

(τG(ũ), τG(ũ)) − cρ−α
∥G(ũ)2

∥L1(Br+ρ)

−
1
2

∫
Br+ρ

∫
Br+ρ

(τG(ũ(x)) − τG(ũ(y)))2
|Ka(x, y)| dy dx .

For the nonsymmetric part, using (K1loc) and (2-8), we find that, for every ε > 0, there is c > 0 such that∫
Br+ρ

∫
Br+ρ

(τG(ũ(x)) − τG(ũ(y)))2
|Ka(x, y)| dy dx

≤ εEKs
Br+ρ

(τG(ũ), τG(ũ)) + c
∫

Br+ρ

τ 2(x)G2(ũ(x))

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

≤ 2εEKs
Br+ρ

(τG(ũ), τG(ũ)) + cρ−α
∥G(ũ)2

∥L1(Br+ρ).

Consequently,
Is + Ia ≥

1
4E

Ks
Br+ρ

(τG(ũ), τG(ũ)) − cρ−α
∥G(ũ)2

∥L1(Br+ρ).

For Js , we use (4-2), (4-5), and (cutoff) to prove that, for every ε > 0, there exists c > 0 such that

Js ≥ −

∫∫
M

|G(ũ(x)) − G(ũ(y))|G(ũ(y))|τ(x) − τ(y)|(τ (x) ∨ τ(y))Ks(x, y) dy dx

≥ −ε

∫∫
M

(G(ũ(x)) − G(ũ(y)))2(τ 2(x) ∨ τ 2(y))Ks(x, y) dy dx − cρ−α
∥G(ũ)2

∥L1(Br+ρ)

≥ −εEKs
Br+ρ

(τG(ũ), τG(ũ)) − cρ−α
∥G(ũ)2

∥L1(Br+ρ).

Next, we estimate Ja and prove, using (3-4), (1-2), (4-2), (cutoff), and (4-5), that, for every ε > 0,
there is c > 0 such that

Ja ≥ −8
∫∫

M
|ũ(x) − ũ(y)|g(ũ(y))(τ 2(x) ∧ τ 2(y))|Ka(x, y)| dy dx

− 8
∫∫

M
|ũ(x) − ũ(y)|g(ũ(y))(τ (x) − τ(y))2Ks(x, y) dy dx
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≥ −ε

∫∫
M

(G(ũ(x)) − G(ũ(y)))2(τ 2(x) ∧ τ 2(y))J (x, y) dy dx

− c
∫∫

M
G(ũ(y))(τ 2(x) ∧ τ 2(y))

|Ka(x, y)|2

J (x, y)
dy dx − cρ−α

∥G(ũ)2
∥L1(Br+ρ)

≥ −2εEKs
Br+ρ

(τG(ũ), τG(ũ)) − cρ−α
∥G(ũ)2

∥L1(Br+ρ),

where we used (K1loc) and (2-8) in the last step to estimate

c
∫∫

M
G2(ũ(y))(τ 2(x) ∧ τ 2(y))

|Ka(x, y)|2

J (x, y)
dy dx ≤ 2εEKs

Br+ρ
(τG(ũ), τG(ũ)) + cρ−α

∥G(ũ)2
∥L1(Br+ρ)

and used Lemma 2.6 in [Kassmann and Weidner 2022], (K1loc), (4-4), and (cutoff) to estimate∫∫
M

(G(ũ(x)) − G(ũ(y)))2(τ 2(x) ∧ τ 2(y))J (x, y) dy dx

≤ c
∫

Br+ρ

∫
Br+ρ

(G(ũ(x)) − G(ũ(y)))2(τ 2(x) ∧ τ 2(y))Ks(x, y) dy dx

≤ cEKs
Br+ρ

(τG(ũ), τG(ũ)) + cρ−α
∥G(ũ)2

∥L1(Br+ρ). (4-9)

Altogether, we obtain

EBr+ρ
(u, τ 2g(ũ)) ≥

[ 1
4 − 2ε

]
EKs

Br+ρ
(τG(ũ), τG(ũ)) − cρ−α

∥G(ũ)2
∥L1(Br+ρ).

The desired estimate (4-8) now follows by choosing ε > 0 small enough.

Step 2: In addition, we claim

−E(Br+ρ×Br+ρ)c(u, τ 2g(ũ)) ≤ 2∥g(ũ)∥L1(Br+ρ) sup
z∈Br+ρ/2

(∫
Bc

r+ρ

u(y)K (z, y) dy
)

. (4-10)

To see this, we compute

−E(Br+ρ×Br+ρ)c(u, τ 2g(ũ))

= −2
∫

(Br+ρ×Br+ρ)c
(u(x) − u(y))τ 2(x)g(ũ(x))K (x, y) dy dx

= −2
∫

Br+ρ

τ 2(x)u(x)g(ũ(x))

(∫
Bc

r+ρ

K (x, y) dy
)

dx + 2
∫

Br+ρ

τ 2(x)g(ũ(x))

(∫
Bc

r+ρ

u(y)K (x, y) dy
)

dx

≤ 2∥g(ũ)∥L1(Br+ρ) sup
z∈Br+ρ/2

(∫
Bc

r+ρ

u(y)K (z, y) dy
)

using u, K ≥ 0 and supp(τ ) ⊂ Br+ρ/2.

Step 3: Observe that

EKs
Br+ρ

(u, τ 2g(ũ)) = E(u, τ 2g(ũ)) − E(Br+ρ×Br+ρ)c(u, τ 2g(ũ)).

Therefore, combining (4-8) and (4-10) yields the desired result. □
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The following Caccioppoli-type estimate is designed for the dual equation.

Lemma 4.7. Assume that (K1glob) and (cutoff) hold for some θ ∈ (d/α, ∞]. Moreover, assume (Sob) if
θ < ∞. Then there exist c1, c2, γ > 0 such that, for every 0 < ρ ≤ r ≤ 1, every nonnegative function
u ∈ V (Br+ρ |Rd) ∩ L2θ ′

(Rd), and every q ≥ 1, we have

EKs
Br+ρ

(τG(ũ), τG(ũ))

≤ c1Ê(u, τ 2g(ũ)) + c2qγ ρ−α
∥G(ũ)2

∥L1(Br+ρ) + c2∥g(ũ)∥L1(Br+ρ) T̂ailK
(
u, r +

1
2ρ, r + ρ

)
,

where B2r ⊂ �, τ = τr,ρ/2, and ũ = u + Rα
∥ f ∥L∞ .

Proof. Step 1: We claim that there exists c > 0 such that, for some γ ≥ 1,

ÊBr+ρ
(u, τ 2g(ũ)) ≥ c1EKs

Br+ρ
(τG(ũ), τG(ũ)) − c2qγ ρ−α

∥G(ũ)2
∥L1(Br+ρ). (4-11)

Let M be as in the proof of Lemma 4.6. Moreover, we observe the algebraic identity

(a + b)(τ 2
1 g(ã) − τ 2

2 g(b̃)) = (ã − b̃)(g(ã) − g(b̃))τ 2
1 + 2b(g(ã) − g(b̃))τ 2

1 + (a + b)g(b̃)(τ 2
1 − τ 2

2 ).

We use again Lemma 2.3 in [Kassmann and Weidner 2022] to estimate

ÊKa
M (u, τ 2g(ũ)) = 2

∫∫
M

(ũ(x) − ũ(y))(g(ũ(x)) − g(ũ(y)))τ 2(x)Ka(x, y) dy dx

+ 4
∫∫

M
u(y)(g(ũ(x)) − g(ũ(y)))τ 2(x)Ka(x, y) dy dx

+ 4
∫∫

M
(u(x) + u(y))g(ũ(y))(τ 2(x) − τ 2(y))Ka(x, y) dy dx

≥ 2
∫∫

M
(ũ(x) − ũ(y))(g(ũ(x)) − g(ũ(y)))τ 2(x)Ka(y, x) dy dx

− 4
∫∫

M
ũ(x)|g(ũ(x)) − g(ũ(y))|τ 2(x)|Ka(x, y)| dy dx

− 8
∫∫

M
g(ũ(x))ũ(x)|τ 2(x) − τ 2(y)||Ka(x, y)| dy dx

= Ia + Ma + Na,

where we used that u(x) ≥ u(y) and g(u(x)) ≥ g(u(y)) on M , as well as u ≤ ũ. As in the proof of
Lemma 4.6, we can write the decomposition

EKs
Br+ρ

(u, τ 2g(ũ)) = Is + Js .

Then, using (4-1), (2-8), and (cutoff), we estimate

Is + Ia = 2
∫∫

M
(ũ(x) − ũ(y))(g(ũ(x)) − g(ũ(y)))τ 2(x)K (x, y) dy dx

≥
1
4E

Ks
Br+ρ

(τG(ũ), τG(ũ)) − cρ−α
∥G(ũ)2

∥L1(Br+ρ).
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For Ma , we use (4-3), (4-6), (4-5), and (cutoff) to obtain

Ma ≥ −4q
∫∫

M
|G(ũ(x)) − G(ũ(y))|G(ũ(x))τ 2(x)|Ka(x, y)| dy dx

≥ −ε

∫∫
M

(G(ũ(x)) − G(ũ(y)))2(τ 2(y) ∨ τ 2(x))J (x, y) dy dx

− cq2
∫∫

M
τ 2(x)G2(ũ(x))

|Ka(x, y)|2

J (x, y)
dy dx

≥ −cεEKs
Br+ρ

(τG(ũ), τG(ũ)) − cqγ1ρ−α
∥G(ũ)2

∥L1(Br+ρ)

for some γ1 > 0, where we used that, by (K1glob) and (2-9) applied with some δ ≤ ε/(cq2),

cq2
∫∫

M
τ 2(x)G2(ũ(x))

|Ka(x, y)|2

J (x, y)
dy dx

≤ εEKs
Br+ρ

(τG(ũ), τG(ũ)) + cq2(δ−γ2 + δ)ρ−α
∥G(ũ)2

∥L1(Br+ρ) (4-12)

for some γ2 > 0, and moreover, by (3-4), (cutoff), and using the same argument as in (4-9),

ε

∫∫
M

(G(ũ(x)) − G(ũ(y)))2(τ 2(y) ∨ τ 2(x))J (x, y) dy dx

≤ 2ε

∫
Br+ρ

∫
Br+ρ

(G(ũ(x)) − G(ũ(y)))2(τ 2(y) ∧ τ 2(x))J (x, y) dy dx + cρ−α
∥G(ũ)2

∥L1(Br+ρ)

≤ cεEKs
Br+ρ

(τG(ũ), τG(ũ)) + cρ−α
∥G(ũ)2

∥L1(Br+ρ).

For Na , we compute, using (4-7), (3-4), and (1-2),

Na ≥ −cq
∫∫

M
G2(ũ(x))(τ (x) − τ(y))2Ks(x, y) dy dx

− cq
∫∫

M
G2(ũ(x))(τ (x) ∧ τ(y))|τ(x) − τ(y)||Ka(x, y)| dy dx

≥ −cqρ−α
∥G(ũ)2

∥L1(Br+ρ) − cq2
∫

Br+ρ

∫
Br+ρ

τ 2(x)G2(ũ(x))
|Ka(x, y)|2

J (x, y)
dy dx

≥ −cqγ3ρ−α
∥G(ũ)2

∥L1(Br+ρ) − εEKs
Br+ρ

(τG(ũ), τG(ũ))

for some γ3 > 0, where we applied (cutoff) and used the same argument as in (4-12) to estimate the
second summand in the last step. Altogether, we have shown

ÊBr+ρ
(u, τ 2g(ũ)) ≥

[ 1
4 − 3ε

]
EKs

Br+ρ
(τG(ũ), τG(ũ)) − cqγ ρ−α

∥G(ũ)2
∥L1(Br+ρ).

Thus, by choosing ε > 0 small enough, we obtain (4-11), as desired.

Step 2: Moreover, we have

−Ê(Br+ρ×Br+ρ)c(u, τ 2g(ũ)) ≤ c∥g(ũ)∥L1(Br+ρ) sup
z∈Br+ρ/2

(∫
Bc

r+ρ

u(y)K (y, z) dy
)

. (4-13)
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The proof works similar to the proof of Step 2 in Lemma 4.6:

−Ê(Br+ρ×Br+ρ)c(u, τ 2g(ũ))

= −2
∫

(Br+ρ×Br+ρ)c
(τ 2g(ũ(x)) − τ 2g(ũ(y)))u(x)K (x, y) dy dx

= −2
∫

Br+ρ

τ 2(x)u(x)g(ũ(x))

(∫
Bc

r+ρ

K (x, y) dy
)

dx + 2
∫

Br+ρ

τ 2(y)g(ũ(y))

(∫
Bc

r+ρ

u(x)K (x, y) dx
)

dy

≤ 2∥g(ũ)∥L1(Br+ρ) sup
z∈Br+ρ/2

(∫
Bc

r+ρ

u(y)K (y, z) dy
)

using u, K ≥ 0 and supp(τ ) ⊂ Br+ρ/2. □

4.3. Local boundedness. Now, we will show how to prove Theorem 3.6 via the Moser iteration. Note
that we get a slightly better bound for subsolutions to (P̂DE) compared to Theorem 3.6 (ii).

Theorem 4.8. Assume that (K ≤

loc), (cutoff), and (Sob) hold.

(i) Assume (K1loc) holds for some θ ∈ [d/α, ∞]. Then there exists c > 0 such that, for every 0 < R ≤ 1
and every nonnegative, weak subsolution u to (PDE) in I ⊖

R (t0) × B2R ,

sup
I ⊖

R/8×BR/2

u ≤ c
(

−

∫
I ⊖

R/4

−

∫
BR

u2(t, x) dx dt
)1/2

+ c sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + cRα
∥ f ∥L∞, (4-14)

where B2R ⊂ �.

(ii) Assume (K1glob) holds for some θ ∈ (d/α, ∞]. Then there exists c > 0 such that, for every 0 < R ≤ 1
and every nonnegative, weak subsolution u to (P̂DE) in I ⊖

R (t0) × B2R ,

sup
I ⊖

R/8×BR/2

u ≤ c
(

−

∫
I ⊖

R/4

−

∫
BR

u2(t, x) dx dt
)1/2

+ c sup
t∈I ⊖

R/4

T̂ailK ,α(u(t), R) + cRα
∥ f ∥L∞, (4-15)

where B2R ⊂ �.

Proof. We will only demonstrate the proof of (ii). The proof of (i) follows via the same arguments, but
uses Lemma 4.6 instead of Lemma 4.7. Let 0 < ρ ≤ r ≤ r + ρ ≤ R and q ≥ 1. By applying Lemma 4.7,
we obtain

c
∫

Br+ρ

τ 2(x)∂t u(t, x)g(ũ(t, x)) dx + EKs
Br+ρ

(τG(ũ), τG(ũ))

≤ c[(∂t u(t), τ 2g(ũ(t))) + E(u(t), τ 2g(ũ(t)))]

+ cqγ ρ−α
∥G(ũ(t))2

∥L1(Br+ρ) + c∥g(ũ(t))∥L1(Br+ρ) T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
≤ c( f (t), τ 2g(ũ(t))) + cqγ ρ−α

∥G(ũ(t))2
∥L1(Br+ρ) + c∥g(ũ(t))∥L1(Br+ρ) T̂ailK

(
u(t), r +

1
2ρ, r + ρ

)
≤ cqγ ρ−α

∥G(ũ(t))2
∥L1(Br+ρ) + c∥g(ũ(t))∥L1(Br+ρ) T̂ailK

(
u(t), r +

1
2ρ, r + ρ

)
, (4-16)
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where c > 0 is the constant from Lemma 4.7 and we tested the equation with τ 2g(u), where τ = τr,ρ/2.
Moreover, by the definition of ũ, we used

( f (t), τ 2g(ũ(t))) ≤ cρ−α
∥G(ũ(t))2

∥L1(Br+ρ).

We observe that

(∂t u)g(ũ) =


1

2q
∂t(ũ2q), u ≤ M,

1
2

M2q−2∂t(ũ2), u > M.

Next, we define χ ∈ C1(R) to be a function satisfying

0 ≤ χ ≤ 1, ∥χ ′
∥∞ ≤ 16((r + ρ)α − rα)−1, χ

(
t0 −

( 1
4(r + ρ)

)α)
= 0, χ ≡ 1 in I ⊖

r/4(t0).

By multiplying (4-16) with χ2 and integrating over
(
t0 −

( 1
4(r + ρ)

)α
, t

)
for some arbitrary t ∈ I ⊖

r/4(t0),
we obtain∫

Br+ρ

χ2(t)τ 2(x)H(ũ(t, x)) dx +

∫ t

t0−((r+ρ)/4)α
χ2(s)EKs

Br+ρ
(τG(ũ(s)), τG(ũ(s))) ds

≤ c2qγ ρ−α

∫ t

t0−((r+ρ)/4)α
χ2(s)∥G(ũ(s))2

∥L1(Br+ρ) ds

+ c2

∫ t

t0−((r+ρ)/4)α
χ(s)|χ ′(s)|

∫
Br+ρ

τ 2(x)H(ũ(s, x)) dx ds

+ c2

∫ t

t0−((r+ρ)/4)α
χ2(s)∥g(ũ(s))∥L1(Br+ρ) T̂ailK

(
u(s), r +

1
2ρ, r + ρ

)
ds

for some c2 > 0, where

H(t) =


1

2q
t2q , t ≤ M,

1
2

M2q−2t2, t > M.

Consequently,

sup
t∈I ⊖

r/4

∫
Br

H(ũ(t, x)) dx +

∫
I ⊖

r/4

EKs
Br+ρ

(τG(ũ(s)), τG(ũ(s))) ds

≤ c3qγ (ρ−α
∨ ((r + ρ)α − rα)−1)(∥H(ũ)∥L1(I ⊖

(r+ρ)/4×Br+ρ) + ∥G(ũ)2
∥L1(I ⊖

(r+ρ)/4×Br+ρ))

+ c3∥g(ũ)∥L1(I ⊖

(r+ρ)/4×Br+ρ) sup
t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
for some c3 > 0. Now, we take the limit M ↗ ∞. By monotone convergence, the definitions of g, G,
and H , and Lemma 4.5,

sup
t∈I ⊖

r/4

∫
Br

ũ2q(t, x) dx +

∫
I ⊖

r/4

EKs
Br+ρ

(τ ũq(s), τ ũq(s)) ds

≤ c4qγ (ρ−α
∨ ((r + ρ)α − rα)−1)∥ũ2q

∥L1(I ⊖

(r+ρ)/4×Br+ρ)

+ c4q∥ũ2q−1
∥L1(I ⊖

(r+ρ)/4×Br+ρ) sup
t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
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for some c4 > 0. Recall κ = 1+α/d > 1. By Hölder interpolation and Sobolev inequality (Sob), we have

∥ũ2q
∥Lκ (I ⊖

r ×Br )
≤

(
sup
t∈I ⊖

r

∥ũ2q(t)∥κ−1
L1(Br )

∫
I ⊖
r

∥ũ2q(s)∥Ld/(d−α)(Br )
ds

)1
κ

≤ cqγ (ρ−α
∨ ((r + ρ)α − rα)−1)∥ũ2q

∥L1(I ⊖

r+ρ×Br+ρ)

+ cq∥ũ2q−1
∥L1(I ⊖

(r+ρ)/4×Br+ρ) sup
t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
. (4-17)

We will now demonstrate how to perform the Moser iteration for positive exponents for nonlocal equations.
Inequality (4-17) is the key estimate for the iteration scheme. The main difficulty compared to the classical
local case is the treatment of the tail term.

Let us define ci = 2−(i+1)(d+ε)/α < 1 for ε > 0 to be determined later and i ∈ N. By Hölder’s and
Young’s inequalities we have, for each i ∈ N, the estimate

q∥ũ2q−1
∥L1(I ⊖

(r+ρ)/4×Br+ρ) sup
t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
≤ (q(ciρ)−α

∥ũ2q
∥L1(I ⊖

(r+ρ)/4×Br+ρ))
2q−1

2q

(
q

1
2q (ciρ)

α
2q−1

2q (r + ρ)
d+α
2q sup

t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

))
≤ q(ciρ)−α

∥ũ2q
∥L1(I ⊖

(r+ρ)/4×Br+ρ) +

(
q

1
2q (ciρ)

α
2q−1

2q (r + ρ)
d+α
2q sup

t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

))2q
.

Combining this estimate with (4-17) and taking both sides to the power 1/(2q) yields

∥ũ∥L2qκ (I ⊖
r ×Br )

≤ c
1

2q q
γ
2q c

−
α
2q

i (ρ
−

α
2q ∨ ((r + ρ)α − rα)

−
1

2q )∥ũ∥L2q (I ⊖

r+ρ×Br+ρ)

+ c
1

2q q
1

2q (ciρ)
α

2q−1
2q (r + ρ)

d+α
2q sup

t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
≤ c

1
2q q

γ
2q c

−
α
2q

i (ρ
−

α
2q ∨ ((r + ρ)α − rα)

−
1

2q )

×

(
∥ũ∥L2q (I ⊖

r+ρ×Br+ρ) + (ciρ)α(r + ρ)
d+α
2q sup

t∈I ⊖

(r+ρ)/4

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

))
.

Recall that, by (2-11), we have the estimate

T̂ailK
(
u(t), r +

1
2ρ, r + ρ

)
≤ cρ−α

(
r + ρ

ρ

)d

T̂ailK ,α(u(t), R).

Fix q0 ≥ 1 and qi = q0κ
i , and set ρi = 2−i−1 R and ri+1 = ri − ρi+1, r0 = R. Note that ri ↘

1
2 R. For

every i ∈ N, using

(ρ−
α

2qi−1i ∨ ((ri + ρi )
α
− rα

i )
−

1
2qi−1 ) ≤ c

1
2qi−1 R−

α
2qi−1 2

i+1
qi−1 ,

we obtain

∥ũ∥Lqi (I ⊖
ri ×Bri )

≤ c
1

2qi−1 q
γ

2qi−1
i−1 R−

α
2qi−1 2

d+ε+2
2qi−1

(i+1)

×

(
∥ũ∥L2qi−1 (I ⊖

ri−1×Bri−1 ) + 2−(d+ε)(i+1)ρα
i R

d+α
2qi−1 sup

t∈I ⊖

(ri +ρi )/4

T̂ailK
(
u(t), ri +

1
2ρi , ri + ρi

))
≤ c

1
2qi−1 q

γ
2qi−1

i−1 R−
α

2qi−1 2
d+ε+2
2qi−1

(i+1)

×

(
∥ũ∥L2qi−1 (I ⊖

ri−1×Bri−1 ) + R
d+α

2qi−1 2−(i+1)ε sup
t∈I ⊖

R/4

T̂ailK ,α(u(t), R)
)
. (4-18)
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Consequently,

sup
I ⊖

R/2×BR/2

ũ ≤

( ∞∏
i=1

c
1

2qi−1 q
γ

2qi−1
i−1 R−

α
2qi−1 2

d+ε+2
2qi−1

(i+1)
)

∥ũ∥L2q0 (I ⊖

R ×BR)

+

[ ∞∑
i=1

( ∞∏
j=i

c
1

2q j−1 q
γ

2q j−1
j−1 R

−
α

2q j−1 2
d+ε+2
2q j−1

( j+1)
)

R
d+α

2qi−1 2−(i+1)ε

]
sup

t∈I ⊖

R/4

T̂ailK ,α(u(t), R).

Note that
∑

∞

i=0 κ−i
= (d + α)/α and also

∑
∞

i=0 i/κ i
=: c3 < ∞. Therefore,

∞∏
i=1

(cqi−1)
γ

2qi−1 ≤ (cq0)
γ

2q0

∑
∞

i=0 κ−i

κ
γ

2q0

∑
∞

i=0
i
κi ≤ c(q0, κ, γ ) < ∞,

∞∏
i=1

2
d+ε+2
2qi−1

(i+1)
≤ 2

d+ε+2
2q0

∑
∞

i=0
i+2
κi ≤ 2

(d+ε+2)c4
2q0 < ∞,

∞∏
j=i

R
−

α
2q j−1 = R−

α
2qi−1

∑
∞

j=0 κ− j

= R−
d+α

2qi−1 .

As a consequence,
∞∏

i=1

c
1

2qi−1 q
γ

2qi−1
i−1 R−

α
2qi−1 2

d+ε+2
2qi−1

(i+1)
≤ c(q0, κ, d)R−

d+α
2qk 2

d+ε+2
2qk

∑
∞

i=0
i+k+2

κi

≤ c(q0, κ, d)R−
d+α
2q0 2

(d+ε+2)c5
2q0 ,

∞∑
i=1

( ∞∏
j=i

c
1

2q j−1 q
γ

2q j−1
j−1 R

−
α

2q j−1 2
d+ε+2
2q j−1

( j+1)
)

R
d+α

2qi−1 2−(i+1)ε
≤ c

∞∑
i=1

2
(d+ε+2)c5

2qi−1
(i+1)2−(i+1)ε

≤ c2
(d+ε+2)c6

2q0

∞∑
i=1

2−(i+1)ε

≤ c(d, q0, κ, ε),

where we used that (i +1)/κ i−1 is bounded from above by some constant c6 = c6(κ). Therefore, choosing
ε = 1 and q0 = 1, we deduce that, for some c > 0,

sup
I ⊖

R/2×BR/2

ũ ≤ c
(

−

∫
I ⊖

R

−

∫
BR

ũ2(t, x) dx dt
)1

2

+ c sup
t∈I ⊖

R/4

T̂ailK ,α(u(t), R).

As a consequence, using the definition of ũ as well as the triangle inequality for the L2-norm, we deduce

sup
I ⊖

R/2×BR/2

u ≤ c
(

−

∫
I ⊖

R

−

∫
BR

u2(t, x) dx dt
)1

2

+ c sup
t∈I ⊖

R/4

T̂ailK ,α(u(t), R) + cRα
∥ f ∥L∞ .

This proves the desired result. □
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5. Local tail estimate

In this section, local tail estimates for supersolutions to (PDE) and (P̂DE) (see Corollary 5.3) as well as
the corresponding stationary equations (ell-PDE) and (ell-P̂DE) (see Corollary 5.4) are established. The
main auxiliary results are Lemmas 5.1 and 5.2, whose proofs use similar ideas as in Lemmas 3.1 and 3.4.
Central ingredients in the proof are the assumptions (UJS) and (ÛJS), which allow us to derive local tail
estimates without having to assume a pointwise lower bound of the jumping kernel. They are applied in a
similar way as in [Schulze 2019], where symmetric nonlocal operators are considered.

Lemma 5.1. Assume that (K1loc), (cutoff), and (UJS) hold for some θ ∈ [d/α, ∞]. Moreover, assume
(Sob) if θ < ∞. Then there exist c1, c2 > 0 such that, for every 0 < ρ ≤ r ≤ 1, every nonnegative function
u ∈ V (B2r |Rd), and every S > 0 with S ≥ supBr+ρ

u, we have

TailK (u, r, r + ρ) ≤ c1
1

Sρd E(u, τ 2(u − 2S)) + c2

(
r + ρ

ρ

)d

ρ−α S,

where B2r ⊂ � and τ = τr,ρ .

Proof. We define w = u − 2S. Note that, by definition, w ∈ [−2S, −S] in Br+ρ . We separate the proof
into several steps.

Step 1: First, we claim that, for some c > 0, we have

EKs
Br+ρ

(τw, τw) ≤ EKs
Br+ρ

(u, τ 2w) + cS2(r + ρ)dρ−α. (5-1)
We compute

EKs
Br+ρ

(u, τ 2w) =

∫
Br+ρ

∫
Br+ρ

(w(x) − w(y))(τ 2w(x) − τ 2w(y))Ks(x, y) dy dx

= EKs
Br+ρ

(τw, τw)−

∫
Br+ρ

∫
Br+ρ

w(x)w(y)(τ (x) − τ(y))2Ks(x, y) dy dx .

We estimate, using (cutoff),∫
Br+ρ

∫
Br+ρ

w(x)w(y)(τ (x) − τ(y))2Ks(x, y) dy dx ≤ 4S2EKs
Br+ρ

(τ, τ ) ≤ c1S2(r + ρ)dρ−α

for some c1 > 0, which directly implies (5-1).

Step 2: Next, we claim that there exists c > 0 such that

−EKa
Br+ρ

(u, τ 2w) ≤
1
2E

Ks
Br+ρ

(τw, τw)+ cS2(r + ρ)dρ−α. (5-2)

For the proof, we use the same arguments as in the proof of the Caccioppoli estimate:

−EKa
Br+ρ

(u, τ 2w) =

∫
Br+ρ

∫
Br+ρ

(w(y) − w(x))(τ 2w(x) + τ 2w(y))Ka(x, y) dy dx

=

∫
Br+ρ

∫
Br+ρ

(τw(y) − τw(x))(τw(y) + τw(x))Ka(x, y) dy dx

+

∫
Br+ρ

∫
Br+ρ

w(x)w(y)(τ 2(x) − τ 2(y))Ka(x, y) dy dx

=: J1 + J2.
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Using Hölder’s and Young’s inequalities as well as (K1loc) and (2-8), we obtain, for every δ > 0,

J1 ≤ δE J
Br+ρ

(τw, τw)+ c2

∫
Br+ρ

∫
Br+ρ

(τw(y) + τw(x))2 |Ka(x, y)|2

J (x, y)
dy dx

≤ cδEKs
Br+ρ

(τw, τw)+ 2c2

∫
Br+ρ

τ 2w2(x)

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

≤ 2cδEKs
Br+ρ

(τw, τw)+ c3S2(r + ρ)dρ−α

for c2, c3 > 0 depending on δ. Again, by Hölder’s and Young’s inequalities as well as (K1loc), (cutoff),
and (2-8), we estimate

J2 ≤
1
2

∫
Br+ρ

∫
Br+ρ

|w(x)||w(y)|(τ (y) − τ(x))2 J (x, y) dy dx

+
1
2

∫
Br+ρ

∫
Br+ρ

|w(x)||w(y)|(τ (y) + τ(x))2 |Ka(x, y)|2

J (x, y)
dy dx

≤ 2S2E J
Br+ρ

(τ, τ )+ 8S2
∫

Br+ρ

(
τ 2(x)

∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

≤ c4S2EKs
Br+ρ

(τ, τ )+ c4S2(r + ρ)dρ−α

≤ c5S2(r + ρ)dρ−α

for c4, c5 > 0. From here, (5-2) directly follows.

Step 3: We claim that there exist constants c, c′ > 0 such that

−E(Br+ρ×Br+ρ)c(u, τ 2w) ≤ cS2(r + ρ)dρ−α
− c′Sρd TailK (u, r, r + ρ). (5-3)

First, we rewrite the term on the left-hand side of the above line:

−E(Br+ρ×Br+ρ)c(u, τ 2w) = −2
∫∫

(Br+ρ×Br+ρ)c
(u(x) − u(y))τ 2w(x)K (x, y) dy dx

= −2
∫

Br+ρ

∫
Bc

r+ρ∩{u(y)≥S}

(u(y) − u(x))τ 2(x)(2S − u(x))K (x, y) dy dx

+ 2
∫

Br+ρ

∫
Bc

r+ρ∩{u(y)≤S}

(u(x) − u(y))τ 2(x)(2S − u(x))K (x, y) dy dx

=: I1 + I2. (5-4)

For I2, we obtain

I2 ≤ 4S
∫

Br+ρ

∫
Bc

r+ρ∩{u(y)≤S}

(u(x) − u(y))+τ 2(x)K (x, y) dy dx

≤ 8S2
∫

Br+ρ

∫
Bc

r+ρ

(τ (x) − τ(y))2K (x, y) dy dx

≤ 8S2
∫

Br+ρ

0Ks (τ, τ )(x) dx

≤ c6S2(r + ρ)dρ−α
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for some c6 > 0, where we used (1-2), (cutoff), and that K ≥ 0 and u ≥ 0 globally. We treat I1 in the
following way (see [Schulze 2019]):

I1 ≤ −2S
∫

Br+ρ

∫
Bc

r+ρ∩{u(y)≥S}

(u(y) − S)τ 2(x)K (x, y) dy dx

≤ −2S
∫

Br+ρ

∫
Bc

r+ρ

(u(y) − S)τ 2(x)K (x, y) dy dx

≤ −2S
∫

Br+ρ/4

∫
Bc

r+ρ

u(y)τ 2(x)K (x, y) dy dx + 2S2
∫

Br+ρ

∫
Bc

r+ρ

(τ (x) − τ(y))2K (x, y) dy dx

≤ −
S
8

∫
Br+ρ/4

∫
Bc

r+ρ

u(y)K (x, y) dy dx + c7S2(r + ρ)dρ−α

for some c7 > 0, where we used that u, K ≥ 0, u ≤ S in Br+ρ , τ 2
≥

1
16 in Br+ρ/4, (1-2), and (cutoff).

Finally, note that, due to (UJS),

ρd TailK (u, r, r + ρ) = ρd sup
x∈Br

∫
Bc

r+ρ

u(y)K (x, y) dy

≤ c8 sup
x∈Br

∫
Bc

r+ρ

u(y)

(∫
Bρ/4(x)

K (z, y) dz
)

dy

≤ c8

∫
Bc

r+ρ

u(y)

(∫
Br+ρ/4

K (x, y) dx
)

dy

= c8

∫
Br+ρ/4

∫
Bc

r+ρ

u(y)K (x, y) dy dx (5-5)

for some c8 > 0. Consequently,

I1 ≤ −c9Sρd TailK (u, r, r + ρ) + c10S2(r + ρ)dρ−α,

where c9, c10 > 0 are constants.

Step 4: Now, we want to combine (5-1), (5-2), and (5-3). First, we observe that

EKs
Br+ρ

(u, τ 2w) = E(u, τ 2w) − E(Br+ρ×Br+ρ)c(u, τ 2w) − EKa
Br+ρ

(u, τ 2w).

Together, we obtain

EKs
Br+ρ

(τw, τw) ≤ E(u, τ 2w) + c11S2(r + ρ)dρ−α
− c12Sρd TailK (u, r, r + ρ) +

1
2E

Ks
Br+ρ

(τw, τw)

for c11, c12 > 0. Since L ≥ 0, we conclude

TailK (u, r, r + ρ) ≤ c13
1

Sρd E(u, τ 2w) + c14S
(

r + ρ

ρ

)d

ρ−α,

where c13, c14 > 0 are constants. This yields the desired result. □

Next, we prove a similar estimate for the dual form.
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Lemma 5.2. Assume that (K1glob), (cutoff), and (ÛJS) hold for some θ ∈ [d/α, ∞]. Moreover, assume
(Sob) if θ < ∞. Then there exist c1, c2 > 0 such that, for every 0 < ρ ≤ r ≤ 1, every nonnegative function
u ∈ V (B2r |Rd) ∩ L2θ ′

(Rd), and every S ≥ supBr+ρ
u, we have

T̂ailK (u, r, r + ρ) ≤ c1
1

Sρd Ê(u, τ 2(u − 2S)) + c2

(
r + ρ

ρ

)d

ρ−α S,

where B2r ⊂ �, τ = τr,ρ .

Proof. As in the proof of Lemma 5.1, we define w = u − 2S and observe that w ∈ [−S, −2S] in Br+ρ .
The proof is separated into several steps.

Step 1: First, we recall from Step 1 in the proof of Lemma 5.1 that, for some c > 0, we have

EKs
Br+ρ

(τw, τw) ≤ EKs
Br+ρ

(u, τ 2w) + cS2(r + ρ)dρ−α. (5-6)

Step 2: In analogy with Step 2 in the proof of Lemma 5.1, we claim that, for some c > 0,

−ÊKa (u, τ 2w) ≤
1
2E

Ks
Br+ρ

(τw, τw)+ cS2(r + ρ)dρα. (5-7)

To see this, we estimate

−ÊKa (u, τ 2w) =

∫
Br+ρ

∫
Br+ρ

(τ 2w(x) − τ 2w(y))(w(x) + w(y))Ka(x, y) dy dx

+ 4S
∫

Br+ρ

∫
Br+ρ

(τ 2w(x) − τ 2w(y))Ka(x, y) dy dx

:= I1 + I2.

For I1, we compute

I1 =

∫
Br+ρ

∫
Br+ρ

(τ 2w2(x) − τ 2w2(y))Ka(x, y) dy dx

+

∫
Br+ρ

∫
Br+ρ

w(x)w(y)(τ 2(x) − τ 2(y))Ka(x, y) dy dx,

and from the same arguments as in the proof of Step 2 in the proof of Lemma 5.1, we conclude

I1 ≤
1
4E

Ks
Br+ρ

(τw, τw)+ cS2(r + ρ)dρ−α,

using (K1glob) and (cutoff). For I2, we observe

I2 = 2S
∫

Br+ρ

∫
Br+ρ

(τw(x) − τw(y))(τ (x) + τ(y))Ka(x, y) dy dx

+ 2S
∫

Br+ρ

∫
Br+ρ

(τw(x) + τw(y))(τ (x) − τ(y))Ka(x, y) dy dx

=: I2,1 + I2,2.
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Now, using (K1glob), (2-8), and (cutoff),

I2,1 ≤
1
8E

Ks
Br+ρ

(τw, τw)+ cS2
∫

Br+ρ

τ 2(x)

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

≤
1
8E

Ks
Br+ρ

(τw, τw)+ cS2EKs
Br+ρ

(τ, τ )+ cS2ρ−α

∫
Br+ρ

τ 2(x) dx

≤
1
8E

Ks
Br+ρ

(τw, τw)+ cS2(r + ρ)dρ−α,

and, again using (K1glob), (2-8), and (cutoff),

I2,2 ≤ cS2EKs
Br+ρ

(τ, τ )+

∫
Br+ρ

τ 2w2(x)

(∫
Br+ρ

|Ka(x, y)|2

Ks(x, y)
dy

)
dx

≤ cS2(r + ρ)dρ−α
+

1
8E

Ks
Br+ρ

(τw, τw)+ cρ−α

∫
Br+ρ

τ 2w2(x) dx

≤
1
8E

Ks
Br+ρ

(τw, τw)+ cS2(r + ρ)dρ−α.

Altogether, we have proved (5-7).

Step 3: Moreover, we claim that, for some constants c, c′ > 0,

−Ê(Br+ρ×Br+ρ)c(u, τ 2w) ≤ cS2(r + ρ)dρ−α
− c′Sρd T̂ailK (u, r, r + ρ). (5-8)

First, we write the decomposition

−E(Br+ρ×Br+ρ)c(τ 2w, u)

= −2
∫

Br+ρ

∫
Bc

r+ρ

τ 2w(x)u(x)K (x, y) dy dx + 2
∫

Bc
r+ρ

∫
Br+ρ

τ 2w(y)u(x)K (x, y) dy dx

=: J1 + J2.

For J1, using the definition of w, nonnegativity of u, and (1-2), we compute

J1 = 2
∫

Br+ρ

∫
Bc

r+ρ

τ 2(x)(2S − u(x))u(x)K (x, y) dy dx

≤ 4S2
∫

Br+ρ

∫
Bc

r+ρ

(τ (x) − τ(y))2Ks(x, y) dy dx

≤ cS2(r + ρ)2ρ−α.

For J2, using that τ 2
≥

1
16 in Br+ρ/4, we observe

J2 = 2
∫

Bc
r+ρ

∫
Br+ρ

τ 2(y)(u(y) − 2S)u(x)K (x, y) dy dx

≤ −2S
∫

Br+ρ

∫
Bc

r+ρ

τ 2(y)u(x)K (x, y) dx dy

≤ −
S
8

∫
Br+ρ/4

∫
Bc

r+ρ

u(x)K (x, y) dx dy.
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Finally, using (ÛJS) and the same argument as in (5-5), we can prove that

ρd T̂ailK (u, r, r + ρ) ≤ c
∫

Br+ρ/4

∫
Bc

r+ρ

u(x)K (x, y) dx dy.

Altogether, we have established (5-8), as desired.

Step 4: Combining (5-6), (5-7), and (5-8), we obtain

EKs
Br+ρ

(τw, τw) ≤ EKs
Br+ρ

(u, τ 2w) + cS2(r + ρ)dρ−α

= Ê(u, τ 2w) − ÊKa
Br+ρ

(u, τ 2w) − Ê(Br+ρ×Br+ρ)c(u, τ 2w) + cS2(r + ρ)dρ−α

≤ Ê(u, τ 2w) + cS2(r + ρ)dρ−α
+

1
2E

Ks
Br+ρ

(τw, τw)− cSρd T̂ailK (u, r, r + ρ).

Consequently,

T̂ailK (u, r, r + ρ) ≤ c
1

Sρd Ê(u, τ 2w) + c
(

r + ρ

ρ

)d

ρ−α S,

as desired. □

Lemma 5.1 can be used to bound TailK (u, r, r + ρ) from above by the supremum of u. First, we
provide such an estimate for weak supersolutions to the stationary equations (ell-PDE) and (ell-P̂DE),
which is a direct corollary of Lemma 5.1 applied with S = supBr+ρ

u.

Corollary 5.3. Assume that (cutoff) holds.

(i) Assume (K1loc) and (UJS) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Then
there exists c > 0 such that, for every 0 < ρ ≤ r ≤ 1 and every nonnegative, weak supersolution u to
(ell-PDE) in B2r , we have

TailK (u, r, r + ρ) ≤ c
(

r + ρ

ρ

)d(
ρ−α sup

Br+ρ

u + ∥ f ∥L∞

)
,

where B2r ⊂ �.

(ii) Assume (K1glob) and (ÛJS) holds for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Then
there exists c > 0 such that, for every 0 < ρ ≤ r ≤ 1 and every nonnegative, weak subsolution u to
(ell-P̂DE) in B2r , we have

T̂ailK (u, r, r + ρ) ≤ c
(

r + ρ

ρ

)d(
ρ−α sup

Br+ρ

u + ∥ f ∥L∞

)
,

where B2r ⊂ �.

One can also deduce an estimate for the L1-parabolic tail,∫
I ⊖

r/2

TailK (u(t), r, r + ρ) dt,

for supersolutions to (PDE) and (P̂DE) from Lemma 5.1.
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Corollary 5.4. Assume that (cutoff) holds.

(i) Assume (K1loc) and (UJS) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Then
there exists c > 0 such that, for every 0 < ρ ≤ r ≤ 1 and every nonnegative, weak supersolution u to
(PDE) in I ⊖

r (t0) × B2r , we have∫
I ⊖

r/2

TailK (u(t), r, r + ρ) dt ≤ c
(

r + ρ

ρ

)d((
r + ρ

ρ

)α∨1

sup
I ⊖

(r+ρ)/2×Br+ρ

u + (r + ρ)α∥ f ∥L∞

)
,

where B2r ⊂ �.

(ii) Assume (K1glob) and (ÛJS) hold for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Then
there exists c > 0 such that, for every 0 < ρ ≤ r ≤ 1 and every nonnegative, weak supersolution u to
(P̂DE) in I ⊖

r (t0) × B2r , we have∫
I ⊖

r/2

T̂ailK (u(t), r, r + ρ) dt ≤ c
(

r + ρ

ρ

)d((
r + ρ

ρ

)α∨1

sup
I ⊖

(r+ρ)/2×Br+ρ

u + (r + ρ)α∥ f ∥L∞

)
,

where B2r ⊂ �.

Proof. We only explain the proof of (i). The proof of (ii) works in the same way, but relies on Lemma 5.2
instead of Lemma 5.1. We write S = supI ⊖

(r+ρ)/2×Br+ρ
u and define w = u − 2S. We also observe that

∂t(w
2) = 2w∂t u. From Lemma 5.1 and the fact that u is a supersolution to (PDE), we deduce

c
2Sρd

∫
Br+ρ

τ 2(x)∂t(w
2)(t, x) dx + TailK (u(t), r, r + ρ)

≤ c
1

Sρd [(∂t u(t), τ 2w(t)) + E(u(t), τ 2w(t))] + cS
(

r + ρ

ρ

)d

ρ−α

≤ c
1

Sρd ( f (t), τ 2w(t)) + cS
(

r + ρ

ρ

)d

ρ−α

≤ c
(

r + ρ

ρ

)d

(∥ f ∥L∞ + Sρ−α),

where c > 0 is the constant from Lemma 5.1 and we tested the equation with τ 2w, where τ = τr,ρ . Let
χ ∈ C1(R) be a nonnegative function with

χ
(
t0 −

(1
2(r + ρ)

)α)
= 0, χ ≡ 1 in I ⊖

r/2, ∥χ∥∞ ≤ 1, ∥χ ′
∥∞ ≤ 8((r + ρ)α − rα)−1.

Multiplying by χ2 and integrating over
(
t0 −

( 1
2(r + ρ)

)α
, t

)
for some arbitrary t ∈ I ⊖

r/2, we obtain

c
2Sρd

∫
Br+ρ

χ2(t)τ 2(x)w2(t, x) dx +

∫ t

t0−((r+ρ)/2)α
χ2(s) TailK (u(s), r, r + ρ) ds

≤ c1

∫ t

t0−((r+ρ)/2)α
χ2(s)S

(
r + ρ

ρ

)d

ρ−α ds + c1

(
r + ρ

ρ

)d

(r + ρ)α∥ f ∥L∞

+ c1

∫ t

t0−((r+ρ)/2)α

1
Sρd χ(s)|χ ′(s)|

∫
Br+ρ

τ 2(x)w2(s, x) dx ds,
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where c1 > 0 is a constant. Consequently, using that w2
≤ 4S2,

sup
t∈I ⊖

r/2

c
2Sρd

∫
Br

w2(t, x) dx +

∫
I ⊖

r/2

TailK (u(s), r, r + ρ) ds

≤ c2

(
r + ρ

ρ

)d+(α∨1)

sup
I ⊖

(r+ρ)/2×Br+ρ

u + c2

(
r + ρ

ρ

)d

(r + ρ)α∥ f ∥L∞,

where c2 > 0 and we used that, for some c > 0,

((r + ρ)α − rα)−1
≤ cρ−(α∨1)(r + ρ)(α∨1)−α.

This concludes the proof. □

6. Harnack inequalities

The goal of this section is to complete the proofs of our main results: Theorem 1.1 and Theorem 1.4. In
Section 6.1, we give improved versions of the local boundedness estimates from Sections 3 and 4, which
do not involve tail terms. These results make use of the tail estimates obtained in Corollary 5.3 and are
the key ingredients in the proof of Theorem 1.4. In Section 6.2 we combine local boundedness estimates
with the weak Harnack inequalities from [Kassmann and Weidner 2022] and obtain our main results.

We point out that the proof of Theorem 1.1 does not rely on the tail estimates from Section 5. It is an
open question — even in the symmetric case — how to derive a parabolic Harnack inequality involving
only local quantities from suitable tail estimates, as one does in the stationary case. Section 6.3 is
dedicated to this issue.

6.1. Local boundedness without tail terms. We obtain local L∞-L p-estimates for solutions to (ell-PDE)
and (ell-P̂DE) (see Theorem 6.2). In comparison with Theorem 3.6, the estimates only contain purely
local quantities. The underlying procedure works exactly as for symmetric forms. However, note that we
need to redo the iteration in Theorem 3.6 in order to prove Theorem 6.1 since the quantities TailK and
TailK ,α are in general not comparable.

The following theorem is the key result on our path towards L∞-L p-estimates for nonnegative solutions
to (ell-PDE) and (ell-P̂DE) since it no longer involves nonlocal quantities.

Theorem 6.1. Assume that (cutoff) and (Sob) hold.

(i) Assume that (K1loc) and (UJS) hold for some θ ∈ [d/α, ∞]. Then, for every δ ∈ (0, 1], there exists
c > 0 such that, for every 0 < R ≤ 1 and every nonnegative, weak solution u to (ell-PDE) in B2R ⊂ �,
we have

sup
BR/2

u ≤ c
(

−

∫
BR

u2(x) dx
)1/2

+ δ sup
BR

u + cRα
∥ f ∥L∞ . (6-1)

(ii) Assume that (K1glob) and (ÛJS) hold for some θ ∈ (d/α, ∞]. Then, for every δ ∈ (0, 1], there exists
c > 0 such that, for every 0 < R ≤ 1 and every nonnegative, weak solution u to (ell-P̂DE) in B2R ,
estimate (6-1) holds.
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We present two proofs of this theorem based on the De Giorgi iteration and the Moser iteration. Both
proofs rely on a combination of the iteration schemes established in Sections 3 and 4 and the tail estimate
from Corollary 5.4.

Proof of Theorem 6.1 (based on De Giorgi iteration). The proof of (i) is analogous to the proof of
Theorem 3.6 (i). We define (li )i , (ρi )i , (ri )i , (wi )i in the same way. Moreover, we set Ai = ∥wi∥L1(Bri )

.
Note that (

ri + ρi

ρi

)d

=

(
(1 +

( 1
2

)i
) +

( 1
2

)i( 1
2

)i+1

)d

≤ 2(i+2)d .

Consequently, Corollary 5.3 (i) — applied with r = ri +
1
2ρi and ρ =

1
2ρi — yields

TailK
(
u, ri +

1
2ρi , ri + ρi

)
≤ c12i(d+2) R−α

(
sup
BR

u + Rα
∥ f ∥L∞

)
(6-2)

for some c1 > 0. Moreover, by following the arguments in the proof of Theorem 3.6 (i), we derive the
following analog of (3-16):

Ai ≤ c2
1

(li − li−1)2/κ ′

(
σ(ri , ρi ) +

TailK
(
u, ri +

1
2ρi , ri + ρi

)
+ ∥ f ∥L∞

li − li−1

)
A1+1/κ ′

i−1 (6-3)

for some c2 > 0, where we can choose κ = d/(d − α) using that u is a subsolution to the stationary
equation (ell-PDE) in (3-13). We combine (6-2) and (6-3) and obtain

Ai ≤
c3

Rα M2/κ ′
2γ i

(
1 +

supBR
u + Rα

∥ f ∥L∞

M

)
A1+1/κ ′

i−1 ,

where c3 > 0 and γ > 1 are constants. We proceed as in the proof of Theorem 3.6 (i) and choose

M := δ
(

sup
BR

u + ∥ f ∥L∞

)
+ Cκ ′2/2cκ ′/2

3 δ−κ ′/2 R−ακ ′/2 A1/2
0 ,

where C := 2γ > 1 and conclude

A0 ≤

(
c3

δRα M2/κ ′

)−κ ′

C−κ ′2
,

and therefore we obtain from Lemma 7.1 in [Giusti 2003]

sup
BR/2

u ≤ M = δ
(

sup
BR

u + Rα
∥ f ∥L∞

)
+ c3δ

−κ ′/2
(

−

∫
BR

u2(x) dx
)1/2

for some c3 > 0, as desired.
In order to prove (ii), we follow the arguments in the proof of Theorem 3.6 (ii) and derive the following

analog of (6-3):

Ai ≤ c4
Rd(1/κ ′

−µ)

(li − li−1)2µ

(
σ(ri , ρi )

(
1 +

(
li

li − li−1

)2 )
+

TailK
(
u, ri +

1
2ρi , ri + ρi

)
+ ∥ f ∥L∞

li − li−1

)
A1+µ

i−1
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for some c4 > 0, where µ = 1/κ ′
− 1/θ and κ = d/(d −α). As before, by Corollary 5.3 (ii) — applied

with r = ri +
1
2ρi and ρ =

1
2ρi — we prove

T̂ailK
(
u, ri +

1
2ρi , ri + ρi

)
≤ c12i(d+2) R−α

(
sup
BR

u + Rα
∥ f ∥L∞

)
. (6-4)

By combining (6-4) with the previous estimate, we deduce

Ai ≤
c5

δRµd M2µ
Cγ i A1+µ

i−1

for some c5 > 0 and γ > 1. From here, the desired result follows by the same arguments as in the proof
of (i). □

Proof of Theorem 6.1 (based on Moser iteration). We explain how to prove (ii). The proof of (i) follows
exactly the same arguments. Our proof is based on the Moser iteration and works in a similar way to the
proof of Theorem 4.8. Let us define (ρi )i , (ri )i , and (qi )i in the same way, but set κ = d/(d − α).

Note that by following the arguments of the proof of Theorem 4.8, but using that u is a subsolution to
the stationary equation in (4-17), we can derive the following analog of (4-18):

∥ũ∥Lqi (Bri )
≤ c

1
2qi−1 q

γ
2qi−1

i−1 R−
α

2qi−1 2
d+ε+2
2qi−1

(i+1)

×
(
∥ũ∥L2qi−1 (Bri−1 ) + 2−(d+ε+α)(i+1) Rα+

d
2qi−1 T̂ailK

(
u, ri +

1
2ρi , ri + ρi

))
.

By combining this estimate with (6-4), we obtain

∥ũ∥Lqi (Bri )
≤ c

1
2qi−1 q

γ
2qi−1

i−1 R−
α

2qi−1 2
d+ε+2
2qi−1

(i+1)

×

(
∥ũ∥L2qi−1 (Bri−1 ) + R

d
2qi−1 2−(i+1)(ε+α−2)

(
sup
BR

u + Rα
∥ f ∥L∞

))
.

From here, the proof follows in a similar manner to the proof of Theorem 4.8. First, we observe that

sup
BR/2

ũ ≤

( ∞∏
i=1

c
1

2qi−1 q
γ

2qi−1
i−1 R−

α
2qi−1 2

d+ε+2
2qi−1

(i+1)
)

∥ũ∥L2q0 (BR)

+

[ ∞∑
i=1

( ∞∏
j=i

c
1

2q j−1 q
γ

2q j−1
j−1 R

−
α

2q j−1 2
d+ε+2
2q j−1

( j+1)
)

R
d

2qi−1 2−(i+1)(ε+α−2)

](
sup
BR

u + Rα
∥ f ∥L∞

)
.

Moreover, by similar arguments as in the proof of Theorem 4.8,

∞∑
i=1

( ∞∏
j=i

c
1

2q j−1 q
γ

2q j−1
j−1 R

−
α

2q j−1 2
d+ε+2
2q j−1

( j+1)
)

R
d

2qi−1 2−(i+1)(ε+α−2)
≤ c

∞∑
i=1

2
(d+ε+2)c5

2q0
(i+1)

2(i+1)(ε+α−2)

using that
∞∑

i=0

κ−i
=

d
α

and
∞∑

i=0

i
κ i < ∞,

where κ = d/(d − α).
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Now, choose ε ≥ 1 large enough that
∞∑

i=1

2−(i+1) ε+α−2
2 ≤

δ

2c
.

Then, let us choose q0 ≥ 1 large enough that

(d + ε + 2)c5

2q0
≤

ε + α − 2
2

.

In that case,

c
∞∑

i=1

2
(d+ε+2)c5

2q0
(i+1)2−(i+1)(ε+α−2)

≤ c
∞∑

i=k+1

2−(i+1)
(ε+α−2)

2 ≤
1
2δ.

Therefore,

sup
BR/2

ũ ≤ c
(

−

∫
BR

ũ2q0(x) dx
) 1

2q0
+

1
2δ

(
sup
BR

u + Rα
∥ f ∥L∞

)
.

As a consequence, using the definition of ũ as well as the triangle inequality for the L2q0-norm, we deduce

sup
BR/2

u ≤ c
(

−

∫
BR

u2q0(x) dx
) 1

2q0
+

1
2δ sup

BR

u + cRα
∥ f ∥L∞ .

It remains to prove the desired estimate (6-1) in the case q0 > 1. This follows from Young’s inequality:(
−

∫
BR

u2q0(x) dx
) 1

2q0
≤ sup

BR

u
2q0−2

2q0

(
−

∫
BR

u2(x) dx
) 1

2q0
≤

δ

2c
sup
BR

u + c
(

−

∫
BR

u2(x) dx
)1

2

. □

By a standard iteration argument one can deduce local boundedness of nonnegative solutions to
(ell-PDE) and (ell-P̂DE) from Theorem 6.1.

Theorem 6.2. Assume that (cutoff) and (E≥) hold.

(i) Assume that (K1loc) and (UJS) hold for some θ ∈ [d/α, ∞]. Then there exists c > 0 such that, for
every 0 < R ≤ 1, every p ∈ (0, 2], and every nonnegative, weak solution u to (ell-PDE) in B2R , we
have

sup
BR/4

u ≤ c
(

−

∫
BR/2

u p(x) dx
)1

p

+ cRα
∥ f ∥L∞, (6-5)

where B2R ⊂ �.

(ii) Assume that (K1glob) and (ÛJS) hold for some θ ∈ (d/α, ∞]. Then there exists c > 0 such that, for
every 0 < R ≤ 1, every p ∈ (0, 2], and every nonnegative, weak solution u to (ell-P̂DE) in B2R ,
estimate (6-5) holds.

Proof. We restrict ourselves to proving (i). The proof of (ii) follows in the same way. The proof works
as in [Di Castro et al. 2014, pp. 1828-1829]. Let us point out that this proof crucially relies on local
boundedness of u, i.e.,

sup
BR/2

u < ∞, (6-6)
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which follows from Theorem 3.6 and Theorem 4.8, since TailK ,α(u, R) and T̂ailK ,α(u, R) are finite
under the assumptions of this theorem due to Lemma 2.13 (i) and Lemma 2.13 (ii), respectively. Let
1
4 ≤ t < s ≤

1
2 . We conclude from Theorem 6.1 and a classical covering argument

sup
Bt R

u ≤ c1(s − t)−d/2
(

−

∫
Bs R

u2(x) dx
)1/2

+ c2 Rα
∥ f ∥L∞ + c2δ sup

Bs R

u,

where c1, c2 > 0 are constants. By Young’s inequality (applied with 2/p, 2/(2 − p) ≥ 1),

sup
Bt R

u ≤ c1(s − t)−d/2 sup
Bs R

u(2−p)/2
(

−

∫
Bs R

u p(x) dx
)1/2

+ c2δ sup
Bs R

u + c2 Rα
∥ f ∥L∞

≤
(
c2δ +

1
4

)
sup
Bs R

u + c3(s − t)−d/p
(

−

∫
Bs R

u p(x) dx
)1/p

+ c2 Rα
∥ f ∥L∞

for some c3 > 0. By choosing δ = 1/(4c2), we obtain

sup
Bt R

u ≤
1
2 sup

Bs R

u + c4(s − t)−d/p
(

−

∫
BR/2

u p(x) dx
)1/p

+ c4 Rα
∥ f ∥L∞

for c4 > 0, and the result follows from the application of Lemma 1.1 in [Giaquinta and Giusti 1982]
using (6-6). □

6.2. Proofs of main results. In this section we provide the proofs of our main results: Theorem 1.1 and
Theorem 1.4. Let us recall the following theorem from [Kassmann and Weidner 2022].

Theorem 6.3 (weak Harnack inequality). Assume (K2), (cutoff), (Poinc), and (Sob).

(i) Assume that (K1loc) holds for some θ ∈ [d/α, ∞]. Then there is c > 0 such that, for every 0 < R ≤ 1
and every nonnegative, weak supersolution u to (PDE) in IR(t0) × B2R , we have

inf
(t0+Rα−(R/2)α,t0+Rα)×BR/2

u ≥ c
(

−

∫
(t0−Rα,t0−Rα+(R/2)α)×BR/2

u(t, x) dx dt − Rα
∥ f ∥L∞

)
, (6-7)

where B2R ⊂ �.

(ii) Assume that (K1glob) holds for some θ ∈ (d/α, ∞]. Then there is c > 0 such that, for every 0 < R ≤ 1
and every nonnegative, weak supersolution u to (P̂DE) in IR(t0) × B2R , estimate (6-7) holds.

Now we prove Theorem 1.1 and Theorem 1.4. Both results require the weak Harnack inequality
Theorem 6.3.

Proof of Theorem 1.1. We only prove (i) since the proof of (ii) follows the same line of arguments. Part (i)
follows from a combination of Theorem 6.3 and Theorem 3.6 (or Theorem 4.8). First, we deduce from
Theorem 3.6 (or Theorem 4.8) and a classical covering argument that, for every 1

4 ≤ t < s ≤
1
2 ,

sup
I ⊖

t R/2×Bt R

u ≤ c1(s − t)−(d+α)/2
(

−

∫
I ⊖

s R/2

−

∫
Bs R

u2(t, x) dx dt
)1/2

+ sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + c2 Rα
∥ f ∥L∞ .
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By a similar iteration argument as in the proof of Theorem 6.2, we deduce

sup
I ⊖

R/8×BR/4

u ≤ c2

(
−

∫
I ⊖

R/4×BR/2

u(t, x) dx dt
)

+ c2 sup
t∈I ⊖

R/4

TailK ,α(u(t), R) + c2 Rα
∥ f ∥L∞ . (6-8)

Next, Theorem 6.3 yields

inf
(t0+(1−2−α)Rα,t0+Rα)×BR/2

u ≥ c1

(
−

∫
(t0−Rα,t0−(1−2−α)Rα)×BR/2

u(t, x) dx dt − Rα
∥ f ∥L∞

)
(6-9)

for some c1 > 0. Note that

(t0 − Rα, t0 − (1 − 2−α)Rα) = I ⊖

R/2(t0 − (1 − 2−α)Rα).

Consequently, by (6-8),

sup
I ⊖

R/8(t0−(1−2−α)Rα)×BR/4

u

≤ c2

(
−

∫
I ⊖

R/4(t0−(1−2−α)Rα)×BR/2

u(t, x) dx dt
)

+ c2 sup
t∈I ⊖

R/4(t0−(1−2−α)Rα)

TailK ,α(u(t), R) + c2 Rα
∥ f ∥L∞

≤ c3

(
−

∫
(t0−Rα,t0−(1−2−α)Rα)×BR/2

u(t, x) dx dt
)

+ c3 sup
t∈I ⊖

R/4(t0−(1−2−α)Rα)

TailK ,α(u(t), R) + c3 Rα
∥ f ∥L∞

≤ c4 inf
(t0+(1−2−α)Rα,t0+Rα)×BR/2

+c4 sup
t∈(t0−(1−2−α+4−α)Rα,t0−(1−2−α)Rα)

TailK ,α(u(t), R) + c4 Rα
∥ f ∥L∞

for some c2, c3, c4 > 0. The proof is finished upon noticing that

I ⊖

R/8(t0 − (1 − 2−α)Rα) = (t0 − (1 − 2−α
+ 8−α)Rα, t0 − (1 − 2−α)Rα). □

Proof of Theorem 1.4. This result follows directly by combining Theorems 6.2 and 6.3, where we apply
Theorem 6.2 with p = 1. □

6.3. Challenges in the parabolic case. Let us assume that (cutoff), (E≥), (K1loc), (K2), and (UJS) hold
for some θ ∈ [d/α, ∞]. The goal of this section is to discuss the validity of a parabolic version of
Theorem 1.4, i.e., to investigate the estimate

sup
(t0−c1 Rα,t0−c2 Rα)×BR/4

u ≤ C
(

inf
(t0+c2 Rα,t0+Rα)×BR/2

u + Rα
∥ f ∥L∞

)
(6-10)

for some C > 0 and 0 < c2 < c1 < 1 for nonnegative, weak solutions u to (PDE) in I ⊖

R × B2R , where
B2R ⊂ �. In order to keep the presentation short, we will not discuss weak solutions to (P̂DE) here.

As in the elliptic case, the general strategy to establish (6-10) would be to first prove an L∞-L p-estimate
of the form (given any p ∈ (0, 2])

sup
I ⊖

R/8×BR/4

u ≤ c
(

−

∫
I ⊖

R/4

−

∫
BR/2

u p(t, x) dx dt
)1/p

+ cRα
∥ f ∥L∞ (6-11)

and to deduce (6-10) after combination with the weak parabolic Harnack inequality of Theorem 6.3 as in
the proof of Theorem 1.1.
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A natural approach in order to show (6-11) would be to proceed as in the proof of Theorem 3.6 but to
apply Corollary 5.4 in order to estimate the nonlocal tail by a local quantity. However, as Corollary 5.4
only provides an estimate for

∫
I ⊖

r/2
TailK (u(t), r, r + ρ) dt but not for supI ⊖

r/2
TailK (u(t), r, r + ρ), one

needs to come up with a new idea to bridge the gap between

sup
I ⊖

r/2

TailK (u(t), r, r + ρ) and
∫

I ⊖

r/2

TailK (u(t), r, r + ρ) dt.

Note that the same issue appears in the symmetric case and has not been solved so far. There seems to be
no proof of a parabolic Harnack inequality (6-10) for jumping kernels K (x, y) ≍ |x − y|

−d−α that uses
only analytic arguments. Note that via probabilistic methods, an estimate of the form (6-10) has been
proved in the symmetric case in [Bass and Levin 2002; Chen and Kumagai 2003].

Let us explain how to deduce (6-11) under the condition that u satisfies the following two additional
assumptions:

(a) There exists c0 > 0 such that, for every 1
2 R ≤ r ≤ R and 0 < ρ ≤ r ≤ r + ρ ≤ R,

sup
t∈I ⊖

(r+ρ)/4

TailK
(
u(t), r +

1
2ρ, r + ρ

)
≤ c0 sup

I ⊖

(r+ρ/2)/2×Br+ρ

u. (6-12)

(b) We have supI ⊖

R/4(t0)
TailK ,α(u(t), R) < ∞.

Remark 6.4. (i) Naturally, the constant c in (6-11) will depend on c0.

(ii) (6-12) holds for global solutions to (PDE) in the symmetric case (see [Strömqvist 2019b]).

(iii) It has been proposed in [Kim 2019] to establish (6-12) for every weak solution u to (PDE) in I × B2R

with prescribed nonlocal parabolic boundary data g ∈ L∞(I × Rd) ∩ C(I × Rd), with c0 depending
only on g. The proof of [Kim 2019, Lemma 5.3] is not complete.

(iv) Note that (b) is an additional restriction and does not naturally follow from our weak solution concept.
We refer to Section 2.3 for a more detailed discussion of finiteness of tail terms.

In order to establish (6-11), we need to prove an analog of (6-1). As in the proof of Theorem 3.6, we
derive (3-16), and by combining it with (6-12), we deduce, for every δ > 0,

Ai ≤
c1

Rα M2/κ ′
2γ i

(
1 +

supI ⊖

R/2×BR
u + Rα

∥ f ∥L∞

M

)
A1+1/κ ′

i−1

for some c1 > 0 and γ > 1. Here, κ = 1 + α/d. By choosing

M := δ
(

sup
I ⊖

R/2×BR

u + Rα
∥ f ∥L∞

)
+ Cκ ′2/2cκ ′/2

1 δ−κ ′/2 R−ακ ′/2 A1/2
0 ,

where C := 2γ > 1, we can deduce

sup
I ⊖

R/8×BR/2

u ≤ δ
(

sup
I ⊖

R/2×BR

u + Rα
∥ f ∥L∞

)
+ c2δ

−κ ′/2
(

−

∫
I ⊖

R/4

−

∫
BR

u2(t, x) dx dt
)1/2

(6-13)

for some c2 > 0. This estimate is a parabolic analog of (6-1). Note that (6-13) can also be established via
the arguments from the proof of Theorem 4.8 using the Moser iteration.
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Next, we intend to prove (6-11) by adapting the arguments in the proof of Theorem 6.2 to the parabolic
setting.

As in the elliptic case, a standard covering argument yields, for every 1
4 ≤ t < s ≤

1
2 ,

sup
I ⊖

t R/2×Bt R

u ≤ c3(s − t)−(d+α)/2
(

−

∫
I ⊖

s R/2

−

∫
Bs R

u2(t, x) dx dt
)1/2

+ c4 Rα
∥ f ∥L∞ + c4δ sup

I ⊖

s R/2×Bs R

u,

where c3, c4 > 0 are constants. By Young’s inequality and choosing δ = 1/c4, we arrive at

sup
I ⊖

t R/2×Bt R

u ≤
1
2 sup

I ⊖

s R/2×Bs R

u + c4(s − t)−(d+α)/p
(

−

∫
I ⊖

R/4

−

∫
BR/2

u p(t, x) dx dt
)1/p

+ c4 Rα
∥ f ∥L∞,

where p ∈ (0, 2] can be chosen arbitrarily.
Now, (6-11) follows from [Giaquinta and Giusti 1982, Lemma 1.1], but this only applies if

sup
I ⊖

R/4×BR/2

u < ∞. (6-14)

In order to obtain (6-14), we apply Theorem 3.6 (or Theorem 4.8) and use condition (b) on u. This
concludes the proof of (6-11) under the additional assumptions (a) and (b).

Appendix

The following lemma justifies the way we deal with the weak formulation of (PDE), or (P̂DE), in the proof
of Theorem 3.6 after testing with φ(t, x) = τ 2(x)(u(t, x)− k)+ for some k ≥ 0, where u is a subsolution
to the respective equation. In fact, φ is a priori not differentiable in t , which prevents us from integrating
by parts. The idea of the proof is to test the equation with an auxiliary function having the required
smoothness properties in t . This can be achieved with the help of Steklov averages. For symmetric
nonlocal equations, such lemmas are well known (see [Felsinger and Kassmann 2013; Strömqvist 2019a]).
We adapt the idea of the proof of [Felsinger and Kassmann 2013] to the nonsymmetric case. Note that
Lemma A.2 in [Felsinger and Kassmann 2013] is not sufficient for the proof of (A.4) in [Felsinger and
Kassmann 2013]. Our proof fixes the gap in their argument.

Lemma A.1. Assume (cutoff).

(i) Assume that (K1loc) holds for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Let u ∈

V (Br+ρ |Rd) be a weak subsolution to (PDE). Then, for every [t1, t2] ⊂ I , every 0 < ρ ≤ r ≤ 1 with
Br+ρ ⊂ �, every k ≥ 0, and every χ ∈ C1

c (R),

χ2(t2)
∫

Br+ρ

(u(t2) − k)2
+
τ 2 dx − χ2(t1)

∫
Br+ρ

(u(t1) − k)2
+
τ 2 dx

−

∫ t2

t1
∂t(χ

2(t))
∫

Br+ρ

(u(t) − k)2
+
τ 2 dx dt +

∫ t2

t1
χ2(t)E(u(t), τ 2(u(t) − k)+) dt

≤

∫ t2

t1
χ2(t)

∫
Br+ρ

f (t, x)τ 2(x)(u(t, x) − k)+ dx dt,

where τ = τr,ρ/2.
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(ii) Assume that (K1glob) holds for some θ ∈ [d/α, ∞]. Moreover, assume (Sob) if θ < ∞. Let u ∈

V (Br+ρ |Rd) be a weak subsolution to (P̂DE). Then, for every [t1, t2] ⊂ I , every 0 < ρ ≤ r ≤ 1 with
Br+ρ ⊂ �, every k ≥ 0, and every χ ∈ C1

c (R),

χ2(t2)
∫

Br+ρ

(u(t2) − k)2
+
τ 2 dx − χ2(t1)

∫
Br+ρ

(u(t1) − k)2
+
τ 2 dx

−

∫ t2

t1
∂t(χ

2(t))
∫

Br+ρ

(u(t) − k)2
+
τ 2 dx dt +

∫ t2

t1
χ2(t )̂E(u(t), τ 2(u(t) − k)+) dt

≤

∫ t2

t1
χ2(t)

∫
Br+ρ

f (t, x)τ 2(x)(u(t, x) − k)+ dx dt.

Proof. Given v ∈ L1((0, T ); X) for some Banach space X , we define its Steklov average vh(t, x) =

−

∫ t+h
t v(s, · ) ds if t + h ∈ I and vh(t, x) = 0 otherwise. Observe that

∂t uh(t, x) =
1
h
(u(t + h, x) − u(t, x)) = −

∫ t+h

t
∂su(s, x) ds.

According to Lemma A.1 in [Felsinger and Kassmann 2013], we have

∥vh(t) − v(t)∥L2 → 0 as h ↘ 0 if v ∈ C((0, T ); L2(Br+ρ)), (A-1)

∥vh − v∥L2([t1,t2];X) → 0 as h ↘ 0, (A-2)

∥vh∥L2([t1,t2];X) ≤ ∥v∥L2([t1,t2];X). (A-3)

We first explain how to prove (i). Let t ∈ I . We use the test function φ = τ 2(uh(t) − k)+, and after
integrating over (t, t + h) for some h > 0 such that t + h ∈ I and dividing by h, we obtain∫

Br+ρ

∂t uh(t, x)φ(t, x) dx + E(uh(t), φ(t)) ≤ ( f (t), φ(t)).

Note that t 7→ uh(t, x) is differentiable for a.e. x ∈ Br+ρ , and therefore

∂t uh(t, x)φ(t, x) =
1
2∂t [(uh(t, x) − k)2

+
]τ 2(x).

We multiply by χ2(t) and integrate over (t1, t2). Integration by parts yields∫
Br+ρ

χ2(t2)(uh(t2) − k)2
+
τ 2 dx −

∫
Br+ρ

χ2(t1)(uh(t1) − k)2
+
τ 2 dx

−

∫ t2

t1

∫
Br+ρ

∂t(χ
2(t))(uh(t) − k)2

+
τ 2 dx dt +

∫ t2

t1
χ2(t)E(uh(t), τ 2(uh(t) − k)+) dt

≤

∫ t2

t1
χ2(t)

∫
Br+ρ

f (t, x)τ 2(x)(uh(t, x) − k)+ dx dt.

Since ∥|(uh(t) − k)+ − (u(t) − k)+|τ 2
∥L2(Br+ρ) ≤ ∥uh(t) − u(t)∥L2(Br+ρ), it follows by (A-1) that∫

Br+ρ

(uh(t) − k)2
+
τ 2 dx →

∫
Br+ρ

(u(t) − k)2
+
τ 2 dx for t ∈ [t1, t2].
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Moreover, (A-2) implies∫ t2

t1
∂t(χ

2(t))
∫

Br+ρ

(uh(t) − k)2
+
τ 2 dx dt →

∫ t2

t1

∫
Br+ρ

∂t(χ
2(t))(u(t) − k)2

+
τ 2 dx dt,∫ t2

t1
χ2(t)

∫
Br+ρ

f (t, x)τ 2(x)(uh(t, x) − k)+ dx dt →

∫ t2

t1
χ2(t)

∫
Br+ρ

f (t, x)τ 2(x)(u(t, x) − k)+ dx dt

as h ↘ 0. It remains to prove that∫ t2

t1
χ2(t)E(uh(t), τ 2(uh(t) − k)+) dt →

∫ t2

t1
χ2(t)E(u(t), τ 2(u(t) − k)+) dt. (A-4)

In Lemma A.2 in [Felsinger and Kassmann 2013], the authors established a related convergence property
for symmetric energy forms. However, their proof has a gap, since Lemma A.2 does not suffice to deduce
the desired result (even in the symmetric case), since, if 8 = f (u), it does not hold in general that
8h = f (uh).

We define
V (t, x, y) = u(t, x) − u(t, y),

W (t, x, y) = τ 2(x)(u(t, x) − k)+ − τ 2(y)(u(t, y) − k)+,

W̃ (t, x, y) = τ 2(x)(uh(t, x) − k)+ − τ 2(y)(uh(t, y) − k)+.

Our goal is to show that ∫ t2

t1
|E(uh(t) − u(t), τ 2(uh(t) − k)+)| dt → 0, (A-5)∫ t2

t1
|E(u(t), τ 2(uh − k)+ − τ 2(u(t) − k)+)| dt → 0. (A-6)

To establish (A-5), we split∫ t2

t1
|E(uh(t) − u(t), τ 2(uh(t) − k)+)| dt

≤ ∥EKs
Br+ρ

(uh − u, τ 2(uh − k)+)∥L1([t1,t2]) + ∥EKa
Br+ρ

(uh − u, τ 2(uh − k)+)∥L1([t1,t2])

+ ∥E(Br+ρ×Br+ρ)c(uh − u, τ 2(uh − k)+)∥L1([t1,t2])

=: I1 + I2 + I3,

and establish the convergence of each term separately. For I1, we estimate

I1 ≤

∫ t2

t1

∫
Br+ρ

∫
Br+ρ

|Vh(t, x, y) − V (t, x, y)||W̃ (t, x, y)|Ks(x, y) dy dx dt

≤ ∥(Vh − V )K 1/2
s ∥L2([t1,t2]×Br+ρ×Br+ρ)∥W̃ K 1/2

s ∥L2([t1,t2]×Br+ρ×Br+ρ)

≤ ∥uh − u∥L2([t1,t2];V (Br+ρ |Rd ))∥E
Ks
Br+ρ

(τ 2(uh − k)+, τ 2(uh − k)+)∥
1/2
L1([t1,t2])

≤ ∥uh − u∥L2([t1,t2];V (Br+ρ |Rd ))∥τ
2u∥L2([t1,t2];V (Br+ρ |Rd ))

→ 0,
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where we used (A-2) and (A-3), that

u, φ ∈ L2([t1, t2]; V (Br+ρ |Rd)),

and the fact that, due to the Markov property of EKs and (A-3),

EKs
Br+ρ

(τ 2(uh − k)+, τ 2(uh − k)+) ≤ EKs
Br+ρ

(τ 2uh, τ
2uh)

= EKs
Br+ρ

([τ 2u]h, [τ
2u]h) ≤ ∥τ 2u∥

2
V (Br+ρ |Rd )

. (A-7)

For I2,

I2 ≤

∫ t2

t1

∫
Br+ρ

∫
Br+ρ

|Vh(t, x, y) − V (t, x, y)|τ 2(x)(uh(t, x) − k)+|Ka(x, y)| dy dx dt

≤ ∥(Vh − V )J 1/2
∥L2([t1,t2]×Br+ρ×Br+ρ)

∥∥∥∥∫
Br+ρ/2

(uh( · , x) − k)2
+

(∫
Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

∥∥∥∥1/2

L1([t1,t2])

≤ c∥uh − u∥L2([t1,t2];V (Br+ρ |Rd ))∥u∥L2([t1,t2];L2θ ′
(Br+ρ/2))

≤ c∥uh − u∥L2([t1,t2];V (Br+ρ |Rd ))∥u∥L2([t1,t2];V (Br+ρ |Rd ))

→ 0,

where c > 0 might depend on ρ, and we used (K1loc), (A-2), (A-3), that

u ∈ L2([t1, t2]; V (Br+ρ |Rd)),

and (Sob). For I3, we obtain

I3 ≤ 2
∫ t2

t1

∫
Br+ρ

∫
Bc

r+ρ

|Vh(t, x, y) − V (t, x, y)|τ 2(x)(uh(t, x) − k)+Ks(x, y) dy dx dt

≤ 2∥(Vh − V )K 1/2
s ∥L2([t1,t2]×Br+ρ×Bc

r+ρ)

∥∥∥∥∫
Br+ρ/2

(uh( · , x) − k)2
+
0Ks (τ, τ )(x) dx

∥∥∥∥1/2

L1([t1,t2])

≤ cρ−α/2
∥uh − u∥L2([t1,t2];V (Br+ρ |Rd ))∥u∥L2([t1,t2]×Br+ρ)

→ 0,

where we used (1-2), (cutoff), (A-2), (A-3) and that

u ∈ L2([t1, t2]; V (Br+ρ |Rd)).

It remains to prove (A-6). Again, we split∫ t2

t1
|E(u(t), τ 2(uh − k)+ − τ 2(u(t) − k)+)| dt

≤ ∥EKs
Br+ρ

(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

+ ∥EKa
Br+ρ

(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

+ ∥E(Br+ρ×Br+ρ)c(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

=: J1 + J2 + J3,
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Convergence of J1 can be proved as follows. First, by Hölder’s inequality,

J1 ≤ ∥u∥L2([t1,t2];V (Br+ρ |Rd ))

∥∥∥∥∫
Br+ρ

∫
Br+ρ

|W ( · , x, y) − W̃ ( · , x, y)|2Ks(x, y) dy dx
∥∥∥∥1/2

L1([t1,t2])
.

Since u ∈ L2([t1, t2]; V (Br+ρ |Rd)), it suffices to prove that the second factor converges to zero in order
to conclude that J1 → 0. For this, we claim that there exist ξ(t, x, y), ξ̃ (t, x, y) ∈ [0, 1] such that

τ 2(x)(u(t, x) − k)+ − τ 2(y)(u(t, y) − k)+ = ξ(t, x, y)[ f (t, x) − f (t, y)],

τ 2(x)(uh(t, x) − k)+ − τ 2(y)(uh(t, y) − k)+ = ξ̃ (t, x, y)[ fh(t, x) − fh(t, y)],

where we define f (t, x) = τ 2(x)(u(t, x) − k). In fact, it is easy to see that

ξ(t, x, y) =



1, u(t, x), u(t, y) > k,

0, u(t, x), u(t, y) ≤ k,

f (t, x)

f (t, x)− f (t, y)
, u(t, x) > k ≥ u(t, y),

f (t, y)

f (t, y)− f (t, x)
, u(t, y) > k ≥ u(t, x),

ξ̃ (t, x, y) =



1, uh(t, x), uh(t, y) > k,

0, uh(t, x), uh(t, y) ≤ k,

fh(t, x)

fh(t, x)− fh(t, y)
, uh(t, x) > k ≥ uh(t, y),

fh(t, y)

fh(t, y)− fh(t, x)
, uh(t, y) > k ≥ uh(t, x)

have the desired properties. We estimate∥∥∥∥∫
Br+ρ

∫
Br+ρ

|W ( · , x, y) − W̃ ( · , x, y)|2Ks(x, y) dy dx
∥∥∥∥1/2

L1([t1,t2])

≤ 2
∥∥∥∥∫

Br+ρ

∫
Br+ρ

|ξ̃ ( · , x, y)|2[( fh(t, x) − f (t, x)) − ( fh(t, y) − f (t, y))]2Ks(x, y) dy dx
∥∥∥∥1/2

L1([t1,t2])

+ 2
∥∥∥∥∫

Br+ρ

∫
Br+ρ

|ξ̃ ( · , x, y) − ξ( · , x, y)|2[ f (t, x) − f (t, y)]2Ks(x, y) dy dx
∥∥∥∥1/2

L1([t1,t2])
≤ J1,1 + J1,2.

For J1,1, note that

J1,1 ≤ 2∥ fh − f ∥L2([t1,t2];V (Br+ρ |Rd )) → 0,

where we used that |ξ̃ | ≤ 1, f ∈ L2([t1, t2]; V (Br+ρ |Rd)), and (A-2). For J1,2. we observe that

|ξ̃ (t, x, y) − ξ(t, x, y)| → 0 as h ↘ 0 for a.e. t, x, y.

Since f ∈ L2([t1, t2]; V (Br+ρ |Rd)), it follows from dominated convergence that J1,2 also goes to 0.
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For J2, we estimate

J2 ≤

∫ t2

t1

∫
Br+ρ

∫
Br+ρ

|V (t, x, y)|τ 2(x)|(uh(t, x)−k)+−(u(t, x)−k)+||Ka(x, y)| dy dx dt

≤ ∥u∥L2([t1,t2];V (Br+ρ |Rd ))

∥∥∥∥∫
Br+ρ

|(uh( · , x)−k)+−(u( · , x)−k)+|
2
(∫

Br+ρ

|Ka(x, y)|2

J (x, y)
dy

)
dx

∥∥∥∥1/2

L1([t1,t2])

≤ c∥u∥L2([t1,t2];V (Br+ρ |Rd ))∥uh −u∥L2([t1,t2];L2θ ′
(Br+ρ))

→ 0,

where we used (K1loc),

|(uh(t, x) − k)+ − (u(t, x) − k)+| ≤ |uh(t, x) − u(t, x)|, u ∈ L2([t1, t2]; V (Br+ρ |Rd)),

(Sob), and (A-2). To prove convergence of J3, we proceed as follows:

J3 ≤ 2
∫ t2

t1

∫
Br+ρ

∫
Bc

r+ρ

|V (t, x, y)|τ 2(x)|(uh(t, x) − k)+ − (u(t, x) − k)+|Ks(x, y) dy dx dt

≤ 2∥u∥L2([t1,t2];V (Br+ρ |Rd ))

∥∥∥∥∫
Br+ρ/2

|(uh( · , x) − k)+ − u( · , x) − k)|20Ks (τ, τ )(x) dx
∥∥∥∥1/2

L1([t1,t2])

≤ cρ−α/2
∥u∥L2([t1,t2];V (Br+ρ |Rd ))∥uh − u∥L2([t1,t2]×Br+ρ)

→ 0,

where we used (cutoff), (A-2), and

u ∈ L2([t1, t2]; V (Br+ρ |Rd)).

Altogether, this proves (A-4), and we deduce the desired result. Let us now prove (ii). In analogy to
the proof of (i), it is only left to show∫ t2

t1
Ê(uh(t), τ 2(uh(t) − k)+) dt →

∫ t2

t1
Ê(u(t), τ 2(u(t) − k)+) dt. (A-8)

We will establish (A-8) by proving the following two properties:∫ t2

t1
|E(uh(t) − u(t), τ 2(uh(t) − k)+)| dt → 0, (A-9)∫ t2

t1
|E(u(t), τ 2(uh − k)+ − τ 2(u(t) − k)+)| dt → 0. (A-10)

Let us first prove (A-9). In analogy to the proof of (A-5), we split∫ t2

t1
|̂E(uh(t) − u(t), τ 2(uh(t) − k)+)| dt

≤ ∥EKs
Br+ρ

(uh − u, τ 2(uh − k)+)∥L1([t1,t2]) + ∥̂EKa
Br+ρ

(uh − u, τ 2(uh − k)+)∥L1([t1,t2])

+ ∥̂E(Br+ρ×Br+ρ)c(uh − u, τ 2(uh − k)+)∥L1([t1,t2])

=: Î1 + Î2 + Î3.
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In (i), we already showed that Î1 → 0. Let us estimate Î2 as follows:

Î2 ≤ ∥(uh − u)W̃ |Ka|∥L1([t1,t2])

≤ ∥EKs
Br+ρ

(τ 2(uh − k)+, τ 2(uh − k)+)∥
1/2
L1([t1,t2])

∥uh − u∥L2([t1,t2];L2θ ′
(Br+

ρ
2
))

≤ c∥τ 2u∥L2([t1,t2];V (Br+ρ |Rd ))∥uh − u∥L2([t1,t2];V (Br+ρ |Rd ))

→ 0,

where we used (K1glob), (A-2), (A-7), and (Sob). Moreover, Î3 can be treated as follows:

Î3 ≤ ∥EKs
(Br+ρ×Br+ρ)c(uh − u, τ 2(uh − k)+)∥L1([t1,t2])

+

∥∥∥∥∫
Br+ρ/2

∫
Bc

r+ρ

(uh( · , x) − u( · , x))τ 2(x)(uh( · , x) − k)+|Ka(x, y)| dy dx
∥∥∥∥

L1([t1,t2])

+

∥∥∥∥∫
Bc

r+ρ

∫
Br+ρ/2

(uh( · , x) − u( · , x))τ 2(y)(uh( · , y) − k)+|Ka(x, y)| dy dx
∥∥∥∥

L1([t1,t2])

=: Î3,1 + Î3,2 + Î3,3.

The proof of convergence for Î3,1 goes exactly like for I3. For Î3,2, we estimate using the assumptions
(K1glob) and (cutoff):

Î3,2 + Î3,3 ≤

∥∥∥∥∫
Rd

|uh( · , x) − u( · , x)|2
(∫

Rd

|Ka(x, y)|2

J (x, y)
dy

)
dx

∥∥∥∥1/2

L1([t1,t2])

×

∥∥∥∥∫
Br+ρ/2

(uh( · , x) − k)2
+
0 J (τ, τ )(x) dx

∥∥∥∥1/2

L1([t1,t2])

≤ cρ−α/2
∥uh − u∥L2([t1,t2];L2θ ′

(Rd ))∥(uh − k)+∥L2([t1,t2]×Br+ρ)

≤ cρ−α/2
∥uh − u∥L2([t1,t2];L2θ ′

(Rd ))∥u∥L2([t1,t2]×Br+ρ)

→ 0,

where we used (A-2), (A-3), and

u ∈ L2([t1, t2]; L2θ ′

(Rd)).

We have established (A-9). To prove (A-10), let us again split∫ t2

t1
|̂E(u(t), τ 2(uh − k)+ − τ 2(u(t) − k)+)| dt

≤ ∥EKs
Br+ρ

(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

+ ∥̂EKa
Br+ρ

(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

+ ∥̂E(Br+ρ×Br+ρ)c(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

=: Ĵ1 + Ĵ2 + Ĵ3.
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Note that Ĵ1 = J1 → 0. For Ĵ2, we estimate

Ĵ2 ≤ ∥u∥L2([t1,t2];L2θ ′
(Br+ρ))

∥∥∥∥∫
Br+ρ

∫
Br+ρ

|W ( · , x, y) − W̃ ( · , x, y)|2Ks(x, y) dy dx
∥∥∥∥1/2

L1([t1,t2])
,

where we used (K1glob) and that u ∈ L2([t1, t2]; L2θ ′

(Br+ρ)). We conclude that Ĵ2 → 0 since the second
factor converges to zero, as we proved already when dealing with J1.

To estimate Ĵ3, we proceed as follows:

Ĵ3 ≤ ∥EKs
(Br+ρ×Br+ρ)c(u, τ 2(uh − k)+ − τ 2(u − k)+)∥L1([t1,t2])

+

∥∥∥∥∫
Br+ρ/2

∫
Bc

r+ρ

τ 2(x)|(uh − k)+(x) − (u − k)+(x)|u(x)|Ka(x, y)| dy dx
∥∥∥∥

L1([t1,t2])

+

∥∥∥∥∫
Bc

r+ρ

∫
Br+ρ/2

τ 2(y)|(uh − k)+(y) − (u − k)+(y)|u(x)|Ka(x, y)| dy dx
∥∥∥∥

L1([t1,t2])

= Ĵ3,1 + Ĵ3,2 + Ĵ3,3.

Note that Ĵ3,1 → 0 follows similarly to the proof of J3 → 0. Ĵ3,2 and Ĵ3,3 are estimated as follows, using
similar arguments as in the estimates of Î3,2 and Î3,3:

Ĵ3,2 + Ĵ3,3 ≤ ∥(uh − k)+ − (u − k)+∥L2([t1,t2];L2θ ′
(Rd ))

∥∥∥∥∫
Br+ρ/2

u2(x)0Ks (τ, τ )(x) dx
∥∥∥∥1/2

L1([t1,t2])

≤ cρ−α/2
∥uh − u∥L2([t1,t2];L2θ ′

(Rd ))∥u∥L2([t1,t2]×Br+ρ)

→ 0,

where we used (cutoff) and (K1glob), as well as (A-2) and u ∈ L2([t1, t2]; L2θ ′

(Br+ρ)). This proves (ii). □

Remark A.2. We point out that the above proof can be extended to more general test functions φ of the
form φ = ±τ 2g(u), where g : [0, ∞) → [0, ∞). This way, it would be possible to generalize the notion
of a weak solution to (PDE), or to (P̂DE), in I ×�, in the sense that the assumption ∂t u ∈ L1

loc(I, L2(�)),
where ∂t u is the weak L2(�)-derivative of u, can be replaced by u ∈ C(I ; L2(�)).
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TRANSFERENCE OF SCALE-INVARIANT ESTIMATES FROM LIPSCHITZ TO
NONTANGENTIALLY ACCESSIBLE TO UNIFORMLY RECTIFIABLE DOMAINS

STEVE HOFMANN, JOSÉ MARÍA MARTELL AND SVITLANA MAYBORODA

In relatively nice geometric settings, in particular, on Lipschitz domains, absolute continuity of elliptic
measure with respect to the surface measure is equivalent to Carleson measure estimates, to square
function estimates, and to ε-approximability, for solutions to the second-order divergence-form elliptic
partial differential equations Lu = − div(A∇u) = 0. In more general situations, notably, in an open
set � with a uniformly rectifiable boundary, absolute continuity of elliptic measure with respect to the
surface measure may fail, already for the Laplacian. In the present paper, extending and clarifying our
previous work (Duke Math J. 165:12 (2016), 2331–2389), we demonstrate that nonetheless, Carleson
measure estimates, square function estimates, and ε-approximability remain valid in such �, for solutions
of Lu = 0, provided that such solutions enjoy these properties in Lipschitz subdomains of �.

Moreover, we establish a general real-variable transference principle, from Lipschitz to chord-arc
domains, and from chord-arc to open sets with uniformly rectifiable boundary, that is not restricted to
harmonic functions or even to solutions of elliptic equations. In particular, this allows one to deduce the
first Carleson measure estimates and square function bounds for higher-order systems on open sets with
uniformly rectifiable boundaries and to treat subsolutions and subharmonic functions.
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1. Introduction

In the setting of a Lipschitz domain � ⊂ Rn+1, n ≥ 1, for any divergence-form elliptic operator L =

− div(A∇) with bounded measurable coefficients, the following are equivalent:

(i) Every bounded solution u, of the equation Lu = 0 in �, satisfies the Carleson measure estimate (see
Definition 1.9 with F = |∇u|/∥u∥L∞(�)).
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(ii) Every bounded solution u, of the equation Lu = 0 in �, is ε-approximable for every ε > 0 (see
Definition 1.11).

(iii) The elliptic measure associated to L , ωL , is (quantitatively) absolutely continuous with respect to
the Lebesgue measure, ωL ∈ A∞(σ ) on ∂�.

(iv) Uniform square function/nontangential maximal function (“S/N”) estimates hold locally in “saw-
tooth” subdomains of � (see Definition 1.15).

Historically, Dahlberg [1980a] obtained an extension of Garnett’s ε-approximability result, observing
that (iv) implies (ii) in the harmonic case.1 The explicit connection of ε-approximability with the A∞

property of harmonic measure, i.e., that (ii) implies (iii), appears in [Kenig et al. 2000] (where this
implication is established not only for the Laplacian, but for general divergence-form elliptic operators).
That (iii) implies (iv) is proved for harmonic functions in [Dahlberg 1980b],2 and, for null solutions of
general divergence-form elliptic operators, in [Dahlberg et al. 1984]. Finally, Kenig, Kirchheim, Pipher
and Toro [Kenig et al. 2016] have recently shown that (i) implies (iii), whereas, on the other hand, (i)
may be seen, via good-lambda and John–Nirenberg arguments, to be equivalent to the local version of
one direction of (iv) (the “S < N” direction).3

The main goal of the present paper is to show that while (iii) may fail on general uniformly rectifiable
domains even for harmonic functions [Bishop and Jones 1990], or might be not applicable in the absence
of a suitable concept of elliptic measure (e.g., for systems), (i), (ii) and (iv) carry over from Lipschitz
domains to the complement of a uniformly rectifiable set. The novelty of the present work lies in the
fact that we develop a general transference principle, from Lipschitz domains to chord-arc domains and
thence to domains with uniformly rectifiable boundaries, that will allow us to carry out this program by a
purely real-variable mechanism. In particular, this both extends and clarifies our previous work [Hofmann
et al. 2016]. But let us start with more historical context.

In the past several decades, uniformly rectifiable sets have been identified as the most general geometric
setting in which many standard harmonic-analytic properties continue to hold. In particular, it was shown
in the early 90’s that uniform rectifiability of a set E is equivalent to boundedness of all sufficiently
nice singular integral operators with odd kernels in L2(E) [David and Semmes 1991], and, much more
recently, that uniform rectifiability is equivalent to boundedness of the Riesz transform in L2(E) (see
[Mattila et al. 1996] for the case n = 1 and [Nazarov et al. 2014] in general).

However, it seemed to be vital for many standard boundary estimates for solutions of elliptic PDEs in
a domain � that, in addition to uniform rectifiability of its boundary, � should possess some additional
topological features, ensuring a reasonably nice approach to the boundary. In some respects, this is indeed
true. In particular, it has been known that (i)–(iv) hold for harmonic functions on chord-arc domains, that
is, nontangentially accessible domains with Ahlfors–David regular boundaries (see Definitions 1.1 and
1.6 below, and [Jerison and Kenig 1982; Dahlberg et al. 1984; David and Jerison 1990]). Such domains

1This implication holds more generally for null solutions of divergence-form elliptic equations; see [Kenig et al. 2000;
Hofmann et al. 2015].

2And thus all four properties hold for harmonic functions in Lipschitz domains, by the result of [Dahlberg 1977].
3We will prove this fact in much greater generality in this paper.
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satisfy an interior and exterior corkscrew condition (quantitative openness) and a Harnack chain condition
(quantitative connectedness). At the same time, the counterexample of [Bishop and Jones 1990] showed
that absolute continuity of harmonic measure with respect to the Lebesgue measure (iii) may fail on a
general set with a uniformly rectifiable boundary: they construct a one-dimensional (uniformly) rectifiable
set E in the complex plane, for which harmonic measure with respect to�= C\E , is singular with respect
to Hausdorff H 1 measure on E . Much more recently, under the natural and rather minimal background
assumptions that � satisfies an interior corkscrew condition, and has an Ahlfors–David regular boundary,
quantitative absolute continuity of harmonic measure with respect to surface measure (either property (iii)
above, or the weak-A∞ property, i.e., property (iii) in the absence of doubling), has now been characterized
in the harmonic case, thus establishing the necessity of some connectivity assumption in this context:
property (iii) (respectively, its weaker nondoubling version) is equivalent to uniform rectifiability of ∂�,
along with some version of accessibility to the boundary, either the semiuniformity condition of [Aikawa
and Hirata 2008] in the doubling case [Azzam 2021], or respectively, the “weak local John condition”,
which gives access to an ample portion of the boundary, locally, from each interior point of � [Azzam
et al. 2020]. Thus, while some connectivity is indeed required to obtain property (iii), in [Hofmann et al.
2016] the authors proved that, nonetheless, Carleson measure estimates (i) and ε-approximability (ii) for
harmonic functions (and implicitly, for solutions of a certain more general class of elliptic equations)
remain valid on all domains with a uniformly rectifiable boundary, in the absence of any connectivity
assumption. Shortly thereafter, it was shown that, at least in the presence of interior corkscrew points,
each of the necessary properties (i) and (ii) is also sufficient for uniform rectifiability [Garnett et al. 2018].

The present paper introduces a new transference mechanism, which illustrates that for certain classes
of scale-invariant estimates (e.g., Carleson measure bounds, or square function/nontangential maximal
function estimates) the passage from such estimates on Lipschitz domains to analogous results on chord-
arc domains and further to the same bounds on all open sets with uniformly rectifiable boundaries is,
in fact, a real-variable phenomenon. That is, for a given function F defined in the complement of a
codimension 1, uniformly rectifiable set E ⊂ Rn+1, if one has suitable bounds for F on Lipschitz domains,
then these automatically carry over to Rn+1

\ E . This immediately gives a series of new results in very
general PDE settings (for solutions of second-order elliptic PDEs with coefficients satisfying a Carleson
measure condition, for solutions of higher-order systems, for nonnegative subsolutions), but clearly the
power of having a general, purely real-variable scheme, goes beyond these applications. Let us now
discuss the details. We begin by defining several basic concepts.

Definition 1.1 (ADR). We say that a set E ⊂ Rn+1 is n-dimensional Ahlfors–David regular (or simply
ADR) if it is closed, and if there is some uniform constant C ≥ 1 such that

C−1rn
≤ σ(1(x, r))≤ Crn for all r ∈ (0, diam(E)), x ∈ E, (1.2)

where diam(E)may be infinite. Here,1(x, r) := E∩B(x, r) is the surface ball of radius r , and σ := H n
|E

is the surface measure on E , where H n denotes n-dimensional Hausdorff measure.

Definition 1.3 (UR and UR character). An n-dimensional ADR (hence closed) set E ⊂ Rn+1 is n-
dimensional uniformly rectifiable (or simply UR) if and only if it contains big pieces of Lipschitz images
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of Rn (BPLI). This means that there are positive constants θ,M0 > 1 such that for each x ∈ E and each
r ∈ (0, diam(E)) there is a Lipschitz mapping ρ = ρx,r : Rn

→ Rn+1, with Lipschitz constant no larger
than M0, such that

H n(E ∩ B(x, r)∩ ρ({z ∈ Rn
: |z|< r})

)
≥ θ−1rn.

Additionally, the UR character of E is just the triple of constants (θ,M0,C), where C is the ADR constant;
or equivalently, the quantitative bounds involved in any particular characterization of uniform rectifiability.

Note that, in particular, a UR set is closed by definition, so that Rn+1
\ E is open, but need not be

connected.
We recall that n-dimensional rectifiable sets are characterized by the property that they can be covered,

up to a set of H n-measure 0, by a countable union of Lipschitz images of Rn; we observe that BPLI is a
quantitative version of this fact.

It is worth mentioning that there exist sets that are ADR (and that even form the boundary of an open
set satisfying interior corkscrew and Harnack chain conditions), but that are totally nonrectifiable (e.g.,
see the construction of Garnett’s “4-corners Cantor set” in [David and Semmes 1993, Chapter 1]).

Definition 1.4 (corkscrew condition). Following [Jerison and Kenig 1982], we say that an open set
� ⊂ Rn+1 satisfies the corkscrew condition if for some uniform constant C > 1 and for every surface
ball 1 :=1(x, r)= B(x, r)∩ ∂�, with x ∈ ∂� and 0< r < diam(∂�), there is a ball B(X1,C−1r)⊂

B(x, r)∩�. The point X1 ⊂ � is called a corkscrew point relative to 1. We note that we may allow
r < C ′ diam(∂�) for any fixed C ′ simply by adjusting the constant C.

Definition 1.5 (Harnack chain condition). Again following [Jerison and Kenig 1982], we say that an
open set � satisfies the Harnack chain condition if there is a uniform constant C ≥ 1 such that for every
pair of points X, X ′

∈� there is a chain of balls B1, B2, . . . , BN ⊂� with

N ≤ C
(

2 + log+

2
|X − X ′

|

min{dist(X, ∂�), dist(X ′, ∂�)}

)
,

X ∈ B1, X ′
∈ BN , Bk∩Bk+1 ̸=∅ for every 1≤k ≤ N−1, and C−1 diam(Bk)≤dist(Bk, ∂�)≤C diam(Bk)

for every 1 ≤ k ≤ N. The chain of balls is called a Harnack chain. We remark that in general, the estimate
for N can be worse than logarithmic, but as is well known, in the presence of an interior corkscrew
condition, it is necessarily logarithmic if it holds at all.

Definition 1.6 (NTA, 1-sided NTA, CAD, and 1-sided CAD). We say that an open set � ⊂ Rn+1 is
1-sided nontangentially accessible (or simply 1-sided NTA) if it satisfies the Harnack chain condition,
and � satisfies the (interior) corkscrew condition. Additionally, the 1-sided NTA character of � is just
the collection of constants involved in the fact that � is 1-sided NTA, that is, the (interior) corkscrew
constant, as well as the constant from the Harnack chain condition.

As in [Jerison and Kenig 1982], we say that an � ⊂ Rn+1 is nontangentially accessible (or simply
NTA) if it satisfies the Harnack chain condition, and if both � and �ext := Rn+1

\� satisfy the corkscrew
condition. The NTA character of � is the collection of constants involved in the fact that � is NTA, that
is, the interior and exterior corkscrew constants, as well as the constant from the Harnack chain condition.
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We say that an open set �⊂ Rn+1 is a 1-sided chord-arc domain, or simply 1-sided CAD, (resp. chord-
arc domain, or simply CAD) if it is 1-sided NTA (resp. NTA) and has ADR boundary. The 1-sided CAD
character (resp. CAD character) is the 1-sided NTA character (resp. NTA character) together with the
ADR constant.

Definition 1.7 (Lipschitz graph domain). We say that �⊂ Rn+1 is a Lipschitz graph domain if there is
some Lipschitz function ψ : Rn

→ R and some coordinate system such that

�= {(x ′, t) : x ′
∈ Rn, t >ψ(x ′)}.

We refer to M = ∥∇ψ∥L∞(Rn) as the Lipschitz constant of �.

Definition 1.8 (bounded Lipschitz domain). We say that an open connected set �⊂ Rn+1 is a bounded
Lipschitz domain if there exist r� > 0, M,C0,m ≥ 1, {x j }

m
j=1 ⊂ ∂�, {rj }

m
j=1, with C−1

0 r� < rj < C0r�
for every 1 ≤ j ≤ m, such that the following conditions hold. First, ∂�⊂

⋃m
j=1 B(x j , rj ). Second, for

each 1 ≤ j ≤ m there is some Lipschitz graph domain Vj , with x j ∈ ∂Vj and with Lipschitz constant at
most M, such that Uj ∩�= Uj ∩ Vj , where Uj is a cylinder of height 8(M + 1)rj , radius 2rj , and with
axis parallel to the t-axis (in the coordinates associated with Vj ). We refer to the triple (M,m,C0) as the
Lipschitz character of �.

As we pointed out above and as can be seen from the definitions, nontangentially accessible domains
possess certain quantitative topological features. One can show that a CAD satisfies a property analogous
to Definition 1.3, but using big pieces of Lipschitz subdomains, rather than big pieces of Lipschitz images
(see Proposition 3.20), the crucial difference being that in some sense a nice access to the boundary of a
Lipschitz domain is retained, contrary to the general UR case.

Finally, let us define the scale-invariant estimates at the center of this paper.

Definition 1.9 CME. Let � ⊂ Rn+1 be an open set and let F ∈ L2
loc(�). We say that F satisfies the

Carleson measure estimate (or simply CME) on � if

∥F∥CME(�) := sup
x∈∂�, 0<r<∞

1
rn

∫∫
B(x,r)∩�

|F(Y )|2 dist(Y, ∂�) dY <∞. (1.10)

Definition 1.11 (ε-approximable). Let � ⊂ Rn+1 be an open set. Let u ∈ L∞(�), with ∥u∥L∞(�) ≤ 1,
and let ε ∈ (0, 1). We say that u is ε-approximable on � if there is a constant Cε and a function
ϕ = ϕε ∈ W 1,1

loc (�) satisfying
∥u −ϕ∥L∞(�) < ε (1.12)

and
sup

x∈∂�, 0<r<∞

1
rn

∫∫
B(x,r)∩�

|∇ϕ(Y )| dY ≤ Cε. (1.13)

Let � be an open set. The cone with vertex at x ∈ ∂� and aperture κ > 0 is defined as

0�(x) := 0�,κ(x) := {Y ∈�∩ B(x, r) : |Y − x | ≤ (1 + κ) dist(Y, ∂�)}, x ∈ ∂�. (1.14)

Given r > 0, we write 0r
�(x) := 0�(x)∩ B(x, r) for the truncated cone. With a slight abuse of notation

if � is unbounded and ∂� bounded, our cones will be truncated. More precisely, in that scenario, we
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will write 0�( · ) to denote 0C diam(∂�)
� ( · ), where C ≥ 2 is a fixed harmless constant. In this way, when

∂� is bounded, so are the cones, all being contained in a C ′ diam(∂�)-neighborhood of ∂�. We will
sometimes refer to these cones as “traditional” to distinguish them from some dyadic cones which will be
introduced later; see (2.23).

Definition 1.15 (nontangential maximal function, area integral, and square function). Let � be an open
set. For H ∈ C(�) (i.e., H is a continuous function in�) we define the nontangential maximal function as

N∗,�H(x) := N∗,�,κH(x) := sup
Y∈0�,κ (x)

|H(Y )|, x ∈ ∂�; (1.16)

for G ∈ L2
loc(�), we define the area integral as

A�G(x) :=A�,κG(x) :=

(∫∫
0�,κ (x)

|G(Y )|2 dist(Y, ∂�)1−n dY
)1

2

, x ∈ ∂�; (1.17)

and, for u ∈ W 1,2
loc (�), we define the square function as

S�u(x) := S�,κu(x) :=

(∫∫
0�,κ (x)

|∇u(Y )|2 dist(Y, ∂�)1−n dY
)1

2

, x ∈ ∂�. (1.18)

For any r > 0, we write N r
∗,�, Ar

�, and Sr
� to denote the truncated nontangential maximal function, area

integral, and square function respectively, where 0�( · ) is replaced by the truncated cone 0r
�( · ).

Let us now list some highlights of the main results of this paper (see Corollary 3.1, Theorem 3.31 and
Theorem 3.6 for the precise statements in the body of the paper and also Notation 2.56). First, we have
that Carleson measure estimates on Lipschitz domains imply Carleson measure estimates in CAD, which,
in turn, imply Carleson measure estimates on the sets with UR boundaries, via the following formalism.

Theorem 1.19 (transference of Carleson measure estimates4). (i) Let D ⊂ Rn+1 be a chord-arc domain
and F ∈ L2

loc(D). If F satisfies the Carleson measure estimate on all bounded Lipschitz subdomains
of D then F satisfies the Carleson measure estimate on D as well.

(ii) Let E ⊂ Rn+1 be an n-dimensional uniformly rectifiable set and let F ∈ L2
loc(R

n+1
\ E). If F satisfies

the Carleson measure estimate on all bounded chord-arc subdomains of Rn+1
\ E , then F satisfies

the Carleson measure estimate on Rn+1
\ E as well.

(iii) Let E ⊂ Rn+1 be an n-dimensional uniformly rectifiable set and let F ∈ L2
loc(R

n+1
\ E). If F satisfies

the Carleson measure estimate on all bounded Lipschitz subdomains of Rn+1
\ E , then F satisfies

the Carleson measure estimate on Rn+1
\ E as well.

4In the statement we have omitted the dependence in the Carleson estimates on the various geometric parameters. The precise
statements (see Theorems 3.31 and 3.6) given in the body of the paper impose that the Carleson measure estimates hold for any
bounded Lipschitz (resp. chord-arc) subdomain with a bound depending on the Lipschitz (resp. CAD) character. The latter means
that for all subdomains with Lipschitz (resp. CAD) character controlled by some uniform quantity, say M, the corresponding
Carleson measure estimates hold with an associated uniform constant depending on M. The conclusions should also include
that the resulting Carleson estimates depend on the CAD character of D (resp. UR character of E), as well as on the Carleson
estimates of F in the subdomains.
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We remark that Theorem 1.19(ii) was already implicit in our previous work [Hofmann et al. 2016],
although in the present paper we give a proof of this result that is simpler than the corresponding argument
there. The main new ingredient in Theorem 1.19 is part (i); part (iii) is an immediate corollary of parts (i)
and (ii).

Next, in the class of open sets with UR or ADR boundary, or in the class of chord-arc domains or
1-sided chord-arc domains, the Carleson measure estimates are equivalent to local and global area integral
bounds (aka square function estimates).

Theorem 1.20. Let �⊂ Rn+1 be an open set with ADR boundary and suppose that we have a collection
{�′

}�′∈6 such that each �′
∈ 6 is an open subset of �, ∂�′ is ADR boundary, and also that all of its

local sawtooth subdomains (see Section 2) belong to 6. Let G ∈ L2
loc(�) and H ∈ C(�) and assume that(

1
rn

∫∫
B(X,r)

|G(Y )|2δ(Y ) dY
)1

2

≤ C∥H∥L∞(B(X,2r)) for all B(X, 2r)⊂�.

The following statements are equivalent:

(i) ∥G∥CME(�′) ≲ ∥H∥
2
L∞(�′) for all �′

∈6.

(ii) ∥A�′ G∥Lq (∂�′) ≤ C∥N∗,�′ H∥Lq (∂�′) for all �′
∈6 and for some 0< q <∞.

(iii) ∥A�′ G∥Lq (∂�′) ≤ C∥N∗,�′ H∥Lq (∂�′) for all �′
∈6 and for all 0< q <∞.

This result is a particular case of Theorem 4.8 (and Remarks 4.20, 2.37, and 2.38), which actually
contains considerably more detailed statements, as well as equivalence to local area integral bounds.

Finally, we discuss transference for the converse bounds on nontangential maximal function in terms of
the square function and their connection with ε-approximability. In this context, one has to tie up explicitly
the arguments of A and N∗. Our first result is a reduced version of the combination of Theorems 5.1
and 5.24 stated in Corollary 5.50. We do not explain in detail conditions (5.2) and (5.25) now, but let us
mention that, generally, they are harmless bounds on interior cubes, which, in the context of solutions of
elliptic PDE follow from well-known interior estimates.

Theorem 1.21. Let D ⊂ Rn+1 be a chord-arc domain. Let u ∈ W 1,2
loc (D)∩ C(D) so that (5.2) and (5.25)

hold for some p > 2. Assume that for every bounded Lipschitz subdomain �⊂ Rn+1
\ E

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C∥S�u∥L2(∂�) (1.22)

holds with a constant depending on n and the Lipschitz character of �, and where X+

� is any interior
corkscrew point of � at the scale of diam(∂�). Then, for every κ > 0, if ∂D is bounded

∥N∗,D,κ(u − u(X+

D))∥Lq (∂D) ≤ C ′
∥SD,κu∥Lq (∂D) for all 0< q <∞,

and if ∂D is unbounded and u(X)→ 0 as |X | → ∞ then

∥N∗,D,κu∥Lq (∂D) ≤ C ′
∥SD,κu∥Lq (∂D) for all 0< q <∞,

where C ′ depends on q , n, the CAD character of D, the implicit constants in (5.2) and (5.25), the
constant C in (1.22), and κ; and where X+

D is any interior corkscrew point of D at the scale of diam(∂D).
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We mention one further result that is stated in full detail below as Theorem 6.1. The interior bound (6.2)
is, again, a fairly harmless prerequisite which follows from known interior estimates in the context of
solutions of elliptic PDEs. We remark that the estimate (1.24) itself (see below) would not make much sense
for general uniformly rectifiable sets because of topological obstructions (there is no preferred component
for a corkscrew point in such a general context), and for that reason we pass directly to ε-approximability.

Theorem 1.23. Let E ⊂ Rn+1 be an n-dimensional uniformly rectifiable, and suppose that

u ∈ W 1,2
loc (R

n+1
\ E)∩ C(Rn+1

\ E)∩ L∞(Rn+1
\ E)

satisfies (6.2). Assume, in addition, that

∥∇u∥CME(Rn+1\E) ≤ C ′

0∥u∥L∞(Rn+1\E)

and that for every bounded chord-arc subdomain �⊂ Rn+1
\ E

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C∥S�u∥L2(∂�) (1.24)

holds with a constant depending on n and the CAD character of �, and where X+

� is any interior
corkscrew point of � at the scale of diam(∂�). Then u is ε-approximable on Rn+1

\ E , with the implicit
constants depending on n, the UR character of E , the constant in (6.2) and in C ′

0.

Theorem 1.23/Theorem 6.1 is simply a formalization of results that were implicit in [Hofmann et al.
2016], and we state it here, without proof, for the record.

Let us reiterate that the fact that our results provide a “black box” real-variable transference principle
allows one to use them considerably beyond the traditional scope. We can treat, for instance, subsolutions
and supersolutions of elliptic equations. Another example is higher-order elliptic systems. The best
available results to date in this context are restricted to Lipschitz domains [Dahlberg et al. 1997]. Here
we establish, for instance, the following estimates.

Let K ,m ∈N. Let E be an n-dimensional uniformly rectifiable set and u be a weak solution to the system

Lu =

K∑
k=1

∑
|α|=|β|=m

a jk
αβ∂

α∂βuk
= 0, j = 1, . . . , K ,

on Rn+1
\ E . Here, a jk

αβ , 1 ≤ α, β ≤ n + 1, 1 ≤ j, k ≤ K, α = (α1, . . . , αn+1) ∈ Nn+1
0 are real constant

symmetric coefficients satisfying the Legendre–Hadamard ellipticity condition (see (7.18)). Then u
satisfies the S < N estimates in Rn+1

\ E , that is,

∥SRn+1\E(∇
m−1u)∥L p(E) ≤ C∥N∗,Rn+1\E(|∇

m−1u|)∥L p(E), 0< p <∞.

Furthermore, if D ⊂ Rn+1 is a chord-arc domain with an unbounded boundary and ∇
m−1u vanishes at

infinity, we also have the converse estimate

∥N∗,D(∇
m−1u)∥Lq (∂D) ≤ C∥SD(∇

m−1u)∥Lq (∂D) for all 0< q <∞.

Similar results are valid locally and on bounded domains. We also obtain a version of ε-approximability
and Carleson measure estimates in this general context. The reader can consult Section 7 for a detailed
discussion of these results and other applications.
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Let us conclude this introduction with an outline of the organization of the paper. In Section 2, we
develop some preliminary material, including notation and definitions, and we state some known results
that will be useful in the sequel.

In Section 3, we give the proof of Theorem 1.19, showing first that Carleson measure estimates
(“CME”) may be transferred from Lipschitz subdomains to chord-arc domains (part (i)), and then from
chord-arc subdomains to the complement of a uniformly rectifiable set (part (ii)). As noted above, the
first step is new, while the second step is a very general version of a result whose proof was implicit in
[Hofmann et al. 2016], established here by a simpler argument than in that work. These results, along with
those in Section 5, comprise the main new contributions of the paper (although some of our applications
in Section 7 are also novel).

In Section 4, we prove Theorem 1.20/Theorem 4.8, in which, using the well-known technique of
good-λ inequalities, we show that abstract versions of CME are equivalent to abstract versions of so-called
“S < N” bounds (in the generality that we consider here, the notation A< N seems more appropriate),
which express the control of a square function by a nontangential maximal function, in L p norm.

In Section 5, we consider the reverse “N < S” bounds (see Theorem 1.21 above), and show that these
may be transferred from Lipschitz subdomains to chord-arc domains.

In Section 6, we state a detailed version of Theorem 1.23.
We note that the results in Sections 3–6 are of a purely real-variable nature, and we do not assume,

per se, that we are dealing with solutions (or sub/supersolutions) of a PDE, although at certain points we
do impose abstract versions of Caccioppoli’s inequality and/or Moser’s local boundedness.

Finally, in Section 7, we present several PDE applications of our abstract results.

2. Preliminaries

We start with some further notation and definitions.

• We use the letters c,C to denote harmless positive constants, not necessarily the same at each occurrence,
which depend only on dimension and the constants appearing in the hypotheses of the theorems (which
we refer to as the “allowable parameters”). We shall also sometimes write a ≲ b and a ≈ b to mean,
respectively, that a ≤ Cb and 0< c ≤ a/b ≤ C, where the constants c and C are as above, unless explicitly
noted to the contrary. At times, we shall designate by M a particular constant whose value will remain
unchanged throughout the proof of a given lemma or proposition, but which may have a different value
during the proof of a different lemma or proposition.

• Given a closed set E ⊂ Rn+1, we shall use lower case letters x, y, z, etc., to denote points on E , and
capital letters X, Y, Z , etc., to denote generic points in Rn+1 (especially those in Rn+1

\ E).

• The open (n+1)-dimensional Euclidean ball of radius r will be denoted by B(x, r)when the center x lies
on E , or B(X, r) when the center X lies in Rn+1

\ E . A surface ball is denoted by 1(x, r) := B(x, r)∩ E
where unless otherwise specified we implicitly assume that x ∈ E .

• Given a Euclidean ball B or surface ball 1, its radius will be denoted rB or r1, respectively.
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• Given a Euclidean or surface ball B = B(X, r) or 1 = 1(x, r), its concentric dilate by a factor of
κ > 0 will be denoted by κB := B(X, κr) or κ1 :=1(x, κr).

• Given a (fixed) closed set E ⊂ Rn+1, for X ∈ Rn+1, we set δ(X) := dist(X, E).

• We let H n denote n-dimensional Hausdorff measure, and let σ := H n
|E denote the “surface measure”

on E .

• We will also work with open sets �⊂ Rn+1 in which case the previous notation and definitions easily
adapt by letting E := ∂�.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e., 1A(x)= 1 if x ∈ A,
and 1A(x)= 0 if x /∈ A.

• For a Borel set A ⊂ Rn+1, we let int(A) denote the interior of A.

• Given a Borel measure µ, and a Borel set A, with positive and finite µ measure, we set −

∫
A f dµ :=

µ(A)−1
∫

A f dµ.

• We shall use the letter I (and sometimes J ) to denote a closed (n+1)-dimensional Euclidean dyadic
cube with sides parallel to the coordinate axes, and we let ℓ(I ) denote the side length of I. If ℓ(I )= 2−k,
then we set kI := k. Given an ADR set E ⊂ Rn+1, we use Q to denote a dyadic “cube” on E . The latter
exist (see [David and Semmes 1991; Christ 1990]) and enjoy certain properties which we enumerate in
Lemma 2.1 below.

Lemma 2.1 (existence and properties of the “dyadic grid” [David and Semmes 1991; 1993; Christ 1990]).
Suppose that E ⊂ Rn+1 is an n-dimensional ADR set. Then there exist constants a0 > 0, γ > 0 and
C1<∞, depending only on dimension and the ADR constant, such that for each k ∈ Z there is a collection
of Borel sets (“cubes”)

Dk := {Qk
j ⊂ E : j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying:

(i) E =
⋃

j Qk
j for each k ∈ Z.

(ii) If m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j = ∅.

(iii) For each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i .

(iv) diam(Qk
j )≤ C12−k .

(v) Each Qk
j contains some “surface ball” 1(xk

j , a02−k) := B(xk
j , a02−k)∩ E.

(vi) H n({x ∈ Qk
j : dist(x, E \ Qk

j )≤ ϱ2−k
})≤ C1ϱ

γ H n(Qk
j ) for all k, j and for all ϱ ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been proved in [Christ 1990],
with the dyadic parameter 1

2 replaced by some constant δ ∈ (0, 1). In fact, one may always take δ=
1
2 (see

[Hofmann et al. 2017b, proof of Proposition 2.12]). In the presence of the Ahlfors–David property (1.2),
the result already appears in [David and Semmes 1991; 1993].
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• For our purposes, we may ignore those k ∈ Z such that 2−k ≳ diam(E), in the case that the latter is
finite.

• We shall denote by D = D(E) the collection of all relevant Qk
j , i.e.,

D :=

⋃
k

Dk,

where, if diam(E) is finite, the union runs over those k such that 2−k ≲ diam(E). When E is bounded,
there exists a cube Q0 ∈ D(∂�) such that Q0 = ∂� and Q ∈ DQ0 for any Q ∈ D(∂�).

• For a dyadic cube Q ∈ Dk , we shall set ℓ(Q)= 2−k, and we shall refer to this quantity as the “length”
of Q. Evidently, ℓ(Q)≈ diam(Q).

• For a dyadic cube Q ∈ D, we let k(Q) denote the “dyadic generation” to which Q belongs, i.e., we set
k = k(Q) if Q ∈ Dk ; thus, ℓ(Q)= 2−k(Q).

• Given Q ∈ D we write Q̃ to denote the dyadic parent of Q, that is, the unique dyadic cube Q̃ with
Q ⊂ Q̃ and ℓ(Q̃)= 2ℓ(Q). Also, the children of Q are the dyadic cubes Q′

⊂ Q with ℓ(Q′)= ℓ(Q)/2.

• Properties (iv) and (v) imply that, for each cube Q ∈ D, there is a point xQ ∈ E , a Euclidean ball
B(xQ, r) and a surface ball 1(xQ, r) := B(xQ, r)∩ E such that cℓ(Q) ≤ r ≤ ℓ(Q) for some uniform
constant 0< c < 1 and

1(xQ, 2r)⊂ Q ⊂1(xQ,Cr) (2.2)

for some uniform constant C. We shall denote this ball and surface ball by

BQ := B(xQ, r), 1Q :=1(xQ, r), (2.3)

and we shall refer to the point xQ as the “center” of Q.

Definition 2.4. Let E ⊂ Rn+1 be an n-dimensional ADR set. By MD
= MD(E) we denote the dyadic

Hardy–Littlewood maximal function on E , that is, for f ∈ L1
loc(E)

MD f (x)= sup
x∈Q∈D(E)

−

∫
Q

| f (y)| dσ(y),

and, for 0< p <∞, we also write MD
p f = MD(| f |

p)1/p. Analogously, if Q0 ∈ D(E), we write MD
Q0

for
the dyadic Hardy–Littlewood maximal function localized to Q0,

MD
Q0

f (x)= sup
x∈Q∈DQ0

−

∫
Q

| f (y)| dσ(y),

where DQ0(E)= {Q ∈ D(E) : Q ⊂ Q0}, and, for 0< p <∞, we also write MD
Q0,p f = MD

Q0
(| f |

p)1/p.

Let � ⊂ Rn+1 be an open set so that ∂� is ADR. LetW =W(�) denote a collection of (closed)
dyadic Whitney cubes of �, so that the cubes inW form a pairwise nonoverlapping covering of �, which
satisfy

4 diam(I )≤ dist(4I, E)≤ dist(I, ∂�)≤ 40 diam(I ) for all I ∈W (2.5)
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(just dyadically divide the standard Whitney cubes, as constructed in [Stein 1970, Chapter VI], into cubes
with side length 1

8 as large) and also

1
4 diam(I1)≤ diam(I2)≤ 4 diam(I1),

whenever I1 and I2 touch.
Next, we choose a small parameter 0 < τ0 < 2−4 (depending only on dimension), so that for any

I ∈W, and any τ ∈ (0, τ0], the concentric dilate I ∗(τ ) := (1 + τ)I still satisfies the Whitney property

diam I ≈ diam I ∗(τ )≈ dist(I ∗(τ ), ∂�)≈ dist(I, ∂�), 0< τ ≤ τ0. (2.6)

Moreover, for τ ≤ τ0 small enough, and for any I, J ∈W, we have that I ∗(τ ) meets J ∗(τ ) if and only if
I and J have a boundary point in common, and that, if I ̸= J, then I ∗(τ ) misses 3J/4.

Definition 2.7 (Whitney-dyadic structure). Let � ⊂ Rn+1 be an open set so that ∂� is ADR. Let
W =W(�) denote a collection of (closed) dyadic Whitney cubes of � as in (2.5). Let D = D(∂�) be
the collection of dyadic cubes from Lemma 2.1 and given the parameters η < 1 and K > 1, set

W0
Q := {I ∈W : η

1
4 ℓ(Q)≤ ℓ(I )≤ K

1
2 ℓ(Q), dist(I, Q)≤ K

1
2 ℓ(Q)}, (2.8)

A Whitney-dyadic structure for � with parameters η and K is a family {WQ}Q∈D ⊂W satisfying the
following conditions:

(i) W0
Q ̸= ∅ for every Q ∈ D.

(ii) W0
Q ⊂WQ for every Q ∈ D.

(iii) There exists C ≥ 1 such that, for every Q ∈ D,

C−1η
1
2 ℓ(Q)≤ ℓ(I )≤ C K

1
2 ℓ(Q) for all I ∈WQ,

dist(I, Q)≤ C K
1
2 ℓ(Q) for all I ∈WQ .

(2.9)

In principle, for the previous definition, η and K are arbitrary, but we will typically need to assume
that η is sufficiently small and K is sufficiently large. We will do so and as a consequence the constant C
will be independent of η and K and will depend on dimension, ADR, and some other intrinsic constants
depending on the different scenarios on which we work. In particular, it is convenient to assume, and we
will do so, that K ≥ 402n so that given any I ∈W such that ℓ(I )≲ diam(E), if we write Q∗

I for (one)
nearest dyadic cube to I with ℓ(I )= ℓ(Q∗

I ) then I ∈W0
Q∗

I
⊂WQ∗

I
. Note that there can be more than one

choice of Q∗

I , but at this point we fix one so that in what follows Q∗

I is unambiguously defined.
Below we will discuss a few special cases depending on whether we have some extra information

about � or ∂�. The main idea consists in constructing some kind of “Whitney regions” which will allow
us to introduce some “Carleson boxes” and “sawtooth subdomains”. The construction of the Whitney
regions depends very much on the background assumptions, having extra information about � or ∂�
will allow us to augment the collectionsW0

Q to defineWQ so that we gain some connectivity on the
corresponding Whitney regions and hence the resulting subdomains would have better properties. We
consider four cases. In the first one, treated in Section 2.1, we assume only that �= Rn+1

\ E , where
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E is ADR (but is not necessarily UR) and we setWQ =W0
Q (here we do not gain any connectivity).

The second case is considered in Section 2.2 and deals with � = Rn+1
\ E, where E is UR, in which

case we can invoke Lemma 2.42 below and use the Lipschitz graphs associated to the good regimes so
that the augmented collectionWQ creates two nice Whitney regions, one each lying respectively above
and below the Lipschitz graph. Third, when � is a 1-sided CAD we can augmentW0

Q using that D is
Harnack chain connected so that the resulting collectionsWQ give some Whitney regions which produce
Carleson boxes and sawtooth subdomains which are 1-sided CAD; see Section 2.3. We repeat the same
construction in our last case in Section 2.4, where � is a CAD. The fact that � satisfies the exterior
corkscrew condition allows us to conclude that Carleson boxes and sawtooth subdomains are as well.

To continue with our discussion let �⊂ Rn+1 be an open set so that ∂� is ADR. LetW=W(�) and
D = D(∂�) be as above and let {WQ}Q∈D be a Whitney-dyadic structure for � with some parameters η
and K (we will assume that η is sufficiently small and K is sufficiently large). Fix 0< τ ≤ τ0/4 as above.
Given an arbitrary Q ∈ D, we may define an associated Whitney region UQ (not necessarily connected), as

UQ = UQ,τ :=

⋃
I∈WQ

I ∗(τ ). (2.10)

For later use, it is also convenient to introduce some fattened version of UQ

ÛQ = UQ,2τ :=

⋃
I∈WQ

I ∗(2τ). (2.11)

When the particular choice of τ ∈ (0, τ0] is not important, for the sake of notational convenience, we may
simply write I ∗ and UQ in place of I ∗(τ ) and UQ,τ .

We may also define the Carleson box relative to Q ∈ D, by

TQ = TQ,τ := int
( ⋃

Q′∈DQ

UQ,τ

)
, (2.12)

where
DQ := {Q′

∈ D : Q′
⊂ Q}. (2.13)

Let us note that we may choose K large enough so that, for every Q,

TQ,τ ⊂ TQ,τ0 ⊂ B∗

Q := B(xQ, Kℓ(Q)). (2.14)

We also observe that for any N ≥ 1 we have

BQ ∩�⊂ TQ,τ/N . (2.15)

To see this, let Y ∈ BQ ∩� = B(xQ, r)∩� (see (2.2), (2.3)) and pick I ∈W with I ∋ Y. Note that
ℓ(I )≤ dist(I, ∂�)/4 ≤ |Y − xQ |/4< r/4 ≤ ℓ(Q)/4. Take ŷ ∈ Q so that dist(Y, Q)= |Y − ŷ| and select
QY ∋ ŷ with ℓ(QY )= ℓ(I )≤ ℓ(Q)/4. Thus, QY ∈ DQ and

dist(I, QY )≤ |Y − ŷ| = dist(Y, Q)≤ |Y − xQ |< r ≤ ℓ(Q).

All these show that I ∈W0
Q ⊂WQ and consequently Y ∈ int(I ∗(τ/N ))⊂ TQ,τ/N as desired.
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It is convenient to introduce the Carleson box T1 relative to 1=1(x, r), with x ∈ ∂� and 0< r <
diam(∂�). Let k(1) denote the unique k ∈ Z such that 2−k−1 < 200r ≤ 2−k and set

D1
:= {Q ∈ Dk(1) : Q ∩ 21 ̸= ∅}.

We then define

T1 = T1,τ := int
( ⋃

Q∈D1

TQ

)
. (2.16)

Much as in [Hofmann and Martell 2014, (3.60)] if we write B1 = B(x, r) so that 1= B1 ∩ E , we have
by taking K possibly larger

5
4 B1 ∩�⊂ T1 ⊂ B(x, Kr)∩�. (2.17)

For future reference, we also introduce dyadic sawtooth regions as follows. Given a family F of
disjoint cubes {Q j } ⊂ D, we define the global discretized sawtooth relative to F by

DF := D \

⋃
F

DQ j , (2.18)

i.e., DF is the collection of all Q ∈ D that are not contained in any Q j ∈ F. Given some fixed cube Q,
the local discretized sawtooth relative to F by

DF ,Q := DQ \

⋃
F

DQ j = DF ∩ DQ . (2.19)

Note that we can also allow F to be empty in which case D∅ = D and D∅,Q = DQ .
Similarly, we may define geometric sawtooth regions as follows. Given a family F ⊂ D of disjoint

cubes as before, we define the global sawtooth and the local sawtooth relative to F by respectively

�F := int
( ⋃

Q′∈DF

UQ′

)
, �F ,Q := int

( ⋃
Q′∈DF ,Q

UQ′

)
. (2.20)

Note that �∅,Q = TQ . For the sake of notational convenience, we set

WF :=

⋃
Q′∈DF

WQ′, WF ,Q :=

⋃
Q′∈DF ,Q

WQ′, (2.21)

so that in particular, we may write

�F ,Q = int
( ⋃

I∈WF ,Q

I ∗

)
. (2.22)

Finally, for every x ∈ ∂�, we define nontangential approach regions, dyadic cones, as

0(x)=

⋃
Q∈D:Q∋x

UQ . (2.23)

Their local (or truncated) versions are given by

0Q(x)=

⋃
Q′∈DQ :Q′∋x

UQ′, x ∈ Q. (2.24)
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When ∂� is bounded, there exists a cube Q0 ∈D(∂�) such that Q0 = ∂� and Q ∈DQ0 for any Q ∈D(∂�).
In particular, 0Q( · )⊂ 0Q0( · )⊂ {X ∈� : dist(X, ∂�)≲ diam(∂�)} and all the cones are bounded.

Note that all the previous objects have been defined using the Whitney regions UQ (made out of dilated
Whitney cubes I ∗(τ )). One can analogously use the fattened Whitney regions ÛQ (composed of the union
of dilated Whitney cubes I ∗(2τ)). In that case we will use the notation T̂Q , T̂1, �̂F , �̂F ,Q , 0̂( · ), 0̂Q( · ).

We will always assume that K is large enough (say K ≥ 104n) so that 0̂�,1(x) ⊂ 0(x) (see (1.14))
for every x ∈ ∂�. Indeed, let Y ∈ 0�,1(x) and pick I ∈W with Y ∈ I. Take Q ∈ D with Q ∋ x and
ℓ(Q)= ℓ(I ). Then,

dist(I, Q)≤ |Y − x | ≤ 2 dist(Y, ∂�)≤ 2(diam(I )+ dist(I, ∂�))≤ 82 diam(I ) < 100
√

nℓ(Q).

Hence, I ∈W0
Q ⊂WQ provided 100

√
n ≤

√
K and thus I ⊂ UQ ⊂ 0(x) as desired.

Remark 2.25. It is convenient to introduce a condition on interior Whitney balls that is much weaker
than CME itself. Let �⊂ Rn+1 be an open set. For every F ∈ L2

loc(�) we set

∥F∥C0(�) := sup
X∈�

1
δ(X)n−1

∫∫
B(X,δ(X)/2)

|F(Y )|2 dY, (2.26)

where δ( · )= dist( · , ∂�).
Note that for any X ∈ � we have that B(X, δ(X)/2) ⊂ B(x̂, 3δ(X)/2) ∩ � with x̂ ∈ ∂� so that

δ(X)= |X − x̂ |, and δ(Y )≥ δ(X)/2 for every Y ∈ B(X, δ(X)/2). Hence,

∥F∥C0(�) ≤ 2
( 3

2

)n
∥F∥CME(�), (2.27)

and ∥F∥C0(�) <∞ is necessary for (1.10) to hold.
We note that in all applications to the CME for solutions of elliptic PDEs, ∥F∥C0(�) will be bounded

automatically, by Caccioppoli’s inequality (since F will be of the form ∇u or ∇
mu with u being a bounded

solution). We shall discuss this in more detail together with the corresponding applications.

We introduce a dyadic version of Definition 1.9. Given �⊂ Rn+1, an open set with ∂� being ADR,
let {WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with some parameters η and K. We define, for
every F ∈ L2

loc(�),

∥F∥CMEdyad(�) := sup
Q∈D(∂�)

1
σ(Q)

∫∫
TQ

|F(X)|2 dist(X, ∂�) d X. (2.28)

We are going to show that

∥F∥CME(�) ≲ ∥F∥CMEdyad(�) + ∥F∥C0(�). (2.29)

To obtain this, fix x ∈ ∂� and 0< r <∞. SetWx,r = {I ∈W(�) : I ∩ B(x, r) ̸=∅} and note that given
I ∈Wx,r , if we pick Z I ∈ I ∩ B(x, r), then (2.5) implies

diam(I )≤ dist(I, ∂�)≤ |Z I − x |< r. (2.30)

Set

W small
x,r = {I ∈Wx,r : ℓ(I ) < diam(∂�)/4}, Wbig

x,r = {I ∈Wx,r : ℓ(I )≥ diam(∂�)/4},
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with the understanding thatWbig
x,r =∅ if diam(∂�)= ∞. Using this notation and writing δ= dist( · , ∂�)

we have ∫∫
B(x,r)∩�

|F |
2δ d X ≤

∑
I∈Wsmall

x,r

∫∫
I
|F |

2δ d X +

∑
I∈Wbig

x,r

∫∫
I
|F |

2δ d X = I + II, (2.31)

where we understand that II = 0 ifWbig
x,r = ∅.

To estimate I we set r0 = min{r, diam(∂�)/4} and pick k2 ∈ Z so that 2k2−1
≤ r0 < 2k2 . Set

D1 = {Q ∈ D(∂�) : ℓ(Q)= 2k2, Q ∩ B(x, 3r) ̸= ∅}.

Given I ∈W small
x,r we pick y ∈∂� so that dist(I, ∂�)=dist(I, y). Hence there exists a unique Q I ∈D(∂�)

so that y ∈ Q I and ℓ(Q I )= ℓ(I ) < r0 ≤ diam(∂�)/4 by (2.30). Also,

dist(I, Q I )≤ dist(I, y)= dist(I, ∂�)≤ 40 diam(I )= 40
√

nℓ(Q).

This implies that I ∈W0
Q I

⊂WQ I , provided 0< η ≤ 1 and K ≥ 40
√

n. On the other hand, by (2.30)

|y − x | ≤ dist(y, I )+ diam(I )+ |Z I − x |< 3r;

hence there exists a unique Q ∈D1 so that y ∈ Q. Since ℓ(Q I ) < r0 < 2k2 = ℓ(Q), we conclude that
Q I ⊂ Q and consequently I ⊂ int(UQ I )⊂ TQ . In short we have shown that if I ∈W small

x,r , there exists
Q ∈D1 so that I ⊂ TQ . Thus,

I ≲
∑

Q∈D1

∫∫
TQ

|F |
2δ d X ≤ ∥F∥CMEdyad(�)

∑
Q∈D1

σ(Q)≲ ∥F∥CMEdyad(�)r
n,

where we have used the fact that D1 is a pairwise disjoint family, that
⋃

Q∈D1
Q ⊂ B(x,Cr)∩ ∂� (with

C depending on dimension and ADR), and that ∂� is ADR.
We now estimate II when nonempty, in which case diam(∂�)<∞. Using the properties of the Whitney

cubes and recalling (2.26) we arrive at

II ≲
∑

I∈Wbig
x,r

ℓ(I )
∫∫

I
|F |

2 d X ≲ ∥F∥C0(�)

∑
I∈Wbig

x,r

ℓ(I )n≤ ∥F∥C0(�)

∑
diam(∂�)/4≤2k<r

2kn#{I ∈Wbig
x,r : ℓ(I )= 2k

}.

To estimate the last term we observe that if Y ∈ I ∈W
big

x,r we have by (2.5)

|Y − x | ≤ diam(I )+ dist(I, ∂�)+ diam(∂�)≲ ℓ(I ).

This and the fact that Whitney cubes have nonoverlapping interiors imply

#{I ∈Wbig
x,r : ℓ(I )= 2k

} = 2−k(n+1)
∑

I∈Wbig
x,r :ℓ(I )=2k

|I |

= 2−k(n+1)
∣∣∣∣ ⋃

I∈Wbig
x,r :ℓ(I )=2k

I
∣∣∣∣ ≤ 2−k(n+1)

|B(x,C2k)| ≲ 1. (2.32)
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Therefore,

II ≲ ∥F∥C0(�)

∑
diam(∂�)/4≤2k<r

2kn ≲ ∥F∥C0(�)r
n.

Collecting the estimates for I and II we obtain (2.29).

Definition 2.33 (dyadic nontangential maximal function, area integral, and square function). Let�⊂Rn+1

be an open set with ∂� being ADR and let {WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with
some parameters η and K. For H ∈ C(�) (i.e., H is continuous function in �), we define the dyadic
nontangential maximal function as

N∗H(x) := sup
Y∈0(x)

|H(Y )|, x ∈ ∂�; (2.34)

for G ∈ L2
loc(�), we define the dyadic area integral as

AG(x) :=

(∫∫
0(x)

|G(Y )|2 dist(Y, E)1−n dY
)1

2

, x ∈ ∂�; (2.35)

and, for u ∈ W 1,2
loc (�), we define the dyadic square function as

Su(x) :=

(∫∫
0(x)

|∇u(Y )|2 dist(Y, ∂�)1−n dY
)1

2

, x ∈ ∂�. (2.36)

For any Q ∈ D(∂�), we write N Q
∗ , AQ , and SQ to denote the local (or truncated) dyadic nontangential

maximal function, area integral, and square function respectively, where 0( · ) is replaced by the local
cone 0Q( · ). Finally, N̂∗, Â, Ŝ or N̂ Q

∗ , ÂQ , ŜQ stand for the corresponding objects associated to the
fattened cones 0̂( · ) or their local versions 0̂Q( · ).

Remark 2.37. It is convenient to compare the two types of cones, the “traditional” and the dyadic (see
(1.14) and (2.23)). Fix a Whitney-dyadic structure {WQ}Q∈D(∂�) for � with parameters η and K. It is
straightforward to see that there exists κ such that the dyadic cones 0(x) are contained in 0�(x) for all
x ∈ ∂�. Indeed, if Y ∈ I ∗(2τ) with I ∈WQ and Q ∋ x then by (2.9)

|Y − x | ≤ diam(I ∗(2τ))+ dist(I, Q)+ diam(Q)≲ K
1
2 ℓ(Q)≲ K

1
2η−

1
2 ℓ(I )

≲ K
1
2η−

1
2 dist(I, ∂�)≤ K

1
2η−

1
2 dist(Y, ∂�);

hence Y ∈0�,K 1/2η−1/2(x). And we have shown that 0(x)⊂ 0̂(x)⊂0�,K 1/2η−1/2 . Conversely, given κ > 0,
there exist η and K (depending on κ) such that if {WQ}Q∈D(∂�) is a Whitney-dyadic structure for � with
parameters η and K then 0�,κ(x) ⊂ 0(x) for all x ∈ ∂�. As a matter of fact, given Y ∈ 0�,κ(x), let
I ∈W with I ∋ Y and pick Q ∈ D(∂�) with Q ∋ x and ℓ(I )= ℓ(Q) (recall that if ∂� is bounded we
have assumed that δ(Y )≲ diam(∂�), hence such a cube Q always exists). Then,

dist(I, Q)≤ |Y −x | ≤ (1+κ) dist(Y, ∂�)≤ (1+κ)(diam(I )+dist(I, ∂�))≲ (1+κ)ℓ(I )= (1+κ)ℓ(Q).

Thus, if K 1/2
≫ 1 + κ , then I ∈W0

Q ⊂WQ and Y ∈ I ⊂ UQ ⊂ 0(x) as desired.
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Remark 2.38. In the previous remark we were able to compare the dyadic and the traditional cones and
this gives comparisons between the associated nontangential maximal functions, area integrals, or square
functions by adjusting the different parameters. It is also convenient to see how to incorporate the “change
on the aperture” on the traditional cones via or on the dyadic cones. In the case of traditional cones this
amounts to considering different values of the aperture κ . For the dyadic cones one can “change the
aperture” using UQ = UQ,τ versus ÛQ = UQ,2τ , or even by considering Whitney-dyadic structures with
different parameters.

In the case of the traditional cones, one has, for every 0< p <∞ and κ, κ ′ and for every F ∈ C(�)
and G ∈ W 1,2

loc (�),

∥N∗,�,κF∥L p(∂�) ≈κ,κ ′ ∥N∗,�,κ ′ F∥L p(∂�), ∥A�,κG∥L p(∂�) ≲κ,κ ′ ∥A�,κ ′ G∥L p(∂�). (2.39)

The first estimate can be found in [Hofmann et al. 2010, Proposition 2.2]. For the second estimate we refer
to [Milakis et al. 2013, Proposition 4.5] in the case of � being a CAD, a simpler argument (valid also in
the former case) can be carried out by adapting [Martell and Prisuelos-Arribas 2017, Proposition 3.2(i)].
Further details are left to the interested reader.

For the dyadic cones, Remark 2.37 says that if {WQ}Q∈D(∂�) is a Whitney-dyadic structure for � with
parameters η≪ 1 and K ≫ 1 then 0(x)⊂ 0̂(x)⊂0�,κ(x) for some large κ > 0 and for every x ∈ ∂�. On
the other hand, let {W′

Q}Q∈D(∂�) be a Whitney-dyadic structure for � with parameters η′
≪ 1 and K ′

≫ 1
and we write 0′(x) for the associated dyadic cone. As observed before we have that 0�,1(x) ⊂ 0′(x).
Write N∗ and A (resp. N ′

∗
and A ′) as in (2.34) and (2.35) for the cones 0 (resp. 0′). These and (2.39)

allow us to obtain that for every 0< p <∞ and for every F ∈ C(�)

∥N∗F∥L p(∂�) ≤ ∥N̂∗F∥L p(∂�) ≤ ∥N∗,�,κF∥L p(∂�) ≲κ ∥N∗,�,1 F∥L p(∂�) ≤ ∥N ′

∗
F∥L p(∂�)

and, for every G ∈ W 1,2
loc (�),

∥AG∥L p(∂�) ≤ ∥ÂG∥L p(∂�) ≤ ∥A�,κG∥L p(∂�) ≲κ ∥A�,1G∥L p(∂�) ≤ ∥A ′G∥L p(∂�).

2.1. Case ADR. Here we assume that �= Rn+1
\ E , where E is merely ADR, but possibly not UR. Let

us setWQ =W0
Q (see (2.8)) and we clearly have (ii) and (iii) with C = 1 in Definition 2.7. For (i), we

see thatW0
Q is nonempty, provided that we choose η small enough, and K large enough, depending only

on dimension and the ADR constant of E . Indeed, given Q ∈ D(E), consider the ball BQ = B(xQ, r),
as defined in (2.2), (2.3), with r ≈ ℓ(Q), so that 1Q = BQ ∩ E ⊂ Q. By [Hofmann and Martell 2014,
Lemma 5.3], we have that, for some C = C(n, ADR),

|{Y ∈ Rn+1
\ E : dist(Y, E) < εr} ∩ BQ | ≤ Cεrn+1

for every 0 < ε < 1. Consequently, fixing 0 < ε0 < 1 small enough, there exists X Q ∈ BQ/2, with
dist(X Q, E)≥ ε0r . Thus, B(X Q, ε0r/2)⊂ BQ \ E . We shall refer to this point X Q as a “corkscrew point”
relative to Q, that is, relative to the surface ball 1Q (see (2.2) and (2.3)). Now observe that X Q belongs
to some Whitney cube I ∈W, which will belong toW0

Q for η small enough and K large enough. Hence,
{WQ}Q∈D(E) is a Whitney-dyadic structure for Rn+1

\ E .
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In [Hofmann et al. 2016] it was shown that the ADR property is inherited by all dyadic local sawtooths
and all Carleson boxes:

Proposition 2.40 [Hofmann et al. 2016, Proposition A.2]. Let E ⊂ Rn+1 be a closed n-dimensional ADR
set and let {WQ}Q∈D(E) be a Whitney-dyadic structure for Rn+1

\ E with parameters η≪ 1 and K ≫ 1.
Then all dyadic local sawtooths �F ,Q and all Carleson boxes TQ have n-dimensional ADR boundaries.
In all cases, the implicit constants are uniform and depend only on dimension, the ADR constant of E and
the parameters η, K, and τ .

2.2. Case UR. Here we assume that � = Rn+1
\ E, where we further assume that E is UR. Much as

before, since E is in particular ADR, if we take η≪ 1 and K ≫ 1 (depending on n and the ADR constant
of E), we can guarantee thatW0

Q ̸= ∅. In this case we will exploit the additional fact that E is UR to
construct some Whitney-dyadic structure with better properties. To do so, we would like to recall some
results from [Hofmann et al. 2016] but we first give a definition to then continue with the main geometric
lemma there.

Definition 2.41 [David and Semmes 1993]. . Let S ⊂ D(E). We say that S is “coherent” if the following
conditions hold:

(a) S contains a unique maximal element denoted by Q(S) which contains all other elements of S as
subsets.

(b) If Q belongs to S, and if Q ⊂ Q̃ ⊂ Q(S), then Q̃ ∈ S.

(c) Given a cube Q ∈ S, either all of its children belong to S, or none of them do.

We say that S is “semicoherent” if only conditions (a) and (b) hold.

Lemma 2.42 (the bilateral corona decomposition [Hofmann et al. 2016, Lemma 2.2]). Suppose that
E ⊂ Rn+1 is n-dimensional UR. Then given any positive constants η≪ 1 and K ≫ 1, there is a disjoint
decomposition D(E)= G∪B, satisfying the following properties.

(i) The “good” collection G is further subdivided into disjoint stopping time regimes such that each such
regime S is coherent (see Definition 2.41).

(ii) The “bad” cubes, as well as the maximal cubes Q(S) satisfy a Carleson packing condition:∑
Q′⊂Q,Q′∈B

σ(Q′)+
∑

S:Q(S)⊂Q

σ(Q(S))≤ Cη,Kσ(Q) for all Q ∈ D(E).

(iii) For each S, there is a Lipschitz graph 0S, with Lipschitz constant at most η, such that, for every
Q ∈ S,

sup
x∈1∗

Q

dist(x, 0S)+ sup
y∈B∗

Q∩0S

dist(y, E) < ηℓ(Q), (2.43)

where B∗

Q := B(xQ, Kℓ(Q)) and 1∗

Q := B∗

Q ∩ E.

As we have assumed that E is UR we make the corresponding bilateral corona decomposition of
Lemma 2.42 with η ≪ 1 and K ≫ 1. Our goal is to construct, for each stopping time regime S in
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Lemma 2.42, a pair of CAD domains �±

S , which provide a good approximation to E , at the scales
within S, in some appropriate sense. To be a bit more precise, �S := �+

S ∪�−

S will be constructed as
a sawtooth region relative to some family of dyadic cubes, and the nature of this construction will be
essential to the dyadic analysis that we will use below.

Given Q ∈ D(E), for this choice of η and K, we set as above B∗

Q := B(xQ, Kℓ(Q)), where we recall
that xQ is the center of Q (see (2.2), (2.3)). For a fixed stopping time regime S, we choose a coordinate
system so that 0S = {(z, ϕS(z)) : z ∈ Rn

}, where ϕS : Rn
→ R is a Lipschitz function with ∥ϕ∥Lip ≤ η.

Claim 2.44 [Hofmann et al. 2016, Claim 3.4]. If Q ∈ S, and I ∈W0
Q , then I lies either above or

below 0S. Moreover, dist(I, 0S) ≥ η1/2ℓ(Q) (and therefore, by (2.43), dist(I, 0S) ≈ dist(I, E), with
implicit constants that may depend on η and K ).

Next, given Q ∈ S, we augment W0
Q . We split W0

Q =W
0,+
Q ∪W

0,−
Q , where I ∈W

0,+
Q if I lies

above 0S, and I ∈W
0,−
Q if I lies below 0S. Choosing K large and η small enough, by (2.43), we

may assume that bothW0,±
Q are nonempty. We focus onW0,+

Q , as the construction forW0,−
Q is the same.

For each I ∈W
0,+
Q , let X I denote the center of I. Fix one particular I0 ∈W

0,+
Q , with center X+

Q := X I0 .
Let Q̃ denote the dyadic parent of Q (that is, the unique dyadic cube Q̃ with Q ⊂ Q̃ and ℓ(Q̃)= 2ℓ(Q)),
unless Q = Q(S); in the latter case we simply set Q̃ = Q. Note that Q̃ ∈ S, by the coherency of S. By
Claim 2.44, for each I inW0,+

Q , or inW0,+
Q̃

, we have

dist(I, E)≈ dist(I, Q)≈ dist(I, 0S),

where the implicit constants may depend on η and K. Thus, for each such I, we may fix a Harnack chain,
call it HI , relative to the Lipschitz domain

�+

0S
:= {(x, t) ∈ Rn+1

: t > ϕS(x)},

connecting X I to X+

Q . By the bilateral approximation condition (2.43), the definition ofW0
Q , and the

fact that K 1/2
≪ K, we may construct this Harnack chain so that it consists of a bounded number

of balls (depending on η and K ), and stays a distance at least cη1/2ℓ(Q) away from 0S and from E .
We let W∗,+

Q denote the set of all J ∈W which meet at least one of the Harnack chains HI , with
I ∈W

0,+
Q ∪W

0,+
Q̃

(or simply I ∈W
0,+
Q , if Q = Q(S)), i.e.,

W
∗,+
Q := {J ∈W : there exists I ∈W

0,+
Q ∪W

0,+
Q̃

for which HI ∩ J ̸= ∅},

where as above, Q̃ is the dyadic parent of Q, unless Q = Q(S), in which case we simply set Q̃ = Q (so
the union is redundant). We observe that, in particular, each I ∈W

0,+
Q ∪W

0,+
Q̃

meets HI , by definition,
and therefore

W
0,+
Q ∪W

0,+
Q̃

⊂W
∗,+
Q . (2.45)

Of course, we may constructW∗,−
Q analogously. We then set

W∗

Q :=W
∗,+
Q ∪W

∗,−
Q .
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It follows from the construction of the augmented collectionsW∗,±
Q that there are uniform constants c

and C such that
cη

1
2 ℓ(Q)≤ ℓ(I )≤ C K

1
2 ℓ(Q) for all I ∈W∗

Q,

dist(I, Q)≤ C K
1
2 ℓ(Q) for all I ∈W∗

Q .
(2.46)

It is convenient at this point to introduce some additional terminology.

Definition 2.47. Given Q ∈ G, and hence in some S, we shall refer to the point X+

Q specified above, as
the “center” of U+

Q (similarly, the analogous point X−

Q , lying below 0S, is the “center” of U−

Q ). We also
set Y ±

Q := X±

Q̃
, and we call this point the “modified center” of U±

Q , where as above Q̃ is the dyadic parent
of Q, unless Q = Q(S), in which case Q = Q̃, and Y ±

Q = X±

Q .

Observe thatW∗,±
Q and hence alsoW∗

Q have been defined for any Q that belongs to some stopping
time regime S, that is, for any Q belonging to the “good” collection G of Lemma 2.42. We now set

WQ :=

{
W∗

Q, Q ∈ G,

W0
Q, Q ∈ B,

(2.48)

and for Q ∈ G we shall henceforth simply writeW±

Q in place ofW∗,±
Q . Note that by (2.8) when Q ∈ B

and by (2.46) when Q ∈ G we clearly obtain (2.9) with C depending on n and the UR character of E . By
constructionW0

Q ⊂WQ . All these show that, provided η≪ 1 and K ≫ 1 (depending on n and the UR
character of E), {WQ}Q∈D(E) is a Whitney-dyadic structure for Rn+1

\ E with parameter η and K and
with C depending on n and the UR character of E .

Given an arbitrary Q ∈ D(E) and 0< τ ≤ τ0/4, we may define an associated Whitney region UQ (not
necessarily connected) as in (2.10) or the fattened version of ÛQ as in (2.11). In the present situation, if
Q ∈ G, then UQ splits into exactly two connected components

U±

Q = U±

Q,τ :=

⋃
I∈W±

Q

I ∗(τ ). (2.49)

We note that for Q ∈ G, each U±

Q is Harnack chain connected, by construction (with constants depending
on the implicit parameters τ, η and K ); moreover, for a fixed stopping time regime S, if Q′ is a child
of Q, with both Q′, Q ∈ S, then U+

Q′ ∪ U+

Q is Harnack chain connected, and similarly for U−

Q′ ∪ U−

Q .
We may also define the Carleson boxes TQ , global and local sawtooth regions �F , �F ,Q , cones 0,

and local cones 0Q as in (2.12), (2.20), (2.23), and (2.24).

Remark 2.50. We recall that, by construction (see (2.45), (2.48)), given Q ∈ G, one hasW0,±
Q̃

⊂WQ ,
where Q̃ is the dyadic parent of Q. Therefore, Y ±

Q ∈ U±

Q ∩ U±

Q̃
. Moreover, since Y ±

Q is the center of
some I ∈W

0,±
Q̃

, we have that dist(Y ±

Q , ∂U±

Q )≈ dist(Y ±

Q , ∂U±

Q̃
)≈ ℓ(Q) (with implicit constants possibly

depending on η and/or K )

Remark 2.51. Given a stopping time regime S as in Lemma 2.42, for any semicoherent subregime (see
Definition 2.41) S′

⊂ S (including, of course, S itself), we now set

�±

S′ = int
( ⋃

Q∈S′

U±

Q

)
, (2.52)
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and let �S′ := �+

S′ ∪�
−

S′ . Note that implicitly, �S′ depends upon τ (since U±

Q has such dependence).
When it is necessary to consider the value of τ explicitly, we shall write �S′(τ ).

The main geometric lemma for the associated sawtooth regions is the following.

Lemma 2.53 [Hofmann et al. 2016, Lemma 3.24]. Let S be a given stopping time regime as in Lemma 2.42,
and let S′ be any nonempty, semicoherent subregime of S. Then, for 0< τ ≤ τ0, with τ0 small enough,
each of �±

S′ is a CAD with character depending only on n, τ, η, K, and the UR character of E.

2.3. Case 1-sided CAD. Here we assume that � is a 1-sided CAD. In this case, we are basically in the
situation which is similar to being within one regimen S, at least as far as the construction ofWQ is
concerned.

With W = W(�) and D = D(∂�) as above, and for some give parameters η < 1, K > 1, we
considerW0

Q (see (2.8)). For any Q ∈ D we let X Q be a corkscrew point relative to Q, more specifically,
relative to 1Q (see (2.2), (2.3)). We note that in this scenario the existence of such point comes from the
fact that � satisfies the (interior) corkscrew condition). For η≪ 1 and K ≫ 1 depending on the CAD
character of � we can guarantee that for every Q ∈ D, if I ∈W is so that I ∋ X Q then I ∈W0

Q . We then
augmentW0

Q toW∗

Q as done in [Hofmann and Martell 2014, Section 3]. More precisely, use the fact
that one can construct a Harnack chain to connect X Q with any of the centers of the Whitney cubes in
W0

Q ∪W0
Q̃

, where Q̃ is the dyadic parent of Q. ThenW∗

Q is the family of all Whitney cubes which meet
at least one ball in all those Harnack chains. Note that in the case when E is UR and Q ∈ S we have used
a similar idea; the main difference is that the Harnack chain in that case comes from the fact that �+

0S
is a

Lipschitz domain, whereas here such property comes from the assumption that � is a 1-sided CAD and
hence the Harnack chain condition holds. Set thenWQ =W∗

Q and one can see that (with the appropriate
choice of a sufficiently small η and a sufficiently large K depending on n and the CAD character of D)
(2.9) holds. Moreover, the construction guarantees thatW0

Q ∪W0
Q̃

⊂WQ , that we can cover with the
Whitney cubes inWQ all the Harnack chains connecting X Q with any center of I ∈W0

Q ∪W0
Q̃

⊂WQ ,
and also that if I, J are such that I ∋ X Q and J ∋ X Q̃ then I, J ∈WQ . We note that by construction the
Harnack chain condition holds in each Whitney region UQ and so it does in UQ ∪ UQ̃ . In either case the
corresponding constant depends on the CAD character of D and the parameters η, K, τ .

In the present situation we have the following geometric result:

Lemma 2.54 [Hofmann and Martell 2014, Lemma 3.61]. Let � ⊂ Rn+1 be a 1-sided CAD and let
{WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with parameters η≪ 1 and K ≫ 1 as just constructed.
Then all of its dyadic sawtooths regions�F and�F ,Q and all Carleson boxes TQ and T1 are also 1-sided
CAD with character depending only on dimension, the 1-sided CAD character of �, and the parameters
η, K, and τ .

2.4. Case CAD. Here we assume that � is a CAD. This is, strictly speaking, a subcase of the case
of 1-sided CAD above, but the extra assumption that � has exterior corkscrews can be inferred to the
associated sawtooth regions and Carleson boxes.

With W = W(�) and D = D(∂�) as above, and for some give parameters η < 1, K > 1, we
consider W0

Q (see (2.8)) and construct WQ exactly as in the 1-sided CAD case since a CAD is in



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3273

particular a 1-sided CAD. Hence, we have the very same properties, in particular, Lemma 2.54 applies.
But we can additionally obtain the exterior corkscrew condition:

Lemma 2.55. Let �⊂ Rn+1 be a CAD and let {WQ}Q∈D(∂�) be a Whitney-dyadic structure for � with
parameters η≪ 1 and K ≫ 1 as just constructed. Then all of its dyadic sawtooths regions �F and �F ,Q
and all Carleson boxes TQ and T1 are also CAD with character depending only on dimension, the CAD
character of �, and the parameters η, K, and τ .

Proof. As mentioned above we can apply Lemma 2.54; hence all the �F , �F ,Q , TQ , and T1 are 1-sided
CAD domains. It remains to see that any of them satisfy the exterior corkscrew condition. Let �⋆
be one of these subdomains and take x⋆ ∈ ∂�⋆ and 0 < r < diam(∂�⋆). By construction ∂�⋆ ⊂ �

and we consider two cases 0 ≤ dist(x⋆, ∂�) ≤ r/2 and dist(x⋆, ∂�) > r/2. In the first scenario we
pick x ∈ ∂� so that |x⋆ − x | = dist(x⋆, ∂�) ≤ r/2 (notice that x = x⋆ if x⋆ ∈ ∂� ∩ ∂�⋆). Since � is
a CAD, it satisfies the exterior corkscrew condition; hence we can find X ∈ �ext = Rn+1

\� so that
B(X, c0r/2)⊂ B(x, r/2)∩�ext where c0 is the exterior corkscrew constant. Note that �⋆ ⊂�; hence
B(X, c0r/2) ⊂ (�⋆)ext. Also, B(X, c0r/2) ⊂ B(x, r/2) ⊂ B(x⋆, r). This shows that X is an exterior
corkscrew point relative to the surface ball B(x⋆, r)∩∂�⋆ for the domain�⋆ with constant c0/2. Consider
next the case on which dist(x⋆, ∂�) > r/2. Note that in particular x⋆ ∈� and therefore we can find two
Whitney cubes I, J ∈W so that x ∈ ∂ I ∗

∩ J, ∂ I ∩ ∂ J ̸= ∅, int(I ∗) ⊂ �⋆ and J is a Whitney cube
which does not belong to any of theWQ that define �⋆. Note that ℓ(J )≥ dist(x⋆, ∂�)/C > r/(2C) for
some uniform constant C ≥ 1, that I ∗ misses 3J/4 as observed before and that the center of J satisfies
X (J ) ∈ (�⋆)ext. It is then clear that the open segment joining x⋆ with X (J ) is contained in (�⋆)ext and
we pick X in that segment so that |X − x⋆| = r/(8C) and hence B(X, r/(16C))⊂ B(x⋆, r)∩�⋆. This
shows that X is an exterior corkscrew point relative to the surface ball B(x⋆, r)∩ ∂�⋆ for the domain �⋆
with constant 1/(16C). Therefore, we have shown that � satisfies the exterior corkscrew condition with
implicit constant uniformly controlled by the CAD character of �. □

2.5. Some important notation. To complete this section we introduce the following notation which will
be used in our main statements:

Notation 2.56. In the statements of our main results, we will assume that some estimates (e.g., Carleson
estimates, “A< N”, “N < S”, etc.) hold for a given family of subsets with constants depending on the
character of those subsets and our goal is to transfer those estimates to the original set. It is crucial to
explain how this dependence on the character is understood. To set the stage suppose that we are given
some set X ⊂ Rn+1 and a family SX := {Y}Y∈SX

, Y ⊂ X. We assume that associated with X there is
some collection of nonnegative parameters MX ∈ [1,∞)N1 called its character and also that each Y ∈ SX

has some associated character MY ∈ [1,∞)N2, a collection of nonnegative parameters. Using this notation
when we say that certain estimate holds for all Y ∈ SX with constant CY depending on the character of Y,
we mean that CY =2(MY) with 2 : [1,∞)N2 → (0,∞) being a nondecreasing function in each variable.
Implicit in the arguments to transfer the desired estimate to X, we will use only those sets Y ∈ SX whose
parameters in the character are all uniformly controlled by some constant M0 (which will depend on
the character of X), and then all the corresponding constants in the assumed estimates for those sets
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will be controlled by 2(M0, . . . ,M0) < ∞, and eventually the desired estimate on X will depend on
2(M0, . . . ,M0).

It is illustrative to present some examples explaining the previous abstract notation in some particular
cases. Suppose that the goal is to show that some function F satisfies the Carleson measure estimate (1.10)
in X = Rn+1

\ E , with E being UR (see the second part of Theorem 3.31). In this case MX ∈ [1,∞)3 is the
UR character of E , and we let SX be the collection of bounded chord-arc subdomains of X, in which case
MY ∈ [1,∞)4 is the CAD character of Y. With this in hand we show that there is a constant M0 (depending
only on MX, dimension, and the harmless discretionary parameters τ, η and K, and thus independent
of F ; see Lemma 2.53) so that the resulting estimate can be transferred from the collection of CAD with
parameters in the character at most M0, and hence the Carleson estimate (1.10) holds with a constant
depending only on 2(M0,M0,M0,M0), and other harmless parameters. Similarly, another example is
the case that X = D is a CAD, hence MX ∈ [1,∞)4 is its CAD character, and SX is some collection of
bounded Lipschitz chord-subdomains of X; then MY ∈ [1,∞)3 is the Lipschitz CAD character of Y.

3. Transference of Carleson measure estimates

In this section we show how to transfer CME estimates from Lipschitz to CAD (see Theorem 3.6) and
then from CAD to the complement of a UR set (see Theorem 3.31). These two independent results, each
interesting in its own right, can be combined to give immediately the following:

Corollary 3.1. Let E ⊂ Rn+1 be an n-dimensional UR set and let F ∈ L2
loc(R

n+1
\ E). If F satisfies the

Carleson measure estimate (1.10) for every bounded Lipschitz subdomain of Rn+1
\ E with constant

depending on the Lipschitz character (see Notation 2.56), then F satisfies the Carleson measure estimate
(1.10) in Rn+1

\ E as well. More precisely, there exists a large constant M0 (depending only n and the UR
character of E5) so that using the notation in (1.10) there holds

∥F∥CME(Rn+1\E) ≤ C sup
�⊂Rn+1\E

∥F∥CME(�), (3.2)

where the sup runs over all bounded Lipschitz subdomains �⊂ Rn+1
\ E with parameters in the Lipschitz

character at most M0, and C depends as before only on n, and the UR character of E.

Remark 3.3. The previous result (and also Theorem 3.31) easily yields a version of itself where everything
is localized to some open subset with UR boundary. More precisely, let �⊂ Rn+1 be an open set with
∂� being UR and let F ∈ L2

loc(�). Then

∥F∥CME(�) ≤ C sup
D⊂�

∥F∥CME(D), (3.4)

where the sup runs over all bounded Lipschitz subdomains D ⊂ � with parameters in the Lipschitz
character at most M0, and C depends only on n and the UR character of ∂�.

5Our estimates depend also on the discretionary parameters τ, η and K introduced above, but in turn each of these may be
chosen to depend at most on n and the UR character of E .
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To see this, write F� := F in � and F� = 0 in Rn+1
\� so that F ∈ L2

loc(R
n+1

\ ∂�). Since ∂� is UR
we can apply Corollary 3.1 to E = ∂� and (3.2) easily yields

∥F∥CME(�) = ∥F�∥CME(Rn+1\∂�) ≤ C sup
D⊂Rn+1\∂�

∥F�∥CME(D) = C sup
D⊂�

∥F�∥CME(D).

3.1. Transference of Carleson measure estimates: from Lipschitz to chord-arc domains. In this section
we present a method to transfer the CME estimates from Lipschitz domains to CAD. Our main result is
as follows:

Theorem 3.5. Let D ⊂ Rn+1 be a given CAD and assume that F ∈ L2
loc(D) satisfies (2.26). If F satisfies

the Carleson measure estimate (1.10) on all bounded Lipschitz subdomains of D with the constant C = C0

depending on the Lipschitz constants of the underlying domains only, then F satisfies the Carleson
measure estimate (1.10) in D as well, with the bound depending on C0, the constant in (2.26), the NTA
constants of D and the ADR constants of ∂D only.

Theorem 3.6. Let D ⊂ Rn+1 be a given CAD and let F ∈ L2
loc(D). If F satisfies the Carleson measure

estimate (1.10) for every bounded Lipschitz subdomain of D with constant depending on the Lipschitz
character (see Notation 2.56), then F satisfies the Carleson measure estimate (1.10) in D as well. More
precisely, there exists a large constant M0 (depending only n and the CAD character of D) so that using
the notation in (1.10) there holds

∥F∥CME(D) ≤ C sup
�⊂D

∥F∥CME(�), (3.7)

where the sup runs over all bounded Lipschitz subdomains � ⊂ D with parameters in the Lipschitz
character at most M0, and C depends as before only on n, and the CAD character of D.

Let us remark that in the course of the proof we ensure a suitable choice of a (sufficiently small) η
and a (sufficiently large) K is (2.8) which strictly speaking affect the constant in (3.7). However, as all
choices depend on dimension and the CAD character only, this does not affect the result as stated above.

In preparation to prove the previous result we start with the following version of the John–Nirenberg
inequality. It is a suitable modification of [Hofmann and Mayboroda 2009, Lemma 10.1] which, in turn,
was inspired by [Auscher et al. 2001, Lemma 2.14]. Here we present an alternative proof along the lines
in [Marín et al. 2020, Lemma A.1]. Given � an open set with an ADR boundary, let Q0 be either ∂�, in
which case DQ0 = D(∂�), or some fixed dyadic cube in D(∂�), in which case DQ0 is defined in (2.13).

Lemma 3.8. Let � be an open set with an ADR boundary, let Q0 be either ∂� or a fixed cube in D(∂�),
and for some given η ≪ 1 and K ≫ 1, consider a Whitney-dyadic structure {WQ}Q∈D(∂�) for � with
parameters η and K as in Definition 2.7. Let F ∈ L2

loc(�) and suppose that there exist 0 < α < 1 and
0< N <∞ such that

σ {x ∈ Q :AQ F(x) > N } ≤ ασ(Q) for all Q ∈ DQ0 . (3.9)

Then, for every 0< p <∞ there exists Cα,p depending only on p and α such that

sup
Q∈DQ0

−

∫
Q
AQ F(x)p dσ(x)≤ Cα,p N p. (3.10)
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Proof. We first claim that for all Q ∈ DQ0

AQ F(x)≤AQ′

F(x)+ inf
y∈Q̃′

AQ F(y) for all x ∈ Q′
∈ DQ \ {Q}, (3.11)

where Q̃′ is the dyadic parent of Q′. This follows easily from the fact that if x ∈ Q′
∈ DQ \ {Q} and

y ∈ Q̃′ then
0Q(x) \0Q′

(x)⊂

⋃
x∈P∈DQ\DQ′

UP =

⋃
Q̃′⊂P⊂Q

UP ⊂ 0Q(y).

Next, let us set

4(t) := sup
Q∈DQ0

σ(EQ(t))
σ (Q)

:= sup
Q∈DQ0

σ {x ∈ Q :AQ F(x) > t}
σ(Q)

, 0< t <∞. (3.12)

From (3.9) it follows that

σ(EQ(N )) := σ {x ∈ Q :AQ F(x) > N } ≤ ασ(Q) for all Q ∈ DQ0 . (3.13)

Fix now Q ∈ DQ0 , β ∈ (α, 1) (we will eventually let β → 1+) and, recalling the notation introduced in
Definition 2.4 with E = ∂�, set

FQ(N ) := {x ∈ Q : MD
Q(1EQ(N ))(x) > β}. (3.14)

Note that (3.13) ensures that

−

∫
Q

1EQ(N )(y) dσ(y)=
σ(EQ(N ))
σ (Q)

≤ α < β; (3.15)

hence we can extract a family of pairwise disjoint stopping-time cubes {Q j }j ⊂ DQ \ {Q} so that
FQ(N )=

⋃
j Q j and for every j

σ(EQ(N )∩ Q j )

σ (Q j )
> β;

σ(EQ(N )∩ Q′)

σ (Q′)
≤ β, Q j ⊊ Q′

∈ DQ . (3.16)

Fix t > N. Observe that EQ(t)⊂ EQ(N ) and

β < 1 = 1EQ(N )(x)≤ MD
Q(1EQ(N ))(x) for σ -a.e. x ∈ EQ(t). (3.17)

Hence,
σ(EQ(t))= σ(EQ(t)∩ FQ(N ))=

∑
j

σ(EQ(t)∩ Q j ).

For every j , by the second estimate in (3.16) applied to Q̃ j , the dyadic parent of Q j , we have

σ(EQ(N )∩ Q̃ j )/σ (Q̃ j )≤ β < 1;

therefore σ(Q̃ j \ EQ(N ))/σ (Q̃ j ) ≥ 1 − β > 0. In particular, we can pick x j ∈ Q̃ j \ EQ(N ). This and
(3.11) imply that for all x ∈ Q j

AQ F(x)≤AQ j F(x)+ inf
y∈Q̃ j

AQ F(y)≤AQ j F(x)+AQ j F(x j )≤AQ j F(x)+ N .

Consequently, AQ j F(x) > t − N for every x ∈ EQ(t)∩ Q j , which further implies

σ(EQ(t)∩ Q j )≤ σ {x ∈ Q j :AQ j F(x) > t − N } ≤4(t − N )σ (Q j ).
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All these give

σ(EQ(t))=

∑
j

σ(EQ(t)∩ Q j )≤4(t − N )
∑

j

σ(Q j )

≤4(t − N )
1
β

∑
j

σ(EQ(N )∩ Q j )≤4(t − N )
1
β
σ(EQ(N ))≤4(t − N )

α

β
σ(Q), (3.18)

where we have used the first estimate in (3.16), that the cubes {Q j }j are pairwise disjoint and, finally,
(3.13). Dividing by σ(Q) and taking the supremum over all Q ∈ DQ0 we obtain

4(t)≤
α

β
4(t − N ), t > N . (3.19)

Since this estimate is valid for all β ∈ (α, 1), we can now let β → 1−, iterate the previous expression, and
use the fact that 4(t)≤ 1 to conclude that

4(t)≤ α−1e−(log(α−1)/N )t , t > 0.

We finally see how the just-obtained estimate implies (3.10): for any 0< p <∞,

−

∫
Q
AQ F(x)p dσ(x)= p

∫
∞

0

σ {x ∈ Q :AQ F(x) > t}
σ(Q)

t p dt
t

≤ p
∫

∞

0
4(t)t p dt

t
≤ pα−1

∫
∞

0
e−(log(α−1)/N )t t p dt

t

= pα−1
(

N
log(α−1)

)p ∫
∞

0
e−t t p dt

t
= Cα,p N p. □

To address the transference of the Carleson measure condition from Lipschitz to chord-arc domains
we shall use the fact that chord-arc domains contain interior big pieces of Lipschitz subdomains.

Proposition 3.20 [David and Jerison 1990]. Given �⊂ Rn+1, a CAD, there exist constants C ≥ 2 and
0 < θ < 1 such that for every surface ball 1(x, r) = B(x, r)∩ ∂�, x ∈ ∂�, 0 < r < diam(∂�), there
exists a bounded Lipschitz domain �′ for which we have the following conditions:

(i) H n(∂�∩ ∂�′
∩ B(x, r))≥ θH n(1(x, r))≈ θrn .

(ii) There exists X1 so that B(X1, r/C)⊂ B(x, r)∩�∩�′.

(iii) �′
⊂�∩ B(x, r).

The Lipschitz character of �′ as well as 0< θ < 1 and C ≥ 2 depend on n, the CAD character of D only
(and are independent of x, r ).

We remark that in [David and Jerison 1990], Proposition 3.20 is proved under weaker assumptions,
namely, ADR and an interior corkscrew condition, and a “weak exterior corkscrew condition” which
gives exterior disks rather than exterior balls, and with no hypothesis of Harnack chains — but if the
Harnack chain condition is assumed, [Azzam et al. 2017] yields the exterior corkscrew condition, hence
exterior disks implies exterior balls. Later on, in [Badger 2012], existence of big pieces of Lipschitz
subdomains was also proved for usual NTA domains, with no upper ADR assumption on ∂� (the lower



3278 STEVE HOFMANN, JOSÉ MARÍA MARTELL AND SVITLANA MAYBORODA

ADR bound holds automatically in the presence of a two-sided corkscrew condition, by virtue of the
relative isoperimetric inequality). For the applications that we have in mind here, neither amelioration is
significant, and we will simply work with CAD domains in the sense of Definition 1.6.

For future reference we also would like to provide the following corollary.

Corollary 3.21. Let � ⊂ Rn+1 be a CAD. There exist constants C ≥ 2 and 0 < θ < 1 such that, for
every Q ∈ D(∂�), there exists a bounded Lipschitz domain �Q ⊂ � for which, using the notation
BQ = B(xQ, r), 1Q = BQ ∩ ∂�, with cℓ(Q)≤ r ≤ ℓ(Q) in (2.2), (2.3), we have the following:

(i) σ(∂�Q ∩ Q)≥ θσ (Q)≈ θℓ(Q)n .

(ii) For every Q′
∈ D(Q) such that there exists a point yQ′ ∈ Q′

∩ ∂�Q , there exists YQ′ so that
B(YQ′, ℓ(Q′)/C)⊂ B(yQ′, ℓ(Q′))∩�∩�Q , that is, YQ′ is a corkscrew relative to B(yQ′, ℓ(Q′))∩�

and ∂�, and B(yQ′, ℓ(Q′))∩ ∂�Q and �Q . Furthermore, with the appropriate choice of η and K
in (2.8), we have B(YQ′, ℓ(Q′)/C)⊂ UQ′ .

(iii) �Q ⊂�∩ BQ .

The Lipschitz character of �Q as well as 0< θ < 1, C ≥ 2, depend on n, and the CAD character of �
only (and are uniform in Q, Q′).

Proof. The corollary follows directly from Proposition 3.20. Indeed, for any Q ∈ D(∂�) there exists
1Q ⊂ Q as in (2.2), (2.3). One can then build a Lipschitz domain�Q from Proposition 3.20 corresponding
to 1Q , and then the conditions (i) and (iii) in Proposition 3.20 give (i) and (iii) in Corollary 3.21,
respectively. Condition (ii) in Corollary 3.21 follows from the fact that a Lipschitz domain �Q is, in
particular, a CAD, and hence, it has a corkscrew point relative to B(yQ′, r ′)∩ ∂�Q since r ′

≤ ℓ(Q′)≤

ℓ(Q)≈ diam(∂�Q) (the ≈ follows from (ii) and (iii) in Proposition 3.20). Using the fact that �Q ⊂�,
one can easily see that YQ is also a corkscrew point in � relative to B(yQ′, r ′)∩∂�. It remains to observe
that a suitable choice of η and K (uniform in Q′) ensures that such a corkscrew point always belongs
to UQ′ and moreover, B(YQ′,C−1ℓ(Q′))⊂ UQ′ . □

We are now ready to prove Theorem 3.6:

Proof of Theorem 3.6. By (2.29) and Remark 3.34 we can reduce matters to estimate ∥F∥CMEdyad(D). Fix
some Q ∈ D. According to Corollary 3.21 (along with the inner regularity property of the measure) there
exists a bounded Lipschitz domain �Q such that σ(∂�Q ∩ Q) ≥ θσ (Q), and the Lipschitz character
of �Q as well as 0 < θ < 1 depend only on n and the CAD character of D (and are uniformly in Q).
The domain �Q further satisfies properties (i)–(iii) in Corollary 3.21. Given x ∈ Q \ ∂�Q , since ∂�Q is
closed, there exists rx > 0 such that B(x, rx)∩∂�Q =∅. Pick then Qx ∈ D with ℓ(Qx)≪ min{ℓ(Q), rx}

so that x ∈ Qx . Then, x ∈ Q ∩ Qx and necessarily Qx ⊂ Q. Also, Qx ⊂ B(x, rx) since x ∈ Qx and
diam(Qx)≈ ℓ(Qx)≪ rx . Thus, Qx ⊂ Q \∂�Q and there exists a cube with maximal size Qmax

x ∈ DQ so
that Qmax

x ⊂ Q \∂�Q . Note that Qmax
x ⊊ Q since σ(∂�Q ∩ Q) > 0. Thus, by maximality, ∂�Q ∩ Q′

̸=∅
for every Q′ with Qmax

x ⊊ Q′
⊂ Q. Consider then F = {Q j }j ⊂ DQ \ {Q} the collection of such maximal

cubes. By construction, the cubes in F are pairwise disjoint and also Q \ ∂�Q =
⋃

j Q j . Associated
with F we build the corresponding local sawtooth �F ,Q (see (2.20)).
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Note that if Q′
⊂ Q j ∈ F, then Q′

⊂ Q j ⊂ Q \ ∂�Q ; hence ∂�Q ∩ Q′
= ∅. Conversely, if Q′

∈ DQ

is such that ∂�Q ∩ Q′
= ∅, then Q′

⊂ Q \ ∂�Q =
⋃

j Q j and there is Q j ∈ F such that Q′
∩ Q j ̸= ∅.

If Q j ⊊ Q′ then by the maximality of Q j we have ∂�Q ∩ Q′
̸= ∅, which is a contradiction. As a

result, necessarily Q′
⊂ Q j . All in one, for every Q′

∈ DQ , we have that Q′
⊂ Q j ∈ F if and only if

∂�Q ∩ Q′
= ∅. Equivalently, given Q′

∈ DQ , one has that Q′
∈ DF ,Q if and only if Q′

∩ ∂�Q ̸= ∅.
Let N ≥ 1 to be chosen and by Chebyshev’s inequality

σ {x ∈ ∂�Q ∩ Q :AQ F(x) > N } ≤
1

N 2

∫
∂�Q∩Q

∫∫
0Q(x)

|F(Y )|2δ(Y )1−n dY

≤
1

N 2

∑
Q′∈DQ

σ(∂�Q ∩ Q′)

∫∫
UQ′

|F(Y )|2δ(Y )1−n dY

≈
1

N 2

∑
Q′∈DF ,Q

σ(∂�Q ∩ Q′)

σ (Q′)

∫∫
UQ′

|F(Y )|2δ(Y ) dY

≲
1

N 2

∫∫
�F ,Q

|F(Y )|2δ(Y ) dY,

where we have used that δ(Y )≈ ℓ(Q′) for every Y ∈ U ′

Q and also that the family {U ′

Q}Q′∈D has bounded
overlap. We claim that

1
σ(Q)

∫∫
�F ,Q

|F(X)|2δ(X) d X ≤ C
(

sup
�⊂D

∥F∥CME(�) + ∥F∥C0(D)

)
, (3.22)

where the sup runs over all bounded Lipschitz subdomains � ⊂ D with parameters in the Lipschitz
character at most M0, and C depends as before only on n, and the CAD character of D. Assuming this
momentarily, and invoking (3.36), we conclude that

σ {x ∈ Q :AQ F(x) > N } ≤ σ(Q \ ∂�Q)+
C
N 2

∫∫
�F ,Q

|F(Y )|2δ(Y ) dY

≤ (1 − θ)σ (Q)+
C
N 2 sup

�⊂D
∥F∥CME(�)σ(Q)≤

(
1 −

θ

2

)
σ(Q),

provided N 2
= (2C/θ) sup�⊂D ∥F∥CME(�). Applying then the John–Nirenberg inequality, Lemma 3.8

with Q0 = E = ∂D, which is ADR by assumption, extending F as 0 in Rn+1
\ D, and with p = 2 we

then conclude that
sup

Q∈DQ0

−

∫
Q
AQ F(x)2σ(x)≲ sup

�⊂D
∥F∥CME(�).

In turn, this yields∫∫
TQ

|F |
2δ d X ≤

∑
Q′∈DQ

∫∫
UQ′

|F |
2δ d X ≈

∑
Q′∈DQ

σ(Q′)

∫∫
UQ′

|F |
2δ1−n d X

=

∑
Q′∈DQ

∫
Q′

(∫∫
UQ′

|F |
2δ1−n d X

)
dσ ≲

∫
Q

(∫∫
0Q(x)

|F |
2δ1−n dY

)
dσ(x)

=

∫
Q
AQ F(x)2σ(x)≲ σ(Q) sup

�⊂D
∥F∥CME(�).

Here we have used that δ( · )≈ ℓ(Q′) in UQ′ and the fact that the family {UQ}Q∈D has bounded overlap.
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We are then left with showing (3.22). To this end, let us write∫∫
�F ,Q

|F(X)|2δ(X) d X ≤

∑
Q′∈DF ,Q

∫∫
UQ′

|F(Y )|2δ(Y ) dY =

∑
Q′∈D1

F ,Q

· · · +

∑
Q′∈D2

F ,Q

· · · , (3.23)

where, for some ε > 0 to be chosen,

D1
F ,Q :=

{
Q′

∈ DF ,Q : dist(UQ′, ∂D)≤
1
ε

dist(UQ′, ∂�Q)
}
, D2

F ,Q := DF ,Q \ D1
F ,Q .

Note that, in principle, UQ′ can intersect ∂�Q . For later use it is convenient to record that ℓ(Q′) ≈

dist(UQ′, ∂D)≈ dist(UQ′, Q′) by (2.8), (2.6), (2.9), (2.10).
Let Q′

∈ D1
F ,Q , the fact that Q′

∈ DF ,Q implies that there exists y ∈ Q′
∩ ∂�Q ; hence

εℓ(Q′)≈ ε dist(UQ′, ∂D)≤ dist(UQ′, ∂�Q)

≤ dist(UQ′, y)≤ dist(UQ′, Q′)+ diam(Q′)≲ ℓ(Q′). (3.24)

In particular, for every Y ∈ UQ′ with Q′
∈ D1

F ,Q we have

δ(Y )= dist(Y, ∂D)≲ ℓ(Q′)+ dist(UQ′, ∂D)≲ ε−1 dist(UQ′, ∂�Q)≲ ε
−1 dist(Y, ∂�Q). (3.25)

Note also that since y′
∈ Q′

∩ ∂�Q ̸= ∅, according to Corollary 3.21 part (ii), we can find YQ′ so that
B(YQ′, ℓ(Q′)/C)⊂ B(yQ′, ℓ(Q′))∩�∩�Q ∩ UQ′ . Hence, �Q ∩ UQ′ ̸= ∅, and then due to (3.24) and
the fact that UQ′ is connected by construction, we conclude that UQ′ ⊂�Q . As a result,∑

Q′∈D1
F ,Q

∫∫
UQ′

|F(Y )|2δ(Y ) dY ≲ ε−1
∑

Q′∈D1
F ,Q

∫∫
UQ′

|F(Y )|2 dist(Y, ∂�Q) dY

≲
∫∫

�Q

|F(Y )|2 dist(Y, ∂�Q) dY ≤ σ(Q) sup
�⊂D

∥F∥CME(�),

(3.26)

where we used (3.25), the finite overlap property of the family {UQ′}Q′∈D, and the fact that �Q is
a bounded Lipschitz subdomain of D with character controlled by the CAD parameters in the last one.
Note that �Q ⊂ B(xQ,Cℓ(Q)) for some uniform constant C, which justifies the bound by σ(Q).

Consider next the family D2
F ,Q and we shall demonstrate that they satisfy a packing condition. Indeed,

recall from above that ℓ(Q′)≈ dist(UQ′, ∂D), so that in particular, if Q′
∈ D2

F ,Q , then

dist(UQ′, ∂�Q)≲ εℓ(Q′). (3.27)

It follows that for a suitably small ε depending on the implicit constant in (3.27) and τ , we can ensure
that fattened regions ÛQ′ corresponding to UQ′ (see (2.11)) necessarily intersect ∂�Q and, moreover,
H n(ÛQ′ ∩ ∂�Q)≈ ℓ(Q′)n , while the family {ÛQ′}Q′ still has finite overlap. Since the Lipschitz character
of ∂�Q depends on the CAD character of D, we have that H n(∂�Q)≈ diam(∂�Q)

n
≈ diam(�Q)

n
≈

ℓ(Q)≈ σ(Q), with implicit constants which are uniform in Q. Thus, all in all,∑
Q′∈D2

F ,Q

σ(Q′)≈

∑
Q′∈D2

F ,Q

ℓ(Q′)n ≈

∑
Q′∈D2

F ,Q

H n(ÛQ′ ∩ ∂�Q)≲ H n(∂�Q)≈ σ(Q). (3.28)
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Consequently, using that one can cover UQ′ by a uniform number of balls of the form B(X, δ(X)/2) with
X ∈ UQ′ (and hence δ(X)≈ ℓ(Q′)) we arrive at∑

Q′∈D2
F ,Q

∫∫
UQ′

|F(Y )|2δ(Y ) dY ≲ ∥F∥C0(D)

∑
Q′∈D2

F ,Q

σ(Q′)≲ σ(Q)∥F∥C0(D), (3.29)

simply recalling the notation introduced in (2.26).
Collecting (3.23), (3.26), and (3.29) we conclude as desired (3.22), completing the proof. □

3.2. Transference of Carleson measure estimates: from chord-arc domains to the complement of
a UR set. Let us now discuss the “transference” mechanism allowing one to pass from the Carleson
measure estimates on CAD to those open sets with UR boundaries. The main idea consists in showing
that if for some given F one can prove (1.10) on D ⊂ Rn+1

\ E , any bounded CAD, then (1.10) holds
for Rn+1

\ E . This was proved in [Hofmann et al. 2016, Theorem 1.1] for F = |∇u|/∥u∥L∞(Rn+1\E)

with u being a bounded harmonic function in Rn+1
\ E . On the other hand, it was already observed in

Remark 4.28 of that work that harmonicity is not really needed and that one could take for instance
F = |∇u|/∥u∥L∞(Rn+1\E) with u being a bounded solution of a second-order elliptic PDE or, more
generally, F = |∇

mu|/∥∇m−1u∥L∞(Rn+1\E) with u being a bounded solution of a 2m-th order elliptic
PDE, m ∈ N. We shall come back to this point with more details in Section 7, and for now try to keep the
discussion general for as long as possible.

Remark 3.30. There is a slightly glitchy point of notation point. For reasons of homogeneity, one might
prefer to normalize so that F = dist( · , E)|∇u|/∥u∥L∞(Rn+1\E). However, making the function F and
later on G and H in Section 4 depend on the open set (via its distance to the boundary) has its own
dangers and kills the beauty of the generality here.

The following result is stated in [Hofmann et al. 2016, Theorem 1.1] exclusively for harmonic functions,
but as noted in Remark 4.28 of that work, the same proof applies verbatim to any bounded function
satisfying Caccioppoli’s inequality along with CME in chord-arc subdomains. The argument further
extends to the following formulation with a few changes. For the sake of self-containment we present
below a somewhat different and more direct argument.

Theorem 3.31. Let E ⊂ Rn+1 be an n-dimensional UR set and let F ∈ L2
loc(R

n+1
\ E). Given η ≪ 1

and K ≫ 1, consider the decomposition D(E)= G∪B from Lemma 2.42, as well as a Whitney-dyadic
structure {WQ}Q∈D(E) for Rn+1

\ E with parameters η and K ; see Section 2.2. Then using the notation in
(1.10) and (2.26) there holds

∥F∥CME(Rn+1\E) ≤ C max
{
∥F∥C0(Rn+1\E), sup

S⊂G

∥F∥CME(�±

S )

}
, (3.32)

where �±

S is defined by (2.52) (with S′
= S) and where C depends only on n, the UR character of E , and

the choice of η, K , τ .
In particular, if F satisfies the Carleson measure estimate (1.10) for every bounded chord-arc subdo-

main D ⊂ Rn+1
\ E with constants depending on the CAD character (see Notation 2.56) then F satisfies
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the Carleson measure estimate (1.10) on Rn+1
\ E. More precisely, there exists a large constant M0

(depending only n and the UR character of E) so that using the notation in (1.10) there holds

∥F∥CME(Rn+1\E) ≤ C sup
D⊂Rn+1\E

∥F∥CME(D), (3.33)

where the sup runs over all bounded chord-arc subdomains D ⊂ Rn+1
\ E with parameters in the CAD

character at most M0, and C depends as before only on n and the UR character of E.

We note that much as in Remark 3.3 one can easily get a version of this result valid where everything
is localized to some open subset with UR boundary. The precise statement and the details are left to the
interested reader.

Remark 3.34. As already mentioned in Remark 2.25 and for PDE applications, the quantities ∥F∥C0(Rn+1\E)

or ∥F∥C0(D) are harmless terms since they are typically finite, whether or not F satisfies Carleson
measure estimates on some family of nice subdomains. However, one can also see that these terms
are under-controlled when one imposes Carleson measure estimates on bounded Lipschitz subdomains.
Let E ⊂ Rn+1 be an n-dimensional ADR set, write δ( · ) = dist( · , E), and let F ∈ L2

loc(R
n+1

\ E).
Note that �X = B(X, δ(X)) is a bounded Lipschitz subdomain of Rn+1

\ E with all the parameters in
the Lipschitz character bounded by Mn ≥ 1 which depends just on n. Also if Y ∈ B(X, δ(X)/2) then
dist(Y, ∂�X )≥ δ(X)/2 and Y ∈ B(z, 2δ(X)) for any z ∈ ∂�X . Thus, for any z ∈ ∂�X

1
δ(X)n−1

∫∫
B(X,δ(X)/2)

|F(Y )|2 dY ≤
2

δ(X)n

∫∫
B(z,2δ(X))

|F(Y )|2 dist(Y, ∂�X ) dY

and, consequently,

∥F∥C0(Rn+1\E) ≤ 2n+1 sup
D⊂Rn+1\E

∥F∥CME(D), (3.35)

where the sup runs over all bounded Lipschitz subdomains of Rn+1
\ E with all the parameters in the

Lipschitz character at most Mn ≥ 1. Analogously, if F ∈ L2
loc(�), where �⊂ Rn+1 is an open set with

∂� being n-dimensional ADR, then

∥F∥C0(�) ≤ 2n+1 sup
D⊂�

∥F∥CME(D), (3.36)

where the sup runs over all bounded Lipschitz subdomains of � with all the parameters in the Lipschitz
character at most Mn ≥ 1.

Proof. We write δ( · ) = dist( · , E) and Define βQ =
∫∫

UQ,τ/2
|F |

2δ d X for every Q ∈ D = D(E). Fix
Q0 ∈ D. Using the decomposition D(E)= G∪B from Lemma 2.42∫∫

TQ0,τ/2

|F(X)|2δ(X) d X ≤

∑
Q∈DQ0

βQ =

∑
Q∈DQ0∩B

βQ +

∑
Q∈DQ0∩G

βQ

=

∑
Q∈DQ0∩B

βQ +

∑
S:DQ0∩S ̸=∅

∑
Q∈DQ0∩S

βQ =:61 +62,
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and we estimate each term in turn. For 61 we observe that by construction the UQ,τ/2’s are uniformly
bounded unions of Whitney cubes of size of the order of ℓ(Q) and with distance to E of the order of
ℓ(Q) and it follows easily that βQ ≲ C0σ(Q), where the implicit constants depend only on n, the UR
character of E , and the choice of η, K , τ . Hence,

61 ≲ ∥F∥C0(Rn+1\E)

∑
Q∈DQ0∩B

σ(Q)≲ ∥F∥C0(Rn+1\E)σ(Q0), (3.37)

where in the last estimate we have used Lemma 2.42(ii).
Let us estimate 62. Fix S so that DQ0 ∩ S ̸= ∅ and write Q1 = Q1(S) = Q0 ∩ Q(S). Note that

if Q ∈ DQ0 ∩ S then Q ⊂ Q1 ⊂ Q(S) and by the coherency of S we conclude that Q1 ∈ S. Set
δ±S ( · ) = dist( · , ∂�±

S ) (see (2.52) with S′
= S). Note that �±

S is comprised of Whitney regions of the
form U±

Q = U±

Q,τ . Thus for X ∈ U±

Q,τ/2 with Q ∈ S, we have that δ(X) ≈ δ±S (X), where the implicit
constants depend on τ . This, the fact that the family {U±

Q }Q∈D has bounded overlap and (2.14) easily give

∑
Q∈DQ0∩S

βQ =

∑
Q∈DQ1∩S

βQ ≈

∑
Q∈DQ1∩S

∫∫
U±

Q

|F |
2δ±S d X ≲

∫∫
B∗

Q1
∩�±

S

|F |
2δ±S d X,

where B∗

Q1
:= B(xQ1, Kℓ(Q1)). Pick now X±

1 ∈ U±

Q1,τ/2 and choose x±

1 ∈ ∂�±

S so that |X±

1 − x±

1 | =

δ±S (X
±

1 )≈ δ(X±

1 )≈ ℓ(Q1). Therefore, B∗

Q1
⊂ B∗∗

Q1
= BQ1(x

±

1 ,Cℓ(Q1)), where C depends on n, the UR
character of E and η, K and τ . Thus,∑

Q∈DQ0∩S

βQ ≲
∫∫

B∗∗

Q1
∩�±

S

|F |
2δ±S d X ≲ ∥F∥CME(�±

S )
ℓ(Q1)

n
≈ ∥F∥CME(�±

S )
σ(Q1). (3.38)

Using this and recalling that Q1 = Q1(S)= Q0 ∩ Q(S), we can bound 62 as follows:

62 =

∑
S:DQ0∩S ̸=∅

∑
Q∈DQ0∩S

βQ ≲ sup
S⊂G

∥F∥CME(�±

S )

∑
S:DQ0∩S ̸=∅

σ(Q0 ∩ Q(S))

= sup
S⊂G

∥F∥CME(�±

S )

( ∑
S:Q(S)⊂Q0

σ(Q(S))+
∑

S:DQ0∩S ̸=∅
Q0⊊Q(S)

σ(Q0)

)
=:621 +622.

Using Lemma 2.42(ii) we easily obtain ∑
S:Q(S)⊂Q0

σ(Q(S))≲ σ(Q0),

where the implicit constant depends only on n, the UR character of E , and the choice of η, K , τ . For the
other term we note that the facts DQ0 ∩ S ̸= ∅ and Q0 ⊊ Q(S) imply that Q0 ∈ S by the coherency of S;
hence 622 = 0 if Q0 ∈ B. On the other hand, if Q0 ∈ G there is a unique S0 ⊂ G so that Q0 ∈ S0 and
DQ0 ∩ S = ∅ for every S ̸= S0 with Q0 ⊊ Q(S). This clearly implies that in this case∑

S:DQ0∩S ̸=∅
Q0⊊Q(S)

σ(Q0)= σ(Q0).
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If we finally collect all the obtained estimates we conclude that

∥F∥CMEdyad(Rn+1\E) = sup
Q∈D(E)

1
σ(Q)

∫∫
TQ,τ/2

|F(X)|2δ(X) d X

≤ C max
{
∥F∥C0(Rn+1\E), sup

S⊂G

∥F∥CME(�±

S )

}
, (3.39)

where C depends only on n, the UR character of E , and the choice of η, K , τ . Thus, the desired estimates
follows from (2.29).

To complete the proof we look at the second part of the statement. By (3.35) and the fact that bounded
Lipschitz domains are CAD with all the parameters in the CAD character by the Lipschitz character we
have ∥F∥C0(Rn+1\E) ≲ supD⊂Rn+1\E ∥F∥CME(D), where the sup runs over all bounded CAD subdomains
with character at most Mn . On the other hand, Lemma 2.53 establishes that all the �±

S ’s are CAD with
parameters in the CAD character all controlled by M ′

0 ≥ 1 (depending on the allowable parameters).
They are also bounded since every S has a maximal cube Q(S) and hence �±

S ⊂ B∗

Q(S) (see (2.14)).
Consequently,

sup
S⊂G

∥F∥CME(�±

S )
≤ sup

D
∥F∥CME(D),

where the second sup runs over all bounded CAD with character at most M ′

0. Taking M0 = max{Mn,M ′

0},
we easily see that (3.32) along with the above observations readily yield (3.33). □

4. Carleson estimates,A< N estimates and good-λ arguments

Given an open set �⊂ Rn+1 with ADR boundary we recall the definitions of the area integral A and the
nontangential maximal function N∗ from Definition 2.33 or the corresponding fattened versions Â and N̂∗

or the corresponding local versions. These are defined with respect to a {WQ}Q∈D, some Whitney-dyadic
structure for � with some implicit parameters η and K. Note that according to these definitions, the cones
are unbounded when ∂� is unbounded. On the other hand, when ∂� is bounded, so are the cones, all
being contained in a C diam(∂�)-neighborhood of ∂�. We note also that when ∂� is bounded, there
exists a cube Q0 ∈ D(∂�) such that Q0 = ∂� and for any Q ∈ D(∂�) we have Q ∈ DQ0 . It is, however,
particularly useful to work with local versions AQ and N̂ Q

∗ or ÂQ and N̂ Q
∗ .

Definition 4.1 (A< N estimates). Let�⊂Rn+1 be an open set with ∂� being ADR and let {WQ}Q∈D(∂�)

be a Whitney-dyadic structure for�with some parameters η and K. Consider also G ∈ L2
loc(�), H ∈C(�),

and 0< q <∞. We say that “A< N” estimates hold for G, H on Lq(∂�) if

∥AG∥Lq (∂�) ≤ C∥N̂∗H∥Lq (∂�), (4.2)

where the Lq norms are taken with respect to surface measure σ := H n
|∂�. Similarly, we will say that

“AD < N D” estimates hold for G, H on Lq(∂�) if

∥AQG∥Lq (Q) ≤ C∥N̂ Q
∗

H∥Lq (Q) for all Q ∈ D(∂�), (4.3)

with C independent of Q.
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Remark 4.4. We observe that by Remarks 2.37 and 2.38, A< N estimates imply an analogous estimate
for traditional cones, that is, for every κ > 0

∥A�,κG∥Lq (∂�) ≤ C∥N∗,�,κH∥Lq (∂�),

and the implicit constant depends on q, n, the ADR constant of ∂�, the choice of η, K , τ , the constant
in A < N, and κ . On the other hand AD < N D estimates imply also some local A < N estimates
with traditional cones. More precisely, for any x ∈ ∂� and 0 < r < 2 diam(∂�), using the notation in
Definition 1.15, there exists K ′ depending on n, the ADR constant of ∂�, the choice of η, K , τ , and the
constant in Definition 2.7(iii) such that for every κ > 0

∥Ar
�,κG∥Lq (1(x,r)) ≲ ∥N K ′r

∗,�,κH∥Lq (1(x,K ′r)), (4.5)

where 1(x, r)= B(x, r)∩ ∂�, and the implicit constant depends on q , n, the ADR constant of ∂�, the
choice of η, K , τ , the constant in AD < N D, and κ .

Fix then {WQ}Q∈D(∂�) a Whitney-dyadic structure for� with some parameters η and K. Given x ∈ ∂�

and 0< r < 2 diam(∂�), write 1=1(x, r) and B = B(x, r). We first consider the case r ≪ diam(∂�).
Note that for every y ∈1 we have 0r (y)⊂ 2B. Also, if 0�,1(z)∩ 2B ̸= ∅ then z ∈ 61. Recall that we
have always assumed that K is large enough (say K ≥ 104n) so that 0�,1(y)⊂ 0(y) for every y ∈ ∂�.
All these, together with Remark 2.38, give

∥Ar
�,κG∥Lq (1) ≤ ∥A�,κ(G12B)∥Lq (∂�) ≲ ∥A�,1(G12B)∥Lq (∂�) ≤ ∥A(G12B)∥Lq (61).

Let

D1 = {Q ∈ D(∂�) : Q ∩ 61 ̸= ∅, C(ηn)−1/2r/4 ≤ ℓ(Q) < C(ηn)−1/2r/2}, (4.6)

where C is the constant in (2.9) (it is here we use that r ≪ diam(∂�) so that C(ηn)−1/2r/2< diam(∂�),
thus D1 ̸= ∅). Suppose that Q ⊊ Q′ with Q ∈ D1 and let Y ∈ UQ′ . Then there is I ′

∈WQ′ with
Y ∈ ∂ I ∗(τ ) and by (2.5)

C(ηn)−
1
2 2−1r ≤ 2ℓ(Q)≤ ℓ(Q′)≤ Cη−

1
2 ℓ(I ′)≤ C(ηn)4−1 dist(4I ′, ∂�)≤ C(ηn)4−1 dist(Y, ∂�).

Hence, dist(Y, ∂�)≥ 2r and 0(y)∩2B ⊂0Q(y) for every y ∈ Q ∈D1. Thus theAD< N D estimates give

∥Ar
�,κG∥

q
Lq (1) ≲

∑
Q∈D1

∥A(G12B)∥
q
Lq (Q) ≤

∑
Q∈D1

∥AQG∥
q
Lq (Q) ≲

∑
Q∈D1

∥N Q
∗

H∥
q
Lq (Q).

Note next that for every y ∈ Q ∈D1 we have by (2.14) that 0Q(y)⊂ B(xQ, Kℓ(Q))∩�⊂ K ′B ∩�.
Hence, using again Remark 2.38 we have

∥Ar
�,κG∥Lq (1) ≲ ∥N∗(H1K ′ B)∥Lq (∂�) ≲ ∥N∗,�,min{1,κ}(H1K ′ B)∥Lq (∂�) ≤ ∥N 3K ′r

∗,�,κH∥Lq (3K ′1),

where we have used that 0�,1(z)∩ K ′B ̸= ∅ then z ∈ 3K ′1.
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To conclude we consider the case r ≈ diam(∂�). Hence ∂� is bounded and ∂� is itself a dyadic
cube Q0 and D(∂�)= DQ0 . Then we easily obtain using some of the previous observations

∥Ar
�,κG∥Lq (1) ≤ ∥A�,κG)∥Lq (∂�) ≲ ∥A�,1G∥Lq (∂�)

≤ ∥AQ0 G∥Lq (∂�) ≲ ∥N Q0
∗

H∥Lq (∂�)

≲ ∥N∗,�,κH∥Lq (∂�) = ∥N K ′r
∗,�,κH∥Lq (1(x,K ′r)), (4.7)

where the last estimate uses our convention that in the case � unbounded and ∂� bounded 0�( · ) is
indeed 0C diam(∂�)

� ( · ).

Theorem 4.8. Let � ⊂ Rn+1 be an open set with ∂� being ADR and let {WQ}Q∈D(∂�) be a Whitney-
dyadic structure for � with some parameters η and K. Given G ∈ L2

loc(�), H ∈ C(�), and 0< q <∞,
consider the following statements:

(A) Carleson measure estimate holds for F = G/∥H∥L∞(�) on �, that is, ∥G∥CME(�) ≲ ∥H∥
2
L∞(�)

(see (1.10)).

(A)D Dyadic Carleson measure estimate holds for F = G/∥H∥L∞(�) on �, that is, ∥G∥CMEdyad(�) ≲
∥H∥

2
L∞(�) (see (2.28)).

(Aloc) Carleson measure estimate holds on any (bounded) local sawtooth subdomain of �, in the
sense that for any Q ∈ D(∂�) and any pairwise disjoint family of cubes F ⊂ DQ , one has that
F = G/∥H∥L∞(�̂F ,Q)

satisfies the Carleson measure estimate on �̂F ,Q , that is,

sup
Q,F

∥G∥CME(�̂F ,Q)/∥H∥
2
L∞(�̂F ,Q)

<∞,

where the sup runs over all Q ∈ D(∂�) and all pairwise disjoint family of cubes F ⊂ DQ .

(B)q A< N on Lq(∂�) holds for G and H, in the sense of Definition 4.1, i.e., (4.2) is valid.

(Bloc)q A< N on Lq(∂�̂F ,Q) holds for G and H in the sense of Definition 4.1 for any Q ∈ D(∂�) and
any pairwise disjoint family of cubes F ⊂ DQ , i.e., (4.2) is valid in �̂F ,Q .

(B)Dq AD < N D on Lq(∂�) holds for G and H, in the sense of Definition 4.1, i.e., (4.3) is valid.

(Gλ) There exists θ > 0 such that for every ε, γ > 0 and for all α > 0

σ {x ∈ ∂� :AG(x) > (1 + ε)α, N̂∗H(x)≤ γα} ≤ C(γ /ε)θσ {x ∈ ∂� :AG(x) > α}. (4.9)

(Gλ)D There exists θ > 0 such that for every ε, γ > 0 and for all α > 0

σ {x ∈ Q :AQG(x) > (1 + ε)α, N̂ Q
∗

H(x)≤ γα}

≤ C(γ /ε)θσ {x ∈ Q :AQG(x) > α} for any Q ∈ D(∂�). (4.10)

Consider, in addition, the condition(
1

δ(X)n

∫∫
B(X,δ(X)/2)

|G(Y )|2δ(Y ) dY
)1/2

≤ C∥H∥L∞(B(X,3δ(X)/4)) for all X ∈�. (4.11)
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Then the following implications hold:

(Aloc) =⇒ (Gλ)D =⇒ (Gλ), (4.12)

(Aloc) =⇒ (B)Dq for all 0< q <∞, (4.13)

(B)Dq for some 0< q <∞ =⇒ (B)q , (4.14)

(B)Dq for some 0< q <∞ =⇒ (A)D, (4.15)

(A)D and (4.11) =⇒ (A), (4.16)

(Bloc)q for some 0< q <∞ =⇒ (A)D. (4.17)

In the previous implications the implicit constants of each of the conclusions depend on n, q , the ADR
character of ∂�, the choice of η, K , τ , the constant in Definition 2.7(iii), as well as the implicit constants
in the corresponding hypotheses.

Remark 4.18. In the previous result it is understood that (A) and (A)D are vacuous, unless H ∈ L∞(�).
Regarding (Aloc), if H /∈ L∞(�̂F ,Q), for some Q ∈ D(∂�) and for some pairwise disjoint family of
cubes F ⊂ DQ , then it is understood that F = G/∥H∥L∞(�̂F ,Q)

= 0 and ∥G∥CME(�̂F ,Q)/∥H∥L∞(�̂F ,Q)
= 0.

Hence, in the sup the only relevant sawtooths �̂F ,Q are those on which H is essentially bounded.

Remark 4.19. We note that the assumption (4.11) in (4.16) is only needed when � is unbounded and ∂�
is bounded because all dyadic cones are contained in a C diam(∂�)-neighborhood of E . Hence from
(A)D we only get information for F in that region. However, in all practical applications to solutions of
elliptic PDEs (4.11) is easily justified by Caccioppoli’s inequality.

Remark 4.20. It is possible to show the equivalence of previous conditions upon assuming that they hold
in some class of sets. To be more precise, let �⊂ Rn+1 be an open set with ADR boundary and suppose
that we have a collection {�′

}�′∈6 such that each �′
∈6 is an open subset of �, ∂�′ is ADR boundary,

and also that �̂F ,Q ∈6 for every Q ∈ D(∂�′) and any pairwise disjoint family of cubes F ⊂ DQ . Assume
further that (

1
rn

∫∫
B(X,r)

|G(Y )|2δ(Y ) dY
)1

2

≤ C∥H∥L∞(B(X,2r)) for all B(X, 2r)⊂�. (4.21)

Then, (A) holds on every �′
∈6 if and only if (B)Dq holds for every �′

∈6 and for all (some) 0< q <∞

if and only if (B)q holds for every �′
∈6 and for all (some) 0< q <∞; with the understanding that all

implicit constants in the statements above are uniform within 6. We have several examples of classes 6.
Suppose first that � = Rn+1

\ E , with E being UR (resp. ADR). In that case 6 is the class of open
sets �′

⊂ Rn+1
\ E with ∂� being UR (resp. ADR) and the implicit constant in each condition should

depend on the UR (resp. ADR) character of each �′. Another interesting example is that when � is some
given CAD (resp. 1-sided CAD) and 6 is the collection of chord-arc subdomains (resp. 1-sided chord-arc
subdomains) �′

⊂ �, in that case the implicit constant in each condition should depend on the CAD
(1-sided CAD) character of each �′.
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Lemma 4.22. Let � ⊂ Rn+1 be an open set with ∂� being ADR and let {WQ}Q∈D(∂�) be a Whitney-
dyadic structure for � with some parameters η and K. If (Aloc) holds for G ∈ L2

loc(�) and H ∈ C(�),
then

∥AQ0 G∥L2(F) ≤ Cσ(Q0)
1
2

(
sup
F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

) 1
2
∥N̂ Q0

∗
H∥L∞(F) (4.23)

for every Q0 ∈ D(∂�) and every Borel set F ⊂ Q0, and where the sup is taken over all families F ∈ DQ0

which are pairwise disjoint. The constant C depends on n, the ADR character of ∂�, the choice of η, K , τ ,
and the constant in Definition 2.7(iii).

Proof. We may assume without lost of generality that σ(F) > 0 and also that ∥N̂ Q0
∗ H∥L∞(F) < ∞.

Subdivide Q0 ∈ D(∂�) dyadically and stop the first time that Q ∩ F = ∅. This generates a possibly
empty maximal (hence pairwise disjoint) family F = {Q j }j ⊂ DQ0 \ {Q0}, so that Q j ∩ F = ∅ for every
Q j ∈ F, and Q ∩ F ̸= ∅ for every Q ∈ DF ,Q0 .

Let us observe that if Q ∩ F ̸= ∅ then necessarily Q ∈ DF ,Q0 ; otherwise Q ⊂ Q j ∈ F and hence
Q ∩ F = ∅, which is a contradiction. Recall that by construction for every Y ∈ UQ we have δ(Y ) ≈

ℓ(Q)≈ dist(Y, ∂�̂F ,Q0) since, as explained above, �̂F ,Q0 is composed of fattened Whitney regions ÛQ ,
which, in turn, have bounded overlap. Writing δ( · )= dist( · , ∂�), all these yield∫

F
AQ0 G(x)2 dσ(x)≤

∫
F

∑
x∈Q∈DQ0

∫∫
UQ

G(Y )2δ(Y )1−n dY dσ(x)

=

∑
Q∈DQ0

σ(F ∩ Q)
∫∫

UQ

G(Y )2δ(Y )1−n dY

≲
∑

Q∈DF ,Q0

∫∫
ÛQ

G(Y )2 dist(Y, ∂�̂F ,Q0) dY

≲
∫∫

�̂F ,Q0

G(Y )2 dist(Y, ∂�̂F ,Q0) dY.

Pick then y ∈ ∂�̂F ,Q0 and use (Aloc) in the sawtooth domain �̂F ,Q0 to conclude∫
F
AQ0G(x)2 dσ(x)≲

∫∫
B(y,2 diam(�̂F ,Q))∩�̂F ,Q0

G(Y )2 dist(Y, ∂�̂F ,Q0) dY

≲ ∥G∥CME(�̂F ,Q0 )
diam(�̂F ,Q0)

n
≤ C0∥H∥

2
L∞(�̂F ,Q)

diam(�̂F ,Q0)
n

≈ C0∥G∥CME(�̂F ,Q0 )
∥H∥

2
L∞(�̂F ,Q0 )

σ(Q0),

where

C0 = sup
F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

.

To conclude we observe that if Y ∈ �̂F ,Q0 , then Y ∈ ÛQ for some Q ∈ DF ,Q0 . The latter implies that we
can find z ∈ Q ∩ F ̸= ∅. Hence Y ∈ 0Q0(z) and |H(Y )| ≤ N̂ Q0

∗ H(z)≤ ∥N̂ Q0
∗ H∥L∞(F). As a result,∫

F
AQ0 G(x)2 dσ(x)≲ C0∥N̂ Q0

∗
H∥

2
L∞(F)σ(Q0). □
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4.1. Proof of Theorem 4.8: (Aloc) =⇒ (Gλ)D. Fix Q0 ∈ D = D(∂�) and for any α > 0, set

Eα = {x ∈ Q0 :AQ0 G(x) > α}, Fα = {x ∈ Q0 : N̂ Q0
∗

H(x)≤ α}.

Note that if Eα = ∅ then (4.10) (with Q = Q0) is trivial and there is nothing to prove. Assume then that
Eα ̸= ∅.

We momentarily suppose that Eα ⊊ Q0. Given x ∈ Eα , the monotone convergence theorem guarantees
that there exists kx ≥ 0 such that∫∫

⋃
x∈Q∈DQ0
ℓ(Q)≥2−kx

UQ

|G(Y )|2δ(Y )1−n > α2, (4.24)

where δ( · )= dist( · , ∂�).
Let Qx ∈ DQ0 be the unique cube with Qx ∋ x and ℓ(Qx)= 2−kx and note that for every y ∈ Qx

0Q0(y)=

⋃
y∈Q∈DQ0

UQ ⊃

⋃
Qx⊂Q∈DQ0

UQ =

⋃
x∈Q∈DQ0
ℓ(Q)≥2−kx

UQ .

This and (4.24) imply thatAQ0 G(y) > α. We have then show that for every x ∈ Eα there exists Qx ∈ DQ0

such that Qx ⊂ Eα . We can then take Qmax
x , with Qx ⊂ Qmax

x ⊂ Q0, the maximal cube so that Qmax
x ⊂ Eα .

Note that Qx ⊊ Q0 since Eα ⊊ Q0. Write then F = {Q j }j ⊂ DQ0 \ {Q0} for the collection of maximal
(hence pairwise disjoint) cubes Qmax

x with x ∈ Eα. By construction, Eα =
⋃

Q j ∈F
Q j and for every

Q j ∈ F, by maximality, we can find x j ∈ Q̃ j \ Eα, where Q̃ j is the dyadic parent of Q j . In the latter
scenario, if x ∈ Q j

0Q0(x)=

⋃
x∈Q∈DQ0

UQ =

( ⋃
x∈Q∈DQj

UQ

)
∪

( ⋃
Q j⊊Q⊂Q0

UQ

)
⊂ 0Q j (x)∪0Q0(x j )

and, consequently,

AQ0 G(x)≤AQ j G(x)+AQ0 G(x j )≤AQ j G(x)+α, x ∈ Q j .

Using this, for every ε > 0 we have

E(1+ε)α = E(1+ε)α ∩ Eα =

⋃
Q j ∈F

E(1+ε)α ∩ Q j ⊂

⋃
Q j ∈F

{x ∈ Q j :AQ j G(x) > εα}.

This holds under the assumption Eα ⊊ Q0 but it clearly extends to the case Eα ⊊ Q0 by setting F = {Q0}.
Hence, invoking Chebyshev’s inequality and Lemma 4.22 in every Q j , we arrive at

σ(E(1+ε)α ∩ Fγα)≤

∑
Q j ∈F

σ({x ∈ Q j :AQ j G(x) > εα} ∩ Fγα)

≤
1

(εα)2

∑
Q j ∈F

∫
Fγα∩Q j

AQ j G(x)2 dσ(x)

≲
1

(εα)2

(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

) ∑
Q j ∈F

∥N̂ Q0
∗

H∥
2
L∞(Fγα∩Q j )

σ(Q j )
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≤

(
γ

ε

)2(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

) ∑
Q j ∈F

σ(Q j )

=

(
γ

ε

)2(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

)
σ

( ⋃
Q j ∈F

Q j

)
=

(
γ

ε

)2(
sup
Q0,F

∥G∥CME(�̂F ,Q0 )
/∥H∥

2
L∞(�̂F ,Q0 )

)
σ(Eα),

where the sup is taken over all Q0 ∈ D and over all families F ∈ DQ0 which are pairwise disjoint. □

4.2. Proof of Theorem 4.8: (Aloc)=⇒ (B)D
q for all 0 < q <∞. We start by observing that if G ∈ L2

loc(�)

then for every �′
⊂ � one has ∥G1�′∥CME(�̂F ,Q) ≤ ∥G∥CME(�̂F ,Q) for every Q ∈ D = D(∂�) and for

every family of pairwise disjoint cubes F ∈ DQ . This means that if (Aloc) holds for G and H then it also
does for G1�′ and H uniformly in �′. Therefore, from what we have proved so far, (Gλ)D holds for
G1�′ and H uniformly in �′.

Fix x0 ∈ ∂� and given k ∈ N set

�k = {X ∈ B(x0, k)∩� : |G(X)| ≤ k, δ(X)≥ k−1
}

and note that for every 0< q <∞ and for every x ∈ ∂�

A(G1�k )(x)
2
=

∫∫
0(x)∩�k

|G(Y )|2δ(Y )1−n dY ≤ kn+1
|B(x0, k)| ≈ k2(n+1).

On the other hand, suppose that x ∈ ∂� is so that 0(x)∩�k ̸= ∅. Pick Z ∈ 0(x)∩�k ̸= ∅, then Z ∈ I ∗

with I ∈WQ and x ∈ Q ∈ D. Using (2.9) it follows that

|x − x0| ≤ |x − xQ | + diam(Q)+ dist(I, Q)+ diam(I ∗)+ |Z − x0| ≲ ℓ(I )+ k

≈ δ(Z)+ k ≲ |X − z0| + k ≤ 2k.

As a consequence, suppA(G1�k ) ⊂ B(x0,C K ). These, together with the fact that AQ(G1�k )(x) ≤

A(G1�k )(x) for every x ∈ ∂�, allow us to conclude that A(G1�k ),A
Q(G1�k ) ∈ L∞

c (∂�) ⊂ Lq(∂�)

for every Q ∈ D, albeit with bounds that depend on k.
Using the previous observations and invoking (Gλ)D with G1�k and H (with constant that is indepen-

dent of k) we have for every Q ∈ D

∥AQ(G1�k )∥
q
Lq (Q)

= (1 + ε)q
∫

∞

0
qαqσ {x ∈ Q :AQ(G1�k )(x) > (1 + ε)α}

dα
α

≤ (1 + ε)q
∫

∞

0
qαqσ {x ∈ Q :AQ(G1�k )(x) > (1 + ε)α, N̂ Q

∗
H(x)≤ γα}

dα
α

+ (1 + ε)q
∫

∞

0
qαqσ {x ∈ Q : N̂ Q

∗
H(x) > γα}

dα
α

≤ C
(
γ

ε

)θ
(1 + ε)q

∫
∞

0
qαqσ {x ∈ Q :AQ(G1�k )(x) > α}

dα
α

+

(
1 + ε

γ

)q

∥N̂ Q
∗

H∥
q
Lq (Q)

= C
(
γ

ε

)θ
(1 + ε)q∥AQ(G1�k )∥

q
Lq (Q) +

(
1 + ε

γ

)q

∥N̂∗H∥
q
Lq (Q). (4.25)
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Pick ε= 1 and choose γ sufficiently small to ensure that Cγ θ2q < 1
2 . Using that ∥AQ(G1�k )∥

q
Lq (Q)<∞

we can hide this term on the left-hand side of (4.25) and conclude that

∥AQ(G1�k )∥
q
Lq (Q) ≲ ∥N̂ Q

∗
H∥

q
Lq (Q), (4.26)

with an implicit constant depending on n, the ADR character of ∂�, the choice of η, K , τ , the constant in
Definition 2.7(iii), q , and the implicit constant in (Gλ), but nonetheless independent of k. By the monotone
convergence theorem and the fact that |G(X)| <∞ for a.e. X ∈ �, since G ∈ L2

loc(�), it follows that
AQ(G1�k )(x)↗AQG(x). Then we can use the monotone convergence theorem to obtain from (4.26)

∥AQG∥
q
Lq (Q) = lim

k→∞

∥AQ(G1�k )∥
q
Lq (Q) ≲ ∥N̂ Q

∗
H∥

q
Lq (Q),

completing the proof. □

Remark 4.27. The previous arguments easily yield that for any 0< q <∞, one has that (Gλ)D ⇒ (Bloc)q

provided ∥AQG∥Lq (Q)<∞. A very similar argument gives that (Gλ)⇒ (B)q provided ∥AG∥Lq (∂�)<∞.
Details are left to the interested reader.

4.3. Proof of Theorem 4.8: (Gλ)D =⇒ (Gλ). We note that if ∂� is bounded, then ∂� itself is the largest
cube in D = D(∂�), say ∂�= Q0; hence (Gλ) is a particular case of (Gλ)D. Consider next the case ∂�
unbounded and for every k ∈ N write

0k(x)=

⋃
x∈Q∈D

ℓ(Q)≤2k

UQ, x ∈ ∂�,

and associated with these cones defineAk and N̂ k
∗

. Given Q ∈ D−k , i.e., ℓ(Q)= 2−k, one easily sees that
0Q0(x)= 0k(x) for every x ∈ Q0. Hence, for every k ∈ N, using (Gλ)D we obtain

σ {x ∈ ∂� :Ak G(x) > (1 + ε)α, N̂∗H(x)≤ γα}

≤ σ {x ∈ ∂� :Ak G(x) > (1 + ε)α, N̂ k
∗

H(x)≤ γα}

=

∑
Q∈D−k

σ {x ∈ Q :Ak G(x) > (1 + ε)α, N̂ k
∗

H(x)≤ γα}

=

∑
Q∈D−k

σ {x ∈ Q :AQG(x) > (1 + ε)α, N̂ Q
∗

H(x)≤ γα}

≲

(
γ

ε

)θ ∑
Q∈D−k

σ {x ∈ Q :AQG(x) > α} =

(
γ

ε

)θ ∑
Q∈D−k

σ {x ∈ Q :Ak G(x) > α}

=

(
γ

ε

)θ
σ {x ∈ ∂� :Ak G(x) > α} ≤

(
γ

ε

)θ
σ {x ∈ ∂� :AG(x) > α}. (4.28)

On the other hand, the monotone convergence theorem gives that Ak G(x)↗AG(x) as k → ∞ and for
every x ∈ ∂�. Hence, another use of the monotone convergence theorem and (4.28) yield

σ {x ∈ ∂� :AG(x) > (1 + ε)α, N̂∗H(x)≤ γα} = lim
k→∞

σ {x ∈ ∂� :Ak G(x) > (1 + ε)α, N̂∗H(x)≤ γα}

≲ (γ /ε)θσ {x ∈ ∂� :AG(x) > α}, □
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4.4. Proof of Theorem 4.8: (B)D
q for some 0 < q < ∞ =⇒ (B)q . We note that if ∂� is bounded, then

∂� itself is the largest cube in D = D(∂�), say ∂�= Q0; hence (B)q is a particular case of (Bloc)q . If
∂� is unbounded we use the same argument as in the previous proof:∫

∂�

Ak G(x)q dσ(x)=

∑
Q∈D−k

∫
Q
Ak G(x)q dσ(x)=

∑
Q∈D−k

∫
Q
AQG(x)q dσ(x)

≲
∑

Q∈D−k

∫
Q

N̂ Q
∗

H(x)q dσ(x)=

∑
Q∈D−k

∫
Q

N̂ k
∗

H(x)q dσ(x)

=

∫
∂�

N̂ k
∗

H(x)q dσ(x)≤

∫
∂�

N̂∗H(x)q dσ(x).

From here, we obtain the desired estimate from the monotone convergence theorem and the fact that
Ak G(x)↗AG(x) for every x ∈ ∂�, as k → ∞. □

4.5. Proof of Theorem 4.8: (B)D
q for some 0< q <∞=⇒ (A)D. Assume that (Bloc)q for some 0<q<∞

holds. We may assume that H ∈ L∞(�). Hence, for every Q ∈ D(∂�),∫
Q
AQG(x)q dσ(x)≤ Cq

q

∫
Q

Ñ Q
∗

H(x)q dσ(x)≤ Cq
q ∥H∥

q
L∞(�) σ(Q).

Writing F := G(21/qCq∥H∥L∞(�))
−1, we have by Chebyshev’s

σ {x ∈ Q :AQ F(x) > 1} ≤

∫
Q
AQ F(x)q dσ(x)≤

1
2σ(Q).

We then invoke Lemma 3.8 with p = 2 and obtain

sup
Q∈DQ0

−

∫
Q
AQ F(x)2 dσ(x)≲ 1.

On the other hand, writing δ( · )= dist( · , ∂�), and recalling that the family {UQ′}Q′∈D(∂�) has bounded
overlap, we see that∫∫

TQ

F2δ dY ≈

∑
Q′∈DQ

∫∫
UQ′

F2δ dY ≈

∑
Q′∈DQ

σ(Q′)

∫∫
UQ′

F2δ1−n dY

=

∫
Q

∑
x∈Q′∈DQ

∫∫
UQ′

F2δ1−n dY dσ(x)

≈

∫
Q

∫∫
0Q(x)

F2δ1−n dY dσ(x)=

∫
Q
AQ F(x)2 dσ(x), (4.29)

Thus,

∥F∥CMEdyad(�) = sup
Q∈DQ0

1
σ(Q)

∫∫
TQ

F(Y )2δ(X) dY ≲ 1. □

4.6. Proof of Theorem 4.8: (A)D and (4.11) =⇒ (A). This follows trivially from (2.29):

∥G∥CME(�) ≲ ∥G∥CMEdyad(�) + ∥G∥C0(�) ≲ ∥H∥
2
L∞(�),

which is the desired estimate. □
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4.7. Proof of Theorem 4.8: (Bloc)q for some 0 < q < ∞ =⇒ (A)D. Write D = D(∂�) and δ( · ) =

dist( · , ∂�). Assume (Bloc) and fix Q0 ∈ D. We may suppose that H ∈ L∞(�); otherwise there is nothing
to prove. Recall that T̂Q0 = �̂∅,Q0 ; hence (Bloc) implies that A < N on Lq(∂TQ0). Thus, Remark 4.4
yields for every κ > 0

∥A T̂Q0 ,κ
G∥

q
Lq (∂ T̂Q0 )

≲ ∥N
∗,T̂Q0 ,κ

H∥
q
Lq (∂ T̂Q0 )

≤ ∥H∥
q
L∞(�)H

n(∂TQ0)≲ ∥H∥
q
L∞(�) diam(∂TQ0)

n

≲ ∥H∥
q
L∞(�)ℓ(Q0)

n
≈ ∥H∥

q
L∞(�)σ(Q0)

n, (4.30)

where we have used that ∂TQ0 is upper ADR (see Remark A.2), (2.14), and that ∂� is ADR.
Let x ∈ Q0 and Y ∈ 0Q0(x). Then Y ∈ I ∗ with I ∈WQ with x ∈ Q ∈ DQ0 . Recalling that I ∗

= I ∗(τ )

and that T̂Q0 is defined using fattened Whitney cubes of the form J ∗(2τ) we clearly see that Y ∈TQ0 ⊂ T̂Q0

with δ(Y )≈ dist(Y, ∂ T̂Q0). Consequently,

|Y − x | ≤ diam(I )+ dist(I, Q)+ diam(Q)≲ ℓ(I )≈ δ(Y )≈ dist(Y, ∂ T̂Q0).

Then we can find κ depending on n, the ADR constants of ∂�, η, K, and the constant in Definition 2.7(iii)
such that Y ∈ 0T̂Q0 ,κ

(x). Since Q0 ⊂ ∂ T̂Q0 (see [Hofmann and Martell 2014, Proposition 6.1]), we then
obtain

AQ0 G(x)=

(∫∫
0Q0 (x)

|G(Y )|2δ(Y )1−n dY
)1

2

≈

(∫∫
0Q0 (x)

|G(Y )|2 dist(Y, ∂TQ0)
1−n dY

)1
2

≤

(∫∫
0T̂Q0

,κ (x)
|G(Y )|2 dist(Y, ∂TQ0)

1−n dY
)1

2

=A T̂Q0 ,κ
G(x).

This and (4.30) imply

−

∫
Q0

AQ0 G(x)q dσ(x)≲ −

∫
Q0

A T̂Q0 ,κ
G(x)q dσ(x)≤ C∥H∥

q
L∞(�).

Writing F = G(C∥H∥L∞(�))
−1, for N large enough, we obtain from Chebyshev’s inequality

σ {x ∈ Q0 :AQ0 F(x) > N } ≤ N−q
∫

Q0

AQ0 F(x)q dσ(x)≤
1
2σ(Q).

Since Q0 ∈ D is arbitrary we can apply Lemma 3.8 with p = 2 and obtain

sup
Q∈DQ0

−

∫
Q
AQ F(x)2 dσ(x)≲ 1.

This and (4.29) give

∥F∥CMEdyad(�) = sup
Q∈DQ0

1
σ(Q)

∫∫
TQ

F(Y )2δ(X) dY ≲ 1,

which is the desired estimate. □

5. Transference of N < S estimates: from Lipschitz to chord-arc domains

Before starting, we introduce some notation. Let D ⊂ Rn+1 be a bounded CAD. Given Q ∈ D(∂D) or
1=1(x, r), with x ∈ ∂D and 0< r ≲ diam(∂D), we will write X+

Q and X+

1 to denote respectively some
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interior corkscrew points relative to Q (that is, relative to 1Q , see (2.2)) and 1. When ∂D is bounded, we
write X+

D to denote a corkscrew point relative to a surface ball1(x, 3 diam(∂D)/2)= ∂D for some x ∈ ∂D.
Also, recall the dyadic Hardy–Littlewood maximal function from Definition 2.4. In addition, we will

be using its continuous analogue. Let E ⊂ Rn+1 be an n-dimensional ADR set. By M = ME we denote
the continuous (noncentered) Hardy–Littlewood maximal function on E , that is, for f ∈ L1

loc(E)

M f (x)= sup
1∋x

−

∫
1

| f (y)| dσ(y),

where the sup is taken over all 1, surface balls on E containing x . For 0 < p < ∞, we also write
Mp f = M(| f |

p)1/p. It is clear from (2.2) that MD f (x)≲ M f (x) for every x ∈ E . The converse might
fail pointwise, but both maximal functions are bounded in L p(E), p > 1.

We are now ready to state the main result of this section:

Theorem 5.1. Let D ⊂ Rn+1 be a CAD. Let u ∈ W 1,2
loc (D)∩ C(D) and assume that there exists C0 > 0

such that for any c ∈ R and for any cube I with 2I ⊂ D

sup
X∈I

|u(X)− c| ≤ C0

(
ℓ(I )−n−1

∫∫
2I

|u − c|2 d X
)1

2

. (5.2)

Suppose that the N < S estimates are valid on L2 on all bounded Lipschitz subdomains �⊂ D, that is,
for any bounded Lipschitz subdomain �⊂ D there holds

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C�∥S�u∥L2(∂�). (5.3)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� in (5.3)
depends on the Lipschitz character of �, the dimension n, the implicit choice of κ (the aperture of the
cones in N∗,� and S�), and the implicit corkscrew constant for the point X+

� .
Given η≪ 1 and K ≫ 1, consider {WQ}Q∈D(∂D) a Whitney-dyadic structure for D with parameters η

and K ; see Section 2.4. Then there exist 0< c0 ≪ 1 and C > 0, depending on n, the CAD character of D,
the choice of η, K , τ , such that for every ε > 0, for every 0 < γ < c0ε/C0, for all α > 0, and for all
Q ∈ D(∂D)

σ {x ∈ Q : N Q
∗
(u − u(X+

Q))(x) > (1 + ε)α, MD
Q0,2(Ŝ

Qu)(x)≤ γα}

≤ C∗

γ,εσ {x ∈ Q : N Q
∗
(u − u(X+

Q))(x) > α}, (5.4)

where C∗
γ,ε = (1 − θ + C(γ /ε)2) and θ ∈ (0, 1) is from Corollary 3.21 (hence depends on n and the CAD

character of D). Therefore

∥N Q
∗
(u − u(X+

Q))∥Lq (Q) ≤ C ′
∥ŜQu∥Lq (Q) for all q > 2, (5.5)

where C ′ depends on n, the CAD character of D, C0, the choice of η, K , τ , and q.
As a consequence, for any x ∈ ∂D and 0< r < 2 diam(∂D) there exists K ′ depending on n, the CAD

character of D such that for every κ > 0

∥N r
∗,D,κ(u − u(X+

1(x,r))∥Lq (1(x,r)) ≤ C ′′
∥SK ′r

D,κu∥Lq (1(x,K ′r)) for all q > 2, (5.6)
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where 1(x, r)= B(x, r)∩ ∂�, and where C ′′ depends on q , n, the CAD character of D, C0, and κ . In
particular, if ∂D is bounded

∥N∗,D,κ(u − u(X+

D))∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all q > 2 (5.7)

and if ∂D is unbounded and u(X)→ 0 as |X | → ∞ then

∥N∗,D,κu∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all q > 2. (5.8)

We remark that contrary to the previous sections, we do not consider general AG and N∗H anymore.
This is a necessity, as the argument of the area integral has to be the gradient of the argument of the
nontangential maximal function. The assumption (5.2) is a standard interior regularity estimate for
solutions of elliptic equations (also known as Moser’s local boundedness estimate). In principle, we need
a somewhat different version. Recall that ÛQ is a fattened version of the Whitney region UQ . We have

|u(YQ)− c| ≤ C0

(
ℓ(Q)−n−1

∫∫
ÛQ

|u − c|2 d X
)1

2

, (5.9)

where YQ is any point lying in UQ , so that there is a ball centered at YQ , of radius proportional to ℓ(Q),
which lies inside ÛQ . We note that if we assumed (5.2) or (5.9) without enlarging the integrals on the
respective right-hand sides, we could obtain a version of (5.4)–(5.5) without enlarging the “aperture of
cones” on the right-hand side (that is, with SQ in place of ŜQ). But that is minor and (5.2) looks a bit
more familiar and more in line with (6.2) below.

Proof. To start, write D = D(∂D) and δ( · ) = dist( · , ∂D). Fix η ≪ 1 and K ≫ 1 and consider
{WQ}Q∈D(∂D) a Whitney-dyadic structure for D with parameters η and K from Section 2.4. We claim that
for every Q ∈ D

sup
X,Y∈UQ

|u(X)− u(Y )| ≤ CC0 inf
z∈Q

ŜQu(z)≤ CC0−

∫
Q

ŜQu dσ, (5.10)

where C depends on n, η, K, τ , and the CAD character of D, and C0 is the constant in (5.2). To see this
observe that for every Q ∈ D and X ∈ UQ we have that X ∈ I ∗(τ ) for some I ∈WQ . Let IX ⊂ D be the
cube centered at X with side length τℓ(I ) so that 2IX ⊂ I ∗(2τ)⊂ ÛQ . Note that ℓ(IX )≈ ℓ(I )≈ ℓ(Q).
Then, (5.2) yields, for every c ∈ R,

|u(X)− c| ≤ C0

(
ℓ(IX )

−n−1
∫∫

2IX

|u − c|2 d X
)1

2

≲ C0

(
ℓ(Q)−n−1

∫∫
ÛQ

|u − c|2 d X
)1

2

. (5.11)

With this at hand, let Q ∈ D and X, Y ∈ UQ and z ∈ Q. Setting

cQ :=
1

|ÛQ |

∫∫
ÛQ

v d Z ,

we obtain

|u(X)− u(Y )| ≤ |u(X)− cQ | + |u(Y )− cQ | ≲ C0

(
ℓ(Q)−n−1

∫∫
ÛQ

|u − cQ |
2 d Z

)1
2

≲ C0

(
ℓ(Q)−n+1

∫∫
ÛQ

|∇u|
2 d X

)1
2

≈ C0

(∫∫
ÛQ

|∇u|
2δ1−n d X

)1
2

≤ C0 ŜQu(z),
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where the second inequality follows from (5.11), the third from Poincaré’s inequality in the context of
Whitney regions (see the argument in [Hofmann et al. 2017a, Proof of Lemma 3.1]), and the last from the
fact that δ( · )≈ ℓ(Q) in ÛQ . This proves our claim.

Let us fix Q0 ∈ D and write v := u − u(X+

Q0
), with X+

Q0
beginning the corkscrew relative to Q0, that

is, relative to the surface ball 1Q0 (see (2.2) and (2.3)). For every α > 0 we set

Eα := {x ∈ Q0 : N Q0
∗
v(x) > α}, Fα := {x ∈ Q0 : MD

Q0,2(Ŝ
Q0v)(x)≤ α},

where MD
Q,2 was defined in Definition 2.4. Our goal is to obtain for every α, γ, ε > 0 with 0< γ ≪ ε/C0

there holds

σ(E(1+ε)α ∩ Fγα)≤ C∗

γ,εσ(Eα), (5.12)

and we will me more specific about the constant C∗
γ,ε momentarily. With this goal in mind we fix

α, γ, ε > 0. We may assume that Eα ̸= ∅; otherwise (5.4) is trivial.
Let x ∈ Eα; then there exist Qx ∈ DQ0 with x ∈ Qx and Y ∈ UQx such that |v(Y )| > α. Note that

UQx ⊂0Q0(y) for every y ∈ Qx ; hence N Q0
∗ v(y)≥|v(Y )|>α and Qx ⊂ Eα . We can then take Qmax

x , with
Qx ⊂ Qmax

x ⊂ Q0, the maximal cube so that Qmax
x ⊂ Eα . Write then F = {Q j }j ⊂ DQ0 for the collection

of maximal (hence pairwise disjoint) cubes Qmax
x with x ∈ Eα. By construction, Eα =

⋃
Q j ∈F

Q j .
Given Q ∈F , invoke Corollary 3.21 and take a bounded Lipschitz domain�Q ⊂ D satisfying properties

(i)–(iii) in the statement. In particular, we set FQ := ∂�Q ∩ Q ⊂ Q such that σ(FQ)≥ θσ (Q). Our goal
is to show that

σ(E(1+ε)α ∩ Fγα ∩ FQ)≤ C
(
γ

ε

)2

C�Qσ(Q), (5.13)

where C�Q is the constant from (5.3); hence it depends on the Lipschitz character of �Q , which in turn
depends only on the CAD character of D, and C depends as well on the CAD character of D. Assuming
this momentarily, we obtain (5.4):

σ(E(1+ε)α ∩ Fγα)= σ(E(1+ε)α ∩ Eα ∩ Fγα)=

∑
Q∈F

σ(E(1+ε)α ∩ Eα ∩ Q)

≤

∑
Q∈F

(
σ(Q \ FQ)+ σ(E(1+ε)α ∩ Eα ∩ FQ)

)
≤

(
1 − θ + C

(
γ

ε

)2

sup
Q∈D

C�Q

) ∑
Q∈F

σ(Q)= C∗

γ,εσ(Eα),

where C∗
γ,ε = (1 − θ + C(γ /ε)2 supQ∈D C�Q ). Note that supQ∈D C�Q <∞ and ultimately depends on

the CAD character of D, since all the Lipschitz characters of the �Q are uniformly bounded depending
on the CAD character of D (see Corollary 3.21) and our assumption states that C�Q depends on the
Lipschitz character of �Q , the dimension n, and the choice of κ (the aperture of the cones).

Let us then obtain (5.13). We may assume that the left-hand side is nonzero; hence we can pick
zQ ∈ E(1+ε)α ∩ Fγα ∩ FQ . Let YQ be from Corollary 3.21(ii) whose existence is guaranteed by part (i)
and note that YQ ∈ UQ .
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We need to consider two separate cases. First assume that Q ⊊ Q0. By the maximality of Q ∈ F,
we can find x̃ ∈ Q̃ \ Eα, where Q̃ is the dyadic parent of Q. That is, N Q0

∗ v(x̃) ≤ α and, in particular,
|v(X)| ≤ α for every X ∈ UQ̃ since UQ̃ ⊂ 0Q0(x̃). Note then that if x ∈ Q, then

N Q0
∗
v(x)= sup

Y∈0Q0 (x)
|v(Y )| = max

{
sup

Y∈0Q(x)
|v(Y )|, max

Y∈UQ ,Q̃⊂Q⊂Q0

|v(Y )|
}

≤ max{N Q
∗
v(x), N Q0

∗
v(x̃)} ≤ max{N Q

∗
v(x), α}. (5.14)

Since |v(X)| ≤ α for every X ∈ UQ̃ , we have that |v(X+

Q̃
)| ≤ α, where X+

Q̃
is the interior corkscrew point

relative to Q̃ (with respect to D which is a CAD). Then, recalling that the construction ofWQ guarantees
that X+

Q̃
∈ UQ , and that YQ ∈ UQ , we have, by (5.10),

|v(X+

Q̃
)− v(YQ)| = |u(X+

Q̃
)− u(YQ)| ≤ CC0−

∫
Q

ŜQu dσ ≤ CC0−

∫
Q

ŜQ0u dσ

= CC0−

∫
Q

ŜQ0v dσ ≤ MD
Q0,2(Ŝ

Q0v)(zQ)≤ CC0γα, (5.15)

where we have used that zQ ∈ Q ∩ Fγα. As a consequence,

|v(YQ)| ≤ |v(YQ)− v(X+

Q̃
)| + |v(X+

Q̃
)| ≤ (1 + CC0γ )α ≤ (1 + ε/2)α, (5.16)

where C depends on the CAD character of D, and provided γ < (2CC0)
−1ε =: 2c0ε. As a result, using

(5.14), for every x ∈ E(1+ε)α we arrive at

(1 + ε)α < N Q0
∗
v(x)= N Q

∗
v(x)≤ N Q

∗
(v− v(YQ))(x)+ |v(YQ)| ≤ N Q

∗
(v− v(YQ))(x)+ (1 + ε/2)α,

and, consequently,

E(1+ε)α ∩ Fγα ∩ FQ ⊂ {x ∈ Fγα ∩ FQ : N Q
∗
(v− v(YQ))(x) > εα/2}, (5.17)

where we recall that we are currently considering the case Eα ⊊ Q.
In the second case Q = Q0; hence F = {Q} and Eα = Q. Since YQ, X+

Q0
∈ UQ0 we can invoke (5.10)

to obtain

|v(YQ)| = |u(YQ)− u(X Q0)
+
| ≤ CC0−

∫
Q0

ŜQ0u dσ = CC0−

∫
Q0

ŜQ0v dσ

≤ MD
Q0,2(Ŝ

Q0v)(zQ)≤ CC0γα ≤ (1 + CC0γ )α ≤ (1 + ε/2)α, (5.18)

where C depends on the CAD character of D, and provided γ < (2CC0)
−1ε =: 2c0ε. Consequently, for

every x ∈ E(1+ε)α we arrive at

(1 + ε)α < N Q0
∗
v(x)≤ N Q0

∗
(v− v(YQ))(x)+ |v(YQ)| ≤ N Q

∗
(v− v(YQ))(x)+ (1 + ε/2)α.

Thus, N Q
∗ (v− v(YQ))(x)= N Q0

∗ (v− v(YQ))(x) > εα/2 and (5.17) holds also in this case.
We can now merge the two cases. Pick x ∈ Fγα ∩ FQ = ∂�Q ∩ Q such that N Q

∗ (v − v(YQ))(x) >
εα/2. Then, there exist Q′

∈ DQ with Q′
∋ x and Y ∈ UQ′ such that |v(Y )− v(YQ)| > εα/2. Thus,

yQ′ := x ∈ Q′
∩ ∂�Q = FQ ∩ Q′ and applying once again condition (ii) of Corollary 3.21 we can find the
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corresponding YQ′ ∈ UQ′ so that

|YQ′ − yQ′ |< ℓ(Q′)≤ C dist(YQ′, ∂�Q) := (1 + κ) dist(YQ′, ∂�Q),

where C ≥ 2 is the constant from Corollary 3.21. This means that YQ′ ∈ 0�Q (yQ′)= 0�Q (x) (see (1.14)).
On the other hand, since Y, YQ′ ∈ UQ′ and x ∈ Fγα ∩ Q′, one can see that (5.10) yields

|v(Y )− v(YQ′)| = |u(Y )− u(YQ′)| ≤ CC0−

∫
Q′

ŜQ′

u dσ ≤ CC0−

∫
Q′

ŜQ0u dσ

= CC0−

∫
Q′

ŜQ0v dσ ≤ CC0 MD
Q0,2(Ŝ

Q0v)(x)≤ CC0γα ≤ εα/4, (5.19)

provided γ < c0ε = (4CC0)
−1ε. Hence,

εα/2< |v(Y )− v(YQ)| ≤ |v(Y )− v(YQ′)| + |v(Y ′

Q)− v(YQ)| ≤ εα/4 + |v(Y ′

Q)− v(YQ)|

and

N∗,�Q (v− v(YQ))(x)= sup
Z∈0Q(x)

|v(Y )− v(YQ)| ≥ |v(YQ′)− v(YQ)| ≥ εα/4.

All these yield

E(1+ε)α ∩ Fγα ∩ FQ ⊂ {x ∈ ∂�Q : N∗,�Q (v− v(YQ))(x) > εα/4}.

Use Chebyshev’s inequality and the assumption (5.3) we write

σ(E(1+ε)α ∩ Fγα ∩ FQ)≤ σ {x ∈ ∂�Q : N∗,�Q (v− v(YQ))(x) > εα/4}

≤

(
4
εα

)2 ∫
∂�Q

N∗,�Q (v− v(YQ))(x)2 d H n(x)

≲ C�Q

16
(εα)2

∫
∂�Q

(S�Qv(x))
2 d H n(x), (5.20)

where C�Q depends on n and the CAD of D, and so do all the implicit constants. Note that∫
∂�Q

(S�Qv(x))
2 d H n(x)=

∫
∂�Q

∫∫
|Y−x |≤(1+κ) dist(Y,∂�Q)

|∇v(Y )|2 dist(Y, ∂�Q)
1−n dY d H n(x)

≤

∫∫
�Q

|∇v(Y )|2 dist(Y, ∂�Q)
1−n H n(B(Y, (2 + κ) dist(Y, ∂�Q))∩ ∂�Q) dY

≲
∫∫

�Q

|∇v(Y )|2 dist(Y, ∂�Q) dY

≤

∫∫
TQ

|∇v(Y )|2δ(Y ) dY, (5.21)

where we have used that ∂�Q is ADR with constant depending on the CAD character of �G ; hence
ultimately on the CAD character of D, and the last inequality follows from the fact that�Q ⊂ D∩BQ ⊂ TQ



TRANSFERENCE OF SCALE-INVARIANT ESTIMATES 3299

(see (iii) in Corollary 3.21 and (2.15)) and, in particular, dist(Y, ∂�Q) ≤ dist(Y, ∂D)= δ(Y ) for every
Y ∈�Q . Note that (4.29) with G̃ = |∇v| implies∫∫

TQ

|∇v|2δ dY ≈

∫
Q

∫∫
0Q(x)

|∇v|2δ1−n dY dσ(x)

=

∫
Q

ŜQv2 dσ ≤ MD
Q0,2(Ŝ

Q0v)(zQ)
2σ(Q)≤ (γ α)2σ(Q), (5.22)

where we have used that zQ ∈ Fγα. Thus, (5.20), (5.21), and (5.22) imply

σ(E(1+ε)α ∩ Fγα ∩ FQ)≲ C�Q (γ /ε)
2σ(Q),

which is (5.13).
To continue the proof, having at hand (5.4), an argument analogous to (4.25) yields (5.5). To be

specific, we show that taking ε > 0 small enough depending on n and the CAD character of D and then
taking γ > 0 small enough depending on the same parameters and ε, the estimate (5.4) yields (5.5). It is
here that we use a possibility to pick ε > 0 sufficiently small. Indeed, fix any q > 2, Q0 ∈ D and write
v := u − u(X Q0). Then, much as in (4.25), for every N > 1

IN :=

∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

= (1 + ε)q
∫ N/(1+ε)

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1 + ε)α}

dα
α

≤ (1 + ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1 + ε)α, MD

Q0,2(Ŝ
Q0v)(x)≤ γα}

dα
α

+

(
1 + ε

γ

)q

∥MD
Q0,2(Ŝ

Q0v)∥
q
Lq (Q0)

≤ C∗

γ,ε(1 + ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

+
(1 + ε)q

γ q ∥MD
Q0,2(Ŝ

Q0v)∥
q
Lq (Q0)

=

(
1 − θ + C

(
γ

ε

)2

sup
Q∈D

C�Q

)
(1 + ε)q IN +

(1 + ε)q

γ q ∥MD
Q0,2(Ŝ

Q0v)∥
q
Lq (Q0)

. (5.23)

At this point we first choose ε > 0 small enough so that (1 − θ)(1 + ε)q < 1
4 , and once ε is fixed we take

0< γ < c0ε/C0 small enough so that C(γ /ε)2 supQ∈D C�Q (1 + ε)q < 1
4 . With these choices and using

that IN ≤ N qσ(Q0) <∞, we can hide this term with IN on the left-hand side of (5.23) to obtain

IN ≤ 2(1 + ε)q/γ q
∥MD

Q0,2(Ŝ
Q0v)∥

q
Lq (Q0)

.

Noting that IN ↗ ∥N Q0
∗ v∥

q
Lq (Q0)

as N → ∞, and using that MD
Q0,2 is bounded on Lq(Q0) since q > 2,

we obtain as desired (5.5).
We next see how to obtain (5.6) using the ideas in Remark 4.4. Proceeding as there, once we have

fixed {WQ}Q∈D(∂D) a Whitney-dyadic structure for D with some parameters η and K. Given x ∈ ∂D and
0 < r < 2 diam(∂D), write 1 = 1(x, r) and B = B(x, r) and consider the case r ≪ diam(∂D). Then
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0r (y)⊂ 2B for every y ∈1, if z /∈ 61 then 0�,1(z)∩ 2B = ∅, and 0�,1(y)⊂ 0(y) for every y ∈ ∂D.
All these and with Remark 2.38 imply

∥N r
∗,D,κ(u − u(X+

1))∥Lq (1) ≤ ∥N∗,D,κ((u − u(X+

1))12B)∥Lq (∂D)

≲ ∥N∗,D,1((u − u(X+

1))12B)∥Lq (∂D) ≤ ∥N∗((u − u(X+

1))12B)∥Lq (61).

We introduceD1 as in (4.6). Let Q ∈D1 and note that δ(X+

Q)≈ℓ(Q)≈r ≈δ(X+

1) and also |X+

Q−X+

1|≲r .
Hence we can use the Harnack chain condition to find a collection of cubes I1, . . . , IN with N ≲ 1 so that
X+

Q ∈ I0, X+

1 ∈ IN , dist(4Ij , ∂D)≈ ℓ(Ij )≈ r ≈ ℓ(Q) for 1 ≤ j ≤ N, and there exists X j ∈ Ij ∩ I j+1 ̸=∅
for each 1 ≤ j ≤ N − 1. Write X0 = X Q+ , X N = X+

1, and note that for every 1 ≤ j ≤ N

dist(Ij ,Q)≤|X j−xQ |≤|X j−X+

Q |+|X+

Q−xQ|≲
j−1∑
k=0

|Xk−Xk+1|+ℓ(Q)≤
j−1∑
k=0

diam(Ik+1)+ℓ(Q)≈ℓ(Q).

Thus, there exist η′ and K ′ depending on n, the CAD character of D, and fixed parameters η and K such
that if {W ′

Q}Q∈D(∂D) is a Whitney-dyadic structure for D with parameters η′ and K ′, and if I ∈W with
I ∩ 2Ij ̸= ∅, then I ∈ (W ′

Q)
0
⊂W ′

Q . Consequently, 2I ⊂ U ′

Q (the Whitney region corresponding to Q
with the Whitney-dyadic structure {W ′

Q}Q∈D(∂D)). All these and (5.2) yield

|u(X+

Q)− u(X+

1)| = |u(X0)− u(X N )| ≤

N−1∑
j=0

|u(X j )− u(X j+1)|

≤

N−1∑
j=0

∣∣∣∣u(X j )− ℓ(2I j+1)
−n−1

∫∫
2I j+1

u dY
∣∣∣∣ + ∣∣∣∣u(X j+1)− ℓ(2I j+1)

−n−1
∫∫

2I j+1

u dY
∣∣∣∣

≲ sup
1≤ j≤N

sup
X∈Ij

∣∣∣∣u(X)− ℓ(2I j )
−n−1

∫∫
2I j

u dY
∣∣∣∣

≲ C0 sup
1≤ j≤N

(
ℓ(2I j )

−n−1
∫∫

2I j

∣∣∣∣u − ℓ(2I j )
−n−1

∫∫
2I j

u
∣∣∣∣2

dY
)1

2

≲ C0 sup
1≤ j≤N

ℓ(Ij )

(
ℓ(2I j )

−n−1
∫∫

2I j

|∇u|
2 dY

)1
2

≈ C0 sup
1≤ j≤N

(∫∫
2I j

|∇u|
2δ1−n dY

)1
2

≤ C0 sup
1≤ j≤N

(∫∫
U ′

Q

|∇u|
2δ1−n dY

)1
2

≤ C0 inf
y∈Q
A ′,Q(∇u)(y),

where A ′,Q is the local area integral to the cones 0′( · ) made up with the Whitney regions U ′

Q′ .
On the other hand for each Q ∈D1 we have much as before that

0(y)∩ 2B ⊂ 0Q(y)⊂ 0̂Q(y)⊂ B(xQ, Kℓ(Q))∩ D ⊂ K ′B ∩ D
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for every y ∈ Q ∈ D1. Taking K ′ even larger we also have that 0′,Q(y) ⊂ D ⊂ K ′B ∩ D for every
y ∈ Q ∈D1. Thus all the previous considerations, (5.5) for q > 2, and Remark 2.38 give

∥N r
∗,D,κ(u − u(X+

1))∥
q
Lq (1) ≲

∑
Q∈D1

∥N∗((u − u(X+

1))12B)∥
q
Lq (Q)

≤

∑
Q∈D1

(
∥N Q

∗
((u − u(X+

Q))12B)∥
q
Lq (Q) + |u(X+

Q)− u(X+

1)|
qσ(Q)

)
≲

∑
Q∈D1

(
∥ŜQu∥

q
Lq (Q) + C0 inf

y∈Q
A ′,Q(∇u)(y)qσ(Q)

)
≤ ∥Â(|∇u|1k′ B)∥

q
Lq (∂D) + C0∥A

′(|∇u|1k′ B)∥
q
Lq (∂D)

≲ (1 + C0)∥AD,min{1,κ}(|∇u|1k′ B)∥
q
Lq (∂D)

≲ (1 + C0)∥A
3K ′r
D,κ (|∇u)|∥q

Lq (3K ′1)

= (1 + C0)∥S3K ′r
D,κ u∥

q
Lq (3K ′1),

where we have used that 0�,1(z)∩ K ′B ̸= ∅ then z ∈ 3K ′1. This proves (5.6).
To complete the proof we observe that if ∂D is bounded then for any x ∈ ∂D we have that ∂D =

1(x, 3 diam(∂D)/2). Thus (5.7) readily follows from (5.6). On the other hand, to obtain for (5.8)
fix x0 =∈ ∂D and write 1R = 1(x0, R). Given ε > 0, there exist Rε such that |u(X)| < ε for every
|X − x0| ≥ Rε, with X ∈ D. By the corkscrew condition B(X+

1R
, R/C)⊂ B(x0, R) for some C > 1 and

then |X+

1R
− x0| ≥ R/C .

Fix y ∈ ∂D and let R> 2 max{C Rε, |y−x0|} so that B(x0, Rε)⊂ B(y, R) and |X+

1R
−x0| ≥ R/C > Rε.

Hence, |u(X+

1R
)|< ε, |u(Z)|< ε for every D \ B(y, R), and

|N∗,κu(y)− N R
∗,k(u − u(X+

1R
)(y)11R (y)| = |N∗,κu(y)− N∗,k((u − u(X+

1R
)1B(y,R)))(y)|

≤ |N∗,κ(u − (u − u(X+

1R
)1B(y,R)))(y)|

≤ |N∗,κ(u1D\B(y,R))(y)| + |u(X+

1R
)|< 2ε.

This shows that for every y ∈ ∂D

lim
R→∞

N R
∗,k(u − u(X+

1R
)(y)11R (y)= N∗,κu(y).

Thus Fatou’s lemma and (5.6) imply for every q > 2∫
∂D

N∗,κu(y)q dσ(y)≤ lim inf
R→∞

∫
1R

N R
∗,k(u − u(X+

1R
)(y)q dσ(y)

≤ C ′′ lim inf
R→∞

∫
K ′1R

SK ′ Ru(y)q dσ(y)≤ C ′′

∫
∂D

Su(y)q dσ(y). □

Our next goal is to extend the previous result so that we have the N < S estimates in all Lq. We
need to introduce some notation. Recall that if D is a CAD, we have constructed a Whitney-dyadic
structures {WQ}Q∈D(∂D) for D with parameters η and K ; see Section 2.4. In the following result we
will need to work with two different Whitney-dyadic structures associated with different parameters and
we need to introduce some notation to distinguish between the associated objects. More specifically, let
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{WQ}Q∈D(∂D) (resp. {W ′

Q}Q∈D(∂D)) be a Whitney-dyadic structure for D with parameters η ≪ 1 and
K ≫ 1 (resp. η′

≪ 1 and K ′
≫ 1). Associated with {WQ}Q∈D(∂D (resp. {W ′

Q}Q∈D(∂D)) we define the
Whitney regions UQ , the dyadic cones 0 and the local dyadic cones 0Q (resp. U ′

Q , 0′, 0′,Q) as in (2.10),
(2.23), or (2.24). With this we define N∗, N Q

∗ , S, SQ (resp. N ′
∗
, N ′,Q

∗ , S′, S′,Q) as in Definition 2.33.

Theorem 5.24. Let D ⊂ Rn+1 be a CAD. Let u ∈ W 1,2
loc (D)∩ C(D) be so that (5.2) holds and assume

that there exists C ′

0 > 0 and p > 2 such that for any cube I with 2I ⊂ D,(
ℓ(I )−n−1

∫∫
I
|∇u|

p d X
)1

p

≤ C ′

0

(
ℓ(I )−n−1

∫∫
2I

|∇u|
2 d X

)1
2

. (5.25)

Suppose that the N < S estimates are valid on L p on all bounded chord-arc subdomains �⊂ D, that is,
for any bounded chord-arc subdomain �⊂ D, there holds

∥N∗,�(u − u(X+

�))∥L p(∂�) ≤ C�∥S�u∥L p(∂�). (5.26)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� depends on
the CAD character of �, the dimension n, p, the implicit choice of κ (the aperture of the cones in N∗,�

and S�), and the implicit corkscrew constant for the point X+

� .
Given η≪ 1 and K ≫ 1, consider {WQ}Q∈D(∂D) a Whitney-dyadic structure for D with parameters η

and K ; see Section 2.4. Then, there exist η′
≪ η and K ′

≫ K (depending on n, the CAD character of D,
and the choice of η, K , τ ) so that if {W ′

Q}Q∈D(∂D) is a Whitney-dyadic structure for D with parameters η
and K, for every Q ∈ D(∂D),

∥N Q
∗
(u − u(X+

Q))∥Lq (Q) ≤ C ′
∥S′,Qu∥Lq (Q) for all 0< q <∞, (5.27)

where C ′ depends on n, the CAD character of D, C0, C ′

0, q , and the choice of η, K , τ . Here N Q
∗ is the

nontangential maximal function associated with the Whitney-dyadic structure {WQ}D(∂D), while S′,Q is
the square function with the associated with the Whitney-dyadic structure {W ′

Q}D(∂D).
As a consequence, for any x ∈ ∂D and 0< r < 2 diam(∂D) there exists K ′ depending on n, the CAD

character of D such that for every κ > 0

∥N r
∗,D,κ(u − u(X+

1(x,r))∥Lq (1(x,r)) ≤ C ′′
∥SK ′r

D,κu∥Lq (1(x,K ′r)) for all 0< q <∞, (5.28)

where 1(x, r)= B(x, r)∩ ∂�, and where C ′′ depends on q , n, the CAD character of D, C0, C ′

0, and κ .
In particular, if ∂D is bounded then

∥N∗,D,κ(u − u(X+

D))∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all 0< q <∞, (5.29)

and if ∂D is unbounded and u(X)→ 0 as |X | → ∞ then

∥N∗,D,κu∥Lq (∂D) ≤ C ′′
∥SD,κu∥Lq (∂D) for all 0< q <∞. (5.30)

We note that (5.25) can be relaxed so that it suffices to assume that it holds for I = 2J with J ∈W(D).
We also note that the same proof allows us to work with 1-sided CAD. That is, if D is a 1-sided CAD
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and (5.26) holds for all bounded 1-sided chord-arc subdomains then (5.27) and (5.29) hold for D. Further
details are left to the interested reader.

Proof. For starters we fix η ≪ 1 and K ≫ 1 and let {WQ}Q∈D be Whitney-dyadic structure for D
with parameters η and K. Let η′

≪ η be small enough and K ′
≫ K large enough to be chosen and

let {W ′

Q}Q∈D be Whitney-dyadic structure for D with parameters η′ and K ′. Taking into account (2.9)
if (η′)1/4 ≤ C−1η1/2 and (K ′)1/2 ≥ C K 1/2, then WQ ⊂ (W ′

Q)
0

⊂ W ′

Q for every Q ∈ D = D(∂D).
Consequently, 0̂Q(x)⊂ 0′

Q(x) and ŜQv(x)≤ S′,Qv(x) for every x ∈ ∂D, Q ∈ D, and v ∈ W 1,2
loc (D).

Much as in the proof of Theorem 5.1, matters can be reduced to showing that for every α, γ, ε > 0
with 0< γ ≪ ε/C0 and for any given Q0 ∈ D

σ {x ∈ Q0 : N Q0
∗
(u − u(X+

Q0
))(x) > (1 + ε)α, S′,Q0u(x)≤ γα}

≤ C∗

γ,εσ {x ∈ Q0 : N Q0
∗
(u − u(X+

Q0
))(x) > α}, (5.31)

and we will me more specific about the constant C∗
γ,ε momentarily.

Let us fix Q0 ∈ D and write v := u − u(X+

Q0
), with X+

Q0
begin the corkscrew relative to Q0, that is,

relative to the surface ball 1Q0 (see (2.2) and (2.3)). For every α > 0 we set

Eα := {x ∈ Q0 : N Q0
∗
v(x) > α}, F̃α := {x ∈ Q0 : S′,Q0v(x)≤ α}.

Our goal is to obtain
σ(E(1+ε)α ∩ F̃γα)≤ C∗

γ,εσ(Eα), (5.32)

where C∗
γ,ε = C(γ /ε)p(1 + C ′

0) supQ∈D,F̃ C�F̃ ,Q , where the sup runs over all Q ∈ D and all pairwise
disjoint families F̃ ⊂ DQ \ {Q}. Note that supQ∈D,F̃ C�F̃ ,Q <∞ and ultimately depends on the CAD
character of D, since all the sawtooth subdomains�F̃ ,Q are CAD with uniform constants (see Lemma 2.55)
and our assumption states that C�F̃ ,Q depends on the CAD character of �F̃ ,Q .

With this goal in mind we fix α, γ, ε > 0. We may assume that Eα ̸= ∅; otherwise (5.31) is trivial. As
in the proof of Theorem 5.1we can find F = {Q j }j ⊂ DQ0 , a family of maximal (hence pairwise disjoint)
cubes with respect to the property Q ⊂ Eα, so that Eα =

⋃
Q j ∈F

Q j . We then fix Q ∈ F and we just
need to see that

σ(E(1+ε)α ∩ F̃γα ∩ Q)≤ C∗

γ,εσ(Q), (5.33)

assuming that γ < c0ε with a suitably small c0 depending on n, the CAD character of D. We may assume
that σ(E(1+ε)α ∩ F̃γα ∩ Q) > 0 and pick zQ ∈ E(1+ε)α ∩ F̃γα ∩ Q. We follow the same argument of the
proof of Theorem 5.1taking into account that the set Fγα needs to be replaced by F̃γα. Here we do not
invoke Corollary 3.21 and we formally take FQ = Q. Also we take YQ = X+

Q , the corkscrew relative
to Q. We replace (5.15) by

|v(X+

Q̃
)− v(YQ)| = |u(X+

Q̃
)− u(YQ)| ≤ CC0 inf

z∈Q
ŜQu(z)≤ ŜQ0v(zQ)≤ S′,Q0v(zQ)≤ CC0γα,

where we have used (5.10) and the fact that zQ ∈ Q ∩ F̃γα . Thus, assuming that γ < (2CC0)
−1ε =: 2c0ε,

one arrives at (5.17) with F̃γα in place of Fγα and FQ = Q in the case Eα ⊊ Q. On the other hand, the
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same estimate holds in the case Q = Q0 since YQ = X+

Q = X+

Q0
; hence (5.18) becomes trivial. Thus we

have obtained that in either case

E(1+ε)α ∩ F̃γα ∩ Q ⊂ {x ∈ F̃γα ∩ FQ : N Q
∗
(v− v(YQ))(x) > εα/2} =: EQ . (5.34)

Let E ′

Q be an arbitrary closed subset of EQ with σ(E ′

Q) > 0. Let x ∈ Q \ E ′

Q . Since E ′

Q is closed there
exists rx > 0 such that B(x, rx)∩ E ′

Q = ∅. Pick any Qx ∈ D with Qx ∋ x and ℓ(Qx)≪ min{ℓ(Q), rx}.
Then, x ∈ Qx ∩Q and necessarily Qx ⊂ Q. Also Qx ⊂ B(x, rx) since x ∈ Qx and diam(Qx)≈ ℓ(Qx)≪ rx .
All in one, Qx ⊂ Q \ E ′

Q and there exists a maximal cube Qmax
x ∈ DQ so that Qmax

x ⊂ Q \ E ′

Q . Note
that Qmax

x ⊊ Q; otherwise E ′

Q = ∅ which contradicts the fact that σ(E(1+ε)α ∩ F̃γα ∩ Q) > 0. Let F̃
be the family of maximal (hence pairwise disjoint) cubes Qmax

x with x ∈ E ′

Q . Note that F̃ ⊂ DQ \ {Q}

and Q \ E ′

Q =
⋃

Q′∈F̃ Q′.
Let �⋆ = �̂F̃ ,Q . Let us write δ⋆( · ) = dist( · , ∂�⋆) and σ⋆ = H n

|∂�⋆ . We start with Chebyshev’s
inequality and the fact that E ′

Q ⊂ EQ

σ(E ′

Q)≤

(
2
εα

)p ∫
E ′

Q

N Q
∗
(v− v(YQ))(x)p dσ(x), (5.35)

and now change the cones from those used in N Q
∗ (dyadic, with respect to D) to the traditional ones

(1.14) with respect to �⋆. More precisely, let x ∈ E ′

Q = Q \
⋃

Q′∈F̃ Q′
⊂ ∂�⋆ ∩ ∂D (see [Hofmann and

Martell 2014, Proposition 6.1]) and Y ∈ 0Q(x). Then Y ∈ I ∗(τ ) with I ∈WQ′ with x ∈ Q′
∈ DQ and

|Y − x | ≤ diam(I )+ dist(I, Q′)+ diam(Q′)≲ ℓ(I ).

Note that Q′
∈ DF̃ ,Q ; otherwise Q′

⊂ Q′′
∈ F̃ and hence x ∈

⋃
Q′′∈F̃ Q′′

= Q \ E ′

Q . As a consequence,
int(I ∗(2τ)) ⊂ int(UQ′,2τ ) = int(ÛQ′) ⊂ �⋆ and δ⋆(Y ) ≳ ℓ(I ). All this shows that |Y − x | ≲ δ⋆(Y ) and
this means for some choice of κ (depending on the CAD character, and η and K ), Y ∈ 0�⋆,κ(x) (see
(1.14)). Thus, with the notation in (1.16),

N Q
∗
(v− v(YQ))(x)= sup

Y∈0Q(x)
|v(Y )− v(YQ)| ≤ sup

Y∈0�⋆,κ (x)
|v(Y )− v(YQ)| =: N∗,�⋆,κ(v− v(YQ))(x).

and (5.35) leads to

σ(E ′

Q)≤

(
2
εα

)p ∫
E ′

Q

N∗,�⋆,κ(v− v(YQ))(x)p dσ⋆(x)

≤

(
2
εα

)p ∫
∂�⋆

N∗,�⋆,κ(v− v(YQ))(x)p dσ⋆(x)

≲
1

(εα)p

∫
∂�⋆

N∗,�⋆,κ0(v− v(YQ))(x)p dσ⋆(x), (5.36)

where the last estimate follows from a change of aperture in the cones (see Remark 2.38). We remark
that YQ = X+

Q , which is a corkscrew point for Q with respect to D. By construction, if we take I ∈W

so that X+

Q ∈ I then I ∈WQ . Hence, much as before

δ(YQ)≈ ℓ(Q)≈ ℓ(I )≲ δ⋆(YQ)≤ δ(YQ).
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Hence YQ is an interior corkscrew of �⋆ at the scale diam(�⋆)≈ ℓ(Q) (see (2.14)). Note v( · )−v(YQ)=

u( · )− u(YQ) and ∇v = ∇u in D. This and the fact that �⋆ is a CAD (see Lemma 2.55) allow us to
invoke (5.26), which together with (5.36), yields

σ(E ′

Q)≲
1

(εα)p

∫
∂�⋆

N∗,�⋆,κ0(v−v(YQ))(x)p dσ⋆(x)

≤ C�⋆
1

(εα)p

∫
∂�⋆

S�⋆,κ0v(x)
p dσ⋆(x)

≲C�⋆
1

(εα)p

∫
∂�⋆

S�⋆,1v(x)
p dσ⋆(x)

= C�⋆
1

(εα)p

∫
E ′

Q

S�⋆,1v(x)
p dσ⋆(x)+C�⋆

1
(εα)p

∫
∂�⋆∩D

S�⋆,1v(x)
p dσ⋆(x)=: C�⋆(I+II), (5.37)

where the third estimate follows from a change of aperture in the cones (see Remark 2.38)) and the first
equality from [Hofmann and Martell 2014, Propositions 6.1 and 6.3].

To estimate the previous terms we first need to introduce some notation. Given x ∈ ∂�⋆ and for some
parameter N ≥ 1 (depending on the CAD character of D) to be chosen later we write

01
�⋆,1 := 0�⋆,1 ∩ {Y ∈�⋆ : δ(Y )≤ ℓ(Q)}, 02

�⋆,1 := 0�⋆,1 \01
�⋆,1.

To proceed let us observe that if Q′
∈ DF̃ ,Q , then one can find yQ′ ∈ Q′

∩ E ′

Q ; otherwise, Q′
∩ E ′

Q =∅ and
by construction there exists Q′′

∈ F̃ with Q′
⊂ Q′′, contradicting the fact that Q′

∈ DF̃ ,Q .
Given x ∈ ∂�⋆, let Y ∈ 02

�,1(x) ⊂ �⋆ = �̂F̃ ,Q . Then Y ∈ ÛQ′ for some Q′
∈ DF̃ ,Q . In particular,

Y ∈ 0̂Q′

(yQ′)⊂ 0̂Q0(yQ′). Also, ℓ(Q) < δ(Y )≈ ℓ(Q′)≤ ℓ(Q). This means that∫∫
02
�⋆,1(x)

|∇v|2δ1−n dY ≤

∑
Q′

∈DF̃ ,Q
ℓ(Q′)≈ℓ(Q)

∫∫
0̂Q0 (yQ′ )

|∇v|2δ1−n dY =

∑
Q′

∈DF̃ ,Q
ℓ(Q′)≈ℓ(Q)

ŜQ0v(yQ′)2

≤

∑
Q′

∈DF̃ ,Q
ℓ(Q′)≈ℓ(Q)

S′,Q0v(yQ′)2 ≤ (γ α)2#{Q′
∈ DQ : ℓ(Q′)≈ ℓ(Q)} ≲ (γ α)2. (5.38)

We next turn to estimate I. Let x ∈ E ′

Q ⊂ ∂�⋆∩∂D (see [Hofmann and Martell 2014, Proposition 6.1]).
Note first that if Y ∈ 0�,1(x), then δ(Y )≤ |Y − x | ≤ 2δ⋆(Y ) and thus (5.38) gives

Ŝ�⋆,1v(x)
2
=

∫∫
0�⋆,1(x)

|∇v|2δ1−n
⋆ dY ≲

∫∫
01
�⋆,1(x)

|∇v|2δ1−n dY +

∫∫
02
�⋆,1(x)

|∇v|2δ1−n dY

≲
∫∫

01
�⋆,1(x)

|∇v|2δ1−n dY + (γ α)2. (5.39)

Given Y ∈01
�,1(x)⊂�⋆ ⊂ D, one has Y ∈ IY for some IY ∈W. Pick then QY ∋ x with ℓ(IY )= ℓ(QY )

and note that by (2.5), and since K is large enough,

dist(QY , IY )≤ |x − Y | ≤ 2 dist(Y, ∂�⋆)≤ 2δ(Y )≤ 82 diam(IY )= 82
√

nℓ(QY )≤ K
1
2 ℓ(QY ).
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This means that IY ∈W0
QY

⊂WQY . Additionally,

ℓ(QY )= ℓ(IY )≤ dist(I, ∂D)≤ δ(Y )≤ ℓ(Q)/N ≤ ℓ(Q);

this together with the fact that x ∈ QY ∩ Q gives that QY ∈ DQ . Hence, Y ∈ IY ⊂ UQY ⊂0Q(x)⊂ 0̂Q0(x)
and eventually ∫∫

01
�⋆,1(x)

|∇v|2δ1−n dY ≤ ŜQ0v(x)2 ≤ S′,Q0v(x)2 ≤ (γ α)2, (5.40)

since x ∈ E ′

Q ⊂ EQ . This and (5.39) imply that

I ≲
(
γα

εα

)p

σ(E ′

Q)≤

(
γ

ε

)p

σ(Q). (5.41)

Turning to II, we start with the following:

Claim 5.42. We can take choose η′ small enough and K ′ large enough (depending on n, the CAD
character of D, and the choice of η, K , τ ) such that for any x ∈ ∂�⋆∩ D there exists yx ∈ E ′

Q such that if
J ∈W satisfies 4J ∩01

�⋆,1(x) ̸= ∅, then 4J ⊂ 0′,Q(yx) and, in particular, 01
�⋆,1(x)⊂ 0′,Q(yx).

Proof. Fix x ∈ ∂�⋆∩ D. Then x ∈ ∂ Î, where Î := I ∗(2τ)= (1 + 2τ)I with I ∈WQ′ , Q′
∈ DF̃ ,Q . In this

scenario we observed before that we can find pick yx = yQ′ ∩ EQ′ ∩ Q′.
Let Y ∈ 4J ∩ 01

�⋆,1(x) and assume first that |Y − x | ≥ ℓ(I )τ/(2
√

n). Pick Q′′
∈ D with yQ′ ∈ Q′′

and δ⋆(Y )/2< ℓ(Q′′) ≤ δ⋆(Y ). Note that ℓ(Q′′) ≤ δ⋆(Y ) ≤ δ(Y ) ≤ ℓ(Q) since Y ∈ 01
�⋆,1(x) and hence

Q′′
⊂ Q. Then, choosing N large enough, depending on n and the CAD character of D (recall that η, K

have been already fixed depending also on the CAD character of D),

dist(4J, Q′′)≤ |Y − yQ′ | ≤ |Y − x | + diam( Î )+ dist(I, Q′)+ diam(Q′)

≤ |Y − x | + C K
1
2η−

1
2 ℓ(I )≤ (1 + C K

1
2η−

1
2 τ−1)|Y − x |

≤
1
2 N |Y − x | ≤ Nδ⋆(Y )≤ Nℓ(Q′′),

where we have used (2.9). Note also that by (2.5)

ℓ(Q′′)≤ δ⋆(Y )≤ δ(Y )≤ diam(4J )+ dist(4J, ∂D)≤ 41 diam(J )= 41
√

nℓ(J )

and

ℓ(J )≤ dist(4J, ∂D)/
√

n ≤ dist(4J, Q′′)/
√

n ≤ Nℓ(Q′′).

All in one we have obtained that

N−1ℓ(J )≤ ℓ(Q′′)≤ 41
√

nℓ(J ), dist(4J, Q′′)≤ Nℓ(Q′′).

If we now take J ′
∈W with J ′

∩ 4J ̸= ∅, then the properties of the Whitney cubes guarantee that
ℓ(J ′)≈ ℓ(J ) and hence the previous estimates easily extend to J ′. This means that choosing η′ smaller
and K ′ larger (depending on the CAD character of D), we have that J ′

∈ (W ′

Q′′)
0
⊂W ′

Q′′ . Since yQ′ ∈ Q′′,
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we then have that

4J ⊂

⋃
J ′∈W;J ′∩4J ̸=∅

J ′
⊂

⋃
yQ′∈Q′′′∈DQ

( ⋃
J ′∈W ′

Q′′′

I ∗(τ )

)
=

⋃
yQ′∈Q′′′∈DQ

U ′

Q′′′ = 0′,Q(yQ′).

Consider finally the case on which Y ∈ 4J ∩ 01
�⋆,1(x) satisfies |Y − x | < ℓ(I )τ/(2

√
n) so that

Y ∈ (1 + 2τ I ) = I ∗(2τ) =: Î and ℓ(I ) ≈ δ(Y ) ≈ ℓ(J ). Note then that if J ′
∩ 4J ̸= ∅ we have

ℓ(J ′)≈ ℓ(J )≈ ℓ(I ). Since I ∈WQ′ , Q′
∈ DF̃ ,Q we have by (2.9) that

η
1
2 ℓ(Q′)≲ ℓ(I )≈ ℓ(J ′)≲ K

1
2 ℓ(Q),

and

dist(J ′, Q)≤ diam(J ′)+ diam(4J )+ |Y − x | + diam( Î )+ dist(I, Q)≲ ℓ(I )+ dist(I, Q)≲ K
1
2 ℓ(Q).

Thus, by taking η′ smaller and K ′ bigger, if needed, we obtain that J ′
∈ (W ′

Q′)
0. Much as before the fact

that yQ′ ∈ Q′ yields

4J ⊂

⋃
J ′∈W;J ′∩4J ̸=∅

J ′
⊂

⋃
yQ′∈Q′′′∈DQ

( ⋃
J ′∈W ′

Q′′′

I ∗(τ )

)
=

⋃
yQ′∈Q′′′∈DQ

U ′

Q′′′ = 0′,Q(yQ′). □

Let us now get back to the proof, specifically, to the estimate for II in (5.37). Let ϖ > 0 be small
enough to be chosen and set for every x ∈ ∂�⋆ ∩ D

03
�⋆,1(x)= {Y ∈ 01

�⋆,1(x) : δ⋆(Y )≥ϖδ(Y )}, 04
�⋆,1(x)= {Y ∈ 02

�⋆,1(x) : δ⋆(Y )≥ϖδ(Y )},

and
05
�⋆,1(x)= {Y ∈ 0�⋆,1(x) : δ⋆(Y ) < ϖδ(Y )}.

Thus

S�⋆,1v(x)
2
=

5∑
k=3

∫∫
0k
�⋆,1(x)

|∇v|2δ1−n
⋆ dY =:

5∑
k=3

gk(x)2. (5.43)

Note that for x ∈ ∂�⋆ ∩ D invoking Claim 5.42 we obtain

g3(x)2 ≤ϖ 1−n
∫∫

01
�⋆,1(x)

|∇v|2δ1−n dY ≤ϖ 1−n
∫∫

0′,Q(yx )

|∇v|2δ1−n dY =ϖ 1−n S′,Qu(yx)
2
≤ (γ α2).

Analogously, by (5.38)

g4(x)2 ≤ϖ 1−n
∫∫

01
�⋆,2(x)

|∇v|2δ1−n dY ≤ϖ 1−n
∫∫

0′,Q(x)
|∇v|2δ1−n dY ≲ (γ α)2.

As a result, ∫
∂�⋆∩D

(g p
3 + g p

4 ) dσ⋆ ≲ϖ
1
2 (1−n)p(γ α)pσ⋆(∂�⋆)

≲ϖ
1
2 (1−n)p(γ α)pℓ(Q)n ≈ϖ

1
2 (1−n)p(γ α)pσ(Q), (5.44)

where we have used that ∂�⋆ is ADR with diam(∂�⋆)≲ ℓ(Q) (see (2.14)).
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We next consider g5. Set W⋆ = {I ∈W : I ∩ ∂�⋆ ̸= ∅} and note that ∂�⋆ ∩ D ⊂
⋃

I∈W⋆
I. For

every x ∈ ∂�⋆ ∩ D we then have that x ∈ Ix ∈W⋆ and also that x ∈ ∂ Ĵx with Jx ∈WQx , Qx ∈ DF̃ ,Q . If
Y ∈ 05

�⋆,1(x) and ϖ < 1
4 , then

δ(Y )≤ |Y − x | + δ(x)≤ 2δ⋆(Y )+ δ(x) < 2ϖδ(Y )+ δ(x) < 1
2δ(Y )+ δ(x).

This and (2.5) yield

δ(Y )≤ 2δ(x)≤ 2(diam(4Jx)+ dist(4Jx , ∂D)) < 100 diam(Jx)

and, for ϖ small enough,

|Y − x | ≤ 2δ⋆(Y )≤ 2ϖδ(Y ) < 200ϖ diam(Jx) <
1
8τℓ(Jx).

Recalling that Ĵx := J ∗
x (2τ)with τ ≤ τ0 ≤2−4 it follows that Y ∈ J ∗

x (7τ/4)⊂2Jx and also Y ∈ B(x, ℓ(Jx)).
Hence, easy calculations lead to∫∫

05
�⋆,1(x)

δ
p

p−2 −n
⋆ dY ≤ max{2

p
p−2 −n

, 1}

∫∫
B(x,ℓ(Jx ))

|x − Y |
p

p−2 −n dY ≲ ℓ(Jx)
2 p−1

p−2 ≈ ℓ(Ix)
2 p−1

p−2 .

Using Hölder’s inequality with p/2 we arrive at

g5(x)=

(∫∫
05
�⋆,1(x)

|∇v|2δ1−n
⋆ dY

)1
2

≤

(∫∫
05
�⋆,1(x)

δ
p

p−2 −n
⋆ dY

)p−2
2p

(∫∫
05
�⋆,1(x)

|∇v|pδ−n
⋆ dY

)1
p

≲ ℓ(Ix)
p−1

p

(∫∫
2Jx∩B(x,2δ⋆(x))∩�⋆

|∇v|pδ−n
⋆ dY

)1
p

.

Next, for every I ∈W⋆ we set

W I
⋆ := {J ∈W : J = Jx for some x ∈ ∂�⋆ ∩ I, 2Jx ∩0�⋆,1(x) ̸= ∅}

and obtain∫
∂�⋆∩D

g p
5 dσ⋆ ≤

∑
I∈W⋆

∫
∂�⋆∩I

g p
5 dσ⋆

≤

∑
I∈W⋆

ℓ(I )p−1
∫
∂�⋆∩I

∫∫
2Jx∩B(x,2δ⋆(x))∩�⋆

|∇v(Y )|pδ⋆(Y )−n dY dσ⋆(x)

≤

∑
I∈W⋆

ℓ(I )p−1
∑

J∈W I
⋆

∫∫
2J∩�⋆

|∇v(Y )|pδ⋆(Y )−nσ⋆(∂�⋆ ∩ B(Y, 2δ⋆(x))) dY

≲
∑

I∈W⋆

ℓ(I )p−1
∑

J∈W I
⋆

∫∫
2J

|∇v(Y )|p dY

≲ C ′

0

∑
I∈W⋆

ℓ(I )p−1
∑

J∈W I
⋆

ℓ(J )(n+1) 2−p
2

(∫∫
4J

|∇v(Y )|2 dY
)p

2

≈ C ′

0

∑
I∈W⋆

ℓ(I )n
∑

J∈W I
⋆

(∫∫
4J

|∇v(Y )|2δ(Y )1−ndY
)p

2

, (5.45)
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where we have used that ∂�⋆ is ADR (see [Hofmann and Martell 2014, Lemma 3.61]), (5.25) (since
4J ⊂ D by (2.5)), that ℓ(Jx)≈ ℓ(I ) since x ∈ I ∩ ∂ Ĵx (hence I ∩ J ̸= ∅), and finally that δ( · )≈ ℓ(J )
in 4J by (2.5).

Suppose next that I ∈W⋆ with ℓ(I )≪ ℓ(Q). Note that if J = Jx with x ∈ ∂�⋆ ∩ I then x ∈ ∂ Ĵx ∩ I ;
hence ℓ(Jx)≈ ℓ(I )≪ diam(I ) and 4Jx ⊂{Y ∈ D : δ(Y )<ℓ(Q)}. Thus, if 2Jx ∩0�⋆,1(x) ̸=∅, necessarily
2Jx ∩01

�⋆,1(x) ̸= ∅. We can then invoke Claim 5.42 with J = Jx to find yx ∈ E ′

Q so that

∑
J∈W I

⋆

(∫∫
4J

|∇v|2δ1−ndY
)p

2

≤

(∫∫
0′,Q(yx )

|∇v|2δ1−ndY
)p

2

#{J ∈W : ∂ Ĵ ∩ I ̸= ∅}

≲ S′,Q(yx)
p
≤ S′,Q0(yx)

p
≤ (γ α)p. (5.46)

Consider next the case I ∈W⋆ with ℓ(I )≳ ℓ(Q). For every J ∈W I
⋆ we have that J = Jx for some

x ∈ ∂�⋆ ∩ I and there exists Z ∈ 2J ∩�⋆. As such J ∈WQx for some Qx ∈ DF̃ ,Q . In particular,
ℓ(Q) ≲ ℓ(I ) ≈ ℓ(J ) ≈ ℓ(Qx) ≤ ℓ(Q). Take then an arbitrary Y ∈ 4J ∩�⋆. Since Z ∈ 2J , one has
δ(Y ) ≈ ℓ(J ) ≈ ℓ(Q). Also, Z ∈ �⋆ = �̂F̃ ,Q ; then Z ∈ ÛQ′ for some Q′

∈ DF̃ ,Q and, as observed
above, the latter implies that one can find yQ′ ∈ Q′

∩ E ′

Q . We claim that 4J ⊂ 0′,Q(yx). To see this let
Y ∈ 4J ⊂ D and take IY ∈W with Y ∈ IY . Note that by (2.5) and (2.9), ℓ(IY )≈ δ(Y )≈ ℓ(J )≈ ℓ(Q) and

dist(IY , Q)≤ dist(Y, Q)≤ diam(4J )+ dist(J, Qx)≲ ℓ(Q)+ ℓ(Qx)≈ ℓ(Q).

Thus taking η′ smaller and K ′ larger if needed ((depending on n, the CAD character of D, and the choice
of η, K , τ ) we can ensure that IY ∈ (W ′

Q)
0
⊂W ′

Q and since yQ′ ∈ Q′
⊂ Q we conclude that Z ∈0′,Q(yx)

as desired. All these give an estimate similar to (5.38):∑
J∈W I

⋆

(∫∫
4J

|∇v(Y )|2δ(Y )1−ndY
)p

2

≤ #{J ∈W : ∂ Ĵ ∩ I ̸= ∅}

(∫∫
0′,Q(yx )

|∇v|2δ1−n dY
)p

2

≲ S′,Qv(yQ′)≤ S′,Q0v(yQ′)p
≤ (γ α)p. (5.47)

We finally combine (5.45), (5.46), and (5.47) to obtain∫
∂�⋆∩D

g p
5 dσ⋆ ≲ C ′

0(γ α)
p

∑
I∈W⋆

ℓ(I )n. (5.48)

To complete the proof we estimate the sum in the right-hand side. For every I ∈W⋆ pick Z I ∈ ∂�⋆ ∩ I
so that ℓ(I ) ≈ δ(Z I ) and let 1I

⋆ := B(Z I , δ(Z I )/2)∩ ∂�⋆, which is a surface ball with respect to �⋆.
The fact that Z I ∈ ∂�⋆ ⊂ ∩D implies that there exists I ′

∈WQ′ with Q′
∈ DF̃ ,Q and Z I ∈ ∂ Î. Then,

ℓ(I )≈ δ(Z I )≈ ℓ(I ′)≈ ℓ(Q′) ≤ ℓ(Q) by (2.5) and (2.9)). Note that Q ∈ DF̃ ,Q ; hence UQ ⊂ �⋆. Pick
IQ ∈WQ (which is nonempty by construction) and note that ℓ(IQ)≈ ℓ(Q) by (2.9) and IQ ⊂ UQ ⊂�⋆.
Hence ℓ(Q)≈ diam(IQ)≤ diam(�⋆)≲ ℓ(Q) by (2.14). All these show that δ(Z I )≲ diam(∂�⋆). Suppose
next that 1I

⋆ ∩1J
⋆ ̸= ∅ for some I, J ∈W⋆ and let Y belong to that intersection. Assume for instance

that ℓ(I )≤ ℓ(J ) and note that

δ(Z J )≤ |Z J − Y | + |Y − Z I | + δ(Z I )≤
1
2δ(Z J )+

3
2δ(Z I ).
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Hence, ℓ(J )≈ δ(Z J )≤ 3δ(Z I )≈ ℓ(I )≤ ℓ(J ) and

dist(I, J )≤ |Z I − Z J | ≤ |Z J − Y | + |Y − Z I | ≤
1
2δ(Z J )+

1
2δ(Z I )≈ ℓ(I )+ ℓ(J )≈ ℓ(I )≈ ℓ(J ).

As a consequence, the family {1I
⋆}I∈W⋆

has bounded overlap and therefore∑
I∈W⋆

ℓ(I )n ≈

∑
I∈W⋆

σ⋆(1
I
⋆)≲ σ⋆

( ⋃
I∈W⋆

1I
⋆

)
≤ σ⋆(∂�⋆)≲ diam(∂�⋆)n ≈ ℓ(Q)n ≈ σ(Q),

where we have used that ∂�⋆ is ADR (see [Hofmann and Martell 2014, Lemma 3.61]). This and (5.48)
eventually yield ∫

∂�⋆∩D
g p

5 dσ⋆ ≲ C ′

0(γ α)
pσ(Q).

This, (5.37), (5.43), and (5.44) give

II =
1

(εα)p

∫
∂�⋆∩D

S�⋆,1v
p dσ⋆ ≲

1
(εα)p

∫
∂�⋆∩D

(g p
3 + g p

4 + g p
5 ) dσ⋆ ≲ (1 + C ′

0)

(
γ

ε

)p

σ(Q).

We next combine this with (5.37) and (5.41) to arrive at

σ(E ′

Q)≲ C�⋆(1 + C ′

0)

(
γ

ε

)p

σ(Q).

Recalling that Let E ′

Q be an arbitrary closed subset of EQ with σ(E ′

Q) > 0, by inner regularity of the
Hausdorff measure, we therefore obtain that

σ(E(1+ε)α ∩ F̃γα ∩ Q)≤ σ(EQ)≲ C�⋆(1 + C ′

0)

(
γ

ε

)p

σ(Q).

We have then show (5.32) which in turn implies (5.31). With the latter estimate in hand and for any
0< q <∞, we proceed as in (5.23):

IN :=

∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

= (1+ ε)q
∫ N/(1+ε)

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1+ ε)α}

dα
α

≤ (1+ ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > (1+ ε)α, S′,Q0v(x)≤ γα}

dα
α

+

(
1+ ε

γ

)q

∥S′,Q0v∥
q
Lq (Q0)

≤ C∗

γ,ε(1+ ε)q
∫ N

0
qαqσ {x ∈ Q0 : N Q0

∗
v(x) > α}

dα
α

+
(1+ ε)q

γ q ∥S′,Q0v∥
q
Lq (Q0)

= C
(
γ

ε

)p

(1+C ′

0)
(

sup
Q∈D,F̃

C�F̃ ,Q
)
(1+ ε)q IN +

(1+ ε)q

γ q ∥S′,Q0v)∥
q
Lq (Q0)

. (5.49)

At this point we first choose ε = 1 and next take 0< γ < c0ε/C0 small enough so that

Cγ p(1 + C ′

0) sup
Q∈D

C�Q 2q < 1/1.
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With these choices and using that IN ≤ N qσ(Q0) <∞, we can hide this term on the left-hand side of
(5.49) to obtain

IN ≤ 2(1 + ε)q/γ q
∥S′,Q0v∥

q
Lq (Q0)

.

Noting that IN ↗ ∥N Q0
∗ v∥

q
Lq (Q0)

as N → ∞ we obtain as desired (5.27).
From (5.27) one can obtain (5.28), and hence (5.29) and (5.30) much as in the proof of Theorem 5.1

and we omit details. □

Combining Theorems 5.1 and 5.24 we can obtain the following:

Corollary 5.50. Let D ⊂ Rn+1 be a CAD. Let u ∈ W 1,2
loc (D)∩C(D) so that (5.2) and (5.25) hold for some

p > 2. Suppose that the N < S estimates are valid on L2 on all bounded Lipschitz subdomains �⊂ D
(see (5.3) in Theorem 5.1). Then (5.27)–(5.30) hold.

Proof. Let �⊂ D be an arbitrary bounded CAD. Since any bounded Lipschitz subdomain of � is also
a subdomain of D we can apply Theorem 5.1 to obtain (5.7) for � and for every q > 2. That is, we
have the N < S estimates are valid on all bounded chord-arc subdomains �⊂ D for q = p > 2. Hence,
Theorem 5.24 applies to obtain the desired conclusions. □

6. From N<S bounds on chord-arc domains to ε-approximability in the complement of a UR set

Recall the definition of ε-approximability (Definition 1.11). The second main result in [Hofmann et al.
2016], stated there for harmonic functions but proved in full generality, can be formulated as follows.

Theorem 6.1. Let E ⊂ Rn+1 be an n-dimensional UR set, Rn+1
\ E , and suppose that

u ∈ W 1,2
loc (R

n+1
\ E)∩ C(Rn+1

\ E)∩ L∞(Rn+1
\ E)

is such that for any cube I with 2I ⊂ Rn+1
\ E

sup
X,Y∈I

|u(X)− u(Y )| ≤ C0

(
ℓ(I )1−n

∫∫
2I

|∇u|
2 d X

)1
2

(6.2)

and

∥∇u∥CME(Rn+1\E) ≤ C ′

0∥u∥L∞(Rn+1\E).

Assume, in addition, that N < S estimates are valid on L2 on all bounded chord-arc subdomains
�⊂ Rn+1

\ E ; that is, for any bounded chord-arc subdomain �⊂ Rn+1
\ E , there holds

∥N∗,�(u − u(X+

�))∥L2(∂�) ≤ C�∥S�u∥L2(∂�). (6.3)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� depends on
the CAD character of �, the dimension n, p, the implicit choice of κ (the aperture of the cones in N∗,�

and S�), and the implicit corkscrew constant for the point X+

� . Then u is ε-approximable on Rn+1
\ E ,

with the implicit constants depending only on n, the UR character of E , C0, and C ′

0.
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Strictly speaking, the previous result was proved in [Hofmann et al. 2016, Section 5] for harmonic
functions but it was observed in Remark 5.29 of that work that the same argument can be carried out
under the current assumptions.6 Let us note that one can weaken (6.2) by just assuming that for any
Q ∈ D(E) and for any connected component of U i

Q there holds

sup
X,Y∈U i

Q

|u(X)− u(Y )| ≤ C0

(
ℓ(Q)−n−1

∫∫
Û i

Q

|u|
2 d X

)1
2

. (6.4)

Also, in the course of the proof one uses (6.3) for the bounded chord-arc subdomains of the form �=�±

S
defined by (2.52) (with S′

= S). Further details are left to the interested reader.

7. Applications: solutions, subsolutions, and supersolutions of divergence-form elliptic equations
with bounded measurable coefficients

7.1. Estimates for solutions of second-order divergence-form elliptic operators with coefficients satisfy-
ing a Carleson measure condition. Given an open set � ⊂ Rn+1, consider a divergence-form elliptic
operator L := − div(A( · )∇), defined in �, where A is an (n+1)× (n+1) matrix with real bounded
measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition

λ−1
|ξ |2 ≤ A(X)ξ ·, ξ :=

n+1∑
i, j=1

Ai j (X)ξ jξi , |A(X)ξ · ζ | ≤ λ|ξ ||ζ |, (7.1)

for some λ ≥ 1, and for all ξ, ζ ∈ Rn+1, and for a.e. X ∈�. As usual, the divergence-form equation is
interpreted in the weak sense; i.e., we say that Lu = 0 in � if u ∈ W 1,2

loc (�) and∫∫
�

A(X)∇u(X) · ∇9(X) d X = 0 (7.2)

for all 9 ∈ C∞

0 (�).
Let us introduce some notation. Given an open set �⊂ Rn+1 and A, an (n+1)× (n+1) matrix defined

on Rn+1
\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity

condition (7.1), we say that A ∈ KP(�) (the Kenig–Pipher class) if |∇ A( · )| dist( · , ∂�) ∈ L∞(�) and
∥∇ A∥CME(�) <∞. It has been demonstrated in [Kenig and Pipher 2001] that if � is a Lipschitz domain
and A ∈ KP(�) then weak solutions to Lu satisfy square function/nontangential maximal function
estimates and Carleson measure estimates on �. Strictly speaking, the class of matrices is slightly smaller
and the details of the proof are only provided there for N < S direction (and only for p > 2), but all
ingredients are laid out for a reader to reconstruct a complete proof. One can also consult [David et al.
2019] for complete details presented in this and more general, higher codimensional, case. For the precise
case we are considering here, the following result can be found in [Hofmann et al. 2017a, Appendix A]:7

6In [Hofmann et al. 2016, Remark 5.29], we inadvertently neglected to mention that our proof utilized estimate (6.3); in
fact, it is utilized in an essential way. One should bear this in mind when comparing the statement of Theorem 6.1 with that
Remark 5.29. The former is correct.

7The argument in [Hofmann et al. 2017a, Appendix A] follows that of [Kenig and Pipher 2001] very closely.
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Let � be a Lipschitz domain and let A ∈ KP(�). Then, any weak solution
u ∈ W 1,2

loc (�)∩ L∞(�) to Lu = 0 in � satisfies ∥∇u∥CME(�) ≲ ∥u∥
2
L∞(�) with

implicit constant depending on n, the Lipschitz character of �, ellipticity, and
the implicit constants in A ∈ KP(�).

(7.3)

We also need the following auxiliary result (see [Kenig and Pipher 2001, Lemma 3.1]):

Lemma 7.4. Let E ⊂ Rn+1 be a closed set and let A be an (n+1)×(n+1) matrix defined on Rn+1
\E with

real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition (7.1). If
A ∈KP(Rn+1

\E) then A ∈KP(D) for any subset D ⊂Rn+1
\E. Moreover, ∥∇ A( · ) dist( · , ∂D)∥L∞(D)≤

∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E) and

∥∇ A∥CME(D) ≤ C(∥∇ A∥CME(Rn+1\E) + ∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E)),

where C depends only on dimension.

Proof. Note first that since D ⊂ Rn+1
\ E then dist(X, ∂D)≤ dist(X, E) for every X ∈ D. In particular,

one has ∥∇ A( · )| dist( · , ∂D)∥L∞(D) ≤ ∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E).
Next, we fix B(x, r) with x ∈ ∂D and 0< r <∞. We shall consider two cases. First, if dist(x, E)≤ 2r

we pick z ∈ E with dist(x, E)= |x − z| and observe that B(x, r)⊂ B(z, 3r). Then,∫∫
B(x,r)∩D

|∇ A(Y )|2 dist(Y, ∂D) dY ≤

∫∫
B(z,3r)∩D

|∇ A(Y )|2 dist(Y, E) dY ≤ (3r)n∥∇ A∥CME(Rn+1\E).

In the second case, dist(X, E) > 2r , we have dist(Y, E) > r and dist(Y, ∂D) ≤ |Y − x | < r for every
Y ∈ B(x, r)∩ D. Hence,∫∫

B(x,r)∩D
|∇ A(Y )|2 dist(Y, ∂D) dY ≤ ∥∇ A( · ) dist( · , E)∥2

L∞(Rn+1\E)

∫∫
B(z,r)∩D

dist(Y, ∂D)
dist(Y, E)2

dY

≤ ∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E)r

−1
|B(x, r)|

= cn∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E)r

n.

All these readily give the desired estimate. □

Theorem 7.5. Let E ⊂ Rn+1 be an n-dimensional UR set. Let A be an (n+1)× (n+1) matrix defined
on Rn+1

\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (7.1) and so that A ∈ KP(Rn+1

\ E). Then any weak solution u ∈ W 1,2
loc (R

n+1
\ E) to Lu = 0 in

Rn+1
\ E satisfies the S < N estimates

∥SRn+1\E u∥L p(E) ≤ C∥N∗,Rn+1\E u∥L p(E), 0< p <∞, (7.6)

∥Sr
Rn+1\E u∥L p(1(x,r)) ≲ ∥N K ′r

∗,Rn+1\E u∥L p(1(x,K ′r)), 0< p <∞, (7.7)

for any x ∈ E and 0< r < 2 diam(E), where 1(x, r)= B(x, r)∩ E , and where K ′ depends on n and the
UR character of E ; as well as its local dyadic analogue, for any Whitney-dyadic structure {WQ}Q∈D(E),
for Rn+1

\ E with parameters η and K,

∥SQu∥L p(Q) ≤ C∥N̂ Q
∗

u∥L p(Q), Q ∈ D(E), 0< p <∞. (7.8)
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If , in addition, bounded, u ∈ L∞(Rn+1
\ E) then the Carleson measure estimate

∥∇u∥CME(Rn+1\E) ≤ C∥u∥
2
L∞(Rn+1\E) (7.9)

holds and u is ε-approximable on Rn+1
\ E , in the sense of Definition 1.11. All constants depend on n, the

UR character of E , the ellipticity of A, ∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E), ∥∇ A∥CME(Rn+1\E), the aperture of
the cone κ implicit in (7.6), and the implicit parameters η, K , τ implicit in (7.8).

Proof. Fix A ∈ KP(Rn+1
\ E) with ellipticity constant λ and take any weak solution u ∈ W 1,2

loc (R
n+1

\ E)
to Lu = 0 in Rn+1

\ E .

Claim 7.10. For any �⊂ Rn+1
\ E with ∂� being UR there holds

∥∇u∥CME(�) ≲ ∥u∥
2
L∞(�),

with an implicit constants on n, the UR character of E , λ, and the implicit constants in A ∈ KP(Rn+1
\ E).

Assuming this momentarily, and taking �= Rn+1
\ E we readily obtain (7.9). On the other hand, given

an arbitrary Q ∈ D(E) and arbitrary pairwise disjoint family F ⊂ DQ , let G = ∇u ∈ L2
loc(R

n+1
\ E) and

H = u ∈ C(Rn+1
\ E). Note that Proposition A.11 says that �̂F ,Q is an open set with UR boundary and

with UR character depending on n and the UR character of E . Hence, Claim 7.10 says that

∥G∥CME(�̂F ,Q) = ∥∇u∥CME(�̂F ,Q) ≲ ∥u∥
2
L∞(�̂F ,Q)

= ∥H∥
2
L∞(�̂F ,Q)

,

with a constant which is independent of u, Q and F, and depends on n, the UR character of E , the
ellipticity of A, and the implicit constants in A ∈ KP(Rn+1

\ E). This means that (Aloc) in Theorem 4.8
holds for the open set Rn+1

\ E . As such (4.13), (4.14), and Remark 4.4 imply (7.6)–(7.8).

Proof of Claim 7.10. Take an arbitrary any open subset �⊂ Rn+1
\ E with ∂� being UR. We may assume

that 0< ∥u∥L∞(�) <∞; otherwise the desired estimate is trivial. Set A� := A in � and A� := Id (the
identity matrix) in Rn+1

\� which is an elliptic matrix with ellipticity constant at most λ. Note that
Lemma 7.4 gives

∥∇ A�∥CME(Rn+1\∂�) = sup
x∈∂�,0<r<∞

1
rn

∫∫
B(x,r)\∂�

|∇ A�(Y )|2 dist(Y, ∂�) dY

= sup
x∈∂�,0<r<∞

1
rn

∫∫
B(x,r)∩�

|∇ A(Y )|2 dist(Y, ∂�) dY

≤ ∥∇ A∥CME(�) ≤ Cn(∥∇ A∥CME(Rn+1\E) + ∥∇ A( · ) dist( · , E)∥2
L∞(Rn+1\E))

and

∥∇ A� dist( · , ∂�)∥L∞(Rn+1\∂�) = ∥∇ A dist( · , ∂�)∥L∞(�) ≤ ∥∇ A dist( · , E)∥L∞(Rn+1\E).

Write also u� = u in � and u� := 0 in Rn+1
\�. Note that u� ∈ W 1,2

loc (R
n+1

\ ∂�) satisfies, in the weak
sense, − div(A�∇u�)= Lu = 0 in � and − div(A�∇u�)= 0 and Rn+1

\�= 0. This and the fact that �
is open imply that − div(A�∇u�)= 0 in Rn+1

\∂� in the weak sense. Note also that u� ∈ L∞(Rn+1
\∂�)

implies ∥u�∥L∞(Rn+1\∂�) = ∥u∥L∞(�) <∞.
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Fix D ⊂� an arbitrary bounded Lipschitz subdomain and F = ∇u�/∥u�∥
2
L∞(�). By Lemma 7.4, we

have that A� ∈ KP(�)⊂ KP(D) (with uniform bounds controlled by those of A� ∈ KP(�), and hence
ultimately on those of A ∈ KP(Rn+1

\ E)). By (7.3) applied to u� for the operator L� in D we obtain

∥F∥CME(D) =
∥∇u�∥CME(D)

∥u�∥
2
L∞(�)

≲
∥u�∥

2
L∞(D)

∥u�∥
2
L∞(�)

≤ 1,

with implicit constant depending on n, the Lipschitz character of D′, λ and the implicit constants of A ∈

KP(Rn+1
\ E). This and Corollary 3.1 (or Remark 3.3 for a more direct argument) to the UR set ∂� yield

∥∇u∥CME(�)

∥u∥
2
L∞(�)

=
∥∇u�∥CME(Rn+1\∂�)

∥u�∥
2
L∞(�)

= ∥F∥CME(�) ≲ sup
D⊂Rn+1\∂�

∥F∥CME(D) = sup
D⊂�

∥F∥CME(D) ≲ 1,

with implicit constants depending only on n, the UR character of ∂�, λ, and the implicit constants in
A ∈ KP(Rn+1

\ E). This completes the proof of (7.9). □

To continue with the proof of Theorem 7.5 we are left with showing that if we further assume that
u ∈ L∞(Rn+1

\ E) then u is ε-approximable on Rn+1
\ E . Firstly, all auxiliary estimates (5.2), (5.25),

and (6.2) hold for u in the open set Rn+1
\ E , and hence in any open subset �⊂ Rn+1

\ E , by the usual
interior estimates for solutions of elliptic PDEs (see, e.g., [Kenig 1994]). We point out again that N < S
estimates (5.3) on all bounded Lipschitz subdomains of � hold essentially by [Kenig and Pipher 2001].
More precisely, let D ⊂ Rn+1

\ E be an arbitrary chord-arc subdomain. For every a bounded Lipschitz
subdomain �⊂ D, by Lemma 7.4 it follows that A ∈ KP(�) with bounds that depend on the implicit
constants in A ∈ KP(Rn+1

\ E). In turn (7.3) and [Kenig et al. 2016] yield that the associated elliptic
measure belongs to the class A∞(∂�) with respect to surface measure. Thus, [Dahlberg et al. 1984]
allows us to obtain N < S estimates are valid on Lq, 0 < q <∞, on �. Corollary 5.50 readily gives
N < S on Lq, 0 < q <∞. This together with the fact that we have already shown (7.9) allows us to
invoke Theorem 6.1 to conclude as desired that u is ε-approximable with constants depending only on n,
the UR character of E , λ, and the implicit constants in A ∈ KP(Rn+1

\ E). □

7.2. Estimates for subsolutions and supersolutions of second-order divergence-form elliptic operators
with coefficients satisfying a Carleson measure condition. Our methods allow us to deal not only with
solutions but also with subsolutions (thus, also with supersolutions) of the operators considered in the
previous section. Before, stating the result let us recall that given an open set�⊂ Rn+1 and a second-order
divergence-form elliptic operators L :=− div(A( · )∇), defined in�, where A is an (n+1)×(n+1)matrix
with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity condition (7.1),
we say that u ∈ W 1,2

loc (�) is a weak L-subsolution (or, Lu ≤ 0) in � if∫∫
�

A(X)∇u(X) · ∇9(X) d X ≤ 0 (7.11)

for all 0 ≤ 9 ∈ C∞

0 (�). Analogously, u ∈ W 1,2
loc (�) is a weak L-supersolution (or, Lu ≥ 0) if −u is a

subsolution.
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We are now ready to state our main result in this section. We note that it applies in particular to the
Laplace operator; hence the obtained estimates are valid for any subharmonic or superharmonic functions.

Theorem 7.12. Let E ⊂ Rn+1 be an n-dimensional UR set. Let A be an (n+1)× (n+1) matrix defined
on Rn+1

\ E with real bounded measurable coefficients, possibly nonsymmetric, satisfying the ellipticity
condition (7.1) and so that A ∈ KP(Rn+1

\ E). Then any weak L-subsolution or L-supersolution
u ∈ W 1,2

loc (R
n+1

\ E) in Rn+1
\ E satisfies the S < N estimates

∥SRn+1\E u∥L p(E) ≤ C∥N∗,Rn+1\E u∥L p(E), 0< p <∞, (7.13)

∥Sr
Rn+1\E u∥L p(1(x,r)) ≲ ∥N K ′r

∗,Rn+1\E u∥L p(1(x,K ′r)), 0< p <∞, (7.14)

for any x ∈ E and 0< r < 2 diam(E), where 1(x, r)= B(x, r)∩ E , and where K ′ depends on n and the
UR character of E ; as well as its local dyadic analogue, for any Whitney-dyadic structure {WQ}Q∈D(E)

for Rn+1
\ E with parameters η and K,

∥SQu∥L p(Q) ≤ C∥N̂ Q
∗

u∥L p(Q), Q ∈ D(E), 0< p <∞. (7.15)

If , in addition, bounded, u ∈ L∞(Rn+1
\ E) then the following Carleson measure estimate holds:

∥∇u∥CME(Rn+1\E) ≤ C∥u∥
2
L∞(Rn+1\E). (7.16)

All constants depend on n, the UR character of E , the ellipticity of A, ∥∇ A( · ) dist( · , E)∥L∞(Rn+1\E),
∥∇ A∥CME(Rn+1\E), the aperture of the cone κ implicit in (7.6), and the parameters η, K , τ implicit in (7.8).

Proof. We start observing that we just need to consider the case where u is a weak L-subsolution
(because if u is a weak L-supersolution then −u is a weak L-subsolution). We proceed much in the
proof of Theorem 7.12 and a careful reading shows that we just need a version of (7.3) valid for weak
L-subsolutions. That is, we need to obtain the following:

Let � be a Lipschitz domain and let A ∈ KP(�). Then, any weak L-subsolution
u ∈ W 1,2

loc (�) ∩ L∞(�) in � satisfies ∥∇u∥CME(�) ≲ ∥u∥
2
L∞(�) with implicit

constant depending on n, the Lipschitz character of �, ellipticity, and the implicit
constants in A ∈ KP(�).

(7.17)

With this goal in mind, fix then an arbitrary weak L-subsolution u ∈ W 1,2
loc (�)∩ L∞(�) in �. We

may suppose that u is a.e. nonnegative. Indeed, assume for the moment that we have proved (7.17) for
a.e. nonnegative weak L-subsolutions, and let u ∈ W 1,2

loc (�) be an arbitrary bounded weak L-subsolution,
so that ũ := u +∥u∥L∞(�) ∈ W 1,2

loc (�)∩ L∞(�) is an a.e. nonnegative weak L-subsolution in �. We then
observe that our assumption for a.e. nonnegative weak L-subsolutions yields the desired estimate for u:

∥∇u∥CME(�) = ∥∇ũ∥CME(�) ≲ ∥ũ∥
2
L∞(�) ≤ 2∥u∥

2
L∞(�).

Let us then verify (7.17) for an a.e. nonnegative weak L-subsolution u ∈ W 1,2
loc (�) ∩ L∞(�). We

observe that since A ∈ KP(�), by (7.3) and [Kenig et al. 2016], it follows that the elliptic measure ωL

belongs to A∞(σ ) with σ = H n
|∂�. With this in hand, we carefully follow the argument in [Cavero et al.

2020, proof of Theorem 1.1: (b) ⇒ (a)] with u being the fixed a.e. nonnegative weak L-subsolution in �
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in place of a solution and observing that Lipschitz domains are clearly 1-sided CAD. To justify that the
argument can be adapted to the present situation we just need two observations. First, that u satisfies
Caccioppoli’s estimate (the proof is a straightforward modification of the standard argument using that
u is a nonnegative a.e. weak L-subsolution). Second, in [Cavero et al. 2020, (3.64)] one has to replace
“= 0” by “≤ 0” because in the present scenario u is a nonnegative a.e. weak L-subsolution (in place of a
solution). With these two observations an interested reader could easily see that the argument goes through
and eventually show that ∥∇u∥CME(�) ≲ ∥u∥

2
L∞(�). Hence, (7.17) holds and this completes the proof. □

7.3. Higher-order elliptic equations and systems with constant coefficients. In [Dahlberg et al. 1997] the
authors obtained square function/nontangential maximal function estimates for higher-order elliptic equa-
tions and systems on bounded Lipschitz domains. These results have never been extended, even to CAD do-
mains, and here we present a generalization of Carleson measure estimates to the complements of UR sets.

For any multiindex α= (α1, . . . , αn+1) ∈ Nn+1
0 , we write |α| = α1 +· · ·+αn+1 and α! = α1! · · ·αn+1! ,

where 0! = 1. Also ∂α = ∂α1 . . . ∂αn+1 and for every Y ∈ Rn+1 we write Y α = Y α1
1 · · · Y αn+1

n+1 , where a0
= 1

for every a ∈ R. Finally, ∇
k, k ∈ N, stands for the vector of all partial derivatives of order k. For k = 0,

∇
0 is just the identity operator.
Let K ,m ∈ N. For every 1 ≤ j, k ≤ K, let L jk

=
∑

|α|=2m a jk
αβ∂

α, where α = (α1, . . . , αn+1) ∈ Nn+1
0 .

The coefficients a jk
αβ , 1 ≤ α, β ≤ n + 1, 1 ≤ j, k ≤ K are real constants. Given an open set � and

u = (u1, . . . , uK ), with u j ∈ W m,2
loc (�), 1 ≤ j ≤ K, we say that Lu = 0, if

K∑
k=1

L jkuk
=

K∑
k=1

∑
|α|=|β|=m

a jk
αβ∂

α∂βuk
= 0, j = 1, . . . , K ,

as usual, in the weak sense, similarly to (7.2). Here, W m,2(�) is the space of functions with all derivatives
of orders 0, . . . ,m in L2(�) and W m,2

loc (�) is the space of functions locally in W m,2(�). We assume, in
addition, that L is symmetric: L jk

= Lk j for 1 ≤ j, k ≤ K, and that the Legendre–Hadamard ellipticity
condition holds: there exists λ > 0 such that

K∑
j,k=1

∑
|α|=|β|=m

a jk
αβξ

αξβζjζk ≥ λ|ξ |2m
|ζ |2 for all ζ = (ζ1, . . . , ζK ) ∈ RK, ξ ∈ Rn+1. (7.18)

Theorem 7.19. Let E ⊂ Rn+1 be an n-dimensional UR set. Given K ,m ∈ N, let L be a symmetric
constant-coefficient 2m-order K × K system satisfying the Legendre–Hadamard ellipticity condition, as
above. Then any weak solution u ∈ [W m,2

loc (R
n+1

\ E)∩Cm−1(Rn+1
\ E)]K to Lu = 0 in Rn+1

\ E satisfies
the S < N estimates

∥SRn+1\E(∇
m−1u)∥L p(E) ≤ C∥N∗,Rn+1\E(|∇

m−1u|)∥L p(E), 0< p <∞, (7.20)

∥Sr
Rn+1\E(∇

m−1u)∥L p(1(x,r)) ≲ ∥N K ′r
∗,Rn+1\E(|∇

m−1u|)∥L p(1(x,K ′r)), 0< p <∞, (7.21)

for any x ∈ E and 0< r < 2 diam(E), where 1(x, r)= B(x, r)∩ E , and where K ′ depends on n and the
UR character of E , as well as its local dyadic analogue, for any Whitney-dyadic structure {WQ}Q∈D(E)
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for Rn+1
\ E with parameters η and K,

∥SQ(∇m−1u)∥L p(Q) ≤ C∥N̂ Q
∗
(|∇m−1u|)∥L p(Q), Q ∈ D(E), 0< p <∞. (7.22)

If u is, in addition, such that ∇
m−1u ∈ L∞(�), then the Carleson measure estimate

∥∇
mu∥CME(Rn+1\E) ≤ C∥∇

m−1u∥
2
L∞(Rn+1\E) (7.23)

holds. All constants depend on n, the UR character of E , the Legendre–Hadamard ellipticity constant,
sup j,k,α,β |a jk

αβ |, the aperture of the cone κ implicit in (7.20), and the implicit parameters η, K , τ implicit
in (7.22).

Remark 7.24. It is easy to see that from the previous result, one can also obtain analogous estimates
in any chord-arc domain D ⊂ Rn+1. To see this let us consider any weak solution u ∈ [W m,2

loc (D)]
K to

Lu = 0 in D. Let ũ := u in D and ũ = 0 ∈ Rn+1
\ D. Then ũ ∈ [W m,2

loc (R
n+1

\ ∂D)]K satisfies Lũ = 0
in Rn+1

\ ∂D in the weak sense. As such, and using the fact that since D is a CAD then ∂D is UR, we
obtain (7.20) for ũ in Rn+1

\ ∂D, which immediately gives the corresponding estimate for u in D. The
same occurs with (7.23). Further details are left to the interested reader.

Proof. The proof runs much as that of Theorem 7.5. One replaces (7.3) with the fact that for any bounded
Lipschitz domain�⊂Rn+1; it was shown in [Dahlberg et al. 1997, Theorem 2, p. 1455] that any weak solu-
tion u ∈[W m,2

loc (�)]
K to Lu =0 in�with ∇

m−1u ∈ L∞(�) satisfies ∥∇
mu∥CME(�)≲∥∇

m−1u∥
2
L∞(�). With

this at hand the proof can be carried out mutatis mutandis. Further details are left to the interested reader. □

We can now state a higher-order version of Theorems 5.1 and 5.24:

Theorem 7.25. Let D ⊂Rn+1 be a CAD, let K ,m ∈N and let u = (u1, . . . , uK )∈[W m,2
loc (D)∩Cm−1(D)]K.

(1) Assume that (5.2) holds with ∇
m−1u in place of u. Suppose that the (m−1)-th order N < S estimates

are valid on L2 on all bounded Lipschitz subdomains�⊂ D, that is, (5.3) holds for any bounded Lipschitz
subdomain �⊂ D with ∇

m−1u in place of u, and where the constant may also depend on m and K. Then
(5.4)–(5.8) hold replacing u by ∇

m−1u, and where all the constants may also depend on m and K.

(2) Assume that (5.2) holds with ∇
m−1u in place of u and that (5.25) hold with ∇

mu in place of ∇u for
some p > 2. Suppose that the (m−1)-th order N < S estimates are valid on L p on all bounded chord-arc
�⊂ D, that is, (5.26) holds for any bounded chord-arc subdomain �⊂ D with ∇

m−1u in place of u, and
where the constant may also depend on m and K. Then (5.27)–(5.30) hold with ∇

m−1u in place of u, and
where all the constants may also depend on m and K.

(3) Assume that (5.2) holds with ∇
m−1u in place of u and that (5.25) hold with ∇

mu in place of ∇u for
some p > 2. Suppose that the (m−1)-th order N < S estimates are valid on L2 on all bounded Lipschitz
subdomains � ⊂ D, that is, (5.3) holds for any bounded Lipschitz subdomain � ⊂ D with ∇

m−1u in
place of u, and where the constant may also depend on m and K. Then (5.27)–(5.30) hold replacing u
by ∇

m−1u, and where all the constants may also depend on m and K.

Proof. The proof is fairly easy. Consider the vector v = ∇
m−1u ∈ [W 1,2

loc (D)∩ C(D)]K (n−1)m−1
. Note that

our current assumptions in (i)–(iii) imply that v satisfies (5.2). Also, in items (ii), (iii) we will have that v
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satisfies (5.25). Note that (5.3) is satisfied by v in parts (i) and (iii), and (5.26) holds for v in part (ii).
We also know that Theorems 5.1 and 5.24, and Corollary 5.50 can be easily extended to vector-valued
functions u. With all these at hand, we readily obtain the corresponding estimates for v which translated
into those stated for u. Further details are left to the interested reader. □

One can also obtain a higher-order version of Theorem 6.1 using the same ideas:

Theorem 7.26. Let E ⊂ Rn+1 be an n-dimensional UR set, Rn+1
\ E , and let m, K ∈ N. Suppose that

u ∈ [W m,2
loc (R

n+1
\ E)∩Cm−1(Rn+1

\ E)∩ L∞(Rn+1
\ E)]K is such that for any cube I with 2I ⊂ Rn+1

\ E

sup
X,Y∈I

|∇
m−1u(X)− ∇

m−1u(Y )| ≤ C0

(
ℓ(I )1−n

∫∫
2I

|∇
mu|

2 d X
)1

2

(7.27)

and
∥∇

mu∥CME(Rn+1\E) ≤ C ′

0∥∇
m−1u∥L∞(Rn+1\E)

Assume, in addition, (m−1)-th order that N < S estimates are valid on L2 on all bounded chord-arc
subdomains �⊂ Rn+1

\ E , that is, for any bounded chord-arc subdomain �⊂ Rn+1
\ E , there holds

∥N∗,�(∇
m−1u − ∇

m−1u(X+

�))∥L2(∂�) ≤ C�∥S�(∇m−1u)∥L2(∂�). (7.28)

Here X+

� is any interior corkscrew point of � at the scale of diam(�), and the constant C� depends on
the CAD character of �, the dimension n, m, K, p, the implicit choice of κ (the aperture of the cones in
N∗,� and S�), and the implicit corkscrew constant for the point X+

� . Then ∇
m−1u is ε-approximable on

Rn+1
\ E , with the implicit constants depending only on n, m, K, the UR character of E , C0, and C ′

0.

As a corollary of all these we can obtain N < S estimates and ε-approximability for solutions of a
symmetric constant-coefficient 2m-order K × K systems.

Theorem 7.29. Given K ,m ∈ N, let L be a symmetric constant-coefficient 2m-order K × K system,
satisfying the Legendre–Hadamard ellipticity condition, as above.

(i) If D ⊂ Rn+1 is a CAD, then any weak solution u ∈ [W m,2
loc (D)∩ Cm−1(D)]K to Lu = 0 in D satisfies

for any x ∈ ∂D and 0< r < 2 diam(∂D) and for every κ > 0

∥N r
∗,D,κ(∇

m−1u − ∇
m−1u(X+

1(x,r)))∥Lq (1(x,r))

≤ C∥SC ′r
D,κ(∇

m−1u)∥Lq (1(x,C ′r)), for all 0< q <∞, (7.30)

where 1(x, r)= B(x, r)∩ ∂�. Here C depends on n, q , K, m, the CAD character of D, the Legendre–
Hadamard ellipticity constant, sup j,k,α,β |a jk

αβ |, and the aperture of the cone κ , and C ′ depends on n and
the CAD character of D. In particular, if ∂D is bounded then

∥N∗,D,κ(∇
m−1u − ∇

m−1u(X+

D))∥Lq (∂D) ≤ C ′′
∥SD,κ(∇

m−1u)∥Lq (∂D) for all 0< q <∞, (7.31)

and if ∂D is unbounded and ∇
m−1u(X)→ 0 as |X | → ∞ then

∥N∗,D,κ(∇
m−1u)∥Lq (∂D) ≤ C ′′

∥SD,κ(∇
m−1u)∥Lq (∂D) for all 0< q <∞. (7.32)



3320 STEVE HOFMANN, JOSÉ MARÍA MARTELL AND SVITLANA MAYBORODA

(ii) Let E ⊂ Rn+1 be an n-dimensional UR set. Then any weak solution

u ∈ [W m,2
loc (R

n+1
\ E)∩ Cm−1(Rn+1

\ E)∩ L∞(Rn+1
\ E)]K

to Lu =0 in Rn+1
\E satisfies that ∇

m−1u is ε-approximable in Rn+1
\E with implicit constants depending

on n, K, m, the UR character of E , the Legendre–Hadamard ellipticity constant, sup j,k,α,β |a jk
αβ |.

Proof. We aim to use Theorem 7.25(iii) and 7.26. To this end, we need to verify the interior estimates:
(5.2) with ∇

m−1u in place of u, (5.25) with ∇
mu in place of ∇u for some p > 2, and (7.27), and to

obtain (m−1)-th order N < S estimates on L2 on all bounded Lipschitz subdomains � and for any weak
solution u ∈ [W m,2

loc (�)∩ Cm−1(�)]K to Lu = 0 in �. That is, we need to show that (7.28) holds on all
bounded Lipschitz subdomains �. Let us start with the latter. To see this we introduce

Pm−1,X+

�
u(X)=

∑
|α|≤m−1

∂αu(X+

�)

α!
(X − X+

�)
α, X ∈�.

and observe that ∇k Pm−1,X+

�
u(X+

�)=∇
ku(X+

�) for 0≤k ≤m−2, ∇
m−1 Pm−1,X+

�
u( · )≡∇

m−1u(X+

�), and
∇

m Pm−1,X+

�
u ≡ 0. Thus if we write v= u − Pm−1,X+

�
u( · ), we have that v ∈ [W m,2

loc (�)∩Cm−1(�)]K is a
weak solution to Lv=0 in� satisfying ∇

kv(X+

�)=0 for all 0≤k ≤m−1, ∇m−1v=∇
m−1u−∇

m−1u(X+

�),
and ∇

mv = ∇
mu. As such we can invoke [Dahlberg et al. 1997, Theorem 3, p. 1456] to obtain that

∥N∗,�(∇
m−1u − ∇

m−1u(X+

�))∥L2(∂�) = ∥N∗,�(∇
m−1v)∥L2(∂�)

≲ ∥S�(∇m−1v)∥L2(∂�) = ∥S�(∇m−1u)∥L2(∂�).

Turning to interior estimates, we recall from [Barton 2016, Corollary 22, p. 384] that for all solutions
to Lu = 0 in 2I we have∫∫

I
|∇

j u|
2 d X ≤ Cℓ(I )−2 j

∫∫
2I

|u|
2 d X, j = 0, . . . ,m. (7.33)

In fact, [Barton 2016] pertains to much more general elliptic systems with bounded measurable coefficients.
It uses the weak Gårding inequality [Barton 2016, (10), p. 380]. To obtain the latter (with δ = 0) we
can see that Plancherel’s theorem, the fact that we are currently considering the case with real constant
coefficients, and the Legendre–Hadamard condition (7.18) easily yield, for every smooth compactly
supported function ϕ,

Re⟨∇mϕ, A∇
mϕ⟩Rn+1 = Re

∫∫
Rn+1

K∑
j,k=1

∑
|α|=|β|=m

∂αϕj (X)a
jk
αβ∂

βϕk(X) d X

=

K∑
j,k=1

∑
|α|=|β|=m

a jk
αβ Re

∫∫
Rn+1

(−2π iξ)α(2π iξ)β ϕ̃j (ξ) ϕ̃k(ξ) dξ

=

∫∫
Rn+1

K∑
j,k=1

∑
|α|=|β|=m

a jk
αβ(2πξ)

α(2πξ)β Re(ϕ̃j (ξ) ϕ̃k(ξ)) dξ

≥ λ

∫∫
Rn+1

(2π |ξ |)2m
|ϕ̃j (X)|2 d X = λ

∫∫
Rn+1

|∇
mϕj (ξ)|

2 dξ,

and so [Barton 2016] applies to our setting.
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Now, for constant-coefficient operators any derivative of a solution is still a solution, and, in fact, we
will use v := u − Pm−1,X I u( · ) built similarly to above, only using X I being the center of I in place
of X+

� . Clearly, ∇
mv = ∇

mu is a solution too, and so a repeated application of (7.33) yields∫∫
I
|∇

kv|2 d X ≤ Cℓ(I )−2(k−m)
∫∫

2I
|∇

mv|2 d X, k ≥ m. (7.34)

Taking k > m − 1 large enough, depending on the dimension only, so that the Sobolev space W k,2(I )
embeds into the Hölder space Cm−1,α(I ), α > 0, we can show that

sup
X,Y∈I

|∇
m−1u(X)− ∇

m−1u(Y )| = sup
X,Y∈I

|∇
m−1v(X)− ∇

m−1v(Y )|

≤ C
k∑

j=0

(
ℓ(I )−1−n+2( j−m+1)

∫∫
I
|∇

jv|2 d X
)1

2

.
(7.35)

For j > m we use (7.34) to descend to j = m. For j < m, we use the Poincaré inequality to ascend to
j = m, and all in all, the expression above is bounded by

C
(
ℓ(I )1+n

∫∫
2I

|∇
mv|2 d X

)1
2

= C
(
ℓ(I )1+n

∫∫
2I

|∇
mu|

2 d X
)1

2

,

as desired. This yields (7.27).
In order to obtain (5.2) with ∇

m−1u in place of u, we apply the same argument as above to v :=

∇
m−1u − c⃗ for some constant vector c⃗. The function v is also a solution of the initial system, and so

(7.34) still holds. Much as above, by the Morrey inequality (or generalized Sobolev embeddings), for
k large enough, depending on dimension only, we arrive at

sup
I

|v| ≤ C
k∑

j=0

(
ℓ(I )−1−n+2 j

∫∫
I
|∇

jv|2 d X
)1

2

≤ C
(
ℓ(I )−1−n

∫∫
2I

|v|2 d X
)1

2

, (7.36)

where we have used (7.33) and (7.34) for the second inequality.
Finally, the reverse Hölder inequality (5.25) with ∇

mu in place of ∇u was also proved in [Barton 2016,
Theorem 24].

With all the previous ingredients we are ready to invoke Theorem 7.25(iii) and then Theorem 7.26 to
obtain the desired estimates. □

Appendix: Sawtooths have UR boundaries

To start, recall from [Hofmann et al. 2016, Appendix A] the fact that the sawtooth regions and Carleson
boxes inherit the ADR property. In that Appendix we treated simultaneously the case that the set E is
ADR, but not necessarily UR, and also the case that E is UR. The point was that the Whitney regions in
the two cases (and thus also the corresponding sawtooth regions and Carleson boxes) were somewhat
different. In any case, the reader can easily see that, with the notation introduced in Definition 2.7,
the arguments in [Hofmann et al. 2016, Appendix A] can be carried out for any ADR set E and with
{WQ}Q∈D(E) any Whitney-dyadic structure for Rn+1

\ E with some parameters η and K. In turn, both if
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E happens to be merely an ADR set as in Section 2.1, or a UR set as in Section 2.2, the corresponding
constructions of Whitney-dyadic structure fit within the previous framework. Nonetheless, the same
applies to any other Whitney-dyadic structure (constructed in a different way) but retaining the same
properties.

Let us now recall some results from [Hofmann et al. 2016] that we shall use in the sequel.

Proposition A.1 [Hofmann et al. 2016, Proposition A.2]. Let E ⊂ Rn+1 be an n-dimensional ADR set
and let {WQ}Q∈D(E) be a Whitney-dyadic structure for Rn+1

\ E with some parameters η≪ 1 and K ≫ 1.
Then all dyadic local sawtooths �F ,Q and all Carleson boxes TQ have n-dimensional ADR boundaries.
In all cases, the implicit constants are uniform and depend only on dimension, the ADR constant of E ,
parameters η, K, and the constant C in Definition 2.7(iii).

Remark A.2. Let � ⊂ Rn+1 be an open set with ADR boundary and let {WQ}Q∈D(∂�) be a Whitney-
dyadic structure for � with parameters η and K. One can easily construct a Whitney-dyadic structure
{W ′

Q}Q∈D(∂�) for Rn+1
\ ∂� so that for every I ∈W(�) one has that I ∈WQ if and only if I ∈W ′

Q ,
that is, the new Whitney-dyadic structure remains the same for the Whitney cubes contained in �. To
construct such a Whitney-dyadic structure we define (W ′

Q)
0 as in (2.8) with the same parameters η

and K but for all the Whitney cubes I ∈W(Rn+1
\ ∂�). For every Q ∈ D(∂�) we the set W ′

Q :=

WQ ∪ ((W ′

Q)
0
∩W(Rn+1

\�)). It is straightforward to see that {W ′

Q}Q∈D(∂�) is a Whitney-dyadic
structure for Rn+1

\ ∂� with parameters η and K and agreeing with {WQ}Q∈D(∂�) when restricted to the
Whitney cubes contained in �. Note also that the constants in Definition 2.7(iii) are the same for both.

We then note by Proposition A.1 all the associated dyadic local sawtooths �′

F ,Q and all Carleson
boxes T ′

Q (contained in Rn+1
\ ∂�) have n-dimensional ADR boundaries. In turn the agreement of

{WQ}Q∈D(∂�) with {W ′

Q}Q∈D(∂�) inside � implies at the very least that all the associated dyadic local
sawtooths �F ,Q and all Carleson boxes TQ (contained now in �) have a boundary satisfying the upper
ADR condition (that is the upper estimate in (1.2)) with constant depending on the ADR constant of ∂�,
η, K and the constant in Definition 2.7(iii).

In what follows we assume that E is an ADR set and fix {WQ}Q∈D(E) a Whitney-dyadic structure
for Rn+1

\ E with some parameters η and K. As mentioned in Section 2, we always assume that if
{WQ}Q∈D(E) is a Whitney-dyadic structure for Rn+1

\ E with some parameters η and K, then K is
large enough (say K ≥ 402n) so that for any ℓ(I ) ≲ diam(E) we have I ∈W0

Q∗

I
⊂WQ∗

I
, where Q∗

I is
some fixed nearest dyadic cube to I with ℓ(I ) = ℓ(Q∗

I ). To simplify the notation, it is convenient to
find m0 ∈ Z+,C0 ∈ R+ (say 2m0 ≈ C max{K , η−1

}
1/2, C0 = C K 1/2, hence depending on η, K and the

constant C in Definition 2.7(iii)) such that

2−m0ℓ(Q)≤ ℓ(I )≤ 2m0ℓ(Q) and dist(I, Q)≤ C0ℓ(Q) for all I ∈WQ . (A.3)

From now, we will use these parameters m0 and C0, rather than η, K and the constant C in Definition 2.7(iii).
Let us recall some notation from [Hofmann et al. 2016, Appendix A]. Given a cube Q0 ∈ D and a

family F of disjoint cubes F = {Q j } ⊂ DQ0 (for the case F = ∅ the changes are straightforward and we
leave them to the reader, also the case F = {Q0} is disregarded since in that case �F ,Q0 is the null set).
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We write �⋆ =�F ,Q0 and 6 = ∂�⋆ \ E . Given Q ∈ D we set

RQ :=

⋃
Q′∈DQ

WQ′, and 6Q =6
⋂( ⋃

I∈RQ

I
)
.

Let C1 be a sufficiently large constant, to be chosen below, depending on n, the ADR constant of E ,
m0 and C0. Let us introduce some new collections:

F|| := {Q ∈ D \ {Q0} : ℓ(Q)= ℓ(Q0), dist(Q, Q0)≤ C1ℓ(Q0)},

F⊤ := {Q′
∈ D : dist(Q′, Q0)≤ C1ℓ(Q0), ℓ(Q0) < ℓ(Q′)≤ C1ℓ(Q0)},

F ∗

||
:= {Q ∈ F|| :6Q ̸= ∅} = {Q ∈ F|| : there exists I ∈ RQ such that 6 ∩ I ̸= ∅},

F ∗
:= {Q ∈ F :6Q ̸= ∅} = {Q ∈ F : there exists I ∈ RQ such that 6 ∩ I ̸= ∅}.

We also set
R⊥ =

⋃
Q∈F ∗

RQ, R|| =

⋃
Q∈F ∗

||

RQ, R⊤ =

⋃
Q∈F⊤

WQ .

Lemma A.4 [Hofmann et al. 2016, Lemma A.3]. SetW6 = {I ∈W : I ∩6 ̸= ∅} and define

W⊥

6 =

⋃
Q∈F ∗

W6,Q, W
||

6 =

⋃
Q∈F ∗

||

W6,Q, W⊤

6 = {I ∈W6 : Q∗

I ∈ F⊤},

where for every Q ∈ F ∗
∪F ∗

||
we set

W6,Q = {I ∈W6 : Q∗

I ∈ DQ},

and where we recall that Q∗

I is the nearest dyadic cube to I with ℓ(I )= ℓ(Q∗

I ) as defined above. Then

W6 =W⊥

6 ∪W
||

6 ∪W⊤

6, (A.5)

where
W⊥

6 ⊂ R⊥, W
||

6 ⊂ R||, W⊤

6 ⊂ R⊤. (A.6)

As a consequence,

6 =6⊥ ∪6|| ∪6⊤ :=

( ⋃
I∈W⊥

6

6 ∩ I
) ⋃( ⋃

I∈W||

6

6 ∩ I
) ⋃( ⋃

I∈W⊤

6

6 ∩ I
)
. (A.7)

Lemma A.8 [Hofmann et al. 2016, Lemma A.7]. Given I ∈W6 , we can find Q I ∈ D, with Q I ⊂ Q∗

I ,
such that ℓ(I )≈ ℓ(Q I ), dist(Q I , I )≈ ℓ(I ), and in addition,∑

I∈W6,Q

1Q I ≲ 1Q for any Q ∈ F ∗
∪F ∗

||
, (A.9)∑

I∈W⊤

6

1Q I ≲ 1B∗

Q0
∩E , (A.10)

where the implicit constants depend on n, the ADR constant of E , m0 and C0, and where B∗

Q0
=

B(xQ0,Cℓ(Q)) with C large enough depending on the same parameters.
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With the preceding results in hand, we turn to the main purpose of this appendix: to prove that uniform
rectifiability is also inherited by the sawtooth domains and Carleson boxes.

Proposition A.11. Let E ⊂ Rn+1 be an n-dimensional UR set and let {WQ}Q∈D(E) be a Whitney-dyadic
structure for Rn+1

\ E with some parameters η≪ 1 and K ≫ 1. Then all dyadic local sawtooths �F ,Q
and all Carleson boxes TQ have n-dimensional UR boundaries. In all cases, the implicit constants are
uniform and depend only on dimension, the UR character of E , and the parameters m0 and C0 (hence on
the parameters η, K, and the constant C in Definition 2.7(iii)).

The proof of this result follows the ideas from [Hofmann and Martell 2014, Appendix C], which in turn
uses some ideas from Guy David, and uses the following singular integral characterization of UR sets,
established in [David and Semmes 1991]. Suppose that E ⊂ Rn+1 is n-dimensional ADR. The singular
integral operators that we shall consider are those of the form

TE,ε f (x)= Tε f (x) :=

∫
E
Kε(x − y) f (y) d H n(y),

where Kε(x) :=K(x)8(|x |/ε), with 0 ≤8≤ 1, 8(ρ)≡ 1 if ρ ≥ 2, 8(ρ)≡ 0 if ρ ≤ 1, and 8 ∈ C∞(R),
and where the singular kernel K is an odd function, smooth on Rn+1

\ {0}, and satisfying

|K(x)| ≤ C0|x |
−n, (A.12)

|∇
mK(x)| ≤ Cm |x |

−n−m for all m ≥ 1. (A.13)

Then E is UR if and only if for every such kernel K , we have that

sup
ε>0

∫
E

|TE,ε f |
2 d H n

≤ CK

∫
E

| f |
2 d H n. (A.14)

We refer the reader to [David and Semmes 1991] for the proof. For K as above, set

TE f (X) :=

∫
E
K(X − y) f (y) d H n(y), X ∈ Rn+1

\ E . (A.15)

We define (possibly disconnected) nontangential approach regions ϒα(x) as follows. Set Wα(x) :=

{I ∈W : dist(I, x) < αℓ(I )}. Then we define

ϒα(x) :=

⋃
I∈Wα(x)

I ∗

(thus, roughly speaking, α is the “aperture” of ϒα(x)). Here I ∗
= I ∗(τ ) as in Section 2 with 0< τ ≤ τ0/4,

which is fixed. Note that these nontangential approach regions are slightly different that the ones introduced
in (2.23) since they do not use the Whitney regions UQ . For F ∈ C(Rn+1

\ E) we may then also define a
new nontangential maximal function (which is different than the one (2.34) although somehow comparable
much as in Remark 2.37)

N∗,αF(x) := sup
Y∈ϒα(x)

|F(Y )|.

We shall sometimes write simply N∗ when there is no chance of confusion in leaving implicit the
dependence on the aperture α. The following lemma is a standard consequence of the usual Cotlar
inequality for maximal singular integrals, and we omit the proof.
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Lemma A.16. Suppose that E ⊂ Rn+1 is an n-dimensional UR, and let TE be defined as in (A.15). Then,
for each 1< p <∞ and α ∈ (0,∞), there is a constant C p,α,K depending only on p, n, α,K and the UR
character of E such that ∫

E
(N∗,α(TE f ))p d H n

≤ Cα,K

∫
E

| f |
p d H n. (A.17)

Proof of Proposition A.11. Write σ = H n
|E . We fix Q0 ∈ D = D(E) and a family F of disjoint cubes

F = {Q j } ⊂ DQ0 (for the case F = ∅ the changes are straightforward and we leave them to the reader,
also the case F = {Q0} is disregarded since �F ,Q0 is the null set). We write �⋆ =�F ,Q0 , E⋆ = ∂�⋆, and
σ⋆ = H n

|E⋆ . We fix 0 ≤8 ≤ 1, 8(ρ)≡ 1 if ρ ≥ 2, 8(ρ)≡ 0 if ρ ≤ 1, and 8 ∈ C∞(R). According to
the previous considerations we fix ε0 > 0 and our goal is to show that TE⋆,ε0 is bounded on L2(E⋆) with
bounds that are independent of ε0. To simplify the notation we writeK0 =Kε0 and set, for every X ∈ Rn+1,

TE,0 f (X)=

∫
E
K0(X − y) f (y) dσ(y), TE⋆,0g(X)=

∫
E⋆
K0(X − y)g(y) dσ⋆(y).

We first observe that K0 is not singular and therefore, for any p, 1< p <∞, and for every f ∈ L p(E),
respectively g ∈ L p(E⋆), the previous operators are well-defined (by means of an absolutely convergent
integral) for every X ∈ Rn+1. Also for such functions it is easy to see that the dominated convergence
theorem implies that TE,0 f,TE⋆,0g ∈ C(Rn+1).

Remark A.18. We notice that K0 is an odd smooth function which satisfies (A.12) and (A.13) with
uniform constants (i.e., with no dependence on ε0) and therefore the fact that E is UR implies that (A.14)
and (A.17) hold with constants that do not depend on ε0.

We are going to see that TE,0 : L p(E)→ L p(E⋆) for every 1< p<∞. To do that we take f ∈ L p(E)
and write∫

E⋆
|TE,0 f (x)|p dσ⋆(x)=

∫
E⋆∩E

|TE,0 f (x)|p dσ⋆(x)+
∫

E⋆\E
|TE,0 f (x)|p dσ⋆(x)=: I + II.

The estimate for I follows from the fact that E is UR

I ≤

∫
E

|TE,0 f (x)|p dσ(x)=

∫
E

|TE,ε0 f (x)|p dσ(x)≤ CK

∫
E

| f (x)|p dσ(x),

where we have used (A.14) and the standard Calderón–Zygmund theory (taking place in the ADR set E)
and CK does not depend on ε0. For II we use that 6 = E⋆ \ E = ∂�⋆ \ E and invoke Lemmas A.4
and A.8; let Q I be the cube constructed in the latter, so that

II =

∑
I∈W6

∫
I∩6

|TE,0 f (x)|p dσ⋆(x)=

∑
I∈W6

−

∫
Q I

∫
I∩6

|TE,0 f (x)|p dσ⋆(x) dσ(y).

Note that if y ∈ Q I and x ∈ 6 ∩ I then dist(I, y) ≲ ℓ(Q I ) ≈ ℓ(I ). Then taking α > 0 large enough
we obtain that I ⊂Wα(y). Write F̃ = F ∗

∪F ∗

||
, and observe that by construction the cubes in F̃ are
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pairwise disjoint. Then by the ADR property of E⋆, along with Lemmas A.4 and A.8,

II ≤

∑
I∈W6

σ⋆(6 ∩ I )−
∫

Q I

|N∗,α(TE,0 f )(y)|p dσ(y)

≲
∑
Q∈F̃

∑
I∈W6,Q

∫
Q I

|N∗,α(TE,0 f )(y)|p dσ(y)+
∑

I∈W⊤

6

∫
Q I

|N∗,α(TE,0 f )(y)|p dσ(y)

≲
∑
Q∈F̃

∫
Q

|N∗,α(TE,0 f )(y)|p dσ(y)+
∫

B∗

Q0
∩E

|N∗,α(TE,0 f )(y)|p dσ(y)

≲
∫

E
|N∗,α(TE,0 f )(y)|p dσ(y)≲

∫
E

| f (y)|p dσ(y),

where in the last estimate we have employed Lemma A.16 and Remark A.18, and the implicit constants
do not depend on ε0.

We have thus established that TE,0 : L p(E)→ L p(E⋆) for every 1< p<∞. Since K is odd, so is K0,
and by duality we therefore obtain that

TE⋆,0 : L p(E⋆)→ L p(E), 1< p <∞. (A.19)

Our goal is to show that TE⋆,0 : L2(E⋆)→ L2(E⋆) with bounds that do not depend on ε0. Note that TE⋆,0 f
is a continuous function for every f ∈ L2(E⋆) and therefore TE⋆,0 f |E⋆ = TE⋆,ε0 f everywhere on E⋆.

We take f ∈ L2(E⋆) and write as before∫
E⋆

|TE⋆,0 f (x)|2 dσ⋆(x)=

∫
E⋆∩E

|TE⋆,0 f (x)|2 dσ⋆(x)+
∑

I∈W6

∫
I∩6

|TE⋆,0 f (x)|2 dσ⋆(x)

=: I +

∑
I∈W6

III = I + II. (A.20)

For I we use (A.19) with p = 2 and conclude the desired estimate

I ≤

∫
E⋆∩E

|TE⋆,0 f (x)|2 dσ⋆(x)≤

∫
E

|TE⋆,0 f (x)|2 dσ(x)≤

∫
E⋆

| f (x)|2 dσ⋆(x). (A.21)

We next fix I ∈W6 and estimate each III . Let M > 2 be large parameter to be chosen below and set
ζI = ℓ(I )/M, ξI = Mℓ(I ). Write

K0(x)=K0(x)8
(

|x |

ξI

)
+K0(x)

(
8

(
|x |

ζI

)
−8

(
|x |

ξI

))
+K0(x)

(
1 −8

(
|x |

ζI

))
=:K0,ξI (x)+K0,ζI ,ξI (x)+K

ζI
0 (x). (A.22)

Corresponding to any of these kernels we respectively set the operators TE⋆,0,ξI , TE⋆,0,ζI ,ξI and T ζI
E⋆,0.

We start with TE⋆,0,ξI . Fix x ∈ 6 ∩ I. Write 1⋆,I = B(x, ξI ) ∩ E⋆ and split f = f1 + f2 :=

f 11⋆,I + f 1E⋆\1⋆,I . Then we use Remark A.18, the fact supp8 ⊂ [1,∞) and that E⋆ is ADR to
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easily obtain that for every y ∈ Q I , with Q I as in Lemma A.8,

|TE⋆,0,ξI f1(x)| + |TE⋆,0,ξI f1(y)|

≤

∫
1⋆,I

(
|K0(x − z)|8

(
|x − z|
ξI

)
+ |K0(y − z)|8

(
|y − z|
ξI

))
| f (z)| dσ⋆(z)

≲
1
ξ n

I

∫
1⋆,I

| f (y)| dσ⋆(z)≈ −

∫
1⋆,I

| f (y)| dσ⋆(z)≤ ME⋆ f (x), (A.23)

where ME⋆ is the Hardy–Littlewood maximal function on E⋆, and the constants are independent of ε0 and I.
On the other hand, much as before we have that K0,ξI is a Calderón–Zygmund kernel with constants

that are uniform in ε0 and ξI . Also, if M is taken large enough we have that 2|x − y|< Mℓ(I )≤ |x − z|
for every z ∈ E⋆ \1⋆,I , x ∈6 ∩ I and y ∈ Q I . Therefore using standard Calderón–Zygmund estimates
and the fact that E⋆ is ADR we obtain that for every and y ∈ Q I

|TE⋆,0,ξI f2(x)−TE⋆,0,ξI f2(y)| ≤

∫
E⋆\1⋆,I

|K0,ξI (x − z)−K0,ξI (y − z)|| f (z)| dσ⋆(z)

≲
∫

E⋆\1⋆,I

|x − y|

|x − z|n+1 | f (z)| dσ⋆(z)≲M ME⋆ f (x). (A.24)

We next use (A.23) and (A.24) to conclude that∣∣∣∣TE⋆,0,ξI f (x)− −

∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣ ≲ |TE⋆,0,ξI f1(x)| +−

∫
Q I

|TE⋆,0,ξI f1(y)| dσ(y)

+ −

∫
Q I

|TE⋆,0,ξI f2(x)−TE⋆,0,ξI f2(y)| dσ(y)≲ ME⋆ f (x),

which in turn yields∫
6∩I

∣∣∣∣TE⋆,0,ξI f (x)− −

∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣2

dσ⋆(x)≲
∫
6∩I

ME⋆ f (x)2 dσ⋆(x). (A.25)

We next introduce another operator

TE⋆,0,ξI f (y)=

∫
z∈E⋆:|y−z|≥ξI

K0(y − z) f (z) dσ⋆(z), y ∈ E .

We fix x ∈ 6 ∩ I and y ∈ Q I . We first observe that, for M large enough, Remark A.18 and the ADR
property for E⋆ imply that

|TE⋆,0,ξI f (y)− TE⋆,0,ξI f (y)| ≤

∫
E⋆

|K0(y − z)|
∣∣∣∣8(

|y − z|
ξI

)
− 1[1,∞)

(
|y − z|
ξI

)∣∣∣∣| f (z)| dσ⋆(z)

≲
1
ξ n

I

∫
z∈E⋆:|y−z|≤2ξI

| f (z)| dσ⋆(z)

≲
1
ξ n

I

∫
z∈E⋆:|x−z|≤3ξI

| f (z)| dσ⋆(z)≲ ME⋆ f (x).

On the other hand, we can introduce another decomposition

f = f3 + f4 := f 1B(y,ξI )∩E⋆ + f 1E⋆\B(y,ξI ),
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and then for every ȳ ∈ Q I

|TE⋆,0,ξI f (y)| = |TE⋆,0 f4(y)| ≤ |TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| + |TE⋆,0 f4(ȳ)|

≤ |TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| + |TE⋆,0 f (ȳ)| + |TE⋆,0 f3(ȳ)|. (A.26)

We estimate each term in turn. We first observe that, for M large enough, 2|y − ȳ|< Mℓ(I ) ≤ |y − z|
for every z ∈ E⋆ \ B(y, ξI ) and ȳ ∈ Q I . Therefore, using standard Calderón–Zygmund estimates and the
fact that E⋆ is ADR, we obtain that for every and ȳ ∈ Q I

|TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| ≤

∫
E⋆\B(y,ξI )

|K0(y − z)−K0(ȳ − z)|| f (z)| dσ⋆(z)

≲
∫

E⋆\B(y,ξI )

|y − ȳ|

|y − z|n+1 | f (z)| dσ⋆(z)≲ ME⋆ f (x), (A.27)

where we have used that, for M large enough, x ∈ B(y, ξI /2). Fix 1< p < 2. We next average (A.26)
on ȳ ∈ Q I and use (A.27) and (A.19) to obtain

|TE⋆,0,ξI f (y)| ≤ −

∫
Q I

(|TE⋆,0 f4(y)−TE⋆,0 f4(ȳ)| + |TE⋆,0 f (ȳ)| + |TE⋆,0 f3(ȳ)|) dσ(ȳ)

≲ ME⋆ f (x)+ ME(TE⋆,0 f )(y)+ σ(Q I )
−

1
p ∥TE⋆,0 f3∥L p(E)

≲ ME⋆ f (x)+ ME(TE⋆,0 f )(y)+ σ(Q I )
−

1
p ∥ f3∥L p(E⋆)

≲ ME⋆ f (x)+ ME(TE⋆,0 f )(y)+
(

1
ℓ(I )n

∫
B(y,ξI )∩E⋆

| f (z)|p dσ⋆(z)
)1

p

≲ ME⋆,p f (x)+ ME(TE⋆,0 f )(y), (A.28)

where ME is the Hardy–Littlewood maximal function on E and we also write ME⋆,p f = ME⋆(| f |
p)1/p.

Note that this estimate holds for every x ∈6 ∩ I and for every y ∈ Q I . Hence,∫
6∩I

∣∣∣∣−∫
Q I

TE⋆,0,ξI f (y)dσ(y)
∣∣∣∣2

dσ⋆(x)≲
∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)+
∫

Q I

ME(TE⋆,0 f )(y)2 dσ(y), (A.29)

where we have used that σ⋆(6 ∩ I )≲ ℓ(I )n. We now gather (A.25) and (A.29) to obtain that for every
I ∈W6∫
6∩I

|TE⋆,0,ξI f (x)|2 dσ⋆(x)

≲
∫
6∩I

∣∣∣∣TE⋆,0,ξI f (x)− −

∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣2

dσ⋆(x)+
∫
6∩I

∣∣∣∣−∫
Q I

TE⋆,0,ξI f (y) dσ(y)
∣∣∣∣2

dσ⋆(x)

≲
∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)+
∫

Q I

ME(TE⋆,0 f )(y)2 dσ(y). (A.30)

We next consider TE⋆,0,ζI ,ξI . Note that for every x ∈6 ∩ I and z ∈ E⋆ we have

|K0,ζI ,ξI (z − x)| = |K0(z − x)|
∣∣∣∣8(

|z − x |

ζI

)
−8

(
|z − x |

ξI

)∣∣∣∣ ≲ 1
|z − x |n

1ζI ≤|z−x |≤2ξI ≲
1
ζ n

I
1|z−x |≤2ξI ,
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and therefore∫
6∩I

|TE⋆,0,ζI ,ξI f (x)|2 dσ⋆(x)≲
∫
6∩I

(
1
ζ n

I

∫
B(x,2ξI )∩E⋆

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲M

∫
6∩I

ME⋆ f (x)2 dσ⋆(x). (A.31)

Let us finally address T ζI
E⋆,0. Observe first that

K
ζI
0 ( · )=K( · )8

(
| · |

ε0

)(
1 −8

(
| · |

ζI

))
.

We consider three different cases.

Case 1: ζI ≤ ε0/2. We have that K ζI
0 ≡ 0 and thus T ζI

E⋆,0 ≡ 0.

Case 2: ε0/2< ζI ≤ 2ε0. In this case for every x ∈6 ∩ I and z ∈ E⋆

|K
ζI
0 (x − z)| ≲

1
|x − z|n

1ε0≤|z−x |≤2ζI ≲
1
εn

0
1|z−x |≤4ε0,

and therefore ∫
6∩I

|T
ζI
|!E⋆,0 f (x)|2 dσ⋆(x)≲

∫
6∩I

(
1
εn

0

∫
B(x,4ε0)∩E⋆

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲
∫
6∩I

ME⋆ f (x)2 dσ⋆(x), (A.32)

where the implicit constants are independent of ε0 and ζI .

Case 3: ζI > 2ε0. In this case T ζI
E⋆,0 f is a double truncated integral whose smooth Calderón–Zygmund

kernel K ζI
0 is odd, smooth in Rn+1 and satisfies the estimates (A.12), (A.13). with uniform bounds (i.e.,

independent of ε0 and ζI ). Fix z I ∈6∩ I and notice that if x ∈6∩ I and z ∈ B(x, 2ζI )∩ E⋆ then, taking
M large enough, we have

|z − z I | ≤ |z − x | + |x − z I | ≤ 2ζI + diam(I )=
ℓ(I )
2M

+ diam(I ) < 3
2

diam(I )

and therefore the fact that suppK ζI
0 ⊂ B(0, 2ζI ) immediately gives T ζI

E⋆,0 f (x)= T
ζI

E⋆,0( f 11̃⋆,I )(x), where
1̃⋆,I := B̃⋆,I ∩ E⋆ := B(z I , 2 diam(I ))∩ E⋆. Note that (2.5) yields

4 diam(I )≤ dist(4I, E)≤ dist(z I , E)≤ dist(B̃⋆,I , E)+ 2 diam(I )

and therefore dist(B̃⋆,I , E)≥ 2 diam(I ). This implies that 3B̃⋆,I /2 ⊂ Rn+1
\ E . Also if J ∈W satisfies

that J ∗
∩ B̃⋆,I ̸= ∅ we can easily check that ℓ(I ) ≈ ℓ(J ) and dist(I, J ) ≲ ℓ(I ). This implies that only

a bounded number of J ’s have the property that J ∗ intersects B̃⋆,I . We recall that 6 = E⋆ \ E is a union
of portion of faces of fattened Whitney cubes J ∗. Thus we have

1̃⋆,I ⊂

M0⋃
m=1

Fm,I ,
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where M0 is a uniform constant and each Fm,I is either a portion of a face of some J ∗, or else Fm,I = ∅
(since M0 is not necessarily equal to the number of faces, but is rather an upper bound for the number
of faces.) Note also that I ⊂ B̃⋆,I and therefore we also have that

6 ∩ I ⊂

M0⋃
m=1

Fm,I .

Thus ∫
6∩I

|T
ζI

E⋆,0 f (x)|2 dσ⋆(x)=

∫
6∩I

|T
ζI

E⋆,0( f 11̃⋆,I )(x)|
2 dσ⋆(x)

≲
∑

1≤m,m′≤M0

∫
Fm,I

|T
ζI

E⋆,0( f 1Fm′,I
)(x)|2 dσ⋆(x).

In the case m = m′, we take the hyperplane Hm,I with Fm,I ⊂Hm,I and then∫
Fm,I

|T
ζI

E⋆,0( f 1Fm,I )(x)|
2 dσ⋆(x)≤

∫
Hm,I

|T
ζI
Hm,I ,0

( f 1Fm,I )(x)|
2 d H n(x)

≲
∫

Fm,I

| f (x)|2 d H n(x)=

∫
Fm,I

| f (x)|2 dσ⋆(x),

where, after a rotation, we have used the L2 bounds of Calderón–Zygmund operators with nice kernels
on Rn. For m ̸= m′ we consider two cases: either dist(Fm,I , Fm′,I ) ≈ ℓ(I ) or dist(Fm,I , Fm′,I )≪ ℓ(I ).
In the first scenario, using that K ζI

0 satisfies (A.12) uniformly we obtain that∫
Fm,I

|T
ζI

E⋆,0( f 1Fm′,I
)(x)|2 dσ⋆(x)≲

∫
Fm,I

(∫
Fm′,I

1
|x − z|n

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲
∫

Fm,I

(
1

ℓ(I )n

∫
B(x,Cℓ(I ))∩E⋆

| f (z)| dσ⋆(z)
)2

dσ⋆(x)

≲
∫

Fm,I

ME⋆ f (x)2 dσ⋆(x).

Finally if dist(Fm,I , Fm′,I )≪ ℓ(I ), we have that Fm,I and Fm′,I are contained in respective faces which
either lie in the same hyperplane, or else meet at an angle of π

2 . In the first case we may proceed as in
the case m = m′. In the second case, after a possible rotation of coordinates, we may view F j

m ∪ F j
m′ as

lying in a Lipschitz graph with Lipschitz constant 1, so that we may estimate T ζI
E⋆,0 using an extension

of the Coifman–McIntosh–Meyer theorem:∫
Fm,I

|T
ζI

E⋆,0( f 1Fm′,I
)(x)|2 dσ⋆(x)≲

∫
Fm′,I

| f (x)|2 dσ⋆(x).

Gathering all the possible cases we may conclude that∫
6∩I

|T
ζI

E⋆,0 f (x)|2 dσ⋆(x)≲
∑

1≤m≤M0

∫
Fm,I

ME⋆ f (x)2 dσ⋆(x)

≲
∑

I ′∈W6 :I ′∩1̃⋆,I ̸=∅

∫
I ′∩6

ME⋆ f (x)2 dσ⋆(x). (A.33)
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We now gather (A.30), (A.31) and (A.33) to get the following estimate for SI after using (A.22):

III =

∫
6∩I

|TE⋆,0 f (x)|2 dσ⋆(x)

≲
∫
6∩I

|TE⋆,0,ξI f (x)|2 dσ⋆(x)+
∫
6∩I

|TE⋆,0,ζI ,ξI f (x)|2 dσ⋆(x)+
∫
6∩I

|T
ζI

E⋆,0|
2 dσ⋆(x)

≲
∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)+
∫

Q I

ME(TE⋆,0 f )(y)2 dσ(y)

+

∑
I ′∈W6 :I ′∩1̃⋆,I ̸=∅

∫
I ′∩6

ME⋆ f (x)2 dσ⋆(x). (A.34)

Note that since 1< p < 2 we have∑
I∈W6

∫
6∩I

ME⋆,p f (x)2 dσ⋆(x)≤

∫
E⋆

ME⋆,p f (x)2 dσ⋆(x)≲
∫

E⋆
| f (x)|2 dσ⋆(x). (A.35)

On the other hand, recalling that F̃ = F ∗
∪F ∗

||
is comprised of pairwise disjoint cubes, Lemmas A.4

and A.8 then imply that∑
I∈W6

∫
Q I

ME(TE⋆,0 f )(y)2 dσ(y)

=

∑
Q∈F̃

∑
I∈W6,Q

∫
Q I

ME(TE⋆,0 f )(y)2 dσ(y)+
∑

I∈W⊤

6

∫
Q I

ME(TE⋆,0 f )(y)2 dσ(y)

≲
∑
Q∈F̃

∫
Q

ME(TE⋆,0 f )(y)2 dσ(y)+
∫

B∗

Q0
∩E

ME(TE⋆,0 f )(y)2 dσ(y)

≲
∫

E
ME(TE⋆,0 f )(y)2 dσ(y)≲

∫
E

|TE⋆,0 f (y)|2 dσ(y)≲
∫

E⋆
| f (y)|2 dσ⋆(y), (A.36)

where in the last estimate we have used (A.19) with p = 2.
Finally, by the nature of the Whitney boxes (see (2.5)), we have that the family {2I }I∈W has the

bounded overlap property and therefore∑
I∈W6

∑
I ′∈W6 :I ′∩1̃⋆,I ̸=∅

16∩I ′ ≲ sup
I ′∈W6

#{I ∈W6 : I ′
∩1⋆,I ̸= ∅},

which we claim that is uniformly bounded. Indeed, fix I ′
∈W6 and let I1, I2 ∈W6 with I ′

∩ 1̃⋆,I1 ̸=∅
and I ′

∩ 1̃⋆,I2 ̸= ∅. Recall that dist(B̃⋆,I , E)≥ 2 diam(I ) with B̃⋆,I = B(z I , 2 diam(I )) and z I ∈ I ∩6.
This implies that ℓ(I1)≈ ℓ(I ′)≈ ℓ(I2) and also dist(I1, I2)≲ ℓ(I1). This easily gives our claim. Using
this we conclude that∑

I∈W6

∑
I ′∈W6 :I ′∩1̃⋆,I ̸=∅

∫
I ′∩6

ME⋆ f (x)2 dσ⋆(x)≲
∫

E⋆
ME⋆ f (x)2 dσ⋆(x)≲

∫
E⋆

| f (x)|2 dσ⋆(x). (A.37)

We now combine (A.34), (A.35), (A.36) and (A.37) to obtain that

II =

∑
I∈W6

III ≲
∫

E⋆
| f (x)|2 dσ⋆(x).
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This, (A.20), and (A.21) give as desired that∫
E⋆

|TE⋆,0 f (x)|2 dσ⋆(x)≲
∫

E⋆
| f (x)|2 dσ⋆(x),

and the implicit constant does not depend on ε0. Hence, TE⋆,0 : L2(E⋆) → L2(E⋆) with bounds that
do not depend on ε0. Since TE⋆,0 f is a continuous function for every f ∈ L2(E⋆), we have that
TE⋆,0 f |E⋆ = TE⋆,ε0 f everywhere on E⋆. Thus, all these show that TE⋆,0 : L2(E⋆)→ L2(E⋆) uniformly
in ε. This in turn gives, by the aforementioned result of [David and Semmes 1991], that E⋆ is UR as
desired, and the proof is complete. □
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OPTIMAL REGULARITY AND THE LIOUVILLE PROPERTY
FOR STABLE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS

IN Rn WITH n ≥ 10

FA PENG, YI RU-YA ZHANG AND YUAN ZHOU

Let 0 ≤ f ∈ C0,1(R). Given a domain � ⊂ Rn , we prove that any stable solution to the equation
−1u = f (u) in � satisfies

• a BMO interior regularity, when n = 10,
• a Morrey M pn ,4+2/(pn−2) interior regularity, when n ≥ 11, where

pn =
2(n − 2

√
n − 1 − 2)

n − 2
√

n − 1 − 4
.

This result is optimal as hinted by, e.g., Brezis and Vázquez (1997), Cabré and Capella (2006), and
Dupaigne (2011), and answers an open question raised by Cabré, Figalli, Ros-Oton and Serra (2020). As
an application, we show a sharp Liouville property: any stable solution u ∈ C2(Rn) to −1u = f (u) in Rn

satisfying the growth condition

|u(x)| =

{
o(log |x |) as |x | → +∞, when n = 10,

o(|x |
−n/2+

√
n−1+2) as |x | → +∞, when n ≥ 11,

must be a constant. This extends the well-known Liouville property for radial stable solutions obtained by
Villegas (2007).

1. Introduction

Let � be a bounded domain of Rn with n ≥ 2. Given any local Lipschitz function f : R → R (for short
f ∈ C0,1(R)), we consider the semilinear elliptic equation

−1u = f (u) in �, (1-1)

which is the Euler–Lagrange equation for the energy functional

E(u) :=

∫
�

(1
2
|Du|

2
− F(u)

)
dx, (1-2)

where F(t) =
∫ t

0 f (s) ds for t ∈ R. A function u ∈ W 1,2(�) is called a weak solution to (1-1) if
f (u) ∈ L1

loc(�) and ∫
�

Du · Dξ dx =

∫
�

f (u)ξ dx for all ξ ∈ C∞

c (�),
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that is, u is a critical point of the energy functional E . We say that a weak solution u is stable in � if
f ′
−
(u) ∈ L1

loc(�) and ∫
�

f ′

−
(u)ξ 2 dx ≤

∫
�

|Dξ |
2 dx for all ξ ∈ C∞

c (�), (1-3)

that is, the second variation of the energy functional E is nonnegative. Here and below,

f ′

−
(t) = lim inf

h→0

f (t + h) − f (t)
h

for all t ∈ R,

and note that f ′
−
(t) = f ′(t) whenever f ∈ C1(R).

The study of stable solutions to semilinear elliptic equations can be traced to the seminal paper [Crandall
and Rabinowitz 1975]. The regularity of stable solutions provides an important way to understand the
regularity of the extremal solution u⋆ to the Gelfand-type problem

−1u = λ⋆ f (u) in �,

u > 0 in �,

u = 0 on ∂�

(1-4)

for some positive constant λ⋆ > 0. We refer to [Brezis 2003; Cabré 2017; Gelfand 1963] for a compre-
hensive analysis of (1-4) and related topics. Note that the extremal solution u⋆ can be approximated by
stable solutions {uλ}λ<λ⋆ ; see, e.g., [Dupaigne 2011].

In dimension n ≤ 9, Brezis [2003] introduced an open problem: is the extremal solution u⋆ to (1-4)
bounded for some f and �? Since u⋆ is approximated by stable solutions {uλ}λ<λ⋆ , it suffices to establish
some a priori bound for stable solutions. In recent years, there were several strong efforts to study
regularity for stable solutions and hence for Brezis’ open problem. In particular, a positive answer was
given by Nedev [2000], when n ≤ 3, and by Cabré [2010], when n = 4 (see also [Cabré 2019] for an
alternative proof).

Very recently, Cabré, Figalli, Ros-Oton and Serra [Cabré et al. 2020] provided a complete answer to
Brezis’ open problem when f ≥ 0 based on certain Morrey-type estimates for n ≥ 3. Throughout this
paper, for p ∈ [1, ∞) and β ∈ (0, n), we define the Morrey norm as

∥w∥M p,β (�) := sup
y∈�,r>0

(
rβ−n

∫
�∩Br (y)

|w|
p dx

)1/p

< ∞, (1-5)

where Br (y) denotes the ball with center y and radius r > 0. We simply write Br when the center of the
ball is at the origin. In addition, following the convention, we denote by C(a, b, . . . ) a positive constant
depending only on the parameters a, b, . . . .

In dimension n ≥ 10, in particular, [Cabré et al. 2020, Theorem 1.9] established the following regularity
of stable solutions to (1-1).

Theorem 1.1 [Cabré et al. 2020]. Suppose that f ∈ C0,1(R) is nonnegative. If u ∈ C2(B1) is a stable
solution to (1-1) in B1, then

∥u∥M p,2+4/(p−2)(B1/2) ≤ C(n, p)∥u∥L1(B1) for every p < pn, (1-6)
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where

pn :=

∞ if n = 10,

2(n−2
√

n−1−2)

n−2
√

n−1−4
if n ≥ 11.

(1-7)

Moreover, suppose additionally that f is nondecreasing and � is a bounded domain of class C3. If
u ∈ C2(�) ∩ C0(�) is a stable solution to (1-1) in � with boundary u = 0 on ∂�, then

∥u∥M p,2+4/(p−2)(�) ≤ C(n, p, �)∥u∥L1(�) for every p < pn. (1-8)

We remark that the exponent n − 2
√

n − 1 − 4 changes sign when n = 10, which has already appeared
in, e.g., [Gui et al. 1992].

However, for the endpoint case p = pn , [Cabré et al. 2020, Section 1.3] pointed out that it is an open
question whether (1-6) holds.

As hinted at by earlier results in the radial symmetric case [Cabré and Capella 2006], when n = 10,
instead of L∞

= M∞,2, a more suitable space to consider is a class of functions with bounded mean
oscillations (BMO space), as remarked therein. Indeed, u(x) = −2 log|x | is a stable solution to (1-1)
in B1, with f (u) = 2(n − 2)eu . Obviously, u ∈ BMO(B1) but u /∈ L∞(B1). Here and below, the BMO
norm is defined as

∥u∥BMO(�) := sup
y∈�,r>0

inf
c∈R

−

∫
�∩Br (y)

|u(x) − c| dx,

where, −

∫
E v dx denotes the integral average of v on a measurable set E .

On the other hand, when n ≥ 11, also hinted at by the results in [Cabré and Capella 2006], the range
p ≤ pn is the best possible in (1-6). Besides, it was proven in [Brezis and Vázquez 1997] that the function
u(x) = |x |

−2/(qn−1)
− 1 is the extremal solution to

−1u = λ⋆(1 + u)qn in B1, u = 0 on ∂ B1, (1-9)

with

λ⋆
=

2
qn

and qn :=
n − 2

√
n − 1

n − 2
√

n − 1 − 4
.

We note that qn here is exactly the standard exponent in [Joseph and Lundgren 1973]. It is easy to see
that u ∈ M p,2+4/(p−2)(B1/2) if and only if p ≤ pn . Recall that, by [Dupaigne 2011, Section 3.2.2], such
an extremal solution can be approximated by stable solutions. We also refer to, e.g., [Farina 2007] for
some earlier work on Lane–Emden equations, which also hints at the optimality of our results.

The first main purpose of this paper is to establish the following regularity at the endpoint pn for stable
solutions to (1-1), when n ≥ 10, and then answer the above open question in [Cabré et al. 2020].

Theorem 1.2. Suppose f ∈ C0,1(R) is nonnegative. For any stable solution u ∈ C2(B1) to (1-1) in B1,
when n = 10, we have

∥u∥BMO(B1/2) ≤ C(n)∥u∥L1(B1), (1-10)

and when n ≥ 11, we have
∥u∥M pn ,2+4/(pn−2)(B1/2) ≤ C(n)∥u∥L1(B1). (1-11)
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Moreover, suppose additionally that f is nondecreasing and � is a bounded smooth convex domain.
For any positive stable solution u ∈ C2(�) to (1-1) with boundary u = 0 on ∂�, when n = 10, we have

∥u∥BMO(�) ≤ C(n, �)∥u∥L1(�), (1-12)

and when n ≥ 11, we have

∥u∥M pn ,2+4/(pn−2)(�) ≤ C(n, �)∥u∥L1(�). (1-13)

As a direct consequence of the above a priori estimates, we have the following result for stable solutions
in W 1,2.

Corollary 1.3. Suppose that � ⊂ Rn is a bounded smooth convex domain and that f ∈ C0,1(R) is
nonnegative, nondecreasing, convex, and satisfies f (t)/t → +∞ as t → +∞. For any stable solution
u ∈ W 1,2

0 (�) to (1-1) with boundary u = 0 on ∂�, we have (1-12) when n = 10, and (1-13) when n ≥ 11.

Remark 1.4. (i) While writing this paper, we learned via personal communication that Figalli and
Mayboroda have independently proved (1-10) in Theorem 1.2 with n = 10 via a similar argument.

(ii) In Theorem 1.2 and Corollary 1.3 we only consider bounded smooth convex domains so as to avoid
technical discussions on the boundary estimate. We believe that after suitable modifications, it is possible
to relax this assumption to bounded domains of C3 class, as in [Cabré et al. 2020].

As an application of Theorem 1.2, we prove the following Liouville property for stable solutions to the
equation

−1u = f (u) in Rn (1-14)

for f ∈ C0,1(Rn).

Theorem 1.5. Let n ≥ 10 and 0 ≤ f ∈ C0,1
loc (R). Suppose that u ∈ C2(Rn) is a nonconstant stable solution

to (1-14) in Rn .
If u is nonconstant, then

−

∫
B4R\BR

|u(x)| dx ≥

{
c log R for all R ≥ R0, if n = 10,

cR−n/2+2+
√

n−1 for all R ≥ R0, if n ≥ 11,
(1-15)

for some R0 ≥ 2 and c > 0.
In particular, if u satisfies the growth condition

|u(x)| =

{
o(log |x |) as |x | → +∞, when n = 10,

o(|x |
−n/2+2+

√
n−1) as |x | → +∞, when n ≥ 11,

(1-16)

then u must be a constant.

This problem has attracted a lot of attention in the literature. First of all, for radial stable solutions,
Villegas [2007] obtained the following sharp Liouville property based on the monotone property by Cabré
and Capella [2004]; see also [Dupaigne 2011; Villegas 2007].
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Theorem 1.6 [Villegas 2007]. Let n ≥ 2 and f ∈ C1(R). Suppose that u ∈ C2(Rn) is a radial stable
solution to (1-14).

If u is not constant, then

|u(x)| ≥

{
M log |x | whenever |x | ≥ r0, when n = 10,

M |x |
−n/2+

√
n−1+2 whenever |x | ≥ r0, when n ̸= 10,

(1-17)

for some M > 0 and r0 ≥ 10.
In particular, if u satisfies the growth condition (1-16), then u must be a constant.

Note that for radial stable solutions u(x), the condition (1-15) is equivalent to (1-17). Indeed, by
[Villegas 2007], u(r) = u(re1) is always monotone, and hence

min{|u(4r)|, |u(r)|} ≤ −

∫
B4r \Br

|u(x)| dx ≤ max{|u(4r)|, |u(r)|} for all r > 0,

which implies the equivalence between (1-15) and (1-17).
Let βn = −

1
2 n + 2 +

√
n − 1. Then βn < 0 when n ≥ 11, and βn > 0 when n ≤ 9. The sharpness of

Theorem 1.6 (and also Theorem 1.5) is demonstrated in the following sense by Villegas [2007] (with a
slight modification at n = 10).

(i) When n ̸=10, the radial smooth function (1+|x |
2)βn/2 is a stable solution to the equation −1u = fβn (u)

in Rn , where, when n ≥ 11,

fβn (s) :=

{
0 if s ≤ 0,

βn(βn − 2)s1−4/βn − βn(βn + n − 2)s1−2/βn if s > 0,

and, when n ≤ 9,

fβn (s) :=

{
βn(βn − 2)s1−4/βn − βn(βn + n − 2)s1−2/βn if s ≥ 1,

−(βn − 2)(n + 2)(s − 1) − nβn if s < 1.

See [Villegas 2007, Example 3.1] for details. Note that, when n ≥ 11, by βn < 0 and βn + n − 2 > 0, we
have fβn ≥ 0 in R, while, when n ≤ 9, we have that fβn ≤ 0 in R.

(ii) When n = 10, the radial smooth function −
1
2 log(1 + |x |

2) is a stable solution to the equation
−1u = f (u) in Rn , where f (s) = (n − 2)e2s

+ 2e4s
≥ 0 in R. This is a slight modification of [Villegas

2007, Example 3.1] with n = 10. See the Appendix for details.

For general (nonradial) stable solutions u ∈ C2(Rn) to −1u = f (u) in Rn , it is then natural to ask
if certain Liouville properties similar to Theorem 1.6 hold. Namely, when f satisfies certain regularity
assumptions,

• if u satisfies (1-16), then is it necessary that u is a constant?

• if u is nonconstant, is it possible to give some sharp lower bound for |u| toward ∞?

Suppose that 0 ≤ f ∈ C1(R) and u ∈ C2(Rn) is a stable solution to (1-14). When n ≤ 4, Dupaigne and
Farina [2023] proved that if |u| is bounded, then u must be a constant. Recently, with the aid of [Cabré
et al. 2020], Dupaigne and Farina [2022] showed that if n ≤ 9 and u(x) ≥ −C[1 + log |x |]

γ for some
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γ ≥ 1 and C > 0, or if n = 10 and u ≥ −C for some constant C > 0, then u must be a constant. When
n ≥ 10, our result Theorem 1.5 finally answers the two questions above.

Ideas of the proofs. We sketch the ideas to prove Theorems 1.2 and 1.5. All of them heavily rely on the
following decay estimate on the Dirichlet energy.

Lemma 1.7. Let n ≥ 10 and f ∈ C0,1(R). For any y ∈ Rn and t > 0, if u ∈ C2(B2t(y)) is a stable solution
to (1-1) in B2t(y), one has(r

t

)−2(1+
√

n−1)
∫

Br (y)

|Du|
2 dx ≤ C(n)

∫
Bt (y)\Bt/2(y)

|Du|
2 dx for all r ≤

t
2
. (1-18)

See Section 2 for the proof of Lemma 1.7; the key point is that we take a suitable test function in a
celebrated lemma of [Cabré et al. 2020] (see Lemma 2.1 below). One may compare it with [Cabré et al.
2020, Lemma 2.1] in the case where 3 ≤ n ≤ 9.

We also recall the following lemma, which was essentially established in [Cabré et al. 2020, Lemma A.2
and Proposition 2.5] together with the proofs therein. For the convenience of the reader, we give a sketch
of the proof at the beginning of Section 3.

Lemma 1.8. Let 0 ≤ f ∈ C0,1(R). For any stable solution u ∈ C2(B2t(y)) to (1-1) in B2t(y), one has(∫
Bt/2(y)

|Du|
2 dx

)1/2

≤ C(n)t−n/2
∫

Bt (y)

|Du| dx (1-19)

and ∫
Bt/2(y)

|Du| dx ≤ C(n)t−1
∫

Bt (y)

|u| dx . (1-20)

Applying Lemma 1.7, Lemma 1.8 and some known boundary estimate, we are able to prove Theorem 1.2
and Corollary 1.3. This is clarified in Section 3.

In order to prove Theorem 1.5, an auxiliary and crucial proposition is shown in Section 4, which is
specifically applied in the case n = 10.

Proposition 1.9. Let n ≥ 3. Suppose that u ∈ W 1,1
loc (Rn) is superharmonic, that is, −1u ≥ 0 in Rn in the

distributional sense. For any 0 < r < R < ∞, we have∫
BR\Br

|Du||x |
−n+1 dx ≤ C(n) −

∫
Br/2\Br/4

|u| dz + C(n) −

∫
B4R\B2R

|u| dz. (1-21)

The main idea of showing Proposition 1.9 goes as follows. First, it is known that

Duδ(x) = D1−1
[1(uδη)](x) for x ∈ BR \ Br ,

where uδ is a standard smooth mollification of u and η is a suitable cut-off function. Next, thanks to the
key fact −1uδ ≥ 0, via some subtle kernel estimates and integration by parts, we are able to prove (1-21)
for uδ, and then a standard approximation gives (1-21) as desired.
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Theorem 1.5 is eventually proved in the last section. The case n ≥ 11 is relatively simple. In fact, by
Lemmas 1.7 and 1.8, one can build up the following:

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)Rn/2−2−
√

n−1
−

∫
B3R\B3R/4

|u| dx for all 0 < r < R < ∞

for stable solutions, which allows us to conclude Theorem 1.5 for n ≥ 11.
As for the case when n = 10, we first employ Lemma 1.7 and repeat Lemma 1.8 to get

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)
1

log R

∫
BR2\B4

|Du||x |
−n+1 dx for all 0 < r < R < ∞,

which, when R > 25
+ r > 4 and thanks to Proposition 1.9 with r and R therein replaced by 4 and R2, is

then bounded from above by

C(n)
1

log R

(
−

∫
B2\B1

|u(z)| dz + −

∫
B4R2\B2R2

|u(z)| dz
)

.

From this we conclude Theorem 1.5 when n = 10.

2. Proof of Lemma 1.7

Towards Lemma 1.7 we recall the following a priori bound by [Cabré et al. 2020, Lemma 2.1], which is
obtained by taking the test function (x · Du)η in the stability condition (1-3).

Lemma 2.1. Let u ∈ C2(B1) be a stable solution to (1-1) in B1, with f ∈ C0,1(R). Then, for all cut-off
functions η ∈ C0,1

c (B1),∫
B1

|x · Du|
2
|Dη|

2 dx

≥ (n − 2)

∫
B1

|Du|
2η2 dx + 2

∫
B1

|Du|
2(x · Dη)η dx − 4

∫
B1

(x · Du)(Du · Dη)η dx . (2-1)

For convenience, for any 0 < r < t < ∞ and y ∈ Rn , we define the annulus Ar,t(y) := Bt(y) \ Br (y);
for simplicity, we write Ar,t = Ar,t(0).

Proof of Lemma 1.7. It suffices to prove(r
t

)−2(1+
√

n−1)
∫

Br (y)

|Du|
2 dx ≤ C(n)

∫
Ar,t (y)

|Du|
2 dx for all r ≤

t
2
. (2-2)

Indeed, applying (2-2) to 1
2 t and t , one has(1

2

)−2(1+
√

n−1)
∫

Bt/2(y)

|Du|
2 dx ≤ C(n)

∫
At/2,t (y)

|Du|
2 dx . (2-3)
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If 1
4 t ≤ r < 1

2 t , by Br (y) ⊂ Bt/2(y) and 1
4 ≤ r/t ≤ 1, inequality (2-3) gives(r

t

)−2(1+
√

n−1)
∫

Br (y)

|Du|
2 dx ≤ C(n)

∫
At/2,t (y)

|Du|
2 dx . (2-4)

If 0 < r < 1
4 t , applying (2-2) to r and 1

2 t , and noting Ar,t/2 ⊂ Bt/2, one gets(
r

t/2

)−2(1+
√

n−1) ∫
Br (y)

|Du|
2 dx ≤ C(n)

∫
Ar,t/2(y)

|Du|
2 dx ≤ C(n)

∫
Bt/2(y)

|Du|
2 dx,

which together with (2-3) yields(r
t

)−2(1+
√

n−1)
∫

Br (y)

|Du|
2 dx ≤ C(n)

∫
At/2,t (y)

|Du|
2 dx .

From this and (2-4) we conclude (1-18).
To prove (2-2), without loss of generality we may assume that t = 1 and y = 0. Indeed, if u(x) is a

stable solution to −1u = f (u) in B2t(y), then v(x) = u(t x + y) is the stable solution to −1v = t2 f (v)

in B2. Note that, up to a change of variable, u satisfies (2-2) if and only if v satisfies (2-2) with t = 1
and y = 0.

Write a = 2(1 +
√

n − 1). Let r ∈
(
0, 1

2

]
be fixed and set

η =

{
r−a/2 if 0 ≤ |x | ≤ r,
|x |

−a/2φ if r < |x | ≤ 1,
(2-5)

where φ ∈ C∞
c (B1) satisfies

φ = 1 in B3/4 and |Dφ| ≤ 5χB1\B3/4 . (2-6)

Clearly, η ∈ C0,1
c (B1). Since η = r−a/2 in Br and hence Dη = 0 in Br , substituting η in inequality (2-1)

one has∫
Ar,1

|x · Du|
2
|Dη|

2 dx ≥ (n − 2)r−a
∫

Br

|Du|
2 dx + (n − 2)

∫
Ar,1

|Du|
2η2 dx

+ 2
∫

Ar,1

|Du|
2(x · Dη)η dx − 4

∫
Ar,1

(x · Du)(Du · Dη)η dx . (2-7)

Noting that
Dη = −

1
2a|x |

−a/2−2xφ + |x |
−a/2 Dφ in Ar,1,

one has

2
∫

Ar,1

|Du|
2(x · Dη)η dx − 4

∫
Ar,1

(x · Du)(Du · Dη)η dx

= −a
∫

Ar,1

|Du|
2
|x |

−aφ2 dx + 2
∫

Ar,1

|Du|
2(x · Dφ)φ|x |

−a dx + 2a
∫

ar,1

(x · du)2
|x |

−a−2φ2 dx

− 4
∫

Ar,1

(x · Du)(Du · Dφ)φ|x |
−a dx . (2-8)



REGULARITY AND THE LIOUVILLE PROPERTY FOR STABLE SOLUTIONS TO ELLIPTIC EQUATIONS 3343

Moreover, by

|Dη|
2
=

1
4a2

|x |
−a−2φ2

− 2a|x |
−a−2(x · Dφ)φ + |x |

−a
|Dφ|

2,

one can write∫
Ar,1

(Du · x)2
|Dη|

2 dx =
a2

4

∫
Ar,1

(Du · x)2
|x |

−a−2φ2 dx +

∫
Ar,1

(Du · x)2
|x |

−a
|Dφ|

2 dx

− a
∫

Ar,1

(Du · x)2
|x |

−a−2(x · Dφ)φ dx . (2-9)

Using (2-8) for the left-hand side of (2-7), and (2-9) for the last two terms in the right-hand side
of (2-7), and then moving all terms including Dφ to the left-hand side and all other terms to the right-hand
side, we have∫

Ar,1

|x · Du|
2
|Dφ|

2
|x |

−a dx − 2
∫

Ar,1

|Du|
2(x · Dφ)φ|x |

−a dx

+ 4
∫

Ar,1

(x · Du)(Du · Dφ)φ|x |
−a dx − a

∫
Ar,1

|x |
−a−2(x · Du)2φ(x · Dφ) dx

≥ (n − 2)r−a
∫

Br

|Du|
2 dx + (n − 2)

∫
Ar,1

|Du|
2
|x |

−aφ2 dx

− a
∫

Ar,1

|Du|
2
|x |

−aφ2 dx + 2a
∫

Ar,1

(x · Du)2
|x |

−a−2φ2 dx −
a2

4

∫
Ar,1

(Du · x)2
|x |

−a−2φ2 dx

= (n−2)r−a
∫

Br

|Du|
2 dx+

∫
Ar,1

{
(n−2−a)|Du|

2
+

(
2a−

1
4a2)(Du ·x)2

|x |
−2}

|x |
−aφ2 dx . (2-10)

Note that, by |Dφ| = 0 in B3/4 and |Dφ| ≤ 5 in B1 as in (2-6) and a > 2,∫
Ar,1

|x · Du|
2
|Dφ|

2
|x |

−a dx − 2
∫

Ar,1

|Du|
2(x · Dφ)φ|x |

−a dx

+ 4
∫

Ar,1

(x · Du)(Du · Dφ)φ|x |
−a dx − a

∫
Ar,1

|x |
−a−2(x · Du)2φ(x · Dφ) dx

≤ C(n)

∫
A3/4,1

|Du|
2 dx . (2-11)

Additionally, note that n ≥ 10 implies a = 2(1 +
√

n − 1) ≥ 8, and hence

2a −
1
4a2

=
1
4a(8 − a) ≤ 0.

By |x |
−1

|x · Du| ≤ |Du| in Ar,1, we have

(n − 2 − a)|Du|
2
+

(
2a −

1
4a2)(Du · x)2

|x |
−2

≥
(
n − 2 + a −

1
4a2)

|Du|
2.

Since

n − 2 + a −
1
4a2

= −
(1

2a − [1 −
√

n − 1]
)(1

2a − [1 +
√

n − 1]
)
= 0,

we have

(n − 2 − a)|Du|
2
+

(
2a −

1
4a2)(Du · x)2

|x |
−2

≥ 0 in Ar,1, (2-12)

which means that the last term in the right-hand side of (2-10) is nonnegative. From this, together with
(2-10) and (2-11), we conclude (2-2). The proof is complete. □
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Remark 2.2. Recall that in [Cabré et al. 2020], the authors used the test function η = |x |
−a/2ξ with

ξ ∈ C∞
c (B1), which was not enough to get (2-2).

3. Proofs of Equation (1-1) and Corollary 1.3

In this section we prove Theorem 1.2 and Corollary 1.3. First, we sketch a proof of Lemma 1.8.

Proof of Lemma 1.8. Up to considering v(x) = u(t x + y), we may assume that t = 1 and y = 0.
Inequality (1-20) is given by [Cabré et al. 2020, Lemma A.2]. Inequality (1-19) reads as ∥Du∥L2(B1/2) ≤

C(n)∥Du∥L1(B1) and will follow from the proof of [Cabré et al. 2020, Proposition 2.5], where the authors
proved that

∥Du∥L2(B1/2) ≤ C(n)∥u∥L1(B1). (3-1)

In their proof, first they obtained a bound of ∥Du∥L2(B1/2) via ∥Du∥L1(B1/2) and some other small terms.
Next, they used ∥Du∥L1(B1/2) ≤ C(n)∥u∥L1(B1). Finally, via an iteration argument, they got (3-1). If we
directly apply the iteration argument without using ∥Du∥L1(B1/2) ≤ C(n)∥u∥L1(B1), we get ∥Du∥L2(B1/2) ≤

C(n)∥Du∥L1(B1). □

Recall that uE = −

∫
E u dx denotes the integral average of u on a measurable set E . The interior

regularity (1-10) and (1-11) in Theorem 1.2 is a consequence of Lemma 1.7 and (1-19), together with a
standard embedding argument.

Proofs of (1-10) and (1-11) in Theorem 1.2. Let u ∈ C2(B2) be a stable solution to (1-1). Write
β = n − 2 − 2

√
n − 1. For any y ∈ B1/2, if r > 1

8 , by Lemma 1.8 we have

rβ−n
∫

Br (y)∩B1/2

|Du|
2 dx ≤ C(n) −

∫
B1/2

|Du|
2 dx ≤ C(n)∥u∥

2
L1(B1)

,

and if 0 < r < 1
8 , by Lemmas 1.7 and 1.8 again we have

rβ−n
∫

Br (y)∩B1/2

|Du|
2 dx ≤ rβ

−

∫
Br (y)

|Du|
2 dx ≤ C(n) −

∫
B1/4(y)

|Du|
2 dx ≤ C(n)∥u∥

2
L1(B1)

.

This means that Du ∈ M2,β(B1/2) with ∥Du∥M2,β (B1/2) ≤ C(n)∥u∥L1(B1).
If n = 10, then β = 2 and 2β/(β − 2) = ∞. Thanks to the Sobolev–Poincaré inequality, one can easily

check that Du ∈ M2,β(B1/2) implies u ∈ BMO(B1/2), with a norm bound

∥u∥BMO(B1/2) ≤ C(n)∥Du∥M2,β (B1/2).

If n ≥ 11, then pn = 2β/(β − 2) < ∞ and β = 2+4/(pn −2). By the embedding result in [Adams 1975]
and also [Cabré and Charro 2021, Section 4], Du ∈ M2,β(B1/2) implies u ∈ M2β/(β−2),β(B1/2), with its
norm bound

∥u∥M pn ,β (B1/2) ≤ C(n)∥Du∥M2,β (B1/2).

This proves (1-10) and (1-11). □
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To prove the global regularity (1-12) and (1-13) in Theorem 1.2, we need the following a priori
L∞-bound in a neighborhood of ∂� for a C2 solution when � is a bounded smooth convex domain; see
[Cabré 2010, Proposition 3.2] and [Chen and Li 1993; de Figueiredo et al. 1982; Gidas et al. 1979]. For
ρ > 0, we write

�ρ := {x ∈ � : dist(x, ∂�) < ρ}.

Lemma 3.1. Suppose that f ∈ C0,1(R) is nonnegative and � is a smooth convex domain in Rn . There
exist positive constants ρ and γ depending only on the domain � such that, for any positive solution
u ∈ C2(�) ∩ C0(�) to (1-1), one has

∥u∥L∞(�ρ) ≤
1
γ

∥u∥L1(�). (3-2)

Note that, as f ≥ 0, the maximum principle shows that any solution u ∈ C2(�) ∩ C0(�) to (1-1) with
zero boundary is always nonnegative, and the strong maximum principle further shows that u is always
positive in the domain �.

Proofs of (1-12) and (1-13) in Theorem 1.1. Let β = n − 2 − 2
√

n − 1, and let ρ, γ be as in Lemma 3.1.
We first consider the case n ≥ 11. For any y ∈ � and r > 0, write

rβ−n
∫

�∩Br (y)

|u|
pn dx = rβ−n

∫
�ρ∩Br (y)

|u|
pn dx + rβ−n

∫
(�\�ρ)∩Br (y)

|u|
pn dx

:= 81(y, r) + 82(y, r).

To see (1-12), we only need to prove 81(y, r) ≤ C(n, �)∥u∥
pn
L1(�)

and 82(y, r) ≤ C(n, ρ,�)∥u∥
pn
L1(�)

for any y ∈ � and r > 0.
Note that

rβ−n
|�ρ ∩ Br (y)| ≤

{
C(n) when r < 1,

|�ρ | when r > 1,

so by 2 < β < n and Lemma 3.1, we have

81(y, r) ≤ rβ−n
|�ρ ∩ Br (y)|∥u∥

pn
L∞(�ρ) ≤ C(n, �)∥u∥

pn
L1(�)

.

Next, to get 82(y, r)≤C(n, ρ,�)∥u∥
pn

L1(�)
for any y ∈� and r >0, we only need to consider y ∈�\�ρ

and 0 < r < 1
8ρ. Indeed, for y ∈ �ρ , if r < dist(y, �\�ρ), then 82(y, r) = 0, and if r ≥ dist(y, �\�ρ),

then 82(y, r) ≤ C(n)82(ȳ, 2r), where ȳ is the closest point in �\�ρ and B(y, r) ⊂ B(ȳ, 2r). Moreover,
for any y ∈ � \ �ρ and r ≥

1
8ρ,

82(y, r) ≤ ρβ−n
∫

�\�ρ

|u|
pn dx ≤

N∑
i=1

ρβ−n
∫

�\�ρ∩Bρ/9(xi )

|u|
pn dx =

N∑
i=1

8
(
xi ,

1
9ρ

)
,

where
{

B
(
xi ,

1
9ρ

)}N
i=1 is a cover of the compact set � \�ρ , {xi }

N
i=1 ⊂ � \�ρ and N depends only on �

and ρ.



3346 FA PENG, YI RU-YA ZHANG AND YUAN ZHOU

On the other hand, for any y ∈�\�ρ and 0< r < 1
8ρ, since u is a stable solution in Bρ(y)⊂�, by (1-11)

with a scaling argument, we have u ∈ M pn,β(Bρ/8(y)) with ∥u∥M pn ,β (Bρ/8(y)) ≤ C(n, ρ)∥u∥L1(Bρ/2(y)), in
particular

82(y, r) ≤ rβ
−

∫
Br (y)

|u|
pn dx ≤ C(n, ρ)∥u∥

pn
L1(�)

as desired. This proves (1-13).
In the case n = 10, for any y ∈ �, if r > 1

9ρ, we have

r−n
∫

�∩Br (y)

|u| dx ≤ C(n, ρ)∥u∥L1(�).

Below we assume that 0<r < 1
9ρ. If y ∈�\�8ρ/9, we have ρ < 9

8 dist(y, ∂�). Since 0<r < 1
8 dist(y, ∂�)

and u is a stable solution in Bdist(y,∂�)(y) ⊂ �, by (1-10) with a scaling we have

−

∫
Br (y)

|u − u Br (y)| dx ≤ C(n, ρ)∥u∥L1(Bdist(y,∂�)(y)) ≤ C(n, ρ)∥u∥L1(�).

For y ∈ �8ρ/9, noting 0 < r < 1
9ρ ≤ dist(y, ∂�ρ), one has � ∩ Br (y) ⊂ � \ �ρ . Thus

r−n
∫

�∩Br (y)

|u| dx = r−n
∫

�ρ∩Br (y)

|u| dx ≤ C(n, ρ)∥u∥L1(�).

Combining these estimates, we obtain (1-12). □

We finally prove Corollary 1.3.

Proof of Corollary 1.3. Let u ∈ W 1,2
0 (�) be a stable solution to (1-1) with zero boundary. By [Dupaigne

2011, Corollary 3.2.1] (see also the proof in [Cabré et al. 2020, Theorem 4.1] and [Dupaigne and Farina
2023, Theorem 5]), there is a nonnegative, nondecreasing sequence ( fk) of convex functions in C1(R)

such that fk → f pointwise in [0, ∞) and a nondecreasing sequence (uk) in C2(�)∩ W 1,2
0 (�) such that

uk is a weak stable solution to

−1uk = fk(uk) in �, uk = 0 on ∂� (3-3)

and

uk → u in W 1,2(�) as k → +∞.

If n = 10, applying (1-12) to uk , one has

−

∫
�∩Br (y)

∣∣∣∣uk(x) − −

∫
�∩Br (y)

uk dz
∣∣∣∣ dx ≤ ∥uk∥BMO(�) ≤ C(n, �)

∫
�

|uk | dx for all r > 0 for all y ∈ �.

Since uk → u in W 1,2(�) as k → +∞, we conclude that ∥u∥BMO(�) ≤ C(n)∥u∥L1(�) as desired.
If n ≥ 11, applying (1-13) to uk , we have

rβ−n
∫

�∩Br (y)

|uk |
pn dx ≤ C(n, �, ρ)(∥uk∥L1(�))

pn for all y ∈ � for all r > 0, (3-4)
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where β = 2pn/(pn − 2) ∈ (0, n). Since uk → u in W 1,2(�) as k → +∞, we deduce that uk ∈ L pn (�)

uniformly in k ≥ 0, and hence uk → u weakly in L pn (�). Thus, letting k → +∞ in (3-4), we conclude
∥u∥M pn ,β (�) ≤ C(n)∥u∥L1(�) as desired. □

4. Proof of Proposition 1.9

Let 0 < r < R < ∞. Let η ∈ C∞
c (Ar/4,4R) satisfy

0 ≤ η ≤ 1 in Ar/4,4R and η = 1 in Ar/2,2R, (4-1)

|Dη|
2
+ |D2η| ≤

C
r2 in Ar/4,r/2 and |Dη|

2
+ |D2η| ≤

C
R2 in A2R,4R, (4-2)

where C > 0 is a universal constant.
Let uδ = u ∗ φδ for δ > 0, where φδ is the standard smooth mollifier and is supported in B(0, δ).

Recall that u ∈ W 1,1
loc (Rn) and uδ → u in W 1,1

loc (Rn). Since −1u ≥ 0 is a locally finite measure, we have
−1uδ = (−1u) ∗ φδ ≥ 0 everywhere. By uδη ∈ C∞

c (Rn), one has

uδη(x) = 1−1
[1(uδη)](x) = c(n)

∫
Rn

1
|x − y|n−2 1(uδη)(y) dy for all x ∈ Rn,

and hence

D(uδη)(x) = D1−1
[1(uδη)](x) = c(n)(2 − n)

∫
Rn

x − y
|x − y|n

1(uδη)(y) dy for all x ∈ Rn.

Noting
1(uδη)(y) = 1uδ(y)η(y) + 1η(y)uδ(y) + 2Duδ(y) · Dη(y),

for 0 < δ ≪
1
8r , we write∫

Ar,R

|Duδ||x |
−n+1 dx =

∫
A(r,R)

|D(uδη)||x |
−n+1 dx

=

∫
Ar,R

∣∣∣∣∫
Rn

x − y
|x − y|n

1(uδη)(y) dy
∣∣∣∣|x |

−n+1 dx

≤ C(n)

∫
Ar,R

∣∣∣∣∫
Rn

x − y
|x − y|n

1uδ(y)η(y) dy
∣∣∣∣|x |

−n+1 dx

+ C(n)

∫
Ar,R

∣∣∣∣∫
Rn

x − y
|x − y|n

uδ(y)1η(y) dy
∣∣∣∣|x |

−n+1 dx

+ C(n)

∫
Ar,R

∣∣∣∣∫
Rn

x − y
|x − y|n

Duδ(y) · Dη(y) dy
∣∣∣∣|x |

−n+1 dx

=: I1 + I2 + I3.

In order to control I1 from above, first by −1uδ ≥ 0 and (4-1), one has

I1 ≤

∫
Rn

(∫
Rn

|x − y|
−n+1

|x |
−n+1 dx

)
(−1uδ)(y)η(y) dy.
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Employing the triangle inequality, for y ∈ Rn , we further get∫
Rn

|x − y|
−n+1

|x |
−n+1 dx ≤ 2n−1

∫
{|x |>2|y|}

|x |
−2n+2 dx + 2n−1

∫
{|x |<|y|/2}

|x |
−n+1

|y|
−n+1 dx

+

∫
{|y|/2≤|x |≤2|y|}

|x − y|
−n+1

|y|
−n+1 dx

≤ C(n)|y|
−n+2

+ C(n)|y|
−n+2

+

∫
{|y−x |≤3|y|}

|x − y|
−n+1

|y|
−n+1 dx

≤ C(n)|y|
−n+2. (4-3)

This together with −1uδ ≥ 0 again gives

I1 ≤ C(n)

∫
Rn

(−1uδ)|y|
−n+2η(y) dy.

Via integration by parts and using η ∈ C∞
c (Ar/4,4R), we have∫

Rn
(−1uδ)|y|

−n+2η(y) dy =

∫
Ar/4,4R

uδ[−1|y|
−n+2η(y) + D|y|

−n+2
· Dη(y) − |y|

−n+21η(y)] dy.

Observing that 1|y|
n−2

= 0 in Ar/4,4R and using (4-1) and (4-2), we arrive at

I1 ≤ C(n)

∫
Ar/4,4R

uδ(y)[(2 − n)|y|
−n y · Dη(y) − |y|

−n+21η(y)] dy

≤ C(n)

∫
Ar/4,4R

|uδ(y)|[r−nχAr/4,r/2 + R−nχA2R,4R ] dy

≤ C(n) −

∫
Ar/4,r/2

|uδ| dz + −

∫
A2R,4R

|uδ| dz.

For I2, by (4-3) and (4-1),

I2 ≤

∫
Rn

(∫
A(r,R)

|x − y|
−n+1

|x |
−n+1 dx

)
|uδ|(y)|1η(y)| dy

≤ C(n)

∫
Rn

|y|
−n+2

|uδ|(y)|1η(y)| dy

≤ C(n)

∫
Rn

|uδ(y)|[r−nχAr/4,r/2 + R−nχA2R,4R ] dy

≤ C(n) −

∫
Ar/4,r/2

|uδ| dz + C(n) −

∫
A2R,4R

|uδ| dz.

Now let us estimate I3. First via integration by parts one gets∫
Rn

|x − y|
−n(x − y)Duδ(y) · Dδη(y) dy

=

∫
Rn

|x − y|
−n(x − y)uδ(y)1η(y) dy +

∫
Rn

uδ(y)D[|x − y|
−n(x − y)]Dη(y) dy.
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Since
|D[|x − y|

−n(x − y)]| ≤ C(n)|x − y|
−n,

we obtain∣∣∣∣∫
Rn

|x − y|
−n(x − y)Duδ(y) · Dη(y) dy

∣∣∣∣
≤ C(n)

∣∣∣∣∫
Rn

|x − y|
−n+1uδ(y)1η(y) dy

∣∣∣∣ + C(n)

∫
Rn

|x − y|
−n

|uδ(y)||Dη(y)| dy.

As a consequence,

I3 ≤ C(n)I2 + C(n)

∫
Rn

(∫
Ar,R

|x − y|
−n

|x |
−n+1 dx

)
|uδ(y)||Dη(y)| dy =: C(n)I2 + C(n) Ĩ3.

In order to estimate Ĩ3, first we note that (4-1) gives

Ĩ3 ≤ C(n)

∫
Rn

(∫
Ar,R

|x − y|
−n

|x |
−n+1 dx

)
|uδ(y)|[r−1χAr/4,r/2 + R−1χA2R,4R ] dy.

For any x ∈ Ar,R , if y ∈ Ar/4,r/2, we have |x − y| ≥
1
2 |x |, and hence∫

Ar,R

|x − y|
−n

|x |
−n+1 dx ≤ C(n)

∫
Ar,R

|x |
−2n+1 dx ≤ C(n)r−n+1

;

if y ∈ A2R,4R , then |x − y| ≥ R, and hence∫
Ar,R

|x − y|
−n

|x |
−n+1 dx ≤ C(n)R−n

∫
Ar,R

|x |
−n+1 dx ≤ C(n)R−n+1.

Thus it follows that

Ĩ3 ≤ C(n)

∫
Rn

|uδ(y)|[r−nχAr/4,r/2 + R−nχA2R,4R ] dy ≤ C(n) −

∫
Ar/4,r/2

|uδ| dz + C(n) −

∫
A2R,4R

|uδ| dz.

To conclude, ∫
Ar,R

|Duδ||x |
−n+1 dx ≤ C(n) −

∫
Ar/4,r/2

|uδ| dz + C(n) −

∫
A2R,4R

|uδ| dz.

By letting δ → 0 and noting uδ → u in W 1,1
loc , we conclude (1-21). □

5. Proof of Theorem 1.5

Since u satisfies (1-16), we know that u does not satisfy (1-15). We only need to show that if u is
nonconstant, then (1-15) holds. Equivalently, it suffices to show that if u does not satisfy (1-15), then u is
a constant. Namely, there exists a sequence {R j } j∈N tending toward ∞ such that

1
log R j

−

∫
AR j ,4R j

|u(z)| dz → 0 as j → ∞, when n = 10, (5-1)

and
Rn/2−2−

√
n−1

j −

∫
AR j ,4R j

|u(x)| dx → 0 as j → ∞, when n ≥ 11. (5-2)
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On the other hand, given any 0 < r < ∞, applying (1-18) for any R > 4r , we have

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)R−(1+
√

n−1)

(∫
AR,2R

|Du|
2 dx

)1/2

. (5-3)

Observe that the annulus A1,2 can be covered by {B1/8(yi )}
N
i=1 with y1, . . . , yN ∈ A1,2 and N ≤ C(n):

χA1,2 ≤

N∑
i=1

χB1/8(yi ) ≤

N∑
i=1

χB1/4(yi ) ≤ C(n)χA3/4,3 .

Below we consider the case n ≥ 11 and the case n = 10 separately.

Case n ≥ 11. For each i , applying (1-19) and (1-20), one attains(∫
BR/8(Ryi )

|Du|
2 dx

)1/2

≤ C(n)R−(n+2)/2
∫

BR/4(Ryi )

|u| dx ≤ C(n)R(n−2)/2
−

∫
A3R/4,3R

|u| dx .

Thus by summing over all these balls,∫
AR,2R

|Du|
2 dx ≤ C(n)Rn−2

(
−

∫
A3R/4,3R

|u| dx
)2

,

and we eventually obtain from (5-3) that

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)Rn/2−2−
√

n−1
−

∫
A3R/4,3R

|u| dx .

Taking R =
4
3 R j , applying (5-2) and letting j → ∞, one concludes∫

Br

|Du|
2 dx = 0.

By the arbitrariness of r > 0, we obtain ∥Du∥L2(Rn) = 0, which implies that u is a constant.

Case n = 10. For each i , applying (1-19), one attains(∫
BR/8(Ryi )

|Du|
2 dx

)1/2

≤ C(n)R−n/2
∫

BR/4(Ryi )

|Du| dx ≤ C(n)R(n−2)/2
∫

AR/2,4R

|Du||x |
−n+1 dx .

Thus ∫
AR,2R

|Du|
2 dx ≤ C(n)Rn−2

(∫
AR/2,4R

|Du||x |
−n+1 dx

)2

. (5-4)

We therefore obtain from (5-3) that

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)Rn/2−2−
√

n−1
∫

AR/2,4R

|Du||x |
−n+1 dx

= C(n)

∫
AR/2,4R

|Du||x |
−n+1 dx,

where in the last identity we use 1
2 n − 2 −

√
n − 1 = 5 − 2 − 3 = 0.
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For R > 25
+ r > 4, let m be the largest integer such that m ≤ log2 R − 3. Applying (5-4) to 2 j R with

j = 1, . . . , m, one has

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)
1
m

m∑
j=1

∫
A2 j R/2,4(2 j R)

|Du||x |
−n+1 dx

≤ C(n)
1
m

∫
AR,2m+2 R

|Du||x |
−n+1 dx ≤ C(n)

1
log R

∫
A4,R2/2

|Du||x |
−n+1 dx .

By (1-21), one has

r−(1+
√

n−1)

(∫
Br

|Du|
2 dx

)1/2

≤ C(n)
1

log R
−

∫
A1,2

|u(z)| dz + C(n)
1

log R2 −

∫
A2R2,4R2

|u(z)| dz.

Taking R =
√

R j and letting j → ∞, by (5-1) one concludes∫
Br

|Du|
2 dx = 0.

Then the arbitrariness of r > 0 implies ∥Du∥L2(Rn) = 0, which further implies that u is a constant. □

Appendix: A radial stable solution when n = 10

Suppose n = 10 in this appendix. Villegas [2007] proved that 1
2 log(1 + |x |

2) is a stable solution to the
equation −1u = −(n − 2)e−2u

− 2e−4u in Rn . Note that −(n − 2)e−2s
− 2e−4s

≤ 0 in R.
Below, we show that u = −

1
2 log(1 + |x |

2) is a stable solution to the equation

−1u = f (u) in Rn,

where f (s) = (n − 2)e2s
+ 2e4s

≥ 0 in R.
First we show that u is a solution. Indeed, for any x ∈ Rn , a direct calculation gives

−1u(x) = ((1 + |x |
2)−1xi )xi =

n
1 + |x |2

+ 2
|x |

2

(1 + |x |2)2 = (n − 2)
1

1 + |x |2
+ 2

1
(1 + |x |2)2 .

Since e2u(x)
= (1 + |x |

2)−1, we have

−1u(x) = (n − 2)e2u(x)
+ 2e4u(x)

= f (u(x)).

Next, we show that u is stable. Note that f ′(s) = 2(n − 2)e2s
+ 8e4s for s ∈ R. Given any x ̸= 0,

writing r = |x | and noting e2u(x)
= (1 + |x |

2)−1, we have

f ′(u(x)) = 2(n − 2)e2u(x)
+ 8e4u(x)

=
2(n − 2)

1 + r2 +
8

(1 + r2)2 .

Since n = 10, we have

f ′(u(x)) =
16r2(1 + r2) + 8r2

r2(1 + r2)2 =
16r4

+ 24r2

r2(1 + r2)2 <
16(1 + r2)2

r2(1 + r2)2 =
(n − 2)2

4|x |2
.
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By this and the Hardy inequality, we have∫
Rn

f ′(u)ξ 2 dx ≤
(n − 2)2

4

∫
Rn

ξ 2

|x |2
dx ≤

∫
Rn

|Dξ |
2 dx for all ξ ∈ C∞

c (Rn).

Thus u is a stable solution to −1u = f (u) in Rn .

Acknowledgements

Peng is supported by the National Natural Science Foundation of China (no. 12201612) and also by the
China Postdoctoral Science Foundation (no. BX20220328). Zhang is partially funded by the Chinese
Academy of Science and NSFC (no. 12288201). Zhou is supported by the National Natural Science
Foundation of China (no. 12025102) and by the Fundamental Research Funds for the Central Universities.

References

[Adams 1975] D. R. Adams, “A note on Riesz potentials”, Duke Math. J. 42:4 (1975), 765–778. MR Zbl

[Brezis 2003] H. Brezis, “Is there failure of the inverse function theorem?”, pp. 23–33 in Morse theory, minimax theory and
their applications to nonlinear differential equations (Beijing, 1999), edited by H. Brezis et al., New Stud. Adv. Math. 1, Int.
Press, Somerville, MA, 2003. MR Zbl

[Brezis and Vázquez 1997] H. Brezis and J. L. Vázquez, “Blow-up solutions of some nonlinear elliptic problems”, Rev. Mat.
Univ. Complut. Madrid 10:2 (1997), 443–469. MR Zbl

[Cabré 2010] X. Cabré, “Regularity of minimizers of semilinear elliptic problems up to dimension 4”, Comm. Pure Appl. Math.
63:10 (2010), 1362–1380. MR Zbl

[Cabré 2017] X. Cabré, “Boundedness of stable solutions to semilinear elliptic equations: a survey”, Adv. Nonlinear Stud. 17:2
(2017), 355–368. MR Zbl

[Cabré 2019] X. Cabré, “A new proof of the boundedness results for stable solutions to semilinear elliptic equations”, Discrete
Contin. Dyn. Syst. 39:12 (2019), 7249–7264. MR Zbl

[Cabré and Capella 2004] X. Cabré and A. Capella, “On the stability of radial solutions of semilinear elliptic equations in all of
Rn”, C. R. Math. Acad. Sci. Paris 338:10 (2004), 769–774. MR Zbl

[Cabré and Capella 2006] X. Cabré and A. Capella, “Regularity of radial minimizers and extremal solutions of semilinear elliptic
equations”, J. Funct. Anal. 238:2 (2006), 709–733. MR Zbl

[Cabré and Charro 2021] X. Cabré and F. Charro, “The optimal exponent in the embedding into the Lebesgue spaces for
functions with gradient in the Morrey space”, Adv. Math. 380 (2021), art. id. 107592. MR Zbl

[Cabré et al. 2020] X. Cabré, A. Figalli, X. Ros-Oton, and J. Serra, “Stable solutions to semilinear elliptic equations are smooth
up to dimension 9”, Acta Math. 224:2 (2020), 187–252. MR Zbl

[Chen and Li 1993] W. X. Chen and C. Li, “A priori estimates for solutions to nonlinear elliptic equations”, Arch. Ration. Mech.
Anal. 122:2 (1993), 145–157. MR Zbl

[Crandall and Rabinowitz 1975] M. G. Crandall and P. H. Rabinowitz, “Some continuation and variational methods for positive
solutions of nonlinear elliptic eigenvalue problems”, Arch. Ration. Mech. Anal. 58:3 (1975), 207–218. MR Zbl

[Dupaigne 2011] L. Dupaigne, Stable solutions of elliptic partial differential equations, Chapman & Hall/CRC Monogr. Surv.
Pure Appl. Math. 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. MR Zbl

[Dupaigne and Farina 2022] L. Dupaigne and A. Farina, “Classification and Liouville-type theorems for semilinear elliptic
equations in unbounded domains”, Anal. PDE 15:2 (2022), 551–566. MR Zbl

[Dupaigne and Farina 2023] L. Dupaigne and A. Farina, “Regularity and symmetry for semilinear elliptic equations in bounded
domains”, Commun. Contemp. Math. 25:5 (2023), art. id. 2250018. MR Zbl

http://projecteuclid.org/euclid.dmj/1077311348
http://msp.org/idx/mr/458158
http://msp.org/idx/zbl/0336.46038
http://msp.org/idx/mr/2056500
http://msp.org/idx/zbl/1200.35144
http://www.mat.ucm.es/serv/revmat/vol10-2/vol10-2j.html
http://msp.org/idx/mr/1605678
http://msp.org/idx/zbl/0894.35038
https://doi.org/10.1002/cpa.20327
http://msp.org/idx/mr/2681476
http://msp.org/idx/zbl/1198.35094
https://doi.org/10.1515/ans-2017-0008
http://msp.org/idx/mr/3641647
http://msp.org/idx/zbl/1360.35095
https://doi.org/10.3934/dcds.2019302
http://msp.org/idx/mr/4026188
http://msp.org/idx/zbl/1425.35095
https://doi.org/10.1016/j.crma.2004.03.013
https://doi.org/10.1016/j.crma.2004.03.013
http://msp.org/idx/mr/2059485
http://msp.org/idx/zbl/1081.35029
https://doi.org/10.1016/j.jfa.2005.12.018
https://doi.org/10.1016/j.jfa.2005.12.018
http://msp.org/idx/mr/2253739
http://msp.org/idx/zbl/1130.35050
https://doi.org/10.1016/j.aim.2021.107592
https://doi.org/10.1016/j.aim.2021.107592
http://msp.org/idx/mr/4205108
http://msp.org/idx/zbl/1457.42037
https://doi.org/10.4310/acta.2020.v224.n2.a1
https://doi.org/10.4310/acta.2020.v224.n2.a1
http://msp.org/idx/mr/4117051
http://msp.org/idx/zbl/1467.35172
https://doi.org/10.1007/BF00378165
http://msp.org/idx/mr/1217588
http://msp.org/idx/zbl/0807.35040
https://doi.org/10.1007/BF00280741
https://doi.org/10.1007/BF00280741
http://msp.org/idx/mr/382848
http://msp.org/idx/zbl/0309.35057
https://doi.org/10.1201/b10802
http://msp.org/idx/mr/2779463
http://msp.org/idx/zbl/1228.35004
https://doi.org/10.2140/apde.2022.15.551
https://doi.org/10.2140/apde.2022.15.551
http://msp.org/idx/mr/4409886
http://msp.org/idx/zbl/1490.35119
https://doi.org/10.1142/S0219199722500183
https://doi.org/10.1142/S0219199722500183
http://msp.org/idx/mr/4579985
http://msp.org/idx/zbl/1512.35268


REGULARITY AND THE LIOUVILLE PROPERTY FOR STABLE SOLUTIONS TO ELLIPTIC EQUATIONS 3353

[Farina 2007] A. Farina, “On the classification of solutions of the Lane–Emden equation on unbounded domains of RN ”, J. Math.
Pures Appl. (9) 87:5 (2007), 537–561. MR Zbl

[de Figueiredo et al. 1982] D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum, “A priori estimates and existence of positive
solutions of semilinear elliptic equations”, J. Math. Pures Appl. (9) 61:1 (1982), 41–63. MR Zbl

[Gelfand 1963] I. M. Gelfand, “Some problems in the theory of quasilinear equations”, pp. 295–381 in Twelve papers on logic
and differential equations, Amer. Math. Soc. Transl. 29, Amer. Math. Soc., Providence, RI, 1963. MR Zbl

[Gidas et al. 1979] B. Gidas, W. M. Ni, and L. Nirenberg, “Symmetry and related properties via the maximum principle”, Comm.
Math. Phys. 68:3 (1979), 209–243. MR Zbl

[Gui et al. 1992] C. Gui, W.-M. Ni, and X. Wang, “On the stability and instability of positive steady states of a semilinear heat
equation in Rn”, Comm. Pure Appl. Math. 45:9 (1992), 1153–1181. MR Zbl

[Joseph and Lundgren 1973] D. D. Joseph and T. S. Lundgren, “Quasilinear Dirichlet problems driven by positive sources”,
Arch. Ration. Mech. Anal. 49 (1973), 241–269. MR Zbl

[Nedev 2000] G. Nedev, “Regularity of the extremal solution of semilinear elliptic equations”, C. R. Acad. Sci. Paris Sér. I Math.
330:11 (2000), 997–1002. MR Zbl

[Villegas 2007] S. Villegas, “Asymptotic behavior of stable radial solutions of semilinear elliptic equations in RN ”, J. Math.
Pures Appl. (9) 88:3 (2007), 241–250. MR Zbl

Received 3 Jul 2022. Accepted 13 Jun 2023.

FA PENG: pengfa@buaa.edu.cn
School of Mathematical Science, Beihang University, Beijing, China

and

Academy of Mathematics and Systems Science, The Chinese Academy of Sciences, Beijing, China

YI RU-YA ZHANG: yzhang@amss.ac.cn
Academy of Mathematics and Systems Science, The Chinese Academy of Sciences, Beijing, China

YUAN ZHOU: yuan.zhou@bnu.edu.cn
School of Mathematical Science, Beijing Normal University, Beijing, China

mathematical sciences publishers msp

https://doi.org/10.1016/j.matpur.2007.03.001
http://msp.org/idx/mr/2322150
http://msp.org/idx/zbl/1143.35041
http://msp.org/idx/mr/664341
http://msp.org/idx/zbl/0452.35030
https://doi.org/10.1090/trans2/029/12
http://msp.org/idx/mr/153960
http://msp.org/idx/zbl/0127.04901
https://doi.org/10.1007/BF01221125
http://msp.org/idx/mr/544879
http://msp.org/idx/zbl/0425.35020
https://doi.org/10.1002/cpa.3160450906
https://doi.org/10.1002/cpa.3160450906
http://msp.org/idx/mr/1177480
http://msp.org/idx/zbl/0811.35048
https://doi.org/10.1007/BF00250508
http://msp.org/idx/mr/340701
http://msp.org/idx/zbl/0266.34021
https://doi.org/10.1016/S0764-4442(00)00289-5
http://msp.org/idx/mr/1779693
http://msp.org/idx/zbl/0955.35029
https://doi.org/10.1016/j.matpur.2007.06.004
http://msp.org/idx/mr/2355457
http://msp.org/idx/zbl/1163.35020
mailto:pengfa@buaa.edu.cn
mailto:yzhang@amss.ac.cn
mailto:yuan.zhou@bnu.edu.cn
http://msp.org




ANALYSIS AND PDE
Vol. 17 (2024), No. 9, pp. 3355–3369

DOI: 10.2140/apde.2024.17.3355 msp

A GENERALIZATION OF THE BEURLING–MALLIAVIN MAJORANT THEOREM

IOANN VASILYEV

We prove a generalization of the Beurling–Malliavin majorant theorem. In more detail, we establish a new
sufficient condition for a function to be a Beurling–Malliavin majorant. Our result is strictly more general
than that of the Beurling–Malliavin majorant theorem. We also show that our result is sharp in a number
of senses.

1. Introduction

Let Lip(R) denote the space of Lipschitz functions in R (i.e., functions f satisfying for all x, y ∈ R the
inequality | f (x) − f (y)| ≤ C |x − y| with C > 0 independent of x, y). By Lip(ξ, R) we shall denote all
Lipschitz functions in R with the Lipschitz constant ξ .

The following theorem was first proved by A. Beurling and P. Malliavin.

Theorem A [Beurling and Malliavin 1962]. Let ω : R → (0, 1] be a function such that log(1/ω) ∈

L1(R, dx/(1 + x2)), and log(1/ω) is a Lipschitz function. Then for each δ > 0 there exists a function f ∈

L2(R), which is not identically zero and which satisfies spec( f ) ⊂ [0, δ] and | f (x)| ≤ ω(x) for all x ∈ R.

For a function f ∈ L2(R), by spec( f ) we mean the spectrum of f , i.e., the support of its Fourier
transformation. Note that the spectrum is defined up to a set of the Lebesgue measure zero. Let us also
remark that here the term “not identically zero” means “not zero almost everywhere”. We shall further
sometimes write just “nonzero” for brevity.

The Beurling–Malliavin theorems are considered by many experts to be among the most deep and
important results of the 20th century harmonic analysis. Theorem A above is called the Beurling–Malliavin
majorant theorem (or the first Beurling–Malliavin theorem). This result gives conditions for the majorant ω

ensuring existence of a nonzero function whose spectrum lies in an arbitrary small interval and whose
modulus is majorized by ω. This theorem is a crucial tool in the proof of the second Beurling–Malliavin
theorem about the radius of completeness of an exponential system. Moreover, Theorem A was recently
used by J. Bourgain and S. Dyatlov [2018] in the theory of resonances for hyperbolic surfaces. Deep
connections of the first Beurling–Malliavin theorem with nowadays popular gap and type problems are
discussed in [Borichev and Sodin 2011; Poltoratski 2012; Makarov and Poltoratski 2010].

Note that Theorem A is in a certain sense a contradiction to the following postulate, called the uncertainty
principle: “It is impossible for a nonzero function and its Fourier transform to be simultaneously very
small, unless the function is zero”. Indeed, Theorem A shows that there exist nonzero functions that are
“small” and whose Fourier transforms are also “small”. Of course these smallnesses are different from each

MSC2020: primary 42B05, 42B20, 46E35; secondary 26A16.
Keywords: uncertainty principle, Beurling and Malliavin theorems.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2024.17-9
https://doi.org/10.2140/apde.2024.17.3355
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


3356 IOANN VASILYEV

other and from the smallness in L2(R). So in fact Theorem A does not contradict the most well-known
variant of the uncertainty principle, the Heisenberg inequality. For recent violations of the uncertainty
principle of a completely different nature, see [Kislyakov and Perstneva 2021; Nazarov and Olevskii 2018].

In addition to the original proof of A. Beurling and P. Malliavin, there are many approaches to the proof
of Beurling–Malliavin theorems due to H. Redheffer [1977], L. De Branges [1968], P. Kargaev [Koosis],
N. Makarov and A. Poltoratski [Makarov and Poltoratski 2010], to name just some of them. V. Havin,
J. Mashreghi and F. Nazarov [Mashregi et al. 2005] suggested a new proof of the first Beurling–Malliavin
theorem. An essential novelty of their proof was that it was done by (almost) purely real methods and did
not use complex analysis except at one place; see [Mashregi et al. 2005] and the remark right after the
formulation of Theorem B below.

Among the goals of the present paper is to give a proof of a new nontrivial generalization of Theorem A.
Before stating our main results, we recall some classical definitions and fix some notation.

One of the principle objects of this paper is the class of BM majorants.

Definition 1. Let ω be a bounded nonnegative function on R. This function is called a Beurling–Malliavin
majorant (we shall further write “BM majorant” to save space) if for any σ > 0 there exists a nonzero
function f ∈ L2(R) such that

(a) | f | ≤ ω,

(b) spec( f ) ⊂ [0, σ ].

The set of all BM majorants will be further referred to as the BM class. If the conditions (a) and (b) just
above are satisfied for a function ω with some fixed σ > 0, then we call such function ω a σ -admissible
majorant. If we replace the condition (a) with a stronger two-sided condition Cω ≤ | f | ≤ ω for some
constant C > 0, then what we get is the definition of a strictly admissible majorant.

Recall that the Poisson measure d P on R is defined by the formula

d P(x) :=
dx

1 + x2 .

The corresponding weighted Lebesgue space L1(d P) is the space of all functions f that satisfy∫
R

| f | d P < ∞. The expression
∫

R
log(1/ω) d P will be sometimes further referred to as the logarithmic

integral of ω.
Note that the condition log(1/ω) ∈ L1(d P) is necessary for ω to be a BM majorant, but not sufficient;

see [Mashregi et al. 2005]. What Theorem A establishes is that some additional regularity suffices for
admissibility.

We remind the reader of how one should modify the Cauchy kernel in order to extend the definition of
the Hilbert transformation up to the space L1(d P).

Definition 2. The Hilbert transformation of a function f ∈ L1(d P) is defined as the principal value integral

H f (x) := −

∫
R

(
1

x − t
+

t
t2 + 1

)
f (t) dt.

It is worth noting that the integral above converges for almost all x ∈ R.
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To avoid ambiguity, we stress that this definition coincides, up to an additive constant, with the classical
one for functions in L1(R).

Let us now introduce function classes that will play an important role in what follows. To this end, we
first define an auxiliary system of intervals: J0 = [−2, 2), and for j ∈ N,

J j = [2 j , 2 j+1), J− j = [−2 j+1, −2 j ).

Definition 3. Let β ∈ (0, 1]. If β < 1, then we shall say that an absolutely continuous function ϕ belongs
to the class Vβ if ϕ is a β-Hölder function on the interval J j with the constant κ j and moreover these
constants satisfy (∑

n∈Z

2−| j |κ
1/(1−β)

j

)1−β

< ∞. (1)

In the case when β = 1, we use the convention Vβ = Lip(R).

Note that these classes resemble homogeneous weighted Sobolev spaces. We are going to work with
functions that belong to intersections L1(d P)

⋂
Vβ . From the functional-analytic point of view, these

intersections are Banach spaces with respect to the norms ∥ · ∥L1(d P) + ∥ · ∥Vβ
.

We are now in position to formulate the first main result of this paper to be proved in the next section.

Theorem 1. Let ω : R → (0, 1] be a function such that log(1/ω) ∈ L1(d P), with log(1/ω) absolutely
continuous and satisfying log(1/ω) ∈ Vβ for some β ∈ (0, 1]. Then for each δ > 0 there exists a function
f ∈ L2(R), not identically zero, such that spec( f ) ⊂ [0, δ] and | f (x)| ≤ ω(x) for all x ∈ R.

Remark. We would like to stress that one can replace the intervals J j in the definition of the spaces Vβ

with any system of intervals [λ j , λ j+1), where {λ j } is any sequence of reals satisfying λ ≤ λ j+1/λ j ≤ 3

with 1 < λ < 3 < ∞, in a way that the corresponding version of Theorem 1 holds true.

Remark. Throughout this paper, � will mean log(1/w) for a function ω : R → (0, 1].

In order to get some intuition of what a “typical” function satisfying � ∈ L1(d P) and � ∈ Vβ looks
like, the reader is welcome to think of a function whose graph consists of an infinite number of “pits”
and “hills”; see the pictures of Section 1.5 in [Mashregi et al. 2005] and Figure 1 below. Of course, the
same intuition applies to the functions with Lipschitz logarithm and finite logarithmic integral (i.e., those
satisfying the conditions of the first Beurling–Malliavin theorem). However, we shall shortly see that
there are drastic differences between these classes of functions.

Indeed, let us compare our sufficient condition of Theorem 1 with these already known. First, it is
obvious that our theorem is a generalization of the first Beurling–Malliavin theorem, since it is a particular
case of our result that corresponds to β = 1.

A “typical” function in classes Vβ is visualized at Figure 1.
There are many other sufficient “regularity” conditions for the admissibility; see for instance those

contained in [Koosis 1988; 1992; Belov and Havin 2015]. However, all these conditions are either
imposed on the Hilbert transform of �, or they claim that only some regularization or some minorant
of ω is admissible. For instance, if the condition (log ω( · ))/(1 + ( · )2)1/2

∈ Ẇ 1/2,2(R) is fulfilled for
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�(x)

x

2n/n

2n 2n+1

Figure 1. A “typical” function in Vβ .

a function ω that has convergent logarithmic integral, then some regularization of this function is an
admissible majorant; see [Beurling and Malliavin 1962].

Note that the following approximation property of the spaces Vβ with β ∈ (0, 1] is a direct consequence
of our Theorem 1.

Corollary. By a theorem of A. Baranov and V. Havin [2006, Section 6], we get that, for any β ∈ (0, 1],
σ > 0, and any ω ∈ Vβ , the space of all functions in L2(R) with the spectrum in R\[0, σ ] is not dense in
the weighted Lebesgue space L1(ω).

We hope that our main results will find other applications in harmonic and complex analysis, in
particular for the uncertainty principle and for exponential systems.

The main step of the proof of Theorem 1 is the following lemma.

Lemma 1 (a new variant of the global Nazarov lemma). Let 0 < β ≤ 1. Suppose that � ∈ L1(d P)∩ Vβ

is positive. Then, for each ε > 0, there exists a function �1, satisfying

(A) �(x) ≤ �1(x) for all x ∈ R,

(B) �1 ∈ L1(R, dx/(1 + x2)),

(C) H�1 ∈ Lip(ε, R), where H is the Hilbert transform on the real line.

Indeed, Theorem 1 follows from Lemma 1, thanks to the following sufficient condition for a function
to be a BM majorant, which is a consequence of a more general result, proved by Mashreghi and Havin.

Theorem B. If ω :R→ (0, 1], log(1/ω)∈ L1(d P) and ∥(H log(1/ω))′∥∞ <πσ , then ω is a σ -admissible
majorant.

Remark. The proof of Theorem B uses a one-dimensional construction coming from the classical
(complex) theory of Hardy spaces on the unit circle. Namely, given a nonnegative function on the unit
circle with convergent logarithmic integral there exists an analytic function whose modulus coincides
with the former function. Such functions are called outer; see [Nikolski 2012] for details.
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For necessary conditions for σ -admissible majorants, see [Belov 2007; 2008b; Baranov and Khavin
2006].

We briefly discuss main ideas lying behind our proof of Lemma 1. Our proof is inspired by that of the
Nazarov lemma from [Mashregi et al. 2005]. Indeed, we use the beautiful idea of a so-called regularized
system of intervals, which was first introduced by F. Nazarov and fruitfully used in [Mashregi et al. 2005].
Another important feature of the proof of the Nazarov lemma in [Mashregi et al. 2005] is a version of
the Hadamard–Landau inequality. We have had to modify this result drastically in order for it to fit the
conditions of our Lemma 1. This culminated in Lemma 4 of the present paper. On top of that, most
estimates from the proof in [Mashregi et al. 2005] become considerably harder under our assumptions, in
comparison to the Lipschitz condition of that work.

Note that Nazarov’s lemma is by itself a highly nontrivial and very interesting result in harmonic
analysis. To illustrate this, we mention [Stolyarov and Zatitskiy 2021], where the authors have utilized
the main object of the Nazarov lemma, the regularized system of intervals, in some special form. For a
multidimensional version of the classical Nazarov lemma, see our paper [Vasilyev 2022].

Let us now discuss the second main result of this article. Our Theorem 2, gives an answer to the
following question: “How sharp is the result of Theorem 1 ?” The answer to this question is given in the
following result.

Theorem 2. For any β ∈ (0, 1), there are functions ω : R → (0, 1] satisfying log(1/ω) ∈ L1(d P) and
2−| j |κ

1/(1−β)

j ≍ 1 in the notation of Theorem 1, that are not BM majorants.

We remark that our Theorem 2 shows that the condition log(1/ω) ∈ Vβ in our Theorem 1 is sharp in a
number of senses.

The proof of Theorem 2 builds upon one construction from [Belov and Havin 2015]. This construction
says that smallness of a bandlimited function is “contagious”: if such a function is small on an interval,
it is also small on a much larger concentric interval. This construction is due to A. Borichev and it
works only for majorants that have a growth strictly greater than linear at a sequence tending to infinity.
Majorants that appear in the formulation of Theorem 2 have at most linear growth at infinity. Nevertheless,
for some of these majorants, we were able to use a combination of Borichev’s construction with an
iteration method to prove Theorem 2.

The paper is organized as follows. Theorem 1 is proved in Sections 2 and 3. Section 4 is devoted to
the proof of Theorem 2.

We finally mention some open questions concerning Theorems 1 and 2. The first question consists
of determining whether the condition log(1/ω) ∈ Vβ in Theorem 1 can be weakened down to, roughly
speaking, a condition of the kind “ω belongs to some Orlicz-type class, defined in the spirit of Vβ classes”.
The second question concerns the system of intervals that are used in the definition of the spaces Vβ .
Namely, we would like to find a necessary and sufficient condition on the system of intervals instead of
the dyadic system in Definition 3, for which the first theorem still holds. Yet another question is to find a
multidimensional version of Theorem 1 which seems unavailable at the present time, according to [Han
and Schlag 2020]. The fourth and the final question reads as follows. It would be also interesting to find
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counterparts of the main results of this paper in the context of the so-called model spaces, in spirit of
Yu. S. Belov’s early papers. The author plans to attack the aforementioned questions in the nearest future.

2. A new local Nazarov lemma

We accumulate here the list of the frequently used technical abbreviations and notation. For an interval
a ⊂ R its length is denoted by l(a), ca will stand for the center of a and λa with λ positive will be the
interval centered at ca and whose edge length equals λl(a). Let I be an interval on the real line. We will
denote by TI (x) the distance from x ∈ R to R\I. For a dyadic interval b, we will denote by b♯ the dyadic
parent of b. Throughout this paper, I ∗ will denote the unit interval

[
−

1
2 , 1

2

]
. For β ∈ (0, 1), we denote

Holβ(κ, I ) the class of β-Hölder functions on the interval I, with the constant κ , i.e., all f defined on I
such that for all x ∈ I and y ∈ I holds | f (x) − f (y)| ≤ κ|x − y|

β .
The main step of the proof of our new global Nazarov lemma is its following local variant.

Lemma 2 (a new local Nazarov lemma). Let I ⊂ R be an interval and let β ∈ (0, 1]. Suppose that f is
a nonnegative absolutely continuous function such that holds f ∈ Holβ(κ, I ) and ∥ f ∥L∞(I ) ≤ δl(I ) for
some 0 < δ ≤ 1 and 1 ≤ κ . Then there exists a nonnegative function F ∈ C∞(R) such that

(i) F = 0 outside 1.5I,

(ii) f (x) ≤ F(x) for all x ∈ I,

(iii) ∥(HF)′∥L∞(R) ≲ δ,

(iv)
∫

R
F(x) dx ≲

∫
I f + κδ−βl(I )1−β

(∫
I f

)β .

In the case when β = 1 in Lemma 2, the corresponding result coincides with Lemma 2.6 from [Mashregi
et al. 2005].

In the formulation of Lemma 2 and until the end of the third section, the signs ≲ and ≳ indicate that
the left-hand (right-hand) part of an inequality is less than the right-hand (left-hand) part multiplied by a
constant independent of δ, f, κ and I.

The rest of this section is entirely devoted to the proof of Lemma 2.

Proof of the new local Nazarov lemma. The following definition is very important.

Definition 4. We say that a dyadic interval a ⊂ I is essential if ∥ f ∥L∞(a) ≥ δl(a)/2. Denote by A the set
of essential intervals.

It is straightforward to see that we have

{x ∈ I : f (x) > 0} ⊆

⋃
a∈A

a.

However, we will not use this fact later on in our estimates.
Consider AM, the set of maximal by inclusion elements of A. To each interval a ∈ AM we associate its

tail t (a). Informally, the tail t (a) is a family of dyadic intervals that is composed of a countable number
of finite series tp(a), p = 0, 1, 2, . . . , of dyadic intervals. For p = 0 we define t0(a) := a and for a
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fixed p ≥ 1, the intervals of the family tp(a) all have length equal to l(a)/2p and their unions form the
sets

a ∪

⋃
1≤q≤p

tq(a) =

{
x ∈ R :

l(a)

2
+ l(a)

p−1∑
q=1

3q

2q ≤ |x − ca| <
l(a)

2
+ l(a)

p∑
q=1

3q

2q

}
.

For a detailed discussion of tails, see [Mashregi et al. 2005, Section 2.6.5]. In fact, after we have added
these tails, we will get a regularized system of intervals; see [Mashregi et al. 2005, Sections 2.6 and 2.7].
Next, we define B :=

⋃
a∈AM t (a), and then pose τ := {c ∈ B M

: c ⊆ I }. Here, B M stands for the set of
maximal by inclusion elements of B. Note that the system τ covers I, consists of dyadic intervals and
any c ∈ τ satisfies δl(c) ≥ ∥ f ∥L∞(c); see [Mashregi et al. 2005].

Define for an interval a ∈ τ its neighborhood N (a) by

N (a) :=

{
b ∈ τ : d(a, b) ≤ 2l(a),

1
2

≤
l(a)

l(b)
≤ 2

}
.

Note that #N (a) ≤ 9. We shall need the following property of the system τ .

Lemma 3. Suppose that a ∈ τ and b ∈ τ\N (a). If l(b) ≤ 2l(a) then d(2a, 2b) ≥ l(a)/2, and if
l(b) = 2kl(a) for some natural k ≥ 2, then d(2a, 2b) ≥ 2 · 3k−2l(a).

Proof. The proof of this lemma is not detailed here, since it can be found in [Mashregi et al. 2005,
Section 2.6.6]. □

Define 2τ := {2c : c ∈ τ }. As a direct consequence of the lemma, we deduce that the multiplicity
#{b ∈ 2τ : x ∈ b} is uniformly bounded in x ∈ R. Indeed, if b ∈ τ\N (a), then d(2a, 2b) > 0 and

sup
x∈R

#{b ∈ 2τ : x ∈ b} ≤ sup
a∈τ

#N (a) ≲ 1.

Fix a bump function φ, i.e., φ ∈ C∞(R) satisfying 0 ≤ φ(x) ≤ 1 for all x ∈ R, φ ≡ 0 outside 1.5I ∗

and φ ≡ 1 on I ∗. Second, for an interval a ∈ τ define

φa( · ) := δl(a)φ

(
( · ) − ca

l(a)

)
.

Simple calculation shows that

Hφb( · ) = δl(b)Hφ

(
( · ) − cb

l(b)

)
.

Hence we infer the inequality ∥(Hφb)
′
∥L∞(R) ≲ δ. We finally define F by

F :=

∑
a∈τ

φa.

Now we have to check the required properties of the majorant F. The first one follows readily from
the definition of F. To prove the second one, note that for all a ∈ τ we have ∥ f ∥L∞(a) ≤ δl(a). Indeed,
suppose the contrary, i.e., that ∥ f ∥L∞(a0) > δl(a0) for some a0 ∈ τ . This means that

∥ f ∥L∞(a♯

0)
≥ ∥ f ∥L∞(a0) > δl(a0) = δ

(
l(a♯

0)

2

)
,
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which in turn signifies that a♯

0 is an essential interval and hence a♯

0 ∈ τ . This contradicts the definition
of τ . From here we deduce that if x ∈ a ∈ τ , then

F(x) ≥ δl(a) ≥ ∥ f ∥L∞(a) ≥ f (x).

Next we estimate the integral of the function F. To this end, we prove a variant of the Hadamard–Landau
inequality which is appropriate for our goals.

Lemma 4. Let a be an interval such that a ∈ AM. Then we have

∥ f ∥
2
L∞(a) ≲

(∫
a

f
)

δ + κ

(∫
a

f
)β

(δl(a))1−β,

where C(r) is a positive constant, depending on r only.

Proof. Let x0 ∈ a be a point such that ∥ f ∥L∞(a) = f (x0). Suppose with no loss of generality that
a+ − x0 ≥ l(a)/2, where a+ is the right end of the interval a. Consider a point x ∈ (x0, a+). Since f is
Hölder continuous, we hence infer the estimate

f (x) ≥ f (x0) − κ(x − x0)
β .

Let υ := ( f (x0)/κ)1/β . We shall treat two cases separately, according to the value of υ. First, we
suppose that υ < l(a)/2. Observe that in this case the point x0 +υ belongs to the interval a. We integrate
the estimate just above using this observation and deduce that∫

a
f ≥

∫ x0+υ/2

x0

f (x) dx ≥

∫ x0+υ/2

x0

f (x0) − κ(x − x0)
β dx

=
f (x0)

2

(
f (x0)

κ

)1/β

−
κ

21+β(β + 1)

(
f (x0)

κ

)(β+1)/β

≳
∥ f ∥

(β+1)/β

L∞(a)

κ1/β
=

∥ f ∥
2/β

L∞(a)∥ f ∥
(β−1)/β

L∞(a)

κ1/β
≳

∥ f ∥
2/β

L∞(a)(δl(a))(β−1)/β

κ1/β
, (2)

where the last bound above follows from the fact that a ∈ AM. Hence we have that

∥ f ∥
2
L∞(a) ≲ κ

(∫
a

f
)β

(δl(a))1−β .

Consider now the second case, where υ ≥ l(a)/2. In this case we shall use the fact that the point
x0 + l(a)/2 belongs to the interval a. Integrating the same inequality as in the first case yields∫

a
f ≥

∫ x0+l(a)/2

x0

f (x) dx ≥
l(a) f (x0)

2
−

κl(a)β+1

2β+1(β + 1)
=

l(a)

2

(
f (x0) −

κ

β + 1
·

(
l(a)

2

)β )
. (3)

Note that since υ ≥ l(a)/2, we have also that f (x0)/κa ≥ (l(a)/2)β. Let us use this in the following way:∫
a

f ≥
l(a)

2

(
f (x0) −

f (x0)

β + 1

)
≳ δ−1

∥ f ∥
2
L∞(a),

thanks to the fact that a ∈ AM. Hence Lemma 4 is proved. □



A GENERALIZATION OF THE BEURLING–MALLIAVIN MAJORANT THEOREM 3363

So, let us start the estimates of the integral of the function F :∫
R

F ≤

∑
b∈AM

∫
R

φb +

∑
c∈AM

∑
b∈t (c)\c

∫
R

φb ≤ δ
∑

b∈AM

l(b)2
+ δ

∑
c∈AM

∑
b∈t (c)\c

l(b)2

≲ δ
∑

b∈AM

l(b)2
+ δ

∑
c∈AM

∞∑
p=1

∑
b∈tp(c)

l(b)2 ≲ δ
∑

b∈AM

l(b)2
+ δ

∑
c∈AM

∞∑
p=1

3p
(

l(c)
2p

)2

≲ δ
∑

c∈AM

l(c)2 ≲ δ−1
∑

c∈AM

∥ f ∥
2
L∞(c). (4)

We further use the result of Lemma 4 to continue the estimates of the integral of the function F :∫
R

F ≲
∑

c∈AM

∫
c

f + δ−1
∑

c∈AM

κ

(∫
c

f
)β

(δl(c))1−β

≤

∫
I

f + δ−βκ

( ∑
c∈AM

∫
c

f
)β

·

( ∑
c∈AM

l(c)
)1−β

≲
∫

I
f + δ−βκl(I )1−β

(∫
I

f
)β

. (5)

The last and second-to-last inequalities just above are in need of explanation. The last estimate uses the
fact that intervals of AM are nonoverlapping, whereas the penultimate bound follows from the Hölder
inequality.

It remains to derive the inequality on the derivative of the Hilbert transformation of the function F.
First, we shall obtain this estimate for x ∈

⋃
b∈τ 2b. Let a(= a(x)) denote the interval from τ such that

x ∈ 2a. We isolate the neighborhood N (a) from its complement in τ and infer the inequality

|(HF)′(x)| ≤

∑
b∈N (a)

|(Hφb)
′(x)| +

∑
b∈τ\N (a)
l(b)≤2l(a)

|(Hφb)
′(x)| +

∞∑
k=2

∑
b∈τ\N (a)

l(b)=2k l(a)

|(Hφb)
′(x)| =: S1 + S2 + S3.

We shall estimate the terms S1, S2 and S3 separately. We start with the sum S1, whose estimate turns
out to be easy:

S1 ≤ #N (a) sup
b∈τ

∥(Hφb)
′
∥L∞(R) ≲ δ.

We further proceed to the second term. We use a simple estimate on the kernel of the Hilbert
transformation, the fact that the system of intervals {2b}b∈τ (by Lemma 3) has finite multiplicity and
Lemma 3 to get

S2 ≲
∑

b∈τ\N (a)
l(b)≤2l(a)

∫
R

φb(t)
∂

∂x

(
1

t − x

)
dt ≲

∑
b∈τ\N (a)
l(b)≤2l(a)

∫
R

φb(t)
(t − x)2 dt

≲
∑

b∈τ\N (a)
l(b)≤2l(a)

∫
1.5b

δl(a) dt
(t − x)2 ≲ δl(a)

∫
{|u|≥l(a)/2}

du
|u|2

≲ δ.
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The third term can be estimated as well using Lemma 3:

S3 ≲
∞∑

k=2

∑
b∈τ\N (a)

l(b)=2k l(a)

∫
2b

φb(t) dt
(t − x)2 ≤

∞∑
k=2

2kδl(a)
∑

b∈τ\N (a)

l(b)=2k l(a)

∫
2b

dt
(t − x)2 ≲

∞∑
k=2

2kδl(a)

∫
{|u|≥2·3k−2l(a)}

du
u2 ≲ δ,

and the lemma for x ∈
⋃

b∈τ 2b follows.
Next, if a point z ∈ R is situated at a positive distance from the set

⋃
b∈τ 2b, then denote by x the point

of this set closest to z, and let a(= a(x)) be an interval as above. We infer the estimates

|(HF)′(z)|≤
∑

b∈τ\N (a)

|(Hφb)
′(z)|+

∑
b∈N (a)

|(Hφb)
′(z)|≲

∑
b∈τ\N (a)

∫
R

φb(t) dt
(t − x)2 +#N (a) sup

b∈τ

∥(Hφb)
′
∥L∞(R).

Thanks to the estimates of the terms S1, S2 and S3, we conclude that the needed variant of the local
Nazarov lemma is proved. □

3. Proof of a new global Nazarov lemma

In this section, we shall derive the global Nazarov lemma from the local one.

Proof. Until the end of the third section, the signs ≲ and ≳ indicate that the left-hand (right-hand) part of
an inequality is less than the right-hand (left-hand) part multiplied by a “harmless” positive constant.

Note that we may assume in the global Nazarov lemma that �(x) = 0 for |x | ≤ R, with R being
an arbitrary large positive number. Indeed, if it is not the case, then consider the function �( · ) =

max(0, � −M)( · ), where M := maxx∈B(0,R) �(x). If �1 is a majorant of the function � satisfying
properties (B) and (C) then the function �1 +M will be the desired majorant of the function �.

Fix 0 < ε ≤ 1 and choose 1 < R1 so big that∫
R\(−R1,R1)

� d P ≤ ε.

Since the series (1) converges, there exists a natural N1 so big that for all j > N1 it holds that κ
1/(1−β)

j 2− j
≤

ε1/(1−β). As a consequence, we infer for all such j the bound

κ j 2 j (β+1)
≤ ε22 j . (6)

By the previous paragraph, we may assume � is equal to zero on the interval (−max(R1,2N1),max(R1,2N1)).
Recall the above-defined system of intervals J0 = [−2, 2), and, for j ∈ N,

J j = [2 j , 2 j+1), J− j = [−2 j+1, −2 j ).

Next, we shall prove for x ∈ R the inequality

�(x) ≲ ε|x |. (7)

With no loss of generality, we suppose that x > 0 and we let n ∈ N be such that 2n
≤ |x | < 2n+1. First,

note that according to the previous paragraph, the bound (7) is obvious once |x | ≲ 1. Second, for 1 ≲ |x |
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we will argue as in Lemma 4. We thus find a point x0 ∈ [2n, 2n+1) such that �(x0) = ∥�∥L∞(Jn). Then,
for any y ∈ Jn we have

�(y) ≥ �(x0) − κn|y − x0|
β .

Once again, without loss of generality we suppose that the point x0 + 2n/2 belongs to the interval Jn .
We finally infer the chain of inequalities

ε ≥

∫
� d P ≥ |x |

−2
∫

Jn

�(y) dy ≥ |x |
−2

∫ x0+2n/2

x0

(�(x0) − κn(y − x0)
β) dy

≥ |x |
−2(2n−1�(x0) − C(β)κn2n(β+1)). (8)

Hence, the bound (7) is proved, by virtue of (6).

Apply the local lemma to each interval J j and the corresponding restriction f j = � J j . Indeed,
Lemma 2 can be applied since these functions satisfy

∥ f j∥∞ ≤ ε2 j
≤ εl(J j )

by (7). Thus we obtain functions F j for j ∈ Z. The needed majorant �1 is defined by

�1 =

∑
j∈Z

F j .

Now, we shall check the required properties of �1. The first property follows obviously from the local
lemma. We proceed to the second one:∫

R

�1(t) d P(t) =

∑
j∈Z

∫
R

F j (t) d P(t) ≲
∑
j∈Z

∫
1.5J j

F j (t)
dt

22| j |

≲ ε−β
∑
j∈Z

2| j |(β−1)κ j

(∫
1.5J j

�(t)
dt

22| j |

)β

+

∑
j∈Z

∫
1.5J j

�(t)
dt

22| j |

≲ ε−β

(∑
j∈Z

2−| j |κ
1/(1−β)

j

)1−β

·

(∑
j∈Z

∫
1.5J j

�(t)
dt

22| j |

)β

+ ε ≲ ε, (9)

where in the third inequality above we have used the local lemma and in the penultimate bound we have
used the Hölder inequality.

So, it remains to check that the third conclusion holds. First, fix a point x ∈ R. Second, denote by
S(x) the interval from the system F = {J j } j∈Z such that x ∈ S(x). Next, denote by U (x) the subset of F
consisting of S(x) and its two neighbor intervals and by W (x) its complement: W (x) =F\U (x). Finally,
write the function �1 as a sum of two functions as follows:

�1 =

∑
j∈W (x)

F j +

∑
j∈U (x)

F j =: ω1 + ω2.
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Since there is only a finite number of intervals in the family U (x), we see that

|(Hω2)
′(x)| ≲ #U (x) sup

j∈U (x)

∥(HF j )
′
∥∞ ≲ ε,

where we have just used condition (iii) of Lemma 2 in the last estimate. On the other hand, since
supp(ω1) ⊆

⋃
j∈W (x) 1.5J j we deduce that

supp(ω1) ⊆

{
t ∈ R : |t − x | ≥

l(S(x))

4

}
⊆

{
t ∈ R : |t − x | ≥

|x |

16

}
.

Therefore, we arrive at the chain of inequalities

|(Hω1)
′(x)| =

∣∣∣∣(∫
R

ω1(t)
1

t − x
dt

)′
∣∣∣∣ =

∣∣∣∣∫
R

ω1(t)
∂

∂x

(
1

t − x

)
dt

∣∣∣∣
=

∫
R

ω1(t)
1

(t − x)2 dt ≲
∫

R

�1(t) d P(t) ≲ ε,

thanks to the bound (9).
Hence, the needed variant of the Nazarov lemma is proved. □

Thus, Theorem 1 is also proved, via Theorem B.

4. Sharpness of Lemma 1

Note that the proof of Theorem 2 is a direct consequence of the following proposition.

Proposition 1. Let γ > 1
2 and define In := [2n

− 2n/nγ , 2n
+ 2n/nγ

] for n ≥ 3. Consider for x ∈ R the
function

ω(x) :=

{
exp(−nγ−1/2TIn (x)) if x ∈ In with n ≥ 3,

1 otherwise.
(10)

We claim that log(1/ω) ∈ L1(d P) and that log(1/ω) satisfies the regularity assumption of Theorem 2,
though ω is not a BM majorant.

The graph of the function � = log(1/ω) and the main idea of the proof below (i.e., the iteration) is
illustrated at Figure 2.

Proof. The first two claims are easy to verify, so we omit their proofs.
Let σ be a positive constant and consider the Bernstein space Eσ,1, i.e., the space of all entire functions f

such that
| f (z)| ≤ eσ |z| for any z ∈ C and | f | ≤ 1 on R.

Recall Lemma 1 from [Belov and Havin 2015].

Lemma A. For any σ > 0 there exist a (small) α(σ) ∈
(
0, 1

2

)
and a (big) h(σ ) > 2 such that for any

h ≥ h(σ ), any f ∈ Eσ,1 and any compact interval I ⊂ R

| f | ≤ e−hTI on R =⇒ | f | ≤ e−Ch|I | on Ĩ ,

where C > 0 is an absolute constant and Ĩ is the interval centered at c(I ) with | Ĩ | = hα(σ)
|I |.
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�(x)

x

2n/
√

n

2n
− 2n/nγ 2n

+ 2n/nγ

Figure 2. The main idea of the proof of Theorem 2.

Let us prove that ω is not in the BM class. Suppose the contrary. Hence, for a fixed σ > 0 there exists
a function, not identically zero, satisfying f ∈ L2(R), spec( f ) ⊂ [0, σ ] and | f (x)| ≤ ω(x) for all real x .
We shall now use Lemma A. Notice that the function f satisfies the conditions of this lemma with h := nϑ,
where ϑ := γ −

1
2 > 0 and I := In for n ≥ n(γ ). We deduce from this lemma that there exists a universal

constant C and a power α ∈
(
0, 1

2

)
, depending only on σ such that

| f (x)| ≤ exp(−C2n)

on the interval In,1 := (nϑα/2)In .

Remark. From now until the end of the present article, the sign X ≍ Y means that C1Y ≤ X ≤ C2Y for
some constants C1 and C2 depending only on γ, α, σ and C . In this case, we shall say that X is of order Y.

Note that the length of this interval satisfies the bound |In,1| ≍ nϑ(α−1)2n. As a consequence, we infer
that the inequality

| f (x)| ≤ exp(−Cnϑ(α−1)TIn,1(x))

is valid for x ∈ In,1. This means that we can apply Lemma A once again, now for h := Cnϑ(1−α) and
I := In,1. This yields the bound

| f (x)| ≤ e−Ch|In,1| = e−C22n
,

which is true for x ∈ In,2 := ((Cnϑ(1−α))α/2)In,1. It is not difficult to see that the corresponding interval In,2

has length of order
Cαnϑ(1−α)α+ϑ(α−1)2n

= Cαn−ϑ(1−α)2
2n.

Acting inductively, after m steps, we arrive at the estimate | f (x)| ≤ exp(−Cm2n), verified by f for
x ∈ In,m with

|In,m | ≍ n−ϑ(1−α)m
2n.

Maybe, it is worth noting that Ik,m ∩ In,m = ∅ for any natural m, once n ̸= k. This results from the fact
that we assume, as we can, that C < 1.
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We are now in position to prove that f = 0 identically, which will lead to a contradiction. To this end,
we estimate the logarithmic integral of f . For each natural number m it holds that∫

R

log | f (x)| d P(x) ≤ −

∑
n≥3

∫
In,m

2−2nCm2n dx ≍ −

∑
n≥3

n−ϑ(1−α)m
.

Choosing m sufficiently large and recalling that (1 − α) ∈ (0, 1), we arrive at the formula∫
R

log | f (x)| d P(x) = −∞.

Since f ∈ L2(R) has the spectrum in the interval [0, σ ], it hence belongs to the Hardy class H 2(R). From
the Jensen inequality, see [Havin and Jöricke 1994], we deduce that f = 0 identically, which contradicts
our assumption. Hence, the second theorem is proved. □

Remark. Alas, our proof above does not work if one replaces in (10) and in the definition of intervals In

the powers nγ by θn with θ ∈ (1, 2).

Remark. It can be seen exactly as above that the function ω∗ is not a strictly admissible majorant; recall
Definition 1. For a detailed discussion of strictly admissible majorants, see [Belov 2008a].
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