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MATHEMATICS OF INTERNAL WAVES IN A TWO-DIMENSIONAL AQUARIUM

SEMYON DYATLOV, JIAN WANG AND MACIEJ ZWORSKI

Following theoretical and experimental work of Maas et al. (Nature 288:6642 (1997), 557–561) we
consider a linearized model for internal waves in effectively two-dimensional aquaria. We provide a
precise description of singular profiles appearing in long-time wave evolution and associate them to
classical attractors. That is done by microlocal analysis of the spectral Poincaré problem, leading in
particular to a limiting absorption principle. Some aspects of the paper (for instance Section 6) can be
considered as a natural microlocal continuation of the work of John (Amer. J. Math. 63 (1941), 141–154)
on the Dirichlet problem for hyperbolic equations in two dimensions.

1. Introduction

Internal waves are a central topic in oceanography and the theory of rotating fluids — see [Maas 2005;
Sibgatullin and Ermanyuk 2019] for reviews and references. They can be described by linear perturbations
of the initial state of rest of a stable-stratified fluid (dense fluid lies everywhere below less-dense fluid and
the isodensity surfaces are all horizontal). Forcing can take place at linear level by pushing fluid away from
this equilibrium state either mechanically, by wind, a piston, a moving boundary, or thermodynamically,
by spatially differential heating or evaporation/rain.

The mechanism behind formation of internal waves comes from ray dynamics of the classical system
which underlies wave equations — see Section 1.1 for the case of nonlinear ray dynamics relevant to the
case we consider. When parameters of the system produce hyperbolic dynamics, attractors are observed
in wave evolution — see Figure 1. This phenomenon is both physically and theoretically more accessible
in dimension 2. The analysis in the physics literature, see [Maas 2005; Troitskaya 2017], has focused on
constructions of standing and propagating waves and did not address the evolution problem analytically.
(See, however, [Bajars et al. 2013] for an analysis of a numerical approach to the evolution problem.)
In this paper we prove the emergence of singular profiles in the long-time evolution of linear waves for
two-dimensional domains.

The model we consider is described as follows. Let �⊂ R2
= {x = (x1, x2) : x j ∈ R} be a bounded

simply connected open set with C∞ boundary ∂�. Following the fluid mechanics literature we consider
the following evolution problem, sometimes referred to as the Poincaré problem:

(∂2
t 1+ ∂2

x2
)u = f (x) cos λt, u|t=0 = ∂t u|t=0 = 0, u|∂� = 0, (1-1)

MSC2020: primary 35G16, 76B55; secondary 35B40, 76M22.
Keywords: internal wave, attractor, stratified fluid, limiting absorption.
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u(t = 17) u(t = 33) u(t = 50)

u(t = 67) u(t = 83) u(t = 100)

Figure 1. Contour plots of a numerical solution to (1-1) for � given by a unit square tilted
by π

10 (see Section 2.5), with f (x)= e−5π2(x−x0)2, where x0 is the center and λ= 0.8. In
that case the rotation number of the billiard ball map is 1

2 (see Figure 9) and the classical
attractor is given by a parallelogram on which u develops a singularity — see Theorem 1.3.

Figure 2. Experimental results of [Hazewinkel et al. 2010]: horizontal component of the
observed perturbation buoyancy gradient projected onto a field that oscillates at the forcing
frequency, thus reducing the time series to an amplitude field (left) and a phase field (right).
In terms of our Theorem 1.3 this corresponds to amplitude and phase of u+. The arrows
indicate directions of phase propagation in agreement with our analysis, shown in Figure 4.

where λ ∈ (0, 1) and 1 := ∂2
x1

+ ∂2
x2

; see [Sobolev 1954, equation (48); Ralston 1973, p. 374; Maas et al.
1997; Brouzet 2016, §1.1.2–3; Dauxois et al. 2018; Colin de Verdière and Saint-Raymond 2020; Sibgatullin
and Ermanyuk 2019]. It models internal waves in a stratified fluid in an effectively two-dimensional
aquarium � with an oscillatory forcing term (here we follow [Colin de Verdière and Saint-Raymond
2020] rather than change the boundary condition). The geometry of � and the forcing frequency λ
can produce concentration of the fluid velocity v = (∂x2u,−∂x1u) on attractors. This phenomenon was
predicted by Maas and Lam [1995] and was then observed experimentally by Maas, Benielli, Sommeria
and Lam [Maas et al. 1997]; see Figure 2 for experimental data from the more recent [Hazewinkel et al.
2010]. (See also the earlier work [Wunsch 1968], which studied the case of an internal wave converging
to a corner, along a trajectory of the type pictured in Figure 7.) In this paper we provide a mathematical
explanation: as mentioned above, the physics papers concentrated on the analysis of modes and classical
dynamics rather than on the long-time behavior of solutions to (1-1).
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Figure 3. Left: the involutions γ± and the chess billiard map b. Right: a forward
trajectory of the map b on a trapezium with rounded corners, converging to a periodic
trajectory. We remark that the effect of smoothed corner on classical dynamics was
investigated by Manders, Duistermaat and Maas [Manders et al. 2003], see also Section 2.4.

1.1. Assumptions on � and λ. The assumptions on � and λ which guarantee existence of singular
profiles (internal waves) in long-time evolution of (1-1) are formulated using a “chess billiard” — see
[Nogueira and Troubetzkoy 2022; Lenci et al. 2023] for recent studies and references. It was first
considered in similar context by John [1941] (see also the later work of Aleksandrjan [1960]) and was
the basis of the analysis in [Maas and Lam 1995]. It is defined as the reflected bicharacteristic flow for
(1 − λ2)ξ 2

2 − λ2ξ 2
1 , which is the Hamiltonian for the 1 + 1 wave equation with x2 corresponding to time

and the speed given by c = λ/
√

1 − λ2 — see Figure 3 and Section 2.1. This flow has a simple reduction
to the boundary, which we describe using a factorization of the quadratic form dual to (1 − λ2)ξ 2

2 − λ2ξ 2
1 :

−
x2

1

λ2 +
x2

2

1 − λ2 = ℓ+(x, λ)ℓ−(x, λ), ℓ±(x, λ) := ±
x1

λ
+

x2
√

1 − λ2
. (1-2)

We often suppress the dependence on λ, writing simply ℓ±(x). Same applies to other λ-dependent objects
introduced below.

Definition 1.1. Let 0 < λ < 1. We say that � is λ-simple if each of the functions ∂� ∋ x 7→ ℓ±(x, λ)
has only two critical points, which are both nondegenerate. We denote these minimum/maximum points
by x±

min(λ), x±
max(λ).

Under the assumption of λ-simplicity we define the following two smooth orientation-reversing
involutions on the boundary (see Section 2.1 for more details):

γ±( • , λ) : ∂�→ ∂�, ℓ±(x)= ℓ±(γ±(x)). (1-3)

These maps correspond to interchanging intersections of the boundary with lines with slopes ∓1/c,
respectively — see Figure 3. The chess billiard map b( • , λ) is defined as the composition

b := γ+
◦ γ− (1-4)

and is a C∞ orientation-preserving diffeomorphism of ∂�.
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Figure 4. A visualization of the Lagrangian submanifolds (1-9) corresponding to attrac-
tive and repulsive cycles of b given in (1-4). The parallelogram represents the projection
of the attractive (+) and repulsive (−) Lagrangians 3±(λ) and the arrows perpendicular
to the sides represent the conormal directions distinguishing the two Lagrangians. We
also indicate the corresponding sets on the boundary: 6±

λ are the attractive (+) and
repulsive (−) periodic points of b given by (1-4) and the arrows indicate the sign of the
conormal directions.

Denoting by bn the n-th iterate of b, we consider the set of periodic points

6λ := {x ∈ ∂� | bn(x, λ)= x for some n ≥ 1}. (1-5)

If 6λ ̸= ∅, then all the periodic points in 6λ have the same minimal period; see Section 2.1.
We are now ready to state the dynamical assumptions on the chess billiard:

Definition 1.2. Let 0< λ < 1. We say that λ satisfies the Morse–Smale conditions if:

(1) � is λ-simple.

(2) The map b has periodic points, that is, 6λ ̸= ∅.

(3) The periodic points are hyperbolic, that is, ∂x bn(x, λ) ̸= 1 for all x ∈6λ, where n is the minimal period.

Under the Morse–Smale conditions we have 6λ =6+

λ ⊔6−

λ , where 6+

λ , 6
−

λ are the sets of attractive,
respectively repulsive, periodic points of b:

6+

λ := {x ∈6λ | ∂x bn(x, λ) < 1}, 6−

λ := {x ∈6λ | ∂x bn(x, λ) > 1}. (1-6)

Moreover, each of the involutions γ± exchanges 6+

λ with 6−

λ ; see (2-2).
For y ∈ ∂�, let

0±

λ (y) := {x ∈� | ℓ±(x, λ)= ℓ±(y, λ)} (1-7)

be the open line segment connecting y with γ±(y, λ). Define 0λ(y) := 0+

λ (y)∪0
−

λ (y). Then 0λ(6λ)
gives the closed trajectories of the chess billiard inside �.
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For y ∈ ∂� which is not a critical point of ℓ+, we split the conormal bundle N ∗0+

λ (y) into the
positive/negative directions:

N ∗0+

λ (y) \ 0 = N ∗

+
0+

λ (y)⊔ N ∗

−
0+

λ (y),

N ∗

±
0+

λ (y) := {(x, τdℓ+(x)) | x ∈ 0+

λ (y), ±(∂θℓ
+(y))τ > 0}

(1-8)

and similarly for N ∗0−

λ (y). Here ∂θ is the derivative with respect to a positively oriented (that is,
counterclockwise when � is convex) parametrization of the boundary ∂�. Note that the orientation
depends on the choice of y and not just on 0±

λ (y): we have N ∗
+
0±

λ (γ
±(y))= N ∗

−
0±

λ (y).
We now define Lagrangian submanifolds 3±(λ)⊂ T ∗� \ 0 by

3±(λ) := N ∗

+
0−

λ (6
±

λ )⊔ N ∗

−
0+

λ (6
∓

λ ); (1-9)

see Figure 4. We note that π(3±(λ))= 0λ(6λ) and N ∗
−
0±

λ (6
+

λ )= N ∗
+
0±

λ (6
−

λ ).

1.2. Statement of results. The main result of this paper is formulated using the concept of wave front set;
see [Hörmander 1990, §8.1; 1994, Theorem 18.1.27]. The wave front set of a distribution, WF(u), is
a closed subspace of the cotangent bundle of T ∗� \ 0 and it provides phase space information about
singularities. Its projection to the base, π(WF(u)), is the singular support, sing supp u.

Theorem 1.3. Suppose that� and λ∈ (0, 1) satisfy the Morse–Smale conditions of Definition 1.2. Assume
that f ∈ C∞

c (�; R). Then the solution to (1-1) is decomposed as

u(t)= Re(eiλt u+)+ r(t)+ e(t), u+
∈ H (1/2)−(�), WF(u+)⊂3+(λ),

r(t) ∈ H 1(�), ∥r(t)∥H1(�) ≤ C, ∥e(t)∥H (1/2)−(�) → 0 as t → ∞,
(1-10)

where3+(λ)⊂ T ∗�\0 is the attracting Lagrangian — see (1-9) and Figure 4. In particular, sing supp u+

is contained in the union of closed orbits of the chess billiard flow. In addition, u+ is a Lagrangian
distribution, u+

∈ I −1(�,3+(λ)) (see Section 3.2) and u+
|∂� = 0 (well-defined because of the wave

front set condition).

For a numerical illustration of (1-10), see Figure 1. We remark that numerically it is easier to consider
polygonal domains — see Section 2.4 for a discussion of the stability of our assumptions for smoothed
out polygonal domains.

Theorem 1.3 is proved using spectral properties of a self-adjoint operator associated to the evolution
equation (1-1). To define it, let 1� be the (negative definite) Dirichlet Laplacian of � with the inverse
denoted by 1−1

� : H−1(�)→ H 1
0 (�). Then

P := ∂2
x2
1−1
� : H−1(�)→ H−1(�), ⟨u, w⟩H−1(�) := ⟨∇1−1

� u,∇1−1
� w⟩L2(�), (1-11)

is a bounded nonnegative (hence self-adjoint) operator studied in [Aleksandrjan 1960; Ralston 1973] —
see Section 7.1. Studying the spectrum of P is referred to as a Poincaré problem.

The evolution equation (1-1) is equivalent to

(∂2
t + P)w = f cos λt, w|t=0 = ∂tw|t=0 = 0, f ∈ C∞

c (�; R), u =1−1
� w. (1-12)
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classical dynamics classical dynamics

Figure 5. Numerical illustration of Theorem 1.4: contour plots of |u(x)| for
u = (∂2

x2
− (λ2

+ iε)1�)−1 f , where ε = 0.005 and f (x) = e−10(x−(1/2,1/2))2 and
� = T0.5 (see Section 2.5). On the left, the rotation number is given by 1

3 and we see
concentration on an attractor; on the right, the rotation number is (nearly) irrational and, as
ε→ 0+, u is expected to be uniformly distributed [Maas 2005]. Morse–Smale assumptions
do not hold, at least not on scales relevant to numerical calculations and trajectories are
uniformly distributed in the trapezium. In the contour plots of |u(x)| black corresponds to 0.

This equation is easily solved using the functional calculus of P:

w(t)= Re(eiλt Wt,λ(P) f ), where Wt,λ(z)=

∫ t

0

sin(s
√

z)
√

z
e−iλs ds =

∑
±

1 − e−i t (λ±
√

z)

2
√

z(
√

z ± λ)
. (1-13)

Using the Fourier transform of the Heaviside function (see (3-26)), we see that for any ϕ ∈ C∞
c (R) we

have ∫
R

1 − e−i tζ

ζ
ϕ(ζ ) dζ = i

∫ t

0
ϕ̂(η) dη t→∞

−−→ i
∫

∞

0
ϕ̂(η) dη =

∫
R

(ζ − i0)−1ϕ(ζ ) dζ

and thus for any λ ∈ (0, 1) we have the distributional limit

Wt,λ(z)→ (z − λ2
+ i0)−1 as t → ∞, in D′

z((0,∞)). (1-14)

This suggests that, as long as we only look at the spectrum of P near λ2 (the rest of the spectrum
contributing the term r(t) in Theorem 1.3), if the spectral measure of P applied to f is smooth in the



MATHEMATICS OF INTERNAL WAVES IN A TWO-DIMENSIONAL AQUARIUM 7

spectral parameter z, then Wt,λ(P) f → (P − λ2
+ i0)−1 f as t → ∞. By Stone’s formula, it suffices

to establish the limiting absorption principle for the operator P near λ2 and that is the content of the
following:

Theorem 1.4. Suppose that J ⊂ (0, 1) is an open interval such that each λ∈J satisfies the Morse–Smale
conditions of Definition 1.2. Then for each f ∈ C∞

c (�) and λ ∈ J the limits

(P − λ2
± i0)−1 f = lim

ε→0+

(P − (λ∓ iε)2)−1 f in D′(�) (1-15)

exist and the spectrum of P is purely absolutely continuous in J 2
:= {λ2

| λ ∈ J }:

σ(P)∩J 2
= σac(P)∩J 2. (1-16)

Moreover,
(P − λ2

± i0)−1 f ∈ I 1(�,3±(λ))⊂ H−(3/2)−(�), (1-17)

where 3±(λ) are given in (1-9) and the definition of the conormal spaces I 1(�,3±(λ)) is reviewed in
Section 3.2.

Remarks. (1) The proof provides a more precise statement based on a reduction to the boundary — see
Section 7. We also have smooth dependence on λ which plays a crucial role in proving Theorem 1.3 as in
[Dyatlov and Zworski 2019b, §5] — see Section 8. This precise information is important in obtaining
the H (1/2)− remainder in (1-10). The singular profile in Theorem 1.3 satisfies

u+
=1−1

� (P − λ2
+ i0)−1 f,

which agrees with the heuristic argument following (1-14).

(2) As noted in [Ralston 1973], σ(P)= [0, 1] but as emphasized there and in numerous physics papers
the structure of the spectrum of P is far from clear. Here we only characterize the spectrum (1-16) under
the Morse–Smale assumptions of Definition 1.2.

Rather than working with P, we consider the closely related stationary Poincaré problem

(∂2
x2

−ω21)uω = f ∈ C∞

c , uω|∂� = 0, Reω ∈ (0, 1), Imω > 0.

Then uλ+iε ∈ C∞(�) has a limit in D′(�) which satisfies uλ+i0 ∈ I −1(�,3−(λ)), and we have
(P − λ2

− i0)−1 f =1uλ+i0.

1.3. Related mathematical work. Motivated by the study of internal waves, results similar to Theo-
rems 1.3 and 1.4 were obtained for self-adjoint 0th order pseudodifferential operators on two-dimensional
tori with dynamical conditions in Definitions 1.1 and 1.2 replaced by demanding that a naturally defined
flow is Morse–Smale. That was done first in [Colin de Verdière and Saint-Raymond 2020; Colin de
Verdière 2020], with different proofs provided in [Dyatlov and Zworski 2019b]. The question of modes
of viscosity limits in such models (addressing physics questions formulated for domains with boundary —
see [Rieutord and Valdettaro 2018]) were investigated by Galkowski and Zworski [2022] and Wang [2022].
Finer questions related to spectral theory were also answered in [Wang 2023]. Unlike in the situation
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considered in this paper, embedded eigenvalues are possible in the case of 0th order pseudodifferential
operators [Tao 2024].

The dynamical system (1-4) was recently studied in [Nogueira and Troubetzkoy 2022; Lenci et al.
2023]. We refer to those papers for additional references and dynamical results.

After this paper was accepted for publication we learned of significant contributions to the spectral
theory of the operator P (see (1-11)) in the Russian literature. The study of its spectrum was known there
as the Sobolev problem. We are grateful to Sergey Denisov for pointing this out to us. The most relevant
(and translated to English) papers are those of [Fokin 1993; Troitskaya 2017]. The main result announced
in Fokin’s paper (proved in the longer Russian-language papers cited there) was the existence of singular
continuous spectrum for some �: any �0 with smooth boundary for which P has H 1

0 eigenfunctions
(such as the disk) can be perturbed to obtain � with a smooth boundary and nonempty singular continuous
spectrum for P. Troitskaya showed that the spectrum for any triangle is continuous. Both papers presented
interesting results about long-time behavior of solutions of the Cauchy problem but did not seem to
address the questions studied in this paper. These two papers and the papers cited by them contain
however a wealth of ideas which may well have applications to our problem.

We should also mention that recently Li [2024] succeeded in providing analogues of Theorems 1.3
and 1.4 in the case of domains with corners. The statements are similar but more complicated as additional,
weaker, singularities emanate from the corners.

1.4. Organization of the paper. In Section 2 we provide a self-contained analysis of the dynamical
system given by the diffeomorphism (1-4). We emphasize properties needed in the analysis of the operator
(1-11): properties of pushforwards by ℓ± and existence of suitable escape/Lyapunov functions. Section 3 is
devoted to a review of microlocal analysis used in this paper and in particular to definitions and properties
of conormal/Lagrangian spaces used in the formulations of Theorems 1.3 and 1.4. In Section 4 we describe
reduction to the boundary using 1+1 Feynman propagators which arise naturally in the limiting absorption
principles. Despite the presence of characteristic points, the restricted operator enjoys good microlocal
properties — see Proposition 4.15. Microlocal analysis of that operator is given in Section 5 with the key
estimate (5-19) motivated by Lasota–Yorke inequalities and radial estimates. The self-contained Section 6
analyses wave front set properties of distributions invariant under the diffeomorphisms (1-4). These results
are combined in Section 7 to give the proof of the limiting absorption principle of Theorem 1.4. Finally,
in Section 8 we follow the strategy of [Dyatlov and Zworski 2019b] to describe long-time properties of
solutions to (1-1) — see Theorem 1.3.

2. Geometry and dynamics

In this section we assume that �⊂ R2 is an open bounded simply connected set with C∞ boundary ∂�
and review the basic properties of the involutions γ± and the chess billiard b defined in (1-3), (1-4). We
orient ∂� in the positive direction as the boundary of � (that is, counterclockwise if � is convex).

2.1. Basic properties. Fix λ ∈ (0, 1) such that � is λ-simple in the sense of Definition 1.1. We first
show that the involutions γ± defined in (1-3) are smooth. Away from the critical set {x±

min, x±
max} this is
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immediate. Next, we write

ℓ±(x)= ℓ±(x±

min)+ θ
±

min(x)
2 for x near x±

min,

ℓ±(x)= ℓ±(x±

max)− θ
±

max(x)
2 for x near x±

max,
(2-1)

where θ±

min, θ
±
max are local coordinate functions on ∂� which map x±

min, x±
max to 0. Then for x near x±

min
the point γ±(x) satisfies the equation

θ±

min(γ
±(x))= −θ±

min(x)

and similarly near x±
max. This shows the smoothness of ∂� ∋ x 7→ γ±(x) near the critical points.

Next, note that since γ± are involutions, b is conjugate to its inverse:

b−1
= γ±

◦ b ◦ γ±. (2-2)

Therefore 6+

λ = γ±(6−

λ ), where 6±

λ are defined in (1-6). Since x±

min, x±
max are fixed points of γ±, the

Morse–Smale conditions (see Definition 1.2) imply that there are no characteristic periodic points:

6λ ∩ Cλ = ∅, where Cλ := C +

λ ⊔ C −

λ , C ±

λ := {x±

min(λ), x±

max(λ)}. (2-3)

2.1.1. Useful identities. For x ∈ ∂� and λ ∈ (0, 1) we define the signs

ν±(x, λ) := sgn ∂θℓ±(x, λ), (2-4)

where ∂θ is the derivative along ∂� with respect to a positively oriented parametrization.

Lemma 2.1. Assume that � is λ-simple. Then for all x ∈ ∂�

sgn ℓ∓(γ±(x)− x)= ±ν±(x), (2-5)

ν±(γ±(x))= −ν±(x), (2-6)

∂λℓ
±(x, λ)=

2λ2
− 1

2λ(1 − λ2)
ℓ±(x, λ)+

1
2λ(1 − λ2)

ℓ∓(x, λ). (2-7)

Proof. To see (2-5), we first notice that it holds when x ∈ {x±

min, x±
max}, as then both sides are equal to 0.

Now, assume that γ±(x) ̸= x (that is, x /∈ {x±

min, x±
max}). Denote by v(x) ∈ R2 the velocity vector of the

parametrization at the point x ∈ ∂�. The vector γ±(x)− x ∈ R2 is pointing into � at the point x ∈ ∂�.
Since we use a positively oriented parametrization, the vectors v(x), γ±(x)− x form a positively oriented
basis. We now note that ℓ+, ℓ− form a positively oriented basis of the dual space to R2, and hence

det
(
ℓ+(v(x)) ℓ+(γ±(x)− x)
ℓ−(v(x)) ℓ−(γ±(x)− x)

)
> 0.

Since ∂θℓ±(x)= ℓ±(v(x)), this gives (2-5). The identity (2-6) follows from (2-5), and (2-7) is verified by
a direct computation. □

The next statement is used in the proof of Lemma 4.9.

Lemma 2.2. Assume that � is λ-simple. Then for all y ∈ ∂� and x ∈�

ν+(y)ℓ−(x − y) > 0 or ν−(y)ℓ+(x − y) < 0 (or both). (2-8)
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Proof. Let 0±

λ (y) be the sets defined in (1-7) and recall that they are open line segments with endpoints
y, γ±(y). Then by (2-5),

�∩ R±(y)= ∅, where R±(y) := {x ∈ R2
| ℓ±(x − y)= 0, ±ν±(y)ℓ∓(x − y)≤ 0}.

The sets R±(y) are closed rays starting at y when ν±(y) ̸= 0 and lines passing through y when ν±(y)= 0.
Any continuous curve starting at the set of x ∈ R2 satisfying (2-8) and ending in the complement of this
set has to intersect R+(y)∪ R−(y), as can be seen (in the case ν±(y) ̸= 0) by applying the intermediate
value theorem to the pullback to that curve of the function x 7→ max(ν+(y)ℓ−(x − y),−ν−(y)ℓ+(x − y)).
Thus, since � is connected and contains at least one point x satisfying (2-8) (for instance, take any point
in 0±

λ (y)), all points x ∈� satisfy (2-8). □

2.1.2. Properties of pushforwards. We next show basic properties of pushforwards of smooth functions
by the maps ∂� ∋ x 7→ ℓ±(x, λ), which are used in the proof of Lemma 4.8. Fix λ ∈ (0, 1) such that �
is λ-simple and define

ℓ±min := ℓ±(x±

min), ℓ±max := ℓ±(x±

max), (2-9)

so that ℓ± maps ∂� onto the interval [ℓ±min, ℓ
±
max]. We again fix a positively oriented coordinate θ on ∂�.

Lemma 2.3. (1) Assume that f ∈ C∞(∂�) and define 5±

λ f ∈ E ′(R) by the formula∫
R

5±

λ f (s)ϕ(s) ds =

∫
∂�

f (x)ϕ(ℓ±(x)) dθ(x) for all ϕ ∈ C∞(R). (2-10)

Then supp5±

λ f ⊂ [ℓ±min, ℓ
±
max] and√
(s − ℓ±min)(ℓ

±

max − s)5±

λ f (s) ∈ C∞([ℓ±min, ℓ
±

max]). (2-11)

(2) Assume that f ∈ C∞(∂�) and define the functions ϒ±

λ f on (ℓ±min, ℓ
±
max) by

ϒ±

λ f (s) :=

∑
x∈∂�, ℓ±(x)=s

f (x), s ∈ (ℓ±min, ℓ
±

max).

Then ϒ±

λ f ∈ C∞([ℓ±min, ℓ
±
max]).

Proof. (1) The support property follows immediately from the definition: if suppϕ ∩ [ℓ±min, ℓ
±
max] = ∅,

then ϕ ◦ ℓ± = 0 on ∂� and thus
∫
(5±

λ f )ϕ = 0.
To show (2-11), we compute

5±

λ f (s)=

∑
x∈∂�, ℓ±(x)=s

f (x)
|∂θℓ±(x)|

for all s ∈ (ℓ±min, ℓ
±

max). (2-12)

It follows that 5±

λ f is smooth on the open interval (ℓ±min, ℓ
±
max). Next, note that (2-11) does not depend

on the choice of the parametrization θ since changing the parametrization amounts to multiplying f by a
smooth positive function. Thus we can use the local coordinate θ = θ±

min near x±

min introduced in (2-1).
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With this choice we have ℓ±(x)= ℓ±min + θ2 and the formula (2-12) gives for s near ℓ±min

5±

λ f (s)=
f (

√

s − ℓ±min)+ f (−
√

s − ℓ±min)

2
√

s − ℓ±min

,

where we view f as a function of θ . It follows that
√

s − ℓ±min5
±

λ f (s) is smooth at the left endpoint of
the interval (ℓ±min, ℓ

±
max). Similar analysis shows that

√

ℓ±max − s5±

λ f (s) is smooth at the right endpoint
of this interval.

(2) This is proved similarly to part (1), where we no longer have |∂θℓ
±(x)| in the denominator in (2-12). □

2.1.3. Dynamics of the chess billiard. We now give a description of the dynamics of the orientation-
preserving diffeomorphism b = γ+

◦ γ− in the presence of periodic points.

Lemma 2.4. Assume that 6λ ̸= ∅ (see (1-5)). Then:

(1) All periodic points of b have the same minimal period.

(2) For each x ∈ ∂�, the trajectory bk(x) converges to 6λ as k → ±∞.

(3) If ∂x bn
̸= 1 on 6λ, where n denotes the minimal period, then the set 6λ is finite.

Proof. See for example [de Melo and van Strien 1993, §1.1] or [Walsh 1999] for the proof of the first
two claims. The last claim follows from the fact that 6λ is the set of solutions to bn(x) = x and thus
∂x bn(x) ̸= 0 implies that it consists of isolated points. □

We finally discuss the rotation number of b. Fix a positively oriented parametrization on ∂� which
identifies it with the circle S1

= R/Z and denote by π : R → ∂� the covering map. Consider a lift of
b( • , λ) to R, that is, an orientation-preserving diffeomorphism b( • , λ) : R → R such that

π(b(θ, λ))= b(π(θ), λ) for all θ ∈ R.

Denote by bk( • , λ) the k-th iterate of b( • , λ). Define the rotation number of b( • , λ) as

r(λ) := lim
k→∞

bk(θ, λ)− θ

k
mod Z ∈ R/Z. (2-13)

The limit exists and is independent of the choice of θ ∈ R and of the lift b. We refer to [Walsh 1999] for
a proof of this fact as well that of the following.

Lemma 2.5. The rotation number r(λ) is rational if and only if 6λ ̸= ∅. In this case r(λ)= q/n mod Z,
where n > 0 is the minimal period of the periodic points and q ∈ Z is coprime with n.

We remark that b( • , λ) cannot have fixed points: indeed, if x ∈ ∂� and b(x)= x , then γ+(x)= γ−(x),
which is impossible. We then fix the lift b for which

0< b(0, λ) < 1. (2-14)

With this choice we have 0< bk(0, λ) < k for all k ≥ 0 and thus (2-13) defines the rotation number r(λ)
which satisfies 0< r(λ) < 1.
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2.2. Dependence on λ. We now discuss the dependence of the dynamics of the chess billiard map b( • , λ)

on λ. We first give a stability result:

Lemma 2.6. The set of λ ∈ (0, 1) satisfying the Morse–Smale conditions (see Definition 1.2) is open.
Moreover, the maps γ±(x, λ) and b(x, λ), as well as the sets 6λ, depend smoothly on λ as long as λ
satisfies the Morse–Smale conditions.

Proof. Assume that λ0 satisfies the Morse–Smale conditions. We need to show that all λ close enough
to λ0 satisfy this condition as well. From (1-2) we see that the functions ℓ±(x, λ) depend smoothly on
x ∈ ∂�, λ ∈ (0, 1). Therefore, � is λ-simple for λ close to λ0. Moreover, γ±(x, λ) and b(x, λ) depend
smoothly on λ as long as � is λ-simple.

Next, let m > 0 be the number of points in 6λ0 and let n be their minimal period under b( • , λ0). Since
∂x bn(x, λ0) ̸= 1 on6λ0 , by the implicit function theorem for λ close to λ0 the equation bn(x, λ)= x has ex-
actly m solutions, which depend smoothly on λ. It follows that λ satisfies the Morse–Smale conditions. □

Lemmas 2.5 and 2.6 imply in particular that when λ0 satisfies the Morse–Smale conditions, the
rotation number r is constant in a neighborhood of λ0: indeed, the rotation number is determined by the
combinatorial structure of the map b on each closed orbit (if the rotation number is equal to q/n with q, n
coprime, then each closed orbit has period n and the action of b on this orbit is the shift by q points), which
varies continuously with λ. A partial converse to this fact is given by the second part of the following.

Lemma 2.7. Assume that J ⊂ (0, 1) is an open interval such that � is λ-simple for each λ ∈ J. Then:

(1) r(λ) is a continuous increasing function of λ ∈ J.

(2) If r is constant on J, then this constant is rational and the Morse–Smale conditions hold for Lebesgue
almost every λ ∈ J.

Proof. (1) Fix a positively oriented coordinate θ on ∂�. Using (1-3), (2-7) we compute

∂λγ
±(x, λ)=

∂λℓ
±(x − γ±(x, λ), λ)
∂θℓ±(γ±(x, λ), λ)

=
ℓ∓(x − γ±(x, λ), λ)

2λ(1 − λ2)∂θℓ±(γ±(x, λ), λ)
.

By (2-5) and (2-6) we have
∂λγ

+ > 0, ∂λγ
− < 0.

We then compute

∂λb(x, λ)= ∂λγ
+(γ−(x, λ), λ)+ ∂θγ+(γ−(x, λ), λ)∂λγ−(x, λ).

Since ∂� ∋ x 7→ γ+(x, λ) ∈ ∂� is orientation-reversing, this gives

∂λb(x, λ) > 0 for all x ∈ ∂�, λ ∈ J . (2-15)

Fix the lift b(θ, λ) satisfying (2-14). Then (2-15) gives ∂λb(θ, λ)>0. This implies that for each two-points
λ1 < λ2 in J and every k ≥ 1

bk(θ, λ1) < bk(θ, λ2).

Recalling the definition (2-13) of r(λ), we see that r(λ1)≤ r(λ2); that is, r(λ) is an increasing function
of λ ∈ J.
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(2) We now show that r(λ) is a continuous function of λ ∈ J. Fix arbitrary λ0 ∈ J and ε > 0; since r is
an increasing function it suffices to show that there exists δ > 0 such that

r(λ0 + δ) < r(λ0)+ ε, r(λ0 − δ) > r(λ0)− ε.

We show the first statement, with the second one proved similarly. Choose a rational number q/n ∈

(r(λ0), r(λ0)+ ε), where n ∈ N and q ∈ Z are coprime. Since r(λ0) < q/n, the definition (2-13) implies
that there exists k0 > 0 such that

bk0n(0, λ0)

nk0
<

q
n
,

that is, bk0n(0, λ0) < k0q . Since bk0n(0, λ) is continuous in λ, we can choose δ > 0 small enough so that

bk0n(0, λ0 + δ) < k0q. (2-16)

By induction on j we see that

b jk0n(0, λ0 + δ) < jk0q for all j ≥ 1. (2-17)

Here the inductive step is proved as follows: using bp(r) = bp(0) + r , r ∈ Z (bp is a lift of the
orientation-preserving diffeomorphism bp; we dropped λ0 + δ in the notation),

b( j+1)k0n(0)= bk0n(b jk0n(0)) < bk0n( jk0q)= bk0n(0)+ jk0q < ( j + 1)k0q.

Now, the definition (2-13) and (2-17) imply that r(λ0 + δ)≤ q/n < r(λ0)+ ε as needed.

(3) Assume now that r is constant on J. We first show that this constant is a rational number. Assume
the contrary and take an arbitrary λ0 ∈ J. By (2-15) (shrinking J slightly if necessary) we may assume
that ∂λb(x, λ)≥ c > 0 for some c > 0 and all x ∈ ∂�, λ ∈ J. Then ∂λbn(x, λ)≥ c for all n ≥ 0 as well.
Fix ε > 0 such that λ1 := λ0 + ε/c lies in J. Then bn(θ, λ1)≥ bn(θ, λ0)+ ε for all θ ∈ R.

Fix arbitrary x0 = π(θ0) ∈ ∂�, θ0 ∈ R. Since r(λ0) is irrational and b( • , λ0) is smooth, by Denjoy’s
theorem [de Melo and van Strien 1993, §I.2] every orbit of b( • , λ0) is dense; in particular the orbit
{bn(x0, λ0)}n≥1 intersects the ε-sized interval on ∂� whose right endpoint is x0. That is, there exist n ∈ N,
m ∈ Z such that

θ0 + m − ε ≤ bn(θ0, λ0)≤ θ0 + m.

It follows that
bn(θ0, λ0)≤ θ0 + m ≤ bn(θ0, λ0)+ ε ≤ bn(θ0, λ1).

By the intermediate value theorem, there exists λ ∈ [λ0, λ1] ⊂ J such that bn(θ0, λ) = θ0 + m. Then
x0 = π(θ0) is a periodic orbit of b( • , λ), which contradicts our assumption that r(λ) is irrational for
all r ∈ J.

(4) Under the assumption of step (3), we now have r(λ)= q/n mod Z for some coprime q ∈ Z, n ∈ N

and all λ ∈ J. By Lemma 2.5, for each λ ∈ J the set of periodic points 6λ is nonempty and each such
point has minimal period n. Define

6J := {(x, λ) | λ ∈ J , x ∈6λ} = {(x, λ) ∈ ∂�×J | bn(x, λ)= x}.
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From (2-15) we see that ∂λbn(x, λ) > 0 for all x ∈ ∂�, λ ∈ J. Shrinking J if needed, we may assume
that 6J is a one-dimensional submanifold of J × ∂� projecting diffeomorphically onto the x-variable,
that is, 6J = {(x, ψ(x)) | x ∈ U } for some open set U ⊂ ∂� and smooth function ψ : U → J,
∂xψ(x)= (1 − ∂x bn(x, λ))/∂λbn(x, λ), λ= ψ(x). Then λ ∈ J satisfies the Morse–Smale conditions if
and only if λ is a regular value of ψ , which by the Morse–Sard theorem happens for Lebesgue almost
every λ ∈ J. □

2.3. Escape functions. We now construct an adapted parametrization of ∂� and a family of escape
functions, which are used in Section 5 below. Throughout this section we assume that λ ∈ (0, 1) satisfies
the Morse–Smale conditions of Definition 1.2. Recall the sets 6±

λ of attractive/repulsive periodic points of
the map b( • , λ) defined in (1-6). Let n ∈ N be the minimal period of the corresponding trajectories of b.

We first construct a parametrization of ∂� with a bound on ∂x b|6±

λ
rather than on the derivative of the

n-th iterate ∂x bn
|6±

λ
:

Lemma 2.8. Let 6±

λ be given by (1-6). There exists a positively oriented coordinate θ : ∂�→ S1 such
that, taking derivatives on ∂� with respect to θ ,

∂x b(x, λ) < 1 for all x ∈6+

λ ,

∂x b(x, λ) > 1 for all x ∈6−

λ .
(2-18)

Proof. Fix any Riemannian metric g0 on ∂� and consider the metric g on ∂� given by

|v|g(x) :=

n−1∑
j=0

|∂x b j (x)v|g0(b j (x)) for all (x, v) ∈ T (∂�).

We have for all (x, v) ∈ T (∂�)

|∂x b(x)v|g(b(x)) − |v|g(x) = |∂x bn(x)v|g0(bn(x)) − |v|g0(x).

Thus by (1-6) we have for v ̸= 0

|∂x b(x)v|g(b(x)) < |v|g(x), when x ∈6+

λ ,

|∂x b(x)v|g(b(x)) > |v|g(x), when x ∈6−

λ .

It remains to choose the coordinate θ so that |∂θ |g is constant. □

We next use the global dynamics of b( • , λ) described in Lemma 2.4 to construct an escape function in
Lemma 2.9 below. Fix a parametrization on ∂� which satisfies (2-18) and denote by

6±

λ (δ)⊂ ∂�

the open δ-neighborhoods of the sets 6±

λ with respect to this parametrization. Here δ > 0 is a constant
small enough so that the closures 6+

λ (δ) and 6−

λ (δ) do not intersect each other. We also choose δ small
enough so that

b(6+

λ (δ))⊂6+

λ (δ), b−1(6−

λ (δ))⊂6−

λ (δ); (2-19)

this is possible by (2-18) and since 6±

λ are b-invariant.
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Σ−
λ Σ+

λ

Σ−
λ (δ) Σ+

λ (δ)

g

g ◦ b

α+

α−

Figure 6. The escape function g constructed in Lemma 2.9 and the function g ◦b, where
for simplicity we replace6±

λ by fixed points of the map b. The shaded regions correspond
to 6±

λ (δ) and the dashed lines correspond to α±.

Lemma 2.9. Let α+ < α− be two real numbers. Then there exists a function g ∈ C∞(∂�; R) such that:

(1) g(b(x))≤ g(x) for all x ∈ ∂�.

(2) g(b(x)) < g(x) for all x ∈ ∂� \ (6+

λ (δ)∪6
−

λ (δ)).

(3) g(x)≥ α+ for all x ∈ ∂�.

(4) g(x)≥ α− for all x ∈ ∂� \6+

λ (δ).

(5) g = α+ on some neighborhood of 6+

λ .

(6) For M ≫ 1, we have M(g(b(x))− g(x))+ g(x)≤ α+ for all x ∈ ∂� \6−

λ (δ).

See Figure 6.

Remark. We note that the same construction works for b−1 with the roles of 6±

λ reversed. Hence for
any real numbers α− < α+ we can find g ∈ C∞(∂�; R) such that:

(1) g(x)≤ g(b(x)) for all x ∈ ∂�.

(2) g(x) < g(b(x)) for all x ∈ ∂� \ (6+

λ (δ)∪6
−

λ (δ)).

(3) g(x)≥ α− for all x ∈ ∂�.

(4) g(x)≥ α+ for all x ∈ ∂� \6−

λ (δ).

(5) g = α− on some neighborhood of 6−

λ .

(6) For M ≫ 1, we have M(g(x)− g(b(x)))+ g(b(x))≤ α− for all x ∈ ∂� \6+

λ (δ).

Proof. In view of (2-19) there exists 0< δ1 < δ such that

b(6+

λ (δ))⊂6+

λ (δ1). (2-20)

(1) We first show that there exists N ≥ 0 such that

bN (∂� \6−

λ (δ))⊂6+

λ (δ1). (2-21)
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We argue by contradiction. Assume that (2-21) does not hold for any N. Then there exist sequences

x j ∈ ∂� \6−

λ (δ), m j → ∞, bm j (x j ) ̸∈6+

λ (δ1). (2-22)

Passing to subsequences, we may assume that x j → x∞ for some x∞ ∈ ∂�. Since x j ̸∈6−

λ (δ), we have
x∞ ̸∈ 6−

λ (δ) as well. Then by (2-19) the trajectory bk(x∞), k ≥ 0, does not intersect 6−

λ (δ). On the
other hand, by Lemma 2.4 this trajectory converges to 6λ =6−

λ ⊔6+

λ as k → ∞. Thus this trajectory
converges to 6+

λ ; in particular

there exists k ≥ 0 such that bk(x∞) ∈6+

λ (δ1).

Since x j → x∞, we have bk(x j )→ bk(x∞) as j →∞. Since6+

λ (δ1) is an open set, there exists j ≥ 0 such
that m j ≥ k and bk(x j )∈6

+

λ (δ1). But then by (2-20) we have bm j (x j )∈6
+

λ (δ1) which contradicts (2-22).

(2) Choose N such that (2-21) holds and fix a cutoff function

χ+ ∈ C∞

c (6
+

λ (δ); [0, 1]), χ+ = 1 on 6+

λ (δ1).

Define the function g̃ ∈ C∞(∂�; R) as an ergodic average of χ+:

g̃(x) :=
1
N

N−1∑
j=0

χ+(b j (x)) for all x ∈ ∂�.

It follows from the definition and (2-20) that

0 ≤ g̃(x)≤ 1 for all x ∈ ∂�,

g̃(x)= 1 for all x ∈6+

λ (δ1),

g̃(x)≤ 1 −
1
N

for all x ∈ ∂� \6+

λ (δ).

(2-23)

Next, we compute

g̃(b(x))− g̃(x)=
1
N
(χ+(bN (x))−χ+(x)).

It follows that
g̃(b(x))≥ g̃(x) for all x ∈ ∂�,

g̃(b(x))= g̃(x)+ 1
N

for all x ∈ ∂� \ (6+

λ (δ)∪6
−

λ (δ)).
(2-24)

Indeed, take arbitrary x ∈ ∂�. We have χ+(x)= 0 unless x ∈6+

λ (δ). By (2-21), we have χ+(bN (x))= 1
unless x ∈6−

λ (δ). Recalling that 0 ≤ χ+ ≤ 1 and 6+

λ (δ)∩6
−

λ (δ)= ∅, we get (2-24).

(3) Now put
g(x) := Nα− − (N − 1)α+ − N (α− −α+)g̃(x). (2-25)

Using (2-23) and (2-24), we see that the function g satisfies the first five properties, with the following
quantitative versions of parts (2) and (5):

g(b(x))− g(x)= α+ −α− < 0 for all x ∈ ∂� \ (6+

λ (δ)∪6
−

λ (δ)),

g(x)= α+ for all x ∈6+

λ (δ1).
(2-26)
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To prove part (6) we first use (2-25) and (2-26) to see that, for all M ≥ N and x ∈ ∂�\ (6+

λ (δ)∪6
−

λ (δ)),

M(g(b(x))− g(x))+ g(x)≤ α+. (2-27)

To establish (2-27) for x ∈ 6+

λ (δ) we use (2-20) and the fact that g|6+

λ (δ1)
= α+ by (2-26). Then, for

M ≥ 1 and x ∈6+

λ (δ), property (1) gives

M(g(b(x))− g(x))+ g(x)≤ g(b(x))= α+,

which completes the proof of the lemma. □

Remark. We discuss here the dependence of the objects in this section on the parameter λ. The
parametrization θ constructed in Lemma 2.8 depends smoothly on λ as follows immediately from its
construction (recalling from the proof of Lemma 2.6 that the period n is locally constant in λ). Next, for
each λ0 ∈ (0, 1) satisfying the Morse–Smale conditions there exists a neighborhood U (λ0) such that we
can construct a function g(x, λ) for each λ ∈ U (λ0) satisfying the conclusions of Lemma 2.9 in such
a way that it is smooth in λ. Indeed, the sets 6±

λ depend smoothly on λ by Lemma 2.6, so the cutoff
function χ+ can be chosen λ-independent. The function g(x, λ) is constructed explicitly using this cutoff,
the map b( • , λ), and the number N. The latter can be chosen λ-independent as well: if (2-21) holds for
some λ, then it holds with the same N and all nearby λ.

2.4. Domains with corners. We now discuss the case when the boundary of ∂� has corners. This includes
the situation when ∂� is a convex polygon, which is the setting of the experiments. Our results do not
apply to such domains; however, they apply to appropriate “roundings” of these domains described below.

We first define domains with corners. Let �⊂ R2 be an open set of the form

�= {x ∈ R2
| F1(x) > 0, . . . , Fk(x) > 0},

where F1, . . . , Fk : R2
→ R are C∞ functions such that:

(1) The set � := {F1 ≥ 0, . . . , Fk ≥ 0} is compact and simply connected.

(2) For each x ∈�, at most two of the functions F1, . . . , Fk vanish at x .

If only one of the functions F1, . . . , Fk vanishes at x ∈�, then we call x a regular point of the bound-
ary ∂� :=� \�. If two of the functions F1, . . . , Fk vanish at x ∈�, then we call x a corner of �. We
make the following natural nondegeneracy assumptions:

(3) If x ∈ ∂� is a regular point and F j (x)= 0, then d F j (x) ̸= 0.

(4) If x ∈ ∂� is a corner and F j (x) = F j ′(x) = 0, where j ̸= j ′, then d F j (x), d F j ′(x) are linearly
independent.

We call � a domain with corners if it satisfies the assumptions (1)–(4) above.
Since � is simply connected, the boundary ∂� is a Lipschitz continuous piecewise smooth curve. We

parametrize ∂� in the positively oriented direction by a Lipschitz continuous map

θ ∈ S1
:= R/Z 7→ x(θ) ∈ ∂�⊂ R2, (2-28)
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x(θ1)

x(θ2)x(θ3)

Figure 7. Left: a domain with corners and its ε-rounding (in blue). The circles have
radius ε. Right: a trajectory on a trapezium which converges to a corner.

where the corners are given by x(θ j ) for some θ1 < · · · < θm and the map (2-28) is smooth on each
interval [θ j , θ j+1]. See Figure 7.

We next extend the concept of λ-simplicity to domains with corners. Let ℓ∈ C∞(R2
; R) and x = x(θ j )

be a corner of �. Consider the one-sided derivatives ∂θ (ℓ ◦ x)(θ j ± 0). There are three possible cases:

(1) Both derivatives are nonzero and have the same sign — then we call x not a critical point of ℓ.

(2) Both derivatives are nonzero and have opposite signs — then we call x a nondegenerate critical point
of ℓ.

(3) At least one of the derivatives is zero — then we call x a degenerate critical point of ℓ.

If x = x(θ) is instead a regular point of the boundary, then we use the standard definition of critical points:
x is a critical point of ℓ if ∂θ (ℓ◦ x)(θ)= 0, and a critical point is nondegenerate if ∂2

θ (ℓ◦ x)(θ) ̸= 0. With
the above convention for critical points, we follow Definition 1.1: we say that a domain with corners � is
λ-simple if each of the functions ℓ±( • , λ) defined in (1-2) has exactly two critical points on ∂�, which
are both nondegenerate.

If � is λ-simple, then the involutions γ±( • , λ) : ∂�→ ∂� from (1-3) are well-defined and Lipschitz
continuous. Thus b = γ+

◦ γ− is an orientation-preserving bi-Lipschitz homeomorphism of ∂�. We now
revise the Morse–Smale conditions of Definition 1.2 as follows:

Definition 2.10. Let � be a domain with corners. We say that λ ∈ (0, 1) satisfies the Morse–Smale
conditions if:

(1) � is λ-simple.

(2) The set 6λ of periodic points of the map b( • , λ) is nonempty.

(3) The set 6λ does not contain any corners of �.

(4) For each x ∈6λ, we have ∂x bn(x, λ) ̸= 1, where n is the minimal period.

The new condition (3) in Definition 2.10 ensures that b is smooth near the γ±-invariant set 6λ, so
condition (4) makes sense. Without this condition we could have trajectories of b converging to a corner;
see Figure 7.
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We finally show that if � is a domain with corners satisfying the Morse–Smale conditions of
Definition 2.10 then an appropriate “rounding” of� satisfies the Morse–Smale conditions of Definition 1.2:

Proposition 2.11. Let � be a domain with corners and λ ∈ (0, 1) satisfy the Morse–Smale conditions
for �. Then there exists ε > 0 such that for any open simply connected �̂⊂ R2 with C∞ boundary and
such that

• �̂ is an ε-rounding of � in the sense that, for each x ∈ R2 which lies distance ≥ ε from all the
corners of �, we have x ∈� if and only if x ∈ �̂,

• the domain �̂ is λ-simple in the sense of Definition 1.1, and

the Morse–Smale conditions are satisfied for λ and �̂.

Proof. Fix a parametrization x(θ) of ∂� as in (2-28). Take a parametrization

θ ∈ S1
7→ x̂(θ) ∈ ∂�̂,

which coincides with x(θ) except ε-close to the corners:

x̂(θ)= x(θ) for all θ /∈
m⋃

j=1

I j (ε), I j (ε) := [θ j − Cε, θ j + Cε]. (2-29)

Here C denotes a constant depending on � and the parametrization x(θ), but not on �̂ or ε, whose precise
value might change from place to place in the proof.

Denote by γ±, γ̂± the involutions (1-3) corresponding to�, �̂, and consider them as homeomorphisms
of S1 using the parametrizations x, x̂ . Then by (2-29)

γ±(θ)= γ̂±(θ) if θ, γ±(θ) ̸∈

m⋃
j=1

I j (ε). (2-30)

Let b = γ+
◦ γ−, b̂ = γ̂+

◦ γ̂− be the chess billiard maps of �, �̂ and let 6λ, 6̂λ be the corresponding
sets of periodic trajectories. Choose ε > 0 such that the intervals I j (ε) do not intersect 6λ; this is
possible since 6λ does not contain any corners of �. Since 6λ is invariant under γ±, we see from (2-30)
that b = b̂ in a neighborhood of 6λ and thus 6λ ⊂ 6̂λ. That is, the periodic points for the original
domain � are also periodic points for the rounded domain �̂, with the same period n. It also follows that
∂x b̂n(x, λ)= ∂x bn(x, λ) ̸= 1 for all x ∈6λ.

It remains to show that 6̂λ ⊂6λ, that is the rounding does not create any new periodic points for b̂.
Note that all periodic points have the same period n, and it is enough to show that

b̂n(θ) ̸= θ for all θ ∈

m⋃
j=1

I j (ε). (2-31)

From (2-30), the monotonicity of γ±, γ̂±, and the Lipschitz continuity of γ± we have

|γ±(θ)− γ̂±(θ)| ≤ Cε for all θ ∈ S1.



20 SEMYON DYATLOV, JIAN WANG AND MACIEJ ZWORSKI

α

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r(
)

Figure 8. Left: the chess billiard for �α in Example 2.12. The numbers in bold mark
the values of the coordinate θ at the vertices. Right: rotation numbers as functions of λ
for �π/10.

Iterating this and using the Lipschitz continuity of γ± again, we get

|bn(θ)− b̂n(θ)| ≤ Cε for all θ ∈ S1.

Since bn(θ j ) ̸= θ j for all j = 1, . . . ,m, taking ε small enough we get (2-31), finishing the proof. □

2.5. Examples of Morse–Smale chess billiards. Here we present two examples of Morse–Smale chess
billiards.

Example 2.12. For α ∈
(
0, π2

)
, let �α ⊂ R2 be the open square with vertices (0, 0), (cosα, sinα),

√
2
(
cos

(
α +

π
4

)
, sin

(
α +

π
4

))
,

(
cos

(
α +

π
2

)
, sin

(
α +

π
2

))
. (See Figure 8.) We parametrize ∂�α by

θ ∈ R/4Z so that the parametrization x(θ) is affine on each side of the square and the vertices listed
above correspond to θ = 0, 1, 2, 3 respectively. For λ ∈ (0, 1), we define

β ∈
(
0, π2

)
, tanβ =

√
1 − λ2/λ, t1 := tan(β −α), t2 := tan(β +α).

We will show that if

0< α < π
8 ,

π
4 −α < β < π

4 +α,

or equivalently

0< α < π
8 , cos

(
π
4 +α

)
< λ < cos

(
π
4 −α

)
, (2-32)

then λ and �α satisfy the Morse–Smale conditions (Definition 2.10). Moreover, for α, λ satisfying (2-32),
we have (identifying θ with x(θ))

6λ =

{
1 − t1
t2 − t1

, 1 +
t1(t2 − 1)

t2 − t1
, 2 +

1 − t1
t2 − t1

, 3 +
t1(t2 − 1)

t2 − t1

}
, (2-33)

and the rotation number is r(λ)=
1
2 .
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In fact, assume α, λ satisfy (2-32); then ℓ+( • , λ) has exactly two nondegenerate critical points x(0),
x(2) on ∂�α , and ℓ−( • , λ) also has two nondegenerate critical points x(1), x(3) on ∂�. This shows that
�α is λ-simple.

We have the following partial computation of the reflection maps γ± (note that 0< t1 < 1< t2 <∞

by (2-32)):

γ+(θ)=

{
t−1
2 (2 − θ)+ 2, 1 ≤ θ ≤ 2,

t−1
2 (4 − θ), 3 ≤ θ ≤ 4,

γ−(θ)=

{
t1(1 − θ)+ 1, 0 ≤ θ ≤ 1,
t1(3 − θ)+ 3, 2 ≤ θ ≤ 3.

(2-34)

This in particular implies that we have the mapping properties

[0, 1]
γ−

−→ [1, 2]
γ+

−→ [2, 3]
γ−

−→ [3, 4]
γ+

−→ [0, 1]. (2-35)

Recall that b = γ+
◦ γ−. We compute

b2(θ)=

(
t1
t2

)2

θ +
(t1 + t2)(1 − t1)

t2
2

, θ ∈ [0, 1]. (2-36)

By solving b2(θ0)= θ0, θ0 ∈ [0, 1], we find θ0 = (1 − t1)/(t2 − t1) and

{θ0, γ
−(θ0), b(θ0), γ

+(θ0)} ⊂6λ.

This shows that the right-hand side of (2-33) lies in 6λ and that the rotation number is r(λ)=
1
2 . On the

other hand, suppose θ1 ∈ R/4Z and θ1 ∈ 6λ. If θ1 ∈ [0, 1], then θ1 = θ0 by (2-36). If θ1 ∈ [2, 3], then
b(θ1) ∈ 6λ ∩ [0, 1] and thus θ1 = b(θ0). If θ1 ∈ [1, 2], then γ+(θ1) ∈ 6λ ∩ [2, 3] and thus θ1 = γ−(θ0).
Finally, if θ1 ∈ [3, 4], then γ+(θ1) ∈6λ ∩ [0, 1] and thus θ1 = γ+(θ0). This shows (2-33).

Using (2-36) and the fact that b2 commutes with b and is conjugated by γ± to b−2 we compute

∂θb2(θ)=

{
t2
1/t2

2 < 1, θ ∈ {θ0, b(θ0)},

t2
2/t2

1 > 1, θ ∈ {γ−(θ0), γ
+(θ0)}.

We have now checked that under the condition (2-32), �α and λ satisfy all conditions in Definition 2.10.

Example 2.13. Let Td ⊂ R2 be the open trapezium with vertices (0, 0), (1 + d, 0), (1, 1), (0, 1), d > 0.
(See Figure 9.) We parametrize ∂Td by θ ∈ R/4Z so that the parametrization x(θ) is affine on each side
of the trapezium and the vertices listed above correspond to θ = 0, 1, 2, 3 respectively.

For λ ∈ (0, 1), we put c = λ/
√

1 − λ2. We assume that

max(1, d) < c < d + 1. (2-37)

Under the condition (2-37) we know ℓ+( • , λ) has exactly two nondegenerate critial points x(0), x(2);
ℓ−( • , λ) also has two nondegenerate critical points x(1), x(3). Hence Td is λ-simple.

We have the following partial computation of the reflection maps γ±:

γ+(θ)=

2 + (c − d)(2 − θ), 1 ≤ θ ≤ 2,
c

1+d
(4 − θ), 3 ≤ θ ≤ 4,

γ−(θ)=


1+d
c+d

(1 − θ)+ 1, 0 ≤ θ ≤ 1,

1
c
(3 − θ)+ 3, 2 ≤ θ ≤ 3.

(2-38)



22 SEMYON DYATLOV, JIAN WANG AND MACIEJ ZWORSKI

1

d10
1

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r(
)

Figure 9. Left: the chess billiard for Td in Example 2.13. Right: rotation numbers as
functions of λ for T1/2.

This in particular implies that we again have the mapping properties (2-35). From here we compute

b2(θ)=
c − d
c + d

θ +
2c(c − 1)

(1 + d)(c + d)
, θ ∈ [0, 1].

The fixed point of this map is

θ0 =
c(c − 1)
d(1 + d)

.

Arguing as in Example 1, we see that Td , λ satisfy the conditions of Definition 2.10, with

6λ =

{
c(c − 1)
d(1 + d)

, 2 −
c − 1

d
, 3 − c +

c(c − 1)
d

, 4 −
c − 1

d

}
.

3. Microlocal preliminaries

In this section we present some general results needed in the proof. Most of the microlocal analysis in
this paper takes place on the one-dimensional boundary ∂�; we review the basic notions in Section 3.1.
In Section 3.2 we review definitions and basic properties of conormal distributions (needed in dimensions 1
and 2). These are used to prove and formulate Theorem 1.3: the singularities of (P − λ2

∓ i0)−1 f using
conormal distributions. In our approach, this structure of (P −λ2

∓ i0)−1 f is essential for describing the
long-time evolution profile in Theorem 1.4. Finally, Sections 3.3–3.4 contain technical results needed
in Section 4.

3.1. Microlocal analysis on ∂�. We first briefly discuss pseudodifferential operators on the circle
S1

= R/Z, referring to [Hörmander 1994, §18.1] for a detailed introduction to the theory of pseudodiffer-
ential operators. Pseudodifferential operators on S1 are given by quantizations of 1-periodic symbols.
More precisely, if 0 ≤ δ < 1

2 and m ∈ R, then we say that a ∈ C∞(R2) lies in Sm
δ (T

∗S1) if (letting
⟨ξ⟩ :=

√
1 + |ξ |2)

a(x + 1, ξ)= a(x, ξ), |∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ⟨ξ⟩m+δα−(1−δ)β . (3-1)



MATHEMATICS OF INTERNAL WAVES IN A TWO-DIMENSIONAL AQUARIUM 23

For brevity we just write Sm
δ := Sm

δ (T
∗S1). Each a ∈ Sm

δ is quantized by the operator Op(a) : C∞(S1)→

C∞(S1), D′(S1)→ D′(S1) defined by

Op(a)u(x)=
1

2π

∫
R2

ei(x−y)ξa(x, ξ)u(y) dy dξ, (3-2)

where u ∈ C∞(R) is 1-periodic and the integral is understood in the sense of oscillatory integrals
[Hörmander 1990, §7.8]. We introduce the following spaces of pseudodifferential operators:

9m
δ := {Op(a) : a ∈ Sm

δ }, 9m+

δ =

⋂
m′>m

9m′

δ , 9m
δ+ =

⋂
δ′>δ

9m
δ′ ,

Sm+

δ =

⋂
m′>m

Sm′

δ , Sm
δ+ =

⋂
δ′>δ

Sm
δ′ .

We remark that Sm
δ+ ⊂ Sm+

δ ; moreover, a ∈ Sm+

δ lies in Sm
δ+ if and only if a(x, ξ)=O(⟨ξ⟩m). We henceforth

define 9m
:=9m

0 . The space 9−∞
:=

⋂
m 9

m consists of smoothing operators.
In terms of Fourier series on S1, we have

Op(a)u(x)=

∑
k,n∈Z

e2π inxan−k(k)uk,

aℓ(k) :=

∫ 1

0
a(x, 2πk)e−2π iℓx dx, uk :=

∫ 1

0
u(x)e−2π ikx dx .

(3-3)

This shows that Op(a) does not determine a uniquely. This representation also shows boundedness on
Sobolev spaces Op(a) : H s(S1)→ H s−m(S1), s ∈ R, a ∈ Sm

δ . Indeed, smoothness of a in x shows that
aℓ(k)=O(⟨ℓ⟩−∞

⟨k⟩
m) and the bound on the norm follows from the Schur criterion [Dyatlov and Zworski

2019a, (A.5.3)]. Despite the fact that A := Op(a) does not determine a uniquely, it does determine its
essential support, which is the right-hand side in the definition of the wave front set of a pseudodifferential
operator:

WF(A) := ∁
{
(x, ξ) : ξ ̸= 0, there exists ρ > 0 such that a(y, η)=O(⟨η⟩−∞) when |x − y|<ρ,

η

ξ
> 0

}
;

see [Dyatlov and Zworski 2019a, §E.2]. We refer to that section and [Hörmander 1994, §18.1] for a
discussion of wave front sets. We also recall a definition of the wave front set of a distribution,

WF(u) :=

⋂
Au∈C∞,A∈90

Char(A),

Char(A) := ∁
{
(x, ξ) : ξ ̸= 0, there exists ρ, c> 0 such that |a(y, η)|> c, |x − y|<ρ,

η

ξ
> 0, |η|>

1
ρ

}
The symbol calculus on S1 translates directly from the symbol calculus of pseudodifferential operators

on R. We record in particular the composition formula [Hörmander 1994, Theorem 18.1.8]: for b1 ∈ Sm1
δ ,

b2 ∈ Sm2
δ ,

Op(b1)Op(b2)= Op(b), b ∈ Sm1+m2
δ ,

b(x, ξ)= exp(−i∂y∂η)[b1(x, η)b2(y, ξ)]|(y,η)=(x,ξ),

b(x, ξ)=

∑
0≤k<N

(−i)k

k!
∂k
ξ b1(x, ξ) ∂k

x b2(x, ξ)+ bN (x, ξ), bN ∈ Sm−N (1−2δ)
δ ,

(3-4)

where expanding the exponential gives an asymptotic expansion of b.
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We record here a norm bound for pseudodifferential operators at high frequency:

Lemma 3.1. Assume that a ∈ S0
δ , r ∈ S−1+, and sup |a| ≤ R. Then, for all N, ν > 0, and u ∈ L2(S1) we

have

∥ Op(a + r)u∥L2 ≤ (R + ν)∥u∥L2 + C∥u∥H−N , (3-5)

where the constant C depends on R, ν, N, and some seminorms of a and r but not on u.

Proof. By [Grigis and Sjöstrand 1994, Lemma 4.6] we can write

(R + ν)2 I = Op(a + r)∗ Op(a + r)+ Op(b)∗ Op(b)+ Op(q)

for some b ∈ S0
δ and q ∈ S−∞. The bound (3-5) follows. □

Although a in (3-3) is not unique, the principal symbol of Op(a) defined as

σ(Op(a))= [a] ∈ Sm
δ /Sm−1+2δ

δ (3-6)

is, and we have a short exact sequence 0 →9m−1+2δ
δ →9m

δ

σ
−→ Sm

δ /Sm−1+2δ
δ → 0. Somewhat informally,

we write σ(Op(a))= b for any b satisfying a − b ∈ Sm−1+2δ
δ .

In our analysis, we also consider families ε 7→ aε, ε ≥ 0, such that aε ∈ S−∞ for ε > 0 and a0 ∈ Sm
δ .

In that case, for Aε = Op(aε),

σ(Aε)= [bε], bε − aε ∈ Sm−1+2δ
δ uniformly for ε ≥ 0. (3-7)

Again, we drop [ • ] when writing σ(A) for a specific operator.
We will crucially use mild exponential weights which result in pseudodifferential operators of varying

order — see [Unterberger 1971], and in a related context [Faure et al. 2008].

Lemma 3.2. Suppose that (in the sense of (3-1)) m j ∈ S0, m0 is real-valued, and

G(x, ξ) := m0(x, ξ) log⟨ξ⟩ + m1(x, ξ), m0(x, tξ)= m0(x, ξ), t, |ξ | ≥ 1. (3-8)

Then

eG
∈ SM

0+
, e−G

∈ S−m
0+
, M := max

|ξ |=1
m0(x, ξ), m := min

|ξ |=1
m0(x, ξ), (3-9)

and there exists rG ∈ S−1+ such that

Op(eG)Op(e−G(1 + rG))− I, Op(e−G(1 + rG))Op(eG)− I ∈9−∞. (3-10)

Also, if G j (x, ξ) are given by (3-8) with m0 and m1 replaced by m0 j , m1 j , respectively, then, for a j ∈ S0,
r j ∈ S−1+, j = 1, 2, there exists r3 ∈ S−1+ such that

Op(eG1(a1 + r1))Op(eG2(a2 + r2))= Op(eG1+G2(a1a2 + r3)). (3-11)

Proof. Since log⟨ξ⟩=Oε(⟨ξ⟩ε) for all ε > 0, (3-9) follows from (3-1). In fact, we have the stronger bound

|∂αx ∂
β
ξ (e

±G(x,ξ))| ≤ Cαβεe±G(x,ξ)
⟨ξ⟩ε−|β|, ε > 0. (3-12)
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This gives (3-11). Indeed, the remainder in the expansion (3-4) is in SM1+M2−N+ and the k-th term is
in eG1+G2 S−k+ by (3-12); it suffices to take N ≥ M + M2 + 1.

To obtain (3-10) we note that (3-11) gives Op(e±G)Op(e∓G)= I −Op(r±), r± ∈ S−1+. We then have
parametrices for the operators I −Op(r±) [Hörmander 1994, Theorem 18.1.9], I +Op(b±), which give left
and right approximate inverses (in the sense of (3-10)) (I + Op(b−))Op(e−G), Op(e−G)(I + Op(b+)).
Those have the required form by (3-11) (where one of G1,G2 is equal to −G and the other one is
equal to 0). □

We also record a change of variables formula. Suppose f : R/Z → R/Z is a diffeomorphism with a
lift f : R → R, f (x + 1) = f (x)± 1 (with “+” for orientation-preserving f and “−” otherwise). For
symbols 1-periodic in x we can use the standard formula given in [Hörmander 1994, Theorem 18.1.17]
and an argument similar to (3-11). That gives, for G given by (3-8), and r ∈ S−1+,

f ∗
◦ Op(eG(1 + r))= Op(eG f (1 + r f )) ◦ f ∗,

G f (x, ξ) := G( f (x), f ′(x)−1ξ), r f ∈ S−1+.
(3-13)

In Section 4.6 below we will use pseudodifferential operators acting on 1-forms on S1. Using the
canonical 1-form dx , x ∈ S1

= R/Z, we identify 1-forms with functions, and this gives an identification
of the class 9m

δ (S
1
; T ∗S1) (operators acting on 1-forms) with 9m

δ (S
1) (operators acting on functions).

This defines the principal symbol map, which we still denote by σ .
Fixing a positively oriented coordinate θ : ∂�→ S1, we can identify functions/distributions on ∂� with

functions/distributions on S1. The change of variables formula used for (3-13) also shows the invariance
of σ(A) under changes of variables and allows pseudodifferential operators acting on section of bundles —
see [Hörmander 1994, Definition 18.1.32]. In particular, we can define the class of pseudodifferential
operators 9m

δ (∂�; T ∗∂�) acting on 1-forms on ∂� and the symbol map

σ :9m
δ (∂�; T ∗∂�)→ Sm

δ (T
∗∂�)/Sm−1+2δ

δ (T ∗∂�), (3-14)

with the class 9m
δ and the map σ independent of the choice of coordinate on ∂�.

3.2. Conormal distributions. We now review conormal distributions associated to hypersurfaces, referring
the reader to [Hörmander 1994, §18.2] for details. Although we consider the case of manifolds with
boundaries, the hypersurfaces are assumed to be transversal to the boundaries and conormal distributions
are defined as restrictions of conormal distributions in the no-boundary case.

Let M be a compact m-dimensional manifold with boundary and 6 ⊂ M be a compact hypersurface
transversal to the boundary (that is, 6 is a compact codimension-1 submanifold of M with boundary
∂6=6∩∂M and Tx6 ̸= Tx∂M for all x ∈∂6). We should emphasize that in our case, the hypersurfaces6
take a particularly simple form: we either have M =� and 6 given by straight lines transversal to ∂�
(see Theorems 1.3 and 1.4) or M = ∂�≃ S1 and 6 is given by points (see Propositions 7.3 and 7.4).

The conormal bundle to 6 is given by N ∗6 := {(x, ξ) ∈ T ∗M : x ∈ 6, ξ |Tx6 = 0}, which is a
Lagrangian submanifold of T ∗M and a one-dimensional vector bundle over 6. For k ∈ R, define the
symbol class Sk(N ∗6) consisting of functions a ∈ C∞(N ∗6) satisfying the derivative bounds

|∂αx ∂
β
θ a(x, θ)| ≤ Cαβ⟨θ⟩k−|β|, (3-15)
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where we use local coordinates (x, θ) ∈ Rm−1
× R ≃ N ∗6. Here x is a coordinate on 6 and θ is a

linear coordinate on the fibers of N ∗6; ⟨θ⟩ :=
√

1 + |θ |2. The estimates (3-15) are supposed to be valid
uniformly up to the boundary of 6. In other words we can consider a as a restriction of a symbol defined
on an extension of 6.

Denote by I s(M, N ∗6) ⊂ D′(M◦) the space of extendible distributions on the interior M◦ (see
[Hörmander 1994, §B.2]) which are conormal to 6 of order s ∈ R smoothly up to the boundary of M. To
describe the class I s we first consider two model cases:

• If M = Rm, we write points in Rm as (x1, x ′)∈ R×Rm−1, and 6= {x1 = 0}, then a compactly supported
distribution u ∈ E ′(Rm) lies in I s(M, N ∗6) if and only if its Fourier transform in the x1-variable, ǔ(ξ1, x ′),
lies in Sm/4−1/2+s(N ∗6), where N ∗6 = {(0, x ′, ξ1, 0) | x ′

∈ Rm−1, ξ1 ∈ R}.

• If M = Rx1 ×[0,∞)x2 ×Rm−2
x ′′ and 6 = {x1 = 0, x2 ≥ 0}, then a distribution u ∈D′(M◦) with bounded

support lies in I s(M, N ∗6) if and only if u = ũ|M◦ for some ũ ∈ E ′(Rm) which lies in I s(Rm, N ∗6̃),
with 6̃ := {x1 = 0} ⊂ Rm. Alternatively, ǔ(ξ1, x ′) lies in Sm/4−1/2+s(N ∗6), where the derivative bounds
are uniform up to the boundary.

In those model cases, elements of I s(M, N ∗6) are given by the oscillatory integrals (where we use the
prefactor from [Hörmander 1994, Theorem 18.2.9])

u(x)= (2π)−m/4−1/2
∫

R

ei x1ξ1a(x ′, ξ1) dξ1, a ∈ Sm/4−1/2+s(N ∗
{x1 = 0}). (3-16)

We note that in both of the above cases the distribution u is in C∞(M) (up to the boundary in the second
case) outside of any neighborhood of 6.

For the case of general compact manifold M and hypersurface 6 transversal to the boundary of M, we
say that u ∈ I s(M, N ∗6) if (see [Hörmander 1994, Theorem 18.2.8])

(1) u is in C∞(M) (up to the boundary) outside of any neighborhood of 6, and

(2) the localizations of u to the model cases using coordinates lie in I s as defined above.

Note that the wavefront set of any u ∈ I s(M, N ∗6), considered as a distribution on the interior M◦, is
contained in N ∗6.

In addition we define the space

I s+(M, N ∗6) :=

⋂
s′>s

I s′

(M, N ∗6).

Such spaces are characterized in terms of the Sobolev spaces (where for simplicity assume that M has no
boundary, since this is the only case used in this paper), H s−(M) :=

⋂
s′<s H s′

(M), as follows:

u ∈ I s+(M, N ∗6) ⇐⇒

for any vector fields X1, . . . , Xℓ on M tangent to 6, we have X1 · · · Xℓ u ∈ H−m/4−s−(M); (3-17)

see [Hörmander 1994, Definition 18.2.6 and Theorem 18.2.8].
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Assume now that the conormal bundle N ∗6 is oriented; for (x, ξ) ∈ N ∗6 \ 0 we say that ξ > 0 if ξ is
positively oriented and ξ < 0 if ξ is negatively oriented. This gives the splitting

N ∗6 \ 0 = N ∗

+
6 ⊔ N ∗

−
6, N ∗

±
6 := {(x, ξ) ∈ N ∗6 | ±ξ > 0}. (3-18)

Denote by I s(M, N ∗
±
6) the space of distributions u ∈ I s(M, N ∗6) such that WF(u)⊂ N ∗

±
6, up to the

boundary. Since 6 is transversal to the boundary this means that an extension of u satisfies this condition.
In the model case (and effectively in the cases considered in this paper) M = Rm, 6 = {x1 = 0} they can
be characterized as follows: ǔ(ξ1, x ′) lies in Sm/4−1/2+s(N ∗6) and ǔ(ξ1, x ′)= O(⟨ξ1⟩

−∞) as ξ1 → ∓∞.
In the present paper we will often study the case when M = ∂�, identified with S1 by a coordinate θ ,

and we are given two finite sets 6+, 6−
⊂ ∂�, with 6+

∩6−
= ∅. We define

I s(∂�, N ∗

+
6−

⊔ N ∗

−
6+) := I s(∂�, N ∗

+
6−)+ I s(∂�, N ∗

−
6+). (3-19)

Put 6 := 6+
⊔ 6−. Then I s(∂�, N ∗

+
6−

⊔ N ∗
−
6+) consists of the elements of I s(∂�; N ∗6) with

wavefront set contained in N ∗
+
6−

⊔ N ∗
−
6+.

Assume that 6 has an even number of points (which will be the case in our application) and fix a
defining function ρ ∈C∞(∂�; R) of6: that is,6=ρ−1(0) and dρ ̸=0 on6. Fix also a pseudodifferential
operator A6 ∈90(∂�) such that WF(A6)∩(N ∗

+
6−

⊔ N ∗
−
6+)=∅ and A6 is elliptic on N ∗

−
6−

⊔ N ∗
+
6+.

Using (3-17), we see that u ∈ D′(∂�) lies in I s+(∂�, N ∗
+
6−

⊔ N ∗
−
6+) if and only if the following

seminorms are finite:

∥(ρ∂θ )
N u∥H−1/4−s−β , ∥A6u∥H N for all N ∈ N0, β > 0. (3-20)

Choosing different ρ and A6 leads to an equivalent family of seminorms (3-20). In particular, if ρ, A6
are as above and Ã6 ∈ 90(∂�) satisfies WF( Ã6) ∩ (N ∗

+
6−

⊔ N ∗
−
6+) = ∅ then WF( Ã6) lies in the

union of {ρ ̸= 0} and the elliptic set of A6 ; thus by the elliptic estimate we have for N0 ≥ N +
1
4 + s +β

∥ Ã6u∥H N ≤ C(∥A6u∥H N + ∥(ρ∂θ )
N0u∥H−1/4−s−β + ∥u∥H−1/4−s−β ). (3-21)

Moreover, the operator ρ∂θ is bounded with respect to the seminorms (3-20), as are pseudodifferential
operators in 90(∂�) [Hörmander 1994, Theorem 18.2.7].

We will also need the notion of conormal distributions depending smoothly on a parameter — see
[Dyatlov and Zworski 2019b, Lemma 4.4] for a more general Lagrangian version. Here we restrict
ourselves to the specific conormal distributions appearing in this paper and define relevant smooth families
of conormal distributions in Proposition 7.4 and Lemma 8.3.

We will not discuss principal symbols of general conormal distributions to avoid introducing half-
densities; however, we give here a special case of the way the principal symbol changes under pseudodif-
ferential operators and under pullbacks:

Lemma 3.3. Assume that u ∈ E ′(R) lies in I s(R, {0}), that is, û ∈ Ss−1/4(R). Then:

(1) If a(x, ξ) ∈ S0(T ∗R) is compactly supported in the x-variable and Op(a) is defined by (3-2), then

Ôp(a)u(ξ)= a(0, ξ)û(ξ)+ Ss−5/4(R). (3-22)
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(2) If f is a diffeomorphism of open subsets of R such that f (0)= 0 and the range of f contains supp u,
then

f̂ ∗u(ξ)=
1

| f ′(0)|
û
(

ξ

f ′(0)

)
+ Ss−5/4(R). (3-23)

Proof. Since these statements are standard, we only sketch the proofs, referring to [Hörmander 1994,
Theorems 18.2.9 and 18.2.12] for details. To see (3-22) we use the formula

Ôp(a)u(ξ)=
1

2π

∫
R2

ei x(η−ξ)a(x, η)û(η) dη dx .

Assume that |ξ | ≥ 1. Using a smooth partition of unity, we split the integral above into two pieces: one
where |η− ξ | ≥

1
4 |ξ | and another one where |η− ξ | ≤

1
2 |ξ |. The first piece is rapidly decaying in ξ

by integration by parts in x . The second piece is equal to a(0, ξ)û(ξ)+ Ss−5/4(R) by the method of
stationary phase.

To see (3-23) we fix a cutoff χ ∈ C∞
c (R) such that suppχ lies in the range of f and χ = 1 near supp u.

Using the Fourier inversion formula, we write

f̂ ∗u(ξ)=
1

2π

∫
R2

ei( f (x)η−xξ)χ( f (x))û(η) dη dx .

Now (3-23) is proved similarly to (3-22). Here in the application of the method of stationary phase,
the critical point is given by x = 0, η = ξ/ f ′(0) and the Hessian of the phase at the critical point has
signature 0 and determinant − f ′(0)2. □

3.3. Convolution with logarithm. In Section 4 we need information about mapping properties between
spaces of conormal distributions on the boundary and conormal distributions in the interior. In preparation
for Lemma 4.8 below we now prove the following:

Lemma 3.4. Let f ∈ C∞
c (R) and define

g(x) :=

∫
∞

0
log |x − y|

f (y)
√

y
dy, x > 0. (3-24)

Then g ∈ C∞([0,∞)).

Remark. In general g is not smooth on (−∞, 0]. In fact, changing variables y = s2
|x |, we obtain (see

(3-25) below)

g′(x)= −2|x |
−1/2

∫
∞

0

f (s2
|x |)

1 + s2 ds, x < 0,

which blows up as x → 0− if f (0) ̸= 0. This, and the conclusion of Lemma 3.4, can also be seen from
analysis on the Fourier transform side.

Proof. Let x−1/2
+ := H(x)x−1/2, where H(x) is the Heaviside function: H(x)= 1 for x > 0 and H(x)= 0

for x < 0. Since g is the convolution of log |x | and x−1/2
+ f (x), which are both smooth except at x = 0, the

function g is smooth on (0,∞). Thus it suffices to prove that g is smooth on [0, 1] up to the boundary.
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√
x−

√
x

1−1 2−2

Figure 10. The contour 0 used in the proof of Lemma 3.4. The dashed lines are the cuts
needed to define the function ψx(z).

(1) Assume first that f is real-valued and extends holomorphically to the disk {|z| < 4}. Making the
change of variables y := t2, we write

g(x)= 2
∫

∞

0
log |t2

− x | f (t2) dt =

∫
R

log |t2
− x | f (t2) dt. (3-25)

Assume that x ∈ (0, 1] and consider the holomorphic function

ψx(z) := log(z −
√

x)+ log(z +
√

x), z ∈ C \
(
(
√

x − i[0,∞))∪ (−
√

x − i[0,∞))
)
,

where we use the branch of the logarithm on C \ −i[0,∞) which takes real values on (0,∞). Then
Reψx(t)= log |t2

− x | for all t ∈ R \ {
√

x,−
√

x}.
Fix an x-independent contour 0 = {t + iw(t) | t ∈ R} ⊂ C such that w(t)≥ 0 everywhere, w(t)= 0

for |t | ≥
3
2 , |t + iw(t)|< 2 for |t | ≤

3
2 , and w(t) > 0 for |t | ≤ 1. (See Figure 10.) Deforming the contour

in (3-25), we get

g(x)= Re
∫
0

ψx(z) f (z2) dz for all x ∈ (0, 1].

Since ∂xψx(z)= (x−z2)−1, the function ψx(z) and all its x-derivatives are bounded uniformly in x ∈ (0, 1]

and locally uniformly in z ∈ 0. It follows that g is smooth on the interval [0, 1].

(2) For the general case, fix a cutoff χ ∈ C∞
c (R) such that χ = 1 near [−4, 4]. Take arbitrary N ∈ N.

Using the Taylor expansion of f at 0, we write

f (x)= f1(x)+ f2(x), f1(x)= p(x)χ(x),

where p is a polynomial of degree at most N and f2 ∈ C∞
c (R) satisfies f2(x)=O(|x |

N+1) as x → 0. We
write g = g1 + g2, where g j are constructed from f j using (3-24).

By step (1) of the present proof, we see that g1 is smooth on [0, 1]. On the other hand, x−1/2
+ f2(x) ∈

C N (R); since log |x | is locally integrable we get g2 ∈ C N ([0, 1]). Since N can be chosen arbitrary, this
gives g ∈ C∞([0, 1]) and finishes the proof. □

We also give the following general mapping property of convolution with logarithm on conormal
spaces used in Lemma 4.9 below:
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Lemma 3.5. Let 6 ⊂ R be a finite set and put log± x := log(x ± i0). Then

f ∈ I s(R, N ∗

±
6)∩ E ′(R) =⇒

{
log± ∗ f ∈ I s−1(R, N ∗

±
6),

log∓ ∗ f ∈ C∞(R).

Proof. Assume that f ∈ I s(R, N ∗
+
6)∩ E ′(R) (the case of N ∗

−
6 is handled similarly). We may reduce to

the case 6 = {0}. Since ∂x is an elliptic operator, the local definition (3-16) (with no x ′-variable) shows
that it is enough to prove

∂x log+ ∗ f ∈ I s(R, N ∗

+
{0}), ∂x log− ∗ f ∈ C∞(R).

It remains to use that ∂x log± = (x ± i0)−1 and we have the Fourier transform formula (see [Hörmander
1990, Example 7.1.17]; here H is the Heaviside function)

u±0(x) := (x ± i0)−1
=⇒ û±0(ξ)= ∓2π i H(±ξ), (3-26)

completing the proof. □

3.4. Microlocal structure of (x ± iεψ(x))−1. In this section we study the behavior as ε → 0+ of
functions of the form

χ(x, ε)(x ± iεψ(x, ε))−1
∈ C∞(J ), 0< ε < ε0, (3-27)

where J ⊂ R is an open interval containing 0 and

χ,ψ ∈ C∞(J × [0, ε0); C), Reψ > 0 on J × [0, ε0). (3-28)

We first decompose (3-27) into the sum of r(x ± iεz)−1, where r, z ∈ C depend on ε but not on x , and a
function which is smooth uniformly in ε:

Lemma 3.6. Under the conditions (3-28) we have for all ε ∈ (0, ε0)

χ(x, ε)(x ± iεψ(x, ε))−1
= r±(ε)(x ± iεz±(ε))−1

+ q±(x, ε), (3-29)

where r±, z±
∈ C∞([0, ε0)) and q±

∈ C∞(J × [0, ε0)) are complex-valued, Re z± > 0 on [0, ε0),
z±(0)= ψ(0, 0), and χ(x, 0)= xq±(x, 0)+ r±(0).

Proof. Since (x ± iεψ(x, ε))−1 is a smooth function of (x, ε) ∈ J ×[0, ε0) outside of (0, 0), it is enough
to show that (3-29) holds for |x |, ε small enough.

The complex-valued function F±(x, ε) := x ± iεψ(x, ε) is smooth in (x, ε) ∈ J ×[0, ε0) and satisfies
F±(0, 0) = 0 and ∂x F±(0, 0) = 1. Thus by the Malgrange preparation theorem [Hörmander 1990,
Theorem 7.5.6], we have for (x, ε) in some neighborhood of (0, 0) in J × [0, ε0)

x = q±

1 (x, ε)(x ± iεψ(x, ε))+ r±

1 (ε),

where q±

1 , r±

1 are smooth. Taking ε = 0 we get r±

1 (0)= 0 and q±

1 (x, 0)= 1; differentiating in ε and then
putting x = ε = 0 we get ∂εr±

1 (0)= ∓iψ(0, 0). We put z±(ε) := ±iε−1r±

1 (ε), so that when ε > 0

(x ± iεψ(x, ε))−1
= q±

1 (x, ε)(x ± iεz±(ε))−1. (3-30)

Note that z±(0)= ψ(0, 0) and thus Re z±(ε) > 0 for small ε.
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Now, we use the Malgrange preparation theorem again, this time for the function F±(x, ε) := x ±

iεz±(ε), to get for (x, ε) in some neighborhood of (0, 0) in J × [0, ε0)

χ(x, ε)q±

1 (x, ε)= q±(x, ε)(x ± iεz±(ε))+ r±(ε),

where q±, r± are again smooth. Taking ε = 0 we get χ(x, 0)= xq±(x, 0)+ r±(0). Together with (3-30)
this gives the decomposition (3-29). □

As an application of Lemma 3.6, we give:

Lemma 3.7. Assume that ψ satisfies (3-28). Then we have for all s <−
1
2

(x ± iψ(x, ε))−1
→ (x ± i0)−1 as ε→ 0 + in H s

loc(J ). (3-31)

Proof. Put χ ≡ 1 and let z±(ε), r±(ε), q±(x, ε) be given by Lemma 3.6; note that 1 = xq±(x, 0)+r±(0);
thus r±(0)= 1 and q±(x, 0)= 0. We have

(x ± iεz±(ε))−1
→ (x ± i0)−1 in H s(R).

Indeed, the Fourier transform of the right-hand side is equal to ∓2π i H(±ξ) by (3-26) and the Fourier
transform of the left-hand side is equal to ∓2π i H(±ξ)e−εz±(ε)|ξ | by

u±z(x) := (x ± i z)−1, Re z > 0 =⇒ û±z(ξ)= ∓2π i H(±ξ)e−z|ξ |. (3-32)

We have convergence of these Fourier transforms in L2(R; ⟨ξ⟩2s dξ) by the dominated convergence
theorem.

By (3-29) this implies that the left-hand side of (3-31) converges in H s
loc(J ) to

r±(0)(x ± i0)−1
+ q±(x, 0)= (x ± i0)−1,

which finishes the proof. □

The functions r±, z±, q± in Lemma 3.6 are not uniquely determined by χ,ψ ; however, they are unique
up to O(ε∞):

Lemma 3.8. Assume that r±

j , z±

j ∈ C∞([0, ε0)), j = 1, 2, are complex-valued functions such that
Re z±

j > 0 on [0, ε0), r±

j (0) ̸= 0, and

q̃±(x, ε) := r±

1 (ε)(x ± iεz±

1 (ε))
−1

− r±

2 (ε)(x ± iεz±

2 (ε))
−1

∈ C∞(J × [0, ε0)).

Then r±

1 (ε)− r±

2 (ε), z±

1 (ε)− z±

2 (ε), and q̃±(x, ε) are O(ε∞), that is all their derivatives in ε vanish
at ε = 0.

Proof. Differentiating k − 1 times in x and then putting x = 0 we see that for all k ≥ 1

r±

1 (ε)

εkz±

1 (ε)
k

−
r±

2 (ε)

εkz±

2 (ε)
k

∈ C∞([0, ε0)).

Therefore

∂ℓε |ε=0

(
r±

1 (ε)

z±

1 (ε)
k

−
r±

2 (ε)

z±

2 (ε)
k

)
= 0 for all 0 ≤ ℓ < k. (3-33)
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Taking ℓ = 0 and k = 1, 2, we see that r±

1 (0) = r±

2 (0) and z±

1 (0) = z±

2 (0). Arguing by induction on ℓ
and using k = ℓ+ 1, ℓ+ 2 in (3-33) we see that ∂ℓεr±

1 (0) = ∂ℓεr±

2 (0) and ∂ℓε z±

1 (0) = ∂ℓε z±

2 (0). Thus
r±

1 (ε)− r±

2 (ε) and z±

1 (ε)− z±

2 (ε) are O(ε∞), which implies that q̃±(x, ε) is O(ε∞) as well. □

Remark. If χ and ψ depend smoothly on some additional parameter y, then the proof of Lemma 3.6
shows that r±, z±, q± can be chosen to depend smoothly on y as well. Lemma 3.7 also holds, with
convergence locally uniform in y, as does Lemma 3.8. In Section 4.6 below we use this to study
expressions of the form

χ(θ, θ ′, ε)(θ − θ ′
± iεψ(θ, θ ′, ε))−1, (3-34)

where (θ, θ ′) is in some neighborhood of 0 and we put x := θ − θ ′, y := θ .

For the use in Section 4 we record the fact that operators with Schwartz kernels of the form (3-34) are
pseudodifferential:

Lemma 3.9. Assume that c±
ε (θ

′) and z±
ε (θ

′) are complex-valued functions smooth in θ ′
∈ S1

:= R/Z and
ε ∈ [0, ε0) and such that Re z±

ε > 0. Let χ ∈ C∞(S1
×S1) be supported in a neighborhood of the diagonal

and equal to 1 on a smaller neighborhood of the diagonal. Consider the operator A±
ε on C∞(S1) given by

A±

ε f (θ)=

∫
S1

K ±

ε (θ, θ
′) f (θ ′) dθ ′,

K ±

ε (θ, θ
′)=

{
χ(θ, θ ′)c±

ε (θ
′)(θ − θ ′

± iεz±
ε (θ

′))−1, ε > 0,
χ(θ, θ ′)c±

ε (θ
′)(θ − θ ′

± i0)−1, ε = 0.

(3-35)

Then A±
ε ∈90(S1) uniformly in ε and we have, uniformly in ε,

WF(A±

ε )⊂ {±ξ > 0}, σ (A±

ε )(θ, ξ)= ∓2π ic±

ε (θ)e
−εz±

ε (θ)|ξ |H(±ξ), (3-36)

where for ε > 0 the principal symbol is understood as in (3-7) and H is the Heaviside function (with the
symbol considered for |ξ |> 1).

Remark. We note that the definition (3-7) of the symbol of a family of operators and Lemma 3.8 show
that the principal symbol is independent of the (not unique) c±

ε , z±
ε .

Proof. Using the formulas (3-26) and (3-32), we write the kernel K ±
ε (θ, θ

′) as an oscillatory integral
(where aε(θ, θ ′, ξ) is supported near {θ = θ ′

} where θ − θ ′
∈ R is well-defined)

K ±

ε (θ, θ
′)=

1
2π

∫
R

ei(θ−θ ′)ξaε(θ, θ ′, ξ) dξ,

aε(θ, θ ′, ξ)= ∓2π iχ(θ, θ ′)c±

ε (θ
′)e−εz±

ε (θ
′)|ξ |H(±ξ).

Fix a cutoff function χ̃ ∈ C∞
c (R) such that χ̃ = 1 near 0 and split aε = χ̃(ξ)aε+(1−χ̃(ξ))aε. The integral

corresponding to χ̃(ξ)aε gives a kernel which is in C∞ in θ , θ ′, and ε ∈ [0, ε0). Next, (1 − χ̃(ξ))aε is a
symbol of class S0: for each α, β there exists Cαβ such that for all θ, θ ′, ξ and ε ∈ [0, ε0), we have∣∣∂α(θ,θ ′)∂

β
ξ

(
(1 − χ̃(ξ))aε(θ, θ ′, ξ)

)∣∣ ≤ Cαβ⟨ξ⟩−β .
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Therefore (see [Hörmander 1994, Lemma 18.2.1] or [Grigis and Sjöstrand 1994, Theorem 3.4]) we see
that A±

ε ∈90 uniformly in ε, its wavefront set is contained in {±ξ > 0}, and its principal symbol is the
equivalence class of aε(θ, θ, ξ). □

Remark. The fine analysis in Section 3.4 is strictly speaking not necessary for our application in Section 4.6:
indeed, in the proof of Proposition 4.15 one could instead use a version of Lemma 3.9 which allows c±

ε

and z±
ε to depend on both θ and θ ′. Moreover, ultimately one just uses that the exponential in (3-36)

is bounded in absolute value by 1; see the proof of Lemma 5.2. However, we feel that using the
results of Section 3.4 leads to nicer expressions for the kernels of the restricted single layer potentials in
Sections 4.6.5–4.6.6 which could be useful elsewhere.

4. Boundary layer potentials

In this section we describe microlocal properties of boundary layer potentials for the operator P −ω2
=

∂2
x2
1−1
� −ω2, or rather for the related partial differential operator P(ω) defined in (4-1). The key issue

is the transition from elliptic to hyperbolic behavior as Imω → 0. To motivate the results we explain
the analogy with the standard boundary layer potentials in Section 4.2. In Section 4.3 we compute
fundamental solutions for P(ω) on R2 and in Section 4.4 we use these to study the Dirichlet problem for
P(ω) on �. This will lead us to single layer potentials: in Section 4.5 we study their mapping properties
(in particular relating Lagrangian distributions on the boundary to Lagrangian distributions in the interior)
and in Section 4.6 we give a microlocal description of their restriction to ∂� uniformly as Imω → 0,
which is crucially used in Section 5.

In Sections 4–7 we generally use the letter λ to denote the spectral parameter when it is real and the
letter ω for complex values of the spectral parameter, often taking the limit ω→ λ± i0.

4.1. Basic properties. Consider the second-order constant coefficient differential operator on R2
x1,x2

P(ω) := (1 −ω2)∂2
x2

−ω2∂2
x1
, where ω ∈ C, 0< Reω < 1. (4-1)

Formally,

P(ω)= (P −ω2)1�, P(ω)−1
=1−1

� (P −ω2)−1. (4-2)

We note that P(ω) is hyperbolic when ω ∈ (0, 1) and elliptic otherwise. We factorize P(ω) as

P(ω)= 4L+

ω L−

ω , L±

ω :=
1
2(±ω ∂x1 +

√
1 −ω2 ∂x2). (4-3)

Here
√

1 −ω2 is defined by taking the branch of the square root on C \ (−∞, 0] which takes positive
values on (0,∞). We note that for λ ∈ (0, 1) the operators L±

λ are two linearly independent constant
vector fields on R2. For Imω ̸= 0, L±

ω are Cauchy–Riemann-type operators.
The definition (1-2) of the functions ℓ±(x, λ) extends to complex values of λ:

ℓ±(x, ω) := ±
x1

ω
+

x2
√

1 −ω2
, x = (x1, x2) ∈ R2, ω ∈ C, 0< Reω < 1.
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Then the linear functions ℓ±( • , ω) are dual to the operators L±
ω :

L±

ωℓ
±(x, ω)= 1, L∓

ωℓ
±(x, ω)= 0. (4-4)

We record here the following statement:

Lemma 4.1. Assume that Imω > 0. Then the map x ∈ R2
7→ ℓ±(x, ω) ∈ C is orientation-preserving in

the case of ℓ+ and orientation reversing in the case of ℓ−. If Imω < 0 then a similar statement holds with
the roles of ℓ± switched.

Proof. This follows immediately from the sign identity

sgn Im
ω

√
1 −ω2

= sgn Imω, ω ∈ C, 0< Reω < 1, (4-5)

which can be verified by noting that Re
√

1 −ω2 > 0 and sgn Im
√

1 −ω2 = − sgn Imω. □

4.2. Motivational discussion. When Imω > 0 the decomposition (4-3) is similar to the factorization of
the Laplacian,

1= 4∂z∂z̄, ∂z =
1
2(∂x − i∂y), ∂z̄ =

1
2(∂x + i∂y).

The functions z = x + iy and z̄ play the role of ℓ±(x, ω) for ± respectively (which matches the orientation
in Lemma 4.1) and ∂z, ∂z̄ play the role of L+

ω, L−
ω. Hence to explain the structure of the fundamental

solution of P(ω) and to motivate the restricted boundary layer potential in Section 4.6 we review the
basic case when �= {y > 0} and P(ω) is replaced by 1. The fundamental solution is given by (see, e.g.,
[Hörmander 1990, Theorem 3.3.2])

1E = δ0, E := c log(zz̄), ∂z E =
c
z
, ∂z̄ E =

c
z̄
, c =

1
4π
.

We consider the single layer potential S : C∞
c (R)→ D′(R2)∩ C∞(R2

\ {y = 0}),

Sv(x, y) :=

∫
R

E(x − x ′, y)v(x ′) dx ′, v ∈ C∞

c (R).

We then have limits as y → 0±,

C±v(x)= Cv(x) :=
1

2π

∫
R

log |x − x ′
|v(x ′) dx ′,

and we consider
∂xCv(x)= lim

y→0±

∂x Sv(x, y)= lim
y→0±

(∂z + ∂z̄)Sv(x, y).

Then
(
where we recall c =

1
4π

)
lim

y→0±

∂z Sv(x, y)= lim
y→0±

∫
R

c
x − x ′ + iy

v(x ′) dx ′
=

∫
R

c
x − x ′ ± i0

v(x ′) dx,

and similarly,

lim
y→0±

∂̄z Sv(x, y)= lim
y→0±

∫
R

c
x − x ′ − iy

v(x ′) dx ′
=

∫
R

c
x − x ′ ∓ i0

v(x ′) dx,
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where the right-hand sides are understood as distributional pairings. This gives

∂xCv(x)=
1

4π

∫
R

∑
±

(x − x ′
± i0)−1v(x ′) dx ′, (4-6)

which is 1
2 times the Hilbert transform, that is, the Fourier multiplier with symbol −i sgn(ξ). (We note

that
∑

±
(x − x ′

± i0)−1
= 2∂x log |x | which is the principal value of 2/x .)

In Section 4.6 we describe the analogue of ∂xC in our case. It is similar to (4-6) when Imω> 0 but when
Imω→ 0+, it has additional singularities described using the chess billiard map b(x, λ), λ= Reω, or
rather its building components γ±. The operator becomes an elliptic operator of order 0 (just as is the case
in (4-6) if we restrict our attention to compact sets) plus a Fourier integral operator — see Proposition 4.15.

4.3. Fundamental solutions. We now construct a fundamental solution of the operator P(ω) defined
in (4-1), that is, a distribution Eω ∈ D′(R2) such that

P(ω)Eω = δ0. (4-7)

For that we use the complex-valued quadratic form

A(x, ω) := ℓ+(x, ω)ℓ−(x, ω)= −
x2

1

ω2 +
x2

2

1 −ω2 .

Since 0< Reω < 1, we have sgn Im(−ω−2)= sgn Im((1 −ω2)−1)= sgn Imω; thus

sgn Im A(x, ω)= sgn Imω for all x ∈ R2
\ {0}. (4-8)

4.3.1. The nonreal case. We first consider the case Imω ̸= 0. In this case our fundamental solution is
the locally integrable function

Eω(x) := cω log A(x, ω), x ∈ R2
\ {0}, cω :=

i sgn Imω

4πω
√

1 −ω2
. (4-9)

Here we use the branch of logarithm on C \ (−∞, 0] which takes real values on (0,∞). Note that the
function Eω is smooth on R2

\ {0}.

Lemma 4.2. The function Eω defined in (4-9) solves (4-7).

Proof. We first check that P(ω)Eω = 0 on R2
\ {0}: this follows from (4-3), (4-4), and the identities

L±

ω log A(x, ω)=
1

ℓ±(x, ω)
for all x ∈ R2

\ {0}. (4-10)

Next, denote by Bε the ball of radius ε > 0 centered at 0 and orient ∂Bε in the counterclockwise direction.
Using the divergence theorem twice, we compute for each ϕ ∈ C∞

c (R
2)∫

R2
Eω(x)(P(ω)ϕ(x)) dx = 4 lim

ε→0+

∫
R2\Bε

Eω(x)(L+

ω L−

ωϕ(x)) dx = −4cω lim
ε→0+

∫
R2\Bε

L−
ωϕ(x)

ℓ+(x, ω)
dx

= −2cω lim
ε→0+

∫
∂Bε

ϕ(x)(
√

1 −ω2 dx1 +ω dx2)

ℓ+(x, ω)

= −2cωω
√

1 −ω2 ϕ(0) lim
ε→0+

∫
∂Bε

dℓ+(x, ω)
ℓ+(x, ω)

= ϕ(0)
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which gives (4-7). Here in the last equality we make the change of variables z = ℓ+(x, ω) and use
Lemma 4.1. □

4.3.2. The real case. We now discuss the case λ ∈ (0, 1). Define the fundamental solutions Eλ±i0 ∈

L1
loc(R

2) as

Eλ±i0(x) := ±cλ log(A(x, λ)± i0), cλ :=
i

4πλ
√

1 − λ2
,

log(A(x, λ)± i0)=

{
log A(x, λ), A(x, λ) > 0,
log(−A(x, λ))± iπ, A(x, λ) < 0.

(4-11)

The next lemma shows that Eλ±iε → Eλ±i0 in D′(R2) as ε→ 0+. In fact it gives a stronger convergence
statement with derivatives in λ. To make this statement we introduce the following notation: if J ⊂ (0, 1)
is an open interval then

O(J + i[0,∞))⊂ C∞(J + i[0,∞)) (4-12)

consists of C∞ functions on J + i[0,∞) which are holomorphic in the interior J + i(0,∞). Similarly
one can define O(J − i[0,∞)).

Lemma 4.3. The maps

ω ∈ (0, 1)± i[0,∞) 7→

{
Eω, Imω ̸= 0,
Eλ±i0, ω = λ ∈ (0, 1),

(4-13)

lie in O((0, 1)± i[0,∞);D′(R2)) in the following sense: the distributional pairing of (4-13) with any
ϕ ∈ C∞

c (R
2) lies in O((0, 1)± i[0,∞)).

Proof. We consider the case of Imω ≥ 0, with the case Imω ≤ 0 handled similarly. Fix ϕ ∈ C∞
c (R

2).

(1) We will prove the following limiting statement: for each λ ∈ (0, 1)∫
R2

Eω j (x)ϕ(x) dx →

∫
R2

Eλ+i0(x)ϕ(x) dx for all ω j → λ, Imω j > 0. (4-14)

We write ω j =λ j +iε j , where λ j →λ and ε j → 0+. We first show a bound on Eω j (x)= cω j log A(x, ω j )

which is uniform in j . Taking the Taylor expansion of ℓ+(x, λ+ iε) in ε, we get

ℓ+(x, ω j )= ℓ+(x, λ j )+ iε j∂λℓ
+(x, λ j )+O(ε2

j |x |),

where the constant in O( • ) is independent of j . Since ∂λℓ+(x, λ j ) is real, we bound

|ℓ+(x, ω j )| ≥
1
2(|ℓ

+(x, λ j )| + ε j |∂λℓ
+(x, λ j )|)− Cε2

j |x |. (4-15)

As ℓ+(x, λ j ), ∂λℓ
+(x, λ j ) are linearly independent linear forms in x (see (2-7)), we have

|x | ≤ C(|ℓ+(x, λ j )| + |∂λℓ
+(x, λ j )|). (4-16)

Together (4-15) and (4-16) show that for j large enough

|ℓ+(x, ω j )| ≥
1
3 |ℓ+(x, λ j )|. (4-17)
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The same bound holds for ℓ−. Since A(x, ω j )= ℓ+(x, ω j )ℓ
−(x, ω j ), we then have

C−1
|A(x, λ j )| ≤ |A(x, ω j )| ≤ C |x |

2,

which implies the following bound for j large enough, some j-independent constant C , and all x ∈ R2:

|Eω j (x)| ≤ C(|Eλ j +i0(x)| + log(2 + |x |)). (4-18)

(2) To pin the zero set of A(x, λ j ), which depends on λ j , we introduce the linear isomorphism 8λ :

R2
y → R2

x such that 8−1
λ (x)= (ℓ+(x, λ), ℓ−(x, λ)). Then A(8λ(y), λ)= y1 y2, so the pullback of Eλ j +i0

by 8λ j is given by
8∗

λ j
Eλ j +i0(y)= cλ j log(y1 y2 + i0), (4-19)

which is a locally integrable function on R2.
We can now show (4-14). For each y ∈ R2, we have A(8λ j (y), ω j ) → A(8λ(y), λ) = y1 y2 and

ϕ(8λ j (y))→ ϕ(8λ(y)). Using (4-8) we then get the pointwise limit

8∗

λ j
(Eω jϕ)(y)→8∗

λ(Eλ+i0ϕ)(y) for all y ∈ R2, y1 y2 ̸= 0.

Now (4-14) follows from the dominated convergence theorem applied to the sequence of functions
8∗

λ j
(Eω jϕ), where the dominant is given by the locally integrable function C(1 + | log(y1 y2 + i0)|) as

follows from the bound (4-18) and the identity (4-19).

(3) Denote by Fϕ(ω) the pairing of (4-13) with ϕ. Since A(x, ω) is a quadratic form depending holomorphi-
cally on ω ∈ (0, 1)+ i(0,∞), which has a positive definite imaginary part by (4-8), we see that Fϕ is holo-
morphic on (0, 1)+ i(0,∞). Moreover, the restriction of Fϕ to (0, 1) is smooth, as can be seen by writing

Fϕ(λ)=

∫
R2

Eλ+i0(x)ϕ(x) dx = cλ|det8λ|
∫

R2
log(y1 y2 + i0)ϕ(8λ(y)) dy, λ ∈ (0, 1),

and using that the function (y, λ) 7→ ϕ(8λ(y)) is smooth in (y, λ). By (4-14) Fϕ is continuous at the
boundary interval (0, 1). Since Fϕ is holomorphic, it is harmonic, so by boundary regularity for the
Dirichlet problem for the Laplacian (see the references in the proof of Lemma 4.4 below) we see that
Fϕ ∈ C∞((0, 1)+ i[0,∞)). □

Passing to the limit in (4-7) we see that

P(λ)Eλ±i0 = δ0 for all λ ∈ (0, 1). (4-20)

Note that Eλ±i0(x) is smooth except on the union of the two lines {ℓ+(x, λ) = 0} and {ℓ−(x, λ) = 0}.
We remark that Eλ±i0 are the Feynman propagators in dimension 1; see [Hörmander 1990, (6.2.1) and
p. 141] for the formula in all dimensions.

4.4. Reduction to the boundary. We now let � ⊂ R2 be a bounded open set with C∞ boundary and
consider the elliptic boundary value problem

P(ω)u = f, u|∂� = 0, Reω ∈ (0, 1), Imω ̸= 0. (4-21)
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Lemma 4.4. For each f ∈ C∞
c (�), the problem (4-21) has a unique solution u ∈ C∞(�).

Remark. The proof shows that if f is fixed, then u ∈ C∞(�) depends holomorphically on ω ∈ (0, 1)±
i(0,∞).

Proof. (1) We first show that for each µ ∈ C \ [1,∞) and s ≥ 2, the map

H s(�) ∋ u 7→ ((1−µ∂2
x2
)u, u|∂�) ∈ H s−2(�)⊕ H s−1/2(∂�) (4-22)

is a Fredholm operator. (Here H s(�) denotes the space of distributions on � which extend to H s

distributions on R2.) We apply [Hörmander 1994, Theorem 20.1.2]. The operator 1−µ∂2
x2

is elliptic,
so it remains to verify that the Shapiro–Lopatinski condition [Hörmander 1994, Definition 20.1.1(ii)]
holds for any domain �. (An example of an operator for which this condition fails is (∂x1 + i∂x2)

2.) In
our specific case the Shapiro–Lopatinski condition can be reformulated as follows: for each basis (ξ, η)
of R2, if we denote by M the space of all bounded solutions on [0,∞) to the ODE

p(ξ − iη∂t)u(t)= 0, p(ξ) := ξ 2
1 + (1 −µ)ξ 2

2

then the map u ∈ M 7→ u(0) is an isomorphism. This is equivalent to the requirement that the quadratic
equation p(ξ + zη)= 0 have two roots, one with Im z > 0 and one with Im z < 0. To see that the latter
condition holds, we argue by continuity: since 1−µ∂2

x2
is elliptic, the equation p(ξ + zη)= 0 cannot

have any real roots z, so the condition either holds for all µ, ξ, η or fails for all µ, ξ, η. However, it is
straightforward to check that the condition holds when µ= 0, ξ = (1, 0), η = (0, 1), as the roots are ±i .

(2) We next claim that the Fredholm operator (4-22) is invertible. We first show that it has index 0,
arguing by continuity: since the operator (4-22) is continuous in µ in the operator norm topology, its
index should be independent of µ. However, for µ= 0 we get the Dirichlet problem for the Laplacian,
where (4-22) is invertible.

To show that (4-22) is invertible it remains to prove injectivity, namely

u ∈ H 2(�), (1−µ∂2
x2
)u = 0, u|∂� = 0 =⇒ u = 0. (4-23)

Multiplying the equation (1−µ∂2
x2
)u = 0 by ū and integrating by parts over �, we get ∥∇u∥

2
L2(�)

=

µ∥∂x2u∥
2
L2(�)

. Since 0 ≤ ∥∂x2u∥
2
L2(�)

≤ ∥∇u∥
2
L2(�)

and µ ̸∈ [1,∞), we see that ∥∇u∥L2(�) = 0, which
implies that u = 0, giving (4-23).

(3) Writing

P(ω)= ∂2
x2

−ω21= −ω2(1−µ∂2
x2
), µ := ω−2

∈ C \ [1,∞),

and using the invertibility of (4-22), we see that, for each s ≥ 2 and f ∈ H s−2(�), the problem (4-21) has a
unique solution u ∈ H s(�). When f ∈C∞

c (�), we may take an arbitrary s which gives that u ∈C∞(�). □

We will next express the solution to (4-21) in terms of boundary data and single layer potentials. Let
us first define the operators used below. Let T ∗∂� be the cotangent bundle of the boundary ∂�. Sections
of this bundle are differential 1-forms on ∂� (where we use the positive orientation on ∂�); they can be
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identified with functions on ∂� by fixing a coordinate θ . Define the operator I :D′(∂�; T ∗∂�)→ E ′(R2)

as follows: for v ∈ D′(∂�; T ∗∂�) and ϕ ∈ C∞(R2),∫
R2

Iv(x)ϕ(x) dx :=

∫
∂�

ϕv. (4-24)

Note that supp(Iv)⊂ ∂� and we can think of Iv as multiplying v by the delta function on ∂�. Next, let
Eω be the fundamental solution constructed in (4-9) and define the convolution operator

Rω : E ′(R2)→ D′(R2), Rωg := Eω ∗ g. (4-25)

Using the limiting fundamental solutions Eλ±i0 constructed in (4-11), we similarly define the operators
Rλ±i0 for λ ∈ (0, 1) which will be used later. Finally, for ω ∈ (0, 1)+ iR, define the “Neumann data”
operator

Nω : C∞(�)→ C∞(∂�; T ∗∂�), Nωu := −2ω
√

1 −ω2 j∗(L+

ωu dℓ+( • , ω)), (4-26)

where j : ∂�→ � is the embedding map and j∗ is the pullback on 1-forms. We can now reduce the
problem (4-21) to the boundary:

Lemma 4.5. Assume that u ∈ C∞(�) is the solution to (4-21) for some f ∈ C∞
c (�). Put U := 1l� u ∈

E ′(R2) and v := Nωu. Then

P(ω)U = f − Iv, (4-27)

U = Rω f − RωIv. (4-28)

Remark. Note that we also have

v = 2ω
√

1 −ω2 j∗(L−

ωu dℓ−( • , ω)).

Indeed, 0 = j∗du = j∗(L+
ωu dℓ+ + L−

ωu dℓ−) since u|∂� = 0 and by (4-4).

Proof. Let ϕ ∈ C∞
c (R

2). Then by (4-3)∫
R2
(P(ω)U )ϕ dx = 4

∫
�

uL+

ω L−

ωϕ dx = −4
∫
�

(L+

ωu)(L−

ωϕ) dx

=

∫
�

f ϕ dx − 4
∫
�

L−

ω (ϕL+

ωu) dx

=

∫
�

f ϕ dx + 2ω
√

1 −ω2
∫
∂�

ϕL+

ωu dℓ+ =

∫
�

( f − Iv)ϕ dx,

which gives (4-27). The identity (4-28) follows from (4-27), the fundamental solution equation (4-7), and
the fact that U is a compactly supported distribution: Eω ∗ P(ω)U = (P(ω)Eω) ∗ U = U. □

In the notation of Lemma 4.5, define Sωv := (RωIv)|� ∈ D′(�). Then (4-28) implies that

u = (Rω f )|� − Sωv. (4-29)
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Since Rω f ∈ C∞(R2), we have Sωv ∈ C∞(�). Denote by Cωv := (Sωv)|∂� its boundary trace; then the
boundary condition u|∂� = 0 gives the following equation on v:

Cωv = (Rω f )|∂�. (4-30)

This motivates the study of the operator Sω in Section 4.5 and of the operator Cω in Section 4.6.

4.5. Single layer potentials. We now introduce single layer potentials. For ω ∈ C with 0< Reω < 1 and
Imω ̸= 0 the single layer potential is the operator Sω : D′(∂�; T ∗∂�)→ D′(�) given by

Sωv := (Eω ∗ Iv)|�, v ∈ D′(∂�; T ∗∂�). (4-31)

Here Eω∈D′(R2) is the fundamental solution defined in (4-9) and the operator I :D′(∂�; T ∗∂�)→E ′(R2)

is defined in (4-24). Similarly, if λ ∈ (0, 1) and � is λ-simple (see Definition 1.1) then we can define
operators

Sλ±i0 : D′(∂�; T ∗∂�)→ D′(�) (4-32)

by the formula (4-31), using the limiting distributions Eλ±i0 defined in (4-11).
If we fix a positively oriented coordinate θ on ∂� and use it to identify D′(∂�; T ∗∂�) with D′(∂�),

then the action of Sω on smooth functions is given by

Sω( f dθ)(x)=

∫
∂�

Eω(x − y) f (y) dθ(y), f ∈ C∞(∂�), x ∈�, (4-33)

and similarly for Sλ±i0.
We now discuss the mapping properties of Sω, in particular showing that Sωv, Sλ±i0v ∈ C∞(�) when

v ∈ C∞(∂�; T ∗∂�). We break the latter into two cases:

4.5.1. The nonreal case. We first consider the case Imω ̸= 0. We use the following standard result,
which is a version of the Sochocki–Plemelj theorem:

Lemma 4.6. Assume that �0 ⊂ C is a bounded open set with C∞ boundary (oriented in the positive
direction). For f ∈ C∞(∂�0), define u ∈ C∞(�0) by

u(z)=

∫
∂�0

f (w) dw
w− z

, z ∈�0.

Then u extends smoothly to the boundary and the operator f 7→ u is continuous C∞(∂�0)→ C∞(�0).

Remark. In the (unbounded) model case �0 = {Im z > 0}, we have for each f ∈ C∞
c (R)

u(x + iy)=

∫
R

f (t) dt
t − x − iy

, y > 0.

We see in particular that the function x 7→ limy→0+ ∂
k
y u(x + iy) is given by the convolution of f with

(−1)k+1ikk! (x + i0)−k−1.
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Proof. Let f̃ ∈ C∞
c (C) be an almost analytic extension of f ; that is, f̃ |∂�0 = f and ∂z̄ f̃ vanishes to

infinite order on ∂�0. (See for example [Dyatlov and Zworski 2019a, Lemma 4.30] for the existence of
such an extension.) Denote by dm the Lebesgue measure on C. By the Cauchy–Green formula (see for
instance [Hörmander 1990, (3.1.11)]), we have

u(z)= 2π i f̃ (z)+ 2i
∫
�0

∂w̄ f̃ (w)
w− z

dm(w), z ∈�0,

and this extends smoothly to z ∈ C: indeed, the second term on the right-hand side is the convolution of
the distribution −2i z−1

∈ L1
loc(C), with 1l�0 ∂z̄ f̃ ∈ C∞

c (C). □

We now come back to the mapping properties of single layer potentials:

Lemma 4.7. Assume 0<Reω< 1 and Imω ̸= 0. Then Sω is a continuous operator from C∞(∂�; T ∗∂�)

to C∞(�).

Remark. With more work, it is possible to show that Sω is actually continuous C∞(∂�; T ∗∂�)→C∞(�)

uniformly as Imω→ 0, with limits being the operators Sλ±i0, λ= Reω. However, our proof of Lemma 4.7
only shows the mapping property for any fixed nonreal ω. This is enough for our purposes since we
have weak convergence of Sλ±iε to Sλ±i0 (Lemma 4.3; see also Lemmas 4.10 and 4.16 below) and
in Section 4.6 we analyze the behavior of the restricted single layer potentials uniformly as Imω→ 0.

Proof. Let v ∈ C∞(∂�; T ∗∂�). Since Eω is smooth on R2
\ {0} and Iv is supported on ∂�, we have

Sωv ∈ C∞(�). It remains to show that Sωv is smooth up to the boundary, and for this it is enough to verify
the smoothness of the derivatives L±

ω Sωv, where L±
ω are defined in (4-3). By (4-10) we have (suppressing

the dependence of ℓ± on ω in the notation)

L±

ω Sωv(x)= cω

∫
∂�

v(y)
ℓ±(x − y)

, x ∈�.

Since Imω ̸= 0, the maps x 7→ ℓ±(x) are linear isomorphisms from R2 onto C (considered as a real
vector space). Using this we write

L±

ω Sωv(x)= ± sgn(Imω)cω

∫
∂�±

f±(w) dw
z −w

, z := ℓ±(x) ∈�±, (4-34)

where we put �± := ℓ±(�)⊂ C and define the functions f± ∈ C∞(∂�±) by the equality of differential
forms v(y)= f±(ℓ±(y)) dℓ±(y) on ∂�. Here ∂�± are positively oriented and the sign factor ± sgn(Imω)

accounts for the orientation of the map ℓ±; see Lemma 4.1.
Now L±

ω Sωv extends smoothly to the boundary by Lemma 4.6. □

4.5.2. The real case. We now consider the case λ ∈ (0, 1):

Lemma 4.8. Assume that λ ∈ (0, 1) and � is λ-simple (see Definition 1.1). Then Sλ±i0 are continuous
operators from C∞(∂�; T ∗∂�) to C∞(�).

Proof. (1) We focus on the operator Sλ+i0, noting that Sλ−i0 is related to it by the identity

Sλ−i0v̄ = Sλ+i0v for all v ∈ D′(∂�; T ∗∂�).
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We again suppress the dependence on λ in the notation, writing simply ℓ±(x) and A(x). Denoting by
H(x)= 1l(0,∞)(x) the Heaviside function, we can rewrite (4-11) as

log(A(x)+ i0)= log |ℓ+(x)| + log |ℓ−(x)| + iπH(−A(x)).

We then take the decomposition

Sλ+i0 = cλ(S+

λ + S−

λ + iπ S0
λ ), (4-35)

where for all x ∈� and v ∈ C∞(∂�; T ∗∂�)

S±

λ v(x)=

∫
∂�

log |ℓ±(x − y)|v(y),

S0
λv(x)=

∫
∂�

H(−A(x − y))v(y).

(2) Let v ∈ C∞(∂�; T ∗∂�). Fix a positively oriented coordinate θ on ∂� and write v = f dθ for some
f ∈ C∞(∂�). We first analyze S±

λ v, writing it as

S±

λ v(x)= g±(ℓ
±(x)), g±(t) :=

∫
R

(5±

λ f )(s) log |t − s| ds,

where 5±

λ f ∈ E ′(R) are the pushforwards of f by the maps ℓ± defined in (2-10). Let ℓ±min < ℓ
±
max be

defined in (2-9). By part (1) of Lemma 2.3, 5±

λ f is supported in [ℓ±min, ℓ
±
max] and√

(s − ℓ±min)(ℓ
±

max − s)5±

λ f (s) ∈ C∞([ℓ±min, ℓ
±

max]).

Using Lemma 3.4, we then get

g± ∈ C∞([ℓ±min, ℓ
±

max]),

which implies that S±

λ v ∈ C∞(�).

(3) It remains to show that S0
λv ∈ C∞(�). We may assume that v = d F for some F ∈ C∞(∂�), that is,∫

∂�
v = 0. Indeed, if we are studying S0

λv near some point x0 ∈� then we may take y0 ∈ ∂� such that
A(x0 − y0) > 0 and change v in a small neighborhood of y0 so that S0

λv(x) does not change for x near x0

and v integrates to 0.
For s ∈ (ℓ±min, ℓ

±
max), define x±

(1)(s), x±

(2)(s) ∈ ∂� by

ℓ±(x±

(1)(s))= ℓ±(x±

(2)(s))= s, ℓ∓(x±

(1)(s)) < ℓ
∓(x±

(2)(s)).

Then for any x ∈�, the set of y ∈ ∂� such that A(x − y) < 0 consists of two intervals of the circle ∂�,
from x+

(1)(ℓ
+(x)) to x−

(2)(ℓ
−(x)) (with respect to the positive orientation on ∂�) and from x+

(2)(ℓ
+(x)) to

x−

(1)(ℓ
−(x))— see Figure 11. Since v = d F , we compute for x ∈�

S0
λv(x)= F−(ℓ

−(x))− F+(ℓ
+(x)), F±(s) := F(x±

(1)(s))+ F(x±

(2)(s)).

By part (2) of Lemma 2.3, we have F± = ϒ±

λ F ∈ C∞([ℓ±min, ℓ
±
max]). Thus S0

λv ∈ C∞(�) as needed. □
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x
ℓ
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=const
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(2)(ℓ

−(x))

x−
(1)(ℓ

−(x))
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(2)(ℓ

+(x))

x+
(1)(ℓ

+(x))

Figure 11. A point x ∈ � and the corresponding projections x±

( j)(ℓ
±(x)) ∈ ∂�. The

shaded region is the set of y ∈ R2 such that A(x − y) < 0.

4.5.3. Conormal singularities. We now study the action of Sλ+i0 on conormal distributions (see Section 3.2):

Lemma 4.9. Assume that λ ∈ (0, 1) and � is λ-simple. Fix y0 ∈ ∂� \ Cλ, where the characteristic set Cλ

was defined in (2-3). Then for each v ∈ D′(∂�; T ∗∂�) we have

v ∈ I s(∂�, N ∗

±
{y0}) =⇒ Sλ+i0v ∈ I s−5/4(�, N ∗

±
0±

λ (y0)).

Here the positive/negative halves of the conormal bundle N ∗
±
{y0} ⊂ T ∗∂� are defined using the positive

orientation on ∂�, the line segments 0±

λ (y0)⊂� are defined in (1-7) and transverse to the boundary ∂�,
and N ∗

±
0±

λ (y0) are defined in (1-8).

Proof. (1) By Lemma 4.8 and since v is smooth away from y0, we may assume that

supp v ⊂ U := {y ∈ ∂� | ν+(y)= ν+(y0), ν
−(y)= ν−(y0)}, (4-36)

where ν±(y)= sgn ∂θℓ±(y); see (2-4). We define ν+
:= ν+(y0), ν−

:= ν−(y0).
We claim that for all y ∈ U and x ∈� \0λ(y), where 0λ(y) := 0+

λ (y)∪0
−

λ (y),

log(A(x − y)+ i0)= log(ℓ+(x − y)+ iν+0)+ log(ℓ−(x − y)− iν−0)+ c0,

c0 =

{
2π i, if ν+

= −1 and ν−
= 1,

0, otherwise.

(4-37)

(Here as always we use the branch of log real on the positive real axis.) Indeed, fix x and y. By Lemma 2.2,
we have

ν+ℓ−(x − y) > 0 or ν−ℓ+(x − y) < 0 (or both).

Then there exist α+, α−> 0 such that α+ν+ℓ−(x −y)−α−ν−ℓ+(x −y)= 1. This implies that for all ε> 0

A(x − y)+ iε = ℓ+(x − y)ℓ−(x − y)+ iε

= (ℓ+(x − y)+ iα+ν+ε)(ℓ−(x − y)− iα−ν−ε)+O(ε2).

Letting ε→ 0+, we obtain (4-37).
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(2) Fix a coordinate θ on ∂� and write v = f (θ) dθ . Similarly to step (2) in the proof of Lemma 4.8
we get from (4-37)

Sλ+i0v(x)= cλ

(
g+(ℓ

+(x))+ g−(ℓ
−(x))+ c0

∫
∂�

f (θ) dθ
)
,

where, letting log+ x := log(x + i0), log− x := log(x − i0) and using (2-10),

g+ := (5+

λ f ) ∗ logν+, g− := (5−

λ f ) ∗ log−ν− . (4-38)

(Here, ±ν• is meant as ± if ν•
= 1 and ∓ when ν•

= −1.)
By (4-36), we have supp v ⊂ U, where ℓ± : U → R are diffeomorphisms onto their ranges. Since

v ∈ I s(∂�, N ∗
±
{y0}) and recalling (2-12), we then have

5+

λ f ∈ I s(R, N ∗

±ν+{ℓ+(y0)}), 5−

λ f ∈ I s(R, N ∗

±ν−{ℓ−(y0)}).

By Lemma 3.5, we see that
g± ∈ I s−1(R, N ∗

±ν±{ℓ±(y0)}), g∓ ∈ C∞.

Using the Fourier characterization of conormal distributions reviewed in Section 3.2, we see that
Sλ+i0 f ∈ I s−5/4(�, N ∗

±
0±

λ (y0)) as needed. □

Remark. In Section 7 we will apply this result to elements of I s(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ), defined in (3-19),
where 6±

λ are defined in (1-6). Lemma 4.9 gives

Sλ+i0 : I s(∂�, N ∗

+
6−

λ ⊔ N ∗

−
6+

λ )→ I s−5/4(�,3−(λ)), (4-39)

where 3−(λ) = N ∗
−
0+

λ (6
+

λ ) ⊔ N ∗
+
0−

λ (6
−

λ ) = N ∗
+
0+

λ (6
−

λ ) ⊔ N ∗
−
0−

λ (6
+

λ ) is defined in (1-9). Here we
define the conormal spaces on the right-hand side similarly to (3-19):

I s(�,3−(λ)) := I s(�, N ∗

+
0+

λ (6
−

λ ))+ I s(�, N ∗

−
0−

λ (6
+

λ )).

4.6. The restricted single layer potentials. We now study the restricted operators

Cω : C∞(∂�; T ∗∂�)→ C∞(∂�), Cωv := (Sωv)|∂�, (4-40)

given by the boundary trace of Sωv ∈ C∞(�); see Lemma 4.7. When λ is real and � is λ-simple (see
Definition 1.1), we have two operators Cλ±i0 obtained by restricting Sλ±i0; see Lemma 4.8. From (4-33)
we have for v ∈ C∞(∂�; T ∗∂�)

Cωv(x)=

∫
∂�

Eω(x − y) v(y), x ∈ ∂�, (4-41)

with the integration in y, and same is true for ω replaced with λ± i0. Later in (4-77) we show that Cω
and Cλ±i0 extend to continuous operators D′(∂�; T ∗∂�)→ D′(∂�).

Composing Cω with the differential d : C∞(∂�)→ C∞(∂�; T ∗∂�) we get the operator

dCω : C∞(∂�; T ∗∂�)→ C∞(∂�; T ∗∂�).
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In this section we assume that

ω = λ+ iε, ε > 0, (4-42)

where λ ∈ (0, 1) is chosen so that � is λ-simple. Our main result here is a microlocal description of dCω
uniformly as ε → 0+; see Proposition 4.15 below. (This description is also locally uniform in λ; see
Remark (1) after Proposition 4.15.)

For convenience, we fix a positively oriented coordinate θ ∈ S1 on ∂� and identify 1-forms on ∂�
with functions on S1 by writing v = f (θ) dθ . Let x : S1

→ ∂� be the corresponding parametrization
map. Let

γ±

λ : S1
→ S1, γ±(x(θ), λ)= x(γ±

λ (θ)), (4-43)

be the orientation reversing involutions on S1 induced by the maps γ±( • , λ) defined in (1-3).

4.6.1. A weak convergence statement. Before starting the microlocal analysis of dCω, we show that
Cλ+iε → Cλ+i0 as ε → 0+ in a weak sense in x, y but uniformly with all derivatives in λ. A stronger
convergence will be shown later in Lemma 4.16. We use the letter O(J + i[0,∞)) for spaces of
holomorphic functions that are smooth up to the boundary interval J, introduced in (4-12) and in the
statement of Lemma 4.3.

Lemma 4.10. Let J ⊂ (0, 1) be an open interval such that � is λ-simple for all λ ∈ J. Then the Schwartz
kernel of the operator

ω ∈ J + i[0,∞) 7→

{
Cω, Imω > 0,
Cλ+i0, ω = λ ∈ J ,

(4-44)

lies in O(J + i[0,∞);D′(∂�× ∂�)).

Proof. (1) The holomorphy of (4-44) when Imω > 0 follows by differentiating (4-41) (one can cut away
from the singularity at x = y and represent the pairing of (4-44) with any element of C∞(∂�×∂�) as the
locally uniform limit of a sequence of holomorphic functions). The smoothness of the restriction of (4-44)
to J can be shown using the decomposition (4-35) and the λ-dependent local coordinates introduced in
step (2) of the present proof. Arguing similarly to step (3) in the proof of Lemma 4.3 and recalling (4-41),
we then see that it suffices to show the following convergence statement for all ϕ ∈ C∞(∂�× ∂�):∫
∂�×∂�

Eω j (x − y)ϕ(x, y) dθ(x) dθ(y)

→

∫
∂�×∂�

Eλ+i0(x − y)ϕ(x, y) dθ(x) dθ(y) for all ω j → λ ∈ J , Imω j > 0.

Similarly to (4-35) we take the decomposition

Eω = E+

ω + E−

ω + E0
ω, E±

ω (x) := cω log |ℓ±(x, ω)|, E0
ω := icω Im log A(x, ω),

and similarly for Eλ+i0. It suffices to show that for • = +,−, 0 we have∫
∂�×∂�

E •

ω j
(x − y)ϕ(x, y) dθ(x) dθ(y)→

∫
∂�×∂�

E •

λ+i0(x − y)ϕ(x, y) dθ(x) dθ(y). (4-45)
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(2) We have E •

ω j
(x − y)→ E •

λ+i0(x − y) for almost every (x, y) ∈ ∂�× ∂�, more specifically for all
(x, y) such that y ̸∈ {x, γ+(x, λ), γ−(x, λ)}. This gives (4-45) for • = 0 by the dominated convergence
theorem since |Im log A(x, ω j )| ≤ π .

To see (4-45) for • = + (a similar argument works for • = −), we follow step (2) of the proof of
Lemma 4.3. Instead of the family of linear isomorphisms 8λ used there we choose a specific local
coordinate θ j on ∂� which depends on λ j = Reω j . More precisely, using a partition of unity we see
that it suffices to show that each (x0, y0) ∈ ∂�× ∂� has a neighborhood U such that (4-45) holds for all
ϕ ∈ C∞

c (U ). Now we consider four cases (corresponding to Sections 4.6.3–4.6.6 below):

• ℓ+(x0, λ) ̸= ℓ+(y0, λ): we can use the dominated convergence theorem since E+
ω j
(x − y) is bounded

uniformly in j and in (x, y) ∈ U by (4-17).

• y0 = x0 ̸= γ+(x0, λ): we choose the coordinate θ j = ℓ+(x, λ j ) near x0. Then the argument in the proof
of Lemma 4.3 goes through, using that log |θ − θ ′

| is a locally integrable function of (θ, θ ′) ∈ R2.

• y0 = γ+(x0, λ) ̸= x0: we again choose the coordinate θ j = ℓ+(x, λ j ) near x0 and near y0, and the
argument goes through as in the previous case.

• x0 = y0 = γ+(x0, λ): assume that x0 = x+

min(λ) is the minimum point of ℓ+( • , λ) on ∂� (the case
when x0 is the maximum point is handled similarly). We choose the coordinate θ j near x0 given by (2-1):

ℓ+(x, λ j )= ℓ+(x+

min(λ j ), λ j )+ θ j (x)2.

Then the argument in the proof of Lemma 4.3 goes through, using that log |θ2
− (θ ′)2| is a locally

integrable function of (θ, θ ′) ∈ R2. □

4.6.2. Decomposition into T ±
ω . Since the linear functions ℓ±(x, ω) are dual to the vector fields L±

ω

(see (4-4)), we have

dCω = T +

ω + T −

ω , (4-46)

where the operators T ±
ω : C∞(∂�; T ∗∂�)→ C∞(∂�; T ∗∂�) are given by (with j the embedding map)

T ±

ω v = j∗((L±

ω Sωv) dℓ±), j : ∂�→�. (4-47)

Let K ±
ω (θ, θ

′) ∈ D′(S1
× S1) be the Schwartz kernel of T ±

ω , that is,

T ±

ω v(θ)= (∂θℓ
±(x(θ), ω))L±

ω Sωv(x(θ)) dθ =

(∫
S1

K ±

ω (θ, θ
′) f (θ ′) dθ ′

)
dθ, (4-48)

where we put v= f (θ) dθ . Recalling the integral definition (4-33) of Sω, the formula (4-9) for Eω (which
in particular shows that Eω is smooth on R2

\ {0}), and the identity (4-10), we see that K ±
ω is smooth on

(S1
× S1) \ {θ ̸= θ ′

} and

K ±

ω (θ, θ
′)= cω

∂θℓ
±(x(θ), ω)

ℓ±(x(θ)− x(θ ′), ω)
, θ ̸= θ ′. (4-49)
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4.6.3. Away from the singularities. Define the sets

Diag := {(θ, θ) | θ ∈ S1
},

Ref±

λ := {(θ, γ±

λ (θ)) | θ ∈ S1
}.

(4-50)

Note that the intersection

Diag ∩ Ref±

λ = {(θ, θ) | θ ∈ S1, ∂θℓ
±(x(θ), λ)= 0} (4-51)

corresponds to the critical points x±

min(λ), x±
max(λ) of ℓ±( • , λ) on ∂� (see Definition 1.1). At these points

the operator P(λ) is characteristic with respect to ∂�.
We start the analysis of the uniform behavior of K ±

ω as ε = Imω→ 0 by showing that the singularities
are contained in Diag ∪ Ref±

λ :

Lemma 4.11. We have

K ±

ω |(S1×S1)\(Diag ∪ Ref ±

λ )
∈ C∞((S1

× S1) \ (Diag ∪ Ref±

λ ))

smoothly in ε up to ε = 0.

Proof. This follows immediately from (4-49). Indeed, for (θ, θ ′) /∈ Diag ∪ Ref±

λ , we have ℓ±(x(θ), λ) ̸=

ℓ±(x(θ ′), λ) and thus the denominator in (4-49) is nonvanishing when ε = 0. □

4.6.4. Noncharacteristic diagonal. We next consider the singularities of K ±
ω (θ, θ

′) near the diagonal but
away from the characteristic set Diag ∩ Ref±

λ . In that case the structure of the kernel is similar to the
model case (4-6):

Lemma 4.12. Take θ0 ∈ S1 such that γ±

λ (θ0) ̸= θ0. Then, for θ, θ ′ in some neighborhood U of θ0 and
ε = Imω > 0 small enough, we have

K ±

ω (θ, θ
′)= cω(θ − θ ′

± i0)−1
+ K ±

ω (θ, θ
′), (4-52)

where K ±
ω ∈ C∞(U × U ) is smooth in θ, θ ′, ε up to ε = 0.

Proof. (1) Fix some smooth vector field v(θ) on ∂� which points inwards. We have for all v= f (θ) dθ ∈

C∞(∂�; T ∗∂�),∫
S1

K ±

ω (θ, θ
′) f (θ ′) dθ ′

= (∂θℓ
±(x(θ), ω)) lim

δ→0+

L±

ω Sωv(x(θ)+ δv(θ))

= cω(∂θℓ±(x(θ), ω)) lim
δ→0+

∫
S1

f (θ ′)

ℓ±(x(θ)− x(θ ′)+ δv(θ), ω)
dθ ′,

where the limit is in C∞(S1). Here in the first equality we use the definition (4-48) of K ±
ω (recalling that

Sωv ∈ C∞(�) by Lemma 4.7). In the second equality we use the definition (4-33) of Sω, the formula (4-9)
for Eω, and the identity (4-10).

Since ∂θℓ±(x(θ), λ) ̸= 0 at θ = θ0, we factorize for θ, θ ′ in some neighborhood U of θ0 and ε = Imω

small enough
ℓ±(x(θ)− x(θ ′), ω)= G±

ω (θ, θ
′)(θ − θ ′),
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where G±
ω (θ, θ

′) is a nonvanishing smooth function of θ, θ ′, ε up to ε = 0 and

G±

ω (θ, θ)= ∂θℓ
±(x(θ), ω), θ ∈ U. (4-53)

Therefore, for (θ, θ ′) ∈ U × U we have

K ±

ω (θ, θ
′)=

cω∂θℓ±(x(θ), ω)
G±
ω (θ, θ ′)

lim
δ→0+

(
θ − θ ′

+ δ
ℓ±(v(θ), ω)

G±
ω (θ, θ ′)

)−1

, (4-54)

with the limit in D′(U × U ).

(2) We next claim that if U is a small enough neighborhood of θ0, then for all (θ, θ ′) ∈ U × U and
Imω = ε > 0 small enough

± Im
ℓ±(v(θ), ω)

G±
ω (θ, θ ′)

> 0. (4-55)

When ω=λ is real, the expression (4-55) is equal to 0. Thus it suffices to check that for all (θ, θ ′)∈U ×U

±∂ε|ε=0 Im
ℓ±(v(θ), λ+ iε)

G±

λ+iε(θ, θ
′)

> 0. (4-56)

It is enough to consider the case θ = θ ′
= θ0, in which case the left-hand side of (4-56) equals

±∂ε|ε=0 Im
ℓ±(v(θ0), λ+ iε)
ℓ±(∂θ x(θ0), λ+ iε)

.

By (2-7) and since ℓ± is holomorphic in ω it then suffices to check that

±
(
ℓ∓(v(θ0), λ)ℓ

±(∂θ x(θ0), λ)− ℓ
±(v(θ0), λ)ℓ

∓(∂θ x(θ0), λ)
)
> 0. (4-57)

The inequality (4-57) follows from the fact that x 7→ (ℓ+(x, λ), ℓ−(x, λ)) is an orientation-preserving
linear map on R2 and ∂θ x(θ0), v(θ0) form a positively oriented basis of R2 since the parametrization x(θ)
is positively oriented and v(θ) points inside �. This finishes the proof of (4-55).

(3) By Lemma 3.7 (see also (3-34)), with δ taking the role of ε, the distributional limit on the right-hand
side of (4-54) is equal to (θ − θ ′

± i0)−1. Therefore

K ±

ω (θ, θ
′)=

cω∂θℓ±(x(θ), ω)
G±
ω (θ, θ ′)

(θ − θ ′
± i0)−1. (4-58)

By (4-53) we can write for some K ±
ω (θ, θ

′) which is smooth in θ, θ ′, ε up to ε = 0,

cω∂θℓ±(x(θ), ω)
G±
ω (θ, θ ′)

= cω + K ±

ω (θ, θ
′)(θ − θ ′),

which gives (4-52) since (θ − θ ′)(θ − θ ′
± i0)−1

= 1. □

4.6.5. Noncharacteristic reflection. We now move to the singularities on the reflection sets Ref±

λ , again
staying away from the characteristic set Diag ∩ Ref±

λ :
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Lemma 4.13. Take θ0 ∈ S1 such that γ±

λ (θ0) ̸= θ0. Then there exists neighborhoods U,U ′
= γ±

λ (U ) of
γ±

λ (θ0), θ0 such that, for (θ, θ ′) ∈ U × U ′ and ε = Imω > 0 small enough, we have

K ±

ω (θ, θ
′)= c̃±

ω (θ
′)
(
γ±

λ (θ)− θ
′
± iεz±

ω (θ
′)
)−1

+ K ±

ω (θ, θ
′), (4-59)

where K ±
ω ∈ C∞(U ×U ′) is smooth in θ, θ ′, ε up to ε = 0, the functions c̃±

ω (θ
′) and z±

ω (θ
′) are smooth in

θ ′, ε up to ε = 0, and
c̃±

ω (θ
′)=

cω
∂θ ′γ±

λ (θ
′)

+O(ε), Re z±

ω (θ
′)≥ c > 0, (4-60)

where c is independent of ε, θ ′.

Proof. (1) Recall that ω = λ+ iε. We take Taylor expansions of ℓ±(x, ω) at ε = 0, using its holomorphy
in ω:

ℓ±(x, ω)= ℓ±(x, λ)+ iεℓ±1 (x, λ)+ ε
2ℓ±2 (x, λ, ε), ℓ±1 (x, λ) := ∂λℓ

±(x, λ), (4-61)

where the coefficients of the linear maps x 7→ ℓ±2 (x, λ, ε) are smooth in ε up to ε = 0. Since we have
∂θℓ

±(x(θ), λ) ̸= 0 at θ = θ0, we factorize for θ, θ ′ in some neighborhoods U,U ′
= γ±

λ (U ) of γ±

λ (θ0), θ0

ℓ±(x(θ)− x(θ ′), λ)= ℓ±(x(γ±

λ (θ))− x(θ ′), λ)= G±

λ (θ, θ
′)(γ±

λ (θ)− θ
′),

where G±

λ ∈ C∞(U × U ′
; R) is nonvanishing and

G±

λ (γ
±

λ (θ
′), θ ′)= ∂θ ′ℓ±(x(θ ′), λ). (4-62)

Hence for (θ, θ ′) ∈ U × U ′

ℓ±(x(θ)− x(θ ′), ω)= G±

λ (θ, θ
′)(γ±

λ (θ)− θ
′
± iεψ±

ω (θ, θ
′)),

ψ±

ω (θ, θ
′) := ±

ℓ±1 (x(θ)− x(θ ′), λ)− iεℓ±2 (x(θ)− x(θ ′), λ, ε)

G±

λ (θ, θ
′)

.

By (4-49) we have for (θ, θ ′) ∈ U × U ′

K ±

ω (θ, θ
′)= F±

ω (θ, θ
′)
(
γ±

λ (θ)− θ
′
± iεψ±

ω (θ, θ
′)
)−1
, F±

ω (θ, θ
′) := cω

∂θℓ
±(x(θ), ω)

G±

λ (θ, θ
′)

.

Note that ψ±
ω (θ, θ

′) and F±
ω (θ, θ

′) are smooth in θ, θ ′, ε up to ε = 0.

(2) We next claim that Reψ±
ω (θ, θ

′) ≥ c > 0 for ε small enough and (θ, θ ′) ∈ U × U ′, if U,U ′ are
sufficiently small neighborhoods of γ±

λ (θ0), θ0. For that it suffices to show that

±
ℓ±1 (x(γ

±

λ (θ0))− x(θ0), λ)

G±

λ (γ
±

λ (θ0), θ0)
> 0. (4-63)

By (2-7) and (4-62), and since ℓ±(x(γ±

λ (θ0))− x(θ0), λ)= 0, the left-hand side of (4-63) has the same
sign as

±
ℓ∓(x(γ±

λ (θ0))− x(θ0), λ)

∂θℓ±(x(θ), λ)|θ=θ0

,

which is positive by (2-5) with x := x(θ0).
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(3) Now (4-59) and the second part of (4-60) follow from Lemma 3.6, see also the remark follow-
ing Lemma 3.8 where we replace θ with γ±

λ (θ). Finally, by (4-62) and differentiating the identity
ℓ±(x(γ±

λ (θ
′)), λ)= ℓ±(x(θ ′), λ) in θ ′ we compute

F±

ω (γ
±

λ (θ
′), θ ′)= cω

∂θℓ
±(x(θ), λ)|θ=γ±

λ (θ
′)

∂θ ′ℓ±(x(θ ′), λ)
+O(ε)=

cω
∂θ ′γ±

λ (θ
′)

+O(ε),

which gives the first part of (4-60). □

4.6.6. Characteristic points. We finally study the singularities of K ±
ω near the characteristic set Diag ∩ Ref±

λ .
Recalling (4-51), we see that this set consists of two points (θ±

min, θ
±

min) and (θ±
max, θ

±
max), where x(θ±

min)=

x±

min(λ), x(θ±
max)= x±

max(λ) are the critical points of ℓ±( • , λ) (see Definition 1.1).

Lemma 4.14. Assume that θ0 ∈ {θ±

min, θ
±
max}. Then there exists a neighborhood U = γ±

λ (U ) of θ0 such
that, for (θ, θ ′) ∈ U × U and ε = Imω > 0 small enough, we have

K ±

ω (θ, θ
′)= cω(θ − θ ′

± i0)−1
+ c̃±

ω (θ
′)
(
γ±

λ (θ)− θ
′
± iεz±

ω (θ
′)
)−1

+ K ±

ω (θ, θ
′), (4-64)

where K ±
ω ∈ C∞(U × U ) is smooth in θ, θ ′, ε up to ε = 0, c̃±

ω (θ
′) and z±

ω (θ
′) are smooth in θ ′, ε up

to ε = 0, and (4-60) holds.

Remarks. (1) Note that Lemma 4.14 implies Lemmas 4.12 and 4.13 in a neighborhood of the character-
istic set, since the first term on the right-hand side of (4-64) is smooth away from the diagonal Diag and
the second term is smooth (uniformly in ε) away from the reflection set Ref±

λ .

(2) Since keeping track of the signs is frustrating we present a model situation: ℓ+(x) = x1 + iεx2,
ℓ−(x)= x2 + iεx1 (which is compatible with Lemma 4.1) and ∂� which near (0, 0) is given by

x1 = q(x2), q(0)= q ′(0)= 0, q ′′(0) < 0.

This corresponds to the point θ+
max, since when ε = 0 the function ℓ+(x) = x1 has a nondegenerate

maximum on ∂�.

We can use θ = x2 as a positively oriented parametrization of ∂� near (0, 0). In that case the involution
γ+(θ) is given by

q(γ+(θ))= q(θ), γ+(θ)= −θ +O(θ2).

This gives

q(θ)− q(θ ′)= Q(θ, θ ′)(θ − θ ′)(γ+(θ)− θ ′), Q(0, 0)= −
q ′′(0)

2
> 0.

The Schwartz kernel of the model restricted single layer potential C is given by (with Q = Q(θ, θ ′) and
neglecting the overall constant cω in (4-9))

K (θ, θ ′)= log
(
ℓ+(x(θ)− x(θ ′))ℓ−(x(θ)− x(θ ′))

)
= log

(
(q(θ)− q(θ ′)+ iε(θ − θ ′))(θ − θ ′

+ iε(q(θ)− q(θ ′)))
)

= log
(
(θ − θ ′)2(Q(γ+(θ)− θ ′)+ iε)(1 + iεQ(γ+(θ)− θ ′))

)
= 2 log |θ − θ ′

| + log(γ+(θ)− θ ′
+ iεQ−1)+ log(1 + iεQ(γ+(θ)− θ ′))+ log Q.
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Hence (see Section 4.2) the Schwartz kernel of ∂θC is

∂θK (θ, θ ′)=

∑
±

(θ − θ ′
± i0)−1

+
∂θγ

+(θ)+ iε∂θQ−1(θ, θ ′)

γ+(θ)− θ ′ + iεQ−1(θ, θ ′)
+ K (θ, θ ′),

where Q(0, 0) > 0 and K ∈ C∞ uniformly in ε. This is consistent with (4-64) and (4-60), where we use
Lemma 3.6 and recall that by (4-46) we have ∂θK = K +

+ K −.

Proof of Lemma 4.14. (1) Recall that ω = λ+ iε, ε > 0 and consider the expansion (4-61):

ℓ±(x, ω)= ℓ±(x, λ)+ iεℓ±1 (x, λ)+ ε
2ℓ±2 (x, λ, ε).

We have for θ, θ ′ in a sufficiently small neighborhood U of θ0 ∈ {θ±

min, θ
±
max}

ℓ±(x(θ)− x(θ ′), λ)= G0(θ, θ
′)(γ±

λ (θ)− θ
′)(θ − θ ′),

ℓ±1 (x(θ)− x(θ ′), λ)= G1(θ, θ
′)(θ − θ ′),

ℓ±2 (x(θ)− x(θ ′), λ, ε)= G2(θ, θ
′, ε)(θ − θ ′),

(4-65)

where G0,G1,G2 are smooth in θ, θ ′, ε up to ε = 0, and G0,G1 are real-valued and nonvanishing.
Indeed, the first decomposition follows from (2-1) and the second one, from (2-7) and the fact that
∂θℓ

∓(x(θ), λ) ̸= 0 at θ = θ0. We have now (with G j = G j (θ, θ
′))

ℓ±(x(θ)− x(θ ′), ω)= (θ − θ ′)(G0(γ
±

λ (θ)− θ
′)+ iεG1 + ε2G2). (4-66)

(2) The argument in the proof of Lemma 4.12 (see (4-58)) shows that for any fixed small ε > 0

K ±

ω (θ, θ
′)=

cω∂θℓ±(x(θ), ω)
G0(γ

±

λ (θ)− θ
′)+ iεG1 + ε2G2

(θ − θ ′
± i0)−1. (4-67)

To apply this argument we need to check the condition (4-55), which we rewrite as

± Im
G0(γ

±

λ (θ)− θ
′)+ iεG1 + ε2G2

ℓ±(v(θ), ω)
< 0 (4-68)

for θ, θ ′ near θ0, ε = Imω > 0 small enough, and v(θ) an inward-pointing vector field on ∂�. Here the
denominator is separated away from zero since ℓ±(v(θ0), λ) ̸= 0.

For ε = 0, the expression (4-68) is equal to 0. Thus it suffices to check the sign of its derivative in ε at
ε = 0 and θ = θ ′

= θ0, that is, show that (where we use (2-7))

±ℓ±(v(θ0), λ)ℓ
∓(∂θ x(θ0), λ) < 0. (4-69)

The latter follows from the fact that ℓ±(∂θ x(θ0), λ) = 0, x 7→ (ℓ+(x, λ), ℓ−(x, λ)) is an orientation-
preserving linear map on R2, and ∂θ x(θ0), v(θ0) form a positively oriented basis of R2.

(3) Differentiating (4-66) in θ to get a formula for ∂θℓ±(x(θ), ω) and substituting into (4-67) we get the
following identity for θ, θ ′

∈ U :

K ±

ω (θ, θ
′)= cω(θ − θ ′

± i0)−1
+

cω∂θ (G0(γ
±

λ (θ)− θ
′)+ iεG1 + ε2G2)

G0(γ
±

λ (θ)− θ
′)+ iεG1 + ε2G2

, (4-70)
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where, as before, G j = G j (θ, θ
′). Dividing the numerator and denominator of the last term on the right-

hand side by G0, we see that the second term on the right-hand side of (4-70) is equal to F±
ω (θ, θ

′)(γ±

λ (θ)−

θ ′
± iεψ±

ω (θ, θ
′))−1, where the functions

ψ±

ω (θ, θ
′) := ±

G1(θ, θ
′)− iεG2(θ, θ

′, ε)

G0(θ, θ ′)
,

F±

ω (θ, θ
′) :=

cω∂θ
(
G0(θ, θ

′)(γ±

λ (θ)− θ
′)+ iεG1(θ, θ

′)+ ε2G2(θ, θ
′, ε)

)
G0(θ, θ ′)

are smooth in θ, θ ′, ε up to ε = 0 and ψ±
ω is real and nonzero when ε = 0.

To get (4-64) we can now use Lemma 3.6 (and the remark following Lemma 3.8) similarly to step (3)
in the proof of Lemma 4.13. Here the sign condition Reψ±

ω ≥ c> 0 and (4-60) can be verified by a direct
computation using (2-7), definitions (4-65) and (4-69); note that for the sign condition it suffices to check
the sign of G1/G0 at θ = θ ′

= θ0. □

4.6.7. Summary. We summarize the findings of this section in microlocal terms. Consider the pullback
operator by γ±

λ on 1-forms on S1,

(γ±

λ )
∗
: C∞(S1

; T ∗S1)→ C∞(S1
; T ∗S1).

In terms of the identification of functions with 1-forms, f 7→ f dθ , we have

(γ±

λ )
∗( f dθ)= (( f ◦ γ±

λ )∂θγ
±

λ ) dθ. (4-71)

Proposition 4.15. Assume that ω = λ+ iε, where λ ∈ (0, 1), ε ≥ 0, and � is λ-simple in the sense
of Definition 1.1. Let Cω be the operator defined in (4-40), where for ε = 0 we understand it as the
operator Cλ+i0. Using the coordinate θ , we treat dCω as an operator on C∞(S1

; T ∗S1). Then for all ε
small enough, we can write

EωdCω = I + (γ+

λ )
∗ A+

ω + (γ−

λ )
∗ A−

ω , (4-72)

where Eω, A±
ω are pseudodifferential operators in 90(S1

; T ∗S1) bounded uniformly in ε and such that,
uniformly in ε (see (3-7)),

σ(Eω)(θ, ξ)=
i sgn ξ
2πcω

, WF(A±

ω )⊂ {±ξ > 0}, σ (A±

ω )(θ, ξ)= a±

ω (θ)H(±ξ)e
−εz±

ω (θ)|ξ |,

where H(ξ) denotes the Heaviside function, a±
ω and z±

ω are smooth in θ, ε up to ε = 0, Re z±
ω (θ)≥ c > 0,

and a±
ω (θ)= −1 +O(ε).

Remarks. (1) Proposition 4.15 is stated for a fixed value of λ= Reω. However, its proof still works
when λ varies in some open interval J ⊂ (0, 1) such that � is λ-simple for all λ ∈ J. The conclusions of
Proposition 4.15 hold locally uniformly in λ∈J and the functions a±

ω (θ), z±
ω (θ) can be chosen depending

smoothly on θ ∈ S1, λ ∈ J, and ε = Imω ≥ 0. Moreover, the operators A±
ω and Eω depend smoothly on λ

and all their λ-derivatives are in 90 uniformly in ε; the same is true for the pseudodifferential operators
featured in the decomposition (4-75) below.
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(2) One can formulate a version of (4-72) directly on ∂� which does not depend on the choice of the
(positively oriented) coordinate θ , using the fact that the principal symbol (3-14) is invariantly defined.

Proof. (1) Recall from (4-46) that dCω = T +
ω + T −

ω , where T ±
ω are defined in (4-47). As with dCω, we

use the coordinate θ to think of T ±
ω as operators on C∞(S1

; T ∗S1). We will write T ±
ω as a sum of a

pseudodifferential operator and a composition of a pseudodifferential operator with (γ±

λ )
∗; see (4-75)

below. The singular supports of the Schwartz kernels of these two operators will lie in the sets Diag and
Ref±

λ defined in (4-50).
Fix a cutoff χDiag ∈ C∞(S1

× S1) supported in a small neighborhood of the diagonal Diag and equal
to 1 on a smaller neighborhood of Diag. Define the (ω-dependent) operator

T ±

Diag : C∞(S1
; T ∗S1)→ C∞(S1

; T ∗S1),

with the Schwartz kernel cωχDiag(θ, θ
′)(θ − θ ′

± i0)−1. Here Schwartz kernels are defined in (4-48). By
Lemma 3.9 we have

T ±

Diag ∈90(S1
; T ∗S1), σ (T ±

Diag)(θ, ξ)= ∓2π icωH(±ξ). (4-73)

(2) Next, define the reflected operators

T ±

Ref := T ±

ω − T ±

Diag, T̂ ±

Ref := (γ±

λ )
∗T ±

Ref.

Denote by K ±

Ref, K̂ ±

Ref the corresponding Schwartz kernels. Combining Lemmas 4.11, 4.12, 4.13, and 4.14
we see that, putting χ±

Ref(θ, θ
′) := χDiag(γ

±

λ (θ), θ
′),

K ±

Ref(θ, θ
′)= χ±

Ref(θ, θ
′)c̃±

ω (θ
′)(γ±

λ (θ)− θ
′
± iεz±

ω (θ
′))−1

+ K ±

ω (θ, θ
′), 0< ε < ε0,

where K ±
ω is smooth in θ, θ ′, ε up to ε= 0, c̃±

ω (θ
′) and z±

ω (θ
′) are smooth in θ ′, ε up to ε= 0, Re z±

ω (θ
′)≥

c > 0 for some constant c, and c̃±
ω (θ

′) = cω/∂θ ′γ±

λ (θ
′)+ O(ε). Here we use a partition of unity and

Lemma 3.8 to patch together different local representations from Lemmas 4.13 and 4.14 and get globally
defined c̃±

ω , z±
ω . Recalling (4-71), we have

K̂ ±

Ref(θ, θ
′)= (∂θγ

±

λ (θ))K
±

Ref(γ
±

λ (θ), θ
′).

Thus by Lemma 3.9 the operator T̂ ±

Ref is pseudodifferential: we have uniformly in ε > 0

T̂ ±

Ref ∈90(S1
; T ∗S1), WF(T̂ ±

Ref)⊂ {±ξ > 0},

σ (T̂ ±

Ref)(θ, ξ)= ∓2π i c̃±

ω (θ)(∂θγ
±

λ (θ))e
−εz±

ω (θ)|ξ |H(±ξ).
(4-74)

(3) We now have the decomposition for ε > 0

dCω = T +

Diag + T −

Diag + (γ+

λ )
∗T̂ +

Ref + (γ
−

λ )
∗T̂ −

Ref. (4-75)

Taking the limit as ε→ 0+ and using Lemma 3.7 (see also (3-34)) and Lemma 4.10 we see that the same
decomposition holds for ε = 0, where we have

K ±

Ref(θ, θ
′)= χ±

Ref(θ, θ
′)c̃±

ω (θ
′)(γ±

λ (θ)− θ
′
± i0)−1

+ K ±

ω (θ, θ
′), when ε = 0,

and by Lemma 3.9 the properties (4-74) hold for ε = 0.
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The operator TDiag := T +

Diag+T −

Diag lies in90(S1
; T ∗S1) and has principal symbol −2π icω sgn ξ (away

from ξ = 0), which is elliptic. Let Eω be the elliptic parametrix of TDiag, so that EωTDiag = I +9−∞ (see
[Hörmander 1994, Theorem 18.1.9]). We have σ(Eω)= 1/σ(TDiag)= i sgn ξ/(2πcω). Multiplying (4-75)
on the left by Eω we get (4-72) where the operators A±

ω have the form

A±

ω = (γ±

λ )
∗Eω(γ±

λ )
∗T̂ ±

Ref.

By [Hörmander 1994, Theorem 18.1.17], (γ±

λ )
∗Eω(γ±

λ )
∗

∈ 90(S1
; T ∗S1) has the principal symbol

−i sgn ξ/(2πcω) (as γ±

λ is orientation-reversing), so from (4-74) we get the needed properties of A±
ω , with

a±

ω (θ)= −
c̃±
ω (θ)

cω
∂θγ

±

λ (θ)= −1 +O(ε). □

4.6.8. A strong convergence statement. A corollary of Lemma 4.10 and Proposition 4.15 is the following
limiting statement:

Lemma 4.16. Assume that λ ∈ (0, 1), � is λ-simple, k ∈ N0, and s + 1> t . Then

∥∂k
ωCω j − ∂k

λCλ+i0∥H s+k(∂�;T ∗∂�)→H t (∂�) → 0 for all ω j → λ, Imω j > 0. (4-76)

Proof. (1) Fix k. We first show the following uniform bound: for each s there exists Cs such that, for all
large j ,

∥∂k
ωCω j ∥H s+k(∂�;T ∗∂�)→H s+1(∂�) ≤ Cs . (4-77)

Indeed, Proposition 4.15 (more precisely, (4-75)) and Remark (1) after it imply that

∥d∂k
ωCω j ∥H s+k(∂�;T ∗∂�)→H s(∂�;T ∗∂�) ≤ Cs for all s, (4-78)

where the loss of k derivatives comes from differentiating the pullback operators γ±

λ in λ = Reω. On
the other hand Lemma 4.10 shows that, for each ϕ ∈ C∞(∂�× ∂�), and denoting by ∂k

ωCω(x, y) the
Schwartz kernel of the operator ∂k

ωCω, the sequence∫
∂�×∂�

∂k
ωCω j (x, y)ϕ(x, y) dθ(x) dθ(y)

converges (to the same integral for ∂k
λCλ+i0) and thus in particular is bounded. By the Banach–Steinhaus

theorem in the Fréchet space C∞(∂�× ∂�), we see that there exists Nk such that

∥∂k
ωCω j ∥H s(∂�;T ∗∂�)→H t (∂�) ≤ Cs,t for all s ≥ Nk, t ≤ −Nk . (4-79)

(Another way to show (4-79), avoiding Banach–Steinhaus, would be to carefully examine the proof of
Lemma 4.10.)

Together (4-78), (4-79), and the elliptic estimate for ∂θ imply that (4-77) holds for all s ≥ Nk − k. The
operator ∂k

ωCω j is its own transpose under the natural bilinear pairing on C∞(∂�; T ∗∂�)× C∞(∂�).
Since H−s is dual to H s under this pairing, (4-77) holds for all s ≤ −Nk − 1. Then (4-79) holds for
all s, t such that t ≤ min(s + 1 − k,−Nk). Together with (4-78) and the elliptic estimate for ∂θ , this
implies that (4-77) holds in general. Same bound holds for the operator ∂k

λCλ+i0.
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(2) We now show that

∂k
ωCω jv → ∂k

λCλ+i0v in C∞(∂�), for all v ∈ C∞(∂�; T ∗∂�). (4-80)

Indeed, by (4-77) the sequence ∂k
ωCω jv is precompact in H s for every s, and any convergent subsequence

has to converge to ∂k
λCλ+i0v since ∂k

ωCω jv → ∂k
λCλ+i0v in D′ by Lemma 4.10.

Since C∞ is dense in H s+k, we get from (4-77), (4-80), and a standard argument in functional analysis
the strong-operator convergence

∂k
ωCω jv → ∂k

λCλ+i0v in H s+1(∂�), for all v ∈ H s+k(∂�; T ∗∂�). (4-81)

We are now ready to prove (4-76). Let s+1> t . Assume that (4-76) fails; then by passing to a subsequence
we may assume that there exists some c > 0 and a sequence

v j ∈ H s+k(∂�; T ∗∂�), ∥v j∥H s+k = 1, ∥(∂k
ωCω j − ∂k

λCλ+i0)v j∥H t ≥ c.

Since H s+k embeds compactly into H t−1+k, passing to a subsequence we may assume that v j → v0 in
H t−1+k. But then

∥(∂k
ωCω j − ∂k

λCλ+i0)v j∥H t ≤ ∥(∂k
ωCω j − ∂k

λCλ+i0)(v j − v0)∥H t + ∥(∂k
ωCω j − ∂k

λCλ+i0)v0∥H t .

Now the first term on the right-hand side goes to 0 as j → ∞ by (4-77), and the second term goes to 0
by (4-81), giving a contradiction. □

4.6.9. Action on conormal distributions. We finish this section by showing that Cω is bounded uniformly
as Imω → 0+ on conormal spaces I s(∂�; N ∗

+
6−

λ ⊔ N ∗
−
6+

λ ) defined in (3-19), where 6±

λ are the
attractive/repulsive sets of the chess billiard b( • , λ) defined in (1-6) and λ= Reω— see Lemma 4.17
below. Moreover, we get similar estimates on all the derivatives ∂k

ωCω. This is used in the proof of
Proposition 7.4 below.

Since the conormal spaces above depend on λ, we introduce a λ-dependent system of coordinates which
maps 6±

λ to λ-independent sets. Assume that J ⊂ (0, 1) is an open interval such that the Morse–Smale
conditions hold for each λ ∈ J (see Definition 1.2). Recall from Lemma 2.6 that the points in the sets 6±

λ

depend smoothly on λ ∈ J. Fix any finite set 6̃ ⊂ S1 with the same number of points as 6λ =6+

λ ⊔6−

λ

and a family of orientation-preserving diffeomorphisms depending smoothly on λ

2λ : S1
→ ∂�, λ ∈ J , 2λ(6̃)=6λ.

We may take the decomposition 6̃ = 6̃+
⊔ 6̃−, where 6̃± are λ-independent sets and

2λ(6̃
±)=6±

λ for all λ ∈ J . (4-82)

Note that for any fixed λ ∈ J the pullback 2∗

λ gives an isomorphism

2∗

λ : I s(∂�, N ∗

+
6−

λ ⊔ N ∗

−
6+

λ )→ I s(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)

and the space on the right-hand side is independent of λ.
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For ω ∈ J + i(0,∞) define the conjugated operator (here 2−∗

λ is the pullback by 2−1
λ )

C̃ω :=2∗

λCω2
−∗

λ : C∞(S1
; T ∗S1)→ C∞(S1), where λ := Reω. (4-83)

We write ω = λ+ iε and define ∂k
λ C̃ω by differentiating in λ with ε fixed. (Note that Cω is holomorphic

in ω by Lemma 4.10 but C̃ω is not holomorphic.)
We say that a sequence of operators

T j : I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)→ I t+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)

is bounded uniformly in j if for each sequence ṽ j ∈ I s+(S1, N ∗
+
6̃−

⊔ N ∗
−
6̃+) with every seminorm (3-20)

bounded uniformly in j , the sequence T j ṽ j also has all the seminorms (3-20) bounded uniformly in j .
Similarly we consider operators acting on differential forms on S1, which are identified with functions
using the canonical coordinate θ .

Lemma 4.17. Assume that λ∈J and ω j →λ, Imω j >0. Then for each k and s, the sequence of operators

∂k
λ C̃ω j : I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)→ I s−1+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)

is bounded uniformly in j .

Proof. (1) From (4-77) we see that for each r , ∂k
λ C̃ω j is bounded H r

→ H r−k+1 uniformly in j . By
elliptic regularity, it then suffices to show that the sequence of operators

d∂k
λ C̃ω j : I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)→ I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)

is bounded uniformly in j . Using the decomposition (4-75), we write

dC̃ω = T̃Diag,ω + (γ̃+

λ )
∗T̃ +

Ref,ω + (γ̃−

λ )
∗T̃ −

Ref,ω, (4-84)
where ω = λ+ iε,

T̃Diag,ω :=2∗

λ(T
+

Diag + T −

Diag)2
−∗

λ , T̃ ±

Ref,ω :=2∗

λT̂ ±

Ref2
−∗

λ

are families of pseudodifferential operators in 90(S1
; T ∗S1) smooth in λ ∈ J uniformly in ε (see

Remark (1) following Proposition 4.15), and

γ̃±

λ :=2−1
λ ◦ γ±( • , λ) ◦2λ

is a family of orientation-reversing involutive diffeomorphisms of S1 depending smoothly on λ ∈ J and
such that by (2-2) and (4-82)

γ̃±

λ (6̃
+)= 6̃−, γ̃±

λ (6̃
−)= 6̃+. (4-85)

(2) Differentiating (4-84) in λ= Reω, we see that it suffices to show that for each k and s the sequences
of operators

∂k
λ T̃Diag,ω j , ∂

k
λ T̃ ±

Ref,ω j
, ∂k

λ(γ̃
±

λ j
)∗ : I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)→ I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)

are bounded uniformly in j . The operators ∂k
λ T̃Diag,ω j and ∂k

λ T̃ ±

Ref,ω j
are bounded in 90 uniformly in j and

thus bounded on any space of conormal distributions [Hörmander 1994, Theorem 18.2.7], so it remains
to show the boundedness of ∂k

λ(γ̃
±

λ j
)∗.
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Instead of pullback on 1-forms we study pullback on functions, since the two differ by a multiplication
operator which can be put into T̃ ±

Ref,ω. We then have for all λ ∈ J

∂λ(γ̃
±

λ )
∗
= X±

λ (γ̃
±

λ )
∗,

where X±

λ is the vector field on S1 given by

X±

λ (θ)=
∂λγ̃

±

λ (θ)

∂θ γ̃
±

λ (θ)
∂θ .

We note that X±

λ vanishes on 6̃ by (4-85).
It follows that ∂k

λ(γ̃
±

λ )
∗ is a linear combination with constant coefficients of operators of the form

(∂
k1
λ X±

λ ) · · · (∂
kℓ
λ X±

λ )(γ̃
±

λ )
∗, k1 + · · · + kℓ + ℓ= k.

Thus it remains to show that for all k the operators

∂k
λX±

λ j
, (γ̃±

λ j
)∗ : I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)→ I s+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+) (4-86)

are bounded uniformly in j .
Each ∂k

λX±

λ is a vector field which vanishes on 6̃ and thus can be written in the form aρ∂θ for some
a ∈ C∞(S1) depending smoothly on λ and ρ which is a defining function of 6̃ (see the discussion
preceding (3-20)). Thus ∂k

λX±

λ j
is bounded on the spaces (4-86) uniformly in j . Finally, (γ̃±

λ j
)∗ is bounded

on these spaces uniformly in j by the mapping property (4-85) and since γ̃±

λ j
is orientation reversing, its

symplectic lift maps N ∗
+
6̃− and N ∗

−
6̃+ to each other. □

5. High frequency analysis on the boundary

In this section, we take
ω = λ+ iε, 0< ε≪ 1,

where λ ∈ (0, 1) satisfies the Morse–Smale conditions on � (see Definition 1.2), and consider the elliptic
boundary value problem (4-21):

P(ω)uω = f, uω|∂� = 0.

Here f ∈ C∞
c (�) is fixed and the solution uω lies in C∞(�) (see Lemma 4.4). Our goal is to prove

high-frequency estimates on uω which are uniform in the limit ε→ 0+, when the operator P(ω) becomes
hyperbolic. To do this we combine the detailed analysis of Section 4.6 with the dynamical properties
following from the Morse–Smale conditions.

5.1. Splitting into positive and negative frequencies. Fix a positively oriented coordinate θ : ∂�→ S1

to identify ∂� with S1. Recall from (4-30) that

Cωvω = Gω := (Rω f )|∂�. (5-1)

Here the 1-form vω :=Nωuω ∈C∞(S1
; T ∗S1) is the “Neumann data” of uω defined using (4-26); however,

we do not have uniform bounds on vω in C∞ as ε = Imω → 0+. The function Gω lies in C∞(S1)
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uniformly in ε since f ∈ C∞
c and Rω is the convolution operator with the fundamental solution Eω, which

has a distributional limit as ε→ 0+ by Lemma 4.3.
Let γ±

λ be defined in (4-43). By Proposition 4.15 we have

EωdGω = EωdCωvω = vω + (γ+

λ )
∗ A+

ωvω + (γ−

λ )
∗ A−

ωvω.

We rewrite this equation as

vω = −Aωvω + EωdGω, Aω := (γ+

λ )
∗ A+

ω + (γ−

λ )
∗ A−

ω . (5-2)

The operator Aω exchanges positive and negative frequencies, since A±
ω are pseudodifferential and the

maps γ±

λ are orientation reversing. We thus study the square of Aω, which maps positive and negative fre-
quencies to themselves. It is expressed in terms of the pullback of the chess billiard map b =γ+

◦γ− to S1:

bλ := γ+

λ ◦ γ−

λ , b−1
λ = γ−

λ ◦ γ+

λ , (5-3)

which is an orientation-preserving diffeomorphism of S1. Denote the pullback operators by bλ and b−1
λ

on 1-forms by
b∗

λ, b−∗

λ : C∞(S1
; T ∗S1)→ C∞(S1

; T ∗S1).

Lemma 5.1. We have
A2
ω = B+

ω b∗

λ + B−

ω b−∗

λ , (5-4)

where B±
ω are pseudodifferential; more precisely we have uniformly in ε ≥ 0 (see (3-7))

B±

ω ∈90(S1
; T ∗S1), WF(B±

ω )⊂ {±ξ > 0},

σ (B±

ω )(θ, ξ)= ã±

ω (θ)H(±ξ)e
−εz̃±

ω (θ)|ξ |,
(5-5)

where H denotes the Heaviside function, the functions ã±
ω (θ), z̃±

ω (θ) are smooth in θ ∈ S1 and ε ≥ 0,
Re z̃±

ω ≥ c > 0, and ã±
ω (θ)= 1 +O(ε).

Remark. From Remark (1) after Proposition 4.15 we see that B±
ω are smooth in λ (where ω = λ+ iε),

with λ-derivatives of all orders lying in 90 uniformly in ε.

Proof. From Proposition 4.15 and the change of variables formula for pseudodifferential operators
[Hörmander 1994, Theorem 18.1.17] we see that (γ±

λ )
∗ A±

ω (γ
±

λ )
∗ lies in 90(S1

; T ∗S1) and has wavefront
set inside {∓ξ > 0} uniformly in ε. Since products of pseudodifferential operators with nonintersecting
wavefront sets are smoothing, we see that

((γ±

λ )
∗ A±

ω )
2
∈9−∞(S1

; T ∗S1) uniformly in ε ≥ 0.

Recalling (5-2) we see that (with 9−∞ denoting smoothing operators uniformly in ε)

A2
ω = (γ+

λ )
∗ A+

ω (γ
−

λ )
∗ A−

ω + (γ−

λ )
∗ A−

ω (γ
+

λ )
∗ A+

ω +9−∞.

This gives the decomposition (5-4) with

B±

ω = ((γ∓

λ )
∗ A∓

ω (γ
∓

λ )
∗)((b±1

λ )
∗ A±

ω (b
∓1
λ )

∗)+9−∞.
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Using the properties of A±
ω in Proposition 4.15 together with the product formula and the change of

variables formula for pseudodifferential operators, we see that B±
ω ∈ 90(S1

; T ∗S1) and WF(B±
ω ) ⊂

{±ξ > 0} uniformly in ε. This also gives

σ(B±

ω )(θ, ξ)= σ(A∓

ω )

(
γ∓

λ (θ),
ξ

∂θγ
∓

λ (θ)

)
σ(A±

ω )

(
b±1
λ (θ),

ξ

∂θb±1
λ (θ)

)
in the sense of (3-7), which implies the formula for the principal symbol in (5-5), with

ã±

ω (θ)= a∓

ω (γ
∓

λ (θ))a
±

ω (b
±1
λ (θ)), z̃±

ω (θ)=
z∓
ω (γ

∓

λ (θ))

|∂θγ
∓

λ (θ)|
+

z±
ω (b

±1
λ (θ))

∂θb±1
λ (θ)

,

where a±
ω , z±

ω are given in Proposition 4.15. □

Applying (5-2) twice, we get the equation

vω = B+

ω b∗

λvω + B−

ω b−∗

λ vω + gω, (5-6)

where
gω := (I −Aω)EωdGω

is in C∞(S1
; T ∗S1) uniformly in ε > 0.

We now split vω into positive and negative frequencies. Consider a pseudodifferential partition of unity

I =5+
+5−, 5±

∈90(S1, T ∗S1),

WF(5±)⊂ {±ξ > 0}, σ (5±)(θ, ξ)= H(±ξ).
(5-7)

Put
v±

ω :=5±vω, g±

ω :=5±gω, (5-8)

with g±
ω in C∞(S1

; T ∗S1) uniformly in ε, and apply 5± to (5-6) to get

v±

ω = B±

ω (b
±1
λ )

∗v±

ω + R±

ω vω + g±

ω , (5-9)

where the operator

R±

ω :=
(
[5±, B±

ω ] + B±

ω (5
±

− (b±1
λ )

∗5±(b∓1
λ )

∗)
)
(b±1
λ )

∗
+5±B∓

ω (b
∓1
λ )

∗

is in 9−∞(S1
; T ∗S1) uniformly in ε, as follows from (5-7) and the fact that WF(B±

ω )⊂ {±ξ > 0}.

5.2. Microlocal Lasota–Yorke inequalities. We now show that B±
ω (b

±1
λ )

∗ featured in (5-9) are con-
tractions at high frequencies on appropriately chosen inhomogeneous Sobolev spaces, and use this to
prove a high-frequency estimate on vω; see Proposition 5.3 below. This is reminiscent of Lasota–Yorke
inequalities (see [Baladi 2018]) and could be considered a simple version of radial estimates (see [Dyatlov
and Zworski 2019a, §E.4.3]) for Fourier integral operators. It is also related to microlocal weights used
by Faure, Roy and Sjöstrand [Faure et al. 2008].

Unlike applications to volume-preserving Anosov maps in [Baladi 2018; Faure et al. 2008], where
critical regularity is given by L2, for us the critical regularity space is H−1/2. This can be informally
explained as follows: if we have v±

ω = d f ± for some functions f ± then the flux Im
∫

S1 f ± d f ± is
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invariant under replacing f ± with the pullback (b±1
λ )

∗ f ± and is well-defined for f ±
∈ H 1/2. When

WF( f ±)⊂ {±ξ > 0}, the flux is related to ∥ f ±
∥

2
H1/2 ∼ ∥v±

ω ∥
2
H−1/2 .

To simplify notation, we only study in detail the case of the “+” sign. The case of the “−” sign is
handled similarly by replacing bλ with b−1

λ , switching 6+

λ with 6−

λ , and using the escape function in
Lemma 2.9 (rather than in the remark following it).

We identify ∂� with S1 using the adapted coordinate θ constructed in Lemma 2.8, which satisfies for
δ > 0 small enough

∓ log ∂θbλ > 0 on 6±

λ (δ), (5-10)

where 6±

λ ⊂ S1 are the attractive (+) and repulsive (−) periodic points of bλ defined in (1-6), and 6±

λ (δ)

are their open δ-neighborhoods.
Take arbitrary α− < α+ and small δ > 0 (in particular, so that (5-10) holds). Let g ∈ C∞(S1

; R) be
the escape function defined in the remark following Lemma 2.9. We have

α− ≤ g(θ)≤ N0 for some N0. (5-11)

Define the symbol

G(θ, ξ) := g(θ)(1 −χ0(ξ)) log |ξ |, (θ, ξ) ∈ T ∗S1, (5-12)

where χ0 ∈ C∞
c ((−1, 1)) is equal to 1 near 0. We use Lemma 3.2 to construct

EG := Op(eG) ∈9
N0
0+
(S1

; T ∗S1), Ẽ−G := Op(e−G(1 + rG)) ∈9
−α−

0+
(S1

; T ∗S1),

rG ∈ S−1+, Ẽ−G EG − I, EG Ẽ−G − I ∈9−∞.
(5-13)

By property (4) in the remark following Lemma 2.9 we have g ≥ α+ on S1
\6−

λ (δ). Therefore by (3-11)

χ Ẽ−G ∈9
−α+

0+
(S1

; T ∗S1) for all χ ∈ C∞(S1), suppχ ∩6−

λ (δ)= ∅. (5-14)

We now apply EG to (5-9) (with the “+” sign) to get

vG = TGvG + RGvω + gG, where vG := EGv
+

ω , gG := EG g+

ω ,

TG := EG B+

ω b∗

λ Ẽ−G, RG := EG B+

ω b∗

λ(I − Ẽ−G EG)5
+

+ EGR+

ω .
(5-15)

Here gG ∈ C∞(S1
; T ∗S1) and RG ∈ 9−∞(S1

; T ∗S1), both uniformly in ε. The function vG lies in
C∞(S1

; T ∗S1) for ε > 0, but it is not bounded in this space uniformly in ε. We also have the following
bounds for each N, which follow from (5-13) and (5-14) (writing v+

ω = Ẽ−GvG + (I − Ẽ−G EG)v
+
ω ):

∥v+

ω ∥Hα− ≤ C∥vG∥L2 + CN ∥vω∥H−N , (5-16)

∥χv+

ω ∥Hα+ ≤ C∥vG∥L2 + CN ∥vω∥H−N if suppχ ∩6−

λ (δ)= ∅, (5-17)

∥gG∥L2 ≤ C∥gω∥H N0 . (5-18)

The key result in this section is the following lemma. The point is that for α− < −
1
2 < α+, we can

obtain a contraction property of the microlocally conjugated operator TG :
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Lemma 5.2. Suppose that G is given by (5-12) (using a coordinate θ in which (5-10) holds) with g defined
with parameters α− < α+, δ > 0, and that TG is defined in (5-15). Define the norm on L2(S1

; T ∗S1)

using the coordinate θ . Then for any N and ν > 0 there exists CN such that, for all small ε = Imω > 0
and all w ∈ C∞(S1

; T ∗S1),

∥TGw∥L2 ≤
(
max

±
sup
6±

λ (δ)

(∂θbλ)1/2+α± + ν
)
∥w∥L2 + CN ∥w∥H−N . (5-19)

Proof. (1) Recalling the formula (4-71) for pullback operators on 1-forms, we see that the operator

(b−∗

λ )(∂θbλ)1/2 : L2(S1
; T ∗S1)→ L2(S1

; T ∗S1)

is unitary. Multiplying TG by this operator on the right, we see that it suffices to show that

∥T̃Gw∥L2 ≤
(
max

±
sup
6±

λ (δ)

(∂θbλ)1/2+α± + ν
)
∥w∥L2 + CN ∥w∥H−N ,

where T̃G := EG B+

ω b∗

λ Ẽ−Gb−∗

λ (∂θbλ)1/2. (5-20)

By (3-13) we have b∗

λ Ẽ−Gb−∗

λ =Op(e−Gb(1+r)) for Gb(θ, ξ) := G(bλ(θ), ξ/∂θbλ(θ)) and some r ∈ S−1+.
Recalling the definition (5-12) of G, we compute for |ξ | large enough

G(θ, ξ)− Gb(θ, ξ)= (g(θ)− g(bλ(θ))) log |ξ | + g(bλ(θ)) log ∂θbλ(θ). (5-21)

Since g(θ)− g(bλ(θ)) ≤ 0 by property (1) in the remark following Lemma 2.9, we see that G − Gb

is bounded above by some constant. By (3-11) and Lemma 5.1 we then see that T̃G ∈90
0+
(S1

; T ∗S1)

uniformly in ε and its principal symbol is (in the sense of (3-7))

σ(T̃G)(θ, ξ)= ã+

ω (θ)H(ξ)e
−εz̃+

ω (θ)ξ (∂θbλ(θ))1/2eG(θ,ξ)−Gb(θ,ξ), |ξ | ≥ 1.

Thus (5-20) follows from Lemma 3.1 once we show that there exists C1 > 0 such that for all ξ ≥ C1

|ã+

ω (θ)|e
−εRe z̃+

ω (θ)ξ (∂θbλ(θ))1/2eG(θ,ξ)−Gb(θ,ξ) ≤ max
±

sup
6±

λ (δ)

(∂θbλ)1/2+α± . (5-22)

(2) Since ã+
ω (θ) = 1 + O(ε) and Re z̃+

ω (θ) ≥ c > 0, for ξ ≥ C1 and C1 large enough we have
|ã+
ω (θ)|e

−εRe z̃+
ω (θ)ξ ≤ 1. Thus (5-22) reduces to showing that for all ξ ≥ C1

G̃(θ, ξ)≤ max
±

sup
6±

λ (δ)

( 1
2 +α±

)
log ∂θbλ,

where G̃(θ, ξ) := (g(θ)− g(bλ(θ))) log ξ +
( 1

2 + g(bλ(θ))
)

log ∂θbλ(θ). (5-23)

This in turn is proved if we show that there exists c0 > 0 such that for ξ large enough

G̃(θ, ξ)≤


−c0 log ξ, θ ∈ S1

\ (6−

λ (δ)∪6
+

λ (δ)),( 1
2 +α+

)
log ∂θbλ(θ), θ ∈6+

λ (δ),( 1
2 +α−

)
log ∂θbλ(θ), θ ∈6−

λ (δ).

(5-24)

We now prove (5-24) using properties (1)–(6) in Lemma 2.9 (or rather the remark which follows it). The
first inequality follows from property (2), since g(θ)− g(bλ(θ))≤ −2c0 for some c0 > 0. The second
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inequality follows from properties (1) and (4) together with (5-10). Finally, the third inequality follows
from property (6) with M := (log ξ)/(log ∂θbλ(θ))≫ 1, where we again use (5-10). □

With Lemma 5.2 in place we give a basic high-frequency estimate on solutions to (5-6) which is
uniform as Imω→ 0. An upgraded version of this estimate (Proposition 5.4) is used in the proof of the
limiting absorption principle in Section 7 below.

Proposition 5.3. Fix β > 0, N, and some functions χ±
∈ C∞(S1) such that suppχ±

∩6∓

λ = ∅. Then
there exist N0 and C such that for all small ε = Imω > 0 and each solution vω ∈ C∞(S1

; T ∗S1) to (5-6)
we have

∥vω∥H−1/2−β ≤ C(∥gω∥H N0 + ∥vω∥H−N ), (5-25)

∥χ±5±vω∥H N ≤ C(∥gω∥H N0 + ∥vω∥H−N ). (5-26)

Remarks. (1) The a priori assumption that vω is smooth (without any uniformity as ε→ 0+) is important
in the argument because it ensures that the norm ∥vG∥L2 is finite.

(2) Using the notation (3-18), we see that (5-26) implies that, assuming that the right-hand side of this
inequality is bounded uniformly in ε for each N0 and some N, we have WF(vω) ⊂ N ∗

+
6−

λ ⊔ N ∗
−
6+

λ

uniformly in ε.

Proof. (1) Fix α± satisfying
−

1
2 −β ≤ α− <−

1
2 < α+, α+ ≥ N .

Next, fix δ > 0 in the construction of the escape function g small enough so that (5-10) holds and
suppχ+

∩6−

λ (δ)= ∅. By (5-10) and since α− <−
1
2 < α+ we may choose τ such that

max
±

sup
6±

λ (δ)

(∂θbλ)1/2+α± < τ < 1.

Take N0 so that (5-11) holds. We use (5-15) and (5-18) to get

∥vG∥L2 ≤ ∥TGvG∥L2 + C(∥gω∥H N0 + ∥vω∥H−N ).

Applying Lemma 5.2 to w := vG , we see that

∥TGvG∥L2 ≤ τ∥vG∥L2 + C∥vω∥H−N .

Since τ < 1, together these two inequalities give

∥vG∥L2 ≤ C(∥gω∥H N0 + ∥vω∥H−N ). (5-27)

(2) From (5-27) and (5-16) we have

∥v+

ω ∥H−1/2−β ≤ C(∥gω∥H N0 + ∥vω∥H−N ). (5-28)

The bound (5-26) for the “+” sign follows from (5-27) and (5-17). Similar analysis (replacing bλ with b−1
λ ,

switching the roles of 6+

λ and 6−

λ , and using Lemma 2.9 instead of the remark that follows it) shows
that (5-28) holds for v−

ω and (5-26) holds for the “−” sign. Since vω = v+
ω + v−

ω , we obtain (5-25). □
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5.3. Conormal regularity. We now upgrade Proposition 5.3 to obtain iterated conormal regularity uni-
formly as Imω→ 0+. We also relax the assumptions on the right-hand side gω: instead of being smooth
uniformly in ε it only needs to be bounded in a certain conormal space uniformly in ε. This is the
high-frequency estimate used in the proof of Lemma 7.1 below.

As before we identify ∂� with S1 and 1-forms on S1 with functions using the coordinate θ constructed
in Lemma 2.8, which in particular makes it possible to define the operator ∂θ on 1-forms. Fix some
defining function ρ of 6λ = 6+

λ ⊔ 6−

λ and an operator A6λ ∈ 90(S1
; T ∗S1) such that WF(A6λ) ∩

(N ∗
+
6−

λ ⊔ N ∗
−
6+

λ )= ∅ and A6λ is elliptic on N ∗
−
6−

λ ⊔ N ∗
+
6+

λ . The estimate (5-29) below features the
seminorms (3-20) for the space I (1/4)+(S1, N ∗

+
6−

λ ⊔ N ∗
−
6+

λ ) defined in (3-19). The proposition below
applies to any vω, gω ∈ C∞ solving (5-6), not just to vω discussed in Section 5.1.

Proposition 5.4. Fix β > 0, k ∈ N0, and N. Then there exist N0 = N0(β, k) and C = C(β, k, N ) such
that for all small ε = Imω > 0 and any solution vω ∈ C∞(S1

; T ∗S1) to (5-6) we have

∥(ρ∂θ )
kvω∥H−1/2−β + ∥A6λvω∥H k ≤ C

(
max

0≤ℓ≤N0
∥(ρ∂θ )

ℓgω∥H−1/2−β + ∥A6λgω∥H N0 + ∥vω∥H−N
)
. (5-29)

Remark. From the Remark at the end of Section 2.3 we see that the statement of Proposition 5.4 holds
locally uniformly in λ. More precisely, assume that J ⊂ (0, 1) is an open interval such that each λ ∈ J
satisfies the Morse–Smale conditions of Definition 1.2. We may choose the coordinate θ , the defining
function ρ of 6λ, and the operator A6λ depending smoothly on λ. Then for each compact set K ⊂ J we
may choose constants N0 and C so that (5-29) holds for all λ= Reω∈K. This can be seen from the remark
following Lemma 5.1 and the fact that the escape function g can be chosen to depend smoothly on λ.

Proof. (1) By the discussion following (3-20) it suffices to show (5-29) for one specific choice of ρ. We
choose ρ such that

ρ−1(0)=6λ, |∂θρ| = 1 on 6λ. (5-30)

Recalling the formula (4-71) for pullback on 1-forms we have the commutation identity of operators on
C∞(S1

; T ∗S1)

ρ∂θb∗

λ = ϕb∗

λρ∂θ +ψb∗

λ, ϕ(θ)=
ρ(θ)∂θbλ(θ)
ρ(bλ(θ))

, ψ(θ)=
ρ(θ)∂2

θ bλ(θ)
∂θbλ(θ)

. (5-31)

By (5-30) and since bλ(6λ)=6λ we have |ϕ| = 1 on 6λ.
As in (5-8), let v±

ω :=5±vω and g±
ω :=5±gω. Since WF(A6λ)∩N ∗

±
6∓

λ =∅, we may fix χ±
∈C∞(S1)

such that
suppχ±

∩6∓

λ = ∅, χ±
= 1 near {θ ∈ S1

| (θ,±1) ∈ WF(A6λ)}.

We will show that there exist N0 = N0(β, k) and χ̃±
∈ C∞(S1) such that supp χ̃±

∩6∓

λ = ∅ and

∥(ρ∂θ )
kv±

ω ∥H−1/2−β + ∥χ±v±

ω ∥H k ≤ C
(

max
0≤ℓ≤k

∥(ρ∂θ )
ℓg±

ω ∥H−1/2−β + ∥χ̃±g±

ω ∥H N0 + ∥vω∥H−N
)
. (5-32)

Adding these together and using that vω = v+
ω + v−

ω , we get

∥(ρ∂θ )
kvω∥H−1/2−β + ∥χ+v+

ω +χ−v−

ω ∥H k

≤ C
(

max
0≤ℓ≤k

∥(ρ∂θ )
ℓgω∥H−1/2−β + ∥χ̃+g+

ω ∥H N0 + ∥χ̃−g−

ω ∥H N0 + ∥vω∥H−N
)
.
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Since χ+5+
+ χ−5− is elliptic on WF(A6λ), we may estimate ∥A6λvω∥H k in terms of ∥χ+v+

ω +

χ−v−
ω ∥H k . Since WF(χ̃±5±) ∩ (N ∗

+
6−

λ ⊔ N ∗
−
6+

λ ) = ∅, we may estimate ∥χ̃±g±
ω ∥H N0 by (3-21).

Thus (5-32) implies (5-29) (possibly with a larger value of N0).

(2) It remains to show (5-32). We show an estimate on v+
ω , with the case of v−

ω handled similarly. We start
with the case k = 0. Let EG , Ẽ−G be constructed in (5-13), where the escape function g is constructed
using parameters α− < α+, δ > 0 such that

α− = −
1
2 −β, suppχ+

∩6−

λ (δ)= ∅, (5-33)

α+ ≥ 0, max
±

sup
6±

λ (δ)

(∂θbλ)1/2+α± < 1. (5-34)

Using (5-15) and Lemma 5.2 similarly to the proof of Proposition 5.3, we get the inequality

∥vG∥L2 ≤ C(∥gG∥L2 + ∥vω∥H−N ), (5-35)

where vG := EGv
+
ω , gG := EG g+

ω . By (5-16) and (5-17) we have

∥v+

ω ∥H−1/2−β + ∥χ+v+

ω ∥L2 ≤ C(∥vG∥L2 + ∥vω∥H−N ). (5-36)

By property (5) in the remark following Lemma 2.9 we have g = α− on some neighborhood of 6−

λ . Thus
we can choose χ̃+

∈ C∞(S1) such that supp χ̃+
∩6−

λ = ∅ and

g = α− near supp(1 − χ̃+).

Then EG(1 − χ̃+) ∈ 9
α−

0+
by (3-11). Fix N0 such that (5-11) holds, so that EG ∈ 9

N0
0+

. Writing
gG = EG(1 − χ̃+)g+

ω + EG χ̃
+g+

ω , we get

∥gG∥L2 ≤ C(∥g+

ω ∥H−1/2−β + ∥χ̃+g+

ω ∥H N0 ). (5-37)

Putting together (5-35)–(5-37), we get (5-32) for k = 0.

(3) We next show (5-32) for k = 1. Put for j ∈ N0

v j
:= (ρ∂θ )

jv+

ω ∈ C∞(S1
; T ∗S1), v

j
G := EGv

j , g j
G := EG(ρ∂θ )

j g+

ω .

We apply ρ∂θ to (5-9) and use (5-31) to get a similar equation on v1
= ρ∂θv

+
ω which also involves v0

= v+
ω :

v1
= B+

ω ϕb∗

λv
1
+ Q+

ωb∗

λv
0
+ ρ∂θ (R

+

ω vω + g+

ω ),

Q+

ω = [ρ∂θ , B+

ω ] + B+

ωψ ∈90(S1
; T ∗S1) uniformly in ε.

(5-38)

Applying EG to (5-38), we get similarly to (5-15)

v1
G = T 1

Gv
1
G + QGv

0
G + R1

Gvω + g1
G, (5-39)

where R1
G ∈9−∞ uniformly in ε and

T 1
G := EG B+

ω ϕb∗

λ Ẽ−G, QG := EG Q+

ωb∗

λ Ẽ−G .
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We fix the parameters α±, δ in the construction of the escape function g such that we have (5-33) and the
following strengthening of (5-34):

α+ ≥ 1, max
±

sup
6±

λ (δ)

max(1, |ϕ|)(∂θbλ)1/2+α± < 1. (5-40)

This is possible by (5-10) and since |ϕ| = 1 on 6±

λ .
Arguing similarly to the proof of Lemma 5.2, we get the bounds for some τ < 1

∥T 1
Gv

1
G∥L2 ≤ τ∥v1

G∥L2 + C∥vω∥H−N , ∥QGv
0
G∥L2 ≤ C∥v0

G∥L2 .

Combining these with (5-39) and recalling (5-35) we get

∥v1
G∥L2 ≤ C(∥v0

G∥L2 + ∥g1
G∥L2 + ∥vω∥H−N ),

∥v0
G∥L2 ≤ C(∥g0

G∥L2 + ∥vω∥H−N ).
(5-41)

Similarly to (5-36)–(5-37) we have for j = 0, 1

∥v j
∥H−1/2−β + ∥χ+v j

∥H1 ≤ C(∥v j
G∥L2 + ∥vω∥H−N ),

∥g j
G∥L2 ≤ C(∥(ρ∂θ ) j g+

ω ∥H−1/2−β + ∥χ̃+g+

ω ∥H N0 ).
(5-42)

Together (5-41)–(5-42) give (5-32) for k = 1.

(4) The case of general k is handled similarly to k = 1. We write similarly to (5-38)

vk
= B+

ω ϕ
kb∗

λv
k
+

k−1∑
j=0

Q+

ω,k, j b
∗

λv
j
+ (ρ∂θ )

k(R+

ω vω + g+

ω ).

Here Q+

ω,k, j ∈90 uniformly in ε is defined inductively as

Q+

ω,k, j :=
(
[ρ∂θ , B+

ω ϕ
k−1

] + B+

ω ϕ
k−1ψ

)
δ j,k−1 + Q+

ω,k−1, j−1ϕ+ [ρ∂θ , Q+

ω,k−1, j ] + Q+

ω,k−1, jψ

and we use the notation δa,b = 1 if a = b and 0 otherwise, and Q+

ω,k−1, j = 0 when j ∈ {−1, k − 1}. The
argument in step (3) of this proof now goes through, replacing (5-40) with

α+ ≥ k, max
±

sup
6±

λ (δ)

max(1, |ϕ|
k)(∂θbλ)1/2+α± < 1 (5-43)

and gives (5-32) for any value of k. □

We will also need a refinement concerning Lagrangian regularity. Let B±

λ+i0 be the operators B±
ω from

Lemma 5.1 with ε := 0.

Lemma 5.5. Suppose that v ∈ D′(S1
; T ∗S1) satisfies (5-6) with ε = 0:

v = B+

λ+i0b∗

λv+ B−

λ+i0b−∗

λ v+ g for some g ∈ C∞(S1
; T ∗S1). (5-44)

Similarly to (5-8) define v±
:=5±v. Then

v±
∈ I (1/4)+(S1, N ∗6∓

λ ) =⇒ v±
∈ I 1/4(S1, N ∗6∓

λ ). (5-45)
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Proof. (1) Let us consider v+, with v− handled similarly. Similarly to (5-9) we have from (5-44)

v+
= B+

λ+i0b∗

λv
+

+ g1, where g1 ∈ C∞(S1
; T ∗S1).

Iterating this n times, where n is the period of the closed trajectories of bλ, we see that

v+
= B f ∗v+

+ g2, where f := bn
λ : S1

→ S1, g2 ∈ C∞(S1
; T ∗S1), (5-46)

and the pseudodifferential operator

B := B+

λ+i0(b
∗

λB+

λ+i0b−∗

λ ) · · · ((bn−1
λ )∗B+

λ+i0(b
n−1
λ )−∗) ∈90(S1

; T ∗S1)

satisfies σ(B)= H(ξ) by Lemma 5.1.
Take arbitrary x0 ∈6−

λ and assume that the coordinate θ is chosen so that θ(x0)= 0. Note that f (0)= 0.
Fix χ ∈ C∞(R) supported on a small neighborhood of 0 which does not contain any other point in 6−

λ ,
and such that χ = 1 near 0. We write

χv+
= u(θ) dθ for some u ∈ E ′(R).

Then u ∈ I
1
4 +(R, N ∗

{0}) and by (5-46) we have

u = B̃ f ∗u + g3, where g3 ∈ C∞

c (R) (5-47)

and B̃ is a compactly supported operator in 90(R) such that σ(B̃)(0, ξ)= f ′(0)H(ξ). Here in (5-46) the
operator f ∗ is the pullback on 1-forms, and in (5-47) the same symbol denotes the pullback on functions,
with the two related by the formula (4-71). We can take arbitrary B̃ which is equal to B f ′ near θ = 0,
since u is smooth away from 0.

It suffices to show that u ∈ I 1/4(R, N ∗
{0}), which (recalling (3-16)) is equivalent to û ∈ S0(R). Note

that û(ξ) is rapidly decaying as ξ → −∞ since WF(v+)⊂ {ξ > 0}, so it suffices to study what happens
for ξ > 1.

(2) We now use the invariance of the principal symbol of u coming from (5-47). More precisely, by
Lemma 3.3, and since the Fourier transform ĝ3 is rapidly decaying, (5-47) implies for ξ > 1

û(ξ)= û(ξ/R)+ q(ξ), where R := f ′(0) > 1, q ∈ S−1+(R).

Iterating this, we see that for any k ∈ N0 and η ≥ 1

û(Rkη)= û(η)+
k∑
ℓ=1

q(Rℓη). (5-48)

We now estimate (using for simplicity that q ∈ S−1/2 rather than q ∈ S−1+)

sup
ξ≥1

|û(ξ)| = sup
k∈N0

sup
1≤η≤R

|û(Rkη)| ≤ sup
1≤η≤R

|û(η)| + C
∞∑
ℓ=1

R−ℓ/2 <∞.

Differentiating (5-48) m times in η, we similarly see that supξ≥1 ξ
m
|∂m
ξ û(ξ)|<∞. This gives û ∈ S0(R)

and finishes the proof. □
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6. Microlocal properties of Morse–Smale maps

Here we prove properties of distributions invariant under Morse–Smale maps (see Definition 1.2). We
start with a stand alone local result about distributions invariant under contracting maps. The quantum
flux defined below (6-3) is reminiscent of similar quantities appearing in scattering theory — see [Dyatlov
and Zworski 2019a, (3.6.17)]. The wave front condition (6-16) is an analogue of the outgoing condition in
scattering theory — see [Dyatlov and Zworski 2019a, Theorem 3.37]. Although technically very different,
Lemma 6.1 and Proposition 6.3 are analogous to [Dyatlov and Zworski 2017, Lemma 2.3] and play the role
of that lemma in showing the absence of embedded eigenvalues — see [Dyatlov and Zworski 2019b, §3.2].

6.1. Local analysis. In this section we assume that f : [−1, 1] → (−1, 1) is a C∞ map such that

f (0)= 0, 0< f ′(x) < 1. (6-1)
We also assume that

u ∈ D′((−1, 1)), singsupp u ⊂ {0}, f ∗u = u on (−1, 1). (6-2)

For χ ∈C∞
c ( f (−1, 1)), χ = 1 near 0 we then define the flux of u (understood as an integral of a differential

1-form):

F(u) := i
∫
(−1,1)

( f ∗χ −χ)ū du. (6-3)

The integral is well-defined since u is smooth on supp( f ∗χ −χ)⊂ (−1, 1) \ {0}.
We note that F(u) is independent of χ . In fact, if χ j ∈C∞

c ( f (−1, 1)), χ1 =χ2 near 0, then the difference
of the fluxes defined using χ j ’s in place of χ , is given by (6-3) with χ̃ = χ1 −χ2 ∈ C∞

c ( f (−1, 1) \ {0})

in place of χ . Since χ̃ is supported away from 0 we can split the integral:∫
(−1,1)

( f ∗χ̃ − χ̃)ū du =

∫
( f ∗χ̃)ū du −

∫
f ∗(χ̃ ū du)=

∫
( f ∗χ̃)(ū du − f ∗(ū du))= 0.

Here in the first equality we made a change of variables by f : (−1, 1)→ f (−1, 1) and in the last equality
we used (6-2). In fact, this argument shows that we could take χ in (6-3) to be the indicator function of
some interval f (a−, a+) with −1< a− < 0< a+ < 1, obtaining

F(u)= i
∫

[a−, f (a−)]⊔[ f (a+),a+]

ū du. (6-4)

Similarly we see that F(u) is real. For that we take χ real-valued so that

2 Im F(u)= 2
∫
(−1,1)

( f ∗χ −χ)Re(ū du)=

∫
( f ∗χ −χ) d(|u|

2)

=

∫
|u|

2 d(χ − f ∗χ)=

∫
|u|

2 dχ −

∫
|u|

2 f ∗ dχ = 0,

where in the last line we used (6-2) and the fact that χ ′
= 0 near 0.

The key local result is given in:

Lemma 6.1. Suppose that (6-1) and (6-2) hold. Then

WF(u)⊂ {0} × R+, F(u)≥ 0 =⇒ u = const . (6-5)
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Remark. The wavefront set restriction to positive frequencies is crucial: for example, if u is the Heaviside
function, then (6-2) holds and F(u)= 0. A nontrivial example when (6-1), (6-2), and the wavefront set
condition in (6-5) hold is f (x)= e−2π x , u(x)= (x +i0)ik , k ∈ Z\{0}, where F(u)= 2πk(e−2πk

−1)< 0.

To prove Lemma 6.1 we use a standard one-dimensional linearization result [Sternberg 1957]. For the
reader’s convenience we present a variant of the proof from [Yoccoz 1995, Appendice 4].

Lemma 6.2. Assume that f satisfies (6-1). Then there exists a unique C∞ diffeomorphism h : [−1, 1] →

h([−1, 1])⊂ R such that for all x ∈ [−1, 1]

h( f (x))= f ′(0)h(x), h(0)= 0, h′(0)= 1. (6-6)

Proof. (1) We first note that any C1 diffeomorphism satisfying (6-6) is unique. In fact, suppose
that h j , j = 1, 2, are two such diffeomorphisms. With a = f ′(0) ∈ (0, 1), ah j = h j ◦ f we have
ah1 ◦ h−1

2 (x)= h1 ◦ f h−1
2 (x)= h1 ◦ h−1

2 (ax) for all x ∈ h2([−1, 1]), so that

h1 ◦ h−1
2 (x)= a−nh1 ◦ h−1

2 (anx)= lim
n→∞

a−nh1 ◦ h−1
2 (anx)= (h1 ◦ h−1

2 )′(0)x = x .

Hence it is enough to show that for every n there exists a Cn diffeomorphism satisfying (6-6).
Using the fact that a = f ′(0)∈ (0, 1) we can construct a formal power series such that (6-6) holds for the

Taylor series of f as an asymptotic expansion. Using Borel’s lemma [Hörmander 1990, Theorem 1.2.6]
we can then construct a diffeomorphism h0 of [−1, 1] onto itself with that formal series as Taylor series
at 0. Then h0 ◦ f ◦ h−1

0 = ax(1 + g(x)), where g ∈ C∞ vanishes to infinite order at 0. Hence we can
assume that

f (x)= ax(1 + g(x)).

We might no longer have f ′ < 1 but f is still eventually contracting: there exists m > 0 such that the
m-th iterate f m satisfies

∂x( f m(x)) < 1 for all x ∈ [−1, 1]. (6-7)

(2) We are now looking for h(x) = x(1 + ϕ(x)), ϕ(0) = 0 such that h(ax(1 + g(x))) = ah(x), that is,
ax(1 + g(x))(1 +ϕ( f (x)))= ax(1 +ϕ(x)), or

(1 + g(x))(1 +ϕ( f (x)))= 1 +ϕ(x).

A formal solution is then given by 1 +ϕ(x)=
∏

∞

ℓ=0(1 + g( f ℓ(x))). Rather than analyze this expression,
we follow [Yoccoz 1995, Appendice 4] and use the contraction mapping principle for Banach spaces, Bn ,
of Cn functions on [−δ, δ] vanishing to order n ≥ 2 at 0: we look for ϕ ∈ Bn such that

g(x)+ (1 + g(x))ϕ( f (x))= ϕ(x), x ∈ [−δ, δ]. (6-8)

We claim that for δ > 0 small enough,

ϕ(x) 7→ (Tϕ)(x) := (1 + g(x))ϕ( f (x))

is a contraction on Bn . The norm on Bn is given by

∥ϕ∥Bn := sup
|x |≤δ

|∂nϕ(x)|, sup
|x |≤δ

|∂ jϕ(x)| ≤ Cnδ
n− j

∥ϕ∥Bn , ϕ ∈ Bn, j ≤ n, (6-9)
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where the last inequality follows from Taylor’s formula. Since f (x)= ax(1 + g(x)), we have f ′(x)=

a+O(x∞) and f ( j)(x)=O(x∞) for j>1. Hence, we obtain for |x |≤ δ, using (6-9) and with homogenous
polynomials Q j ,

∂n
[ϕ( f (x))] = ∂nϕ( f (x))(∂ f (x))n +

n−1∑
j=1

∂ jϕ( f (x))Q j (∂ f (x), . . . , ∂n− j+1 f (x))

= ∂nϕ( f (x))an(1 +On(δ))+

n−1∑
j=1

On(δ
n− j )∥ϕ∥Bn .

It follows that ∥Tϕ∥Bn ≤ (an
+On(δ))∥ϕ∥Bn , which for δ small enough (depending on n) shows that T

is a contraction on Bn . That gives a solution ϕ to (6-8). Consequently, we have shown that for every n
there exist δ > 0 and ϕ ∈ Cn([−δ, δ]) such that, for h(x)= x(1 +ϕ(x)),

h( f (x))= ah(x), |x | ≤ δ, h ∈ Cn([−δ, δ]).

By (6-7), there exists N > 0 such that f N ([−1, 1]) ⊂ [−δ, δ]. We extend h to [−1, 1] by putting
h(x) := a−N h( f N (x)) to obtain a Cn diffeomorphism h : [−1, 1] → h([−1, 1]) satisfying (6-6). □

Proof of Lemma 6.1. (1) We first note that if u ∈ C∞((−1, 1)) then u is constant as follows from (6-2): for
each x ∈ (−1, 1) we have u(x)= u( f N (x))→ u(0) as N → ∞. Since we assumed that singsupp u ⊂ {0}

it suffices to show that u is smooth in a neighborhood of 0.
Making the change of variable given by Lemma 6.2, we may assume that f (x) = ax for small x ,

where a := f ′(0) ∈ (0, 1). Restricting to a neighborhood of 0, rescaling, and using (6-4) we reduce to the
following statement: if

u ∈ D′((−a−1, a−1)), WF(u)⊂ {0} × R+, u(ax)= u(x), |x |< a−1, (6-10)

F(u) := i
∫

[−1,−a]⊔[a,1]

ū du ≥ 0 (6-11)

then u ∈ C∞((−1, 1)).

(2) We next extend u to a distribution on the entire R. Fix

ψ ∈ C∞

c ((−a−1, a−1) \ [−a, a]),
∑
k∈Z

ψ(a−k x)= 1, x ̸= 0.

Then ψu ∈ C∞
c (R \ {0}). Define

v(x) :=

∑
k∈Z

(ψu)(a−k x) ∈ C∞(R \ {0}). (6-12)

Since u(ax) = u(x) for |x | < a−1, we have u = v on (−a−1, a−1) \ {0}. Thus we may extend v to an
element of D′(R) so that u = v|(−a−1,a−1). We note that

v ∈ S ′(R), v(ax)= v(x), x ∈ R,

WF(v)⊂ {0} × R+, F(v)= F(u)≥ 0.
(6-13)

It remains to show that v ∈ C∞; in fact, we will show that v is constant.
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(3) Fix χ ∈ C∞
c (R) such that χ = 1 near 0 and write

v = v1 + v2, v1 := χv, v2 := (1 −χ)v.

From (6-12) we obtain uniformly in x ̸= 0,

∂ℓxv(x)= x−ℓ
∑
k∈Z

(( • )ℓ(ψu)(ℓ))(a−k x)= O(x−ℓ),

since ( • )ℓ(ψu)(ℓ) : x 7→ xℓ(ψu)(ℓ)(x) ∈ C∞
c (R \ {0}) and the sum is locally finite with a uniformly

bounded number of terms. Hence ∂ℓxv2(x) = O(⟨x⟩
−ℓ), which implies that v̂2(ξ) (and thus v̂(ξ)) is

smooth when ξ ∈ R \ {0} and

v̂2(ξ)= O(⟨ξ⟩−∞), |ξ | → ∞.

On the other hand the assumption on WF(v) and [Hörmander 1990, Proposition 8.1.3] shows that
v̂1(ξ)= O(⟨ξ⟩−∞), as ξ → −∞. From (6-13) we obtain for ξ < 0 and k ∈ N,

v̂(ξ)= a−1v̂(a−1ξ)= a−k v̂(a−kξ)= Oξ (ak) =⇒ v̂|R−
≡ 0. (6-14)

(4) It follows from (6-14) that the distributional pairing

V (z) := v̂(ei z • )/(2π), Im z > 0, (6-15)

is well-defined and holomorphic in {Im z > 0} and |V (z)| ≤ C⟨z⟩N/(Im z)M , Im z > 0 (with more precise
bounds possible). We also have v(x) = V (x + i0) for x ∈ R \ {0}, and V (az) = V (z) when Im z > 0,
which follows from (6-15). We will now use V to calculate F(v). We have

F(v)= i
∫
γ0

V (z)∂z V (z) dz, γ0 := [−1,−a] ∪ [a, 1],

where the curve γ0 is positively oriented. Let γα, α > 0, be the half circle |z| = α, Im z > 0 oriented
counterclockwise. Since V (az)= V (z),∫

γ1

V (z)∂z V (z) dz =

∫
γ1

V (az)(∂z V )(az) d(az)=

∫
γa

V (z)∂z V (z) dz.

If 0 is the semiannulus bounded by ∂0 :=γ0+γ1−γa (see Figure 12) it follows from the Cauchy–Pompeiu
formula [Hörmander 1990, (3.1.9)] that (with z = x + iy)

F(v)= i
∮
∂0

V (z)∂z V (z) dz = −2
∫
0

∂z̄(V (z)∂z V (z)) dx dy = −2
∫
0

|∂z V (z)|2 dx dy.

Since we assumed F(v)≥ 0 it follows that V is constant on 0 and thus on the entire upper half-plane,
which implies that v is constant on R \ {0}. Since functions supported at 0 are linear combinations of
derivatives of the delta function and cannot solve the equation v(ax)= v(x), we see that v is constant
on R, which finishes the proof. □
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Γ

γ0γ0

γa

γ1

a 1−a−1

Figure 12. The domain 0 used in the proof of Lemma 6.1.

6.2. A global result. We now use the local result in Lemma 6.1 to obtain a global result for Morse–Smale
diffeomorphisms of the circle.

Proposition 6.3. Let b : ∂�→ ∂� be a Morse–Smale diffeomorphism (see Definition 1.2). Denote by
6+, 6−

⊂∂� the sets of attractive, respectively repulsive, periodic points of b, and define N ∗
±
6±

⊂ T ∗∂�

by (3-18). Suppose that u ∈ D′(∂�) satisfies

b∗u = u, WF(u)⊂ N ∗

+
6+

⊔ N ∗

−
6−. (6-16)

Then u is constant.

Remark. The same conclusion holds when the wavefront set condition in (6-16) is replaced by WF(u)⊂
N ∗

+
6−

⊔ N ∗
−
6+, as can be seen by applying Proposition 6.3 to the complex conjugate ū.

Proof. We introduce fluxes associated to g := bn, where n is the minimal period of periodic points of b.
For that we take two arbitrary cutoff functions

χ± ∈ C∞(∂�), supp(1 −χ±)∩6
±

= ∅, suppχ± ∩6∓
= ∅.

Assume that u satisfies (6-16) and define the fluxes (where we again use positive orientation on ∂� to
define the integrals of 1-forms):

F+(u) := i
∫
∂�

(g∗χ+ −χ+) ū du,

F−(u) := i
∫
∂�

((g−1)∗χ− −χ−) ū du.

The integrals above are well-defined since g∗χ+−χ+ and (g−1)∗χ−−χ− are supported in ∂�\(6+
⊔6−),

where u is smooth. Moreover as in the case of F(u) defined in (6-3), F±(u) are real and do not depend
on the choice of χ±. We also note that (by taking χ± real-valued)

F±(ū)= −F±(u)= −F±(u). (6-17)

Since F±(u) are independent of χ±, we may choose χ+ := 1 − (g−1)∗χ− to get the identity

F+(u)= F−(u). (6-18)

Let 6+
= {x+

1 , . . . , x+
m }. By taking χ+ = χ1

+
+ · · · +χm

+
, where each χ j

+ is supported near x+

j , we can
write F+(u)= F1

+
(u)+· · ·+ Fm

+
(u). We may apply Lemma 6.1 with f defined by g in local coordinates
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near x+

j ≃ 0 to see that F j
+(u)≤ 0 with equality only if u is constant near x+

j . Adding these together, we
see that F+(u)≤ 0 with equality only if u is locally constant near 6+.

Arguing similarly near6−, using f :=g−1 and replacing u by ū, with WF(ū)={(x,−ξ)|(x,ξ)∈WF(u)},
we see that F−(u)≥ 0 with equality only if u is locally constant near 6−. By (6-18) we then see that u is
locally constant near 6+

⊔6− and hence u ∈ C∞(∂�). Since for x ∈ ∂� \6−, gn(x)→ x0 for some x0

in 6+, we conclude that u ∈ C∞ takes finitely many values and hence is constant. □

7. Limiting absorption principle

In this section we consider operators

P := ∂2
x2
1−1
� : H−1(�)→ H−1(�),

P(ω) := ∂2
x2

−ω21= (P −ω2)1� : H 1
0 (�)→ H−1(�).

(7-1)

We prove the limiting absorption principle for P in the form presented in Theorem 1.4. To do this we
follow Section 4.4 to reduce the equation P(ω)uω = f to the boundary ∂�. We next analyze the resulting
“Neumann data” vω =Nωuω (see (4-26)) uniformly as ε= Imω→ 0+, using the high-frequency estimates
of Section 5 and the absence of embedded spectrum following from the results of Section 6. This is
slightly nonstandard since the boundary has characteristic points and the problem changes from elliptic to
hyperbolic as Imω→ 0+.

7.1. Poincaré spectral problem. We recall (see for instance [Davies 1995, Chapter 6]) that 1= ∂2
x1

+∂2
x2

with the domain H 2(�)∩ H 1
0 (�) (H 1

0 (�) is the closure of C∞
c (�) with respect to the norm ∥ • ∥H1

0 (�)

below) is a negative definite unbounded self-adjoint operator on L2(�). Its inverse is an isometry,

1−1
� : H−1(�)→ H 1

0 (�),

with inner products on these Hilbert spaces given by

⟨u, w⟩H1
0 (�)

:=

∫
�

∇u · ∇w dx, ⟨U,W ⟩H−1(�) := ⟨1−1
� U,1−1

� W ⟩H1
0 (�)

.

Since ∂2
x2

: H 1
0 (�)→ H−1(�) the operator P in (7-1) is indeed bounded on H−1(�).

Let {eα}α∈A be an L2(�)-orthonormal basis of eigenfunctions of −1�:

−1�eα = µ2
αeα, eα|∂� = 0, ⟨eα, eβ⟩L2(�) = δα,β .

Then {µαeα}α∈A is an orthonormal basis of the Hilbert space H−1(�). The matrix elements of P in this
basis are given by

⟨Pµαeα, µβeβ⟩H−1 = ⟨1−1
� ∂

2
x2
µ−1
α eα, µ−1

β eβ⟩H1
0

= −µ−1
α µ

−1
β ⟨∂2

x2
eα, eβ⟩L2

= µ−1
α µ

−1
β ⟨∂x2eα, ∂x2eβ⟩L2(�),

where the last integration by parts is justified as eβ |∂� = 0. This shows that P is a bounded self-adjoint
operator on H−1(�). This representation is particularly useful in numerical calculations needed to
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produce Figure 1. Testing P against 12(ψ(x)ei⟨n,x⟩), ψ ∈ C∞
c (�), n ∈ Z2, shows that

Spec(P)= [0, 1];

see [Ralston 1973, Theorem 2]. In particular, for ω2
∈ C \ [0, 1],

∥P(ω)−1
∥H−1(�)→H1

0 (�)
= ∥(P −ω2)−1

∥H−1(�)→H−1(�) =
1

d(ω2, [0, 1])
. (7-2)

Limiting absorption principle in its most basic form means showing we have limiting operators acting on
smaller spaces with values in larger spaces: for λ ∈ (0, 1) satisfying the Morse–Smale conditions

(P − λ2
− i0)−1

: C∞

c (�)→ H−(3/2)−(�), P(λ+ i0)−1
: C∞

c (�)→ H (1/2)−(�). (7-3)

7.2. Regularity of limits as ε→ 0+. In this section we use the results of Section 5 to get a conormal
regularity statement for weak limits of boundary data. In Section 7.4 below we apply this to the Neumann
data vω = Nωuω, P(ω)uω = f .

Since the conormal spaces used below depend on λ = Reω, we need to define what it means for
a sequence of distributions to be bounded in these spaces uniformly in λ. Assume that J ⊂ (0, 1)
is an open interval such that each λ ∈ J satisfies the Morse–Smale conditions of Definition 1.2. Let
6±

λ be defined in (1-6) and 6λ = 6+

λ ⊔ 6−

λ . Fix a defining function ρλ ∈ C∞(∂�; R) of 6λ and a
pseudodifferential operator A6λ ∈ 90(∂�) such that WF(A6λ) ∩ (N ∗

+
6−

λ ⊔ N ∗
−
6+

λ ) = ∅ and A6λ is
elliptic on N ∗

−
6−

λ ⊔ N ∗
+
6+

λ . We choose both ρλ and A6λ depending smoothly on λ ∈ J.
Given two sequences λ j → λ ∈ J and v j ∈ C∞(∂�), we say that

v j is bounded in I s+(∂�, N ∗

+
6−

λ j
⊔ N ∗

−
6+

λ j
) uniformly in j

if each of the seminorms (3-20) is bounded uniformly in j . We can similarly talk about uniform
boundedness of sequences of 1-forms v j ∈ C∞(∂�; T ∗∂�), identifying these with scalar distributions
using a coordinate θ .

Lemma 7.1. Assume that ω j → λ ∈ J, Imω j > 0, and the sequence v j ∈ C∞(∂�; T ∗∂�) has the
following properties:

v j → v0 in H−N for some N , (7-4)

Cω jv j is bounded in I −(3/4)+(∂�, N ∗

+
6−

λ j
⊔ N ∗

−
6+

λ j
) uniformly in j, (7-5)

where λ j = Reω j and Cω j was defined in Section 4.6. Then we have

v j → v0 in H−(1/2)−β for all β > 0, (7-6)

v0 ∈ I (1/4)+(∂�, N ∗

+
6−

λ ⊔ N ∗

−
6+

λ ). (7-7)

Remark. In fact we have v j → v0 in I (1/4)+(∂�, N ∗
+
6−

λ j
⊔ N ∗

−
6+

λ j
) where convergence is defined using

the seminorms (3-20) — see the last paragraph of the proof below.

Proof. The function v j satisfies (5-6):

v j = B+

ω j
b∗

λ j
v j + B−

ω j
b−∗

λ j
v j + g j , g j = (I −Aω j )Eω j dCω jv j . (7-8)

Here the operator Aω j = (γ+

λ j
)∗ A+

ω j
+ (γ−

λ j
)∗ A−

ω j
is defined in (5-2).
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Applying Proposition 5.4 to vω := v j we see that for each k ∈ N0 and β > 0 there exist N0,C
independent of j such that

∥(ρλ j ∂θ )
kv j∥H−1/2−β +∥A6λ j

v j∥H k ≤ C
(

max
0≤ℓ≤N0

∥(ρλ j ∂θ )
ℓg j∥H−1/2−β +∥A6λ j

g j∥H N0 +∥v j∥H−N
)
. (7-9)

The pseudodifferential operators A±
ω j
, Eω j are bounded on I (1/4)+(∂�, N ∗

+
6−

λ j
⊔ N ∗

−
6+

λ j
) uniformly

in j , as are the pullback operators (γ±

λ j
)∗ (see Remark (1) after Proposition 4.15 and the end of

the proof of Lemma 4.17). Thus by (7-5) we see that g j is bounded uniformly in j in the space
I (1/4)+(∂�, N ∗

+
6−

λ j
⊔ N ∗

−
6+

λ j
). Moreover, by (7-4) ∥v j∥H−N is bounded uniformly in j as well. It follows

that the right-hand side of (7-9), and thus its left-hand side as well, is bounded uniformly in j for any
choice of k ∈ N0, β > 0.

Take arbitrary 0< β ′ < β. Then ∥v j∥H−1/2−β′ is bounded in j . Using compactness of the embedding
H−1/2−β ′

↪→ H−1/2−β we see that each subsequence of {v j } has a subsequence converging in H−1/2−β ;
the limit of this further subsequence has to be equal to v0 by (7-4). This implies (7-6).

A similar argument using again the boundedness of the left-hand side of (7-9) shows that (ρλ j ∂θ )
kv j →

(ρλ∂θ )
kv0 in H−1/2−β for all k ∈ N0, β > 0 and A6λ j

v j → A6λv0 in C∞. In particular, this implies that
(ρλ∂θ )

kv0 ∈ H−(1/2)− and A6λv0 ∈ C∞, which by (3-20) gives (7-7). □

7.3. Uniqueness for the limiting problem. We next use the analysis of Section 6 to show a uniqueness
result for the restricted single layer potential operator Cλ+i0 (see Section 4.6) in the space of distributions
satisfying additional conditions. This will give us the lack of embedded spectrum for the operator P in
the Morse–Smale case. To formulate this result, we recall the operators Rλ+i0 : g 7→ Eλ+i0 ∗ g defined
in (4-25) and I : D′(∂�; T ∗∂�)→ E ′(R2) defined in (4-24).

Lemma 7.2. Let λ ∈ (0, 1) satisfy the Morse–Smale conditions of Definition 1.2. Assume that v ∈

D′(∂�; T ∗∂�) lies in I s(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ) for some s (see (3-19)), where 6±

λ are defined in (1-6).
Then

Cλ+i0v = 0, supp(Rλ+i0Iv)⊂� =⇒ v = 0. (7-10)

Proof. (1) Put U := Rλ+i0Iv ∈ D′(R2). Since P(λ)Eλ+i0 = δ0 by (4-20), we have

P(λ)U = Iv. (7-11)

We first show that

supp U ⊂ ∂�. (7-12)

By the second assumption in (7-10) we have supp U ⊂ �; thus it suffices to show that u = 0, where
u := U |� = Sλ+i0v and Sλ+i0 is the limiting single layer potential defined in (4-32).

Since supp Iv ⊂ ∂�, from (7-11) we have P(λ)u = 0. As λ ∈ (0, 1), P(λ) is a constant coefficient
hyperbolic operator. In view of (4-3) and (4-4) we then have, letting ℓ±(x) := ℓ±(x, λ), ℓ±min := ℓ±(x±

min),
ℓ±max := ℓ±(x±

max)

u(x) := u+(ℓ
+(x))− u−(ℓ

−(x)), x ∈�, u± ∈ D′((ℓ±min, ℓ
±

max)). (7-13)



MATHEMATICS OF INTERNAL WAVES IN A TWO-DIMENSIONAL AQUARIUM 75

From (4-39) we see that u ∈ I s−5/4(�,3−(λ)), in particular by (2-3) u is smooth up to the boundary
near the characteristic set Cλ. It follows that u± are smooth near the boundary points ℓ±min, ℓ

±
max up to the

boundary. Define the pullbacks of u± to ∂� by the maps ℓ±,

w± = u±(ℓ
±(x))|∂� ∈ D′(∂�), (γ±)∗w± = w±.

From the proof of conormal regularity of u in Lemma 4.9 we see that WF(w±)⊂ N ∗
+
6−

λ ⊔ N ∗
−
6+

λ .
The restriction u|∂� is equal to both w+ −w− and Cλ+i0v. Thus by the first assumption in (7-10) we

have w+ = w−. Defining w := w+ = w−, we have

(γ±)∗w = w, WF(w)⊂ N ∗

+
6−

λ ⊔ N ∗

−
6+

λ .

This implies that b∗w = w and we can apply Proposition 6.3 to see that w is constant. But then u± are
constant and u = 0, giving (7-12).

(2) We now show that v = 0 away from the characteristic set Cλ of P(λ) on ∂� (see (2-3)). For each
x0 ∈ ∂� \Cλ we can find a neighborhood V ⊂ R2 of x0 and coordinates (y1, y2) on V such that for some
open interval I ⊂ R

∂�∩ V = {y1 = 0, y2 ∈ I }, P(λ)|V =

∑
|α|≤2

aα(y)∂αy , a2,0 ̸= 0.

(The noncharacteristic property means that the conormal bundle of {y1 = 0} is disjoint from the set
of zeros of

∑
|α|=2 aαηα.) Now, by [Hörmander 1990, Theorem 2.3.5] we see that (7-12) implies

U |V =
∑

k≤K uk(y2)δ
(k)(y1), uk ∈ D′(I ). Hence, for some ũk ∈ D′(I ),

P(λ)U |V = a2,0(y)uK (y2)δ
(K+2)(y1)+

∑
k≤K+1

ũk(y2)δ
(k)(y1).

By (7-11) we have P(λ)U |V = Iv|V = a(y2)v(y2)δ(y1), a ̸= 0. Thus uK = 0. (Here we use y2 as a
local coordinate on ∂� to identify v|∂�∩V with a distribution on I.) Iterating this argument shows that
U |V = 0, which means v|V ∩∂� = 0.

(3) We have shown supp v is contained in the finite set Cλ. On the other hand, v∈ I s(∂�, N ∗
+
6−

λ ⊔N ∗
−
6+

λ )

is smooth away from 6λ. Since 6λ ∩ Cλ = ∅ by (2-3), we get v = 0. □

Remark. The proof would be simpler if we knew that the limiting single layer potential operators Sλ+i0

were injective acting on the conormal spaces (4-39) — this would imply the injectivity of Cλ+i0 on
I s(∂�, N ∗

+
6−

λ ⊔ N ∗
−
6+

λ ) without the support condition in (7-10) as follows from step (1) of the proof
above. However, that is not clear. Under the dynamical assumptions made here, the proof of Proposition 5.4
shows that ker Sλ+i0 ⊂ ker Cλ+i0 is finite-dimensional but injectivity seems to be a curious open problem.

7.4. Boundary data analysis. Fix f ∈ C∞
c (�) and let J ⊂ (0, 1) be an open interval such that each

λ∈J satisfies the Morse–Smale conditions of Definition 1.2. Consider the solution to the boundary-value
problem (4-21):

uω ∈ C∞(�), P(ω)uω = f, uω|∂� = 0, ω ∈ J + i(0,∞).
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In this section, we combine the results of Sections 7.2–7.3 to study the behavior as Imω→ 0+ of the
“Neumann data” defined using (4-26):

vω := Nωuω ∈ C∞(∂�; T ∗∂�).

We first show the following convergence statement:

Proposition 7.3. Assume that ω j → λ ∈ J, Imω j > 0. Then for all β > 0

vω j → vλ+i0 in H−1/2−β(∂�; T ∗∂�), as j → ∞, (7-14)

where vλ+i0 ∈ H−(1/2)−(∂�; T ∗∂�) is the unique distribution such that

vλ+i0 ∈ I (1/4)+(∂�, N ∗

+
6−

λ ⊔ N ∗

−
6+

λ ),

Cλ+i0vλ+i0 = (Rλ+i0 f )|∂�, supp Rλ+i0( f − Ivλ+i0)⊂�.
(7-15)

Moreover, vλ+i0 ∈ I 1/4(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ).

Proof. (1) We start with a few general observations. Recall (5-1):

Cωvω = (Rω f )|∂�, Rω f = Eω ∗ f ∈ C∞(R2). (7-16)

Moreover, by (4-28) we have
1l� uω = Rω( f − Ivω). (7-17)

By Lemma 4.3, Eω j → Eλ+i0 in D′(R2). Passing to the limit in (7-16) we see that

Cω jvω j → (Rλ+i0 f )|∂� in C∞(∂�). (7-18)

(2) We now show a boundedness statement: for each β > 0 there exists a constant C (depending on f
and β) such that for all j

∥vω j ∥H−1/2−β (∂�;T ∗∂�) ≤ C. (7-19)

We proceed by contradiction. If (7-19) fails then we may pass to a subsequence to make ∥vω j ∥H−1/2−β →∞.
We then put

v j := vω j /∥vω j ∥H−1/2−β , u j := uω j /∥vω j ∥H−1/2−β .

By (7-18) we have
Cω jv j → 0 in C∞(∂�). (7-20)

By compactness of the embedding H−1/2−β ↪→ H−N, where we fix N > 1
2 + β, we may pass to a

subsequence to make

v j → v0 in H−N for some v0 ∈ H−N (∂�; T ∗∂�).

Now Lemma 7.1 applies and gives

v j → v0 in H−1/2−β(∂�; T ∗∂�), v0 ∈ I (1/4)+(∂�, N ∗

+
6−

λ ⊔ N ∗

−
6+

λ ). (7-21)
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By Lemma 4.16 and passing to the limit in (7-17) using Lemma 4.3 we get

Cω jv j → Cλ+i0v0 in D′(∂�), 1l� u j → −Rλ+i0Iv0 in D′(R2).

Thus by (7-20) and since supp(1l� u j )⊂� for all j we have

Cλ+i0v0 = 0, supp(Rλ+i0Iv0)⊂�.

Now Lemma 7.2 gives v0 = 0. On the other hand the first part of (7-21) and the fact that ∥v j∥H−1/2−β = 1
imply that ∥v0∥H−1/2−β = 1, which gives a contradiction.

(3) Fix β>0 and take an arbitrary subsequence vω jℓ
which converges to some v in H−1/2−β. By Lemma 7.1

and (7-18) we have v ∈ I (1/4)+(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ). By Lemma 4.16 and (7-18) we have Cλ+i0v =

(Rλ+i0 f )|∂�. Finally, passing to the limit in (7-17) using Lemma 4.3 we have supp Rλ+i0( f − Iv)⊂�.
Thus v satisfies (7-15). By Lemma 7.2 there is at most one distribution which satisfies (7-15). This
implies that all the limits of convergent subsequences of vω j in H−1/2−β have to be the same.

On the other hand by (7-19) and compactness of the embedding H−1/2−β ′

↪→ H−1/2−β when 0<β ′<β

we see that the sequence vω j is precompact in H−1/2−β . Together with uniqueness of limit of subsequences
this implies the convergence statement (7-14).

We finally show that vλ+i0 ∈ I 1/4(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ). From (7-15) we get similarly to (5-6)

vλ+i0 = B+

λ+i0b∗

λvλ+i0 + B−

λ+i0b−∗

λ vλ+i0 + gλ+i0, where gλ+i0 ∈ C∞(S1
; T ∗S1).

It remains to apply Lemma 5.5. □

We now upgrade Proposition 7.3 to a convergence statement for all the derivatives ∂k
ωvω. Here

vω ∈ C∞(∂�; T ∗∂�) is holomorphic in ω ∈ J + i(0,∞): indeed, uω ∈ C∞(�) is holomorphic by the
Remark following Lemma 4.4 and the operator Nω defined in (4-26) is holomorphic as well.

As in the proof of Proposition 7.3 we will use the spaces I s(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ) which depend on
λ= Reω. We recall from Section 4.6.9 the family of diffeomorphisms

2λ : S1
→ ∂�, 2λ(6̃

±)=6±

λ , λ ∈ J ,

with the pullback operator 2∗

λ mapping I s(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ) to the λ-independent space I s(S1,

N ∗
+
6̃−

⊔ N ∗
−
6̃+). Define

ṽω :=2∗

λvω ∈ C∞(S1
; T ∗S1), ω ∈ J + i(0,∞), λ= Reω.

If vλ+i0 is defined in (7-15), then we also put

ṽλ+i0 :=2∗

λvλ+i0 ∈ I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+), λ ∈ J .

Writing ω = λ+ iε, denote by ∂ℓλṽω the ℓ-th derivative of ṽω in λ with ε fixed. (Note that unlike vω, the
function ṽω is not holomorphic in ω.)

We are now ready to give the main technical result of this section. The proof is similar to that of
Proposition 7.3 (which already contains the key ideas), using additionally Lemma 4.17 which establishes
regularity in λ of the operators Cω conjugated by 2λ.
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Proposition 7.4. We have

ṽλ+i0 ∈ C∞(J ; I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)), (7-22)

where the topology on I (1/4)+(S1, N ∗
+
6̃−

⊔ N ∗
−
6̃+) is defined using the seminorms (3-20). Moreover, for

each λ ∈ J and ℓ we have as ε→ 0+

∂ℓλṽλ+iε → ∂ℓλṽλ+i0 in I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+), (7-23)

with convergence locally uniform in λ.

Remarks. (1) From (7-22) we get a regularity statement for vλ+i0 =2−∗

λ ṽλ+i0:

vλ+i0 ∈ Cℓ(J ; H−1/2−ℓ−(∂�; T ∗∂�)) for all ℓ.

Here the loss of ℓ derivatives comes from differentiating 2−∗

λ in λ.

(2) The property (7-22) can be reformulated as follows: the distribution (λ, x) 7→ vλ+i0(x) lies in
I 0+(J × ∂�, N ∗

+
6−

J ⊔ N ∗
−
6+

J ), where 6±

J := {(λ, x) | λ ∈ J , x ∈ 6±

λ } and we orient the conormal
bundles N ∗6±

J using the positive orientation on ∂�.

Proof. (1) We start with a few identities on ṽω, ω ∈ J + i(0,∞). Let C̃ω =2∗

λCω2
−∗

λ , λ= Reω, be the
conjugated restricted single layer potential defined in (4-83). Applying 2∗

λ to (7-16) we get

C̃ωṽω = G̃ω, where G̃ω :=2∗

λ((Rω f )|∂�). (7-24)

From (7-17) we have

1l� uω = Rω( f − I2−∗

λ ṽω). (7-25)

Differentiating these identities ℓ times in λ= Reω, we get

C̃ω∂ℓλṽω = ∂ℓλG̃ω −

ℓ−1∑
r=0

(
ℓ

r

)
(∂ℓ−r
λ C̃ω)(∂r

λṽω), (7-26)

RωI2−∗

λ ∂
ℓ
λṽω = ∂ℓωRω f − 1l� ∂ℓωuω −

ℓ−1∑
r=0

(
ℓ

r

)
(∂ℓ−r
λ (RωI2−∗

λ ))(∂
r
λṽω). (7-27)

(2) Take an arbitrary sequence ω j = λ j + iε j → λ ∈ J, Imω j > 0. We show that for each ℓ ∈ N0

∂ℓλṽω j is bounded uniformly in j, in I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+). (7-28)

We use induction on ℓ, showing (7-28) under the assumption

∂r
λṽω j is bounded uniformly in j , in I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+), for all r < ℓ. (7-29)

Fix arbitrary β > 0; the main task will be to show that

∥∂ℓλṽω j ∥H−1/2−β is bounded in j. (7-30)
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We argue by contradiction: if (7-30) does not hold then we can pass to a subsequence to make
∥∂ℓλṽω j ∥H−1/2−β → ∞. Define

ṽ j := ∂ℓλṽω j /∥∂
ℓ
λṽω j ∥H−1/2−β , ∥ṽ j∥H−1/2−β = 1. (7-31)

Since H−1/2−β embeds compactly into H−N, where we fix N > 1
2 +β, we may pass to a subsequence to

get
ṽ j → ṽ0 in H−N for some ṽ0 ∈ H−N (S1

; T ∗S1). (7-32)

We now analyze the right-hand side of (7-26) for ω = ω j . Since Rω f = Eω ∗ f , ∂r
ωEω j → ∂r

λEλ+i0

in D′(R2) by Lemma 4.3, and f ∈ C∞
c (�) is independent of j , we see that

∂ℓλG̃ω j is bounded uniformly in j , in C∞(S1). (7-33)

By Lemma 4.17 and (7-29) we next have for all r < ℓ

(∂ℓ−r
λ C̃ω j )(∂

r
λṽω j ) is bounded uniformly in j , in I −(3/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+). (7-34)

Dividing (7-26) by ∥∂ℓλṽω j ∥H−1/2−β , we then get

C̃ω j ṽ j → 0 in I −(3/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+). (7-35)

We now apply Lemma 7.1 to

v j :=2−∗

λ j
ṽ j , v0 :=2−∗

λ ṽ0, Cω jv j =2−∗

λ j
C̃ω j ṽ j

and get
v j → v0 in H−1/2−β, v0 ∈ I (1/4)+(∂�, N ∗

+
6−

λ ⊔ N ∗

−
6+

λ ). (7-36)

By Lemma 4.16 and (7-36) we have Cω jv j → Cλ+i0v0 in D′(∂�); thus by (7-35)

Cλ+i0v0 = 0. (7-37)

We now obtain a support condition on Rλ+i0Iv0 by analyzing the right-hand side of (7-27) for ω = ω j .
Similarly to the proof of (7-33) we have

∂ℓωRω j f is bounded uniformly in j , in C∞(R2).

By a similar argument using additionally (7-29) we get for all r < ℓ

(∂ℓ−r
λ (Rω jI2

−∗

λ j
))(∂r

λṽω j ) is bounded uniformly in j , in D′(R2),

where we define ∂k
λ(Rω jI2

−∗

λ j
) := ∂k

λ(RωI2
−∗

λ )|ω=ω j .
By Lemma 4.3 and (7-36) we get

Rω jI2
−∗

λ j
ṽ j → Rλ+i0Iv0 in D′(R2).

Now, dividing (7-27) by ∥∂ℓλṽω j ∥H−1/2−β and using that supp(1l� ∂ℓωuω j )⊂� for all j we obtain

supp(Rλ+i0Iv0)⊂�. (7-38)
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Applying Lemma 7.2 and using (7-36)–(7-38) we now see that v0 = 0. This gives a contradiction
with (7-36), since ∥v j∥H−1/2−β is bounded away from 0 by (7-31). This finishes the proof of (7-30).

The bound (7-30) implies the stronger boundedness statement (7-28). Indeed, the proof of Lemma 7.1
(more precisely, (7-9) and the paragraph following it) shows that any seminorm of 2−∗

λ j
∂ℓλṽω j in

I (1/4)+(∂�, N ∗
+
6−

λ j
⊔ N ∗

−
6+

λ j
) (see (3-20)) is bounded in terms of ∥∂ℓλṽω j ∥H−1/2−β (for any choice of β)

and of some I −(3/4)+(∂�, N ∗
+
6−

λ j
⊔ N ∗

−
6+

λ j
)-seminorm of 2−∗

λ j
C̃ω j ∂

ℓ
λṽω j . The former is bounded in j

by (7-30) and the latter is bounded in j by (7-26), (7-33), and (7-34).

(3) From (7-28) we see that (as before, using the seminorms (3-20)), the family of distributions
ṽλ+iε is bounded uniformly in ε ∈ (0, 1] in the space C∞(J ; I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗
−
6̃+)). By the

Arzelà–Ascoli theorem [Munkres 2000, Theorem 47.1] and since any sequence which is bounded in
I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗
−
6̃+) is also precompact in this space (following from (3-20) and the com-

pactness of embedding H s
⊂ H t for s > t), it follows that ṽλ+iε is also precompact in the space

C∞(J ; I (1/4)+(S1, N ∗
+
6̃−

⊔ N ∗
−
6̃+)). Moreover, ṽλ+iε → ṽλ+i0 in the space C0(J ; H−

1
2 −(S1

; T ∗S1))

by Proposition 7.3. Together these two statements imply that as ε→ 0+

ṽλ+iε → ṽλ+i0 in C∞(J ; I (1/4)+(S1, N ∗

+
6̃−

⊔ N ∗

−
6̃+)),

giving (7-22) and (7-23). □

7.5. Proof of Theorem 1.4. Fix f ∈ C∞
c (�), let ω= λ+ iε, where λ∈J and 0< ε≪ 1. Without loss of

generality we assume that f is real-valued. It suffices to show existence of the limit of (P −(λ+ iε)2)−1 f ,
since (P − (λ− iε)2)−1 f is given by its complex conjugate.

Let uω ∈ C∞(�) be the solution to the boundary-value problem (4-21). Recalling (7-1) we see that

(P −ω2)−1 f =1uω ∈ C∞(�).

Next, by (4-29) we have
uω = (Rω f )|� − Sωvω, (7-39)

where the “Neumann data” vω := Nωuω ∈ C∞(∂�; T ∗∂�) is defined using (4-26).
By Proposition 7.3 we have

vλ+iε → vλ+i0 in H−(1/2)−(∂�; T ∗∂�), as ε→ 0+,

with convergence locally uniform in λ ∈ J. Using Lemma 4.3 and recalling that Rω f = Eω ∗ f and
Sωvω = (RωIvω)|�, we pass to the limit in (7-39) to get

uλ+iε → uλ+i0 := (Rλ+i0 f )|� − Sλ+i0vλ+i0 in D′(�), as ε→ 0+,

with convergence again locally uniform in λ ∈ J. This gives the convergence statement (1-15) with

(P − λ2
− i0)−1 f =1uλ+i0.

Next, since Rλ+i0 f ∈ C∞(R2) and vλ+i0 ∈ I 1/4(∂�, N ∗
+
6−

λ ⊔ N ∗
−
6+

λ ), we apply the mapping prop-
erty (4-39) to get uλ+i0 ∈ I −1(�,3−(λ)), which implies

(P − λ2
− i0)−1 f ∈ I 1(�,3−(λ)).
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Since C∞
c (�) is dense in H−1(�) (see for instance [Ralston 1973, Lemma 5]), it is then standard (see

for instance [Cycon et al. 1987, Proposition 4.1]) that the spectrum of P in J 2 is purely absolutely
continuous. □

8. Large time asymptotic behavior

We will now adapt the analysis of [Dyatlov and Zworski 2019b, §5, 6] and use (1-13) to describe
asymptotic behavior of solutions to (1-1), giving the proof of Theorem 1.3. Assume that λ ∈ (0, 1)
satisfies the Morse–Smale conditions of Definition 1.2 and fix an open interval J ⊂ (0, 1) containing λ
such that each ω ∈ J satisfies the Morse–Smale conditions as well (this is possible by Lemma 2.6). We
emphasize that in this section, in contrast with Sections 4–7, we denote by λ the fixed real frequency
featured in the forcing term in (1-1) and by ω an arbitrary real number (often lying in J ).

8.1. Reduction to the resolvent. Fix f ∈ C∞
c (�; R) and let u be the solution to (1-1). We first split (1-13)

into two parts. Fix a cutoff function

ϕ ∈ C∞

c (J ; [0, 1]), ϕ = 1 on [λ− δ, λ+ δ] for some δ > 0. (8-1)

By (1-13) we can write

u(t)=1−1
� Re(eiλt(w1(t)+ r1(t))), (8-2)

where, with Wt,λ defined in (1-13),

w1(t)= ϕ(
√

P)Wt,λ(P) f, r1(t)= (I −ϕ(
√

P))Wt,λ(P) f. (8-3)

The contribution of r1 to u is bounded in H 1(�) uniformly as t → ∞ as follows from:

Lemma 8.1. We have

∥Re(eiλtr1(t))∥H−1(�) ≤
2
λδ

∥ f ∥H−1(�) for all t ≥ 0. (8-4)

Proof. We calculate Re(eiλtr1(t))= Rt,λ(P) f , where

Rt,λ(z)= Re
(
eiλt Wt,λ(z)(1 −ϕ(

√
z))

)
=
(cos(t

√
z)− cos(tλ))(1 −ϕ(

√
z))

λ2 − z
.

Since ϕ = 1 near λ, we see that sup[0,1] |Rt,λ| ≤ 2/(λδ). Now (8-4) follows from the functional calculus
for the self-adjoint operator P on H−1(�). □

Define for ω ∈ J the limits in D′(�) (which exist by Theorem 1.4; see Section 7.5)

u±(ω) :=1−1
� (P −ω2

± i0)−1 f. (8-5)

Here u+(ω) is the complex conjugate of u−(ω) since f is real-valued.
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By Stone’s formula for the operator P (see for instance [Dyatlov and Zworski 2019a, Theorem B.10])
and a change of variables in the spectral parameter we have

1−1
� w1(t)=

1
π i

∫
R

ϕ(ω)Wt,λ(ω
2)(u−(ω)− u+(ω))ω dω

=
1

2π

∫ t

0

∫
R

ϕ(ω)(ei(ω−λ)s
− e−i(ω+λ)s)(u+(ω)− u−(ω)) dω ds. (8-6)

8.2. Global geometry. The proof of Theorem 1.4 in Section 7.5 shows that u±(ω) are smooth families
of conormal distributions associated to ω-dependent lines in R2, more precisely

u±(ω) ∈ I −1(�,3±(ω)), (8-7)

where 3±(ω) are defined in (1-9). To understand the behavior of 1−1
� w1(t) as t → ∞ we present an

explicit version of (8-7), relying on Proposition 7.4. The most confusing thing here are the signs defined
in (1-8). Figures 4, 13, and 14 can be used for guidance here.

Let ω ∈ J and 6±
ω ⊂ ∂� be the attractive/repulsive sets of the chess billiard b( • , ω) defined in (1-6).

Recall that b = γ+
◦γ− and the involutions γ±( • , ω) map 6+

ω to 6−
ω . Let n be the minimal period of the

periodic points of b. To simplify notation, we assume that each of the sets 6±
ω consists of exactly n points,

that is, it is a single periodic orbit of b (as opposed to a union of several periodic orbits), but the analysis
works in the same way in the general case. We write (with the cyclic convention that x±

n+1(ω)= x±

1 (ω),
x±

0 (ω)= x±
n (ω))

6±

ω = {x±

k (ω)}
n
k=1, γ−(x+

k )= x−

k , γ+(x−

k )= x+

k+1, (8-8)

and b±1(x±

k (ω), ω)= x±

k+1. By Lemma 2.6, we can make x±

k (ω) depend smoothly on ω ∈ J.
In the notation of (1-8) and (1-9),

3−(ω)=

n⊔
k=1

N ∗

+
0−

ω (x
−

k (ω))⊔

n⊔
k=1

N ∗

−
0+

ω (x
+

k (ω)),

N ∗

+
0−

ω (x
−

k (ω))= {(x, τdℓ−ω ) : ℓ−ω (x − x−

k (ω))= 0, ν−

k τ > 0},

N ∗

−
0+

ω (x
+

k (ω))= {(x, τdℓ+ω ) : ℓ+ω (x − x+

k (ω))= 0, ν+

k τ < 0},

ν±

k := ν±(x±

k (ω), ω) := sgn ∂θℓ±ω (x
±

k (ω)),

(8-9)

where ℓ±ω (x) := ℓ±(x, ω). We note that ν±

k are independent of ω ∈ J. To obtain 3+(ω) we switch the
sign of τ in (8-9) — see Figure 4.

We need the following geometric result (see Figure 14):

Lemma 8.2. With the notation above we have for all ω ∈ J

x ∈�, ℓ±ω (x − x±

k (ω))= 0 =⇒ sgn[∂ω(ℓ
±

ω (x − x±

k (ω)))] = ∓ν±

k . (8-10)

Proof. (1) We note that the definition (1-3) of γ±
ω and (8-8) give

ℓ±ω (x − x±

k (ω))= ℓ±ω (x − x∓

ℓ (ω)), ℓ=

{
k − 1, +,

k, −.
(8-11)
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∂Ω

x−
1

x+
2

x−
2

x+
1

ℓ−(x− x+
1 ) = 0

ℓ+(x− x+
2 ) = 0

γ−(x+
k ) = x−

k ,

γ+(x−
k ) = x+

k+1

Figure 13. An illustration of (8-8) with 6±

λ = {x±

1 (λ), x±

2 (λ)}.

x+
1 (ω)

x−
1 (ω)

x+
2 (ω)

x−
2 (ω)

x+
1 (ω + ε)

x−
1 (ω + ε)

x+
2 (ω + ε)

x−
2 (ω + ε)

Figure 14. An illustration of Lemma 8.2, showing the periodic trajectory of the chess
billiard for ω and for ω + ε, ε > 0. In this example ν+

1 = ν−

1 = 1, ν+

2 = ν−

2 = −1.
Lemma 8.2 shows in which direction the blue and red segments move as ω grows. For
example, the entire red segment {x ∈ � | ℓ+ω (x − x+

1 (ω)) = 0}, which connects x+

1 (ω)

to x−

2 (ω), lies inside the half-plane {x | ℓ+ω+ε(x − x+

1 (ω+ ε)) < 0}, which is consistent
with (8-10).

We also note that (2-6) implies

sgn ∂θℓ±ω (x
∓

ℓ (ω))=: ν±(x∓

ℓ (ω), ω)= −ν±(x±

k (ω), ω)= −ν±

k , (8-12)

where θ 7→ x(θ) ∈ ∂� is a positive parametrization of ∂� by S1
θ . It is sufficient to establish (8-10) with

x±

k replaced by x∓

ℓ , where ℓ is given in (8-11):

x ∈�, ℓ±ω (x − x∓

ℓ (ω))= 0 =⇒ sgn[∂ω(ℓ
±

ω (x − x∓

ℓ (ω)))] = ∓ν±

k . (8-13)

(2) Using (2-7) and the condition on x in (8-13) we see that

∂ω[ℓ
±

ω (x − x∓

ℓ (ω))] =
ℓ∓ω (x − x∓

ℓ (ω))

2ω(1 −ω2)
− dxℓ

±

ω (∂ωx∓

ℓ (ω)). (8-14)



84 SEMYON DYATLOV, JIAN WANG AND MACIEJ ZWORSKI

We start by considering the sign of the second term on the right-hand side:

− sgn dxℓ
±

ω (∂ωx∓

ℓ (ω))= − sgn[∂θℓ
±

ω ](x∓

ℓ (ω))∂ωθ(x
∓

ℓ (ω))= ν±

k sgn ∂ω[θ(x∓

ℓ (ω))], (8-15)

where we used (8-12).
We now put f := θ ◦ bn

◦ θ−1, with n the primitive period. Then (2-15) and (1-6) give

f (θ(x∓

ℓ (ω)), ω)= θ(x∓

ℓ (ω)), ∂ω f (x, ω) > 0, ∓
(
1 − [∂θ f ](θ(x∓

ℓ (ω)), ω)
)
> 0.

Differentiating the first equality in ω gives

∂ω[θ(x∓

ℓ (ω))] = ∂ω f (θ(x), ω)|x=x∓

ℓ (ω)
/
(
1 − [∂θ f ](θ(x∓

ℓ (ω)), ω)
)
,

and hence sgn ∂ω[θ(x∓

ℓ (ω))] = ∓1. Returning to (8-15) we see that

− sgn dxℓ
±

ω (∂ωx∓

ℓ (ω))= ∓ν±

k .

(3) We next claim that

x ∈�, ℓ±ω (x − x∓

ℓ (ω))= 0 =⇒ sgn ℓ∓ω (x − x∓

ℓ (ω)) ∈ {∓ν∓

k , 0}. (8-16)

Combined with (8-14) and the conclusion of step (2), this will give (8-13) and hence (8-10). Since the
set on the left-hand side of (8-16) is given by x = (1 − t)x∓

ℓ (ω)+ tγ±
ω (x

∓

ℓ (ω)), 0 ≤ t ≤ 1, it suffices to
establish the conclusion in (8-16) for x = γ±

ω (x
∓

ℓ (ω)). For that we use (2-5) and (8-12), which give

sgn ℓ∓ω (γ
±

ω (x
∓

ℓ (ω))− x∓

ℓ (ω))= ±ν±(x∓

ℓ (ω), ω)= ∓ν±

k ,

completing the proof. □

In the notation of this section, Theorem 1.4 is reformulated as follows. Note that henceforth in this
section, ε denotes a sign (either + or −) in contrast with its use in the statement and proof of Theorem 1.4.

Lemma 8.3. In the notation of (8-5), (8-9) and with ε ∈ {+,−},

uε(x, ω)=

n∑
k=1

∑
±

gεk,±(x, ω)+ uε0(x, ω), uε0 ∈ C∞(�×J ), gεk,± ∈ D′(R2),

gεk,±(x, ω)=
1

2π

∫
R

eiτℓ±ω (x−x±

k (ω))aεk,±(τ, ω) dτ, (x, ω) ∈ R2
×J ,

(8-17)

where aεk,± ∈ S−1+(Jω × Rτ ) is supported in {τ : ±εν±

k τ ≥ 1}.

Proof. We consider the case of ε = −, with the case ε = + following since u+(ω) = u−(ω). Recall
from Section 7.5 that

u−(ω)= uω+i0 = (Rω+i0 f )|� − Sω+i0vω+i0,

where Rω+i0 f ∈ C∞(R2
×J ) by Lemma 4.3 and

vω+i0 ∈ C∞(J ; I (1/4)+(∂�, N ∗

+
6−

ω ⊔ N ∗

−
6+

ω )),
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with smoothness in ω understood in the sense of Proposition 7.4. By the mapping property (4-39) we
have

Sω+i0vω+i0 ∈ C∞(J ; I −1+(�,3−(ω))).

Here smoothness in ω is obtained by following the proof of Lemma 4.9, which writes Sω+i0v for
v ∈ C∞(J ; I (1/4)+(∂�, N ∗

±
{x∓

ℓ (ω)})) as a sum of a function in C∞(�× J ) and the pullback by ℓ±ω
of a conormal distribution to ℓ±ω (x

∓

ℓ (ω)) = ℓ±ω (x
±

k (ω)), with k, ℓ related by (8-11). This gives the
representation (8-17). Here we can follow (1-9) and (8-9) to obtain an explicit parametrization of the
conormal bundles N ∗

∓
0±
ω (x

±

k (ω)) = N ∗
±
0±
ω (x

∓

ℓ (ω)) and check that aεk,± can be written as a sum of a
symbol supported in {τ : ±εν±

k τ ≥ 1} and a symbol which is rapidly decaying in τ , with the contribution
of the latter lying in C∞(�×J ). □

The next lemma disposes of the term uε0:

Lemma 8.4. Suppose that u±(x, ω) ∈ C∞(�× J ). If w1 is defined by (8-6) then, for any k, there
exists Ck such that, for all t ≥ 0, ∥1−1

� w1(t)∥Ck(�) ≤ Ck .

Proof. Recalling (8-6), we see that it suffices to prove that for any u ∈ C∞(�×J )

sup
t≥0

∥w(t)∥Ck(�) ≤ Ck, where w(t) :=

∫ t

0

∫
R

ϕ(ω)(ei(ω−λ)s
− e−i(ω+λ)s)u(ω) dω ds.

Integrating by parts in ω, we get

w(x, t)=

∫ t

0

∫
R

ϕ(ω)u(x, ω)[(1 + s2)−1(1 + D2
ω)](e

i(ω−λ)s
− e−i(ω+λ)s) dω ds

=

∫ t

0

∫
R

(1 + D2
ω)[ϕ(ω)u(x, ω)](e

i(ω−λ)s
− e−i(ω+λ)s)(1 + s2)−1 dω ds,

which is bounded in C∞(�) uniformly in t ≥ 0. □

Returning to (8-6) we see that we have to analyze the behavior of

w
ε,ε′

k,±(x, t) :=
1

2π

∫ t

0

∫
R

ϕ(ω)gεk,±(x, ω)e
is(ε′ω−λ) dω ds, ε, ε′

∈ {+,−}, (8-18)

as t → ∞. More precisely, if the term uε0 in the decomposition (8-17) were zero, then

1−1
� w1(x, t)=

n∑
k=1

∑
±

∑
ε,ε′∈{+,−}

εε′w
ε,ε′

k,±(x, t). (8-19)

8.3. Asymptotic behavior of wε,ε
′

k,±. For τ ̸= 0, define

Aε,ε
′

k,±(x, t, τ ) :=
1

2π

∫ t

0

∫
R

eiτℓ±ω (x−x±

k (ω))+i(ε′ω−λ)sϕ(ω)aεk,±(τ, ω) dω ds

=
τ

2π

∫ t/τ

0

∫
R

eiτ(ℓ±ω (x−x±

k (ω))+(ε
′ω−λ)r)ϕ(ω)aεk,±(τ, ω) dω dr
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in the notation used for gεk,± in Lemma 8.3, where in the second line we made the change of variables
s = τr . We then have

w
ε,ε′

k,±(x, t)=
1

2π

∫
R

Aε,ε
′

k,±(x, t, τ ) dτ, (8-20)

in the sense of oscillatory integrals (since ∂xℓ
±
ω (x − x±

k (ω))= dℓ±ω ̸= 0 the phase is nondegenerate — see
[Hörmander 1990, §7.8]). From the support condition in Lemma 8.3 we get

Aε,ε
′

k,±(x, t, τ ) ̸= 0 =⇒ ±εν±

k τ ≥ 1. (8-21)

The lemma below shows that we only need to integrate over a compact interval in r :

Lemma 8.5. There exist χ ∈ C∞
c ((0,∞)) and ϕ satisfying (8-1) such that for

Ãε,ε
′

k,±(x, t, τ ) :=
τ

2π

∫ t/τ

0

∫
R

eiτ(ℓ±ω (x−x±

k (ω))+(ε
′ω−λ)r)(1 −χ(±ε′ν±

k r))ϕ(ω)aεk,±(τ, ω) dω dr,

w̃
ε,ε′

k,±(x, t) :=
1

2π

∫
R

Ãε,ε
′

k,±(x, t, τ ) dτ,

we have ∥w̃
ε,ε′

k,±(t)∥Ck(�) ≤ Ck for every k and uniformly as t → ∞.

Proof. (1) Put F(x, ω) := ℓ±ω (x − x±

k (ω)). Lemma 8.2 shows that for all ω ∈ J

x ∈�, F(x, ω)= 0 =⇒ ∓ν±

k ∂ωF(x, ω) > 0.

Fix a cutoff function ψ ∈ C∞
c (�) such that ψ = 1 in a neighborhood of {x ∈ � | F(x, λ) = 0} and

∓ν±

k ∂ωF(x, λ) > 0 for all x ∈ suppψ . Choosing ϕ supported in a sufficiently small neighborhood of λ,
we see that there exists χ ∈ C∞

c ((0,∞)) such that for all ω ∈ suppϕ

x ∈�∩ supp(1 −ψ) =⇒ F(x, ω) ̸= 0, (8-22)

x ∈�∩ suppψ =⇒ ∓ν±

k ∂ωF(x, ω) /∈ supp(1 −χ). (8-23)

(2) Using the singular support property of conormal distributions (see Section 3.2) and (8-22), we have

(1 −ψ(x))ϕ(ω)gεk,±(x, ω) ∈ C∞(�× R).

The proof of Lemma 8.4 shows that ∥(1 −ψ(x))w̃ε,ε
′

k,±(t)∥Ck(�) ≤ Ck , uniformly as t → ∞.
On the other hand, (8-23) implies that for some constant c > 0

ω ∈ suppϕ, x ∈�∩ suppψ, r ∈ supp(1 −χ(±ε′ν±

k • )) =⇒ |∂ωF(x, ω)+ ε′r | ≥ c⟨r⟩.

Integration by parts in ω shows that

∂αx [ψ(x) Ãε,ε
′

k,±(x, t, τ )] = O(⟨τ ⟩−∞),

uniformly in t . But that gives uniform smoothness of ψ(x)w̃ε,ε
′

k,±(x, t), finishing the proof. □
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The lemma shows that in the study of (8-18) we can replace A in (8-20) by

Bε,ε
′

k,±(x, t, τ )= Aε,ε
′

k,±(x, t, τ )− Ãε,ε
′

k,±(x, t, τ )

=
τ

2π

∫ t/τ

0

∫
R

eiτ(ℓ±ω (x−x±

k (ω))+(ε
′ω−λ)r)χ(±ε′ν±

k r)ϕ(ω)aεk,±(τ, ω) dω dr.

Define the limit Bε,ε
′

k,±(x,∞, τ ) by replacing the integral
∫ t/τ

0 dr above by
∫ (sgn τ)∞

0 dr , which is well-
defined thanks to the cutoff χ(±ε′ν±

k r), where we recall that χ ∈ C∞
c ((0,∞)). The next lemma describes

the behavior of this limit as τ → ∞:

Lemma 8.6. Define F(x, ω) := ℓ±ω (x − x±

k (ω)). Then e−iτ F(x,λ)Bε,ε
′

k,±(x,∞, τ ) lies in the symbol class
S−1+(�x × Rτ ) and

e−iτ F(x,λ)Bε,ε
′

k,±(x,∞, τ ) ∈

{
χ(∓ν±

k ∂λF(x, λ))aεk,±(τ, λ)+ S−2+(�× R), ε = ε′
= +,

S−∞(�× R), otherwise.

Proof. We first note that if ±ε′ν±

k τ < 0 then Bε,ε
′

k,±(x,∞, τ )= 0. Hence we can assume that

sgn τ = ±ε′ν±

k . (8-24)

In that case we can replace limits of integration in r by (−∞,∞), with τ replaced by |τ | in the
prefactor τ/(2π). The method of stationary phase (see for instance [Hörmander 1990, Theorem 7.7.5])
can be applied to the double integral

∫
R2 dω dr and the critical point in given by

ω = ε′λ, r = −ε′∂ωF(x, ω).

Since ω = −λ lies outside of the support of ϕ, if ε′
= − then (by the method of nonstationary phase) we

have Bε,ε
′

k,±(x,∞, τ ) ∈ S−∞(�× R). We thus assume that ε′
= +, which by (8-24) gives ±ν±

k τ > 0. If
ε=− then the support property of aεk,± in Lemma 8.3 shows that Bε,ε

′

k,±(x,∞, τ )= 0. Thus we may assume
that ε= ε′

=+. In the latter case the method of stationary phase gives the expansion for Bε,ε
′

k,±(x,∞, τ ). □

We now analyze the remaining term given by

v
ε,ε′

k,±(x, t) :=
1

2π

∫
R

Cε,ε′

k,±(x, t, τ ) dτ, (8-25)

where

Cε,ε′

k,±(x, t, τ )=
τ

2π

∫ (sgn τ)∞

t/τ

∫
R

eiτ(ℓ±ω (x−x±

k (ω))+(ε
′ω−λ)r)χ ε

′

k,±(r)ϕ(ω)a
ε
k,±(τ, ω) dω dr,

and χ ε
′

k,±(r) := χ(±ε′ν±

k r) ∈ C∞
c (R \ {0}). The last lemma deals with this term:

Lemma 8.7. For vε,ε
′

k,± given by (8-25) we have, for every β > 0,

∥v
ε,ε′

k,±(t)∥H1/2−β (�) → 0 as t → ∞. (8-26)
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Proof. (1) We put ε′
= + as the other case is similar and simpler. To simplify notation we will often

drop ε and k. Fix a cutoff function

ψ ∈ C∞

c (R), (ℓ∓ω )
∗ψ = 1 near � for all ω ∈ suppϕ. (8-27)

For x ∈ R2, t > 0, and ω ∈ J, define

U±(x, t, ω)= ψ(ℓ∓ω (x))V±(ℓ
±

ω (x), t, ω),

where (in the sense of oscillatory integrals)

V±(y, t, ω) :=

∫
R

τ

2π

∫ (sgn τ)∞

t/τ
eiτ(y−ℓ±ω (x

±

k (ω))+(ω−λ)r)χ̃(r)b(τ, ω) dr dτ,

b :=
aεk,±
2π

∈ S−1+(Jω × Rτ ), χ̃ := χ+

k,± ∈ C∞

c (R \ 0).

(8-28)

Then we have for x ∈�

v
ε,+
k,±(x, t)=

∫
R

ϕ(ω)U±(x, t, ω) dω,

which together with the Fourier characterization of the Sobolev space H 1/2−β(R2) implies the following
bound, where Û± denotes the Fourier transform of U± in the x-variable:

∥v
ε,+
k,±(t)∥

2
H1/2−β (�)

≤

∫
R2

⟨ξ⟩1−2β
∣∣∣∣∫

R

ϕ(ω)Û±(ξ, t, ω) dω
∣∣∣∣2

dξ. (8-29)

(2) Thinking of L±
ω (see (4-3)) as elements of the dual R2 of (R2)∗ we have by (4-4)

(R2)∗ ∋ ξ = L+

ω (ξ)ℓ
+

ω + L−

ω (ξ)ℓ
−

ω , ℓ±ω ∈ (R2)∗.

Hence, since det ∂(x1, x2)/∂(ℓ
+
ω , ℓ

−
ω )=

1
2ω

√
1 −ω2,

Fx→ξ

(
f (ℓ+ω (x))g(ℓ

−

ω (x))
)
=

∫
R2

e−i L+
ω (ξ)ℓ

+
ω (x)−i L−

ω (ξ)ℓ
−
ω (x) f (ℓ+ω (x))g(ℓ

−

ω (x)) dx

=
1
2ω

√
1 −ω2 f̂ (L+

ω (ξ))ĝ(L
−

ω (ξ)).

Consequently,

Û±(ξ, t, ω)= L±

ω (ξ)D(L
±

ω (ξ), t, ω− λ)ψ̂(L∓

ω (ξ))e
−i L±

ω (ξ)ℓ
±
ω (x

±

k (ω))b(L±

ω (ξ), ω), (8-30)

where we absorbed the Jacobian into b and put

D(τ, t, ρ) :=

∫ (sgn τ)∞

t/τ
χ̃(r)eiτρr dr, τ ̸= 0.

Since χ̃ ∈ C∞
c (R), we have D(t, τ, ρ)→ 0, for fixed τ ̸= 0 as t → ∞, uniformly in ρ. In view of the

support condition in Lemma 8.3 (which implies that |L±
ω (ξ)| ≥ 1 on the support of Û±) we then get∫

R

ϕ(ω)Û±(ξ, t, ω) dω→ 0 as t → ∞, (8-31)
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for all ξ ∈ R2. Using the dominated convergence theorem and (8-29) we see that to establish (8-26) it
is enough to show that the integrand on the right-hand side of (8-29) is bounded by a t-independent
integrable function of ξ .

(3) We have

|D(τ, t, ρ)| ≤ C⟨τρ⟩
−1. (8-32)

Indeed, since the support of χ̃ is bounded, we have D = O(1). On the other hand, when |τρ|> 1 we can
integrate by parts using that eiτρr

= (iτρ)−1∂r eiτρr, which gives the estimate.
Recalling (8-30), (8-32) and using that ψ̂ ∈ S (R) by (8-27) and b(τ, ω)= O(⟨τ ⟩−1+β/2) by (8-28),

we get

|Û±(ξ, t, ω)| ≤ C⟨L∓

ω (ξ)⟩
−10

⟨L±

ω (ξ)⟩
β/2

⟨(ω− λ)L±

ω (ξ)⟩
−1.

Thus is remains to show that∥∥∥∥∫
R

ϕ(ω)H(ξ,ω)dω
∥∥∥∥

L2(R2
ξ )

<∞, where H(ξ,ω):=⟨ξ⟩1/2−β
⟨L∓

ω (ξ)⟩
−10

⟨L±

ω (ξ)⟩
β/2

⟨(ω−λ)L±

ω (ξ)⟩
−1.

Using the integral version of the triangle inequality for L2(R2
ξ ), this reduces to∫

R

ϕ(ω)∥H(ξ, ω)∥L2(R2
ξ )

dω <∞. (8-33)

Fix ω ∈ suppϕ and make the linear change of variables ξ 7→ η = (η+, η−), η± = L±
ω (ξ). Then we see

that

∥H(ξ, ω)∥2
L2(R2

ξ )
≤ C

∫
R2

⟨η⟩1−2β
⟨η∓⟩

−20
⟨η±⟩

β
⟨(ω− λ)η±⟩

−2 dη.

Integrating out η∓ and making the change of variables ζ := (ω − λ)η±, we get (for ω bounded and
assuming β < 1)

∥H(ξ, ω)∥2
L2(R2

ξ )
≤ C

∫
R

⟨η±⟩
1−β

⟨(ω− λ)η±⟩
−2 dη± ≤ C |ω− λ|β−2.

Thus ∫
R

ϕ(ω)∥H(ξ, ω)∥L2(R2
ξ )

dω ≤ C
∫ 1

0
|ω− λ|β/2−1 dω <∞,

giving (8-33) and finishing the proof. □

8.4. Proof of Theorem 1.3. We now review how the pieces presented in Sections 8.1–8.3 fit together to
give the proof of Theorem 1.3.

In view of (8-2), Lemma 8.1, and (8-7) it suffices to show that

1−1
� w1(t)= u+(λ)+ r2(t)+ ẽ(t),

∥r2(t)∥H1(�) = O(1), ∥ẽ(t)∥H (1/2)−(�) → 0 as t → ∞.
(8-34)
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We use the formula (8-6) which expresses 1−1
� w1(t) as an integral featuring the distributions uε(x, ω),

ε ∈ {+,−}. Lemma 8.3 gives a decomposition of uε into the conormal components gεk,± and the smooth
component uε0. Lemma 8.4 then shows that the contribution of uε0 to 1−1

� w1(t) can be absorbed into r2(t).
The contribution of conormal terms gεk,± to 1−1

� w1(t) is then given by (8-19). Restricting integration
in r using the cut-off 1 −χ in Lemma 8.5 produces other terms which can be absorbed into r2(t). The
limit of the remaining terms as t → +∞ is described in Lemma 8.6: summing over k and ± gives the
leading term as u+(λ) (as seen by returning to Lemma 8.3, where the cutoff χ does not matter by (8-22)
and (8-23)) and terms which again can be absorbed in r2(t).

What is left is given by a sum of (8-25). Lemma 8.7 shows that those terms all go to 0 in H (1/2)−(�)

as t → ∞ and their sum constitutes ẽ(t).
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LARGE SETS CONTAINING NO COPIES OF A GIVEN INFINITE SEQUENCE

MIHAIL N. KOLOUNTZAKIS AND EFFIE PAPAGEORGIOU

Suppose an is a real, nonnegative sequence that does not increase exponentially. For any p < 1, we
construct a Lebesgue measurable set E ⊆ R which has measure at least p in any unit interval and which
contains no affine copy {x + tan : n ∈ N} of the given sequence (for any x ∈ R, t > 0). We generalize this
to higher dimensions and also for some “nonlinear” copies of the sequence. Our method is probabilistic.

1. Introduction

In Euclidean Ramsey theory, one is interested in assuming some kind of largeness for sets E in Euclidean
space Rd , or sometimes in Zd , and concluding that E then contains a “copy” of a pattern. The most
famous such example is perhaps Szemeredi’s theorem [1975], which states that any subset of the integers
with positive density contains arbitrarily long arithmetic progressions. Another well-known example is
the theorem of Falconer and Marstrand [1986], Fürstenberg, Katznelson and Weiss [Fürstenberg et al.
1990] and Bourgain [1986] (see also [Kolountzakis 2004]): if the set E ⊆ Rd has positive Lebesgue
density (this means there are arbitrarily large cubes where E takes up at least a constant fraction of the
measure) then its points implement all sufficiently large distances (conjecture by Székely [1983]).

Another well-known problem, very much related to the contents of this paper, is the so-called Erdős
similarity problem: a set A ⊆ R is called universal in measure if, whenever E ⊆ R has positive Lebesgue
measure, we can find an affine copy of A contained in E . In other words, x + tA ⊆ E for some x ∈ R,
t > 0. It is easy to see that every finite set A is universal (just look close enough to some point of density
of E , shrink A enough and average the number of points of the copy of A that belong to E over translates
of A nearby) but it has been conjectured [Erdős 2015] (see also [Croft et al. 1991, p. 183]) that no infinite
set A can be universal in measure. This is known for many classes of infinite sets but not for all [Chlebik
2015; Falconer 1984; Gallagher et al. 2023; Humke and Laczkovich 1998; Komjáth 1983]. Clearly it
would suffice to prove this for A a positive sequence an decreasing to 0, but if an decays fast to 0 (so it is
in some sense sparse, hence not that hard to contain) this is still unknown. On the contrary, this is known
when log 1/an = o(n). This is not known if an = 2−n , for example.

In this paper we consider an analogue of the Erdős similarity problem “in the large”. Let A ⊆ R be
a discrete, unbounded, infinite set in R. Can we find a “large” measurable set E ⊆ R which does not
contain any affine copy x + tA of A (for any x ∈ R, t > 0)? Our attention was drawn to this problem by
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a recent paper by Bradford, Kohut and Mooroogen [Bradford et al. 2023] in which the authors prove that
if A is an infinite arithmetic progression then this is indeed possible: for any p ∈ [0, 1), they construct a
Lebesgue measurable set E , with measure at least p in any interval of length 1, which does not contain
any affine copy of A. This is clearly equivalent to being able to obtain, for any p ∈ [0, 1), a set E avoiding
all infinite arithmetic progressions and having measure ≥ p in any interval of length 1 whose endpoints
are integers. (Indeed, if the set E has measure at least p in every interval of the form [n, n + 1], n ∈ Z,
then, since for any x the interval [x, x +1] is contained in the union of two such unit-length intervals with
integer endpoints, we obtain that [x, x + 1] \ E has measure at most 2(1 − p). Since p can be as close
to 1 as we want, this implies that [x, x + 1] \ E has measure as close to 0 as we want.) From now on we
follow this simplification, and we deal only with intervals with integer endpoints (in any dimension).

We generalize the result of [Bradford et al. 2023] to sequences of nonnegative numbers A which do
not grow too fast. To state our result, we introduce the following class of sequences.

Definition 1.1. We say that a real sequence A = {an : n ∈ N} is in the class (A) if

(1) a0 = 0,

(2) an+1 − an ≥ 1 for every n ∈ N,

(3) log an = o(n).

Remark 1.2. Since the problem we are studying is translation invariant, (1) in Definition 1.1 is unnecessary,
but we keep it as it simplifies the proofs somewhat.

Writing
A(t) = |A ∩ [0, t]| (1-1)

for the counting function of the set A, notice that the growth (3) is equivalent to the limit, as t → +∞,

A(t)
log t

→ +∞. (1-2)

Our main result is the following.

Theorem 1.3. Consider the sequence A = {an : n ∈ N} which belongs to the class (A). Then, for each
0 ≤ p < 1, there exists a Lebesgue measurable set E ⊆ R such that

|E ∩ [m, m + 1]| ≥ p for all m ∈ Z,

but E does not contain any affine copy of A.

As in the case of the Erdős similarity problem described above, the sparser the set A, the easier it
should be to contain it in large sets, so it is not surprising that we had to impose a growth condition (to
belong to the class (A)). It remains an open question if a similar set E can be constructed when A grows
exponentially or faster.

Question 1. Is there a sequence 0 < an → +∞ and a number p ∈ [0, 1) such that one can find an affine
copy of A = {an : n ∈ N} in any set E ⊆ R which has measure more than p in any interval of length 1?
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Unlike the approach taken in [Bradford et al. 2023], our method of proof is probabilistic. We construct
a family of random sets and we show that, with high probability, such a random set will have all the
properties we want. This method turns out to be extremely flexible, and this allows us to generalize. Not
only can we deal with essentially arbitrary and unstructured sequences A, but we can also relax the sense
in which we seek copies of A in the large set E . Instead of scaling the elements of A and translating them,

x + tan, x ∈ R, t > 0,

we can allow for more general transformations

x + φ(n, t) · an, x ∈ R, t > 0. (1-3)

Theorem 1.4. Consider the set A = {an : n ∈ N} which belongs to the class (A), and let

φ(n, t) : N × (0, +∞) → (0, +∞)

be such that, for each n, the function φ(n, t) is increasing in t , and such that, for all n ∈ N, we have

C1t ≤ φ(n + 1, t)an+1 − φ(n, t)an (1-4)

and

φ(n, t) ≤ C2t for all t > 0, (1-5)

for some C1, C2 > 0. Then, for each 0 ≤ p < 1, there exists a Lebesgue measurable set E ⊆ R such
that E intersects every interval of unit length in a set of measure at least p, but E does not contain the set

{x + φ(n, t) · an : n ∈ N}

for any choice of x ∈ R, t > 0.

We adopt certain arguments from [Kolountzakis 1997, Section 3] where it is proved, on the Erdős
similarity problem, that sequences with a finite limit, say 0, which are not decaying very fast (e.g., they
decay polynomially or subexponentially but not, for instance, exponentially fast — compare to our growth
condition (3)) cannot be universal in measure, by showing the existence of a randomly constructed set
E ⊆ [0, 1], avoiding all affine copies of the sequence.

The measure assumption makes this problem different than other “avoidance” problems, where the
avoiding set is often taken to have zero Lebesgue measure but to have large Hausdorff dimension or
Fourier dimension. For example, in [Keleti 2008], a compact subset of R is constructed that has full
Hausdorff dimension but does not contain any 3-term arithmetic progression. See also [Cruz et al. 2022;
Denson et al. 2021; Fraser and Pramanik 2018; Maga 2011; Máthé 2017; Shmerkin 2017; Yavicoli 2021].

We can also prove the following result in higher dimension (Theorem 1.5). We phrase it as avoiding
linear images of a set in Euclidean space into another Euclidean space. In this manner we obtain easily
some corollaries, Theorem 1.3 one of them, and its proof is rather simpler than that of Theorem 1.3
given in Section 3. But it does not extend easily to more complicated transformations such as those in
Theorem 1.4, so we choose to stay with linear maps.
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Theorem 1.5. Let d1, d ≥ 1, b, f > 0 and p ∈ [0, 1). Let also α(R) be a function satisfying

α(R)

log R
→ +∞ as R → +∞.

Then, if A ⊆ Rd1 is a discrete point set such that

|A ∩ BR(0)| ≤ C2 Rb, R > 0, (1-6)

there is a set E ⊆ Rd such that:

(i) |E ∩ (m + [0, 1]
d)| ≥ p for all m ∈ Zd .

(ii) For any linear map T : Rd1 → Rd , if , for arbitrarily large values of R,

T (A) ∩ BR(0) (1-7)

contains at least α(R) points with separation R− f then

T (A) is not contained in E . (1-8)

Proof of Theorem 1.3 using Theorem 1.5. Apply Theorem 1.5 with d1 = 2, d = 1, b = 1, α(x) = A(x1/2)

(where A(x) is the counting function of A), f = 1 (there is great flexibility in choosing α(x), b, f ) and
the set

P = A × {1} ⊆ R2

to obtain a set E ⊆ R satisfying |E ∩ [m, m + 1]| ≥ p for all m ∈ Z. We see that (1-6) is satisfied. Let
now T : R2

→ R be given by the 1 × 2-matrix T = (t, x), so that

T (P) = x + tA.

For any x ∈ R, t > 0, the set (x + tA)∩ [−R, R] contains at least A(R/t) points of separation t , so, if R
is large enough, it contains α(R) = A(R1/2) points with separation R−1. It follows that x + tA is not
contained in E . □

Corollary 1.6 (avoiding linear images of general sets in high dimension). Let p ∈ [0, 1), d ≥ 1, an ∈ Rd

for n ∈ N, with log|an| = o(n) and |an − an+1| ≥ 1 for all n ∈ N. Then there is a set E ⊆ Rd such that,
for all m ∈ Zd , we have |E ∩ (m + [0, 1]

d)| ≥ p, and such that, for all x ∈ Rd and for all nonsingular
linear T : Rd

→ Rd , the set {x + T an : n ∈ N} is not contained in E.

Proof. Take A ⊆ R2d to be the set A×{(

d︷ ︸︸ ︷
1, 0, . . . , 0)}, where A ={an :n ∈ N}. Writing A(s)=#(A∩Bs(0))

for the counting function of A, we have A(R)/log R → +∞. Use Theorem 1.5 with d1 = 2d, b = 1,
α(R)= A(R1/2), f = 1. Let T : Rd

→ Rd be nonsingular, x ∈ Rd , and define the linear map S : R2d
→ Rd

by
S(u, v) = S(u, v1, v2, . . . , vd) = T u + v1x .

In other words the d × (2d)-matrix of S is (T | x | 0) in block form. It follows that

S(A) = {T an + x : n ∈ N}.
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Since T is nonsingular it follows that, if R > 0 is sufficiently large, the set S(A)∩ BR(0) contains at least
α(R) points with separation ≥ R−1, so the set E ⊆ Rd furnished by Theorem 1.5 does not contain S(A),
as we had to prove. □

Corollary 1.7 [Bradford et al. 2023, Corollary 6]. If p ∈ [0, 1) then there exists a set E ⊆ Rd such that
|E ∩ (m + [0, 1]

d)| ≥ p for all m ∈ Zd and it does not contain any set of the form x + N1, with x ∈ Rd

and 1 ∈ Rd
\ {0} (an arithmetic progression in Rd ).

Proof. We use Corollary 1.6 with the sequence an = (n, 0, . . . , 0) ∈ Rd , x ∈ Rd and any nonsingular
d × d-matrix T that maps (1, 0, . . . , 0) to 1. □

The outline of this note is as follows. In Section 3 we give the proof of Theorem 1.3 without using
Theorem 1.5, and we indicate how the same proof also works for Theorem 1.4. In Section 4 we extend
our technique to cover linear transformations of given sequences from one Euclidean space to another
and prove Theorem 1.5 and some corollaries.

Added in revision: The results in [Burgin et al. 2023], which came after this paper was submitted, are
very relevant to the results in this paper and contain some improvements.

2. Warm-up and some basic tools: no translational copies

In this section we introduce the basic probabilistic method by proving the more restricted Theorem 2.1:
we can avoid all translations of a given infinite sequence 0 ≤ an → +∞ with a set which is arbitrarily
large everywhere. This is considerably easier than avoiding all affine copies of the sequence, when scaling
the sequence as well as translating it is allowed. For translations we have only one degree of freedom
while for affine copies we have two. Still, some important ingredients of the method will be evident in
the proof of Theorem 2.1 below. In Section 3 we will introduce the extra discretization in scaling space
that will be required.

Theorem 2.1. Let A = {a0 = 0 < a1 < a2 < · · · } ⊆ R be a sequence with an → +∞, and let p ∈ [0, 1).
Then we can find a Lebesgue measurable set E ⊆ R such that no translate of A,

x + A, x ∈ R,

is contained in E , and such that, for each m ∈ Z, we have

|E ∩ [m, m + 1]| ≥ p.

Proof. Let q < 1 be defined by 1 − q =
1
2(1 − p)

(
or q =

1
2(1 + p)

)
. Passing to a subsequence, we can

assume that an+1 − an ≥ 1 for all n. We construct a random set E by breaking up each unit interval
[m, m + 1], m ∈ Z, into a number Nm of equal intervals and keeping each of these subintervals with
probability q , independently, in our set E . See Figure 1 for an illustration of the set E . As |m| increases,
the number Nm will also have to increase, so let us take Nm = max{K , |m|} say, where the large positive
integer K will be determined later.

Define now, for x ∈ R, the random function

φ(x) = 1(x + A ⊆ E).



98 MIHAIL N. KOLOUNTZAKIS AND EFFIE PAPAGEORGIOU

−4 −3 −2 −1 0 1 2 3 4

Figure 1. The random set E .

Since all points of x + A are in different random intervals, it follows, by independence, that Eφ(x) =

P[x + A ⊆ E] = 0. Let the set of “bad” x be

B = {x ∈ R : x + A ⊆ E}.

We have
E|B| =

∫
Eφ(x) dx = 0;

hence |B| is almost surely 0.
It remains to make sure that |E ∩ [m, m + 1]| ≥ p for all m ∈ Z. Fix m, and let X1, . . . , X Nm be 0/1

random variables such that X i is 0 if we included the i-th subinterval of [m, m + 1] in the set E and
is 1 otherwise. In other words, X i denotes the absence of the i-th subinterval from the set E . Clearly
EX i = 1 − q, and the random variable

X =

Nm∑
i=1

X i (the number of missing subintervals)

is a sum of independent indicator random variables with EX = (1 − q)Nm and we can use the very
versatile large deviation Chernoff inequality (to be used repeatedly in Sections 3.1 and 4 below)

P[|X − EX | ≥ ϵEX ] ≤ 2e−cϵEX (2-1)

(see [Alon and Spencer 1992; Chernoff 1952]) with ϵ = 1 to obtain

P[|E ∩ [m, m + 1]| < p] = P[X > (1 − p)Nm] = P[X − EX > EX ]

≤ 2 exp(−c1(1 − q) max{K , |m|}). (2-2)

Define now the bad events Bm = {|E ∩ [m, m + 1]| < p} which we do not want to hold, for all m ∈ Z,
and observe that the above inequality means that we can choose K large enough to achieve∑

m∈Z

P[Bm] < 1
2 .

This means that, with probability at least 1
2 , none of the bad events Bm hold and, with the same probability,

the set B has measure 0. We now amend our random set E by removing from it the set B (the set of first
terms of those x + A which are contained in E). Thus arises a set E ′, which differs from E by a set of
measure 0 and which contains no translate of A. □

Remark 2.2. It is not necessary to assume that an → +∞ in Theorem 2.1. It suffices to assume that
the set A is infinite. If A does not contain a sequence tending to infinity (for Theorem 2.1 to apply to
it) then it will have a finite accumulation point, so a result of Komjáth [1983] guarantees the existence
of a set Ẽ ⊆ [0, 1], of measure arbitrarily close to 1, which contains no translate of A. Repeating Ẽ
1-periodically,
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E =

⋃
n∈Z

Ẽ + n,

we obtain a set E with the required properties. For a probabilistic proof of this result in the spirit of the
present paper, see [Kolountzakis 1997].

Remark 2.3. The Chernoff inequality (2-1) is extremely useful when one needs to control a random
variable X (this means that one wants to ensure, with high probability, that X is near its mean EX ) which
is a sum of indicator, independent random variables. The key is that the mean EX cannot be very small, as
it appears in the exponent in the right-hand side of (2-1). Since one usually wants to do so simultaneously
for a large number of random variables X , one key situation to keep in mind is the following: if the
number of random variables to be controlled is polynomial in N (a parameter), it is enough that their
mean is at least a large multiple of log N .

With minor modifications of the proof we can get a progressively denser set E avoiding all translates.
We throw in the whole negative half-line (as we could have done in Theorem 1.3 too).

Theorem 2.4. Let A = {a0 = 0 < a1 < a2 < · · · } ⊆ R be a sequence with an → +∞. Then we can find a
Lebesgue measurable set E ⊆ R such that no translate of A,

x + A, x ∈ R,

is contained in E , and such that

(−∞, 0] ⊆ E and |E ∩ [m, m + 1]| → 1− as m → +∞.

Proof. We indicate the differences with the proof of Theorem 2.1 and omit some details.
Our random set E now will be of the same type as in the proof of Theorem 2.1 but with the probability

of including the small subintervals tending slowly to 1 as we go out to +∞ and with the negative half-line
contained in E to begin with.

Let us view the probability of keeping an interval as a function p(s) defined on the real line. In the
proof of Theorem 2.1 this function was constant. Here it will be constant on all intervals of the form
[m, m + 1], m ∈ Z.

With φ(x) = 1(x + A ⊆ E), we need again to ensure that Eφ(x) = 0 for all x ∈ R. After assuming, as
in the previous proof, that the points of A differ by at least 1, we again have independence of all events
x + a ∈ E for a ∈ A so that Eφ(x) = 0 becomes equivalent to∏

a∈A

p(x + a) = 0,

which, writing q(s) = 1 − p(s), is equivalent to∑
a∈A

q(x + a) = +∞. (2-3)

Let 0 = k1 < k2 < · · · be those positive integers for which

[k, k + 1) ∩ A ̸= ∅.
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Define then q(x) to be 1/ i in the interval [ki , ki+1), i = 1, 2, . . . . It follows easily that, for all x ∈ R, we
have (2-3): since the function q( · ) is decreasing we have q(x + an) ≥ q(an) if x ≤ 0, and if x ≥ 0 we
have q(x + an) ≥ q(a⌈x⌉+n) since ak+1 − ak ≥ 1 for all k ∈ N. In both cases the series (2-3) contains a
tail of the series

∑
a∈A q(a), which is divergent.

It remains to ensure that the random variables |[m, m + 1] \ E | tend to 0 with m → +∞. These
random variables are 1/Nm times a sum of independent indicator random variables (one for each of
the Nm subintervals into which we break up [m, m + 1]) of mean q(m)Nm , so we can use the Chernoff
bound (2-1) to obtain

P[|[m, m + 1] \ E | > 2q(m)] ≤ 2 exp(−c1q(m)Nm).

To ensure that the sum, over all m ∈ Z, of the left-hand side is < 1 we can of course pick the integers Nm

to be very large, say Nm = K |m|/q(m), with a sufficiently large constant K > 0. □

3. No affine copies for slowly increasing sequences

In this section we prove Theorem 1.3 and explain why the proof also gives the more general Theorem 1.4.

Lemma 3.1. Let A ∈ (A). For all 0 < a < b, 0 ≤ p < 1 and ϵ > 0, there is N0 ∈ N such that, for all
N ≥ N0, there is a set E ⊆ [−N , N ] such that

(i) for all m ∈ {−N , −N + 1, . . . , N − 1}, we have |E ∩ [m, m + 1]| ≥ p and

(ii) if the set B consists of all x ∈ [−N , N ] for which there is t ∈ [a, b] such that

(a) (x + tA) ∩ [−N , N ] ⊆ E and
(b) #((x + tA) ∩ [−N , N ]) ≥ A(N/(10b)),

then |B| < ϵ. Here, A( · ) is the counting function (1-1) of the set A and

A
( N

10b

)
=

∣∣∣A ∩

[
0,

N
(10b)

]∣∣∣.
Let us first show how one derives Theorem 1.3 from Lemma 3.1. We give the proof of Theorem 1.3 in

two steps: the first verifies the result for a restricted scale, that is, for scales in a compact interval, and the
second concludes for all positive scales, by writing the whole scaling interval (0, +∞) as a countable
union of intervals of the above type.

Step 1. For all 0 < a < b and for each 0 ≤ p < 1, there exists a set E ⊆ R such that |E ∩[m, m +1]| ≥ p
for all m ∈ Z, but E does not contain any affine copies of A with scale in [a, b].

Consider 0 ≤ p < 1 and a positive increasing sequence {pn}, n = 1, 2, . . . such that pn → 1− and,
moreover,

∞∑
n=0

(1 − pn) < 1 − p. (3-1)

Take also any positive sequence ϵn → 0. According to Lemma 3.1, for 0 < a < b, we can choose
an increasing sequence of natural numbers Nn = Nn(pn, ϵn, a, b) → ∞ for which there exist sets
En ⊆ [−Nn, Nn] with the following properties:
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−Nn · · ·· · · ·0 · · ·· · · Nn

Figure 2. The set Ẽn .

(i) for all m = −Nn, . . . , Nn − 1, we have |En ∩ [m, m + 1]| ≥ pn ,

(ii) if
An(x, t) = (x + tA) ∩ [−Nn, Nn]

and

Bn =

{
x ∈ [−Nn, Nn] : ∃t ∈ [a, b] s.t. An(x, t) ⊆ En and #An(x, t) ≥ A

(
Nn

10b

)}
,

then |Bn| < ϵn .

Now take
Ẽn = (−∞, −Nn] ∪ En ∪ [Nn, +∞)

and

E =

∞⋂
n=1

Ẽn.

See Figure 2 for an illustration of the set Ẽn .
Then, since |Ẽn ∩ [m, m + 1]| ≥ pn for all m ∈ Z, we get from (3-1) that the set E has measure at

least p at every unit interval with integer endpoints. Also, if there exist x and t such that x + tA ⊆ E , then
x + tA is also contained in each Ẽn . Having fixed x and t we can then find n0 large enough such that, for
all n ≥ n0, we have #((x + tA) ∩ [−Nn, Nn]) ≥ A(Nn/(10b)). This implies that, for every n ≥ n0, we
have x ∈ Bn . It follows that |Bn| < ϵn for every n ≥ n0. Since ϵn → 0, setting

B = {x : ∃t ∈ [a, b] s.t. x + tA ⊆ E},

we get |B| = 0. The null set of “bad” translates B is contained in E (since we assumed that 0 ∈ A), thus
removing it from E results in a set E ′ which still has measure |E ′

∩ [m, m + 1]| ≥ p for all m ∈ Z but
contains no affine copy of A with scale in [a, b].

Step 2. Completion of the proof of Theorem 1.3.
Take a positive sequence p′

n ∈ [0, 1), n ∈ Z, such that∑
n∈Z

(1 − p′

n) < 1 − p. (3-2)

Consider the intervals [an, bn] = [2n−1, 2n
], n ∈ Z. Then, according to Step 1, for each p′

n , there exists a
set En such that |En ∩ [m, m + 1]| ≥ p′

n for all m ∈ Z, but, for all x ∈ R and for all t ∈ [an, bn], the set
x + tA is not contained in En .

Take
E =

⋂
n∈Z

En.
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−N · · · −3 −2 −1 0 1 2 3 · · · N

Figure 3. The new random set E .

Assume that, for some x ∈ R and some t > 0, we have x + tA ⊆ E . Then, x + tA ⊆ En for all n ∈ Z.
However, since there is n0 ∈ Z such that t ∈ [2n0−1, 2n0], the inclusion x + tA ⊆ En0 cannot be true.
Thus, E does not contain any affine copy of A with positive scale. Finally, due to (3-2), we have
|[m, m + 1] \ E | < 1 − p, or |E ∩ [m, m + 1]| ≥ p.

3.1. Proof of Lemma 3.1. Fix the scale t ∈ [a, b], and let 0 ≤ p < 1. Consider the positive sequence

pN = 1 −

√
log

( N
10b

)
A
( N

10b

) . (3-3)

From (1-2) this implies pN → 1−.
Partition [−N , N ] into unit intervals [m, m+1], m =−N , −N +1, . . . , N −1. Divide each [m, m+1]

further into kN equal subintervals

Ii,m = m +

[ i −1
kN

,
i

kN

]
, i = 1, . . . , kN ,

where
kN =

⌈10
a

⌉ N
1− pN

. (3-4)

Notice that kN /N → +∞.
Construct a random set E = EN as follows: keep each Ii,m in E independently of the other intervals

and with probability pN as in (3-3). Then, P(x ∈ E) = pN for each x ∈ [−N , N ]. See Figure 3 for an
illustration of the new set E .

Let MN (x, t) be the number of elements of (x + tA) ∩ [−N , N ], and observe that

MN (x, t) ≤ A
(2N

a

)
for x ∈ [−N , N ]. (3-5)

For a given set E ⊆ [−N , N ], consider the set of “bad” translates

B =

{
x ∈ [−N , N ] : ∃t ∈ [a, b] s.t. (x + tA) ∩ [−N , N ] ⊆ E and MN (x, t) ≥ A

( N
10b

)}
. (3-6)

We first deal with the measure of B. We have

E|B| = E

∫ N

−N
1B(x) dx

=

∫ N

−N
P

[
∃t ∈ [a, b] : (x + tA) ∩ [−N , N ] ⊆ E and MN (x, t) ≥ A

( N
10b

)]
dx . (3-7)

In what follows, we estimate from above the probability in (3-7), uniformly in x ∈ [−N , N ].
Fix x ∈ [−N , N ]. To check whether there exists t ∈ [a, b] such that (x + tA) ∩ [−N , N ] ⊆ E , it is

sufficient to check whether such a t exists in a finite set

S = S(x) = {t1, t2, . . . , tu} ⊆ [a, b]. (3-8)
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x

x + t2an2

x + t1an1

−N · · · −3 −2 −1 0 1 2 3 · · · N

Figure 4. As x is held fixed and t grows, the points x + tan cross over interval endpoints
creating events that need to be checked.

Write α′

0 < α′

1 < · · · < α′

MN (x,t)−1 for the elements of (x + tA) ∩ [−N , N ]. Then, the set S consists
exactly of those t ∈ [a, b] for which some α′

j = x + taj , j = 0, . . . , MN (x, t) − 1, is in the set

m +

{
0,

1
kN

,
2

kN
, . . . ,

kN −1
kN

, 1
}

for some m ∈ {−N , −N + 1, . . . , N − 1}. Each of the points α′

j = x + taj traverses — as t moves from
a to b and as long as the point α′

j remains in [−N , N ] — an interval of length at most 2N , therefore it
meets at most 2NkN interval endpoints of the intervals Ii,m . See Figure 4 for an illustration. Altogether,
we have

u ≤ 2NkN sup
a≤t≤b

MN (x, t) ≤ c(a)N 2(1 − pN )−1 A
(2N

a

)
, (3-9)

where, for the last inequality, we used (3-4) and (3-5).
Since kN → +∞, we can take N large enough, say N ≥ N0, that kN > 1/a for every N ≥ N0.

Then, the length of each Ii,m is small enough, ≤ a, to ensure that, for each t ∈ [a, b], the points α′

j ,
j = 0, . . . , MN − 1, all belong to different intervals Ii,m . Therefore, for any fixed x and t ,

P
[
(x + tA) ∩ [−N , N ] ⊆ E and MN (x, t) ≥ A

( N
10b

)]
≤ P

[
(x + tA) ∩ [−N , N ] ⊆ E

∣∣ MN (x, t) ≥ A
( N

10b

)]
≤ pA(N/(10b))

N . (3-10)

Thus, using the bound (3-9),

P[∃t ∈ S : (x + tA) ∩ [−N , N ]) ⊆ E] ≤ c(a)N 2(1 − pN )−1 A
(2N

a

)
pA(N/(10b))

N .

Thus, (3-7) yields

E|B| ≤ 2c(a)N 3(1 − pN )−1 A
(2N

a

)
pA(N/(10b))

N .

We want to have

N 3(1 − pN )−1 A
(2N

a

)
pA(N/(10b))

N → 0,

while pN → 1− as N → ∞. Since A( · ) grows at most linearly at infinity, it suffices to show that

A
( N

10b

)
log pN

(
4

log N

A
( N

10b

)
log pN

−
log(1 − pN )

A
( N

10b

)
log pN

+ 1
)

→ −∞. (3-11)
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To show (3-11), observe first that, since limx→+∞ x log(1 − x−1/2) = −∞, we have

A
( N

10b

)
log pN

log N
→ −∞ (3-12)

due to (3-3). Therefore, we also have A(N/(10b)) log pN → −∞. Finally, by (3-3) and (3-12), we get

log(1 − pN )

A
( N

10b

)
log pN

= −
1
2

log A
( N

10b

)
A
( N

10b

)
log pN

{
1 −

log log N
10b

log A
( N

10b

)}
→ 0.

In other words, we have shown that, for every ϵ > 0, there is N1 ≥ N0 such that, for all N ≥ N1, we have
E|B| < 1

2ϵ, which implies that
P(|B| ≥ ϵ) < 1

2 for all N ≥ N1. (3-13)

We now turn to the measure of E in every unit interval with integer endpoints. Fix m ∈ [−N , N ]. Let
Xm

1 , Xm
2 , . . . , Xm

kN
be independent indicator random variables, with Xm

i = 1 if and only if Ii,m ⊆ E . Let
Y m

i = 1 − Xm
i , and denote by Xm

=
∑kN

i=1 Xm
i and Y m

=
∑kN

i=1Y m
i their sums. Then, EY m

= (1 − pN )kN .
Notice also that the total measure kept in [m, m + 1] ∩ E is equal to Xm/kN .

For any δ > 0, we define the “bad” events

Am = {|Y m
− EY m

| > δ EY m
}, m = −N , −N + 1, . . . , N − 1.

To control P[Am], we use Chernoff’s inequality [Alon and Spencer 1992; Chernoff 1952]: for all δ > 0,

P[Am] ≤ 2e−cδEY m
,

where cδ = min
{
(1 + δ) log(1 + δ) − δ log δ, 1

2δ2
}
. Take δ =

1
2 . It follows that

P
[
|Y m

− (1 − pN )kN | > 1
2(1 − pN )kN

]
≤ 2 exp

(
−

1
2(1 − pN )kN

)
.

Thus, the probability that there is some [m, m + 1] ⊆ [−N , N ] such that Am holds is at most

4N exp
(
−

1
2(1 − pN )kN

)
,

and the right-hand side tends to zero as N → +∞ by our choice of kN in (3-4). Thus, there is N2 ≥ N1

such that
P[∃m ∈ {−N , −N + 1, . . . , N − 1} : Am holds] < 1

2 (3-14)

for all N ≥ N2. Then, (3-13) and (3-14) imply the existence of a set E ⊆ R such that, on the one hand, it
satisfies

|B| < ϵ

and, on the other hand,
Xm

− pN kN ≥ −
1
2(1 − pN )kN

for all m = −N , −N + 1, . . . , N − 1, for all N ≥ N2. Thus the measure of E in each unit interval
[m, m + 1] is at least pN −

1
2(1 − pN ) → 1 as pN → 1−. In other words, for all 0 ≤ p < 1, there is

N3 ≥ N2 such that, for all N ≥ N3, we have |E ∩ [m, m + 1]| ≥ p. The proof of Lemma 3.1 is complete.
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Remark 3.2. Let us indicate here why the proof of Theorem 1.3 just completed also applies to Theorem 1.4
without any essential changes. First of all, the implication from Lemma 3.1 to Theorem 1.5 (finite to
infinite) remains true almost verbatim. So it suffices to ensure that Lemma 3.1 is true in this case. The
main ingredients of the proof of Lemma 3.1 are the following. Having fixed x and varying t we have to
make sure that the following conditions hold:

C.1 All points of the (x, t)-copy of the set remain well-separated, so that independence applies and we
can multiply the probabilities that they belong to our random set. This is ensured by (1-4).

C.2 The number of points in the (x, t)-copy of the set in the interval [−N , N ] has to be large as this is
the exponent in the upper bound (3-10). Condition (1-5) guarantees this.

C.3 The number of events that need to be checked so that we are certain that, for all t , no (x, t)-copy is
contained in our random set is small. This is the number u in (3-8). What we are doing in the proof
is to count how many times each of the points of our set (as x is held fixed and t increases from
a to b) crosses over an interval boundary. Since the φ(n, t) are assumed increasing in t this remains
as before.

It should be clear that the conditions imposed on the scaling functions φ(n, t) in Theorem 1.4 are far
from optimal. They are rather indicative of what can be accomplished with the method, and it is clear
that the method could work under different sorts of conditions.

4. The problem in higher dimension

We will derive Theorem 1.5 as a consequence of the more finitary theorem below.

Theorem 4.1. Let d1, d ≥ 1, β, ζ > 0, p ∈ (0, 1). Let also α(N ) be a function satisfying

α(N )

log N
→ +∞.

Then, if N is sufficiently large and P ⊆ Rd1 is a point set with at most N ζ points, there is a set
EN ⊆ [−N , N ]

d such that:

(1) |EN ∩ (m + [0, 1]
d)| ≥ p for all m = (m1, . . . , md) ∈ Zd , with −N ≤ m j < N.

(2) For any linear map T : Rd1 → Rd , if

T (P) ∩ [−N , N ]
d (4-1)

contains at least α(N ) points with separation ≥ N−β , then

(T (P) ∩ [−N , N ]
d) ⊊ EN . (4-2)

Proof. Let γ > β, and split the cube [−N , N ]
d with an N−γ

× · · · × N−γ -spaced grid of O(d N 1+γ )

hyperplanes perpendicular to the d coordinate axes. Define the random set E to contain each of the
N−γ

× · · · × N−γ -sized cubes independently with probability p′
∈ (p, 1). We show that, with positive

probability, one can take EN = E .
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T1

T2

Figure 5. The regions defined in T -space by the equations E(H, T (q)) for all H , q.
Only one of the transformations T1, T2 needs to be checked.

The first property of E is a simple consequence of Chernoff bounds and we can assume it holds with
probability > 1

2 working as in the proof of Theorem 1.3.
Let T = (Ti, j ) be a linear map Rd1 → Rd . This depends on d · d1 real variables Ti, j , so we view T

as an element of Rd·d1 . Instead of checking condition (2) for all T ∈ Rd·d1 , we first show that there is a
small number (polynomial in N ) of transformations T that need to be checked.

Indeed, the set of N−γ
× · · · × N−γ -sized cubes that contain T (P) does not change when T varies

except when one or more of the points in T (P) cross a dividing hyperplane of those that subdivide
[−N , N ]

d . Let H be one of those O(d N 1+γ ) hyperplanes, and fix an arbitrary point h ∈ H . Let also u
be a unit vector orthogonal to H . For a point x ∈ Rd to belong to H , it must satisfy the linear equation

E(H, x) : u · x = u · h.

Let q ∈ P . For the point T (q) to belong to H , we must have

E(H, T (q)) : u · T (q) = u · h,

which is a linear equation in T ∈ Rd·d1 . Taking all such equations in T over all dividing hyperplanes H
and all q ∈ P , we obtain a subdivision of Rd·d1 by

n = O(d · N 1+γ
· |P|)

hyperplanes. These n hyperplanes subdivide Rd·d1 into m = O(nd·d1) connected regions (this is easily
proved by induction on the dimension or see [Buck 1943]). For any two points T1, T2 in the same region,
condition (4-2) is either true for both or false for both since we can move continuously from T1 to T2

without leaving the region and, therefore, without any of the points T (q) touching any of the dividing
hyperplanes H . See Figure 5 for an illustration.
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It suffices therefore to check condition (4-2) for one point per region. Let us call these points T1, . . . , Tm .
To guarantee that (4-2) holds for all T , it is enough for it to be true for all Tj , j = 1, 2, . . . , m. Define
the bad events

Bj =

⋂
q∈P

{Tj (q) ∈ E}.

We need to ensure that none of the Bj holds, but we only need to check those Bj for which there is a T in
the cell of Tj for which (4-1) holds. For such a j , the number of different N−γ

× · · ·× N−γ -sized cubes
touched by Tj (P) is the same as the number touched by T (P), which is at least α(N ), so

P[Bj ] ≤ p′α(N ),

and it is therefore enough to make sure that

nd·d1 p′α(N )
= O(N ζ ·d·d1 N (1+γ )d·d1 p′α(N ))

can be made arbitrarily small by choosing N large. This is clearly possible since the term p′α(N ) decays
faster than any power of N . □

Proof of Theorem 1.5. Let pn ∈ (0, 1) be such that
∞∑

n=1

(1 − pn) < 1 − p. (4-3)

Apply Theorem 4.1 successively for N =n, pn , ζ =b, α(N )=α(R), β = f and the set P =A∩[−n, n]
d1

to obtain sets En ⊆ [−n, n]
d . Define

E =

∞⋂
n=1

(En ∪ (Rd
\ [−n, n]

d)).

It is easy to see because of (4-3) that, for any m ∈ Zd , we have |E ∩ m +[0, 1]
d
| ≥ p. Let T : Rd1 → Rd ,

and let R be such that T (A) ∩ BR(0) contains α(R) points which are R− f -separated. Let n = ⌈R⌉. It
follows from Theorem 4.1 that T (A) ∩ [−n, n]

d is not contained in En ∪ (Rd
\ [−n, n]

d) and therefore
not contained in E , as we had to show. □
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THE 3D STRICT SEPARATION PROPERTY FOR THE
NONLOCAL CAHN–HILLIARD EQUATION WITH SINGULAR POTENTIAL

ANDREA POIATTI

We consider the nonlocal Cahn–Hilliard equation with singular (logarithmic) potential and constant
mobility in three-dimensional bounded domains and we establish the validity of the instantaneous strict
separation property. This means that any weak solution, which is not a pure phase initially, stays uniformly
away from the pure phases ±1 from any positive time on. This work extends the result in dimension two
for the same equation and gives a positive answer to the long-standing open problem of the validity of the
strict separation property in dimensions higher than 2. In conclusion, we show how this property plays
an essential role to achieve higher-order regularity for the solutions and to prove that any weak solution
converges to a single equilibrium.

1. Introduction

The diffuse interface theory, also called the phase field method, is one of the oldest and most efficient
approaches to multiphase problems. This approach is characterized by the notion of diffuse interface,
meaning that the transition layer between the two phases or components has a narrow finite size. The
interface is not explicitly tracked as in boundary integral and front-tracking methods. On the other hand,
the phase state is incorporated into the macroscopic equations and the internal microstructures arise from
the competition between the diffusion and aggregation mechanisms included in the free energy. The
fundamental advantage of this theory is the natural representation of singular interfacial behaviors, such
as topological change, self-intersection, merger and pinch-off.

Consider a mixture of two incompatible substances A and B, which is homogeneously distributed and
isothermal. Under certain circumstances, namely if the temperature is above a critical threshold θc, this
configuration is stable; however, if suddenly cooled down and kept at θ <θc, the initially (macroscopically)
homogeneous alloy evolves in a way such that A-rich and B-rich regions appear and grow. The Cahn–
Hilliard equation was introduced in [Allen and Cahn 1979; Cahn and Hilliard 1958] to model this
phenomenon in iron alloys, and it has now become a widespread model, since phase separation has
become a paradigm also in cell biology (see, e.g., [Dolgin 2018]). Let � be a bounded domain in Rd ,
d = 2, 3, filled with a binary solution consisting of A and B atoms, and let us fix a time horizon T > 0.
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We define their relative mass fraction difference as φ, which is the phase-field variable, whose smooth
but highly localized variation is associated with the (diffuse) interface. If the mixture is isothermal and
the molar volume is uniform and independent on pressure, the system evolves in order to minimize the
free energy functional

U(φ) :=

∫
�

(ϵ

2
|∇φ|

2
+ 9(φ)

)
dx, (1-1)

where 9(φ) is the Helmholtz free energy density

9(s) =
α

2
((1 + s) ln(1 + s) + (1 − s) ln(1 − s)) −

α0

2
s2

= F(s) −
α0

2
s2 for all s ∈ [−1, 1], (1-2)

with α such that 0 < α < α0, constants related to the temperature of the mixture. The term ϵ is called
capillary coefficient, related to the thickness of interfaces. The potential defined in this way is called
singular, whereas many authors (see, e.g., [Fife 2000]) considered a proper approximation, which avoids
the fact that 9 ′ is unbounded at the pure phases −1 and 1: namely, the significant potential is considered to
be still a double-well, but with the two local minima coinciding with the pure phases. The most common
choice is polynomial of even degree, like the case 9(s) =

1
4(s2

−1)2. However, in the case of polynomial
potentials, it is worth recalling that it is not possible to guarantee the existence of physical solutions, that
is, solutions for which −1 ≤ φ(x, t) ≤ 1. Following, e.g., [Lowengrub and Truskinovsky 1998], we get
a differential description of the phenomenon of the phase separation as

∂tφ + div J = 0 in � × (0, T ), (1-3)

where φ is the order parameter and J is the diffusional flux given by Fick’s law,

J = −M(φ)∇
δU(φ)

δφ
= −M(φ)∇(−ϵ1φ + 9 ′(φ)),

where δU(φ)/δφ is the variational derivative of U(φ). The function M(φ) is the mobility of the substances
and in this work will be considered as a unitary constant (see, for instance, [Cherfils et al. 2011; Elliott
and Garcke 1996] for an analysis of the case of nonconstant and degenerate mobility, i.e., vanishing at
the pure phases). The Cahn–Hilliard equation with constant mobility then reads{

∂tφ = 1µ in � × (0, T ),

µ = −ϵ1φ + 9 ′(φ) in � × (0, T ),
(1-4)

with the initial condition φ0 and two boundary conditions which are generally the following:

∂nφ = 0, ∂nµ = 0, on ∂� × (0, T ), (1-5)

with n as the outer normal vector. The former condition means that no mass flux occurs at the boundary,
while the latter requires the interface to be orthogonal at the boundary.

It is worth noticing that the free energy U in (1-1) only focuses on short range interactions between
particles. Indeed, the gradient square term accounts for the fact that the local interaction energy is spatially
dependent and varies across the interfacial surface due to spatial inhomogeneities in the concentration.
Going back to the general approach of statistical mechanics, the mutual short and long range interactions
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between particles is described through convolution integrals weighted by interactions kernels. Following
this approach, Giacomin and Lebowitz [1996; 1997; 1998] observed that a physically more rigorous
derivation leads to nonlocal dynamics, which is the nonlocal Cahn–Hilliard equation. In particular, this
equation is rigorously justified as a macroscopic limit of microscopic phase segregation models with
particles conserving dynamics. In this case, the gradient term is replaced by a nonlocal spatial interaction
integral, namely, the energy is defined as

E(φ) := −
1
2

∫
�

∫
�

J (x − y)φ(x)φ(y) dxdy +

∫
�

F(φ(x)) dx, (1-6)

where J is a sufficiently smooth symmetric interaction kernel. Note that this functional is characterized by
a competition between the mixing entropy F and a nonlocal demixing term. As shown in [Giacomin and
Lebowitz 1997] (see also [Gal et al. 2017; 2023a]), the energy U can be seen as an approximation of E ,
as long as we suitably redefine F as F̃(x, s) = F(s) −

1
2(J ∗ 1)(x)s2. In particular, we can rewrite E as

E(φ) =
1
4

∫
�

∫
�

J (x − y)|φ(y) − φ(x)|2 dxdy +

∫
�

(
F(φ(x)) −

a(x)

2
φ2(x)

)
dx

=
1
4

∫
�

∫
�

J (x − y)|φ(y) − φ(x)|2 dxdy +

∫
�

F̃(φ(x)) dx,

with a(x) = (J ∗1)(x). If we formally interpret F̃ as the potential 9 of (1-1), we realize that the (formal)
first approximation of the nonlocal interaction is k

2 |∇φ|
2, for some k > 0, as long as J is sufficiently

peaked around 0. In the case � = T3 (see, e.g., [Giacomin and Lebowitz 1998]), the term J ∗ 1 is a
constant: thus E and U appear to be very similar. In particular, in this case, corresponding to set a(x) = α0,
nonlocal-to-local asymptotics results have been obtained in [Davoli et al. 2021a; 2021b] (see also [Gal
and Shomberg 2022]) for the nonlocal equation (1-7) below: namely, the solution to the nonlocal equation
converges, under suitable conditions on the data of the problem, to the weak solution of (1-4)–(1-5).

The resulting nonlocal Cahn–Hilliard equation then reads (see [Gal et al. 2017; 2023a])
∂tφ − 1µ = 0 in � × (0, T ),

µ = F ′(φ) − J ∗ φ in � × (0, T ),

∂nµ = 0 on ∂� × (0, T ),

φ( · , 0) = φ0 in �.

(1-7)

From now on we will refer to problem (1-4)–(1-5) as the local Cahn–Hilliard equation, in order to
distinguish it from the nonlocal one in (1-7).

The well-posedness theory of Cahn–Hilliard equations with logarithmic (or singular) potential has been
widely studied. The local Cahn–Hilliard equation (1-4)–(1-5) has been studied in [Abels and Wilke 2007;
Debussche and Dettori 1995; Elliott and Luckhaus 1991; Giorgini et al. 2017; Londen and Petzeltová
2018; Miranville and Zelik 2004] (see also [Cherfils et al. 2011; Gal et al. 2023a] for a review and an
insight analysis about this topic). Concerning the nonlocal Cahn–Hilliard equation, the physical relevance
of nonlocal interactions was already pointed out in the pioneering paper [van der Waals 1982] (see also
[Emmerich 2003, 4.2]) and studied for different kind of evolution equations, mainly Cahn–Hilliard and
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phase-field systems (see, e.g., [Bertozzi et al. 2007; Colli et al. 2007; Gajewski and Zacharias 2003; Gal
and Grasselli 2014; Krejčí et al. 2007]). In particular, regarding the nonlocal system (1-7), the existence
of weak solutions and their uniqueness, and the existence of the connected global attractor were proven in
[Frigeri et al. 2016; Frigeri and Grasselli 2012a; 2012b]. Moreover, well-posedness and regularity of weak
solutions are studied in [Gal et al. 2017], namely, in this work the authors establish the validity of the strict
separation property in dimension two for the nonlocal Cahn–Hilliard equation (1-7) with constant mobility
and singular potential. This means that if the initial state is not a pure phase (i.e., φ0 ≡ 1 or φ0 ≡ −1),
then the corresponding solution stays away from the pure states in finite time, uniformly with respect to
the initial datum. Exploiting this crucial property in dimension two, the authors derive straightforward
consequences, such as further regularity results as well as the existence of regular finite-dimensional
attractors and the convergence of a weak solution to a single equilibrium point. In [Gal et al. 2023a], the
same authors propose an alternative argument to prove the strict separation property in dimension two,
relying on a De Giorgi’s iteration scheme (see [Gal et al. 2023a, Theorem 4.1]).

In the present work we extend the results of [Gal et al. 2023a] to the case of three-dimensional bounded
domains, namely we prove the validity of the instantaneous strict separation property in dimension three for
the system (1-7) with singular potential F. Our main result is the following: given a weak solution to (1-7),

for all τ > 0 there exists δ > 0 such that |φ(x, t)| ≤ 1 − δ for a.e. (x, t) ∈ � × (τ, +∞), (1-8)

where δ depends on the parameters of the problem, the initial datum φ0 and τ . Furthermore, we show
that, if the initial datum φ0 is more regular and already strictly separated from the pure phases, then (1-8)
also holds with τ = 0, i.e., the solution is uniformly strictly separated at almost any time t ≥ 0. To assess
the importance of property (1-8), similarly to [Gal et al. 2017], we infer some additional regularization
results for any weak solution and we prove that each weak solution converges to a single stationary state.

As far as we are aware, this is the first time the instantaneous strict separation property is shown in
three-dimensional bounded domains for the Cahn–Hilliard equation with constant mobility and singular
(logarithmic) potential. Indeed, the only available result in dimension three regards the nonlocal Cahn–
Hilliard equation with degenerate mobility and singular potential; see [Londen and Petzeltová 2011].
For the local Cahn–Hilliard equation the instantaneous separation property was first proven to hold in
[Miranville and Zelik 2004], but only in dimension two. Concerning dimension three, only the asymptotic
(i.e., from some positive time on, depending on the specific initial datum) separation property was
proven in [Abels and Wilke 2007] for the local Cahn–Hilliard equation, but nothing is known about its
instantaneous (i.e., from any positive time on) counterpart. The main issue which so far seemed to be
hard to overcome in dimension three for both local and nonlocal cases is the use of the Trudinger–Moser
inequality (see, e.g., [Nagai et al. 1997]), which, in dimension d = 2, 3, reads∫

�

e| f (x)| dx ≤ Ce
C∥ f ∥

d
W 1,d (�) for all f ∈ W 1,d(�), (1-9)

for some positive constant C independent of f , but depending on the dimension d and on the Lebesgue
d-dimensional measure of �. In dimension two this inequality is easy to be handled, since it concerns
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only the H 1(�) norm of f . Indeed, if one assumes that

F ′′(s) ≤ CeC |F ′(s)| for all s ∈ (−1, 1), (1-10)

for some constant C > 0 (see, e.g., [Gal et al. 2023a, (E2)] or [Gal et al. 2017]), which is satisfied by the
logarithmic potential

F(s) =
α

2

(
(1 + s) ln(1 + s) + (1 − s) ln(1 − s)

)
for all s ∈ [−1, 1], (1-11)

then, exploiting (1-9) as done in [Gal et al. 2017] or adopting an argument as in [Gal et al. 2023a,
Theorem 3.1], one can control the quantity ∥F ′′(φ(t))∥L p(�), for any p ≥ 2, uniformly in time and this is
the key tool to prove the validity of the separation property in two dimensions for example of the nonlocal
Cahn–Hilliard equation with constant mobility and singular potential. In the case of three-dimensional
bounded domains, (1-9) leads to the necessity of a control of the W 1,3(�) norm of f and this does not
seem to be feasible in this context. Thus the proof proposed in [Gal et al. 2017] does not hold in dimension
three. Moreover, also the alternative proof in [Gal et al. 2023a] to allow the control of ∥F ′′(φ(t))∥L p(�)

is not viable in dimension three, due to the fact that the embedding H 1(�) ↪→ Lq(�) holds only for
q ∈ [2, 6], so that a result like [Gal et al. 2023a, (3.3)–(3.6)] cannot be obtained.

Here we are able to establish the (strict) separation property in three dimensions by avoiding the control
of the quantity F ′′(φ(t)) in any L p(�) space. We do not assume condition (1-10) on F any more (see
assumptions (H2)–(H3) and Remark 4.2 below), but we only rely on some natural growth conditions
of F ′ and F ′′ near the endpoints ±1. The idea is to perform a De Giorgi’s iteration scheme on each
interval of the form (T − τ̃ , T ), with T > 0 arbitrary and τ̃ suitably chosen, similarly to the proof of
[Gal et al. 2023a, Theorem 4.1], but modifying the argument in order to fully exploit the property that
F ′′(1 − 2δ)−4

= O(δ4), for δ > 0 sufficiently small (see (4-32)). This is possible in the estimates by
treating in a suitable way all the terms leading to the presence of a quantity of the kind F ′′(1 − 2δ)−γ ,
with 0 ≤ γ < 4 (see, e.g., the term Z2 in the proof of [Gal et al. 2023a, Theorem 4.1]). To this aim, we
first show the validity of a novel Poincaré-type inequality (Lemma 3.1), which is applied to a particular
family of truncated functions obtained from the weak solution φ (namely, a family φρ = (φ − ρ)+, for
some suitable ρ ∈ (0, 1)). This can be obtained heavily relying on the conservation of total mass (i.e.,∫

�

φ0(x) dx =

∫
�

φ(x, t) dx

for any t ≥ 0), that is one of the most important properties of the solution. By means of this Poincaré-
type inequality, in the De Giorgi’s scheme we get, at the end of the estimates, a term of the kind
F ′′(1−2δ)−4δ−5

= O(δ−1) and this, together with the use of the growth condition of F ′ near 1, permits to
obtain the strict separation property by choosing a suitably small τ̃ depending on δ. Since the size of δ and
the related quantity τ̃ do not depend on T, we repeat the same argument on each time interval (T − τ̃ , T )

for arbitrary T > 0, extending the result of the separation property on the entire interval (τ, +∞), for
τ > 0 arbitrarily fixed at the beginning, completing in this way the proof of the validity of (1-8).
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As future work, it is worth noticing that the strict separation property could pave the way for the
study of other related problems with logarithmic potential in dimension three. For example, one
could study the nonlocal Cahn–Hilliard–Oono equation (see, e.g., [Della Porta and Grasselli 2015]),
the nonlocal Cahn–Hilliard–Hele–Shaw system (see, e.g., [Della Porta et al. 2018]) as well as other
hydrodynamic phase-field models for binary fluid mixtures of incompressible viscous fluids (see also
Remark 4.7).

The paper is organized as follows. In Section 2 we introduce the functional setting. Section 3 is
devoted to the presentation some preliminaries, which are essential in the proofs, in particular the new
Poincaré-type inequality. In the same section we also recall some already-known results concerning
well-posedness of the nonlocal Cahn–Hilliard equation and we present a Lemma on geometric convergence
of numerical sequences, which is a key tool for De Giorgi’s type arguments. Section 4 contains the
main result concerning the strict separation property in dimension three for the system (1-7), together
with its proof. In conclusion, in Section 5 we present some consequences of the validity of the strict
separation property, namely we show some regularization results and we prove that any weak solution
to (1-7) converges to a single equilibrium.

2. Mathematical setting

Let � be a smooth bounded domain in R3. The Sobolev spaces are denoted as usual by W k,p(�), where
k ∈ N and 1 ≤ p ≤ ∞, with norm ∥ · ∥W k,p(�). The Hilbert space W k,2(�) is denoted by H k(�) with
norm ∥ · ∥H k(�). In particular, we will adopt the notation

H = L2(�), V = H 1(�), V2 = {v ∈ H 2(�) : ∂nv = 0 on ∂�}.

Moreover, given a space X , we denote by X the space of vectors of three components, each one belonging
to X . We then denote by ( · , · ) the inner product in H and by ∥ · ∥ the induced norm. We indicate by
( · , · )V and ∥ · ∥V the canonical inner product and its induced norm in V , respectively. We also define the
integral mean of a function f as

f :=

∫
�

f (x) dx
|�|

,

where |�| stands for the three-dimensional Lebesgue measure of the set �. We then introduce

H0 = {v ∈ H : f = 0}, V0 = {v ∈ V : f = 0}, V ′

0 =

{
v ∈ V ′

:
⟨ f, 1⟩

|�|
= 0

}
,

endowed with the norms of H , V and V ′. Thanks to the Poincaré-Wirtinger inequality, it follows that
(∥∇u∥

2
L2(�)

+|u|
2)1/2 is a norm on V equivalent to ∥u∥V . The Laplace operator A0 : V0 → V ′

0 defined by
⟨A0u, v⟩ = (∇u, ∇v) is an isomorphism. We denote by N its inverse map and we set ∥ f ∥∗ := ∥∇N f ∥,
which is a norm on V ′

0 equivalent to the canonical one. Moreover, we recall that

∥ f − f ∥
2
∗
+ | f |

2 (2-1)
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is a norm V ′ which is equivalent to the standard one. Next, we recall the following Gagliardo–Nirenberg
inequality (see, e.g., [Brezis 2011, Chapter 9]):

∥u∥L p(�) ≤ C(p)∥u∥

6−p
2p ∥u∥

3(p−2)

2p
V for all u ∈ V and p ∈ [2, 6], (2-2)

where the constant C(p) depends on � and p. From this inequality, in the case p =
10
3 we get

∥u∥L10/3(�) ≤ Ĉ∥u∥
2
5 ∥u∥

3
5
V for all u ∈ V, (2-3)

with Ĉ > 0 depending on �.

3. Preliminaries

Here we present some preliminary results, which are essential for the proof of our main theorem.

3.1. A Poincaré-type inequality. First we state the following generalized version of the well known
Poincaré’s inequality:

Lemma 3.1. Let I be either a compact interval or an interval of the kind [τ, +∞), with τ > 0. Let
K ⊂ R be a set of indices and { fρ}ρ∈K ⊂ L∞(I ; V ) ∩ C(I ; H). Assume also that, for any ρ ∈ K and
for any t ∈ I , fρ(t) ≡ 0 on the set E(t) := {x ∈ � : g(t, x) ≤ 1 − 2δ} ⊂ �, with g ∈ C(I ; Lq(�)),
q ≥ 1, and δ ∈

(
0, 1

2

)
. Moreover, for a fixed ε > 0 sufficiently small, assume that for any t ∈ I the set

{x ∈ � : g(t, x) ≤ 1 − 2δ − ε} ⊂ E(t) has strictly positive Lebesgue measure. In the case the interval I
is [τ, +∞), assume additionally that for any sequence {tl}l , such that tl → ∞ as l → ∞, there exists a
(nonrelabeled) subsequence {tl}l , a function g⋆

∈ Lr (�), r ≥ 1, and ε̃ > 0, such that g(tl) → g⋆ strongly
in Lr (�) as l → ∞ and the set {x ∈ � : g⋆(x) ≤ 1 − 2δ − ε̃} has strictly positive Lebesgue measure.

Then there exists a uniform (in ρ and t) constant CP > 0 such that

∥ fρ(t)∥ ≤ CP∥∇ fρ(t)∥ for all t ∈ I and ρ ∈ K. (3-1)

Remark 3.2. Since { fρ}ρ ⊂ C(I ; H) ∩ L∞(I ; V ) ↪→ Cw(I ; V ), where Cw(I ; V ) denotes the V -valued
weakly continuous functions (see, e.g., [Boyer and Fabrie 2013, Lemma II.5.9]), it makes sense to ask for
conditions at any time t ∈ I .

Proof. Due to { fρ}ρ ⊂ Cw(I ; V ), fρ(t) ∈ V for any ρ ∈ K and any t ∈ I . Assume by contradiction that
(3-1) is false. Then there exist a sequence {ρn}n∈N ⊂ K and a sequence {tn}n∈N ⊂ I such that

∥ fρn (tn)∥ > n∥∇ fρn (tn)∥ for all n ∈ N.

We then set

wn :=
fρn (tn)

∥ fρn (tn)∥
, with ∥wn∥ = 1.
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We need to consider two cases:

(1) Either the interval I is compact or there exists a nonrelabeled subsequence of {tn}n which is entirely
contained in the set [τ, M] ⊂ I , for some M < +∞. In this case there exists another nonrelabeled
subsequence of times and t⋆

∈ I , with t⋆ < +∞, such that tn → t⋆.
Now notice that, since g ∈ C(I ; Lq(�)), q ≥ 1, we get g(tn) → g(t⋆) in Lq(�). Therefore, there exists

a subsequence {g(tn j )} j such that, as j → ∞,

g(tn j ) → g(t⋆) a.e. in �.

Let us now set D := {x ∈ � : g(t⋆, x) ≤ 1 − 2δ − ε}, and

α = |D| > 0,

which is possible by assumption. Then by the Severini–Egorov theorem (notice that � has finite measure,
so this theorem can be applied), there exists a measurable subset B ⊂ � such that |B| < α

2 and such that,
as j → ∞,

g(tn j ) → g(t⋆) uniformly on � \ B.

Therefore, we also deduce that |D \ B| > α
2 > 0 and that also

g(tn j ) → g(t⋆) uniformly on D \ B.

This means that there exists a J ∈ N such that, for any x ∈ D \ B,

|g(tn j , x) − g(t⋆, x)| < ε for all j ≥ J ,

implying that, for any x ∈ D \ B, by definition of the set D,

g(tn j , x) = g(tn j , x) − g(t⋆, x) + g(t⋆, x) ≤ ε + 1 − 2δ − ε = 1 − 2δ for all j ≥ J .

This means, by the assumptions, that

D \ B ⊂ E(tn j ) ⊂ {x ∈ � : wn j (x) = 0} for all j ≥ J ,

implying
D \ B ⊂

⋂
j≥J

{x ∈ � : wn j (x) = 0}, |D \ B| >
α

2
.

(2) The interval I is of the form [τ, +∞) and there are no bounded subsequences of {tn}n , i.e., tn → +∞

as n → ∞. In this case we have by assumption that, up to a nonrelabeled subsequence, there exists
g⋆

∈ Lr (�), r ≥ 1, such that g(tn) → g⋆ strongly in Lr (�). Thus there exists a subsequence {g(tn j )} j

such that
g(tn j ) → g⋆ a.e. in �.

As in case (1), we set D := {x ∈ � : g⋆(x) ≤ 1 − 2δ − ε̃}, and

α = |D| > 0,



3D STRICT SEPARATION PROPERTY FOR NONLOCAL CAHN–HILLIARD EQUATION 117

which is again possible by assumption. Then we can repeat exactly the same arguments as in case (1) to
obtain again that

D \ B ⊂ E(tn j ) ⊂ {x ∈ � : wn j (x) = 0} for all j ≥ J ,

implying

D \ B ⊂
⋂
j≥J

{x ∈ � : wn j (x) = 0}, |D \ B| >
α

2
.

Clearly notice that in this case the set B will be such that there exists a J ∈ N such that, for any x ∈ D \ B,

|g(tn j , x) − g⋆(x)| < ε̃ for all j ≥ J .

In both cases (1) and (2), since wn j is uniformly bounded in V , there exists w ∈ V such that, by the
Rellich–Kondrachov theorem, as j → ∞,

wn j ⇀ w in V, wn j → w in H, ∇wn j ⇀ ∇w in H,

up to a nonrelabeled subsequence. Moreover, since ∥∇wn j ∥ < 1/n j , we deduce, by weak lower sequential
semicontinuity of the L2-norm, that ∇w ≡ 0 almost everywhere in � and thus, being � connected, w ≡ κ

almost everywhere in �, with κ constant. Therefore, since also, up to another subsequence, wn j → w

almost everywhere in �, we have w ≡ 0 on D \ B (of positive Lebesgue measure) up to a zero measure
set. But this clearly implies that κ = 0, which is a contradiction, since ∥w∥ = 1 (because ∥wn j ∥ = 1
and wn j → w in H as j → ∞). This concludes the proof. □

3.2. The state of the art for the three-dimensional nonlocal Cahn–Hilliard equation. For the sake of
completeness we state here the already-known results concerning the nonlocal Cahn–Hilliard equation
with constant mobility and singular potential in three-dimensional bounded domains. We first consider
the following assumptions:

(H1) J ∈ W 1,1
loc (R3), with J (x) = J (−x).

(H2) F ∈ C([−1, 1]) ∩ C2(−1, 1) fulfills

lim
s→−1

F ′(s) = −∞, lim
s→1

F ′(s) = +∞, F ′′(s) ≥ α> 0 for all s ∈ (−1, 1).

We extend F(s) = +∞ for any s /∈ [−1, 1]. Without loss of generality, F(0) = 0 and F ′(0) = 0. In
particular, this entails that F(s) ≥ 0 for any s ∈ [−1, 1]. Also, we assume that there exists γ ∈ (0, 1)

such that F ′′ is nondecreasing in [1 − γ, 1) and nonincreasing in (−1, −1 + γ ].

Theorem 3.3. Assume that (H1)–(H2) hold and also that φ0 ∈ L∞(�) such that ∥φ0∥L∞ ≤ 1 and
|φ0| = m < 1. Then there exists a unique weak solution to (1-7) such that, for any T > 0,

φ ∈ L∞(� × (0, T )) : for all t > 0, |φ(t)| < 1, a.e. in �,

φ ∈ L2(0, T ; V ) ∩ H 1(0, T ; H),

µ ∈ L2(0, T ; V ), F ′(φ) ∈ L2(0, T ; V ),
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such that

⟨∂tφ, v⟩ + (∇µ, ∇v) = 0 for all v ∈ V, a.e. in (0, T ), (3-2)

µ = F ′(φ) − J ∗ φ a.e. in � × (0, T ), (3-3)

and φ( · , 0) = φ0( · ) in �. The weak solution also satisfies the energy identity (E is defined in (1-6))

E(φ(t)) +

∫ t

s
∥∇µ(τ)∥2 dτ = E(φ(s)) for all 0 ≤ s ≤ t < ∞. (3-4)

Moreover, for any τ > 0,

sup
t≥τ

∥∂tφ(t)∥V ′ +sup
t≥τ

∥∂tφ∥L2(t,t+1,H) ≤
K0
√

τ
, (3-5)

sup
t≥τ

∥µ(t)∥V +sup
t≥τ

∥φ(t)∥V ≤
K0
√

τ
, (3-6)

∥F ′(φ)∥L∞(τ,t;V )+∥µ∥L2(t,t+1,V2) ≤ K1 for all t ≥ τ, (3-7)

∥∇µ∥Lq (t,t+1;L p(�))+∥∇φ∥Lq (t,t+1;L p(�)) ≤ K2 if
3p−6

2p
=

2
q

for all p ∈ [2,6] and t ≥ τ, (3-8)

where the positive constant K0 depends only on the initial datum energy E(φ0), φ0, � and the parameters
of the system, whereas K1 = K1(τ ) and K2 = K2(τ ) also depend on τ . Furthermore K2 depends on
also q, p. In conclusion, there holds the following continuous dependence estimate: for every two weak
solutions φ1 and φ2 to (1-7) on [0, T ], with initial data φ01 and φ02, respectively, we have, for all t ∈[0, T ],

∥φ1(t) − φ2(t)∥2
V ′ ≤ ∥φ01 − φ02∥

2
V ′ + K |φ01 − φ02|eCT ,

where C is a positive constant and

K = C(∥F ′(φ1)∥L1(0,T ;L1(�)) + ∥F ′(φ2)∥L1(0,T ;L1(�))).

Remark 3.4. The proof of the above theorem can be found in [Gal et al. 2017, Theorems 3.4, 4.1,
Proposition 4.2] and [Della Porta et al. 2018, Proposition 3.1]; see also [Gal et al. 2023b, Theorem 4.1]
and [Poiatti and Signori 2024, Theorem 2.2] for a comprehensive result in the more general case of an
advective nonlocal Cahn–Hilliard equation in two and three dimensions, respectively. In particular, we
refer to [Gal et al. 2023b, Theorem 4.1, (4.4)] and [Della Porta et al. 2018, Proposition 3.1, (3.53)], which
still hold in the nonadvective case u = 0, for the validity of the energy identity (3-4), whereas (3-5) is
shown in [Gal et al. 2017, Theorem 4.1, (4.2)]. Estimates (3-6)–(3-8) can be found in Theorem 4.1, (4.3),
Proposition 4.2, (4.7), and Proposition 4.2, (4.9) of [Gal et al. 2017], respectively.

Remark 3.5. If we assume additionally that ∇F ′(φ0) ∈ H we can actually extend (3-5)–(3-8) to τ = 0,
since the initial datum is more regular and one can argue as in [Della Porta et al. 2018, Section 4] to
obtain the desired regularity departing from the initial time. This means that the solution φ with initial
datum φ0 is indeed a strong solution to problem (1-7).
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Remark 3.6. Notice that from condition (3-7) we can also deduce by Sobolev embeddings that

∥F ′(φ)∥L∞(τ,∞;L p(�)) ≤ K3(τ, p) for all p ∈ [1, 6], (3-9)

where K3(τ, p) depends on K1, � and p.

Remark 3.7. We highlight that the previous theorem and our following main result concerning the strict
separation property in dimension three heavily rely on the assumption φ0 ∈ (−1, 1) (see also [Kenmochi
et al. 1995] for the local Cahn–Hilliard equation). This is physically reasonable since φ0 = 1 (or φ0 = −1)
means that the initial condition is a pure phase, so that no phase separation takes place in �, unless we
assume the existence of a source or reaction term (see, for instance [Grasselli et al. 2023]).

3.3. A lemma on geometric convergence of sequences. We present here one of the key tools for the
application of De Giorgi’s iteration argument. This lemma can be found, e.g., in [DiBenedetto 1993,
Chapter I, Lemma 4.1], [Ladyženskaja et al. 1968, Chapter 2, Lemma 5.6], and it has also been proposed
in [Gal et al. 2023a, Lemma 4.3].

Lemma 3.8. Let {yn}n∈N∪{0} ⊂ R+ satisfy the recursive inequalities

yn+1 ≤ Cbn y1+ε
n for all n ≥ 0, (3-10)

for some C > 0, b > 1 and ε > 0. If

y0 ≤ θ := C−
1
ε b−

1
ε2 , (3-11)

then
yn ≤ θb−

n
ε for all n ≥ 0, (3-12)

and consequently yn → 0 for n → ∞.

Proof. The proof can be easily carried out directly by induction. Indeed, the case n = 0 is trivial. Then
assume that (3-12) holds for n. We prove that it also holds for n + 1. In particular we have by (3-10) and
recalling (3-11),

yn+1 ≤ Cbn y1+ε
n ≤ Cbnθ1+εb−

n
ε
(1+ε)

= Cθ1+εb−
n
ε = θb−

n+1
ε Cθ εb

1
ε ≤ θb−

n+1
ε ,

where we exploited the definition of θ in (3-11). This means that (3-12) also holds for n + 1, concluding
the proof by induction. □

We now present our main results, concerning the instantaneous strict separation property in three-
dimensional bounded domains.

4. Main results

Let us assume, additionally to (H2), the following hypotheses on the singular potential F :

(H3) As δ → 0+ we assume

1
F ′(1 − 2δ)

= O
(

1
|ln(δ)|

)
,

1
F ′′(1 − 2δ)

= O(δ), (4-1)
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and analogously

1
|F ′(−1 + 2δ)|

= O
(

1
|ln(δ)|

)
,

1
F ′′(−1 + 2δ)

= O(δ). (4-2)

Remark 4.1. Notice that these conditions are verified by the logarithmic potential (1-11). Indeed,

F ′(s) =
α

2
ln

(
1 + s
1 − s

)
, F ′′(s) =

α

1 − s2 ;

thus

F ′(1 − 2δ) =
α

2
ln

(
1 − δ

δ

)
, F ′′(1 − 2δ) =

α

4δ(1 − δ)
,

F ′(−1 + 2δ) =
α

2
ln

(
δ

1 − δ

)
, F ′′(−1 + 2δ) =

α

4δ(1 − δ)
,

clearly implying assumption (H3).

Remark 4.2. As already pointed out in the Introduction, assumption (H3) does not make any explicit
reference to the typical extra condition (1-10). Indeed, as far as we know, this is the first proof of the
instantaneous separation property concerning nonlocal Cahn–Hilliard equation with constant mobility
and singular potential (problem (1-7)) in which it is not exploited any constraint on ∥F ′′(φ(t))∥Lq (�),
for some q ≥ 2 and for almost any t ≥ τ , with τ > 0. Indeed, in our proof we simply rely on some
natural growth conditions of F ′ and F ′′ near the endpoints ±1. Note that assumptions (H2)–(H3) on the
potential F are somehow minimal, in the sense that the proof of the separation property in dimension
three works only in this case (or for more singular potentials than the logarithmic one). This seems to
suggest that the use of the logarithmic potential when modeling phase separation phenomena with the help
of the nonlocal Cahn–Hilliard equation with constant mobility could be a good choice, since it preserves
all the basic physical properties expected from the solution.

We can now state our main theorem.

Theorem 4.3. Let � ⊂ R3 be a smooth bounded domain and let assumptions (H1)–(H3) hold. Assume
that φ0 ∈ L∞(�) such that ∥φ0∥L∞ ≤ 1 and |φ0| = m < 1. Then for any τ > 0 there exists δ ∈ (0, 1),
depending on τ , m and the initial datum, such that the unique weak solution to problem (1-7) given in
Theorem 3.3 satisfies

|φ(x, t)| ≤ 1 − δ for a.e. (x, t) ∈ � × (τ, +∞),

i.e., the instantaneous strict separation property from the pure phases ±1 holds.

Remark 4.4. Observe that the quantity δ given in the theorem strongly depends on the specific entire
trajectory, therefore, by the uniqueness of the solution, on the initial datum φ0. This means that we cannot
have an explicit dependence of δ, e.g., on the initial datum energy.
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As a byproduct of the main theorem, we also prove that, if the initial datum φ0 is more regular and
already separated from the pure phases, i.e., there exists δ0 ∈ (0, 1] such that

∥φ0∥L∞(�) ≤ 1 − δ0,

then the unique solution φ departing from φ0, which is now strong from the time t = 0 (see Remark 3.5),
is strictly separated on [0, +∞), i.e., it remains separated from the pure phases uniformly for almost any
time t ≥ 0.

Corollary 4.5. Under the same hypotheses of Theorem 4.3, if we assume additionally that ∇F ′(φ0) ∈ H ,
and that φ0 is strictly separated, i.e., there exists δ0 ∈ (0, 1] such that

∥φ0∥L∞(�) ≤ 1 − δ0,

then there exists δ ∈ (0, 1), depending on τ , m, δ0 and the initial datum, such that the unique strong
solution to problem (1-7) given in Remark 3.5 satisfies

|φ(x, t)| ≤ 1 − δ, for a.e. (x, t) ∈ � × [0, +∞),

i.e., the instantaneous strict separation property from the pure phases ±1 holds for almost any time t ≥ 0.

Remark 4.6. Observe that, since by Theorem 4.3 the solution φ in Corollary 4.5 is strictly separated on
time sets of the kind (τ, +∞), for any τ > 0, it is enough to show that there exists an interval [0, T1]

(T1 > 0) on which the solution is separated to obtain the strict separation over [0, +∞), choosing τ = T1.
As it will be clear from the proof of Corollary 4.5, T1 can be explicitly computed as a function of the
parameters of the problem and the initial datum.

4.1. Proof of Theorem 4.3. We divide the proof into two steps. In the first we show that we can apply
Lemma 3.1 to a specific family of functions, which will be of essential importance in the second step, when
we adopt a De Giorgi’s iteration scheme (as in [Gal et al. 2023a, Theorem 4.1]) to obtain the desired result.

Step 1. Application of Lemma 3.1 to a family of truncated functions. Let us consider the unique
solution φ departing from φ0, whose existence and regularity is stated in Theorem 3.3. We make the
following observations: first fix any τ > 0.

• Since |φ0| ≤ m < 1, there exists δ̂ > 0 and an ε > 0 such that

m ≤ 1 − 2δ̂ − ε. (4-3)

In particular we may choose ε := (1 − m)/2 > 0 and δ̂ := (1 − m)/4 > 0. Thanks to the conservation of
total mass, we have that for any ρ ∈ R+, ρ ≥ 1 − 2δ̂, and for any t ∈ [0, +∞), the function

φρ(x, t) := (φ(x, t) − ρ)+ (4-4)

vanishes on the set (independent of ρ)

E(t) := {x ∈ � : φ(x, t) ≤ 1 − 2δ̂}, (4-5)
which is such that

|{x ∈ � : φ(x, t) ≤ 1 − 2δ̂ − ε}| > 0 for all t ≥ 0. (4-6)
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Proof. To prove this observation, let us assume by contradiction that, for some t̃ ≥ 0,

|{x ∈ � : φ(x, t̃) ≤ 1 − 2δ̂ − ε}| = 0.

By the conservation of total mass we get, for any t ≥ 0,

(1 − 2δ̂ − ε)|�| ≥ m|�| ≥

∫
�

φ0(x) dx =

∫
�

φ(x, t) dx,

but then we get a contradiction, since |�| = |{x ∈ � : φ(x, t̃) > 1 − 2δ̂ − ε}| and

(1 − 2δ̂ − ε)|�| ≥

∫
�

φ(x, t̃) dx > (1 − 2δ̂ − ε)|{x ∈ � : φ(x, t̃) > 1 − 2δ̂ − ε}|. □

• We aim to apply Lemma 3.1 with K = [1 − 2δ̂, 1], { fρ}ρ∈K = {φρ}ρ∈K, I = [τ, +∞), g = φ, δ = δ̂,
ε̃ = ε. Indeed we verify all the assumptions:

• We have {φρ}ρ ⊂ L∞(I ; V ) ∩ C(I ; H), φ ∈ C(I ; H), and (4-5) and (4-6) hold for any t ∈ I .

• Let {tl}l be any sequence such that tl → ∞. By (3-6), there exists a constant C(τ ) > 0 such that

sup
t≥τ

∥φ∥V ≤ C(τ ).

Therefore, since V is reflexive, there exist a (nonrelabeled) subsequence {tl}l and a function g⋆
∈ V

(which could depend on the subsequence) such that, as l → ∞,

φ(tl) ⇀ g⋆ in V,

implying by compactness that
φ(tl) → g⋆ in H. (4-7)

Now notice that this strong convergence also implies, by the conservation of total mass, that∫
�

φ0(x) dx =

∫
�

φ(x, tl) dx →

∫
�

g⋆(x) dx,

and thus also g⋆ enjoys the same total mass as the initial datum φ0:∫
�

g⋆(x) dx =

∫
�

φ0(x) dx .

This means that we can repeat exactly the same argument as the one adopted to get (4-6) to infer

|{x ∈ � : g⋆(x) ≤ 1 − 2δ̂ − ε}| > 0, (4-8)

so that, having chosen ε̃ = ε and g = φ, thanks to (4-7)–(4-8), we have completed the verification of the
assumptions of Lemma 3.1.

In the end we can conclude that there exists a uniform (in ρ and t) constant CP,+ > 0 such that

∥φρ(t)∥ ≤ CP,+∥∇φρ(t)∥ (4-9)

for any t ∈ [τ, +∞) and any ρ ∈ [1 − 2δ̂, 1].



3D STRICT SEPARATION PROPERTY FOR NONLOCAL CAHN–HILLIARD EQUATION 123

• Since in the last part of the proof we need to reproduce all the arguments on the functions

φ̃ρ(x, t) := (φ(x, t) + ρ)− = (−φ(x, t) − ρ)+, (4-10)

with ρ ≥ 1 − 2δ̂, we observe that (4-5) and (4-6) still hold substituting φ with −φ, simply because, again
by the conservation of mass, m|�| ≥

∫
�

−φ(x, t) dx for any t ≥ τ . Therefore again the assumptions
of Lemma 3.1 are satisfied (with g = −φ), and thus that there exists a uniform (in ρ and t) constant
CP,− > 0 (which is possibly different from CP,+) such that

∥φ̃ρ(t)∥ ≤ CP,−∥∇φ̃ρ(t)∥ (4-11)

for any t ∈ [τ, +∞) and for any ρ ∈ [1−2δ̂, 1]. Thus we introduce the constant CP := max{CP,+, CP,−}

so that both (4-9) and (4-11) hold with the same constant CP , i.e.,

∥φρ(t)∥ ≤ CP∥∇φρ(t)∥, ∥φ̃ρ(t)∥ ≤ CP∥∇φ̃ρ(t)∥, (4-12)

for any t ≥ τ and any ρ ∈ [1 − 2δ̂, 1]. Note that the constant CP depends on the specific solution φ we
used, thus, since φ is uniquely determined by φ0, we have that CP depends in a nontrivial way on the
initial datum.

Step 2. De Giorgi’s iteration scheme. We perform a De Giorgi’s iteration scheme following the one
presented in [Gal et al. 2023a, Lemma 4.1]. Let us fix δ sufficiently small such that δ ≤ δ̂, so that (4-12)
holds for any ρ ∈ [1 − 2δ, 1]. Set then τ̃ > 0 such that

τ̃ =
2−20δ5(F ′′(1 − 2δ))4 F ′(1 − 2δ)

3C(τ )∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

, (4-13)

where CP is given in (4-12), Ĉ is defined in (2-3) and Br is a ball centered at 0 of radius r > 0 sufficiently
large such that x − � ⊂ Br for any x ∈ � (see also [Giorgini 2024] for this observation on Br ). Now
observe that, since, by (4-1), there exists a positive constant CF > 0 such that, for δ sufficiently small,

0 <
1

F ′′(1 − 2δ)
≤ CFδ and 0 <

1
F ′(1 − 2δ)

≤
CF

|ln(δ)|
,

we have

8δ2

τ̃

∥∇ J∥
2
L1(Br )

2F ′′(1−2δ)

=
16δ2 F ′′(1 − 2δ)

∥∇ J∥
2
L1(Br )

3C(τ )∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

2−20δ5(F ′′(1 − 2δ))4 F ′(1 − 2δ)

=

3C(τ )∥∇ J∥
3
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

2−24δ3(F ′′(1 − 2δ))3 F ′(1 − 2δ)
≤

C̃
|ln(δ)|

→ 0 as δ → 0+,

where

C̃ :=

3C(τ )∥∇ J∥
3
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2 C4

F

2−24 > 0,
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so that
8δ2

τ̃

∥∇ J∥
2
L1(Br )

2F ′′(1−2δ)

= O
(

1
|ln(δ)|

)
.

This means that we can find a sufficiently small δ > 0 so that

max
{

∥∇ J∥
2
L1(Br )

2F ′′(1 − 2δ)
,

8δ2

τ̃

}
=

∥∇ J∥
2
L1(Br )

2F ′′(1 − 2δ)
. (4-14)

Choose now T > 0 such that T − 3τ̃ ≥
τ
2

(
for example, one can start with T = 3τ̃ +

τ
2

)
. Up to reducing

the size of δ, and thus of τ̃ , we can find τ̃ such that

2τ̃ +
τ

2
≤ τ. (4-15)

Let us then fix δ > 0 (and thus τ̃ > 0) so that also (4-14) and (4-15) hold. Notice that the choice of δ

and τ̃ does not depend on the specific T, but clearly depends on τ .
We now define the sequence

kn = 1 − δ −
δ

2n for all n ≥ 0, (4-16)

where
1 − 2δ < kn < kn+1 < 1 − δ for all n ≥ 1, kn → 1 − δ as n → ∞, (4-17)

and the sequence of times

tn =

{
T − 3τ̃ if n = −1,

tn−1 +
τ̃

2n
if n ≥ 0,

(4-18)

which satisfies
t−1 < tn < tn+1 < T − τ̃ for all n ≥ 0.

We now introduce a cutoff function ηn ∈ C1(R) by setting

ηn(t) :=

{
0 if t ≤ tn−1,

1 if t ≥ tn
and |η′

n(t)| ≤
2n+1

τ̃
, (4-19)

on account of the above definition of the sequence {tn}n . Recalling (4-4), we then set ρ = kn ,

φn(x, t) := (φ − kn)
+, (4-20)

and, for any n ≥ 0, we introduce the interval In = [tn−1, T ] and the set

An(t) := {x ∈ � : φ(x, t) − kn ≥ 0} for all t ∈ In.

Clearly, we have
In+1 ⊆ In for all n ≥ 0,

An+1(t) ⊆ An(t) for all n ≥ 0 and t ∈ In+1.
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In conclusion, we set

yn =

∫
In

∫
An(s)

1 dx ds for all n ≥ 0.

Now, for any n ≥ 0, we consider the test function v = φnη
2
n , and integrate over [tn−1, t], tn ≤ t ≤ T. Then∫ t

tn−1

⟨∂tφ, φnη
2
n⟩ds +

∫ t

tn−1

∫
An(s)

F ′′(φ)∇φ · ∇φnη
2
n dx ds =

∫ t

tn−1

∫
An(s)

η2
n(∇ J ∗ φ) · ∇φn dx ds, (4-21)

since ∇F ′(φ(t)) = F ′′(φ)∇φ(t), for almost every x ∈ � and for any t ≥
τ
2 , which can be proven, e.g.,

by a truncation argument as in [He and Wu 2021, Lemma 3.2], applied for any t ≥
τ
2 . Indeed, as in [He

and Wu 2021, (3.5)], we obtain ∇F ′(φ(t)) = F ′′(φ)∇φ(t) in the sense of distribution and thus, since
∇F ′(φ) ∈ L∞

(
τ
2 , ∞; H

)
, we immediately infer that the equality holds also almost everywhere in �, for

any t ≥
τ
2 . Now, as in [Gal et al. 2023a], for δ sufficiently small we obtain∫ t

tn−1

η2
n

∫
An(s)

F ′′(φ)∇φ · ∇φn dx ds ≥ F ′′(1 − 2δ)

∫ t

tn−1

η2
n∥∇φn∥

2 ds, (4-22)

and, for the right-hand side of (4-21), recalling that |φ| < 1 a.e. in � × (0, +∞), we find∫ t

tn−1

∫
An(s)

(∇ J ∗ φ) · ∇φnη
2
n dx ds

≤
1
2

F ′′(1 − 2δ)

∫ t

tn−1

η2
n∥∇φn∥

2 ds +
1

2F ′′(1 − 2δ)

∫ t

tn−1

∫
An(s)

η2
n|∇ J ∗ φ|

2 dx ds

≤
1
2

F ′′(1 − 2δ)

∫ t

tn−1

η2
n∥∇φn∥

2 ds +
1

2F ′′(1 − 2δ)

∫ t

tn−1

∥∇ J ∗ φ∥
2
L∞(�)

∫
An(s)

dx ds

≤
1
2

F ′′(1 − 2δ)

∫ t

tn−1

η2
n∥∇φn∥

2 ds +

∥∇ J∥
2
L1(Br )

2F ′′(1 − 2δ)

∫ t

tn−1

∫
An(s)

dx ds

≤
1
2

F ′′(1 − 2δ)

∫ t

tn−1

η2
n∥∇φn∥

2 ds +

∥∇ J∥
2
L1(Br )

2F ′′(1 − 2δ)
yn, (4-23)

where we have applied (see, e.g., [Brezis 2011, Theorem 4.33])

∥∇ J ∗ φ∥L∞(�) ≤ ∥∇ J∥L1(Br )∥φ∥L∞(�) ≤ ∥∇ J∥L1(Br ). (4-24)

Moreover, we have ∫ t

tn−1

⟨∂tφ, φnη
2
n⟩ ds =

1
2
∥φn(t)∥2

−

∫ t

tn−1

∥φn(s)∥2ηn∂tηn ds. (4-25)

Note that, since |φ| < 1 a.e. in �, for any t ≥
τ
2 ,

0 ≤ φn ≤ 2δ a.e. in � for all t ≥
τ

2
. (4-26)
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Then, by the above inequality,∫ t

tn−1

∥φn(s)∥2ηn∂tηn ds =

∫ t

tn−1

∫
�

φ2
n(s)ηn∂tηn dx ds =

∫ t

tn−1

∫
An(s)

φ2
n(s)ηn∂tηn dx ds

≤

∫ t

tn−1

∫
An(s)

(2δ)2 2n+1

τ̃
dx ds ≤

2n+3δ2

τ̃
yn. (4-27)

Plugging (4-22), (4-23), (4-25) and (4-27) into (4-21), we find

1
2
∥φn(t)∥2

+
1
2

F ′′(1 − 2δ)

∫ t

tn−1

η2
n∥∇φn(s)∥2 ds ≤ 2n+1 max

{
∥∇ J∥

2
L1(Br )

2F ′′(1 − 2δ)
,

8δ2

τ̃

}
yn

for any t ∈ [tn, T ]. Thanks to the choice of δ and τ̃ , we recall (4-14), implying

max
t∈In+1

∥φn(t)∥2
≤ Xn, F ′′(1 − 2δ)

∫
In+1

∥∇φn∥
2 ds ≤ Xn, (4-28)

where

Xn := 2n+1
∥∇ J∥

2
L1(Br )

F ′′(1 − 2δ)
yn.

On the other hand, for any t ∈ In+1 and for almost any x ∈ An+1(t), we get

φn(x, t) = φ(x, t) −

[
1 − δ −

δ

2n

]
= φ(x, t) −

[
1 − δ −

δ

2n+1

]
︸ ︷︷ ︸

φn+1(x,t)≥0

+δ

[
1
2n −

1
2n+1

]
≥

δ

2n+1 ,

which implies∫
In+1

∫
�

|φn|
3 dx ds ≥

∫
In+1

∫
An+1(s)

|φn|
3 dx ds ≥

(
δ

2n+1

)3 ∫
In+1

∫
An+1(s)

dx ds =

(
δ

2n+1

)3

yn+1.

Then we have (
δ

2n+1

)3

yn+1 ≤

∫
In+1

∫
�

|φn|
3 dx ds =

∫
In+1

∫
An(s)

|φn|
3 dx ds

≤

(∫
In+1

∫
�

|φn|
10
3 dx ds

) 9
10

(∫
In+1

∫
An(s)

dx ds
) 1

10
. (4-29)

Notice that, thanks to (2-3) and (4-12) (which holds thanks to (4-17)), we get∫
In+1

∫
�

|φn|
10
3 dx ds ≤ Ĉ

∫
In+1

∥φn∥
2
V ∥φn∥

4
3 ds ≤ Ĉ

∫
In+1

(
∥φn∥

2
+ ∥∇φn∥

2)
∥φn∥

4
3 ds

≤ Ĉ(1 + C2
P)

∫
In+1

∥∇φn∥
2
∥φn∥

4
3 ds,
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where we have chosen an equivalent norm on V . Observe now that, by (4-28),∫
In+1

∫
�

|φn|
10
3 dx ds ≤ Ĉ(1 + C2

P)

∫
In+1

∥∇φn∥
2
∥φn∥

4
3 ds

≤ Ĉ(1 + C2
P) max

t∈In+1
∥φn(t)∥

4
3

∫
In+1

∥∇φn∥
2 ds

≤
Ĉ(1 + C2

P)

F ′′(1 − 2δ)
X

2
3
n F ′′(1 − 2δ)

∫
In+1

∥∇φn∥
2 ds

≤
Ĉ(1 + C2

P)

F ′′(1 − 2δ)
X

5
3
n ≤

2
5n
3 +

5
3 ∥∇ J∥

10
3

L1(Br )
Ĉ(1 + C2

P)

(F ′′(1 − 2δ))
8
3

y
5
3
n .

Coming back to (4-29), we immediately infer(
δ

2n+1

)3

yn+1 ≤

(∫
In+1

∫
�

|φn|
10
3 dx ds

) 9
10

(∫
In+1

∫
An(s)

dx ds
) 1

10

≤

2
3
2 n+

3
2 ∥∇ J∥

3
L1(Br )

Ĉ
9

10 (1 + C2
P)

9
10

(F ′′(1 − 2δ))
12
5

y
3
2
n y

1
10
n

=

2
3
2 n+

3
2 ∥∇ J∥

3
L1(Br )

Ĉ
9
10 (1 + C2

P)
9

10

(F ′′(1 − 2δ))
12
5

y
8
5
n . (4-30)

In conclusion, we end up with

yn+1 ≤

2
9
2 n+

9
2 ∥∇ J∥

3
L1(Br )

Ĉ
9
10 (1 + C2

P)
9
10

δ3(F ′′(1 − 2δ))
12
5

y
8
5
n for all n ≥ 0. (4-31)

Thus we can apply Lemma 3.8. In particular, we have

b = 2
9
2 > 1, C =

2
9
2 ∥∇ J∥

3
L1(Br )

Ĉ
9
10 (1 + C2

P)
9
10

δ3(F ′′(1 − 2δ))
12
5

> 0, ε =
3
5
,

to get that yn → 0, as long as

y0 ≤ C−
5
3 b−

25
9 ,

that is,

y0 ≤
2−20δ5(F ′′(1 − 2δ))4

∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

. (4-32)

We are left with a last estimate: thanks to (3-7), we know that ∥F ′(φ)∥L∞(τ/2,∞;L1(�)) ≤ C(τ ) and F ′ is
monotone in a neighborhood of +1, so that we infer

y0 =

∫
I0

∫
A0(s)

1 dx ds ≤

∫
I0

∫
{x∈�: φ(x,s)≥1−2δ}

1 dx ds ≤

∫
I0

∫
A0(s)

|F ′(φ)|

F ′(1 − 2δ)
dx ds ≤

3C(τ )τ̃

F ′(1 − 2δ)
.
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Therefore, if we ensure that

3C(τ )τ̃

F ′(1 − 2δ)
≤

2−20δ5(F ′′(1 − 2δ))4

∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

,

then (4-32) holds. Having fixed τ̃ in (4-13) such that

τ̃ =
2−20δ5(F ′′(1 − 2δ))4 F ′(1 − 2δ)

3C(τ )∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

, (4-33)

we obtain the result. Notice that δ is fixed, so τ̃ > 0 is not infinitesimal, but it depends on φ0 in a nontrivial
way (thus not only on the initial energy) through CP .

In the end, passing to the limit in yn as n → ∞, we have obtained that

∥(φ − (1 − δ))+∥L∞(�×(T −τ̃ ,T )) = 0,

since, as n → ∞,
yn →

∣∣{(x, t) ∈ � × [T − τ̃ , T ] : φ(x, t) ≥ 1 − δ
}∣∣ = 0.

We now repeat exactly the same argument for the case (φ − (−1 + δ))− (using φn(t) = (φ(t) + kn)
−).

Notice that also for this second case we have the same constant CP (see (4-12)). Moreover, the argument
is exactly the same due to assumption (4-2), which implies that

1
F ′′(−1 + 2δ)

= O(δ) and
1

|F ′(−1 + 2δ)|
= O

(
1

|ln(δ)|

)
,

for δ sufficiently small. We can then choose the minima between the δ and τ̃ obtained in the two cases, to
get in the end that there exists a couple δ > 0, τ̃ > 0 such that

−1 + δ ≤ φ(x, t) ≤ 1 − δ, a.e. in � × (T − τ̃ , T ). (4-34)

Finally, notice that, due to the choice of T, we have T − τ̃ = 2τ̃ +
τ
2 ≤ τ ; therefore we can repeat the same

procedure on the interval (T, T + τ̃ )
(
this means that the new starting time will be t−1 = T − 2τ̃ ≥

τ
2

)
and so on, reaching eventually the entire interval [τ, +∞). Clearly δ and τ̃ are always the same, since
the constant CP is uniform over the entire interval [τ, +∞) and the time horizon T does not enter in any
of the estimates. The proof is thus concluded.

Remark 4.7. We point out that the same proof holds for the case of convective nonlocal Cahn–Hilliard
equation 

∂tφ + u · ∇φ − 1µ = 0 in � × (0, T ),

µ = F ′(φ) − J ∗ φ in � × (0, T ),

∂nµ = 0 on ∂� × (0, T ),

φ( · , 0) = φ0 in �,

(4-35)

where u is a sufficiently regular divergence free vector field, such that u · n = 0 on ∂� × (0, T ). Indeed,
Theorem 3.3 can be mostly extended also to this case (see, e.g., [Gal et al. 2017, Section 6], in which a
related system, the nonlocal Cahn–Hilliard–Navier–Stokes system, is analyzed). Moreover, in the proof of
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Theorem 4.3 the term u · ∇φ does not appear, since in (4-21) we should get an additional (u · ∇φ, φnη
2
n),

which is zero thanks to the assumptions on u. Therefore, the separation property could a priori be obtained
also in the couplings of the nonlocal Cahn–Hilliard equation with some hydrodynamic models, like
Navier–Stokes equations (see, e.g., [Abels and Terasawa 2020] or [Gal et al. 2017, Section 6] for some
examples of such models).

Remark 4.8. One might think that the proof of Theorem 4.3 could be adapted also to the conserved
Allen–Cahn equation 

∂tφ + µ − µ = 0 in � × (0, T ),

µ = 9 ′(φ) − 1φ in � × (0, T ),

∂nφ = 0 on ∂� × (0, T ),

φ( · , 0) = φ0 in �,

(4-36)

where 9 is defined in (1-2). Indeed, this has been obtained in [Grasselli and Poiatti 2024] in the case
of multicomponent conserved Allen–Cahn equation in two and three dimensions, and it is valid also
for (4-36). In the proof one loses the term∫ t

tn−1

∫
An(s)

F ′′(φ)∇φ · ∇φnη
2
n dx ds,

which is substituted by
∫ t

tn−1

∫
An(s) F ′(φ)φnη

2
n dx ds ≥ F ′(1 − 2δ)

∫ t
tn−1

∫
An(s) φnη

2
n dx ds: the presence of

the first derivative of F instead of the second derivative, since F ′(1 − 2δ) → +∞ as δ → 0+, is still
enough to carry out the De Giorgi’s iteration scheme, by heavily exploiting estimate (4-26). We also
mention the fact that in two-dimensional bounded domains the instantaneous strict separation property
for (4-36) was proven before in [Giorgini et al. 2022], by a completely different argument.

Remark 4.9. Assumption (H3) shows that the strict separation property also holds for more general
and singular potentials F than the logarithmic one (1-2). Furthermore, by slightly adapting the proof of
Theorem 4.3, one can show that the same property also holds for more general double well potentials
than F. For instance, one could deal with a chemical potential µ = 9 ′(φ) + (J ∗ 1)φ − J ∗ φ, with 9

defined in (1-2) and obtain an analogous result. Notice that in this new setting the nonlocal term J ∗ φ is
related to diffusion effects (see [Gal et al. 2023a]). Also, in the case of nonconstant mobility M(φ), the
proof should work well as long as it is nondegenerate (i.e., bounded below by a strictly positive constant)
and the existence of strong solutions is given. In conclusion, another possible extension could be in the
case of dynamic boundary conditions (see, e.g., [Knopf and Signori 2021]): first one needs to assess the
existence of strong solutions and the instantaneous regularization of weak solutions, and then apply a De
Giorgi’s iteration scheme, which seems harder due to the presence of boundary terms which have to be
carefully handled.

4.2. Proof of Corollary 4.5. Observe that, due to Remark 4.6, we only need to prove that the unique
solution φ departing from φ0 is strictly separated from the pure phases in a neighborhood of the initial
time. To this aim we perform again a De Giorgi’s iteration scheme, in this case without the use of a
cutoff function of the form (4-19). Indeed, the necessity of the cutoff function is merely to eliminate the
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presence of the initial datum in the estimates, but in our case, up to choosing δ ≤ δ0/2, this problem does
not appear any more, as we shall see. Again the Step 1 of the proof of Theorem 4.3 is still valid, and we
adopt the same notation. Clearly, thanks to Remark 3.5, we can choose τ = 0, so that again

∥φρ(t)∥≤CP∥∇φρ(t)∥, ∥φ̃ρ(t)∥≤CP∥∇φ̃ρ(t)∥, for almost any t≥0 and for any ρ ∈[1−2δ̂,1]. (4-37)

We then start from Step 2. Let us fix δ sufficiently small such that δ ≤ min{δ̂, δ0/2}, so that (4-37) holds
for any ρ ∈ [1 − 2δ, 1]. Set then τ̃ > 0 such that (4-43) below holds. As in Theorem 4.3, we define the
same sequence (4-16), but we do not need to consider any sequence of times, since we will always use
the same, fixed, interval I := [0, τ̃ ]. Then we define again

φn(x, t) := (φ − kn)
+, (4-38)

and, for any n ≥ 0, we introduce the set

An(t) := {x ∈ � : φ(x, t) − kn ≥ 0} for all t ∈ I,

so that

An+1(t) ⊆ An(t) for all n ≥ 0 and t ∈ I.

We thus set

yn =

∫
I

∫
An(s)

1 dx ds for all n ≥ 0.

Now, for any n ≥ 0 we consider the test function w = φn , and integrate over [0, t], t ≤ τ̃ . Then we have,
as in Theorem 4.3,

1
2
∥φn(t)∥2

+

∫ t

0

∫
An(s)

F ′′(φ)∇φ · ∇φn dx ds =

∫ t

0

∫
An(s)

(∇ J ∗ φ) · ∇φn dx ds +
1
2
∥φn(0)∥2.

Note that, due to the choice of δ ≤ δ0/2, thanks to the strict separation of the initial datum, we immediately
infer that ∥φn(0)∥ = 0 for any n ≥ 0. Following the same arguments as in the proof of Theorem 4.3, we
obtain

1
2
∥φn(t)∥2

+
1
2

F ′′(1 − 2δ)

∫ t

0
∥∇φn(s)∥2 ds ≤

∥∇ J∥
2
L1(Br )

2F ′′(1 − 2δ)
yn

for any t ∈ [0, τ̃ ]. Observe that we do not see the presence of the term related to 1/τ̃ (estimated in (4-27)),
since it is a consequence of the use of the cutoff function (4-19). This implies

max
t∈I

∥φn(t)∥2
≤ Zn, F ′′(1 − 2δ)

∫
I
∥∇φn∥

2 ds ≤ Zn, (4-39)

where

Zn :=

∥∇ J∥
2
L1(Br )

F ′′(1 − 2δ)
yn.

Observe that, for any t ∈ I and for almost any x ∈ An+1(t), we get

φn(x, t) = φ(x, t) −

[
1 − δ −

δ

2n+1

]
︸ ︷︷ ︸

φn+1(x,t)≥0

+δ

[
1
2n −

1
2n+1

]
≥

δ

2n+1 ,
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which implies∫
I

∫
�

|φn|
3 dx ds ≥

∫
I

∫
An+1(s)

|φn|
3 dx ds ≥

(
δ

2n+1

)3 ∫
I

∫
An+1(s)

dx ds =

(
δ

2n+1

)3

yn+1.

Then we have, as in (4-29),(
δ

2n+1

)3

yn+1 ≤

(∫
I

∫
�

|φn|
10
3 dx ds

) 9
10

(∫
I

∫
An(s)

dx ds
) 1

10
. (4-40)

Again thanks to (2-3) and (4-37), we have∫
I

∫
�

|φn|
10
3 dx ds ≤ Ĉ(1 + C2

P)

∫
I
∥∇φn∥

2
∥φn∥

4
3 ds,

so that, by (4-39),∫
I

∫
�

|φn|
10
3 dx ds

≤ Ĉ(1 + C2
P)

∫
I
∥∇φn∥

2
∥φn∥

4
3 ds ≤ Ĉ(1 + C2

P) max
t∈I

∥φn∥
4
3

∫
I
∥∇φn∥

2 ds

≤
Ĉ(1 + C2

P)

F ′′(1 − 2δ)
Z

2
3
n F ′′(1 − 2δ)

∫
I
∥∇φn∥

2 ds ≤
Ĉ(1 + C2

P)

F ′′(1 − 2δ)
Z

5
3
n ≤

∥∇ J∥

10
3

L1(Br )
Ĉ(1 + C2

P)

(F ′′(1 − 2δ))
8
3

y
5
3
n .

Therefore, we immediately infer from (4-40) that(
δ

2n+1

)3

yn+1 ≤

(∫
I

∫
�

|φn|
10
3 dx ds

) 9
10

(∫
I

∫
An(s)

dx ds
) 1

10

≤

∥∇ J∥
3
L1(Br )

Ĉ
9

10 (1 + C2
P)

9
10

(F ′′(1 − 2δ))
12
5

y
3
2
n y

1
10
n =

∥∇ J∥
3
L1(Br )

Ĉ
9
10 (1 + C2

P)
9
10

(F ′′(1 − 2δ))
12
5

y
8
5
n . (4-41)

In conclusion, we end up with

yn+1 ≤

23n+3
∥∇ J∥

3
L1(Br )

Ĉ
9

10 (1 + C2
P)

9
10

δ3(F ′′(1 − 2δ))
12
5

y
8
5
n for all n ≥ 0,

and we can apply Lemma 3.8. In particular, we have

b = 23 > 1, C =

23
∥∇ J∥

3
L1(Br )

Ĉ
9
10 (1 + C2

P)
9
10

δ3(F ′′(1 − 2δ))
12
5

> 0, ε =
3
5
,

to get that yn → 0, as long as

y0 ≤ C−
5
3 b−

25
9 ,
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i.e.,

y0 ≤
2−

40
3 δ5(F ′′(1 − 2δ))4

∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

. (4-42)

In conclusion, since we know by (3-7) and Remark 3.5 that ∥F ′(φ)∥L∞(0,∞;L1(�)) ≤ C , we infer

y0 =

∫
I

∫
A0(s)

1 dx ds ≤

∫
I

∫
A0(s)

|F ′(φ)|

F ′(1 − 2δ)
dx ds ≤

C τ̃

F ′(1 − 2δ)
.

Having fixed τ̃ so that

τ̃ =
2−

40
3 δ5(F ′′(1 − 2δ))4 F ′(1 − 2δ)

C∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

, (4-43)

we have
C τ̃

F ′(1 − 2δ)
≤

2−
40
3 δ5(F ′′(1 − 2δ))4

∥∇ J∥
5
L1(Br )

Ĉ
3
2 (1 + C2

P)
3
2

,

so that (4-42) holds. In the end, passing to the limit in yn as n → ∞, we have obtained that

∥(φ − (1 − δ))+∥L∞(�×(0,τ̃ )) = 0.

We now repeat exactly the same argument for the case (φ − (−1 + δ))− (using φn(t) = (φ(t) + kn)
−), to

get in the end that there exist δ > 0, τ̃ > 0 such that

−1 + δ ≤ φ(x, t) ≤ 1 − δ, a.e. in � × (0, τ̃ ). (4-44)

Notice that τ̃ can be explicitly computed as a function of the parameters of the problem and the initial
datum (see (4-43)). The proof is then concluded, recalling Remark 4.6 with T1 = τ̃ .

5. Some consequences of the strict separation property

In this section we collect some results which are straightforward consequences of the strict separation
property proven in Theorem 4.3.

5.1. Regularization in finite time. First we show that the weak solution given by Theorem 3.3 actually
regularizes more. Indeed, we have a first immediate consequence:

Corollary 5.1. Under the same assumptions of Theorem 4.3, for any τ > 0, there exists a constant
C = C(τ ) > 0 such that

∥F ′(φ(t))∥L∞(�) + ∥µ(t)∥L∞(�) ≤ C for all t ≥ τ.

Proof. The proof is immediate, since by the strict separation property we deduce ∥F ′(φ(t))∥L∞(�) ≤ C
for any t ≥ τ and then by comparison we get the L∞- control on µ. □

Furthermore, we can also obtain the Hölder regularity of the weak solutions:
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Corollary 5.2. Under the same assumptions of Theorem 4.3, for any τ > 0, there exists C = C(τ ) > 0
and κ = κ(τ, δ) ∈ (0, 1) such that

|φ(x1, t1) − φ(x2, t2)| ≤ C
(
|x1 − x2|

κ
+ |t1 − t2|

κ
2
)
, (5-1)

|µ(x1, t1) − µ(x2, t2)| ≤ C
(
|x1 − x2|

κ
+ |t1 − t2|

κ
2
)

(5-2)

for all (x1, t1), (x2, t2) ∈ �t , where �t = [t, t + 1] ×� and t ≥ τ .

Proof. We can argue as in [Gal and Grasselli 2014, Lemma 2.11]. In particular, we rewrite the system (1-7)
in the form

∂tφ = div(a(x, φ,∇φ)), (a(x, φ,∇φ) · n)|∂� = 0,

with

a(x, φ,∇φ) := F ′′(φ)∇φ − ∇ J ∗ φ.

Since by (H1) we have J ∈ W 1,1
loc (R3), F ′′(s) ≥ α for any s ∈ (−1, 1) by (H2) and ∥∇ J ∗ φ∥L∞(�) ≤

∥∇ J∥L1(Br ) by (4-24), by Young’s inequality we get

a(x, φ,∇φ) · ∇φ = F ′′(φ)|∇φ|
2
− (∇ J ∗ φ) · ∇φ

≥ α|∇φ|
2
− ∥∇ J∥L1(Br )|∇φ|

≥
α

2
|∇φ|

2
−

1
2α

∥∇ J∥
2
L1(Br )

,

and, similarly, by Corollary 5.1 and (4-24),

|a(x, φ,∇φ)| ≤ ∥F ′′(φ)∥L∞(�)|∇φ| + ∥∇ J ∗ φ∥L∞(�) ≤ C1|∇φ| + ∥∇ J∥L1(Br )

for some positive constant C1 depending on τ, δ. Therefore we infer the desired estimate (5-1) applying
[Dung 2000, Corollary 4.2]. Then, by the regularity of F, we immediately deduce the same result for µ,
concluding the proof. □

In order to obtain higher-order spatial regularity for the phase variable φ, we need to strengthen the
assumptions on the interaction kernel J . In particular, we assume

(H4) Either J ∈ W 2,1(BR), where BR := {x ∈ R3
: |x | < R}, with R ∼ diam(�) such that � ⊂ BR and

x −� ⊂ BR for any x ∈ �, or J is admissible in the sense of [Bedrossian et al. 2011, Definition 1].

Remark 5.3. As noticed in [Gal et al. 2017, Remark 5.9], we observe that Newtonian and second-order
Bessel potentials satisfy assumption (H4), namely they are admissible in the sense of [Bedrossian et al.
2011, Definition 1].

Lemma 5.4. Under the same assumptions of Theorem 4.3, assuming also that J satisfies (H4) and
F ∈ C3(−1, 1), for any τ > 0 there exists C = C(τ ) > 0 such that

∥φ∥L4/3(t,t+1;H2(�)) ≤ C for all t ≥ τ. (5-3)
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Proof. We first observe that, since we can apply Theorem 3.3, by (3-7)–(3-8) we deduce that

∥∇φ∥L8/3(t,t+1;L4(�)) + ∥µ∥L2(t,t+1;V2) ≤ C(τ ) for all t ≥ τ, (5-4)

for some positive constant C(τ ). Then, as in [Frigeri et al. 2016, Theorem 5], we proceed formally
(these computations could be justified in a suitable approximating scheme, see, e.g., [Frigeri et al. 2016,
Theorem 5, Step 3]) defining

∂2
i jφ :=

∂2φ

∂xi∂x j
for i, j = 1, 2, 3.

We now apply ∂2
i j to the equation for the chemical potential µ and integrate on �, to infer∫

�

∂2
i jµ∂2

i jφ dx =

∫
�

F ′′(φ)(∂2
i jφ)2 dx−

∫
�

∂i (∂ j J ∗φ)∂2
i jφ dx+

∫
�

F ′′′(φ)∂iφ∂ jφ∂2
i jφ, i, j = 1,2,3.

We now recall assumption (H4), so that, by [Bedrossian et al. 2011, Lemma 2],

∥∂i (∂ j J ∗ φ)∥L2(�) ≤ C∥φ∥L2(�) ≤ C(τ ).

Therefore, by Cauchy–Schwartz and Young’s inequalities, we infer, recalling that F ′′(s) ≥ α for any
s ∈ (−1, 1), and exploiting the separation property of Theorem 4.3, for any t ≥ τ ,

α

2
∥∂2

i jφ∥
2
≤ C(1 + ∥∂2

i jµ∥
2
+

∫
�

|∂iφ|
2
|∂ jφ|

2 dx) ≤ C
(
1 + ∥µ∥

2
H2(�)

+ ∥∇φ∥
4
L4(�)

)
, i, j = 1, 2, 3,

which implies (5-3), thanks to (5-4). □

5.2. Convergence to equilibrium. We conclude the results of our paper by showing that the strict
separation property is essential to study the longtime behavior of the single trajectory. In particular, we
can follow [Della Porta et al. 2018, Section 6.2]: for the sake of completeness we give here a sketch of the
proofs. We employ the typical strategy based on the Lyapunov property of the associated system (see (3-4))
and the well known Łojasiewicz–Simon inequality. Let us consider the set of admissible initial data

Hm := {φ ∈ L∞(�) : ∥φ∥L∞(�) ≤ 1, |φ| = m},

with m ∈ [0, 1), and fix an initial datum φ0 ∈ Hm . Let then φ be the unique weak global-in-time solution
departing from φ0, whose existence and uniqueness is ensured by Theorem 3.3. We introduce the ω-limit
set associated to φ0, i.e.,

ω(φ0) = {φ̃ ∈ Hm : ∃tn → ∞ such that φ(tn) → φ̃ in H}.

By (3-6), φ is uniformly bounded in V , which is compactly embedded in H . Therefore, by standard
results related to the intersection of nonempty, compact (in H ), connected and nested sets, we infer that
ω(φ0) is nonempty, compact and connected in Hm . We now characterize the set ω(φ0), showing that it
is composed by equilibrium points (i.e., stationary solutions) associated to (1-7), which are defined as:
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Definition 5.5. φ∞ is an equilibrium point to problem (1-7) if φ∞ ∈ Hm ∩ V satisfies the stationary
nonlocal Cahn–Hilliard equation

F ′(φ∞) − J ∗ φ∞ = µ∞ in �, (5-5)

where µ∞ ∈ R is a real constant.

As noticed also in [Della Porta et al. 2018], the existence of a (not necessarily unique, see, e.g., [Bates
and Chmaj 1999]) solution to (5-5) can be proven by means of a fixed point argument. Moreover, as
shown in [Della Porta et al. 2018, Lemma 6.1], any φ∞ ∈ V ∩Hm satisfying (5-5) is strictly separated
from the pure phases, i.e., there exists δ > 0 such that

∥φ∞∥L∞(�) ≤ 1 − δ.

If we now introduce the set of all the stationary points of the nonlocal Cahn–Hilliard equation,

S := {φ∞ ∈ Hm ∩ V : φ∞ satisfies (5-5)},

we can easily prove that ω(φ0) ⊂ S. Indeed, let us consider a sequence tn → ∞ such that φ(tn) → φ̃

in H , φ̃ ∈ ω(φ0). We then define the sequence of trajectories φn(t) := φ(t + tn) and µn(t) := µ(t + tn).
Thanks to (3-6), we get, up to a nonrelabeled subsequence, that φn

∗⇀ φ∗ in L∞(0, ∞; V ). Passing to
the limit in the equations for φn , exploiting the results of Theorem 3.3, we infer that also φ∗ satisfies
(3-2)–(3-3) (we denote the corresponding chemical potential by µ∗), with initial datum φ∗(0) = φ̃. This
last consideration follows from the fact that φn(0) = φ(tn) → φ̃ strongly in H . Moreover, we clearly
have limn→∞ E(φn(t)) = E(φ∗(t)) for all t ≥ 0. By the energy identity (3-4), we infer that the energy
E(φ( · )) is nonincreasing in time, thus there exists E∞ such that limt→∞ E(φ(t)) = E∞. This means that
this convergence also holds for the subsequence {t + tn}n , thus

E(φ∗(t)) = lim
n→∞

E(φn(t)) = lim
n→∞

E(φ(t + tn)) = E∞,

entailing that E(φ∗( · )) is constant in time. Passing then to the limit in (3-4), which is valid for each φn ,
we obtain

E∞ +

∫ t

s
∥∇µ∗(τ )∥2 dτ ≤ E∞ for all 0 ≤ s ≤ t < ∞,

implying ∇µ∗
= 0 almost everywhere in �, and thus, by comparison in (3-2), also ∂tφ

∗
= 0 almost

everywhere in �, for almost every t ≥ 0. Therefore, we infer that φ∗ is constant in time, namely φ∗(t) = φ̃

for all t ≥ 0. Thus φ̃ satisfies (5-5) with some constant µ∞ ∈ R, and then φ̃ ∈S, implying, being φ̃ ∈ω(φ0)

arbitrary, ω(φ0) ⊂ S. Notice that in this way we have shown that, for any φ∞ ∈ ω(φ0),

E(φ∞) = E∞ = lim
s→∞

E(φ(s)) = inf
s≥0

E(φ(s)) ≤ E(φ(t)) for all t ≥ 0. (5-6)

We can then conclude by showing that ω(φ0) is a singleton. For the sake of clarity we present here the
main tool, which is the Łojasiewicz–Simon inequality (see, e.g., [Della Porta et al. 2018, Proposition 6.2]
or [Gajewski and Griepentrog 2006]):
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Proposition 5.6. Let P0 : H → H0 be the projector operator. Assume that F satisfies (H2) and is real
analytic in (−1, 1), φ ∈ V ∩ L∞(�) is such that −1 + γ ≤ φ(x) ≤ 1 − γ , for any x ∈ �, for some
γ ∈ (0, 1) and φ∞ ∈ S. Then there exists θ ∈

(
0, 1

2

)
, η > 0 and a positive constant C such that

|E(φ) − E(φ∞)|1−θ
≤ C∥P0(F ′(φ) − J ∗ φ)∥∗, (5-7)

whenever ∥φ − φ∞∥ ≤ η.

Remark 5.7. We observe that the logarithmic potential F is indeed real analytic in (−1, 1), thus the
assumption of the foregoing proposition is satisfied.

Theorem 5.8. Under the same assumptions as in Theorem 4.3, suppose additionally that F is real analytic
in (−1, 1). Then the weak solution φ, departing from the initial datum φ0 ∈ Hm converges to a single
equilibrium point φ∞ (depending on φ0) and ω(φ0) = {φ∞}. In particular we have

lim
t→∞

∥φ(t) − φ∞∥ = 0. (5-8)

Proof. Thanks to (5-6), we infer that E(φ(t))≥ E(φ∞), E(φ(t))→ E(φ∞), as t →∞, for any φ∞ ∈ω(φ0).
Without loss of generality we can assume E(φ(t)) > E(φ∞) for all t ≥ 0. Indeed, if there exists t > 0
such that E(φ(t)) = E(φ∞), then clearly φ(t) = φ(t) for any t ≥ t and the claim follows, since then
φ(t) = φ∞ for any t ≥ t . Let us now fix θ ∈

(
0, 1

2

)
and η > 0 given in Proposition 5.6, where we have

chosen γ equal to the value of δ given in Theorem 4.3. By a contradiction argument as in [Frigeri et al.
2013, Theorem 4] it is possible to show that there exists t∗ > 0 such that ∥φ(t)−φ∞∥ ≤ η, for all t ≥ t∗.
Therefore, since the solution φ enjoys the separation property (by Theorem 4.3) and thanks to the choice
of γ , by Proposition 5.6 we get, for any t ≥ t∗,

(E(φ) − E(φ∞))1−θ
≤ ∥P0(F ′(φ) − J ∗ φ)∥∗ ≤ C∥P0µ∥ ≤ Ĉ∥∇µ∥,

where Ĉ > 0 depends on C and on the Poincaré–Wirtinger constant. Therefore, by means of the energy
identity (3-4), we deduce, for any t ≥ t∗,

−
d
dt

(E(φ) − E(φ∞))θ = −θ(E(φ) − E(φ∞))θ−1 d
dt

E(φ) ≥
θ∥∇µ∥

2

Ĉ∥∇µ∥
≥ C̃∥∇µ∥,

where C̃ > 0 is a positive constant independent of t . An integration over (t∗, +∞), for t∗ sufficiently
large, implies that ∇µ ∈ L1(t∗, ∞; H). By comparison, we deduce that also ∂tφ ∈ L1(t∗, ∞; V ′), so that

φ(t) = φ(t∗) +

∫ t

t∗
∂tφ(τ) dτ

t→+∞
−−−→ φ̃ in V ′,

for some φ̃ ∈ V ′. Then we infer that φ(t) converges in V ′ as t → ∞. By uniqueness of the limit in V ′,
we can then conclude that ω(φ0) is a singleton, i.e., ω(φ0) = {φ̃}. From now on we will denote φ̃ by φ∞,
since any φ∞ ∈ ω(φ0) coincides with φ̃. Thanks to (3-6), we then get (5-8) by interpolation:

∥φ(t) − φ∞∥ ≤ C∥φ(t) − φ∞∥
1/2
V ∥φ(t) − φ∞∥

1/2
V ′ ≤ C∥φ(t) − φ∞∥

1/2
V ′

t→+∞
−−−→ 0,

concluding the proof. □



3D STRICT SEPARATION PROPERTY FOR NONLOCAL CAHN–HILLIARD EQUATION 137

Acknowledgments

The author thanks the referees for their appropriate comments and useful remarks. The author is also
grateful to Andrea Giorgini and Maurizio Grasselli for several helpful comments on a preliminary
version of this article and to Giorgio Meretti for the fruitful discussion about the lemma on the Poincaré-
type inequality. Moreover, the author has been partially funded by MIUR-PRIN Grant 2020F3NCPX
“Mathematics for Industry 4.0 (Math4I4)”.

References

[Abels and Terasawa 2020] H. Abels and Y. Terasawa, “Weak solutions for a diffuse interface model for two-phase flows of
incompressible fluids with different densities and nonlocal free energies”, Math. Methods Appl. Sci. 43:6 (2020), 3200–3219.
MR Zbl

[Abels and Wilke 2007] H. Abels and M. Wilke, “Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic
free energy”, Nonlinear Anal. 67:11 (2007), 3176–3193. MR Zbl

[Allen and Cahn 1979] S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening”, Acta Metallurg. 27:6 (1979), 1085–1095.

[Bates and Chmaj 1999] P. W. Bates and A. Chmaj, “An integrodifferential model for phase transitions: stationary solutions in
higher space dimensions”, J. Stat. Phys. 95:5-6 (1999), 1119–1139. MR Zbl

[Bedrossian et al. 2011] J. Bedrossian, N. Rodríguez, and A. L. Bertozzi, “Local and global well-posedness for aggregation
equations and Patlak–Keller–Segel models with degenerate diffusion”, Nonlinearity 24:6 (2011), 1683–1714. MR Zbl
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[Frigeri et al. 2013] S. Frigeri, M. Grasselli, and P. Krejčí, “Strong solutions for two-dimensional nonlocal Cahn–Hilliard–
Navier–Stokes systems”, J. Differential Equations 255:9 (2013), 2587–2614. MR Zbl

[Frigeri et al. 2016] S. Frigeri, C. G. Gal, and M. Grasselli, “On nonlocal Cahn–Hilliard–Navier–Stokes systems in two
dimensions”, J. Nonlinear Sci. 26:4 (2016), 847–893. MR Zbl

[Gajewski and Griepentrog 2006] H. Gajewski and J. A. Griepentrog, “A descent method for the free energy of multicomponent
systems”, Discrete Contin. Dyn. Syst. 15:2 (2006), 505–528. MR Zbl

[Gajewski and Zacharias 2003] H. Gajewski and K. Zacharias, “On a nonlocal phase separation model”, J. Math. Anal. Appl.
286:1 (2003), 11–31. MR Zbl

[Gal and Grasselli 2014] C. G. Gal and M. Grasselli, “Longtime behavior of nonlocal Cahn–Hilliard equations”, Discrete Contin.
Dyn. Syst. 34:1 (2014), 145–179. MR Zbl

[Gal and Shomberg 2022] C. G. Gal and J. L. Shomberg, “Cahn–Hilliard equations governed by weakly nonlocal conservation
laws and weakly nonlocal particle interactions”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39:5 (2022), 1179–1234. MR Zbl

[Gal et al. 2017] C. G. Gal, A. Giorgini, and M. Grasselli, “The nonlocal Cahn–Hilliard equation with singular potential:
well-posedness, regularity and strict separation property”, J. Differential Equations 263:9 (2017), 5253–5297. MR Zbl

[Gal et al. 2023a] C. G. Gal, A. Giorgini, and M. Grasselli, “The separation property for 2D Cahn–Hilliard equations: local,
nonlocal and fractional energy cases”, Discrete Contin. Dyn. Syst. 43:6 (2023), 2270–2304. MR Zbl

[Gal et al. 2023b] C. G. Gal, A. Giorgini, M. Grasselli, and A. Poiatti, “Global well-posedness and convergence to equilibrium
for the Abels–Garcke–Grün model with nonlocal free energy”, J. Math. Pures Appl. 178 (2023), 46–109. Zbl

[Giacomin and Lebowitz 1996] G. Giacomin and J. L. Lebowitz, “Exact macroscopic description of phase segregation in model
alloys with long range interactions”, Phys. Rev. Lett. 76:7 (1996), 1094–1097.

[Giacomin and Lebowitz 1997] G. Giacomin and J. L. Lebowitz, “Phase segregation dynamics in particle systems with long
range interactions, I: Macroscopic limits”, J. Stat. Phys. 87:1-2 (1997), 37–61. MR Zbl

[Giacomin and Lebowitz 1998] G. Giacomin and J. L. Lebowitz, “Phase segregation dynamics in particle systems with long
range interactions, II: Interface motion”, SIAM J. Appl. Math. 58:6 (1998), 1707–1729. MR Zbl

[Giorgini 2024] A. Giorgini, “On the separation property and the global attractor for the nonlocal Cahn–Hilliard equation in
three dimensions”, J. Evol. Equ. 24:2 (2024), art. id. 21. MR Zbl

[Giorgini et al. 2017] A. Giorgini, M. Grasselli, and A. Miranville, “The Cahn–Hilliard–Oono equation with singular potential”,
Math. Models Methods Appl. Sci. 27:13 (2017), 2485–2510. MR Zbl

[Giorgini et al. 2022] A. Giorgini, M. Grasselli, and H. Wu, “On the mass-conserving Allen–Cahn approximation for incom-
pressible binary fluids”, J. Funct. Anal. 283:9 (2022), art. id. 109631. MR Zbl

[Grasselli and Poiatti 2024] M. Grasselli and A. Poiatti, “Multi-component conserved Allen–Cahn equations”, Interfaces Free
Bound. 26:4 (2024), 489–541. MR Zbl

[Grasselli et al. 2023] M. Grasselli, L. Scarpa, and A. Signori, “On a phase field model for RNA-protein dynamics”, SIAM J.
Math. Anal. 55:1 (2023), 405–457. MR Zbl

https://doi.org/10.1137/S0036141094267662
http://msp.org/idx/mr/1377481
http://msp.org/idx/zbl/0856.35071
https://doi.org/10.1007/3-540-36409-9
http://msp.org/idx/zbl/1039.74001
https://elibm.org/article/10003039
http://msp.org/idx/mr/1772733
http://msp.org/idx/zbl/0957.35062
https://doi.org/10.4310/DPDE.2012.v9.n4.a1
https://doi.org/10.4310/DPDE.2012.v9.n4.a1
http://msp.org/idx/mr/3019479
http://msp.org/idx/zbl/1280.35089
https://doi.org/10.1007/s10884-012-9272-3
https://doi.org/10.1007/s10884-012-9272-3
http://msp.org/idx/mr/3000606
http://msp.org/idx/zbl/1261.35105
https://doi.org/10.1016/j.jde.2013.07.016
https://doi.org/10.1016/j.jde.2013.07.016
http://msp.org/idx/mr/3090070
http://msp.org/idx/zbl/1284.35312
https://doi.org/10.1007/s00332-016-9292-y
https://doi.org/10.1007/s00332-016-9292-y
http://msp.org/idx/mr/3518604
http://msp.org/idx/zbl/1348.35171
https://doi.org/10.1007/BF02607064
https://doi.org/10.1007/BF02607064
http://msp.org/idx/mr/2199441
http://msp.org/idx/zbl/1141.90500
https://doi.org/10.1016/S0022-247X(02)00425-0
http://msp.org/idx/mr/2009615
http://msp.org/idx/zbl/1032.35078
https://doi.org/10.3934/dcds.2014.34.145
http://msp.org/idx/mr/3072989
http://msp.org/idx/zbl/1274.35399
https://doi.org/10.4171/aihpc/29
https://doi.org/10.4171/aihpc/29
http://msp.org/idx/mr/4515095
http://msp.org/idx/zbl/1511.35360
https://doi.org/10.1016/j.jde.2017.06.015
https://doi.org/10.1016/j.jde.2017.06.015
http://msp.org/idx/mr/3688414
http://msp.org/idx/zbl/1400.35178
https://doi.org/10.3934/dcds.2023010
https://doi.org/10.3934/dcds.2023010
http://msp.org/idx/mr/4562643
http://msp.org/idx/zbl/1514.35039
https://doi.org/10.1016/j.matpur.2023.07.005
https://doi.org/10.1016/j.matpur.2023.07.005
http://msp.org/idx/zbl/07738545
https://doi.org/10.1103/PhysRevLett.76.1094
https://doi.org/10.1103/PhysRevLett.76.1094
https://doi.org/10.1007/BF02181479
https://doi.org/10.1007/BF02181479
http://msp.org/idx/mr/1453735
http://msp.org/idx/zbl/0937.82037
https://doi.org/10.1137/S0036139996313046
https://doi.org/10.1137/S0036139996313046
http://msp.org/idx/mr/1638739
http://msp.org/idx/zbl/1015.82027
https://doi.org/10.1007/s00028-024-00953-y
https://doi.org/10.1007/s00028-024-00953-y
http://msp.org/idx/mr/4718612
http://msp.org/idx/zbl/1543.35031
https://doi.org/10.1142/S0218202517500506
http://msp.org/idx/mr/3714635
http://msp.org/idx/zbl/1386.35023
https://doi.org/10.1016/j.jfa.2022.109631
https://doi.org/10.1016/j.jfa.2022.109631
http://msp.org/idx/mr/4459002
http://msp.org/idx/zbl/1504.35225
https://doi.org/10.4171/ifb/513
http://msp.org/idx/mr/4794136
http://msp.org/idx/zbl/07926854
https://doi.org/10.1137/22M1483086
http://msp.org/idx/mr/4543430
http://msp.org/idx/zbl/1512.35151


3D STRICT SEPARATION PROPERTY FOR NONLOCAL CAHN–HILLIARD EQUATION 139

[He and Wu 2021] J. He and H. Wu, “Global well-posedness of a Navier–Stokes–Cahn–Hilliard system with chemotaxis and
singular potential in 2D”, J. Differential Equations 297 (2021), 47–80. MR Zbl

[Kenmochi et al. 1995] N. Kenmochi, M. Niezgódka, and I. Pawlow, “Subdifferential operator approach to the Cahn–Hilliard
equation with constraint”, J. Differential Equations 117:2 (1995), 320–356. MR Zbl

[Knopf and Signori 2021] P. Knopf and A. Signori, “On the nonlocal Cahn–Hilliard equation with nonlocal dynamic boundary
condition and boundary penalization”, J. Differential Equations 280 (2021), 236–291. MR Zbl
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THE KATO SQUARE ROOT PROBLEM
FOR WEIGHTED PARABOLIC OPERATORS

ALIREZA ATAEI, MORITZ EGERT AND KAJ NYSTRÖM

We give a simplified and direct proof of the Kato square root estimate for parabolic operators with elliptic
part in divergence form and coefficients possibly depending on space and time in a merely measurable
way. The argument relies on the nowadays classical reduction to a quadratic estimate and a Carleson-type
inequality. The precise organization of the estimates is different from earlier works. In particular, we
succeed in separating space and time variables almost completely despite the nonautonomous character of
the operator. Hence, we can allow for degenerate ellipticity dictated by a spatial A2-weight, which has not
been treated before in this context.

1. Introduction and main result

In the variables (x, t) ∈ Rn
× R =: Rn+1, we consider parabolic operators of the form

Hu := ∂t u − w−1 divx(A∇x u), (1-1)

where the weight w =w(x) is time-independent and belongs to the spatial Muckenhoupt class A2(R
n, dx),

and the coefficient matrix A = A(x, t) is measurable with complex entries and possibly depends on all
variables. Degeneracy is dictated by the same weight w in the sense that w−1 A satisfies the classical
uniform ellipticity condition (Section 2.3).

Weighted parabolic operators as in (1-1) occur in various contexts and applications, including the study
of fractional powers [Litsgård and Nyström 2023] and heat kernels of Schrödinger equations with singular
potential [Ishige et al. 2017]. For contributions to the study of local properties of solutions to Hu = 0 and
Gaussian estimates, we refer to [Chiarenza and Serapioni 1985; Cruz-Uribe and Rios 2008].

The purpose of this paper is to establish the Kato (square root) estimate for H, that is, to prove
Theorem 1.1 stated below. We write L2

µ = L2(Rn+1, dw dt), dµ = dw dt = w(x) dx dt , for the natural
weighted Lebesgue space associated with H, and Eµ for the corresponding first-order parabolic Sobolev
space of functions u such that the spatial gradient ∇x u, as well as the half-order time derivative D1/2

t u, is
in L2

µ. For the sake of the introduction, an intuitive interpretation of these objects suffices. We turn to
rigorous definitions in Section 3.
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Theorem 1.1. The operator H can be defined as an m-accretive operator in L2
µ associated with an

accretive sesquilinear form with domain Eµ. The domain of its unique m-accretive square root is the same
as the form domain, that is D(

√
H) = Eµ, and

∥
√
Hu∥L2

µ
∼ ∥∇x u∥L2

µ
+ ∥D1/2

t u∥L2
µ
, u ∈ Eµ,

holds with an implicit constant that depends on the dimension, the ellipticity parameters of A and the
A2-constant for w.

The time derivative ∂t is a skew-adjoint operator, and hence there are no lower bounds for the formal
pairing Re⟨Hu, u⟩ that contain derivatives in t . However, when the time variable describes the full real line,
parabolic operators admit some “hidden coercivity” that can be revealed through the Hilbert transform Ht

in the t-variable. Indeed, splitting ∂t = D1/2
t Ht D1/2

t , the sesquilinear form associated with (1-1) over L2
µ

is given by

B(u, v) :=

∫∫
Rn+1

w−1 A∇x u · ∇xv + Ht D1/2
t u · D1/2

t v dw dt, u, v ∈ Eµ, (1-2)

and lower bounds including both time and space derivatives become available when taking v = (1+δHt)u
with δ > 0 small. This observation is originally due to Kaplan [1966] and has been rediscovered several
times ever since; see [Dier and Zacher 2017; Hofmann and Lewis 2005; Nyström 2016] for example.
M-accretivity of H essentially follows from this observation, but to the best of our knowledge an explicit
statement, in the unweighted case w = 1, only appeared much later in [Auscher and Egert 2016]. For
the reader’s convenience, we reproduce the full argument in our weighted setting in Section 4. Being
m-accretive, H admits a sectorial functional calculus and in particular a (unique) m-accretive square
root

√
H; see [Haase 2006; Kato 1966] for background. This is how our main result should be understood.

The pursuit of the solution of the Kato problem for unweighted elliptic operators (finally completed
in [Auscher et al. 2002]) introduced new techniques that proved extremely viable for extensions and
applications to other problems in harmonic analysis and partial differential equations [Amenta and Auscher
2018; Alfonseca et al. 2011; Auscher and Axelsson 2011; Auscher and Mourgoglou 2019; Auscher and
Rosén 2012; Auscher et al. 2018; Castro et al. 2016; Escauriaza and Hofmann 2018; Hofmann et al. 2015;
2019; 2022; Nyström 2017]. For this reason, Kato-type estimates for different operators are desirable,
and the results of this paper most surely have important implications for, and applications to, boundary
value problems for weighted second-order parabolic operators.

Let us mention that the case of A2-weighted elliptic operators was settled in [Cruz-Uribe and Rios
2015], see also [Cruz-Uribe et al. 2018] for an extension, and rediscovered in the more general framework
of first-order Dirac operators in [Auscher et al. 2015]. The third author was first to develop the underlying
harmonic analysis in the unweighted parabolic setting in [Nyström 2016], and in the same paper he
proved the square function estimates that are essentially equivalent to Theorem 1.1 when w ≡ 1 and
when the coefficients A are t-independent. Using a framework of parabolic Dirac operators, Auscher,
together with the second and third authors, obtained the unweighted parabolic case when coefficients
depend measurably on x and t [Auscher et al. 2020]. Our Theorem 1.1 completes this succession of
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results but there is more to it and that makes, as we shall discuss next, the present paper interesting even
in the unweighted case.

Under the assumption A = A(x) in [Nyström 2016], the operator H is an autonomous parabolic
operator, and, in retrospect, the main result of that paper could have been obtained by interpolation from
maximal regularity of the Cauchy problem for (1-1); see [Ouhabaz 2021]. (In fact, this argument requires
only smoothness of order 1

2 for the coefficients in the t-variable.) However, many of the techniques
in [Nyström 2016], such as the parabolic off-diagonal estimates and the construction of T b-type test
functions, had already been strong enough for proving the parabolic Kato estimate in the presence of
measurable t-dependence, and our proof of Theorem 1.1 shows exactly how, thereby making our result
novel in at least two ways:

• We generalize all previous findings in the parabolic setting by combining measurable dependence of
the coefficients on all variables with A2-weighted degeneracy in space.

• We avoid the Dirac operator framework in [Auscher et al. 2020]. The resulting “second-order”
approach for parabolic operators with time-dependent measurable coefficients has not appeared in
the literature before, and, when restricted to the unweighted case w ≡ 1, it provides a significant
simplification of the proof of [Auscher et al. 2020, Theorem 2.6].

Our ambition is to present an almost self-contained argument using only a minimal number of tools. We
do not attempt to generalize all further results in [Auscher et al. 2020] to the weighted setting, which
should be done by developing a parabolic weighted Dirac operator framework.

As is customary in the field, see [Auscher et al. 2002; Cruz-Uribe and Rios 2015; Hofmann et al. 2022;
Nyström 2016], the first reduction in the proof of Theorem 1.1 is to use the bounded H∞-calculus for
m-accretive operators and a duality argument in order to reduce the matter to the one-sided quadratic
estimate ∫

∞

0
∥λH(1 + λ2H)−1u∥

2
L2

µ

dλ

λ
≲ ∥∇x u∥

2
L2

µ

+ ∥D1/2
t u∥

2
L2

µ

, u ∈ Eµ. (1-3)

In contrast to the elliptic setting, this reduction does not follow immediately from classical results à la
Kato and Lions [Lions 1962], since the sesquilinear form B in (1-2) is not closed due to the lack of lower
bounds by half-order time derivatives. Some more care is needed but we settle the issue in Section 6.
The quadratic estimate (1-3) is then achieved by slightly refining the techniques in [Nyström 2016], and
the argument relies on (weighted) Littlewood–Paley theory in L2 (Section 5), which eventually reduces
matters to a Carleson measure estimate that can be proved through a T b-procedure (Section 8).

It came as a surprise to us that, even though coefficients may depend measurably on all variables, the
proof of (1-3) can be arranged in a way that almost completely separates time and space variables. This
observation incarnates in three different stages of the proof:

• At the level of Littlewood–Paley theory, it suffices to use weighted elliptic theory in x and classical
Fourier analysis in t . The required weighted theory has already been developed in detail by Cruz-Uribe
and Rios [2012; 2015] in order to solve the weighted elliptic Kato problem.
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• At the level of off-diagonal bounds (averaged “kernel” bounds, see Section 4.4), we only need
estimates for operators involving differentiation in space. These estimates can be deduced directly
from the equation and come with parabolic scaling. The much more involved off-diagonal decay
and Poincaré inequalities for nonlocal derivatives such as D1/2

t , which were fundamental novelties
in [Auscher et al. 2020], can be avoided.

• At the level of the T b-argument, the test functions can be constructed based on a product structure,
which makes the argument more straightforward compared to the system of functions used in
[Auscher et al. 2020].

These three observations have in common that we can regroup derivatives of resolvents of H in such a
way that fine harmonic analysis estimates need only apply to the spatial parts, whereas the t-derivatives
appear in blocks that are amenable for simple resolvent estimates in L2

µ-norm. We shall indicate the most
striking examples of this principle along with the proof of the Carleson measure estimate in the final
section.

The next section contains some preliminary notation and conventions. The rest of the paper follows
the outline above.

2. Preliminaries and basic assumptions

Given (x, t) ∈ Rn
× R, we let ∥(x, t)∥ := max{|x |, |t |1/2

}. We call ∥(x, t)∥ the parabolic norm of (x, t).
Given a half-open cube Q =

(
x −

1
2r, x +

1
2r

]n
⊂ Rn parallel to the coordinate axes with sidelength r and

an interval I =
(
t − 1

2r2, t + 1
2r2

]
, we call 1 := Q × I ⊂ Rn+1 a parabolic cube of size r . Occasionally, we

write 1r (x, t) = Qr (x)× Ir (t) and r = ℓ(1) to indicate the center and size directly. A dyadic parabolic
cube of size 2 j is by definition centered in (2 j Z)n

× (4 j Z). For every c > 0, and given 1, we define c1
as the parabolic cube with the same center as 1 and size cℓ(1).

2.1. Assumptions and notation concerning the weight. For general background and the results cited
here, we refer to [Stein 1993, Chapter V]. The weight w = w(x) is a real-valued function belonging to
the Muckenhoupt class A2(R

n, dx), that is,

[w]A2 := sup
Q

(
−

∫
Q

w dx
)(

−

∫
Q

w−1 dx
)

< ∞, (2-1)

where the supremum is taken with respect to all cubes Q ⊂Rn . We introduce the measure dw(x) :=w(x) dx
on Rn , and we write w(E) =

∫
E dw for all Lebesgue measurable sets E ⊂ Rn . For averages, we use the

notation

(g)E,w := −

∫
E

g(x) dw(x) :=
1

w(E)

∫
E

g(x)w(x) dx

if w(E) ∈ (0, ∞) and g is locally integrable on Rn with respect to dw(x). It follows from (2-1) that there
are constants η ∈ (0, 1) and β > 0, depending only on n and [w]A2 , such that

β−1
(

|E |

|Q|

)1/(2η)

≤
w(E)

w(Q)
≤ β

(
|E |

|Q|

)2η

(2-2)
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whenever E ⊂ Q is measurable, and where | · | denotes Lebesgue measure in Rn . In particular, there
exists a constant D depending only on [w]A2 and n, called the doubling constant for w, such that

w(2Q) ≤ Dw(Q) for all cubes Q ⊂ Rn. (2-3)

The measures
dµ = dµ(x, t) := w(x) dx dt,

dµ−1
= dµ−1(x, t) := w(x)−1 dx dt

(2-4)

are defined on Rn+1. Naturally, µ and µ−1 can be seen as measures on Rn+1 defined by A2(R
n+1, dx dt)

weights, and in the context of these measures we use similar notation as above. The doubling constant
for µ with respect to parabolic scaling is 4D.

2.2. Maximal functions. We introduce the maximal operators in the individual variables

M(1)(g1)(x) := sup
r>0

−

∫
Qr (x)

|g1| dx,

M(2)(g2)(t) := sup
r>0

−

∫
Ir (t)

|g2| dt

for all locally integrable functions g1 and g2 on Rn and R, respectively. The operator M(1) is bounded on
the weighted space L2(Rn, dw) with a bound depending on [w]A2 and n [Stein 1993, Theorem 1, p. 201].
Both maximal operators can be naturally extended to L2(Rn+1, dµ) by keeping one of the variables fixed,
and they are bounded in this setting.

2.3. Assumptions on the coefficients. The matrix-valued function

A = A(x, t) = {Ai, j (x, t)}n
i, j=1

is assumed to have complex measurable entries Ai, j that satisfy

c1|ξ |
2w(x) ≤ Re(A(x, t)ξ · ξ̄ ), |A(x, t)ξ · ζ | ≤ c2w(x)|ξ ||ζ | (2-5)

for some c1, c2 ∈ (0, ∞) and for all ξ, ζ ∈ Cn , (x, t) ∈ Rn+1. Here, u · v = u1v1 + · · · + unvn , and ū
denotes the complex conjugate of u so that u · v̄ is the standard inner product on Cn . We refer to c1, c2 as
the ellipticity constants of A. Assumption (2-5) is equivalent to saying that w−1 A satisfies the classical
uniform ellipticity condition.

2.4. Floating constants. We refer to n and the constants [w]A2 , c1, c2, appearing in (2-1) and (2-5), as
structural constants. For A, B ∈ (0, ∞), the notation A ≲ B means that A ≤ cB for some c depending at
most on the structural constants. The notation A ≳ B and A ∼ B should be interpreted similarly.

3. Weighted function spaces

In this section we give a brief account of the relevant weighted function spaces. We let L2
w = L2(Rn, dw)

be the Hilbert spaces of square integrable functions with respect to dw. Its norm is denoted by ∥ · ∥2,w, its
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inner product by ⟨ · , · ⟩2,w, and the operator norm of linear operators on that space by ∥ · ∥2→2,w. Thanks
to the A2-condition, we have

L2
w ⊂ L1

loc(R
n, dx), (3-1)

and the class C∞

0 (Rn) of smooth and compactly supported test functions is dense in L2
w via the usual

truncation and convolution procedure [Kilpeläinen 1994, Section 1]. The same notation and properties
apply to L2

µ in Rn+1.

Definition 3.1 (elliptic weighted Sobolev space). We write H1
w := H1

w(Rn) for the space of all f ∈ L2
w

for which the distributional gradient ∇x f is (componentwise) in L2
w, and we equip the space with the

norm ∥ · ∥H1
w

:= (∥ · ∥
2
2,w + ∥∇x · ∥

2
2,w)1/2.

By construction H1
w is a Hilbert space, and standard truncation and convolution techniques yield that

C∞

0 (Rn) is dense in H1
w; see [Kilpeläinen 1994, Theorem 2.5].

In order to define parabolic function spaces, we use the Fourier transform F in the time variable,
keeping in mind that if f ∈ L2(Rn+1, dµ), then f (x, · ) ∈ L2(R, dt) for a.e. x ∈ Rn . The corresponding
Fourier variable will be denoted by τ . Then,

Ht f := F−1(i sgn(τ )F f )

is our Hilbert transform. If |τ |
1/2F f ∈ L2

µ, then we define the half-order time derivative

D1/2
t f := F−1(|τ |

1/2F f ),

and this is what we mean when we write D1/2
t f ∈ L2

µ. Using a classical formula for fractional Laplacians
for a.e. fixed x ∈ Rn , see [Di Nezza et al. 2012] for example, we obtain

∥D1/2
t f ∥

2
2,µ =

2
π

∫
Rn

∫
R

∫
R

| f (x, t) − f (x, s)|2

|t − s|2
ds dt dw(x), (3-2)

with the right-hand side being finite precisely when D1/2
t f ∈ L2

µ.

Definition 3.2 (parabolic energy space). We write Eµ := Eµ(Rn+1) for the space of all f ∈ L2
µ for which

∇x f, D1/2
t f ∈ L2

µ, and we equip the space with the norm

∥ · ∥Eµ
:= (∥ · ∥

2
2,µ + ∥∇x · ∥

2
2,µ + ∥D1/2

t · ∥
2
2,µ)1/2.

For f ∈ Eµ, we will refer to the vector D f := (∇x f, D1/2
t f ) as the parabolic gradient of f .

Again, Eµ is a Hilbert space. Note that, in the unweighted setting of [Nyström 2016], the notation D

has a slightly different meaning.

Lemma 3.3. The following statements are true:

(i) The space C∞

0 (Rn+1) is dense in Eµ(Rn+1).

(ii) Multiplication by C1(Rn+1)-functions is bounded on Eµ(Rn+1).
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Proof. We begin with (i). If f ∈ Eµ, then convolutions with smooth mollifiers, separately in x and t ,
provide smooth approximations in Eµ. For the convolution in space, this argument uses the A2-condition
on w as mentioned above. Hence, it suffices to approximate f by compactly supported functions in Eµ. To
this end, we can follow the standard pattern of smooth truncation: We pick a sequence (η j ) j ⊂ C∞

0 (Rn+1)

such that η j → 1 pointwise a.e. as j →∞, ∥η j∥∞+ j∥∇xη j∥∞+ j∥∂tη j∥∞ ≤ c uniformly in j , and then
we set f j := η j f . By dominated convergence, we obtain f j → f and ∇x f j → ∇x f in L2

µ as j → ∞. For
the half-order derivative, we use (3-2) with f j − f in place of f . We first bound the integrand in (3-2) by

|( f j − f )(x, t) − ( f j − f )(x, s)|2

|t − s|2

≤ 2
|(η j − 1)(x, t) − (η j − 1)(x, s)|2

|t − s|2
| f (x, t)|2 + 2

| f (x, t) − f (x, s)|2

|t − s|2
|(η j − 1)(x, s)|2

≤ 2 min
{

c2,
4(c + 1)2

|t − s|2

}
| f (x, t)|2 + 2(c + 1)2 | f (x, t) − f (x, s)|2

|t − s|2
. (3-3)

The right-hand side is independent of j and integrable with respect to ds dt dw(x). Since the middle term
tends to 0 a.e. as j → ∞, we conclude

∥D1/2
t ( f j − f )∥2,µ → 0

by dominated convergence. This completes the proof of (i).
As for (ii), we note that if η ∈ C1(Rn+1) and f ∈ Eµ, then

∥η f ∥2,µ ≤ ∥η∥∞∥ f ∥2,µ,

∥∇x(η f )∥2,µ ≤ ∥η∥∞∥∇x f ∥2,µ + ∥∇xη∥∞∥ f ∥2,µ,

∥D1/2
t (η f )∥2,µ ≤

√
8∥η∥

1/2
∞

∥∂tη∥
1/2
∞

∥ f ∥2,µ + ∥η∥∞∥D1/2
t f ∥2,µ,

where the third line follows by the same splitting as in (3-3), but with η in place of 1 − η j . □

Lemma 3.3 (i) implies the chain of continuous and dense embeddings

Eµ ⊂ L2
µ ≃ (L2

µ)∗ ⊂ (Eµ)∗, (3-4)

where we use the upper star to denote (anti)-dual spaces. We have bounded operators

D1/2
t : Eµ → L2

µ,

∇x : Eµ → (L2
µ)n,

(3-5)

and we denote their adjoints with respect to (3-4) by

D1/2
t : L2

µ → (Eµ)∗,

w−1 divx w : (L2
µ)n

→ (Eµ)∗.
(3-6)

Note carefully that w−1 divx w is only a suggestive notation reflecting the formal action of this operator.
In general, there is no guarantee that this operator splits into a composition of its three building blocks.
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4. The parabolic operator

We continue by introducing the formal parabolic operator in (1-1) rigorously as an unbounded operator in
the Hilbert space L2

µ associated with a sesquilinear form.

Denoting by Ht the Hilbert transform in the t-variable and by D1/2
t the half-order time derivative as

defined in Section 3, we can factorize
∂t = D1/2

t Ht D1/2
t .

By (3-5) and (3-6), we have ∂t : Eµ → (Eµ)∗. We define H as a bounded operator Eµ → (Eµ)∗ via

(Hu)(v) := B(u, v) :=

∫∫
Rn+1

w−1 A∇x u · ∇xv + Ht D1/2
t u · D1/2

t v dµ, u, v ∈ Eµ. (4-1)

In view of (3-4), it makes sense to consider the maximal restriction of H to an operator in L2
µ, called the

part of H in L2
µ, with domain

D(H) := {u ∈ Eµ(Rn+1) : Hu ∈ L2
µ(Rn+1)}. (4-2)

If u ∈ D(H), we have, for all v ∈ Eµ, that

(Hu)(v) =

∫∫
Rn+1

Hu · v̄ dµ,

and a formal integration by parts in (4-1) reveals that it is indeed justified to say that the part of H in L2
µ

gives meaning to the formal expression in (1-1). More precisely, in terms of (3-5) and (3-6), we have that
H : Eµ → (Eµ)∗ acts as the composition of operators

H = D1/2
t Ht D1/2

t − (w−1 divx w)(w−1 A∇x). (4-3)

4.1. Hidden coercivity. The following lemma relies on the hidden coercivity (proved by Kaplan [1966])
of the parabolic sesquilinear form B in (4-1) that can be revealed through the Hilbert transform.

Lemma 4.1. Let σ ∈ C with Re σ > 0. For each f ∈ (Eµ)∗, there exists a unique u ∈ Eµ such that
(σ +H)u = f . Moreover,

∥u∥Eµ
≤

√
2 max

{
c2 + 1

c1
,
|Im σ | + 1

Re σ

}
∥ f ∥(Eµ)∗ .

Proof. By Plancherel’s theorem, the Hilbert transform Ht is isometric on Eµ. Hence, we can define a
“twisted” sesquilinear form Bδ,σ : Eµ × Eµ → C via

Bδ,σ (u, v) :=

∫∫
Rn+1

(
σu · (1 + δHt)v + w−1 A∇x u · ∇x(1 + δHt)v

+ Ht D1/2
t u · D1/2

t (1 + δHt)v
)

dµ, (4-4)

where δ ∈ (0, 1) is to be chosen. Clearly Bδ,σ is bounded. Since Ht is skew-adjoint, we have

Re
∫∫

Rn+1
Htv · v̄ dµ = 0, v ∈ L2

µ . (4-5)
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Expanding Bδ,σ (u, u) and using the above along with the weighted ellipticity of the coefficients A, we
find

Re Bδ,σ (u, u) ≥ δ∥D1/2
t u∥

2
2,µ + (c1 − c2δ)∥∇x u∥

2
2,µ + (Re σ − δ|Im σ |)∥u∥

2
2,µ. (4-6)

Choosing δ = min{c1/(c2 + 1), Re σ/(|Im σ | + 1)}, the factors in front of the second and third term in
the last display become no less than δ. Hence, we obtain the coercivity estimate

Re Bδ,σ (u, u) ≥ min
{

c1

c2 + 1
,

Re σ

|Im σ | + 1

}
∥u∥

2
Eµ

, v ∈ Eµ. (4-7)

The Lax–Milgram lemma yields, for each f ∈ (Eµ)∗, a unique u ∈ Eµ satisfying the estimate claimed in
the lemma such that

Bδ,σ (u, v) = f ((1 + δHt)v), v ∈ Eµ.

(Note that the additional factor
√

2 is an upper bound for the norm of 1 + δHt on Eµ.) Plancherel’s
theorem yields that 1 + δHt is an isomorphism on Eµ for all δ ∈ R. Thus,∫∫

Rn+1
σu · v̄ + w−1 A∇x u · ∇xv + Ht D1/2

t u · D1/2
t v dµ = f (v), v ∈ Eµ,

that is, (σ +H)u = f as required. □

The proof above fails for δ = 0 since Re B( · , · ) does not control ∥D1/2
t · ∥2,µ from above. As a

consequence, B itself is not a closed sesquilinear form in the sense of Kato [1966] or, equivalently,
(∥ · ∥

2
2,µ + Re B( · , · ))1/2 does not define an equivalent norm on Eµ. In [Auscher and Egert 2016,

Lemma 4], it has been (essentially) shown that a parabolic analog of Kato’s first representation theorem
holds nonetheless. For convenience, we include the short argument with some minor improvements in the
next section.

4.2. M-accretivity. Recall that an operator H in a Hilbert space such as L2
µ is called m-accretive if it is

closed and densely defined, with resolvent estimates

∥(σ +H)−1
∥2→2,µ ≤ (Re σ)−1, σ ∈ C, Re σ > 0.

Proposition 4.2. The part of H in L2
µ is m-accretive and D(H) is dense in Eµ.

Proof. Fix σ ∈ C with Re σ > 0. Lemma 4.1 yields that σ +H : D(H) → L2
µ is bijective. Given f ∈ L2

µ,
we set u := (σ +H)−1 f and use ellipticity of the coefficients A and (4-5) to deduce

Re σ∥u∥
2
2,µ ≤ Re

∫∫
Rn+1

σu · ū + w−1 A∇x u · ∇x u + Ht D1/2
t u · D1/2

t u dµ

= Re
∫∫

Rn+1
f · ū dµ ≤ ∥ f ∥2,µ∥u∥2,µ.

This gives the required resolvent bound ∥u∥2,µ ≤ (Re σ)−1
∥ f ∥2,µ. Moreover, the part of H in L2

µ is closed
since it has a nonempty resolvent set, and the resolvent estimates for σ > 0 imply a dense domain [Haase
2006, Proposition 2.1.1]. This proves m-accretivity.
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In order to prove that D(H) is dense in Eµ, we use the sesquilinear form Bδ,1 in (4-4) with δ > 0
chosen as in the proof of that lemma. Suppose v ∈ Eµ is orthogonal to D(H) in Eµ. By the Lax–Milgram
lemma, there is w ∈ Eµ such that ⟨u, v⟩Eµ

= Bδ,1(u, w) for all u ∈ Eµ. For u ∈ D(H), this identity
becomes 0 = ⟨(1 +H)u, (1 + δHt)w⟩2,µ, and since 1 +H : D(H) → L2

µ is bijective, we conclude that
(1 + δHt)w = 0. Thus, we have w = 0 and therefore also v = 0. □

The adjoint H∗ of H (seen as either a bounded operator Eµ → (Eµ)∗ or an unbounded operator in L2
µ)

has the same properties as H. Indeed, it can be checked by the very definition that it is associated with
the sesquilinear form

B∗(u, v) = B(v, u)

and that it formally corresponds to the backward-in-time operator

−∂t − w−1(x) divx(A∗(x, t)∇x).

Here A∗ is the conjugate transpose of A.

4.3. Resolvent estimates. Using Proposition 4.2, we see that, for λ > 0, the resolvent operators

Eλ := (I + λ2H)−1,

E∗

λ := (I + λ2H∗)−1
(4-8)

are well defined as bounded operators L2
µ → L2

µ and (Eµ)∗ → Eµ. Moreover, they are adjoints of each
other.

Lemma 4.3. The following resolvent estimates hold uniformly for all λ > 0, all f ∈ L2
µ and all f ∈ (L2

µ)n:

(i) ∥Eλ f ∥2,µ + ∥λDEλ f ∥2,µ ≲ ∥ f ∥2,µ,

(ii) ∥λEλD1/2
t f ∥2,µ + ∥λ2DEλD1/2

t f ∥2,µ ≲ ∥ f ∥2,µ,

(iii) ∥λEλw
−1 divx(w f )∥2,µ + ∥λ2DEλw

−1 divx(w f )∥2,µ ≲ ∥ f ∥2,µ.

The same estimates hold with Eλ replaced by E∗

λ .

Proof. We first prove (i). Setting u := (λ−2
+H)−1 f , we have Eλ f = λ−2u, and by m-accretivity we

obtain
∥Eλ f ∥2,µ ≤ ∥ f ∥2,µ.

Next, we use the twisted sesquilinear form Bδ,σ as in (4-4) with parameter σ =λ−2, so that by construction

Bδ,σ (u, u) = ⟨ f, (1 + δHt)u⟩2,µ. (4-9)

With this choice for σ , we pick δ = c1/(2c2), use (4-6) on the left, and Cauchy–Schwarz on the right, in
order to obtain

∥Du∥
2
2,µ ≲ ∥ f ∥2,µ∥u∥2,µ ≤ λ2

∥ f ∥
2
2,µ.

This is the required uniform bound for λDEλ f . Since H is of the same type as H∗ from the point of view
of sesquilinear forms, the same estimates also hold for E∗

λ in place of Eλ.
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Next, we note that the estimates for the leftmost terms in (ii) and (iii) follow by duality from (i) applied
to E∗

λ .
In order to estimate the second term on the left in (ii), we set u := (λ−2

+H)−1 D1/2
t f . Since D1/2

t f
is now regarded as an element in (Eµ)∗, we get ⟨ f, D1/2

t (1 + δHt)u⟩2,µ on the right-hand side in (4-9),
and from this we conclude

∥Du∥
2
2,µ ≲ ∥ f ∥2,µ∥Du∥2,µ,

as required. The remaining term in (iii) is estimated in the same way upon replacing D1/2
t f by

w−1 divx(w f ). □

4.4. Off-diagonal estimates. Given measurable subsets E and F of Rn+1, we let

d(E, F) := inf{∥(x − y, t − s)∥ : (x, t) ∈ E, (y, s) ∈ F}

denote their parabolic distance. Lemma 4.4 below is an improvement of the uniform bounds in Lemma 4.3.
We only state and prove Lemma 4.4 for the families of operators that will require it later. However, let us
stress that such estimates are not to be expected in the presence of the nonlocal operator D1/2

t , and one
of the insights in [Auscher et al. 2020] was that in this case a nonlocal version of off-diagonal bounds
should be used.

Lemma 4.4. Assume that E and F are measurable subsets of Rn+1, and let d := d(E, F). Then, there
exists a constant c ∈ (0, ∞), depending only on the structural constants, such that

(i)
∫∫

F
|Eλ f |

2
+ |λ∇xEλ f |

2 dµ ≲ e−d/(cλ)

∫∫
E

| f |
2 dµ,

(ii)
∫∫

F
|λEλw

−1 divx(w f )|2 dµ ≲ e−d/(cλ)

∫∫
E

| f |
2 dµ

for all λ > 0 and all f ∈ L2
µ, f ∈ (L2

µ)n with support in E. The same statements are true when Eλ is
replaced by E∗

λ .

Proof. As in the proof of Lemma 4.3, it suffices to treat Eλ. Based on Lemma 4.3, we see that it suffices
to obtain the exponential estimate for 0 < λ ≤ αd, where for now α ∈ (0, 1) is a degree of freedom that
will be determined later and which will only depend on the structural constants.

Let u := Eλ f , and recall that∫∫
Rn+1

uv̄ + λ2w−1 A∇x u · ∇xv + λ2 Ht D1/2
t u · D1/2

t v dµ =

∫∫
Rn+1

f · v̄ dµ (4-10)

for all v ∈ Eµ. We can pick a real-valued η̃ ∈ C∞(Rn+1) such that η̃ = 1 on F , η̃ = 0 on E , and such that

d|∇x η̃| + d2
|∂t η̃| ≤ c

for some constant c only depending on n. The different scaling in the two terms is due to the definition of
the parabolic distance. Next, we let

v := uη2 with η := e(αd/λ)η̃
− 1. (4-11)



152 ALIREZA ATAEI, MORITZ EGERT AND KAJ NYSTRÖM

For this choice of v, we rewrite the real part in (4-10) of the pairing containing half-order derivatives
as follows. According to Lemma 3.3, there exists a sequence {ui } ⊂ C∞

0 (Rn+1) such that ui → u in Eµ

as i → ∞. By the same lemma, η2ui → η2u in Eµ, and therefore

Re
∫∫

Rn+1
Ht D1/2

t u · D1/2
t v dµ = Re lim

i→∞

∫∫
Rn+1

Ht D1/2
t ui · D1/2

t (uiη2) dt dw

= lim
i→∞

Re
∫∫

Rn+1
∂t ui · uiη2 dt dw

=
1
2

lim
i→∞

∫∫
Rn+1

∂t |ui |
2
· η2 dt dw

=
1
2

lim
i→∞

−

∫∫
Rn+1

|ui |
2
· ∂t(η

2) dt dw

= −
1
2

∫∫
Rn+1

|u|
2
· ∂t(η

2) dµ.

Going back to (4-10) and using that η = 0 on E , we conclude that

Re
∫∫

Rn+1
|u|

2η2 dµ + λ2w−1 A∇x u · ∇x(uη2) −
1
2λ2

|u|
2∂t(η

2) dµ = 0.

Using this identity and ellipticity, we deduce∫∫
Rn+1

|u|
2η2 dµ + c1λ

2
∫∫

Rn+1
|∇x u|

2η2 dµ

≤ λ2
∫∫

Rn+1
|u|

2
|η||∂tη| dµ + 2c2λ

2
∫∫

Rn+1
|u||∇x u||η||∇xη| dµ

≤
1
2

∫∫
Rn+1

|u|
2η2 dµ +

1
2
λ4

∫∫
Rn+1

|u|
2
|∂tη|

2 dµ +
1
2

c1λ
2
∫∫

Rn+1
|∇x u|

2η2 dµ

+ 2
c2

2

c1
λ2

∫∫
Rn+1

|u|
2
|∇xη|

2 dµ.

In conclusion,∫∫
Rn+1

|u|
2η2 dµ + c1λ

2
∫∫

Rn+1
|∇x u|

2η2 dµ ≤

∫∫
Rn+1

|u|
2
(
λ4

|∂tη|
2
+ 4

c2
2

c1
λ2

|∇xη|
2
)

dµ.

By the definition of η in (4-11) and since λ ≤ αd ≤ d , we see that

|∂tη|
2
≤

α2d2

λ2 |η + 1|
2 c2

d4 ≤ c2α2λ−4
|η + 1|

2

and

|∇xη|
2
≤

α2d2

λ2 |η + 1|
2 c2

d2 = c2α2λ−2
|η + 1|

2.

Thus, we get ∫∫
Rn+1

|u|
2η2 dµ + c1λ

2
∫∫

Rn+1
|∇x u|

2η2 dµ ≲ α2
∫∫

Rn+1
|u|

2
|η + 1|

2 dµ.
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At this point, we make our choice of α. Indeed, using the bound |η + 1|
2
≤ 2(η2

+ 1), we choose α small
enough to be able to absorb the part coming from η into the left-hand side. The conclusion is that∫∫

Rn+1
|u|

2η2 dµ + λ2
∫∫

Rn+1
|∇x u|

2η2 dµ ≲
∫∫

Rn+1
|u|

2 dµ.

On the right-hand side, we can use Lemma 4.3 (i), and, on the left-hand side, we exploit that on F we
have

η = eαd/λ
− 1 ≥

1
2 eαd/λ

since we are assuming λ ≤ αd . Consequently,

e2αd/λ

∫∫
F

|u|
2 dµ + e2αd/λ

∫∫
F

|λ∇x u|
2 dµ ≲

∫∫
E

| f |
2 dµ,

which proves (i).
The inequality in (ii) follows by a duality argument, using (i) for E∗

λ and interchanging the roles of E
and F . In fact, ∫∫

F
|λEλw

−1 divx(w f )|2 dµ = sup
g

(∫∫
Rn+1

λEλw
−1 divx(w f ) · ḡ dµ

)2

= sup
g

(∫∫
E

− f · λ∇xE∗

λ g dµ

)2

,

where the supremum is taken with respect to all g ∈ L2
µ, with support in F , such that ∥g∥2,µ = 1. We can

now complete the proof by applying the Cauchy–Schwarz inequality and (i) of the lemma but for E∗

λ . □

5. Weighted Littlewood–Paley theory in the parabolic setting

We could develop a weighted parabolic Littlewood–Paley theory following the approach for singular
integrals on spaces of homogeneous type [David et al. 1985]. However, since our weight w is time
independent, we have decided to present a down-to-earth approach by combining weighted elliptic theory
known in the field [Cruz-Uribe and Rios 2008; 2012; García-Cuerva and Rubio de Francia 1985] with
Fourier analysis on the real line. Most of our estimates here are formulated using the square function
norm

||| · |||2,µ :=

(∫
∞

0

∫∫
Rn+1

| · |
2 dµ dλ

λ

)1/2

. (5-1)

For the rest of the paper, P ∈ C∞

0 (Rn+1) is a fixed real-valued function in product form

P(x, t) = P(1)(x)P(2)(t),

where P(1) and P(2) are both radial, nonnegative, and have integral 1. For all x ∈ Rn , t ∈ R, we set

P(1)
λ (x) := λ−nP(1)(x/λ),

P(2)
λ (t) := λ−2P(2)(t/λ2),

Pλ(x, t) := P(1)
λ (x)P(2)

λ (t) = λ−n−2P(1)(x/λ)P(2)(t/λ2)
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whenever λ > 0. With a slight abuse of notation, we let Pλ also denote the associated convolution operator

Pλ f (x, t) = Pλ ∗ f (x, t) =

∫∫
Rn+1

Pλ(x − y, t − s) f (y, s) dy ds,

and likewise for P(1)
λ and P(2)

λ . We note that

|P(1)
λ f (x, t)| ≤ M(1)( f ( · , t))(x),

|P(2)
λ f (x, t)| ≤ M(2)( f (x, · ))(t),

|Pλ f (x, t)| ≤ M(1)(M(2) f ( · , t))(x)

(5-2)

almost everywhere, for every f ∈ L1
loc(R

n+1); see [Stein 1993, Section II.2.1]. In particular, these
pointwise bounds hold for f ∈ L2

µ. The boundedness of the maximal operators in L2
µ implies

sup
λ>0

∥Pλ∥2→2,µ ≲ 1;

see Section 2.2.

Lemma 5.1. For all f ∈ L2
µ(Rn+1),

|||λ∇xPλ f |||2,µ + |||λ2∂tPλ f |||2,µ + |||λD1/2
t Pλ f |||2,µ ≲ ∥ f ∥2,µ.

Proof. Here, we write out in detail how the product structure of Pλ can be used to prove parabolic
estimates in Rn+1 through weighted elliptic theory and classical Fourier analysis. This motif will appear
in all proofs of this section. Let ĝ denote the Fourier transform in time of a function g on Rn+1.

By uniform boundedness of P(1)
λ in L2

µ and Plancherel’s theorem, we have

|||λD1/2
t Pλ f |||

2
2,µ =

∫
∞

0

∫∫
Rn+1

|P(1)
λ λD1/2

t P(2)
λ f |

2 dµ dλ

λ

≲
∫

Rn

∫
∞

0

∫
R

|λD1/2
t P(2)

λ f |
2 dt dλ

λ
dw

=

∫
Rn

∫
∞

0

∫
R

∣∣λ|τ |
1/2P̂(2)(λ2τ) f̂ (x, τ )

∣∣2 dτ dλ

λ
dw(x).

The integral in λ is finite and independent of τ since P̂(2) is a radial Schwartz function. Applying
Plancherel’s theorem backwards, we get the desired bound by ∥ f ∥

2
2,µ. The same argument yields the

bound for |||λ2∂tPλ f |||2,µ.
Finally, in order to bound λ∇xPλ f , we use uniform boundedness of P(2)

λ to get

|||λ∇xPλ f |||
2
2,µ =

∫
∞

0

∫∫
Rn+1

|P(2)
λ λ∇xP(1)

λ f |
2 dµ dλ

λ
≲

∫
R

∫
∞

0

∫
Rn

|λ∇xP(1)
λ f |

2 dw dλ

λ
dt.

For fixed t , we now need weighted elliptic Littlewood–Paley theory. The operator λ∇xP(1)
λ acts by

convolution with 9λ, where 9 = ∇xP(1) has integral 0. Thus, we can use, e.g., [Cruz-Uribe and Rios
2012, Lemma 4.6] to control the integral in dw dλ by ∥ f ( · , t)∥2

2,w, and the proof is complete. □
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Lemma 5.2. For all f ∈ Eµ,
|||λ−1(I −Pλ) f |||2,µ ≲ ∥D f ∥2,µ.

Proof. We first claim

|||λ−1(I −P(1)
λ ) f |||2,µ

≲ ∥∇x f ∥2,µ, |||λ−1(I −P(2)
λ ) f |||2,µ

≲ ∥D1/2
t f ∥2,µ. (5-3)

As in the proof of Lemma 5.1, this can be proved using Plancherel’s theorem in t for the second term
and weighted Littlewood–Paley theory with t fixed for the first term. The required weighted result is
[Cruz-Uribe and Rios 2015, Proposition 2.3] (originally [Cruz-Uribe and Rios 2012, Proposition 4.7]) and
the application to the concrete operator considered here is detailed in the lines following equation (4.3) in
the same paper.

In order to complete the proof of the lemma, we simply write

(I −Pλ) = P(2)
λ (1 −P(1)

λ ) + (1 −P(2)
λ ).

The result follows from (5-3) and the uniform boundedness of P(2)
λ in L2

µ. □

In the following we write 1 = Q × I for parabolic cubes in Rn+1
= Rn

× R.

Definition 5.3. We define A(1)
λ , A(2)

λ and Aλ to be the dyadic averaging operators in x , t and (x, t) with
respect to parabolic scaling, that is, if 1 = Q × I is the dyadic parabolic cube with 1

2ℓ(1) < λ ≤ ℓ(1)

containing (x, t), then

A(1)
λ f (x, t) := −

∫
Q

f dy,

A(2)
λ f (x, t) := −

∫
I

f ds,

Aλ f (x, t) := −

∫
−

∫
1

f dy ds = A(1)
λ A(2)

λ f (x, t).

It follows from the bounds for the maximal operators in Section 2.2 and doubling that the dyadic
averaging operators are bounded on L2

µ, uniformly in λ.

Lemma 5.4. Let Pλ and Aλ be as above. Then, for all f ∈ L2
µ(Rn+1),

|||(Aλ −Pλ) f |||2,µ ≲ ∥ f ∥2,µ.

Proof. We follow our (general) strategy and write

Aλ −Pλ = A(2)
λ (A(1)

λ −P(1)
λ ) +P(1)

λ (A(2)
λ −P(2)

λ ),

where we have also used that A(2)
λ and P(1)

λ commute since they act in different variables. Since these
operators are uniformly bounded on L2

µ with respect to λ, we get

|||(Aλ −Pλ) f |||2,µ ≲
∫

R

∫
∞

0
∥(A(1)

λ −P(1)
λ ) f ( · , t)∥2

2,w

dλ

λ
dt

+

∫
Rn

∫
∞

0
∥(A(2)

λ −P(2)
λ ) f (x, · )∥2

2,dt
dλ

λ
dw(x).
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For the first term on the right, we can rely on the weighted elliptic version of the lemma [Cruz-Uribe and
Rios 2012, Lemma 5.2]. For the second term on the right, we can make a change of variables λ′

= λ2

and use the unweighted one-dimensional version of the lemma, which of course follows from the same
reference or the classical proof in [Auscher and Tchamitchian 1998, Appendix C, (4)]. □

6. Reduction to a quadratic estimate

The purpose of this short section is to reduce our main result, Theorem 1.1, to the quadratic estimate

|||λHEλ f |||2,µ ≲ ∥∇x f ∥2,µ + ∥Ht D1/2
t f ∥2,µ, f ∈ Eµ. (6-1)

Recall that Eλ = (1 + λ2H)−1. Since the sesquilinear form associated with H is not closed, see Section 4,
classical results à la Lions [1962] as in the elliptic case do not apply, and here we give full details of this
reduction.

At this point, we require some essentials from functional calculus. We give references along the way,
and we refer the reader to [Haase 2006; McIntosh 1986] for further background. Since H is m-accretive
(Proposition 4.2), it has a unique m-accretive square root

√
H defined by the functional calculus for

sectorial operators, and the same is true for the adjoint H∗ with
√
H∗ = (

√
H)∗.

In order to see the reduction alluded to above, we start out with the Calderón reproducing formula in
[Haase 2006, Theorem 5.2.6], and we write

√
H f =

16
π

∫
∞

0
λ3H2(1 + λ2H)−3 f dλ

λ
, (6-2)

where f ∈ D(
√
H) and the integral is understood as an improper Riemann integral in L2

µ. Testing this
identity against g ∈ L2

µ and applying Cauchy–Schwarz, we obtain

|⟨
√
H f, g⟩2,µ| ≤

16
π

|||λH(1 + λ2H)−1 f |||2,µ × |||λ2H∗(1 + λ2H∗)−2g|||2,µ.

The second term is controlled by a structural constant times ∥g∥2,µ since H∗ is m-accretive in L2
µ —

more precisely, this follows from von Neumann’s inequality [Haase 2006, Theorem 7.1.7] and the
characterization of the emerging functional calculus due to McIntosh [Haase 2006, Theorem 7.3.1].
Taking the supremum over all g yields

∥
√
H f ∥2,µ ≲ |||λH(I + λ2H)−1 f |||2,µ.

Let us now suppose that (6-1) holds. Then, we obtain

∥
√
H f ∥2,µ ≲ ∥∇x f ∥2,µ + ∥Ht D1/2

t f ∥2,µ, (6-3)

when f is in Eµ ∩D(
√
H) ⊃ D(H). However, since this space is dense in Eµ, by Proposition 4.2, and as

√
H is closed, the estimate extends to all f ∈ Eµ. Next, we note that H∗ is similar to an operator in the

same class as H under conjugation with the “time reversal” f (t, x) 7→ f (−t, x) and conjugation of A.
Hence, we also have

∥
√
H∗g∥2,µ ≲ ∥∇x g∥2,µ + ∥Ht D1/2

t g∥2,µ (6-4)
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whenever g ∈ Eµ. Using (4-6) with σ = 0 and δ small enough depending on the structural constants, we
obtain, for all f ∈ D(H), that

δ∥∇x f ∥
2
2,µ + δ∥D1/2

t f ∥
2
2,µ ≤ |⟨H f, (1 + δHt) f ⟩2,µ|

≤ ∥
√
H f ∥2,µ∥

√
H∗(1 + δHt) f ∥.

Now, (6-4) with g := (1 + δHt) f ∈ Eµ implies

∥∇x f ∥2,µ + ∥D1/2
t f ∥2,µ ≲ ∥

√
H f ∥2,µ. (6-5)

Since D(H) is dense in D(
√
H) for the graph norm [Haase 2006, Proposition 3.1.1(h)], the estimate

extends to all f ∈ D(
√
H).

In conclusion, we have seen that (6-1) implies the statement of Theorem 1.1 through the estimates
(6-3) and (6-5). Therefore, the rest of the paper is devoted to the task of proving (6-1).

7. Principal part approximation

In order to prove the square function estimate (6-1), we will eventually split H into its elliptic and
parabolic parts and perform the “hard” analysis only on the elliptic part. This will lead us to the operators

Uλ := λEλw
−1 divx w, λ > 0. (7-1)

These operators appeared in Lemma 4.4 on off-diagonal estimates and in particular they are uniformly
bounded on (L2

µ)n . Here, we continue their analysis.
Given a cube Q = Qr (x) ⊂ Rn and an interval I = Ir (t), we let 1 := Q × I and set

Ck(1) = Ck(Q × I ) := 2k+11 \ 2k1, k = 1, 2, . . . ,

C0(1) := 21.

In the following, we denote the characteristic function of a set E by 1E . We use off-diagonal estimates to
define Uλ on (L∞)n .

Definition 7.1. For b ∈ (L∞)n , we define

Uλb =: lim
k→∞

Uλ(b12k1), (7-2)

with convergence locally in (L2
µ)n , where on the right 1 is any parabolic cube.

Definition 7.1 is meaningful and independent of the choice of 1 as we shall see next. To start, if 1′ is
any parabolic cube, then for m > l large enough to guarantee that 1′

⊂ 2l−11, applying Lemma 4.4 with
E = C j (1) and F = 1′ for j = l, . . . , m − 1 yields

∥Uλ(b12m1\2l1)∥L2
µ(1′) ≤

m−1∑
j=l

∥Uλ(b1C j (1))∥L2
µ(1′)

≲ µ(1)1/2
∥b∥∞

m−1∑
j=l

e−ℓ(1)2 j−1/cλ(4D) j+1.
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Recall that 4D is the doubling constant for µ; see (2-3). The right-hand side converges to 0 as m, l → ∞.
In conclusion, {Uλ(b12l1)}l is a Cauchy sequence locally in (L2

µ)n . By the same argument, Definition 7.1
is independent of the particular choice 1. Taking 1′

= 1 and l = 1, we get

∥Uλb∥L2
µ(1) ≤ ∥Uλ(b121)∥L2

µ(1) +
∥∥ lim

m→∞
Uλ(b12m1\21)

∥∥
L2

µ(1)

≲ µ(1)1/2
∥b∥∞

(
1 +

∞∑
j=1

e−ℓ(1)2 j−1/cλ(4D) j+1
)

. (7-3)

Lemma 7.2. Let b ∈ (L∞)n and f ∈ L2
µ. Then,

∥(Uλb) ·Aλ f ∥2,µ ≲ ∥b∥∞∥ f ∥2,µ.

Proof. If 1 ⊂ Rn+1 is a parabolic cube such that 1
2ℓ(1) < λ ≤ ℓ(1), then by (7-3) we have∫∫

1

|Uλb|
2 dµ ≲ µ(1)∥b∥

2
∞

.

Since Aλ f is constant on each such 1, we obtain∫∫
1

|(Uλb) ·Aλ f |
2 dµ ≤

∫∫
1

|Uλb|
2 dµ · −

∫
−

∫
1

|Aλ f |
2 dµ≲ ∥b∥

2
∞

∫∫
1

|Aλ f |
2 dµ.

The claim follows by summing in 1 and using that Aλ is uniformly bounded on L2
µ with respect to λ;

see Section 5. □

Writing A = (A1, . . . , An) with A j the j-th column of A, we can use Definition 7.1 to define the
action of Uλ on the bounded matrix-valued function w−1 A by

(Uλw
−1 A) := Uλ(w

−1 A) := (Uλ(w
−1 A1), . . . , Uλ(w

−1 An)).

We will approximate Uλw
−1 A by operators that act via multiplication on the maximal dyadic cubes of

size at most λ. To be precise, we will consider

Rλ f := Uλ(w
−1 A f ) − (Uλw

−1 A) ·Aλ f. (7-4)

This is nowadays called the “principal part approximation”. Using Lemmas 4.3 and 7.2, we see that
the Rλ are uniformly bounded on L2

µ for λ > 0. Moreover, we prove the following bound.

Proposition 7.3. Let f ∈ L2
µ ∩ C∞. Then,

∥Rλ f ∥2,µ ≲ ∥λ∇x f ∥2,µ + ∥λ2∂t f ∥2,µ.

For the proof, we need the following weighted Poincaré-type inequality. In the following we abbreviate
( f )1 = ( f )1,dx dt .

Lemma 7.4. Let f ∈ C∞. Then, for all parabolic cubes 1 and all nonnegative integers k,∫∫
Ck(1)

|( f − ( f )1)|2 dµ ≤ c2k(n+2)

∫∫
2k+11

ℓ(1)2
|∇x f |

2
+ ℓ(1)4

|∂t f |
2 dµ,

where c depends only on n and [w]A2 .
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Proof. Let 1 = Q × I be a parabolic cube. We set g := ( f )Q,dx , which is a function of t , and we split

f − ( f )1 = ( f − ( f )Q,dx) + (g − (g)I,dt).

To the first term we can apply the weighted Poincaré inequality in the x-variable from (the proof of)
[Heinonen et al. 1993, Theorem 15.26] and to the second term the standard Poincaré inequality in the
t-variable. The result is(∫∫

1

|( f − ( f )1)|2 dµ

)1/2

≤ c
(∫∫

1

ℓ(1)2
|∇x f |

2
+ ℓ(1)4

|∂t f |
2 dµ

)1/2

.

Note that in [Heinonen et al. 1993] balls are used instead of cubes, but doubling allows us to switch
between one and the other. For the general result it suffices to write

f − ( f )1 = ( f − ( f )2k+11) + (( f )2k+11 − ( f )2k1) + · · · + (( f )21 − ( f )1)

and to use the estimate above on the cubes 2k+11 and then on 2k+11, . . . , 21. □

Proof of Proposition 7.3. We note that if (x, t) ∈ Rn+1 and λ > 0, then

Rλ f (x, t) = Uλ(w
−1 A( f − ( f )1))(x, t),

where 1 is the unique dyadic parabolic cube with 1
2ℓ(1) < λ ≤ ℓ(1) that contains (x, t). Thus,

∥Rλ f ∥
2
2,µ =

∑
1

∫∫
1

|Uλ(w
−1 A( f − ( f )1))|2 dµ

≤

∑
1

( ∞∑
k=0

(∫∫
1

|Uλ(w
−1 A · 1Ck(1)( f − ( f )1))|2 dµ

)1/2)2

,

and therefore

∥Rλ f ∥
2
2,µ ≲

∑
1

( ∞∑
k=0

e−2k/c
(∫∫

Ck(1)

|( f − ( f )1)|2 dµ

)1/2)2

≲
∑
1

∞∑
k=0

e−2k/c
∫∫

Ck(1)

|( f − ( f )1)|2 dµ

≲
∑
1

∞∑
k=0

e−2k/c2k(n+2)

∫∫
2k+11

λ2
|∇x f |

2
+ λ4

|∂t f |
2 dµ

≤

( ∞∑
k=0

e−2k/c2(2k+1)(n+2)

) ∫∫
Rn+1

λ2
|∇x f |

2
+ λ4

|∂t f |
2 dµ,

where we used, in succession, the off-diagonal estimates, Cauchy–Schwarz inequality, Lemma 7.4, and
the fact that each point in Rn+1 is contained in exactly 2(k+1)(n+2) of the cubes 2k+11. The sum in k is
still finite, and the proof is complete. □



160 ALIREZA ATAEI, MORITZ EGERT AND KAJ NYSTRÖM

8. Proof of Theorem 1.1

After the reduction in Section 6, it remains to prove the quadratic estimate (6-1) that we now write in
the form

|||λEλH f |||2,µ ≲ ∥D f ∥2,µ, f ∈ Eµ. (8-1)

In the following we will use the operators Pλ, Aλ, Uλ, Rλ that have been introduced in Sections 4, 5
and 7. Collecting the estimates from these sections, we can at this stage prove the following.

Proposition 8.1. Let f ∈ Eµ. Then,

|||(λEλH+ (Uλw
−1 A) ·Aλ∇x) f |||2,µ ≲ ∥D f ∥2,µ.

Proof. We begin by writing

λEλH f = λEλHPλ f + λHEλ(I −Pλ) f. (8-2)

Using the identity
λHEλ = λ−1(I − Eλ),

the uniform L2
µ-boundedness of Eλ, and Lemma 5.2, we see that

|||λHEλ(I −Pλ) f |||2,µ ≲ |||λ−1(I −Pλ) f |||2,µ ≲ ∥D f ∥2,µ.

Next, we use (4-3) to write

λEλHPλ f = −Uλw
−1 A∇xPλ f + λEλD1/2

t Ht D1/2
t Pλ f. (8-3)

Using Lemma 4.3 (i) and then Lemma 5.1, we see that

|||λEλD1/2
t Ht D1/2

t Pλ f |||2,µ = |||λEλD1/2
t PλD1/2

t Ht f |||2,µ

≲ |||λD1/2
t PλD1/2

t Ht f |||2,µ

≲ ∥D1/2
t f ∥2,µ. (8-4)

Finally, we bring the principal part approximation into play. We use Uλ and Rλ to write

Uλw
−1 A∇xPλ f = Uλw

−1 APλ∇x f

= RλPλ∇x f + (Uλw
−1 A) ·Aλ(Pλ −Aλ)∇x f + (Uλw

−1 A) ·Aλ∇x f, (8-5)

where we have also used that (Aλ)
2
= Aλ for the last term. Applying Proposition 7.3 and Lemma 5.1, we

have
|||RλPλ∇x f |||2,µ ≲ |||λ∇xPλ∇x f |||2,µ + |||λ2∂tPλ∇x f |||2,µ ≲ ∥D f ∥2,µ.

Also, by Lemmas 5.4 and 7.2, we have

|||(Uλw
−1 A) ·Aλ(Pλ −Aλ)∇x f |||2,µ ≲ |||(Aλ −Pλ)∇x f |||2,µ ≲ ∥∇x f ∥2,µ.

Looking back at the successive splittings in (8-2), (8-3) and (8-5), we see that the only term that has not
been treated in the square function norm is (Uλw

−1 A) ·Aλ∇x f . This proves the claim. □
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To conclude the square function estimate for the final term (Uλw
−1 A)·Aλ∇x f , we establish Lemma 8.3

below. The lemma states that
|Uλw

−1 A|
2 dµ dλ

λ

is a Carleson measure and that we have good control of the constants. Hence,

|||(Uλw
−1 A) ·Aλ∇x f |||2,µ ≲ ∥∇x f ∥2,µ

follows by Carleson’s inequality for parabolic cubes; see Lemma 8.2. This completes the proof of the
estimate in (8-1), and hence the proof of Theorem 1.1 modulo Lemma 8.3. The reader should observe
that, in our proof of (8-1), we have split off the time derivative ∂t from H and we have controlled the part
coming from ∂t by a standard Littlewood–Paley estimate in (8-4).

For convenience, we include a proof of the version of Carleson’s inequality that is used above. We
adapt the elegant dyadic argument found in [Morris 2012, Theorem 4.3].

Lemma 8.2. Let ν be a Borel measure on Rn+1
× R+ that satisfies

∥ν∥C := sup
1

ν(1 × (0, ℓ(1)])

µ(1)
< ∞,

where the supremum is taken over all dyadic parabolic cubes 1 ⊂ Rn+1. Then there is a constant c that
only depends on n and [w]A2 such that, for every f ∈ L2

µ,∫
∞

0

∫∫
Rn+1

|Aλ f (x, t)|2 dν(x, t, λ) ≤ c∥ν∥C

∫∫
Rn+1

| f |
2 dµ.

Proof. For i ∈ Z, let {1
j
i } j be the partition of Rn+1 into dyadic parabolic cubes such that ℓ(1

j
i ) = 2i .

We have∫
∞

0

∫∫
Rn+1

|Aλ f (x, t)|2 dν(x, t, λ) =

∞∑
i=−∞

∑
j

∣∣∣∣−∫ −

∫
1

j
i

f dy ds
∣∣∣∣2

ν(1
j
i × (2i−1, 2i

]) =

∞∑
i=−∞

∑
j

| f j
i |

2ν
j

i ,

where we have introduced ν
j

i := ν(1
j
i × (2i−1, 2i

]) and f j
i := −

∫
−

∫
1

j
i

f dy ds. For r > 0, let {1k(r)}k

be the collection of maximal dyadic parabolic cubes 1
j
i such that | f j

i | > r . Note that these cubes are
pairwise disjoint and contained in {M(1)M(2) f > r}. Hence,

∞∑
i=−∞

∑
j

| f j
i |

2ν
j

i =

∫
∞

0
2r

∞∑
i=−∞

∑
j

1
{| f j

i |>r}
ν

j
i dr ≤

∫
∞

0
2r

∑
k

∑
1⊂1k(r)

ν
(
1 ×

( 1
2ℓ(1), ℓ(1)

])
dr

=

∫
∞

0
2r

∑
k

ν(1k(r) × (0, ℓ(1k(r))]) dr

≤ ∥ν∥C

∫
∞

0
2r

∑
k

µ(1k(r)) dr ≤ ∥ν∥C

∫
∞

0
2rµ({M(1)M(2) f > r}) dr

= ∥ν∥C∥M(1)M(2) f ∥
2
2,µ.

Now, the claim follows from the Hardy–Littlewood–Muckenhoupt inequality. □

The rest of the section is devoted to the proof of the following lemma.
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Lemma 8.3. For all dyadic parabolic cubes 1 = Q × I ⊂ Rn+1,∫ ℓ(1)

0

∫∫
1

|Uλw
−1 A|

2 dµ dλ

λ
≲ µ(1).

The proof of Lemma 8.3 is based on the use of appropriate local T b-type test functions.

8.1. Construction of appropriate local T b-type test functions. Let ζ ∈ Cn with |ζ | = 1, and let ζi denote
the i-th component of ζ for 1 ≤ i ≤ n. We let χ and η be smooth functions on Rn and R, respectively,
whose values are in [0, 1]. The function χ is equal to 1 on

[
−

1
2 , 1

2

]n and has support in (−1, 1)n , and η

is equal to 1 on
[
−

1
2 , 1

2

]
with support in (−1, 1). We fix a parabolic dyadic cube 1 and denote its center

by (x1, t1). We first introduce

χ1(x, t) := χ

(
x − x1

ℓ(1)

)
η

(
t − t1
ℓ(1)2

)
.

Based on ζ and χ1, we introduce

Lζ
1(x, t) := χ1(x, t)(81(x) · ζ̄ ), 81(x) := (x − x1).

Clearly, Lζ
1 ∈ Eµ. Using the function Lζ

1 and 0 < ϵ ≪ 1, we define the test function

f ζ
1,ϵ := Eϵℓ(1)Lζ

1 = (I + (ϵℓ(1))2H)−1Lζ
1. (8-6)

Lemma 8.4. Let ζ ∈ Cn with |ζ | = 1, and let 0 < ϵ ≪ 1 be a degree of freedom. Given a parabolic dyadic
cube 1, define f ζ

1,ϵ as in (8-6). Then,

(i) ∥ f ζ
1,ϵ − Lζ

1∥
2
2,µ ≲ (ϵℓ(1))2µ(1),

(ii) ∥D( f ζ
1,ϵ − Lζ

1)∥2
2,µ ≲ µ(1),

(iii) ∥D f ζ
1,ϵ∥

2
2,µ ≲ µ(1).

Proof. Note that

f ζ
1,ϵ − Lζ

1 = −(ϵℓ(1))2Eϵℓ(1)HLζ
1

= −(ϵℓ(1))2Eϵℓ(1)D1/2
t Ht D1/2

t Lζ
1 + (ϵℓ(1))2Eϵℓ(1)w

−1 divx w(w−1 A∇x Lζ
1).

Hence, using the uniform L2
µ-boundedness of (ϵℓ(1))Eϵℓ(1)D1/2

t and (ϵℓ(1))Eϵℓ(1)w
−1 divx w, see

Lemma 4.3, we get ∫∫
Rn+1

| f ζ
1,ϵ − Lζ

1|
2 dµ ≲

∫∫
Rn+1

|(ϵℓ(1))DLζ
1|

2 dµ.

Furthermore, ∫∫
Rn+1

|DLζ
1|

2 dµ =

∫∫
Rn+1

|∇x Lζ
1|

2 dµ +

∫∫
Rn+1

|D1/2
t Lζ

1|
2 dµ ≲ µ(1) (8-7)

by the construction of Lζ
1 (to estimate D1/2

t Lζ
1 we use the homogeneity of the Fourier symbol). Similarly,

we deduce that ∫∫
Rn+1

|D( f ζ
1,ϵ − Lζ

1)|2 dµ ≲ µ(1).

This proves (i) and (ii). To prove (iii), we simply use (ii) and (8-7). □
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Lemma 8.5. Given a parabolic dyadic cube 1 = Q × I , let f ζ
1,ϵ be defined as in (8-6). There exist

ϵ ∈ (0, 1), depending only on the structural constants, and a finite set W of unit vectors in Cn , whose
cardinality depends on ϵ and n, such that

sup
1

1
|1|

∫ ℓ(1)

0

∫∫
1

|Uλw
−1 A|

2 dµ dλ

λ
≲

∑
ζ∈W

sup
1

1
|1|

∫ ℓ(1)

0

∫∫
1

|(Uλw
−1 A) ·Aλ∇x f ζ

1,ϵ |
2 dµ dλ

λ
,

where the supremum is taken over all dyadic parabolic cubes 1 ⊂ Rn+1.

Proof. Consider a degree of freedom ϵ > 0. Given a unit vector ζ in Cn , we introduce the cone

Cϵ
ζ := {u ∈ Cn

: |u − (u · ζ̄ )ζ | ≤ ϵ|u · ζ̄ |}.

We note that we can cover Cn by a finite number of such cones {Cϵ
ζ }. The number of cones that are

needed depends on ϵ and n. In the following, we fix one Cϵ
ζ . We let

γ ϵ
λ,ζ (x, t) := 1Cϵ

ζ
(Uλw

−1 A(x, t)) · Uλw
−1 A(x, t)

and consider a fixed dyadic parabolic cube 1 = Q × I ⊂ Rn+1.

Step 1: Estimate of the test function along ζ̄ . We first estimate∫∫
1

(1 − ∇x f ζ
1,ϵ · ζ ) dx dt. (8-8)

To start the estimate, we write

1 − ∇x f ζ
1,ϵ · ζ = ∇x gζ

1,ϵ · ζ + (1 − ∇x Lζ
1 · ζ ),

where gζ
1,ϵ := Lζ

1 − f ζ
1,ϵ . By construction, we have ∇x Lζ

1(x, t) = ζ̄ whenever (x, t) ∈ 1. Hence,∫∫
1

(1 − ∇x Lζ
1 · ζ ) dx dt = 0.

We have to estimate the contribution to the integral in (8-8) coming from ∇x gζ
1,ϵ ·ζ . To do this, let s ∈ (0, 1)

yet to be chosen, and let ϕ : Rn+1
→ [0, 1] be a smooth function which is 1 on 1s := (1−s)Q ×(1−s2)I ,

supported on 1, and satisfies ∥∇xϕ∥∞ ≤ c(sℓ(1))−1, ∥∂tϕ∥∞ ≤ c(sℓ(1))−2 for a dimensional constant
c > 0. Using ϕ, we see that∫∫

1

∇x gζ
1,ϵ · ζ dx dt =

∫∫
1

(1 − ϕ)∇x gζ
1,ϵ · ζ dx dt +

∫∫
1

ϕ∇x gζ
1,ϵ · ζ dx dt =: I + II.

Using the Cauchy–Schwarz inequality, Lemma 8.4 (ii) and (2-2) for the A2-weight µ−1(x, t) = w−1(x),
we obtain

|I| ≤

(∫∫
1

|1 − ϕ|
2 dµ−1

)1/2(∫∫
1

|∇x gζ
1,ϵ |

2 dµ

)1/2

≲ µ−1(1 \ 1s)
1/2µ(1)1/2 ≲ sηµ−1(1)1/2µ(1)1/2

≤ sη
[w]A2 |1|.



164 ALIREZA ATAEI, MORITZ EGERT AND KAJ NYSTRÖM

To estimate II, we integrate by parts to get

II = −

∫∫
Rn+1

gζ
1,ϵ∇xϕ · ζ dx dt,

and using the Cauchy–Schwarz inequality and Lemma 8.4 (i), we obtain similarly

|II| ≤

(∫∫
Rn+1

|∇xϕ|
2 dµ−1

)1/2(∫∫
Rn+1

|gζ
1,ϵ |

2 dµ

)1/2

≲ (sℓ(1))−1µ(1)1/2ϵℓ(1)µ−1(1)1/2
≤ ϵs−1

[w]A2 |1|.

We now choose s = ϵ1/(η+1), so that the estimates for I and II come with the same power of ϵ. Putting
the estimates together, we obtain, for the integral in (8-8), that

1
|1|

∣∣∣∣∫∫
1

1 − ∇x f ζ
1,ϵ · ζ dx dt

∣∣∣∣ ≲ ϵη/(η+1). (8-9)

Using Lemma 8.4 (iii) and the Cauchy–Schwarz inequality, we also see that

1
|1|

∫∫
1

|∇x f ζ
1,ϵ | dx dt ≤

1
|1|

(∫∫
1

|∇x f ζ
1,ϵ |

2 dµ

)1/2

µ−1(1)1/2 ≲ 1. (8-10)

Step 2: Choice of ϵ. Using the estimates in the last two displays, we see, if ϵ is chosen small enough,
that

1
|1|

∫∫
1

Re(∇x f ζ
1,ϵ · ζ ) dx dt ≥

7
8

and
1

|1|

∫∫
1

|∇x f ζ
1,ϵ | dx dt ≤ c

for some large constant c depending only on the structural constants. We now perform a stopping-time
decomposition as in [Auscher et al. 2002] to select a collection S ′

ζ = {1′
} of dyadic parabolic subcubes

of 1, which are maximal with respect to the property that either

1
|1′|

∫∫
1′

Re(∇x f ζ
1,ϵ · ζ ) dx dt ≤

3
4 (8-11)

or
1

|1′|

∫∫
1′

|∇x f ζ
1,ϵ | dx dt ≥ (4ϵ)−2 (8-12)

holds. In other words, we parabolically dyadically subdivide 1 and stop the first time either (8-11) or
(8-12) hold. Then, S ′

ζ = {1′
} is a disjoint set of the parabolic dyadic subcubes of 1. Let S ′′

ζ = {1′′
}

be the collection of all the parabolic dyadic subcubes of 1 not contained in any 1′
∈ S ′

ζ . Then, each
1′′

∈ S ′′

ζ satisfies
1

|1′′|

∫∫
1′′

Re(∇x f ζ
1,ϵ · ζ ) dx dt ≥

3
4 ,

1
|1′′|

∫∫
1′′

|∇x f ζ
1,ϵ | dx dt ≤ (4ϵ)−2.

(8-13)
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At this stage, we claim that, by the same type of argument as in the proof of statement (i) in Proposition 5.7
in [Auscher et al. 2002], there exists ϵ ∈ (0, 1) even smaller and depending only on the structural constants
and η′

= η′(ϵ) ∈ (0, 1) such that ∣∣∣∣ ⋃
1′∈S ′

ζ

1′

∣∣∣∣ ≤ (1 − η′)|1|. (8-14)

In particular, from now on ϵ is fixed. For completeness and the convenience of the reader, we include a
proof here.

Let E1 and E2 be the unions of all parabolic cubes in S ′

ζ which satisfy (8-11) and (8-12), respectively.
Then, ∣∣∣∣ ⋃

1′∈S ′

ζ

1′

∣∣∣∣ ≤ |E1| + |E2|.

For |E2|, we have

|E2| ≤ (4ϵ)2
∑

1′∈S ′

ζ

∫∫
1′

|∇x f ζ
1,ϵ | dx dt ≤ (4ϵ)2

∫∫
1

|∇x f ζ
1,ϵ | dx dt ≤ (4ϵ)2c|1|,

where we used (8-10) in the last step. To control |E1|, we let h := 1 − Re(∇x f ζ
1,ϵ · ζ ) and write

|E1| ≤ 4
∑
1′

∫∫
1′

h dx dt = 4
∫∫

1

h dx dt − 4
∫∫

1\E1

h dx dt, (8-15)

where the sum is taken over all parabolic subcubes of E1. By (8-9), the first term on the right is controlled
by ϵη/(η+1)

|1| times a constant depending on the structural constants. Using in succession the Cauchy–
Schwarz inequality, Lemma 8.4 (iii), the A2-property and Young’s inequality, the second term on the right
is controlled by

4|1 \ E1| + 4µ−1(1 \ E1)
1/2

(∫∫
1

|∇x f ζ
1,ϵ |

2 dµ

)1/2

≤ 4|1 \ E1| + 4c̃µ−1(1 \ E1)
1/2µ(1)1/2

≤ 4|1 \ E1| + 4c̃|1 \ E1|
η
|1|

1−η

≤ (4 + c̃ϵ−1/η)|1 \ E1| + c̃ϵ1−η
|1|,

where c̃ depends on the structural constants and changes from line to line. Going back to (8-15) and
rearranging terms, we find

|E1| ≤
4 + c̃ϵ−1/η

+ c̃(ϵη/(η+1)
+ ϵ1−η)

5 + c̃ϵ−1/η
|1|,

and, taking ϵ small enough, we conclude (8-14).
Since µ is an A2-weight, we obtain from (8-14) — and upon taking η′ smaller depending on the

structural constants and ϵ — that

µ

( ⋃
1′∈S ′

ζ

1′

)
≤ (1 − η′)µ(1); (8-16)

see, for example, [Stein 1993, p. 196] for this A∞-property of A2-weights.
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Step 3: Reintroducing the averaging operator. Given 1, we consider 1′′
∈ S ′′

ζ as above. Set

v :=
1

µ(1′′)

∫∫
1′′

∇x f ζ
1,ϵ dx dt ∈ Cn. (8-17)

If (x, t) ∈ 1′′ and 1
2ℓ(1′′) < λ ≤ ℓ(1′′), then v = (Aλ∇x f ζ

1,ϵ)(x, t). Assume that

u := (Uλw
−1 A)(x, t) ∈ Cϵ

ζ .

The pair of vectors (u, v) satisfies the estimates in (8-13). Thus, we can apply [Auscher et al. 2002,
Lemma 5.10] with w := ζ and conclude that |u| ≤ 4|u · v|; that is,

|γ ϵ
λ,ζ (x, t)| ≤ 4|(Uλw

−1 A(x, t)) · (Aλ∇x f ζ
1,ϵ)(x, t)|. (8-18)

We next observe that, by construction, the Carleson box 1 × (0, ℓ(1)] can be partitioned into Carleson
boxes 1′

× (0, ℓ(1′)], with 1′
∈ S ′

ζ , and Whitney boxes 1′′
×

(1
2ℓ(1′′), ℓ(1′′)

]
, with 1′′

∈ S ′′

ζ . In
particular,

1
µ(1)

∫ ℓ(1)

0

∫∫
1

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
=: I + II,

where

I :=
1

µ(1)

∑
1′∈S ′

ζ

∫ ℓ(1′)

0

∫∫
1′

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
,

II :=
1

µ(1)

∑
1′′∈S ′′

ζ

∫ ℓ(1′′)

ℓ(1′′)/2

∫∫
1′′

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
.

Using (8-16), we obtain

I ≤
1

µ(1)

∑
1′∈S ′

ζ

Aϵ
ζµ(1′) ≤ (1 − η′)Aϵ

ζ ,

where

Aϵ
ζ := sup

1̃

1

µ(1̃)

∫ ℓ(1̃)

0

∫∫
1̃

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
,

and where the supremum is taken over all dyadic parabolic subcubes 1̃ ⊂ 1. By (8-18), we have

II ≤
16

µ(1)

∫ ℓ(1)

0

∫∫
1

|(Uλw
−1 A)(x, t) · (Aλ∇x f ζ

1,ϵ)(x, t)|2 dµ dλ

λ
.

Since these estimates hold for all dyadic parabolic cubes, in particular those which are subcubes of 1, we
conclude that

Aϵ
ζ ≤ (1 − η′)Aϵ

ζ + sup
1̃

16

µ(1̃)

∫ ℓ(1̃)

0

∫∫
1̃

|(Uλw
−1 A)(x, t) · (Aλ∇x f ζ

1̃,ϵ
)(x, t)|2 dµ dλ

λ
.

Summing with respect to ζ ∈ W completes the proof of Lemma 8.5 under the a priori assumption that Aϵ
ζ

is qualitatively finite, since it can then be absorbed into the left-hand side.
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Step 4: Removing the a priori assumption. The a priori assumption that Aϵ
ζ is qualitatively finite can

be removed by setting γ ϵ
λ,ζ (x, t) to 0 for λ small and large, repeating the argument from (8-18) on and

passing to the limit at the end. For the truncated γ ϵ
λ,ζ (x, t), we get Aϵ

ζ < ∞ from (7-3). Indeed, for
0 < δ < 1 small, we have

Aϵ
ζ ≤

∫ δ−1

δ

(
sup
1̃

1

µ(1̃)

∫∫
1̃

|Uλw
−1 A|

2 dµ

)
dλ

λ
≤

∫ δ−1

δ

C dλ

λ
< ∞,

where C depends on ℓ(1) and δ. This completes the argument. □

8.2. The Carleson measure estimate: proof of Lemma 8.3. Thanks to Lemma 8.5, it suffices to prove∫ ℓ(1)

0

∫∫
1

|(Uλw
−1 A) ·Aλ∇x f ζ

1,ϵ |
2 dµ dλ

λ
≲ µ(1). (8-19)

The left-hand side in (8-19) is bounded by

|||(λEλH+ (Uλw
−1 A) ·Aλ∇x) f ζ

1,ϵ |||
2

2,µ
+

∫ ℓ(1)

0

∫∫
1

|λEλH f ζ
1,ϵ |

2 dµ dλ

λ
=: I + II.

By Proposition 8.1 and Lemma 8.4, we have

I ≲ ∥D f ζ
1,ϵ∥

2
2,µ ≲ µ(1).

As for II, we obtain from (8-6) that

H f ζ
1,ϵ =

(Lζ
1 − f ζ

1,ϵ)

(ϵℓ(1))2 .

Using the L2
µ-boundedness of Eλ, see Lemma 4.3, and then Lemma 8.4, we obtain

II ≲
∫ ℓ(1)

0
∥λ(ϵℓ(1))−2(Lζ

1 − f ζ
1,ϵ)∥

2
2,µ

dλ

λ

=
1

2ϵ4ℓ(1)2 ∥Lζ
1 − f ζ

1,ϵ∥
2
2,µ ≲ ϵ−2µ(1).

This completes the proof of (8-19), and hence the proof of Theorem 1.1.

References

[Alfonseca et al. 2011] M. A. Alfonseca, P. Auscher, A. Axelsson, S. Hofmann, and S. Kim, “Analyticity of layer potentials and
L2 solvability of boundary value problems for divergence form elliptic equations with complex L∞ coefficients”, Adv. Math.
226:5 (2011), 4533–4606. MR Zbl

[Amenta and Auscher 2018] A. Amenta and P. Auscher, Elliptic boundary value problems with fractional regularity data: the
first order approach, CRM Monogr. Ser. 37, Amer. Math. Soc., Providence, RI, 2018. MR Zbl

[Auscher and Axelsson 2011] P. Auscher and A. Axelsson, “Weighted maximal regularity estimates and solvability of non-smooth
elliptic systems, I”, Invent. Math. 184:1 (2011), 47–115. MR Zbl

[Auscher and Egert 2016] P. Auscher and M. Egert, “On non-autonomous maximal regularity for elliptic operators in divergence
form”, Arch. Math. (Basel) 107:3 (2016), 271–284. MR Zbl

[Auscher and Mourgoglou 2019] P. Auscher and M. Mourgoglou, “Representation and uniqueness for boundary value elliptic
problems via first order systems”, Rev. Mat. Iberoam. 35:1 (2019), 241–315. MR Zbl

https://doi.org/10.1016/j.aim.2010.12.014
https://doi.org/10.1016/j.aim.2010.12.014
http://msp.org/idx/mr/2770458
http://msp.org/idx/zbl/1217.35056
https://doi.org/10.1090/crmm/037
https://doi.org/10.1090/crmm/037
http://msp.org/idx/mr/3753666
http://msp.org/idx/zbl/1398.35001
https://doi.org/10.1007/s00222-010-0285-4
https://doi.org/10.1007/s00222-010-0285-4
http://msp.org/idx/mr/2782252
http://msp.org/idx/zbl/1231.35059
https://doi.org/10.1007/s00013-016-0934-y
https://doi.org/10.1007/s00013-016-0934-y
http://msp.org/idx/mr/3538523
http://msp.org/idx/zbl/1361.35052
https://doi.org/10.4171/rmi/1054
https://doi.org/10.4171/rmi/1054
http://msp.org/idx/mr/3914545
http://msp.org/idx/zbl/1421.35090


168 ALIREZA ATAEI, MORITZ EGERT AND KAJ NYSTRÖM

[Auscher and Rosén 2012] P. Auscher and A. Rosén, “Weighted maximal regularity estimates and solvability of nonsmooth
elliptic systems, II”, Anal. PDE 5:5 (2012), 983–1061. MR Zbl

[Auscher and Tchamitchian 1998] P. Auscher and P. Tchamitchian, Square root problem for divergence operators and related
topics, Astérisque 249, Soc. Math. France, Paris, 1998. MR Zbl

[Auscher et al. 2002] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and P. Tchamitchian, “The solution of the Kato square
root problem for second order elliptic operators on Rn”, Ann. of Math. (2) 156:2 (2002), 633–654. MR Zbl

[Auscher et al. 2015] P. Auscher, A. Rosén, and D. Rule, “Boundary value problems for degenerate elliptic equations and
systems”, Ann. Sci. École Norm. Sup. (4) 48:4 (2015), 951–1000. MR Zbl

[Auscher et al. 2018] P. Auscher, M. Egert, and K. Nyström, “The Dirichlet problem for second order parabolic operators in
divergence form”, J. Éc. Polytech. Math. 5 (2018), 407–441. MR Zbl

[Auscher et al. 2020] P. Auscher, M. Egert, and K. Nyström, “L2 well-posedness of boundary value problems for parabolic
systems with measurable coefficients”, J. Eur. Math. Soc. 22:9 (2020), 2943–3058. MR Zbl

[Castro et al. 2016] A. J. Castro, K. Nyström, and O. Sande, “Boundedness of single layer potentials associated to divergence
form parabolic equations with complex coefficients”, Calc. Var. Partial Differential Equations 55:5 (2016), art. id. 124. MR Zbl

[Chiarenza and Serapioni 1985] F. Chiarenza and R. Serapioni, “A remark on a Harnack inequality for degenerate parabolic
equations”, Rend. Sem. Mat. Univ. Padova 73 (1985), 179–190. MR Zbl

[Cruz-Uribe and Rios 2008] D. Cruz-Uribe and C. Rios, “Gaussian bounds for degenerate parabolic equations”, J. Funct. Anal.
255:2 (2008), 283–312. Correction in 267:9 (2014), 3507–3513. MR Zbl

[Cruz-Uribe and Rios 2012] D. Cruz-Uribe and C. Rios, “The solution of the Kato problem for degenerate elliptic operators with
Gaussian bounds”, Trans. Amer. Math. Soc. 364:7 (2012), 3449–3478. MR Zbl

[Cruz-Uribe and Rios 2015] D. Cruz-Uribe and C. Rios, “The Kato problem for operators with weighted ellipticity”, Trans.
Amer. Math. Soc. 367:7 (2015), 4727–4756. MR Zbl

[Cruz-Uribe et al. 2018] D. Cruz-Uribe, J. M. Martell, and C. Rios, “On the Kato problem and extensions for degenerate elliptic
operators”, Anal. PDE 11:3 (2018), 609–660. MR Zbl

[David et al. 1985] G. David, J.-L. Journé, and S. Semmes, “Opérateurs de Calderón–Zygmund, fonctions para-accrétives et
interpolation”, Rev. Mat. Iberoam. 1:4 (1985), 1–56. MR Zbl

[Di Nezza et al. 2012] E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces”, Bull.
Sci. Math. 136:5 (2012), 521–573. MR Zbl

[Dier and Zacher 2017] D. Dier and R. Zacher, “Non-autonomous maximal regularity in Hilbert spaces”, J. Evol. Equ. 17:3
(2017), 883–907. MR Zbl

[Escauriaza and Hofmann 2018] L. Escauriaza and S. Hofmann, “Kato square root problem with unbounded leading coefficients”,
Proc. Amer. Math. Soc. 146:12 (2018), 5295–5310. MR Zbl

[García-Cuerva and Rubio de Francia 1985] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related
topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985. MR Zbl

[Haase 2006] M. Haase, The functional calculus for sectorial operators, Operator Theory: Adv. Appl. 169, Birkhäuser, Basel,
2006. MR Zbl

[Heinonen et al. 1993] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations,
Oxford Univ. Press, 1993. MR Zbl

[Hofmann and Lewis 2005] S. Hofmann and J. L. Lewis, “The L p Neumann problem for the heat equation in non-cylindrical
domains”, J. Funct. Anal. 220:1 (2005), 1–54. MR Zbl

[Hofmann et al. 2015] S. Hofmann, C. Kenig, S. Mayboroda, and J. Pipher, “Square function/non-tangential maximal function
estimates and the Dirichlet problem for non-symmetric elliptic operators”, J. Amer. Math. Soc. 28:2 (2015), 483–529. MR Zbl

[Hofmann et al. 2019] S. Hofmann, P. Le, and A. J. Morris, “Carleson measure estimates and the Dirichlet problem for degenerate
elliptic equations”, Anal. PDE 12:8 (2019), 2095–2146. MR Zbl

[Hofmann et al. 2022] S. Hofmann, L. Li, S. Mayboroda, and J. Pipher, “The Dirichlet problem for elliptic operators having a
BMO anti-symmetric part”, Math. Ann. 382:1-2 (2022), 103–168. MR Zbl

https://doi.org/10.2140/apde.2012.5.983
https://doi.org/10.2140/apde.2012.5.983
http://msp.org/idx/mr/3022848
http://msp.org/idx/zbl/1275.35093
http://numdam.org/item/AST_1998__249__R1_0/
http://numdam.org/item/AST_1998__249__R1_0/
http://msp.org/idx/mr/1651262
http://msp.org/idx/zbl/0909.35001
https://doi.org/10.2307/3597201
https://doi.org/10.2307/3597201
http://msp.org/idx/mr/1933726
http://msp.org/idx/zbl/1290.35062
https://doi.org/10.24033/asens.2263
https://doi.org/10.24033/asens.2263
http://msp.org/idx/mr/3377070
http://msp.org/idx/zbl/1328.35049
https://doi.org/10.5802/jep.74
https://doi.org/10.5802/jep.74
http://msp.org/idx/mr/3808890
http://msp.org/idx/zbl/1419.35081
https://doi.org/10.4171/jems/980
https://doi.org/10.4171/jems/980
http://msp.org/idx/mr/4127944
http://msp.org/idx/zbl/1454.35209
https://doi.org/10.1007/s00526-016-1058-8
https://doi.org/10.1007/s00526-016-1058-8
http://msp.org/idx/mr/3551304
http://msp.org/idx/zbl/1361.35068
http://www.numdam.org/item?id=RSMUP_1985__73__179_0
http://www.numdam.org/item?id=RSMUP_1985__73__179_0
http://msp.org/idx/mr/799906
http://msp.org/idx/zbl/0588.35013
https://doi.org/10.1016/j.jfa.2008.01.017
https://doi.org/10.1016/j.jfa.2014.07.013
http://msp.org/idx/mr/2419963
http://msp.org/idx/zbl/1165.35029
https://doi.org/10.1090/S0002-9947-2012-05380-3
https://doi.org/10.1090/S0002-9947-2012-05380-3
http://msp.org/idx/mr/2901220
http://msp.org/idx/zbl/1278.35111
https://doi.org/10.1090/S0002-9947-2015-06131-5
http://msp.org/idx/mr/3335399
http://msp.org/idx/zbl/1326.47051
https://doi.org/10.2140/apde.2018.11.609
https://doi.org/10.2140/apde.2018.11.609
http://msp.org/idx/mr/3738257
http://msp.org/idx/zbl/1386.35112
https://doi.org/10.4171/RMI/17
https://doi.org/10.4171/RMI/17
http://msp.org/idx/mr/850408
http://msp.org/idx/zbl/0604.42014
https://doi.org/10.1016/j.bulsci.2011.12.004
http://msp.org/idx/mr/2944369
http://msp.org/idx/zbl/1252.46023
https://doi.org/10.1007/s00028-016-0343-5
http://msp.org/idx/mr/3707301
http://msp.org/idx/zbl/1386.35251
https://doi.org/10.1090/proc/14224
http://msp.org/idx/mr/3866869
http://msp.org/idx/zbl/1400.35041
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/116
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/116
http://msp.org/idx/mr/807149
http://msp.org/idx/zbl/0578.46046
https://doi.org/10.1007/3-7643-7698-8
http://msp.org/idx/mr/2244037
http://msp.org/idx/zbl/1101.47010
http://msp.org/idx/mr/1207810
http://msp.org/idx/zbl/0780.31001
https://doi.org/10.1016/j.jfa.2004.10.016
https://doi.org/10.1016/j.jfa.2004.10.016
http://msp.org/idx/mr/2114697
http://msp.org/idx/zbl/1065.35125
https://doi.org/10.1090/S0894-0347-2014-00805-5
https://doi.org/10.1090/S0894-0347-2014-00805-5
http://msp.org/idx/mr/3300700
http://msp.org/idx/zbl/1326.42028
https://doi.org/10.2140/apde.2019.12.2095
https://doi.org/10.2140/apde.2019.12.2095
http://msp.org/idx/mr/4023976
http://msp.org/idx/zbl/1435.35148
https://doi.org/10.1007/s00208-021-02219-1
https://doi.org/10.1007/s00208-021-02219-1
http://msp.org/idx/mr/4377300
http://msp.org/idx/zbl/1496.35184


THE KATO SQUARE ROOT PROBLEM FOR WEIGHTED PARABOLIC OPERATORS 169

[Ishige et al. 2017] K. Ishige, Y. Kabeya, and E. M. Ouhabaz, “The heat kernel of a Schrödinger operator with inverse square
potential”, Proc. Lond. Math. Soc. (3) 115:2 (2017), 381–410. MR Zbl

[Kaplan 1966] S. Kaplan, “Abstract boundary value problems for linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (3) 20:2 (1966), 395–419. MR Zbl

[Kato 1966] T. Kato, Perturbation theory for linear operators, Grundl. Math. Wissen. 132, Springer, 1966. MR Zbl

[Kilpeläinen 1994] T. Kilpeläinen, “Weighted Sobolev spaces and capacity”, Ann. Acad. Sci. Fenn. Ser. A I Math. 19:1 (1994),
95–113. MR Zbl

[Lions 1962] J.-L. Lions, “Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs”, J. Math. Soc. Japan
14 (1962), 233–241. MR Zbl

[Litsgård and Nyström 2023] M. Litsgård and K. Nyström, “On local regularity estimates for fractional powers of parabolic
operators with time-dependent measurable coefficients”, J. Evol. Equ. 23:1 (2023), art. id. 3. MR Zbl

[McIntosh 1986] A. McIntosh, “Operators which have an H∞ functional calculus”, pp. 210–231 in Miniconference on operator
theory and partial differential equations (North Ryde, Australia, 1986), edited by B. Jefferies et al., Proc. Centre Math. Anal.
Austral. Nat. Univ. 14, Austral. Nat. Univ., Canberra, 1986. MR Zbl

[Morris 2012] A. J. Morris, “The Kato square root problem on submanifolds”, J. Lond. Math. Soc. (2) 86:3 (2012), 879–910.
MR Zbl

[Nyström 2016] K. Nyström, “Square function estimates and the Kato problem for second order parabolic operators in Rn+1”,
Adv. Math. 293 (2016), 1–36. MR Zbl

[Nyström 2017] K. Nyström, “L2 solvability of boundary value problems for divergence form parabolic equations with complex
coefficients”, J. Differential Equations 262:3 (2017), 2808–2939. MR Zbl

[Ouhabaz 2021] E. M. Ouhabaz, “The square root of a parabolic operator”, J. Fourier Anal. Appl. 27:3 (2021), art. id. 59. MR
Zbl

[Stein 1993] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math.
Ser. 43, Princeton Univ. Press, 1993. MR Zbl

Received 22 Sep 2022. Revised 30 Aug 2023. Accepted 19 Sep 2023.

ALIREZA ATAEI: alireza.ataei@math.uu.se
Department of Mathematics, Uppsala University, Uppsala, Sweden

MORITZ EGERT: egert@mathematik.tu-darmstadt.de
Fachbereich Mathematik, TU Darmstadt, Darmstadt, Germany

KAJ NYSTRÖM: kaj.nystrom@math.uu.se
Department of Mathematics, Uppsala University, Uppsala, Sweden

mathematical sciences publishers msp

https://doi.org/10.1112/plms.12041
https://doi.org/10.1112/plms.12041
http://msp.org/idx/mr/3684109
http://msp.org/idx/zbl/1379.35079
http://www.numdam.org/item/ASNSP_1966_3_20_2_395_0
http://msp.org/idx/mr/200593
http://msp.org/idx/zbl/0163.12903
https://doi.org/10.1007/978-3-662-12678-3
http://msp.org/idx/mr/203473
http://msp.org/idx/zbl/0148.12601
https://www.acadsci.fi/mathematica/Vol19/kilpelai.html
http://msp.org/idx/mr/1246890
http://msp.org/idx/zbl/0801.46037
https://doi.org/10.2969/jmsj/01420233
http://msp.org/idx/mr/152878
http://msp.org/idx/zbl/0108.11202
https://doi.org/10.1007/s00028-022-00844-0
https://doi.org/10.1007/s00028-022-00844-0
http://msp.org/idx/mr/4519202
http://msp.org/idx/zbl/1504.35094
https://projecteuclid.org/proceedings/proceedings-of-the-centre-for-mathematics-and-its-applications/Miniconference-on-Operator-Theory-and-Partial-Differential-Equations/Chapter/Operators-which-have-an-H_infty-functional-calculus/pcma/1416336602?tab=ChapterArticleLink
http://msp.org/idx/mr/912940
http://msp.org/idx/zbl/0634.47016
https://doi.org/10.1112/jlms/jds039
http://msp.org/idx/mr/3000834
http://msp.org/idx/zbl/1276.47044
https://doi.org/10.1016/j.aim.2016.02.006
http://msp.org/idx/mr/3474318
http://msp.org/idx/zbl/1339.35138
https://doi.org/10.1016/j.jde.2016.11.011
https://doi.org/10.1016/j.jde.2016.11.011
http://msp.org/idx/mr/3582246
http://msp.org/idx/zbl/1386.35149
https://doi.org/10.1007/s00041-021-09863-w
http://msp.org/idx/mr/4273649
http://msp.org/idx/zbl/1481.35248
http://msp.org/idx/mr/1232192
http://msp.org/idx/zbl/0821.42001
mailto:alireza.ataei@math.uu.se
mailto:egert@mathematik.tu-darmstadt.de
mailto:kaj.nystrom@math.uu.se
http://msp.org




ANALYSIS AND PDE
Vol. 18 (2025), No. 1, pp. 171–198

DOI: 10.2140/apde.2025.18.171 msp

SMALL SCALE FORMATION
FOR THE 2-DIMENSIONAL BOUSSINESQ EQUATION

ALEXANDER KISELEV, JAEMIN PARK AND YAO YAO

We study the 2-dimensional incompressible Boussinesq equations without thermal diffusion, and aim to con-
struct rigorous examples of small scale formations as time goes to infinity. In the viscous case, we construct
examples of global smooth solutions satisfying supτ∈[0,t]∥∇ρ(τ)∥L2 ≳ tα for some α > 0. For the inviscid
equation in the strip, we construct examples satisfying ∥ω(t)∥L∞ ≳ t3 and supτ∈[0,t] ∥∇ρ(τ)∥L∞ ≳ t2

during the existence of a smooth solution. These growth results hold for a broad class of initial data, where
we only require certain symmetry and sign conditions. As an application, we also construct solutions to the
3-dimensional axisymmetric Euler equation whose velocity has infinite-in-time growth.

1. Introduction

The incompressible Boussinesq equations describe the motion of incompressible fluid under the influence
of gravitational forces [Gill and Adrian 1982; Majda 2003; Pedlosky 1979]. Let us denote by ρ(x, t) the
density of the fluid (it can also represent the temperature, depending on the physical context) and u(x, t)
the velocity field. Throughout this paper, we consider the 2-dimensional incompressible Boussinesq
equations in the absence of density/thermal diffusivity:

ρt + u · ∇ρ = 0,

ut + u · ∇u = −∇ p − ρe2 + ν1u, x ∈�, t > 0,

∇ · u = 0,

(1-1)

where the initial condition is u( · , 0)= u0 and ρ( · , 0)= ρ0. Here e2 := (0, 1)T , and ν ≥ 0 is the viscosity
coefficient. We assume the spatial domain � is one of the following: the whole space R2, the torus
T2

:= (−π, π]
2, or the strip T × [0, π] that is periodic in x1. When � is the strip, we impose the no-slip

boundary condition u|∂� = 0 if ν > 0, and the no-flow boundary condition u · n|∂� = 0 if ν = 0.
In the past decade, much progress has been made on the analysis of (1-1) in both the viscous case

ν > 0 and inviscid case ν = 0. Below we briefly review the relevant literature and state our main results
in each case.

1.1. The viscous case ν > 0. If the equation for ρ has an additional thermal diffusion term κ1ρ, global
regularity of solutions is well known (see, e.g., [Temam 1988]) and follows from the classical methods
for Navier–Stokes equations. In the absence of thermal diffusion, the first global-in-time regularity results
were obtained by Hou and Li [2005] in the space (u, ρ) ∈ H m(R2)× H m−1(R2) for m ≥ 3, and by
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Chae [2006] in the space H m(R2)× H m(R2) for m ≥ 3. When �⊂ R2 is a bounded domain, Lai, Pan,
and Zhao [Lai et al. 2011] proved global well-posedness of solutions in H 3(�)× H 3(�) with the no-slip
boundary condition, and showed that the kinetic energy is uniformly bounded in time. The function space
was improved by Hu, Kukavica, and Ziane [Hu et al. 2013] to (u, ρ) ∈ H m(�)× H m−1(�) for m ≥ 2,
where � is either a bounded domain, R2, or T2. In spaces with lower regularity, global well-posedness of
weak solutions was obtained in [Abidi and Hmidi 2007; Danchin and Paicu 2011; Hmidi and Keraani
2007; Larios et al. 2013]. For the temperature patch problem, Gancedo and García-Juárez [2017; 2020]
proved global regularity in two dimensions and local regularity in three dimensions.

Regarding upper bounds of the global-in-time solutions, for a bounded domain, Ju [2017] obtained
that ∥ρ∥H1(�) ≲ eCt2

. The eCt2
bound was improved to an exponential bound eCt in [Kukavica and

Wang 2020] for �= T2 or a bounded domain, and a super-exponential bound eCt (1+β)

for some constant
β ≈ 0.29 for �= R2. When �= T2, they also obtained the uniform-in-time bound ∥u∥W 2,p(T2) ≤ C(p)
for all p ∈ [2,∞). In recent work by Kukavica, Massatt, and Ziane [Kukavica et al. 2023], when � is a
bounded domain, the upper bound of the norm of ρ has been improved to ∥ρ∥H2(�) ≤ Cϵeϵt for all ϵ > 0,
and they also showed ∥u∥H3 ≤ Cϵeϵt for all ϵ > 0.

We would like to point out that all these results deal with upper bounds of solutions, and it is a natural
question whether certain norms of solutions can actually grow to infinity as t → ∞. When ν > 0 and
�= R2, Brandolese and Schonbek [2012] proved that when the initial data ρ0 does not have mean zero,
∥u(t)∥L2(R2) must grow to infinity like (1 + t)1/4. Here the growth mechanism is due to potential energy
converting into kinetic energy, and does not necessarily imply growth in higher derivatives of u or ρ.
To the best of our knowledge, there has been no example in the literature showing that ∥ρ(t)∥Ḣm or
∥u(t)∥Ḣm can actually grow to infinity as t → ∞ for some m ≥ 1. The goal of this paper is exactly to
construct such examples in R2 and T2, where ∥ρ(t)∥Ḣm → ∞ as t → ∞ for all m ≥ 1. Since ∥ρ(t)∥L2

is preserved in time, growth of ∥ρ(t)∥Ḣm implies that ρ has some small scale formation as t → ∞.

In the viscous case, we set the spatial domain to be either R2 or T2, and assume that the initial
data (ρ0, u0) satisfies the following assumptions (here we write u0 = (u01, u02)

T ). See Figure 1 for an
illustration of the assumptions on ρ0.

(A1) ρ0, u0 ∈ C∞(�). If �= R2, assume in addition that ρ0, u0 ∈ C∞
c (R

2).

(A2) ρ0 and u02 are odd in x2, and u01 is even in x2. If �= T2, assume in addition that ρ0 and u02 are
even in x1, u01 is odd in x1, and ρ0 = 0 on the x2-axis.1

(A3) ρ0 is not identically zero, and ρ0 ≥ 0 for x2 ≥ 0.

As we show in Section 2.1, under these assumptions, both the potential energy EP(t) :=
∫
�
ρ(x, t)x2 dx

and kinetic energy EK (t) =
1
2∥u(t)∥2

L2(�)
of the solution remain bounded for all times, and the total

energy is decreasing in time. We prove that, for all s ≥ 1, the Sobolev norm ∥ρ(t)∥Ḣ s grows to infinity at
least algebraically in t .

1Note that if the ρ0 = 0 on the x2-axis assumption is removed, the initial data would include some steady states with
horizontally stratified density, which clearly would not lead to any growth.
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x1

x2

x1

x2

Figure 1. Illustration of the symmetry and sign assumptions on ρ0 in the plane R2 (left)
and torus T2 (right) for the viscous Boussinesq equations. Here red denotes positive ρ0

and blue denotes negative ρ0.

Theorem 1.1. Assume ν > 0, and let �= R2 or T2. For any initial data (ρ0, u0) satisfying (A1)–(A3),
the global-in-time smooth solution (ρ, u) to (1-1) satisfies the following:

• If �= R2, we have
lim sup

t→∞

t−s/10
∥ρ(t)∥Ḣ s(�) = +∞ for all s ≥ 1. (1-2)

• If �= T2, we have
lim sup

t→∞

t−s(2s−1)/(8s−2)
∥ρ(t)∥Ḣ s(�) = +∞ for all s ≥ 1. (1-3)

Remark 1.2. It is a natural question whether these growth rates are sharp. While the powers are likely
nonsharp, we point out that ∥ρ(t)∥H1 cannot have exponential growth under the assumptions (A1)–(A3).
Namely, following arguments similar to [Kukavica and Wang 2020], we show in Proposition 2.4 that,
under the assumptions (A1)–(A3), ∥ρ(t)∥H1 has a refined subexponential upper bound

∥ρ(t)∥H1(�) ≲ exp(Ctα) for all t > 0

for some constant α ∈ (0, 1). Therefore in this setting, the fastest possible growth rate of ∥ρ(t)∥H1(�) is
somewhere between algebraic and subexponential.

The proof of Theorem 1.1 is motivated by a recent result on small scale formation in solutions to
incompressible porous media (IPM) equation by the first and third author [Kiselev and Yao 2023]. The
main idea there was to use the monotonicity of the potential energy EP(t)=

∫
ρ(x, t)x2 dx : on the one

hand, for solutions with certain symmetries, EP(t) is bounded below with E ′

P(t)= −∥∂1ρ(t)∥2
Ḣ−1 , thus

the integral
∫

∞

0 ∥∂1ρ(t)∥2
Ḣ−1 dt is finite; on the other hand, under certain symmetries, one can show that

∥∂1ρ(t)∥2
Ḣ−1 can only be small if ∥ρ(t)∥H s ≫ 1 for some s > 0, leading to growth of ρ in Sobolev norms.

The IPM and Boussinesq equations are related in the sense that, in both equations, the density ρ is
transported by an incompressible u, where u = −∇ p−ρe2 in IPM, whereas Du/Dt = −∇ p−ρe2 +ν1u
in Boussinesq equations. Since the velocity in Boussinesq equations has one more time derivative than
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IPM, we formally expect that E ′′

P(t) should be related to −∥∂1ρ(t)∥2
Ḣ−1 . While this turns out to be true,

the situation is more delicate for the Boussinesq equations because E ′′

P(t) also contains other terms
coming from the pressure and viscosity terms. By carefully controlling these additional terms, we prove
that if ∥ρ(t)∥H s grows too slowly for s ≥ 1, E ′

P(t) would become unbounded below, contradicting the
uniform-in-time bound of energy.

1.2. The inviscid case ν = 0. For the inviscid Boussinesq equations in two dimensions, it is well known
that the system (1-1) can be rewritten into an equivalent system for the density ρ and the vorticity
ω = ∂1u2 − ∂2u1:

ρt + u · ∇ρ = 0,

ωt + u · ∇ω = −∂1ρ,
(1-4)

where the velocity u can be recovered from the vorticity ω from the Biot–Savart law u = ∇
⊥(−1)−1ω.

While local well-posedness results are available in a variety of functional spaces for �= R2, T2, or a
bounded domain [Chae and Nam 1997; Chae et al. 1999; Danchin 2013], whether smooth initial data in
T2 or R2 with finite energy can develop a finite-time singularity is an outstanding open question in fluid
dynamics. Note that smooth, infinite-energy initial data can lead to a finite-time blowup, as shown in
[Sarria and Wu 2015].

In the presence of boundary, there have been many exciting developments regarding finite-time
singularity formation of solutions in the past few years. Luo and Hou [2014] provided numerical evidence
for finite-time blowup in smooth solutions of the 3-dimensional axisymmetric Euler equation in a cylinder.
When the domain has a corner, Elgindi and Jeong [2020] proved that blow-up can happen for inviscid
Boussinesq equations with smooth initial data. When � = R2

+
is the upper half-plane, Chen and Hou

[2021] proved that solutions with C1,α velocity and density can have a nearly self-similar finite-time
blowup. Recently, for smooth initial data, Wang, Lai, Gómez-Serrano, and Buckmaster [Wang et al.
2023] used physics-informed neural networks to construct an approximate self-similar blow-up solution
numerically. In a very recent preprint, Chen and Hou [2022] put forward an argument combining
impressive analytical tools and computer assisted estimates to show that smooth initial data can lead to a
stable nearly self-similar blowup.

Note that the inviscid Boussinesq equations (1-4) become the 2-dimensional Euler equation when
ρ ≡ 0, where it is well known that ∥∇ω(t)∥L∞ can have infinite-in-time growth [Denisov 2009; 2015;
Kiselev and Šverák 2014; Nadirashvili 1991; Zlatoš 2015]. Therefore we will only focus on proving
infinite-in-time growth of either ∇ρ (since ρ itself is preserved along the trajectory, one can at most
obtain growth results for ∇ρ) or L p norms of ω itself not involving any derivatives (where such growth
is not possible for the 2-dimensional Euler equation since ∥ω∥L p is preserved in time).

Our first result is set up in the periodic domain � = T2. We show that, for all smooth initial data
(ρ0, ω0) in T2 under some symmetry assumptions, as long as ρ0 takes values of different sign along
the two line segments {0} × [0, π] and {π} × [0, π] (see the left figure of Figure 2 for an illustration),
∥∇ρ(t)∥L∞ must grow to infinity at least algebraically in time for all time during the existence of a
smooth solution.
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Figure 2. Illustration of the symmetry and sign assumptions on ρ0 in the torus T2 (left)
and the strip T × [0, π] (right) for the inviscid Boussinesq equation. Here red denotes
positive ρ0 and blue denotes negative ρ0.

Theorem 1.3. Let ρ0 ∈ C∞(T2) be odd in x2 and even in x1, and ω0 ∈ C∞(T2) be odd in both x1 and x2.
Assume ρ0 ≥ 0 on {0}×[0, π] with k0 := supx2∈[0,π ] ρ0(0, x2) > 0, and ρ0 ≤ 0 on {π}×[0, π]. Then there
exists some constant c(ρ0, ω0) > 0 such that the corresponding solution (ρ, ω) to (1-4) satisfies

sup
τ∈[0,t]

∥∇ρ(τ)∥L∞(T2) > c(ρ0, ω0)t1/2 for all t ∈ [0, T ), (1-5)

where T is the lifespan of the smooth solution (ρ, ω).

Next we consider the inviscid Boussinesq equation in the strip T × [0, π]. Here the presence of
boundary allows us to obtain a faster growth rate in ∥∇ρ(t)∥L∞ : we prove that the growth is at least
like t2 in the strip (as compared to t1/2 in Theorem 1.3). We are also able to obtain a superlinear lower
bound for ∥ω(t)∥L p (for p = ∞ it grows like t3) and a linear lower bound for ∥u(t)∥L∞ . Although these
algebraic lower bounds are far from finite-time blowup, they hold for a broad class of initial data: no
assumption on ω0 is needed other than being odd in x1, and ρ0 only needs to be even in x1 and satisfy
some sign conditions along two line segments (see the right figure of Figure 2 for an illustration). The
proofs are soft but might provide an insight into the behavior of smooth solutions during their lifespan.

Theorem 1.4. Let �= T ×[0, π]. Let ρ0 ∈ C∞(�) be even in x1 and ω0 ∈ C∞(�) be odd in x1. Assume
that there exists k0 > 0 such that ρ0 ≥ k0 > 0 on {0}× [0, π] and ρ0 ≤ 0 on {π}× [0, π]. Then there exist
some constants T0(ρ0, ω0) ≥ 0 and c(ρ0, ω0) > 0 such that the corresponding solution (ρ, ω) to (1-4)
satisfies

∥ω(t)∥L p(�) ≥ ct3−2/p for all p ∈ [1,∞], t ∈ [T0, T ), (1-6)

∥u(t)∥L∞(�) ≥ ct for all t ∈ [T0, T ), (1-7)
and

sup
τ∈[0,t]

∥∇ρ(τ)∥L∞(�) > ct2 for all t ∈ [0, T ), (1-8)

where T is the lifespan of the smooth solution (ρ, ω). In particular, if
∫
[0,π ]×[0,π ]

ω0 dx ≥ 0, then T0 = 0
in all the estimates above.
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Remark 1.5. In the estimates for ∥ω(t)∥L p(�) and ∥u(t)∥L∞(�) above, it is necessary to have a “waiting
time” T0 depending on the initial data. This is because, for any t1 > 0, there exists some initial data
satisfying the assumption of Theorem 1.4 withω( · , t1)≡0. (To see this, one can start withω( · , t1)≡0 and
go backwards in time.) That being said, it can be easily seen from the proof that, if

∫
[0,π ]×[0,π ]

ω0 dx ≥ 0,
no waiting time is needed.

Remark 1.6. If the symmetry assumptions on ρ0 and ω0 are dropped, we still have ∥ω(t)∥L1(�) ≳ t for
t ≫ 1. This infinite-in-time growth implies that, given any steady state ωs for the 2-dimensional Euler
equation on the strip, we have (0, ωs) is a nonlinearly unstable steady state for the inviscid Boussinesq
equation. See Remark 3.3 for more discussions.

Remark 1.7. Note that the growth result in Theorem 1.4 also holds for the rectangular domain [−π, π]×

[0, π], since the symmetries imposed on the initial data automatically implies u · n = 0 on all boundaries
of [−π, π] × [0, π] for all time. However, the proof of Theorem 1.4 does not apply to domains with
smooth boundary. That being said, for any bounded domain that is symmetric about both the x1 and
x2 axis and has a smooth boundary, one can proceed similarly as in Theorem 1.3 (and Lemma 3.1) to
obtain the same growth of ∥∇ρ∥L∞ as in Theorem 1.3. We leave the details of the argument to interested
readers.

For both Theorems 1.3 and 1.4, the proof is based on an interplay between various monotone and
conservative quantities. Under the symmetry assumptions, one can easily check that the sign assumptions
ρ ≥ 0 on {0} × [0, π] and ρ ≤ 0 on {π} × [0, π] remain true for all times. This allows us to make
the elementary but important observation that the vorticity integral

∫
[0,π ]×[0,π ]

ω(x, t) dx is monotone
increasing for all times. More precisely, for the strip, the growth is linear for all times during the existence
of a smooth solution, whereas in T2 we relate the growth with ∥∇ρ(t)∥L∞ . Another key ingredient is the
relation between the vorticity integral and kinetic energy: since the kinetic energy has a uniform-in-time
bound, we prove that if the vorticity integral is large, the L p norm of vorticity must be much larger.
For a strip, this allows us to upgrade the linear growth of ∥ω(t)∥L1 to superlinear growth for ∥ω(t)∥L p

for p ∈ (1,∞].

1.3. Infinite-in-time growth for the 3-dimensional axisymmetric Euler equation. The question whether
the incompressible Euler equation in R3 can have a finite-time blowup from smooth initial data of finite
energy is an outstanding open problem in nonlinear PDE and fluid dynamics. As we mentioned earlier, for
the 3-dimensional axisymmetric Euler equation, when the equation is set up in a cylinder with boundary,
Luo and Hou [2014] gave convincing numerical evidence that smooth initial data can lead to a finite-time
singularity formation on the boundary. Recent numerical evidence by Hou and Huang [2022; 2023]
and Hou [2022] suggests that the blowup can also happen in the interior of domain, but apparently
not in self-similar fashion. The first rigorous blow-up result for finite-energy solutions was established
in domains with corners by Elgindi and Jeong [2019]. For initial data in C1,α in R3, Elgindi [2021]
showed that such initial data can lead to a self-similar blowup. Very recently, using the connection
between 3-dimensional axisymmetric Euler and Boussinesq equations, Chen and Hou [2022] set up a
computer-assisted argument that smooth solutions to 3-dimensional axisymmetric Euler equation can
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form a stable nearly self-similar blowup. The singularity formation happens for initial data in a small
neighborhood of a profile that is selected carefully with computer assistance.

In addition to the blow-up v.s. global-in-time regularity question, it is also interesting to investigate
whether Sobolev norms of solutions to the 3-dimensional Euler equation can have infinite-in-time growth
for broader classes of initial data. Choi and Jeong [2023] constructed smooth compactly supported initial
data in R3 with ∥∇

2ω(t)∥L∞ growing algebraically for all times, and ∥ω(t)∥L∞ growing exponentially
for finite (but arbitrarily long) time. It is also well known that the “two-and-a-half dimensional” solutions
(i.e., where u only depends on x , y, not z) can lead to infinite-in-time linear growth of ω; see [Bardos
and Titi 2007, Remark 3.1] for example. See the excellent survey [Drivas and Elgindi 2023] for more
results on growth and singularity formation for 2-dimensional and 3-dimensional Euler equations.

It is well known that, away from the axis of symmetry, the 3-dimensional axisymmetric Euler equation
is closely related to the inviscid 2-dimensional Boussinesq equations; see [Majda and Bertozzi 2002,
Section 5.4.1]. To see this connection, recall that the 3-dimensional axisymmetric Euler equation can be
reduced to the system

Dt(ruθ )= 0, Dt

(
ωθ

r

)
=
∂z(ruθ )2

r4 , (1-9)

where uθ and ωθ only depend on r , z, t , and Dt := ∂t +ur∂r +uz∂z is the material derivative. Heuristically
speaking, ruθ plays the role of ρ in the Boussinesq equation, whereas ωθ/r plays the role of ω in the
Boussinesq equation. Here (ur , uz) can be recovered from ωθ/r by the Biot–Savart law

(ur , uz)=
1
r
(−∂zψ, ∂rψ), where −

1
r
∂r

(
1
r
∂rψ

)
−

1
r2 ∂

2
zψ =

ωθ

r
. (1-10)

We note that the analog of Theorem 1.4 holds for the 3-dimensional axisymmetric Euler equation. We
set the spatial domain to be a (not rotating) Taylor–Couette tank

�= {(r, θ, z) : r ∈ [π, 2π ], θ ∈ T, z ∈ T}, (1-11)

with no-penetration boundary condition at r = π, 2π and periodic boundary conditions in z. Our
assumptions and results are as follows.

Theorem 1.8. Consider the 3-dimensional axisymmetric Euler equation (1-9)–(1-10) set on the domain�
in (1-11). Let uθ0 ∈ C∞(�) be even in z and ωθ0 ∈ C∞(�) be odd in z. Assume that there exists k0 > 0
such that uθ0 ≥ k0 > 0 on z = π and |uθ0| ≤

1
8 k0 on z = 0. Then there exist some constants T0(u0)≥ 0 and

c(u0) > 0 such that the corresponding solution satisfies

∥ωθ (t)∥L p(�) ≥ ct3−2/p for all p ∈ [1,∞], t ∈ [T0, T ) (1-12)

and

∥u(t)∥L∞(�) ≥ ct for all t ∈ [T0, T ), (1-13)

where T is the lifespan of the smooth solution. In particular, if
∫ π

0

∫ 2π
π
ωθ0 dr dz ≥ 0, then T0 = 0 in both

estimates above.
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Figure 3. Illustration of the domain and assumptions on uθ0 for the 3-dimensional
axisymmetric Euler equation. The left figure illustrates uθ0 on the r z plane, and the right
figure shows the 3-dimensional setting. Here red denotes positive uθ0 (and deeper color
means larger magnitude), and green denotes uθ0 with a smaller magnitude (whose sign
can be positive or negative). With such initial data, we will show that the “secondary
flow” within the yellow square Q grows to infinity as t → ∞.

See Figure 3 for an illustration of the domain and initial data. Note that our setting is almost the same
as the Hou–Luo scenario [Luo and Hou 2014], except that we replace the cylinder by an annular cylinder.
While our growth estimates are far from a finite-time blowup, they hold for a broad class of initial data:
in addition to some symmetry assumptions on uθ0 and ωθ0 , all we need is uθ0 being uniformly positive on
z = π and having small magnitude on z = 0. The proof is a simple argument analogous to Theorem 1.4
for Boussinesq equations, where the key idea is the interplay between the monotonicity of a vorticity
integral and the boundedness of kinetic energy.

After the completion of this manuscript, we became aware of work by Serre [1991; 1999], where he
studied the 3-dimensional axisymmetric Euler equation in the same domain as in our setting and obtained
linear growth of vorticity.

2. Small scale formation for viscous Boussinesq equation

In this section, we aim to prove Theorem 1.1. To begin with, we discuss some properties on the solution
(ρ, u) when the initial data satisfies (A1)–(A3). Under the assumption (A1), it is well known that ρ( · , t)
and u( · , t) remain in C∞(�). And if �= R2, we have ρ( · , t) ∈ C∞

c (R
2) and u( · , t) ∈ H k(R2) for all

k ∈ N and t ≥ 0; see, e.g., [Chae 2006; Hou and Li 2005].
Note that the symmetry in (A2) holds true for all times thanks to the uniqueness of solutions. If �= T2,

the additional symmetry in x1 leads to u1( · , t)= 0 on the x2-axis for all times, thus ρ(0, x2, t)= 0 for
all x2 ∈ T and t ≥ 0.

The symmetry in x2 in (A2) also gives u2( · , t) = 0 on the x1-axis for all times, and combining it
with (A3) gives ρ(x, t)≥ 0 for x2 ≥ 0 and all t ≥ 0.

We also note that, due to the incompressibility of u, all L p norms of ρ are conserved in time; that is,

∥ρ(t, · )∥L p(�) =∥ρ0∥L p(�) for all t ≥ 0, p ∈ [1,∞]. (2-1)
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2.1. Evolution of the potential and kinetic energy. Let us define the potential energy and kinetic energy
of the solution as, respectively,

EP(t) :=

∫
�

ρ(x, t)x2 dx and EK (t) :=
1
2

∫
�

|u(x, t)|2 dx . (2-2)

As we will see, the evolution of these energies plays a crucial role in the proof of Theorem 1.1. The rate
of change of EP can be easily computed as

E ′

P(t)=

∫
�

ρt x2 dx =

∫
�

−u · (∇ρ)x2 dx =

∫
�

ρu2 dx, (2-3)

where the last equality follows from the divergence theorem and ∇ · u = 0, and note that the boundary
integral in the divergence theorem is zero: in R2 it follows from ρ( · , t) having compact support, and
in T2 it follows from the symmetries in (A2).

Similarly, one can compute the rate of change of the kinetic energy EK as

E ′

K (t)= −

∫
�

ρu2 dx − ν

∫
�

|∇u|
2 dx .

Combining the two equations, the total energy EP(t)+ EK (t) is nonincreasing in time, and more precisely
we have

EP(t)+ EK (t)+ ν
∫ t

0

∫
�

|∇u(x, s)|2 dx ds = EK (0)+ EP(0) for all t ≥ 0. (2-4)

From our discussion above, ρ( · , t) remains odd in x2 for all t ≥ 0, and the property (A3) holds for all
t ≥ 0. Thus EP(t) is positive for all times. Combining this with (2-4) gives

0 ≤ EP(t)≤ EP(0)+ EK (0) and 0 ≤ EK (t)≤ EP(0)+ EK (0) for all t ≥ 0. (2-5)

In addition, using that EP(t)≥ 0 and EK (t)≥ 0 for all t ≥ 0, we can send t → ∞ in (2-4) to obtain

ν

∫
∞

0
∥∇u(t)∥2

L2(�)
dt ≤ EP(0)+ EK (0). (2-6)

In the next lemma we compute the second derivative of EP , which will be used later.

Lemma 2.1. Let (ρ, u) be a solution to (1-1) with initial data (ρ0, u0) satisfying (A1)–(A3). Then the
potential energy EP defined in (2-2) satisfies

E ′′

P(t)= A(t)+ B(t)− δ(t) for all t ≥ 0, (2-7)

where

A(t) :=
2∑

i, j=1

∫
�

((−1)−1∂2ρ)∂i u j∂j ui dx, B(t) :=ν
∫
�

ρ1u2 dx, and δ(t) :=∥∂1ρ∥
2
Ḣ−1(�)

. (2-8)

Proof. Differentiating (2-3) in time, we get

E ′′

P(t)=

∫
�

−u · ∇(ρu2)+ ρ(−∂2 p − ρ+ ν1u2) dx =

∫
�

ρ(−∂2 p − ρ+ ν1u2) dx, (2-9)
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where the second equality follows from the incompressibility of u and the fact that the boundary integral
is zero as we apply the divergence theorem: for �= R2 it follows from ρ( · , t) having compact support,
whereas for �= T2 we are using u ·n = 0 on the boundary of [−π, π]

2 due to our symmetry assumptions
in (A2). Comparing (2-9) with our goal (2-7), it suffices to show that∫

�

ρ(−∂2 p − ρ) dx = A(t)− δ(t). (2-10)

To do so, we take divergence in the equation for u in (1-1). Using the incompressibility of u, we get
∇ · (u · ∇u)= −1p − ∂2ρ, and hence

p = (−1)−1
∇ · (u · ∇u)+ (−1)−1∂2ρ,

where (−1)−1 is the inverse Laplacian in � (which is either R2 or T2) defined in the standard way using
Fourier transform (for �= R2) or Fourier series (for �= T2). Therefore it follows that

−∂2 p − ρ = −∂2(−1)
−1

∇ · (u · ∇u)− (−1)−1∂22ρ− ρ

= −

2∑
i, j=1

∂2(−1)
−1(∂i u j∂j ui )+ (−1)

−1∂11ρ.

This immediately yields that∫
�

ρ(−∂2 p − ρ) dx = −

2∑
i, j=1

∫
�

ρ∂2(−1)
−1(∂i u j∂j ui ) dx +

∫
�

ρ(−1)−1∂11ρ dx

= A(t)− δ(t),

where the second equality follows from integration by parts. This finishes the proof. □

The relation between δ(t) and ∥ρ(t)∥Ḣ s(�) has been investigated in [Kiselev and Yao 2023]. Below
we state the results from that paper and give a slightly improved estimate for the �= R2 case.2 For the
sake of completeness, we give a proof in the Appendix. In the statement of the lemma we replace ρ(t)
by µ to emphasize that the estimate does not depend on the equation that ρ(t) satisfies.

Lemma 2.2. (a) Assume �= R2. Consider all µ ∈ C∞
c (R

2) that are odd in x2 and not identically zero.
For all such µ, there exists c1(s, ∥µ∥L1, ∥µ∥L2) > 0 such that

∥µ∥Ḣ s(R2) ≥ c1(∥∂1µ∥
2
Ḣ−1(R2)

)−s/4 for all s > 0. (2-11)

(b) Assume �= T2. Consider all µ ∈ C∞(T2) that are not identically zero, odd in x2, even in x1, with
µ = 0 on the x2-axis, and µ ≥ 0 in T × [0, π]. For all such µ, there exists c2

(
s,

∫
T×[0,π ]

µ1/3 dx
)
> 0

such that

∥µ∥Ḣ s(T2) ≥ c2(∥∂1µ∥
2
Ḣ−1(T2)

)−s+1/2 for all s > 1
2 . (2-12)

2In [Kiselev and Yao 2023], the estimate corresponding to (2-11) is [Kiselev and Yao 2023, (3.4)], where an extra condition
∥∂1µ∥

2
Ḣ−1 <

1
4∥µ∥

2
L2 was imposed. In this lemma we give a slightly improved estimate where this assumption is dropped.
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2.2. Infinite-in-time growth of Sobolev norms. Using Lemma 2.1, for any t2 > t1 ≥ 0, integrating E ′′

P
from t1 to t2 we get

E ′

P(t2)− E ′

P(t1)=

∫ t2

t1
A(t) dt +

∫ t2

t1
B(t) dt −

∫ t2

t1
δ(t) dt. (2-13)

In the next lemma we estimate the two integrals
∫ t2

t1
A(t) dt and

∫ t2
t1

B(t) dt on the right-hand side.

Lemma 2.3. Assume ν > 0. Let (ρ, u) be a solution to (1-1) with initial data (ρ0, u0) satisfying (A1)–(A3).
Then, for all t2 > t1 ≥ 0, A(t) defined in (2-8) satisfies∫ t2

t1
|A(t)| dt ≤ C(ρ0)

∫ t2

t1
∥∇u(t)∥2

L2(�)
dt. (2-14)

Furthermore, for all s ≥ 1 and t2 > t1 ≥ 0, B(t) defined in (2-8) satisfies∫ t2

t1
|B(t)| dt ≤ C(s, ρ0)ν

(∫ t2

t1
∥∇u(t)∥2

L2(�)
dt

)1/2(∫ t2

t1
∥ρ(t)∥2/s

Ḣ s(�)
dt

)1/2

. (2-15)

Proof. Let us show (2-14) first. Let f := (−1)−1∂2ρ; we claim that

∥ f ( · , t)∥L∞(�) ≤ C(ρ0) for all t ≥ 0. (2-16)

Once this is proved, it follows that∫ t2

t1
|A(t)| dt ≤

∫ t2

t1
∥ f ∥L∞(�)∥∇u∥

2
L2(�)

dt ≤ C(ρ0)

∫ t2

t1
∥∇u∥

2
L2(�)

dt.

To estimate ∥ f ∥L∞(�), we recall the following Hardy–Littlewood–Sobolev inequality for �= R2 or T2:(
when �= T2, the function g needs to satisfy an additional assumption

∫
�

g(x) dx = 0
)

∥(−1)−α/2g∥Lq (�) ≤ C(α, p, q)∥g∥L p(�) for 0< α < 2, 1< p < q <∞, and 1
q

=
1
p

−
α

2
.

We choose α = 1, q = 4, p =
4
3 , and g = (−1)1/2 f ( · , t) (note that g = (−1)−1/2∂2ρ indeed has mean

zero when �= T2). Then the above inequality becomes

∥ f ( · , t)∥L4(�) ≤ C∥(−1)1/2 f ∥L4/3(�) = C∥(−1)−1/2∂2ρ∥L4/3(�) ≤ C∥ρ∥L4/3(�) ≤ C(ρ0),

and we also have

∥(−1)1/2 f ( · , t)∥L4(�) = ∥(−1)−1/2∂2ρ∥L4(�) ≤ C∥ρ∥L4(�) ≤ C(ρ0).

In the above two estimates, the second-to-last inequality in both equations is due to the Riesz transform
being bounded in L p(�) for 1 < p < ∞, and the last inequality in both equations comes from (2-1).
Combining these estimates together, we have

∥ f ( · , t)∥W 1,4(�) ≤ C(ρ0) for all t ≥ 0.

Then the boundedness of f follows immediately from Morrey’s inequality W 1,4(�) ⊂ C0,1/2(�) for
both � = R2 and T2. This leads to ∥ f ( · , t)∥L∞(�) ≤ C∥ f ( · , t)∥W 1,4(�) ≤ C(ρ0) for all t ≥ 0, which
proves (2-16).
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Now we turn to the estimate for B(t). Applying the divergence theorem to the definition of B(t)
from (2-8), we see that∫ t2

t1
|B(t)| dt = ν

∫ t2

t1

∣∣∣∣∫
�

∇ρ ·∇u2 dx
∣∣∣∣ dt ≤ ν

(∫ t2

t1
∥u(t)∥2

Ḣ1(�)
dt

)1/2(∫ t2

t1
∥ρ(t)∥2

Ḣ1(�)
dt

)1/2

, (2-17)

where we used the Cauchy–Schwarz inequality in the last step. Using the Gagliardo–Nirenberg interpola-
tion inequality, we obtain∫ t2

t1
|B(t)| dt ≤ ν

(∫ t2

t1
∥∇u(t)∥2

L2(�)
dt

)1/2(∫ t2

t1
C(s)∥ρ(t)∥2(1−1/s)

L2 ∥ρ(t)∥2/s
Ḣ s(�)

dt
)1/2

≤ C(s, ρ0)ν

(∫ t2

t1
∥∇u(t)∥2

L2(�)
dt

)1/2(∫ t2

t1
∥ρ(t)∥2/s

Ḣ s(�)
dt

)1/2

,

where the last inequality follows from (2-1). This finishes the proof of (2-15). □

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The main idea of the proof is to estimate all terms in (2-13) for t1 = T and t2 = 2T
for T ≫ 1, and obtain a contradiction if supt∈[T,2T ] ∥ρ(t)∥Ḣ s grows slower than a certain power of T .

First, to bound the left-hand side of (2-13), note that (2-3) and the Cauchy–Schwarz inequality yield

|E ′

P(t)| ≤∥ρ(t)∥L2∥u(t)∥L2 ≤ ∥ρ0∥L2

√
2EK (t)≤ C(ρ0, u0) <∞ for all t ≥ 0, (2-18)

where the second inequality follows from (2-1) and the definition of EK in (2-2), and the third inequality
follows from (2-5). Thus

|E ′

P(2T )− E ′

P(T )| ≤ C0(ρ0, u0) <∞ for all T > 0. (2-19)

Plugging the estimates (2-19) and (2-14) into the identity (2-13), we have∫ 2T

T
δ(t) dt ≤ C0(ρ0, u0)+ C1(ρ0)

∫ 2T

T
∥∇u(t)∥2

L2(�)
dt +

∫ 2T

T
|B(t)| dt for all T > 0. (2-20)

Next we will bound the two integrals on the right-hand side from above, and
∫ 2T

T δ(t) dt from below. Let
us define

η(T ) :=

∫ 2T

T
∥∇u(t)∥2

L2(�)
dt and Ms(T ) := sup

t∈[T,2T ]

∥ρ(t)∥Ḣ s(�).

Combining (2-4) and (2-5) yields∫
∞

0
∥∇u(t)∥2

L2(�)
dt ≤ ν−1C(ρ0, u0) <∞,

where we also used the assumption ν > 0. This implies

lim
T →∞

η(T )= 0. (2-21)
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To bound
∫ 2T

T |B(t)| dt , we use (2-15) and the definitions of η(T ) and Ms(T ) to get∫ 2T

T
|B(t)| dt ≤ C(s, ρ0)ν

(∫ 2T

T
∥∇u∥

2
L2(�)

dt
)1/2(∫ 2T

T
∥ρ∥

2/s
Ḣ s(�)

dt
)1/2

≤ C2(s, ρ0, ν)η(T )1/2 Ms(T )1/s T 1/2 for all s ≥ 1, T > 0. (2-22)

Next we will bound the integral
∫ 2T

T δ(t) dt from below. If � = R2, assumption (A2) allows us to
apply Lemma 2.2 (a) to ρ( · , t) (and note that its L1 and L2 norms are preserved in time), so there exists
c3(s, ρ0) > 0 such that

∥ρ(t)∥Ḣ s(R2) ≥ c3(s, ρ0)δ(t)−s/4 for all s > 0, t > 0. (2-23)

And if � = T2, using assumptions (A2) and (A3)
(
note that these imply that

∫
T×[0,π ]

ρ(x, t)1/3 dx is
preserved in time

)
, by Lemma 2.2 (b), there exists c4(s, ρ0) > 0 such that

∥ρ(t)∥Ḣ s(T2) ≥ c4(s, ρ0)δ(t)−(s−1/2) for all s > 1
2 , t > 0. (2-24)

Let us rewrite (2-23) and (2-24) above in a unified manner for the two cases �= R2 and T2, so we do
not need to repeat similar proofs twice. For � either being R2 or T2, let us define

α� :=

{1
4 s �= R2,

s −
1
2 �= T2,

s� :=

{
0 �= R2,
1
2 �= T2,

c�(s, ρ0) :=

{
c3(s, ρ0) �= R2,

c4(s, ρ0) �= T2.
(2-25)

With this notation, (2-23) and (2-24) become

∥ρ(t)∥Ḣ s(�) ≥ c�(s, ρ0)δ(t)−α� for all s > s�, t > 0. (2-26)

Combining (2-26) with the definition of Ms gives∫ 2T

T
δ(t) dt ≥

∫ 2T

T
c1/α�
� ∥ρ(t)∥−1/α�

Ḣ s(�)
dt ≥ c1/α�

� Ms(T )−1/α�T for all s > s�, T > 0. (2-27)

Applying the bounds (2-22) and (2-27) and the definition of η(T ) to the inequality (2-20) (and noting
that s� < 1), we have

c5 Ms(T )−1/α�T ≤ C0 + C1η(T )+ C2η(T )1/2 Ms(T )1/s T 1/2 for all s ≥ 1, T > 0,

where c5 := c�(s, ρ0)
1/α� , C0 := C0(ρ0, u0), C1 := C1(ρ0), and C2 := C2(s, ρ0, ν)— note that they are

all strictly positive and do not depend on T . Rearranging the terms, the inequality is equivalent to

(c5 − C2η(T )1/2T −1/2 Ms(T )1/s+1/α�)Ms(T )−1/α�T ≤ C0 + C1η(T ) for all s ≥ 1, T > 0. (2-28)

We claim that this implies

lim sup
T →∞

T −1/2 Ms(T )1/s+1/α� = +∞ for all s ≥ 1. (2-29)

Towards a contradiction, assume

A := lim sup
T →∞

T −1/2 Ms(T )1/s+1/α� <∞ for some s ≥ 1.
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Combining this assumption with (2-21) gives

lim sup
T →∞

η(T )1/2T −1/2 Ms(T )1/s+1/α� =
(
lim sup

T →∞

T −1/2 Ms(T )1/s+1/α�
)(

lim
T →∞

η(T )1/2
)
= 0,

so the parenthesis in (2-28) converges to c5 as T → ∞. For the remaining term on the left-hand of (2-28),
we have

lim inf
T →∞

Ms(T )−1/α�T = lim inf
T →∞

(T −1/2 Ms(T )1/s+1/α�)−s/(s+α�)T (s+2α�)/(2(s+α�))

= lim inf
T →∞

A−s/(s+α�)T (s+2α�)/(2(s+α�)) = +∞. (2-30)

The above discussion yields that the liminf of the left-hand side of (2-28) is +∞. This contradicts (2-21),
which says the right-hand side of (2-28) goes to C0 < ∞ as T → ∞. This finishes the proof of the
claim (2-29).

Finally, using the definition of Ms , we have that (2-29) is equivalent to

lim sup
t→∞

t−1/2
∥ρ(t)∥1/s+1/α�

Ḣ s = +∞.

Recalling the definition of α� from (2-25), we see that the desired estimates (1-2) and (1-3) follow
immediately. □

Although it is unclear whether the algebraic rates are sharp, in the next proposition we show that, under
the assumptions (A1)–(A3), ∥ρ(t)∥H1(�) can at most have subexponential growth.

Proposition 2.4. Let � = R2 or T2. For any initial data (ρ0, u0) satisfying (A1)–(A3), ∥ρ(t)∥H1(�)

satisfies the subexponential bound

∥ρ(t)∥H1(�) ≲ exp(Ctα) for all t > 0,

for some constant α ∈ (0, 1).

Proof. The proposition can be proved by making a slight modification to [Kukavica and Wang 2020,
Theorem 3.1]. For the sake of completeness, we will provide a sketch of the proof. For both � = T2

and R2, standard energy estimates give that ∥∇ρ(t)∥L2(�) satisfies the estimate

d
dt

∥∇ρ(t)∥L2(�) ≤ ∥∇u(t)∥L∞∥∇ρ(t)∥L2(�),

which leads to

∥∇ρ(t)∥L2(�) ≲ exp
(∫ t

0
∥∇u(s)∥L∞(�) ds

)
∥∇ρ0∥L2(�). (2-31)

Recall that (2-6) gives ∫
∞

0
∥∇u(t)∥2

L2 dt ≤ C(ν, ρ0, u0). (2-32)

Here the time integrability of ∥∇u(t)∥2
L2 follows from the symmetry assumptions in our setting, and it

allows us to obtain a refined upper bound compared to [Kukavica and Wang 2020, Theorem 3.1]. Namely,
combining (2-32) with the Gagliardo–Nirenberg inequality

∥∇u∥L∞(�) ≤ ∥∇u∥
(p−2)/(2p−2)
L2(�)

∥∇
2u∥

p/(2p−2)
L p(�) for p > 2 (2-33)
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and Hölder’s inequality, the exponent in (2-31) can be bounded above by∫ t

0
∥∇u(s)∥L∞(�) ds ≤ C(p, ν, ρ0, u0)

(∫ t

0
∥∇

2u∥
(2p)/(3p−2)
L p(�) ds

)(3p−2)/(4p−4)

. (2-34)

When �= T2, by [Kukavica and Wang 2020, Theorem 2.1], ∥u(t)∥W 2,p < C(p, ν, ρ0, u0) for all p <∞.
So one can choose p ≫ 1 to obtain the subexponential upper bound

∥∇ρ(t)∥L2 ≤ C(ρ0) exp(C(ϵ, ν, ρ0, u0)t3/4+ϵ) for any ϵ > 0, t > 0. (2-35)

Next we move on to the �= R2 case. In this case, it suffices to prove ∥∇
2u(t)∥L p < C(p, ν, ρ0, u0)

for all p <∞ under our symmetry setting. Once this is shown, an identical argument as (2-31)–(2-35)
again leads to the subexponential growth, since all these estimates also hold for R2.

To begin with, we show that ∥ω(t)∥L2 is uniformly bounded in time under our symmetry assumptions.
Noting from (1-1) that ω satisfies ωt + u · ∇ω = ν1ω− ∂1ρ, we can obtain a standard energy inequality

d
dt

∥ω(t)∥2
L2(R2)

+ ν∥∇ω(t)∥2
L2(R2)

= 2
∫

R2
ρ(t, x)∂1ω(t, x) dx

≤
1
2ν∥∇ω(t)∥

2
L2(R2)

+ C(ν)∥ρ(t)∥L2(R2).

Since ∥ρ(t)∥L2 is conserved, the above estimate leads to (d/dt)∥ω(t)∥2
L2(R2)

≤ C(ν, ρ0). Combining this
with (2-32) (and recall ∥ω∥L2 = ∥∇u∥L2), we have

∥ω(t)∥L2(R2) < C(ν, ρ0, u0) for all t ≥ 0. (2-36)

Following the notation from [Kukavica and Wang 2020], let us define ζ = ω− ∂1(I −1)−1ρ to be the
modified vorticity. Since one has ∥∂1(I −1)−1ρ∥W 1,p ≤ C(p, ρ0) for all 1< p <∞, it implies

∥ζ −ω∥L p ≤ C(p, ρ0) and ∥∇ζ − ∇ω∥L p ≤ C(p, ρ0). (2-37)

Combining (2-36) and (2-37) gives a uniform-in-time bound ∥ζ(t)∥L2 < C(ν, ρ0, u0). Now, let us define
ψp(t) :=

∫
R2 |∇ζ(t)|p for p ≥ 2. Using (1-1), one can express the equation for ζ as [Kukavica and Wang

2020, (2.21)]

ζt + u · ∇ζ = ν1ζ + F, F := [∂1(I −1)−1, u · ∇]ρ− ((I −1)−11− I )∂1ρ.

A straightforward calculation yields that ψ ′

2(t)= 2
∫

R2 ∇ζ · ∇F dx − 2ν
∫

R2 |∇
2ζ |2 dx . Using the inter-

polation inequality

∥∇
2ζ∥L2 ≥

∥∇ζ∥2
L2

C∥ζ∥L2
,

we obtain

ψ ′

2(t)+
ψ2

2

C∥ζ∥2
L2

≤ 2
∫

R2
∇ζ · ∇F dx .
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To obtain an estimate of the right-hand side, a more careful analysis is required, and the same argument
as in [Kukavica and Wang 2020, (3.2)] gives that

ψ ′

2(t)+
ψ2

2

C∥ζ∥2
L2

≤ Cψ2 + C.

Thus the above uniform-in-time bound for ∥ζ∥2
L2 gives a uniform-in-time bound for ψ2(t). For any

2 ≤ p <∞, [Kukavica and Wang 2020, (3.3)] gives

ψ ′

2p(t)+
ψ2

2p

Cψ2
p

≤ Cp2ψ2p + Cp5ψ
(p−1)/p
2p .

One can use induction (for p = 2, 4, 8, . . . ) to obtain a uniform-in-time bound ψp(t)≤ C(p, ν, ρ0, u0),
and combining this bound with (2-37) gives

∥∇
2u(t)∥L p ≤ C(p)∥∇ω(t)∥L p ≤ C(p)(∥∇ζ(t)∥L p + C(p, ρ0))≤ C(p, ν, ρ0, u0).

Finally, choosing an arbitrarily large p ≫ 1 and plugging the above uniform-in-time estimate into (2-34),
we again have the subexponential upper bound (2-35) for �= R2. □

3. Infinite-in-time growth for inviscid Boussinesq and 3-dimensional Euler

3.1. Vorticity lemma for flows with fixed kinetic energy. Before proving the main theorems, let us start
with a simple observation: it says that for any vector field u in a square Q = [0, π]

2 with a fixed kinetic
energy, if its vorticity integral A :=

∫
Q ω dx is big, then, for 1< p ≤ ∞, ∥ω∥L p must be even bigger, at

least of order A3−2/p.

Lemma 3.1. Let Q := [0, π]
2. For any vector field u ∈ C∞(Q), let ω := ∂1u2 − ∂2u1. Let us define

E0 :=

∫
Q

|u|
2 dx and A :=

∫
Q
ω(x) dx .

Then we have the following lower bound for ∥ω∥L p(Q):

∥ω∥L p(Q) ≥ c0 max{E−1+1/p
0 |A|

3−2/p, |A|} for all p ∈ [1,∞], (3-1)

where c0 = (128π2)−1 > 0 is a universal constant.

Proof. Without loss of generality, assume A > 0. (If A < 0, we can prove the estimate for −u, whose
vorticity integral would be positive.) By Green’s theorem, we have∫

∂Q
|u(x)| ds ≥

∫
∂Q

u(x) · dl =

∫
Q
ω(x) dx = A,

where the integral in ds denotes the (scalar) line integral with respect to arclength, and the integral in dl
denotes the (vector) line integral counterclockwise along ∂Q.
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For any r ∈
[
0, π2

)
, let us define

Qr := [r, π − r ] × [r, π − r ].

Note that Q0 = Q and Qr shrinks to a point as r ↗
π
2 . Let us define

r0 := inf
{

r ∈
[
0, π2

)
:

∫
∂Qr

|u(x)| ds =
1
2 A

}
.

Since ∫
∂Q0

|u(x)| ds > A and
∫
∂Qr

|u(x)| ds → 0 as r ↗
π
2 ,

the above definition leads to a well-defined r0 ∈
(
0, π2

)
, and in addition we have∫

∂Qr

|u(x)| ds > 1
2 A for all r ∈ [0, r0).

Next we claim that

r0 < 16πE0 A−2. (3-2)

To show this, note that, for all 0< r < r0, we can apply the Cauchy–Schwarz inequality on ∂Qr (and use
|∂Qr |< 4π ) to obtain ∫

∂Qr

|u|
2 ds ≥

1
4π

(∫
∂Qr

|u| ds
)2

>
A2

16π
.

Integrating the above inequality for r ∈ (0, r0) over the direction transversal to ∂Qr
(
and noting that⋃

r∈(0,r0)
∂Qr = Q \ Qr0

)
, we obtain

E0 ≥

∫
Q\Qr0

|u|
2 dx =

∫ r0

0

∫
∂Qr

|u|
2 ds dr >

A2r0

16π
,

which yields the claim (3-2). Note that (3-2) implies

|Q \ Qr0 | =

∫ r0

0
|∂Qr | dr ≤ min{4πr0, π

2
} ≤ min{64π2 E0 A−2, π2

}. (3-3)

By Green’s theorem and the definition of r0,∫
Q\Qr0

ω dx =

∫
∂Q

u · dl −

∫
∂Qr0

u · dl ≥ A −
1
2 A =

1
2 A. (3-4)

Finally, we apply Hölder’s inequality to bound ∥ω∥L p(Q) from below for p ∈ [1,∞]:

∥ω∥L p(Q) ≥ ∥ω∥L p(Q\Qr0 )
≥

(∫
Q\Qr0

ω dx
)

|Q \ Qr0 |
−1+1/p for all p ∈ [1,∞].

Applying the estimates (3-4) and (3-3) in the above inequality finishes the proof of (3-1) with a universal
constant c0 = (128π2)−1. □



188 ALEXANDER KISELEV, JAEMIN PARK AND YAO YAO

3.2. Infinite-in-time growth for inviscid Boussinesq equations. Now we are ready to prove the infinite-
in-time growth results. Let us start with Theorem 1.3 for �= T2.

Proof of Theorem 1.3. Using the Biot–Savart law u = ∇
⊥(−1)−1ω, one can easily check that, in

T2
= (−π, π]

2, the even-odd symmetry of ρ and odd-odd symmetry of ω is preserved for all times. This
implies the odd-even symmetry of u1 and even-odd symmetry of u2 hold for all times. In particular,
defining

Q := [0, π] × [0, π],

we have u · n = 0 on ∂Q for all times.
For any x ∈ T2 and t ≥ 0, let 8t(x) be the flow map defined by

∂t8t(x)= u(8t(x), t), 80(x)= x .

Using u ·n = 0 on ∂Q for all times (and u = 0 at the four corners of ∂Q), for any x ∈ ∂Q, 8t(x) remains
on the same side of ∂Q for all times during the existence of a smooth solution. Combining this with the
fact that ρ is preserved along the flow map, the assumptions on ρ0 implies

ρ(0, x2, t)≥ 0 and ρ(π, x2, t)≤ 0 for all x2 ∈ [0, π], t ≥ 0. (3-5)

Note that the odd-in-x2 symmetry of ρ0 yields ρ0(0, 0) = ρ0(0, π) = 0, so the supremum in k0 :=

supx2∈[0,π ] ρ0(0, x2) > 0 is achieved at some ρ(0, a) for a ∈ (0, π). In addition, by continuity of ρ0, there
exists some b ∈ (0, a) such that ρ0(0, b)=

1
2 k0 and ρ0 ≥

1
2 k0 on {0} × [b, a].

Since u · n = 0 on ∂Q for all times, 8t(0, a) and 8t(0, b) remain on the line segment {0}× (0, π) for
all times. Define

h(t) := |8t(0, b)−8t(0, a)|, (3-6)

which is strictly positive as long as u remains smooth. Note ρ(8t(0, a), t)= k0 and ρ(8t(0, b), t)= 1
2 k0

for all times. This implies

∥∇ρ(t)∥L∞(Q) ≥
|ρ(8t(0, b), t)− ρ(8t(0, a), t)|

|8t(0, b)−8t(0, a)|
≥

1
2 k0h(t)−1 (3-7)

for all times during the existence of a smooth solution.
Next let us define

A(t) :=

∫
Q
ω(x, t) dx;

we make a simple but useful observation about the monotonicity of A(t). Using the symmetries and the
facts ∇ · u = 0 in Q and u · n = 0 on ∂Q, we find

A′(t)= −

∫
Q

u(x, t) · ∇ω(x, t) dx −

∫
Q
∂x1ρ(x, t) dx

=

∫ π

0
ρ(0, x2, t) dx2 −

∫ π

0
ρ(π, x2, t) dx2 ≥

1
2 k0h(t), (3-8)



SMALL SCALE FORMATION FOR THE 2-DIMENSIONAL BOUSSINESQ EQUATION 189

where the inequality follows from (3-5), the definition of h(t), and the fact that ρ( · , t)≥
1
2 k0 on the line

segment connecting 8t(0, a) and 8t(0, b). We now integrate (3-8) in [0, t] and apply (3-7). This yields

A(t)≥
1
4 k2

0

∫ t

0
∥∇ρ(τ)∥−1

L∞(Q) dτ + A(0). (3-9)

In order to apply Lemma 3.1, we need to bound ∥u(t)∥2
L2(Q) from above. From the same calculation in

Section 2.1, the sum of the kinetic and potential energies is conserved in T2, and hence it is also conserved
in Q due to the symmetries

1
2

∫
Q

|u(x, t)|2 dx +

∫
Q

x2ρ(x, t) dx =
1
2

∫
Q

|u0(x)|2 dx +

∫
Q

x2ρ0(x) dx .

Since ρ is advected by the flow, ∥ρ(t)∥L1(Q) is conserved in time, so
∣∣∫

Q x2ρ(x, t) dx
∣∣ ≤ π∥ρ0∥L1(Q) for

all times. This implies∫
Q

|u(x, t)|2 dx ≤

∫
Q

|u0(x)|2 dx + 4π∥ρ0∥L1(Q) =: E0(ρ0, u0)

for all times. Now we can apply Lemma 3.1 with p = +∞ to conclude

∥ω(t)∥L∞ ≥ c0 E−1
0 A(t)3 ≥ c0 E−1

0

(
1
4 k2

0

∫ t

0
∥∇ρ(τ)∥−1

L∞ dτ + A(0)
)3

, (3-10)

where we used (3-9) in the last step. Note that A(0) may be positive or negative.
On the other hand, the Lagrangian form of the evolution equation for vorticity

d
dt
ω(8t(x), t)= −∂x1ρ(8t(x), t)

implies that

∥ω(t)∥L∞ ≤

∫ t

0
∥∇ρ(τ)∥L∞ dτ + ∥ω0∥L∞ . (3-11)

Combining (3-10) and (3-11), we arrive at∫ t

0
∥∇ρ(τ)∥L∞ dτ + ∥ω0∥L∞ ≥ c0 E−1

0

(
1
4 k2

0

∫ t

0
∥∇ρ(τ)∥−1

L∞ dτ + A0

)3

. (3-12)

Let us define

F(t) :=

∫ t

0
∥∇ρ(τ)∥L∞ dτ.

Since the Cauchy–Schwarz inequality yields∫ t

0
∥∇ρ(τ)∥−1

L∞ dτ ≥ t2
(∫ t

0
∥∇ρ(τ)∥L∞ dτ

)−1

≥ t2 F(t)−1 for all t > 0,

plugging it into (3-12) gives an inequality relating F(t) to itself:

F(t)≥ c0 E−1
0

(
1
4 k2

0 t2 F(t)−1
+ A0

)3

− ∥ω0∥L∞ . (3-13)

Our goal is to show that there exists some c1(ρ0, ω0) > 0 such that

F(t)≥ c1(ρ0, ω0)t3/2 for all t ≥ 1. (3-14)
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Towards a contradiction, suppose (3-14) does not hold at some t1 ≥ 1, so t2
1 F(t1)−1

≥ c−1
1 t1/2

1 . Since
t1 ≥ 1, one can choose c1 sufficiently small (only depending on initial data) such that the right-hand side
of (3-13) is bounded below by 4−4c0 E−1

0 k6
0c−3

1 t3/2
1 . On the other hand, the left-hand side is bounded

above by c1t3/2
1 . Thus we obtain a contradiction if we further require c1 < 4−1(c0 E−1

0 k6
0)

1/4.
Finally, note that (3-14) directly implies supτ∈[0,t] ∥∇ρ(τ)∥L∞ ≥ c1(ρ0, ω0)t1/2 for all t ≥ 1. For

t ∈ (0, 1), recall that the definition of k0 and the fact ρ(0, 0, t)= 0 yield

∥∇ρ(t)∥L∞ ≥
1
π

k0 ≥
( 1
π

k0
)
t1/2 for t ∈ (0, 1).

Combining these two estimates finishes the proof. □

Remark 3.2. Theorem 1.3 does not give us an infinite-in-time growth result for ω( · , t). All we have is
the following conditional growth estimate coming from (3-10): if lim supt→∞ t−1

∥∇ρ(t)∥L∞ <∞, this
must imply limt→∞ ∥ω(t)∥L∞ = ∞.

Proof of Theorem 1.4. The proof is similar to the previous one, and in fact it is easier due to the uniform
positivity of ρ0 on {0} × [0, π]. Using the Biot–Savart law, one can check that the even-in-x1 symmetry
of ρ and odd-in-x1 symmetry of ω is preserved for all times. Defining Q := [0, π]×[0, π], the symmetries
and the boundary condition yield that u · n = 0 on ∂Q for all times. In particular, this implies

ρ(0, x2, t)≥ k0 > 0 and ρ(π, x2, t)≤ 0 for all x2 ∈ [0, π], t ≥ 0, (3-15)

during the existence of a smooth solution.
Again, let us define A(t) :=

∫
Q ω(x, t) dx . A calculation similar to the previous proof shows that in

this case

A′(t)≥

∫ π

0
ρ(0, x2, t) dx2 −

∫ π

0
ρ(π, x2, t) dx2 ≥ k0π,

where the last inequality follows from (3-15). This gives us a lower bound

A(t)≥ k0π t + A(0) for all t ≥ 0. (3-16)

An identical argument as in the proof of Theorem 1.3 gives∫
�

|u(x, t)|2 dx ≤ E0(ρ0, u0)

uniformly in time; thus we can apply Lemma 3.1 to obtain

∥ω∥L p(Q) ≥ c0 E−1+1/p
0 |A(t)|3−2/p for all p ∈ [1,∞]. (3-17)

Also, note that Green’s theorem yields

A(t)=

∫
∂Q

u · dl ≤ 4π∥u(t)∥L∞ . (3-18)

Regarding the growth of ∇ρ, note that (3-11) still holds in a strip, so

sup
τ∈[0,t]

∥∇ρ(τ)∥L∞ ≥ t−1(∥ω(t)∥L∞ − ∥ω0∥L∞) for all t > 0. (3-19)

Below we discuss two cases.



SMALL SCALE FORMATION FOR THE 2-DIMENSIONAL BOUSSINESQ EQUATION 191

Case 1: A(0)≥ 0. In this case (3-16) gives

A(t)≥ k0π t for all t > 0.

We then apply (3-17) and (3-18) to obtain lower bounds for ∥ω(t)∥L p(Q) and ∥u(t)∥L∞ :

∥ω(t)∥L p(Q) ≥ c1(ρ0, ω0)t3−2/p for all p ∈ [1,+∞], t ≥ 0, (3-20)

∥u(t)∥L∞(Q) ≥
1
4 k0t for all t ≥ 0. (3-21)

Regarding the growth of ∇ρ, we apply (3-20) with p = +∞ and combine it with (3-19) to obtain

sup
τ∈[0,t]

∥∇ρ(τ)∥L∞ ≥ t−1(c1(ρ0, ω0)t3
− ∥ω0∥L∞),

which implies

sup
τ∈[0,t]

∥∇ρ(τ)∥L∞ ≥ c1(ρ0, ω0)t2 for all t ≥

(
∥ω0∥L∞

c1(ρ0, ω0)

)1/3

.

Combining this large time estimate with the trivial lower bound ∥∇ρ(t)∥L∞ ≥
1
π

k0 for all times, there
exists some c2(ρ0, ω0) > 0 such that

sup
τ∈[0,t]

∥∇ρ(τ)∥L∞ ≥ c2(ρ0, ω0)t2 for all t ≥ 0. (3-22)

Case 2: A0 < 0. In this case the right-hand side of (3-16) becomes positive for t > |A0|/(k0π). In
addition, we have

A(t)≥
1
2 k0π t for all t ≥ T0 =:

2|A0|

k0π
.

Once we obtain this (positive) linear lower bound for t ≥ T0, we can argue as in Case 1 to obtain lower
bounds for ∥ω(t)∥L p(Q), ∥u(t)∥L∞ , and supτ∈[0,t] ∥∇ρ(τ)∥L∞ for all t ≥ T0. In addition, combining the
lower bound for ∥∇ρ(t)∥L∞ for t ≥ T0 with the trivial lower bound ∥∇ρ(t)∥L∞ ≥ k0/π for all times, we
again have (3-22) with a smaller coefficient c(ρ0, ω0) > 0 that only depends on the initial data. □

Remark 3.3. If the assumptions on symmetries of ρ0 and ω0 are dropped, the following simple argument
still gives ∥ω(t)∥L1 ≳ t for t ≫ 1. Let Qt := {8t(x) : x ∈ [0, π] × [0, π]}, and denote by

01
t := {8t(x) : x ∈ {0} × [0, π]} and 02

t := {8t(x) : x ∈ {π} × [0, π]}

the left and right boundary of Qt . (Since u · n = 0 on ∂�, the top and bottom boundaries of Qt remain
on ∂� for all times.) In addition, since ρ is preserved along the flow, at each t we have ρ( · , t)|01

t
≥ k0> 0

and ρ( · , t)|02
t
≤ 0. Thus a computation similar to (3-8) in the moving domain Qt gives

d
dt

∫
Qt

ω(x, t) dx =

∫
Qt

−∂x1ρ(t) dx ≥ k0π for all t ≥ 0.

Therefore, as long as the solution (ρ, ω) remains smooth, we have

∥ω(t)∥L1 ≥

∫
Qt

ω(x, t) dx ≥ k0π t − ∥ω0∥L1 for all t ≥ 0. (3-23)

However, since Qt is in general largely deformed from a square for t ≫ 1, we are not able to apply
Lemma 3.1 to obtain faster growth rate for higher L p norms.
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Note that given any steady state ωs of the 2-dimensional Euler equation on the strip �, (0, ωs) is
automatically a steady state of the inviscid Boussinesq equations (1-4). Thus the infinite-in-time growth
estimate (3-23) directly implies that any such steady state (with zero density) is nonlinearly unstable, in
the sense that, for any 0 < k0 ≪ 1, an arbitrarily small perturbation ρ0 = k0 cos(x1), ω0 = ωs leads to
limt→∞∥ω(t)∥L1 = ∞. See [Bedrossian et al. 2023; Castro et al. 2019; Deng et al. 2021; Doering et al.
2018; Masmoudi et al. 2022; Tao et al. 2020; Zillinger 2023] for more results on stability/instability of
steady states of the inviscid or viscous Boussinesq equations.

3.3. Application to 3-dimensional axisymmetric Euler equation. In this subsection we will prove
Theorem 1.8, whose proof is a close analog of Theorem 1.4.

Proof of Theorem 1.8. Using the Biot–Savart law, one can easily check that ωθ remains odd in z and uθ

remains even in z for all times while the solution stays smooth. Combining these symmetries with the
Biot–Savart law (1-10) gives uz

= 0 for z = 0 and z = π for all times. For a point x on the r z-plane, let
us define the flow-map 8t(x) : [π, 2π ] × T → [π, 2π ] × T, given by

d
dt
8t(x)= (ur (8t(x), t), uz(8t(x), t)).

Since uz = 0 on z = π , for any x ∈ [π, 2π ] × {π}, we have 8t(x) remains on [π, 2π ] × {π}. From the
first equation in (1-9), we have ruθ is conserved along the trajectory. Thus, for any point (r, π) with
r ∈ [π, 2π ], we have

ruθ (r, π, t)≥ πuθ0(8
−1
t (r, π), 0)≥ πk0,

where the last inequality follows from the assumption uθ0 ≥ k0 > 0 on z = π and the fact that 8−1
t (r, π) ∈

[π, 2π ] × {π}. This implies

uθ (r, π, t)≥
1
2 k0 > 0 for all r ∈ [π, 2π ], t ≥ 0. (3-24)

Applying a similar argument for z = 0, the assumption |uθ0|<
1
8 k0 on z = 0 leads to

|uθ (r, 0, t)| ≤
1
4 k0 for all r ∈ [π, 2π ], t ≥ 0. (3-25)

Defining Q := [π, 2π ] × [0, π] to be a square on the r z-plane, the above symmetry results give
(ur , uz) ·n = 0 on ∂Q for all times. Using this boundary condition as well as the divergence-free property
of (rur , ruz) in (r, z) (which follows from (1-10)), we apply the divergence theorem to obtain

d
dt

∫
Q
ωθ (r, z, t) dr dz =

∫
Q
(rur , ruz) · ∇r,z

(
ωθ

r

)
+
∂z(uθ )2

r
dr dz

=

∫
Q

∂z(uθ )2

r
dr dz

=

∫ 2π

π

1
r
(uθ (r, π, t)2 − uθ (r, 0, t)2) dr

≥ ln 2 3
16 k2

0 ≥
1
10 k2

0
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for all times during the existence of a smooth solution, where the last inequality follows from (3-24)
and (3-25). This directly implies

A(t) :=

∫
Q
ωθ (r, z, t) dr dz ≥

1
10 k2

0 t +

∫
Q
ωθ0 dr dz.

In particular, if
∫

Q ω
θ
0 dr dz ≥ 0, this implies

A(t)≥
1

10 k2
0 t for all t ≥ 0, (3-26)

and if
∫

Q ω
θ
0 dr dz < 0, we have

A(t)≥
1

20 k2
0 t for all t ≥ T0 =: 20k−2

0

∣∣∣∣∫
Q
ωθ0 dr dz

∣∣∣∣. (3-27)

Another ingredient we need is the energy conservation. It is well known that the kinetic energy is
conserved for the 3-dimensional Euler equation, i.e.,

∫
�

|u(x, t)|2 dx =
∫
�

|u0|
2 dx . Since � has an inner

boundary with positive radius π , this implies, in the domain Q in the r z plane, we also have∫
Q
(ur (r, z, t)2 + uz(r, z, t)2) dr dz ≤ E0(u0).

Recall that ωθ and (ur , uz) are related by ωθ = ∂r uz
− ∂zur . Thus we can apply Lemma 3.1 to conclude

that
∥ωθ (t)∥L p(Q) ≥ c0 E−1+1/p

0 |A(t)|3−2/p for all p ∈ [1,∞], t ≥ 0,

which directly leads to (1-12) once we plug estimates (3-26) and (3-27) of A(t) into the above equation.
Finally, applying Green’s theorem in Q, we have

A(t)=

∫
Q
ωθdrdz =

∫
Q
(∂r uz

− ∂zur ) dr dz =

∫
∂Q

u · dl ≤ 4π∥u(t)∥L∞ .

Combining this with the estimates (3-26) and (3-27) directly gives (1-13), finishing the proof. □

Appendix: Proof of Lemma 2.2

In the appendix we prove Lemma 2.2. The proof is almost the same as in [Kiselev and Yao 2023] other
than a small improvement in part (a). We sketch a proof for both parts below for the sake of completeness.

Proof of Lemma 2.2 (a). Here the proof mostly follows [Kiselev and Yao 2023, (3.4)], except that we
make a small improvement dropping the assumption ∥∂1µ∥

2
Ḣ−1 <

1
4∥µ∥

2
L2 in that paper. Let us define

δ := ∥∂1µ∥
2
Ḣ−1(R2)

, A := ∥µ∥
2
L2(R2)

.

Clearly,

δ =

∫
R2

ξ 2
1

|ξ |2
|µ̂|

2 dξ ≤ A.

Let us discuss the following two cases.
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Case 1: δ < 1
4 A. In this case let us define

Dδ :=

{
(ξ1, ξ2) :

|ξ1|

|ξ |
≥

√
2δ
A

}
.

By definition of Dδ, we have

δ ≥

∫
Dδ

ξ 2
1

|ξ |2
|µ̂(ξ)|2 dξ ≥

2δ
A

∫
Dδ

|µ̂|
2 dξ.

This gives
∫

Dδ
|µ̂|

2 dξ ≤
1
2 A, and thus

∫
Dc
δ
|µ̂|

2 dξ ≥
1
2 A. Note that Dc

δ can be expressed in polar
coordinates as

Dc
δ =

{
(r cos θ, r sin θ) : r ≥ 0, | cos θ |<

√
2δ
A

}
.

Since µ ∈ C∞
c (R

2), we have
∥µ̂∥L∞(R2) ≤ (2π)−1

∥µ∥L1(R2) =: B.

Let hδ>0 be such that |Dc
δ∩{|ξ2|<hδ}|= (4B2)−1 A, which we will estimate later. Such a definition gives∫

Dc
δ∩{|ξ2|≥hδ}

|µ̂|
2 dξ =

∫
Dc
δ

|µ̂|
2 dξ −

∫
Dc
δ∩{|ξ2|<hδ}

|µ̂|
2 dξ ≥

1
2 A − (4B2)−1 AB2

=
1
4 A,

which implies

∥µ∥
2
Ḣ s(R2)

≥

∫
R2

|ξ2|
2s

|µ̂|
2 dξ ≥ h2s

δ

∫
Dc
δ∩{|ξ2|≥hδ}

|µ̂|
2 dξ ≥

1
4 Ah2s

δ . (A-1)

To estimate hδ, let us define θ0 := cos−1(
√

2δ/A). Since Dc
δ ∩ {|ξ2| < hδ} consists of two identical

triangles with height hδ and base 2hδ cot θ0, we have

(4B2)−1 A = |Dc
δ ∩ {|ξ2|< hδ}| = 2h2

δ cot θ0 ≤ 4
√
δA−1/2h2

δ,

where the inequality follows from cos θ0 =
√

2δ/A and sin θ0 =
√

1 − 2δ/A ≥ 1/
√

2, due the assumption
δ < 1

4 A in Case 1. Therefore hδ ≥ (4B)−1 A3/4δ−1/4. Plugging it into (A-1) yields

∥µ∥Ḣ s(R2) ≥
1
2

√
Ahs

δ ≥ c(s, A, B)δ−s/4,

finishing the proof of Lemma 2.2 in Case 1.

Case 2: δ≥
1
4 A. As in Case 1, let us define ∥µ̂∥L∞(R2)≤ (2π)−1

∥µ∥L1(R2)=: B. Let r0 := (A/(2πB2))1/2.
Such a definition leads to ∫

B(0,r0)

|µ̂|
2 dξ ≤ πr2

0∥µ̂∥
2
L∞(R2)

≤
1
2 A,

and thus

∥µ∥
2
Ḣ s(R2)

≥

∫
B(0,r0)c

|ξ |2s
|µ̂|

2 dξ ≥ r2s
0

1
2 A ≥ c(s, A, B)δ−s/4,

where the last inequality follows from the assumption δ ≥
1
4 A in Case 2. This finishes the proof of

part (a). □
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Proof of Lemma 2.2 (b). This part is equivalent to the last (unnumbered) equation in the proof of
Theorem 1.2 in [Kiselev and Yao 2023]. We sketch a proof below for completeness, and also to clarify
the dependence of c2

(
s,

∫
T×[0,π ]

µ1/3 dx
)

in (2-12).
For any k = (k1, k2) ∈ Z2, the Fourier coefficient µ̂(k1, k2) can be written as

µ̂(k1, k2)=
1

(2π)2

∫
T

e−ik1x1

∫
T

e−ik2x2µ(x1, x2) dx2 dx1

=
1

(2π)2

∫
T

e−ik1x1(−2i)
∫ π

0
sin(k2x2)µ(x1, x2) dx2︸ ︷︷ ︸

=:g(x1,k2)

dx1, (A-2)

where the last identity is due to µ being odd in x2. With g(x1, k2) defined in the last line of (A-2), when
setting k2 = 1, we claim that g(x1, 1) satisfies the following properties:

(a) g(x1, 1) is even in x1 and nonnegative for all x1 ∈ T.

(b) g(0, 1)= 0.

(c)
∫

T
g(x1, 1) dx1 ≥ c

(∫
D µ(x)

1/3 dx
)3 for some universal constant c > 0.

Here property (a) follows from the facts that µ is even in x1 and nonnegative on D := [0, π]
2. Property (b)

follows from µ(0, · )≡ 0. For property (c), note that∫
T

g(x1, 1) dx1 = 2
∫ π

0
g(x1, 1) dx1 = 2

∫
D

sin(x2)µ(x) dx .

Combining Hölder’s inequality with the fact that sin(x2)µ(x)≥ 0 in D, we have∫
D

sin(x2)µ(x) dx ≥

(∫
D

sin(x2)
−1/2 dx

)−2(∫
D
µ(x)1/3 dx

)3

≥ c0

(∫
D
µ(x)1/3 dx

)3

for some universal constant c0 > 0. This proves property (c).
For any k1 ∈ Z, let ĝ(k1) be the Fourier coefficient of g( · , 1); that is,

ĝ(k1) :=
1

2π

∫
T

e−ik1x1 g(x1, 1) dx . (A-3)

Denote by ḡ :=
1

2π

∫
T

g(x1, 1) dx1 the average of g( · , 1). Applying the definition of ĝ to (A-2) gives

µ̂(k1, 1)=
−2i
2π

ĝ(k1) for any k1 ∈ Z. (A-4)

This allows us to bound δ := ∥∂1µ∥
2
Ḣ−1(T2)

from below as

δ ≥ (2π)2
∑

k1∈Z\{0}

k2
1

k2
1 + 1

|µ̂(k1, 1)|2

≥ 2
∑

k1∈Z\{0}

|ĝ(k1)|
2
=

1
π

∫
T

|g(x1, 1)− ḡ|
2 dx1. (A-5)
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By property (c), ḡ ≥ c
(∫

D µ(x)
1/3 dx

)3
> 0. Applying [Kiselev and Yao 2023, Lemma 3.3] to g(x1, 1)

yields

∥g( · , 1)∥Ḣ s(T) ≥ c
(

s,
∫

D
µ(x)1/3 dx

)
δ−s+1/2 for all s > 1

2 . (A-6)

Note that

∥g( · , 1)∥2
Ḣ s(T)

= 2π3
∑
k1 ̸=0

|k1|
2s

|µ̂(k1, 1)|2 ≤
π
√

2
∥∂1µ∥

2
Ḣ s−1(T2)

≤
π
√

2
∥µ∥

2
Ḣ s(T2)

, (A-7)

where the first inequality follows by the assumption s> 1
2 . Finally, combining inequalities (A-6) and (A-7)

gives (2-12). □
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IN THE OBSTACLE PROBLEM
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We show that the singular set 6 in the classical obstacle problem can be locally covered by a C∞

hypersurface, up to an “exceptional” set E , which has Hausdorff dimension at most n − 2 (countable in
the n = 2 case). Outside this exceptional set, the solution admits a polynomial expansion of arbitrarily
large order. We also prove that 6 \ E is extremely unstable with respect to monotone perturbations of the
boundary datum. We apply this result to the planar Hele-Shaw flow, showing that the free boundary can
have singular points for at most countable many times.
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1. Introduction

1.1. The classical obstacle problem. The classical obstacle problem consists in studying the solutions of
the variational problem

min
{

1
2

∫
B1

|∇w|
2
: w ≥ ϕ in B1 ⊆ Rn, w = g on ∂B1

}
,

where g : ∂B1 → R and ϕ : B1 → R are given, with ϕ < g on ∂B1. In two dimensions an intuitive
interpretation of this problem is the following: The graph of the minimizer w represents the shape of a
thin membrane stretched over B1 and fixed on ∂B1 along the profile g. The hypograph of ϕ represents a
solid “obstacle” above which the membrane must lie, possibly touching it. The Dirichlet energy, finally,
corresponds to the linearization of the surface energy of the membrane, which is assumed proportional to
the area of the graph of w.
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It is well known (see for example the exposition in [Fernández-Real and Ros-Oton 2022, Chapter 5])
that there exists a unique optimal shape v and that it enjoys C1,1

loc regularity, provided that ϕ is smooth
enough. Furthermore, u := v−ϕ solves the Euler–Lagrange equation

1u = −1ϕχ{u>0} in B1.

One of the most challenging problems is to understand the a priori unknown interface ∂{u > 0}, called
the “free boundary”. Unless 1ϕ < 0, simple examples show that the free boundary can be any closed set;
hence it is standard to assume that ϕ is superharmonic. Thus, we deal with solutions of{

1u = f χ{u>0} in B1,

u ≥ 0 in B1,
(1-1)

where f ∈ C∞(B1) is given and positive.
By classical works of Caffarelli [1977; 1998], the free boundary ∂{u > 0} splits into a regular and a

singular part:
∂{u > 0} = Reg(u)∪6(u).

Points in these sets can be characterized, for example, by density considerations:

x◦ ∈ Reg(u) ⇐⇒ |{u = 0} ∩ Br (x◦)| =
1
2 |Br | + o(rn),

x◦ ∈6(u) ⇐⇒ |{u = 0} ∩ Br (x◦)| = o(rn).

Caffarelli showed that Reg(u) is relatively open in the free boundary and, locally, is a C1 hypersurface
(smoothness and analyticity were proved later in [Kinderlehrer and Nirenberg 1977]). On the other hand,
6(u) can always be covered, locally, by a single C1 hypersurface (see [Caffarelli 1998, Theorem 8]).
Thus, when we speak about “regularity of 6(u)” we are actually speaking about the regularity of the
manifold covering it. In this paper we will improve the smoothness of this hypersurface. We remark
that 6(u) can display a very wild structure, as long as it is contained inside a single hypersurface; see
example (1-2).

1.2. The singular set: important examples and known results. The following simple example shows
that 6(u) can be rather wild. Furthermore, it can have Hausdorff dimension equal to n−1, thus it can be
as “large” as Reg(u). Consider the function

u(x) := x2
n + h(x ′) for (x ′, xn) ∈ Rn−1

× R, (1-2)

where h ∈ C∞(Rn−1) is nonnegative. Possibly multiplying h by a small factor, u solves (1-1) (with
some f depending on h) and

6(u)= {xn = 0} ∩ {h = 0}, Reg(u)= ∅.

Hence 6(u) can be any closed subset of {xn = 0}. See the second point below for even wilder examples
due to Schaeffer [1977], where the contact set has nonempty interior. In this paper we show that, locally,
6(u) is always contained in a C∞ hypersurface (the hyperplane {xn = 0}, in this example), except for an
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(n−2)-dimensional piece (the empty set, in this example). Before turning to the statements, let us try to
give an overview of what is known about 6(u).

• Concerning the pointwise structure, 6(u) consists precisely of those points x◦ ∈ ∂{u > 0} such that

r−2u(x◦ + r x)→ p2,x◦
(x) as r ↓ 0,

where p2,x◦
is a convex and 2-homogeneous polynomial with 1p2,x◦

= f (x◦). Thus, zooming in on x◦,
one sees the contact set {u = 0} clustering around the linear space {p2,x◦

= 0}. When dim{p2,x◦
= 0} = m

for some integer m ≤ n − 1, this suggests that 6(u) displays, qualitatively, an m-dimensional structure
at x◦.

• Concerning the local structure, when n = 2 and f is real analytic, Sakai [1993] gave a complete
characterization of the possible shapes of the free boundary around a singular point. In brief, 6(u) is
locally either an analytic curve, or an isolated point, around which ∂{u > 0} is the union of at most two
analytic arcs. In particular, 6(u) has codimension 1 inside the free boundary. We remark that his approach
relies on complex analysis techniques [Sakai 1991]. On the other hand, Schaeffer [1977] constructed
examples of rather wild free boundaries in the case where f is “just” C∞. He showed that

int({u = 0} ∩ {xn = 0}) and {u = 0} ∩ {xn = 0}

can be any nested couple of relatively open and closed subsets of {xn = 0} (the interior part is taken with
respect to the relative topology). In particular, the contact set might form infinitely many cusps, which in
turn produce an arbitrarily closed subset of {xn = 0} as the singular set. This shows that the sharpness of
Sakai’s results is due to analytic rigidity.

• Despite the counterexamples of Schaeffer, it is still possible to obtain refined statements about the
shape of 6(u). Caffarelli [1977; 1998] showed that 6(u) is locally contained in a C1 hypersurface. More
precisely, if we partition 6(u) into the strata

6m := {x◦ ∈6(u) : dim ker Ax◦
= m} for m = 0, . . . , n − 1,

then each 6m is locally contained in an m-dimensional C1 manifold. Building on Weiss [1999] and
Monneau [2003], Figalli and Serra [2019] extended these results by showing that 6(u)\ E can be covered
by C1,1 manifolds, where the excluded set E has Hausdorff dimension at most n−2.

• By the implicit function theorem, this type of covering result is tightly linked with the fact that u admits
a polynomial expansion around singular points. From this perspective, Caffarelli showed that, at each
x◦ ∈6(u),

u(x)= p2,x◦
(x − x◦)+ σ(x − x◦)|x − x◦|

2,

with an abstract dimensional modulus of continuity σ . This was improved in [Colombo et al. 2018],
showing that σ(x − x◦)≤ C

∣∣log |x − x◦|
∣∣−ε◦ for some dimensional C, ε◦ > 0. Figalli and Serra [2019]

proved that σ(x − x◦) ≤ C |x − x◦|
α◦ when x◦ ∈ 6n−1, and also that σ(x − x◦) ≤ C |x − x◦| provided

x◦ ∈ 6(u) \ E , where dimH E ≤ n − 2. Similar results were recovered in [Savin and Yu 2023] with
independent methods. This analysis was pushed further by Figalli, Ros-Oton and Serra [Figalli et al. 2020]
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in the framework of “generic” regularity. They showed that, for all ε > 0 small, there is a set E ⊆6(u)
with Hausdorff dimension at most n−2 such that, if x◦ ∈6(u) \ E , then

u(x)= P4,x◦
(x)+ O(|x − x◦|

5−ε) (1-3)

for some polynomial P4,x◦
with 1P4,x◦

= 1.

1.3. Main results of this paper. Concerning expansion (1-3), the approach in [Figalli et al. 2020] was
blocked at order 5, and new ideas were needed to go further, as we explain in detail in Section 1.4.2 below.
In fact, the natural question whether such an expansion could be pushed to some order k ≥ 5 (at most
points) was explicitly raised in [Figalli 2018, p. 22]. The main contribution of this paper is providing a
positive answer to this question: we prove that u admits a C∞ polynomial expansion at most points in 6.

Theorem 1.1. Let n ≥ 2, mu> 0 and f ∈ C∞(B1) be given, with f ≥µ. Let u ∈ C1,1
loc (B1) be a solution of

the obstacle problem (1-1), and let 6 be its singular set. Then there exists a closed set 6∞
⊆6 such that

(i) dimH(6 \6∞)≤ n − 2 (countable if n = 2),

(ii) locally, 6∞ is contained in one (n−1)-dimensional C∞ manifold.

Moreover, at every point x ∈6∞, the solution u has a polynomial expansion of arbitrarily large order.
That is, for every x ∈6∞ and k ∈ N, there exists a unique polynomial Pk,x with deg Pk,x ≤ k such that
the expansion

|u(x + h)− Pk,x(h)| ≤ C |h|
k+1 for all |h| ≤

1
2(1 − |x |) (1-4)

holds with a constant C depending only on n, k, µ, ∥ f ∥Ck+1 , 1−|x |. We further have that1Pk+2,x = fk,x ,
where fk,x is the k-th Taylor polynomial of f centered at x. Finally, the map 6∞

∋ x 7→ (Pk,x)k∈N is
smooth in the sense of Whitney.1

We remark that there are solutions in dimension 2 with f ≡ 1 for which 0 ∈ 6(u), but where
expansion (1-4) does not hold at 0 for k ≥ 3 (e.g., see the cusp-type solutions in [Sakai 1993]). In this
sense the dimensional bound in (i) is optimal. Furthermore, example (1-2) shows one cannot hope to show
that 6 is a smooth manifold, at least when the right-hand sides f are not analytic — this motivates (ii).

Example (1-2) is also a model situation which our result describes effectively: in this case 6 =6∞.
In dimension 2, Theorem 1.1 can be also read as an extension of Sakai’s result to nonanalytic right-hand

sides f (see the proof of Corollary 1.4 for a detailed comparison of the two results).
Our analysis further shows that the set6∞ is extremely unstable with respect to monotone perturbations

of the boundary datum. Indeed, following [Figalli et al. 2020], we also prove:

Theorem 1.2. Let {ut
}t∈(−1,1) be a family of solutions to (1-1), with f independent from t , which is

“uniformly monotone” in the sense that, for every t ∈ (−1, 1) and any compact set K ⊆ ∂B1 ∩ {ut > 0},
there exists c = c(t, K ) > 0 such that

min
x∈K

(ut+h(x)− ut(x))≥ ch for all − 1< t < t + h < 1. (1-5)

1We denote by dimH the Hausdorff dimension, and we refer to Whitney’s definition of smoothness on a closed set [Whitney
1934, Section 3].
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With the notation of Theorem 1.1, define the singular sets

6 := {(x◦, t◦) : x◦ ∈6(ut◦)},

6∞
:= {(x◦, t◦) : x◦ ∈6∞(ut◦)}.

Then, denoting the standard projections by πt : B1 × (−1, 1)→ (−1, 1) and πx : B1 × (−1, 1)→ B1, we
have that 6 is a graph over πx(6), and

(i) dimH(πt(6
∞))= 0 in any dimension n ≥ 2,

(ii) dimH(πt(6))= 0 in dimension n = 2,

(iii) dimH(πx(6 \ 6∞))≤ n − 2 (countable if n = 2).

Remark 1.3. The Hausdorff dimension bound in (i) can actually be improved to zero Minkowski
dimension (see [Mattila 1995, Chapter 5] for the definition).

Combining this result with Sakai’s classification we also get an improvement of [Figalli et al. 2020,
Theorem 1.2] concerning the generic regularity of the free boundary in the planar Hele-Shaw flow.

Corollary 1.4. Let O ⊆ R2 be an open and bounded set with Lipschitz boundary, and let � := R2
\ O.

For each t > 0, let ut be a weak solution of
1ut

= χ{ut>0} in �,
ut

= t on ∂�,
ut

≥ 0 in �.
(1-6)

Then the set of t ∈ (0,∞) such that 6(ut) ̸= ∅ is countable.

1.4. On the proofs of the main results. Let us now explain the main ideas in the proof of Theorem 1.1,
the general outline of the argument being inspired by [Figalli et al. 2020]. As pointed out, the key feature
is the Taylor expansion (1-4). Furthermore, we can work in the top-dimensional stratum 6n−1, as the
lower strata 6m , m ∈ {1, . . . , n − 2}, have Hausdorff dimension at most m thanks to Caffarelli’s covering
result.

We will perform a blow-up analysis on the functions u −Pk , where the Pk are suitable polynomials.
The core of this blow-up analysis is an Almgren-type monotonicity formula for u −Pk .

1.4.1. Polynomial ansatz. Similarly to [Figalli et al. 2023], we construct Pk , the prototypical k-th Taylor
polynomial of u at 0 ∈6n−1. These polynomials should be approximate solutions of (1-1), that is to say{

1Pk = f + O(|x |
k−1) in B1,

Pk ≥ −O(|x |
k+2) in B1.

Furthermore, they should have an (n−1)-dimensional zero set (we are in the top-dimensional stratum
6n−1). Together with nonnegativity, this suggests that Pk is almost a square:

Pk = (polynomial)2 + O(|x |
k+2).
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The coefficients of Pk can be chosen with some freedom, which can be used to modulate the shape of
the hypersurface {Pk = 0} around 0. Notice that, by Caffarelli’s analysis, P0 = P1 = 0 and (in suitable
coordinates) P2 =

1
2 x2

n . For example, we will see that P3 needs to have a more complicated form:

P3 =

(
xn +

p3

xn
+ xn R2

)2

+ O(|x |
k+2),

where p3 is any 3-homogeneous harmonic polynomial odd in xn and R2 = R2[p3] is a 2-homogeneous
polynomial determined uniquely by p3.

1.4.2. Almgren monotonicity formula. In [Figalli and Serra 2019], it was first noticed that the Almgren
frequency function of u − p2, that is

r 7→
∥r∇(u − p2)(r · )∥L2(B1)

∥(u − p2)(r · )∥L2(∂B1)

=: φ(r, u − p2), (1-7)

is increasing. This property is known to be very powerful and paved the way for most of the results of
[Figalli and Serra 2019]. Similarly, the key observation that allows us to prove expansion (1-4) is that,
for all k ≥ 2, (a version of) the Almgren frequency function is (almost) monotone on functions of the
form u −Pk . Proving this crucial fact for all k is one of the main contributions of this paper. The case
k = 3 was already obtained in [Figalli et al. 2020],2 but their approach was blocked and the general case
cannot be obtained by tuning their argument; let us explain why.

By known computations, for every function w,

d
dr
φ(r, w)≥

2
r

∫
B1
(φ(r, w)wr − x · ∇wr )1wr

∥wr∥
2
L2(∂B1)

. (1-8)

In [Figalli and Serra 2019], it was shown that the right-hand side is nonnegative if w = u −P2, but in
order to carry out our arguments it is enough to prove that the negative part of the right-hand side is
integrable around r = 0 when w = u −Pk . In trying to do so, the term wr1wr has (up to some errors)
the right sign, while the main difficulties come from the term (x · ∇wr )1wr .

In order to control this last term in the case k = 3, the following crucial Lipschitz estimate was proved
in [Figalli et al. 2020, Lemma 4.7]:

r∥∇(u −P3)∥L∞(Br ) ≤ C(∥(u −P3)(r · )∥L2(B2) + r5) (1-9)

for some constant C independent of u, P3, and r ∈
(
0, 1

4

)
. In order to prove (1-9), one needs to take

incremental quotients of u−P3 along the flow of some circular vector fields {X j }, which have the property
that X j X jP3 = O(|x |

3) (see [Figalli et al. 2020, Lemma 4.6]). Now, exploiting that the Laplacian is
invariant under rotations (that such vector fields generate), one can prove (1-9). There is little hope to
make this ingenious argument work for a general u −Pk , since the Laplacian does not commute with
more general diffeomorphisms, which, on the other hand, would be needed to ensure X j X jPk = O(|x |

k).

2Actually, as a consequence of the method of proof, the authors also immediately obtain the same monotonicity for u−P3 − P
for some homogeneous harmonic polynomial of order 4. This then leads the expansion up to order 5 − ε, but to continue on what
is missing is Almgren’s frequency monotonicity for u −P4, where P4 ̸= P3 + P .
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With a completely different proof, in Section 3.2, we will prove the following weaker Lipschitz estimate,
which — nontrivially — is still enough to get the integrability of the right-hand side of (1-8). For all k ≥ 2,
we have

r∥∇(u −Pk)∥L∞(Br ) ≤ C(∥(u −Pk)(r · )∥L2(Bθ ) + r k+2)1−β, (1-10)

where β > 0 can be chosen arbitrarily small, C, θ > 1 are constants independent of u, and r ∈ (0, 1/θ).
This allows us to prove the monotonicity of a suitable modification of Almgren’s frequency function
introduced in [Figalli et al. 2020]. More precisely, the function

r 7→ φγ (r, u −Pk)+ Cr ε, where φγ (r, w) :=

∥∇wr∥
2
L2(B1)

+ γ r2γ

∥wr∥
2
L2(∂B1)

+ r2γ
, (1-11)

is increasing. Here wr := w(r · ), C , ε are positive constants and γ > k + 1 is the truncation parameter.

1.4.3. Blow-up analysis. The monotonicity formula allows us to pursue a blow-up analysis to every order.
Similarly to [Figalli and Serra 2019], we classify the possible blowups, that is, we study the possible
limits of the normalized sequence

ṽrℓ :=
vrℓ

∥vℓ∥
2
L2(∂B1)

as rℓ ↓ 0, where vr := (u −Pk)(r · ).

We show that ṽrℓ → q, where q is a nontrivial global solution of a certain PDE: the Signorini problem.
Furthermore, q is homogeneous of degree φγ (0+, v). The blowup can be performed at each point of
6n−1 of course, but q could be a nonpolynomial function or even have nonintegral homogeneity. At the
points where this happens, there cannot be a Taylor polynomial of order k+1, so the expansion (1-4)
must stop. These points must be shown to be “rare”.

1.4.4. Dimension reduction. We show that φγ (0+, u −Pk)= k + 1 outside of a set of dimension at most
n−2 for a suitable choice of Pk , and the blowup q is a harmonic polynomial vanishing on {p2 = 0} (a
particular class of solutions of the Signorini problem). This allows us to determine the next ansatz Pk+1 in
terms of Pk and q and prove the Taylor expansion up to order k+1 with remainder o(r k+1). The various
dimension reduction techniques are inspired by [Figalli and Serra 2019], but new barrier arguments are
introduced to deal with the points with even frequency.

1.5. Structure of the paper. In Section 2 we fix the notation and recall some basic results on the obstacle
problem and the Signorini problem. In Section 3.1 we give the construction of the polynomial ansatz Pk .
In Section 3.2 we prove our Lipschitz estimate (1-10). In Section 4 we prove the almost-monotonicity of
the truncated frequency φγ ( · , u −Pk). In Section 5 we perform and classify the blowups. In Section 6
we perform the dimension reductions distinguishing various cases; the proof of Theorem 1.1 is given in
Section 6.4. In Section 7 we give the proof of the instability result Theorem 1.2.

In Appendix A we reprove a result [Figalli and Serra 2019, Remark 2.14] for a general right-hand side.
In Appendix B we explain, line by line, which modifications are needed for a smooth right-hand side in
the previous proofs. Finally, Appendix C contains two technical lemmas.
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2. Preliminaries

2.1. Notation. We work in Rn endowed with its Euclidean structure and assume n ≥ 2. We will often
perform blowups: given a function v : B1 → R, we set vr := v(r · ) which is defined in B1/r ; the parameter
r > 0 is thought to be small. We remark that ∇vr = r(∇v)r . We will sometimes write X ≲a,b Y , meaning
that X ≤ CY for some constant C > 0 which depends only on a and b.

2.2. Known results. Fix µ > 0 and a function f ∈ C∞(B1) such that f ≥ µ in B1. We will denote by u
any solution of 

1u = f χ{u>0} in B1,

u ≥ 0 in B1,

0 ∈ ∂{u > 0}.

(2-1)

The last condition is added for normalization purposes, as we want to stay away from ∂B1. We recall
some basic properties of the solution u, relying on the classical theory by Caffarelli [1977; 1998], see
also [Figalli et al. 2020, Section 3] for a summary of the known results. There exists

C = C(n, µ, ∥ f ∥L∞(B1)) > 0

such that
∥u∥C1,1(B1/2) ≤ C and sup

B1/2

u ≥
1
C
. (2-2)

Thus we will assume throughout the paper that u ∈ C1,1
loc (B1). We remark that the problem has a natural

scaling; in fact, for any r > 0, we have that r−2ur solves
1(r−2ur )= frχ{ur>0} in B1/r ,

ur ≥ 0 in B1/r ,

0 ∈ ∂{ur > 0}.

The free boundary ∂{u > 0} consists of regular points (in the neighborhood of which ∂{u > 0} is an
analytic hypersurface) and singular points 6 ⊆ ∂{u > 0} (at which the volume density of {u = 0} is 0). It
is well known that the singular points are characterized by the condition that the blowup

p2,x◦
(x) := lim

r→0
r−2u(x◦ + r x)

exists and is a convex 2-homogeneous polynomial with 1p2,x◦
≡ f (x◦). When x◦ = 0, we denote the

blowup simply by p2. The singular set 6 stratifies according to dim{p2,x◦
= 0}. The strata

6m := {x◦ ∈6 : dim{p2,x◦
= 0} = m} for m = 0, . . . , n − 1

are locally contained in m-dimensional C1 manifolds. As we want to prove a statement “up to sets of
codimension 2”, we will be mostly interested in the top-dimensional stratum 6n−1.

The following lemma is crucial for our analysis. It shows that, in 6n−1, the rate of convergence of u to
its blowup is more than quadratic. It was proved in [Figalli and Serra 2019, Remark 2.14] for f ≡ 1; for
completeness we give the proof for a general f ∈ Cδ(B1) in Appendix A.
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Lemma 2.1. Assume that 0 ∈6n−1 and r−2ur → p2. Then there are C, α◦ > 0 such that

sup
Br

|u − p2| ≤ Cr2+2α◦ for all r ∈
(
0, 1

2

)
. (2-3)

In particular, we have

{ur = 0} ∩ B1 ⊆ {x : dist(x, {p2 = 0})≤ Crα◦} for all r ∈ (0, 1). (2-4)

The constants C and α◦ depend only on n, µ, δ, ∥ f ∥Cδ(B1), where 0< δ ≤ 1 can be freely chosen.

Notice that (2-4) immediately follows from (2-3) because dist( · , {p2 = 0})2 = p2 since 0 ∈6n−1.

2.3. Truncated frequency function. We will make extensive use of the following functionals. For
w ∈ C1,1

loc (B1), r ∈ (0, 1) and a parameter γ ≥ 0, let us define the nondimensional quantities

D(r, w) := r2−n
∫

Br

|∇w|
2
=

∫
B1

|∇wr |
2, H(r, w) := r1−n

∫
∂Br

w2
=

∫
∂B1

w2
r (2-5)

and the truncated frequency function

φγ (r, w) :=
D(r, w)+ γ r2γ

H(r, w)+ r2γ , (2-6)

which has been introduced in [Figalli et al. 2020]. By [Figalli et al. 2020, Lemma 2.3], the following
formula is valid for all w ∈ C1,1

loc (B1) and r ∈ (0, 1):

d
dr
φγ (r, w)≥

2
r

(
r2−n

∫
Br
w1w

)2
+ Eγ (r, w)

(H(r, w)+ r2γ )2
,

where

Eγ (r, w) :=

(
r2−n

∫
Br

w1w

)
(D(r, w)+ γ r2γ )−

(
r2−n

∫
Br

(x · ∇w)1w

)
(H(r, w)+ r2γ ).

Thus we have

d
dr
φγ (r, w)≥

2
r

∫
B1
(φγ (r, w)wr − x · ∇wr )1wr

H(r, w)+ r2γ . (2-7)

We recall from [Figalli et al. 2020] the following result which says, roughly speaking, that the value of
φγ ( · , v) corresponds to the power at which H( · , v) grows. This lemma will be used extensively to pass
from L2 norms over spheres to L2 norms over thick shells.

Lemma 2.2 [Figalli et al. 2020, Lemma 4.1, Remark 4.2]. Let R ∈ (0, 1), and let w : BR → [0,∞) be a
C1,1 function. Assume that, for some ε ∈ (0, 1) and a constant C◦ > 0, we have

d
dr
(φγ (r, w)+ C◦r ε)≥

2
r

(
r2−n

∫
Br
w1w

)2

(H(r, w)+ r2γ )2
for all r ∈ (0, R).
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Then the following hold:

(a) Suppose that 0< λ≤ φγ (r, w)≤ λ̄ for all r ∈ (0, R). Then, for any given δ > 0, we have

1
Cδ

( R
r

)2λ−δ
≤

H(R, w)+ R2γ

H(r, w)+ r2γ ≤ Cδ
( R

r

)2λ̄+δ
for all r ∈ (0, R),

where Cδ depends on n, γ , ε, λ̄, C◦, δ.

(b) Assume in addition that

r2−n
∫

Br
w1w

H(r, w)+ r2γ ≥ −C◦r ε for all r ∈ (0, R).

Then, for λ∗ := φγ (0+, w), we have λ∗ ≤ γ and

e−C◦/ε
2
( R

r

)2λ∗

≤
H(R, w)+ R2γ

H(r, w)+ r2γ .

2.4. The Signorini problem. The Signorini problem, called also the thin obstacle problem, consists of
the following system of PDEs 

1q ≤ 0 and q1q = 0 in Rn,

1q = 0 in Rn
\ L ,

q ≥ 0 on L ,
(2-8)

where L ⊆ Rn is a hyperplane and q is at least continuous. Recall that the following regularity is known
(see [Athanasopoulos and Caffarelli 2004]) for weak solutions: if L = {xn = 0} then q ∈ C1,1/2

loc ({xn ≥ 0}).
For each solution q we will consider its singular set,3 defined by

6(q) := {x ∈ L : q = |∇q| = 0}. (2-9)

We will be interested in homogeneous solutions, so, for every λ≥ 0 and every hyperplane L ⊆ Rn , let
us define

Sλ(L) := {q ∈ W 1,2
loc ∩ C0

loc(R
n) : q is λ-homogeneous and solves (2-8)}. (2-10)

We will use the following characterization of homogeneous solutions.

Lemma 2.3. Let q ∈ W 1,2
loc ∩C0

loc(R
n) be a weak solution of (2-8), and let λ≥ 0. Then q is λ-homogeneous

if and only if
D(r, q)
H(r, q)

= λ for all r > 0.

Proof. Setting to zero the derivative with respect to r of the left-hand side, one formally gets

q(x)= λx · ∇q(x).

One can make the computation rigorous using the C1,α regularity of q; see [Fernández-Real 2022]. □

3We warn the reader that our singular set has nothing to do with the “singular points” of the free boundary of q. Our
terminology is instead consistent with [Naber and Valtorta 2017].
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Every q ∈ S(ν⊥), with ν a unit vector, can be split into its even and odd part with respect to L , namely

qeven(x) :=
1
2(q(x)+ q(x − 2(x · ν)ν)), qodd(x) :=

1
2(q(x)− q(x − 2(x · ν)ν)), (2-11)

so that q = qeven
+ qodd. It is easy to show that qeven and qodd solve (2-8) separately, thus it is natural to

define
S even
λ (L) := {q ∈ Sλ(L) : q is even with respect to L},

S odd
λ (L) := {q ∈ Sλ(L) : q is odd with respect to L}.

When it is not relevant, we will drop the dependence on L . We gather information on these sets next.

Proposition 2.4. For every m ∈ N, the following hold:

(i) Every element of S2m+1(L) vanishes on the obstacle L.

(ii) S odd
λ (L) consists exactly of those λ-homogeneous harmonic polynomials that vanish on L , thus it’s

empty when λ /∈ N.

(iii) S even
2m (L) consists exactly of those 2m-homogeneous harmonic polynomials that are nonnegative

on L.

(iv) If q ∈ S even
2m+1(e

⊥
n ), then q(x)= −|xn|(q0(x ′)+ x2

nq1(x)), where q0 and q1 are polynomials such that
q0 ≥ 0 and 1(−xnq0(x ′)+ x3

nq1(x))= 0.

(v) The (real) values of λ for which S even
λ (L) is not empty are known only in dimension n = 2, in which

case we have λ ∈ N ∪
{
2m +

3
2 : m ∈ N

}
.

Proof. For (i) see [Figalli et al. 2020, Lemma 5.1]. To show (ii), notice that q is harmonic in a half-space
and coincides with its odd reflection, thus it is harmonic everywhere. The third point is proven in [Garofalo
and Petrosyan 2009, Lemma 1.3.4]. For (iv) see [Figalli et al. 2020, Appendix B]. The last point follows
by separating variables and explicitly solving the resulting ODE. □

Remark 2.5. Using Proposition 2.4, it is easy to check that if n = 2 and λ∈ N, λ≥ 2, then6(qeven)= {0}.

3. Lipschitz estimates

For the sake of readability, we deal first with the case f ≡ 1 and µ = 1. A list of notational changes
needed to address a general f is given in Appendix B. This section is devoted to the derivation of the
Lipschitz estimate (1-10), which contains the most original part of this work.

3.1. Polynomial ansatz. We denote by V j the vector space of homogeneous polynomials of degree j ≥ 1.
We introduce the projection map π j : R[x] → V j , which sends a polynomial to its j-homogeneous part,
and the map π≤ j , which truncates it at degree j . We define for k ≥ 2 the set Pk ⊆ V2 ×· · ·× Vk by saying
that (p2, . . . , pk) ∈ Pk if and only if

(i) p j is a j-homogeneous polynomial for each 2 ≤ j ≤ k,

(ii) p2 ≥ 0, 1p2 = 1 and dim{p2 = 0} = n − 1,

(iii) 1p j = 0 and p j vanish on {p2 = 0} for each 3 ≤ j ≤ k.
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Notice that any p2 satisfying (ii) must be of the form p2(x)= 1
2(ν · x)2 for some unit vector ν; of course ν

is not unique as we can always choose −ν, but that is the only freedom we have. Furthermore, for every
(p2, . . . , pk) ∈ V2 × · · · × Vk , we set

|(p2, . . . , pk)| :=

∑
2≤ j≤k

∥p j∥L2(∂B1).

Lemma 3.1. Let k ≥ 2 and (p2, . . . , pk) ∈ Pk be given. Then there exists a unique collection of
polynomials

(R1, . . . , Rk−1) ∈ V1 × · · · × Vk−1

such that the following holds. If p2(x)=
1
2(ν · x)2 for some unit vector ν and we define

Ak,ν(x) := (ν · x)+
k−1∑
j=1

(ν · x)R j (x)+
k∑

j=3

p j (x)
(ν · x)

,

then 1
( 1

2A
2
k,ν

)
= 1 + O(|x |

k). Furthermore, each R j is determined only by (p2, . . . , p j+1) and does not
depend on which ν we choose, so that Ak,−ν = −Ak,ν . Finally, 1

2A
2
2,ν = p2.

Proof. We prove the full statement by induction on k, beginning with k = 2. We compute

1
( 1

2A
2
2,ν

)
= 1 +1(2p2 R1)+ O(|x |

2),

thus R1 must solve 1(p2 R1) = 0; this is true if and only if R1 = 0, as we can see with the following
general argument. For m ≥ 1, we consider the linear map δm : Vm → Vm given by δm(q) :=1(p2q). We
claim that δm is a isomorphism. Indeed, if δm(q)= 0, then the polynomial p2q is a harmonic function
that vanishes on the hyperplane {p2 = 0} along with its normal derivative, thus p2q ≡ 0 (by reflection,
p2q is both even and odd with respect to {p2 = 0}, thus q ≡ 0). As Vm has finite dimension, the map δm

is invertible. In particular, R1 = δ−1
1 (0)= 0, regardless of p2 and ν.

Assume that the full statement is proved up to some k ≥ 2. Fix (p2, . . . , pk+1) ∈ Pk+1 and ν, and for
simplicity set xν := (ν ·x). Notice that, for every (R1, . . . , Rk), we have Ak+1,ν =Ak,ν+xνRk + pk+1/xν .
A direct computation again gives

1
( 1

2A
2
k+1,ν

)
= π≤k−1

(
1

( 1
2A

2
k,ν

))
+πk

(
1

( 1
2A

2
k,ν

))
+1pk+1 +1

p3 pk+1

2p2
+1(2p2 Rk)+ O(|x |

k+1).

Hence we have 1 1
2A

2
k+1,ν = 1 + O(|x |

k+1) if and only if{
11

2A
2
k,ν = 1 + O(|x |

k),

πk
(
11

2A
2
k,ν

)
+1p3 pk+1/(2p2)+12p2 Rk = 0,

by inductive assumption the first equation determines uniquely (R1, . . . , Rk−1) and thus Ak,ν . The second
equation then determines uniquely Rk , indeed, as in the base step, we set

Rk := −
1
2δ

−1
k

(
πk1

(1
2A

2
k,ν

)
+1

p3 pk+1

2p2

)
.

Finally, by inductive assumption 1
2A

2
k,ν =

1
2A

2
k,−ν , thus it is manifest that Rk does not depend on the

choice of ν. □



C∞ PARTIAL REGULARITY OF THE SINGULAR SET IN THE OBSTACLE PROBLEM 211

This lemma shows that we can construct a function 1
2A

2
k : Pk → R[x] defined by

A2
k : (p2, . . . , pk) 7→ A2

k,ν, where p2(x)= (ν · x)2. (3-1)

Definition 3.2. Given k ≥ 2, we define Pk : Pk → R[x] by

Pk(p2, . . . , pk) := π≤k+1
( 1

2A
2
k
)
, (3-2)

where A2
k = A2

k,±ν are constructed from (p2, . . . , pk) as in Lemma 3.1.

We now give some simple properties of 1
2A

2
k and Pk ; given a unit vector e, we write ∂eu = e · ∇u.

Proposition 3.3. Let k ≥ 2, (p2, . . . , pk) ∈ Pk and τ > 0 be such that |(p2, . . . , pk)| ≤ τ . Choose some
unit vector ν for which p2(x) =

1
2(ν · x)2. Then the polynomials 1

2A
2
k(p2, . . . , pk) and Pk(p2, . . . , pk)

satisfy:

(i) 1Pk = 1 and ∂e
(1

2A
2
k

)
= ∂ePk + O(|x |

k+1), for any unit vector e.

(ii) We have Pk(p2, . . . , pk)= Pk−1(p2, . . . , pk−1)+ pk + O(|x |
k+1).

(iii) For all |x | ≤ r0, we have 1
2 ≤ |∂νAk,ν(x)| ≤ 2, and thus

1
2 |Ak(x)| ≤

∣∣∂ν(1
2A

2
k(x)

)∣∣ ≤ 2|Ak(x)|,

where r0 = r0(n, k, τ ) ∈ (0, 1).

(iv) If u is a solution as in (2-1), 0 ∈6n−1 and r−2u(r · )→ p2, then by (2-3) we have, for all 0< r < 1
2 ,

sup
Br ∩{u=0}

|∂νPk | ≤ Cr1+α◦

for some constant C = C(n, k, τ ) > 0.

Proof. Point (i) follows immediately from 1
( 1

2A
2
k

)
= 1+ O(|x |

k) and the fact that Pk −
1
2A

2
k = O(|x |

k+2).
The second point can be easily checked by direct computation using the structure of the polynomial Ak,ν .
For (iii), we compute ∂νAk,ν = ∂ν(ν · x + O(|x |

2))= 1+ O(|x |). Lastly, for the fourth point, note that by
construction Pk = p2 + O(|x |

3) and apply Lemma 2.1. □

3.2. Regularity estimates near the free boundary. We now turn to the Lipschitz estimate on functions of
the form u −Pk .

Proposition 3.4. Let u be a solution of the obstacle problem (2-1) with f ≡ 1, µ = 1, and suppose
0 ∈ 6n−1. Let k ≥ 2 be an integer, τ > 0 and β ∈ (0, α2

◦
/(k + 2)). Let (p2, . . . , pk) ∈ Pk be such that

|(p2, . . . , pk)| ≤ τ . Suppose that

r−2u(r · )→ p2 =
1
2 x2

n ,

and set

v := u −Pk,

where Pk = Pk(p2, . . . , pk) is the polynomial ansatz from Definition 3.2. Then:
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(i) there are C > 0 and r0 ∈ (0, 1), depending on n, k, τ , such that, for each j = 1, . . . , n − 1 and
0< r < r0, we have

∥∂ jvr∥L∞(B1) ≤ C(∥vθr∥L2(B2\B1/2) + r k+2), (3-3)

where θ = θ(n, k) > 1,

(ii) there are C > 0 and r0 ∈ (0, 1), depending on n, k, τ , β, such that, for every 0< r < r0, we have

∥∂nvr∥L∞(B1) ≤ C(∥vθr∥L2(B2\B1/2) + r k+2)1−β, (3-4)

where θ = θ(n, k, β) > 1.

As this result will be crucial let us explain briefly its proof. As p2 =
1
2 x2

n , we split Rn into the “tangential”
directions e1, . . . , en−1 and the “normal” direction en . The idea is to study the quantity

sup
Br ∩{u=0}

|∂nPk |

for small r .
Geometrically this quantity tells us how much the zero set of Pk is a good approximation of the contact

set {u = 0} around the origin; see Proposition 3.3.
Analytically, supBr ∩{u=0} |∂nPk | is crucial because it will be the “pivot” linking Lipschitz estimates

along “tangential” directions with the one along the “normal” direction; let us see how.
First, taking difference quotients along tangential directions, we will prove that when j ̸= n, we have,

r∥∂ jv∥L∞(Br ) ≲n,k,τ r2
· sup
{u=0}∩Br

|∂nPk | + ∥vr∥L2(B2\B1/2) + r k+2.

The fact that we have r2 (and not r!) in front of sup{u=0}∩Br
|∂nPk | is the crucial gain, peculiar to the

tangential derivatives.
Now we have to bound sup{u=0}∩Br

|∂nPk | from above. As this is much more complex, we just give
the heuristics. First, notice that, as u is C1, we have ∂nPk ≡ ∂nv in {u = 0}. As v is harmonic in
� := Br ∩ {u > 0}, elliptic regularity suggests that we should be able to control ∥∂nv∥C0,β (�) with
∥v∥C1,β (∂�) + ∥v∥L∞(�). Furthermore, by Lemma 2.1, ∂� is close to the hyperplane {xn = 0}, so we
expect that the main contribution in ∥v∥C1,β (∂�) comes from the tangential derivatives ∥∂ jv∥C0,β (∂�)

for j ̸= n. If we could take β = 0 and knew that ∂� was regular enough, this argument would give a
bound on supBr

|∂nPk | in terms of ∥∂ jv∥L∞(Br ). But this is too much to ask: Schauder estimates break
down at the Lipschitz scale and ∂� could be wild, this is why we lose a power β on the right-hand side
of (3-4). The first issue will be fixed choosing β small and interpolating, the second will require us to
construct a different set �⊆ {u > 0} through a geometric barrier argument.

We start with a preliminary L2-L∞ estimate.

Lemma 3.5. In the setting of Proposition 3.4, there exists a constant C = C(n, k, τ ) such that

∥vr∥L∞(B1) ≤ C∥vr∥L2(B2\B1/2) + Cr k+2 (3-5)

for all 0< r < 1
2 .
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Proof. Recalling 1Pk = 1, we have 1v =1(u −Pk)= −χ{u=0} ≤ 0. Using the mean-value inequality
for superharmonic functions, for some z ∈ ∂Br , we have

min
Br

v = v(z)≥ /

∫
B1/2(z)

vr ≳n −∥vr∥L2(B2\B1/2).

This provides the estimate from below. Inside {u = 0} ∩ Br , we have

v = −
1
2A

2
k + O(|x |

k+2)≤ Cr k+2

for some C = C(n, k, τ ). Then we “glue” the functions Cr k+2 and v, which is harmonic in Br ∩ {u > 0},
so that

V := max{Cr k+2, v} is subharmonic in Br .

Thus to estimate from above v on Br ∩ {u > 0}, we just use the mean-value property on V as above: this
gives the upper bound up to corrections of size Cr k+2. □

With a similar technique, we bound the first derivatives of v with sup{u=0}∩Br
|∂nPk |.

Lemma 3.6. In the setting of Proposition 3.4, there exists a constant C = C(n, k, τ ), such that, for each
j = 1, . . . , n − 1 and 0< r < 1

2 , we have

∥∂ jvr∥L∞(B1) ≤ Cr · sup
{u=0}∩Br

|r∂nPk | + C∥vr∥L2(B2\B1/2) + Cr k+2,

∥∂nvr∥L∞(B1) ≤ C sup
{u=0}∩Br

|r∂nPk | + C∥vr∥L2(B2\B1/2) + Cr k+2.

We remark that ∥∂ℓvr∥L∞(B1) = r∥∂ℓv∥L∞(Br ) for all ℓ and r > 0.

Proof. We address first the case j ̸= n. By construction, we have 1Pk = 1, so 1v = −χ{u=0}. Hence,
∂ jv is harmonic in Br ∩ {u > 0}. On the other hand, in Br ∩ {u = 0}, we have ∂ jv = −∂ jPk , so by
Proposition 3.3

|∂ jPk | ≤ |∂ jAk ||Ak | + O(|x |
k+1)≲n,k,τ |x ||∂nPk(x)| + |x |

k+1.

Here we crucially used that |∂ jAk | ≲n,k,τ |x | as Ak(x)= xn + O(x2). Hence,

sup
Br ∩{u=0}

|∂ jv| ≤ Cr k+1
+ Cr · sup

Br ∩{u=0}

|∂nPk | =: K

for some C = C(n, k, τ ). In order to estimate ∂ jv on Br ∩ {u > 0}, we truncate it at levels K and −K to
obtain that

f := max{K , ∂ jv} and g := min{−K , ∂ jv}

are, respectively, subharmonic and superharmonic in Br . Choose x ∈ ∂Br a maximum point of f in Br

and use the mean-value property:

sup
Br ∩{u>0}

∂ jv ≤ sup
Br

f = f (x)≤ /

∫
B1/2(x)

fr ≲n K +
1
r
∥∂ jvr∥L1(B3/2\B1/2),



214 FEDERICO FRANCESCHINI AND WIKTORIA ZATOŃ

where we used that Br/2(x)⊆ B3r/2 \ Br/2. By standard elliptic estimates we find

∥∇vr∥L1(B3/2\B1/2) ≲n ∥1vr∥L1(B2\B1/2) + ∥vr∥L2(B2\B1/2).

Recalling 1vr = −r2χ{ur =0} ≤ 0, we integrate by parts with some smooth cut-off function

χB2\B1/2 ≤ ψ ≤ χB3\B1/3,

with ∥ψ∥C2 ≲n 1, and we have∫
B2\B1/2

|1vr | = −

∫
B2\B1/2

1vr ≤ −

∫
B3\B1/3

1vrψ ≲n ∥vr∥L2(B3\B1/3).

The same computation with g instead of f provides an analogous estimate from below on ∂ jv. In
conclusion we proved that, in every case, in Br we have

|∂ jv| ≲n K +
1
r
∥vr∥L2(B3\B1/3).

Multiplying by r on both sides we find the first estimate.
The second estimate is proven with the same reasoning, just replacing K with

K ′
:= Cr k+1

+ C · sup
Br ∩{u=0}

|∂nPk |,

without the “extra r”. □

We now use global Schauder estimates to bound from above the term sup{u=0}∩Br
|r∂nPk |.

Lemma 3.7. In the setting of Proposition 3.4, for any β ∈ (0, α2
◦
/(k + 2)), there exists C = C(n, k, τ, β)

such that, for all 0< r < 1
2 , we have

sup
{u=0}∩Br/4

|r∂nPk | ≤ Crβ/(α◦−β)∥∂nvr∥L∞(B1) + Crβ+β/α◦∥∇x ′vr∥
1−β/α◦

L∞(B1)
+ C∥vr∥L∞(B1) + Cr k+2. (3-6)

We recall that the dimensional constant α◦ > 0 has been defined in Lemma 2.1.

Proof. We will split the coordinates x = (x ′, xn) and denote by B ′
r the intersection of Br and {xn = 0}.

First of all, we recall from Lemma 2.1 that

sup
{u=0}∩Br

|∂nPk | = sup
{u=0}∩Br

|xn + O(|x |
2)| ≤ C◦r1+α◦ for all 0< r < 1 (3-7)

for some α◦,C◦ depending only on n and k. It is enough to prove the claim for r ∈ (0, r0), for some
r0 whose size will be constrained during the proof in terms of n, k, τ (recall that τ ≥ |(p2, . . . , p3)|).
We will prove in detail only the upper bound, as the lower bound is derived in the same way, with a
“symmetric” argument.

We choose a point z ∈ Br/4 ∩ {u = 0} such that

sup
{u=0}∩Br/4

r∂nPk = r∂nPk(z).
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Step 1. If r0 is small enough, then, for all r ∈ (0, r0), we can find an open set � satisfying the following:

(i) � is a smooth domain inside Br0 , that is � ∩ Br0 = {xn > γ (x ′)} ∩ Br0 for some γ ∈ C∞(B ′
r0
).

Furthermore we have the following estimates on γ :

∥γ ∥L∞(B ′
r )

≤ Cr1+α◦, ∥∇
′γ ∥L∞(B ′

r )
≤ Crα◦, [∇

′γ ]Cα◦ (B ′
r )

≤ C (3-8)

for some C = C(n, k, τ ).

(ii) �⊆ {u > 0} and there exists z∗
∈ ∂�∩ {u = 0} ∩ Br/2.

We emphasize that �, γ and z∗ may depend on r , but the constant in (3-8) does not.

Proof of Step 1. We fix some r ∈ (0, r0). For all b ∈ R and L = L(n, k, τ ) to be determined, we define
the domains

�(b) := {x ∈ Br : ∂nPk(x) > ∂nPk(z)+ Lrα◦−1
|x ′

− z′
|
2
+ b}.

Roughly speaking, �(b) looks like a perturbed paraboloid with vertex at (z′, zn +b), provided r0 ≲n,k,τ 1.
Now, starting with b large, we decrease it until �(b) touches the contact set in Br . That is, define

� :=�(b∗), where b∗
:= inf{b ∈ R :�(b)∩ Br ⊆ {u > 0}}.

We start checking that b∗ is well defined. Thanks to (3-7), if there exists x ∈ {u = 0} ∩ Br ∩�(b) then

Lrα◦−1
|x ′

− z′
|
2
+ b < |∂nPk(x)| + |∂nPk(z)| ≤ 2C◦r1+α◦ . (3-9)

This shows that b∗ is well defined and b∗
≤ 2C◦r1+α◦ ; in fact {u = 0} ∩ Br ∩�(b) must be empty for

larger b. We also notice that b ≥ 0, as z ∈ {u = 0} ∩ Br ∩�(b) for all b < 0.
We now prove (ii). Take b < b∗. By definition there exists xb ∈ {u = 0} ∩�(b), and inequality (3-9)

shows that |x ′

b − z′
| ≤

1
8r for an appropriate choice of L ≳ C◦. Using the triangular inequality and (3-7)

to estimate |(xb)n − zn|, we find, for r0 small, that

xb ∈ {u = 0} ∩ Br ∩�(b) =⇒ xb ∈ Br/2 and b ≤ 2C◦r1+α◦ . (3-10)

We take z∗
∈ Br/2 to be any accumulation point of xb as b ↑ b∗. We clearly have z∗

∈ ∂�∩{u = 0}∩ Br/2.
Let us now prove (i). Consider the map 8 : x 7→ (x ′, ∂nPk(x)). As ∂nPk(x)= xn + O(x2), we have

that 8 is a diffeomorphism from Br0 , provided r0 is small. Let 9 denote the n-th component of its inverse
which is defined in some ball BR0 . Clearly we have that 9(y)= yn + O(|y|

2), thus

|∇
′9(y)| ≲n,k,τ |y| and ∂n9(y)≥

1
2 for all y ∈ BR0 . (3-11)

Therefore we conclude that x ∈� if, and only if, x ∈ Br and

xn =9(x ′, ∂nPk(x)) > 9(x ′, ∂nPk(z)+ Lrα◦−1
|x ′

− z′
|
2
+ b∗) := γ (x ′).

We have that γ ∈ C∞(B ′
r0
) is well defined as, for r0 small,

(x ′, ∂nPk(z)+ Lrα◦−1
|x ′

− z′
|
2
+ b∗) ∈ BR0 .
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This proves that � is a smooth domain. We remark that, while γ depends on r , 9 only depends on r0.
This observation along with (3-11) easily gives the estimates on γ with constants independent of r . For
example, we estimate, for all x ′

∈ B ′
r ,

|∇
′γ (x ′)| ≤ |∇

′9(x ′, ∂nPk(z)+ Lrα◦−1
|x ′

− z′
|
2
+ b∗)|

+ 2Lrα◦−1
|x ′

− z′
||∂n9(x ′, ∂nPk(z)+ Lrα◦−1

|x ′
− z′

|
2
+ b∗)|

≲n,τ |x ′
| + |∂nPk(z)+ Lrα◦−1

|x ′
− z′

|
2
+ b∗

| + Lrα◦−1
∥∂n9∥L∞(BR0 )

|x ′
− z′

|,

and all the terms on the right-hand side are of order rα◦ or higher thanks to (3-9). The other estimates can
be proven identically, using (3-9) and the fact that 9(0, 0)= |∇

′9(0, 0)| = 0.

Step 2. For each β ∈ (0, α◦], there is C = C(n, k, τ, β) such that

1
C

sup
{u=0}∩Br/4

r∂nPk ≤ [∇
′(v ◦0)r ]Cβ (B ′

3/4)
+ ∥vr∥L∞(B1),

where 0 : B ′
r → Rn is the graph of γ , that is, 0(x ′)= (x ′, γ (x ′)).

Proof of Step 2. We observe that, by definition of z∗,

∂nPk(z)≤ ∂nPk(z∗),

so we have
sup

{u=0}∩Br/4

r∂nPk = r∂nPk(z)≤ r∂nPk(z∗)≤ ∥∂nvr∥L∞(∂�̃∩B1/2)
,

where we used the rescaled domain �̃ :=�/r , whose boundary is the graph of γ̃ = γ (r · )/r . We now
employ global Schauder estimates in �̃ (see, e.g., [Gilbarg and Trudinger 1983, Theorem 8.33]) to control
the right-hand side:

∥∂nvr∥L∞(∂�̃∩B1/2)
≲n,β [∇

′(v ◦0)r ]Cβ (B ′

3/4)
+ ∥1vr∥L∞(�̃) + ∥vr∥L∞(B1). (3-12)

Note that �̃ lies in {ur > 0}, where 1vr ≡ 0. We remark that the previous estimate holds with a constant
which depends on ∥∇γ̃ ∥Cα◦ (B1), which is bounded independently by r from (3-8):

∥∇γ̃ ∥L∞(B ′

1)
= ∥∇γ ∥L∞(B ′

r )
≤ Crα◦ and [∇γ̃ ]Cα◦ (B ′

1)
= rα◦∥∇γ ∥Cα◦ (B ′

r )
≤ Crα◦ .

Furthermore, we also used that, thanks to (3-8), the graph of γ̃ is contained in the strip
{
|yn| ≤

1
10

}
∩ B1,

provided that r0 is small.

Step 3. There is C = C(n, k, τ ) such that

1
C

∥∇
′(v ◦0)r∥L∞(B ′

3/4)
≤ ∥∇

′vr∥L∞(B1) + rα◦∥∂nvr∥L∞(B1),

1
C

[∇
′(v ◦0)r ]Cα◦ (B ′

3/4)
≤ r1+α◦ .

Proof of Step 3. Let 0̃ denote the graph of γ̃ , that is, 0̃(y′)= (y′, γ̃ (y′)). We have

∇
′(v ◦0)r = ∇

′(vr ◦ 0̃)= ∇
′vr + (∂nvr ◦ 0̃)∇ ′γ̃ ,
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so the first bound follows taking the L∞(B ′

3/4) norms, using 0̃(B ′

3/4)⊆ B ′

1 and ∥∇γ̃ ∥L∞(B ′

1)
≤ Crα◦ . For

the second bound we use the optimal regularity of u (see (2-2)):

[∇
′(v ◦0)r ]Cα◦ (B ′

3/4)
= r1+α◦[(∇ ′v ◦0)(∇ ′0)]Cα◦ (B ′

3r/4)

≤ r1+α◦(∥∇v∥L∞(Br )[∇
′γ ]Cα◦ (B ′

r )
+ [∇v]C0,1(B ′

r )
[0]Cα◦ (B ′

r )
∥∇

′0∥L∞(B ′
r )
)

≤ r1+α◦∥γ ∥Cα◦ (B ′
r )
∥v∥C1,1(B1/2)

≲n,k,τ r1+α◦ .

Step 4. There is C = C(n, k, τ, β) such that

1
C

[∇
′(v ◦0)r ]Cβ (B ′

3/4)
≤ rα

2
◦/β + rβ/(α◦−β)∥∂nvr∥L∞(B1) + rβ+β/α◦∥∇

′vr∥
1−β/α◦

L∞(B1)
. (3-13)

Proof of Step 4. The idea is to bound the Cβ norm in (3-12) with an interpolation of the L∞ and the Cα◦

norms, which we bounded in Step 3. This gives

[∇
′(v ◦0)r ]Cβ (B ′

3/4)
≤ [∇

′(v ◦0)r ]
β/α◦

Cα◦ (B ′

1)
[∇

′(v ◦0)r ]
1−β/α◦

L∞(B ′

1)

≤ Crβ+β/α◦(∥∇ ′vr∥L∞(B1) + rα◦∥∂nvr∥L∞(B1))
1−β/α◦

≤ Crα◦(rβ/(α◦−β)∥∂nvr∥L∞(B1))
1−β/α◦ + Crβ+β/α◦∥∇

′vr∥
1−β/α◦

L∞(B1)
,

where in the last line we used the subadditivity of t 7→ t
1−β/α◦ . Finally we obtain (3-13) using Young’s

inequality on the first term, with exponent 1/p = β/α◦:

rα◦(rβ/(α◦−β)∥∂nvr∥L∞(B1))
1−β/α◦ ≲α◦,β rα

2
◦/β + rβ/(α◦−β)∥∂nvr∥L∞(B1).

Combining Steps 2 and 4 and recalling that α2
◦
/β > k + 2, we obtain (3-6) for all r ∈ (0, r0), as the

constants do not depend on r . □

With the help of the two previous lemmas, we can now prove our main Lipschitz estimate by using
supBr ∩{u=0} |∂nPk | as “pivot”.

Proof of Proposition 3.4. We first address (ii), the estimate in the normal direction. All constants will
depend on n, k, τ , β. Linking Lemma 3.7 with the second estimate of Lemma 3.6, we get

1
C

∥∂nvr∥L∞(B1/4) ≤ rβ/(α◦−β)∥∂nvr∥L∞(B1) + rβ+β/α◦∥∇x ′vr∥
1−β/α◦

L∞(B1)
+3(r),

where we set for brevity

3(r) := ∥v∥L∞(Br ) + r k+2.

Notice that 3 is increasing in r . Now we use trivial bounds and the tangential estimate of Lemma 3.6 to
deal with the central terms on the right-hand side:

rβ+β/α◦∥∇x ′vr∥
1−β/α◦

L∞(B1)
≤ Crβ+β/α◦(r∥∂nvr∥L∞(B1) +3(2r))1−β/α◦ .
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Then, using Young’s inequality with 1/p = β/α◦ and rα◦/β ≤ r k+2, we obtain

rβ+β/α◦(r∥∂nvr∥L∞(B1))
1−β/α◦ = r(rα◦β/(α◦−β)∥∂nvr∥L∞(B1))

1−β/α◦

≲α◦,β rα◦β/(α◦−β)∥∂nvr∥L∞(B1) + r k+2.

Thus, by subadditivity of t 7→ t1−β/α◦ and enlarging the constants, we finally arrive at

∥∂nvr∥L∞(B1/4) ≤ Crα◦β/(α◦−β)∥∂nvr∥L∞(B1) + C3(2r)1−β/α◦ . (3-14)

We conclude by iteration of this inequality. Let us set

f (r) := ∥∂nvr∥L∞(B1) = r∥∂nv∥L∞(Br ) and δ :=
α◦β

α◦ −β
.

Then (3-14) reads as
f
( 1

4r
)
≤ Cr δ f (r)+ C3(2r)1−β/α◦ for all 0< r < 1

4 .

Since f and 3 are increasing functions, we can iterate this inequality N ∼ k/δ times (N does not depend
on r ), and it becomes

f (r)≤ CN3(4N r)1−β/α◦ + CN f
( 1

4

)
r k+2 for all 0< r < 4−N ,

and f
( 1

4

)
is again bounded by a dimensional constant, by optimal regularity. Finally, we use Lemma 3.5

to replace ∥v4N r∥L∞(B1) with ∥v4N r∥L2(B2\B1/2) + r k+2. We have proved that

∥∂nvr∥L∞(B1) ≤ C(∥vθr∥L2(B2\B1/2) + r k+2)1−β/α◦,

with C = C(n, k, τ, β) and θ(n, k, β)= 4N , for all r ∈ (0, r0). Since β ∈ (0, α◦/(k +2)) we proved (3-4).
We turn to the proof of the tangential estimate (3-3). Combining the previous step with Lemma 3.6,

we have, for C > 0 and r ∈ (0, r0),

1
C

∥∂ jvr∥L∞(B1) ≤ r(∥vθr∥L2(B2\B1/2) + r k+2)1−β/α◦ + ∥vr∥L2(B2\B1/2) + r k+2

≤ (r1−β(k+2)/α◦ + 1)(∥vθr∥L2(B2\B1/2) + r k+2).

We used that θ is large and Lemma 3.5 to bound

∥vr∥L2(B2\B1/2) ≤ ∥vr∥L∞(B2) ≤ ∥vθr∥L2(B1) ≲n,k,θ ∥vθr∥L2(B2\B1/2).

Note that with the choice β := α2
◦
/(k +4), we get rid of the β-dependence in the constants and obtain the

claimed estimate. □

4. Monotonicity of the truncated frequency

In this section we show that the truncated frequency function φγ (r, u −Pk) from (2-6) is almost monotone
for γ < k + 2, regardless of the p3, . . . , pk . All the proofs in this section do not change for a generic
smooth f , as we use the inequalities of the previous section as “black boxes”.

The core of the monotonicity is the following computational lemma.
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Lemma 4.1. Let k ≥ 2, τ > 0, and let u : B1 → R be a solution of the obstacle problem (2-1), with f ≡ 1
and µ= 1. Assume r−2u(r · )→ p2, and take (p2, . . . , pk) ∈ Pk such that |(p2, . . . , pk)| ≤ τ . Consider
v := u −Pk , where Pk = Pk(p2, . . . , pk) is constructed as in Definition 3.2. For each γ ∈ [0, k + 2) and
β ∈ (0, α◦/(k + 2)), set

ϵ := min{α◦ −β(k + 2), k + 2 − γ }> 0,

where the dimensional constant α◦ is the one of Lemma 2.1. Then there exists r0 = r0(k, n, τ, β) ∈ (0, 1)
such that, for all 0< r < r0,

d
dr
φγ (r, v)≥ −Cr ϵ−1(gγ (r, v)+ 1)(φγ (r)+ 1) (4-1)

and ∫
Br

|vr1vr |

H(r, v)+ r2γ ≤ Cr ϵ(gγ (r, v)+ 1), (4-2)

where we set

gγ (r, v) :=

∥vθr∥
2
L2(B2\B1/2)

H(r, v)+ r2γ .

Here θ = θ(k, β) and C = C(n, k, τ, β) are constants.

Proof. Throughout the proof, C will be a constant depending on n, k, τ , β. Up to a rotation of the
coordinate axes, we may assume p2 =

1
2 x2

n . We begin with recalling the estimate on the derivative of φγ ,
compare (2-7),

d
dr
φγ (r, v)≥

2
r

φγ (r, v)
∫

B1
vr1vr −

∫
B1
(x · ∇vr )1vr

H(r, v)+ r2γ .

Using supp1vr ⊆ {ur = 0}, we reduce (4-1) to a bound from below on the quantity

2
r

∥φγ (r)vr − x · ∇vr∥L∞(B1∩{ur =0})

∫
B1∩{ur =0}

|1vr |

H(r, v)+ r2γ .

For x ∈ B1 ∩ {ur = 0} and r < r0(n, k, τ, β), we have

(i) |xn| ≤ Crα◦ , see Lemma 2.1;

(ii) |vr (x)| ≤ Cr |∂n(Pk)r (x)| + Cr k+2, see Proposition 3.3 (ii);

(iii) |∂ jvr (x)| ≤ Cr |∂n(Pk)r (x)| + Cr k+2 for all j ̸= n, see Lemma 3.6;

(iv) r |∂nPk(x)| ≤ C(∥vθr∥L2(B2\B1/2) + r k+2)1−β , see Proposition 3.4.

Putting together all these bounds we get, for all x ∈ B1 ∩ {ur = 0},

|φγ (r)vr − x · ∇vr | ≤ (φγ (r)+ 1)(|vr | + |xn||∂n(Pk)r | + |∇x ′vr |)

≤ C(φγ (r)+ 1)(rα◦∥∂n(Pk)r∥L∞(B1∩{ur =0}) + r k+2)

≤ C(φγ (r)+ 1)rα◦(∥vθr∥L2(B3\B1/2) + r k+2)1−β
+ C(φγ (r)+ 1)r k+2

≤ C(φγ (r)+ 1)r ϵ(∥vθr∥L2(B3\B1/2) + r k+2)+ C(φγ (r)+ 1)r k+2,
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where in the last line we argued

(∥vθr∥L2(B3\B1/2) + r k+2)1−β
≤ r−β(k+2)(∥vθr∥L2(B3\B1/2) + r k+2).

Thus, using (H(r, v)+ r2γ )−1/2
≤ r−γ and r k+2−γ

≤ r ϵ , we get

∥φγ (r)vr − x · ∇vr∥L∞(B1∩{ur =0})

(H(r, v)+ r2γ )1/2
≤ r ϵ(φγ (r)+ 1)(gγ (r)1/2 + 1).

Now, using (ii) and (iv) to estimate |∇vr (x)| for x ∈ B1 ∩ {ur = 0} as above, we get

∥vr∥L∞(B1∩{ur =0})

(H(r, v)+ r2γ )1/2
≤ r ϵ(gγ (r)1/2 + 1).

Thanks to this observation, to prove both (4-1) and (4-2) we only need to show∫
B1∩{ur =0}

|1vr |

(H(r, v)+ r2γ )1/2
≤ Cgγ (r)1/2.

As 1vr = −r2χ{ur =0}, we can integrate by parts with some regular cut-off χB1 ≤ ψ ≤ χB2 :∫
B1∩{ur =0}

|1vr | = −

∫
B1

1vr ≤ −

∫
B2

1vrψ ≲n ∥vr∥L1(B2\B1),

which concludes the proof. □

We now make a specific choice of β and derive from these preliminary bounds the monotonicity of the
truncated frequency.

Proposition 4.2. Let k ≥ 2, τ > 0, and let u be a solution of the obstacle problem (2-1) with f ≡ 1
and µ= 1. Assume r−2u(r · )→ p2, and take (p2, . . . , pk) ∈ Pk such that |(p2, . . . , pk)| ≤ τ . Consider
v := u −Pk , where Pk = Pk(p2, . . . , pk) is constructed as in Definition 3.2, and, for each γ ∈ (0, k + 2),
set

ε(γ ) := min
{ 1

2α◦; k + 2 − γ
}
,

where the dimensional constant α◦ is the one of Lemma 2.1. Then, there exist C(n, k, τ, γ ) > 0 and
r0(n, k, τ ) ∈ (0, 1) such that, for all 0< r < r0, we have

d
dr
φγ (r)≥ −Cr ε−1, φγ (r)≤ C and

∫
Br

|vr1vr |

H(r, v)+ r2γ ≤ Cr ε. (4-3)

In particular, φγ (0+, v)= limr↓0 φ
γ (r, v) exists and φγ (0+, v)≤ γ .

Proof. Fix γ◦ ∈ (0, k +2), and let ε◦ = ε(γ◦). Let r0 = r0(n, k, τ, β = α◦/(2(k +2))) be as in Lemma 4.1.
By Lemma 4.1 and estimate (4-1), we only need to show that the functions gγ◦(·) and φγ◦(·) are uniformly
bounded in the interval (0, r0]. We are going to prove it by increasing iteratively the parameter γ , exactly
as in the proof of [Figalli et al. 2020, Lemma 4.3]. Throughout the proof, Cγ will denote a general
constant depending on n, k, τ , γ , and similarly for Cγ,δ.
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First notice that by (2-2) the functions φ0( · , v) and g0( · ) are uniformly bounded in [0, r0]. Fix any
γ ∈ [0, γ◦]. The core of the proof is the observation{

φγ + gγ ≤ Cγ in (0, r0],

0< 5δ ≤ ε◦,
=⇒ φγ+δ

+ gγ+δ
≤ Cγ,δ in (0, r0]. (4-4)

We iterate this observation to reach the conclusion. Define the sequence γ0 = 0, γ j+1 := γ j +
1
5ε◦, where

j ≥ 0. With a finite number of iterations we get closer than 1
5ε◦ to γ◦, and applying (4-4) once more with

an appropriate δ we get to γ◦.
We prove (4-4) for a generic γ . Keeping in mind r, δ ≤ 1, we estimate

φγ+δ(r)=
D(r, v)+ (γ + δ)r2γ+2δ

H(r, v)+ r2γ+2δ ≤
1

r2δ

D(r, v)+ γ r2γ

H(r, v)+ r2γ + 1 ≤
Cγ
r2δ

and

gγ+δ(r)=

∥vθr∥
2
L2(B3\B1/2)

H(r, v)+ r2γ+2δ ≤
1

r2δ

∥vθr∥
2
L2(B2\B1/2)

H(r, v)+ r2γ ≤
Cγ
r2δ .

Now we apply Lemma 4.1 with β := α◦/(2(k + 2)) and γ → γ + δ:

d
dr
φγ+δ(r)≥ −Cr ϵ−1(gγ+δ(r)+ 1)(φγ+δ(r)+ 1)≥ −Cγ r ε◦−4δ−1

≥ −Cγ r δ−1,

where we used ϵ(β, γ+δ)≥ ε◦ and the smallness of δ. Integrating this inequality and using C1,1 estimates,
we obtain

φγ+δ(r)≤ φγ+δ(r0)+ Cγ r δ0/δ ≲n,k,τ Cγ,δ

for all r ∈ (0, r0]. The uniform boundedness of gγ+δ is now a consequence of Lemma 2.2 (a), as we can
take λ̄= Cγ,δ. Indeed, for any 0< 2θr < r0 and any R ∈

( 1
2rθ, 2θr

)
, we have

H(R, v)+ R2γ+2δ

H(r, v)+ r2γ+2δ ≲n,k,τ

( R
r

)Cγ,δ
≤ Cγ,δ.

Thus, for all r ∈ (0, r0/(2θ)], we have

gγ+δ(r)=

∥vθr∥
2
L2(B2\B1/2)

H(r, v)+ r2γ+2δ ≲n,k,τ /

∫ 2θr

θr/2

H(R, v) d R
H(r, v)+ r2γ+2δ ≤ Cγ,δ.

Finally gγ+δ is clearly bounded in [r0/(2θ), r0] by (2-2). This concludes the proof. □

The following is an immediate corollary of Proposition 4.2.

Corollary 4.3. With the same notation from Proposition 4.2, we have that, for all r ∈ (0, r0),

d
dr

log(r−2λ(H(r, u −Pk)+ r2γ ))≥ −Cr ε−1, (4-5)

provided λ≤ φγ (0+, v). Here r0, C , ε are the same positive numbers from Proposition 4.2.
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Proof. Computing the derivative and using Proposition 4.2, we obtain

d
dr

log(r−2λ(H(r, v)+ r2γ ))=
2
r
(φγ (r, v)− λ)+ 2

r

∫
B1
vr1vr

H(r, v)+ r2γ

≥ −C /

∫ r

0
sε−1 ds − Cr ε−1

≥ −Cr ε−1. □

5. The sets 6k-th and higher-order blowups

The estimates obtained in the previous two sections did not assume any relationship between u and Pk ,
beside the crucial fact that p2 was the blowup of u at 0. In this section, instead, we define the set of points
at which u admits a polynomial expansion of order k. This expansion will identify the polynomial Pk up
to order k, leaving some freedom for the k+1 terms (compare Proposition 3.3 (ii)).

The results of this section never use explicitly the simplifying assumption f ≡ 1; they use it implicitly,
though, employing the results of the previous two sections. Hence for a generic smooth f , all the results
of this section apply without change.

Recall that Pk was defined at the beginning of Section 3.1.

Definition 5.1. Let u : B1 → [0,∞) solve (2-1) and x◦ ∈6n−1. We say the following:

(i) 62nd
:=6n−1.

(ii) x◦ ∈63rd if

r−3(u(x◦ + r · )− p2,x◦
(r · ))→ p3,x◦

in W 1,2
loc (R

n)∩ C0
loc(R

n)

as r ↓ 0, where p3,x◦
is some 3-homogeneous harmonic polynomial vanishing on {p2,x◦

= 0}. Thus
we have (p2,x◦

, p3,x◦
) ∈ P3.

(iii) x◦ ∈6k-th for some integer k ≥ 4, if x◦ ∈6(k−1)-th and

r−k(u(x◦ + r · )−Pk−1,x◦
(r · ))→ pk,x◦

in W 1,2
loc (R

n)∩ C0
loc(R

n)

as r ↓ 0, where Pk−1,x◦
= Pk−1(p2,x◦

, . . . , pk−1,x◦
) is the polynomial ansatz from Definition 3.2 and

the limit pk,x◦
is some k-homogeneous harmonic polynomial vanishing on {p2,x◦

= 0}. Thus we
have (p2,x◦

, . . . , pk,x◦
) ∈ Pk .

When x◦ = 0, we simply drop x◦ from p j,x◦
.

Remark 5.2. Let u : B1 → [0,∞) solve (2-1) and suppose 0 ∈6k-th for some k ≥ 2. Then

(i) φγ (0+, u −Pk) exists for all γ ∈ [k, k + 2), see Proposition 4.2;

(ii) for every δ > 0, we have r2φγ (0+,u−Pk)+δ ≪ H(r, u −Pk)= o(r2k) as r ↓ 0. The lower bound follows
by Lemma 2.2, the upper bound by continuity of the embedding W 1,2(B1)→ L2(∂B1).

With help of Corollary 4.3, we prove a Monneau-type monotonicity formula; see [Monneau 2003].
The argument is an adaptation of [Figalli and Serra 2019, Lemma 4.1].
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Proposition 5.3 (Monneau-type monotonicity). Let u : B1 → [0,∞) solve (2-1). Suppose 0 ∈6k-th for
some k ≥ 3. Let q be any polynomial such that (p2,0, . . . , pk−1,0, q)∈ Pk , with |(p2,0, . . . , pk−1,0, q)| ≤ τ
for some number τ > 0. Set

w := u −Pk(p2,0, . . . , pk−1,0, q).

Then there exists r0 = r0(n, k, τ ) such that, for all r ∈ (0, r0),

r−2k H(r, w)≤ C and d
dr
(r−2k H(r, w))≥ −Cr ε−1

for some constants C = C(n, k, τ ) and ε(n, k) > 0.

Proof. For the sake of the proof, let us fix γ = k + 1 +
1
2 ; all constants are allowed to depend on n, k, γ ,

even if not explicitly stated, and can change value from line to line. We begin by showing φγ (0+, w)≥ k.
By construction of the Pk (see Proposition 3.3), we have

w = u −Pk,0 − pk,0 + q + O(xk+1),

so using 0 ∈6k-th we find

H(r, w)1/2 ≤ H(r, u −Pk)
1/2

+ H(r, pk)
1/2

+ H(r, q)1/2 + H(r, O(|x |
k+1))1/2 = o(r k)+ O(r k).

If φγ (0+, w) < k were true, then Lemma 2.2 would give, for r ≪ 1,

r2φγ (0+,w)+δ
≪ H(r, w)+ r2γ ≲ r2k,

which would be a contradiction for δ > 0 small. Hence, φγ (0+, w)≥ k, and we can apply Corollary 4.3
with γ = k + 1 +

1
2 to find that the function

f (r) := log(r−2k(H(r, w)+ r2γ ))+ Cr ε

is increasing in (0, r0) for appropriate r0, C , ε depending on n, k, τ . Using Equation (2-2) we have that
∥w∥L∞(B1) ≤ C , and so f (r0)≤ C . Thus, by monotonicity of f ,

r−2k(H(r, w)+ r2γ )≤ C

for r ∈ (0, r0). Inserting again this estimate in Corollary 4.3, we get

d
dr
(r−2k(H(r, w)+ r2γ ))≥ −Cr ε−1(r−2k(H(r, w)+ r2γ ))≥ −Cr ε−1,

and as (d/dr)r2(γ−k)
≪ r ε−1 we conclude. □

The following result proves the continuity of the map x 7→ Pk,x , defined on 6k-th, for k ≥ 2. Our
argument is a direct adaptation of [Figalli and Serra 2019, Proposition 4.5] for the case k = 3.

Proposition 5.4. Let u : B1 → [0,∞) solve (2-1) and k ≥ 2. Then the map6k-th
∋ x 7→Pk,x is continuous.

Furthermore, there exists a constant τ(n, k) such that

sup{|(p2,x , . . . , pk,x)| : x ∈6k-th
∩ B1/2} ≤ τ(n, k). (5-1)
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Proof. We first prove the bound on τ(n, k). Since x ∈6k-th implies x ∈6 j-th for j ≤ k, we proceed by
induction on k. The inductive step follows from Proposition 5.3 applied to the functions u(x + · ) and
q = 0, which allows us to deduce that pk+1,x is bounded in terms of n, k and τ(n, k − 1). We can take as
the base step k = 2, for which |(p2,x)| ≤

1
2 .

Let us prove continuity at 0. Again, we proceed inductively and suppose that the statement is true for
k−1 (see [Figalli and Serra 2019] for k − 1 = 2). Let (xℓ)ℓ∈N ⊆ 6k-th

∩ B1/2 with xℓ → 0, and choose
a sequence of rotations (Rℓ)ℓ∈N ⊆ SO(n) mapping {p2,xℓ = 0} to {p2,0 = 0} for each ℓ and satisfying
Rℓ → id. We apply Proposition 5.3 to the functions u(xℓ+ · ) and the polynomials qℓ := pk,0 ◦ Rℓ, and
since

u(xℓ + y)−Pk,xℓ(p2,xℓ, . . . , pk−1,xℓ, q)= u(xℓ + y)−Pk−1,xℓ(y)+ qℓ(y)+ O(|y|
k+1),

we find that the function

r 7→

∫
∂B1

∣∣∣∣u(xℓ + r · )−Pk−1,xℓ(r · )

r k − pk,0 ◦ Rℓ +
O(|r x |

k+1)

r k

∣∣∣∣2

dσ + Cr ε (5-2)

is increasing in (0, r0) for all ℓ ∈ N, for some r0 and C uniform in ℓ. Using this information for the
constant sequence xℓ = 0, we find that, for any δ > 0, there is rδ <min{r0, δ} such that∫

∂B1

∣∣∣∣u(rδ · )−Pk−1,0(rδ · )

r k
δ

− pk,0 +
O(|rδx |

k+1)

r k
δ

∣∣∣∣2

dσ ≤ δ. (5-3)

Using (5-2) we estimate, for each ℓ,∫
∂B1

|pk,xℓ − pk,0 ◦ Rℓ|2 = lim
r↓0

∫
∂B1

∣∣∣∣u(xℓ + r · )−Pk−1,xℓ(r · )

r k − pk,0 ◦ Rℓ

∣∣∣∣2

dσ

≤

∫
∂B1

∣∣∣∣u(xℓ + rδ · )−Pk−1,xℓ(rδ · )

r k
δ

− pk,0 ◦ Rℓ + O(rδ)
∣∣∣∣2

dσ + Cr εδ .

As Pk−1,xℓ → Pk−1,0 by inductive assumption, taking the upper limit in ℓ on both sides and using (5-3),
we find

lim sup
ℓ

∫
∂B1

|pk,xℓ − pk,0|
2
≤ δ,

and letting δ ↓ 0 we conclude. □

The following definition is useful to quantify the rate at which Pk approximates u.

Definition 5.5 (frequency). For u : B1 → [0,∞) a solution to (2-1) and k ≥ 2, define the k-th frequency
λk :6k-th

→ [k, k + 2] by

λk(x) := sup{φγ (0+, u(x + · )−Pk,x) : γ ∈ [k, k + 2)}.

At x = 0, we write λk := λk(0).

We comment that in the definition above we indeed have λk(6
k-th) ⊆ [k, k + 2]. First, the fact that

φγ (0+, u −Pk)≥ k holds for every γ ∈ [k, k + 2) was observed in Proposition 5.3. Second, we always
have φγ (0+, u −Pk)≤ γ , as observed in Proposition 4.2. The following lemma shows that indeed φγ is
a truncation of the frequency, that is φγ (0+, u −Pk)= min{λk, γ }.
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Lemma 5.6. For u : B1 → [0,∞) a solution to (2-1) and k ≥ 2, consider x◦ ∈ 6k-th. Then, for all
γ ∈ (λk, k + 2),

λk(x◦)= φγ (0+, u(x◦ + · )−Pk,x◦
)= lim

r↓0
φ(r, u(x◦ + · )−Pk,x◦

),

where φ(r, v) := D(r, v)/H(r, v) is the (nontruncated) Almgren frequency function.

Proof. For simplicity, let x◦ = 0 and set v := u −Pk . By Lemma 2.2, for each δ > 0, there is a constant
cδ and a radius rδ such that Cδr2λk+δ ≪ H(r, u −Pk)+ r2γ for every 0< r < rδ. Hence, after picking
0< δ < 1

10(γ − λk), we find

φγ (0+, v)= lim
r↓0

φ(r, v)+ o(1)
1 + o(1)

= lim
r↓0

φ(r, v)=: λ̃,

where λ̃ does not depend on the choice of γ ∈ (λk, k + 2). On the one hand, λ̃≤ γ holds for any such γ ,
implying λ̃≤ λk ; see Proposition 4.2. On the other hand, λk ≥ φγ (0+, v)= λ̃, by definition. □

We now give a more flexible characterization of 6k-th.

Lemma 5.7. For every solution u : B1 → [0,∞) to (2-1) and k ≥ 2, we have

6k-th
≡ 6̃k-th

:=
{

x ∈6(k−1)-th
: ∃(q2, . . . , qk) ∈ Pk,

∃rℓ ↓ 0 such that r−k
ℓ (u −Pk−1(q2, . . . , qk−1))rℓ ⇀ qk in W 1,2

loc (R
n)

}
.

Proof. We just need to show that 6̃k-th
⊆ 6k-th, because the other inclusion follows by definition. Let

0 ∈ 6̃k-th. We know that
r−k
ℓ (u −Pk−1(q2, . . . , qk−1))rℓ ⇀ qk in W 1,2

loc (R
n)

for a certain (q2, . . . , qk) ∈ Pk and a certain sequence rℓ ↓ 0.
We first show that necessarily q j = p j,0 for all 2 ≤ j ≤ k − 1. To prove this we reason inductively and

exploit the fact that 0 ∈6 j-th; in particular, we have the uniform convergence

lim
r→0

r− j (u −P j (p2,0, . . . , p j,0))r = 0.

Suppose (p2,0, . . . , p j−1,0)= (q2, . . . , q j−1) holds for some j ≥ 2. By Proposition 3.3 (ii), we have

0 = lim
ℓ

(u −Pk(q2, . . . , q j ))rℓ

r j
ℓ

= lim
ℓ

(u −P j (p2,0, . . . , p j,0))rℓ

r j
ℓ

+
(P j (p2,0, . . . , p j,0)−Pk(q2, . . . , qk))rℓ

r j
ℓ

= 0 + lim
ℓ

(P j−1(p2,0, . . . , p j−1,0)+ p j,0 −P j−1(q2, . . . , q j−1)− q j + O(|x |
j+1))rℓ

r j
ℓ

= p j,0 − q j ,

in L2(∂B1). This completes the inductive step. The same computation gives also the base step q2 = p2,0.
Now let Pk =Pk(p2, . . . , pk−1, qk). Then Pk =Pk−1+qk + P for some (k+1)-homogeneous harmonic

polynomial P (see (ii) in Proposition 3.3). We set v = u −Pk and notice that by assumption r−k
ℓ vrℓ ⇀ 0
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in W 1,2
loc (R

n). We will show that this convergence is strong, locally uniform and happens along the full
range r ↓ 0, which in turn implies that 0 ∈6k-th.

Take r0 as in Proposition 4.2 and fix some γ ∈ (k + 1, k + 2). As in (ii) in Remark 5.2, we obtain
H(rℓ, v)= o(r2k

ℓ ), which as in Proposition 5.3 implies λ := limr→0 φ
γ (r, v)≥ k. Since by Proposition 4.2

φγ ( · , v) is bounded by Cγ in (0, r0), we have

r−2k
∫

BR

|∇vr |
2
≤ r−2kφγ (Rr, v)(H(Rr, v)+ (Rr)2γ )≤ Cγ r−2k(H(Rr, v)+ (Rr)2γ ),

provided Rr < r0. We now exploit that the logarithm of the right-hand side is almost monotone in r
thanks to Corollary 4.3 and get

lim sup
r↓0

log
(

r−2k
∫

BR

|∇vr |
2
)

≤ log Cγ + lim
s↓0

log(s−k(H(s, v)+ s2γ ))

= log Cγ + lim
ℓ→∞

log(r−k
ℓ (H(rℓ, v)+ r2γ

ℓ ))= −∞,

thus limr↓0 ∥r−k
∇vk∥L2(BR) = 0 for all fixed R > 0. The proof of local uniform convergence is very

similar: namely, using Lemma 3.5 and then Lemma 2.2, we have

∥vr∥L∞(BR) ≤ C∥vRr∥L2(B2\B1/2) + C(Rr)k+2
≤ C H(Rr, v)1/2 + C(Rr)k+2,

provided Rr is small, thus we can divide by r k and argue as before exploiting the log-monotonicity. □

With the same kind of reasoning we can prove the following basic lemma.

Lemma 5.8. Let u : B1 → [0,∞) be a solution to (2-1) and k ≥ 2, and suppose 0 ∈6k-th with λk > k +1.
Then 0 ∈6(k+1)-th and pk+1 = 0.

Proof. Set v := u −Pk , and pick any γ ∈ (λk, k + 2), so that φγ (0+, v) > k + 1. Arguing as in the proof
of Lemma 5.7, we find

r−2(k+1)
∫

BR

|∇vr |
2 ≲ r−2(k+1)(H(Rr, v)+ (Rr)2γ ),

provided Rr < r0 ≪ 1. On the other hand, as φγ (0+, v) > k +1, we have φγ (r, u −Pk) > k +1 for r ≪ 1.
Thus, with Lemma 2.2 we deduce H(r, u −Pk)= o(r2(k+1)). Taking the above estimate into account, we
conclude r−2(k+1)vr → 0 in W 1,2

loc (R
n), thus by Lemma 5.7, we have 0 ∈6(k+1)-th. □

Finally, we study the blowups of u − Pk when Lemma 5.8 does not apply. Our argument is an
adaptation of [Figalli and Serra 2019, Proposition 2.10]. We will study the sequence of functions
ṽr := H(r, u −Pk)

−1/2(u −Pk)(r · ) as r ↓ 0. Any limit of ṽr will be a λk-homogeneous solution of a
certain PDE (the Signorini problem (5-4)) but not necessarily a polynomial.

Proposition 5.9. Let 0 ∈ 6k-th with λk ≤ k + 1. Let (rℓ)ℓ∈N be an infinitesimal sequence, and let
xℓ ∈6k-th

∩ Brℓ . For every ℓ, set vxℓ := u(xℓ + · )−Pk,xℓ , and suppose that λk(xℓ)→ λk . Consider the
sequence

ṽrℓ,xℓ :=
vxℓ(rℓ · )

H(rℓ, vxℓ)
1/2 .
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Then:

(i) (ṽrℓ,xℓ)ℓ∈N is bounded in W 1,2
loc (R

n) and C0,1/(n+1)
loc (Rn).

(ii) If ṽrℓ,xℓ ⇀ q ∈ W 1,2
loc (R

n), then the convergence is in fact strong and q must be a nontrivial λk-
homogeneous solution of the Signorini problem with obstacle {p2 = 0}, that is

1q ≤ 0 and q1q = 0 in Rn,

1q = 0 in Rn
\ {p2 = 0},

q ≥ 0 on {p2 = 0}.

(5-4)

Finally, if λk < k + 1, then q is even with respect to the thin obstacle.

Proof. For the sake of readability, we set vℓ := vxℓ and ṽℓ := ṽrℓ,xℓ . Furthermore, we will omit the
dependence of the constants on n and k, and set δ :=

1
100ε, where ε(n, k) is the same as in Proposition 5.3.

Without loss of generality, assume ℓ is large enough that xℓ ∈ B1/2 and λk(xℓ)≤ λk + δ. Within this
proof we fix γ := k + 1 +

3
4 , so by Lemma 5.6 we have that λk(xℓ)= φγ (0+, vℓ) for all ℓ.

Step 1. We claim that there are ε, r0 ∈
(
0, 1

2

)
and C0, c0 > 0, all independent of ℓ and ℓ0, such that if we

define
fxℓ(r) := φγ (r, vℓ)+ C0r ε and hxℓ(r) := r−2k H(r, vℓ)+ C0r ε,

then:

• fxℓ and hxℓ are continuous and increasing on [0, r0] and converge uniformly in this interval to f0

and h0, respectively. Furthermore, hxℓ(0
+)= 0 identically.

• We have fxℓ(r)≤ λk + 2δ and H(r, vℓ)≥ c0r2λk+5δ for all r ∈ [0, r0] and all ℓ > ℓ0.

The fact that, for each ℓ, both fxℓ and hxℓ are increasing is a consequence of Proposition 4.2 and
Proposition 5.3, respectively. By Proposition 5.4 we can choose τ := τ(n, k) such that r0 and C0 can be
taken uniform in ℓ. Since xℓ ∈6k-th, we already observed in Remark 5.2 that hxℓ(0

+)= 0. Furthermore,
by assumption, fxℓ(0

+)= λk(xℓ)→ λk = f0(0+), thus fxℓ → f0 and hxℓ → h0 pointwise. As they are
monotone and the limit functions are continuous, the convergence must be uniform, and thus (a) is proved.
We turn to (b): possibly taking a smaller r0, we have that f0 ≤ λk + δ in [0, r0], and thus by uniform
convergence there is ℓ0 such that fxℓ ≤ λk + 2δ. Now the last statement follows if we apply Lemma 2.2
with w = vℓ, R = r0, λ̄= λk + δ, δ =

1
100ε.

We will use many times through the proof that

c0r2γ
≤ H(r, vℓ)r1/2 in [0, r0], (5-5)

uniformly in ℓ > ℓ0. This is a direct consequence of (b) and the fact that 2γ −
1
2 > 2λk + 5δ.

Step 2. We prove (i). Fix some R > 1 and for Rrℓ < r0 write

D(R, ṽℓ)≤ φγ (Rrℓ, vℓ)
H(Rrℓ, vℓ)+ (Rrℓ)2γ

H(rℓ, vℓ)
≤ CR

H(Rrℓ, vℓ)
H(rℓ, vℓ)

+ CR
r2γ
ℓ

H(rℓ, vℓ)
≤ CR + o(1),

where we used (5-5) and Lemma 2.2 to find the second and the first addendum, respectively. Thus
∥∇ṽℓ∥L2(BR) is bounded in ℓ.
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Now we want to combine the uniform L2 bound on ∇ṽℓ and the Lipschitz estimate on ∇x ′ ṽr to produce
uniform Hölder bounds. Fix some ℓ and choose coordinates so that p2,xℓ =

1
2 x2

n . By Proposition 3.4, we
have, for 2θRrℓ < r0 and j ̸= n,

∥∂ j ṽℓ∥L∞(BR) ≤ C∥ṽℓ∥L2(B2θR\BθR/2) + C
r k+2

H(rℓ, vℓ)1/2
.

The second term is o(1) in ℓ again by (5-5), while for the first we employ again Lemma 2.2 to find

∥vℓ(rℓ · )∥2
L2(B2θR\BθR/2)

=

∫ 2θR

θR/2
H(srℓ, vℓ)sn−1 ds ≤ CR H(rℓ, vℓ). (5-6)

Hence, ∥∂ j ṽℓ∥L∞(BR) ≤ CR for all j ̸= n. By Lemma C.1, this gives the Hölder bound

[ṽℓ]C0,1/(n+1)(BR/2) ≤ CR(∥∇x ′ ṽℓ∥L∞(BR) + ∥∇ṽℓ∥L2(BR))≤ CR.

This concludes the proof of (i).

Step 3. We turn to (ii) and prove that q solves (5-4). Since1vℓ = −χ{u(xℓ+ · )=0} ≤ 0, we have that1q ≤ 0
weakly in Rn . Furthermore, integrating by parts with some cut-off function χBR ≤ ψ ≤ χB2R leads to∫

BR

|1ṽℓ| ≤ −

∫
Rn
1ṽℓψ ≤ CR∥ṽℓ∥L2(B2R\BR) ≤ CR,

where in the last step we argued as in (5-6). Hence by compactness 1ṽℓ
∗
⇀1q in Cc(R

n)∗. On the other
hand, by (i), ṽℓ → q locally uniformly, and so

ṽℓ1ṽℓ
∗
⇀ q1q in Cc(R

n)∗.

We now apply Proposition 4.2 to vℓ with our particular choice of γ and recall that by (4-3) we have, for
Rrℓ < r0, ∫

BR

|ṽℓ1ṽℓ|
H(rℓ, vℓ)

H(Rrℓ, vℓ)+ (Rrℓ)2γ
≤ CRr εℓ = o(1).

Notice that the constants are independent of ℓ as, by Proposition 5.4, we can choose a uniform τ = τ(n, k)
for all xℓ ∈6k-th

∩ B1/2. Sending ℓ ↑ ∞, we get q1q = 0. In order to show 1q = 0 outside {p2,0 = 0},
we exploit once again Lemma 2.1 to find

BR/2 ∩ supp(1ṽℓ)⊆ {dist({p2,xℓ = 0}, · )≤ CRrα◦

ℓ },

and as p2,xℓ → p2,0 and R can be taken arbitrarily large, we deduce that supp1q ⊆ {p2,0 = 0}. It remains
to show that q is nonnegative on the thin obstacle. Up to a rotation we can assume p2,0 =

1
2 x2

n . Pick
x∗ ∈ {xn = 0} and consider some sequence (yℓ)ℓ∈N such that

yℓ ∈ {Ak,xℓ(rℓ · )= 0}, yℓ → x∗.

Thus, by locally uniform convergence and (5-5),

q(x∗)= lim
ℓ
ṽrℓ(yℓ)= lim

ℓ

u(rℓyℓ)− 1
2A

2
k,xℓ(rℓyℓ)+ O(r k+2

ℓ )

H(rℓ, vℓ)1/2
≥ 0.
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To construct such a sequence set yℓ := 8ℓ(x∗), where 8ℓ ∈ C∞(BRℓ) are the inverse functions of
9ℓ : x 7→ (x ′, r−1

ℓ (Ak,xℓ)rℓ). Notice that 9ℓ → id in C1
loc and that Rℓ ↑ +∞ as ℓ→ ∞. So 8ℓ → id and

x∗ ∈ BRℓ eventually, thus yℓ → x∗. Therefore

q ≥ 0 on {xn = 0}.

Hence we proved that q is a global solution of the Signorini problem (5-4).

Step 4. We show that ṽℓ → q in W 1,2
loc (R

n) and that q is λk-homogeneous. Fix any η ∈ C∞
c (R

n) and
exploit as before that ∥ṽrℓ1ṽrℓ∥L1(BR) → 0 and integrate by parts in Rn:∫

|∇(ηṽℓ)|
2
= −

∫
ηṽℓ1(ηṽℓ)= −

∫
(ηṽ2

ℓ1η+ 2ηṽℓ∇η · ∇ṽℓ + η2ṽℓ1ṽℓ)

≤ −

∫
(η1ηṽ2

ℓ + 2ηṽℓ∇η · ∇ṽℓ)+ C(η)∥ṽℓ1ṽℓ∥L1(BR).

Taking the upper limit and using ∇ṽℓ⇀ ∇q in L2
loc(R

n) and ṽℓ → q in C0
loc(R

n), we get

lim sup
ℓ

∫
|∇(ηṽℓ)|

2
≤ −

∫
(η1ηq2

+ 2ηq∇η · ∇q + η2q1q)=

∫
|∇(ηq)|2,

where we used q1q = 0. By weak lower semicontinuity we always have the converse inequality, thus
∇(ηṽℓ)→ ∇(ηq) strongly in L2(Rn). This in particular gives, for every R > 0,

φ(R, q)= lim
ℓ
φ(R, ṽℓ)= lim

ℓ
φ(Rrℓ, vℓ)= lim

ℓ
φγ (Rrℓ, vℓ),

where in the last line we used (5-5). On the other hand, (a) in Step 1 implies

lim
ℓ
φγ (Rrℓ, vℓ)= lim

ℓ
fxℓ(Rrℓ)= f0(0+)= λk,

thus φ(R, q) ≡ λk for all R > 0. As a standard consequence, we have that q is λk-homogeneous; see
[Athanasopoulos et al. 2008].

Step 5. We finally prove that, for λk < k + 1, we have qodd
= 0. Notice that by Proposition 2.4 qodd is

harmonic and thus has integral homogeneity; hence the only nontrivial case is when λk = k. We need
to show that q is orthogonal in L2(∂B1) to every k-homogeneous harmonic polynomial P vanishing on
{p2,0 = 0}. Fix such a P and apply Proposition 5.3 with

wℓ := u(xℓ + · )−Pk(p2,xℓ, . . . , pk−1,xℓ, pk,xℓ − P ◦ Rℓ),

where Rℓ are rotations sending {p2,xℓ=0} to {p2,0 = 0} and Rℓ → id. Thus, with constants uniform in ℓ
(P is fixed),

r−2k H(r, wℓ)+ Cr ε = Cr ε +

∫
∂B1

(
vℓ(r · )

r k + P ◦ Rℓ + O
(

|x |
k+1

r k

))2

≥ lim
r→0

r−2k H(r, wℓ)+ Cr ε =

∫
∂B1

P2.
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Now divide by the sequence εℓ := (H(rℓ, vℓ)r−2k
ℓ )1/2, which by Step 1 (b) satisfies (recall λk = k)

r5δ
ℓ ≤ ε2

ℓ ≤ hxℓ(rℓ)= o(1).

We compute the squares and rearrange the terms to get∫
∂B1

ṽ2
ℓεℓ + 2

∫
∂B1

ṽℓP ◦ Rℓ ≥ −C
r εℓ
εℓ

≥ −Cr ε−5δ/2
ℓ .

Since δ ≤
1

100ε, we can send ℓ→ ∞ and get ∫
∂B1

q P ≥ 0.

The conclusion follows by linearity in P . □

Remark 5.10. An important application of Proposition 5.9 is when the sequence xℓ is identically equal
to 0.

Remark 5.11. Step 1 of the proof shows that the function 6k-th
∋ x 7→ φγ (u(x + · )−Pk,x , 0+) is upper

semicontinuous. In fact, with the same notations we have, for each r < r0,

lim sup
ℓ

φγ (u(xℓ + · )−Pk,xℓ, 0+)≤ lim sup
ℓ

φγ (u(xℓ + · )−Pk,xℓ, r)+ Cr ε = φγ (u −Pk, r)+ Cr ε,

and the conclusion follows letting r ↓ 0.

Proposition 5.9 shows that in order to pursue our analysis further we need to have some basic knowledge
about homogeneous solutions of the Signorini Problem (5-4). In the next chapter we will use extensively
the results reported in Section 2.4.

6. Estimating the size of the sets 6k-th
\ 6(k+1)-th

Throughout this section u will be a solution of (2-1) with f ≡ 1 and µ= 1. We will show that, for all
k ≥ 2,

dimH(6
k-th

\6(k+1)-th) is less than or equal to n − 2 and is countable if n = 2.

In the last subsection we will show how this constrains the geometry of 6. We remark that, by Caffarelli’s
analysis, 6 \62nd has locally finite Hn−2 measure (see, e.g., [Caffarelli 1998, Theorem 8 (c)]).

In this chapter we repeatedly use the facts and notation concerning the Signorini problem recalled
and/or established in Section 2.4. In particular, we will use Sk , S even, qeven, qodd, 6(q), . . . .

We need to understand the nature of points in 6k-th
\6(k+1)-th. Therefore, suppose 0 ∈ 6k-th and

0 /∈ 6(k+1)-th. We necessarily have λk ≤ k + 1; see Lemma 5.8. Notice that, with the notation of
Proposition 5.9 and Lemma 2.2, we have

(u −Pk)(r · )

r k+1 =
H(r, u −Pk)

1/2

r k+1

(u −Pk)(r · )

H(r, u −Pk)1/2
= O(rλk−(k+1))ṽr,0.
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As every accumulation point of ṽr,0 equals some nonzero q ∈ Sk+1({p2 = 0}) (see Proposition 5.9), in
order to conclude 0 /∈6(k+1)-th (see the flexible definition of this set from Lemma 5.7), either we must
have λk < k + 1 or λk = k + 1 and every accumulation point q satisfies qeven

̸≡ 0.
These observations inspire the following trichotomy. If x ∈6k-th

\6(k+1)-th then exactly one of the
following happens:

(1) λk(x)= k,

(2) λk(x) ∈ (k, k + 1),

(3) λk(x)= k +1, but every accumulation point of r−(k+1)(u(x + · )−Pk,x)(r · ) has a nonzero even part.

We rephrase these cases with a notation closer to that adopted in [Figalli and Serra 2019; Figalli et al.
2020]. Namely, for each k ≥ 2, define

6>k
:=6k-th

∩ {λk > k}, 6≥k+1
:=6k-th

∩ {λk ≥ k + 1}.

So we have the descending chain of inclusions

6n−1 =62nd
=6>2

⊇ · · · ⊇6k-th
⊇6>k

⊇6≥k+1
⊇6(k+1)-th

⊇ · · · ⊇
⋂
j≥2
6 j-th

=:6∞.

With this notation case (1) corresponds to the set 6k-th
\6>k , case (2) to 6>k

\6≥k+1 and case (3) to
6≥k+1

\6(k+1)-th. In the next subsections we will address separately each case.
We point out that, in cases (1) and (3), the parity of k will play a role in our arguments. This is related

to the different shape of the functions in S even
k according to the parity of k (see Proposition 2.4).

6.1. The size of 6k-th \ 6>k. We start by showing that when k is even, the set 6k-th
\6>k is in fact

empty. This is a simple consequence of the following monotonicity formula, which is an extension of
[Figalli et al. 2020, Lemma 4.14] to higher values of k.

Lemma 6.1. Let u solve (2-1), and let 0 ∈ 6k-th for some k ≥ 2. Let v := u − Pk , and let P be any
k-homogeneous harmonic polynomial such that P ≥ 0 on {p2 = 0}. Then there exists ε, r0 > 0 depending
on n and k such that, for all r ∈ (0, r0),

d
dr

(
r−k

∫
∂B1

vr P
)

≤ Cr ε−1

for some constant C depending only on n, k, ∥P∥L2(∂B1).

Proof. The proof is identical to in [Figalli et al. 2020, Lemma 4.14]; we give it nevertheless for the
reader’s convenience. Integration by parts and the fact that P is harmonic lead to

d
dr

∫
∂B1

vr P =
1
r

(∫
∂B1

vr∂νP +

∫
B1

1vr P
)

=
1
r

(
k

∫
∂B1

vr q +

∫
B1

1vr P
)
,

where we used the homogeneity of P to deduce that ∂νP = k P on ∂B1. As 1vr = −r2χ{ur =0}, we can
rewrite this as

d
dr

(
r−k

∫
∂B1

vr P
)

= −
1

r k−1

∫
B1∩{ur =0}

P.
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We have
r−k

∥vr∥L2(B1) = ∥ṽr∥L2(B1)(r
−2k H(r, v))1/2 ≤ C(n, k)

for r ≲ 1 sufficiently small, thanks to Proposition 5.9 (i) and Proposition 5.3. Combining this estimate
with the Lipschitz bounds from Proposition 3.4 (ii), with β ∈ (0, 1/(k + 2)) to be chosen, we find

{ur = 0} ∩ B1 ⊆ {x ∈ B1 : r |∂nPk |(r x)= r2
|xn + O(|x |

2)| ≤ Cr k(1−β)
},

with some constant C depending on n and k only (as we can choose τ = τ(n, k) from Proposition 5.4).
This shows that |{ur = 0} ∩ B1| ≤ Cr k(1−β)−2. On the other hand, by the maximum principle, we have
−P ≤ C |xn| in B1. Hence, using Lemma 2.1, we obtain

−

∫
B1∩{ur =0}

P ≤ Crα◦ |{ur = 0} ∩ B1| ≤ Cr k+α◦−kβ−2,

and the lemma follows choosing β = α◦/(2k). □

As a simple corollary we get our claim.

Corollary 6.2. For every even integer k ≥ 2, we have 6k-th
\6>k

= ∅.

Proof. Let us assume, on the contrary, that 0 ∈6k-th
\6>k , that is λk = k. Then, by Proposition 5.9, any

accumulation point q of ṽr = (u −Pk)r/H(r, u −Pk)
1/2 lies in S even

k ({p2 = 0}) \ {0}. Furthermore, by
Proposition 2.4, any such q satisfies the assumptions of Lemma 6.1. As 0 ∈ 6k-th, we moreover have
vr/r k

→ 0, thus after combining this with Lemma 6.1 with P = q , we find

r−k
∫
∂B1

vr q ≤ Cr ε

for small r ≤ 1. Dividing by H(r, u −Pk)
1/2 leads to∫

∂B1

ṽrℓq ≤ C
r k+ε
ℓ

H(rℓ, u −Pk)1/2
.

Thanks to (ii) in Remark 5.2, we deduce that the right-hand side vanishes as ℓ ↑ ∞, implying
∫
∂B1

q2
≤ 0

and contradicting ∥q∥L2(∂B1) = 1. □

Let us now consider an odd k. We point out that, for k = 3, we still have 63rd
\6≥3

=∅, but the proof
is more refined; see [Figalli et al. 2020, Proposition 5.8]. We will instead rely on a more robust argument
which will be also employed later to deal with the case λk = k + 1 (see Lemma 6.10). The main step is
contained in the following lemma, based on a barrier argument.

Lemma 6.3. Let k ≥ 3 be odd. For all x ∈6k-th
\6>k and ε > 0, there is ϱ = ϱ(ε, x) > 0 such that, for

each 0< r < ϱ, there exists q ∈ S even
k ({p2,x = 0}) such that

6(u)∩ Br (x)⊆6(q)+ Bεr (x). (6-1)

Recall that 6(q) := {q = |∇q| = 0} ∩ {p2,x = 0} was defined in (2-9).
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Proof. Up to an isometry, suppose x = 0 and p2 =
1
2 x2

n . We argue by contradiction and (rescaling the
space) suppose that there are ε◦ > 0 and rℓ ↓ 0 such that

6(urℓ)∩ {y ∈ B1 : dist(y, 6(q)) > ε◦} ̸= ∅ for all q ∈ S even
k .

Thanks to Proposition 5.9, we can extract a subsequence (that we do not rename) such that

(u −Pk)rℓ

H(rℓ, u −Pk)1/2
→ q̄ ∈ S even

k \ {0} in C0
loc(R

n). (6-2)

Thus, there are yℓ ∈ B1 such that

yℓ ∈6(urℓ), dist(yℓ, 6(q̄))≥ ε◦, yℓ → y∞ ∈ {xn = 0}.

By Proposition 2.4 we can write q̄(x)= −|xn|(q0(x ′)+ x2
nq1(x)) for some polynomials q0 and q1, with

q0 ≥ 0. For brevity, we set hℓ := H(rℓ, u −Pk)
1/2 and remark that r k+δ

ℓ ≤ C0hℓ ≪ r k
ℓ for some constants

C0 and δ (see Remark 5.2).
As yℓ → y∞, in order to reach a contradiction, it suffices to show that, for some small radius R > 0

and all ℓ large,
6(urℓ)∩ BR(y∞)= ∅. (6-3)

The rest of the proof is devoted to showing (6-3) for a suitable R independent of ℓ.
We start by choosing a radius ρ as follows. As y∞ ∈ {xn = 0} \6(q̄)⊆ {q0 > 0}, we can find some

small ρ,m ∈ (0, 1) such that

q(x)≤ −m|xn| for x ∈ B4ρ(y∞), (6-4)

and we can also require that ρ ≤
1

100 m.
Let us introduce some notation. Define the set of points that admit a barrier as

Zℓ := {z ∈ Bρ(y∞) : ∃φz,ℓ of class C2 in a neighborhood of Bρ(z) solving (6-5)},

where 
φz,ℓ(z)= 0,
φz,ℓ ≥ 0 in Bρ(z),
1φz,ℓ < r2

ℓ in Bρ(z),
u(rℓ · ) < φz,ℓ on ∂Bρ(z).

(6-5)

We also set
0ℓ := {Ak(rℓ · )= 0} ∩ B2.

For ℓ large in terms of n, k and τ , we have that 0ℓ is a smooth hypersurface inside B2, which converges
to the hyperplane {xn = 0}, say, in the C2 norm. Furthermore, combining Lemma 2.1 and the fact that
Ak(x)= xn + O(|x |

2), we get

({urℓ = 0} ∪0ℓ)∩ B2 ⊆ {|xn| ≤ C1rα◦

ℓ } ∩ B2 (6-6)

for some constant C1 = C1(n, k) > 0.
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Claim. There is ℓ0 such that, for ℓ > ℓ0, the following hold:

(i) All points in Bρ(y∞) belonging to the hypersurface 0ℓ admit a barrier, that is, 0ℓ ∩ Bρ(y∞)⊆ Zℓ.

(ii) The function u vanishes on Zℓ. Moreover, Zℓ is open and contained in the interior of the contact set
{u(rℓ · )= 0}.

(iii) There is a dimensional constant N (n) > 0 such that (6(urℓ)∩ Bρ/2N (y∞)) \0ℓ = ∅.

The combination of these three claims will give (6-3) with R = ρ/(2N ). In fact, as there are no singular
points in the interior of the singular set, (i) and (ii) give 6(urℓ)∩ Bρ/2N (y∞)∩0ℓ = ∅. We conclude
with (iii). □

Proof of the Claim. We begin by proving (ii). First, for any z ∈ Zℓ and any ξ close to z, we can define

φξ,ℓ(x) := φz,ℓ(x + (z − ξ)).

By continuity of translations, φξ,ℓ solves (6-5) on Bρ(ξ) for |ξ − z| small enough; hence Zℓ is open. We
now apply the comparison principle, using the last two properties of the barrier in (6-5) to find u|Zℓ ≡ 0.
Notice that, for z ∈ Zℓ, two cases arise: either for all c > 0 we have u(rℓ · ) < φz,ℓ+ c on Bρ(z), or there
exist the largest c∗ > 0 such that u(rℓx∗)= φz,ℓ(x∗)+c∗ for some x∗ ∈ Bρ(z). In the first case, evaluating
at z and sending c ↓ 0, we get u(rℓz) = 0. In the second case, we notice that by (6-5) we must have
x∗ /∈ ∂Bρ(z), thus we get

r2
ℓχ{u(rℓ·)>0}(x∗)=1urℓ(x∗)≤1φz,ℓ(x∗) < r2

ℓ ⇒ x∗ /∈ {u(rℓ · ) > 0}.

Then 0 = u(rℓx∗)= φz,ℓ(x∗)+ c∗ ≥ c∗ > 0, a contradiction.
Next, we turn to the proof of (iii). First recall that there exists a dimensional modulus of continuity

(see [Caffarelli 1998, Theorem 8 and Corollary 11]) such that, for all x ∈6(u), we have

∥u(x + · )− p2,x∥L∞(Br ) ≤ r2ω(r).

Suppose by contradiction that we can find

y∗

ℓ ∈ (6(urℓ)∩ Bρ/2N (y∞)) \0ℓ

for arbitrarily large ℓ. We set for brevity pℓ := p2,rℓy∗

ℓ
. As pℓ is convex and 1pℓ ≥ 1, for every such ℓ,

we choose a unit vector eℓ such that
pℓ(x)≥

1
2n
(eℓ · x)2.

Now by item (ii), we have, for all z ∈ Bρ/N (y∞)∩0ℓ,

0 = u(rℓz)= urℓ(y
∗

ℓ + (z − y∗

ℓ ))≥ pℓ(z − y∗

ℓ )− |z − y∗

ℓ |
2ω(|z − y∗

ℓ |)

≥
1

2n
(eℓ · (z − y∗

ℓ ))
2
− |z − y∗

ℓ |
2ω(|z − y∗

ℓ |).

From this inequality we reach a contradiction: On one hand we have |z − y∗

ℓ | ≤ 1/N , so we can require N
to be large enough that ω(|z − y∗

ℓ |)≤ 1/(100n). On the other hand we can choose z in such a way that
the nonzero vector z − y∗

ℓ is almost aligned with eℓ, thus we get a contradiction dividing by |z − y∗

ℓ |
2.



C∞ PARTIAL REGULARITY OF THE SINGULAR SET IN THE OBSTACLE PROBLEM 235

In order to prove (i) we need to construct a barrier for all z ∈ Bρ(y∞)∩0ℓ. Set

φz,ℓ(x) :=

(
1 −

hℓ
r2
ℓ

)
1
2
A2

k(rℓx)+
hℓ
4n

|x ′
− z′

|
2.

We have to check that φz,ℓ indeed satisfies (6-5) for ℓ large. The first two equations in (6-5) are clearly
fulfilled for any ℓ. For the third condition, let us compute, for x ∈ Bρ(z),

1φz,ℓ = r2
ℓ − hℓ + C2r k+2

ℓ +
2(n − 1)

4n
hℓ ≤ r2

ℓ −
1
2 hℓ + C0C2rℓhℓ,

where we used, for some C2 = C2(n, k), that 11
2A

2
k ≤ 1 + C2|x |

k and r k+1
ℓ ≤ C0hℓ. Hence, 1φz,ℓ < r2

ℓ

as soon as ℓ is large enough.
We turn to the last condition of (6-5). For any fixed η ≤ ρ2/(100n), we have, by uniform convergence

of (6-2) for ℓ large,
urℓ ≤

1
2A

2
k(rℓ · )+ hℓq̄ + hℓη

in B2. As for some constant C3 = C3(n, k) > 0, we have, in B2,

1
2A

2
k(x)≤

1
2 x2

n + C3|x |
3,

and recalling the choice of ρ from (6-4), we get, for x ∈ Bρ(z),

u(rℓx)≤
1
2A

2
k(rℓx)− hℓm|xn| + hℓη

≤

(
1 −

hℓ
r2
ℓ

)
1
2
A2

k(rℓx)+
hℓ
2

x2
n − hℓm|xn| + C3hℓrℓ|x |

3
+ hℓη

= φz,ℓ(x)+ hℓ
(1

2
x2

n − m|xn| + C3rℓ|x |
3
+ η−

1
4n

|x ′
− z′

|
2
)
.

We show that, whenever x ∈ ∂Bρ(z), the term between parentheses is negative. Using (6-6) and the fact
that |x | ≤ 2, we get, for all x ∈ ∂Bρ(z),

1
2

x2
n − m|xn| + C3rℓ|x |

3
+ η−

1
4n

|x ′
− z′

|
2
=

1
4n

|xn − zn|
2
+

1
2

x2
n − m|xn| + C3rℓ|x |

3
+ η−

ρ2

4n

≤ x2
n − m|xn| + C2

1r2α◦

ℓ + 8C3rℓ + η−
ρ2

4n
.

We claim that this quantity is negative as soon as

rα◦

ℓ ≤ min
{
ρ

C1
,
η

8C3
,
η

C2
1
, 1

}
.

In fact by (6-6), we have, uniformly in z,

|xn| ≤ |xn − zn| + |zn| ≤ ρ+ C1rα◦

ℓ ≤ 2ρ ≤
2m
100

,

thus x2
n − m|xn| ≤ 0 and

C1r2
ℓ + 8C3rℓ + η−

ρ2

4n
≤ 3η−

ρ2

4n
≤

3ρ2

100n
−
ρ2

4n
< 0. □
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Exploiting some recent volume estimates for the tubular neighborhood of the critical set of harmonic
functions from [Naber and Valtorta 2017], we can now deduce the following.

Lemma 6.4. Given β1 > n − 2 and k ≥ 3 odd, there exists an ε̂ = ε̂(n, β1) small such that the following
holds. Let E ⊆ Rn be any set satisfying

E ⊆ Br (x)∩ (6(q)+ Bε̂r (x))

for some r ∈ (0, 1), x ∈ Rn and q ∈ S even
k (L) \ {0} for some hyperplane L. Then E can be covered with

⌊γ−β1⌋ balls of radius γ r centered at points of E for γ =
1
5 ε̂.

Proof. By translation and scaling we can recover the general case from the case r = 1, x = 0. Let
ε̂ ∈ (0, 1) be a parameter to be fixed later, and take q as in the statement, recalling that q vanishes on L
(see Proposition 2.4). For simplicity we assume L = {xn = 0} and consider Q, the odd (with respect to L)
extension of q|{xn>0} to Rn . Q is harmonic, and it is easily checked that6(q)⊆{Q =|∇Q|= 0}=:6(Q);
hence a fortiori

E ⊆ B1 ∩ {dist( · , 6(Q))≤ ε̂}.

As Q is harmonic and nonzero, we can apply the volume estimates in [Naber and Valtorta 2017, Theo-
rem 1.1] to find

Hn(B2 ∩ {dist( · , 6(Q))≤ t})≤ C(n)t2

for all t ∈ (0, 1). Now, consider a covering of E of the form {Bε̂(x)}x∈E . By Vitali’s covering lemma,
there exists a disjoint subcollection {Bε̂(xi )}i∈I such that

E ⊆

⋃
x∈E

Bε̂(x)⊆

⋃
i∈I

B5ε̂(xi ).

We need to estimate the cardinality of I . Denoting by ωn the volume of the unit ball in Rn and using that
Bε̂(xi )⊆ (E + Bε̂ ⊆6(Q)+ B2ε̂)∩ B2, we have

ωn ε̂
n#I = Hn

(⋃
i∈I

Bε̂(xi )

)
≤ Hn({dist( · , 6(Q))≤ 2ε̂})≤ C(n)ε̂2,

and thus #I ≤ C(n)ε̂2−n . As β1 > n − 2, choosing ε̂(n, β1) small enough, we find #I ≤
( 1

5 ε̂
)−β1 , which

finishes the proof. □

We employ Lemma 6.4 to get a Reifenberg-type result. We need to incorporate the lower-semicontinuous
function τ into the statement, as we will use this result in the next section.

Proposition 6.5 [Figalli et al. 2020, Proposition 7.5]. Let τ : E → R be a lower-semicontinuous function
and E ⊆ Rn be a measurable set with the following property. For any ε > 0 and x ∈ E , there exists
ϱ = ϱ(x, ε) > 0 such that, for all r ∈ (0, ϱ), there exist a hyperplane L , an odd integer k ≥ 3 and
q ∈ S even

k (L) \ {0} such that

E ∩ Br (x)∩ τ−1([τ(x),+∞))⊆6(q)+ Bεr (x).

Then dimH(E)≤ n − 2.
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Proof. The result follows by iterating Lemma 6.4, and we skip the details. See for example the proof of
Propositions 7.3 or 7.5 in [Figalli et al. 2020]. □

This finally gives the desired dimensional estimate.

Corollary 6.6. Let k ≥ 3 be odd. Then dimH(6
k-th

\6>k)≤ n−2. Furthermore, if n = 2, then6k-th
\6>k

is discrete in 6.

Proof. Recall that if n = 2, then 6(q)= {0} for every q ∈ S even
k \ {0}. Pick any x ∈6k-th

\6>k and apply
Lemma 6.3 with ε :=

1
2 . Then, for all r < ϱ

(
x, 1

2

)
, we have

6 ∩ (Br (x) \ Br/2(x))= ∅.

This clearly implies that 6 ∩ Bϱ(x)= {x}, thus x is isolated in 6.
For the case n ≥ 3 we apply Proposition 6.5 to E :=6k-th

\6>k and the constant function τ ≡ 1. The
hypothesis are satisfied thanks to Lemma 6.3. □

6.2. The size of 6>k \6≥k+1. The key idea behind this dimensional reduction is that at an accumulation
point of 6>k

\6≥k+1, the blowup gains a translation symmetry along the direction of the approaching
sequence. This observation corresponds to Lemmas 6.8 or 6.9 in [Figalli et al. 2020].

Lemma 6.7. Let 0 ∈6>k
\6≥k+1 for some k ≥ 2. Suppose there exists an infinitesimal sequence rℓ ↓ 0

and points xℓ ∈6k-th
∩ Brℓ , xℓ ̸= 0 such that λk(xℓ)→ λk . Assume further that, as ℓ→ ∞, we have

(i) xℓ/rℓ → y∞ ∈ B1,

(ii) ṽrℓ = (u −Pk)rℓ/H(rℓ, u −Pk)
1/2

→ q in C0
loc(R

n) for some q ∈ Sλk ({p2 = 0}) \ {0}.

Then y∞ ∈ {p2 = 0} and q = q(y∞ + · ).

Proof. Consider a sequence (xℓ)ℓ∈N ⊆6k-th
∩ Brℓ as in the statement of the lemma. We begin by recalling

that y∞ ∈ {p2 = 0} because r−2
ℓ u(rℓ ·)→ p2 uniformly in B2. Then we apply Proposition 5.9 with varying

centers (xℓ)ℓ∈N, and after passing to a subsequence (denoted again with rℓ) we have

ṽrℓ,xℓ :=
u(xℓ + rℓ · )−Pk,xℓ(rℓ · )

∥(u(xℓ + · )−Pk,xℓ)rℓ∥L2(∂B1)

→ Q

in C0
loc(R

n) for some Q ∈ Sλk ({p2 = 0}) \ {0}. On the other hand, by uniform convergence,

q(y∞ + · )= lim
ℓ
ṽrℓ

( xℓ
rℓ

+ ·

)
= lim

ℓ

u(xℓ + rℓ · )−Pk(xℓ + rℓ · )

H(rℓ, u −Pk)1/2
.

So putting everything together we can write

ṽrℓ

( xℓ
rℓ

+ ·

)
= ṽrℓ,xℓ · Iℓ + Jℓ, (6-7)

where

Iℓ :=
H(rℓ, u(xℓ + · )−Pk,xℓ( · ))

1/2

H(rℓ, u −Pk)1/2
=

∥u(xℓ + rℓ · )−Pk,xℓ(rℓ · )∥L2(∂B1)

∥u(rℓ · )−Pk(rℓ · )∥L2(∂B1)
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is a numerical sequence and

Jℓ :=
Pk,xℓ(rℓ · )−Pk(xℓ + rℓ · )

H(rℓ, u −Pk)1/2

is a sequence of harmonic polynomials of degree at most k + 1. Now two cases arise:

either sup
ℓ

Iℓ <∞ or Iℓm ↑ ∞ for some subsequence ℓm → ∞.

Let us begin with the first case. Up to a subsequence that we do not rename, we have Iℓ → α for some
α ≥ 0. Equation (6-7) then implies that Jℓ → J locally uniformly to some harmonic polynomial J of
degree at most k + 1. Thus, sending ℓ ↑ ∞ in (6-7), we obtain

q(y∞ + · )= αQ + J. (6-8)

We exploit homogeneity: for large R > 0, we have

Rλk q
( y∞

R
+ ·

)
= RλkαQ + J (R · ),

so limR↑∞ R−λk J (Rx) exists for every x ∈ Rn . As λk is not an integer and J is a polynomial, the only
possibility is that limR↑∞ R−λk J (Rx)= 0 for all x , and so deg J ≤ k. Hence the last identity reads

q = αQ.

Inserting this back in (6-8), we find q(y∞ + · )= q + J . Now, using again that q is homogeneous, for
any R > 0, we have

R
(

q
( y∞

R
+ ·

)
− q( · )

)
= R1−λk J (R · ).

Sending R → ∞, the left-hand side converges to y∞ · ∇q, but as before the right-hand side can only
converge to 0, so y∞ · ∇q = 0.

The second case is simpler. We divide (6-7) by Iℓm and find, after passing to a subsequence of ℓm , that

0 = Q + J̃

for some harmonic polynomial J̃ of degree at most k + 1. This is a contradiction, since Q ̸= 0 is a
λk ∈ (k, k + 1) homogeneous function and hence not a polynomial. This finishes the proof. □

Lemma 6.7 triggers a Federer-type dimension reduction, exactly as in [Figalli and Serra 2019].

Proposition 6.8 [Figalli et al. 2020, Proposition 7.3]. Let E ⊆ Rn , f : E → R and m ∈ {1, . . . , n}.
Assume that, for any ε > 0 and x ∈ E , there exists ϱ = ϱ(x, ε) > 0 such that, for all r ∈ (0, ϱ), we have

E ∩ Br (x)∩ f −1([ f (x)− ϱ, f (x)+ ϱ])⊆5x,r + Bεr

for some m-dimensional plane 5x,r passing through x (possibly depending on r ). Then dimH(E)≤ m.

We combine Lemma 6.7 and Proposition 6.8 to prove the dimensional estimate.

Proposition 6.9. For every k ≥ 2, we have dimH(6
>k

\6≥k+1) ≤ n − 2. Moreover, if n = 2, then
6>k

\6≥k+1 consists of isolated points if k is odd and is empty if k is even.
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Proof. We want to apply Proposition 6.8 with E :=6>k
\6≥k+1, m = n − 2 and the function f given

on E by x 7→ λk(x) ∈ (k, k + 1). It suffices to show that, for all x ∈ E and for all ε > 0, there exist
ϱ = ϱ(x, ε) > 0 and an (n−2)-dimensional plane 5x,r passing through x such that

E ∩ Br (x◦)∩ λ
−1
k ([λk(x)− ϱ, λk(x)+ ϱ])⊆ {x : dist(x,5x,r )≤ εr} for all r ∈ (0, ϱ).

We argue by contradiction. Assume that, for x = 0 and some ε◦ > 0, the above does not hold. Then
we make the following simple geometric claim. For each ℓ there exists rℓ ∈ (0, 2−ℓ) and n − 1 points
x (1)ℓ , . . . , x (n−1)

ℓ in E ∩ Brℓ such that

|x (1)ℓ ∧ · · · ∧ x (n−1)
ℓ | ≥ δrn−1

ℓ , |λk(x
( j)
ℓ )− λk | ≤ 2−ℓ

for all j ∈ {1, . . . , n − 1} and for some δ = δ(n, ε◦) ∈ (0, 1). In particular, {x (1)ℓ , . . . , x (n−1)
ℓ } span a

hyperplane and, for each fixed j , the sequence (x ( j)
ℓ )ℓ∈N lies in E ⊆6k-th, with

λk(x
( j)
ℓ )→ λk .

We extract a finite number of subsequences to ensure x ( j)
ℓ /rℓ → y( j)

∞ for each j . Exploiting the lower
bound on the exterior product, we again have that

dim span{y(1)
∞
, . . . , y(n−1)

∞
} = n − 1.

Now we apply Proposition 5.9 to each (x ( j)
ℓ )ℓ∈N and get

ṽrℓ =
(u −Pk)rℓ

H(rℓ, u −Pk)1/2
→ q in C0

loc

for some q ∈ Sλk . Notice that, taking at each time a subsequence, q can be taken the same for all j’s.
By Lemma 6.7, we conclude that q is translation-invariant in the directions y( j)

∞ for all 1 ≤ j ≤ n − 1;
hence q is a 1-dimensional homogeneous solution to the obstacle problem vanishing at the origin. Thus,
after a rotation of coordinates, we must have q(x)= −A|xn|+ Bxn for some constants A ≥ 0 and B ∈ R,
which contradicts λk > 1.

Let us sketch the geometric argument needed to construct such {x (1)ℓ , . . . , x (n−1)
ℓ }. Fixing ℓ, we pick any

(n−2)-plane 50 and any x (1) ∈ (E ∩ Brℓ)\ (50 + Bε◦). Then we choose any plane 51 containing x (1) and
any x (2) in (E ∩ Brℓ)\(51 + Bε◦). We can go on in this way and construct the whole set {x (1), . . . , x (n−1)

}.
Finally, we notice that, by compactness,

δ := min{|z1 ∧ · · · ∧ zn−1| : z j ∈ Rn, ∀ j dist(z j , span{zi : i ̸= j, 1 ≤ i ≤ n − 1})≥ ε◦}> 0.

We are left with the case n = 2. Recall that if q is a λ-homogeneous solution to the thin obstacle problem,
then λ∈ N+∪

{
2m −

1
2 : m ∈ N+

}
(see Proposition 2.4). Thus, having in mind Proposition 5.9, we find that

6>k
\6≥k+1 is empty for k even. If k is odd, we find λk(x◦)= k +

1
2 for every x◦ ∈6>k

\6≥k+1. If this
set was not discrete, we could apply Lemma 6.7 and reach a contradiction, obtaining a one-dimensional
and

(
k +

1
2

)
-homogeneous solution of the thin obstacle problem. □
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6.3. The size of 6≥k+1 \ 6(k+1)-th.

Lemma 6.10. Let k ≥ 2, x ∈6≥k+1
\6(k+1)-th and ε > 0. Then there exists ϱ = ϱ(ε, x) > 0 such that,

for each r ∈ (0, ϱ), there is q ∈ S even
k+1 ({p2,x = 0}) \ {0} such that

6(u)∩ Br (x)⊆6(q)+ Bεr (x). (6-9)

Recall that 6(q)= {q = |∇q| = 0} ∩ {p2,x = 0} was defined in (2-9).

Proof of the case (k+1) even. Up to an isometry, we can assume x = 0 and p2 =
1
2 x2

n . We argue by
contradiction and rescale everything: we find ε◦ > 0 and a sequence rℓ ↓ 0 such that

yℓ ∈6(u(rℓ · ))∩ B1 and dist(yℓ, 6(q ′))≥ ε◦

for all q ′
∈ S even

k+1 ({xn = 0}). Up to taking subsequences, we can assume yℓ → y∞ ∈ {xn = 0}, and by
Proposition 5.9,

(u −Pk)(rℓ · )

r k+1
ℓ

→ q̄ ∈ Sk+1({xn = 0})

in C0
loc(R

n). Since 0 /∈6(k+1)-th, we have q̄even
̸= 0. Rearranging the terms we can equivalently write

wℓ :=

(
u −

1
2A

2
k+1(p2,0, . . . , pk,0, q̄odd)

)
(rℓ · )

r k+1
ℓ

→ q̄even in C0
loc(R

n).

Now recall that, k + 1 being even, we have 6(q̄even)= {q̄even
= 0}, thus η := q̄even(y∞) > 0, as y∞ lies

on the thin obstacle. So we can find a small radius δ > 0 and a large ℓ0 such that, for all ℓ > ℓ0, we have

inf
Bδ(y∞)

wℓ ≥ inf
Bδ(y∞)

q̄even
− ∥wℓ − q̄even

∥L∞(B2) ≥
1
2η−

1
4η =

1
4η.

However, eventually we will have yℓ ∈ Bδ(y∞), and this is a contradiction as

0 ≥ −
A2

k+1(rℓyℓ)

2r k+1
ℓ

= wℓ(yℓ)≥ inf
Bδ(y∞)

wℓ ≥
1
4η.

We remark that we only used that yℓ ∈ {urℓ = 0}, not that the yℓ were singular points. □

Proof of the case (k+1) odd.. Arguing by contradiction as in the even case, we find ε◦ > 0 and a sequence
rℓ ↓ 0 such that, for each ℓ,

yℓ ∈6(u(rℓ · ))∩ B1 and dist(yℓ, 6(q))≥ ε◦ for all q ∈ S even
k+1 ({xn = 0}) \ {0}.

We can also assume that yℓ → y∞ ∈ {xn = 0} and

wℓ :=

(
u −

1
2A

2
k(p2,0, . . . , pk,0, q̄odd)

)
(rℓ · )

r k+1
ℓ

→ q̄even in C0
loc(R

n).

From this point the proof is conducted analogously to the proof of Lemma 6.3; it suffices to replace k
with k + 1 and hℓ with r k+1

ℓ . □
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Remark 6.11. In the case k + 1 even the proof actually gives a stronger result: as we only used that
yℓ ∈ {u = 0}, we can replace 6(u) with the full contact set. In other words we can replace (6-9) with

{u = 0} ∩ Br (x)⊆6(q)+ Bεr (x). (6-10)

We can conclude now exactly as in the case λk = k for k odd.

Corollary 6.12. Suppose k ≥ 2. Then dimH(6
≥k+1

\6(k+1)-th) ≤ n − 2. Furthermore, if n = 2, then
6≥k+1

\6(k+1)-th is discrete in the full 6.

Proof. Recall that if n = 2 then 6(q) = {0} for every q ∈ S even
k+1 . Pick x ∈ 6≥k+1

\6(k+1)-th and apply
Lemma 6.10 with ε :=

1
2 . This gives that, for all r < ϱ

(
x, 1

2

)
, we have

6(u)∩ (Br (x) \ Br/2(x))= ∅.

This clearly gives 6(u)∩ Bϱ(x)= {x}, thus x is isolated in 6(u).
For n ≥ 3, we argue as in Corollary 6.6; namely, we apply Proposition 6.5 to E := 6≥k

\6(k+1)-th.
The assumptions are satisfied thanks to Lemma 6.10. □

In particular we notice that in dimension n = 2 this forces the sets 6k-th to be closed.

Corollary 6.13. If n = 2, then the sets 6k-th are closed for all k ≥ 2.

Proof. We prove the assertion by induction on k. Let (xℓ)ℓ∈N ⊆6(k+1)-th
\ {0} be a sequence with xℓ → 0.

In particular, we have xℓ ∈6≥k+1. By inductive assumption we can assume 0 ∈6k-th, and by the upper
semicontinuity of the truncated frequency we get λk(0)≥ k +1 (see Remark 5.11). But by Corollary 6.12
the origin cannot lie in 6≥k+1

\6(k+1)-th, because it is an accumulation point of the sequence of singular
points xℓ. Since 62nd

=6n−1 is closed, by lower semicontinuity of the rank, the proof is finished. □

6.4. The geometry of 6∞. Let us put together the results obtained so far. By definition,

6∞
:=

⋂
k≥2

6k-th.

In the last three subsections we proved the following.

Proposition 6.14. We have dimH(6 \6∞)≤ n − 2. If n = 2, then 6 \6∞ is countable.

Proof. By definition we have that

6 \6∞
= (6 \6n−1)∪

⋃
j≥2
(6 j-th

\6> j )∪
⋃
j≥2
(6> j

\6≥ j+1)∪
⋃
j≥3
(6≥ j

\6 j-th).

But now

• dimH(6 \6n−1)≤ n − 2 (discrete if n = 2), by [Caffarelli 1998, Theorem 8];

• dimH(6
j-th

\6> j )≤ n − 2 (discrete if n = 2), by Corollaries 6.2 and 6.6;

• dimH(6
j-th

\6> j )≤ n − 2 (discrete if n = 2), by Proposition 6.9;

• dimH(6
≥ j

\6 j-th)≤ n − 2 (discrete if n = 2), by Corollary 6.12. □
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At each point of 6∞ we have Taylor polynomials of every order, and they vary smoothly in the sense
of Whitney. This also gives that 6∞ locally is contained in a smooth hypersurface. Let us first phrase a
suitable statement.

Theorem 6.15. Let E ⊆ Rn be any set, and, for each k ∈ N, consider a collection of polynomials {Pk,x}x∈E

of degree at most k. Suppose that these polynomials satisfy

(i) Pk,x = π≤k(Pk+ℓ,x) for all k, ℓ ∈ N and x ∈ E ,

(ii) for each k ∈ N, there is a constant C(k) such that, for each multi-index α, |α| ≤ k, we have

|∂αPk,x(0)− ∂αPk,y(x − y)| ≤ C(k)|x − y|
k−|α|+1 for all x, y ∈ E .

Then there exists a function F ∈ C∞(Rn) such that, for each x ∈ E and k ∈ N, we have

F(x + h)= Pk,x(h)+ O(|h|
k+1) as |h| → 0.

Proof. This is just a restatement of Whitney’s extension theorem for smooth functions. The interested
reader can find in Appendix C how to derive this formulation from the original, namely [Whitney 1934,
Theorem I]. □

Lemma 6.16. Let u be a solution to the obstacle problem (2-1). Then 6∞ is closed and locally covered
by one smooth manifold of dimension n−1.

Proof. The main idea is to combine the implicit function theorem and Whitney’s extension theorem
(Theorem 6.15). We will first prove the covering and then the closeness.

As the statement is local we can assume that 0 ∈6∞ and that u solves (2-1) in B2(0)⊆ Rn . We want
to apply Whitney’s extension theorem (Theorem 6.15) with E :=6∞

∩ B1 and the polynomials

Pk,x := π≤k(Pk,x) for all x ∈6∞
∩ B1, k ≥ 0.

Assumption (i) holds because Pk+ℓ and Pk agree up to order k (see also Lemma 5.7). We need to show
that (ii) holds. It is not restrictive to do it only for some fixed k ≥ 3. To do so we exploit our previous
analysis on 6(k+1)-th. More precisely, combining Lemma 3.5 with the uniform estimate in Proposition 5.4
and growth estimates from Proposition 4.2 and Lemma 2.2, we find R = R(n, k) and C = C(n, k) such
that, for all x ∈6(k+1)-th

∩ B1 and 0< r < R < 1
2 , we have

∥u(x + · )− Pk,x∥L∞(Br (0)) ≤ Cr k+1. (6-11)

Thus this must hold, a fortiori, for all x ∈6∞
∩ B1. Let now x1, x2 ∈6∞

∩ B1 such that |x1 − x2| ≤
1

10 R.
Then, since B2|x1−x2|(x1) ⊆ B4|x1−x2|(x2), by (6-11) applied at x1 with r1 = 2|x1 − x2| and at x2 with
r2 = 4|x1 − x2|, together with the triangle inequality, we find

∥Pk,x1( · − x1)− Pk,x2( · − x2)∥L∞(B2|x1−x2|(x1)) ≤ C |x1 − x2|
k+1. (6-12)

If we consider the polynomial Q = Pk,x1( · − x1)− Pk,x2( · − x2), equation (6-12) reads

∥Q(x1 + 2|x1 − x2| · )∥L∞(B1) ≤ C |x1 − x2|
k+1,
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hence by the equivalence of norms on the space of polynomials of degree bounded by k, we conclude

∥(∂αQ)(x1 + 2|x1 − x2| · )∥L∞(B1) ≤ C |x1 − x2|
k+1−|α|

for all multi-index |α| ≤ k, with some C = C(n, k). In particular, looking at the center of B1, we get

|∂αPk,x1(x2 − x1)− ∂
αPk,x2(0)| ≤ C(n, k)|x1 − x2|

k+1−l, (6-13)

and this proves that assumption (ii) holds. By the Whitney extension theorem, there exists a C∞ function
F : Rn

→ R for which
F(x)= Pk,x◦

(x − x◦)+ O(|x − x◦|
k+1)

at every x◦ ∈6∞
∩ B1.

We now conclude as in [Figalli et al. 2020, Proposition 8.1c)], using the implicit function theorem. As
6∞

⊆ {∇F = 0} and ∇
2 F(x1)= ∇

2 p2,x1(0) has rank 1, we conclude with the implicit function theorem
that {∇F = 0} is a smooth hypersurface in some neighborhood of x1.

Let us now prove that 6∞ is closed. Suppose 0 ∈6∞, so there exists xℓ ∈6∞ such that xℓ → 0. First
observe that 0 ∈6 since the full singular set 6 is closed, and hence p2 exists. We define by continuity
Pk := limℓ Pk,xℓ for all k ≥ 3; this is a well-posed definition as by Lemma 6.16 the map x 7→ Pk,x is
Lipschitz on 6∞ and hence admits a unique extension to the closure. Now, by Proposition 5.3, for some
constants C, ε > 0 and a radius r0, both independent of ℓ, we have, for all r ∈ (0, r0),

d
dr
(r−2k H(r, u(xℓ + · )−Pk,xℓ))≥ −Cr ε−1 and r−2k H(r, u(xℓ + · )−Pk,xℓ)≤ C.

We can pass both these inequalities to the limit ℓ→ ∞ and apply the same reasoning to Proposition 4.2
to show that the sequence r−k(u −P)r is uniformly bounded in W 1,2

loc (R
n). Hence it is immediate that

0 ∈ 6̃(k−1)-th (see Lemma 5.7); as k was arbitrary we conclude 0 ∈6∞. □

We conclude this section proving Theorem 1.1.

Proof of Theorem 1.1. The bound on the dimension of 6 \6∞ is given by Proposition 6.14 and the
covering by Lemma 6.16. The polynomial expansion has been shown in (6-11) above, we simply take
Pk,x◦

:= π≤k(Pk,x◦
). Although we often assumed f ≡ 1 and µ= 1 to simplify the notation, essentially no

modifications are needed for a general f . The reader can find a complete account of the modifications
needed in the statements and in the proofs in Appendix B. □

In the following section we aim to explain in which sense the set 6∞ is unstable and disappears after
a slight perturbation of the boundary data in the obstacle problem.

7. Extension to a monotone family of solutions

In this section we aim to prove Theorem 1.2 and Corollary 1.4. For simplicity we take f ≡ 1. This allows
us to use verbatim some lemmas from [Figalli et al. 2020] and shortens the notation, without affecting the
proofs. We list the changes needed in Appendix B.

We remark that in Sections 7.1 and 7.2 we only assume to have a monotone family of solutions, while
in Section 7.3 we work under the “uniform monotonicity” assumption (7-8).
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7.1. Setup and strategy. For the rest of the section, we let u : B1 × [−1, 1] → R, u ≥ 0, be a monotone
1-parameter family of solutions of the obstacle problem, namely{

1u( · , t)= χ{u( · ,t)>0},

0 ≤ u( · , s)≤ u( · , t) in B1 for − 1 ≤ s ≤ t ≤ 1.
(7-1)

We will also use the notation ut
:= u( · , t). We will assume in addition that u ∈ C0(B1 ×[−1, 1]). We

remark that this continuity property in t follows by the maximum principle whenever u|∂B1×[−1,1] is
continuous.

We will often think of t as the time parameter, as intuitively we imagine lifting the boundary datum of
a solution of (2-1). However, no equation in t is given.

For each fixed t , we can apply the results of the previous sections, so we introduce further notation for
the following subsets of B1 × [−1, 1]:

6 := {(x◦, t◦) : x◦ ∈6(u( · , t◦))},

6n−1 := {(x◦, t◦) : x◦ ∈6n−1(u( · , t◦))},

6k-th
:= {(x◦, t◦) : x◦ ∈6k-th(u( · , t◦))}, k ≥ 2,

6>k
:= {(x◦, t◦) : x◦ ∈6>k(u( · , t◦))}, k ≥ 2,

6≥k+1
:= {(x◦, t◦) : x◦ ∈6≥k+1(u( · , t◦))}, k ≥ 2,

6∞
:= {(x◦, t◦) : x◦ ∈6∞(u( · , t◦))}.

(7-2)

This setup (up to k = 4) has already been considered in [Figalli et al. 2020]. As we use the same notation,
we begin recalling two important lemmas from [Figalli et al. 2020] about the set 6.

Lemma 7.1 [Figalli et al. 2020, Lemma 6.2]. Let u ∈ C0(B1 × [−1, 1]) solve (7-1). Then

(i) 6 ∩ Bϱ × [−1, 1] is closed for any ϱ < 1, and

6 ∩ Bϱ × [−1, 1] ∋ (xk, tk)→ (x∞, t∞) ⇒ p2,xk ,tk → p2,x∞,t∞ .

(ii) If (x◦, t1) and (x◦, t2) both belong to 6 and t1 < t2, then there exists r > 0 such that u(x, t) is
independent of t for all (x, t) ∈ Br (x◦)× [t1, t2].

The next result concerns the quantitative behavior of the first blowup p2,k := p2,xk ,tk with respect to
the convergence xk → 0 (here it is assumed (xk, tk) ∈ 6 for some sequence of times).

Lemma 7.2 [Figalli et al. 2020, Lemma 6.3]. Let u ∈ C0(B1 × [−1, 1]) solve (7-1), let (xk, tk) ∈ 6,
(0, 0) ∈ 6 and assume that xk → 0. If we set p2 := p2,0,0, then we have∥∥∥∥p2,k − p2

(
xk

|xk |
+ ·

)∥∥∥∥
L∞(B1)

≤ Cω(2|xk |) and ∥p2,k − p2∥L∞(B1) ≤ Cω(2|xk |)

for some dimensional modulus of continuity ω. In addition,

dist
(

xk

|xk |
, {p2 = 0}

)
→ 0 as k → ∞.
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Our strategy follows the one exhibited in [Figalli et al. 2020]. For each (x◦, t◦) ∈ 6≥k+1, we first prove
the approximation

∥u(x◦ + · , t◦)− Pk,x◦,t◦∥L∞(Br ) ≤ Cr k+1, (7-3)

where the polynomial Pk,x◦,t◦ of degree at most k is unique and 1Pk,x◦,t◦ = 1. Using the fact that the
polynomials above are almost positive together with barrier-type arguments (see Lemma 7.11), we are
able to conclude a “cleaning property” in space-time in the following sense. For each (x◦, t◦) ∈ 6≥k+1,
there exist ϱ > 0 and C > 0 (depending on n, k, x◦) such that

{(x, t) ∈ Bϱ(x◦)× (t◦, 1) : t − t◦ > C |x − x◦|
k
} ∩ {u = 0} = ∅. (7-4)

This property expresses the instability of 6≥k+1(ut) with respect to increments of the t parameter. From
here, we will conclude with the next geometric measure theory result, that the set πt(6

∞) has zero
Hausdorff dimension.

Proposition 7.3 [Figalli et al. 2020, Corollary 7.8]. Let E ⊆ Rn
× [−1, 1], let (x, t) denote a point in

Rn
× [−1, 1], and let πx : (x, t) 7→ x and πt : (x, t) 7→ t be the standard projections. Assume that, for

some β ∈ (0, n] and s > β, we have:

• dimH(πx(E))≤ β.

• For all (x◦, t◦) ∈ E and ε > 0, there exists ϱ = ϱx◦,t◦,ε > 0 such that

{(x, t) ∈ Bϱ(x◦)× [−1, 1] : t − t◦ > |x − x◦|
s−ε

} ∩ E = ∅.

Then dimH(πt(E))≤ β/s.

To obtain Corollary 1.4 we also need to take care of the points where the expansion (7-3) fails for
some k. To this end we need to generalize to one-parameter solutions some of the previous results.

7.2. Adaptation of previous sections to family of solutions. In this section we establish an analog of
Theorem 1.1 for monotone families of solutions. The generalization of the polynomial expansion is
obvious in the set πx(6

∞), so the only nontrivial task is to show that πx(6 \ 6∞) has again Hausdorff
dimension at most n−2. We will show this by repeating the arguments of Section 6. While the arguments
of Sections 6.1 and 6.3 adapt immediately by exploiting monotonicity, the arguments of Section 6.2
require a bit more care. Specifically, we have to check Lemma 6.7 for varying times.

We start observing that in Proposition 5.9 one can also consider the varying time parameter.

Proposition 7.4. Let u ∈ C0(B1 × [−1, 1]) solve (7-1) and (0, 0) ∈ 6k-th, with λk = λk,0(0)≤ k + 1. Let
(rℓ)ℓ∈N be an infinitesimal sequence, and let xℓ ∈6k-th(utℓ)∩ Brℓ . For every ℓ, set

vℓ := u(xℓ + · , tℓ)−Pk,xℓ,tℓ,

and suppose that λk,tℓ(xℓ)→ λk . Consider the sequence

ṽℓ :=
vℓ(rℓ · )

H(rℓ, vℓ)1/2
.
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Then:

(i) (ṽℓ)ℓ∈N is bounded in W 1,2
loc (R

n) and C0,1/(n+1)
loc (Rn).

(ii) If ṽℓ⇀ q ∈ W 1,2
loc (R

n), then the convergence is strong and q must be a nontrivial λk-homogeneous
solution of the thin obstacle problem (5-4) with obstacle {p2 = 0}, that is

1q ≤ 0 and q1q = 0 in Rn,

1q = 0 in Rn
\ {p2 = 0},

q ≥ 0 on {p2 = 0}.

Finally, if λk < k + 1 then q is even with respect to the thin obstacle.

Proof. Given the convergence assumption λk,tℓ(xℓ)→ λk and Lemma 7.2, the proof is almost identical to
Proposition 5.9. □

We now turn to the time-dependent version of Lemma 6.7.

Lemma 7.5. Let u ∈ C0(B1 × [−1, 1]) solve (7-1), let k ≥ 2 and suppose (0, 0) ∈ 6>k
\ 6≥k+1, that is

λk = λk,0(0) ∈ (k, k + 1). Suppose there exists an infinitesimal sequence rℓ ↓ 0 and (xℓ, tℓ) ∈ 6k-th
∩ Brℓ

such that λk,tℓ(xℓ)→ λk . Assume further that, as ℓ ↑ ∞, we have

(i) xℓ/rℓ → y∞ ∈ B1,

(ii) ṽrℓ = (u0 −Pk,0,0)rℓ/H(rℓ, u0 −Pk,0,0)
1/2

→ q in C0
loc(R

n) for some q ∈ Sλk ({p2,0,0 = 0}) \ {0}.

Then y∞ ∈ {p2,0,0 = 0} and q = q(y∞ + · ).

Proof. Whenever x = t = 0, we simplify the notation by dropping the indices, e.g., p2,0,0 = p2. Consider
a sequence (xℓ, tℓ)ℓ∈N ⊆ 6k-th

∩ Brℓ as in the statement of the lemma. Note that y∞ ∈ {p2 = 0} due to
Lemma 7.2. Applying Proposition 7.4 with varying centers (xℓ)ℓ∈N and respective sequence of times
(tℓ)ℓ∈N, we find (after passing to a subsequence)

ṽℓ :=
u(xℓ + rℓ · , tℓ)−Pk,xℓ,tℓ(rℓ · )

∥(u(xℓ + · , tℓ)−Pk,xℓ,tℓ)rℓ∥L2(∂B1)

→ Q

in C0
loc(R

n) for some Q ∈ Sλk ({p2 = 0}) \ {0}. On the other hand, by uniform convergence,

q(y∞ + · )= lim
ℓ

u(xℓ + rℓ · )−Pk(xℓ + rℓ · )

H(rℓ, u −Pk)1/2
.

We write
u(xℓ + rℓ · )−Pk(xℓ + rℓ · )

H(rℓ, u −Pk)1/2
=

u(xℓ + rℓ · )− u(xℓ + rℓ · , tℓ)
∥(u(xℓ + · , tℓ)−Pk,xℓ,tℓ)rℓ∥L2(B1)

· aℓ Iℓ + ṽℓ · bℓ Iℓ + Jℓ,

where

Iℓ :=
∥(u(xℓ + · , tℓ)−Pk,xℓ,tℓ)rℓ∥L2(B1) + H(rℓ, u(xℓ + · , tℓ)−Pk,xℓ,tℓ)

1/2

H(rℓ, u −Pk)1/2

is a numerical sequence and

Jℓ :=
Pk,xℓ(rℓ · )−Pk(xℓ + rℓ · , tℓ)

H(rℓ, u −Pk)1/2
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is a sequence of harmonic polynomials of degree at most k+1. The numerical sequences

aℓ :=
∥(u(xℓ + · , tℓ)−Pk,xℓ,tℓ)rℓ∥L2(B1)

∥(u(xℓ + · , tℓ)−Pk,xℓ,tℓ)rℓ∥L2(B1) + H(rℓ, u(xℓ + · , tℓ)−Pk,xℓ,tℓ)
1/2

and

bℓ :=
H(rℓ, u(xℓ + · , tℓ)−Pk,xℓ,tℓ)

1/2

∥(u(xℓ + · , tℓ)−Pk,xℓ,tℓ)rℓ∥L2(B1) + H(rℓ, u(xℓ + · , tℓ)−Pk,xℓ,tℓ)
1/2

are both bounded by 1 and hence, up to a subsequence, converge to some a and b, respectively, in [0, 1].
Now two cases arise:

(i) supℓ Iℓ <∞.

(ii) Iℓm ↑ ∞ for some subsequence ℓm → ∞.

Let us begin with the first case. Up to a subsequence that we do not rename, we have Iℓ → α, and passing
to the limit as ℓ→ ∞ in (7-5) in L2(B1) implies that Jℓ converges to some harmonic polynomial J of
degree at most k + 1. We find that

q(y∞ + · )= aαw+ bαQ + J (7-5)

in L2 for some function w having a constant sign. Combining this fact and exploiting the homogeneity
of q and Q, as in Proposition 5.9, we find

q( · )≤ aαQ( · )+ R−λk J (R · ) or q ≥ aαQ + R−λk J (R · ). (7-6)

Next, we remark that J does not have a constant sign, as it is harmonic and vanishes somewhere on
the line segment −y∞0. The last property is seen as follows. First, note that, for large ℓ, we have
H(rℓ, u −Pk)

1/2
≫ rλk+δ

ℓ ≫ r k+1
ℓ . On the other hand, we calculate

H(rℓ, u −Pk)
1/2 Jℓ(0)≤ Cr k+2

ℓ and H(rℓ, u −Pk)
1/2 Jℓ

(
−

xℓ
rℓ

)
≥ −Cr k+2

ℓ .

Hence, there exists a sequence of points ȳℓ ∈ −(xℓ/rℓ)0 with |Jℓ(ȳℓ)| ≤ Crℓ, and so J vanishes at some
point in the line segment −y∞0.

As J does not have a constant sign, there are directions x± ∈ Sn−1 with J (Rx±)→ ±∞ as R → ∞.
Combining this with (7-6), we thus find deg J ≤ k and

q ≤ aαQ or q ≥ aαQ.

Thus, in any of the cases, we have found two ordered λk-homogeneous solutions to the thin obstacle
problem, and they must be equal, see [Figalli et al. 2020, Lemma A.4]. Inserting this back in (7-5), we
find q(y∞ + · )= q + J . Therefore, for any R > 0, we have

R
(

q
( y∞

R
+ ·

)
− q( · )

)
≤ R1−λk J (R · ) or R

(
q
( y∞

R
+ ·

)
− q( · )

)
≥ R1−λk J (R · ).
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As the left-hand side is bounded (and converges to y∞ · ∇q) as R → ∞, we exploit the fact that J does
not have a constant sign to find that the k-th coefficients must vanish. And so

y∞ · ∇q ≤ 0 or y∞ · ∇q ≥ 0.

Reasoning as in Step 3 in the proof of [Figalli et al. 2020, Lemma 6.5], we find that in any of the cases
we must have y∞ ·∇q ≡ 0, as otherwise y∞ ·∇q would be a multiple of an eigenfunction to some elliptic
problem on a subset on the sphere, which contradicts the high homogeneity of y∞ · ∇q .

The second case is simpler. We divide (7-5) by Iℓm and find, after passing to a subsequence of ℓm ,

0 = aw+ bQ + J̃

for some harmonic polynomial J̃ of degree at most k+1. This is a contradiction, as the three functions
J̃ , w and Q are not linearly dependent. Indeed, w has a sign, Q ̸= 0 is a λk ∈ (k, k + 1) homogeneous
function and J̃ a harmonic polynomial with no constant sign. The fact that J̃ vanishes somewhere can be
checked as we checked that J vanishes somewhere, using that

Iℓ ≥
H(rℓ, u(xℓ + · , tℓ)−Pk,xℓ,tℓ)

1/2

H(rℓ, u −Pk)1/2
≫

r k+1
ℓ

H(rℓ, u −Pk)1/2
. □

In order to perform the necessary dimension reductions we need some adaptations of Section 6. We
start with the following variation of Proposition 6.5, taken from [Figalli et al. 2023].

Proposition 7.6 [Figalli et al. 2023, Proposition 7.6]. Let k ≥ 2 and E ⊆ Rn
× R. Suppose that

∀(x, t) ∈ E, ∀ε > 0, ∃ϱ > 0, ∀r ∈ (0, ϱ), ∃L hyperplane, ∃q ∈ S even
k (L)

such that
πx(E ∩ (Br (x)× (−∞, t]))⊆6(q)+ Bεr (x).

Then dimH(E)≤ n − 2.

We want to apply this proposition to E = 6k-th
\ 6(k+1)-th. We check in the next two lemmas that this

is possible.

Lemma 7.7. Let k ≥ 2 and (0, 0) ∈ 6k-th
\6(k+1)-th, and suppose λ := λk(0, 0) is an even integer. Then,

∀ε > 0, ∃ϱ > 0, ∀r ∈ (0, ϱ), ∃q ∈ S even
λ ({p2,0,0 = 0})

such that
πx({u = 0} ∩ (Br (x)× [0, 1]))⊆6(q)+ Bεr (x).

Proof. Notice that, by Lemma 6.1, λ= k + 1. Further we have by monotonicity

πx({u = 0} ∩ (Br (x)× [0, 1]))⊆ {u( · , 0)= 0} ∩ Br (x).

Now by Lemma 6.10, and taking Remark 6.11 into account, the set {u( · , 0)= 0}∩ Br (x) can be covered
with a tubular neighborhood of the singular set of a Signorini solution, provided r is small enough. □

For odd frequencies we use a control “in the past”.
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Lemma 7.8. Let k ≥ 2 and (0, 0) ∈ 6k-th
\ 6(k+1)-th, and suppose λ := λk(0, 0) is an odd integer. Then,

∀ε > 0, ∃ϱ > 0, ∀r ∈ (0, ϱ), ∃q ∈ S even
λ ({p2,0,0 = 0})

such that
πx(6 ∩ (Br (x)× [−1, 0]))⊆6(q)+ Bεr (x).

Proof. Notice that either λ= k or λ= k + 1. In the first case, we reproduce the proof of Lemma 6.3. In
the second case, we reproduce the proof of Lemma 6.10 for the odd case. In both cases, it suffices to
replace u with u( · , 0), and the argument for a single solution can be applied. The key point is that, by
monotonicity, the barriers {φz,ℓ} will work for all u( · , t) for t ≤ 0. Indeed, following the proof with the
same notation, one arrives at

{Ak,0,0(rℓ · )= 0} ∩ Bρ(y∞)⊆ Zℓ ⊆ int{u(rℓ · , 0)= 0} ⊆ int{u(rℓ · , t)= 0}.

Hence the contact set of u( · , t) is fat around y∞. This gives 6(u(rℓ · , t))∩ Bρ/N (y∞) = ∅ for some
dimensional constant N and for all t ≤ 0 (see [Caffarelli 1998, Theorem 7] or the proof of [Figalli et al.
2020, Lemma 9.4]). This is the desired contradiction as yℓ → y∞, where yℓ ∈6(u(rℓ · , tℓ)). □

Putting all these results together, we can prove the main theorem of this section. It is an extension of
the fifth-order approximation result [Figalli et al. 2020, Theorem 8.7] to every order. For a fixed solution,
this is just the content of our main Theorem 1.1.

Theorem 7.9. Let u ∈ C0(B1 × [−1, 1]) solve (7-1). Then dimH(πx(6 \ 6∞)) ≤ n − 2, and the set is
countable if n = 2. Moreover, for every k ≥ 2, there exist constants C = C(n, k) and ρ = ρ(n, k) such
that

∥u(x◦ + · , t◦)− Pk,x◦,t◦∥L∞(Br ) ≤ Cr k+1 (7-7)

holds with a unique polynomial Pk,x◦,t◦ of degree at most k and 1Pk,x◦,t◦ = 1, for all 0 < r < ρ and
(x◦, t◦) ∈ 6∞

∩ B1/2 × (−1, 1).

Proof. We recall from [Figalli et al. 2020, Proposition 8.1] that dimH(πx(6 \ 6n−1)) ≤ n − 2 and that
dimH(πx(6 \ 6n−1)) is countable if n = 2. Thus we need to show that, for all k ≥ 2,

(i) dimH(πx(6
≥k

\ 6k-th))≤ n − 2 (countable if n = 2),

(ii) dimH(πx(6
k-th

\ 6>k))≤ n − 2 (countable if n = 2),

(iii) dimH(πx(6
>k

\ 6≥k+1))≤ n − 2 (countable if n = 2).

By Lemmas 7.8 and 7.7, to prove (i) and (ii) we can use Proposition 7.6 (or an obvious version of it for
future times) with E = 6≥k

\ 6k-th and E = 6k-th
\ 6>k , respectively.

We turn to the proof of (iii). We can apply Proposition 6.8 to the set E = πx(6
>k

\6≥k+1) using the
function f (x◦) := λk,τ (x◦)(x◦), where τ : πx(6)→ [−1, 1] is defined by

τ(x◦) := min{t ∈ [−1, 1] : (x◦, t) ∈ 6}.

The assumptions of Proposition 6.8 hold for such E : if not we could argue by contradiction and blow up
exactly as in Proposition 6.9. The only difference is that we have to use Lemma 7.5 above, instead of
Lemma 6.7. □
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7.3. Cleaning lemmas in the time variable. Following [Figalli et al. 2020], in this section we consider
any monotone family of solutions {ut

}t∈(−1,1) of (2-1) in B1, which additionally satisfy the following
“uniform monotonicity” condition:

For every t ∈ (−1, 1) and any compact set Kt ⊆ ∂B1 ∩ {ut > 0},

there exists cKt > 0 such that inf
x∈Kt

(ut ′(x)− ut(x))≥ cKt (t
′
− t) for all − 1< t < t ′ < 1. (7-8)

This condition rules out the existence of regions that remain stationary as we increase the parameter t .
Combining this observation with (iii) in Lemma 7.1, one gets that 6 is a graph above B1 in the sense that

x ∈6(ut)∩6(us) ⇒ s = t.

We now turn to the “cleaning lemmas”, namely Lemmas 7.10 and 7.11. Using a barrier argument, we
show that if u0 is O(rκ)-close to a polynomial ansatz in Br , then ut is positive in Br as soon as t ∼ rκ :
thus the contact set was “cleaned” from Br . The larger the κ , the faster this cleaning takes place. Then
we combine this reasoning with the polynomial expansions given by the Pk .

Lemma 7.10. Let u ∈ C0(B1 × [−1, 1]) solve (7-1) and satisfy the uniform monotonicity condition (7-8).
Assume (0, 0) ∈ 6, and let P be a solution of 1P = 1 such that

|u( · , 0)−P| ≤ Crκ in Br for all r ∈
(
0, 1

2

)
for some C, κ > 0. Then there exist r◦, c > 0 such that

u( · , t)≥ P + crt − Crκ in Br/4 for all r ∈ (0, r◦).

Proof. This is a combination of Lemmas 9.1 and 9.2 in [Figalli et al. 2020]. □

The next result shows that, if (x◦, t◦) ∈ 6≥k+1, then the contact set surely disappears from Br (x◦) after
t − t◦ ∼ r k units of time.

Lemma 7.11. Let u ∈ C0(B1 × [−1, 1]) solve (7-1) and satisfy the uniform monotonicity condition (7-8).
Suppose (0, 0) ∈ 6≥k+1 for some k ≥ 2. Then there exists r,C0 > 0 depending on n and k such that

{(x, t) ∈ Br × (0, 1) : t > C0|x |
k
} ∩ {u = 0} = ∅.

Proof. Since 0 ∈6≥k+1(ut), there exists C(n, k) > 0 such that, for every r ∈
(
0, 1

2

)
,

|u( · , 0)−Pk | ≤ Cr k+1 in Br .

Moreover, recall from Proposition 3.3 that Pk is almost positive, in the sense of

Pk ≥ −C(n, k)|x |
k+2 in B1.

Combining this with Lemma 7.10 with P = Pk and κ = k + 1, we get

u( · , t)≥ Pk + crt − Cr k+1
≥ −Cr k+1

+ crt in Br/4 for all r ∈ (0, r◦) for all t ≥ 0

for some r◦, c > 0. Now evaluating this at (x, t) ∈ ∂Br × (0, 1), with t > C0r k , we get u(x, t) > 0 as
soon as r is small enough and C0 is large enough in terms of c and C . □
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We finally prove Theorem 1.2, combining Lemma 7.11 with Proposition 7.3.

Proof of Theorem 1.2. For any k ≥ 2, we can apply Proposition 7.3 to the set E = 6≥k+1 with β = n and
s = k + 1, as the assumptions are satisfied thanks to Lemma 7.11. Hence, we get

dimH(πt(6
∞))≤ dimH(πt(6

≥k+1))≤
n

k+1
,

and (i) follows letting k ↑ ∞. As noted in Remark 1.3, this bound can be improved to a Minkowski
dimension bound by directly applying Lemma 4.2 in [Fernández-Real and Ros-Oton 2021], which is a
refinement of Proposition 7.3.

For (ii) it suffices to show that πt(6 \6∞) has zero Hausdorff dimension. By Proposition 6.14, the set
πx(6 \6∞) is countable, provided n = 2. On the other hand, by the strict monotonicity condition (7-8),
6 is a graph above the space variables and hence 6 \6∞ is also countable; this finishes the proof. Finally,
(iii) is contained in Theorem 7.9. □

We turn to the proof of Corollary 1.4. We remark that, for analytic f , we have at most countable many
singular times (combining Theorem 1.2 with [Sakai 1993, Theorem 1.1]). For smooth f , Theorem 1.2
gives that singular times have zero Hausdorff dimension.

Proof of Corollary 1.4. We divide the proof into two steps.

Step 1. The set 6(ut) \6∞(ut) is not empty at most for countably many times.
The result follows directly from Theorem 1.2 (iii) provided we show that {ut

} satisfies the uniform
monotonicity condition (7-8). For completeness we give the argument: fix t, h > 0 and K ⋐ {ut > 0}. For
brevity, we work with the assumption that � is connected and thus unbounded. Notice that w := ut+h

−ut

is harmonic in {ut > 0}, which is connected. By Schauder estimates and Lipschitz regularity of ∂�, we
have that dist({ut

= 0}, O) > δ for some δ = δ(n, ∂�, t) > 0. Hence we can build an open and connected
set V with Lipschitz boundary such that

O ∪ K ⊆ V ⋐ {ut > 0}.

By comparison we have w ≥ h ·φ, where φ solves
1φ = 0 in V \ O,
φ = 1 on ∂O = ∂�,

φ = 0 in ∂V .

As φ > 0 in V \ O , we have c := minK φ > 0, so, for all h > 0 and x ∈ K , we have

ut+h(x)− ut(x)≥ h min
K
φ = ch.

We used that V , and hence φ, did not depend on h.

Step 2. The set 6∞(ut) is not empty for at most countably many times.
Assume 0 ∈6∞(u0). Then we will show that we have an instantaneous cleaning of the zero set, that is:

there exists a universal δ > 0 such that Bδ∩{ut
= 0} =∅ for all t > 0. In fact, referring to the classification

provided in [Sakai 1993, Theorem 1.1], we have that 0 must be a “degenerate” point (case 2a), that is:



252 FEDERICO FRANCESCHINI AND WIKTORIA ZATOŃ

{u0
= 0} ∩ Bδ must be an analytic arc (it cannot be an isolated point). In particular, 1u0

= 1 in Bδ and
ut

− u0 is harmonic and nonnegative in Bδ , thus it is strictly positive in Bδ/2 since, by assumption (7-8),
it cannot be the zero function.

We explain how to prove that 0 is not a “double point” (case 2b) nor a “cusp” (case 2c). If 0 was
a double point, it would be the tangency point of two distinct analytic arcs, but since the expansion
of u holds at any order these two arcs should have the same Taylor expansion; hence they are the same
arc (so we are in case 2a). If 0 was a cusp point, the cusp should be of the form given in [Sakai 1993,
Proposition 4.1]; in particular, up to a rotation, we would have two different functions α, β : [0, δ)→ R

such that

{u0
= 0} ∩ Bδ = {(x, y) : α(x)≤ y ≤ β(x), x ≥ 0} ∩ Bδ.

But by the Lipschitz estimate (1-10), we get, for all k ≥ 2,

|Ak(x, α(x))| + |Ak(x, β(x)| ≲ sup
{u0=0}∩Br

|∂nPk | ≲ r k, x ∈ [0, δ).

This shows that the graphs of α and β are both tangent to the manifold {Ak = 0} up to order k − 1. As k
was arbitrary, this forces α and β to have the same polynomial expansions. By Proposition 4.1 in [Sakai
1993], this requires that α ≡ β, a contradiction. □

Appendix A: Proof of Lemma 2.1

We quickly prove Lemma 2.1 for a solution of (2-1) with f ∈ Cδ(B1) for some δ ∈ (0, 1]. This is just an
adaptation of the argument given in [Figalli and Serra 2019].

In this section we will call “universal” any constant depending on n, µ, δ, ∥ f ∥Cδ(B1). We also assume
that 0 ∈ ∂{u > 0} and 0 ∈6(u), meaning that there exists a sequence rk ↓ 0 such that

|{u = 0} ∩ Brk |

|Brk |
→ 0 as k → ∞.

Lemma A.1. There is a universal constant C such that, for all r ∈
(
0, 1

2

)
,

r2
≤ C sup

∂Br

u, ∥u∥L∞(Br ) ≤ Cr2, ∥Du∥L∞(Br ) ≤ Cr, ∥D2u∥L∞(Br ) ≤ C. (A-1)

Proof. See [Caffarelli 1998, Theorem 2 and Lemma 5]. □

From this we classify all possible blowups.

Lemma A.2. Up to subsequences, we have that

r−2
k u(rk · ) ⇀ f (0)p2 in C1,1

loc (R
n), (A-2)

where p is a 2-homogeneous nonnegative polynomial with 1p2 = 1. We denote with P the set of such
polynomials.
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Proof. Set vk := r−2
k u(rk · ) ∈ C1,1(B1/rk ). By weak* compactness, vk has a limit point v ∈ C1,1

loc (R
n) with

v ≥ 0, v(0)= 0 and

∥∇
2v∥L∞(Rn) ≤ lim inf

k
∥∇

2vk∥L∞(B1/2rk )
≤ ∥∇

2u∥L∞(B1/2) ≤ C.

Since 0 ∈6(u), we also have that f (rk · )χ{vk=0} → f (0) in L1
loc(R

n). A nonnegative entire function with
Laplacian f (0) and bounded Hessian must be in P . □

Now we show that the blowups are unique using the Weiss monotonicity formula for the adjusted
energy; see [Weiss 1999]. We set

Wλ(r, v) := r−2λ
{D(r, v)− λH(r, v)}.

Lemma A.3. There is a universal constant C such that, for all p ∈ P and r ∈ (0, 1), we have

d
dr

W2(r, u − f (0)p)≥ −Cr δ−1. (A-3)

Proof. Set v := u − f (0)p, and directly compute

d
dr

W2(r, u − f (0)p)≥
2
r5

∫
B1

(2vr − x · ∇vr )1vr .

Notice that |1vr + r2 frχ{ur =0}| ≤ r2 supBr
| f − f (0)|. And thus∫

B1

(2vr − x · ∇vr )1vr ≥ −r2
∫

B1∩{u=0}

(2vr − x · ∇vr ) fr − C
∫

B1

|2vr − x · ∇vr |r2+δ

≥ r2
∫

B1∩{u=0}

(2pr − x · ∇ pr )︸ ︷︷ ︸
=0

fr − Cr4+δ
≥ −Cr4+δ. □

We deduce uniqueness of blowups and Monneau’s almost-monotonicity formula.

Lemma A.4. For all p ∈ P , we have W2(0+, u − f (0)p)= 0 and

d
dr
(r−4 H(r, u − f (0)p))≥ −Cr δ−1 for all r ∈ (0, 1), (A-4)

with C universal. In particular, the blowup is unique at singular points and there exists a universal
modulus of continuity ω : (0, 1)→ R, ω(0+)= 0, such that

r−4 H(r, u − f (0)p2)≤ ω(r) for all r ∈ (0, 1),

provided p2 is the blowup.

Proof. Choose some subsequence rk ↓ 0 and p ∈ P such that r−2
k urk → p. Then, by Lemma A.3 and (A-2),

we have

W2(0+, u − f (0)p)= lim
k

W2(rk, u − f (0)q)= lim
k

D(1, r−2
k urk − f (0)q)− 2H(1, r−2

k urk − f (0)q)

=

∫
B1

|∇(p − q)|2 − 2
∫
∂B1

(p − q)2 = 0,

where in the last step we used that p and q are 2-homogeneous and 1p =1q .
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Integrating (A-3) we get W2(r, v)≥ −Cr δ, so by direct computation

d
dr
(r−4 H(r, u − f (0)p))=

2
r

{
W2(r, v)+

1
r4

∫
B1

vr1vr

}
≥

2
r

{
−Cr δ +

∫
B1∩{ur =0}

f (0)p f (r · )︸ ︷︷ ︸
≥0

−Cr δ
}

≥ −Cr δ−1.

This immediately gives uniqueness of the blowups, let us prove the existence of a universal rate of
convergence of u to such blowups. Arguing by contradiction, one finds ϵ > 0 and uk such that

r−4
k H(rk, uk − f (0)p2,k)≥ ϵ.

Setting vk := r−2
k uk(rk ·) and arguing as in Lemma A.2, one finds q ∈ P such that vk → f (0)q in C1

loc(R
n).

Now we get a contradiction using Monneau’s monotonicity on uk and q:

ϵ ≤ H(1, vk − f (0)p2,k)≲ H(1, vk − f (0)q)+ H(1, f (0)q − f (0)p2,k)

≤ H(1, vk − f (0)q)+ r−4
k H(rk, uk − f (0)q)+ Cr δk

≤ 2H(1, vk − f (0)q)+ Cr δk → 0

as k → ∞. □

From now on we will denote with f (0)p2 the unique blowup. Let us give several preliminary estimates
on the function v := u − f (0)p2.

Lemma A.5. Take any p ∈ P and set vr := (u− f (0)p)r . Then the following estimates hold with universal
constants for all r ∈

(
0, 1

2

)
:

1vr = −r2 frχ{ur =0} + O(r2+δ),

∥vr∥L∞(B1) ≲ ∥vr∥L2(B2\B1/2) + r2+δ,

r2
|{ur = 0} ∩ B1| ≲ ∥vr∥L2(B2\B1/2) + r2+δ,

vr1vr = r4 f (0) fr p2χ{ur =0} + vr O(r2+δ),

∥∇vr∥L2(B1) ≲ ∥vr∥L2(B2\B1/2) + r2+δ,

[vr ]C0,δ/(2δ+n−1) ≲ ∥vr∥L2(B2\B1/2) + r2+δ, provided dim{p = 0} = n − 1.

Proof. The first is a direct computation exploiting Hölder continuity of f .
For the second we notice that

• 1v ≤ Cr δ in Br and 1v ≥ −Cr δ in Br ∩ {u > 0}.

• v ≤ 0 in Br ∩ {u = 0}.

Hence sub- and superharmonic comparisons give the result as in Lemma 3.5.
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For the third, we choose χB1 ≤ η ≤ χB2 and compute

µr2
|{ur = 0}∩B1| ≤

∫
B1

r2 frχ{u=0} ≤ Cr2+δ
−

∫
B1

1vr

=

∫
B1

1

(
Cr2+δ

|x |
2

2n
−vr

)
︸ ︷︷ ︸

≥0

≤

∫
B2

1

(
Cr2+δ

|x |
2

2n
−vr

)
η

≤ Cη(∥vr∥L2(B2\B1)+r2+δ).

The fourth is a direct computation.
Since vr1vr ≥ −Cr2+δ

|vr |, for the fifth we can use the Caccioppoli inequality:∫
B2

η2
|∇vr |

2
= −2

∫
B2

ηvr∇vr · ∇η−

∫
B2

η2vr1vr

≤ 4∥η∇vr∥L2(B2)∥vr∥L2(B2\B1) + Cr2+δ

∫
B2

|vr |

≤
1
2∥η∇vr∥

2
L2(B2)

+ C(∥vr∥
2
L2(B2\B1)

+ r2(2+δ)),

where η is as above.
For the sixth, assume p2 =

1
2 x2

n and consider, for 0< t < 1, j ̸= n, the function

w±(x) :=
vr (x ± te j )− vr (x)

tδ
=

ur (x ± te j )− ur (x)
tδ

.

Notice that, with constants uniform in t , we have

∥w±∥L2(B2\B1/2) ≲ t1−δ
∥∇vr∥L2(B4\B1/4) ≲ ∥vr∥L2(B8\B1/8) + r2+δ.

On the other hand, in {ur > 0} ∩ B1 we have 1w± ≲ r2+δ, and in {ur = 0} ∩ B1 we have w± ≥ 0. Thus
the function

min
{
w± + Cr2+δ 1 − |x |

2

2n
; 0

}
is superharmonic in B1. Using the minimum principle and the previous estimate, we get

min
B1

w± ≥ −C(∥vr∥L2(B4\B1/4) + r2+δ).

By the symmetry w±(x ∓ te j )= −w∓(x), we also have the upper bound on a smaller ball. Since all the
constants are uniform in t , we conclude, using the following estimate (see Lemma C.1),

[ f ]C0,δ/(2δ+n−1)(B1) ≲n,δ

n−1∑
j=1

sup
x∈B1,|t |≤1

| f (x + te j )− f (x)|
|t |δ

+ ∥∂n f ∥L2(B2),

valid for every f ∈ Lip(B2). □

Since the blowup is well defined, we can from now on assume to be in the top-dimensional stratum,
that is p2 =

1
2 x2

n . Arguing as is Section 4, we exploit the truncated frequency φγ with some γ (δ) > 2.
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Lemma A.6. Let p ∈ P and γ = 2 +
1
8δ, and set v := u − f (0)p. Then there is ε = ε(δ) > 0 such that

the following inequalities hold for all r ∈ (0, 1):

φγ (r, v)≥ 2 − Cr ε, φγ (r, v)≤ C, d
dr
φγ (r, v)≥ −Cr ε−1, (A-5)

with C universal. Furthermore, we also have∫
B1
vr1vr

H(r, v)+ r2γ ≥ −Cr ε. (A-6)

Proof. For the first inequality in (A-5), we employ Lemma A.3 and get

φγ (r, v)− 2 =
D(r)− 2H(r)+ (γ − 2)r2γ

H(r)+ r2γ

≥
W2(r)

r−4 H(r)+ r2γ−4 ≥ −Cr δ−2(γ−2),

so we can set ε :=
3
4δ. For the second, we need to estimate from below with −Cr ε−1 the term

2
r(H(r)+ r2γ )

∫
B1

(λrvr − x · ∇vr )1vr dx,

where for brevity λr := φγ (r, v) (see Proposition 4.2). Recall that

|1vr + r2 frχ{ur =0}| ≤ Cr2+δ,

and estimate each term recalling that p2 is 2-homogeneous:∫
B1

(λrvr − x · ∇vr )1vr = −r2
∫

B1∩{ur =0}

(λrvr − x · ∇vr ) fr − Cr2+δ

∫
B1

|λrvr − x · ∇vr |

≥ r2
∫

B1∩{ur =0}

(λr pr − 2pr ) f (0) fr − Cr4+δ(λr + 1)

≥ r4 (λr − 2)︸ ︷︷ ︸
≥−Crε

∫
B1∩{ur =0}

p f (0) fr︸ ︷︷ ︸
≥0

−Cr4+δ(λr + 1)

≥ −Cr4(r ε + r δ(λr + 1)),

so with crude bounds the frequency solves the ODI

λ′

r ≥ −Cr3−2γ (r ε + r δ(λr + 1))≥ −Cr3+ε−2γ (λr + 1). (A-7)

From here we see that log(1 + λr ) is almost monotone and bounded above by some constant, provided
γ < 2 +

1
2ε. Thus plugging this back into (A-7), we get

λ′

r ≥ −Cr3+ε−2γ ,

which was the claim up to redefining ε. Equation (A-6) follows as in the proof of Lemma A.4 above. □
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Hence φγ (0+, v) ≥ 2 exists for all p, and we want to show that there is a universal number α◦ > 0
such that φγ (0+, u − f (0)p2) ≥ 2 + 2α◦, provided p2 is indeed the blowup at 0. Let us show how to
conclude from here. Up to universal constants we have the following: By Lemma A.5, we have

∥v∥L∞(B1) ≲ ∥vr∥L2(B2\B1/2) + r2+δ.

But φγ ≤ C in (0, 1), so by Lemma 2.2, we have in turn

∥vr∥
2
L2(B2\B1/2)

≲ H
(1

2r
)
+ r2γ

and γ > 2. Now, since φγ (0+, v)= 2 + 2α◦, we have, again by Lemma 2.2, that

H(r)+ r2γ ≲ r2(2+2α◦),

hence putting everything together we obtain Lemma 2.1:

∥v∥L∞(B1) ≲ r2+2α◦ .

So we are left to show that
λ2(0) := φγ (0+, u − f (0)p2)≥ 2 + 2α◦, (A-8)

and it is also clear that we can work under the assumption that λ2(0)≤ 2 +
1

16δ, otherwise (A-8) holds
with α◦ =

1
64δ. The following proposition is crucial and the proof follows the same line of Proposition 5.9

(or also of [Figalli and Serra 2019, Proposition 2.12]). As the only technical complications are settled by
the bounds gathered in Lemma A.5, we omit the proof.

Lemma A.7. Assume 0 ∈6n−1 and λ2 ≤ 2 +
1
16α. Then the sequence

ṽr :=
vr

∥vr∥L2(∂B1)

is bounded in W 1,2
loc (R

n)∩ Cδ/(2δ+n−1)
loc (Rn). Furthermore, every accumulation point of {vr }r>0 solves the

Signorini problem (5-4) and is λ2-homogeneous.

The following combination of Monneau monotonicity and the characterization of blowups will
prove (A-8). The proof is in fact very similar to Step 5 in the proof of Proposition 5.9.

Lemma A.8. There cannot be sequences uk , fk , µk , δk , with 0 ∈ ∂{uℓ > 0} and

sup
ℓ

(
∥ fℓ∥Cδℓ (B1)

+
1
δℓ

+
1
µℓ

)
<+∞,

such that λ(k)2 ↓ 2, where
λ
(k)
2 := φ2+δk/8(0+, uk − fk(0)p

(k)
2 ).

In particular, (A-8) holds for some α◦ = α◦(n, k, δ, ∥ f ∥Cδ(B1)) ∈ (0, 1).

Proof. Step 1. If ṽrk ⇀ q in W 1,2
loc then, for all p ∈ P , we have∫

∂B1

q(p2 − p)≥ 0. (A-9)
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Proof of Step 1. Define ε2
k := H(rk, v) and notice that, by the growth Lemma 2.2 and the compactness of

the trace operator, we have, for k large,
r δk ≪ εk → 0,

where we used that φγ (rk)≤ 2 +
1

100δ for all k large enough. By Monneau monotonicity (Lemma A.4)
applied to p instead of p2, we have∫

∂B1

(εk ṽrk + p2 − p)2 + Cr δk ≥

∫
∂B1

(p2 − p)2,

computing the squares and dividing by εk we get

εk

∫
∂B1

ṽ2
rk

+ 2
∫
∂B1

ṽrk (p2 − p)+ C
r δk
εk

≥ 0,

and sending k ↑ ∞ we obtain (A-9). We remark that all the constants in these computations are universal.

Step 2. If q is a 2-homogeneous harmonic polynomial such that (A-9) holds for all p ∈ P , then q ≤ 0 on
the hyperplane {p2 = 0}.

Proof of Step 2. This is exactly [Figalli and Serra 2019, Lemma 2.12].

Step 3. For each uk , fk , µk , δk as in the assumptions, Lemma A.6 gives qk , a λ(k)2 -homogeneous solution
of the Signorini problem with ∥qk∥L2(∂B1) = 1. It is easy to see that, by compactness, qk → q, where
q is a 2-homogeneous solution of Signorini with ∥q∥L2(∂B1) = 1. Thus, q is a harmonic polynomial,
nonnegative on the thin obstacle (see Proposition 2.4). But this contradicts Step 1, up to taking a diagonal
subsequence. A careful verification that all the bounds are uniform is the same as Step 1 in the proof of
Proposition 5.9, and it is not repeated here. □

Appendix B: Adaptations for general right-hand sides

In this section we collect the modification needed to work with a general f and µ.
The main difference is that u −Pk will not be harmonic in {u > 0} ∩ Br , but its Laplace operator will

be of size O(r k). This is the size of the error we would have in every estimate. Keeping this in mind,
it is clear that all the arguments go through with the same proof, provided we can indeed construct Pk

with the same properties as before. This is not a hard task. We will, for completeness, list also the other
modifications needed. Let us remark that all constants that in the case f ≡ 1 depend on n and k will now
also depend on µ and ∥ f ∥Ck .

In the following, we provide a generalization of Section 3.1. We begin with the respective polynomial
ansatz, which will additionally depend on the Taylor expansion of f and on the center of expansion. We
will denote by Fk,x the k-th Taylor polynomial of f at x , that is

Fk,x(h) :=

∑
|α|≤k

∂α f (x)
α!

hα.

The sets Pk and V j are the same as in Section 3.1.



C∞ PARTIAL REGULARITY OF THE SINGULAR SET IN THE OBSTACLE PROBLEM 259

Lemma B.1. Let k ≥ 2, f ∈ Ck−1(B1), x ∈ B1 and (p2, . . . , pk) ∈ Pk be given. Let ν be any unit vector
such that p2(h)=

1
2(h · ν)2. There exists a unique collection of polynomials

(R1, . . . , Rk−1) ∈ V1 × · · · × Vk−1

such that if we define the polynomial

Ax,k,ν(h) := (ν · h)+
k−1∑
j=1

(ν · h)R j (y)+
k∑

j=3

p j (h)
(ν · h)

,

then
1

( 1
2 f (x)A2

x,k,ν
)
(h)= Fk−1,x(h)+ O(|h|

k).

Furthermore, each R j is determined (analytically) only by (p2, . . . , p j+1) and the coefficients of Fk,x . In
particular, each R j does not depend on ν, so Ax,k,−ν = −Ax,k,ν .

Proof. The proof is almost identical to the proof of Lemma 3.1, the only difference being that we have
to take into account the Taylor expansion of f . Let us work out explicitly the case k = 2. By a direct
computation we find

1
( 1

2 f (x)A2
x,k,ν

)
(h)= f (x)+1(2 f (x)p2 R1)(h)+ O(|h|

2).

Thus, the right (and unique) choice for R1 is

R1 :=
1

2 f (x)
δ−1

1 (F1,x),

where the linear isomorphisms δm : Vm → Vm were introduced in the proof of Lemma 3.1. □

Using Lemma B.1, we can define the polynomial ansatz functions A2
k,Pk : B1 × Pk → R[h], which

now depend explicitly also on the center of expansion x . We set

Ak(x; p2, . . . , pk−1) := A2
x,k,ν, Pk(x; p2, . . . , pk−1) := π≤k+1

( 1
2 f (x)A2

x,k,ν
)
,

and notice that the dependence on f is hidden in the dependence on x . Once again any norm of Pk is
bounded by constants depending on n, k, ∥ f ∥Ck−1(B1) and |(p2, . . . , pk)|. Furthermore, the function
Pk(x; · ) is injective.

With this construction we obtain

1Pk(x; p2, . . . , pk)(h)= f (x + h)+ O(|h|
k) and Pk(x; p2, . . . , pk)(h)≥ −C |h|

k+2, (B-1)

where the big O is a Ck function of x and h. Here comes the only difference with the case in which
f ≡ 1. When we apply the Laplace operator to the function v := u(x◦ + · )−Pk(x◦; p2, . . . , pk), we get,
in Br (x◦),

1v = − f (x◦ + · )χ{u(x◦+ · )=0} + O(r k), (B-2)

while in the case f ≡ 1 we had 1v = −χ{u(x◦+ · )=0} exactly.
We now state an analog of Proposition 3.3, which contained all crucial properties of the ansatz.
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Proposition B.2. Let k ≥ 2, (p2, . . . , pk) ∈ Pk and τ > 0 be such that |(p2, . . . , pk)| ≤ τ . Choose some
unit vector ν for which p2(x) =

1
2(ν · x)2. Let f ∈ Ck−1,1(B1), and let |x◦| <

1
2 . Then the polynomials

A2
k(x◦; p2, . . . , pk) and Pk(x◦; p2, . . . , pk) satisfy:

(i) 1Pk = f (x◦ + · )+ O(| · |k) and ∂e
( 1

2A
2
k

)
= ∂ePk + O(| · |k+1) for any unit vector e.

(ii) We have Pk(x◦; p2, . . . , pk)= Pk−1(x◦, p2, . . . , pk−1)+ pk + O(| · |k+1).

(iii) For all |h| ≤ r0, we have 1
2 ≤ |∂νAx◦,k,ν(h)| ≤ 2, and thus

1
2 |Ak(h)| ≤

∣∣∂ν( 1
2A

2
k(h)

)∣∣ ≤ 2|Ak(h)|,

where r0 = r0(n, k, τ, ∥ f ∥Ck(B1)) ∈ (0, 1).

(iv) If u is a solution as in (2-1), 0 ∈6n−1 and r−2u(r · )→ p2, then by (2-3) we have, for all 0< r < 1
2 ,

sup
Br (x◦)∩{u=0}

|∂νPk | ≤ Cr1+α◦

for some constant C = C(n, k, τ, ∥ f ∥Ck ).

Now that the polynomial ansatz has the right formal properties (i.e., (B-1), (B-2) and those collected in
Proposition B.2), it is simple to check that the rest of the arguments go through. The rest of this section is
a list of the modifications needed to obtain Theorem 1.1 in its full generality.

• Lemmas 3.5 and 3.6 are the same: even if, in Br ∩ {u > 0}, the function u − Pk is not harmonic,
pointwise we have 1(u −Pk)= O(r k). The comparison principle we use remains valid in this case.

• The proof of Lemma 3.7 is identical, except for the fact that in � our function is not harmonic. This is
used only in (3-12), where we have the term ∥1vr∥L∞(�̃∩B1)

, but it can be absorbed into the term Cr k+2.

• In Lemma 4.1, we also pick up an extra term, which, however, is much smaller than the one we are
estimating. Indeed we have ∫

B1

|vr1vr | ≤ M
∫

B1∩{u=0}

|vr | + Cr k
∫

B1

|vr |.

The first integral is treated as in Lemma 4.1. Since we have |vr | ≲ r2 around a contact point, for the
second term we estimate

1
r

Cr k+2

H(r, v)+ r2γ ≲ r k+1−γ
= r ϵ−1.

As |x · ∇vr | ≲ r2 in Br , the same reasoning applies to the term
∫

B1
|(x · ∇vr )1vr |.

The rest of Section 4 goes on with exactly the same proofs.

• Section 5 essentially uses the statements of two previous sections as black boxes. The only modification
is in the very definition of the sets 6k-th, namely, for x◦ ∈6k-th, we use the ansatz

Pk,x◦
:= Pk(x◦; p2,x◦

, . . . , pk,x◦
),

which is again continuous in the x◦ variable. Notice that, to use our argument, we need it to make sense
to construct Pk in 6k-th; hence we require that, at a minimum, f ∈ Ck(B1).
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• Concerning Section 6, note that we can no longer use that 1Pk = 0 in {u > 0}. Thus in Lemma 6.1 we
introduce a small modification, namely in the term∫

B1

P1vr = −

∫
B1∩{ur =0}

f P + O(r k+2)

∫
B1

P,

but we underline that the extra factor O(r k+2) does not affect any subsequent computation.

• In Lemma 6.3, the definition of the barrier function needs to be adapted. Namely (6-5) must be replaced
with 

φz,ℓ(z)= 0,
φz,ℓ ≥ 0 in Bρ(z),
1φz,ℓ < r2

ℓ f (rℓ · ) in Bρ(z),
u(rℓ · ) < φz,ℓ on ∂Bρ(z),

so that the proofs of Claim (ii) and Claim (iii) are the same. For Claim (i) we must use the following
barrier:

φz,ℓ(x) :=

(
1 −

hℓ
r2
ℓ

)
f (0)

2
A2

k(rℓx)+
hℓ

4nM
|x ′

− z′
|
2.

• Sections 6.1, 6.2, 6.3 do not require further modifications.

• In the proof of Lemma 6.16, the constant of (6-11) depends on ∥∇
k f ∥L∞ .

• As they are based on Section 6, Sections 7.1 and 7.2 do not require any modification.

• In Section 7.3, it is easily checked that Lemma 7.11 works if we assume that 1P = f + O(rκ) instead
of 1P = 1, and the cleaning works just as before.

Appendix C: Auxiliary lemmas

Lemma C.1. For every u ∈ Lip(B2), 1 ≤ j ≤ n and β ∈ (0, 1], define

[δ j u]β := sup
x∈B1,|t |≤1

|u(x + te j )− u(x)|
|t |β

.

Then, for all p > 1,

[u]C0,σ (B1) ≤ C
( ∑

1≤ j<n

[δ j u]β + ∥∂nu∥L p(B2)

)
,

where C = C(n, β, p) and σ = β(p − 1)/(βp + n − 1).

Proof. By homogeneity we can assume that the right-hand side is 1. Set h = (0, . . . , 0, r), and consider
Ar := B ′

rα × [0, r ], where θ > 0 is small. By Fubini’s theorem, we can find some z′
∈ B ′

r θ such that∫ r

0
|∂nu(z′, s)|p ds ≤ r θ(1−n)

∥∂nu∥
p
L p(Ar )

≤ r θ(1−n).
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The fundamental theorem of calculus and Hölder’s inequality give

|u(0)− u(h)| ≤ |u(0)− u(z′, 0)| + |u(z′, 0)− u(z′, r)| + |u(z′, r)− u(0, r)|

≤ 2n|z′
|
β

+

∫ r

0
|∂nu(z′, s)| ds

≲n r θβ + r θ(1−n)/pr1/p′

.

Since |h| = r , u is σ -Hölder continuous for every σ ≤ min{θβ, θ(1 − n)/p + 1/p′
}, and maximizing

with respect to the interpolation parameter θ > 0 we get the optimal value for σ . □

Let us finally give, for completeness, the proof of our statement of Whitney’s theorem for C∞ functions.

Proof of Theorem 6.15. Let us define the functions fα : E → R for each multi-index α ∈ Nn by

fα(x) := ∂αP|α|,x( · ) (= ∂αP|α|+ℓ,x(0) for all ℓ ∈ N).

Assumption (ii) with k = |α| immediately gives

| fα(x)− fα(y)| = |∂αP|α|,x(0)− ∂αP|α|,y(x − y)| ≤ C(|α|)|x − y|.

Thus each fα admits a canonical Lipschitz extension to E , which we don’t rename.
For each x, y,∈ E , m ∈ N and |α| ≤ m, define the remainder

Rm,α(x, y) := fα(x)−
∑

|β|≤m−|α|

fα+β(y)
β!

(x − y)β . (C-1)

If we show that each remainder satisfies |Rα,m(x, y)| ≤ C(m)|x − y|
|α|−m+1 for all x, y ∈ E , then we

can extend it by continuity, so that it holds in the full E × E , and conclude by applying [Whitney 1934,
Theorem I] verbatim. To check this, notice that the left-hand side of assumption (ii) is just (C-1) in
disguise:

Rm,α(x, y)= ∂αPm,x(0)−
∑

|β|≤m−|α|

∂β(∂αPm,y)(0)
β!

(x − y)β

= ∂αPm,x(0)− ∂αPm,y(x − y)= O(|x − y|
m−|α|+1),

where we used that polynomials equal their Taylor expansion of sufficiently high degree (and here
deg ∂αPm,y ≤ m − |α|). This concludes the proof. □
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DIMENSIONS OF FURSTENBERG SETS AND
AN EXTENSION OF BOURGAIN’S PROJECTION THEOREM

PABLO SHMERKIN AND HONG WANG

We show that the Hausdorff dimension of (s, t)-Furstenberg sets is at least s +
1
2 t + ϵ, where ϵ > 0

depends only on s and t . This improves the previously best known bound for 2s < t ≤ 1 + ϵ(s, t), in
particular providing the first improvement since 1999 to the dimension of classical s-Furstenberg sets for
s < 1

2 . We deduce this from a corresponding discretized incidence bound under minimal nonconcentration
assumptions that simultaneously extends Bourgain’s discretized projection and sum-product theorems.
The proofs are based on a recent discretized incidence bound of T. Orponen and the first author and a
certain duality between (s, t) and

( 1
2 t, s +

1
2 t

)
-Furstenberg sets.

1. Introduction and main results

1.1. Dimension of Furstenberg sets. Let s ∈ (0, 1]. We say that a set K ⊂ R2 is an s-Furstenberg set if
for almost all directions θ ∈ S1 there is a line ℓθ in direction θ such that dimH(K ∩ ℓθ ) ≥ s. Motivated
by work of Furstenberg and by the Szemerédi–Trotter theorem in incidence geometry, T. Wolff [1999]
posed the problem of estimating the smallest possible dimension γ (s) of an s-Furstenberg set. Using
elementary geometric arguments, Wolff showed that

γ (s) ≥ max
(
2s, s +

1
2

)
.

Note that both bounds coincide for s =
1
2 . J. Bourgain [2003], building up on work of N. Katz and

T. Tao [2001], proved that γ
( 1

2

)
> 1 + ϵ for some small universal constant ϵ > 0; this is much deeper.

Much more recently, T. Orponen and the first author [Orponen and Shmerkin 2023] established a similar
improvement for s ∈

( 1
2 , 1

)
:

γ (s) ≥ 2s + ϵ(s),

where ϵ(s)>0 for s ∈
( 1

2 , 1
)
. For the case s < 1

2 , the first author [Shmerkin 2022] recently obtained a similar
improvement, with the significant caveat that it involves only the packing dimension of s-Furstenberg
sets (which can be larger than Hausdorff dimension). In this paper, as a corollary of our main result we
obtain the corresponding Hausdorff dimension improvement:
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Theorem 1.1. For every s ∈ (0, 1) there is ϵ(s) > 0 such that every s-Furstenberg set K satisfies

dimH(K ) ≥ s +
1
2 + ϵ(s).

Recently, there has been much interest in the following generalization of Furstenberg sets: we say that
K ⊂ R2 is an (s, t)-Furstenberg set if there is a family of lines L with dimH(L) ≥ t such that

dimH(K ∩ ℓ) ≥ s, ℓ ∈ L.

Since lines are a two-dimensional manifold, the Hausdorff dimension of L is well-defined. Classical
s-Furstenberg sets are, of course, (s, 1)-Furstenberg sets. The central problem, initiated by U. Molter and
E. Rela [2012], is to estimate γ (s, t), the smallest possible Hausdorff dimension of (s, t)-Furstenberg
sets; this can be seen as a continuous analog of the Szemerédi–Trotter incidence bound. Recent works
investigating this problem include [Lutz and Stull 2020; Héra et al. 2022; Di Benedetto and Zahl 2021;
Dąbrowski et al. 2022; Fu and Ren 2024]. The best currently known bounds are summarized as follows.
Suppose first that t ≤ 1 + ϵ′(s, t) (where ϵ′(s, t) is a small positive parameter). Then (see [Molter and
Rela 2012; Lutz and Stull 2020; Héra et al. 2022; Orponen and Shmerkin 2023])

γ (s, t) ≥


s + t if t ≤ s,
2s + ϵ(s, t) if s ≤ t ≤ 2s − ϵ′(s, t),
s +

1
2 t if 2s − ϵ′(s, t) ≤ t.

Suppose now that t ≥ 1 + ϵ′(s, t). Then (see [Fu and Ren 2024])

γ (s, t) ≥

{
2s + t − 1 if s + t ≤ 2,

s + 1 if s + t ≥ 2.

The bounds s+t , s+1 are sharp in the respective regimes, but the other bounds are not expected to be
sharp. In this article we obtain a small improvement upon the s+1

2 t bound:

Theorem 1.2. Given s ∈ (0, 1], t ∈ (0, 2], there is ϵ(s, t) > 0 such that the following holds. Let K be an
(s, t)-Furstenberg set. Then

dimH(K ) ≥ s +
1
2 t + ϵ(s, t).

Theorem 1.1 is an immediate corollary, taking t = 1.

1.2. Discretized incidence estimates and a strengthening of Bourgain’s discretized projection and
sum-product theorems. Theorem 1.2 is a consequence of the following discretized incidence estimate.
See Section 2.2 for the definition of (δ, s, C)-sets of points and tubes.

Proposition 1.3. Given s ∈ (0, 1) and t ∈ (s, 2], there are ϵ, η > 0 such that the following holds for small
enough δ: Let P ⊂ B2(0, 1) be a (δ, t, δ−ϵ)-set. For each p ∈ P, let T (p) be a (δ, s, δ−ϵ)-set of tubes
through p with |T (p)| ≥ M. Then the union T =

⋃
p∈P T (p) satisfies

|T | ≥ Mδ−(t/2+η). (1-1)
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By duality between points and lines (see, e.g., [Orponen and Shmerkin 2023, Theorem 3.2] and
the discussion afterwards) we obtain the following corollary of Proposition 1.3 which more closely
resembles the Furstenberg set problem. In the statement, |P|δ stands for the δ-covering number of P (see
Section 2.1).

Corollary 1.4. Given 0 < s < 1, s < t , there are ϵ, η > 0 such that the following holds for small enough
dyadic δ: Let L be a (δ, t, δ−ϵ)-set of lines intersecting B2(0, 1). For each ℓ ∈ L, let P(ℓ) be a (δ, s, δ−ϵ)-
set contained in ℓ(δ). Suppose |P(ℓ)|δ ≥ M for all ℓ ∈ L. Then the union P =

⋃
ℓ∈L P(ℓ) satisfies

|P|δ ≥ Mδ−(t/2+η).

Note that M ≥ δ−(s−ϵ) and hence (up to changing the values of η, ϵ) we also have the conclusion
|T | ≥ δ−(s+t/2+η). In turn, by [Héra et al. 2022, Lemma 3.3] this yields Theorem 1.2.

For comparison’s sake, and because it plays a crucial role in the proof of Proposition 1.3, we recall
[Orponen and Shmerkin 2023, Theorem 3.2].

Theorem 1.5. Given s ∈ (0, 1) and t ∈ (s, 2], there are ϵ, η > 0 such that the following holds for all small
enough dyadic δ: Let T be a (δ, t, δ−ϵ)-set of dyadic δ-tubes. Assume that for every T ∈ T there exists a
(δ, s, δ−ϵ)-set P(T ) such that p ∈ T for all p ∈ P(T ). Then∣∣∣ ⋃

T ∈T

P(T )

∣∣∣ ≥ δ−2s−η.

The nonconcentration assumption on T (p) in Proposition 1.3 is quite mild, since M can potentially
be much larger than δ−s (and a δ−ϵ factor is also allowed). What about P? Some nonconcentration is
needed, as the following standard example shows: if P = B(x, r) and T (p) is the set of tubes through p
with slopes in a fixed (δ, s, C)-set S, then

|T | ∼ |S|δ ·
r
δ

∼ |T (p)| · |P|
1/2
δ .

A similar estimate holds if P is very dense in the union of a small number of r-balls. The next result
asserts that under a minimal single-scale nonconcentration assumption on P that rules out this scenario,
there is a gain over the “trivial” estimate of Corollary 2.6:

Theorem 1.6. Given s, u ∈ (0, 1), there are ϵ, η > 0 such that the following holds for small enough
dyadic δ: Let P ⊂ B2(0, 1) be set such that

|P ∩ B(x, δ|P|
1/2
δ )|δ ≤ δu

|P|δ, x ∈ B2(0, 1). (1-2)

For each p ∈ P, let T (p) be a (δ, s, δ−ϵ)-set of dyadic tubes through p with |T (p)| ≥ M. Then the union
T =

⋃
p∈P T (p) satisfies

|T | ≥ δ−η M |P|
1/2
δ . (1-3)

This result extends Proposition 1.3 (however, the proposition is used in the proof) and due to the minimal
nonconcentration assumption it provides new information even when |P|δ ≫ δ−1. Perhaps more signifi-
cantly, Theorem 1.6 generalizes Bourgain’s celebrated discretized projection theorem [2010, Theorem 3]
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(or even the refined version with single-scale nonconcentration in [Shmerkin 2023, Theorem 1.7]).
Roughly speaking, Bourgain’s theorem corresponds to the special “product” case in which the slopes of
the tubes in T (p) are (nearly) independent of p; see Section 5 for the details. This connection between
Furstenberg sets and projections is well known; see, e.g., [Oberlin 2014] or [Orponen and Shmerkin 2023,
§3.2]. Bourgain’s discretized projection theorem is used in the proof of Theorem 3.2 of the latter work
(recalled as Theorem 1.5 above), which is in turn used to prove Theorem 1.6, so this does not provide a
new proof of the projection theorem. Using a well-known argument of G. Elekes, Theorem 1.6 (or rather
its dual formulation below) also easily recovers Bourgain’s discretized sum-product theorem [Bourgain
2003, Theorem 0.3; Bourgain and Gamburd 2008, Proposition 3.2]. The details are sketched in Section 5.
It is worth noting that although Bourgain’s discretized sum-product and projection theorems are closely
connected to each other, deducing either from the other takes a substantial amount of work, while they
are both rather direct corollaries of Theorem 1.6.

By duality between points and lines (again we refer to [Orponen and Shmerkin 2023, Theorem 3.2] for
details), we have the following corollary of Theorem 1.6:

Corollary 1.7. Given s, u ∈ (0, 1), there are ϵ, η > 0 such that the following holds for small enough
dyadic δ: Let T ⊂ T δ be a set of dyadic tubes such that

|{T ∈ T : T ⊂ T }| ≤ δu
|T |

for all (δ|T |
1/2)-tubes T.

For each T ∈ T , let P(T ) ⊂ T be a (δ, s, δ−ϵ)-set with |P(T )|δ ≥ M. Then P =
⋃

T ∈T P(T ) satisfies

|P| ≥ δ−η M |T |
1/2.

1.3. Sketch of proof. Many “ϵ-improvements” in discretized geometry are obtained by showing that, in
the absence of it, the relevant geometric object has a rigid structure that eventually is shown to contradict
some previously known bounds (often involving some other “ϵ-improvement”). This is also the approach
we take here. By the simple elementary bounds in Lemmas 2.4–2.5, one obtains the improved bound in
Proposition 1.3 unless

|P ∩ T |δ ≈ |P|
1/2
δ , T ∈ T ,

|P|δ ≈ δ−t . (1-4)

(In this section the notation ≈ should be interpreted informally as “up to small powers of δ”). A first
ingredient of the proof is showing that (after suitable refinements of P and T ) one also gets the desired
conclusion unless

|P ∩ T ∩ Q|δ ≈ |P ∩ Q|
1/2
δ (1-5)

for all T ∈ T , all 1-squares Q intersecting P and a “dense” set of scales δ < 1 < 1. To see this, we
combine the elementary bounds applied to P ∩ Q (and a subsystem of tubes passing through P ∩ Q) with
an induction-on-scales mechanism from [Orponen and Shmerkin 2023], recalled as Proposition 2.7 below.

The relation (1-5) can be shown to imply that either one gets the improved bound we are seeking,
or P intersects each tube T in a

(
δ, 1

2 t
)
-set. By (known) elementary arguments T is a

(
δ, s +

1
2 t

)
-set
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of tubes. Hence P is a discretized
(1

2 t, s +
1
2 t

)
-Furstenberg set. But it follows from Theorem 1.5 that

|P|δ ≥ δ−t−η for some η = η
( 1

2 t, s +
1
2 t

)
> 0. This contradicts (1-4), showing the impossibility of the

rigid configuration described by (1-5) and hence establishing Proposition 1.3. To our knowledge this dual
relationship between (s, t) and

( 1
2 t, s +

1
2 t

)
-Furstenberg sets hadn’t been noticed before.

We obtain Theorem 1.6 by applying Proposition 1.3 to each scale in a multiscale decomposition of P
into “nontrivial Frostman pieces” that was established in [Shmerkin 2023], and is recalled as Theorem 2.10
below. The scales are combined together by another application of Proposition 2.7.

2. Preliminaries

2.1. Notation. The notation A ≲ B or A = O(B) stands for A ≤ C · B for some constant C > 0, and
similarly for A ≳ B and A ∼ B. The δ-covering number of a set X (in a metric space) is defined as the
smallest number of δ-balls needed to cover X , and is denoted by |X |δ. The open r -neighbourhood of a
set X is denoted by X (r).

2.2. (δ, s)-sets of points and tubes. Given r ∈ 2−N, we denote the family of (half-open) dyadic cubes of
side-length in Rd by Dr . The set of cubes in Dr intersecting a set X is denoted by Dr (X).

In this article, we work with the following notion of discretization of sets of dimension s:

Definition 2.1 ((δ, s, C)-set). Let P ⊂ Rd be a bounded nonempty set, d ≥ 1. Let δ ∈ 2−N, 0 ≤ s ≤ d,
and C > 0. We say that P is a (δ, s, C)-set if

|P ∩ Q|δ ≤ C · |P|δ · r s, Q ∈ Dr (R
d), δ ≤ r ≤ 1. (2-1)

If P ⊂ Dδ (so P is a family of dyadic cubes), we will abuse notation by identifying P with
⋃

P, so it
makes sense to speak of (δ, s, C)-sets of dyadic cubes.

We also need to work with discretized families of tubes:

Definition 2.2 (dyadic δ-tubes). Let δ ∈ 2−N. A dyadic δ-tube is a set of the form

D(p) := {(x, y) : y = ax + b for some (a, b) ∈ p},

where p ∈ Dδ([−1, 1) × R). The collection of all dyadic δ-tubes is denoted by

T δ
:= {D(p) : p ∈ Dδ([−1, 1) × R)}.

A finite collection of dyadic δ-tubes {D(p)}p∈P is called a (δ, s, C)-set if P is a (δ, s, C)-set.

We remark that a dyadic δ-tube is not exactly a δ-neighbourhood of some line, but the intersection of

T = D([a, a + δ] × [b, b + δ])

with some fixed bounded set B satisfies ℓ
(cδ)
a,b ∩B ⊂ T ∩B ⊂ ℓ

(Cδ)
a,b , where ℓa,b =

{
y =

(
a+

1
2δ

)
x +

(
b+

1
2δ

)}
and c, C depend only on B.

An elementary but important observation is that tubes in T δ that intersect a fixed square p ∈ Dδ

are parametrized by their slope in a bilipschitz way. In particular, if T (p) ⊂ T δ is a family of tubes
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intersecting p ∈Dδ , then T (p) is a (δ, s, C)-set if and only if the slopes of tubes in T (p) form a (δ, s, C ′)
set for C ′

∼ C ; see [Orponen and Shmerkin 2023, Corollary 2.12] for the precise statement.

2.3. Elementary incidence bounds. We now collect some elementary incidence bounds; they correspond
in various ways to the lower bound s +

1
2 t for the dimension of (s, t)-Furstenberg sets. We state our

bounds in terms of the following notion:

Definition 2.3. Fix δ ∈ 2−N, s ∈ [0, 1], C > 0, M ∈ N. We say that a pair (P, T ) ⊂ Dδ × T δ is a
(δ, s, C, M)-nice configuration if for every p ∈ P there exists a (δ, s, C)-set T (p) ⊂ T with |T (p)| = M
and such that T ∩ p ̸= ∅ for all T ∈ T (p).

Lemma 2.4. Let (P, T ) be a (δ, s, C, M)-nice configuration. Then for any δ-tube T (not necessarily in
T ),

|T | ≳ C−1/s
· |T ∩ P|δ · M.

Proof. We may assume P is δ-separated. Fix p ∈ T ∩ P. Since T (p) is a (δ, s, C)-set, there is a subset
T ′(p) ⊂ T (p) such that |T ′(p)| ≥

1
2 |T (p)| =

1
2 M and each tube T ′

∈ T ′(p) makes an angle ≳ C−1/s

with the direction of T. In turn, this implies that the sets T ′(p), p ∈ T ∩ P have overlap ≲ C1/s . This
gives the claim. □

Lemma 2.5. Let (P, T ) be a (δ, s, C, M)-nice configuration. Suppose |T ∩ P| ≤ K for all T ∈ T . Then

|T | ≥ K −1
· |P| · M.

Proof. We have

|P| · M =

∑
p∈P

|Tp| =

∑
T ∈T

|{p : T ∈ Tp}| ≤

∑
T ∈T

|T ∩ P| ≤ |T | · K . □

Corollary 2.6. Let (P, T ) be a (δ, s, C, M)-nice configuration. Then

|T | ≳ C−1/s
· |P|

1/2
· M.

Moreover, T contains a
(
δ, s +

1
2 t, log(1/δ)O(1)C1/s

)
-set of δ-tubes.

Proof. If |T ∩ P| ≥ |P|
1/2 for some T ∈ T , we apply Lemma 2.4, otherwise we apply Lemma 2.5. In any

case we get the first claim.
Let L be the set of lines corresponding to tubes in T (or, equivalently, the δ-neighbourhood of the

central lines of tubes in T ). It follows from the first claim and two dyadic pigeonholings that the Hausdorff
content of L satisfies

Hs+t/2
∞

(L) ≳ log(1/δ)−O(1)C−1/s .

See, e.g., the proof of [Héra et al. 2022, Lemma 3.3] or [Orponen et al. 2024, Lemma 3.5, in particular,
equation (3.9)]. The conclusion then follows from the discrete version of Frostman’s lemma [Fässler and
Orponen 2014, Proposition A.1] (which is stated in R3 but works just as well in the space of lines). □
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2.4. A multiscale incidence bound. We next recall [Orponen and Shmerkin 2023, Proposition 5.2]. Fix
two dyadic scales 0 < δ < 1 ≤ 1 and families P0 ⊂ Dδ and T0 ⊂ T δ. For Q ∈ D1 and T ∈ T 1, we define

P0 ∩ Q = {p ∈ P0 : p ⊂ Q} and T0 ∩ T := {T ∈ T0 : T ⊂ T }.

We also write
D1(P0) = {Q ∈ D1 : P0 ∩ Q ̸= ∅},

T 1(T0) = {T ∈ T 1
: T0 ∩ T ̸= ∅}.

In the next proposition, for 1 ∈ 2−N and Q ∈ D1, the map SQ : R2
→ R2 is the homothety that maps Q

to the square [0, 1)2, and SQ(P0) = {SQ(p) : p ∈ P0}. Furthermore, the notation A ⪅δ B stands for
A ≤ log(1/δ)C B for a constant C > 0, and likewise for A ≈δ B.

Proposition 2.7 [Orponen and Shmerkin 2023, Proposition 5.2]. Fix dyadic numbers 0 < δ < 1 ≤ 1. Let
(P0, T0) be a (δ, s, C, M)-nice configuration. Then there exist sets P ⊂ P0 and T (p) ⊂ T0(p), p ∈ P,
such that defining T =

⋃
p∈P T (p) the following hold:

(i) |D1(P)| ≈δ |D1(P0)| and |P ∩ Q| ≈δ |P0 ∩ Q| for all Q ∈ D1(P).

(ii) |T (p)| ⪆δ |T0(p)| = M for p ∈ P.

(iii) (D1(P), T 1(T )) is (1, s, C1, M1)-nice for some C1 ≈δ C and M1 ≥ 1.

(iv) For each Q ∈ D1(P) there exist CQ ≈δ C , MQ ≥ 1, and a family of tubes TQ ⊂ T δ/1 such that
(SQ(P ∩ Q), TQ) is (δ/1, s, CQ, MQ)-nice.

Furthermore, the families TQ can be chosen so that

|T0|

M
⪆δ

|T 1(T )|

M1

·

(
max

Q∈D1(P)

|TQ |

MQ

)
. (2-2)

2.5. Uniformization. Next, we recall a basic lemma asserting the existence of large uniform subsets.
See, e.g., [Orponen and Shmerkin 2023, Lemma 7.3] for the proof.

Definition 2.8. Let N ≥ 1, and let

δ = 1N < 1N−1 < · · · < 11 ≤ 10 = 1

be a sequence of dyadic scales. We say that a set P ⊂ [0, 1)2 is (1 j )
N
j=1-uniform if there is a sequence

(K j )
N
j=1 such that |P ∩ Q|1 j = K j for all j ∈ {1, . . . , N } and all Q ∈ D1 j−1(P).

Lemma 2.9. Given P ⊂ [0, 1)2 and a sequence δ = 1N < 1N−1 < · · · < 11 ≤ 10 = 1 of dyadic numbers,
N ≥ 1, there is a (1 j )

N
j=1-uniform set P ′

⊂ P such that

|P ′
|δ ≥ (4N−1 log(1/δ))−N

|P|δ. (2-3)

Note that if the number N of scales is independent of δ, then the lower bound on |P ′
|δ can be

simplified as
|P ′

|δ ≥ C−1
N · log(1/δ)−CN · |P|δ,

with CN independent of δ.
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2.6. A multiscale decomposition. To conclude this section, we recall the multiscale decomposition into
“Frostman pieces” of uniform sets that satisfy a single-scale nonconcentration assumption provided by
[Shmerkin 2023, Theorem 4.1].

Theorem 2.10. For every u > 0 and ϵ > 0 there are ξ = ξ(u) > 0 and τ = τ(ϵ) > 0 such that the following
holds for all sufficiently small ρ ≤ ρ0(ϵ) and n ≥ n0(ρ, ϵ): Let P be a (ρ j )n

j=1-uniform set and write
δ = ρn. Suppose

|P ∩ B(x, δ|P|
1/2
δ )|δ ≤ δu

|P|δ for all x . (2-4)

Then there exists a collection of dyadic scales

δ = 1N < 1N−1 < · · · < 11 < 10 = 1, N ≤ N0(ϵ),

each of which is a power of ρ, and numbers α0, . . . , αN−1 ∈ [0, 2] such that, defining λ j = 1 j+1/1 j , the
following hold:

(i) For each j and each Q ∈ D1 j (P),

|P ∩ Q ∩ B(x, r1 j )|1 j+1 ≤ λ−ϵ
j · rα j · |P ∩ Q|1 j+1

for all x ∈ B2(0, 1) and all r ∈ [λ j , 1].

(ii)
∑

{α j log(1/λ j ) : λ j ≤ δτ
} ≥ log |P|δ − 2ϵ log(1/δ).

(iii)
∑

{log(1/λ j ) : α j ∈ [ξ, d − ξ ] and λ j ≤ δτ
} ≥ ξ log(1/δ).

This is just (a slightly weaker version of) [Shmerkin 2023, Theorem 4.1], although stated using
different notation: the measure µ there corresponds to normalized Lebesgue measure on P(δ) (or the
union of δ-squares intersecting δ); ρ corresponds to 2−T in [Shmerkin 2023]; the scales 1 j correspond
to both 2−T Ai and 2−T Bi. The last two claims only concern scale intervals [1 j+1, 1 j ] corresponding to
[2−T Bi , 2−T Ai ], while for [1 j+1, 1 j ] = [2−T Bi+1, 2−T Ai ] we simply take α j = 0.

3. Proof of Proposition 1.3

In this section we prove Proposition 1.3. Note that there is no loss of generality in assuming that P is a
union of dyadic δ-squares and the tubes in T (p) are dyadic δ-tubes intersecting p.

The parameter ϵ should be thought of as being much smaller than η (and will be chosen after η). Both
ϵ, η will ultimately be chosen in terms of s, t only. We let N = ⌈η−1

⌉, so that N = N (s, t). Let ρ = δ1/N ;
without loss of generality, ρ is dyadic.

In the course of this proof, A ⪅ B stands for A ≤ C(s, t)δ−C(s,t)ϵ B. Likewise, a (δ, u)-set is a
(δ, u, C)-set for C ⪅ 1.

Replacing P by its (ρ j )N
j=1-uniformization (given by Lemma 2.9), we may assume that P is (ρ j )N

j=1-
uniform. Note that the uniformization is still a (δ, t)-set.

We will construct sequences Pj ⊂ Dδ, T j ⊂ T δ, j = 0, 1, . . . , N, with the following properties:

(a) Pj is (ρ j )N
j=1-uniform.
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(b) Pj+1 ⊂ Pj , P0 ⊂ P and |Pj+1| ⪆ |Pj |, |P0| ⪆ |P|. In particular, PN is a (δ, t)-set.

(c) T0(p) = T (p), T j+1(p) ⊂ T j (p) and M j+1 ∼ |T j+1(p)|⪆ |T j (p)| for p ∈ Pj+1 and some M j+1. In
particular, each T (p), p ∈ PN , is a (δ, t)-set.

(d) For each j , any Q ∈ Dρ j (Pj ) and any δ-tube T,

|T | ⪆ M · |Pj |
1/2
ρ j · |T ∩ Pj ∩ Q|δ.

Recall that |T (p)| ≥ M for each p ∈ P. Pigeonhole a dyadic number M0 such that |T (p)| ∼ M0 for
all p ∈ P ′

0 ⊂ P with |P ′

0| ⪆ |P|. We let P0 be the (ρ j )N
j=1-uniformization of P ′

0 given by Lemma 2.9.
Then P0 is a (δ, t)-set, and we take T0(p) = T (p) for p ∈ P0.

Once Pj , T j are defined, we let P ′

j+1, T ′

j+1 be the objects provided by Proposition 2.7 applied to
(Pj , T j ) at scale 1 = ρ j+1. It follows from Proposition 2.7(i) and the regularity of Pj that P ′

j+1 ⊂ Pj and
|P ′

j+1| ⪆ Pj . Pigeonhole a number M j+1 such that |T ′

j+1(p)| ∼ M j+1 for all p ∈ P ′′

j+1 ⊂ P ′

j+1, where
|P ′′

j+1| ⪆ |P ′

j+1|. Finally, let Pj+1 be the (ρ j )N
j=1-uniformization of P ′′

j+1 and T j+1(p) = T ′

j+1(p) for
p ∈ Pj+1.

Properties (a)–(b) hold by construction. Property (c) follows from Proposition 2.7(ii). To see prop-
erty (d), let C1, M1, TQ , CQ , MQ be the objects provided by Proposition 2.7(iii)–(iv). By Corollary 2.6,

|T 1(T ′

j+1)| ⪆ M1 · |Pj+1|
1/2,

and by Lemma 2.4 and rescaling,
|TQ | ⪆ MQ · |T ∩ Pj ∩ Q|δ.

Putting these facts together with (2-2), we see that property (d) holds.
We pause to observe that (PN , TN ) is a (δ, s, CN , MN )-nice configuration, where CN ⪅ 1 and MN ⪆ M.
We now consider several cases. Suppose first that there are T ∈ TN , j ∈ {1, . . . , N }, and Q ∈Dρ j (PN )

such that
|T ∩ PN ∩ Q|δ ≥ δ−2η

· |PN ∩ Q|
1/2
δ .

Then, by (d), the uniformity of PN , and the fact that Pj ⊃ PN is a (δ, t)-set, we see that (1-1) holds if ϵ

is small enough in terms of s, t, η.
Hence, we assume from now on that

|T ∩ PN ∩ Q|δ ≤ δ−2η
· |PN ∩ Q|

1/2
δ (3-1)

for j ∈ {1, . . . , N }, Q ∈ Dρ j (PN ), and T ∈ TN .
We consider two further subcases. Suppose first that for at least half of the squares p in PN , at least

half of the tubes T ∈ TN (p) satisfy
|T ∩ PN |δ ≤ δ2η

· |PN |
1/2
δ .

Then Lemma 2.5 (applied to suitable restrictions of PN and TN ) yields (1-1).
We can then assume that

|T ∩ PN |δ ≥ δ2η
· |PN |

1/2
δ for all T ∈ T ′

N , (3-2)
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where T ′

N =
⋃

p∈P ′

N
T ′(p), with |P ′

N | ≥
1
2 |PN | and |T ′

N (p)| ≥
1
2 |TN (p)|. It then follows from (3-1) that,

for any Q ∈ Dρn (PN ) and T ∈ T ′

N ,

|T ∩ PN ∩ Q|δ ≤ δ−4η(|PN |
−1/2
δ |PN ∩ Q|

1/2
δ )|T ∩ PN |δ

≤ δ−5η(ρ j )t/2
|T ∩ PN |δ,

using that PN is a (δ, t)-set and taking ϵ sufficiently small in terms of η, s, t .
Recalling that N = ⌈η−1

⌉, we deduce that, for any r -ball Br with ρ j+1
≤ r < ρ j ,

|T ∩ PN ∩ Br |δ ≲ δ−5η(ρ j )t/2
|T ∩ PN |δ ≤ δ−6ηr t/2

|T ∩ PN |δ,

so that T ∩ PN is a
(
δ, 1

2 t, δ−7η
)
-set for each T ∈ T ′.

Now, taking ϵ small enough in terms of s, t, η, we deduce from Corollary 2.6 that T ′ contains a(
δ, s +

1
2 t, δ−η

)
-set T ′′. Then {T ∩ PN : T ∈ T ′′

} satisfies the assumptions of Theorem 1.5 (with 1
2 t in

place of s and s +
1
2 t in place of t), provided that η and δ are taken small enough in terms of s, t only.

Applying Theorem 1.5, we conclude that |PN |δ > δ−t−3η (again assuming η = η(s, t) is small enough).
The first claim of Corollary 2.6 then yields (1-1).

4. Proof of Theorem 1.6

By iterating Proposition 2.7, we obtain the follow multiscale version.

Corollary 4.1. Fix N ≥ 2 and dyadic numbers

0 < δ = 1N < 1N−1 < · · · < 11 < 10 = 1.

Let (P0, T0) be a (δ, s, C, M)-nice configuration. Then there exists a set P ⊂ P0 such that the following
hold:

(i) |D1 j (P)| ≈δ |D1 j (P0)| and |P ∩ Q| ≈δ |P0 ∩ Q| for all j ∈ [1, N ] and all Q ∈ D1 j (P).

(ii) For each j ∈ [0, N − 1] and each Q ∈ D1 j (P) there exist CQ ≈δ C , MQ ≥ 1, and a family of tubes
TQ ⊂ T 1 j+1/1 j such that (SQ(P ∩ Q), TQ) is (1 j+1/1 j , s, CQ, MQ)-nice.

Furthermore, the families TQ can be chosen so that if Q j ∈ D1 j (P), then

|T0|

M
⪆δ

N−1∏
j=0

|TQ j |

MQ j

. (4-1)

All the constants implicit in the ≈δ notation are allowed to depend on N.

Proof. We proceed by induction in N. The case N = 2 follows from Proposition 2.7. Suppose the claim
holds for N and let us verify it for N + 1. First apply Proposition 2.7 with δ = 1N+1 and 1 = 1N .
Let P ′, T be the resulting objects. Property (ii) holds (at the moment for P ′) for j = N thanks to
Proposition 2.7(iv). We then apply the inductive assumption to (D1N (P ′), T 1N (T )), which is legitimate
by Proposition 2.7(iii). This yields a set P ′′

⊂ D1N ; we define

P =

⋃
Q∈D1N (P ′′)

P ′
∩ Q.
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This ensures that SQ(P ∩ Q), when viewed at scale 1 j+1/1 j , equals P ′′ for j < N and P ′ for j = N, and
so property (ii) holds for all j ∈[0, N ]. Finally, (4-1) holds thanks to (2-2) and the inductive assumption. □

Proof of Theorem 1.6. We will eventually take η = η(s, u) and ϵ = ϵ(η, s, u) ≪ η. Fix ρ = ρ(ϵ) ∈ (0, 1)

small enough that the conclusion of Theorem 2.10 holds, and

log(4 log(1/ρ))

log(1/ρ)
< ϵ.

Then, for δ = ρn, the (ρ j )n
j=1-uniformization P ′ of P given by Lemma 2.9 satisfies |P ′

| ≥ δϵ
|P|. We

assume from now on that δ = ρn, where n is taken sufficiently large in terms of all other parameters. Take
ϵ < min

( 1
2 u, 1

2η
)
. Then P ′ satisfies (1-2) with 1

2 u in place of u, and the conclusion (1-3) for P ′ implies it
for P with 1

2η in place of η. Hence we assume from now on that P is (ρ j )n
j=1-uniform.

We apply Theorem 2.10 to P. Let ξ = ξ(u), τ = τ(ϵ) be the numbers provided by the theorem, and
let (1 j )

N
j=0 and (α j )

N
j=1 be the scales and exponents corresponding to P.

Let λ j = 1 j+1/1 j . We apply Corollary 4.1 to (P, T ) and the scales (1 j ). Let P ′
⊂ P be the

resulting set. Since N ≤ N0(ϵ), the notation A ⪅δ B in the statement of Corollary 4.1 translates to
A ≤ log(1/δ)C(ϵ)B; in particular, A ≤ δϵτ/2 B if δ is small enough in terms of ϵ. With these remarks,
the (1 j )

N
j=1-uniformity of P, Corollary 4.1(i) and Theorem 2.10(i) show that if Q ∈ D1 j (P ′), then

SQ(P ′
∩ Q) is a (λ j , α j , λ

−ϵ
j )-set whenever λ j ≤ δτ.

Let
N = { j : λ j ≤ δτ, α j /∈ [ξ, 2 − ξ ]},

G = { j : λ j ≤ δτ, α j ∈ [ξ, 2 − ξ ]}.

(Here N stands for “normal” and G for “good” scales.) It follows from Corollary 4.1(ii) combined with
Corollary 2.6 and Proposition 1.3 that, for Q ∈ D1 j (P ′),

j ∈ N =⇒ |TQ | ≥ (1/ log δ)C(ϵ,s)
· MQ · |SQ(P ∩ Q)|

1/2
λ j

,

j ∈ G =⇒ |TQ | ≥ (1/ log δ)C(ϵ,s)
· MQ · λ

−(α j /2−η)

j ,

where η = η(ξ, s) = η(u, s) > 0. It is indeed possible to take a value of η uniformly over t ∈ [ξ, 2 − ξ ]

because the value of η in Proposition 1.3 is robust under perturbations of t . Note that since τ = τ(ϵ), if δ

is small enough in terms of ϵ, and j ∈ G, then λ j ≤ δτ is small enough that Proposition 1.3 is indeed
applicable. It follows from Theorem 2.10(i) that

|SQ(P ∩ Q)|λ j ≥ λ
ϵ−α j
j .

Combining these facts with the conclusion (4-1) and the trivial bound |TQ | ≥ MQ (applied at scales
outside N ∪G), we obtain

|T |

M
≥

(∏
j∈N

λ
ϵ/2
j λ

−α j /2
j

)(∏
j∈G

λ
−η

j λ
−α j /2
j

)
≥ δϵ

( ∏
j∈N∪G

λ
−α j /2
j

)(∏
j∈G

λ
−η

j

)
≥ δ3ϵ

· |P|
1/2
δ · δ−ξη,

using Theorem 2.10(ii)–(iii) for the last inequality. Taking ϵ < 1
6ξη, this gives the claim with 1

2ξη in
place of η. □
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5. Connection with Bourgain’s projection theorem

We conclude by showing how Theorem 1.6 has as corollaries both Bourgain’s discretized projection and
sum-product theorems. We start with the former. Let 5s(x, y) = x − sy.

Theorem 5.1 (Bourgain’s discretized projection theorem [2010]; see also [Shmerkin 2023]). Given
s, u ∈ (0, 1) there are ϵ, η > 0 such that the following hold: Let P ⊂ B2(0, 1) satisfy

|P ∩ B(x, δ|P|
1/2
δ )|δ ≤ δu

|P|δ, x ∈ B2(0, 1).

Let S ⊂ [1, 2] be a (δ, s, δ−ϵ)-set. Then there is s ∈ S such that

|5s(P ′)|δ ≥ δ−η
· |P|

1/2
δ for all P ′

⊂ P, |P ′
|δ ≥ δϵ

|P|δ.

Proof. The argument is standard. Suppose the claim does not hold. Hence, for each s ∈ S there is a set
Ps ⊂ P with |Ps |δ ≥ δϵ

|P|δ such that

|5s(Ps)|δ ≤ δ−η
· |P|

1/2.

The set X = {(p, s) : p ∈ Ps} has size ≥ δϵ
|P||S|; hence there is a set P ′

⊂ P with |P ′
|δ ≳ δϵ

|P|δ such
that |Sp| ≳ δϵ

|S|, where Sp = {s : p ∈ Ps}.
Given a tube T = D([a, a + δ] × [b, b + δ]) (recall Definition 2.2), we let σ(T ) = [a, a + δ] be the

corresponding slope interval. For each p ∈ P ′ let Tp be the set of dyadic tubes through p such that
σ(T ) ∩ Sp ̸= ∅.

If ϵ < 1
2 u, then P ′ still satisfies the single-scale nonconcentration assumption (with 1

2 u in place of u).
Since Sp is a (δ, s, O(δ−2ϵ))-set, so is Tp. Also, |Tp| ≳ δϵ

|S|. Hence if ϵ > 0 is small enough in terms of
s, u, we can apply Theorem 1.6 to obtain (for T =

⋃
p∈P ′ Tp)

|T | ≳ δ−η′

· δϵ
|S| · |P ′

|
1/2
δ ≥ δ2ϵ−η′

· |S| · |P|
1/2
δ ,

where η′ > 0 depends on s, u only. Taking η′ > 4ϵ, this implies that there is s ∈ S such that there are
≳ δ−η′/2

· |P|
1/2
δ tubes T ∈ T with s ∈ σ(T ). All of these tubes intersect Ps by construction. We conclude

that

|5s Ps |δ ≳ δ−η′/2
|P|

1/2
δ

which is a contradiction if we take η =
1
3η′. □

We turn to the discretized sum-product problem. We have the following corollary of Theorem 1.6:

Corollary 5.2. Given s, u ∈ (0, 1), there are ϵ, η > 0 such that the following holds for all small enough δ:
Let A, B1, B2 ⊂ [1, 2] satisfy the following: A is a (δ, s, δ−ϵ)-set, and B1, B2 satisfy the single-scale
nonconcentration bound

|Bi ∩ [a, a + δ|Bi |δ]|δ ≤ δu
|Bi |, a ∈ [1, 2].

Then

|A + B1|δ |A · B2|δ ≥ δ−η
|A|δ |B1|

1/2
δ |B2|

1/2
δ . (5-1)
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Taking A = B1 = B2, one immediately recovers Bourgain’s discretized sum-product theorem, even
under the weak nonconcentration assumption of [Bourgain and Gamburd 2008, Proposition 3.2].

To prove the corollary, consider (as in [Elekes 1997]) the set P = (A + B1) × (A · B2). For each
(b1, b2) ∈ B1 × B2, the set P intersects the line ℓb1,b2 = {x +b1, b2x : x ∈ R} in an affine copy of A. Using
that (b1, b2) → ℓb1,b2 is bilipschitz, it is routine to verify that this configuration satisfies the assumptions
of Corollary 1.7, with 2u in place of u (considering for each (b1, b2) the δ-dyadic tube that contains
ℓb1,b2 ∩ [0, 2]

2). See, e.g., [Dąbrowski et al. 2022, §6.3] for details of adapting Elekes’ argument to the
discretized setting. The conclusion of Corollary 1.7 is then precisely (5-1).
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