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LARGE SETS CONTAINING NO COPIES OF A GIVEN INFINITE SEQUENCE

MIHAIL N. KOLOUNTZAKIS AND EFFIE PAPAGEORGIOU

Suppose an is a real, nonnegative sequence that does not increase exponentially. For any p < 1, we
construct a Lebesgue measurable set E ⊆ R which has measure at least p in any unit interval and which
contains no affine copy {x + tan : n ∈ N} of the given sequence (for any x ∈ R, t > 0). We generalize this
to higher dimensions and also for some “nonlinear” copies of the sequence. Our method is probabilistic.

1. Introduction

In Euclidean Ramsey theory, one is interested in assuming some kind of largeness for sets E in Euclidean
space Rd , or sometimes in Zd , and concluding that E then contains a “copy” of a pattern. The most
famous such example is perhaps Szemeredi’s theorem [1975], which states that any subset of the integers
with positive density contains arbitrarily long arithmetic progressions. Another well-known example is
the theorem of Falconer and Marstrand [1986], Fürstenberg, Katznelson and Weiss [Fürstenberg et al.
1990] and Bourgain [1986] (see also [Kolountzakis 2004]): if the set E ⊆ Rd has positive Lebesgue
density (this means there are arbitrarily large cubes where E takes up at least a constant fraction of the
measure) then its points implement all sufficiently large distances (conjecture by Székely [1983]).

Another well-known problem, very much related to the contents of this paper, is the so-called Erdős
similarity problem: a set A ⊆ R is called universal in measure if, whenever E ⊆ R has positive Lebesgue
measure, we can find an affine copy of A contained in E . In other words, x + tA ⊆ E for some x ∈ R,
t > 0. It is easy to see that every finite set A is universal (just look close enough to some point of density
of E , shrink A enough and average the number of points of the copy of A that belong to E over translates
of A nearby) but it has been conjectured [Erdős 2015] (see also [Croft et al. 1991, p. 183]) that no infinite
set A can be universal in measure. This is known for many classes of infinite sets but not for all [Chlebik
2015; Falconer 1984; Gallagher et al. 2023; Humke and Laczkovich 1998; Komjáth 1983]. Clearly it
would suffice to prove this for A a positive sequence an decreasing to 0, but if an decays fast to 0 (so it is
in some sense sparse, hence not that hard to contain) this is still unknown. On the contrary, this is known
when log 1/an = o(n). This is not known if an = 2−n , for example.

In this paper we consider an analogue of the Erdős similarity problem “in the large”. Let A ⊆ R be
a discrete, unbounded, infinite set in R. Can we find a “large” measurable set E ⊆ R which does not
contain any affine copy x + tA of A (for any x ∈ R, t > 0)? Our attention was drawn to this problem by
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a recent paper by Bradford, Kohut and Mooroogen [Bradford et al. 2023] in which the authors prove that
if A is an infinite arithmetic progression then this is indeed possible: for any p ∈ [0, 1), they construct a
Lebesgue measurable set E , with measure at least p in any interval of length 1, which does not contain
any affine copy of A. This is clearly equivalent to being able to obtain, for any p ∈ [0, 1), a set E avoiding
all infinite arithmetic progressions and having measure ≥ p in any interval of length 1 whose endpoints
are integers. (Indeed, if the set E has measure at least p in every interval of the form [n, n + 1], n ∈ Z,
then, since for any x the interval [x, x +1] is contained in the union of two such unit-length intervals with
integer endpoints, we obtain that [x, x + 1] \ E has measure at most 2(1 − p). Since p can be as close
to 1 as we want, this implies that [x, x + 1] \ E has measure as close to 0 as we want.) From now on we
follow this simplification, and we deal only with intervals with integer endpoints (in any dimension).

We generalize the result of [Bradford et al. 2023] to sequences of nonnegative numbers A which do
not grow too fast. To state our result, we introduce the following class of sequences.

Definition 1.1. We say that a real sequence A = {an : n ∈ N} is in the class (A) if

(1) a0 = 0,

(2) an+1 − an ≥ 1 for every n ∈ N,

(3) log an = o(n).

Remark 1.2. Since the problem we are studying is translation invariant, (1) in Definition 1.1 is unnecessary,
but we keep it as it simplifies the proofs somewhat.

Writing
A(t) = |A ∩ [0, t]| (1-1)

for the counting function of the set A, notice that the growth (3) is equivalent to the limit, as t → +∞,

A(t)
log t

→ +∞. (1-2)

Our main result is the following.

Theorem 1.3. Consider the sequence A = {an : n ∈ N} which belongs to the class (A). Then, for each
0 ≤ p < 1, there exists a Lebesgue measurable set E ⊆ R such that

|E ∩ [m, m + 1]| ≥ p for all m ∈ Z,

but E does not contain any affine copy of A.

As in the case of the Erdős similarity problem described above, the sparser the set A, the easier it
should be to contain it in large sets, so it is not surprising that we had to impose a growth condition (to
belong to the class (A)). It remains an open question if a similar set E can be constructed when A grows
exponentially or faster.

Question 1. Is there a sequence 0 < an → +∞ and a number p ∈ [0, 1) such that one can find an affine
copy of A = {an : n ∈ N} in any set E ⊆ R which has measure more than p in any interval of length 1?
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Unlike the approach taken in [Bradford et al. 2023], our method of proof is probabilistic. We construct
a family of random sets and we show that, with high probability, such a random set will have all the
properties we want. This method turns out to be extremely flexible, and this allows us to generalize. Not
only can we deal with essentially arbitrary and unstructured sequences A, but we can also relax the sense
in which we seek copies of A in the large set E . Instead of scaling the elements of A and translating them,

x + tan, x ∈ R, t > 0,

we can allow for more general transformations

x + φ(n, t) · an, x ∈ R, t > 0. (1-3)

Theorem 1.4. Consider the set A = {an : n ∈ N} which belongs to the class (A), and let

φ(n, t) : N × (0, +∞) → (0, +∞)

be such that, for each n, the function φ(n, t) is increasing in t , and such that, for all n ∈ N, we have

C1t ≤ φ(n + 1, t)an+1 − φ(n, t)an (1-4)

and

φ(n, t) ≤ C2t for all t > 0, (1-5)

for some C1, C2 > 0. Then, for each 0 ≤ p < 1, there exists a Lebesgue measurable set E ⊆ R such
that E intersects every interval of unit length in a set of measure at least p, but E does not contain the set

{x + φ(n, t) · an : n ∈ N}

for any choice of x ∈ R, t > 0.

We adopt certain arguments from [Kolountzakis 1997, Section 3] where it is proved, on the Erdős
similarity problem, that sequences with a finite limit, say 0, which are not decaying very fast (e.g., they
decay polynomially or subexponentially but not, for instance, exponentially fast — compare to our growth
condition (3)) cannot be universal in measure, by showing the existence of a randomly constructed set
E ⊆ [0, 1], avoiding all affine copies of the sequence.

The measure assumption makes this problem different than other “avoidance” problems, where the
avoiding set is often taken to have zero Lebesgue measure but to have large Hausdorff dimension or
Fourier dimension. For example, in [Keleti 2008], a compact subset of R is constructed that has full
Hausdorff dimension but does not contain any 3-term arithmetic progression. See also [Cruz et al. 2022;
Denson et al. 2021; Fraser and Pramanik 2018; Maga 2011; Máthé 2017; Shmerkin 2017; Yavicoli 2021].

We can also prove the following result in higher dimension (Theorem 1.5). We phrase it as avoiding
linear images of a set in Euclidean space into another Euclidean space. In this manner we obtain easily
some corollaries, Theorem 1.3 one of them, and its proof is rather simpler than that of Theorem 1.3
given in Section 3. But it does not extend easily to more complicated transformations such as those in
Theorem 1.4, so we choose to stay with linear maps.
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Theorem 1.5. Let d1, d ≥ 1, b, f > 0 and p ∈ [0, 1). Let also α(R) be a function satisfying

α(R)

log R
→ +∞ as R → +∞.

Then, if A ⊆ Rd1 is a discrete point set such that

|A ∩ BR(0)| ≤ C2 Rb, R > 0, (1-6)

there is a set E ⊆ Rd such that:

(i) |E ∩ (m + [0, 1]
d)| ≥ p for all m ∈ Zd .

(ii) For any linear map T : Rd1 → Rd , if , for arbitrarily large values of R,

T (A) ∩ BR(0) (1-7)

contains at least α(R) points with separation R− f then

T (A) is not contained in E . (1-8)

Proof of Theorem 1.3 using Theorem 1.5. Apply Theorem 1.5 with d1 = 2, d = 1, b = 1, α(x) = A(x1/2)

(where A(x) is the counting function of A), f = 1 (there is great flexibility in choosing α(x), b, f ) and
the set

P = A × {1} ⊆ R2

to obtain a set E ⊆ R satisfying |E ∩ [m, m + 1]| ≥ p for all m ∈ Z. We see that (1-6) is satisfied. Let
now T : R2

→ R be given by the 1 × 2-matrix T = (t, x), so that

T (P) = x + tA.

For any x ∈ R, t > 0, the set (x + tA)∩ [−R, R] contains at least A(R/t) points of separation t , so, if R
is large enough, it contains α(R) = A(R1/2) points with separation R−1. It follows that x + tA is not
contained in E . □

Corollary 1.6 (avoiding linear images of general sets in high dimension). Let p ∈ [0, 1), d ≥ 1, an ∈ Rd

for n ∈ N, with log|an| = o(n) and |an − an+1| ≥ 1 for all n ∈ N. Then there is a set E ⊆ Rd such that,
for all m ∈ Zd , we have |E ∩ (m + [0, 1]

d)| ≥ p, and such that, for all x ∈ Rd and for all nonsingular
linear T : Rd

→ Rd , the set {x + T an : n ∈ N} is not contained in E.

Proof. Take A ⊆ R2d to be the set A×{(

d︷ ︸︸ ︷
1, 0, . . . , 0)}, where A ={an :n ∈ N}. Writing A(s)=#(A∩Bs(0))

for the counting function of A, we have A(R)/log R → +∞. Use Theorem 1.5 with d1 = 2d, b = 1,
α(R)= A(R1/2), f = 1. Let T : Rd

→ Rd be nonsingular, x ∈ Rd , and define the linear map S : R2d
→ Rd

by
S(u, v) = S(u, v1, v2, . . . , vd) = T u + v1x .

In other words the d × (2d)-matrix of S is (T | x | 0) in block form. It follows that

S(A) = {T an + x : n ∈ N}.
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Since T is nonsingular it follows that, if R > 0 is sufficiently large, the set S(A)∩ BR(0) contains at least
α(R) points with separation ≥ R−1, so the set E ⊆ Rd furnished by Theorem 1.5 does not contain S(A),
as we had to prove. □

Corollary 1.7 [Bradford et al. 2023, Corollary 6]. If p ∈ [0, 1) then there exists a set E ⊆ Rd such that
|E ∩ (m + [0, 1]

d)| ≥ p for all m ∈ Zd and it does not contain any set of the form x + N1, with x ∈ Rd

and 1 ∈ Rd
\ {0} (an arithmetic progression in Rd ).

Proof. We use Corollary 1.6 with the sequence an = (n, 0, . . . , 0) ∈ Rd , x ∈ Rd and any nonsingular
d × d-matrix T that maps (1, 0, . . . , 0) to 1. □

The outline of this note is as follows. In Section 3 we give the proof of Theorem 1.3 without using
Theorem 1.5, and we indicate how the same proof also works for Theorem 1.4. In Section 4 we extend
our technique to cover linear transformations of given sequences from one Euclidean space to another
and prove Theorem 1.5 and some corollaries.

Added in revision: The results in [Burgin et al. 2023], which came after this paper was submitted, are
very relevant to the results in this paper and contain some improvements.

2. Warm-up and some basic tools: no translational copies

In this section we introduce the basic probabilistic method by proving the more restricted Theorem 2.1:
we can avoid all translations of a given infinite sequence 0 ≤ an → +∞ with a set which is arbitrarily
large everywhere. This is considerably easier than avoiding all affine copies of the sequence, when scaling
the sequence as well as translating it is allowed. For translations we have only one degree of freedom
while for affine copies we have two. Still, some important ingredients of the method will be evident in
the proof of Theorem 2.1 below. In Section 3 we will introduce the extra discretization in scaling space
that will be required.

Theorem 2.1. Let A = {a0 = 0 < a1 < a2 < · · · } ⊆ R be a sequence with an → +∞, and let p ∈ [0, 1).
Then we can find a Lebesgue measurable set E ⊆ R such that no translate of A,

x + A, x ∈ R,

is contained in E , and such that, for each m ∈ Z, we have

|E ∩ [m, m + 1]| ≥ p.

Proof. Let q < 1 be defined by 1 − q =
1
2(1 − p)

(
or q =

1
2(1 + p)

)
. Passing to a subsequence, we can

assume that an+1 − an ≥ 1 for all n. We construct a random set E by breaking up each unit interval
[m, m + 1], m ∈ Z, into a number Nm of equal intervals and keeping each of these subintervals with
probability q , independently, in our set E . See Figure 1 for an illustration of the set E . As |m| increases,
the number Nm will also have to increase, so let us take Nm = max{K , |m|} say, where the large positive
integer K will be determined later.

Define now, for x ∈ R, the random function

φ(x) = 1(x + A ⊆ E).
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−4 −3 −2 −1 0 1 2 3 4

Figure 1. The random set E .

Since all points of x + A are in different random intervals, it follows, by independence, that Eφ(x) =

P[x + A ⊆ E] = 0. Let the set of “bad” x be

B = {x ∈ R : x + A ⊆ E}.

We have
E|B| =

∫
Eφ(x) dx = 0;

hence |B| is almost surely 0.
It remains to make sure that |E ∩ [m, m + 1]| ≥ p for all m ∈ Z. Fix m, and let X1, . . . , X Nm be 0/1

random variables such that X i is 0 if we included the i-th subinterval of [m, m + 1] in the set E and
is 1 otherwise. In other words, X i denotes the absence of the i-th subinterval from the set E . Clearly
EX i = 1 − q , and the random variable

X =

Nm∑
i=1

X i (the number of missing subintervals)

is a sum of independent indicator random variables with EX = (1 − q)Nm and we can use the very
versatile large deviation Chernoff inequality (to be used repeatedly in Sections 3.1 and 4 below)

P[|X − EX | ≥ ϵEX ] ≤ 2e−cϵEX (2-1)

(see [Alon and Spencer 1992; Chernoff 1952]) with ϵ = 1 to obtain

P[|E ∩ [m, m + 1]| < p] = P[X > (1 − p)Nm] = P[X − EX > EX ]

≤ 2 exp(−c1(1 − q) max{K , |m|}). (2-2)

Define now the bad events Bm = {|E ∩ [m, m + 1]| < p} which we do not want to hold, for all m ∈ Z,
and observe that the above inequality means that we can choose K large enough to achieve∑

m∈Z

P[Bm] < 1
2 .

This means that, with probability at least 1
2 , none of the bad events Bm hold and, with the same probability,

the set B has measure 0. We now amend our random set E by removing from it the set B (the set of first
terms of those x + A which are contained in E). Thus arises a set E ′, which differs from E by a set of
measure 0 and which contains no translate of A. □

Remark 2.2. It is not necessary to assume that an → +∞ in Theorem 2.1. It suffices to assume that
the set A is infinite. If A does not contain a sequence tending to infinity (for Theorem 2.1 to apply to
it) then it will have a finite accumulation point, so a result of Komjáth [1983] guarantees the existence
of a set Ẽ ⊆ [0, 1], of measure arbitrarily close to 1, which contains no translate of A. Repeating Ẽ
1-periodically,
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E =

⋃
n∈Z

Ẽ + n,

we obtain a set E with the required properties. For a probabilistic proof of this result in the spirit of the
present paper, see [Kolountzakis 1997].

Remark 2.3. The Chernoff inequality (2-1) is extremely useful when one needs to control a random
variable X (this means that one wants to ensure, with high probability, that X is near its mean EX ) which
is a sum of indicator, independent random variables. The key is that the mean EX cannot be very small, as
it appears in the exponent in the right-hand side of (2-1). Since one usually wants to do so simultaneously
for a large number of random variables X , one key situation to keep in mind is the following: if the
number of random variables to be controlled is polynomial in N (a parameter), it is enough that their
mean is at least a large multiple of log N .

With minor modifications of the proof we can get a progressively denser set E avoiding all translates.
We throw in the whole negative half-line (as we could have done in Theorem 1.3 too).

Theorem 2.4. Let A = {a0 = 0 < a1 < a2 < · · · } ⊆ R be a sequence with an → +∞. Then we can find a
Lebesgue measurable set E ⊆ R such that no translate of A,

x + A, x ∈ R,

is contained in E , and such that

(−∞, 0] ⊆ E and |E ∩ [m, m + 1]| → 1− as m → +∞.

Proof. We indicate the differences with the proof of Theorem 2.1 and omit some details.
Our random set E now will be of the same type as in the proof of Theorem 2.1 but with the probability

of including the small subintervals tending slowly to 1 as we go out to +∞ and with the negative half-line
contained in E to begin with.

Let us view the probability of keeping an interval as a function p(s) defined on the real line. In the
proof of Theorem 2.1 this function was constant. Here it will be constant on all intervals of the form
[m, m + 1], m ∈ Z.

With φ(x) = 1(x + A ⊆ E), we need again to ensure that Eφ(x) = 0 for all x ∈ R. After assuming, as
in the previous proof, that the points of A differ by at least 1, we again have independence of all events
x + a ∈ E for a ∈ A so that Eφ(x) = 0 becomes equivalent to∏

a∈A

p(x + a) = 0,

which, writing q(s) = 1 − p(s), is equivalent to∑
a∈A

q(x + a) = +∞. (2-3)

Let 0 = k1 < k2 < · · · be those positive integers for which

[k, k + 1) ∩ A ̸= ∅.
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Define then q(x) to be 1/ i in the interval [ki , ki+1), i = 1, 2, . . . . It follows easily that, for all x ∈ R, we
have (2-3): since the function q( · ) is decreasing we have q(x + an) ≥ q(an) if x ≤ 0, and if x ≥ 0 we
have q(x + an) ≥ q(a⌈x⌉+n) since ak+1 − ak ≥ 1 for all k ∈ N. In both cases the series (2-3) contains a
tail of the series

∑
a∈A q(a), which is divergent.

It remains to ensure that the random variables |[m, m + 1] \ E | tend to 0 with m → +∞. These
random variables are 1/Nm times a sum of independent indicator random variables (one for each of
the Nm subintervals into which we break up [m, m + 1]) of mean q(m)Nm , so we can use the Chernoff
bound (2-1) to obtain

P[|[m, m + 1] \ E | > 2q(m)] ≤ 2 exp(−c1q(m)Nm).

To ensure that the sum, over all m ∈ Z, of the left-hand side is < 1 we can of course pick the integers Nm

to be very large, say Nm = K |m|/q(m), with a sufficiently large constant K > 0. □

3. No affine copies for slowly increasing sequences

In this section we prove Theorem 1.3 and explain why the proof also gives the more general Theorem 1.4.

Lemma 3.1. Let A ∈ (A). For all 0 < a < b, 0 ≤ p < 1 and ϵ > 0, there is N0 ∈ N such that, for all
N ≥ N0, there is a set E ⊆ [−N , N ] such that

(i) for all m ∈ {−N , −N + 1, . . . , N − 1}, we have |E ∩ [m, m + 1]| ≥ p and

(ii) if the set B consists of all x ∈ [−N , N ] for which there is t ∈ [a, b] such that

(a) (x + tA) ∩ [−N , N ] ⊆ E and
(b) #((x + tA) ∩ [−N , N ]) ≥ A(N/(10b)),

then |B| < ϵ. Here, A( · ) is the counting function (1-1) of the set A and

A
( N

10b

)
=

∣∣∣A ∩

[
0,

N
(10b)

]∣∣∣.
Let us first show how one derives Theorem 1.3 from Lemma 3.1. We give the proof of Theorem 1.3 in

two steps: the first verifies the result for a restricted scale, that is, for scales in a compact interval, and the
second concludes for all positive scales, by writing the whole scaling interval (0, +∞) as a countable
union of intervals of the above type.

Step 1. For all 0 < a < b and for each 0 ≤ p < 1, there exists a set E ⊆ R such that |E ∩[m, m +1]| ≥ p
for all m ∈ Z, but E does not contain any affine copies of A with scale in [a, b].

Consider 0 ≤ p < 1 and a positive increasing sequence {pn}, n = 1, 2, . . . such that pn → 1− and,
moreover,

∞∑
n=0

(1 − pn) < 1 − p. (3-1)

Take also any positive sequence ϵn → 0. According to Lemma 3.1, for 0 < a < b, we can choose
an increasing sequence of natural numbers Nn = Nn(pn, ϵn, a, b) → ∞ for which there exist sets
En ⊆ [−Nn, Nn] with the following properties:
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−Nn · · ·· · · ·0 · · ·· · · Nn

Figure 2. The set Ẽn .

(i) for all m = −Nn, . . . , Nn − 1, we have |En ∩ [m, m + 1]| ≥ pn ,

(ii) if
An(x, t) = (x + tA) ∩ [−Nn, Nn]

and

Bn =

{
x ∈ [−Nn, Nn] : ∃t ∈ [a, b] s.t. An(x, t) ⊆ En and #An(x, t) ≥ A

(
Nn

10b

)}
,

then |Bn| < ϵn .

Now take
Ẽn = (−∞, −Nn] ∪ En ∪ [Nn, +∞)

and

E =

∞⋂
n=1

Ẽn.

See Figure 2 for an illustration of the set Ẽn .
Then, since |Ẽn ∩ [m, m + 1]| ≥ pn for all m ∈ Z, we get from (3-1) that the set E has measure at

least p at every unit interval with integer endpoints. Also, if there exist x and t such that x + tA ⊆ E , then
x + tA is also contained in each Ẽn . Having fixed x and t we can then find n0 large enough such that, for
all n ≥ n0, we have #((x + tA) ∩ [−Nn, Nn]) ≥ A(Nn/(10b)). This implies that, for every n ≥ n0, we
have x ∈ Bn . It follows that |Bn| < ϵn for every n ≥ n0. Since ϵn → 0, setting

B = {x : ∃t ∈ [a, b] s.t. x + tA ⊆ E},

we get |B| = 0. The null set of “bad” translates B is contained in E (since we assumed that 0 ∈ A), thus
removing it from E results in a set E ′ which still has measure |E ′

∩ [m, m + 1]| ≥ p for all m ∈ Z but
contains no affine copy of A with scale in [a, b].

Step 2. Completion of the proof of Theorem 1.3.
Take a positive sequence p′

n ∈ [0, 1), n ∈ Z, such that∑
n∈Z

(1 − p′

n) < 1 − p. (3-2)

Consider the intervals [an, bn] = [2n−1, 2n
], n ∈ Z. Then, according to Step 1, for each p′

n , there exists a
set En such that |En ∩ [m, m + 1]| ≥ p′

n for all m ∈ Z, but, for all x ∈ R and for all t ∈ [an, bn], the set
x + tA is not contained in En .

Take
E =

⋂
n∈Z

En.
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−N · · · −3 −2 −1 0 1 2 3 · · · N

Figure 3. The new random set E .

Assume that, for some x ∈ R and some t > 0, we have x + tA ⊆ E . Then, x + tA ⊆ En for all n ∈ Z.
However, since there is n0 ∈ Z such that t ∈ [2n0−1, 2n0], the inclusion x + tA ⊆ En0 cannot be true.
Thus, E does not contain any affine copy of A with positive scale. Finally, due to (3-2), we have
|[m, m + 1] \ E | < 1 − p, or |E ∩ [m, m + 1]| ≥ p.

3.1. Proof of Lemma 3.1. Fix the scale t ∈ [a, b], and let 0 ≤ p < 1. Consider the positive sequence

pN = 1 −

√
log

( N
10b

)
A
( N

10b

) . (3-3)

From (1-2) this implies pN → 1−.
Partition [−N , N ] into unit intervals [m, m+1], m =−N , −N +1, . . . , N −1. Divide each [m, m+1]

further into kN equal subintervals

Ii,m = m +

[ i −1
kN

,
i

kN

]
, i = 1, . . . , kN ,

where
kN =

⌈10
a

⌉ N
1− pN

. (3-4)

Notice that kN /N → +∞.
Construct a random set E = EN as follows: keep each Ii,m in E independently of the other intervals

and with probability pN as in (3-3). Then, P(x ∈ E) = pN for each x ∈ [−N , N ]. See Figure 3 for an
illustration of the new set E .

Let MN (x, t) be the number of elements of (x + tA) ∩ [−N , N ], and observe that

MN (x, t) ≤ A
(2N

a

)
for x ∈ [−N , N ]. (3-5)

For a given set E ⊆ [−N , N ], consider the set of “bad” translates

B =

{
x ∈ [−N , N ] : ∃t ∈ [a, b] s.t. (x + tA) ∩ [−N , N ] ⊆ E and MN (x, t) ≥ A

( N
10b

)}
. (3-6)

We first deal with the measure of B. We have

E|B| = E

∫ N

−N
1B(x) dx

=

∫ N

−N
P

[
∃t ∈ [a, b] : (x + tA) ∩ [−N , N ] ⊆ E and MN (x, t) ≥ A

( N
10b

)]
dx . (3-7)

In what follows, we estimate from above the probability in (3-7), uniformly in x ∈ [−N , N ].
Fix x ∈ [−N , N ]. To check whether there exists t ∈ [a, b] such that (x + tA) ∩ [−N , N ] ⊆ E , it is

sufficient to check whether such a t exists in a finite set

S = S(x) = {t1, t2, . . . , tu} ⊆ [a, b]. (3-8)
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x

x + t2an2

x + t1an1

−N · · · −3 −2 −1 0 1 2 3 · · · N

Figure 4. As x is held fixed and t grows, the points x + tan cross over interval endpoints
creating events that need to be checked.

Write α′

0 < α′

1 < · · · < α′

MN (x,t)−1 for the elements of (x + tA) ∩ [−N , N ]. Then, the set S consists
exactly of those t ∈ [a, b] for which some α′

j = x + taj , j = 0, . . . , MN (x, t) − 1, is in the set

m +

{
0,

1
kN

,
2

kN
, . . . ,

kN −1
kN

, 1
}

for some m ∈ {−N , −N + 1, . . . , N − 1}. Each of the points α′

j = x + taj traverses — as t moves from
a to b and as long as the point α′

j remains in [−N , N ] — an interval of length at most 2N , therefore it
meets at most 2NkN interval endpoints of the intervals Ii,m . See Figure 4 for an illustration. Altogether,
we have

u ≤ 2NkN sup
a≤t≤b

MN (x, t) ≤ c(a)N 2(1 − pN )−1 A
(2N

a

)
, (3-9)

where, for the last inequality, we used (3-4) and (3-5).
Since kN → +∞, we can take N large enough, say N ≥ N0, that kN > 1/a for every N ≥ N0.

Then, the length of each Ii,m is small enough, ≤ a, to ensure that, for each t ∈ [a, b], the points α′

j ,
j = 0, . . . , MN − 1, all belong to different intervals Ii,m . Therefore, for any fixed x and t ,

P
[
(x + tA) ∩ [−N , N ] ⊆ E and MN (x, t) ≥ A

( N
10b

)]
≤ P

[
(x + tA) ∩ [−N , N ] ⊆ E

∣∣ MN (x, t) ≥ A
( N

10b

)]
≤ pA(N/(10b))

N . (3-10)

Thus, using the bound (3-9),

P[∃t ∈ S : (x + tA) ∩ [−N , N ]) ⊆ E] ≤ c(a)N 2(1 − pN )−1 A
(2N

a

)
pA(N/(10b))

N .

Thus, (3-7) yields

E|B| ≤ 2c(a)N 3(1 − pN )−1 A
(2N

a

)
pA(N/(10b))

N .

We want to have

N 3(1 − pN )−1 A
(2N

a

)
pA(N/(10b))

N → 0,

while pN → 1− as N → ∞. Since A( · ) grows at most linearly at infinity, it suffices to show that

A
( N

10b

)
log pN

(
4

log N

A
( N

10b

)
log pN

−
log(1 − pN )

A
( N

10b

)
log pN

+ 1
)

→ −∞. (3-11)
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To show (3-11), observe first that, since limx→+∞ x log(1 − x−1/2) = −∞, we have

A
( N

10b

)
log pN

log N
→ −∞ (3-12)

due to (3-3). Therefore, we also have A(N/(10b)) log pN → −∞. Finally, by (3-3) and (3-12), we get

log(1 − pN )

A
( N

10b

)
log pN

= −
1
2

log A
( N

10b

)
A
( N

10b

)
log pN

{
1 −

log log N
10b

log A
( N

10b

)}
→ 0.

In other words, we have shown that, for every ϵ > 0, there is N1 ≥ N0 such that, for all N ≥ N1, we have
E|B| < 1

2ϵ, which implies that
P(|B| ≥ ϵ) < 1

2 for all N ≥ N1. (3-13)

We now turn to the measure of E in every unit interval with integer endpoints. Fix m ∈ [−N , N ]. Let
Xm

1 , Xm
2 , . . . , Xm

kN
be independent indicator random variables, with Xm

i = 1 if and only if Ii,m ⊆ E . Let
Y m

i = 1 − Xm
i , and denote by Xm

=
∑kN

i=1 Xm
i and Y m

=
∑kN

i=1Y m
i their sums. Then, EY m

= (1 − pN )kN .
Notice also that the total measure kept in [m, m + 1] ∩ E is equal to Xm/kN .

For any δ > 0, we define the “bad” events

Am = {|Y m
− EY m

| > δ EY m
}, m = −N , −N + 1, . . . , N − 1.

To control P[Am], we use Chernoff’s inequality [Alon and Spencer 1992; Chernoff 1952]: for all δ > 0,

P[Am] ≤ 2e−cδEY m
,

where cδ = min
{
(1 + δ) log(1 + δ) − δ log δ, 1

2δ2
}
. Take δ =

1
2 . It follows that

P
[
|Y m

− (1 − pN )kN | > 1
2(1 − pN )kN

]
≤ 2 exp

(
−

1
2(1 − pN )kN

)
.

Thus, the probability that there is some [m, m + 1] ⊆ [−N , N ] such that Am holds is at most

4N exp
(
−

1
2(1 − pN )kN

)
,

and the right-hand side tends to zero as N → +∞ by our choice of kN in (3-4). Thus, there is N2 ≥ N1

such that
P[∃m ∈ {−N , −N + 1, . . . , N − 1} : Am holds] < 1

2 (3-14)

for all N ≥ N2. Then, (3-13) and (3-14) imply the existence of a set E ⊆ R such that, on the one hand, it
satisfies

|B| < ϵ

and, on the other hand,
Xm

− pN kN ≥ −
1
2(1 − pN )kN

for all m = −N , −N + 1, . . . , N − 1, for all N ≥ N2. Thus the measure of E in each unit interval
[m, m + 1] is at least pN −

1
2(1 − pN ) → 1 as pN → 1−. In other words, for all 0 ≤ p < 1, there is

N3 ≥ N2 such that, for all N ≥ N3, we have |E ∩ [m, m + 1]| ≥ p. The proof of Lemma 3.1 is complete.
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Remark 3.2. Let us indicate here why the proof of Theorem 1.3 just completed also applies to Theorem 1.4
without any essential changes. First of all, the implication from Lemma 3.1 to Theorem 1.5 (finite to
infinite) remains true almost verbatim. So it suffices to ensure that Lemma 3.1 is true in this case. The
main ingredients of the proof of Lemma 3.1 are the following. Having fixed x and varying t we have to
make sure that the following conditions hold:

C.1 All points of the (x, t)-copy of the set remain well-separated, so that independence applies and we
can multiply the probabilities that they belong to our random set. This is ensured by (1-4).

C.2 The number of points in the (x, t)-copy of the set in the interval [−N , N ] has to be large as this is
the exponent in the upper bound (3-10). Condition (1-5) guarantees this.

C.3 The number of events that need to be checked so that we are certain that, for all t , no (x, t)-copy is
contained in our random set is small. This is the number u in (3-8). What we are doing in the proof
is to count how many times each of the points of our set (as x is held fixed and t increases from
a to b) crosses over an interval boundary. Since the φ(n, t) are assumed increasing in t this remains
as before.

It should be clear that the conditions imposed on the scaling functions φ(n, t) in Theorem 1.4 are far
from optimal. They are rather indicative of what can be accomplished with the method, and it is clear
that the method could work under different sorts of conditions.

4. The problem in higher dimension

We will derive Theorem 1.5 as a consequence of the more finitary theorem below.

Theorem 4.1. Let d1, d ≥ 1, β, ζ > 0, p ∈ (0, 1). Let also α(N ) be a function satisfying

α(N )

log N
→ +∞.

Then, if N is sufficiently large and P ⊆ Rd1 is a point set with at most N ζ points, there is a set
EN ⊆ [−N , N ]

d such that:

(1) |EN ∩ (m + [0, 1]
d)| ≥ p for all m = (m1, . . . , md) ∈ Zd , with −N ≤ m j < N.

(2) For any linear map T : Rd1 → Rd , if

T (P) ∩ [−N , N ]
d (4-1)

contains at least α(N ) points with separation ≥ N−β , then

(T (P) ∩ [−N , N ]
d) ⊊ EN . (4-2)

Proof. Let γ > β, and split the cube [−N , N ]
d with an N−γ

× · · · × N−γ -spaced grid of O(d N 1+γ )

hyperplanes perpendicular to the d coordinate axes. Define the random set E to contain each of the
N−γ

× · · · × N−γ -sized cubes independently with probability p′
∈ (p, 1). We show that, with positive

probability, one can take EN = E .
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T1

T2

Figure 5. The regions defined in T -space by the equations E(H, T (q)) for all H , q.
Only one of the transformations T1, T2 needs to be checked.

The first property of E is a simple consequence of Chernoff bounds and we can assume it holds with
probability > 1

2 working as in the proof of Theorem 1.3.
Let T = (Ti, j ) be a linear map Rd1 → Rd . This depends on d · d1 real variables Ti, j , so we view T

as an element of Rd·d1 . Instead of checking condition (2) for all T ∈ Rd·d1 , we first show that there is a
small number (polynomial in N ) of transformations T that need to be checked.

Indeed, the set of N−γ
× · · · × N−γ -sized cubes that contain T (P) does not change when T varies

except when one or more of the points in T (P) cross a dividing hyperplane of those that subdivide
[−N , N ]

d . Let H be one of those O(d N 1+γ ) hyperplanes, and fix an arbitrary point h ∈ H . Let also u
be a unit vector orthogonal to H . For a point x ∈ Rd to belong to H , it must satisfy the linear equation

E(H, x) : u · x = u · h.

Let q ∈ P . For the point T (q) to belong to H , we must have

E(H, T (q)) : u · T (q) = u · h,

which is a linear equation in T ∈ Rd·d1 . Taking all such equations in T over all dividing hyperplanes H
and all q ∈ P , we obtain a subdivision of Rd·d1 by

n = O(d · N 1+γ
· |P|)

hyperplanes. These n hyperplanes subdivide Rd·d1 into m = O(nd·d1) connected regions (this is easily
proved by induction on the dimension or see [Buck 1943]). For any two points T1, T2 in the same region,
condition (4-2) is either true for both or false for both since we can move continuously from T1 to T2

without leaving the region and, therefore, without any of the points T (q) touching any of the dividing
hyperplanes H . See Figure 5 for an illustration.
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It suffices therefore to check condition (4-2) for one point per region. Let us call these points T1, . . . , Tm .
To guarantee that (4-2) holds for all T , it is enough for it to be true for all Tj , j = 1, 2, . . . , m. Define
the bad events

Bj =

⋂
q∈P

{Tj (q) ∈ E}.

We need to ensure that none of the Bj holds, but we only need to check those Bj for which there is a T in
the cell of Tj for which (4-1) holds. For such a j , the number of different N−γ

× · · ·× N−γ -sized cubes
touched by Tj (P) is the same as the number touched by T (P), which is at least α(N ), so

P[Bj ] ≤ p′α(N ),

and it is therefore enough to make sure that

nd·d1 p′α(N )
= O(N ζ ·d·d1 N (1+γ )d·d1 p′α(N ))

can be made arbitrarily small by choosing N large. This is clearly possible since the term p′α(N ) decays
faster than any power of N . □

Proof of Theorem 1.5. Let pn ∈ (0, 1) be such that
∞∑

n=1

(1 − pn) < 1 − p. (4-3)

Apply Theorem 4.1 successively for N =n, pn , ζ =b, α(N )=α(R), β = f and the set P =A∩[−n, n]
d1

to obtain sets En ⊆ [−n, n]
d . Define

E =

∞⋂
n=1

(En ∪ (Rd
\ [−n, n]

d)).

It is easy to see because of (4-3) that, for any m ∈ Zd , we have |E ∩ m +[0, 1]
d
| ≥ p. Let T : Rd1 → Rd ,

and let R be such that T (A) ∩ BR(0) contains α(R) points which are R− f -separated. Let n = ⌈R⌉. It
follows from Theorem 4.1 that T (A) ∩ [−n, n]

d is not contained in En ∪ (Rd
\ [−n, n]

d) and therefore
not contained in E , as we had to show. □
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[Falconer 1984] K. J. Falconer, “On a problem of Erdős on sequences and measurable sets”, Proc. Amer. Math. Soc. 90:1 (1984),
77–78. MR Zbl

[Falconer and Marstrand 1986] K. J. Falconer and J. M. Marstrand, “Plane sets with positive density at infinity contain all large
distances”, Bull. Lond. Math. Soc. 18:5 (1986), 471–474. MR Zbl

[Fraser and Pramanik 2018] R. Fraser and M. Pramanik, “Large sets avoiding patterns”, Anal. PDE 11:5 (2018), 1083–1111.
MR Zbl

[Fürstenberg et al. 1990] H. Fürstenberg, Y. Katznelson, and B. Weiss, “Ergodic theory and configurations in sets of positive
density”, pp. 184–198 in Mathematics of Ramsey theory, edited by J. Nešetřil and V. Rödl, Algorithms Combin. 5, Springer,
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