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THE KATO SQUARE ROOT PROBLEM
FOR WEIGHTED PARABOLIC OPERATORS

ALIREZA ATAEI, MORITZ EGERT AND KAJ NYSTRÖM

We give a simplified and direct proof of the Kato square root estimate for parabolic operators with elliptic
part in divergence form and coefficients possibly depending on space and time in a merely measurable
way. The argument relies on the nowadays classical reduction to a quadratic estimate and a Carleson-type
inequality. The precise organization of the estimates is different from earlier works. In particular, we
succeed in separating space and time variables almost completely despite the nonautonomous character of
the operator. Hence, we can allow for degenerate ellipticity dictated by a spatial A2-weight, which has not
been treated before in this context.

1. Introduction and main result

In the variables (x, t) ∈ Rn
× R =: Rn+1, we consider parabolic operators of the form

Hu := ∂t u − w−1 divx(A∇x u), (1-1)

where the weight w =w(x) is time-independent and belongs to the spatial Muckenhoupt class A2(R
n, dx),

and the coefficient matrix A = A(x, t) is measurable with complex entries and possibly depends on all
variables. Degeneracy is dictated by the same weight w in the sense that w−1 A satisfies the classical
uniform ellipticity condition (Section 2.3).

Weighted parabolic operators as in (1-1) occur in various contexts and applications, including the study
of fractional powers [Litsgård and Nyström 2023] and heat kernels of Schrödinger equations with singular
potential [Ishige et al. 2017]. For contributions to the study of local properties of solutions to Hu = 0 and
Gaussian estimates, we refer to [Chiarenza and Serapioni 1985; Cruz-Uribe and Rios 2008].

The purpose of this paper is to establish the Kato (square root) estimate for H, that is, to prove
Theorem 1.1 stated below. We write L2

µ = L2(Rn+1, dw dt), dµ = dw dt = w(x) dx dt , for the natural
weighted Lebesgue space associated with H, and Eµ for the corresponding first-order parabolic Sobolev
space of functions u such that the spatial gradient ∇x u, as well as the half-order time derivative D1/2

t u, is
in L2

µ. For the sake of the introduction, an intuitive interpretation of these objects suffices. We turn to
rigorous definitions in Section 3.
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Theorem 1.1. The operator H can be defined as an m-accretive operator in L2
µ associated with an

accretive sesquilinear form with domain Eµ. The domain of its unique m-accretive square root is the same
as the form domain, that is D(

√
H) = Eµ, and

∥
√
Hu∥L2

µ
∼ ∥∇x u∥L2

µ
+ ∥D1/2

t u∥L2
µ
, u ∈ Eµ,

holds with an implicit constant that depends on the dimension, the ellipticity parameters of A and the
A2-constant for w.

The time derivative ∂t is a skew-adjoint operator, and hence there are no lower bounds for the formal
pairing Re⟨Hu, u⟩ that contain derivatives in t . However, when the time variable describes the full real line,
parabolic operators admit some “hidden coercivity” that can be revealed through the Hilbert transform Ht

in the t-variable. Indeed, splitting ∂t = D1/2
t Ht D1/2

t , the sesquilinear form associated with (1-1) over L2
µ

is given by

B(u, v) :=

∫∫
Rn+1

w−1 A∇x u · ∇xv + Ht D1/2
t u · D1/2

t v dw dt, u, v ∈ Eµ, (1-2)

and lower bounds including both time and space derivatives become available when taking v = (1+δHt)u
with δ > 0 small. This observation is originally due to Kaplan [1966] and has been rediscovered several
times ever since; see [Dier and Zacher 2017; Hofmann and Lewis 2005; Nyström 2016] for example.
M-accretivity of H essentially follows from this observation, but to the best of our knowledge an explicit
statement, in the unweighted case w = 1, only appeared much later in [Auscher and Egert 2016]. For
the reader’s convenience, we reproduce the full argument in our weighted setting in Section 4. Being
m-accretive, H admits a sectorial functional calculus and in particular a (unique) m-accretive square
root

√
H; see [Haase 2006; Kato 1966] for background. This is how our main result should be understood.

The pursuit of the solution of the Kato problem for unweighted elliptic operators (finally completed
in [Auscher et al. 2002]) introduced new techniques that proved extremely viable for extensions and
applications to other problems in harmonic analysis and partial differential equations [Amenta and Auscher
2018; Alfonseca et al. 2011; Auscher and Axelsson 2011; Auscher and Mourgoglou 2019; Auscher and
Rosén 2012; Auscher et al. 2018; Castro et al. 2016; Escauriaza and Hofmann 2018; Hofmann et al. 2015;
2019; 2022; Nyström 2017]. For this reason, Kato-type estimates for different operators are desirable,
and the results of this paper most surely have important implications for, and applications to, boundary
value problems for weighted second-order parabolic operators.

Let us mention that the case of A2-weighted elliptic operators was settled in [Cruz-Uribe and Rios
2015], see also [Cruz-Uribe et al. 2018] for an extension, and rediscovered in the more general framework
of first-order Dirac operators in [Auscher et al. 2015]. The third author was first to develop the underlying
harmonic analysis in the unweighted parabolic setting in [Nyström 2016], and in the same paper he
proved the square function estimates that are essentially equivalent to Theorem 1.1 when w ≡ 1 and
when the coefficients A are t-independent. Using a framework of parabolic Dirac operators, Auscher,
together with the second and third authors, obtained the unweighted parabolic case when coefficients
depend measurably on x and t [Auscher et al. 2020]. Our Theorem 1.1 completes this succession of
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results but there is more to it and that makes, as we shall discuss next, the present paper interesting even
in the unweighted case.

Under the assumption A = A(x) in [Nyström 2016], the operator H is an autonomous parabolic
operator, and, in retrospect, the main result of that paper could have been obtained by interpolation from
maximal regularity of the Cauchy problem for (1-1); see [Ouhabaz 2021]. (In fact, this argument requires
only smoothness of order 1

2 for the coefficients in the t-variable.) However, many of the techniques
in [Nyström 2016], such as the parabolic off-diagonal estimates and the construction of T b-type test
functions, had already been strong enough for proving the parabolic Kato estimate in the presence of
measurable t-dependence, and our proof of Theorem 1.1 shows exactly how, thereby making our result
novel in at least two ways:

• We generalize all previous findings in the parabolic setting by combining measurable dependence of
the coefficients on all variables with A2-weighted degeneracy in space.

• We avoid the Dirac operator framework in [Auscher et al. 2020]. The resulting “second-order”
approach for parabolic operators with time-dependent measurable coefficients has not appeared in
the literature before, and, when restricted to the unweighted case w ≡ 1, it provides a significant
simplification of the proof of [Auscher et al. 2020, Theorem 2.6].

Our ambition is to present an almost self-contained argument using only a minimal number of tools. We
do not attempt to generalize all further results in [Auscher et al. 2020] to the weighted setting, which
should be done by developing a parabolic weighted Dirac operator framework.

As is customary in the field, see [Auscher et al. 2002; Cruz-Uribe and Rios 2015; Hofmann et al. 2022;
Nyström 2016], the first reduction in the proof of Theorem 1.1 is to use the bounded H∞-calculus for
m-accretive operators and a duality argument in order to reduce the matter to the one-sided quadratic
estimate ∫

∞

0
∥λH(1 + λ2H)−1u∥

2
L2

µ

dλ

λ
≲ ∥∇x u∥

2
L2

µ

+ ∥D1/2
t u∥

2
L2

µ

, u ∈ Eµ. (1-3)

In contrast to the elliptic setting, this reduction does not follow immediately from classical results à la
Kato and Lions [Lions 1962], since the sesquilinear form B in (1-2) is not closed due to the lack of lower
bounds by half-order time derivatives. Some more care is needed but we settle the issue in Section 6.
The quadratic estimate (1-3) is then achieved by slightly refining the techniques in [Nyström 2016], and
the argument relies on (weighted) Littlewood–Paley theory in L2 (Section 5), which eventually reduces
matters to a Carleson measure estimate that can be proved through a T b-procedure (Section 8).

It came as a surprise to us that, even though coefficients may depend measurably on all variables, the
proof of (1-3) can be arranged in a way that almost completely separates time and space variables. This
observation incarnates in three different stages of the proof:

• At the level of Littlewood–Paley theory, it suffices to use weighted elliptic theory in x and classical
Fourier analysis in t . The required weighted theory has already been developed in detail by Cruz-Uribe
and Rios [2012; 2015] in order to solve the weighted elliptic Kato problem.
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• At the level of off-diagonal bounds (averaged “kernel” bounds, see Section 4.4), we only need
estimates for operators involving differentiation in space. These estimates can be deduced directly
from the equation and come with parabolic scaling. The much more involved off-diagonal decay
and Poincaré inequalities for nonlocal derivatives such as D1/2

t , which were fundamental novelties
in [Auscher et al. 2020], can be avoided.

• At the level of the T b-argument, the test functions can be constructed based on a product structure,
which makes the argument more straightforward compared to the system of functions used in
[Auscher et al. 2020].

These three observations have in common that we can regroup derivatives of resolvents of H in such a
way that fine harmonic analysis estimates need only apply to the spatial parts, whereas the t-derivatives
appear in blocks that are amenable for simple resolvent estimates in L2

µ-norm. We shall indicate the most
striking examples of this principle along with the proof of the Carleson measure estimate in the final
section.

The next section contains some preliminary notation and conventions. The rest of the paper follows
the outline above.

2. Preliminaries and basic assumptions

Given (x, t) ∈ Rn
× R, we let ∥(x, t)∥ := max{|x |, |t |1/2

}. We call ∥(x, t)∥ the parabolic norm of (x, t).
Given a half-open cube Q =

(
x −

1
2r, x +

1
2r

]n
⊂ Rn parallel to the coordinate axes with sidelength r and

an interval I =
(
t − 1

2r2, t + 1
2r2

]
, we call 1 := Q × I ⊂ Rn+1 a parabolic cube of size r . Occasionally, we

write 1r (x, t) = Qr (x)× Ir (t) and r = ℓ(1) to indicate the center and size directly. A dyadic parabolic
cube of size 2 j is by definition centered in (2 j Z)n

× (4 j Z). For every c > 0, and given 1, we define c1
as the parabolic cube with the same center as 1 and size cℓ(1).

2.1. Assumptions and notation concerning the weight. For general background and the results cited
here, we refer to [Stein 1993, Chapter V]. The weight w = w(x) is a real-valued function belonging to
the Muckenhoupt class A2(R

n, dx), that is,

[w]A2 := sup
Q

(
−

∫
Q

w dx
)(

−

∫
Q

w−1 dx
)

< ∞, (2-1)

where the supremum is taken with respect to all cubes Q ⊂Rn . We introduce the measure dw(x) :=w(x) dx
on Rn , and we write w(E) =

∫
E dw for all Lebesgue measurable sets E ⊂ Rn . For averages, we use the

notation

(g)E,w := −

∫
E

g(x) dw(x) :=
1

w(E)

∫
E

g(x)w(x) dx

if w(E) ∈ (0, ∞) and g is locally integrable on Rn with respect to dw(x). It follows from (2-1) that there
are constants η ∈ (0, 1) and β > 0, depending only on n and [w]A2 , such that

β−1
(

|E |

|Q|

)1/(2η)

≤
w(E)

w(Q)
≤ β

(
|E |

|Q|

)2η

(2-2)
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whenever E ⊂ Q is measurable, and where | · | denotes Lebesgue measure in Rn . In particular, there
exists a constant D depending only on [w]A2 and n, called the doubling constant for w, such that

w(2Q) ≤ Dw(Q) for all cubes Q ⊂ Rn. (2-3)

The measures
dµ = dµ(x, t) := w(x) dx dt,

dµ−1
= dµ−1(x, t) := w(x)−1 dx dt

(2-4)

are defined on Rn+1. Naturally, µ and µ−1 can be seen as measures on Rn+1 defined by A2(R
n+1, dx dt)

weights, and in the context of these measures we use similar notation as above. The doubling constant
for µ with respect to parabolic scaling is 4D.

2.2. Maximal functions. We introduce the maximal operators in the individual variables

M(1)(g1)(x) := sup
r>0

−

∫
Qr (x)

|g1| dx,

M(2)(g2)(t) := sup
r>0

−

∫
Ir (t)

|g2| dt

for all locally integrable functions g1 and g2 on Rn and R, respectively. The operator M(1) is bounded on
the weighted space L2(Rn, dw) with a bound depending on [w]A2 and n [Stein 1993, Theorem 1, p. 201].
Both maximal operators can be naturally extended to L2(Rn+1, dµ) by keeping one of the variables fixed,
and they are bounded in this setting.

2.3. Assumptions on the coefficients. The matrix-valued function

A = A(x, t) = {Ai, j (x, t)}n
i, j=1

is assumed to have complex measurable entries Ai, j that satisfy

c1|ξ |
2w(x) ≤ Re(A(x, t)ξ · ξ̄ ), |A(x, t)ξ · ζ | ≤ c2w(x)|ξ ||ζ | (2-5)

for some c1, c2 ∈ (0, ∞) and for all ξ, ζ ∈ Cn , (x, t) ∈ Rn+1. Here, u · v = u1v1 + · · · + unvn , and ū
denotes the complex conjugate of u so that u · v̄ is the standard inner product on Cn . We refer to c1, c2 as
the ellipticity constants of A. Assumption (2-5) is equivalent to saying that w−1 A satisfies the classical
uniform ellipticity condition.

2.4. Floating constants. We refer to n and the constants [w]A2 , c1, c2, appearing in (2-1) and (2-5), as
structural constants. For A, B ∈ (0, ∞), the notation A ≲ B means that A ≤ cB for some c depending at
most on the structural constants. The notation A ≳ B and A ∼ B should be interpreted similarly.

3. Weighted function spaces

In this section we give a brief account of the relevant weighted function spaces. We let L2
w = L2(Rn, dw)

be the Hilbert spaces of square integrable functions with respect to dw. Its norm is denoted by ∥ · ∥2,w, its
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inner product by ⟨ · , · ⟩2,w, and the operator norm of linear operators on that space by ∥ · ∥2→2,w. Thanks
to the A2-condition, we have

L2
w ⊂ L1

loc(R
n, dx), (3-1)

and the class C∞

0 (Rn) of smooth and compactly supported test functions is dense in L2
w via the usual

truncation and convolution procedure [Kilpeläinen 1994, Section 1]. The same notation and properties
apply to L2

µ in Rn+1.

Definition 3.1 (elliptic weighted Sobolev space). We write H1
w := H1

w(Rn) for the space of all f ∈ L2
w

for which the distributional gradient ∇x f is (componentwise) in L2
w, and we equip the space with the

norm ∥ · ∥H1
w

:= (∥ · ∥
2
2,w + ∥∇x · ∥

2
2,w)1/2.

By construction H1
w is a Hilbert space, and standard truncation and convolution techniques yield that

C∞

0 (Rn) is dense in H1
w; see [Kilpeläinen 1994, Theorem 2.5].

In order to define parabolic function spaces, we use the Fourier transform F in the time variable,
keeping in mind that if f ∈ L2(Rn+1, dµ), then f (x, · ) ∈ L2(R, dt) for a.e. x ∈ Rn . The corresponding
Fourier variable will be denoted by τ . Then,

Ht f := F−1(i sgn(τ )F f )

is our Hilbert transform. If |τ |
1/2F f ∈ L2

µ, then we define the half-order time derivative

D1/2
t f := F−1(|τ |

1/2F f ),

and this is what we mean when we write D1/2
t f ∈ L2

µ. Using a classical formula for fractional Laplacians
for a.e. fixed x ∈ Rn , see [Di Nezza et al. 2012] for example, we obtain

∥D1/2
t f ∥

2
2,µ =

2
π

∫
Rn

∫
R

∫
R

| f (x, t) − f (x, s)|2

|t − s|2
ds dt dw(x), (3-2)

with the right-hand side being finite precisely when D1/2
t f ∈ L2

µ.

Definition 3.2 (parabolic energy space). We write Eµ := Eµ(Rn+1) for the space of all f ∈ L2
µ for which

∇x f, D1/2
t f ∈ L2

µ, and we equip the space with the norm

∥ · ∥Eµ
:= (∥ · ∥

2
2,µ + ∥∇x · ∥

2
2,µ + ∥D1/2

t · ∥
2
2,µ)1/2.

For f ∈ Eµ, we will refer to the vector D f := (∇x f, D1/2
t f ) as the parabolic gradient of f .

Again, Eµ is a Hilbert space. Note that, in the unweighted setting of [Nyström 2016], the notation D

has a slightly different meaning.

Lemma 3.3. The following statements are true:

(i) The space C∞

0 (Rn+1) is dense in Eµ(Rn+1).

(ii) Multiplication by C1(Rn+1)-functions is bounded on Eµ(Rn+1).
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Proof. We begin with (i). If f ∈ Eµ, then convolutions with smooth mollifiers, separately in x and t ,
provide smooth approximations in Eµ. For the convolution in space, this argument uses the A2-condition
on w as mentioned above. Hence, it suffices to approximate f by compactly supported functions in Eµ. To
this end, we can follow the standard pattern of smooth truncation: We pick a sequence (η j ) j ⊂ C∞

0 (Rn+1)

such that η j → 1 pointwise a.e. as j →∞, ∥η j∥∞+ j∥∇xη j∥∞+ j∥∂tη j∥∞ ≤ c uniformly in j , and then
we set f j := η j f . By dominated convergence, we obtain f j → f and ∇x f j → ∇x f in L2

µ as j → ∞. For
the half-order derivative, we use (3-2) with f j − f in place of f . We first bound the integrand in (3-2) by

|( f j − f )(x, t) − ( f j − f )(x, s)|2

|t − s|2

≤ 2
|(η j − 1)(x, t) − (η j − 1)(x, s)|2

|t − s|2
| f (x, t)|2 + 2

| f (x, t) − f (x, s)|2

|t − s|2
|(η j − 1)(x, s)|2

≤ 2 min
{

c2,
4(c + 1)2

|t − s|2

}
| f (x, t)|2 + 2(c + 1)2 | f (x, t) − f (x, s)|2

|t − s|2
. (3-3)

The right-hand side is independent of j and integrable with respect to ds dt dw(x). Since the middle term
tends to 0 a.e. as j → ∞, we conclude

∥D1/2
t ( f j − f )∥2,µ → 0

by dominated convergence. This completes the proof of (i).
As for (ii), we note that if η ∈ C1(Rn+1) and f ∈ Eµ, then

∥η f ∥2,µ ≤ ∥η∥∞∥ f ∥2,µ,

∥∇x(η f )∥2,µ ≤ ∥η∥∞∥∇x f ∥2,µ + ∥∇xη∥∞∥ f ∥2,µ,

∥D1/2
t (η f )∥2,µ ≤

√
8∥η∥

1/2
∞

∥∂tη∥
1/2
∞

∥ f ∥2,µ + ∥η∥∞∥D1/2
t f ∥2,µ,

where the third line follows by the same splitting as in (3-3), but with η in place of 1 − η j . □

Lemma 3.3 (i) implies the chain of continuous and dense embeddings

Eµ ⊂ L2
µ ≃ (L2

µ)∗ ⊂ (Eµ)∗, (3-4)

where we use the upper star to denote (anti)-dual spaces. We have bounded operators

D1/2
t : Eµ → L2

µ,

∇x : Eµ → (L2
µ)n,

(3-5)

and we denote their adjoints with respect to (3-4) by

D1/2
t : L2

µ → (Eµ)∗,

w−1 divx w : (L2
µ)n

→ (Eµ)∗.
(3-6)

Note carefully that w−1 divx w is only a suggestive notation reflecting the formal action of this operator.
In general, there is no guarantee that this operator splits into a composition of its three building blocks.
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4. The parabolic operator

We continue by introducing the formal parabolic operator in (1-1) rigorously as an unbounded operator in
the Hilbert space L2

µ associated with a sesquilinear form.

Denoting by Ht the Hilbert transform in the t-variable and by D1/2
t the half-order time derivative as

defined in Section 3, we can factorize
∂t = D1/2

t Ht D1/2
t .

By (3-5) and (3-6), we have ∂t : Eµ → (Eµ)∗. We define H as a bounded operator Eµ → (Eµ)∗ via

(Hu)(v) := B(u, v) :=

∫∫
Rn+1

w−1 A∇x u · ∇xv + Ht D1/2
t u · D1/2

t v dµ, u, v ∈ Eµ. (4-1)

In view of (3-4), it makes sense to consider the maximal restriction of H to an operator in L2
µ, called the

part of H in L2
µ, with domain

D(H) := {u ∈ Eµ(Rn+1) : Hu ∈ L2
µ(Rn+1)}. (4-2)

If u ∈ D(H), we have, for all v ∈ Eµ, that

(Hu)(v) =

∫∫
Rn+1

Hu · v̄ dµ,

and a formal integration by parts in (4-1) reveals that it is indeed justified to say that the part of H in L2
µ

gives meaning to the formal expression in (1-1). More precisely, in terms of (3-5) and (3-6), we have that
H : Eµ → (Eµ)∗ acts as the composition of operators

H = D1/2
t Ht D1/2

t − (w−1 divx w)(w−1 A∇x). (4-3)

4.1. Hidden coercivity. The following lemma relies on the hidden coercivity (proved by Kaplan [1966])
of the parabolic sesquilinear form B in (4-1) that can be revealed through the Hilbert transform.

Lemma 4.1. Let σ ∈ C with Re σ > 0. For each f ∈ (Eµ)∗, there exists a unique u ∈ Eµ such that
(σ +H)u = f . Moreover,

∥u∥Eµ
≤

√
2 max

{
c2 + 1

c1
,
|Im σ | + 1

Re σ

}
∥ f ∥(Eµ)∗ .

Proof. By Plancherel’s theorem, the Hilbert transform Ht is isometric on Eµ. Hence, we can define a
“twisted” sesquilinear form Bδ,σ : Eµ × Eµ → C via

Bδ,σ (u, v) :=

∫∫
Rn+1

(
σu · (1 + δHt)v + w−1 A∇x u · ∇x(1 + δHt)v

+ Ht D1/2
t u · D1/2

t (1 + δHt)v
)

dµ, (4-4)

where δ ∈ (0, 1) is to be chosen. Clearly Bδ,σ is bounded. Since Ht is skew-adjoint, we have

Re
∫∫

Rn+1
Htv · v̄ dµ = 0, v ∈ L2

µ . (4-5)
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Expanding Bδ,σ (u, u) and using the above along with the weighted ellipticity of the coefficients A, we
find

Re Bδ,σ (u, u) ≥ δ∥D1/2
t u∥

2
2,µ + (c1 − c2δ)∥∇x u∥

2
2,µ + (Re σ − δ|Im σ |)∥u∥

2
2,µ. (4-6)

Choosing δ = min{c1/(c2 + 1), Re σ/(|Im σ | + 1)}, the factors in front of the second and third term in
the last display become no less than δ. Hence, we obtain the coercivity estimate

Re Bδ,σ (u, u) ≥ min
{

c1

c2 + 1
,

Re σ

|Im σ | + 1

}
∥u∥

2
Eµ

, v ∈ Eµ. (4-7)

The Lax–Milgram lemma yields, for each f ∈ (Eµ)∗, a unique u ∈ Eµ satisfying the estimate claimed in
the lemma such that

Bδ,σ (u, v) = f ((1 + δHt)v), v ∈ Eµ.

(Note that the additional factor
√

2 is an upper bound for the norm of 1 + δHt on Eµ.) Plancherel’s
theorem yields that 1 + δHt is an isomorphism on Eµ for all δ ∈ R. Thus,∫∫

Rn+1
σu · v̄ + w−1 A∇x u · ∇xv + Ht D1/2

t u · D1/2
t v dµ = f (v), v ∈ Eµ,

that is, (σ +H)u = f as required. □

The proof above fails for δ = 0 since Re B( · , · ) does not control ∥D1/2
t · ∥2,µ from above. As a

consequence, B itself is not a closed sesquilinear form in the sense of Kato [1966] or, equivalently,
(∥ · ∥

2
2,µ + Re B( · , · ))1/2 does not define an equivalent norm on Eµ. In [Auscher and Egert 2016,

Lemma 4], it has been (essentially) shown that a parabolic analog of Kato’s first representation theorem
holds nonetheless. For convenience, we include the short argument with some minor improvements in the
next section.

4.2. M-accretivity. Recall that an operator H in a Hilbert space such as L2
µ is called m-accretive if it is

closed and densely defined, with resolvent estimates

∥(σ +H)−1
∥2→2,µ ≤ (Re σ)−1, σ ∈ C, Re σ > 0.

Proposition 4.2. The part of H in L2
µ is m-accretive and D(H) is dense in Eµ.

Proof. Fix σ ∈ C with Re σ > 0. Lemma 4.1 yields that σ +H : D(H) → L2
µ is bijective. Given f ∈ L2

µ,
we set u := (σ +H)−1 f and use ellipticity of the coefficients A and (4-5) to deduce

Re σ∥u∥
2
2,µ ≤ Re

∫∫
Rn+1

σu · ū + w−1 A∇x u · ∇x u + Ht D1/2
t u · D1/2

t u dµ

= Re
∫∫

Rn+1
f · ū dµ ≤ ∥ f ∥2,µ∥u∥2,µ.

This gives the required resolvent bound ∥u∥2,µ ≤ (Re σ)−1
∥ f ∥2,µ. Moreover, the part of H in L2

µ is closed
since it has a nonempty resolvent set, and the resolvent estimates for σ > 0 imply a dense domain [Haase
2006, Proposition 2.1.1]. This proves m-accretivity.
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In order to prove that D(H) is dense in Eµ, we use the sesquilinear form Bδ,1 in (4-4) with δ > 0
chosen as in the proof of that lemma. Suppose v ∈ Eµ is orthogonal to D(H) in Eµ. By the Lax–Milgram
lemma, there is w ∈ Eµ such that ⟨u, v⟩Eµ

= Bδ,1(u, w) for all u ∈ Eµ. For u ∈ D(H), this identity
becomes 0 = ⟨(1 +H)u, (1 + δHt)w⟩2,µ, and since 1 +H : D(H) → L2

µ is bijective, we conclude that
(1 + δHt)w = 0. Thus, we have w = 0 and therefore also v = 0. □

The adjoint H∗ of H (seen as either a bounded operator Eµ → (Eµ)∗ or an unbounded operator in L2
µ)

has the same properties as H. Indeed, it can be checked by the very definition that it is associated with
the sesquilinear form

B∗(u, v) = B(v, u)

and that it formally corresponds to the backward-in-time operator

−∂t − w−1(x) divx(A∗(x, t)∇x).

Here A∗ is the conjugate transpose of A.

4.3. Resolvent estimates. Using Proposition 4.2, we see that, for λ > 0, the resolvent operators

Eλ := (I + λ2H)−1,

E∗

λ := (I + λ2H∗)−1
(4-8)

are well defined as bounded operators L2
µ → L2

µ and (Eµ)∗ → Eµ. Moreover, they are adjoints of each
other.

Lemma 4.3. The following resolvent estimates hold uniformly for all λ > 0, all f ∈ L2
µ and all f ∈ (L2

µ)n:

(i) ∥Eλ f ∥2,µ + ∥λDEλ f ∥2,µ ≲ ∥ f ∥2,µ,

(ii) ∥λEλD1/2
t f ∥2,µ + ∥λ2DEλD1/2

t f ∥2,µ ≲ ∥ f ∥2,µ,

(iii) ∥λEλw
−1 divx(w f )∥2,µ + ∥λ2DEλw

−1 divx(w f )∥2,µ ≲ ∥ f ∥2,µ.

The same estimates hold with Eλ replaced by E∗

λ .

Proof. We first prove (i). Setting u := (λ−2
+H)−1 f , we have Eλ f = λ−2u, and by m-accretivity we

obtain
∥Eλ f ∥2,µ ≤ ∥ f ∥2,µ.

Next, we use the twisted sesquilinear form Bδ,σ as in (4-4) with parameter σ =λ−2, so that by construction

Bδ,σ (u, u) = ⟨ f, (1 + δHt)u⟩2,µ. (4-9)

With this choice for σ , we pick δ = c1/(2c2), use (4-6) on the left, and Cauchy–Schwarz on the right, in
order to obtain

∥Du∥
2
2,µ ≲ ∥ f ∥2,µ∥u∥2,µ ≤ λ2

∥ f ∥
2
2,µ.

This is the required uniform bound for λDEλ f . Since H is of the same type as H∗ from the point of view
of sesquilinear forms, the same estimates also hold for E∗

λ in place of Eλ.



THE KATO SQUARE ROOT PROBLEM FOR WEIGHTED PARABOLIC OPERATORS 151

Next, we note that the estimates for the leftmost terms in (ii) and (iii) follow by duality from (i) applied
to E∗

λ .
In order to estimate the second term on the left in (ii), we set u := (λ−2

+H)−1 D1/2
t f . Since D1/2

t f
is now regarded as an element in (Eµ)∗, we get ⟨ f, D1/2

t (1 + δHt)u⟩2,µ on the right-hand side in (4-9),
and from this we conclude

∥Du∥
2
2,µ ≲ ∥ f ∥2,µ∥Du∥2,µ,

as required. The remaining term in (iii) is estimated in the same way upon replacing D1/2
t f by

w−1 divx(w f ). □

4.4. Off-diagonal estimates. Given measurable subsets E and F of Rn+1, we let

d(E, F) := inf{∥(x − y, t − s)∥ : (x, t) ∈ E, (y, s) ∈ F}

denote their parabolic distance. Lemma 4.4 below is an improvement of the uniform bounds in Lemma 4.3.
We only state and prove Lemma 4.4 for the families of operators that will require it later. However, let us
stress that such estimates are not to be expected in the presence of the nonlocal operator D1/2

t , and one
of the insights in [Auscher et al. 2020] was that in this case a nonlocal version of off-diagonal bounds
should be used.

Lemma 4.4. Assume that E and F are measurable subsets of Rn+1, and let d := d(E, F). Then, there
exists a constant c ∈ (0, ∞), depending only on the structural constants, such that

(i)
∫∫

F
|Eλ f |

2
+ |λ∇xEλ f |

2 dµ ≲ e−d/(cλ)

∫∫
E

| f |
2 dµ,

(ii)
∫∫

F
|λEλw

−1 divx(w f )|2 dµ ≲ e−d/(cλ)

∫∫
E

| f |
2 dµ

for all λ > 0 and all f ∈ L2
µ, f ∈ (L2

µ)n with support in E. The same statements are true when Eλ is
replaced by E∗

λ .

Proof. As in the proof of Lemma 4.3, it suffices to treat Eλ. Based on Lemma 4.3, we see that it suffices
to obtain the exponential estimate for 0 < λ ≤ αd, where for now α ∈ (0, 1) is a degree of freedom that
will be determined later and which will only depend on the structural constants.

Let u := Eλ f , and recall that∫∫
Rn+1

uv̄ + λ2w−1 A∇x u · ∇xv + λ2 Ht D1/2
t u · D1/2

t v dµ =

∫∫
Rn+1

f · v̄ dµ (4-10)

for all v ∈ Eµ. We can pick a real-valued η̃ ∈ C∞(Rn+1) such that η̃ = 1 on F , η̃ = 0 on E , and such that

d|∇x η̃| + d2
|∂t η̃| ≤ c

for some constant c only depending on n. The different scaling in the two terms is due to the definition of
the parabolic distance. Next, we let

v := uη2 with η := e(αd/λ)η̃
− 1. (4-11)
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For this choice of v, we rewrite the real part in (4-10) of the pairing containing half-order derivatives
as follows. According to Lemma 3.3, there exists a sequence {ui } ⊂ C∞

0 (Rn+1) such that ui → u in Eµ

as i → ∞. By the same lemma, η2ui → η2u in Eµ, and therefore

Re
∫∫

Rn+1
Ht D1/2

t u · D1/2
t v dµ = Re lim

i→∞

∫∫
Rn+1

Ht D1/2
t ui · D1/2

t (uiη2) dt dw

= lim
i→∞

Re
∫∫

Rn+1
∂t ui · uiη2 dt dw

=
1
2

lim
i→∞

∫∫
Rn+1

∂t |ui |
2
· η2 dt dw

=
1
2

lim
i→∞

−

∫∫
Rn+1

|ui |
2
· ∂t(η

2) dt dw

= −
1
2

∫∫
Rn+1

|u|
2
· ∂t(η

2) dµ.

Going back to (4-10) and using that η = 0 on E , we conclude that

Re
∫∫

Rn+1
|u|

2η2 dµ + λ2w−1 A∇x u · ∇x(uη2) −
1
2λ2

|u|
2∂t(η

2) dµ = 0.

Using this identity and ellipticity, we deduce∫∫
Rn+1

|u|
2η2 dµ + c1λ

2
∫∫

Rn+1
|∇x u|

2η2 dµ

≤ λ2
∫∫

Rn+1
|u|

2
|η||∂tη| dµ + 2c2λ

2
∫∫

Rn+1
|u||∇x u||η||∇xη| dµ

≤
1
2

∫∫
Rn+1

|u|
2η2 dµ +

1
2
λ4

∫∫
Rn+1

|u|
2
|∂tη|

2 dµ +
1
2

c1λ
2
∫∫

Rn+1
|∇x u|

2η2 dµ

+ 2
c2

2

c1
λ2

∫∫
Rn+1

|u|
2
|∇xη|

2 dµ.

In conclusion,∫∫
Rn+1

|u|
2η2 dµ + c1λ

2
∫∫

Rn+1
|∇x u|

2η2 dµ ≤

∫∫
Rn+1

|u|
2
(
λ4

|∂tη|
2
+ 4

c2
2

c1
λ2

|∇xη|
2
)

dµ.

By the definition of η in (4-11) and since λ ≤ αd ≤ d , we see that

|∂tη|
2
≤

α2d2

λ2 |η + 1|
2 c2

d4 ≤ c2α2λ−4
|η + 1|

2

and

|∇xη|
2
≤

α2d2

λ2 |η + 1|
2 c2

d2 = c2α2λ−2
|η + 1|

2.

Thus, we get ∫∫
Rn+1

|u|
2η2 dµ + c1λ

2
∫∫

Rn+1
|∇x u|

2η2 dµ ≲ α2
∫∫

Rn+1
|u|

2
|η + 1|

2 dµ.
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At this point, we make our choice of α. Indeed, using the bound |η + 1|
2
≤ 2(η2

+ 1), we choose α small
enough to be able to absorb the part coming from η into the left-hand side. The conclusion is that∫∫

Rn+1
|u|

2η2 dµ + λ2
∫∫

Rn+1
|∇x u|

2η2 dµ ≲
∫∫

Rn+1
|u|

2 dµ.

On the right-hand side, we can use Lemma 4.3 (i), and, on the left-hand side, we exploit that on F we
have

η = eαd/λ
− 1 ≥

1
2 eαd/λ

since we are assuming λ ≤ αd . Consequently,

e2αd/λ

∫∫
F

|u|
2 dµ + e2αd/λ

∫∫
F

|λ∇x u|
2 dµ ≲

∫∫
E

| f |
2 dµ,

which proves (i).
The inequality in (ii) follows by a duality argument, using (i) for E∗

λ and interchanging the roles of E
and F . In fact, ∫∫

F
|λEλw

−1 divx(w f )|2 dµ = sup
g

(∫∫
Rn+1

λEλw
−1 divx(w f ) · ḡ dµ

)2

= sup
g

(∫∫
E

− f · λ∇xE∗

λ g dµ

)2

,

where the supremum is taken with respect to all g ∈ L2
µ, with support in F , such that ∥g∥2,µ = 1. We can

now complete the proof by applying the Cauchy–Schwarz inequality and (i) of the lemma but for E∗

λ . □

5. Weighted Littlewood–Paley theory in the parabolic setting

We could develop a weighted parabolic Littlewood–Paley theory following the approach for singular
integrals on spaces of homogeneous type [David et al. 1985]. However, since our weight w is time
independent, we have decided to present a down-to-earth approach by combining weighted elliptic theory
known in the field [Cruz-Uribe and Rios 2008; 2012; García-Cuerva and Rubio de Francia 1985] with
Fourier analysis on the real line. Most of our estimates here are formulated using the square function
norm

||| · |||2,µ :=

(∫
∞

0

∫∫
Rn+1

| · |
2 dµ dλ

λ

)1/2

. (5-1)

For the rest of the paper, P ∈ C∞

0 (Rn+1) is a fixed real-valued function in product form

P(x, t) = P(1)(x)P(2)(t),

where P(1) and P(2) are both radial, nonnegative, and have integral 1. For all x ∈ Rn , t ∈ R, we set

P(1)
λ (x) := λ−nP(1)(x/λ),

P(2)
λ (t) := λ−2P(2)(t/λ2),

Pλ(x, t) := P(1)
λ (x)P(2)

λ (t) = λ−n−2P(1)(x/λ)P(2)(t/λ2)
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whenever λ > 0. With a slight abuse of notation, we let Pλ also denote the associated convolution operator

Pλ f (x, t) = Pλ ∗ f (x, t) =

∫∫
Rn+1

Pλ(x − y, t − s) f (y, s) dy ds,

and likewise for P(1)
λ and P(2)

λ . We note that

|P(1)
λ f (x, t)| ≤ M(1)( f ( · , t))(x),

|P(2)
λ f (x, t)| ≤ M(2)( f (x, · ))(t),

|Pλ f (x, t)| ≤ M(1)(M(2) f ( · , t))(x)

(5-2)

almost everywhere, for every f ∈ L1
loc(R

n+1); see [Stein 1993, Section II.2.1]. In particular, these
pointwise bounds hold for f ∈ L2

µ. The boundedness of the maximal operators in L2
µ implies

sup
λ>0

∥Pλ∥2→2,µ ≲ 1;

see Section 2.2.

Lemma 5.1. For all f ∈ L2
µ(Rn+1),

|||λ∇xPλ f |||2,µ + |||λ2∂tPλ f |||2,µ + |||λD1/2
t Pλ f |||2,µ ≲ ∥ f ∥2,µ.

Proof. Here, we write out in detail how the product structure of Pλ can be used to prove parabolic
estimates in Rn+1 through weighted elliptic theory and classical Fourier analysis. This motif will appear
in all proofs of this section. Let ĝ denote the Fourier transform in time of a function g on Rn+1.

By uniform boundedness of P(1)
λ in L2

µ and Plancherel’s theorem, we have

|||λD1/2
t Pλ f |||

2
2,µ =

∫
∞

0

∫∫
Rn+1

|P(1)
λ λD1/2

t P(2)
λ f |

2 dµ dλ

λ

≲
∫

Rn

∫
∞

0

∫
R

|λD1/2
t P(2)

λ f |
2 dt dλ

λ
dw

=

∫
Rn

∫
∞

0

∫
R

∣∣λ|τ |
1/2P̂(2)(λ2τ) f̂ (x, τ )

∣∣2 dτ dλ

λ
dw(x).

The integral in λ is finite and independent of τ since P̂(2) is a radial Schwartz function. Applying
Plancherel’s theorem backwards, we get the desired bound by ∥ f ∥

2
2,µ. The same argument yields the

bound for |||λ2∂tPλ f |||2,µ.
Finally, in order to bound λ∇xPλ f , we use uniform boundedness of P(2)

λ to get

|||λ∇xPλ f |||
2
2,µ =

∫
∞

0

∫∫
Rn+1

|P(2)
λ λ∇xP(1)

λ f |
2 dµ dλ

λ
≲

∫
R

∫
∞

0

∫
Rn

|λ∇xP(1)
λ f |

2 dw dλ

λ
dt.

For fixed t , we now need weighted elliptic Littlewood–Paley theory. The operator λ∇xP(1)
λ acts by

convolution with 9λ, where 9 = ∇xP(1) has integral 0. Thus, we can use, e.g., [Cruz-Uribe and Rios
2012, Lemma 4.6] to control the integral in dw dλ by ∥ f ( · , t)∥2

2,w, and the proof is complete. □
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Lemma 5.2. For all f ∈ Eµ,
|||λ−1(I −Pλ) f |||2,µ ≲ ∥D f ∥2,µ.

Proof. We first claim

|||λ−1(I −P(1)
λ ) f |||2,µ

≲ ∥∇x f ∥2,µ, |||λ−1(I −P(2)
λ ) f |||2,µ

≲ ∥D1/2
t f ∥2,µ. (5-3)

As in the proof of Lemma 5.1, this can be proved using Plancherel’s theorem in t for the second term
and weighted Littlewood–Paley theory with t fixed for the first term. The required weighted result is
[Cruz-Uribe and Rios 2015, Proposition 2.3] (originally [Cruz-Uribe and Rios 2012, Proposition 4.7]) and
the application to the concrete operator considered here is detailed in the lines following equation (4.3) in
the same paper.

In order to complete the proof of the lemma, we simply write

(I −Pλ) = P(2)
λ (1 −P(1)

λ ) + (1 −P(2)
λ ).

The result follows from (5-3) and the uniform boundedness of P(2)
λ in L2

µ. □

In the following we write 1 = Q × I for parabolic cubes in Rn+1
= Rn

× R.

Definition 5.3. We define A(1)
λ , A(2)

λ and Aλ to be the dyadic averaging operators in x , t and (x, t) with
respect to parabolic scaling, that is, if 1 = Q × I is the dyadic parabolic cube with 1

2ℓ(1) < λ ≤ ℓ(1)

containing (x, t), then

A(1)
λ f (x, t) := −

∫
Q

f dy,

A(2)
λ f (x, t) := −

∫
I

f ds,

Aλ f (x, t) := −

∫
−

∫
1

f dy ds = A(1)
λ A(2)

λ f (x, t).

It follows from the bounds for the maximal operators in Section 2.2 and doubling that the dyadic
averaging operators are bounded on L2

µ, uniformly in λ.

Lemma 5.4. Let Pλ and Aλ be as above. Then, for all f ∈ L2
µ(Rn+1),

|||(Aλ −Pλ) f |||2,µ ≲ ∥ f ∥2,µ.

Proof. We follow our (general) strategy and write

Aλ −Pλ = A(2)
λ (A(1)

λ −P(1)
λ ) +P(1)

λ (A(2)
λ −P(2)

λ ),

where we have also used that A(2)
λ and P(1)

λ commute since they act in different variables. Since these
operators are uniformly bounded on L2

µ with respect to λ, we get

|||(Aλ −Pλ) f |||2,µ ≲
∫

R

∫
∞

0
∥(A(1)

λ −P(1)
λ ) f ( · , t)∥2

2,w

dλ

λ
dt

+

∫
Rn

∫
∞

0
∥(A(2)

λ −P(2)
λ ) f (x, · )∥2

2,dt
dλ

λ
dw(x).
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For the first term on the right, we can rely on the weighted elliptic version of the lemma [Cruz-Uribe and
Rios 2012, Lemma 5.2]. For the second term on the right, we can make a change of variables λ′

= λ2

and use the unweighted one-dimensional version of the lemma, which of course follows from the same
reference or the classical proof in [Auscher and Tchamitchian 1998, Appendix C, (4)]. □

6. Reduction to a quadratic estimate

The purpose of this short section is to reduce our main result, Theorem 1.1, to the quadratic estimate

|||λHEλ f |||2,µ ≲ ∥∇x f ∥2,µ + ∥Ht D1/2
t f ∥2,µ, f ∈ Eµ. (6-1)

Recall that Eλ = (1 + λ2H)−1. Since the sesquilinear form associated with H is not closed, see Section 4,
classical results à la Lions [1962] as in the elliptic case do not apply, and here we give full details of this
reduction.

At this point, we require some essentials from functional calculus. We give references along the way,
and we refer the reader to [Haase 2006; McIntosh 1986] for further background. Since H is m-accretive
(Proposition 4.2), it has a unique m-accretive square root

√
H defined by the functional calculus for

sectorial operators, and the same is true for the adjoint H∗ with
√
H∗ = (

√
H)∗.

In order to see the reduction alluded to above, we start out with the Calderón reproducing formula in
[Haase 2006, Theorem 5.2.6], and we write

√
H f =

16
π

∫
∞

0
λ3H2(1 + λ2H)−3 f dλ

λ
, (6-2)

where f ∈ D(
√
H) and the integral is understood as an improper Riemann integral in L2

µ. Testing this
identity against g ∈ L2

µ and applying Cauchy–Schwarz, we obtain

|⟨
√
H f, g⟩2,µ| ≤

16
π

|||λH(1 + λ2H)−1 f |||2,µ × |||λ2H∗(1 + λ2H∗)−2g|||2,µ.

The second term is controlled by a structural constant times ∥g∥2,µ since H∗ is m-accretive in L2
µ —

more precisely, this follows from von Neumann’s inequality [Haase 2006, Theorem 7.1.7] and the
characterization of the emerging functional calculus due to McIntosh [Haase 2006, Theorem 7.3.1].
Taking the supremum over all g yields

∥
√
H f ∥2,µ ≲ |||λH(I + λ2H)−1 f |||2,µ.

Let us now suppose that (6-1) holds. Then, we obtain

∥
√
H f ∥2,µ ≲ ∥∇x f ∥2,µ + ∥Ht D1/2

t f ∥2,µ, (6-3)

when f is in Eµ ∩D(
√
H) ⊃ D(H). However, since this space is dense in Eµ, by Proposition 4.2, and as

√
H is closed, the estimate extends to all f ∈ Eµ. Next, we note that H∗ is similar to an operator in the

same class as H under conjugation with the “time reversal” f (t, x) 7→ f (−t, x) and conjugation of A.
Hence, we also have

∥
√
H∗g∥2,µ ≲ ∥∇x g∥2,µ + ∥Ht D1/2

t g∥2,µ (6-4)
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whenever g ∈ Eµ. Using (4-6) with σ = 0 and δ small enough depending on the structural constants, we
obtain, for all f ∈ D(H), that

δ∥∇x f ∥
2
2,µ + δ∥D1/2

t f ∥
2
2,µ ≤ |⟨H f, (1 + δHt) f ⟩2,µ|

≤ ∥
√
H f ∥2,µ∥

√
H∗(1 + δHt) f ∥.

Now, (6-4) with g := (1 + δHt) f ∈ Eµ implies

∥∇x f ∥2,µ + ∥D1/2
t f ∥2,µ ≲ ∥

√
H f ∥2,µ. (6-5)

Since D(H) is dense in D(
√
H) for the graph norm [Haase 2006, Proposition 3.1.1(h)], the estimate

extends to all f ∈ D(
√
H).

In conclusion, we have seen that (6-1) implies the statement of Theorem 1.1 through the estimates
(6-3) and (6-5). Therefore, the rest of the paper is devoted to the task of proving (6-1).

7. Principal part approximation

In order to prove the square function estimate (6-1), we will eventually split H into its elliptic and
parabolic parts and perform the “hard” analysis only on the elliptic part. This will lead us to the operators

Uλ := λEλw
−1 divx w, λ > 0. (7-1)

These operators appeared in Lemma 4.4 on off-diagonal estimates and in particular they are uniformly
bounded on (L2

µ)n . Here, we continue their analysis.
Given a cube Q = Qr (x) ⊂ Rn and an interval I = Ir (t), we let 1 := Q × I and set

Ck(1) = Ck(Q × I ) := 2k+11 \ 2k1, k = 1, 2, . . . ,

C0(1) := 21.

In the following, we denote the characteristic function of a set E by 1E . We use off-diagonal estimates to
define Uλ on (L∞)n .

Definition 7.1. For b ∈ (L∞)n , we define

Uλb =: lim
k→∞

Uλ(b12k1), (7-2)

with convergence locally in (L2
µ)n , where on the right 1 is any parabolic cube.

Definition 7.1 is meaningful and independent of the choice of 1 as we shall see next. To start, if 1′ is
any parabolic cube, then for m > l large enough to guarantee that 1′

⊂ 2l−11, applying Lemma 4.4 with
E = C j (1) and F = 1′ for j = l, . . . , m − 1 yields

∥Uλ(b12m1\2l1)∥L2
µ(1′) ≤

m−1∑
j=l

∥Uλ(b1C j (1))∥L2
µ(1′)

≲ µ(1)1/2
∥b∥∞

m−1∑
j=l

e−ℓ(1)2 j−1/cλ(4D) j+1.
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Recall that 4D is the doubling constant for µ; see (2-3). The right-hand side converges to 0 as m, l → ∞.
In conclusion, {Uλ(b12l1)}l is a Cauchy sequence locally in (L2

µ)n . By the same argument, Definition 7.1
is independent of the particular choice 1. Taking 1′

= 1 and l = 1, we get

∥Uλb∥L2
µ(1) ≤ ∥Uλ(b121)∥L2

µ(1) +
∥∥ lim

m→∞
Uλ(b12m1\21)

∥∥
L2

µ(1)

≲ µ(1)1/2
∥b∥∞

(
1 +

∞∑
j=1

e−ℓ(1)2 j−1/cλ(4D) j+1
)

. (7-3)

Lemma 7.2. Let b ∈ (L∞)n and f ∈ L2
µ. Then,

∥(Uλb) ·Aλ f ∥2,µ ≲ ∥b∥∞∥ f ∥2,µ.

Proof. If 1 ⊂ Rn+1 is a parabolic cube such that 1
2ℓ(1) < λ ≤ ℓ(1), then by (7-3) we have∫∫

1

|Uλb|
2 dµ ≲ µ(1)∥b∥

2
∞

.

Since Aλ f is constant on each such 1, we obtain∫∫
1

|(Uλb) ·Aλ f |
2 dµ ≤

∫∫
1

|Uλb|
2 dµ · −

∫
−

∫
1

|Aλ f |
2 dµ≲ ∥b∥

2
∞

∫∫
1

|Aλ f |
2 dµ.

The claim follows by summing in 1 and using that Aλ is uniformly bounded on L2
µ with respect to λ;

see Section 5. □

Writing A = (A1, . . . , An) with A j the j-th column of A, we can use Definition 7.1 to define the
action of Uλ on the bounded matrix-valued function w−1 A by

(Uλw
−1 A) := Uλ(w

−1 A) := (Uλ(w
−1 A1), . . . , Uλ(w

−1 An)).

We will approximate Uλw
−1 A by operators that act via multiplication on the maximal dyadic cubes of

size at most λ. To be precise, we will consider

Rλ f := Uλ(w
−1 A f ) − (Uλw

−1 A) ·Aλ f. (7-4)

This is nowadays called the “principal part approximation”. Using Lemmas 4.3 and 7.2, we see that
the Rλ are uniformly bounded on L2

µ for λ > 0. Moreover, we prove the following bound.

Proposition 7.3. Let f ∈ L2
µ ∩ C∞. Then,

∥Rλ f ∥2,µ ≲ ∥λ∇x f ∥2,µ + ∥λ2∂t f ∥2,µ.

For the proof, we need the following weighted Poincaré-type inequality. In the following we abbreviate
( f )1 = ( f )1,dx dt .

Lemma 7.4. Let f ∈ C∞. Then, for all parabolic cubes 1 and all nonnegative integers k,∫∫
Ck(1)

|( f − ( f )1)|2 dµ ≤ c2k(n+2)

∫∫
2k+11

ℓ(1)2
|∇x f |

2
+ ℓ(1)4

|∂t f |
2 dµ,

where c depends only on n and [w]A2 .
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Proof. Let 1 = Q × I be a parabolic cube. We set g := ( f )Q,dx , which is a function of t , and we split

f − ( f )1 = ( f − ( f )Q,dx) + (g − (g)I,dt).

To the first term we can apply the weighted Poincaré inequality in the x-variable from (the proof of)
[Heinonen et al. 1993, Theorem 15.26] and to the second term the standard Poincaré inequality in the
t-variable. The result is(∫∫

1

|( f − ( f )1)|2 dµ

)1/2

≤ c
(∫∫

1

ℓ(1)2
|∇x f |

2
+ ℓ(1)4

|∂t f |
2 dµ

)1/2

.

Note that in [Heinonen et al. 1993] balls are used instead of cubes, but doubling allows us to switch
between one and the other. For the general result it suffices to write

f − ( f )1 = ( f − ( f )2k+11) + (( f )2k+11 − ( f )2k1) + · · · + (( f )21 − ( f )1)

and to use the estimate above on the cubes 2k+11 and then on 2k+11, . . . , 21. □

Proof of Proposition 7.3. We note that if (x, t) ∈ Rn+1 and λ > 0, then

Rλ f (x, t) = Uλ(w
−1 A( f − ( f )1))(x, t),

where 1 is the unique dyadic parabolic cube with 1
2ℓ(1) < λ ≤ ℓ(1) that contains (x, t). Thus,

∥Rλ f ∥
2
2,µ =

∑
1

∫∫
1

|Uλ(w
−1 A( f − ( f )1))|2 dµ

≤

∑
1

( ∞∑
k=0

(∫∫
1

|Uλ(w
−1 A · 1Ck(1)( f − ( f )1))|2 dµ

)1/2)2

,

and therefore

∥Rλ f ∥
2
2,µ ≲

∑
1

( ∞∑
k=0

e−2k/c
(∫∫

Ck(1)

|( f − ( f )1)|2 dµ

)1/2)2

≲
∑
1

∞∑
k=0

e−2k/c
∫∫

Ck(1)

|( f − ( f )1)|2 dµ

≲
∑
1

∞∑
k=0

e−2k/c2k(n+2)

∫∫
2k+11

λ2
|∇x f |

2
+ λ4

|∂t f |
2 dµ

≤

( ∞∑
k=0

e−2k/c2(2k+1)(n+2)

) ∫∫
Rn+1

λ2
|∇x f |

2
+ λ4

|∂t f |
2 dµ,

where we used, in succession, the off-diagonal estimates, Cauchy–Schwarz inequality, Lemma 7.4, and
the fact that each point in Rn+1 is contained in exactly 2(k+1)(n+2) of the cubes 2k+11. The sum in k is
still finite, and the proof is complete. □
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8. Proof of Theorem 1.1

After the reduction in Section 6, it remains to prove the quadratic estimate (6-1) that we now write in
the form

|||λEλH f |||2,µ ≲ ∥D f ∥2,µ, f ∈ Eµ. (8-1)

In the following we will use the operators Pλ, Aλ, Uλ, Rλ that have been introduced in Sections 4, 5
and 7. Collecting the estimates from these sections, we can at this stage prove the following.

Proposition 8.1. Let f ∈ Eµ. Then,

|||(λEλH+ (Uλw
−1 A) ·Aλ∇x) f |||2,µ ≲ ∥D f ∥2,µ.

Proof. We begin by writing

λEλH f = λEλHPλ f + λHEλ(I −Pλ) f. (8-2)

Using the identity
λHEλ = λ−1(I − Eλ),

the uniform L2
µ-boundedness of Eλ, and Lemma 5.2, we see that

|||λHEλ(I −Pλ) f |||2,µ ≲ |||λ−1(I −Pλ) f |||2,µ ≲ ∥D f ∥2,µ.

Next, we use (4-3) to write

λEλHPλ f = −Uλw
−1 A∇xPλ f + λEλD1/2

t Ht D1/2
t Pλ f. (8-3)

Using Lemma 4.3 (i) and then Lemma 5.1, we see that

|||λEλD1/2
t Ht D1/2

t Pλ f |||2,µ = |||λEλD1/2
t PλD1/2

t Ht f |||2,µ

≲ |||λD1/2
t PλD1/2

t Ht f |||2,µ

≲ ∥D1/2
t f ∥2,µ. (8-4)

Finally, we bring the principal part approximation into play. We use Uλ and Rλ to write

Uλw
−1 A∇xPλ f = Uλw

−1 APλ∇x f

= RλPλ∇x f + (Uλw
−1 A) ·Aλ(Pλ −Aλ)∇x f + (Uλw

−1 A) ·Aλ∇x f, (8-5)

where we have also used that (Aλ)
2
= Aλ for the last term. Applying Proposition 7.3 and Lemma 5.1, we

have
|||RλPλ∇x f |||2,µ ≲ |||λ∇xPλ∇x f |||2,µ + |||λ2∂tPλ∇x f |||2,µ ≲ ∥D f ∥2,µ.

Also, by Lemmas 5.4 and 7.2, we have

|||(Uλw
−1 A) ·Aλ(Pλ −Aλ)∇x f |||2,µ ≲ |||(Aλ −Pλ)∇x f |||2,µ ≲ ∥∇x f ∥2,µ.

Looking back at the successive splittings in (8-2), (8-3) and (8-5), we see that the only term that has not
been treated in the square function norm is (Uλw

−1 A) ·Aλ∇x f . This proves the claim. □
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To conclude the square function estimate for the final term (Uλw
−1 A)·Aλ∇x f , we establish Lemma 8.3

below. The lemma states that
|Uλw

−1 A|
2 dµ dλ

λ

is a Carleson measure and that we have good control of the constants. Hence,

|||(Uλw
−1 A) ·Aλ∇x f |||2,µ ≲ ∥∇x f ∥2,µ

follows by Carleson’s inequality for parabolic cubes; see Lemma 8.2. This completes the proof of the
estimate in (8-1), and hence the proof of Theorem 1.1 modulo Lemma 8.3. The reader should observe
that, in our proof of (8-1), we have split off the time derivative ∂t from H and we have controlled the part
coming from ∂t by a standard Littlewood–Paley estimate in (8-4).

For convenience, we include a proof of the version of Carleson’s inequality that is used above. We
adapt the elegant dyadic argument found in [Morris 2012, Theorem 4.3].

Lemma 8.2. Let ν be a Borel measure on Rn+1
× R+ that satisfies

∥ν∥C := sup
1

ν(1 × (0, ℓ(1)])

µ(1)
< ∞,

where the supremum is taken over all dyadic parabolic cubes 1 ⊂ Rn+1. Then there is a constant c that
only depends on n and [w]A2 such that, for every f ∈ L2

µ,∫
∞

0

∫∫
Rn+1

|Aλ f (x, t)|2 dν(x, t, λ) ≤ c∥ν∥C

∫∫
Rn+1

| f |
2 dµ.

Proof. For i ∈ Z, let {1
j
i } j be the partition of Rn+1 into dyadic parabolic cubes such that ℓ(1

j
i ) = 2i .

We have∫
∞

0

∫∫
Rn+1

|Aλ f (x, t)|2 dν(x, t, λ) =

∞∑
i=−∞

∑
j

∣∣∣∣−∫ −

∫
1

j
i

f dy ds
∣∣∣∣2

ν(1
j
i × (2i−1, 2i

]) =

∞∑
i=−∞

∑
j

| f j
i |

2ν
j

i ,

where we have introduced ν
j

i := ν(1
j
i × (2i−1, 2i

]) and f j
i := −

∫
−

∫
1

j
i

f dy ds. For r > 0, let {1k(r)}k

be the collection of maximal dyadic parabolic cubes 1
j
i such that | f j

i | > r . Note that these cubes are
pairwise disjoint and contained in {M(1)M(2) f > r}. Hence,

∞∑
i=−∞

∑
j

| f j
i |

2ν
j

i =

∫
∞

0
2r

∞∑
i=−∞

∑
j

1
{| f j

i |>r}
ν

j
i dr ≤

∫
∞

0
2r

∑
k

∑
1⊂1k(r)

ν
(
1 ×

( 1
2ℓ(1), ℓ(1)

])
dr

=

∫
∞

0
2r

∑
k

ν(1k(r) × (0, ℓ(1k(r))]) dr

≤ ∥ν∥C

∫
∞

0
2r

∑
k

µ(1k(r)) dr ≤ ∥ν∥C

∫
∞

0
2rµ({M(1)M(2) f > r}) dr

= ∥ν∥C∥M(1)M(2) f ∥
2
2,µ.

Now, the claim follows from the Hardy–Littlewood–Muckenhoupt inequality. □

The rest of the section is devoted to the proof of the following lemma.
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Lemma 8.3. For all dyadic parabolic cubes 1 = Q × I ⊂ Rn+1,∫ ℓ(1)

0

∫∫
1

|Uλw
−1 A|

2 dµ dλ

λ
≲ µ(1).

The proof of Lemma 8.3 is based on the use of appropriate local T b-type test functions.

8.1. Construction of appropriate local T b-type test functions. Let ζ ∈ Cn with |ζ | = 1, and let ζi denote
the i-th component of ζ for 1 ≤ i ≤ n. We let χ and η be smooth functions on Rn and R, respectively,
whose values are in [0, 1]. The function χ is equal to 1 on

[
−

1
2 , 1

2

]n and has support in (−1, 1)n , and η

is equal to 1 on
[
−

1
2 , 1

2

]
with support in (−1, 1). We fix a parabolic dyadic cube 1 and denote its center

by (x1, t1). We first introduce

χ1(x, t) := χ

(
x − x1

ℓ(1)

)
η

(
t − t1
ℓ(1)2

)
.

Based on ζ and χ1, we introduce

Lζ
1(x, t) := χ1(x, t)(81(x) · ζ̄ ), 81(x) := (x − x1).

Clearly, Lζ
1 ∈ Eµ. Using the function Lζ

1 and 0 < ϵ ≪ 1, we define the test function

f ζ
1,ϵ := Eϵℓ(1)Lζ

1 = (I + (ϵℓ(1))2H)−1Lζ
1. (8-6)

Lemma 8.4. Let ζ ∈ Cn with |ζ | = 1, and let 0 < ϵ ≪ 1 be a degree of freedom. Given a parabolic dyadic
cube 1, define f ζ

1,ϵ as in (8-6). Then,

(i) ∥ f ζ
1,ϵ − Lζ

1∥
2
2,µ ≲ (ϵℓ(1))2µ(1),

(ii) ∥D( f ζ
1,ϵ − Lζ

1)∥2
2,µ ≲ µ(1),

(iii) ∥D f ζ
1,ϵ∥

2
2,µ ≲ µ(1).

Proof. Note that

f ζ
1,ϵ − Lζ

1 = −(ϵℓ(1))2Eϵℓ(1)HLζ
1

= −(ϵℓ(1))2Eϵℓ(1)D1/2
t Ht D1/2

t Lζ
1 + (ϵℓ(1))2Eϵℓ(1)w

−1 divx w(w−1 A∇x Lζ
1).

Hence, using the uniform L2
µ-boundedness of (ϵℓ(1))Eϵℓ(1)D1/2

t and (ϵℓ(1))Eϵℓ(1)w
−1 divx w, see

Lemma 4.3, we get ∫∫
Rn+1

| f ζ
1,ϵ − Lζ

1|
2 dµ ≲

∫∫
Rn+1

|(ϵℓ(1))DLζ
1|

2 dµ.

Furthermore, ∫∫
Rn+1

|DLζ
1|

2 dµ =

∫∫
Rn+1

|∇x Lζ
1|

2 dµ +

∫∫
Rn+1

|D1/2
t Lζ

1|
2 dµ ≲ µ(1) (8-7)

by the construction of Lζ
1 (to estimate D1/2

t Lζ
1 we use the homogeneity of the Fourier symbol). Similarly,

we deduce that ∫∫
Rn+1

|D( f ζ
1,ϵ − Lζ

1)|2 dµ ≲ µ(1).

This proves (i) and (ii). To prove (iii), we simply use (ii) and (8-7). □
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Lemma 8.5. Given a parabolic dyadic cube 1 = Q × I , let f ζ
1,ϵ be defined as in (8-6). There exist

ϵ ∈ (0, 1), depending only on the structural constants, and a finite set W of unit vectors in Cn , whose
cardinality depends on ϵ and n, such that

sup
1

1
|1|

∫ ℓ(1)

0

∫∫
1

|Uλw
−1 A|

2 dµ dλ

λ
≲

∑
ζ∈W

sup
1

1
|1|

∫ ℓ(1)

0

∫∫
1

|(Uλw
−1 A) ·Aλ∇x f ζ

1,ϵ |
2 dµ dλ

λ
,

where the supremum is taken over all dyadic parabolic cubes 1 ⊂ Rn+1.

Proof. Consider a degree of freedom ϵ > 0. Given a unit vector ζ in Cn , we introduce the cone

Cϵ
ζ := {u ∈ Cn

: |u − (u · ζ̄ )ζ | ≤ ϵ|u · ζ̄ |}.

We note that we can cover Cn by a finite number of such cones {Cϵ
ζ }. The number of cones that are

needed depends on ϵ and n. In the following, we fix one Cϵ
ζ . We let

γ ϵ
λ,ζ (x, t) := 1Cϵ

ζ
(Uλw

−1 A(x, t)) · Uλw
−1 A(x, t)

and consider a fixed dyadic parabolic cube 1 = Q × I ⊂ Rn+1.

Step 1: Estimate of the test function along ζ̄ . We first estimate∫∫
1

(1 − ∇x f ζ
1,ϵ · ζ ) dx dt. (8-8)

To start the estimate, we write

1 − ∇x f ζ
1,ϵ · ζ = ∇x gζ

1,ϵ · ζ + (1 − ∇x Lζ
1 · ζ ),

where gζ
1,ϵ := Lζ

1 − f ζ
1,ϵ . By construction, we have ∇x Lζ

1(x, t) = ζ̄ whenever (x, t) ∈ 1. Hence,∫∫
1

(1 − ∇x Lζ
1 · ζ ) dx dt = 0.

We have to estimate the contribution to the integral in (8-8) coming from ∇x gζ
1,ϵ ·ζ . To do this, let s ∈ (0, 1)

yet to be chosen, and let ϕ : Rn+1
→ [0, 1] be a smooth function which is 1 on 1s := (1−s)Q ×(1−s2)I ,

supported on 1, and satisfies ∥∇xϕ∥∞ ≤ c(sℓ(1))−1, ∥∂tϕ∥∞ ≤ c(sℓ(1))−2 for a dimensional constant
c > 0. Using ϕ, we see that∫∫

1

∇x gζ
1,ϵ · ζ dx dt =

∫∫
1

(1 − ϕ)∇x gζ
1,ϵ · ζ dx dt +

∫∫
1

ϕ∇x gζ
1,ϵ · ζ dx dt =: I + II.

Using the Cauchy–Schwarz inequality, Lemma 8.4 (ii) and (2-2) for the A2-weight µ−1(x, t) = w−1(x),
we obtain

|I| ≤

(∫∫
1

|1 − ϕ|
2 dµ−1

)1/2(∫∫
1

|∇x gζ
1,ϵ |

2 dµ

)1/2

≲ µ−1(1 \ 1s)
1/2µ(1)1/2 ≲ sηµ−1(1)1/2µ(1)1/2

≤ sη
[w]A2 |1|.
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To estimate II, we integrate by parts to get

II = −

∫∫
Rn+1

gζ
1,ϵ∇xϕ · ζ dx dt,

and using the Cauchy–Schwarz inequality and Lemma 8.4 (i), we obtain similarly

|II| ≤

(∫∫
Rn+1

|∇xϕ|
2 dµ−1

)1/2(∫∫
Rn+1

|gζ
1,ϵ |

2 dµ

)1/2

≲ (sℓ(1))−1µ(1)1/2ϵℓ(1)µ−1(1)1/2
≤ ϵs−1

[w]A2 |1|.

We now choose s = ϵ1/(η+1), so that the estimates for I and II come with the same power of ϵ. Putting
the estimates together, we obtain, for the integral in (8-8), that

1
|1|

∣∣∣∣∫∫
1

1 − ∇x f ζ
1,ϵ · ζ dx dt

∣∣∣∣ ≲ ϵη/(η+1). (8-9)

Using Lemma 8.4 (iii) and the Cauchy–Schwarz inequality, we also see that

1
|1|

∫∫
1

|∇x f ζ
1,ϵ | dx dt ≤

1
|1|

(∫∫
1

|∇x f ζ
1,ϵ |

2 dµ

)1/2

µ−1(1)1/2 ≲ 1. (8-10)

Step 2: Choice of ϵ. Using the estimates in the last two displays, we see, if ϵ is chosen small enough,
that

1
|1|

∫∫
1

Re(∇x f ζ
1,ϵ · ζ ) dx dt ≥

7
8

and
1

|1|

∫∫
1

|∇x f ζ
1,ϵ | dx dt ≤ c

for some large constant c depending only on the structural constants. We now perform a stopping-time
decomposition as in [Auscher et al. 2002] to select a collection S ′

ζ = {1′
} of dyadic parabolic subcubes

of 1, which are maximal with respect to the property that either

1
|1′|

∫∫
1′

Re(∇x f ζ
1,ϵ · ζ ) dx dt ≤

3
4 (8-11)

or
1

|1′|

∫∫
1′

|∇x f ζ
1,ϵ | dx dt ≥ (4ϵ)−2 (8-12)

holds. In other words, we parabolically dyadically subdivide 1 and stop the first time either (8-11) or
(8-12) hold. Then, S ′

ζ = {1′
} is a disjoint set of the parabolic dyadic subcubes of 1. Let S ′′

ζ = {1′′
}

be the collection of all the parabolic dyadic subcubes of 1 not contained in any 1′
∈ S ′

ζ . Then, each
1′′

∈ S ′′

ζ satisfies
1

|1′′|

∫∫
1′′

Re(∇x f ζ
1,ϵ · ζ ) dx dt ≥

3
4 ,

1
|1′′|

∫∫
1′′

|∇x f ζ
1,ϵ | dx dt ≤ (4ϵ)−2.

(8-13)
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At this stage, we claim that, by the same type of argument as in the proof of statement (i) in Proposition 5.7
in [Auscher et al. 2002], there exists ϵ ∈ (0, 1) even smaller and depending only on the structural constants
and η′

= η′(ϵ) ∈ (0, 1) such that ∣∣∣∣ ⋃
1′∈S ′

ζ

1′

∣∣∣∣ ≤ (1 − η′)|1|. (8-14)

In particular, from now on ϵ is fixed. For completeness and the convenience of the reader, we include a
proof here.

Let E1 and E2 be the unions of all parabolic cubes in S ′

ζ which satisfy (8-11) and (8-12), respectively.
Then, ∣∣∣∣ ⋃

1′∈S ′

ζ

1′

∣∣∣∣ ≤ |E1| + |E2|.

For |E2|, we have

|E2| ≤ (4ϵ)2
∑

1′∈S ′

ζ

∫∫
1′

|∇x f ζ
1,ϵ | dx dt ≤ (4ϵ)2

∫∫
1

|∇x f ζ
1,ϵ | dx dt ≤ (4ϵ)2c|1|,

where we used (8-10) in the last step. To control |E1|, we let h := 1 − Re(∇x f ζ
1,ϵ · ζ ) and write

|E1| ≤ 4
∑
1′

∫∫
1′

h dx dt = 4
∫∫

1

h dx dt − 4
∫∫

1\E1

h dx dt, (8-15)

where the sum is taken over all parabolic subcubes of E1. By (8-9), the first term on the right is controlled
by ϵη/(η+1)

|1| times a constant depending on the structural constants. Using in succession the Cauchy–
Schwarz inequality, Lemma 8.4 (iii), the A2-property and Young’s inequality, the second term on the right
is controlled by

4|1 \ E1| + 4µ−1(1 \ E1)
1/2

(∫∫
1

|∇x f ζ
1,ϵ |

2 dµ

)1/2

≤ 4|1 \ E1| + 4c̃µ−1(1 \ E1)
1/2µ(1)1/2

≤ 4|1 \ E1| + 4c̃|1 \ E1|
η
|1|

1−η

≤ (4 + c̃ϵ−1/η)|1 \ E1| + c̃ϵ1−η
|1|,

where c̃ depends on the structural constants and changes from line to line. Going back to (8-15) and
rearranging terms, we find

|E1| ≤
4 + c̃ϵ−1/η

+ c̃(ϵη/(η+1)
+ ϵ1−η)

5 + c̃ϵ−1/η
|1|,

and, taking ϵ small enough, we conclude (8-14).
Since µ is an A2-weight, we obtain from (8-14) — and upon taking η′ smaller depending on the

structural constants and ϵ — that

µ

( ⋃
1′∈S ′

ζ

1′

)
≤ (1 − η′)µ(1); (8-16)

see, for example, [Stein 1993, p. 196] for this A∞-property of A2-weights.
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Step 3: Reintroducing the averaging operator. Given 1, we consider 1′′
∈ S ′′

ζ as above. Set

v :=
1

µ(1′′)

∫∫
1′′

∇x f ζ
1,ϵ dx dt ∈ Cn. (8-17)

If (x, t) ∈ 1′′ and 1
2ℓ(1′′) < λ ≤ ℓ(1′′), then v = (Aλ∇x f ζ

1,ϵ)(x, t). Assume that

u := (Uλw
−1 A)(x, t) ∈ Cϵ

ζ .

The pair of vectors (u, v) satisfies the estimates in (8-13). Thus, we can apply [Auscher et al. 2002,
Lemma 5.10] with w := ζ and conclude that |u| ≤ 4|u · v|; that is,

|γ ϵ
λ,ζ (x, t)| ≤ 4|(Uλw

−1 A(x, t)) · (Aλ∇x f ζ
1,ϵ)(x, t)|. (8-18)

We next observe that, by construction, the Carleson box 1 × (0, ℓ(1)] can be partitioned into Carleson
boxes 1′

× (0, ℓ(1′)], with 1′
∈ S ′

ζ , and Whitney boxes 1′′
×

(1
2ℓ(1′′), ℓ(1′′)

]
, with 1′′

∈ S ′′

ζ . In
particular,

1
µ(1)

∫ ℓ(1)

0

∫∫
1

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
=: I + II,

where

I :=
1

µ(1)

∑
1′∈S ′

ζ

∫ ℓ(1′)

0

∫∫
1′

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
,

II :=
1

µ(1)

∑
1′′∈S ′′

ζ

∫ ℓ(1′′)

ℓ(1′′)/2

∫∫
1′′

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
.

Using (8-16), we obtain

I ≤
1

µ(1)

∑
1′∈S ′

ζ

Aϵ
ζµ(1′) ≤ (1 − η′)Aϵ

ζ ,

where

Aϵ
ζ := sup

1̃

1

µ(1̃)

∫ ℓ(1̃)

0

∫∫
1̃

|γ ϵ
λ,ζ (x, t)|2 dµ dλ

λ
,

and where the supremum is taken over all dyadic parabolic subcubes 1̃ ⊂ 1. By (8-18), we have

II ≤
16

µ(1)

∫ ℓ(1)

0

∫∫
1

|(Uλw
−1 A)(x, t) · (Aλ∇x f ζ

1,ϵ)(x, t)|2 dµ dλ

λ
.

Since these estimates hold for all dyadic parabolic cubes, in particular those which are subcubes of 1, we
conclude that

Aϵ
ζ ≤ (1 − η′)Aϵ

ζ + sup
1̃

16

µ(1̃)

∫ ℓ(1̃)

0

∫∫
1̃

|(Uλw
−1 A)(x, t) · (Aλ∇x f ζ

1̃,ϵ
)(x, t)|2 dµ dλ

λ
.

Summing with respect to ζ ∈ W completes the proof of Lemma 8.5 under the a priori assumption that Aϵ
ζ

is qualitatively finite, since it can then be absorbed into the left-hand side.



THE KATO SQUARE ROOT PROBLEM FOR WEIGHTED PARABOLIC OPERATORS 167

Step 4: Removing the a priori assumption. The a priori assumption that Aϵ
ζ is qualitatively finite can

be removed by setting γ ϵ
λ,ζ (x, t) to 0 for λ small and large, repeating the argument from (8-18) on and

passing to the limit at the end. For the truncated γ ϵ
λ,ζ (x, t), we get Aϵ

ζ < ∞ from (7-3). Indeed, for
0 < δ < 1 small, we have

Aϵ
ζ ≤

∫ δ−1

δ

(
sup
1̃

1

µ(1̃)

∫∫
1̃

|Uλw
−1 A|

2 dµ

)
dλ

λ
≤

∫ δ−1

δ

C dλ

λ
< ∞,

where C depends on ℓ(1) and δ. This completes the argument. □

8.2. The Carleson measure estimate: proof of Lemma 8.3. Thanks to Lemma 8.5, it suffices to prove∫ ℓ(1)

0

∫∫
1

|(Uλw
−1 A) ·Aλ∇x f ζ

1,ϵ |
2 dµ dλ

λ
≲ µ(1). (8-19)

The left-hand side in (8-19) is bounded by

|||(λEλH+ (Uλw
−1 A) ·Aλ∇x) f ζ

1,ϵ |||
2

2,µ
+

∫ ℓ(1)

0

∫∫
1

|λEλH f ζ
1,ϵ |

2 dµ dλ

λ
=: I + II.

By Proposition 8.1 and Lemma 8.4, we have

I ≲ ∥D f ζ
1,ϵ∥

2
2,µ ≲ µ(1).

As for II, we obtain from (8-6) that

H f ζ
1,ϵ =

(Lζ
1 − f ζ

1,ϵ)

(ϵℓ(1))2 .

Using the L2
µ-boundedness of Eλ, see Lemma 4.3, and then Lemma 8.4, we obtain

II ≲
∫ ℓ(1)

0
∥λ(ϵℓ(1))−2(Lζ

1 − f ζ
1,ϵ)∥

2
2,µ

dλ

λ

=
1

2ϵ4ℓ(1)2 ∥Lζ
1 − f ζ

1,ϵ∥
2
2,µ ≲ ϵ−2µ(1).

This completes the proof of (8-19), and hence the proof of Theorem 1.1.
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