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ROTATING SPIRALS IN SEGREGATED REACTION-DIFFUSION SYSTEMS

ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

We give a complete characterization of the boundary traces ¢; (i =1, ..., K) supporting spiraling waves,
rotating with a given angular speed w, which appear as singular limits of competition-diffusion systems
of the type

deu; — Au; = pu; — pu; Zj;éi ajju; inQx R,

up = @; on I x RT,

u;(x,0) =u;0(x) for x € Q,

as § — +o0. Here 2 is a rotationally invariant planar set, and a;; > 0 for every i and j. We tackle also
the homogeneous Dirichlet and Neumann boundary conditions, as well as entire solutions in the plane.
As a byproduct of our analysis, we detect explicit families of eternal, entire solutions of the pure heat
equation, parametrized by w € R, which reduce to homogeneous harmonic polynomials for @ = 0.

1. Introduction

This paper deals with existence, uniqueness and qualitative properties of rotating spiraling waves arising in
the singular limit of reaction-diffusion systems, when the interspecific competition rates become infinite.
More precisely, we are concerned with the singular limits, as 8 — 400, of the following model problem
involving K > 3 species competing in the plane:

oiu; — Au; = fi(u;) — Bu; Zj?éi aiju; inQXR+,

Ui = @; on IQ xR, (1)
u;i(x,0) =u;o(x) for x € Q.
Here Q C R? has a smooth boundary and u; = u;(x,t) represents the density of the i-th species

(1 <i < K), whose internal dynamic is described by the function f;. The positive numbers Ba;; account
for the interspecific competition rates, so that the interaction has a repulsive character. The boundary
data ¢; are positive and segregated, i.e., ¢;¢; =0 for j #1i.

As already mentioned, we are concerned with the limit case of strong competition; that is, when the
parameter B goes to 4+-oo while the positive coefficients a;; remain fixed. In this case it is known that the
densities u; segregate, in the sense that they converge uniformly to limit densities satisfying u;u; = 0 for
j # i; hence a pattern arises, and the common nodal set (where all densities vanish simultaneously) can
be considered as a free boundary; see [Caffarelli et al. 2009; Conti et al. 2005a; 2005b; Wei and Weth
2008] for steady states and [Dancer et al. 2012a; 2012b; Dancer and Zhang 2002; Wang and Zhang 2010]
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for time-varying solutions. For such segregated limit profiles, the interface conditions are expressed by
two systems of differential inequalities which play a fundamental role in our work:

oru; — Au; < fi(u,-), 0:u; — Atlj > fi(ﬁi), (2)
where the differential inequalities are understood in the variational sense, and

==Y g i) = £ =Y 5L f ). ©
j#i ! j#i !
These inequalities incorporate the transmission conditions at the free boundary, that is the closure of the
interfaces d{u; > 0} N d{u; > 0}, which separate the supports of u; and u; at any fixed time ¢.

For planar stationary solutions, the structure of the free boundary has been the object of several papers.
In the case of symmetric interactions (a;; = a;; for every i and j), it is composed by a regular part, a
collection of smooth curves, meeting at a locally finite number of (singular) clustering points, with definite
tangents; see [Caffarelli et al. 2009; Conti et al. 2005a; 2006; Helffer et al. 2009]. On the other hand,
the asymmetric case has been treated only more recently in [Terracini et al. 2019]: while the topological
structure of the free boundary is analogous to the symmetric case (smooth curves meeting at isolated
singular points), the geometric description differs strongly in a neighborhood of each singular point,
where the nodal lines meet with logarithmic spiraling asymptotics.

Going back to time-dependent systems, rotating spiraling patterns have been detected numerically in the
case of three competing populations in [Murakawa and Ninomiya 2011]. Driven by this phenomenology,
in this paper we seek rotating spirals, that is rigidly rotating waves which are steady states of (2) in a
reference frame spinning with frequency w; such solutions satisfy d;u; = wdgu; in a disk, subject to
boundary conditions which are prescribed in the rotating frame, and exhibit spiraling interfaces near the
origin. Hence, in comparison with the literature, our work tackles the segregation problem from a new
perspective, that is the existence of limit segregated profiles satisfying additional qualitative properties or
shadowing some given shapes. On the other hand, the literature on other aspects of segregation triggered
by strong competition, starting from pioneering works by Dancer and Du [1995a; 1995b], is now very
vast, and it is impossible to give a complete account of it here; besides the papers mentioned above, we
mention a few more recent ones such as [Arakelyan and Bozorgnia 2017; Berestycki and Zilio 2018;
2019; Lanzara and Montefusco 2019; 2021; Verzini and Zilio 2014].

The rotating spiral shapes we investigate evoke some other typical examples of spatiotemporal patterns
arising in reaction-diffusion systems in planar domains: the spiral waves. In the simplest case, spiral
waves are stationary waves in a rotating frame, while modulated spiraling waves may emanate from
rigidly rotating ones in some circumstances. Such waves arise in different models and appear in the
literature about reaction-diffusion systems in contexts different from singular perturbation problems;
see, e.g., [Sandstede et al. 1997; Sandstede and Scheel 2007; 2023]. As far as we know, this is the first
study on spiraling rotating waves for segregated limit profiles of competition-diffusion systems. We also
mention that spiraling interfaces arise in free boundary problems in entirely different contexts [Allen and
Kriventsov 2020].
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To construct eternal solutions of spiraling-type to the limit system (2), in this paper we deal with
suitable classes of reactions f; and boundary conditions. More precisely, let us consider identical, linear
reactions in the unit ball (centered at 0):

Q =B, fi(u)=pu forsome ucR.
We insert into (2) the rotating wave ansatz
ui(x,1) =ui(Rorx),

Ry = (cos(a)t) —sin(a)t))

sin(wt)  cos(wt)

where

is the rotation matrix of angular speed w, and we obtain the stationary system of inequalities
—Au; +owxt -Vu; < pu; in B,
—Allj +wxt-Vi; > ui; in B, 4)
uj-uj =0 fori # j,

where x+ =R, /2% and 1; is defined in (3). It is worth noting that, despite appearances, this system is
strongly nonlinear and has to be tackled as a free boundary problem.
We are interested in solutions of (4) whose nodal set consists in smooth arcs, emanating from dB and
spiraling towards 0, which is the unique singular point of the free boundary. In this way, each arc is a
smooth interface between two adjacent densities, and the origin is the only point with higher multiplicity
(see Figure 1). In this framework we provide a complete description of the nonhomogeneous Dirichlet
problem associated with (4).
Let us consider a K-tuple (¢1, ..., ¢x) of segregated boundary traces. Precisely, we assume that, for
everyi =1,...,K,
¢ € C¥1(3B). ¢; =0,
{x : @i (x) > 0} are connected, nonempty and disjoint arcs, 5)
\U; supp¢; = 9B.

Up to relabeling, we can assume that the traces ¢; are labeled in counterclockwise order.

In general, it is not reasonable to expect that any choice of the boundary data provides a solution of (4)
with a unique singular point at 0. Indeed, we show that this happens exactly for an explicit subset having
codimension K—1 in the space of traces. Let s = (s1,...,5k) € [F\RK, with s; > 0 for all i, and let us
consider the class of functions

Siot ={U = (uy,...,ug) € (HI(B))K :u; > 0 satisfy (4), u; = s;p; on dB}. (6)

To state our main result we introduce the parameter
apz a a
a:Lln(ﬁ.ﬁ...ﬁ), o
27 azy adszxx a1k

which synthesizes the asymmetry of the coefficients a;;; see [Terracini et al. 2019] for more details.



552 ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

Figure 1. Contour lines of a numerical simulation (obtained in FreeFem++ [Hecht
2012]) in the case of K = 3 densities, with asymmetric competition such that
a12/a»1 = azz/asz = aszy1/aysz = 10, and reaction term p = 0. The angular velocity
is w = 3 for the image on the left (counterclockwise spin) and w = —3 for the image
on the right (clockwise spin). In both cases, we obtain a unique singular point at
the center of the circle by choosing the same boundary conditions, which satisfy the
necessary and sufficient conditions in Theorem 1.1; see (10). The rotation affects the
shape of the spirals but not their asymptotic behavior close to the center. This is part
of the content of Theorem 1.1.

Our main result is the following theorem.
Theorem 1.1. Let K > 3, a;; > 0 and o € R. Assume that u < 2 and (¢1, . . ., gk ) satisfies (5). There
exists

5=(51,...,5x) € RK,
independent of | and w, with s; > 0 for all i, such that:

(1) If s =15 for somet > 0, then St contains an element with a unique singular point at 0. Moreover,
such an element is unique and, defining U as a suitable linear combination of its components, we
have

K
U(rcos, rsint) = Ar? 008(319 —aln r) +o(?) asr—0, (8)

where

K 202
)/25-1-% and 0< Ap < A(x) < A;.

(2) If s £ t5 for everyt > 0, then S;o contains no element with a unique singular point at 0.
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Corollary 1.2. Under the assumptions of the above theorem, if the problem is invariant under a rotation

of 2n /K, i.e.,
ai(i+1) _ aKi

aGi+1)i aik

¢i+1(x) = 01(Razi/kXx) and )

for every i, then
s=(1,1,...,1).

Remark 1.3. Notice that the asymptotic expansion (8) implies that the free boundary, near the singular
point 0, is the union of K equidistributed logarithmic spirals, as long as « # 0. On the other hand, in the
case o = 0, we obtain that the interfaces enter the origin with a definite angle. In particular, this holds
true in the symmetric case a;; = a;; for every j #i.

Remark 1.4. In this work, we normalize the radius of the disc, taking the slope of the reaction term u at
zero as a parameter. If we wish to work in a ball of radius R then we need p < 72/R?, as seen with a
simple scaling.

Remark 1.5. A natural question concerns the dynamical stability of the solutions above. From this
point of view, the study of the linearized problem of (1), due to the presence of the large parameter j,
does not seem a viable path. This leaves open the problem of stability, for the moment, although
numerical simulations for (1), with logistic reactions and 8 large, suggest stability for some specific
angular velocity w.

We shall adopt a constructive point of view, building the solution by superposition of fundamental
elementary modes. The dependence of such building blocks on the parameter w and u shows the presence
of resonances at exceptional values; see Section 6 for further details. As a byproduct of the analysis of
resonances, we will prove the following results.

Theorem 1.6 (homogeneous boundary conditions). Let K >3 and a;j > 0. If (i, w) belongs to a suitable
discrete set then there exists a nontrivial element of S;o; With null traces. Analogous results hold for
homogenous Neumann or Robin boundary conditions.

Theorem 1.7 (entire solutions). Let K > 3 and a;; > 0. For almost every (i, ), there exists an entire
solution of (4) in R2.

In the above results, the conditions on (i, w) are explicit in terms of the zero set of suitable analytic
functions in the complex plane. In both cases, the solutions are explicit in terms of trigonometric and
Bessel’s functions. This allows us to study the structure of the free boundary of the entire solutions far
away from the origin. It turns out that, at least when w # 0, also at infinity the free boundary consists in
equidistributed spirals, now of arithmetic type. We refer to Lemma 6.7 and Remark 6.8 for further details.

Remark 1.8. In the particular case o« = = 0, we obtain that the entire solution found in Theorem 1.7
is related to the nodal components of a smooth rotating solution of the pure heat equation. Let w > 0,
k > 1 be an integer, and let /; denote the modified Bessel function of the first kind, with parameter k.
We have that the function

U(re'®,t) = Re[e* TN 1 (1 20k (1 +i)r)]
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=,

Figure 2. Contour lines of the rotating caloric functions in Remark 1.8. Here v = 1,
and k = 1 and k = 2, respectively. In black the nodal lines: the appearance of arithmetic
spirals for r large is rather clear in the picture.

is an entire, eternal rotating solution of the heat equation
U —~AU=0 inR*xR

having 2k nodal regions, which coincide up to rotations that are a multiple of 7/ k. The equidistributed
nodal lines admit a straight tangent as r — 0, while they behave like arithmetic spirals of the equation
¥ = /w/(2k)r as r — +o0; see Figure 2. Notice that, as w — 0, a suitable renormalization of U
converges to the entire harmonic function Re z¥.

Remark 1.9. Notice that, by separation of variables, one may treat boundary value problems for rotating
solutions also on other rotationally invariant domains €2, such as annuli or external domains. Of course,
since in these cases 0 ¢ €2, this cannot provide spiraling solutions, at least in our sense.

Let us provide an explanation for our construction. When a smooth curve separates two densities of an
element of Sy, at least locally, the gradients of the two densities are proportional across such an interface.
Indeed, by definition of 1;, the function azju; — aj2u3 solves an elliptic equation in a neighborhood of
the interface.

Let us assume, for concreteness, K = 3. In case the nodal structure of (11, U2, u3) € Syt is the required
one, as depicted in Figure 1, then a suitable linear combination of the components u; satisfies an equation
on B, up to a curve. More precisely, let us define

aiz aiz2 dadzs
U=u——ur+ —--—us, F={u1>0}ﬂ{u3>0}.
azi az1 dsz

It is easy to check that
—AU+wxt-VU =pU in B\T,



ROTATING SPIRALS IN SEGREGATED REACTION-DIFFUSION SYSTEMS 555

while, if 0 # xo € " and « is defined as in (7),

lim ViU(x)=—e>"® lim VU(x).
X—>X0 X—>X0

uz(x)>0 ui(x)>0
By composing with a conformal map between B \ {0} and its universal covering R x (0, co), we can
lift ¢ to a solution of a linear equation in the half-plane (see (11) below) having a precise nodal structure.
This connection is analyzed in Section 2.

To prove Theorem 1.1 we reverse the above argument: we start by solving the equation in the covering
by separation of variables in Section 3; next, we show in Section 4 that, under suitable conditions, the
solution has the appropriate nodal properties to be mapped back to the disk. In both these points, we have
to deal with nonresonance/coerciveness conditions, leading to the assumption on . On the other hand,
the existence of the vector § is equivalent to the validity of suitable compatibility conditions, expressed in
terms of the Fourier coefficients of the boundary data. Specifically, when K = 3, § is any componentwise
positive solution of the system

2 s 2 D
/ e 0 P(9) sin(—) dx = / e 0 P(9) cos(—) dx =0, (10)
0 2 0 2
where 4 g 4
12 12 a3
O=s101—52—@ot+s53——@3.
azy az] dasz

We analyze the general compatibility conditions in Section 5, concluding the proof of Theorem 1.1.
Finally, Theorems 1.6 and 1.7 are proved in Section 6.

2. An equivalent problem in the half-plane

As we mentioned, the proof of Theorems 1.1, 1.6 and 1.7 is based on the connection between system (4)
and an equation in the half-plane, seen as the universal covering of the punctured disk. In this section we
analyze such a connection.

Let i, w be real parameters and v = v(x, y) € C(R x [0, +00)) be a classical solution of the equation

—Av4we Pvy=ePpv, xeR, y>O0. (11)
In the following we assume that v satisfies the following properties:

(a) There exists o 7 0 such that
v(x +2m,y) =ov(x,y) (12)
forany x e R, y > 0.

(b) v(x,y) =0if and only if (x, y) € S; N S; 4 for some i € Z, where the nonempty nodal regions S;
are open, connected, disjoint, unbounded and

SiN{(x,0):x e R} ={(x,0): x;—1 <x <x;}, SinS;#o <+ j—i=-1,01.

In particular, since v is analytic for y > 0, we obtain that the set S; N S;4 is actually a locally
analytic curve which accumulates both at (x;,0) and at y = oo.

(c) v|s; € H 1(S;) for every i € Z (or, equivalently, their trivial extensions belong to H ! (R x (0, +00))).



556 ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

We infer that _J; S; =R x[0, +00), and that this covering is locally finite. Moreover, by (a), the nodal
set of v is 2m-periodic in the x-direction. Up to a translation, we can assume that x¢o = 0, so that in
particular v(0, 0) = 0 and the number K of nodal components, up to periodicity, can be defined as

K =#{i:[xj—1,x;] C[0,2n]}, ie., Si+x =S; +(2m,0), foralli. (13)

Notice that o > 0 implies K even, while o < 0 forces K odd.
Finally, we introduce the following conformal map between the half-plane and the punctured disk:

T:Rx(0,+00) = B\ {0}, T:(x,y)—>x= (e ?cosx,e ”sinx) (14)

(for more details about this map, see Remarks 2.17 and 2.19 in [Terracini et al. 2019]).
The main result of this section is the following.

Proposition 2.1. Let v € C(R x [0, +00)) be a classical solution of (11) satisfying (a), (b) and (c¢), and
let K be defined as in (13). Assume that the positive coefficients a;j and the parameter o satisfy

Qi 1ns
2D _ Ky (15)
=1 aji-1)
(understanding ag1 = agi1, a10 = dikg).
Fori =1,..., K, let us define
. a. s
wi = (1)l o7, withly =1, I; = =D, (16)
agG—1i

(trivially extended in the whole B). Then (u1,...,Uug) € Sior. Moreover, with respect to this K-tuple, the

origin is the only point with higher multiplicity, with m(0) = K.
Vice versa, if (U1,...,Uug) € St has the origin as its only singular point, then there exists v such that
the first part of the proposition holds.

Remark 2.2. In the case that the asymptotic behavior of the nodal zones S; is known as y — 400,
then by composition with 7 one can deduce the local description of the free boundary associated to
(u1,...,ug) near 0.

Proof. By condition (a) the functions u; are well defined, by (b) they satisfy u; -u; = 0 as long as j # i,
and by (c) they belong to H!(B) (recall that T is a conformal map). With direct computations one can
check that

—Auj +wxt-Vu; = Mu;  in w; = {u; > 0}, (17)

Analogously, using the definition of the coefficients /; (see (16)), we have that

a s . a P . a P .
—A(u,-_l B G u,-) +wa‘-V(u,-_1 B Gt ul-) = M(Mi—l _ ZG-Di ui) (18)

ai(i—1) ai(i—1) di(i-1)

in the interior of w;—; Uw;, i = 1,..., K (in case i = 1 we keep the understanding i — 1 = K, and
the validity of (18) follows by (15)). Notice that, when restricted to w;—; U w;, the function in (18) is a
multiple of both ;1 and ;.
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We have to show the validity of the inequalities
| e Vot foxtug =y <0, (19
/B Vil; Vo + [wxt Vi, - uiiilp > 0 (20)

for every Lipschitz, compactly supported, nonnegative ¢.
First, let us consider any ¢ such that ¢ = 0 in B¢(0). Then (19) follows by integration by parts, since

/ V“z"vﬁo"‘[wxl'v“i—ﬂ“i]‘ﬂ:/ Vu; Vo + [ox* - Vu; — pujle = duip <0,

B w;i\Bs¢ w;

where we used the regularity of dw; away from 0, the equation for u; and the fact that d,u; <0 on Jdw; .
On the other hand, to prove (20), since ¢ = 0 in B.(0), we can use a partition of unity argument and
assume that supp(¢) intersects at most two adjacent nodal regions. In case none of them is w;, then
u; = —ciuj — cpuj+1, with ¢; > 0, and (20) follows by applying (19) twice, with i = j, j + 1; if
supp(¢) C wj—1 Uw; \ B, then (18) yields

/ Vil; - Vo + [wxt - Vii; — puile = [ Vii; - Vo + [wxt - Vii; — piij]e = 0,
B ®;—1Nw;\B;g

and the same holds true if supp(¢) C w; Uw;+1 \ Be.
Finally, let us consider any ¢. We show how to prove (19); the proof of (20) is analogous. For any
¢ > (0 small, we define the function

0, X € B,
nx)=1(xl—¢e)/e, x € Bae\ B,
1, x € B\ Bj..

Then ¢n = 0 in B, and by the previous part
/ (Vui - Vo)n +/ (Vui - Vg +/ [wx™ - Vu; — pulng <0.
B B B
Since ¢ is Lipschitz, we have
1 1
.. < = . < = . < i oo,
[vuevme| <L [ Fte = Ml g ollaeay = Cluslin ol

Thus we find the estimate

L(vui'V‘P)r/'i‘/;[wa_'vui—Mui]rl‘/’fc””i”Hl(Bzg)”‘/’”Loo-

Taking the limit as ¢ — 0, since n converges monotonically to 1, we conclude that
/ Vu; Vo + [wx® - Viu; — puilp <0,
B

concluding the proof of the first assertion.
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The second part follows by defining

voT =Y ~——u;, 1)

=

and then deriving v by a lifting argument. We refer to [Terracini et al. 2019, Section 2] for further
details. O

3. Solutions in the half-plane
Let u, o, w € R. Given the trace
®:[0,27] > R, &(0)=d(2xn) =0,
we look for solutions v of the following problem in the half-plane:

—Av+we Py, = e_zy;w, xeR, y>0,
v(x+2n,y)=ez’mv(x,y), xeR, y=>0, (22)
v(x,0) = d(x), 0<x<2m.

Notice that we are considering (11) together with condition (12) in the case o = 2% > 0 (recall
definition (7) and the relation (15)). As we noticed, this involves an even number of nodal zones in the
period. One can easily modify our arguments to deal with an odd one, i.e., with o < 0, for instance with
the change of variables (x, y) — (%x % y), o +— o2. In a completely equivalent way, one can work
with 27 -periodicity and take o = % In|o| + ’5 e C.

To solve (22), we first transform it into a periodic problem, and then use separation of variables to
write the solution in Fourier series. To this aim, we notice that v solves (22) if and only if

solves
—Aw + (we™2 = 2a)wy + [(aw —p)e 2 —a?lw =0, xeR, y >0,
w(x +2m,y) =w(x,y), xeR, y>0, (23)
w(x,0) = e **d(x), 0<x<2m.

Of course, if @ = 0 then v and w coincide. Either way, with a little abuse of notation, we can extend ®
to R in such a way that e **®(x) is 2z -periodic. At least formally we can expand w in Fourier series
and write
wix.y) =) Wi(n)e'™™.
kez
Plugging this expression into (23), we obtain that the coefficients Wy : RT — C, k € Z, must solve the
ordinary differential equation

Wi () = [(k —ia)® + (0o — p+iwk)e 2 TWe(y), ¥ >0. (24)

We can solve boundary value problems associated with (24) by using the Fredholm alternative and the
Lax—Milgram theorem, settled in complex Hilbert spaces. We are looking for solutions of (23) that change
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sign as y — +o00. As we will see in Lemma 3.9, this requires that the term corresponding to kX = 0 in the
expansion should not be present. For this reason we consider k # 0 from now on.

Lemma 3.1. For any k € 7\ {0}, a € R, there exists a sequence {A,}nen C C, with |A,| — 400 as
n — 400, such that the problem

X/ () =k —ia)® + (wa — p+iok)e ] Xk (y), v >0,

Xr(0)=1, Xpe H'(RT;C), (2)

admits a unique solution if and only if
wo— p+iwk & {Aninen, (26)

while no solution exists in the complementary case.

Proof. We shall consider the case k > 1, as the case k < —1 follows by the same arguments, up to the
change of sign

(¢, 0, u, k) = (—a, —w, u, —k).

In particular, one can verify that X_;(y) = Xy (y) for any k € Z and y > 0 (in case one of them exists).
We proceed through several steps.

Step 1. Weak formulation of the problem. Letting X = U + Up, where Uy := e~ *~10Y "we are led to
find, if it exists, a function U € H} (R™; C), solution of

—U"+ [k —ia)?>+ (wa— p+ivk)e U = —(wa — p + iwk)e Ve kTi0)y 5 0,
We settle the problem in the space
o0
H=H{®50), Julfy = [ 0P+ P
0
To proceed, we introduce the sesquilinear forms ag, ay as
e} _ _ o0 _
ar(U, V) = / UV +[(k?—a®) + (wa—p)e WUV, ap(U V)= / (—2ak + wke UV,
0 0
and the antilinear form / as
oo _ o0 . —
(V) =—(wa—u+ ia)k)/ e VUV = —(wa — pu + iwk)/ e~ k+2-ia)yy (27)
0 0
In this way, we are reduced to solve the following variational problem: finding U € H such that
aU,V)=agrU,V)+iary(U,V)=1(V) forallVeH. (28)

Notice that both @ and [ are continuous: indeed, since |e=2”| < 1 for y > 0, it is easy to see that

a(U, V)| < (k2 + a2 + V(0o — w)? + (k) [ull g 0]z
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Similarly, for [ we obtain

00 — 00 1/2
1) < =ik [ e*“ﬁths“@fﬁééggky(A nﬂﬁ .

For future purposes we notice that, for every U € H, both ar(U, U) and aj (U, U) are real numbers:

indeed, ag (U, U) and aj (U, U) are, respectively, the real and imaginary part of a(U, U). We can exploit
the Cauchy—Schwarz inequality (for real two-dimensional vectors) to find that

a(U.U)| = sup aR(U,U)+Ka1(U,U)> k
’ KGR 1+ K? T Va

/'nU|<+w2+a%uu1—

— (ar.0) - Farw.0)

(29)

/’L / e—2 y |U |2.

JTIP JaZ k2 Jo
In order to prove existence and uniqueness of a solution U, we shall make use of the classical Fredholm
alternative theorem. In particular, we shall find that (28) admits a unique solution U € HO1 RT*:C) if
and only if O is not an eigenvalue of @ (more precisely, and equivalently, O is not an eigenvalue of the
conjugate transpose sesquilinear form a ).

Step 2. A related eigenvalue problem. To proceed, we introduce the (adjoint) eigenvalue problem: finding
AeCandV € H \ {0} such that

e} o0
/ [U'V' + (k—ia)’UV] +/\/ UV =0 forallU € H.
0 0
Defining the weighted space
o0
L={Ue%gww3wm&=/ e |UP < +ool,
0

we have that H C L = L* C H* is a Hilbert triplet, with H compactly embedded in L; see Lemma A.1.
Then standard spectral theory (see, e.g., [Kato 1966, Chapter 3, Theorem 6.26]) yields the existence of a
sequence of eigenvalues {1, }nen C C, with |A,| — +o00, and it is straightforward to show that IV # 0
satisfies

wa—u+ivk = Ay,

=0 for all H
aU.V)=0 forallU e = and V =V, is an associated eigenfunction.

(30)

Notice that each A, is a simple eigenvalue by uniqueness of the Cauchy problem for ODEs.

Step 3. Application of the Babuska—Lax—Milgram theorem. To conclude the invertible case, we show
that, if wa — u + iwk # A, for every n, then there exists a unique solution to (28). To this aim,
we apply a generalization of the Lax—Milgram theorem due to Babuska [1971, Theorem 2.1] (with
H{ = Hy = H). After the previous steps, in order to apply such a result to (28), we only need to show
that, if wa — u + iwk # A, for every n, then the following inf-sup conditions hold:

inf sup |a(U,V)| = C, >0, inf sup |a(U,V)|>C3>0
WVilz=1u|y=1 WWia=1v|y=1
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for suitable constants C», C3. We prove the first inequality; the second is proved analogously. Assume
by contradiction that the sequence {1V}, }, satisfies

Wallr =1, |a@. Vo)l < LUy forall U e A,

In particular, as n — +o0, a(Vy, V) — 0. Moreover, up to subsequences, V;, converges to Vs, both
weakly in H and strongly in L (by compact embedding). Thus a(U, V) = 0 for every U € H. Since
wo — i+ iwk # A, for every n and recalling (30), we deduce that Vo = 0. Since k2 > 1, (29) yields

(1) = [a W Vi) = e [V = — W2 = ——— 4 o(1)
o(1) = |a(Vy, > S - 4,
B AN Ry R N oy

as n — 0o, a contradiction.

Step 4. Nonexistence in the resonant case. Finally, assume that wa — u 4+ iwk = A, for some n, and let
Vi % 0 be an associated eigenfunction of the adjoint problem

a(U. Vy) = /

o0 o0
[U'V), 4+ (k—ia)?UV,] +An[ e UV, =0 forallU € H.
0 0

This forces
Vi + (k—ia)*Vy+2Ane ™V, =0 on (0, 00); 31)

in particular, V,, € H?(0, +00), and thus V)(y) = 0 as y — +00. Moreover, by uniqueness of the
Cauchy problem, V, (0) # 0.
In the case we are considering, (28) can be rewritten as

a(U, V)= (=A,Up, V) forallVeH,

where Uy = e~ k—i0)y, By Fredholm’s alternative, in this case (28) is solvable if and only if the
compatibility condition

holds true. On the other hand, using (31), we have
o _ _ o0 _ _ _
(=AnUo, V)L = —An /(; e_szOVn = U(O)V; (0) +/(; [U(;V;1 + (k _ia)zUOVn] = V;(O) #0,

which concludes the proof. O

The resonance set in the previous lemma can be characterized in terms of the zero set of the following
function ©®,,, depending on the complex parameter v:

00 1 N
) =3 e ) ¢ G2

n=0

Notice that, for any v € C, O, is analytic on C (recall that I" has no zeros, but only simple poles at each
nonpositive integer —k: in such a case, we understand 1/ I'(—k) = 0). As a matter of fact, ®, is related
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to I,,, the modified Bessel function of the first kind, with parameter v € C, by the formula
v
1) = (%) 0 (33)

(in turn, 1, (z) = e""V™/2 ], (iz), where J, is the usual Bessel function of the first kind). Notice that, in
the case v € Z, I, is a multivalued function because of the complex exponentiation z”. Nonetheless, the
zero set of (any determination of) /,, coincides with the complex square root of the zero set of ®,,, with
the exception of 0.

Lemma 3.2. Forany k € Z\ {0}, a € R, let {1, }nen C C denote the sequence defined in Lemma 3.1.
Then

{Antnen = 1{z € C\{0} : Ogignk)(k—iw) (z) = 0},
where ©,, is defined in (32) for every v € C.

Moreover, whenever A := wa — 4 + iwk & {A, }nen, the unique solution of (25) is

O,(Ae™2) _
Xi() = 22

(X (y) = eV in the case A = 0), where v = sign(k)(k — i) whenever k # 0.

Equivalently, we could write
Iv (\/Xe_y)
L(VA)

and such an identity is not ambiguous as long as we choose the same determinations both in the numerator

Xi(y) =

and in the denominator.

Proof. Again, we treat the case k > 1; the case k < —1 follows with minor changes. With the above
notation,
v=k—ia, A=wo—pu+iowk,

the second-order linear ODE in (25) is written as

X(y) =%+ Ae” P ]x (). (34)
We assume A # 0; the complementary case is trivial. Let us consider the functions x,(y) defined as
1 AN
X =041, )™ =Y 0y e where ¢ = —(_)
+v(y) +v( ) ’; +v,n W +v,n MT(+1+v)\4

(again, we understand ¢, , = 0 whenever —(n+1=£v) € N). We notice that 4n(n+v)c4y, =ACty n—1.
Then

00 = T2 F et = T e eI T )

n>0 n>0 n>0
=2x, () + A Y capno1eTT = 12 4 he P xgy (0);
n>1

that is, both x4, solve the second-order linear ODE (34).
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Let us first assume that @ # 0. Then —(n 4+ 1 £ v) &N for every 7, and we obtain that @4, (le™2Y) =
1/T(1£v)+ o(1); that is,

1
Xy (¥) = F(l—j:v)eijy +o(e™?) asy— +oo.

Then x4, are linearly independent, and any solution of (34) is of the form
x(y)=Cyxp(y) + C-x-p(y). CxeC

Since v =k —ia and k > 1, we have that x € HI(O, +00) if and only if C_ = 0. As a consequence,
(25) is (uniquely) solvable if and only if x,(0) = ©,,(1) # 0, and the lemma follows.
On the other hand, let @ = 0 (and A 5 0). In this case v =k > 1, and

1 ANtk ANk
Contk = o) (Z) - (Z) Chn
for every n > 0, therefore the functions x4 are no longer linearly independent. By differentiating (34)

with respect to v, one can easily see that a second independent solution of (34) can be obtained as

k
= [(3) 55

mimicking the procedure that leads to the (modified) Bessel functions of the second kind. Since I'(n+1—k)

has a simple pole at n = 0, we have

ac—v,O

lim

v—>k

=(-D*¥Gk-1)! and  F()=(DFk -1 +0(*) asy > 400

(see [Erdélyi et al. 1953, Section 7.2.5, p. 9] for more details). Thus also in this case Xx ¢ H (0, +00),
and the lemma follows. O

Corollary 3.3. Let X} denote the solution of (25). Then, for some C # 0,
Xi(y) = Ce™ S k—ic)y O(e—(|k|+2)y) as y — +o0.

Remark 3.4. As a byproduct of the proof of Lemma 3.2, we have that the eigenvalues A,, are all simple
in HO1 (RT; C). Indeed, the general solution of the corresponding eigenequation is a two-dimensional
vector space of complex-valued functions, but only a one-dimensional subspace consists of H ! functions
of the form

C Ogign(k) (k—ia) (Ane 2 ) SE@E—Y = e C,

In view of writing w as a series in terms of the solutions X, we need to estimate the asymptotic
behaviors as k — oo of their L? and H! norms.
Lemma 3.5. Let , |4, w be fixed in such a way that (26) holds for every k # 0. Then X}, satisfies
1) 1/2 C 1) 1/2
([Tmer) "= ([T1P) " =cVIE @ INelimoso < VI G9
0 VK| 0

where C depends only on o, |, 0.
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Proof. As usual, for concreteness, we assume k > 1. As in the proof of Lemma 3.1 we write X =
U +e~* =@y 1n order to prove (35), we distinguish between two cases, corresponding to the instances k
small and k large. Indeed, for any fixed k , which we will choose later in terms of «, i, ®, the estimate (35)
is true for k < k and a suitable constant C. Next, for k > k , we estimate the norms of U using the identity

la(U.U)| = [[(U)].
Recalling (27), we have

o] o) 1/2
] Cutiok ~(k+2)y \/(O)Ol—ﬂ)2+(CUk)2( 2) ‘
IU)| < |oa—p+iw I/O le U =< kD) /0 \U|

Using (29), we obtain

k[T \/(wa—m2+(wk)2( > )1/2
U+ (k2 + o — u U2 Uizl
rwz/() U+ (K +a? — DU P < — /0 14

Then
(/°°|U|2)“2< VT e?  Ja—p? + k) _ ol
T k(2 +aZ—put) V2(k +2) T k3
whence

A e (L
0 - k 20k +2) 0 T k4

for k > k sufficiently large (depending on w, u, o).
Coming back to Xz = U + e~ *~1Y we finally obtain

o) 21/2 o) 21/2 o) - 1/2 |a)| 1 1
X = / U) +(/ e y) S5 t—=—F
()= ee) (] S
and

) 1/2 00 1/2 ) 1/2 3/2 2 2
712 2 .2 —2ky |Cl)| +a
([Tme) = ([Twe) ([ weiape) T < Bos e E < v

for k sufficiently large (depending on @, p, «), concluding the H! estimates. Finally, by Corollary 3.3,
for any y > 0,

00 0o 1/2 , roo 1/2
X ()2 = — [ 2Xk<r>X,Q(r>drsz(/ |Xk|2) (/ |X,Q|2) <22,
y 0 0

and the last estimate follows. O

Next we provide explicit sufficient conditions for the validity of condition (26).

Lemma 3.6. A sufficient condition for (26) to hold true is
2@ 2. W g2 2
sup{(h,l) 2t (T 0} > =5 (k= 4+ a”), (36)

where j; 1 denotes the first (positive) zero of the standard Bessel function of the first kind of order v > 0.
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This is the case, for instance, if
either 11 < (jo,1 + VK2 +a2)?, or g <2. (37)
In particular, for any choice of a, w, W, if |k| is sufficiently large then (26) holds.

Proof. Using the notation introduced in the proof of Lemma 3.1, we are going to show that, under the
present assumptions, the sesquilinear form a is coercive. By the first estimate in (29), this follows once
we find K € R such that the quadratic form (with real coefficients)

o0
ar(U,U)+a;(U, U)K = / U’ |? + (k? —a? —20kK)|U|? + (wa — 1) + 0k K)e 2 |U|?
0

is strictly positive. To this aim, it is not difficult to check that we have to ask that k2 —a? — 20k K > 0.
For this reason, it is convenient to introduce the parameters T > 0 and b = b(t) such that

_ k?—a?-1? . . 1)
K_T’ b-—((wa—,u)%—ka)—/L—F%

In this way, we are reduced to finding 7 > 0 such that the quadratic form

(% — (k> + a?)).

o0
U H/ U2 + (12— be™2)|U 2
0

is strictly positive. This quadratic form can be studied by standard arguments; we postpone the details to
Lemma A.2 in the Appendix. We obtain that it is coercive if and only if

b= pt g (= (K2 + o) < (),
and (36) follows. In order to make this condition more explicit, we exploit the fact that
Je1 > joa+ 1t forevery T >0
(see [McCann and Love 1982]). Therefore, a stronger condition than (36) is
uw+ %(rz —(k*+a?) < (jo,1 + 7)?  for some 7 > 0.
The conditions in (37) follow by taking either 72 = k2 + a2, or T — +00, respectively. O

Corollary 3.7. Let o, u, o be fixed, with
1< (o +1)% (38)
Then (26) holds true for every k # Q.

We are ready to state and prove the main result of this section. For any ® € Lip([0, 27]), we write the
Fourier coefficients of e ** ®(x) as

2w
or = L e~ UktIxX(x)dx, keZ
21 Jo

Proposition 3.8. Let o, 1, o be fixed and ® € Lip([0, 27]). Let us assume that
o < (joq+1)* =347
e ®(0) = ®(2w) =0 and ¢ = [;" e~ D(x) dx = 0.
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Then the functions
w.y) = Y X and v(x.y) = e w(x,y), (39)
kez\{0}

where the functions X, are as in Lemmas 3.1 and 3.2, satisfy:

(D) we H'({(x,y) e RxRY :a <x +1y <b}) foranyl € Rand a < b, and it solves (23).

Q) ve H'({(x,y) eRxRY :a <x 41y <b}) foranyl such that loa > 0 and for every a < b, and it
solves (22).

(3) Both v and w are analytic in R x RY and C%* up to y = 0 for every a < 1.

Proof of Proposition 3.8. In view of Lemma 3.1, we have that all the terms in the series in (39) are smooth
and satisfy the differential equations in (23). We now show that the series converges in H!, ensuring
that w also satisfies the corresponding equation. We start by observing that, by construction, the family
{(x,y) > X (y)eikx}kez\{o} is orthogonal in H!(S), S = (0,27) x R, and, in particular, for any
k,h € Z\ {0} and k # h, we have

/ X (e (Xp(y)eihx) = 0, / Xp(0)e™ (X} (v)eihx) =0
S S

and, recalling (35),

. C . .
[ et p < [1Gme e, [ ey < ikl
s kl™Js S
On the other hand, since x > e ~**®(x) can be extended to a 27r-periodic Lipschitz continuous function,
it is an A '-function on S', and its Fourier coefficients ¢ satisfy

> k¢l < 400
kez

(recall that ¢o = 0). Combining the above inequalities, we infer

2

> Wi(y)e*

k#0

1
<C Y (hel + |¢_k|2>(— " |k|) < +oo.

HI(S) =1 |k |

We conclude that the series defining w converges in H ! (S), making w a weak solution of (23). Since w is
periodic in the x-direction, we deduce that it belongs to H ' ((a, b) x RT) for every a < b. Exploiting once
again the periodicity in x of w, we can readily infer that w € H!({(x, y) e RxR¥ :a < x+1y <b}) for any
I € R and a < b. Moreover, by elliptic regularity, w is analytic in R x R™ and Hélder continuous up to the
boundary. Analogous conclusions for the function v can be drawn from the fact that v(x, y) = e**w(x, y),
the only difference being that we need to exploit the assumption /¢ > 0 in order to estimate the exponential
factor. O

We conclude this section by showing that the Fourier expansions of the functions w and v can be
exploited to give a description of their nodal sets for y large.
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Lemma 3.9. We consider again the assumptions of Proposition 3.8. Let n > 1 be the largest integer such
that

¢r =0 forall k| <n.

Then there exists y* > 0 and 2n disjoint simple curves I'1, ..., 2, such that
{(x,y) €RX (3%, 400) tw(x,y) =0(=v(x,y)}= | J Tj+@nh,0). (40)
j=1,....2n
hez

The curves I'; are asymptotic to evenly spaced parallel lines: there exists f € R such that
(x,y)el'y, < oay+nx=B+mnj+o0,(1) as y — +oo.
Proof. By Lemma 3.5, we have that

sup  w(x, ) < sup Y 1wl X )]+ i | [ Xk (D < C D (Il + [k ) < +o0,
(x,y)eRxXRT y>0 -0 k>n

which implies that the series converges also uniformly in R x R*. Moreover, we can extract the first term
of the series and see that

W(x.y) = b Xn(3)e™ = nX_n(0)e ™[ <C > (x| + lp—khe ™™ < Ce DY
k>n+1

(see Corollary 3.3). This, in turn, implies that
W, y) = G Xn (e + ¢ X_n(n)e™"* + 0@~ HD) (41)

uniformly in x € R.
We claim that the nodal lines of the functions w (and of v) align asymptotically with those of the
function

(x,y) = An(x,y) = duXn (y)einx + ¢_nX_n(y)e—inx
= ¢ncne—(n—icx)J/+inx +¢_nc_ne(—n—ia)y—inx + O(e_("+2)y)
= e " (ay, cos(ay +nx) + by sin(ey +nx) + 0(e=2”))
= e—ny(\/msin(ay +nx—B)+ 0(e™2)),

where the coefficients a,, b, and B are real numbers, a2 + b2 # 0 by assumption, and sin 8 =
—ayn/ /a2 + b2. Indeed, recalling (41), we have that, as y — +00,

e™w(x,y) = Va:+b2sin(ay +nx—p)+ 0(e™?).

Analogously, one can show that also the series of the derivatives converges uniformly in x € R and that,
as y — 400,

e"™ wy(x,y) =nva2 +b2cos(ay +nx—p)+ 0(e™?).
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By the implicit function theorem, there exists y* > 0 large enough that the nodal set of the function w in
R x (y*, +00) is a countable union of graphs with respect to the y variable, each one asymptotic to

ay+nx=8+hr forsomehel”.

We choose I';, j =1,...,2n, as 2n consecutive curves in this family of graphs by taking h = j. O

Remark 3.10. If the number of nodal zones for y small is different from 27, then the nodal lines of v
must intersect. As a consequence, condition (b) in Section 2 fails for such a v, which cannot correspond
to any element of S,y via Proposition 2.1.

4. Nodal sets in the half-plane

In this section, we study in detail the nodal structure of the function v constructed in Proposition 3.8. For
this purpose, we let
N ={(x.y) eRxRy :v(x,y) =0}

be the nodal set of v, and we call a nodal component of v any connected component of R x R\ \V.

We state the main result of this section. Its assumptions should be compared to those of Proposition 3.8,
in particular, we point out that they imply the existence of a unique solution v of (22). We recall that, for
® e Lip([0, 27r]), we write the Fourier coefficients of e ** ®(x) as

1

2w
— —(ik+a)x
o ; e d(x)dx, kel

Pr

Proposition 4.1. Let o, 1, w be fixed real numbers, ® € Lip([0, 21]) and n > 1 be a given integer. Let
us assume that

e the function ® changes sign 2n times in [0, 2], more precisely, there exist

X1:0<XZ<---<X2,H_1=27'[

such that
n—1 n—1
{x € (0.27) : ®(x) > 0} = | J (xak41. Xok42) and  {x € (0.27): D(x) <0} = | J (xar42. Xok43);
k=0 k=0

o the coefficients of the equation satisfy L < 2;

e we have the compatibility condition

sup{lk| : ¢ =0} =n—-1>0. (42)

Moreover, let v denote the solution of (23), whose existence is guaranteed by Proposition 3.8.
Then there exist 2n connected, open sets Si, ..., 82, CRx RT such that

e extending the definition of Sy, by periodicity, as Sk +2n = Sk + (27,0), k € Z, we have

SkNS, =9 foreveryk #h and SkNSp#0 < k—h=-1,01;
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e any nodal component of v is one of the Sy,:
RxRT\N = U Sk
kezZ
* cach of them touches the x-axis in a single (connected) interval:
Sk N{(x,0)} =[xk, Xk 41] foranyk =1,...,2n;
e they are asymptotic to a family of evenly spaced strips: there exists B € R such that
Sk C{(x,y):B+rk+0y(1) <ay+nx <B+nak+1)+o0y(1)} asy— +oo.
The remaining part of this section is devoted to the proof of Proposition 4.1. We shall prove it in a
series of intermediate steps. First we briefly investigate the local structure of the nodal set .
Lemma 4.2. Under the above notation,
e C={(x,y) eRxRy4 :v(x,y) =0,Vu(x,y) =0} is discretein R x RT;
e N\ C is the union of countably many analytic curves;
o If O(x) #O0andl € R, then the set
NN{(x,y)ix+1y =X}
is discrete, and it does not accumulate at {y = 0}.
We point out that, for the moment, it may still be that C accumulates at some point of the discrete set
{(x,0) : &(x) = 0}.

Proof. We recall that v satisfies (22), and v is analytic in R x R* and continuous up to the boundary
{(x,y):y = 0} (see Proposition 3.8). By well-known results of Hartman and Wintner [1953], the set C is
discrete in R x R*.

As a consequence, by the analytic implicit function theorem, A\ C is the disjoint union of countably
many analytic curves which are either unbounded, accumulate at some point of {(x,0) : ®(x) = 0}, or
meet each other at points of C.

Finally, let ¢ : [0, +00) — R be defined as

p(y) =v(x =1y, y).

Then ¢ is real analytic for y > 0, and continuous up to y = 0 and ¢(0) # 0. We deduce that its zero set
is discrete. Since

NNO{(x,y)ix+ly=x} ={(x—1y,y):9(y) =0},
the lemma follows. O

Let A be any nodal component of v. In the following, for any /& € Z, we write
Ap = A— (2hx,0).

Since v is 2z -periodic in x, Ay is itself a nodal component of v. As a consequence, either A and Ay,
coincide, or they are disjoint. We prove that this property is independent of & # 0.
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Lemma 4.3. Let A be any nodal component of v. Then

e cither A = Ay, for some h € Z, in which case A = Ay, foreveryk € Z,

e or AN Ay, = @ for some h € Z, in which case AN Ay = & for every k # 0, and
sup [{x : (x,y) € A}| <2m,
y>0
where |- | denotes the one-dimensional Lebesgue measure.
Proof. We start by examining the first alternative. Let (X, y) € A = Ay, with h > 1, so that we also
have (x + 2hm, y) € A. By connectedness, there exists a curve y C A joining (X, y) and (x + 2hmn, V).
Since 2hn/(2w) = h € N, by the universal chord theorem (see, e.g., [Oxtoby 1972]), there exists
(1, 1), (x2, y2) € y such that (x2, y2) = (x1, y1) + (27, 0). Thus AN Ay 5 (x2, y2), which implies
A = Ay forevery k € Z.
Conversely, let us assume that A N Ay = @ for every k # 0. Then, for every y > 0,

{x:(ry)edt=|Jixekm. 2k + Dm): (x.y) e A} = | J{x €[0.27m) : (x.y) € A}
kez kez

and such a union is disjoint by assumption. We deduce that |[{x : (x, y) € A}| <|[0,2n)|. |

To proceed, we need the following result, which is a consequence of a Poincaré-type inequality (see
Lemma A.3).

Lemma 4.4. Let A be any nodal component of v and assume that (i < 72 and)

sup [{x: (x,y) € A}| <2m.
y>0

Thenv|q ¢ H} (A).
Proof. By contradiction, let A be any nodal component of v and assume that v|4 € HO1 (A) and

sup [{x : (x, y) € 4}| < 27.
y>0

We will show that this necessarily implies p > 2.
By assumption, the function v € H!(A) satisfies
—Av+we vy =e P uv  in A,
v=0 on 0A.

Multiplying by v and integrating by parts over A yields the identity

/IVv|2=M/e_2yv2;
A A

Q/e—Zy(vz)x =0
2 Ja

for every v € HO1 (A) by density of the test functions.

indeed,
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We argue by Steiner symmetrization with respect to the y-axis; see, e.g., [Kawohl 1985]. We stress
that the weight (x, y) — e~2” is independent of the x variable. Let A* C (—m, 7) x RT be defined as

A= (. y) iy > 0, [x] < Hx s (x,y) € A}])

and v* € Hy (A*) C H} ((—m, w) X R™) be the Steiner symmetrization of the function v|4. By well-known
properties of the Steiner symmetrization, we obtain

/ |Vu*|? < M/ e 2 (v*)2.
(—m,m)xRt+ (—m,m)xRt

Since v and v* are not identically zero, by Lemma A.3, we obtain

w=(j121)* =2 O
Lemma 4.5. Let y* be defined as in Lemma 3.9, and let A denote any nodal component of v such that
AN{(x,y):y>y*} # @. Then

sup [{x : (x,y) € A}| <2m.
y>0

Proof. Without loss of generality we can assume that v > 0 in A and, by Lemma 3.9, there exists a
half-line £ := {(x,y) : y > y*,ay + nx = ¢} such that £ C A. Let us assume by contradiction that
supy,~o [{x : (x,y) € A}| > 2. By Lemma 4.3, we deduce that A is 27r-periodic in the x-direction, so
that also £ + (2, 0) C A. By connectedness, we can find a simple curve y such that

yCA, ynN{(x,y):y>y*}=LUL+Q2m,0) and yN{(x,y):y <y*}iscompact.

As a consequence, R x RT \ y = Op U 01, where each O; is open and connected and only one of them,
say 01, is such that

O1 D{(x,y") :x*" <x<x*+2x}#2, where ay* +nx* =gq.
Since y N{y < y*} is compact, we deduce that there exist g1, g2 and yo > 0 such that

O1 C{(x.y):y>y0,q1 <ay+nx <q>}. (43)

Now, let B # A be any other nodal component of v satisfying B C O; (B exists as v changes sign
in 01, by Lemma 3.9). Then B cannot be periodic in the x-direction, and hence, by Lemma 4.3,
supy~o [{x : (x,y) € B} < 2m. By Proposition 3.8 and (43), we have that v|p € HO1 (B). Thus

Lemma 4.4 applies, providing a contradiction since we are assuming p < 2. O

In the same spirit, we show the following.

Lemma 4.6. Let y* be defined as in Lemma 3.9, and let A denote any nodal component of v such that
AN{(x,y):y>y*} £ 3. Then AN{(x,y):y > y*}is connected.

Proof. The proof follows the lines of that of Lemma 4.5. Assume by contradiction that AN{(x, y):y > y*}
contains at least two connected components, say A1 and A,. Then, by Lemma 3.9, we can find half-lines
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i :={(x,y):y>y*, ay +nx =q;} C A; and a simple curve y C A which joins such half lines. Then

R x Rt \ y is the disjoint union of Op and O1, and one can find a contradiction as above. O
Motivated by Lemma 4.6, we introduce the following notation.

Definition 4.7. Let y* > 0 and € R be fixed as in Lemma 3.9. We denote with Sy, k € Z, the nodal

component of v asymptotic to

{(x,yv):B+rmk<ay+nx<B+nk+1)} asy— +oo.

By Lemma 4.6, we have that S and Sy, are disjoint, as long as & # k. To conclude the proof of
Proposition 4.1, we are left to show that the sets S; exhaust the nodal components of v. At the moment
we cannot be assured that each S intersects the x-axis. However, in such cases, the horizontal order is
preserved.

Lemma 4.8. Let Si,, Sk, be two nodal components of v as in Definition 4.7, and let k1 < k. If
Sk, N{(x,0)} # @, i =1,2, then

(fi,O)Egki = X1 <X3.
Proof. This follows by connectedness since the segments S N {(x, y*)} are ordered according to the

index k. 0

Lemma 4.9. Let A denote any nodal component of v. There exist q— < q+ such that
AC{(x,y):qg— <ay+nx <q+}.

Proof. We only show that A C {(x, y) : @y +nx < g4}, for some ¢, because the other property follows
by a similar argument. In the following, we fix xo such that ®(xo) # 0, and we write

L:={(x,y):y>0,ay +n(x—x0) =0}, L :={(x,y):y>0,ay+n(x—x9) <0}

Moreover, by Lemma 3.9, we can assume that v does not vanish on £ N {(x,y):y > y*}.
We have to show that, for some 4 € Z,

Ap:=A—(Qhm,0)C L.

To start with, we observe that A N L~ # & for every h > h sufficiently large (indeed A is not empty).
Let us assume by contradiction that Ay \ L™ # & for every h > h as well. By connectedness, we obtain
that I, := £ N Ay, is nonempty, relatively open in £, and with nonempty (relative) boundary a7, C N.
Finally, by Lemmas 4.5 and 4.3, we have that I, N I, = @& for every hy # h,. We deduce that the set

J o cwnen{y <y*})) isinfinite.

h>h
This contradicts the last part of Lemma 4.2. O
Lemma 4.10. Let A denote any nodal component of v. Then v|4 € H1(A).

Proof. This follows by Lemma 4.9 and Proposition 3.8. O
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Lemma 4.11. Let Sy be a nodal component of v as in Definition 4.7. Then v|ys, # 0. In particular,
{x:(x,0) e Sg} contains a nontrivial interval.

Proof. The lemma follows by Lemmas 4.4, 4.5 and 4.10. ([

Lemma 4.12. Let A denote any nodal component of v. Then

sup [{x: (x,y) € A}| <2m.
y>0

Proof. Let A contradict the result; then A = A + (27,0) (Lemma 4.3) and A C {(x,y) : y < y*}
(Lemma 4.5). As a consequence, there exists a simple curve y C A, with y + (27,0) = y. Then
RxRT\ y = 0o U Oy, where each O; is open and connected and O1 D {(x,y):y > y*}. Now, let A’
be any nodal region of v intersecting {(x,y): y > y*}. Then AN A’ = @. By Lemma 4.11 there exists
y’ € A’ with one endpoint in O; and the other one in Oy, so that )’ intersects y, a contradiction. O

Lemma 4.13. Let A denote any nodal component of v. Then v|g4 % 0. In particular,
{x:(x,0) € A} contains a nontrivial interval.
Proof. The lemma follows by Lemmas 4.4, 4.12 and 4.10. O
We are ready to conclude the proof of the main result of the section.

End of the proof of Proposition 4.1. We are left to show that the sets S (Definition 4.7) exhaust the nodal
components of the function v, so that, in particular, for each Sy, there exists two consecutive zeros of the
function ®, x; < x;j 41 € [0,2x], and & € Z such that

Sk N{(x,0)} =[x}, xj+1] + (2h7, 0).

Let S; be any connected component as in Definition 4.7; then, by Lemma 4.13 and continuity of the
function v (see Proposition 3.8), there exist two consecutive zeros x; < x;j41 and & € Z such that

[xj. Xj+1] + (2hm,0) C S N{(x,0)}.
By periodicity in the x-direction, it follows that
[x7,xj+1] + (7 + 1)7,0) C Sgi2n N{(x,0)}.

Now, on the one hand, for y > y*, we already know that the nodal set of v between Sj (included) and
Sk+2n (excluded) is precisely given by the 2n sets Sk, ..., Sg4+2,—1. On the other hand, for y =0, the
nodal set of v between (x; + 2hm, 0) and (x; +2(h 4 1)7, 0) consists in exactly 2n intervals. Once again,
we appeal to Lemma 4.11 to infer that every Sg, ..., Sx42,—1 contains exactly one interval on {(x,0)},
and the intersections are ordered by Lemma 4.8. The remaining conclusions follow straightforwardly. [J
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5. End of the proof of Theorem 1.1

We give the proof in the case that K = 2n is even. The odd case can be treated with minor changes; see
the discussion at the beginning of Section 3.

In view of Proposition 2.1, the existence of an element of Sy, as defined in (6), with the required
nodal properties is equivalent to the existence of a solution of (22) having trace

_ )m+1

®(x) = Z ED™ (44)

(recall (16), (21)) and enjoying properties (b) and (c) in Section 2 (property (a) is already contained
in (22)).

The existence of such functions is provided by Proposition 3.8, while properties (b) and (c) follow
from Proposition 4.1 once P satisfies the compatibility conditions (42), i.e.,

1

bk =5

n .
o ekt OXp(x)ydx =0, |k|<n, and ¢, #0 (45)

(or equivalently ¢_,, = ¢, # 0). Under the validity of these conditions, also the asymptotic expansion (8)
follows from Proposition 4.1 and the definition of the map 7 (14); see also Remark 2.2. The details of
these calculations are very similar to those in [Terracini et al. 2019, Proof of Theorem 1.5]

Writing ¢, = $m/ Im in (44) and (45), and recalling also Remark 3.10, we obtain that Theorem 1.1 is
equivalent to the following assertion: there exists ¢ = (¢1, ..., Can), with (=1)" ¢y, > 0, such that

27
— eUktox, o (x)dx =0, |k|<n,

and

2n 1 27 .
Z —/ e_(’”+°‘)xcm(pm(x) dx #0
= 2 Jo

if and only if ¢ = tc.
To prove this last claim, let us define the matrix A € C2nx2n

1 2w " 1 2 "
A= (@m)e=—n+1,..0 = (% / e THHDT g (x) dx) = (E / ¢ +“>‘m¢m<zm)drm) :
m=1,...,2n 0 km 0 km

Observe that we have suitably renamed the dummy variables in each integral as, later, this will lead us to
more manageable identities. We can write the set of compatibility conditions (45) as a system of linear
equations,

Al 1= .1: (46)

C2n On
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To show our claim, we prove that the matrix A is invertible and that it is possible to choose ¢, # 0 such
that the solution vector is real and sign-alternating. First, exploiting the multilinearity of the determinant,

we have
1 2n
detA = —/ e Ymp . (tm) - det A’
(27)2" Ji0,27)2 ”1;[1
where we have introduced the matrix
e_l(_n—‘f_l)tl e_l(_n—‘f_l)tz cee e_l(_n+1)t2n
o | it L it
e—intl e—inlz . e—inl2n

Factoring out the coefficients of the first row, we recognize Vandermonde’s determinant and compute

1 1
e n e—itl e_ith
det A = e i(=n+1)> =1 tm ]
e—@n=Dini ... ,—~@n-Dit,
. 2 . .
— e—l(—n+l)Zm":1 tm 1_[ (e—ltq _e—ltp)
1<p<q=2n

: 2n 1 1 1 1 1 1
— el(n—l)zm=llm l_[ (_l)e—ith—izt,,(_e—jth+§zt,, _i_e—jzt,,—i—jztc,)

1<p<gq=<2n
2/1(2/1 1) N _ 2n 1 1:
— ol — I)Zm_ltm( n- 2 51(2n—1) 35 tm 1_[ (e 2itptaity _ —Litg+1 ztp)
I<p<q=<2n
1 1.
m@n=b _1;52n e2ilta=tp) _ p—5i(tg—1p)
= (-1)"(2i e 2! Lin=11tm
= (-1)"(2i) I -
1<p<gq=2n
= (=1)"(2i)" D=3 =t tm 1_[ sin(—tq ;tp).
1<p<gq=2n
Thus we find
—D"(2i n(2n—1) t—t o
detA=( )"(20) 1_[ e O (tm) 1_[ sin{ 4—_2) g=21 Xin=1tm |
(27.[)2n [0.2 ]2n 2 |
™ 1<p<q<2n Phase
Mod

We show that the integral in the previous expression is always different from 0. We recall that, by
assumption, the functions ¢,, are supported on ordered intervals. More precisely, using the notation
introduced in Proposition 4.1, we have

ite [0’277] Som(t) > 0F = (Xm, Xm+1).
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As a result, the integral can be restricted to the open and not empty set
2n
O = (x1,x2) X (x2,x3) X+ X (X2, X2n41) C [0, 27]°".

Moreover, for any choice 1 < p < g < 2n, in O we have 0 <1, —1, < 27, and thus

tg—1t tg—t
0<%<n = sin(qu)>0.

As it turns out, the factor denoted as Mod is strictly positive in . This function corresponds to the
modulus of the integral function. On the other hand, the factor Phase is complex and of modulus 1. Let
us investigate more closely the argument of Phase. We find

2n 2n 2n 2n 2n
Z Xm < Z tm < Z Xm+1 = Z Xm + (X2n4+1 —X1) < Z Xm + 27
m=1 m=1 m=1 m=1 m=1

That is, letting X = Y2 xp,, for any (t1, ... ,t2n) € O,

2n
1
O<§(thm—X) <.
m=

We can rewrite the determinant as

2n 2n
1 . .1
detA=C|:/(9M0d-cos§(m5=1tm—X)—l[DMod-51n§(mE=1tm—X)}

for some complex constant C € C\ {0}. By the previous discussion, the second integral is positive. It
follows that the determinant of A is not zero, proving that the linear system (46) has a unique solution for
any ¢p.

We now show that there exists ¢, # 0 such that the solution vector is real and sign-alternating. By
Cramer’s rule, we have

¢; = (det A)~ 1 det 4,

where A; is the matrix obtained by replacing the / column of A with the right-hand side of system (46).
Now, by the same considerations as before, we have

2n

1
detA; = —/ 1_[ e O (tm) - det A]
2n ’
2m) (02712 ) ) mal
where

el p—i(-n+Dt2 | ,=i(-n+Dti—1 (o p=i(-n+Dtip1 ... p,—i(-n+Dt2,
A e_i(—n+2)t1 e_i(—n+2)t2 e_i(—n+2)l1—1 0 e—i(_n+2)’l+l e_i(_n+2)t2"
1= . . : : ' .

e—lntl e—lntz e—lnt]_l ¢n e—lnt1+1 e_”'lth
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Developing the determinant with respect to the /-th column, factoring out the first line and exploiting
once more Vandermonde’s determinant, we find

1 1
_ill _it2n
_ o on e . e
detA; — (_l)l 1¢n€ i( n+1)zm=|’m¢1 tin
e—(2n=2)inn . ,—(2n-2)it2,
, 2 . .
— (_1)1_1¢ne_l(_n+1)Zmn=1.m;él tm l_[ (e—ltq _e—ll‘p)
1=p<q=2n
pa#!
— (_l)l_1¢nei(n_1)ann=l.m¢/ tm 1_[ (_l)e—%itq—%itp(_e—%itq-‘r%itl, _i_e—%itp-i-%itq)
1<p<qg=<2n

D.q#l

2 1)(2 2 . 2
M _él(zn_z)Zm’;l,m;ﬁI tm

1 1;
% 1—[ (e_jltp"_iltq e thq"f' ltp)

— (- 1)1 1¢ ol(n— YL Lmz1 Im (1)

1=p<q=2n
p-q#!
1; 1;
@n—1)(2n—2) e2itq=tp) _ p—5iltg—tp)
=D, 2 ] ( : )
1=p<q=2n 21
D.q#l
e L YR | Sin(%)_
1<p<q=<2n
D.q#l
We obtain
_ . _ _ 2n
(detA) 1(_1)l+n(2l)(2n D 1)¢ B oty —t
N (2m)2n—1 . 1_[ ™" O () 1_[ s %
m=1,m#l 1<p<q<2n,p,q#l

2n
tg—1
= (=1 l"'ll"/ | | e *mep(t | | sin(—q p),
(=D [O,2n]2”—1m ©Om(tm) )

=1,m#l 1<p<q<2n,p,q#l
where I" € C. Reasoning as before, we see that the integral is always strictly positive. Thus ¢; satisfies
the condition (—l)l‘Hcl > 0 if and only if I" is real and positive, I' = ¢ > 0. We obtain the solution

2n
ty—t
cl=t(—1)l+1/ | | ~m g (tm) | | sin(u)
[0’2]1-]2n—1m " 2

=1,m#l 1<p<q=<2n,p,q#l
and

+122n—2 2n —at . tq _tp 1 Z t
¢ =1(—=1)" — /[02 - l_[ e M P (tm) 1_[ sm(—2 ) 3 Xt b
2|21 m=1

1=p<q=2n
Proof of Corollary 1.2. This follows by uniqueness of §; indeed, notice that a rotation of 271/ K leaves

the data unchanged, while the indexes of the densities are shifted by 1. By uniqueness, §;;, = §,,,—1 for
every m. O
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6. Single-mode special solutions

In the following we deal with the fundamental single-mode solutions that we constructed by separation of
variables in Section 3. Theorems 1.6 and 1.7 will follow once again by Proposition 2.1.

6.1. The homogeneous Dirichlet problem. We now turn our attention to the homogeneous version
of (22); that is, we look for conditions under which there exists a nonzero solution v of

—Av+we P =ePuv, xeR, y>0,
v(x +27,y) = e v(x,y), x€R, y=0, (47)
v(x,0) =0, 0=<x=<2m,

with nodal set consisting of 2k strips (up to horizontal 27 -periodicity), k > 1, that connect the boundary
y = 0 with y — 400, as in the previous section. Clearly (47) may have nonzero solutions only for some
specific choices of parameters (this is indeed the case according to Lemma 3.6). For this reason, in this
section we consider the number k > 1 and the parameter o € R as givens of the problem, and we look for
pairs of numbers (1, w) € R? such that a solution v as specified above exists.

The analysis that we have conducted in Section 3 can be exploited to give a direct solution to this
problem. Indeed we have the following result.

Lemma 6.1. Forany k > 1, a € R, there exists at least a value A € C satisfying

Ok—ia(d) =0,

Ok_iq(tA) #0 forallt €0, 1), (48)

where ©,, is defined in (32) for every v € C. For any such A, the function

v(x,y) = e FV Re(e! k¥ TN @, (he™2))

is a solution of (47), with

w= Imkﬁ, u =almkﬁ—Re(k).

Moreover, there exists an analytic map y — {(y) such that
hm
v(x,y) =0 <= x=§(y)+7, helZ,

and
{(y) = %(ﬂ —ay)+o(l) forsome B €Randy — +o00.

In particular, for any y > 0, v(-, y) has exactly 2k zeros in each period x € [0, 2m).

Proof. The result is a direct consequence of Lemma 3.2. We start by showing that, for any choice of
parameters, there exists at least a value A € C satisfying (48). Indeed, ®_;, is a nonconstant analytic
function with ©_;,(0) # 0, and it suffices to consider a zero A of ®j_;, with the least absolute value in
order to guarantee that ®_;, (1) # 0 for any ¢ € [0, 1). Of course, many (if not all) the zeros of O _;4
may satisfy this assumption, but these constitute an at most countable discrete subset of C.
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Exploiting the fact that the coefficients of (47) are real, we find that the function
v(x.y) = ¢** Re(e"* Dy (y) (49)
is a solution of (47), where the function Dy solves

DY(y) = [(k —ia)? + (wa — pu + iwk)e >1Di(y), y >0, 50)
Dy (0) =0, Dg(y)—0 as y — +oo.

By Lemma 3.2, equation (50) is solved by any multiple of the function
y e *TYe L (wa — p+iwk)e™),

which in turns vanishes for y — 4o00. The initial condition Dy (0) = 0 is satisfied since we chose
A =wa — u +iwk as a zero of the function ®f_;, (observe that we are negating (26)).

To conclude, we need to study the nodal properties of the function v. From its expression we readily
see, that for any fixed y > 0, the function x — v(x, y) has exactly 2k evenly spaced zeros in [0, 27)
since, by assumption, O _;,(Ae™2Y) # 0. From this we deduce also that the nodal lines of v can be
described, up to translations, by a function y — {(y). We notice that ¢ is continuous by the implicit
function theorem, as

V(7)) =0 = Re(@**Dp(y) =0

and, for such (x, y),

2 Re(e!** Dy (y) = ik Im(e* Dy () # 0.
More explicitly, writing

Di(y) = p(y)e'®,
where p(y) > 0 for y > 0 and ¥ is an analytic lifting of the argument of Dy, we have that

e v(x,y) =Re(€** Dp(y) =0 = x-— h% = %(ﬂ —9(y) =:¢(y).

Finally, the asymptotic behavior of ¢ follows as in Lemma 3.9. O

We conclude with some additional remarks on the result.

Remark 6.2 (a question about uniqueness). If v is a solution of (47), then for any A, X € R, the function
(x,y)— Av(x — X, y) is again a solution. We may wonder whether this family of functions completely
describes the set of solutions of (47) under some additional condition (for instance that, for any x € R,
v(x,y) — 0 as y — +00). More precisely, fix w, p and « in such a way that (47) admits at least a
solution. Is this solution unique (up to translation in x and multiplication by a real constant of course)?
This seems to be a question of a nontrivial nature, and it is related to the position of the zeros of Bessel
functions with different order. From the proof of Lemma 6.1, we can state the following: let « € R be
such that, for any k1, k> > 1 and z1, z, € C, we have

I —ia(21) = Ijy—iq(22) =0,
Re(z7) = Re(z3). = k1 =k
Im(zf)/kl = Im(z%)/kz
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Figure 3. Numerical zeros of Re ®1_; (blue) and Im ®,_; (red). The three zeros located
at 10.36 +123.66, 20.22 +i67.99, 30.21 4 i132.04 satisfy condition (48).

Then for this specific value of «, if (47) admits a solution, this solution is unique up to translation in x
and multiplication by a real constant.

Remark 6.3 (the symmetric case « = 0). If v € R and v > 1, the zeros of the modified Bessel function 7,
are purely imaginary numbers (and are given by ij, ;, where j, ; is the /-th zero of the Bessel function J,,
with [ € N). It follows that

OrM)=0 = A=—t2 forsomet > 0.

As aresult, if « = 0, then necessarily @ = 0 (no rotation) and p = jk2,1‘ Since all the zeros belong to
the same half-line emanating from the origin, the first nontrivial zero is also the only one that satisfies
the assumptions of Lemma 6.1. We conclude that, in the case « = 0, (47) has nonzero solutions only if
n= jkz’1 and w = 0, and any solution (that converges to zero as y — +0o0) is of the form

v(x,y) = (Acos(kx) + B sin(kx))Jx (jk,1e””)

for some A4, B € R.

Remark 6.4 (the asymmetric case o # 0). By Lemma 3.6, and in particular (37), we already know that,
if  # 0, for (47) to have a solution, it is necessary that

w> (o + V2 +a2)?.

From numerical explorations (see, e.g., Figures 3 and 4), it seems that, if o # 0, the zeros of the function
O _; belong to different lines emanating from the origin. In contrast with the case o = 0, it thus seems
to be the case that, for & # 0, (47) has infinitely many (but still countably many) solutions.
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Figure 4. Nodal sets of the solutions corresponding to the three zeros in Figure 3.

6.2. The homogeneous Neumann/Robin problem. Let o € R. We consider the problem
—Av+we Pvy=ePuv, xeR, y>0,
v(x +2m,y) =e?™u(x,y), xeR, y=>0, 51
dyv(x,0)+ov(x,0) =0, 0<x<2m,
which involves Robin (o # 0) or Neumann (o0 = 0) boundary conditions.
As in the previous section we can find single-mode solutions that exhibit a precise nodal behavior.

Lemma 6.5. Forany k > 1, a € R, assume that there exists A € C satisfying
200, . (M) + (k—ia—0)Ok_jq(A) =0,

k—ia

Op_iq(tA) #£0 forallt €[0,1).

Then we have
v(x,y) = e®* kY Re(e! *¥ TN @, _. , (Ae™2))

a solution of (51) for the particular choice of parameters

w = Imkﬁ, u :almkﬁ—Re(k).

Moreover, the nodal set of v has the same properties as those described in Lemma 6.1.
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Proof. We already know that any function of the type
v(x. y) = € Re(e ™ Ni(y))
is a solution of the differential equation in (51) provided that
N/ (y) = [(k —ia)* + (0o — o+ iwk)e >INk (y), y>0.

Once again we can appeal to Lemma 3.2 for an explicit expression for the function Nj. In order to impose
the boundary condition at y = 0 we find

Ni(y) = O)_;, (Ae ) (—2he )~ *70y _ @, . (Ae ) (k —ia)e” K197
that is,
N;(0) = O _;, (M) (=21) — (k —ia)Og_;q(A) = 0.

The rest of the proof follows easily. O

6.3. Entire solutions. Finally we consider the case of entire solutions; that is, we look for functions v
that satisfy
—Av+we Pvy =e P p,

.y) eR?, 52
v(x +2m,y) = e?™%v(x, y), (x. ) (52)

vanish for y — 400 and, as before, change sign exactly 2k times (k > 1) in each period of length 27 in
the x-direction. Similar considerations as before lead us to the following result.

Lemma 6.6. Let k > 1, a € R. Consider any A € C such that

Or_ia(tA) #£0 forallt > 0. (53)
Then the function
v(x,y) = e T Re(e O (2e7)) (54)

is a solution of (52) for the particular choice of parameters

w= Imkﬁ, n= almkﬂ —Re(A).
Once again, we point out that ®_; is analytic and thus it has at most countably many zeros, meaning
that, apart from a negligible set, any A € C gives rise to an entire solution.
In the case of entire solutions, it is interesting to study once again the shape of the nodal lines of the
solutions, which now are defined also for y < 0.

Lemma 6.7. Let v be the function (54) in Lemma 6.6. Then there exists an analytic function y — {(y),
defined for any y € R, such that

e v(x,y)=0ifand only if x =¢(y)+ hn/k, y € R, h € Z, and consequently, in the regions
{(x,y):hn/k <x—=C¢(y)<(h+ Dn/k}, forany h € Z, v does not change sign;
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e for y — 400, { is asymptotic to a line: there exists B € R such that

1
()= (B—ay)+o(l) asy— oo
e for y — —o0, ( is asymptotic to an exponential curve

C(y)=vye? +0(l) asy——oo,

where
. 2 2
% sign(w) \/\/(%(a)oz — /L)) + (%a)k) — %(a)a —un), w#0,
Y=o, w=0, p<O0,
% sign(a) /1L, w=0, u>0,

unless = p =0, in which case

(o) =7 (B-ay). yeR

Proof. The first conclusions of the result follow from similar (and much simpler) considerations as in
Proposition 4.1 and Lemma 6.1. We only study the asymptotic behavior of { as y — —oo. As we shall
see, beyond the validity of (53), we need to distinguish three cases, according to the different expansions
of the Bessel functions at infinity: (Case 1) @ = u = 0; (Case 2) w = 0, u > 0; (Case 3) either v =0
and u <0, or w # 0.

Case 1. We start with the simplest case, that is w = yu = 0. This is equivalent to assuming that A = 0,
whence (53) is automatically satisfied (recall that ®_;,(0) # 0 for k > 1). Substituting in (52) we find
that solutions are of the form

v(x,y) = e** kY cos(kx + ay).

In this case the nodal lines are described, up to translations, by the linear function

1
() =z (F—ay), yeR,
and, in particular, the nodal set of v is a family of parallel straight lines.

Case 2. Next, we look at the case @ = 0 and p > 0, which means A = —u < 0. We have that VAi=—i /T
where we have chosen the determination of the square root with negative imaginary part. In this case,
exploiting (54), (33) and the relation between the Bessel functions and their modified versions, we have

v(x,y) = eax(%eikxjv(ﬂe—y) + %e—ikxm)

(to be precise, we take the line y — Ve Y as the path of monodromy for the determination of J,,). In
particular, from this expression we infer the necessary condition « # 0: indeed, if v = k > 1, the Bessel
function Ji has all of its zeros on the real line, and thus we are contradicting (53). We have that (see
[Erdélyi et al. 1953, p. 85])

1
Jy(z) = ,/%(cos(z—%v— 7+ O(H)) for |z| - +o0o with |argz| < 7.
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As to what concerns us, we have that z > 0. Letting

w= e~ g5 = (Ve 3k~ %) + i

we may simplify the expression for v and see that, for y — —oo, the following asymptotic expansion
holds:

1 . .
Vin e "2V (x, y) = %e’k" cos w + %e_’kx cosw + O(e”).

We point out that, in this peculiar case, the solution v decays for y — —oo since Im(w) is bounded
(constant). The last expression can be further simplified, since
%eikx cosw + %e_ikx cosw = %(cos(kx) + i sin(kx)) cos w + %(cos(kx) —isin(kx)) cosw
= % cos(kx)[cos w + cos w] + %i sin(kx)[cos w — cos W]
= cos(kx) cos(Re w) cosh(Im w) + sin(kx) sin(Re w) sinh(Im w).
In order to determine the asymptotic behavior of the nodal lines of v, we need to solve the equation
cos(kx) cos(Re w) cosh(Im w) + sin(kx) sin(Re w) sinh(Im w) = 0.

It seems that this equation cannot be solved explicitly, nevertheless we can describe its set of solutions
with sufficient accuracy for our purpose. In order to simplify the notation, we introduce the real function

F(X,Y) =cos(X)cos(Y)cosh(T) + sin(X) sin(Y), sinh(7T") (55)

where we recall that the parameter 7 = Imw = Z.a # 0. In the plane (X,Y) € R?, we want to describe
the set F'(X,Y) = 0. First of all, we point out that F is 2;-period both in X and in Y and enjoys the
symmetries F(X,Y)=F(Y,X), F(-X,Y)=F(X,-Y), FX+n,Y)=FX,Y +n)=-F(X,Y)
and F(—X,—Y) = F(X,Y) forany (X, Y) € R%. In particular, we deduce that the equation F(X,Y) =0
has infinitely many solutions and that, for any fixed ¥ € R (resp. X), solutions of F(X,Y) =0 are equally
spaced and of the form X = Xy + hn for some given Xy €e Rand h € Z (resp. Y = Yx + hm, Yx € R).
We deduce that, for any given Y € [0, ), there exists a unique X € [0, ) such that F(X,Y) =0, and
vice versa.

Next, let (Xo, Yo) € R? such that F(Xg, Yo) = 0. By the implicit function theorem, the nodal set of F
is described locally at (X¢, Yo) by a function X = Z(Y) if dy F(Xo, Yo) # 0. Arguing by contradiction,
we have the system

cos(Xg) cos(Yp) cosh(T') + sin(Xp) sin(Yyp) sinh(7") = 0,
cos(Xg) sin(Yp) sinh(7") — sin(Xg) cos(Yg) cosh(7T) =0,

which has a solution if and only if
cos?(Yp) cosh?(T') + sin?(Yy) sinh?(T') = 0.

But this is impossible since cosh?(T) # 0 and sinh?(T') # 0 (recall that T # 0). Thus dx F (X0, Yo) # 0
at any zero of F. Observe that we can perform similar computations exchanging variables and show that
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the function Z is a bijection (and thus monotone). By periodicity, we can assume that Z(0) = % We can
determine the sense of monotonicity of Z by computing Z'(Y') for the zero (X,Y) = (% 0). We find

_aYF(g,o)

2= F(=.0)

= tanh(T') = tanh(5 ).

Bringing together the previous conclusions, we infer that
0<Z(Y)—sign(a)Y <z forallY e R.

Going back to the original variable, we find the asymptotic behavior

{(y) = % sign(e) /e + O(1) as y — —o0.

Case 3. We conclude with the third and last case, that is A = wa — u + iwk € C\ R— together with (53).
We recall that the modified Bessel function /,, satisfies (see [Erdélyi et al. 1953, p. 86])

z 1
I,(z) = \/;W(I-FO(H)) for |Z|—>-|—OO with |argz|<%_8.

By (33), the entire function in (54) is equal to
v(x,y) = e** Re(e!** I,(V2e ™)),

where we choose as determination of the square root of A the one with strictly positive real part (recall
that A € C\ R_). Then |arg v/A| < Z — & for some § > 0. We find

eVhe™
2/ de=Y

_ eax—}-%y—kRe(ﬁ)e_y Re(C;keikx—H Imﬁe_y—i-iO(ey)H + 0(€y)|) = 0,

v(x,y) = e Re(eikx 1+ O(By))) — %X Re(C)Leikx+%y+ﬁe_y(1 + O(ey)))

which in turns gives the asymptotic equation, as y — —o0,

kx +Im(vA)e™ + 0(e”) = B,
where 8 € R and

Im(+v/A) = sign(wk) \/\/(%(wa - ;L))2 + (%a)k)2 — %(a)oz — W)

(with Im(+/A) = 0 in case w = 0). Notice that the sign above agrees with the fact that the nodal lines of
the solution v are spanned by monotone functions; see the proof of Lemma 6.1. O

Remark 6.8. In view of the results of Section 2, we have that any solution constructed in this section
corresponds to an element of the corresponding class S;o. In particular, if & = 0, we obtain (positive and
negative parts of) smooth rotating solutions of the heat equation, with or without reaction term. Moreover,
Lemma 6.7 provides a description of their nodal lines, which behave like arithmetic spirals of the equation
¥ = yr as r — +00, as we claimed in Remark 1.8.
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Appendix: Weighted embeddings and Poincaré inequalities

In this appendix, we give the proof of some results cited in the paper for the sake of completeness. We
start with a very classical compact embedding result.

Lemma A.1. The functional space Ho1 (RT; C) embeds compactly in
L= {U el .RT:O):|U|? :/ e PNUP? < —i—oo}.
y>0
Proof. Let {u,}nen C HO1 (RT; C) be a weakly converging sequence, and let u be its limit. Since the

embedding of HO1 in L is clearly continuous, u, — u in L, and in order to show that u,, — u in L we
just need to prove the convergence of the norms. Let

/ e_zyuﬁ—[ e 2Yu?
y>0 y>0

Observe that {d, }, is a positive sequence. We have that

T o
dy < / e 22 —u?| = / e 2V |uZ —u?| +/ e 2V |uZ —u?|
y>0 0 T

T T
-2 2 2 —2T 2 2 -2 2 2 —27T
s/ eV 2 —u?| +e (||un||L2+||u||L2)s/ ™22 —u?| +2Ce
0 0

d, =

for any T > 0. Since H (0, T') is compactly embedded in L?(0, T'), we conclude that there exists {&, 1 }n
such that &, 7 — 0 and

dy < en1 +2Ce T,

—2T

To conclude, for any given § > 0, we can find T > 0 such that Ce < %8 and subsequently 7 such that

en,T < %5 for any n > nn. This implies that, for any n > 712, we have that 0 < d,, < §; that is,

lim d, =0 = / e ?u? = lim e ?Yu2,
n—+o00 y>0 n—>+00 Jy>g
and thus we conclude the strong convergence of the sequence {u }nen. O

Exploiting this compact embedding, we can show the following weighted Poincaré inequality.

Lemma A.2. Leta > 0and b € R, then
/ [u'|?> + (@®> —be Y )u? >0
y>0

for any u € HO1 (RT) as long as
b S (ja,l)zs

where j,.1 is the first (positive) zero of the Bessel function of the first kind of order a.
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Proof. The statement is equivalent to proving that

(aa)?= inf { / WP+ au? / e—%z:l}. (56)
ueEﬁ(R+) y>0 y>0

The existence of a minimizer u € HO1 (RT) follows directly from the embedding in Lemma A.1. As the
functional and the constraint are even, we can assume that the minimizer u is positive. Standard regularity
results imply that the function u is also smooth and strictly positive in R*. Let A > 0 be the minimum
of (56). We have that u € HO1 (RT) is a solution of

—u" + (a® —Le 2 )u =0,
u(0)=0, u(y)>0 fory>0.

We argue as in Lemma 3.2. We look for a solution defined by the series

u(y) = Z cne” 3T a)yY - where ¢, €R forn € N.

n>0

We first make some formal computations, plugging this expression directly into the equation. We find
that the coefficients ¢, must satisfy the following recursive relation for n > 1:

cn(2n + a)2 =cpa® —cp_1h,
which is satisfied for instance by letting

(-1)" («/X
Cn

2n+a
=\ — forall n e N,
n'n+14+a)\ 2

thus leading us to the solution

n 2n+a
=3 L(J—xeﬂ) — (T,

!
~ n'n+14+a)\ 2
We recall that, if a > 0, then J,;(0) = 0. This gives that, for any @ > 0,
li =0.
y 3o )
One can easily check that the series does converge in H!(R™) to its sum u. We only need to ensure that

u(0)=0 and u(y)>0 forany y > 0.

In terms of the function J,, these conditions together mean that /X has to be the first (positive) zero
for J,; that is,

Vi=ju1 <= A=) O

We can also show a similar Poincaré inequality for semi-infinite rectangles.
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Lemma A.3. Forany a > 0 and b € R, we consider the semi-infinite rectangle

Oup= (—%a, %a) x (b, +00)

and the corresponding functional space

H()I(Qa,b) = {M € Hl(Qa,b) cu=0on aQa,b}-

inf {/ |Vu|2 :/ e y? = 1} = €2b(jn/a,1)2-
ueH(Qar)(J0us Qa.p

Proof. By the same compactness argument of Lemma A.1, we can show that the infimum is attained

We have

by a function u € H(} (Qa.,p) Which, by standard results, is also positive and smooth in Q, 5. Up to a
translation in y, the function u is then a positive solution of

—Au=Xe2be2Yy in Qa.0,
u=~0 on dQ04.0,

for some A > 0. By separation of variables we can easily show that u is of the form
e, ) = eos( T2t
where the new unknown function v € HO1 (R™) solves

{—v” + (Z—; - Ae_Zbe_zy)v =0,
v(0)=0, v(y)>0 fory>0.
By Lemma A.2, we conclude that
2672 = (jrja,)?. O

Acknowledgements

Verzini acknowledges support from the project Vain-Hopes within the program VALERE - Universita
degli Studi della Campania “Luigi Vanvitelli” and by the Portuguese government through FCT/Portugal
under the project PTDC/MAT-PUR/1788/2020.

Zilio acknowledges support from the ANR via the project Indyana under grant agreement ANR-21-
CE40-0008 and the project SHAPO under grant agreement ANR-18-CE40-0013.

This work was partially supported by the INDAM - GNAMPA group.

References

[Allen and Kriventsov 2020] M. Allen and D. Kriventsov, “A spiral interface with positive Alt—Caffarelli-Friedman limit at the
origin”, Anal. PDE 13:1 (2020), 201-214. MR Zbl

[Arakelyan and Bozorgnia 2017] A. Arakelyan and F. Bozorgnia, “Uniqueness of limiting solution to a strongly competing
system”, Electron. J. Differential Equations 2017 (2017), art.id. 96. MR Zbl

[Babuska 1971] I. Babuska, “Error-bounds for finite element method”, Numer. Math. 16 (1971), 322-333. MR Zbl

[Berestycki and Zilio 2018] H. Berestycki and A. Zilio, “Predators-prey models with competition, I: Existence, bifurcation and
qualitative properties”, Commun. Contemp. Math. 20:7 (2018), art. id. 1850010. MR Zbl


https://doi.org/10.2140/apde.2020.13.201
https://doi.org/10.2140/apde.2020.13.201
http://msp.org/idx/mr/4047645
http://msp.org/idx/zbl/1430.35275
https://ejde.math.txstate.edu/Volumes/2017/96/arakelyan.pdf
https://ejde.math.txstate.edu/Volumes/2017/96/arakelyan.pdf
http://msp.org/idx/mr/3651893
http://msp.org/idx/zbl/1370.35114
https://doi.org/10.1007/BF02165003
http://msp.org/idx/mr/288971
http://msp.org/idx/zbl/0214.42001
https://doi.org/10.1142/S0219199718500104
https://doi.org/10.1142/S0219199718500104
http://msp.org/idx/mr/3864295
http://msp.org/idx/zbl/1404.35452

ROTATING SPIRALS IN SEGREGATED REACTION-DIFFUSION SYSTEMS 589

[Berestycki and Zilio 2019] H. Berestycki and A. Zilio, “Predator-prey models with competition, III: Classification of stationary
solutions”, Discrete Contin. Dyn. Syst. 39:12 (2019), 7141-7162. MR Zbl

[Caftarelli et al. 2009] L. A. Caffarelli, A. L. Karakhanyan, and F.-H. Lin, “The geometry of solutions to a segregation problem
for nondivergence systems”, J. Fixed Point Theory Appl. 5:2 (2009), 319-351. MR Zbl

[Conti et al. 2005a] M. Conti, S. Terracini, and G. Verzini, “Asymptotic estimates for the spatial segregation of competitive
systems”, Adv. Math. 195:2 (2005), 524-560. MR Zbl

[Conti et al. 2005b] M. Conti, S. Terracini, and G. Verzini, “A variational problem for the spatial segregation of reaction-diffusion
systems”, Indiana Univ. Math. J. 54:3 (2005), 779-815. MR Zbl

[Conti et al. 2006] M. Conti, S. Terracini, and G. Verzini, “Uniqueness and least energy property for solutions to strongly
competing systems”, Interfaces Free Bound. 8:4 (2006), 437-446. MR Zbl

[Dancer and Du 1995a] E. N. Dancer and Y. H. Du, “Positive solutions for a three-species competition system with diffusion, I:
General existence results”, Nonlinear Anal. 24:3 (1995), 337-357. MR Zbl

[Dancer and Du 1995b] E. N. Dancer and Y. H. Du, “Positive solutions for a three-species competition system with diffusion, II:
The case of equal birth rates”, Nonlinear Anal. 24:3 (1995), 359-373. MR Zbl

[Dancer and Zhang 2002] E. N. Dancer and Z. Zhang, “Dynamics of Lotka—Volterra competition systems with large interaction”,
J. Differential Equations 182:2 (2002), 470-489. MR Zbl

[Dancer et al. 2012a] E. N. Dancer, K. Wang, and Z. Zhang, “Dynamics of strongly competing systems with many species”,
Trans. Amer. Math. Soc. 364:2 (2012), 961-1005. MR Zbl

[Dancer et al. 2012b] E. N. Dancer, K. Wang, and Z. Zhang, “The limit equation for the Gross—Pitaevskii equations and
S. Terracini’s conjecture”, J. Funct. Anal. 262:3 (2012), 1087-1131. MR Zbl

[Erdélyi et al. 1953] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, II, McGraw-
Hill, New York, 1953. MR Zbl

[Hartman and Wintner 1953] P. Hartman and A. Wintner, “On the local behavior of solutions of non-parabolic partial differential
equations”, Amer. J. Math. 75 (1953), 449-476. MR Zbl

[Hecht 2012] F. Hecht, “New development in FreeFem++", J. Numer. Math. 20:3-4 (2012), 251-265. MR Zbl

[Helffer et al. 2009] B. Helffer, T. Hoffmann-Ostenhof, and S. Terracini, “Nodal domains and spectral minimal partitions”, Ann.
Inst. H. Poincaré C Anal. Non Linéaire 26:1 (2009), 101-138. MR Zbl

[Kato 1966] T. Kato, Perturbation theory for linear operators, Grundl. Math. Wissen. 132, Springer, 1966. MR Zbl

[Kawohl 1985] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150, Springer, 1985.
MR Zbl

[Lanzara and Montefusco 2019] F. Lanzara and E. Montefusco, “On the limit configuration of four species strongly competing
systems”, NoDEA Nonlinear Differential Equations Appl. 26:3 (2019), art.id. 19. MR Zbl

[Lanzara and Montefusco 2021] F. Lanzara and E. Montefusco, “Some remarks on segregation of k species in strongly competing
systems”, Interfaces Free Bound. 23:3 (2021), 403-419. MR Zbl

[McCann and Love 1982] R. C. McCann and E. R. Love, “Monotonicity properties of the zeros of Bessel functions”, J. Austral.
Math. Soc. Ser. B 24:1 (1982), 67-85. MR Zbl

[Murakawa and Ninomiya 2011] H. Murakawa and H. Ninomiya, “Fast reaction limit of a three-component reaction-diffusion
system”, J. Math. Anal. Appl. 379:1 (2011), 150-170. MR Zbl

[Oxtoby 1972] J. C. Oxtoby, “Horizontal chord theorems”, Amer. Math. Monthly 79 (1972), 468-475. MR Zbl

[Sandstede and Scheel 2007] B. Sandstede and A. Scheel, “Period-doubling of spiral waves and defects”, SIAM J. Appl. Dyn.
Syst. 6:2 (2007), 494-547. MR Zbl

[Sandstede and Scheel 2023] B. Sandstede and A. Scheel, Spiral waves: linear and nonlinear theory, Mem. Amer. Math. Soc.
1413, Amer. Math. Soc., Providence, RI, 2023. MR Zbl

[Sandstede et al. 1997] B. Sandstede, A. Scheel, and C. Wulff, “Center-manifold reduction for spiral waves”, C. R. Acad. Sci.
Paris Sér. I Math. 324:2 (1997), 153-158. MR Zbl


https://doi.org/10.3934/dcds.2019299
https://doi.org/10.3934/dcds.2019299
http://msp.org/idx/mr/4026185
http://msp.org/idx/zbl/1425.35195
https://doi.org/10.1007/s11784-009-0110-0
https://doi.org/10.1007/s11784-009-0110-0
http://msp.org/idx/mr/2529504
http://msp.org/idx/zbl/1217.35015
https://doi.org/10.1016/j.aim.2004.08.006
https://doi.org/10.1016/j.aim.2004.08.006
http://msp.org/idx/mr/2146353
http://msp.org/idx/zbl/1126.35016
https://doi.org/10.1512/iumj.2005.54.2506
https://doi.org/10.1512/iumj.2005.54.2506
http://msp.org/idx/mr/2151234
http://msp.org/idx/zbl/1132.35397
https://doi.org/10.4171/IFB/150
https://doi.org/10.4171/IFB/150
http://msp.org/idx/mr/2283921
http://msp.org/idx/zbl/1103.92041
https://doi.org/10.1016/0362-546X(94)E0063-M
https://doi.org/10.1016/0362-546X(94)E0063-M
http://msp.org/idx/mr/1312772
http://msp.org/idx/zbl/0824.35033
https://doi.org/10.1016/0362-546X(94)E0064-N
https://doi.org/10.1016/0362-546X(94)E0064-N
http://msp.org/idx/mr/1312773
http://msp.org/idx/zbl/0824.35034
https://doi.org/10.1006/jdeq.2001.4102
http://msp.org/idx/mr/1900331
http://msp.org/idx/zbl/1006.35047
https://doi.org/10.1090/S0002-9947-2011-05488-7
http://msp.org/idx/mr/2846360
http://msp.org/idx/zbl/1252.35284
https://doi.org/10.1016/j.jfa.2011.10.013
https://doi.org/10.1016/j.jfa.2011.10.013
http://msp.org/idx/mr/2863857
http://msp.org/idx/zbl/1242.35119
http://msp.org/idx/mr/58756
http://msp.org/idx/zbl/0052.29502
https://doi.org/10.2307/2372496
https://doi.org/10.2307/2372496
http://msp.org/idx/mr/58082
http://msp.org/idx/zbl/0052.32201
https://doi.org/10.1515/jnum-2012-0013
http://msp.org/idx/mr/3043640
http://msp.org/idx/zbl/1266.68090
https://doi.org/10.1016/j.anihpc.2007.07.004
http://msp.org/idx/mr/2483815
http://msp.org/idx/zbl/1171.35083
http://msp.org/idx/mr/203473
http://msp.org/idx/zbl/0148.12601
https://doi.org/10.1007/BFb0075060
http://msp.org/idx/mr/810619
http://msp.org/idx/zbl/0593.35002
https://doi.org/10.1007/s00030-019-0565-7
https://doi.org/10.1007/s00030-019-0565-7
http://msp.org/idx/mr/3948936
http://msp.org/idx/zbl/1421.35154
https://doi.org/10.4171/ifb/458
https://doi.org/10.4171/ifb/458
http://msp.org/idx/mr/4298757
http://msp.org/idx/zbl/1479.35367
https://doi.org/10.1017/S0334270000003325
http://msp.org/idx/mr/666645
http://msp.org/idx/zbl/0489.33007
https://doi.org/10.1016/j.jmaa.2010.12.040
https://doi.org/10.1016/j.jmaa.2010.12.040
http://msp.org/idx/mr/2776460
http://msp.org/idx/zbl/1217.35017
https://doi.org/10.2307/2317564
http://msp.org/idx/mr/299735
http://msp.org/idx/zbl/0238.26002
https://doi.org/10.1137/060668158
http://msp.org/idx/mr/2318665
http://msp.org/idx/zbl/1210.37053
https://doi.org/10.1090/memo/1413
http://msp.org/idx/mr/4580296
http://msp.org/idx/zbl/07689875
https://doi.org/10.1016/S0764-4442(99)80335-8
http://msp.org/idx/mr/1438374
http://msp.org/idx/zbl/0879.35079

590 ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

[Terracini et al. 2019] S. Terracini, G. Verzini, and A. Zilio, “Spiraling asymptotic profiles of competition-diffusion systems”,
Comm. Pure Appl. Math. 72:12 (2019), 2578-2620. MR Zbl

[Verzini and Zilio 2014] G. Verzini and A. Zilio, “Strong competition versus fractional diffusion: the case of Lotka—Volterra
interaction”, Comm. Partial Differential Equations 39:12 (2014), 2284-2313. MR Zbl

[Wang and Zhang 2010] K. Wang and Z. Zhang, “Some new results in competing systems with many species”, Ann. Inst. H.
Poincaré C Anal. Non Linéaire 27:2 (2010), 739-761. MR Zbl

[Wei and Weth 2008] J. Wei and T. Weth, “Asymptotic behaviour of solutions of planar elliptic systems with strong competition”,
Nonlinearity 21:2 (2008), 305-317. MR Zbl

Received 21 Feb 2022. Revised 1 Sep 2023. Accepted 21 Nov 2023.

ARIEL SALORT: asalort@dm.uba.ar
Instituto de Célculo, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina

SUSANNA TERRACINI: susanna.terracini@unito.it
Dipartimento di Matematica “Giuseppe Peano”, Universita di Torino, Torino, Italy

GIANMARIA VERZINI: gianmaria.verzini@polimi.it
Dipartimento di Matematica, Politecnico di Milano, Milano, Italy

ALESSANDRO ZILIO: alessandro.zilioQu-paris.fr
Laboratoire Jacques Louis Lions (CNRS UMR 7598), Université Paris Diderot, Paris, France

mathematical sciences publishers :.msp


https://doi.org/10.1002/cpa.21823
http://msp.org/idx/mr/4020313
http://msp.org/idx/zbl/1433.35141
https://doi.org/10.1080/03605302.2014.890627
https://doi.org/10.1080/03605302.2014.890627
http://msp.org/idx/mr/3259557
http://msp.org/idx/zbl/1327.35418
https://doi.org/10.1016/j.anihpc.2009.11.004
http://msp.org/idx/mr/2595199
http://msp.org/idx/zbl/1201.35113
https://doi.org/10.1088/0951-7715/21/2/006
http://msp.org/idx/mr/2384550
http://msp.org/idx/zbl/1132.35482
mailto:asalort@dm.uba.ar
mailto:susanna.terracini@unito.it
mailto:gianmaria.verzini@polimi.it
mailto:alessandro.zilio@u-paris.fr
http://msp.org

ANALYSIS AND PDE
Vol. 18 (2025), No. 3, pp. 591-628

DOI: 10.2140/apde.2025.18.591

STAHL-TOTIK REGULARITY FOR CONTINUUM SCHRODINGER OPERATORS

BENJAMIN EICHINGER AND MILIVOJE LUKIC

We develop a theory of regularity for continuum Schrddinger operators based on the Martin compacti-
fication of the complement of the essential spectrum. This theory is inspired by Stahl-Totik regularity
for orthogonal polynomials, but requires a different approach, since Stahl-Totik regularity is formulated
in terms of the potential-theoretic Green’s function with a pole at oo, logarithmic capacity, and the
equilibrium measure, notions which do not extend to unbounded spectra. For any half-line Schrodinger
operator with a bounded potential (in a locally L' sense), we prove that its essential spectrum obeys the
Akhiezer—Levin condition, and moreover, that the Martin function at oo obeys the two-term asymptotic
expansion /—z + a/(2</—z) + 0(1/+/—2) as z — —oo. The constant a in that expansion has not
appeared in the literature before; we show that it can be used to measure the size of the spectrum in a
potential-theoretic sense and that it should be thought of as a renormalized Robin constant suited for
semibounded sets. We prove that it enters a universal inequality a < liminf,_, - (1/x) ]Ox V (¢t) dz, which
leads to a notion of regularity, with connections to the root asymptotics of Dirichlet solutions and zero
counting measures. We also present applications to decaying and ergodic potentials.

1. Introduction

The goal of this paper is to develop a theory of Stahl-Totik regularity suitable for continuum Schrodinger
operators; it is natural for this topic to work in the half-line setting, so our Schrodinger operators are
unbounded self-adjoint operators on L2((0, 00)), corresponding formally to
a2
dx2
The potential V will always be real-valued and assumed to be uniformly locally integrable, i.e.,

Ly = + V.

x+1
sup/ [V ()| dt < o0 (1-1)

x>0

(in particular, O is a regular endpoint and 400 is a limit point endpoint in the sense of Weyl). We set the
Dirichlet boundary condition at 0, so the domain of the operator is

D(Ly) = {f € L*((0,00)) | f € W2 (10, 00)), — f" + Vf € L*((0, 00)), £(0) =0},

loc

where WZ’I([O, 00)) denotes the set of functions such that f € W>!([0, x]) for all x < oo, i.e., f” €

loc

L'([0, x]) for all x < co.
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The connection of orthogonal polynomials and potential theory goes back at least to [Faber 1920; Szegd
1924]. For further references on the subject we refer to [Simon 2007; Stahl and Totik 1992]. Building on the
important work [Ullman 1972], Stahl and Totik developed a comprehensive theory for orthogonal polyno-
mials for arbitrary measures with compact support in C. It is shown that the asymptotic behavior of the or-
thogonal polynomials is intimately related with so-called Stahl-Totik regularity of the measure. Regularity
of the measure is then used as a reference behavior in the description of many phenomena; in spectral theory,
it has important consequences through the special cases of measures supported on the real line or unit circle.
For instance, on the real line, the theory provides a universal inequality between the Jacobi coefficients of
a compactly supported measure and the logarithmic capacity of its topological support E, and the measure
is defined to be Stahl-Totik-regular if equality holds. The corresponding Jacobi matrix is then also said to
be regular. This motivates the search for a similar theory for Schrodinger operators, as discussed in [Simon
2007, Section 9]. However, Stahl-Totik regularity is built on potential-theoretic notions, such as Green’s
functions on the domain 2 = @\ E with the pole at oo, logarithmic capacity, and equilibrium measures —
objects which are undefined for unbounded sets E, and therefore not applicable to continuum Schrédinger
operators. For this reason, even the correct objects and extremal principles were not identified until now.

In this paper, we develop the corresponding theory for Schrédinger operators. Martin functions [1941]
(see also [Armitage and Gardiner 2001]) serve as the counterpart of Green’s functions, corresponding to
boundary points zg € d€2 instead of internal points zo € €2; but whereas the Green’s function is defined
with an explicit logarithmic singularity at zp, the existence and behavior of Martin functions is more
varied. If E C R is a closed unbounded set, co is a boundary point of the Denjoy domain Q2 = C\ E. If
this domain is Greenian, associated to the boundary point 0o is a cone of dimension 1 or 2 of positive
harmonic functions in €2 which are bounded on bounded sets and vanish at every Dirichlet-regular point
of E. The cone is spanned by the minimal Martin functions at oo [Akhiezer and Levin 1960; Ancona
1979; Benedicks 1980; Gardiner and Sjodin 2009]. Moreover, if inf E > —o0, the cone is of dimension 1,
and the Martin function at oo is determined uniquely up to normalization; we denote it by Mg and simply
call it the Martin function from now on.

The Akhiezer—Levin condition for semibounded sets (sets with inf E > —o0) is

lim MEQ

7—>—00 \/—_Z

>0 (1-2)

(by general principles, the limit exists with a value in [0, 00)). This is the semibounded version of a
condition originally considered in [Akhiezer and Levin 1960] for arbitrary E C R; see also [Yuditskii
2020, Remark 1.13]. For sets obeying (1-2), we will normalize the Martin function so that the limit in
(1-2) is equal to 1.

For a potential bounded in the sense (1-1), the spectrum o (Ly) is a closed subset of R bounded below
but not above, so the above definitions are applicable. It will be noted that isolated points of the set don’t
affect the Martin function, so we can equally well use E = o5s(Ly) in what follows (more generally,
Mg, = Mg, if the symmetric difference of E; and E; is a polar set).

In spectral theory, Martin functions first appear implicitly, in the classical work [Marchenko and
Ostrovskii 1975] classifying the spectra of periodic Schrédinger operators. In this work, the discriminant
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of a 1-periodic operator is expressed in the form A(z) =2 cos(®(z)), and it can be recognized that Im ®(z)
is the Martin function at oo for the periodic spectrum. The explicit use of Martin functions in spectral
theory starts with works of Yuditskii and coauthors [Sodin and Yuditskii 1995; Damanik and Yuditskii
2016; Eichinger et al. 2019], through inverse spectral-theoretic studies associated to Dirichlet-regular
spectra obeying a Widom condition and finite gap length conditions.

In contrast to the previous works, our first theorem is a set of universal properties of the spectra of
Schrodinger operators obeying (1-1); note that a boundedness condition such as (1-1) is essential for the
following theory, since potentials going to —oo or +00 can give spectrum equal to R or spectrum which
is a polar set.

Theorem 1.1. For any potential V obeying (1-1) and E = o¢s5(Lvy ), the domain Q = C\ E is Greenian,
o< is a Dirichlet-regular point for Q2, 2 obeys the Akhiezer—Levin condition, and there exists ag € R such
that the Martin function has the asymptotic behavior

_ —, GE_ s ]
ME(Z)—RC(\/_Z‘FZ\/_—Z)-FO(M) (1-3)

as 7z — 0o, argz € [§, 2w — 8] for any 6 > 0.

Each of the conclusions of this theorem is strictly stronger than the previous; we will point out
examples in Section 2. In particular, the second term of the expansion (1-3) is not an automatic property
of Akhiezer—Levin sets, but rather an added feature corresponding to spectra of Schrédinger operators. It
should be emphasized that spectra of Schrodinger operators with bounded potentials can be very thin
in the sense that they can even have zero Hausdorff dimension [Damanik et al. 2017a] and zero lower
box counting dimension [Damanik et al. 2019], while our result is a universal “thickness” result in the
perspective of the Martin function.

In the references given above, the Martin function was used in spectral theory as a positive harmonic
function in Q2 that vanishes on the boundary. In fact, Martin theory provides a whole kernel M (z, x) on
Q x (ﬁ \ {z+}), where Q denotes the Martin compactification of €2 and z, € €2 is a normalization point. If
a{” 2 denotes the so-called minimal Martin boundary of €2, then for every positive harmonic function &
on 2 there exists a unique finite measure v such that

h(z) = M(z, x)dv(x).
aMQ

We will provide more details and precise definitions in Section 2. It is new to combine this theory with
the spectral theory of unbounded self-adjoint operators and this was crucial for the proof of Theorem 1.1.

It is crucial that Theorem 1.1 associates to the essential spectrum E the real-valued constant ag, which
will serve as a substitute for the Robin constant from potential theory. Expansions of the form (1-3) have
previously appeared in the spectral theory literature [Marchenko and Ostrovskii 1975] only under strong
a priori assumptions on the spectrum. Namely, the set E is closed so it can be written in the form

e=1ho. 0o\, @b, (1-4)
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where j indexes the “gaps”, i.e., connected components of [bg, o0) \ E, and N is finite or co. If
Zj(bj —aj) < 0o, the Martin function has an expansion (1-3) with ag = by + Zj (aj +bj — 2cj), where
c¢; denotes the (unique) location of the maximum of the restriction of Mg to the interval [a;, b;] (see
Lemma 6.2) by harmonic/complex-theoretic arguments. Instead, our Theorem 1.1 applies even when the
spectrum E is very thin and this is not a purely complex-theoretic result; its proof is a combination of
spectral-theoretic arguments and the theory of the Martin boundary of Denjoy domains.

The renormalized Robin constant ag obeys a decreasing property on the spectra of Schrédinger operators,
so it should be interpreted as an inverse measure of the size of E. For instance, our next result is a universal
inequality involving ag, which should be seen as a lower bound on the size of the essential spectrum:

Theorem 1.2. If V is a potential obeying (1-1) and E = oeg(Ly), then
X
ag <liminf l/ V(). (1-5)
X—>00 X 0

The perspective on ag as an inverse measure of the size of E will be most explicitly illustrated later,
in the proof of Theorem 1.12, which will use the argument that if E C [0, 00) and ag < gj,«0), then
E = [0, 00). This kind of argument wasn’t available before in this generality, because there was no
known quantity with the correct properties: any quantity based on Lebesgue measure or dimension would
sometimes give infinite or trivial values.

For any z € C, the Dirichlet eigensolution is the solution of the initial value problem

—Bfu(x, 2+ Vxu(x,z) =zulx,z), u(0,z)=0, (0,u)(0,z)=1.

Our next result is that the Martin function provides a universal lower bound on the growth rate of the
Dirichlet solution.

Theorem 1.3. If V is a potential obeying (1-1) and E = oess(Lv), then
Me(2) < liminf %log|u(x, 2)] ¥z eC\ [minE, 00).
X—>00

Exclusion of [min E, co) in Theorem 1.3 is necessary because, for z € (min E, 0c0), by Sturm oscillation
theory [Simon 2005], the Dirichlet solution has infinitely many zeros.

Definition 1.4. The potential V is regular if

ag = lim l/x V() dt. (1-6)
0

X—>00 X

Of course, due to (1-5), this is equivalent to requiring

X
aEzlimsupl/ V() de.
0

X—>00
In our next theorem, we will characterize regularity in terms of root asymptotics for the Dirichlet
eigensolutions. We say that a property holds a.e. on E with respect to harmonic measure if it holds away
from a set A C E such that wg(A, zg) =0, where wg( -, zg) denotes the harmonic measure of €2 evaluated
at some zg € 2. This condition is independent of the choice of zg € €2 since the harmonic measures are
mutually absolutely continuous.
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Theorem 1.5. If V is a potential obeying (1-1) and E = o.ss(Lv ), the following are equivalent:
(1) V is regular.

(ii) For every Dirichlet-regular z € E, limsup,_, %loglu(x, 2)| <0.

(iii) For a.e. z € E with respect to harmonic measure, lim sup,._, )lc loglu(x, z)| <O.

(iv) There exists z € Cy such that limsup, _, chlog|u(x, 2)| < Mg(z).

(v) Forall z € C, limsup, _, ., * loglu(x, z)| < Me(2).

(vi) lim, o % loglu(x, z)| = Mg(z) uniformly on compact subsets of C\ [min E, 00).

Since (v) or (vi) trivially imply (iv), part (iv) is of interest as a criterion for establishing regularity of V,
whereas (v), (vi) are of interest as consequences of regularity. Similarly, (ii) implies (iii), so (ii) is of
interest as a consequence of regularity and (iii) as a condition for regularity. Instead of conditions (ii)
and (iii), it would be customary to state the single condition that the inequality holds quasi-everywhere; this
is between our conditions since the set of Dirichlet-irregular points is polar and polar sets have harmonic
measure 0. The benefit of (ii) is that it can be used pointwise (in particular, for a Dirichlet-regular set E,
the inequality holds everywhere on E). More importantly, the benefit of (iii) is that the characterization in
terms of harmonic measure will be essential for our proof of Theorem 1.8 below.

There are no previous results on Stahl-Totik regularity for continuum Schrodinger operators, even in
special cases. This topic was previously considered by Simon [2007, Section 9], who formulated several
conjectures. The first is that for semibounded spectra that are “close” to [0, co) (e.g., [0, 0o) \ E of finite
Lebesgue measure) there should be a version of equilibrium measure vg and equilibrium potential ®g,
characterized by several properties including a normalization ®g(z) ~ Re(y/—z)(1 +0(1)) as z — —oo.
It was suggested that regularity for continuum Schrédinger operators can be defined by the condition
limsup,_, o, % loglu(x, z)| = ®e(z), and that this would have equivalent characterizations similar to the
orthogonal polynomial case. Our work does not use a finite Lebesgue measure assumption for [0, c0) \ E,
so it solves these conjectures in a far greater generality than they were even previously conjectured.
Moreover, our work provides the correct potential-theoretic interpretation for the function ®¢ (now
understood as the Martin function Mg), and that interpretation is crucial in the proofs.

Simon also conjectured that the asymptotics ®g(z) = Re(/—2z)(1 + o(1)) should improve to the
asymptotic behavior Re /—z + o(1); this is motivated by the asymptotic behavior /—z + o(1) of
m-functions, proved in [Atkinson 1981]. While that asymptotic statement for individual m-functions
cannot be improved for locally integrable potentials, we discover that due to averaging effects, the
asymptotic behavior of our quantities improves even more, to the form (1-3). This discovery of (1-3)
has enabled us to introduce the constant ag, which was not previously conjectured, and to use it for the
robust general definition of regularity given above.

We also define the correct “equilibrium measure” which will be related to a deterministic density of states.
The Martin function can be extended to a subharmonic function on C, so it has a Riesz measure, given by

1
=—AM,
PE o E,
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which we will call the Martin measure of the set E. Conversely, the Martin function has a Hadamard
representation of the form

1-%=

dpe(?),

Me(2) = Me(z.) + [ log =

E — Zx
where z, < minE is an arbitrary normalization point. The Martin measure will serve the same role in
this theory that the logarithmic equilibrium measure serves for orthogonal polynomials. However, pg is
not defined with respect to any extremal property (and it is not even a finite measure), so different proofs
will be needed in the current setting.

For any x > 0, let p, denote the zero counting measure for u(x, z) divided by x,

p=1 Y 6. (1-7)

ziu(x,z)=0

Note that p, is the Riesz measure of % log|u(x, z)|. The limit of p, as x — 0o, when it exists, is interpreted
as a deterministic density of states associated to V. The convergence of measures will be understood in
the weak-x* sense, i.e., when integrated against continuous functions with compact support. The Martin
measure and the zero counting measures are related by the following pair of results:

Theorem 1.6. Assume V is regular. Then p, converges to pg as x — 00, in the weak-* sense.
The following is a continuum analog of a result of [Stahl and Totik 1992]:

Theorem 1.7. Assume that V obeys (1-1) and let u be a maximal spectral measure for Ly. Suppose
that p, converges to pg as x — 00 in the weak-x sense. Then, either V is regular, or there exists a polar
Borel set X such that n(R\ X) = 0.

Of course, the statement @ (R \ X) = 0 can be restated in the language of the Borel functional calculus
as xp\x(Ly) =0.

So far, we have seen that regularity of V can be established from the root asymptotics of Dirichlet
solutions. The next theorem shows that it can be established from spectral properties of the operator. It is
the continuum counterpart of a theorem of [Widom 1967].

Theorem 1.8. Let i be a maximal spectral measure for Ly. If we( -, zo) for some zy € C\ E is absolutely
continuous with respect to |, then V is regular.

This theory leads to several new results even for the special case of half-line essential spectrum [0, c0);
we present those as our first applications. If V is a decaying potential in the sense

x+1
lim/ [V(t)|dt =0 (1-8)
x—>o00 J.

then E = 0css(Ly) = [0, 00) by [Blumenthal 1898; Weyl 1909]. It follows that Mg(z) = Rey/—z. In
particular, ag = 0, so immediately from the definition:

Corollary 1.9. If V is a decaying potential in the sense (1-8), then V is regular with oess(Ly) = [0, 00).
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Since harmonic measure for E = [0, 0o) is mutually absolutely continuous with x(,o0)(x) dx, the
following is an immediate consequence of Theorem 1.8:

Corollary 1.10. Assume that V obeys (1-1) and denote by u a maximal spectral measure for Ly. Denote
by du = fdx 4 dug the Radon—Nikodym decomposition of n with respect to Lebesgue measure. If
Oess(Ly) = [0, 00) and f(x) > O for Lebesgue-a.e. x > 0, then V is regular.

More generally, a version of Corollary 1.10 holds, whenever the harmonic measure for the domain
C\ E is absolutely continuous with respect to the Lebesgue measure xg(x) dx. In particular, it holds for
finite gap sets (i.e., when N is finite in (1-4)) and regular Parreau—Widom sets. If E is Dirichlet-regular,
the Green’s function Gg(z, zo), for zo < min E, has exactly one critical point ¢; € (a;, b;) in each gap. If,
in addition, the critical values of Gg(z, z¢) are summable, i.e.,

o

Y Gelej, 20) < 00,

j=1
we call E a regular Parreau—Widom set. In fact, the harmonic measure for the domain C \ E is absolutely
continuous with respect to the Lebesgue measure if and only if E satisfies a certain sector condition
[Eremenko and Yuditskii 2012, Theorem 4]. We will describe this generalization in Section 6.

Sparse potentials are not covered by Corollary 1.9 or Corollary 1.10, but nonetheless provide additional

examples of regular potentials:

Example 1.11. Let W € L'((0, o0)) be compactly supported, W > 0, let x, > 0 be an increasing
sequence such that x,+; —x, — oo asn — oo and V(x) = Zn W(x — x,). Then V is regular with
Oess(Lv) = [0, 00).

The sparse potentials from Example 1.11 are not decaying in the sense (1-8), so Corollary 1.9 does
not have a converse; sparse potentials have purely singular spectrum by [Pearson 1978; Last and Simon
1999], so Corollary 1.10 does not have a converse.

However, we prove that Corollary 1.9 has the following partial converse; we have already described
Theorem 1.1 as a universal thickness result about the spectrum, and the following result similarly
guarantees presence of essential spectrum.

Theorem 1.12. Assume that V obeys (1-1) and that oess(Ly) C [0, 00). Then:
(a) liminf, o 1 f; V(1) dt > 0.

(b) If liminf,_, » % f(f V(t)dr <0, then oess(Ly) = [0, 00).

(c) If limsup,_, %fox V(t)dt <0, then oess(Ly) = [0, 00) and V is regular.

Part (a) can also be established by other means, but we include it for completeness. Parts (b) and (c)
generalize known results giving sufficient conditions for oes(Ly) = [0, 00). In particular, Damanik and
Remling [2007, Theorem 1.2] showed that o.ss(LLy) C [0, 00) implies oess(Ly) = [0, 00). Part (b) of
our theorem is a strict generalization of that result; strict because it applies, e.g., to the sparse potentials

of Example 1.11 where [loc. cit.] does not (for a positive sparse potential V, minoeg,(L_y) < 0),
and a generalization because 0ess(L_y) C [0, 0o) implies limsup, _, o, )lc fox V(t)dt <0 (by (a) applied
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to —V), so our parts (b), (c) also apply to the potentials in [Damanik and Remling 2007]. In particular,
Oess(L+y) C [0, 00) implies that V is regular and oes(Ly) = [0, 00).

In the theory of Jacobi matrices, a result of [Simon 2009] shows that a regular Jacobi matrix with
essential spectrum [—2, 2] obeys a Cesaro—Nevai condition. The analog for Schrodinger operators is false —
the continuum setting allows rapid oscillations which can break any Cesaro-type decay in an L' sense:

Example 1.13. The potential defined piecewise by V (x) = (—1) [2nGc=mJ on x € [n—1, n) for an integer n
is regular with oess(Ly) = [0, 00), but %fole(t)| dr /A 0 as x — oo.

All objects considered above are deterministic (defined only in terms of a single half-line potential V'),
but for ergodic families of Schrédinger operators, they can be recognized almost surely as ergodic notions
such as the Lyapunov exponent and the ergodic density of states, so our results can be interpreted in the
ergodic setting. In the ergodic setting, it is natural to work with whole line potentials: let us consider
a family (V))),es of real-valued potentials on R on a probability space S which is metrically transitive
with respect to a group of measure-preserving transformations 7y such that V; ,(x) = V;(x — y) and
such that any measurable subset A of § which is invariant under all 7, has probability 0 or 1. The
group of transformations can be continuous (indexed by y € R) or discrete (indexed by y € £Z for some
£ > 0); the former case includes almost periodic Schrodinger operators and the latter case includes many
Anderson-type models studied in the literature [Kirsch 1985; Damanik et al. 2002], including those with
a periodic background. We also assume that V,, almost surely obeys

x+1
sup/ |V, (1)]dt < oo; (1-9)

xeR

in fact, much of the literature on ergodic Schrodinger operators is focused on bounded potentials. Let us
denote by Hy, the self-adjoint operators on L?*(R) given by

D(Hy) ={f e L’R) | f € W2 (R), — "+ V, f € L*(R)}

loc

and recall the basic properties of this ergodic family (see the textbooks [Carmona and Lacroix 1990; Pastur
and Figotin 1992; Cycon et al. 1987] and the paper [Kirsch 1985] addressing some nuances for locally
L' ergodic potentials with a discrete group of transformations). There is an almost sure spectrum E C R,

E=0(Hy,) = 0ess(Hy,) forae.nes,
and the potentials V, have an almost sure Birkhoff average E(V) € R,

X
E(V)= lim 1 Vy(t)dr forae.neS.
X—>00 X 0
If Ly, denotes the half-line operator corresponding to the restriction of V;, to [0, 00), then E = oess(Ly,)

almost surely, so as a direct consequence of our deterministic results, E corresponds to a Martin function
with an expansion (1-3), and

ag <E(V). (1-10)
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This inequality is new; several cases of the equality ag = E(V) are well known and among the most
studied classes of ergodic Schrodinger operators (periodic, reflectionless almost periodic with finite gap
length), and we can now interpret this through the fact that the corresponding potentials are regular.

In the ergodic setting, two central objects are the Lyapunov exponent y (z) and the density of states dp;
both are almost sure ergodic averages of important spectral quantities. The transfer matrix 7),(x, z) is the
2 x 2-matrix-valued solution of the initial value problem

0 V,(x)—z

0Ty (x.2) = (1 ;

)T‘ﬂ(xv Z)v TU(O7Z):Iy

and the corresponding Dirichlet solution is u,(x, z) = (T;)2,1(x, 2). If p, ; denotes the measure corre-
sponding to u,, as in (1-7), then

y(z) = lim l10g||T,,(x,z)|| fora.e. n € S, (1-11)
X—>+00 X
and

dp =w-limdp, . forae.nesS.
X—>+00

Thus Theorem 1.5, specialized to the ergodic setting, immediately gives the following:

Corollary 1.14. For any ergodic family of Schridinger operators obeying (1-9), the following are
equivalent:

(1) ag =E(V).
(ii) For every Dirichlet-regular z € E, we have y (z) = 0.
(iii) For almost every z € E with respect to harmonic measure, we have y (z) = 0.
@iv) Forall z € C4, we have y(z) < Mg(2).
(v) Forall z € C\ E, we have y (z) < Mg(z).
(vi) y(z) = Mg(2) forall z € C\ [minE, 00).

We say that a family of ergodic Schrodinger operators is regular if one (and therefore all) of the
statements of Corollary 1.14 holds. Although this notion is new, let us point out that it contains several of
the most well-studied families of almost periodic Schrodinger operators known to have zero Lyapunov
exponent on the spectrum, such as quasiperiodic operators at small coupling [Eliasson 1992; Damanik
and Goldstein 2014; Damanik et al. 2016; 2017b; 2017c] and limit-periodic potentials superexponentially
well-approximated by periodic operators [Chulaevsky 1981; Pastur and Tkachenko 1984; 1988; Fillman
and Lukic 2017]. In fact, the question of when the Lyapunov exponent is zero or positive on E is one of the
basic questions for an almost periodic family of operators and an important dichotomy in their study; this
is especially well-studied in the setting of discrete Schrodinger operators; see, e.g., [Marx and Jitomirskaya
2017; Damanik 2017; Avila 2015]. In inverse spectral theory one considers reflectionless Schrodinger
operators on Dirichlet-regular Widom spectra with the DCT property and associated solutions of the KdV
equation [Damanik and Goldstein 2016; Egorova 1993; 1994; Sodin and Yuditskii 1995; Gesztesy and
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Yuditskii 2006; Binder et al. 2018; Eichinger et al. 2019]; those operators have zero Lyapunov exponent
on the spectrum so they are regular in the sense of this paper.

For a 1-periodic potential V, it is well known that the discriminant has an asymptotic expansion at oo
whose coefficients are equal to averages of differential polynomials in V (under the appropriate regularity
assumptions on V). The first of those equalities, rewritten for the Martin function, give the equality
ag = fol V (x) dx. This can now be interpreted through the fact that periodic potentials are regular.

For an almost periodic potential V, Johnson and Moser [1982] introduced the spatial average of
m-functions, whose real part is the Lyapunov exponent y. Their construction relies heavily on almost
periodicity through compactness of the hull, so their methods would not extend to our setting; Johnson and
Moser [1982] noted as a consequence of their results, the spectrum of any almost periodic Schrédinger
operator is not a polar set (i.e., 2 is Greenian), but further consequences of Theorem 1.1 were not
previously known even in the almost periodic case.

The next theorem is a specialization of Theorems 1.6, 1.7 to the ergodic setting:

Theorem 1.15. Let (V;))yes be an ergodic family of Schrodinger operators obeying (1-9). If this ergodic
family is regular, then its density of states p is equal to the Martin measure pg. Conversely, if p = pg,
then either the ergodic family is regular, or for a.e. n, the maximal spectral measure ., is supported on a
polar set.

Although positive Lyapunov exponents don’t always correspond to localization, we can now prove that
they always correspond to very thin spectral type. This is the analog of a Jacobi matrix result which has
been described as the ultimate Pastur—Ishii theorem.

Theorem 1.16. Let y denote the Lyapunov exponent associated to the ergodic family (Vy),cs and let i,
denote a maximal spectral measure for Hy,. Let Q C R be the Borel set of 1 € R with y (A) > 0. Then for
a.e. n € S, there exists a polar set X, such that u,(Q \ X)) = 0. In particular, the measure x o dj, is of
local Hausdorff dimension zero.

Itis known in great generality [Damanik et al. 2002] that one-dimensional random Schrédinger operators
give rise to positive Lyapunov exponent throughout the spectrum. In particular, random Schrédinger
operators provide examples of nonregular operators.

Throughout this paper, we follow the dominant literature by working with locally integrable potentials;
we expect that the theory presented here can be extended to potentials which are in the negative Sobolev
space H~!([0, x]) for x < oo, with an appropriate uniform bound replacing (1-1), and that it can be
adapted to certain other classes of one-dimensional differential operators.

We expect that the notion of regularity introduced in this paper will pave the way to new kinds
of results on Schrodinger operators which were previously beyond reach. For instance, regularity of
measures is used as the standard reference behavior in the study of the local distribution of zeros of
orthogonal polynomials, through so-called clock behavior and universality [Lubinsky 2009; Maté et al.
1991; Simon 2008]; we conjecture that similar results hold for regular Schrodinger operators. Without
regularity, the only currently available Schrédinger result is inevitably more limited in scope to certain
perturbations of periodic Schrodinger operators [Maltsev 2010]. Likewise, logarithmic capacity is used
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to formulate the generalization of the Shohat—Nevai theorem to measures whose essential supports are
regular Parreau—Widom sets [Christiansen 2012]; the Schrodinger counterpart of this result couldn’t even
be formulated without the renormalized Robin constant ag. We expect the theory in this paper to be an
integral part of its eventual proof, and of the broader program of investigating sum rules for Schrédinger
operators with regular Parreau—Widom essential spectra.

2. The Martin function and Akhiezer-Levin sets

In this section we consider in more detail the general Martin theory for Denjoy domains 2 = C\ E with
min E = by > —oo. Clearly, we have in mind the application that E is the essential spectrum of some
continuum Schrodinger operator, Ly, where V satisfies (1-1).

Recall that the capacity of a Borel set A is defined by

Cap(A) = sup{Cap(K) : K compact, K C A}

and we call a Borel set, A, polar, if Cap(A) = 0. Moreover, a property holds quasi-everywhere on a
set B if there exists a polar set A such that the property holds on B \ A. We start with a discussion of
the Green’s function Gg(z, zo), zo € 2. For standard references on potential theory see [Armitage and
Gardiner 2001; Ransford 1995; Garnett and Marshall 2005]. If zp € R, then Gg(z, zo) is symmetric, that
is, Ge(z, z0) = Ge(z, zp). Let us fix zg < bg. Then there exists a comb domain

M, ={x+iy:0<x<m, y>sx)} (2-1)

where s is a positive upper semicontinuous function, bounded from above, and vanishes Lebesgue-a.e.,
and a conformal mapping 6,, : C, — I, such that

Ge(z,z20) =Imb,(z), z€Cs. (2-2)

(Such a representation was proved in [Eremenko and Yuditskii 2012] in the case that E is compact
and zo = o0o; by a simple transformation A = 1/(zo — z) this yields a corresponding representation for
the current setting). Note that 6,,(bo) = i limsup,_,, s(#) and 6,,(0c0) =i limsup,,_, , s(u). Moreover,
harmonic measure wg( -, zg) corresponds to the pullback of the normalized (by 7)) Lebesgue measure
on the base of the comb. The mapping can be extended by symmetry to C \ [bg, 00) such that (2-2) still
holds there. In fact, any such function s leads to a Green’s function of a certain domain.

The Martin kernel normalized at z, < bg is defined on 2 x (2 \ {z.}) by

Ge(z, z0)
Ge(z4, 20)

The Martin compactification Q is the smallest metric compactification of €2 such that Mg(z, -) can be

MEe(z, 20) = (2-3)

continuously extended to the boundary a4 Q = Q \ Q for each z. We will also write Mg(z, zg) for the
extended function. Note that by the Harnack principle the family {Mg(z, zg)} is precompact in the space
of positive harmonic functions equipped with uniform convergence on compacts. We call a positive
harmonic function, M, minimal if any harmonic function, /, which satisfies 0 < h < M, is a multiple
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of M, i.e., h =cM, c > 0. Finally, let a{” Q c M Q denote the subset of the Martin boundary, which
consists of minimal harmonic functions. In this case, for every positive harmonic function #, there exists
a unique finite measure v such that
h(z) = e Me(z, x) dv(x),  h(z.) = v(0)'Q). (2-4)
1
In general 9/ Q can be quite abstract, but the situation is rather intuitive for Denjoy domains. In
[Gardiner and Sjodin 2009, Theorem 6] it is shown that there exists a map 7 : 8{"’ Q2 — EU {oo} such that
for every x € EU {oo}, #7~1({x})) is either 1 or 2, depending on how “thin” RN €2 is at x. To state this
precisely we need some definitions. If A is a subset of the Martin boundary ¥ Q = Q \ €2, then we say a
property, P, holds near A if there is a Martin-neighborhood A C W such that P holds on W N Q. Then,
for AC Qanda positive superharmonic function # on 2 we define the reduced function

R;?(x) = inf{u(x) : u > 0 is superharmonic, 7 <u on AN and & < u near AN BMSZ} (2-5)

and ﬁf denotes its lower semicontinuous regularization. A set A C €2 is said to be minimally thin at
y € aMQif

DA

RME(-,y) # Me(-, ).

Then #7 ' ({x}) =2 if and only if thereis y € 771 ({x}) such that QNR is minimally thin at y. Informally,
if E is sufficiently “dense” at x, then €2 locally splits into the two half-spaces C; and C_ and we obtain a
Martin function for each of them.

A reformulation of the above statement can be given in the following way. For x € E, let Pg(x) denote
the set of positive harmonic functions that are bounded outside every neighborhood of x and vanish
quasi-everywhere on E. As in the proof of [Hirata 2007, Lemma 2.9] one can see that Pg(x) is spanned by
the Martin functions related to x. Hence, the above question is whether Pg(x) is one- or two-dimensional.
We will provide a simplified proof for the case that there is only one Martin function associated to x
below. This question has attracted much interest and several conditions have been obtained [Ancona
1979; Benedicks 1980; Koosis 1988; Levin 1989c]. To note two extreme cases, if x € (a, b) C E, then
Pe(x) is two-dimensional, whereas if x is a endpoint of a gap of E, then Pg(x) is one-dimensional, as
discussed in [Gardiner and Sjodin 2009] after Theorem 6.

We are particularly interested in the Martin kernel related to co. Since E is semibounded, Pg = Pg(00)
is one-dimensional and we can talk about the Martin function My (z) = Mg(z, 00) related to oo, which
is known to be symmetric, i.e., M, (Z) = Mo (z). Moreover, all limits with z, — —oo must lead to M
and we have

. . Im6,,(z)
My(z)= lm M(z,z0)= lim ———.
20—>—00 20—~>—0 GE(Zx, 20)

Note that M, is not exactly Mg from the Introduction, because in the general situation we cannot use
the normalization (1-2). For this reason, we keep the normalization at z,, but once we have specified to
sets where the limit in (1-2) is positive, we can pass to this normalization. Since M (z) is positive and
harmonic in €, setting A> = z — by it defines a positive harmonic function for A € C by

J ) =M (2).
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Since f can be represented as

N oy dv(r) )
fatin=a+ [ w0, [ Eh e 2-6)

and )
0<a= lim L%, 2-7)

y—oo y

we see that M, (z) can grow at most as /—z as z — —o0. In case of two-sided unbounded sets, where
the Martin function can grow at most linearly, Akhiezer and Levin showed that Pg is two-dimensional
whenever the Martin function admits the maximal possible growth. This explains why we call E an

Akhiezer—Levin set if
. Moo (2)
lim

7—>—00 —z

> 0. (2-8)

Note that by (2-7) this limit indeed exists in [0, o0). Since in (2-6), the integral f v/ ((x — 2+ yz) dv(?)
defines again a positive harmonic function it follows that

aRe /by —7 < Mx(2) (2-9)

in Q. The following theorem presents a list of equivalent characterizations of M,. We say that /& vanishes
continuously at a point x € E if lim,_, ; ,cq h(z) = 0. We call a subset of €2 bounded if it is bounded as a
subset of C.

Theorem 2.1. Let H, ,(2) denote the set of positive harmonic functions on Q2 that are bounded on every
bounded subset of 2. Then, the following are equivalent:

(1) h € Hy p(2) and h vanishes continuously for every Dirichlet-regular point of E.
(i1) h € Hy p(2) and h vanishes continuously quasi-everywhere on E.
(iii) h € Hy 5(2) and h vanishes continuously wg( -, zo)-a.e.
@iv) h =cMy, where ¢ > 0.

Proof. Due to [Gardiner and Sjodin 2009, Remark 5, Theorem 6] (iv) = (i). Kellogg’s theorem [Garnett
and Marshall 2005, Corollary 6.4] yields (i) = (ii) and by [loc. cit., Theorem II1.8.2] we get that (ii) = (iii).
It remains to show that (iii) = (iv). Due to (2-4) there exists v such that

h(z) =f Mg (z, x)dv(x).
M

Let K C M Q\ {M} be compact. Then K has an open neighborhood U in Q such that U N2 is bounded.
As in the proof of [Armitage and Gardiner 2001, Theorem 8.4.1]

R;I,{(Z)=/ Mg (x, z) dv(x).
K

Since h € H1 ,(€2), h is majorized by a constant in U N €2, so R[f is a bounded harmonic function in
which vanishes wg( -, zg)-a.e. on the boundary. By the maximum principle [Garnett and Marshall 2005,
Theorem II1.8.1] it follows that R}’f = 0. In particular, R}{( (z+) = v(K) = 0. The claim follows. Il
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In a series of papers Levin [1989a; 1989b; 1989c], first systematically established the relation between
extremal problems and comb mappings imposing Dirichlet regularity on the set E. Eremenko and Yuditskii
[2012] provided a modern approach to it, giving a detailed proof for comb mappings for Green’s functions
as discussed above. It relies on the representation of Green’s functions for a compact set E, as

GE(Z,OO)=/ log |z — 1] dpg(t) + vE, (2-10)
E

where Cap(E) = e™ "% and pg(X) = 0 for sets of zero capacity. It is also discussed that the proof carry
over for Martin functions and the corresponding description is given. Since we were not able to find in
our generality a reference for a representation of the type (2-10), which is certainly known to experts, for
the readers convenience we survey the corresponding theory in the following.
Since M, vanishes quasi-everywhere, we can extend M, to a subharmonic function to all of C by
Moo (x) =limsup M (z), x €E; (2-11)

=X

7eQ

see [Armitage and Gardiner 2001, Theorem 5.2.1]. Hence, we obtain a subharmonic, symmetric function
in C, which is positive and harmonic in C4 and C_. For the following result we refer to [Levin 1989b,
Lemma 2.3] and its corollary. It was initially proved for majorants of subharmonic functions, but it is
mentioned that it extends to the version stated below:

Lemma 2.2. Let v be a subharmonic, symmetric function in C, which is positive and harmonic in
C\ [bg, 00) for some by € R. Then

© 7 —Zx © dv(r)
v(z) =v(z4) + log|1 — dv(r), < 00, (2-12)
by I —Zy bo I — Zx«
and fory >0
0 ] o
et iy) _ / a0 (2-13)
ay by (t —X) +y

Remark. Equation (2-12) is essentially the Hadamard representation for the subharmonic function v
and v is its Riesz measure. Usually the Hadamard representation would include a normalization term
(Re z)/¢, which is not needed due to the convergence property of v in (2-12).

Lemma 2.3. Let ® be such that Im ® = M, for z € C, and p be the Riesz measure for M. Then, the

functions ® and i®’ are Herglotz functions and in particular

i0'(2) :/ dp(r)
E

t—z

They can be analytically extended to C \ [by, 00) and ®" # 0 there.

Proof. Applying Lemma 2.2 to M, gives a representation of the form (2-12) in terms of the Riesz
measure p supported on E and, in particular, fE dp(t)/(t — z+) < co. Moreover,

i0/'(2) =co+/ do(®)

El—z

(2-14)
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for some ¢y € R, since the imaginary parts of the two sides are equal by (2-13). Since ® is also a Herglotz
function, for some measure u supported on E,

IR0 dpa(t)
i0(z)= / =22 /m<oo (2-15)

Using monotone convergence and taking the limit as z — —oo in (2-14) and (2-15) yields

lim i©'(z) =0=cy.
7—>—00

Since i ®’ is Herglotz, ® # 0 in C, and C_. Moreover, since it is increasing on (—o00, bg) and vanishes
at —oo we obtain the final claim. 0

The following lemma shows that, like the harmonic measure, p gives zero measure to polar sets. Of
course, once we introduce the Martin measure pg, it will be a scalar multiple of p, so the following claim
will also hold for pg.

Lemma 2.4. Let X C C be a Borel polar set. Then p(X) =
Proof. By [Ransford 1995, Theorem 3.2.3] it suffices to show that for each s > by we have

S S
/ / log |x —t|dp(x)dp(t) > —oo0. (2-16)
bo J by
By means of the subharmonic extension (2-11), M is nonnegative on C and we get

S
05/ My(x)dp(x) =d+ 1) + I,
bo

where
S
d = p(by, s)<1 / log |t — z4| d,o(t))
I =f / log [x — 1] dp() dp(x), D= / / log|1 - —‘ dp(r) dp(x).
bo K
Since I, < 0, it follows that —oo < —d < I, i.e., we have (2-16). Il

It was already encountered in [Levin 1989b, Lemma 2.4] that there is an explicit connection between p
and the conformal map ® defined in Lemma 2.3; see also [Eremenko and Yuditskii 2012]. Note that
although in [Levin 1989b] Dirichlet regularity is assumed for the set E, the proof of the following lemma
holds also in our setting. Namely, the Lebesgue measure on the base of the comb corresponds to the
measure p on E. To be more precise, Re ® extends continuously to R and we have

Re® () —Re ®(a) =nmp((a,b)). 2-17)

These are all the ingredients needed to describe the comb domains related to the conformal mapping ©.
There exists a positive upper semicontinuous function s on (0, b), where b € (0, co], such that ® maps
C+ conformally onto

={x+iy:0<x<b,y>sx)}
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If b < oo then limsup, _,; s(x) = oo. We will show in Corollary 2.8 that b being finite corresponds to 0o
being not Dirichlet-regular.

Example 2.5. In their classical work Marchenko and Ostrovskii [1975] studied the relation between
spectra of 1-periodic L? potentials on the real line and corresponding data of the mapping ®¢. They
showed that E is the spectrum of a Schrodinger operator of this type if and only if the corresponding
comb domain is of the form

Ne={x+iy:x>0, y>0\{kr+iy:keN, 0 <y <s},
and the slit heights sy satisfy Y p; k%57 < 0.
The next example demonstrates Akhiezer—Levin sets which don’t have an expansion of the form (1-3).

Example 2.6. We will construct an explicit expression for the conformal map
O:CL—->O=Ci\{n+iy:neZ,0<y<y},
where yg > 0 is an arbitrary but fixed parameter. We will show that along the imaginary axis we have
OGy)=iy+ic(yg) +o(l) asy— oo,

where, c(yo) is a real constant that depends monotonically on yg and can attain in fact any real value. Note
that ® can be continuously extended to R and that E := O (R) is symmetric, E = —E ={—x:x € E}.
Hence, again by defining @(z) = ®(1?), the function M (z) =Im @(z) is an example for a Martin function
of an Akhiezer—Levin set, which has a constant term in its asymptotic expansion. The Christoffel-Darboux
transformation

1 Y dx
hw= L[
T Jo1N1—x2
maps Cy onto [1; ={ =&+in:n >0, 0 <& < 1}. In particular f1(—1) =0 and f;(1) = 1. We choose
£ > 1 so that iyg = fi(—£) and consider

ro=3 [ =7

Then ® = f o fz_l defines a conformal map ® : [Ty — IT; such that ®(0) =iyy. By symmetry, we can
extend ® to a conformal map from ® : C; — II1. Calculations of fi, f, along the imaginary axis give
O(iy) =i cosh™' (£ cosh(y)), so

OGy) =iy+ilog(f)+o(l) asy— oo.

We emphasize that in order to show that the limit in (2-8) is always finite for the Martin function, it was
only used that M, represents a positive harmonic function in 2. This shows that the same conclusion
holds for any such function. In view of (2-4) this growth should also be reflected in the corresponding
asymptotic behavior of M, leading to the following criterion for E to be an Akhiezer—Levin set.
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Lemma 2.7. Assume that there exists a positive harmonic function in Q such that

lim @ _

7—>—00 \/—_Z

1.

Then 2 is Greenian and E is an Akhiezer—Levin set. Moreover, in this case we have
Me(z) < h(z) (2-18)
for all 7z € Q, where Mg is normalized by lim,_, _ Mg(2)//—2z = 1.

Proof. By Myrberg’s theorem [Armitage and Gardiner 2001, Theorem 5.3.8] the existence of a nonconstant
positive harmonic function on €2 implies that €2 is Greenian. Since / is a positive harmonic function in
Q, there exists a unique measure v with v(af"’ Q) = h(z4) such that

h(z) = M(z, x)dv(x).
aMQ

In particular, v({oo}) < co. Recall that #7 ' ({co}) = 1. Since (—o0, by) C R, the negative half-axis is
clearly not minimally thin at oo so it follows by [Armitage and Gardiner 2001, Theorem 9.2.6] that

lim inf
—>—00

h(Z)Z) < v({oo}) < oo (2-19)

o0

Let A2 =z — by and g(A) =h(z) and f(A) = Mx(z). Then f defines a positive harmonic function in C
and

L y R A (O))
f(x—i—ly)—ay—l-fmdu(t), “—y]lfgo v
Hence, . .
. M) fay) . f@y)
0 < lim sup = lim sup —— = lim sup =a
>—o00  h(2) y—oo 8y y—>00 y

Hence, E is an Akhiezer-Levin set. Due to [Armitage and Gardiner 2001, Theorem 9.3.3] we have

L h@ k@)
Vool =10 4 = M (220

and the second claim follows. Finally, (2-20) shows that we actually have equality in (2-19) and it follows

that v({oco}) corresponds to the normalization of M, at co. O

Carleson and Totik [2004] showed that Pg(xg) being two-dimensional is equivalent to the fact that
GEe(z, zo) is Lipschitz continuous at xg, where zg is some arbitrary interior point. As a corollary of the
comb mapping representation for ®, we show that E being an Akhiezer—Levin set implies continuity
at infinity. Note that by the aforementioned equivalence, one cannot hope for Lipschitz continuity for
semibounded sets, since in this case Pg(0c0) is always one-dimensional. Alternatively, this could be
seen from the fact that often, at a gap edge a, the Green’s function has behavior Gg(z, z9) ~ /z —a
and thus is not Lipschitz continuous. Moreover, as discussed in [Volberg and Yuditskii 2016] the set
E=R+\ UneZ r'"(ay, by), where 0 < a; < by and r > 1, provides an example of a set for which oo is
Dirichlet-regular, but which is not an Akhiezer—Levin set. In this sense the following result is optimal.
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Corollary 2.8. Let E C R be closed and semibounded and ® be the corresponding comb-mapping. If
sup{Re ©(z) : z € C;} = 00, then 00 is a Dirichlet-regular point of E. This holds in particular if E is an
Akhiezer—Levin set.

Proof. We will assume that limsup, _,_ . Ge(20, z+) = € > 0 in order to obtain a contradiction. Note
that sup{Re6,,(z) : z€ C,}=m, so forany z € C,,

Re 6
L‘)(Z) < liminf ————.
20—>—00 GE(Z4,20) ~ 20>~ Gg(24, 20)
Since
6
O(z) = lim ﬂ,
20—~ GE(Zx, 20)

taking the supremum over z € C gives sup{Re ®(z): ze C,} <e~!

7 < 00. Now, as already mentioned
in [Eremenko and Yuditskii 2012], using upper semicontinuity of /4 it follows that vanishing of the radial
limit of Gg(zo, z«) implies Dirichlet regularity. Let Im8,, = Gg(z, z,) and it will be more convenient to
shift the mapping by —. Then, lim,,_, o Gg(20, 2+) = 0 implies that lim sup,_, o #(#) = 0. Therefore,
(—o00, z4) is mapped by 6., onto iRy and we can extend 6., by symmetry to C\ (R\ (—o00, z,)). In
particular i R is an interior ray of the image, I1, =1, UiR; U{—x+iy:x+4iy e I1, }, of this extended
map. Since limsup,,_, o #(#) = 0, we have I1, is locally connected at 0 and hence 6,, can be continuously
extended to 0, which implies that oo is a Dirichlet-regular point. This finishes the proof of the first claim.

In view of (2-17), sup{Re ®(z) : z € C;} < oo means that p is finite. We show this implies that
M, can grow at most like p(R) log |z| and therefore E is not an Akhiezer—Levin set. Let’s assume that

|z« — bo| > 1 and z, < 0. Then, using (2-12) we see that for z < z, we have

o
Mao(2) = p(R) log [2] = Moo (z) +/ log|
bo

: (1_Z_*)‘dp(t)§Moo(Z*)- 0
A Z

AT
For Akhiezer—Levin sets one could also use the result of Carleson and Totik and the substitution
A2 =z — by to see that Gg is Holder continuous with exponent % at oo.

3. Asymptotic behavior of eigensolutions

We now turn our attention to the Schrodinger operator Ly and associated objects. Fundamental solutions
at z € C are defined as solutions u(x, z), v(x, z) of the initial value problems

—Bfu—l—(\/(x)—z)u:O, u(0,z) =0, (0,u)(0,z)=1, (3-1)
—7v+ (V@) —2v=0, v0,2)=1, (8v)(0,2)=0. (3-2)
The natural regularity class for the solutions is that of functions which are in W' ([0, x]) for every x < 0o,

and the differential equations are interpreted as equality of L! functions, i.e., equality Lebesgue-a.e. It is
useful to substitute

k=v=2
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and view the initial value problems as perturbations by V of —d2 + k2. We will always assume that
Re k > 0; this can be done pointwise throughout C, and later we will view k as a branch of the square
root such that Rek > 0 if z € C\ [0, c0). Note also that this makes Imk < 0 if z € C,.. By choosing the
branch /z = ik, we see that \/z € C, if z € C\ [0, 00). In particular, Im ,/z = Re k.

The fundamental solutions for V = 0 are the functions

sinh(kx)/k, k#0,

c(x, k) = cosh(kx), s(x,k)Z{ k=0
X, =0.

By standard arguments, for general V € L' ([0, 1]), the initial value problems (3-1), (3-2) are rewritten as
integral equations, and by Volterra-type arguments, convergent series representations are then found for
the fundamental solutions. With the notation A, (x) ={t e R" |x > t; >t > --- > t, > 0}, the series
representations for fundamental solutions and their first derivatives are

ulx,z)=sx,k)+ Z/
n=1

Ap(x)

v(x,z)=c(x,k)+ Z/
n=1 A

(@xu)(x, 2) = c(x, k) + Z[
n=1

Ap(x)

n—1

s(x —11, k)(l_[ V(t)s(t — 141, k))V(t,,)s(t,,, k) d't, (3-3)
j=1

n—1
s(x —11, k)<1_[ V(t)st — i1, k)) Ve, b d't,  (3-4)
n(x) j=1

n—1

c(x —t1,k) (1_[ V(t)s(t; —tjq1, k)) V(ty)s(t,, k) d"t, (3-5)
j=1

(axv)(x,z)=k2s(x,k)+2/
n=1 A

n—1
c(x —1, k)(l—[ V(t)s(t; —tjt1, k)) V(t,)c(t,, k) d*t. (3-6)
n(x) j=1

These expansions are derived, e.g., in [Poschel and Trubowitz 1987] for V e L?([0, x]), but they hold for
Vel! ([0, x]) as well, due to the estimate

X I3 Ih—1 n
// / eRe"(""l)<l—[ V(tj)eRe"(’-f‘t-f“))V(tn)eRe"’"dt,,~--dt2dt1
0 J0 0 ;
j=1

< ([ vors) e o
n!'\ Jo

which is proved by combining the exponentials and using permutations of ¢ and symmetry, and the

elementary estimates which follow directly from Euler’s formula,
e, b < e s, k)l < [k~ eRer, (3-8)

The same estimates which guarantee convergence provide exponential upper bounds on eigensolutions;
these are often stated over a fixed interval, but we will need a kind of uniformity in x:

Lemma 3.1. Forallz=—k*c Cand x > 0,

lu(x, —k2)| Ee(1+12c1<)x+fg|V(z)|o‘lr_ (3-9)
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Proof. Using [s(x, k)| = | [y c(t, k) dt| < xeRek* < ¢ITRebx and then applying (3-7) to each term of
(3-3) implies that

o0

1 . "
Ju(x, —k?)| < el RO Z;(f |V(r)|) : O
: 0

n=0

Corollary 3.2. If V obeys (1-1), for each R > 0 there exists Cg such that for all |z| < R and x > 1 we
have L loglu(x, z)| < Ck.

Proof. This is an immediate consequence of the previous lemma together with fox [V@®)|dt<Cx+1) <
2Cx for x > 1, where C = sup,o [~ |V (1) dr. 0

We will need asymptotic statements about m-functions. Such statements are ubiquitous, especially for
smooth potentials; we need an asymptotic expansion which doesn’t assume any smoothness.

Lemma 3.3. For fixed x > 0, as 7 — oo, argz € [§, 2w — 8],

_v(x,z) _
ulx,z)

X X pt
—k—/ V(t)e 2k dt+%[f e 2K (1 — e 22V (1) V (1) dtp diy + O (Jk|72)
0 0 JO

uniformly in 'V in bounded subsets of L' ([0, x]).

Proof. Assume that [;|V (1)| dr < C. Define

n—1

Ay =2k e / sCe—t, k)(ﬂ Vst — i1, k)) V (t)s(ta, k) d'1,
Ap(x) i
j=1

n—1

[[V)st -t k)) V(t)c(ty, k) d't,

j=1

B, = 2k”ekx/ s(x —11, k)(
An(x)

From (3-8) and (3-7) it follows that |A,|, | B,| < 2C"/n!. In the nontangential limit z — oo, argz €
[6, 2m — §], we have the elementary estimates
s(x, k) _
ekx/(2k)

cx.k)

—2kx __ -3
ekx/z =1+e x_1+0(|k| )’

1—e 2 =140k,

so the series expansions for u(x, z), v(x, z) imply

€kx A] A2
= — 1 —_— _ -3
u(x, 2) Zk( + -+ 25+ Ok )),

ekx Bl B 3
v(x,z)=7 1+7+F+0(|k| )],

with the error O (|k|~3) depending only on C and 8. Dividing,

, Bi—A B, —A,—A{(B1—A
v(x, z) k(1—|— 1 L B 2 1(B1 1)

u(x,z) k2

+ 0(|k|—3)). (3-10)



STAHL-TOTIK REGULARITY FOR CONTINUUM SCHRODINGER OPERATORS 611

Moreover,

X X
BI—A1:/ (1—e‘zk(x_’))V(t)e_Zk’dt:f V(t)e 2 dr + O (e 2Rekx) (3-11)
0 0

Multiplying by
X
_ % / (1 — e K=Yy () (1 — e~ %) ds
0

gives a formula for A|(B;— A}) as a double integral over [0, x1?, and using the substitution #; = max{s, t},
t, = min{s, t} gives

X prh
A](B] _ A]) — % / / (6—2/([1 4 6—2/{12 _ 2e—2k(ll+t2) _ €_2k(x_t1+[2))V(t])V(t2) dtz d[] + 0(6—2R6kX)
0J0
(some terms are grouped into the error O (e~2Re*¥) since, e.g., x — t, +; > x). Similarly,

By — Ay == // (1 — e =Yy (1) (1 — e KOV (1) 22 dr, dry

/ [ ( 72kt2 —2kty _ e*2k(x7t1+t2))v(tl)v(t2) dtz dtl + 0(672RekX)‘

Substituting these formulas into (3-10) concludes the proof. O

Returning to the half-line setting from the Introduction, we recall that half-line potentials obeying
the boundedness assumption (1-1) are in the limit point case at +00, i.e., for every z € C\ E, the set of
solutions of

—RY+ VY =2y, ¥ eL*((0,00)),

is one-dimensional. Any such nontrivial solution is called the Weyl solution; it is uniquely determined up
to normalization and we will not fix any particular normalization. We will use

_ @), 2) ]
m(x,z) = oo (3-12)

Proposition 3.4. As z — oo, argz € [§, T — 5],

1 1 p1y
m(s,z):—k—/ V(s+t)e_2k’dt+%// e k(1 — e XYY (s + 1)V (s + 1) dra dry + O (Jk|72)
0 0J0

and the error is uniform in s € [0, 0co) if V obeys (1-1).
Proof. By an argument of [Atkinson 1981], for arg z € [§, w — &], the Weyl circle at x has radius

2k

—2xRek -1
1+ 0(lk ,
|Imk| (I+0(kl™))

which decays exponentially as z — oo, argz € [8, w — 8]; the error term O (|k|™") is uniform for V in
bounded subsets of [0, x], since this term is derived by arguments like those in the proof of Lemma 3.3.
Since m4 (0, z) lies inside the Weyl circle and —v(1, z)/u(1, z) lies on the circle, this radius allows us to

estimate )
v(l,2) 4|k| o—2Rek .
0, K1+ 0(k
m(0, z) + a2 _|Imk| (I+O(kI)).
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In the nontangential limit as arg z € [§, m — §], this error is O (|k|™2), so the previous lemma implies

1 1 rty
m(0, z):—k—/ V(t)e M dt—i—%// e k(1 — e %YV (1)) V (1) dtp Aty + O (k| 72).
0 0J0

Applying this for an arbitrary s > O to the translated half-line potential Vi(x) = V(x 4+ ) on [0, 00)
concludes the proof. O

For the half-line operator Ly, the Dirichlet solution can be interpreted as the Weyl solution correspond-
ing to the endpoint 0. Therefore, the Atkinson argument can be applied also “in reverse”, to produce
uniform asymptotics on the logarithmic derivative of u(x, z). To produce uniform asymptotics, we fix the
interval length 1, as in the previous proof:

Corollary 3.5. As z —> oo, argz € [8, m — 48], foralls > 1,

8)6 ’ !
—M=_k_/ V(s_t)e_Zktdt
M(S,Z) 0 1 1 pty
+E// e 2 —e XYY (s — 1) V(s — ) dta dt; + O (Jk|72)
0J0

and the error is uniform in s € [1, 00) if V obeys (1-1).

To make some uniform statements for a family of Herglotz functions, we will use the Carathéodory
inequality for the half-plane [Levin 1980, Proof of Theorem 1.8]: for any Herglotz function f,

: . 2|z —if
f@OI=1fOI+Im f()——— Vzels. (3-13)
lz+i|—|z—1]
Lemma 3.6. Fix a potential V which obeys (1-1). For each z € C,,

(Oxu)(x, z)
_— <X

0. 2) (3-14)

x>1

Proof. The ratio —(0,u)(x, z)/u(x, z) is a Herglotz function and obeys the nontangential asymptotics in
Corollary 3.5. The error is uniform in x > 1 since V obeys (1-1). In particular, for z =iy with some fixed
yo > 0 large enough, Corollary 3.5 implies an upper bound independent of x and therefore (3-14). By
rescaling by yg and using (3-13), the upper bound at iyy implies uniform upper bounds for z in compact
subsets of C,.. O

For z ¢ o(Ly), ¥ decays exponentially as x — oo. The Weyl solution i and the Dirichlet solution u
are related by the Wronskian

W, u) = (0:u)(x, DY (x, 2) = () (x, Du(x, 2),

which is independent of x and nonzero, since u, \ are linearly independent (otherwise they would give
an eigenvalue of Ly ). This strongly suggests that u should grow at the same rate at which i decays, but
a proof based only on the Wronskian is difficult due to the derivative, especially if a pointwise statement
is desired. We therefore use a different argument:



STAHL-TOTIK REGULARITY FOR CONTINUUM SCHRODINGER OPERATORS 613

Lemma 3.7. Fix a potential V which obeys (1-1). For each z € C, there exists C such that, for all
x € [1, 00),
C' < ulx, )¢ (x, 2)| < C.

Proof. We use the diagonal (spectral-theoretic) Green’s function for Ly,

ulx, 2)¥(x, )

g(x»X;Z)=W, (3-15)
which can be written as
e @) 16
g(x,x;z) V(x, 2) u(x, z)

Using the above asymptotics for m-functions gives a well-known asymptotic statement,

1
(,x;2)==——+0(zI""), z— o0, argz €[8, 7w -4,
8 W 2
and the proof given here shows that this asymptotic behavior is uniform in x € [1, 00), since V obeys
(1-1). In particular, for some fixed z = iy with y large enough, this implies

sup |g(x, x;iy)| < oo, inf |g(x,x;iy)| > 0.
x€e[l,00) x€[1,00)

Rescaling z by a factor y and applying (3-13) to the Herglotz functions g(x, x; z) and —1/g(x, x; z)
implies uniform upper and lower bounds on compact subsets of C .

For any z € C,, the Wronskian is nonzero and independent of x, so by (3-15), uniform bounds in x
for g(x, x; z) imply uniform bounds in x (for each z € C,) for u(x, z)¥ (x, z). Il

The growth rate of u(x, z) can now be expressed in terms of averages of the m-functions:

Corollary 3.8. Foranyz € C,4,

X
lim sup llogu(x,z)+l/ m(s, z)ds| =0. (3-17)
x—o0 |X X Jo
Proof. This follows from Lemma 3.7 since m(x, z) is the logarithmic derivative of ¥ (x, z). O

Expansions for m(s, z) are often stated in terms of values of V and its derivatives at s, but such
expansions assume some regularity of V, and the error terms in such expansions are usually not uniform
in the appropriate local norm for V. By working directly with the expansion in Proposition 3.4, we can
obtain uniform expansions for the averages without imposing any regularity on V.

Corollary 3.9. IfV obeys (1-1),

X X
lim sup l/ m(s,z)ds+k+L/ V(s)ds =0(|k|_2), (3-18)
x—oo | X Jo 2kx 0
as z = —k* — oo, argz € [8, m — 8] forany § > 0.
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Proof. Due to the uniformity of the error in the asymptotic expansion from Proposition 3.4,

1 X 1 x prl iy
= m(s,z)ds = —k —— V(s+1t)e dr ds
X Jo X Jo Jo

x pl ph
+$/// e 2K (1 — e )Y (s + 1)V (s + 1) dt, dty ds + O ([k|72),
0J0O JO

with the error term independent of x. For the term linear in V, we use p = s 4 ¢ to rewrite the iterated

Ty (p)e=2* dp dr. Then we wish to note that

integral as f, [

1 1 px+t 1 1 px
—// V(p)e_Zk’dpdt:—// Vipe *dpdr+0x~"h, x— oo, (3-19)
X Jo Ji X Jo Jo

for any k. This is because the two iterated integrals describe similar regions in R?: the symmetric
difference of the regions {(#, p) |0 <t <1, t<p<x+t}land {(t,p) |0<r <1,0=<p <x}is
contained in [0, 1] x ([0, 1]U [x, x 4 1]), and the double integral over that region is bounded uniformly
in x due to (1-1). Now the integral in (3-19) separates and simplifies using fol ek dr = ﬁ + O (e 2Reky,
By analogous arguments, using ¢ = s + #, to rewrite the quadratic term and comparing the regions
{t,|0=h=t<l,b<g=x+n}and{(t,0,9)|0=n=n =<1 0=<qg=x},

x pl ph
é//f e 21 (1 — e K2V (5 4 1))V (s + 1) dra dry ds
0 J0 JO

I pt1 px
= L/ / / e—2kf1(l — e—ZktZ)V(q 4+t —1)V(g)dq dt df, + O(x—l)
kx Jo Jo Jo

1 px
szf/ hu)V (g +u)V(g)dgdu+ O(x~")
X Jo Jo

as x — oo, for any k. For the last step we introduced u = #; — t, € [0, 1] and
1—
h(u) = / ' ekt (] _ o= 2ki2y gy,
0

For the remaining double integral, it is elementary to estimate that 2 (u) = O (Jk|=H uniformly in u € [0, 1]
and that

1 px
1// V(g +u)V(q) dg du < C2,
X Jo Jo

where C denotes the sup in (1-1), so (3-18) follows. O

4. Regular measures for half-line Schrodinger operators
The main part of this section is devoted to the study of limits of the function
h(x, 2) ::%10g|u(x,z)| (4-1)
as x — oo. Our first goal is to show that for z € C; we have that liminf,_, o A(x, z) > 0.

Lemma 4.1. Fix z € C.. Then

liminfl log |u(x, z)| > 0.
xX—>00 X
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Proof. Note first of all that u(x, z) # 0 whenever x > 0, because the converse would correspond to a
complex eigenvalue for the self-adjoint realization of Ly on [0, x] with Dirichlet boundary conditions.
The Weyl solution ¥ (x, z) is an eigensolution and is in L?((0, 00)); the condition (1-1) is sufficient to
conclude that v decays pointwise [Lukic 2013, Theorem 1.1], i.e.,

lim ¥ (x,z)=0.
X—>00
Combining with Lemma 3.7 shows that |u(x, z)| — 00 as x — oo, which completes the proof. O

Let E = o0egs(Ly) written in the form (1-4). That is by = min E and (a;, b;) denote the gaps of E.

Lemma 4.2. For any € > 0 there exists xo > 0 such that u(x, z) # 0 for x > xg and z < by — . Moreover,
let nj(¢) denote the finite number of eigenvalues in (a; + ¢, b; —¢). Then, for any x > 0, u(x, z) has at
most nj(¢) + 1 zeros in (a; + €, bj — ¢€).

Proof. Since Ly is semibounded there are at most finitely many eigenvalues below by — ¢. Hence, the
first statement follows by Sturm oscillation theory.

As in the proof of Lemma 3.7, we use the spectral-theoretic Green’s function g(x, x; z). By the
Weyl M-matrix representation for Ly centered at x, g(x, x; -) is analytic on C\ o (Ly) and, since it
is Herglotz, it is strictly increasing on intervals in R\ o (Ly). In particular, every pole of g(x, x; -)
is an eigenvalue of Ly, so it has at most n;(¢) poles in (a; + ¢, b; — ¢). By (3-16), every zero of
u(x, z) is a pole of —(0,u)(x, z)/u(x, z) and a zero of g(x, x; -). Since zeros and poles of the Herglotz
function g(x, x; -) strictly interlace on intervals in the domain of meromorphicity, it follows that u(x, z)
has at most n;(¢) + 1 zeros in (a; + ¢, b; — ¢). O

We are now ready to study the existence of limit points for the family of functions F = {h(x, 2)}xe[1,00)-
Since u(x, -) are entire functions, the functions £ (x, - ) are subharmonic in C, and they can be viewed as
elements of the space of distributions D’(C) with nonnegative distributional Laplacian.

Theorem 4.3. (a) The family F = {h(x, z)}xe[1.00) is precompact in D' (C).

(b) For any sequence (xj)ﬁil with xj — oo such that h(xj,-) converges in D'(C), the limit h =
lim;_, o h(x;, -) is also a subharmonic function on C, harmonic on C\ E, and h(x;, -) also converge
to h uniformly on compact subsets of C\ E.

Proof. (a) By Corollary 3.2, h(x, z) is uniformly bounded from above on compact subsets of C. Moreover,
Lemma 4.1 implies a pointwise lower bound at some arbitrary point zg € C... Hence, [Hormander 1983,
Theorem 4.1.9] shows that F is precompact in the topology of D'(C).

(b) On C,. and on C_, the functions h(x, z) are harmonic and uniformly bounded above. Since they
are also pointwise bounded below, they are uniformly bounded and uniformly equicontinuous on each
compact subset of C.. Therefore, they are precompact in the topology of uniform convergence on compact
subsets of C.. Since this convergence implies convergence in Llloc(Ci), it follows that if the sequence
h(xj, -) converges in D’(C) to h, then it also converges to /2 uniformly on compact subsets of C..
Next, we show that & has a harmonic extension through an arbitrary gap (a;,, b,;,) of E. Fix ¢ > 0.
By Lemma 4.2, there are at most n,,(¢) + 1 zeros of u(x;, z) in (a,, + ¢, b,y — €). Let p; be the monic
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polynomial of degree at most n,,(¢) + 1 which vanishes exactly at these zeros. Now consider

M(Xj, Z)
pj(2)

fi) = xijlog

’

which is harmonic on C, U C_U(a,,+¢, b,,—e). On the boundary of the rectangle (a,,—1, b,,+1)x(—1, 1),
pj is uniformly bounded below by 1, so by the maximum principle, the analytic functions u(x;, z)/p;(z)
are also bounded above by e in this rectangle for some constant c¢. Hence, f;(z) is locally uniformly
bounded above on R, = (a,, + ¢, b, —¢) x (—1, 1). Since all zeros of p; are in (a,,, by), there is still a
pointwise lower bound for zg € C. Hence, the functions f; are harmonic on R,, and precompact in the
topology of uniform convergence on compacts. For any z € R, \ R,

. . 1
lim (hj(2) — fj(z)) = lim —log|p;(z)| =0
j—oo j—oo XJ

since |Im z|"@®*! < |pj ()| < by —am + 1) ©+1 Hence, any subsequential limit of the fj(z) is a
harmonic function on R,, which agrees with 4 on R,, \ R. It follows that f; converge in R, uniformly on
compacts, so it provides a harmonic extension for 4 through (a,, + ¢, b,, — €). Since ¢ > 0 was arbitrary
and the extensions must coincide on their common domain, we obtain an extension through (a,,, b,,) by
letting ¢ — 0. It follows from the weak identity principle for subharmonic functions [Ransford 1995,
Theorem 2.7.5] that the harmonic extension coincides with /.

Consider a compact K C C\ [bg, 00). By possibly increasing K, assume that K ¢ R. Choose an
open set U such that K ¢ U C U C C\ [bg, 00). By Lemma 4.2, for all sufficiently large j, we have
h;(z) is harmonic in U. The functions /; are uniformly bounded above and pointwise bounded below at
z0 € KN (CLUC_), so they form a precompact sequence with respect to uniform convergence on K. As
before, every limit is equal to 4, so i; converge to & uniformly on compacts. O

Collecting our results now yields that the limits define a positive harmonic function in 2 = C\ E.

Theorem 4.4. Let x; — o0 be a sequence such that hj = h(x;, - ) converge in D'(C). Then h =1im;_, o h;
defines a positive harmonic function in 2, the limit

Xj
a= lim 1 / V(x)dx (4-2)
Jj—oo Xj Jo
exists, and h has the nontangential asymptotic behavior
h(@) =Re(k+ 52 ) + Ok ™), (4-3)

z—> 00, § <argz <2m —§ forany s > 0.

Proof. Harmonicity of & was proved in Theorem 4.3 and positivity in C U C_ follows from Lemma 4.1.
That / is also positive in R \ E follows by the maximum principle for harmonic functions, and by
Corollary 3.8,
Xj
h(z) = — lim iRe/ m(x, z) dx. (4-4)
0

Jj—o0o Xj
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Define ¢ = mino (Ly). By general spectral theory, m(x, z) are analytic functions on C \ [¢, co0) and
m(x,z) <0 on (—o00, ¢). Since convergence of analytic functions follows from convergence of their real
parts together with convergence at one point, from Imm (x, z) = 0 for z < ¢ together with (4-4), it follows
that the limit

w(z) = lim l/ jm(x,z) dx
0

Jj—00 Xj
converges uniformly on compact subsets of C \ [c, 00). If a denotes some accumulation point of the
sequence (1/x;) fox 7'V (x) dx, applying Corollary 3.9 along the subsequence and using uniformity of the

error term, it follows that

w(z) = —k— ﬁ + O (k™) (4-5)

nontangentially as z — oo, with arg z € [8, # — §]. This asymptotic behavior can only hold for one value
of a, so it follows that the limit (4-2) exists.

We know that (4-5) holds as z — oo with arg z € [§, w — 8] and, by symmetry, for arg z € [7 + 8, 2 —4].
It remains to extend this asymptotic behavior to a sector of the form arg z € [x — §, 7 + §]. Without loss
of generality assume ¢ = 0. Since Re w = —h < 0, the function f (1) = —iw(A?) is Herglotz, and obeys

f) = k—ﬁ—i-O(lkl_ ), A= oo, (4-6)

along theraysarg A =m/2—§/2 and arg A=m/2+46/2. Inthe sector T ={A:mw/2—5/2 <arg A <m /2+65/2},
the function g(A) = 23( f(A) —A+4a/(2))) is analytic. It has a continuous extension to T with g(0) =

because f(A) = O(1/A) as A — 0 nontangentially. By (4-6), g is bounded on the boundary of 7' Finally,
since f is Herglotz, f, g grow at most polynomially as A — oo, A € T, so by Phragmén—Lindeldf, g is
bounded in 7. This implies that f has the asymptotic behavior (4-6) also in the sector 7. Rewriting the
conclusion for w and A = — Re w completes the proof. O

We need the following variant of the Herglotz representation:

Lemma 4.5. Let f be a Herglotz function. Assume Im f(iy) = O(y~!) as y — oo. Then for some B € R
du(t
) :,B—i—/ di® it lim yIm £Giy) = u(R) < oo,
RI—A y—>00

f) = ﬂ—?Jr (A7, (4-7)

A— 00, § <argh <m — 4 forany$ > 0.

and

Proof. Starting from the Herglotz representation, we can write Im f (iy) =ay + [ y/ (12 4+ y?) du(r), with
limy_, Im f(iy)/y = a. Hence, by our assumption, a = 0. Moreover, by monotone convergence

hm yIm f(@iy) = hm / du(t) = n(R).

By our assumption, this shows that u(R) < oo. We have

Aft“()Jr (R) = /—du(t)—>0 as A — 0o,
T

by dominated convergence since |t/(t — A)| < 1/sin . O
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We are now ready to prove an asymptotic expansion (1-3) of higher order for M.

Proof of Theorem 1.1. By translation, we may assume that 0 = minE. By precompactness of the
family {h(x, z)}x>1, there is a sequence x,, — oo for which the limit & = lim,_, oo (1/x,) log|u(x,, - )|
is convergent in D'(C). By Theorem 4.4, h is a positive harmonic function in € and h(z)/+/—z — 1
as z — —o00, so by Lemma 2.7, Q2 is Greenian, obeys the Akhiezer—Levin condition, and 4 > Mg in 2.
Using (2-9), we obtain for z € Q

Rev/—z < Me(z) < h(2). (4-8)

Hence, the difference Mg(—k?) — Rek defines a positive harmonic function in © and (4-3), (4-8) imply
that Mg(—k?) —Rek = O(|k|™"). Set z = A? and v(L) = Mg(—k?) —Rek. We thus obtain a positive
harmonic function in C such that v(iy) = O(y ™). By Lemma 4.5 there is a constant ¢ such that

v() = —Im () +o(A™)
as A — oo nontangentially in C,.. Recalling that A = ik, this shows that
Me(—k?) —Rek =Re($) +o(lkI ™). O

Proof of Theorem 1.2. Consider a sequence x, — oo such that

[ 1 [
lim —/ V(t)dt:liminf—/ V(t)dt.
0 0

n—o0 Xy x—>00 X

Due to Theorem 4.3, this sequence has a subsequence for which the limit 2 =1im;, oo (1/x,,) log|u (xp;, - )|
is convergent in D'(C). As in the proof of Theorem 1.1, we have 4 > Mg in Q. Theorems 1.1 and 4.4
yield

X
ag= lim 2k(Mg(—k*)—k) < lim 2k(h(—k*) —k) = lim L/ ' V(s)ds. O
k—+o00 k— 400 - Jo
Proof of Theorem 1.3. Fix zg € C\ [min E, co) and consider a sequence x,, — oo such that

lim ilog|u(xn,zo)| =1i infllog|u(x,zo)|.
n—o0 Xy xX—>00 X

We can again pass to a subsequence such that &7 = limj_)oo(l/xnj) loglu(x,,j, ) and h > Mg in Q. In
particular,

liminfl loglu(x, zo)| = h(zo) = Mg(20)- O
x—00 X

Proof of Theorem 1.5. By inclusions, we have (vi) = (iv) and (v) = (iv).

(iv) = (vi): Consider any sequence x; — oo such that the limit 4 = lim;_,, h(x;, -) converges. The
limit 2 obeys & > Mg on C by Theorem 1.3 and obeys /(z) < Mg(z) for some z € C,.. By the maximum
principle, h = Mg on C,, and then on Q by harmonic continuation. Thus, Mg is the only possible
subsequential limit of A(x, -) as x — 00, so by precompactness, lim,_, /i (x, z) = Mg(z) uniformly on
compact subsets of C \ [bg, 00).
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(vi) = (v): Given (vi), we know that for any convergent sequence 4 (x,, z) the limit is Mg. For z € [bg, 00)
we have by [Azarin 2009, Theorem 2.7.4.1] that
lim sup A (x,,, z) < (limsup h(x,, 7)) = Mg(z),
n—>oo n—oo

where f denotes the upper semicontinuous regularization of f. The first inequality follows by the general
fact that f < f

(v) = (ii): This follows from Theorem 2.1.

(i1) = (iii): Due to [Garnett and Marshall 2005, Corollary 6.4] the set of Dirichlet-irregular points is polar
and thus, by [loc. cit., Theorem 8.2] it is of harmonic measure zero and the claim follows.

(iii) = (vi): Take a sequence x, — 0o such that lim,_, o h(x,, z) = h(z) in D'(C) and uniformly on
compact subsets of C \ [by, c0). Due to the upper envelope theorem [Azarin 2009, Theorem 2.7.4.1],
there is a polar set X such that, for any z € C\ X},

lim sup A (x,, z) = h(2).

n—oo

On the other hand, assuming (iii), there exists X, with wg (X3, zg) = 0 such that, for t € E\ (X; U X») by
upper semicontinuity

0 <liminfh(z) <limsuph(z) < h(t) <O.

‘o o

Since we(X1 U X3, z0) = 0, Theorem 2.1 gives h = cMg. Comparing the leading-order asymptotic
behavior at oo shows that ¢ = 1. Thus, Mg is the only possible subsequential limit of 4 (x, -) as x — o0,
so by precompactness, lim,_, » £ (x, ) = Mg(z) uniformly on compact subsets of C \ [bg, 00).
(vi) = (i): By Theorem 4.4, (vi) implies that (1/x;) fox 7'V (t)dt — ag for every sequence Xj — 00, 80 (i)
follows.
(i) = (vi): Take a sequence x, — oo such that 4 = lim,_, o i(x,, -) converges in D'(C). Define
v(L) = h(—=k?) — M(—k3). Similarly to the proof of C. Theorem 1.1, this yields a positive harmonic
function in By Theorems 4.4 and 1.1, v(iy) = o(y~!) as y — o0o. By Lemma 4.5, limy,_, o yv(iy) =0
implies that v = 0. This shows that Mg is the only subsequential limit of A(x,-) as x — co. By
precompactness, (vi) follows. (|

The functions u(x, z) are entire functions of order % and as such admit a product representation

u(x,z) =u(x, z4) l—[(l - Z._Z* )

j=1 Z] _Z*

where the z; depend on x and z, is some normalization point. Then the Riesz measure, p,, of the
subharmonic function log |u(x, z)| is a rescaled zero counting measure of u(x, z). That is,

1_Z_Z>k
t

1 1
! log utr. )| = L tog utr. 201+ [ o o0,

Tx

where p, is defined in (1-7).
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Proof of Theorem 1.6. By Theorems 1.5 and 4.3, h(x, - ) = Mg in D’(C) as x — oo. By the definition of
the Riesz measure, for any ¢ € C2°(C),

xli)ngo27r ®(2) dpx(z)lei)n;o/h(x,z)AMz) dr(z)

_ / Me(2)A¢(2) dA() = 27 [ $(2) dpe(@).

where dA denotes the Lebesgue measure on C. The rest follows from density of C2°(C) in C.(C). O

Proposition 4.6. Let du be the spectral measure of Ly, where V satisfies (1-1) and oess(Lyv) =E. Suppose
that along a sequence x, — oo the Riesz measures dpy, converge to pg in the weak-x sense. Then, either
h(x,, ) converges to Mg(z) or there exists a polar Borel set X such that u(R\ X) =0.

Proof. Assume that /(x,, - ) do not converge to Mg and consider a subsequence Xn; such that h(x,,_,. ,)—>h
in D’(C) with some limit 4 not equal to Mg. By the upper envelope theorem [Azarin 2009, Theorem 2.7.4.1]
there is a polar set X such that, for any z € C\ X|,
limsup i (xy;, z) = h(z).
j—oo

The subharmonic function 4 has some Riesz measure p and by the same arguments as in the proof of
Theorem 1.6, Px,, cOnverges to p in the weak-* sense. Hence, by uniqueness of the limits our assumption
implies that p = pg and, by Lemma 2.2 applied to 4 and Mg,

l_Z_Z*
t

h(z) =h(z*)+/10g

dpe(t) =d + Me(2),

*

where d = h(z,) — Me(z+). Recall that Mg has a unique subharmonic extension to C which vanishes
quasi-everywhere on E. Therefore, there is a polar set X, such that h(z) = d for z € E\ X;,. Moreover,
since Mg < h on 2 we see that d > 0, and since 4 is not equal to Mg, d > 0. In particular,

limsuph(xy;,z) =d >0 VzeE\(XUXa).
j—oo
However, by Schnol’s theorem [1954], for p-a.e. z € E, the Dirichlet solution decays at most polynomially
and, in particular,

limsup A (x,;, z) < 0.
j—oo '

Thus w(E\ (X1 U X»)) = 0, which implies the claim with X = X; U X». Il
In particular, Theorem 1.7 is now proved.

Proof of Theorem 1.8. By Schnol’s theorem [1954] for pu-a.e. z € E

limsup A (x, z) <O0. (4-9)

X—>00

Hence, by assumption, (4-9) holds wq( -, z9)-a.e. Therefore, V is regular by Theorem 1.5. O
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5. Applications

Proof of Theorem 1.12. (a) Setting E = o.s(Ly), it follows from E C [0, oo) that Mg is a positive
harmonic function on C \ [0, co). Since the Martin function for the domain C \ [0, c0) is Re /—z, it
follows from Lemma 2.7 that Mg(z) > Re /—z. Comparing this with the asymptotic expansion (1-3) as
z — —oo shows that ag > 0 so, by (1-5), liminfy—.c + f; V() df > 0.

(b) As in (a), ag = 0. By (1-5) and liminf,_, %f(f V(t)dt <O, this implies that ag = 0. Moreover,
Mg(z) — Re/—z = o(/|z] _1) defines a positive harmonic function in C \ [0, co) so, by Lemma 2.7,
Me(z) = Re/—z. If E was a proper subset of [0, o0), since E is closed, there would exist a gap
(a,b) C [0, 00) \ E, and on this gap Mg would be strictly positive, contradicting Mg(z) = Re /—z.

(c) Again by ag > 0 and (1-5), limsup, _, )lc f(f V(t) dt <0 implies that V is regular. 0

We now turn to the construction of a potential which is regular for E = [0, co) but not decaying, even in
the Cesaro sense. The potential will be constructed piecewise, so we begin by considering a 28-periodic
potential defined by
1, x €[0,9),

Wa(x) = {—1, x €[5, 29).

Let us compute the discriminant As(z) and the smallest eigenvalue for the periodic problem,
As =min{A € R| As(A) =2}.
Lemma 5.1. limgio )»5 =0.

Proof. Since |Ws| <1 and A; is the minimum of the periodic spectrum, by standard variational principles,
As € [—1, 1] for all § > 0. The transfer matrix corresponding to Ws at energy A € (—1, 1) is

noge( -COShOVTR)  sinh(3T=7)/v/T=2 cos(BVTFR)  sin(3v/TFR) /TR
S =\ VT=A sinh(8+/T—1) cosh(8+/1—2) —V1+Asin(84/141) cos(8+/141) '

From this it is elementary to obtain the asymptotic behavior for the discriminant, As(A) = tr T5(A), in the
form

As(L) =2—4A182+0(), 6§10, (5-1)

uniformly in A € (—1, 0) (and then, by continuity, for A € [—1, 0]). From this, it follows that, for any
t < 0, there exists §o > 0 such that § € (0, §p) and A € [—1, ¢) implies As(A) > 2 and therefore A5 > ¢. It
follows that liminfs o As > 0.

Meanwhile, A5(0) =2coshdcos§ =2 —68%/3+0(8*) as § — 0 implies that limsups g As <0. O

Proof of Example 1.13. Consider the Dirichlet solution u(x, ¢) corresponding to the given potential at
some t < 0. There exists ng such that, for all n > ng, A1/, > t. At energies below the periodic spectrum,
transfer matrices have strictly positive entries; applying this on intervals [n, n + 1] and since products
of matrices with positive entries have positive entries, we conclude that u(x, #) has at most one zero
with x > ng — 1. Since zeros of an eigensolution are isolated, it follows that u( -, ¢) has finitely many
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zeros, so by Sturm oscillation theory, min oess(Ly) > ¢. Since this holds for arbitrary ¢ < 0, we conclude
min gegs(Ly) > 0.
Conversely, since V obeys lim,_, o % f(f V (t)dt =0, the statement is completed by Theorem 1.12. [

Proof of Example 1.11. For x € [x,, X,4+1] we have

1/XV(z)dt§/W(z)dz”“.
X Jo

Xn

Since the condition on x, implies that x,/n — oo we see that lim,_, o )lc f(;c V(t)dt =0. Since V > 0,
we have o.ss(Ly) C o(Ly) C [0, 00), so by Theorem 1.12, V is regular and oss(Ly) = [0, 00).

Let Hy be the whole-line operator with the potential W (x). Since W > 0, we have o (Hy) C [0, 00).
Hence, we conclude that mino (H_w) < 0, for otherwise [Damanik et al. 2005, Corollary 1] would
imply that W = 0. Now by [Last and Simon 2006, Theorem 7.1] it follows that oess(H_y) = o (H_w)
(where H_y is the full-line operator with potential V extended to R_ by V = 0). Since o.ss(H_vy) =
Oess (L0) U 0ess (L _y) this shows that min oes(L_y) < 0. O

Proof of Theorem 1.16. The Lyapunov exponent y is harmonic in C; UC_ and subharmonic in C. By
(1-11) forae.n e S

T1im Liogluy (v, 9l =y (0
converges pointwise in C4 U C_; by the weak identity principle for subharmonic functions and precom-
pactness, convergence to y is also in D’(C). By Schnol’s theorem, for p1,-a.e. z,
lim sup 1 loglu,(x, z)| <0. (5-2)
x—o00 X
Fix a sequence x, — oo. By the upper envelope theorem [Azarin 2009, Theorem 2.7.4.1] there is a polar
set X, such that, for any z € C\ X,

lim sup L log|uy (xn, 2)| =y (2).
n—oo Xn

On Q, y > 0. Hence, since (5-2) holds for p,-a.e. z, we have u,(Q \ X,) =0. Il

6. Conformal maps

In view of Corollary 1.10 and the subsequent discussion, it is of great interest if the harmonic measure of
the domain C\ E is absolutely continuous with respect to the Lebesgue measure yg(x) dx. Let zo < min E
and GEg(z, zo) be the Green’s function of C \ E with pole at zo and IT, the associated comb domain,
defined by the upper semicontinuous function s. We say that I, satisfies the sector condition if

S
Su= sup 0O
ye(0,7) X — Yl

is finite for Lebesgue-a.e. x € (0, 7). Then, we(-, zo) is absolutely continuous with respect to the
Lebesgue measure if and only if IT;, satisfies the sector condition.

The proceeding discussion holds for general semibounded sets E and does not assume that E is an
Akhiezer-Levin set. Let M be the Martin function with pole at co, normalized at some internal point z,,
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p its Riesz measure and IT1 and ® the corresponding comb and comb mapping. There is a similar
characterization for absolute continuity of p. Let s be the upper semicontinuous function defining IT.
Then p is absolutely continuous with respect to yg(x) dx if and only if the domain contains a Stolz angle
at a.e. point at the base of the comb, i.e.,

S(x) = limsup sO)
yox X =yl

(6-1)

is finite for Lebesgue-a.e. x € (0, b).

Under various conditions on the set E, it is known that the conformal map i ®’ has a product representa-
tion. We now provide a general proof which does not assume Dirichlet regularity or any other additional
assumptions.

Lemma 6.1. Let E be a closed nonpolar set of the form (1-4). For each j there exists c; € [a;, b;]
such that M is strictly increasing on (a;, ¢;) and strictly decreasing on (cj, bj), and ©'(z) is given on
z € C\ [by, 00) by

i0'(z) = BN NN R = Sres (6-2)
by —z
where £E(x) = % forx € (aj, cj), §(x) = —% forx € (cj, bj), §(x) =0 for x & [by, o0) \ E, and C > 0 is
a normalization constant.

Proof. For finite-gap sets, this is a reformulation of the Schwarz—Christoffel mapping. If E has infinitely
many gaps, we consider them labeled by j € N in an arbitrary way and define E, = [bg, 00) \ U?:l (aj, bj).
Denote by M,, the Martin functions at oo corresponding to the sets E,;, normalized by M, (z,) = 1 for
some fixed z, < bg. Since the functions M, are all positive harmonic on C\ [bg, 00), for any R > |bg|, by
Harnack’s principle they are uniformly bounded on the line segments parametrized by —R +it, t +iR,
t—iR,witht € [—R, R]. Since M, (x +iy) are increasing in y > 0 and symmetric, it follows that M,, are
uniformly bounded above on the boundary of (—R, R) X (—R, R) for any R large enough. Since they are
also nonnegative, they are a precompact sequence of subharmonic functions on C. By the upper envelope
theorem, for any subsequential limit /2 =limy_, oc Mp, , quasi-everywhere on E, h(z) =limy—, oo My, (z) =0,
so by Theorem 2.1, & is Martin function for the domain C\ E with A(z,) = 1. It follows that M,, converge
to h in D'(C).

It follows that ®,, converge to ® since their real parts converge and their imaginary parts are zero
on (—00, bp). In particular, the Herglotz functions i ®), converge to ¢i®" uniformly on compact subsets
of C,, so by interpreting this convergence in terms of their exponential Herglotz representations,

I -2 _ 10— vgeCRU
Jim [ w05 = [ewem s Yee CRU D,

where £ is determined by lim, o arg ®'(x +iy) = 7&(x) Lebesgue-a.e. x € R. By using test functions g
supported in (a;, b;), it follows that, for each j, the critical points c; , must converge to a point ¢; € [a;, b;].
Then &, converge pointwise to the function é which is 1 on intervals (a;, ¢;), —1 on (c;, b;), and O
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on [bgy, 00), so by dominated convergence with dominating function || g||oo(1/(1 + x2)) X[bo,00)\E>

. dx ~ dx
lim /g(X)Sn(X)ﬁ=/g(x)é(X)— Vg € C(RU{o0}).
n—oo Jp +x R

14 x2
Of course, this implies & = &, which implies (6-2). Finally, by separating the contribution from the
gap (aj, b;) from the remainder of the integral, (6-2) can be extended into the gap (a;, b;) to show that
i® > 0on (aj,c;) and i®" < 0 on (¢j, bj). It follows that M’ > 0 on (a;, ¢;) and M" < 0 on (cj, b;), so
our construction of ¢; as limits of ¢; , satisfies the property in the lemma. 0

As the final topic of this section, we describe a class of Akhiezer-Levin sets for which it can be seen
by purely complex-theoretic arguments that the Martin function has the two-term expansion (1-3). While
this is not as general as Theorem 1.1, within its scope of applicability, it provides a formula for ag in
terms of critical points of the Martin function.

Lemma 6.2. Let E C R be of the form (1-4). If Z?’:l (bj —aj) < 00, then E is an Akhiezer—Levin set, the
Martin function obeys the two-term expansion (1-3), and

N
ag=bo+ Y (a;+b; —2c)). (6-3)
j=1

Proof. Finite gap length can be restated as [ X[n,,00)\e(X)dx < 00 and it implies that the exponent in (6-2)
can be split into two separately integrable integrands, of which one is z-independent, to give

iO(z) = bCE ef[boyom\Ef(x)%—de_
0—2

For any § > 0, using finite gap length and dominated convergence,

1 1 _
/ s<x>—dx=——/ £(x) dx +o(lz ),
[bo,00)\E X—z 2 Jbo,00)\E

as z —> 00, argz € [8, 2w — §]. Evaluating the integral f[ho, O)\E &(x) dx and substituting into ©’(z),

1 N 1
i®) (2) = CE( + =(bo + (a; +b; —2¢;)) 0(|Z|_3/2))
j 2 ; =

—Z

1
Ne

and integrating along rays shows that, as z — oo with arg z € [§, 27w — 6],

\ I
10e(z) = CE(—ZJ—_z+ <bo+;(aj by =) = +0(|Z|_1/2)).

Taking imaginary parts gives a two-term expansion of Mg, which matches (1-3) with Cg = % Reading
off the second term gives (6-3). O
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GLOBAL EXISTENCE AND MODIFIED SCATTERING
FOR THE SOLUTIONS TO THE VLASOV-MAXWELL SYSTEM
WITH A SMALL DISTRIBUTION FUNCTION

LEO BIGORGNE

The purpose of this paper is two-fold. In the first part, we provide a new proof of the global existence
of the solutions to the Vlasov—Maxwell system with a small initial distribution function. Our approach
relies on vector field methods, together with the Glassey—Strauss decomposition of the electromagnetic
field, and does not require any support restriction on the initial data or smallness assumption on the
Maxwell field. Contrary to previous works on Vlasov systems in dimension 3, we do not modify the
linear commutators and avoid then many technical difficulties.

In the second part of this paper, we prove a modified scattering result for these solutions. More precisely,
we obtain that the electromagnetic field has a radiation field along future null infinity and approaches,
for large time, a smooth solution to the vacuum Maxwell equations. As for the Vlasov—Poisson system,
in contrast, the distribution function converges to a new density function f,, along modifications of the
characteristics of the free relativistic transport equation. In order to define these logarithmic corrections,
we identify an effective asymptotic Lorentz force. By considering logarithmical modifications of the
linear commutators, defined in terms of derivatives of the asymptotic Lorentz force, we finally prove
higher-order regularity results for f.
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1. Introduction
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0 f+0-Vif+(E4+0xB)-V,f=0, (1

vx-Ezf fdv, 8,E=VxxB—/ b f dv, )
R} R}

V,-B=0, %B=-V, xE, 3)

where

e fiRL, x [Rii X [Rﬁ — R is the density distribution function of the particles,
e =0/ w9, with v¥ := /1 + [v|2, is the relativistic speed of a particle of momentum v € [R{fj,
. fR3 fdvand fR3 v f dv are respectively the total charge density and the total current density,

e E,B:Ry, xR} — R? are respectively the electric and the magnetic field.

For simplicity, we assume that the plasma is composed of one species of particles of charge ¢ = 1 and mass
m =1. Our results can be extended without any additional difficulty to several families of particles of differ-
ent charges and positive masses.! We refer to [Glassey 1996] for a detailed introduction to these equations.

The initial value problem for the Vlasov—-Maxwell equations, together with a regular initial data set
(fo, Eo, Bo) composed of a function fj : IR)% X [F\Rg — R and two fields Ey, By : [F\Ri - R3 satisfying the
constraint equations V, - Ey = fv fodv and V, - By = 0, is well-posed [Wollman 1984]. On the other
hand, the global existence problem for classical solutions to the Vlasov—Maxwell system is still open” and
has only been addressed in some particular cases, such as under certain symmetry assumptions [Glassey
and Schaeffer 1990; 1997; 1998; Luk and Strain 2016; Rein 1990; Wang 2022a]. For the general case,
since the pioneering work [Glassey and Strauss 1986], several continuation criteria have been obtained
[Glassey and Strauss 1987b; 1989; Klainerman and Staffilani 2002; Bouchut et al. 2003; Pallard 2005;
2015; Sospedra-Alfonso and Illner 2010; Luk and Strain 2014; Kunze 2015; Patel 2018].

1.1. Small data solutions to the Vlasov—Maxwell system. Much more is known for this particular
perturbative regime, in which global existence holds and the solutions disperse. For small compactly
supported initial data Glassey and Strauss [1987a] proved the optimal decay rate fv fdv<t73 onthe
velocity average of the distribution function and obtained estimates for the electromagnetic field and its
first-order derivatives. Shortly after, in the multispecies case, the smallness assumptions on the individual
particle densities was relaxed by [Glassey and Schaeffer 1988]. Later, Schaeffer [2004] removed the
support restriction on the velocity variable. However, his method leads to a loss on the estimate of |, , S dv.

It is only recently that all the compact support assumptions on the initial data were removed in two
independent results [Bigorgne 2020a; Wang 2022b]. Both of these works are based on vector field
methods and the latter used also Fourier analysis. These robust approaches allow for the derivation
of sharp pointwise decay estimates on the solutions and their (high-order) derivatives. Moreover, in
[Bigorgne 2020a], the initial decay hypothesis in v is optimal and improved estimates on certain null
components of the electromagnetic field are derived. Finally, using the framework of Glassey and Strauss

IThe case of massless particles requires in fact a different analysis [Bigorgne 2021b].
2In contrast, a global in time existence result for weak solutions was proved in [DiPerna and Lions 1989] and revisited in
[Rein 2004].
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and without any compact support restriction, Wei and Yang [2021] derived a global existence result which
does not require the initial Maxwell field to be small.

In the first part of this article, we provide an alternative but shorter proof of the main results of
[Bigorgne 2020a; Wang 2022b], without assuming any smallness assumption on the electromagnetic field.
Compared to [Wei and Yang 2021], we require more regularity on the initial data but our method allows
us to control the derivatives of the solutions, up to an arbitrary order N. This information is needed for
the second part of the paper.

1.2. Modified scattering results for the Vlasov—Poisson system. Sharp decay estimates for the small
data solutions to the Vlasov—Poisson system were first derived by [Bardos and Degond 1985] and then,
with various improvements, by [Hwang et al. 2011; Smulevici 2016; Duan 2022; Schaeffer 2021] (for the
relativistic cases, see [Glassey and Schaeffer 1985; Wang 2023; Bigorgne 2020b]). Modified scattering
for these solutions was established in [Choi and Kwon 2016] and then in [Ionescu et al. 2022; Pankavich
2022], where more information was obtained on the asymptotic dynamics governing the modification of
the linear characteristics. Furthermore, a scattering map has been constructed by [Flynn et al. 2023] and
let us finally mention that similar results hold for perturbations of a point charge [Pausader and Widmayer
2021; Pausader et al. 2024].

In the second part of this paper, we investigate such problems in the context of the Vlasov—Maxwell
equations. In particular, as in [lonescu et al. 2022] for the Vlasov—Poisson system, we prove that

[RSf(t,x,v)dx—> Oc(v) ast— 4o0.

The scattering charge O is deeply related to the leading-order term of the asymptotic expansion of
both the charge density fv f dv and the current density. It allows us to define an asymptotic Lorentz
force v — Lor(v), from which we deduce the modified scattering statement for f (see Theorem 1.1 and
Remark 1.3 for more details). We also prove higher-order regularity properties for the limit distribution fo,
which require a more thorough analysis. To our knowledge, there is no such regularity result for the
Vlasov—Poisson system.

1.3. Vector field methods for relativistic transport equations. Our analysis of the asymptotic behavior of
both the electromagnetic field and the distribution function relies on vector field methods (see Section 2.4
for an overview of the key ideas). This kind of technique was first developed by Klainerman [1985] in
order to study solutions to nonlinear wave equations and then adapted in [Christodoulou and Klainerman
1990] to the Maxwell equations. It is only recently that the approach has been adapted to relativistic
transport equations by Fajman, Joudioux and Smulevici [Fajman et al. 2017], leading in particular to a
proof of the stability of Minkowski spacetime for both the massive and massless Einstein—Vlasov system
[Fajman et al. 2021; Bigorgne et al. 2021] (see also [Lindblad and Taylor 2020; Taylor 2017] for alternative
proofs). Our work [Bigorgne 2020a] concerning the small data solutions to the Vlasov—Maxwell system
relies on such techniques as well. The method has also been successfully used to derive boundedness and
decay estimates for the solutions to the massless Vlasov equation on a fixed Kerr black hole [Andersson
et al. 2018; Bigorgne 2023]. Finally, even if it concerns the nonrelativistic setting, let us also mention
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that such approaches have been applied in the collisional regime [Chaturvedi 2021; 2022; Chaturvedi
et al. 2023].

In order to deal with slowly decaying error terms, all the works on the small data solutions to
massive relativistic Vlasov systems or the Vlasov—Poisson system [Fajman et al. 2021; Bigorgne 2020a;
Smulevici 2016; Duan 2022], based on vector field methods, require dynamically modifying certain linear
commutators of the Vlasov operator. One of the main novelties of this article consists in proving that
the solutions are global without using these modified vector fields, which considerably simplifies the
analysis. For this, even though certain quantities grow logarithmically in time, we are able to close the
energy estimates by identifying several hierarchies in the commuted equations (see Section 2.8.2 for
more details). It is then important to derive the optimal decay rate r—> for fv f dv and its derivatives by a
method allowing well-chosen weighted WQ’ ;°° norms of the distribution function to grow slowly in time.
We believe that this approach could be applied to other systems of equations, in particular for both the
Einstein—Vlasov and the Vlasov—Poisson systems.

1.4. The main result. We present here a short version of our main result, stated in Theorems 2.10-2.11
below, where we also describe the behavior of the derivatives of the solutions.

Theorem 1.1. Any solution (f, E, B) to the Vlasov—Maxwell system (1)—(3) arising from a small initial
distribution function and smooth as well as sufficiently decaying initial data is global in time. Moreover:

(1) There exists a solution (EY*, B¥*°) to the vacuum Maxwell equations® approaching (E,B) as t+|x|— 00,
V(e x) Ry xRS, |E—EY|(t,x) +|B - B™|(t.x) < C,(1+1+1x) 770, L<g<L.

(2) The Lorentz force has a self-similar asymptotic profile v — Lor(v),

glog"(3+1)

V(t, x,v) e Ry xR xRS, |F2(E(t, x +10) + 0 x B(t, x +10)) — Lor(v)| < (x)|vY) T

’

where (x) := (1 + |x|»)'/? and, say, n = 70. We have modified scattering to a new density function
foo :RIX RS — Ry,

VEZ3, 1f@ Xt ) ) = follt s, S 17 log" (@),

where the Cartesian components X!‘g of the modified spatial characteristics X4 € Ri are defined as

v log(?)

Xy (t, x, v) = x* + 10" — ——=(Lor* (v) — §-Lor()?*), 1<k<3.
v

Remark 1.2. No modification of the spatial characteristics is in fact required in the exterior of the light
cone {|x| > t} in order to prove such a result (see Section C.2). We already observed in [Bigorgne 2021a]
that the small data solutions to the Vlasov—Maxwell system have better behavior in this region.
Similarly, no correction of the linear characteristics should in principle be necessary in order to prove
a scattering statement in higher dimensions. This is consistent with the result of [Pankavich 2023]

3The vacuum Maxwell equations are given by (2)—(3) with f =0.
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concerning the Vlasov—Poisson system in dimension d > 4 and our study of the asymptotic behavior of
the small data solutions of the Vlasov—Maxwell system in high dimensions [Bigorgne 2022].

The case of massless particles differs from the case of massive particles treated in this paper. Indeed,
in view of [Bigorgne 2021b], we expect the small data solutions of the massless Vlasov—Maxwell system
to satisfy linear scattering in dimension d = 3.

Remark 1.3. The behavior of the Lorentz force along the linear trajectories suggests that the characteristics
of the Vlasov—-Maxwell system satisfy, for r > 1,

X=V, Vat?2Lor(V), X(0)=xo, V(0)=nu.

Hence, we can presume that V converges to v, so that

V)~ v— T Lor(w), X()~ D — — Lor(v) + 22 W54 02),
t tv tv
and we can then expect X () =~ X« (¢, xo, v).

Moreover, we could in fact decompose Lor(v) as E°°(v) + 0 x B*(v) and observe that, as v — 0,
X (t, x,v) =x +tv—1log(t) E*(v) + o(v).

In other words, for small velocities, the modified characteristics X¢ of the Vlasov—Maxwell system
approach the ones constructed in [Ionescu et al. 2022] for the Vlasov—Poisson system.

1.5. Structure of the paper. In Section 2 we introduce the notations and the tools used throughout this
article. Then, we state our main results, Theorems 2.10-2.11, and present the key ideas of the proof. In
Section 3, we set up the bootstrap assumptions and discuss their immediate consequences. Section 4
concerns the study of the distribution function. In particular, we prove that weighted L3’ norms of f and
its derivatives grow at most logarithmically and we improve the bootstrap assumption on their velocity
average. Then, in Section 5, we conclude the proof of the global existence of the small data solutions to
(1)-(3) by exploiting the Glassey—Strauss decomposition of the electromagnetic field in order to improve
the bounds on (E, B) and their derivatives. Next, in Section 6 we refine our estimates by proving that the
particle current density and the electromagnetic field have a self-similar asymptotic profile. This allows
us to define the modified trajectories along which the distribution function converges. Section 7 is devoted
to the scattering results for the electromagnetic field. A crucial part of the proof consists in constructing a
scattering map for the vacuum Maxwell equations. In Section 8, we relate the conserved total energy of the
system to the ones of the scattering states. Finally, Appendices A and B contain two useful computations
and Appendix C presents alternative expressions for the profile of F' and the modified characteristics.

2. Preliminaries and detailed statement of the main result

2.1. Basic notations. In this paper we work on the 14-3-dimensional Minkowski spacetime (R!*3, 1).
We will use two sets of coordinates, the Cartesian (x° =7, x!, x2, x3), in which n =diag(—1,1,1, 1),
and null coordinates (u, u, 8, ¢), where

u=t+r, u=t—r, ri=lx=VKP+2P+ 0P,
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and (0, ¢) €10, [ x ]O, 27 [ are spherical coordinates on the spheres of constant (¢, r). These coordinates
are defined globally on R!*3 apart from the usual degeneration of spherical coordinates and at r = 0.
Sometimes, for a tensor field 7' defined on R x IRfC, it will be convenient to write

u+u u—u
272

T, u,w):= T<

a)) u>0, |ul<u, weS

We will work with the null frame (L, L, ey, e,), where L =20,,, L =20, are null derivatives and (ey, e,)
is the standard orthonormal basis on the spheres. More precisely,

1
- rsin@a‘”'

L=b,+0, L=0-0, e=10, e

The Einstein summation convention will often be used; for instance v* 0« f = Zizo v"* 0y f. The Latin
indices goes from 1 to 3 and the Greek indices from O to 3. We will raise and lower indices using the
Minkowski metric 7, so that x' = x; and x% = —xo.

The four-momentum vector v = (v*)p<, <3 is parametrized by v = (Ui)lsjf?, € [Rii and v0 = /1 + |v|?

L

since the mass of the particles is equal to 1. Let (vl, vE, v¢!, v°2) be the null components of the momentum

vector and p = (v*, v®) its angular part, so that

L_vo—i-(xi/r)vi UL_UO—(xi/r)vi

DIULL+ULL+U69€9+U6“’€¢, v > , = |}/)|2=|U69|2+|Ue“’|2-

The relativistic speed d € R? is given by o = v’ /v° and, for convenience, we define the quantities

0 L L ea
S0._ U _ SL._ sL._VEa D se,
v .———1, v .—F, v .—W, ﬁ—m, v .—W, AG{Q,QD}
: : . 0 0 3 . m3
Sometimes, we will write (Jv”|”g)(w) to denote |w”|”g(w), where w € R; and g : R; — R.
In order to capture the good properties of certain geometric quantities associated to the solutions in
the good null directions (L, eg, e,), we introduce the Faraday tensor F),,, which is a 2-form, and the

four-current density J(f)u,

o E' E? E° —Jw S dv
|-e" o -B* B? | i) fdv
F= —-E* B* 0 -B'|’ I)= Jrz (02/0%) f dv @
—E3 —_RB2 B! 0 f[Rg% (U3/U0)f dv

The Cartesian components of F are then either equal to 0 or to a component of (E, B). We will in fact
be more interested in its null decomposition («x(F), a(F), p(F), o (F)) defined, for A € {0, ¢}, as

«(F)e, :=Feyr, a(F)ey:=Fe,p. p(F):=3Fpr, 0(F):=Feu,. (5)

In particular, p(F) = E - 9, and —o (F) = B - 9, are the radial components of the electric field and the
magnetic field. Moreover, the 1-forms «(F) and o (F') are tangential to the 2-spheres and we will use the
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pointwise norms

ot (F)1? := |a(F)e, |* +ot(F)e, 17, |a(F)* = |a(Fe, |* + a(F)e, |,
IFI>:= Y |Ful = 3a(®)+LHa(F))* + p(F)* + o (F).

0<pu<v<3

The Vlasov equation (1) can be rewritten as
Tr(f)=0, where Tr: fr> 8 f +0-Vof +0"F. /8, . (0)

and the Maxwell equations (2)—(3) take a concise form. The Gauss—Ampere law and the Gauss—Faraday

law*

VEFw=J(f)v, V¥Fu, =0, (7)

where *F),, = %F 9 g30uv is the Hodge dual of F and ¢ is the Levi-Civita symbol. Here V stands for the
covariant derivative (or Levi-Civita connection), so that (7) holds in any coordinate system.

The operators V, and V, will denote the standard gradients in x and v respectively. For instance,

fo=(8x1f, axzf’ ax3f)v va=(8vlf, 8v2f’ av3f)-

Given a 2-form G and 0 < A < 3, we will denote by VaxA G the covariant derivative of G according to 9,
where 0,0 = ;. For any multi-index « € {0, 1, 2, 3}”, we define V;fo = Vam cee Vaw G. In Cartesian
coordinates, we then have

V[K,X(G);vaatK,X(G;w), 0<pu,v<3.

Finally, for x € R* we will use the Japanese brackets (x) := (1 + |x|*)!/? and the notation D; < D, will
stand for the statement that there exists C > 0 a positive constant independent of the solutions such as
D <CD:.

2.2. Backward light cones and future null infinity. The scattering state for a smooth electromagnetic
field F, which in our case is also called radiation field, will be a tensor field depending on the variables
(u,w) e R x S2 1t will be obtained as the limit, when u — +o00, of r F(u, u, w). For this reason, we
introduce the backward light cones C, and give their induced volume form duc, in accordance with the
choice of the null vector field L as their normal vector. Let, for any u > 0,

Cu={t.x) Ry xR} |1+ x| =u}, duc, = 5r’ dudue,

where diug: = sin(f) d6 dg is the volume form on Ss2

Even if we will not need this formalism, we mention that the radiation field is in fact defined on a part
of the conformal boundary of the Minkowski space, called future null infinity Z* and corresponding to
the future end points of the null geodesics ¢ — |x| = u. It can be viewed as C .. More precisely,

(t,r,w)— (T(t,r)= tan_l(t—l-r) —|—tan_1(t —r), R, r)= tan_l(t +r) —tan_l(t —r),w) eR x Sk

4Note that VH*F,, = 0 is equivalent to V[, Fy,) := V3 Fyp + Vu Fo + Vy Fyy = 0.
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=
|

N {t+1x] = u}

i

Figure 1. The set C,, and the Penrose diagram of the Minkowski space.

is a conformal diffeomorphism between Minkowski spacetime and the interior of the triangle 0 < R <,
|T| =7 — R of the space R x S?, equipped with the metric —dT'> + dR? + sin?(R) djus2. Then

ItV :={(T,R,w) eRxS*|0<R<m, T =n—R).

Past null infinity Z~ is defined similarly as {0 < R <z, T = R — 7} and can be viewed as t — |x| = —o0.
See Figure 1.

2.3. Charged electromagnetic field. For our global existence result, it will be sufficient to assume that
the electromagnetic field satisfies | F|(0, -) < 72 whereas our scattering result will require a slightly
stronger initial decay hypothesis. However, if the plasma is not neutral, one cannot expect F to decay
faster than 2 Indeed, if (f, F) is a sufficiently regular solution to (6)—(7) on [0, T[, we obtain from
Gauss’s law that the total charge

0r0:=lim [ pE)trortdue= [ [ fexvdde, re0.TL
r—+o00 J peS? X veR3

eR3
is a conserved quantity and that |F| = o(r~2) implies Qr = 0. In order to avoid such a restrictive

assumption, we introduce the pure charge part F of F,

— OrF x;
F(t, = —
0= P ]

dt ndx', p(F)(t,x):AmQ|—§|2, a(F)=a(F)=0(F)=0, (8)

which corresponds to the electromagnetic field generated by a point charge Q r at x = 0. One can verify
that Q7 = QF, so that F — F is chargeless and it will then be consistent to assume that F has an asymptotic
expansion of the form F = F + O(r~>7%), § > 0. In fact, E = EY + Ef and B = BY + B can be
decomposed into their divergence-free and curl-free components. Then, Bf=0and E* = Fo; + O (r?)
if J(f)o is sufficiently regular, so that the stronger initial decay assumption required for the scattering
result concerns the divergence-free components of £ and B.
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2.4. Commutation vector fields. We will derive estimates on both the electromagnetic field and the
distribution function using vector field methods. These kinds of approaches are usually based on

« a set of vector fields, which commute with the linear operator of the equation studied,

« energy inequalities, applied in order to prove boundedness for L2 or L' norms of the solutions and
their derivatives (for instance, see [Bigorgne 2020a, Section 4.1]),

» weighted Sobolev embeddings, such as [Fajman et al. 2017, Theorem 6], used to obtain decay
estimates on the fields.

In this paper, in order to simplify the analysis, we will prove L estimates and then obtain pointwise
decay estimates on the solutions in a different way (see Section 2.8 for more details). We now elaborate
on the commutators for the Maxwell equations and the ones for the relativistic transport equation.

Definition 2.1. Let K be the set composed of the vector fields
O, i, Qii=tdu+x'8, Qpi=x'0u—x"8y, S:=1d+x"du=18+rd,

where 1 <i <3 and 1 < j <k < 3. The translations 9,., the Lorentz boosts £2(; and the rotations €2 jx
are Killing vector fields, so that they generate isometries of the Minkowski space. The scaling vector
field S is merely conformal Killing.

We will use this set for differentiating the electromagnetic field geometrically. More precisely, for a
2-form F and a vector field Z = Z* d,«, the Lie derivative Lz (F) of F with respect to Z is given, in
coordinates, by

L7 (FYu=Z(Fu) + 8,(Z*) Fyy + 8,(Z") F .

Furthermore, if F' is a smooth solution to the vacuum Maxwell equations V# F,, = V**F,, =0and Z € K,
then £z (F) is also a solution to the vacuum Maxwell equations, that is, V¥ Lz (F),, = V**Lz(F),, =0.

Definition 2.2. Let @0 be the set composed of
0, 0y, ﬁOi =19 +x' 9 + 0 0y s ﬁjk =x7 du —xk 8.+ v/ A — vk dyi, S=t0,+ro,

where 1 <i <3and 1< j <k <3. In fact, 5xn = Oyu, ﬁo,- and Q jk are obtained as the complete lift, a
classical operation in differential geometry,5 of the Killing fields 9y, Q0; and €2 j;.

These vector fields have good commutation properties with the linear transport operator Top = 9, + 0 - V.
Indeed, [Ty, S]= Ty and [v°Ty, Z] =0 for all Z € Py \ {S}.

In order to consider higher-order derivatives, we introduce an ordering on K = (Zi]1<i<l1l1)
and on @0 = {? | 1 <i < 11}. It will be convenient to assume that Z!! = Z" = § and 2’ = 7' for

any 1 <i < 10. Moreover, for a multi-index g € [1, 11]” of length || = p, we denote by L5 the

SWe refer to [Fajman et al. 2017, Section 2G] for more details about the relations between the Vlasov operator on a Lorentzian
manifold and the complete lift of its Killing vector fields.
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Lie derivative £, - - - L5, of order |8|. Similarly, we define 7P as ZP1 ... ZPr. Note the equivalence
between the pointwise norms

YIS Y Y 1ZPFEINS Y 1Lz (F). 9)
lyI<N [BI<N 0<p,v<3 ly|<N

Since Ly , (F) and 9« f have better behavior than the other derivatives, it will be crucial, in order to
identify certain hierarchies in the commuted equations, to count the number of homogeneous vector fields
composing Z# or ZP. We denote by Bu (respectively Br) the number of homogeneous vector fields Q2;,
Qi and § (respectively translations d,x) composing ZP. Note that By + Br = | 8| and that ZP is also com-
posed of B homogenous vector fields and A7 translations. If Z# = (19,5, we have By =2 and 7 = 1.

The following geometric commutation formula, proved in [Bigorgne 2021b, Lemma 2.8], will be
fundamental for us.

Lemma 2.3. Let G be a 2-form and g : [0, T[ x R2 x R> — R be a function, both of class C', such that
VG =J(8)y, V*G,, =0.
Let further Z € K\ {S} be a Killing vector field and Ze @0 \ {S} be its complete lift. Then,

VELA(Ghn = T(Z8)u,  VFL2(Gy =0,
VLG = J(Sg)v +3J (v, V*Ls(G)uy =0,
ZW'G,'0,i8) =v"Lz(G), 0,ig +v"' G, 0, Zg,
SW'G .7 8,8) = v"Ls(G), 3,58 — 20" G, 8,58 +v"G,7 3, Sg.
Iterating the above, we obtain that the structure of the Vlasov—Maxwell equations (6)—(7) is preserved
by commutation.

Proposition 2.4. Let (f, F) be a sufficiently regular solution to the Viasov—Maxwell system. For any
multi-index B, there exists C 5’,(, C f € Z such that

Tr(ZPf)= Y CB "Ly (F)0,Z" f.
ly 1+l |<IBI
lc|<IB]-1

VILop(Fyw= Y CEIZEf),  VPLyp(Fluy=0.
[E1=<IBI

Moreover, the multi-indices |y | + |«| < |B| satisfy yu + kn < Bu and the equality kg = Bu implies
yr = L.

Proof. For the condition on the multi-indices |y |+ |« | < | B8], note from Lemma 2.3 that yy +«xpy < By and
yr +kr = Br. Hence, if kg = By, we necessarily have k7 < By since || < |B]. This implies y7 > 1. I

2.5. Weights preserved along the linear flow. The set k| of weight functions given by

zo =10 —x', zpo=ad xR0, 1<i<3, 1<j<k<3, (10)
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are conserved along any timelike straight line ¢ — (¢, x +¢0). They are obtained as W0~ (v, K), where
K is a Killing vector field® and they are then solutions to the relativistic transport equation, for all z € ky,
To(z) = 0. As a consequence, if Tp(g) = 0 then the same goes for zg, so that certain weighted norms of
g are conserved. In our nonlinear setting these norms will grow logarithmically in time and will then
provide useful decay properties on the Vlasov field. For convenience, we will rather work with

mZ(L+Z:fy’ Ty(z) = 0 0,u(z) =0. (11
ZEkl

In particular, as zo; € ky, one has
1<z and V(t,x,v) eRy xR xR, (x) <z(t,x+1d,v), (12)

which will allow us to obtain space decay for f(z, x + 10, v), the particle density evaluated along the
linear characteristics. Note also the following properties, which will be particularly useful for us in order
to exploit the null structure of the system.

Lemma 2.5. The four-momentum vector v has good null components, vt and p. More precisely,

L+t —|x]| z N z
DS
T+r+x]  14¢+]|x]

Vi, x,v) eRy xR xR}, 0<9E< _

In certain circumstances, vE will be the best component for exploiting decay in t — r. We will then use
172+ 1P < 40t
Proof. The first two inequalities are proved in [Bigorgne 2020a, Lemma 2.4]; using
400 > 4ol = O — |xTiv,-|2 =1+ = - P =1+ v-egf +|v-e > =14+p> (13)
the last inequality follows. O

Since the particles are massive and then travel at a speed strictly lower than 1, the speed of light, Vlasov
fields enjoy much better decay properties along null rays than along timelike geodesics ¢ — x + 0. After
a long time, many of the particles should be located in the interior of the light cone. We will capture this
property with the following inequality.

Lemma 2.6. By losing powers of v° and z, one can gain decay near the light cone t = |x|,
L+t — x| 0%z
S 0%

3 3
V(I,X,U)ER+XRXXR1N lN 1+t+|-x| v 1+t+|.x|

Moreover, in the exterior of the light cone, for |x| >t, one has 1 < (1+1¢+ lx) 0%z

Proof. For the first inequality, note that (13) gives 1 < 4|v°|>0L and apply Lemma 2.5. For the second

one, we refer to [Bigorgne 2020a, Remark 2.5]. U

Recall from [Bigorgne 2020a, Lemma 3.2] that z enjoys good commutation properties with the vector
fields of @0.

50n any smooth Lorentzian manifold (Y, g), if y is a timelike geodesic and K a Killing vector field, then g(y, K) = constant.
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Lemma 2.7. Forany a € R and Z € Py, we have | Z(z%)| < |a|z“.

Finally, motivated by the fact that any regular solution to the linear relativistic transport equation
Ty(h) = 0 is constant along the timelike straight lines, i (¢, x + vt, v) = h(0, x, v), it will sometimes be
useful to work with g (¢, x, v) := f (¢, x +1t0, v), in particular during the study of the asymptotic properties
of [ » J dv and its derivatives. The following result suggests that g enjoys strong space decay and that its
v derivatives behave better than the ones of the distribution function f.

Lemma 2.8. Let f:[0, T[x Ri X [R{g — R be a sufficiently regular functionand g(t, x, v) := f (¢, x+10, v).
Then the following properties hold:

(¥)*1gl(t, x, v) < |2 1, x +19,0),  V|Vogl(t, x,v) < 3 12Z I, x+1D, v).
ZEP()

Proof. The first property follows from z2 > 1 4 |z¢1|% + |202|> + |z03]® and |zo;|(¢, x + 19, v) = |x'|. For
the second one, we have, using the Einstein summation convention,

009,58, x, v) = (W00, £)(t, x +10,v) +1d,; f(t, x + 1D, v) — tﬁjﬁiaxif(t, X +10,v).
Then by vOaU, = on — 10, —xja, and

x93 410708 = (x/ —107) 8, + 0718, + 07 (10" —x") By + 0/ x i = —20,; 8+ 0/ S+ Y /z0:0y, (14)

1<i<3
the result follows. 0

2.6. Inverse function of the relativistic speed. In order to perform the change of variables y = x — 0r for
integrals on the domain [R%i, it will be useful to determine certain properties of the function v — 9.

Lemma 2.9. We define, on the domain {y € R3 | |y| < 1}, the operator * as

yr—)jzzL sothat ¥yl <1, veR, )szy,

VI=DP

Note also that v° = (1 — |0|?)~1/2. Moreover, for any (t, x) € Ry x R?, the Jacobian determinant of the

transformation v — x — 0t is equal to —t /|v°]°.

SH¢
Il
<

Proof. The fact that * is the reciprocal function of * can be obtained by direct computations. Let V be
the column vector such that its transpose is V7 = (v /v?, v2/v°, v3/v°). Then the Jacobian determinant
of the transformation v — x — 0t is equal to

L ettty = vy =~ der(diag (1. 1,1 - 1 - O
———det(Is — = ———det(diag| 1, 1,1 — =— .
0 S o0 T ) T TP

912, which will be used several

Let us also mention the inequality 2(1 — |9]) > (1 — [0])(1 4+ |0]) = |v
times throughout this paper.
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2.7. Complete version of the main result. We are now ready to give a full and detailed version of
Theorem 1.1. Recall the alternative geometric form (6)—(7) of the Vlasov—Maxwell equations (1)—(3).

Theorem 2.10. Let N > 3 and (fy, Fy) be an initial data set of class C" for the Vlasov—Maxwell system.
Consider further A > € > 0, two constants (N,, Ny) € [R?%r and assume that

> sup (0)FTVY Fyl(x) < A, > sup (u)VrIRl Gy NeFIBLBE B fol(x, v) <.
[y I<N+1 xeR3 IBl+lkI=N (x,v)eR®

If Ny > 15 and N, > 7, there exist D > 0 and €y > 0, depending only on (N, Ny, N,), such that, if
€ 1= eeP? < €, then the unique solution (f, F) to (1)—(3) arising from these data is global in time.
Moreover:

o The following pointwise estimates hold for the distribution function:
V(t,x,0) e Ry xRIxR3, VB < N, [0V 3122 Z8 £ (2, x, v) S Elog®™ 3N (341),
VIk| <N, WMoy F1 x, v) SE
o The electromagnetic field and its derivatives Lzy (F), up to order |y| < N — 1, decay as,
V(t,x) eRy xR, Lz FI(t,x) SAQ+t+xD A+ — x|~
If |y| < N —2, the good null components enjoy stronger decay properties near the light cone,

log(3+1)

3
V(t,x, U) € R+ x R , |Ol(£ZVF)|(t,X)+ |,0(£ZVF)|(I,X)+|O'(£ZVF)|(t,X) SAm

Let us formulate two remarks.

(1) More estimates, such as fv f dv <t73, are derived during the proof of Theorem 2.10.

(2) With our method, contrary to our previous work [Bigorgne 2020a], we cannot reach the optimal
assumption N, = 3. We list in Remark 3.3 below the precise parts of the proof where the control of
higher spatial and momentum moments of f are required.

We now state our scattering result. For this, recall from (8) the definition of the pure charge part F of F.

Theorem 2.11. Let 0 <8 <1 and (f, F) be a smooth solution to the Vlasov—-Maxwell system arising from
initial data satisfying the assumptions of Theorem 2.10. Suppose further that the initial electromagnetic
field has the asymptotic expansion

| ‘Z l|sl‘lpl<x>2+5+‘y'|VZX<F— F)|(0,x) < A. (15)
YISN+1 |x|>

Then, with n :=7(N, + N), we have the following properties.

e The spatial average of f converges to a function Qs € L' (Ri) N L”(Rg) of class CN~1,

|v°|5</ f(r,x,v>dx—Qoo<v>> <log G+
.

vVt € R+,
LInL 1+1
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o The four-current density J (2‘3 = fv(vu / vo)fﬁ f dv has the following self-similar asymptotic profile.
Forany |B| <N —1and0 < u <3,

PN H X I 341
t3/ U—OZﬂf(t,x,v)dv—xT(IUOISQ’gO)(;)‘,S My x0=t,
RS

VteR*, su
+ P 3 v t

|x|<t

where ng can be computed in terms of 0 Q0. |€| < |B|. Moreover, J (2’3 f) decays much faster in the
exterior of the light cone.

o The electromagnetic field and their derivatives up to order |y| < N — 1 have a self-similar asymptotic
profile v > Lzy (F)* (v),

log"(3+1)

V(t, x,v) e Ry xR X RS, [£2L (F)(t, x +0t) — Lzv (F)® ()| < Ax)?[0°)® T

F is of class CN~" and the components of L7+ (F)™ can be computed in terms of 9 F e KL= 171

o We have modified scattering to a state f € L;’U NLY, of class CN=2. Forany k| +|B| <N =2,

_ 4 _log" (1)
Vi >3, |0V O ) Ve R BE 0K £ (2, Xep (1, x,0), 0) — 0505 foo(x, V) || o SE .
where the corrections of the linear spatial characteristics are defined as
XL, x,v) :=x/ 410/ — f()W(FOOJ(u)Jrva °()), 1<j<3. (16)

o The modified complete lifts, of the Lorentz boosts ﬁ()k and the rotations Q jk> and the modified scaling,

log( ) o

Qd = Qe — (Lo ()3 (0) + 07 Lo, (F)5 ()3, 0<i<k<3,

g()w

smedi=§ + (F>7 (v) + 0/ F5(0)) 0y,

satisfy the improved estimates ||Qm°df(t, cMlze S Eand ||S™ (2, -, e, S < e

Xov N

o Forany |y| < N — 3, there exists a scattering state gy (u, ) on I such that,

1
Vuz3,  sup  lra(Cy F)uu o) —al () <A logw)

|u|<u,weS? =

Moreover, gﬁ is of class CN 3 and sz can be expressed in terms of the derivatives of gﬁ.

o The conserved energy of the system can be related to the ones of the scattering states. For all t € R,
/ f W £ (1, x,v) dvdx+1/ |F|?(z, x)dx:/ / V0 foo (x, v) dv dx+1/ o 12 (u, ») dpnee du.
RS JR3 2 Jre GENE 4 Jrulsz

o If N > 10, there exists a solution FY*¢ of class C N=5 to the vacuum Maxwell equations (19) such that,
forcmy% <g<land|y| <N —10,

V(t,x) eRy xR, |Lz0(F) — Lzv (F)"™|(1,x) < AC,(1 +1 4+ [x])""77, €, >0.
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Remark 2.12. As suggested by the scattering result, we could improve the logarithmic powers in the L7,
estimates for f stated in Theorem 2.10. We could then prove that Theorem 2.11 holds for n = 3N, 4+ 3N.
However, such a tiny improvement would require a relatively long and technical proof.

Remark 2.13. We emphasize two main differences with previous works on Vlasov systems in dimension 3
based on vector field methods [Fajman et al. 2021; Smulevici 2016; Bigorgne 2020a; Duan 2022].

(1) The logarithmic correction of the linear commutators Q;, and S can be geometrically interpreted in
terms of the asymptotic dynamic of the Lorentz force 0" F,; and its derivatives (see also Remark 6.31).

(2) Our approach does not require modifying the linear commutators in order to prove the global existence
of the solutions, so that we avoid many technical difficulties. In these previous works, the analysis of the
Vlasov field relied on propagating L }C’v bounds. The source term of the wave equations (or the Poisson

equation) were estimated through weighted Sobolev embeddings as 3| Z# fv fdv| <t fv |2ﬁ fldv <E(r),
1

X,V
I1Zflz:, > log(t) if Z # 9. As a consequence, the optimal decay ¢~ cannot be obtained in such a

where E(¢) is a certain L, , norm. However, we know from Theorems 2.10-2.11 that, in general,

way without modifying the linear commutators.

Remark 2.14. The profile F* of F' can be explicitly expressed in terms of the limit of the spatial
average (o (see Remark 6.17 and Appendix C.1). Moreover, the Maxwell field admits the decomposition
F =FT 4 F? where
lim 2F(t, x+10)= lim *FT(t,x+10) = F®(), lim rFT(u,u, w)=0.
t—+00 t—+00 u—+00
In other words, the part of the electromagnetic field which gives rise to F'*° (respectively gI+) has no
impact on gﬁ (respectively F°°).

2.8. Key ingredients of the proof. For the global existence result, our strategy relies on vector field
methods and a continuity argument. The proof then essentially consists in improving bootstrap assumptions,
which are pointwise decay estimates on the solutions and their derivatives. The scattering statements are
then obtained by refining the analysis carried out during of the proof of Theorem 2.10 and by investigating
further the asymptotic behavior of the electromagnetic field.

2.8.1. The large Maxwell field. The assumptions of Theorems 2.10-2.11 imply that, initially, the distri-
bution function f is at most of size € < 1 and the electromagnetic field F is at most of size A. The goal
of our bootstrap argument is to prove that these properties are preserved over time. Our proof allows for
A to be large for the following reasons.

» Since the Maxwell equations are linear, we can expect F (¢, -) and its derivatives to be at most of size
A + Ce ~ A, provided that € is small enough. Here, the constant C possibly depends on A. Indeed, the
data are bounded by A and we expect the source term J(f) to remains of size €.

* In contrast, the Vlasov equation is nonlinear and we can expect, at first glance, to bound |97, /' (7, - ) || L2,
by € + DAe = C(A)e.
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In fact, since our argument will rely on Grénwall’s inequality, C(A) will rather be of the form e?A. The
difficulty, if A is large, is related to the logarithmic growth of quantities such as ||§01 Sz, More
precisely, certain error terms are at the threshold of time-integrability. Consequently a naive application
of Gronwall’s inequality would lead to ||§01 £l L, < e(1 +1)PA We discuss how to circumvent this

obstacle in the next section.

2.8.2. Estimates for the Vlasov field. In order to control sufficiently well the electromagnetic field and
close our estimates, we would like to recover the linear decay for | fv ZP f(, x,v) dv| < 73, with
|B] < N — 1, and similar quantities. This is done as follows:

0 | Ny z

o The main step consists in proving that |v N.ZP f grows slowly, and in fact logarithmically, in time.

 Then, by performing the standard change of variables y = x — 10, we are able to reduce the problem
to proving a uniform bound for the spatial averages [v°]° f v ZP f(,y,v)dy. This turns out to be a
consequence of the first step as well but our argument requires a loss of regularity, which is why we do
not attain the optimal decay ¢~ for the top-order derivatives |8| = N.

Let us illustrate certain difficulties of the first step, which relies on Duhamel’s formula, by considering
the first-order derivatives. If Z € K\ {S} is a Killing vector field, then

t R .
+(lx| 16" L2 (F),7| 13,0 f] + better terms. (17)

Te(Z )| = [0"Lz(F) 0, IS D
1<j<3

Since L (F) is supposed to decay as’ |L£z(F)| < A(1+t+|x|)~ (14|t —|x]||)~", there are two problems.
(1) The decay rate degenerates near the light cone ¢ = |x|.

(2) Even far from the light cone, |T¢ (2 I~ At~! |0; x f] is not integrable in time, preventing us from
proving that ||2 f L, grows slowly by a direct application of Gronwall’s inequality if A is large.

We deal with the first issue by taking advantage of the null structure of the Lorentz force, which,
roughly speaking, allows us to transform decay in ¢ — r into decay in # 4 r. More precisely, 04 Lz (F )Mj
can be decomposed as the sum of terms containing either a good null component «, p or o of Lz(F) or
one of the good null components of v. The first group enjoys improved decay estimates near the light cone,
whereas the latter allows us to exploit the decay in t —r. We refer to Lemmas 4.1 and 4.4 for more details.

We circumvent the second problem by identifying hierarchies in the commuted equations. More
precisely, if Z = 0« is a translation, one can use that [£; , (F)| S t~ (14|t —|x|])~2 in order to prove that
Tr(0xe f) 1s in fact time-integrable. Then, one can observe that the system of the commuted Vlasov equa-
tions (17) is in some sense triangular and expect || Z fllLes, to grow at most logarithmically. A toy model
for the system of the first-order commuted equations, once the null structure is well understood, is then

Tr(g)=A1+0)2g+AQ+0)h, Tr()=AA+0D""g+ A1 +1)"2h, g>0,h>0,

where g is supposed to capture the behavior of |3« f|, 0 < u < 3, and & that of I/Z\f |, with Z a
homogeneous vector field such as Q1. The source terms having % as a factor represent the strongly

TThis pointwise decay estimate is consistent with the expected behavior of the source term of the Maxwell equations.
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decaying error terms in (17). Using the Duhamel formula and applying Gronwall’s inequality, we have,
for E(r) := g, -, )i, + 1A, -, )Ly,

t

E(r) < [E(0)+f IA?[E(s) ds, [E@r) <E@0)(1+0)".

s=0
As mentioned earlier, without any smallness assumption on A, this estimate is not good enough to derive
a satisfying decay estimate for | , J dv. The idea then is to exploit that

Tr(log~'B3+1)) <0, Tr(hlog2G+0))<A(l+1)""log?GB+0g+A(+1)"2hlog >3 +1).

By considering the hierarchized norm E(t) := lg(t, -, - )”L.i?,% + ||, -, - )”L.i?,% 10g72(3 +1), we finally get

fo T / 28 o E o 12
E(r) <E0) + E(s)ds, [E(t) <EO)e".

s=0 (1+5)log?(3+ )
More generally, the hierarchies are determined by the number of homogeneous vector fields Sy composing
ZP and the exponent of the weight z.

A new difficulty arises for the higher-order derivatives since we do not have improved estimates at our
disposal on the good null components of Lzy (F) for |y| > N — 1. This time, we transform decay in t —r
into decay in ¢ 4+ r by losing powers of [v°|?z through Lemma 2.6. For this, it is important to observe
that, in the error terms, such a Lz (F) is always multiplied by a low-order derivative of f. We can then

close the estimates by propagating weaker L%, norms of ZP f when || >N —1.

Remark 2.15. Let us make some comparisons between the decay properties of the electromagnetic F
and the ones of the electric field E associated to a solution to the Vlasov—Poisson system arising from
small data.

o As||E(t, )z St72 and |F|(t, x) St (1+]t — |x|]) 7", the electromagnetic field has a much weaker
decay rate near the light cone t = r than E.

» The difference is even more marked for their derivatives since |9/, E|(z, x) < 1~ whereas we merely
have |Lyr F|(2, x) < = + |t — |x||)~'~ /<. Thus, in order to exploit the extra decay provided by these
derivatives of F, one has to take advantage of the null structure of the system or lose powers of |v°|?z.

2.8.3. Estimates for the electromagnetic field. We control the Cartesian components of L7y (F') using the
representation formula for the wave equation since, for instance, L1Fp; = — fv 3,1 f + 019, f dv. However,

two difficulties arise for the higher-order derivatives:
(1) There is a loss of regularity. We need to control f ; 019, xf}’ f dv in order to estimate Lzy (F).

(2) With our method, we do not have the optimal decay rate for [ v VAY fdv, |y| = N. Moreover, any
logarithmic loss would prevent us from closing our estimates.

We treat the first problem by using the Glassey—Strauss decomposition [1986] of the electromagnetic
field, presented in detail in Section 5.1. The idea is to express the derivatives d,» in terms of derivatives
tangential to backward light cones and Ty = 9, + 0 - V,;, which is transverse to light cones. Exploiting
then the Vlasov equation T (f) = 0, we can perform integration by parts and save one derivative.
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We deal with the second issue by estimating V; Lz (F), for |§| = N — 1, by the Glassey—Strauss
decomposition of the derivatives of the electromagnetic field. Roughly speaking, it allows us to control
the inhomogeneous part of V, (L:(F) by fv |v0|3|2ﬂf| dv, where || < N — 1 (see Proposition 5.7 and
Corollary 5.8 for more details). However, with this process, we get a bad control of the other top-order
derivatives near the light cone,

|L22 (F)|(8, %) SH+1+|x ) Ve o L6 F (8, X)+|L 26 FI(2, %) S(+H[t—r ) "2 logB+[t—r),  [E|=N—1.

This forces us to lose a power more of |02
field f.

Once we proved that the solutions are global in time, we use null properties of the Maxwell equations (7)

z for the estimates of the top-order derivatives of the Vlasov

to derive the existence of a scattering state for F' and its derivatives. We then address the problem of
finding a solution F¥*¢ to the vacuum Maxwell equations which approaches F' by constructing a scattering
map for these equations. For this, we make crucial use of the corresponding result for the homogeneous
wave equation [Lindblad and Schlue 2023]. This is carried out in Section 7.

2.8.4. Modified scattering result. In the context of the Vlasov—Poisson system, except for the trivial
solution, the distribution function does not converge along the linear characteristics [Choi and Ha 2011].
We then do not expect f (¢, x +¢0, v) to converge and the reason is related to the long-range effect of the
Lorentz force (recall Remark 1.3). More precisely, isolating the leading-order term of the source term of
the Maxwell equations,

3 [ vt XMoo X
I/R% vof(t,x,v)dv t(|v|Qoo)(t>

sup
|x|<t

— 0@t 2), QOuw():= lim / £(t, x, v)dv,
t— 400 [R{E

where x° = ¢, we are able to prove P2F(t,x +10) = F® )+ 0(%?). Consequently, the slow decay of
the electromagnetic field along timelike trajectories implies that the right-hand side of

t . .
8 (f (1, X +10, V) = — 0P (F,J (1, x +10) + 07 Fyo(t, x +10))d, f (6, x +10, v) + O ~7)
v

should not be time-integrable, preventing f (¢, x 4+ ¢0, v) from converging. Instead, by considering the
logarithmic corrections X, given in (16), of the timelike straight lines, one can compensate for the
worst term in the right-hand side of the previous identity and prove the modified scattering statement
[, X, v) = foolx, ).

Although the regularity of fo, according to x can be obtained in a similar fashion, the regularity
in v requires a more thorough analysis. In fact, v°9,: (f (¢, X¢, v)) can be expressed as terms such as
§0,~ f(, X4, v) which, contrary to 9; . f (¢, X¢, v), does not converge. The reason is related to the weak
decay of the error term [T, Qoi] ~ t~1. As for the characteristics, the idea consists in considering a
logarithmic correction of Qo introduced and studied in Section 6.4, which has improved commutation
properties with the Vlasov operator Tr. As stated in Theorem 2.11, these corrections are given in terms
of first-order derivatives of the effective electromagnetic field F*°(v).
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2.9. Null properties of electromagnetic fields. We recall here the classical results which will be used
throughout this paper in order to study solutions to the Maxwell equations

VHE,,=J,, V*F,, =0, (18)

where the source term J = J, dx* is a sufficiently regular 1-form. In particular, solutions to the vacuum
Maxwell equations will satisfy
VHF,, =0, V*F,,=0. (19)

We point out that some of the estimates presented here could be refined in a general setting. For the
purpose of performing energy estimates during the construction of the scattering map for (19), we recall
the electromagnetic stress-energy tensor.

Definition 2.16. Let G be a 2-form of class C! such that V¥G,,, = J, and V*#*G,, = 0. The energy-
momentum tensor T[G],,, is defined as

T[Gluw == GG — 11,y Gen G5

Moreover, we have
VET[Gluw = G J*, TGl =|a(G)*, TIGlL =a(G)*, TIGlL = p(G)*+|o(G)|*.

We now present inequalities relying on the relations

i i
(z—r)L=S—x7sin, (t+r)L=S+x790i, reg = — cos(9)Q3 —sin(@)3,  re, = Q. (20)

Lemma 2.17. Let G be a sufficiently regular solution to the Maxwell equations (18) with a smooth source
term J. Then,

L2 (G)I(z, x)

Vix| = 5(1+1),  (IVLa(G)|+|VLp(G)| + VLo (G, x) S 12, x) + Z L7+ x|

lyl=1
and,

V(t,x) Ry xR, [VL(ra(G))|(t, x) Sr|JI(, x) + Z lo(Lzr G2, x) + o (Lzr G)|(t, x).
lyi=<l
Remark 2.18. Compared to Z € K, Z # 0,«, the derivatives tangential to the light cone (L, eg, e,)
provide an extra decay in ¢ + r, whereas L merely provides an additional decay in ¢ — r. The second
estimate then reflects that «, p and o are the good null components. The last inequality provides an
improved control of V (ra) near the light cone and will be useful in order to prove the existence of
scattering states.

Proof. Let us denote by Y the intrinsic covariant differentiation on the spheres and by ¢ any of the
null components «, «, p or o. Then, according to [Bigorgne 2021b, Lemma D.2], we have, for all
(t,x) e Ry x R3,

(I+1+|xD VLG, x)+(L+|x DIV (G (1, )+ A+t =[x DIVLL(G)|(1, x) S Z [E(Lzy G)I(2, x).
lyl=1
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We now express the Maxwell equations in null coordinates. According to [Christodoulou and Klainerman
1990, equations (M{)—(M{)], we have, for any A € {0, ¢},

a(G)e,
r
a(G)e,

+Ye, 0 (G) — Y, ,0(G) = J,,,

VLo(G) = 2p(G) ~¥ "Gy = J1. Via(G)e, -

~Ve,p(G) — *8Y,,0(G) = J,.

2
VLo (G) = 20(G) +&"We,a(Gey =0, Via(G)e, +

This allows us to deduce the first estimate. For the last one, use the same arguments and remark further
that Vpes = 0 implies

VLe S Y IVLEDesl = Y VLU = D rVia(G)ey +2(G)eyl. 0
Be{f,¢} Be{f, ¢} Bel{f,p}
In the same spirit, we have the following identity which is proved in [Bigorgne 2020a, Proposition 3.7,
equation (18)].

Lemma 2.19. For any sufficiently regular 2-form G and any null component ¢ € {«, o, p, 0},

[E(LzrG)I(E, x)  |Lzr(G)|(2, x)
14t —|x]|| 1+t+x]

V(. x0) eRe xR, E(VLOIE0S Y

lyl<1

We now illustrate how the previous lemmas can be used in order to obtain improved estimates for the
good null components of the electromagnetic field.

Corollary 2.20. Consider a 2-form G of class C', a solution to the Maxwell equations (18) with a

continuous source term J. Assume that there exist two constants C[G] > 0 and g > 0 such that,

C[G]

3
V(t.x) e R xR, (1+t+|x|)|J|(t,x)+yz|<:1 L2 (@0 = G e @D
Then, for all (t, x) € Ry x R3,
(1 +1+[xp='7a if0<q <1,
(le(@)]+1p(G) + o (G)D(t, x) S CIGT {logB+1)(1 +1 +|x)) 7 ifq=1,

(L+t+xD2A+e—|xID79T ifg> L
Moreover, if G is merely defined on [0, T X R3 T > 0, we have the weaker estimate, for the case g > 1,
V(t,x) €0, T[xR?,  (la(G)|+|p(G)|+ 1o (G))(t, x) SCIGIL +1+|x)7? if g> 1.

Proof. Note first that the assumptions give |G|(f, x) < (1414 |x|)~'79 if 1 4+¢ > 2|x| or |x| > 2(1 +1).
We then fix (¢, rw) € Ry x R3 such that 1 +¢ <2r < 4(1+1), we S?, and we denote by ¢ any of the
null components «, p or o. Consider further

b (u, 1) :=z<G)(”+” Z_”w).

272
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By Lemma 2.17 and (21), we have

1 U+u u—u C[G]
\Y Ju) ==V (G| = , = < .
V5,01, w) = 31914 )|( s w)w(lw)z(lﬂum
Now, note that, fort —r <0,
—|t—r|
IC(G)I(t,rw)=|¢>|(t—r,t+r)=|¢(—t—r,t+r)+/ Vi, @ (u, t +r)dul
Uu=—t—r

—|t—r| d
<160, 10+ ra) + — ) / u

A+t 472 iy (L4 fu)e
Similarly, if t —r > 0, we obtain by integrating between u =t —r and t +r,

C[G] /’*’ du

< - -
[E(G)|(t, rw) S 16(G) (2 +1,0) + (Eascl ST
By (21),

12(G)|(1 +7,0) +2(G)|(0, tw+re) SCIGI(A +1+7)' 71
and the first part of the result then follows from the computations of the integrals in the previous two
estimates. For the case g = 1, note that log(1 +¢4r) <3log(3 +¢) since r <2+ 2¢.

If G is merely defined on [0, T[ x R® and t < T, then we cannot apply the previous computations in
the case ¢ > r. Instead, we integrate between u = 0 and ¢ — r in order to get

t+r t+r) C[G] f'f—'l du
w
u

LI, ro) S IZ(G)I(

2 72 (I+1+r)? Jumo A 4|up?’
It remains to bound |¢(G)|((t +71)/2, (t +r)w/2) by the estimate obtained in the region ¢ < r and to
compute the integral in the three different cases. U

Finally, we prove pointwise decay estimates for a solution to the homogeneous wave equation. Since
the Cartesian components F,,, of a solution F' to the vacuum Maxwell equations satisfy L1F),, = 0, the
next result will also allow us to estimate such electromagnetic fields.

Proposition 2.21. Let ¢ be a C? solution to the free wave equation ¢ = 0 such that

E91¢] := sup (x)?]¢](0, x) 4 sup (x)413; . ¢](0, x) < +00, ¢ =>2.

xeR3 xeR3

Then, there holds,

gle]
3 <
V(t,X) ER-i- x R, |¢|(t"x)r\./ (1+l‘+|X|)(1+|t_|x||)q71.

Proof. By Kirchhoff’s formula we have

1
T 472

/ $(0, ) dy + yox
|y—x|=t

4rt |ly—x|=t Iy —X|

¢(t, x) Vy¢(0, y) +8:¢(0, y)dy.
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We obtain the result by applying® [Wei and Yang 2021, Lemma 4.1], which gives that, for any 7 € C(R?)
such that |h](x) < Ko(1 4+ |x|)77,

/ () dy < {8nK0t2(1 4D A+ = x|D7PH if2<p <3,
ly—x|=t B

22
ArKot(1+1t+|x)~ 1+t — |x|)~P+?  if p >3, (22)

completing the proof. O

3. Strategy of the proof and the bootstrap assumptions

Let N > 3, N, > 15, N, > 7 and consider an initial data set (fp, Fo) satisfying the hypotheses of
Theorem 2.10. By a standard local well-posedness argument, there exists a unique maximal solution
(f, F) to the Vlasov—Maxwell system arising from these data. Let Tnax € R% U {400} such that the
solution is defined on [0, Ti.x[. By continuity, there exists a largest time 0 < T < Ty« and a constant
Choot > 0, independent of €, such that the following bootstrap assumptions hold. For all (¢, x) € [0, T[ x R3,

Cboot A

Viy| <N -1, Lzv(F)|(t, x) < , BA1
E L2 (P ) < (BAD)
Choots Iog(3 + |1 — 1)
Yiy|l=N—1, VixLzr (F)|(t, x) < , BA2
vl VerLzr ()1, 6) = o e (BA2)
Vi~ Choot A
VIB| <N -2, —7F t,x,v)dv| < ———, 0<u<3. BA3
Bl < VR T B P (BA3)

The goal consists in improving, for Cpeo chosen large enough and if € is small enough, (BA1)—-(BA3).
We stress that (BA3) will only be used for the proof of Proposition 3.1, where we improve the pointwise
decay estimates for the good null components of the electromagnetic field.

3.1. Immediate consequences of the bootstrap assumptions. We start by improving, near the light cone,
the estimates for the good null components of the electromagnetic field and its derivatives up to order N —2.

Proposition 3.1. Forany |y| <N —2 and all (¢, x) € [0, T[ x R3, we have

Alog(3+1)

(L1 +xD2A + e = [xrr”
A

(L4t +[x(1+ |t = x|’

(a(Lzr )l +1p(Lzr F) + o (Lzr F)D(1, %) S

la(Lzy F)|(t, %) S

where we recall that yr is number of translations dy. composing Z" .

Proof. Consider |y| < N — 2 and recall from Proposition 2.4 that £zv F is solution to the Maxwell
equations (18) with a source term which is a linear combination of J (2’3 ), 1Bl < N —2, which are
bounded by the bootstrap assumption (BA3). Hence, by applying Corollary 2.20 and using the bootstrap

8The case 2 < p < 3, not considered by [Wei and Yang 2021], can be treated as the case p = 2 since fba A/ +2)Pdr <
(A+b)P72[2 /(14 1) dh.
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assumption (BA1), we get
(la(Lzy )|+ p(Lzy F)| + |0 (Lzr F))(t, x) < AlogB+1)(1+1+|x]) 72,
l(Lzy F)I(t, x) S1Lzv (F)(t, ) S A+t +xD L+t — x|~

Now, note that, for any 0 < u <3 and Z € K, we have [Z, d,«] =0 or [Z, d,x] = %0, for a certain
0 <X < 3. As a consequence, and since Ly , = Vj ., there exists constants DZ’E € N such that

L(F)= Y > DlLagze(F)= Y > D]V Ly(F). (23)
lxl=yr EI<ly|—yr lcl=yr l§I<lyl=yr
The result then follows from yr applications of Lemma 2.19. O

In contrast, we have very bad control of the top-order derivatives near the light cone.

Proposition 3.2. For any |y| = N, there holds,

log(3+ [t —|x]])

V(t,x) [0, T[ xR3, Lz F|(t, x) <A .
(t,x) €0, T[ x |Lzy FI(t,x) S A e

If |ly| < N — 1, we have the better estimate,

V6, x) € [0, TIx R, L2 FI(t, ) S A+ 14+ [xD 7 A+ e = x|D~' 777,
Proof Let |y| = N, (¢, x) € [0, T[ x R and note that |£;G]| S(14+t+7r)|V, 2G|+ |G| forany Z € K
and any 2-form G. Consequently, we obtain from the bootstrap assumptions (BA1)—-(BA?2) that,

Alog(3+(t—|x||) A <A10g(3—|—|t—|x||)

yF(t, <(1 .
ez E1 2 S (D o 2 T O D A=l ~ (=12

As previously, when yr > 1, the extra decay in ¢t — r is given by (23) and Lemma 2.19. The case
Y| < N —1 is easier and follows from (BA1), (23) and Lemma 2.19. O

3.2. Structure of the proof. The remainder of the paper is divided as follows.

(1) First, in Section 4, we prove that, for any || < N, an L7°, norm of ZP f, weighted by powers of v°
and z, grows at most logarithmically in time. Next, we control uniformly in time weighted space averages
of ZP f for any |8| < N — 1. This will allow us to prove, in Section 4.4, decay estimates for fv ZP fdv
and improve (BA3).

(2) Then, we introduce the Glassey—Strauss decomposition of the electromagnetic field in Section 5.1. It
allows us to improve the bootstrap assumptions (BA1) and (BA2), respectively in Sections 5.3 and 5.4,
thus implying the global existence of the solution (f, F').

(3) Finally, refining the estimates carried out during the previous steps, we prove our modified scattering
result for the distribution function in Section 6. The scattering result for the electromagnetic field is
treated in Section 7 and will require an additional step, the construction of a scattering map for the vacuum
Maxwell equations.
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Remark 3.3. If one is interested in relaxing the assumptions on N, and N, though it would force us to
either modify the proof or obtain weaker rate of convergences, we give here the precise results where
losses in v° and z occur.

* Two powers of z are lost in order to close the L??, estimates in Proposition 4.5; 5+ § powers of z are
required in order to apply Lemma 4.7 and prove boundedness for fx f dx and its derivatives.

« Three powers of v are lost for closing the LT, estimates, and eight for the pointwise decay estimates
(see Lemma 4.12 and Proposition 4.13). Finally, the Glassey—Strauss decomposition of the derivative of
the Maxwell field requires losing four powers of v°, as suggested by Proposition 5.7 and Corollary 5.8.

Note that the various applications of Proposition 4.11 will not require controlling as many moments of f
as the results mentioned here.

4. Estimates for the distribution function

4.1. Control of the Lorentz force. In view of the structure of the error terms for the commuted Vlasov
equations, given by Proposition 2.4, it is important to obtain precise estimates of the Lorentz force and its
derivatives by exploiting its null structure.

Lemmad.l. Let |y| < N —2and j € [[1,3]. Forall (t,x,v) € [0, T[ x R} x R}, we have

Alog(3+1) ADE

A+r+1xD?  A+e+xDA+[e—|xID

If yr = 1, then we have the improved estimate

1 .
mlv"ﬁzv(F)Mjl(t,X)S

A ADL
s+ 5
A+t+xpz  A+r+IxDA+1E—|x]D)

1. .
Elv“ﬁzv(F)Mjl(t, x) S

Proof. Recall the definition of the null components of a 2-form (5) and expand 0# F, Mj according to the
null frame (L, L, ey, e,) in order to get
|04 F, /| = |08 F/ + 0L FL ) + 0 F,, + 0% F, /|
SoE(a(P)+1o(F)) + 0L (p(F) + le(F)) + [Pl(o (F)| + la(F)| + |a(F))).  (24)

Since %, 0L, [p| < 1 and [p| + |v°|~' < 2+/0L by Lemma 2.5, we obtain
1, : = N
FlvﬂF’M SVOL(a(F)|+ |p(F)| + 1o (F)]) + dXa(F)]. (25)

Note that the same applies to Lz» (F), |y| < N —2, so that the first estimate follows from Proposition 3.1.
Assume now that 7 > 1 and apply once again (25) to Lz» F' together with Proposition 3.1. We obtain

1 ‘ Alog(3+ 1)V ok ADE

L (F 12, 0) € SRR L — : >

v e+ DA 41— 1xlD) - Q41+ D+ — |x]])
log>?(3+1) AL

~Y + 9
(I+t+xD? - A4+ xDA+ 1= x])?
which implies the result. 0
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If N—1<|y| <N, we do not have improved estimates on the null components of the electromagnetic
field. Moreover, if |y| = N and yy = 0, we have a very bad control of Lz» F near the light cone. The
idea then is to transform decay in # — r into decay in ¢ 4 r at the cost of powers of z and v’.

Lemma 4.2. Consider |y| < N and j € [1, 3. Then, forall (¢, x,v) € Ry x R3 x R3,

log(3+1t+|x]|) |v0|3

2
t’ 9 9
Qrrra)? Vet

1 . . 1
— 1V Lzy (F) (2, x) S —5|Lzr FI(t,x) S A
v v

and, if yr > 1,

log(3+1¢t+ |x
MWP#(:, X, v).

(1+1+|x])3

Proof. Recall from Lemma 2.6 that (1 +1+7)2 < (1 + |t —r])*|v°*z2 The first estimate then follows
from Proposition 3.2 and the second one from (BA2) together with (23). 0

1 . . 1
10 L2r (F) |8, 2) S —51L20 FI(t. ) S A
v v

Remark 4.3. If |[y| < N — 1, we have |L F|(t, x) S A(1 41+ |x)720°%z(t, x, v). If [y| < N —2, by
03
|

combining Lemmas 2.5 and 4.1, we could even save a power of |v”|°z in the first estimate of the Lorentz

force and then avoid any loss in v.

4.2. Pointwise bounds for f and its derivatives. As explained in Section 2.8.2, the main difficulties here
are related to the weak decay rate of the electromagnetic field. We deal with them by exploiting several
hierarchies in the commuted equations and by taking advantage of the null structure of the Lorentz force.
Our approach, based on the method of characteristics, will require various applications of the following
result.

Lemmad4.4. Letg:[0, T[x [R{i X [Rii —Ryandh:[0, T[x IR?C X Rg — Ry be two nonnegative sufficiently
regular functions such that, for all (t, x,v) € [0, T[ x [F\Ri X Rg,
c C, vt 1
5 8+ = 8§+ 2 h
(I+0log”B+1) A+t —Ix[Dlog"G+Ir—|x[) A+ log"(3+1)

for some constant Cy > 0. Then,

ITr ()7, x,v) <

Yt x,0) €10, TIx RS x RS, [g(t, x,v) < (1g(0, -, )l usw, +3lhllpz )edCe.

1,x,v

Proof. Fix, for all of this proof, (x, v) € [Rii X [Rig and denote by t — (X, V;) the characteristic of the
operator Tp = 3, + /9, + 0*F,’d,; satisfying,

Vi<j<3, X/ =V, VW =V'FJt.X) Xo=x Vo=v.
According to the Duhamel formula, we have,
t
vViel0, T[, gt X;,V;)=¢g(0,x,v) —I—/ Tr(g)(s, X, V) ds.
s=0
We are then lead to introduce the two functions

Y1(s) := (1+5) " og 2B +s),  ¥als) :i= 05X+ s — XD og ™23+ |s — | X,
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In view of the expression of Tr(g), we have, for all ¢t € [0, T[,

8, X, V) = 11800, -, g, + 1nllLee, /—o Vi(s)ds +/—o Ce(W1(s) +v2(5))g(s, X, Vi) ds.

Consequently, Gronwall’s inequality and

+oo +o0 ds +oo 3ds 3
Yi(s)ds = / 5 < / 5 < <3
5=0 s=0 (1+s)logB+s) ~ Js=0o B+s)log (3+s) ~ log(3)

yield,

t
s=0

0<s<t

It remains us to estimate the integral of vr,. For this, we will perform a change of variables reflecting that
the Vlasov operator reads, in the coordinate system (u, x, v), where u =t — | x|,

A.x~ i N . N i N .
Tr =9, — vlﬁau + 08y + 0" Fl 8,5 = 2059, + 010, + 04 F, 7 8,
X

As 9L > 0 by Lemma 2.5, we can then parametrize ¢ — (X;, V;) by the variable u. Hence, we perform
the change of variables ii(s) = s — | X/, so that &/(s) = 2VL (Xs) > 0 and

' i) du du
/ V(s) ds = f , < / ; <3
=0 i) 20+ D) 022G + () — Juer 201+ u]) 10223 + )

We are now able to prove that quantities such as 2ZP f are almost uniformly bounded in phase space.

We recall that for a multi-index §, the number of homogeneous vector fields (respectively translations)
composing Z# is denoted by By (respectively Br).

Proposition 4.5. There exists D > 0, depending only on (N, Ny, Ny), such that the following estimates
hold. For all (t,x,v) € [0, T[ x R3 x R},

VO<q <Ny IBI<N=2,  [\M29ZP f|(t, x, v) < eePP log®1 T3P (3 4 1), (26)
VO<g<N,—2, |BI<N, " 3129ZP f|(t, x, v) < eeP log?+3br (3 4 1), 27)

Throughout this paper, it will be convenient to work with € := eePTDA,

Proof. For simplicity, we assume here that N > 4 and we sketch the proof of the case N =3 in Remark 4.6
below. Note further that, by interpolation, it suffices to deal with the cases ¢ € {0, N, } for (26) and
g € {0, N, — 2} for (27). Motivated by the analysis of the toy model carried out in Section 2.8.2, we
introduce the following hierarchized norms in order to deal with nonintegrable error terms and still obtain
satisfying estimates if the electromagnetic field is large. Consider, for (Ng, p, g) = (N —2, Ny, N,) or
(N: Nl)_31 Nx_2)7

[WOIPI1ZP £1(t, x,v)  |WOIP(29ZP fl(t, x, v)
log*# (3 +1) log*31 (3 4-1)

ERILA1 X v) = )

IBI=No
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and let us prove that, for all (¢, x, v) € [0, T[ x R? x R,

AELFINS (2, x, v) AL QOELFIND (2, x, v)
Ty (BN D X, <A + , 28
P D) S oG T (41— ) 102G + 1 — <1 28)

AEY M1, x, v)
(1+10)log*3+1)
APEQEY M ABY A1 X v)
A +1r=IxIDlog® G+t —1x[) (1 +0log’G+1)
We are able to apply TF to these energy norms since Tr(|h|) = Tr(h)(h/|h|) almost everywhere for

Tr(ENTN 2D x, v) S

29)

any h € WILCI The result would then follow from two applications of Lemma 4.4. Fix now (z, x, v) €

[0, T[ x R? x R as well as either || <N —2, p=N, anda € {0, N} or |[8| <N, p=N,—3 and

a € {0, N, — 2}. Note then, since TF(logfl(S—l-t)) < 0, that
0017z 2P f| 001P~ 12 ZP £
T( 3a+3p ! < pTr(¥") 3a13p !
log F(341) log H3+1)
v01Pz9 71| ZP f| PN B U
+aTr(z 30
o )log3“+3ﬁﬂ<3+> ez )|Zﬁf|1og3“+3f’ﬂ<3+r> G0

It is important to note that the second term on the right-hand side vanishes if a = 0. We start by dealing
with the first two terms on the right-hand side since the last one requires a more thorough analysis. As
|V,v°| < 1, we obtain, by applying Lemma 4.1,

1 | Alog(3+1) ADE
— | Tr@O)|(t, x, v) = — |0 F, 7 8,; W) (£, x) < ., (31
S Tr @I x v = G F 0, 160 S oS+ T ma s eGP
so that
|TF(UO)||v°|P—1|z”?ﬁf|(r,x,v)<< AL Adt )Ivol”lz”?ﬁfl(t,x,v) 32)
log* 3P4 (3 + 1) A+n2  A+DA+I—=Ix[)/) log @4+

Next, recall from (11) the identity 9*d,« (z) = 0 and note that |V, z| < (t+r)/v". We get, using Lemma 4.1,

t+ x| . Alog(3+1) ADE
0

Tr(2)|(t, x, v) < VEE 01 S '
ITr(2)|( )<Y [0*F/ (2, x) T+ x| L+ — x|

1<j<3
Using Young inequality for products, we obtain, if a # 0,

a—1

z a—1 74 1
< + :
log** B3 +1) ~ alog®>B+1)1og* B +1)  alog’(3+1)

We then deduce that

0017201\ ZP £ |
a|T
| Tr(z )I o (3 1 1)
A AdL (UYZ /Z\ﬁ 0(p,a 2ﬁ
5( i n ) : ><|v3|| fl n |v3|§| fl ) (33)
A+0log>BG+1) A+t —|x|Dlog®B+1) /) \log*" 3 +1)  log* T3P (3 4+1)
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We now focus on the last term in (30). The first step consists in applying the commutation formula of
Proposition 2.4 and noting that v°9,; = Qoi — td,i — x'9;. We can then bound

\Tr(ZP £)110°1P 2% log =334 (3 4-1)

by a linear combination of terms of the following form. The good ones, which are strongly decaying and

can then be easily handled,

0017 21Q0, Z* f |
3a+3/31.1 (3 ) ’

G == |vﬂﬁzv(F)uJ| lyl+ el < 1B, [kl <8l —1, (34)
and the bad ones,

(35)

0p 0 ZK <
v Z +« [; s
B)ljsa = (l—|—r) sup — |UM£ZV(1 )IL || |3a+3|ﬂHtx f| {VH = 1
o 1<J<3 (3+[) KH_ﬁH S 1% >1,

where, again, |y|+ |k| < |B]| and || < |B] — 1. We emphasize that 75 = 8,,le\" is composed of the
same number of homogeneous vector fields as 2", so that £ = ky. In contrast, 7¢ = Qo j 7 satisfies
g = kg + 1. Moreover, ﬁoj 7Z* and 0r x 7 are of order at most |B].

Consider first the case || < N —2, so that p = N, and a € {0, N, }, and fix two multi-indices |y| < |8],
|k| < |B| — 1. Then, according to Lemma 4.1, we have

Ghva < ( log(3 +1) oL >|v0|Nv|z“§0j2Kf|(t,x,v)
YN AFr+xD? 0 A4+ xDA = |x]) log 381 (3 4 1)
<( A ADL )|v0|Nv|z“§0j2Kf|(z,x,v) G6)
(1+07 A+ +]—[x))/  logh D@4

We now focus on B]/X”,g” and we start by treating the case ky = By and yr > 1. Applying once again
Lemma 4.1, we get

ADE WO |Nv (299, (7"
Bl §(z+|x|>( + 2)' a2l
A+t+ x> A+r+xDA+1E—1xD*/ log H(3+1)
A ADE V0N (299, , Z¥
5( 4 2>| |3|+3 fox fl. 37)
(A+pn2 A+lr=1xD7/ log™ > " (3 +1)
Otherwise kg < By — 1, so necessarily By > 1, and
Alog(3+1¢ ADL VOV |z49,  Z*
(I+r+1xD= (A+r+xDA+1t—Ix]) /) log”*™FH (3 + 1)
- ( A N ADL )|v0|Nv|zaa,,x2Kf| %)
“\A+0log?B+1)  (A+|t—|xD1log®B+1)/) log* 3B +1)

We obtain from (30)—(33) and (36)-(38),

< [0z 27 f | ) AENY LF1G X v) | ADEOEZS L1 2. v)  ABE@)ER"Y [f1(, x, v)
log** ¥4 (34 1) (1+mog G+ (41— xIDlog? B3 +1) (L4 = |x1D?
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As |t —r| 2t for r > 2t and ¢ > |t — r| otherwise, we have
(It —rD " og 2B+ S A+ og 2B+ + (1 + 1t —r) og 2B+t —r) (39

and we then deduce that (28) holds. Lemma 4.4 then implies (26).
Assume now that N — 1 <|B8| <N, p= N, —3 and a € {0, N, — 2}. We fix two multi-indices y, «
verifying |y |+ |k| < |8, |k| < |B| — 1 and we consider two cases.

Case 1: |y| < N —2. The Lorentz force can still be estimated using Lemma 4.1. One can then follow the
analysis carried out in (36)—(39) and obtain

AEN TN, x, ) N AL OENTI TP, x, v)
(1+1)log>(3+1) (1+ 1t — x| log B + |t — |x]])’

where the term B)IX 3(*3’” is of course merely defined when yr and kg satisfy the condition given in (35).

Ny—3,a Ny—3,a
G, By S

)/,K' ~Y

(40)

Case2: N —1<|y| < N. Then, as N > 4, we have |k| < 1 so that we will be able to control the

terms (34)—(35) using (26). In particular, we are allowed to lose two powers of [v°|%z in the upcoming

estimates in order to deal with the weak decay rate of Lz F' near the light cone. More precisely, using
first Lemma 4.2 and then a 42 < Ny,

Alog(3+1¢ 0\N=3120 %0 7% F(t, x,
g]1/v,;(_3,g < ogB+1+ |2X|) WP x. v) v Ig 30, S, x,v)
’ (I+1+1x]) log?@3P1 (3 4 1)
<A [0V 12NeQo; ZF f1(2, x, v)
Y (4nr logtNkEtD (3 4y
Next, consider the terms (35) and assume first that y7 > 1. In that case, fo 3'(_3’“ can be easily handled
since it is strongly decaying. Indeed, using again Lemma 4.2, we get
AlogB+1+1x) o 00131299, . Z* f1(2. x, v)
(1+1+]x])3 log? @3k (3 4+ 1)
<A [0V |2Ned,  ZF f1(t, x, v)
~ (1 N t)% 10g3N,x+3KH (3 + t)
Finally, if yr =0, we necessarily have yy = |y| > N —1 > 3. Since By > yy +«p, we have kg < By —3,
so that 3a + 38y > 3(a +2) + 3ky + 3. Thus, Lemma 4.2 yields
Alog(3+1+|x|) [WONv=31290, (Z¥ f(t, x, v)
(414 |x))? log3+3P1 (3 4- 1)
_ A [0 1228, Z¥ £ 12, x, v)
~(140)1og?B+1)  logd@tDkn (3 4 1)

We then deduce that, in this case,

322(t, x, v)

Ny,—3,
BT (0 + 1)

B < (t+1x) W22, x, v)

A
gN,,—3,a’ BNv—=3.a 5 [EN“_’NX[ 1(¢, x, v).
VoK VoK (1+1)1log*(3+1) w2 LI :

The estimate (29) ensues from (40) and this last inequality. To conclude the proof, it then remains to

apply again the previous Lemma 4.4. O
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Remark 4.6. If N = 3, the proof of Proposition 4.5 requires an additional step. Once the estimate for
[E%”_’Izv" [ f]is proved, we need to control the intermediary norm [EZ"__II’N"_I [ f]. For this, compared to the

treatment of [E%”_S’N 2] f1 carried out during the proof of Proposition 4.5, there are two differences.

« First, we can exploit the much stronger decay estimate satisfied by the derivatives of order N — 1 of
the electromagnetic field than that on its top-order ones (see Proposition 3.2). This explains why we can
propagate higher moments for the derivatives of order N — 1 of f than for the top-order ones.

N,—1,0
V,K
prove, through a direct application of Lemma 2.17, that the good null components of Lzy (F) still satisfy

* Moreover, for controlling sufficiently well B and BJIXL,'(_LNX_I in the case 8y = kg, we can

improved estimates when |y| =N — 1 and yr > 1.

Finally, in order to bound uniformly in time [E%”_S’N"_Z[ f1, the analysis of the terms (34)—(35) is slightly
more technical. It is necessary to consider three cases (|y| <N —2, |y|=N —1aswellas |y| =N) and
to use the estimates on the first two energy norms.

4.3. Uniform boundedness of the spatial averages. We start by a preparatory result, which will also be
useful later in Section 6. Recall the constant € := eeP*D4 introduced in Proposition 4.5.

Lemma 4.7. For any |B]| < N — 1, we have,

log*V+ 3N (3 4 1)
(1+1)2

at/ ZPf(t,x,v)dx| <é
R3

X

V(t,v) €0, T[ xRS, [v0V°

Proof. Fix |B|<N—1,te[0,T[and v € Rg. Integrating the commutation formula of Proposition 2.4
for ZP f and performing integration by parts in x gives

a,/ 2ﬂf(z,x,v)dx:—/ OHF, 0, ZP £, x, v) dx
R3 R R N
’ ' + Y CE | VML (PS8, ZF f(t,x,v) dx.
R3
[y [+1k1=IBI x
Now, we write

008, = Qoj —x78 — 18, = Qoj — (&) =073, —v/S+vixlay —tdy, |x -0t <z,

so that, integrating once again by parts,

8,/ 2’5f(t,x,v)dx
R3

X

1 . ~
< E sup f3 EIU”ﬁzy(F),ﬂ(t,x)I|zZ"f|(t,x, v) dx
1<j<3JR
lyl+le|<IBl1+1 x
lyI<IB

r+ x| . j 7
yISIP +/3 1509, £ (P 6 012 £100, x, v) dix.
R.X’

V0
According to the bootstrap assumptions (BA1)—(BA2) and Lemma 2.6, we have

1Lzv () (¢, x)] S A(L+1+ |x]) 200z,
|VexLzr (F) 7 (8, )] S Alog(3+1 + [x (1 +1+ [x]) 7 v°*2%,
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so that
log(3+t+x|) PN
Zb t,x,v)dx| S A f ZEf(t, x,v)dx
/ Fit,x,0) > IR 2 Al
lc|<IB]+1
log(3+t ~ d

<A sup sup<0g(+—+|xz|)|v0|3|szZZKf|(t,x,v))/ %.

[k]<IBl+1 xeR3 (I41+(x]) R3 2T (t,x,v)

Note then that, in view of (11) and N, > 7,

dx dx dy
N2 = N1 — v < too.
R 2N, x,v) T R (14 x — ot yers (1+1yD™

0|Nu—6

Then, multiply both sides of the inequality by |v and bound above the right-hand side by applying

Proposition 4.5. It remains to use AeeP? < eeP+DA = ¢, 0
Remark 4.8. If |3| < N — 3, by using the estimates of the Lorentz force provided by Lemma 4.1, we can
o [ ZP fdv| SEA+1)2log 3V 3 4 1),

Note now that |/x 2‘3]‘(0, X, V) dx| <2sup, |z42’3f|(0, x, v) < 2e. Hence, by integrating in time the
inequality of the previous Lemma 4.7, we obtain, for any || < N — 1,

_ t lOgSNx+3N(3+.[) _
§e+6/ TERSE dr <€
=0

even prove 09|V

V(t,v) [0, T[ xRS, [v0N~0

/ 2ﬁf(t, x,v)dx
R?

It directly implies the following result.

Corollary 4.9. Let |f| < N — 1 and y : S2 x R} — R be a function such that || (-, v)|| e S 0[V=C
Then, for any w € s?

V(t,v) [0, T[ x R, ‘w(a} v)f ZP £(t, x,v) dx

We allowed the function ¥ to depend on a parameter @ € S? in order to prove optimal decay estimates
on certain elements of the Glassey—Strauss decomposition of the electromagnetic field, defined as integral
kernels.

4.4. Pointwise decay estimates for velocity averages. We prove here that the decay rate of f v ZP f dv,
for |8] < N — 1, coincides with the one of the linear setting. In particular, we improve the bootstrap
assumption (BA3). The starting point consists of performing the change of variables y = x — ¢0. For this,
recall Lemma 2.9 and that y — y is the inverse function of v — 0.

Lemma 4.10. Let g : [0, T[ x [Rifc X [Rig — R be a sufficiently regular function. Then,

3 3 - _ 0,5 x—Yy
V(t,x)G[O,T[X[R, t g(tvx_vt9v)dv_ (lU | g) t’y’— dy
R3 ly—x|<t t

This change of variables is motivated by the linear case. Any regular solution to the relativistic transport
equation 9,1 + v - V,h = 0 is constant along the timelike straight lines, A (z, x 4+ vt, v) = h(0, x, v). The
previous lemma, applied for g(¢, x, v) = h(0, x, v), then leads to fv hit,x,v)dv < 13,



660 LEO BIGORGNE

As a first step, we control fv |2'3 f|dv for any |8| < N, which has a slightly slower decay rate than in
the linear case in the interior of the light cone. These estimates will also be useful on their own.

Proposition 4.11. Let |B| < N and 0 <a < Ny — 6. Then, the following properties hold.
o Almost optimal pointwise decay estimate,

10g3Nx+3N (3 + t)
(141)3

V(t, x) € [0, T[ x R, / 10O Y8129 ZP £1(t, x, v) dv < &
R3

o Improved decay estimates near and in the exterior of the light cone,
(1 +1—|x]¢

Vix| <t <T, 0| No=8-2a, 78 t,x,v)dv < elog®M N3 4+t ,
x| < fmu 27 f1te, . v dv £ Elog™ NG 0T

~ _log®M 3N (3 4 1)
0N, —8—2a 58
Vi < sup(lxl, ), /ng 2 1 ) o S E

Proof. Fix |B| <N, (¢t,x) €[0, T[ x [Ri and 0 <a < N, —6. If r <1, we have by Proposition 4.5,

~ ~ dw

f WO T2 ZP £l x, v) dv S sup 00N 2N TOZE £ x, v)/ —7 SE
R} veR? R3, (w)

Assume now, unless 7' <1, that > 1 and introduce the function g(¢, x, v) := |v0|Nv*8|z”2ﬁf|(t, X410, v).

Applying the previous Lemma 4.10 to g, we get

t3/ |v°|NU—8|z“?ﬁf|<r,x,v)dvsf sup [V g(t, v, v) dy
R3

y—x|<t veR3

v |

dy
< sup PPy, v)/ <.
(7, v)eR? xR Ry ()

Using now Lemma 2.8 and then Proposition 4.5, we obtain
A / WO ZP fle v dv s sup O ZE £y, v) S Elog TN G 4.
R3 (y,v)eR3xR3

This concludes the proof of the first estimate, which, together with Lemma 2.6, implies the second one as
well as the last one in the region t < |x| < 2¢. If |x| > 2¢, note that z = 1 4+ |[x — 0| = 1 +¢ + |x], so that

15 _ _ P dw
/ WO TIZE fl x vy do S A+ 4 )M sup 0V M 2zﬂf|<r,y,v>/ Ve
R} (y,v)€R3 xR3 Rr3 (W)
It remains to apply Proposition 4.5. |

Our goal now is to remove the logarithmic loss of the estimate of || v ZP f dv provided by Proposition 4.11.
Since our analysis will rely on the following result, we will not be able to deal with top-order derivatives.
We recall that N, — 3 > 4.

Lemma 4.12. Let g : [0, T[ x [F\Ri X R% — R be a sufficiently regular function. Then, forall |x| <t < T,

X 1
<|v°|5g><r,y,;)dy <= osup OO 1g 1+ B Veg (2, v, v).

(7,v)eR3xR3

t3/ g(t, x—0t,v)dv—
R3 yeR
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Proof. According to Lemma 4.10, we have

t3/ g(t,x—ﬁt,v)dv—/ g(t Yy, )dv_Il—i—Iz,
R3 yeR

x\_/y ¥
I = / (|v0|5g)<t, y, —) dy —/ (|UO|58)<1, Y, —) dy,
lx—y|<t t lx—yl<t 4
05 X
Iy = —/ (i g)(hy, —) dy.
lx—y|=t t

-3
Since, by Lemma 2.9, we have |V, 3| S /1 —|y]? ~ = ()3 = |v°]3 (), the mean value theorem gives us

—_—

(Ivlg)(t s t) (Ivlg)( t)

Consequently,

where

|yl
< = sup [V)71gl(, y, v) + 0O 1| Vg (2, ¥, v).

veR3

1 - dy
LIS+ sup MM Igl @y, v) 4+ 00 IVugl @, v, v) ———. N,—4>3
4 (y,v)eR3 xR3 |x—y|<t ()=

In order to bound 7, recall that |x| < ¢ and note that, for v = ;//t and any y € R such that |y — x| > 1,

1:|vo|2< IXI) |0|2IYI(t+IXI) |yl 10"
12

12 t

We then finally deduce that

2 X\ (N3 1 _
1To| < —f <|v°|7g><z, Y, —)Wdy <— sup (Mgl v, v). O
L Jly—x|>t t ) (y)* t (y,v)eR3 xR3
We are able to prove that the decay of quantities such as |, ; ZP f dv is optimal. We state a general
result since we will later have to deal with integral kernels.

Proposition 4.13. Let || < N — 1 and ¥ : S2 x R} — R be a sufficiently regular function such that
W, 0 lre + 10OV )l S WOIN ! Then, for any o € S?,

€

3 7B —
V(t,x)e[0, T[ xR, ‘/ V(w, )27 f (1, x,v)dv| S ~A4t+xD3

Proof. Assume first that [x| <7 <1 or |x| >¢. Then, as |¥|(-, v) < [0 M9 it suffices to use the first or
the third estimate of Proposition 4.11, applied for a = % Otherwise ¢t > max(1, |x|) and we introduce, for
any w € s? gu(t,x,v) =¥ (o, v)fﬁf(t, x + 10, v). Using first Lemma 2.8 and then Proposition 4.5,
we have

sup (MM (00 gl + 100 1P I VieguD (&, ¥, v)
(y,v)eR3xR3

S sup VW@ P BN TZE Al v 0 + D W, ) 12T ZEZE £ v v)

(y,v)e[R3><R3 |K‘§1

Sy sup o PO TPZE f( . v) SElog?M PN B 4. (41)
|€|§N(y,v)€R3><IR3
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Now, apply Lemma 4.12 to g, in order to get,

VoeS?, ;

/ U(w, v)ZP £(t, x, v) dv
5

X 1oV 3N 3 4 1)
S ‘f3<|v°|5gw>(r,y, ;) dy’ +é :
R3

As t > 1, it remains to bound by € the first term on the right-hand side. For this, perform the change of
variables z = y — t9 and apply Corollary 4.9 with ¥ (w, v) = |V’ ¥ (w, v). O

The next result is a direct application of the previous proposition to W (w, v) = v* /v° for any 0 < u < 3.

Corollary 4.14. For any |B| < N — 1, the decay of the current density J (2’3 f) is optimal. There exists a
constant C > 0 independent of € such that,
Ce

Y€ 0<p<3.
SU+r+ s k=

V(t,x)€[0, T[ x R3, ‘/ —zﬂf(z x,v)dv| <

If € satisfies C€ = CeePTDA < CpootA, it improves the bootstrap assumption (BA3).

4.5. Improved estimates for derivatives of velocity averages. In the linear case, derivatives of averages
in v, such as 9; fv f dv, enjoy stronger decay properties. Our study of the top-order derivatives of the
electromagnetic field will require the following improved estimates.

Proposition 4.15. Let || <N —1, u € [0, 3] and & : S? x [Rﬁ — R be a sufficiently regular function
such that || (-, v)|l g + VOV, @ (-, v)ll e < [WONe~10 Then, for any w € S?,

1 g3NX+3N(3 4 t)
(141 +]x*

Y(t,x) € [0, T[ x R, ‘/ O (w, V)3 ZP £(t, x,v) dv

Proof. Let (t,x) € [0, T[ x IR)% and note that, if |x| > ¢ — 1, the result is given by Proposition 4.11, applied
for a = 1. We then consider the case r — |x| > 1. Using (20) together with 7$2;; = (xi/r)on —(x7 /1) Q0i,
one has

TP =1 — x|

=3

ZeK

/®(m,v)8xuzﬁf(t,x,v)dv /cb(a),v)z?ﬁf(t,x,v)dv.
R3 R3

Fix now Z € K. If Z is a translation 0« orif Z =S, then Z € @o. Otherwise, either Z = ;; is a rotation
and Z =7 — v d,; +v/d, or Z = Qq is a Lorentz boost and Z = Z — v°9,, so that

55>

A=0 k=1

CD(w WZZP £(t, x,v)dv

/ O (w, )04 ZP £(2, x, v) dv|.
[R

Integration by parts and |3, (P (w, v)v*)| < vOIVU(DI(w, V) + | P|(w, v) < WOV ~10 yield

Z/ O N1 ZK ZP £1(2, x, v) d.

<1

/ D (w, V)3 ZP f(t, x,v)dv| <
R3

v

It—IXII

As t — |x| > 1, it remains to apply once again Proposition 4.11 for a = 1. O
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5. Improvement of the bootstrap assumptions on the electromagnetic field

We are now able to prove pointwise decay estimates for the Maxwell field and its derivatives. We improve
first (BA1), whereas the case of the top-order derivatives (BA2) will require a different strategy since we
did not recover the linear decay 173 for fv 2ﬂf(t, x,v)dv, |B]=N.

5.1. The Glassey—Strauss decomposition of the electromagnetic field. We separate F as well as its
derivatives Lz» (F') into three parts according to the Glassey—Strauss decomposition. For this, recall
from (4) the relation between the electric field E, the magnetic field B and the Faraday tensor F. We
have E! = Fy;, B! = F3,, B?> = Fi3 and B® = F»;. To simplify the statement of the decomposition, we
introduce a weight tensor field.

Definition 5.1. Let w,,(w, v) be the antisymmetric tensor defined for all (w, v) € S? x [Rig by
wOi(a),v)z_in(w’ U) = C()[+ﬁ[, wjk(w7 U) = C()jﬁk—a)kﬁj, 1 Sla]7k§3v
where w; 1= x;/|x| if x € R? satisfies w = x/|x|. We further define

wuv(w» V)

W,uv(a),v) = 1+a)~f) .

Remark 5.2. Since w is antisymmetric, w,,,, = 0 for any u € [0, 3]. Note also that 1 + - § = 20 > 0.

We can now prove an adaptation of [Glassey and Strauss 1986, Theorem 3]. The key idea of their proof
consists in rewriting the standard derivatives 9; , as combinations of derivatives tangential to a backward
light cone, which naturally appears in the representation formula for solutions to wave equations, and
Ty := 0; + U - V, the free relativistic transport operator which is transverse to light cones. To avoid any
confusion with the scaling vector field, we do not keep the notation S, used by Glassey and Strauss, in
order to denote Tj.

Proposition 5.3. Let |y| < N — 1. Then, there exist C;, N[ € N such that
A L7y (F) = Lzv (F)™ 4+ L7v (F)T + L7v (F)5,

where, for any 0 < u, v <3 and with o = (y — x)/|y — x| in the following integrals:

o Loyv(F )/(i?;ta can be explicitly computed in terms of the initial data. More precisely,

Lzv (F)@(t, x)

= 4w Loy (Pt x) = >

Y
%
t

IBI=IyI

f Wun(@, v) = 850" +899")ZP £(0, y, v) dv dy
ly—x|=t JR3
and Lzv (F )2‘;“‘ is the unique solution to the homogeneous wave equation 1L zv (F )E‘]’,m = 0 which initially

verifies Lzv (F)IS™(0,-) = Lzv (F)(0, - ) and 3, Lzy (F);™(0, ) = 8; Lzv (F ) (0, ).

o The 2-form Lzv(F)T is given by

Lo (F)L,(t.x) == > CHZPfIL, (. %),
1BI=Iy]
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where the field [2’3 f17 generated by ZP fis
W, v) dvdy
2= [ [ 2y = o
ly—x|<t JR3 WO +w- D) ly —x|?
o The 2-form Lzv (F)3 is defined by
dvdy

ly — x|’

;CZV(F)EV(LX) = Z N;K[ (/Z\Kfﬁ)tﬁzg(F))‘j)(t_|y_-x|,y,l))avjwpw(w’v)
[E]+lx| =]y y—x|<t JR}

Proof. Fix |y| < N — 1 and apply Proposition 2.4 in order to rewrite the Maxwell equations satisfied by
Lzv(F) as

VMLZV(F)M:/W%fy(z,x,v)dv, VA Lz (Flw =0, vell0.3], f,:= Y ChZPf. (42)
v 1BI=Iy|

with Cg € N. Introduce further the electric £, and magnetic B, parts of Lz» (F),
E, =Lz (F)o, i€ll,3], B,=Lz(F)y, B,=~Lz(F)is, By=~Lz(F)u.  43)

In such a way, our framework exactly corresponds to the one of Glassey and Strauss. More precisely, one
can compute the source terms of the wave equations satisfied by the components of E, and B, . For any
0 <pu,v <3, we have

OLzy (Fpuw = /R} Uy dyv fry — Uy0xn fo dv,  so, for instance, DE; = — /R} 0yi fy 4+ 0;0; fpy dv.

Applying [Glassey and Strauss 1986, Theorem 3] to (f,, E,, B,) provides us, for any 0 < p, v <3,
dvdy

A Lzy (Fuy = Lz (F)S + L7 (P, — / W@ 0T fy)@ =1y =l y, v)
l[y—x|<t JR; -

where we recall that Ty = 0*9,. Note that the constants Cy in the definitions of £z (F ydaa o, (F)T

and f, are the same. Applying the commutation formula of Proposition 2.4 for any || < |y| yields

Tofy=— Y Cho"FJo,ZPf+Cy > CL "Ly (F) 8,2 f. (44)
IBI=lyI 11+ |<IBI
with Cgk € N. It remains to integrate by parts in v and to recall that V,; - 0" L z¢ (F)Mj =Ly (F)jj =0. O
It will then be important to estimate the kernels introduced in the previous proposition.
Lemma 5.4. For all (w, v) € S* x Rg, we have |0+ 013 |oAD)? <2(14+w-0) and (1+w-0)~' <202
Proof. For the second inequality, simply note that
2P+ w-0) = 20°P (1 = [0]) = 20°° o)) = (07 + D 0 o)) = [0°) — v = 1.
For the first ones, since |w| =1 and |0] < 1,
lw~+ 02 = |w)* +0)*4+2w-0 <2(1 +w- D),
o AD)? = w0 — o < (I +o-0)(1—w-1) <2(1+o-D). O
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Corollary 5.5. Forany 0 <, v <3 and all (w, v) € S? x Ri, there holds

W ’
Wiwl(@. v) <4’ VW@, v) <60’

14Y% ) <2 Oa T 0101 . AN

We have similar bounds for their first-order derivatives,

W (@, v)
Vo Wul(@, v) <v°, |V, [ —22 )1 <0 |V,V W (0, v) <0,
IVoWoul(@, ) < At ) |57 VoV Wul@ v S
Proof. The first two inequalities are a direct consequence of the previous lemma. The other ones ensue

from straightforward computations carried out in Lemma A.2. O

Remark 5.6. These bounds are sharp. Let us focus for instance on the first one, Wy, |[(w, v) < 2v°. For
this, consider, for any v € [Rig, the function ¢, : @ — 1+ w - v defined on S2 Then,

0 —|v| 1 1 v +|v|
mln ¢U (C()) 0 |UO|2 9 X ¢l) (Cl))

> 1.
weS? v vo(v0+ v]) ~

By continuity, there exists w, € S? such that 1 +w, -0 = |v0|_2. Then, using |o+0|*> =2(14+w-0)—|v°] 72,
we have

lwy + D)2 1 1
> Wil @y, v) = ——— = “\2- o = ) ="
1+ w, - vl l+wy-v V17 (1 4+ wy - V)

1<i<3
In order to improve the bootstrap assumption (BA2), we will need to use the Glassey—Strauss decompo-
sition of the spatial derivatives of the electromagnetic field. A similar result holds for the time derivative
but we will estimate it by exploiting the Maxwell equations. For instance, one can check that (2)—(3)
imply |V, F| S Zlgkﬁ |V3Xk F|+1J(f)|. We lighten the notations by denoting the Lorentz force as
K7 :=0"F,J, Kl:=0"Ly(F),/, 1<j<3, 1<|§|<N. (45)
Proposition 5.7. Let |y|=N —1and 1 <k < 3. Then, Vi Lzv (F) can be written as
ANy, Lzv (F) = ASR + AV + AT+ ADS + ASS,

where the five 2-forms satisfy the following properties. We fix 0 < u, v < 3 and we use again the notation
w = (y —x)/|y — x| in the integrals written below. Moreover, we give the definition of the kernels at the
end of the statement.’

. A?j‘}f‘ can be explicitly computed in terms of the initial data,

AG (6 0) = AT Ly (P x0) = ) Ch /

IBI<N—1 y—x|=t

- Y

BI=N—1 ==

/ L@, 0)ZP £(0, y, v)dvdy
IR3

/ €k, (@, )Ty ZP £(0, y, v) dvdy.
R}

SWe point out that we are only interested in the qualitative properties of these kernels.



666 LEO BIGORGNE

. A;ez is the vertex term,

A;/,ell; [Ll)(t, X) = Z Cy /ESZ/ (G, v)/Z\ﬂf(t’ X, U) dv d,LLgZ.

IBI=N—1

o A;i is the most singular term,

dvd
yk,w(t X):= Cy/ A (o, v)Zﬁf(t—ly—x| v, v) y3
ly—x|<t JR} ly — x|

IBI=N—1

and the crucial identity |,

lo|=1

Aﬁv(a, 0) dpus2 = 0 holds for all v € R,
o ATS s given by
y.k

N dvdy
D S A A
€ |-Hlic| <N —1 ly—xl=t TRy y=X
AS  is the sum of the four following quantities, where N, 5 e €N,
§5.1 y k 2 dvdy
Ayk;w = Z Ngé‘/c [VU(VUCMU(Q)’)KE)K{Z f](t_ly_x|9yvv)ﬁv
JE1+I¢ 1| <N —1 ly—xl<t JR} y—x
-~ dvdy
A= D, N / / VuCh (@, v) - (To(K)Z5 (1 — [y — x|, , v)
JE |+ | <N—1 —x|<t JR] ly — x|
8% —v;0" dvdy
= X W[ e R eewDZ ety a0 S
lE|+Ik| <N -1 ly—xl<t JR) v ly — x|
— ;0" dvdy
Ay = / f Chy (@, v)L—— ’ (K{0wZ" )t =y —x].y. )
|§|+|K|<N 1 ly—x|<t JR3 | x|

o The kernels are smooth functions of (w, v) € S? x [R% given by

Ak (@, v) = w;w(w V)i w0 (@, V) Vg Sty — Sk Dy
| Pl +w- 0 ORI +w-0)3 W21 4e-0)2
B, (w,v):=3 Wiy (0, U)wf Y@ UA)ﬁk _ Skuby — Skfﬁu
WP +0-0)°  (1+w-0)? I+o-0
w v ’
Ck (@, v) = kW (@, V) D (@ v) i Wy (@, V)

(14+w-0)2° W21+ w- D)3

Proof. Let k € [1, 3], |[y| = N — 1 and recall from (42) the definition of f, and that Lz» (F) solves the
Maxwell equations with source term J( f) ). Recall further the electric and magnetic parts (E,, B,) of
Lz (F), introduced in (43). In the same spirit as in the proof of Proposition 5.3, we apply'? [Glassey
1996, Theorem 5.4.1] to (f,, E,, By). This yields

vanEZV (F);u) — Adata +AVCI‘ +ATT +A

ASS
V. k, v vk, v vk, v +A

yk;w vk, v

10See also the original version of the result, [Glassey and Strauss 1986, Theorem 4].
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where
- dvdy
Bfw=[ [ Bueodse-y syt
vk y—xi<t Jmz 4 ly —x|?
- dvdy
Bow== [ [ ch@o@mnse-1y-xiy0
vk y—xi<t Jrz "’ 4 |y — x|
as well as flcr|=1 A,k“(o, U) dus2 = 0. One can then prove that Ailiﬂw = A)T:/iuv by rewriting Tp f), using

the (commuted) Vlasov equation. More precisely, we use (44) and we then integrate by parts in v. It
remains to deal with Aifk, v and we recall for this that V, - Kz = V,; - 0M L, (F),’ = 0. Hence, using
again (44), we get that there exists N y « € N such that

TTo(f,) = Y. N Tod(K.Z"f).
[E]+lx|=]y]

Now, we write Tyd,;, = 9, To — 9, (0")d,» and we apply the commutation formula of Proposition 2.4
to Z¥ f. We get
3;0

o~ L . ~ v o , ~
Tody) (0" Lz (F)2) 2 f) = 8,1 (To(K) Z* 40,1 (K To(Z )=~ —5— @ (KD Z* f+K{ 90 Z° f),

so that, by integration by parts in v for the quantities related to the two first terms on the right-hand side
of the previous equality,

1SS SS,11 SS, 111 SS,1V
Ay,k,pw = Ay,k,;w + Ay,k,;w + Ay,k,,uv
PN dvdy
+ D N / / Vi (€, (@, KL Ty (ZE ) 3y, v, )
€|+l ly—xl<t JR] ly — x|

where 7, :=1 — |y — x|. Finally, we deal with the last term by applying first the commutation relation
of Proposition 2.4, giving that To(fK fl=—K-V, A f+c g PLCE v, ZP f, and then by integrating by
parts in v. O

These kernels and their derivatives can be estimated by a direct application of Lemmas 5.4 and A.2.

Corollary 5.8. Forany 1 <k, j,n <3 and forall v € Ri, we have
(|AK] 4+ [V, AK] 4 |V, B 4 1K + 1V, CF| 4 |V, Vo CF 4 1D + 1V, DD (-, v) S 0P

5.2. Three integral bounds. The estimate of most of the terms listed in Propositions 5.3 and 5.7 will in
fact be reduced to the analysis of three different integrals. We will deal with all of them by applying a
particular case of [Glassey 1996, Lemma 6.5.2].

LemmaS5.9. Let peRand g : R%r — Ry be a continuous function. Then, for all (t, x) € [0, T[ x R\ {0},

/ dy 27T t |x|4+t—1 dr
gt —1y—xI, Iy - —/ / e di—
ly—x|<t ly —xI?7 x| Je=o Jaz|jx|—t+| (t—7)p~!

The following result will be useful for controlling Lz (F )S and Aﬁfk.
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Lemma 5.10. Forany b > 4 and for all (t, x) € Ry X R, there holds

p=1 L 1 dy
Y, (t,x):= 5
’ yxl<t L+ =]y =x|+[yD°(A+ [t =y —x[—=|yID [y — x|

log(3+ 1 — |x|])
YA+ IxDA A+ —|xhP2

Proof. Note first that, on the domain of integration,
t=ly—xl+lylzt—=Iyl=Ixl+Iyl=t—Ixl, t—=ly—x[+Iy=|yl=|x]—|y—x|=Ix|—1, (46)

so that prl t,x)<A+1t—|xID” b+4Yf1 (t, x) and it suffices to treat the case b = 4. By continuity,
we can assume further that x # 0. According to Lemma 5.9,

o= |x|+t—1 drdt
vI7 o < 28 - .
|x| r=0 Jaz|ix|—t+7) A +T+A) A+t —A])

We perform the change of variables u = 7 + A and u = t — A. Then, on the domain of integration

[lx] —t] <u <t+|x| and u < ||x| —t|. Moreover, u > —u since 2t > 0. Consequently,

t+|x] ||x]—1] t+|x|
Yfl (. x) < /‘ dg _dw  _2m 2 log(3 —I—%) .
x| u=|lx|—t| Ju=—u 1+ |u| (I'+u) x| Juzpxj—sy (1 +u)

Now, note that
27 log(3+ [t — |x|]) "I du

Y T x) S
1 A+t =1xIDIxl Jumjpp)—r (14 u)?
_ 2 log(3+ |t — |x]|]) t4+ x| — |t —|x]|
(A +r+xDA+[r—|x|D? |x]

and it remains to note that the last factor on the right-hand side is bounded by 2 min(¢, |x|)/|x| <2. U
We will apply the next lemma in order to deal with £ (F)” and A;,‘f
Lemma 5.11. Let, for any b > 3 and all (¢, x) € Ry x R3,

=2 - dy
Y/, %) :=/ (I4i—ly—xl+yh " —=—.
ly—x|<t ly — x|

Then, the following range of estimates holds. For any 0 < § <1,

Y72, x) 87 (o4 x| — x| )T,

Y/ x) S A1+ )20+ | — x|~ log(1+1).
Proof. Tn view of (46), we have ¥/ ="(¢, x) < (1+ [t — |x|[)"**3¥/=(1, x) and it suffices to treat the
case b = 3. Then note that

dy
_x|2'

=2 _
Y700 = Kjo g + K Ko 12/ A tr—=ly—xl+1yh~°
2 ly—x|el ly
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On the domain of integration of Ko /2, we have t — |y — x|+ |y| 2 ¢ + |x|. Indeed, t — [y — x| > 1/2
and |y| > |x| — ¢ (which controls |x|/2 if |x| > 2¢). Consequently,

t

K[o,;]§(1+t+IXI)3/2 dr < 5141+ x> (47)

r=0

Applying Lemma 5.9, we have

/ f'xl+f i ddr
2 |X| 1=0 Jom(px|—t4r) A+ T+L)201 —1)

Now, observe that, forall 0 <t <t/2,
1 bel+i—t dx 2min(|x|, t — 1)

21— 1) Sicgeren AT+ 02 3] = DA+ 1+ DA+ + [Jx[ =1+ 7))
8

< .
— max(|x], )(1+1+ [x)(1 + 7+ 7 —[x]])
Let 0 <& < 1 and write (1 +7 4 |t — |x||) > (1 +7)'=°(1 + |t — |x||)°. It remains to integrate in 7 in
order to derive the expected range of estimates for K, ). Il

(48)

ATT

Finally, a part of our analysis of A) % will rely on the following estimate.

Lemma 5.12. For all (¢, x) € [1, +00[ x R3, we have

dy _ log®)
ly—x[3 ™~ (I+1+x)3

Y=, ) :=/ (At —ly—x|+ )~
I<|y—x|<t

Proof. The inequality can be easily proved if <2 so we assume ¢ > 2. Start by writing

dy
_x|3'

Y3P:3(t,x) = K[l,%] +I?[%,,], K, := / 41—y —x|+ |y|)_3
y—xlel Iy

Following (47), we have

> d
]5(1+z+|x|)—3/ Tr<log< )(1+t+|x|) -3
=1

r=

K[,

(ST

Next, we apply Lemma 5.9 to get

/ fxl+’ 4 drdr
< — .
5.0 = x| Jezo Jogjpx|—r47) A +T+ 221 —1)?

If 2¢ > |x|, we use (48) and r — t > ¢/2 in order to derive I?[t/z,,] <t72(1414]x])""log(1 +¢/2), which
implies the result. Otherwise, 2¢ < |x| and we have, forall 0 <t <1/2,

1 = didr 2min(|x|, 1 — 1)
1t =) Jampixmrar) A HTH? ] =21+ DA+ T+ [lx[ =1 47))
2

(49)

< .
T A+ +xDA+ x| =)@ — 1)
We get, as 2 < 2t < |x|,

K, <4mlog@)lx| " 1+ 1x1/2)7 A+ 1+ xS A1+ )7 0
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5.3. The derivatives of order up to N — 1. In this subsection, we prove pointwise decay estimates for
each of the elements of the decomposition of Lz» (F) provided by Proposition 5.3. We start by dealing
with £z, (F)%@, which is defined on Ry x R>.

Proposition 5.13. There exists Cyaa > 0, depending only on N, such that,
Viy| SN =1, ¥(t,x) e Rp xR, L7y (F)®|(t, x) < ACqaa(1 41+ [x) 7 (1411 — x|~

Proof. In view of the assumptions on the initial data (see Theorem 2.10) and applying Corollary 5.5 in
order to estimate WV,,,, we have, forany || <N —1, w € S?and 0 < pu,v <3,

¥y e R, |Lzs (PO, ) + MV Lz (IO, ) S Y (MMIVEFI0, y) S A(y) 2,
lc|<IB]+1

~ d
<3 [ W2 POy ol Sl
R3 (v)Mo—l
The estimates, at t = 0, for the time derivatives of the solutions are obtained by using that (1)—(3) are
initially verified. Using (22) for p = N, > 3, we then deduce that,

/ Wan(@, 9) — 850" +8%9")ZF £(0, y, v) dv
R

V(t,x) e Ry x R?,  |L2r (F)RE — L0 (P (1, x) Se(d+1+xD7 A+ — x|~ (50)

and it remains to use € < A and to apply Proposition 2.21 to Lz» (F )mm. O
Next, we consider £z, (F)3, which is strongly decaying far from the light cone.
Proposition 5.14. For any |y| < N — 1, there holds,

log(3+ 1z —[x[])

3 y S <z )
Vi, x) e[0, T[ xR, |Lzv(F) l(t’x)NéA(l+t—|—|x|)(1—|—|t—|x||)2

Proof. Fix 0 < u,v < 3 and recall from Proposition 5.3 the definition of Lzy (F )S. We have, with
w=(y—x)/|ly—x|,

|Lzv (F);,, |2, x)

S Z /I | 1Lz (F)7|(t — |y — x|, W‘/w 048, Wi (@, 0)Z f(t — |y — x|, y, v) dv
€1 +lic|<ly| © Y THS! 3

ly — x|

Fixnow [&|+ k| <N—1, j €[, 3] and A € [0, 3]. In view of Corollary 5.5, ¥ (w, v) := ﬁ’\av_/WMv(w, V)
satisfies |W|(-, v) + [V, ¥|(-, v) < [WO)2 < WO M~ As [k| < N — 1, Proposition 4.13 then gives us,

Y(o,7,y) € S* x [0, T[ x R?, é

AN K
dyi W, ,V)Z v, )dy| < ——m——
/R}v i Wi (0, V)Z¥ f (T, y, v) v‘w(lﬂﬂym

Applying this last inequality for (o, ) = (w, t — |y — x|) and estimating the electromagnetic field using
the bootstrap assumption (BA1), we get

€A d
Lo @l < i Y _
oxte (0= Iy — X[ YDA 12—y~ — 51 Iy ]

The result then follows from Lemma 5.10. O

EAY)T (2, x).
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We finally deal with £z, (F)T, which actually enjoys stronger decay properties than £z, (F) for
t ~ |x| (see Remark 5.16 below).

Proposition 5.15. Forany |y| <N —1and all (¢t,x) € [0, T[ x R3, we have
T - _7 _1
[Lzr (F)"[(t, x) SEA+1 4 |x) "5 (1+ [t — x|~ 5.
Proof. In view of the definition of £z (F)”, introduced in Proposition 5.3, we have

1Lz (F)T|(2, x)

: Z Z /ly—xil

0<p,v=3|BI=lyl

w , ~ d _
f#zﬂﬂt—iy—xw,v)dv—yz, w=21"%
Ry V1R @ 0) ly — x| ly — x|

Fix 0 < u,v <3, |B] <|y| and recall from Corollary 5.5 that

W,uv(o', v)

Y(o,v) = —5 7
(o, v) P+ w-0)

satisfies |W|(-, v) + [V, ¥[(-,v) < v%. We then obtain from Proposition 4.13 that,

Vo €S2, V(t,2) € [0, T[ x R?,

Ww(o,v) = €
T 7P f(rzv)dv| S ———.
ng [vO12(1 + 0 - D) /¢ . (I+7+z])?

Applying this estimate for 0 =w, Tt =¢ — |y — x| and z = y, we get from Lemma 5.11 that
L0 (F)T 1, %) SEVPT(, ) SEQ+1+ D)7 (14|t — x|+, O

Remark 5.16. In fact, Lemma 5.11 also provides |£z» (F)T|(t, x) <€(14t+|x]) "2 log(1+1). Moreover,
the estimate could be significantly improved in the exterior of the light cone, where |x| > t.

If the constant Choo is chosen such that Cpoor > 2Cqaia and if € is small enough, Propositions 5.13,
5.14 and 5.15 allow us to improve the bootstrap assumption (BAT).

5.4. The top-order derivatives. In this section, we estimate all the terms listed in Proposition 5.7 in order
to improve the bootstrap assumption (BA2). We start by dealing with the ones depending explicitly on
the data.

Proposition 5.17. There exists a constant C ga, depending only on N, such that, for any k € [1, 3] and
lyl=N—1,

V(t,x) € [0, T[x R, |AQR|(t,x) < ACaa(1+1+ x4t —|x[]) 2

Proof. Recall from Propositions 5.3 and 5.7 the expression of A?j‘,‘f and from Corollaries 5.5 and 5.8 the
bounds on the kernels. Hence, for (¢, x) € [0, T[ x R3,

|AS2\(t, x) S Vo Lazr (F)™(6, )+ ) min(t_l,t_z)/ 3|v0|3|2ﬂf|(o,y,u)dvdy.
ly—x|=t /R
BI=ly|+1 v



672 LEO BIGORGNE

As [0xn, Z] =0 or [0yr, Z] = £0,» for any Z € K, by the equivalence of the pointwise norms (9) and in
view of the smallness assumptions on the initial data, there holds

Vo Lzr (F)™(0, ) = Vo, Lz (IO, ) S D MV FI0, ) S Ay,
I<|x|=N

ViV Lzr (F))0, ) = Vi Vo, Lzr (PO, ) S Y (AVEFI0,y) S Aly)
2<|k|<N+1
As Vy Lz (F )2?}“ is solution to the homogeneous wave equation, Proposition 2.21 gives

IV, Lzr (F)™M(1,x) S A +1+|x)7 A+ = |x]D72

Since |07 3 e L ([Rig), we have, for any |8| < N,

/'”0'3'?ﬁf|<o,y,v>dv,§<y>Nx sup  sup o0 M L) MeHR 9 £10, x, v) S e(y) M
R} k| +IEISN (x,v)eR6

Consequently, as N, > 5, we have

o d
(A0 € AU+ DT A = i) b eming 1) 0 Qi [ oF
ly—xl|=t

As € < A, it remains to prove min(t ', t72)Q, . < (1 4+t + |x|)~'(1 + |t — |x|[)~2 and, for this, we
consider two cases.

o If r <1, then |y| > |x| — 1 on the domain of integration and Q; , < 47 ¢%(x) 7. It remains to note that

(x)>14t4|x| > 14|t —|x|| and r~! < ¢72 in the region considered.

o Otherwise r > 1 and we have Q; , Sr(1 41+ xD~LA 4|2 — |x]]) 2 according to the estimate (22).
The result follows from =2 < ¢~! in the domain treated here. O

Next, we consider the vertex term.

Proposition 5.18. Let k € [1, 3]l and |y| = N — 1. We have,
V(. x) € [0, T[x R, |AYLI(1,x) SEQ+1+]x)) .

Proof. Fix 0 < u,v <3, (t,x) € [0, T[ x R3 and recall N, > 15, so that Corollary 5.8 implies
1D}, (@, v) + V0V, DE (@, v) S 0N~ Proposition 4.13, applied for W =D, and to any | 8| < N—1,

then yields
A DS D f »
€

/3 DZU(U’ U)iﬂf(t, X, U) dv d,b{,gz
1BI<Iy| R
dme

= |
(1+1+]x])3

< - @ due
~ (141 +x])3 /g Hs

We now estimate A;’ ks . Note that the next result could be easily improved but it is more than enough
for the purpose of improving the bootstrap assumption (BA2).
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Proposition 5.19. Forany k € [[1, 3] and |y| = N — 1, there holds,
V(.)€ [0, TEx R, |ADS|(1,0) SEAL + 1+ xD 73 (1 + | — [x]) 72

Proof. Let 0 < u,v <3, (¢t,x) € [0, T[ x R3 and recall that K%_j = AAEZE(F)M. Consequently,

|A; ,f (@, X) is bounded by a linear combination of terms of the form

f:fszf |£ZE(F)/\j|(t—|y—x|,y)/ 18, Bl (@, V)| 1Z° f(t = |y = x|, y, v)| dv =
ly—x|<t R3 |y — x|

with €]+ [«| < N — 1 and where we recall that w = (y — x)/|y — x|. Since 9,8, (w, v)| < [v°]* by
Corollary 5.8 and N, > 13, Proposition 4.11, applied for a = 1, provides

e(l+1t—1ly—x[—1ylD
(I+1—ly—x|+yD**2

[ 10uB @ 0l 2~ 1y = xl. v vl dv S
[RU
Moreover, as || < N — 1, the bootstrap assumption (BA1) gives

1L2¢ (F) /|2, ) S A 41— |y = x|+ 1yD 7 A+ 1= |y — x| = IyID

Consequently, the last two estimates yield

d _
0fr A / (Ut —ly—xh 2 Ay’ )
' [y—x|<t |y —X|2 4ty
and the result follows from Lemma 5.11. O

We pursue with the analysis of A;fsk As for the previous term, the estimate could be improved.

Proposition 5.20. We have, for any k € [1,3] and |y| =N —1,
3 ss = -1 -3
V(t,x) [0, T[x R, [ADLIE x) SEAN)A+1+|xD)™ (I+ 1]t —|x[D72.

Proof. We fix (¢, x) € [0, T[ xR? and we recall that K g] =0ML e (F) »/. Recall further from Proposition 5.7
that Aﬁi can be decomposed as the sum of four terms. Bounding the kernel in Aii” by Corollary 5.8
and estimating the derivatives of the electromagnetic field using (BA1), we have

A5 12, x)
A2 / ~ dy
<D [WOPI1Z* fI(z, y, v) dv . Ti=t—y—x|
|K<N_1/|y_x|§t (A+7+yD2A +Ir —[yID? Jrg ly — x|

For the next two terms, recall that Ty = 9*9, and the expression of K. Recall further from Corollary 5.8
that the integral kernels are bounded by |03, Consequently, we can bound |A§§{’H|(t, x)+ |Ai§(’m [(t, x)
by a linear combination of terms of the form

~ dy
Ri% :=/ |v,,x£zs<F)|<z—|y—x|,y>/ WOPIZ =1y — x|, y,v)|dv ,
ly—x|<t R3 ly — x|
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where |£] + || < N — 1. We estimate the electromagnetic field through (BA2) if || = N — 1 or by
Proposition 3.2 if || < N — 2. This leads to the bound

[Api 10 +1A, @)
- / Alog(3+ |z — Iyl
~ stz L+ THIYDA+ [T = [y[])?

dy
/ WOPIZ £l v, ) do—2
ly — x|

[k|<N—1

where T =t — |y —x|. Controlling the velocity average through the improved estimates of Proposition 4.11
yields, as N, > 13,

|AST N ) + 1A ) + 1405 @ x)

1 3N +3N+1 347 — _ d
S€A<A>/ og ( 4; ly —x[+1yD Y <eaA - 311(t’x).
y—xj<t A+t =]y —=x[+yD>A+t =]y —x|—=[yID [y —x] ~

S§S,1V

Finally, we can bound similarly |AY 1@, x) by a linear combination of terms of the form

dy
ly — x|’
where [§|+|c| <N—1, 1<n <3and V(, v) is of the form Cf, (@, v)0*[v°| ~!. We get from Corollary 5.8
that |V(w, v)| + vV, V(w, v)| < |93, so that Proposition 4.15 gives,

ﬁff 3=/ [Lze (F)|(t — |y — x|, y)’/ V(w, U)ax"?(f(f —ly—x[,y,v)dv
ly—x|<t R}

< lo g3NX+3N(3+T)

Y(t,y,0) € [0, T[ x R* x S?,
(my.0) €071 Mo+ THyD?

/ V(o, v)c’)an f(r,y,v)dv
R3

Applying it to 0 = w and T =¢ — |y — x| and estimating the electromagnetic field using (BA1), we get

e eAf logSNx+3N(3+t—|y—x|) dy <€AY‘D 1 %)
T e =y =X DA+ =y — x| = [yl [y —x] ™
Consequently, |ASS |(t, x) SEA(AN)YL ! (t, x), so that the result follows from Lemma 5.10. O

q & 4+3/4,1

Finally, we deal with the most problematic term, the one with an integral kernel carrying the noninte-
grable weight |y — x|,
Proposition 5.21. Letk € [[1,3]| and |y| = N — 1. Then,

_ log(3+1)

5 e
Y(,x)e[0, T[ x R, |A kl(t X)S€ (141 +x])3

Proof. Let0 < pu,v <3, |B| <N —1and
Gg(r, y) :=/ AZV(U, v)?ﬂf(t, y,v)ydv, (o,1,y)€ S? x [0, T[ x R>.
R3

Recall from Corollary 5.8 the bound on the kernel Afw and apply Proposition 4.13 for ¥ = A;kw We
obtain,

Y(o,7,y) €S*x [0, T[ xR}, |GP|(z,y) SEl+t+|y)>,
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which, applied for (o, 7) = (w, t — |y — x|), yields
dvdy
ly—x|3

— =3 =
ATT L0 SeX e n+ Y ul,, ufx:=‘/ Al (@, 0)ZP f(t—]y—x]|, y,v)
Bl=N-1 ly—x<1 /R

Fix |B] < N — 1 and recall from Proposition 5.7 that the average of o A’;w (o, -) on S? vanishes.

Hence,
dvdy

ly —x|3

dy
ly —x|3

uf, = V A (@, ZP f(t— 1y —xl,y,v) = ZP f(t — |y — x|, x, v))
ly—x|<1 JR}
<

—/ IGE(t — |y — x|, ) — GE(t — |y — x|, x)|
[y—x|=<1

For any (0, 1) € S? x [0, T[, we apply the mean value theorem to s +— Gg (t,x +s(y — x)) on the
interval [0, 1]. Then, there exists x, , in the segment [x, y] C R3 such that

S

Sy —al

Apply now Proposition 4.15 for & = A, in order to get, forany 1 <i <3,

Gl(r,y)—Gl(t,x) =w-V,GE(t, x5 )y — x|, @

V(0,7,2) € S* [0, T[ xR, 8,:GP|(r,2) =

/ AZU(U, )3, 2P f (7, z, v) dv
R3

log*V+ 3N (3 4 1)
147+ zph?
Applying the last two identities for 0 = w, T =t — |y — x| and z = x, , yields

S€E

1,x ~ 1 t— . 3 . 2"
ly—x|<1 ( + |y x|+|xw,t—|y—x\|) Iy X|

As|y—x|<1land xy;—|y—x €[x, y], wehave 1 +7 —|y —x| > %(l—l—t) and [x, ;—|y—x|| = |x|—1, so that

ATS @ x) SEXIT @ x)+ el +1+ |x)) 2.

We conclude the proof by applying Lemma 5.12. 0

As in the previous subsection, if Cpoot 1S chosen such that Cpoor > 2C gata and if € is small enough, we
can improve the bootstrap assumption (BA2) for the spatial derivatives Vj , L7y (F), with 1 <k <3 and
|yl = N — 1, by applying Propositions 5.17-5.21. The time derivative can then be controlled using

Vo Lzr(F)IS Y Vo, Lar(F)+ > 1J(ZPf)I,
1<k<3 IBI=lyI

which follows from the commuted Maxwell equations (see Proposition 2.4). We stress, for the smallness
condition on €, that €(A)? < 2eeP+IA,

6. Modified scattering for the distribution function

In this section, we determine the precise asymptotic behavior of the particle density and its derivatives
under the additional assumption (15) on the initial electromagnetic field. In particular, we determine the
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self-similar profile of the current density J(f) as well as the one of the Maxwell field F and we define
modified trajectories along which f converges to a new smooth density function.

6.1. Convergence of the spatial averages. Since the solution (f, F') is global in time, all the statements
of Sections 3-5 hold true for T = 4o00. We can then deduce that [ VA f dx converges to a function
defined on R3.

Proposition 6.1. Let |f| < N — 1. There exists a continuous function Q’OSO € LI N L such that,

|v°|Nv6<Q§o —fw ZPf, x, -)dx)

_1Og3NX+3N (3 + t)
<e€ .

Vi e Ry,
* LOO(R{’,) 1+t

Remark 6.2. This estimate directly implies that [v?|V»—10 fRi Zﬂf(t, x,)dx — |v0|N"_10Q'§o inL! (Rg),
as t — 400, with the same rate for convergence.

Proof. Letv € [R{f} and apply Lemma 4.7 in order to get, for all 0 <7 <,

Y]

K IOgSNx+3N(3+r) 10g3Nx+3N(3+t)
dtr<e—=.

0/N,—6
1) -
=t (1+T) 141

/2ﬂf(s,x,v)dx—f 2ﬂf(t,x,v)dx‘§é/
R3 R3 T

Consequently, there exists ng € LS° such that ng 7P f(s,x,v)dx — ng in L{° as s — 4-00. Moreover,
letting s — 400 in the previous estimate provides the rate of convergence stated in the proposition. It
implies |v0|1\’“_6Q’§O € LY and then, as N, > 9, ng € Lll). O

It turns out that these functions are differentiable for || < N — 2 and that 9, Q’go can be related to
other such functions Q% . For this reason, if Z* = Q; ZP, we will use Qgi?" P in order to denote 0%

Proposition 6.3. For any |B] < N — 2, ng € CN*I*“‘”(Rﬁ) and its derivatives can be obtained by

iterating the relations

09, 08 = % _jigh  1<i<3. (51)

Proof. Let (¢, v) € Ry x [R?J and note that

voavi/ 2ﬁf(t,x,v)dx=/ Q()izﬂf(t,x,v)dx—t/
R} R} R}

axifﬂf(t,x,v)dx—/ x'8,ZP £(t, x,v) dx.
R}

Writing 8, = —0 - V,, — 0*F,,/d,; + Tr, we get by performing integration by parts,

voavi/ 2ﬂf(t,x, v) dx
R3

X

:/ §0i2ﬂf(t,x,v)—ﬁifﬂf(t,x,v)dx+/ X (OMF, 0, — Te)(ZP £)(t, x, v) dx.
R3 R}

According to Proposition 6.1, the first term on the right-hand side converges to Q?c?”s — ng, ast — +oo
and in L°°([RRI3)). Following the proof of Lemma 4.7 and then using Proposition 4.5, one can prove
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. . ~ log(3 +1¢ 5
/ XM F, 8, — TR)(ZP ), x, v) dx| S ARECED o sup 10PN 2E £, x, v)
R} L+1 0 <l xems
_log3Ne 3N (3 4 4)
<e .
~ 1+t
We then deduce (51) and, by a direct induction, Q%, € CN~1-IAI(R3). O

Let us mention that any Q’go can be written as a combination of O, and Qf , where 7 is only
composed of complete lifts of Lorentz boosts ;.

Proposition 6.4. Let |B| < N — 1. Then:

o If Br > 1, which means that 7P is composed of at least one translation, we have Q‘OBo =0.

o Otherwise there exists n + |k| < |B| such that 7P = S"Z* and ng = (=3)"0%..

e Moreover, if 7B = ijZ", 1<j<k<3, then ng =9/ QﬁOk" — ok Qﬁof’(.

Proof. Assume first that 87 > 1. Since [/Z\, dyu] =0 or £0,» for any 0 < u <3 and Ze @0, it suffices to
consider the case Z# = 9, Z%. Then, by either applying Lemma 4.7 or by performing integration by parts,

‘/ 9,25 £(t,x,v)dx| SE1+1)"2 — 0, /axiféf(z,x,v)dxzo, 1<i<3.
R? R}

Otherwise 7 =0 and since S commutes with ﬁjk and §0i, there exists n+ |k | < |B] such that 7P =S"7Zx,
The result follows from an easy induction and the following properties, which hold for any |§| < N — 2:

‘/ ta,/Z\Ef(t,x, v)dx
R}

<E(141)"2 0, /xiaxiiéf(t,x,u)dx:—/ ZE f(t,x,v)dx, 1<i<3.
R? R3

Finally, if 7P = ij Z*, note that by integration by parts,

/Zﬂfdx:ﬁ-ifvoav@"fdx—ﬁk/voa,,_,?‘fdx

X X X

and it remains to apply Proposition 6.3. 0

We are now able to establish the precise behavior of J(f) in the interior of the light cone. In other
words, we improve Corollary 4.14. No such result holds for the exterior region since the decay can be
arbitrarily fast (we refer for this to the third estimate of Proposition 4.11). Recall the notation x° = .

Proposition 6.5. For any |B| < N — 1, the components of the electric current density J (2’3 f), that is,
JMZP f) = fR%(v“/vo)fﬁf dv, satisfy,

_ xH X _log®V N34 ¢)
t3J“(Z’3f)(t,x)—T(IvOISQﬁo)(;)‘Se g . pelo,3].

Vx| <t,
t

Proof. Let |[B| <N —1, 0<p <3 and |x| <t. Apply Lemma 4.12 and the estimate (41) to g(¢, x, v) :=
05
|

ﬁ“Zﬂf(t, X 410, v). Since the spatial average of |v”|°g is equal to the one of ﬁ"|v0|52ﬂf, we get

7% n . Y 1 3N.+3N 3 t
z3/ ”—zﬂf(z,x,v)dv—/ Y0328 £ (1, y, ) dy| <8 G0 (5
R3 V0 R3 v t t

()]




678 LEO BIGORGNE

As N, — 6> 5, we obtain from Proposition 6.1 that,
10g3Nx+3N(3 + t)
1+1 '

3 vt 05 08 v oos [ o -
Vv e Ry, le | Qw(v)—wlv | RSZ f@, y,v)dy|S€
The result follows from (52) and the last estimate, applied for v = x\//t . O

6.2. Self-similar asymptotic profile of the electromagnetic field. To identify the profile of F, we will see
that Q. generates an effective electromagnetic field. For this, we study F7 since it is the element of the
Glassey—Strauss decomposition of F' with the slower decay rate along timelike geodesics ¢ — (¢, x + ¢ D).

If the plasma is not neutral, Q r # 0, we will also have to improve the estimate for F92,

6.2.1. Behavior of Lzv(F)T along timelike straight lines. It will be convenient to lighten the notations
by denoting the kernel in the integral defining F7, which was bounded in Corollary 5.5, as

W(w, v)
[vO12(1 4+ w - )
Definition 6.6. Let, for any || < N — 1, [2’3 f1°°(v) be the 2-form defined as,

R P+ 0 Z+0 dz
VweR, [ZFf1®w ::/ WT<i’ Z ) Vs ( ) ‘
Lo rre= [ 2 1=p= ) PN T S ra =y

W (, v) := WL 0 F VW) S0 (53)

lz4+0]<1—[z]
Remark 6.7. We recall our convention (|v0|5Q’go)(w) = |w0|5ng(w) for any w € Rg.
Remark 6.8. It is crucial to observe that the domain of integration is included in {0 < |z| < (1 + |0])/2}.

Indeed, if |z| > (1 + |0|)/2, we have

lz4+0|>|z| =14+ 1—|0] >

>1—]z|.

1 -9
2
Consequently,
1 1 — 0]
<
402 = 2
In order to transform decay in |t — r| into decay in ¢ along timelike trajectories, we will use the next
property.
Lemma 6.9. Let (x,v) € R x R3. Then,

0,2 (x)[v°]? 0,2 n t
Vi<r=<4x)v’|, 14 , Vi > 4x) 75, = x+ v > .
t 4|02

lz| <1, [z +0] <1—-]z]| = <1l-Jz] <L

Proof. 1t suffices to observe that,

2|x| . -0 . 1+19] !
o sothat ¢—|x+tv|>1t— t—|vjt=t— t
— |V

> .
2 T 4p0;2
We have the following convergence result.

Proposition 6.10. Let |8| < N — 1 and (x,v) € R} x R3. Forall t > 1, there holds

Ve > 4)x| [0, 1> O

g 10g3Nx+3N+1 (3 + [)

121Z° 17 (1, x + 0t) — [ZP 10 (0)] S €x) 20 .
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Proof. Fix |[B| <N —1, (t,x,v) € [1, 4o0[ X [R{fc X [R{f’) and recall from Proposition 5.3 the definition of
[ZP £17. Next, we split the domain of integration of [Z” 17 into two parts,

~ dwd
tZ[Zﬁf]T(t,x+ﬁt)=t2f S / WT(g )Zﬂf(t—|y x—to], y w)—— Y47,

st ly—x| ly—x—19?
ly—x[=t—|y—x—10]

3
j::/ lz|<1 / WT(|Z—| w)Zﬂf(t(l—lzl) X+tz+10, w)dwt| (IIZZ

|z+ﬁ|£1—|z\

where we performed the change of variables z = (y —x —¢0)/¢ in order to obtain the second integral 7.
As we shall see below, this splitting is useful in order to identify and isolate the asymptotic profile.
We start by controlling the first term. For this, note that (53), N, > 10 and the last two estimates of
Proposition 4.11, applied for a = 1, yield, for all (w, 7, y) € S? x Ry x R3,

14+max(z—|y|,0)
(I+z+yD*

1MTamu»zﬂfuuyﬂwduW§i/ w'|Z° f(z, y, w)dw S Elog* N (3+1)
R% 3

w w

Note now that |y — x| >t — |y — x — t0| implies
t—=ly—x—10]=|y| St —|y—x =10 — |y — x|+ |x] < |x].
Hence, applying first the previous estimate for T = — |y — x — ¢0| and then (46), we get

log®M 3N 34t —|y—x—10)) dy
y—x—ril<t (14t —|y—x—t0|+|yD*  |y—x—1D]?

l[y—x|>t—|y—x—1t0]
log* N3N (34 |1 — u+wm2sz
L4t —|x+19]|

121ZP 17 (1, x+01) = T| S E(1+]x])e?

N

e(x)

(t, x+10).
According to Lemma 5.11, t2Y3p:2(t, x +10) <log(l+1). By applying Lemma 6.9, we then deduce

+ 02

(x) |00 lfm“N@+n)
+ b

2r78 1T Ay <z
[ZF 1" (t, x4+ 0t) — T| S €(x )10g(1+t)( 151

so that it remains for us to compare J with [2’8 f1°°(v). As in Section 4.4, it is convenient to change the
reference frame and work with gﬁ (T, y,w):= 2ﬂf(T, y+tw, w). In view of Lemma 2.9, the change of
variables y = x +tz 4+ 0t — wt (1 — |z|), for z fixed, leads to

dydz
J= f /’ mﬂ(—u)mwk%aa—m>yw%—————,
2=l e yretir <e(1-12)) |zl 1z12(1 — |z])3

|z4+0]<1—|z|

where we used w to denote the following function of (y, z):

X—y+tz+10 . X—y-+iz+1t0
R —— R——A4 w = ———
r(1—z]) t(1—1lz])
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By the triangular inequality, we have |7 — [2’3 fI°l < J1 + J» + J3, where

Ji / AP dydz
1.=— - p_dvds
|Z+172|‘£11—|Z| |x—y—+tz+10|<t(1—|z]) |Z|2(1_|Z|)3
e T
A’]S —WT( >(|v0| H=zD, y, w)— WT( )(|v0|5gﬂ)<t(1_|z|)’y’ )’
& |z]” 1—z] -
< -+ Z\‘f‘/ﬁ dde
Jo = V j21<1 / ) WT(IZI “lz |)(| | gﬁ)(t(l—lzl),y, 1—|Z|)|z|2(1—|z|)3 ’
|z4+0]<1—]z] [x—y+tz+10|>r(1—|z])
dz
B
Hi= A,
lz|<1 201 _ 3
|z+fJZ|<1—|Z| lz|=(1—]z])
Z 9 Z+v
AL :=WT<|Z| —|z|>[/ (| Zﬂf)(t(l—lzl) Y13 |>dy (00 Qﬂ)( - |>]

where, for Ag , we used that the spatial average of g# is equal to the one of Zb f. In view of Remark 6.8,
we will be able to transform time decay for the integrands of .7; into decay in ¢, at the cost of powers
of vY. In particular, Remark 6.8 and N, > 7 imply the following inequality that we will use several times:

d d d
/ / > : 5/ T 2202 e (54)
lz|=1 Ry (N 221 = z))" 2=l z]2(1—|z])"
e+ <1—]z] * jz+0<1—z]

We start by dealing with 7. Since |VVV| <(A—-|VH32= |V0|3 for all |V| <1 by Lemma 2.9 and in
view of the bounds (53) on W, the mean value theorem yields

lx —yl
A%< 220 Gup [VOP(P |+ 1Vug (e — 12D, y. V)

t(1=lz]) yeps

1+ |x| _
< v sup VOO Mgl + Vg D — [z, X V).
(L= 1zD™M™ ™ x.v)ers

By applying Lemma 2.8 and then the estimates of Proposition 4.5, we obtain

&(x)log® V(3 41)

B 0(9,N:—25«k
A7) < sup VPN 228 £l (1 2. X, V) € ,
ra 'Z') " Uzmx,wew (A= 12D ()

where we used N, > 12 and |8| + 1 < N. We then deduce from (54) that

10g3N-‘+3N 3+

108
Ji S €(x)|v] ;

Next, we control Ag using WT|(-, V) < VO N, > 12 and Proposition 6.1. This allows us to bound .73
through (54),

1 3N, +3N(3+I) _ o 3NX+3N(3+t)
o8 Ty S P E2E _

Aﬂ
3000 —f2) 1+1¢
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Finally, note that on the domain of integration of 75, we have, for w = (z + 0) /(1 — |z|),

/\2 . A . . A .
| — |w°|2(1— |z + D 2) _ |w0|2(1 lz] + 1z + D1 2|z| |z +d]) < 12 2lx =yl
(1—1z]) (I =1z (1 =zt
Since WT (-, w) < w’ we get
(x)

Jo = ~—sup sup |w°|8(y)N"_3|g’3|(r,y,w)/

Tt (y,w)e[R{G

/ dy dz
2=t Sy ()N 22 (1 = |zt

lz+d]<1—|z]

Using once again Lemma 2.8 together with Proposition 4.5, we get, in view of (54),
Jo SE) oM N 3+ O
This directly provides us the asymptotic profile of Lz (F)" = =35, Cy [ZP £1T.
Corollary 6.11. Let |y| < N — 1 and L7v(F)® := = ¥ 5\, C4[Z* f1%. Then,

V(t, x,v) € [1, +oo[ x R} x R?,

10g3Nx+3N+l (3 + t)

2Lz (F)T (£, x 4+ 1) — L7 (F)®(v)| < €(x)* "8

t

Moreover, if ZV contains a translation 9« or the scaling vector field S, then Lzv (F)* = 0.

Proof. We only have to focus on the second part of the statement. Recall from the proof of Proposition 6.4
that we can reduce the analysis to the cases Z¥ = 9, Z if yr > 1, and ZY = SZ* otherwise. Recall
further from the commutation formula of Lemma 2.3 and Proposition 2.4 that

VELy, 2 (Fyw =Y CET@uZ5 f)v. VFLsze(Fw= Y CEI(SZE f)y+3CEI(ZF f)v.
[E1=<lx] 1=«

It remains to recall from Proposition 6.4 that Qiﬁfé =0 and Q§§ = —3Q%, so that Lz, (F)*® =0. O

6.2.2. Behavior of Lz» (F)%® along timelike straight lines. Recall from Proposition 5.3 and (50) that
F%@ g the sum of F'™ which verifies OF ,i‘fjm = 0, and a term which is strongly decaying in the
interior of the light cone. If QF # 0, F decays initially as »~2 and one cannot expect to prove strong
decay estimates for F'™ through Proposition 2.21. For this reason, we need to analyse in detail the
homogeneous part F'°™ It turns out that it decays faster in the interior of the light cone and then along
timelike straight lines, so that it will not contribute to the asymptotic Lorentz force.

In order to improve the naive estimate of Proposition 5.13, one can note that the leading-order term
F(0,x) = Qpx;/(4m|x|?)dt Adx’ of the asymptotic expansion of F hom(y . corresponds to the static
electromagnetic field generated by a point charge Qr located at x = 0. It is derived from the potential
A = Q(4mr)~! dr which satisfies the Lorenz gauge, and then A, =0o0n R x (R3 \ {0}). To deal with
our evolution problem and the singularity of the Newton potential, we introduce

x Or
At x)y =g (¥ =0 A0 = P2 (xl=ndt - g €CUR 0D, X =0 Aliiso =1
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Then, A is smooth on R x R? and OA x = 0. It motivates the introduction of
OFx; OFrXx;
47 |x|3 47 |x|?
= (e = O F(t, ) — 255 (| — 1y dr ad,

4 |x|

F(t,x) :=dA(t, x) = x (x| —t)dr Adx’ — x (x| =) ds Adx’

which, in view of [(J, 8,+] = 0 and [JA; = 0, satisfies [1F,,, = 0. Since,
e forany I' e K\ {S}, [, ' =0 and [, S] =201,
o forany Z = Z*3,» € I and any 2-form H, we have £z (H),, = Z(Hy)+ 0y (Z*) Hyp + 0,0 (Z2) Hy,

we then have Dﬁzy(ﬁ)w =0 for any |y | < N—1. The key idea will then be to consider £Zy(F)h°m—£zy(f).
More precisely, the following estimates hold.

Proposition 6.12. For any |y| < N — 1, we have,
V(t,x) €Re xR, Lz (F)22(t, x) — Ly (F)(t, x) S AQ+1+ x0T+ — x|~
Remark 6.13. We will not use it here, but we have
1L2v(F) — x (x| =)Lz (F)(t, )| S Qr (1 4+ 1) Lo<ie—r=1-

Moreover, L, (F)= Lo, (F)=Lg(F)=0forall 1 <j <k <3. We refer to [Bigorgne 2020a, Section 5]
for more information concerning F.

This result implies that the leading-order term of £z (F)%@(t, x) is supported in the exterior of the
light cone. Before proving it, let us investigate its direct consequence for the behavior of F%% along
timelike trajectories.

Proposition 6.14. For any |y| < N — 1, we have,
V(t, x,v) € [1, +oo x B2 x R,  [12Lz (F)Y4 (1, x +10)] < Ax)? 0%,
Proof. Let (¢, x, v) € [1, +00[ x R3 x R3. If t < 4(x)|v°|? it suffices to apply Proposition 5.13, providing
|Lzr (F)32 (¢, x +10)| < At71 < 16A (x)? 004 3.

Otherwise, according to Lemma 6.9, we have t — |x + 10| > ¢/(4[v°|?), so that x ™ (|x + 10| — ) = 0 for
all n € N. Consequently, we get from Proposition 6.12 that

|Lzy (F)98(t, x +10)| S At (A4t — |x +10]) 718 < 16 A 1O * 3. O
The first step of the proof of Proposition 6.12 consists in controlling the initial data for £z (F)"™

Lemma 6.15. The assumption (15) on the initial electromagnetic field F (0, -) implies,

Viy| <N —1, sup sup (x)*PPHNVE £ (F)" —VE L2/ (F)|(0,x) S A. (55)

le|<1|x|=1

Note that V{ , Lzv (F)(0,x) = Vi Lz (ﬁ)(O, x) forall |x| > 1since x =1on[1,4o0l.
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Proof As F is defined on R x R3\ {0}, Lz (F) is well-defined for |x| > 1. We point out that
V,Lzy(F)(0, -) does not necessarily vanish (consider for instance the case Z¥V = Qg;). Moreover,
L7y (FYP™(0,.) = L7 (F)(0, -) by definition. Hence, the left-hand side of (55) is bounded by

sup sup (x)> TN VE £, (F = F)[(0,x) S sup  sup (x)*P RNV (F = F)|(0, x)

lk|<1|x|>1 [E1<ly|+1 |x]|>1

<A+ sup sup (x)2FH NG, VEOFI0,x),  (56)
[BIZlyl|x|=1

where, in the last step, we used the assumption (15) and that F is independent of . Now, remark that if
n > 1, the Maxwell equations implies

33" 9P By =—0""19P(V, x E), 80" '0PE)=0""'9P(V, x B) —/

. 507197 f dv.

v

Let E and B be the electric and magnetic field associated to F according to (4), so that E'=x'Qp/(4nr?)
and B=0. As V, x E =V, x B =0, we can bound (56) by A by performing an induction and using
(15) as well as the initial assumptions on f. O

We are now able to prove Proposition 6.12 and conclude this subsection. As € < A, (50) implies,
V(t,x) € Ry xR Lz (F)R = Ly (F)™™(0,20) S A1+ )T A+ e =[x~

Finally, 1L z» (F )E‘;m — 0Lz (F )uv = 0, the decay assumptions on the initial data given by Lemma 6.15

and Proposition 2.21 yield,
V(t,x) € Ry xR, Lz (F)M™ = L2y (F)](1,0) S A+ +1x) 7 (A 411 = %D~
6.2.3. Self-similar asymptotic profile of Lz» (F). We are now able to study the full Maxwell field.

Corollary 6.16. For any |y| < N — 1, there exists a 2-form Lzv (F)*, independent of t, such that,

lo 3N, +3N+1 34t
V(t, x,v) € [1, 0o X RE X RS, 112L2r (F)(t, x +01) — L2v (F)® (0)] < A (x)2[°B—2 3 ©O+0
Moreover, for any n > 0, there exists C,, > 0 such that,
|)C| 10g3Nx+3N+1(3+t)

V(t.x) € [1 +ool xR}, — < 1-n, zzﬁsz)(r,x)—ﬁzy(F)we)‘ SAC, 5

Remark 6.17. For the most important case, |y| =0, we have 4w F* = —[ f]°°, where [ f]* is explicitly
written in Definition 6.6.

Proof. Fix |y| < N — 1 and (¢, x, v) € [1, oo[ x R} x R3. Applying Proposition 5.14 and Lemma 6.9, we
have

+|v0|

log(3+1¢
[2|EZV(F)S|([,X+6[)§€A 4Og(t+ ))

tlog(3+ |t —|x - t9]]) < A((x)2|v0|4
(141t — |x —19]])2
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We then get the first part of the statement using the Glassey—Strauss decomposition given by Proposition 5.3,
Corollary 6.11, where Lz (F) is introduced, and Proposition 6.14. For the second part, it suffices to
apply the first estimate, with a slight abuse of notation, for x =0 and v = x /1. (|

We deduce from the previous result a uniform bound on Lz» (F)°°. Moreover, it turns out that this
quantity vanishes in certain cases, providing improved estimates for Lz» (F).

Proposition 6.18. For any |y| < N — 1, we have |Lz» (F)*®|(v) < év/v0 Moreover, if |y| > 1 and Z”
contains a translation 9 or the scaling vector field S, then Lzy (F)*° = 0.

Proof. According to Proposition 5.15, t2| L2y (F)T|(t, t0) < é(1 — |9])~1/* < 2é+/v0. All the properties
then follow from Corollary 6.11. (|
Finally, we investigate the regularity of £y (F).
Proposition 6.19. Forany |y| <N —2and0<u,v <3, Lzr (F)Z‘; is of class CN=1=I. Moreover, for
any 1 <k <3, we have
V00 Ly (F)5o = Loy zr (F)o+20" Lzv (F)5o =80 Ly (F)Ro—8k Lzv (F)o—80 Ly (F)oo—8k L2v (F).
The angular derivatives satisfy
(07 By =V 8,1 Lzr (F) = Lay,zv () — 81 Lzv (F)y + 85 Lzv (F)3 — 8] Lz (F)ig + 85 Lzv ().
Proof. In order to lighten the notations, we introduce X := x + ¢0. Then, we compute
anvk (Lzv (F)pw (, X))
=18, — 009 (Lzr (F)yu) (1, X)
= (QokLzr (F)yu)(t, X) = X 8, (Lzr (F)) (8, X) + 04 (" = XD (L7 (F)y) (1, X)
= (QokLzy (F)u) (1, X) =8 (SLzr (F)yu) (1, X) = x (L7 (i) (1, X) + 0 278, (L0 (F) (1, X).
One can already notice that the last two terms enjoy strong decay properties. More precisely, since
Lemma 6.9 implies 1 + |t — | X|| 2 (1 + 1)/({(x)|v°|?), we have from Proposition 3.2
Afx)* 0

1?1 = xX0, (L2 (F)) (8, X) + 05 %78, (Lzv (F)u) (8, X)| S T

The result then follows from
Lszy (F)uw = S(Lzr (FYuw) +2Lzy (Fuv,  Lszr (F)* =0, (57)
Loy zr (Fluy = Qoc(Lzr (F)yuy) + 8y Lzy (Fiw + 8y Lzv (Fow + 80 L2y (Fuk + 85 Lz (F)uo
and Corollary 6.16, which give us
H3NA3N (3 4 p)
(141)? ’

where v°9,4 L7y (F ),y (v) is given in the statement of the proposition. To get the expression of the angular

N lo
120%0,0 L0 (Fyun (8, x +10) = 0%0,0 L0 (F)Z ()] S Alx) o0 B2

derivatives, notice that

(0 By — V¥ 0,) (L2 (F)un (t, X)) = (QjxLzr (Fun)(t, X) — (67 8 — x5 (Lzr (F)) (@, X),
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and
La,zr (Fuy = Qjx(Lzr (F)p) + 8], Ly (F)iy — 85 Lzv (F) ju + 8] L2y (F)uk — 85 L7 (F)yj

and apply the same arguments. The C¥~!~1”! regularity is obtained by an induction. UJ
For later use, we prove that the structure of the asymptotic Lorentz force is preserved by differentiation.
Corollary 6.20. Let 0 < v < 3 and define
, 0P oM
Azv ot x,0) :=1"—Lzv (Fu (1, x) — _OEZV(F)Z?)(U)’ lyl| <N —1.
v v

For any |y| < N — 2, there holds
S(Azvv) = Aszv v,
ﬁjk(Azy,v)=Aijzyv 5jAZVk+(SkAZVj, 1<j<k<3,
Qoi(Azr ) =Agyzro —80Azr i —8 Agy o +2 0(x —t0)H Ly (Fu(t,x), 1<i<3.

Proof. The first identity follows from S (t?) = 22 and (57). For the other ones, start by noticing that,
according to Proposition 6.19 and for 1 <i <3,

H 14
( ﬁZV(F)W(v)) — 09, (U—ﬁzr(F)ﬁ?)(v))

DM .
- —ﬁgol 27 (F)5(v) — SO—EZy(F) agmczy(mgg}. (58)
Similarly, for 1 < j <k <3,

— H
ij(Z—OEzy(F)ﬁﬁ(v))Z—Eg,kzv(F) (v)—SJ Ezy(F) +3k ﬁzv(F)°°- (59)

Recall that we denote by v the 4-vector (v*)o<, <4, so that

R 1 R 1’2 l2 t2
Z<IZF£ZV(F)MV>=Z<|UO|2)U Loy (Pt Lz (F)®,0)4 1505 L0 (F)®,1Z,00) (60)

2

ZW") Ly (F)uy. (61)

| 0|2EZV(F)([Z v], v )+|

0|2
o If Z=Qq;, we have [Z, v] = —v' 9, — v‘)ax,- and Z(v“) = 621)" + SLUO, so that the sum of two terms in
(61) vanishes. It remains to remark that [Z, d,v] = —58' 8, — 8%9;, Z(+2/|v°|?) = 2t (x —10")/[v°|? and to
combine (58) with (60).

o If Z =Qjy, there holds [Z, v] = —v/ 9+ vkax_/ and ?(v“) = Sﬁvj — Si;vk, so that the sum of the two
terms in (61) vanishes once again. The result then ensues from 2(t2/|v0|2) =0,[Z, 0] =—8) 0, +8§8xj,
(59) and (60). O

6.3. Convergence of the distribution function along modified characteristics. Motivated by the discus-
sion in Section 2.8.4 and by Corollary 6.16, we modify the linear spatial characteristics ¢ — x +¢0 as
follows.
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Definition 6.21. For (x, v) € Ri X [RR%, let X (-, x,v):t > x+1t0+%(,v) be the ‘[rajec‘[ory11

. S . 8 =00
X (t, x,v) :==x"+10' —log(t)v“Flfo’](v)—0
v
i ~i log(t) AL 00 A AL 00 x .
=x"+tv —T(v Fui (v)+v'v Fuo(v)), teRy, i e[l,3]. (62)

For simplicity, we will often write X instead of X« (¢, x, v). By Proposition 6.18, the components " of
the correction term % satisfy,

vVt >0, |<€i|(t,v)§é|v0|_%log(t), i €[1,3]. (63)
We now bound the time derivative of a function evaluated along the modified characteristics.

Proposition 6.22. Let f: R, x Ri X [R{?) — R be a sufficiently regular function and introduce h(t, x, v) :=
f(t, Xg(t, x,v),v). Then, forall (t,x,v) €[1, +oo[ x R x R3,

34+3N,+3N (3 + t)
(141)t+e

lo
18,111, x, v) < |Tr() (1, Xeg, v) + A—2

> I Z LIt X, v).

ZE[FDO

Proof. We have, for all (¢, x, v) € [1, +o0[ X [RfC X [R?J,

al‘h(l’y X, U) - (atf + aiax[f)([v X%? U) + 8l‘<gi(tv U)axif(tv X%? U)
=Tr(f)(t, Xg) — 0" F, 7 (t, Xg)8yi f (£, Xeg, V) 4+ 8,67 (£, )i f (£, X, V). (64)

Recall from (14) the relation

000, = —t(3, — 0/9°0,0) + Qoj +20;0 — /S — D dlzgide, 1<) <3, (65)

1<i<3

in order to rewrite d,; f (¢, X¢, v). As v°8,%"(t, v) = —(l/t)f)“F,fO’j(v)((S; — ﬁjﬁi), we get

Bh1(t 2. 0) < |Tr(OIE X )+ Y D 104 F, |1, Xe)

1§j§3 /Z\E@()

(t, X¢,v)

7 -~

wZf
1

+ muzF(t, Xg) — FX W) 8,2 fI(t, Xg, v).

We deal with the second term on the right-hand side of the previous inequality by controlling the Lorentz
force through Remark 4.3, so that |0“Fﬂj|(t, Xo) SAQ4+16)720°%z(t, X4, v). Next, by Corollary 6.16
and the mean value theorem,

[2F (1, X)) — FPW)| < [f*F(t, x +10) — F®@)| + 2| F (1, X)) — F(t, x +1D)]

10g3NX+3N+1 (3 + [)

< A(x)? 08 +12|€(@, v)| sup IV, Fl(t, y).

(1+41)° ly—X|<I€](t,v)

HRecall that F® is a 2-form, so that D4 ﬁ"Fl‘Z‘S =0.
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In view of the estimate of V; , F' given by Lemma 4.2 and the bound (63) on ¥, we have

341
Mwoﬁ sup zz(t, ¥, V).

P16, v)|  sup Vil Flt, y) S s e
y—X<¢|=IC|(,v

~Y
|y—x|<|%|(z,v) vv

Since |V, z| < 1, the mean value theorem yields

t log(3+1)

z(t, x +10,v) < sup 2(t, v, v) < 2(t, Xig, ) + —— log(3 +1) < log(3 +1)z(t, Xos, v). (66)
ly—X|<I](,) V0

Consequently, as (x) < z(t, x + 10, v), we have
P F(t, X) = F¥ )| S A1 +0) 7 o™ V33 40)|0°*22 (1, Xe, v).
We then deduce the result from the previous estimates. O

By applying this result to f, we obtain that there exists foo € L7, such that f(z, X¢, v) = foo(x, V)
as t — 0 (see Proposition 6.34 for more details). Applying it again to 95 f we could easily deduce that f
is smooth with respect to the spatial variables. However, obtaining the regularity in the velocity variables
requires a more thorough analysis. Indeed, 9, (f (¢, X¢, v)) is deeply related to Qo f(, X, v), which
does not converge.

6.4. Modified commutators. Let Ze @0 \ {0, 0,1, 9,2, 0,3} be a homogeneous vector field. Contrary to
the case of the translations, the error term [T, 2]( f) does not decay sufficiently fast in order to prove a
convergence result for Z f, even along the modified characteristics. Indeed, recall from Lemma 2.3 that

Tr(Zf) = =0"Lz(F)u/ 8, f + 850" F/ 9, f

and let us identify the terms with the slowest decay rate. Rewriting d,; by using (65) and estimating the
electromagnetic field through Remark 4.3, we have

Tr(Zf) - #(f)“ﬁz(F)uj — 8501 F, /) (85 — 0,0") 0, f‘ SA(407? Z VT fL (67)
FGPO
In view of Proposition 4.5, the right-hand side is bounded by €(1 + ¢)~21log’ (3 + ) and then belongs
to L}L;f’v. On the other hand, if £(F)* and F* does not vanish, the decay rate of #|L, F|+t|F| <t~}
along timelike trajectories is at the threshold of time-integrability. For this reason, we modify the linear
commutator Z in a way that is similar to how we modify the spatial characteristics. More precisely,
motivated by Corollary 6.16 and (67), we introduce the following vector fields.

Definition 6.23. For any A= @0 \ {0, 0,1, 0,2, 0,3, S}, we define Zmod and §mod g

A A7 / A A7

Smod | B . . 83-_1)]'1) d . 8=
Zmed .= 7 — log(t)v’*EZ(F)ZO’J (V) 50, gmod.— ¢ +10g(t)v”Flf°’J(v)—08 i
v v

We further define the correction coefficients %g (t,v) = —¢'(t,v) and

~ =000 log(r
CL(t,v) = —log(0) 0" L2 (F) (v)-L— =_0g()(

0 01 Lz (F)P> (v) + 010" Lz (F)S5(v)),

so that $™4 = § 4+ %%(1, v)d, and Z™ = Z + CL(1, 0)d,.
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Remark 6.24. Recall that t|Ls(F)| < (1+4¢)~'~? in domains of the form {r > (1 —8)r} since Ls(F)>® =0.
This is why we do not need to compensate the term related to Lg(F') in (67).

We have the improved commutation relations.

Proposition 6.25. Let Z € K be a rotational vector field Q2 ji or a Lorentz boost Q. Then, fort > 0,
A osi

“Zmod _l 241 Jj_ 0, j 8-11'_ij .
(Tp, 27 = -tV (Lz(F)) =Lz (F) ) =5 i
t v

e o N N . o
_F’CZ(F)MJ <on+zoj3;—v] S— Z v’ z0i 3xi> _%%Uuﬁax,- (F), 7 0y +0"F,’ 3Uj<5%3xi.
1<i<3
For the scaling vector field, we have

A Af

U 2gm j oo,y 5 = 050
i + - (P05 (P = L5 (PP L—5"—)au

1 R . . 8 — ﬁjﬁi
[Ty, S™%) = —;(rzv“(fw -t ——
I N N N
+ 5 (F’ - cS(F)MJ)(QOj +20i0 — /S — > v’z(),-ax,)

1<i<3
— G0 Ly (F)p! 8y + 0" Ful 0,650,

Proof. Consider first the case Z = Qj; or Z = Qo;. In view of the commutation relation of Lemma 2.3,
[Tr, Z™ = Tp(€5)d, + [T, Z1 + C5[Tr, 331 = Tp(€5)d, — 0" L2(F),/ 8,0 — €50" Lo, (F)u? 9,

It then suffices to use (65) in order to rewrite d,, in the second term and to compute
o s

i L., 00, 85’ “UY L aup g i
TF(%’Z\):—;U 'C'Z(F)l/- ’ (U)T+U Fﬂ avj‘ff.
The case of the scaling S can be treated similarly since L£g(F)* = 0 according to Proposition 6.18. [

Apart from the term involving Lg(F'), already discussed in Remark 6.24, it is clear that any of the error
terms decay almost as 11~ for, say, |x| < /2. At this point, we could then prove that f., is C' in v.
However, since we would like to show f», € CV72(R3 x R3), we need to state a higher-order commutator
formula for the modified vector fields. For this purpose, we introduce the set

Py = (3, 9,0, Q09 QU s™ | 1<i <3, 1< j <k <3},

and we consider an ordering on it, so that @6“0‘1 = {/Z\m(’d’i | 1 <i <11}. Given a multi-index 8 € [[1, 11]7,
we will then denote Zmod-A1 ... Zmod.f, by Zmod.B We will further denote by Byu (respectively Br) the
number of modified vector fields (respectively translations) composing ?’“Od*ﬂ, so that |8| = By + Br.
Furthermore, we will use the schematic notation P, ,(%) in order to denote any quantity of the form

[]172%@%), (r.@eN, 1=<i<3, Z'ePo, Y l|al=q. qr= Y &r. qu:=q—qr,
1<k<p l<k<p 1<k=q
where g7 > 1 when at least one translation d,« is applied to at least one of the correction coefficients. By

convention, we set Py (%) =1 for p = g = 0. We recall from (10) the weights z,x € k;, 0 <X <k <3,
which commute with the linear transport operator Tj.
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Proposition 6.26. Let Zmod.B ¢ @88 3 Then, [TF, 2m°d’ﬂ] can be written as a linear combination of the
following types of terms:

1 1 . N N o~
R (5 0.2) P (O) (19 Lzr (Fos = " Ly (F)50)) 2, (T-1)
1 1 . =
SGR(720.2) Ppg )Ly (Fun 2, (T-2)
o 1 R ~
SSR(7 0.2 Pra @)Ly (F)nZ", qryr =1, (T-3)

where R is a polynomial in 1/t, 0 = (ﬁi)15i53 and 7 = (Zuk)o<p<k<3, of degree deg, R in z, and
gy +deg, R<Bu, p=Pu, q+lyl+icl=IBl+1L, qlyl.Ik[=IBl, O0=<a, i, v=<3.

Remark 6.27. In fact, we could prove that, as for the first-order commutation formula, most of the error
terms satisfy a form of null condition. Since this property is not crucial for our purpose, we chose to
demonstrate a result requiring a much simpler analysis.

Proof. Note first that the result holds for any |8| = 1. One can see it by applying either Lemma 2.3, for
the translation, or Proposition 6.25 and by rewriting all the v derivatives as v°9,; = Qo j— 10— x7/9,. Let
n > 1 such that the proposition holds for any |8| = n and consider a multi-index | 89| = n + 1. Consider
further |8| = n as well as Zmod ¢ @g“’d such that Zmod-Ao — ZmodZmod.f 304 note

[TF9 2[110(21,,30] — [TFa 2‘m0d]’z‘mod,ﬂ + Zmod[TF’ 2[110(1,/3]. (68)

We can deal with the first term on the right-hand side by applying the result for first-order operators and
by noticing that 75 zmod B for |E] < 1, can be written as a linear combination of terms of the form

Ppy(6)Z5, p<Bu. au=<Pu+éu—1. q=<IBl+EI—1, q+I¢|<|Bl+I&]. (69)

For the second term, we apply the induction hypothesis, so that [TF, 2‘“0‘1*’3] can be written as a linear
combination of terms of the form (T-1)—(T-3). In order to deal with them, we will use the following
properties:

« 0(0) =1, QIN(r) = x/ = —z0; — 197, S™4(t) =t and Z™(r) = 0 otherwise.
o If Zmod — § . then ZMod(xk) = Sl’i. Otherwise, there exists 0 < A < 3 such that Zmd(x*) = +£x* + %%
o ﬁg}."d(vo) =v/ forany 1 < j <3 and 2m°d(v0) = (0 otherwise.
o There exist four polynomials Ry, ..., R3 such that
Z™Y(R(1/t,,2)) = Ro(1/, 9, 2) + €5Ri(1/1,9,2), deg. Ry <deg. R+ 1, deg_ R; <deg, R,

where we set %gxu := 0. Moreover, if Zmd # @g‘]f’d, then deg, Ry < deg, R. This can be obtained by the
first property and [Bigorgne 2020a, Lemma 3.2], giving,

VI ePy, V1 <i <3, Vzek, T e{0Uk;, 8,.:(z)ef0, 1,01 <k<3}.
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o If Z™4 = 5., we schematically have Z™4(P, ,(¥)) = PO (cg) with q =g+1and qH =qu.
Otherwise, Z™4(P, , (%)) = Pl @)+ P2 5(€), withq' = q =q+1,qy=qu+1and g =qu.

o Zmod7Zk _ 77k + %éax, VA and Zm"dﬁzy (F)j, can be written as a linear combination of
Lzzv(Fliw, 5Ly, (F)y,  Lzv(Flug, 0<p, & <3.

Hence, we obtain by applying Zmod o any quantity of the form (T-1), (T-2) or (T-3) (corresponding to
|B] = n), a combination of terms of the form (T-1)—(T-3) (corresponding to |By| =n + 1), as well as

A

~ 1 1 . ~ oM v ~
T[Zmod] — ;R(;’ 0, Z) Pp,q(%)zm()d (ZZFLZV(F)IW — FLZV(F)Z?)(U)) ZK’

where 0 <v <3, g +|y|+Ic| <|B|+1, max(q, |y|, [«]) = |Bl, p < Bu and gy +deg. R < . Assume
first that Z™9 is a translation d,.. Then,

289 . . ~ A . .
T[0,:]= —AR(I/t, D, 2) Py g (€)0" Lzv (F)p Z* + —R(l/t, 0, 2) Ppg (6)0" Lo, 20 (F)nZ

is the sum of a term of type (T-2) and a term of type (T-3). Otherwise, Zmod — 7 4 %’ d,i and, following
the previous computations, we have

TIZ™N =TIZ)+ ¢TI0, =TIZ1+ R(/1,9.2) Py (€YEL La, 70 (F)n 2",
where the last three terms are of type (T-3). Accordlng to Corollary 6.20, T [Z] is a combination of terms
of type (T-1) and, in the case 7= ﬁo s (T-2). O

We now control these error terms and then prove a uniform boundedness statement for Zmod.p f.
Because of regularity issues on the coefficients %, which are of class CV ~2, we are not able to deal with
the multi-indices || > N — 1.

Proposition 6.28. Let || < N —2. Forall (t, x, v) € [3, 400[ X [R{i X Rg, there holds

Zmod, 8 10g3N +4N() 24 By Tk
I Te(Z™ )1, x,0) S A > WOIPPZE £, x, v).
lc]<IBI
Moreover, NN
~ log”™* t
O TN T2 |13 v) S Ees 2

Proof. Fix (t, x, v) € [3, +00[ x [R{fc X [R{?) and let us prove first the following property. Consider P, , (%)
and R(1/t, v, z) a polynomial such that p < By, g < |B| and gy +deg, R < By. Then,

. log" (1)
RO/, D1 Ppg ()11, %, 0) S 25 —L2P1(1,x,v). (70)

For this, remark first that, for |§| < N —2, i € [1, 3] and Ze @0 \ {0, 0,1, 0,2, 0,3, S},
~ . ~ ~ (D™
ZEEDIEx )= D Ty L= Y 127 log()] ZK(EL',Z(F);?U)

ly |+l <I§] 0<v<3

yr=&r

Note that the case Z = S leads to a similar estimate.

(v).
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o We have |Z7 log(1)| < 175725 (¢, x, v) log(r). Indeed, | Z? log(¢)| < |t 77 Py, (x/1) log(t)|, where Py,
is a polynomial of degree at most yy < &y, and yr = &r. Finally, recall that |x|/t < |x — 0]/t +1 <
2z(t, x, v).

o To deal with the last factor in Z,, ., note first that |[«| +1 < N — 1 and that this quantity vanishes if « is
composed of at least a translation or the scaling vector field S according to Proposition 6.18. Then, using
first the relations (58)—(59) and then Proposition 6.18, we get

PR 7%
‘Z“(Z—OLZ(F);‘;) ws >

[¢1=<]k|+1
IR(1/1, 0, 2)||Pp.g (E)|(t, x, v) S 2% R (1, x, v)1 =7 294 (¢, x, v) log” (1)€”,

(v) Se. (71)

_£Z£(F)
0

We then deduce that

which implies (70).
Apply Proposition 6.26 in order to reduce the analysis to the treatment of terms of type (T-1), (T-2)
and (T-3). By Corollary 6.16 and (70), we can bound any term of type (T-1) by

3N,+4N (l) 3Nx+4N( )

08
vY[°lo t ~
v log WO 122HPH Z% f(t, x, v),

007148

log

A (x —10)212PH Z€ f1(t, x,v) S A

t1+5
since (x — 1) < z(¢, x, v) and where || < N — 2. We deal with the ones of type (T-2) by using (BA1),
(70) and Lemma 2.6. There are bounded above by
Alog" (1) (14t = |x D[Pz
(t+1xD 2 —x]hv° 1+ |x|
Finally, let 73 be a term of type (T-3). Using first (70) together with Proposition 3.2 and then Lemma 2.6,

P fI(tx, ) < AE ()| 013122481 Z% £1(1, x, v).

~ logh =2(t =
292 1t v) S AE 0148 2% £ 1, x, ),

AlogN=2(r)
P 004r (14 Jt — x| T

We deduce from that the first estimate of the statement, which, through an application of Proposition 4.5,
implies the second one. 0

Corollary 6.29. Let |8| < N —2. If By < Ny — 2, there exists D > 0 such that,
Vi=3, [N TZ f () S eePh (72)

Proof. Note first that we can obtain, by a much simpler analysis than in the proof of Proposition 4.5, that
(IPNREAS 2’3f(3, ., -)||ch>§u < € for all |8] < N. Consequently, using (69) and (71), we get,

VIBI<N =1, O™ ZmM 3 e, S Y IOV ZE Bl ), SE

lel=<IBI
Hence, it suffices to prove, according to Lemma 4.4, that
. A0 Nv=7 Z‘mod,ﬂ ADLpO N7 2‘mod,ﬁ g
|TF<|v°|Nv—7zm°d’ﬂf)|<z,x,v)g( S R p f') p
(141)2 (I+[z—]x[]) (1+1)log*(3+t)
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forall (¢, x,v) € [3, T[ x [R{fc X [Ri?) and any |B| < N — 2. For this, we bound Tr(0°) using (31) and we
apply the previous Proposition 6.28 in order to control T (Z™%# £). O

6.5. Regularity of the asymptotic state. In order to prove that f., is differentiable with respect to v,
we will need to compute the first-order v-derivatives of the correction terms in the modified spatial
characteristics and to bound their higher-order derivatives.

Lemma 6.30. Let (i, k) € [1, 3] Then, forall (t, x, v) € [3, +oo[ x R x R3,
V00,6 (¢, v) = G, (1, v) — ' EF (2, v).
More generally, for any multi-index |k| < N — 1,
0l«| 9k cpi =,,0—1
[ 10, 6" (2, v) S €lv| 2 log(2).

Proof. According to (58), we have, for any v € [0, 3],

"

0 o 00 i 00 Oa'u 00 kﬁ 00
Uavk FFMV :F‘CQO"'(F)MV_SVFFMk_avaMO'

This implies in particular that

EY) NI EY) N Nk Au N
0 V' v ' v Ny v
In view of the definition of the correction coefficients (see Definitions 6.21 and 6.23), we deduce from
this last equality the first part of the statement. The second part follows from a direct induction as well as
Propositions 6.18-6.19. 0

Remark 6.31. Similarly, we could prove using (59) that Qlj).k%" (t,v) = %;’Z/k (t,v) — 53%0, v) +
8,’;% J(t,v), where Q;’ = v/ 3,6 —v¥d,;. Consequently, the following quantities, related to the asymptotic
Lorentz force,

il R - il R :
['(v) = E(F,f,-o(v) + 0 Fp)dv', Tz():= W(ﬁz(F),i’?(v) + 0 Lz (F)0(v)dv,
satisfy Evoavk (I')=Tgq, and cg;k(r) =Tq.

We now perform a computation, which holds for any sufficiently regular function f. In particular, we
will apply it to f = 9, f. We have

V03 (f(t, X, v) =10 f(t, Xeg, ) — 105070, f (2, Xop, V)
+ 009, f(t, X, 0) + 00,6 (1, v)0, f (1, Xeg, V).

Then, we use (65) in order to rewrite the third term on the right-hand side. We get

v(’avk(f(r,x(g,v>>=(§()kf+z0ka,f—ﬁ"8f—ﬁk > zO,-axff)u,X(g,v)+v°a,,k%f<r,v)axz-fa,x(g,v).

1<i<3
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Hence, as zo; (t, X4, v) = —x' — €' (1, v),

¢k (t, v)
t

V00, (f (1, Xeg, 0)) = Qo ) (1, X, v) — x5 (3, )2, Xegr, v) —
(1, v)

(S, Xe,v)

+ XLa. f(t, Xg, v) — 0K (S )t Xeg, v) + DG (£, 0)0,i f (2, Xg, V)
+ 0510, f(t, Xe, v) +0°0,6C (1, )3, f (1, Xog, V).
Now, according to Lemma 6.30,
Qo + 000, (1, )i = Qo + Gy, (1, V)i — G (2, V)0 = QI — F* (1, V)0 B,

and, in view of the relations S™4 = § — ¥/ (¢, v)d,: and X% =x' 410" + € (t,v),

@) (S™ ), X v)
ck(t, v)

t

V00, (f (1, X, 0)) = (R £)(1, Xop, v) — (ﬁk +

—x*@, )t X, v) + (ﬁk + )xfax,-f(t, Xg,v). (73)

Iterating this process to the functions f = 3, f yields the following result.

Proposition 6.32. Let |«|+ |&| < N — 2. Then, there exist functions Pg £ such that,

V(t,x,v) € [3, 400l xR xRS, [WO105 (@) )t X)) = Y PyEtx, 0)Z™Pf (1, X, v)
IBI=lx]|+I§]
and Pg’g (t, x, v) is a linear combination of terms of the form P (x, V)M (€), where P is a polynomial and

d

1 .
M) =[] OI%of e v, d+ Y7 &l <IEL 181+ Y lal<Iél.  deg(P)+Bu <&l

k=1 1<k<d 1<k<d
The value d = 0 is allowed, in which case we set M(€) = 1.

In order to prove, through Proposition 6.22, that the functions considered in the previous statement
converge, as t — +00, we will be lead to estimate these polynomials and their time derivative.

Lemma 6.33. Let |k|+ |E]| < N —2 and |B| < ||+ |&]|. Then, forall (¢, x, v) € [3, +00[ X IRfC x R3,

j61—p1 108()

1PEEN (e, v) S 0)FI7P 19, P x, v) S EG) >

Proof. 1t is enough to bound terms of the form P(x,0)M (%) satisfying the conditions given in
Proposition 6.32. The first factor satisfies | P(x, 0)| < (x)9& P < (x)/51=A# and does not depend on . In
view of Lemma 6.30, we have |M (%)| < ed logd (1)t ¢, which implies the first estimate. The second one can
be obtained similarly. Either |3; M (¢)| =0ord > 1 and |9, M (€)| < ed logd (1)t—4-1 by Lemma 6.30. [

We are now able to prove the main result of this paper. For this, let us introduce

het, x, ) > [, X041, v),0), W =0 F105axh(r, x, v)=v°|¥15 (35 £ (1, Xis (1, x, V), V).
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Proposition 6.34. There exists a function fs € CV _Q(Ri X R%, R.) such that, for any |k|+1§| < N —2,

0(N,—10 N,—4 _log" M tM(z)
iz 3, 0T MR @GR G -) — 0505 foollu, SE——

In particular, as N, > 13 and if Ny > T+ |&|, we have aiaffoo € L}C’U

Proof. Fix t > 3 and (x, v) € [R{fc X [Rg. Applying the previous Proposition 6.32 and Lemma 6.33, we get

og(t)
2

0h5F (e 2, 0) S Y () BP9, 2N £(1, X, )+ 280 - Zmo0s £1(1, X, ),

[BI<N-2
Bu<|§|
Next, we recall from (66) the inequality (x) < log(¢)z(f, X«, v) and note, using the same arguments, that

z(t, X4, v) Slog(t)(x) holds as well. Bounding o, Zmod.p f by Proposition 6.22, we then get

OV ) VT g, S x ) S 0D TogM ()00 N0 N B T (ZMME f) (2, Xop, )
|BI<N-2
Bu=<|&|

log

4N, 43N
+A ©

T 2 WM TN ZYZmR £, X, ).
lyl<l
We control the first term on the right-hand side by Proposition 6.28 and we claim that the second one is

bounded by

10g4NX+4N(t) B PN
A= D WM TZLIC X ).

[k|<=N—-1
Indeed, we rewrite the modified vector fields using (69) and we control P, , (%) by (70). We then deduce
from Proposition 4.5 that

B e o 7NX+7N(t)
OO0 ) N 1, x, ) S @
We obtain from that,
10g7(Nx+N)([)
Visist, [N TN RGOS @ ) - R x o) SE— (74)

Consequently, there exists fC><> € L<>O such that /¢ (¢, -, - ) — fc'f<;"’E as t — +o00, uniformly on any compact
subset of R? x R3. By uniqueness of the limit in D’ (R3 x R?) and by continuity of the distributional partial
derivatives, we get f(fo’é =) |8§ 0¥ foo. Letting T — +o0 in (74) yields the stated rate of convergence
and concludes the proof. O

Remark 6.35. We can improve the result for f.. Propositions 4.5 and 6.22 give,

log12+3Nx+3N (t)

Viz3 RO TN T X)) = foo) |, S € 3

Moreover, we could prove that f., is of class CV~! according to the spatial variable x.

Remark 6.36. We could prove that 85 (97195 f(t, X¢, V) — BS( V- Vi)"Y foo. The idea consists in
rewriting the time derivatives using d; = —v - V, + Tp — 0" F, ,/ 0yi -
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7. Scattering result for the electromagnetic field

In this section, we start by defining the scattering state of a sufficiently regular Maxwell field. Then, we
construct a scattering map for the vacuum Maxwell equations. Finally, we apply these results together
with the estimates derived in Section 3.1 in order to prove that the electromagnetic field F scatters, in the
sense that it is approached by a solution to the homogeneous Maxwell equations.

Since the asymptotic states will be functions of the variables (u, 6, ¢), defined on future null infinity Z*
introduced in Section 2.2, it will be convenient to work in null coordinates. For a function v (¢, x), in
order to simplify the presentation, we will write ¥ (u, u, w) to denote ¥ (¥ +u)/2, (u — u)w/2), where
(u, u, w) are the null coordinates such that x = rw, u =t +randu =1 —r.

The scattering state of a smooth electromagnetic field G will give the leading-order term in the
asymptotic expansion of rG, as u — +o0co. This motivates the introduction of the following terminology.

Definition 7.1. Let ¢ : R, x R* — R be a function such that the limit

Pu,w):= lim rog(u+r,ro)= lim r¢)(u,u,w), Pu,w)<-4oo,
r— 400 u——+00

exists and is finite for all («, w) € R, x S% Then, we say that the function @, defined on R, x S2 is the
radiation field %Z(¢) of ¢ along future null infinity Z.

Definition 7.2. Similarly, consider 8, a 1-form on Ry x R? tangential to the 2-spheres'? such that 8,,
and B,, have a radiation field ,BEI; and ,BKI; Then, ,BIJ: defined on R, x S? as the 1-form ,BEI;dG + ,BKI;d(p
tangential to the 2-spheres, is called the radiation field of 8 along Z™.

If BZ" is of class C!, we define

Va, (B):=8,(BL )d0+3,(BL )dg. Ve, (B)(ut, -, )=V, (B, ). Ve, (B)u.-.-):=Ve, (Blu.-.)).
where Y denotes the covariant derivative on S

We already know from Corollary 2.20 that, given a sufficiently decaying electromagnetic field G, the
radiation field of the good null components «(G), p(G) and o (G) exist and vanish. Concerning the
component & (G), we have the following result.

Proposition 7.3. Let G be a C! solution to the Maxwell equations (18) with a continuous source term J.

Assume that there exist three constants C[G] > 0, p € N and q > 0 such that, for all (t, x) € Ry x R3,

C[G]llog’ 3+t +|x])
(141 + |x|)t+a

riJ(, x) + Z lp(Lzr G)|(t, x) + [0 (Lzr G)I(F, x) < (75)

lyl<l

Then, a(G) has a radiation field along T*. For any B € {0, ¢} and for all (u, w) € R, x S?, the limit

o, (u,0) = 1M ra(Gley(r+u,ro)= lim ra(Gle,u, u, o)

2More generally, we could consider tensor fields tangential to the cones Cy,.
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exists and is finite. Moreover,

log? 3 +1+ |x])
Y(t, x) € Ry x R?, Gley(t. ) — o (1 —Ixl. )| S CIG :
(t,x) € Ry x ra(G)ey (1, X) — ot ] x|~ 1G] (1 +1+|x])4

Consequently, gﬁ is a continuous tensor field, defined on R, x S* and tangential to the 2-spheres.

Proof. The last inequality of Lemma 2.17, together with (75), provides,
V(t,x) € Ry xR, VL (ra(G)(t, x) Slogh G+t + e +1 4 x)~' 7. (76)

Using the null coordinates u =t +r and u =t —r, where x = rw, we get, as L =29, and Vyep =0,

2 log’(B+s)ds _ logP(3+u)
VO<uc=z, Irgt(F)(u,g,w)—rgt(F)(u,z,w)lS/szu (14 5)+ S (1 +u)

implying the existence of gg, for any B € {0, ¢}, and the rate of convergence given in the statement. [J

If the electromagnetic field is sufficiently regular, we can relate the radiation fields of the derivatives
of G to the ones of c_xﬁ. For this, we will use the bounded functions w; :=x/|x| and a)iA :=(0,i, eq), Where
1 <i<3and A € {6, ¢}, which depend only on w € S? and which are given explicitly in Appendix B.

Proposition 7.4. Suppose that G satisfies, in addition to the hypotheses of the previous Proposition 7.3,
the inequality |rG|(t, x) < C[G]. Then, forany Z € K,

307 € DR, xSY), ralzG) (- u, ) —r0f inD Ry xS?.

U—>—+00

Moreover, forany 1 <i <3and1<j <k <3,

+ + + + + + +

o) =V, of =—wVa', af =uV' 4o,
X'

It It It _ Tt zt es It

ag, =Laou@), ag, =—wuVa' —2wie’ +o'V,a".

This result is proved in Appendix B.

7.1. Scattering map for the vacuum Maxwell equations. Before starting the construction of the forward
map for the homogeneous Maxwell equations, we introduce two functional spaces adapted to our problem.
The first one contains the initial electromagnetic fields which are in L? and the second one contains the
scattering states which belong to L2 For a smooth solution F to (19), this state will be the radiation field
of ¢ (F). Note that the electromagnetic fields considered in this subsection will be denoted by F. Since,
we will only consider solutions to the homogeneous Maxwell equations here, there is no risk of confusion
with the electromagnetic field of the plasma considered in the remainder of the article.

Definition 7.5. Let £;—¢, be the set containing all the 2-form on R!*™3 which does not depend on ¢ and
which is in L?(R?). Equipped with the norm
1Follg,_y, = f (la(Fo)I> + 2 (Fo)|* + 2| p (Fo) > + 2|0 (Fo) ) (x) dx,

R}

Ei1=oy 1s a Hilbert space.
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We define £7+ as the set of the 1-forms on R, x S which are tangential to the 2-spheres and in L2 For

It 2 . T2
le™ 117+ -=/ /2 lo™ |*(u, w) dus: du,
R,JS2

(&z+, || - lz+) is a Hilbert space.
We now state the two main results of this section.

Theorem 7.6. The linear map

9+:8{,=0}DC§’°—>£I+, For> lim ra(F)(u,u, w),
u——+o0

where F is the unique solution to the vacuum Maxwell equations (19) such that F (0, -) = Fy, is well-
defined and preserves the norm || Fo || g,y = |71 (Fy)llz+.
Moreover, this forward map can be uniquely extended in a bijective isometry F1 : Ey—gy — Er+.

Remark 7.7. When Fy ¢ C2° but is still sufficiently regular, #*(Fp) is also given by the formula written
in Theorem 7.6. Otherwise, .#+(Fy) can still be interpreted, in a weak sense, as the radiation field
of ¢ (F), with F the solution to (19) arising from the data Fj (see Lemma 7.9 below).

The proof will in particular rely on the following result, which is also important in itself. It provides
precise estimates for solutions arising from the preimage by .Z " of smooth elements of Ez+.

Proposition 7.8. Let 0 <a < 5, N € Nand a® €& bea sufficiently regular scattering state. Then,

the unique solution F to the vacuum Maxwell equations (19) satisfying F+(F) = gtﬁ satisfies, for any

0<gqg-— % <a,
1
Y =2 Lz Fl, )l S Cla™ ]
lyISN — Z / / 2a+2n1lvn1Wé’lz n3 (u a)) d,l,LSZ du
§2

ny+ny+n3<N+3

forallt € Ry. In particular, if N > 4, we have, for any |y| < N —3and |§| < N —4,

Vi, x) Ry xR, (la(Lzr F)| +1p(Lzr F)| + 1o (L20 F)I) (1, x) < ETEAEIE

ra(Ly F)(t, ) — FHEL FO, )t - a5 )| = —
S S T A D

where the constant C depends only on C [g1+] and q.

We start by proving that .Z* is well-defined for sufficiently regular electromagnetic field, including
those arising from smooth compactly supported data.

Lemma 7.9. The linear map .Z % introduced in Theorem 7.6 is well-defined and extends in an injective
isometry from E—oy to Ez+. Moreover, if F is a solution to the free Maxwell equations (19) such that

Cri= ) 12/ F(0,)lly=0) < +00, 7
lyl<4
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then, a(F) has a continuous radiation field F* (F (0, -)) and, for all (t, x) € Ry x R3,

(a(F)| + [p(F)|+ o (F)(t.x) S Cr(l +1+x])72, (78)
ra(F)(t,x) — F(F(0, -))(t — |xl, |f€—|>‘ SCr(41+1x))72. (79)

This implies that the radiation fields of a(F), p(F) and o (F) vanish.
Finally, if F is a mildly regular solution to (19) such that F (0, -) € o), then ra(F) converges to
FH(F(0,-)), as u — +00, in the space of distributions D' (R, x S?).

Proof. Recall from Definition 2.16 the energy momentum tensor T[F],,,, its principal null components
and that V#T[F],0 = 0. For any ¢ > 0, the divergence theorem, applied to T[F],o in the domain
{(s,x) e RT3 0 <5 <1}, gives

1F O, -y = 4 f TFln(©, ) dr =4 f TIF oo, ) dx

R? R?
=2 ¥ [ 1RuPendr=21F s
R3
0<wp,v<3 X

This also applies to Lzy (F), for any |y| <4, since it is a solution to the free Maxwell equations (19) as
well. In view of the equivalence of the pointwise norms (9), the standard Klainerman—Sobolev inequality
(see for instance Theorem 1.3 of [Sogge 1995, Chapter II]) yields, for any |y| < 2,

Vit x) eRy xR, Lo Fl.0)S Y Y 1ZP(Fu)IEx)
IBI=2+]y| 0=p,v=<3

< Cr

N g (80)
A+ 4+ xDA + [ —[x[D>

Applying Corollary 2.20 to Lz: F, for any |§| <1 and g = %, gives,
3
VIEI <LV x) eRy xR, (la(Lze F)|+|p(Lzs F)+lo (Lz6 F)|)(1,x) < Cp(1+i+[x]) 72

The existence of the radiation field gI+ of o (F) and the rate of convergence given in the statement then
follows from Proposition 7.3. Since the convergence is uniform in (#, ®), gI+ is continuous on R, x S2
Before defining .# ¥, we need to bound the L? norm of the radiation field. For this, we prove conservation
laws which hold for any mildly regular solution G to the free Maxwell equations (19).
Fix u > 0 and apply the divergence theorem to T[G],0, in the domain {z + |x| < u}, in order to get

f T[Glroduc, =/ T[Gloo(0, x) dx
Cu

lx|<u
1

=z/|, (eGP +12(G)P +21p(F)F +2/0 (@) 0, ) dx, D)

where

/ T[G]Lodﬂgzzéll / S(|gz(G)|2+|p<G>|2+|cr(G>|2>(u,z,co)rzdugzdu. (82)
Cy lu|<ud S2,
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Assume now that F,,(0,-) € C ?O([R{i) for all 0 < p, v < 3 and let us apply the previous equality to F.
On the one hand, the right-hand side of (81) converges to %HF (0, -)||%[:0} as u — +o00. On the other
hand, we know from the Huygens—Fresnel principle that there exists U > 0 such that F (¢, x) = 0 for all
|t —|x|| = |u| = U. This implies that the domain of integration of the integrals in (82) is in fact included in
{lu| < U} for all u > 0. The triangular inequality in L? together with the estimates (78)—(79) then leads to

1 1
/ TFloduc, —— 4 / /g FTFO, )P duse du= gl 7.
Cy Lins lu|l<UJS;

We can then define .7+ : y—q) N C® — &7+, with FT(F(0,-)) := o, and extend it to an injective
isometry from £;—q) to E7+.

Consider now a, say, C! solution F to (19) such that F(0, -) € Ei=0y. Fix ¥ e CE(R, x S and R >0
satisfying supp(y) C [—R, R] x S2. Let further (F)n>0 be a sequence of smooth solutions to the vacuum
Maxwell equations such that F,(0, -) is compactly supported for any n € N and F,(0,-) — F(O, -)
in £;—o). Fix A € {0, ¢} and start by observing that

|ra(F)ey — FT(F (O, -)e,) V|
S (Ira(F) —ra(F)| + ra(Fy) — F(F, 0, )| + 17 ((F = F)O, -)I)Ljuj<k-

Then, in order to prove ra,, — Z1(F(0,+)),, in D' (R, x S?), as u — +00, it suffices to prove that
the integral on R, x S? of each of the three terms on the right-hand side converges to 0 as u — +oo. For
this, consider € > 0 and start by noticing that the energy equality (81)—(82), applied to F — F,,, gives,

Vn >0, Yu >0, ff ra(F) —ra(F) 2, u, ©) dus du < [|F(0, ) — Fu (0, )% _g,-
R, J/SZ

According to (79), applied to F),, there exists a constant C,,, such that,

n

vneN, Yu >0, / f lra(Fy)(u, u, a))—9+(Fn(0,-))(u,a))|du§z duy < ——.
lu|<RJS}Z (A+u):2

Moreover, since Z 1 is an isometry, we have ||.# T (F, (0, - ))—ZF T (F (0, - ) lz+ =1 F (0, - )= F, (0, - ) | r=0}-
The last four estimates, together with the Cauchy—Schwarz inequality in L?([—R, R] x S?), yields

+u)?

gt C”
/R/gz(rgt(F)eA(u,z,w)—«/ (F)eyu, 0)) ¥ (u, ®) dus du 5IIF(O,-)—Fn(O,-)Il{t=0}+(l—]

for all n € N and u > 0. For a sufficiently large n and U, which depends on n, we can bound the right-hand
side by € for all u > U. This concludes the proof of the last part of the lemma.

It remains to show that for any F (0, - ) satisfying (77), we have .Z 1 (F (0, -)) = gfr. For this, it suffices
to recall that we proved ra(F) — % in Ly, O

Remark 7.10. In fact, assuming more decay on the initial data, we could prove using the equations (M?),
(MY) and (M) of [Christodoulou and Klainerman 1990] that |a(F)| = O (u~*~°) and that r*p(F) as
well as 20 (F) converge as u — —+00.
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To conclude the proof of Theorem 7.6, it remains us to show that .# T is surjective. For this, it suffices
to prove Proposition 7.8, which in particular implies that any smooth and compactly supported gﬁ has a
preimage by .# . For this, we will make crucial use of [Lindblad and Schlue 2023, Theorem 1.1], which
is a similar result for solutions to the homogeneous wave equation, and exploit that [JF,,, = 0 for any
Cartesian component F),,,.

Lemma 7.11. Let ® € C(R, x S?) be a sufficiently regular function, 0 < a < % and N € N. Then, there
exists a unique solution to wave equation O¢ = 0 on Ry x R? satisfying, forany 0 <8 <a and all t € R,

YoM =T My S D f /§2 (1) 3,) 95 D (u, )*(u)** dprs2 du

lyl=N [k|+BI<N+3
and such that ® is the radiation field %(¢) of ¢ along T™.
We will also require standard estimates for smooth solutions to the wave equation.

Lemma 7.12. Let ¢ be a smooth solution to the wave equatton Lp =0 such that |ZV ¢ (0, - )||L2 < 400
forany |y| < 5. Then, for any |B| < 1, the radiation field % (0, x¢) of 9, xqﬁ is well-defined and

Vu =1, Y, o) € [—u, ul x S?,  [rofpu, u, ) — ZOF . ), )| Su2.

Moreover, Z(3;¢) = 3, %(¢) and Z(d,ip) = —(x'/|x])0,%Z(p) foralli € [1,3].

Proof. The first part of the result is classical. Indeed, since [1Z¥¢ = 0 for any |y| < 4, we obtain
by applying the standard Klainerman—Sobolev inequality and then an energy inequality (for a proof,
see for instance Theorem 1.3 and Lemma 3.5 of [Sogge 1995, Chapter II]), that, for all |y| < 2 and
(t,x) e Ry x R3,

1
A4e+ DA+ = xIDZ27¢l, ) S Y 12°¢¢, )l S D 1ZP60, ). (83)
IBI<ly|+2 |B1<4
Now we claim that,

V(t,x) € Ry xR, L)1, x) S (1 41+ |x) 73,

Indeed, if |x|=r < (141)/2, we have 1+1+r < 14|t —r|. Moreover, (20) leads to | L (r¢)| < Z\ﬂlsl |ZPy|,
so that the claim is implied by (83). Otherwise, |x| 2 14+ |x| = 1 +u and, by writing the d’ Alembertian
in spherical coordinates, we obtain from [J¢ = 0 that

2L—L Ql’jQij(ﬁ . QijQij¢
0=—LLp+-——=¢+ Z — 5, leadingto L(L(r¢))= Z ——= 64
1<i<j<3 1<i<j<3
In order to integrate along a null straight line ¢ + r = u, it will be convenient to work with the null
coordinate system. We then write x = |x|w, with w € S% As L = 23, and in view of (83)—(84), we have

t—|x|
L)t x) = ILES — 1), 1, 0) < [LES)(—1 — ||, 1, w)+%/_ LLCO I ) du
1=lx| du 3
<IL(r)I(0, <t+|x|>w)+/ <t
u=—t—|x| (1 +u)?(1+ |ul)?
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which concludes the proof of the claim. As L = 29,, we directly deduce from it that,

Z

Vizu>0, Vju| <u, Yo €S*, |ré(u,z, a))—r(ﬁ(u,z,w)l,ﬂ/ |L(V¢)|(u,s,w)d55(1+l_¢)_%-

S=u

This implies the existence of the radiation field 2(¢) of ¢ as well as the rate of convergence given in
the statement of the lemma. Since [19,.¢ =0 and || ZY 9, ¢ (0, -)||L§ < +oo for any |y| <4, the same
applies to dx:¢. Now, note that

Xl i

2roip =rLop+rLp, 2roi¢p= ﬂquS — |x lrLd) +2(0,i, eg)regd +2(0,i, ep)re,dp, 1 <i <3.
X

Combining (83) with (20) yields r|L@| +rlead| +rley| + P S u~! so that

there exists ¢pm € L (R, xS2)  such that Lo®)— ¢Oo, o= =2%(8,0), %qﬁo% = —2%(D,:).
X

It remains to use that L(r¢)(-,u, -) — 20,%(¢) in D' (R, x S?) since ré(-, u, -) converges to Z(¢)

in L;°,. O

We are now ready for the last part of this subsection.

Proof of Proposition 7.8. Fix 0 < q — 5 <a < 5, N € Nand at " € &+ such that the norm C [gcﬁ] is
finite. Recall that any sufficiently regular solutlon F to the vacuum Maxwell equations (19) satisfies
U F,, =0 for any O < u, v < 3. The first step consists in constructing each Cartesian component F),,
of the electromagnetic field by applying Lemma 7.11 to well-chosen radiation fields. This will define a
2-form F which will verify the stated estimate. Then, we will prove that F is indeed a solution to the
Maxwell equations and, finally, we will derive the pointwise decay estimates.

Assume first that N > 5 and let us start by identifying the expected radiation field of F),,. For this,
assume that F' exists and recall the transfer matrix between the Cartesian and the null frame

e .
d=3L+1L, dy=1oL—joL+ole+owe, 1<i<3,

where ; and w;* are bounded functions of the spherical variables and are given explicitly in Appendix B.
For convenience, we set a)o :=—1 and a)e*‘ := 0. Consequently, for any 0 < u, v < 3, there exist smooth
functions of w € S, 8;w , g0y s ghv and &pv» such that

rFu, = _j(szwv - wuwle;A)rg(F)eA +ga ro(F)e, +ngl’,0(F) +gzvl’0'(F).
We then obtain by (78)—(79) that

H(F ) = ——(a)"’*‘a)U a)Ma)eA)oz 0<pu,v<3. (85)

ep’

According to Lemma 7.11, we can indeed define a 2-form F satisfying (85) as well as L1F),, = 0 and, for
all t € Ry,

S =L Fl )l Y. Y e =n 22 (Fu) @ )l SClet 1. (86)

ly|I=N |y|<N 0<u,v<3
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The remainder of the proof of the case N > 5 essentially consists in performing linear algebra computations.
In order to lighten the notations we temporarily denote 9, by d,. Our goal now is to prove that F is a
solution to the vacuum Maxwell equations (19), which read in Cartesian coordinates

B“F,wzo, 8“*F,LV:8[AFM = BAFM,,—i-BMFM—i-a,,F,\M:O. (87)

For a proof of the second identity, see for instance [Bigorgne 2021b, Lemma 2.2]. Since [Jo* F,, =0
and LJo#*F,, =0, (87) would be implied, according to Lemma 7.11, by

(" F,) =0, #(0"F,)=0, 0<v<3.
We compute, using Lemma 7.12, that, for any 0 < A <3,
B, F ) = =0, 0,8 (Fy) = 3oz (0 o, — 0,08 d,l, . 0<p, v <3,
This implies in particular that 2(9[, F,,) = 0. Furthermore, as 0# = n"*9,, we have
R Fu) = 300, (05 0y — 0,000l = L(nea. LYoy —n(L, L)ool =0.

We then deduce that F is a smooth solution to the vacuum Maxwell equations. Finally, since the Cartesian
components of L = "3, and e4 = 1,,"3, are bounded functions of w € S% we obtain from (85) and
Lemmas 7.9, 7.12 that

FHEO. )¢, = lim ra(Fe,(-.u,-)
= e, 0" WM rFu(ou) = ne n A(F) =, . Ae(0.9).

This concludes the proof of the first part of the proposition for the case N > 5. Consider now the case
N = 0 and define similarly F,,, through Lemma 7.11, as the unique solution to [JF,, = 0 such that
(85) holds. This directly provides the estimate (86); let us prove that F is a weak solution to (19). For
this, consider a sequence (g,’f) € 8IN+ of smooth and compactly supported scattering states such that
C[gzI+ — g,’f] — 0 as n — 400. Then, denote by F,, the unique smooth solution to the vacuum Maxwell
equations such that .Z*(F,(0, -)) = gcf. Applying once again Lemma 7.11 to Z(Fy,, — F, ,v) yields

sup [|F(t, ) — Fu(t. )2 S Cla'" —al'l. (88)

teRy

Fix ¢ € C2°(R4 x Ri) and Ty, such that ¥ (¢, - ) =0 for all # > Ty,. Note, since F, is a classical and then
a weak solution to (19), that forany 0 <v <3 andn € N,

/ Fu(t, x)0" (¢, x) dx dt—i—f Fu, (0, )y (0, x) dx
Ry xR3 R

f (F — Fp)uv(t, x)0"y (¢, x) dx dt —i—/ (F — Fp)uw(0, x)¥ (0, x)dx
Ry xR R3

S (L+Ty) sup [|(F = F) (@, )llL2. (89)

[€R+
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By (88), the right-hand side converges to 0 as n — 400 whereas the left-hand side does not depend
on n. This implies that (89) vanishes. The same applies to *F, so that F' is a weak solution to the vacuum
Maxwell equations (19). Finally, by continuity of .#* and (88), .Z T (F(0, -)) = Q{If

We now focus on the second part of Proposition 7.8, which merely concerns the cases N > 4. We
apply [Lindblad and Schlue 2023, Lemma 3.3], a weighted version of the standard Klainerman—Sobolev
inequality, to Z#(F,,,). Using (9), we obtain, for any |y| < N —2 and all (¢, x) € Ry x R,

It — )3 L0 (F)I(t, )2

Lz (PI0S Y Y, 1ZPENCDS Y] A+1+ DA+t —[xDd

IBISN—20<pu,v<3 IBI=N

(90)

The numerator in the right-hand side is bounded by C [gﬁ]. Recall now that £y (F) is a solution to the
vacuum Maxwell equations as well. To conclude the proof, it then suffices to use the previous estimate
and to apply Corollary 2.20 to Lzv (F) for any |y| < N — 3, as well as Proposition 7.3, to Lz (F) for
any || <N —4.

Remark 7.13. A statement similar to Theorem 7.6 holds for scattering toward past null infinity Z~ =
R, x S% One can construct the past forward evolution bijective isometry .# ~ : Ei=0y — &7, where,
if F(0,) € Ey=qyNC°, F~(F)(u, w) :=lim,, ra(F)(u,u, ) and || -|Iz- := || - | ;2@®,xs?).- The
scattering map .¥ = (# ")~ 0.Z T then defines a unitary isomorphism of Hilbert spaces. .

Finally, we state a direct consequence of Theorem 7.6, Proposition 7.8 and the commutation properties
of the vacuum Maxwell equations with Lz, Z € K.

Definition 7.14. Let N > 0 and 5{1;/:0} C &=y be the set of the 2-forms on R'+3 independent of ¢
verifying

1Follgn = D €20 (F)(©O, I, < +oo.
 IvIsN

Consider Eé\i C &7+, the set of the 1-forms on R, x S which are tangential to the 2-spheres and such that

t 2 . t 2
le™ 13 o= Y gy 13+ < +oo,

ly|I=N
where gcg is defined recursively from gﬁ through Proposition 7.4. Then, (5{];’:0}, Il- ||(2€(N_0)) and
(EX:. Il Iln,z+) are Hilbert spaces. -

Corollary 7.15. For any N > 0, the restriction of F7 to 8{1[\’:0} is a bijective isometry from 5{1;’:0} fo Sé\i.

7.2. Existence of an asymptotic state for F and its derivatives. In order to avoid any confusion, we make
precise that, as in Sections 3-6, F' denotes the electromagnetic field of our solution to the Vlasov—-Maxwell
system ( f, F'). The following statement can be easily deduced from previous results.

Proposition 7.16. For any |y| < N —3, a(Lzv F) has a continuous radiation field gc?. Moreover, for
any 0 < n < 1, we have the rate of convergence,

log(3+u)
VueRy, Jul <u, 0eS ) (ra(Lo F)u, u, 0) —a® (1, )| S A(liw.

If |y| =0, we simply denote the radiation field of F by gﬁ.
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Proof. Recall from Proposition 2.4 the form of the source term in the commuted Maxwell equations.
Hence, according to the estimates of Proposition 3.1 and Corollary 4.14, L7y F satisfies the hypotheses
of Proposition 7.3. (|

It turns out that our decomposition of F allows us to improve the estimate on the radiation field.
Proposition 7.17. For any |y| < N — 3, we have,

—1-6 .
Y, ) eRx S ol |, w)<{A<”>_2 f0<d<l,
Au)~log(1+ (u)) if 8=1.

Proof. Recall the decomposition
rLzvF =1Ly (F)S +r(Ly (F)22(¢t, x) — L0 (F)) +rLyr (F) + 1Lz (F)T.
Then, we use that u =t — r as well as:

o The first term is bounded by A (f —r)~2log(1 + (t — r)) according to Proposition 5.14.
« By Proposition 6.12, the second one is controlled by A (t — )~ 1%,

« By Remark 6.13, the third term is bounded by (1 47 + )"+ €lj_<tandu=t-—r.

o Finally, the last one is bounded above by €(1 + ¢ + ) ~3/4 according to Proposition 5.15. U

The last goal of this section consists in proving, if N is large enough, that F' can be approached by a
solution to the vacuum Maxwell equations through an application of Proposition 7.8, which requires us to
control gI+ and its derivatives up to order at least 3. Note then that by iterating Proposition 7.4, we get

that gf can be computed in terms of derivatives of a” Conversely, for any 0 < a < 1, we have

27
Z / / 2a+2nu|vnuy7 :;_I+ (I/l (l)) d//LSZ dl/l< Z / / 2a|a | (M Cl)) d,bLgZ du.
Hu+g+n, <N —3 $? ly|<N—3
Applying Proposition 7.16 for n = (3 4+ 2a) /4 then yields
A
2. f [ e P duss du S A [ @ Faes 15 oD
s? 1—2a

ny+ng+ny,<N-—3 Ry

We are now ready to prove the following result.

Proposition 7.18. If N > 10, there exists a solution F¥* of class CN 78 to the vacuum Maxwell equa-
tions (19) such that, for any % <g<land|y| <N —10,

V(. x) Ry xR, r|Lzr (F) = Ly (FY)|(t, x) < ACq(1+1 4 |x])74,
where the constant C, > 0 depends on q.

Proof. We fix 0 < g — 5 <a < 5. Since (91) holds, we get from Proposition 7.8 that there exists a solution
F¥ of class CN 78 to the vacuum Maxwell equations satisfying, for any |y| < N —9 and |§| < N — 10,
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3 vac vac vac <
V(t,x) Ry xR, (la(Lzy FY¥)|+|p(Lzr FY*)|+|0 (Lzr F )|)(l,X)N—(1+t+|x|)1+q, (92)
X
rg(ﬁZEFvac)(fyx)—ij(ﬁzEFvac(O,'))<f—|xlsm)‘§m (93)

and Z1(F¥<(0,-)) =a’" Together with Proposition 3.1 and Corollary 4.14, these estimates imply that
Lzv (F — FY*) satisfies the assumptions of Proposition 7.4 for any |y| < N — 10. We then deduce, by a
straightforward induction, that g§+ = .ZT(Lzy F¥*(0, -)). Combining (93) with Proposition 7.16 then
yields,

V(t,x) e Ry xR, rla(Lyy F) —a(Lz FY¥)|(t,x) SAQ+14+ x4, |y| <N —10.
On the other hand, Proposition 3.1 and (92) give, for any null component ¢ € {«, p, o},
V(t,x) eRy xR, rle(Lzy F) = (L F¥)|(t,x) SAQ+1+]x)79, [y <N -9,
which concludes the proof. O

Remark 7.19. According to Corollary 7.15 and Lemma 7.9, F¥* is in fact of class C=>. Moreover, if
N > 7, then the statement of Proposition 7.18 still holds for any |y | < N —7 and the particular value g = %

8. Conservation of the total energy of the system

Since (f, F) is a solution to the Vlasov—Maxwell system, the energy momentum tensor T[ f, F'], defined as
dv
T Fluy =Tl + TTF s Tl = f fvwvegs TPl i= Fup B = Gt ey P
Rl}
is divergence free. It provides the conservation of the total energy of the system

[Et::// vof(t,x,v)dvdx—l-%/ |F|*(t,x)dx =F, |F|*= Z |Ful? = |EI” +|BP.
R R R

0<pu<v<3

We would like to relate Eq to the energy of the scattering states fi and gfr. More precisely, the goal of
this section is to prove

Eoo :=/ / Uofoo(X,v)dde+l/ / lo” 12 (u, ) diue: du = Eo. (94)
R JR 4 Jr, Js2

Note that Eo, < +00 according to Remark 6.35 and Proposition 7.16. The statement (94) is a consequence
of E; = [y and the following two propositions.

Proposition 8.1. There holds

lim // vof(t,x,v)dvdx:/f vofoo(x,v)dvdx.
I=too JryJmy RIJR}

Proof. Let t > 3 and perform the change of variables

2 = yI 4071 —log()D* (F (v) + 07 F5(v))
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to get

/ / vof(t,x,v)dvdxzf / vof(t,Xc,g(t,y,v),v)dvdy.
e JR3 R3JR?

We then deduce that

// Uof(f,x,v)dvdx—// vofoo(x,v)dvdx‘
R}V R R3JR3

7
< sup ()2 [°Pf @, Xe(t, x, v), v) — foolx, V)],
(x,v)eR0

which, in view of Ny, > 12, N, > = and Remark 6.35, implies the result. g

Proposition 8.2. We have

lim —/ |F| (t,x)dx = - / / |a | (u, w)dus du.
t—>+oo

Proof. Consider u > 7 > 3 and introduce the domain D; ={t+ |x| <u, t > t}, which is bounded by the
truncated backward light cone g; ={t+|x|=u, t >t}and {t =t} N {|x| <u — t}. In the same spirit
as (81), the divergence theorem, applied to T[F],0 in D, yields

/ T[F]Loduc, =/ T[Floo(z, x) dx—i—f Fo,\J(f)’\dxdt. (95)
(07 lx|<u—t

(t,x)eDé

First, we have

fim f T[Floo(t, x)dx = lim 1/ |F|2(r,x)dx=1/ \F2(z, x) dx.
|x|<u—t 2 [x|<u—t 2 R?

u——+00 u——+00

Next, since |F|(t,x) < (14t + [x)7'(A + |t — [x])~! by BA1) and [J(f)| < (1 + ¢+ |x])~3 by
Corollary 4.14,

N oo rrdrde oo drdr 1
Fo, J(f) dxdr < 2 - STl
(t.x)eD} r=0 (1+t+r)*(1+[1— rl) r=0 (144)3 (14|t —r])>

Recall from Definition 2.16 the value of the null components of T[F

o1t x) +1ol(t, %) S (141 +[x) 7

by Proposition 3.1 and in view of Proposition 7.16, applied for n > %,

1
/ TIFlodpc, =5 /2 /S (2P +1p(F) [+ 1o (F)!) (w, 1, 0)r dps: du

:l/ / r2|Q(F)|2(u,Z, w)due du+0(ﬂ—%)
4 2r—u<u<u JS2

I
mélf[&/gilg |“(u, ) duge du.

Letting u — +o00 and then T — +o00 in (95) yields the result. O
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Appendix A: Estimates for the gradients of the kernels

In order to estimate the kernels and their derivatives in the integrals of Propositions 5.3 and 5.7, we
introduce the following class of terms.

Definition A.1. Let (p, ¢, d, dy) € N* We define S;‘fjgw as the set of the functions G : S? x R? — R of
the form

_ PO, 0)0w(w,v))
9@ = o (1 w0

(96)

3

where P is a monomial of degree d in (0!, 92, 03, w1, w», w3) and Q is a monomial of degree dy, in

Wy (w,v), where 0 < u <v <3.

All the kernels considered in this paper can be written as linear combination of such terms, with
dy € [0, 3]. Moreover, if 2q > dy, by a direct application of Lemma 5.4, one can bound G(w, v) in (96)
by |00|2¢—4w=P_ The estimates of Corollaries 5.5 and 5.8 of the derivatives of the kernels then follows
from the next result.

Lemma A.2. Let (p,q,d, dy) € N* and consider G € ngg'”. Then, for any multi-index vy, 37 G(w, v) can
. . . . . . do,d,
be written as linear combination of terms belonging to certain S pg,qg"o, where

(Po, 90, dos dw,0) €NY, 20 —duo—po <2q —dw—p, q—dw <qo—duwp.
This implies |3} G|(-, v) < W02 ~% =P if 2g > d,.

Proof. This follows from a straightforward induction and the following relations. For any (i, j, k) € [1, 3],

R T Y . G
~ i 0,—
0y 0" = ——G5—. By =0, dylv] ”=—PW’
8/ — 0o TR A A 1
dyiwoi (@, v) = ———,  iwir(®, V) =o' —F— -0 ———,
v v v
Y 1 B v/ wo; (@, v) 0
J A~ - AN AN *
"\l+w-D Wl4+w-0) V(1 +w-0)2

Appendix B: The radiation field of the derivatives of the Maxwell field

We fix, for all of this section, a C' solution G to the Maxwell equations (18) with a continuous source
term J. We assume that there exist C[G] > 0 and g > O such that, for all (¢, x) € Ry x R3,

rGl(t,x) < CIGL. |6, x)+ ) 1p(Lzr Gt x) + 1o (L2 Gt x) < ol
T | ’ lyl=t ’ T (A xp

As a consequence, G verifies the hypotheses (75) of Proposition 7.3 and then has a radiation field gﬁ.

The purpose of this section is to prove that, for any Z € K, £zG has a radiation field g? which can
be expressed in terms of the derivatives of o For this, we will use the following bounded functions
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depending only on the spherical variables:

xl

w; = (d,i,0,) = R wi* = (dy,eq), 1=<i<3, Ae{, ¢},
x
wi’ =cos(p)cos(P), wy =sin(p)cos¥), w3 =—sin(H),
a)f“’ = —sin(g), a)g“’ =cos(¢), a)g“’ =0,

and we will work in the space of distributions D’'(R, x S?). For simplicity, we will simply write ¥ — 1//1+
if the weak convergence
Y, t, ) ———¥F (u,w) inD' R, xS?)

u—>—+00

holds. In particular, the following convergences will be crucial for us.
Lemma B.1. Forany 1 <i <3 and B € {0, ¢},

Gl =0, LrL@(G)e,) —d@l), r’L@(G)e,) —~ —al

Zep "’
rlofes@(G)e,) = wlea@l)), ro(G)—0, ro(G)—0.

Since 2r = u — u, we also have
rL(@(G)ey) =0, rofes(@(G)ey) =0, p(G)—0, o(G)—0.

Proof. The first weak convergence follows from 2|G|(u, u, w) < C[G](u —u)~", so that |G|(-,u, ) — 0
uniformly on any compact subset of R, x S%. The others are a direct consequence of the strong uniform con-
vergence ra(G)(u, u, ®) —>gz+ (u, w) as u — 400, which is given by Proposition 7.3 since G satisfies (75).

o For the second one, use rL = Lr + 1, L =20, and that o(F)., (-, u, -) — 0 uniformly on compact
subsets of R, x S%

o The third one is in fact a strong and uniform convergence. Indeed, r2L(gz (Geg)=rL(ra(G)e,)—ra(G)e,
and according to (76), r|L(ra(G)e,)| Su~9.

o Next, fix (t,r) eR2, ¥ CX (R, x S?2) and denote by v; the vector field a)fA e 4, which is the projection
on the 2-spheres of d,i. Since (reg, rey,) = (9, 9,/ sin(6)), we have

o' r?(ea(@(G)ep))(t, ro) ¥ (u, ) = rir (u, ®)0; - ¥ (@(G)e, (1, rw)),
oftealel))u, )Y, w) = ¥, 0)3; V(i) u, v),

Tt

so that it suffices to apply the divergence theorem on S? and to use ra(G)., — « .

« Finally, the last two follow from r|p(G)| +r|o(G)| Su™1. [

We now prove a result which directly implies Proposition 7.4. We consider a more general setting since
it does not complicate the proof and so we will be able to apply these properties in different contexts. For
this, given a strictly increasing and unbounded sequence of advanced times § = (1,),>0, we will write
Y — wﬁ if the following weak convergence holds:

VU, Un, ©) =7 T, w) inD (R, xS?).
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Proposition B.2. Consider G an H. (Ry. x R®) 2-form and o*" an L}, (R, x S2) 2-form tangential to
the spheres. Assume that there exists a strictly increasing and unbounded sequence of advanced times

§ = (Un)n>0 such that

« ra(G) = o,
e all the weak convergences of Lemma B.1 hold, at least for the sequence s C Ry .

ioc (Ry X Sfu), a 2-form tangential to the spheres, which satisfies
ra(LzG) — g?. Moreover, forany 1 <i <3and1<j <k <3,

Then, for any Z € K, there exists Ql§+ elL?

T+ I+ T+ I+ s It | Tt

oy =V, o, = —wiVya©, oy =uVyat 4o,
T+ T+ T+ s i ea T+
@, =Loy@ ), ag, =-—wuVa' 20" +o'Va" .

Proof. In order to avoid technical difficulties related to the degeneracies of the spherical coordinate system,
we will in fact prove weak convergences in

DR, x K), K:=|weS*|sin6 >t}

The convergences in the full space D’ (R, x S?) can then be obtained by applying the upcoming results to
another well-chosen spherical coordinate system.
We fix, for all of this proof, B € {6, ¢}, i € [1, 3] and we recall that, for any Z € K,
ra(LzG)e, =rZ(a(G)ey) —rG([Z, el L) —rG(ep, [Z, L]).
Then, we have
ra(L,Gey = 5L@(G)ey) + 5L@(Gey) =5 dulery,).

For the spatial translation 9, = —%a)i L+ %a)iL + a)lAe A, We use that

€A

w.
[axi’ L‘] == _;eA
r
and [0,i, ea] = 0, (a);A)axj, with 9, (wj-") <r~!on K. We get
ra(Ly,G)e,
w;r w;r A e €A

= —TL(Q(G)eB) + TL(Q‘(G)eB) +rojea(@(Gey) —royi(w;")G(ep, 3y) +w;"G(ep, ea)

— —wid@l).
For the scaling, recall that [S, L] = —L and [S, ep] = —ep. As 28 = uL + (u + 2r)L, we have
u+2r

u
re(LsG)ey = SrL@(G)e,) + rL@(G).,) +2rGlep, L) —y ud, (@l) + ol .

Next, for the Lorentz boost Q2¢;, we use

:3

; ! t
Qol':%(ZL—ML)-l-twaeA, [Q0i, el = 2’r (ML_HL)+;CU,-6AV£B€D7 [QOi,L]ZwiL—%waeA,
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where J'2, are the Christoffel symbols of S? in the nonholonomic basis (eg, e,). In particular, J'?; is
bounded on K. As u =u +2r and t = u + r, we obtain

i (u + 2r) ; ;"
—— 1 L@(G)ey) + o (A r)res@(Gey) = —-uG(L, L)

w; eapD A
+ 2 uG(L, L) — (u+r)o*V 3Gep, L) — wirG(ep, L) + uw" G(ep, e).

wilu
ra(LayGley = ——-rL@(G)e,) +

Since G(L, L) =0 and u(|G(L, L)| +1G(ea, ep))) = (u +2r)2|p(G)| + |0 (G)]) — 0, we get
ra(LoyG)ey =5 —wiudy(@l)) — ;0L +oftea@l) —0+0— V550l —wial +0
= —wiud, (@) — 2wigeﬁ Ve, (@ )y
Finally, we recall the expression of the rotations in the spherical coordinate system (¢, r, 0, @),
Qo =0,, 13 =c0s(p)dy—cot(f)sin(p)d,, 223 = —sin(g)dy — cot(d) cos(¢)a,.

In particular, these vector fields, tangential to the spheres, are well-defined on Z+ ~ R, x S2 Fix now
(j, k) € [[1,3]* and write Qj = Q?kag + sz‘j.’kaw. Note, using first [€2x, L] =0 and then the expression
of the Lie derivative in the spherical coordinate system, that

@(£0;,G)oy = Loy (@(G))ay = Qjr(@(G)ay) + 95(R7)2 (G, -

Recall now that (reg, re,) = (dp, 9,/ sin(f)) on Ry x R3 and (eg, ey) = (9, 0yp/sin(0)) on R, x S

Hence, using ra(G)., —5 gI+ and since any of the quantities considered is smooth and bounded on K,

ea
ra(L£a,G)e, = Q09 (ra(G)e,) + Q%05 (ra(G)e,) + 35 ()ra(G)e, +sin(0) 35 (5 )ra(G)e,
— Q@I+ 89(529,()0[89 + s1n(0)39(s2<"k)a
= Qu(ed) + 3 (QY)ad = Lo, @ e,

Similarly, we get

1 1
ra(La, Ge, = Qrra(G)e,) — le(sin 9>rge(G)ew + —B(p(Q?k)rg(G)eﬁ + 8¢(Q?k)rg(G)ew
1
~s el = (s )ed + =, (k) +a,@0el = Loy @), D

Appendix C: Remarks on F*° and the modified characteristics

C.1. Alternative expression for F*°. We could define F'*° in a slightly different way. However, contrary
to what we did in Section 6.2, we could not define in such a way Lz (F)* for the derivatives of order
|yl = N — 1. Using the representation formula for the wave equation satisfied by F),,,

ly — XI

In order to investigate the asymptotic behavior of [ £]""", it is important to determine the asymptotic profile

Fup=FR™+[F1m, (1, x / 3 /R (Dpudyv f — Dy )t — |y — x[, y, v) dv
ly—x|<t JR3

of the source term of the wave equation. In particular, we need to obtain a better estimate than the one
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given by Proposition 4.15 which does not provide the expected time decay ¢ ~*. The starting point consists
in observing that a kind of null condition holds,

1Dy +0;0;) = Qi + 20i0r = Qoi — V28, + 8,201 — 0 = Qo — 0y’ + dzoi, 1 <i <3,
l(f)jaxk — ﬁkax_i) = ﬁjﬁok — f)kﬁoj — athk — ﬁjavkv°+ lA)kaijO, 1<j<k<3.

Hence, using the convention Q0o =0 and performing integration by parts, we obtain, forany 0 <pu <v <3,

/Rg BB f = By f dv = 1 /Rg(ﬁuﬁol;f — 8, Q0 f) dv—1 fR 0z f) dv.
The leading-order term of its asymptotic expansion is the first term on the right-hand side. Its behavior
can be easily obtained from Proposition 6.5. Following the proof of Proposition 4.15, one could prove that
last term almost decay as . It will then be convenient to use the notation Q?g" in order to denote QF_,

where Z* = Qqy, and to set Q?C?O := 0. Following the proof Proposition 6.10, we could obtain

: 2¢ pinh P 05,4 O _ » A% z+0 dz
t_1>1+moot Lf1 (@ x +10) := o /+|5|511 | |(Iv (0, 052 — 0y Qoo ))<1—|z|>|z|(1—|z|)4’
ZTvi<l—|zZ

which is necessarily equal to F'*°.

C.2. The support of the corrections of the linear characteristics and commutators. We could obtain
similar results by modifying the trajectories and the homogeneous vector fields only inside the light cone.
More precisely, we could consider, for Ze Po \ {0, 0,1, 0,2, 0,3},

Xo(t, x,0) i=x +10+ €, V)t — |x —t0]), Z™4:= /Z\—i-%%x(t —r)d,i,

where x is a cutoff function satisfying x (s) =0 for s <1 and x(s) = 1 for s > 2. It is not surprising that
all the results proved for X and Zmod hold as well with these corrections since the Vlasov field enjoys
strong decay properties in the exterior of the light cone (see Lemma 2.6). We could even avoid the loss
of the weight z## in Proposition 6.28 and Corollary 6.29. Indeed, these weights come from the identity
x'/t = (x' —t0")/t + 7' that we performed during the proof of Proposition 6.26. On the support of ¥,
we can simply use that |x|/¢# < 1. However, we could not save any (x) weight in the analogue version
of the scattering statement of Proposition 6.34 since we would have to lose a power of z%# in order to
estimate |v°]1535 (x (¢ — |x +t9])).
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STRONG ILL-POSEDNESS IN L* FOR THE RIESZ TRANSFORM PROBLEM

TAREK M. ELGINDI AND KARIM R. SHIKH KHALIL

We prove strong ill-posedness in L> for linear perturbations of the 2-dimensional Euler equations of the
form
dw~+u-Vw = R(w),

where R is any nontrivial second-order Riesz transform. Namely, we prove that there exist smooth
solutions that are initially small in L*° but become arbitrarily large in short time. Previous works in this
direction relied on the strong ill-posedness of the linear problem, viewing the transport term perturbatively,
which only led to mild growth. We derive a nonlinear model taking all of the leading-order effects into
account to determine the precise pointwise growth of solutions for short time. Interestingly, the Euler
transport term does counteract the linear growth so that the full nonlinear equation grows an order of
magnitude less than the linear one. In particular, the (sharp) growth rate we establish is consistent with
the global regularity of smooth solutions.

1. Introduction

The Euler equations for incompressible flow are a fundamental model in fluid dynamics that describe the
motion of ideal fluids:
ou—+u-Vu+Vp =0,
V.u=0.
In this equation, u is the velocity field and p is the pressure of an ideal fluid flowing in R% A key difficulty

(1-1)

in understanding the dynamics of 2-dimensional Euler flows is the nonlocality of the system due to the
presence of the pressure term.
Defining the vorticity w := V1 - u, it is insightful to study the Euler equations in vorticity form:

ojw+u-Vo =0,
V.-u=0, (1-2)
u=vV=iale.
Because the L° norm of vorticity is conserved in the Euler equations in two dimensions, Yudovich [1963]
proved that there is a unique global-in-time solution to the Euler equation corresponding to every initial
bounded and decaying vorticity. See also [Wolibner 1933; Beale et al. 1984; Holder 1933; Yudovich 1963;

Kato 1967; Marchioro and Pulvirenti 1994; Majda and Bertozzi 2002]. This bound on the L* norm is
unfortunately unstable even to very mild perturbations of the equation [Constantin and Vicol 2012; Elgindi
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and Masmoudi 2020; Elgindi 2018]. To understand this phenomenon, we are interested in studying linear
perturbations of the Euler equations in two dimensions as follows:

8,u+u-Vu+Vp:(L?l>, (1-3)
V-u=0.

Equation (1-3) is a model for many problems in fluid dynamics that have a coupling with the Euler
equations. For instance, similar types of equations appear in viscoelastic fluids, see [Constantin and
Kliegl 2012; Elgindi and Rousset 2015; Lions and Masmoudi 2000; Chemin and Masmoudi 2001], and in
magnetohydrodynamics, see [Boardman et al. 2020; Hmidi 2014; Cao and Wu 2011; Wu and Zhao 2023].
Further, they also appear when studying stochastic Euler equations; see [Glatt-Holtz and Vicol 2014].

Writing (1-3) in vorticity form, we get

ow—+u-Vw =0uy,
V.-u=0, (1-4)
u=vV+taTle.

We observe that the challenge of studying these equations is that the right-hand side of (1-4) can be
written as the Riesz transform of vorticity d,u; = R(w), which is unbounded on L*°. P. Constantin and
V. Vicol [2012] considered these equations with weak dissipation, and they proved global well-posedness.
However, without dissipation it is an open question whether these equations are globally well-posed. In
this work, we are interested in the question of L ill/well-posedness of the Euler equations with Riesz
forcing and the local rate of L*° growth. The first author and N. Masmoudi studied the Euler equations
with Riesz forcing in [Elgindi and Masmoudi 2020], where they proved that it is mildly ill-posed. This

means that there is a universal constant ¢ > O such that, for all € > 0, there is wy € C* for which the
unique local solution to (1-4) satisfies

lwolre <€, but sup,cgplw@)|i~=c. (1-5)

The authors in [Elgindi and Masmoudi 2020] conjectured that the Euler equation with Riesz forcing
is actually strongly ill-posed in L°°. Namely, that we can take ¢ in (1-5) to be arbitrarily large. The
goal of our work here is to show that indeed this is possible. To show this, we use the first author’s
Biot—Savart law decomposition [Elgindi 2021] to derive a leading-order system for the Euler equations
with Riesz forcing. We then show that the leading-order system is strongly ill-posed in L. Using
this, we can show that the Euler equation with Riesz forcing is strongly ill-posed by estimating the
error between the leading-order system and the Euler with Riesz forcing system on a specific time
interval.

We should remark that the main application of the approach of [Elgindi and Masmoudi 2020] was to
prove ill-posedness of the Euler equation in the integer C¥ spaces, which was also proved independently
by J. Bourgain and D. Li [2015]. Regarding the notion of mild ill-posedness in L for models related to
the Euler with Riesz forcing system, see [Wu and Zhao 2023] about the 2-dimensional resistive MHD
equations.
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1.1. Statement of the main result.

Theorem 1. For any «,8 > 0, there exists an initial data a)g’(S € Cf,’o([F\Rz) and T (o) such that the
corresponding unique global solution, w®?, to (1-4) is such that at t = 0 we have

8
lwg | =8,

but for any 0 <t < T (a) we have
|0®® (1) |1 = |wol L + clog<1 + §;>,

where T (a) = ca log(c|log(w)l|), and ¢ > 0 is a constant independent of a that depends linearly on 8.

Remark 1.1. Note that at time ¢t = T («), we have
|| > ¢log(c log(cllog(@)))),

which can be made arbitrarily large as « — 0. Fixing § > 0 small and then taking « sufficiently small
thus gives strong ill-posedness for (1-4) in L.

Remark 1.2. As we will discuss below, we in fact establish upper and lower bounds on the solutions we
construct so that on the same time-interval we have

62 (0)] 2 ~ ol + ¢ log 1+ g,),

This should be contrasted with the linear problem where the upper and lower bounds for the same data
come without the log:

o 1 ~ ool +¢(1+ 1),
Remark 1.3. Our ill-posedness result applies to the equation
oiw~+u-Vo = R(w),

where R = Rj» = d1oA~ L. Note that a direct consequence of the result gives strong ill-posedness when
R = Ry| or R = Ry even though these are dissipative on L2 This can be seen just by noting that a
linear change of coordinates can transform Rj; to a constant multiple of Rj; — Ry» = Ry; — 1d. The
strong ill-posedness for the Euler equation with forcing by any second-order Riesz transform (other
than the identity) follows. We further remark that the same strategy can be used to study the case of
general Riesz transforms, though we do not undertake this here since the case of forcing by second-order
Riesz transforms is the most relevant for applications we are aware of (such as the 3-dimensional Euler
equations, the Boussinesq system, viscoelastic models, MHD, etc.).

1.2. Comparison with the linear equation and the effect of transport. We now move to compare the
result of this paper with the corresponding linear results and emphasize the regularizing effect of the
nonlinearity in this problem. The ill-posedness result of [Elgindi and Masmoudi 2020] relies on viewing
(1-4) as a perturbation of

O f =R(f). (1-6)
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For this simple linear equation, it is easy to show that L°° data can immediately develop a logarithmic
singularity. Let us mention two ways to quantify this logarithmic singularity. One way is to study the
growth of L? norms as p — oo. For the linear equation (1-6), it is easy to show that the upper bound

|fOlLr < exp(Ct)p] folrr

is sharp in the sense that we can find localized L*>° data for which the solution satisfies

Lf@lLr = c(®) - p.
This can be viewed as approximating L* “from below”. Similarly, the C* bound for (1-6),

exp(Ct)
o

| f(D)ce < | folce,

can also be shown to be sharp for short time in that we can find for each o > 0 smooth and localized data
with | fo|ce = 1 for which

ol = <.
o

The main result of [Elgindi and Masmoudi 2020] was that these upper and lower bounds remain unchanged
in the presence of a transport term by a Lipschitz continuous velocity field. This is not directly applicable
to our setting since the coupling between w and u is such that # may not be Lipschitz even if w is bounded.
Interestingly, in [Elgindi 2018], it was shown that this growth could be significantly stronger in the
presence of a merely bounded velocity field.

All of the above discussion leads us to understand that the nature of the well/ill-posedness of (1-4)
will depend on the precise relationship between the velocity field and the linear forcing term in (1-4). In
particular, for a natural class of data, we construct solutions to (1-4) satisfying

ol ~ 1+ log(1+ 1),
o

for short time, which is the best growth rate possible in this setting. This should be contrasted with the
corresponding growth rate for the linear problem

t
|@iinear| 20 ~ 1+ —.
o

In particular, the nonlinear term in (1-4) actually tries to prevent L* growth. Let us finally remark that
the weak growth rate we found is consistent with the vorticity trying to develop a loglog singularity.
It is curious that, in the Euler equation, vorticity with nearly loglog data is perfectly well-behaved
and consistent with global regularity but with a triple exponential upper bound on gradients. Though
establishing the global regularity rigorously remains a major open problem, this appears to be a sign that
perhaps smooth solutions to (1-3) are globally regular.

1.3. A shortdiscussion of the proof. The first step of the proof is to use the Biot—Savart law decomposition
in [Elgindi 2021] to derive a leading-order model:

0,2+ i(LS(Q) sin(20) + L.(£2) cos(20))0p 2 = LLS(Q),
20 200
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where the operators Lg and L. are bounded linear operators on L? defined by

00 21 0o m2r
Lipw =1 [T LD wonaas wna rpmw=L T[T LD

cos(20)df ds.

Essentially all we do here is replace the velocity field by its most singular part. Upon inspecting this
model, we observe that the forcing term on the right-hand side is purely radial, while the direction of
transport is angular. Upon choosing a suitable unknown, we thus reduce the problem to solving a transport
equation for some unknown f:

0 f + 5 Ls(f) sin20)d f =0.

Surprisingly, this reduced equation propagates the usual “odd-odd” symmetry even though the original
system does not. The leading-order model will then be strongly ill-posed if we can ensure that the solution
of this transport equation satisfies that fot L (f) can be arbitrarily large. One subtlety is that the growth
of L;(f) enhances the transport effect, which in turn depletes the growth of L(f). In fact, were the
transport term to be stronger even by a log, the problem would not be strongly ill-posed. By a careful study
of the characteristics of this equation, we obtain a closed nonlinear integrodifferential equation governing
the evolution of L(f) (see (3-4)). We study this nonlinear integrodifferential equation and establish upper
and lower bounds on L, (f) proving strong ill-posedness for the leading-order equation; see Section 3
for more details. Finally, we close the argument by estimating the error incurred by approximating the
dynamics with the leading-order model. An important idea here is to work on a time scale long enough to
see the growth from the leading-order model but short enough to suppress any potential stronger nonlinear
growth; see Section 6 for more details.

1.4. Organization. This paper is organized as follow: In Section 2, we derive a leading-order model for
the Euler equations with Riesz forcing (1-4) based on the first author’s Biot—Savart law approximation
[Elgindi 2021]. Then, in Section 3, we obtain a pointwise estimate on the leading-order model which is
the main ingredient in obtaining the strong ill-posedness result for the Euler with Riesz forcing system.
In addition, in Section 3, we also obtain some estimates on the leading-order model in suitable norms
which will be then used in estimating the remainder term in Section 6. After that, in Section 4 we will
recall the Biot—Savart law decomposition obtained in [Elgindi 2021], and we will include a short sketch
of the proof. In Section 5, we will obtain some embedding estimates which will also be used in Section 6
for the remainder term estimates. Then, in Section 6, we show that the remainder term remains small
which will then allow us to prove the main result in Section 7.

1.5. Notation. In this paper, we will be working in a form polar coordinates introduced in [Elgindi 2021].

r=vx*+y%,

and since we will be working with functions of the variable r*, where 0 < o < 1, we will use R to

Let r be the radial variable,

denote it:
R=r".
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We will use 6 to denote the angle variable:

6 = arctan X.
X

We will use | f|r~ and | f|;2 to denote the usual L and L? norms, respectively. In addition, we will
use f; or f; to denote the time variable. Further, in this paper, following [Elgindi 2021], we will be
working on (R, 6) € [0, 00) x [0, %] where the L2 norm will be with measure d R d6 and not R dR d6.

We define the weighted HE ([O, 00) X [O, %]) norm as

m

m k
|Flin =D _10R05 ™ flrz+ Y IR0 Flrze 1 fl =D _ 1 flign-
m=0

i=0 i=1

We also define the WX norm as

m m k
| flpmee = Y 10505 flooe + > IR 005 flr. | flwkoe = Y [ flyjpmos
i=0 i=1 m=0
Throughout this paper, we will use the notation
oo
S
L(f)(R) = / ds
R S

to define operators, and by adding a subscript Ly or L. we denote the projection onto sin(26) and cos(26)
respectively. Namely,

Ls(H)(R) = — ; sin20)df ds and  Le(f)(R) = — -

00 p21 00 p21
! / (s, 6) 1 / F6:9) o520y d6 ds.
R JO R JO

2. Leading-order model
In this section, we will derive a leading-order model for the Euler equation with Riesz forcing:
dw~+u-Vo =0,uy,
V.-u=0, 2-1)
u=V=iaTle.

To do this, we follow [Elgindi 2021] and we write the equation in a form of polar coordinates. Namely,
we set r = {/x2+y2, R =r%, and 0 = arctan (y/x). We will the rewrite (2-1) in the new functions
w(x,y) =Q(R,0) and ¥ (x, y) = r>W(R, 0), with u = V-, where u; = —9,¥ and up = 9, .

Equations of u in terms of W:

up = —r2sin(@)V +a sin(0)R g W + cos(0)dy V),
ury =rQ2cos()¥ +a cos(f)R dgW¥ — sin(f)dg V).
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Evolution equation for Q:

0,2+ (—aRIgW)IRQ2+ QW + aRIR V)2

= (—2aR sin(8) cos() — &’ R sin(0) cos(9))Ig W + (—1 +2sin*(0))3p ¥
+ (—aR cos*(8) +aR sin*(0))dge ¥ — (¢ R? sin(8) cos(0))dgr ¥ + (sin() cos(6))dpe V.

The elliptic equation for A(r2W (R, 0)) = Q(R, 0):

AV + @®R*IgpV + dgoV + (da + aP) RIRY = Q(R, 0).

Now using the Biot—Savart decomposition of [Elgindi 2021], see Section 4 for more details, by defining
the operators

00 p2m o0 p21
L (Q)(R) = % / / £206.9) Gn26)dods and L(Q)(R) = - / / 26.9) o520 d6 ds
R Jo S T Jr Jo S

we have

V(R,0)= —4LL (2) sin(20) — 1 L (2) cos(20) + lower-order terms.

Thus, if we ignore the «-terms in the evolution equation, we obtain
0,2+ W)y =(—1+2 sin2(9))89\11 ~+ (sin(6) cos(6))dge V. (2-2)

Now we consider ¥ of the form

V= —4LL (€2) sin(20) — 1 L () cos(20),

and plugging it into the evolution equation, we have
3,Q— ( 2o Le(®) sm(26)+—L Q) cos(29)) 899——(005(29))( L. cos(29)+—L Q) 51n(29))

( sm(20)> (—L Q) s1n(29)+—L ) Cos(29))
which simplifies to

atQ—( Ly()5in(20) + 5 L () cos(29)>8g§2 = 2iL Q).

In order to work with positive solutions and have the angular trajectories moving to the right, we make
the change 2 — —Q and get the final model

9,9+ (iLS(Q) §in(20) + - L.(Q) cos(29)> Q= L, (). (2-3)
2a 2 2a
We now move to study the dynamics of solutions to (2-3).
Proposition 2.1. Let 2 be a solution to the leading-order model
0,2+ (LLS(Q) sin(20) + LLC(Q) cos(20)) 092 = LLS(Q), 2-4)
2« 2a 2a
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with initial data of the form Q|;—o = fo(R) sin(20). Then we can write 2 as

Q=ft e /O Ly(f) dr, (2-5)

where f satisfies the transport equation
o f + % Sin(20) Ly (£) f = 0. (2-6)
Proof. The right-hand side term of (2-4) is radial, and hence if we take the inner product with sin(26) it
will be zero. Now if write 2 as
k.0 = &0+ [ Li@o®
and consider it to be a solution to (2-4), we obtain that f satisfies

0 fi+ (5 Lo(f) SI20) + 5 Le(f) c05(20)) 8o f; = 0. @7

Here we used that L;(€2;)(R) is a radial function. Notice that (2-7) is a transport equation that preserves
odd symmetry. Now if we set

2 2
ff= [ f/(R,0)sin(20)d® and Qf:f Q:(R, 0)sin(20) d6,
0 0

we notice that f and 2 will satisfy the same equation. Thus, if we start with the same initial conditions
fo = R0, then
fi =] forallz.

Thus, we have L;(€2;) = Ls(f;), and hence

t
Q = f,+%/o Ly(f)dr.

Now since the initial data which we are considering have odd symmetry, it suffices to consider the
transport equation:

0 fi+ 5 SnCO)Ly (/)0 f; = 0. O

3. Leading-order model estimate

The purpose of this section is to obtain L°° estimates for the leading-order model, which is the main
ingredient in obtaining the ill-posedness result for the Euler with Riesz forcing system. This will be done
in Section 3.1 in three steps: Lemma 3.1, Lemma 3.2, and Proposition 3.3. Then in Section 3.2, we will
obtain an estimate for the leading-order model which will be useful in remainder estimates in Section 6.

3.1. Pointwise leading-order model estimate.
Lemma 3.1. Let f be a solution to the transport equation

a,f—i-%sin(ZQ)Ls(f)agf:O, (3-1)



STRONG ILL-POSEDNESS IN L* FOR THE RIESZ TRANSFORM PROBLEM 723

with initial data f|;—0 = fo(R) sin(20). Then we have the following estimate on the operator Ls(f):

Py /OO fols) exp(—lft Ls(fr)(s)dr> ds
R S @ Jo
So(s)
€X

o0 1 t
< L;(/O(R) Ssz p(——/ Ls(fo)(s) dr) ds, (3-2)
R S @ Jo

where c| and c, are independent of «.

Proof. To prove this, we consider the following variable change. For 6 € [(), %) let y be defined as

d 2
y :=tan(f) = —)9/ = secz(Q), and sin(20) = 1+)/y2.
Applying the chain rule, we rewrite (3-1) in the (R, y)-variables
1
dfit vLs(f)(R) 3y f =0, (3-3)
with initial data 5
. 14
Fli=o = fo(R)sin(20) = fo(R) 2

Let ¢, (y) be the flow map associated with (3-3), so we have

d 1 L[
WL oty = o =ven(; [ L)
t o «Jo

Thus,
1 t
d)fl(y):yexP(——/ Ls(f,)dt).
@ Jo

Hence, we now write the solution to (3-3) as

207 (v) 2y exp(=(1/e) [y Ls(f2) d)
= fo(R) - .
1+ y2 eXP(—(z/Ol) f() Ls(fr) d‘L’)

LS

* 2

(R, y)= fo(R, ¢, (¥)) = fo(R) ——""— =
Ji(R,y) = fo(R, ¢, (¥)) = fo( )1+¢;‘(y)2

Now we consider the operator Ly in the (R, y) € [0, 00) X [0 )-Variables:

L(f)(R)—l/oolfoof(s V4
e A AN T2

Plugging in the expression for f;, we have

1 (1 [® exp(—(1/a) fy Ls(fo)(s)dT) 4y?
L(f)(R) =~ | = dy ds. 3-4
(DR nfR s/o fO(S)l+yzexp(—(2/oz)f0tLs(fr)(s)dt) (14 y2)? re G4

Now since 0 < exp(—(2/oz) fot Li(f:)(s)d r) < 1, we have an upper and a lower bound on the operator
on L;(f;)(R) with constants ¢, ¢ independent of « (in fact, these constants can be explicitly computed).
Namely,

(o] t (e8] t
(s) 1 (s) 1
i / o) exp (—5 / Ls<fr><s>dr) ds < L, (f)(R) <3 f f exp(—; f Ls<fr)<s)dr) ds.
R 0 R 0

N S

Thus, we have our desired inequalities. O
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Lemma 3.2. Define the operator

o t
L(f)(R) := / Jols) exp(—l / L(fs)(s)dr> ds. (3-5)
R N o Jo

Then we have

" t
|| Bt dr = 2atog 1+ 3L R),

where L(fo)(R) = [~ fo(s)/s ds.

Proof. We introduce g;(R) := exp(—(1/a) [y L(f;)(R)dt) and K (R) := fo(R)/R. Then the operator L

can be rewritten as
o0

LR = f K ()g:(s) ds. (3-6)

R

Now taking the time derivative of (3-6), and using that 9,g,(R) = —(1/a)g;(R) f;;o K(s)g:(s)ds, we
can obtain

L) === (LD,

which can be solved explicitly:

- L(fo)(R)
L R) = . 3-7
U = T ean L o) G
Then it follows that
s _ !
/O L(F)(R) dr _2alog<1+£L(fo)(R)). 0
Proposition 3.3. Let f be a solution to the transport equation
8, f + - sin(0) Ly (f)dy f =0, (3-8)

2a
with initial data f|;—o = fo(R) sin(26). Then we have the following estimate on the operator Ls(f):

2a c ! 2a ¢
— log(l + 2—1L(f0)(R)) = / Li(f:)(R) > — 10g<1 + —fL(fO)(R)>, (3-9)
o 0 c 200

1
where c| and c; are independent of a.

Proof. In the section, we will use the bounds in (3-2), namely

o /oo fols) exp(—l/t Li(f2)(s) dT) ds
R S * Jo

= Ly(f)(R) 502/00 fols) eXP(—é/ Ls(fz)(S)dT> ds, (3-10)
R 0

s

to obtain and upper and lower estimate on fot Ls(f). As before we set

d R
gz(R)=eXP<—$/O Ls(fr)(R)dT) and K(R)Zfol(e ).
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Using (3-10), we can obtain that

o] 2 00 00 2
—2</ gt<s)1<(s>ds> za,/ & (©)K(s)ds > —C—2</ gt<s>1<<s>du> NERT)
20[ R R 20[ R
Similar to Lemma 3.2, we define
Ls(f1)(R) i=/R g (s)K(s)ds.

Now from (3-11), we have

—ZC—%LS(ﬁ)(R))2 > 8Ly (f)(R) = —~2(Ly(f)(R))*.
o 20

Thus,
L(fo)(R) > L(f)(R) > L(fo)(R) (3-12)
L+ (c1/Qa))tL(fo)(R) — " 14 (c2/ Qe tL(fo)(R)’
which will give us that
2 ! 2
—alog(l + C—ltL(fo)(R)) Z/ Ls(fo)(R) = —a10g<1 + C—th(fo)(R)>,
cl 2a 0 c 2a
and this completes the proof. |

3.2. Estimate for the leading-order model in W* > and H* norms. The purpose of this subsection
is to obtain some estimate on the leading-order model in W% and #* norms. These will be used to
estimate the size of the remainder term in Section 6. First we will obtain estimates on W, in Lemma 3.4.
Then in Lemma 3.5, we will obtain estimates on £2;.

Lemma 3.4. Let Q; be a solution to the leading-order model:
9 + (50 Ls(22) Sin(20) + 5 Lo() c05(20)) 85 R = 5Ly (),
20 2a 20
with initial data Q2 |;—0 = fo(R) sin(20), where fy(R) is smooth and compactly supported. Consider

U, = 1 L(2)sin(20) + LLc(Qz) cos(20).
4o 4o

Then, we have the following estimates on V;:
Ck Ck
|\112|Wk+1_oo < —, |\I’2|Hk+1 < —, (3—13)
o o

where ¢y depends on the initial conditions and is independent of «.
Proof. Recall that from Proposition 2.1, we can write €2, as

1 t
Qz=f+£'/0 Ls(fo)dr,

and since the initial data is odd in 6, we have

W, = %LS(Q,) sin(26) = %Ls(ft) sin(26).
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To estimate the size of W, from (3-4), we have

% oo exp(—(1/a) [y Ls(fo)(s)dT) 4y2
Ly(f)(R) = =
(R /R S/ Jots 1+ y2exp(—(2/a) [y Ly(fo)(s)dt) (1 +¥?)

5 dyds.

Using (3-2), we have

o0
[Wo|pe < E/ fols) ds < «.
a Jr N

For 0y W», it is clear that we have
o]
|0g W2l < —,
o

where, similarly, cg depends on the initial condition.
Now for dgW,, we have .
IrW2 = —0rLy(f;) sin(20).

4o
Thus,

exp(—(1/a) [y Ls(f:)(R) dT) 4y?
1+ y2exp(—Q2/a) fi Li(fo)(R) dt) (1 +y?)?

LR == [ ik ay,

and similarly, we have

C
[0rW2 10 < —.
o

Now the estimate on R dg W, follows from the estimate on 0z W> and the fact that the initial data have
compact support. Thus,
c
|RORW2 |~ < —
a
For higher-order derivatives, we can obtain the estimate following the same steps. Hence, we have
Ck
v oo < =X
W[y prtt0 < »
The #* estimates also follow using the same steps:
Ck
W1 < =, Il
[V a1 < o

In the following lemma, we will obtain the #* estimates on ;. Here we will use Lemma 3.4 and
transport estimates.

Lemma 3.5. Let Q2; be a solution to the leading—order model

at92+( Ly(@2) sin(26) + 5~ L () cos(20)>89522 — L.

20 20
with initial data 2, |;—0 = fo(R) sin(260), where fo(R) is smooth and compactly supported. Then, we have

the following estimates on 2;:
Q05 < cpe /", (3-14)
where cy, depends on the initial conditions and is independent of «.

Proof. Recall that from Proposition 2.1 we can write €2, as

t
Q=f+ %fo Ly(f.) d.
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where f satisfies the transport equation
0 fr +2W2 0 fr = 0.

When we consider the derivatives of €25, the transport term f dominates the radial term (1/(2a)) fot Ly(f)dr.
Thus, it suffices to consider the ¥ estimates on f which will follow from the standard L? estimate for
the transport equation. Thus, we have

Ufi+2W280 i =0 = 909 fi +-209pW20p fi +-2W2pe f1 = 0.
Hence,
[0g filp2 < |86f0|L2€f0 |09 W2 oo

From (3-13) we have |0g W7 |1~ < co/c. Thus, applying the Gronwall inequality, we have
180 fil 12 < |36 fol L2¢' /" (3-15)

To obtain H* estimates, we need to estimate terms of the form Rkaﬁ. We will show how to obtain the
ROg estimate, and for general k, it will follow similarly. Thus, similar to L? estimate for the 9y f case, since

o fy +2Wo0g f; =0,
we have
0;0R fr +20r W20y f1 +2W20re f1 =0,
and thus,
0| ROR filr2 < 2|RORW2 |09 f 12 + 109 W2l |ROR fr 12

Now from (3-13), (3-15), and applying the Gronwall inequality we have

IR fil12 < (IRIR fol 12 + |9 fol 20/ )e 0/
Hence,
|f Ol <1 folppe /™",
which implies that
100 < 122050/

Similarly, using (3-13), the transport estimate, and following the same steps as above, we can obtain
the general #* estimates. Hence
|Qlys < 1220)]ppee /", O

4. Elliptic estimate

The purpose of this section is to recall the Biot—Savart law decomposition of [Elgindi 2021], which is
used here to derive the leading-order model. In this section, we highlight the main ideas in the proof, and
for more details, see [Elgindi 2021; Drivas and Elgindi 2023]. We remark that this is also related to the
Key Lemma of A. Kiselev and V. Sverik [2014]; see also [Elgindi 2016; Elgindi and Jeong 2023] for
generalizations.
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Proposition 4.1 [Elgindi 2021]. Given Q € H* such that for every R we have
2 21
/ Q(R, 0)sin(nb) do = / Q(R,0)cos(nf)dd =0
0 0

forn =0, 1,2, the unique solution to
AW + 9V + a’ R?Ogg W + (da + a®)RIgW = Q (R, 0)
satisfies
|99 W gt + ot| RORe W | i + ®| R*0rr W i < Cr | e, (4-1)
where Cy, is independent of «. In addition, we have the weights estimate
1800 D (W) 2 + | Roge D (V)| 2 +&*| R*9rr D (W) 2 < Ci| D ()2, (4-2)
where Cy, is independent of o. Recall that Dg = Rog.

Proof. First, we will show how to obtain (4-1). Since €2 is orthogonal to sin(n6) and cos(nf) forn =0, 1, 2,
W must also be orthogonal to sin(nf) and cos(n8) for n =0, 1, 2. Consider the elliptic equation, and we
consider the L? estimate

AW + JgoW + ’R?9rr ¥ + (4o + a®)RIR Y = Q(R, 0).
Taking the inner product with dgg W and integrating by parts, we obtain
2 2 2 2 2 2 1 2 2
—4[0p W2+ (000 W 2 — [0 W2 + | RORg W} 2 + 5 (4o + ) |3 W} > < [S2]12[099 V| 2.

Now by assumption, we have
W(R,0) =) W, (R)e",

n>3

and hence
2 1 2
[0gW]72 < 51300 W72

Using the above inequality, we can show that

2|9po W17, +*|RIRe W7 > + 5 (4o — ) |9 W7, < |S2;21000 V] 2,

and thus we have
[0g9 W12 < Col€2| 2,

where Cy is independent of «. The estimate for the R%3x g W-term will follow similarly. We can also obtain
the H* estimates by following the same strategy. To obtain the (4-2) estimates, recall that Dz = Rdg and
we notice that we can write the elliptic equation in the form

4W + g ¥ 4 o> D3 (W) 4 4a DR(¥) = Q(R, 0).

From this, we observe that the Dg operator commutes with the elliptic equation, and hence (4-2) estimates
will follow from (4-1). Il
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Theorem 2 [Elgindi 2021]. Given Q € H¥, where Q has the form of

Q(R,0) = f(R)sin(20) (Q(R, 0) = f(R) cos(29)),
the unique solution to

40 + 85p W+’ R?gr W + (4o + a®) ROg W = Q(R, 0)
is

1 . 1
W == L(f)(R)sin(26) + R(f) <xp =~ L(f)(R) c0s(26) +R(f)>,
where
L(f)(R) = / L) 4
R s

and

IRk <cl fluk,

where c is independent of o.

Proof. Consider the case where Q2(R, 6) = f(R) sin(260); the case where Q(R, 8) = f(R) cos(20) can
be handled similarly. In this case W (R, 6) will be of the form W (R, 6) = W, (R) sin(26), where W, (R)
will satisfy the ODE

o> R?0gr Vs + (4o + ®)RIR W, = f(R).
We can solve the ODE, see Theorem 4.24 in [Drivas and Elgindi 2023], and obtain

R
1 f6)

8RWZ(R):(X_2R4/“+1 s 45

Now using that W, (R) — 0 as R — 0o, we obtain

\Ifz(R)=_i/oop LI R AR
R

o2 Yot Jo g T-4/a

We notice that we can write the above as
1 © 1 Pf(s) 1 o0 1 Lf(s)
WZ(R)——Q—ZA p4/0[+1 . 51*4/0{ dep_E_/; 8p W ) mdé‘dﬂ

Thus, by integrating by parts, it follows that

Lo 11 (R w1
vk == [ IR [ de L) + R,

Using Hardy-type inequality, see Lemma 4.25 in [Drivas and Elgindi 2023], one can show that

IR()2 <clflpa,

where c is independent of «. O
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5. Embedding estimate in terms of the ¥ norm

In this section we consider some embedding estimate in the ¥ norm which will be used in Section 6.
These estimates will be used various times as we estimate the remainder term. Recall that the ¥ norm is
defined as

m m k
Flim = D 10500 Fliz+ > IR Flize | flage = Y | lion.
i=0 i=1 m=0
Lemma 5.1. Let f € HY, where N € N. Then we have
0835 f 112 < Clum] flpgeemsa, (5-1)
|R¥O% 00" f 110 < Chom| flpgkimsa (5-2)

foranyk+m+2 < N.

Proof. We will show how to obtain inequality (5-2), since inequality (5-1) follows from standard Sobolev
embedding. To show that
IR 3RO flroe < chom| flagimsz,

for any k +m +2 < N, we apply Sobolev embedding to obtain
| R 35' f 11 < cm|RCOROG fluz

where lew is the standard H? norm in R and #. When considering the second derivative terms of
R 8§ dy' f, for the angular derivatives term, we have | R¥ 8§ 8(;”+2 Sfl2 < | flyx+m+2. Now for the radial
derivatives, we have three cases. Considering the case when the two radial derivatives land on aﬁgagf fs
we have

IR ORTZO0 f 12 < [RMF2ONTZO0 112+ 19KT200 1 < | f lpgemen,

where the last inequality follows from the definition of the 4" norm. The other two cases follow in a
similar way. (|
We will also need some embedding estimates for the stream function W in terms of 2.
Lemma 5.2. Let Q@ € HN, where N € N, satisfy the same conditions as in Proposition 4.1. Then for the
solution ¥V of
4W + dgp W + &’ R*9pr W + (4o + 0®) RIRY = Q(R, 0),
we have
18500 W | o0 < Chom |Qqgeemsn (5-3)

fork,m e Nwithk+m+1<N.
Proof. As in Lemma 5.1, applying the Sobolev embedding, we have

|0% 05" W0 < ciml OR 0" W2 -
From the elliptic estimates in Proposition 4.1, for any i, n € N, we have

10%08 W |12 < i | Qpgitnt. (5-4)
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Thus, to bound |8§8(’9"\IJ|H§ o we take €2 to be in H¥T*!. Hence, we have

100 W | Lo < Chom |Qqgrime1, (5-5)

completing the proof. O

Lemma 5.3. Let Q € #, where N € N, satisfying the same conditions as in Proposition 4.1. Then for
the solution V¥ of
AW + 9oV 4+’ R?OgrV + (da + a>) RIRY = Q(R, 0),
we have
|R¥O% 00 W | 1o < Chm | Qgtims (5-6)
fork,m e Nwithk+m-+1<N.
Proof. As in Lemma 5.1, applying the Sobolev embedding, we have
IR DK 0 W | 1 < Chm | ROR 05" 3 -
From the elliptic estimates in Proposition 4.1, for any i, n € N, we have
10505 W] 2 < cinl0%00 Q2 < €in|Qlpgien (5-7)
and
IR 8%95W |12 < ¢in|Qpgivn. (5-8)

Thus, if we look at the second derivative terms of R* 823@" W, we can use the above inequalities to
obtain the desired estimate. For the angular derivative term, we have |Rk8§ 8g1+2\11| 12 < Chom| 2 agkam+1.
When considering the radial derivative terms, we have three terms. For the Rkajg“ 0y’ W-term, applying
(5-7) and (5-8), we have

IR IR0, W | 12 < |RFT2ONT200 W 1o + 9K T2 W] < o |Qggeims .

The other terms can be handled in similar way. Hence, we have our desired result. O

6. Reminder estimate

In this section, we obtain an error estimate on the remaining terms in the Euler with Riesz forcing. Recall
that 2 satisfies the evolution equation

9 Q+ (—aR¥W) IpQ2+ QW + aRIRW) 352

= (2aR sin(8) cos(9) + a*R sin(9) cos(0)) dg W + (1 — 2sin*(9)) dp ¥
+ («R cos*(0) + aR sin*(0)) dgg W + (¢* R* sin(0) cos(9)) drg W — (sin(0) cos(9)) dp W,  (6-1)

and the elliptic equation is
AW + @ R*Igr Y + dpo ¥ + (4o + ¢®) RIRY = Q(R, 0). (6-2)
From Section 2, the leading-order model for the Euler with Riesz forcing equation satisfies

30+ (QW2) 32 = (—1 +25in’(0))dg W1 + (sin(0) cos(0)) dgg V2, (6-3)
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where
1

Uy (R, 0) = —L;(£2;)sin(20) + iLC(SZQ) cos(20). (6-4)
4a 4o
Now set €2, := Q — Q; to be the remainder term for the vorticity, and similarly set W, := W — W, to be
the remainder term for the stream function. Thus, we have that the remainder, 2,, satisfies the evolution
equation

02 + (—aR(3p W2 + 99 W) (022 + 0RS2) + (2W209 2, + 2W, 09 25 + 2, 99 €2;)

+ (@R(Or W2+ 9rY,)) (0922 + 0p€2/)
= (2ozR sin(0) cos(0) + o’R sin(0) cos(@))(aR W, +0rY,)
+ (1 —25in%(0)) 39 W, 4 a (R cos*(0) — R sin>(0)) (drg W2 + dre V,)

+a?(R?sin(0) cos(0)) (9rr W2 + drr ¥, ) — (sin(0) cos(9))dgeV,. (6-5)

The goal of this section is to show that 2, remains small. Namely, using energy methods, for some

time T, we show that

sup, <7 |2 (1)|~ < Ca'/?

for some constant C independent of «.
Lemma 6.1. Ler Q, = Q — Q; satisfy (6-5) with Q and 2, satisfying (6-1) and (6-3), respectively. Let
WV, =W — W, with W and V, satisfying (6-2) and (6-4), respectively. Then we have the estimates
10501 W, |12 < KM@, lpeent and | R¥O9IW, 12 < KR, ke (6-6)
o o
fork,m e N.

Proof. Recall that by the Biot—Savart law decomposition [Elgindi 2021] (see Section 4 for more details),
we have the following decomposition for the elliptic equation (6-2):

W(R,0) = %LS(Q) sin(20) + %LC(Q) cos(20) + R(2),

with R(2) bounded on 7" with a constant independent of «. This follows from the elliptic estimates
in Proposition 4.1 and Theorem 2 in Section 4. Now since we defined 2, = Q — Qp and ¥, = ¥ — ,,
with €, and W, satisfying (6-3), and (6-4), respectively, we have the following decomposition for W,:

V. (R,0) = %LS(QJ sin(260) + %LC(Q,) cos(20) +R(€2,) +R(€22). (6-7)

Hence, this gives the estimates
1058w, 2 < EM1Q, et and  [RY858MW, |12 < EMQ, |y jeinot 0
o o
We define the following terms to shorten the notation:
I = —aR(0g W2 + 9V, ) (Or 22 + 0R2,),
I = (2W70p2, +2W, 092 +2W, 00 2;),
I3 =aR(0rW2 + 0r W, ) (0p€22 + 05 €2;),
Iy =20(1 —a)R sin(0) cos(0) (g Wy + 0r ¥,),
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Is = (1 —2sin%(0)) 9V,
Is = a(R cos*(9) — Rsin*(0))(dre W2 + dre \V,),
I7 = &*(R? sin(6) cos(0)) (Irr W2 + drr W),
I3 = —(sin(0) cos(6))dpo V.
Now we have the error estimate proposition.
Proposition 6.2. Let 2, = Q — Q; satisfy (6-5) with Q,|;—0 = 0. Then

1/2
SUPg<; -7 2 (1)1 < eyar'/?,

where T = ca log(c|log(w)|) and c is a small constant independent of «.

Proof. We will use 3" to refer to any mixed derivatives in R and 6 of order N (not excluding pure R- and
6-derivatives). From the definition of the 7" norm, to obtain the H”" estimate we will take the following
inner product with each /;-term:

(0%1;,9") and  (R*9p05 " 1;, R0y 2)
for0<k<Nand1<i<8.

Estimate on /; and /3: Here we will estimate /1 and /3. The estimate of /3 is very similar to /1, and so
we will just show how to obtain the estimate on /.

Estimate on /;: We can write I; as
I = —aR(0gWr + 09V, ) (0r €22 + IR €2,)
= —a(3pW2) R(Or€22) — (39 W2) R(OR€2,) — (99 W) R(IR€22) — (39 W) R(ORS2/)
=hath2+hsz+ 1,
and we will estimate each term separately.

e [1 ] = —adyWr RORS2;. Here we have

N
(0" (dp W2 ROR), 0V Q) = ) " cin / 0" (e W2)d" ™" (ROR2) 9V Q.
i=0
Now from Lemmas 3.4 and 3.5, we know that

W [kt < Z—k and  [Qp|yr < |QZ(O)|er(Ck/a)t'

Thus, we have
N

N
Z/aaf(aewz)aN—f(RaRszz) 0N, <y Y alddpWalre |0V (RORQ) L2 10" Q12
i =0 i=0

< cyo|Walpyn+ieo |22+t |20 |y

C
< a eV v < ene D, gy,
o
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and similarly we have
(0%0) " (adp Wy ROR), R* 8KV FQ,)

N
= Ci,m,N / Z Lo (adgWp) 9% 8) KM (ROR ) R*0K0N T+,
i+m=0
From the definition of the WY 11> norm, we have fori +m < N,

R0 05" W] e < [Walyywr .

Again, applying Lemmas 3.4 and 3.5, we obtain

N
> f R %37 (cdpW2) R 97 9) " (RO 2) R0~ .
i+m=0
N .
<cy Y a| Ry T ol |RTT 0 0 TH T (ROR) |2 IRM 0K D) TH 12
i+m=0

CN N N
< ena|Walyynetoo |2 lavet |2 lyn < a——e NN Q v < eneNONQ, |y
o

Thus, we have
(T11. Qr)pgy < ene Qg (6-8)

o 1o =—adyWy RORS2,. Here we have

N
(0" (cdp W2 ROR). V) = ) cin / 0" (009 W2)9" ' (ROR2)0" Q.
=0

To obtain this estimate, we again apply Lemma 3.4. Namely, that |V, |yk+1.00 < cx/oc. When i =0, we
integrate by parts and obtain

CN
f(aaewnaN(RaRszr) N < c|Walyyece | Q5 n < ;mr@w.
For 1 <i < N we have

N N
> / ad By W)~ (RoRR) Ny < ey ) B Walre |97 (RORQ)1 12 10V 12
i=1 i=1
N 2 2
= evaWalynteo [l [Qrlgn < o= 182 [0 = en[S2r [,
Similarly, now for the Rkajg Bév ~*_terms we have

(R¥9%8) *(adg W RORS,), R¥0%0) Q)

N
= Cim.N / Y RYORI; (@de W) B9y T (RORS,) R¥OR 0,2,
i+m=0
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We again use |V |\ k+1.00 < ¢ /a. Hence, we have

N
> fRia;agl(aa@xpz) RETk=IgN=k=m (RO Q,) R¥0%0) * 2,
i+m=0 N
<cy Y Ry Wl |RTT 00 TH T (RORS) 12 | RA KDY TF Q12
i+m=0
N 2 2
< ena|Walyynttoo [S2 v (27 [gyv < a?IQrIHN < NIy N
Thus, we have
(T2, )3y < en|Qel3- (6-9)

e [13=—a(dyV,)RIRr2,. To obtain the estimate on /; 3, we will use Lemma 3.5, which will give us
the estimate on €2,. In addition, to bound the dy W,-term, we will use the decomposition of W, (6-7) and
estimate (6-6) combined with the elliptic estimates from Proposition 4.1 and embedding estimates from
Lemma 5.2. Now we have

N
(0" (@ W ROR), 0V Q) =) cin f 0" (W) 8" (RORS2) 9V Q.
i=0
When 0 <i < N/2, we will use the embedding from Lemma 5.1. Namely that
10709 W, | L < ¢i]3p Wy g2

Then, applying Lemma 6.1, we have

o
|09 Wy [3gi+2 < — |2 |42
o
Thus,
N/2 N/2

> / 0" (dp W) 0N~ (RORS2) OV Qr <Y at]d' W, |1 [0V (RORQ) 1210V Q112
i =0 i=0
N/2

i
< Zaém,mmmﬂwﬁ [oRMY
i=0
< |9 g2 | Qalpgv [ Iy < ene™N¥ Q15w
Here we used Lemma 3.5 for the |22]4/~-+1-term.
When N/2 <i < N, we will use Lemma 6.1. Namely,

i Ci
[0°0g W) |12 < E|Qr|w‘~
Thus, we have

N N
> / 0" (cdp W) 0N T (ROR2) 0N Q< D @ 9 Wy |2 |RAR 2 lyyw—ice [0V 2 |12
i=N/2 i=N/2

N
Ci
= D a1 hul Qb |l
i=N/2
2
< e |92 13w 1030w 12 Iy < ene N ONQ L
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Similarly, to estimate the inner product
N—k 2 N—k 2
(0%0) (B9 W) ROR), R* 00y Q) < ene /™ |Q, 17 v

we will use the weighted embedding estimates from Lemma 5.1 combined with Lemma 6.1. Following
the same steps as we did in the previous inner product, we obtain

(113, 2 )av < ene Q3 (6-10)

e [14=—a(dpV,)ROg2,. To obtain the estimate on /1 4, we will use Lemma 6.1 and the embedding
estimate from Lemma 5.1 to handle the dg\W,-term. To handle the R0z <2,-term, we will use embedding
estimates from Lemma 5.1 and follow the same steps as we did in the previous inner product. We will
only show how to obtain the estimate on the term

(k)" @i, RoRS2). R*0ha) ™)
o [ 35 a5 R Rl
i+m=0

For the other inner product, the idea is the same. To start the estimate, first we consider the case when
i =m = 0. We integrate by parts and use the embedding estimates in Lemmas 5.1 and 6.1 to estimate the
dp ¥,--term. We have

/aagqf,(Rk“a;g“ Nk, + RFaka) T Q,) RY koY TFQ,
< | RRe W, |1 |R 9505 * Q17 + el 0p Wr | oo | R 90, 17,
< en (@l 190 3w + 19012 190 150)
<Nl
Now when 1 <i+m < N /2, we will again use Lemmas 5.1 and 6.1 and the definition of the H* norm
to obtain
N/2

Z R 0597 (adpW,) (R Tkt =gV =k=mqy 4 RF-1gk=TaN=k=mq. ) R ok N+,

i+m=>1

N/2
< Z Q| R DRI, | oo |RFFIZIGRTIZI N =k=m ey |15 |R¥ 0% 0 7+, 112
i+m>1 N/2
+ Z a| R %8I, oo [RFTT AN TR 2 RN ORON TR, |
i+m=>1
N/2
<cn D Qb2 (@l + 1D lv-1) | Qg
i+m>1

< N2 gz (182, v + |20 |gv 1) [S27 [ gyv

3
<Nl
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Now for the case when N/2 <i+m < N, we will use Lemmas 5.1 and 6.1 to obtain
N
> RI0RO; (dpWw,) (RS R ) R, + RN ) T, ) R o) TR,
i+m>N/2

N
< D RO (IR TN T ) [RY 0K, TR
i+m>N/2 N
+ Y alR ORI 2 (IR o 0 T, 1) | RE 9T 12
v i+m=>N/2
< Z |2 [2gi4m (|Qr|’HN—(z’+m)+3 + |Qr|'HN—(i+m)+2) |2 [N
i+m>N/2

3
=< CN|Qr|HN |Qr|HN/2+3|Qr|HN = CN|Qr|7_LN,

and thus, we have
(I14s Qe )pv < NIl (6-11)

Thus, we have the following estimate on the /;-term:
(I, Q)qgw < ene D |Q g+ ene Y QI + en Q[ (6-12)

Estimate on /3: The estimate on /3 follows similarly to I, so we skip the details for this case. One can
obtain

(I3, Qv < ene /D |Qp g + ene Q[+ en IRl (6-13)
Estimate on I>: Here we have
I = (2W209 Q2 +2W, 0020 +2W,002,) = 1 + L2 + 2 3.

o Ip ] =2W7092,. To estimate I 1, we follow the same steps as in the /1-term. Using Lemma 3.4,
namely that |Ws|yyv.o < cy/a, we have

CN
(Dot Qe)n < =1y (6-14)

o Ip =2W,05p$2. Similarly, to estimate I, we also follow the same steps as we did in /;. More
specifically, to handle the W, -term, we will follow similar steps as for the terms /; 3 and /; 4. Namely,
we will apply embedding estimates and Lemma 6.1 to estimate the W,-term. To estimate €2, we use
Lemma 3.5 to obtain that |27 ]x < |S22(0)|er(ck/"‘)’. Thus we have

CN
(2, Q)pgv < ge@'v/“)’mr@w. (6-15)

e [53=2W,0pQ2,. This term I, 3 can be estimated similarly to the /| 4-term by using embedding and
Lemma 6.1. Hence, we obtain

C
(D3 )y < 12 Py (6-16)
o



738 TAREK M. ELGINDI AND KARIM R. SHIKH KHALIL

Thus we have
CN CN R CN CN R CN
(D, Qehgn = Qg+ —=e VR Gy + 1y < —=e QR + =2 [y (6-17)

Estimates on 14, Is, Is, I7, and Ig: We can write I4 as

Iy = 2R sin() cos(0) 4+ o> R sin(0) cos(0)) (9g W2 + Iz V)

=2+ a) sin(9) cos(8) RIgWs 4+ a (2 + ) sin(0) cos(0) RARY, = Iy + I45.
Recall that
Is = (1 —2sin%(0))dg V.

We can also rewrite and /g and I as
Is = a(cos?(0) — sin®(0)) R (dgg W2 + dge V)

= a(cos?(0) — sin*(0)) Rdgg W1 + ar(cos?(9) — sin®(0)) Rogg W, = I | + I 2
and
I; = a*(sin(9) cos(0)) R*(9gr W2 + drr V»)
= o%(sin(8) cos(0)) R? dgr Wy + & (sin(8) cos(0)) R* dgp W, = I7.1 + 175
Recall that
Ig = —sin(0) cos(0) dgo ¥, .

Now for i =4, 6, and 7, using Lemma 3.4, namely that |V |;+1 < cx/a, we have the estimate

(Li1, 2 )yv <cn|Qlyv fori=4,6,7. (6-18)
Using Lemma 6.1, we obtain
(i )ar <@ By = e[ fori =4,6,7 (6-19)
and
CN 2 .
(lis )y < — [ |3n  fori=35,8. (6-20)
o

Hence, from (6-18), (6-19), (6-20), we have
(Iiy Q)ynv <Nl lyy + C—N|Qr|3{,\, fori =4,5,...,8. (6-21)
o

Total remainder estimate: Here we obtain the total error estimate. From our previous work we have

8
d
TR B = 0, Qu)ay < 1T Q).
i=1
and thus from (6-12), (6-13), (6-17), and (6-21), we have
d . c . c
7190 o < ene Qo + e M|y + 1 .

and hence

%|Q,|HN < cyelen/or 4 %’Ve(cN/a)z |2 |y + %Nm,ﬁ{,v. (6-22)
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Now since we have 2, |;—9 = 0, we will use bootstrap argument to close the remainder estimate. We
will assume that |, ;v < 2cya'/? for time 0 < ¢ < T, and then show that |2, (¢)|,,v < cya!/?, and this
will give the remainder estimate. Let us assume that

Q) |av < 2enal/?,

Then from (6-22) we have

d . CN (¢
77 Sty = cenel N 4 ;e(éN/a)qumN +4ey,

and thus
' e
|2 |yv < ([) CNe(CN/Ol)T +4013V d‘L’) exp</0 ;Ne(czv/a)t d‘L’) < (acNe(cN/oz)t —|—4C?Vt) eXp(CNe(CN/a)t).

Hence, if we choose our time scale 0 < ¢ < T'(«) = cjo log(ca|log(e)|) for ¢y and ¢> small constants, for

example, take c; = 1/cy, and ¢ = 1/(4cy), we have
19 |3v < ena'’?,

which completes the bootstrap argument and gives the proof of Proposition 6.2. 0

7. Main result

We now recall and prove the main theorem of this work.
Theorem 3. Forany o, § >0, there exists initial data a)g"s eCX (R?) and T (&) such that the corresponding
unique global solution, w®?°, to (1-4) is such that at t = 0 we have

|| = 8,

but for any 0 <t < T (a) we have
™ 0)] 1~ = ool +clog(1+<1)),

where T (o) = ca log(c|log(a)|), and ¢ > 0 is a constant independent of « that depends linearly on §.

Proof. Consider the initial data of the form
wo = Q=0 = fo(R) sin(20),

where fy(R), with R = r% is a nonnegative compactly supported smooth function which is zero on
[O, %] U[1, oo) and positive outside. We know that we can write 2 = 2, 4 €2, and from the form of the
initial data, we have 2, |;,—o = 0 and thus from Proposition 6.2 we have

12, (1) L~ < cna'/?
for 0 <t < T () = calog(c|log(r)|), where recall that ¢ is a small constant independent of «. Recall

also that we can write €2, as

t
Q=f+ %fo Ly(f.) d.
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and thus from Proposition 3.3, we obtain

_ 1/ o
Qz—f+2a/0 Ls(ff)drzf+colog<l+ at)

for some ¢y independent of o and thus we have our desired result. O
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FRACTAL UNCERTAINTY FOR DISCRETE TWO-DIMENSIONAL CANTOR SETS

ALEX COHEN

We prove that a self-similar Cantor set in Zy x Zy has a fractal uncertainty principle if and only if it does
not contain a pair of orthogonal lines. The key ingredient in our proof is a quantitative form of Lang’s
conjecture in number theory due to Ruppert and to Beukers and Smyth. Our theorem answers a question
of Dyatlov and has applications to open quantum maps.

1. Introduction

1.1. One-dimensional fractal uncertainty. The Bourgain—Dyatlov [2018] fractal uncertainty principle
(FUP) says, in a precise quantitative sense, that a function f : R — C cannot simultaneously have large L?
mass on a fractal set in physical space and large L? mass on a fractal set in Fourier space. This theorem
and its variants have many applications to quantum chaos; see the survey article [Dyatlov 2019]. The
proof of FUP in [Bourgain and Dyatlov 2018] is quite tricky, but the analogous result in the discrete
setting has similar ingredients and is much simpler.

We begin with some notation. In this paper Zy = Z/NZ refers to the integers mod N. We use the
unitary discrete Fourier transform F : £2(Zy) — £>(Zy), given by

Fr& =@ = ﬁ 3 fwe W

erN

- 1 i
Flfm=f'0=—= Y fEenrs.
VN
Eely
We will also use the one-dimensional and two-dimensional tori T, T2 which are identified as sets with
[0, 1) and [0, 1) x [0, 1).
Let us restrict our attention to self-similar Cantor sets (when we say Cantor set we always mean
self-similar). Fix a base M and an alphabet A C Zj,. Then let

Xk:{ao+alM+---+ak_1Mk_l ta; € A} C Zyp

be the k-th iterate. It will be convenient to let N = M, so X, C Zy. We say A has dimension 84 =log,, | Al,
so M*® = |x;| for all k. Similarly, let J; be the Cantor iterates associated with the alphabet . Dyatlov
and Jin [2017] proved the following fractal uncertainty principle for discrete one-dimensional Cantor sets.
They were motivated by applications to open quantum maps; see Section 1.4 for more discussion.
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Theorem 1 (one-dimensional FUP [Dyatlov and Jin 2017, Theorem 2]). For all alphabets A, B C Zy,
the estimate

My F Ll S M (1)
holds for some B > 0.

Because of self-similarity, Cantor sets enjoy the submultiplicativity estimate (see Section 5.1 for a proof)

Iy, Fly o2 < 11y, F Ly llas2ll1y, F 1y ll2—2, ()

which reduces (1) to the problem of proving that for some k > 0

1y, F lx, llo—2 < 1.

This estimate holds if there is no nonzero function f with supp f C X} and supp f C Y. To recap, proving
a one-dimensional FUP reduces to showing that, for some k, there is no function f with supp f C X
and supp f C k.

In the general case of arbitrary porous sets (not necessarily Cantor sets), submultiplicativity is replaced
by an induction-on-scales argument which allows one to find significant L? mass of f in the gaps of Yy
at every scale.

1.2. Two-dimensional fractal uncertainty. In two dimensions, Cantor sets are determined by an alphabet
AC 73, We set

Xe={(ao+- - +aM  bo+ -+ b MY (aj, b)) € A} C 75, 3)

where N := M*. We have |A| = M? with 0 < § < 2, and |X;| = M*°. The unitary Fourier transform in
two dimensions is given by

FrEm=FfEm=— Y [y Fasom

2
(x,y)EZy
2mi

fA(’é) = % Z f(x)e_T."'E in vector notation.

2
xely

Submultiplicativity (2) holds in two dimensions as well (see Section 5.1), so proving a two-dimensional
FUP reduces to showing that, for some k, there is no nonzero f with supp f C X} and supp f C k.
Unfortunately, this claim is not true in general. Indeed,

fa.y) =N, has f=N"1,g

and fractal sets can contain vertical and horizontal lines. We show that the fractal sets generated by the
alphabets .4, B containing a pair of orthogonal lines are the only obstruction to a two-dimensional FUP.
For A C ZIZM an alphabet, let

A={(x,y)eT?: (IMx], IMy]) € A}.
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This is a closed drawing of A in T2 and we draw the Cantor iterate X} as

X ={(x,y) € T2: ([M*x], IM*y]) € X} C T 4)
We write X = ("), X C T? as the limiting Cantor set, so

A=XyD2X|1DX;D---DX,
X ={(0.apay...,0.bpby...):(aj,bj) € Aforall j >0} inbase M.

Note that if x € T is of the form a/M* then there are two possible decimal expansions — the point
(x,y) € Tisin X if some decimal expansion has all digits in the alphabet. For B a second alphabet we
write B C T? as the drawing of B and ¥ C T? as the limiting Cantor set for B. We need these closed sets
to state the condition of our main theorem.

Theorem 2 (two-dimensional FUP). Suppose A, B are alphabets. Then either
Ro+pcCX and Rvt+gcCY (5)
for some v = (a, b) € R — {0}, p,q € T2 orif not then X, Y satisfy

My F 1y llasa S M (6)

for some > 0.

In particular, if X does not contain any line then it has an FUP. We note that in this theorem, (a, b)
can be taken to be integers. Otherwise a/b is irrational and the coset Rv + p is dense in T2, so it cannot
lie entirely in the closed set X C T2 The main outside ingredient we use is Theorem 19 due to [Ruppert
1993, Corollary 5] and [Beukers and Smyth 2002, Theorem 4]; see Section 4.

In Section 5.2 we show that this theorem is sharp: if X, Y contain a pair of orthogonal lines, FUP will
fail. Notice that the condition of the theorem depends on the limiting Cantor sets X, ¥ C T2, and it is not
immediately clear when alphabets A, B generate Cantor sets satisfying this orthogonal line condition.
The following proposition reduces this question to a finite combinatorial problem.

Proposition 3. A line Rv + p lies on X if and only if Rv 4+ M* p lies on A for all k > 0. Additionally,
suppose (a, b) € 7> — {0} is given, a, b coprime. In order for there to be some p with Rv+ p C X, we
must have max(|a|, |b]) < M.

Proposition 3 leaves open a natural algorithmic question. Given an alphabet A and vector v € Z> — {0},
does there exist a point p € T2 such that Rv + p C X? An efficient algorithm for this problem would
lead to an efficient algorithm for testing when two alphabets .4, B satisfy the conditions of Theorem 2.
For the proof and more discussion see Section 5.3.

Remark 4. Theorem 2 refines Conjecture 6.7 from [Dyatlov 2019]. That conjecture recognizes the
potential obstruction of X, ¥ containing a pair of vertical/horizontal or diagonal/antidiagonal lines (the
case max(|al, |b|) <1 in Proposition 3), but does account for lines with other slopes, which may occur in
practice. See Figure 1.
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(a) All iterates contain a skewed line. (b) The first iterate contains a skewed
line, but further iterates do not.

Figure 1. Cantor sets can contain lines that aren’t horizontal, vertical, or diagonal, but they are less stable.

Theorem 2 is only interesting when %(8 4 +8p) > 1. Indeed, equation (6.8) from [Dyatlov 2019] says
that (6) always holds with g = max(O, 1-— %(8 A+4 B)). Combining Theorem 2 with Proposition 6.8
from [Dyatlov 2019], we can classify exactly which discrete two-dimensional Cantor sets exhibit a fractal
uncertainty principle.

Corollary 5. Let A, BB be a pair of alphabets. Equation (6) holds for some B > max(O, 1— %(8 ) B)) if
and only if
e 34 +6p =2 and the orthogonal line condition from Theorem 2 holds,

o 84+8p <2andforsome j,j €A, k, k' €B,
(j—Jj . k—K')#0 asaninner productinZ.

The second condition above is a different sort of orthogonal line condition from the first. Although it
is not initially obvious, the two conditions are the same when §4 + 6 = 2. Indeed, this must be the case,
because both conditions are if and only if statements. If §4 + 5 = 2 and A, B do not obey an FUP, then
) A= 1) B = 1 and

A={(xo,t):t€Zy} and B={(t, yo):t €Zy} forsome xg, yo € Zy

or
A={E,t):teZy} and B={t,M—1—1):t €y},

or the reverse of these. Indeed, if 64 < 1 then X is less than one-dimensional and it cannot contain any
line, so Theorem 2 applies. If §4 = dp =1 then |A| = |B| = N, and A — A, B — B must both lie on
one-dimensional cosets as subsets of Z2 This can only be true in one of the two cases listed above.

1.3. Sketch of the argument. Suppose f : Z%\, — C has supp f = S, supp f=T. Our argument shows
that if S avoids lines in a robust sense, then |T'| > N2 Proposition 15 is a realization of this heuristic.
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We start by writing functions on Z%\, with Fourier support in [0, D]? as a trigonometric polynomial
on T? ¢ C? with degree < D. We gain two things from using polynomials: unique factorization and
Bezout’s theorem on the intersection of zero loci. The heart of the argument is constructing a trigonometric
polynomial

2mi 2mi
hx.y)= Y auw', z=eV  w=ev’, DSV|TI, (7)
0<k,lI<D

which vanishes on all of T except one line (and does not vanish on all of 7). Then & f is nonzero and
supported along a line, so (A f )" has constant magnitude along dual lines. We have (h f ) =h"*f,s0

supp(hf) C §—[0, D] x [0, D].

Thus § —[0, D] x [0, D] contains some dual line, and combining this fact with the structural condition on
S implies D > N. Thus |T| > N2 Because we end up analyzing the function £ f h is called a multiplier.

It is useful to consider a hypothetical scenario: what if T is the vanishing set of some low-degree
trigonometric polynomial in 73, e.g.,

T:{(x,y)eZ%,:z2+4zw—|—w:1}, z=eN ", w=enN?

Bezout’s inequality (Theorem 24) states that any trigonometric polynomial / can only vanish on at most
4D points of T, or it must vanish on all of 7. So any multiplier as in (7) would have degree ~ |T| > /|7,
obstructing our strategy if |T'| is large.

Luckily, Theorem 19 from [Ruppert 1993, Corollary 5] and [Beukers and Smyth 2002, Theorem 4.1]
excludes this possibility. They prove that the vanishing set of a degree-D trigonometric polynomial in Z%V
either has order < 22D? or contains a line. Concretely, with T defined as above, |T| < 88 for all N.
This theorem gives a sharp quantitative form to Lang’s conjecture, which is a qualitative statement about
cyclotomic roots of polynomials in C* — see Section 4 for more details. Lemma 11 encapsulates this
number-theoretic input as it applies to our result.

1.4. An application to quantum chaos. Dyatlov and Jin [2017] initially introduced Theorem 1 to prove
results in quantum chaos. In particular, they used Theorem 1 to prove a class of one-dimensional guantum
open baker’s maps, a discrete model for open quantum maps, always have a spectral gap. Adapting their
pipeline we can use our Theorem 2 to prove a large class of two-dimensional quantum open baker’s maps
have a spectral gap.

One-dimensional baker’s maps. First we will review the one-dimensional situation as discussed in
[Dyatlov and Jin 2017]. The quantum open baker’s maps in consideration are parametrized by triples

(M, A, x), MeZ.o, ACZy, x € Cy (0, D; [0, 1]).

Here M is the base, A is the alphabet, and x is the cutoff function. For any N > 1, let xy € ?(Zy) be
given by yn(x) = x(x/N). For each k > 1 the corresponding quantum open baker’s map is the operator
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on (>(Zy), N = M¥, given by
XN/M FN/M XN/M
By =7Fy -, Lo m.
XN/M FN/M XN/M
Here 14 5 is the N x N diagonal matrix with k-th diagonal entry equal to 1 if LN/LMJ € Aand O

otherwise, and xn/m Fn/m xn/m is an (N /M) x (N /M) block matrix given by the corresponding operator
on £*(Z ~n/m)- It is convenient to introduce the projection operator

N
M, : Zy) — C@Znm), a€lu, nau<j>=u(j+aﬁ).
Then

By = Z By, By = Fy I xnm Fm xnm M.
acA
Let X, C Zy« denote the Cantor iterates of A as before. The following proposition relates the fractal

uncertainty principle to spectral gaps for By.

Proposition 6 [Dyatlov and Jin 2017, Proposition 2.6]. Suppose

112 F L ll22 < CgM ™ forall k. (8)
Then

lim supmax{|A| : A € Sp(By)} < M P, 9)

N—o0

where Sp(By) is the spectrum.

Combining Proposition 6 with Theorem 1, Dyatlov and Jin obtain a spectral gap for our quantum open
bakers maps.

Theorem 7 [Dyatlov and Jin 2017, Theorem 1]. There exists § = (M, A) > 0 such that

lim supmax{|A| : A € Sp(By)} < MF,
N—o00
where Sp(By) is the spectrum.

It is not hard to show that (8) always holds with g = max(O, % — 8), 3 the fractal dimension, so this
theorem is only interesting when § > % A different argument for § < % shows that in Theorem 1 we can

take > max\v, 5 — or a , gZ1vVINng an 1mprove spectra ap 10r a ractal dimensions 1n corem /.
k 0, 1 —8) for all 8, giving an i d 1 gap for all fractal dimensions in Th 7

Two-dimensional baker’s maps. A two-dimensional quantum open baker’s map is parametrized by a
triple
(M, A, x), MeZ.o, AC@Zu), x € CW0, [0, 1).

We will define baker’s maps By : 2 (ZZZV) — EZ(Z%,), N = M*. As before, define

. . N
M, : CZy) > @) a=(aa) € @y)’,  Mau(j)= M(J +aﬁ).
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Then set

By =Y By, B =TT xnm Fam xnm Na,
acA

where Fy denotes the unitary Fourier transform on KZ(Z%V) and xny(j) = x(j/N). In Section 5.4 we sketch
the proof that Proposition 6 holds for two-dimensional bakers maps as well, leading to the following.

Theorem 8. Suppose A C Z%,[ is an alphabet such that X, the Cantor set generated by A, does not contain
a pair of orthogonal lines as in Theorem 2. Then there is some § = B(M, A) > 0 so that

lim sup max{|A]| : A € Sp(By)} < M.
N—o00
Just as Theorem 7 is only interesting for § > 1, Theorem 8 is only interesting for § > 1, because we
can always take § = max(0, 1 —§) in (8).

1.5. Organization. In Section 2 we give a new proof of a one-dimensional FUP (Theorem 1) as a warmup
for our two-dimensional argument. In Section 3 we prove Theorem 2, up to the proof of the main Lemma 11,
which we defer to Section 4. In Section 5 we supply proofs of several earlier claims which are not directly
relevant to Theorem 2. In particular, we show the condition of Theorem 2 is sharp, prove Proposition 3
regarding lines in Cantor sets, and sketch the two-dimensional proof of Proposition 6 regarding the
application of FUP to quantum baker’s maps. In Appendix A we give a sketch of Ruppert and Beukers—
Smyth’s Theorem 19, which is the essential ingredient to our Lemma 11. Finally, in Appendix B, we
compare Theorem 2 to a more recent higher-dimensional FUP the author [Cohen 2023] proved in R% The
more recent result can be used to prove an FUP for discrete Cantor sets in any dimension that avoid all lines,
but cannot recover the precise orthogonal line condition proved in two dimensions in the present paper.

2. The one-dimensional argument

Our starting point is the following simple argument which can be used to establish a one-dimensional
FUP.

Proposition 9. Let I = [a, b) be an interval, and suppose f : Zn — C is nonzero and has f |r =0. Then
Isupp f| > [I|=b—a.

Proof. Suppose [supp f| =k. Let S =supp f = {x1, ..., xx}. Let F(z) be the polynomial

k—1
F(Z):(Z—ele)...(z_eka’l): ajZJ-
j=0

Let h : Zy — C be defined by

aja Of.lfk_la
0, else.

1 2mi

h(x) = WF(WC), h(j)= {
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supp f = {y1, 2, ¥3, ya) supp f = {x1, x2, X3, X4}
supph C [0, D) supp fh = {x4}
supp fh C {y1, y2, ¥3, ya} + 1[0, D) A
—to—to—F—t—11o— | CTR o M
oy y3 V4
Fh(y) =0,

a contradiction

Figure 2. Diagram of the one-dimensional argument.

Then & vanishes on all of S except for xi (and 4 is nonzero at xi). Thus Af = céy,, ¢ #0. So 717 has full
Fourier support. But

k—1
hfb—1)=(hxf)b—1) =Y h(j)fb—1- ).
j=0
If k < |I| we have ﬁ?(b — 1) =0 leading to a contradiction. Thus [supp f| > |1]. O

See Figure 2 for a visualization.

Remark 10. This proof shares some similarities with Bourgain and Dyatlov’s proof of a one-dimensional
FUP for general fractal sets. They constructed a function i with compact Fourier support and which
decays quickly on a fractal set. They multiply by this function to discover that a function supported on a
fractal set must have substantial Fourier mass in a union of intervals. In the discrete setting, things are
much simpler: we may construct a multiplier that vanishes on all but one element of the fractal set, and
then multiply by this function to discover some Fourier mass in every gap.

3. The two-dimensional argument

We first state our main lemma, then derive Theorem 2 from this lemma, and finally discuss the proof of

the lemma. For A C ZIZV, let

Nz(A) =A+[0, R) x [0, R) = supp(1[o,r)x[0,R) * 1 4)
be the R-neighborhood of A. A line ¢ C Z%v is a coset of the form
€={(x,y) €Z% :ax +by=c}.

The coefficients (a, b, ¢) are only determined up to multiplication by Z . We say £ is irreducible if a, b
are coprime over Zy, and ||£|| = R is the minimal number so that we can write

C={(x,y)€Z% :ax+by=c}, lal,|b|<R. (10)
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supp & C supp f + [0, D)?

4
o
o
o -
o o
s ]
o
o oo g
oS o o -
]:(Zn XZN) ZNXZN

Figure 3. Visualization of Lemma 11.

Lemma 11. Let | : Z%\, — C be a nonzero function with supp f = S. Let R = 1200|S|'/2|. There is an
irreducible line £ with ||£|| < R and a nonzero function g with supp g C S N £ and supp ¢ C Ng(supp f ).

This lemma is analogous to the proof of Proposition 9, except we can only localize the support of f to
a line ¢ rather than to a single point. See Figure 3. Before showing how to derive Theorem 2 using this
lemma we discuss discretizations of sets in T? lines in T2 and lines in Z%.

3.1. Discretization of fractal sets. It will be more convenient to state our main results for discretizations
of general fractal sets in T2 and then specialize to Cantor sets later. Let X C T2 be closed. For 0 <r < 1,
let N,(X) =X +[—r, r] x [—r, r] be the r—neighborhood.1 Let

x x+1 y y+1
Xv = y Zz — ) nX 1%
v={omezd: (25 x5 e | nx 2 o

c {(x,y) e (% %) € Nl/N(X)}

be a discretization of X to Z%V. If X is the limiting Cantor set for an alphabet A, then X C Z%/[k
is just slightly larger than the k-th Cantor iterate X} of A (due to endpoint considerations). Likewise,
the drawing X; (4) of the k-th iterate in T2 is slightly smaller than N,,—«(X). If R is an integer and
Nz(Xy) =Xy +[0, R) x [0, R), then

Ng(Xy) C {(x,y)ezzN:G,%) eNR/N<X>}, (11)

where Ng/n(X) C T2 In what follows R will be ~ N, B < 1,s0 R/N ~ NF~1 and Ng,n(X) will look
like a very small neighborhood of X in T.
LOur convention is that N, (X) = X + [—r, r] x [—r, r] denotes a neighborhood in T2 and Ng(A)=A+[0,R) x [0, R)

denotes an “upper right” neighborhood in Z%V. We take the full neighborhood in T2 rather than just the upper right neighborhood
for technical reasons — this convention makes (11) true, and otherwise it would be more complicated to state.
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3.2. Some useful lemmas on lines.
Lemma 12. Let
£={(x,y) EZ?\, cax+by=c}, a,b,cely,
be an irreducible line, i.e., a, b are coprime as elements of Zy. Then £ = Z(—b, a) + p, where p € £ is

arbitrary. We have |€| = N. Also, a, b can be taken as coprime integers.

Proof. Pick s, t so that sa +tb =1 (mod N). We have (cs, ct) € £. Suppose ax + by = 0. We claim
(x,y) = (=b,a) - (—tx +sy). Indeed,

—b(—tx +sy) =tbx —sby =tbx 4+ sax =x (mod N),
a(—tx +sy) = —atx +asy =tby+say =y (mod N)

as needed. This shows that for (x, y) € ¢, (x,y)— p € (—b,a)”Z.

To see |£| = N, notice (—nb, na)+p = (—mb, ma)+p (mod N) if and only if (—(n—m)b, (n—m)a) =
0 (mod N) if and only if » =m (mod N), using that a, b are coprime.

Finally, suppose a and b are not coprime integers, but a = aa’, b = ab’, where a’, b’ are coprime
integers. Then because a, b are coprime mod N, «, N are coprime, SO

ax+by=c <= a@x+by)=c << dx+by=alc,
where the equalities above are mod N. O

We will need a uniformity result for lines through closed sets X C T2 In what follows
d(p,q) =max(|p1 —qilv, Ip2 —q2l1), x|y = 22? lx —nlg, (12)

is the ¢ distance on T2 First we need a lemma.

Lemma 13. Let v = (a, b) with a, b coprime integers. Every coset £ = Rv + p is quantitatively dense
in T, in the sense that, for every q € T2 we have d(q,?) <1/max(la|, |b]).

In the following proof we let %Z = {% in € Z}.

Proof. For every yg € T, (Rv+ p) N {y =y} is a coset of %Z, and, for every xg € T, (Rv+ p) N{x = xo}
is a coset of %Z. Thus

1
d((-x()’ )’0), Z) 5 d((-x(), y()), Z N {y = yo}) 5 m7
1
d((x()a )’0), K) < d((JC(), y()), N {x = )CO}) < m’
giving the result. O

Lemma 14. Suppose X C T? is closed. There is a constant cx > 0 such that, for every direction
v € R? — {0}, either some coset Rv + p lies entirely on X, or
sup d(x, X)>cyx (13)
xeRv+p

for every p. Moreover, there is some Cx > 0 so that if a, b are coprime integers with max(|a/|, |b|) > Cyx,

then (13) holds for v = (a, b).
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Proof. Because X is a closed proper subset of T2 it is not dense, and there is some X0 € T2 with
d(xg, X) > 2¢p. If v = (¢, B) with o/ or B/« irrational, then Rv 4 p is dense and has points coming
arbitrarily close to xo. Thus

sup d(x, X) > 2cy.
xeRv+p

Otherwise, let v = (a, b) with a, b coprime integers. By Lemma 13,

inf d(x, xo) <1/ max(|al, |b|),
xeRv+p

sup d(x, X) = 2¢o — 1/ max(|al, |b]).
xeRv+p
Hence if max(|a|, |b|) > 1/cp, then SUPycRy+p d(x, X) > cg. For each pair of coprime integers a, b with
max(|al, |b]) < 1/co, either some coset R(a, b) + p lies on X, or there is a ¢ so

sup d(x,X)>c; forall pe T2
xeR(a,b)=p
There are finitely many such choices of (a, b), so c; can be chosen uniformly in all of them. We take
cx = min(cg, ¢1) in (13). Il

3.3. Proof of Theorem 2 assuming Lemma 11. Before proving Theorem 2, we prove the following
simpler proposition, which applies when one of the fractal sets X, Y avoids all lines.

Proposition 15. Suppose X C T2 is closed and does not contain any closed cosets Rv + p C T By
Lemma 14, there is some cx > 0 so that

supd(x, X) > cx, <£=Rv+ parbitrary.

xel

If f: Z%V — C is nonzero and has supp f C XN, then

2

Isupp f| > —X_ N2, (14)
4002

Proof. Suppose supp f = S, supp f C Xy. Apply Lemma 11 to f. We obtain an R < 200/S|'/2, a line
L={(x,y):ax+by=c}, a,bcoprime, max(la|,|b|) <R,

and a nonzero g supported on £ with supp ¢ C Ng(Xy). We claim R/N > cx /2, which would imply (14).
Suppose R/N < cx /2. We show g =0. Set v = (a, b) and v+ = (—b, a). Because g is supported on £,
£ has constant magnitude on dual lines Zv + p. Indeed,

=1 Y sweFEr,

v-x=c (mod N)

ge+my=1 3 gloe Ty = Fregee),

v-x=c (mod N)
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L]
il :
u-f
m F B B EBER EBR
T i 1)
al =0 sl i
L |
'R & B )
|| I | | ' a
2(&) = 0 because the line
through £ intersects the white region

|supp g| is large because
it has full support on > ¢N lines

Figure 4. The two cases in Proposition 16 obtain contradictions in different ways.

Let& € ZIZV be arbitrary. Let 7 € R be such that d(tv/N + &/N, X) > cx. Let n be the nearest integer

to t. Then
b
d ﬂ—I—E,X > cx —max M,u ZC—X.
N N N N 2

By (11), since R/N < cx /2, we have nv + & ¢ Ng(Xy), so g(nv+ &) = 0 by hypothesis. Thus g(§) =0
as well. Since & € Z?\, was arbitrary, g = 0. (]

Now we prove a more general proposition applying to measure-zero sets X, ¥ which don’t contain a
pair of orthogonal lines. Theorem 2 follows directly from this proposition by submultiplicativity.

Proposition 16. Suppose X, Y C T? are closed and have Lebesgue measure zero. Suppose that, for every
direction v = (a, b) € R* — {0}, vt = (=b, a), either X contains no coset Rv + p or'Y contains no coset
Ruvt + p. Then for large enough N, there is no nonzero f ZIZ\, — C with supp f C Xy and supp f C Yy.

The proof involves two cases; see Figure 4.
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Proof. First notice that by continuity of measure,
lim [N, (X)| = lim |N,(Y)| =0, (15)
r—0 r—0

where | - | denotes the Lebesgue measure. It follows that

XNl YN = o(N?) (16)
as N — oo.
Using the hypothesis and Lemma 14, there is some ¢ > 0 such that, for every coprime a, b, either

sup d(y,Y)>c forallp (17)
yveR(a,b)+p
or
sup d(x,X)>c forall p. (18)
xeR(=b,a)+p

There is also some C > 0 so that if max(|a/|, |b|) > C, then (17) and (18) both hold.
Suppose supp f =S C Xy and supp f C Yn. Apply Lemma 11 to f to obtain an R < o(N), a line

L={(x,y):ax+by=c}, a,bcoprime, max(|al, |b|]) <R,

and a nonzero g supported on £ N Xy with supp g C Ng(Yy). Let v = (a, b), vt = (—b, a).

Case 1: Suppose (17) holds. Then we are in the same position as Proposition 15, and for N large enough
we conclude g = 0, which is a contradiction.

Case 2: Suppose (17) does not hold. Then (18) holds and max(|a|, |b|) < C. Choose p = (p1, p2) € ¢,
s0 £ = Zv* + p. Write g(nv* + p) = g(n). Then

GO = D Fme HEOVID) — T HEIN LS gy Hne
neZy nezy
Notice in particular that g only depends on & - v-. By Lemma 12, for every d € Z there are N solutions
in & to & - vt =d. So we may write
86 = e FEPFE v = 3 g T,

JN

88| = LN|§<§-vL>|,

i

HEZN

Thus [supp g| = N|supp g|.
Choose ¢ € R so that d(tv-/N + p/N, X) > c. Then

svt o p C ¢ c
dl —+—=,X)>c—|s—t|—>= for|s—t| <—N.
N N N 2 2C

If 5 is an integer satisfying the above and N > 100/c, we conclude that sv-+ p ¢ Xy.
Let I =[t—(c/2C)N,t+ (¢/2C)N]NZ. Then |I| > (¢/C)N and g|; = 0. By Proposition 9,

supp g| = N|g| > %N2.

On the other hand, |Yy| < o(N?), leading to a contradiction for large enough N. O
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Remark 17. Although Proposition 16 applies to arbitrary fractal sets, Theorem 2 only applies to Cantor
sets, because we need submultiplicativity in order to prove exponential decay (6).

Remark 18. Let us note a quantitative difference between Cases 1 and 2 above. In Case 1 the coefficients
a, b determining the line ¢ should have size o(/N) in order to obtain a contradiction. In Case 2, the coeffi-
cients a, b must have size O (1). Lemma 11 only gives a, b = o(N), so we argue that if max(|a/, |b]) > C,
we can use Case 1, and Case 2 only arises when max(|a/, |b]) < C.

Now we can conclude Theorem 2.

Proof of Theorem 2. Suppose A and B are alphabets satisfying the condition of Theorem 2. The Cantor
sets they generate, X and Y, satisfy the conditions of Proposition 16. Indeed, X, Y have dimension < 2,
so certainly | X| = Y| =0.

Let X, Vi C Z%,, N = M¥, be the k-th Cantor iterates. Then X; C Xy, Vi C Yy, where Xy and Yy
are obtained by discretizing X, Y as in Section 3.1. By Proposition 16, for N large enough there is no
f: Z%\, — C with supp f C X and supp f C Y. Thus for k large enough, there is no f with supp f C X
and supp f C Yy. For this k,

1y F 1x a2 <1

and so by submultiplicativity we conclude

My F 1l S M7
for some 8 > 0. U

4. Proof of the main lemma

Lang [1965] conjectured that if C is an irreducible algebraic curve in C*”* with infinitely many cyclotomic
points — that is, points (zy, ..., z,) € C all of which are roots of unity—then C is a translate of a
subgroup of C*" by a root of unity [Granville and Rudnick 2007].

The key ingredient in proving Lemma 11 is the following theorem from [Ruppert 1993, Corollary 5]
and [Beukers and Smyth 2002, Theorem 4.1], which can be viewed as a sharp quantitative form of Lang’s
conjecture in two dimensions.

Theorem 19 [Ruppert 1993; Beukers and Smyth 2002]. Let
F(z,w)= Z anz w! (19)

0<k,lI<D

be a polynomial in C[z, w] with degree at most D in z, w separately. Then F has either at most 22D>
cyclotomic points, or infinitely many. In the latter case F has an irreducible factor

2wl —¢ or —cuwb (20)
for some root of unity { and coprime integers a, b.

We note that z¢w? — ¢ or z% — ¢w” is only irreducible if @ and b are coprime integers, which is why
that is part of the conclusion. In their paper Beukers Smyth actually proved significantly more; they gave
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an algorithm to compute this factor. The approach is to find seven polynomials Fi, ..., F7 so that every
cyclotomic root of F' is also a root of some Fj, and then apply Bezout’s inequality to bound their pairwise
intersection; see Appendix A for a sketch. In what follows

deg F = max max(|k|, |I]), F(z,w)= Zaklzkwl 20
ap 70 1
so that (19) is the general form of a polynomial with degree < D.
Recall that we can embed T2 — C*? via
(X, y) — (e27tl'x’ eZm'y)‘
The cyclotomic points in C*? are precisely the image of (Q/Z)2 For F(z, w) a polynomial, we let
Z(F) = {(x,y) € T 1 F(7, &™) = 0},
Zy(F) ={(x,y) € 73 : F(e V¥, %) =0). (22)

If we view Z%V as the subgroup of T2 given by

~ XYy
Z?V:—H—%V:{(N,N>E—”—2|x,y62}

then Zy(F)=Z(F)N T?V. We say that a polynomial F of the form (20) cuts out a line because
Z(F)={(x,y)eT?:ax+by=c} or Z(F)={(x,y)eT?:ax—by=c},

with a, b > 0 integers and ¢ € Q. If c =¢’/N, ¢’ € Z, then we say ¢ cuts out a line in va. Conversely,
suppose

€={(x,y) € Z% :ax + by =c (mod N)}

is an irreducible line. By Lemma 12, a, b can be taken as coprime integers. Then

2mic
FwP—eN . a,b>0,
EZZ P ’ P 4 = zic
N(Po),  Pu(z, w) {Za_ezN w, a>0,b<0,

and Py is an irreducible polynomial with deg P, < 2||£||. Theorem 19 is related to Lemma 11 because
functions g : Z?\, — C with supp g C [0, D] x [0, D] have values given by polynomials at cyclotomic
points:

_1 o k.l _ MJC _ my
g(x,)’)—NO;Dg(k,l)Zw, z=eN w=enN",

Lemma 11 is a quick consequence of the following. We don’t try to optimize the constant 200.

Lemma 20. Let S C Z?\, be an arbitrary nonempty set. Then there is a polynomial F* with deg F* <
200(S|'/? — 1 so that S — Zn (F*) is nonempty and lies on an irreducible line £ with ||| < 200|S|'/2.
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We prove the slightly awkward bound deg F* < 200|S|'/?—1 in order to make the proof and application
of Lemma 11 cleaner. Before proving this lemma, it is helpful to consider how it could fail to be true.
Consider a quadratic polynomial

Gz, w)=a+bz+cw+ fzw+dz> +ew?

which does not cut out a line (e.g., G is not of the form z = w?). Theorem 19 says that |Zy (G)| < 44 for
all N (the quadratic polynomial G cannot pass through many cyclotomic points). Ignoring this fact for a
moment, it turns out that if for some G, N we have |Zy(G)| > 1200% then Lemma 20 would fail.

Let S = Zy(G). Suppose F* is a polynomial of degree < 200|S|'/? such that § — Zy (F*) is nonempty
and lies on a line £ with ||£|| <200|S|'/?. The polynomial G cannot be a component of F* because that
would mean § C Zy (F*). So by Bezout’s inequality (Theorem 24),

[ZN(F*)NS| <2deg F* < 400|S|%.
If ¢ is a line with [|£]| < 200|S|'/2, then
6N S| = |Zy(P) N S| < 2deg Py < 4]1¢]| < 800|S|?
again by Bezout’s inequality. Thus if S — Zy (F*) lies on such a line ¢,
|S| —SOOISI% §400|S|% = |§] < 12007
as claimed. Before proving Lemma 20 we need another lemma.

Lemma 21. For every nonempty set S C C2, D = ||S|'/?], there is a nonzero polynomial F(z, w) =
D 0<ki<D agz w'

Proof. Consider the linear map taking

vanishing on S.

(ak)o<k,i<p —> <Z ayfw' : (z, w) € S).

kl

If (D + 1)? > |S| then by rank nullity this has a nontrivial kernel, which is our desired polynomial F.
Thus we may take D = ||S|'/?]. O

The proof of Lemma 20 involves four cases; see Figure 5.

Proof of Lemma 20. We give a recursive algorithm to find our polynomial F*. Mathematically this is
phrased as induction on the size of S. For ease of presentation we prove we can take deg F* <200|S|!/2, but
the same argument can be optimized to give deg F* < 198]S|!/2, yielding the claim deg F* < 200|S|/2—1.

Let F be a polynomial of minimal degree D with S C Zy (F). We have D < |S|'/? by Lemma 21. If
there are several such polynomials, choose one with the minimal number of irreducible factors.

Case 1: F cuts out a line £. In this case

ZN(F)z{(x,y)eZ%vz%—i——:c}, ce Q.
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Figure 5. Cases 1-4 (left to right, top to bottom) in the proof of Lemma 20.

Because S is nonempty there is some (xg, yo) € S with ¢ = (axo+byg)/N. So F cuts out a line £ in 73, and
ZN(F)=L0={(x,y) €Zy :ax + by =axo+byo}, || <degF < ISI2.

Thus we are already done— we may take F* =1, and S already lies on a desired line .

Case 2: |S]| <200. Let S = {(xg, yx) € Z%\,}, and {x{, ..., x,;} be the distinct x-coordinates appearing
in §. If m =1, we are in Case 1. Otherwise, set

F*=(z _82nix1/N) oz — eZnixm,l/N).
Then deg F* < 200 < 200|S5|'/?, and
S—ZN(F*) C{x =xn}
lies on a line.

Case 3: F is irreducible but does not cut out a line. In this case, |S| < 22D? by Theorem 19. Because
|S| > 200, we have D > 4. Choose a curve G of degree D — 1 passing through at least

(D—1)%> i|S|(1—i)2> B

—22 D/ — 40
points of S. Let A=SNZy(G). Notice §— A is nonempty by the minimality of D. Now apply the inductive
hypothesis to find a polynomial H passing through all but one line of S — A with deg H < 200|S — A|'/2,

and set F* = GH. We have

deg G <200v/|S(1 — &) + D — 1 <|S|2(198 + 1) < 200|S|
as needed.
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Case 4: F isreducible. Let FF = G H, where neither G nor H are scalars and |Zy(G)| < |Zy(H)|. Let
T =7Zn(G)—Zn(H). Because deg H < deg F and H has fewer irreducible factors than F, S ¢ Zy(H),
so T is nonempty. Using the inductive hypothesis we may find a polynomial P passing through all but
one line of the set T = Zy(G) — Zy(H) (notice T is nonempty by the minimality of the number of
irreducible factors). We have |T| < |S|/2. Set F* = H P. We have

1
deg F* <200|T|? +deg H < 200(}S])? + 5|7 < 143]S]
as needed. U
Now we prove Lemma 11.

Proof of Lemma 11. Let f : Z3, — C have supp f = S. Let R = [200/S|'/2]. By Lemma 20 let

Fr= 3" auzw' €Clz,wl, £={(x,y)€Zy ax+by=c}, max(la|, b)) <R
0<k,/<R
be such that
A=S—ZyN(F*)

is nonempty and lies on €. Let & : Z%\, — C be defined by

ak;, 0<k,<R,
0, else.

2mi

1 LI ~
h(x,y):NF(eNx,eN)), h(k,l):{
Thus A f is nonzero and supported in £. Also,

supp 7if = supp i f C supp(ljo,gy2 * 13, 7) = Nr(supp £).
Setting g := hf we are done. O

Remark 22. In order to obtain Theorem 2, it would suffice to replace Theorem 19 with a quantitatively
weaker version which says that for F(z, w) a degree-D irreducible polynomial not cutting out a line,

#{(01,0) : F(41, 02) =0} <, D*™, ¢}, & cyclotomic,
for all ¢ > 0.

5. Loose ends

5.1. Submultiplicativity. We prove the submultiplicativity estimate (2) in two dimensions.

Proof. We first recall how Dyatlov [2019, Lemma 4.6] proved submultiplicativity for discrete one-
dimensional cantor sets. The Fourier transform F : Zy, y, = Zn, n, can be realized as follows. We realize
L%*(Zy,n,) as L>(Maty, xn,). In this basis,

F= fcolD}-row,

where

2mi

—2mip . .
(FrowlU) pp = e WMy pg  applies the Fourier transform to each row,

| &
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Ny
i
(FeaU) pp = L Z e M P Uyp applies the Fourier transform to each column,
' Ni =0
(DU)pp = e R Py b applies a phase shift to each entry.

Abstractly, L>(Zy,n,) = L*(Zyn,) ® L*>(Zy,). But

‘FZNI ®-FZN2 = FZNIXZNZ 7& FZN1N2~
The phase shift operator D corrects this issue. We can write

FrOW:Id®FZN2, fCOIZFZNl®Id7

(23)
F = (Fz,, ®1d) o Do (Id® Fz,,).

In the notation of tensor products, if Ny = M¥, N, = M", then

Ly, =1y @1y, 1y, =1y Q1y,.
Because 1y, 1y,,, commute with D,
Ly, Frerrla, = (ly, ® 1y,) o (Fzy, ®Id) o Do (Id® Fz,,) o (1y ® 1)
= (1y, Fzy, ®1y,) 0 Do (lx ® Fz,, 1)
= 1y, Fzy, 1, ® 1y,) o Do (1y ® 1y, Fz,, 1x,).
It follows from the above that
I yes, Frar L, 22 < 1y, Fzy, 122011y, Fzy, L, 22

as desired. Written in this way, it is easy to see that the submultiplicativity estimate extends to two
dimensions. We have the equation

FZ%VlNz = (}—Z%vl ®Id)o Do (Id®}—z%v2)’

where D is a multiplication operator (indeed, this can be seen from writing Z/2V1 n, as a product of two
copies of Zy, y, and tensoring (23) with itself) and the rest of the proof goes through verbatim. O

5.2. Theorem 2 is sharp. Suppose A, B are alphabets generating fractal sets X, Y C T2 with

Rv+pcX and Rvt+4+gqcCY,
v=1(a,b), vi =(=b,a), aandb coprime integers.
We show A, B do not obey an FUP. This amounts to showing that, for infinitely many & (in fact, for all k),
there exists f : Z%\, — C with

supp f C X, supp f C V.
where X}, ) are defined in (3).
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Case 1: a =0or b =0. Assume (a,b) = (0,1). Then X contains a vertical line and Y contains a
horizontal line. It follows that A contains some vertical line {x = xo}, xo € Z)s, and 3 contains a horizontal
line {y = yp}. Let
(k) _ k—1 (k) .
xW =xog+Mxo+---+M""x9, {(x",y):yeZy}C X,

y(k) =yo+Myog+--- —i—Mk_lyo, {(x, y(k)) :y€eZy} C k.

We have
FN " Loo6,m=N"1 ) e W= N1,
yely
SO
f= N_%ezmy(k)lxzﬂm
satisfies
supp f = fx =x®} c &, supp f={y=yP}c W

as needed.

Case 2: a, b # 0. In this case we claim

Xk:{(x,y)eZ?V:(x x+1)x<l y_—H>mX#®}’

M M M M o
. X x+1 y y+l1
yk—{(x,y)eZN.(M,—M >X<M’_M )ﬂY;é@}.

Itis clear thatif (x/M, (x+1)/M)x (y/M, (y+1)/M)NX # & then (x, y) € X}. For the other direction,
we first note that (0, 1)>2N X # @ —the only way for this to fail is if A lies on one of the horizontal
or vertical lines x =0, x =M —1, y =0, y = M — 1 in which case we are back in Case 1. Now if
(x,y) € X, then (x, x4+ 1) x (y, y+ 1) N X # @ by the self-similarity of X.
Now, assume without loss of generality that a, b are coprime. We will show that, for all k, there exist
p®, q® e Zzzwk so that
Zv+p® cx, and Zvt+4® c . (25)

We show it just for X;. By (24), we would like to choose p* = ( pfk), pg{)) so that, for all t € Z,

pgk)—i—ta <Mpi+@t+e)a <p§k)+ta+1,

pék) +1b < M*py+ (1 +6)b < pék) +tb+1
for some small €. Rearranging, this amounts to
0<(Mkp1—p§k))+8a< 1, 26)
0< M*py—p)+eb<1.

To make this true, we select pik), pék) to be integers so that
M py — ik)e{[O, 1) ifa>0, ‘ (k)e{[o,l) if b >0,

M —_
©0.1] ifa <0, P2=P2 S0 0,1] ifb <o.
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In each of these cases (26) will hold, which yields (25). Now, we have

1 2.
.FIZv(g) = ,\/_ﬁ tZ e N g = 1v£:0 = IZvJ_
EZN

by Lemma 12. Thus with 7, f = f(- — a) the translation operator, we see that

f=F 'T,wFTynlz
satisfies

(9] 3 1 (k)

supp f CZv+p™ C Ak, supp f CZv=+q" C I,

contradicting a fractal uncertainty principle.

5.3. Proof of Proposition 3. Let A C Z%,, be an alphabet and X C T? the Cantor set it generates. Let
A C T? be the drawing of A.
First we show that a line Rv + p lies on X if and only if Rv + M* p lies on A for all k£ > 0. Recall that

x€X ifandonlyif M*x e A forallk >0.
Now, suppose Rv + p C X. Then
w+peX = Mv+Mpex,
so rescaling, Rv + M*p C X C A. In the reverse direction, suppose Rv + M* p C A for all k. Then
M‘tv+p)e A forallk = tv+peX
as needed. Also, by Lemma 13, if v = (a, ) and max(|a|, |b|) > M then Rv + p ¢ A for any p.

More discussion on a procedure for checking lines. Suppose £ = Rv + p. If v is a multiple of (1, 0) then
£ is a horizontal line, and X can only contain a horizontal line if .4 does.

Otherwise, let v=(a, b) with a, b coprime integers, b # 0. Assume a, b are fixed and max(|a|, |b|) < M.
There is some p’ = (po, 0) € £, so £ = Rv + (pg, 0). We will turn the question around and consider the
closed set

Sy={seT:Rv+(s,0) C A}.
The only possible boundary points are those for which Rv + (s, 0) intersects a point of the form
(j/M,k/M) e T If tv+ (s, 0) = (j/M, k/M) then we can compute s as
_ jb—ka+Mr
T M

Now we can write S, as a union of intervals,

s+l
S,,:{sje{O,...,Mb—l}:[s—J Sit ]CS,,},

Mb’ Mb
si si+1
S, = _J’J_'
U %

S_,'ES,,

c
for some r € Z, SO § = Wb for some ¢ € Z.
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Given the alphabet A and v = (a, b), one can efficiently compute the finite set S, C Zyp. It is then a
combinatorial question whether or not there exists x € T so that M¥x € S, for all k. It would be interesting
to find an algorithm to answer this question.

5.4. FUP implies spectral gap for bakers maps. We would like to show that the results in [Dyatlov and
Jin 2017, §2] hold for two-dimensional bakers maps, in particular Proposition 6 ([loc. cit., Proposition 2.6]).
We prove here that [loc. cit., Proposition 2.3] holds in two dimensions. The deduction of Proposition 2.4
from Proposition 2.3 is the same in two dimensions, and the proofs of Proposition 2.5 and 2.6 go through
verbatim.

In what follows we use the £>° distance on T? as in (12). Let ® be the expanding map

ap a;+1 ay ax+1
qD:cDM’A:Ll(M’ I >X<M,T)—>(O, 1)2,
acA

a; a1+1 a ar+1
®(x,y)=(Mx—aj, My —ay), (x.y)€ (Ml 17) x (Mz 27)

For each ¢ : T> — R define
on € C(Z3).  on() =0(/N).

The function ¢y defines a multiplication operator as well as a Fourier multiplier gaﬁ = FyonFN.

Proposition 23 (propagation of singularities). Assume that ¢, ¥ : T?> — [0, 1] and, for some ¢ > 0,

0<p<l,
d(®(supp ¥ N~ (supp x)), supp ) > cN 7. (27)
Then
lon BN |22 = O(N™°), (28)
g% BNUR 22 = O(N™), (29)

where O(N ~°°) means decay faster than any polynomial, with constants depending only on c, p, x. In
particular, these hold when
d(supp, @' (supp¢)) = N~ (30)

The proof is almost identical to that in [Dyatlov and Jin 2017].
Proof. We have

’

i
).

N———"

. N
on Bnynu(j) =) ) A‘J’.ku<k+aﬁ
acA 0k ky<N/M—1
k=(ky,k2)

ar MY o Za N (Vo (X 4
.y = — _— X —_— . _— J—
Jk NZ(p N p M T)x N N

- 2Tl
Ajk = Z exp(%m -(J —kM))X<m

0<my,my<N/M-1
m=(mj,my)

where

<=

and

==
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We can write

- 2mi m .
Ajk = Z eXP(wb'm>Xl<N>, bL=j—kM, xi(x)=x(Mx).

2
meZy

We have A‘J’.k = 0 unless

j . k a . " kM k a c
L esuppyp, —+— €su , —=®|—+— ) esu )
N PP N M PP N N M PP X

It follows that d(b/N, 0) > ¢N~", so by the method of nonstationary phase [Dyatlov and Jin 2017,
Lemma 2.2], we see max, j k |A‘J'.k| = O(N~°) and (28) follows. Equation (29) is a consequence, as

3 BnoY = F(on BNWn)* Fiy

and the Fourier transform is unitary. 0

Appendix A: Sketch of the proof of Theorem 19

In this section we will try to illustrate the main ideas of Beukers and Smyth’s proof of Theorem 19 as
directly as possible. In what follows the degree of a polynomial is

deg F/ = max(k+1),  F(z,w) = > aufw' € Clz, w),

akl I,

which is different from Section 4. We will use the notation Zy (F) C Z?\, as in (22).

A.1. Bezout’s inequality. We first state Bezout’s theorem.

Theorem 24. Let F, G € C|z, w] be coprime irreducible polynomials with degrees D, E which are not

F = Z akzzkwl, G= Z bkzzkwl.

0<k+I<D 0<k+I<E

multiples of each other,

Then
{(z,w) € C*: F(z, w) = G(z, w) = 0}| < DE.

If intersections are taken in CP? and counted with multiplicity, then this is an equality.
We denote by V(F), V(G) C C2 the zero sets of F and G. Then Bezout’s inequality can be written
IV(F)NV(G)| < DE. (31)

A.2. Setup for Theorem 19. To prove Theorem 19, it is more convenient to work with Laurent polynomi-
als F € Clz, w, 77!
enjoy unique factorization up to units and satisfy a version of Bezout’s inequality. From this perspective,

, w™!]. Like polynomials in two variables, Laurent polynomials in two variables also

the factors z% — ¢w” can be written as z*w ™" — ¢, so we can just look for factors of the form z%w? —¢.
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1

Beukers and Smyth make the following reduction. For F =), ayz*w! € Clz, w, z7', w™!] a Laurent

polynomial, let £(F) be the sublattice of Z* generated by
{(k, ) — (K", 1) 2 ap, aw i # O},

Notice that if F = z%w” — ¢,then L(F)=/Z(a,b) hasrank 1. If F =z% — ;‘w”, then L(F) = Z(a, —b).
More generally, if £(F) has rank 1 then F can be written as a function of z¢w” and one can reduce to
the one variable case. If £(F) has rank 2 but is not all of Z2 one can change variables within the class of
Laurent polynomials to reduce to the case where £(F) = Z2 Rather than fully explain this, we will just
prove Theorem 19 in the case where F is a genuine polynomial and £L(F) = 7>

Here is part of Lemma 1 from [Beukers and Smyth 2002].

Lemma 25. If ¢ is a root of unity, then it is Galois conjugate to exactly one of —¢, %, —¢2

Now we partially prove a lemma covering the relevant portions of [Beukers and Smyth 2002, §3]. We
follow them directly.

Lemma 26. Let F € Clz, w] be an irreducible polynomial with L(F) = 72 Then there are seven other
polynomials Fy, ..., F7 none of which have F as a component, and such that if (z, w) is a cyclotomic
point (zN = w" =1 for some N) with F(z, w) = 0, then Fi(z, w) =0 for some 1 < j <. We may take
deg F| =deg F, =deg F3 =deg F,
deg Fy =deg Fs =deg Fg =deg F; =2deg F.

It follows directly from Bezout’s inequality (31) that
7
Zy(F) C szl Zn(F)NZy(F;) forall N,
|Zy(F)| <3D?*+8D? =11D? for all N.

Remark 27. In Theorem 19 we state the bound 22 D? rather than 11 D? because we allow terms of the form
zPw?P, which has degree 2D. The bound is 22 D? rather than 11(2D)? =44 D? because the Newton polytope
of F has volume < D? so [Beukers and Smyth 2002, Theorem 4.1] gives the sharper bound of 22 D>

A.3. Proof sketch of some special cases of Lemma 26. In the proof we split into cases depending on

whether or not F' can be defined over an abelian extension of Q. The hardest case is when F is defined in

some nontrivial abelian extension of () — there are a few subcases involved. We prove Lemma 26 in the

two easier cases where F has coefficients in Q, and where F is not defined over any abelian extension.
First, multiply F by a constant so one of its coefficients is rational.

Case 1: F € Q[z, w]. We take
Fi=F(—z,w), FHh=F( ~w), FR=F(-z,—w),
Fy=F( w?), Fs(=22,w?), Fe(Z —w?, F(=2% —w?).

We must show that if F'(z, w) =0 is a cyclotomic point, Fj(z, w) =0 for some j. Let ¢ be a root of unity
and z =¢% w=2¢" a, b coprime. Then f(¢) = F(¢%, ¢") is a polynomial in ¢ with rational coefficients.
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Thus every conjugate of ¢ is also a root of f. By Lemma 25 exactly one of {—¢, ¢2, —¢?2} is conjugate
to ¢, so one of

(=¢.80, @ =g, (=g =eh, @), (=), @) (=0 =)
is also a zero of F as needed. It remains to show that F' is not a component of any F;. Because
they arise from a linear change of variables of F, we know Fi, F,, F3 are irreducible. If Fj is a linear
multiple of F, then all nonzero a;; must have the same parity for k. Thus £(F) would span a proper
sublattice of Z2 contradicting our assumption. Similar arguments show that F> and F3 are not linear
multiples of F, and because they have the same degree, F is not a component. If F were a component
of F4 then F(z%, w?) = F(z, w)G(z, w), so F(z%, w?) = F(z, w)G(—z, w), and F is a component
of F4 as well. An analogous argument shows F,, F3 are components as well. This would imply

that deg Fy > deg F F| F> F3 > 4D using the fact that F, F;, F3, Fy are all distinct irreducibles. But
deg F1 = 2D, a contradiction. A similar argument shows F' is not a factor of Fs, Fg, F7.

Case 2: The coefficients of F do not lie in any abelian extension of Q0. This case is easier. Let
o € Gal(C/Q“) be an automorphism of C which fixes Q* and does not fix the coefficients of F. Here
Q? is the maximal abelian extension of @, which is the composite of all the cyclotomic extensions
Q[e*™/N]. Let
F° = Z O’(akl)kal.
kL

For z, w a cyclotomic root of F, we have o (z) = z and o (w) = w, so
F°(z,w) =0(F(z,w)) =0.

Thus the cyclotomic points of F are contained in V(F) N V(F?). But F° is not a multiple of F,
because some coefficient of F (the rational one) is fixed by o and another must be different. Thus
V(F)NV(F°) < D>

Appendix B: Higher dimensions and continuous FUP

B.1. Results from a new method. It seems difficult to use the ideas in the present paper to prove a
discrete FUP in d > 3 dimensions. We would need a higher-dimensional analogue of Theorem 19 with
very strong bounds that are currently unavailable.

However, after this work was completed the author [Cohen 2023] proved a fractal uncertainty principle
for sets X C R’ that avoid lines in a quantitative sense called line porosity. The core of the latter
paper involves constructing plurisubharmonic functions, and the methods are completely different from
those used here — there is no arithmetic input. Using the new work we can prove the following higher-
dimensional result for discrete Cantor sets.

Theorem 28. Suppose A, B C Zﬁl are alphabets with drawings X, Y C T IfY does not contain any
lines, then Xy, Yy satisfy

My F L llasn S M7
for some > 0.
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The more recent work has a few advantages. We don’t need self-similarity, the result applies in
any dimension, and most importantly, we move from the model setting Zﬁi\, to the physically relevant
domain R

On the other hand, Theorem 2 gives a precise condition involving pairs of orthogonal lines which is
currently unavailable in the continuous setting: Theorem 28 needs one of the Cantor sets to avoid all lines.
It is an interesting challenge to improve the main result of [Cohen 2023] so the condition involves pairs
of orthogonal subspaces.

B.2. Statement of higher-dimensional continuous FUP. For x € R? let Bg(x) be the radius-R ball
about x.

Definition 29. Let v < %

e Aset X CR?is v-porous on balls from scales o to «; if for every ball B of diameter op < R < o
there is some x € B such that B,g(x) N X = 2.

o A set X is v-porous on lines from scales o to «; if for all line segments t with length o < R < o)
there is some x € t such that B,p(x)N X = @.

We are ready to state the main theorem of [Cohen 2023].
Theorem 30. Let v > 0 and assume that

e X C [—1, 11 is v-porous on balls from scales h to 1, and

e Y C[—=h~', h=11 is v-porous on lines from scales 1 to h™".

Then there exist B, C > 0 depending only on v and d such that for all f € L*(R?)
supp f CY  => || flxl2 < ChP||f]2. (32)

To prove Theorem 28 we first show that the drawing of a Cantor set avoiding lines is porous on lines,
and then prove a discrete FUP using continuous FUP.

B.3. Line porosity for self-similar Cantor sets. In this section x € [0, 1]¢ denotes a point in R? and
x € T? denotes the image in the torus. It is similar for sets ¥ C [0, 119 and Y C T4

Definition 31. Let X C T¢ be a closed set. We say X is a self-similar Cantor set at level M if M - X = X,
where
M-X={Mx:xecX).

In particular, if A} is a sequence of Cantor sets in Z«, then the drawing X C T¢ is a self-similar
Cantor set.

We first prove that if a Cantor set does not contain any lines, then it also does not contain any line
segments. By a line in T¢, we mean an irreducible one-dimensional closed coset. By a line segment
7 C T¢, we mean the image of a line segment in R?.

Lemma 32. Let Y C T¢ be a self-similar Cantor set which contains no lines. Then Y also does not

contain any line segments T.
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Proof. Suppose by way of contradiction that 7 C T¢ is a line segment with 7 C Y. Let 7 point in direction
b € §971, and let
Cy=cl{tv:t e R} c T¢

be the closure of the geodesic based at the origin and pointing in direction v. The set Cj is a closed
subgroup which contains at least one torus line. Choose x in the interior of 7. Select a subsequence
{k;} ;>0 such that M*i %y — %, € T¢. For any t € R,

M*i &+ M*itd) — &) +1b € £+ C;.

For large enough j, M*i(xg+ M™% 19) € Y, and because Y is closed, we see X+ C;5 C Y contradicting
our assumption. (|

We prove if a Cantor set does not contain lines then it is porous on lines.

Lemma 33. Suppose that Y C T¢ is a self-similar Cantor set which does not contain any lines. Then for
some v >0, Y C [0, 11¢ is v-porous on lines from scales 0 to 1.

Proof. Let Y C T be a Cantor set which does not contain any lines. We show by a compactness argument
that, for some ¢ > 0, every line segment T with length 1 has some X € 7 such that d(x, Y) > co. Suppose
by way of contradiction that this is not the case. Then there is a sequence 7; of unit line segments such
that maxzez; d(x, Y)<c j» where ¢; — 0. The space of unit line segments in T¢ is compact, so there is
some line segment T which is a limit of these, and it follows that T C Y contradicting Lemma 32.

Now let 7 C R? be a line segment of length 0 < R < 1. We would like to show there is some x € 7
such that d(x, Y) > vR. The torus metric is stronger than the ambient R? metric, so it suffices to show
that there is some X € 7 such that d(¥, T) > vR. Let j > 0 be the smallest integer so that M/R > 1.
Because M/ - T is a line segment with length > 1, there is some x € T such that dMi%,Y) > cp. So
by self-similarity d(x,Y) > M~/cq > (co/M)R and Y is v-porous on lines from scales 0 to 1 with
V= Cp / M. Il

B.4. Proof of Theorem 28. We roughly follow the argument in [Dyatlov and Jin 2018, Proposition 5.8].
We state a general proposition which allows us to prove discrete fractal uncertainty from continuous
fractal uncertainty. We will need the locally constant property from Fourier analysis, which we explain in
a certain form now. Construct a w € C*°(R?) by setting W to be a smooth bump function with @ = 1
on B and supp w C B;. Then

lwx)| Spa (x)™™  forallm > 0.
Moreover, if f € L2(R?) is a function with supp f C By then
f=fswy, wy@)=NwNx).
In particular we have the pointwise bound

IFEOIS N FCOHOWNC —x) 2. (33)
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Let X', Y C 79, be sets. Let
X=N'{xe{0,...,N—1}¢:x € x}, )
Y={ye{0,....N—1}¢:5€e)}.

Here is the main proposition connecting discrete and continuous FUP.

Proposition 34. Let X, )Y C Zj’v and X, Y C R? be as above. For any % <r< % and m > 0 we have

I1x Flyllas2 Sam Mx+8, F ly+s ulla—s2+ (Nr)™™. (35)

Proof. Letu € LZ(Z‘I{,) have supp it C Y. We will construct an auxiliary function f € L?*(R?) based on u.
Let x € Cgo([R{d ) be a bump function supported in By /4. We can design x so that

IxV(x)|>1 forxe[-10,10)%, (36)
Ixll2 < Ca. (37)
Let f be given by
fe= > aExE-¢).

We have
LA = N33 < lull3:
Notice that, for x € X,
f@x) =NV (x)u(Nx),
SO
lu 11320y SN 1@

xeX
If we let

B(x) = (Z lw(N (x —x’))|2> :
x'eX
by (33), | F(x)|* < N¥||lw(N(x —x')) £ 15, so summing over x € X we find
I @S NLf w3,

xeX
2 ~ 112
lulx Iz < I fwll3-

Using the fact that X is an N~ !-separated set,

b)) =Y [wNE =N S Y (I+Nx—x')"

x'eX x'eX
S Y, U4N2)YTIXNBy@IS ). (N2 S A4 Nd@E X))
N-1<2i<10 2/ >max(N-1,d(x,X))

for m large enough. Thus for any » > N~! and m > 0,

(X)) Smoa 1x48,(x) + (Nr)™™.



FRACTAL UNCERTAINTY FOR DISCRETE TWO-DIMENSIONAL CANTOR SETS 771

Because supp f CY+ By,
lulxllo SIf Ixtm 2+ N1 fl2

S (x4, F lytny a2+ (Nr) ™" ull2
giving (35). g

Now we prove the FUP for arithmetic Cantor sets that avoid lines.

Proof of Theorem 28. Let X; and Y be a sequence of Cantor iterates such that the drawing ¥ C T¢ does
not contain any lines. Let N = M k Let X; C [0, 11¢ and Y; C [0, N]¢ be the corresponding point sets as
in (34). By choosing r = N*~! in Proposition 34, we have for any & > 0 the estimate

” 1Xk F lyk ||2—>2 S ” le—FBr F lYk+Bl/4 ||2—>2 + Nﬁe'
Letting X, Y C [0, 11¢ be the drawings of these Cantor sets, we have

Xi CX+[-N"L,NT, i N-Y +[-1,1]. (38)
Thus

o The set X is v-porous on balls from scales 0 to 1. So Xy 4 By.-1 is v-porous on balls from scales
2N*"'to 1.

e By Lemma 33, the set Y is v-porous on lines from scales 0 to 1. So the set Y + By 4 is v-porous on
lines from scales JT\/E to N.

In the above, the value of v changes from line to line. Split up [-N — 1, N + 1]¢ into a disjoint union of
< N®¥ many cubes Q € Q that have side length N'~¢. By Theorem 30, there is 8 = (v, d) > 0 so that
x+8 F Lyts,onollasz S NP,

Summing this over all the boxes Q € Q, we have

11,48, F Lycssyllan S NAFEEHR),

Choose ¢ > 0 small enough that the exponent is negative and apply Proposition 34 to obtain

Iy Flyllasa <CNTF
for some B’ > 0. O
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LINEAR POTENTIALS AND APPLICATIONS IN CONFORMAL GEOMETRY

SHIGUANG MA AND JIE QING

We derive estimates for linear potentials that hold away from thin subsets. And, inspired by the celebrated
work of Huber (1957) and Cohn-Vossen (1935), we verify that, for a subset that is thin at a point, there is
always a geodesic that reaches to the point and avoids the thin subset in general dimensions. As applications
of these estimates on linear potentials, we consider the scalar curvature equations and improve the results
of Schoen and Yau (1988, 1994) and Carron (2012) on the Hausdorff dimensions of singular sets which
represent the ends of complete conformal metrics on domains in manifolds of dimension greater than 3. We
also study Q-curvature equations in dimensions greater than 4 and obtain stronger results on the Hausdorff
dimensions of the singular sets than those of Chang et al. (2004). More interestingly, our approach based
on potential theory yields a significantly stronger finiteness theorem on the singular sets for Q-curvature
equations in dimension 4 than those of Chang et al. (2000) and Carron and Herzlich (2002), which is a
remarkable analogue of Huber’s theorem.

1. Introduction

We employ linear potential theory to study scalar curvature equations and Q-curvature equations in
conformal geometry. This is a continuation of our recent work on n-superharmonic functions (see
[Bonini et al. 2018; 2019; Ma and Qing 2021; 2022]) inspired by Huber’s theorem and related work on
superharmonic functions in dimension 2 (see [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973;
Hayman and Kennedy 1976]).

Linear potential theory has always been a major subject in analysis and partial differential equations.
We refer readers, for instance, to [Mizuta 1996; Adams and Hedberg 1996; Armitage and Gardiner
2001] for good introductions on potential theory. For clarity, the definitions of Riesz potentials and log
potentials are given in Section 2. For our purpose, the kernel functions are not chosen for discussions
on the boundary behavior of potentials and we focus on the outer capacity and thin subsets (please
see Definitions 2.2 and 2.8 in Section 2). Also we set up some of the potential theory on Riemannian
manifolds directly. The interesting result on Riesz potentials we obtain is:

Theorem 1.1. Suppose that (M™", g) is a complete Riemannian manifold and [ is a finite nonnegative
Radon measure on a bounded domain G C M". Let S be a compact subset in G such that its Hausdorff
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dimension is greater than d , where d <n —a and « € (1,n). Then there is a point p € S and a subset E
that is o-thin at p such that

1
du < 1-1
/G Ay =G pyrad (-

for some constant C and all x € Bg(p) \ E for some small § > 0.

The proof of Theorem 1.1 uses a general decomposition result [Kpata 2019, Proposition 1.4] and
multiscale analysis. We also give a proof of a slight extension of [Mizuta 1996, Theorem 6.3] for log
potentials on manifolds, which is closely related to [Cohn-Vossen 1935; Huber 1957; Arsove and Huber
1973; Ma and Qing 2021; 2022] for us. What makes these estimates useful is the following key observation
about thin subsets in general dimensions (see [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973;
Ma and Qing 2021; 2022]).

Theorem 1.2. Let E be a subset in the Euclidean space R" and p € R™. Suppose that E is a-thin at the
point p for o € (1,n). Then there is always a ray from p that avoids E at least within some small ball at p.

The proof of Theorem 1.2 uses only the scaling property (Lemma 2.4), the contractive property
(Lemma 2.5), and the calculation of C*(S"~!, B,(0)) (Lemma 2.6) for the outer capacity C*(E, Q)
defined in Definition 2.2 and «-thinness in Definition 2.8.

To better motivate our geometric applications, let us first recall the seminal theorem of Huber on
surfaces. Huber [1957] showed that a complete open surface whose negative part of the Gaussian curvature
is integrable is a closed surface with finitely many points removed. Huber’s theorem uses the Gaussian
curvature equation

—A[gl¢ + K[g] = K[e*?g]e* (1-2)
and the potential theory on superharmonic functions.
In conformal geometry, the scalar curvature equation

4(n—1)
 n-2

A[glu + R[glu = Rlun glu'ns (1-3)

describes the conformal transformation of the scalar curvature in dimensions higher than 2. There have
been many works on singular solutions after the seminal paper [Schoen and Yau 1988], where the
singularities represent the ends of complete conformal metrics on domains in Riemannian manifolds (see,
for instance, [Schoen and Yau 1994, Chapter VI; Carron 2012; Schoen 1988; Mazzeo and Smale 1991;
Mazzeo and Pacard 1996]).

Theorem 1.3. Let (M", g) be a complete Riemannian manifold and S be a compact subset in M". And
let D be a bounded open neighborhood of S. Suppose that g = ut/(n=2) g is a conformal metric on D\ S
and is geodesically complete near S. Then the Hausdorff dimension satisfies

dim(S) < ”—;2 (14)
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provided R™[g] € L>"/ @+ (D\ S, ¢)NLP(D\ S, g) for some p >, where R™[g] is the negative part
of the scalar curvature of the metric g. Consequently, (1-4) holds when the scalar curvature R|[g] of the

conformal metric g is nonnegative.

Theorem 1.3 is an improvement of [Schoen and Yau 1988, Theorem 2.7] and [Carron 2012, Theorem C].
Our approach is based on Theorems 1.1 and 1.2. Particularly, Theorem 1.3 covers domains in general
manifolds, while others (see [Schoen and Yau 1988; Carron 2012]) are restricted to domains in round
spheres. The use of auxiliary testing functions built from the level sets is the key analytic technique (see
[Dolzmann et al. 1997; Bidaut-Véron 1989; Ma and Qing 2021; 2022]). We remark that, for our approach,
the complement M” \ D is not relevant (see Theorem 1.3 in Section 3).

In conformal geometry, one considers the Paneitz operator

4
Py= A2 +div(44-V — (n—2)JV) + ”TQ4

and the associated Q-curvature
04=—AJ + %JZ _214P%,

where A = ﬁ(Ric—J g) is the Schouten curvature and J = ﬁR. The curvature Q4, under a

conformal change of the metric, transforms by the Q-curvature equation:

—4 n
P4lglu = nTQ4[uﬁg]uni3 in dimensions > 5, (1-5)
P48l + 04]g] = Q4le*gle*™ in dimension 4. (1-6)

On Q-curvature equations in dimensions greater than 4, we have:

Theorem 1.4. Let (M", g) be a complete Riemannian manifold for n > 5 and S be a compact subset
in M". And let D be a bounded open neighborhood of S. Suppose that g = ut/ (”_4)§ is a conformal
metric on D \ S with nonnegative scalar curvature R[g] > 0 and is geodesically complete near S. And

suppose also that
_ 2n_
Q4 lgle L*+3(D\S. g).
where Q [g] is the negative part of the Q-curvature of the metric g. Then

dim () < ”—;4. (1-7)
There have been a lot of works on the study of singular solutions to Q-curvature equations on manifolds
of dimension greater than 4, notably [Qing and Raske 2006a; 2006b; Chang et al. 2004; Gonzélez et al.
2012]. Theorem 1.4 is an improvement of [Chang et al. 2004, Theorem 1.2] in terms of curvature
conditions and the coverage of domains in general manifolds. The preliminary estimates in Lemma 4.1
serve to facilitate the argument of treating the bi-Laplace as the iteration of the Laplace, which is an
interesting alternative to the usual elliptic estimates of Q-curvature equations. Again, the complement
M"™\ D is not relevant for our approach (see Theorem 1.4 in Section 4).
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On Q-curvature equations in dimension 4, there have been several attempts to establish results analogous
to Huber’s theorem on finiteness of singularities (see [Chang et al. 2000a; Carron and Herzlich 2002; Ma
and Qing 2021; 2022]). Q-curvature in dimension 4 indeed plays a role similar to that of the Gaussian
curvature in dimension 2 (please see (1-6) for instance). Our following result is a significant improvement
of the finiteness result of [Chang et al. 2000a, Theorem 2] (see also [Chang et al. 2000b]). It covers domains
in general manifolds and drops other additional curvature assumptions in [Chang et al. 2000a, Theorem 2].
The potential theory approach here, particularly Theorems 1.1 and 1.2, seems to be more effective. And
the preliminary estimates in Lemma 4.4 are interesting for Q-curvature equations in dimension 4 too.
Once again, the complement M" \ D is not relevant for our approach (see Theorem 1.4 in Section 4).

Theorem 1.5. Let (M*, g) be a complete Riemannian manifold and S be a compact subset in M". And
let D be a bounded open neighborhood of S. Suppose that g = e** g is a conformal metric on D \ S with
nonnegative scalar curvature R[g] > 0 and is geodesically complete near S. And suppose that

/ 07 lg] dvol[g] < oo,
D

where Q7 [g] is the negative part of the Q-curvature of the metric g. Then S consists of only finitely many
points.

The organization of this paper is as follows: In Section 2 we define linear potentials and develop
potential theory with the outer capacity and the notion of «-thinness. Then we prove Theorems 1.1
and 1.2. In Section 3 we build the framework to use potential theory developed in Section 2 to estimate
the Hausdorff dimension of singular sets which correspond to the ends of complete conformal metrics on
domains of manifolds. And we prove Theorem 1.3. In Section 4, based on the framework built in Section 3,
we prepare some preliminary estimates and prove Theorems 1.4 and 1.5 for Q-curvature equations.

2. On linear potentials

The study of linear potentials has been extensive and full of great achievements. Readers are referred, for
instance, to [Mizuta 1996; Adams and Hedberg 1996; Armitage and Gardiner 2001] for good introductions.
In this section we will introduce the theory of linear potential to facilitate the discussion of some estimates
of linear potentials inspired by the one in [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973; Ma
and Qing 2021; 2022]. The estimates provide us some alternative tools to study the problems on the
Hausdorff dimensions of singularities of solutions to a class of geometric partial differential equations in
conformal geometry (see [Schoen and Yau 1988; 1994; Chang et al. 2004; Carron and Herzlich 2002] for
instance). We will introduce potential theory in a way that is brief, mostly self-contained, and suffices to
Serve our purpose.

2.1. Linear potential and the outer capacity in Euclidean spaces. For the purpose of relating potentials
on Euclidean spaces to that on manifolds, we want to introduce potentials that are possibly confined to an
open subset 2 C R” in the Euclidean space. We will use the definition of a Radon measure on locally
compact Hausdorff spaces in [Royden and Fitzpatrick 2010, page 455].
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Definition 2.1. Let 2 € R” be a bounded open subset in the Euclidean space R”. Then, for x € €, let

1
/—_du(y) when a € (1,n),
Qlx -y

% (x) = 2-1)

D
/ log du(y) whena=n
e Ix—yl
for a Radon measure p on 2, where D is the diameter of 2.

For basic properties of the potential RZ’Q(X), readers are referred to [Mizuta 1996, Chapter 2]. Most
facts, results, and arguments in that work that are relevant for the discussions in this paper hold with
slight changes.

Definition 2.2. Let E be a subset in 2 and Q2 be a bounded open subset in R”. For o € (1, n], we define
a capacity by
CYE,Q)=inf{u(2) : © >0 on Q and Rﬁ’g(x) > 1forall x € E}. (2-2)

Because of the choice of the kernel functions in Definition 2.1, the capacity C*(E, 2) in Definition 2.2
is not intended to be the same as relative capacity where the kernel function is the Green’s function for a
so-called Greenian domain 2. Similar to [Mizuta 1996, Theorem 4.1 in Chapter 2; Section 2.6], we have:

Lemma 2.3. Let C% be the capacity defined as in Definition 2.2 for a € (1, n].

(1) C¥ is nondecreasing, that is,
C*(E1,Q) < C%(E2, Q)
when E1 C E; CQ CR™

(2) C% is countably subadditive, that is,
o0

C"‘( U E,»,sz) <> C%Ei.Q)

i=1 i=1
for subsets E; C Q.

(3) C% is an outer capacity, that is,
CYE,Q)=inf{C*(U,Q): E CU and U C 2 open}.

The immediate and important property of the outer capacity C% in Definition 2.2 is the scaling property
(see [Armitage and Gardiner 2001, page 135]).

Lemma 2.4. For a positive number A, let
Ay ={Ax:x € A}
for any subset A in R"™. Then, for o € (1,n],
C*(E;,Q;)=A"%C*(E, Q).
Proof. For a nonnegative Radon measure p on €2, we associate it with a nonnegative Radon measure

w*(Ay) = pu(A)
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on €2, . Then
a2y _ 1a—n pa,2
R/« (Ax) = A*T" R (%)
for x € Q2. Therefore
C(Ej. Q) = inf{u* () : RUP*(Ax) = 1 for all x € E}
—a - — ,Q
= A" Yinf{A* " w(E) : Ria_,,u(x) >1forall x € E}
=A"YCY(E, Q). O
The next important property of the outer capacity C% in Definition 2.2 is the contractive property (see

[Mizuta 1996; Adams and Hedberg 1996; Armitage and Gardiner 2001]).

Lemma 2.5. Suppose that
P:Q—->Q

is a contractive map, that is,
|®(x) —@(y)| < [x —y]

forall x,y € Q. Then, fora € (1,n],

CUP(E), Q) =CYE,Q)
for any subset E C Q.

Proof. Let 1 be a nonnegative Radon measure on €2 such that RZ’Q(X) > 1forall x € E. Then let u* be
a nonnegative Radon measure on € such that u*(A4) = u(®~1(A)) for any A C Q and therefore

/ £G) du*(5) = / Fo®(y) du(y).
Q Q

Notice that

o, _ 1 * N 1
R = || e 0 |, o ene 0

1
= [ e ) = R0 = 1,

Thus
CY(®(E), Q) = inf{v(R) : v >0on Q and R*%(x) > 1 for all x € B(E)}
<inf{u*(Q) : u* induced from pu and RZ’*Q (®(x)) > 1forall x € E}
= inf{u(Q) : £t > 0 on Q and R%%(x) > 1 forall x € E} = C*(E, Q).
The argument for o« = n is similar and the proof is complete. O

Before we introduce the notion of thinness by C¢, for completeness, let us calculate the outer capacity
C*(S™ 1 B,), where

By={xeR":|x| <2} and S" !'={xeR":|x|=1}.
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Lemma 2.6 [Mizuta 1996, Example 5.4.3]. For a € (1, n],
CYS" ', By) =c(n,a)

for some positive constant c(n, a).
Proof. Tt suffices to show that C*(S"~1, B,) is finite and positive. Let o be the volume measure for the
unit sphere so that the total measure of S”~1 is 1. First we realize that the potential, for o € (1, n] and
x € S™1 satisfies

RGP2(x) = m

for some m = m(n,a) > 0. Therefore C“(S”_l, By) < % < 00 by Definition 2.2. To see that
C%(S"1,By) > 0 for any 1 on By, we use Lemma 2.7 below to pick up a point p € S”~! such
that (2-3) holds and calculate, for « € (1, n),

o0
a,B (0 l_l 1 1
R ==a) [ u({E=5 > o) T e

3 1
= (=) [ By () 0 B dr 4 (B

< M(n,a)(B2)

for some M(n,a) >0and r = |x — p|. Fora =n,
B 3 1 4
a,B> S .
R 72 (p) /0 u({r 1>s}ﬂB2)1 sds+10g3u(32)

3 1 4
= [ w(Br(p)N Bz);dr +log 3 u(B2)
0
< M(n,n)u(B>)

for some M (n,n) > 0. In the above we used [Rudin 1987, Theorem 8.16]. This implies C*(S"~!, B,) >
1/M(n,«) > 0 by Definition 2.2. |

By the Vitali covering lemma, we prove the following fact used in the above.

Lemma 2.7. Let n > 2 and | be a finite nonnegative Radon measure on By C R™. Then there is a point
p € S™ 1 such that

W(Br(p) N B2) < c(m)u(B2)r"~" forall r >0, (2-3)
for some dimensional constant ¢ = c(n).
Proof. For convenience, let j1(B3) = 1. Assume otherwise, for any ¢ € S”~1, there is rq > 0 such that
1(Br,(q) N Bo) > c(n)ri ™,
Using the Vitali covering lemma, we have {¢1.q2, ....qx} C S”~! such that the balls in the collection
{Br,, (1), Br,,(q2). . ... Br, (qk)}

are disjoint but the balls in the collection

{B3r,,(41): B3r,, (q2), - -, Bar,, (qx)}
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cover the sphere S n=1 Therefore, on one hand,

k k
c(m) Y rit <> By, (qi) N Bo) < u(By) = 1.
i=1 i=1

On the other hand,

k k
1S"71 = " |Bsr, (g) N S" T < |S" e(m) Y rih
i=1 i=1

when ¢ (n) is sufficiently large, where | - | stands for the Lebesgue measure on S”~!. Therefore the lemma
is proven by contradiction. O

Now let us introduce the geometric definition of thinness. For notions of thinness in terms of the fine
topology and Wiener criterion, readers are referred, for instance, to [Mizuta 1996; Adams and Hedberg
1996; Armitage and Gardiner 2001]. Let

w0 (p) ={x eR": |x—p|e 278,27 15},
Q¥ (p) ={x eR": |x—p| e 271715,271+25)}.
Definition 2.8. Let £ be a subset in the Euclidean space R"” and p € R” be a point in R”. The subset £
is said to be «-thin at the point p for « € (1,n) if
) CY(E Nl (p), QL (p))
C*(0B,-i5(p). By-i+15(p))

for some small § > 0. The subset E is said to be n-thin at p if

Y iCME Nl (p). 2 (p) < 00

i>1

i>1

for some small § > 0.

Combining Lemmas 2.3-2.6 with the above definition, we observe the following important property
of a-thin sets, inspired by [Arsove and Huber 1973] (see also [Ma and Qing 2021; 2022]). We recall
Theorem 1.2 from the Introduction for readers’ convenience.

Theorem 1.2. Let E be a subset in the Euclidean space R" and p € R" be a point. Suppose that E is
a-thin at the point p for o € (1, n]. Then there is a ray from p that avoids E at least within some small
ball at p.

Proof. First of all, due to the translation invariance, we may simply assume p is the origin of the Euclidean
space. Then, by the scaling property of the outer capacity C* in Lemma 2.4, one notices that
CHEN®.QY) _ CU(Si(E)Nwy. Q)
Ca(aBz—i(S, BZ_i+18) Ca(aBl,BZ) '

where S; (v) = (2/ /6)v is the scaling map. Then we consider the projection
__{v/[v] whenveR"and |v| > 1,
o when v € R” and |v]| < 1,

P(v)
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which is contractive. Therefore, in light of Lemma 2.5, we have
C%(P(Si(E) Nw}). Qf) < C*(Si(E) Nwh. Q).

Next, using the countable subadditivity in Lemma 2.3, we have

C“(U P(Si(E) Nwy), Qé) <Y CH(P(Si(E)Nwg), Q).
i>k i~k
Thus,
ce(UU Psiteynad).0b) = 3 cosieynop.2h

i>k ik

CUSi(E)Nal, Qf
fca(aBLBZ)Z (Si(E) wq 0)
i>k

C*(3B1, By)
C*(ENw?, Q%)
C*(0B,—ig, By—it15)’

<C%0B1.B2) )
i>k

which is arbitrarily small when k is appropriately large using Lemma 2.6 for C¥(dB1, B3). And then
this implies that

0B1\ | P(Si(E)Nwy) # 2.

i>k
The argument for @ = 7 is similar and easier. O
2.2. Linear potential on manifolds. On a given complete Riemannian manifold (M", g), let d(-,-) be
the distance function associated with the given Riemannian metric g.

Definition 2.9. Suppose that (M", g) is a complete Riemannian manifold and U € M”" is a bounded
open subset. For « € (1, n], the linear potential on the Riemannian manifold (M", g) of order « for a
Radon measure p on U is given by

1
——du(y) whena € (1,n),
Ui _ /Ud(x,y)”“"
Ry " (x) =

D
lo d when o = n,
/Q gd(x’y) w(y)

where D is the diameter of U.

From the discussion in the previous subsection, it is easily seen that one may generate an outer capacity
¢*(E,U) for any subset E C U C M" that behaves like the counterpart in Euclidean spaces. To use
RZ’Q (x) and C*(FE, ©2) on Euclidean spaces in the previous subsection to study %fj’U (p) and €*(A,U)
on manifolds, we first introduce the correspondence between Radon measures on the tangent space 7, M"
at each point p € M™ and those on (M", g). Suppose that (M", g) is a complete Riemannian manifold.
Let p € M" and U be a convex normal coordinate neighborhood at p on (M", g), where the exponential
map serves as the convex normal coordinate

explp: Q—U.
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The domain U is said to be convex if the unique geodesic joining any two points in U stays in U.
Moreover, we may assume in the coordinate chart U the exponential map be uniformly bi-Lipschitz
throughout this paper.

Then, for a Radon measure i on U € M", one may introduce the Radon measure u* on  C T,M"
such that, for a subset £ C €2,

W) = plexplpE) and [ foexplydu’ = [ f

It is then easily seen that the following equivalence between the linear potential RZ’*Q, the outer capacities
C*(-, <) and the corresponding a>Y €“(-,U) holds. Namely:

Lemma 2.10. Suppose that (M", g) is a complete Riemannian manifold and p € M". Let
explp: Q—->U

be the convex normal coordinate chart, where the exponential map is uniformly bi-Lipschitz. And let
o € (1,n]. Then, for ACU and E = (exp|p) !4 C Q,

—1 pa,2 , U o,
C7ICYE,Q)<¢*%(A,U)<CCYE,Q)

for some constant C = C(M", g, U, p). Consequently, a subset A C U is a-thin at p if and only if
E = (exp |p) "1 (A) C Q is a-thin at the origin of Ty M".

Proof. The proof is straightforward based on the properties of the convex normal coordinate chart at a
point in a complete Riemannian manifold, where the exponential map is bi-Lipschitz. O

2.3. Estimates of Riesz potentials. We now introduce our estimates of Riesz potentials on manifolds. We
will recall some well-known estimates for Riesz potentials in Euclidean spaces [Mizuta 1996, Chapter 2].

Our estimates on Riesz potentials are designed to help understand the Hausdorff dimensions of
singularities of solutions of partial differential equations on manifolds. Let us start with a general
decomposition theorem for nonnegative Radon measures on a complete Riemannian manifold based on
[Kpata 2019, Proposition 1.4], which is related to Lemma 2.7 and a broad generalization of the Lebesgue
Differentiation Theorem in some way.

Lemma 2.11 [Kpata 2019, Proposition 1.4]. Let u be a nonnegative Radon measure on a complete
Riemannian manifold (M", g) and let

GP = {x e M" :limsupr~? u(B,(x)) = +°°}

r—0

for any d € [0, n)]. Then
Ha(GF) =0,

where ¢y is the Hausdor[f measure of dimension d.
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Proof. Based on the general decomposition theorem [Kpata 2019, Proposition 1.4] on the Euclidean
space and the correspondence of Radon measures in Lemma 2.10, this lemma is easily seen. Specifically,
we first prove the statement for Radon measures supported in a convex normal coordinate chart used
in Lemma 2.10. Then the lemma follows by using a countable covering for (M, g) by convex normal
coordinate charts. O

Now we are ready to state and prove one crucial analytic result in this paper on the behavior of the
Riesz potentials. For readers’ convenience, we recall Theorem 1.1 from the Introduction.

Theorem 1.1. Suppose that (M™, g) is a complete Riemannian manifold and . is a finite Radon measure
on a bounded domain G C M". Let S be a compact subset in G such that its Hausdorff dimension is
greater than d. And let o € (1,n) and d < n — «a. Then there is a point p € S and a subset E that is
o-thin at p such that

1
du <
/G d(x, e P = d pyrad
for some constant C and all x € Bg(p) \ E for some § > 0.

Proof. First, due to the assumption that the Hausdorff dimension of S is greater than d,
Hy1e(S) = 00
for some small € > 0. Then, in light of Lemma 2.11, there is a point p € S such that

lim sup r =@+ (B, (p)) < C < 0.

r—0

That is to say
W(Br(p)) < Crite (2-4)

when r is appropriately small. Secondly, we may confine ourselves to a convex normal coordinate
neighborhood U of p and we may work on the Euclidean space without loss of generality in light of the
discussion in the previous subsection, particularly, Lemma 2.10, where exp |, : € — U and exp |, (0) = p.
For convenience, we will not differentiate ; and u* if no confusion rises. Therefore, for x € a)l‘g CcQ
when § is sufficiently small and 7 is appropriately large,

RO = [

Q lx—y/"

1 1 1
= —dﬂ‘i‘/ —dﬂ+/ ——————du, (2-5)
/5;\1-'32—1‘0-1-2‘S |x =y Bz_i0+23\9f |x —y|"— Q¢ |x — y|r—e

where ig <1i to be fixed. For the first term in the right-hand side of (2-5),

1 1 n—o 1 n—o
I = ———du < . . Q) <|{—— Q).
/;Z\Bz—io-',-zs |x _y|n—¢x M= (2—104—28 _2—1+15) ,bL( ) = (2—10+18) /L( )

du
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Recall that 277§ < |x| < 27/+1§ for x € w;, we have

2 —z+15)n—(x —d 1 1
= p(82) io+18\n—a =C —a—d’
(2—lo+1§) |x|r—o— —d x| d

(2-6)

where C = C(n,a,d,§,ip). For the second term in the right-hand side of (2-5),

1 1 1
= f — du+ / —
/132i0+25\9? |X - y|n_a 327i0+28\327i+23 |x - y|n_a B,_i_ |X - y|n_a

2—i—lg

/ 1 1 n—o
< g dn Tt (T) p(By=i-15)
B, _ig+25\By—it24 |x —y|r— 271718

i—1

1 1 n—o
] ()
k;o LZ_k+25\B2_k+13 |x —yln_a 2_1_18 2 §

i—1 1 n—o 1 n—o
< (m) w(By—k+25) + (m) w(By-i-15).
=io

Using (2-4) for € = 0, we continue from the above,

i—1

- 1 n—a—d 1 n—a—d
II < C(4d > (—2_k5) + (—2—i—15) )

k=io

4d 1 n—a—d 1 n—a—d 1
= C(] _y—(n—a—d) (2—i+15) + (m) ) = CW, 2-7)

where C = C(n,«,d,§,ip). To handle the third term in the right-hand side of (2-5), we let

E} = xew5:[ ;du>/\2i("_“_d) ,
’ folad lx—yprme T T

where A > 0 is fixed. By Definition 2.2, we know

M(Qs) C (2 z+25)d+e C4d+e

o —i€h—i\n—a
C(EQ)—Azz(nad)—)k 2z(nad)_ A 2772 ’
where (2-4) for some € > 0 is used and Qf C B,-i+25. Now, from Lemma 2.6 and the scaling property,
we know
C%(By—ig, By-it15) = C(n,a) (27 8)" ¢
and

Z Ca(EA Zz—el
C*(9B,- 18732 l+18) T

i>ig i>ip

Thus, by Definition 2.8, the proof is completed. O
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As a consequence of Theorems 1.2 and 1.1, we have:

Corollary 2.12. Suppose that (M", g) is a complete Riemannian manifold and . is a finite Radon measure
on a bounded domain G C M". Let S be a compact subset in G such that its Hausdorff dimension is
greater than d. And let o € (1,n) and d < n — «. Then there is a point p € S such that, for some
constant C,

/ 1 du < C
6 de,yy— = G pye=d
for all x € Ray, NB(x,§), where Ray, is a ray from p and B(p,d) is the geodesic ball of radius § > 0.

2.4. Estimates of the log potential. First, as stated in [Mizuta 1996, Theorem 6.3], for the log potential
U, iu(x) on Euclidean spaces defined on page 82 of that work,

m O,
x—pand xeQ\E log(1/|x — p|)

The following is our version of [Mizuta 1996, Theorem 6.3] on manifolds. For us it is a generalization
of [Arsove and Huber 1973, Theorem 1.3] in higher dimensions and linear versions of such behaviors
for n-superharmonic functions (see [Huber 1957; Bonini et al. 2018; 2019; Ma and Qing 2021; 2022]).
For convenience, we present a brief but full proof based on the potential theory developed in previous

subsections in this paper.

Theorem 2.13. Suppose (M", g) is a complete Riemannian manifold. Let u be a finite Radon measure

on a bounded domain G C M". Then, for all p € G, there is a subset A that is n-thin at p and
Jglog(1/d(x,y)du(y)

X—>p anljr)lcleMn\A log(l/d(x, p)) - /“L({p})

Proof. Let
explp:Q—->U

be a convex normal coordinate at p € M". Clearly, it suffices to show that there is a subset 4 in U, which
is n-thin at p, such that
U
Ay (x)

op i A Tog(l/d(x. py) - HEPD: 2-8)

5 .
Therefore, for x € w? (p), we write

71U (x) = /U log du(y)

D
d(x,y)

D D D
= logd dp+ logd du+ logd du. (2-9)
U\B,—ig12, (x.y) B, _ig+2,\2 (x.y) Q? (x,)

Here we omit the center p for each ball or annulus for simplicity. For the first term in the right-hand side
of (2-9),

as x — p. (2-10)

D D 1
1 = / log du < u(U)log———— =o(1)log
U\B,—ip+2,4 d(x,y) 270t d(x, p)
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For the second term in the right-hand side of (2-9),

D D D
/ log du(y) :/ log du+/ log du
B\ d(x.y) B gen \Byrry o dy) T g R G

1
<C |: Z kpu(By—k+25 \ Bz—k+15)] + w(By-i—2g) log
k=io

D
272§

Due to the regularity of Radon measures and d(x, p) € 27718, 27 6], we know

(Bys—25) 108 — 2 = pu({p}) log —— + (1 ) — @2-11)
W(Bymi—2g)log o —imgp = nltphlog g =S tollog 5o ) asx = p -

and

> kp(By-i+2 \ By-i15) = 0(1)i = o(1)log (2-12)

1
P d(x, p)
as i — oo or equivalently x — p. To see (2-12), for any € > 0, we first find k¢ such that
U(Bay—1+25 \ By—m+15) < g
for all m > [ > k¢ due to the regularity of u. Next, we find N such that

Zk =iy ki(By—k+25 \ By—k+15) - €
; =

[\

for all i > N. Together, this gives

. k .
Y k=io kit (By—k+25\By—i+15) _ D keio ki (By—k+25\ By—r+15) N Y k=ko+1 k1 (By—it25\By—ict15)
i i i
Z ki (Bykt25\Bykt1s)
k=io + Z W(By—k+25\By—k+15) <€

k=ko+1

i

for all i > N. Thus we conclude that

1T = (u({p}) +o(1)) log

1
as x — p. (2-13)
d(x, p)

To handle the third term in the right side of (2-9), for A; > 0 to be determined, we consider

D;
Ari = 5:/ 1 di>il;
{xea)l Ogd(x 5 U= DA

where D; is the diameter of Qg By Definition 2.2,

(8)

l

" (AN, Q¥ < —2
In light of Definition 2.8, we consider

n()

. Ai o8
Yo ienah, Q) < »

i>ip i=ip
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and pick up A; — 0 as i — oo by the classic Paul du Bois-Reymond theorem [1873] (see [Bromwich 1908,
(5), page 40]) for infinite series such that ) ;- ; o ,u(SZf) /Ai converges when } ;- o ,u(SZf) converges.
This is to say that the third term in the right side of (2-9) satisfies

D D; D .
111:/ lo d =/ lo | + log — (!
o gd(x’y) wu(y) o g wu(y) ng_/L( 5)

d(x,y)
1 1 : D
<[A; 1+ -log— QH)1
< (b (1 Froe g Juca) e
1 .
=o0(1)log as x ea)f\Ekl and x — p. (2-14)
d(x, p)
Finally, if let 4 = | J; A%, we have
. a2 (x)
lim — = u({p),
x—pand xeU\A log(1/d(x, p))
where A is n-thin at p. O

3. On scalar curvature equations

We now focus on the scalar curvature equations for conformal deformation of metrics. Let (M", g) be a
compact Riemannian manifold for n > 3. Let R;;;[g] be the Riemann curvature tensor, R;;[g] = R;jki gkl
be the Ricci curvature tensor, and R[g] = R;; 2% be the scalar curvature. The scalar curvature equation
in conformal geometry is

Alglu + R[glu = R[um> glun (3-1)

4n—1)
 n-2

for a positive function u. The scalar curvature equation describes how the scalar curvature transforms

under conformal change of metrics. In this section we want to use the estimates for the Newton potential
in the previous section to study the Hausdorff dimensions of the singularities of solutions u to the scalar
equations which represent the ends of a complete conformal metric ut/ =2z

We remark here that all of the results in this section hold if we assume S is compact, D C M" is a
bounded domain that contains S, and (M", g) is just complete, because the possible noncompact part
M™\ D is not relevant for the purpose here.

3.1. Preliminaries. Let us start with [Ma and Qing 2022, Lemma 3.1], which is a slight improvement of
[Chang et al. 2004, Proposition 8.1].

Lemma 3.1 [Ma and Qing 2022, Lemma 3.1]. Let (M", g) be a compact Riemannian manifold and S
be a closed subset in M". And let D be an open neighborhood of S. Suppose that g = u4/(”_2)g isa
conformal metric on D \ S and is geodesically complete near S. Then

u(x) > 4oo asx—S

if R™[gle LP(D\ S, g) for some p > n/2, where R™[g] = max{—R|[g], 0} stands for the negative part
of the scalar curvature R[g] and LP?(D\ S, g) is the L? space with respect to the metric g.
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For a preliminary estimate on the Hausdorff dimension of S, we follow the proof of [Ma and Qing
2022, Theorem 3.1] and get:

Proposition 3.2. Let (M", g) be a compact Riemannian manifold and S be a closed subset in M". And
let D be an open neighborhood of S where the scalar curvature R[g] is nonpositive. Suppose that
g = ut/ (”_2)57 is a conformal metric on D \ S and is geodesically complete near S. Then the Newton

capacity of S is zero and therefore the Hausdorff dimension satisfies

dim(S) <n-2,
provided that
R[gle L¥2(D\S,g)NLP(D\ S, g)
for some p > %.

Proof. Recall the scalar curvature equation

4n—1 ; "
3D oy Rut RS — R (g3 i D\ s, (3-2)
n_
where
n+2
_ nt2 _ _ 2n_ 2n_ _\ 2 n—2
[ i v < ([ @ la@oud avim) i)
D\S D\S
n+2
o 2n 2n n=2
< (/ (R™[g])n+2 dVOl[g]) vol(D) 2n < 0. (3-3)
D\S

Here, and from now on, all geometric quantities are under the background metric g unless indicated
otherwise. And, in light of Lemma 3.1, we know

u(x) > +oo asx—S.
As in the proof of [Ma and Qing 2022, Theorem 3.1] (adopted from [Bidaut-Véron 1989, Lemma 1.2]),
we use the following test functions. First we let

B. u>o+p,

d = — 1—mn),
u—a, u<a+p, an ¢a,/3 Uy, IB+IB( n)

Ug,p =

where n € C°(Xy) is a fixed cut-off function that is equal to 1 in a neighborhood of S and ¥, =
{x € D :u(x) > a}. Notice that, for B sufficiently large,

ug g €(0,8] in Xy and $ap=0 on{xeD:u(x)=ajU{xeD:u>a+p}

and
Voo,p = Vugg+pBVn and Vu=Vu,g when Vuyg #0.
We then multiply ¢, g to (3-2) and get

4(n—1)
n—2

Vu-Veg g dvollg] = /E (—Ru + R[g]u%)qﬁa,ﬂ dvol[g].

o
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Therefore

4(” 1) 2 ( 3 (1 — )
/ [Vug g|~ dvol[g ,8/ e _I)Vu Vn+(— Ru—l—R[g]u )(1 —n)) dvol|g]

+ n+2 —
= |, (Ru+ RY[glui ) (6 g p) dvollg]
n+2 _
+ [ Rl B~ p) dvollg) < €. (3-4)
where C depends on « and 7 but does not depend on S, due the support of 1 — 7 and (3-3). That is,
Ua,B 2 . _C
|V—=]"dvol[g] < — —0
/za p B

as B — oo, where u, g/p is a function that is identically 1 in a neighborhood of S. This implies the
Newton capacity Cap, (S, D) of S is zero. Consequently, we know S is of Hausdorff dimension not
greater than n —2 (see [Adams and Meyers 1972; Schoen and Yau 1994, Theorem 2.10 in Chapter VI]). [J

3.2. —Au is a Radon measure on D. In order to use the estimates of potentials in the previous section,
we need the following lemma (see [Ma and Qing 2022, Lemma 3.2-3.4]).

Lemma 3.3. Let (M", g) be a compact Riemannian manifold and S be a closed subset in M". And
let D be an open neighborhood of S where the scalar curvature R[g] is nonpositive. Suppose that
g = u4/(”_2)§ is a conformal metric on D \ S and is geodesically complete near S. Then —Au is a
Radon measure on D and —Au|g > 0, provided that

R7[g]€ L#2(D\ S, )N L7 (D\ S, g)
for some p > 5.
Proof. Again, recall the scalar curvature equation

4(n—-1)
)

Au=—Ru+ R¥[glui2 — R [glu2 = f inD\S, (3-5)

where
n+2
/ R [glun=2 dvol[g] < co.
D

And, in light of Lemma 3.1, we know

u(x) >oo asx —S.

Then we claim the right-hand side f of (3-5) is in L1 (D). To prove this claim, we follow the argument
in the proof of [Ma and Qing 2022, Theorem 3.2] (stated as Lemma 3.2 there). Let

t, t<s,
as(t) = 4 increasing, ¢ € [s, 10s],
2s, t > 10s
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(this function was used in [Dolzmann et al. 1997]). Notice that one may require o} € [0, 1] and «y < 0.
We calculate
—Aas(u) = —a" )| Vu? + g (u) (— Au)

and, for s > max{u(x) : x € 0D},

a_u ! 2 -
/E)D " da—/ Aag(u) dvol[g] = /D( " (u)|Vu| —i—oz(u) ( l)f) dvol[g].
Hence
o 2 ’ n-2 . _ 3_14 n—2 _ 142 volls
[ (esoivu + oo = Y avottg) < [ Gt do 2= [ roten avoli
and

-1 M 2 ! n—2 + — ~
[ 1aasldvotal = [ (~a iVl +a' 0=+ 1) dvollz)

By Fatou’s lemma, as s — oo, we have

4(n—1 ad n
/ Fravorg) < 27D [0y / R [glun2 dvol[g].
D D
So the claim is proven. Moreover,

n—2 Jsp 0v
/|Aas(u)|dvol g]</ % 2(n 1)/ R [g]un 2dV01[]

Consequently, for ¢ € CX°(D),

|- Aas () ()] = ‘ /D (— Aoy (1)) dvol[g]‘
< /D | Acts ()] dvol[Z] |l coco)

du n—2
= 3, ot w2 dvol )
(/31) v 2—1) Jp\s R™[g] [g])¢licocp)

for any s larger. Before we show —Au is a Radon measure, let us state and prove a lemma which is
useful for the proof now and later in the following sections.

Lemma 3.4. Let (M", g) be a compact Riemannian manifold and S be a closed subset in M". And
let D be an open neighborhood of S where the scalar curvature R[g] is nonpositive. Suppose that
g= ut/ (”_2)§ is a conformal metric on D \ S and is geodesically complete near S. Then

VueLP(D) and ue Li(D) (3-6)

fl)andq € [l,nf

forpell,; 5 ), provided that

R[gl€ Li#2(D\ S, )N LP(D\S,g)

for some p > 5.
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Proof. In fact, we continue from the above, for ¢ € C°(D),

f Vas(u)-Vé dvol[g']‘ = ‘/ (—A[g’]as(u)@dvol[é]‘
D D

ou n—2 ni2
= a-do+ R_gquvolg)
(/ap v 20—1) Jp\s [&] [])I¢llcocp)
du n—2 n+2
<C / —do+ R [glun—2 dvol -) v (3-7)
( ap OV 2(m—1) Jp\s (8] &IVl Lr(py

for any A > n due to the Sobolev embedding theorem. Therefore, for any s appropriately large,

IVas@)llLrpy =€ and  Jlas()|Lep) = C

_n_

— 1/
for some constant C and p = A" € (1, i

) and g € [1, nnTz)’ where C is independent of s. Therefore
we first have, by Fatou’s lemma,

lullLapy < C

for some C and g € [1, nnTz) Moreover, we calculate

[Vu(p)| = / uVe dvol[gf]’ = | lim / as(u)Ve a’vol[gf]‘ = | lim / o (u)Vug dvol[g]
D §—>00 D §—>00 D
<limsup [l () V| LoDy #llL2 < CllgllLa- (3-8)
S—>00
This implies
Vue L?(D) and ue L9(D) (3-9)
for p € [1, ;%) and g € [1, %5 ), completing the proof of Lemma 3.4. O

Back to the proof of Lemma 3.3,
(—Au)(¢) = / Vu-V¢ dvol[g] = lim / oy (u)Vu - Ve dvol(g] = lim (—Aas(u))(¢)), (3-10)
D S—>00 D §—>00

where the dominated convergence theorem is applied due to Vu € L!(D). Thus, for ¢ € CZ(D),
n—2
2(n—1) Jp\s

which implies that —Au is a Radon measure on D. To show that —Au|g > 0, we calculate, for a

3 n+2
cani= ([ Saos R (e ol I coco)

nonnegative function ¢ € C°(D),

(8@ = [ Vu-Vpavollg) = tim [ Vaso-Vdvollg) = tim [ (~Aos0)s dvolig

n—2
—1

= lim D|:cx;(u)4(n

§—>00

S Ru+ Rlgh ) —a;/(u>|w|2]¢ dvol[g]

n—2 ni2
> _ |—Ru+R[g1un—2|dvol[g1} 16llcom) — 0
% 4(” - 1) suppp\S coD)

a3 [ oo d\S dvol[g] — 0 and [|¢ | co(py = 1, which implies —Au|g > 0. O
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3.3. Main result on the Hausdorff dimensions. Now we are ready to state and prove our result on the
Hausdorff dimension of the singular set S, which is a significant improvement of Proposition 3.2. For the
readers’ convenience, we recall Theorem 1.3 from the Introduction.

Theorem 1.3. Let (M™", 2) be a compact Riemannian manifold and S be a closed subset in M". And let
D be an open neighborhood of S. Suppose that g = ut/ (=2 g is a conformal metric on D \ S and is
geodesically complete near S. Then the Hausdorff dimension satisfies
-2
dim ¢ () < “5= (3-11)
provided R™[g] € L2/ "+2(D\ S, g)NLP(D\ S, g) for some p > %. Consequently, (3-11) holds when
the scalar curvature R|g] of the conformal metric g is nonnegative.

Proof. The outline of the proof is as follows: We first show that one may assume the scalar curvature
R[g] is nonpositive without loss of generality for our purpose. Then we use the Green’s function to
construct the integral representation of the solution to the Laplace equation. Finally we apply Lemma 3.3,
Theorem 1.1, and the geodesic completeness to complete the proof.

Step I: In this step, we find a conformal change h =4/ (=2 g such that the scalar curvature R[ﬁ] is
nonpositive (or even negative) in D, based on the similar idea used in the proof of [Ma and Qing 2022,
Lemma 3.1]. This is trivial if the Yamabe constant of (M", g) is nonpositive. Otherwise, take a point
p € M"™\ D and consider a connected sum of M" with another compact Riemannian manifold (M7, g1)
with very negative Yamabe constant in such way that the conformal structure on the connected sum
M"™$M7 is unchanged in D C M"§M{'. Then, by [Gil-Medrano 1986, Theorem 5], the Yamabe constant
of such a connected sum is negative. Therefore one easily finds a conformal metric h = v*/ (=2 g whose
scalar curvature is negative in D, where v € C*°(D) and

Cl'l<v<C inD (3-12)

for some positive constant C. In any case, we have g = ut/ =2z — (%)4/ (n_z)ﬁ and the scalar curvature
R[ﬁ] is nonpositive. In conclusion, due to (3-12), we may simply assume R[g] is nonpositive (or even
negative) in D without loss of any generality for the purpose of obtaining the growth estimate like the

one given in Theorem 1.1.

Step II: In this step, we use the Green’s function to construct the integral representation of the solution u.
In light of Lemma 3.3, we may write
—Au=u inD

for a Radon measure u on D. Let G(x,y) be the Green’s function on D given by [Aubin 1982,
Theorem 4.17]. Then

u=[ GG+
for a smooth function /4 that is harmonic in D. By [Aubin 1982, Theorem 4.17(c)], we have

O<G(X,J’)§W
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for some constant C and x, y € D. We therefore arrive at, for x € D,
u(x) < /D G(x,y)dut +h(x) < C%’if(x) + h(x). (3-13)
Step III: Assume otherwise that dim - (S) =d > % From Corollary 2.12, there is a point p € S such that

C
2.D
%,ﬁ (x) < —d(x, p)n—z—d

at least for x along a short geodesic ray y from p, which implies
C
2(n—2—d)

d(x,p) =2

at least for x along a short geodesic ray y from p, where

u(x)z < (3-14)

2(n—2—-d) 2d
=2-— <1
n—2 n—2
when d > % Now the length of the curve y with respect to the conformal metric g = ut/(n=2) gis
lo 1
LW@fC/ =gy 45 <0
0 s n—2
when d > %, which contradicts the geodesic completeness of the conformal metric g = ut/ =2z O

The study of singular solutions to the scalar curvature equations started from the seminal paper [Schoen
and Yau 1988] (see also [Schoen and Yau 1994, Chapter VI; Carron 2012; Schoen 1988; Mazzeo and
Smale 1991; Mazzeo and Pacard 1996]) on domains of the sphere. Theorem 1.3 here can be considered as
a necessary condition for the existences of singular solutions on domains in general Riemannian manifolds
and compared with [Schoen and Yau 1988, Theorem 2.7; Carron 2012, Theorem C], which stated the
similar result for domains in the round sphere S” and slightly stronger curvature assumptions. Clearly
[Schoen and Yau 1988, Proposition 2.4] and the quantity d(M ) there are not of local nature, while our
approach here is very much local in nature.

4. On Q-curvature equations

We will use linear potential theory developed in Section 2 to study Q-curvature equations and prove our
results on the Hausdorff dimensions of the singular sets of positive solutions of Q-curvature equations
which correspond to ends of complete conformal metrics on domains of a compact Riemannian manifold.

Again we remark here that all of the results in this section hold if we assume S is compact, D C M"
is a bounded domain that contains S, and (M", g) is just complete. Because the possible noncompact
part M"™\ D is not relevant for the purpose here.
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4.1. Q-curvature equations in dimensions greater than 4. We now focus on (1-5) in dimensions greater
than 4. We will always assume that the scalar curvature of the conformal metric g = u*/ =9z is
nonnegative. We will first prove some preliminary estimates based on discussions in the previous section.
Our strategy is to consider the bi-Laplace operator as the composition of the Laplace operators. Let us
write the scalar curvature equation and its consequence:

n—2 n—2 n—2 n—2 n+42
— Ayn—=4 Run—4 = R n—4 inD\S, 4-1
ST T 4(n—1) [g]u in D\ ¢

2 |Vul? —4 n
—Au= VUl L =% R+ Rlgu#) inD\s. (4-2)

n—4 u 4(n—1)
Here, and from now on, all geometric quantities are under the background metric g unless indicated

otherwise.

Lemma 4.1. Let (M", 2) be a compact Riemannian manifold for n > 5 and S be a closed subset in M.
And let D be an open neighborhood of S where the scalar curvature satisfies R < —co < 0. Suppose
that g = u*/ "= g is a conformal metric on D \ S with nonnegative scalar curvature R[g] > 0 and is

geodesically complete near S. And suppose also that

03 lel € LT3 (D\ S, ).
Then
as a functionon D\ S, —Au—+o0o asx— S,
as a Radon measure on D, Au|s =0, (4-3)
in fact, Au e LP(D) foranyp€[l,:%5).

Proof. First, using Lemma 3.4 for u=2)/(=4) e know that

ue LP(D) for pe([l,2). (4-4)

> n—4
Also, from Lemma 3.1, for u®#=2)/(n=4)
u(x) > +oo asx — S, (4-5)

which implies, by (4-2),
—Au —> +o00 asx —S.

To prove —Au is an integrable function in distributional sense, we first realize —Au is a Radon measure
on D following (4-2) and Lemma 3.3. And, as a side product, we also have

2 |Vu|2 n—4 % )
/D[n—4 u +4(n_1)(_R”+R[g]“"‘ )]dvol[g]<oo.

In fact, from (4-1) and Lemma 3.3, we also know —Au=2)/(=4) i 3 Radon measure on D. To use this
fact we calculate

n—2 n— —4 n— 2 \v} 2
—Aos(u) = —A(o{s(u)ni—ézl)n—g = n O‘s(“)_ﬁ(—Aas(u)ﬁ) + [Vorg (u)]
n—2 n—4 oag(u)
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To prove —Au|s = 0, we consider

(—Au)($) = /D Vu. Vg dvol[g].

where Vu is integrable in the distributional sense directly from (3-8) and (3-9). Therefore

/Vu-V¢dV01[§]= lim / oy (u)Vu -V dvol[g] = lim /(—Aas(u))¢dvol[§]
D S—>00 D S—>00 D

and

A @) =""2 lim / 0t 1) (— Aty ()1 ) avol (g + —— tim [ V2P o
— 0 D

n—2s n—4s—oo [p  ag(u)

n—4 2

0 2 Vul|?
witicaniFhg + 2 [ T
n—2 n—4Jp

u

¢ dvol[g] >0

a3 [ uopd\S dvol[g] — 0 and [|¢ | co(py < 1. The proof will be complete after the following L? estimate.
To get the L7 estimate, we first calculate

n+4

0z [gh dvol[g] = ( [ (ostep i dvoug]) " vol(D) s
D\S

n+4
_ ( f (071g) s dvol[g])
D\S

2n
Then we continue to use notation in the proof of Proposition 3.2 and let

D\S

vol(D)i23 < o0, (4-6)

o = max{u(x):x € dD}

and @ < . And recall

. B, X € Xqi8,
a’ﬂ_{u(x)—oz, X € X\ Xo48,
and
“a,ﬁ_ﬂn:“_(a+,3)+,8(l_n) inEa\EaH_g,
$a,p =10 on 0Xy,
0 on dXy1g,

where 7 is a fixed cut-off function in C°(Z) and is identically 1 in a neighborhood of S, and B is
arbitrarily large. We now first multiply the Q-curvature equation (1-5) by 1 — 7, integrate over D, apply
integration by parts multiple times, and get

[ a=moiui avolig) < [ ozu avolla) + @)
D D

for some constant C depending on the cut-off function 7, u at dD, and |lul|z1(p). We then multiply both
sides of the Q-curvature equation (1-5) by ¢, g, integrate over Xy \ X4 g, and get
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0 d
/ Aulgy g dvol[g]—/ Au—u da—/ M Au do
Za\za—i-ﬁ X 81) 82(,_,_5 a‘)

o

. n—4 _
[ AT )~ =207 V- Vo p) dvollg] + Qi g dvol[3]
Za\Za+s 2 Zo\Za+p
_n—4

n+t4 _
=L oulelu g dvola) -8)
th\za-l—ﬁ

where v is the outward normal direction at the boundary and the boundary term | S etp g—'\f (—Au)do is

nonnegative due to (4-2) and g— = |Vu|. Therefore,

u
v |82a+,3

f (Auw)? dvolz] + B [ (Aw)(A(1 — ) dvol[g]
Y\ a4 Zo\Za+tp

9
< —/ A X do +C IVul? dvol[g]
95 v Zo\Za+ts

-8 /E (4A(Vu, V(1 =) — (1 —2)J Vat- V(1 — 1)) dvol[g]

JrCﬂ/Dudvol[g]+Cﬂ/DQ;[g]u'éfi1 dvol[g], (4-9)

where we use (4-7) and |[¢| < B in Xy \ o4 g. After applying integration by parts, we get
/ |Au|? dvol[g] < C / |Vu|? dvol[g] + CB (4-10)
Za\Za+8 Zo\Za+8
for some constant C depending on the cut-off function 7, u at 9%, and |[u||z1(p), because
/ AulAndvol[g] = / uA%ndvol[g]
Za\2a+[3 E(X\E(X+ﬂ

and similarly we may unload all derivatives from u by integration by parts for the other terms in the
above (4-9). Now, to get an a priori estimate, we calculate

1 Vul* —-4)C
/ |Vu|? dvol[g] < —/ | 1;| dvol[g] + u/ u? dvol[g]
Ea\2a+ﬂ (71 - 4)C Za\za—i-ﬁ u 4 Ea\za+[5
—4)C
<— |Au|2dvol[g]+u(a+,3)/ u dvol[g],
2C S\ Za+s 4 D
due to (4-2), which implies, from (4-10),
/ |Au|* dvol[g] < C(a + B). (4-11)
E(x\za-i—B

We claim that (4-11) implies
Au € L? (D) (4-12)
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for all p € [1, nnTz) To prove (4-12), we first derive from (4-11)

z—i/E i |Aul? dvol[g] < C
2i—1 [

for i > ig large, which implies

A 2
/ |Aul dvol[g] <2C
21 I\Zzi u

and, for s > 0 appropriately small for any p € [1, L),
/ A 1+s ” dvollz ]_Z[ 1+s " dvollz] < Zz“ 1+1)/ AUl ) otz <o,
EziO_l\S u 21 1\221 u i=ig Zi_l\EZi u
Thus R
Aul? 2 (1+s) -2
[ muravoizy = ([ avora) ([ o dwa) <o
D\S D\s u ™ D\S
where !
(1+s)p < n ‘ ]
2—p n—4

Corollary 4.2. Under the same assumptions as in Lemma 4.1 we have
dim»(S) <n—4.

Proof. Consequently from (4-2) and (4-11), we have

2 \vJ 4
[ owepaag =P [ Bl g
o \Za4p p p Ze\Za+p U

! (@+p)? _ (@ +p)°
B - ﬁ4 /Ea\za-i-ﬁ |Au|2 dvollgl = C(XT

for some o appropriately large and B — oo, which leads to Cap,(S) = 0 and completes the proof similar
to the proof of Proposition 3.2 (see [Adams and Meyers 1972; Schoen and Yau 1994, Theorem 2.10 in
Chapter VI]). O

Lemma 4.3. Let (M", g) be a compact Riemannian manifold for n > 5 and S be a closed subset in M.
And let D be an open neighborhood of S where the scalar curvature R[g] < —co < 0. Suppose that
g = u*/"=Yg is a conformal metric on D \ S with nonnegative scalar curvature R[g] > 0 and is
geodesically complete near S. And suppose also that

— 2n_
0,lgle Ln+3(D\ S, g).
Then A?u is a Radon measure on D and A%u|g > 0.

Proof. Let v = —Au. We will follow the proof of Lemma 3.3 to show that —Av is a Radon measure
on D using Lemma 4.1. We continue to use the notation from the proof of Lemma 3.3. We calculate

—Aas(v) = ' (v)(=Av) —a" (V) |V ],
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where, by the Q-curvature equation (1-5), we have

—Av = —div(4A(Vu) —(n —2)JVu) — n—;4Q4u + Q4[g]u%j11 inD\S

and
— A (v) = —a) (v)|Vol? + o (v)(— div(4A(Vur) — (n —2)J Vu) - n—;4Q4u + Oulglun=)

in D. In light of Lemma 4.1, terms in the right-hand side of the above equation are all integrable except
—a” (v)|Vv|? + QI [g]lu®+9/ (=4 Therefore the argument in the proof of Lemma 3.3 works from this
point and completes the proof. O

We now are ready to state and prove our main results for Q-curvature equations in dimensions greater
than 4. For this, we recall Theorem 1.4 from the Introduction.

Theorem 1.4. Let (M", g) be a compact Riemannian manifold for n > 5 and S be a closed subset in M.
And let D be an open neighborhood of S. Suppose that g = u4/("_4)g‘ is a conformal metric on D \ S
with nonnegative scalar curvature R[g| > 0 and is geodesically complete near S. And suppose also that

Oilele LiH1(D\ S, g).

—4
dim(S) < ”T

Then

Proof. In light of Step I in the proof of Theorem 1.3, we may assume the scalar curvature R < —co <0
for some ¢ without loss of any generality. Then we use Lemmas 4.1 and 4.3 and conclude that

Au=p
for a Radon measure @ on D. We use [Aubin 1982, Theorem 4.7] first to write

—Au :/ G(x,y)du+ h(x)
D

for some harmonic function %4 (x), where G(x, y) is the Green’s function for —A. Then we have

u(x) = /D G(x.2) /D G(z. y) du(y) dvol[g](z) + b(x).

where b(x) is biharmonic, where

/ Gx.2) / Gz, y) du(y) dvolg](z) = / ( / G(x.2)G(z. y) dvol[z](2)) du(y)

and
C

D= dy

for a constant C and n > 5 due to [Aubin 1982, Proposition 4.12], which can be easily proven to be

- / G(x.2)G(z. y) dvol[g]
D

available for bounded domains in Riemannian manifolds. Hence

u(x) < %’33? (x) +b(x).
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From now on, using the same argument of the proof of Theorem 1.3, based on Theorem 1.1 for o = 4
and n > 5, we conclude
—4
dim - (8) < ©

and finish the proof. U

There have been a lot of works on the study of singular solutions to Q-curvature equations on manifolds
of dimension greater than 4, notably [Qing and Raske 2006a; 2006b; Chang et al. 2004; Gonzélez et al.
2012], for example. Theorem 1.4, for instance, is an improvement of [Chang et al. 2004, Theorem 1.2] in
terms of curvature conditions. And the approach here is different from [Chang et al. 2004].

4.2. Q-curvature equations in dimension 4. We will now study the Q-curvature equation (1-6). Our
approach here in principle is similar to that in the previous subsection but different in calculations and
details. We will always assume that the scalar curvature of the conformal metric g = e?* g is nonnegative.
We will first derive some preliminary estimates from the scalar curvature equation for w = e* and the
Q-curvature equation (1-6) for u. Let us write the scalar curvature equation for e*

—Ae* = L(—Re* + R[gle®) inD\S (4-13)
and consequently,
—Au = |Vul> + L(-R+ R[g]e**) inD\S. (4-14)

Lemma 4.4. Let (M*, g) be a compact Riemannian manifold and S be a closed subset in M". And let D
be an open neighborhood of S where the scalar curvature R < 0. Suppose that g = e?*g is a conformal
metric on D \ S with nonnegative scalar curvature R[g] > 0 and is geodesically complete near S. And
suppose also that

0;lgl e L'(D\ S, 9).
Then

as a Radon measure, — Au|g =0,
) 4 (4-15)
in fact, Au € LP(D) forany p €[1,%).

Proof. First, by Lemma 3.1 for e¥, we have
u(x) >oo0 asx—S.

Then, by the proof of Lemma 3.3 and (4-14), we know that
e —Au is a Radon measure on D,
e Vue LP(D) forany p € [1, %) and u € L?(D) for any p €1, 2),
* |[Vul? + (=R + R[gle*) € L'(D).
Using the same argument as in the proof of Lemma 4.1 we can prove that —Au|g = 0 as a Radon measure.

Also, for the L? estimate, following the proof of Lemma 4.1, we multiply both sides of (1-6) by 1 —n
and get

/ (1—m) QO e* dvol[g] < / 07 [g] dvol[g] + C.
D D
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Next we multiply both sides of (1-6) by ¢, g and integrate,

0 0
/ AulAgy g dvol[g] —/ AMM do —/ AMM do
Zo\Za+p 0y v 0ot p dv
[ @A) - 20Vu Vg dvollgl+ [ Qagugdvolld
Zo\Za+5 a\Za+8

=/ Qalgle* o, p dvol[g],
Zo\Za+p

and, again, the boundary term at 3%, 1 g is with the sign in our favor, thanks to (4-14) and ‘3—’5 I2qss = VUl

for the outward normal v of X4 \ ¥4 g. Similar to the estimates in the proof of Lemma 4.1, we get

/ |Au|? dvol[g] < C / |Vu|? dvol[g] + CB.
To\Za+s Sa\Za+8

And we handle fZa\EaJﬂs |Vu|? dvol[g] much as before,

1 1
/ |Vul|? dvol[g] < —/ |Vu|* dvol[g] + C < — |Au|? dvol[g] + C
Zo\Zas 2C JS\Says 2C JSa\Sass
due to (4-14). Therefore
/ |Au|? dvol[g] < CB. (4-16)
Ea\ZaJrB

Now, using the same idea as in the proof of Lemma 4.1, we rewrite (4-16) as

A 2
/ AUl volz] < €
E21'—1 \Ezi u
and, for s > 0 appropriately small for any p € [1, %), we derive

A 2
/ 2l fvolz <
D

\S u1+s
A+s)p 1=
(/ u 2-r dvol[g'])
D\S

2. |

which implies

P 2
2 2

A 2
/ |Aul? dvol[g] < (/ %dvol[g])
D\S D\S U

(I+s)p -
2-p
Corollary 4.5. Under the assumptions of Lemma 4.4, we know the singular set S is of zero Hausdorff

when

dimension.

Proof. From (4-14) and (4-16) in the above we have

/ Y 14 dvollz) < B
Sa\Zays P
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for some « appropriately large and 8 — oo, which leads to Cap, (S, D) = 0 and completes the proof as in
Proposition 3.2 (see [Adams and Meyers 1972; Schoen and Yau 1994, Theorem 2.10 in Chapter VI]). O

What follows is to go beyond that S is of zero Hausdorff dimension. We now are ready to state and
prove our main result on the finiteness of singularities for the -curvature equation in dimension 4. This
is inspired by [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973; Ma and Qing 2021; 2022]. We
recall Theorem 1.5 from the Introduction.

Theorem 1.5. Let (M*, ) be a compact Riemannian manifold and S be a closed subset in M™. And let
D be an open neighborhood of S. Suppose that g = e?*g is a conformal metric on D\ S with nonnegative
scalar curvature R[g] > 0 and is geodesically complete near S. And suppose that

[ 07 [g] dvol[g] < co.
D

Then S consists of only finitely many points.

Proof. As before, we use the argument in Step I on Theorem 1.3 to assume that the scalar curvature of the
background metric g is less than a negative number, i.e., R < —co < 0, without loss of any generality for
our purpose. Let

v=—Au+u

and claim —Av is a Radon measure on D with —Av|g > 0. Let us start with
—Av = A% — Au = —div(4A(Vu) —2J Vu) — Q4 + Q4lgle*” — Au. (4-17)
By Lemma 4.4 and (4-14), we know
e v(x) >o0asx — S,
e all terms in the right side of (4-17) except QI [g]e** are integrable.

Therefore, following the same argument as in the proof of Lemma 4.3, the claim is proven. Obviously,
the same conclusion holds for A%y = —Av + Au from —Av and what we know about Au in Lemma 4.4.
Thus we let

A%u=p

for a Radon measure on D with AZu |s > 0. Like in the proof of Theorem 1.4, we first write
—ux) = [ 6y () + )
by [Aubin 1982, Theorem 4.17], where /(x) is a harmonic function. Then we write
u) = [ 662) [ 6y dut dvollgle) + ).

where b(x) is a biharmonic function and, due to [Aubin 1982, Proposition 4.12],

/ G(x,z)G(z,y)dvol[g](z) <C (1 + log ! )
D d(x,y)
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for some constant C in dimension 4, where [Aubin 1982, Proposition 4.12] can be easily made available
on bounded domains in manifolds. Therefore

u(x) < C%Z’f (x) +b(x).
Applying Theorem 2.13, we have

. u(x)
lim — 7 <cut =C ,
o pim ¢F Tog(1/d(x. 7)) ~ w{p}) = Cu{p})
where FE is a subset that is n-thin at p. Next, in light of Corollary 2.12, we conclude that pu({p}) > é for
each p € § since otherwise u(x) <mlog(1/d(x, p)) for some m < 1, which violates the completeness
of the metric g near S, because the g-geodesic mentioned in Theorem 1.2, which avoids £, would have
finite length with respect to the metric g. So we conclude that S can only have finitely many points. [

Theorem 1.4 is a significant improvement of [Chang et al. 2000a, Theorem 2] (please see also [Carron
and Herzlich 2002; Chang et al. 2000b; Ma and Qing 2022]).
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