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ROTATING SPIRALS IN SEGREGATED REACTION-DIFFUSION SYSTEMS

ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

We give a complete characterization of the boundary traces 'i (i D 1; : : : ; K) supporting spiraling waves,
rotating with a given angular speed !, which appear as singular limits of competition-diffusion systems
of the type 8<:

@tui ��ui D �ui �ˇui
P
j¤i aijuj in ��RC;

ui D 'i on @��RC;

ui .x; 0/D ui;0.x/ for x 2�;

as ˇ!C1. Here � is a rotationally invariant planar set, and aij > 0 for every i and j . We tackle also
the homogeneous Dirichlet and Neumann boundary conditions, as well as entire solutions in the plane.
As a byproduct of our analysis, we detect explicit families of eternal, entire solutions of the pure heat
equation, parametrized by ! 2 R, which reduce to homogeneous harmonic polynomials for ! D 0.

1. Introduction

This paper deals with existence, uniqueness and qualitative properties of rotating spiraling waves arising in
the singular limit of reaction-diffusion systems, when the interspecific competition rates become infinite.
More precisely, we are concerned with the singular limits, as ˇ!C1, of the following model problem
involving K � 3 species competing in the plane:8<:

@tui ��ui D fi .ui /�ˇui
P
j¤i aijuj in ��RC;

ui D 'i on @��RC;

ui .x; 0/D ui;0.x/ for x 2�:

(1)

Here � � R2 has a smooth boundary and ui D ui .x; t / represents the density of the i-th species
(1� i �K), whose internal dynamic is described by the function fi . The positive numbers ˇaij account
for the interspecific competition rates, so that the interaction has a repulsive character. The boundary
data 'i are positive and segregated, i.e., 'i'j � 0 for j ¤ i .

As already mentioned, we are concerned with the limit case of strong competition; that is, when the
parameter ˇ goes to C1 while the positive coefficients aij remain fixed. In this case it is known that the
densities ui segregate, in the sense that they converge uniformly to limit densities satisfying uiuj � 0 for
j ¤ i ; hence a pattern arises, and the common nodal set (where all densities vanish simultaneously) can
be considered as a free boundary; see [Caffarelli et al. 2009; Conti et al. 2005a; 2005b; Wei and Weth
2008] for steady states and [Dancer et al. 2012a; 2012b; Dancer and Zhang 2002; Wang and Zhang 2010]

MSC2020: primary 35B25, 35B36; secondary 35K51, 92D25.
Keywords: competition-diffusion systems, singular perturbation, free boundary problems, spiral waves.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2025.18-3
https://doi.org/10.2140/apde.2025.18.549
http://msp.org
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


550 ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

for time-varying solutions. For such segregated limit profiles, the interface conditions are expressed by
two systems of differential inequalities which play a fundamental role in our work:

@tui ��ui � fi .ui /; @t Oui �� Oui � Ofi . Oui /; (2)

where the differential inequalities are understood in the variational sense, and

Oui D ui �
X
j¤i

aij

aj i
uj ; Ofi . Oui /D f .ui /�

X
j¤i

aij

aj i
f .uj /: (3)

These inequalities incorporate the transmission conditions at the free boundary, that is the closure of the
interfaces @fui > 0g\ @fuj > 0g, which separate the supports of ui and uj at any fixed time t .

For planar stationary solutions, the structure of the free boundary has been the object of several papers.
In the case of symmetric interactions (aij D aj i for every i and j ), it is composed by a regular part, a
collection of smooth curves, meeting at a locally finite number of (singular) clustering points, with definite
tangents; see [Caffarelli et al. 2009; Conti et al. 2005a; 2006; Helffer et al. 2009]. On the other hand,
the asymmetric case has been treated only more recently in [Terracini et al. 2019]: while the topological
structure of the free boundary is analogous to the symmetric case (smooth curves meeting at isolated
singular points), the geometric description differs strongly in a neighborhood of each singular point,
where the nodal lines meet with logarithmic spiraling asymptotics.

Going back to time-dependent systems, rotating spiraling patterns have been detected numerically in the
case of three competing populations in [Murakawa and Ninomiya 2011]. Driven by this phenomenology,
in this paper we seek rotating spirals, that is rigidly rotating waves which are steady states of (2) in a
reference frame spinning with frequency !; such solutions satisfy @tui D !@�ui in a disk, subject to
boundary conditions which are prescribed in the rotating frame, and exhibit spiraling interfaces near the
origin. Hence, in comparison with the literature, our work tackles the segregation problem from a new
perspective, that is the existence of limit segregated profiles satisfying additional qualitative properties or
shadowing some given shapes. On the other hand, the literature on other aspects of segregation triggered
by strong competition, starting from pioneering works by Dancer and Du [1995a; 1995b], is now very
vast, and it is impossible to give a complete account of it here; besides the papers mentioned above, we
mention a few more recent ones such as [Arakelyan and Bozorgnia 2017; Berestycki and Zilio 2018;
2019; Lanzara and Montefusco 2019; 2021; Verzini and Zilio 2014].

The rotating spiral shapes we investigate evoke some other typical examples of spatiotemporal patterns
arising in reaction-diffusion systems in planar domains: the spiral waves. In the simplest case, spiral
waves are stationary waves in a rotating frame, while modulated spiraling waves may emanate from
rigidly rotating ones in some circumstances. Such waves arise in different models and appear in the
literature about reaction-diffusion systems in contexts different from singular perturbation problems;
see, e.g., [Sandstede et al. 1997; Sandstede and Scheel 2007; 2023]. As far as we know, this is the first
study on spiraling rotating waves for segregated limit profiles of competition-diffusion systems. We also
mention that spiraling interfaces arise in free boundary problems in entirely different contexts [Allen and
Kriventsov 2020].
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To construct eternal solutions of spiraling-type to the limit system (2), in this paper we deal with
suitable classes of reactions fi and boundary conditions. More precisely, let us consider identical, linear
reactions in the unit ball (centered at 0):

�D B; fi .u/D �u for some � 2 R.

We insert into (2) the rotating wave ansatz

ui .x; t /D ui .R!tx/;
where

R!t D
�

cos.!t/ � sin.!t/
sin.!t/ cos.!t/

�
is the rotation matrix of angular speed !, and we obtain the stationary system of inequalities8<:

��ui C!x? � rui � �ui in B;
�� Oui C!x? � r Oui � � Oui in B;
ui �uj D 0 for i ¤ j;

(4)

where x? DR�=2x and Oui is defined in (3). It is worth noting that, despite appearances, this system is
strongly nonlinear and has to be tackled as a free boundary problem.

We are interested in solutions of (4) whose nodal set consists in smooth arcs, emanating from @B and
spiraling towards 0, which is the unique singular point of the free boundary. In this way, each arc is a
smooth interface between two adjacent densities, and the origin is the only point with higher multiplicity
(see Figure 1). In this framework we provide a complete description of the nonhomogeneous Dirichlet
problem associated with (4).

Let us consider a K-tuple .'1; : : : ; 'K/ of segregated boundary traces. Precisely, we assume that, for
every i D 1; : : : ; K,8<:

'i 2 C
0;1.@B/; 'i � 0;

fx W 'i .x/ > 0g are connected, nonempty and disjoint arcs,S
i supp'i D @B:

(5)

Up to relabeling, we can assume that the traces 'i are labeled in counterclockwise order.
In general, it is not reasonable to expect that any choice of the boundary data provides a solution of (4)

with a unique singular point at 0. Indeed, we show that this happens exactly for an explicit subset having
codimension K�1 in the space of traces. Let s D .s1; : : : ; sK/ 2 RK , with si > 0 for all i , and let us
consider the class of functions

Srot D fU D .u1; : : : ; uK/ 2 .H
1.B//K W ui � 0 satisfy (4); ui D si'i on @Bg: (6)

To state our main result we introduce the parameter

˛ D
1

2�
ln
�
a12

a21
�
a23

a32
� � �
aK1

a1K

�
; (7)

which synthesizes the asymmetry of the coefficients aij ; see [Terracini et al. 2019] for more details.
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Figure 1. Contour lines of a numerical simulation (obtained in FreeFem++ [Hecht
2012]) in the case of K D 3 densities, with asymmetric competition such that
a12=a21 D a23=a32 D a31=a13 D 10, and reaction term �D 0. The angular velocity
is ! D 3 for the image on the left (counterclockwise spin) and ! D�3 for the image
on the right (clockwise spin). In both cases, we obtain a unique singular point at
the center of the circle by choosing the same boundary conditions, which satisfy the
necessary and sufficient conditions in Theorem 1.1; see (10). The rotation affects the
shape of the spirals but not their asymptotic behavior close to the center. This is part
of the content of Theorem 1.1.

Our main result is the following theorem.

Theorem 1.1. Let K � 3, aij > 0 and ! 2 R. Assume that � < �2 and .'1; : : : ; 'K/ satisfies (5). There
exists

Ns D .Ns1; : : : ; NsK/ 2 RK ;

independent of � and !, with Nsi > 0 for all i , such that:

(1) If s D t Ns for some t > 0, then Srot contains an element with a unique singular point at 0. Moreover,
such an element is unique and, defining U as a suitable linear combination of its components, we
have

U.r cos#; r sin#/D Ar cos
�
K

2
# �˛ ln r

�
C o.r / as r! 0; (8)

where

 D
K

2
C
2˛2

K
and 0 < A0 � A.x/� A1:

(2) If s ¤ t Ns for every t > 0, then Srot contains no element with a unique singular point at 0.
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Corollary 1.2. Under the assumptions of the above theorem, if the problem is invariant under a rotation
of 2�=K, i.e.,

'iC1.x/D '1.R2�i=Kx/ and
ai.iC1/

a.iC1/i
D
aK1

a1K
(9)

for every i , then
Ns D .1; 1; : : : ; 1/:

Remark 1.3. Notice that the asymptotic expansion (8) implies that the free boundary, near the singular
point 0, is the union of K equidistributed logarithmic spirals, as long as ˛ ¤ 0. On the other hand, in the
case ˛ D 0, we obtain that the interfaces enter the origin with a definite angle. In particular, this holds
true in the symmetric case aij D aj i for every j ¤ i .

Remark 1.4. In this work, we normalize the radius of the disc, taking the slope of the reaction term � at
zero as a parameter. If we wish to work in a ball of radius R then we need � < �2=R2, as seen with a
simple scaling.

Remark 1.5. A natural question concerns the dynamical stability of the solutions above. From this
point of view, the study of the linearized problem of (1), due to the presence of the large parameter ˇ,
does not seem a viable path. This leaves open the problem of stability, for the moment, although
numerical simulations for (1), with logistic reactions and ˇ large, suggest stability for some specific
angular velocity !.

We shall adopt a constructive point of view, building the solution by superposition of fundamental
elementary modes. The dependence of such building blocks on the parameter ! and � shows the presence
of resonances at exceptional values; see Section 6 for further details. As a byproduct of the analysis of
resonances, we will prove the following results.

Theorem 1.6 (homogeneous boundary conditions). LetK � 3 and aij >0. If .�; !/ belongs to a suitable
discrete set then there exists a nontrivial element of Srot with null traces. Analogous results hold for
homogenous Neumann or Robin boundary conditions.

Theorem 1.7 (entire solutions). Let K � 3 and aij > 0. For almost every .�; !/, there exists an entire
solution of (4) in R2.

In the above results, the conditions on .�; !/ are explicit in terms of the zero set of suitable analytic
functions in the complex plane. In both cases, the solutions are explicit in terms of trigonometric and
Bessel’s functions. This allows us to study the structure of the free boundary of the entire solutions far
away from the origin. It turns out that, at least when ! ¤ 0, also at infinity the free boundary consists in
equidistributed spirals, now of arithmetic type. We refer to Lemma 6.7 and Remark 6.8 for further details.

Remark 1.8. In the particular case ˛ D �D 0, we obtain that the entire solution found in Theorem 1.7
is related to the nodal components of a smooth rotating solution of the pure heat equation. Let ! > 0,
k � 1 be an integer, and let Ik denote the modified Bessel function of the first kind, with parameter k.
We have that the function

U.rei# ; t /D Re
�
eik.#C!t/Ik

�
1
2

p
2!k.1C i/r

��
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Figure 2. Contour lines of the rotating caloric functions in Remark 1.8. Here ! D 1,
and k D 1 and k D 2, respectively. In black the nodal lines: the appearance of arithmetic
spirals for r large is rather clear in the picture.

is an entire, eternal rotating solution of the heat equation

Ut ��U D 0 in R2 �R

having 2k nodal regions, which coincide up to rotations that are a multiple of �=k. The equidistributed
nodal lines admit a straight tangent as r! 0, while they behave like arithmetic spirals of the equation
# D

p
!=.2k/r as r ! C1; see Figure 2. Notice that, as ! ! 0, a suitable renormalization of U

converges to the entire harmonic function Re zk .

Remark 1.9. Notice that, by separation of variables, one may treat boundary value problems for rotating
solutions also on other rotationally invariant domains �, such as annuli or external domains. Of course,
since in these cases 0 …�, this cannot provide spiraling solutions, at least in our sense.

Let us provide an explanation for our construction. When a smooth curve separates two densities of an
element of Srot, at least locally, the gradients of the two densities are proportional across such an interface.
Indeed, by definition of Oui , the function a21u1� a12u2 solves an elliptic equation in a neighborhood of
the interface.

Let us assume, for concreteness, KD 3. In case the nodal structure of .u1; u2; u3/2Srot is the required
one, as depicted in Figure 1, then a suitable linear combination of the components ui satisfies an equation
on B , up to a curve. More precisely, let us define

U D u1�
a12

a21
u2C

a12

a21
�
a23

a32
u3; � D fu1 > 0g\ fu3 > 0g:

It is easy to check that
��U C!x? � rU D �U in B n�;
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while, if 0¤ x0 2 � and ˛ is defined as in (7),

lim
x!x0

u3.x/>0

rU.x/D�e2�˛ lim
x!x0

u1.x/>0

rU.x/:

By composing with a conformal map between B n f0g and its universal covering R� .0;1/, we can
lift U to a solution of a linear equation in the half-plane (see (11) below) having a precise nodal structure.
This connection is analyzed in Section 2.

To prove Theorem 1.1 we reverse the above argument: we start by solving the equation in the covering
by separation of variables in Section 3; next, we show in Section 4 that, under suitable conditions, the
solution has the appropriate nodal properties to be mapped back to the disk. In both these points, we have
to deal with nonresonance/coerciveness conditions, leading to the assumption on �. On the other hand,
the existence of the vector Ns is equivalent to the validity of suitable compatibility conditions, expressed in
terms of the Fourier coefficients of the boundary data. Specifically, when K D 3, Ns is any componentwise
positive solution of the systemZ 2�

0

e�˛#ˆ.#/ sin
�
#

2

�
dx D

Z 2�

0

e�˛#ˆ.#/ cos
�
#

2

�
dx D 0; (10)

where
ˆD s1'1� s2

a12

a21
'2C s3

a12

a21
�
a23

a32
'3:

We analyze the general compatibility conditions in Section 5, concluding the proof of Theorem 1.1.
Finally, Theorems 1.6 and 1.7 are proved in Section 6.

2. An equivalent problem in the half-plane

As we mentioned, the proof of Theorems 1.1, 1.6 and 1.7 is based on the connection between system (4)
and an equation in the half-plane, seen as the universal covering of the punctured disk. In this section we
analyze such a connection.

Let �, ! be real parameters and vD v.x; y/ 2C.R� Œ0;C1// be a classical solution of the equation

��vC!e�2yvx D e
�2y�v; x 2 R; y > 0: (11)

In the following we assume that v satisfies the following properties:

(a) There exists � ¤ 0 such that
v.xC 2�; y/D �v.x; y/ (12)

for any x 2 R, y � 0.

(b) v.x; y/D 0 if and only if .x; y/ 2 S i \S iC1 for some i 2 Z, where the nonempty nodal regions Si
are open, connected, disjoint, unbounded and

S i \f.x; 0/ W x 2 Rg D f.x; 0/ W xi�1 � x � xig; S i \Sj ¤∅ () j � i D�1; 0; 1:

In particular, since v is analytic for y > 0, we obtain that the set S i \S iC1 is actually a locally
analytic curve which accumulates both at .xi ; 0/ and at y D1.

(c) vjSi
2H 1.Si / for every i 2 Z (or, equivalently, their trivial extensions belong to H 1.R� .0;C1//).
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We infer that
S
i S i DR� Œ0;C1/, and that this covering is locally finite. Moreover, by (a), the nodal

set of v is 2�-periodic in the x-direction. Up to a translation, we can assume that x0 D 0, so that in
particular v.0; 0/D 0 and the number K of nodal components, up to periodicity, can be defined as

K D #fi W Œxi�1; xi �� Œ0; 2��g; i.e., SiCK D Si C .2�; 0/; for all i: (13)

Notice that � > 0 implies K even, while � < 0 forces K odd.
Finally, we introduce the following conformal map between the half-plane and the punctured disk:

T WR� .0;C1/! B n f0g; T W .x; y/ 7! x D .e�y cos x; e�y sin x/ (14)

(for more details about this map, see Remarks 2.17 and 2.19 in [Terracini et al. 2019]).
The main result of this section is the following.

Proposition 2.1. Let v 2 C.R� Œ0;C1// be a classical solution of (11) satisfying (a), (b) and (c), and
let K be defined as in (13). Assume that the positive coefficients aij and the parameter ˛ satisfy

KY
iD1

a.i�1/i

ai.i�1/
D .�1/K� (15)

(understanding a01 D aK1, a10 D a1K).
For i D 1; : : : ; K, let us define

ui D .�1/
iC1livjSi

ı T ; with l1 D 1; li D
ai.i�1/

a.i�1/i
� li�1 (16)

(trivially extended in the whole B). Then .u1; : : : ; uK/ 2 Srot. Moreover, with respect to this K-tuple, the
origin is the only point with higher multiplicity, with m.0/DK.

Vice versa, if .u1; : : : ; uK/ 2 Srot has the origin as its only singular point, then there exists v such that
the first part of the proposition holds.

Remark 2.2. In the case that the asymptotic behavior of the nodal zones Si is known as y ! C1,
then by composition with T one can deduce the local description of the free boundary associated to
.u1; : : : ; uK/ near 0.

Proof. By condition (a) the functions ui are well defined, by (b) they satisfy ui �uj � 0 as long as j ¤ i ,
and by (c) they belong to H 1.B/ (recall that T is a conformal map). With direct computations one can
check that

��ui C!x? � rui D �ui in !i WD fui > 0g: (17)

Analogously, using the definition of the coefficients li (see (16)), we have that

��

�
ui�1�

a.i�1/i

ai.i�1/
ui

�
C!x? � r

�
ui�1�

a.i�1/i

ai.i�1/
ui

�
D �

�
ui�1�

a.i�1/i

ai.i�1/
ui

�
(18)

in the interior of !i�1 [ !i , i D 1; : : : ; K (in case i D 1 we keep the understanding i � 1 D K, and
the validity of (18) follows by (15)). Notice that, when restricted to !i�1[!i , the function in (18) is a
multiple of both Oui�1 and Oui .
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We have to show the validity of the inequalitiesZ
B

rui � r'C Œ!x? � rui ��ui �' � 0; (19)Z
B

r Oui � r'C Œ!x? � r Oui �� Oui �' � 0 (20)

for every Lipschitz, compactly supported, nonnegative '.
First, let us consider any ' such that ' � 0 in B".0/. Then (19) follows by integration by parts, sinceZ
B

rui � r'C Œ!x? � rui ��ui �' D

Z
!inB"

rui � r'C Œ!x? � rui ��ui �' D

Z
@!i

@�ui' � 0;

where we used the regularity of @!i away from 0, the equation for ui and the fact that @�ui � 0 on @!i .
On the other hand, to prove (20), since ' � 0 in B".0/, we can use a partition of unity argument and
assume that supp.'/ intersects at most two adjacent nodal regions. In case none of them is !i , then
Oui D �c1uj � c2ujC1, with ci > 0, and (20) follows by applying (19) twice, with i D j; j C 1; if
supp.'/� !i�1[!i nB" then (18) yieldsZ

B

r Oui � r'C Œ!x? � r Oui ��ui �' D

Z
!i�1\!inB"

r Oui � r'C Œ!x? � r Oui �� Oui �' D 0;

and the same holds true if supp.'/� !i [!iC1 nB".
Finally, let us consider any '. We show how to prove (19); the proof of (20) is analogous. For any

" > 0 small, we define the function

�.x/D

8<:
0; x 2 B";

.jxj � "/="; x 2 B2" nB";

1; x 2 B nB2":

Then '�D 0 in B", and by the previous partZ
B

.rui � r'/�C

Z
B

.rui � r�/'C

Z
B

Œ!x? � rui ��ui ��' � 0:

Since ' is Lipschitz, we haveˇ̌̌̌Z
B

.rui � r�/'

ˇ̌̌̌
�
1

"

Z
B2"nB"

jrui j' �
1

"
kuikH1.B2"/

k'kL2.B2"/
� CkuikH1.B2"/

k'kL1 :

Thus we find the estimateZ
B

.rui � r'/�C

Z
B

Œ!x? � rui ��ui ��' � CkuikH1.B2"/
k'kL1 :

Taking the limit as "! 0, since � converges monotonically to 1, we conclude thatZ
B

rui � r'C Œ!x? � rui ��ui �' � 0;

concluding the proof of the first assertion.



558 ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

The second part follows by defining

v ı T D
KX
iD1

.�1/iC1

li
ui ; (21)

and then deriving v by a lifting argument. We refer to [Terracini et al. 2019, Section 2] for further
details. �

3. Solutions in the half-plane

Let �; ˛; ! 2 R. Given the trace

ˆW Œ0; 2��! R; ˆ.0/Dˆ.2�/D 0;

we look for solutions v of the following problem in the half-plane:8<:
��vC!e�2yvx D e

�2y�v; x 2 R; y > 0;

v.xC 2�; y/D e2�˛v.x; y/; x 2 R; y � 0;

v.x; 0/Dˆ.x/; 0� x � 2�:

(22)

Notice that we are considering (11) together with condition (12) in the case � D e2�˛ > 0 (recall
definition (7) and the relation (15)). As we noticed, this involves an even number of nodal zones in the
period. One can easily modify our arguments to deal with an odd one, i.e., with � < 0, for instance with
the change of variables .x; y/ 7!

�
1
2
x; 1
2
y
�
, � 7! �2. In a completely equivalent way, one can work

with 2�-periodicity and take ˛ D 1
2�

ln j� jC i
2
2 C.

To solve (22), we first transform it into a periodic problem, and then use separation of variables to
write the solution in Fourier series. To this aim, we notice that v solves (22) if and only if

w.x; y/ WD e�˛xv.x; y/

solves 8<:
��wC .!e�2y � 2˛/wxC Œ.˛! ��/e

�2y �˛2�w D 0; x 2 R; y > 0;

w.xC 2�; y/D w.x; y/; x 2 R; y � 0;

w.x; 0/D e�˛xˆ.x/; 0� x � 2�:

(23)

Of course, if ˛ D 0 then v and w coincide. Either way, with a little abuse of notation, we can extend ˆ
to R in such a way that e�˛xˆ.x/ is 2�-periodic. At least formally we can expand w in Fourier series
and write

w.x; y/D
X
k2Z

Wk.y/e
ikx :

Plugging this expression into (23), we obtain that the coefficients Wk W RC! C, k 2 Z, must solve the
ordinary differential equation

W 00k .y/D Œ.k� i˛/
2
C .!˛��C i!k/e�2y �Wk.y/; y > 0: (24)

We can solve boundary value problems associated with (24) by using the Fredholm alternative and the
Lax–Milgram theorem, settled in complex Hilbert spaces. We are looking for solutions of (23) that change
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sign as y!C1. As we will see in Lemma 3.9, this requires that the term corresponding to k D 0 in the
expansion should not be present. For this reason we consider k ¤ 0 from now on.

Lemma 3.1. For any k 2 Z n f0g, ˛ 2 R, there exists a sequence f�ngn2N � C, with j�nj ! C1 as
n!C1, such that the problem�

X 00
k
.y/D Œ.k� i˛/2C .!˛��C i!k/e�2y �Xk.y/; y > 0;

Xk.0/D 1; Xk 2H
1.RCIC/;

(25)

admits a unique solution if and only if

!˛��C i!k … f�ngn2N; (26)

while no solution exists in the complementary case.

Proof. We shall consider the case k � 1, as the case k � �1 follows by the same arguments, up to the
change of sign

.˛; !; �; k/ 7! .�˛;�!;�;�k/:

In particular, one can verify that X�k.y/DXk.y/ for any k 2 Z and y � 0 (in case one of them exists).
We proceed through several steps.

Step 1. Weak formulation of the problem. Letting Xk D U CU0, where U0 WD e�.k�i˛/y , we are led to
find, if it exists, a function U 2H 1

0 .R
CIC/, solution of

�U 00C Œ.k� i˛/2C .!˛��C i!k/e�2y �U D�.!˛��C i!k/e�2ye�.k�i˛/y ; y > 0:

We settle the problem in the space

H DH 1
0 .R
C
IC/; kuk2H D

Z 1
0

jU 0j2CjU j2:

To proceed, we introduce the sesquilinear forms aR, aI as

aR.U; V /D

Z 1
0

U 0V 0C Œ.k2�˛2/C .!˛��/e�2y �UV ; aI .U; V /D

Z 1
0

.�2˛kC!ke�2y/UV ;

and the antilinear form l as

l.V /D�.!˛��C i!k/

Z 1
0

e�2yU0V D�.!˛��C i!k/

Z 1
0

e�.kC2�i˛/yV : (27)

In this way, we are reduced to solve the following variational problem: finding U 2H such that

a.U; V /D aR.U; V /C iaI .U; V /D l.V / for all V 2H: (28)

Notice that both a and l are continuous: indeed, since je�2y j � 1 for y � 0, it is easy to see that

ja.U; V /j � .k2C˛2C
p
.!˛��/2C .!k/2/kukHkvkH :
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Similarly, for l we obtain

jl.V /j � j.!˛��C i!k/j

Z 1
0

e�.kC2/y jV j �

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jV j2
�1=2

:

For future purposes we notice that, for every U 2 H , both aR.U; U / and aI .U; U / are real numbers:
indeed, aR.U; U / and aI .U; U / are, respectively, the real and imaginary part of a.U;U /. We can exploit
the Cauchy–Schwarz inequality (for real two-dimensional vectors) to find that

ja.U;U /j D sup
K2R

aR.U; U /CKaI .U; U /
p
1CK2

�
k

p
˛2C k2

�
aR.U; U /�

˛

k
aI .U; U /

�
D

k
p
˛2C k2

Z 1
0

ŒjU 0j2C .k2C˛2/jU j2��
k�

p
˛2C k2

Z 1
0

e�2y jU j2:

(29)

In order to prove existence and uniqueness of a solution U , we shall make use of the classical Fredholm
alternative theorem. In particular, we shall find that (28) admits a unique solution U 2H 1

0 .R
CIC/ if

and only if 0 is not an eigenvalue of a (more precisely, and equivalently, 0 is not an eigenvalue of the
conjugate transpose sesquilinear form a�).

Step 2. A related eigenvalue problem. To proceed, we introduce the (adjoint) eigenvalue problem: finding
� 2 C and V 2H n f0g such thatZ 1

0

ŒU 0V 0C .k� i˛/2UV �C�

Z 1
0

e�2yUV D 0 for all U 2H:

Defining the weighted space

LD

�
U 2 L1loc.R

C
IC/ W kU k2L D

Z 1
0

e�2y jU j2 <C1

�
;

we have that H �LDL� �H� is a Hilbert triplet, with H compactly embedded in L; see Lemma A.1.
Then standard spectral theory (see, e.g., [Kato 1966, Chapter 3, Theorem 6.26]) yields the existence of a
sequence of eigenvalues f�ngn2N � C, with j�nj !C1, and it is straightforward to show that V ¤ 0
satisfies

a.U; V /D 0 for all U 2H ()
!˛��C i!k D �n

and V D Vn is an associated eigenfunction.
(30)

Notice that each �n is a simple eigenvalue by uniqueness of the Cauchy problem for ODEs.

Step 3. Application of the Babuška–Lax–Milgram theorem. To conclude the invertible case, we show
that, if !˛ � � C i!k ¤ �n for every n, then there exists a unique solution to (28). To this aim,
we apply a generalization of the Lax–Milgram theorem due to Babuška [1971, Theorem 2.1] (with
H1 DH2 DH ). After the previous steps, in order to apply such a result to (28), we only need to show
that, if !˛��C i!k ¤ �n for every n, then the following inf-sup conditions hold:

inf
kV kHD1

sup
kU kHD1

ja.U; V /j � C2 > 0; inf
kU kHD1

sup
kV kHD1

ja.U; V /j � C3 > 0
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for suitable constants C2, C3. We prove the first inequality; the second is proved analogously. Assume
by contradiction that the sequence fVngn satisfies

kVnkH D 1; ja.U; Vn/j �
1

n
kU kH for all U 2H:

In particular, as n!C1, a.Vn; Vn/! 0. Moreover, up to subsequences, Vn converges to V1, both
weakly in H and strongly in L (by compact embedding). Thus a.U; V1/D 0 for every U 2H . Since
!˛��C i!k ¤ �n for every n and recalling (30), we deduce that V1 � 0. Since k2 � 1, (29) yields

o.1/D ja.Vn; Vn/j �
k

p
˛2C k2

kVnk
2
H �

k�
p
˛2C k2

kVnk
2
L D

k
p
˛2C k2

C o.1/

as n!1, a contradiction.

Step 4. Nonexistence in the resonant case. Finally, assume that !˛��C i!k D �n for some n, and let
Vn 6� 0 be an associated eigenfunction of the adjoint problem

a.U; Vn/D

Z 1
0

ŒU 0V 0nC .k� i˛/
2UV n�C�n

Z 1
0

e�2yUV n D 0 for all U 2H:

This forces

�V 00nC .k� i˛/
2V nC�ne

�2yV n D 0 on .0;1/I (31)

in particular, Vn 2 H 2.0;C1/, and thus V 0n.y/! 0 as y ! C1. Moreover, by uniqueness of the
Cauchy problem, V 0n.0/¤ 0.

In the case we are considering, (28) can be rewritten as

a.U; V /D .��nU0; V /L for all V 2H;

where U0 D e�.k�i˛/y . By Fredholm’s alternative, in this case (28) is solvable if and only if the
compatibility condition

.��nU0; Vn/L D 0

holds true. On the other hand, using (31), we have

.��nU0; Vn/L D��n

Z 1
0

e�2yU0V n D U.0/V
0
n.0/C

Z 1
0

ŒU 00V
0
nC .k� i˛/

2U0V n�D V
0
n.0/¤ 0;

which concludes the proof. �

The resonance set in the previous lemma can be characterized in terms of the zero set of the following
function ‚� , depending on the complex parameter �:

‚�.z/D

1X
nD0

1

nŠ �.nC 1C �/

�
z

4

�n
: (32)

Notice that, for any � 2 C, ‚� is analytic on C (recall that � has no zeros, but only simple poles at each
nonpositive integer �k: in such a case, we understand 1=�.�k/D 0). As a matter of fact, ‚� is related
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to I� , the modified Bessel function of the first kind, with parameter � 2 C, by the formula

I�.z/D
�
z

2

��
‚�.z

2/ (33)

(in turn, I�.z/D e�i��=2J�.iz/, where J� is the usual Bessel function of the first kind). Notice that, in
the case � 62 Z, I� is a multivalued function because of the complex exponentiation z� . Nonetheless, the
zero set of (any determination of) I� coincides with the complex square root of the zero set of ‚� , with
the exception of 0.

Lemma 3.2. For any k 2 Z n f0g, ˛ 2 R, let f�ngn2N � C denote the sequence defined in Lemma 3.1.
Then

f�ngn2N D fz 2 C n f0g W‚sign.k/.k�i˛/.z/D 0g;

where ‚� is defined in (32) for every � 2 C.
Moreover, whenever � WD !˛��C i!k … f�ngn2N, the unique solution of (25) is

Xk.y/D
‚�.�e

�2y/

‚�.�/
e��y

(Xk.y/D e��y in the case �D 0), where � D sign.k/.k� i˛/ whenever k ¤ 0.

Equivalently, we could write

Xk.y/D
I�.
p
�e�y/

I�.
p
�/

;

and such an identity is not ambiguous as long as we choose the same determinations both in the numerator
and in the denominator.

Proof. Again, we treat the case k � 1; the case k � �1 follows with minor changes. With the above
notation,

� D k� i˛; �D !˛��C i!k;

the second-order linear ODE in (25) is written as

x00.y/D Œ�2C�e�2y �x.y/: (34)

We assume �¤ 0; the complementary case is trivial. Let us consider the functions x˙�.y/ defined as

x˙�.y/D‚˙�.�e
�2y/e��y D

X
n�0

c˙�;ne
.�2n��/y ; where c˙�;n D

1

nŠ �.nC 1˙ �/

�
�

4

�n
(again, we understand c˙�;nD 0 whenever �.nC1˙�/2N). We notice that 4n.n˙�/c˙�;nD�c˙�;n�1.
Then

x00˙�.y/D
X
n�0

.�2n� �/2c˙�;ne
.�2n��/y

D

X
n�0

�2c˙�;ne
.�2n��/y

C

X
n�0

4n.n˙ �/c˙�;ne
.�2n��/y

D �2x˙�.y/C�
X
n�1

c˙�;n�1e
.�2n��/y

D Œ�2C�e�2y �x˙�.y/I

that is, both x˙� solve the second-order linear ODE (34).
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Let us first assume that ˛¤ 0. Then �.nC1˙�/ 62N for every n, and we obtain that ‚˙�.�e�2y/D
1=�.1˙ �/C o.1/; that is,

x˙�.y/D
1

�.1˙ �/
e��y C o.e��y/ as y!C1:

Then x˙� are linearly independent, and any solution of (34) is of the form

x.y/D CCx�.y/CC�x��.y/; C˙ 2 C:

Since � D k � i˛ and k � 1, we have that x 2H 1.0;C1/ if and only if C� D 0. As a consequence,
(25) is (uniquely) solvable if and only if x�.0/D‚�.�/¤ 0, and the lemma follows.

On the other hand, let ˛ D 0 (and �¤ 0). In this case � D k � 1, and

c�k;nCk D
1

.nC k/Š nŠ

�
�

4

�nCk
D

�
�

4

�k
ck;n

for every n� 0, therefore the functions x˙k are no longer linearly independent. By differentiating (34)
with respect to �, one can easily see that a second independent solution of (34) can be obtained as

Qxk D
h�
�

4

�k @x�
@�
�
@x��
@�

i
�Dk

;

mimicking the procedure that leads to the (modified) Bessel functions of the second kind. Since�.nC1�k/
has a simple pole at nD 0, we have

lim
�!k

@c��;0

@�
D .�1/k.k� 1/Š and Qxk.y/D .�1/

k.k� 1/Š eky C o.eky/ as y!C1

(see [Erdélyi et al. 1953, Section 7.2.5, p. 9] for more details). Thus also in this case Qxk …H 1.0;C1/,
and the lemma follows. �

Corollary 3.3. Let Xk denote the solution of (25). Then, for some C ¤ 0,

Xk.y/D Ce
� sign.k/.k�i˛/y

CO.e�.jkjC2/y/ as y!C1:

Remark 3.4. As a byproduct of the proof of Lemma 3.2, we have that the eigenvalues �n are all simple
in H 1

0 .R
CIC/. Indeed, the general solution of the corresponding eigenequation is a two-dimensional

vector space of complex-valued functions, but only a one-dimensional subspace consists of H 1 functions
of the form

C‚sign.k/.k�i˛/.�ne
�2y/e� sign.k/.k�i˛/y ; C 2 C:

In view of writing w as a series in terms of the solutions Xk , we need to estimate the asymptotic
behaviors as k!1 of their L2 and H 1 norms.

Lemma 3.5. Let ˛, �, ! be fixed in such a way that (26) holds for every k ¤ 0. Then Xk satisfies�Z 1
0

jXkj
2

�1=2
�

Cp
jkj
;

�Z 1
0

jX 0kj
2

�1=2
� C

p
jkj and kXkkL1.0;C1/ �

p
2C; (35)

where C depends only on ˛, �, !.
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Proof. As usual, for concreteness, we assume k � 1. As in the proof of Lemma 3.1 we write Xk D
UCe�.k�i˛/y . In order to prove (35), we distinguish between two cases, corresponding to the instances k
small and k large. Indeed, for any fixed Nk, which we will choose later in terms of ˛, �, !, the estimate (35)
is true for k < Nk and a suitable constant C . Next, for k � Nk, we estimate the norms of U using the identity

ja.U;U /j D jl.U /j:

Recalling (27), we have

jl.U /j � j!˛��C i!kj

Z 1
0

je�.kC2/y jjU j �

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jU j2
�1=2

:

Using (29), we obtain

k
p
k2C˛2

Z 1
0

ŒjU 0j2C .k2C˛2��C/jU j2��

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jU j2
�1=2

:

Then �Z 1
0

jU j2
�1=2
�

p
k2C˛2

k.k2C˛2��C/
�

p
.!˛��/2C .!k/2
p
2.kC 2/

�
j!j

k3=2
;

whence �Z 1
0

jU 0j2
�1=2
�

�p
k2C˛2

k

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jU j2
��1=2

�
j!j3=2

k5=4

for k � Nk sufficiently large (depending on !, �, ˛).
Coming back to Xk D U C e�.k�i˛/y , we finally obtain�Z 1

0

jXkj
2

�1=2
�

�Z 1
0

jU j2
�1=2
C

�Z 1
0

e�2ky
�1=2
�
j!j

k3=2
C

1
p
2k
�

1
p
k

and�Z 1
0

jX 0kj
2

�1=2
�

�Z 1
0

jU 0j2
�1=2
C

�Z 1
0

jk� i˛j2e�2ky
�1=2
�
j!j3=2

k5=4
C

r
k2C˛2

2k
�
p
k

for k sufficiently large (depending on !, �, ˛), concluding the H 1 estimates. Finally, by Corollary 3.3,
for any y > 0,

Xk.y/
2
D�

Z 1
y

2Xk.t/X
0
k.t/ dt � 2

�Z 1
0

jXkj
2

�1=2�Z 1
0

jX 0kj
2

�1=2
� 2C 2;

and the last estimate follows. �

Next we provide explicit sufficient conditions for the validity of condition (26).

Lemma 3.6. A sufficient condition for (26) to hold true is

sup
n
.j�;1/

2
�
!

2˛
�2 W � > 0

o
> ��

!

2˛
.k2C˛2/; (36)

where j�;1 denotes the first (positive) zero of the standard Bessel function of the first kind of order � > 0.
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This is the case, for instance, if

either � < .j0;1C
p
k2C˛2/2; or !

˛
< 2: (37)

In particular, for any choice of ˛, !, �, if jkj is sufficiently large then (26) holds.

Proof. Using the notation introduced in the proof of Lemma 3.1, we are going to show that, under the
present assumptions, the sesquilinear form a is coercive. By the first estimate in (29), this follows once
we find K 2 R such that the quadratic form (with real coefficients)

aR.U; U /C aI .U; U /K D

Z 1
0

jU 0j2C .k2�˛2� 2˛kK/jU j2C ..!˛��/C!kK/e�2y jU j2

is strictly positive. To this aim, it is not difficult to check that we have to ask that k2�˛2� 2˛kK > 0.
For this reason, it is convenient to introduce the parameters � > 0 and b D b.�/ such that

K D
k2�˛2��2

2˛k
; b D�..!˛��/C!kK/D �C

!

2˛
.�2� .k2C˛2//:

In this way, we are reduced to finding � > 0 such that the quadratic form

U 7!

Z 1
0

jU 0j2C .�2� be�2y/jU j2

is strictly positive. This quadratic form can be studied by standard arguments; we postpone the details to
Lemma A.2 in the Appendix. We obtain that it is coercive if and only if

b D �C
!

2˛
.�2� .k2C˛2// < .j�;1/

2;

and (36) follows. In order to make this condition more explicit, we exploit the fact that

j�;1 � j0;1C � for every � � 0

(see [McCann and Love 1982]). Therefore, a stronger condition than (36) is

�C
!

2˛
.�2� .k2C˛2// < .j0;1C �/

2 for some � > 0:

The conditions in (37) follow by taking either �2 D k2C˛2, or � !C1, respectively. �

Corollary 3.7. Let ˛, �, ! be fixed, with
� < .j0;1C 1/

2: (38)
Then (26) holds true for every k ¤ 0.

We are ready to state and prove the main result of this section. For any ˆ 2 Lip.Œ0; 2��/, we write the
Fourier coefficients of e�˛xˆ.x/ as

�k D
1

2�

Z 2�

0

e�.ikC˛/xˆ.x/ dx; k 2 Z:

Proposition 3.8. Let ˛, �, ! be fixed and ˆ 2 Lip.Œ0; 2��/. Let us assume that

� � < .j0;1C 1/
2 ' 3:42,

� ˆ.0/Dˆ.2�/D 0 and �0 D
R 2�
0 e�˛xˆ.x/ dx D 0.
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Then the functions

w.x; y/D
X

k2Znf0g

�kXk.y/e
ikx and v.x; y/D e˛xw.x; y/; (39)

where the functions Xk are as in Lemmas 3.1 and 3.2, satisfy:

(1) w 2H 1.f.x; y/ 2 R�RC W a < xC ly < bg/ for any l 2 R and a < b, and it solves (23).

(2) v 2H 1.f.x; y/ 2 R�RC W a < xC ly < bg/ for any l such that l˛ � 0 and for every a < b, and it
solves (22).

(3) Both v and w are analytic in R�RC and C 0;˛ up to y D 0 for every ˛ < 1.

Proof of Proposition 3.8. In view of Lemma 3.1, we have that all the terms in the series in (39) are smooth
and satisfy the differential equations in (23). We now show that the series converges in H 1, ensuring
that w also satisfies the corresponding equation. We start by observing that, by construction, the family
f.x; y/ 7! Xk.y/e

ikxgk2Znf0g is orthogonal in H 1.S/, S D .0; 2�/�RC, and, in particular, for any
k; h 2 Z n f0g and k ¤ h, we haveZ

S

Xk.y/e
ikx
� .Xh.y/e

ihx/D 0;

Z
S

X 0k.y/e
ikx
� .X 0

h
.y/eihx/D 0

and, recalling (35),Z
S

jXk.y/e
ikx
j
2
�
C

jkj
;

Z
S

jX 0k.y/e
ikx
j
2
� C jkj;

Z
S

jXk.y/.e
ikx/0j2 � C jkj:

On the other hand, since x 7! e�˛xˆ.x/ can be extended to a 2�-periodic Lipschitz continuous function,
it is an H 1-function on S1, and its Fourier coefficients �k satisfyX

k2Z

k2j�kj
2 <C1

(recall that �0 D 0). Combining the above inequalities, we inferX
k¤0

Wk.y/e
ikx

2
H1.S/

� C
X
k�1

.j�kj
2
Cj��kj

2/

�
1

jkj
C jkj

�
<C1:

We conclude that the series defining w converges inH 1.S/, making w a weak solution of (23). Since w is
periodic in the x-direction, we deduce that it belongs toH 1..a; b/�RC/ for every a< b. Exploiting once
again the periodicity in x ofw, we can readily infer thatw2H 1.f.x; y/2R�RC Wa<xCly <bg/ for any
l 2R and a < b. Moreover, by elliptic regularity, w is analytic in R�RC and Hölder continuous up to the
boundary. Analogous conclusions for the function v can be drawn from the fact that v.x; y/D e˛xw.x; y/,
the only difference being that we need to exploit the assumption l˛� 0 in order to estimate the exponential
factor. �

We conclude this section by showing that the Fourier expansions of the functions w and v can be
exploited to give a description of their nodal sets for y large.
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Lemma 3.9. We consider again the assumptions of Proposition 3.8. Let n� 1 be the largest integer such
that

�k D 0 for all jkj< n:

Then there exists y� > 0 and 2n disjoint simple curves �1; : : : ; �2n such that

f.x; y/ 2 R� .y�;C1/ W w.x; y/D 0.D v.x; y//g D
[

jD1;:::;2n
h2Z

�j C .2�h; 0/: (40)

The curves �j are asymptotic to evenly spaced parallel lines: there exists ˇ 2 R such that

.x; y/ 2 �j () ˛yCnx D ˇC�j C oy.1/ as y!C1:

Proof. By Lemma 3.5, we have that

sup
.x;y/2R�RC

jw.x; y/j � sup
y>0

X
k�n

j�kjjXk.y/jC j��kjjX�k.y/j � C
X
k�n

.j�kjC j��kj/ <C1;

which implies that the series converges also uniformly in R�RC. Moreover, we can extract the first term
of the series and see that

jw.x; y/��nXn.y/e
inx
���nX�n.y/e

�inx
j � C

X
k�nC1

.j�kjC j��kj/e
�ky
� Ce�.nC1/y

(see Corollary 3.3). This, in turn, implies that

w.x; y/D �nXn.y/e
inx
C��nX�n.y/e

�inx
CO.e�.nC1/y/ (41)

uniformly in x 2 R.
We claim that the nodal lines of the functions w (and of v) align asymptotically with those of the

function

.x; y/ 7! An.x; y/D �nXn.y/e
inx
C��nX�n.y/e

�inx

D �nCne
�.n�i˛/yCinx

C��nC�ne
.�n�i˛/y�inx

CO.e�.nC2/y/

D e�ny.an cos.˛yCnx/C bn sin.˛yCnx/CO.e�2y//

D e�ny.
p
a2nC b

2
n sin.˛yCnx�ˇ/CO.e�2y//;

where the coefficients an, bn and ˇ are real numbers, a2n C b
2
n ¤ 0 by assumption, and sinˇ D

�an=
p
a2nC b

2
n. Indeed, recalling (41), we have that, as y!C1,

enyw.x; y/D
p
a2nC b

2
n sin.˛yCnx�ˇ/CO.e�y/:

Analogously, one can show that also the series of the derivatives converges uniformly in x 2 R and that,
as y!C1,

enywx.x; y/D n
p
a2nC b

2
n cos.˛yCnx�ˇ/CO.e�y/:
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By the implicit function theorem, there exists y� > 0 large enough that the nodal set of the function w in
R� .y�;C1/ is a countable union of graphs with respect to the y variable, each one asymptotic to

˛yCnx D ˇC h� for some h 2 Z:

We choose �j , j D 1; : : : ; 2n, as 2n consecutive curves in this family of graphs by taking hD j . �

Remark 3.10. If the number of nodal zones for y small is different from 2n, then the nodal lines of v
must intersect. As a consequence, condition (b) in Section 2 fails for such a v, which cannot correspond
to any element of Srot via Proposition 2.1.

4. Nodal sets in the half-plane

In this section, we study in detail the nodal structure of the function v constructed in Proposition 3.8. For
this purpose, we let

N D f.x; y/ 2 R�RC W v.x; y/D 0g

be the nodal set of v, and we call a nodal component of v any connected component of R�RC nN .
We state the main result of this section. Its assumptions should be compared to those of Proposition 3.8,

in particular, we point out that they imply the existence of a unique solution v of (22). We recall that, for
ˆ 2 Lip.Œ0; 2��/, we write the Fourier coefficients of e�˛xˆ.x/ as

�k D
1

2�

Z 2�

0

e�.ikC˛/xˆ.x/ dx; k 2 Z:

Proposition 4.1. Let ˛, �, ! be fixed real numbers, ˆ 2 Lip.Œ0; 2��/ and n� 1 be a given integer. Let
us assume that

� the function ˆ changes sign 2n times in Œ0; 2��, more precisely, there exist

x1 D 0 < x2 < � � �< x2nC1 D 2�

such that

fx 2 .0; 2�/ Wˆ.x/ > 0gD

n�1[
kD0

.x2kC1; x2kC2/ and fx 2 .0; 2�/ Wˆ.x/< 0gD

n�1[
kD0

.x2kC2; x2kC3/I

� the coefficients of the equation satisfy � < �2;

� we have the compatibility condition

supfjkj W �k D 0g D n� 1� 0: (42)

Moreover, let v denote the solution of (23), whose existence is guaranteed by Proposition 3.8.
Then there exist 2n connected, open sets S1; : : : ; S2n � R�RC such that

� extending the definition of Sk , by periodicity, as SkC2n D SkC .2�; 0/, k 2 Z, we have

Sk \Sh D∅ for every k ¤ h and Sk \Sh ¤∅ () k� hD�1; 0; 1I
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� any nodal component of v is one of the Sk:

R�RC nN D
[
k2Z

SkI

� each of them touches the x-axis in a single (connected) interval:

Sk \f.x; 0/g D Œxk; xkC1� for any k D 1; : : : ; 2nI

� they are asymptotic to a family of evenly spaced strips: there exists ˇ 2 R such that

Sk � f.x; y/ W ˇC�kC oy.1/ < ˛yCnx < ˇC�.kC 1/C oy.1/g as y!C1:

The remaining part of this section is devoted to the proof of Proposition 4.1. We shall prove it in a
series of intermediate steps. First we briefly investigate the local structure of the nodal set N .

Lemma 4.2. Under the above notation,

� C D f.x; y/ 2 R�RC W v.x; y/D 0;rv.x; y/D 0g is discrete in R�RC;

� N n C is the union of countably many analytic curves;

� If ˆ. Nx/¤ 0 and l 2 R, then the set

N \f.x; y/ W xC ly D Nxg

is discrete, and it does not accumulate at fy D 0g.

We point out that, for the moment, it may still be that C accumulates at some point of the discrete set
f.x; 0/ Wˆ.x/D 0g.

Proof. We recall that v satisfies (22), and v is analytic in R�RC and continuous up to the boundary
f.x; y/ W y D 0g (see Proposition 3.8). By well-known results of Hartman and Wintner [1953], the set C is
discrete in R�RC.

As a consequence, by the analytic implicit function theorem, N n C is the disjoint union of countably
many analytic curves which are either unbounded, accumulate at some point of f.x; 0/ Wˆ.x/D 0g, or
meet each other at points of C.

Finally, let ' W Œ0;C1/! R be defined as

'.y/D v. Nx� ly; y/:

Then ' is real analytic for y > 0, and continuous up to y D 0 and '.0/¤ 0. We deduce that its zero set
is discrete. Since

N \f.x; y/ W xC ly D Nxg � f. Nx� ly; y/ W '.y/D 0g;
the lemma follows. �

Let A be any nodal component of v. In the following, for any h 2 Z, we write

Ah D A� .2h�; 0/:

Since v is 2�-periodic in x, Ah is itself a nodal component of v. As a consequence, either A and Ah
coincide, or they are disjoint. We prove that this property is independent of h¤ 0.
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Lemma 4.3. Let A be any nodal component of v. Then

� either A� Ah for some h 2 Z, in which case A� Ak for every k 2 Z,

� or A\Ah D∅ for some h 2 Z, in which case A\Ak D∅ for every k ¤ 0, and

sup
y>0

jfx W .x; y/ 2 Agj � 2�;

where j � j denotes the one-dimensional Lebesgue measure.

Proof. We start by examining the first alternative. Let . Nx; Ny/ 2 A � Ah, with h � 1, so that we also
have . NxC 2h�; Ny/ 2 A. By connectedness, there exists a curve  � A joining . Nx; Ny/ and . NxC 2h�; Ny/.
Since 2h�=.2�/ D h 2 N, by the universal chord theorem (see, e.g., [Oxtoby 1972]), there exists
.x1; y1/; .x2; y2/ 2  such that .x2; y2/ D .x1; y1/C .2�; 0/. Thus A\A1 3 .x2; y2/, which implies
A� Ak for every k 2 Z.

Conversely, let us assume that A\Ak D∅ for every k ¤ 0. Then, for every y > 0,

fx W .x; y/ 2 Ag D
[
k2Z

fx 2 Œ2k�; 2.kC 1/�/ W .x; y/ 2 Ag D
[
k2Z

fx 2 Œ0; 2�/ W .x; y/ 2 Akg;

and such a union is disjoint by assumption. We deduce that jfx W .x; y/ 2 Agj � jŒ0; 2�/j. �

To proceed, we need the following result, which is a consequence of a Poincaré-type inequality (see
Lemma A.3).

Lemma 4.4. Let A be any nodal component of v and assume that (� < �2 and)

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

Then vjA …H 1
0 .A/.

Proof. By contradiction, let A be any nodal component of v and assume that vjA 2H 1
0 .A/ and

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

We will show that this necessarily implies �� �2.
By assumption, the function v 2H 1.A/ satisfies�

��vC!e�2yvx D e
�2y�v in A;

v D 0 on @A:

Multiplying by v and integrating by parts over A yields the identityZ
A

jrvj2 D �

Z
A

e�2yv2I

indeed,
!

2

Z
A

e�2y.v2/x D 0

for every v 2H 1
0 .A/ by density of the test functions.
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We argue by Steiner symmetrization with respect to the y-axis; see, e.g., [Kawohl 1985]. We stress
that the weight .x; y/ 7! e�2y is independent of the x variable. Let A� � .��; �/�RC be defined as

A� WD
˚
.x; y/ W y > 0; jxj< 1

2
jfx W .x; y/ 2 Agj

	
and v� 2H 1

0 .A
�/�H 1

0 ..��; �/�RC/ be the Steiner symmetrization of the function vjA. By well-known
properties of the Steiner symmetrization, we obtainZ

.��;�/�RC
jrv�j2 � �

Z
.��;�/�RC

e�2y.v�/2:

Since v and v� are not identically zero, by Lemma A.3, we obtain

�� .j1=2;1/
2
D �2: �

Lemma 4.5. Let y� be defined as in Lemma 3.9, and let A denote any nodal component of v such that
A\f.x; y/ W y > y�g ¤∅. Then

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

Proof. Without loss of generality we can assume that v > 0 in A and, by Lemma 3.9, there exists a
half-line ` WD f.x; y/ W y � y�; ˛y C nx D qg such that ` � A. Let us assume by contradiction that
supy>0 jfx W .x; y/ 2 Agj> 2� . By Lemma 4.3, we deduce that A is 2�-periodic in the x-direction, so
that also `C .2�; 0/� A. By connectedness, we can find a simple curve  such that

 � A;  \f.x; y/ W y � y�g D `[ `C .2�; 0/ and  \f.x; y/ W y � y�g is compact.

As a consequence, R�RC n  DO0[O1, where each Oi is open and connected and only one of them,
say O1, is such that

O1 � f.x; y
�/ W x� < x < x�C 2�g ¤∅; where ˛y�Cnx� D q:

Since  \fy � y�g is compact, we deduce that there exist q1, q2 and y0 > 0 such that

O1 � f.x; y/ W y � y0; q1 < ˛yCnx < q2g: (43)

Now, let B ¤ A be any other nodal component of v satisfying B � O1 (B exists as v changes sign
in O1, by Lemma 3.9). Then B cannot be periodic in the x-direction, and hence, by Lemma 4.3,
supy>0 jfx W .x; y/ 2 Bgj � 2� . By Proposition 3.8 and (43), we have that vjB 2 H 1

0 .B/. Thus
Lemma 4.4 applies, providing a contradiction since we are assuming � < �2. �

In the same spirit, we show the following.

Lemma 4.6. Let y� be defined as in Lemma 3.9, and let A denote any nodal component of v such that
A\f.x; y/ W y > y�g ¤∅. Then A\f.x; y/ W y > y�g is connected.

Proof. The proof follows the lines of that of Lemma 4.5. Assume by contradiction thatA\f.x; y/ Wy>y�g
contains at least two connected components, say A1 and A2. Then, by Lemma 3.9, we can find half-lines
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j̀ WD f.x; y/ W y � y
�; ˛yCnx D qj g �Aj and a simple curve  �A which joins such half lines. Then

R�RC n  is the disjoint union of O0 and O1, and one can find a contradiction as above. �

Motivated by Lemma 4.6, we introduce the following notation.

Definition 4.7. Let y� > 0 and ˇ 2 R be fixed as in Lemma 3.9. We denote with Sk , k 2 Z, the nodal
component of v asymptotic to

f.x; y/ W ˇC�k < ˛yCnx < ˇC�.kC 1/g as y!C1:

By Lemma 4.6, we have that Sk and Sh are disjoint, as long as h ¤ k. To conclude the proof of
Proposition 4.1, we are left to show that the sets Sk exhaust the nodal components of v. At the moment
we cannot be assured that each Sk intersects the x-axis. However, in such cases, the horizontal order is
preserved.

Lemma 4.8. Let Sk1
, Sk2

be two nodal components of v as in Definition 4.7, and let k1 < k2. If
Ski
\f.x; 0/g ¤∅, i D 1; 2, then

. Oxi ; 0/ 2 Ski
D) Ox1 < Ox2:

Proof. This follows by connectedness since the segments Sk \ f.x; y�/g are ordered according to the
index k. �

Lemma 4.9. Let A denote any nodal component of v. There exist q� < qC such that

A� f.x; y/ W q� < ˛yCnx < qCg:

Proof. We only show that A� f.x; y/ W ˛yCnx < qCg, for some qC, because the other property follows
by a similar argument. In the following, we fix x0 such that ˆ.x0/¤ 0, and we write

` WD f.x; y/ W y > 0; ˛yCn.x� x0/D 0g; L� WD f.x; y/ W y > 0; ˛yCn.x� x0/ < 0g:

Moreover, by Lemma 3.9, we can assume that v does not vanish on `\f.x; y/ W y � y�g.
We have to show that, for some h 2 Z,

Ah WD A� .2h�; 0/� L
�:

To start with, we observe that Ah\L� ¤∅ for every h� Nh sufficiently large (indeed A is not empty).
Let us assume by contradiction that Ah nL� ¤∅ for every h� Nh as well. By connectedness, we obtain
that Ih WD `\Ah is nonempty, relatively open in `, and with nonempty (relative) boundary @Ih � N .
Finally, by Lemmas 4.5 and 4.3, we have that Ih1

\ Ih2
D∅ for every h1 ¤ h2. We deduce that the set[

h� Nh

@Ih � .N \ `\fy � y�g/ is infinite.

This contradicts the last part of Lemma 4.2. �

Lemma 4.10. Let A denote any nodal component of v. Then vjA 2H 1.A/.

Proof. This follows by Lemma 4.9 and Proposition 3.8. �
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Lemma 4.11. Let Sk be a nodal component of v as in Definition 4.7. Then vj@Sk
6� 0. In particular,

fx W .x; 0/ 2 Skg contains a nontrivial interval.

Proof. The lemma follows by Lemmas 4.4, 4.5 and 4.10. �

Lemma 4.12. Let A denote any nodal component of v. Then

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

Proof. Let A contradict the result; then A � AC .2�; 0/ (Lemma 4.3) and A � f.x; y/ W y < y�g

(Lemma 4.5). As a consequence, there exists a simple curve  � A, with  C .2�; 0/ �  . Then
R�RC n  DO0[O1, where each Oi is open and connected and O1 � f.x; y/ W y � y�g. Now, let A0

be any nodal region of v intersecting f.x; y/ W y � y�g. Then A\A0 D∅. By Lemma 4.11 there exists
 0 � A0 with one endpoint in O1 and the other one in O0, so that  0 intersects  , a contradiction. �

Lemma 4.13. Let A denote any nodal component of v. Then vj@A 6� 0. In particular,

fx W .x; 0/ 2 Ag contains a nontrivial interval.

Proof. The lemma follows by Lemmas 4.4, 4.12 and 4.10. �

We are ready to conclude the proof of the main result of the section.

End of the proof of Proposition 4.1. We are left to show that the sets Sk (Definition 4.7) exhaust the nodal
components of the function v, so that, in particular, for each Sk , there exists two consecutive zeros of the
function ˆ, xj < xjC1 2 Œ0; 2��, and h 2 Z such that

Sk \f.x; 0/g D Œxj ; xjC1�C .2h�; 0/:

Let Sk be any connected component as in Definition 4.7; then, by Lemma 4.13 and continuity of the
function v (see Proposition 3.8), there exist two consecutive zeros xj < xjC1 and h 2 Z such that

Œxj ; xjC1�C .2h�; 0/� Sk \f.x; 0/g:

By periodicity in the x-direction, it follows that

Œxj ; xjC1�C .2.hC 1/�; 0/� SkC2n\f.x; 0/g:

Now, on the one hand, for y � y�, we already know that the nodal set of v between Sk (included) and
SkC2n (excluded) is precisely given by the 2n sets Sk; : : : ; SkC2n�1. On the other hand, for y D 0, the
nodal set of v between .xj C2h�; 0/ and .xj C2.hC1/�; 0/ consists in exactly 2n intervals. Once again,
we appeal to Lemma 4.11 to infer that every Sk; : : : ; SkC2n�1 contains exactly one interval on f.x; 0/g,
and the intersections are ordered by Lemma 4.8. The remaining conclusions follow straightforwardly. �
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5. End of the proof of Theorem 1.1

We give the proof in the case that K D 2n is even. The odd case can be treated with minor changes; see
the discussion at the beginning of Section 3.

In view of Proposition 2.1, the existence of an element of Srot, as defined in (6), with the required
nodal properties is equivalent to the existence of a solution of (22) having trace

ˆ.x/D

KX
mD1

.�1/mC1

lm
sm'm (44)

(recall (16), (21)) and enjoying properties (b) and (c) in Section 2 (property (a) is already contained
in (22)).

The existence of such functions is provided by Proposition 3.8, while properties (b) and (c) follow
from Proposition 4.1 once ˆ satisfies the compatibility conditions (42), i.e.,

�k D
1

2�

Z 2�

0

e�.ikC˛/xˆ.x/ dx D 0; jkj< n; and �n ¤ 0 (45)

(or equivalently ��n D �n ¤ 0). Under the validity of these conditions, also the asymptotic expansion (8)
follows from Proposition 4.1 and the definition of the map T (14); see also Remark 2.2. The details of
these calculations are very similar to those in [Terracini et al. 2019, Proof of Theorem 1.5]

Writing cm D sm=lm in (44) and (45), and recalling also Remark 3.10, we obtain that Theorem 1.1 is
equivalent to the following assertion: there exists Nc D . Nc1; : : : ; Nc2n/, with .�1/mC1cm > 0, such that

2nX
mD1

1

2�

Z 2�

0

e�.ikC˛/xcm'm.x/ dx D 0; jkj< n;

and
2nX
mD1

1

2�

Z 2�

0

e�.inC˛/xcm'm.x/ dx ¤ 0

if and only if c D t Nc.
To prove this last claim, let us define the matrix A 2 C2n�2n,

AD .akm/kD�nC1;:::;n
mD1;:::;2n

D

�
1

2�

Z 2�

0

e�.ikC˛/x'm.x/ dx

�
km

D

�
1

2�

Z 2�

0

e�.ikC˛/tm'm.tm/ dtm

�
km

:

Observe that we have suitably renamed the dummy variables in each integral as, later, this will lead us to
more manageable identities. We can write the set of compatibility conditions (45) as a system of linear
equations,

A

0BB@
c1
c2
:::
c2n

1CCAD
0BB@
0

0
:::
�n

1CCA : (46)
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To show our claim, we prove that the matrix A is invertible and that it is possible to choose �n ¤ 0 such
that the solution vector is real and sign-alternating. First, exploiting the multilinearity of the determinant,
we have

detAD
1

.2�/2n

Z
Œ0;2��2n

2nY
mD1

e�˛tm'm.tm/ � detA0;

where we have introduced the matrix

A0 D

0BB@
e�i.�nC1/t1 e�i.�nC1/t2 � � � e�i.�nC1/t2n

e�i.�nC2/t1 e�i.�nC2/t2 � � � e�i.�nC2/t2n

:::
:::

: : :
:::

e�int1 e�int2 � � � e�int2n

1CCA :
Factoring out the coefficients of the first row, we recognize Vandermonde’s determinant and compute

detA0 D e�i.�nC1/
P2n

mD1 tm

ˇ̌̌̌
ˇ̌̌̌ 1 � � � 1

e�it1 � � � e�it2n

:::
: : :

:::

e�.2n�1/it1 � � � e�.2n�1/it2n

ˇ̌̌̌
ˇ̌̌̌

D e�i.�nC1/
P2n

mD1 tm
Y

1�p<q�2n

.e�itq � e�itp /

D ei.n�1/
P2n

mD1 tm
Y

1�p<q�2n

.�1/e�
1
2
itq�

1
2
itp .�e�

1
2
itqC

1
2
itp C e�

1
2
itpC

1
2
itq /

D ei.n�1/
P2n

mD1 tm.�1/
2n.2n�1/

2 e�
1
2
i.2n�1/

P2n
mD1 tm

Y
1�p<q�2n

.e�
1
2
itpC

1
2
itq � e�

1
2
itqC

1
2
itp /

D .�1/n.2i/
2n.2n�1/

2 e�
1
2
i
P2n

mD1 tm
Y

1�p<q�2n

�
e

1
2
i.tq�tp/� e�

1
2
i.tq�tp/

2i

�

D .�1/n.2i/n.2n�1/e�
1
2
i
P2n

mD1 tm
Y

1�p<q�2n

sin
�
tq � tp

2

�
:

Thus we find

detAD
.�1/n.2i/n.2n�1/

.2�/2n

Z
Œ0;2��2n

2nY
mD1

e�˛tm'm.tm/
Y

1�p<q�2n

sin
�
tq � tp

2

�
„ ƒ‚ …

Mod

e�
1
2
i
P2n

mD1 tm„ ƒ‚ …
Phase

:

We show that the integral in the previous expression is always different from 0. We recall that, by
assumption, the functions 'm are supported on ordered intervals. More precisely, using the notation
introduced in Proposition 4.1, we have

ft 2 Œ0; 2�� W 'm.t/ > 0g D .xm; xmC1/:
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As a result, the integral can be restricted to the open and not empty set

OD .x1; x2/� .x2; x3/� � � � � .x2n; x2nC1/� Œ0; 2��2n:

Moreover, for any choice 1� p < q � 2n, in O we have 0 < tq � tp < 2� , and thus

0 <
tq � tp

2
< � D) sin

�
tq � tp

2

�
> 0:

As it turns out, the factor denoted as Mod is strictly positive in O. This function corresponds to the
modulus of the integral function. On the other hand, the factor Phase is complex and of modulus 1. Let
us investigate more closely the argument of Phase. We find

2nX
mD1

xm <

2nX
mD1

tm <

2nX
mD1

xmC1 D

2nX
mD1

xmC .x2nC1� x1/ <

2nX
mD1

xmC 2�:

That is, letting X D
P2n
mD1 xm, for any .t1; : : : ; t2n/ 2O,

0 <
1

2

� 2nX
mD1

tm�X

�
< �:

We can rewrite the determinant as

detAD C
�Z

O
Mod � cos 1

2

� 2nX
mD1

tm�X

�
� i

Z
O

Mod � sin 1
2

� 2nX
mD1

tm�X

��
for some complex constant C 2 C n f0g. By the previous discussion, the second integral is positive. It
follows that the determinant of A is not zero, proving that the linear system (46) has a unique solution for
any �n.

We now show that there exists �n ¤ 0 such that the solution vector is real and sign-alternating. By
Cramer’s rule, we have

cl D .detA/�1 detAl ;

where Al is the matrix obtained by replacing the l column of A with the right-hand side of system (46).
Now, by the same considerations as before, we have

detAl D
1

.2�/2n

Z
Œ0;2��2n

2nY
mD1;m¤l

e�˛tm'm.tm/ � detA0l ;

where

A0l D

0BB@
e�i.�nC1/t1 e�i.�nC1/t2 � � � e�i.�nC1/tl�1 0 e�i.�nC1/tlC1 � � � e�i.�nC1/t2n

e�i.�nC2/t1 e�i.�nC2/t2 � � � e�i.�nC2/tl�1 0 e�i.�nC2/tlC1 � � � e�i.�nC2/t2n

:::
:::

: : :
:::

:::
:::

: : :
:::

e�int1 e�int2 � � � e�intl�1 �n e�intlC1 � � � e�int2n

1CCA :
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Developing the determinant with respect to the l-th column, factoring out the first line and exploiting
once more Vandermonde’s determinant, we find

detA0l D .�1/
l�1�ne

�i.�nC1/
P2n

mD1;m¤l tm

ˇ̌̌̌
ˇ̌̌̌
ˇ

1 � � � 1

e�it1 � � � e�it2n

:::
: : :

:::

e�.2n�2/it1 � � � e�.2n�2/it2n

ˇ̌̌̌
ˇ̌̌̌
ˇ

D .�1/l�1�ne
�i.�nC1/

P2n
mD1;m¤l tm

Y
1�p<q�2n
p;q¤l

.e�itq � e�itp /

D .�1/l�1�ne
i.n�1/

P2n
mD1;m¤l tm

Y
1�p<q�2n
p;q¤l

.�1/e�
1
2
itq�

1
2
itp .�e�

1
2
itqC

1
2
itp C e�

1
2
itpC

1
2
itq /

D .�1/l�1�ne
i.n�1/

P2n
mD1;m¤l tm.�1/

.2n�1/.2n�2/
2 e�

1
2
i.2n�2/

P2n
mD1;m¤l tm

�

Y
1�p<q�2n
p;q¤l

.e�
1
2
itpC

1
2
itq � e�

1
2
itqC

1
2
itp /

D .�1/lCn�2�n.2i/
.2n�1/.2n�2/

2

Y
1�p<q�2n
p;q¤l

�
e

1
2
i.tq�tp/� e�

1
2
i.tq�tp/

2i

�

D .�1/lCn.2i/.2n�1/.n�1/�n
Y

1�p<q�2n
p;q¤l

sin
�
tq � tp

2

�
:

We obtain

cl D
.detA/�1.�1/lCn.2i/.2n�1/.n�1/�n

.2�/2n�1

Z 2nY
mD1;m¤l

e�˛tm'm.tm/
Y

1�p<q�2n;p;q¤l

sin
�
tq � tp

2

�

D .�1/lC1�

Z
Œ0;2��2n�1

2nY
mD1;m¤l

e�˛tm'm.tm/
Y

1�p<q�2n;p;q¤l

sin
�
tq � tp

2

�
;

where � 2 C. Reasoning as before, we see that the integral is always strictly positive. Thus cl satisfies
the condition .�1/lC1cl > 0 if and only if � is real and positive, � D t > 0. We obtain the solution

cl D t .�1/
lC1

Z
Œ0;2��2n�1

2nY
mD1;m¤l

e�˛tm'm.tm/
Y

1�p<q�2n;p;q¤l

sin
�
tq � tp

2

�
and

�n D t .�1/
nC1 2

2n�2

�

Z
Œ0;2��2n

2nY
mD1

e�˛tm'm.tm/
Y

1�p<q�2n

sin
�
tq � tp

2

�
e�

1
2
i
P2n

mD1 tm :

Proof of Corollary 1.2. This follows by uniqueness of Ns; indeed, notice that a rotation of 2�=K leaves
the data unchanged, while the indexes of the densities are shifted by 1. By uniqueness, Nsm D Nsm�1 for
every m. �
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6. Single-mode special solutions

In the following we deal with the fundamental single-mode solutions that we constructed by separation of
variables in Section 3. Theorems 1.6 and 1.7 will follow once again by Proposition 2.1.

6.1. The homogeneous Dirichlet problem. We now turn our attention to the homogeneous version
of (22); that is, we look for conditions under which there exists a nonzero solution v of8<:

��vC!e�2yvx D e
�2y�v; x 2 R; y > 0;

v.xC 2�; y/D e2�˛v.x; y/; x 2 R; y � 0;

v.x; 0/D 0; 0� x � 2�;

(47)

with nodal set consisting of 2k strips (up to horizontal 2�-periodicity), k � 1, that connect the boundary
y D 0 with y!C1, as in the previous section. Clearly (47) may have nonzero solutions only for some
specific choices of parameters (this is indeed the case according to Lemma 3.6). For this reason, in this
section we consider the number k � 1 and the parameter ˛ 2 R as givens of the problem, and we look for
pairs of numbers .�; !/ 2 R2 such that a solution v as specified above exists.

The analysis that we have conducted in Section 3 can be exploited to give a direct solution to this
problem. Indeed we have the following result.

Lemma 6.1. For any k � 1, ˛ 2 R, there exists at least a value � 2 C satisfying�
‚k�i˛.�/D 0;

‚k�i˛.t�/¤ 0 for all t 2 Œ0; 1/;
(48)

where ‚� is defined in (32) for every � 2 C. For any such �, the function

v.x; y/D e˛x�ky Re.ei.kxC˛y/‚k�i˛.�e
�2y//

is a solution of (47), with

! D
Im.�/
k

; �D ˛
Im.�/
k
�Re.�/:

Moreover, there exists an analytic map y 7! �.y/ such that

v.x; y/D 0 () x D �.y/C
h�

k
; h 2 Z;

and

�.y/D
1

k
.ˇ�˛y/C o.1/ for some ˇ 2 R and y!C1:

In particular, for any y > 0, v. � ; y/ has exactly 2k zeros in each period x 2 Œ0; 2�/.

Proof. The result is a direct consequence of Lemma 3.2. We start by showing that, for any choice of
parameters, there exists at least a value � 2 C satisfying (48). Indeed, ‚k�i˛ is a nonconstant analytic
function with ‚k�i˛.0/¤ 0, and it suffices to consider a zero � of ‚k�i˛ with the least absolute value in
order to guarantee that ‚k�i˛.t�/¤ 0 for any t 2 Œ0; 1/. Of course, many (if not all) the zeros of ‚k�i˛
may satisfy this assumption, but these constitute an at most countable discrete subset of C.
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Exploiting the fact that the coefficients of (47) are real, we find that the function

v.x; y/D e˛x Re.eikxDk.y// (49)

is a solution of (47), where the function Dk solves�
D00
k
.y/D Œ.k� i˛/2C .!˛��C i!k/e�2y �Dk.y/; y > 0;

Dk.0/D 0; Dk.y/! 0 as y!C1:
(50)

By Lemma 3.2, equation (50) is solved by any multiple of the function

y 7! e�.k�i˛/y‚k�i˛..!˛��C i!k/e
�2y/;

which in turns vanishes for y ! C1. The initial condition Dk.0/ D 0 is satisfied since we chose
�D !˛��C i!k as a zero of the function ‚k�i˛ (observe that we are negating (26)).

To conclude, we need to study the nodal properties of the function v. From its expression we readily
see, that for any fixed y > 0, the function x 7! v.x; y/ has exactly 2k evenly spaced zeros in Œ0; 2�/
since, by assumption, ‚k�i˛.�e�2y/ ¤ 0. From this we deduce also that the nodal lines of v can be
described, up to translations, by a function y 7! �.y/. We notice that � is continuous by the implicit
function theorem, as

v.x; y/D 0 () Re.eikxDk.y//D 0

and, for such .x; y/,
@

@x
Re.eikxDk.y//D ik Im.eikxDk.y//¤ 0:

More explicitly, writing
Dk.y/D �.y/e

i#.y/;

where �.y/ > 0 for y > 0 and # is an analytic lifting of the argument of Dk , we have that

e˛xv.x; y/D Re.eikxDk.y//D 0 () x�
h�

k
D
1

k
.ˇ�#.y//DW �.y/:

Finally, the asymptotic behavior of � follows as in Lemma 3.9. �

We conclude with some additional remarks on the result.

Remark 6.2 (a question about uniqueness). If v is a solution of (47), then for any A, Nx 2 R, the function
.x; y/ 7! Av.x� Nx; y/ is again a solution. We may wonder whether this family of functions completely
describes the set of solutions of (47) under some additional condition (for instance that, for any x 2 R,
v.x; y/! 0 as y !C1). More precisely, fix !, � and ˛ in such a way that (47) admits at least a
solution. Is this solution unique (up to translation in x and multiplication by a real constant of course)?
This seems to be a question of a nontrivial nature, and it is related to the position of the zeros of Bessel
functions with different order. From the proof of Lemma 6.1, we can state the following: let ˛ 2 R be
such that, for any k1; k2 � 1 and z1; z2 2 C, we have8<:

Ik1�i˛.z1/D Ik2�i˛.z2/D 0;

Re.z21/D Re.z22/;
Im.z21/=k1 D Im.z22/=k2

D) k1 D k2:
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Figure 3. Numerical zeros of Re‚1�i (blue) and Im‚1�i (red). The three zeros located
at 10:36C i23:66, 20:22C i67:99, 30:21C i132:04 satisfy condition (48).

Then for this specific value of ˛, if (47) admits a solution, this solution is unique up to translation in x
and multiplication by a real constant.

Remark 6.3 (the symmetric case ˛D 0). If � 2R and � � 1, the zeros of the modified Bessel function I�
are purely imaginary numbers (and are given by ij�;l , where j�;l is the l-th zero of the Bessel function J� ,
with l 2 N). It follows that

‚k.�/D 0 D) �D�t2 for some t > 0:

As a result, if ˛ D 0, then necessarily ! D 0 (no rotation) and �D j 2
k;1

. Since all the zeros belong to
the same half-line emanating from the origin, the first nontrivial zero is also the only one that satisfies
the assumptions of Lemma 6.1. We conclude that, in the case ˛ D 0, (47) has nonzero solutions only if
�D j 2

k;1
and ! D 0, and any solution (that converges to zero as y!C1) is of the form

v.x; y/D .A cos.kx/CB sin.kx//Jk.jk;1e
�y/

for some A;B 2 R.

Remark 6.4 (the asymmetric case ˛ ¤ 0). By Lemma 3.6, and in particular (37), we already know that,
if ˛ ¤ 0, for (47) to have a solution, it is necessary that

�� .j0;1C
p
k2C˛2/2:

From numerical explorations (see, e.g., Figures 3 and 4), it seems that, if ˛ ¤ 0, the zeros of the function
‚k�i˛ belong to different lines emanating from the origin. In contrast with the case ˛ D 0, it thus seems
to be the case that, for ˛ ¤ 0, (47) has infinitely many (but still countably many) solutions.
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Figure 4. Nodal sets of the solutions corresponding to the three zeros in Figure 3.

6.2. The homogeneous Neumann/Robin problem. Let � 2 R. We consider the problem8<:
��vC!e�2yvx D e

�2y�v; x 2 R; y > 0;

v.xC 2�; y/D e2�˛v.x; y/; x 2 R; y � 0;

@yv.x; 0/C �v.x; 0/D 0; 0� x � 2�;

(51)

which involves Robin (� ¤ 0) or Neumann (� D 0) boundary conditions.
As in the previous section we can find single-mode solutions that exhibit a precise nodal behavior.

Lemma 6.5. For any k � 1, ˛ 2 R, assume that there exists � 2 C satisfying�
2�‚0

k�i˛
.�/C .k� i˛� �/‚k�i˛.�/D 0;

‚k�i˛.t�/¤ 0 for all t 2 Œ0; 1/:
Then we have

v.x; y/D e˛x�ky Re.ei.kxC˛y/‚k�i˛.�e
�2y//

a solution of (51) for the particular choice of parameters

! D
Im.�/
k

; �D ˛
Im.�/
k
�Re.�/:

Moreover, the nodal set of v has the same properties as those described in Lemma 6.1.
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Proof. We already know that any function of the type

v.x; y/D e˛x Re.eikxNk.y//

is a solution of the differential equation in (51) provided that

N 00k .y/D Œ.k� i˛/
2
C .!˛��C i!k/e�2y �Nk.y/; y > 0:

Once again we can appeal to Lemma 3.2 for an explicit expression for the function Nk . In order to impose
the boundary condition at y D 0 we find

N 0k.y/D‚
0
k�i˛.�e

�2y/.�2�e�2y/e�.k�i˛/y �‚k�i˛.�e
�2y/.k� i˛/e�.k�i˛/y I

that is,

N 0k.0/D‚
0
k�i˛.�/.�2�/� .k� i˛/‚k�i˛.�/D 0:

The rest of the proof follows easily. �

6.3. Entire solutions. Finally we consider the case of entire solutions; that is, we look for functions v
that satisfy �

��vC!e�2yvx D e
�2y�v;

v.xC 2�; y/D e2�˛v.x; y/;
.x; y/ 2 R2; (52)

vanish for y!C1 and, as before, change sign exactly 2k times (k � 1) in each period of length 2� in
the x-direction. Similar considerations as before lead us to the following result.

Lemma 6.6. Let k � 1, ˛ 2 R. Consider any � 2 C such that

‚k�i˛.t�/¤ 0 for all t > 0: (53)

Then the function

v.x; y/D e˛x�ky Re.ei.kxC˛y/‚k�i˛.�e
�2y// (54)

is a solution of (52) for the particular choice of parameters

! D
Im.�/
k

; �D ˛
Im.�/
k
�Re.�/:

Once again, we point out that ‚k�i˛ is analytic and thus it has at most countably many zeros, meaning
that, apart from a negligible set, any � 2 C gives rise to an entire solution.

In the case of entire solutions, it is interesting to study once again the shape of the nodal lines of the
solutions, which now are defined also for y < 0.

Lemma 6.7. Let v be the function (54) in Lemma 6.6. Then there exists an analytic function y 7! �.y/,
defined for any y 2 R, such that

� v.x; y/ D 0 if and only if x D �.y/C h�=k, y 2 R, h 2 Z, and consequently, in the regions
f.x; y/ W h�=k < x� �.y/ < .hC 1/�=kg, for any h 2 Z, v does not change sign;
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� for y!C1, � is asymptotic to a line: there exists ˇ 2 R such that

�.y/D
1

k
.ˇ�˛y/C o.1/ as y!C1I

� for y!�1, � is asymptotic to an exponential curve

�.y/D e�y CO.1/ as y!�1;

where

 D

8̂̂<̂
:̂
1
k

sign.!/

rq�
1
2
.!˛��/

�2
C
�
1
2
!k
�2
�
1
2
.!˛��/; ! ¤ 0;

0; ! D 0; � < 0;
1
k

sign.˛/
p
�; ! D 0; � > 0;

unless ! D �D 0, in which case

�.y/D
1

k
.ˇ�˛y/; y 2 R:

Proof. The first conclusions of the result follow from similar (and much simpler) considerations as in
Proposition 4.1 and Lemma 6.1. We only study the asymptotic behavior of � as y!�1. As we shall
see, beyond the validity of (53), we need to distinguish three cases, according to the different expansions
of the Bessel functions at infinity: (Case 1) ! D �D 0; (Case 2) ! D 0, � > 0; (Case 3) either ! D 0
and � < 0, or ! ¤ 0.

Case 1. We start with the simplest case, that is ! D �D 0. This is equivalent to assuming that �D 0,
whence (53) is automatically satisfied (recall that ‚k�i˛.0/¤ 0 for k � 1). Substituting in (52) we find
that solutions are of the form

v.x; y/D e˛x�ky cos.kxC˛y/:

In this case the nodal lines are described, up to translations, by the linear function

�.y/D
1

k

�
�
2
�˛y

�
; y 2 R;

and, in particular, the nodal set of v is a family of parallel straight lines.

Case 2. Next, we look at the case !D 0 and �>0, which means �D��<0. We have that
p
�D�i

p
�,

where we have chosen the determination of the square root with negative imaginary part. In this case,
exploiting (54), (33) and the relation between the Bessel functions and their modified versions, we have

v.x; y/D e˛x
�
1
2
eikxJ�.

p
�e�y/C 1

2
e�ikxJ�.

p
�e�y/

�
(to be precise, we take the line y 7!

p
�e�y as the path of monodromy for the determination of J�). In

particular, from this expression we infer the necessary condition ˛ ¤ 0: indeed, if � D k � 1, the Bessel
function Jk has all of its zeros on the real line, and thus we are contradicting (53). We have that (see
[Erdélyi et al. 1953, p. 85])

J�.z/D

r
2

�z

�
cos
�
z� �

2
� � �

4

�
CO

�
1

jzj

��
for jzj !C1 with jarg zj< �:
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As to what concerns us, we have that z > 0. Letting

w D
p
�e�y � �

2
� � �

4
D
�p
�e�y � �

2
k� �

4

�
C i �

2
˛;

we may simplify the expression for v and see that, for y!�1, the following asymptotic expansion
holds: p

1
2
�
p
�e�˛x�

1
2
yv.x; y/D 1

2
eikx coswC 1

2
e�ikx coswCO.ey/:

We point out that, in this peculiar case, the solution v decays for y ! �1 since Im.w/ is bounded
(constant). The last expression can be further simplified, since

1
2
eikx coswC 1

2
e�ikx cosw D 1

2
.cos.kx/C i sin.kx// coswC 1

2
.cos.kx/� i sin.kx// cosw

D
1
2

cos.kx/ŒcoswC cosw�C 1
2
i sin.kx/Œcosw� cosw�

D cos.kx/ cos.Rew/ cosh.Imw/C sin.kx/ sin.Rew/ sinh.Imw/:

In order to determine the asymptotic behavior of the nodal lines of v, we need to solve the equation

cos.kx/ cos.Rew/ cosh.Imw/C sin.kx/ sin.Rew/ sinh.Imw/D 0:

It seems that this equation cannot be solved explicitly, nevertheless we can describe its set of solutions
with sufficient accuracy for our purpose. In order to simplify the notation, we introduce the real function

F.X; Y /D cos.X/ cos.Y / cosh.T /C sin.X/ sin.Y /; sinh.T / (55)

where we recall that the parameter T D Imw D �
2
˛ ¤ 0. In the plane .X; Y / 2 R2, we want to describe

the set F.X; Y /D 0. First of all, we point out that F is 2�-period both in X and in Y and enjoys the
symmetries F.X; Y /D F.Y;X/, F.�X; Y /D F.X;�Y /, F.X C�; Y /D F.X; Y C�/D�F.X; Y /
and F.�X;�Y /DF.X; Y / for any .X; Y /2R2. In particular, we deduce that the equation F.X; Y /D 0
has infinitely many solutions and that, for any fixed Y 2R (resp. X ), solutions of F.X; Y /D 0 are equally
spaced and of the form X DXY Ch� for some given XY 2 R and h 2 Z (resp. Y D YX Ch� , YX 2 R).
We deduce that, for any given Y 2 Œ0; �/, there exists a unique X 2 Œ0; �/ such that F.X; Y /D 0, and
vice versa.

Next, let .X0; Y0/ 2 R2 such that F.X0; Y0/D 0. By the implicit function theorem, the nodal set of F
is described locally at .X0; Y0/ by a function X DZ.Y / if @XF.X0; Y0/¤ 0. Arguing by contradiction,
we have the system �

cos.X0/ cos.Y0/ cosh.T /C sin.X0/ sin.Y0/ sinh.T /D 0;
cos.X0/ sin.Y0/ sinh.T /� sin.X0/ cos.Y0/ cosh.T /D 0;

which has a solution if and only if

cos2.Y0/ cosh2.T /C sin2.Y0/ sinh2.T /D 0:

But this is impossible since cosh2.T /¤ 0 and sinh2.T /¤ 0 (recall that T ¤ 0). Thus @XF.X0; Y0/¤ 0
at any zero of F . Observe that we can perform similar computations exchanging variables and show that
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the function Z is a bijection (and thus monotone). By periodicity, we can assume that Z.0/D �
2

. We can
determine the sense of monotonicity of Z by computing Z0.Y / for the zero .X; Y /D

�
�
2
; 0
�
. We find

Z0.0/D�
@YF

�
�
2
; 0
�

@XF
�
�
2
; 0
� D tanh.T /D tanh

�
�
2
˛
�
:

Bringing together the previous conclusions, we infer that

0�Z.Y /� sign.˛/Y < � for all Y 2 R:

Going back to the original variable, we find the asymptotic behavior

�.y/D
1

k
sign.˛/

p
�e�y CO.1/ as y!�1:

Case 3. We conclude with the third and last case, that is �D !˛��C i!k 2 CnR� together with (53).
We recall that the modified Bessel function I� satisfies (see [Erdélyi et al. 1953, p. 86])

I�.z/D
ez
p
2�z

�
1CO

�
1

jzj

��
for jzj !C1 with jarg zj< �

2
� ı:

By (33), the entire function in (54) is equal to

v.x; y/D e˛x Re.eikxI�.
p
�e�y//;

where we choose as determination of the square root of � the one with strictly positive real part (recall
that � 2 C nR�). Then jarg

p
�j< �

2
� ı for some ı > 0. We find

v.x; y/D e˛x Re
�
eikx

e
p
�e�yp

2�
p
�e�y

.1CO.ey//

�
D e˛x Re.C�e

ikxC 1
2
yC
p
�e�y

.1CO.ey///

D e˛xC
1
2
yCRe.

p
�/e�y

Re.C�e
ikxCi Im

p
�e�yCiO.ey/

j1CO.ey/j/D 0;

which in turns gives the asymptotic equation, as y!�1,

kxC Im.
p
�/e�y CO.ey/D ˇ;

where ˇ 2 R and

Im.
p
�/D sign.!k/

rq�
1
2
.!˛��/

�2
C
�
1
2
!k
�2
�
1
2
.!˛��/

(with Im.
p
�/D 0 in case ! D 0). Notice that the sign above agrees with the fact that the nodal lines of

the solution v are spanned by monotone functions; see the proof of Lemma 6.1. �

Remark 6.8. In view of the results of Section 2, we have that any solution constructed in this section
corresponds to an element of the corresponding class Srot. In particular, if ˛ D 0, we obtain (positive and
negative parts of) smooth rotating solutions of the heat equation, with or without reaction term. Moreover,
Lemma 6.7 provides a description of their nodal lines, which behave like arithmetic spirals of the equation
# D r as r!C1, as we claimed in Remark 1.8.
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Appendix: Weighted embeddings and Poincaré inequalities

In this appendix, we give the proof of some results cited in the paper for the sake of completeness. We
start with a very classical compact embedding result.

Lemma A.1. The functional space H 1
0 .R
CIC/ embeds compactly in

LD

�
U 2 L1loc.R

C
IC/ W kU k2L D

Z
y>0

e�2y jU j2 <C1

�
:

Proof. Let fungn2N � H
1
0 .R
CIC/ be a weakly converging sequence, and let u be its limit. Since the

embedding of H 1
0 in L is clearly continuous, un*u in L, and in order to show that un! u in L we

just need to prove the convergence of the norms. Let

dn D

ˇ̌̌̌Z
y>0

e�2yu2n�

Z
y>0

e�2yu2
ˇ̌̌̌
:

Observe that fdngn is a positive sequence. We have that

dn �

Z
y>0

e�2y ju2n�u
2
j D

Z T

0

e�2y ju2n�u
2
jC

Z 1
T

e�2y ju2n�u
2
j

�

Z T

0

e�2y ju2n�u
2
jC e�2T .kunk

2
L2 Ckuk

2
L2/�

Z T

0

e�2y ju2n�u
2
jC 2Ce�2T

for any T >0. SinceH 1.0; T / is compactly embedded in L2.0; T /, we conclude that there exists f"n;T gn
such that "n;T ! 0 and

dn � "n;T C 2Ce
�2T :

To conclude, for any given ı > 0, we can find T > 0 such that Ce�2T < 1
2
ı and subsequently Nn such that

"n;T �
1
2
ı for any n� Nn. This implies that, for any n� Nn, we have that 0� dn � ı; that is,

lim
n!C1

dn D 0 D)

Z
y>0

e�2yu2 D lim
n!C1

Z
y>0

e�2yu2n;

and thus we conclude the strong convergence of the sequence fungn2N. �

Exploiting this compact embedding, we can show the following weighted Poincaré inequality.

Lemma A.2. Let a > 0 and b 2 R, thenZ
y>0

ju0j2C .a2� be�2y/u2 � 0

for any u 2H 1
0 .R
C/ as long as

b � .ja;1/
2;

where ja;1 is the first (positive) zero of the Bessel function of the first kind of order a.
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Proof. The statement is equivalent to proving that

.ja;1/
2
D inf
u2H1

0 .R
C/

�Z
y>0

ju0j2C a2u2 W

Z
y>0

e�2yu2 D 1

�
: (56)

The existence of a minimizer u 2H 1
0 .R
C/ follows directly from the embedding in Lemma A.1. As the

functional and the constraint are even, we can assume that the minimizer u is positive. Standard regularity
results imply that the function u is also smooth and strictly positive in RC. Let �� 0 be the minimum
of (56). We have that u 2H 1

0 .R
C/ is a solution of�
�u00C .a2��e�2y/uD 0;

u.0/D 0; u.y/ > 0 for y > 0:

We argue as in Lemma 3.2. We look for a solution defined by the series

u.y/D
X
n�0

cne
�.2nCa/y ; where cn 2 R for n 2 N:

We first make some formal computations, plugging this expression directly into the equation. We find
that the coefficients cn must satisfy the following recursive relation for n� 1:

cn.2nC a/
2
D cna

2
� cn�1�;

which is satisfied for instance by letting

cn D
.�1/n

nŠ �.nC 1C a/

�p
�

2

�2nCa
for all n 2 N;

thus leading us to the solution

u.y/D
X
n2N

.�1/n

nŠ �.nC 1C a/

�p
�

2
e�y

�2nCa
D Ja.

p
�e�y/:

We recall that, if a > 0, then Ja.0/D 0. This gives that, for any a > 0,

lim
y!C1

u.y/D 0:

One can easily check that the series does converge in H 1.RC/ to its sum u. We only need to ensure that

u.0/D 0 and u.y/ > 0 for any y > 0:

In terms of the function Ja, these conditions together mean that
p
� has to be the first (positive) zero

for Ja; that is,
p
�D ja;1 () �D .ja;1/

2: �

We can also show a similar Poincaré inequality for semi-infinite rectangles.
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Lemma A.3. For any a > 0 and b 2 R, we consider the semi-infinite rectangle

Qa;b D
�
�
1
2
a; 1
2
a
�
� .b;C1/

and the corresponding functional space

H 1
0 .Qa;b/D fu 2H

1.Qa;b/ W uD 0 on @Qa;bg:

We have

inf
u2H1

0 .Qa;b/

�Z
Qa;b

jruj2 W

Z
Qa;b

e�2yu2 D 1

�
D e2b.j�=a;1/

2:

Proof. By the same compactness argument of Lemma A.1, we can show that the infimum is attained
by a function u 2H 1

0 .Qa;b/ which, by standard results, is also positive and smooth in Qa;b . Up to a
translation in y, the function u is then a positive solution of�

��uD �e�2be�2yu in Qa;0,
uD 0 on @Qa;0,

for some �� 0. By separation of variables we can easily show that u is of the form

u.x; y/D cos
�
�

a
x
�
v.y/;

where the new unknown function v 2H 1
0 .R
C/ solves�

�v00C
�
�2

a2 ��e
�2be�2y

�
v D 0;

v.0/D 0; v.y/ > 0 for y > 0:

By Lemma A.2, we conclude that
�e�2b D .j�=a;1/

2: �
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STAHL–TOTIK REGULARITY FOR CONTINUUM SCHRÖDINGER OPERATORS

BENJAMIN EICHINGER AND MILIVOJE LUKIĆ

We develop a theory of regularity for continuum Schrödinger operators based on the Martin compacti-
fication of the complement of the essential spectrum. This theory is inspired by Stahl–Totik regularity
for orthogonal polynomials, but requires a different approach, since Stahl–Totik regularity is formulated
in terms of the potential-theoretic Green’s function with a pole at ∞, logarithmic capacity, and the
equilibrium measure, notions which do not extend to unbounded spectra. For any half-line Schrödinger
operator with a bounded potential (in a locally L1 sense), we prove that its essential spectrum obeys the
Akhiezer–Levin condition, and moreover, that the Martin function at ∞ obeys the two-term asymptotic
expansion

√
−z + a/(2

√
−z) + o(1/

√
−z) as z → −∞. The constant a in that expansion has not

appeared in the literature before; we show that it can be used to measure the size of the spectrum in a
potential-theoretic sense and that it should be thought of as a renormalized Robin constant suited for
semibounded sets. We prove that it enters a universal inequality a ≤ lim infx→∞(1/x)

∫ x
0 V (t) dt , which

leads to a notion of regularity, with connections to the root asymptotics of Dirichlet solutions and zero
counting measures. We also present applications to decaying and ergodic potentials.

1. Introduction

The goal of this paper is to develop a theory of Stahl–Totik regularity suitable for continuum Schrödinger
operators; it is natural for this topic to work in the half-line setting, so our Schrödinger operators are
unbounded self-adjoint operators on L2((0,∞)), corresponding formally to

LV = −
d2

dx2 + V .

The potential V will always be real-valued and assumed to be uniformly locally integrable, i.e.,

sup
x≥0

∫ x+1

x
|V (t)| dt <∞ (1-1)

(in particular, 0 is a regular endpoint and +∞ is a limit point endpoint in the sense of Weyl). We set the
Dirichlet boundary condition at 0, so the domain of the operator is

D(LV )= { f ∈ L2((0,∞)) | f ∈ W 2,1
loc ([0,∞)),− f ′′

+ V f ∈ L2((0,∞)), f (0)= 0},

where W 2,1
loc ([0,∞)) denotes the set of functions such that f ∈ W 2,1([0, x]) for all x < ∞, i.e., f ′′

∈

L1([0, x]) for all x <∞.
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The connection of orthogonal polynomials and potential theory goes back at least to [Faber 1920; Szegő
1924]. For further references on the subject we refer to [Simon 2007; Stahl and Totik 1992]. Building on the
important work [Ullman 1972], Stahl and Totik developed a comprehensive theory for orthogonal polyno-
mials for arbitrary measures with compact support in C. It is shown that the asymptotic behavior of the or-
thogonal polynomials is intimately related with so-called Stahl–Totik regularity of the measure. Regularity
of the measure is then used as a reference behavior in the description of many phenomena; in spectral theory,
it has important consequences through the special cases of measures supported on the real line or unit circle.
For instance, on the real line, the theory provides a universal inequality between the Jacobi coefficients of
a compactly supported measure and the logarithmic capacity of its topological support E, and the measure
is defined to be Stahl–Totik-regular if equality holds. The corresponding Jacobi matrix is then also said to
be regular. This motivates the search for a similar theory for Schrödinger operators, as discussed in [Simon
2007, Section 9]. However, Stahl–Totik regularity is built on potential-theoretic notions, such as Green’s
functions on the domain �= Ĉ \E with the pole at ∞, logarithmic capacity, and equilibrium measures —
objects which are undefined for unbounded sets E, and therefore not applicable to continuum Schrödinger
operators. For this reason, even the correct objects and extremal principles were not identified until now.

In this paper, we develop the corresponding theory for Schrödinger operators. Martin functions [1941]
(see also [Armitage and Gardiner 2001]) serve as the counterpart of Green’s functions, corresponding to
boundary points z0 ∈ ∂� instead of internal points z0 ∈�; but whereas the Green’s function is defined
with an explicit logarithmic singularity at z0, the existence and behavior of Martin functions is more
varied. If E ⊂ R is a closed unbounded set, ∞ is a boundary point of the Denjoy domain �= C \E. If
this domain is Greenian, associated to the boundary point ∞ is a cone of dimension 1 or 2 of positive
harmonic functions in � which are bounded on bounded sets and vanish at every Dirichlet-regular point
of E. The cone is spanned by the minimal Martin functions at ∞ [Akhiezer and Levin 1960; Ancona
1979; Benedicks 1980; Gardiner and Sjödin 2009]. Moreover, if infE>−∞, the cone is of dimension 1,
and the Martin function at ∞ is determined uniquely up to normalization; we denote it by ME and simply
call it the Martin function from now on.

The Akhiezer–Levin condition for semibounded sets (sets with infE>−∞) is

lim
z→−∞

ME(z)
√

−z
> 0 (1-2)

(by general principles, the limit exists with a value in [0,∞)). This is the semibounded version of a
condition originally considered in [Akhiezer and Levin 1960] for arbitrary E ⊂ R; see also [Yuditskii
2020, Remark 1.13]. For sets obeying (1-2), we will normalize the Martin function so that the limit in
(1-2) is equal to 1.

For a potential bounded in the sense (1-1), the spectrum σ(LV ) is a closed subset of R bounded below
but not above, so the above definitions are applicable. It will be noted that isolated points of the set don’t
affect the Martin function, so we can equally well use E = σess(LV ) in what follows (more generally,
ME1 = ME2 if the symmetric difference of E1 and E2 is a polar set).

In spectral theory, Martin functions first appear implicitly, in the classical work [Marchenko and
Ostrovskii 1975] classifying the spectra of periodic Schrödinger operators. In this work, the discriminant
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of a 1-periodic operator is expressed in the form1(z)=2 cos(2(z)), and it can be recognized that Im2(z)
is the Martin function at ∞ for the periodic spectrum. The explicit use of Martin functions in spectral
theory starts with works of Yuditskii and coauthors [Sodin and Yuditskii 1995; Damanik and Yuditskii
2016; Eichinger et al. 2019], through inverse spectral-theoretic studies associated to Dirichlet-regular
spectra obeying a Widom condition and finite gap length conditions.

In contrast to the previous works, our first theorem is a set of universal properties of the spectra of
Schrödinger operators obeying (1-1); note that a boundedness condition such as (1-1) is essential for the
following theory, since potentials going to −∞ or +∞ can give spectrum equal to R or spectrum which
is a polar set.

Theorem 1.1. For any potential V obeying (1-1) and E = σess(LV ), the domain �= C \E is Greenian,
∞ is a Dirichlet-regular point for �, � obeys the Akhiezer–Levin condition, and there exists aE ∈ R such
that the Martin function has the asymptotic behavior

ME(z)= Re
(
√

−z +
aE

2
√

−z

)
+ o

(
1

√
|z|

)
(1-3)

as z → ∞, arg z ∈ [δ, 2π − δ] for any δ > 0.

Each of the conclusions of this theorem is strictly stronger than the previous; we will point out
examples in Section 2. In particular, the second term of the expansion (1-3) is not an automatic property
of Akhiezer–Levin sets, but rather an added feature corresponding to spectra of Schrödinger operators. It
should be emphasized that spectra of Schrödinger operators with bounded potentials can be very thin
in the sense that they can even have zero Hausdorff dimension [Damanik et al. 2017a] and zero lower
box counting dimension [Damanik et al. 2019], while our result is a universal “thickness” result in the
perspective of the Martin function.

In the references given above, the Martin function was used in spectral theory as a positive harmonic
function in � that vanishes on the boundary. In fact, Martin theory provides a whole kernel M(z, x) on
�× (�̂\ {z∗}), where �̂ denotes the Martin compactification of � and z∗ ∈� is a normalization point. If
∂M

1 � denotes the so-called minimal Martin boundary of �, then for every positive harmonic function h
on � there exists a unique finite measure ν such that

h(z)=

∫
∂M

1 �

M(z, x) dν(x).

We will provide more details and precise definitions in Section 2. It is new to combine this theory with
the spectral theory of unbounded self-adjoint operators and this was crucial for the proof of Theorem 1.1.

It is crucial that Theorem 1.1 associates to the essential spectrum E the real-valued constant aE, which
will serve as a substitute for the Robin constant from potential theory. Expansions of the form (1-3) have
previously appeared in the spectral theory literature [Marchenko and Ostrovskii 1975] only under strong
a priori assumptions on the spectrum. Namely, the set E is closed so it can be written in the form

E = [b0,∞) \
⋃N

j=1
(aj , bj ), (1-4)
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where j indexes the “gaps”, i.e., connected components of [b0,∞) \ E, and N is finite or ∞. If∑
j (bj − aj ) <∞, the Martin function has an expansion (1-3) with aE = b0 +

∑
j (aj + bj − 2cj ), where

cj denotes the (unique) location of the maximum of the restriction of ME to the interval [aj , bj ] (see
Lemma 6.2) by harmonic/complex-theoretic arguments. Instead, our Theorem 1.1 applies even when the
spectrum E is very thin and this is not a purely complex-theoretic result; its proof is a combination of
spectral-theoretic arguments and the theory of the Martin boundary of Denjoy domains.

The renormalized Robin constant aE obeys a decreasing property on the spectra of Schrödinger operators,
so it should be interpreted as an inverse measure of the size of E. For instance, our next result is a universal
inequality involving aE, which should be seen as a lower bound on the size of the essential spectrum:

Theorem 1.2. If V is a potential obeying (1-1) and E = σess(LV ), then

aE ≤ lim inf
x→∞

1
x

∫ x

0
V (t) dt. (1-5)

The perspective on aE as an inverse measure of the size of E will be most explicitly illustrated later,
in the proof of Theorem 1.12, which will use the argument that if E ⊂ [0,∞) and aE ≤ a[0,∞), then
E = [0,∞). This kind of argument wasn’t available before in this generality, because there was no
known quantity with the correct properties: any quantity based on Lebesgue measure or dimension would
sometimes give infinite or trivial values.

For any z ∈ C, the Dirichlet eigensolution is the solution of the initial value problem

−∂2
x u(x, z)+ V (x)u(x, z)= zu(x, z), u(0, z)= 0, (∂x u)(0, z)= 1.

Our next result is that the Martin function provides a universal lower bound on the growth rate of the
Dirichlet solution.

Theorem 1.3. If V is a potential obeying (1-1) and E = σess(LV ), then

ME(z)≤ lim inf
x→∞

1
x

log|u(x, z)| ∀z ∈ C \ [minE,∞).

Exclusion of [minE,∞) in Theorem 1.3 is necessary because, for z ∈ (minE,∞), by Sturm oscillation
theory [Simon 2005], the Dirichlet solution has infinitely many zeros.

Definition 1.4. The potential V is regular if

aE = lim
x→∞

1
x

∫ x

0
V (t) dt. (1-6)

Of course, due to (1-5), this is equivalent to requiring

aE ≥ lim sup
x→∞

1
x

∫ x

0
V (t) dt.

In our next theorem, we will characterize regularity in terms of root asymptotics for the Dirichlet
eigensolutions. We say that a property holds a.e. on E with respect to harmonic measure if it holds away
from a set A ⊂ E such that ωE(A, z0)= 0, where ωE( · , z0) denotes the harmonic measure of � evaluated
at some z0 ∈�. This condition is independent of the choice of z0 ∈� since the harmonic measures are
mutually absolutely continuous.
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Theorem 1.5. If V is a potential obeying (1-1) and E = σess(LV ), the following are equivalent:

(i) V is regular.

(ii) For every Dirichlet-regular z ∈ E, lim supx→∞
1
x log|u(x, z)| ≤ 0.

(iii) For a.e. z ∈ E with respect to harmonic measure, lim supx→∞
1
x log|u(x, z)| ≤ 0.

(iv) There exists z ∈ C+ such that lim supx→∞
1
x log|u(x, z)| ≤ ME(z).

(v) For all z ∈ C, lim supx→∞
1
x log|u(x, z)| ≤ ME(z).

(vi) limx→∞
1
x log|u(x, z)| = ME(z) uniformly on compact subsets of C \ [minE,∞).

Since (v) or (vi) trivially imply (iv), part (iv) is of interest as a criterion for establishing regularity of V,
whereas (v), (vi) are of interest as consequences of regularity. Similarly, (ii) implies (iii), so (ii) is of
interest as a consequence of regularity and (iii) as a condition for regularity. Instead of conditions (ii)
and (iii), it would be customary to state the single condition that the inequality holds quasi-everywhere; this
is between our conditions since the set of Dirichlet-irregular points is polar and polar sets have harmonic
measure 0. The benefit of (ii) is that it can be used pointwise (in particular, for a Dirichlet-regular set E,
the inequality holds everywhere on E). More importantly, the benefit of (iii) is that the characterization in
terms of harmonic measure will be essential for our proof of Theorem 1.8 below.

There are no previous results on Stahl–Totik regularity for continuum Schrödinger operators, even in
special cases. This topic was previously considered by Simon [2007, Section 9], who formulated several
conjectures. The first is that for semibounded spectra that are “close” to [0,∞) (e.g., [0,∞) \E of finite
Lebesgue measure) there should be a version of equilibrium measure νE and equilibrium potential 8E,
characterized by several properties including a normalization 8E(z)∼ Re(

√
−z)(1 + o(1)) as z → −∞.

It was suggested that regularity for continuum Schrödinger operators can be defined by the condition
lim supx→∞

1
x log|u(x, z)| =8E(z), and that this would have equivalent characterizations similar to the

orthogonal polynomial case. Our work does not use a finite Lebesgue measure assumption for [0,∞) \E,
so it solves these conjectures in a far greater generality than they were even previously conjectured.
Moreover, our work provides the correct potential-theoretic interpretation for the function 8E (now
understood as the Martin function ME), and that interpretation is crucial in the proofs.

Simon also conjectured that the asymptotics 8E(z) = Re(
√

−z)(1 + o(1)) should improve to the
asymptotic behavior Re

√
−z + o(1); this is motivated by the asymptotic behavior

√
−z + o(1) of

m-functions, proved in [Atkinson 1981]. While that asymptotic statement for individual m-functions
cannot be improved for locally integrable potentials, we discover that due to averaging effects, the
asymptotic behavior of our quantities improves even more, to the form (1-3). This discovery of (1-3)
has enabled us to introduce the constant aE, which was not previously conjectured, and to use it for the
robust general definition of regularity given above.

We also define the correct “equilibrium measure” which will be related to a deterministic density of states.
The Martin function can be extended to a subharmonic function on C, so it has a Riesz measure, given by

ρE =
1

2π
1ME,
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which we will call the Martin measure of the set E. Conversely, the Martin function has a Hadamard
representation of the form

ME(z)= ME(z∗)+

∫
E

log
∣∣∣∣1 −

z − z∗

t − z∗

∣∣∣∣ dρE(t),

where z∗ < minE is an arbitrary normalization point. The Martin measure will serve the same role in
this theory that the logarithmic equilibrium measure serves for orthogonal polynomials. However, ρE is
not defined with respect to any extremal property (and it is not even a finite measure), so different proofs
will be needed in the current setting.

For any x > 0, let ρx denote the zero counting measure for u(x, z) divided by x ,

ρx =
1
x

∑
z:u(x,z)=0

δz. (1-7)

Note that ρx is the Riesz measure of 1
x log|u(x, z)|. The limit of ρx as x →∞, when it exists, is interpreted

as a deterministic density of states associated to V. The convergence of measures will be understood in
the weak-∗ sense, i.e., when integrated against continuous functions with compact support. The Martin
measure and the zero counting measures are related by the following pair of results:

Theorem 1.6. Assume V is regular. Then ρx converges to ρE as x → ∞, in the weak-∗ sense.

The following is a continuum analog of a result of [Stahl and Totik 1992]:

Theorem 1.7. Assume that V obeys (1-1) and let µ be a maximal spectral measure for LV . Suppose
that ρx converges to ρE as x → ∞ in the weak-∗ sense. Then, either V is regular, or there exists a polar
Borel set X such that µ(R \ X)= 0.

Of course, the statement µ(R \ X)= 0 can be restated in the language of the Borel functional calculus
as χR\X (LV )= 0.

So far, we have seen that regularity of V can be established from the root asymptotics of Dirichlet
solutions. The next theorem shows that it can be established from spectral properties of the operator. It is
the continuum counterpart of a theorem of [Widom 1967].

Theorem 1.8. Let µ be a maximal spectral measure for LV . If ωE( · , z0) for some z0 ∈ C\E is absolutely
continuous with respect to µ, then V is regular.

This theory leads to several new results even for the special case of half-line essential spectrum [0,∞);
we present those as our first applications. If V is a decaying potential in the sense

lim
x→∞

∫ x+1

x
|V (t)| dt = 0 (1-8)

then E = σess(LV ) = [0,∞) by [Blumenthal 1898; Weyl 1909]. It follows that ME(z) = Re
√

−z. In
particular, aE = 0, so immediately from the definition:

Corollary 1.9. If V is a decaying potential in the sense (1-8), then V is regular with σess(LV )= [0,∞).
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Since harmonic measure for E = [0,∞) is mutually absolutely continuous with χ(0,∞)(x) dx , the
following is an immediate consequence of Theorem 1.8:

Corollary 1.10. Assume that V obeys (1-1) and denote by µ a maximal spectral measure for LV . Denote
by dµ = f dx + dµs the Radon–Nikodym decomposition of µ with respect to Lebesgue measure. If
σess(LV )= [0,∞) and f (x) > 0 for Lebesgue-a.e. x > 0, then V is regular.

More generally, a version of Corollary 1.10 holds, whenever the harmonic measure for the domain
C \E is absolutely continuous with respect to the Lebesgue measure χE(x) dx . In particular, it holds for
finite gap sets (i.e., when N is finite in (1-4)) and regular Parreau–Widom sets. If E is Dirichlet-regular,
the Green’s function GE(z, z0), for z0 <minE, has exactly one critical point cj ∈ (aj , bj ) in each gap. If,
in addition, the critical values of GE(z, z0) are summable, i.e.,

∞∑
j=1

GE(cj , z0) <∞,

we call E a regular Parreau–Widom set. In fact, the harmonic measure for the domain C \E is absolutely
continuous with respect to the Lebesgue measure if and only if E satisfies a certain sector condition
[Eremenko and Yuditskii 2012, Theorem 4]. We will describe this generalization in Section 6.

Sparse potentials are not covered by Corollary 1.9 or Corollary 1.10, but nonetheless provide additional
examples of regular potentials:

Example 1.11. Let W ∈ L1((0,∞)) be compactly supported, W ≥ 0, let xn ≥ 0 be an increasing
sequence such that xn+1 − xn → ∞ as n → ∞ and V (x) =

∑
n W (x − xn). Then V is regular with

σess(LV )= [0,∞).

The sparse potentials from Example 1.11 are not decaying in the sense (1-8), so Corollary 1.9 does
not have a converse; sparse potentials have purely singular spectrum by [Pearson 1978; Last and Simon
1999], so Corollary 1.10 does not have a converse.

However, we prove that Corollary 1.9 has the following partial converse; we have already described
Theorem 1.1 as a universal thickness result about the spectrum, and the following result similarly
guarantees presence of essential spectrum.

Theorem 1.12. Assume that V obeys (1-1) and that σess(LV )⊂ [0,∞). Then:

(a) lim infx→∞
1
x

∫ x
0 V (t) dt ≥ 0.

(b) If lim infx→∞
1
x

∫ x
0 V (t) dt ≤ 0, then σess(LV )= [0,∞).

(c) If lim supx→∞
1
x

∫ x
0 V (t) dt ≤ 0, then σess(LV )= [0,∞) and V is regular.

Part (a) can also be established by other means, but we include it for completeness. Parts (b) and (c)
generalize known results giving sufficient conditions for σess(LV )= [0,∞). In particular, Damanik and
Remling [2007, Theorem 1.2] showed that σess(L±V )⊂ [0,∞) implies σess(LV )= [0,∞). Part (b) of
our theorem is a strict generalization of that result; strict because it applies, e.g., to the sparse potentials
of Example 1.11 where [loc. cit.] does not (for a positive sparse potential V, min σess(L−V ) < 0),
and a generalization because σess(L−V )⊂ [0,∞) implies lim supx→∞

1
x

∫ x
0 V (t )dt ≤ 0 (by (a) applied
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to −V ), so our parts (b), (c) also apply to the potentials in [Damanik and Remling 2007]. In particular,
σess(L±V )⊂ [0,∞) implies that V is regular and σess(LV )= [0,∞).

In the theory of Jacobi matrices, a result of [Simon 2009] shows that a regular Jacobi matrix with
essential spectrum [−2, 2] obeys a Cesàro–Nevai condition. The analog for Schrödinger operators is false —
the continuum setting allows rapid oscillations which can break any Cesàro-type decay in an L1 sense:

Example 1.13. The potential defined piecewise by V (x)= (−1)⌊2n(x−n)⌋ on x ∈ [n−1, n) for an integer n
is regular with σess(LV )= [0,∞), but 1

x

∫ x
0 |V (t)| dt ̸→ 0 as x → ∞.

All objects considered above are deterministic (defined only in terms of a single half-line potential V ),
but for ergodic families of Schrödinger operators, they can be recognized almost surely as ergodic notions
such as the Lyapunov exponent and the ergodic density of states, so our results can be interpreted in the
ergodic setting. In the ergodic setting, it is natural to work with whole line potentials: let us consider
a family (Vη)η∈S of real-valued potentials on R on a probability space S which is metrically transitive
with respect to a group of measure-preserving transformations τy such that Vτyη(x) = Vη(x − y) and
such that any measurable subset A of S which is invariant under all τy has probability 0 or 1. The
group of transformations can be continuous (indexed by y ∈ R) or discrete (indexed by y ∈ ℓZ for some
ℓ > 0); the former case includes almost periodic Schrödinger operators and the latter case includes many
Anderson-type models studied in the literature [Kirsch 1985; Damanik et al. 2002], including those with
a periodic background. We also assume that Vη almost surely obeys

sup
x∈R

∫ x+1

x
|Vη(t)| dt <∞; (1-9)

in fact, much of the literature on ergodic Schrödinger operators is focused on bounded potentials. Let us
denote by HVη the self-adjoint operators on L2(R) given by

D(HVη)= { f ∈ L2(R) | f ∈ W 2,1
loc (R),− f ′′

+ Vη f ∈ L2(R)}

and recall the basic properties of this ergodic family (see the textbooks [Carmona and Lacroix 1990; Pastur
and Figotin 1992; Cycon et al. 1987] and the paper [Kirsch 1985] addressing some nuances for locally
L1 ergodic potentials with a discrete group of transformations). There is an almost sure spectrum E ⊂ R,

E = σ(HVη)= σess(HVη) for a.e. η ∈ S,

and the potentials Vη have an almost sure Birkhoff average E(V ) ∈ R,

E(V )= lim
x→∞

1
x

∫ x

0
Vη(t) dt for a.e. η ∈ S.

If LVη denotes the half-line operator corresponding to the restriction of Vη to [0,∞), then E = σess(LVη)

almost surely, so as a direct consequence of our deterministic results, E corresponds to a Martin function
with an expansion (1-3), and

aE ≤ E(V ). (1-10)
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This inequality is new; several cases of the equality aE = E(V ) are well known and among the most
studied classes of ergodic Schrödinger operators (periodic, reflectionless almost periodic with finite gap
length), and we can now interpret this through the fact that the corresponding potentials are regular.

In the ergodic setting, two central objects are the Lyapunov exponent γ (z) and the density of states dρ;
both are almost sure ergodic averages of important spectral quantities. The transfer matrix Tη(x, z) is the
2 × 2-matrix-valued solution of the initial value problem

(∂x Tη)(x, z)=

(
0 Vη(x)−z
1 0

)
Tη(x, z), Tη(0, z)= I,

and the corresponding Dirichlet solution is uη(x, z)= (Tη)2,1(x, z). If ρη,x denotes the measure corre-
sponding to uη as in (1-7), then

γ (z)= lim
x→+∞

1
x

log∥Tη(x, z)∥ for a.e. η ∈ S, (1-11)

and

dρ = w-lim
x→+∞

dρη,x for a.e. η ∈ S.

Thus Theorem 1.5, specialized to the ergodic setting, immediately gives the following:

Corollary 1.14. For any ergodic family of Schrödinger operators obeying (1-9), the following are
equivalent:

(i) aE = E(V ).

(ii) For every Dirichlet-regular z ∈ E, we have γ (z)= 0.

(iii) For almost every z ∈ E with respect to harmonic measure, we have γ (z)= 0.

(iv) For all z ∈ C+, we have γ (z)≤ ME(z).

(v) For all z ∈ C \E, we have γ (z)≤ ME(z).

(vi) γ (z)= ME(z) for all z ∈ C \ [minE,∞).

We say that a family of ergodic Schrödinger operators is regular if one (and therefore all) of the
statements of Corollary 1.14 holds. Although this notion is new, let us point out that it contains several of
the most well-studied families of almost periodic Schrödinger operators known to have zero Lyapunov
exponent on the spectrum, such as quasiperiodic operators at small coupling [Eliasson 1992; Damanik
and Goldstein 2014; Damanik et al. 2016; 2017b; 2017c] and limit-periodic potentials superexponentially
well-approximated by periodic operators [Chulaevsky 1981; Pastur and Tkachenko 1984; 1988; Fillman
and Lukic 2017]. In fact, the question of when the Lyapunov exponent is zero or positive on E is one of the
basic questions for an almost periodic family of operators and an important dichotomy in their study; this
is especially well-studied in the setting of discrete Schrödinger operators; see, e.g., [Marx and Jitomirskaya
2017; Damanik 2017; Avila 2015]. In inverse spectral theory one considers reflectionless Schrödinger
operators on Dirichlet-regular Widom spectra with the DCT property and associated solutions of the KdV
equation [Damanik and Goldstein 2016; Egorova 1993; 1994; Sodin and Yuditskii 1995; Gesztesy and
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Yuditskii 2006; Binder et al. 2018; Eichinger et al. 2019]; those operators have zero Lyapunov exponent
on the spectrum so they are regular in the sense of this paper.

For a 1-periodic potential V, it is well known that the discriminant has an asymptotic expansion at ∞

whose coefficients are equal to averages of differential polynomials in V (under the appropriate regularity
assumptions on V ). The first of those equalities, rewritten for the Martin function, give the equality
aE =

∫ 1
0 V (x) dx . This can now be interpreted through the fact that periodic potentials are regular.

For an almost periodic potential V, Johnson and Moser [1982] introduced the spatial average of
m-functions, whose real part is the Lyapunov exponent γ . Their construction relies heavily on almost
periodicity through compactness of the hull, so their methods would not extend to our setting; Johnson and
Moser [1982] noted as a consequence of their results, the spectrum of any almost periodic Schrödinger
operator is not a polar set (i.e., � is Greenian), but further consequences of Theorem 1.1 were not
previously known even in the almost periodic case.

The next theorem is a specialization of Theorems 1.6, 1.7 to the ergodic setting:

Theorem 1.15. Let (Vη)η∈S be an ergodic family of Schrödinger operators obeying (1-9). If this ergodic
family is regular, then its density of states ρ is equal to the Martin measure ρE. Conversely, if ρ = ρE,
then either the ergodic family is regular, or for a.e. η, the maximal spectral measure µη is supported on a
polar set.

Although positive Lyapunov exponents don’t always correspond to localization, we can now prove that
they always correspond to very thin spectral type. This is the analog of a Jacobi matrix result which has
been described as the ultimate Pastur–Ishii theorem.

Theorem 1.16. Let γ denote the Lyapunov exponent associated to the ergodic family (Vη)η∈S and let µη
denote a maximal spectral measure for HVη . Let Q ⊂ R be the Borel set of λ ∈ R with γ (λ) > 0. Then for
a.e. η ∈ S, there exists a polar set Xη such that µη(Q \ Xη)= 0. In particular, the measure χQ dµη is of
local Hausdorff dimension zero.

It is known in great generality [Damanik et al. 2002] that one-dimensional random Schrödinger operators
give rise to positive Lyapunov exponent throughout the spectrum. In particular, random Schrödinger
operators provide examples of nonregular operators.

Throughout this paper, we follow the dominant literature by working with locally integrable potentials;
we expect that the theory presented here can be extended to potentials which are in the negative Sobolev
space H−1([0, x]) for x < ∞, with an appropriate uniform bound replacing (1-1), and that it can be
adapted to certain other classes of one-dimensional differential operators.

We expect that the notion of regularity introduced in this paper will pave the way to new kinds
of results on Schrödinger operators which were previously beyond reach. For instance, regularity of
measures is used as the standard reference behavior in the study of the local distribution of zeros of
orthogonal polynomials, through so-called clock behavior and universality [Lubinsky 2009; Máté et al.
1991; Simon 2008]; we conjecture that similar results hold for regular Schrödinger operators. Without
regularity, the only currently available Schrödinger result is inevitably more limited in scope to certain
perturbations of periodic Schrödinger operators [Maltsev 2010]. Likewise, logarithmic capacity is used
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to formulate the generalization of the Shohat–Nevai theorem to measures whose essential supports are
regular Parreau–Widom sets [Christiansen 2012]; the Schrödinger counterpart of this result couldn’t even
be formulated without the renormalized Robin constant aE. We expect the theory in this paper to be an
integral part of its eventual proof, and of the broader program of investigating sum rules for Schrödinger
operators with regular Parreau–Widom essential spectra.

2. The Martin function and Akhiezer–Levin sets

In this section we consider in more detail the general Martin theory for Denjoy domains �= C \E with
minE = b0 > −∞. Clearly, we have in mind the application that E is the essential spectrum of some
continuum Schrödinger operator, LV , where V satisfies (1-1).

Recall that the capacity of a Borel set A is defined by

Cap(A)= sup{Cap(K ) : K compact, K ⊂ A}

and we call a Borel set, A, polar, if Cap(A) = 0. Moreover, a property holds quasi-everywhere on a
set B if there exists a polar set A such that the property holds on B \ A. We start with a discussion of
the Green’s function GE(z, z0), z0 ∈�. For standard references on potential theory see [Armitage and
Gardiner 2001; Ransford 1995; Garnett and Marshall 2005]. If z0 ∈ R, then GE(z, z0) is symmetric, that
is, GE(z̄, z0)= GE(z, z0). Let us fix z0 < b0. Then there exists a comb domain

5z0 = {x + iy : 0< x < π, y > s(x)}, (2-1)

where s is a positive upper semicontinuous function, bounded from above, and vanishes Lebesgue-a.e.,
and a conformal mapping θz0 : C+ →5z0 such that

GE(z, z0)= Im θz0(z), z ∈ C+. (2-2)

(Such a representation was proved in [Eremenko and Yuditskii 2012] in the case that E is compact
and z0 = ∞; by a simple transformation λ = 1/(z0 − z) this yields a corresponding representation for
the current setting). Note that θz0(b0) = i lim supu→0 s(u) and θz0(∞) = i lim supu→π s(u). Moreover,
harmonic measure ωE( · , z0) corresponds to the pullback of the normalized (by π) Lebesgue measure
on the base of the comb. The mapping can be extended by symmetry to C \ [b0,∞) such that (2-2) still
holds there. In fact, any such function s leads to a Green’s function of a certain domain.

The Martin kernel normalized at z∗ < b0 is defined on �× (� \ {z∗}) by

ME(z, z0)=
GE(z, z0)

GE(z∗, z0)
. (2-3)

The Martin compactification �̂ is the smallest metric compactification of � such that ME(z, · ) can be
continuously extended to the boundary ∂M�= �̂ \� for each z. We will also write ME(z, z0) for the
extended function. Note that by the Harnack principle the family {ME(z, z0)} is precompact in the space
of positive harmonic functions equipped with uniform convergence on compacts. We call a positive
harmonic function, M, minimal if any harmonic function, h, which satisfies 0 ≤ h ≤ M, is a multiple
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of M, i.e., h = cM, c ≥ 0. Finally, let ∂M
1 � ⊂ ∂M� denote the subset of the Martin boundary, which

consists of minimal harmonic functions. In this case, for every positive harmonic function h, there exists
a unique finite measure ν such that

h(z)=

∫
∂M

1 �

ME(z, x) dν(x), h(z∗)= ν(∂M
1 �). (2-4)

In general ∂M
1 � can be quite abstract, but the situation is rather intuitive for Denjoy domains. In

[Gardiner and Sjödin 2009, Theorem 6] it is shown that there exists a map π : ∂M
1 �→ E∪{∞} such that

for every x ∈ E∪ {∞}, #π−1({x}) is either 1 or 2, depending on how “thin” R ∩� is at x . To state this
precisely we need some definitions. If A is a subset of the Martin boundary ∂M�= �̂ \�, then we say a
property, P, holds near A if there is a Martin-neighborhood A ⊂ W such that P holds on W ∩�. Then,
for A ⊂ �̂ and a positive superharmonic function h on � we define the reduced function

R A
h (x)= inf{u(x) : u ≥ 0 is superharmonic, h ≤ u on A ∩� and h ≤ u near A ∩ ∂M�} (2-5)

and R̂ A
h denotes its lower semicontinuous regularization. A set A ⊂ � is said to be minimally thin at

y ∈ ∂M
1 � if

R̂ A
ME( · ,y) ̸= ME( · , y).

Then #π−1({x})= 2 if and only if there is y ∈π−1({x}) such that�∩R is minimally thin at y. Informally,
if E is sufficiently “dense” at x , then � locally splits into the two half-spaces C+ and C− and we obtain a
Martin function for each of them.

A reformulation of the above statement can be given in the following way. For x ∈ E, let PE(x) denote
the set of positive harmonic functions that are bounded outside every neighborhood of x and vanish
quasi-everywhere on E. As in the proof of [Hirata 2007, Lemma 2.9] one can see that PE(x) is spanned by
the Martin functions related to x . Hence, the above question is whether PE(x) is one- or two-dimensional.
We will provide a simplified proof for the case that there is only one Martin function associated to x
below. This question has attracted much interest and several conditions have been obtained [Ancona
1979; Benedicks 1980; Koosis 1988; Levin 1989c]. To note two extreme cases, if x ∈ (a, b)⊂ E, then
PE(x) is two-dimensional, whereas if x is a endpoint of a gap of E, then PE(x) is one-dimensional, as
discussed in [Gardiner and Sjödin 2009] after Theorem 6.

We are particularly interested in the Martin kernel related to ∞. Since E is semibounded, PE =PE(∞)

is one-dimensional and we can talk about the Martin function M∞(z)= ME(z,∞) related to ∞, which
is known to be symmetric, i.e., M∞(z̄)= M∞(z). Moreover, all limits with zn → −∞ must lead to M∞

and we have
M∞(z)= lim

z0→−∞
M(z, z0)= lim

z0→−∞

Im θz0(z)
GE(z∗, z0)

.

Note that M∞ is not exactly ME from the Introduction, because in the general situation we cannot use
the normalization (1-2). For this reason, we keep the normalization at z∗, but once we have specified to
sets where the limit in (1-2) is positive, we can pass to this normalization. Since M∞(z) is positive and
harmonic in �, setting λ2

= z − b0 it defines a positive harmonic function for λ ∈ C+ by

f (λ)= M∞(z).
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Since f can be represented as

f (x + iy)= ay +

∫
y

(x − t)2 + y2 dν(t),
∫

dν(t)
1 + t2 <∞, (2-6)

and
0 ≤ a = lim

y→∞

f (iy)
y

, (2-7)

we see that M∞(z) can grow at most as
√

−z as z → −∞. In case of two-sided unbounded sets, where
the Martin function can grow at most linearly, Akhiezer and Levin showed that PE is two-dimensional
whenever the Martin function admits the maximal possible growth. This explains why we call E an
Akhiezer–Levin set if

lim
z→−∞

M∞(z)
√

−z
> 0. (2-8)

Note that by (2-7) this limit indeed exists in [0,∞). Since in (2-6), the integral
∫

y/((x − t)2 + y2) dν(t)
defines again a positive harmonic function it follows that

a Re
√

b0 − z ≤ M∞(z) (2-9)

in �. The following theorem presents a list of equivalent characterizations of M∞. We say that h vanishes
continuously at a point x ∈ E if limz→x, z∈� h(z)= 0. We call a subset of � bounded if it is bounded as a
subset of C.

Theorem 2.1. Let H+,b(�) denote the set of positive harmonic functions on � that are bounded on every
bounded subset of �. Then, the following are equivalent:

(i) h ∈ H+,b(�) and h vanishes continuously for every Dirichlet-regular point of E.

(ii) h ∈ H+,b(�) and h vanishes continuously quasi-everywhere on E.

(iii) h ∈ H+,b(�) and h vanishes continuously ωE( · , z0)-a.e.

(iv) h = cM∞, where c ≥ 0.

Proof. Due to [Gardiner and Sjödin 2009, Remark 5, Theorem 6] (iv) ⇒ (i). Kellogg’s theorem [Garnett
and Marshall 2005, Corollary 6.4] yields (i) ⇒ (ii) and by [loc. cit., Theorem III.8.2] we get that (ii) ⇒ (iii).
It remains to show that (iii) ⇒ (iv). Due to (2-4) there exists ν such that

h(z)=

∫
∂M

1 �

ME(z, x) dν(x).

Let K ⊂ ∂M�\{M∞} be compact. Then K has an open neighborhood U in �̂ such that U ∩� is bounded.
As in the proof of [Armitage and Gardiner 2001, Theorem 8.4.1]

RK
h (z)=

∫
K

ME(x, z) dν(x).

Since h ∈ H+,b(�), h is majorized by a constant in U ∩�, so RK
h is a bounded harmonic function in �

which vanishes ωE( · , z0)-a.e. on the boundary. By the maximum principle [Garnett and Marshall 2005,
Theorem III.8.1] it follows that RK

h = 0. In particular, RK
h (z∗)= ν(K )= 0. The claim follows. □
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In a series of papers Levin [1989a; 1989b; 1989c], first systematically established the relation between
extremal problems and comb mappings imposing Dirichlet regularity on the set E. Eremenko and Yuditskii
[2012] provided a modern approach to it, giving a detailed proof for comb mappings for Green’s functions
as discussed above. It relies on the representation of Green’s functions for a compact set E , as

G E(z,∞)=

∫
E

log |z − t | dρE(t)+ γE , (2-10)

where Cap(E)= e−γE and ρE(X)= 0 for sets of zero capacity. It is also discussed that the proof carry
over for Martin functions and the corresponding description is given. Since we were not able to find in
our generality a reference for a representation of the type (2-10), which is certainly known to experts, for
the readers convenience we survey the corresponding theory in the following.

Since M∞ vanishes quasi-everywhere, we can extend M∞ to a subharmonic function to all of C by

M∞(x)= lim sup
z→x
z∈�

M∞(z), x ∈ E; (2-11)

see [Armitage and Gardiner 2001, Theorem 5.2.1]. Hence, we obtain a subharmonic, symmetric function
in C, which is positive and harmonic in C+ and C−. For the following result we refer to [Levin 1989b,
Lemma 2.3] and its corollary. It was initially proved for majorants of subharmonic functions, but it is
mentioned that it extends to the version stated below:

Lemma 2.2. Let v be a subharmonic, symmetric function in C, which is positive and harmonic in
C \ [b0,∞) for some b0 ∈ R. Then

v(z)= v(z∗)+

∫
∞

b0

log
∣∣∣∣1 −

z − z∗

t − z∗

∣∣∣∣ dν(t),
∫

∞

b0

dν(t)
t − z∗

<∞, (2-12)

and for y > 0
∂v(x + iy)

∂y
=

∫
∞

b0

y
(t − x)2 + y2 dν(t) > 0. (2-13)

Remark. Equation (2-12) is essentially the Hadamard representation for the subharmonic function v
and ν is its Riesz measure. Usually the Hadamard representation would include a normalization term
(Re z)/t , which is not needed due to the convergence property of ν in (2-12).

Lemma 2.3. Let 2 be such that Im2= M∞ for z ∈ C+ and ρ be the Riesz measure for M∞. Then, the
functions 2 and i2′ are Herglotz functions and in particular

i2′(z)=

∫
E

dρ(t)
t − z

.

They can be analytically extended to C \ [b0,∞) and 2′
̸= 0 there.

Proof. Applying Lemma 2.2 to M∞ gives a representation of the form (2-12) in terms of the Riesz
measure ρ supported on E and, in particular,

∫
E dρ(t)/(t − z∗) <∞. Moreover,

i2′(z)= c0 +

∫
E

dρ(t)
t − z

(2-14)
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for some c0 ∈ R, since the imaginary parts of the two sides are equal by (2-13). Since 2 is also a Herglotz
function, for some measure µ supported on E,

i2′(z)= i
∫

dµ(t)
(t − z)2

,

∫
dµ(t)
1 + t2 <∞. (2-15)

Using monotone convergence and taking the limit as z → −∞ in (2-14) and (2-15) yields

lim
z→−∞

i2′(z)= 0 = c0.

Since i2′ is Herglotz, 2′
̸= 0 in C+ and C−. Moreover, since it is increasing on (−∞, b0) and vanishes

at −∞ we obtain the final claim. □

The following lemma shows that, like the harmonic measure, ρ gives zero measure to polar sets. Of
course, once we introduce the Martin measure ρE, it will be a scalar multiple of ρ, so the following claim
will also hold for ρE.

Lemma 2.4. Let X ⊂ C be a Borel polar set. Then ρ(X)= 0.

Proof. By [Ransford 1995, Theorem 3.2.3] it suffices to show that for each s > b0 we have∫ s

b0

∫ s

b0

log |x − t | dρ(x) dρ(t) >−∞. (2-16)

By means of the subharmonic extension (2-11), M∞ is nonnegative on C and we get

0 ≤

∫ s

b0

M∞(x) dρ(x)= d + I1 + I2,

where

d = ρ(b0, s)
(

1 −

∫ s

b0

log |t − z∗| dρ(t)
)
,

I1 =

∫ s

b0

∫ s

b0

log |x − t | dρ(t) dρ(x), I2 =

∫ s

b0

∫
∞

s
log

∣∣∣∣1 −
x − z∗

t − z∗

∣∣∣∣ dρ(t) dρ(x).

Since I2 ≤ 0, it follows that −∞<−d ≤ I1, i.e., we have (2-16). □

It was already encountered in [Levin 1989b, Lemma 2.4] that there is an explicit connection between ρ
and the conformal map 2 defined in Lemma 2.3; see also [Eremenko and Yuditskii 2012]. Note that
although in [Levin 1989b] Dirichlet regularity is assumed for the set E, the proof of the following lemma
holds also in our setting. Namely, the Lebesgue measure on the base of the comb corresponds to the
measure ρ on E. To be more precise, Re2 extends continuously to R and we have

Re2(b)− Re2(a)= πρ((a, b)). (2-17)

These are all the ingredients needed to describe the comb domains related to the conformal mapping 2.
There exists a positive upper semicontinuous function s on (0, b), where b ∈ (0,∞], such that 2 maps
C+ conformally onto

5= {x + iy : 0< x < b, y > s(x)}.



606 BENJAMIN EICHINGER AND MILIVOJE LUKIĆ

If b<∞ then lim supx→b s(x)= ∞. We will show in Corollary 2.8 that b being finite corresponds to ∞

being not Dirichlet-regular.

Example 2.5. In their classical work Marchenko and Ostrovskii [1975] studied the relation between
spectra of 1-periodic L2 potentials on the real line and corresponding data of the mapping 2E. They
showed that E is the spectrum of a Schrödinger operator of this type if and only if the corresponding
comb domain is of the form

5E = {x + iy : x > 0, y > 0} \ {kπ + iy : k ∈ N, 0 ≤ y ≤ sk},

and the slit heights sk satisfy
∑

∞

k=1 k2s2
k <∞.

The next example demonstrates Akhiezer–Levin sets which don’t have an expansion of the form (1-3).

Example 2.6. We will construct an explicit expression for the conformal map

2 : C+ →5= C+ \ {n + iy : n ∈ Z, 0< y ≤ y0},

where y0 > 0 is an arbitrary but fixed parameter. We will show that along the imaginary axis we have

2(iy)= iy + ic(y0)+ o(1) as y → ∞,

where, c(y0) is a real constant that depends monotonically on y0 and can attain in fact any real value. Note
that 2 can be continuously extended to R and that E :=2−1(R) is symmetric, E = −E = {−x : x ∈ E}.
Hence, again by defining 2̃(z)=2(λ2), the function M(z)= Im 2̃(z) is an example for a Martin function
of an Akhiezer–Levin set, which has a constant term in its asymptotic expansion. The Christoffel–Darboux
transformation

f1(w)=
1
π

∫ w

−1

dx
√

1 − x2

maps C+ onto 51 = {ϑ = ξ + iη : η > 0, 0< ξ < 1}. In particular f1(−1)= 0 and f1(1)= 1. We choose
ℓ > 1 so that iy0 = f1(−ℓ) and consider

f2(w)=
1
π

∫ w

−ℓ

dx
√
ℓ2 − x2

= f1

(
w

ℓ

)
.

Then 2= f1 ◦ f −1
2 defines a conformal map 2 :51 →51 such that 2(0)= iy0. By symmetry, we can

extend 2 to a conformal map from 2 : C+ →5. Calculations of f1, f2 along the imaginary axis give
2(iy)= i cosh−1(ℓ cosh(y)), so

2(iy)= iy + i log(ℓ)+ o(1) as y → ∞.

We emphasize that in order to show that the limit in (2-8) is always finite for the Martin function, it was
only used that M∞ represents a positive harmonic function in �. This shows that the same conclusion
holds for any such function. In view of (2-4) this growth should also be reflected in the corresponding
asymptotic behavior of M∞, leading to the following criterion for E to be an Akhiezer–Levin set.
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Lemma 2.7. Assume that there exists a positive harmonic function in � such that

lim
z→−∞

h(z)
√

−z
= 1.

Then � is Greenian and E is an Akhiezer–Levin set. Moreover, in this case we have

ME(z)≤ h(z) (2-18)

for all z ∈�, where ME is normalized by limz→−∞ ME(z)/
√

−z = 1.

Proof. By Myrberg’s theorem [Armitage and Gardiner 2001, Theorem 5.3.8] the existence of a nonconstant
positive harmonic function on � implies that � is Greenian. Since h is a positive harmonic function in
�, there exists a unique measure ν with ν(∂M

1 �)= h(z∗) such that

h(z)=

∫
∂M

1 �

M(z, x) dν(x).

In particular, ν({∞}) <∞. Recall that #π−1({∞})= 1. Since (−∞, b0)⊂�, the negative half-axis is
clearly not minimally thin at ∞ so it follows by [Armitage and Gardiner 2001, Theorem 9.2.6] that

lim inf
z→−∞

h(z)
M∞(z)

≤ ν({∞}) <∞. (2-19)

Let λ2
= z − b0 and g(λ)= h(z) and f (λ)= M∞(z). Then f defines a positive harmonic function in C+

and
f (x + iy)= ay +

∫
y

(x − t)2 + y2 dµ(t), a = lim
y→∞

f (iy)
y

.

Hence,

0< lim sup
z→−∞

M∞(z)
h(z)

= lim sup
y→∞

f (iy)
g(iy)

= lim sup
y→∞

f (iy)
y

= a.

Hence, E is an Akhiezer–Levin set. Due to [Armitage and Gardiner 2001, Theorem 9.3.3] we have

ν({∞})= inf
z∈�

h(z)
M∞(z)

≤
h(z)

M∞(z)
(2-20)

and the second claim follows. Finally, (2-20) shows that we actually have equality in (2-19) and it follows
that ν({∞}) corresponds to the normalization of M∞ at ∞. □

Carleson and Totik [2004] showed that PE(x0) being two-dimensional is equivalent to the fact that
GE(z, z0) is Lipschitz continuous at x0, where z0 is some arbitrary interior point. As a corollary of the
comb mapping representation for 2, we show that E being an Akhiezer–Levin set implies continuity
at infinity. Note that by the aforementioned equivalence, one cannot hope for Lipschitz continuity for
semibounded sets, since in this case PE(∞) is always one-dimensional. Alternatively, this could be
seen from the fact that often, at a gap edge a, the Green’s function has behavior GE(z, z0) ∼

√
z − a

and thus is not Lipschitz continuous. Moreover, as discussed in [Volberg and Yuditskii 2016] the set
E = R+ \

⋃
n∈Z rn(a1, b1), where 0 < a1 < b1 and r > 1, provides an example of a set for which ∞ is

Dirichlet-regular, but which is not an Akhiezer–Levin set. In this sense the following result is optimal.
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Corollary 2.8. Let E ⊂ R be closed and semibounded and 2 be the corresponding comb-mapping. If
sup{Re2(z) : z ∈ C+} = ∞, then ∞ is a Dirichlet-regular point of E. This holds in particular if E is an
Akhiezer–Levin set.

Proof. We will assume that lim supz0→−∞ GE(z0, z∗) = ε > 0 in order to obtain a contradiction. Note
that sup{Re θz0(z) : z ∈ C+} = π , so for any z ∈ C+,

lim
z0→−∞

Re θz0(z)
GE(z∗, z0)

≤ lim inf
z0→−∞

π

GE(z∗, z0)
.

Since

2(z)= lim
z0→−∞

θz0(z)
GE(z∗, z0)

,

taking the supremum over z ∈ C+ gives sup{Re2(z) : z ∈ C+} ≤ ε−1π <∞. Now, as already mentioned
in [Eremenko and Yuditskii 2012], using upper semicontinuity of h it follows that vanishing of the radial
limit of GE(z0, z∗) implies Dirichlet regularity. Let Im θz∗

= GE(z, z∗) and it will be more convenient to
shift the mapping by −π . Then, limz0→−∞ GE(z0, z∗)= 0 implies that lim supu→0 h(u)= 0. Therefore,
(−∞, z∗) is mapped by θz∗

onto iR+ and we can extend θz∗
by symmetry to C \ (R \ (−∞, z∗)). In

particular iR+ is an interior ray of the image, 5e =5z∗
∪ iR+ ∪{−x + iy : x + iy ∈5z∗

}, of this extended
map. Since lim supu→0 h(u)= 0, we have 5e is locally connected at 0 and hence θz∗

can be continuously
extended to 0, which implies that ∞ is a Dirichlet-regular point. This finishes the proof of the first claim.

In view of (2-17), sup{Re2(z) : z ∈ C+} < ∞ means that ρ is finite. We show this implies that
M∞ can grow at most like ρ(R) log |z| and therefore E is not an Akhiezer–Levin set. Let’s assume that
|z∗ − b0|> 1 and z∗ < 0. Then, using (2-12) we see that for z < z∗ we have

M∞(z)− ρ(R) log |z| = M∞(z∗)+

∫
∞

b0

log
∣∣∣∣ 1
t − λ∗

(
1 −

z∗

z

)∣∣∣∣ dρ(t)≤ M∞(z∗). □

For Akhiezer–Levin sets one could also use the result of Carleson and Totik and the substitution
λ2

= z − b0 to see that GE is Hölder continuous with exponent 1
2 at ∞.

3. Asymptotic behavior of eigensolutions

We now turn our attention to the Schrödinger operator LV and associated objects. Fundamental solutions
at z ∈ C are defined as solutions u(x, z), v(x, z) of the initial value problems

−∂2
x u + (V (x)− z)u = 0, u(0, z)= 0, (∂x u)(0, z)= 1, (3-1)

−∂2
x v+ (V (x)− z)v = 0, v(0, z)= 1, (∂xv)(0, z)= 0. (3-2)

The natural regularity class for the solutions is that of functions which are in W 2,1([0, x]) for every x <∞,
and the differential equations are interpreted as equality of L1 functions, i.e., equality Lebesgue-a.e. It is
useful to substitute

k =
√

−z
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and view the initial value problems as perturbations by V of −∂2
x + k2. We will always assume that

Re k ≥ 0; this can be done pointwise throughout C, and later we will view k as a branch of the square
root such that Re k > 0 if z ∈ C \ [0,∞). Note also that this makes Im k < 0 if z ∈ C+. By choosing the
branch

√
z = ik, we see that

√
z ∈ C+ if z ∈ C \ [0,∞). In particular, Im

√
z = Re k.

The fundamental solutions for V = 0 are the functions

c(x, k)= cosh(kx), s(x, k)=

{
sinh(kx)/k, k ̸= 0,
x, k = 0.

By standard arguments, for general V ∈ L1([0, 1]), the initial value problems (3-1), (3-2) are rewritten as
integral equations, and by Volterra-type arguments, convergent series representations are then found for
the fundamental solutions. With the notation 1n(x) = {t ∈ Rn

| x ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ 0}, the series
representations for fundamental solutions and their first derivatives are

u(x, z)= s(x, k)+
∞∑

n=1

∫
1n(x)

s(x − t1, k)
(n−1∏

j=1

V (tj )s(tj − t j+1, k)
)

V (tn)s(tn, k) dnt, (3-3)

v(x, z)= c(x, k)+
∞∑

n=1

∫
1n(x)

s(x − t1, k)
(n−1∏

j=1

V (tj )s(tj − tj+1, k)
)

V (tn)c(tn, k) dnt, (3-4)

(∂x u)(x, z)= c(x, k)+
∞∑

n=1

∫
1n(x)

c(x − t1, k)
(n−1∏

j=1

V (tj )s(tj − tj+1, k)
)

V (tn)s(tn, k) dnt, (3-5)

(∂xv)(x, z)= k2s(x, k)+
∞∑

n=1

∫
1n(x)

c(x − t1, k)
(n−1∏

j=1

V (tj )s(tj − tj+1, k)
)

V (tn)c(tn, k) dnt. (3-6)

These expansions are derived, e.g., in [Pöschel and Trubowitz 1987] for V ∈ L2([0, x]), but they hold for
V ∈ L1([0, x]) as well, due to the estimate∣∣∣∣∫ x

0

∫ t1

0
· · ·

∫ tn−1

0
eRe k(x−t1)

( n∏
j=1

V (tj )eRe k(tj −tj+1)

)
V (tn)eRe ktn dtn · · · dt2 dt1

∣∣∣∣
≤

1
n!

(∫ x

0
|V (s)| ds

)n

eRe kx , (3-7)

which is proved by combining the exponentials and using permutations of t and symmetry, and the
elementary estimates which follow directly from Euler’s formula,

|c(x, k)| ≤ eRe kx , |s(x, k)| ≤ |k|
−1eRe kx . (3-8)

The same estimates which guarantee convergence provide exponential upper bounds on eigensolutions;
these are often stated over a fixed interval, but we will need a kind of uniformity in x :

Lemma 3.1. For all z = −k2
∈ C and x > 0,

|u(x,−k2)| ≤ e(1+Re k)x+
∫ x

0 |V (t)| dt . (3-9)
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Proof. Using |s(x, k)| =
∣∣∫ x

0 c(t, k) dt
∣∣ ≤ xeRe kx

≤ e(1+Re k)x and then applying (3-7) to each term of
(3-3) implies that

|u(x,−k2)| ≤ e(1+Re k)x
∞∑

n=0

1
n!

(∫ x

0
|V (t)|

)n

. □

Corollary 3.2. If V obeys (1-1), for each R > 0 there exists CR such that for all |z| ≤ R and x ≥ 1 we
have 1

x log|u(x, z)| ≤ CR .

Proof. This is an immediate consequence of the previous lemma together with
∫ x

0 |V (t)| dt ≤ C(x + 1)≤

2Cx for x ≥ 1, where C = supx≥0
∫ x+1

x |V (t)| dt . □

We will need asymptotic statements about m-functions. Such statements are ubiquitous, especially for
smooth potentials; we need an asymptotic expansion which doesn’t assume any smoothness.

Lemma 3.3. For fixed x > 0, as z → ∞, arg z ∈ [δ, 2π − δ],

−
v(x, z)
u(x, z)

= −k −

∫ x

0
V (t)e−2kt dt +

1
k

∫ x

0

∫ t1

0
e−2kt1(1 − e−2kt2)V (t1)V (t2) dt2 dt1 + O(|k|

−2)

uniformly in V in bounded subsets of L1([0, x]).

Proof. Assume that
∫ x

0 |V (t)| dt ≤ C . Define

An = 2kn+1e−kx
∫
1n(x)

s(x − t1, k)
(n−1∏

j=1

V (tj )s(tj − tj+1, k)
)

V (tn)s(tn, k) dnt,

Bn = 2kne−kx
∫
1n(x)

s(x − t1, k)
(n−1∏

j=1

V (tj )s(tj − tj+1, k)
)

V (tn)c(tn, k) dnt,

From (3-8) and (3-7) it follows that |An|, |Bn| ≤ 2Cn/n!. In the nontangential limit z → ∞, arg z ∈

[δ, 2π − δ], we have the elementary estimates

s(x, k)
ekx/(2k)

= 1 − e−2kx
= 1 + O(|k|

−3),
c(x, k)
ekx/2

= 1 + e−2kx
= 1 + O(|k|

−3),

so the series expansions for u(x, z), v(x, z) imply

u(x, z)=
ekx

2k

(
1 +

A1

k
+

A2

k2 + O(|k|
−3)

)
,

v(x, z)=
ekx

2

(
1 +

B1

k
+

B2

k2 + O(|k|
−3)

)
,

with the error O(|k|
−3) depending only on C and δ. Dividing,

−
v(x, z)
u(x, z)

= −k
(

1 +
B1 − A1

k
+

B2 − A2 − A1(B1 − A1)

k2 + O(|k|
−3)

)
. (3-10)
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Moreover,

B1 − A1 =

∫ x

0
(1 − e−2k(x−t))V (t)e−2kt dt =

∫ x

0
V (t)e−2kt dt + O(e−2 Re kx) (3-11)

Multiplying by

A1 =
1
2

∫ x

0
(1 − e−2k(x−s))V (s)(1 − e−2ks) ds

gives a formula for A1(B1− A1) as a double integral over [0, x]
2, and using the substitution t1 = max{s, t},

t2 = min{s, t} gives

A1(B1 − A1)=
1
2

∫ x

0

∫ t1

0
(e−2kt1 + e−2kt2 − 2e−2k(t1+t2) − e−2k(x−t1+t2))V (t1)V (t2) dt2 dt1 + O(e−2 Re kx)

(some terms are grouped into the error O(e−2 Re kx) since, e.g., x − t2 + t1 ≥ x). Similarly,

B2 − A2 =
1
2

∫ x

0

∫ t1

0
(1 − e−2k(x−t1))V (t1)(1 − e−2k(t1−t2))V (t2)e−2kt2 dt2 dt1

=
1
2

∫ x

0

∫ t1

0
(e−2kt2 − e−2kt1 − e−2k(x−t1+t2))V (t1)V (t2) dt2 dt1 + O(e−2 Re kx).

Substituting these formulas into (3-10) concludes the proof. □

Returning to the half-line setting from the Introduction, we recall that half-line potentials obeying
the boundedness assumption (1-1) are in the limit point case at +∞, i.e., for every z ∈ C \E, the set of
solutions of

−∂2
xψ + Vψ = zψ, ψ ∈ L2((0,∞)),

is one-dimensional. Any such nontrivial solution is called the Weyl solution; it is uniquely determined up
to normalization and we will not fix any particular normalization. We will use

m(x, z)=
(∂xψ)(x, z)
ψ(x, z)

. (3-12)

Proposition 3.4. As z → ∞, arg z ∈ [δ, π − δ],

m(s, z)= −k −

∫ 1

0
V (s + t)e−2kt dt +

1
k

∫ 1

0

∫ t1

0
e−2kt1(1 − e−2kt2)V (s + t1)V (s + t2) dt2 dt1 + O(|k|

−2)

and the error is uniform in s ∈ [0,∞) if V obeys (1-1).

Proof. By an argument of [Atkinson 1981], for arg z ∈ [δ, π − δ], the Weyl circle at x has radius

r =
2|k|

2

|Im k|
e−2x Re k(1 + O(|k|

−1)),

which decays exponentially as z → ∞, arg z ∈ [δ, π − δ]; the error term O(|k|
−1) is uniform for V in

bounded subsets of [0, x], since this term is derived by arguments like those in the proof of Lemma 3.3.
Since m+(0, z) lies inside the Weyl circle and −v(1, z)/u(1, z) lies on the circle, this radius allows us to
estimate ∣∣∣∣m(0, z)+

v(1, z)
u(1, z)

∣∣∣∣ ≤
4|k|

2

|Im k|
e−2 Re k(1 + O(|k|

−1)).
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In the nontangential limit as arg z ∈ [δ, π − δ], this error is O(|k|
−2), so the previous lemma implies

m(0, z)= −k −

∫ 1

0
V (t)e−2kt dt +

1
k

∫ 1

0

∫ t1

0
e−2kt1(1 − e−2kt2)V (t1)V (t2) dt2 dt1 + O(|k|

−2).

Applying this for an arbitrary s ≥ 0 to the translated half-line potential Vs(x) = V (x + s) on [0,∞)

concludes the proof. □

For the half-line operator LV , the Dirichlet solution can be interpreted as the Weyl solution correspond-
ing to the endpoint 0. Therefore, the Atkinson argument can be applied also “in reverse”, to produce
uniform asymptotics on the logarithmic derivative of u(x, z). To produce uniform asymptotics, we fix the
interval length 1, as in the previous proof:

Corollary 3.5. As z → ∞, arg z ∈ [δ, π − δ], for all s ≥ 1,

−
(∂x u)(s, z)

u(s, z)
= −k −

∫ 1

0
V (s − t)e−2kt dt

+
1
k

∫ 1

0

∫ t1

0
e−2kt1(1 − e−2kt2)V (s − t1)V (s − t2) dt2 dt1 + O(|k|

−2)

and the error is uniform in s ∈ [1,∞) if V obeys (1-1).

To make some uniform statements for a family of Herglotz functions, we will use the Carathéodory
inequality for the half-plane [Levin 1980, Proof of Theorem I.8]: for any Herglotz function f ,

| f (z)| ≤ | f (i)| + Im f (i)
2|z − i |

|z + i | − |z − i |
∀z ∈ C+. (3-13)

Lemma 3.6. Fix a potential V which obeys (1-1). For each z ∈ C+,

sup
x≥1

∣∣∣∣(∂x u)(x, z)
u(x, z)

∣∣∣∣<∞. (3-14)

Proof. The ratio −(∂x u)(x, z)/u(x, z) is a Herglotz function and obeys the nontangential asymptotics in
Corollary 3.5. The error is uniform in x ≥ 1 since V obeys (1-1). In particular, for z = iy0 with some fixed
y0 > 0 large enough, Corollary 3.5 implies an upper bound independent of x and therefore (3-14). By
rescaling by y0 and using (3-13), the upper bound at iy0 implies uniform upper bounds for z in compact
subsets of C+. □

For z /∈ σ(LV ), ψ decays exponentially as x → ∞. The Weyl solution ψ and the Dirichlet solution u
are related by the Wronskian

W (ψ, u)= (∂x u)(x, z)ψ(x, z)− (∂xψ)(x, z)u(x, z),

which is independent of x and nonzero, since u, ψ are linearly independent (otherwise they would give
an eigenvalue of LV ). This strongly suggests that u should grow at the same rate at which ψ decays, but
a proof based only on the Wronskian is difficult due to the derivative, especially if a pointwise statement
is desired. We therefore use a different argument:
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Lemma 3.7. Fix a potential V which obeys (1-1). For each z ∈ C+, there exists C such that, for all
x ∈ [1,∞),

C−1
≤ |u(x, z)ψ(x, z)| ≤ C.

Proof. We use the diagonal (spectral-theoretic) Green’s function for LV ,

g(x, x; z)=
u(x, z)ψ(x, z)

W (ψ, u)
, (3-15)

which can be written as

−
1

g(x, x; z)
=
(∂xψ)(x, z)
ψ(x, z)

−
(∂x u)(x, z)

u(x, z)
. (3-16)

Using the above asymptotics for m-functions gives a well-known asymptotic statement,

g(x, x; z)=
1

2
√

−z
+ O(|z|−1), z → ∞, arg z ∈ [δ, π − δ],

and the proof given here shows that this asymptotic behavior is uniform in x ∈ [1,∞), since V obeys
(1-1). In particular, for some fixed z = iy with y large enough, this implies

sup
x∈[1,∞)

|g(x, x; iy)|<∞, inf
x∈[1,∞)

|g(x, x; iy)|> 0.

Rescaling z by a factor y and applying (3-13) to the Herglotz functions g(x, x; z) and −1/g(x, x; z)
implies uniform upper and lower bounds on compact subsets of C+.

For any z ∈ C+, the Wronskian is nonzero and independent of x , so by (3-15), uniform bounds in x
for g(x, x; z) imply uniform bounds in x (for each z ∈ C+) for u(x, z)ψ(x, z). □

The growth rate of u(x, z) can now be expressed in terms of averages of the m-functions:

Corollary 3.8. For any z ∈ C+,

lim sup
x→∞

∣∣∣∣1
x

log u(x, z)+ 1
x

∫ x

0
m(s, z) ds

∣∣∣∣ = 0. (3-17)

Proof. This follows from Lemma 3.7 since m(x, z) is the logarithmic derivative of ψ(x, z). □

Expansions for m(s, z) are often stated in terms of values of V and its derivatives at s, but such
expansions assume some regularity of V, and the error terms in such expansions are usually not uniform
in the appropriate local norm for V. By working directly with the expansion in Proposition 3.4, we can
obtain uniform expansions for the averages without imposing any regularity on V.

Corollary 3.9. If V obeys (1-1),

lim sup
x→∞

∣∣∣∣1
x

∫ x

0
m(s, z) ds + k +

1
2kx

∫ x

0
V (s) ds

∣∣∣∣ = O(|k|
−2), (3-18)

as z = −k2
→ ∞, arg z ∈ [δ, π − δ] for any δ > 0.
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Proof. Due to the uniformity of the error in the asymptotic expansion from Proposition 3.4,

1
x

∫ x

0
m(s, z) ds = −k −

1
x

∫ x

0

∫ 1

0
V (s + t)e−2kt dt ds

+
1

kx

∫ x

0

∫ 1

0

∫ t1

0
e−2kt1(1 − e−2kt2)V (s + t1)V (s + t2) dt2 dt1 ds + O(|k|

−2),

with the error term independent of x . For the term linear in V, we use p = s + t to rewrite the iterated
integral as

∫ 1
0

∫ x+t
t V (p)e−2kt dp dt . Then we wish to note that

1
x

∫ 1

0

∫ x+t

t
V (p)e−2kt dp dt =

1
x

∫ 1

0

∫ x

0
V (p)e−2kt dp dt + O(x−1), x → ∞, (3-19)

for any k. This is because the two iterated integrals describe similar regions in R2: the symmetric
difference of the regions {(t, p) | 0 ≤ t ≤ 1, t ≤ p ≤ x + t} and {(t, p) | 0 ≤ t ≤ 1, 0 ≤ p ≤ x} is
contained in [0, 1] × ([0, 1] ∪ [x, x + 1]), and the double integral over that region is bounded uniformly
in x due to (1-1). Now the integral in (3-19) separates and simplifies using

∫ 1
0 e−2kt dt =

1
2k + O(e−2 Re k).

By analogous arguments, using q = s + t2 to rewrite the quadratic term and comparing the regions
{(t1, t2, q) | 0 ≤ t2 ≤ t1 ≤ 1, t2 ≤ q ≤ x + t2} and {(t1, t2, q) | 0 ≤ t2 ≤ t1 ≤ 1, 0 ≤ q ≤ x},

1
kx

∫ x

0

∫ 1

0

∫ t1

0
e−2kt1(1 − e−2kt2)V (s + t1)V (s + t2) dt2 dt1 ds

=
1

kx

∫ 1

0

∫ t1

0

∫ x

0
e−2kt1(1 − e−2kt2)V (q + t1 − t2)V (q) dq dt2 dt1 + O(x−1)

=
1

kx

∫ 1

0

∫ x

0
h(u)V (q + u)V (q) dq du + O(x−1)

as x → ∞, for any k. For the last step we introduced u = t1 − t2 ∈ [0, 1] and

h(u)=

∫ 1−u

0
e−2k(u+t2)(1 − e−2kt2) dt2.

For the remaining double integral, it is elementary to estimate that h(u)= O(|k|
−1) uniformly in u ∈ [0, 1]

and that
1
x

∫ 1

0

∫ x

0
|V (q + u)V (q)| dq du ≤ C2,

where C denotes the sup in (1-1), so (3-18) follows. □

4. Regular measures for half-line Schrödinger operators

The main part of this section is devoted to the study of limits of the function

h(x, z) :=
1
x

log |u(x, z)| (4-1)

as x → ∞. Our first goal is to show that for z ∈ C+ we have that lim infx→∞ h(x, z)≥ 0.

Lemma 4.1. Fix z ∈ C+. Then

lim inf
x→∞

1
x

log |u(x, z)| ≥ 0.
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Proof. Note first of all that u(x, z) ̸= 0 whenever x > 0, because the converse would correspond to a
complex eigenvalue for the self-adjoint realization of LV on [0, x] with Dirichlet boundary conditions.
The Weyl solution ψ(x, z) is an eigensolution and is in L2((0,∞)); the condition (1-1) is sufficient to
conclude that ψ decays pointwise [Lukic 2013, Theorem 1.1], i.e.,

lim
x→∞

ψ(x, z)= 0.

Combining with Lemma 3.7 shows that |u(x, z)| → ∞ as x → ∞, which completes the proof. □

Let E = σess(LV ) written in the form (1-4). That is b0 = minE and (aj , bj ) denote the gaps of E.

Lemma 4.2. For any ε > 0 there exists x0 > 0 such that u(x, z) ̸= 0 for x > x0 and z ≤ b0 −ε. Moreover,
let n j (ε) denote the finite number of eigenvalues in (aj + ε, bj − ε). Then, for any x > 0, u(x, z) has at
most n j (ε)+ 1 zeros in (aj + ε, bj − ε).

Proof. Since LV is semibounded there are at most finitely many eigenvalues below b0 − ε. Hence, the
first statement follows by Sturm oscillation theory.

As in the proof of Lemma 3.7, we use the spectral-theoretic Green’s function g(x, x; z). By the
Weyl M-matrix representation for LV centered at x , g(x, x; · ) is analytic on C \ σ(LV ) and, since it
is Herglotz, it is strictly increasing on intervals in R \ σ(LV ). In particular, every pole of g(x, x; · )

is an eigenvalue of LV , so it has at most n j (ε) poles in (aj + ε, bj − ε). By (3-16), every zero of
u(x, z) is a pole of −(∂x u)(x, z)/u(x, z) and a zero of g(x, x; · ). Since zeros and poles of the Herglotz
function g(x, x; · ) strictly interlace on intervals in the domain of meromorphicity, it follows that u(x, z)
has at most n j (ε)+ 1 zeros in (aj + ε, bj − ε). □

We are now ready to study the existence of limit points for the family of functions F = {h(x, z)}x∈[1,∞).
Since u(x, · ) are entire functions, the functions h(x, · ) are subharmonic in C, and they can be viewed as
elements of the space of distributions D′(C) with nonnegative distributional Laplacian.

Theorem 4.3. (a) The family F = {h(x, z)}x∈[1,∞) is precompact in D′(C).

(b) For any sequence (x j )
∞

j=1 with x j → ∞ such that h(x j , · ) converges in D′(C), the limit h =

lim j→∞ h(x j , · ) is also a subharmonic function on C, harmonic on C\E, and h(x j , · ) also converge
to h uniformly on compact subsets of C \E.

Proof. (a) By Corollary 3.2, h(x, z) is uniformly bounded from above on compact subsets of C. Moreover,
Lemma 4.1 implies a pointwise lower bound at some arbitrary point z0 ∈ C+. Hence, [Hörmander 1983,
Theorem 4.1.9] shows that F is precompact in the topology of D′(C).

(b) On C+ and on C−, the functions h(x, z) are harmonic and uniformly bounded above. Since they
are also pointwise bounded below, they are uniformly bounded and uniformly equicontinuous on each
compact subset of C±. Therefore, they are precompact in the topology of uniform convergence on compact
subsets of C±. Since this convergence implies convergence in L1

loc(C±), it follows that if the sequence
h(x j , · ) converges in D′(C) to h, then it also converges to h uniformly on compact subsets of C±.

Next, we show that h has a harmonic extension through an arbitrary gap (am, bm) of E. Fix ε > 0.
By Lemma 4.2, there are at most nm(ε)+ 1 zeros of u(x j , z) in (am + ε, bm − ε). Let pj be the monic
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polynomial of degree at most nm(ε)+ 1 which vanishes exactly at these zeros. Now consider

f j (z)=
1
x j

log
∣∣∣∣u(x j , z)

pj (z)

∣∣∣∣,
which is harmonic on C+∪ C−∪(am+ε, bm−ε). On the boundary of the rectangle (am−1, bm+1)×(−1, 1),
pj is uniformly bounded below by 1, so by the maximum principle, the analytic functions u(x j , z)/pj (z)
are also bounded above by ecx j in this rectangle for some constant c. Hence, f j (z) is locally uniformly
bounded above on Rm = (am + ε, bm − ε)× (−1, 1). Since all zeros of pj are in (am, bm), there is still a
pointwise lower bound for z0 ∈ C+. Hence, the functions f j are harmonic on Rm and precompact in the
topology of uniform convergence on compacts. For any z ∈ Rm \ R,

lim
j→∞

(h j (z)− f j (z))= lim
j→∞

1
x j

log|pj (z)| = 0

since |Im z|nm(ε)+1
≤ |pj (z)| ≤ (bm − am + 1)nm(ε)+1. Hence, any subsequential limit of the f j (z) is a

harmonic function on Rm which agrees with h on Rm \ R. It follows that f j converge in Rm uniformly on
compacts, so it provides a harmonic extension for h through (am + ε, bm − ε). Since ε > 0 was arbitrary
and the extensions must coincide on their common domain, we obtain an extension through (am, bm) by
letting ε → 0. It follows from the weak identity principle for subharmonic functions [Ransford 1995,
Theorem 2.7.5] that the harmonic extension coincides with h.

Consider a compact K ⊂ C \ [b0,∞). By possibly increasing K , assume that K ̸⊂ R. Choose an
open set U such that K ⊂ U ⊂ U ⊂ C \ [b0,∞). By Lemma 4.2, for all sufficiently large j , we have
h j (z) is harmonic in U. The functions h j are uniformly bounded above and pointwise bounded below at
z0 ∈ K ∩ (C+ ∪ C−), so they form a precompact sequence with respect to uniform convergence on K . As
before, every limit is equal to h, so h j converge to h uniformly on compacts. □

Collecting our results now yields that the limits define a positive harmonic function in �= C \E.

Theorem 4.4. Let x j →∞ be a sequence such that h j = h(x j , · ) converge in D′(C). Then h = lim j→∞ h j

defines a positive harmonic function in �, the limit

a = lim
j→∞

1
x j

∫ x j

0
V (x) dx (4-2)

exists, and h has the nontangential asymptotic behavior

h(z)= Re
(

k +
a
2k

)
+ O(|k|

−2), (4-3)

z → ∞, δ ≤ arg z ≤ 2π − δ for any δ > 0.

Proof. Harmonicity of h was proved in Theorem 4.3 and positivity in C+ ∪ C− follows from Lemma 4.1.
That h is also positive in R \ E follows by the maximum principle for harmonic functions, and by
Corollary 3.8,

h(z)= − lim
j→∞

1
x j

Re
∫ x j

0
m(x, z) dx . (4-4)



STAHL–TOTIK REGULARITY FOR CONTINUUM SCHRÖDINGER OPERATORS 617

Define c = min σ(LV ). By general spectral theory, m(x, z) are analytic functions on C \ [c,∞) and
m(x, z) < 0 on (−∞, c). Since convergence of analytic functions follows from convergence of their real
parts together with convergence at one point, from Im m(x, z)= 0 for z < c together with (4-4), it follows
that the limit

w(z)= lim
j→∞

1
x j

∫ x j

0
m(x, z) dx

converges uniformly on compact subsets of C \ [c,∞). If a denotes some accumulation point of the
sequence (1/x j )

∫ x j
0 V (x) dx , applying Corollary 3.9 along the subsequence and using uniformity of the

error term, it follows that
w(z)= −k −

a
2k

+ O(|k|
−2) (4-5)

nontangentially as z → ∞, with arg z ∈ [δ, π − δ]. This asymptotic behavior can only hold for one value
of a, so it follows that the limit (4-2) exists.

We know that (4-5) holds as z →∞ with arg z ∈ [δ, π−δ] and, by symmetry, for arg z ∈ [π+δ, 2π−δ].
It remains to extend this asymptotic behavior to a sector of the form arg z ∈ [π − δ, π + δ]. Without loss
of generality assume c = 0. Since Rew = −h ≤ 0, the function f (λ)= −iw(λ2) is Herglotz, and obeys

f (λ)= λ−
a
2λ

+ O(|λ|−2), |λ| → ∞, (4-6)

along the rays arg λ=π/2−δ/2 and arg λ=π/2+δ/2. In the sector T ={λ :π/2−δ/2≤arg λ≤π/2+δ/2},
the function g(λ)= λ2( f (λ)−λ+ a/(2λ)) is analytic. It has a continuous extension to T with g(0)= 0,
because f (λ)= O(1/λ) as λ→ 0 nontangentially. By (4-6), g is bounded on the boundary of T. Finally,
since f is Herglotz, f, g grow at most polynomially as λ→ ∞, λ ∈ T, so by Phragmén–Lindelöf, g is
bounded in T. This implies that f has the asymptotic behavior (4-6) also in the sector T. Rewriting the
conclusion for w and h = − Rew completes the proof. □

We need the following variant of the Herglotz representation:

Lemma 4.5. Let f be a Herglotz function. Assume Im f (iy)= O(y−1) as y → ∞. Then for some β ∈ R

f (λ)= β +

∫
R

dµ(t)
t − λ

, with lim
y→∞

y Im f (iy)= µ(R) <∞,

and
f (λ)= β −

µ(R)

λ
+ o(|λ|−1), (4-7)

λ→ ∞, δ ≤ arg λ≤ π − δ for any δ > 0.

Proof. Starting from the Herglotz representation, we can write Im f (iy)= ay +
∫

y/(t2
+ y2) dµ(t), with

limy→∞ Im f (iy)/y = a. Hence, by our assumption, a = 0. Moreover, by monotone convergence

lim
y→∞

y Im f (iy)= lim
y→∞

∫
y2

t2 + y2 dµ(t)= µ(R).

By our assumption, this shows that µ(R) <∞. We have

λ

∫
R

dµ(t)
t − λ

+µ(R)=

∫
R

t
t − λ

dµ(t)→ 0 as λ→ ∞,

by dominated convergence since |t/(t − λ)| ≤ 1/sin δ. □
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We are now ready to prove an asymptotic expansion (1-3) of higher order for ME.

Proof of Theorem 1.1. By translation, we may assume that 0 = minE. By precompactness of the
family {h(x, z)}x≥1, there is a sequence xn → ∞ for which the limit h = limn→∞(1/xn) log|u(xn, · )|

is convergent in D′(C). By Theorem 4.4, h is a positive harmonic function in � and h(z)/
√

−z → 1
as z → −∞, so by Lemma 2.7, � is Greenian, obeys the Akhiezer–Levin condition, and h ≥ ME in �.
Using (2-9), we obtain for z ∈�

Re
√

−z ≤ ME(z)≤ h(z). (4-8)

Hence, the difference ME(−k2)− Re k defines a positive harmonic function in � and (4-3), (4-8) imply
that ME(−k2)− Re k = O(|k|

−1). Set z = λ2 and v(λ) = ME(−k2)− Re k. We thus obtain a positive
harmonic function in C+ such that v(iy)= O(y−1). By Lemma 4.5 there is a constant c such that

v(λ)= − Im
( c
λ

)
+ o(|λ|−1)

as λ→ ∞ nontangentially in C+. Recalling that λ= ik, this shows that

ME(−k2)− Re k = Re
(c

k

)
+ o(|k|

−1). □

Proof of Theorem 1.2. Consider a sequence xn → ∞ such that

lim
n→∞

1
xn

∫ xn

0
V (t) dt = lim inf

x→∞

1
x

∫ x

0
V (t) dt.

Due to Theorem 4.3, this sequence has a subsequence for which the limit h = lim j→∞(1/xn j ) log|u(xn j , · )|

is convergent in D′(C). As in the proof of Theorem 1.1, we have h ≥ ME in �. Theorems 1.1 and 4.4
yield

aE = lim
k→+∞

2k(ME(−k2)− k)≤ lim
k→+∞

2k(h(−k2)− k)= lim
j→∞

1
xn j

∫ xnj

0
V (s) ds. □

Proof of Theorem 1.3. Fix z0 ∈ C \ [minE,∞) and consider a sequence xn → ∞ such that

lim
n→∞

1
xn

log|u(xn, z0)| = lim inf
x→∞

1
x

log|u(x, z0)|.

We can again pass to a subsequence such that h = lim j→∞(1/xn j ) log|u(xn j , · )| and h ≥ ME in �. In
particular,

lim inf
x→∞

1
x

log|u(x, z0)| = h(z0)≥ ME(z0). □

Proof of Theorem 1.5. By inclusions, we have (vi) ⇒ (iv) and (v) ⇒ (iv).

(iv) ⇒ (vi): Consider any sequence x j → ∞ such that the limit h = lim j→∞ h(x j , · ) converges. The
limit h obeys h ≥ ME on C+ by Theorem 1.3 and obeys h(z)≤ ME(z) for some z ∈ C+. By the maximum
principle, h = ME on C+, and then on � by harmonic continuation. Thus, ME is the only possible
subsequential limit of h(x, · ) as x → ∞, so by precompactness, limx→∞ h(x, z)= ME(z) uniformly on
compact subsets of C \ [b0,∞).
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(vi) ⇒ (v): Given (vi), we know that for any convergent sequence h(xn, z) the limit is ME. For z ∈ [b0,∞)

we have by [Azarin 2009, Theorem 2.7.4.1] that

lim sup
n→∞

h(xn, z)≤ (lim sup
n→∞

h(xn, z))̌ = ME(z),

where f̌ denotes the upper semicontinuous regularization of f . The first inequality follows by the general
fact that f ≤ f̌ .

(v) ⇒ (ii): This follows from Theorem 2.1.

(ii) ⇒ (iii): Due to [Garnett and Marshall 2005, Corollary 6.4] the set of Dirichlet-irregular points is polar
and thus, by [loc. cit., Theorem 8.2] it is of harmonic measure zero and the claim follows.

(iii) ⇒ (vi): Take a sequence xn → ∞ such that limn→∞ h(xn, z) = h(z) in D′(C) and uniformly on
compact subsets of C \ [b0,∞). Due to the upper envelope theorem [Azarin 2009, Theorem 2.7.4.1],
there is a polar set X1 such that, for any z ∈ C \ X1,

lim sup
n→∞

h(xn, z)= h(z).

On the other hand, assuming (iii), there exists X2 with ωE(X2, z0)= 0 such that, for t ∈ E \ (X1 ∪ X2) by
upper semicontinuity

0 ≤ lim inf
z→t
z∈�

h(z)≤ lim sup
z→t
z∈�

h(z)≤ h(t)≤ 0.

Since ωE(X1 ∪ X2, z0) = 0, Theorem 2.1 gives h = cME. Comparing the leading-order asymptotic
behavior at ∞ shows that c = 1. Thus, ME is the only possible subsequential limit of h(x, · ) as x → ∞,
so by precompactness, limx→∞ h(x, z)= ME(z) uniformly on compact subsets of C \ [b0,∞).

(vi) ⇒ (i): By Theorem 4.4, (vi) implies that (1/x j )
∫ x j

0 V (t) dt → aE for every sequence x j → ∞, so (i)
follows.

(i) ⇒ (vi): Take a sequence xn → ∞ such that h = limn→∞ h(xn, · ) converges in D′(C). Define
v(λ)= h(−k2)− M(−k2). Similarly to the proof of C+. Theorem 1.1, this yields a positive harmonic
function in By Theorems 4.4 and 1.1, v(iy)= o(y−1) as y → ∞. By Lemma 4.5, limy→∞ yv(iy)= 0
implies that v ≡ 0. This shows that ME is the only subsequential limit of h(x, · ) as x → ∞. By
precompactness, (vi) follows. □

The functions u(x, z) are entire functions of order 1
2 and as such admit a product representation

u(x, z)= u(x, z∗)

∞∏
j=1

(
1 −

z − z∗

z j − z∗

)
,

where the z j depend on x and z∗ is some normalization point. Then the Riesz measure, ρx , of the
subharmonic function log |u(x, z)| is a rescaled zero counting measure of u(x, z). That is,

1
x

log |u(x, z)| =
1
x

log |u(x, z∗)| +

∫
log

∣∣∣∣1 −
z − z∗

t − z∗

∣∣∣∣ dρx(t),

where ρx is defined in (1-7).
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Proof of Theorem 1.6. By Theorems 1.5 and 4.3, h(x, · )→ ME in D′(C) as x → ∞. By the definition of
the Riesz measure, for any φ ∈ C∞

c (C),

lim
x→∞

2π
∫
φ(z) dρx(z)= lim

x→∞

∫
h(x, z)1φ(z) dλ(z)

=

∫
ME(z)1φ(z) dλ(z)= 2π

∫
φ(z) dρE(z),

where dλ denotes the Lebesgue measure on C. The rest follows from density of C∞
c (C) in Cc(C). □

Proposition 4.6. Let dµ be the spectral measure of LV , where V satisfies (1-1) and σess(LV )=E. Suppose
that along a sequence xn → ∞ the Riesz measures dρxn converge to ρE in the weak-∗ sense. Then, either
h(xn, z) converges to ME(z) or there exists a polar Borel set X such that µ(R \ X)= 0.

Proof. Assume that h(xn, · ) do not converge to ME and consider a subsequence xn j such that h(xn j , · )→ h
in D′(C)with some limit h not equal to ME. By the upper envelope theorem [Azarin 2009, Theorem 2.7.4.1]
there is a polar set X1 such that, for any z ∈ C \ X1,

lim sup
j→∞

h(xn j , z)= h(z).

The subharmonic function h has some Riesz measure ρ and by the same arguments as in the proof of
Theorem 1.6, ρxnj

converges to ρ in the weak-∗ sense. Hence, by uniqueness of the limits our assumption
implies that ρ = ρE and, by Lemma 2.2 applied to h and ME,

h(z)= h(z∗)+

∫
log

∣∣∣∣1 −
z − z∗

t − z∗

∣∣∣∣ dρE(t)= d + ME(z),

where d = h(z∗)− ME(z∗). Recall that ME has a unique subharmonic extension to C which vanishes
quasi-everywhere on E. Therefore, there is a polar set X2 such that h(z)= d for z ∈ E \ X2. Moreover,
since ME ≤ h on � we see that d ≥ 0, and since h is not equal to ME, d > 0. In particular,

lim sup
j→∞

h(xn j , z)= d > 0 ∀z ∈ E \ (X1 ∪ X2).

However, by Schnol’s theorem [1954], for µ-a.e. z ∈ E, the Dirichlet solution decays at most polynomially
and, in particular,

lim sup
j→∞

h(xn j , z)≤ 0.

Thus µ(E \ (X1 ∪ X2))= 0, which implies the claim with X = X1 ∪ X2. □

In particular, Theorem 1.7 is now proved.

Proof of Theorem 1.8. By Schnol’s theorem [1954] for µ-a.e. z ∈ E

lim sup
x→∞

h(x, z)≤ 0. (4-9)

Hence, by assumption, (4-9) holds ω�( · , z0)-a.e. Therefore, V is regular by Theorem 1.5. □
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5. Applications

Proof of Theorem 1.12. (a) Setting E = σess(LV ), it follows from E ⊂ [0,∞) that ME is a positive
harmonic function on C \ [0,∞). Since the Martin function for the domain C \ [0,∞) is Re

√
−z, it

follows from Lemma 2.7 that ME(z)≥ Re
√

−z. Comparing this with the asymptotic expansion (1-3) as
z → −∞ shows that aE ≥ 0 so, by (1-5), lim infx→∞

1
x

∫ x
0 V (t) dt ≥ 0.

(b) As in (a), aE ≥ 0. By (1-5) and lim infx→∞
1
x

∫ x
0 V (t) dt ≤ 0, this implies that aE = 0. Moreover,

ME(z)− Re
√

−z = o(
√

|z|−1
) defines a positive harmonic function in C \ [0,∞) so, by Lemma 2.7,

ME(z) = Re
√

−z. If E was a proper subset of [0,∞), since E is closed, there would exist a gap
(a, b)⊂ [0,∞) \E, and on this gap ME would be strictly positive, contradicting ME(z)= Re

√
−z.

(c) Again by aE ≥ 0 and (1-5), lim supx→∞
1
x

∫ x
0 V (t) dt ≤ 0 implies that V is regular. □

We now turn to the construction of a potential which is regular for E= [0,∞) but not decaying, even in
the Cesàro sense. The potential will be constructed piecewise, so we begin by considering a 2δ-periodic
potential defined by

Wδ(x)=

{
1, x ∈ [0, δ),
−1, x ∈ [δ, 2δ).

Let us compute the discriminant 1δ(z) and the smallest eigenvalue for the periodic problem,

λδ = min{λ ∈ R |1δ(λ)= 2}.

Lemma 5.1. limδ↓0 λδ = 0.

Proof. Since |Wδ| ≤ 1 and λδ is the minimum of the periodic spectrum, by standard variational principles,
λδ ∈ [−1, 1] for all δ > 0. The transfer matrix corresponding to Wδ at energy λ ∈ (−1, 1) is

Tδ(λ)=
(

cosh(δ
√

1−λ) sinh(δ
√

1−λ)/
√

1−λ
√

1−λ sinh(δ
√

1−λ) cosh(δ
√

1−λ)

) (
cos(δ

√
1+λ) sin(δ

√
1+λ)/

√
1+λ

−
√

1+λ sin(δ
√

1+λ) cos(δ
√

1+λ)

)
.

From this it is elementary to obtain the asymptotic behavior for the discriminant, 1δ(λ)= tr Tδ(λ), in the
form

1δ(λ)= 2 − 4λδ2
+ O(δ3), δ ↓ 0, (5-1)

uniformly in λ ∈ (−1, 0) (and then, by continuity, for λ ∈ [−1, 0]). From this, it follows that, for any
t < 0, there exists δ0 > 0 such that δ ∈ (0, δ0) and λ ∈ [−1, t) implies 1δ(λ) > 2 and therefore λδ ≥ t . It
follows that lim infδ↓0 λδ ≥ 0.

Meanwhile, 1δ(0)= 2 cosh δ cos δ = 2 − δ4/3 + o(δ4) as δ → 0 implies that lim supδ↓0 λδ ≤ 0. □

Proof of Example 1.13. Consider the Dirichlet solution u(x, t) corresponding to the given potential at
some t < 0. There exists n0 such that, for all n ≥ n0, λ1/(2n)> t . At energies below the periodic spectrum,
transfer matrices have strictly positive entries; applying this on intervals [n, n + 1] and since products
of matrices with positive entries have positive entries, we conclude that u(x, t) has at most one zero
with x > n0 − 1. Since zeros of an eigensolution are isolated, it follows that u( · , t) has finitely many



622 BENJAMIN EICHINGER AND MILIVOJE LUKIĆ

zeros, so by Sturm oscillation theory, min σess(LV )≥ t . Since this holds for arbitrary t < 0, we conclude
min σess(LV )≥ 0.

Conversely, since V obeys limx→∞
1
x

∫ x
0 V (t)dt = 0, the statement is completed by Theorem 1.12. □

Proof of Example 1.11. For x ∈ [xn, xn+1] we have

1
x

∫ x

0
V (t) dt ≤

∫
W (t) dt n+1

xn
.

Since the condition on xn implies that xn/n → ∞ we see that limx→∞
1
x

∫ x
0 V (t) dt = 0. Since V ≥ 0,

we have σess(LV )⊂ σ(LV )⊂ [0,∞), so by Theorem 1.12, V is regular and σess(LV )= [0,∞).
Let HW be the whole-line operator with the potential W (x). Since W ≥ 0, we have σ(HW )⊂ [0,∞).

Hence, we conclude that min σ(H−W ) < 0, for otherwise [Damanik et al. 2005, Corollary 1] would
imply that W ≡ 0. Now by [Last and Simon 2006, Theorem 7.1] it follows that σess(H−V )= σ(H−W )

(where H−V is the full-line operator with potential V extended to R− by V ≡ 0). Since σess(H−V ) =

σess(L0)∪ σess(L−V ) this shows that min σess(L−V ) < 0. □

Proof of Theorem 1.16. The Lyapunov exponent γ is harmonic in C+ ∪ C− and subharmonic in C. By
(1-11) for a.e. η ∈ S

lim
x→∞

1
x

log|uη(x, z)| = γ (z)

converges pointwise in C+ ∪ C−; by the weak identity principle for subharmonic functions and precom-
pactness, convergence to γ is also in D′(C). By Schnol’s theorem, for µη-a.e. z,

lim sup
x→∞

1
x

log|uη(x, z)| ≤ 0. (5-2)

Fix a sequence xn → ∞. By the upper envelope theorem [Azarin 2009, Theorem 2.7.4.1] there is a polar
set Xη such that, for any z ∈ C \ Xη,

lim sup
n→∞

1
xn

log|uη(xn, z)| = γ (z).

On Q, γ > 0. Hence, since (5-2) holds for µη-a.e. z, we have µη(Q \ Xη)= 0. □

6. Conformal maps

In view of Corollary 1.10 and the subsequent discussion, it is of great interest if the harmonic measure of
the domain C\E is absolutely continuous with respect to the Lebesgue measure χE(x) dx . Let z0 <min E
and GE(z, z0) be the Green’s function of C \ E with pole at z0 and 5z0 the associated comb domain,
defined by the upper semicontinuous function s. We say that 5z0 satisfies the sector condition if

Sz0(x)= sup
y∈(0,π)

sz0(y)
|x − y|

is finite for Lebesgue-a.e. x ∈ (0, π). Then, ωE( · , z0) is absolutely continuous with respect to the
Lebesgue measure if and only if 5z0 satisfies the sector condition.

The proceeding discussion holds for general semibounded sets E and does not assume that E is an
Akhiezer–Levin set. Let M be the Martin function with pole at ∞, normalized at some internal point z∗,
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ρ its Riesz measure and 5 and 2 the corresponding comb and comb mapping. There is a similar
characterization for absolute continuity of ρ. Let s be the upper semicontinuous function defining 5.
Then ρ is absolutely continuous with respect to χE(x) dx if and only if the domain contains a Stolz angle
at a.e. point at the base of the comb, i.e.,

S(x)= lim sup
y→x

s(y)
|x − y|

(6-1)

is finite for Lebesgue-a.e. x ∈ (0, b).
Under various conditions on the set E, it is known that the conformal map i2′ has a product representa-

tion. We now provide a general proof which does not assume Dirichlet regularity or any other additional
assumptions.

Lemma 6.1. Let E be a closed nonpolar set of the form (1-4). For each j there exists cj ∈ [aj , bj ]

such that M is strictly increasing on (aj , cj ) and strictly decreasing on (cj , bj ), and 2′(z) is given on
z ∈ C \ [b0,∞) by

i2′(z)=
C

√
b0 − z

e
∫
[b0,∞)\E ξ(x)

1+xz
x−z

dx
1+x2 (6-2)

where ξ(x)= 1
2 for x ∈ (aj , cj ), ξ(x)= −

1
2 for x ∈ (cj , bj ), ξ(x)= 0 for x /∈ [b0,∞) \E, and C > 0 is

a normalization constant.

Proof. For finite-gap sets, this is a reformulation of the Schwarz–Christoffel mapping. If E has infinitely
many gaps, we consider them labeled by j ∈ N in an arbitrary way and define En = [b0,∞)\

⋃n
j=1(aj , bj ).

Denote by Mn the Martin functions at ∞ corresponding to the sets En , normalized by Mn(z∗) = 1 for
some fixed z∗ < b0. Since the functions Mn are all positive harmonic on C\ [b0,∞), for any R > |b0|, by
Harnack’s principle they are uniformly bounded on the line segments parametrized by −R + i t , t + i R,
t − i R, with t ∈ [−R, R]. Since Mn(x + iy) are increasing in y > 0 and symmetric, it follows that Mn are
uniformly bounded above on the boundary of (−R, R)× (−R, R) for any R large enough. Since they are
also nonnegative, they are a precompact sequence of subharmonic functions on C. By the upper envelope
theorem, for any subsequential limit h = limk→∞ Mnk , quasi-everywhere on E, h(z)= limk→∞ Mnk (z)=0,
so by Theorem 2.1, h is Martin function for the domain C\E with h(z∗)= 1. It follows that Mn converge
to h in D′(C).

It follows that 2n converge to 2 since their real parts converge and their imaginary parts are zero
on (−∞, b0). In particular, the Herglotz functions i2′

n converge to ci2′ uniformly on compact subsets
of C+, so by interpreting this convergence in terms of their exponential Herglotz representations,

lim
n→∞

∫
R

g(x)ξn(x)
dx

1 + x2 =

∫
R

g(x)ξ(x)
dx

1 + x2 ∀g ∈ C(R ∪ {∞}),

where ξ is determined by limy↓0 arg2′(x + iy)= πξ(x) Lebesgue-a.e. x ∈ R. By using test functions g
supported in (aj , bj ), it follows that, for each j , the critical points cj,n must converge to a point cj ∈ [aj , bj ].
Then ξn converge pointwise to the function ξ̃ which is 1 on intervals (aj , cj ), −1 on (cj , bj ), and 0
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on [b0,∞), so by dominated convergence with dominating function ∥g∥∞(1/(1 + x2))χ[b0,∞)\E,

lim
n→∞

∫
R

g(x)ξn(x)
dx

1 + x2 =

∫
R

g(x)ξ̃ (x)
dx

1 + x2 ∀g ∈ C(R ∪ {∞}).

Of course, this implies ξ = ξ̃ , which implies (6-2). Finally, by separating the contribution from the
gap (aj , bj ) from the remainder of the integral, (6-2) can be extended into the gap (aj , bj ) to show that
i2′ > 0 on (aj , cj ) and i2′ < 0 on (cj , bj ). It follows that M ′ > 0 on (aj , cj ) and M ′ < 0 on (cj , bj ), so
our construction of cj as limits of cj,n satisfies the property in the lemma. □

As the final topic of this section, we describe a class of Akhiezer–Levin sets for which it can be seen
by purely complex-theoretic arguments that the Martin function has the two-term expansion (1-3). While
this is not as general as Theorem 1.1, within its scope of applicability, it provides a formula for aE in
terms of critical points of the Martin function.

Lemma 6.2. Let E ⊂ R be of the form (1-4). If
∑N

j=1(bj − aj ) <∞, then E is an Akhiezer–Levin set, the
Martin function obeys the two-term expansion (1-3), and

aE = b0 +

N∑
j=1

(aj + bj − 2cj ). (6-3)

Proof. Finite gap length can be restated as
∫
χ[b0,∞)\E(x)dx <∞ and it implies that the exponent in (6-2)

can be split into two separately integrable integrands, of which one is z-independent, to give

i2′

E(z)=
CE

√
b0 − z

e
∫
[b0,∞)\E ξ(x)

1
x−z dx

.

For any δ > 0, using finite gap length and dominated convergence,∫
[b0,∞)\E

ξ(x) 1
x−z

dx = −
1
z

∫
[b0,∞)\E

ξ(x) dx + o(|z|−1),

as z → ∞, arg z ∈ [δ, 2π − δ]. Evaluating the integral
∫
[b0,∞)\E ξ(x) dx and substituting into 2′(z),

i2′

E(z)= CE

(
1

√
−z

+
1
2
(b0 +

N∑
j=1

(aj + bj − 2cj ))
1

√
−z3 + o(|z|−3/2)

)
and integrating along rays shows that, as z → ∞ with arg z ∈ [δ, 2π − δ],

i2E(z)= CE

(
−2

√
−z + (b0 +

N∑
j=1

(aj + bj − 2cj ))
1

√
−z

+ o(|z|−1/2)

)
.

Taking imaginary parts gives a two-term expansion of ME, which matches (1-3) with CE =
1
2 . Reading

off the second term gives (6-3). □
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GLOBAL EXISTENCE AND MODIFIED SCATTERING
FOR THE SOLUTIONS TO THE VLASOV–MAXWELL SYSTEM

WITH A SMALL DISTRIBUTION FUNCTION
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The purpose of this paper is two-fold. In the first part, we provide a new proof of the global existence
of the solutions to the Vlasov–Maxwell system with a small initial distribution function. Our approach
relies on vector field methods, together with the Glassey–Strauss decomposition of the electromagnetic
field, and does not require any support restriction on the initial data or smallness assumption on the
Maxwell field. Contrary to previous works on Vlasov systems in dimension 3, we do not modify the
linear commutators and avoid then many technical difficulties.

In the second part of this paper, we prove a modified scattering result for these solutions. More precisely,
we obtain that the electromagnetic field has a radiation field along future null infinity and approaches,
for large time, a smooth solution to the vacuum Maxwell equations. As for the Vlasov–Poisson system,
in contrast, the distribution function converges to a new density function f∞ along modifications of the
characteristics of the free relativistic transport equation. In order to define these logarithmic corrections,
we identify an effective asymptotic Lorentz force. By considering logarithmical modifications of the
linear commutators, defined in terms of derivatives of the asymptotic Lorentz force, we finally prove
higher-order regularity results for f∞.
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1. Introduction
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∂t f + v̂ · ∇x f + (E + v̂× B) · ∇v f = 0, (1)

∇x · E =

∫
R3
v

f dv, ∂t E = ∇x × B −

∫
R3
v

v̂ f dv, (2)

∇x · B = 0, ∂t B = −∇x × E, (3)

where

• f : R+,t × R3
x × R3

v → R+ is the density distribution function of the particles,

• v̂ = v/v0, with v0
:=

√
1 + |v|2, is the relativistic speed of a particle of momentum v ∈ R3

v,

•

∫
R3
v

f dv and
∫

R3
v
v̂ f dv are respectively the total charge density and the total current density,

• E, B : R+,t × R3
x → R3 are respectively the electric and the magnetic field.

For simplicity, we assume that the plasma is composed of one species of particles of charge q = 1 and mass
m =1. Our results can be extended without any additional difficulty to several families of particles of differ-
ent charges and positive masses.1 We refer to [Glassey 1996] for a detailed introduction to these equations.

The initial value problem for the Vlasov–Maxwell equations, together with a regular initial data set
( f0, E0, B0) composed of a function f0 : R3

x × R3
v → R+ and two fields E0, B0 : R3

x → R3 satisfying the
constraint equations ∇x · E0 =

∫
v

f0 dv and ∇x · B0 = 0, is well-posed [Wollman 1984]. On the other
hand, the global existence problem for classical solutions to the Vlasov–Maxwell system is still open2 and
has only been addressed in some particular cases, such as under certain symmetry assumptions [Glassey
and Schaeffer 1990; 1997; 1998; Luk and Strain 2016; Rein 1990; Wang 2022a]. For the general case,
since the pioneering work [Glassey and Strauss 1986], several continuation criteria have been obtained
[Glassey and Strauss 1987b; 1989; Klainerman and Staffilani 2002; Bouchut et al. 2003; Pallard 2005;
2015; Sospedra-Alfonso and Illner 2010; Luk and Strain 2014; Kunze 2015; Patel 2018].

1.1. Small data solutions to the Vlasov–Maxwell system. Much more is known for this particular
perturbative regime, in which global existence holds and the solutions disperse. For small compactly
supported initial data Glassey and Strauss [1987a] proved the optimal decay rate

∫
v

f dv ≲ t−3 on the
velocity average of the distribution function and obtained estimates for the electromagnetic field and its
first-order derivatives. Shortly after, in the multispecies case, the smallness assumptions on the individual
particle densities was relaxed by [Glassey and Schaeffer 1988]. Later, Schaeffer [2004] removed the
support restriction on the velocity variable. However, his method leads to a loss on the estimate of

∫
v

f dv.
It is only recently that all the compact support assumptions on the initial data were removed in two

independent results [Bigorgne 2020a; Wang 2022b]. Both of these works are based on vector field
methods and the latter used also Fourier analysis. These robust approaches allow for the derivation
of sharp pointwise decay estimates on the solutions and their (high-order) derivatives. Moreover, in
[Bigorgne 2020a], the initial decay hypothesis in v is optimal and improved estimates on certain null
components of the electromagnetic field are derived. Finally, using the framework of Glassey and Strauss

1The case of massless particles requires in fact a different analysis [Bigorgne 2021b].
2In contrast, a global in time existence result for weak solutions was proved in [DiPerna and Lions 1989] and revisited in

[Rein 2004].
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and without any compact support restriction, Wei and Yang [2021] derived a global existence result which
does not require the initial Maxwell field to be small.

In the first part of this article, we provide an alternative but shorter proof of the main results of
[Bigorgne 2020a; Wang 2022b], without assuming any smallness assumption on the electromagnetic field.
Compared to [Wei and Yang 2021], we require more regularity on the initial data but our method allows
us to control the derivatives of the solutions, up to an arbitrary order N. This information is needed for
the second part of the paper.

1.2. Modified scattering results for the Vlasov–Poisson system. Sharp decay estimates for the small
data solutions to the Vlasov–Poisson system were first derived by [Bardos and Degond 1985] and then,
with various improvements, by [Hwang et al. 2011; Smulevici 2016; Duan 2022; Schaeffer 2021] (for the
relativistic cases, see [Glassey and Schaeffer 1985; Wang 2023; Bigorgne 2020b]). Modified scattering
for these solutions was established in [Choi and Kwon 2016] and then in [Ionescu et al. 2022; Pankavich
2022], where more information was obtained on the asymptotic dynamics governing the modification of
the linear characteristics. Furthermore, a scattering map has been constructed by [Flynn et al. 2023] and
let us finally mention that similar results hold for perturbations of a point charge [Pausader and Widmayer
2021; Pausader et al. 2024].

In the second part of this paper, we investigate such problems in the context of the Vlasov–Maxwell
equations. In particular, as in [Ionescu et al. 2022] for the Vlasov–Poisson system, we prove that∫

R3
x

f (t, x, v) dx → Q∞(v) as t → +∞.

The scattering charge Q∞ is deeply related to the leading-order term of the asymptotic expansion of
both the charge density

∫
v

f dv and the current density. It allows us to define an asymptotic Lorentz
force v 7→ Lor(v), from which we deduce the modified scattering statement for f (see Theorem 1.1 and
Remark 1.3 for more details). We also prove higher-order regularity properties for the limit distribution f∞,
which require a more thorough analysis. To our knowledge, there is no such regularity result for the
Vlasov–Poisson system.

1.3. Vector field methods for relativistic transport equations. Our analysis of the asymptotic behavior of
both the electromagnetic field and the distribution function relies on vector field methods (see Section 2.4
for an overview of the key ideas). This kind of technique was first developed by Klainerman [1985] in
order to study solutions to nonlinear wave equations and then adapted in [Christodoulou and Klainerman
1990] to the Maxwell equations. It is only recently that the approach has been adapted to relativistic
transport equations by Fajman, Joudioux and Smulevici [Fajman et al. 2017], leading in particular to a
proof of the stability of Minkowski spacetime for both the massive and massless Einstein–Vlasov system
[Fajman et al. 2021; Bigorgne et al. 2021] (see also [Lindblad and Taylor 2020; Taylor 2017] for alternative
proofs). Our work [Bigorgne 2020a] concerning the small data solutions to the Vlasov–Maxwell system
relies on such techniques as well. The method has also been successfully used to derive boundedness and
decay estimates for the solutions to the massless Vlasov equation on a fixed Kerr black hole [Andersson
et al. 2018; Bigorgne 2023]. Finally, even if it concerns the nonrelativistic setting, let us also mention
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that such approaches have been applied in the collisional regime [Chaturvedi 2021; 2022; Chaturvedi
et al. 2023].

In order to deal with slowly decaying error terms, all the works on the small data solutions to
massive relativistic Vlasov systems or the Vlasov–Poisson system [Fajman et al. 2021; Bigorgne 2020a;
Smulevici 2016; Duan 2022], based on vector field methods, require dynamically modifying certain linear
commutators of the Vlasov operator. One of the main novelties of this article consists in proving that
the solutions are global without using these modified vector fields, which considerably simplifies the
analysis. For this, even though certain quantities grow logarithmically in time, we are able to close the
energy estimates by identifying several hierarchies in the commuted equations (see Section 2.8.2 for
more details). It is then important to derive the optimal decay rate t−3 for

∫
v

f dv and its derivatives by a
method allowing well-chosen weighted W N ,∞

x,v norms of the distribution function to grow slowly in time.
We believe that this approach could be applied to other systems of equations, in particular for both the
Einstein–Vlasov and the Vlasov–Poisson systems.

1.4. The main result. We present here a short version of our main result, stated in Theorems 2.10–2.11
below, where we also describe the behavior of the derivatives of the solutions.

Theorem 1.1. Any solution ( f, E, B) to the Vlasov–Maxwell system (1)–(3) arising from a small initial
distribution function and smooth as well as sufficiently decaying initial data is global in time. Moreover:

(1) There exists a solution (Evac,Bvac) to the vacuum Maxwell equations3 approaching (E,B) as t+|x |→∞,

∀(t, x) ∈ R+ × R3, |E − Evac
|(t, x)+ |B − Bvac

|(t, x)≤ Cq(1 + t + |x |)−1−q , 1
2 ≤ q < 1.

(2) The Lorentz force has a self-similar asymptotic profile v 7→ Lor(v),

∀(t, x, v) ∈ R+ × R3
x × R3

v, |t2(E(t, x + t v̂)+ v̂× B(t, x + t v̂))− Lor(v)| ≲ ⟨x⟩
2
|v0

|
8 logn(3 + t)

1 + t
,

where ⟨x⟩ := (1 + |x |
2)1/2 and, say, n = 70. We have modified scattering to a new density function

f∞ : R3
x × R3

v → R+,

∀t ≥ 3, ∥ f (t, XC (t, · , · ), · )− f∞∥L1
x,v∩L∞

x,v
≲ t−1 logn(t),

where the Cartesian components X k
C of the modified spatial characteristics XC ∈ R3

x are defined as

X k
C (t, x, v) := xk

+ t v̂k
−

log(t)
v0 (Lork(v)− v̂ · Lor(v)v̂k), 1 ≤ k ≤ 3.

Remark 1.2. No modification of the spatial characteristics is in fact required in the exterior of the light
cone {|x | ≥ t} in order to prove such a result (see Section C.2). We already observed in [Bigorgne 2021a]
that the small data solutions to the Vlasov–Maxwell system have better behavior in this region.

Similarly, no correction of the linear characteristics should in principle be necessary in order to prove
a scattering statement in higher dimensions. This is consistent with the result of [Pankavich 2023]

3The vacuum Maxwell equations are given by (2)–(3) with f = 0.
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concerning the Vlasov–Poisson system in dimension d ≥ 4 and our study of the asymptotic behavior of
the small data solutions of the Vlasov–Maxwell system in high dimensions [Bigorgne 2022].

The case of massless particles differs from the case of massive particles treated in this paper. Indeed,
in view of [Bigorgne 2021b], we expect the small data solutions of the massless Vlasov–Maxwell system
to satisfy linear scattering in dimension d = 3.

Remark 1.3. The behavior of the Lorentz force along the linear trajectories suggests that the characteristics
of the Vlasov–Maxwell system satisfy, for t ≫ 1,

Ẋ = V̂ , V̇ ≈ t−2 Lor(V ), X (0)= x0, V (0)= v0.

Hence, we can presume that V converges to v, so that

V (t)≈ v−
1
t

Lor(v), Ẋ(t)≈ v̂−
1

tv0 Lor(v)+ v̂ ·Lor(v)
tv0 v̂+ O(t−2),

and we can then expect X (t)≈ XC (t, x0, v).
Moreover, we could in fact decompose Lor(v) as E∞(v)+ v̂× B∞(v) and observe that, as v → 0,

XC (t, x, v)= x + tv− log(t)E∞(v)+ o(v).

In other words, for small velocities, the modified characteristics XC of the Vlasov–Maxwell system
approach the ones constructed in [Ionescu et al. 2022] for the Vlasov–Poisson system.

1.5. Structure of the paper. In Section 2 we introduce the notations and the tools used throughout this
article. Then, we state our main results, Theorems 2.10–2.11, and present the key ideas of the proof. In
Section 3, we set up the bootstrap assumptions and discuss their immediate consequences. Section 4
concerns the study of the distribution function. In particular, we prove that weighted L∞

x,v norms of f and
its derivatives grow at most logarithmically and we improve the bootstrap assumption on their velocity
average. Then, in Section 5, we conclude the proof of the global existence of the small data solutions to
(1)–(3) by exploiting the Glassey–Strauss decomposition of the electromagnetic field in order to improve
the bounds on (E, B) and their derivatives. Next, in Section 6 we refine our estimates by proving that the
particle current density and the electromagnetic field have a self-similar asymptotic profile. This allows
us to define the modified trajectories along which the distribution function converges. Section 7 is devoted
to the scattering results for the electromagnetic field. A crucial part of the proof consists in constructing a
scattering map for the vacuum Maxwell equations. In Section 8, we relate the conserved total energy of the
system to the ones of the scattering states. Finally, Appendices A and B contain two useful computations
and Appendix C presents alternative expressions for the profile of F and the modified characteristics.

2. Preliminaries and detailed statement of the main result

2.1. Basic notations. In this paper we work on the 1+3-dimensional Minkowski spacetime (R1+3, η).
We will use two sets of coordinates, the Cartesian (x0

= t, x1, x2, x3), in which η = diag(−1, 1, 1, 1),
and null coordinates (u, u, θ, ϕ), where

u = t + r, u = t − r, r := |x | =

√
|x1|2 + |x2|2 + |x3|2,
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and (θ, ϕ)∈ ]0, π[×]0, 2π [ are spherical coordinates on the spheres of constant (t, r). These coordinates
are defined globally on R1+3 apart from the usual degeneration of spherical coordinates and at r = 0.
Sometimes, for a tensor field T defined on R+ × R3

x , it will be convenient to write

T (u, u, ω) := T
(

u + u
2

,
u − u

2
ω

)
, u ≥ 0, |u| ≤ u, ω ∈ S2.

We will work with the null frame (L , L, eθ , eϕ), where L = 2∂u , L = 2∂u are null derivatives and (eθ , eϕ)
is the standard orthonormal basis on the spheres. More precisely,

L = ∂t + ∂r , L = ∂t − ∂r , eθ =
1
r
∂θ , eϕ =

1
r sin θ

∂ϕ.

The Einstein summation convention will often be used; for instance vµ∂xµ f =
∑3

µ=0 v
µ∂xµ f . The Latin

indices goes from 1 to 3 and the Greek indices from 0 to 3. We will raise and lower indices using the
Minkowski metric η, so that x i

= xi and x0
= −x0.

The four-momentum vector v = (vµ)0≤µ≤3 is parametrized by v = (vi )1≤i≤3 ∈ R3
v and v0

=
√

1 + |v|2

since the mass of the particles is equal to 1. Let (vL , vL , ve1, ve2) be the null components of the momentum
vector and v = (veθ , veϕ ) its angular part, so that

v = vL L +vL L +veθ eθ +veϕeϕ, vL
=
v0

+ (xi/r)vi

2
, vL

=
v0

− (xi/r)vi

2
, |v|2 = |veθ |2 +|veϕ |2.

The relativistic speed v̂ ∈ R3 is given by v̂i
= vi/v0 and, for convenience, we define the quantities

v̂0
:=
v0

v0 = 1, v̂L
:=
vL

v0 , v̂L
:=
vL

v0 , v̂ :=
v

v0 , v̂eA :=
veA

v0 , A ∈ {θ, ϕ}.

Sometimes, we will write (|v0
|

pg)(w) to denote |w0
|

pg(w), where w ∈ R3
v and g : R3

v → R.
In order to capture the good properties of certain geometric quantities associated to the solutions in

the good null directions (L , eθ , eϕ), we introduce the Faraday tensor Fµν , which is a 2-form, and the
four-current density J ( f )µ,

F =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3
−B2 B1 0

 , J ( f ) :=


−

∫
R3
v

f dv∫
R3
v
(v1/v

0) f dv∫
R3
v
(v2/v

0) f dv∫
R3
v
(v3/v

0) f dv

 . (4)

The Cartesian components of F are then either equal to 0 or to a component of ±(E, B). We will in fact
be more interested in its null decomposition (α(F), α(F), ρ(F), σ (F)) defined, for A ∈ {θ, ϕ}, as

α(F)eA := FeA L , α(F)eA := FeA L , ρ(F) :=
1
2 FL L , σ (F) := Feθ eϕ . (5)

In particular, ρ(F)= E · ∂r and −σ(F)= B · ∂r are the radial components of the electric field and the
magnetic field. Moreover, the 1-forms α(F) and α(F) are tangential to the 2-spheres and we will use the
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pointwise norms

|α(F)|2 := |α(F)eθ |
2
+ |α(F)eϕ |

2, |α(F)|2 := |α(F)eθ |
2
+ |α(F)eϕ |

2,

|F |
2
:=

∑
0≤µ<ν≤3

|Fµν |2 =
1
2 |α(F)|2 +

1
2 |α(F)|2 + |ρ(F)|2 + |σ(F)|2.

The Vlasov equation (1) can be rewritten as

TF ( f )= 0, where TF : f 7→ ∂t f + v̂ · ∇x f + v̂µFµ j∂v j f, (6)

and the Maxwell equations (2)–(3) take a concise form. The Gauss–Ampère law and the Gauss–Faraday
law4

∇
µFµν = J ( f )ν, ∇

µ∗Fµν = 0, (7)

where ∗Fµν =
1
2 Fλσ ελσµν is the Hodge dual of F and ε is the Levi-Civita symbol. Here ∇ stands for the

covariant derivative (or Levi-Civita connection), so that (7) holds in any coordinate system.
The operators ∇x and ∇v will denote the standard gradients in x and v respectively. For instance,

∇x f = (∂x1 f, ∂x2 f, ∂x3 f ), ∇v f = (∂v1 f, ∂v2 f, ∂v3 f ).

Given a 2-form G and 0 ≤ λ≤ 3, we will denote by ∇∂xλ
G the covariant derivative of G according to ∂xλ ,

where ∂x0 = ∂t . For any multi-index κ ∈ {0, 1, 2, 3}
p, we define ∇

κ
t,x G := ∇∂xκ1 · · · ∇∂xκp G. In Cartesian

coordinates, we then have

∇
κ
t,x(G)µν = ∂κt,x(Gµν), 0 ≤ µ, ν ≤ 3.

Finally, for x ∈ R3 we will use the Japanese brackets ⟨x⟩ := (1 + |x |
2)1/2 and the notation D1 ≲ D2 will

stand for the statement that there exists C > 0 a positive constant independent of the solutions such as
D1 ≤ C D2.

2.2. Backward light cones and future null infinity. The scattering state for a smooth electromagnetic
field F, which in our case is also called radiation field, will be a tensor field depending on the variables
(u, ω) ∈ R × S2. It will be obtained as the limit, when u → +∞, of r F(u, u, ω). For this reason, we
introduce the backward light cones Cu and give their induced volume form dµCu in accordance with the
choice of the null vector field L as their normal vector. Let, for any u ≥ 0,

Cu := {(t, x) ∈ R+ × R3
| t + |x | = u}, dµCu =

1
2r2 du dµS2,

where dµS2 = sin(θ) dθ dϕ is the volume form on S2.
Even if we will not need this formalism, we mention that the radiation field is in fact defined on a part

of the conformal boundary of the Minkowski space, called future null infinity I+ and corresponding to
the future end points of the null geodesics t − |x | = u. It can be viewed as C+∞. More precisely,

(t, r, ω) 7→ (T (t, r)= tan−1(t + r)+ tan−1(t − r), R(t, r)= tan−1(t + r)− tan−1(t − r), ω) ∈ R × S3

4Note that ∇
µ∗Fµν = 0 is equivalent to ∇[λFµν] := ∇λFµν + ∇µFνλ+ ∇νFλµ = 0.
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∞
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cst

Figure 1. The set Cu and the Penrose diagram of the Minkowski space.

is a conformal diffeomorphism between Minkowski spacetime and the interior of the triangle 0 ≤ R ≤ π ,
|T | = π − R of the space R × S3, equipped with the metric −dT 2

+ dR2
+ sin2(R) dµS2 . Then

I+
:= {(T, R, ω) ∈ R × S3

| 0< R < π, T = π − R}.

Past null infinity I− is defined similarly as {0< R <π, T = R −π} and can be viewed as t −|x | = −∞.
See Figure 1.

2.3. Charged electromagnetic field. For our global existence result, it will be sufficient to assume that
the electromagnetic field satisfies |F |(0, · ) ≲ r−2, whereas our scattering result will require a slightly
stronger initial decay hypothesis. However, if the plasma is not neutral, one cannot expect F to decay
faster than r−2. Indeed, if ( f, F) is a sufficiently regular solution to (6)–(7) on [0, T [, we obtain from
Gauss’s law that the total charge

QF (t) := lim
r→+∞

∫
ω∈S2

ρ(F)(t, rω)r2 dµS2 =

∫
x∈R3

∫
v∈R3

f (t, x, v) dv dx, t ∈ [0, T [,

is a conserved quantity and that |F | = o(r−2) implies QF = 0. In order to avoid such a restrictive
assumption, we introduce the pure charge part F of F,

F(t, x) :=
QF

4π |x |2

xi

|x |
dt ∧ dx i , ρ(F)(t, x)=

QF

4π |x |2
, α(F)= α(F)= σ(F)= 0, (8)

which corresponds to the electromagnetic field generated by a point charge QF at x = 0. One can verify
that QF = QF , so that F−F is chargeless and it will then be consistent to assume that F has an asymptotic
expansion of the form F = F + O(r−2−δ), δ > 0. In fact, E = Edf

+ Ecf and B = Bdf
+ Bcf can be

decomposed into their divergence-free and curl-free components. Then, Bcf
= 0 and Ecf,i

= F0i + O(r−3)

if J ( f )0 is sufficiently regular, so that the stronger initial decay assumption required for the scattering
result concerns the divergence-free components of E and B.
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2.4. Commutation vector fields. We will derive estimates on both the electromagnetic field and the
distribution function using vector field methods. These kinds of approaches are usually based on

• a set of vector fields, which commute with the linear operator of the equation studied,

• energy inequalities, applied in order to prove boundedness for L2 or L1 norms of the solutions and
their derivatives (for instance, see [Bigorgne 2020a, Section 4.1]),

• weighted Sobolev embeddings, such as [Fajman et al. 2017, Theorem 6], used to obtain decay
estimates on the fields.

In this paper, in order to simplify the analysis, we will prove L∞ estimates and then obtain pointwise
decay estimates on the solutions in a different way (see Section 2.8 for more details). We now elaborate
on the commutators for the Maxwell equations and the ones for the relativistic transport equation.

Definition 2.1. Let K be the set composed of the vector fields

∂t , ∂x i , �0i := t ∂x i + x i ∂t , � jk := x j ∂xk − xk ∂x j , S := t ∂t + xℓ ∂xℓ = t ∂t + r ∂r ,

where 1 ≤ i ≤ 3 and 1 ≤ j < k ≤ 3. The translations ∂xµ , the Lorentz boosts �0i and the rotations � jk

are Killing vector fields, so that they generate isometries of the Minkowski space. The scaling vector
field S is merely conformal Killing.

We will use this set for differentiating the electromagnetic field geometrically. More precisely, for a
2-form F and a vector field Z = Zµ ∂xµ , the Lie derivative LZ (F) of F with respect to Z is given, in
coordinates, by

LZ (F)µν = Z(Fµν)+ ∂µ(Zλ)Fλν + ∂ν(Zλ)Fµλ.

Furthermore, if F is a smooth solution to the vacuum Maxwell equations ∇
µFµν =∇

µ∗Fµν = 0 and Z ∈ K,
then LZ (F) is also a solution to the vacuum Maxwell equations, that is, ∇

µLZ (F)µν = ∇
µ∗LZ (F)µν = 0.

Definition 2.2. Let P̂0 be the set composed of

∂t , ∂x i , �̂0i := t ∂x i + x i ∂t + v0 ∂vi , �̂ jk := x j ∂xk − xk ∂x j + v j ∂vk − vk ∂v j , S = t ∂t + r ∂r ,

where 1 ≤ i ≤ 3 and 1 ≤ j < k ≤ 3. In fact, ∂̂xµ = ∂xµ , �̂0i and �̂ jk are obtained as the complete lift, a
classical operation in differential geometry,5 of the Killing fields ∂xµ , �0i and � jk .

These vector fields have good commutation properties with the linear transport operator T0 = ∂t + v̂ ·∇x .
Indeed, [T0, S] = T0 and [v0T0, Ẑ ] = 0 for all Ẑ ∈ P̂0 \ {S}.

In order to consider higher-order derivatives, we introduce an ordering on K = {Z i
| 1 ≤ i ≤ 11}

and on P̂0 = {Ẑ i
| 1 ≤ i ≤ 11}. It will be convenient to assume that Z11

= Ẑ11
= S and Ẑ i = Ẑ i for

any 1 ≤ i ≤ 10. Moreover, for a multi-index β ∈ [[1, 11]]
p of length |β| = p, we denote by LZβ the

5We refer to [Fajman et al. 2017, Section 2G] for more details about the relations between the Vlasov operator on a Lorentzian
manifold and the complete lift of its Killing vector fields.
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Lie derivative LZβ1 · · ·LZβp of order |β|. Similarly, we define Ẑβ as Ẑβ1 · · · Ẑβp . Note the equivalence
between the pointwise norms∑

|γ |≤N
|LZγ (F)| ≲

∑
|β|≤N

∑
0≤µ,ν≤3

|Zβ(Fµν)| ≲
∑

|γ |≤N
|LZγ (F)|. (9)

Since L∂xµ (F) and ∂xµ f have better behavior than the other derivatives, it will be crucial, in order to
identify certain hierarchies in the commuted equations, to count the number of homogeneous vector fields
composing Zβ or Ẑβ. We denote by βH (respectively βT ) the number of homogeneous vector fields �0i ,
� jk and S (respectively translations ∂xµ) composing Zβ. Note that βH +βT = |β| and that Ẑβ is also com-
posed of βH homogenous vector fields and βT translations. If Zβ =�01∂t S, we have βH = 2 and βT = 1.

The following geometric commutation formula, proved in [Bigorgne 2021b, Lemma 2.8], will be
fundamental for us.

Lemma 2.3. Let G be a 2-form and g : [0, T [ × R3
x × R3

v → R be a function, both of class C1, such that

∇
µGµν = J (g)ν, ∇

µ∗Gµν = 0.

Let further Z ∈ K \ {S} be a Killing vector field and Ẑ ∈ P̂0 \ {S} be its complete lift. Then,

∇
µLZ (G)µν = J (Ẑ g)ν, ∇

µ∗LZ (G)µν = 0,

∇
µLS(G)µν = J (Sg)ν + 3J (g)ν, ∇

µ∗LS(G)µν = 0,

Ẑ(vµGµ
j∂v j g)= vµLZ (G)µ j∂v j g + vµGµ

j∂v j Ẑ g,

S(vµGµ
j∂v j g)= vµLS(G)µ j∂v j g − 2vµGµ

j∂v j g + vµGµ
j∂v j Sg.

Iterating the above, we obtain that the structure of the Vlasov–Maxwell equations (6)–(7) is preserved
by commutation.

Proposition 2.4. Let ( f, F) be a sufficiently regular solution to the Vlasov–Maxwell system. For any
multi-index β, there exists Cβ

γ,κ , Cβ
ξ ∈ Z such that

TF (Ẑβ f )=
∑

|γ |+|κ|≤|β|

|κ|≤|β|−1

Cβ
γ,κ v̂

µLZγ (F)µ j∂v j Ẑκ f,

∇
µLZβ (F)µν =

∑
|ξ |≤|β|

Cβ
ξ J (Ẑ ξ f ), ∇

µ∗LZβ (F)µν = 0.

Moreover, the multi-indices |γ | + |κ| ≤ |β| satisfy γH + κH ≤ βH and the equality κH = βH implies
γT ≥ 1.

Proof. For the condition on the multi-indices |γ |+|κ| ≤ |β|, note from Lemma 2.3 that γH +κH ≤ βH and
γT +κT = βT . Hence, if κH = βH , we necessarily have κT <βH since |κ|< |β|. This implies γT ≥ 1. □

2.5. Weights preserved along the linear flow. The set k1 of weight functions given by

z0i := t v̂i
− x i , z jk := x j v̂k

− xk v̂ j , 1 ≤ i ≤ 3, 1 ≤ j < k ≤ 3, (10)
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are conserved along any timelike straight line t 7→ (t, x + t v̂). They are obtained as |v0
|
−1η(v, K ), where

K is a Killing vector field6 and they are then solutions to the relativistic transport equation, for all z ∈ k1,
T0(z)= 0. As a consequence, if T0(g)= 0 then the same goes for zg, so that certain weighted norms of
g are conserved. In our nonlinear setting these norms will grow logarithmically in time and will then
provide useful decay properties on the Vlasov field. For convenience, we will rather work with

z :=

(
1 +

∑
z∈k1

z2
)1

2
, T0(z)= v̂µ∂xµ(z)= 0. (11)

In particular, as z0i ∈ k1, one has

1 ≤ z and ∀(t, x, v) ∈ R+ × R3
x × R3

v, ⟨x⟩ ≤ z(t, x + t v̂, v), (12)

which will allow us to obtain space decay for f (t, x + t v̂, v), the particle density evaluated along the
linear characteristics. Note also the following properties, which will be particularly useful for us in order
to exploit the null structure of the system.

Lemma 2.5. The four-momentum vector v has good null components, vL and v. More precisely,

∀(t, x, v) ∈ R+ × R3
x × R3

v, 0< v̂L ≲
1 + |t − |x ||

1 + t + |x |
+

z
1 + t + |x |

, |v̂| ≲
z

1 + t + |x |
.

In certain circumstances, vL will be the best component for exploiting decay in t − r . We will then use

|v0
|
−2

+ |v̂|2 ≤ 4v̂L .

Proof. The first two inequalities are proved in [Bigorgne 2020a, Lemma 2.4]; using

4v0vL
≥ 4vLvL

= |v0
|
2
−

∣∣∣ x i

r
vi

∣∣∣2
= 1 + |v|2 − |v · ∂r |

2
= 1 + |v · eθ |2 + |v · eϕ|2 = 1 + |v|2, (13)

the last inequality follows. □

Since the particles are massive and then travel at a speed strictly lower than 1, the speed of light, Vlasov
fields enjoy much better decay properties along null rays than along timelike geodesics t 7→ x + t v̂. After
a long time, many of the particles should be located in the interior of the light cone. We will capture this
property with the following inequality.

Lemma 2.6. By losing powers of v0 and z, one can gain decay near the light cone t = |x |,

∀(t, x, v) ∈ R+ × R3
x × R3

v, 1 ≲
1 + |t − |x ||

1 + t + |x |
|v0

|
2
+

|v0
|
2z

1 + t + |x |
.

Moreover, in the exterior of the light cone, for |x | ≥ t , one has 1 ≲ (1 + t + |x |)−1
|v0

|
2z.

Proof. For the first inequality, note that (13) gives 1 ≤ 4|v0
|
2v̂L and apply Lemma 2.5. For the second

one, we refer to [Bigorgne 2020a, Remark 2.5]. □

Recall from [Bigorgne 2020a, Lemma 3.2] that z enjoys good commutation properties with the vector
fields of P̂0.

6On any smooth Lorentzian manifold (Y , g), if γ is a timelike geodesic and K a Killing vector field, then g(γ̇ , K )= constant.
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Lemma 2.7. For any a ∈ R and Ẑ ∈ P̂0, we have |Ẑ(za)| ≲ |a|za .

Finally, motivated by the fact that any regular solution to the linear relativistic transport equation
T0(h)= 0 is constant along the timelike straight lines, h(t, x + v̂t, v)= h(0, x, v), it will sometimes be
useful to work with g(t, x, v) := f (t, x + t v̂, v), in particular during the study of the asymptotic properties
of

∫
v

f dv and its derivatives. The following result suggests that g enjoys strong space decay and that its
v derivatives behave better than the ones of the distribution function f .

Lemma 2.8. Let f : [0, T [×R3
x ×R3

v→R be a sufficiently regular function and g(t, x, v) := f (t, x+t v̂, v).
Then the following properties hold:

⟨x⟩
a
|g|(t, x, v)≤ |za f |(t, x + t v̂, v), v0

|∇vg|(t, x, v)≤
∑̂

Z∈P̂0

|z Ẑ f |(t, x + t v̂, v).

Proof. The first property follows from z2
≥ 1 + |z01|

2
+ |z02|

2
+ |z03|

3 and |z0i |(t, x + t v̂, v)= |x i
|. For

the second one, we have, using the Einstein summation convention,

v0∂v j g(t, x, v)= (v0∂v j f )(t, x + t v̂, v)+ t∂x j f (t, x + t v̂, v)− t v̂ j v̂
i∂x i f (t, x + t v̂, v).

Then by v0∂v j = �̂0 j − t∂x j − x j∂t and

x j∂t + t v̂ j v̂i∂x i = (x j
− t v̂ j )∂t + v̂

j t∂t + v̂
j (t v̂i

−x i )∂x i + v̂ j x i∂x i = −z0 j∂t + v̂
j S+

∑
1≤i≤3

v̂ j z0i∂x i , (14)

the result follows. □

2.6. Inverse function of the relativistic speed. In order to perform the change of variables y = x − v̂t for
integrals on the domain R3

v, it will be useful to determine certain properties of the function v 7→ v̂.

Lemma 2.9. We define, on the domain {y ∈ R3
| |y|< 1}, the operator ·̌ as

y 7→ y̌ =
y√

1 − |y|2
, so that ∀|y|< 1, v ∈ R3

v,
ˆ̌y = y, ˇ̂v = v.

Note also that v0
= (1 − |v̂|2)−1/2. Moreover, for any (t, x) ∈ R+ × R3, the Jacobian determinant of the

transformation v 7→ x − v̂t is equal to −t3/|v0
|
5.

Proof. The fact that ·̌ is the reciprocal function of ·̂ can be obtained by direct computations. Let V be
the column vector such that its transpose is V T

= (v1/v0, v2/v0, v3/v0). Then the Jacobian determinant
of the transformation v 7→ x − v̂t is equal to

−
t3

|v0|3
det(I3 − V V T )= −

t3

|v0|3
det

(
diag

(
1, 1, 1 −

|v|2

1 + |v|2

))
= −

t3

|v0|5
. □

Let us also mention the inequality 2(1 − |v̂|)≥ (1 − |v̂|)(1 + |v̂|)= |v0
|
−2, which will be used several

times throughout this paper.
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2.7. Complete version of the main result. We are now ready to give a full and detailed version of
Theorem 1.1. Recall the alternative geometric form (6)–(7) of the Vlasov–Maxwell equations (1)–(3).

Theorem 2.10. Let N ≥ 3 and ( f0, F0) be an initial data set of class C N for the Vlasov–Maxwell system.
Consider further 3≥ ϵ > 0, two constants (Nv, Nx) ∈ R2

+
and assume that∑

|γ |≤N+1
sup
x∈R3

⟨x⟩
2+|γ |

|∇
γ
x F0|(x)≤3,

∑
|β|+|κ|≤N

sup
(x,v)∈R6

⟨v⟩Nv+|κ|
⟨x⟩

Nx+|β|
|∂κv ∂

β
x f0|(x, v)≤ ϵ.

If Nv ≥ 15 and Nx > 7, there exist D > 0 and ϵ0 > 0, depending only on (N , Nv, Nx), such that, if
ϵ̄ := ϵeD3

≤ ϵ0, then the unique solution ( f, F) to (1)–(3) arising from these data is global in time.
Moreover:

• The following pointwise estimates hold for the distribution function:

∀(t, x,v)∈ R+×R3
v×R3

x , ∀|β| ≤ N , |v0
|
Nv−3

|zNx−2 Ẑβ f |(t, x,v)≲ ϵ̄ log3Nx+3N (3+t),

∀|κ| ≤ N , |v0
|
Nv−3

|∂κt,x f |(t, x,v)≲ ϵ̄.

• The electromagnetic field and its derivatives LZγ (F), up to order |γ | ≤ N − 1, decay as,

∀(t, x) ∈ R+ × R3, |LZγ F |(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−1.

If |γ | ≤ N − 2, the good null components enjoy stronger decay properties near the light cone,

∀(t, x, v) ∈ R+ × R3, |α(LZγ F)|(t, x)+ |ρ(LZγ F)|(t, x)+ |σ(LZγ F)|(t, x)≲3
log(3 + t)
(1 + t + |x |)2

.

Let us formulate two remarks.

(1) More estimates, such as
∫
v

f dv ≲ t−3, are derived during the proof of Theorem 2.10.

(2) With our method, contrary to our previous work [Bigorgne 2020a], we cannot reach the optimal
assumption Nv = 3. We list in Remark 3.3 below the precise parts of the proof where the control of
higher spatial and momentum moments of f are required.

We now state our scattering result. For this, recall from (8) the definition of the pure charge part F of F.

Theorem 2.11. Let 0< δ ≤ 1 and ( f, F) be a smooth solution to the Vlasov–Maxwell system arising from
initial data satisfying the assumptions of Theorem 2.10. Suppose further that the initial electromagnetic
field has the asymptotic expansion∑

|γ |≤N+1
sup
|x |≥1

⟨x⟩
2+δ+|γ |

|∇
γ
t,x(F − F)|(0, x)≤3. (15)

Then, with n := 7(Nx + N ), we have the following properties.

• The spatial average of f converges to a function Q∞ ∈ L1(R3
v)∩ L∞(R3

v) of class C N−1,

∀t ∈ R+,

∥∥∥∥|v0
|
5
(∫

R3
x

f (t, x, v) dx − Q∞(v)

)∥∥∥∥
L1
v∩L∞

v

≲ ϵ̄
logn(3 + t)

1 + t
.
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• The four-current density J (Ẑβ f )µ =
∫
v
(vµ/v

0)Ẑβ f dv has the following self-similar asymptotic profile.
For any |β| ≤ N − 1 and 0 ≤ µ≤ 3,

∀t ∈ R∗

+
, sup

|x |<t

∣∣∣∣t3
∫

R3
v

vµ

v0 Ẑβ f (t, x, v) dv−
xµ

t
(|v0

|
5 Qβ

∞
)

(
qx
t

)∣∣∣∣ ≲ ϵ̄ logn(3 + t)
t

, x0
= t,

where Qβ
∞ can be computed in terms of ∂κv Q∞, |κ| ≤ |β|. Moreover, J (Ẑβ f ) decays much faster in the

exterior of the light cone.

• The electromagnetic field and their derivatives up to order |γ | ≤ N − 1 have a self-similar asymptotic
profile v 7→ LZγ (F)∞(v),

∀(t, x, v) ∈ R+ × R3
x × R3

v, |t2LZγ (F)(t, x + v̂t)−LZγ (F)∞(v)| ≲3⟨x⟩
2
|v0

|
8 logn(3 + t)
(1 + t)δ

.

F∞ is of class C N−1 and the components of LZγ (F)∞ can be computed in terms of ∂κv F∞
µν , |κ| ≤ |γ |.

• We have modified scattering to a state f∞ ∈ L1
x,v ∩ L∞

x,v of class C N−2. For any |κ| + |β| ≤ N − 2,

∀t ≥ 3,
∥∥|v0

|
Nv−10+|ξ |

⟨x⟩
Nx−4−|ξ |

(
∂ξv ∂

κ
x f (t, XC (t, x, v), v)− ∂ξv ∂

κ
x f∞(x, v)

)∥∥
L∞

x,v
≲ ϵ̄

logn(t)
tδ

,

where the corrections of the linear spatial characteristics are defined as

X j
C (t, x, v) := x j

+ t v̂ j
−

log(t)
v0 v̂µ(F∞, j

µ (v)+ v̂ j F∞

µ0(v)), 1 ≤ j ≤ 3. (16)

• The modified complete lifts, of the Lorentz boosts �̂0k and the rotations �̂ jk , and the modified scaling,

�̂mod
λk := �̂λk −

log(t)
v0 v̂µ

(
L�λk (F)

∞, j
µ (v)+ v̂ jL�λk (F)

∞

µ0(v)
)
∂x j , 0 ≤ λ < k ≤ 3,

Smod
:= S +

log(t)
v0 v̂µ

(
F∞, j
µ (v)+ v̂ j F∞

µ0(v)
)
∂x j ,

satisfy the improved estimates ∥�̂mod
λk f (t, · , · )∥L∞

x,v
≲ ϵ̄ and ∥Smod f (t, · , · )∥L∞

x,v
≲ ϵ̄.

• For any |γ | ≤ N − 3, there exists a scattering state αI+

γ (u, ω) on I+ such that,

∀u ≥ 3, sup
|u|≤u,ω∈S2

|rα(LZγ F)(u, u, ω)−αI+

γ (u, ω)| ≲3
log(u)

u
.

Moreover, αI+

is of class C N−3 and αI+

γ can be expressed in terms of the derivatives of αI+

.

• The conserved energy of the system can be related to the ones of the scattering states. For all t ∈ R+,∫
R3

x

∫
R3
v

v0 f (t, x,v)dv dx+
1
2

∫
R3

x

|F |
2(t, x)dx =

∫
R3

x

∫
R3
v

v0 f∞(x,v)dv dx+
1
4

∫
Ru

∫
S2
ω

|αI+

|
2(u,ω)dµS2 du.

• If N ≥ 10, there exists a solution Fvac of class C N−5 to the vacuum Maxwell equations (19) such that,
for any 1

2 ≤ q < 1 and |γ | ≤ N − 10,

∀(t, x) ∈ R+ × R3, |LZγ (F)−LZγ (F)vac
|(t, x)≤3Cq(1 + t + |x |)−1−q , Cq > 0.



SOLUTIONS TO THE VLASOV–MAXWELL SYSTEM WITH A SMALL DISTRIBUTION FUNCTION 643

Remark 2.12. As suggested by the scattering result, we could improve the logarithmic powers in the L∞
x,v

estimates for f stated in Theorem 2.10. We could then prove that Theorem 2.11 holds for n = 3Nx + 3N.
However, such a tiny improvement would require a relatively long and technical proof.

Remark 2.13. We emphasize two main differences with previous works on Vlasov systems in dimension 3
based on vector field methods [Fajman et al. 2021; Smulevici 2016; Bigorgne 2020a; Duan 2022].

(1) The logarithmic correction of the linear commutators �̂λν and S can be geometrically interpreted in
terms of the asymptotic dynamic of the Lorentz force v̂µFµk and its derivatives (see also Remark 6.31).

(2) Our approach does not require modifying the linear commutators in order to prove the global existence
of the solutions, so that we avoid many technical difficulties. In these previous works, the analysis of the
Vlasov field relied on propagating L1

x,v bounds. The source term of the wave equations (or the Poisson
equation) were estimated through weighted Sobolev embeddings as t3

|Zβ
∫
v

f dv|≤ t3
∫
v
|Ẑβ f | dv≲E(t),

where E(t) is a certain L1
x,v norm. However, we know from Theorems 2.10–2.11 that, in general,

∥Ẑ f ∥L1
x,v

≳ log(t) if Ẑ ̸= ∂t,x . As a consequence, the optimal decay t−3 cannot be obtained in such a
way without modifying the linear commutators.

Remark 2.14. The profile F∞ of F can be explicitly expressed in terms of the limit of the spatial
average Q∞ (see Remark 6.17 and Appendix C.1). Moreover, the Maxwell field admits the decomposition
F = FT

+ F2, where

lim
t→+∞

t2 F(t, x + t v̂)= lim
t→+∞

t2 FT (t, x + t v̂)= F∞(v), lim
u→+∞

r FT (u, u, ω)= 0.

In other words, the part of the electromagnetic field which gives rise to F∞ (respectively αI+

) has no
impact on αI+

(respectively F∞).

2.8. Key ingredients of the proof. For the global existence result, our strategy relies on vector field
methods and a continuity argument. The proof then essentially consists in improving bootstrap assumptions,
which are pointwise decay estimates on the solutions and their derivatives. The scattering statements are
then obtained by refining the analysis carried out during of the proof of Theorem 2.10 and by investigating
further the asymptotic behavior of the electromagnetic field.

2.8.1. The large Maxwell field. The assumptions of Theorems 2.10–2.11 imply that, initially, the distri-
bution function f is at most of size ϵ ≪ 1 and the electromagnetic field F is at most of size 3. The goal
of our bootstrap argument is to prove that these properties are preserved over time. Our proof allows for
3 to be large for the following reasons.

• Since the Maxwell equations are linear, we can expect F(t, · ) and its derivatives to be at most of size
3+ Cϵ ∼3, provided that ϵ is small enough. Here, the constant C possibly depends on 3. Indeed, the
data are bounded by 3 and we expect the source term J ( f ) to remains of size ϵ.

• In contrast, the Vlasov equation is nonlinear and we can expect, at first glance, to bound ∥∂κt,x f (t, · )∥L∞
x,v

by ϵ+ D3ϵ = C(3)ϵ.



644 LÉO BIGORGNE

In fact, since our argument will rely on Grönwall’s inequality, C(3) will rather be of the form eD3. The
difficulty, if 3 is large, is related to the logarithmic growth of quantities such as ∥�̂01 f ∥L∞

x,v
. More

precisely, certain error terms are at the threshold of time-integrability. Consequently a naive application
of Grönwall’s inequality would lead to ∥�̂01 f ∥L∞

x,v
≲ ϵ(1 + t)D3. We discuss how to circumvent this

obstacle in the next section.

2.8.2. Estimates for the Vlasov field. In order to control sufficiently well the electromagnetic field and
close our estimates, we would like to recover the linear decay for

∣∣∫
v

Ẑβ f (t, x, v) dv
∣∣ ≲ t−3, with

|β| ≤ N − 1, and similar quantities. This is done as follows:

• The main step consists in proving that |v0
|
Nv zNx Ẑβ f grows slowly, and in fact logarithmically, in time.

• Then, by performing the standard change of variables y = x − t v̂, we are able to reduce the problem
to proving a uniform bound for the spatial averages |v0

|
5
∫

y Ẑβ f (t, y, v) dy. This turns out to be a
consequence of the first step as well but our argument requires a loss of regularity, which is why we do
not attain the optimal decay t−3 for the top-order derivatives |β| = N.

Let us illustrate certain difficulties of the first step, which relies on Duhamel’s formula, by considering
the first-order derivatives. If Z ∈ K \ {S} is a Killing vector field, then

|TF (Ẑ f )| = |v̂µLZ (F)µ j∂v j f | ≲
∑

1≤ j≤3

t + |x |

v0 |v̂µLZ (F)µ j
||∂t,x f | + better terms. (17)

Since LZ (F) is supposed to decay as7
|LZ (F)|≲3(1+ t +|x |)−1(1+|t −|x ||)−1, there are two problems.

(1) The decay rate degenerates near the light cone t = |x |.

(2) Even far from the light cone, |TF (Ẑ f )| ∼3t−1
|∂t,x f | is not integrable in time, preventing us from

proving that ∥Ẑ f ∥L∞
x,v

grows slowly by a direct application of Grönwall’s inequality if 3 is large.

We deal with the first issue by taking advantage of the null structure of the Lorentz force, which,
roughly speaking, allows us to transform decay in t − r into decay in t + r . More precisely, v̂µLZ (F)µ j

can be decomposed as the sum of terms containing either a good null component α, ρ or σ of LZ (F) or
one of the good null components of v̂. The first group enjoys improved decay estimates near the light cone,
whereas the latter allows us to exploit the decay in t −r . We refer to Lemmas 4.1 and 4.4 for more details.

We circumvent the second problem by identifying hierarchies in the commuted equations. More
precisely, if Z = ∂xµ is a translation, one can use that |L∂xµ (F)|≲ t−1(1+|t −|x ||)−2 in order to prove that
TF (∂xµ f ) is in fact time-integrable. Then, one can observe that the system of the commuted Vlasov equa-
tions (17) is in some sense triangular and expect ∥Ẑ f ∥L∞

x,v
to grow at most logarithmically. A toy model

for the system of the first-order commuted equations, once the null structure is well understood, is then

TF (g)=3(1 + t)−2g +3(1 + t)−3h, TF (h)=3(1 + t)−1g +3(1 + t)−2h, g ≥ 0, h ≥ 0,

where g is supposed to capture the behavior of |∂xµ f |, 0 ≤ µ ≤ 3, and h that of |Ẑ f |, with Ẑ a
homogeneous vector field such as �̂01. The source terms having h as a factor represent the strongly

7This pointwise decay estimate is consistent with the expected behavior of the source term of the Maxwell equations.
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decaying error terms in (17). Using the Duhamel formula and applying Grönwall’s inequality, we have,
for E(t) := ∥g(t, · , · )∥L∞

x,v
+ ∥h(t, · , · )∥L∞

x,v
,

E(t)≤ E(0)+
∫ t

s=0

3

1 + s
E(s) ds, E(t)≤ E(0)(1 + t)3.

As mentioned earlier, without any smallness assumption on 3, this estimate is not good enough to derive
a satisfying decay estimate for

∫
v

f dv. The idea then is to exploit that

TF (log−1(3 + t))≤ 0, TF (h log−2(3 + t))≤3(1 + t)−1 log−2(3 + t)g +3(1 + t)−2h log−2(3 + t).

By considering the hierarchized norm E(t) := ∥g(t, · , · )∥L∞
x,v

+∥h(t, · , · )∥L∞
x,v

log−2(3+ t), we finally get

E(t)≤ E(0)+
∫ t

s=0

23

(1 + s) log2(3 + s)
E(s) ds, E(t)≤ E(0)e23.

More generally, the hierarchies are determined by the number of homogeneous vector fields βH composing
Ẑβ and the exponent of the weight z.

A new difficulty arises for the higher-order derivatives since we do not have improved estimates at our
disposal on the good null components of LZγ (F) for |γ | ≥ N −1. This time, we transform decay in t − r
into decay in t + r by losing powers of |v0

|
2z through Lemma 2.6. For this, it is important to observe

that, in the error terms, such a LZγ (F) is always multiplied by a low-order derivative of f . We can then
close the estimates by propagating weaker L∞

x,v norms of Ẑβ f when |β| ≥ N − 1.

Remark 2.15. Let us make some comparisons between the decay properties of the electromagnetic F
and the ones of the electric field E associated to a solution to the Vlasov–Poisson system arising from
small data.

• As ∥E(t, · )∥L∞
x
≲ t−2 and |F |(t, x)≲ t−1(1+|t −|x ||)−1, the electromagnetic field has a much weaker

decay rate near the light cone t = r than E .

• The difference is even more marked for their derivatives since |∂κt,x E |(t, x)≲ t−2−|κ|, whereas we merely
have |L∂κt,x F |(t, x)≲ t−1(1 + |t − |x ||)−1−|κ|. Thus, in order to exploit the extra decay provided by these
derivatives of F, one has to take advantage of the null structure of the system or lose powers of |v0

|
2z.

2.8.3. Estimates for the electromagnetic field. We control the Cartesian components of LZγ (F) using the
representation formula for the wave equation since, for instance, □F01 = −

∫
v
∂x1 f + v̂1∂t f dv. However,

two difficulties arise for the higher-order derivatives:

(1) There is a loss of regularity. We need to control
∫
v
v̂µ∂t,x Ẑγ f dv in order to estimate LZγ (F).

(2) With our method, we do not have the optimal decay rate for
∫
v

Ẑγ f dv, |γ | = N. Moreover, any
logarithmic loss would prevent us from closing our estimates.

We treat the first problem by using the Glassey–Strauss decomposition [1986] of the electromagnetic
field, presented in detail in Section 5.1. The idea is to express the derivatives ∂xµ in terms of derivatives
tangential to backward light cones and T0 = ∂t + v̂ · ∇x , which is transverse to light cones. Exploiting
then the Vlasov equation TF ( f )= 0, we can perform integration by parts and save one derivative.
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We deal with the second issue by estimating ∇t,xLZ ξ (F), for |ξ | = N − 1, by the Glassey–Strauss
decomposition of the derivatives of the electromagnetic field. Roughly speaking, it allows us to control
the inhomogeneous part of ∇t,xLZ ξ (F) by

∫
v
|v0

|
3
|Ẑβ f | dv, where |β| ≤ N − 1 (see Proposition 5.7 and

Corollary 5.8 for more details). However, with this process, we get a bad control of the other top-order
derivatives near the light cone,

|LZ Z ξ (F)|(t, x)≲(1+t+|x |)|∇t,xLZ ξ F |(t, x)+|LZ ξ F |(t, x)≲(1+|t−r |)−2 log(3+|t−r |), |ξ |=N−1.

This forces us to lose a power more of |v0
|
2z for the estimates of the top-order derivatives of the Vlasov

field f .
Once we proved that the solutions are global in time, we use null properties of the Maxwell equations (7)

to derive the existence of a scattering state for F and its derivatives. We then address the problem of
finding a solution Fvac to the vacuum Maxwell equations which approaches F by constructing a scattering
map for these equations. For this, we make crucial use of the corresponding result for the homogeneous
wave equation [Lindblad and Schlue 2023]. This is carried out in Section 7.

2.8.4. Modified scattering result. In the context of the Vlasov–Poisson system, except for the trivial
solution, the distribution function does not converge along the linear characteristics [Choi and Ha 2011].
We then do not expect f (t, x + t v̂, v) to converge and the reason is related to the long-range effect of the
Lorentz force (recall Remark 1.3). More precisely, isolating the leading-order term of the source term of
the Maxwell equations,

sup
|x |<t

∣∣∣∣t3
∫

R3
v

vµ

v0 f (t, x, v) dv−
xµ

t
(|v0

|
5 Q∞)

(
qx
t

)∣∣∣∣ = O(t−
δ
2 ), Q∞(v) := lim

t→+∞

∫
R3

x

f (t, x, v) dv,

where x0
= t , we are able to prove t2 F(t, x + t v̂)= F∞(v)+ O(t−δ/2). Consequently, the slow decay of

the electromagnetic field along timelike trajectories implies that the right-hand side of

∂t( f (t, x + t v̂, v))=
t
v0 v̂

µ(Fµ j (t, x + t v̂)+ v̂ j Fµ0(t, x + t v̂))∂x j f (t, x + t v̂, v)+ O(t−
δ
2 )

should not be time-integrable, preventing f (t, x + t v̂, v) from converging. Instead, by considering the
logarithmic corrections XC , given in (16), of the timelike straight lines, one can compensate for the
worst term in the right-hand side of the previous identity and prove the modified scattering statement
f (t, XC , v)→ f∞(x, v).

Although the regularity of f∞ according to x can be obtained in a similar fashion, the regularity
in v requires a more thorough analysis. In fact, v0∂vi ( f (t, XC , v)) can be expressed as terms such as
�̂0i f (t, XC , v) which, contrary to ∂t,x f (t, XC , v), does not converge. The reason is related to the weak
decay of the error term [TF , �̂0i ] ∼ t−1. As for the characteristics, the idea consists in considering a
logarithmic correction of �̂0i , introduced and studied in Section 6.4, which has improved commutation
properties with the Vlasov operator TF . As stated in Theorem 2.11, these corrections are given in terms
of first-order derivatives of the effective electromagnetic field F∞(v).
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2.9. Null properties of electromagnetic fields. We recall here the classical results which will be used
throughout this paper in order to study solutions to the Maxwell equations

∇
µFµν = Jν, ∇

µ∗Fµν = 0, (18)

where the source term J = Jµ dxµ is a sufficiently regular 1-form. In particular, solutions to the vacuum
Maxwell equations will satisfy

∇
µFµν = 0, ∇

µ∗Fµν = 0. (19)

We point out that some of the estimates presented here could be refined in a general setting. For the
purpose of performing energy estimates during the construction of the scattering map for (19), we recall
the electromagnetic stress-energy tensor.

Definition 2.16. Let G be a 2-form of class C1 such that ∇
µGµν = Jν and ∇

µ∗Gµν = 0. The energy-
momentum tensor T[G]µν is defined as

T[G]µν := GµβGν
β

−
1
4ηµνGξλGξλ.

Moreover, we have

∇
µT [G]µν = Gνλ J λ, T [G]L L = |α(G)|2, T [G]L L = |α(G)|2, T [G]L L = |ρ(G)|2 + |σ(G)|2.

We now present inequalities relying on the relations

(t −r)L = S −
x i

r
�0i , (t +r)L = S +

x i

r
�0i , reθ = − cos(ϕ)�13 − sin(ϕ)�23, reϕ =�12. (20)

Lemma 2.17. Let G be a sufficiently regular solution to the Maxwell equations (18) with a smooth source
term J. Then,

∀|x | ≥
1
2(1 + t), (|∇Lα(G)| + |∇Lρ(G)| + |∇Lσ(G)|)(t, x)≲ |J |(t, x)+

∑
|γ |≤1

|LZγ (G)|(t, x)
1 + t + |x |

and,

∀(t, x) ∈ R+ × R3, |∇L(rα(G))|(t, x)≲ r |J |(t, x)+
∑
|γ |≤1

|ρ(LZγ G)|(t, x)+ |σ(LZγ G)|(t, x).

Remark 2.18. Compared to Z ∈ K, Z ̸= ∂xµ , the derivatives tangential to the light cone (L , eθ , eϕ)
provide an extra decay in t + r , whereas L merely provides an additional decay in t − r . The second
estimate then reflects that α, ρ and σ are the good null components. The last inequality provides an
improved control of ∇L(rα) near the light cone and will be useful in order to prove the existence of
scattering states.

Proof. Let us denote by ∇ the intrinsic covariant differentiation on the spheres and by ζ any of the
null components α, α, ρ or σ . Then, according to [Bigorgne 2021b, Lemma D.2], we have, for all
(t, x) ∈ R+ × R3,

(1+t+|x |)|∇Lζ(G)|(t, x)+(1+|x |)|∇ζ(G)|(t, x)+(1+|t−|x ||)|∇Lζ(G)|(t, x)≲
∑
|γ |≤1

|ζ(LZγ G)|(t, x).
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We now express the Maxwell equations in null coordinates. According to [Christodoulou and Klainerman
1990, equations (M ′′

1 )–(M
′′

6 )], we have, for any A ∈ {θ, ϕ},

∇Lρ(G)−
2
r
ρ(G)−∇

eBα(G)eB = JL , ∇Lα(G)eA −
α(G)eA

r
+∇eAρ(G)− ε

AB
∇eBσ(G)= JeA ,

∇Lσ(G)−
2
r
σ(G)+ εAB

∇eAα(G)eB = 0, ∇Lα(G)eA +
α(G)eA

r
−∇eAρ(G)− ε

AB
∇eBσ(G)= JeA .

This allows us to deduce the first estimate. For the last one, use the same arguments and remark further
that ∇LeA = 0 implies

|∇L(rα)| ≲
∑

B∈{θ,ϕ}

|∇L(rα)eB | =

∑
B∈{θ,ϕ}

|∇L(rαeB )| =

∑
B∈{θ,ϕ}

|r∇Lα(G)eB +α(G)eB |. □

In the same spirit, we have the following identity which is proved in [Bigorgne 2020a, Proposition 3.7,
equation (18)].

Lemma 2.19. For any sufficiently regular 2-form G and any null component ζ ∈ {α, α, ρ, σ },

∀(t, x) ∈ R+ × R3, |ζ(∇t,x G)|(t, x)≲
∑
|γ |≤1

|ζ(LZγ G)|(t, x)
1 + |t − |x ||

+
|LZγ (G)|(t, x)

1 + t + |x |
.

We now illustrate how the previous lemmas can be used in order to obtain improved estimates for the
good null components of the electromagnetic field.

Corollary 2.20. Consider a 2-form G of class C1, a solution to the Maxwell equations (18) with a
continuous source term J. Assume that there exist two constants C[G]> 0 and q > 0 such that,

∀(t, x)∈ R+×R3, (1+t+|x |)|J |(t, x)+
∑
|γ |≤1

|LZγ (G)|(t, x)≤
C[G]

(1+t+|x |)(1+|t−|x ||)q
. (21)

Then, for all (t, x) ∈ R+ × R3,

(|α(G)| + |ρ(G)| + |σ(G)|)(t, x)≲ C[G]


(1 + t + |x |)−1−q if 0< q < 1,
log(3 + t)(1 + t + |x |)−2 if q = 1,
(1 + t + |x |)−2(1 + |t − |x ||)−q+1 if q > 1.

Moreover, if G is merely defined on [0, T [ × R3, T > 0, we have the weaker estimate, for the case q > 1,

∀(t, x) ∈ [0, T [ × R3, (|α(G)| + |ρ(G)| + |σ(G)|)(t, x)≲ C[G](1 + t + |x |)−2 if q > 1.

Proof. Note first that the assumptions give |G|(t, x)≲ (1 + t + |x |)−1−q if 1 + t ≥ 2|x | or |x | ≥ 2(1 + t).
We then fix (t, rω) ∈ R+ × R3 such that 1 + t ≤ 2r ≤ 4(1 + t), ω ∈ S2, and we denote by ζ any of the
null components α, ρ or σ . Consider further

φ(u, u) := ζ(G)
(

u + u
2

,
u − u

2
ω

)
.
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By Lemma 2.17 and (21), we have

|∇∂uφ|(u, u)=
1
2
|∇Lζ(G)|

(
u + u

2
,

u − u
2

ω

)
≲

C[G]

(1 + u)2(1 + |u|)q
.

Now, note that, for t − r ≤ 0,

|ζ(G)|(t, rω)= |φ|(t − r, t + r)= |φ(−t − r, t + r)+
∫

−|t−r |

u=−t−r
∇∂uφ(u, t + r) du|

≲ |ζ(G)|(0, tω+ rω)+
C[G]

(1 + t + r)2

∫
−|t−r |

u=−t−r

du
(1 + |u|)q

.

Similarly, if t − r ≥ 0, we obtain by integrating between u = t − r and t + r ,

|ζ(G)|(t, rω)≲ |ζ(G)|(t + r, 0)+
C[G]

(1 + t + r)2

∫ t+r

u=|t−r |

du
(1 + |u|)q

.

By (21),

|ζ(G)|(t + r, 0)+ |ζ(G)|(0, tω+ rω)≲ C[G](1 + t + r)−1−q

and the first part of the result then follows from the computations of the integrals in the previous two
estimates. For the case q = 1, note that log(1 + t + r)≤ 3 log(3 + t) since r ≤ 2 + 2t .

If G is merely defined on [0, T [ × R3 and t < T, then we cannot apply the previous computations in
the case t ≥ r . Instead, we integrate between u = 0 and t − r in order to get

|ζ(G)|(t, rω)≲ |ζ(G)|
(

t + r
2
,

t + r
2
ω

)
+

C[G]

(1 + t + r)2

∫
|t−r |

u=0

du
(1 + |u|)q

.

It remains to bound |ζ(G)|((t + r)/2, (t + r)ω/2) by the estimate obtained in the region t ≤ r and to
compute the integral in the three different cases. □

Finally, we prove pointwise decay estimates for a solution to the homogeneous wave equation. Since
the Cartesian components Fµν of a solution F to the vacuum Maxwell equations satisfy □Fµν = 0, the
next result will also allow us to estimate such electromagnetic fields.

Proposition 2.21. Let φ be a C2 solution to the free wave equation □φ = 0 such that

Eq
[φ] := sup

x∈R3
⟨x⟩

q
|φ|(0, x)+ sup

x∈R3
⟨x⟩

q+1
|∂t,xφ|(0, x) <+∞, q ≥ 2.

Then, there holds,

∀(t, x) ∈ R+ × R3, |φ|(t, x)≲
Eq

[φ]

(1 + t + |x |)(1 + |t − |x ||)q−1 .

Proof. By Kirchhoff’s formula we have

φ(t, x)=
1

4π t2

∫
|y−x |=t

φ(0, y) dy +
1

4π t

∫
|y−x |=t

y − x
|y − x |

· ∇yφ(0, y)+ ∂tφ(0, y) dy.
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We obtain the result by applying8 [Wei and Yang 2021, Lemma 4.1], which gives that, for any h ∈ C(R3)

such that |h|(x)≤ K0(1 + |x |)−p,∫
|y−x |=t

|h|(y) dy ≤

{
8πK0t2(1 + t + |x |)−1(1 + |t − |x ||)−p+1 if 2 ≤ p < 3,
4πK0t (1 + t + |x |)−1(1 + |t − |x ||)−p+2 if p ≥ 3,

(22)

completing the proof. □

3. Strategy of the proof and the bootstrap assumptions

Let N ≥ 3, Nv ≥ 15, Nx > 7 and consider an initial data set ( f0, F0) satisfying the hypotheses of
Theorem 2.10. By a standard local well-posedness argument, there exists a unique maximal solution
( f, F) to the Vlasov–Maxwell system arising from these data. Let Tmax ∈ R∗

+
∪ {+∞} such that the

solution is defined on [0, Tmax[. By continuity, there exists a largest time 0< T ≤ Tmax and a constant
Cboot> 0, independent of ϵ, such that the following bootstrap assumptions hold. For all (t, x)∈ [0, T [×R3,

∀|γ | ≤ N − 1, |LZγ (F)|(t, x)≤
Cboot3

(1 + t + |x |)(1 + |t − |x ||)
, (BA1)

∀|γ | = N − 1, |∇t,xLZγ (F)|(t, x)≤
Cboot3 log(3 + |t − |x ||)

(1 + t + |x |)(1 + |t − |x ||)2
, (BA2)

∀|β| ≤ N − 2,
∣∣∣∣∫

R3
v

vµ

v0 Ẑβ f (t, x, v) dv
∣∣∣∣ ≤

Cboot3

(1 + t + |x |)3
, 0 ≤ µ≤ 3. (BA3)

The goal consists in improving, for Cboot chosen large enough and if ϵ is small enough, (BA1)–(BA3).
We stress that (BA3) will only be used for the proof of Proposition 3.1, where we improve the pointwise
decay estimates for the good null components of the electromagnetic field.

3.1. Immediate consequences of the bootstrap assumptions. We start by improving, near the light cone,
the estimates for the good null components of the electromagnetic field and its derivatives up to order N −2.

Proposition 3.1. For any |γ | ≤ N − 2 and all (t, x) ∈ [0, T [ × R3, we have

(|α(LZγ F)| + |ρ(LZγ F)| + |σ(LZγ F)|)(t, x)≲
3 log(3 + t)

(1 + t + |x |)2(1 + |t − |x |)γT
,

|α(LZγ F)|(t, x)≲
3

(1 + t + |x |)(1 + |t − |x ||)1+γT
,

where we recall that γT is number of translations ∂xµ composing Zγ .

Proof. Consider |γ | ≤ N − 2 and recall from Proposition 2.4 that LZγ F is solution to the Maxwell
equations (18) with a source term which is a linear combination of J (Ẑβ f ), |β| ≤ N − 2, which are
bounded by the bootstrap assumption (BA3). Hence, by applying Corollary 2.20 and using the bootstrap

8The case 2< p < 3, not considered by [Wei and Yang 2021], can be treated as the case p = 2 since
∫ a

b λ/(1 + λ)p dλ ≤

(1 + b)p−2∫ a
b λ/(1 + λ)2 dλ.
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assumption (BA1), we get

(|α(LZγ F)| + |ρ(LZγ F)| + |σ(LZγ F)|)(t, x)≲3 log(3 + t)(1 + t + |x |)−2,

|α(LZγ F)|(t, x)≲ |LZγ (F)|(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−1.

Now, note that, for any 0 ≤ µ ≤ 3 and Z ∈ K, we have [Z , ∂xµ] = 0 or [Z , ∂xµ] = ±∂xλ for a certain
0 ≤ λ≤ 3. As a consequence, and since L∂xµ = ∇∂xµ , there exists constants Dγ

κ,ξ ∈ N such that

LZγ (F)=
∑

|κ|=γT

∑
|ξ |≤|γ |−γT

Dγ

κ,ξL∂κt,x Z ξ (F)=
∑

|κ|=γT

∑
|ξ |≤|γ |−γT

Dγ

κ,ξ∇
κ
t,xLZ ξ (F). (23)

The result then follows from γT applications of Lemma 2.19. □

In contrast, we have very bad control of the top-order derivatives near the light cone.

Proposition 3.2. For any |γ | = N, there holds,

∀(t, x) ∈ [0, T [ × R3, |LZγ F |(t, x)≲3
log(3 + |t − |x ||)

(1 + |t − |x ||)2+γT
.

If |γ | ≤ N − 1, we have the better estimate,

∀(t, x) ∈ [0, T [ × R3, |LZγ F |(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−1−γT .

Proof. Let |γ | = N, (t, x) ∈ [0, T [ × R3 and note that |LZ G| ≲ (1 + t + r)|∇t,x G| + |G| for any Z ∈ K

and any 2-form G. Consequently, we obtain from the bootstrap assumptions (BA1)–(BA2) that,

|LZγ F |(t, x)≲ (1+t+|x |)
3 log(3+|t−|x ||)

(1+t+|x |)(1+|t−|x ||)2
+

3

(1+t+|x |)(1+|t−|x ||)
≲3

log(3+|t−|x ||)

(1+|t−|x ||)2
.

As previously, when γT ≥ 1, the extra decay in t − r is given by (23) and Lemma 2.19. The case
|γ | ≤ N − 1 is easier and follows from (BA1), (23) and Lemma 2.19. □

3.2. Structure of the proof. The remainder of the paper is divided as follows.

(1) First, in Section 4, we prove that, for any |β| ≤ N, an L∞
x,v norm of Ẑβ f , weighted by powers of v0

and z, grows at most logarithmically in time. Next, we control uniformly in time weighted space averages
of Ẑβ f for any |β| ≤ N − 1. This will allow us to prove, in Section 4.4, decay estimates for

∫
v

Ẑβ f dv
and improve (BA3).

(2) Then, we introduce the Glassey–Strauss decomposition of the electromagnetic field in Section 5.1. It
allows us to improve the bootstrap assumptions (BA1) and (BA2), respectively in Sections 5.3 and 5.4,
thus implying the global existence of the solution ( f, F).

(3) Finally, refining the estimates carried out during the previous steps, we prove our modified scattering
result for the distribution function in Section 6. The scattering result for the electromagnetic field is
treated in Section 7 and will require an additional step, the construction of a scattering map for the vacuum
Maxwell equations.
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Remark 3.3. If one is interested in relaxing the assumptions on Nv and Nx , though it would force us to
either modify the proof or obtain weaker rate of convergences, we give here the precise results where
losses in v0 and z occur.

• Two powers of z are lost in order to close the L∞
x,v estimates in Proposition 4.5; 5 + δ powers of z are

required in order to apply Lemma 4.7 and prove boundedness for
∫

x f dx and its derivatives.

• Three powers of v0 are lost for closing the L∞
x,v estimates, and eight for the pointwise decay estimates

(see Lemma 4.12 and Proposition 4.13). Finally, the Glassey–Strauss decomposition of the derivative of
the Maxwell field requires losing four powers of v0, as suggested by Proposition 5.7 and Corollary 5.8.

Note that the various applications of Proposition 4.11 will not require controlling as many moments of f
as the results mentioned here.

4. Estimates for the distribution function

4.1. Control of the Lorentz force. In view of the structure of the error terms for the commuted Vlasov
equations, given by Proposition 2.4, it is important to obtain precise estimates of the Lorentz force and its
derivatives by exploiting its null structure.

Lemma 4.1. Let |γ | ≤ N − 2 and j ∈ [[1, 3]]. For all (t, x, v) ∈ [0, T [ × R3
x × R3

v, we have

1
v0 |v̂µLZγ (F)µ j

|(t, x)≲
3 log(3 + t)
(1 + t + |x |)2

+
3v̂L

(1 + t + |x |)(1 + |t − |x ||)
.

If γT ≥ 1, then we have the improved estimate

1
v0 |v̂µLZγ (F)µ j

|(t, x)≲
3

(1 + t + |x |)
5
2

+
3v̂L

(1 + t + |x |)(1 + |t − |x ||)2
.

Proof. Recall the definition of the null components of a 2-form (5) and expand v̂µFµ j according to the
null frame (L, L , eθ , eϕ) in order to get

|v̂µFµ j
| = |v̂L FL

j
+ v̂L FL

j
+ v̂eθ Feθ

j
+ v̂eϕ Feϕ

j
|

≲ v̂L(|α(F)| + |ρ(F)|)+ v̂L(|ρ(F)| + |α(F)|)+ |v̂|(|σ(F)| + |α(F)| + |α(F)|). (24)

Since v̂L , v̂L , |v̂| ≤ 1 and |v̂| + |v0
|
−1

≤ 2
√
v̂L by Lemma 2.5, we obtain

1
v0 |v̂µFµ j

| ≲
√

v̂L(|α(F)| + |ρ(F)| + |σ(F)|)+ v̂L
|α(F)|. (25)

Note that the same applies to LZγ (F), |γ | ≤ N −2, so that the first estimate follows from Proposition 3.1.
Assume now that γT ≥ 1 and apply once again (25) to LZγ F together with Proposition 3.1. We obtain

1
v0 |v̂µLZγ (F)µ j

|(t, x)≲
3 log(3 + t)

√
v̂L

(1 + t + |x |)2(1 + |t − |x ||)
+

3v̂L

(1 + t + |x |)(1 + |t − |x ||)2

≲3
log2(3 + t)
(1 + t + |x |)3

+
3v̂L

(1 + t + |x |)(1 + |t − |x ||)2
,

which implies the result. □
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If N −1 ≤ |γ | ≤ N, we do not have improved estimates on the null components of the electromagnetic
field. Moreover, if |γ | = N and γT = 0, we have a very bad control of LZγ F near the light cone. The
idea then is to transform decay in t − r into decay in t + r at the cost of powers of z and v0.

Lemma 4.2. Consider |γ | ≤ N and j ∈ [[1, 3]]. Then, for all (t, x, v) ∈ R+ × R3
x × R3

v,

1
v0 |v̂µLZγ (F)µ j

|(t, x)≲
1
v0 |LZγ F |(t, x)≲3

log(3 + t + |x |)

(1 + t + |x |)2
|v0

|
3z2(t, x, v),

and, if γT ≥ 1,

1
v0 |v̂µLZγ (F)µ j

|(t, x)≲
1
v0 |LZγ F |(t, x)≲3

log(3 + t + |x |)

(1 + t + |x |)3
|v0

|
3z2(t, x, v).

Proof. Recall from Lemma 2.6 that (1 + t + r)2 ≲ (1 + |t − r |)2|v0
|
4z2. The first estimate then follows

from Proposition 3.2 and the second one from (BA2) together with (23). □

Remark 4.3. If |γ | ≤ N −1, we have |LZγ F |(t, x)≲3(1+ t +|x |)−2
|v0

|
2z(t, x, v). If |γ | ≤ N −2, by

combining Lemmas 2.5 and 4.1, we could even save a power of |v0
|
3z in the first estimate of the Lorentz

force and then avoid any loss in v.

4.2. Pointwise bounds for f and its derivatives. As explained in Section 2.8.2, the main difficulties here
are related to the weak decay rate of the electromagnetic field. We deal with them by exploiting several
hierarchies in the commuted equations and by taking advantage of the null structure of the Lorentz force.
Our approach, based on the method of characteristics, will require various applications of the following
result.

Lemma 4.4. Let g : [0, T [×R3
x ×R3

v → R+ and h : [0, T [×R3
x ×R3

v → R+ be two nonnegative sufficiently
regular functions such that, for all (t, x, v) ∈ [0, T [ × R3

x × R3
v,

|TF (g)|(t, x, v)≤
Cg

(1 + t) log2(3 + t)
g +

Cg v̂
L

(1 + |t − |x ||) log2(3 + |t − |x ||)
g +

1

(1 + t) log2(3 + t)
h

for some constant Cg > 0. Then,

∀(t, x, v) ∈ [0, T [ × R3
x × R3

v, |g|(t, x, v)≤ (∥g(0, · , · )∥L∞
x,v

+ 3∥h∥L∞
t,x,v )e

6Cg .

Proof. Fix, for all of this proof, (x, v) ∈ R3
x × R3

v and denote by t 7→ (X t , Vt) the characteristic of the
operator TF = ∂t + v̂i∂x i + v̂µFµ j∂v j satisfying,

∀ 1 ≤ j ≤ 3, Ẋ j
t = V̂ j

t , V̇ j
t = V̂ µ

t Fµ j (t, X t), X0 = x, V0 = v.

According to the Duhamel formula, we have,

∀t ∈ [0, T [, g(t, X t , Vt)= g(0, x, v)+
∫ t

s=0
TF (g)(s, Xs, Vs) ds.

We are then lead to introduce the two functions

ψ1(s) := (1 + s)−1 log−2(3 + s), ψ2(s) := v̂L(Xs)(1 + |s − |Xs ||)
−1 log−2(3 + |s − |Xs ||).
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In view of the expression of TF (g), we have, for all t ∈ [0, T [,

g(t, X t , Vt)≤ ∥g(0, · , · )∥L∞
x,v

+ ∥h∥L∞
t,x,v

∫ t

s=0
ψ1(s) ds +

∫ t

s=0
Cg(ψ1(s)+ψ2(s))g(s, Xs, Vs) ds.

Consequently, Grönwall’s inequality and∫
+∞

s=0
ψ1(s) ds =

∫
+∞

s=0

ds

(1 + s) log2(3 + s)
≤

∫
+∞

s=0

3 ds

(3 + s) log2(3 + s)
≤

3
log(3)

≤ 3

yield,

∀t ∈ [0, T [, sup
0≤s≤t

g(s, Xs, Vs)≤ (∥g(0, · , · )∥L∞
x,v

+ 3∥h∥L∞
t,x,v ) exp

(
3Cg + Cg

∫ t

s=0
ψ2(s) ds

)
.

It remains us to estimate the integral of ψ2. For this, we will perform a change of variables reflecting that
the Vlasov operator reads, in the coordinate system (u, x, v), where u = t − |x |,

TF = ∂u − v̂i xi

|x |
∂u + v̂i∂x i + v̂µFµ j∂v j = 2v̂L∂u + v̂i∂x i + v̂µFµ j∂v j .

As v̂L > 0 by Lemma 2.5, we can then parametrize t 7→ (X t , Vt) by the variable u. Hence, we perform
the change of variables ũ(s)= s − |Xs |, so that ũ′(s)= 2V̂ L(Xs) > 0 and∫ t

s=0
ψ2(s) ds =

∫ ũ(t)

u=t−|x |

du

2(1 + |u|) log2(3 + |u|)
≤

∫
u∈R

du

2(1 + |u|) log2(3 + |u|)
≤ 3. □

We are now able to prove that quantities such as z Ẑβ f are almost uniformly bounded in phase space.
We recall that for a multi-index β, the number of homogeneous vector fields (respectively translations)
composing Ẑβ is denoted by βH (respectively βT ).

Proposition 4.5. There exists D > 0, depending only on (N , Nv, Nx), such that the following estimates
hold. For all (t, x, v) ∈ [0, T [ × R3

x × R3
v,

∀ 0 ≤ q ≤ Nx , |β| ≤ N − 2, |v0
|
Nv |zq Ẑβ f |(t, x, v)≲ ϵeD3 log3q+3βH (3 + t), (26)

∀ 0 ≤ q ≤ Nx − 2, |β| ≤ N , |v0
|
Nv−3

|zq Ẑβ f |(t, x, v)≲ ϵeD3 log3q+3βH (3 + t). (27)

Throughout this paper, it will be convenient to work with ϵ̄ := ϵe(D+1)3.

Proof. For simplicity, we assume here that N ≥ 4 and we sketch the proof of the case N = 3 in Remark 4.6
below. Note further that, by interpolation, it suffices to deal with the cases q ∈ {0, Nx} for (26) and
q ∈ {0, Nx − 2} for (27). Motivated by the analysis of the toy model carried out in Section 2.8.2, we
introduce the following hierarchized norms in order to deal with nonintegrable error terms and still obtain
satisfying estimates if the electromagnetic field is large. Consider, for (N0, p, q)= (N − 2, Nv, Nx) or
(N , Nv − 3, Nx − 2),

E
p,q
N0

[ f ](t, x, v) :=

∑
|β|≤N0

|v0
|

p
|Ẑβ f |(t, x, v)

log3βH (3 + t)
+

|v0
|

p
|zq Ẑβ f |(t, x, v)

log3q+3βH (3 + t)
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and let us prove that, for all (t, x, v) ∈ [0, T [ × R3
x × R3

v,

TF (E
Nv,Nx
N−2 [ f ])(t, x, v)≲

3E[ f ]
Nv,Nx
N−2 (t, x, v)

(1 + t) log2(3 + t)
+

3v̂L(x)E[ f ]
Nv,Nx
N−2 (t, x, v)

(1 + |t − |x ||) log2(3 + |t − |x ||)
, (28)

TF (E
Nv−3,Nx−2
N [ f ])(t, x, v)≲

3E
Nv−3,Nx−2
N [ f ](t, x, v)

(1 + t) log2(3 + t)

+
3v̂L(x)ENv−3,Nx−2

N [ f ]

(1 + |t − |x ||) log2(3 + |t − |x ||)
+
3E

Nv,Nx
N−2 [ f ](t, x, v)

(1 + t) log2(3 + t)
. (29)

We are able to apply TF to these energy norms since TF (|h|) = TF (h)(h/|h|) almost everywhere for
any h ∈ W 1,1

loc . The result would then follow from two applications of Lemma 4.4. Fix now (t, x, v) ∈

[0, T [ × R3
x × R3

v as well as either |β| ≤ N − 2, p = Nv and a ∈ {0, Nx} or |β| ≤ N, p = Nv − 3 and
a ∈ {0, Nx − 2}. Note then, since TF (log−1(3 + t)) < 0, that

TF

(
|v0

|
p za

|Ẑβ f |

log3a+3βH (3 + t)

)
≤ pTF (v

0)
|v0

|
p−1za

|Ẑβ f |

log3a+3βH (3 + t)

+ aTF (z)
|v0

|
p za−1

|Ẑβ f |

log3a+3βH (3 + t)
+ TF (Ẑβ f )

Ẑβ f
|Ẑβ f |

|v0
|

p za

log3a+3βH (3 + t)
. (30)

It is important to note that the second term on the right-hand side vanishes if a = 0. We start by dealing
with the first two terms on the right-hand side since the last one requires a more thorough analysis. As
|∇vv

0
| ≤ 1, we obtain, by applying Lemma 4.1,

1
v0 |TF (v

0)|(t, x, v)=
1
v0 |v̂µFµ j∂v j (v0)|(t, x)≲

3 log(3 + t)
(1 + t + |x |)2

+
3v̂L

(1 + t + |x |)(1 + |t − |x ||)
, (31)

so that

|TF (v
0)|

|v0
|

p−1
|za Ẑβ f |(t, x, v)

log3a+3βH (3 + t)
≲

(
3

(1 + t)
3
2

+
3v̂L

(1 + t)(1 + |t − |x ||)

)
|v0

|
p
|za Ẑβ f |(t, x, v)

log3a+3βH (3 + t)
. (32)

Next, recall from (11) the identity v̂µ∂xµ(z)= 0 and note that |∇v z|≲ (t +r)/v0. We get, using Lemma 4.1,

|TF (z)|(t, x, v)≲
∑

1≤ j≤3

t + |x |

v0 |v̂µFµ j (t, x)| ≲
3 log(3 + t)
1 + t + |x |

+
3v̂L

1 + |t − |x ||
.

Using Young inequality for products, we obtain, if a ̸= 0,

za−1

log3a(3 + t)
≤

a − 1

a log3(3 + t)

za

log3a(3 + t)
+

1

a log3(3 + t)
.

We then deduce that

a|TF (z)|
|v0

|
p za−1

|Ẑβ f |

log3a+3βH (3 + t)

≲

(
3

(1 + t) log2(3 + t)
+

3v̂L

(1 + |t − |x ||) log3(3 + t)

)(
|v0

|
p
|Ẑβ f |

log3βH (3 + t)
+

|v0
|

p za
|Ẑβ f |

log3a+3βH (3 + t)

)
. (33)
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We now focus on the last term in (30). The first step consists in applying the commutation formula of
Proposition 2.4 and noting that v0∂vi = �̂0i − t∂x i − x i∂t . We can then bound

|TF (Ẑβ f )||v0
|

p za log−3a−3βH (3 + t)

by a linear combination of terms of the following form. The good ones, which are strongly decaying and
can then be easily handled,

G p,a
γ,κ :=

1
v0 |v̂µLZγ (F)µ j

|
|v0

|
p za

|�̂0 j Ẑκ f |

log3a+3βH (3 + t)
, |γ | + |κ| ≤ |β|, |κ| ≤ |β| − 1, (34)

and the bad ones,

B p,a
γ,κ := (t + r) sup

1≤ j≤3

1
v0 |v̂µLZγ (F)µ j

|
|v0

|
p za

|∂t,x Ẑκ f |

log3a+3βH (3 + t)
,

{
γH + κH ≤ βH ,

κH = βH =⇒ γT ≥ 1,
(35)

where, again, |γ | + |κ| ≤ |β| and |κ| ≤ |β| − 1. We emphasize that Ẑ ξ := ∂t,x Ẑκ is composed of the
same number of homogeneous vector fields as Ẑκ, so that ξH = κH . In contrast, Ẑ ζ := �̂0 j Ẑκ satisfies
ζH = κH + 1. Moreover, �̂0 j Ẑκ and ∂t,x Ẑκ are of order at most |β|.

Consider first the case |β| ≤ N −2, so that p = Nv and a ∈ {0, Nx}, and fix two multi-indices |γ | ≤ |β|,
|κ| ≤ |β| − 1. Then, according to Lemma 4.1, we have

GNv,a
γ,κ ≲3

(
log(3 + t)
(1 + t + |x |)2

+
v̂L

(1 + t + |x |)(1 + |t − |x |)

)
|v0

|
Nv |za�̂0 j Ẑκ f |(t, x, v)

log3a+3βH (3 + t)

≲

(
3

(1 + t)
3
2

+
3v̂L

(1 + t)
1
2 (1 + |t − |x |)

)
|v0

|
Nv |za�̂0 j Ẑκ f |(t, x, v)

log3a+3(κH +1)(3 + t)
. (36)

We now focus on BNv,a
γ,κ and we start by treating the case κH = βH and γT ≥ 1. Applying once again

Lemma 4.1, we get

BNv,a
γ,κ ≲ (t + |x |)

(
3

(1 + t + |x |)
5
2

+
3v̂L

(1 + t + |x |)(1 + |t − |x |)2

)
|v0

|
Nv |za∂t,x Ẑκ f |

log3a+3βH (3 + t)

≤

(
3

(1 + t)
3
2

+
3v̂L

(1 + |t − |x |)2

)
|v0

|
Nv |za∂t,x Ẑκ f |

log3a+3κH (3 + t)
. (37)

Otherwise κH ≤ βH − 1, so necessarily βH ≥ 1, and

BNv,a
γ,κ ≲ (t + |x |)

(
3 log(3 + t)
(1 + t + |x |)2

+
3v̂L

(1 + t + |x |)(1 + |t − |x |)

)
|v0

|
Nv |za∂t,x Ẑκ f |

log3a+3βH (3 + t)

≤

(
3

(1 + t) log2(3 + t)
+

3v̂L

(1 + |t − |x |) log3(3 + t)

)
|v0

|
Nv |za∂t,x Ẑκ f |

log3a+3κH (3 + t)
. (38)

We obtain from (30)–(33) and (36)–(38),

TF

(
|v0

|
Nv za

|Ẑβ f |

log3a+3βH (3 + t)

)
≲
3E

Nv,Nx
N−2 [ f ](t, x, v)

(1 + t) log2(3 + t)
+
3v̂L(x)ENv,Nx

N−2 [ f ](t, x, v)

(1 + |t − |x ||) log2(3 + t)
+
3v̂L(x)ENv,Nx

N−2 [ f ](t, x, v)

(1 + |t − |x ||)2
.
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As |t − r | ≳ t for r ≥ 2t and t ≥ |t − r | otherwise, we have

(1 + |t − r |)−1 log−2(3 + t)≲ (1 + t)−1 log−2(3 + t)+ (1 + |t − r |)−1 log−2(3 + |t − r |) (39)

and we then deduce that (28) holds. Lemma 4.4 then implies (26).
Assume now that N − 1 ≤ |β| ≤ N, p = Nv − 3 and a ∈ {0, Nx − 2}. We fix two multi-indices γ , κ

verifying |γ | + |κ| ≤ |β|, |κ| ≤ |β| − 1 and we consider two cases.

Case 1: |γ | ≤ N −2. The Lorentz force can still be estimated using Lemma 4.1. One can then follow the
analysis carried out in (36)–(39) and obtain

GNv−3,a
γ,κ , BNv−3,a

γ,κ ≲
3E

Nv−3,Nx−2
N [ f ](t, x, v)

(1 + t) log2(3 + t)
+

3v̂L(x)ENv−3,Nx−2
N [ f ](t, x, v)

(1 + |t − |x ||) log2(3 + |t − |x ||)
, (40)

where the term BNv−3,a
γ,κ is of course merely defined when γT and κH satisfy the condition given in (35).

Case 2: N − 1 ≤ |γ | ≤ N. Then, as N ≥ 4, we have |κ| ≤ 1 so that we will be able to control the
terms (34)–(35) using (26). In particular, we are allowed to lose two powers of |v0

|
2z in the upcoming

estimates in order to deal with the weak decay rate of LZγ F near the light cone. More precisely, using
first Lemma 4.2 and then a + 2 ≤ Nx ,

GNv−3,a
γ,κ ≲

3 log(3 + t + |x |)

(1 + t + |x |)2
|v0

|
3z2(t, x, v)

|v0
|
Nv−3

|za�̂0 j Ẑκ f |(t, x, v)

log3a+3βH (3 + t)

≲
3

(1 + t)
3
2

|v0
|
Nv |zNx �̂0 j Ẑκ f |(t, x, v)

log3Nx+3(κH +1)(3 + t)
.

Next, consider the terms (35) and assume first that γT ≥ 1. In that case, BNv−3,a
γ,κ can be easily handled

since it is strongly decaying. Indeed, using again Lemma 4.2, we get

BNv−3,a
γ,κ ≲ (t + |x |)

3 log(3 + t + |x |)

(1 + t + |x |)3
|v0

|
3z2(t, x, v)

|v0
|
Nv−3

|za∂t,x Ẑκ f |(t, x, v)

log3a+3βH (3 + t)

≲
3

(1 + t)
3
2

|v0
|
Nv |zNx ∂t,x Ẑκ f |(t, x, v)

log3Nx+3κH (3 + t)
.

Finally, if γT = 0, we necessarily have γH = |γ | ≥ N −1 ≥ 3. Since βH ≥ γH +κH , we have κH ≤ βH −3,
so that 3a + 3βH ≥ 3(a + 2)+ 3κH + 3. Thus, Lemma 4.2 yields

BNv−3,a
γ,κ ≲ (t + |x |)

3 log(3 + t + |x |)

(1 + t + |x |)2
|v0

|
3z2(t, x, v)

|v0
|
Nv−3

|za∂t,x Ẑκ f |(t, x, v)

log3a+3βH (3 + t)

≲
3

(1 + t) log2(3 + t)

|v0
|
Nv |za+2∂t,x Ẑκ f |(t, x, v)

log3(a+2)+3κH (3 + t)
.

We then deduce that, in this case,

GNv−3,a
γ,κ , BNv−3,a

γ,κ ≲
3

(1 + t) log2(3 + t)
E

Nv,Nx
N−2 [ f ](t, x, v).

The estimate (29) ensues from (40) and this last inequality. To conclude the proof, it then remains to
apply again the previous Lemma 4.4. □
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Remark 4.6. If N = 3, the proof of Proposition 4.5 requires an additional step. Once the estimate for
E

Nv,Nx
N−2 [ f ] is proved, we need to control the intermediary norm E

Nv−1,Nx−1
N−1 [ f ]. For this, compared to the

treatment of E
Nv−3,Nx−2
N [ f ] carried out during the proof of Proposition 4.5, there are two differences.

• First, we can exploit the much stronger decay estimate satisfied by the derivatives of order N − 1 of
the electromagnetic field than that on its top-order ones (see Proposition 3.2). This explains why we can
propagate higher moments for the derivatives of order N − 1 of f than for the top-order ones.

• Moreover, for controlling sufficiently well BNv−1,0
γ,κ and BNv−1,Nx−1

γ,κ in the case βH = κH , we can
prove, through a direct application of Lemma 2.17, that the good null components of LZγ (F) still satisfy
improved estimates when |γ | = N − 1 and γT ≥ 1.

Finally, in order to bound uniformly in time E
Nv−3,Nx−2
N [ f ], the analysis of the terms (34)–(35) is slightly

more technical. It is necessary to consider three cases (|γ | ≤ N − 2, |γ | = N − 1 as well as |γ | = N ) and
to use the estimates on the first two energy norms.

4.3. Uniform boundedness of the spatial averages. We start by a preparatory result, which will also be
useful later in Section 6. Recall the constant ϵ̄ := ϵe(D+1)3 introduced in Proposition 4.5.

Lemma 4.7. For any |β| ≤ N − 1, we have,

∀(t, v) ∈ [0, T [ × R3
v, |v0

|
Nv−6

∣∣∣∣∂t

∫
R3

x

Ẑβ f (t, x, v) dx
∣∣∣∣ ≲ ϵ̄ log3Nx+3N (3 + t)

(1 + t)2
.

Proof. Fix |β| ≤ N − 1, t ∈ [0, T [ and v ∈ R3
v. Integrating the commutation formula of Proposition 2.4

for Ẑβ f and performing integration by parts in x gives

∂t

∫
R3

x

Ẑβ f (t, x, v) dx = −

∫
R3

x

v̂µFµ j∂v j Ẑβ f (t, x, v) dx

+

∑
|γ |+|κ|≤|β|

Cβ
γ,κ

∫
R3

x

v̂µLZγ (F)µ j∂v j Ẑκ f (t, x, v) dx .

Now, we write

v0∂v j = �̂0 j − x j∂t − t∂x j = �̂0 j − (x j
− v̂ j t)∂t − v j S + v j x i∂x i − t∂x j , |x j

− v̂ j t | ≤ z,

so that, integrating once again by parts,∣∣∣∣∂t

∫
R3

x

Ẑβ f (t, x, v) dx
∣∣∣∣ ≲ ∑

|γ |+|κ|≤|β|+1
|γ |≤|β|

sup
1≤ j≤3

∫
R3

x

1
v0 |v̂µLZγ (F)µ j (t, x)||z Ẑκ f |(t, x, v) dx

+

∫
R3

x

t + |x |

v0 |v̂µ∇t,xLZγ (F)µ j (t, x)||Ẑκ f |(t, x, v) dx .

According to the bootstrap assumptions (BA1)–(BA2) and Lemma 2.6, we have

|LZγ (F)µ j (t, x)| ≲3(1 + t + |x |)−2
|v0

|
2z,

|∇t,xLZγ (F)µ j (t, x)| ≲3 log(3 + t + |x |)(1 + t + |x |)−3
|v0

|
4z2,
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so that∣∣∣∣∂t

∫
R3

x

Ẑβ f (t, x,v)dx
∣∣∣∣≲3 ∑

|κ|≤|β|+1

∫
R3

x

log(3+t+|x |)

(1+t+|x |)2
|v0

|
3
|z2 Ẑκ f |(t, x,v)dx

≤3 sup
|κ|≤|β|+1

sup
x∈R3

(
log(3+t+|x |)

(1+t+|x |)2
|v0

|
3
|zNx−2 Ẑκ f |(t, x,v)

)∫
R3

x

dx
zNx−4(t, x,v)

.

Note then that, in view of (11) and Nx > 7,∫
R3

x

dx
zNx−4(t, x, v)

≤

∫
R3

x

dx
(1 + |x − v̂t |)Nx−4 =

∫
y∈R3

dy
(1 + |y|)Nx−4 <+∞.

Then, multiply both sides of the inequality by |v0
|
Nv−6 and bound above the right-hand side by applying

Proposition 4.5. It remains to use 3ϵeD3
≤ ϵe(D+1)3

= ϵ̄. □

Remark 4.8. If |β| ≤ N −3, by using the estimates of the Lorentz force provided by Lemma 4.1, we can
even prove |v0

|
Nv

∣∣∂t
∫

x Ẑβ f dv
∣∣ ≲ ϵ̄(1 + t)−2 log−3Nx−3N (3 + t).

Note now that
∣∣∫

x Ẑβ f (0, x, v) dx
∣∣ ≤ 2 supx |z4 Ẑβ f |(0, x, v)≤ 2ϵ. Hence, by integrating in time the

inequality of the previous Lemma 4.7, we obtain, for any |β| ≤ N − 1,

∀(t, v) ∈ [0, T [ × R3
v, |v0

|
Nv−6

∣∣∣∣∫
R3

x

Ẑβ f (t, x, v) dx
∣∣∣∣ ≲ ϵ+ ϵ̄

∫ t

τ=0

log3Nx+3N (3 + τ)

(1 + τ)2
dτ ≲ ϵ̄.

It directly implies the following result.

Corollary 4.9. Let |β| ≤ N − 1 and ψ : S2
ω × R3

v → R be a function such that ∥ψ( · , v)∥L∞
ω
≲ |v0

|
Nv−6.

Then, for any ω ∈ S2,

∀(t, v) ∈ [0, T [ × R3
v,

∣∣∣∣ψ(ω, v) ∫
R3

x

Ẑβ f (t, x, v) dx
∣∣∣∣ ≲ ϵ̄.

We allowed the function ψ to depend on a parameter ω ∈ S2 in order to prove optimal decay estimates
on certain elements of the Glassey–Strauss decomposition of the electromagnetic field, defined as integral
kernels.

4.4. Pointwise decay estimates for velocity averages. We prove here that the decay rate of
∫
v

Ẑβ f dv,
for |β| ≤ N − 1, coincides with the one of the linear setting. In particular, we improve the bootstrap
assumption (BA3). The starting point consists of performing the change of variables y = x − t v̂. For this,
recall Lemma 2.9 and that y 7→ y̌ is the inverse function of v 7→ v̂.

Lemma 4.10. Let g : [0, T [ × R3
x × R3

v → R be a sufficiently regular function. Then,

∀(t, x) ∈ [0, T [ × R3, t3
∫

R3
v

g(t, x − v̂t, v) dv =

∫
|y−x |<t

(|v0
|
5g)

(
t, y,

x − y
t

)
dy.

This change of variables is motivated by the linear case. Any regular solution to the relativistic transport
equation ∂t h + v̂ · ∇x h = 0 is constant along the timelike straight lines, h(t, x + v̂t, v)= h(0, x, v). The
previous lemma, applied for g(t, x, v)= h(0, x, v), then leads to

∫
v

h(t, x, v) dv ≲ t−3.
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As a first step, we control
∫
v
|Ẑβ f | dv for any |β| ≤ N, which has a slightly slower decay rate than in

the linear case in the interior of the light cone. These estimates will also be useful on their own.

Proposition 4.11. Let |β| ≤ N and 0 ≤ a ≤ Nx − 6. Then, the following properties hold.

• Almost optimal pointwise decay estimate,

∀(t, x) ∈ [0, T [ × R3
x ,

∫
R3
v

|v0
|
Nv−8

|za Ẑβ f |(t, x, v) dv ≲ ϵ̄
log3Nx+3N (3 + t)

(1 + t)3
.

• Improved decay estimates near and in the exterior of the light cone,

∀|x | ≤ t < T,
∫

R3
v

|v0
|
Nv−8−2a

|Ẑβ f |(t, x, v) dv ≲ ϵ̄ log3Nx+3N (3 + t)
(1 + t − |x |)a

(1 + t)3+a ,

∀ t < sup(|x |, T ),
∫

R3
v

|v0
|
Nv−8−2a

|Ẑβ f |(t, x, v) dv ≲ ϵ̄
log3Nx+3N (3 + t)
(1 + t + |x |)3+a .

Proof. Fix |β| ≤ N, (t, x) ∈ [0, T [ × R3
x and 0 ≤ a ≤ Nx − 6. If t ≤ 1, we have by Proposition 4.5,∫

R3
v

|v0
|
Nv−7

|za Ẑβ f |(t, x, v) dv ≲ sup
v∈R3

|v0
|
Nv−3

|zNx−6 Ẑβ f |(t, x, v)
∫

R3
w

dw
⟨w⟩4 ≲ ϵ̄.

Assume now, unless T ≤1, that t ≥1 and introduce the function g(t, x, v) := |v0
|
Nv−8

|za Ẑβ f |(t, x+t v̂, v).
Applying the previous Lemma 4.10 to g, we get

t3
∫

R3
v

|v0
|
Nv−8

|za Ẑβ f |(t, x, v) dv ≤

∫
|y−x |<t

sup
v∈R3

|v0
|
5g(t, y, v) dy

≤ sup
(y,v)∈R3×R3

|v0
|
5
⟨y⟩

4g(t, y, v)
∫

R3
y

dy
⟨y⟩4 .

Using now Lemma 2.8 and then Proposition 4.5, we obtain

t3
∫

R3
v

|v0
|
Nv−8

|za Ẑβ f |(t, x, v) dv ≤ sup
(y,v)∈R3×R3

|v0
|
Nv−3

|za+4 Ẑβ f |(t, y, v)≲ ϵ̄ log3a+12+3N (3 + t).

This concludes the proof of the first estimate, which, together with Lemma 2.6, implies the second one as
well as the last one in the region t < |x | ≤ 2t . If |x | ≥ 2t , note that z ≳ 1 +|x − t v̂| ≳ 1 + t +|x |, so that∫

R3
v

|v0
|
Nv−7

|Ẑβ f |(t, x, v) dv ≲ (1 + t + |x |)−Nx+2 sup
(y,v)∈R3×R3

|v0
|
Nv−3

|zNx−2 Ẑβ f |(t, y, v)
∫

R3
w

dw
⟨w⟩4 .

It remains to apply Proposition 4.5. □

Our goal now is to remove the logarithmic loss of the estimate of
∫
v

Ẑβ f dv provided by Proposition 4.11.
Since our analysis will rely on the following result, we will not be able to deal with top-order derivatives.
We recall that Nx − 3> 4.

Lemma 4.12. Let g : [0, T [ × R3
x × R3

v → R be a sufficiently regular function. Then, for all |x |< t < T,∣∣∣∣t3
∫

R3
v

g(t, x−v̂t,v)dv−
∫

y∈R

(|v0
|
5g)

(
t, y,

qx
t

)
dy

∣∣∣∣≲ 1
t

sup
(y,v)∈R3×R3

⟨y⟩
Nx−3(|v0

|
7
|g|+|v0

|
8
|∇vg|)(t, y,v).
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Proof. According to Lemma 4.10, we have

t3
∫

R3
v

g(t, x − v̂t, v) dv−

∫
y∈R

g
(

t, y,
qx
t

)
dv = I1 + I2,

where

I1 :=

∫
|x−y|<t

(|v0
|
5g)

(
t, y,

x − y
t

)
dy −

∫
|x−y|<t

(|v0
|
5g)

(
t, y,

qx
t

)
dy,

I2 := −

∫
|x−y|≥t

(|v0
|
5g)

(
t, y,

qx
t

)
dy.

Since, by Lemma 2.9, we have |∇y y̌| ≲
√

1 − |y|2
−3

= ⟨y̌⟩
3
= |v0

|
3(y̌), the mean value theorem gives us∣∣∣∣(|v0

|
5g)

(
t, y,

x − y
t

)
− (|v0

|
5g)

(
t, y,

qx
t

)∣∣∣∣ ≲ |y|

t
sup
v∈R3

|v0
|
7
|g|(t, y, v)+ |v0

|
8
|∇vg|(t, y, v).

Consequently,

|I1| ≲
1
t

sup
(y,v)∈R3×R3

⟨y⟩
Nx−3(|v0

|
7
|g|(t, y, v)+ |v0

|
8
|∇vg|(t, y, v))

∫
|x−y|<t

dy
⟨y⟩Nx−4 , Nx − 4> 3.

In order to bound I2 recall that |x |< t and note that, for v = }x/t and any y ∈ R such that |y − x | ≥ t ,

1 = |v0
|
2
(

1 −
|x |

2

t2

)
≤ |v0

|
2 |y|(t + |x |)

t2 ≤ 2
|y||v0

|
2

t
.

We then finally deduce that

|I2| ≤
2
t

∫
|y−x |≥t

(|v0
|
7g)

(
t, y,

qx
t

)
⟨y⟩

Nx−3

⟨y⟩Nx−4 dy ≤
4
t

sup
(y,v)∈R3×R3

|v0
|
7
⟨y⟩

Nx−3
|g|(t, y, v). □

We are able to prove that the decay of quantities such as
∫
v

Ẑβ f dv is optimal. We state a general
result since we will later have to deal with integral kernels.

Proposition 4.13. Let |β| ≤ N − 1 and 9 : S2
ω × R3

v → R be a sufficiently regular function such that
∥9( · , v)∥L∞

ω
+ ∥v0

∇v9( · , v)∥L∞
ω
≲ |v0

|
Nv−11. Then, for any ω ∈ S2,

∀(t, x) ∈ [0, T [ × R3
x ,

∣∣∣∣∫
R3
v

9(ω, v)Ẑβ f (t, x, v) dv
∣∣∣∣ ≲ ϵ̄

(1 + t + |x |)3
.

Proof. Assume first that |x | ≤ t ≤ 1 or |x | ≥ t . Then, as |9|( · , v)≲ |v0
|
Nv−9, it suffices to use the first or

the third estimate of Proposition 4.11, applied for a =
1
2 . Otherwise t >max(1, |x |) and we introduce, for

any ω ∈ S2, gω(t, x, v) = 9(ω, v)Ẑβ f (t, x + t v̂, v). Using first Lemma 2.8 and then Proposition 4.5,
we have

sup
(y,v)∈R3×R3

⟨y⟩
Nx−3(|v0

|
7
|gω| + |v0

|
8
|∇vgω|)(t, y, v)

≲ sup
(y,v)∈R3×R3

|∇v9|(ω, v)|v0
|
8
|zNx−3 Ẑβ f |(t, y, v)+

∑
|κ|≤1

|9|(ω, v)|v0
|
7
|zNx−2 Ẑκ Ẑβ f |(t, y, v)

≲
∑

|ξ |≤N

sup
(y,v)∈R3×R3

|v0
|
Nv−3

|zNx−2 Ẑ ξ f |(t, y, v)≲ ϵ̄ log3Nx+3N (3 + t). (41)
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Now, apply Lemma 4.12 to gω in order to get,

∀ω ∈ S2, t3
∣∣∣∣∫

R3
v

9(ω, v)Ẑβ f (t, x, v) dv
∣∣∣∣ ≲ ∣∣∣∣∫

R3
y

(|v0
|
5gω)

(
t, y,

qx
t

)
dy

∣∣∣∣ + ϵ̄ log3Nx+3N (3 + t)
t

.

As t ≥ 1, it remains to bound by ϵ̄ the first term on the right-hand side. For this, perform the change of
variables z = y − t v̂ and apply Corollary 4.9 with ψ(ω, v)= |v0

|
59(ω, v). □

The next result is a direct application of the previous proposition to 9(ω, v)= vµ/v0 for any 0 ≤µ≤ 3.

Corollary 4.14. For any |β| ≤ N − 1, the decay of the current density J (Ẑβ f ) is optimal. There exists a
constant C > 0 independent of ϵ such that,

∀(t, x) ∈ [0, T [ × R3
x ,

∣∣∣∣∫
R3
v

vµ

v0 Ẑβ f (t, x, v) dv
∣∣∣∣ ≤

C ϵ̄
(1 + t + |x |)3

, 0 ≤ µ≤ 3.

If ϵ satisfies C ϵ̄ = Cϵe(D+1)3 < Cboot3, it improves the bootstrap assumption (BA3).

4.5. Improved estimates for derivatives of velocity averages. In the linear case, derivatives of averages
in v, such as ∂t,x

∫
v

f dv, enjoy stronger decay properties. Our study of the top-order derivatives of the
electromagnetic field will require the following improved estimates.

Proposition 4.15. Let |β| ≤ N − 1, µ ∈ [[0, 3]] and 8 : S2
× R3

v → R be a sufficiently regular function
such that ∥8( · , v)∥L∞

ω
+ ∥v0

∇v8( · , v)∥L∞
ω
≲ |v0

|
Nv−10. Then, for any ω ∈ S2,

∀(t, x) ∈ [0, T [ × R3
x ,

∣∣∣∣∫
R3
v

8(ω, v)∂xµ Ẑβ f (t, x, v) dv
∣∣∣∣ ≲ ϵ̄ log3Nx+3N (3 + t)

(1 + t + |x |)4
.

Proof. Let (t, x) ∈ [0, T [×R3
x and note that, if |x | ≥ t −1, the result is given by Proposition 4.11, applied

for a = 1. We then consider the case t −|x | ≥ 1. Using (20) together with t�i j = (x i/r)�0 j − (x j/r)�0i ,
one has

Iβt,x := |t − |x ||

∣∣∣∣∫
R3
v

8(ω, v)∂xµ Ẑβ f (t, x, v) dv
∣∣∣∣ ≤

∑
Z∈K

∣∣∣∣∫
R3
v

8(ω, v)Z Ẑβ f (t, x, v) dv
∣∣∣∣.

Fix now Z ∈ K. If Z is a translation ∂xµ or if Z = S, then Z ∈ P̂0. Otherwise, either Z =�i j is a rotation
and Z = Ẑ − vi∂v j + v j∂vi or Z =�0k is a Lorentz boost and Z = Ẑ − v0∂vk , so that

Iβt,x ≤

∑
Ẑ∈P̂0

∣∣∣∣∫
R3
v

8(ω, v)Ẑ Ẑβ f (t, x, v) dv
∣∣∣∣ + 3∑

λ=0

3∑
k=1

∣∣∣∣∫
R3
v

8(ω, v)vλ∂vk Ẑβ f (t, x, v) dv
∣∣∣∣.

Integration by parts and |∂vk (8(ω, v)vλ)| ≤ v0
|∇v8|(ω, v)+ |8|(ω, v)≲ |v0

|
Nv−10 yield∣∣∣∣∫

R3
v

8(ω, v)∂xµ Ẑβ f (t, x, v) dv
∣∣∣∣ ≲ 1

|t − |x ||

∑
|κ|≤1

∫
R3
v

|v0
|
Nv−10

|Ẑκ Ẑβ f |(t, x, v) dv.

As t − |x | ≥ 1, it remains to apply once again Proposition 4.11 for a = 1. □
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5. Improvement of the bootstrap assumptions on the electromagnetic field

We are now able to prove pointwise decay estimates for the Maxwell field and its derivatives. We improve
first (BA1), whereas the case of the top-order derivatives (BA2) will require a different strategy since we
did not recover the linear decay t−3 for

∫
v

Ẑβ f (t, x, v) dv, |β| = N.

5.1. The Glassey–Strauss decomposition of the electromagnetic field. We separate F as well as its
derivatives LZγ (F) into three parts according to the Glassey–Strauss decomposition. For this, recall
from (4) the relation between the electric field E , the magnetic field B and the Faraday tensor F. We
have E i

= F0i , B1
= F32, B2

= F13 and B3
= F21. To simplify the statement of the decomposition, we

introduce a weight tensor field.

Definition 5.1. Let wµν(ω, v) be the antisymmetric tensor defined for all (ω, v) ∈ S2
× R3

v by

w0i (ω, v)= −wi0(ω, v) := ωi + v̂i , w jk(ω, v) := ω j v̂k −ωk v̂ j , 1 ≤ i, j, k ≤ 3,

where ωi := xi/|x | if x ∈ R3 satisfies ω = x/|x |. We further define

Wµν(ω, v) :=
wµν(ω, v)

1 +ω · v̂
.

Remark 5.2. Since w is antisymmetric, wµµ = 0 for any µ ∈ [[0, 3]]. Note also that 1 +ω · v̂ = 2vL > 0.

We can now prove an adaptation of [Glassey and Strauss 1986, Theorem 3]. The key idea of their proof
consists in rewriting the standard derivatives ∂t,x as combinations of derivatives tangential to a backward
light cone, which naturally appears in the representation formula for solutions to wave equations, and
T0 := ∂t + v̂ · ∇x , the free relativistic transport operator which is transverse to light cones. To avoid any
confusion with the scaling vector field, we do not keep the notation S, used by Glassey and Strauss, in
order to denote T0.

Proposition 5.3. Let |γ | ≤ N − 1. Then, there exist Cγ

β , N γ

ξ,κ ∈ N such that

4πLZγ (F)= LZγ (F)data
+LZγ (F)T +LZγ (F)S,

where, for any 0 ≤ µ, ν ≤ 3 and with ω = (y − x)/|y − x | in the following integrals:

• LZγ (F)data
µν can be explicitly computed in terms of the initial data. More precisely,

LZγ (F)data
µν (t, x)

= 4πLZγ (F)hom
µν (t, x)−

∑
|β|≤|γ |

Cγ

β

t

∫
|y−x |=t

∫
R3
v

(Wµν(ω, v)− δ
0
µv̂

ν
+ δ0

ν v̂
µ)Ẑβ f (0, y, v) dv dy

and LZγ (F)hom
µν is the unique solution to the homogeneous wave equation □LZγ (F)hom

µν = 0 which initially
verifies LZγ (F)hom

µν (0, · )= LZγ (F)µν(0, · ) and ∂tLZγ (F)hom
µν (0, · )= ∂tLZγ (F)µν(0, · ).

• The 2-form LZγ (F)T is given by

LZγ (F)Tµν(t, x) := −

∑
|β|≤|γ |

Cγ

β [Ẑβ f ]
T
µν(t, x),
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where the field [Ẑβ f ]
T generated by Ẑβ f is

[Ẑβ f ]
T
µν(t, x) :=

∫
|y−x |≤t

∫
R3
v

Wµν(ω, v)

|v0|2(1 +ω · v̂)
Ẑβ f (t − |y − x |, y, v)

dv dy
|y − x |2

.

• The 2-form LZγ (F)S is defined by

LZγ (F)S
µν(t, x) :=

∑
|ξ |+|κ|≤|γ |

N γ

ξ,κ

∫
|y−x |≤t

∫
R3
v

(Ẑκ f v̂λLZ ξ (F)λ
j )(t − |y − x |, y, v)∂v jWµν(ω, v)

dv dy
|y − x |

.

Proof. Fix |γ | ≤ N − 1 and apply Proposition 2.4 in order to rewrite the Maxwell equations satisfied by
LZγ (F) as

∇
µLZγ (F)µν =

∫
R3
v

vν

v0 fγ (t, x, v) dv, ∇
µ∗LZγ (F)µν = 0, ν ∈ [[0, 3]], fγ :=

∑
|β|≤|γ |

Cγ

β Ẑβ f, (42)

with Cγ

β ∈ N. Introduce further the electric Eγ and magnetic Bγ parts of LZγ (F),

E i
γ := LZγ (F)0i , i ∈ [[1, 3]], B1

γ = LZγ (F)32, B2
γ = LZγ (F)13, B3

γ = LZγ (F)21. (43)

In such a way, our framework exactly corresponds to the one of Glassey and Strauss. More precisely, one
can compute the source terms of the wave equations satisfied by the components of Eγ and Bγ . For any
0 ≤ µ, ν ≤ 3, we have

□LZγ (F)µν =

∫
R3
v

v̂µ∂xν fγ − v̂ν∂xµ fγ dv, so, for instance, □E i
γ = −

∫
R3
v

∂x i fγ + v̂i∂t fγ dv.

Applying [Glassey and Strauss 1986, Theorem 3] to ( fγ , Eγ , Bγ ) provides us, for any 0 ≤ µ, ν ≤ 3,

4πLZγ (F)µν = LZγ (F)data
µν +LZγ (F)Tµν −

∫
|y−x |≤t

∫
R3
v

Wµν(ω, v)(T0 fγ )(t − |y − x |, y, v)
dv dy
|y − x |

,

where we recall that T0 = v̂λ∂xλ . Note that the constants Cγ

β in the definitions of LZγ (F)data, LZγ (F)T

and fγ are the same. Applying the commutation formula of Proposition 2.4 for any |β| ≤ |γ | yields

T0 fγ = −

∑
|β|≤|γ |

Cγ

β v̂
µFµ j∂v j Ẑβ f + Cγ

β

∑
|ξ |+|κ|≤|β|

Cβ
ξ,κ v̂

µLZ ξ (F)µ
j∂v j Ẑκ f, (44)

with Cβ
ξ,κ ∈ N. It remains to integrate by parts in v and to recall that ∇v j ·v̂µLZ ξ (F)µ

j
=LZ ξ (F) j

j
= 0. □

It will then be important to estimate the kernels introduced in the previous proposition.

Lemma 5.4. For all (ω, v)∈ S2
×R3

v, we have |ω+ v̂|2, |ω∧ v̂|2 ≤ 2(1+ω · v̂) and (1+ω · v̂)−1
≤ 2|v0

|
2.

Proof. For the second inequality, simply note that

2|v0
|
2(1 +ω · v̂)≥ 2|v0

|
2(1 − |v̂|)= 2v0(v0

− |v|)≥ (v0
+ |v|)(v0

− |v|)= |v0
|
2
− |v|2 = 1.

For the first ones, since |ω| = 1 and |v̂| ≤ 1,

|ω+ v̂|2 = |ω|
2
+ |v̂|2 + 2ω · v̂ ≤ 2(1 +ω · v̂),

|ω∧ v̂|2 = |ω|
2
|v̂|2 − |ω · v̂|2 ≤ (1 +ω · v̂)(1 −ω · v̂)≤ 2(1 +ω · v̂). □
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Corollary 5.5. For any 0 ≤ µ, ν ≤ 3 and all (ω, v) ∈ S2
× R3

v, there holds

|Wµν |(ω, v)≤ 2v0,
|Wµν |(ω, v)

|v0|2(1 +ω · v̂)
≤ 4v0, |∇vWµν |(ω, v)≤ 6v0.

We have similar bounds for their first-order derivatives,

|∇vWµν |(ω, v)≲ v
0,

∣∣∣∣∇v( Wµν(ω, v)

|v0|2(1 +ω · v̂)

)∣∣∣∣ ≲ v0, |∇v∇vWµν |(ω, v)≲ v
0.

Proof. The first two inequalities are a direct consequence of the previous lemma. The other ones ensue
from straightforward computations carried out in Lemma A.2. □

Remark 5.6. These bounds are sharp. Let us focus for instance on the first one, |Wµν |(ω, v)≤ 2v0. For
this, consider, for any v ∈ R3

v, the function φv : ω 7→ 1 +ω · v̂ defined on S2. Then,

min
ω∈S2

φv(ω)=
v0

− |v|

v0 =
1

v0(v0 + |v|)
≤

1
|v0|2

, max
ω∈S2

φv(ω)=
v0

+ |v|

v0 ≥ 1.

By continuity, there exists ωv ∈ S2 such that 1+ωv ·v̂=|v0
|
−2. Then, using |ω+v̂|2 = 2(1+ω·v̂)−|v0

|
−2,

we have ∑
1≤i≤3

|W0i |
2(ωv, v)=

|ωv + v̂|2

|1 +ωv · v̂|2
=

1
1 +ωv · v̂

(
2 −

1
|v0|2(1 +ωv · v̂)

)
= v0.

In order to improve the bootstrap assumption (BA2), we will need to use the Glassey–Strauss decompo-
sition of the spatial derivatives of the electromagnetic field. A similar result holds for the time derivative
but we will estimate it by exploiting the Maxwell equations. For instance, one can check that (2)–(3)
imply |∇∂t F | ≲

∑
1≤k≤3 |∇∂xk F | + |J ( f )|. We lighten the notations by denoting the Lorentz force as

K j
:= v̂µFµ j , K j

ξ := v̂µLZ ξ (F)µ
j , 1 ≤ j ≤ 3, 1 ≤ |ξ | ≤ N . (45)

Proposition 5.7. Let |γ | = N − 1 and 1 ≤ k ≤ 3. Then, ∇∂xk LZγ (F) can be written as

4π∇∂xk LZγ (F)= Adata
γ,k + Aver

γ,k + AT T
γ,k + AT S

γ,k + ASS
γ,k,

where the five 2-forms satisfy the following properties. We fix 0 ≤ µ, ν ≤ 3 and we use again the notation
ω = (y − x)/|y − x | in the integrals written below. Moreover, we give the definition of the kernels at the
end of the statement.9

• Adata
γ,k can be explicitly computed in terms of the initial data,

Adata
γ,k,µν(t, x)= 4π∂xkLZγ (F)data

µν (t, x)−
∑

|β|≤N−1

Cγ

β

1
t2

∫
|y−x |=t

∫
R3
v

Dk
µν(ω, v)Ẑ

β f (0, y, v) dv dy

−

∑
|β|≤N−1

Cγ

β

1
t

∫
|y−x |=t

∫
R3
v

Ck
µν(ω, v)T0 Ẑβ f (0, y, v) dv dy.

9We point out that we are only interested in the qualitative properties of these kernels.
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• Aver
γ,k is the vertex term,

Aver
γ,k,µν(t, x) :=

∑
|β|≤N−1

Cγ

β

∫
σ∈S2

∫
R3
v

Dk
µν(σ, v)Ẑ

β f (t, x, v) dv dµS2 .

• AT T
γ,k is the most singular term,

AT T
γ,k,µν(t, x) :=

∑
|β|≤N−1

Cγ

β

∫
|y−x |≤t

∫
R3
v

Ak
µν(ω, v)Ẑ

β f (t − |y − x |, y, v)
dv dy

|y − x |3

and the crucial identity
∫
|σ |=1 A

k
µν(σ, v̂) dµS2 = 0 holds for all v ∈ R3

v.

• AT,S
γ,k is given by

AT,S
γ,k,µν(t, x) :=

∑
|ξ |+|κ|≤N−1

N γ

ξ,κ

∫
|y−x |≤t

∫
R3
v

∇vBk
µν(ω, v) · (Ẑ

κ f Kξ )(t − |y − x |, y, v)
dv dy

|y − x |2
.

• ASS
γ,k is the sum of the four following quantities, where N γ

ξ,ζ,κ ∈ N,

ASS,I
γ,k,µν :=

∑
|ξ |+|ζ |+|κ|≤N−1

N γ

ξ,ζ,κ

∫
|y−x |≤t

∫
R3
v

[∇v(∇vCk
µν(ω, · ) · Kξ ) · Kζ Ẑκ f ](t − |y − x |, y, v)

dv dy
|y − x |

,

ASS,II
γ,k,µν :=

∑
|ξ |+|κ|≤N−1

N γ

ξ,κ

∫
|y−x |≤t

∫
R3
v

∇vCk
µν(ω, v) · (T0(Kξ )Ẑκ f )(t − |y − x |, y, v)

dv dy
|y − x |

,

ASS,III
γ,k,µν :=

∑
|ξ |+|κ|≤N−1

N γ

ξ,κ

∫
|y−x |≤t

∫
R3
v

Ck
µν(ω, v)

δn
j − v̂ j v̂

n

v0 (∂xn (K j
ξ )Ẑ

κ f )(t − |y − x |, y, v)
dv dy
|y − x |

,

ASS,I V
γ,k,µν :=

∑
|ξ |+|κ|≤N−1

N γ

ξ,κ

∫
|y−x |≤t

∫
R3
v

Ck
µν(ω, v)

δn
j − v̂ j v̂

n

v0 (K j
ξ ∂xn Ẑκ f )(t − |y − x |, y, v)

dv dy
|y − x |

.

• The kernels are smooth functions of (ω, v) ∈ S2
× R3

v given by

Ak
µν(ω, v) := −3

wµν(ω, v)ωk

|v0|4(1 +ω · v̂)4
− 3

wµν(ω, v)v̂k

|v0|2(1 +ω · v̂)3
+

δkµv̂ν − δkν v̂µ

|v0|2(1 +ω · v̂)2
,

Bk
µν(ω, v) := 3

wµν(ω, v)ωk

|v0|2(1 +ω · v̂)3
− 2

wµν(ω, v)v̂k

(1 +ω · v̂)2
−
δkµv̂ν − δkν v̂µ

1 +ω · v̂
,

Ck
µν(ω, v) :=

ωkwµν(ω, v)

(1 +ω · v̂)2
, Dk

µν(ω, v) :=
ωkwµν(ω, v)

|v0|2(1 +ω · v̂)3
.

Proof. Let k ∈ [[1, 3]], |γ | = N − 1 and recall from (42) the definition of fγ and that LZγ (F) solves the
Maxwell equations with source term J ( fγ ). Recall further the electric and magnetic parts (Eγ , Bγ ) of
LZγ (F), introduced in (43). In the same spirit as in the proof of Proposition 5.3, we apply10 [Glassey
1996, Theorem 5.4.1] to ( fγ , Eγ , Bγ ). This yields

∇∂xk LZγ (F)µν = Adata
γ,k,µν + Aver

γ,k,µν + AT T
γ,k,µν + ÃT,S

γ,k,µν + ÃSS
γ,k,µν,

10See also the original version of the result, [Glassey and Strauss 1986, Theorem 4].
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where

ÃT,S
γ,k,µν :=

∫
|y−x |≤t

∫
R3
v

Bk
µν(ω, v)(T0 fγ )(t − |y − x |, y, v)

dv dy
|y − x |2

,

ÃSS
γ,k,µν := −

∫
|y−x |≤t

∫
R3
v

Ck
µν(ω, v)(T0T0 fγ )(t − |y − x |, y, v)

dv dy
|y − x |

,

as well as
∫
|σ |=1 A

k
µν(σ, v̂) dµS2 = 0. One can then prove that ÃT,S

γ,k,µν = AT,S
γ,k,µν by rewriting T0 fγ using

the (commuted) Vlasov equation. More precisely, we use (44) and we then integrate by parts in v. It
remains to deal with ÃSS

γ,k,µν and we recall for this that ∇v · Kξ = ∇v j · v̂µLZ ξ (F)µ j
= 0. Hence, using

again (44), we get that there exists N γ

ξ,κ ∈ N such that

T0T0( fγ )=

∑
|ξ |+|κ|≤|γ |

N γ

ξ,κT0∂v j (K j
ξ Ẑκ f ).

Now, we write T0∂v j = ∂v j T0 − ∂v j (v̂n)∂xn and we apply the commutation formula of Proposition 2.4
to Ẑκ f . We get

T0∂v j (v̂λLZ ξ (F)λ
j Ẑκ f )= ∂v j (T0(K

j
ξ )Ẑ

κ f )+∂v j (K j
ξ T0(Ẑκ f ))−

δn
j −v̂ j v̂

n

v0 (∂xn (K j
ξ )Ẑ

κ f +K j
ξ ∂xn Ẑκ f ),

so that, by integration by parts in v for the quantities related to the two first terms on the right-hand side
of the previous equality,

ÃSS
γ,k,µν = ASS,II

γ,k,µν + ASS,III
γ,k,µν + ASS,I V

γ,k,µν

+

∑
|ξ |+|κ|≤|γ |

N γ

ξ,κ

∫
|y−x |≤t

∫
R3
v

∇v j (Ck
µν(ω, v))(K

j
ξ T0(Ẑκ f ))(τy, y, v)

dv dy
|y − x |

,

where τy := t − |y − x |. Finally, we deal with the last term by applying first the commutation relation
of Proposition 2.4, giving that T0(Ẑκ f )= −K · ∇v Ẑκ f + Cκ

ζ,βKζ · ∇v Ẑβ f , and then by integrating by
parts in v. □

These kernels and their derivatives can be estimated by a direct application of Lemmas 5.4 and A.2.

Corollary 5.8. For any 1 ≤ k, j, n ≤ 3 and for all v ∈ R3
v, we have

(|Ak
| + |∇vAk

| + |∇vBk
| + |Ck

| + |∇vCk
| + |∇v∇vCk

| + |Dk
| + |∇vDk

|)( · , v)≲ |v0
|
3.

5.2. Three integral bounds. The estimate of most of the terms listed in Propositions 5.3 and 5.7 will in
fact be reduced to the analysis of three different integrals. We will deal with all of them by applying a
particular case of [Glassey 1996, Lemma 6.5.2].

Lemma 5.9. Let p ∈ R and g : R2
+

→ R+ be a continuous function. Then, for all (t, x)∈ [0, T [×R3
\{0},∫

|y−x |≤t
g(t − |y − x |, |y|)

dy
|y − x |p =

2π
|x |

∫ t

τ=0

∫
|x |+t−τ

λ=||x |−t+τ |
g(τ, λ)λ dλ

dτ
(t − τ)p−1 .

The following result will be useful for controlling LZγ (F)S and ASS
γ,k .
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Lemma 5.10. For any b ≥ 4 and for all (t, x) ∈ R+ × R, there holds

Y p=1
b,1 (t, x) :=

∫
|y−x |≤t

1
(1 + t − |y − x | + |y|)b(1 + |t − |y − x | − |y||)

dy
|y − x |

≲
log(3 + |t − |x ||)

(1 + t + |x |)(1 + |t − |x ||)b−2 .

Proof. Note first that, on the domain of integration,

t −|y − x |+ |y| ≥ t −|y|− |x |+ |y| = t −|x |, t −|y − x |+ |y| ≥ |y| ≥ |x |− |y − x | ≥ |x |− t, (46)

so that Y p=1
b,1 (t, x)≤ (1 + |t − |x ||)−b+4Y p=4

4,1 (t, x) and it suffices to treat the case b = 4. By continuity,
we can assume further that x ̸= 0. According to Lemma 5.9,

Y p=1
4,1 (t, x)≤

2π
|x |

∫ t

τ=0

∫
|x |+t−τ

λ=||x |−t+τ |

dλ dτ
(1 + τ + λ)3(1 + |τ − λ|)

.

We perform the change of variables u = τ + λ and u = τ − λ. Then, on the domain of integration
||x | − t | ≤ u ≤ t + |x | and u ≤ ||x | − t |. Moreover, u ≥ −u since 2τ ≥ 0. Consequently,

Y p=1
4,1 (t, x)≤

π

|x |

∫ t+|x |

u=||x |−t |

∫
||x |−t |

u=−u

du
1 + |u|

du
(1 + u)3

≤
2π
|x |

∫ t+|x |

u=||x |−t |

log(3 + u)
(1 + u)3

du.

Now, note that

Y p=1
4,1 (t, x)≲

2π log(3 + |t − |x ||)

(1 + |t − |x ||)|x |

∫ t+|x |

u=||x |−t |

du
(1 + u)2

=
2π log(3 + |t − |x ||)

(1 + t + |x |)(1 + |t − |x ||)2

t + |x | − |t − |x ||

|x |

and it remains to note that the last factor on the right-hand side is bounded by 2 min(t, |x |)/|x | ≤ 2. □

We will apply the next lemma in order to deal with LZγ (F)T and AT,S
γ,k .

Lemma 5.11. Let, for any b ≥ 3 and all (t, x) ∈ R+ × R3,

Y p=2
b (t, x) :=

∫
|y−x |≤t

(1 + t − |y − x | + |y|)−b dy
|y − x |2

.

Then, the following range of estimates holds. For any 0< δ ≤ 1,

Y p=2
b (t, x)≲ δ−1(1 + t + |x |)−2+δ(1 + |t − |x ||)−b−δ+3,

Y p=2
b (t, x)≲ (1 + t + |x |)−2(1 + |t − |x ||)−b+3 log(1 + t).

Proof. In view of (46), we have Y p=2
b (t, x) ≤ (1 + |t − |x ||)−b+3Y p=2

3 (t, x) and it suffices to treat the
case b = 3. Then note that

Y p=2
3 (t, x)= K[0, t

2 ]
+ K[ t

2 ,t]
, K I :=

∫
|y−x |∈I

(1 + t − |y − x | + |y|)−3 dy
|y − x |2

.
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On the domain of integration of K[0,t/2], we have t − |y − x | + |y| ≳ t + |x |. Indeed, t − |y − x | ≥ t/2
and |y| ≥ |x | − t (which controls |x |/2 if |x | ≥ 2t). Consequently,

K[0, t
2 ]
≲ (1 + t + |x |)−3

∫ t
2

r=0
dr ≤

1
2(1 + t + |x |)−2. (47)

Applying Lemma 5.9, we have

K[ t
2 ,t]

≤
2π
|x |

∫ t
2

τ=0

∫
|x |+t−τ

λ=||x |−t+τ |

dλ dτ
(1 + τ + λ)2(t − τ)

.

Now, observe that, for all 0 ≤ τ ≤ t/2,

1
|x |(t − τ)

∫
|x |+t−τ

λ=||x |−t+τ |

dλ
(1 + τ + λ)2

=
2 min(|x |, t − τ)

|x |(t − τ)(1 + t + |x |)(1 + τ + ||x | − t + τ |)

≤
8

max(|x |, t)(1 + t + |x |)(1 + τ + |t − |x ||)
. (48)

Let 0 ≤ δ ≤ 1 and write (1 + τ + |t − |x ||) ≥ (1 + τ)1−δ(1 + |t − |x ||)δ. It remains to integrate in τ in
order to derive the expected range of estimates for K[t/2,t]. □

Finally, a part of our analysis of AT T
γ,k will rely on the following estimate.

Lemma 5.12. For all (t, x) ∈ [1,+∞[ × R3, we have

Y p=3
3 (t, x) :=

∫
1≤|y−x |≤t

(1 + t − |y − x | + |y|)−3 dy
|y − x |3

≲
log(t)

(1 + t + |x |)3
.

Proof. The inequality can be easily proved if t ≤ 2 so we assume t ≥ 2. Start by writing

Y p=3
3 (t, x)= K [1, t

2 ]
+ K [ t

2 ,t]
, K I :=

∫
|y−x |∈I

(1 + t − |y − x | + |y|)−3 dy
|y − x |3

.

Following (47), we have

K [1, t
2 ]
≲ (1 + t + |x |)−3

∫ t
2

r=1

dr
r

≤ log
(

t
2

)
(1 + t + |x |)−3.

Next, we apply Lemma 5.9 to get

K [ t
2 ,t]

≤
2π
|x |

∫ t
2

τ=0

∫
|x |+t−τ

λ=||x |−t+τ |

dλ dτ
(1 + τ + λ)2(t − τ)2

.

If 2t ≥ |x |, we use (48) and t −τ ≥ t/2 in order to derive K [t/2,t] ≲ t−2(1+ t +|x |)−1 log(1+ t/2), which
implies the result. Otherwise, 2t ≤ |x | and we have, for all 0 ≤ τ ≤ t/2,

1
|x |(t − τ)2

∫
|x |+t−τ

λ=||x |−t+τ |

dλ dτ
(1 + τ + λ)2

=
2 min(|x |, t − τ)

|x |(t − τ)2(1 + t + |x |)(1 + τ + ||x | − t + τ |)

≤
2

|x |(1 + t + |x |)(1 + |x | − t)(t − τ)
. (49)

We get, as 2 ≤ 2t ≤ |x |,

K[ t
2 ,t]

≤ 4π log(2)|x |
−1(1 + |x |/2)−1(1 + t + |x |)−1 ≲ (1 + t + |x |)−3. □
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5.3. The derivatives of order up to N − 1. In this subsection, we prove pointwise decay estimates for
each of the elements of the decomposition of LZγ (F) provided by Proposition 5.3. We start by dealing
with LZγ (F)data, which is defined on R+ × R3.

Proposition 5.13. There exists Cdata > 0, depending only on N, such that,

∀|γ | ≤ N − 1, ∀(t, x) ∈ R+ × R3, |LZγ (F)data
|(t, x)≤3Cdata(1 + t + |x |)−1(1 + |t − |x ||)−1.

Proof. In view of the assumptions on the initial data (see Theorem 2.10) and applying Corollary 5.5 in
order to estimate Wµν , we have, for any |β| ≤ N − 1, ω ∈ S2 and 0 ≤ µ, ν ≤ 3,

∀y ∈ R3, |LZβ (F)|(0, y)+ ⟨y⟩|∇t,xLZβ (F)|(0, y)≲
∑

|κ|≤|β|+1

⟨y⟩
|κ|

|∇
κ
t,x F |(0, y)≲3⟨y⟩

−2,

∣∣∣∣∫
R3
v

(Wµν(ω, v̂)− δ
0
µv̂

ν
+ δ0

ν v̂
µ)Ẑβ f (0, y, v) dv

∣∣∣∣ ≤ 3
∫

R3
v

|v0
|
Nv |Ẑβ f (0, y, v)|

dv
⟨v⟩Nv−1 ≲ ϵ⟨y⟩

−Nx .

The estimates, at t = 0, for the time derivatives of the solutions are obtained by using that (1)–(3) are
initially verified. Using (22) for p = Nx ≥ 3, we then deduce that,

∀(t, x) ∈ R+ × R3, |LZγ (F)data
−LZγ (F)hom

|(t, x)≲ ϵ(1 + t + |x |)−1(1 + |t − |x ||)−Nx+1 (50)

and it remains to use ϵ ≤3 and to apply Proposition 2.21 to LZγ (F)hom
µν . □

Next, we consider LZγ (F)S, which is strongly decaying far from the light cone.

Proposition 5.14. For any |γ | ≤ N − 1, there holds,

∀(t, x) ∈ [0, T [ × R3, |LZγ (F)S
|(t, x)≲ ϵ̄3

log(3 + |t − |x ||)

(1 + t + |x |)(1 + |t − |x ||)2
.

Proof. Fix 0 ≤ µ, ν ≤ 3 and recall from Proposition 5.3 the definition of LZγ (F)S. We have, with
ω = (y − x)/|y − x |,

|LZγ (F)S
µν |(t, x)

≲
∑

|ξ |+|κ|≤|γ |

∫
|y−x |≤t

|LZ ξ (F)λ
j
|(t − |y − x |, y)

∣∣∣∣∫
R3
v

v̂λ∂v jWµν(ω, v)Ẑκ f (t − |y − x |, y, v) dv
∣∣∣∣ dy
|y − x |

.

Fix now |ξ |+|κ|≤ N −1, j ∈[[1, 3]] and λ∈[[0, 3]]. In view of Corollary 5.5,9(ω, v) := v̂λ∂v jWµν(ω, v)

satisfies |9|( · , v)+ |v0
∇v9|( · , v)≲ |v0

|
2
≤ |v0

|
Nv−11. As |κ| ≤ N − 1, Proposition 4.13 then gives us,

∀(σ, τ, y) ∈ S2
× [0, T [ × R3,

∣∣∣∣∫
R3
v

v̂λ∂v jWµν(σ, v)Ẑκ f (τ, y, v) dv
∣∣∣∣ ≲ ϵ̄

(1 + τ + |y|)3
.

Applying this last inequality for (σ, τ )= (ω, t − |y − x |) and estimating the electromagnetic field using
the bootstrap assumption (BA1), we get

|LZγ (F)S
|(t, x)≲

∫
|y−x |≤t

ϵ̄3

(1 + t − |y − x | + |y|)4(1 + |t − |y − x | − |y||)

dy
|y − x |

= ϵ̄3Y p=1
4,1 (t, x).

The result then follows from Lemma 5.10. □
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We finally deal with LZγ (F)T, which actually enjoys stronger decay properties than LZγ (F)S for
t ∼ |x | (see Remark 5.16 below).

Proposition 5.15. For any |γ | ≤ N − 1 and all (t, x) ∈ [0, T [ × R3, we have

|LZγ (F)T |(t, x)≲ ϵ̄(1 + t + |x |)−
7
4 (1 + |t − |x ||)−

1
4 .

Proof. In view of the definition of LZγ (F)T, introduced in Proposition 5.3, we have

|LZγ (F)T |(t, x)

≲
∑

0≤µ,ν≤3

∑
|β|≤|γ |

∫
|y−x |≤t

∣∣∣∣∫
R3
v

Wµν(ω, v)

|v0|2(1 +ω · v̂)
Ẑβ f (t − |y − x |, y, v) dv

∣∣∣∣ dy
|y − x |2

, ω =
y − x

|y − x |
.

Fix 0 ≤ µ, ν ≤ 3, |β| ≤ |γ | and recall from Corollary 5.5 that

9(σ, v) :=
Wµν(σ, v)

|v0|2(1 +ω · v̂)

satisfies |9|( · , v)+ |∇v9|( · , v)≲ v0. We then obtain from Proposition 4.13 that,

∀σ ∈ S2, ∀(τ, z) ∈ [0, T [ × R3,

∣∣∣∣∫
R3
v

Wµν(σ, v)

|v0|2(1 + σ · v̂)
Ẑβ f (τ, z, v) dv

∣∣∣∣ ≲ ϵ̄

(1 + τ + |z|)3
.

Applying this estimate for σ = ω, τ = t − |y − x | and z = y, we get from Lemma 5.11 that

|LZγ (F)T |(t, x)≲ ϵ̄Y p=2
3 (t, x)≲ ϵ̄(1 + t + |x |)−

7
4 (1 + |t − |x ||)−

1
4 . □

Remark 5.16. In fact, Lemma 5.11 also provides |LZγ (F)T |(t, x)≲ ϵ̄(1+t +|x |)−2 log(1+t). Moreover,
the estimate could be significantly improved in the exterior of the light cone, where |x | ≥ t .

If the constant Cboot is chosen such that Cboot ≥ 2Cdata and if ϵ is small enough, Propositions 5.13,
5.14 and 5.15 allow us to improve the bootstrap assumption (BA1).

5.4. The top-order derivatives. In this section, we estimate all the terms listed in Proposition 5.7 in order
to improve the bootstrap assumption (BA2). We start by dealing with the ones depending explicitly on
the data.

Proposition 5.17. There exists a constant Cdata, depending only on N, such that, for any k ∈ [[1, 3]] and
|γ | = N − 1,

∀(t, x) ∈ [0, T [ × R3, |Adata
γ,k |(t, x)≤3Cdata(1 + t + |x |)−1(1 + |t − |x ||)−2.

Proof. Recall from Propositions 5.3 and 5.7 the expression of Adata
γ,k and from Corollaries 5.5 and 5.8 the

bounds on the kernels. Hence, for (t, x) ∈ [0, T [ × R3,

|Adata
γ,k |(t, x)≲ |∇∂xk LZγ (F)hom

|(t, x)+
∑

|β|≤|γ |+1

min(t−1, t−2)

∫
|y−x |=t

∫
R3
v

|v0
|
3
|Ẑβ f |(0, y, v) dv dy.
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As [∂xµ, Z ] = 0 or [∂xµ, Z ] = ±∂xν for any Z ∈ K, by the equivalence of the pointwise norms (9) and in
view of the smallness assumptions on the initial data, there holds

|∇∂xk LZγ (F)hom
|(0, y)= |∇∂xk LZγ (F)|(0, y)≲

∑
1≤|κ|≤N

⟨y⟩
|κ|−1

|∇
κ
t,x F |(0, y)≲3⟨y⟩

−3,

|∇t,x∇∂xk LZγ (F)hom
|(0, y)= |∇t,x∇∂xk LZγ (F)|(0, y)≲

∑
2≤|κ|≤N+1

⟨y⟩
|κ|−2

|∇
κ
t,x F |(0, y)≲3⟨y⟩

−4.

As ∇∂xk LZγ (F)hom
µν is solution to the homogeneous wave equation, Proposition 2.21 gives

|∇∂xk LZγ (F)hom
|(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−2.

Since |v0
|
−Nv+3

∈ L1(R3
v), we have, for any |β| ≤ N,∫

R3
v

|v0
|
3
|Ẑβ f |(0, y, v) dv ≲ ⟨y⟩

−Nx sup
|κ|+|ξ |≤N

sup
(x,v)∈R6

|v0
|
Nv+|ξ |

⟨x⟩
Nx+|κ|

|∂κv ∂
ξ
x f |(0, x, v)≲ ϵ⟨y⟩

−Nx .

Consequently, as Nx ≥ 5, we have

|Adata
γ,k |(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−2

+ ϵmin(t−1, t−2)Qt,x , Qt,x :=

∫
|y−x |=t

dµS2

⟨y⟩5 .

As ϵ ≤ 3, it remains to prove min(t−1, t−2)Qt,x ≲ (1 + t + |x |)−1(1 + |t − |x ||)−2 and, for this, we
consider two cases.

• If t ≤ 1, then |y| ≥ |x | − 1 on the domain of integration and Qt,x ≲ 4π t2
⟨x⟩

−5. It remains to note that
⟨x⟩ ≥ 1 + t + |x | ≥ 1 + |t − |x || and t−1

≤ t−2 in the region considered.

• Otherwise t ≥ 1 and we have Qt,x ≲ t (1 + t + |x |)−1(1 + |t − |x ||)−2 according to the estimate (22).
The result follows from t−2

≤ t−1 in the domain treated here. □

Next, we consider the vertex term.

Proposition 5.18. Let k ∈ [[1, 3]] and |γ | = N − 1. We have,

∀(t, x) ∈ [0, T [ × R3, |Aver
γ,k |(t, x)≲ ϵ̄(1 + t + |x |)−3.

Proof. Fix 0 ≤ µ, ν ≤ 3, (t, x) ∈ [0, T [ × R3 and recall Nv ≥ 15, so that Corollary 5.8 implies
|Dk
µν |(ω, v)+ |v0

∇vDk
µν |(ω, v)≲ |v0

|
Nv−11. Proposition 4.13, applied for9=Dk

µν and to any |β|≤ N −1,
then yields

|Aver
γ,k,µν |(t, x)≲

∑
|β|≤|γ |

∫
σ∈S2

∣∣∣∣∫
R3
v

Dk
µν(σ, v)Ẑ

β f (t, x, v) dv
∣∣∣∣ dµS2

≲
ϵ̄

(1 + t + |x |)3

∫
σ∈S2

dµS2 =
4πϵ̄

(1 + t + |x |)3
. □

We now estimate AT,S
γ,k . Note that the next result could be easily improved but it is more than enough

for the purpose of improving the bootstrap assumption (BA2).
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Proposition 5.19. For any k ∈ [[1, 3]] and |γ | = N − 1, there holds,

∀(t, x) ∈ [0, T [ × R3, |AT,S
γ,k |(t, x)≲ ϵ̄3(1 + t + |x |)−

3
2 (1 + |t − |x ||)−2.

Proof. Let 0 ≤ µ, ν ≤ 3, (t, x) ∈ [0, T [ × R3 and recall that K j
ξ := v̂λLZ ξ (F)λ

j. Consequently,
|AT,S
γ,k,µν |(t, x) is bounded by a linear combination of terms of the form

Qξ,κ
t,x :=

∫
|y−x |≤t

|LZ ξ (F)λ
j
|(t − |y − x |, y)

∫
R3
v

|∂v jBk
µν(ω, v)||Ẑ

κ f (t − |y − x |, y, v)| dv
dy

|y − x |2
,

with |ξ | + |κ| ≤ N − 1 and where we recall that ω = (y − x)/|y − x |. Since |∂v jBk
µν(ω, v)| ≲ |v0

|
3 by

Corollary 5.8 and Nv ≥ 13, Proposition 4.11, applied for a = 1, provides∫
R3
v

|∂v jBk
µν(ω, v)||Ẑ

κ f (t − |y − x |, y, v)| dv ≲
ϵ̄(1 + |t − |y − x | − |y||)

(1 + t − |y − x | + |y|)3+
1
2

.

Moreover, as |ξ | ≤ N − 1, the bootstrap assumption (BA1) gives

|LZ ξ (F)λ
j
|(τ, y)≲3(1 + t − |y − x | + |y|)−1(1 + |t − |y − x | − |y||)−1.

Consequently, the last two estimates yield

Qξ,κ
t,x ≲ ϵ̄3

∫
|y−x |≤t

(1 + t − |y − x |)−4−
1
2

dy
|y − x |2

= ϵ̄3Y p=2
4+

1
2
(t, x)

and the result follows from Lemma 5.11. □

We pursue with the analysis of ASS
γ,k . As for the previous term, the estimate could be improved.

Proposition 5.20. We have, for any k ∈ [[1, 3]] and |γ | = N − 1,

∀(t, x) ∈ [0, T [ × R3, |ASS
γ,k |(t, x)≲ ϵ̄3⟨3⟩(1 + t + |x |)−1(1 + |t − |x ||)−

5
2 .

Proof. We fix (t, x)∈[0, T [×R3 and we recall that K j
ξ := v̂λLZ ξ (F)λ

j . Recall further from Proposition 5.7
that ASS

γ,k can be decomposed as the sum of four terms. Bounding the kernel in ASS,I
γ,k by Corollary 5.8

and estimating the derivatives of the electromagnetic field using (BA1), we have

|ASS,I
γ,k |(t, x)

≲
∑

|κ|≤N−1

∫
|y−x |≤t

32

(1 + τ + |y|)2(1 + |τ − |y||)2

∫
R3
v

|v0
|
3
|Ẑκ f |(τ, y, v) dv

dy
|y − x |

, τ := t − |y − x |.

For the next two terms, recall that T0 = v̂λ∂xλ and the expression of Kξ . Recall further from Corollary 5.8
that the integral kernels are bounded by |v0

|
3. Consequently, we can bound |ASS,II

γ,k |(t, x)+|ASS,III
γ,k |(t, x)

by a linear combination of terms of the form

Rξ,κ
t,x :=

∫
|y−x |≤t

|∇t,xLZ ξ (F)|(t − |y − x |, y)
∫

R3
v

|v0
|
3
|Ẑκ f (t − |y − x |, y, v)| dv

dy
|y − x |

,
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where |ξ | + |κ| ≤ N − 1. We estimate the electromagnetic field through (BA2) if |ξ | = N − 1 or by
Proposition 3.2 if |ξ | ≤ N − 2. This leads to the bound

|ASS,II
γ,k |(t, x)+ |ASS,III

γ,k |(t, x)

≲
∑

|κ|≤N−1

∫
|y−x |≤t

3 log(3 + |τ − |y||)

(1 + τ + |y|)(1 + |τ − |y||)2

∫
R3
v

|v0
|
3
|Ẑκ f |(τ, y, v) dv

dy
|y − x |

,

where τ = t −|y −x |. Controlling the velocity average through the improved estimates of Proposition 4.11
yields, as Nv ≥ 13,

|ASS,I
γ,k |(t, x)+ |ASS,II

γ,k |(t, x)+ |ASS,III
γ,k |(t, x)

≲ ϵ̄3⟨3⟩

∫
|y−x |≤t

log3Nx+3N+1(3 + t − |y − x | + |y|)

(1 + t − |y − x | + |y|)5(1 + |t − |y − x | − |y||)

dy
|y − x |

≲ ϵ̄3⟨3⟩Y p=1
4+

3
4 ,1
(t, x).

Finally, we can bound similarly |ASS,I V
γ,k |(t, x) by a linear combination of terms of the form

Rξ,κ
t,x :=

∫
|y−x |≤t

|LZ ξ (F)|(t − |y − x |, y)
∣∣∣∣∫

R3
v

V(ω, v)∂xn Ẑκ f (t − |y − x |, y, v) dv
∣∣∣∣ dy
|y − x |

,

where |ξ |+|κ|≤ N −1, 1≤n ≤3 and V(ω, v) is of the form Ck
µν(ω, v)v̂

λ
|v0

|
−1. We get from Corollary 5.8

that |V(ω, v)| + |v0
∇vV(ω, v)| ≲ |v0

|
3, so that Proposition 4.15 gives,

∀(τ, y, σ ) ∈ [0, T [ × R3
× S2,

∣∣∣∣∫
R3
v

V(σ, v)∂xn Ẑκ f (τ, y, v) dv
∣∣∣∣ ≲ ϵ̄ log3Nx+3N (3 + τ)

(1 + τ + |y|)4
.

Applying it to σ = ω and τ = t − |y − x | and estimating the electromagnetic field using (BA1), we get

Rξ,κ
t,x ≲ ϵ̄3

∫
|y−x |≤t

log3Nx+3N (3 + t − |y − x |)

(1 + t − |y − x | + |y|)5(1 + |t − |y − x | − |y||)

dy
|y − x |

≲ ϵ̄3Y p=1
4+

3
4 ,1
(t, x).

Consequently, |ASS
γ,k |(t, x)≲ ϵ̄3⟨3⟩Y p=1

4+3/4,1(t, x), so that the result follows from Lemma 5.10. □

Finally, we deal with the most problematic term, the one with an integral kernel carrying the noninte-
grable weight |y − x |

−3.

Proposition 5.21. Let k ∈ [[1, 3]] and |γ | = N − 1. Then,

∀(t, x) ∈ [0, T [ × R3, |AT T
γ,k |(t, x)≲ ϵ̄

log(3 + t)
(1 + t + |x |)3

.

Proof. Let 0 ≤ µ, ν ≤ 3, |β| ≤ N − 1 and

Gβ
σ (τ, y) :=

∫
R3

Ak
µν(σ, v)Ẑ

β f (τ, y, v) dv, (σ, τ, y) ∈ S2
× [0, T [ × R3.

Recall from Corollary 5.8 the bound on the kernel Ak
µν and apply Proposition 4.13 for 9 = Ak

µν . We
obtain,

∀(σ, τ, y) ∈ S2
× [0, T [ × R3, |Gβ

σ |(τ, y)≲ ϵ̄(1 + τ + |y|)−3,
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which, applied for (σ, τ )= (ω, t − |y − x |), yields

|AT T
γ,k,µν |(t, x)≲ϵ̄Y p=3

3 (t, x)+
∑

|β|≤N−1

Uβt,x , Uβt,x :=

∣∣∣∣∫
|y−x |≤1

∫
R3
v

Ak
µν(ω,v)Ẑ

β f (t−|y−x |, y,v)
dv dy

|y−x |3

∣∣∣∣.
Fix |β| ≤ N − 1 and recall from Proposition 5.7 that the average of σ 7→ Ak

µν(σ, · ) on S2 vanishes.
Hence,

Uβt,x =

∣∣∣∣∫
|y−x |≤1

∫
R3
v

Ak
µν(ω, v)(Ẑ

β f (t − |y − x |, y, v)− Ẑβ f (t − |y − x |, x, v))
dv dy

|y − x |3

∣∣∣∣
≤

∫
|y−x |≤1

|Gβ
ω(t − |y − x |, y)− Gβ

ω(t − |y − x |, x)|
dy

|y − x |3
.

For any (σ, τ ) ∈ S2
× [0, T [, we apply the mean value theorem to s 7→ Gβ

σ (τ, x + s(y − x)) on the
interval [0, 1]. Then, there exists xσ,τ in the segment [x, y] ⊂ R3 such that

Gβ
σ (τ, y)− Gβ

σ (τ, x)= ω · ∇x Gβ
σ (τ, xσ,τ )|y − x |, ω =

y − x
|y − x |

.

Apply now Proposition 4.15 for 8= Aµν in order to get, for any 1 ≤ i ≤ 3,

∀(σ, τ, z) ∈ S2
× [0, T [ × R3, |∂x i Gβ

σ |(τ, z)=

∣∣∣∣∫
R3

Ak
µν(σ, v)∂x i Ẑβ f (τ, z, v) dv

∣∣∣∣
≲ ϵ̄

log3Nx+3N (3 + τ)

(1 + τ + |z|)4
.

Applying the last two identities for σ = ω, τ = t − |y − x | and z = xσ,τ yields

Uβt,x ≲
∫

|y−x |≤1

ϵ̄

(1 + t − |y − x | + |xω,t−|y−x ||)3

dy
|y − x |2

.

As |y −x | ≤ 1 and xω,t−|y−x | ∈ [x, y], we have 1+ t −|y −x | ≥
1
2(1+ t) and |xω,t−|y−x || ≥ |x |−1, so that

|AT T
γ,k,µν |(t, x)≲ ϵ̄Y p=3

3 (t, x)+ ϵ̄(1 + t + |x |)−3.

We conclude the proof by applying Lemma 5.12. □

As in the previous subsection, if Cboot is chosen such that Cboot ≥ 2Cdata and if ϵ is small enough, we
can improve the bootstrap assumption (BA2) for the spatial derivatives ∇∂xk LZγ (F), with 1 ≤ k ≤ 3 and
|γ | = N − 1, by applying Propositions 5.17–5.21. The time derivative can then be controlled using

|∇∂tLZγ (F)| ≲
∑

1≤k≤3

|∇∂xk LZγ (F)| +
∑

|β|≤|γ |

|J (Ẑβ f )|,

which follows from the commuted Maxwell equations (see Proposition 2.4). We stress, for the smallness
condition on ϵ, that ϵ̄⟨3⟩

2
≤ 2ϵe(D+3)3.

6. Modified scattering for the distribution function

In this section, we determine the precise asymptotic behavior of the particle density and its derivatives
under the additional assumption (15) on the initial electromagnetic field. In particular, we determine the
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self-similar profile of the current density J ( f ) as well as the one of the Maxwell field F and we define
modified trajectories along which f converges to a new smooth density function.

6.1. Convergence of the spatial averages. Since the solution ( f, F) is global in time, all the statements
of Sections 3–5 hold true for T = +∞. We can then deduce that

∫
x Ẑβ f dx converges to a function

defined on R3
v.

Proposition 6.1. Let |β| ≤ N − 1. There exists a continuous function Qβ
∞ ∈ L1

v ∩ L∞
v such that,

∀t ∈ R+,

∥∥∥∥|v0
|
Nv−6

(
Qβ

∞
−

∫
R3

x

Ẑβ f (t, x, · ) dx
)∥∥∥∥

L∞(R3
v)

≲ ϵ̄
log3Nx+3N (3 + t)

1 + t
.

Remark 6.2. This estimate directly implies that |v0
|
Nv−10

∫
R3

x
Ẑβ f (t, x, · ) dx →|v0

|
Nv−10 Qβ

∞ in L1(R3
v),

as t → +∞, with the same rate for convergence.

Proof. Let v ∈ R3
v and apply Lemma 4.7 in order to get, for all 0 ≤ t ≤ s,

|v0
|
Nv−6

∣∣∣∣∫
R3

x

Ẑβ f (s, x,v)dx−

∫
R3

x

Ẑβ f (t, x,v)dx
∣∣∣∣≲ ϵ̄ ∫ s

τ=t

log3Nx+3N (3+τ)

(1+τ)2
dτ ≤ ϵ̄

log3Nx+3N (3+t)
1+t

.

Consequently, there exists Qβ
∞ ∈ L∞

v such that
∫

R3
x

Ẑβ f (s, x, v) dx → Qβ
∞ in L∞

v as s → +∞. Moreover,
letting s → +∞ in the previous estimate provides the rate of convergence stated in the proposition. It
implies |v0

|
Nv−6 Qβ

∞ ∈ L∞
v and then, as Nv > 9, Qβ

∞ ∈ L1
v. □

It turns out that these functions are differentiable for |β| ≤ N − 2 and that ∂vi Qβ
∞ can be related to

other such functions Qκ
∞

. For this reason, if Ẑκ = �̂0i Ẑβ , we will use Q�̂0iβ
∞ in order to denote Qκ

∞
.

Proposition 6.3. For any |β| ≤ N − 2, Qβ
∞ ∈ C N−1−|β|(R3

v) and its derivatives can be obtained by
iterating the relations

v0∂vi Qβ
∞

= Q�̂0iβ
∞

− v̂i Qβ
∞
, 1 ≤ i ≤ 3. (51)

Proof. Let (t, v) ∈ R+ × R3
v and note that

v0∂vi

∫
R3

x

Ẑβ f (t, x, v) dx =

∫
R3

x

�̂0i Ẑβ f (t, x, v) dx−t
∫

R3
x

∂x i Ẑβ f (t, x, v) dx−

∫
R3

x

x i∂t Ẑβ f (t, x, v) dx .

Writing ∂t = −v̂ · ∇x − v̂µFµ j∂v j + TF , we get by performing integration by parts,

v0∂vi

∫
R3

x

Ẑβ f (t, x, v) dx

=

∫
R3

x

�̂0i Ẑβ f (t, x, v)− v̂i Ẑβ f (t, x, v) dx +

∫
R3

x

x i (v̂µFµ j∂v j − TF )(Ẑβ f )(t, x, v) dx .

According to Proposition 6.1, the first term on the right-hand side converges to Q�̂0iβ
∞ − v̂i Qβ

∞, as t →+∞

and in L∞(R3
v). Following the proof of Lemma 4.7 and then using Proposition 4.5, one can prove
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R3

x

x i (v̂µFµ j∂v j − TF )(Ẑβ f )(t, x, v) dx
∣∣∣∣ ≲3 log(3 + t)

1 + t
sup

|κ|≤|β|+1
sup
x∈R3

||v0
|
3zNx−2 Ẑκ f |(t, x, v)

≲ ϵ̄
log3Nx+3N (3 + t)

1 + t
.

We then deduce (51) and, by a direct induction, Qβ
∞ ∈ C N−1−|β|(R3

v). □

Let us mention that any Qβ
∞ can be written as a combination of Q∞ and Qκ

∞
, where Ẑκ is only

composed of complete lifts of Lorentz boosts �̂0i .

Proposition 6.4. Let |β| ≤ N − 1. Then:

• If βT ≥ 1, which means that Ẑβ is composed of at least one translation, we have Qβ
∞ = 0.

• Otherwise there exists n + |κ| ≤ |β| such that Ẑβ = Sn Ẑκ and Qβ
∞ = (−3)n Qκ

∞
.

• Moreover, if Ẑβ = �̂ jk Ẑκ, 1 ≤ j < k ≤ 3, then Qβ
∞ = v̂ j Q�̂0kκ − v̂k Q�̂0 jκ.

Proof. Assume first that βT ≥ 1. Since [Ẑ , ∂xµ] = 0 or ±∂xν for any 0 ≤ µ≤ 3 and Ẑ ∈ P̂0, it suffices to
consider the case Ẑβ = ∂xµ Ẑ ξ. Then, by either applying Lemma 4.7 or by performing integration by parts,∣∣∣∣∫

R3
x

∂t Ẑ ξ f (t, x, v) dx
∣∣∣∣ ≲ ϵ̄(1 + t)−

3
2 → 0,

∫
R3

x

∂x i Ẑ ξ f (t, x, v) dx = 0, 1 ≤ i ≤ 3.

Otherwise βT = 0 and since S commutes with �̂ jk and �̂0i , there exists n+|κ| ≤ |β| such that Ẑβ = Sn Ẑκ.
The result follows from an easy induction and the following properties, which hold for any |ξ | ≤ N − 2:∣∣∣∣∫

R3
x

t∂t Ẑ ξ f (t, x,v)dx
∣∣∣∣≲ ϵ̄(1+t)−

1
2 →0,

∫
R3

x

xi∂x i Ẑ ξ f (t, x,v)dx =−

∫
R3

x

Ẑ ξ f (t, x,v)dx, 1≤i ≤3.

Finally, if Ẑβ = �̂ jk Ẑκ, note that by integration by parts,∫
x

Ẑβ f dx = v̂ j
∫

x
v0∂vk Ẑκ f dx − v̂k

∫
x
v0∂v j Ẑκ f dx

and it remains to apply Proposition 6.3. □

We are now able to establish the precise behavior of J ( f ) in the interior of the light cone. In other
words, we improve Corollary 4.14. No such result holds for the exterior region since the decay can be
arbitrarily fast (we refer for this to the third estimate of Proposition 4.11). Recall the notation x0

= t .

Proposition 6.5. For any |β| ≤ N − 1, the components of the electric current density J (Ẑβ f ), that is,
Jµ(Ẑβ f )=

∫
R3
v
(vµ/v0)Ẑβ f dv, satisfy,

∀|x |< t,
∣∣∣∣t3 Jµ(Ẑβ f )(t, x)−

xµ

t
(|v0

|
5 Qβ

∞
)

(
qx
t

)∣∣∣∣ ≲ ϵ̄ log3Nx+3N (3 + t)
t

, µ ∈ [[0, 3]].

Proof. Let |β| ≤ N − 1, 0 ≤ µ≤ 3 and |x |< t . Apply Lemma 4.12 and the estimate (41) to g(t, x, v) :=
v̂µ Ẑβ f (t, x + t v̂, v). Since the spatial average of |v0

|
5g is equal to the one of v̂µ|v0

|
5 Ẑβ f , we get∣∣∣∣t3

∫
R3
v

vµ

v0 Ẑβ f (t, x, v) dv−

∫
R3

y

(
vµ

v0 |v0
|
5 Ẑβ f

)(
t, y,

qx
t

)
dy

∣∣∣∣ ≲ ϵ̄ log3Nx+3N (3 + t)
t

. (52)
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As Nv − 6 ≥ 5, we obtain from Proposition 6.1 that,

∀v ∈ R3
v,

∣∣∣∣vµv0 |v0
|
5 Qβ

∞
(v)−

vµ

v0 |v0
|
5
∫

R3
y

Ẑβ f (t, y, v) dy
∣∣∣∣ ≲ ϵ̄ log3Nx+3N (3 + t)

1 + t
.

The result follows from (52) and the last estimate, applied for v = }x/t . □

6.2. Self-similar asymptotic profile of the electromagnetic field. To identify the profile of F, we will see
that Q∞ generates an effective electromagnetic field. For this, we study FT since it is the element of the
Glassey–Strauss decomposition of F with the slower decay rate along timelike geodesics t 7→ (t, x + t v̂).
If the plasma is not neutral, QF ̸= 0, we will also have to improve the estimate for Fdata.

6.2.1. Behavior of LZγ (F)T along timelike straight lines. It will be convenient to lighten the notations
by denoting the kernel in the integral defining FT, which was bounded in Corollary 5.5, as

WT (ω, v) :=
W(ω, v)

|v0|2(1 +ω · v̂)
, |WT

|( · , v)+ |∇vWT
|( · , v)≲ v0. (53)

Definition 6.6. Let, for any |β| ≤ N − 1, [Ẑβ f ]
∞(v) be the 2-form defined as,

∀v ∈ R3
v, [Ẑβ f ]

∞(v) :=

∫
|z|≤1

|z+v̂|<1−|z|

WT
(

z
|z|
,

~z + v̂

1 − |z|

)
(|v0

|
5 Qβ

∞
)

(
~z + v̂

1 − |z|

)
dz

|z|2(1 − |z|)3
.

Remark 6.7. We recall our convention (|v0
|
5 Qβ

∞)(w) := |w0
|
5 Qβ

∞(w) for any w ∈ R3
v.

Remark 6.8. It is crucial to observe that the domain of integration is included in {0 ≤ |z| ≤ (1 + |v̂|)/2}.
Indeed, if |z| ≥ (1 + |v̂|)/2, we have

|z + v̂| ≥ |z| − 1 + 1 − |v̂| ≥
1 − |v̂|

2
≥ 1 − |z|.

Consequently,

|z| ≤ 1, |z + v̂|< 1 − |z| =⇒
1

4|v0|2
≤

1 − |v̂|

2
≤ 1 − |z| ≤ 1.

In order to transform decay in |t − r | into decay in t along timelike trajectories, we will use the next
property.

Lemma 6.9. Let (x, v) ∈ R3
x × R3

v. Then,

∀ 1 ≤ t ≤ 4⟨x⟩|v0
|
2, 1 ≤ 4

⟨x⟩|v0
|
2

t
, ∀t ≥ 4⟨x⟩|v0

|
2, t − |x + t v̂| ≥

t
4|v0|2

.

Proof. It suffices to observe that,

∀t ≥ 4|x ||v0
|
2, t ≥

2|x |

1 − |v̂|
, so that t −|x + t v̂| ≥ t −

1 − |v̂|

2
t −|v̂|t = t −

1 + |v̂|

2
t ≥

t
4|v0|2

. □

We have the following convergence result.

Proposition 6.10. Let |β| ≤ N − 1 and (x, v) ∈ R3
x × R3

v. For all t ≥ 1, there holds

|t2
[Ẑβ f ]

T (t, x + v̂t)− [Ẑβ f ]
∞(v)| ≲ ϵ̄⟨x⟩

2
|v0

|
8 log3Nx+3N+1(3 + t)

t
.
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Proof. Fix |β| ≤ N − 1, (t, x, v) ∈ [1,+∞[× R3
x × R3

v and recall from Proposition 5.3 the definition of
[Ẑβ f ]

T. Next, we split the domain of integration of [Ẑβ f ]
T into two parts,

t2
[Ẑβ f ]

T (t, x+v̂t)= t2
∫

|y−x−t v̂|≤t
|y−x |≥t−|y−x−t v̂|

∫
R3
w

WT
(

y−x
|y−x |

,w

)
Ẑβ f (t−|y−x−t v̂|, y,w)

dwdy
|y−x−t v̂|2

+J ,

J :=

∫
|z|≤1

|z+v̂|<1−|z|

∫
R3
w

WT
(

z
|z|
,w

)
Ẑβ f (t (1−|z|), x+t z+t v̂,w)dw

t3 dz
|z|2

,

where we performed the change of variables z = (y − x − t v̂)/t in order to obtain the second integral J.
As we shall see below, this splitting is useful in order to identify and isolate the asymptotic profile.
We start by controlling the first term. For this, note that (53), Nv ≥ 10 and the last two estimates of
Proposition 4.11, applied for a = 1, yield, for all (ω, τ, y) ∈ S2

× R+ × R3,∣∣∣∣∫
R3
w

WT (ω,w)Zβ f (τ, y,w)dw
∣∣∣∣≲ ∫

R3
w

w0
|Zβ f |(τ, y,w)dw≲ ϵ̄ log3Nx+3N (3+τ)

1+max(τ−|y|,0)
(1+τ+|y|)4

.

Note now that |y − x | ≥ t − |y − x − t v̂| implies

t − |y − x − t v̂| − |y| ≤ t − |y − x − t v̂| − |y − x | + |x | ≤ |x |.

Hence, applying first the previous estimate for τ = t − |y − x − t v̂| and then (46), we get

|t2
[Ẑβ f ]

T (t, x+v̂t)−J | ≲ ϵ̄(1+|x |)t2
∫

|y−x−t v̂|≤t
|y−x |≥t−|y−x−t v̂|

log3Nx+3N (3+t−|y−x−t v̂|)
(1+t−|y−x−t v̂|+|y|)4

dy
|y−x−t v̂|2

≲ ϵ̄⟨x⟩
log3Nx+3N (3+|t−|x+t v̂||)

1+|t−|x+t v̂||
t2Y p=2

3 (t, x+t v̂).

According to Lemma 5.11, t2Y p=2
3 (t, x + t v̂)≲ log(1 + t). By applying Lemma 6.9, we then deduce

|t2
[Ẑβ f ]

T (t, x + v̂t)−J | ≲ ϵ̄⟨x⟩ log(1 + t)
(

⟨x⟩|v0
|
2

1 + t
+ |v0

|
2 log3Nx+3N (3 + t)

1 + t

)
,

so that it remains for us to compare J with [Ẑβ f ]
∞(v). As in Section 4.4, it is convenient to change the

reference frame and work with gβ(τ, y, w) := Ẑβ f (τ, y + τŵ, w). In view of Lemma 2.9, the change of
variables y = x + t z + v̂t − ŵt (1 − |z|), for z fixed, leads to

J =

∫
|z|≤1

|z+v̂|<1−|z|

∫
|x−y+t z+v̂t |<t (1−|z|)

WT
(

z
|z|
, w

)
(|v0

|
5gβ)(t (1 − |z|), y, w)

dy dz
|z|2(1 − |z|)3

,

where we used w to denote the following function of (y, z):

w =

x − y + t z + t v̂
t (1 − |z|)

⇐⇒ ŵ =
x − y + t z + t v̂

t (1 − |z|)
.
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By the triangular inequality, we have |J − [Ẑβ f ]
∞

| ≤ J1 +J2 +J3, where

J1 :=

∫
|z|≤1

|z+v̂|<1−|z|

∫
|x−y+t z+t v̂|<t (1−|z|)

|1
β

1 |
dy dz

|z|2(1−|z|)3
,

1
β

1 := WT
(

z
|z|
, w

)
(|v0

|
5gβ)(t (1−|z|), y, w)−WT

(
z
|z|
,

}z+v̂
1−|z|

)
(|v0

|
5gβ)

(
t (1−|z|), y,

}z+v̂
1−|z|

)
,

J2 :=

∣∣∣∣∫ |z|≤1
|z+v̂|<1−|z|

∫
|x−y+t z+t v̂|≥t (1−|z|)

WT
(

z
|z|
,

}z+v̂
1−|z|

)
(|v0

|
5gβ)

(
t (1−|z|), y,

}z+v̂
1−|z|

)
dy dz

|z|2(1−|z|)3

∣∣∣∣,
J3 :=

∫
|z|≤1

|z+v̂|<1−|z|

|1
β

3 |
dz

|z|2(1−|z|)3
,

1
β

3 := WT
(

z
|z|
,

}z+v̂
1−|z|

)[∫
R3

y

(|v0
|
5 Ẑβ f )

(
t (1−|z|), y,

}z+v̂
1−|z|

)
dy−(|v0

|
5 Qβ

∞
)

(
}z+v̂

1−|z|

)]
,

where, for 1β3 , we used that the spatial average of gβ is equal to the one of Ẑβ f . In view of Remark 6.8,
we will be able to transform time decay for the integrands of Ji into decay in t , at the cost of powers
of v0. In particular, Remark 6.8 and Nx > 7 imply the following inequality that we will use several times:∫

|z|≤1
|z+v̂|<1−|z|

∫
R3

y

dy
⟨y⟩Nx−4

dz
|z|2(1 − |z|)n

≲
∫

|z|≤1
|z+v̂|<1−|z|

dz
|z|2(1 − |z|)n

≤ 22n+2π |v0
|
2n, n ∈ N. (54)

We start by dealing with J1. Since |∇V qV | ≲ (1 −|V |
2)−3/2

= | qV 0
|
3 for all |V |< 1 by Lemma 2.9 and in

view of the bounds (53) on WT, the mean value theorem yields

|1
β

1 | ≤
|x − y|

t (1 − |z|)
sup

V ∈R3
|V 0

|
9(|gβ | + |∇vgβ |)(t (1 − |z|), y, V )

≤
1 + |x |

t (1 − |z|)⟨y⟩Nx−4 sup
(X,V )∈R6

|V 0
|
9
⟨X⟩

Nx−3
|(|gβ | + |∇vgβ |)(t (1 − |z|), X, V ).

By applying Lemma 2.8 and then the estimates of Proposition 4.5, we obtain

|1
β

1 | ≤
⟨x⟩

t (1 − |z|)⟨y⟩Nx−4

∑
|κ|≤N

sup
(X,V )∈R6

|V 0
|
9
|zNx−2 Ẑκ f |(t (1 − |z|), X, V )≲

ϵ̄⟨x⟩ log3Nx+3N (3 + t)
t (1 − |z|)⟨y⟩Nx−4 ,

where we used Nv ≥ 12 and |β| + 1 ≤ N. We then deduce from (54) that

J1 ≲ ϵ̄⟨x⟩|v0
|
8 log3Nx+3N (3 + t)

t
.

Next, we control 1β3 using |WT
|( · , V )≲ V 0, Nv ≥ 12 and Proposition 6.1. This allows us to bound J3

through (54),

1
β

3 ≲ ϵ̄
log3Nx+3N (3 + t)
(1 + t)(1 − |z|)

, J3 ≲ ϵ̄|v
0
|
8 log3Nx+3N (3 + t)

1 + t
.
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Finally, note that on the domain of integration of J2, we have, for ŵ = (z + v̂)/(1 − |z|),

1 = |w0
|
2
(

1 −
|z + v̂|2

(1 − |z|)2

)
= |w0

|
2 (1 − |z| + |z + v̂|)(1 − |z| − |z + v̂|)

(1 − |z|)2
≤ |w0

|
2 2|x − y|

(1 − |z|)t
.

Since |WT
|( · , w)≲ w0, we get

J2 :=
⟨x⟩

t
sup
τ≤t

sup
(y,w)∈R6

|w0
|
8
⟨y⟩

Nx−3
|gβ |(τ, y, w)

∫
|z|≤1

|z+v̂|<1−|z|

∫
R3

y

dy
⟨y⟩Nx−4

dz
|z|2(1 − |z|)4

.

Using once again Lemma 2.8 together with Proposition 4.5, we get, in view of (54),

J2 ≲ ϵ̄⟨x⟩t−1 log3Nx+3N (3 + t)|v0
|
8. □

This directly provides us the asymptotic profile of LZγ (F)T = −
∑

|β|≤|γ |
Cγ

β [Ẑβ f ]
T.

Corollary 6.11. Let |γ | ≤ N − 1 and LZγ (F)∞ := −
∑

|β|≤|γ |
Cγ

β [Ẑβ f ]
∞. Then,

∀(t, x, v) ∈ [1,+∞[ × R3
x × R3

v,

|t2LZγ (F)T (t, x + v̂t)−LZγ (F)∞(v)| ≲ ϵ̄⟨x⟩
2
|v0

|
8 log3Nx+3N+1(3 + t)

t
.

Moreover, if Zγ contains a translation ∂xµ or the scaling vector field S, then LZγ (F)∞ = 0.

Proof. We only have to focus on the second part of the statement. Recall from the proof of Proposition 6.4
that we can reduce the analysis to the cases Zγ = ∂xλ Zκ if γT ≥ 1, and Zγ = SZκ otherwise. Recall
further from the commutation formula of Lemma 2.3 and Proposition 2.4 that

∇
µL∂xλ Zκ (F)µν =

∑
|ξ |≤|κ|

Cκ
ξ J (∂xλ Ẑ ξ f )ν, ∇

µLSZκ (F)µν =

∑
|ξ |≤|κ|

Cκ
ξ J (S Ẑ ξ f )ν + 3Cκ

ξ J (Ẑ ξ f )ν .

It remains to recall from Proposition 6.4 that Q
∂xλξ
∞ = 0 and QSξ

∞ = −3Qξ , so that LZγ (F)∞ = 0. □

6.2.2. Behavior of LZγ (F)data along timelike straight lines. Recall from Proposition 5.3 and (50) that
Fdata is the sum of Fhom, which verifies □Fhom

µν = 0, and a term which is strongly decaying in the
interior of the light cone. If QF ̸= 0, F decays initially as r−2 and one cannot expect to prove strong
decay estimates for Fhom through Proposition 2.21. For this reason, we need to analyse in detail the
homogeneous part Fhom. It turns out that it decays faster in the interior of the light cone and then along
timelike straight lines, so that it will not contribute to the asymptotic Lorentz force.

In order to improve the naive estimate of Proposition 5.13, one can note that the leading-order term
F(0, x)= QF xi/(4π |x |

3) dt ∧ dx i of the asymptotic expansion of Fhom(0, · ) corresponds to the static
electromagnetic field generated by a point charge QF located at x = 0. It is derived from the potential
A = Q(4πr)−1 dt which satisfies the Lorenz gauge, and then □Aµ = 0 on R × (R3

\ {0}). To deal with
our evolution problem and the singularity of the Newton potential, we introduce

Ã(t, x) :=χ(|x |−t)A(t, x)=
QF

4π |x |
χ(|x |−t)dt, χ ∈ C∞(R, [0, 1]), χ |]−∞, 1

2 ]
= 0, χ |[1,+∞[ = 1.
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Then, Ã is smooth on R+ × R3 and □ Ãµ = 0. It motivates the introduction of

F̃(t, x) := d Ã(t, x)=
QF xi

4π |x |3
χ(|x | − t) dt ∧ dx i

−
QF xi

4π |x |2
χ ′(|x | − t) dt ∧ dx i

= χ(|x | − t)F(t, x)−
QF xi

4π |x |2
χ ′(|x | − t) dt ∧ dx i ,

which, in view of [□, ∂xλ] = 0 and □ Ãλ = 0, satisfies □F̃µν = 0. Since,

• for any 0 ∈ K \ {S}, [□, 0] = 0 and [□, S] = 2□,

• for any Z = Zλ∂xλ ∈ K and any 2-form H , we have LZ (H)µν = Z(Hµν)+∂xµ(Zλ)Hλν+∂xν (Zλ)Hµλ,

we then have □LZγ(F̃)µν=0 for any |γ |≤ N−1. The key idea will then be to consider LZγ(F)hom
−LZγ(F̃).

More precisely, the following estimates hold.

Proposition 6.12. For any |γ | ≤ N − 1, we have,

∀(t, x) ∈ R+ × R3, |LZγ (F)data(t, x)−LZγ (F̃)(t, x)| ≲3(1 + t + |x |)−1(1 + |t − |x ||)−1−δ.

Remark 6.13. We will not use it here, but we have

|LZγ (F̃)−χ(|x | − t)LZγ (F)(t, x)| ≲ QF (1 + t)−110≤|x |−t≤1.

Moreover, L∂t (F)=L� jk (F)=LS(F)= 0 for all 1 ≤ j < k ≤ 3. We refer to [Bigorgne 2020a, Section 5]
for more information concerning F.

This result implies that the leading-order term of LZγ (F)data(t, x) is supported in the exterior of the
light cone. Before proving it, let us investigate its direct consequence for the behavior of Fdata along
timelike trajectories.

Proposition 6.14. For any |γ | ≤ N − 1, we have,

∀(t, x, v) ∈ [1,+∞[ × R3
x × R3

v, |t2LZγ (F)data(t, x + t v̂)| ≲3⟨x⟩
2
|v0

|
4t−δ.

Proof. Let (t, x, v) ∈ [1,+∞[×R3
x ×R3

v . If t ≤ 4⟨x⟩|v0
|
2, it suffices to apply Proposition 5.13, providing

|LZγ (F)data(t, x + t v̂)| ≲3t−1
≤ 163⟨x⟩

2
|v0

|
4t−3.

Otherwise, according to Lemma 6.9, we have t − |x + t v̂| ≥ t/(4|v0
|
2), so that χ (n)(|x + t v̂| − t)= 0 for

all n ∈ N. Consequently, we get from Proposition 6.12 that

|LZγ (F)data(t, x + t v̂)| ≲3t−1(1 + |t − |x + t v̂||)−1−δ
≤ 163|v0

|
4t−3. □

The first step of the proof of Proposition 6.12 consists in controlling the initial data for LZγ (F)hom.

Lemma 6.15. The assumption (15) on the initial electromagnetic field F(0, · ) implies,

∀|γ | ≤ N − 1, sup
|κ|≤1

sup
|x |≥1

⟨x⟩
2+δ+|κ|

|∇
κ
t,xLZγ (F)hom

− ∇
κ
t,xLZγ (F)|(0, x)≲3. (55)

Note that ∇
κ
t,xLZγ (F)(0, x)= ∇

κ
t,xLZγ (F̃)(0, x) for all |x | ≥ 1 since χ = 1 on [1,+∞[.
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Proof. As F is defined on R × R3
\ {0}, LZγ (F) is well-defined for |x | ≥ 1. We point out that

∇tLZγ (F)(0, · ) does not necessarily vanish (consider for instance the case Zγ = �01). Moreover,
LZγ (F)hom(0, · )= LZγ (F)(0, · ) by definition. Hence, the left-hand side of (55) is bounded by

sup
|κ|≤1

sup
|x |≥1

⟨x⟩
2+δ+|κ|

|∇
κ
t,xLZγ (F − F)|(0, x)≲ sup

|ξ |≤|γ |+1
sup
|x |≥1

⟨x⟩
2+δ+|ξ |

|∇
ξ
t,x(F − F)|(0, x)

≤3+ sup
|β|≤|γ |

sup
|x |≥1

⟨x⟩
2+δ+n+|β|

|∇∂t ∇
β
t,x F |(0, x), (56)

where, in the last step, we used the assumption (15) and that F is independent of t . Now, remark that if
n ≥ 1, the Maxwell equations implies

∂t(∂
n−1
t ∂βx B)= −∂n−1

t ∂βx (∇x × E), ∂t(∂
n−1
t ∂βx E)= ∂n−1

t ∂βx (∇x × B)−
∫

R3
v

v̂∂n−1
t ∂βx f dv.

Let E and B be the electric and magnetic field associated to F according to (4), so that E i
= x i QF/(4πr3)

and B = 0. As ∇x × E = ∇x × B = 0, we can bound (56) by 3 by performing an induction and using
(15) as well as the initial assumptions on f . □

We are now able to prove Proposition 6.12 and conclude this subsection. As ϵ ≤3, (50) implies,

∀(t, x) ∈ R+ × R3, |LZγ (F)data
−LZγ (F)hom

|(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−1−δ.

Finally, □LZγ (F)hom
µν −□LZγ (F̃)µν = 0, the decay assumptions on the initial data given by Lemma 6.15

and Proposition 2.21 yield,

∀(t, x) ∈ R+ × R3, |LZγ (F)hom
−LZγ (F̃)|(t, x)≲3(1 + t + |x |)−1(1 + |t − |x ||)−1−δ.

6.2.3. Self-similar asymptotic profile of LZγ (F). We are now able to study the full Maxwell field.

Corollary 6.16. For any |γ | ≤ N − 1, there exists a 2-form LZγ (F)∞, independent of t , such that,

∀(t, x, v)∈ [1,∞[×R3
x ×R3

v, |t2LZγ (F)(t, x + v̂t)−LZγ (F)∞(v)|≲3⟨x⟩
2
|v0

|
8 log3Nx+3N+1(3 + t)

tδ
.

Moreover, for any η > 0, there exists Cη > 0 such that,

∀(t, x)∈ [1,+∞[×R3
x ,

|x |

t
≤ 1−η,

∣∣∣∣t2LZγ (F)(t, x)−LZγ (F)∞
(

x̌
t

)∣∣∣∣≲3Cη
log3Nx+3N+1(3+t)

tδ
.

Remark 6.17. For the most important case, |γ | = 0, we have 4πF∞
= −[ f ]

∞, where [ f ]
∞ is explicitly

written in Definition 6.6.

Proof. Fix |γ | ≤ N − 1 and (t, x, v) ∈ [1,∞[× R3
x × R3

v . Applying Proposition 5.14 and Lemma 6.9, we
have

t2
|LZγ (F)S

|(t, x + v̂t)≲ ϵ̄3
t log(3 + |t − |x − t v̂||)
(1 + |t − |x − t v̂||)2

≲3

(
⟨x⟩

2
|v0

|
4

t
+ |v0

|
4 log(3 + t)

t

)
.
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We then get the first part of the statement using the Glassey–Strauss decomposition given by Proposition 5.3,
Corollary 6.11, where LZγ (F)∞ is introduced, and Proposition 6.14. For the second part, it suffices to
apply the first estimate, with a slight abuse of notation, for x = 0 and v̂ = x/t . □

We deduce from the previous result a uniform bound on LZγ (F)∞. Moreover, it turns out that this
quantity vanishes in certain cases, providing improved estimates for LZγ (F).

Proposition 6.18. For any |γ | ≤ N − 1, we have |LZγ (F)∞|(v)≲ ϵ̄
√
v0. Moreover, if |γ | ≥ 1 and Zγ

contains a translation ∂xµ or the scaling vector field S, then LZγ (F)∞ = 0.

Proof. According to Proposition 5.15, t2
|LZγ (F)T |(t, t v̂)≲ ϵ̄(1 − |v̂|)−1/4

≤ 2ϵ̄
√
v0. All the properties

then follow from Corollary 6.11. □

Finally, we investigate the regularity of LZγ (F)∞.

Proposition 6.19. For any |γ | ≤ N − 2 and 0 ≤ µ, ν ≤ 3, LZγ (F)∞µν is of class C N−1−|γ |. Moreover, for
any 1 ≤ k ≤ 3, we have

v0∂vkLZγ (F)∞µν=L�0k Zγ (F)∞µν+2v̂kLZγ (F)∞µν−δ
0
µLZγ (F)∞kν−δ

k
µLZγ (F)∞0ν−δ

0
νLZγ (F)∞µk−δ

k
νLZγ (F)∞µ0.

The angular derivatives satisfy

(v j∂vk − vk∂v j )LZγ (F)∞µν = L� jk Zγ (F)∞µν − δ j
µLZγ (F)∞kν + δk

µLZγ (F)∞jν − δ j
νLZγ (F)∞µk + δk

νLZγ (F)∞µj .

Proof. In order to lighten the notations, we introduce X := x + t v̂. Then, we compute

v0∂vk (LZγ (F)µν(t, X))

= t (δi
k − v̂k v̂i )∂x i (LZγ (F)µν)(t, X)

= (�0kLZγ (F)µν)(t, X)− X k∂t(LZγ (F)µν)(t, X)+ v̂k(x i
− X i )∂x i (LZγ (F)µν)(t, X)

= (�0kLZγ (F)µν)(t, X)− v̂k(SLZγ (F)µν)(t, X)− xk∂t(LZγ (F)µν)(t, X)+ v̂k x i∂x i (LZγ (F)µν)(t, X).

One can already notice that the last two terms enjoy strong decay properties. More precisely, since
Lemma 6.9 implies 1 + |t − |X || ≳ (1 + t)/(⟨x⟩|v0

|
2), we have from Proposition 3.2

t2
| − xk∂t(LZγ (F)µν)(t, X)+ v̂k x i∂x i (LZγ (F)µν)(t, X)| ≲

3⟨x⟩
3
|v0

|
4

1 + t
.

The result then follows from

LSZγ (F)µν = S(LZγ (F)µν)+ 2LZγ (F)µν, LSZγ (F)∞ = 0,

L�0k Zγ (F)µν =�0k(LZγ (F)µν)+ δ0
µLZγ (F)kν + δk

µLZγ (F)0ν + δ0
νLZγ (F)µk + δk

νLZγ (F)µ0

(57)

and Corollary 6.16, which give us

|t2v0∂vkLZγ (F)µν(t, x + t v̂)− v0∂vkLZγ (F)∞µν(v)| ≲3⟨x⟩
3
|v0

|
8 log1+3Nx+3N (3 + t)

(1 + t)δ
,

where v0∂vkLZγ (F)∞µν(v) is given in the statement of the proposition. To get the expression of the angular
derivatives, notice that

(v j∂vk − vk∂v j )(LZγ (F)µν(t, X))= (� jkLZγ (F)µν)(t, X)− (x j∂xk − xk∂x j )(LZγ (F)µν)(t, X),
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and

L� jk Zγ (F)µν =� jk(LZγ (F)µν)+ δ j
µLZγ (F)kν − δk

µLZγ (F) jν + δ j
νLZγ (F)µk − δk

νLZγ (F)µj

and apply the same arguments. The C N−1−|γ | regularity is obtained by an induction. □

For later use, we prove that the structure of the asymptotic Lorentz force is preserved by differentiation.

Corollary 6.20. Let 0 ≤ ν ≤ 3 and define

1Zγ ,ν(t, x, v) := t2 v̂
µ

v0 LZγ (F)µν(t, x)−
v̂µ

v0 LZγ (F)∞µν(v), |γ | ≤ N − 1.

For any |γ | ≤ N − 2, there holds

S(1Zγ ,ν)=1SZγ ,ν,

�̂ jk(1Zγ ,ν)=1� jk Zγ ,ν − δ j
ν1Zγ ,k + δk

ν1Zγ , j , 1 ≤ j < k ≤ 3,

�̂0i (1Zγ ,ν)=1�0i Zγ ,ν − δ0
ν1Zγ ,i − δi

ν1Zγ ,0 + 2 t
v0 (x

i
− t v̂i )v̂µLZγ (F)µν(t, x), 1 ≤ i ≤ 3.

Proof. The first identity follows from S(t2) = 2t2 and (57). For the other ones, start by noticing that,
according to Proposition 6.19 and for 1 ≤ i ≤ 3,

�̂0i

(
v̂µ

v0 LZγ (F)∞µν(v)
)

= v0∂vi

(
v̂µ

v0 LZγ (F)∞µν(v)
)

=
v̂µ

v0 L�0i Zγ (F)∞µν(v)− δ
0
ν

v̂µ

v0 LZγ (F)∞µi − δi
ν

v̂µ

v0 LZγ (F)∞µ0. (58)

Similarly, for 1 ≤ j < k ≤ 3,

�̂ jk

(
v̂µ

v0 LZγ (F)∞µν(v)
)

=
v̂µ

v0 L� jk Zγ (F)∞µν(v)− δ
j
ν

v̂µ

v0 LZγ (F)∞µk + δk
ν

v̂µ

v0 LZγ (F)∞µj . (59)

Recall that we denote by v the 4-vector (vµ)0≤µ≤4, so that

Ẑ
(

t2 v̂
µ

v0 LZγ (F)µν

)
= Ẑ

(
t2

|v0|2

)
vµLZγ (F)µν+

t2

|v0|2
LZ Zγ (F)(v,∂xν )+

t2

|v0|2
LZγ (F)(v, [Z ,∂xν ]) (60)

+
t2

|v0|2
LZγ (F)([Z ,v],∂xν )+

t2

|v0|2
Ẑ(vµ)LZγ (F)µν . (61)

• If Z =�0i , we have [Z , v] = −vi∂t − v0∂x i and Ẑ(vµ)= δ0
µv

i
+ δi

µv
0, so that the sum of two terms in

(61) vanishes. It remains to remark that [Z , ∂xν ] = −δi
ν∂t − δ0

ν∂i , Ẑ(t2/|v0
|
2)= 2t (x i

− t v̂i )/|v0
|
2 and to

combine (58) with (60).

• If Z =� jk , there holds [Z , v] = −v j∂xk +vk∂x j and Ẑ(vµ)= δk
µv

j
− δ

j
µv

k , so that the sum of the two
terms in (61) vanishes once again. The result then ensues from Ẑ(t2/|v0

|
2)= 0, [Z , ∂xν ]=−δ

j
ν∂xk +δk

ν∂x j ,
(59) and (60). □

6.3. Convergence of the distribution function along modified characteristics. Motivated by the discus-
sion in Section 2.8.4 and by Corollary 6.16, we modify the linear spatial characteristics t 7→ x + t v̂ as
follows.
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Definition 6.21. For (x, v) ∈ R3
x × R3

v, let XC ( · , x, v) : t 7→ x + t v̂+ C (t, v) be the trajectory11

X i
C (t, x, v) := x i

+ t v̂i
− log(t)v̂µF∞, j

µ (v)
δi

j − v̂ j v̂
i

v0

= x i
+ t v̂i

−
log(t)
v0 (v̂µF∞

µi (v)+ v̂
i v̂µF∞

µ0(v)), t ∈ R∗

+
, i ∈ [[1, 3]]. (62)

For simplicity, we will often write XC instead of XC (t, x, v). By Proposition 6.18, the components C i of
the correction term C satisfy,

∀t > 0, |C i
|(t, v)≲ ϵ̄|v0

|
−

1
2 log(t), i ∈ [[1, 3]]. (63)

We now bound the time derivative of a function evaluated along the modified characteristics.

Proposition 6.22. Let f : R+×R3
x ×R3

v → R be a sufficiently regular function and introduce h(t, x, v) :=
f (t, XC (t, x, v), v). Then, for all (t, x, v) ∈ [1,+∞[ × R3

x × R3
v,

|∂t h|(t, x, v)≤ |TF ( f )|(t, XC , v)+3
log3+3Nx+3N (3 + t)

(1 + t)1+δ

∑
Ẑ∈P̂0

||v0
|
7z2 Ẑ f |(t, XC , v).

Proof. We have, for all (t, x, v) ∈ [1,+∞[ × R3
x × R3

v,

∂t h(t, x, v)= (∂t f + v̂i∂x i f )(t, XC , v)+ ∂tC
i (t, v)∂x i f (t, XC , v)

= TF ( f )(t, XC )− v̂
µFµ j (t, XC )∂v j f (t, XC , v)+ ∂tC

i (t, v)∂x i f (t, XC , v). (64)

Recall from (14) the relation

v0∂v j = −t (∂x j − v̂ j v̂i∂x i )+ �̂0 j + z0 j∂t − v̂ j S −

∑
1≤i≤3

v̂ j z0i∂x i , 1 ≤ j ≤ 3, (65)

in order to rewrite ∂v j f (t, XC , v). As v0∂tC
i (t, v)= −(1/t)v̂µF∞, j

µ (v)(δi
j − v̂ j v̂

i ), we get

|∂t h|(t, x, v)≤ |TF ( f )|(t, XC , v)+
∑

1≤ j≤3

∑
Ẑ∈P̂0

|v̂µFµ j
|(t, XC )

∣∣∣∣ z
v0 Ẑ f

∣∣∣∣(t, XC , v)

+
1

tv0 |t2 F(t, XC )− F∞(v)||∂t,x f |(t, XC , v).

We deal with the second term on the right-hand side of the previous inequality by controlling the Lorentz
force through Remark 4.3, so that |v̂µFµ j

|(t, XC )≲3(1+ t)−2
|v0

|
2z(t, XC , v). Next, by Corollary 6.16

and the mean value theorem,

|t2 F(t, XC )− F∞(v)| ≤ |t2 F(t, x + t v̂)− F∞(v)| + t2
|F(t, XC )− F(t, x + t v̂)|

≲3⟨x⟩
2
|v0

|
8 log3Nx+3N+1(3 + t)

(1 + t)δ
+ t2

|C (t, v)| sup
|y−XC |≤|C |(t,v)

|∇t,x F |(t, y).

11Recall that F∞ is a 2-form, so that v̂µv̂νF∞
µν = 0.
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In view of the estimate of ∇t,x F given by Lemma 4.2 and the bound (63) on C , we have

t2
|C (t, v)| sup

|y−x |≤|C |(t,v)
|∇t,x F |(t, y)≲

3
√
v0

t2 log(3 + t)
log(3 + t)
(1 + t)3

|v0
|
4 sup

|y−XC |≤|C |(t,v)
z2(t, y, v).

Since |∇x z| ≲ 1, the mean value theorem yields

z(t, x + t v̂, v)≤ sup
|y−XC |≤|C |(t,v)

z(t, y, v)≤ z(t, XC , v)+
ϵ̄

√
v0

log(3 + t)≲ log(3 + t)z(t, XC , v). (66)

Consequently, as ⟨x⟩ ≤ z(t, x + t v̂, v), we have

|t2 F(t, XC )− F∞(v)| ≲3(1 + t)−δ log3Nx+3N+3(3 + t)|v0
|
8z2(t, XC , v).

We then deduce the result from the previous estimates. □

By applying this result to f , we obtain that there exists f∞ ∈ L∞
x,v such that f (t, XC , v)→ f∞(x, v)

as t → 0 (see Proposition 6.34 for more details). Applying it again to ∂κx f we could easily deduce that f∞
is smooth with respect to the spatial variables. However, obtaining the regularity in the velocity variables
requires a more thorough analysis. Indeed, ∂vi ( f (t, XC , v)) is deeply related to �̂0i f (t, XC , v), which
does not converge.

6.4. Modified commutators. Let Ẑ ∈ P̂0 \ {∂t , ∂x1, ∂x2, ∂x3} be a homogeneous vector field. Contrary to
the case of the translations, the error term [TF , Ẑ ]( f ) does not decay sufficiently fast in order to prove a
convergence result for Ẑ f , even along the modified characteristics. Indeed, recall from Lemma 2.3 that

TF (Ẑ f )= −v̂µLZ (F)µ j∂v j f + δS
Ẑ v̂

µFµ j∂v j f

and let us identify the terms with the slowest decay rate. Rewriting ∂v j by using (65) and estimating the
electromagnetic field through Remark 4.3, we have∣∣∣∣TF (Ẑ f )−

t
v0 (v̂

µLZ (F)µ j
− δS

Ẑ v̂
µFµ j )(δi

j − v̂ j v̂
i )∂x i f

∣∣∣∣ ≲3(1 + t)−2
∑
0̂∈P̂0

v0
|z20̂ f |. (67)

In view of Proposition 4.5, the right-hand side is bounded by ϵ̄(1 + t)−2 log9(3 + t) and then belongs
to L1

t L∞
x,v . On the other hand, if LZ (F)∞ and F∞ does not vanish, the decay rate of t |LZ F |+ t |F |≲ t−1

along timelike trajectories is at the threshold of time-integrability. For this reason, we modify the linear
commutator Ẑ in a way that is similar to how we modify the spatial characteristics. More precisely,
motivated by Corollary 6.16 and (67), we introduce the following vector fields.

Definition 6.23. For any Ẑ ∈ P̂0 \ {∂t , ∂x1, ∂x2, ∂x3, S}, we define Ẑmod and Smod as

Ẑmod
:= Ẑ − log(t)v̂µLZ (F)∞, j

µ (v)
δi

j − v̂ j v̂
i

v0 ∂x i , Smod
:= S + log(t)v̂µF∞, j

µ (v)
δi

j − v̂ j v̂
i

v0 ∂x i .

We further define the correction coefficients C i
S(t, v)= −C i (t, v) and

C i
Ẑ (t, v)= − log(t)v̂µLZ (F)∞, j

µ (v)
δi

j − v̂ j v̂
i

v0 = −
log(t)
v0

(
v̂µLZ (F)∞,i

µ (v)+ v̂i v̂µLZ (F)∞µ0(v)
)
,

so that Smod
= S + C i

S(t, v)∂x i and Ẑmod
= Ẑ + C i

Ẑ
(t, v)∂x i .
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Remark 6.24. Recall that t |LS(F)|≲ (1+t)−1−δ in domains of the form {t ≥ (1−δ)r} since LS(F)∞ = 0.
This is why we do not need to compensate the term related to LS(F) in (67).

We have the improved commutation relations.

Proposition 6.25. Let Z ∈ K be a rotational vector field � jk or a Lorentz boost �0i . Then, for t > 0,

[TF , Ẑmod
] =

1
t

(
t2v̂µ(LZ (F)µ j

−LZ (F)∞, j
µ )

δi
j−v̂ j v̂

i

v0

)
∂x i

−
v̂µ

v0 LZ (F)µ j
(
�̂0 j+z0 j∂t−v̂

j S−

∑
1≤i≤3

v̂ j z0i∂x i

)
−C i

Ẑ v̂
µL∂xi (F)µ

j∂v j +v̂µFµ j∂v j C i
Ẑ∂x i .

For the scaling vector field, we have

[TF , Smod
] = −

1
t

(
t2v̂µ(Fµ j

− F∞, j
µ )

δi
j − v̂ j v̂

i

v0

)
∂x i +

1
t

(
t2v̂µ(LS(F)µ j

−LS(F)∞, j
µ )

δi
j − v̂ j v̂

i

v0

)
∂x i

+
v̂µ

v0 (Fµ
j
−LS(F)µ j )

(
�̂0 j + z0 j∂t − v̂ j S −

∑
1≤i≤3

v̂ j z0i∂x i

)
− C i

S v̂
µL∂xi (F)µ

j∂v j + v̂µFµ j∂v j C i
S∂x i .

Proof. Consider first the case Z =� jk or Z =�0i . In view of the commutation relation of Lemma 2.3,

[TF , Ẑmod
] = TF (C

i
Ẑ )∂x i + [TF , Ẑ ] + C i

Ẑ [TF , ∂x i ] = TF (C
i
Ẑ )∂x i − v̂µLZ (F)µ j∂v j − C i

Ẑ v̂
µL∂xi (F)µ

j∂v j .

It then suffices to use (65) in order to rewrite ∂v j in the second term and to compute

TF (C
i
Ẑ )= −

1
t
v̂µLZ (F)∞, j

µ (v)
δi

j − v̂ j v̂
i

v0 + v̂µFµ j∂v j C i
Ẑ .

The case of the scaling S can be treated similarly since LS(F)∞ = 0 according to Proposition 6.18. □

Apart from the term involving LS(F), already discussed in Remark 6.24, it is clear that any of the error
terms decay almost as t−1−δ for, say, |x | < t/2. At this point, we could then prove that f∞ is C1 in v.
However, since we would like to show f∞ ∈ C N−2(R3

x ×R3
v), we need to state a higher-order commutator

formula for the modified vector fields. For this purpose, we introduce the set

P̂mod
0 := {∂t , ∂x i , �̂mod

0i , �̂mod
jk , Smod

| 1 ≤ i ≤ 3, 1 ≤ j < k ≤ 3},

and we consider an ordering on it, so that P̂mod
0 = {Ẑmod,i

| 1 ≤ i ≤ 11}. Given a multi-index β ∈ [[1, 11]]
p,

we will then denote Ẑmod,β1 · · · Ẑmod,βp by Ẑmod,β. We will further denote by βH (respectively βT ) the
number of modified vector fields (respectively translations) composing Ẑmod,β, so that |β| = βH + βT .
Furthermore, we will use the schematic notation Pp,q(C ) in order to denote any quantity of the form∏
1≤k≤p

Ẑ ξk (C
ik

Ẑ k ), (p,q)∈N2, 1≤ik ≤3, Ẑ k
∈P̂0,

∑
1≤k≤p

|ξk |=q, qT :=

∑
1≤k≤q

ξk,T , qH :=q−qT ,

where qT ≥ 1 when at least one translation ∂xµ is applied to at least one of the correction coefficients. By
convention, we set P0,0(C )= 1 for p = q = 0. We recall from (10) the weights zλk ∈ k1, 0 ≤ λ < k ≤ 3,
which commute with the linear transport operator T0.
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Proposition 6.26. Let Ẑmod,β
∈ P̂

|β|

0 . Then, [TF , Ẑmod,β
] can be written as a linear combination of the

following types of terms:

1
v0t

R
(1

t
, v̂, z

)
Pp,q(C )

(
t2v̂µLZγ (F)µν − v̂µLZγ (F)∞µν(v)

)
Ẑκ , (T-1)

1
v0 R

(1
t
, v̂, z

)
Pp,q(C )LZγ (F)λν Ẑκ , (T-2)

xα

v0 R
(1

t
, v̂, z

)
Pp,q(C )LZγ (F)λν Ẑκ , qT + γT ≥ 1, (T-3)

where R is a polynomial in 1/t , v̂ = (v̂i )1≤i≤3 and z = (zµk)0≤µ<k≤3, of degree degz R in z, and

qH + degz R ≤ βH , p ≤ βH , q + |γ | + |κ| ≤ |β| + 1, q, |γ |, |κ| ≤ |β|, 0 ≤ α, λ, ν ≤ 3.

Remark 6.27. In fact, we could prove that, as for the first-order commutation formula, most of the error
terms satisfy a form of null condition. Since this property is not crucial for our purpose, we chose to
demonstrate a result requiring a much simpler analysis.

Proof. Note first that the result holds for any |β| = 1. One can see it by applying either Lemma 2.3, for
the translation, or Proposition 6.25 and by rewriting all the v derivatives as v0∂v j = �̂0 j − t∂x j − x j∂t . Let
n ≥ 1 such that the proposition holds for any |β| = n and consider a multi-index |β0| = n + 1. Consider
further |β| = n as well as Ẑmod

∈ P̂mod
0 such that Ẑmod,β0 = Ẑmod Ẑmod,β and note

[TF , Ẑmod,β0] = [TF , Ẑmod
]Ẑmod,β

+ Ẑmod
[TF , Ẑmod,β

]. (68)

We can deal with the first term on the right-hand side by applying the result for first-order operators and
by noticing that Ẑ ξ Ẑmod,β, for |ξ | ≤ 1, can be written as a linear combination of terms of the form

Pp,q(C )Ẑ ζ , p ≤ βH , qH ≤ βH + ξH − 1, q ≤ |β| + |ξ | − 1, q + |ζ | ≤ |β| + |ξ |. (69)

For the second term, we apply the induction hypothesis, so that [TF , Ẑmod,β
] can be written as a linear

combination of terms of the form (T-1)–(T-3). In order to deal with them, we will use the following
properties:

• ∂t(t)= 1, �̂mod
0 j (t)= x j

= −z0 j − t v̂ j, Smod(t)= t and Ẑmod(t)= 0 otherwise.

• If Ẑmod
= ∂xµ , then Ẑmod(xk)= δk

µ. Otherwise, there exists 0 ≤ λ≤ 3 such that Ẑmod(xk)= ±xλ+C k
Ẑ

.

• �̂mod
0 j (v

0)= v j for any 1 ≤ j ≤ 3 and Ẑmod(v0)= 0 otherwise.

• There exist four polynomials R0, . . . , R3 such that

Ẑmod(R(1/t, v̂, z))= R0(1/t, v̂, z)+ C i
Ẑ Ri (1/t, v̂, z), degz R0 ≤ degz R + 1, degz Ri ≤ degz R,

where we set C i
∂xµ

:= 0. Moreover, if Ẑmod
̸= �̂mod

0 j , then degz R0 ≤ degz R. This can be obtained by the
first property and [Bigorgne 2020a, Lemma 3.2], giving,

∀ 0̂ ∈ P̂0, ∀1 ≤ i ≤ 3, ∀z ∈ k1, 0̂(v0z) ∈ {0} ∪ k1, ∂x i (z) ∈ {0, 1, v̂k
| 1 ≤ k ≤ 3}.
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• If Ẑmod
= ∂xµ , we schematically have Ẑmod(Pp,q(C )) = P0

p,q0(C ), with q0
= q + 1 and q0

H = qH .
Otherwise, Ẑmod(Pp,q(C ))= P1

p,q1(C )+ P2
p+1,q2(C ), with q1

= q2
= q + 1, q1

H = qH + 1 and q2
H = qH .

• Ẑmod Ẑκ = Ẑ Ẑκ + C i
Ẑ
∂x i Ẑκ and ẐmodLZγ (F)λν can be written as a linear combination of

LZ Zγ (F)λν, C i
ẐL∂xi Zγ (F)λν, LZγ (F)µξ , 0 ≤ µ, ξ ≤ 3.

Hence, we obtain by applying Ẑmod to any quantity of the form (T-1), (T-2) or (T-3) (corresponding to
|β| = n), a combination of terms of the form (T-1)–(T-3) (corresponding to |β0| = n + 1), as well as

T [Ẑmod
] =

1
t

R
(

1
t
, v̂, z

)
Pp,q(C )Ẑmod

(
t2 v̂

µ

v0 LZγ (F)µν −
v̂µ

v0 LZγ (F)∞µν(v)
)

Ẑκ ,

where 0 ≤ ν ≤ 3, q +|γ |+|κ| ≤ |β|+1, max(q, |γ |, |κ|)≤ |β|, p ≤ βH and qH +degz R ≤ βH . Assume
first that Ẑmod is a translation ∂xλ . Then,

T [∂xλ] =
2δ0
λ

v0 R(1/t, v̂, z)Pp,q(C )v̂
µLZγ (F)µν Ẑκ +

t
v0 R(1/t, v̂, z)Pp,q(C )v̂

µL∂xλ Zγ (F)µν Ẑκ

is the sum of a term of type (T-2) and a term of type (T-3). Otherwise, Ẑmod
= Ẑ + C i

Ẑ
∂x i and, following

the previous computations, we have

T [Ẑmod
] = T [Ẑ ] + C i

ẐT [∂x i ] = T [Ẑ ] +
t
v0 R(1/t, v̂, z)Pp,q(C )C

i
Ẑ v̂

µL∂xi Zγ (F)µν Ẑκ ,

where the last three terms are of type (T-3). According to Corollary 6.20, T [Ẑ ] is a combination of terms
of type (T-1) and, in the case Ẑ = �̂0 j , (T-2). □

We now control these error terms and then prove a uniform boundedness statement for Ẑmod,β f .
Because of regularity issues on the coefficients CẐ , which are of class C N−2, we are not able to deal with
the multi-indices |β| ≥ N − 1.

Proposition 6.28. Let |β| ≤ N − 2. For all (t, x, v) ∈ [3,+∞[ × R3
x × R3

v, there holds

|TF (Ẑmod,β f )|(t, x, v)≲3
log3Nx+4N (t)

t1+δ

∑
|κ|≤|β|

|v0
|
7
|z2+βH Ẑκ f |(t, x, v).

Moreover,

|v0
|
Nv−7

|zNx−2−βH TF (Ẑmod,β f )|(t, x, v)≲ ϵ̄
log6Nx+7N (t)

t1+δ
.

Proof. Fix (t, x, v) ∈ [3,+∞[× R3
x × R3

v and let us prove first the following property. Consider Pp,q(C )

and R(1/t, v̂, z) a polynomial such that p ≤ βH , q ≤ |β| and qH + degz R ≤ βH . Then,

|R(1/t, v̂, z)||Pp,q(C )|(t, x, v)≲
logN−2(t)

tqT
zβH (t, x, v). (70)

For this, remark first that, for |ξ | ≤ N − 2, i ∈ [[1, 3]] and Ẑ ∈ P̂0 \ {∂t , ∂x1, ∂x2, ∂x3, S},

|Ẑ ξ (C i
Ẑ )|(t, x, v)≤

∑
|γ |+|κ|≤|ξ |
γT =ξT

Iγ,κ , Iγ,κ :=

∑
0≤ν≤3

|Ẑγ log(t)|
∣∣∣∣Ẑκ

(
v̂µ

v0 LZ (F)∞µν

)∣∣∣∣(v).
Note that the case Ẑ = S leads to a similar estimate.
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• We have |Ẑγ log(t)|≲ t−ξT zξH (t, x, v) log(t). Indeed, |Ẑγ log(t)| ≤ |t−γT PγH (x/t) log(t)|, where PγH

is a polynomial of degree at most γH ≤ ξH , and γT = ξT . Finally, recall that |x |/t ≤ |x − t v̂|/t + 1 ≤

2z(t, x, v).

• To deal with the last factor in Iγ,κ , note first that |κ| + 1 ≤ N − 1 and that this quantity vanishes if κ is
composed of at least a translation or the scaling vector field S according to Proposition 6.18. Then, using
first the relations (58)–(59) and then Proposition 6.18, we get∣∣∣∣Ẑκ

(
v̂µ

v0 LZ (F)∞µν

)∣∣∣∣(v)≲ ∑
|ζ |≤|κ|+1

∣∣∣∣ v̂µv0 LZ ζ (F)
∞

µν

∣∣∣∣(v)≲ ϵ̄. (71)

We then deduce that

|R(1/t, v̂, z)||Pp,q(C )|(t, x, v)≲ zdegz R(t, x, v)t−qT zqH (t, x, v) logp(t)ϵ̄ p,

which implies (70).
Apply Proposition 6.26 in order to reduce the analysis to the treatment of terms of type (T-1), (T-2)

and (T-3). By Corollary 6.16 and (70), we can bound any term of type (T-1) by

3
|v0

|
8 log3Nx+4N (t)
v0t1+δ

⟨x − t v̂⟩2
|zβH Ẑκ f |(t, x, v)≲3

log3Nx+4N (t)
t1+δ

|v0
|
7
|z2+βH Ẑκ f |(t, x, v),

since ⟨x − t v̂⟩ ≤ z(t, x, v) and where |κ| ≤ N − 2. We deal with the ones of type (T-2) by using (BA1),
(70) and Lemma 2.6. There are bounded above by

3 logN−2(t)
(t + |x |)(1 + |t − |x ||)v0

(1 + |t − |x ||)|v0
|
2z

t + |x |
|zβH Ẑκ f |(t, x, v)≲3

logN−2(t)
t2 v0

|z1+βH Ẑκ f |(t, x, v).

Finally, let T3 be a term of type (T-3). Using first (70) together with Proposition 3.2 and then Lemma 2.6,

T3 ≲
3 logN−2(t)

v0tqT (1 + |t − |x ||)1+γT
|zβH Ẑκ f |(t, x, v)≲3

logN (t)
t2 |v0

|
3
|z2+βH Ẑκ f |(t, x, v).

We deduce from that the first estimate of the statement, which, through an application of Proposition 4.5,
implies the second one. □

Corollary 6.29. Let |β| ≤ N − 2. If βH ≤ Nx − 2, there exists D > 0 such that,

∀t ≥ 3, ∥|v0
|
Nv−7 Ẑmod,β f (t, · , · )∥L∞

x,v
≲ ϵeD3. (72)

Proof. Note first that we can obtain, by a much simpler analysis than in the proof of Proposition 4.5, that
∥|v0

|
Nv zNx Ẑβ f (3, · , · )∥L∞

x,v
≲ ϵ̄ for all |β| ≤ N. Consequently, using (69) and (71), we get,

∀|β| ≤ N − 1, ∥|v0
|
Nv zNx Ẑmod,β f (3, · , · )∥L∞

x,v
≲

∑
|κ|≤|β|

∥|v0
|
Nv zNx Ẑκ f (3, · , · )∥L∞

x,v
≲ ϵ̄.

Hence, it suffices to prove, according to Lemma 4.4, that

|TF (|v
0
|
Nv−7 Ẑmod,β f )|(t, x,v)≲

(
3|v0

|
Nv−7

|Ẑmod,β f |

(1+t)
3
2

+
3v̂L

|v0
|
Nv−7

|Ẑmod,β f |

(1+|t−|x ||)2

)
+

ϵ̄

(1+t) log2(3+t)
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for all (t, x, v) ∈ [3, T [ × R3
x × R3

v and any |β| ≤ N − 2. For this, we bound TF (v
0) using (31) and we

apply the previous Proposition 6.28 in order to control TF (Ẑmod,β f ). □

6.5. Regularity of the asymptotic state. In order to prove that f∞ is differentiable with respect to v,
we will need to compute the first-order v-derivatives of the correction terms in the modified spatial
characteristics and to bound their higher-order derivatives.

Lemma 6.30. Let (i, k) ∈ [[1, 3]]
2. Then, for all (t, x, v) ∈ [3,+∞[ × R3

x × R3
v,

v0∂vk C i (t, v)= C i
�0k
(t, v)− v̂iC k(t, v).

More generally, for any multi-index |κ| ≤ N − 1,

|v0
|
|κ|

|∂κv C i
|(t, v)≲ ϵ̄|v0

|
−

1
2 log(t).

Proof. According to (58), we have, for any ν ∈ [[0, 3]],

v0∂vk

(
v̂µ

v0 F∞

µν

)
=
v̂µ

v0 L�0k (F)
∞

µν − δ0
ν

v̂µ

v0 F∞

µk − δk
ν

v̂µ

v0 F∞

µ0.

This implies in particular that

v0∂vk

(
v̂i v̂µ

v0 F∞

µ0 +
v̂µ

v0 F∞

µi

)
=
v̂i v̂µ

v0 L�0k (F)
∞

µ0 +
v̂µ

v0 L�0k (F)
∞

µi − v̂i
(
v̂k v̂µ

v0 F∞

µ0 +
v̂µ

v0 F∞

µk

)
.

In view of the definition of the correction coefficients (see Definitions 6.21 and 6.23), we deduce from
this last equality the first part of the statement. The second part follows from a direct induction as well as
Propositions 6.18–6.19. □

Remark 6.31. Similarly, we could prove using (59) that �vjkC
i (t, v) = C i

� jk
(t, v) − δi

jC
k(t, v) +

δi
kC

j (t, v), where �vjk := v j∂vk −vk∂v j . Consequently, the following quantities, related to the asymptotic
Lorentz force,

0(v) :=
v̂µ

v0 (F
∞

µi (v)+ v̂i F∞

µ0(v))dv
i , 0Z (v) :=

v̂µ

v0 (LZ (F)∞µi (v)+ v̂iLZ (F)∞µ0(v))dv
i ,

satisfy Lv0∂
vk (0)= 0�0k and L�vjk

(0)= 0� jk .

We now perform a computation, which holds for any sufficiently regular function f. In particular, we
will apply it to f = ∂κt,x f . We have

v0∂vk ( f (t, XC , v))= t∂xk f (t, XC , v)− t v̂k v̂i∂x i f (t, XC , v)

+ v0∂vk f (t, XC , v)+ v
0∂vk C i (t, v)∂x i f (t, XC , v).

Then, we use (65) in order to rewrite the third term on the right-hand side. We get

v0∂vk ( f (t, XC ,v))=

(
�̂0k f +z0k∂t f −v̂k S f −v̂k

∑
1≤i≤3

z0i∂x i f
)
(t, XC ,v)+v

0∂vk C i (t,v)∂x i f (t, XC ,v).
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Hence, as z0i (t, XC , v)= −x i
− C i (t, v),

v0∂vk ( f (t, XC , v))= (�̂0k f )(t, XC , v)− xk(∂t f )(t, XC , v)−
C k(t, v)

t
(S f )(t, XC , v)

+
C k(t, v)

t
X i

C ∂x i f (t, XC , v)− v̂
k(S f )(t, XC , v)+ v̂

kC i (t, v)∂x i f (t, XC , v)

+ v̂k x i∂x i f (t, XC , v)+ v
0∂vk C i (t, v)∂x i f (t, XC , v).

Now, according to Lemma 6.30,

�̂0k + v0∂vk C i (t, v)∂x i = �̂0k + C i
�0k
(t, v)∂x i − C k(t, v)v̂i∂x i = �̂mod

0k − C k(t, v)v̂i∂x i ,

and, in view of the relations Smod
= S − C i (t, v)∂x i and X i

C = x i
+ t v̂i

+ C i (t, v),

v0∂vk ( f (t, XC , v))= (�̂mod
0k f )(t, XC , v)−

(
v̂k

+
C k(t, v)

t

)
(Smod f )(t, XC , v)

− xk(∂t f )(t, XC , v)+

(
v̂k

+
C k(t, v)

t

)
x i∂x i f (t, XC , v). (73)

Iterating this process to the functions f = ∂κt,x f yields the following result.

Proposition 6.32. Let |κ| + |ξ | ≤ N − 2. Then, there exist functions Pκ,ξβ such that,

∀(t, x,v)∈ [3,+∞[×R3
x×R3

v, |v0
|
|ξ |∂ξv((∂

κ
t,x f )(t,XC ,v))=

∑
|β|≤|κ|+|ξ |

Pκ,ξβ (t, x,v)Ẑmod,β f (t,XC ,v)

and Pκ,ξβ (t, x, v) is a linear combination of terms of the form P(x, v̂)M(C ), where P is a polynomial and

M(C )=
d∏

k=1

1
t
|v0

|
|ξk |∂ξk

v C ik (t, v), d +

∑
1≤k≤d

|ξk | ≤ |ξ |, |β|+

∑
1≤k≤d

|ξk | ≤ |ξ |, degx(P)+βH ≤ |ξ |.

The value d = 0 is allowed, in which case we set M(C )= 1.

In order to prove, through Proposition 6.22, that the functions considered in the previous statement
converge, as t → +∞, we will be lead to estimate these polynomials and their time derivative.

Lemma 6.33. Let |κ| + |ξ | ≤ N − 2 and |β| ≤ |κ| + |ξ |. Then, for all (t, x, v) ∈ [3,+∞[ × R3
x × R3

v,

|Pκ,ξβ |(t, x, v)≲ ⟨x⟩
|ξ |−βH , |∂t Pκ,ξβ |(t, x, v)≲ ϵ̄⟨x⟩

|ξ |−βH
log(t)

t2 .

Proof. It is enough to bound terms of the form P(x, v̂)M(C ) satisfying the conditions given in
Proposition 6.32. The first factor satisfies |P(x, v̂)| ≲ ⟨x⟩

degx P
≤ ⟨x⟩

|ξ |−βH and does not depend on t . In
view of Lemma 6.30, we have |M(C )|≲ ϵ̄d logd(t)t−d, which implies the first estimate. The second one can
be obtained similarly. Either |∂t M(C )| = 0 or d ≥ 1 and |∂t M(C )|≲ ϵ̄d logd(t)t−d−1 by Lemma 6.30. □

We are now able to prove the main result of this paper. For this, let us introduce

h :(t, x, v) 7→ f (t, x+t v̂+C (t, v), v), hξ,κ :=|v0
|
|ξ |∂ξv ∂

κ
x h(t, x, v)=|v0

|
|ξ |∂ξv

(
∂κx f (t, XC (t, x, v), v)

)
.
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Proposition 6.34. There exists a function f∞ ∈ C N−2(R3
x ×R3

v,R+) such that, for any |κ|+ |ξ | ≤ N −2,

∀t ≥ 3, ∥|v0
|
Nv−10+|ξ |

⟨x⟩
Nx−4−|ξ |(∂ξv ∂

κ
x h(t, · , · )− ∂ξv ∂

κ
x f∞)∥L∞

x,v
≲ ϵ̄

log7(Nx+N )(t)
tδ

.

In particular, as Nv > 13 and if Nx > 7 + |ξ |, we have ∂ξv ∂κx f∞ ∈ L1
x,v.

Proof. Fix t ≥ 3 and (x, v) ∈ R3
x × R3

v . Applying the previous Proposition 6.32 and Lemma 6.33, we get

|∂t hξ,κ |(t, x, v)≲
∑

|β|≤N−2
βH ≤|ξ |

⟨x⟩
|ξ |−βH |∂t Ẑmod,β f |(t, XC , v)+ ϵ̄

log(t)
t2 ⟨x⟩

|ξ |−βH |Ẑmod,β f |(t, XC , v).

Next, we recall from (66) the inequality ⟨x⟩ ≲ log(t)z(t, XC , v) and note, using the same arguments, that
z(t, XC , v)≲ log(t)⟨x⟩ holds as well. Bounding ∂t Ẑmod,β f by Proposition 6.22, we then get

|v0
|
Nv−10

⟨x⟩
Nx−4−|ξ |

|∂t hκ,ξ |(t, x, v)≲
∑

|β|≤N−2
βH ≤|ξ |

logNx (t)|v0
|
Nv−10

|zNx−4−βH TF (Ẑmod,β f )|(t, XC , v)

+3
log4Nx+3N (t)

t1+δ

∑
|γ |≤1

|v0
|
Nv−3

|zNx−2−βH Ẑγ Ẑmod,β f |(t, XC , v).

We control the first term on the right-hand side by Proposition 6.28 and we claim that the second one is
bounded by

3
log4Nx+4N (t)

t1+δ

∑
|κ|≤N−1

|v0
|
Nv−3

|zNx−2 Ẑκ f |(t, XC , v).

Indeed, we rewrite the modified vector fields using (69) and we control Pp,q(C ) by (70). We then deduce
from Proposition 4.5 that

|v0
|
Nv−10

⟨x⟩
Nx−4−|ξ |

|∂t hκ,ξ |(t, x, v)≲ ϵ̄
log7Nx+7N (t)

t1+δ
.

We obtain from that,

∀ 3 ≤ t ≤ τ,
∣∣|v0

|
Nv−10

⟨x⟩
Nx−4−|ξ |(hκ,ξ (τ, x, v)− hκ,ξ (t, x, v))

∣∣ ≲ ϵ̄ log7(Nx+N )(t)
tδ

. (74)

Consequently, there exists f κ,ξ∞ ∈ L∞
x,v such that hκ,ξ (t, · , · )→ f κ,ξ∞ as t →+∞, uniformly on any compact

subset of R3
x ×R3

v . By uniqueness of the limit in D′(R3
x ×R3

v) and by continuity of the distributional partial
derivatives, we get f κ,ξ∞ = |v0

|
|ξ |∂

ξ
v ∂

κ
x f∞. Letting τ → +∞ in (74) yields the stated rate of convergence

and concludes the proof. □

Remark 6.35. We can improve the result for f∞. Propositions 4.5 and 6.22 give,

∀t ≥ 3,
∥∥|v0

|
Nv−7

⟨x⟩
Nx−2( f (t, XC (t, · , · ), · )− f∞)

∥∥
L∞

x,v
≲ ϵ̄

log12+3Nx+3N (t)
tδ

.

Moreover, we could prove that f∞ is of class C N−1 according to the spatial variable x .

Remark 6.36. We could prove that ∂ξv (∂n
t ∂

κ
x f (t, XC , v)) → ∂

ξ
v (−v̂ · ∇x)

n∂κx f∞. The idea consists in
rewriting the time derivatives using ∂t = −v̂ · ∇x + TF − v̂µFµ j∂v j .
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7. Scattering result for the electromagnetic field

In this section, we start by defining the scattering state of a sufficiently regular Maxwell field. Then, we
construct a scattering map for the vacuum Maxwell equations. Finally, we apply these results together
with the estimates derived in Section 3.1 in order to prove that the electromagnetic field F scatters, in the
sense that it is approached by a solution to the homogeneous Maxwell equations.

Since the asymptotic states will be functions of the variables (u, θ, ϕ), defined on future null infinity I+

introduced in Section 2.2, it will be convenient to work in null coordinates. For a function ψ(t, x), in
order to simplify the presentation, we will write ψ(u, u, ω) to denote ψ((u + u)/2, (u − u)ω/2), where
(u, u, ω) are the null coordinates such that x = rω, u = t + r and u = t − r .

The scattering state of a smooth electromagnetic field G will give the leading-order term in the
asymptotic expansion of rG, as u → +∞. This motivates the introduction of the following terminology.

Definition 7.1. Let φ : R+ × R3
→ R be a function such that the limit

8(u, ω) := lim
r→+∞

rφ(u + r, rω)= lim
u→+∞

(rφ)(u, u, ω), 8(u, ω) <+∞,

exists and is finite for all (u, ω) ∈ Ru × S2. Then, we say that the function 8, defined on Ru × S2, is the
radiation field R(φ) of φ along future null infinity I+.

Definition 7.2. Similarly, consider β, a 1-form on R+ × R3 tangential to the 2-spheres12 such that βeθ

and βeϕ have a radiation field βI+

eθ and βI+

eϕ . Then, βI+

, defined on Ru × S2 as the 1-form βI+

eθ dθ +βI+

eϕ dϕ
tangential to the 2-spheres, is called the radiation field of β along I+.

If βI+

is of class C1, we define

∇∂u (β):=∂u(β
I+

eθ )dθ+∂u(β
I+

eϕ )dϕ, ∇eθ (β)(u, · , ·):=∇eθ (β(u, · , ·)), ∇eϕ (β)(u, · , ·):=∇eϕ (β(u, · , ·)),

where∇ denotes the covariant derivative on S2.

We already know from Corollary 2.20 that, given a sufficiently decaying electromagnetic field G, the
radiation field of the good null components α(G), ρ(G) and σ(G) exist and vanish. Concerning the
component α(G), we have the following result.

Proposition 7.3. Let G be a C1 solution to the Maxwell equations (18) with a continuous source term J.
Assume that there exist three constants C[G]> 0, p ∈ N and q > 0 such that, for all (t, x) ∈ R+ × R3,

r |J |(t, x)+
∑
|γ |≤1

|ρ(LZγ G)|(t, x)+ |σ(LZγ G)|(t, x)≤
C[G] logp(3 + t + |x |)

(1 + t + |x |)1+q . (75)

Then, α(G) has a radiation field along I+. For any B ∈ {θ, ϕ} and for all (u, ω) ∈ Ru × S2, the limit

αI+

eB
(u, ω) := lim

r→+∞
rα(G)eB (r + u, rω)= lim

u→+∞
rα(G)eB (u, u, ω)

12More generally, we could consider tensor fields tangential to the cones Cu .
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exists and is finite. Moreover,

∀(t, x) ∈ R+ × R3,

∣∣∣∣rα(G)eB (t, x)−αI+

eB

(
t − |x |,

x
|x |

)∣∣∣∣ ≲ C[G]
logp(3 + t + |x |)

(1 + t + |x |)q
.

Consequently, αI+

is a continuous tensor field, defined on Ru × S2 and tangential to the 2-spheres.

Proof. The last inequality of Lemma 2.17, together with (75), provides,

∀(t, x) ∈ R+ × R3, |∇L(rα(G))|(t, x)≲ logp(3 + t + |x |)(1 + t + |x |)−1−q . (76)

Using the null coordinates u = t + r and u = t − r , where x = rω, we get, as L = 2∂u and ∇LeB = 0,

∀ 0 ≤ u ≤ z, |rα(F)(u, z, ω)− rα(F)(u, u, ω)| ≲
∫ z

s=u

logp(3 + s) ds
(1 + s)1+q ≲

logp(3 + u)
(1 + u)q

,

implying the existence of αI+

eB
, for any B ∈ {θ, ϕ}, and the rate of convergence given in the statement. □

If the electromagnetic field is sufficiently regular, we can relate the radiation fields of the derivatives
of G to the ones of αI+

. For this, we will use the bounded functions ωi := x i/|x | and ωA
i := ⟨∂x i , eA⟩, where

1 ≤ i ≤ 3 and A ∈ {θ, ϕ}, which depend only on ω ∈ S2 and which are given explicitly in Appendix B.

Proposition 7.4. Suppose that G satisfies, in addition to the hypotheses of the previous Proposition 7.3,
the inequality |rG|(t, x)≤ C[G]. Then, for any Z ∈ K,

∃αI+

Z ∈ D′(Ru × S2), rα(LZ G)( · , u, · ) u→+∞
−−−−⇀αI+

Z in D′(Ru × S2).

Moreover, for any 1 ≤ i ≤ 3 and 1 ≤ j < k ≤ 3,

αI+

∂t
= ∇uα

I+

, αI+

∂xi
= −ωi∇uα

I+

, αI+

S = u∇uα
I+

+αI+

,

αI+

� jk
= L� jk (α

I+

), αI+

�0i
= −ωi u∇uα

I+

− 2ωiα
I+

+ω
eA
i ∇eAα

I+

.

This result is proved in Appendix B.

7.1. Scattering map for the vacuum Maxwell equations. Before starting the construction of the forward
map for the homogeneous Maxwell equations, we introduce two functional spaces adapted to our problem.
The first one contains the initial electromagnetic fields which are in L2 and the second one contains the
scattering states which belong to L2. For a smooth solution F to (19), this state will be the radiation field
of α(F). Note that the electromagnetic fields considered in this subsection will be denoted by F. Since,
we will only consider solutions to the homogeneous Maxwell equations here, there is no risk of confusion
with the electromagnetic field of the plasma considered in the remainder of the article.

Definition 7.5. Let E{t=0} be the set containing all the 2-form on R1+3 which does not depend on t and
which is in L2(R3). Equipped with the norm

∥F0∥
2
E{t=0}

:=

∫
R3

x

(
|α(F0)|

2
+ |α(F0)|

2
+ 2|ρ(F0)|

2
+ 2|σ(F0)|

2)(x) dx,

E{t=0} is a Hilbert space.
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We define EI+ as the set of the 1-forms on Ru ×S2 which are tangential to the 2-spheres and in L2. For

∥αI+

∥
2
I+ :=

∫
Ru

∫
S2
ω

|αI+

|
2(u, ω) dµS2 du,

(EI+, ∥ · ∥I+) is a Hilbert space.

We now state the two main results of this section.

Theorem 7.6. The linear map

F+
: E{t=0} ∩ C∞

c → EI+, F0 7→ lim
u→+∞

rα(F)(u, u, ω),

where F is the unique solution to the vacuum Maxwell equations (19) such that F(0, · ) = F0, is well-
defined and preserves the norm ∥F0∥E{t=0}

= ∥F+(F0)∥I+ .
Moreover, this forward map can be uniquely extended in a bijective isometry F+

: E{t=0} → EI+ .

Remark 7.7. When F0 /∈ C∞
c but is still sufficiently regular, F+(F0) is also given by the formula written

in Theorem 7.6. Otherwise, F+(F0) can still be interpreted, in a weak sense, as the radiation field
of α(F), with F the solution to (19) arising from the data F0 (see Lemma 7.9 below).

The proof will in particular rely on the following result, which is also important in itself. It provides
precise estimates for solutions arising from the preimage by F+ of smooth elements of EI+ .

Proposition 7.8. Let 0< a < 1
2 , N ∈ N and αI+

∈ EI+ be a sufficiently regular scattering state. Then,
the unique solution F to the vacuum Maxwell equations (19) satisfying F+(F)= αI+

satisfies, for any
0 ≤ q −

1
2 < a,∑

|γ |≤N

∥⟨t − r⟩
q−

1
2 |LZγ F |(t, · )∥2

L2
x
≲ C[αI+

]

:=

∑
n1+n2+n3≤N+3

∫
Ru

∫
S2
ω

⟨u⟩
2a+2n1 |∇

n1
u ∇

n2
eθ∇

n3
eϕ α

I+

|
2(u, ω) dµS2 du

for all t ∈ R+. In particular, if N ≥ 4, we have, for any |γ | ≤ N − 3 and |ξ | ≤ N − 4,

∀(t, x) ∈ R+ × R3,
(
|α(LZγ F)| + |ρ(LZγ F)| + |σ(LZγ F)|

)
(t, x)≤

C
(1 + t + |x |)1+q ,∣∣∣∣rα(LZ ξ F)(t, x)− F+(LZ ξ F(0, · ))

(
t − |x |,

x
|x |

)∣∣∣∣ ≤
C

(1 + t + |x |)q
,

where the constant C depends only on C[αI+

] and q.

We start by proving that F+ is well-defined for sufficiently regular electromagnetic field, including
those arising from smooth compactly supported data.

Lemma 7.9. The linear map F+ introduced in Theorem 7.6 is well-defined and extends in an injective
isometry from E{t=0} to EI+ . Moreover, if F is a solution to the free Maxwell equations (19) such that

CF :=

∑
|γ |≤4

∥LZγ F(0, · )∥{t=0} <+∞, (77)



698 LÉO BIGORGNE

then, α(F) has a continuous radiation field F+(F(0, · )) and, for all (t, x) ∈ R+ × R3,

(|α(F)| + |ρ(F)| + |σ(F)|)(t, x)≲ CF (1 + t + |x |)−
3
2 , (78)∣∣∣∣rα(F)(t, x)− F+(F(0, · ))

(
t − |x |,

x
|x |

)∣∣∣∣ ≲ CF (1 + t + |x |)−
1
2 . (79)

This implies that the radiation fields of α(F), ρ(F) and σ(F) vanish.
Finally, if F is a mildly regular solution to (19) such that F(0, · ) ∈ E{t=0}, then rα(F) converges to

F+(F(0, · )), as u → +∞, in the space of distributions D′(Ru × S2).

Proof. Recall from Definition 2.16 the energy momentum tensor T[F]µν , its principal null components
and that ∇

µT[F]µ0 = 0. For any t > 0, the divergence theorem, applied to T[F]µ0 in the domain
{(s, x) ∈ R1+3

| 0 ≤ s ≤ t}, gives

∥F(0, · )∥{t=0} = 4
∫

R3
x

T[F]00(0, x) dx = 4
∫

R3
x

T[F]00(t, x) dx

= 2
∑

0≤µ,ν≤3

∫
R3

x

|Fµν |2(t, x) dx = 2∥F(t, · )∥L2
x
.

This also applies to LZγ (F), for any |γ | ≤ 4, since it is a solution to the free Maxwell equations (19) as
well. In view of the equivalence of the pointwise norms (9), the standard Klainerman–Sobolev inequality
(see for instance Theorem 1.3 of [Sogge 1995, Chapter II]) yields, for any |γ | ≤ 2,

∀(t, x) ∈ R+ × R3
x , |LZγ F |(t, x)≲

∑
|β|≤2+|γ |

∑
0≤µ,ν≤3

|Zβ(Fµν)|(t, x)

≲
CF

(1 + t + |x |)(1 + |t − |x ||)
1
2

. (80)

Applying Corollary 2.20 to LZ ξ F, for any |ξ | ≤ 1 and q =
1
2 , gives,

∀|ξ | ≤ 1, ∀(t, x)∈ R+×R3,
(
|α(LZ ξ F)|+|ρ(LZ ξ F)|+|σ(LZ ξ F)|

)
(t, x)≤ CF (1+t+|x |)−

3
2 .

The existence of the radiation field αI+

of α(F) and the rate of convergence given in the statement then
follows from Proposition 7.3. Since the convergence is uniform in (u, ω), αI+

is continuous on Ru × S2.
Before defining F+, we need to bound the L2 norm of the radiation field. For this, we prove conservation

laws which hold for any mildly regular solution G to the free Maxwell equations (19).
Fix u ≥ 0 and apply the divergence theorem to T[G]µ0, in the domain {t + |x | ≤ u}, in order to get∫

Cu

T[G]L0 dµCu =

∫
|x |≤u

T[G]00(0, x) dx

=
1
4

∫
|x |≤u

(
|α(G)|2 + |α(G)|2 + 2|ρ(F)|2 + 2|σ(G)|2

)
(0, x) dx, (81)

where ∫
Cu

T[G]L0 dµCu =
1
4

∫
|u|≤u

∫
S2
ω

(|α(G)|2 + |ρ(G)|2 + |σ(G)|2)(u, u, ω)r2 dµS2 du. (82)
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Assume now that Fµν(0, · ) ∈ C∞
c (R

3
x) for all 0 ≤ µ, ν ≤ 3 and let us apply the previous equality to F.

On the one hand, the right-hand side of (81) converges to 1
4∥F(0, · )∥2

{t=0}
as u → +∞. On the other

hand, we know from the Huygens–Fresnel principle that there exists U > 0 such that F(t, x)= 0 for all
|t −|x || = |u| ≥ U. This implies that the domain of integration of the integrals in (82) is in fact included in
{|u| ≤ U } for all u ≥ 0. The triangular inequality in L2 together with the estimates (78)–(79) then leads to∫

Cu

T[F]L0 dµCu −−−−→
u→+∞

1
4

∫
|u|≤U

∫
S2
ω

|F+(F(0, · ))|2 dµS2 du =
1
4
∥αI+

∥
2
I+ .

We can then define F+
: E{t=0} ∩ C∞

c → EI+ , with F+(F(0, · )) := αI+

, and extend it to an injective
isometry from E{t=0} to EI+ .

Consider now a, say, C1 solution F to (19) such that F(0, · )∈ E{t=0}. Fix ψ ∈ C∞
c (Ru ×S2) and R> 0

satisfying supp(ψ)⊂ [−R, R]×S2. Let further (Fn)n≥0 be a sequence of smooth solutions to the vacuum
Maxwell equations such that Fn(0, · ) is compactly supported for any n ∈ N and Fn(0, · ) → F(0, · )
in E{t=0}. Fix A ∈ {θ, ϕ} and start by observing that

|(rα(F)eA − F+(F(0, · ))eA)ψ |

≲
(
|rα(F)− rα(Fn)| + |rα(Fn)− F+(Fn(0, · ))| + |F+((Fn − F)(0, · ))|

)
1|u|≤R.

Then, in order to prove rαeA → F+(F(0, · ))eA in D′(Ru × S2), as u → +∞, it suffices to prove that
the integral on Ru × S2 of each of the three terms on the right-hand side converges to 0 as u → +∞. For
this, consider ϵ > 0 and start by noticing that the energy equality (81)–(82), applied to F − Fn , gives,

∀n ≥ 0, ∀u ≥ 0,
∫

Ru

∫
S2
ω

|rα(F)− rα(Fn)|
2(u, u, ω) dµS2 du ≤ ∥F(0, · )− Fn(0, · )∥2

{t=0}
.

According to (79), applied to Fn , there exists a constant Cn , such that,

∀n ∈ N, ∀u ≥ 0,
∫

|u|≤R

∫
S2
ω

|rα(Fn)(u, u, ω)− F+(Fn(0, · ))(u, ω)| dµS2 du ≤
Cn

(1 + u)
1
2

.

Moreover, since F+ is an isometry, we have ∥F+(Fn(0, · ))−F+(F(0, · ))∥I+ =∥F(0, · )−Fn(0, · )∥{t=0}.
The last four estimates, together with the Cauchy–Schwarz inequality in L2([−R, R] × S2), yields∣∣∣∣∫

Ru

∫
S2
ω

(
rα(F)eA(u, u, ω)− F+(F)eA(u, ω)

)
ψ(u, ω) dµS2 du

∣∣∣∣ ≲ ∥F(0, · )− Fn(0, · )∥{t=0} +
Cn

(1 + u)
1
2

for all n ∈ N and u ≥ 0. For a sufficiently large n and U, which depends on n, we can bound the right-hand
side by ϵ for all u ≥ U. This concludes the proof of the last part of the lemma.

It remains to show that for any F(0, · ) satisfying (77), we have F+(F(0, · ))= αI+

. For this, it suffices
to recall that we proved rα(F)→ αI+

in L∞
u,ω. □

Remark 7.10. In fact, assuming more decay on the initial data, we could prove using the equations (M ′′

2 ),
(M ′′

5 ) and (M ′′

6 ) of [Christodoulou and Klainerman 1990] that |α(F)| = O(u−2−δ) and that r2ρ(F) as
well as r2σ(F) converge as u → +∞.
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To conclude the proof of Theorem 7.6, it remains us to show that F+ is surjective. For this, it suffices
to prove Proposition 7.8, which in particular implies that any smooth and compactly supported αI+

has a
preimage by F+. For this, we will make crucial use of [Lindblad and Schlue 2023, Theorem 1.1], which
is a similar result for solutions to the homogeneous wave equation, and exploit that □Fµν = 0 for any
Cartesian component Fµν .

Lemma 7.11. Let 8 ∈ C(Ru × S2) be a sufficiently regular function, 0< a < 1
2 and N ∈ N. Then, there

exists a unique solution to wave equation □φ = 0 on R+ ×R3 satisfying, for any 0< δ ≤ a and all t ∈ R+,∑
|γ |≤N

∥⟨t − r⟩
a−δZγφ(t, · )∥2

L2(R3
x )
≲

∑
|k|+|β|≤N+3

∫
+∞

u=−∞

∫
ω∈S2

|(⟨u⟩∂u)
k∂βω8(u, ω)|

2
⟨u⟩

2a dµS2 du

and such that 8 is the radiation field R(φ) of φ along I+.

We will also require standard estimates for smooth solutions to the wave equation.

Lemma 7.12. Let φ be a smooth solution to the wave equation □φ = 0 such that ∥Zγφ(0, · )∥L2
x
<+∞

for any |γ | ≤ 5. Then, for any |β| ≤ 1, the radiation field R(∂
β
t,xφ) of ∂βt,xφ is well-defined and

∀u ≥ 1, ∀(u, ω) ∈ [−u, u] × S2, |r∂βt,xφ(u, u, ω)− R(∂
β
t,xφ)(u, ω)| ≲ u−

1
2 .

Moreover, R(∂tφ)= ∂uR(φ) and R(∂x iφ)= −(x i/|x |)∂uR(φ) for all i ∈ [[1, 3]].

Proof. The first part of the result is classical. Indeed, since □Zγφ = 0 for any |γ | ≤ 4, we obtain
by applying the standard Klainerman–Sobolev inequality and then an energy inequality (for a proof,
see for instance Theorem 1.3 and Lemma 3.5 of [Sogge 1995, Chapter II]), that, for all |γ | ≤ 2 and
(t, x) ∈ R+ × R3,

(1 + t + |x |)(1 + |t − |x ||)
1
2 |Zγφ|(t, x)≲

∑
|β|≤|γ |+2

∥Zβφ(t, · )∥L2
x
≲

∑
|β|≤4

∥Zβφ(0, · )∥L2
x
. (83)

Now we claim that,
∀(t, x) ∈ R+ × R3, |L(rφ)|(t, x)≲ (1 + t + |x |)−

3
2 .

Indeed, if |x |=r ≤ (1+t)/2, we have 1+t+r ≲1+|t−r |. Moreover, (20) leads to |L(rφ)|≤
∑

|β|≤1 |Zβφ|,
so that the claim is implied by (83). Otherwise, |x |≳ 1+ t +|x | = 1+u and, by writing the d’Alembertian
in spherical coordinates, we obtain from □φ = 0 that

0 = −L Lφ+
2
r

L − L
2

φ+

∑
1≤i< j≤3

�i j�i jφ

r2 , leading to L(L(rφ))=

∑
1≤i< j≤3

�i j�i jφ

r
. (84)

In order to integrate along a null straight line t + r = u, it will be convenient to work with the null
coordinate system. We then write x = |x |ω, with ω ∈ S2. As L = 2∂u and in view of (83)–(84), we have

|L(rφ)|(t, x)= |L(rφ)|(t − |x |, u, ω)≤ |L(rφ)|(−t − |x |, u, ω)+ 1
2

∫ t−|x |

u=−t−|x |

|L(L(rφ))|(u, u, ω) du

≲ |L(rφ)|(0, (t + |x |)ω)+

∫ t−|x |

u=−t−|x |

du

(1 + u)2(1 + |u|)
1
2

≲ (1 + u)−
3
2 ,
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which concludes the proof of the claim. As L = 2∂u , we directly deduce from it that,

∀z ≥ u ≥ 0, ∀|u| ≤ u, ∀ω ∈ S2, |rφ(u, z, ω)− rφ(u, u, ω)| ≲
∫ z

s=u
|L(rφ)|(u, s, ω) ds ≲ (1 + u)−

1
2 .

This implies the existence of the radiation field R(φ) of φ as well as the rate of convergence given in
the statement of the lemma. Since □∂xµφ = 0 and ∥Zγ ∂xµφ(0, · )∥L2

x
<+∞ for any |γ | ≤ 4, the same

applies to ∂xµφ. Now, note that

2r∂tφ = r Lφ+ r Lφ, 2r∂x iφ =
x i

|x |
r Lφ−

x i

|x |
r Lφ+ 2⟨∂x i , eθ ⟩reθφ+ 2⟨∂x i , eϕ⟩reϕφ, 1 ≤ i ≤ 3.

Combining (83) with (20) yields r |Lφ| + r |eθφ| + r |eϕ| + |φ| ≲ u−1 so that

there exists φL
∞ ∈ L∞(Ru×S2

ω) such that L(rφ)
L∞

u,ω
−−−−→
u→+∞

φ
L
∞, φ

L
∞ =2R(∂tφ),

x i

|x |
φ

L
∞ =−2R(∂x iφ).

It remains to use that L(rφ)( · , u, · ) ⇀ 2∂uR(φ) in D′(Ru × S2) since rφ( · , u, · ) converges to R(φ)

in L∞
u,ω. □

We are now ready for the last part of this subsection.

Proof of Proposition 7.8. Fix 0 ≤ q −
1
2 < a < 1

2 , N ∈ N and αI+

∈ EI+ such that the norm C[αI+

] is
finite. Recall that any sufficiently regular solution F to the vacuum Maxwell equations (19) satisfies
□ Fµν = 0 for any 0 ≤ µ, ν ≤ 3. The first step consists in constructing each Cartesian component Fµν
of the electromagnetic field by applying Lemma 7.11 to well-chosen radiation fields. This will define a
2-form F which will verify the stated estimate. Then, we will prove that F is indeed a solution to the
Maxwell equations and, finally, we will derive the pointwise decay estimates.

Assume first that N ≥ 5 and let us start by identifying the expected radiation field of Fµν . For this,
assume that F exists and recall the transfer matrix between the Cartesian and the null frame

∂t =
1
2 L +

1
2 L, ∂x i =

1
2ωi L −

1
2ωi L +ω

eθ
i eθ +ω

eϕ
i eϕ, 1 ≤ i ≤ 3,

where ωi and ωeA
i are bounded functions of the spherical variables and are given explicitly in Appendix B.

For convenience, we set ω0 := −1 and ωeA
0 := 0. Consequently, for any 0 ≤ µ, ν ≤ 3, there exist smooth

functions of ω ∈ S2, gα,θµν , gα,ϕµν , gρµν and gσµν , such that

r Fµν = −
1
2(ω

eA
µ ων −ωµω

eA
ν )rα(F)eA + gα,Aµν rα(F)eA + gρµνrρ(F)+ gσµνrσ(F).

We then obtain by (78)–(79) that

R(Fµν)= −
1
2(ω

eA
µ ων −ωµω

eA
ν )α

I+

eA
, 0 ≤ µ, ν ≤ 3. (85)

According to Lemma 7.11, we can indeed define a 2-form F satisfying (85) as well as □Fµν = 0 and, for
all t ∈ R+,∑

|γ |≤N

∥⟨t − r⟩
q−

1
2 |LZγ F |(t, · )∥L2

x
≲

∑
|γ |≤N

∑
0≤µ,ν≤3

∥⟨t − r⟩
q−

1
2 Zγ (Fµν)(t, · )∥L2

x
≲ C[αI+

]. (86)
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The remainder of the proof of the case N ≥5 essentially consists in performing linear algebra computations.
In order to lighten the notations we temporarily denote ∂xλ by ∂λ. Our goal now is to prove that F is a
solution to the vacuum Maxwell equations (19), which read in Cartesian coordinates

∂µFµν = 0, ∂µ∗Fµν = ∂[λFµν] := ∂λFµν + ∂µFνλ + ∂νFλµ = 0. (87)

For a proof of the second identity, see for instance [Bigorgne 2021b, Lemma 2.2]. Since □∂µFµν = 0
and □∂µ∗Fµν = 0, (87) would be implied, according to Lemma 7.11, by

R(∂µFµν)= 0, R(∂µ∗Fµν)= 0, 0 ≤ ν ≤ 3.

We compute, using Lemma 7.12, that, for any 0 ≤ λ≤ 3,

R(∂λFµν)= −ωλ∂uR(Fµν)=
1
2ωλ(ω

eA
µ ων −ωµω

eA
ν )∂uα

I+

eA
, 0 ≤ µ, ν ≤ 3.

This implies in particular that R(∂[λFµν])= 0. Furthermore, as ∂µ = ηµλ∂λ, we have

R(∂µFµν)=
1
2η
µλωλ(ω

eA
µ ων −ωµω

eA
ν )∂uα

I+

eA
=

1
2(η(eA, L)ων − η(L , L)ωeA

ν )∂uα
I+

eA
= 0.

We then deduce that F is a smooth solution to the vacuum Maxwell equations. Finally, since the Cartesian
components of L = ηL

µ∂µ and eA = ηeA
µ∂µ are bounded functions of ω ∈ S2, we obtain from (85) and

Lemmas 7.9, 7.12 that

F+(F(0, · ))eA = lim
u→∞

rα(F)eA( · , u, · )

= ηeA
µηL

ν lim
u→∞

r Fµν( · , u, · )= ηeA
µηL

νR(Fµν)= αI+

eA
, A ∈ {θ, ϕ}.

This concludes the proof of the first part of the proposition for the case N ≥ 5. Consider now the case
N = 0 and define similarly Fµν , through Lemma 7.11, as the unique solution to □Fµν = 0 such that
(85) holds. This directly provides the estimate (86); let us prove that F is a weak solution to (19). For
this, consider a sequence (α I +

n ) ∈ EN
I+ of smooth and compactly supported scattering states such that

C[αI+

−α I +

n ] → 0 as n → +∞. Then, denote by Fn the unique smooth solution to the vacuum Maxwell
equations such that F+(Fn(0, · ))= αI+

n . Applying once again Lemma 7.11 to R(Fµν − Fn,µν) yields

sup
t∈R+

∥F(t, · )− Fn(t, · )∥L2
x
≲ C[α I +

−α I +

n ]. (88)

Fix ψ ∈ C∞
c (R+ × R3

x) and Tψ such that ψ(t, · )= 0 for all t ≥ Tψ . Note, since Fn is a classical and then
a weak solution to (19), that for any 0 ≤ ν ≤ 3 and n ∈ N,∣∣∣∣∫

R+×R3
x

Fµν(t, x)∂µψ(t, x) dx dt +

∫
R3

x

Fµν(0, x)ψ(0, x) dx
∣∣∣∣

=

∣∣∣∣∫
R+×R3

x

(F − Fn)µν(t, x)∂µψ(t, x) dx dt +

∫
R3

x

(F − Fn)µν(0, x)ψ(0, x)dx
∣∣∣∣

≲ (1 + Tψ) sup
t∈R+

∥(F − Fn)(t, · )∥L2
x
. (89)
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By (88), the right-hand side converges to 0 as n → +∞ whereas the left-hand side does not depend
on n. This implies that (89) vanishes. The same applies to ∗F, so that F is a weak solution to the vacuum
Maxwell equations (19). Finally, by continuity of F+ and (88), F+(F(0, · ))= αI+

.
We now focus on the second part of Proposition 7.8, which merely concerns the cases N ≥ 4. We

apply [Lindblad and Schlue 2023, Lemma 3.3], a weighted version of the standard Klainerman–Sobolev
inequality, to Zβ(Fµν). Using (9), we obtain, for any |γ | ≤ N − 2 and all (t, x) ∈ R+ × R3,

|LZγ (F)|(t, x)≲
∑

|β|≤N−2

∑
0≤µ,ν≤3

|Zβ(Fµν)|(t, x)≲
∑

|β|≤N

∥⟨t − r⟩
q−

1
2 |LZβ (F)|(t, · )∥L2

x

(1 + t + |x |)(1 + |t − |x ||)q
. (90)

The numerator in the right-hand side is bounded by C[αI+

]. Recall now that LZγ (F) is a solution to the
vacuum Maxwell equations as well. To conclude the proof, it then suffices to use the previous estimate
and to apply Corollary 2.20 to LZγ (F) for any |γ | ≤ N − 3, as well as Proposition 7.3, to LZ ξ (F) for
any |ξ | ≤ N − 4. □

Remark 7.13. A statement similar to Theorem 7.6 holds for scattering toward past null infinity I− ∼=

Ru × S2. One can construct the past forward evolution bijective isometry F−
: E{t=0} → EI− , where,

if F(0, · ) ∈ E{t=0} ∩ C∞
c , F−(F)(u, ω) := limu→−∞ rα(F)(u, u, ω) and ∥ · ∥I− := ∥ · ∥L2(Ru×S2). The

scattering map S = (F−)−1
◦ F+ then defines a unitary isomorphism of Hilbert spaces.

Finally, we state a direct consequence of Theorem 7.6, Proposition 7.8 and the commutation properties
of the vacuum Maxwell equations with LZ , Z ∈ K.

Definition 7.14. Let N ≥ 0 and EN
{t=0}

⊂ E{t=0} be the set of the 2-forms on R1+3 independent of t
verifying

∥F0∥
2
EN

{t=0}

:=

∑
|γ |≤N

∥LZγ (F0)(0, · )∥2
E{t=0}

<+∞.

Consider EN
I+ ⊂ EI+ , the set of the 1-forms on Ru ×S2 which are tangential to the 2-spheres and such that

∥αI+

∥
2
N ,I+ :=

∑
|γ |≤N

∥αI+

Zγ ∥
2
I+ <+∞,

where αI+

Zγ is defined recursively from αI+

through Proposition 7.4. Then, (EN
{t=0}

, ∥ · ∥
2
EN

{t=0}

) and
(EN

I+, ∥ · ∥N ,I+) are Hilbert spaces.

Corollary 7.15. For any N ≥ 0, the restriction of F+ to EN
{t=0}

is a bijective isometry from EN
{t=0}

to EN
I+ .

7.2. Existence of an asymptotic state for F and its derivatives. In order to avoid any confusion, we make
precise that, as in Sections 3–6, F denotes the electromagnetic field of our solution to the Vlasov–Maxwell
system ( f, F). The following statement can be easily deduced from previous results.

Proposition 7.16. For any |γ | ≤ N − 3, α(LZγ F) has a continuous radiation field αI+

γ . Moreover, for
any 0 ≤ η < 1, we have the rate of convergence,

∀u ∈ R+, |u| ≤ u, ω ∈ S2,
∣∣⟨u⟩

η
(
rα(LZγ F)(u, u, ω)−αI+

γ (u, ω)
)∣∣ ≲3 log(3 + u)

(1 + u)1−η
.

If |γ | = 0, we simply denote the radiation field of F by αI+

.
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Proof. Recall from Proposition 2.4 the form of the source term in the commuted Maxwell equations.
Hence, according to the estimates of Proposition 3.1 and Corollary 4.14, LZγ F satisfies the hypotheses
of Proposition 7.3. □

It turns out that our decomposition of F allows us to improve the estimate on the radiation field.

Proposition 7.17. For any |γ | ≤ N − 3, we have,

∀(u, ω) ∈ R × S2, |αI+

γ |(u, ω)≲
{
3⟨u⟩

−1−δ if 0< δ < 1,
3⟨u⟩

−2 log(1 + ⟨u⟩) if δ = 1.

Proof. Recall the decomposition

rLZγ F = rLZγ (F)S
+ r(LZγ (F)data(t, x)−LZγ (F̃))+ rLZγ (F̃)+ rLZγ (F)T .

Then, we use that u = t − r as well as:

• The first term is bounded by 3⟨t − r⟩
−2 log(1 + ⟨t − r⟩) according to Proposition 5.14.

• By Proposition 6.12, the second one is controlled by 3⟨t − r⟩
−1−δ.

• By Remark 6.13, the third term is bounded by ϵ(1 + t + r)−1
+ ϵ1|t−r |≤1 and u = t − r .

• Finally, the last one is bounded above by ϵ̄(1 + t + r)−3/4 according to Proposition 5.15. □

The last goal of this section consists in proving, if N is large enough, that F can be approached by a
solution to the vacuum Maxwell equations through an application of Proposition 7.8, which requires us to
control αI+

and its derivatives up to order at least 3. Note then that by iterating Proposition 7.4, we get
that αI+

γ can be computed in terms of derivatives of αI+

. Conversely, for any 0 ≤ a < 1
2 , we have∑

nu+nθ+nϕ≤N−3

∫
Ru

∫
S2

⟨u⟩
2a+2nu |∇

nu
u ∇

nθ
eθ∇

nϕ
eϕ α

I+

|
2(u,ω)dµS2 du≲

∑
|γ |≤N−3

∫
Ru

∫
S2

⟨u⟩
2a

|αI+

γ |
2(u,ω)dµS2 du.

Applying Proposition 7.16 for η = (3 + 2a)/4 then yields∑
nu+nθ+nϕ≤N−3

∫
Ru

∫
S2

⟨u⟩
2a+2nu |∇

nu
u ∇

nθ
eθ∇

nϕ
eϕ α

I+

|
2(u, ω) dµS2 du ≲3

∫
Ru

⟨u⟩
a−

3
2 du ≲

3

1 − 2a
. (91)

We are now ready to prove the following result.

Proposition 7.18. If N ≥ 10, there exists a solution Fvac of class C N−8 to the vacuum Maxwell equa-
tions (19) such that, for any 1

2 ≤ q < 1 and |γ | ≤ N − 10,

∀(t, x) ∈ R+ × R3, r |LZγ (F)−LZγ (Fvac)|(t, x)≤3Cq(1 + t + |x |)−q ,

where the constant Cq > 0 depends on q.

Proof. We fix 0 ≤ q −
1
2 < a < 1

2 . Since (91) holds, we get from Proposition 7.8 that there exists a solution
Fvac of class C N−8 to the vacuum Maxwell equations satisfying, for any |γ | ≤ N − 9 and |ξ | ≤ N − 10,
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∀(t, x)∈ R+×R3,
(
|α(LZγ Fvac)|+|ρ(LZγ Fvac)|+|σ(LZγ Fvac)|

)
(t, x)≲

3

(1+t+|x |)1+q , (92)∣∣∣∣rα(LZ ξ Fvac)(t, x)−F+(LZ ξ Fvac(0, ·))
(

t−|x |,
x
|x |

)∣∣∣∣≲ 3

(1+t+|x |)q
(93)

and F+(Fvac(0, · ))= αI+

. Together with Proposition 3.1 and Corollary 4.14, these estimates imply that
LZγ (F − Fvac) satisfies the assumptions of Proposition 7.4 for any |γ | ≤ N − 10. We then deduce, by a
straightforward induction, that αI+

γ = F+(LZγ Fvac(0, · )). Combining (93) with Proposition 7.16 then
yields,

∀(t, x) ∈ R+ × R3, r |α(LZγ F)−α(LZγ Fvac)|(t, x)≲3(1 + t + |x |)−q , |γ | ≤ N − 10.

On the other hand, Proposition 3.1 and (92) give, for any null component ζ ∈ {α, ρ, σ },

∀(t, x) ∈ R+ × R3, r |ζ(LZγ F)− ζ(LZγ Fvac)|(t, x)≲3(1 + t + |x |)−q , |γ | ≤ N − 9,

which concludes the proof. □

Remark 7.19. According to Corollary 7.15 and Lemma 7.9, Fvac is in fact of class C N−5. Moreover, if
N ≥ 7, then the statement of Proposition 7.18 still holds for any |γ | ≤ N −7 and the particular value q =

1
2 .

8. Conservation of the total energy of the system

Since ( f, F) is a solution to the Vlasov–Maxwell system, the energy momentum tensor T[ f, F], defined as

T[ f, F]µν := T[ f ]µν + T[F]µν, T[ f ]µν :=

∫
R3
v

f vµvν
dv
v0 , T[F]µν := FµβFνβ −

1
4ηµνFξλFξλ,

is divergence free. It provides the conservation of the total energy of the system

Et :=

∫
R3

x

∫
R3
v

v0 f (t, x, v) dv dx +
1
2

∫
R3

x

|F |
2(t, x) dx = E0, |F |

2
=

∑
0≤µ<ν≤3

|Fµν |2 = |E |
2
+ |B|

2.

We would like to relate E0 to the energy of the scattering states f∞ and αI+

. More precisely, the goal of
this section is to prove

E∞ :=

∫
R3

x

∫
R3
v

v0 f∞(x, v) dv dx +
1
4

∫
Ru

∫
S2
ω

|αI+

|
2(u, ω) dµS2 du = E0. (94)

Note that E∞<+∞ according to Remark 6.35 and Proposition 7.16. The statement (94) is a consequence
of Et = E0 and the following two propositions.

Proposition 8.1. There holds

lim
t→+∞

∫
R3

x

∫
R3
v

v0 f (t, x, v) dv dx =

∫
R3

x

∫
R3
v

v0 f∞(x, v) dv dx .

Proof. Let t ≥ 3 and perform the change of variables

x j
= y j

+ v̂ j t − log(t)v̂µ(F∞

µj (v)+ v̂
j F∞

µ0(v))
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to get ∫
R3

x

∫
R3
v

v0 f (t, x, v) dv dx =

∫
R3

y

∫
R3
v

v0 f (t, XC (t, y, v), v) dv dy.

We then deduce that∣∣∣∣∫
R3

x

∫
R3
v

v0 f (t, x, v) dv dx −

∫
R3

x

∫
R3
v

v0 f∞(x, v) dv dx
∣∣∣∣

≤ sup
(x,v)∈R6

⟨x⟩
7
2 |v0

|
5
| f (t, XC (t, x, v), v)− f∞(x, v)|,

which, in view of Nv ≥ 12, Nx ≥
11
2 and Remark 6.35, implies the result. □

Proposition 8.2. We have

lim
t→+∞

1
2

∫
R3

x

|F |
2(t, x) dx =

1
4

∫
Ru

∫
S2
ω

|αI+

|
2(u, ω) dµS2 du.

Proof. Consider u ≥ τ ≥ 3 and introduce the domain Dτu = {t + |x | ≤ u, t ≥ τ }, which is bounded by the
truncated backward light cone Cτ

u := {t + |x | = u, t ≥ τ } and {t = τ } ∩ {|x | ≤ u − τ }. In the same spirit
as (81), the divergence theorem, applied to T[F]µ0 in Dτu , yields∫

Cτ
u

T[F]L0dµCu =

∫
|x |≤u−τ

T[F]00(τ, x) dx +

∫
(t,x)∈Dτ

u

F0λ J ( f )λ dx dt. (95)

First, we have

lim
u→+∞

∫
|x |≤u−τ

T[F]00(τ, x) dx = lim
u→+∞

1
2

∫
|x |≤u−τ

|F |
2(τ, x) dx =

1
2

∫
R3

x

|F |
2(τ, x) dx .

Next, since |F |(t, x) ≲ (1 + t + |x |)−1(1 + |t − |x ||)−1 by (BA1) and |J ( f )| ≲ (1 + t + |x |)−3 by
Corollary 4.14,∫

(t,x)∈Dτ
u

F0λ J ( f )λ dx dt ≲
∫

+∞

t=τ

∫
+∞

r=0

r2 dr dt
(1+t+r)4(1+|t−r |)

≲
∫

+∞

t=τ

∫
+∞

r=0

dr dt

(1+t)
3
2 (1+|t−r |)

3
2

≲ τ−
1
2 .

Recall from Definition 2.16 the value of the null components of T[F]. As

|ρ|(t, x)+ |σ |(t, x)≲ (1 + t + |x |)−
7
4

by Proposition 3.1 and in view of Proposition 7.16, applied for η > 1
2 ,∫

Cτ
u

T[F]L0 dµCu =
1
4

∫
2τ−u≤u≤u

∫
S2
ω

(|α(F)|2 + |ρ(F)|2 + |σ(F)|2)(u, u, ω)r2 dµS2 du

=
1
4

∫
2τ−u≤u≤u

∫
S2
ω

r2
|α(F)|2(u, u, ω) dµS2 du + O(u−

1
2 )

u→+∞
−−−−→

1
4

∫
Ru

∫
S2
ω

|αI+

|
2(u, ω) dµS2 du.

Letting u → +∞ and then τ → +∞ in (95) yields the result. □
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Appendix A: Estimates for the gradients of the kernels

In order to estimate the kernels and their derivatives in the integrals of Propositions 5.3 and 5.7, we
introduce the following class of terms.

Definition A.1. Let (p, q, d, dw) ∈ N4. We define Sd,dw
p,q as the set of the functions G : S2

× R3
→ R of

the form

G(ω, v)=
P(v̂, ω)Q(w(ω, v))
|v0|p(1 +ω · v̂)q

, (96)

where P is a monomial of degree d in (v̂1, v̂2, v̂3, ω1, ω2, ω3) and Q is a monomial of degree dw in
wµν(ω, v), where 0 ≤ µ < ν ≤ 3.

All the kernels considered in this paper can be written as linear combination of such terms, with
dw ∈ [[0, 3]]. Moreover, if 2q ≥ dw, by a direct application of Lemma 5.4, one can bound G(ω, v) in (96)
by |v0

|
2q−dw−p. The estimates of Corollaries 5.5 and 5.8 of the derivatives of the kernels then follows

from the next result.

Lemma A.2. Let (p, q, d, dw) ∈ N4 and consider G ∈ Sd,dw
p,q . Then, for any multi-index γ , ∂γv G(ω, v) can

be written as linear combination of terms belonging to certain Sd0,dw,0
p0,q0 , where

(p0, q0, d0, dw,0) ∈ N4, 2q0 − dw,0 − p0 ≤ 2q − dw − p, q − dw ≤ q0 − dw,0.

This implies |∂
γ
v G|( · , v)≲ |v0

|
2q−dw−p if 2q ≥ dw.

Proof. This follows from a straightforward induction and the following relations. For any (i, j, k)∈[[1, 3]]
3,

∂v j v̂i
=
δ

j
i − v̂i v̂ j

v0 , ∂v jωi
= 0, ∂v j |v0

|
−p

= −p
v̂ j

|v0|p+1 ,

∂v j w0i (ω, v)=
δ

j
i − v̂i v̂ j

v0 , ∂v j wik(ω, v)= ωi δ
j
k − v̂k v̂ j

v0 −ωk δ
j
i − v̂i v̂ j

v0 ,

∂v j

(
1

1 +ω · v̂

)
=

v̂ j

v0(1 +ω · v̂)
−

w0 j (ω, v)

v0(1 +ω · v̂)2
. □

Appendix B: The radiation field of the derivatives of the Maxwell field

We fix, for all of this section, a C1 solution G to the Maxwell equations (18) with a continuous source
term J. We assume that there exist C[G]> 0 and q > 0 such that, for all (t, x) ∈ R+ × R3,

|rG|(t, x)≤ C[G], r |J |(t, x)+
∑
|γ |≤1

|ρ(LZγ G)|(t, x)+ |σ(LZγ G)|(t, x)≤
C[G]

(1 + t + |x |)1+q .

As a consequence, G verifies the hypotheses (75) of Proposition 7.3 and then has a radiation field αI+

.
The purpose of this section is to prove that, for any Z ∈ K, LZ G has a radiation field αI+

Z which can
be expressed in terms of the derivatives of αI+

. For this, we will use the following bounded functions
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depending only on the spherical variables:

ωi := ⟨∂x i ,∂r ⟩ =
x i

|x |
, ω

eA
i := ⟨∂x i ,eA⟩, 1 ≤ i ≤ 3, A ∈ {θ,ϕ},

ω
eθ
1 = cos(ϕ)cos(θ), ω

eθ
2 = sin(ϕ)cos(θ), ω

eθ
3 = −sin(θ),

ω
eϕ
1 = −sin(ϕ), ω

eϕ
2 = cos(ϕ), ω

eϕ
3 = 0,

and we will work in the space of distributions D′(Ru ×S2). For simplicity, we will simply write ψ⇀ψI+

if the weak convergence
ψ(u, u, ω) u→+∞

−−−−⇀ψI+

(u, ω) in D′(Ru × S2)

holds. In particular, the following convergences will be crucial for us.

Lemma B.1. For any 1 ≤ i ≤ 3 and B ∈ {θ, ϕ},

|G|⇀ 0, 1
2r L(α(G)eB ) ⇀ ∂u(α

I+

eB
), r2L(α(G)eB ) ⇀−αI+

eB
,

r2ωA
i eA(α(G)eB ) ⇀ ωA

i eA(α
I+

eB
), rρ(G) ⇀ 0, rσ(G) ⇀ 0.

Since 2r = u − u, we also have

r L(α(G)eB ) ⇀ 0, rωA
i eA(α(G)eB ) ⇀ 0, ρ(G) ⇀ 0, σ (G) ⇀ 0.

Proof. The first weak convergence follows from 2|G|(u, u, ω)≤ C[G](u −u)−1, so that |G|( · , u, · )→ 0
uniformly on any compact subset of Ru×S2. The others are a direct consequence of the strong uniform con-
vergence rα(G)(u,u,ω)→αI+

(u,ω) as u →+∞, which is given by Proposition 7.3 since G satisfies (75).

• For the second one, use r L = Lr + 1, L = 2∂u and that α(F)eB ( · , u, · )→ 0 uniformly on compact
subsets of Ru × S2.

• The third one is in fact a strong and uniform convergence. Indeed, r2L(α(G)eB)=r L(rα(G)eB)−rα(G)eB

and according to (76), r |L(rα(G)eB )| ≲ u−q.

• Next, fix (t, r)∈ R2
+

, ψ ∈ C∞
c (Ru ×S2) and denote by v⃗i the vector field ωeA

i eA, which is the projection
on the 2-spheres of ∂x i . Since (reθ , reϕ)= (∂θ , ∂ϕ/ sin(θ)), we have

ωA
i r2(eA(α(G)eB ))(t, rω)ψ(u, ω)= rψ(u, ω)v⃗i ·∇(α(G)eB (t, rω)),

ωA
i eA(α

I+

eB
)(u, ω)ψ(u, ω)= ψ(u, ω)v⃗i ·∇(αI+

eB
)(u, ω),

so that it suffices to apply the divergence theorem on S2 and to use rα(G)eB ⇀αI+

eB
.

• Finally, the last two follow from r |ρ(G)| + r |σ(G)| ≲ u−q . □

We now prove a result which directly implies Proposition 7.4. We consider a more general setting since
it does not complicate the proof and so we will be able to apply these properties in different contexts. For
this, given a strictly increasing and unbounded sequence of advanced times s = (un)n≥0, we will write
ψ ⇀s ψ

I+

if the following weak convergence holds:

ψ(u, un, ω) n→+∞
−−−−⇀ψI+

(u, ω) in D′(Ru × S2).
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Proposition B.2. Consider G an H 1
loc(R+ × R3) 2-form and αI+

an L2
loc(Ru × S2

ω) 2-form tangential to
the spheres. Assume that there exists a strictly increasing and unbounded sequence of advanced times
s = (un)n≥0 such that

• rα(G) ⇀s α
I+

,

• all the weak convergences of Lemma B.1 hold, at least for the sequence s ⊂ R+,u .

Then, for any Z ∈ K, there exists αI+

Z ∈ L2
loc(Ru × S2

ω), a 2-form tangential to the spheres, which satisfies
rα(LZ G) ⇀s α

I+

Z . Moreover, for any 1 ≤ i ≤ 3 and 1 ≤ j < k ≤ 3,

αI+

∂t
= ∇uα

I+

, αI+

∂xi
= −ωi∇uα

I+

, αI+

S = u∇uα
I+

+αI+

,

αI+

� jk
= L� jk (α

I+

), αI+

�0i
= −ωi u∇uα

I+

− 2ωiα
I+

+ω
eA
i ∇eAα

I+

.

Proof. In order to avoid technical difficulties related to the degeneracies of the spherical coordinate system,
we will in fact prove weak convergences in

D′(Ru × K ), K :=
{
ω ∈ S2

| sin θ > 1
8

}
.

The convergences in the full space D′(Ru ×S2) can then be obtained by applying the upcoming results to
another well-chosen spherical coordinate system.

We fix, for all of this proof, B ∈ {θ, ϕ}, i ∈ [[1, 3]] and we recall that, for any Z ∈ K,

rα(LZ G)eB = r Z(α(G)eB )− rG([Z , eB], L)− rG(eB, [Z , L]).

Then, we have

rα(L∂t G)eB =
r
2

L(α(G)eB )+
r
2

L(α(G)eB ) ⇀s ∂u(α
I+

eB
).

For the spatial translation ∂x i = −
1
2ωi L +

1
2ωi L +ωA

i eA, we use that

[∂x i , L] = −
ω

eA
i

r
eA

and [∂x i , eA] = ∂x i (ω
eA
j )∂x j , with ∂x i (ω

eA
j )≲ r−1 on K. We get

rα(L∂xi G)eB

= −
ωir
2

L(α(G)eB )+
ωir
2

L(α(G)eB )+ rωA
i eA(α(G)eB )− r∂x i (ω

eA
j )G(eB, ∂x j )+ω

eA
i G(eB, eA)

⇀s −ωi∂u(α
I+

eB
).

For the scaling, recall that [S, L] = −L and [S, eB] = −eB . As 2S = uL + (u + 2r)L , we have

rα(LSG)eB =
u
2

r L(α(G)eA)+
u + 2r

2
r L(α(G)eA)+ 2rG(eB, L) ⇀s u∂u(α

I+

eB
)+αI+

eB
.

Next, for the Lorentz boost �0i , we use

�0i =
ωi

2
(uL−uL)+tωeA

i eA, [�0i , eB]=
ω

eB
i

2r
(uL−uL)+

t
r
ω

eA
i 0

D
ABeD, [�0i , L]=ωi L−

u
r
ω

eA
i eA,
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where0D
AB are the Christoffel symbols of S2 in the nonholonomic basis (eθ , eϕ). In particular,0D

AB is
bounded on K. As u = u + 2r and t = u + r , we obtain

rα(L�0i G)eB = −
ωi u

2
r L(α(G)eA)+

ωi (u + 2r)
2

r L(α(G)eB )+ω
eA
i (u +r)reA(α(G)eB )−

ω
eB
i

2
uG(L, L)

+
ω

eB
i

2
uG(L , L)− (u + r)ωeA

i 0
D
AB G(eD, L)−ωirG(eB, L)+ uωeA

i G(eB, eA).

Since G(L, L)= 0 and u(|G(L , L)| + |G(eA, eB)|)= (u + 2r)(2|ρ(G)| + |σ(G)|) ⇀s 0, we get

rα(L�0i G)eB ⇀s −ωi u∂u(α
I+

eB
)−ωiα

I+

eB
+ω

eA
i eA(α

I+

eB
)− 0 + 0 −ω

eA
i 0

D
ABα

I+

eD
−ωiα

I+

eB
+ 0

= −ωi u∂u(α
I+

eB
)− 2ωiα

I+

eB
+ω

eA
i ∇eA(α

I+

)eB .

Finally, we recall the expression of the rotations in the spherical coordinate system (t, r, θ, ϕ),

�12 = ∂ϕ, �13 = cos(ϕ)∂θ − cot(θ) sin(ϕ)∂ϕ, �23 = − sin(ϕ)∂θ − cot(θ) cos(ϕ)∂ϕ.

In particular, these vector fields, tangential to the spheres, are well-defined on I+
≃ Ru × S2. Fix now

( j, k) ∈ [[1, 3]]
2 and write � jk =�θjk∂θ +�

ϕ
jk∂ϕ . Note, using first [� jk, L] = 0 and then the expression

of the Lie derivative in the spherical coordinate system, that

α(L� jk G)∂B = L� jk (α(G))∂B =� jk(α(G)∂B )+ ∂B(�
A
jk)α(G)∂A .

Recall now that (reθ , reϕ) = (∂θ , ∂ϕ/ sin(θ)) on R+ × R3 and (eθ , eϕ) = (∂θ , ∂ϕ/ sin(θ)) on Ru × S2.
Hence, using rα(G)eA ⇀s α

I+

eA
and since any of the quantities considered is smooth and bounded on K,

rα(L� jk G)eθ =�θjk∂θ (rα(G)eθ )+�
ϕ
jk∂ϕ(rα(G)eθ )+ ∂θ (�

θ
jk)rα(G)eθ + sin(θ)∂θ (�

ϕ
jk)rα(G)eϕ

⇀s � jk(α
I+

eθ )+ ∂θ (�
θ
jk)α

I+

eθ + sin(θ)∂θ (�
ϕ
jk)α

I+

eϕ

=� jk(α
I+

∂θ
)+ ∂θ (�

A
jk)α

I+

∂A
= L�kl (α

I+

)eθ .

Similarly, we get

rα(L� jk G)eϕ =� jk(rα(G)eϕ )−�kl

( 1
sin θ

)
rα(G)eϕ +

1
sin θ

∂ϕ(�
θ
jk)rα(G)eθ + ∂ϕ(�

ϕ
jk)rα(G)eϕ

⇀s � jk(α
I+

eϕ )−�kl

( 1
sin θ

)
αI+

eϕ +
1

sin θ
∂ϕ(�

θ
jk)α

I+

eθ + ∂ϕ(�
ϕ
jk)α

I+

eϕ = L�kl (α
I+

)eϕ . □

Appendix C: Remarks on F∞ and the modified characteristics

C.1. Alternative expression for F∞. We could define F∞ in a slightly different way. However, contrary
to what we did in Section 6.2, we could not define in such a way LZγ (F)∞ for the derivatives of order
|γ | = N − 1. Using the representation formula for the wave equation satisfied by Fµν ,

Fµν = Fhom
µν +[ f ]

inh
µν , [ f ]

inh
µν (t, x) :=

1
4π

∫
|y−x |≤t

∫
R3
v

(v̂µ∂xν f − v̂ν∂xµ f )(t − |y − x |, y, v) dv
dy

|y − x |
.

In order to investigate the asymptotic behavior of [ f ]
inh, it is important to determine the asymptotic profile

of the source term of the wave equation. In particular, we need to obtain a better estimate than the one
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given by Proposition 4.15 which does not provide the expected time decay t−4. The starting point consists
in observing that a kind of null condition holds,

t (∂x i + v̂i∂t)=�0i + z0i∂t = �̂0i − v0∂vi + ∂t z0i − v̂i = �̂0i − ∂viv0
+ ∂t z0i , 1 ≤ i ≤ 3,

t (v̂ j∂xk − v̂k∂x j )= v̂ j �̂0k − v̂k�̂0 j − ∂t z jk − v̂ j∂vkv0
+ v̂k∂v jv0, 1 ≤ j < k ≤ 3.

Hence, using the convention �̂00 = 0 and performing integration by parts, we obtain, for any 0 ≤µ<ν≤ 3,∫
R3
v

v̂µ∂xν f − v̂ν∂xµ f dv =
1
t

∫
R3
v

(v̂µ�̂0ν f − v̂ν�̂0µ f ) dv−
1
t

∫
R3
v

∂t(zµν f ) dv.

The leading-order term of its asymptotic expansion is the first term on the right-hand side. Its behavior
can be easily obtained from Proposition 6.5. Following the proof of Proposition 4.15, one could prove that
last term almost decay as t−5. It will then be convenient to use the notation Q�̂0ℓ

∞ in order to denote Qκ
∞

,
where Ẑκ = �̂0ℓ, and to set Q�̂00

∞ := 0. Following the proof Proposition 6.10, we could obtain

lim
t→+∞

t2
[ f ]

inh
µν (t, x + t v̂) :=

1
4π

∫
|z|≤1

|z+v̂|<1−|z|

(|v0
|
5(v̂µQ�̂0ν

∞
− v̂νQ�̂0µ

∞ ))

(
~z + v̂

1 − |z|

)
dz

|z|(1 − |z|)4
,

which is necessarily equal to F∞.

C.2. The support of the corrections of the linear characteristics and commutators. We could obtain
similar results by modifying the trajectories and the homogeneous vector fields only inside the light cone.
More precisely, we could consider, for Ẑ ∈ P̂0 \ {∂t , ∂x1, ∂x2, ∂x3},

X̃C (t, x, v) := x + t v̂+ C (t, v)χ(t − |x − t v̂|), Z̃mod
:= Ẑ + C i

Ẑχ(t − r)∂x i ,

where χ is a cutoff function satisfying χ(s)= 0 for s ≤ 1 and χ(s)= 1 for s ≥ 2. It is not surprising that
all the results proved for XC and Ẑmod hold as well with these corrections since the Vlasov field enjoys
strong decay properties in the exterior of the light cone (see Lemma 2.6). We could even avoid the loss
of the weight zβH in Proposition 6.28 and Corollary 6.29. Indeed, these weights come from the identity
x i/t = (x i

− t v̂i )/t + v̂i that we performed during the proof of Proposition 6.26. On the support of χ ,
we can simply use that |x |/t ≤ 1. However, we could not save any ⟨x⟩ weight in the analogue version
of the scattering statement of Proposition 6.34 since we would have to lose a power of zβH in order to
estimate |v0

|
|ξ∂

ξ
v (χ(t − |x + t v̂|)).
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STRONG ILL-POSEDNESS IN L∞ FOR THE RIESZ TRANSFORM PROBLEM

TAREK M. ELGINDI AND KARIM R. SHIKH KHALIL

We prove strong ill-posedness in L∞ for linear perturbations of the 2-dimensional Euler equations of the
form

∂tω+ u · ∇ω = R(ω),

where R is any nontrivial second-order Riesz transform. Namely, we prove that there exist smooth
solutions that are initially small in L∞ but become arbitrarily large in short time. Previous works in this
direction relied on the strong ill-posedness of the linear problem, viewing the transport term perturbatively,
which only led to mild growth. We derive a nonlinear model taking all of the leading-order effects into
account to determine the precise pointwise growth of solutions for short time. Interestingly, the Euler
transport term does counteract the linear growth so that the full nonlinear equation grows an order of
magnitude less than the linear one. In particular, the (sharp) growth rate we establish is consistent with
the global regularity of smooth solutions.

1. Introduction

The Euler equations for incompressible flow are a fundamental model in fluid dynamics that describe the
motion of ideal fluids:

∂t u + u · ∇u + ∇ p = 0,

∇ · u = 0.
(1-1)

In this equation, u is the velocity field and p is the pressure of an ideal fluid flowing in R2. A key difficulty
in understanding the dynamics of 2-dimensional Euler flows is the nonlocality of the system due to the
presence of the pressure term.

Defining the vorticity ω := ∇
⊥

· u, it is insightful to study the Euler equations in vorticity form:

∂tω+ u · ∇ω = 0,

∇ · u = 0,

u = ∇
⊥1−1ω.

(1-2)

Because the L∞ norm of vorticity is conserved in the Euler equations in two dimensions, Yudovich [1963]
proved that there is a unique global-in-time solution to the Euler equation corresponding to every initial
bounded and decaying vorticity. See also [Wolibner 1933; Beale et al. 1984; Hölder 1933; Yudovich 1963;
Kato 1967; Marchioro and Pulvirenti 1994; Majda and Bertozzi 2002]. This bound on the L∞ norm is
unfortunately unstable even to very mild perturbations of the equation [Constantin and Vicol 2012; Elgindi
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and Masmoudi 2020; Elgindi 2018]. To understand this phenomenon, we are interested in studying linear
perturbations of the Euler equations in two dimensions as follows:

∂t u + u · ∇u + ∇ p =

(
0
u1

)
,

∇ · u = 0.
(1-3)

Equation (1-3) is a model for many problems in fluid dynamics that have a coupling with the Euler
equations. For instance, similar types of equations appear in viscoelastic fluids, see [Constantin and
Kliegl 2012; Elgindi and Rousset 2015; Lions and Masmoudi 2000; Chemin and Masmoudi 2001], and in
magnetohydrodynamics, see [Boardman et al. 2020; Hmidi 2014; Cao and Wu 2011; Wu and Zhao 2023].
Further, they also appear when studying stochastic Euler equations; see [Glatt-Holtz and Vicol 2014].

Writing (1-3) in vorticity form, we get

∂tω+ u · ∇ω = ∂x u1,

∇ · u = 0,

u = ∇
⊥1−1ω.

(1-4)

We observe that the challenge of studying these equations is that the right-hand side of (1-4) can be
written as the Riesz transform of vorticity ∂x u1 = R(ω), which is unbounded on L∞. P. Constantin and
V. Vicol [2012] considered these equations with weak dissipation, and they proved global well-posedness.
However, without dissipation it is an open question whether these equations are globally well-posed. In
this work, we are interested in the question of L∞ ill/well-posedness of the Euler equations with Riesz
forcing and the local rate of L∞ growth. The first author and N. Masmoudi studied the Euler equations
with Riesz forcing in [Elgindi and Masmoudi 2020], where they proved that it is mildly ill-posed. This
means that there is a universal constant c > 0 such that, for all ϵ > 0, there is ω0 ∈ C∞ for which the
unique local solution to (1-4) satisfies

|ω0|L∞ ≤ ϵ, but supt∈[0,ϵ] |ω(t)|L∞ ≥ c. (1-5)

The authors in [Elgindi and Masmoudi 2020] conjectured that the Euler equation with Riesz forcing
is actually strongly ill-posed in L∞. Namely, that we can take c in (1-5) to be arbitrarily large. The
goal of our work here is to show that indeed this is possible. To show this, we use the first author’s
Biot–Savart law decomposition [Elgindi 2021] to derive a leading-order system for the Euler equations
with Riesz forcing. We then show that the leading-order system is strongly ill-posed in L∞. Using
this, we can show that the Euler equation with Riesz forcing is strongly ill-posed by estimating the
error between the leading-order system and the Euler with Riesz forcing system on a specific time
interval.

We should remark that the main application of the approach of [Elgindi and Masmoudi 2020] was to
prove ill-posedness of the Euler equation in the integer Ck spaces, which was also proved independently
by J. Bourgain and D. Li [2015]. Regarding the notion of mild ill-posedness in L∞ for models related to
the Euler with Riesz forcing system, see [Wu and Zhao 2023] about the 2-dimensional resistive MHD
equations.
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1.1. Statement of the main result.

Theorem 1. For any α, δ > 0, there exists an initial data ωα,δ0 ∈ C∞
c (R

2) and T (α) such that the
corresponding unique global solution, ωα,δ, to (1-4) is such that at t = 0 we have

|ω
α,δ
0 |L∞ = δ,

but for any 0< t ≤ T (α) we have

|ωα,δ(t)|L∞ ≥ |ω0|L∞ + c log
(
1 +

c
α

t
)
,

where T (α)= cα log(c|log(α)|), and c > 0 is a constant independent of α that depends linearly on δ.

Remark 1.1. Note that at time t = T (α), we have

|ωα,δ|L∞ ≥ c log(c log(c|log(α)|)),

which can be made arbitrarily large as α → 0. Fixing δ > 0 small and then taking α sufficiently small
thus gives strong ill-posedness for (1-4) in L∞.

Remark 1.2. As we will discuss below, we in fact establish upper and lower bounds on the solutions we
construct so that on the same time-interval we have

|ωα,δ(t)|L∞ ≈ |ω0|L∞ + c log
(
1 +

c
α

t
)
.

This should be contrasted with the linear problem where the upper and lower bounds for the same data
come without the log:

|ω
α,δ
linear(t)|L∞ ≈ |ω0|L∞ + c

(
1 +

c
α

t
)
.

Remark 1.3. Our ill-posedness result applies to the equation

∂tω+ u · ∇ω = R(ω),

where R = R12 = ∂121
−1. Note that a direct consequence of the result gives strong ill-posedness when

R = R11 or R = R22 even though these are dissipative on L2. This can be seen just by noting that a
linear change of coordinates can transform R12 to a constant multiple of R11 − R22 = R11 − Id. The
strong ill-posedness for the Euler equation with forcing by any second-order Riesz transform (other
than the identity) follows. We further remark that the same strategy can be used to study the case of
general Riesz transforms, though we do not undertake this here since the case of forcing by second-order
Riesz transforms is the most relevant for applications we are aware of (such as the 3-dimensional Euler
equations, the Boussinesq system, viscoelastic models, MHD, etc.).

1.2. Comparison with the linear equation and the effect of transport. We now move to compare the
result of this paper with the corresponding linear results and emphasize the regularizing effect of the
nonlinearity in this problem. The ill-posedness result of [Elgindi and Masmoudi 2020] relies on viewing
(1-4) as a perturbation of

∂t f = R( f ). (1-6)
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For this simple linear equation, it is easy to show that L∞ data can immediately develop a logarithmic
singularity. Let us mention two ways to quantify this logarithmic singularity. One way is to study the
growth of L p norms as p → ∞. For the linear equation (1-6), it is easy to show that the upper bound

| f (t)|L p ≤ exp(Ct)p| f0|L p

is sharp in the sense that we can find localized L∞ data for which the solution satisfies

| f (t)|L p ≥ c(t) · p.

This can be viewed as approximating L∞ “from below”. Similarly, the Cα bound for (1-6),

| f (t)|Cα ≤
exp(Ct)
α

| f0|Cα ,

can also be shown to be sharp for short time in that we can find for each α > 0 smooth and localized data
with | f0|Cα = 1 for which

| f (t)|L∞ ≥
c(t)
α
.

The main result of [Elgindi and Masmoudi 2020] was that these upper and lower bounds remain unchanged
in the presence of a transport term by a Lipschitz continuous velocity field. This is not directly applicable
to our setting since the coupling between ω and u is such that u may not be Lipschitz even if ω is bounded.
Interestingly, in [Elgindi 2018], it was shown that this growth could be significantly stronger in the
presence of a merely bounded velocity field.

All of the above discussion leads us to understand that the nature of the well/ill-posedness of (1-4)
will depend on the precise relationship between the velocity field and the linear forcing term in (1-4). In
particular, for a natural class of data, we construct solutions to (1-4) satisfying

|ω|L∞ ≈ 1 + log
(
1 +

t
α

)
,

for short time, which is the best growth rate possible in this setting. This should be contrasted with the
corresponding growth rate for the linear problem

|ωlinear|L∞ ≈ 1 +
t
α
.

In particular, the nonlinear term in (1-4) actually tries to prevent L∞ growth. Let us finally remark that
the weak growth rate we found is consistent with the vorticity trying to develop a log log singularity.
It is curious that, in the Euler equation, vorticity with nearly log log data is perfectly well-behaved
and consistent with global regularity but with a triple exponential upper bound on gradients. Though
establishing the global regularity rigorously remains a major open problem, this appears to be a sign that
perhaps smooth solutions to (1-3) are globally regular.

1.3. A short discussion of the proof. The first step of the proof is to use the Biot–Savart law decomposition
in [Elgindi 2021] to derive a leading-order model:

∂t�+
1

2α
(Ls(�) sin(2θ)+ Lc(�) cos(2θ))∂θ�=

1
2α

Ls(�),
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where the operators Ls and Lc are bounded linear operators on L2 defined by

Ls( f )(R)=
1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

sin(2θ) dθ ds and Lc( f )(R)=
1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

cos(2θ) dθ ds.

Essentially all we do here is replace the velocity field by its most singular part. Upon inspecting this
model, we observe that the forcing term on the right-hand side is purely radial, while the direction of
transport is angular. Upon choosing a suitable unknown, we thus reduce the problem to solving a transport
equation for some unknown f :

∂t f +
1

2α
Ls( f ) sin(2θ)∂θ f = 0.

Surprisingly, this reduced equation propagates the usual “odd-odd” symmetry even though the original
system does not. The leading-order model will then be strongly ill-posed if we can ensure that the solution
of this transport equation satisfies that

∫ t
0 Ls( f ) can be arbitrarily large. One subtlety is that the growth

of Ls( f ) enhances the transport effect, which in turn depletes the growth of Ls( f ). In fact, were the
transport term to be stronger even by a log, the problem would not be strongly ill-posed. By a careful study
of the characteristics of this equation, we obtain a closed nonlinear integrodifferential equation governing
the evolution of Ls( f ) (see (3-4)). We study this nonlinear integrodifferential equation and establish upper
and lower bounds on Ls( f ) proving strong ill-posedness for the leading-order equation; see Section 3
for more details. Finally, we close the argument by estimating the error incurred by approximating the
dynamics with the leading-order model. An important idea here is to work on a time scale long enough to
see the growth from the leading-order model but short enough to suppress any potential stronger nonlinear
growth; see Section 6 for more details.

1.4. Organization. This paper is organized as follow: In Section 2, we derive a leading-order model for
the Euler equations with Riesz forcing (1-4) based on the first author’s Biot–Savart law approximation
[Elgindi 2021]. Then, in Section 3, we obtain a pointwise estimate on the leading-order model which is
the main ingredient in obtaining the strong ill-posedness result for the Euler with Riesz forcing system.
In addition, in Section 3, we also obtain some estimates on the leading-order model in suitable norms
which will be then used in estimating the remainder term in Section 6. After that, in Section 4 we will
recall the Biot–Savart law decomposition obtained in [Elgindi 2021], and we will include a short sketch
of the proof. In Section 5, we will obtain some embedding estimates which will also be used in Section 6
for the remainder term estimates. Then, in Section 6, we show that the remainder term remains small
which will then allow us to prove the main result in Section 7.

1.5. Notation. In this paper, we will be working in a form polar coordinates introduced in [Elgindi 2021].
Let r be the radial variable,

r =

√
x2

+ y2,

and since we will be working with functions of the variable rα, where 0 < α < 1, we will use R to
denote it:

R = rα.
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We will use θ to denote the angle variable:

θ = arctan
y
x
.

We will use | f |L∞ and | f |L2 to denote the usual L∞ and L2 norms, respectively. In addition, we will
use ft or fτ to denote the time variable. Further, in this paper, following [Elgindi 2021], we will be
working on (R, θ) ∈ [0,∞)×

[
0, π2

]
where the L2 norm will be with measure d R dθ and not R d R dθ .

We define the weighted Hk
(
[0,∞)×

[
0, π2

])
norm as

| f |Ḣm =

m∑
i=0

|∂ i
R∂

m−i
θ f |L2 +

m∑
i=1

|Ri∂ i
R∂

m−i
θ f |L2, | f |Hk =

k∑
m=0

| f |Ḣm .

We also define the W k,∞ norm as

| f |Ẇm,∞ =

m∑
i=0

|∂ i
R∂

m−i
θ f |L∞ +

m∑
i=1

|Ri∂ i
R∂

m−i
θ f |L∞, | f |W k,∞ =

k∑
m=0

| f |Ẇm,∞ .

Throughout this paper, we will use the notation

L( f )(R)=

∫
∞

R

f (s)
s

ds

to define operators, and by adding a subscript Ls or Lc we denote the projection onto sin(2θ) and cos(2θ)
respectively. Namely,

Ls( f )(R)=
1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

sin(2θ) dθ ds and Lc( f )(R)=
1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

cos(2θ) dθ ds.

2. Leading-order model

In this section, we will derive a leading-order model for the Euler equation with Riesz forcing:

∂tω+ u · ∇ω = ∂x u1,

∇ · u = 0,

u = ∇
⊥1−1ω.

(2-1)

To do this, we follow [Elgindi 2021] and we write the equation in a form of polar coordinates. Namely,
we set r =

√
x2 + y2, R = rα, and θ = arctan (y/x). We will the rewrite (2-1) in the new functions

ω(x, y)=�(R, θ) and ψ(x, y)= r29(R, θ), with u = ∇
⊥ψ , where u1 = −∂yψ and u2 = ∂xψ .

Equations of u in terms of 9:

u1 = −r(2 sin(θ)9 +α sin(θ)R ∂R9 + cos(θ)∂θ9),

u2 = r(2 cos(θ)9 +α cos(θ)R ∂R9 − sin(θ)∂θ9).
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Evolution equation for �:

∂t�+ (−αR∂θ9)∂R�+ (29 +αR∂R9)∂θ�

=
(
−2αR sin(θ) cos(θ)−α2 R sin(θ) cos(θ)

)
∂R9 + (−1 + 2 sin2(θ))∂θ9

+
(
−αR cos2(θ)+αR sin2(θ)

)
∂Rθ9 − (α2 R2 sin(θ) cos(θ))∂R R9 + (sin(θ) cos(θ))∂θθ9.

The elliptic equation for 1(r29(R, θ))=�(R, θ):

49 +α2 R2∂R R9 + ∂θθ9 + (4α+α2)R∂R9 =�(R, θ).

Now using the Biot–Savart decomposition of [Elgindi 2021], see Section 4 for more details, by defining
the operators

Ls(�)(R)=
1
π

∫
∞

R

∫ 2π

0

�(s, θ)
s

sin(2θ) dθ ds and Lc(�)(R)=
1
π

∫
∞

R

∫ 2π

0

�(s, θ)
s

cos(2θ) dθ ds

we have

9(R, θ)= −
1

4α
Ls(�) sin(2θ)− 1

4α
Lc(�) cos(2θ)+ lower-order terms.

Thus, if we ignore the α-terms in the evolution equation, we obtain

∂t�+ (29)∂θ�= (−1 + 2 sin2(θ))∂θ9 + (sin(θ) cos(θ))∂θθ9. (2-2)

Now we consider 9 of the form

9 = −
1

4α
Ls(�) sin(2θ)− 1

4α
Lc(�) cos(2θ),

and plugging it into the evolution equation, we have

∂t�−

( 1
2α

Ls(�)sin(2θ)+ 1
2α

Lc(�)cos(2θ)
)
∂θ�=−(cos(2θ))

(
−

1
2α

Ls(�)cos(2θ)+ 1
2α

Lc(�)sin(2θ)
)

+

(1
2

sin(2θ)
)( 1
α

Ls(�)sin(2θ)+ 1
α

Lc(�)cos(2θ)
)
,

which simplifies to

∂t�−

( 1
2α

Ls(�) sin(2θ)+ 1
2α

Lc(�) cos(2θ)
)
∂θ�=

1
2α

Ls(�).

In order to work with positive solutions and have the angular trajectories moving to the right, we make
the change �→ −� and get the final model

∂t�+

( 1
2α

Ls(�) sin(2θ)+ 1
2α

Lc(�) cos(2θ)
)
∂θ�=

1
2α

Ls(�). (2-3)

We now move to study the dynamics of solutions to (2-3).

Proposition 2.1. Let � be a solution to the leading-order model

∂t�+

( 1
2α

Ls(�) sin(2θ)+ 1
2α

Lc(�) cos(2θ)
)
∂θ�=

1
2α

Ls(�), (2-4)
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with initial data of the form �|t=0 = f0(R) sin(2θ). Then we can write � as

�= f +
1

2α

∫ t

0
Ls( fτ ) dτ, (2-5)

where f satisfies the transport equation

∂t f +
1

2α
sin(2θ)Ls( f )∂θ f = 0. (2-6)

Proof. The right-hand side term of (2-4) is radial, and hence if we take the inner product with sin(2θ) it
will be zero. Now if write � as

�t(R, θ)= ft(R, θ)+
1

2α

∫ t

0
Ls(�τ )(R) dτ,

and consider it to be a solution to (2-4), we obtain that f satisfies

∂t ft +

( 1
2α

Ls( ft) sin(2θ)+ 1
2α

Lc( ft) cos(2θ)
)
∂θ ft = 0. (2-7)

Here we used that Ls(�τ )(R) is a radial function. Notice that (2-7) is a transport equation that preserves
odd symmetry. Now if we set

f s
t =

∫ 2π

0
ft(R, θ) sin(2θ) dθ and �s

t =

∫ 2π

0
�t(R, θ) sin(2θ) dθ,

we notice that f s
t and �s

t will satisfy the same equation. Thus, if we start with the same initial conditions
f0 =�0, then

f s
t =�s

t for all t.

Thus, we have Ls(�t)= Ls( ft), and hence

�t = ft +
1

2α

∫ t

0
Ls( fτ ) dτ.

Now since the initial data which we are considering have odd symmetry, it suffices to consider the
transport equation:

∂t ft +
1

2α
sin(2θ)Ls( ft)∂θ ft = 0. □

3. Leading-order model estimate

The purpose of this section is to obtain L∞ estimates for the leading-order model, which is the main
ingredient in obtaining the ill-posedness result for the Euler with Riesz forcing system. This will be done
in Section 3.1 in three steps: Lemma 3.1, Lemma 3.2, and Proposition 3.3. Then in Section 3.2, we will
obtain an estimate for the leading-order model which will be useful in remainder estimates in Section 6.

3.1. Pointwise leading-order model estimate.

Lemma 3.1. Let f be a solution to the transport equation

∂t f +
1

2α
sin(2θ)Ls( f )∂θ f = 0, (3-1)
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with initial data f |t=0 = f0(R) sin(2θ). Then we have the following estimate on the operator Ls( f ):

c1

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds

≤ Ls( ft)(R)≤ c2

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds, (3-2)

where c1 and c2 are independent of α.

Proof. To prove this, we consider the following variable change. For θ ∈
[
0, π2

)
, let γ be defined as

γ := tan(θ) =⇒
dγ
dθ

= sec2(θ), and sin(2θ)=
2γ

1 + γ 2 .

Applying the chain rule, we rewrite (3-1) in the (R, γ )-variables

∂t ft +
1
α
γ Ls( ft)(R) ∂γ f = 0, (3-3)

with initial data

f |t=0 = f0(R) sin(2θ)= f0(R)
2γ

1 + γ 2 .

Let φt(γ ) be the flow map associated with (3-3), so we have

dφt(γ )

dt
=

1
α
φt(γ )Ls( ft) =⇒ φt(γ )= γ exp

(
1
α

∫ t

0
Ls( fτ ) dτ

)
.

Thus,

φ−1
t (γ )= γ exp

(
−

1
α

∫ t

0
Ls( fτ ) dτ

)
.

Hence, we now write the solution to (3-3) as

ft(R, γ )= f0(R, φ−1
t (γ ))= f0(R)

2φ−1
t (γ )

1 +φ−1
t (γ )2

= f0(R)
2γ exp

(
−(1/α)

∫ t
0 Ls( fτ ) dτ

)
1 + γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ ) dτ

) .
Now we consider the operator Ls in the (R, γ ) ∈ [0,∞)×

[
0, π2

)
-variables:

Ls( ft)(R)=
1
π

∫
∞

R

1
s

∫
∞

0
ft(s, γ )

2γ
(1 + γ 2)2

dγ ds.

Plugging in the expression for ft , we have

Ls( ft)(R)=
1
π

∫
∞

R

1
s

∫
∞

0
f0(s)

exp
(
−(1/α)

∫ t
0 Ls( fτ )(s) dτ

)
1 + γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ )(s) dτ

) 4γ 2

(1 + γ 2)2
dγ ds. (3-4)

Now since 0 ≤ exp
(
−(2/α)

∫ t
0 Ls( fτ )(s) dτ

)
≤ 1, we have an upper and a lower bound on the operator

on Ls( ft)(R) with constants c1, c2 independent of α (in fact, these constants can be explicitly computed).
Namely,

c1

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s)dτ

)
ds ≤ Ls( ft)(R)≤ c2

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s)dτ

)
ds.

Thus, we have our desired inequalities. □
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Lemma 3.2. Define the operator

L̂( ft)(R) :=

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
L̂( fs)(s) dτ

)
ds. (3-5)

Then we have ∫ t

0
L̂( fτ )(R) dτ = 2α log

(
1 +

t
2α

L( f0)(R)
)
,

where L( f0)(R)=
∫

∞

R f0(s)/s ds.

Proof. We introduce gt(R) := exp
(
−(1/α)

∫ t
0 L̂( fτ )(R) dτ

)
and K (R) := f0(R)/R. Then the operator L̂

can be rewritten as

L̂( ft)(R)=

∫
∞

R
K (s)gt(s) ds. (3-6)

Now taking the time derivative of (3-6), and using that ∂t gt(R)= −(1/α)gt(R)
∫

∞

R K (s)gt(s) ds, we
can obtain

∂t L̂( ft)= −
1

2α
(L̂( ft))

2,

which can be solved explicitly:

L̂( ft)(R)=
L( f0)(R)

1 + (t/(2α))L( f0)(R)
. (3-7)

Then it follows that ∫ t

0
L̂( ft)(R) dτ = 2α log

(
1 +

t
2α

L( f0)(R)
)
. □

Proposition 3.3. Let f be a solution to the transport equation

∂t f +
1

2α
sin(2θ)Ls( f )∂θ f = 0, (3-8)

with initial data f |t=0 = f0(R) sin(2θ). Then we have the following estimate on the operator Ls( f ):

2α
c1

log
(

1 +
c1

2α
t L( f0)(R)

)
≥

∫ t

0
Ls( fτ )(R)≥

2α
c2

log
(

1 +
c2

2α
t L( f0)(R)

)
, (3-9)

where c1 and c2 are independent of α.

Proof. In the section, we will use the bounds in (3-2), namely

c1

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds

≤ Ls( ft)(R)≤ c2

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds, (3-10)

to obtain and upper and lower estimate on
∫ t

0 Ls( f ). As before we set

gt(R)= exp
(
−

1
α

∫ t

0
Ls( fτ )(R) dτ

)
and K (R)=

f0(R)
R

.
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Using (3-10), we can obtain that

−
c1

2α

(∫
∞

R
gt(s)K (s) ds

)2

≥ ∂t

∫
∞

R
gt(s)K (s) ds ≥ −

c2

2α

(∫
∞

R
gt(s)K (s) du

)2

. (3-11)

Similar to Lemma 3.2, we define

Ls( ft)(R) :=

∫
∞

R
gt(s)K (s) ds.

Now from (3-11), we have

−
c1

2α
(Ls( ft)(R))2 ≥ ∂t Ls( ft)(R)≥ −

c2

2α
(Ls( ft)(R))2.

Thus,
L( f0)(R)

1 + (c1/(2α))t L( f0)(R)
≥ Ls( ft)(R)≥

L( f0)(R)
1 + (c2/(2α))t L( f0)(R)

, (3-12)

which will give us that

2α
c1

log
(

1 +
c1

2α
t L( f0)(R)

)
≥

∫ t

0
Ls( fτ )(R)≥

2α
c2

log
(

1 +
c2

2α
t L( f0)(R)

)
,

and this completes the proof. □

3.2. Estimate for the leading-order model in W k,∞ and Hk norms. The purpose of this subsection
is to obtain some estimate on the leading-order model in W k,∞ and Hk norms. These will be used to
estimate the size of the remainder term in Section 6. First we will obtain estimates on 92 in Lemma 3.4.
Then in Lemma 3.5, we will obtain estimates on �2.

Lemma 3.4. Let �2 be a solution to the leading-order model:

∂t�2 +

( 1
2α

Ls(�2) sin(2θ)+ 1
2α

Lc(�2) cos(2θ)
)
∂θ�2 =

1
2α

Ls(�2),

with initial data �2|t=0 = f0(R) sin(2θ), where f0(R) is smooth and compactly supported. Consider

92 =
1

4α
Ls(�2) sin(2θ)+ 1

4α
Lc(�2) cos(2θ).

Then, we have the following estimates on 92:

|92|W k+1,∞ ≤
ck

α
, |92|Hk+1 ≤

ck

α
, (3-13)

where ck depends on the initial conditions and is independent of α.

Proof. Recall that from Proposition 2.1, we can write �2 as

�2 = f +
1

2α

∫ t

0
Ls( fτ ) dτ,

and since the initial data is odd in θ , we have

92 =
1

4α
Ls(�t) sin(2θ)=

1
4α

Ls( ft) sin(2θ).
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To estimate the size of 92, from (3-4), we have

Ls( ft)(R)=

∫
∞

R

1
s

∫
∞

0
f0(s)

exp
(
−(1/α)

∫ t
0 Ls( fτ )(s) dτ

)
1 + γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ )(s) dτ

) 4γ 2

(1 + γ 2)2
dγ ds.

Using (3-2), we have

|92|L∞ ≤
c
α

∫
∞

R

f0(s)
s

ds ≤
c0

α
.

For ∂θ92, it is clear that we have
|∂θ92|L∞ ≤

c0

α
,

where, similarly, c0 depends on the initial condition.
Now for ∂R92, we have

∂R92 =
1

4α
∂R Ls( ft) sin(2θ).

Thus,

∂R Ls( ft)(R)= −
1
R

∫
∞

0
f0(R)

exp
(
−(1/α)

∫ t
0 Ls( fτ )(R) dτ

)
1 + γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ )(R) dτ

) 4γ 2

(1 + γ 2)2
dγ,

and similarly, we have
|∂R92|L∞ ≤

c
α
.

Now the estimate on R ∂R92 follows from the estimate on ∂R92 and the fact that the initial data have
compact support. Thus,

|R ∂R92|L∞ ≤
c
α
.

For higher-order derivatives, we can obtain the estimate following the same steps. Hence, we have

|9|W k+1,∞ ≤
ck
α
.

The Hk estimates also follow using the same steps:

|9|Hk+1 ≤
ck
α
. □

In the following lemma, we will obtain the Hk estimates on �2. Here we will use Lemma 3.4 and
transport estimates.

Lemma 3.5. Let �2 be a solution to the leading-order model

∂t�2 +

( 1
2α

Ls(�2) sin(2θ)+ 1
2α

Lc(�2) cos(2θ)
)
∂θ�2 =

1
2α

Ls(�2),

with initial data�2|t=0 = f0(R) sin(2θ), where f0(R) is smooth and compactly supported. Then, we have
the following estimates on �2:

|�2|Hk ≤ cke(ck/α)t , (3-14)

where ck depends on the initial conditions and is independent of α.

Proof. Recall that from Proposition 2.1 we can write �2 as

�2 = f +
1

2α

∫ t

0
Ls( fτ ) dτ,
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where f satisfies the transport equation

∂t ft + 292 ∂θ ft = 0.

When we consider the derivatives of�2, the transport term f dominates the radial term (1/(2α))
∫ t

0 Ls( f )dτ.
Thus, it suffices to consider the Hk estimates on f which will follow from the standard L2 estimate for
the transport equation. Thus, we have

∂t ft + 292∂θ ft = 0 =⇒ ∂t∂θ ft + 2∂θ92∂θ ft + 292∂θθ ft = 0.

Hence,
|∂θ ft |L2 ≤ |∂θ f0|L2e

∫ t
0 |∂θ92|L∞ .

From (3-13) we have |∂θ92|L∞ ≤ c0/α. Thus, applying the Gronwall inequality, we have

|∂θ ft |L2 ≤ |∂θ f0|L2e(c0/α)t . (3-15)

To obtain Hk estimates, we need to estimate terms of the form Rk∂k
R . We will show how to obtain the

R∂R estimate, and for general k, it will follow similarly. Thus, similar to L2 estimate for the ∂θ f case, since

∂t ft + 292∂θ ft = 0,

we have
∂t∂R ft + 2∂R92∂θ ft + 292∂Rθ ft = 0,

and thus,
∂t |R∂R ft |L2 ≤ 2|R∂R92|L∞ |∂θ f |L2 + |∂θ92|L∞ |R∂R ft |L2 .

Now from (3-13), (3-15), and applying the Gronwall inequality we have

|R∂R ft |L2 ≤ (|R∂R f0|L2 + |∂θ f0|L2e(c0/α)t)e(c0/α)t .

Hence,
| f (t)|H1 ≤ | f0|H1e(c1/α)t ,

which implies that
|�2(t)|H1 ≤ |�2(0)|H1e(c1/α)t .

Similarly, using (3-13), the transport estimate, and following the same steps as above, we can obtain
the general Hk estimates. Hence

|�2|Hk ≤ |�2(0)|Hk e(ck/α)t . □

4. Elliptic estimate

The purpose of this section is to recall the Biot–Savart law decomposition of [Elgindi 2021], which is
used here to derive the leading-order model. In this section, we highlight the main ideas in the proof, and
for more details, see [Elgindi 2021; Drivas and Elgindi 2023]. We remark that this is also related to the
Key Lemma of A. Kiselev and V. Šverák [2014]; see also [Elgindi 2016; Elgindi and Jeong 2023] for
generalizations.
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Proposition 4.1 [Elgindi 2021]. Given � ∈ H k such that for every R we have∫ 2π

0
�(R, θ) sin(nθ) dθ =

∫ 2π

0
�(R, θ) cos(nθ) dθ = 0

for n = 0, 1, 2, the unique solution to

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ)

satisfies
|∂θθ9|H k +α|R∂Rθ9|H k +α2

|R2∂R R9|H k ≤ Ck |�|H k , (4-1)

where Ck is independent of α. In addition, we have the weights estimate

|∂θθ Dk
R(9)|L2 +α|R∂Rθ Dk

R(9)|L2 +α2
|R2∂R R Dk

R(9)|L2 ≤ Ck |Dk
R(�)|L2, (4-2)

where Ck is independent of α. Recall that DR = R∂R .

Proof. First, we will show how to obtain (4-1). Since� is orthogonal to sin(nθ) and cos(nθ) for n =0, 1, 2,
9 must also be orthogonal to sin(nθ) and cos(nθ) for n = 0, 1, 2. Consider the elliptic equation, and we
consider the L2 estimate

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ).

Taking the inner product with ∂θθ9 and integrating by parts, we obtain

−4|∂θ9|
2
L2 + |∂θθ9|

2
L2 −α2

|∂θ9|
2
L2 +α2

|R∂Rθ9|
2
L2 +

1
2(4α+α2)|∂θ9|

2
L2 ≤ |�|L2 |∂θθ9|L2 .

Now by assumption, we have
9(R, θ)=

∑
n≥3

9n(R)einθ ,

and hence
|∂θ9|

2
L2 ≤

1
9 |∂θθ9|

2
L2 .

Using the above inequality, we can show that

5
9 |∂θθ9|

2
L2 +α2

|R∂Rθ9|
2
L2 +

1
2(4α−α2)|∂θ9|

2
L2 ≤ |�|L2 |∂θθ9|L2,

and thus we have
|∂θθ9|L2 ≤ C0|�|L2,

where C0 is independent of α. The estimate for the R2∂R R9-term will follow similarly. We can also obtain
the H k estimates by following the same strategy. To obtain the (4-2) estimates, recall that DR = R∂R and
we notice that we can write the elliptic equation in the form

49 + ∂θθ9 +α2 D2
R(9)+ 4α DR(9)=�(R, θ).

From this, we observe that the DR operator commutes with the elliptic equation, and hence (4-2) estimates
will follow from (4-1). □
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Theorem 2 [Elgindi 2021]. Given � ∈ H k, where � has the form of

�(R, θ)= f (R) sin(2θ)
(
�(R, θ)= f (R) cos(2θ)

)
,

the unique solution to

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ)

is

9 = −
1

4α
L( f )(R) sin(2θ)+R( f )

(
9 = −

1
4α

L( f )(R) cos(2θ)+R( f )
)
,

where

L( f )(R)=

∫
∞

R

f (s)
s

ds

and

|R( f )|H k ≤ c| f |H k ,

where c is independent of α.

Proof. Consider the case where �(R, θ)= f (R) sin(2θ); the case where �(R, θ)= f (R) cos(2θ) can
be handled similarly. In this case 9(R, θ) will be of the form 9(R, θ)=92(R) sin(2θ), where 92(R)
will satisfy the ODE

α2 R2∂R R92 + (4α+α2)R∂R92 = f (R).

We can solve the ODE, see Theorem 4.24 in [Drivas and Elgindi 2023], and obtain

∂R92(R)=
1
α2

1
R4/α+1

∫ R

0

f (s)
s1−4/α ds.

Now using that 92(R)→ 0 as R → ∞, we obtain

92(R)= −
1
α2

∫
∞

R

1
ρ4/α+1

∫ ρ

0

f (s)
s1−4/α ds dρ.

We notice that we can write the above as

92(R)= −
1
α2

∫
∞

R

1
ρ4/α+1

∫ ρ

0

f (s)
s1−4/α ds dρ =

1
4α

∫
∞

R
∂ρ

(
1
ρ4/α

) ∫ ρ

0

f (s)
s1−4/α ds dρ.

Thus, by integrating by parts, it follows that

92(R)= −
1

4α

∫
∞

R

f (s)
s

ds −
1

4α
1

R4/α

∫ R

0

f (s)
s1−4/α ds := −

1
4α

L( f )(R)+R( f ).

Using Hardy-type inequality, see Lemma 4.25 in [Drivas and Elgindi 2023], one can show that

|R( f )|L2 ≤ c| f |L2,

where c is independent of α. □
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5. Embedding estimate in terms of the Hk norm

In this section we consider some embedding estimate in the Hk norm which will be used in Section 6.
These estimates will be used various times as we estimate the remainder term. Recall that the Hk norm is
defined as

| f |Ḣm =

m∑
i=0

|∂ i
R∂

m−i
θ f |L2 +

m∑
i=1

|Ri∂ i
R∂

m−i
θ f |L2, | f |Hk =

k∑
m=0

| f |Ḣm .

Lemma 5.1. Let f ∈ HN, where N ∈ N. Then we have

|∂k
R∂

m
θ f |L∞ ≤ ck,m | f |Hk+m+2, (5-1)

|Rk∂k
R∂

m
θ f |L∞ ≤ ck,m | f |Hk+m+2 (5-2)

for any k + m + 2 ≤ N.

Proof. We will show how to obtain inequality (5-2), since inequality (5-1) follows from standard Sobolev
embedding. To show that

|Rk∂k
R∂

m
θ f |L∞ ≤ ck,m | f |Hk+m+2,

for any k + m + 2 ≤ N, we apply Sobolev embedding to obtain

|Rk∂k
R∂

m
θ f |L∞ ≤ ck,m |Rk∂k

R∂
m
θ f |H2

R,θ
,

where H 2
R,θ is the standard H 2 norm in R and θ . When considering the second derivative terms of

Rk∂k
R∂

m
θ f , for the angular derivatives term, we have |Rk∂k

R∂
m+2
θ f |L2 ≤ | f |Hk+m+2 . Now for the radial

derivatives, we have three cases. Considering the case when the two radial derivatives land on ∂k
R∂

m
θ f ,

we have
|Rk∂k+2

R ∂m
θ f |L2 ≤ |Rk+2∂k+2

R ∂m
θ f |L2 + |∂k+2

R ∂m
θ f | ≤ | f |Hk+m+2,

where the last inequality follows from the definition of the HN norm. The other two cases follow in a
similar way. □

We will also need some embedding estimates for the stream function 9 in terms of �.

Lemma 5.2. Let � ∈ HN, where N ∈ N, satisfy the same conditions as in Proposition 4.1. Then for the
solution 9 of

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ),

we have
|∂k

R∂
m
θ 9|L∞ ≤ ck,m |�|Hk+m+1 (5-3)

for k,m ∈ N with k + m + 1 ≤ N.

Proof. As in Lemma 5.1, applying the Sobolev embedding, we have

|∂k
R∂

m
θ 9|L∞ ≤ ck,m |∂k

R∂
m
θ 9|H2

R,θ
.

From the elliptic estimates in Proposition 4.1, for any i, n ∈ N, we have

|∂ i
R∂

n
θ9|L2 ≤ ci,n|�|Hi+n−1 . (5-4)



STRONG ILL-POSEDNESS IN L∞ FOR THE RIESZ TRANSFORM PROBLEM 731

Thus, to bound |∂k
R∂

m
θ 9|H2

R,θ
, we take � to be in Hk+m+1. Hence, we have

|∂k
R∂

m
θ 9|L∞ ≤ ck,m |�|Hk+m+1, (5-5)

completing the proof. □

Lemma 5.3. Let � ∈ HN, where N ∈ N, satisfying the same conditions as in Proposition 4.1. Then for
the solution 9 of

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ),

we have
|Rk∂k

R∂
m
θ 9|L∞ ≤ ck,m |�|Hk+m+1 (5-6)

for k,m ∈ N with k + m + 1 ≤ N.

Proof. As in Lemma 5.1, applying the Sobolev embedding, we have

|Rk∂k
R∂

m
θ 9|L∞ ≤ ck,m |Rk∂k

R∂
m
θ 9|H2

R,θ
.

From the elliptic estimates in Proposition 4.1, for any i, n ∈ N, we have

|∂ i
R∂

n
θ9|L2 ≤ ci,n|∂

i
R∂

n−1
θ �|L2 ≤ ci,n|�|Hi+n−1 (5-7)

and
|Ri∂ i

R∂
n
θ9|L2 ≤ ci,n|�|Hi+n−1 . (5-8)

Thus, if we look at the second derivative terms of Rk∂k
R∂

m
θ 9, we can use the above inequalities to

obtain the desired estimate. For the angular derivative term, we have |Rk∂k
R∂

m+2
θ 9|L2 ≤ ck,m |�|Hk+m+1 .

When considering the radial derivative terms, we have three terms. For the Rk∂k+2
R ∂m

θ 9-term, applying
(5-7) and (5-8), we have

|Rk∂k+2
R ∂m

θ 9|L2 ≤ |Rk+2∂k+2
R ∂m

θ 9|L2 + |∂k+2
R ∂m

θ 9| ≤ ck,m |�|Hk+m+1 .

The other terms can be handled in similar way. Hence, we have our desired result. □

6. Reminder estimate

In this section, we obtain an error estimate on the remaining terms in the Euler with Riesz forcing. Recall
that � satisfies the evolution equation

∂t�+ (−αR∂θ9) ∂R�+ (29 +αR∂R9) ∂θ�

=
(
2αR sin(θ) cos(θ)+α2 R sin(θ) cos(θ)

)
∂R9 + (1 − 2 sin2(θ)) ∂θ9

+
(
αR cos2(θ)+αR sin2(θ)

)
∂Rθ9 + (α2 R2 sin(θ) cos(θ)) ∂R R9 − (sin(θ) cos(θ)) ∂θθ9, (6-1)

and the elliptic equation is

49 +α2 R2∂R R9 + ∂θθ9 + (4α+α2)R∂R9 =�(R, θ). (6-2)

From Section 2, the leading-order model for the Euler with Riesz forcing equation satisfies

∂t�2 + (292)∂θ�2 = (−1 + 2 sin2(θ))∂θ92 + (sin(θ) cos(θ)) ∂θθ92, (6-3)
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where
92(R, θ)=

1
4α

Ls(�2) sin(2θ)+ 1
4α

Lc(�2) cos(2θ). (6-4)

Now set �r :=�−�2 to be the remainder term for the vorticity, and similarly set 9r :=9−92 to be
the remainder term for the stream function. Thus, we have that the remainder, �r , satisfies the evolution
equation

∂t�r + (−αR(∂θ92 + ∂θ9r ))(∂R�2 + ∂R�r )+ (292∂θ�r + 29r∂θ�2 + 29r∂θ�r )

+ (αR(∂R92 + ∂R9r ))(∂θ�2 + ∂θ�r )

=
(
2αR sin(θ) cos(θ)+α2 R sin(θ) cos(θ)

)
(∂R92 + ∂R9r )

+ (1 − 2 sin2(θ))∂θ9r +α(R cos2(θ)− R sin2(θ))(∂Rθ92 + ∂Rθ9r )

+α2(R2 sin(θ) cos(θ))(∂R R92 + ∂R R9r )− (sin(θ) cos(θ))∂θθ9r . (6-5)

The goal of this section is to show that �r remains small. Namely, using energy methods, for some
time T, we show that

supt≤T |�r (t)|L∞ ≤ Cα1/2

for some constant C independent of α.

Lemma 6.1. Let �r =�−�2 satisfy (6-5) with � and �2 satisfying (6-1) and (6-3), respectively. Let
9r =9 −92 with 9 and 92 satisfying (6-2) and (6-4), respectively. Then we have the estimates

|∂k
R∂

m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 and |Rk∂k

R∂
m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 (6-6)

for k,m ∈ N.

Proof. Recall that by the Biot–Savart law decomposition [Elgindi 2021] (see Section 4 for more details),
we have the following decomposition for the elliptic equation (6-2):

9(R, θ)=
1

4α
Ls(�) sin(2θ)+ 1

4α
Lc(�) cos(2θ)+R(�),

with R(�) bounded on HN with a constant independent of α. This follows from the elliptic estimates
in Proposition 4.1 and Theorem 2 in Section 4. Now since we defined �r =�−�2 and 9r =9 −92,
with �2, and 92 satisfying (6-3), and (6-4), respectively, we have the following decomposition for 9r :

9r (R, θ)=
1

4α
Ls(�r ) sin(2θ)+ 1

4α
Lc(�r ) cos(2θ)+R(�r )+R(�2). (6-7)

Hence, this gives the estimates

|∂k
R∂

m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 and |Rk∂k

R∂
m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 . □

We define the following terms to shorten the notation:

I1 = −αR(∂θ92 + ∂θ9r )(∂R�2 + ∂R�r ),

I2 = (292∂θ�r + 29r∂θ�2 + 29r∂θ�r ),

I3 = αR(∂R92 + ∂R9r )(∂θ�2 + ∂θ�r ),

I4 = 2α(1 −α)R sin(θ) cos(θ)(∂R92 + ∂R9r ),
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I5 = (1 − 2 sin2(θ))∂θ9r ,

I6 = α(R cos2(θ)− R sin2(θ))(∂Rθ92 + ∂Rθ9r ),

I7 = α2(R2 sin(θ) cos(θ))(∂R R92 + ∂R R9r ),

I8 = −(sin(θ) cos(θ))∂θθ9r .

Now we have the error estimate proposition.

Proposition 6.2. Let �r =�−�2 satisfy (6-5) with �r |t=0 = 0. Then

sup0≤t<T |�r (t)|L∞ ≤ cNα
1/2,

where T = cα log(c|log(α)|) and c is a small constant independent of α.

Proof. We will use ∂N to refer to any mixed derivatives in R and θ of order N (not excluding pure R- and
θ -derivatives). From the definition of the HN norm, to obtain the HN estimate we will take the following
inner product with each Ii -term:

⟨∂N Ii , ∂
N�r ⟩ and ⟨Rk∂k

R∂
N−k
θ Ii , Rk∂k

R∂
N−k
θ �r ⟩

for 0 ≤ k ≤ N and 1 ≤ i ≤ 8.

Estimate on I1 and I3: Here we will estimate I1 and I3. The estimate of I3 is very similar to I1, and so
we will just show how to obtain the estimate on I1.

Estimate on I1: We can write I1 as

I1 = −αR(∂θ92 + ∂θ9r )(∂R�2 + ∂R�r )

= −α(∂θ92)R(∂R�2)−α(∂θ92)R(∂R�r )−α(∂θ9r )R(∂R�2)−α(∂θ9r )R(∂R�r )

= I1,1 + I1,2 + I1,3 + I1,4,

and we will estimate each term separately.

• I1,1 = −α∂θ92 R∂R�2. Here we have

⟨∂N (α∂θ92 R∂R�2), ∂
N�r ⟩ =

N∑
i=0

ci,N

∫
∂ i (α∂θ92)∂

N−i (R∂R�2) ∂
N�r .

Now from Lemmas 3.4 and 3.5, we know that

|92|W k+1,∞ ≤
ck
α

and |�2|Hk ≤ |�2(0)|Hk e(ck/α)t .

Thus, we have
N∑

i=0

∫
α∂ i (∂θ92)∂

N−i (R∂R�2) ∂
N�r ≤ cN

N∑
i=0

α|∂ i∂θ92|L∞ |∂N−i (R∂R�2)|L2 |∂N�r |L2

≤ cNα|92|WN+1,∞ |�2|HN+1 |�r |HN

≤ α
cN

α
e(cN /α)t |�r |HN ≤ cN e(cN /α)t |�r |HN ,
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and similarly we have

⟨∂k
R∂

N−k
θ (α∂θ92 R∂R�2), R2k∂k

R∂
N−k
θ �r ⟩

= ci,m,N

∫ N∑
i+m=0

∂ i
R∂

m
θ (α∂θ92) ∂

k−i
R ∂N−k−m

θ (R∂R�2) R2k∂k
R∂

N−k
θ �r .

From the definition of the WN+1,∞ norm, we have for i + m ≤ N,

|Ri∂ i
R∂

m+1
θ 92|L∞ ≤ |92|WN+1,∞ .

Again, applying Lemmas 3.4 and 3.5, we obtain

N∑
i+m=0

∫
Ri∂ i

R∂
m
θ (α∂θ92) Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�2) Rk∂k

R∂
N−k
θ �r

≤ cN

N∑
i+m=0

α|Ri∂ i
R∂

m+1
θ 92|L∞ |Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�2)|L2 |Rk∂k

R∂
N−k
θ �r |L2

≤ cNα|92|WN+1,∞ |�2|HN+1 |�r |HN ≤ α
cN

α
e(cN /α)t |�r |HN ≤ cN e(cN /α)t |�r |HN .

Thus, we have

⟨I1,1, �r ⟩HN ≤ cN e(cN /α)t |�r |HN . (6-8)

• I1,2 = −α∂θ92 R∂R�r . Here we have

⟨∂N (α∂θ92 R∂R�r ), ∂
N�r ⟩ =

N∑
i=0

ci,N

∫
∂ i (α∂θ92)∂

N−i (R∂R�r )∂
N�r .

To obtain this estimate, we again apply Lemma 3.4. Namely, that |92|W k+1,∞ ≤ ck/α. When i = 0, we
integrate by parts and obtain∫

(α∂θ92)∂
N (R∂R�r ) ∂

N�r ≤ c|92|W2,∞ |�r |
2
HN ≤

cN

α
|�r |

2
HN .

For 1 ≤ i ≤ N we have
N∑

i=1

∫
α∂ i (∂θ92)∂

N−i (R∂R�r ) ∂
N�r ≤ cN

N∑
i=1

α|∂ i∂θ92|L∞ |∂N−i (R∂R�r )|L2 |∂N�r |L2

≤ cNα|92|WN+1,∞ |�r |HN |�r |HN ≤ α
cN

α
|�r |

2
HN ≤ cN |�r |

2
HN .

Similarly, now for the Rk∂k
R∂

N−k
θ -terms we have

⟨Rk∂k
R∂

N−k
θ (α∂θ92 R∂R�r ), Rk∂k

R∂
N−k
θ �r ⟩

= ci,m,N

∫ N∑
i+m=0

Rk∂ i
R∂

m
θ (α∂θ92) ∂

k−i
R ∂N−k−m

θ (R∂R�r ) Rk∂k
R∂

N−k
θ �r .
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We again use |92|W k+1,∞ ≤ ck/α. Hence, we have
N∑

i+m=0

∫
Ri∂ i

R∂
m
θ (α∂θ92) Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�r ) Rk∂k

R∂
N−k
θ �r

≤ cN

N∑
i+m=0

α|Ri∂ i
R∂

m+1
θ 92|L∞ |Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�r )|L2 |Rk∂k

R∂
N−k
θ �r |L2

≤ cNα|92|WN+1,∞ |�r |HN |�r |HN ≤ α
cN

α
|�r |

2
HN ≤ cN |�r |

2
HN .

Thus, we have
⟨I1,2, �r ⟩HN ≤ cN |�r |

2
HN . (6-9)

• I1,3 = −α(∂θ9r )R∂R�2. To obtain the estimate on I1,3, we will use Lemma 3.5, which will give us
the estimate on �2. In addition, to bound the ∂θ9r -term, we will use the decomposition of 9r (6-7) and
estimate (6-6) combined with the elliptic estimates from Proposition 4.1 and embedding estimates from
Lemma 5.2. Now we have

⟨∂N (α∂θ9r R∂R�2), ∂
N�r ⟩ =

N∑
i=0

ci,N

∫
∂ i (α∂θ9r )∂

N−i (R∂R�2) ∂
N�r .

When 0 ≤ i ≤ N/2, we will use the embedding from Lemma 5.1. Namely that

|∂ i∂θ9r |L∞ ≤ ci |∂θ9r |Hi+2 .

Then, applying Lemma 6.1, we have

|∂θ9r |Hi+2 ≤
ci

α
|�r |Hi+2 .

Thus,
N/2∑
i=0

∫
∂ i (α∂θ9r )∂

N−i (R∂R�2) ∂
N�r ≤

N/2∑
i=0

α|∂ i∂θ9r |L∞ |∂N−i (R∂R�2)|L2 |∂N�r |L2

≤

N/2∑
i=0

α
ci

α
|�r |Hi+2 |�2|HN+1 |�r |HN

≤ |�r |HN/2+2 |�2|HN+1 |�r |HN ≤ cN ecN /α|�r |
2
HN .

Here we used Lemma 3.5 for the |�2|HN+1-term.
When N/2 ≤ i ≤ N , we will use Lemma 6.1. Namely,

|∂ i∂θ9r |L2 ≤
ci

α
|�r |Hi .

Thus, we have
N∑

i=N/2

∫
∂ i (α∂θ9r )∂

N−i (R∂R�2) ∂
N�r ≤

N∑
i=N/2

α|∂ i∂θ9r |L2 |R∂R�2|WN−i,∞ |∂N�r |L2

≤

N∑
i=N/2

α
ci

α
|�r |Hi |�2|WN/2,∞ |�r |HN

≤ cN |�r |HN |�2|HN |�r |HN ≤ cN e(cN /α)t |�r |
2
HN .
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Similarly, to estimate the inner product

⟨∂k
R∂

N−k
θ (α(∂θ9r )R∂R�2), R2k∂k

R∂
N−k
θ �r ⟩ ≤ cN e(cN /α)t |�r |

2
HN ,

we will use the weighted embedding estimates from Lemma 5.1 combined with Lemma 6.1. Following
the same steps as we did in the previous inner product, we obtain

⟨I1,3, �r ⟩HN ≤ cN e(cN /α)t |�r |
2
HN . (6-10)

• I1,4 = −α(∂θ9r )R∂R�r . To obtain the estimate on I1,4, we will use Lemma 6.1 and the embedding
estimate from Lemma 5.1 to handle the ∂θ9r -term. To handle the R∂R�r -term, we will use embedding
estimates from Lemma 5.1 and follow the same steps as we did in the previous inner product. We will
only show how to obtain the estimate on the term

⟨∂k
R∂

N−k
θ (α∂θ9r R∂R�r ), R2k∂k

R∂
N−k
θ �r ⟩

= ci,m,N

∫ N∑
i+m=0

∂ i
R∂

m
θ (α∂θ9r ) ∂

k−i
R ∂N−k−m

θ (R∂R�r ) R2k∂k
R∂

N−k
θ �r .

For the other inner product, the idea is the same. To start the estimate, first we consider the case when
i = m = 0. We integrate by parts and use the embedding estimates in Lemmas 5.1 and 6.1 to estimate the
∂θ9r -term. We have∫
α∂θ9r (Rk+1∂k+1

R ∂N−k
θ �r + Rk∂k

R∂
N−k
θ �r ) Rk∂k

R∂
N−k
θ �r

≤ α|R∂Rθ9r |L∞ |Rk∂k
R∂

N−k
θ �r |

2
L2 +α|∂θ9r |L∞ |Rk∂k

R∂
N−k
θ �r |

2
L2

≤ cN (|�r |H3 |�r |
2
HN + |�r |H2 |�r |

2
HN )

≤ cN |�r |
3
HN .

Now when 1 ≤ i +m ≤ N/2, we will again use Lemmas 5.1 and 6.1 and the definition of the Hk norm
to obtain

N/2∑
i+m≥1

Ri∂ i
R∂

m
θ (α∂θ9r )

(
Rk+1−i∂k+1−i

R ∂N−k−m
θ �r + Rk−i∂k−i

R ∂N−k−m
θ �r

)
Rk∂k

R∂
N−k
θ �r

≤

N/2∑
i+m≥1

α|Ri ∂ i
R∂

m+1
θ 9r |L∞ |Rk+1−i∂k+1−i

R ∂N−k−m
θ �r |L2 |Rk∂k

R∂
N−k
θ �r |L2

+

N/2∑
i+m≥1

α|Ri ∂ i
R∂

m+1
θ 9r |L∞ |Rk−i∂k−i

R ∂N−k−m
θ �r |L2 |Rk∂k

R∂
N−k
θ �r |L2

≤ cN

N/2∑
i+m≥1

|�r |Hi+m+2(|�r |HN + |�r |HN−1)|�r |HN

≤ cN |�r |HN/2+3(|�r |HN + |�r |HN−1)|�r |HN

≤ cN |�r |
3
HN .
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Now for the case when N/2 ≤ i + m ≤ N, we will use Lemmas 5.1 and 6.1 to obtain
N∑

i+m≥N/2

Ri∂ i
R∂

m
θ (α∂θ9r )

(
Rk+1−i∂k+1−i

R ∂N−k−m
θ �r + Rk−i∂k−i

R ∂N−k−m
θ �r

)
Rk∂k

R∂
N−k
θ �r

≤

N∑
i+m≥N/2

α|Ri ∂ i
R∂

m+1
θ 9r |L2

(
|Rk+1−i∂k+1−i

R ∂N−k−m
θ �r |L∞

)
|Rk∂k

R∂
N−k
θ �r |L2

+

N∑
i+m≥N/2

α|Ri ∂ i
R∂

m+1
θ 9r |L2

(
|Rk−i∂k−i

R ∂N−k−m
θ �r |L∞

)
|Rk∂k

R∂
N−k
θ �r |L2

≤

N∑
i+m≥N/2

|�r |Hi+m
(
|�r |HN−(i+m)+3 + |�r |HN−(i+m)+2

)
|�r |HN

≤ cN |�r |HN |�r |HN/2+3 |�r |HN ≤ cN |�r |
3
HN ,

and thus, we have

⟨I1,4, �r ⟩HN ≤ cN |�r |
3
HN . (6-11)

Thus, we have the following estimate on the I1-term:

⟨I1, �r ⟩HN ≤ cN e(cN /α)t |�r |HN + cN e(cN /α)t |�r |
2
HN + cN |�r |

3
HN . (6-12)

Estimate on I3: The estimate on I3 follows similarly to I1, so we skip the details for this case. One can
obtain

⟨I3, �r ⟩HN ≤ cN e(cN /α)t |�r |HN + cN e(cN /α)t |�r |
2
HN + cN |�r |

3
HN . (6-13)

Estimate on I2: Here we have

I2 = (292∂θ�r + 29r∂θ�2 + 29r∂θ�r )= I2,1 + I2,2 + I2,3.

• I2,1 = 292∂θ�r . To estimate I2,1, we follow the same steps as in the I1-term. Using Lemma 3.4,
namely that |92|WN ,∞ ≤ cN/α, we have

⟨I2,1, �r ⟩HN ≤
cN

α
|�r |

2
HN . (6-14)

• I2,2 = 29r∂θ�2. Similarly, to estimate I2,2 we also follow the same steps as we did in I1. More
specifically, to handle the 9r -term, we will follow similar steps as for the terms I1,3 and I1,4. Namely,
we will apply embedding estimates and Lemma 6.1 to estimate the 9r -term. To estimate �2, we use
Lemma 3.5 to obtain that |�2|Hk ≤ |�2(0)|Hk e(ck/α)t . Thus we have

⟨I2,2, �r ⟩HN ≤
cN

α
e(cN /α)t |�r |

2
HN . (6-15)

• I2,3 = 29r∂θ�r . This term I2,3 can be estimated similarly to the I1,4-term by using embedding and
Lemma 6.1. Hence, we obtain

⟨I2,3, �r ⟩HN ≤
cN

α
|�r |

3
HN . (6-16)
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Thus we have

⟨I2, �r ⟩HN ≤
cN

α
|�r |

2
HN +

cN

α
e(cN /α)t |�r |

2
HN +

cN

α
|�r |

3
HN ≤

cN

α
e(cN /α)t |�r |

2
HN +

cN

α
|�r |

3
HN . (6-17)

Estimates on I4, I5, I6, I7, and I8: We can write I4 as

I4 = 2αR sin(θ) cos(θ)+α2 R sin(θ) cos(θ))(∂R92 + ∂R9r )

= α(2 +α) sin(θ) cos(θ) R∂R92 +α(2 +α) sin(θ) cos(θ) R∂R9r = I4,1 + I4,2.

Recall that
I5 = (1 − 2 sin2(θ))∂θ9r .

We can also rewrite and I6 and I7 as

I6 = α(cos2(θ)− sin2(θ))R(∂Rθ92 + ∂Rθ9r )

= α(cos2(θ)− sin2(θ))R∂Rθ92 +α(cos2(θ)− sin2(θ))R∂Rθ9r = I6,1 + I6,2

and
I7 = α2(sin(θ) cos(θ))R2(∂R R92 + ∂R R9r )

= α2(sin(θ) cos(θ))R2 ∂R R92 +α2(sin(θ) cos(θ))R2 ∂R R9r = I7,1 + I7,2.

Recall that
I8 = − sin(θ) cos(θ) ∂θθ9r .

Now for i = 4, 6, and 7, using Lemma 3.4, namely that |9|Hk+1 ≤ ck/α, we have the estimate

⟨Ii,1, �r ⟩HN ≤ cN |�r |HN for i = 4, 6, 7. (6-18)

Using Lemma 6.1, we obtain

⟨Ii,2, �r ⟩HN ≤ α
cN

α
|�r |

2
HN = cN |�r |

2
HN for i = 4, 6, 7 (6-19)

and
⟨Ii , �r ⟩HN ≤

cN

α
|�r |

2
HN for i = 5, 8. (6-20)

Hence, from (6-18), (6-19), (6-20), we have

⟨Ii , �r ⟩HN ≤ cN |�r |HN +
cN

α
|�r |

2
HN for i = 4, 5, . . . , 8. (6-21)

Total remainder estimate: Here we obtain the total error estimate. From our previous work we have

d
dt

|�r |
2
HN = ⟨∂t�r , �r ⟩HN ≤

8∑
i=1

|⟨Ii , �r ⟩HN |,

and thus from (6-12), (6-13), (6-17), and (6-21), we have

d
dt

|�r |
2
HN ≤ cN e(cN /α)t |�r |HN +

cN

α
e(cN /α)t |�r |

2
HN +

cN

α
|�r |

3
HN ,

and hence
d
dt

|�r |HN ≤ cN e(cN /α)t +
cN

α
e(cN /α)t |�r |HN +

cN

α
|�r |

2
HN . (6-22)
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Now since we have �r |t=0 = 0, we will use bootstrap argument to close the remainder estimate. We
will assume that |�r |HN ≤ 2cNα

1/2 for time 0< t ≤ T, and then show that |�r (t)|HN ≤ cNα
1/2, and this

will give the remainder estimate. Let us assume that

|�r |HN ≤ 2cNα
1/2.

Then from (6-22) we have

d
dt

|�r |HN ≤ cN e(cN /α)t +
cN

α
e(cN /α)t |�r |HN + 4c3

N ,

and thus

|�r |HN ≤

(∫ t

0
cN e(cN /α)τ + 4c3

N dτ
)

exp
(∫ t

0

cN

α
e(cN /α)τ dτ

)
≤ (αcN e(cN /α)t + 4c3

N t) exp(cN e(cN /α)t).

Hence, if we choose our time scale 0< t ≤ T (α)= c1α log(c2|log(α)|) for c1 and c2 small constants, for
example, take c1 = 1/cN , and c2 = 1/(4cN ), we have

|�r |HN ≤ cNα
1/2,

which completes the bootstrap argument and gives the proof of Proposition 6.2. □

7. Main result

We now recall and prove the main theorem of this work.

Theorem 3. For any α, δ>0, there exists initial dataωα,δ0 ∈C∞
c (R

2) and T (α) such that the corresponding
unique global solution, ωα,δ, to (1-4) is such that at t = 0 we have

|ω
α,δ
0 |L∞ = δ,

but for any 0< t ≤ T (α) we have

|ωα,δ(t)|L∞ ≥ |ω0|L∞ + c log
(

1 +
c
α

t
)
,

where T (α)= cα log(c|log(α)|), and c > 0 is a constant independent of α that depends linearly on δ.

Proof. Consider the initial data of the form

ω0 =�|t=0 = f0(R) sin(2θ),

where f0(R), with R = rα, is a nonnegative compactly supported smooth function which is zero on[
0, 1

2

]
∪ [1,∞) and positive outside. We know that we can write �=�2 +�r , and from the form of the

initial data, we have �r |t=0 = 0 and thus from Proposition 6.2 we have

|�r (t)|L∞ ≤ cNα
1/2

for 0 ≤ t ≤ T (α) = cα log(c|log(α)|), where recall that c is a small constant independent of α. Recall
also that we can write �2 as

�2 = f +
1

2α

∫ t

0
Ls( fτ ) dτ,
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and thus from Proposition 3.3, we obtain

�2 = f +
1

2α

∫ t

0
Ls( fτ ) dτ ≥ f + c0 log

(
1 +

c0
α

t
)

for some c0 independent of α and thus we have our desired result. □
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FRACTAL UNCERTAINTY FOR DISCRETE TWO-DIMENSIONAL CANTOR SETS

ALEX COHEN

We prove that a self-similar Cantor set in ZN × ZN has a fractal uncertainty principle if and only if it does
not contain a pair of orthogonal lines. The key ingredient in our proof is a quantitative form of Lang’s
conjecture in number theory due to Ruppert and to Beukers and Smyth. Our theorem answers a question
of Dyatlov and has applications to open quantum maps.

1. Introduction

1.1. One-dimensional fractal uncertainty. The Bourgain–Dyatlov [2018] fractal uncertainty principle
(FUP) says, in a precise quantitative sense, that a function f : R → C cannot simultaneously have large L2

mass on a fractal set in physical space and large L2 mass on a fractal set in Fourier space. This theorem
and its variants have many applications to quantum chaos; see the survey article [Dyatlov 2019]. The
proof of FUP in [Bourgain and Dyatlov 2018] is quite tricky, but the analogous result in the discrete
setting has similar ingredients and is much simpler.

We begin with some notation. In this paper ZN = Z/NZ refers to the integers mod N. We use the
unitary discrete Fourier transform F : ℓ2(ZN )→ ℓ2(ZN ), given by

F f (ξ)= f̂ (ξ)=
1

√
N

∑
x∈ZN

f (x)e−
2π i
N ξ x ,

F−1 f (x)= f ∨(x)=
1

√
N

∑
ξ∈ZN

f (ξ)e
2π i
N ξ x .

We will also use the one-dimensional and two-dimensional tori T, T2, which are identified as sets with
[0, 1) and [0, 1)× [0, 1).

Let us restrict our attention to self-similar Cantor sets (when we say Cantor set we always mean
self-similar). Fix a base M and an alphabet A⊊ ZM . Then let

Xk = {a0 + a1 M + · · · + ak−1 Mk−1
: a j ∈ A} ⊂ ZMk

be the k-th iterate. It will be convenient to let N = Mk, so Xk ⊂ZN . We say A has dimension δA = logM |A|,
so Mkδ

= |Xk | for all k. Similarly, let Yk be the Cantor iterates associated with the alphabet B. Dyatlov
and Jin [2017] proved the following fractal uncertainty principle for discrete one-dimensional Cantor sets.
They were motivated by applications to open quantum maps; see Section 1.4 for more discussion.
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Theorem 1 (one-dimensional FUP [Dyatlov and Jin 2017, Theorem 2]). For all alphabets A,B ⊊ ZM ,
the estimate

∥1YkF 1Xk ∥2→2 ≲ M−kβ (1)

holds for some β > 0.

Because of self-similarity, Cantor sets enjoy the submultiplicativity estimate (see Section 5.1 for a proof)

∥1Yr+kF 1Xr+k ∥2→2 ≤ ∥1YrF 1Xr ∥2→2∥1YkF 1Xk ∥2→2, (2)

which reduces (1) to the problem of proving that for some k > 0

∥1YkF 1Xk ∥2→2 < 1.

This estimate holds if there is no nonzero function f with supp f ⊂Xk and supp f̂ ⊂Yk . To recap, proving
a one-dimensional FUP reduces to showing that, for some k, there is no function f with supp f ⊂ Xk

and supp f̂ ⊂ Yk .
In the general case of arbitrary porous sets (not necessarily Cantor sets), submultiplicativity is replaced

by an induction-on-scales argument which allows one to find significant L2 mass of f̂ in the gaps of Yk

at every scale.

1.2. Two-dimensional fractal uncertainty. In two dimensions, Cantor sets are determined by an alphabet
A⊊ Z2

M. We set

Xk = {(a0 + · · · + ak Mk−1, b0 + · · · + bk Mk−1) : (a j , b j ) ∈ A} ⊂ Z2
N , (3)

where N := Mk. We have |A| = Mδ with 0< δ < 2, and |Xk | = Mkδ. The unitary Fourier transform in
two dimensions is given by

F f (ξ, η)= f̂ (ξ, η)=
1
N

∑
(x,y)∈Z2

N

f (x, y)e−
2π i
N (xξ+yη)

f̂ (ξ)=
1
N

∑
x∈Z2

N

f (x)e−
2π i
N x·ξ in vector notation.

Submultiplicativity (2) holds in two dimensions as well (see Section 5.1), so proving a two-dimensional
FUP reduces to showing that, for some k, there is no nonzero f with supp f ⊂ Xk and supp f̂ ⊂ Yk .

Unfortunately, this claim is not true in general. Indeed,

f (x, y)= N−
1
2 1y=0 has f̂ = N−

1
2 1x=0

and fractal sets can contain vertical and horizontal lines. We show that the fractal sets generated by the
alphabets A,B containing a pair of orthogonal lines are the only obstruction to a two-dimensional FUP.
For A ⊂ Z2

M an alphabet, let

A = {(x, y) ∈ T2 : (⌊Mx⌋, ⌊My⌋) ∈ A}.
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This is a closed drawing of A in T2, and we draw the Cantor iterate Xk as

Xk = {(x, y) ∈ T2 : (⌊Mk x⌋, ⌊Mk y⌋) ∈ Xk} ⊂ T2. (4)

We write X =
⋂

k Xk ⊂ T2 as the limiting Cantor set, so

A = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ X,

X = {(0.a0a1 . . . , 0.b0b1 . . . ) : (a j , b j ) ∈ A for all j ≥ 0} in base M.

Note that if x ∈ T is of the form a/Mk then there are two possible decimal expansions — the point
(x, y) ∈ T is in X if some decimal expansion has all digits in the alphabet. For B a second alphabet we
write B ⊂ T2 as the drawing of B and Y ⊂ T2 as the limiting Cantor set for B. We need these closed sets
to state the condition of our main theorem.

Theorem 2 (two-dimensional FUP). Suppose A,B are alphabets. Then either

Rv + p ⊂ X and Rv⊥
+ q ⊂ Y (5)

for some v = (a, b) ∈ R2
− {0}, p, q ∈ T2, or if not then Xk , Yk satisfy

∥1YkF 1Xk ∥2→2 ≲ M−kβ (6)

for some β > 0.

In particular, if X does not contain any line then it has an FUP. We note that in this theorem, (a, b)
can be taken to be integers. Otherwise a/b is irrational and the coset Rv + p is dense in T2, so it cannot
lie entirely in the closed set X ⊊ T2. The main outside ingredient we use is Theorem 19 due to [Ruppert
1993, Corollary 5] and [Beukers and Smyth 2002, Theorem 4]; see Section 4.

In Section 5.2 we show that this theorem is sharp: if X , Y contain a pair of orthogonal lines, FUP will
fail. Notice that the condition of the theorem depends on the limiting Cantor sets X,Y ⊂ T2, and it is not
immediately clear when alphabets A,B generate Cantor sets satisfying this orthogonal line condition.
The following proposition reduces this question to a finite combinatorial problem.

Proposition 3. A line Rv + p lies on X if and only if Rv + Mk p lies on A for all k ≥ 0. Additionally,
suppose (a, b) ∈ Z2

− {0} is given, a, b coprime. In order for there to be some p with Rv + p ⊂ X , we
must have max(|a|, |b|)≤ M.

Proposition 3 leaves open a natural algorithmic question. Given an alphabet A and vector v ∈ Z2
−{0},

does there exist a point p ∈ T2 such that Rv + p ⊂ X? An efficient algorithm for this problem would
lead to an efficient algorithm for testing when two alphabets A,B satisfy the conditions of Theorem 2.
For the proof and more discussion see Section 5.3.

Remark 4. Theorem 2 refines Conjecture 6.7 from [Dyatlov 2019]. That conjecture recognizes the
potential obstruction of X,Y containing a pair of vertical/horizontal or diagonal/antidiagonal lines (the
case max(|a|, |b|)≤ 1 in Proposition 3), but does account for lines with other slopes, which may occur in
practice. See Figure 1.
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(a) All iterates contain a skewed line. (b) The first iterate contains a skewed
line, but further iterates do not.

Figure 1. Cantor sets can contain lines that aren’t horizontal, vertical, or diagonal, but they are less stable.

Theorem 2 is only interesting when 1
2(δA + δB)≥ 1. Indeed, equation (6.8) from [Dyatlov 2019] says

that (6) always holds with β = max
(
0, 1 −

1
2(δA + δB)

)
. Combining Theorem 2 with Proposition 6.8

from [Dyatlov 2019], we can classify exactly which discrete two-dimensional Cantor sets exhibit a fractal
uncertainty principle.

Corollary 5. Let A,B be a pair of alphabets. Equation (6) holds for some β >max
(
0, 1 −

1
2(δA + δB)

)
if

and only if

• δA + δB ≥ 2 and the orthogonal line condition from Theorem 2 holds,

• δA + δB ≤ 2 and for some j , j ′
∈ A, k, k′

∈ B,

⟨ j − j ′, k − k′
⟩ ̸= 0 as an inner product in Z.

The second condition above is a different sort of orthogonal line condition from the first. Although it
is not initially obvious, the two conditions are the same when δA + δB = 2. Indeed, this must be the case,
because both conditions are if and only if statements. If δA + δB = 2 and A,B do not obey an FUP, then
δA = δB = 1 and

A = {(x0, t) : t ∈ ZM} and B = {(t, y0) : t ∈ ZM} for some x0, y0 ∈ ZM

or

A = {(t, t) : t ∈ ZM} and B = {(t,M − 1 − t) : t ∈ ZM},

or the reverse of these. Indeed, if δA < 1 then X is less than one-dimensional and it cannot contain any
line, so Theorem 2 applies. If δA = δB = 1 then |A| = |B| = N, and A−A, B − B must both lie on
one-dimensional cosets as subsets of Z2. This can only be true in one of the two cases listed above.

1.3. Sketch of the argument. Suppose f : Z2
N → C has supp f = S, supp f̂ = T. Our argument shows

that if S avoids lines in a robust sense, then |T | ≳ N 2. Proposition 15 is a realization of this heuristic.
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We start by writing functions on Z2
N with Fourier support in [0, D]

2 as a trigonometric polynomial
on T2

⊂ C2 with degree ≤ D. We gain two things from using polynomials: unique factorization and
Bezout’s theorem on the intersection of zero loci. The heart of the argument is constructing a trigonometric
polynomial

h(x, y)=

∑
0≤k,l≤D

akl zkwl, z = e
2π i
N x , w = e

2π i
N y, D ≲

√
|T |, (7)

which vanishes on all of T except one line (and does not vanish on all of T ). Then h f̂ is nonzero and
supported along a line, so (h f̂ )∨ has constant magnitude along dual lines. We have (h f̂ )∨ = h∨

∗ f , so

supp(h f̂ )∨ ⊂ S − [0, D] × [0, D].

Thus S −[0, D]×[0, D] contains some dual line, and combining this fact with the structural condition on
S implies D ≳ N. Thus |T | ≳ N 2. Because we end up analyzing the function h f̂ , h is called a multiplier.

It is useful to consider a hypothetical scenario: what if T is the vanishing set of some low-degree
trigonometric polynomial in Z2

N , e.g.,

T = {(x, y) ∈ Z2
N : z2

+ 4zw+w = 1}, z = e
2π i
N x , w = e

2π i
N y?

Bezout’s inequality (Theorem 24) states that any trigonometric polynomial h can only vanish on at most
4D points of T, or it must vanish on all of T. So any multiplier as in (7) would have degree ∼ |T | ≫

√
|T |,

obstructing our strategy if |T | is large.
Luckily, Theorem 19 from [Ruppert 1993, Corollary 5] and [Beukers and Smyth 2002, Theorem 4.1]

excludes this possibility. They prove that the vanishing set of a degree-D trigonometric polynomial in Z2
N

either has order ≤ 22D2 or contains a line. Concretely, with T defined as above, |T | ≤ 88 for all N.
This theorem gives a sharp quantitative form to Lang’s conjecture, which is a qualitative statement about
cyclotomic roots of polynomials in Cn — see Section 4 for more details. Lemma 11 encapsulates this
number-theoretic input as it applies to our result.

1.4. An application to quantum chaos. Dyatlov and Jin [2017] initially introduced Theorem 1 to prove
results in quantum chaos. In particular, they used Theorem 1 to prove a class of one-dimensional quantum
open baker’s maps, a discrete model for open quantum maps, always have a spectral gap. Adapting their
pipeline we can use our Theorem 2 to prove a large class of two-dimensional quantum open baker’s maps
have a spectral gap.

One-dimensional baker’s maps. First we will review the one-dimensional situation as discussed in
[Dyatlov and Jin 2017]. The quantum open baker’s maps in consideration are parametrized by triples

(M,A, χ), M ∈ Z>0, A⊊ ZM , χ ∈ C∞

0 ((0, 1); [0, 1]).

Here M is the base, A is the alphabet, and χ is the cutoff function. For any N ≥ 1, let χN ∈ ℓ2(ZN ) be
given by χN (x)= χ(x/N ). For each k ≥ 1 the corresponding quantum open baker’s map is the operator
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on ℓ2(ZN ), N = Mk, given by

BN = F ∗

N

χN/M FN/M χN/M
. . .

χN/M FN/M χN/M

 IA,M .

Here IA,M is the N × N diagonal matrix with k-th diagonal entry equal to 1 if
⌊

ℓ
N/M

⌋
∈ A and 0

otherwise, and χN/M FN/M χN/M is an (N/M)×(N/M) block matrix given by the corresponding operator
on ℓ2(ZN/M). It is convenient to introduce the projection operator

5a : ℓ2(ZN )→ ℓ2(ZN/M), a ∈ ZM , 5au( j)= u
(

j + a
N
M

)
.

Then
BN =

∑
a∈A

Ba
N , Ba

N := F ∗

N 5
∗

a χN/M FN/M χN/M 5a.

Let Xk ⊂ ZMk denote the Cantor iterates of A as before. The following proposition relates the fractal
uncertainty principle to spectral gaps for BN .

Proposition 6 [Dyatlov and Jin 2017, Proposition 2.6]. Suppose

∥1XkF 1Xk ∥2→2 ≤ CβM−kβ for all k. (8)

Then
lim sup

N→∞

max{|λ| : λ ∈ Sp(BN )} ≤ M−β, (9)

where Sp(BN ) is the spectrum.

Combining Proposition 6 with Theorem 1, Dyatlov and Jin obtain a spectral gap for our quantum open
bakers maps.

Theorem 7 [Dyatlov and Jin 2017, Theorem 1]. There exists β = β(M,A) > 0 such that

lim sup
N→∞

max{|λ| : λ ∈ Sp(BN )} ≤ M−β,

where Sp(BN ) is the spectrum.

It is not hard to show that (8) always holds with β = max
(
0, 1

2 − δ
)
, δ the fractal dimension, so this

theorem is only interesting when δ ≥
1
2 . A different argument for δ < 1

2 shows that in Theorem 1 we can
take β >max

(
0, 1

2 − δ
)

for all δ, giving an improved spectral gap for all fractal dimensions in Theorem 7.

Two-dimensional baker’s maps. A two-dimensional quantum open baker’s map is parametrized by a
triple

(M,A, χ), M ∈ Z>0, A⊊ (ZM)
2, χ ∈ C∞

0 ((0, 1)2; [0, 1]).

We will define baker’s maps BN : ℓ2(Z2
N )→ ℓ2(Z2

N ), N = Mk. As before, define

5a : ℓ2(Z2
N )→ ℓ2(Z2

N/M), a = (a1, a2) ∈ (ZM)
2, 5au( j)= u

(
j + a

N
M

)
.
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Then set

BN =

∑
a∈A

Ba
N , Ba

N := F ∗

N 5
∗

a χN/M FN/M χN/M 5a,

where FN denotes the unitary Fourier transform on ℓ2(Z2
N ) and χN ( j)=χ( j/N ). In Section 5.4 we sketch

the proof that Proposition 6 holds for two-dimensional bakers maps as well, leading to the following.

Theorem 8. Suppose A⊊Z2
M is an alphabet such that X , the Cantor set generated by A, does not contain

a pair of orthogonal lines as in Theorem 2. Then there is some β = β(M,A) > 0 so that

lim sup
N→∞

max{|λ| : λ ∈ Sp(BN )} ≤ M−β .

Just as Theorem 7 is only interesting for δ ≥
1
2 , Theorem 8 is only interesting for δ ≥ 1, because we

can always take β = max(0, 1 − δ) in (8).

1.5. Organization. In Section 2 we give a new proof of a one-dimensional FUP (Theorem 1) as a warmup
for our two-dimensional argument. In Section 3 we prove Theorem 2, up to the proof of the main Lemma 11,
which we defer to Section 4. In Section 5 we supply proofs of several earlier claims which are not directly
relevant to Theorem 2. In particular, we show the condition of Theorem 2 is sharp, prove Proposition 3
regarding lines in Cantor sets, and sketch the two-dimensional proof of Proposition 6 regarding the
application of FUP to quantum baker’s maps. In Appendix A we give a sketch of Ruppert and Beukers–
Smyth’s Theorem 19, which is the essential ingredient to our Lemma 11. Finally, in Appendix B, we
compare Theorem 2 to a more recent higher-dimensional FUP the author [Cohen 2023] proved in Rd. The
more recent result can be used to prove an FUP for discrete Cantor sets in any dimension that avoid all lines,
but cannot recover the precise orthogonal line condition proved in two dimensions in the present paper.

2. The one-dimensional argument

Our starting point is the following simple argument which can be used to establish a one-dimensional
FUP.

Proposition 9. Let I = [a, b) be an interval, and suppose f : ZN → C is nonzero and has f̂ |I = 0. Then
|supp f |> |I | = b − a.

Proof. Suppose |supp f | = k. Let S = supp f = {x1, . . . , xk}. Let F(z) be the polynomial

F(z)= (z − e
2π i
N x1) · · · (z − e

2π i
N xk−1)=

k−1∑
j=0

a j z j .

Let h : ZN → C be defined by

h(x)=
1

√
N

F(e
2π i
N x), ĥ( j)=

{
a j , 0 ≤ j ≤ k − 1,
0, else.
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supp f̂ = {y1, y2, y3, y4}

supp h ⊂ [0, D)
supp f̂ h ⊂ {y1, y2, y3, y4} + [0, D)

y1 y2 y3 y4

f̂ h(y)= 0,
a contradiction

supp f = {x1, x2, x3, x4}

supp f h = {x4}

h

x1 x2 x3 x4

Figure 2. Diagram of the one-dimensional argument.

Then h vanishes on all of S except for xk (and h is nonzero at xk). Thus h f = cδxk , c ̸= 0. So ĥ f has full
Fourier support. But

ĥ f (b − 1)= (ĥ ∗ f̂ )(b − 1)=

k−1∑
j=0

ĥ( j) f̂ (b − 1 − j).

If k ≤ |I | we have ĥ f (b − 1)= 0 leading to a contradiction. Thus |supp f |> |I |. □

See Figure 2 for a visualization.

Remark 10. This proof shares some similarities with Bourgain and Dyatlov’s proof of a one-dimensional
FUP for general fractal sets. They constructed a function ψ with compact Fourier support and which
decays quickly on a fractal set. They multiply by this function to discover that a function supported on a
fractal set must have substantial Fourier mass in a union of intervals. In the discrete setting, things are
much simpler: we may construct a multiplier that vanishes on all but one element of the fractal set, and
then multiply by this function to discover some Fourier mass in every gap.

3. The two-dimensional argument

We first state our main lemma, then derive Theorem 2 from this lemma, and finally discuss the proof of
the lemma. For A ⊂ Z2

N , let

NR(A)= A + [0, R)× [0, R)= supp(1[0,R)×[0,R) ∗ 1A)

be the R-neighborhood of A. A line ℓ⊂ Z2
N is a coset of the form

ℓ= {(x, y) ∈ Z2
N : ax + by = c}.

The coefficients (a, b, c) are only determined up to multiplication by Z×

N . We say ℓ is irreducible if a, b
are coprime over ZN , and ∥ℓ∥ = R is the minimal number so that we can write

ℓ= {(x, y) ∈ Z2
N : ax + by = c}, |a|, |b| ≤ R. (10)
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supp ĝ ⊂ supp f̂ + [0, D)2
ℓ

F(Zn × ZN ) ZN × ZN

g

Figure 3. Visualization of Lemma 11.

Lemma 11. Let f : Z2
N → C be a nonzero function with supp f = S. Let R = ⌊200|S|

1/2
⌋. There is an

irreducible line ℓ with ∥ℓ∥ ≤ R and a nonzero function g with supp g ⊂ S ∩ ℓ and supp ĝ ⊂ NR(supp f̂ ).

This lemma is analogous to the proof of Proposition 9, except we can only localize the support of f to
a line ℓ rather than to a single point. See Figure 3. Before showing how to derive Theorem 2 using this
lemma we discuss discretizations of sets in T2, lines in T2, and lines in Z2

N .

3.1. Discretization of fractal sets. It will be more convenient to state our main results for discretizations
of general fractal sets in T2 and then specialize to Cantor sets later. Let X ⊂ T2 be closed. For 0< r < 1,
let Nr (X)= X + [−r, r ] × [−r, r ] be the r -neighborhood.1 Let

X N =

{
(x, y) ∈ Z2

N :

[
x
N
,

x + 1
N

]
×

[
y
N
,

y + 1
N

]
∩ X ̸= ∅

}
⊂

{
(x, y) ∈ Z2

N :

(
x
N
,

y
N

)
∈ N1/N (X)

}
be a discretization of X to Z2

N . If X is the limiting Cantor set for an alphabet A, then X Mk ⊂ Z2
Mk

is just slightly larger than the k-th Cantor iterate Xk of A (due to endpoint considerations). Likewise,
the drawing Xk (4) of the k-th iterate in T2 is slightly smaller than NM−k (X). If R is an integer and
NR(X N )= X N + [0, R)× [0, R), then

NR(X N )⊂

{
(x, y) ∈ Z2

N :

(
x
N
,

y
N

)
∈ NR/N (X)

}
, (11)

where NR/N (X)⊂ T2. In what follows R will be ∼ Nβ, β < 1, so R/N ∼ Nβ−1, and NR/N (X) will look
like a very small neighborhood of X in T.

1Our convention is that Nr (X) = X + [−r, r ] × [−r, r ] denotes a neighborhood in T2, and NR(A) = A + [0, R)× [0, R)
denotes an “upper right” neighborhood in Z2

N . We take the full neighborhood in T2 rather than just the upper right neighborhood
for technical reasons — this convention makes (11) true, and otherwise it would be more complicated to state.
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3.2. Some useful lemmas on lines.

Lemma 12. Let
ℓ= {(x, y) ∈ Z2

N : ax + by = c}, a, b, c ∈ ZN ,

be an irreducible line, i.e., a, b are coprime as elements of ZN . Then ℓ= Z(−b, a)+ p, where p ∈ ℓ is
arbitrary. We have |ℓ| = N. Also, a, b can be taken as coprime integers.

Proof. Pick s, t so that sa + tb = 1 (mod N ). We have (cs, ct) ∈ ℓ. Suppose ax + by = 0. We claim
(x, y)= (−b, a) · (−t x + sy). Indeed,

−b(−t x + sy)= tbx − sby = tbx + sax = x (mod N ),

a(−t x + sy)= −atx + asy = tby + say = y (mod N )

as needed. This shows that for (x, y) ∈ ℓ, (x, y)− p ∈ (−b, a)Z.
To see |ℓ|= N, notice (−nb, na)+ p= (−mb,ma)+ p (mod N ) if and only if (−(n−m)b, (n−m)a)=

0 (mod N ) if and only if n = m (mod N ), using that a, b are coprime.
Finally, suppose a and b are not coprime integers, but a = αa′, b = αb′, where a′, b′ are coprime

integers. Then because a, b are coprime mod N, α, N are coprime, so

ax + by = c ⇐⇒ α(a′x + b′y)= c ⇐⇒ a′x + b′y = α−1c,

where the equalities above are mod N. □

We will need a uniformity result for lines through closed sets X ⊂ T2. In what follows

d( p, q)= max(|p1 − q1|T, |p2 − q2|T), |x |T = min
n∈Z

|x − n|R, (12)

is the ℓ∞ distance on T2. First we need a lemma.

Lemma 13. Let v = (a, b) with a, b coprime integers. Every coset ℓ = Rv + p is quantitatively dense
in T2, in the sense that, for every q ∈ T2, we have d(q, ℓ)≤ 1/max(|a|, |b|).

In the following proof we let 1
b Z =

{n
b : n ∈ Z

}
.

Proof. For every y0 ∈ T, (Rv + p)∩{y = y0} is a coset of 1
b Z, and, for every x0 ∈ T, (Rv + p)∩{x = x0}

is a coset of 1
a Z. Thus

d((x0, y0), ℓ)≤ d((x0, y0), ℓ∩ {y = y0})≤
1
|a|
,

d((x0, y0), ℓ)≤ d((x0, y0), ℓ∩ {x = x0})≤
1
|b|
,

giving the result. □

Lemma 14. Suppose X ⊊ T2 is closed. There is a constant cX > 0 such that, for every direction
v ∈ R2

− {0}, either some coset Rv + p lies entirely on X , or

sup
x∈Rv+ p

d(x, X)≥ cX (13)

for every p. Moreover, there is some CX > 0 so that if a, b are coprime integers with max(|a|, |b|) > CX ,
then (13) holds for v = (a, b).
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Proof. Because X is a closed proper subset of T2, it is not dense, and there is some x0 ∈ T2 with
d(x0, X)≥ 2c0. If v = (α, β) with α/β or β/α irrational, then Rv + p is dense and has points coming
arbitrarily close to x0. Thus

sup
x∈Rv+ p

d(x, X)≥ 2c0.

Otherwise, let v = (a, b) with a, b coprime integers. By Lemma 13,

inf
x∈Rv+ p

d(x, x0)≤ 1/max(|a|, |b|),

sup
x∈Rv+ p

d(x, X)≥ 2c0 − 1/max(|a|, |b|).

Hence if max(|a|, |b|) > 1/c0, then supx∈Rv+ p d(x, X)≥ c0. For each pair of coprime integers a, b with
max(|a|, |b|)≤ 1/c0, either some coset R(a, b)+ p lies on X , or there is a c1 so

sup
x∈R(a,b)= p

d(x, X)≥ c1 for all p ∈ T2.

There are finitely many such choices of (a, b), so c1 can be chosen uniformly in all of them. We take
cX = min(c0, c1) in (13). □

3.3. Proof of Theorem 2 assuming Lemma 11. Before proving Theorem 2, we prove the following
simpler proposition, which applies when one of the fractal sets X,Y avoids all lines.

Proposition 15. Suppose X ⊊ T2 is closed and does not contain any closed cosets Rv + p ⊂ T2. By
Lemma 14, there is some cX > 0 so that

sup
x∈ℓ

d(x, X)≥ cX , ℓ= Rv + p arbitrary.

If f : Z2
N → C is nonzero and has supp f̂ ⊂ X N , then

|supp f | ≥
c2

X
4002 N 2. (14)

Proof. Suppose supp f = S, supp f̂ ⊂ X N . Apply Lemma 11 to f . We obtain an R ≤ 200|S|
1/2, a line

ℓ= {(x, y) : ax + by = c}, a, b coprime, max(|a|, |b|)≤ R,

and a nonzero g supported on ℓ with supp ĝ ⊂NR(X N ). We claim R/N ≥ cX/2, which would imply (14).
Suppose R/N < cX/2. We show g = 0. Set v = (a, b) and v⊥

= (−b, a). Because g is supported on ℓ,
ĝ has constant magnitude on dual lines Zv + p. Indeed,

ĝ(ξ)=
1
N

∑
v·x=c (mod N )

g(x)e
2π i
N ξ ·x,

ĝ(ξ + nv)=
1
N

∑
v·x=c (mod N )

g(x)e
2π i
N nv·xe

2π i
N ξ ·x

= e
2π i
N nc ĝ(ξ).
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ξ

ℓ

ĝ(ξ)= 0 because the line
through ξ intersects the white region

|supp ĝ| is large because
it has full support on ≥ cN lines

Figure 4. The two cases in Proposition 16 obtain contradictions in different ways.

Let ξ ∈ Z2
N be arbitrary. Let t ∈ R be such that d(tv/N + ξ/N , X) ≥ cX . Let n be the nearest integer

to t . Then

d
(

nv

N
+

ξ

N
, X

)
≥ cX − max

(
|a|

N
,
|b|

N

)
≥

cX

2
.

By (11), since R/N < cX/2, we have nv + ξ /∈ NR(X N ), so ĝ(nv + ξ)= 0 by hypothesis. Thus ĝ(ξ)= 0
as well. Since ξ ∈ Z2

N was arbitrary, g = 0. □

Now we prove a more general proposition applying to measure-zero sets X,Y which don’t contain a
pair of orthogonal lines. Theorem 2 follows directly from this proposition by submultiplicativity.

Proposition 16. Suppose X,Y ⊂ T2 are closed and have Lebesgue measure zero. Suppose that, for every
direction v = (a, b) ∈ R2

−{0}, v⊥
= (−b, a), either X contains no coset Rv + p or Y contains no coset

Rv⊥
+ p. Then for large enough N, there is no nonzero f : Z2

N → C with supp f ⊂ X N and supp f̂ ⊂ YN .

The proof involves two cases; see Figure 4.
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Proof. First notice that by continuity of measure,

lim
r→0

|Nr (X)| = lim
r→0

|Nr (Y)| = 0, (15)

where | · | denotes the Lebesgue measure. It follows that

|X N |, |YN | = o(N 2) (16)

as N → ∞.
Using the hypothesis and Lemma 14, there is some c > 0 such that, for every coprime a, b, either

sup
y∈R(a,b)+ p

d(y,Y)≥ c for all p (17)

or
sup

x∈R(−b,a)+ p
d(x, X)≥ c for all p. (18)

There is also some C > 0 so that if max(|a|, |b|) > C , then (17) and (18) both hold.
Suppose supp f = S ⊂ X N and supp f̂ ⊂ YN . Apply Lemma 11 to f to obtain an R ≤ o(N ), a line

ℓ= {(x, y) : ax + by = c}, a, b coprime, max(|a|, |b|)≤ R,

and a nonzero g supported on ℓ∩ X N with supp ĝ ⊂ NR(YN ). Let v = (a, b), v⊥
= (−b, a).

Case 1: Suppose (17) holds. Then we are in the same position as Proposition 15, and for N large enough
we conclude g = 0, which is a contradiction.

Case 2: Suppose (17) does not hold. Then (18) holds and max(|a|, |b|)≤ C . Choose p = (p1, p2) ∈ ℓ,
so ℓ= Zv⊥

+ p. Write g(nv⊥
+ p)= g̃(n). Then

ĝ(ξ)=
1
N

∑
n∈ZN

g̃(n)e−
2π i
N ξ ·(nv⊥

+ p)
= e−

2π i
N ξ · p N−1

∑
n∈ZN

g̃(n)e−
2π i
N nξ ·v⊥

.

Notice in particular that ĝ only depends on ξ · v⊥. By Lemma 12, for every d ∈ ZN there are N solutions
in ξ to ξ · v⊥

= d . So we may write

ĝ(ξ)=
1

√
N

e−
2π i
N ξ · p ˆ̃g(ξ · v⊥)=

1
N

∑
n∈ZN

g̃(n)e−
2π i
N nξ ·v⊥

,

|ĝ(ξ)| =
1

√
N

| ˆ̃g(ξ · v⊥)|,

Thus |supp ĝ| = N |supp ˆ̃g|.
Choose t ∈ R so that d(tv⊥/N + p/N , X)≥ c. Then

d
(

sv⊥

N
+

p
N
, X

)
≥ c − |s − t |

C
N

≥
c
2

for |s − t | ≤
c

2C
N .

If s is an integer satisfying the above and N > 100/c, we conclude that sv⊥
+ p /∈ X N .

Let I = [t − (c/2C)N , t + (c/2C)N ] ∩ Z. Then |I | ≥ (c/C)N and g̃|I = 0. By Proposition 9,

|supp ˆ̃g| = N | ˆ̃g| ≥
c
C

N 2.

On the other hand, |YN | ≤ o(N 2), leading to a contradiction for large enough N. □



756 ALEX COHEN

Remark 17. Although Proposition 16 applies to arbitrary fractal sets, Theorem 2 only applies to Cantor
sets, because we need submultiplicativity in order to prove exponential decay (6).

Remark 18. Let us note a quantitative difference between Cases 1 and 2 above. In Case 1 the coefficients
a, b determining the line ℓ should have size o(N ) in order to obtain a contradiction. In Case 2, the coeffi-
cients a, b must have size O(1). Lemma 11 only gives a, b = o(N ), so we argue that if max(|a|, |b|) >C ,
we can use Case 1, and Case 2 only arises when max(|a|, |b|)≤ C .

Now we can conclude Theorem 2.

Proof of Theorem 2. Suppose A and B are alphabets satisfying the condition of Theorem 2. The Cantor
sets they generate, X and Y, satisfy the conditions of Proposition 16. Indeed, X,Y have dimension < 2,
so certainly |X| = |Y | = 0.

Let Xk,Yk ⊂ Z2
N , N = Mk, be the k-th Cantor iterates. Then Xk ⊂ X N , Yk ⊂ YN , where X N and YN

are obtained by discretizing X,Y as in Section 3.1. By Proposition 16, for N large enough there is no
f : Z2

N → C with supp f ⊂ X N and supp f̂ ⊂ YN . Thus for k large enough, there is no f with supp f ⊂Xk

and supp f̂ ⊂ Yk . For this k,
∥1YkF 1Xk ∥2→2 < 1

and so by submultiplicativity we conclude

∥1YkF 1Xk ∥2→2 ≲ M−kβ

for some β > 0. □

4. Proof of the main lemma

Lang [1965] conjectured that if C is an irreducible algebraic curve in C×n with infinitely many cyclotomic
points — that is, points (z1, . . . , zn) ∈ C all of which are roots of unity — then C is a translate of a
subgroup of C×n by a root of unity [Granville and Rudnick 2007].

The key ingredient in proving Lemma 11 is the following theorem from [Ruppert 1993, Corollary 5]
and [Beukers and Smyth 2002, Theorem 4.1], which can be viewed as a sharp quantitative form of Lang’s
conjecture in two dimensions.

Theorem 19 [Ruppert 1993; Beukers and Smyth 2002]. Let

F(z, w)=

∑
0≤k,l≤D

akl zkwl (19)

be a polynomial in C[z, w] with degree at most D in z, w separately. Then F has either at most 22D2

cyclotomic points, or infinitely many. In the latter case F has an irreducible factor

zawb
− ζ or za

− ζwb (20)

for some root of unity ζ and coprime integers a, b.

We note that zawb
− ζ or za

− ζwb is only irreducible if a and b are coprime integers, which is why
that is part of the conclusion. In their paper Beukers Smyth actually proved significantly more; they gave
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an algorithm to compute this factor. The approach is to find seven polynomials F1, . . . , F7 so that every
cyclotomic root of F is also a root of some Fj , and then apply Bezout’s inequality to bound their pairwise
intersection; see Appendix A for a sketch. In what follows

deg F = max
akl ̸=0

max(|k|, |l|), F(z, w)=

∑
k,l

akl zkwl (21)

so that (19) is the general form of a polynomial with degree ≤ D.
Recall that we can embed T2

→ C×2 via

(x, y) 7→ (e2π i x , e2π iy).

The cyclotomic points in C×2 are precisely the image of (Q/Z)2. For F(z, w) a polynomial, we let

Z(F)= {(x, y) ∈ T2
: F(e2π i x , e2π iy)= 0},

ZN (F)= {(x, y) ∈ Z2
N : F(e

2π i
N x , e

2π i
N y)= 0}. (22)

If we view Z2
N as the subgroup of T2 given by

Z2
N

∼= T2
N =

{(
x
N
,

y
N

)
∈ T2

|x, y ∈ Z

}
then ZN (F)= Z(F)∩ T2

N . We say that a polynomial F of the form (20) cuts out a line because

Z(F)= {(x, y) ∈ T2
: ax + by = c} or Z(F)= {(x, y) ∈ T2

: ax − by = c},

with a, b ≥ 0 integers and c ∈ Q. If c = c′/N , c′
∈ Z, then we say ℓ cuts out a line in Z2

N . Conversely,
suppose

ℓ= {(x, y) ∈ Z2
N : ax + by = c (mod N )}

is an irreducible line. By Lemma 12, a, b can be taken as coprime integers. Then

ℓ= ZN (Pℓ), Pℓ(z, w)=

{
zawb

− e
2π ic

N , a, b ≥ 0,
za

− e
2π ic

N w|b|, a ≥ 0, b < 0,

and Pℓ is an irreducible polynomial with deg Pℓ ≤ 2∥ℓ∥. Theorem 19 is related to Lemma 11 because
functions g : Z2

N → C with supp ĝ ⊂ [0, D] × [0, D] have values given by polynomials at cyclotomic
points:

g(x, y)=
1
N

∑
0≤k,l≤D

ĝ(k, l)zkwl, z = e
2π i
N x , w = e

2π i
N y .

Lemma 11 is a quick consequence of the following. We don’t try to optimize the constant 200.

Lemma 20. Let S ⊂ Z2
N be an arbitrary nonempty set. Then there is a polynomial F∗ with deg F∗ <

200|S|
1/2

− 1 so that S −ZN (F∗) is nonempty and lies on an irreducible line ℓ with ∥ℓ∥ ≤ 200|S|
1/2.
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We prove the slightly awkward bound deg F∗< 200|S|
1/2

−1 in order to make the proof and application
of Lemma 11 cleaner. Before proving this lemma, it is helpful to consider how it could fail to be true.
Consider a quadratic polynomial

G(z, w)= a + bz + cw+ f zw+ dz2
+ ew2

which does not cut out a line (e.g., G is not of the form z =w2). Theorem 19 says that |ZN (G)| ≤ 44 for
all N (the quadratic polynomial G cannot pass through many cyclotomic points). Ignoring this fact for a
moment, it turns out that if for some G, N we have |ZN (G)|> 12002, then Lemma 20 would fail.

Let S = ZN (G). Suppose F∗ is a polynomial of degree ≤ 200|S|
1/2 such that S −ZN (F∗) is nonempty

and lies on a line ℓ with ∥ℓ∥ ≤ 200|S|
1/2. The polynomial G cannot be a component of F∗, because that

would mean S ⊂ ZN (F∗). So by Bezout’s inequality (Theorem 24),

|ZN (F∗)∩ S| ≤ 2 deg F∗
≤ 400|S|

1
2 .

If ℓ is a line with ∥ℓ∥ ≤ 200|S|
1/2, then

|ℓ∩ S| = |ZN (Pℓ)∩ S| ≤ 2 deg Pℓ ≤ 4∥ℓ∥ ≤ 800|S|
1
2

again by Bezout’s inequality. Thus if S −ZN (F∗) lies on such a line ℓ,

|S| − 800|S|
1
2 ≤ 400|S|

1
2 =⇒ |S| ≤ 12002

as claimed. Before proving Lemma 20 we need another lemma.

Lemma 21. For every nonempty set S ⊂ C2, D = ⌊|S|
1/2

⌋, there is a nonzero polynomial F(z, w) =∑
0≤k,l≤D akl zkwl vanishing on S.

Proof. Consider the linear map taking

(akl)0≤k,l≤D 7→

(∑
kl

akl zkwl
: (z, w) ∈ S

)
.

If (D + 1)2 > |S| then by rank nullity this has a nontrivial kernel, which is our desired polynomial F.
Thus we may take D = ⌊|S|

1/2
⌋. □

The proof of Lemma 20 involves four cases; see Figure 5.

Proof of Lemma 20. We give a recursive algorithm to find our polynomial F∗. Mathematically this is
phrased as induction on the size of S. For ease of presentation we prove we can take deg F∗

≤200|S|
1/2, but

the same argument can be optimized to give deg F∗
≤ 198|S|

1/2, yielding the claim deg F∗< 200|S|
1/2

−1.
Let F be a polynomial of minimal degree D with S ⊂ ZN (F). We have D ≤ |S|

1/2 by Lemma 21. If
there are several such polynomials, choose one with the minimal number of irreducible factors.

Case 1: F cuts out a line ℓ. In this case

ZN (F)=

{
(x, y) ∈ Z2

N :
ax
N

+
by
N

= c
}
, c ∈ Q.
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F
F∗ ℓ

induct. G F

Figure 5. Cases 1–4 (left to right, top to bottom) in the proof of Lemma 20.

Because S is nonempty there is some (x0, y0)∈ S with c = (ax0+by0)/N. So F cuts out a line ℓ in Z2
N , and

ZN (F)= ℓ= {(x, y) ∈ Z2
N : ax + by = ax0 + by0}, ∥ℓ∥ ≤ deg F ≤ |S|

1
2 .

Thus we are already done — we may take F∗
= 1, and S already lies on a desired line ℓ.

Case 2: |S| ≤ 200. Let S = {(xk, yk) ∈ Z2
N }, and {x1, . . . , xm} be the distinct x-coordinates appearing

in S. If m = 1, we are in Case 1. Otherwise, set

F∗
= (z − e2π i x1/N ) · · · (z − e2π i xm−1/N ).

Then deg F∗ < 200 ≤ 200|S|
1/2, and

S −ZN (F∗)⊂ {x = xm}

lies on a line.

Case 3: F is irreducible but does not cut out a line. In this case, |S| ≤ 22D2 by Theorem 19. Because
|S| ≥ 200, we have D ≥ 4. Choose a curve G of degree D − 1 passing through at least

(D − 1)2 ≥
1
22

|S|

(
1 −

1
D

)2
≥

|S|

40
points of S. Let A= S∩ZN (G). Notice S−A is nonempty by the minimality of D. Now apply the inductive
hypothesis to find a polynomial H passing through all but one line of S − A with deg H ≤ 200|S − A|

1/2,
and set F∗

= G H. We have

deg G ≤ 200
√

|S|
(
1 −

1
40

)
+ D − 1 ≤ |S|

1
2 (198 + 1)≤ 200|S|

1
2

as needed.
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Case 4: F is reducible. Let F = G H, where neither G nor H are scalars and |ZN (G)| ≤ |ZN (H)|. Let
T = ZN (G)−ZN (H). Because deg H ≤ deg F and H has fewer irreducible factors than F, S ̸⊂ ZN (H),
so T is nonempty. Using the inductive hypothesis we may find a polynomial P passing through all but
one line of the set T = ZN (G)− ZN (H) (notice T is nonempty by the minimality of the number of
irreducible factors). We have |T | ≤ |S|/2. Set F∗

= H P. We have

deg F∗
≤ 200|T |

1
2 + deg H ≤ 200

( 1
2 |S|

) 1
2 + |S|

1
2 ≤ 143|S|

1
2

as needed. □

Now we prove Lemma 11.

Proof of Lemma 11. Let f : Z2
N → C have supp f = S. Let R = ⌊200|S|

1/2
⌋. By Lemma 20 let

F∗
=

∑
0≤k,l<R

ak,l zkwl
∈ C[z, w], ℓ= {(x, y) ∈ Z2

N : ax + by = c}, max(|a|, |b|)≤ R

be such that
A = S −ZN (F∗)

is nonempty and lies on ℓ. Let h : Z2
N → C be defined by

h(x, y)=
1
N

F(e
2π i
N x , e

2π i
N y), ĥ(k, l)=

{
ak,l, 0 ≤ k, l < R,
0, else.

Thus h f is nonzero and supported in ℓ. Also,

supp ĥ f = supp ĥ ∗ f̂ ⊂ supp(1[0,R)2 ∗ 1supp f̂ )= NR(supp f̂ ).

Setting g := h f we are done. □

Remark 22. In order to obtain Theorem 2, it would suffice to replace Theorem 19 with a quantitatively
weaker version which says that for F(z, w) a degree-D irreducible polynomial not cutting out a line,

#{(ζ1, ζ2) : F(ζ1, ζ2)= 0} ≲ε D2+ε, ζ1, ζ2 cyclotomic,

for all ε > 0.

5. Loose ends

5.1. Submultiplicativity. We prove the submultiplicativity estimate (2) in two dimensions.

Proof. We first recall how Dyatlov [2019, Lemma 4.6] proved submultiplicativity for discrete one-
dimensional cantor sets. The Fourier transform F : ZN1 N2 → ZN1 N2 can be realized as follows. We realize
L2(ZN1 N2) as L2(MatN1×N2). In this basis,

F = Fcol DFrow,

where

(FrowU )pb =
1

√
N2

N2∑
q=0

e−
2π i
N2

bqUpq applies the Fourier transform to each row,
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(FcolU )pb =
1

√
N1

N1∑
q=0

e−
2π i
N1

pqUqb applies the Fourier transform to each column,

(DU )pb = e−
2π i
N pbUpb applies a phase shift to each entry.

Abstractly, L2(ZN1 N2)= L2(ZN1)⊗ L2(ZN2). But

FZN1
⊗FZN2

= FZN1×ZN2
̸= FZN1 N2

.

The phase shift operator D corrects this issue. We can write

Frow = Id ⊗FZN2
, Fcol = FZN1

⊗ Id,

F = (FZN1
⊗ Id) ◦ D ◦ (Id ⊗FZN2

).
(23)

In the notation of tensor products, if N1 = Mk , N2 = Mr, then

1Xk+r = 1Xk ⊗ 1Xr , 1Yk+r = 1Yk ⊗ 1Yr .

Because 1Xk+r , 1Yk+r commute with D,

1Yk+rFk+r 1Xk+r = (1Yk ⊗ 1Yr ) ◦ (FZN1
⊗ Id) ◦ D ◦ (Id ⊗FZN2

) ◦ (1Xk ⊗ 1Xr )

= (1YkFZN1
⊗ 1Yr ) ◦ D ◦ (1Xk ⊗FZN2

1Xr )

= (1YkFZN1
1Xk ⊗ 1Yr ) ◦ D ◦ (1Xk ⊗ 1YrFZN2

1Xr ).

It follows from the above that

∥1Yk+rFk+r 1Xk+r ∥2→2 ≤ ∥1YkFZN1
1Xk ∥2→2∥1YrFZN2

1Xr ∥2→2

as desired. Written in this way, it is easy to see that the submultiplicativity estimate extends to two
dimensions. We have the equation

FZ2
N1 N2

= (FZ2
N1

⊗ Id) ◦ D ◦ (Id ⊗FZ2
N2
),

where D is a multiplication operator (indeed, this can be seen from writing Z2
N1 N2

as a product of two
copies of ZN1 N2 and tensoring (23) with itself) and the rest of the proof goes through verbatim. □

5.2. Theorem 2 is sharp. Suppose A,B are alphabets generating fractal sets X,Y ⊂ T2 with

Rv + p ⊂ X and Rv⊥
+ q ⊂ Y ,

v = (a, b), v⊥
= (−b, a), a and b coprime integers.

We show A,B do not obey an FUP. This amounts to showing that, for infinitely many k (in fact, for all k),
there exists f : Z2

N → C with

supp f ⊂ Xk, supp f̂ ⊂ Yk,

where Xk , Yk are defined in (3).
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Case 1: a = 0 or b = 0. Assume (a, b) = (0, 1). Then X contains a vertical line and Y contains a
horizontal line. It follows that A contains some vertical line {x = x0}, x0 ∈ ZM , and B contains a horizontal
line {y = y0}. Let

x (k) = x0 + Mx0 + · · · + Mk−1x0, {(x (k), y) : y ∈ ZN } ⊂ Xk,

y(k) = y0 + My0 + · · · + Mk−1 y0, {(x, y(k)) : y ∈ ZN } ⊂ Yk .

We have
FN−

1
2 1x=0(ξ, η)= N−

3
2

∑
y∈ZN

e−
2π i
N yη

= N−
1
2 1η=0,

so
f = N−

1
2 e2π iy(k)1x=x (k)

satisfies
supp f = {x = x (k)} ⊂ Xk, supp f̂ = {y = y(k)} ⊂ Yk

as needed.

Case 2: a, b ̸= 0. In this case we claim

Xk =

{
(x, y) ∈ Z2

N :

(
x
M
,

x + 1
M

)
×

(
y
M
,

y + 1
M

)
∩ X ̸= ∅

}
,

Yk =

{
(x, y) ∈ Z2

N :

(
x
M
,

x + 1
M

)
×

(
y
M
,

y + 1
M

)
∩ Y ̸= ∅

}
.

(24)

It is clear that if (x/M, (x +1)/M)×(y/M, (y+1)/M)∩ X ̸=∅ then (x, y)∈Xk . For the other direction,
we first note that (0, 1)2 ∩ X ̸= ∅— the only way for this to fail is if A lies on one of the horizontal
or vertical lines x = 0, x = M − 1, y = 0, y = M − 1 in which case we are back in Case 1. Now if
(x, y) ∈ Xk , then (x, x + 1)× (y, y + 1)∩ X ̸= ∅ by the self-similarity of X .

Now, assume without loss of generality that a, b are coprime. We will show that, for all k, there exist
p(k), q(k) ∈ Z2

Mk so that

Zv + p(k) ⊂ Xk and Zv⊥
+ q(k) ⊂ Yk . (25)

We show it just for Xk . By (24), we would like to choose p(k) = (p(k)1 , p(k)2 ) so that, for all t ∈ Z,

p(k)1 + ta < Mk p1 + (t + ε)a < p(k)1 + ta + 1,

p(k)2 + tb < Mk p2 + (t + ε)b < p(k)2 + tb + 1

for some small ε. Rearranging, this amounts to

0< (Mk p1 − p(k)1 )+ εa < 1,

0< (Mk p2 − p(k)2 )+ εb < 1.
(26)

To make this true, we select p(k)1 , p(k)2 to be integers so that

Mk p1 − p(k)1 ∈

{
[0, 1) if a > 0,
(0, 1] if a < 0,

Mk p2 − p(k)2 ∈

{
[0, 1) if b > 0,
(0, 1] if b < 0.
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In each of these cases (26) will hold, which yields (25). Now, we have

F1Zv(ξ)=
1

√
N

∑
t∈ZN

e−
2π i
N tv·ξ

= 1v·ξ=0 = 1Zv⊥

by Lemma 12. Thus with Ta f = f ( · − a) the translation operator, we see that

f = F−1Tq(k)FTp(k)1Zv

satisfies
supp f ⊂ Zv + p(k) ⊂ Xk, supp f̂ ⊂ Zv⊥

+ q(k) ⊂ Yk,

contradicting a fractal uncertainty principle.

5.3. Proof of Proposition 3. Let A ⊂ Z2
M be an alphabet and X ⊂ T2 the Cantor set it generates. Let

A ⊂ T2 be the drawing of A.
First we show that a line Rv + p lies on X if and only if Rv + Mk p lies on A for all k ≥ 0. Recall that

x ∈ X if and only if Mk x ∈ A for all k ≥ 0.

Now, suppose Rv + p ⊂ X . Then

tv + p ∈ X =⇒ (Mk t)v + Mk p ∈ X,

so rescaling, Rv + Mk p ⊂ X ⊂ A. In the reverse direction, suppose Rv + Mk p ⊂ A for all k. Then

Mk(tv + p) ∈ A for all k =⇒ tv + p ∈ X

as needed. Also, by Lemma 13, if v = (a, b) and max(|a|, |b|) > M then Rv + p ̸⊂ A for any p.

More discussion on a procedure for checking lines. Suppose ℓ= Rv + p. If v is a multiple of (1, 0) then
ℓ is a horizontal line, and X can only contain a horizontal line if A does.

Otherwise, let v = (a, b)with a, b coprime integers, b ̸=0. Assume a, b are fixed and max(|a|, |b|)≤ M.
There is some p′

= (p0, 0) ∈ ℓ, so ℓ= Rv + (p0, 0). We will turn the question around and consider the
closed set

Sv = {s ∈ T : Rv + (s, 0)⊂ A}.

The only possible boundary points are those for which Rv + (s, 0) intersects a point of the form
( j/M, k/M) ∈ T2. If tv + (s, 0)= ( j/M, k/M) then we can compute s as

s =
jb − ka + Mr

Mb
for some r ∈ Z, so s =

c
Mb

for some c ∈ Z.

Now we can write Sv as a union of intervals,

Sv =

{
s j ∈ {0, . . . ,Mb − 1} :

[
s j

Mb
,

s j + 1
Mb

]
⊂ Sv

}
,

Sv =

⋃
s j ∈Sv

[
s j

Mb
,

s j + 1
Mb

]
.
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Given the alphabet A and v = (a, b), one can efficiently compute the finite set Sv ⊂ ZMb. It is then a
combinatorial question whether or not there exists x ∈ T so that Mk x ∈ Sv for all k. It would be interesting
to find an algorithm to answer this question.

5.4. FUP implies spectral gap for bakers maps. We would like to show that the results in [Dyatlov and
Jin 2017, §2] hold for two-dimensional bakers maps, in particular Proposition 6 ([loc. cit., Proposition 2.6]).
We prove here that [loc. cit., Proposition 2.3] holds in two dimensions. The deduction of Proposition 2.4
from Proposition 2.3 is the same in two dimensions, and the proofs of Proposition 2.5 and 2.6 go through
verbatim.

In what follows we use the ℓ∞ distance on T2 as in (12). Let 8 be the expanding map

8=8M,A :

⊔
a∈A

(
a1

M
,

a1 + 1
M

)
×

(
a2

M
,

a2 + 1
M

)
→ (0, 1)2,

8(x, y)= (Mx − a1,My − a2), (x, y) ∈

(
a1

M
,

a1 + 1
M

)
×

(
a2

M
,

a2 + 1
M

)
.

For each ϕ : T2
→ R define

ϕN ∈ ℓ2(Z2
N ), ϕN ( j)= ϕ( j/N ).

The function ϕN defines a multiplication operator as well as a Fourier multiplier ϕF
N = F ∗

NϕNFN .

Proposition 23 (propagation of singularities). Assume that ϕ,ψ : T2
→ [0, 1] and, for some c > 0,

0 ≤ ρ < 1,
d(8(suppψ ∩8−1(suppχ)), suppϕ)≥ cN−ρ . (27)

Then

∥ϕN BNψN ∥2→2 = O(N−∞), (28)

∥ϕF
N BNψ

F
N ∥2→2 = O(N−∞), (29)

where O(N−∞) means decay faster than any polynomial, with constants depending only on c, ρ, χ . In
particular, these hold when

d(suppψ,8−1(suppϕ))≥ cN−ρ . (30)

The proof is almost identical to that in [Dyatlov and Jin 2017].

Proof. We have

ϕN BNψN u( j)=

∑
a∈A

∑
0≤k1,k2≤N/M−1

k=(k1,k2)

Aa
j ku

(
k + a

N
M

)
,

where

Aa
j k =

M
N 2ϕ

(
j

N

)
exp

(
2π i
M

a · j
)
χ

(
k

M
N

)
ψ

(
k
N

+
a
M

)
Ã j k,

and

Ã j k =

∑
0≤m1,m2≤N/M−1

m=(m1,m2)

exp
(

2π i
N

m · ( j − kM)
)
χ

(
m

M
N

)
.
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We can write

Ã j k =

∑
m∈Z2

N

exp
(

2π i
N

b · m
)
χ1

(
m
N

)
, bL = j − kM, χ1(x)= χ(M x).

We have Aa
j k = 0 unless

j
N

∈ suppϕ,
k
N

+
a
M

∈ suppψ, k
M
N

=8

(
k
N

+
a
M

)
∈ suppχ.

It follows that d(b/N , 0) ≥ cN−ρ, so by the method of nonstationary phase [Dyatlov and Jin 2017,
Lemma 2.2], we see maxa, j ,k |Aa

j k| = O(N−∞) and (28) follows. Equation (29) is a consequence, as

ψF
N BNϕ

F
N = F ∗

N (ϕN BNψN )
∗FN

and the Fourier transform is unitary. □

Appendix A: Sketch of the proof of Theorem 19

In this section we will try to illustrate the main ideas of Beukers and Smyth’s proof of Theorem 19 as
directly as possible. In what follows the degree of a polynomial is

deg F = max
akl ̸=0

(k + l), F(z, w)=

∑
k,l

akl zkwl
∈ C[z, w],

which is different from Section 4. We will use the notation Z N (F)⊂ Z2
N as in (22).

A.1. Bezout’s inequality. We first state Bezout’s theorem.

Theorem 24. Let F,G ∈ C[z, w] be coprime irreducible polynomials with degrees D, E which are not
multiples of each other,

F =

∑
0≤k+l≤D

akl zkwl, G =

∑
0≤k+l≤E

bkl zkwl .

Then

|{(z, w) ∈ C2
: F(z, w)= G(z, w)= 0}| ≤ DE .

If intersections are taken in CP2 and counted with multiplicity, then this is an equality.

We denote by V(F), V(G)⊂ C2 the zero sets of F and G. Then Bezout’s inequality can be written

|V(F)∩V(G)| ≤ DE . (31)

A.2. Setup for Theorem 19. To prove Theorem 19, it is more convenient to work with Laurent polynomi-
als F ∈ C[z, w, z−1, w−1

]. Like polynomials in two variables, Laurent polynomials in two variables also
enjoy unique factorization up to units and satisfy a version of Bezout’s inequality. From this perspective,
the factors za

− ζwb can be written as zaw−b
− ζ , so we can just look for factors of the form zawb

− ζ .
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Beukers and Smyth make the following reduction. For F =
∑

kl akl zkwl
∈ C[z, w, z−1, w−1

] a Laurent
polynomial, let L(F) be the sublattice of Z2 generated by

{(k, l)− (k ′, l ′) : akl, ak′,l ′ ̸= 0}.

Notice that if F = zawb
− ζ , then L(F)= Z(a, b) has rank 1. If F = za

− ζwb, then L(F)= Z(a,−b).
More generally, if L(F) has rank 1 then F can be written as a function of zawb and one can reduce to
the one variable case. If L(F) has rank 2 but is not all of Z2, one can change variables within the class of
Laurent polynomials to reduce to the case where L(F)= Z2. Rather than fully explain this, we will just
prove Theorem 19 in the case where F is a genuine polynomial and L(F)= Z2.

Here is part of Lemma 1 from [Beukers and Smyth 2002].

Lemma 25. If ζ is a root of unity, then it is Galois conjugate to exactly one of −ζ, ζ 2,−ζ 2.

Now we partially prove a lemma covering the relevant portions of [Beukers and Smyth 2002, §3]. We
follow them directly.

Lemma 26. Let F ∈ C[z, w] be an irreducible polynomial with L(F)= Z2. Then there are seven other
polynomials F1, . . . , F7 none of which have F as a component, and such that if (z, w) is a cyclotomic
point (zN

= wN
= 1 for some N ) with F(z, w)= 0, then Fj (z, w)= 0 for some 1 ≤ j ≤ 7. We may take

deg F1 = deg F2 = deg F3 = deg F,

deg F4 = deg F5 = deg F6 = deg F7 = 2 deg F.

It follows directly from Bezout’s inequality (31) that

ZN (F)⊂

⋃7

j=1
ZN (F)∩ZN (Fj ) for all N ,

|ZN (F)| ≤ 3D2
+ 8D2

= 11D2 for all N .

Remark 27. In Theorem 19 we state the bound 22D2 rather than 11D2 because we allow terms of the form
zDwD, which has degree 2D. The bound is 22D2 rather than 11(2D)2 =44D2 because the Newton polytope
of F has volume ≤ D2, so [Beukers and Smyth 2002, Theorem 4.1] gives the sharper bound of 22D2.

A.3. Proof sketch of some special cases of Lemma 26. In the proof we split into cases depending on
whether or not F can be defined over an abelian extension of Q. The hardest case is when F is defined in
some nontrivial abelian extension of Q — there are a few subcases involved. We prove Lemma 26 in the
two easier cases where F has coefficients in Q, and where F is not defined over any abelian extension.

First, multiply F by a constant so one of its coefficients is rational.

Case 1: F ∈ Q[z, w]. We take

F1 = F(−z, w), F2 = F(z,−w), F3 = F(−z,−w),

F4 = F(z2, w2), F5(−z2, w2), F6(z2,−w2), F7(−z2,−w2).

We must show that if F(z, w)= 0 is a cyclotomic point, Fj (z, w)= 0 for some j . Let ζ be a root of unity
and z = ζ a, w= ζ b, a, b coprime. Then f (ζ )= F(ζ a, ζ b) is a polynomial in ζ with rational coefficients.
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Thus every conjugate of ζ is also a root of f . By Lemma 25 exactly one of {−ζ, ζ 2,−ζ 2
} is conjugate

to ζ , so one of

(−ζ a, ζ b), (ζ a,−ζ b), (−ζ a,−ζ b), (ζ 2a, ζ 2b), (−ζ 2a, ζ 2b), (ζ 2a,−ζ 2b), (−ζ 2a,−ζ 2b)

is also a zero of F as needed. It remains to show that F is not a component of any Fj . Because
they arise from a linear change of variables of F, we know F1, F2, F3 are irreducible. If F1 is a linear
multiple of F, then all nonzero akl must have the same parity for k. Thus L(F) would span a proper
sublattice of Z2 contradicting our assumption. Similar arguments show that F2 and F3 are not linear
multiples of F, and because they have the same degree, F is not a component. If F were a component
of F4 then F(z2, w2) = F(z, w)G(z, w), so F(z2, w2) = F1(z, w)G(−z, w), and F1 is a component
of F4 as well. An analogous argument shows F2, F3 are components as well. This would imply
that deg F4 ≥ deg F F1 F2 F3 ≥ 4D using the fact that F1, F2, F3, F4 are all distinct irreducibles. But
deg F4 = 2D, a contradiction. A similar argument shows F is not a factor of F5, F6, F7.

Case 2: The coefficients of F do not lie in any abelian extension of Q. This case is easier. Let
σ ∈ Gal(C/Qab) be an automorphism of C which fixes Qab and does not fix the coefficients of F. Here
Qab is the maximal abelian extension of Q, which is the composite of all the cyclotomic extensions
Q[e2π i/N

]. Let
Fσ =

∑
kl

σ(akl)zkwl .

For z, w a cyclotomic root of F, we have σ(z)= z and σ(w)= w, so

Fσ (z, w)= σ(F(z, w))= 0.

Thus the cyclotomic points of F are contained in V (F) ∩ V (Fσ ). But Fσ is not a multiple of F,
because some coefficient of F (the rational one) is fixed by σ and another must be different. Thus
V (F)∩ V (Fσ )≤ D2.

Appendix B: Higher dimensions and continuous FUP

B.1. Results from a new method. It seems difficult to use the ideas in the present paper to prove a
discrete FUP in d ≥ 3 dimensions. We would need a higher-dimensional analogue of Theorem 19 with
very strong bounds that are currently unavailable.

However, after this work was completed the author [Cohen 2023] proved a fractal uncertainty principle
for sets X ⊂ Rd that avoid lines in a quantitative sense called line porosity. The core of the latter
paper involves constructing plurisubharmonic functions, and the methods are completely different from
those used here — there is no arithmetic input. Using the new work we can prove the following higher-
dimensional result for discrete Cantor sets.

Theorem 28. Suppose A,B ⊊ Zd
M are alphabets with drawings X,Y ⊂ Td. If Y does not contain any

lines, then Xk,Yk satisfy
∥1YkF 1Xk ∥2→2 ≲ M−kβ

for some β > 0.
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The more recent work has a few advantages. We don’t need self-similarity, the result applies in
any dimension, and most importantly, we move from the model setting Zd

N to the physically relevant
domain Rd.

On the other hand, Theorem 2 gives a precise condition involving pairs of orthogonal lines which is
currently unavailable in the continuous setting: Theorem 28 needs one of the Cantor sets to avoid all lines.
It is an interesting challenge to improve the main result of [Cohen 2023] so the condition involves pairs
of orthogonal subspaces.

B.2. Statement of higher-dimensional continuous FUP. For x ∈ Rd, let BR(x) be the radius-R ball
about x.

Definition 29. Let ν ≤
1
3 .

• A set X ⊂ Rd is ν-porous on balls from scales α0 to α1 if for every ball B of diameter α0 < R < α1

there is some x ∈ B such that BνR(x)∩ X = ∅.

• A set X is ν-porous on lines from scales α0 to α1 if for all line segments τ with length α0 < R < α1

there is some x ∈ τ such that BνR(x)∩ X = ∅.

We are ready to state the main theorem of [Cohen 2023].

Theorem 30. Let ν > 0 and assume that

• X ⊂ [−1, 1]
d is ν-porous on balls from scales h to 1, and

• Y ⊂ [−h−1, h−1
]
d is ν-porous on lines from scales 1 to h−1.

Then there exist β,C > 0 depending only on ν and d such that for all f ∈ L2(Rd)

supp f̂ ⊂ Y =⇒ ∥ f 1X∥2 ≤ Chβ∥ f ∥2. (32)

To prove Theorem 28 we first show that the drawing of a Cantor set avoiding lines is porous on lines,
and then prove a discrete FUP using continuous FUP.

B.3. Line porosity for self-similar Cantor sets. In this section x ∈ [0, 1]
d denotes a point in Rd and

x̄ ∈ Td denotes the image in the torus. It is similar for sets Y ⊂ [0, 1]
d and Y ⊂ Td.

Definition 31. Let X ⊊ Td be a closed set. We say X is a self-similar Cantor set at level M if M · X = X ,
where

M · X = {M x̄ : x̄ ∈ X}.

In particular, if Xk is a sequence of Cantor sets in ZMk , then the drawing X ⊂ Td is a self-similar
Cantor set.

We first prove that if a Cantor set does not contain any lines, then it also does not contain any line
segments. By a line in Td, we mean an irreducible one-dimensional closed coset. By a line segment
τ̄ ⊂ Td, we mean the image of a line segment in Rd.

Lemma 32. Let Y ⊂ Td be a self-similar Cantor set which contains no lines. Then Y also does not
contain any line segments τ̄ .
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Proof. Suppose by way of contradiction that τ̄ ⊂ Td is a line segment with τ̄ ⊂ Y. Let τ̄ point in direction
v̂ ∈ Sd−1, and let

Cv̂ = cl{t ¯̂v : t ∈ R} ⊂ Td

be the closure of the geodesic based at the origin and pointing in direction v̂. The set Cv̂ is a closed
subgroup which contains at least one torus line. Choose x0 in the interior of τ̄ . Select a subsequence
{k j } j≥0 such that Mk j x̄0 → x̄′

0 ∈ Td. For any t ∈ R,

Mk j (x̄0 + M−k j t ¯̂v)→ x̄′

0 + t ¯̂v ∈ x̄′

0 + Cv̂.

For large enough j , Mk j (x̄0 + M−k j t ¯̂v) ∈ Y, and because Y is closed, we see x̄′

0 + Cv̂ ⊂ Y contradicting
our assumption. □

We prove if a Cantor set does not contain lines then it is porous on lines.

Lemma 33. Suppose that Y ⊂ Td is a self-similar Cantor set which does not contain any lines. Then for
some ν > 0, Y ⊂ [0, 1]

d is ν-porous on lines from scales 0 to 1.

Proof. Let Y ⊂ Td be a Cantor set which does not contain any lines. We show by a compactness argument
that, for some c0 > 0, every line segment τ̄ with length 1 has some x̄ ∈ τ̄ such that d(x̄,Y)≥ c0. Suppose
by way of contradiction that this is not the case. Then there is a sequence τ̄ j of unit line segments such
that maxx̄∈τ̄ j d(x̄,Y)≤ c j , where c j → 0. The space of unit line segments in Td is compact, so there is
some line segment τ̄ which is a limit of these, and it follows that τ̄ ⊂ Y contradicting Lemma 32.

Now let τ ⊂ Rd be a line segment of length 0< R < 1. We would like to show there is some x ∈ τ

such that d(x,Y)≥ νR. The torus metric is stronger than the ambient Rd metric, so it suffices to show
that there is some x̄ ∈ τ̄ such that d(x̄, τ̄ ) ≥ νR. Let j ≥ 0 be the smallest integer so that M j R ≥ 1.
Because M j

· τ̄ is a line segment with length ≥ 1, there is some x̄ ∈ τ̄ such that d(M j x̄,Y) ≥ c0. So
by self-similarity d(x̄,Y) ≥ M− j c0 ≥ (c0/M)R and Y is ν-porous on lines from scales 0 to 1 with
ν = c0/M . □

B.4. Proof of Theorem 28. We roughly follow the argument in [Dyatlov and Jin 2018, Proposition 5.8].
We state a general proposition which allows us to prove discrete fractal uncertainty from continuous
fractal uncertainty. We will need the locally constant property from Fourier analysis, which we explain in
a certain form now. Construct a w ∈ C∞(Rd) by setting ŵ to be a smooth bump function with ŵ = 1
on B1 and supp ŵ ⊂ B2. Then

|w(x)| ≲m,d ⟨x⟩
−m for all m ≥ 0.

Moreover, if f ∈ L2(Rd) is a function with supp f̂ ⊂ BN then

f = f ∗wN , wN (x)= N dw(N x).

In particular we have the pointwise bound

| f (x)| ≲ N d/2
∥ f ( · )w(N ( · − x))∥2. (33)
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Let X ,Y ⊂ Zd
N be sets. Let

X = N−1
· {x ∈ {0, . . . , N − 1}

d
: x̄ ∈ X },

Y = { y ∈ {0, . . . , N − 1}
d

: ȳ ∈ Y}.
(34)

Here is the main proposition connecting discrete and continuous FUP.

Proposition 34. Let X ,Y ⊂ Zd
N and X, Y ⊂ Rd be as above. For any 10

N < r < 1
10 and m > 0 we have

∥1X F 1Y∥2→2 ≲d,m ∥1X+Br F 1Y+B1/4∥2→2 + (Nr)−m . (35)

Proof. Let u ∈ L2(Zd
N ) have supp û ⊂ Yk . We will construct an auxiliary function f ∈ L2(Rd) based on u.

Let χ ∈ C∞

0 (R
d) be a bump function supported in B1/4. We can design χ so that

|χ∨(x)| ≥ 1 for x ∈ [−10, 10]
d , (36)

∥χ∥2 ≤ Cd . (37)
Let f be given by

f̂ (ξ)=

∑
ξ ′

∈{0,...,N−1}d

û(ξ ′)χ(ξ − ξ ′).

We have
∥ f ∥

2
2 = ∥u∥

2
2∥χ∥

2
2 ≲ ∥u∥

2
2.

Notice that, for x ∈ X ,
f (x)= N d/2 χ∨(x) u(N x),

so
∥u 1Xk ∥

2
L2(Zd

N )
≲ N−d

∑
x∈X

| f (x)|2.

If we let

w̃(x)=

( ∑
x′∈X

|w(N (x − x′))|2
)1

2

,

by (33), | f (x)|2 ≲ N d
∥w(N (x − x ′)) f ∥

2
2, so summing over x ∈ X we find∑

x∈X

| f (x)|2 ≲ N d
∥ f w̃∥

2
2,

∥u1Xk ∥
2
2 ≲ ∥ f w̃∥

2
2.

Using the fact that X is an N−1-separated set,

|w̃(x)|2 =

∑
x′∈X

|w(N (x − x′))|2 ≲m

∑
x′∈X

(1 + N |x − x′
|)−m

≲
∑

N−1≤2 j ≤10

(1 + N 2 j )−m
|X ∩ B2 j (x)| ≲

∑
2 j ≥max(N−1,d(x,X))

(N2 j )d−m ≲ (1 + N d(x, X))d−m

for m large enough. Thus for any r > N−1 and m ≥ 0,

|w̃(x)| ≲m,d 1X+Br (x)+ (Nr)−m .
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Because supp f̂ ⊂ Y + B1/4,

∥u1Xk ∥2 ≲ ∥ f 1X+Br ∥2 + (Nr)−m
∥ f ∥2

≲ (∥1X+Br F 1Y+B1/4∥2→2 + (Nr)−m)∥u∥2
giving (35). □

Now we prove the FUP for arithmetic Cantor sets that avoid lines.

Proof of Theorem 28. Let Xk and Yk be a sequence of Cantor iterates such that the drawing Y ⊂ Td does
not contain any lines. Let N = Mk. Let Xk ⊂ [0, 1]

d and Yk ⊂ [0, N ]
d be the corresponding point sets as

in (34). By choosing r = N ε−1 in Proposition 34, we have for any ε > 0 the estimate

∥1Xk F 1Yk ∥2→2 ≲ ∥1Xk+Br F 1Yk+B1/4∥2→2 + N−ε.

Letting X,Y ⊂ [0, 1]
d be the drawings of these Cantor sets, we have

Xk ⊂ X + [−N−1, N−1
]
d , Yk ⊂ N · Y + [−1, 1]. (38)

Thus

• The set X is ν-porous on balls from scales 0 to 1. So Xk + BN ε−1 is ν-porous on balls from scales
2N ε−1 to 1.

• By Lemma 33, the set Y is ν-porous on lines from scales 0 to 1. So the set Yk + B1/4 is ν-porous on
lines from scales 1

4

√
d to N.

In the above, the value of ν changes from line to line. Split up [−N − 1, N + 1]
d into a disjoint union of

≲ N εd many cubes Q ∈ Q that have side length N 1−ε. By Theorem 30, there is β = β(ν, d) > 0 so that

∥1Xk+Br F 1(Yk+B1/4)∩Q∥2→2 ≲ N−(1−ε)β .

Summing this over all the boxes Q ∈ Q, we have

∥1Xk+Br F 1Yk+B1/4∥2→2 ≲ N−β+ε(d+β).

Choose ε > 0 small enough that the exponent is negative and apply Proposition 34 to obtain

∥1Xk F 1Yk ∥2→2 ≤ C N−β ′

for some β ′ > 0. □
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LINEAR POTENTIALS AND APPLICATIONS IN CONFORMAL GEOMETRY

SHIGUANG MA AND JIE QING

We derive estimates for linear potentials that hold away from thin subsets. And, inspired by the celebrated
work of Huber (1957) and Cohn-Vossen (1935), we verify that, for a subset that is thin at a point, there is
always a geodesic that reaches to the point and avoids the thin subset in general dimensions. As applications
of these estimates on linear potentials, we consider the scalar curvature equations and improve the results
of Schoen and Yau (1988, 1994) and Carron (2012) on the Hausdorff dimensions of singular sets which
represent the ends of complete conformal metrics on domains in manifolds of dimension greater than 3. We
also study Q-curvature equations in dimensions greater than 4 and obtain stronger results on the Hausdorff
dimensions of the singular sets than those of Chang et al. (2004). More interestingly, our approach based
on potential theory yields a significantly stronger finiteness theorem on the singular sets for Q-curvature
equations in dimension 4 than those of Chang et al. (2000) and Carron and Herzlich (2002), which is a
remarkable analogue of Huber’s theorem.

1. Introduction

We employ linear potential theory to study scalar curvature equations and Q-curvature equations in
conformal geometry. This is a continuation of our recent work on n-superharmonic functions (see
[Bonini et al. 2018; 2019; Ma and Qing 2021; 2022]) inspired by Huber’s theorem and related work on
superharmonic functions in dimension 2 (see [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973;
Hayman and Kennedy 1976]).

Linear potential theory has always been a major subject in analysis and partial differential equations.
We refer readers, for instance, to [Mizuta 1996; Adams and Hedberg 1996; Armitage and Gardiner
2001] for good introductions on potential theory. For clarity, the definitions of Riesz potentials and log
potentials are given in Section 2. For our purpose, the kernel functions are not chosen for discussions
on the boundary behavior of potentials and we focus on the outer capacity and thin subsets (please
see Definitions 2.2 and 2.8 in Section 2). Also we set up some of the potential theory on Riemannian
manifolds directly. The interesting result on Riesz potentials we obtain is:

Theorem 1.1. Suppose that .M n; g/ is a complete Riemannian manifold and � is a finite nonnegative
Radon measure on a bounded domain G �M n. Let S be a compact subset in G such that its Hausdorff
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dimension is greater than d , where d < n�˛ and ˛ 2 .1; n/. Then there is a point p 2 S and a subset E
that is ˛-thin at p such that Z

G

1

d.x; y/n�˛
d��

C

d.x; p/n�˛�d
(1-1)

for some constant C and all x 2 Bı.p/ nE for some small ı > 0.

The proof of Theorem 1.1 uses a general decomposition result [Kpata 2019, Proposition 1.4] and
multiscale analysis. We also give a proof of a slight extension of [Mizuta 1996, Theorem 6.3] for log
potentials on manifolds, which is closely related to [Cohn-Vossen 1935; Huber 1957; Arsove and Huber
1973; Ma and Qing 2021; 2022] for us. What makes these estimates useful is the following key observation
about thin subsets in general dimensions (see [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973;
Ma and Qing 2021; 2022]).

Theorem 1.2. Let E be a subset in the Euclidean space Rn and p 2 Rn. Suppose that E is ˛-thin at the
point p for ˛ 2 .1; n�. Then there is always a ray from p that avoids E at least within some small ball at p.

The proof of Theorem 1.2 uses only the scaling property (Lemma 2.4), the contractive property
(Lemma 2.5), and the calculation of C ˛.Sn�1; B2.0// (Lemma 2.6) for the outer capacity C ˛.E;�/
defined in Definition 2.2 and ˛-thinness in Definition 2.8.

To better motivate our geometric applications, let us first recall the seminal theorem of Huber on
surfaces. Huber [1957] showed that a complete open surface whose negative part of the Gaussian curvature
is integrable is a closed surface with finitely many points removed. Huber’s theorem uses the Gaussian
curvature equation

��Œ Ng��CKŒ Ng�DKŒe2� Ng�e2� (1-2)

and the potential theory on superharmonic functions.
In conformal geometry, the scalar curvature equation

�
4.n� 1/

n� 2
�Œ Ng�uCRŒ Ng�uDRŒu

4
n�2 Ng�u

nC2
n�2 (1-3)

describes the conformal transformation of the scalar curvature in dimensions higher than 2. There have
been many works on singular solutions after the seminal paper [Schoen and Yau 1988], where the
singularities represent the ends of complete conformal metrics on domains in Riemannian manifolds (see,
for instance, [Schoen and Yau 1994, Chapter VI; Carron 2012; Schoen 1988; Mazzeo and Smale 1991;
Mazzeo and Pacard 1996]).

Theorem 1.3. Let .M n; Ng/ be a complete Riemannian manifold and S be a compact subset in M n. And
let D be a bounded open neighborhood of S . Suppose that gD u4=.n�2/ Ng is a conformal metric on D nS
and is geodesically complete near S . Then the Hausdorff dimension satisfies

dimH .S/�
n� 2

2
(1-4)
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provided R�Œg� 2L2n=.nC2/.D nS; g/\Lp.D nS; g/ for some p > n
2

, where R�Œg� is the negative part
of the scalar curvature of the metric g. Consequently, (1-4) holds when the scalar curvature RŒg� of the
conformal metric g is nonnegative.

Theorem 1.3 is an improvement of [Schoen and Yau 1988, Theorem 2.7] and [Carron 2012, Theorem C].
Our approach is based on Theorems 1.1 and 1.2. Particularly, Theorem 1.3 covers domains in general
manifolds, while others (see [Schoen and Yau 1988; Carron 2012]) are restricted to domains in round
spheres. The use of auxiliary testing functions built from the level sets is the key analytic technique (see
[Dolzmann et al. 1997; Bidaut-Véron 1989; Ma and Qing 2021; 2022]). We remark that, for our approach,
the complement M n nD is not relevant (see Theorem 1.3 in Section 3).

In conformal geometry, one considers the Paneitz operator

P4 D�
2
C div.4A � r � .n� 2/Jr/C

n� 4

2
Q4

and the associated Q-curvature

Q4 D��J C
n

2
J 2� 2jAj2;

where A D 1
n�2

.Ric�Jg/ is the Schouten curvature and J D 1
2.n�1/

R. The curvature Q4, under a
conformal change of the metric, transforms by the Q-curvature equation:

P4Œ Ng�uD
n� 4

2
Q4Œu

4
n�4 Ng�u

nC4
n�4 in dimensions � 5; (1-5)

P4Œ Ng�uCQ4Œ Ng�DQ4Œe
2u
Ng�e4u in dimension 4: (1-6)

On Q-curvature equations in dimensions greater than 4, we have:

Theorem 1.4. Let .M n; Ng/ be a complete Riemannian manifold for n � 5 and S be a compact subset
in M n. And let D be a bounded open neighborhood of S . Suppose that g D u4=.n�4/ Ng is a conformal
metric on D nS with nonnegative scalar curvature RŒg�� 0 and is geodesically complete near S . And
suppose also that

Q�4 Œg� 2 L
2n
nC4 .D nS; g/;

where Q�4 Œg� is the negative part of the Q-curvature of the metric g. Then

dimH .S/�
n� 4

2
: (1-7)

There have been a lot of works on the study of singular solutions toQ-curvature equations on manifolds
of dimension greater than 4, notably [Qing and Raske 2006a; 2006b; Chang et al. 2004; González et al.
2012]. Theorem 1.4 is an improvement of [Chang et al. 2004, Theorem 1.2] in terms of curvature
conditions and the coverage of domains in general manifolds. The preliminary estimates in Lemma 4.1
serve to facilitate the argument of treating the bi-Laplace as the iteration of the Laplace, which is an
interesting alternative to the usual elliptic estimates of Q-curvature equations. Again, the complement
M n nD is not relevant for our approach (see Theorem 1.4 in Section 4).
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OnQ-curvature equations in dimension 4, there have been several attempts to establish results analogous
to Huber’s theorem on finiteness of singularities (see [Chang et al. 2000a; Carron and Herzlich 2002; Ma
and Qing 2021; 2022]). Q-curvature in dimension 4 indeed plays a role similar to that of the Gaussian
curvature in dimension 2 (please see (1-6) for instance). Our following result is a significant improvement
of the finiteness result of [Chang et al. 2000a, Theorem 2] (see also [Chang et al. 2000b]). It covers domains
in general manifolds and drops other additional curvature assumptions in [Chang et al. 2000a, Theorem 2].
The potential theory approach here, particularly Theorems 1.1 and 1.2, seems to be more effective. And
the preliminary estimates in Lemma 4.4 are interesting for Q-curvature equations in dimension 4 too.
Once again, the complement M n nD is not relevant for our approach (see Theorem 1.4 in Section 4).

Theorem 1.5. Let .M 4; Ng/ be a complete Riemannian manifold and S be a compact subset in M n. And
let D be a bounded open neighborhood of S . Suppose that gD e2u Ng is a conformal metric on D nS with
nonnegative scalar curvature RŒg�� 0 and is geodesically complete near S . And suppose thatZ

D

Q�4 Œg� dvolŒg� <1;

where Q�4 Œg� is the negative part of theQ-curvature of the metric g. Then S consists of only finitely many
points.

The organization of this paper is as follows: In Section 2 we define linear potentials and develop
potential theory with the outer capacity and the notion of ˛-thinness. Then we prove Theorems 1.1
and 1.2. In Section 3 we build the framework to use potential theory developed in Section 2 to estimate
the Hausdorff dimension of singular sets which correspond to the ends of complete conformal metrics on
domains of manifolds. And we prove Theorem 1.3. In Section 4, based on the framework built in Section 3,
we prepare some preliminary estimates and prove Theorems 1.4 and 1.5 for Q-curvature equations.

2. On linear potentials

The study of linear potentials has been extensive and full of great achievements. Readers are referred, for
instance, to [Mizuta 1996; Adams and Hedberg 1996; Armitage and Gardiner 2001] for good introductions.
In this section we will introduce the theory of linear potential to facilitate the discussion of some estimates
of linear potentials inspired by the one in [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973; Ma
and Qing 2021; 2022]. The estimates provide us some alternative tools to study the problems on the
Hausdorff dimensions of singularities of solutions to a class of geometric partial differential equations in
conformal geometry (see [Schoen and Yau 1988; 1994; Chang et al. 2004; Carron and Herzlich 2002] for
instance). We will introduce potential theory in a way that is brief, mostly self-contained, and suffices to
serve our purpose.

2.1. Linear potential and the outer capacity in Euclidean spaces. For the purpose of relating potentials
on Euclidean spaces to that on manifolds, we want to introduce potentials that are possibly confined to an
open subset �� Rn in the Euclidean space. We will use the definition of a Radon measure on locally
compact Hausdorff spaces in [Royden and Fitzpatrick 2010, page 455].
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Definition 2.1. Let �� Rn be a bounded open subset in the Euclidean space Rn. Then, for x 2�, let

R˛;�� .x/D

8̂̂<̂
:̂
Z
�

1

jx�yjn�˛
d�.y/ when ˛ 2 .1; n/;Z

�

log
D

jx�yj
d�.y/ when ˛ D n

(2-1)

for a Radon measure � on �, where D is the diameter of �.

For basic properties of the potential R˛;�� .x/, readers are referred to [Mizuta 1996, Chapter 2]. Most
facts, results, and arguments in that work that are relevant for the discussions in this paper hold with
slight changes.

Definition 2.2. Let E be a subset in � and � be a bounded open subset in Rn. For ˛ 2 .1; n�, we define
a capacity by

C ˛.E;�/D inff�.�/ W �� 0 on � and R˛;�� .x/� 1 for all x 2Eg: (2-2)

Because of the choice of the kernel functions in Definition 2.1, the capacity C ˛.E;�/ in Definition 2.2
is not intended to be the same as relative capacity where the kernel function is the Green’s function for a
so-called Greenian domain �. Similar to [Mizuta 1996, Theorem 4.1 in Chapter 2; Section 2.6], we have:

Lemma 2.3. Let C ˛ be the capacity defined as in Definition 2.2 for ˛ 2 .1; n�.

(1) C ˛ is nondecreasing, that is,
C ˛.E1; �/� C

˛.E2; �/

when E1 �E2 ��� Rn.

(2) C ˛ is countably subadditive, that is,

C ˛
� 1[
iD1

Ei ; �

�
�

1X
iD1

C ˛.Ei ; �/

for subsets Ei ��.

(3) C ˛ is an outer capacity, that is,

C ˛.E;�/D inffC ˛.U;�/ WE � U and U �� openg:

The immediate and important property of the outer capacity C ˛ in Definition 2.2 is the scaling property
(see [Armitage and Gardiner 2001, page 135]).

Lemma 2.4. For a positive number �, let

A� D f�x W x 2 Ag

for any subset A in Rn. Then, for ˛ 2 .1; n�,

C ˛.E�; ��/D �
n�˛C ˛.E;�/:

Proof. For a nonnegative Radon measure � on �, we associate it with a nonnegative Radon measure

��.A�/D �.A/
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on ��. Then

R
˛;��
�� .�x/D �˛�nR˛;�� .x/

for x 2�. Therefore

C ˛.E�; ��/D inff��.��/ WR
˛;��
�� .�x/� 1 for all x 2Eg

D �n�˛ inff�˛�n�.E/ WR˛;�
�˛�n�

.x/� 1 for all x 2Eg

D �n�˛C ˛.E;�/: �

The next important property of the outer capacity C ˛ in Definition 2.2 is the contractive property (see
[Mizuta 1996; Adams and Hedberg 1996; Armitage and Gardiner 2001]).

Lemma 2.5. Suppose that

ˆ W�!�

is a contractive map, that is,

jˆ.x/�ˆ.y/j � jx�yj

for all x; y 2�. Then, for ˛ 2 .1; n�,

C ˛.ˆ.E/;�/� C ˛.E;�/

for any subset E ��.

Proof. Let � be a nonnegative Radon measure on � such that R˛;�� .x/� 1 for all x 2E. Then let �� be
a nonnegative Radon measure on � such that ��.A/D �.ˆ�1.A// for any A�� and thereforeZ

�

f . Qy/ d��. Qy/D

Z
�

f ıˆ.y/ d�.y/:

Notice that

R
˛;�
�� .ˆ.x//D

Z
�

1

jˆ.x/� Qyjn�˛
d��. Qy/D

Z
�

1

jˆ.x/�ˆ.y/jn�˛
d�.y/

�

Z
�

1

jx�yjn�˛
d�.y/DR˛;�� .x/� 1:

Thus

C ˛.ˆ.E/;�/D inff�.�/ W � � 0 on � and R˛;�� .x/� 1 for all x 2ˆ.E/g

� inff��.�/ W �� induced from � and R˛;��� .ˆ.x//� 1 for all x 2Eg

D inff�.�/ W �� 0 on � and R˛;�� .x/� 1 for all x 2Eg D C ˛.E;�/:

The argument for ˛ D n is similar and the proof is complete. �

Before we introduce the notion of thinness by C ˛, for completeness, let us calculate the outer capacity
C ˛.Sn�1; B2/, where

B2 D fx 2 Rn W jxj< 2g and Sn�1 D fx 2 Rn W jxj D 1g:
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Lemma 2.6 [Mizuta 1996, Example 5.4.3]. For ˛ 2 .1; n�,

C ˛.Sn�1; B2/D c.n; ˛/

for some positive constant c.n; ˛/.

Proof. It suffices to show that C ˛.Sn�1; B2/ is finite and positive. Let � be the volume measure for the
unit sphere so that the total measure of Sn�1 is 1. First we realize that the potential, for ˛ 2 .1; n� and
x 2 Sn�1, satisfies

R˛;B2� .x/�m

for some m D m.n; ˛/ > 0. Therefore C ˛.Sn�1; B2/ � 1
m
< 1 by Definition 2.2. To see that

C ˛.Sn�1; B2/ > 0 for any � on B2, we use Lemma 2.7 below to pick up a point p 2 Sn�1 such
that (2-3) holds and calculate, for ˛ 2 .1; n/,

R˛;B2� .p/D .n�˛/

Z 1
0

�
�n
1

r
�
1

3
> s

o
\B2

� 1�
sC 1

3

�n�˛C1dsC 1

3n�˛
�.B2/

D .n�˛/

Z 3

0

�.Br.p/\B2/r
˛�n�1dr C

1

3n�˛
�.B2/

�M.n; ˛/�.B2/

for some M.n; ˛/ > 0 and r D jx�pj. For ˛ D n,

R˛;B2� .p/D

Z 1
0

�
�n
3

r
� 1 > s

o
\B2

�
1

1Cs
dsC log 4

3
�.B2/

D

Z 3

0

�.Br.p/\B2/
1

r
dr C log 4

3
�.B2/

�M.n; n/�.B2/

for some M.n; n/ > 0. In the above we used [Rudin 1987, Theorem 8.16]. This implies C ˛.Sn�1; B2/�
1=M.n; ˛/ > 0 by Definition 2.2. �

By the Vitali covering lemma, we prove the following fact used in the above.

Lemma 2.7. Let n� 2 and � be a finite nonnegative Radon measure on B2 � Rn. Then there is a point
p 2 Sn�1 such that

�.Br.p/\B2/� c.n/�.B2/r
n�1 for all r > 0; (2-3)

for some dimensional constant c D c.n/.

Proof. For convenience, let �.B2/D 1. Assume otherwise, for any q 2 Sn�1, there is rq > 0 such that

�.Brq .q/\B2/� c.n/r
n�1
q :

Using the Vitali covering lemma, we have fq1; q2; : : : ; qkg � Sn�1 such that the balls in the collection

fBrq1 .q1/; Brq2 .q2/; : : : ; Brqk .qk/g

are disjoint but the balls in the collection

fB3rq1 .q1/; B3rq2 .q2/; : : : ; B3rqk .qk/g
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cover the sphere Sn�1. Therefore, on one hand,

c.n/

kX
iD1

rn�1qi
�

kX
iD1

�.Brqi .qi /\B2/� �.B2/D 1:

On the other hand,

jSn�1j �

kX
iD1

jB3rqi .qi /\S
n�1
j< jSn�1jc.n/

kX
iD1

rn�1qi
;

when c.n/ is sufficiently large, where j � j stands for the Lebesgue measure on Sn�1. Therefore the lemma
is proven by contradiction. �

Now let us introduce the geometric definition of thinness. For notions of thinness in terms of the fine
topology and Wiener criterion, readers are referred, for instance, to [Mizuta 1996; Adams and Hedberg
1996; Armitage and Gardiner 2001]. Let

!ıi .p/D fx 2 Rn W jx�pj 2 Œ2�iı; 2�iC1ı�g;

�ıi .p/D fx 2 Rn W jx�pj 2 .2�i�1ı; 2�iC2ı/g:

Definition 2.8. Let E be a subset in the Euclidean space Rn and p 2 Rn be a point in Rn. The subset E
is said to be ˛-thin at the point p for ˛ 2 .1; n/ ifX

i�1

C ˛.E \!ıi .p/;�
ı
i .p//

C ˛.@B2�iı.p/; B2�iC1ı.p//
<1

for some small ı > 0. The subset E is said to be n-thin at p ifX
i�1

iC n.E \!ıi .p/;�
ı
i .p// <1

for some small ı > 0.

Combining Lemmas 2.3-2.6 with the above definition, we observe the following important property
of ˛-thin sets, inspired by [Arsove and Huber 1973] (see also [Ma and Qing 2021; 2022]). We recall
Theorem 1.2 from the Introduction for readers’ convenience.

Theorem 1.2. Let E be a subset in the Euclidean space Rn and p 2 Rn be a point. Suppose that E is
˛-thin at the point p for ˛ 2 .1; n�. Then there is a ray from p that avoids E at least within some small
ball at p.

Proof. First of all, due to the translation invariance, we may simply assume p is the origin of the Euclidean
space. Then, by the scaling property of the outer capacity C ˛ in Lemma 2.4, one notices that

C ˛.E \!ıi ; �
ı
i /

C ˛.@B2�iı ; B2�iC1ı/
D
C ˛.Si .E/\!

1
0 ; �

1
0/

C ˛.@B1; B2/
;

where Si .v/D .2i=ı/v is the scaling map. Then we consider the projection

P.v/D

�
v=jvj when v 2 Rn and jvj � 1;
v when v 2 Rn and jvj< 1;
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which is contractive. Therefore, in light of Lemma 2.5, we have

C ˛.P.Si .E/\!
1
0/;�

1
0/� C

˛.Si .E/\!
1
0 ; �

1
0/:

Next, using the countable subadditivity in Lemma 2.3, we have

C ˛
�[
i�k

P.Si .E/\!
1
0/;�

1
0

�
�

X
i�k

C ˛.P.Si .E/\!
1
0/;�

1
0/:

Thus,

C ˛
�[
i�k

P.Si .E/\!
1
0/;�

1
0

�
�

X
i�k

C ˛.Si .E/\!
1
0 ; �

1
0/

� C ˛.@B1; B2/
X
i�k

C ˛.Si .E/\!
1
0 ; �

1
0/

C ˛.@B1; B2/

� C ˛.@B1; B2/
X
i�k

C ˛.E \!ıi ; �
ı
i /

C ˛.@B2�iı ; B2�iC1ı/
;

which is arbitrarily small when k is appropriately large using Lemma 2.6 for C ˛.@B1; B2/. And then
this implies that

@B1 n
[
i�k

P.Si .E/\!
1
0/¤∅:

The argument for ˛ D n is similar and easier. �

2.2. Linear potential on manifolds. On a given complete Riemannian manifold .M n; g/, let d. � ; � / be
the distance function associated with the given Riemannian metric g.

Definition 2.9. Suppose that .M n; g/ is a complete Riemannian manifold and U �M n is a bounded
open subset. For ˛ 2 .1; n�, the linear potential on the Riemannian manifold .M n; g/ of order ˛ for a
Radon measure � on U is given by

R˛;U
� .x/D

8̂̂<̂
:̂
Z
U

1

d.x; y/n�˛
d�.y/ when ˛ 2 .1; n/;Z

�

log
D

d.x; y/
d�.y/ when ˛ D n;

where D is the diameter of U.

From the discussion in the previous subsection, it is easily seen that one may generate an outer capacity
C ˛.E; U / for any subset E � U �M n that behaves like the counterpart in Euclidean spaces. To use
R
˛;�
� .x/ and C ˛.E;�/ on Euclidean spaces in the previous subsection to study R

˛;U
� .p/ and C ˛.A; U /

on manifolds, we first introduce the correspondence between Radon measures on the tangent space TpM n

at each point p 2M n and those on .M n; g/. Suppose that .M n; g/ is a complete Riemannian manifold.
Let p 2M n and U be a convex normal coordinate neighborhood at p on .M n; g/, where the exponential
map serves as the convex normal coordinate

exp jp W�! U:
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The domain U is said to be convex if the unique geodesic joining any two points in U stays in U.
Moreover, we may assume in the coordinate chart U the exponential map be uniformly bi-Lipschitz
throughout this paper.

Then, for a Radon measure � on U �M n, one may introduce the Radon measure �� on �� TpM n

such that, for a subset E ��,

��.E/D �.exp jpE/ and
Z
�

f ı exp jp d�� D
Z
U

f d�:

It is then easily seen that the following equivalence between the linear potential R˛;��� , the outer capacities
C ˛. � ; �/ and the corresponding R

˛;U
� , C ˛. � ; U / holds. Namely:

Lemma 2.10. Suppose that .M n; g/ is a complete Riemannian manifold and p 2M n. Let

exp jp W�! U

be the convex normal coordinate chart, where the exponential map is uniformly bi-Lipschitz. And let
˛ 2 .1; n�. Then, for A� U and E D .exp jp/�1A��,

C�1R
˛;�
�� �R˛;U

� � CR
˛;�
�� ;

C�1C ˛.E;�/� C ˛.A; U /� CC ˛.E;�/

for some constant C D C.M n; g; U; p/. Consequently, a subset A � U is ˛-thin at p if and only if
E D .exp jp/�1.A/�� is ˛-thin at the origin of TpM n.

Proof. The proof is straightforward based on the properties of the convex normal coordinate chart at a
point in a complete Riemannian manifold, where the exponential map is bi-Lipschitz. �

2.3. Estimates of Riesz potentials. We now introduce our estimates of Riesz potentials on manifolds. We
will recall some well-known estimates for Riesz potentials in Euclidean spaces [Mizuta 1996, Chapter 2].

Our estimates on Riesz potentials are designed to help understand the Hausdorff dimensions of
singularities of solutions of partial differential equations on manifolds. Let us start with a general
decomposition theorem for nonnegative Radon measures on a complete Riemannian manifold based on
[Kpata 2019, Proposition 1.4], which is related to Lemma 2.7 and a broad generalization of the Lebesgue
Differentiation Theorem in some way.

Lemma 2.11 [Kpata 2019, Proposition 1.4]. Let � be a nonnegative Radon measure on a complete
Riemannian manifold .M n; g/ and let

G1d D
n
x 2M n

W lim sup
r!0

r�d�.Br.x//DC1
o

for any d 2 Œ0; n�. Then

Hd .G
1
d /D 0;

where Hd is the Hausdorff measure of dimension d .
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Proof. Based on the general decomposition theorem [Kpata 2019, Proposition 1.4] on the Euclidean
space and the correspondence of Radon measures in Lemma 2.10, this lemma is easily seen. Specifically,
we first prove the statement for Radon measures supported in a convex normal coordinate chart used
in Lemma 2.10. Then the lemma follows by using a countable covering for .M; g/ by convex normal
coordinate charts. �

Now we are ready to state and prove one crucial analytic result in this paper on the behavior of the
Riesz potentials. For readers’ convenience, we recall Theorem 1.1 from the Introduction.

Theorem 1.1. Suppose that .M n; g/ is a complete Riemannian manifold and � is a finite Radon measure
on a bounded domain G �M n. Let S be a compact subset in G such that its Hausdorff dimension is
greater than d . And let ˛ 2 .1; n/ and d < n� ˛. Then there is a point p 2 S and a subset E that is
˛-thin at p such that Z

G

1

d.x; y/n�˛
d��

C

d.x; p/n�˛�d

for some constant C and all x 2 Bı.p/ nE for some ı > 0.

Proof. First, due to the assumption that the Hausdorff dimension of S is greater than d ,

HdC�.S/D1

for some small � > 0. Then, in light of Lemma 2.11, there is a point p 2 S such that

lim sup
r!0

r�.dC�/�.Br.p//� C <1:

That is to say

�.Br.p//� Cr
dC� (2-4)

when r is appropriately small. Secondly, we may confine ourselves to a convex normal coordinate
neighborhood U of p and we may work on the Euclidean space without loss of generality in light of the
discussion in the previous subsection, particularly, Lemma 2.10, where exp jp W�!U and exp jp.0/Dp.
For convenience, we will not differentiate � and �� if no confusion rises. Therefore, for x 2 !ıi ��
when ı is sufficiently small and i is appropriately large,

R˛;�� .x/D

Z
�

1

jx�yjn�˛
d�

D

Z
�nB

2�i0C2ı

1

jx�yjn�˛
d�C

Z
B
2�i0C2ı

n�ı
i

1

jx�yjn�˛
d�C

Z
�ı
i

1

jx�yjn�˛
d�; (2-5)

where i0 � i to be fixed. For the first term in the right-hand side of (2-5),

I D

Z
�nB

2�i0C2ı

1

jx�yjn�˛
d��

�
1

2�i0C2ı� 2�iC1ı

�n�˛
�.�/�

�
1

2�i0C1ı

�n�˛
�.�/:
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Recall that 2�iı � jxj � 2�iC1ı for x 2 !i , we have

I � �.�/
.2�iC1ı/n�˛�d

.2�i0C1ı/n�˛
1

jxjn�˛�d
� C

1

jxjn�˛�d
; (2-6)

where C D C.n; ˛; d; ı; i0/. For the second term in the right-hand side of (2-5),Z
B
2�i0C2ı

n�ı
i

1

jx�yjn�˛
d�D

Z
B
2�i0C2ı

nB
2�iC2ı

1

jx�yjn�˛
d�C

Z
B
2�i�1ı

1

jx�yjn�˛
d�

�

Z
B
2�i0C2ı

nB
2�iC2ı

1

jx�yjn�˛
d�C

�
1

2�i�1ı

�n�˛
�.B2�i�1ı/

�

i�1X
kDi0

Z
B
2�kC2

ınB
2�kC1ı

1

jx�yjn�˛
d�C

�
1

2�i�1ı

�n�˛
�.B2�i�1ı/

�

i�1X
kDi0

�
1

2�kı

�n�˛
�.B2�kC2ı/C

�
1

2�i�1ı

�n�˛
�.B2�i�1ı/:

Using (2-4) for � D 0, we continue from the above,

II � C

�
4d

i�1X
kDi0

�
1

2�kı

�n�˛�d
C

�
1

2�i�1ı

�n�˛�d�

� C

�
4d

1� 2�.n�˛�d/

�
1

2�iC1ı

�n�˛�d
C

�
1

2�i�1ı

�n�˛�d�
� C

1

jxjn�˛�d
; (2-7)

where C D C.n; ˛; d; ı; i0/. To handle the third term in the right-hand side of (2-5), we let

E�i D

�
x 2 !ıi W

Z
�ı
i

1

jx�yjn�˛
d�� �2i.n�˛�d/

�
;

where � > 0 is fixed. By Definition 2.2, we know

C ˛.E�i ; �
ı
i /�

�.�ıi /

�2i.n�˛�d/
�
C

�

.2�iC2ı/dC�

2i.n�˛�d/
D
C4dC�

�
2�i�.2�i /n�˛;

where (2-4) for some � > 0 is used and �ıi � B2�iC2ı . Now, from Lemma 2.6 and the scaling property,
we know

C ˛.@B2�iı ; B2�iC1ı/D C.n; ˛/.2
�iı/n�˛

and X
i�i0

C ˛.E�i ; �
ı
i /

C ˛.@B2�iı ; B2�iC1ı/
�
C

�

X
i�i0

2��i <1:

Thus, by Definition 2.8, the proof is completed. �
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As a consequence of Theorems 1.2 and 1.1, we have:

Corollary 2.12. Suppose that .M n; g/ is a complete Riemannian manifold and� is a finite Radon measure
on a bounded domain G �M n. Let S be a compact subset in G such that its Hausdorff dimension is
greater than d . And let ˛ 2 .1; n/ and d < n � ˛. Then there is a point p 2 S such that, for some
constant C , Z

G

1

d.x; y/n�˛
d��

C

d.x; p/n�˛�d

for all x 2 Rayp \B.x; ı/, where Rayp is a ray from p and B.p; ı/ is the geodesic ball of radius ı > 0.

2.4. Estimates of the log potential. First, as stated in [Mizuta 1996, Theorem 6.3], for the log potential
Un�.x/ on Euclidean spaces defined on page 82 of that work,

lim
x!p and x2�nE

Un�.x/

log.1=jx�pj/
D �.fpg/:

The following is our version of [Mizuta 1996, Theorem 6.3] on manifolds. For us it is a generalization
of [Arsove and Huber 1973, Theorem 1.3] in higher dimensions and linear versions of such behaviors
for n-superharmonic functions (see [Huber 1957; Bonini et al. 2018; 2019; Ma and Qing 2021; 2022]).
For convenience, we present a brief but full proof based on the potential theory developed in previous
subsections in this paper.

Theorem 2.13. Suppose .M n; g/ is a complete Riemannian manifold. Let � be a finite Radon measure
on a bounded domain G �M n. Then, for all p 2G, there is a subset A that is n-thin at p and

lim
x!p and x2MnnA

R
G log.1=d.x; y// d�.y/

log.1=d.x; p//
D �.fpg/:

Proof. Let
exp jp W�! U

be a convex normal coordinate at p 2M n. Clearly, it suffices to show that there is a subset A in U, which
is n-thin at p, such that

lim
x!p and x2UnA

R
n;U
� .x/

log.1=d.x; p//
D �.fpg/: (2-8)

Therefore, for x 2 !ıi .p/, we write

Rn;U
� .x/D

Z
U

log
D

d.x; y/
d�.y/

D

Z
UnB

2�i0C2ı

log
D

d.x; y/
d�C

Z
B
2�i0C2ı

n�ı
i

log
D

d.x; y/
d�C

Z
�ı
i

log
D

d.x; y/
d�: (2-9)

Here we omit the center p for each ball or annulus for simplicity. For the first term in the right-hand side
of (2-9),

I D

Z
UnB

2�i0C2ı

log
D

d.x; y/
d�� �.U / log

D

2�i0C1ı
D o.1/ log

1

d.x; p/
as x! p: (2-10)
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For the second term in the right-hand side of (2-9),Z
B
2�i0C2ı

n�ı
i

log
D

d.x; y/
d�.y/D

Z
B
2�i0C2ı

nB
2�iC1ı

log
D

d.x; y/
d�C

Z
B
2�i�2ı

log
D

d.x; y/
d�

� C

� iX
kDi0

k�.B2�kC2ı nB2�kC1ı/

�
C�.B2�i�2ı/ log

D

2�i�2ı
:

Due to the regularity of Radon measures and d.x; p/ 2 Œ2�i�1ı; 2�iı�, we know

�.B2�i�2ı/ log
D

2�i�2ı
D �.fpg/ log

1

d.x; p/
C o

�
log

1

d.x; p/

�
as x! p (2-11)

and
iX

kDi0

k�.B2�kC2ı nB2�kC1ı/D o.1/i D o.1/ log
1

d.x; p/
(2-12)

as i !1 or equivalently x! p. To see (2-12), for any � > 0, we first find k0 such that

�.B2�lC2ı nB2�mC1ı/�
�

2

for all m� l � k0 due to the regularity of �. Next, we find N such thatPk0
kDi0

k�.B2�kC2ı nB2�kC1ı/

i
�
�

2

for all i �N. Together, this givesPi
kDi0

k�.B2�kC2ınB2�kC1ı/

i
D

Pk0
kDi0

k�.B2�kC2ınB2�kC1ı/

i
C

Pi
kDk0C1

k�.B2�kC2ınB2�kC1ı/

i

D

Pk0
kDi0

k�.B2�kC2ınB2�kC1ı/

i
C

iX
kDk0C1

�.B2�kC2ınB2�kC1ı/� �

for all i �N. Thus we conclude that

II D .�.fpg/C o.1// log
1

d.x; p/
as x! p: (2-13)

To handle the third term in the right side of (2-9), for �i > 0 to be determined, we consider

A�i D

�
x 2 !ıi W

Z
�ı
i

log
Di

d.x; y/
d�� i�i

�
;

where Di is the diameter of �i
ı
. By Definition 2.2,

C n.A�i ; �ıi /�
�.�ıi /

i�i
:

In light of Definition 2.8, we considerX
i�i0

iC n.A�i ; �ıi /�
X
i�i0

�.�ıi /

�i
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and pick up �i! 0 as i!1 by the classic Paul du Bois-Reymond theorem [1873] (see [Bromwich 1908,
(5), page 40]) for infinite series such that

P
i�i0

�.�ıi /=�i converges when
P
i�i0

�.�ıi / converges.
This is to say that the third term in the right side of (2-9) satisfies

III D

Z
�ı
i

log
D

d.x; y/
d�.y/D

Z
�ı
i

log
Di

d.x; y/
d�.y/C log

D

Di
�.�iı/

�

�
�i C

�
1C

1

i
log

1

ı

�
�.�iı/

�
log

D

d.x; p/

D o.1/ log
1

d.x; p/
as x 2 !ıi nE

�i and x! p: (2-14)

Finally, if let AD
S
i A

�i , we have

lim
x!p and x2UnA

R
n;U
� .x/

log.1=d.x; p//
D �.fpg/;

where A is n-thin at p. �

3. On scalar curvature equations

We now focus on the scalar curvature equations for conformal deformation of metrics. Let .M n; Ng/ be a
compact Riemannian manifold for n�3. LetRijkl Œ Ng� be the Riemann curvature tensor,Rij Œ Ng�DRijkl Ngkl

be the Ricci curvature tensor, and RŒ Ng�DRij Ngij be the scalar curvature. The scalar curvature equation
in conformal geometry is

�
4.n� 1/

n� 2
�Œ Ng�uCRŒ Ng�uDRŒu

4
n�2 Ng�u

nC2
n�2 (3-1)

for a positive function u. The scalar curvature equation describes how the scalar curvature transforms
under conformal change of metrics. In this section we want to use the estimates for the Newton potential
in the previous section to study the Hausdorff dimensions of the singularities of solutions u to the scalar
equations which represent the ends of a complete conformal metric u4=.n�2/ Ng.

We remark here that all of the results in this section hold if we assume S is compact, D �M n is a
bounded domain that contains S , and .M n; Ng/ is just complete, because the possible noncompact part
M n nD is not relevant for the purpose here.

3.1. Preliminaries. Let us start with [Ma and Qing 2022, Lemma 3.1], which is a slight improvement of
[Chang et al. 2004, Proposition 8.1].

Lemma 3.1 [Ma and Qing 2022, Lemma 3.1]. Let .M n; Ng/ be a compact Riemannian manifold and S
be a closed subset in M n. And let D be an open neighborhood of S . Suppose that g D u4=.n�2/ Ng is a
conformal metric on D nS and is geodesically complete near S . Then

u.x/!C1 as x! S

if R�Œg� 2 Lp.D nS; g/ for some p > n=2, where R�Œg�Dmaxf�RŒg�; 0g stands for the negative part
of the scalar curvature RŒg� and Lp.D nS; g/ is the Lp space with respect to the metric g.
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For a preliminary estimate on the Hausdorff dimension of S , we follow the proof of [Ma and Qing
2022, Theorem 3.1] and get:

Proposition 3.2. Let .M n; Ng/ be a compact Riemannian manifold and S be a closed subset in M n. And
let D be an open neighborhood of S where the scalar curvature RŒ Ng� is nonpositive. Suppose that
g D u4=.n�2/ Ng is a conformal metric on D nS and is geodesically complete near S . Then the Newton
capacity of S is zero and therefore the Hausdorff dimension satisfies

dimH .S/� n� 2;

provided that

R�Œg� 2 L
2n
nC2 .D nS; g/\Lp.D nS; g/

for some p > n
2

.

Proof. Recall the scalar curvature equation

�
4.n� 1/

n� 2
�uD�RuCRCŒg�u

nC2
n�2 �R�Œg�u

nC2
n�2 in D nS; (3-2)

where Z
DnS

R�Œg�u
nC2
n�2 dvolŒ Ng��

�Z
DnS

.R�Œg�/
2n
nC2u

2n
n�2 dvolŒ Ng�

�nC2
2n

vol.D/
n�2
2n

�

�Z
DnS

.R�Œg�/
2n
nC2 dvolŒg�

�nC2
2n

vol.D/
n�2
2n <1: (3-3)

Here, and from now on, all geometric quantities are under the background metric Ng unless indicated
otherwise. And, in light of Lemma 3.1, we know

u.x/!C1 as x! S:

As in the proof of [Ma and Qing 2022, Theorem 3.1] (adopted from [Bidaut-Véron 1989, Lemma 1.2]),
we use the following test functions. First we let

u˛;ˇ D

�
ˇ; u� ˛Cˇ;

u�˛; u < ˛Cˇ;
and �˛;ˇ D u˛;ˇ �ˇCˇ.1� �/;

where � 2 C1c .†˛/ is a fixed cut-off function that is equal to 1 in a neighborhood of S and †˛ D
fx 2D W u.x/ > ˛g. Notice that, for ˇ sufficiently large,

u˛;ˇ 2 .0; ˇ� in †˛ and �˛;ˇ D 0 on fx 2D W u.x/D ˛g[ fx 2D W u� ˛Cˇg

and
r�˛;ˇ Dru˛;ˇ Cˇr� and ruDru˛;ˇ when ru˛;ˇ ¤ 0:

We then multiply �˛;ˇ to (3-2) and get

4.n� 1/

n� 2

Z
†˛

ru � r�˛;ˇ dvolŒ Ng�D
Z
†˛

.�RuCRŒg�u
nC2
n�2 /�˛;ˇ dvolŒ Ng�:
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Therefore

4.n� 1/

n� 2

Z
†˛

jru˛;ˇ j
2 dvolŒ Ng�D ˇ

Z
†˛

�
n� 2

4.n� 1/
ru � r�C .�RuCRŒg�u

nC2
n�2 /.1� �/

�
dvolŒ Ng�

�

Z
†˛

.�RuCRCŒg�u
nC2
n�2 /.ˇ�u˛;ˇ / dvolŒ Ng�

C

Z
†˛

R�Œg�u
nC2
n�2 .ˇ�u˛;ˇ / dvolŒ Ng�� Cˇ; (3-4)

where C depends on ˛ and � but does not depend on ˇ, due the support of 1� � and (3-3). That is,Z
†˛

jr
u˛;ˇ

ˇ
j
2 dvolŒ Ng��

C

ˇ
! 0

as ˇ!1, where u˛;ˇ=ˇ is a function that is identically 1 in a neighborhood of S . This implies the
Newton capacity Cap2.S;D/ of S is zero. Consequently, we know S is of Hausdorff dimension not
greater than n�2 (see [Adams and Meyers 1972; Schoen and Yau 1994, Theorem 2.10 in Chapter VI]). �

3.2. ��u is a Radon measure on D. In order to use the estimates of potentials in the previous section,
we need the following lemma (see [Ma and Qing 2022, Lemma 3.2–3.4]).

Lemma 3.3. Let .M n; Ng/ be a compact Riemannian manifold and S be a closed subset in M n. And
let D be an open neighborhood of S where the scalar curvature RŒ Ng� is nonpositive. Suppose that
g D u4=.n�2/ Ng is a conformal metric on D n S and is geodesically complete near S . Then ��u is a
Radon measure on D and ��ujS � 0, provided that

R�Œg� 2 L
2n
nC2 .D nS; g/\Lp.D nS; g/

for some p > n
2

.

Proof. Again, recall the scalar curvature equation

�
4.n� 1/

n� 2
�uD�RuCRCŒg�u

nC2
n�2 �R�Œg�u

nC2
n�2 D f in D nS; (3-5)

where Z
D

R�Œg�u
nC2
n�2 dvolŒ Ng� <1:

And, in light of Lemma 3.1, we know

u.x/!1 as x! S:

Then we claim the right-hand side f of (3-5) is in L1.D/. To prove this claim, we follow the argument
in the proof of [Ma and Qing 2022, Theorem 3.2] (stated as Lemma 3.2 there). Let

˛s.t/D

8<:
t; t � s;

increasing; t 2 Œs; 10s�;

2s; t � 10s
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(this function was used in [Dolzmann et al. 1997]). Notice that one may require ˛0s 2 Œ0; 1� and ˛00s � 0.
We calculate

��˛s.u/D�˛
00.u/jruj2C˛0s.u/.��u/

and, for s >maxfu.x/ W x 2 @Dg,Z
@D

@u

@�
d� D

Z
D

�˛s.u/ dvolŒ Ng�D
Z
D

�
�˛00.u/jruj2C˛0.u/

n� 2

4.n� 1/
f

�
dvolŒ Ng�:

HenceZ
D

�
�˛00s .u/jruj

2
C˛0s.u/

n� 2

4.n� 1/
f C

�
dvolŒ Ng��

Z
@D

@u

@�
d� C

n� 2

4.n� 1/

Z
D

R�Œg�u
nC2
n�2 dvolŒ Ng�

and Z
D

j�˛s.u/j dvolŒ Ng�D
Z
D

�
�˛00.u/jruj2C˛0.u/

n� 2

4.n� 1/
.f CCf �/

�
dvolŒ Ng�:

By Fatou’s lemma, as s!1, we haveZ
D

f C dvolŒ Ng��
4.n� 1/

n� 2

Z
@D

@u

@�
d� C

Z
D

R�Œg�u
nC2
n�2 dvolŒ Ng�:

So the claim is proven. Moreover,Z
D

j�˛s.u/j dvolŒ Ng��
Z
@D

@u

@�
d� C

n� 2

2.n� 1/

Z
D

R�Œg�u
nC2
n�2 dvolŒ Ng�:

Consequently, for � 2 C1c .D/,

j ��˛s.u/.�/j D

ˇ̌̌̌Z
D

.��˛s.u//� dvolŒ Ng�
ˇ̌̌̌

�

Z
D

j�˛s.u/j dvolŒ Ng�k�kC0.D/

�

�Z
@D

@u

@�
d� C

n� 2

2.n� 1/

Z
DnS

R�Œg�u
nC2
n�2 dvolŒ Ng�

�
k�kC0.D/

for any s larger. Before we show ��u is a Radon measure, let us state and prove a lemma which is
useful for the proof now and later in the following sections.

Lemma 3.4. Let .M n; Ng/ be a compact Riemannian manifold and S be a closed subset in M n. And
let D be an open neighborhood of S where the scalar curvature RŒ Ng� is nonpositive. Suppose that
g D u4=.n�2/ Ng is a conformal metric on D nS and is geodesically complete near S . Then

ru 2 Lp.D/ and u 2 Lq.D/ (3-6)

for p 2
�
1; n
n�1

�
and q 2

�
1; n
n�2

�
, provided that

R�Œg� 2 L
2n
nC2 .D nS; g/\Lp.D nS; g/

for some p > n
2

.
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Proof. In fact, we continue from the above, for � 2 C1c .D/,ˇ̌̌̌Z
D

r˛s.u/ � r� dvolŒ Ng�
ˇ̌̌̌
D

ˇ̌̌̌Z
D

.��Œ Ng�˛s.u/�/ dvolŒ Ng�
ˇ̌̌̌

�

�Z
@D

@u

@�
d� C

n� 2

2.n� 1/

Z
DnS

R�Œg�u
nC2
n�2 dvolŒ Ng�

�
k�kC0.D/

� C

�Z
@D

@u

@�
d� C

n� 2

2.n� 1/

Z
DnS

R�Œg�u
nC2
n�2 dvolŒ Ng�

�
kr�kL�.D/ (3-7)

for any � > n due to the Sobolev embedding theorem. Therefore, for any s appropriately large,

kr˛s.u/kLp.D/ � C and k˛s.u/kLq.D/ � C

for some constant C and p D �0 2
�
1; n
n�1

�
and q 2

�
1; n
n�2

�
, where C is independent of s. Therefore

we first have, by Fatou’s lemma,
kukLq.D/ � C

for some C and q 2
�
1; n
n�2

�
. Moreover, we calculate

jru.�/j D

ˇ̌̌̌Z
D

ur� dvolŒ Ng�
ˇ̌̌̌
D

ˇ̌̌̌
lim
s!1

Z
D

˛s.u/r� dvolŒ Ng�
ˇ̌̌̌
D

ˇ̌̌̌
lim
s!1

Z
D

˛0s.u/ru� dvolŒ Ng�
ˇ̌̌̌

� lim sup
s!1

k˛0s.u/rukLp.D/k�kL� � Ck�kL� : (3-8)

This implies
ru 2 Lp.D/ and u 2 Lq.D/ (3-9)

for p 2
�
1; n
n�1

�
and q 2

�
1; n
n�2

�
, completing the proof of Lemma 3.4. �

Back to the proof of Lemma 3.3,

.��u/.�/D

Z
D

ru � r� dvolŒ Ng�D lim
s!1

Z
D

˛0s.u/ru � r� dvolŒ Ng�D lim
s!1

.��˛s.u//.�//; (3-10)

where the dominated convergence theorem is applied due to ru 2 L1.D/. Thus, for � 2 C1c .D/,

j.��u/.�/j �

�Z
@D

@u

@�
d� C

n� 2

2.n� 1/

Z
DnS

R�Œg�u
nC2
n�2 dvolŒ Ng�

�
k�kC0.D/;

which implies that ��u is a Radon measure on D. To show that ��ujS � 0, we calculate, for a
nonnegative function � 2 C1c .D/,

.��u/.�/D

Z
D

ru � r� dvolŒ Ng�D lim
s!1

Z
D

r˛s.u/ � r� dvolŒ Ng�D lim
s!1

Z
D

.��˛s.u//� dvolŒ Ng�

D lim
s!1

Z
D

�
˛0s.u/

n� 2

4.n� 1/
.�RuCRŒg�u

nC2
n�2 /�˛00s .u/jruj

2

�
� dvolŒ Ng�

� �

�
n� 2

4.n� 1/

Z
supp�nS

j �RuCRŒg�u
nC2
n�2 j dvolŒ Ng�

�
k�kC0.D/! 0

as
R

supp�nS dvolŒ Ng�! 0 and k�kC0.D/ D 1, which implies ��ujS � 0. �
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3.3. Main result on the Hausdorff dimensions. Now we are ready to state and prove our result on the
Hausdorff dimension of the singular set S , which is a significant improvement of Proposition 3.2. For the
readers’ convenience, we recall Theorem 1.3 from the Introduction.

Theorem 1.3. Let .M n; Ng/ be a compact Riemannian manifold and S be a closed subset in M n. And let
D be an open neighborhood of S . Suppose that g D u4=.n�2/ Ng is a conformal metric on D nS and is
geodesically complete near S . Then the Hausdorff dimension satisfies

dimH .S/�
n� 2

2
(3-11)

provided R�Œg�2L2n=.nC2/.D nS; g/\Lp.D nS; g/ for some p > n
2

. Consequently, (3-11) holds when
the scalar curvature RŒg� of the conformal metric g is nonnegative.

Proof. The outline of the proof is as follows: We first show that one may assume the scalar curvature
RŒ Ng� is nonpositive without loss of generality for our purpose. Then we use the Green’s function to
construct the integral representation of the solution to the Laplace equation. Finally we apply Lemma 3.3,
Theorem 1.1, and the geodesic completeness to complete the proof.

Step I: In this step, we find a conformal change Nh D v4=.n�2/ Ng such that the scalar curvature RŒ Nh� is
nonpositive (or even negative) in D, based on the similar idea used in the proof of [Ma and Qing 2022,
Lemma 3.1]. This is trivial if the Yamabe constant of .M n; Ng/ is nonpositive. Otherwise, take a point
p 2M n nD and consider a connected sum of M n with another compact Riemannian manifold .M n

1 ; Ng1/

with very negative Yamabe constant in such way that the conformal structure on the connected sum
M n]M n

1 is unchanged in D �M n]M n
1 . Then, by [Gil-Medrano 1986, Theorem 5], the Yamabe constant

of such a connected sum is negative. Therefore one easily finds a conformal metric NhD v4=.n�2/ Ng whose
scalar curvature is negative in D, where v 2 C1.D/ and

C�1 � v � C in D (3-12)

for some positive constant C . In any case, we have gDu4=.n�2/ Ng D
�
u
v

�4=.n�2/ Nh and the scalar curvature
RŒ Nh� is nonpositive. In conclusion, due to (3-12), we may simply assume RŒ Ng� is nonpositive (or even
negative) in D without loss of any generality for the purpose of obtaining the growth estimate like the
one given in Theorem 1.1.

Step II: In this step, we use the Green’s function to construct the integral representation of the solution u.
In light of Lemma 3.3, we may write

��uD � in D

for a Radon measure � on D. Let G.x; y/ be the Green’s function on D given by [Aubin 1982,
Theorem 4.17]. Then

uD

Z
D

G.x; y/ d�.y/C h

for a smooth function h that is harmonic in D. By [Aubin 1982, Theorem 4.17(c)], we have

0 < G.x; y/�
C

d.x; y/n�2
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for some constant C and x; y 2D. We therefore arrive at, for x 2D,

u.x/�

Z
D

G.x; y/ d�CC h.x/� CR
2;D

�C
.x/C h.x/: (3-13)

Step III: Assume otherwise that dimH .S/Dd >
n�2
2

. From Corollary 2.12, there is a point p2S such that

R
2;D

�C
.x/�

C

d.x; p/n�2�d

at least for x along a short geodesic ray  from p, which implies

u.x/
2
n�2 �

C

d.x; p/
2.n�2�d/
n�2

(3-14)

at least for x along a short geodesic ray  from p, where

2.n� 2� d/

n� 2
D 2�

2d

n� 2
< 1

when d > n�2
2

. Now the length of the curve  with respect to the conformal metric g D u4=.n�2/ Ng is

L.; g/� C

Z l0

0

1

s
2.n�2�d/
n�2

ds <1

when d > n�2
2

, which contradicts the geodesic completeness of the conformal metric g D u4=.n�2/ Ng. �

The study of singular solutions to the scalar curvature equations started from the seminal paper [Schoen
and Yau 1988] (see also [Schoen and Yau 1994, Chapter VI; Carron 2012; Schoen 1988; Mazzeo and
Smale 1991; Mazzeo and Pacard 1996]) on domains of the sphere. Theorem 1.3 here can be considered as
a necessary condition for the existences of singular solutions on domains in general Riemannian manifolds
and compared with [Schoen and Yau 1988, Theorem 2.7; Carron 2012, Theorem C], which stated the
similar result for domains in the round sphere Sn and slightly stronger curvature assumptions. Clearly
[Schoen and Yau 1988, Proposition 2.4] and the quantity d.M/ there are not of local nature, while our
approach here is very much local in nature.

4. On Q-curvature equations

We will use linear potential theory developed in Section 2 to study Q-curvature equations and prove our
results on the Hausdorff dimensions of the singular sets of positive solutions of Q-curvature equations
which correspond to ends of complete conformal metrics on domains of a compact Riemannian manifold.

Again we remark here that all of the results in this section hold if we assume S is compact, D �M n

is a bounded domain that contains S , and .M n; Ng/ is just complete. Because the possible noncompact
part M n nD is not relevant for the purpose here.
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4.1. Q-curvature equations in dimensions greater than 4. We now focus on (1-5) in dimensions greater
than 4. We will always assume that the scalar curvature of the conformal metric g D u4=.n�4/ Ng is
nonnegative. We will first prove some preliminary estimates based on discussions in the previous section.
Our strategy is to consider the bi-Laplace operator as the composition of the Laplace operators. Let us
write the scalar curvature equation and its consequence:

��u
n�2
n�4 C

n� 2

4.n� 1/
Ru

n�2
n�4 D

n� 2

4.n� 1/
RŒg�u

nC2
n�4 in D nS; (4-1)

��uD
2

n� 4

jruj2

u
C

n� 4

4.n� 1/
.�RuCRŒg�u

n
n�4 / in D nS: (4-2)

Here, and from now on, all geometric quantities are under the background metric Ng unless indicated
otherwise.

Lemma 4.1. Let .M n; Ng/ be a compact Riemannian manifold for n� 5 and S be a closed subset in M n.
And let D be an open neighborhood of S where the scalar curvature satisfies R � �c0 < 0. Suppose
that g D u4=.n�4/ Ng is a conformal metric on D nS with nonnegative scalar curvature RŒg� � 0 and is
geodesically complete near S . And suppose also that

Q�4 Œg� 2 L
2n
nC4 .D nS; g/:

Then
as a function on D nS , ��u!C1 as x! S;

as a Radon measure on D, �ujS D 0;

in fact, �u 2 Lp.D/ for any p 2
�
1; n
n�2

�
:

(4-3)

Proof. First, using Lemma 3.4 for u.n�2/=.n�4/, we know that

u 2 Lp.D/ for p 2
�
1; n
n�4

�
: (4-4)

Also, from Lemma 3.1, for u.n�2/=.n�4/,

u.x/!C1 as x! S; (4-5)

which implies, by (4-2),
��u!C1 as x! S:

To prove ��u is an integrable function in distributional sense, we first realize ��u is a Radon measure
on D following (4-2) and Lemma 3.3. And, as a side product, we also haveZ

D

�
2

n� 4

jruj2

u
C

n� 4

4.n� 1/
.�RuCRŒg�u

n
n�4 /

�
dvolŒ Ng� <1:

In fact, from (4-1) and Lemma 3.3, we also know ��u.n�2/=.n�4/ is a Radon measure on D. To use this
fact we calculate

��˛s.u/D��.˛s.u/
n�2
n�4 /

n�4
n�2 D

n� 4

n� 2
˛s.u/

� 2
n�4 .��˛s.u/

n�2
n�4 /C

2

n� 4

jr˛s.u/j
2

˛s.u/
:
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To prove ��ujS D 0, we consider

.��u/.�/D

Z
D

ru � r� dvolŒ Ng�;

where ru is integrable in the distributional sense directly from (3-8) and (3-9). ThereforeZ
D

ru � r� dvolŒ Ng�D lim
s!1

Z
D

˛0s.u/ru � r� dvolŒ Ng�D lim
s!1

Z
D

.��˛s.u//� dvolŒ Ng�

and

.��u/.�/D
n� 4

n� 2
lim
s!1

Z
D

˛s.u/
� 2
n�4 .��˛s.u/

n�2
n�4 /� dvolŒ Ng�C

2

n� 4
lim
s!1

Z
D

jr˛s.u/j
2

˛s.u/
� dvolŒ Ng�

D
n� 4

n� 2
u�

2
n�4 .��u

n�2
n�4 /.�/C

2

n� 4

Z
D

jruj2

u
� dvolŒ Ng�! 0

as
R

supp�nS dvolŒ Ng�! 0 and k�kC0.D/ � 1. The proof will be complete after the following Lp estimate.
To get the Lp estimate, we first calculateZ

DnS

Q�4 Œg�u
nC4
n�4 dvolŒ Ng�D

�Z
DnS

.Q�4 Œg�/
2n
nC4u

2n
n�4 dvolŒ Ng�

�nC4
2n

vol.D/
2n
n�4

D

�Z
DnS

.Q�4 Œg�/
2n
nC4 dvolŒg�

�nC4
2n

vol.D/
2n
n�4 <1: (4-6)

Then we continue to use notation in the proof of Proposition 3.2 and let

˛ Dmaxfu.x/ W x 2 @Dg

and ˛ < ˇ. And recall

u˛;ˇ D

�
ˇ; x 2†˛Cˇ ;

u.x/�˛; x 2†˛ n†˛Cˇ ;

and

�˛;ˇ D

8<:
u˛;ˇ �ˇ�D u� .˛Cˇ/Cˇ.1� �/ in †˛ n†˛Cˇ ;
0 on @†˛;
0 on @†˛Cˇ ;

where � is a fixed cut-off function in C1c .†˛/ and is identically 1 in a neighborhood of S , and ˇ is
arbitrarily large. We now first multiply the Q-curvature equation (1-5) by 1� �, integrate over D, apply
integration by parts multiple times, and getZ

D

.1� �/QC4 u
nC4
n�4 dvolŒ Ng��

Z
D

Q�4 u
nC4
n�4 dvolŒ Ng�CC (4-7)

for some constant C depending on the cut-off function �, u at @D, and kukL1.D/. We then multiply both
sides of the Q-curvature equation (1-5) by �˛;ˇ , integrate over †˛ n†˛Cˇ , and get
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†˛n†˛Cˇ

�u��˛;ˇ dvolŒ Ng��
Z
@†˛

�u
@u

@�
d� �

Z
@†˛Cˇ

@u

@�
�ud�

�

Z
†˛n†˛Cˇ

.4A.ru;r�˛;ˇ /� .n� 2/Jru � r�˛;ˇ / dvolŒ Ng�C
n� 4

2

Z
†˛n†˛Cˇ

Q4u�˛;ˇ dvolŒ Ng�

D
n� 4

2

Z
†˛n†˛Cˇ

Q4Œg�u
nC4
n�4 �˛;ˇ dvolŒ Ng�; (4-8)

where � is the outward normal direction at the boundary and the boundary term
R
@†˛Cˇ

@u
@�
.��u/ d� is

nonnegative due to (4-2) and @u
@�
j@†˛Cˇ D jruj. Therefore,Z

†˛n†˛Cˇ

.�u/2 dvolŒ Ng�Cˇ
Z
†˛n†˛Cˇ

.�u/.�.1� �// dvolŒ Ng�

� �

Z
@†˛

.��u/
@u

@�
d� CC

Z
†˛n†˛Cˇ

jruj2 dvolŒ Ng�

�ˇ

Z
†˛

�
4A.ru;r.1� �//� .n� 2/Jru � r.1� �/

�
dvolŒ Ng�

CCˇ

Z
D

udvolŒ Ng�CCˇ
Z
D

Q�4 Œg�u
nC4
n�4 dvolŒ Ng�; (4-9)

where we use (4-7) and j�j � ˇ in †˛ n†˛Cˇ . After applying integration by parts, we getZ
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�� C
Z
†˛n†˛Cˇ

jruj2 dvolŒ Ng�CCˇ (4-10)

for some constant C depending on the cut-off function �, u at @†˛, and kukL1.D/, becauseZ
†˛n†˛Cˇ

�u��dvolŒ Ng�D
Z
†˛n†˛Cˇ

u�2� dvolŒ Ng�

and similarly we may unload all derivatives from u by integration by parts for the other terms in the
above (4-9). Now, to get an a priori estimate, we calculateZ

†˛n†˛Cˇ

jruj2 dvolŒ Ng��
1

.n� 4/C

Z
†˛n†˛Cˇ

jruj4

u2
dvolŒ Ng�C

.n� 4/C

4

Z
†˛n†˛Cˇ

u2 dvolŒ Ng�

�
1

2C

Z
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�C
.n� 4/C

4
.˛Cˇ/

Z
D

udvolŒ Ng�;

due to (4-2), which implies, from (4-10),Z
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�� C.˛Cˇ/: (4-11)

We claim that (4-11) implies

�u 2 Lp.D/ (4-12)
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for all p 2
�
1; n
n�2

�
. To prove (4-12), we first derive from (4-11)

2�i
Z
†
2i�1
n†
2i

j�uj2 dvolŒ Ng�� C

for i � i0 large, which implies Z
†
2i�1
n†
2i

j�uj2

u
dvolŒ Ng�� 2C

and, for s > 0 appropriately small for any p 2
�
1; n
n�2

�
,Z

†
2i0�1

nS

j�uj2

u1Cs
dvolŒ Ng�D

1X
iDi0

Z
†
2i�1
n†
2i

j�uj2

u1Cs
dvolŒ Ng��

1X
iDi0

2s.�iC1/
Z
†
2i�1
n†
2i

j�uj2

u
dvolŒ Ng�<1:

Thus Z
DnS

j�ujp dvolŒ Ng��
�Z
DnS

j�uj2

u1Cs
dvolŒ Ng�

�p
2
�Z
DnS

u
.1Cs/p
2�p dvolŒ Ng�

�1�p
2

<1;

where
.1C s/p

2�p
<

n

n� 4
: �

Corollary 4.2. Under the same assumptions as in Lemma 4.1 we have

dimH .S/� n� 4:

Proof. Consequently from (4-2) and (4-11), we haveZ
†˛n†˛Cˇ

jr
u˛;ˇ

ˇ
j
4 dvolŒ Ng��

.˛Cˇ/2

ˇ4

Z
†˛n†˛Cˇ

jruj4

u2
dvolŒ Ng�

�
.˛Cˇ/2

ˇ4

Z
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�� C
.˛Cˇ/3

ˇ4

for some ˛ appropriately large and ˇ!1, which leads to Cap4.S/D 0 and completes the proof similar
to the proof of Proposition 3.2 (see [Adams and Meyers 1972; Schoen and Yau 1994, Theorem 2.10 in
Chapter VI]). �

Lemma 4.3. Let .M n; Ng/ be a compact Riemannian manifold for n� 5 and S be a closed subset in M n.
And let D be an open neighborhood of S where the scalar curvature RŒ Ng� � �c0 < 0. Suppose that
g D u4=.n�4/ Ng is a conformal metric on D n S with nonnegative scalar curvature RŒg� � 0 and is
geodesically complete near S . And suppose also that

Q�4 Œg� 2 L
2n
nC4 .D nS; g/:

Then �2u is a Radon measure on D and �2ujS � 0.

Proof. Let v D ��u. We will follow the proof of Lemma 3.3 to show that ��v is a Radon measure
on D using Lemma 4.1. We continue to use the notation from the proof of Lemma 3.3. We calculate

��˛s.v/D ˛
0.v/.��v/�˛00.v/jrvj2;
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where, by the Q-curvature equation (1-5), we have

��v D� div.4A.ru/� .n� 2/Jru/�
n� 4

2
Q4uCQ4Œg�u

nC4
n�4 in D nS

and

��˛s.v/D�˛
00
s .v/jrvj

2
C˛0.v/.� div.4A.ru/� .n� 2/Jru/�

n� 4

2
Q4uCQ4Œg�u

nC4
n�4 /

in D. In light of Lemma 4.1, terms in the right-hand side of the above equation are all integrable except
�˛00.v/jrvj2CQC4 Œg�u

.nC4/=.n�4/. Therefore the argument in the proof of Lemma 3.3 works from this
point and completes the proof. �

We now are ready to state and prove our main results for Q-curvature equations in dimensions greater
than 4. For this, we recall Theorem 1.4 from the Introduction.

Theorem 1.4. Let .M n; Ng/ be a compact Riemannian manifold for n� 5 and S be a closed subset in M n.
And let D be an open neighborhood of S . Suppose that g D u4=.n�4/ Ng is a conformal metric on D nS
with nonnegative scalar curvature RŒg�� 0 and is geodesically complete near S . And suppose also that

Q�4 Œg� 2 L
2n
nC4 .D nS; g/:

Then
dimH .S/�

n� 4

2
:

Proof. In light of Step I in the proof of Theorem 1.3, we may assume the scalar curvature R � �c0 < 0
for some c0 without loss of any generality. Then we use Lemmas 4.1 and 4.3 and conclude that

�2uD �

for a Radon measure � on D. We use [Aubin 1982, Theorem 4.7] first to write

��uD

Z
D

G.x; y/ d�C h.x/

for some harmonic function h.x/, where G.x; y/ is the Green’s function for ��. Then we have

u.x/D

Z
D

G.x; z/

Z
D

G.z; y/ d�.y/ dvolŒ Ng�.z/C b.x/;

where b.x/ is biharmonic, whereZ
D

G.x; z/

Z
D

G.z; y/ d�.y/ dvolŒ Ng�.z/D
Z
D

.

Z
D

G.x; z/G.z; y/ dvolŒ Ng�.z// d�.y/

and
0 <

Z
D

G.x; z/G.z; y/ dvolŒ Ng�.z/�
C

d.x; y/n�4

for a constant C and n � 5 due to [Aubin 1982, Proposition 4.12], which can be easily proven to be
available for bounded domains in Riemannian manifolds. Hence

u.x/�R
4;D

�C
.x/C b.x/:
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From now on, using the same argument of the proof of Theorem 1.3, based on Theorem 1.1 for ˛ D 4
and n� 5, we conclude

dim H .S/�
n� 4

2
and finish the proof. �

There have been a lot of works on the study of singular solutions toQ-curvature equations on manifolds
of dimension greater than 4, notably [Qing and Raske 2006a; 2006b; Chang et al. 2004; González et al.
2012], for example. Theorem 1.4, for instance, is an improvement of [Chang et al. 2004, Theorem 1.2] in
terms of curvature conditions. And the approach here is different from [Chang et al. 2004].

4.2. Q-curvature equations in dimension 4. We will now study the Q-curvature equation (1-6). Our
approach here in principle is similar to that in the previous subsection but different in calculations and
details. We will always assume that the scalar curvature of the conformal metric gD e2u Ng is nonnegative.
We will first derive some preliminary estimates from the scalar curvature equation for w D eu and the
Q-curvature equation (1-6) for u. Let us write the scalar curvature equation for eu

��eu D 1
6
.�ReuCRŒg�e3u/ in D nS (4-13)

and consequently,
��uD jruj2C 1

6
.�RCRŒg�e2u/ in D nS: (4-14)

Lemma 4.4. Let .M 4; Ng/ be a compact Riemannian manifold and S be a closed subset in M n. And let D
be an open neighborhood of S where the scalar curvature R � 0. Suppose that g D e2u Ng is a conformal
metric on D nS with nonnegative scalar curvature RŒg�� 0 and is geodesically complete near S . And
suppose also that

Q�4 Œg� 2 L
1.D nS; g/:

Then
as a Radon measure, ��ujS D 0;

in fact, �u 2 Lp.D/ for any p 2
�
1; 4
3

�
:

(4-15)

Proof. First, by Lemma 3.1 for eu, we have

u.x/!1 as x! S:

Then, by the proof of Lemma 3.3 and (4-14), we know that

� ��u is a Radon measure on D,

� ru 2 Lp.D/ for any p 2
�
1; 4
3

�
and u 2 Lp.D/ for any p 2 Œ1; 2/,

� jruj2C 1
6
.�RCRŒg�e2u/ 2 L1.D/.

Using the same argument as in the proof of Lemma 4.1 we can prove that ��ujS D 0 as a Radon measure.
Also, for the Lp estimate, following the proof of Lemma 4.1, we multiply both sides of (1-6) by 1� �
and get Z

D

.1� �/QC4 e
4u dvolŒ Ng��

Z
D

Q�4 Œg� dvolŒg�CC:
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Next we multiply both sides of (1-6) by �˛;ˇ and integrate,Z
†˛n†˛Cˇ

�u��˛;ˇ dvolŒ Ng��
Z
@†˛

�u
@�˛;ˇ

@�
d� �

Z
@†˛Cˇ

�u
@�˛;ˇ

@�
d�

�

Z
†˛n†˛Cˇ

.4A.ru;r�˛/� 2Jru � r�˛;ˇ dvolŒ Ng�C
Z
†˛n†˛Cˇ

Q4�˛;ˇ dvolŒ Ng�

D

Z
†˛n†˛Cˇ

Q4Œg�e
4u�˛;ˇ dvolŒ Ng�;

and, again, the boundary term at @†˛Cˇ is with the sign in our favor, thanks to (4-14) and @u
@�
j†˛Cˇ Djruj

for the outward normal � of †˛ n†˛Cˇ . Similar to the estimates in the proof of Lemma 4.1, we getZ
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�� C
Z
†˛n†˛Cˇ

jruj2 dvolŒ Ng�CCˇ:

And we handle
R
†˛n†˛Cˇ

jruj2 dvolŒ Ng� much as before,Z
†˛n†˛Cˇ

jruj2 dvolŒ Ng��
1

2C

Z
†˛n†˛Cˇ

jruj4 dvolŒ Ng�CC �
1

2C

Z
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�CC

due to (4-14). Therefore Z
†˛n†˛Cˇ

j�uj2 dvolŒ Ng�� Cˇ: (4-16)

Now, using the same idea as in the proof of Lemma 4.1, we rewrite (4-16) asZ
†
2i�1
n†
2i

j�uj2

u
dvolŒ Ng�� C

and, for s > 0 appropriately small for any p 2
�
1; 4
3

�
, we deriveZ

DnS

j�uj2

u1Cs
dvolŒ Ng�� C;

which impliesZ
DnS

j�ujp dvolŒ Ng��
�Z
DnS

j�uj2

u1Cs
dvolŒ Ng�

�p
2
�Z
DnS

u
.1Cs/p
2�p dvolŒ Ng�

�1�p
2

when
.1C s/p

2�p
< 2: �

Corollary 4.5. Under the assumptions of Lemma 4.4, we know the singular set S is of zero Hausdorff
dimension.

Proof. From (4-14) and (4-16) in the above we haveZ
†˛n†˛Cˇ

jr
u˛;ˇ

ˇ
j
4 dvolŒ Ng�� Cˇ�3
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for some ˛ appropriately large and ˇ!1, which leads to Cap4.S;D/D 0 and completes the proof as in
Proposition 3.2 (see [Adams and Meyers 1972; Schoen and Yau 1994, Theorem 2.10 in Chapter VI]). �

What follows is to go beyond that S is of zero Hausdorff dimension. We now are ready to state and
prove our main result on the finiteness of singularities for the Q-curvature equation in dimension 4. This
is inspired by [Cohn-Vossen 1935; Huber 1957; Arsove and Huber 1973; Ma and Qing 2021; 2022]. We
recall Theorem 1.5 from the Introduction.

Theorem 1.5. Let .M 4; Ng/ be a compact Riemannian manifold and S be a closed subset in M n. And let
D be an open neighborhood of S . Suppose that gD e2u Ng is a conformal metric onDnS with nonnegative
scalar curvature RŒg�� 0 and is geodesically complete near S . And suppose thatZ

D

Q�4 Œg� dvolŒg� <1:

Then S consists of only finitely many points.

Proof. As before, we use the argument in Step I on Theorem 1.3 to assume that the scalar curvature of the
background metric Ng is less than a negative number, i.e., R ��c0 < 0, without loss of any generality for
our purpose. Let

v D��uCu

and claim ��v is a Radon measure on D with ��vjS � 0. Let us start with

��v D�2u��uD� div.4A.ru/� 2Jru/�Q4CQ4Œg�e4u��u: (4-17)

By Lemma 4.4 and (4-14), we know

� v.x/!1 as x! S ,

� all terms in the right side of (4-17) except QC4 Œg�e
4u are integrable.

Therefore, following the same argument as in the proof of Lemma 4.3, the claim is proven. Obviously,
the same conclusion holds for �2uD��vC�u from ��v and what we know about �u in Lemma 4.4.
Thus we let

�2uD �

for a Radon measure on D with �2ujS � 0. Like in the proof of Theorem 1.4, we first write

��u.x/D

Z
D

G.x; y/ d�.y/C h.x/

by [Aubin 1982, Theorem 4.17], where h.x/ is a harmonic function. Then we write

u.x/D

Z
D

G.x; z/

Z
D

G.z; y/ d�.y/ dvolŒ Ng�.z/C b.x/;

where b.x/ is a biharmonic function and, due to [Aubin 1982, Proposition 4.12],Z
D

G.x; z/G.z; y/ dvolŒ Ng�.z/� C
�
1C log

1

d.x; y/

�
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for some constant C in dimension 4, where [Aubin 1982, Proposition 4.12] can be easily made available
on bounded domains in manifolds. Therefore

u.x/� CR
4;D

�C
.x/C b.x/:

Applying Theorem 2.13, we have

lim
x!p and x…E

u.x/

log.1=d.x; p//
� C�C.fpg/D C�.fpg/;

where E is a subset that is n-thin at p. Next, in light of Corollary 2.12, we conclude that �.fpg/� 1
C

for
each p 2 S since otherwise u.x/�m log.1=d.x; p// for some m< 1, which violates the completeness
of the metric g near S , because the Ng-geodesic mentioned in Theorem 1.2, which avoids E, would have
finite length with respect to the metric g. So we conclude that S can only have finitely many points. �

Theorem 1.4 is a significant improvement of [Chang et al. 2000a, Theorem 2] (please see also [Carron
and Herzlich 2002; Chang et al. 2000b; Ma and Qing 2022]).
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