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ROTATING SPIRALS IN SEGREGATED REACTION-DIFFUSION SYSTEMS

ARIEL SALORT, SUSANNA TERRACINI, GIANMARIA VERZINI AND ALESSANDRO ZILIO

We give a complete characterization of the boundary traces 'i (i D 1; : : : ; K) supporting spiraling waves,
rotating with a given angular speed !, which appear as singular limits of competition-diffusion systems
of the type 8<:

@tui ��ui D �ui �ˇui
P
j¤i aijuj in ��RC;

ui D 'i on @��RC;

ui .x; 0/D ui;0.x/ for x 2�;

as ˇ!C1. Here � is a rotationally invariant planar set, and aij > 0 for every i and j . We tackle also
the homogeneous Dirichlet and Neumann boundary conditions, as well as entire solutions in the plane.
As a byproduct of our analysis, we detect explicit families of eternal, entire solutions of the pure heat
equation, parametrized by ! 2 R, which reduce to homogeneous harmonic polynomials for ! D 0.

1. Introduction

This paper deals with existence, uniqueness and qualitative properties of rotating spiraling waves arising in
the singular limit of reaction-diffusion systems, when the interspecific competition rates become infinite.
More precisely, we are concerned with the singular limits, as ˇ!C1, of the following model problem
involving K � 3 species competing in the plane:8<:

@tui ��ui D fi .ui /�ˇui
P
j¤i aijuj in ��RC;

ui D 'i on @��RC;

ui .x; 0/D ui;0.x/ for x 2�:

(1)

Here � � R2 has a smooth boundary and ui D ui .x; t / represents the density of the i-th species
(1� i �K), whose internal dynamic is described by the function fi . The positive numbers ˇaij account
for the interspecific competition rates, so that the interaction has a repulsive character. The boundary
data 'i are positive and segregated, i.e., 'i'j � 0 for j ¤ i .

As already mentioned, we are concerned with the limit case of strong competition; that is, when the
parameter ˇ goes to C1 while the positive coefficients aij remain fixed. In this case it is known that the
densities ui segregate, in the sense that they converge uniformly to limit densities satisfying uiuj � 0 for
j ¤ i ; hence a pattern arises, and the common nodal set (where all densities vanish simultaneously) can
be considered as a free boundary; see [Caffarelli et al. 2009; Conti et al. 2005a; 2005b; Wei and Weth
2008] for steady states and [Dancer et al. 2012a; 2012b; Dancer and Zhang 2002; Wang and Zhang 2010]
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for time-varying solutions. For such segregated limit profiles, the interface conditions are expressed by
two systems of differential inequalities which play a fundamental role in our work:

@tui ��ui � fi .ui /; @t Oui �� Oui � Ofi . Oui /; (2)

where the differential inequalities are understood in the variational sense, and

Oui D ui �
X
j¤i

aij

aj i
uj ; Ofi . Oui /D f .ui /�

X
j¤i

aij

aj i
f .uj /: (3)

These inequalities incorporate the transmission conditions at the free boundary, that is the closure of the
interfaces @fui > 0g\ @fuj > 0g, which separate the supports of ui and uj at any fixed time t .

For planar stationary solutions, the structure of the free boundary has been the object of several papers.
In the case of symmetric interactions (aij D aj i for every i and j ), it is composed by a regular part, a
collection of smooth curves, meeting at a locally finite number of (singular) clustering points, with definite
tangents; see [Caffarelli et al. 2009; Conti et al. 2005a; 2006; Helffer et al. 2009]. On the other hand,
the asymmetric case has been treated only more recently in [Terracini et al. 2019]: while the topological
structure of the free boundary is analogous to the symmetric case (smooth curves meeting at isolated
singular points), the geometric description differs strongly in a neighborhood of each singular point,
where the nodal lines meet with logarithmic spiraling asymptotics.

Going back to time-dependent systems, rotating spiraling patterns have been detected numerically in the
case of three competing populations in [Murakawa and Ninomiya 2011]. Driven by this phenomenology,
in this paper we seek rotating spirals, that is rigidly rotating waves which are steady states of (2) in a
reference frame spinning with frequency !; such solutions satisfy @tui D !@�ui in a disk, subject to
boundary conditions which are prescribed in the rotating frame, and exhibit spiraling interfaces near the
origin. Hence, in comparison with the literature, our work tackles the segregation problem from a new
perspective, that is the existence of limit segregated profiles satisfying additional qualitative properties or
shadowing some given shapes. On the other hand, the literature on other aspects of segregation triggered
by strong competition, starting from pioneering works by Dancer and Du [1995a; 1995b], is now very
vast, and it is impossible to give a complete account of it here; besides the papers mentioned above, we
mention a few more recent ones such as [Arakelyan and Bozorgnia 2017; Berestycki and Zilio 2018;
2019; Lanzara and Montefusco 2019; 2021; Verzini and Zilio 2014].

The rotating spiral shapes we investigate evoke some other typical examples of spatiotemporal patterns
arising in reaction-diffusion systems in planar domains: the spiral waves. In the simplest case, spiral
waves are stationary waves in a rotating frame, while modulated spiraling waves may emanate from
rigidly rotating ones in some circumstances. Such waves arise in different models and appear in the
literature about reaction-diffusion systems in contexts different from singular perturbation problems;
see, e.g., [Sandstede et al. 1997; Sandstede and Scheel 2007; 2023]. As far as we know, this is the first
study on spiraling rotating waves for segregated limit profiles of competition-diffusion systems. We also
mention that spiraling interfaces arise in free boundary problems in entirely different contexts [Allen and
Kriventsov 2020].
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To construct eternal solutions of spiraling-type to the limit system (2), in this paper we deal with
suitable classes of reactions fi and boundary conditions. More precisely, let us consider identical, linear
reactions in the unit ball (centered at 0):

�D B; fi .u/D �u for some � 2 R.

We insert into (2) the rotating wave ansatz

ui .x; t /D ui .R!tx/;
where

R!t D
�

cos.!t/ � sin.!t/
sin.!t/ cos.!t/

�
is the rotation matrix of angular speed !, and we obtain the stationary system of inequalities8<:

��ui C!x? � rui � �ui in B;
�� Oui C!x? � r Oui � � Oui in B;
ui �uj D 0 for i ¤ j;

(4)

where x? DR�=2x and Oui is defined in (3). It is worth noting that, despite appearances, this system is
strongly nonlinear and has to be tackled as a free boundary problem.

We are interested in solutions of (4) whose nodal set consists in smooth arcs, emanating from @B and
spiraling towards 0, which is the unique singular point of the free boundary. In this way, each arc is a
smooth interface between two adjacent densities, and the origin is the only point with higher multiplicity
(see Figure 1). In this framework we provide a complete description of the nonhomogeneous Dirichlet
problem associated with (4).

Let us consider a K-tuple .'1; : : : ; 'K/ of segregated boundary traces. Precisely, we assume that, for
every i D 1; : : : ; K,8<:

'i 2 C
0;1.@B/; 'i � 0;

fx W 'i .x/ > 0g are connected, nonempty and disjoint arcs,S
i supp'i D @B:

(5)

Up to relabeling, we can assume that the traces 'i are labeled in counterclockwise order.
In general, it is not reasonable to expect that any choice of the boundary data provides a solution of (4)

with a unique singular point at 0. Indeed, we show that this happens exactly for an explicit subset having
codimension K�1 in the space of traces. Let s D .s1; : : : ; sK/ 2 RK , with si > 0 for all i , and let us
consider the class of functions

Srot D fU D .u1; : : : ; uK/ 2 .H
1.B//K W ui � 0 satisfy (4); ui D si'i on @Bg: (6)

To state our main result we introduce the parameter

˛ D
1

2�
ln
�
a12

a21
�
a23

a32
� � �
aK1

a1K

�
; (7)

which synthesizes the asymmetry of the coefficients aij ; see [Terracini et al. 2019] for more details.
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Figure 1. Contour lines of a numerical simulation (obtained in FreeFem++ [Hecht
2012]) in the case of K D 3 densities, with asymmetric competition such that
a12=a21 D a23=a32 D a31=a13 D 10, and reaction term �D 0. The angular velocity
is ! D 3 for the image on the left (counterclockwise spin) and ! D�3 for the image
on the right (clockwise spin). In both cases, we obtain a unique singular point at
the center of the circle by choosing the same boundary conditions, which satisfy the
necessary and sufficient conditions in Theorem 1.1; see (10). The rotation affects the
shape of the spirals but not their asymptotic behavior close to the center. This is part
of the content of Theorem 1.1.

Our main result is the following theorem.

Theorem 1.1. Let K � 3, aij > 0 and ! 2 R. Assume that � < �2 and .'1; : : : ; 'K/ satisfies (5). There
exists

Ns D .Ns1; : : : ; NsK/ 2 RK ;

independent of � and !, with Nsi > 0 for all i , such that:

(1) If s D t Ns for some t > 0, then Srot contains an element with a unique singular point at 0. Moreover,
such an element is unique and, defining U as a suitable linear combination of its components, we
have

U.r cos#; r sin#/D Ar
 cos
�
K

2
# �˛ ln r

�
C o.r
 / as r! 0; (8)

where


 D
K

2
C
2˛2

K
and 0 < A0 � A.x/� A1:

(2) If s ¤ t Ns for every t > 0, then Srot contains no element with a unique singular point at 0.
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Corollary 1.2. Under the assumptions of the above theorem, if the problem is invariant under a rotation
of 2�=K, i.e.,

'iC1.x/D '1.R2�i=Kx/ and
ai.iC1/

a.iC1/i
D
aK1

a1K
(9)

for every i , then
Ns D .1; 1; : : : ; 1/:

Remark 1.3. Notice that the asymptotic expansion (8) implies that the free boundary, near the singular
point 0, is the union of K equidistributed logarithmic spirals, as long as ˛ ¤ 0. On the other hand, in the
case ˛ D 0, we obtain that the interfaces enter the origin with a definite angle. In particular, this holds
true in the symmetric case aij D aj i for every j ¤ i .

Remark 1.4. In this work, we normalize the radius of the disc, taking the slope of the reaction term � at
zero as a parameter. If we wish to work in a ball of radius R then we need � < �2=R2, as seen with a
simple scaling.

Remark 1.5. A natural question concerns the dynamical stability of the solutions above. From this
point of view, the study of the linearized problem of (1), due to the presence of the large parameter ˇ,
does not seem a viable path. This leaves open the problem of stability, for the moment, although
numerical simulations for (1), with logistic reactions and ˇ large, suggest stability for some specific
angular velocity !.

We shall adopt a constructive point of view, building the solution by superposition of fundamental
elementary modes. The dependence of such building blocks on the parameter ! and � shows the presence
of resonances at exceptional values; see Section 6 for further details. As a byproduct of the analysis of
resonances, we will prove the following results.

Theorem 1.6 (homogeneous boundary conditions). LetK � 3 and aij >0. If .�; !/ belongs to a suitable
discrete set then there exists a nontrivial element of Srot with null traces. Analogous results hold for
homogenous Neumann or Robin boundary conditions.

Theorem 1.7 (entire solutions). Let K � 3 and aij > 0. For almost every .�; !/, there exists an entire
solution of (4) in R2.

In the above results, the conditions on .�; !/ are explicit in terms of the zero set of suitable analytic
functions in the complex plane. In both cases, the solutions are explicit in terms of trigonometric and
Bessel’s functions. This allows us to study the structure of the free boundary of the entire solutions far
away from the origin. It turns out that, at least when ! ¤ 0, also at infinity the free boundary consists in
equidistributed spirals, now of arithmetic type. We refer to Lemma 6.7 and Remark 6.8 for further details.

Remark 1.8. In the particular case ˛ D �D 0, we obtain that the entire solution found in Theorem 1.7
is related to the nodal components of a smooth rotating solution of the pure heat equation. Let ! > 0,
k � 1 be an integer, and let Ik denote the modified Bessel function of the first kind, with parameter k.
We have that the function

U.rei# ; t /D Re
�
eik.#C!t/Ik

�
1
2

p
2!k.1C i/r

��
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Figure 2. Contour lines of the rotating caloric functions in Remark 1.8. Here ! D 1,
and k D 1 and k D 2, respectively. In black the nodal lines: the appearance of arithmetic
spirals for r large is rather clear in the picture.

is an entire, eternal rotating solution of the heat equation

Ut ��U D 0 in R2 �R

having 2k nodal regions, which coincide up to rotations that are a multiple of �=k. The equidistributed
nodal lines admit a straight tangent as r! 0, while they behave like arithmetic spirals of the equation
# D

p
!=.2k/r as r ! C1; see Figure 2. Notice that, as ! ! 0, a suitable renormalization of U

converges to the entire harmonic function Re zk .

Remark 1.9. Notice that, by separation of variables, one may treat boundary value problems for rotating
solutions also on other rotationally invariant domains �, such as annuli or external domains. Of course,
since in these cases 0 …�, this cannot provide spiraling solutions, at least in our sense.

Let us provide an explanation for our construction. When a smooth curve separates two densities of an
element of Srot, at least locally, the gradients of the two densities are proportional across such an interface.
Indeed, by definition of Oui , the function a21u1� a12u2 solves an elliptic equation in a neighborhood of
the interface.

Let us assume, for concreteness, KD 3. In case the nodal structure of .u1; u2; u3/2Srot is the required
one, as depicted in Figure 1, then a suitable linear combination of the components ui satisfies an equation
on B , up to a curve. More precisely, let us define

U D u1�
a12

a21
u2C

a12

a21
�
a23

a32
u3; � D fu1 > 0g\ fu3 > 0g:

It is easy to check that
��U C!x? � rU D �U in B n�;



ROTATING SPIRALS IN SEGREGATED REACTION-DIFFUSION SYSTEMS 555

while, if 0¤ x0 2 � and ˛ is defined as in (7),

lim
x!x0

u3.x/>0

rU.x/D�e2�˛ lim
x!x0

u1.x/>0

rU.x/:

By composing with a conformal map between B n f0g and its universal covering R� .0;1/, we can
lift U to a solution of a linear equation in the half-plane (see (11) below) having a precise nodal structure.
This connection is analyzed in Section 2.

To prove Theorem 1.1 we reverse the above argument: we start by solving the equation in the covering
by separation of variables in Section 3; next, we show in Section 4 that, under suitable conditions, the
solution has the appropriate nodal properties to be mapped back to the disk. In both these points, we have
to deal with nonresonance/coerciveness conditions, leading to the assumption on �. On the other hand,
the existence of the vector Ns is equivalent to the validity of suitable compatibility conditions, expressed in
terms of the Fourier coefficients of the boundary data. Specifically, when K D 3, Ns is any componentwise
positive solution of the systemZ 2�

0

e�˛#ˆ.#/ sin
�
#

2

�
dx D

Z 2�

0

e�˛#ˆ.#/ cos
�
#

2

�
dx D 0; (10)

where
ˆD s1'1� s2

a12

a21
'2C s3

a12

a21
�
a23

a32
'3:

We analyze the general compatibility conditions in Section 5, concluding the proof of Theorem 1.1.
Finally, Theorems 1.6 and 1.7 are proved in Section 6.

2. An equivalent problem in the half-plane

As we mentioned, the proof of Theorems 1.1, 1.6 and 1.7 is based on the connection between system (4)
and an equation in the half-plane, seen as the universal covering of the punctured disk. In this section we
analyze such a connection.

Let �, ! be real parameters and vD v.x; y/ 2C.R� Œ0;C1// be a classical solution of the equation

��vC!e�2yvx D e
�2y�v; x 2 R; y > 0: (11)

In the following we assume that v satisfies the following properties:

(a) There exists � ¤ 0 such that
v.xC 2�; y/D �v.x; y/ (12)

for any x 2 R, y � 0.

(b) v.x; y/D 0 if and only if .x; y/ 2 S i \S iC1 for some i 2 Z, where the nonempty nodal regions Si
are open, connected, disjoint, unbounded and

S i \f.x; 0/ W x 2 Rg D f.x; 0/ W xi�1 � x � xig; S i \Sj ¤∅ () j � i D�1; 0; 1:

In particular, since v is analytic for y > 0, we obtain that the set S i \S iC1 is actually a locally
analytic curve which accumulates both at .xi ; 0/ and at y D1.

(c) vjSi
2H 1.Si / for every i 2 Z (or, equivalently, their trivial extensions belong to H 1.R� .0;C1//).
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We infer that
S
i S i DR� Œ0;C1/, and that this covering is locally finite. Moreover, by (a), the nodal

set of v is 2�-periodic in the x-direction. Up to a translation, we can assume that x0 D 0, so that in
particular v.0; 0/D 0 and the number K of nodal components, up to periodicity, can be defined as

K D #fi W Œxi�1; xi �� Œ0; 2��g; i.e., SiCK D Si C .2�; 0/; for all i: (13)

Notice that � > 0 implies K even, while � < 0 forces K odd.
Finally, we introduce the following conformal map between the half-plane and the punctured disk:

T WR� .0;C1/! B n f0g; T W .x; y/ 7! x D .e�y cos x; e�y sin x/ (14)

(for more details about this map, see Remarks 2.17 and 2.19 in [Terracini et al. 2019]).
The main result of this section is the following.

Proposition 2.1. Let v 2 C.R� Œ0;C1// be a classical solution of (11) satisfying (a), (b) and (c), and
let K be defined as in (13). Assume that the positive coefficients aij and the parameter ˛ satisfy

KY
iD1

a.i�1/i

ai.i�1/
D .�1/K� (15)

(understanding a01 D aK1, a10 D a1K).
For i D 1; : : : ; K, let us define

ui D .�1/
iC1livjSi

ı T ; with l1 D 1; li D
ai.i�1/

a.i�1/i
� li�1 (16)

(trivially extended in the whole B). Then .u1; : : : ; uK/ 2 Srot. Moreover, with respect to this K-tuple, the
origin is the only point with higher multiplicity, with m.0/DK.

Vice versa, if .u1; : : : ; uK/ 2 Srot has the origin as its only singular point, then there exists v such that
the first part of the proposition holds.

Remark 2.2. In the case that the asymptotic behavior of the nodal zones Si is known as y ! C1,
then by composition with T one can deduce the local description of the free boundary associated to
.u1; : : : ; uK/ near 0.

Proof. By condition (a) the functions ui are well defined, by (b) they satisfy ui �uj � 0 as long as j ¤ i ,
and by (c) they belong to H 1.B/ (recall that T is a conformal map). With direct computations one can
check that

��ui C!x? � rui D �ui in !i WD fui > 0g: (17)

Analogously, using the definition of the coefficients li (see (16)), we have that

��

�
ui�1�

a.i�1/i

ai.i�1/
ui

�
C!x? � r

�
ui�1�

a.i�1/i

ai.i�1/
ui

�
D �

�
ui�1�

a.i�1/i

ai.i�1/
ui

�
(18)

in the interior of !i�1 [ !i , i D 1; : : : ; K (in case i D 1 we keep the understanding i � 1 D K, and
the validity of (18) follows by (15)). Notice that, when restricted to !i�1[!i , the function in (18) is a
multiple of both Oui�1 and Oui .
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We have to show the validity of the inequalitiesZ
B

rui � r'C Œ!x? � rui ��ui �' � 0; (19)Z
B

r Oui � r'C Œ!x? � r Oui �� Oui �' � 0 (20)

for every Lipschitz, compactly supported, nonnegative '.
First, let us consider any ' such that ' � 0 in B".0/. Then (19) follows by integration by parts, sinceZ
B

rui � r'C Œ!x? � rui ��ui �' D

Z
!inB"

rui � r'C Œ!x? � rui ��ui �' D

Z
@!i

@�ui' � 0;

where we used the regularity of @!i away from 0, the equation for ui and the fact that @�ui � 0 on @!i .
On the other hand, to prove (20), since ' � 0 in B".0/, we can use a partition of unity argument and
assume that supp.'/ intersects at most two adjacent nodal regions. In case none of them is !i , then
Oui D �c1uj � c2ujC1, with ci > 0, and (20) follows by applying (19) twice, with i D j; j C 1; if
supp.'/� !i�1[!i nB" then (18) yieldsZ

B

r Oui � r'C Œ!x? � r Oui ��ui �' D

Z
!i�1\!inB"

r Oui � r'C Œ!x? � r Oui �� Oui �' D 0;

and the same holds true if supp.'/� !i [!iC1 nB".
Finally, let us consider any '. We show how to prove (19); the proof of (20) is analogous. For any

" > 0 small, we define the function

�.x/D

8<:
0; x 2 B";

.jxj � "/="; x 2 B2" nB";

1; x 2 B nB2":

Then '�D 0 in B", and by the previous partZ
B

.rui � r'/�C

Z
B

.rui � r�/'C

Z
B

Œ!x? � rui ��ui ��' � 0:

Since ' is Lipschitz, we haveˇ̌̌̌Z
B

.rui � r�/'

ˇ̌̌̌
�
1

"

Z
B2"nB"

jrui j' �
1

"
kuikH1.B2"/

k'kL2.B2"/
� CkuikH1.B2"/

k'kL1 :

Thus we find the estimateZ
B

.rui � r'/�C

Z
B

Œ!x? � rui ��ui ��' � CkuikH1.B2"/
k'kL1 :

Taking the limit as "! 0, since � converges monotonically to 1, we conclude thatZ
B

rui � r'C Œ!x? � rui ��ui �' � 0;

concluding the proof of the first assertion.
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The second part follows by defining

v ı T D
KX
iD1

.�1/iC1

li
ui ; (21)

and then deriving v by a lifting argument. We refer to [Terracini et al. 2019, Section 2] for further
details. �

3. Solutions in the half-plane

Let �; ˛; ! 2 R. Given the trace

ˆW Œ0; 2��! R; ˆ.0/Dˆ.2�/D 0;

we look for solutions v of the following problem in the half-plane:8<:
��vC!e�2yvx D e

�2y�v; x 2 R; y > 0;

v.xC 2�; y/D e2�˛v.x; y/; x 2 R; y � 0;

v.x; 0/Dˆ.x/; 0� x � 2�:

(22)

Notice that we are considering (11) together with condition (12) in the case � D e2�˛ > 0 (recall
definition (7) and the relation (15)). As we noticed, this involves an even number of nodal zones in the
period. One can easily modify our arguments to deal with an odd one, i.e., with � < 0, for instance with
the change of variables .x; y/ 7!

�
1
2
x; 1
2
y
�
, � 7! �2. In a completely equivalent way, one can work

with 2�-periodicity and take ˛ D 1
2�

ln j� jC i
2
2 C.

To solve (22), we first transform it into a periodic problem, and then use separation of variables to
write the solution in Fourier series. To this aim, we notice that v solves (22) if and only if

w.x; y/ WD e�˛xv.x; y/

solves 8<:
��wC .!e�2y � 2˛/wxC Œ.˛! ��/e

�2y �˛2�w D 0; x 2 R; y > 0;

w.xC 2�; y/D w.x; y/; x 2 R; y � 0;

w.x; 0/D e�˛xˆ.x/; 0� x � 2�:

(23)

Of course, if ˛ D 0 then v and w coincide. Either way, with a little abuse of notation, we can extend ˆ
to R in such a way that e�˛xˆ.x/ is 2�-periodic. At least formally we can expand w in Fourier series
and write

w.x; y/D
X
k2Z

Wk.y/e
ikx :

Plugging this expression into (23), we obtain that the coefficients Wk W RC! C, k 2 Z, must solve the
ordinary differential equation

W 00k .y/D Œ.k� i˛/
2
C .!˛��C i!k/e�2y �Wk.y/; y > 0: (24)

We can solve boundary value problems associated with (24) by using the Fredholm alternative and the
Lax–Milgram theorem, settled in complex Hilbert spaces. We are looking for solutions of (23) that change
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sign as y!C1. As we will see in Lemma 3.9, this requires that the term corresponding to k D 0 in the
expansion should not be present. For this reason we consider k ¤ 0 from now on.

Lemma 3.1. For any k 2 Z n f0g, ˛ 2 R, there exists a sequence f�ngn2N � C, with j�nj ! C1 as
n!C1, such that the problem�

X 00
k
.y/D Œ.k� i˛/2C .!˛��C i!k/e�2y �Xk.y/; y > 0;

Xk.0/D 1; Xk 2H
1.RCIC/;

(25)

admits a unique solution if and only if

!˛��C i!k … f�ngn2N; (26)

while no solution exists in the complementary case.

Proof. We shall consider the case k � 1, as the case k � �1 follows by the same arguments, up to the
change of sign

.˛; !; �; k/ 7! .�˛;�!;�;�k/:

In particular, one can verify that X�k.y/DXk.y/ for any k 2 Z and y � 0 (in case one of them exists).
We proceed through several steps.

Step 1. Weak formulation of the problem. Letting Xk D U CU0, where U0 WD e�.k�i˛/y , we are led to
find, if it exists, a function U 2H 1

0 .R
CIC/, solution of

�U 00C Œ.k� i˛/2C .!˛��C i!k/e�2y �U D�.!˛��C i!k/e�2ye�.k�i˛/y ; y > 0:

We settle the problem in the space

H DH 1
0 .R
C
IC/; kuk2H D

Z 1
0

jU 0j2CjU j2:

To proceed, we introduce the sesquilinear forms aR, aI as

aR.U; V /D

Z 1
0

U 0V 0C Œ.k2�˛2/C .!˛��/e�2y �UV ; aI .U; V /D

Z 1
0

.�2˛kC!ke�2y/UV ;

and the antilinear form l as

l.V /D�.!˛��C i!k/

Z 1
0

e�2yU0V D�.!˛��C i!k/

Z 1
0

e�.kC2�i˛/yV : (27)

In this way, we are reduced to solve the following variational problem: finding U 2H such that

a.U; V /D aR.U; V /C iaI .U; V /D l.V / for all V 2H: (28)

Notice that both a and l are continuous: indeed, since je�2y j � 1 for y � 0, it is easy to see that

ja.U; V /j � .k2C˛2C
p
.!˛��/2C .!k/2/kukHkvkH :
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Similarly, for l we obtain

jl.V /j � j.!˛��C i!k/j

Z 1
0

e�.kC2/y jV j �

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jV j2
�1=2

:

For future purposes we notice that, for every U 2 H , both aR.U; U / and aI .U; U / are real numbers:
indeed, aR.U; U / and aI .U; U / are, respectively, the real and imaginary part of a.U;U /. We can exploit
the Cauchy–Schwarz inequality (for real two-dimensional vectors) to find that

ja.U;U /j D sup
K2R

aR.U; U /CKaI .U; U /
p
1CK2

�
k

p
˛2C k2

�
aR.U; U /�

˛

k
aI .U; U /

�
D

k
p
˛2C k2

Z 1
0

ŒjU 0j2C .k2C˛2/jU j2��
k�

p
˛2C k2

Z 1
0

e�2y jU j2:

(29)

In order to prove existence and uniqueness of a solution U , we shall make use of the classical Fredholm
alternative theorem. In particular, we shall find that (28) admits a unique solution U 2H 1

0 .R
CIC/ if

and only if 0 is not an eigenvalue of a (more precisely, and equivalently, 0 is not an eigenvalue of the
conjugate transpose sesquilinear form a�).

Step 2. A related eigenvalue problem. To proceed, we introduce the (adjoint) eigenvalue problem: finding
� 2 C and V 2H n f0g such thatZ 1

0

ŒU 0V 0C .k� i˛/2UV �C�

Z 1
0

e�2yUV D 0 for all U 2H:

Defining the weighted space

LD

�
U 2 L1loc.R

C
IC/ W kU k2L D

Z 1
0

e�2y jU j2 <C1

�
;

we have that H �LDL� �H� is a Hilbert triplet, with H compactly embedded in L; see Lemma A.1.
Then standard spectral theory (see, e.g., [Kato 1966, Chapter 3, Theorem 6.26]) yields the existence of a
sequence of eigenvalues f�ngn2N � C, with j�nj !C1, and it is straightforward to show that V ¤ 0
satisfies

a.U; V /D 0 for all U 2H ()
!˛��C i!k D �n

and V D Vn is an associated eigenfunction.
(30)

Notice that each �n is a simple eigenvalue by uniqueness of the Cauchy problem for ODEs.

Step 3. Application of the Babuška–Lax–Milgram theorem. To conclude the invertible case, we show
that, if !˛ � � C i!k ¤ �n for every n, then there exists a unique solution to (28). To this aim,
we apply a generalization of the Lax–Milgram theorem due to Babuška [1971, Theorem 2.1] (with
H1 DH2 DH ). After the previous steps, in order to apply such a result to (28), we only need to show
that, if !˛��C i!k ¤ �n for every n, then the following inf-sup conditions hold:

inf
kV kHD1

sup
kU kHD1

ja.U; V /j � C2 > 0; inf
kU kHD1

sup
kV kHD1

ja.U; V /j � C3 > 0
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for suitable constants C2, C3. We prove the first inequality; the second is proved analogously. Assume
by contradiction that the sequence fVngn satisfies

kVnkH D 1; ja.U; Vn/j �
1

n
kU kH for all U 2H:

In particular, as n!C1, a.Vn; Vn/! 0. Moreover, up to subsequences, Vn converges to V1, both
weakly in H and strongly in L (by compact embedding). Thus a.U; V1/D 0 for every U 2H . Since
!˛��C i!k ¤ �n for every n and recalling (30), we deduce that V1 � 0. Since k2 � 1, (29) yields

o.1/D ja.Vn; Vn/j �
k

p
˛2C k2

kVnk
2
H �

k�
p
˛2C k2

kVnk
2
L D

k
p
˛2C k2

C o.1/

as n!1, a contradiction.

Step 4. Nonexistence in the resonant case. Finally, assume that !˛��C i!k D �n for some n, and let
Vn 6� 0 be an associated eigenfunction of the adjoint problem

a.U; Vn/D

Z 1
0

ŒU 0V 0nC .k� i˛/
2UV n�C�n

Z 1
0

e�2yUV n D 0 for all U 2H:

This forces

�V 00nC .k� i˛/
2V nC�ne

�2yV n D 0 on .0;1/I (31)

in particular, Vn 2 H 2.0;C1/, and thus V 0n.y/! 0 as y ! C1. Moreover, by uniqueness of the
Cauchy problem, V 0n.0/¤ 0.

In the case we are considering, (28) can be rewritten as

a.U; V /D .��nU0; V /L for all V 2H;

where U0 D e�.k�i˛/y . By Fredholm’s alternative, in this case (28) is solvable if and only if the
compatibility condition

.��nU0; Vn/L D 0

holds true. On the other hand, using (31), we have

.��nU0; Vn/L D��n

Z 1
0

e�2yU0V n D U.0/V
0
n.0/C

Z 1
0

ŒU 00V
0
nC .k� i˛/

2U0V n�D V
0
n.0/¤ 0;

which concludes the proof. �

The resonance set in the previous lemma can be characterized in terms of the zero set of the following
function ‚� , depending on the complex parameter �:

‚�.z/D

1X
nD0

1

nŠ �.nC 1C �/

�
z

4

�n
: (32)

Notice that, for any � 2 C, ‚� is analytic on C (recall that � has no zeros, but only simple poles at each
nonpositive integer �k: in such a case, we understand 1=�.�k/D 0). As a matter of fact, ‚� is related
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to I� , the modified Bessel function of the first kind, with parameter � 2 C, by the formula

I�.z/D
�
z

2

��
‚�.z

2/ (33)

(in turn, I�.z/D e�i��=2J�.iz/, where J� is the usual Bessel function of the first kind). Notice that, in
the case � 62 Z, I� is a multivalued function because of the complex exponentiation z� . Nonetheless, the
zero set of (any determination of) I� coincides with the complex square root of the zero set of ‚� , with
the exception of 0.

Lemma 3.2. For any k 2 Z n f0g, ˛ 2 R, let f�ngn2N � C denote the sequence defined in Lemma 3.1.
Then

f�ngn2N D fz 2 C n f0g W‚sign.k/.k�i˛/.z/D 0g;

where ‚� is defined in (32) for every � 2 C.
Moreover, whenever � WD !˛��C i!k … f�ngn2N, the unique solution of (25) is

Xk.y/D
‚�.�e

�2y/

‚�.�/
e��y

(Xk.y/D e��y in the case �D 0), where � D sign.k/.k� i˛/ whenever k ¤ 0.

Equivalently, we could write

Xk.y/D
I�.
p
�e�y/

I�.
p
�/

;

and such an identity is not ambiguous as long as we choose the same determinations both in the numerator
and in the denominator.

Proof. Again, we treat the case k � 1; the case k � �1 follows with minor changes. With the above
notation,

� D k� i˛; �D !˛��C i!k;

the second-order linear ODE in (25) is written as

x00.y/D Œ�2C�e�2y �x.y/: (34)

We assume �¤ 0; the complementary case is trivial. Let us consider the functions x˙�.y/ defined as

x˙�.y/D‚˙�.�e
�2y/e��y D

X
n�0

c˙�;ne
.�2n��/y ; where c˙�;n D

1

nŠ �.nC 1˙ �/

�
�

4

�n
(again, we understand c˙�;nD 0 whenever �.nC1˙�/2N). We notice that 4n.n˙�/c˙�;nD�c˙�;n�1.
Then

x00˙�.y/D
X
n�0

.�2n� �/2c˙�;ne
.�2n��/y

D

X
n�0

�2c˙�;ne
.�2n��/y

C

X
n�0

4n.n˙ �/c˙�;ne
.�2n��/y

D �2x˙�.y/C�
X
n�1

c˙�;n�1e
.�2n��/y

D Œ�2C�e�2y �x˙�.y/I

that is, both x˙� solve the second-order linear ODE (34).
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Let us first assume that ˛¤ 0. Then �.nC1˙�/ 62N for every n, and we obtain that ‚˙�.�e�2y/D
1=�.1˙ �/C o.1/; that is,

x˙�.y/D
1

�.1˙ �/
e��y C o.e��y/ as y!C1:

Then x˙� are linearly independent, and any solution of (34) is of the form

x.y/D CCx�.y/CC�x��.y/; C˙ 2 C:

Since � D k � i˛ and k � 1, we have that x 2H 1.0;C1/ if and only if C� D 0. As a consequence,
(25) is (uniquely) solvable if and only if x�.0/D‚�.�/¤ 0, and the lemma follows.

On the other hand, let ˛ D 0 (and �¤ 0). In this case � D k � 1, and

c�k;nCk D
1

.nC k/Š nŠ

�
�

4

�nCk
D

�
�

4

�k
ck;n

for every n� 0, therefore the functions x˙k are no longer linearly independent. By differentiating (34)
with respect to �, one can easily see that a second independent solution of (34) can be obtained as

Qxk D
h�
�

4

�k @x�
@�
�
@x��
@�

i
�Dk

;

mimicking the procedure that leads to the (modified) Bessel functions of the second kind. Since�.nC1�k/
has a simple pole at nD 0, we have

lim
�!k

@c��;0

@�
D .�1/k.k� 1/Š and Qxk.y/D .�1/

k.k� 1/Š eky C o.eky/ as y!C1

(see [Erdélyi et al. 1953, Section 7.2.5, p. 9] for more details). Thus also in this case Qxk …H 1.0;C1/,
and the lemma follows. �

Corollary 3.3. Let Xk denote the solution of (25). Then, for some C ¤ 0,

Xk.y/D Ce
� sign.k/.k�i˛/y

CO.e�.jkjC2/y/ as y!C1:

Remark 3.4. As a byproduct of the proof of Lemma 3.2, we have that the eigenvalues �n are all simple
in H 1

0 .R
CIC/. Indeed, the general solution of the corresponding eigenequation is a two-dimensional

vector space of complex-valued functions, but only a one-dimensional subspace consists of H 1 functions
of the form

C‚sign.k/.k�i˛/.�ne
�2y/e� sign.k/.k�i˛/y ; C 2 C:

In view of writing w as a series in terms of the solutions Xk , we need to estimate the asymptotic
behaviors as k!1 of their L2 and H 1 norms.

Lemma 3.5. Let ˛, �, ! be fixed in such a way that (26) holds for every k ¤ 0. Then Xk satisfies�Z 1
0

jXkj
2

�1=2
�

Cp
jkj
;

�Z 1
0

jX 0kj
2

�1=2
� C

p
jkj and kXkkL1.0;C1/ �

p
2C; (35)

where C depends only on ˛, �, !.
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Proof. As usual, for concreteness, we assume k � 1. As in the proof of Lemma 3.1 we write Xk D
UCe�.k�i˛/y . In order to prove (35), we distinguish between two cases, corresponding to the instances k
small and k large. Indeed, for any fixed Nk, which we will choose later in terms of ˛, �, !, the estimate (35)
is true for k < Nk and a suitable constant C . Next, for k � Nk, we estimate the norms of U using the identity

ja.U;U /j D jl.U /j:

Recalling (27), we have

jl.U /j � j!˛��C i!kj

Z 1
0

je�.kC2/y jjU j �

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jU j2
�1=2

:

Using (29), we obtain

k
p
k2C˛2

Z 1
0

ŒjU 0j2C .k2C˛2��C/jU j2��

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jU j2
�1=2

:

Then �Z 1
0

jU j2
�1=2
�

p
k2C˛2

k.k2C˛2��C/
�

p
.!˛��/2C .!k/2
p
2.kC 2/

�
j!j

k3=2
;

whence �Z 1
0

jU 0j2
�1=2
�

�p
k2C˛2

k

p
.!˛��/2C .!k/2
p
2.kC 2/

�Z 1
0

jU j2
��1=2

�
j!j3=2

k5=4

for k � Nk sufficiently large (depending on !, �, ˛).
Coming back to Xk D U C e�.k�i˛/y , we finally obtain�Z 1

0

jXkj
2

�1=2
�

�Z 1
0

jU j2
�1=2
C

�Z 1
0

e�2ky
�1=2
�
j!j

k3=2
C

1
p
2k
�

1
p
k

and�Z 1
0

jX 0kj
2

�1=2
�

�Z 1
0

jU 0j2
�1=2
C

�Z 1
0

jk� i˛j2e�2ky
�1=2
�
j!j3=2

k5=4
C

r
k2C˛2

2k
�
p
k

for k sufficiently large (depending on !, �, ˛), concluding the H 1 estimates. Finally, by Corollary 3.3,
for any y > 0,

Xk.y/
2
D�

Z 1
y

2Xk.t/X
0
k.t/ dt � 2

�Z 1
0

jXkj
2

�1=2�Z 1
0

jX 0kj
2

�1=2
� 2C 2;

and the last estimate follows. �

Next we provide explicit sufficient conditions for the validity of condition (26).

Lemma 3.6. A sufficient condition for (26) to hold true is

sup
n
.j�;1/

2
�
!

2˛
�2 W � > 0

o
> ��

!

2˛
.k2C˛2/; (36)

where j�;1 denotes the first (positive) zero of the standard Bessel function of the first kind of order � > 0.
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This is the case, for instance, if

either � < .j0;1C
p
k2C˛2/2; or !

˛
< 2: (37)

In particular, for any choice of ˛, !, �, if jkj is sufficiently large then (26) holds.

Proof. Using the notation introduced in the proof of Lemma 3.1, we are going to show that, under the
present assumptions, the sesquilinear form a is coercive. By the first estimate in (29), this follows once
we find K 2 R such that the quadratic form (with real coefficients)

aR.U; U /C aI .U; U /K D

Z 1
0

jU 0j2C .k2�˛2� 2˛kK/jU j2C ..!˛��/C!kK/e�2y jU j2

is strictly positive. To this aim, it is not difficult to check that we have to ask that k2�˛2� 2˛kK > 0.
For this reason, it is convenient to introduce the parameters � > 0 and b D b.�/ such that

K D
k2�˛2��2

2˛k
; b D�..!˛��/C!kK/D �C

!

2˛
.�2� .k2C˛2//:

In this way, we are reduced to finding � > 0 such that the quadratic form

U 7!

Z 1
0

jU 0j2C .�2� be�2y/jU j2

is strictly positive. This quadratic form can be studied by standard arguments; we postpone the details to
Lemma A.2 in the Appendix. We obtain that it is coercive if and only if

b D �C
!

2˛
.�2� .k2C˛2// < .j�;1/

2;

and (36) follows. In order to make this condition more explicit, we exploit the fact that

j�;1 � j0;1C � for every � � 0

(see [McCann and Love 1982]). Therefore, a stronger condition than (36) is

�C
!

2˛
.�2� .k2C˛2// < .j0;1C �/

2 for some � > 0:

The conditions in (37) follow by taking either �2 D k2C˛2, or � !C1, respectively. �

Corollary 3.7. Let ˛, �, ! be fixed, with
� < .j0;1C 1/

2: (38)
Then (26) holds true for every k ¤ 0.

We are ready to state and prove the main result of this section. For any ˆ 2 Lip.Œ0; 2��/, we write the
Fourier coefficients of e�˛xˆ.x/ as

�k D
1

2�

Z 2�

0

e�.ikC˛/xˆ.x/ dx; k 2 Z:

Proposition 3.8. Let ˛, �, ! be fixed and ˆ 2 Lip.Œ0; 2��/. Let us assume that

� � < .j0;1C 1/
2 ' 3:42,

� ˆ.0/Dˆ.2�/D 0 and �0 D
R 2�
0 e�˛xˆ.x/ dx D 0.
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Then the functions

w.x; y/D
X

k2Znf0g

�kXk.y/e
ikx and v.x; y/D e˛xw.x; y/; (39)

where the functions Xk are as in Lemmas 3.1 and 3.2, satisfy:

(1) w 2H 1.f.x; y/ 2 R�RC W a < xC ly < bg/ for any l 2 R and a < b, and it solves (23).

(2) v 2H 1.f.x; y/ 2 R�RC W a < xC ly < bg/ for any l such that l˛ � 0 and for every a < b, and it
solves (22).

(3) Both v and w are analytic in R�RC and C 0;˛ up to y D 0 for every ˛ < 1.

Proof of Proposition 3.8. In view of Lemma 3.1, we have that all the terms in the series in (39) are smooth
and satisfy the differential equations in (23). We now show that the series converges in H 1, ensuring
that w also satisfies the corresponding equation. We start by observing that, by construction, the family
f.x; y/ 7! Xk.y/e

ikxgk2Znf0g is orthogonal in H 1.S/, S D .0; 2�/�RC, and, in particular, for any
k; h 2 Z n f0g and k ¤ h, we haveZ

S

Xk.y/e
ikx
� .Xh.y/e

ihx/D 0;

Z
S

X 0k.y/e
ikx
� .X 0

h
.y/eihx/D 0

and, recalling (35),Z
S

jXk.y/e
ikx
j
2
�
C

jkj
;

Z
S

jX 0k.y/e
ikx
j
2
� C jkj;

Z
S

jXk.y/.e
ikx/0j2 � C jkj:

On the other hand, since x 7! e�˛xˆ.x/ can be extended to a 2�-periodic Lipschitz continuous function,
it is an H 1-function on S1, and its Fourier coefficients �k satisfyX

k2Z

k2j�kj
2 <C1

(recall that �0 D 0). Combining the above inequalities, we infer



X
k¤0

Wk.y/e
ikx





2
H1.S/

� C
X
k�1

.j�kj
2
Cj��kj

2/

�
1

jkj
C jkj

�
<C1:

We conclude that the series defining w converges inH 1.S/, making w a weak solution of (23). Since w is
periodic in the x-direction, we deduce that it belongs toH 1..a; b/�RC/ for every a< b. Exploiting once
again the periodicity in x ofw, we can readily infer thatw2H 1.f.x; y/2R�RC Wa<xCly <bg/ for any
l 2R and a < b. Moreover, by elliptic regularity, w is analytic in R�RC and Hölder continuous up to the
boundary. Analogous conclusions for the function v can be drawn from the fact that v.x; y/D e˛xw.x; y/,
the only difference being that we need to exploit the assumption l˛� 0 in order to estimate the exponential
factor. �

We conclude this section by showing that the Fourier expansions of the functions w and v can be
exploited to give a description of their nodal sets for y large.
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Lemma 3.9. We consider again the assumptions of Proposition 3.8. Let n� 1 be the largest integer such
that

�k D 0 for all jkj< n:

Then there exists y� > 0 and 2n disjoint simple curves �1; : : : ; �2n such that

f.x; y/ 2 R� .y�;C1/ W w.x; y/D 0.D v.x; y//g D
[

jD1;:::;2n
h2Z

�j C .2�h; 0/: (40)

The curves �j are asymptotic to evenly spaced parallel lines: there exists ˇ 2 R such that

.x; y/ 2 �j () ˛yCnx D ˇC�j C oy.1/ as y!C1:

Proof. By Lemma 3.5, we have that

sup
.x;y/2R�RC

jw.x; y/j � sup
y>0

X
k�n

j�kjjXk.y/jC j��kjjX�k.y/j � C
X
k�n

.j�kjC j��kj/ <C1;

which implies that the series converges also uniformly in R�RC. Moreover, we can extract the first term
of the series and see that

jw.x; y/��nXn.y/e
inx
���nX�n.y/e

�inx
j � C

X
k�nC1

.j�kjC j��kj/e
�ky
� Ce�.nC1/y

(see Corollary 3.3). This, in turn, implies that

w.x; y/D �nXn.y/e
inx
C��nX�n.y/e

�inx
CO.e�.nC1/y/ (41)

uniformly in x 2 R.
We claim that the nodal lines of the functions w (and of v) align asymptotically with those of the

function

.x; y/ 7! An.x; y/D �nXn.y/e
inx
C��nX�n.y/e

�inx

D �nCne
�.n�i˛/yCinx

C��nC�ne
.�n�i˛/y�inx

CO.e�.nC2/y/

D e�ny.an cos.˛yCnx/C bn sin.˛yCnx/CO.e�2y//

D e�ny.
p
a2nC b

2
n sin.˛yCnx�ˇ/CO.e�2y//;

where the coefficients an, bn and ˇ are real numbers, a2n C b
2
n ¤ 0 by assumption, and sinˇ D

�an=
p
a2nC b

2
n. Indeed, recalling (41), we have that, as y!C1,

enyw.x; y/D
p
a2nC b

2
n sin.˛yCnx�ˇ/CO.e�y/:

Analogously, one can show that also the series of the derivatives converges uniformly in x 2 R and that,
as y!C1,

enywx.x; y/D n
p
a2nC b

2
n cos.˛yCnx�ˇ/CO.e�y/:
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By the implicit function theorem, there exists y� > 0 large enough that the nodal set of the function w in
R� .y�;C1/ is a countable union of graphs with respect to the y variable, each one asymptotic to

˛yCnx D ˇC h� for some h 2 Z:

We choose �j , j D 1; : : : ; 2n, as 2n consecutive curves in this family of graphs by taking hD j . �

Remark 3.10. If the number of nodal zones for y small is different from 2n, then the nodal lines of v
must intersect. As a consequence, condition (b) in Section 2 fails for such a v, which cannot correspond
to any element of Srot via Proposition 2.1.

4. Nodal sets in the half-plane

In this section, we study in detail the nodal structure of the function v constructed in Proposition 3.8. For
this purpose, we let

N D f.x; y/ 2 R�RC W v.x; y/D 0g

be the nodal set of v, and we call a nodal component of v any connected component of R�RC nN .
We state the main result of this section. Its assumptions should be compared to those of Proposition 3.8,

in particular, we point out that they imply the existence of a unique solution v of (22). We recall that, for
ˆ 2 Lip.Œ0; 2��/, we write the Fourier coefficients of e�˛xˆ.x/ as

�k D
1

2�

Z 2�

0

e�.ikC˛/xˆ.x/ dx; k 2 Z:

Proposition 4.1. Let ˛, �, ! be fixed real numbers, ˆ 2 Lip.Œ0; 2��/ and n� 1 be a given integer. Let
us assume that

� the function ˆ changes sign 2n times in Œ0; 2��, more precisely, there exist

x1 D 0 < x2 < � � �< x2nC1 D 2�

such that

fx 2 .0; 2�/ Wˆ.x/ > 0gD

n�1[
kD0

.x2kC1; x2kC2/ and fx 2 .0; 2�/ Wˆ.x/< 0gD

n�1[
kD0

.x2kC2; x2kC3/I

� the coefficients of the equation satisfy � < �2;

� we have the compatibility condition

supfjkj W �k D 0g D n� 1� 0: (42)

Moreover, let v denote the solution of (23), whose existence is guaranteed by Proposition 3.8.
Then there exist 2n connected, open sets S1; : : : ; S2n � R�RC such that

� extending the definition of Sk , by periodicity, as SkC2n D SkC .2�; 0/, k 2 Z, we have

Sk \Sh D∅ for every k ¤ h and Sk \Sh ¤∅ () k� hD�1; 0; 1I
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� any nodal component of v is one of the Sk:

R�RC nN D
[
k2Z

SkI

� each of them touches the x-axis in a single (connected) interval:

Sk \f.x; 0/g D Œxk; xkC1� for any k D 1; : : : ; 2nI

� they are asymptotic to a family of evenly spaced strips: there exists ˇ 2 R such that

Sk � f.x; y/ W ˇC�kC oy.1/ < ˛yCnx < ˇC�.kC 1/C oy.1/g as y!C1:

The remaining part of this section is devoted to the proof of Proposition 4.1. We shall prove it in a
series of intermediate steps. First we briefly investigate the local structure of the nodal set N .

Lemma 4.2. Under the above notation,

� C D f.x; y/ 2 R�RC W v.x; y/D 0;rv.x; y/D 0g is discrete in R�RC;

� N n C is the union of countably many analytic curves;

� If ˆ. Nx/¤ 0 and l 2 R, then the set

N \f.x; y/ W xC ly D Nxg

is discrete, and it does not accumulate at fy D 0g.

We point out that, for the moment, it may still be that C accumulates at some point of the discrete set
f.x; 0/ Wˆ.x/D 0g.

Proof. We recall that v satisfies (22), and v is analytic in R�RC and continuous up to the boundary
f.x; y/ W y D 0g (see Proposition 3.8). By well-known results of Hartman and Wintner [1953], the set C is
discrete in R�RC.

As a consequence, by the analytic implicit function theorem, N n C is the disjoint union of countably
many analytic curves which are either unbounded, accumulate at some point of f.x; 0/ Wˆ.x/D 0g, or
meet each other at points of C.

Finally, let ' W Œ0;C1/! R be defined as

'.y/D v. Nx� ly; y/:

Then ' is real analytic for y > 0, and continuous up to y D 0 and '.0/¤ 0. We deduce that its zero set
is discrete. Since

N \f.x; y/ W xC ly D Nxg � f. Nx� ly; y/ W '.y/D 0g;
the lemma follows. �

Let A be any nodal component of v. In the following, for any h 2 Z, we write

Ah D A� .2h�; 0/:

Since v is 2�-periodic in x, Ah is itself a nodal component of v. As a consequence, either A and Ah
coincide, or they are disjoint. We prove that this property is independent of h¤ 0.
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Lemma 4.3. Let A be any nodal component of v. Then

� either A� Ah for some h 2 Z, in which case A� Ak for every k 2 Z,

� or A\Ah D∅ for some h 2 Z, in which case A\Ak D∅ for every k ¤ 0, and

sup
y>0

jfx W .x; y/ 2 Agj � 2�;

where j � j denotes the one-dimensional Lebesgue measure.

Proof. We start by examining the first alternative. Let . Nx; Ny/ 2 A � Ah, with h � 1, so that we also
have . NxC 2h�; Ny/ 2 A. By connectedness, there exists a curve 
 � A joining . Nx; Ny/ and . NxC 2h�; Ny/.
Since 2h�=.2�/ D h 2 N, by the universal chord theorem (see, e.g., [Oxtoby 1972]), there exists
.x1; y1/; .x2; y2/ 2 
 such that .x2; y2/ D .x1; y1/C .2�; 0/. Thus A\A1 3 .x2; y2/, which implies
A� Ak for every k 2 Z.

Conversely, let us assume that A\Ak D∅ for every k ¤ 0. Then, for every y > 0,

fx W .x; y/ 2 Ag D
[
k2Z

fx 2 Œ2k�; 2.kC 1/�/ W .x; y/ 2 Ag D
[
k2Z

fx 2 Œ0; 2�/ W .x; y/ 2 Akg;

and such a union is disjoint by assumption. We deduce that jfx W .x; y/ 2 Agj � jŒ0; 2�/j. �

To proceed, we need the following result, which is a consequence of a Poincaré-type inequality (see
Lemma A.3).

Lemma 4.4. Let A be any nodal component of v and assume that (� < �2 and)

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

Then vjA …H 1
0 .A/.

Proof. By contradiction, let A be any nodal component of v and assume that vjA 2H 1
0 .A/ and

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

We will show that this necessarily implies �� �2.
By assumption, the function v 2H 1.A/ satisfies�

��vC!e�2yvx D e
�2y�v in A;

v D 0 on @A:

Multiplying by v and integrating by parts over A yields the identityZ
A

jrvj2 D �

Z
A

e�2yv2I

indeed,
!

2

Z
A

e�2y.v2/x D 0

for every v 2H 1
0 .A/ by density of the test functions.
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We argue by Steiner symmetrization with respect to the y-axis; see, e.g., [Kawohl 1985]. We stress
that the weight .x; y/ 7! e�2y is independent of the x variable. Let A� � .��; �/�RC be defined as

A� WD
˚
.x; y/ W y > 0; jxj< 1

2
jfx W .x; y/ 2 Agj

	
and v� 2H 1

0 .A
�/�H 1

0 ..��; �/�RC/ be the Steiner symmetrization of the function vjA. By well-known
properties of the Steiner symmetrization, we obtainZ

.��;�/�RC
jrv�j2 � �

Z
.��;�/�RC

e�2y.v�/2:

Since v and v� are not identically zero, by Lemma A.3, we obtain

�� .j1=2;1/
2
D �2: �

Lemma 4.5. Let y� be defined as in Lemma 3.9, and let A denote any nodal component of v such that
A\f.x; y/ W y > y�g ¤∅. Then

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

Proof. Without loss of generality we can assume that v > 0 in A and, by Lemma 3.9, there exists a
half-line ` WD f.x; y/ W y � y�; ˛y C nx D qg such that ` � A. Let us assume by contradiction that
supy>0 jfx W .x; y/ 2 Agj> 2� . By Lemma 4.3, we deduce that A is 2�-periodic in the x-direction, so
that also `C .2�; 0/� A. By connectedness, we can find a simple curve 
 such that


 � A; 
 \f.x; y/ W y � y�g D `[ `C .2�; 0/ and 
 \f.x; y/ W y � y�g is compact.

As a consequence, R�RC n 
 DO0[O1, where each Oi is open and connected and only one of them,
say O1, is such that

O1 � f.x; y
�/ W x� < x < x�C 2�g ¤∅; where ˛y�Cnx� D q:

Since 
 \fy � y�g is compact, we deduce that there exist q1, q2 and y0 > 0 such that

O1 � f.x; y/ W y � y0; q1 < ˛yCnx < q2g: (43)

Now, let B ¤ A be any other nodal component of v satisfying B � O1 (B exists as v changes sign
in O1, by Lemma 3.9). Then B cannot be periodic in the x-direction, and hence, by Lemma 4.3,
supy>0 jfx W .x; y/ 2 Bgj � 2� . By Proposition 3.8 and (43), we have that vjB 2 H 1

0 .B/. Thus
Lemma 4.4 applies, providing a contradiction since we are assuming � < �2. �

In the same spirit, we show the following.

Lemma 4.6. Let y� be defined as in Lemma 3.9, and let A denote any nodal component of v such that
A\f.x; y/ W y > y�g ¤∅. Then A\f.x; y/ W y > y�g is connected.

Proof. The proof follows the lines of that of Lemma 4.5. Assume by contradiction thatA\f.x; y/ Wy>y�g
contains at least two connected components, say A1 and A2. Then, by Lemma 3.9, we can find half-lines
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j̀ WD f.x; y/ W y � y
�; ˛yCnx D qj g �Aj and a simple curve 
 �A which joins such half lines. Then

R�RC n 
 is the disjoint union of O0 and O1, and one can find a contradiction as above. �

Motivated by Lemma 4.6, we introduce the following notation.

Definition 4.7. Let y� > 0 and ˇ 2 R be fixed as in Lemma 3.9. We denote with Sk , k 2 Z, the nodal
component of v asymptotic to

f.x; y/ W ˇC�k < ˛yCnx < ˇC�.kC 1/g as y!C1:

By Lemma 4.6, we have that Sk and Sh are disjoint, as long as h ¤ k. To conclude the proof of
Proposition 4.1, we are left to show that the sets Sk exhaust the nodal components of v. At the moment
we cannot be assured that each Sk intersects the x-axis. However, in such cases, the horizontal order is
preserved.

Lemma 4.8. Let Sk1
, Sk2

be two nodal components of v as in Definition 4.7, and let k1 < k2. If
Ski
\f.x; 0/g ¤∅, i D 1; 2, then

. Oxi ; 0/ 2 Ski
D) Ox1 < Ox2:

Proof. This follows by connectedness since the segments Sk \ f.x; y�/g are ordered according to the
index k. �

Lemma 4.9. Let A denote any nodal component of v. There exist q� < qC such that

A� f.x; y/ W q� < ˛yCnx < qCg:

Proof. We only show that A� f.x; y/ W ˛yCnx < qCg, for some qC, because the other property follows
by a similar argument. In the following, we fix x0 such that ˆ.x0/¤ 0, and we write

` WD f.x; y/ W y > 0; ˛yCn.x� x0/D 0g; L� WD f.x; y/ W y > 0; ˛yCn.x� x0/ < 0g:

Moreover, by Lemma 3.9, we can assume that v does not vanish on `\f.x; y/ W y � y�g.
We have to show that, for some h 2 Z,

Ah WD A� .2h�; 0/� L
�:

To start with, we observe that Ah\L� ¤∅ for every h� Nh sufficiently large (indeed A is not empty).
Let us assume by contradiction that Ah nL� ¤∅ for every h� Nh as well. By connectedness, we obtain
that Ih WD `\Ah is nonempty, relatively open in `, and with nonempty (relative) boundary @Ih � N .
Finally, by Lemmas 4.5 and 4.3, we have that Ih1

\ Ih2
D∅ for every h1 ¤ h2. We deduce that the set[

h� Nh

@Ih � .N \ `\fy � y�g/ is infinite.

This contradicts the last part of Lemma 4.2. �

Lemma 4.10. Let A denote any nodal component of v. Then vjA 2H 1.A/.

Proof. This follows by Lemma 4.9 and Proposition 3.8. �
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Lemma 4.11. Let Sk be a nodal component of v as in Definition 4.7. Then vj@Sk
6� 0. In particular,

fx W .x; 0/ 2 Skg contains a nontrivial interval.

Proof. The lemma follows by Lemmas 4.4, 4.5 and 4.10. �

Lemma 4.12. Let A denote any nodal component of v. Then

sup
y>0

jfx W .x; y/ 2 Agj � 2�:

Proof. Let A contradict the result; then A � AC .2�; 0/ (Lemma 4.3) and A � f.x; y/ W y < y�g

(Lemma 4.5). As a consequence, there exists a simple curve 
 � A, with 
 C .2�; 0/ � 
 . Then
R�RC n 
 DO0[O1, where each Oi is open and connected and O1 � f.x; y/ W y � y�g. Now, let A0

be any nodal region of v intersecting f.x; y/ W y � y�g. Then A\A0 D∅. By Lemma 4.11 there exists

 0 � A0 with one endpoint in O1 and the other one in O0, so that 
 0 intersects 
 , a contradiction. �

Lemma 4.13. Let A denote any nodal component of v. Then vj@A 6� 0. In particular,

fx W .x; 0/ 2 Ag contains a nontrivial interval.

Proof. The lemma follows by Lemmas 4.4, 4.12 and 4.10. �

We are ready to conclude the proof of the main result of the section.

End of the proof of Proposition 4.1. We are left to show that the sets Sk (Definition 4.7) exhaust the nodal
components of the function v, so that, in particular, for each Sk , there exists two consecutive zeros of the
function ˆ, xj < xjC1 2 Œ0; 2��, and h 2 Z such that

Sk \f.x; 0/g D Œxj ; xjC1�C .2h�; 0/:

Let Sk be any connected component as in Definition 4.7; then, by Lemma 4.13 and continuity of the
function v (see Proposition 3.8), there exist two consecutive zeros xj < xjC1 and h 2 Z such that

Œxj ; xjC1�C .2h�; 0/� Sk \f.x; 0/g:

By periodicity in the x-direction, it follows that

Œxj ; xjC1�C .2.hC 1/�; 0/� SkC2n\f.x; 0/g:

Now, on the one hand, for y � y�, we already know that the nodal set of v between Sk (included) and
SkC2n (excluded) is precisely given by the 2n sets Sk; : : : ; SkC2n�1. On the other hand, for y D 0, the
nodal set of v between .xj C2h�; 0/ and .xj C2.hC1/�; 0/ consists in exactly 2n intervals. Once again,
we appeal to Lemma 4.11 to infer that every Sk; : : : ; SkC2n�1 contains exactly one interval on f.x; 0/g,
and the intersections are ordered by Lemma 4.8. The remaining conclusions follow straightforwardly. �
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5. End of the proof of Theorem 1.1

We give the proof in the case that K D 2n is even. The odd case can be treated with minor changes; see
the discussion at the beginning of Section 3.

In view of Proposition 2.1, the existence of an element of Srot, as defined in (6), with the required
nodal properties is equivalent to the existence of a solution of (22) having trace

ˆ.x/D

KX
mD1

.�1/mC1

lm
sm'm (44)

(recall (16), (21)) and enjoying properties (b) and (c) in Section 2 (property (a) is already contained
in (22)).

The existence of such functions is provided by Proposition 3.8, while properties (b) and (c) follow
from Proposition 4.1 once ˆ satisfies the compatibility conditions (42), i.e.,

�k D
1

2�

Z 2�

0

e�.ikC˛/xˆ.x/ dx D 0; jkj< n; and �n ¤ 0 (45)

(or equivalently ��n D �n ¤ 0). Under the validity of these conditions, also the asymptotic expansion (8)
follows from Proposition 4.1 and the definition of the map T (14); see also Remark 2.2. The details of
these calculations are very similar to those in [Terracini et al. 2019, Proof of Theorem 1.5]

Writing cm D sm=lm in (44) and (45), and recalling also Remark 3.10, we obtain that Theorem 1.1 is
equivalent to the following assertion: there exists Nc D . Nc1; : : : ; Nc2n/, with .�1/mC1cm > 0, such that

2nX
mD1

1

2�

Z 2�

0

e�.ikC˛/xcm'm.x/ dx D 0; jkj< n;

and
2nX
mD1

1

2�

Z 2�

0

e�.inC˛/xcm'm.x/ dx ¤ 0

if and only if c D t Nc.
To prove this last claim, let us define the matrix A 2 C2n�2n,

AD .akm/kD�nC1;:::;n
mD1;:::;2n

D

�
1

2�

Z 2�

0

e�.ikC˛/x'm.x/ dx

�
km

D

�
1

2�

Z 2�

0

e�.ikC˛/tm'm.tm/ dtm

�
km

:

Observe that we have suitably renamed the dummy variables in each integral as, later, this will lead us to
more manageable identities. We can write the set of compatibility conditions (45) as a system of linear
equations,

A

0BB@
c1
c2
:::
c2n

1CCAD
0BB@
0

0
:::
�n

1CCA : (46)
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To show our claim, we prove that the matrix A is invertible and that it is possible to choose �n ¤ 0 such
that the solution vector is real and sign-alternating. First, exploiting the multilinearity of the determinant,
we have

detAD
1

.2�/2n

Z
Œ0;2��2n

2nY
mD1

e�˛tm'm.tm/ � detA0;

where we have introduced the matrix

A0 D

0BB@
e�i.�nC1/t1 e�i.�nC1/t2 � � � e�i.�nC1/t2n

e�i.�nC2/t1 e�i.�nC2/t2 � � � e�i.�nC2/t2n

:::
:::

: : :
:::

e�int1 e�int2 � � � e�int2n

1CCA :
Factoring out the coefficients of the first row, we recognize Vandermonde’s determinant and compute

detA0 D e�i.�nC1/
P2n

mD1 tm

ˇ̌̌̌
ˇ̌̌̌ 1 � � � 1

e�it1 � � � e�it2n

:::
: : :

:::

e�.2n�1/it1 � � � e�.2n�1/it2n

ˇ̌̌̌
ˇ̌̌̌

D e�i.�nC1/
P2n

mD1 tm
Y

1�p<q�2n

.e�itq � e�itp /

D ei.n�1/
P2n

mD1 tm
Y

1�p<q�2n

.�1/e�
1
2
itq�

1
2
itp .�e�

1
2
itqC

1
2
itp C e�

1
2
itpC

1
2
itq /

D ei.n�1/
P2n

mD1 tm.�1/
2n.2n�1/

2 e�
1
2
i.2n�1/

P2n
mD1 tm

Y
1�p<q�2n

.e�
1
2
itpC

1
2
itq � e�

1
2
itqC

1
2
itp /

D .�1/n.2i/
2n.2n�1/

2 e�
1
2
i
P2n

mD1 tm
Y

1�p<q�2n

�
e

1
2
i.tq�tp/� e�

1
2
i.tq�tp/

2i

�

D .�1/n.2i/n.2n�1/e�
1
2
i
P2n

mD1 tm
Y

1�p<q�2n

sin
�
tq � tp

2

�
:

Thus we find

detAD
.�1/n.2i/n.2n�1/

.2�/2n

Z
Œ0;2��2n

2nY
mD1

e�˛tm'm.tm/
Y

1�p<q�2n

sin
�
tq � tp

2

�
„ ƒ‚ …

Mod

e�
1
2
i
P2n

mD1 tm„ ƒ‚ …
Phase

:

We show that the integral in the previous expression is always different from 0. We recall that, by
assumption, the functions 'm are supported on ordered intervals. More precisely, using the notation
introduced in Proposition 4.1, we have

ft 2 Œ0; 2�� W 'm.t/ > 0g D .xm; xmC1/:
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As a result, the integral can be restricted to the open and not empty set

OD .x1; x2/� .x2; x3/� � � � � .x2n; x2nC1/� Œ0; 2��2n:

Moreover, for any choice 1� p < q � 2n, in O we have 0 < tq � tp < 2� , and thus

0 <
tq � tp

2
< � D) sin

�
tq � tp

2

�
> 0:

As it turns out, the factor denoted as Mod is strictly positive in O. This function corresponds to the
modulus of the integral function. On the other hand, the factor Phase is complex and of modulus 1. Let
us investigate more closely the argument of Phase. We find

2nX
mD1

xm <

2nX
mD1

tm <

2nX
mD1

xmC1 D

2nX
mD1

xmC .x2nC1� x1/ <

2nX
mD1

xmC 2�:

That is, letting X D
P2n
mD1 xm, for any .t1; : : : ; t2n/ 2O,

0 <
1

2

� 2nX
mD1

tm�X

�
< �:

We can rewrite the determinant as

detAD C
�Z

O
Mod � cos 1

2

� 2nX
mD1

tm�X

�
� i

Z
O

Mod � sin 1
2

� 2nX
mD1

tm�X

��
for some complex constant C 2 C n f0g. By the previous discussion, the second integral is positive. It
follows that the determinant of A is not zero, proving that the linear system (46) has a unique solution for
any �n.

We now show that there exists �n ¤ 0 such that the solution vector is real and sign-alternating. By
Cramer’s rule, we have

cl D .detA/�1 detAl ;

where Al is the matrix obtained by replacing the l column of A with the right-hand side of system (46).
Now, by the same considerations as before, we have

detAl D
1

.2�/2n

Z
Œ0;2��2n

2nY
mD1;m¤l

e�˛tm'm.tm/ � detA0l ;

where

A0l D

0BB@
e�i.�nC1/t1 e�i.�nC1/t2 � � � e�i.�nC1/tl�1 0 e�i.�nC1/tlC1 � � � e�i.�nC1/t2n

e�i.�nC2/t1 e�i.�nC2/t2 � � � e�i.�nC2/tl�1 0 e�i.�nC2/tlC1 � � � e�i.�nC2/t2n

:::
:::

: : :
:::

:::
:::

: : :
:::

e�int1 e�int2 � � � e�intl�1 �n e�intlC1 � � � e�int2n

1CCA :
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Developing the determinant with respect to the l-th column, factoring out the first line and exploiting
once more Vandermonde’s determinant, we find

detA0l D .�1/
l�1�ne

�i.�nC1/
P2n

mD1;m¤l tm

ˇ̌̌̌
ˇ̌̌̌
ˇ

1 � � � 1

e�it1 � � � e�it2n

:::
: : :

:::

e�.2n�2/it1 � � � e�.2n�2/it2n

ˇ̌̌̌
ˇ̌̌̌
ˇ

D .�1/l�1�ne
�i.�nC1/

P2n
mD1;m¤l tm

Y
1�p<q�2n
p;q¤l

.e�itq � e�itp /

D .�1/l�1�ne
i.n�1/

P2n
mD1;m¤l tm

Y
1�p<q�2n
p;q¤l

.�1/e�
1
2
itq�

1
2
itp .�e�

1
2
itqC

1
2
itp C e�

1
2
itpC

1
2
itq /

D .�1/l�1�ne
i.n�1/

P2n
mD1;m¤l tm.�1/

.2n�1/.2n�2/
2 e�

1
2
i.2n�2/

P2n
mD1;m¤l tm

�

Y
1�p<q�2n
p;q¤l

.e�
1
2
itpC

1
2
itq � e�

1
2
itqC

1
2
itp /

D .�1/lCn�2�n.2i/
.2n�1/.2n�2/

2

Y
1�p<q�2n
p;q¤l

�
e

1
2
i.tq�tp/� e�

1
2
i.tq�tp/

2i

�

D .�1/lCn.2i/.2n�1/.n�1/�n
Y

1�p<q�2n
p;q¤l

sin
�
tq � tp

2

�
:

We obtain

cl D
.detA/�1.�1/lCn.2i/.2n�1/.n�1/�n

.2�/2n�1

Z 2nY
mD1;m¤l

e�˛tm'm.tm/
Y

1�p<q�2n;p;q¤l

sin
�
tq � tp

2

�

D .�1/lC1�

Z
Œ0;2��2n�1

2nY
mD1;m¤l

e�˛tm'm.tm/
Y

1�p<q�2n;p;q¤l

sin
�
tq � tp

2

�
;

where � 2 C. Reasoning as before, we see that the integral is always strictly positive. Thus cl satisfies
the condition .�1/lC1cl > 0 if and only if � is real and positive, � D t > 0. We obtain the solution

cl D t .�1/
lC1

Z
Œ0;2��2n�1

2nY
mD1;m¤l

e�˛tm'm.tm/
Y

1�p<q�2n;p;q¤l

sin
�
tq � tp

2

�
and

�n D t .�1/
nC1 2

2n�2

�

Z
Œ0;2��2n

2nY
mD1

e�˛tm'm.tm/
Y

1�p<q�2n

sin
�
tq � tp

2

�
e�

1
2
i
P2n

mD1 tm :

Proof of Corollary 1.2. This follows by uniqueness of Ns; indeed, notice that a rotation of 2�=K leaves
the data unchanged, while the indexes of the densities are shifted by 1. By uniqueness, Nsm D Nsm�1 for
every m. �
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6. Single-mode special solutions

In the following we deal with the fundamental single-mode solutions that we constructed by separation of
variables in Section 3. Theorems 1.6 and 1.7 will follow once again by Proposition 2.1.

6.1. The homogeneous Dirichlet problem. We now turn our attention to the homogeneous version
of (22); that is, we look for conditions under which there exists a nonzero solution v of8<:

��vC!e�2yvx D e
�2y�v; x 2 R; y > 0;

v.xC 2�; y/D e2�˛v.x; y/; x 2 R; y � 0;

v.x; 0/D 0; 0� x � 2�;

(47)

with nodal set consisting of 2k strips (up to horizontal 2�-periodicity), k � 1, that connect the boundary
y D 0 with y!C1, as in the previous section. Clearly (47) may have nonzero solutions only for some
specific choices of parameters (this is indeed the case according to Lemma 3.6). For this reason, in this
section we consider the number k � 1 and the parameter ˛ 2 R as givens of the problem, and we look for
pairs of numbers .�; !/ 2 R2 such that a solution v as specified above exists.

The analysis that we have conducted in Section 3 can be exploited to give a direct solution to this
problem. Indeed we have the following result.

Lemma 6.1. For any k � 1, ˛ 2 R, there exists at least a value � 2 C satisfying�
‚k�i˛.�/D 0;

‚k�i˛.t�/¤ 0 for all t 2 Œ0; 1/;
(48)

where ‚� is defined in (32) for every � 2 C. For any such �, the function

v.x; y/D e˛x�ky Re.ei.kxC˛y/‚k�i˛.�e
�2y//

is a solution of (47), with

! D
Im.�/
k

; �D ˛
Im.�/
k
�Re.�/:

Moreover, there exists an analytic map y 7! �.y/ such that

v.x; y/D 0 () x D �.y/C
h�

k
; h 2 Z;

and

�.y/D
1

k
.ˇ�˛y/C o.1/ for some ˇ 2 R and y!C1:

In particular, for any y > 0, v. � ; y/ has exactly 2k zeros in each period x 2 Œ0; 2�/.

Proof. The result is a direct consequence of Lemma 3.2. We start by showing that, for any choice of
parameters, there exists at least a value � 2 C satisfying (48). Indeed, ‚k�i˛ is a nonconstant analytic
function with ‚k�i˛.0/¤ 0, and it suffices to consider a zero � of ‚k�i˛ with the least absolute value in
order to guarantee that ‚k�i˛.t�/¤ 0 for any t 2 Œ0; 1/. Of course, many (if not all) the zeros of ‚k�i˛
may satisfy this assumption, but these constitute an at most countable discrete subset of C.
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Exploiting the fact that the coefficients of (47) are real, we find that the function

v.x; y/D e˛x Re.eikxDk.y// (49)

is a solution of (47), where the function Dk solves�
D00
k
.y/D Œ.k� i˛/2C .!˛��C i!k/e�2y �Dk.y/; y > 0;

Dk.0/D 0; Dk.y/! 0 as y!C1:
(50)

By Lemma 3.2, equation (50) is solved by any multiple of the function

y 7! e�.k�i˛/y‚k�i˛..!˛��C i!k/e
�2y/;

which in turns vanishes for y ! C1. The initial condition Dk.0/ D 0 is satisfied since we chose
�D !˛��C i!k as a zero of the function ‚k�i˛ (observe that we are negating (26)).

To conclude, we need to study the nodal properties of the function v. From its expression we readily
see, that for any fixed y > 0, the function x 7! v.x; y/ has exactly 2k evenly spaced zeros in Œ0; 2�/
since, by assumption, ‚k�i˛.�e�2y/ ¤ 0. From this we deduce also that the nodal lines of v can be
described, up to translations, by a function y 7! �.y/. We notice that � is continuous by the implicit
function theorem, as

v.x; y/D 0 () Re.eikxDk.y//D 0

and, for such .x; y/,
@

@x
Re.eikxDk.y//D ik Im.eikxDk.y//¤ 0:

More explicitly, writing
Dk.y/D �.y/e

i#.y/;

where �.y/ > 0 for y > 0 and # is an analytic lifting of the argument of Dk , we have that

e˛xv.x; y/D Re.eikxDk.y//D 0 () x�
h�

k
D
1

k
.ˇ�#.y//DW �.y/:

Finally, the asymptotic behavior of � follows as in Lemma 3.9. �

We conclude with some additional remarks on the result.

Remark 6.2 (a question about uniqueness). If v is a solution of (47), then for any A, Nx 2 R, the function
.x; y/ 7! Av.x� Nx; y/ is again a solution. We may wonder whether this family of functions completely
describes the set of solutions of (47) under some additional condition (for instance that, for any x 2 R,
v.x; y/! 0 as y !C1). More precisely, fix !, � and ˛ in such a way that (47) admits at least a
solution. Is this solution unique (up to translation in x and multiplication by a real constant of course)?
This seems to be a question of a nontrivial nature, and it is related to the position of the zeros of Bessel
functions with different order. From the proof of Lemma 6.1, we can state the following: let ˛ 2 R be
such that, for any k1; k2 � 1 and z1; z2 2 C, we have8<:

Ik1�i˛.z1/D Ik2�i˛.z2/D 0;

Re.z21/D Re.z22/;
Im.z21/=k1 D Im.z22/=k2

D) k1 D k2:
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Figure 3. Numerical zeros of Re‚1�i (blue) and Im‚1�i (red). The three zeros located
at 10:36C i23:66, 20:22C i67:99, 30:21C i132:04 satisfy condition (48).

Then for this specific value of ˛, if (47) admits a solution, this solution is unique up to translation in x
and multiplication by a real constant.

Remark 6.3 (the symmetric case ˛D 0). If � 2R and � � 1, the zeros of the modified Bessel function I�
are purely imaginary numbers (and are given by ij�;l , where j�;l is the l-th zero of the Bessel function J� ,
with l 2 N). It follows that

‚k.�/D 0 D) �D�t2 for some t > 0:

As a result, if ˛ D 0, then necessarily ! D 0 (no rotation) and �D j 2
k;1

. Since all the zeros belong to
the same half-line emanating from the origin, the first nontrivial zero is also the only one that satisfies
the assumptions of Lemma 6.1. We conclude that, in the case ˛ D 0, (47) has nonzero solutions only if
�D j 2

k;1
and ! D 0, and any solution (that converges to zero as y!C1) is of the form

v.x; y/D .A cos.kx/CB sin.kx//Jk.jk;1e
�y/

for some A;B 2 R.

Remark 6.4 (the asymmetric case ˛ ¤ 0). By Lemma 3.6, and in particular (37), we already know that,
if ˛ ¤ 0, for (47) to have a solution, it is necessary that

�� .j0;1C
p
k2C˛2/2:

From numerical explorations (see, e.g., Figures 3 and 4), it seems that, if ˛ ¤ 0, the zeros of the function
‚k�i˛ belong to different lines emanating from the origin. In contrast with the case ˛ D 0, it thus seems
to be the case that, for ˛ ¤ 0, (47) has infinitely many (but still countably many) solutions.
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Figure 4. Nodal sets of the solutions corresponding to the three zeros in Figure 3.

6.2. The homogeneous Neumann/Robin problem. Let � 2 R. We consider the problem8<:
��vC!e�2yvx D e

�2y�v; x 2 R; y > 0;

v.xC 2�; y/D e2�˛v.x; y/; x 2 R; y � 0;

@yv.x; 0/C �v.x; 0/D 0; 0� x � 2�;

(51)

which involves Robin (� ¤ 0) or Neumann (� D 0) boundary conditions.
As in the previous section we can find single-mode solutions that exhibit a precise nodal behavior.

Lemma 6.5. For any k � 1, ˛ 2 R, assume that there exists � 2 C satisfying�
2�‚0

k�i˛
.�/C .k� i˛� �/‚k�i˛.�/D 0;

‚k�i˛.t�/¤ 0 for all t 2 Œ0; 1/:
Then we have

v.x; y/D e˛x�ky Re.ei.kxC˛y/‚k�i˛.�e
�2y//

a solution of (51) for the particular choice of parameters

! D
Im.�/
k

; �D ˛
Im.�/
k
�Re.�/:

Moreover, the nodal set of v has the same properties as those described in Lemma 6.1.
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Proof. We already know that any function of the type

v.x; y/D e˛x Re.eikxNk.y//

is a solution of the differential equation in (51) provided that

N 00k .y/D Œ.k� i˛/
2
C .!˛��C i!k/e�2y �Nk.y/; y > 0:

Once again we can appeal to Lemma 3.2 for an explicit expression for the function Nk . In order to impose
the boundary condition at y D 0 we find

N 0k.y/D‚
0
k�i˛.�e

�2y/.�2�e�2y/e�.k�i˛/y �‚k�i˛.�e
�2y/.k� i˛/e�.k�i˛/y I

that is,

N 0k.0/D‚
0
k�i˛.�/.�2�/� .k� i˛/‚k�i˛.�/D 0:

The rest of the proof follows easily. �

6.3. Entire solutions. Finally we consider the case of entire solutions; that is, we look for functions v
that satisfy �

��vC!e�2yvx D e
�2y�v;

v.xC 2�; y/D e2�˛v.x; y/;
.x; y/ 2 R2; (52)

vanish for y!C1 and, as before, change sign exactly 2k times (k � 1) in each period of length 2� in
the x-direction. Similar considerations as before lead us to the following result.

Lemma 6.6. Let k � 1, ˛ 2 R. Consider any � 2 C such that

‚k�i˛.t�/¤ 0 for all t > 0: (53)

Then the function

v.x; y/D e˛x�ky Re.ei.kxC˛y/‚k�i˛.�e
�2y// (54)

is a solution of (52) for the particular choice of parameters

! D
Im.�/
k

; �D ˛
Im.�/
k
�Re.�/:

Once again, we point out that ‚k�i˛ is analytic and thus it has at most countably many zeros, meaning
that, apart from a negligible set, any � 2 C gives rise to an entire solution.

In the case of entire solutions, it is interesting to study once again the shape of the nodal lines of the
solutions, which now are defined also for y < 0.

Lemma 6.7. Let v be the function (54) in Lemma 6.6. Then there exists an analytic function y 7! �.y/,
defined for any y 2 R, such that

� v.x; y/ D 0 if and only if x D �.y/C h�=k, y 2 R, h 2 Z, and consequently, in the regions
f.x; y/ W h�=k < x� �.y/ < .hC 1/�=kg, for any h 2 Z, v does not change sign;
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� for y!C1, � is asymptotic to a line: there exists ˇ 2 R such that

�.y/D
1

k
.ˇ�˛y/C o.1/ as y!C1I

� for y!�1, � is asymptotic to an exponential curve

�.y/D 
e�y CO.1/ as y!�1;

where


 D

8̂̂<̂
:̂
1
k

sign.!/

rq�
1
2
.!˛��/

�2
C
�
1
2
!k
�2
�
1
2
.!˛��/; ! ¤ 0;

0; ! D 0; � < 0;
1
k

sign.˛/
p
�; ! D 0; � > 0;

unless ! D �D 0, in which case

�.y/D
1

k
.ˇ�˛y/; y 2 R:

Proof. The first conclusions of the result follow from similar (and much simpler) considerations as in
Proposition 4.1 and Lemma 6.1. We only study the asymptotic behavior of � as y!�1. As we shall
see, beyond the validity of (53), we need to distinguish three cases, according to the different expansions
of the Bessel functions at infinity: (Case 1) ! D �D 0; (Case 2) ! D 0, � > 0; (Case 3) either ! D 0
and � < 0, or ! ¤ 0.

Case 1. We start with the simplest case, that is ! D �D 0. This is equivalent to assuming that �D 0,
whence (53) is automatically satisfied (recall that ‚k�i˛.0/¤ 0 for k � 1). Substituting in (52) we find
that solutions are of the form

v.x; y/D e˛x�ky cos.kxC˛y/:

In this case the nodal lines are described, up to translations, by the linear function

�.y/D
1

k

�
�
2
�˛y

�
; y 2 R;

and, in particular, the nodal set of v is a family of parallel straight lines.

Case 2. Next, we look at the case !D 0 and �>0, which means �D��<0. We have that
p
�D�i

p
�,

where we have chosen the determination of the square root with negative imaginary part. In this case,
exploiting (54), (33) and the relation between the Bessel functions and their modified versions, we have

v.x; y/D e˛x
�
1
2
eikxJ�.

p
�e�y/C 1

2
e�ikxJ�.

p
�e�y/

�
(to be precise, we take the line y 7!

p
�e�y as the path of monodromy for the determination of J�). In

particular, from this expression we infer the necessary condition ˛ ¤ 0: indeed, if � D k � 1, the Bessel
function Jk has all of its zeros on the real line, and thus we are contradicting (53). We have that (see
[Erdélyi et al. 1953, p. 85])

J�.z/D

r
2

�z

�
cos
�
z� �

2
� � �

4

�
CO

�
1

jzj

��
for jzj !C1 with jarg zj< �:
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As to what concerns us, we have that z > 0. Letting

w D
p
�e�y � �

2
� � �

4
D
�p
�e�y � �

2
k� �

4

�
C i �

2
˛;

we may simplify the expression for v and see that, for y!�1, the following asymptotic expansion
holds: p

1
2
�
p
�e�˛x�

1
2
yv.x; y/D 1

2
eikx coswC 1

2
e�ikx coswCO.ey/:

We point out that, in this peculiar case, the solution v decays for y ! �1 since Im.w/ is bounded
(constant). The last expression can be further simplified, since

1
2
eikx coswC 1

2
e�ikx cosw D 1

2
.cos.kx/C i sin.kx// coswC 1

2
.cos.kx/� i sin.kx// cosw

D
1
2

cos.kx/ŒcoswC cosw�C 1
2
i sin.kx/Œcosw� cosw�

D cos.kx/ cos.Rew/ cosh.Imw/C sin.kx/ sin.Rew/ sinh.Imw/:

In order to determine the asymptotic behavior of the nodal lines of v, we need to solve the equation

cos.kx/ cos.Rew/ cosh.Imw/C sin.kx/ sin.Rew/ sinh.Imw/D 0:

It seems that this equation cannot be solved explicitly, nevertheless we can describe its set of solutions
with sufficient accuracy for our purpose. In order to simplify the notation, we introduce the real function

F.X; Y /D cos.X/ cos.Y / cosh.T /C sin.X/ sin.Y /; sinh.T / (55)

where we recall that the parameter T D Imw D �
2
˛ ¤ 0. In the plane .X; Y / 2 R2, we want to describe

the set F.X; Y /D 0. First of all, we point out that F is 2�-period both in X and in Y and enjoys the
symmetries F.X; Y /D F.Y;X/, F.�X; Y /D F.X;�Y /, F.X C�; Y /D F.X; Y C�/D�F.X; Y /
and F.�X;�Y /DF.X; Y / for any .X; Y /2R2. In particular, we deduce that the equation F.X; Y /D 0
has infinitely many solutions and that, for any fixed Y 2R (resp. X ), solutions of F.X; Y /D 0 are equally
spaced and of the form X DXY Ch� for some given XY 2 R and h 2 Z (resp. Y D YX Ch� , YX 2 R).
We deduce that, for any given Y 2 Œ0; �/, there exists a unique X 2 Œ0; �/ such that F.X; Y /D 0, and
vice versa.

Next, let .X0; Y0/ 2 R2 such that F.X0; Y0/D 0. By the implicit function theorem, the nodal set of F
is described locally at .X0; Y0/ by a function X DZ.Y / if @XF.X0; Y0/¤ 0. Arguing by contradiction,
we have the system �

cos.X0/ cos.Y0/ cosh.T /C sin.X0/ sin.Y0/ sinh.T /D 0;
cos.X0/ sin.Y0/ sinh.T /� sin.X0/ cos.Y0/ cosh.T /D 0;

which has a solution if and only if

cos2.Y0/ cosh2.T /C sin2.Y0/ sinh2.T /D 0:

But this is impossible since cosh2.T /¤ 0 and sinh2.T /¤ 0 (recall that T ¤ 0). Thus @XF.X0; Y0/¤ 0
at any zero of F . Observe that we can perform similar computations exchanging variables and show that
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the function Z is a bijection (and thus monotone). By periodicity, we can assume that Z.0/D �
2

. We can
determine the sense of monotonicity of Z by computing Z0.Y / for the zero .X; Y /D

�
�
2
; 0
�
. We find

Z0.0/D�
@YF

�
�
2
; 0
�

@XF
�
�
2
; 0
� D tanh.T /D tanh

�
�
2
˛
�
:

Bringing together the previous conclusions, we infer that

0�Z.Y /� sign.˛/Y < � for all Y 2 R:

Going back to the original variable, we find the asymptotic behavior

�.y/D
1

k
sign.˛/

p
�e�y CO.1/ as y!�1:

Case 3. We conclude with the third and last case, that is �D !˛��C i!k 2 CnR� together with (53).
We recall that the modified Bessel function I� satisfies (see [Erdélyi et al. 1953, p. 86])

I�.z/D
ez
p
2�z

�
1CO

�
1

jzj

��
for jzj !C1 with jarg zj< �

2
� ı:

By (33), the entire function in (54) is equal to

v.x; y/D e˛x Re.eikxI�.
p
�e�y//;

where we choose as determination of the square root of � the one with strictly positive real part (recall
that � 2 C nR�). Then jarg

p
�j< �

2
� ı for some ı > 0. We find

v.x; y/D e˛x Re
�
eikx

e
p
�e�yp

2�
p
�e�y

.1CO.ey//

�
D e˛x Re.C�e

ikxC 1
2
yC
p
�e�y

.1CO.ey///

D e˛xC
1
2
yCRe.

p
�/e�y

Re.C�e
ikxCi Im

p
�e�yCiO.ey/

j1CO.ey/j/D 0;

which in turns gives the asymptotic equation, as y!�1,

kxC Im.
p
�/e�y CO.ey/D ˇ;

where ˇ 2 R and

Im.
p
�/D sign.!k/

rq�
1
2
.!˛��/

�2
C
�
1
2
!k
�2
�
1
2
.!˛��/

(with Im.
p
�/D 0 in case ! D 0). Notice that the sign above agrees with the fact that the nodal lines of

the solution v are spanned by monotone functions; see the proof of Lemma 6.1. �

Remark 6.8. In view of the results of Section 2, we have that any solution constructed in this section
corresponds to an element of the corresponding class Srot. In particular, if ˛ D 0, we obtain (positive and
negative parts of) smooth rotating solutions of the heat equation, with or without reaction term. Moreover,
Lemma 6.7 provides a description of their nodal lines, which behave like arithmetic spirals of the equation
# D 
r as r!C1, as we claimed in Remark 1.8.
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Appendix: Weighted embeddings and Poincaré inequalities

In this appendix, we give the proof of some results cited in the paper for the sake of completeness. We
start with a very classical compact embedding result.

Lemma A.1. The functional space H 1
0 .R
CIC/ embeds compactly in

LD

�
U 2 L1loc.R

C
IC/ W kU k2L D

Z
y>0

e�2y jU j2 <C1

�
:

Proof. Let fungn2N � H
1
0 .R
CIC/ be a weakly converging sequence, and let u be its limit. Since the

embedding of H 1
0 in L is clearly continuous, un*u in L, and in order to show that un! u in L we

just need to prove the convergence of the norms. Let

dn D

ˇ̌̌̌Z
y>0

e�2yu2n�

Z
y>0

e�2yu2
ˇ̌̌̌
:

Observe that fdngn is a positive sequence. We have that

dn �

Z
y>0

e�2y ju2n�u
2
j D

Z T

0

e�2y ju2n�u
2
jC

Z 1
T

e�2y ju2n�u
2
j

�

Z T

0

e�2y ju2n�u
2
jC e�2T .kunk

2
L2 Ckuk

2
L2/�

Z T

0

e�2y ju2n�u
2
jC 2Ce�2T

for any T >0. SinceH 1.0; T / is compactly embedded in L2.0; T /, we conclude that there exists f"n;T gn
such that "n;T ! 0 and

dn � "n;T C 2Ce
�2T :

To conclude, for any given ı > 0, we can find T > 0 such that Ce�2T < 1
2
ı and subsequently Nn such that

"n;T �
1
2
ı for any n� Nn. This implies that, for any n� Nn, we have that 0� dn � ı; that is,

lim
n!C1

dn D 0 D)

Z
y>0

e�2yu2 D lim
n!C1

Z
y>0

e�2yu2n;

and thus we conclude the strong convergence of the sequence fungn2N. �

Exploiting this compact embedding, we can show the following weighted Poincaré inequality.

Lemma A.2. Let a > 0 and b 2 R, thenZ
y>0

ju0j2C .a2� be�2y/u2 � 0

for any u 2H 1
0 .R
C/ as long as

b � .ja;1/
2;

where ja;1 is the first (positive) zero of the Bessel function of the first kind of order a.
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Proof. The statement is equivalent to proving that

.ja;1/
2
D inf
u2H1

0 .R
C/

�Z
y>0

ju0j2C a2u2 W

Z
y>0

e�2yu2 D 1

�
: (56)

The existence of a minimizer u 2H 1
0 .R
C/ follows directly from the embedding in Lemma A.1. As the

functional and the constraint are even, we can assume that the minimizer u is positive. Standard regularity
results imply that the function u is also smooth and strictly positive in RC. Let �� 0 be the minimum
of (56). We have that u 2H 1

0 .R
C/ is a solution of�
�u00C .a2��e�2y/uD 0;

u.0/D 0; u.y/ > 0 for y > 0:

We argue as in Lemma 3.2. We look for a solution defined by the series

u.y/D
X
n�0

cne
�.2nCa/y ; where cn 2 R for n 2 N:

We first make some formal computations, plugging this expression directly into the equation. We find
that the coefficients cn must satisfy the following recursive relation for n� 1:

cn.2nC a/
2
D cna

2
� cn�1�;

which is satisfied for instance by letting

cn D
.�1/n

nŠ �.nC 1C a/

�p
�

2

�2nCa
for all n 2 N;

thus leading us to the solution

u.y/D
X
n2N

.�1/n

nŠ �.nC 1C a/

�p
�

2
e�y

�2nCa
D Ja.

p
�e�y/:

We recall that, if a > 0, then Ja.0/D 0. This gives that, for any a > 0,

lim
y!C1

u.y/D 0:

One can easily check that the series does converge in H 1.RC/ to its sum u. We only need to ensure that

u.0/D 0 and u.y/ > 0 for any y > 0:

In terms of the function Ja, these conditions together mean that
p
� has to be the first (positive) zero

for Ja; that is,
p
�D ja;1 () �D .ja;1/

2: �

We can also show a similar Poincaré inequality for semi-infinite rectangles.
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Lemma A.3. For any a > 0 and b 2 R, we consider the semi-infinite rectangle

Qa;b D
�
�
1
2
a; 1
2
a
�
� .b;C1/

and the corresponding functional space

H 1
0 .Qa;b/D fu 2H

1.Qa;b/ W uD 0 on @Qa;bg:

We have

inf
u2H1

0 .Qa;b/

�Z
Qa;b

jruj2 W

Z
Qa;b

e�2yu2 D 1

�
D e2b.j�=a;1/

2:

Proof. By the same compactness argument of Lemma A.1, we can show that the infimum is attained
by a function u 2H 1

0 .Qa;b/ which, by standard results, is also positive and smooth in Qa;b . Up to a
translation in y, the function u is then a positive solution of�

��uD �e�2be�2yu in Qa;0,
uD 0 on @Qa;0,

for some �� 0. By separation of variables we can easily show that u is of the form

u.x; y/D cos
�
�

a
x
�
v.y/;

where the new unknown function v 2H 1
0 .R
C/ solves�

�v00C
�
�2

a2 ��e
�2be�2y

�
v D 0;

v.0/D 0; v.y/ > 0 for y > 0:

By Lemma A.2, we conclude that
�e�2b D .j�=a;1/

2: �
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