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STOCHASTIC HOMOGENIZATION FOR VARIATIONAL SOLUTIONS
OF HAMILTON–JACOBI EQUATIONS

CLAUDE VITERBO

Let .�;�/ be a probability space endowed with an ergodic action � of .Rn;C/. LetH.x; pI!/DH!.x; p/
be a smooth Hamiltonian on T �Rn parametrized by ! 2� and such that H.aC x; pI �a!/DH.x; pI!/.
We consider for an initial condition f 2 C 0.Rn;R/ the family of variational solutions of the stochastic
Hamilton–Jacobi equations 8<:

@u"

@t
.t; xI!/CH

�
x

"
;
@u"

@x
.t; xI!/

�
D 0;

u".0; xI!/D f .x/:

Under some coercivity assumptions on p— but without any convexity assumption — we prove that for a.e.
! 2 � we have C 0� limu".t;xI!/ D v.t;x/, where v is the variational solution of the homogenized
equation 8<:
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�
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�
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1. Introduction

Let .�;�/ be a probability space endowed with an ergodic action � of .Rn;C/. This means that if X ��
satisfies �aX �X for all a 2 Rn, then �.X/D 0 or 1.

Let H.x; pI!/DH!.x; p/ be a smooth Hamiltonian on T �Rn parametrized by ! 2� and such that

H.aC x; pI �a!/DH.x; pI!/: (Inv)

We shall specify later the assumptions satisfied byH. We now consider for an initial condition f 2C 0.Rn/
the family of stochastic Hamilton–Jacobi equations8<:

@u"

@t
.t; xI!/CH

�
x

"
;
@u"

@x
.t; xI!/I!

�
D 0;

u".0; xI!/D f .x/:
(HJS")

Fixing !, we can consider different types of generalized solutions (there is generally no smooth solution)
for this equation. The most interesting ones are either the viscosity solution of Crandall and Lions
[1983] (see also [Barles 1994; Bardi and Capuzzo-Dolcetta 1997]), or the variational solutions defined
in [Chaperon 1991; Viterbo 1996; 2006] (we also credit J. C. Sikorav [1989]), both requiring some
assumptions on f and H that will be specified later. The problem of stochastic homogenization for
the above equation is to determine whether, for �-a.e. in !, the sequence u".t; xI!/ C 0-converges on
compact sets to Nu.t; x/, the solution of8<:

@v

@t
.t; x/CH

�
@v

@x
.t; x/

�
D 0;

v.0; x/D f .x/;
(HJH)

where H is to be determined (and in general cannot be defined explicitly). Note that H does not
depend on ! by the ergodicity hypothesis. A classical case is the so-called (nonstochastic) periodic case,
corresponding to the case where � D Tn and �a is the translation on the torus. Then condition (Inv)
means that there is a smooth function K on T �T n such that H.x; pI!/DK.x�!; p/. Then solving
(HJS") is equivalent to solving the (nonstochastic) equation

@u

@t
.t; x/CK

�y
"
;
@v"

@y
.t; y/

�
D 0

and in this case stochastic homogenization boils down1 to deterministic homogenization for K. For
viscosity solutions, homogenization in the periodic nonstochastic case has been settled in [Lions et al.
1988] in 1987, and for variational solutions in [Viterbo 2023] in 2014.

For the general stochastic case, this problem has been solved for viscosity solutions by Rezakhanlou
and Tarver [2000] and Souganidis [1999], assuming H is convex in p. Beyond the quasiconvex case (i.e.,
functions having all their sublevels convex) and some very special cases (see for instance [Armstrong et al.

1Indeed, if u".t; x/ is the solution (either viscosity or variational) of @u
"

@t
.t; x/CK

�
x
" �!;

@u"

@x
.t; x/

�
D 0 then v".t; y/D

u".t; yC"!/ satisfies @v
"

@t
.t; x/CK

�y
" ;
@v"

@y
.t; y/

�
D 0. Thus u".t; y/D v".t; y�"!/, and convergence of v" to Nv as " goes to 0

is equivalent to convergence of u" to NuD Nv. See the proof of Corollary 1.7 for another method of reducing to the periodic case.
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2015; Gao 2016]), nothing is known for viscosity solutions in the general (i.e., forH nonconvex in p) case,
and counterexamples have been found, first by Ziliotto [2017] and then by Feldman and Souganidis [2017].

We settle here the case of variational solutions without any convexity assumption. Note that the
construction of a variational solution relies on the choice of a field of coefficients for the homology theory
we use, but once the field is chosen, the variational solution is uniquely defined.2 We shall here fix once
and for all a coefficient field (the reader can think of Z=2Z or R for example). As in [Viterbo 2023], our
results hold when H is either compactly supported or coercive in the p-direction. Note that fixing !, if
Vt .H/f D u.t; x/ is the variational solution operator3 of the Hamilton–Jacobi equation, and St .H/f is
the viscosity semigroup, we know that for H convex in p we have St .H/D Vt .H/ [Zhukovskaya 1993;
1996]. Our result thus implies the stochastic homogenization for viscosity solutions in the convex case4

as in [Rezakhanlou and Tarver 2000; Souganidis 1999]. In the general case it has been proved in [Wei
2013; 2014] (see also [Roos 2017, Theorem 1.19]) that

St .H/D lim
n!C1

.Vt=n.H//
n:

Since there are counterexamples in the nonconvex case, stochastic homogenization of the viscosity
solutions cannot hold in general.5

Of course, as in [Viterbo 2023], the equation (HJS") is related to the Hamiltonian flow of H
�
x
"
; pI!

�
given by

't";! D �
�1
" 't="! �";

where 't! is the flow of H.x; pI!/ and �".x; p/D
�
x
"
; p
�
.

We shall prove analogously to [Viterbo 2023] that, for almost all !, we have

't";!
c
�! N't! ;

but since we are on a noncompact base we have to redefine the  -distance, which we shall denote by c .

1.1. Statement of the main results. Our main result is:

Theorem 1.1 (Main Theorem). Let H.x; pI!/ be a stochastic Hamiltonian on T �Rn��, where .�;�/
is a probability space endowed with an action � of Rn. We assume the following conditions are satisfied:

(1) For all a 2 Rn, the map �a is measure-preserving and the action � is ergodic for the measure � (i.e.,
invariant sets have measure 0 or 1).

2See for example [Cardin and Viterbo 2008] and more explicitly [Wei 2014] and Appendix B in [Roos 2019].
3This means that it sends f to the variational solution of(

@u
@t
.t; x/CH

�
x; @u
@x
.t; x/

�
D 0;

u.0; x/D f .x/:
(HJS)

Note that the operator is not a semigroup (since variational solutions do not have the Markov property).
4However in that case our method is much more complicated.
5 Of course if in some cases we knew that Vt ."/D Vt .H"/D V t CRt ."/, where kRt ."/k � Ct", and V t D Vt .H/ is the

homogenized operator, we would get that k.Vt=n."//n � .V t=n/nk � Ct". Hence, setting S t D limn.V t=n/n, we would have
kS t ."/�S tk � Ct" and then lim"!0 S t0."/D S

t
0.
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(2) We have, for all a 2 Rn, .x; p/ 2 T �Rn and almost all ! 2 �, the identity H.x C a; p; �a!/ D
H.x; p; !/.

(3) The map .x; p/ 7!H.x; p; !/ is C 1;1 for �-almost all !.

(4) For almost all !, H is compactly supported in the p-direction, i.e., the set

fp j 9x 2 Rn; H.x; pI!/¤ 0g

is bounded.

(5) There exists C such that for almost all ! and for all .x; p/ 2 T �Rn we have
ˇ̌
@H
@p
.x; pI!/

ˇ̌
� C.

(6) There exists C such that for almost all ! we have sup.x;p/2T �Rn jH.x; pI!/j � C.

Then if '";! is the flow of H";!.x; p/DH
�
x
"
; pI!

�
there is a function H in C 0.Rn;R/ such that

't";!
c
�! N't!

for the topology c that will be defined in Section 4. Here 't
H

denotes the flow ofH in 2DHam.T �Rn/, the
c-completion of DHam.T �Rn/. As a consequence if f is uniformly continuous on Rn, then a.s. in ! 2�
the variational solution u".t; xI!/ of (HJS") converges to the variational solution Nu.t; x/ of (HJH).

Let us try to give some intuition for the c metric. The c metric is a version, in the noncompact
case, of the -metric first defined in [Viterbo 1992]. For a compact base, it is easier to describe it on
Lagrangians. For example if Lk is the graph of dfk and fk C 0-converges to a smooth function f1,
then Lk converges to L1, the graph of df1. For this reason, the  -metric is often called a C�1-metric.
However, as is quite natural, the  -completion of the set of smooth Lagrangians contains more objects and
in particular contains the graphs of continuous functions. For Hamiltonians maps, if 'k is the time-one
flow of the HamiltonianHk and .Hk/k�1 C 0-converges toH1, then 'k  -converges to '1, the time-one
flow of H1. Here again the time-one flow of a C 0 Hamiltonian is well-defined in the completion (see
[Viterbo 1992; 2006; Humilière 2008]).

Remarks 1.2. (1) Existence and uniqueness of the variational solution for (HJS") follows from [Cardin
and Viterbo 2008, pp. 266–276] (since we are in the case of a noncompact base). The bounded propagation
speed condition in [loc. cit.] is more general than the one in the present paper and is obviously satisfied in
the fiberwise compactly supported case.

(2) By ergodicity, each of the conditions (4), (5), (6) either holds a.s. or fails a.s. Indeed, set

�c D
n
! 2� j sup

.x;p/2T �Rn
jH.x; pI!/j � c

o
:

This set is � -invariant. If for some c this set has measure 0, then (6) holds; otherwise

sup
.x;p/2T �Rn

jH.x; pI!/j D C1

for a.e. !. Similarly, the set �0R D f! 2� j supp.H/� Rn �B.R/g is also invariant by � . It thus either
has measure 1 for some R, and then the bound in (4) is independent from ! in a set of full measure, or it
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�R

R
j

RC1
j

t
>

Figure 1. Graph of �R.

has measure 0 for all R and then, for a.e. !, condition (4) is violated. In the first case, we shall say that
the H! have uniform fiber compact support. This is assumption (4) of the Main Theorem.

(3) Let us compare our results to those of [Rezakhanlou and Tarver 2000; Souganidis 1999]. Note that
if H is convex in p, then viscosity and variational solutions coincide. So consider a Hamiltonian H
convex in p and uniformly coercive. In the ergodic case this implies that there exist functions h˙.p/
going to infinity such that h�.p/�H.x; pI!/� hC.p/ (this also follows from the assumptions in both
[Rezakhanlou and Tarver 2000, (2.5)(ii) and (2.8), p. 280] and [Souganidis 1999, Condition 0.2]). Note
that both authors assume limjpj!C1 h˙.p/=jpj D C1, an assumption we do not require here.

Then we claim that the truncation H�R D �R.H/, where �R is the function represented in Figure 1,
satisfies assumption (5) of the Main Theorem (condition (4) is obvious) or equivalently, (2a) of the
corollary. This is because

@H�R
@p
D �0R.H/

@H

@p
;

so it is enough to prove that @H
@p

is bounded on a set jpj � C. But if
ˇ̌
@H
@p
.x0; p0/

ˇ̌
� A, we can find p1

with jp1j � 2C such that p0�p1 is colinear with @H
@p
.x0; p0/ and jp0�p1j D C, so that

sup
jpj�2C

hC.p/� inf
jpj�2C

h�.p/�H.x; p1/�H.x; p0/�
D
@H

@p
; p0�p1

E
� C

ˇ̌̌
@H

@p

ˇ̌̌
D CAI

hence A is bounded.

The compactly supported case is usually not the most interesting in applications. However the above
theorem implies

Corollary 1.3 (Main Corollary). LetH.x; pI!/ be a stochastic Hamiltonian on T �Rn��, where .�;�/
is a probability space endowed with an action � of Rn. We assume the following conditions are satisfied:

(1a) Conditions (1)–(3) as in the Main Theorem.

(2a) For all .x; pI!/ we have
ˇ̌
@H
@p
.x; pI!/

ˇ̌
� h1.jpj/ for almost all ! for some continuous function

h1 W R! R.

(3a) For almost all !, H is coercive, that is limjpj!C1 jH.x; pI!/j D C1 uniformly in x.
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If H satisfies the above assumptions and f is Lipschitz on Rn, there is a coercive function H in
C 0.Rn;R/ such that a.e. in ! the variational solution u".t; xI!/ of8<:

@u"

@t
.t; xI!/CH

�
x

"
;
@u"

@x
.t; xI!/I!

�
D 0;

u".0; xI!/D f .x/
(HJS")

converges to the variational solution Nu.t; x/ of8<:
@v

@t
.t; x/CH

�
@v

@x
.t; x/

�
D 0;

v.0; x/D f .x/:
(HJH)

Remark 1.4. We shall reduce the case (3a) where H is coercive to the uniformly fiberwise compactly
supported case by replacing H by �R.H/, which is compactly supported where �R WR!R is a function
supported in ��1; RC 1� such that �0.t/D 1 for t �R (see [Cardin and Viterbo 2008, Appendix B]).
Then H�R D �R.H/ also satisfies H�R.xC a; pI �a!/DH�R.x; pI!/.

Examples 1.5. (1) Let� be the space of C 1 functions on Rn, .�af /.x/D f .xCa/ and � be some mea-
sure on � invariant by �a and ergodic. Let V be a bounded function. Set H.x; pI!/D 1

2
h.p/�V.!.x//,

where h is coercive. This satisfies the assumptions of the corollary and corresponds to a random potential,
with probability �.

(2) [Pelayo and Rezakhanlou 2018, Example 2.4(ii)] Let H0.q; p/ be a Hamiltonian and H.q; pI!/DP
j2ZH0.q�qj ; p/, where !D .qj /j2Z is a stationary point process, that is, a probability on RZ invariant

by translation. This makes sense provided H0 decreases fast enough as q goes to infinity. Then H
satisfies the assumption of the above corollary.

Remark 1.6. Here are a few comments:

(1) We could of course also state a convergence result in the coercive case for the sequence '";! ; it is
just that the statement of convergence would be a little more complicated to state.

(2) By ergodicity there exist hC.p/2R[fC1g and h�.p/2R[f�1g such that supx2Rn H.x; pI!/D

hC.p/ a.e. in � and similarly infx2Rn H.x; pI!/D h�.p/ a.e. in �. Notice that (3a) implies that h˙.p/
is finite, and that limjpj!C1 h˙.p/DC1. This condition is more or less explicit in both [Rezakhanlou
and Tarver 2000, conditions (Aii)–(Aiii)] and [Souganidis 1999, Condition 0.2]. Similarly

h1C.p; !/D sup
x2Rn

ˇ̌̌
@H

@p
.x; pI!/

ˇ̌̌
is invariant by � , and hence independent from ! a.e. in �, and equal to h1

C
.p/, so (2a) and (5) either

hold a.s. or do not hold a.s in �.

(3) Again by ergodicity, the coercivity is necessarily uniform: one has a function f .r/ such that
limr!C1 f .r/DC1 and for all .x; pI!/ we have jH.x; pI!/j � f .jpj/.

(4) Let us consider a Hamiltonian H convex in p and uniformly coercive. In the ergodic case this implies
that there exist functions h˙.p/ going to infinity such that h�.p/�H.x; pI!/�hC.p/ (this also follows
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from the assumptions in both [Rezakhanlou and Tarver 2000, (2.5)(ii) and (2.8), p. 280] and [Souganidis
1999, Condition 0.2]). Then we claim that its truncation H�R D �R.H/ satisfies assumption (5) of the
Main Theorem (condition (4) is obvious) or equivalently, (2a) of the corollary. This is because

@H�R
@p
D �0R.H/

@H

@p
;

so it is enough to prove that @H
@p

is bounded on a set jpj � C. But if
ˇ̌
@H
@p
.x0; p0/

ˇ̌
� A, we can find p1

with jp1j � 2C such that p0�p1 is colinear with @H
@p
.x0; p0/ and jp0�p1j D C, so that

sup
jpj�2C

hC.p/� inf
jpj�2C

h�.p/�H.x; p1/�H.x; p0/�
D
@H

@p
; p0�p1

E
� C

ˇ̌̌
@H

@p

ˇ̌̌
D CAI

hence A is bounded.

Our result can be easily extended, since we do not need the full action of Rn. For example if we have
an action of Zn we get the following:

Corollary 1.7. Take the same assumptions as in the Main Theorem except that we have an action of Zn

(instead of Rn) on �, still denoted by � , and the first two assumptions are replaced by:

(1b) For all z 2 Zn, the map �z is measure-preserving and ergodic.

(2b) We have, for all z 2 Zn, .x; p/ 2 T �Rn and almost all ! 2�, the identity

H.xC z; p; �z!/DH.x; p; !/;

while conditions (3)–(6) are unchanged. We then have the same conclusion as in the Main Theorem.

Finally, note that ergodicity of � on � is not required, since we can use the ergodic decomposition
theorem (see [Greschonig and Schmidt 2000]), which holds for Borel spaces6 and obtain:

Corollary 1.8. With the same assumptions as in the Main Theorem (resp. Corollary 1.7) except that
the action � is not supposed to be ergodic but we assume .�;�/ is a Borel space, we have the same
conclusion, except that H.pI!/ now depends on ! 2� and is constant on each ergodic component of � .

1.2. Sketch of the proof of the Main Theorem. Our proof will require the following steps, starting from
the uniformly fiber compactly supported case:

(1) On Hamfc.T
�Rn/, the set of uniformly fiberwise compactly supported Hamiltonians on T �Rn, we

define a metric c (see Sections 3 and 4).

(2) We identify � to H� the set of H! for ! 2�, and yH� its completion for c . We then prove that
ergodicity implies compactness of the metric space .yH�; c/ (see Sections 5 and 6). The action of Rn

on H� given by .�aH/.x; pI!/DH.x � a; pI!/DH.x; pI �a!/ extends to an action of a compact
connected metric abelian group A� on .yH�; c/, and Rn, through the action � , is identified to a dense
subgroup of A�. Moreover we prove that for �-almost all H in H�, the A� orbit of H is equal to yH�.

6That is, isomorphic (as a measured space) to a complete separable metric space with a measure defined on its Borel algebra.
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(3) In Section 7 we prove a regularization theorem showing that the action of A� on yH� can be
approximated by an action of a finite-dimensional torus (note that A� is not in general a finite-dimensional
torus, but is a projective limit of finite-dimensional tori).

(4) We prove in Section 8 that homogenization holds when A� is a finite-dimensional torus (the quasiperi-
odic case) and ! 7!H! is continuous for the C 0-topology instead of the c-topology.

(5) In Section 10 we conclude the proof in the fiberwise compact case, and in Section 11 for the coercive
case and in Section 12 for the discrete case.

2. Notation and abbreviations

� � is a probability space with measure �.

� a.s. or a.e. mean almost surely or almost everywhere in .�;�/.

� GFQI means “generating function quadratic at infinity”.

� H�, H� are, respectively, cohomology and homology (either Čech or singular) with coefficients in
some field K.

� �N is the fundamental class in Hd .N / (for a closed manifold) or Hd .N; @N / (for a manifold with
boundary) or Hd

c .N / (for a noncompact manifold), where d D dim.N /. When N is nonorientable, it is
assumed that KD F2 D Z=2Z.

� 1N is the generator of H 0.N /.

� T �N is the cotangent bundle of N with the standard symplectic form ! D d�, where �D p dq.

� T �N is the cotangent bundle of N with the opposite of the standard symplectic form ! D�d�, where
�D p dq.

� 0N is the zero section of T �N.

� Hamfc.T
�N/ is the set of smooth uniformly fiberwise compactly supported7 autonomous Hamiltonians.

� Hamfc.Œ0; 1�� T
�N/ is the set of smooth uniformly fiberwise compactly supported time-dependent

Hamiltonians.

� C 0fc.Œ0; 1��T
�N/ is set of continuous functions on Œ0; 1��T �N (viewed as “continuous Hamiltonians”)

which are fiberwise compact.

� For a Hamiltonian H on T �N, XH .t; z/ is the Hamiltonian vector field associated to H, defined by
!.XH .t; z//D�dzH.t; z/.

� For a Hamiltonian H on T �N, 'tH is the solution of d
dt
'tH .z/DXH .t; '

t
H .z// such that '0H .z/D z.

We set 'H D '1H .

� DHamfc.T
�N/ is the image by H 7! 'H of Hamfc.Œ0; 1��T

�N/.

� FPS means “finite propagation speed” (see Definition 3.1).

7That is, the support is contained in Rn �B.R/ for some R.
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� BPS means “bounded propagation speed” (see Definition 3.8).

� DHamFP.T
�N/ (resp. HamFP.T

�N/ or HamFP.Œ0; 1��T
�N/) is the set of elements in DHam.T �N/

(resp. Ham.T �N/ or Ham.Œ0; 1��T �N/) having FPS.

� DHamBP.T
�N/ (resp. HamBP.T

�N/ or HamBP.Œ0; 1��T
�N/) is the set of elements in DHam.T �N/

(resp. Ham.T �N/ or Ham.Œ0; 1��T �N/) having BPS.

� L.T �N/ is the set of pairs .L; fL/, where L is the image of 0N by some element ' 2DHamFP.T
�N/

and fL is a primitive of �jL. We often just write L if fL is implicit.

� c is the uniform topology on L.T �N/ (see Definition 4.17).

� yL.T �N/ is the completion for c of L.T �N/ (see Definition 4.17).

� 2DHamFP.T
�N/ (resp. 2DHamBP.T

�N/ or 2DHamfc.T
�N/) is the completion for c ofDHamFP.T

�N/

(resp. DHamBP.T
�N/ or DHamfc.T

�N/) (see Definition 4.24)

� Gf is the graph of df in T �N.

� L: For L 2 L.T �N/ we define LD f.x;�p/ j .x; p/ 2 Lg, where fL D�fL.

3. Noncompactly supported Hamiltonians

Let N be a noncompact manifold. We shall assume that N is homeomorphic to the interior of a compact
manifold with smooth boundary.8

Definition 3.1. Let ' 2DHam.T �N/. We say that ' has finite propagation speed (FPS for short) if, for
each bounded set U, there is a bounded set V such that '.T �U/� T �V . A subset in DHam.T �N/ has
uniformly finite propagation speed if each element has finite propagation speed, and moreover, given U,
the set V can be chosen to be the same for all the elements in the subset. We write DHamFP.T

�N/

for the set of Hamiltonian maps with finite propagation speed. By abuse of language, we use the same
terminology in Ham.T �N/: H has finite propagation speed if 'H has finite propagation speed, etc. We
use the notation HamFP.T

�N/ for this set.

Note that for instance if
ˇ̌
@H
@p
.t; q; p/

ˇ̌
� CU for all .q; p/ 2 T �U then H has FPS.

The following lemma will prove useful.

Lemma 3.2. Let U � V be relatively compact open sets in N such that for any compact set K in N
there exists an isotopy of N sending K in V . Let ' 2DHam.T �N/ be such that '.T �U/� T �V . Then
we can find a Hamiltonian isotopy .'t /t2Œ0;1� from the identity to ' such that for all t 2 Œ0; 1� we have
't .T �U/� T �V .

Proof. Let  t be an isotopy from id to  1 D '. Let X be a vector field corresponding to the isotopy
for a compact set containing the projection of

S
t2Œ0;1�  

t .U /DK and pointing inwards on @V . Let �t

be the Hamiltonian vector field of H.t; x; p/D hp;X.t; x/i which projects on the flow of X . Possibly
replacing �t by a �˛.t/, we may assume that for all t 2 Œ0; 1� we have �t ı  t .T �U/ � T �V . Then

8We eventually only use the case N D Rn. For this section we actually only need that there is an exhausting sequence of open
bounded sets .Uj /j2N such that Uj � UjC1 and, for j large enough, Uj is ambient isotopic to UjC1.
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�1 1.T �U/ � T �V and, since  1.T �U/ � T �V , the set of t such that �t 1.T �U/ � T �V is an
interval — because X points inward on @V — it must contain Œ0; 1�; hence concatenating the Hamiltonian
isotopy t 7! �t t with t 7! �1�t 1, we get a new Hamiltonian isotopy that we denote by 't such that
't .T �U/� T �V for all t 2 Œ0; 1�. �

Note that our hypothesis onN implies that we can find an exhausting sequence .Uj /j�1 ofN satisfying
the assumptions of Lemma 3.2.

We shall now prove that DHamfc, the set of Hamiltonians which are uniformly fiberwise compactly
supported, is contained in HamFP.

Proposition 3.3. If H 2 Hamfc.T
�N/ is uniformly fiberwise compactly supported, then H has FPS.

Proof. Indeed, if for some C, ' is the identity outside of DT �C .N /D f.q; p/ j jpj �C g, then '.T �U/�
T �U ['.T �U \T �CN/, but since T �U \T �CN is compact, its image is contained in some T �V for V
bounded, and we get '.T �U/� T �.U [V /. �

The usefulness of this notion will be clear on several occasions. Remember that a generating function
quadratic at infinity for .L; fL/, whereL is a smooth Lagrangian and fL a function such that of dfLD�jL,
is a smooth function S WE DN �F ! R, where F is a finite-dimensional vector space,9 such that

(1) S.x; �/ coincides with a nondegenerate quadratic form Q on the vector space F for � large enough,

(2) .x; �/ 7! @S
@�
.x; �/ is transverse to 0,

(3) setting†S D
˚
.x; �/ j @S

@�
.x; �/

	
the image of this submanifold by iS W .x; �/ 7! @S

@x
.x; �/ has imageL,

(4) fL ı iS D S .

Let S1; S2 be two GFQI. They are said to be equivalent if they are fiberwise diffeomorphic after
stabilization, that is, there are two nondegenerate quadratic forms q1; q2 such that if

zSj .x; �j ; �j /D Sj .x; �j /C qj .�j /;

there is a fiber-preserving diffeomorphism

.x; �1; �1/! .x; �2.x; �1; �1/; �2.x; �1; �1//

such that
S2.x; �2.x; �1; �1/; �2.x; �1; �1//D S1.x; �1; �1/:

We shall say that S1; S2 are equivalent over U if the fiber-preserving diffeomorphism is defined for
x 2 U. Note that the customary “addition of a constant” for the equivalence of generating functions is not
needed here, since generating functions are normalized so that Sj†S D fL ı iS .

We cannot expect a noncompact Lagrangian to have a GFQI in this sense, since the number of
variables required could go to infinity. We can either assume F is a Hilbert space, but then positive and

9All this discussion also works if we replace N �F by a general finite-dimensional vector bundle. Then we must replace in
the sequel the Künneth isomorphism by the Thom isomorphism.
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negative eigenspaces will generally be infinite-dimensional so that H�.Sb; Sa/D 0, which is a notorious
drawback.10 Here we have:

Definition 3.4. We say that a Lagrangian L � T �N has a GFQI if, for each bounded set U, there is
a GFQI defined over U �F (where F depends on U ), SU , and a set V � U such that the SW are all
equivalent over U for W � V . Two GFQI are equivalent if they are equivalent over each bounded set.

Theorem 3.5. Let ' be an element in DHamFP.T
�N/. Then '.0N / has a GFQI. Moreover such a GFQI

is unique up to equivalence.

Proof. See Appendix A. �
Remarks 3.6. Notice that

(1) If ' does not have FPS, '.0N / does not even need to have surjective projection on N : For example
take on T �R the Hamiltonian �

4
.x2Cp2/. Then '.0R/D f0g �R!

(2) Using Lemma 3.2 we may assume we have a sequence U� of domains such that for all t 2 Œ0; 1� we
have 't .T �U�/� T �U�C1. We let S� D SU� and notice that we may assume that the restriction of S�
over U� is exactly S� ˚ q�;� by composing S� with an extension of the fiber-preserving diffeomorphism
realizing the equivalence.11 We shall always make this assumption in the sequel.

(3) We will use the expression “S is a GFQI for L” meaning “there is a sequence .S�/��1 of GFQI for L
over U�” to avoid cumbersome indexes. Most of the time this means we consider S� for � large enough.

Definition 3.7. We denote byL.T �N/ the set of Lagrangians of the type '.0N /, where '2DHamFP.T
�N/.

On a Riemannian manifold, there is a more precise notion than FPS.

Definition 3.8. Let N be a manifold with a distance d and ' 2DHam.T �N/. We say that ' has bounded
propagation speed (BPS for short) if there is a constant r0 such that for any ball B.x0; r/ we have
'.T �B.x0; r//� T

�B.x0; rC r0/. A subset in DHam.T �N/ has uniformly bounded propagation speed
if each element has bounded propagation speed, and moreover the constant r0 can be chosen to be the
same for all the elements in the subset. We write DHamBP.T

�N/ for the set of Hamiltonians maps with
bounded propagation speed. By abuse of language, we use the same terminology in Ham.T �N/: H has
bounded propagation speed if 'H has bounded propagation speed.

Example 3.9. If
ˇ̌
@H
@p
.t; q; p/

ˇ̌
� C for all .q; p/ 2 T �Rn then H has BPS. In particular assumption (5)

implies BPS.

Remark 3.10. (1) Of course bounded propagation speed implies finite propagation speed.

(2) Our definition of finite propagation speed does not exactly coincide with the terminology of [Cardin
and Viterbo 2008, Definition B.5, p. 271]. Our definition is more involved and the notion of finite
propagation speed defined there is weaker than the present one, but would still be sufficient to prove our
theorems. However this would have made an already long paper even longer.

10That we could avoid by using Floer homology everywhere, but would make reading this paper even harder for the
Hamilton–Jacobi community!

11The existence of the extension follows from the fact that we may assume that, for �; � large enough, the inclusion U� �U�
is a homotopy equivalence.
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4. Spectral invariants in cotangent bundles of noncompact manifolds

The goal of this section is to define and state the main properties of the metric  that occurs in the
statement of the Main Theorem. This has been done in [Viterbo 1992] in the case of a compact base; the
present situation, for a noncompact base, is unfortunately slightly more involved. Even though we work
on a general noncompact manifold, the reader can assume that N D Rn. The general case will turn out to
be useful for future applications, and the only extra difficulty is visual.

4.1. The case of Lagrangians. Let L be an exact Lagrangian in T �N with N not necessarily compact
(but assumed, for simplicity, to be connected). We assume a primitive of �jL, fL, is given.12

We shall assume that L has a unique GFQI, S , such13 that fL D S on L
�
through the identification

iS .x; �/D
�
x; @S

@�
.x; �/

��
. For example according to Theorem 3.5, this is the case if LD 'H .0N / with

' 2DHamFP.T
�N/. Note that in general, SU ;Q; F depend on U.

We denote by TF the generator of H i .D.F�/; S.F�//, where F� is the negative eigenspace of Q,
i D dim.F�/ and D.F�/; S.F�/ are respectively the disc and sphere in F�, so that ˛ 7! ˛˝TF is an
isomorphism (the Künneth isomorphism) from H�.U / to

H�Ci .U �D.F�/; U �S.F�//DH�.U /˝H�.D.F�/; S.F�//

forU�N. By abuse of language we again denote by TF its homological counterpart inHi.D.F�/;S.F�//.
We shall later write T instead of TF .

We denote by S tU D f.x; �/ 2 U � F j S.x; �/ � tg (we omit the subscript for U D N ) and S�1U
(resp. SC1U ) any of the S�cU (resp. Sc) for c large enough (by Morse’s lemma they are all isotopic).

Classically we have a homotopy equivalence between .SC1U ; S�1U / and U � .D.F�/; S.F�//. In the
following definitions, we set �U 2Hn.U; @U /, 1U 2H 0.U / to be the generators of these cohomology
groups.

Definitions 4.1. Let S be a GFQI for L 2 L.T �N/ and U a bounded open set with smooth boundary.
We define:

(1) For ˛ 2H�.U /,

c.˛; S/D infft j T ˝˛ ¤ 0 in H�.S t
jU ; S

�1
jU /g:

(2) For a 2H�.U; @U /,

c.a; S/D infft j T ˝ a is in the image of H�.S tjU ; S
�1
jU [S t

j@U /g:

(3) For ˛ 2H�c .U /DH
�.U; @U /,

c.˛; S/D infft j T ˝˛ ¤ 0 in H�.S t
jU ; S

�1
jU [S t

j@U /g:

12Even though we write L, we always mean the pair .L; fL/.
13Remember by Remarks 3.6(3) that this means there is a sequence S� of GFQI over U� such that, for � ��, the function S�

restricts to the stabilization of S� over U� .
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(4) For a 2H�.U /,
c.a; S/D infft j T ˝ a is in the image of H�.S tjU ; S

�1
jU /g:

(5) For L1; L2 in L.T �N/, having unique GFQI, S1; S2, we set .S1	S2/.xI �; �/DS1.xI �/�S2.xI �/
and, for ˛ 2H�.U / or H�.U; @U /,

c.˛; L1; L2/D c.˛; .S1	S2//

and c.˛; L/D c.˛; 0N ; L/.

(6) We set U .L1; L2/D c.�U ; L1; L2/� c.1U ; L1; L2/ and U .L/D U .0N ; L/.

(7) We write L2 �U L1 if c.1U ; L1; L2/D 0. If this holds for all bounded sets U, we write L2 � L1.

(8) We set GH�.L1; L2I a; b/DH��i ..S1	S2/b; .S1	S2/a/.

Remark 4.2. We notice that

(1) As we said, S is shorthand for S� defined on U� . As long as U � U� , it is easy to see that for
˛ 2H�.U / (resp. H�.U; @U /) the c.˛; S�/ do not depend on �.

(2) The function .S1	S2/ is not quadratic at infinity, but a standard trick allows us to deform it to a func-
tion quadratic at infinity (see [Viterbo 2006, Proposition 1.6]). The GH� functor is called generating func-
tion homology (see [Traynor 1994]) and coincides with Floer homology14 that we shall not introduce here.

(3) Note that if S has no fiber variables, c.1U ; S/D infx2U S.x/ and c.�U ; S/D supx2U S.x/.

It is often convenient to express the cohomological critical values in terms of their homology counter-
parts. Note thatH�.U / is dual toHn��.U; @U / andH�.U; @U / is dual toHn��.U / by Lefschetz duality
(see [Hatcher 2002, p. 254]). We have a fundamental class �U 2Hn.U; @U / dual to ŒptU � 2H0.U /
and 1U 2H 0.U / dual to ŒU � 2Hn.U; @U /. The following lemma will be useful.

Lemma 4.3. We have for S a GFQI:

(1) c.1U ; S/D c.ŒptU �; S/.

(2) c.�U ; S/D c.ŒU �; S/.

We also have the duality identity
c.1U ; L/D�c.�U ; L/:

Proof. The first two properties follow from Proposition B.3 in [Viterbo 2023]. The duality identity
is a consequence of the identity c.1U ;�S/ D �c.�U ; S/. Both are easily adapted from the case
U D N closed to the present situation. This follows from the following argument (see [Viterbo 1992,
Proposition 2.7, p. 692]). First notice that .�S/t D E n S�t, so we look for the smallest t such that
1U ¤ 0 inH�.EjU nS�tjU ; EjU nS

�1
jU

/. We then apply Alexander duality (see [Spanier 1966, Theorem 10,
p. 342]), which claims that for any closed pair .A;B/ contained in an orientable manifold X we have an
isomorphism

Hk.X �B;X �A/'H
d�k
c .B;A/:

14See [Viterbo 2003] (or [Milinković and Oh 1997]) for the equivalence of the two homologies.
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Note that Hd�k
c .B;A/ is invariant by proper homotopy equivalence, so if there is a proper retraction of

the pair .A;B/ to a compact pair .A0; B 0/, then

Hd�k
c .B;A/'Hd�k

c .B 0; A0/'Hd�k.B 0; A0/'Hd�k.B;A/:

In particular this is always the case for pairs .Sb; Sa/, where S is a GFQI. We then get the following
diagram, where vertical maps correspond to long exact sequences of triples, and horizontal to Alexander
isomorphisms (omitting the subscript U ):

Hd .S
�t ; S�1/

'
//

��

HnCk�d .E nS�1; E nS�t /

��

DHnCk�d ..�S/t ; .�S/�1/

��

Hd .S
C1; S�1/

'
//

��

HnCk�d .E nS�1; E nSC1/

��

DHnCk�d ..�S/C1; .�S/�1/

��

Hd .S
C1; S�t /

'
// HnCk�d .E nS�t ; E nS1/ DHnCk�d ..�S/t ; .�S/�1/

Using the universal coefficient theorem (recall, our coefficient ring is a field) we see thatH�.SC1jU ; S�1
jU

/

is a vector space dual to H�.SC1
jU

; S�1
jU

/. By abuse of language, we denote by 1U the element
ptU 2H�.S

C1

jU
; S�1
jU

/ sent to 1U 2H�.SC1jU ; S�1
jU

/, and we see that c.1U ; S/ is the same whether we
consider 1U in homology or cohomology. On the other hand the second line of the diagram sends T ˝1U
to T ˝�U , since in this case Alexander duality corresponds to Poincaré duality. Now saying that 1U is in
the image of H�.S�t ; SC1/ is equivalent to saying that �U is in the image of H�..�S/t ; .�S/�1/. In
other words, �t � c.1U ; S/ is equivalent to t � c.�U ;�S/ and this means c.1U ; S/D�c.�U ;�S/. �

Definition 4.4. Let U be a bounded domain with smooth boundary, @U. We say that the sequence of
smooth functions .fk/k�1 in C1.N / defines U if

(1) there is a decreasing family Fk of closed subset of N such that
T
k Fk D U,

(2) fk D 0 on Fk ,

(3) fk is a decreasing sequence converging to �1 on N nU.

We say that .fk/k�1 is a standard defining sequence if there is a function r 2 C1.R/ such that

(1) r.t/D 0 for t � 0,

(2) r 0.t/ < 0 for 0 < t < 1,

(3) r.t/D�1 for t � 1,

and for some increasing sequence ak converging to C1 we have

fk.x/D akrk.ak � d.x; U //:

Notice that given a sequence .fk/k�1 defining U, we can find standard sequences .gk/k�1; .hk/k�1
such that gk � fk � hk .
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We define for a smooth function f the graph of its differential, Gf D f.x; df .x// j x 2N g. This is
an exact Lagrangian, with primitive f . If L is a Lagrangian with GFQI, S , we define LCGf to be the
Lagrangian generated by S Cf , where S Cf .x; �/D S.x; �/Cf .x/.

We notice that:

Lemma 4.5. Let .fk/k�1 be a sequence defining U, and V be any bounded open set such that V � U.
Then for L1; L2 2 L.T �N/ we have

c.1U ; L1; L2/D lim
k
c.1V ; L1�Gfk ; L2/D lim

k
c.1V ; L1; L2CGfk /:

Proof. Let Sj be GFQI for Lj and S D S1	S2. We have Sc
jU
D limk.S � fk/cjV ; therefore for Čech

cohomology, according to Theorem 5 in [Lee and Raymond 1968] we have

lim
k
H�..S �fk/

c
jV ; .S �fk/

b
jV /DH

�.Sc
jU ; S

b
jU /

and from the definition of c.1U ; S/ the proposition follows. �

Remark 4.6. One should be careful. We will often have to estimate c.�U ; L1; L2/ but it is not true
that c.�U ; L1; L2/D limk c.�N ; L1�Gfk ; L2/. Indeed, if L1DGg ; L2D 0N , then c.�U ; L1; L2/D
supx2U g.x/¤ supx2N g.x/�fk.x/. However it follows from Lemma 4.3 that

c.�U ; L1; L2/D� lim
k
c.1N ; L2CGfk ; L1/:

Let U be an open set with smooth boundary and set �.x/ 2 T �x U to be the exterior conormal to @U at
x 2 @U, i.e., �.x/D 0 on T @U and h�.x/; n.x/i D 1, where n.x/ is the exterior unit normal to U at x.
The conormal of U is then defined as

��U D f.x; p/ 2 T �N j x 2 U; p D 0; or x 2 @U; p D c�.x/; c � 0g:

We now prove that the values of c.˛; L/ correspond to intersection points of L and ��U (or L and ��U ).

Proposition 4.7 (representation theorem). Let U be a bounded open set with smooth boundary and
.L1; f1/; .L2; f2/ be exact Lagrangians in T �N. Then we have:

(1) For ˛ 2H�.U /n f0g, c.˛IL1; L2/ is given by f1.x˛; p1;˛/�f2.x˛; p2;˛/, where .x˛; p1;˛/ 2L˛
and .x˛; p2;˛/ 2 L2 and .x˛; p1;˛ �p2;˛/ 2 ��U.

(2) The same holds for ˛ 2H�.U; @U / n f0g but with ��U replaced by ��U.

Proof. This is the representation theorem [Viterbo 1992, Proposition 2.4], using a standard defining
sequence for U and the fact that c.1U IL1; L2/ D limk c.1V IL1 � Gfk ; L2/. Indeed, a converging
sequence of points in Gfk will converge to a point in ��U (remember fk must also be bounded in the
sequence!). Then the compactness of L1\T �U and L2\T �U implies the result. �

For .fk/k�1 a defining sequence of U, we say ��U is the “limit” of the Gfk for k � 1. We will
formally write c.˛; L; ��U/ for c.˛U ; L/.
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Remarks 4.8. (1) The same will hold for U � V and any ˛V 2H�.V / having restriction ˛U 2H�.U /:

c.˛U ; L1; L2/D lim
k
c.˛V ; L1�Gfk ; L2/D lim

k
c.˛V ; L1; L2CGfk /:

In particular, if M is a closed manifold containing N, we have

c.1U ; L1; L2/D lim
k
c.1M ; L1�Gfk ; L2/D lim

k
c.1M ; L1; L2CGfk /D c.1M ; L1; L2C �

�U/:

(2) Let U � V . Then with obvious abuse of notation c.1V ; ��U/D�1; c.�V ; ��U/D 0 and of course
c.1U ; �

�V /D 0; c.�U ; �
�V /DC1. This means that, for .fk/k�1 and .gk/k�1 defining U and V , we

have limk c.1M ; Gfk ; Ggk /D�1 and limk c.�M ; Gfk ; Ggk /D 0.

We will now prove some of the properties of these invariants:

Proposition 4.9. Let ' 2DHamFP.T
�N/ and LD '1.0N / be a Lagrangian submanifold. We have

U .L/ WD c.�U ; L/� c.1U ; L/� 0

and equality implies that L\T �U � 0U .

Proof. The proof follows from the triangle inequality (see [Viterbo 1992, Proposition 3.3, p. 693]) applied
to the product

H�.U /˝H�c .U /!H�c .U /:

Remember that the triangle inequality in [Viterbo 1992, Proposition 3.3] states that for two GFQI S1; S2
and two cohomology classes ˛; ˇ, we have

c.˛[ˇ; S1˚S2/� c.˛; S1/C c.ˇ; S2/;

where .S1 ˚ S2/.xI �; �/ D S1.xI �/ C S2.xI �/. Here we apply it to S1 a GFQI for L, and S2 a
nondegenerate quadratic form, that is, a GFQI for 0N , ˛ 2H�.U /; ˇ 2H�c .U /. We then have, since
c.ˇ; 0N /D 0,

c.˛[ˇ;L/� c.˛; L/:

Thus we have c.�U ; L/ D c.1U [ �U ; L/ � c.1U ; L/ and equality implies that �U is nonzero in
Kc ' L\ ��U . But this implies �.L\ ��U/� U ; hence L contains 0U . Note that in general, contrary
to the case where N D U is compact, L\T �U may contain other connected components than 0U . �

Proposition 4.10. The following hold for Li 2 L.T �N/:

(1) We have c.�U ; L1; L2/D�c.1U ; L2; L1/D�c.1U ; L1; L2/.

(2) For U � V and L1; L2 Lagrangian submanifolds we have

� c.�U ; L1; L2/� c.�V ; L1; L2/,
� c.1U ; L1; L2/� c.1V ; L1; L2/,
� U .L1; L2/� V .L1; L2/.

(3) We have U .L1; L3/� U .L1; L2/C U .L2; L3/.
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(4) If U .L1; L2/D 0 then L1\L2 has a connected component with projection on N containing U.

(5) If L1 � L2 then c.˛; L1/� c.˛; L2/ for all ˛ ¤ 0.

Proof. (1) The proof is the same as in Lemma 4.3, since SL1 	SL2 D�.SL2 	SL1/.

(2) If U �N note that
c.1U IL1; L2/D lim

k
c.1N ; L1�Gfk ; L2/:

Since we may choose defining sequences .fk/k�1; .gk/k�1 for U; V such that fk � gk , we have for S1 a
GFQI of L1 that S1�fk � S1�gk , hence c.1N ; L1�Gfk /� c.1N ; L1�Ggk /, and going to the limit,
c.1U ; L1; L2/ � c.1V ; L1; L2/. By the duality formula (1), we get c.�U IL1; L2/ � c.�V IL1; L2/;
hence U .L1; L2/� V .L1; L2/.

(3) We have
S1	 2 �f 	S3 D .S1	f /	 .S3˚f /

and .S1	 f /	S2 D S1	 .f ˚S2/. Now noting that if .fk/k�1 defines U, then so does .2 � fk/k�1,
we have

U .L1; L3/D lim
k
V .S1	 2 �fk	S3/

D lim
k
V ..S1	fk/	 .S3˚fk//

� lim
k
V .S1	fk	S2/C lim

k
V .S2	 .fk˚S3//

D U .L1; L2/C U .L2; L3/:

(4) This follows from Lusternik–Schnirelmann theory as in the proof of [Viterbo 1992, Proposition 2.2,
p. 691] (see also Proposition 4.9).

(5) L1 � L2 implies c.�U ; L1; L2/ D 0 for all U. By the triangle inequality applied to S1˚ .�S2/
(where Si is a GFQI for Li ) if ˇ[˛ D �U , we have

0D c.�U ; L1; L2/� c.˛; L1; 0N /C c.ˇ; 0N ; L2/� c.˛; L1/� c.˛; L2/

since c.ˇ; 0N ; L/D�c.˛; L; 0N / according to the proof of Proposition B.3 in [Viterbo 2023]. �

We must now see what happens when we make a coordinates change in T �N. We start with three
lemmas.

Lemma 4.11. Let S be a GFQI defined on E D Y � F and for f W X ! Y a smooth map a map
Qf WX �F ! Y �F living over f , i.e., the diagram

X �F

��

Qf
// Y �F

��

X
f

// Y

is commutative. We then have, for ˛ 2H�.Y / and .f /�.˛/ 2H�.X/,

c.˛; S/� c.f �.˛/; S ı Qf /:
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Proof. Indeed, if T 2H�.D.F�/; S.F�// is the Thom class for F�, then . Qf /�.T /D zT is the Thom
class for Qf �.F�/ and we have, denoting by �; Q� the projections on Y and X ,

. Qf /�.T [��.˛//D ��.f �.˛//[ zT :

Now if c < c.˛; S/ then ��.˛/[T vanishes in H�.Sc ; S�1/ and this implies that . Qf /�.T [��.˛//D
��.f �.˛// [ zT vanishes in H�..S ı Qf /c ; .S ı Qf /�1/, i.e., c � c.f �.˛/; S ı Qf /. This implies the
lemma. �

For the next lemma we use the notation S1�S2 to denote S1.x; y; �; �/D S1.xI �/CS2.yI �/ (not to
be confused with S1˚S2) and ˛˝ˇ to denote the class in H�.X �Y / image of ˛˝ˇ by Künneth’s
isomorphism.

Lemma 4.12. We have
c.1U ˝ 1U IL1 �L2; �

��N /D c.1U IL1; L2/:

Proof. Let d " W N �N ! R be a smooth function vanishing on �N and converging as " goes to 0 to
�1 � .1���N /, where ��N is the characteristic function of �N . For example we can choose

d ".x; y/D�
1

"
d.x; y/:

Similarly define d "U .x; y/D d
".x; y/Cf "U .x/Cf

"
U .y/, where f "U converges to �1.1��U / as " goes

to 0.
Setting ŒS1� .�S2/�.x1; x2; �1; �2/D S1.x1; �1/CS2.x2; �2/, and

ŒS1˚ .�S2/�.x; �1; �2/D S1.x; �1/CS2.x; �2/

we may write

c.1U�U IL1 �L2; �N /D lim
"!0

c.1N�N I .L1�Gf "U /� .L2�Gf
"
U
/; ���N /

D lim
"!0

c.1N�N I .S1�f
"
U /� .�S2�f

"
U /; d

"/

D c.1N�N ; Œ.S1�f
"
U /� .�S2�f

"
U /�� d

"/:

Now lim"!0.S1 � .�S2/ � d
"/c D .S1 ˚ .�S2//

c and if ı W �N ! N � N is the diagonal map,
ı�.1N ˝ 1N /D 1�N , so from Lemma 4.11, we get

c.1U ˝ 1U IL1 �L2; �
��N /� c.1N ; .S1�f

"
U /˚ .S2�f

"
U //� c.1U IL1; L2/:

Conversely we notice that given c, for " small enough, .S1�.�S2/�d "/c is contained in a neighborhood
of �N . Thus if 1U ˝ 1U does not vanish in

H�.Œ..S1�f
"
U /� .�S2�f

"
U //� d

"�c ; Œ..S1�f
"
U /� .�S2�f

"
U //� d

"��1/;

i.e., c � c.1U ˝ 1U IL1 �L2; ���N /, then its restriction to �N , that is, 1U does not vanish either, and
c � c.1U IL1; L2/, so

c.1U ˝ 1U IL1 �L2; �
��N /� c.1U IL1; L2/

and we have equality. �
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Lemma 4.13. Let us consider a bounded open set with boundary U � N and ���U � T �N � T �N,
where �U is the diagonal in U. Let 't be a Hamiltonian flow on T �U such that '1.T �U/� T �V . We
have

.'1 �'1/.���U /� �
��V :

Proof. Let .q; p; q; p0/ 2 ���U and notice that unless q 2 @U, we have p D p0. Then according
to Lemma 3.2 we may assume 't .T �U/ � T �V for all t 2 Œ0; 1�, so setting .'t � 't /.q; p; q; p0/ D
.Qt ; Pt ;Q

0
t ; P
0
t / we know that when .q; p; q; p0/ 2 ���U � T �U, we have Qt ;Q

0
t … @V . So if

.Qt ; Pt ;Q
0
t ; P
0
t / 2 �

�V , we must have Qt DQ
0
t ; Pt D P

0
t , but then p D p0. In other words

.'t �'t /.���U /\ �
��V D .'

t
�'t /.�T �U /\�T �V D .'

t
�'t /.�T �U /:

So the intersection .'t �'t /.���U /\���V is constant and by a classical argument, this implies that as
a function of t , c.˛; .'t �'t /.���U /; ���V / is constant. Since ���U � ���V , we have for all t we
have .'t �'t /.���U /� ���V . �

Using Proposition 4.10(2), we may conclude that the limits in the following proposition are well-defined
in R[f˙1g.

Definition 4.14. When U is an unbounded set we define B.U / to be the set of bounded subsets in U and

c.�U ; L1; L2/D lim
V 2B.U /

c.�V ; L1; L2/;

c.1U ; L1; L2/D lim
V 2B.U /

c.1V ; L1; L2/:

Remark 4.15. Symbolically we have for U � V that ��U C ��V D ��U, meaning that if .fk/k�1
defines U and .gk/k�1 defines V then .fk C gk/k�1 defines U. More generally if U \ V � W , we
have ��U C ��V � ��W where this means that if .fk/k�1 defines U and .gk/k�1 defines V , there is a
sequence .hk/k�1 defining W such that fkCgk � hk .

Proposition 4.16. We have for ' 2DHam.T �N/ such that '.T �U/� T �V and L1; L2 2 L.T �N/

U .'.L1/; '.L2//� V .L1; L2/:

Proof. We use Lemma 4.11 so we replace c.1U ; '.L1/; '.L2// by

c.1U ˝ 1U ; '.L1/�'.L2/; �
��N /

and this in turn equals

c.1N ˝ 1N ; .' �'/.L1 �L2/; �
��N C �

�.U �U//:

Using Remark 4.15 we have

���N C �
�.U �U/� ��.�N \ .U �U//D �

��U

and we get

c.1N ˝ 1N ; .' �'/.L1 �L2/; �
��N C �

�.U �U//� c.1N ˝ 1N ; .' �'/.L1 �L2/; �
��U /

D c.1N ˝ 1N ; .L1 �L2/; .' �'/
�1.���U //
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and using Lemma 4.13 we get that the last term is greater than

c.1N�N ; L1 �L2; �
��V /D c.1V ; L1; L2/:

We may thus conclude that

c.1V ; L1; L2/� c.1U ; '.L1/; '.L2//:

By duality, we get

c.�V ; L1; L2/� c.�U ; '.L1/; '.L2//

and our result follows. �

Definition 4.17. A sequence .Lk/k�1 2 L.T �N/ c-converges to L 2 L.T �N/ if for all bounded
domains U the sequence U .Lk; L/ converges to 0. We shall write Lk

c
�! L. The c-completion of

L.T �N/ for c is the set of equivalence classes of c-Cauchy sequences .Lk/k�1 for the following
relation: .Lk/k�1 ' .L0k/k�1 if for all bounded domains U the sequence U .Lk; L0k/ converges to 0.
We denote this completion by yL.T �N/.

Remark 4.18. Of course we may take a cofinal sequence Uk of bounded open sets in N and define

d.L1; L2/D

C1X
jD1

2�j maxf1; Uj .L1; L2/g

and then take the completion with respect to this metric. It is easy to see that the completion coincides
with the above, and hence does not depend on the choice of the sequence Uk (this is just rephrasing the
fact that the U define a uniform structure; see [Weil 1938] or [Bourbaki 2007, Chapter II]).

Example 4.19. Let fk be a sequence of smooth functions. Then  -convergence of the Lk D gr.dfk/ is
equivalent to uniform convergence on compact sets of the fk .

We shall need the following proposition.

Proposition 4.20. We have for LD '1H .0N / 2 L.T
�N/ the inequalities

c.�U ; L/� sup
.q;p/2T �U

H.q; p/;

c.1U ; L/� inf
.q;p/2T �U

H.q; p/;

U .L/� sup
.q;p/2T �U

H.q; p/� inf
.q;p/2T �U

H.q; p/D oscT �U .H/� 2kHkC0.T �U/:

Proof. Let H.q; p/D h.q/ and Lh D 'H .0N /. Then according to Remark 4.2(3) we have c.�U ; Lh/�
supq2U h.q/ and c.1U ; Lh/� infq2U h.q/ because Lh D f.q; dh.q// j q 2N g.

Now for general H, since for H � h.q/ D supp2T �q N H.q; p/ we have H � h, we get L � Lh, so
c.�U ; L/� c.�;Lh/� supq2U h.q/D sup.q;p/2T �U H.q; p/ and we get the first inequality. The other
two inequalities follow immediately from this one. �
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4.2. The case of Hamiltonians in T �Rn. Let H 2 Hamfc.Œ0; 1��T
�Rn/ and 'tH be its flow. Let s1; s2

the symplectomorphisms

T �Rn �T �Rn! T ��T �Rn

defined respectively by
s1.q; p;Q;P /D .q; P; p�P;Q� q/;

s2.q; p;Q;P /D .Q; p; p�P;Q� q/:

Denoting by .x; y;X; Y / the coordinates in T ��T �Rn , we have

s�i .dY ^ dyC dX ^ dx/D dp^ dq� dP ^ dQ;

so the si are symplectic.
The graph of 'H is .id� 'H /.�T �Rn/, and its image by s1 is denoted by �.'H /, while its image

by s2 will be �.'�1H /. Let SH be a GFQI for �.'H / which exists and is unique if H 2 HamBP.T
�Rn/

by Theorem 3.5.

Definition 4.21. We set for W a domain contained in �T �Rn . Then

(1) c�W .'H ; 'K/D c.1W I�.'H /; �.'H //.

(2) cCW .'H ; 'K/D c.�W I�.'H /; �.'H //.

(3) W .'H ; 'K/D cCW .'H ; 'K/� c
�
W .'H ; 'K/.

(4) c�W .'K/, c
C

W .'K/ and W .'K/ are abbreviations for c�W .id; 'K/, c
C

W .id; 'K/ and W .id; 'K/
respectively.

Remark 4.22. In T �N we may define for U �N the number

OU .'H /D sup
L2L.T �N/

U .L; 'H .L//;

which corresponds to (even though we do not claim it is equal to) .U�Rn/.'H /.

Analogously to Proposition 4.16 we prove:

Proposition 4.23. For '1; '2 2DHamBP.T
�Rn/ such that 'j .T �U/� T �V and L2L.T �Rn/ we have

U .'1.L/; '2.L//� V�Rn.'1; '2/:

Proof. We have

c.1U ; '.L/; L/D c.1U˝1U I'.L/�L; �
��N /

� c.1U˝1U I .'�id/.L�L/; .'�id/.���N //Cc.1U˝1U I .'�id/.���N /; ���N /:

Equality follows from Lemma 4.12 and the inequality is the triangle inequality.
Now if .' � id/T �.U �U/� T �.V �V /, we have

c.1U ˝ 1U I .' � id/.L�L/; .' � id/.���N //� c.1V ˝ 1V IL�L;�T �N /D c.1V IL;L/D 0:
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As a result we have

c.1U ; '.L/; L/� c.1U ˝ 1U I .' � id/.���N /; ���N /D c.1U ˝ 1U I�.'/; �.id//:

We must now compare this last invariant with c.1W I�.'//. The map s1 W T �Rn �T �Rn! T ��R2n

given by s1.q; p;Q;P /D .q; P; p�P;Q� q/ sends T �.V �V / into T �.V �Rn/, so we have

c.1V ˝ 1V I�.'/; �.id//� c.1V�Rn ; �.'//:

We may then conclude that

c.1U ; '.L/; L/� c.1V�Rn ; �.'//

and using the dual inequality we get our result. �

Let then .H�/��1 be a sequence of Hamiltonians in HamFP.T
�Rn/ and '� D 'H� .

Definition 4.24. The sequence .'�/��1 c-converges to ' if for all bounded domains W we have
lim� W .'� ; '/D 0.

The c-completion 2DHamFP.T
�Rn/ is defined as the set of Cauchy sequences in DHamFP.T

�Rn/ for
the uniform structure defined by the W , in other words the set of sequences which are Cauchy for each
W , modulo the equivalence relation .'�/��1 ' . �/��1 if for all W we have lim� W .'� ;  �/D 0.

Similarly we define for H 2 HamFP.T
�Rn/ the pseudometric

W .H;K/D sup
t2Œ0;1�

W .'
t
H ; '

t
K/:

We then define analogously the c-convergence of a sequence in HamFP.T
�Rn/ and its completion

bHamFP.T
�Rn/.

Note that the property of having FPS or being in Hamfc can be checked in the c-completion.

Proposition 4.25. There exist closed sets in 2DHamFP.T
�Rn/ that intersect DHam.T �Rn/ on

DHamFP.T
�Rn/, DHamBP.T

�Rn/ and f' 2DHam.T �T n/ j supp.'/� fjpj � rg respectively.

Proof. Indeed '.T �U/� T �V is equivalent to

�.'/\f.x; px; y; py/ j x 2 U; y … V g D∅

and being supported in jpj � r is equivalent to

�.'/\f.x; px; y; py/ j jpxj � rg � �.id/

and both are closed conditions, which makes sense in the completion (see [Humilière 2008]). �

When dealing with fiberwise compactly supported Hamiltonians, we have:

Definition 4.26. We set for ' 2 Hamfc.T
�Rn/

r.'/D Rn�Bn.r/.'/D lim
R!C1

Bn.R/�Bn.r/.'/;

1.'/D lim
r!1

r.'/ 2 R[fC1g:
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Notice that convergence for c and 1 coincides on sequences supported in a fixed bounded set in the
p-direction.

Proposition 4.27. If h�.p/�H.t; q; p/� hC.p/, we have the inequality

r.'H /� sup
jpj�r

hC.p/� inf
jpj�r

h�.p/:

In particular if a �H.q; p/� b, we have 1.'H /� b� a.

Proof. Indeed, cCW .H/ � c
C

W .hC/, but cC
Rn�Bn.r/

.hC/ D supjpj�r hC.p/. Indeed, the flow of h.p/ is
.q; p/ 7! .qC tdh.p/; p/ and its graph is given by .q; p; 0; tdh.p//, so a GFQI is S.q; P /D h.P /, and

cC
Rn�Bn.r/

.H/� cC
Rn�Bn.r/

.hC/D sup
jpj�r

hC.p/:

Similarly c�
Rn�Bn.r/

.h�/D infjpj�r h�.p/ and c�
Rn�Bn.r/

.H/� cC
Rn�Bn.r/

.h�/D infjpj�r h�.p/.
By taking the difference of the above inequalities, we prove the proposition. �

Remark 4.28. The quantity 1.'/ is finite for ' 2 Ham.T �Rn/ such that kHkC0.T �Rn/ <C1.

Our last results in this section will be:

Proposition 4.29. We have the following, remembering that �.x; p/D
�
x
"
; p
�
:

(1) Assume ; �1 sendW DU �V intoW 0DU 0�V 0, whereU;U 0�Rn; V; V 0� .Rn/�. Then we have

W . 
�1
ı' ı /� W 0.'/:

(2) r.��a ı' ı �a/D r.'/.

(3) r.��1" ı' ı �"/D "r.'/.

Proof. In T �.Rn �Rn/ we have that �.'/ is the set of .q; P; P �p; q �Q/, where .Q;P /D '.q; p/,
while �. ı' ı �1/ is obtained by applying  � to .q; p;Q;P /. In other words writing .q0; p0/D
 .q; p/; .Q0; P 0/D  .Q;P /, �. ı' ı �1/ is obtained as

f.q0; P 0; P 0�p0; q0�Q0/ j '.q; p/D .Q;P /g:

Now if q 2 U and P 2 V , we have q0 2 U 0 and P 0 2 V 0; hence . � /.T �.U � V // � T �.U 0 � V 0/,
where U �V;U 0 �V 0 are considered subsets of �T �Rn .

As a result, since  � preserves the diagonal (that is the zero section in the new coordinates) we
have, using Proposition 4.16,

U�V . 
�1' /D U�V .. � /�.'/; . � /.�//� U 0�V 0.�.'/;�/D U 0�V 0.'/:

Statement (2) follows from first applying (1) to  D �a so that, setting Ua D
S
t2Œ�a;a� �t .U /,

U�B.r/.��a'�a/� Ua�B.r/.'/:

Hence taking the limit for U � Rn we get

r.��a'�a/� r.'/
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and changing a to �a we get equality. The last equality is rather obvious since �" is 1
"
-conformal and

�".U �Br/D
�
1
"
�U
�
�Br . �

Remark 4.30. One should be careful, in particular U .'1; '2/ is not in general equal to U .'�12 ı'1/D
U .'

�1
2 ı'1; id/. We thus have a priori two types of convergence. We could say that '� converges to '

if for all bounded sets U either the sequence U .'� ; '/ goes to 0 or if U .'�'�1/ goes to 0. However
if the '� have uniformly bounded propagation speed, that is, '�.T �Br/� T �BrCr0 for all � and all r ,
then the two conditions are equivalent.

5. Compactness and ergodicity

Let H W T �Rn ��! R be Hamiltonian satisfying properties (1)–(6). Then each H! DH. � ; � ; !/ is in
Hamfc.T

�Rn/ and we identify � with its image in Hamfc.T
�Rn/, denoted by H�. Its closure for the

c-topology in the completion bHamFP.T
�Rn/ is denoted by yH�. The action � of Rn on � induces an

action on H� by
.�aH/.x; pI!/DH.xC a; pI!/DH.x; pI ��a!/:

This action translates into ' 7! ��a'�a on DHamfc.T
�Rn/.

We first want to prove:

Proposition 5.1. The abelian group Rn acts continuously by isometries on .Hamfc.T
�Rn/; c/ and

.DHamfc.T
�Rn/;c/ and hence on .bHamfc.T

�Rn/;c/ and .2DHamfc.T
�Rn/;c/. Therefore the action �

of Rn on H� is a continuous action by isometries for c which extends to a continuous action by isometries
on yH�.

Proof. That Rn acts by isometries follows from Proposition 4.29(2). It is enough according to a theorem by
Chernoff and Marsden15 to prove the separate continuity of the map Rn�Hamfc.T

�Rn/!Hamfc.T
�Rn/

in each variable. In other words — since �a is an isometry, it is obviously continuous in the second
variable — we must prove that, for all H 2 Hamfc.T

�Rn/, we have

lim
a!0

c.H; �aH/D 0;

i.e., we want to prove that for all r > 0, lima!0 r.��1a '�1�a; '/D 0. But

�.'/D f.q; P; p�P;Q� q/ j '.q; p/D .Q;P /g;

while
�.��1a '�a/D f.q� a; P; p�P;Q� q/ j '.q; p/D .Q;P /g;

so that S.q; P I �/ is a GFQI for �.'/ and .�aS/.q; P; �/ D S.q � a; P I �/ is a GFQI for �.��1a '�a/.
Since critical points of S.q; P; �/ are contained in jP j�R and a 7!S.q�a; P I �/ is uniformly continuous
on jP j �R, we get that cW .˛; S 	 �aS/ depends continuously on a, and for aD 0 is equal to 0 (since it
is equal to cW .'; '/D 0). �

15Which claims that, under our assumptions, a separately continuous action is jointly continuous. See [Chernoff and Marsden
1970, Theorem 1], extending a theorem of Ellis [1957].
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Proposition 5.1 extends the action � to a continuous action by isometries of yH�. Since Isom.H�; /�
Isom.yH�; /, the map � WRn! Isom.H�; / extends to a map, still denoted by � , from Rn to Isom.yH�; /.
Since this is obviously a group morphism, its closure in Isom.yH�; / is an abelian connected and complete
metric group.

Proposition 5.2. Let us denote the closure of �.Rn/ in Isom.yH�; / by A�. Then A� is an abelian,
connected and complete metric group.

The goal of this section is to prove that our assumptions on H imply that A� is compact. For this
it is enough to prove that Isom.yH�; c/ is compact, but this follows immediately by the Arzelà–Ascoli
theorem if we prove that .yH�; c/ is compact. Because by assumption .yH�; c/ is complete, it is enough
to show that it is totally bounded, that is, for any " > 0, .yH�; c/ can be covered by finitely many c-balls
of radius ". Since .H�; c/ is dense in .yH�; c/, it is enough to prove that .H�; c/ is totally bounded.
We shall prove slightly less but it will be good enough for our purposes:

Proposition 5.3. Let O�� be the push forward to yH� of the measure � on �. Then the support of O�� is
totally bounded hence compact.

This will follow from the following general result.

Proposition 5.4. Let .X; �/ be a probability space endowed with a distance d such that .X; d/ is
separable.16 LetG be a group acting ergodically onX by (measure-preserving) isometries. Then supp.�/
is totally bounded.

We shall first prove:

Lemma 5.5. Let � be a continuous ergodic action of a group G on a probability, separable metric space
.X; �; d/. Then for �-almost all points x 2X , the orbit G � x is dense in supp.�/.

Proof. This is an immediate consequence of Birkhoff’s ergodic theorem, but we shall give a simpler (or
at least easier) proof. Let Y be countable and dense in X and set

W D
[

y2Y;r2Q�
C

�.B.y;r//D0

B.y; r/:

If �.B.x; r//D 0 for some x 2X , r > 0 then x 2W . Indeed, we may assume r is rational, and choose
y 2 Y such that d.y; x/ < r

2
. Then x 2B

�
y; r
2

�
so B

�
y; r
2

�
�B.x; r/ and we get �

�
B
�
y; r
2

��
D 0. This

argument implies that

W D fx 2X j 9U open x 2 U;�.U /D 0g

and W is � invariant since � preserves � and the open sets. Now because W is a countable union of open
sets of measure 0, it is open and has measure 0. We may then replace X by X nW , so we are reduced to
the situation where all balls have > 0 measure, i.e., all open sets have positive measure.

16A separable topological space is a space having a countable dense subset.
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Now let .Uj /j2N be a countable basis of open sets (since a separable metric space is second countable).
Set �GAD f�gx j x 2 Ag; then the orbit of x misses Uj if and only if �Gx\Uj D∅, i.e., x … �G.Uj /.
The points with nondense orbit must miss at least one �G.Uj / so they belong to[

j

.X n �G.Uj /DX n
\
j

�G.Uj /;

but by ergodicity �G.Uj / being � invariant has measure 1 (since it cannot be zero, as its measure is at
least the measure of Uj that is positive by assumption). Therefore

T
j �G.Uj / as a countable intersection

of measure-1 sets has measure 1, and its complement has measure zero. �

We are now in a position to prove Proposition 5.4.

Proof of Proposition 5.4. By the lemma we may choose x such that �Gx is a dense orbit in supp.�/. We
shall prove that �G.x/ is totally bounded, arguing by contradiction.

Let a1; : : : ; ak; � � � 2G be a sequence in G such that:

�
Sk
jD1B.�aj x; "/ does not cover �Gx, where B.x; r/ is the closed ball of radius r .

� For all i ¤ j we have B
�
�aix;

"
2

�
\B

�
�aj x;

"
2

�
D∅.

We claim that if �Gx cannot be covered by finitely many balls of size " then we may construct such a
sequence by induction. Indeed, assume a1; : : : ; ak have been constructed satisfying the above properties.
Then by the first property we may find akC1 such that �akC1x …

Sk
jD1B.�aj x; "/ and this implies

B
�
�aj x;

"
2

�
\ B

�
�akC1x;

"
2

�
D ∅. Hence a1; : : : ; akC1 satisfy both properties. But now we found

infinitely many disjoint balls of radius "
2

in �Gx. Since �aj x 2 supp.�/, we have �.B
�
�aj x;

"
2

�
/ > 0 and

since all the balls B
�
�ax;

"
2

�
are isometric, they have the same measure. But we cannot have infinitely

many disjoint balls with the same positive measure, since the total measure of our space is 1. �

We may now conclude with:

Proof of Proposition 5.3. HereGDRn and � induces a measure-preserving ergodic action on .H�; ; O��/.
This action is by isometries according to Proposition 5.1, so according to Proposition 5.3 the support of
O�� is totally bounded. �

Remark 5.6. As we pointed out already in [Viterbo 2023], there are not so many nontrivial examples of
compact subset in .bHamfc.T

�Rn/; / or .2DHamfc.T
�Rn/; /, that is, sets that are not already compact

for the C 0-topology (since  is continuous for the C 0 topology on Ham.T �N/ according to [Viterbo
1992]) and in DHam.T �N/ according to [Seyfaddini 2012]). In [Viterbo 2023] we proved that in T �T n

the sequence .Hk/k�1, where Hk.q; p/ D H.k � q; p/, is converging. Here we extend this to certain
families of Hamiltonians on T �Rn.

We thus proved that A�, the closure of Rn in Isom.yH�; /, is a compact, connected, metric abelian
group.

We are thus in the following situation: we have an action — again denoted by � — of the group A�

acting by  -isometries on the space yH� and preserving O��. By compactness of A�, we have that A� �H
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is closed for all H 2 yH�. But since by Lemma 5.5 for almost all H, �RnH is dense, we conclude that for
almost all H we have A� �H D yH�.

Thus yH� ' A�=K�, but A�=K� is again a compact metric abelian group. Moreover the measure
O�� on yH� induces a measure on A�=K�, invariant by the action. It is therefore the Haar measure. To
conclude, and writing from now on A� for A�=K�, we are reduced to the situation where:

(1) �D A�.

(2) !!H! 2 bHamBP.T
�T n/ is continuous for the  -topology.

(3) On the subgroup Rn in A� the action of Rn on � can be identified with the action by translation
of Rn as a dense subgroup of A�. The invariant measure on A� is the Haar measure and the action of Rn

on A� is ergodic.

6. Some results on compact abelian metric groups

Let A be a compact metric abelian group having Rn as a dense subgroup (in particular A is connected).
According to A. Weil [1965, p. 110] (see also [Hofmann and Morris 2013, Theorem 8.45]) A is the
projective limit of finite-dimensional tori. In other words there are tori T nj and group morphisms
fj;i W T

nj ! T ni for i < j integers such that fk;j ı fj;i D fk;i and a map f1;i W A! T ni such that
AD lim

 ��j
T nj. We denote by Aj the image of A in T nj, which is clearly a connected compact subgroup

of T nj and hence a subtorus, and we may replace T nj by Aj . Setting by pj D fjC1;j and �j D f1;j ,
we have the following sequence:

� � �
pjC2
// AjC1

pjC1
// Aj

pj
// Aj�1

pj�1
// � � �

A

�jC1

OO
�j

<<

�j�1

55

We set Kj D Ker.�j /. We then have:

Lemma 6.1. We have

lim
j

diam.Kj /D 0:

Proof. The Kj are a decreasing sequence of closed — hence compact — subgroups such that
T
j Kj D f0g

by the definition of the projective limit. But this implies the lemma by an easy exercise (or [Rudin 1976,
Theorem 3.10]). �

Now we need:

Lemma 6.2. Let us consider the embeddings

��j W C
0.Aj ;R/! C 0.A;R/; f 7! f ı�j :

Then the union of the images of the ��j is dense in C 0.A;R/.
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Proof. Let f 2 C 0.A;R/. Then f is uniformly continuous by the Heine–Cantor theorem (see [Rudin
1976, Theorem 4.19]):

8" > 0; 9� > 0; 8x; y 2 A; d.x; y/ < � D) ı.f .x/; f .y// < ":

For j large enough we have diam.Kj / < �, so setting fj .x/Dminff .xCu/ j u 2 Kj g, we see that by
the compactness of Kj the function fj is well-defined and continuous. Moreover d.f .x/; fj .x// < "
provided diam.Kj / < �. �

Now remember that we have a group morphism � W Rn! A with dense image. By the definition of a
projective limit, the map � is defined by a sequence of maps �j W Rn! Aj such that pj ı �j D �j�1. Of
course the density of �.Rn/ implies the density of �j .Rn/ because the preimage by �j of a proper closed
subset is a proper closed subset (remember �j is onto by assumption). Since the density of the image of
� is equivalent to the ergodicity of the action, we may conclude that � is ergodic on Aj .

We are now in the following situation: we have a subgroup A� in Isom.yH! ; / and for almost every H
(for the measure O��) we have A� �H D yH! . Now A� �H is approximated by Aj �H for a finite-
dimensional torus Aj , and the action of Rn by � yields a dense subgroup of Aj . At the cost of an
approximation, we have thus replacedH! for ! 2A! by theH! for ! 2Aj , that is, we have a continuous
map Aj ! .bHamfc; / and Aj is a finite-dimensional torus.

7. Regularization of the Hamiltonians in 1Hamfc

Let H 2 bHamFP.T
�Rn/ and 'tH be its flow in 2DHamFP.T

�Rn/. Let S.q; pI �/ be a GFQI for �.'H /,
set S.q;p/.�/ D S.q; pI �/, and let c.1.q;p/; S/´ c.1.q;p/; S.q;p// be the critical value corresponding
to the unique cohomology class 1.q;p/ 2H 0.f.q; p/g/. The map ' 7! c.1.q;p/; '/ obviously extends to
2DHamFP.T

�Rn/. We now set:

Definition 7.1. For � > 0 we set

H�.q; p/D
1

�
c.1.q;p/; '

�
H /D

1

�
c.1.q;p/; �.'

�
H //:

This defines a map
�� W bHamfc.T

�Rn/! C
0;1
fc .T �Rn/;

where C 0;1fc .T �Rn/ is the set of Lipschitz functions with fiberwise compact support.

Our goal is to prove that �� is a regularizing operator. This is the content of:

Proposition 7.2. We have for H 2 bHamfc.T
�Rn/:

(1) c � lim�!0 ��.H/DH.

(2) For each R there exists a constant C such that for H supported in Rn � B.R/ and such that
'H .T

�B.�//� T �B.�C r/ we have ��.H/ is C.RCr/
�

-Lipschitz.

(3) �� W bHamfc.T
�Rn/! C 0fc.T

�Rn;R/ is continuous for the  -topology.

(4) �� ı �a D �a ı ��.
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Remark 7.3. One should be careful: the c-limit in (1) is of course not a C 0 limit, since H is not
continuous in general — it is not even a function! But even if H is continuous, we do not claim this.

We need the following lemma, which we shall prove in Appendix C.

Lemma 7.4. For � small enough we can find a GFQI for '�K , SK;�, such that

kSK;�.q; p/� �K.q; p/k � C�
2
krKk2

C0
:

Proof of Proposition 7.2.

(1) By density we can find K 2 C1fc .T
�Rn;R/ such that .H;K/� ". Now for K 2 C1fc .T

�Rn;R/ we
may find a GFQI, SK;� of '�K such that

SK;�.q; p/D � �K.q; p/C o.�/

as � goes to zero so that K�.q; p/D 1
�
c.1.q;p/; SK;�/DK.q; p/C o.1/.

Now the formula c.1.q;p/; SK;�/D �K.q; p/Co.�/ follows immediately from the lemma by applying
on one hand the triangle inequality (see [Viterbo 1992, Proposition 3.3, p. 693])

jc.1x; L/� c.1x; L
0/j � .L;L0/

and on the other hand Proposition 4.20,

kK�.q; p/�K.q; p/k � � � krKk2
C0
:

Now for � small enough we have .K�; K/ � ". Remember from Definitions 4.1 that for H;K 2
bHam.T �Rn/, H � K means c.1W ; 'K ; 'H / D 0 for all W . The reduction inequality [Viterbo 1992,

Proposition 5.1, p. 705] implies that H�.q; p/�K�.q; p/ for all .q; p/ 2 T �Rn.
Let �R.p/ be a function such that 0� �R.p/� 1, vanishing for jpj �R and equal to 1 for jpj2�R.

Now .H;K/ � " implies that K � "�R � H � K C "�R for R large enough: this follows from the
formula c.1W ; 'KC"�R ; 'H /D c.1W ; 'K ; 'H /C " for W large enough because if S is a GFQI for 'K
then S".q; pI �/DS0.q; pI �/C"�R.p/ is a GFQI for 'KC"�RD'Kı'�R and c.1W ; S"/D c.1W ; S0/C"
for R and W large enough.

Now we have K� � "�R �H� �K�C "�R and for � small enough we get kK �K�k � " so

K � 2"�H�
�KC 2":

Thus
H � 3"�K � 2"�H�

�KC 2"�H C 3"I

hence .H�;H/� 3".

(2) We have for jq1� q2jC jp1�p2j � r

c.1.q1;p1/'
�
H /� c.1.q2;p2/'

�
H /� C.r/

because for L.q;p/ Hamiltonianly isotopic to the vertical and coinciding with T �
.q;p/

�R2n in �R2n �B
2n
r

we have
c.1.q;p/; �.'

�
H //D c.�.'

�
H /; L.q;p//
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and
jc.�.'

�
H /; L/� c.�.'

�
H /;  .L//j � .L; .L//� . /:

As a result, there is a Hamiltonian map  with . /� C.r/ such that

 .T �.q1;p1/�R2n/\ .�R2n �B
2n
� /D T �.q2;p2/�R2n \ .�R2n �B

2n
� /;

where � is such that �.'�H /� R2n �B2n� . Since we assumed that H is supported in BR we may assume
�D 2R and we have C.r/DCR �r . Indeed if  t is an isotopy such that  1 sends .q1; p1/ to .q2; p2/, and
‰t its natural extension to a Hamiltonian isotopy T �.�T �R/, we truncate the Hamiltonian generating ‰t
to R2n �B2n� , where � is an upper bound for jQH .q; p/� qjC jPH .q; p/�pj. Such an upper bound is
given by r C 2R (r for jQ� qj and 2R for jP �pj). This proves the inequality.17

(3) We have

k��.H/� ��.K/kC0 �
1

�
sup
.q;p/

c.1.q;p/; '
�. �/�1/�

1

�
.'

�
H ; '

�
K/�

1

�
.H;K/;

where the first inequality is just the triangle inequality (see [Viterbo 1992, Proposition 3.3, p. 693]) and
the second inequality follows by the reduction inequality in [loc. cit., Proposition 5.1, p. 705].

(4) We have ��.H!/.xCa; p/D 1
�
c.1xCa;p; '

�
H!
/D c.1; S!.xCa; P I �// but S!.xCa; P I �/ is the

generating function corresponding to �aH! , i.e., �.��a'
�
H!
�a/ is the set of .qC a; P; P �p;Q� q/,

where '�H! .q; p/D .Q;P /. So we have �.��a'
�
H!
�a/D �a.�.'

�
H!
// and

SH��a! .x; P; ��a�/D S�aH! .x; P I �/D SH! .xC a; P I �/:

We thus proved that

�a��.H!/.x; p/D ��.H!/.xC a; p/D ��.�aH!/.x; p/D ��.H��a!/.x; p/D ��.�aH!/.x; p/: �

We are now in the following situation: we started from a continuous map

H W Aj ! .bHam.T �Rn/; /

and have constructed a map
H�
W Aj ! .C 0fc.T

�Rn/; dC0/

which is continuous and satisfies �aH� DH�. Note that we may replace if needed C 0fc by C kfc by applying
convolution since �a.H ?�/D .�aH/?�DH ?� (and of course, since kH ?��Hk! 0 as �! ı0,
we also have c-convergence).

Let us summarize our findings combining the results of Proposition 7.2 and the conclusions of Sections 5
and 6:

Corollary 7.5. Let H W T �Rn � � ! R satisfy assumptions (1)–(6) of the Main Theorem. Define
�d W �! Ad D T

d be the projection defined in Section 6. Then, given " > 0, there exist d 2 N and
H " W T �Rn �T d ! R such that:

17We also can take R' �kHkC0;1 , and then C.r/' Cr�kHkC0;1 but this requires H to be Lipschitz. But this proves that
the map �� does increase the Lipschitz norm by a bounded multiplicative constant only.
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(1) ! 7!H "
! is continuous from T d to C1fc .T

�Rn;R/.

(2) .H! ;H "
�d .!/

/� " for all ! 2�.

(3) The Hamiltonians H "
! ;H

"
�d .!/

satisfy assumptions (1)–(6).

Proof. From Section 5 we get H from A� to bHamc.T �Rn/. From Section 6 we can approximate H
by a map from T d to bHamc.T �Rn/ and from the present section, we have an approximating map to
C1fc .T

�Rn;R/. �

8. Homogenization in the almost periodic case

We assume in this section that we have a map .q; pI!/ 7!H.q; pI!/DH!.q; p/ such that:

(1) ! 2�D T d.

(2) The map ! 7!H! is continuous for the C1fc topology. In particular the H! have uniformly fiberwise
compact support and the H! are uniformly BPS by Proposition 3.3.

We set 't! to be the time t flow for H! and '";! D ��1" '
1="
! �". By the compactness of � we also

have a map ! 7! S!.q; pI �/ of GFQI for '! D '1! , with � living in a vector space independent from !:
indeed its dimension is bounded by 2nN such that '1=N! is in a given neighborhood of id for all ! 2�
(see Appendix A for the number of fiber variables needed for a GFQI ).

As we are going to use a number of results from [Viterbo 2023]. We will assume in the sequel that
"D 1

k
and write �k for �1=k , hk for h1=k and so on.

Definition 8.1. We set

h!k;U .p/D lim
V 3p

c.�U�V ; 'k;!/

and

h!k D lim
U2Rn

h!k;U :

Proposition 8.2. The sequence h!
k

is equicontinuous and equibounded. All its converging subsequences
have the same limit h!.p/, which is in fact independent from ! and denoted by H.p/. We denote by 't

H
the flow of H in 2DHamfc.T

�Rn/ which belongs to 2DHamFP.T
�Rn/.

Proof. Let us start to examine what happens for fixed !. For typographical reasons, the ! parameter
will be omitted in the notation, but of course, everything depends on ! 2�, and the ! subscript will be
reinstated when we prove that h! does not depend on !.

Set 'k.q; p/D .Qk.q; p/; Pk.q; p// and QDQ1; P D P1. By the definition of Sk we have

@Sk

@�
.q; Pk.q; p/I �/D 0 and

@Sk

@p
.q; Pk.q; p/I �/DQk.q; p/� q:

By assumption we have

hk;U .p/D Sk.q.p/; pI �.p//;
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where .q.p/; pI �.p// satisfies
@Sk

@�
.q.p/; pI �/D 0

and
@Sk

@q
.q.p/; pI �/D

�
0 if q 2 U;
� � �U .q/ if q 2 @U and �U .q/ is the exterior normal:

Now as p varies, we can choose p 7! .q.p/; �.p// to be piecewise smooth, so that for p in the smooth
locus

dhk;U .p/D
@Sk
@p

.q.p/; pI �.p//C
@Sk
@q

.q.p/; pI �.p// �
@q

@p
C
@Sk
@�

.q.p/; pI �.p// �
@�

@p
:

Then we have

@Sk

@�
.q; Pk.q; p/I �/D 0 and

@Sk

@p
.q; Pk.q; p/I �/DQk.q; p/� q:

But
hk;U .p/D Sk.q.p/; pI �.p//;

where
@Sk

@�
.q.p/; pI �/D 0

and
@Sk

@q
.q.p/; pI �/D

�
0 if q 2 U;
� � �U .q/ if q 2 @U and �U .q/ is the exterior normal:

But if q 2 @U, then @q
@p
2 T .@U /, so that the term @Sk

@q
.q.p/; pI �.p// � @q

@p
also vanishes. We thus proved

that where hk;U is smooth, we have

dhk.p/D
@Sk

@p
.q.p/; pI �.p//DQk.q.p/; p/� q.p/D

1

k
.Q.kq; p/� kq/:

The assumption of finite propagation speed implies that this last quantity is uniformly bounded, so
jdhk;U .p/j is uniformly bounded (independently from k; U ).

From this we conclude that the sequence hk is equicontinuous. Equiboundedness follows from
Definition 4.8 in [Viterbo 2023] (or Proposition 9.1 of the current paper), which states that a GFQI Sk of
'k is given by

Sk.q; pI �/D
1

k

�
S.kq; p1/C

k�1X
jD2

S.kqj ; pj /CS..kqk; p/

�
CBk.q; pI �/;

where S.q; pI �/D S1.q; pI �/ is a GFQI for ' D '1, � D .p1; q2; : : : ; pk�1; qk/ and Bk is a nondegen-
erate quadratic form. As a result jSk �Bkj � C , where C is a bound for jS.q; pI �/�B1.q; pI �/j.

This implies that jhk.p/j � C and since all these estimates are uniform in !, this implies (uniform)
equiboundedness.

We may thus apply the Arzelà–Ascoli theorem, and conclude that h!
k

has a converging subsequence.
Proving that the limit is unique follows as in [Viterbo 2023, Lemma 4.11 and Proposition 4.12].
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Finally we prove that h!.p/ is independent from !, using the commutation of �a and �k . We have

hk;�a!.p/D lim
U�Rn

c.�U ˝ 1p; �.'k;�a!//

D lim
U�Rn

c.�U ˝ 1p; �.�
�1
a 'k;!�a//

D lim
U�Rn

c.��aU ˝ 1p; �.'k;!//D hk;!.p/:

Since ! 7! 'k;! is -continuous, we infer that ! 7! hk;!.p/ is continuous and we just proved that it is
� -invariant. Ergodicity then implies that it is constant in !. �

We define
bHamfc;BP .T �Rn/D bHamBP.T

�Rn/\ bHamfc.T
�Rn/:

From now on we write N't instead of 't
H

for typographical reasons.
The next proposition is the analog of Proposition 4.15 in [Viterbo 2023].

Proposition 8.3. Let ˛ 22DHamfc;BP .T
�Rn/. There exists a sequence k� such that

lim
�!C1

lim
U�Rn

c.�U ; 'k� ;!˛/� lim
U�Rn

c.�U ; N'˛/:

Proof. The proof is identical to the proof of Proposition 4.15 in Section 4 of [Viterbo 2023] and can be
found in Appendix D. �

The next proposition is the analog of Proposition 6.2 in [Viterbo 2023], but requires an adaptation. It
will be proved in Section 9.

Proposition 8.4. For each " > 0 there exists K such that, for all k �K and U large enough, we have

c.�U ˝ 1p; 'k;!/� c.1U ˝ 1p; 'k;!/C ":

This implies:

Corollary 8.5. We have '�1 D . N'/�1, or equivalently H'�1 D�H' .

Now putting together Proposition 8.3 and Corollary 8.5 we get:

Proposition 8.6. For almost all ! 2�, the sequence 'k;! 1-converges to N'.

Proof assuming Corollary 8.5 and Proposition 8.3. Let us prove the above proposition as a consequence
of Corollary 8.5 and Proposition 8.3. Indeed Proposition 8.3 implies

lim
k!C1

lim
U
c.�U ; 'k;! N'

�1/� lim
U
c.�U ; id/D 0:

Applying the same inequality for '�1 instead of ' and using the corollary, we get

lim
k!C1

lim
U
c.�U ; '

�1
k;! N'/� lim

U
c.�U ; id/D 0

and this implies
lim

k!C1
lim
U
.�U ; '

�1
k;! N'/D 0;

which proves our claim. �
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Proof of Corollary 8.5 assuming Proposition 8.4. Set

hC
k;!
.'Ip/D lim

U�Rn
c.�U ˝ 1.p/; 'k;!/;

h�k;!.'Ip/D lim
U�Rn

c.1U ˝ 1.p/; 'k;!/

so that h�
k;!
.'Ip/ � hC

k;!
.'Ip/. Set �p0.q; p/ D .q; p C p0/. If S.q; pI �/ is a GFQI for ', then

Sp.xI �/ D S.x; pI �/ is a GFQI for �p.0Rn/ � '.�p.0Rn//. If we assume ' has FPS we have from
Proposition 4.16

c.�U ; �p.0Rn/�'.�p.0Rn///� c.�V ; ��p'
�1.�p.0Rn///

for V such that '.T �U/� T �V . Taking the limit for U � Rn we get

lim
U�Rn

c.�U ; Sp/D lim
U�Rn

c.�U ; ��p'
�1�p.0Rn//

and the same holds for 1U instead of �U . Now we may write (again omitting the !) using first
Proposition 4.10(1) and then FPS of '

hC
k
.'�1Ip/D lim

U�Rn
c.�U ˝ 1.p/; ��p'k�p.0Rn//

D� lim
U�Rn

c.1U ˝ 1.p/; 0Rn � ��p'k�p.0Rn//

� � lim
V�Rn

c.1V ˝ 1.p/; ��p'
�1
k �p.0Rn//D�h

�
k .'Ip/:

As a result
hC
k
.'�1Ip/C h�k .'Ip/� 0 (a)

and as k goes to C1, Proposition 8.4 implies

hC
k
.'�1Ip/� h�k .'Ip/� "

and we get
hC
k
.'�1Ip/C hC

k
.'Ip/� ": (b)

On the other hand, we have using again Proposition 4.10(1)

�c.1U ; ��p'k�p.0Rn//� �c.1V ; 0Rn ; ��p'
�1
k �p.0Rn//D c.�V ; ��p'

�1
k �p.0Rn//;

so
�h�k .'Ip/� h

C

k
.'Ip/;

and using (a) we get
hC
k
.'Ip/C h�k .'Ip/D 0: (c)

Using again Proposition 8.4 we get for k large enough

h�k .'
�1
Ip/C h�k .'Ip/� �": (d)

Adding (b) and (d) we get

ŒhC
k
.'�1Ip/� h�k .'

�1
Ip/�C ŒhC

k
.'Ip/� h�k .'Ip/�� 2": (e)
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Since H'�1 D limk h
C

k
.'�1Ip/, inequality (b) implies

H'�1 CH' � 0:

Using (d) and (e) we get
H'�1 CH' � 0

so we may conclude
H'�1 CH' D 0: �

9. Proof of Proposition 8.4

We shall interchangeably use the notation S!.q; pI �/ and S.q; pI �I!/ for the GFQI of '! . We shall
make repeated use of the iteration formula (see [Viterbo 2023, Lemma 4.5]), defining the GFQI Sk;! for
'k;! in terms of the GFQI S! of '! .

Proposition 9.1 (iteration formula). Let S! be a GFQI for '! . Then the following formula defines a
GFQI for 'k;! :

Sk;!.x; yI �; �/D
1

k

�
S!.kx; p1I �1/C

k�1X
jD2

S!.kqj ; pj I �j /CS!.kqk; yI �k/

�
CBk.x; yI �/;

where � D .p1; q2; : : : ; pk�1; qk/, q1 D x, pk D y, � D .�1; : : : ; �k/ and

Bk.x; yI �/D hp1; q2� xiC

k�1X
jD2

hpj ; qjC1� qj iC hy; x� qki:

We shall set Fk;! D Sk;! �Bk .
The action of Rn is given by

� .k/a .x; yI �; �I!/D
�
xC

a

k
; yI �I �a=k�I �a!

�
:

Remark 9.2. We will mostly use this formula when S.q; p; �/D S.q; p/, i.e., we have no fiber variables
for S .

Lemma 9.3. Assume ! 7! '! for ! 2�D T d to be continuous. Then we may choose ! 7! S!.q; pI �/

to be continuous and such that
S.qC a; pI �a�I �a!/D S.q; pI �I!/:

Proof. It is enough to prove this assuming '! is C 1 small, that is, for '1=N! with N large enough, and
then use iteration formula. But then the graph of '! is the graph of a generating function with no fiber
variable, which obviously depends continuously on ! and satisfies the above formula. �

Now remember that �a is given on�DT d by �a.!/D!CA�a, whereA WRn!Rd is a linear injective
map with dense image in T d. Consider triples ˛; ˇ;  , with ˛ 2H�.T d /, ˇ 2H�.U / or H�.U; @U /,
 2H�.V / or H�.V; @V /. We may then define18 c.˛˝ˇ˝ ; S/, and we have:

18Caveat: the cohomology class ˛ corresponds to the last variable, !!
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Lemma 9.4. We have the inequalities

c.�U ˝ 1.p/IS!/� c.�T d ˝�U ˝ 1.p/IS/;

c.1T d ˝�U ˝ 1.p/IS/� c.1U ˝ 1.p/IS!/:

Proof. This is the reduction inequality (see [Viterbo 1992, Proposition 5.1, p. 705]). �

We now compare spectral invariants of S with those of S0, where we define S0.pI �I!/DS.0; pI �I!/.

Lemma 9.5. We have

lim
U�Rn

c.�T d ˝�U ˝ 1.p/IS/D c.�T d ˝ 1.0/˝ 1.p/IS/D c.�T d ˝ 1.p/IS
0/;

lim
U�Rn

c.1T d ˝�U ˝ 1.p/IS/D c.1T d ˝ 1.0/˝ 1.p/IS/D c.1T d ˝ 1.p/IS
0/:

Remarks 9.6. (1) The point of replacing S by S0 is to avoid the complications related to the noncom-
pactness of x 2 Rn. Our proofs could be adapted to work directly with S , but proving that the cycles we
construct are in the right homology class is slightly more involved.

(2) This is an extension to GFQI of the following obvious identity for continuous functions f WRn�T d!R

such that f .xC a; �a!/D f .x; !/: for any x0 2 Rn we have

sup
.x;!/2Rn�T d

f .x; !/D sup
!2T d

f .x0; !/:

Moreover if the action of � has dense orbits, this is also equal to supx2Rn f .x; !0/ for any !0 2�. The
analog of this last statement will be our main result.

Proof. Clearly if 0 2 U, we have

c.�T d ˝�U ˝ 1.p/IS/� c.�T d ˝ 1.0/˝ 1.p/IS/

and we need to prove the reverse inequality. LetC be a cycle representing�T d˝1.p/2H�..S
0
p /
c;S0p /

�1/

with c � c.˛˝ 1.0/˝ 1.p/; S/C " and set

zCU D f.x; p; �x�I �x!/ j .0; pI �I!/ 2 C; x 2 U g:

Then zCU � Scp and clearly Œ zCU � D �T d ˝�U ˝ 1.p/. The above is in fact an abuse of language for
f�.�U ˝ ŒC �/, where

f W U � ..S0p /
c ; .S0p /

�1/! ..Sp/
c ; .Sp/

�1/

is defined by f .xI .0; p; �; !//D .x; p; �x�; �x!/.
Thus

c.�T d ˝�U ˝ 1.p/; S/� S.
zCU /D S

0.C /

because S.x; p; �x�; �x!/D S.0; pI �I!/ and S0.C /� c.
This implies

c.�TD ˝�U ˝ 1.p/IS/� c.�TD ˝ 1.0/˝ 1.p/IS/

and proves the first equality. The second one is the dual of the first one, since �T d ˝�U is dual to
1T d ˝ 1.U /. �
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Our Proposition 8.4 then follows from:

Proposition 9.7. For each " > 0 there exists K such that for k �K

c.�T d ˝ 1.p/; S
0
k /� c.1T d ˝ 1.p/; S

0
k /C ":

Remark 9.8. The idea behind the proof is that as we homogenize, the difference between the largest and
smallest spectral invariants goes to zero. The proof is a Hamiltonian version of the following ancient
result [Acerbi and Buttazzo 1983] that states that if we replace a metric g by a rescaled version gk , so
that the distance d.x; y/ becomes dk.x; y/D 1

k
d.k � x; k � y/, then limk!1 dk.x; y/D Nd.x; y/ is the

distance associated to a flat Finsler metric, g1. In particular on a 2-torus for each homotopy class ˛ of
loops, ˛, there are two “spectral values” associated to the geodesic problem l1.g; ˛/� l2.g; ˛/, where
l1.g; ˛/ is the shortest geodesic in the homotopy class ˛, while l2.g; ˛/ is the “second shortest”, i.e.,
given by the Birkhoff minmax procedure:

l2.g; ˛/D inf
n
c
ˇ̌
9s 2 C

1
˛ .S

1; T 2/; s 2 S1;
Z
S1
j Ps.t/j dt � c; Œs 7! s.0/� 2 ˇ ¤ ˛

o
:

One then checks that limk!C1 l1.gk; ˛/D limk!1 l2.gk; ˛/D l1.g1; ˛/D l2.g1; ˛/. Our proof is
the analog of the proof of the inequality l2.gk; ˛/� l1.g1; ˛/C " for k large enough, which obviously
implies limk!C1 l1.gk; ˛/D limk!1 l2.gk; ˛/.

Proof. The proof will take up the rest of the section. We rewrite the iteration formula

Sk;!.x; yI �I!/D
1

k

�
S!.kx; p1/C

k�1X
jD2

S!.kqj ; pj /CS!.kqk; y/

�
CBk.x; yI �/;

where � D .p1; q2; : : : ; pk�1; qk/, q1 D x, pk D y and

Bk.x; yI �/D hp1; q2� xiC

k�1X
jD2

hpj ; qjC1� qj iC hy; x� qki

and Fk;! D Sk;! �Bk . The action of Rn is given by

� .k/a .x; yI �I!/D
�
xC

a

k
; yI �a=k�I �a!

�
and now Sk;! is � .k/a -invariant, i.e.,

Sk

�
xC

a

k
; yI �a=k�I �a!

�
D S.x; yI �I!/:

Let a 2 Rn such that for some � 2 Zd we have jA � a� �j � ı (that is, dT d .�a.0/; 0/� ı, where dT d is
the distance on the torus). Then for some constant depending on H and provided ı is small enough

8t 2 Œ0; 1�; 8.q; pI �I!/ 2 Rn �Rn �E ��; jS.kqC ta; pI �I!/�S.kq; pI �I!/j � C (?)

and

8.q; pI �I!/ 2 Rn �Rn �E ��;

jS.kqC a; pI �I!/�S.kq; pI �I!/j D jS.kq; pI �I ��a!/�S.kq; pI �I!/j � ": (??)
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Indeed the first inequality holds because

jS.qCa;pI�I!/�S.q;pI�I!/jD jS.q;pI�I��a!/�S.q;pI�I!/j � sup
!;!0
jS.q;pI�I!/�S.q;pI�I!0/j:

This follows by using the iteration formula. In this case we may assume jS.q; pI!/� S.q; pI!0/j �
.'! ; '!0/. The second inequality follows from the fact that dT d .�a!;!/� ı and by the continuity of S .

Now let  be the path in Rn defined by .t/D t � a for 0 � t � 1. Set Q .k/ to be the path in .Rn/k

defined as the concatenation of the k paths

t 7! ..t/; 0; : : : ; 0/ for t 2
h
0;
1

k

i
;

t 7!
�

�
1

k

�
; 
�
t �

1

k

�
; : : : ; 0

�
for t 2

h
1

k
;
2

k

i
;

:::
:::

t 7!
�

�
1

k

�
; 
� 1
k

�
; : : : ; 

�
1

k

�
; 
�
t �

k�1

k

��
for t 2

h
k�1

k
; 1
i
:

(9-1)

The path Q .k/ connects Q .k/.0/D .0; : : : ; 0/ to Q .k/.1/D
�
a
k
; a
k
; : : : ; a

k

�
through the points

Q .k/
�
1

k

�
D

�
a

k
; 0; : : : ; 0

�
; Q .k/

�
2

k

�
D

�
a

k
;
a

k
; 0; : : : ; 0

�
; : : : ; Q .k/

�
k�1

k

�
D

�
a

k
;
a

k
; : : : ;

a

k
; 0
�
:

We shall omit the superscript k and set Q .k/.t/ D Q.t/ D .1.t/; : : : ; k.t// D .1.t/; N.t//. We then
set � N.t/� D � N.t/.p1; q2; : : : ; pk�1; qk/D .p1; q2C 2.t/; : : : ; pk�1; qk C k.t// and � Q.t/.x; yI �/D
.xC 1.t/; yI � N.t/�/. Now from (?) and (??) and the formula

Fk.x; yI �I �I!/D
1

k

�
S!.kx; p1/C

k�1X
jD2

S!.kqj ; pj /CS!.kqk; y/

�
;

we infer that on
�
l
k
; lC1
k

�
for 1� l � k

Fk.� Q.t/.x;yI�I!//DFk;!.x;yI�I!/C
1

k

�
S.kxCa;p1I�I!/�S.kx;p1I!/

C

lX
kD2

.S.kqjCa;pj I!/�S.kqj ;pj I!//

CS
�
kqlC1C

�
t�
l

k

�
a;plC1I!

�
�S.kqlC1;plC1I!/

�
;

so we get

jFk.� Q.t/.x; yI �/I!/�Fk.x; yI �I!/j �
"l

k
C
C

k
�
C

k
C ": (9-2)

We now want to estimate the variation of Bk on � Q.t/.x; yI �/ as t varies from 0 to 1. Note that the
choice of this path is crucial to our argument: by changing coordinates one at the time, we achieve an
increase of S by O

�
1
k

�
instead of O.1/.

Lemma 9.9. We have

jBk.� Q.t/.x; yI �//�Bk.x; yI �/j � .jplC2�plC1jC jplC1�pl j/
jaj

k
:
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Proof. Indeed,

Bk.x; yI �/D hp1; q2� xiC

k�1X
jD2

hpj ; qjC1� qj iC hy; x� qki

and replacing .x; q2; : : : ; ql/ by
�
x C a

k
; q2 C

a
k
; : : : ; ql C

a
k

�
then qlC1 by qlC1 C

�
t � l

k

�
a, with

t 2
�
l
k
; lC1
k

�
, and leaving qlC2; : : : ; qk unchanged, we get for t 2

�
l
k
; lC1
k

�
Bk.� Q.t/.x; yI �//D Bk.x; yI �/C

D
plC1�pl ;

�
t �

l

k

�
a�

a

k

E
�

D
plC2�plC1;

�
t �

l

k

�
a
E

and this proves the lemma since for t in
�
l
k
; lC1
k

�
,
ˇ̌�
t� l

k

�
a� a

k

ˇ̌
and

ˇ̌�
t� l

k

�
a� a

k

ˇ̌
are bounded by jaj

k
. �

We must then bound the quantity .jplC2�plC1jCjplC1�pl j/
jaj
k

and we shall modify the cycle C rep-
resenting the class in Hk.Sck ; S

�1
k

/ so that the jpl j remain bounded. This follows from the lemma below.

Lemma 9.10 [Viterbo 2023, Lemma 6.5]. There exist constantsK;M such that, given a cycle C �Sc
k

rep-
resenting a class ŒC �2H�.Sck ; S

�1
k

/, we have a cycle zC � Sc
k

such that Œ zC �D ŒC � inH�.Sck ; S
�1
k

/ and

(1) zC � S�4K
k
[ .f.x; yI �I!/ jmaxj jpj j �M g\Sck /,

(2) zC \S�3K
k

� f.x; yI �I!/ j � 2E�
k
g, where E�

k
is the negative eigenspace of Bk .

The lemma means that we can deform C so that below a certain level of Sk it coincides with the
negative bundle of Bk .

Proof. This is as in [Viterbo 2023, Lemma 6.5]. Let Z be the vector field defined by

Pqj D �.jpj j/.pjC1�pj /DZqj .q; p/; Ppj D 0DZpj .q; p/;

where �.r/ vanishes for r � 1. Denoting by  s its flow, we have

d

ds
Sk. 

s.q; p//D dSk.q; p/ �Z.q; p/D
D
@

@q
Sk.q; p/;Zq.q; p/

E
D�

kX
jD1

�.jpj j/
D
d

dqj
Sk.q; p/; pjC1� 2pj Cpj�1

E
D�

kX
jD1

�.jpj j/jpjC1�pj j
2
C

D
d

dq
Sk.k � qj ; pj /; pjC1�pj

E
D�

kX
jD1

�.jpj j/jpjC1�pj j
2
I

the last equality holds because S vanishes on the support of �.jpj j/.
Now given y D pk , if supj jpj j � M, we have that

Pk
jD1 �.jpj j/jpjC1 � pj j

2 is bounded from
below by some positive quantity ck (which is O

�
1
k

�
but it does not matter). Thus, outside the region

f.q; p/ j jpj j �M g, the vector field Z is a pseudogradient vector field for Fk . Since Z is complete, its
flow  s has the following properties:

(1) It preserves the pj .

(2) Outside f.q; p/ j jpj j �M g, we have d
ds
Sk. 

s.q; p//� �ck .
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As a result if Fk.q; p/� c, we have

 .cC4K/=ck .q; p/ 2 .f.q; p/ j jpj j �M g[F
�4K
k /\F ck :

Thus zC1 D  .cC4K/=ck .C / satisfies (1).
Now to satisfy (2), we use a “cut and paste” as in [Viterbo 2023, Lemma 6.5]. �

Using Lemmas 9.9 and 9.10 and the inequality (9-2) we obtain the following:

Proposition 9.11. Given a class a in H�.Sck ; S
�1
k

/, we can find a cycle C representing a and constants
M1;M2 such that

Sk.� Q.t/.C //� Sk.C /C "C
M1

k
C
2M2jaj

k
:

Now let a 2 H�.T d / be represented by a map u W C ! T d and b 2 H1.T d / be represented by a
map v W S1! T d. Then the Pontryagin product a � b is represented by u � v W S1 �C ! T d given by
u � v.z; �/D u.z/C v.�/.

To conclude the proof of Proposition 9.7 (and as a consequence of Proposition 8.4) we need:

Lemma 9.12. Let � 2 Zd be such that jA � a � �j � ı, and let ˇ� be the class in H1.T d / of the loop
t 7! t � � ( for t 2 Œ0; 1�). Then given " > 0, we have, for k large enough,

c.˛ �ˇ� ˝ 1.p/; S
0
k /� c.˛˝ 1.p/; S

0
k /C ":

Proof. Let C be a cycle representing a class in H�..S0k /
c ; .S0

k
/�1/. We may assume C satisfies

properties (1) and (2). We are going to construct a cycle in the class of ˛ �ˇ made of three pieces. First set

C1 D
[
t2Œ0;1�

C1.t/;

where
C1.t/D f.0; pI ��1.t/� N.t/�I �k1.t/!/ j .0; pI �I!/ 2 C g:

According to Proposition 9.11 since

Sk.0; pI ��1.t/� N.t/�I �k1.t/!/D Sk.1.t/; pI � N.t/�I!/

D Sk.�.t/.0; pI �/I!/� Sk.C /C "C
M1C 2M2jaj

k
;

as a result we have for each t 2 Œ0; 1�

S0k .C1.t//� S
0
k .C /C "C

M1C 2M2jaj

k
I

hence

S0k .C1/� S
0
k .C /C "C

M1C 2M2jaj

k
:

Note that

C1.0/D C;

C1.1/D f.0; pI �I �a!/ j .0; pI �I!/ 2 C g:
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Now for u 2 Œ0; 1� define the path �.u/D .1�u/A � aCu� so that �.0/C! D �a!. Set

C1.1Cu/D f.0; pI �I!C �.u// j .0; pI �I!/ 2 C g:

Now C1.2/D C and since j�.u/�A � aj � ı, we have

S0k .C1.1Cu/� S
0
k .C1.1//C "

so that the cycle19

yC D
[

s2Œ0;2�

C1.s/

satisfies for k large enough
S0k .
yC/� S0k .C /C 2":

Moreover we claim that the cycle yC defines a cycle in the homology class of ˛ �ˇ� . Indeed the lift of
the variable ! starting from !0 is given

(1) for s 2 Œ0; 1� by the path s 7! !0C sA � a,

(2) for s 2 Œ1; 2� by s 7! !0C .2� s/A � aC .s� 1/�,

and since it joins !0 to !C�, it belongs to the class ˇ� . As a result Œ yC �D ˛ �ˇ 2H�..S0k /
C1; .S0

k
/�1/

and this proves the lemma. �

We shall also need:

Lemma 9.13. Let " > 0 and A W Rn! Rd be a linear map such that A.Rn/ has dense projection on T d.
Then there are integral vectors �1; : : : ; �d in Zd forming a basis of Rd such that there exist vectors
a1; : : : ; ad in Rn such that

jA � aj � �j j � ":

Proof. See Appendix B. �

Proof of Propositions 9.7 and 8.4. Let j̨ 2H1.T
d / be the homotopy class of the path t 7! t � �j , where

�j is a basis of Rd given by Lemma 9.13. Then ˛1 � ˛2 � � � � � ˛d D cd�T d for some cd ¤ 0. since
c.cd�T d ; f /D c.�T d ; f / we obtain by repeated applications of Lemma 9.12 that c.�T d ˝1.p/; S

0
k
/�

c.1T d ˝ 1.p/; S
0
k
/C " and this proves Proposition 9.7 and hence Proposition 8.4. �

10. Proof of the Main Theorem

We first prove that under assumptions (1)–(6) we have lim"!0 't";! D '
t

H
for almost all ! 2�. We start

fromH satisfying (1)–(6), then, using the results of Section 5, we get a mapH WA�! bHam.T �T n/ such
that A� is a compact connected metric abelian group. According to Section 6, A� is the projective limit
of finite-dimensional tori, Aj , on which �a is given by �a! D !CAj �a, where the projection of Aj .Rn/
is dense in Aj and ! 7!H.: : : ; � I!/ is continuous from Aj to C1fc .T

�Rn;R/ and satisfies (1)–(6).

19Similarly to the proof of Lemma 9.5, this is an abuse of language for f�.R=2Z�C/, where

f .t; .0; pI �I!//D

�
.0; pI ��1.t/� N.t/�I �k1.t/!/ for 0� t � 1;
.0; pI �I!C �.t � 1// for 1� t � 2:
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By Corollary 7.5 we find H� in C1.T �Rn �Aj ;R/ such that

1.H
�

�j .!/
;H!/� �;

where �j W A�! Aj is the projection map. According to Proposition 8.6, we know that

c � lim
k
H
�

k;�j .!/
DH

�

�j .!/

and since, for all k; !, we have 1.H
�

k;�j .!/
;Hk;!/� �, we infer for k large enough

1.H
�

�.!/
;Hk;!/� 2�:

Now consider a sequence �� converging to 0 so thatH��
��.!/

is a c-Cauchy sequence, c-converging to
H! uniformly in !. Then H��

��.!/
is also a Cauchy sequence, so it converges to some H 2 bHam.T �T n/.

But then .Hk;!/k�1 converges a.s. in ! to H.
For the second part of the Main Theorem, we must go from  -convergence of the flow to  -convergence

of the solution of the corresponding Hamilton–Jacobi equation. In the case of a compact base this is
achieved in [Viterbo 2006], and the extension to a noncompact base was spelled out in [Cardin and
Viterbo 2008, pp. 266–276].

For L 2 L.T �N/ we define uL.x/D c.1x; L/. Our first claim is that -convergence for L implies
C 0-convergence of the uL uniformly on compact sets.

Lemma 10.1. Let U be bounded domain in N. If .L�/��1 is a Cauchy sequence for U , then the
sequence uL� is a Cauchy sequence for the topology of uniform convergence on U. As a result if .L�/��1
 -converges to L 2 yL.T �N/ then the sequence uL� converges uniformly on compact sets to uL.

Proof. This is an immediate consequence of the reduction inequality [Viterbo 1992, Proposition 5.1,
p. 705], which implies that, for any x 2 U,

jc.1x; L/� c.1x; L
0/j � U .L;L

0/: �

Proposition 10.2. Let .'�/��1 be a sequence in 2DHamc;FP c-converging to '1 22DHamc;FP. Then for
any L 2 L.T �Rn/ (or in yL.T �Rn/) the sequence '�.L/ c-converges to '1.L/.

Proof. Indeed, we proved in Proposition 4.23 that U . 1.L/;  2.L// � V�Bn.r/. 1;  2/ provided
 ˙1j sends T �U to T �V and L� Rn �B.r/. In our case, we get that for L� Rn �Bn.r/

U .'�.L/; '1.L//� V�Bn.r/.'� ; '1/

and since the right-hand side converges to 0, so does the left-hand side. �

We may now conclude our proof. Since a.s. in !, 't
k;!

1-converges to N't and is uniformly FPS for
bounded t , we have by Proposition 10.2

'tk;!.Lf /!1
N't .Lf //

a.s. in !. Then applying Lemma 10.1 to the sequence .'t
k;!
/k�1, this implies uniform convergence on

compact sets of the sequence .uk;!/k�1 to its limit Nu. This concludes the proof of our Main Theorem.
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11. The coercive case

We now assume H satisfies assumptions (1a)–(3a) of Corollary 1.3. Let �A be a truncation function, that
is, an increasing function such that 0��0A.t/� 1 and �A.t/D t� 32A for t �A and �A.t/D 0 for t � 2A.
We set HA.x; pI!/D �A.H.x; p; !//. Then coercivity implies20 that HA has a.s. in ! 2� the same
flow as H in UR D f.x; p/ j jpj � r.A/g where limA!C1 r.A/DC1. We apply the Main Theorem
to HA and obtain a homogenized Hamiltonian HA. We claim now that for B � A we have HA DHB

on UR. This follows the same proof as Section 11 in [Viterbo 2023]. Because f is Lipschitz, it can
be approximated by functions fk which have a bounded differential, so the image of the graph of dfk
remains in some domain bounded in the p-direction. Therefore for A large enough, 'tHA.Gfk /D 'A.Gfk /
for all k and all t . Therefore homogenization for HA yields homogenization for H.

12. The discrete case (Proof of Corollary 1.7)

If we have a Zn action on �, and its standard action on Rn we construct an Rn action on z�D��Rn=',
where

.!; t1; : : : ; tn/' .T�z!; z1C t1; : : : ; znC tn/;

where z D .z1; : : : ; zn/ 2 Zn. Then Rn acts on z� by translation, i.e.,

zTa.!; t1; : : : ; tn/D .!; t1C a1; : : : ; tnC an/:

Notice that if z 2 Zn, we have zTz.!; t1; : : : ; tn/D .Tz!; t1; : : : ; tn/.
Now it is easy to see that T is ergodic for the measure � on � if and only if zT is ergodic for the

measure �� � (where � is the Lebesgue measure on Œ0; 1Œn), since any zT -invariant set will be of the
form U � Œ0; 1Œn with U a T -invariant set. Then if H satisfies H.xC z; p; Tz!/DH.x; pI!/, we can
consider K.x; p; Œ!; t �/DH.x� t; pI!/ and this satisfies

K.xC a; p; zTaŒ!; t �/DK.x; p; Œ!; t �/

for all a 2 Rn, and we can apply the stochastic homogenization from the Main Theorem.

13. Extending the Main Theorem

Note that one should be able to extend our methods to the case where we have a Hamiltonian satisfying
the assumptions of the Main Theorem, but:

(1) We have a time-dependent Hamiltonian, H.t; x; pI!/, and an action of R � Rn such that
H.t C s; x C a; pI �.s; a/!/ and consider the sequence H

�
t
"
; x
"
; !
�

This has been reduced to our
case in the nonstochastic situation in [Viterbo 2023, Section 11.2. The nonautonomous case].

(2) We consider partial homogenization. For example if X DN �Rk , then we should be able to apply
the above propositions as in [loc. cit.].

20See Remark 1.6, since h�.p/�H.x; pI!/� hC.p/ a.s. in !, where limjpj!C1 h˙.p/DC1.
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(3) We consider the homogenization H"
�
x; p

"
I!
�

as " goes to 0. This has been reduced to our case in
the nonstochastic situation in [Viterbo 2023, Section 12. Homogenization in the p variable].

(4) We have a Zn action on a manifold X such that the quotient X=Zn is compact and the Hamiltonian
satisfies H.Tzx; T �z p; Tz!/DH.x; pI!/, where T is the action of Zn on X and we consider again the
sequence H"

�
x; p

"
; !
�

as " goes to 0.

The proof in this last case should be the same as the Main Theorem. We just need to replace .'/
(which is not defined on T �X/ with O.'/ and we shall get an embedding of Zn into Isom.yH�; /.
According to [Weil 1965], the closure of the image of Zn is the product of an abelian compact connected
metric group, A0�, and a totally disconnected compact metric abelian group D�. Since we have a
morphism c W Zn!D� and the kernel L must be a cocompact free abelian group, hence a lattice, so
L is isomorphic to Zn and in suitable integral coordinates, we see that LD a1Z˚ a2Z˚ � � �˚ anZ, so
D� D Zn=L ' Z=a1Z˚ Z=a1Z˚ � � � ˚ Z=anZ. Replacing Zn by L, we can reduce ourselves to the
case of a compact connected abelian group so we get K.p; !/, where K.p; � / is constant on the ergodic
components of the action of L and the ergodic components are interchanged by an element of D�; thus
we get that K.p; � / is indeed constant a.e.

It would be also interesting to see what can be done in the framework of more general groups, as
explained in [Sorrentino 2019] (see also [Contreras et al. 2015]). In this setting a discrete group G is a
quotient of the �1.M/, where M is a compact manifold, and we see a Hamiltonian on M as a G-invariant
one on zM a cover of M. Then Sorrentino considers the Hamiltonian H

�
x; 1

"
p
�

as " goes to zero, and
proves that it converges in some weak sense (we would say in the  topology) to a Hamiltonian defined
on G1 a graded Lie group associated to G (at least if G is nilpotent).

Appendix A: Generating functions for noncompact Lagrangians: Proof of Theorem 3.5

The goal of this section is to prove Theorem 3.5 that is:

Theorem 3.5. Let ' be an element in DHamFP.T
�N/. Then '.0N / has a GFQI. Moreover such a GFQI

is unique.

First we claim that the fibration theorem of Théret [1999, Theorem 4.2] goes through. Here F is the set
of sequences of GFQI .S�/��1 satisfying the above property and L D L.T �Rn/ and we have:

Proposition A.1. The projection � WF !L is a Serre fibration up to equivalence.

The proof is the same as Theorem 4.2 in [Théret 1999]. We may reduce ourselves to the case of a
single parameter (as in [loc. cit.]). The proof is then based on Sikorav’s existence theorem, which uses
only the fact that, for t small enough, if L has a GFQI over U� then so does 't .L/. Note that we may
always assume that 't .T �U�/� T �U�C1 and by truncating 't beyond T �U�C1, we are reduced to the
compact situation.

Proof of Theorem 3.5. Using Lemma 3.2 we may assume we have a sequence U� of domains such that
't .T �U�/� T

�U�C1. Applying a sequence of cut-offs to the Hamiltonian defining ' we can then find a
sequence L� of Lagrangians of the type '1� .0N /, where



STOCHASTIC HOMOGENIZATION FOR VARIATIONAL SOLUTIONS OF HAMILTON–JACOBI EQUATIONS 849

(1) 't�.T
�U�/� T

�U�C1 for all t 2 Œ0; 1�,

(2) 't� has compact support in T �U�C1,

(3) setting 't�.0N /D L�.t/, we have for �� �

L�.t/\T
�U� D L�.t/\T

�U� D '
t .L/\T �U� :

Then each L�.t/ has a GFQI, S�.t/ W N �E� ! R and we claim that, for � � �, S�.t/ and S�.t/
are equivalent over U� . Indeed, we have a deformation from L� to L� that is the identity on T �U� .
If we denote by Ss a GFQI covering this deformation (the existence of which follows from [Théret
1999], since we are again in the compactly supported case), then Ss generates a Lagrangian Ls that is
constant over T �U� . Then using [loc. cit., Lemma 5.3] we can assume, after applying a fiber-preserving
diffeomorphism, that †s \ .U �F /D†0\ .U �F /, where

†s D

�
.x; �/

ˇ̌̌ @Ss
@�
.x; �/D 0

�
:

But then as in [loc. cit., p. 259], using Hadamard’s lemma we prove that there is a fiber-preserving
diffeomorphism such that S1.x; �.x; �//D S0.x; �/.

So may now assume that the restriction of S� over U� is exactly S� ˚ q�;� by composing S� with an
extension of the fiber-preserving diffeomorphism realizing the equivalence.21 �

Appendix B: Proof of Lemma 9.13

Lemma 9.13. Let " > 0 and A W Rn! Rd be a linear map such that A.Rn/ has dense projection on T d.
Then there are integral vectors �1; : : : ; �d in Zd forming a basis of Rd such that there exist vectors
a1; : : : ; ad in Rn such that

jA � aj � �j j � ":

Remark B.1. We do not claim the basis is an integral basis, i.e., it does not necessarily have determinant 1.

Proof suggested by the referee. We know that A.Rn/CZd is dense in Rd, so we may find b1; : : : ; bd 2Rn,
w1; : : : ; wn 2 Zd such that ˇ̌̌

Abi �wi �
ei
2

ˇ̌̌
�
"

2
:

Then ai D 2bi , vi D ei C 2wi satisfy jAai � vi j � ", and since det.vi / is odd, .v1; : : : ; vd / is a basis
of Rd. �

Appendix C: Approximation of generating functions and symplectic integrators

Our goal is to prove Lemma 7.4. It is a consequence of the more precise result:

Lemma C.1. Let 'tH have St .q; p/ as generating function. We have

kSt .q; p/� tH.q; p/kC0 �
t2

2

@H@q

C0
�

@H@p

C0
:

21The existence of the extension follows from the fact that we may assume that for �; � large enough, the inclusion U� � U�
is a homotopy equivalence.
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Proof. In the sequel, k � k denotes the C 0 norm. Note that St has no fiber variable. It is a classical fact
[Hamilton 1834; 1835; Jacobi 2009] (see also [Arnold 1978]) that St satisfies the Hamilton–Jacobi equation8<:

@

@t
St .q; p/DH

�
qC

@St
@p
.q; p/; p

�
;

S0.q; p/D 0:

Indeed, setting 'tH .q; p/D .Qt .q; p/; Pt .q; p//, the Lagrangian submanifold

ƒ.'/D f.t;�H.t;Qt .q; p/; Pt .q; p//; q; p;Qt .q; p/; Pt .q; p// j t 2 R; .q; p/ 2 T �N g

in T �R�T �N �T �N is contained in

f.t; �; q; p;Q;P / j � CH.Q;P /D 0g

sinceƒ.'/ is easily seen to be invariant by the flow of the HamiltonianK.t; �; q; p;Q;P /D �CH.Q;P /,
which is given by

.t; �; q; p;Q;P /! .t C s; �; q; p;Qs.Q;P /; Ps.Q;P //:

Since Qt D qC
@St
@q

, the equation follows.
Now set St .q; p/D t �H.q; p/CRt .q; p/ and replace in the equation, using

jH.qC �; p/�H.q; p/j � j�j �
@H
@q


C0
;

@Rt
@t
.q; p/�

@H
@q


C0

ˇ̌̌
@St
@p

ˇ̌̌
� t �

@H
@q


C0
�

@H
@p


C0
C

@H
@q


C0
�

ˇ̌̌
@Rt
@p

.q; p/
ˇ̌̌

and R0.q; p/D 0. Now the relation

@tRt .q; p/� tACB
ˇ̌̌
@Rt
@p

ˇ̌̌
implies by monotonicity of the solutions of the Hamilton–Jacobi equations22 that Rt is bounded by the
solution ut of @tuD tACBjrxuj, that is, u.t; x/D 1

2
t2A, so

Rt .q; p/�
t2

2

@H
@q


C0
�

@H
@p


C0
:

The same argument gives an estimate from below. �

Appendix D: Proof of Proposition 8.3

Proposition 8.3. Given any ˛, there exists a sequence .`�/��1 such that for almost all ! 2�

lim
�!1

lim
U�Rn

c.�U ; '`� ;!˛/� lim
U�Rn

c.�U ; N'˛/:

The proof is essentially the same as in Section 5 of [Viterbo 2023]. We reproduce it here adapted to
our situation and notation but notice that ! just appears as a parameter and so does not change the proof
of Proposition 8.3. In particular the cycles we construct in the proof do not need to depend continuously
on !. We first need the next lemma. We define a cycle with closed support in X to be a cycle for the

22That is,H �K implies that the solutions v;w of @tuDH.x;Dxu/ corresponding to the same initial condition satisfy u�v.
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z�mC1

z�m

Dm

�mC1

Figure 2. z�m in red, z�mC1 in blue and Dm in green on the left and �mC1 on the right.

singular homology with locally finite support. These are the cycles of Borel–Moore homology (i.e.,
homology with closed supports) of X . Chains are infinite sums

P
� a�� of singular simplices such that

there are only finitely many simplices with a� ¤ 0 touching any compact set. As a result it is clear what
it means for such a chain to be a cycle. For such homology, admissible maps are the proper maps, i.e.,
only a proper map f WX ! Y will induce a map f� between the corresponding Borel–Moore homology
groups. Any proper submanifold without boundary represents a cycle in Borel–Moore homology, while
in ordinary homology, this is the case only for compact submanifolds.

Lemma D.1. Let S be a GFQI defined on E and c D limU�N c.�U ; S/. There exists a closed cycle �
such that �U D � \��1.U / satisfies Œ�U �D �U in H�.SC1U ; S�1/ and S.�U / � c.�U ; S/C " for
U belonging to a sequence of exhausting open sets with smooth boundary.

Remark D.2. Note that Œ�U � is assumed to be an ordinary cycle, so that its class in H�.SC1U ; S�1U / is
well-defined.

Proof. Consider an increasing sequence Un of open sets with smooth boundary such that N D
S
n Un.

Notice that there is a restriction map for U � V sending H�.V; @V /!H�.U; @U /. It induces a map
that we denote by �U;V ,

H�.S
t
V ; S

�1
V [Ej@V /!H�.S

t
U ; S

�1
U [Ej@U /;

and a diagram

H�.S
C1

V ; S�1V [Ej@V /
�U;V

// H�.S
C1

U ; S�1U [Ej@U /

H�.S
cC"
V ; S�1V [Ej@V /

OO

�U;V
// H�.S

cC"
U ; S�1U [Ej@U /

OO

Now the upper horizontal map sends �V to �U , so applying this to the sequence Un, we get a sequence
z�n 2 H�.S

cC"
Un

; S�1Un [ Ej@Un/ with image �Un , and we have a sequence such that �Un;Um Œz�n� D
Œz�n\�

�1.Um/� is constant for n�m. Then we may glue the z�n as follows: since Œz�m�DŒz�mC1\��1.Um/�
in H�.ScC"Un

; S�1Un [Ej@Un/, we have Dm such that @Dm\��1.Um/D z�m� z�mC1\��1.Um/ and we
can assume Dm � ��1.Um/. This is illustrated in Figure 2. Now we may consider the cycle

�m D z�m[ .@Dm\�
�1.Um//[ z�mC1\�

�1.UmC1 nUm/:

We easily check that

(1) �m\��1.Um/D z�m,

(2) �m\��1.UmC1 nUm/D .z�mC1\��1.UmC1/[ .@Dm\��1.@Um///,
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(3) @�m �E@UmC1 ,

(4) �m � ScC".

By induction we can build a sequence �m and we have �n \ ��1.Um/ D �m \ ��1.Um/ for n > m.
Therefore

S
n �n is stationary over any compact set and defines a closed cycle � such that S.�/� cC". �

Now the generating function for 'k;! is given by Proposition 9.1:

Sk;!.x; yI �; �/D
1

k

�
S!.kx; p1; �1/C

k�1X
jD2

S!.kqj ; pj ; �j /CS!.kqk; y; �k/

�
CBk.x; y; �/;

where � D .�1; : : : ; �k/, � D .p1; q2; : : : ; qk�1; pk�1; qk/,

�a� D .p1; q2C a; : : : ; qk�1C a; pk�1; qkC a/

and

Bk.x; y; �/D hp1; q2� xiC

k�1X
jD2

hpj ; qjC1� qj iC hy; x� qki:

Now let F.q; P I �/ be a GFQI for the graph of ˛. Then

G!k .u; vI x; y; �I �; �/D S
!
k .u; yI �/CF.x; vI �/Chy � v; u� xi

is a GFQI of 'k˛. We set

G!k .u; vI x; y; �/D h
!
k .y/CF.x; vI �/Chy � v; u� xi:

We shall omit the subscripts a; � for the moment, so in the sequel, G!
k;a;�

means G!
k;a;�

Here the
variables u; v; x; y are in Rn and we denote by Ek the space of the � D .�; �/, where � 2 Ek, � 2
.R2n/k and � 2 V . By definition we have a cycle �!U in U � Rnv � Rnx � Rny � E � V relative to
.G!

k
/�1[@U �Rnv�Rnx�Rny�E�V and homologous (as a closed cycle) to U �Rnv��x;y�E

��V �

(where � is the diagonal) such that

G!k .�
!
U /� c.�U ; G

!
k /C "D c.�U ; N'

!
k;U˛/C ";

where N'!
k;U

is the flow of h!
k;U

.y/.
Moreover according to Lemma D.1, we can assume there is a closed (i.e., Borel–Moore) cycle �!

such that �!U D �
! \��1.U / (at least for a cofinal sequence of U ’s).

Now let C!U .y/ be a cycle in the class ofU�E�
k

inH�..S!k;y/
C1; .S!

k;y
/�1/, depending continuously

on y, such that23

S!k .y; C
!
U .y//� h

!
k;U .y/C a�.y/C ":

As in [Viterbo 2023, Section 5, Lemma 5.1], this is possible provided � is the characteristic function
of ƒı , the complement of a disjoint union of sets of diameter less than ı. For example, we can take ƒı

23The notation is unfortunate since it does not respect the order of our variables. By Sk.y; CU .y// we mean the maximum
of Sk.x; yI �; �/, where .xI �; �/ 2 C.y/
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to be a neighborhood of ƒ.ı/D f.x1; : : : ; xn/ j 9j; xj 2 ıZg. Thus we set for a 2 RC; � 2 C
1.Rn/

G!k;a;�.u; vI x; y; �/D h
!
k .y/CF.x; vI �/Chy � v; u� xiC a�.y/:

We shall omit the subscripts a; � for the moment, so in the sequel, G!
k;a;�

means G!
k;a;�

.
We again invoke Lemma D.1 in order to obtain a (closed) cycle C!.y/ such that for a cofinal sequence

of U ’s we have C!U .y/D C
!.y/\��1.U / and, like C!U .y/, the cycle C.y/ depends continuously on y.

We now construct a new (Borel–Moore) cycle, symbolically denoted by ��Y C and defined as follows
(everything depends on ! but for notational convenience we omit it):

� �Y C D f.u; vI x; y; �; �/ j .u; v; x; y; �/ 2 �; .u; �/ 2 C.y/g:

We have

(1) .� �Y C/U is a Borel–Moore cycle homologous to U �Rnv ��x;y �E
�
k
�V �.

(2) G!
k
..� �C/U /�G

!
k;a;�

.�U /C ".

Indeed for (1), it is a cycle by the continuity of C.y/ in y. That its homology class is the stated one
follows from the fact that the homology class of A�Y B only depends on the homology class of A;B
and so �U �Y C�U is homologous to

.U �Rnv ��x;y �V
�/�Y .U �E

�
k /D f.u; vI x; y; �; �/ j u 2 U; x D y; � 2 V

�; � 2E�k g

D U �Rnv ��x;y �V
�
�E�k :

As for (2), we have .� �Y C�/U D �U �Y C�U and

G!k .�U �Y C
�
U /

def
D supfS!k .u; yI �/CF.x; vI �/Chy � v; u� xi j .u; vI x; y; �/ 2 �; .uI �/ 2 C.y/g

but since Sk.u; yI �/� h
C

k;U
.y/C a�.y/C " for .uI �/ 2 C.y/, we have

G!k .�U �Y C
�
U /

� supfF.x; vI �/C hC
k;U

.y/C a�.y/C "Chy � v; u� xi j .u; vI x; y; �/ 2 �!U ; .u; �/ 2 C
!
U .y/g

�G!k;a;�.�U /C ":

Now as in [Viterbo 2023, Section 5, p. 95], let us consider a collection of ` open sets ƒj
ı

for 1� j � `
such that each of them is a translate ofƒı and any nC1 of them have empty intersection. We denote by �j
(1� j � `) the corresponding functions. We set Nx D .x1; : : : ; x`/, Ny D .y1; : : : ; y`/, N� D .�1; : : : ; �`/
and define24

Gk;`.u; v; Nx; Ny; N�; �/D F.x1; vI �/C
1

`

X̀
jD1

Sk.`xj ; yj ; �j /CB`. Nx; Ny/Chy`� v; u� x1i

This is a GFQI for ��1
`
'`
k
��1
`
˛ D ��1

`
��1
k
'k`�k�`˛ D 'k`˛.

Let

Gk;`.u; vI Nx; Ny; �/D F.x1; v; �/C
1

`

X̀
jD1

.hC
k
.yj /C a�j .yj //CB`. Nx; Ny/Chy`� v; u� x1i:

24Here we omit ! from the notation, which would otherwise become unwieldy.
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By definition there is a Borel–Moore cycle, �k;`, such that

Gk;`..�k;`/U /� c.�U ; Gk;`/C ";

and using Cj .yj / as before for 1� j � ` and setting

�k;` �Y C
�Œ`�D f.u; vI Nx; Ny; N�; �/ j .u; v; x; y; �/ 2 �; .`xj ; �j / 2 C

�
j .yj /g;

we have

c.�U ; Gk;`/�Gk;`..�k;`/U �Y .C
�/U Œ`�/�Gk;`..�k;`/U /� c.�U ; Gk;`/C 2":

Finally we claim that

c.�U ; Gk;`/� c.�U ; Gk/C
.nC 1/a

`
:

Indeed, Gk;` is the generating function of  k;` D ��1`  1
k
ı � � � ı `

k
�`, where  j

k
is the time-one flow of

hk.y/C a�j .y/. But these flows commute, so  k;` is the time-one flow of

Kk;`.y/D
1

`

X̀
jD1

.hk;U .y/C a�j .y//

and we have jKk;`.y/� hk.y/j �
.1Cn/a
`
C ". Therefore

c.�U ; Gk;`/� c.�U ;  k;`˛/� c.�U ;  
1
k˛/C

.1Cn/a

`
C "� c.�U ; N'k˛/C

.1Cn/a

`
C ":

Thus for ` large enough c.�U ; Gk;`/� c.�U ;  1k˛/C 2". Taking the limit as k goes to infinity, we get

c.�U ; 'k`˛/D c.�U ; Gk;`/� c.�U ; N'k˛/C 2"� c.�U ; N'˛/C 3":

This concludes the proof of Proposition 8.3.
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EPSILON-REGULARITY FOR THE BRAKKE FLOW WITH BOUNDARY

CARLO GASPARETTO

We prove that, if a Brakke flow with boundary is close enough to a stationary half-plane with density 1, then
it is C1,α. Our approach is based on viscosity techniques introduced by Savin in the context of elliptic equa-
tions. The same techniques can be used to give an alternative proof of Brakke’s (interior) regularity theorem.

1. Introduction

We state and prove a Brakke-type theorem for the mean curvature flow with boundary, that is, a flow of
m-dimensional surfaces in Rd so that at every point the normal component of the velocity is equal to the
mean curvature and the boundary is fixed. A weak notion of such a flow has been recently introduced in
[White 2021] by using integral varifolds, as devised by Brakke [1978]. The objects in question are called
integral Brakke flows with boundary.

In short, given an (m−1)-dimensional submanifold 0, an integral Brakke flow with boundary 0 is a
collection {Vt }t∈I of m-dimensional integral varifolds with the constraint that the first variation of Vt is
a measure whose singular part with respect to ∥Vt∥ behaves like Hm−1 ⌞0 and the varifolds satisfy an
evolution equation that encodes the information on the velocity. A precise definition will be given in
Section 2.

The main result of this paper (Theorem 7.1) is that, if a Brakke flow in a ball of radius 1 is close
enough (in some appropriate topology) to a unit-density half-plane (which is a stationary solution to the
mean curvature flow with a prescribed straight boundary), then the Brakke flow becomes smooth up to
the boundary in a smaller ball and after some fixed waiting time. Roughly stated, the main result is the
following.

Theorem 1.1 (ε-regularity). Let 0 be a C1,α, (m−1)-dimensional submanifold of B1 and let {Vt }t∈[−3,0]

be an integral Brakke flow with boundary 0 in B1 × [−3, 0]. Assume the following:

(1) 0 ∈ supp ∥V0∥.

(2) At time t = −3, the mass measure ∥Vt∥ is close to that of an m-dimensional half-disk.

(3) There exists a half-plane S+ such that, for every t ∈ [−3, 0],

supp∥Vt∥ ⊂ {x ∈ Rd
: dist(x, S+)≤ ε}.
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If ε and 3 are small enough, then there exist small constants η, β and a family {Nt }t∈(−η2,0] of C1,β

surfaces with boundary 0 such that
supp∥Vt∥ ∩ Bη = Nt

for every t ∈ (−η2, 0].

We briefly comment on the assumptions. The key assumptions are (2) and (3), which describe how the
Brakke flow is close to being a half-plane (with a straight boundary). Assumption (1), on the other hand,
prevents a “pathological” behavior of Brakke flows, which is the possibility of a sudden loss of mass
(see, for example, [Tonegawa 2019, Section 2.3]). The statement and the assumptions will be made more
rigorous in Sections 4 and 7.

A central point in our work is that, under appropriate assumptions, the support of an integral Brakke
flow with boundary satisfies a maximum principle. In order to fix ideas, assume that the support of
the flow is the graph of some function u : Rm

→ Rd−m. Then it can be proved that |u| is a viscosity
subsolution (in a suitable sense which we will describe at a later stage) to

∂tϕ−M+(D2ϕ)≤ 0,

where M+ is a Pucci maximal operator. We may therefore exploit this property to adopt a technique
developed by Savin [2007] in the framework of elliptic equations and later adapted by Wang [2013]
to parabolic equations, which we now summarize in our case. The key step in proving Theorem 1.1 is
proving the following improvement of flatness:

Proposition 1.2 (improvement of flatness). Under the assumption of Theorem 1.1, there exist η > 0 and a
half-plane T + close to S+ such that, for every t ∈ (−η2, 0],

supp∥Vt∥ ∩ Bη ⊂

{
x ∈ Rd

: dist(x, T +)≤
ε

2
η
}
.

In summary, if the Brakke flow is “ε-flat” at scale 1, then it becomes “ηε/2-flat” at scale η for some η
small and universal; from this, proving C1,α-regularity is classical.

The proof of Proposition 1.2 is based on a contradiction and compactness argument. Assume one can
find a sequence of flatter and flatter Brakke flows for which the conclusion of Proposition 1.2 does not
hold. Then appropriate rescalings of the supports of such flows converge in a suitable sense to the graph of
a solution to the heat equation. The desired improvement of flatness is a straightforward consequence of
classical Schauder estimates. The above convergence is achieved via a Harnack-type inequality, in the spirit
of [Wang 2013], and a barrier argument that describes the behavior of the Brakke flow near the boundary.

Theorem 1.1 answers a question left open in [White 2021, Remark 11.2], that is, whether an integral
Brakke flow with boundary that has a tangent flow which is a unit-density half-plane is smooth in a
backward neighborhood. The reader should also compare our results with the regularity theorems proved
in [loc. cit.]. The latter are proved under the additional assumption that the flow is standard: namely
the flow has to be smooth at every point where a tangent flow is a unit-density half-plane (see [loc. cit.,
Definition 11.1]). Since we only prove backward regularity, our result does not guarantee (as it should
not be expected) that an integral Brakke flow with boundary satisfying the assumptions of Theorem 1.1 is
actually standard.
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The first ε-regularity theorem for the mean curvature flow (without boundary) was proved in [Brakke
1978] and then refined in [Kasai and Tonegawa 2014], where the authors extended the result to mean
curvature flow in general ambient manifolds. Another relevant reference is the recent work [Stuvard and
Tonegawa 2024]. The above-mentioned proofs are variational and rely on L2 energy estimates, somehow
in the spirit of [Allard 1972]. We think that a variational proof of Theorem 1.1 may be performed by
adapting the arguments in [Allard 1975; Bourni 2016] to account for the presence of the boundary. As
mentioned, our proof is based on an argument first developed in [Savin 2007] for elliptic equations and
then adapted to parabolic equations in [Wang 2013]. This method was used in [Savin 2018] to prove an
Allard-type theorem for minimal surfaces. Although an adaptation of the same techniques to the mean
curvature flow seems quite natural, to the best of the author’s knowledge this paper is the first instance in
which these techniques are used for the mean curvature flow.

The regularity of mean curvature flow with boundary has been briefly investigated also in [White 1995;
2005]. One should also see [Edelen 2020], where the author defines a Brakke flow with a free boundary
condition. Another definition of Brakke flow with fixed boundary has been investigated in [Stuvard and
Tonegawa 2021].

1.1. Structure of the paper. In Section 2, we collect some notation that will be used throughout the
paper and some well-known facts about rectifiable measures. We then recall the definition of integral
Brakke flow with boundary, as stated in [White 2021].

Section 3 is dedicated to collecting some known results about integral Brakke flows and to adapting
them to the case of an integral Brakke flow with fixed boundary.

The core of the paper is Section 4, where we state and prove the improvement of flatness described in
Proposition 1.2, which will later yield the desired C1,β regularity. The proof of this result is described in
Section 4.2. The aforementioned barrier argument and Harnack-type inequality, which are crucial for
obtaining the desired compactness, are discussed in Sections 5 and 6, respectively.

Finally, the proof of Theorem 1.1 is given in Section 7, where we iterate the improvement of flatness
to obtain the desired regularity.

2. Preliminaries, notation and definitions

Throughout the paper, we consider fixed two positive integers m and d such that m ≤ d . All the constants
taken in consideration in the present work depend, in general, on these two parameters, although we will
mostly avoid stating such dependency.

For the present section, we introduce two generic positive integers k ≤ n to define some objects in full
generality.

2.1. Space-time. By Rn,1 we denote the space {(x, t) : x ∈ Rn and t ∈ R}. We use uppercase letters to
denote points in Rn,1, for example X = (x, t).

For any pair X = (x, t) and Y = (y, s) of points in Rn,1, we let

ρ(X, Y )= |x − y| + |t − s|1/2;
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ρ is a metric on Rn,1 (see, for example [Krylov 1996, Exercise 8.5.1]) and the topology that ρ induces
on Rn,1 coincides with the euclidean topology of Rn+1. In particular, if dH (E, F) is the Hausdorff distance
between E and F with respect to ρ and K is a compact subset of Rn,1, then the space of nonempty closed
subsets of K is a compact metric space, when endowed with the metric dH .

If x ∈ Rn and r > 0, we set Bn
r (x) = {y ∈ Rn

: |y − x | < r}. When the dimension of the space is
clear, we omit its indication and simply write Br (x). We also omit the indication of the center of the ball,
whenever it coincides with 0, so that Br = Br (0). If (x, t) ∈ Rn,1, we define the parabolic cylinder

Qn
r (x, t)= Bn

r (x)× (t − r2, t],

where the apex n indicates the dimension of the space component; as above, its indication will be omitted
when no confusion shall arise. Lastly, we let Qr = Qr (0, 0).

We denote by ∂p(U × (a, b)) the parabolic boundary of the cylinder U × (a, b), where U ⊂ Rn:

∂p(U × (a, b)) := (U × {a})∪ (∂U × (a, b)).

We define the measures Ln,1 and Hs,1 (for any 0 ≤ s ≤ n) on Rn,1 by

Ln,1(E × F)= Ln(E)×L1(F), Hs,1(E × F)= Hs(E)×L1(F)

for E ⊂ Rn and F ⊂ R, where Ln is the Lebesgue measure in Rn and Hs is the s-dimensional Hausdorff
measure in Rn.

For any function f : Rn,1
→ Rk, we denote by ∇ f (x, t) the gradient of the function f ( · , t) computed

at x and by ∂t f (x, t) the derivative of f (x, · ) computed at t , whenever they are defined.
Lastly, for a set E ⊂ Rn and x ∈ Rn, we let χE(x)= 0 if x /∈ E and χE(x)= 1 if x ∈ E .

2.2. Linear functions and subspaces of the euclidean space. We let {e1, . . . , en} be the canonical
orthonormal basis of Rn.

We define the Grassmannian Gr(k, n) as the space of (unoriented) k-dimensional linear subspaces of Rn;
we identify S ∈ Gr(k, n) with the endomorphism S : Rn

→ Rn representing the orthogonal projection
onto S. When no confusion shall arise and an orthonormal basis {ζ1, . . . , ζk} of S is fixed, we identify S
with Rk via the canonical bijection

ι : S → Rk, x 7→ (x · ζ1, . . . , x · ζk);

therefore by Sx we denote both the point Sx ∈ S ⊂ Rn and its image via ι. In particular, when S =

span{e1, . . . , ek} and x ∈ Rn , we will often use the notation x ′
= Sx = (x · e1, . . . , x · ek) ∈ Rk.

We also let S : Rn,1
→ Rk,1 be the map S(x, t) = (Sx, t) and, in the case S = span{e1, . . . , ek}, for

X = (x, t) ∈ Rn,1 we let X ′
= (x ′, t).

Lastly, if S and T are two endomorphisms of Rn, we define the scalar product between S and T by

S : T =

n∑
i, j=1

Si j Ti j ,
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where (Si j ) is the representation of S as a n × n matrix such that

Si j = ei · (Sej ).

We also let |S| =
√

S : S.

2.3. Hölder regularity. We point out some facts and definitions on Hölder regularity for several objects.
In what follows, κ ∈ (0, 1) is a fixed parameter.

(1) Functions on Rn. Given a function u : Rn
⊃ U → Rk, we say that u ∈ C1,κ(U ; Rk) if there exists

C > 0 such that supx∈U |u(x)| ≤ C and for all x ∈ U there is an affine function L x : Rn
→ Rk such that,

for every y ∈ U, it holds

|u(y)− L x(y)| ≤ C |x − y|
1+κ .

(2) Functions on Rn,1. Let � ⊂ Rn,1. We say that u : �→ Rk is in C1,κ(�; Rk) if there exists C > 0
such that supX∈� |u(X)| ≤ C and for all X ∈� there is an affine function L X : Rn

→ Rk such that, for
every Y = (y, s) ∈�, it holds

|u(Y )− L X (y)| ≤ Cρ(X, Y )1+κ .

(3) Submanifolds. We say that a k-dimensional, properly embedded submanifold 0 of some open set
U ⊂ Rn is C1,κ if there exists some κ > 0 such that, for every x, y ∈ 0, it holds

[0]C1,κ (U ) := sup
x,y∈0
x ̸=y

|Tx0− Ty0|

|x − y|κ
<∞,

where T· 0 ∈ Gr(k, n) is the tangent space to 0 and |Tx0− Ty0| should be intended as in Section 2.2.

Remark 2.1. We do not require the sets U and � in items (1) and (2) above to have any regularity.
However, one can easily see that, if U ⊂ Rn has C1 boundary and u ∈ C1,κ(U ; Rk), then u is actually
bounded in U, it is differentiable at every point of Int E and the usual definition of C1,κ holds:

∥u∥C1,κ (U ) := sup
U

|u| + sup
x,y∈U
x ̸=y

|∇u(x)− ∇u(y)|
|x − y|κ

<∞.

In fact, ∥u∥C1,κ (U ) is bounded (up to some multiplicative constant depending only on U, n, k, κ) by the
same constant C as in item (1) above.

Similarly, if � = U × I ⊂ Rn,1 for some U ⊂ Rn with C1 boundary and I ⊂ R some interval, then
u ∈ C1,κ(�; Rk) yields that u is differentiable with respect to the space variable everywhere in Int U × I
and that

∥u∥C1,κ (�) := sup
�

|u| + sup
X,Y∈�
X ̸=Y

|∇u(X)− ∇u(Y )|
ρ(X, Y )κ

+ sup
(x,t),(x,s)∈�

s ̸=t

|u(x, t)− u(x, s)|
|t − s|(1+κ)/2 <∞.

2.4. Integral varifolds. We adopt most of the terminology from [White 2021]. Let U ⊂ Rd be an open set
and let M(U ) be the set of nonnegative Radon measures on U ; if ϕ is continuous and compactly supported
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on U, we let M(ϕ)=
∫
ϕ(x) d M(x) for M ∈ M(U ). Let Mm(U ) be the set of m-dimensional rectifiable

nonnegative Radon measures on U. Namely, M ∈ Mm(U ) if and only if there exist an m-dimensional
rectifiable set E and a nonnegative function θ ∈ L1

loc(H
m ⌞ E) such that

M(ϕ)=

∫
E
θ(x)ϕ(x) dHm(x) for all ϕ ∈ Cc(U ).

We also let IMm(U ) be the set of those M ∈ Mm(U ) such that their density θ(x) is a nonnegative
integer at M-a.e. x . If M ∈ Mm(U ), then for M-a.e. x the approximate tangent space Tx M ∈ Gr(m, d) is
well-defined (see, for instance, [Simon 1983, Chapter 3]). An m-dimensional varifold on U is a Radon
measure on U ×Gr(m, d) (see [loc. cit., Chapter 8]). In particular, to each M ∈Mm(U ) we may associate
an m-dimensional varifold Var(M) by

Var(M)(ϕ)=

∫
ϕ(x, Tx M) d M(x) for all ϕ ∈ Cc(U × Gr(m, d)).

Such an object is called a rectifiable varifold (see [loc. cit., Chapter 4]); Var(M) is said to be integral
if and only if M ∈ IMm(U ). If M ∈ Mm(U ), we say that Var(M) has bounded first variation if there
exists C > 0 such that, for every smooth vector field F : U → Rd with compact support in U, it holds∫

Tx M : ∇F(x) d M(x)≤ C∥F∥∞.

If Var(M) has bounded first variation, then there exist an M-locally integrable vector field HM , a Radon
measure βM that is singular with respect to M and a βM -locally integrable unit vector field ζM such that,
for every F ∈ C1

c (U ; Rd), it holds∫
Tx M : ∇F(x) d M(x)= −

∫
HM · F d M +

∫
F · ζM dβM . (2-1)

In the following, we will often write

divS F(x)= S : ∇F(x).

When M ∈ Mm(U ), we also let

divM F(x) := divTx M F(x)= Tx M : ∇F(x),

whenever it is well-defined.

Definition 2.2. Let 0 be a properly embedded (m−1)-dimensional submanifold of U ⊂ Rd. We let
Vm(U, 0) be the space of those M ∈ IMm(U ) such that Var(M) has bounded first variation and the
following hold true:

(1) βM(E)≤ Hm−1(E ∩0) for every E ⊂ U .

(2) HM(x) and Tx M are perpendicular at M-a.e. x .

As mentioned in the remark following [White 2021, Definition 6], (2) is actually redundant, as it can
be derived from [Brakke 1978, Section 5].
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As in [White 2021], for M ∈ Vm(U, 0) we let

νM(x)= lim
r↘0

1
ωm−1rm−1

∫
Br (x)

ζM dβM , (2-2)

where the limit exists, and νM(x) = 0 otherwise. Notice that the requirement βM ≤ Hm−1 ⌞ 0 in
Definition 2.2 yields |νM | ≤ 1 Hm−1 ⌞0-a.e. Moreover, by [Allard 1975, Section 3.1], νM(y) ⊥ 0 for
Hm−1-a.e. y ∈ 0.

In the following, whenever 0 is an (m−1)-dimensional submanifold of Rd, by a small abuse of notation
we denote by 0 the Hausdorff measure Hm−1 ⌞0, if no confusion shall arise.

2.5. Integral Brakke flows with boundary. Let U ⊂ Rd be an open set, I ⊂ R be a nonempty interval
and let 0 be a properly embedded (m−1)-dimensional submanifold of U.

Definition 2.3 (integral Brakke flow). An m-dimensional integral Brakke flow with boundary 0 in U × I
is a collection M = {Mt : t ∈ I } ⊂ M(U ) such that the following hold true:

(1) For almost every t , Mt ∈ Vm(U, 0).

(2) If I ′ ⋐ I and U ′ ⋐ U, then
∫

I ′

∫
U ′(1 + |HMt |

2) d Mt dt <+∞.

(3) If [a, b] ⊂ I and u is a nonnegative, compactly supported, C1 function on U × I, then∫
u( · , a) d Ma −

∫
u( · , b) d Mb ≥

∫ b

a

∫
(u|HMt |

2
− HMt · ∇u − ∂t u) d Mt dt. (2-3)

We denote by BFm(U × I, 0) the set of all m-dimensional integral Brakke flows in U × I with boundary 0.

When 0 = ∅, we drop its indication and simply write BFm(U × I ); notice that in this case βMt = 0
for a.e. t , and the definition agrees with the one of integral Brakke flow (without boundary) given, for
instance, in [Tonegawa 2019].

Given M ∈ BFm(U × I, 0), we define its space-time mass measure M by∫
ϕ(x, t) d M(x, t)=

∫∫
ϕ(x, t) d Mt dt

for every ϕ ∈ Cc(U × I ). We define the space-time track of M to be the closed set

6M = Clos
(⋃

t∈I

supp Mt × {t}
)
,

where the closure is taken in the euclidean topology of Rd,1, and we let 6M(t) be the slice at time t
of 6M , namely 6M(t) = {x ∈ Rd

: (x, t) ∈ 6M}. It is straightforward to check that supp M ⊂ 6M .
Under reasonable assumptions, the opposite inclusion holds true as well; we further discuss this point in
Lemma 3.5. Whenever no confusion may arise, we write6 and6t in place of6M and6M(t), respectively.

Remark 2.4 (scaling properties). A Brakke flow M ∈BFm(U × I, 0) may be translated and parabolically
dilated while preserving the requirements in Definition 2.3. For x0 ∈Rd and r >0, let Tx0,r (y)= (y−x0)/r .
By (Tx0,r )♯µ we denote the push-forward of µ ∈ M(Rd) through Tx0,r . Then M ′

= {M ′
s} given by

M ′

s = r−m(Tx0,r )♯Mt0+r2s
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is a Brakke flow in (U − x0)/r × (I − t0)/r2 with boundary (0− x0)/r . In this case, we will write

M ′
= Dr (M − X0),

where, as usual, X0 = (x0, t0).

3. Properties of integral Brakke flows with boundary

We collect some known results about integral Brakke flows, which we will use throughout the rest of the
paper.

3.1. Monotonicity properties. We denote by 9 : Rd
× (−∞, 0)→ R the m-dimensional backward heat

kernel

9(x, t)=
1

(4π(−t))m/2
exp

(
−

|x |
2

4(−t)

)
.

We also pick a smooth cut-off function φ ∈ C∞
c ([0, 2)) such that φ ≡ 1 in [0, 1], |φ′

| ≤ 2 and 0 ≤ φ ≤ 1
everywhere, which from now on we consider fixed. For the chosen φ, for R > 0 we set

9R(x, t)=9(x, t)φ
(

|x |

R

)
.

Proposition 3.1 (Huisken monotonicity formula). There exists a universal constant C > 0 such that, if
M ∈ BFm(U × (−T, 0), 0) and B2R ⊂ U, then for every −T < s ≤ t < 0 it holds∫

9R(x, t) d Mt −

∫
9R(x, s) d Ms ≤

∫ t

s

∫
νMτ

· ∇9R( · , τ ) d0 dτ︸ ︷︷ ︸
I

+ C
t − s
R2 sup

τ∈[s,t]

Mτ (B2R)

Rm ,︸ ︷︷ ︸
II

(3-1)

where νMτ
is defined in (2-2).

Proof. See [White 2021, Theorem 6.1]. □

In several points of the present work, we are going to need some precise bounds on I and II in (3-1).
While in most cases we will assume a uniform bound of the form

sup
t

sup
Br (x)

Mt(Br (x))
rm ≤ E1 <∞,

which takes care of II, estimating I requires some more attention. What we prove in the following lemma
is that, at a small enough scale, I is close to 1

2 if 0 /∈ 0; otherwise it is very small.

Lemma 3.2. For every δ > 0, there exist small positive constants 3 and c with the following property. Let
U ⊂ Rd be open and let 0 be a C1,α submanifold of U. Then, for every R ≤ c/[0]C1,α(U ) and for every
(x, t) ∈ U × R such that B2R(x)⊂ U, it holds∫ t

t−3R2

∫
|Ty0

⊥
∇9R(y − x, s − t)| d0(y) ds ≤

χ0c(x)
2

+ δ. (3-2)

The proof of Lemma 3.2 is somehow cumbersome and is therefore postponed to Appendix A.



EPSILON-REGULARITY FOR THE BRAKKE FLOW WITH BOUNDARY 865

Exploiting the above result, we may prove a sort of clearing-out lemma, in the spirit of [Tonegawa 2019,
Proposition 3.6]. Namely, we prove that, provided we have some control on I and II in (3-1), if a point
(x, t) is in the space-time track of M , then Ms cannot be too small in a backward neighborhood of (x, t).

Before proceeding with this result, we introduce the following terminology:

Definition 3.3 (maximal density ratio). A Brakke flow M (possibly with boundary) in U × I is said to
have bounded maximal density ratio in U ′

× I ′, where U ′
⊂ U and I ′

⊂ I, if

mdr(M,U ′
× I ′) := sup

Br (x)⊂U ′

sup
t∈I ′

Mt(Br (x))
rm <∞.

Proposition 3.4 (clearing-out lemma). For every K <∞ there exist positive constants c1, c2 with the
following property. Let 0 be a C1,α submanifold of U and let M ∈ BFm(U × (a, b), 0) be such that

mdr(M,U × (a, b))≤ K .

If (x, t) ∈6M , and R is small enough depending on 0, then

Mt−c1 R2(B4R(x))≥ c2 Rm .

Proof. The proof of the case without a boundary can be found, for example, in [Tonegawa 2019,
Proposition 3.6]. For the sake of completeness, we sketch the proof along the same lines as in the case of
an integral Brakke flow with boundary.

Corresponding to δ =
1
4 , choose 3 and c as in Lemma 3.2. Let (x, t) ∈6 and let R ≤ c/[0]C1,α(U ).

We first assume that x ∈ supp Mt and that Mt ∈ Vm(U, 0), so that in particular Mt = θ( · )Hm ⌞ E for
some m-rectifiable set E . Then there exists y ∈ BR(x) such that

1 ≤ θ(y)= lim
τ↗0

Mt(9R( · − y, τ )). (3-3)

Therefore, by centering Proposition 3.1 at a point (y, t −τ) and then letting τ ↗ 0, for any t1 < t , it holds

Mt1(9R( · − y, t1 − t))≥ θ(y)− C K
t − t1

R2 −

∫ t

t1

∫
νMs · ∇9R( · − y, s − t) d0 ds.

We now choose c1 so small that both C K c1 ≤
1
8 and c1 ≤ 3 and we set t1 = t − c1 R2. Then, using

Lemma 3.2, we obtain
Mt1(9R( · − y,−c1 R2))≥ θ(y)− 1

8 −
( 1

2 +
1
4

)
≥

1
8 ,

where the second inequality is given by (3-3). Notice that, for every z ∈ Rd, simple computations yield

9R(z − y,−c1 R2)≤ C R−mχB2R(y)(z)≤ C R−mχB3R(x)(z)

for some C > 0 universal. Hence, by integrating the above inequality in Mt−c1 R2 , we obtain

Mt−c1 R2(B3R(x))≥
Rm

C
Mt−c1 R2(9R( · − y,−c1 R2))≥

Rm

8C
,

as desired.
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If x /∈supp Mt or Mt /∈Vm(U, 0), then one can find a sequence of points (xi , ti ) such that Mti ∈Vm(U, 0),
xi ∈ supp Mti and such that (xi , ti )→ (x, t). It is then sufficient to choose Ri so that ti −c1 R2

i = t −c1 R2

to obtain, for i large enough,

Mt−c1 R2(B4R(x))≥ Mt−c1 R2(B3R(xi ))≥ c2 Rm . □

We now state two important consequences of Proposition 3.4.

Lemma 3.5. Let M ∈ BFm(U × I, 0) have bounded maximal density ratio in U × I and let 0 ∈ C1,α(U ).
Then

6M = supp M.

Proof. The inclusion supp M ⊂6 is trivial. For the opposite inclusion, notice that, for a point (x, t) ∈6

and for every r > 0 small enough, Proposition 3.4 gives

Mt−cr2(Br (x))≥ crm .

It is now sufficient to integrate this inequality in r to obtain that for every r > 0 small enough, there is a
set of the form

Ar =
{
(y, s) : |y − x | ≤ θ

√
t − s ≤ r

}
for some positive θ, c depending only on mdr(M) such that M(Ar ) > 0; hence (x, t) ∈ supp M, as
claimed. □

Lemma 3.6. Let M ∈ BFm(U × I, 0) have bounded maximal density ratio and let 0 ∈ C1,α(U ). Then

M ≥ Hm,1 ⌞6M .

For the proof of the above lemma, we refer the reader to Appendix B.

3.2. Maximum principle. In the present subsection, we assume that U ⊂ Rd is open and I ⊂ R is an
interval of the form (a, b]. We also let 0 be an (m−1)-dimensional, C1,α submanifold of U.

The main result of the present section is the following maximum principle.

Proposition 3.7 (maximum principle). Let M ∈ BFm(U × I, 0) have bounded maximal density ratio.
If there exist u ∈ C2(U × I ) and a point (x0, t0) ∈6 \ ∂p(U × I ) with x0 /∈ 0 such that u|6∩{t≤t0} has a

local maximum at (x0, t0) and ∇u(x0, t0) ̸= 0, then

∂t u(x0, t0)− inf
T ∈Gr(m,d)

T ⊥∇u(x0,t0)

T : D2u(x0, t0)≥ 0.

Proof. This proposition is a corollary of the results in [Hershkovits and White 2023, Section 13]; see also
[Ambrosio and Soner 1997]. For the reader’s convenience, we give a self-contained proof, in the spirit of,
for example, [White 2016].

We may assume, without loss of generality, that (x0, t0)= (0, 0) and that u|6∩{t≤0} has a strict local
maximum at (0, 0) (if not, replace u by u − |x |

4
− |t |2).
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Step 1: We first prove that
∂t u(0, 0)− tracem D2u(0, 0)≥ 0,

where tracem D2u is the sum of the m smallest eigenvalues of D2u. Assume the result does not hold.
Arguing as in [White 2016, Lemma 2.4], we may assume that, for some ρ > 0 and ε > 0 small, u satisfies

(i) ∂t u − tracem D2u <−ε < 0 in Qρ ,

(ii) Bρ ∩0 = ∅,

(iii) u > ε > 0 in 6 ∩ Qρ/2 and u < 0 in 6 ∩ {t ≤ 0} \ Qρ .

We now let ϕ(x, t)= (u+(x, t))4, where u+
= max{u, 0}, and we use ϕ as a test function for (2-3). Since

ϕ( · ,−ρ2)= 0 by assumption, we have

0 ≤

∫
ϕ( · , 0) d M0 =

∫
ϕ( · , 0) d M0 −

∫
ϕ( · ,−ρ2) d M−ρ2

≤

∫ 0

−ρ2

∫
(−|H |

2ϕ+ H · ∇ϕ+ ∂tϕ) d Mt dt,

where the last inequality is given by (2-3) and we have set H( · , t)= HMt ( · ) for a.e. t . We now use the
fact that suppϕ ⊂ 0c; thus ∫

H · ∇ϕ d Mt = −

∫
divMt ∇ϕ d Mt

for a.e. t . Since the term |H |
2ϕ is nonnegative, we obtain from the above chain of inequalities

0 ≤

∫ 0

−ρ2

∫
(− divMt ∇ϕ+ ∂tϕ) d Mt dt.

Some straightforward computations show that

divMt ∇ϕ = 4(u+)3 divMt ∇u ≥ 4(u+)3 tracem D2u

and ∂tϕ = 4(u+)3∂t u. Therefore

0 ≤

∫ 0

−ρ2

∫
4(u+)3(∂t u − tracem D2u) d Mt dt ≤ −4ε4 M(Qρ/2),

where the last inequality is given by (i) and (iii) above. In particular, it must be

M(Qρ/2)= 0;

however, by Lemma 3.5, (0, 0) ∈6 = supp M ; thus we reach a contradiction.

Step 2: We now prove the general result. It is sufficient to show that one can find an m-dimensional
subspace T of Rd such that

∂t u(0, 0)− T : D2u(0, 0)≥ 0

and T ∇u(0, 0)= 0. Without loss of generality, assume that u(0, 0)= 0. Let ψj (z)= z + ( j/2)z2 and let

u j (X)= ψj (u(X)).
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Then, for every j , u j |6∩{t≤0} has a local maximum at (0, 0). Thus, by Step 1, there is an m-dimensional
subspace Tj of Rd such that, at (0, 0),

0 ≤ ∂t u j − Tj : D2u j = ∂t u − Tj : D2u − jTj : (∇u ⊗ ∇u).

Up to a subsequence, which we do not relabel, we have that Tj → T for some m-dimensional subspace T,
and

T : (∇u ⊗ ∇u)≤ lim inf
j

1
j
(∂t u − Tj : D2u)= 0;

thus T ⊥ ∇u. On the other hand, since jTj : (∇u ⊗ ∇u)≥ 0, we have

T : D2u ≤ lim inf
j

Tj : D2u ≤ lim inf
j

(∂t u − jTj : (∇u ⊗ ∇u))≤ ∂t u,

as desired. □

Given an upper-semicontinuous function u : Rm,1
→[0, 1]∪{−∞} and a smooth function ϕ : Rm,1

→ R,
we say that ϕ touches u from above at (x ′

0, t0) ∈ Rm,1 if there exists r > 0 such that{
ϕ(x ′, t)≥ u(x ′, t) for every (x ′, t) ∈ Qm

r (x
′

0, t0),
ϕ(x ′

0, t0)= u(x ′

0, t0).

We recall the definition of Pucci’s maximal operator (see, for instance, [Caffarelli and Cabré 1995,
Section 2.2]). For a symmetric matrix N ∈ Rd×d, we let

M+(N ) := M+

(
N , 1

2
, 2

)
=

1
2

∑
λi<0

λi + 2
∑
λi>0

λi , (3-4)

where λi = λi (N ) are the eigenvalues of N. The following result is a consequence of Proposition 3.7.

Corollary 3.8. Let M ∈ BFm(R
d,1) have bounded maximal density ratio. For every (x ′, t) ∈ Rm,1, let

u(x ′, t)= sup{|z| : z ∈ Rd−m and (x ′, z) ∈6M(t)},

with the convention sup∅ = −∞ and assume that u ≤ 1 everywhere. There is δ > 0 universal
such that, whenever a smooth function ϕ : Rm,1

→ R touches u from above at X ′

0 = (x ′

0, t0) and
max{|D2ϕ(X ′

0)|, |∇ϕ(X
′

0)|} ≤ δ, it holds

∂tϕ(X ′

0)−M+(D2ϕ(X ′

0))≤ 0.

Proof. We assume x ′

0 = 0 and t0 = 0. Notice that, since 6 is closed and u(0, 0) = ϕ(0, 0), the
supremum in the definition of u is attained and, without loss of generality, we may assume that the
contact point is x0 = ϕ(0, 0)ed ∈ 60. We let S = span{e1, . . . , em} and S′

= span{em+1, . . . , ed−1}, so
that Rd

= S + S′
+ span{ed}. Consider the function

H(x, t)=
1
4 |S′x |

2
+ x · ed −ϕ(Sx, t).

By assumption, in a neighborhood of (x0, 0) it holds

|S⊥x | ≤ ϕ(Sx, t)≤ 2
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for every (x, t) ∈ 6; therefore it can be checked that H |6∩{t≤0} ≤ 0 in the same neighborhood. Since
H(x0, 0)= 0, we know H |6∩{t≤0} has a local maximum at (x0, 0). Hence, by Proposition 3.7, it holds

∂t H(x0, 0)− inf
T ⊥∇ H(x0,0)

T : D2 H(x0, 0)≥ 0. (3-5)

We now estimate the two summands in the above inequality. In order to do so, we first remark that

∇ H(x0, 0)=

−∇ϕ(0, 0)
0
1

 , D2 H(x0, 0)=

−D2ϕ(0, 0) 0 0
0 IS′/2 0
0 0 0

 .

Consider T ∈ Gr(m, d) and an orthonormal basis ζ1, . . . , ζm of T. Then

T : D2 H =

m∑
i=1

⟨D2 Hζi ; ζi ⟩ =

m∑
i=1

(
−⟨D2ϕ(Sx, t)Sζi ; Sζi ⟩ +

|S′ζi |
2

2

)
≥ −

m∑
i=1

⟨D2ϕ(Sx, t)Sζi ; Sζi ⟩.

In particular, S : D2 H(x, t)= −1ϕ(Sx, t) and

T : D2 H = S : D2 H + (T − S) : D2 H

≥ −1ϕ− |T − S||D2ϕ|.

Now, if |T − S| ≤ c1, then the above inequality yields that, for some small c1 universal,

T : D2 H(x0, 0)≥ −M+(D2ϕ(0, 0)).

On the other hand, if |T − S| ≥ c1, then we may choose an orthonormal basis ζ1, . . . , ζm of T such that
|S⊥ζ1| ≥ c2 for some c2 universal. Since we are also assuming T ⊥ ∇ H(x0, 0), we have

0 = ζ1 · ∇H(x0, 0)= −Sζ1 · ∇ϕ(0, 0)+ ζ1 · ed .

Thus, in particular, |ζ1 · ed | ≤ |∇ϕ| ≤ δ and

|S′ζ1| ≥ |S⊥ζ1| − |ζ1 · ed | ≥ c2 − δ ≥
c2

2
,

provided δ ≤ c2/2. Therefore

T : D2 H(x0, 0)≥ −

m∑
i=1

⟨D2ϕ(0, 0)ζi ; ζi ⟩ +
|S′ζ1|

2

2
≥ −1ϕ(0, 0)+

c2
2

8
≥ −Cδ+

c2
2

8

for some C universal, since |D2ϕ(0, 0)| ≤ δ by assumption. We may choose δ smaller, if needed, so that

−M+(D2ϕ(0, 0))≤ Cδ ≤ −Cδ+
c2

2

8
.

Therefore, whether |T − S| ≤ c1 or not, it holds

T : D2 H(x0, 0)≥ −M+(D2ϕ(0, 0)).

We conclude the proof by remarking that

∂t H(x0, 0)= −∂tϕ(0, 0).
Thus (3-5) gives the desired result. □
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Remark 3.9. With some more accurate computations, one may show that, actually, at the contact point ϕ
satisfies the inequality

∂tϕ−

√
1 + |∇ϕ|2 div

(
∇ϕ√

1 + |∇ϕ|2

)
≤ 0.

However, the weaker result proved in Corollary 3.8 will be sufficient for the rest of the paper.

4. Improvement of flatness

This section is the core of the present work. We prove that if a Brakke flow with boundary is sufficiently
flat in Q1, then its flatness can be improved at a smaller universal scale. This is going to allow us to prove
the desired C1,β regularity; see Section 7.

We introduce the following notation. We fix an m-dimensional subspace of Rd, which we denote by S,
and an (m−1)-dimensional subspace of Rd, which we denote by 00, such that 00 ⊂ S. Up to changing
coordinates in Rd, we shall assume for the rest of the present section that S = span{e1, . . . , em} and that
00 = span{e1, . . . , em−1}. We also let S+

= S ∩ {xm > 0}.
Given an (m−1)-dimensional submanifold 0 of BR , we write 0 ∈ Fα(δ, BR) if the following hold:

• 0 is a C1,α submanifold of BR and [0]C1,α(BR) ≤ δR−α.

• 0 ∈ 0 and T00 = 00.

In passing, we remark that if 0 ∈ Fα(δ, BR) and θ > 0, then θ0 ∈ Fα(δ, BθR).
Moreover, if 0 ∈ Fα(δ, BR), and δ is smaller than some constant depending only on α, then there

exists γ : 00 ∩ BR → 0⊥

0 such that |γ (0)| = |∇γ (0)| = 0, ∥γ ∥C1,α(BR) ≤ δR−α and

0 = {x + γ (x) : x ∈ 00 ∩ BR} ∩ BR;

given 0 ∈ Fα(δ, BR), we will always implicitly define γ as above.
The following is the main result of the present section.

Theorem 4.1 (improvement of flatness). For every E0 and α, there exist constants 3, ε0, η, β (small)
and C (large) with the following property. Let ε ≤ ε0, 0 ∈ Fα(ε, B1) and M ∈ BFm(B1 × [−3, 0], 0)

be such that (0, 0) ∈6M ,
6M ⊂ {(z, τ ) : dist(z, S+)≤ ε},

sup
t∈[−3,0]

Mt(B1)≤ E0

and ∫
B1

9( · ,−3) d M−3 ≤
3
4
. (4-1)

Then there exists a half-plane T + of the form

T +
= {x +wζ : x ∈ 00, w > 0} (4-2)

for some ζ ∈ 0⊥

0 with |ζ − em | ≤ Cε such that

6M ∩ Qη ⊂ {(x, t) : dist(x, T +)≤ η1+βε}. (4-3)
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The proof of Theorem 4.1 is based on a contradiction and compactness argument. If one assumes the
conclusion does not hold, then it is possible to find a sequence of Brakke flows which are flatter and
flatter and satisfy the other assumptions of Theorem 4.1, for which, however, no half-plane of the form
(4-2) can be found so that the flatness improves at any smaller scale. However, for such flows, one shows
that, after an appropriate rescaling, the space-time tracks must converge in the Hausdorff distance to
the graph of a solution to the heat equation. It is then sufficient to use Schauder estimates for the heat
equation with Dirichlet boundary condition to recover the conclusion.

The central point of the proof is to obtain the desired compactness. This is achieved via the two
following results. The first one provides a control over the oscillations near 0 of the space-time support
of a Brakke flow satisfying the assumptions of Theorem 4.1.

Proposition 4.2 (boundary behavior). For every E0 and α, there exist small constants c1 and r1 with the
following property. Let M and 0 satisfy the assumptions of Theorem 4.1. Then

6 ∩ Qr1 ⊂

{
(x − γ (x ′′)) · em ≥ −ε2

+ c1
|S⊥(x − γ (x ′′))|2

2ε2

}
.

Here, x ′′ denotes the point (x1, . . . , xm−1, 0, . . . , 0) ∈ 00.
With the above results at hand, we may prove that, if the Brakke flow is flat enough, then assumption

(4-1) gives a Holder-type modulus of continuity in parabolic cylinders whose radii are controlled from
below by some power of the flatness ε.

Proposition 4.3 (decay of oscillations). For every E0 and α, there exist constants ς,C2 and r2 with the
following property. Let M and 0 satisfy the assumptions of Theorem 4.1 and let (x, t), (y, s) ∈6 ∩ Qr2 .
If min{xm, ym} ≥ 2ε and

ρ := ρ((x ′, t), (y′, s))≥ C2ε
ς ,

then
|S⊥(x − y)| ≤ C2ερ

ς .

The two above results are sufficient to prove, via an Arzelà–Ascoli-type argument, the convergence in
the Hausdorff distance which we have described.

Before proceeding, it is worth spending a few words on how the constants in Theorem 4.1 will be chosen.

• We fix 3 once and for all in Proposition 4.4; it will be needed to prove that M has bounded maximal
density ratio in a smaller parabolic cylinder, Qr3 .

• Propositions 4.2, 4.3 and 4.4 hold true provided ε0 is small enough (depending on E0). We will therefore
always assume that this is the case. The final value of ε0 will not be determined explicitly, as Theorem 4.1
is proved by compactness.

• The constants r1 and r2 chosen in Propositions 4.2 and 4.3 are chosen smaller than r3 (determined in
Proposition 4.4) and they depend on E0 and α. These two constants will give upper bounds for η. We
will then give a further upper bound for η coming from the regularity properties of the heat equation.

• Lastly, the constants C and β depend only on α and on regularity properties for the heat equation.
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We now briefly describe the rest of the present section. The proof of Theorem 4.1 is given in Section 4.2.
In Section 4.1, we state and prove some lemmas which will be useful in the following. The proofs of
Propositions 4.2 and 4.3 are postponed to Sections 5 and 6, respectively.

4.1. Preliminaries to the proof of Theorem 4.1. Some remarks on the assumptions of Theorem 4.1 will
be needed for the proofs of Propositions 4.2 and 4.3 and, ultimately, of Theorem 4.1 itself. We begin by
showing that (4-1) propagates in the interior of the domain.

Proposition 4.4 (propagation of small density). For every E0 and α, there is r3 small with the following
property. Let M and 0 satisfy the assumptions of Theorem 4.1. Then, for every (x, t) ∈ Qr3 and for every
τ ∈ (−r2

3 , 0), it holds ∫
Br3 (x)

9( · − x, τ ) d Mt ≤
7
8

+
χ0c(x)

2
.

Proof. We fix positive constants r3 ≤
1
8 , ε, 3 and δ, all of which we will determine later; we always

assume that r3 is much smaller than 3. For simplicity of notation, in this proof we set r = r3. For
(x, t) ∈ Qr and τ ∈ (−r2, 0), we let t0 = t − τ . Then, by Proposition 3.1, it holds∫

Br (x)
9( · − x, t − t0) d Mt ≤

∫
91/8( · − x, t − t0) d Mt

≤

∫
91/8( · − x,−3− t0) d M−3

+

∫ t

−3

∫
νM · ∇91/8( · − x, s − t0) d0 dτ + C E0(t +3). (4-4)

By Lemma 3.2, if ε and 3 are small enough and r is much smaller than 3, then∫ t

−3

∫
νM ·∇91/8( · − x, s − t0) d0 dτ ≤

∫ t0

t0−23

∫
|Ty0

⊥
∇91/8(y − x, s − t0)| d0(y) dτ ≤

χ0c(x)
2

+δ.

We then take 3 even smaller so that C E0(t +3)≤ C E03≤ δ.
So far, we have fixed ε and 3 depending only on E0 and δ, and we have assumed that r is much

smaller than 3. The last step is to choose r even smaller in order to bound (4-4) from above. To this end,
we let L be the Lipschitz constant of 9 restricted to Rd

× (−∞,−3/2]. Since r is much smaller than 3,
−3− t0 ≤ −3/2 and we can estimate, for every y ∈ B1/4(x),

91/8(y − x,−3− t0)≤9(y − x,−3− t0)

≤9(y,−3)+ L(|x | + |t0|)

≤9(y,−3)+ 2Lr.

Let now b = b(3) > 0 be so small that 9(y,−3)≥ b if |y| ≤
1
2 . In particular, assuming that r ≤

1
4 , for

every y ∈ B1/4(x), it holds

91/8(y − x,−3− t0)≤

(
1 +

2Lr
b

)
9(y,−3).
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The same bound holds, trivially, for any y such that |y − x | ≥
1
4 . We now choose r even smaller, if needed,

so that 2Lr/b ≤ δ. Therefore we may bound∫
91/8( · − x, t0 +3) d M−3 ≤ (1 + δ)

∫
B1

9( · ,−3) d M−3 ≤
3(1 + δ)

4
,

which yields the desired conclusion, up to choosing δ small universal. □

Corollary 4.5 (bound on mdr(M)). Under the assumptions of Proposition 4.4, there exist E1 universal
such that, for every t ∈ [−r2

3 , 0] and every Br (x)⊂ Br3 , it holds

Mt(Br (x))≤ E1rm . (4-5)

In particular, for every (x, t) ∈6M ∩ Qr3 and for every r > 0 small enough, it holds

Mt−c1r2(Br (x))≥ c2rm (4-6)
for some c1, c2 small universal.

Proof. Let x, t and r be as in the statement. Then

Mt(Br (x))≤ Crm
∫

Br (x)
9( · − x,−r2) d Mt ≤ 2Crm,

and (4-6) follows from (4-5) and Proposition 3.4. □

4.2. Proof of Theorem 4.1. As stated earlier, we are going to argue by contradiction and compactness.
Namely, we fix E0 and α, we let 3 be as specified in Proposition 4.4 and we assume there exist εj ↘ 0
and two sequences {0 j

}, {M j
} such that, for every j , M j and 0 j satisfy the assumptions of Theorem 4.1

with ε0 replaced by εj .
In particular, we assume that 0 j

∈ Fα(εj , B1) and

6M j ⊂ {(z, τ ) : dist(z, S+)≤ εj }. (4-7)

We also assume, for the sake of contradiction, that for no j (4-3) is satisfied for any choice of T +, η
and β.

In the following, we let γ j
: 00 ∩ B1 → 0⊥

0 be such that 0 j
∩ B1 ⊂ graph γ j, as in the definition

of Fα(εj , B1), and we let 6 j
:= 6M j . We also fix r0 = min{r1, r2, r3}, so that the conclusions of

Propositions 4.2, 4.3, 4.4 and of Corollary 4.5 hold true in Qr0 .

Lemma 4.6 (compactness and convergence to hyperplane). There exists a subsequence (not relabeled)
such that, for almost every t ∈ (−r2

0 , 0],

M j
t ⇀Hm ⌞ S+

as Radon measures in Br0 .

Proof. By the Arzelà–Ascoli theorem, γ j
→ 0 in C1 up to subsequences. By Corollary 4.5, we may

apply the compactness theorems proven in [White 2021, Theorems 10.1 and 10.2] and find a further
subsequence (not relabeled) and M∞

∈ BFm(Qr0, 00) such that, for every t ∈ (−r2
0 , 0],

M j
t ⇀ M∞

t .
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In particular, the weak convergence stated above and (4-7) yield

M∞

t ((S
+)c)= 0

for every t ∈ (−r2
0 , 0]. Therefore, by Definition 2.3, for almost every t , there is an integer-valued function

θt ∈ L1
loc(S

+) so that
M∞

t = θt( · )Hm ⌞ (S+
∩ Br0).

By testing (2-1) with vector fields X ∈ C1
c (Br0 \00; Rd) such that S⊥X = 0 everywhere, one deduces

that, for almost every t , θt( · ) is an integer-valued W 1,1
loc function on S+. Since S+

∩ Br0 is connected,
θt( · ) must be constant for almost every t . Moreover, by (4-6), (0, 0) ∈6M∞ ; thus by Proposition 3.4 it
must be θt > 0 for every t < 0. We conclude by noting that, with the above remarks, for almost every t ,
βM∞

t = θtHm−1 ⌞00; then the assumption M∞
t ∈ V(Br0, 00) yields θt = 1. □

Before stating the next result, we define some objects that we will use in the rest of the subsection.
First of all, let Fε : Rd

→ Rd be the map

Fε(x)=

(
Sx, 1

ε
S⊥x

)
;

with a small abuse of notation, we use the same notation for the map Fε : Rd,1
→ Rd,1 such that

Fε(x, t)= (Fε(x), t). We now define
6̃ j

= Fεj (6
j ).

Notice that, by (4-7), 6̃ j
⊂ {(x, t) : |S⊥x | ≤ 1} for every j . For j ∈ N and (x ′, t) ∈ Qr0 , we define

u j (x ′, t)= {z ∈ Bd−m
1 : ((x ′, z), t) ∈ 6̃ j

};

notice that such a set may well be empty or have more than one element. We also define γ̃ j
= Fεj ◦γ

j ; it
is clear that

γ̃ j
· em → 0 in C1,α.

Furthermore, since ∥γ̃ j
∥C1,α(Br0 )

≤ 1, by the Arzelà–Ascoli theorem and up to passing to a subsequence
(which we do not relabel) we may find g : Bm−1

r0
→ Bd−m

1 such that, for every 0< ς < α,

S⊥γ̃ j
→ g in C1,ς

and ∥g∥C1,ς ≤ 1.
In order to keep the notation light, in the following we denote by E = Bm

r0
× Bd−m

1 ×[−r2
0 , 0] ⊂ Rd,1

and E ′
= S(E)= Qm

r0
⊂ Rm,1. We also let E ′

+
= E ′

∩ {xm ≥ 0}.

Lemma 4.7 (uniform convergence). There exist a subsequence (not relabeled) and u : E ′
+

→ Bd−m
1 with

the following properties:

(i) It holds
dH (6̃

j
∩ E; graph u)→ 0 (4-8)

as j → ∞.

(ii) For every (x ′′, t) ∈ Qm−1
r0 it holds u((x ′′, 0), t)= g(x ′′).
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(iii) For every X ′, Y ′
∈ E ′

+
,

|u(X ′)− u(Y ′)| ≤ 2C2ρ(X ′, Y ′)ς ,

where C2 and ς are as in Proposition 4.3.

In (4-8), by graph u we mean the set {(x ′, u(x ′, t), t) : (x ′, t) ∈ E ′
+
} ⊂ E .

Proof. Step 1: Hausdorff convergence. By Lemma 4.6, 6̃ j
∩ E ̸= ∅ eventually. Thus one may extract a

subsequence (not relabeled) so that 6̃ j
∩ E converges in the Hausdorff distance to some closed set 6̃ ⊂ E .

Since, by assumption, 6̃ j
⊂ {xm ≥ −εj }, it must also be 6̃ ⊂ {xm ≥ 0}. We define the set-valued function

u(x ′, t)= {y ∈ Bd−m
1 : ((x ′, y), t) ∈ 6̃} (4-9)

for (x ′, t) ∈ E ′
+

.

Step 2: u(x ′, t) ̸=∅ for every (x ′, t)∈ E ′
+

. Assume, by contradiction, that there exists (x ′, t)∈ E ′
+

\S(6̃)
(recall the notation S(x, t)= (Sx, t)= (x ′, t)). Then, since S(6̃) is closed, there exists an open neigh-
borhood U ′ of (x ′, t) such that U ′

⊂ (S(6̃))c. If we let U = S−1(U ′) ⊂ Rd,1, then by Lemma 4.6 and
Fatou’s lemma

0<Hm,1(U ∩ (S+
× R))≤ lim inf

j
M j (U ).

Thus M j (U ) > 0 eventually. In particular, by taking smaller and smaller neighborhoods, one can pick
a subsequence jℓ → ∞ and a sequence Xℓ ∈6 jℓ so that S(Xℓ)→ (x ′, t). By using the maps Fεj defined
above, we rescale in the directions of S⊥ and find that, up to subsequences, there exists z ∈ Bd−m

1 such that

6̃ jℓ ∋ Fε jℓ
(Xℓ)→ ((x ′, z), t).

By Step 1, ((x ′, z), t) ∈ 6̃, which contradicts the fact that u(x ′, t)= ∅.

Step 3: u((x ′′, 0), t) = {g(x ′′)}. Let (x ′′, t) ∈ Qm−1
r0 . If y ∈ u((x ′′, 0), t), then by Step 1 there exists a

sequence (x j , tj ) ∈ 6̃ j such that x j → ((x ′′, 0), y) and tj → t . In particular, by Proposition 4.2, it holds

|S⊥(x j − γ̃ j (x ′′

j ))| =
1
εj

|S⊥(F−1
εj
(x j )− γ

j (x ′′

j ))|

≤ C |x j · em + εj + ε2
j |

1/2
→ 0

as j → ∞. Since S⊥γ̃ j converges uniformly to g and S⊥x j → y, it must be

u((x ′′, 0), t)= {g(x ′′)}.

Step 4: u(x ′, t) is a singleton and (iii) holds true. For i = 1, 2, let X i = (xi , ti ) ∈ 6̃. Let also
ρ := ρ(S(X1), S(X2)) and, without loss of generality, assume (x2)m ≥ (x1)m .

Case 1: (x1)m = 0. By Step 1 and Proposition 4.2, we have

|S⊥x2 − g(x ′′

2 )| ≤ C(x2)
1/2
m ≤ Cρ1/2.

Moreover, |S⊥x1 − g(x ′′

2 )| = |g(x ′′

1 )− g(x ′′

2 )| ≤ Cρ. Thus

|S⊥x2 − S⊥x1| ≤ Cρ1/2
+ Cρ ≤ Cρς .



876 CARLO GASPARETTO

Case 2: (x1)m > 0 and ρ= 0. In this case, we prove that S⊥(x1)= S⊥(x2). Fix ω much smaller than (x1)m .
By Steps 1 and 2, we may pick j large enough and three points Y1, Y2, W = (w, τ) ∈ 6̃ j such that
ρ(X i , Yi )≤ ω and 2ω ≤ ρ(S(W ), S(X i ))≤ 4ω. Up to choosing j larger, we may assume that ω ≥ Cεςj
and (yi )m ≥ (xi )m −ω ≥ 2εj . Therefore, by Proposition 4.3, since ρ(S(W ), S(Yi ))≥ ω, we estimate

|S⊥(x1 − x2)| ≤ |S⊥(x1 − y1)| + |S⊥(x2 − y2)| + |S⊥(y1 −w)| + |S⊥(y2 −w)|

≤ 2ω+ Cως .

Since ω > 0 is arbitrary, it holds S⊥(x1) = S⊥(x2). In particular, u(x ′, t) is a singleton for every
(x ′, t) ∈ E ′

+
. With a small abuse of notation, from here onwards, we will denote by u(x ′, t) ∈ Rd−m the

only element of the set defined in (4-9).

Case 3: (x1)m > 0 and ρ > 0. By Steps 1 and 2, we may choose j large enough and two points Y1, Y2

such that the following hold true:

(1) Y1, Y2 ∈ 6̃ j .

(2) For i = 1, 2, ρ(X i , Yi ) < ρ/8.

(3) Cεςj ≤ ρ/2.

(4) For i = 1, 2, (yi )m ≥ 2εj .

Then, by Proposition 4.3, it holds

|u(SX1)− u(SX2)| ≤ |u(SX1)− S⊥(y1)| + |u(SX2)− S⊥(y2)| + |S⊥(y1 − y2)|

≤ 2
ρ

8
+ Cρς ≤ 2Cρς ,

as desired. □

The rest of the proof consists in proving that u defined in Lemma 4.7 solves the heat equation
in the interior of E ′

+
. To this end, we recall some facts about the heat equation. First, recall that

E ′
+

= Qm
r0

∩ {xm ≥ 0} and let us introduce the sets

Intp E ′

+
= E ′

+
\ ∂p E ′

+
,

(E ′

+
)r = {x ′

∈ Rm
: |x ′

| ≤ r0 − r and x ′

m ≥ r} × [−r2
0 + r2, 0].

Notice that Intp E ′
+

=
⋃

r>0(E
′
+
)r .

Lemma 4.8 (interior regularity for the heat equation). Let g ∈ C(∂p E ′
+
). Then there exists h ∈

C∞(Intp E ′
+
)∩ C(E ′

+
) such that {

∂t h −1h = 0 in Intp E ′
+
,

h = g on ∂p E ′
+
.

Moreover, for every r > 0 there exists C > 0 such that, for every (x ′, t) ∈ (E ′
+
)r , it holds

max{|h(x ′, t)|, |∇h(x ′, t)|, |D2h(x ′, t)|, |∂t h(x ′, t)|} ≤ C∥g∥L∞(∂p E ′
+)
.

We now proceed with the proof of Theorem 4.1.
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Lemma 4.9. Let u be as in Lemma 4.7. Then u ∈ C∞(Intp E ′
+
; Rd−m)∩ C(E ′

+
; Rd−m) and

∂t u −1u = 0

in Intp E ′
+

.

Proof. We take as a model the proof of [Savin 2018, Lemma 2.4]. We show that u is equal to the solution
h : E ′

+
→ Rd−m to the boundary value problem{

∂t h −1h = 0 in Intp E ′
+
,

h = u on ∂p E ′
+
,

whose existence is guaranteed by Lemma 4.8. If not, there exist r, ω small and positive so that the function

E ′

+
∋ (x ′, t) 7→ |u(x ′, t)− h(x ′, t)|2 +ω|x ′

|
2

achieves its maximum at (x ′

0, t0) ∈ (E ′
+
)2r . Since 6̃ j converges in the Hausdorff distance to graph u, for

some large j we may find X1 = (x1, t1) ∈6 j such that (x ′

1, t1) ∈ (E ′
+
)r and the restriction to 6 j of

H(x, t) :=

∣∣∣∣ S⊥x
εj

− h(Sx, t)
∣∣∣∣2

+ω|Sx |
2

achieves its maximum at X1.
We claim that, if εj is small enough, depending on r and ω, then, for every m-dimensional subspace T,

it holds T : D2 H(X1) > ∂t H(X1). This would contradict Proposition 3.7, thus concluding the proof. To
prove the claim, we define f (x, t)= (1/εj )S⊥x − h(Sx, t) and, with some straightforward computations,
we write

H(x, t)= G1(x, t)+ G2(x, t),

where
G1(x, t)= | f (X1)|

2
+ 2 f (X1) · ( f (x, t)− f (X1))+ω|Sx |

2,

G2(x, t)= | f (x, t)− f (X1)|
2.

Notice that, by Lemma 4.8, there exists C depending on r such that

|D2G1(X1)| ≤ C(ω+ | f (X1)||D2h(SX1)|)≤ C.

Then, just as in [Savin 2018], it is easy to show that, if |T − S| ≤ cω, then

T : D2G1(X1) > ∂t H(X1)

and D2G2(X1)≥ 0; thus in this case T : D2 H(X1) > ∂t H(X1). On the other hand, if |T − S| ≥ cω, then
there exists a unit-vector ν ∈ T such that S⊥ν ≥ cω. In particular, since D2G2(X1)= 2∇ f (X1)∇ f (X1)

T,
it holds

T : D2G2(X1)≥ −|Sν|2|∇h(SX1)|
2
+

1
ε2

j
|S⊥ν|2 ≥

cω2

ε2
j
.

We now conclude by remarking that ∂t H(X1)= 2 f (X1) · ∂t h(SX1)≤ C and

T : D2G1(X1)≥ −|D2G1(X1)| ≥ −C.
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Thus

T : D2 H(X1)≥ −C +
cω2

ε2
j
> ∂t H(X1),

provided εj is chosen small enough depending on ω and C (which, in turn, is a large constant depending
on r ). □

Once proven that u is a solution to the heat equation, it is sufficient to apply the following classical
estimate:

Lemma 4.10 (boundary regularity for the heat equation). For every α ∈ (0, 1), there exist positive
constants C and β with the following property. Let u ∈ C2(Intp E ′

+
)∩ C(E ′

+
) be such that

∂t u −1u = 0 in Intp E ′

+
.

Assume, moreover, that for all t , u( · , t)|{xm=0} = g ∈ C1,α(Br0 ∩{xm = 0}) we have |g(0)| = |Dg(0)| = 0
and |u| ≤ 1 everywhere. Then there exists a linear operator L : Rm

→ Rd−m with |L| ≤ C such that, for
every η ∈

(
0, 1

4

)
,

|u(x ′, t)− L(x ′)| ≤ Cη1+β

in (Bm
η ∩ {xm ≥ 0})× (−η2, 0].

Proof. See [Wang 1992, Theorem 2.1]. □

Remark 4.11. From the fact that g ∈ C1,α and that Dg(0)= 0, it follows that L(x ′)= 0 if xm = 0.

Conclusion of the proof of Theorem 4.1. By Lemmas 4.9 and 4.10, there exists L : Rm
→ Rd−m linear

such that L(x ′)= 0 if x ′
m = 0, |L| ≤ C and, for every η small, it holds

6̃ ∩ (Bm
2η × Bd−m

1 × (−4η2, 0])⊂ {(x, t) : |S⊥x − L(Sx)| ≤ Cη1+β
}.

We fix η small, to be specified later, and we choose j sufficiently large so that the Hausdorff distance
between 6̃ and 6̃ j is smaller than η1+β. We now let T = {x ∈ Rd

: S⊥x = εj L(Sx)}. Then it holds

6 j
∩ Qη ⊂ {|T ⊥x | ≤ C ′εjη

1+β
}.

Moreover, by Proposition 4.2 and the fact that |γ
j

m(x ′′)| ≤ εj |x ′′
|
1+α, it holds

6 j
∩ Qη ⊂ {xm ≥ −εjη

1+α
− ε2

j },

provided η ≤ r2. We choose j large enough so that ε2
j ≤ η1+β. Since β can be chosen smaller than α,

6 j
∩ Qη ⊂ {xm ≥ −2εjη

1+β
} ∩ {|T ⊥x | ≤ Cεjη

1+β
}.

Up to choosing j larger, the above inclusion yields

6 j
∩ Qη ⊂ {dist( · , T +)≤ 2Cεjη

1+β
}.

We conclude the proof by choosing β ′ > β and η so small that 2Cη1+β
≤ η1+β ′

and we recover (4-3)
(with β ′ instead of β). This contradicts the assumption made at the beginning of the present subsection,
thus concluding the proof. □
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5. Boundary behavior

We now prove Proposition 4.2. The setting is the following. Let E0 and α be given and let r3 be the
constant given in Proposition 4.4. Assume M and 0 satisfy the assumptions of Theorem 4.1. Then
mdr(M, Qr3) <∞; therefore Proposition 4.2 follows from the following, more general, statement:

Proposition 5.1 (boundary behavior at scale R). There exist c and ε1 depending only on α with the
following property. Let 0< δ < ε ≤ ε1, 0 ∈ Fα(δ, BR) and M ∈ BFm(Q R, 0) be such that

6 ∩ Q R ⊂ {(x, t) : dist(x, S+)≤ εR}

and
mdr(M, Q R) <∞. (5-1)

Then

6 ∩ Q R/2 ⊂

{
(x, t) : xm ≥ γm(x ′′)− Rδ2

+ cR
|S⊥(x − γ (x ′′))|2

2(εR)2

}
.

Remark 5.2. The role of (5-1) is to guarantee that the maximum principle (Proposition 3.7) holds true.

Proof. By a simple rescaling argument, it is sufficient to prove the result in the case R = 1. We fix c small
and ε1 ≤ c, to be specified later. By contradiction, assume there exist 0< δ ≤ ε ≤ ε1, 0 and M as above,
and a point (x̄, t̄) ∈6 ∩ Q1/2 such that

0< ω :=
c

2ε2 |S⊥(x̄ − γ (x̄ ′′))|2 − δ2
+ γm(x̄ ′′)− x̄m .

We show that, if this is the case, then we may build a family of surfaces sliding in the direction of em that
touch 6 at some point where the conclusion of Proposition 3.7 fails.

In order to do so, we first define the functions g : Rd−m
→ R and h : Rm

→ R as

g(z)= c
|z − S⊥γ (x̄ ′′)|2

2ε2 ,

h(y)= P(y′′)− |y′′
− x̄ ′′

|
2
− ym,

where
P(y′′)= γm(x̄ ′′)+ ∇γm(x̄ ′′) · (y′′

− x̄ ′′)− δ2
− C |y′′

− x̄ ′′
|
2,

and C is a constant depending only on α chosen so that

P(x ′′)≤ γm(x ′′) (5-2)

(to show that such C depending only on α exists, use the fact that γ ∈ C1,α(BR) and Young’s inequality).
Then, choose a smooth function f : R → R such that f (−1)=−4c, f |t≥−1/4 ≥−ω/2, f < 0 everywhere
and f ′(t)≤ 8c everywhere. We now set

H(x, t)= g(S⊥x)+ h(Sx)+ f (t).

This way, the zero-level set of H is a surface sliding in the em-direction. Notice that

H(x̄, t̄)= ω+ f (t̄) > 0. (5-3)

We now show that, if (x, t) ∈6 ∩ ((0× R)∪ ∂p Q1), then H(x, t)≤ 0.
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(1) If x ∈6−1, then

• g(S⊥x)≤ c(ε+ δ)2/(2ε2)= 2c, since |S⊥x | ≤ ε and |γ (x ′′)| ≤ δ ≤ ε,

• by (5-2), h(Sx)≤ γm(x ′′)− xm ≤ 2ε.

The two above facts, along with the assumption f (−1)= −4c, yield

H(x,−1)≤ 2c + 2ε− 4c ≤ 0

provided ε ≤ c.

(2) If x ∈ ∂B1 ∩6t , then |S⊥x | ≤ ε and xm ≥ −ε. Thus

|x ′′
| ≥

√
1 − ε2

− x2
m ≥

3
4 − xm,

provided ε is small enough. In particular, |x ′′
− x̄ ′′

| ≥
1
4 − xm . Hence:

• Since ∥γ ∥C1,α(B1) ≤ δ, we have

h(Sx)≤ 2δ− (C + 1)|x ′′
− x̄ ′′

|
2
− xm ≤ 2δ− (C + 1)

( 1
4 − xm

)2
− xm .

• As in (1), g(S⊥x)≤ 2c,

• f (t)≤ 0.

Therefore

H(x, t)≤ 2c + 2δ− (C + 1)
( 1

4 − xm
)2

− xm ≤ 2c + 2δ−
C

4(1 + C)
≤ 0

provided C ≥ 1 and c, δ are small enough.

(3) Lastly, for every x ∈ 0 and t ∈ (−1, 0), under the assumptions δ ≤ ε and c ≤ 1, it holds

g(S⊥x)=
c

2ε2 |S⊥(γ (x ′′)− γ (x̄ ′′))|2 ≤
c

2ε2 ∥∇γ ∥
2
∞

|x ′′
− x̄ ′′

|
2
≤ |x ′′

− x̄ ′′
|
2.

Since f ≤ 0 and h(Sx)≤ γm(x ′′)− |x ′′
− x̄ ′′

|
2
− xm , we have

H(x, t)≤ γm(x ′′)− xm = 0.

Points (1)–(3) above and (5-3) show that there must exist Y = (y, s) ∈ Q1 ∩6 with y /∈ 0 such that
H |{t≤s} has a local maximum at (y, s).

We now show that one can choose c even smaller, if needed, so that the existence of such a point would
contradict the maximum principle. Indeed, since |S⊥y| ≤ ε, if c is small enough then

|∇h(Sy)|2

|∇g(S⊥y)|2
≥ ε.

Thus
|S⊥

∇ H(Y )| = |∇g(S⊥y)| ≤ (1 − ε)|∇ H(Y )|.

Therefore, if T is an m-dimensional subspace of Rd such that T ⊥ ∇ H(Y ), then

T : S⊥
≥ ε
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and

T : D2 H(Y )= T :

(
D2h 0

0 D2g

)
≥ −|D2h(Sy)| + ε|D2g(S⊥y)|.

Now, simple computations show that, up to multiplication by constants depending only on m and α,
|D2h(Sy)| ≤ 1 and |D2g(S⊥y)| ≥ c/ε2. Therefore, if ε is much smaller than c, then T : D2 H(y)≥ c/(2ε).
However, by Proposition 3.7, it holds

inf
T ⊥∇ H(Y )

T : D2 H(Y )≤ ∂t H(Y )= f ′(s)≤ 8c,

which is a contradiction. □

6. Decay of oscillations: proof of Proposition 4.3

We begin by giving the following definition:

Definition 6.1. Let u : Rm,1
→ [−∞, 1] be an upper-semicontinuous function. Assume that, whenever a

smooth function ϕ : Rm,1
→ R touches u from above at some (x ′

0, t0)∈U × I (according to the terminology
set in Section 3.2) and |∇ϕ(x ′

0, t0)|, |D2ϕ(x ′

0, t0)| are smaller than some fixed universal constant δ0, then

∂tϕ−M+(D2ϕ)≤ 0 (6-1)

at (x ′

0, t0) (see Section 3.2 for the definition of M+). Then u is said to be a viscosity subsolution to (6-1)
in U × I.

The reader should notice that the classical definition of viscosity solution is slightly different than ours, in
that the test function ϕ usually has no restrictions on the magnitude of |∇ϕ| and |D2ϕ| at the touching point.

The proof of Proposition 4.3 is achieved in three steps:

(1) First of all, one sees that the support of a M behaves, in some sense, like the graph of a viscosity
subsolution to (6-1), as in the definition above; this was proved in Corollary 3.8.

(2) By exploiting the results in [Wang 2013], one shows that, if a 6 has a point far enough from S, then
the mass of M near that point cannot be too small.

(3) If 6 does not have the decay of oscillations stated in Proposition 4.3, then by the previous step the
mass of M in some parabolic cylinder must be large; this contradicts the small density assumption (4-1).

Before proceeding, we introduce some notation that we are going to use in the present subsection.
Given θ ∈ (0, 1), we define the set

Pθ1 =

{
(x ′, t) ∈ Rm,1

: |x ′
|
2 <−

t
θ2 < 1

}
.

One should compare these sets with those which, in [Wang 2013], are called “parabolic balls”. Our
definition slightly differs from theirs; notice that with our choice Pθ1 ⊂ Bm

1 × (−θ2, 0).
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Lemma 6.2 (measure estimate [Wang 2013]). For every θ > 0 and µ ∈ (0, 1), there exist small con-
stants η′, r with the following property. Let u : Rm,1

→ [−∞, 1] be a viscosity subsolution to (6-1) in
Bm

1 × (−θ2, 0) and assume that
u(Y0)≥ 1 − η′

for some Y0 ∈ Bm
r × (−θ2r2, 0). Then

Lm,1({u ≥ 1 −µ} ∩Pθ1 )≥ (1 −µ)Lm,1(Pθ1 ). (6-2)

Proof. This result corresponds, essentially, to [Wang 2013, Lemma 4.3]. Apart from some trivial
adjustment of constants, there are two caveats:

• The results in [loc. cit.] are stated with the classical definition of viscosity solutions, where no bound
on the test function at the touching point is required. However, it is easy to see that the results are valid
for our definition of viscosity solution, as well.

• In our setting, we allow u to be merely upper-semicontinuous and, possibly, take infinite values, while
in [loc. cit.] u is required to be continuous. This minor point can be easily overcome by looking at the
sup-convolution of u,

uδ(x, t)= sup
{

u(y, s)− 1
δ
(|x − y|

2
+ (t − s)2)

}
,

which conserves the property of being a viscosity subsolution to (6-1) and for which (6-2) holds true, by
[loc. cit., Lemma 4.3]. Letting δ ↘ 0 gives the desired conclusion. □

Before stating the next result, we fix some further notation. For any closed set 6 ⊂ Rd,1 and any
�⊂ Rd,1, we let

osc(6,�)= inf
{
h > 0 : there is y ∈ Rd such that 6 ∩�⊂ {x : |S⊥(x − y)| ≤ h}

}
.

We also let
Cr = {x ∈ Rd

: |Sx |< r}.

Lemma 6.3 (Harnack inequality). For every δ ∈ (0, 1), there exist small constants ε2, θ , r , η with the
following property. Let ε ≤ ε2 and M ∈ BFm(C1 × (−θ2, 0]) be such that

6 ⊂ {|S⊥x | ≤ ε}, (6-3)∫
C1

9( · , t) d Mt ≤ 2 − δ for all t ∈ (−θ2, 0), (6-4)

and
mdr(M,C1 × (−θ2, 0]) <∞. (6-5)

Then
osc(6,Cr × (−θ2r2, 0])≤ (1 − η)ε. (6-6)

The proof of the above result involves some technical estimates. It is therefore convenient to give
an overview of the strategy. If (6-6) does not hold, then one finds two points Y1 and Y2 in 6 that are
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far enough in S⊥. By applying Lemma 6.2 twice, we find that in C1 × (−θ2, 0) the mass of M must be
almost that of two m-dimensional disks. This contradicts (6-4), which encodes the fact that the mass of
M must not exceed by too much that of a single disk.

Proof of Lemma 6.3. Let δ ∈ (0, 1) be given. Fix θ and µ, which we will specify later, and let r
and η′ be chosen accordingly as in Lemma 6.2. Moreover, fix ε much smaller than µ and η ≤ η′, to
be specified later. Assume, by contradiction, that there exist M ∈ BFm(C1 × (−θ2, 0]) that satisfies
the assumptions of the present result with the choices made above, and two points Y1 = (y1, s1), Y2 =

(y2, s2) ∈6∩ (Cr × (−θ2r2, 0]) with |S⊥y1 − S⊥y2| ≥ 2(1−η)ε. For every (x ′, t) ∈ Bm
1 × (−θ2, 0] and

for i = 1, 2, let

ui (x ′, t)=
1
2ε

sup{|z − S⊥yi | : z ∈ S⊥ and (x ′, z) ∈6t }.

Notice that u1 and u2 are upper-semicontinuous and, for every (x ′, t), either u1(x ′, t), u2(x ′, t) ∈ [0, 1] or
u1 = u2 = −∞. By Corollary 3.8 and (6-5), both u1 and u2 are viscosity subsolutions to (6-1). Moreover,

u1(Sy2, s2)≥
1
2ε

|S⊥y2 − S⊥y1| ≥ 1 − η ≥ 1 − η′
;

hence, by Lemma 6.2,
Lm,1({u1 ≥ 1 −µ} ∩Pθ1 )≥ (1 −µ)Lm,1(Pθ1 ).

With the same argument, one also obtains

Lm,1({u2 ≥ 1 −µ} ∩Pθ1 )≥ (1 −µ)Lm,1(Pθ1 ). (6-7)

We now want to estimate ∫
C1×(−θ2,0)

9 d M.

We first define, for i = 1, 2, the sets

Ai =

{
(x, t) ∈ Rd,1

: (Sx, t) ∈ Pθ1 , |S
⊥(x − yi )| ≤

ε

2
and t ≤ −

2ε2

δ

}
.

Notice that A1 ∩ A2 = ∅ and, by (6-3), for M-a.e. (x, t) ∈ Ai , it holds

9(x, t)= exp
(

|S⊥x |
2

4t

)
9 ′(Sx, t)≥ exp

(
−

ε2

8ε2/δ

)
9 ′(Sx, t)≥

(
1 −

δ

8

)
9 ′(Sx, t),

where 9 ′(x ′, t) :=9((x ′, 0), t).
Therefore we have∫

C1×(−θ2,0)
9 d M ≥

∫
A1

9 d M +

∫
A2

9 d M

≥

(
1 −

δ

8

)(∫
A1

9 ′(Sx, t) d M(x, t)+
∫

A2

9 ′(Sx, t) d M(x, t)
)
. (6-8)

Moreover, by Lemma 3.6 and by the coarea formula,∫
Ai

9 ′(Sx, t) d M(x, t)≥

∫
S(Ai ∩6)

9 ′(x ′, t) dLm,1(x ′, t). (6-9)
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We may assume that µ and η are smaller that some universal constant so that, if z ∈ Rd−m with |z| ≤ ε

is such that |z − S⊥y2|/(2ε)≥ 1 −µ, then

|z − S⊥y1| ≤
ε

2
.

In particular, we have

S(A1 ∩6)⊃ {u2 ≥ 1 −µ} ∩Pθ1 ∩

{
t ≤ −

2ε2

δ

}
,

which, together with (6-7), yields that S(A1 ∩6) covers a large portion of Pθ1 ; namely

Lm,1(S(A1 ∩6))≥ Lm,1
(
Pθ1 ∩ {u2 ≥ 1 −µ} ∩

{
t ≤ −

2ε2

δ

})
≥ Lm,1(Pθ1 ∩ {u2 ≥ 1 −µ})−

2ε2

δ
≥ (1 − 2µ)Lm,1(Pθ1 ),

provided ε2
≤ cδµ for some c small universal.

We are now ready to choose µ, depending on δ, so that the above inequality and the fact that 9 ∈

L1(Lm,1 ⌞Pθ1 ) yield∫
S(A1∩6)

9 ′ dLm,1
≥

∫
Pθ

1

9 ′ dLm,1
−
δθ2

8
= θ2

∫
Bm

1

9 ′( · ,−θ2) dLm
−
δθ2

8
. (6-10)

Finally, we also choose θ small such that∫
Bm

1

9 ′( · ,−θ2) dLm
≥

∫
Rm
9 ′( · ,−θ2) dLm

−
δ

8
= 1 −

δ

8
. (6-11)

By (6-10) and (6-11), it holds ∫
S(A1∩6)

9 ′ dLm,1
≥ θ2

(
1 −

δ

4

)
. (6-12)

The same argument can be repeated for A2, thus giving∫
S(A2∩6)

9 ′ dLm,1
≥ θ2

(
1 −

δ

4

)
. (6-13)

We conclude the proof by combining (6-8), (6-9), and (6-12), (6-13), obtaining∫
C1×(−θ2,0)

9 d M ≥ 2θ2
(
1 −

δ

8

)(
1 −

δ

4

)
≥ θ2

(
2 −

3δ
4

)
,

which contradicts (6-4). This concludes the proof. □

A simple rescaling argument allows one to iterate Lemma 6.3 and obtain the following

Proposition 6.4. For every δ ∈ (0, 1) there exist C (large) and ς (small) with the following property. Let
M ∈ BFm(CR × (−R2, R2)) be such that

mdr(M,CR × (−R2, R2)) <∞ (6-14)
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and assume that, for every (x, t) ∈ CR/2 × (−R2/4, R2/4)) and every s ∈ (t − R2/4, t), it holds∫
CR/2(x)

9( · − x, s − t) d Ms ≤ 2 − δ. (6-15)

If ε = osc(6,CR × (−R2, R2)), then, for any couple (x, t), (y, s) ∈ CR/2 × (−R2/4, R2/4)∩6 such
that ρ = ρ(X ′, Y ′)≥ C R1−ςες , it holds

|S⊥(x − y)| ≤ Cε
(
ρ

R

)ς
.

Proof. We prove the result for R = 1, as the general case follows by replacing M with DR M.
Let ε2, θ , r , η be the constants given in Lemma 6.3 in correspondence to δ. Without loss of generality,

we may assume that ε ≤ ε2; otherwise the result follows by choosing C large enough. Consider the
rescaled flows Mk

= Dr k (M − X). By induction, the assumptions of Lemma 6.3 are in place for every
integer k such that (

1 − η

r

)k

ε ≤ ε2. (6-16)

Therefore, scaling back to the original flow, we see that for those k

osc(6M ,Cr k (x)× (t − θ2r2k, t])≤ (1 − η)kε.

Let now X = (x, t) and Y = (y, s) be two points in C1/2 ×
(
−

1
4 ,

1
4

)
∩6 and let ρ = ρ((x ′, t), (y′, s)).

Without loss of generality, we may assume that t ≥ s. Furthermore, by taking C ≥ 2/θ , we may clearly
reduce ourselves to the case ρ ≤ θ/2. By choosing ς small enough and C larger than the choice
made above, if necessary, we infer from ρ ≥ Cες that there exists k ∈ N satisfying (6-16) such that
r k+1

≤ 2ρ/θ ≤ r k. Thus

Y ∈ C2ρ(x)× (t − 4ρ2, t] ⊂ Cr k (x)× (t − θ2r2k, t];

hence it must be |S⊥(x − y)| ≤ 2(1 − η)kε. We conclude the proof by taking C larger and ς smaller, if
needed, so that 2(1 − η)k ≤ Cρς. □

We finally prove Proposition 4.3.

Proof of Proposition 4.3. Let r2 =
1
2 min{r1, r3}, where r1 and r3 are given in Propositions 4.2 and 4.4,

respectively. Let also X = (x, t), Y = (y, s) be two points in 6 ∩ Qr2 . Without loss of generality, we
assume that R := xm ≥ ym ≥ 2ε. Let ρ = ρ((x ′, t), (y′, s)); finally, let ς be the constant determined in
Proposition 6.4 corresponding to δ =

1
2 . We shall distinguish two cases.

If ρ ≤ R/8, then we may find t ′
∈ (−r2

2 , 0] such that X, Y ∈ CR/4(x)× (t ′
− R2/16, t ′

+ R2/16) and
CR/4(x) ⊂ 0c. Since R ≤ 1, the assumption ρ ≥ Cες yields ρ ≥ C R1−ςες. By Proposition 4.4 and
Corollary 4.5, (6-14) and (6-15) hold true; thus Proposition 6.4 applies and we obtain

|S⊥(x − y)| ≤ C
(
ρ

R

)ς
osc(6,U(X)),
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where U(X) := CR/4(x)× (t ′
− R2/16, t ′

+ R2/16). By Proposition 4.2, we may estimate

osc(6,U(X))≤ 2Cε
√

2R + ε+ ε2 + C R∥∇γ ∥∞ ≤ CεR1/2,

since ε ≤ R/2 and ∥∇γ ∥∞ ≤ Cε. Thus

|S⊥(x − y)| ≤ CεR1/2−ςρς ≤ Cερς ,

since ς can be chosen smaller than 1
2 .

On the other hand, if ρ ≥ R/8, then it is sufficient to use Proposition 4.2 twice and the fact that
∥∇γ ∥∞ ≤ Cε to estimate

|S⊥(x − γ (x ′′))| ≤ Cε(R + ε+ ε2)1/2 ≤ Cερ1/2,

|S⊥(y − γ (y′′))| ≤ Cε(2R + ε+ ε2)1/2 ≤ Cερ1/2,

|S⊥(γ (y′′)− γ (x ′′))| ≤ Cερ.
We therefore conclude

|S⊥(x − y)| ≤ Cερ1/2
≤ Cερς ,

which is the desired result. □

7. C1,β regularity

In the present section, we prove the following ε-regularity theorem:

Theorem 7.1 (C1,β regularity). For every E0 and α, there are small constants ε3,3, η and β with the
following property. Let ε ≤ ε3, 0 ∈ Fα(ε, B1), M ∈ BFm(B1 × [−3, 0], 0) be such that (0, 0) ∈6M ,

6M ⊂ {(z, τ ) : dist(z, S+)≤ ε},

sup
t∈[−3,0]

Mt(B1)≤ E0

and ∫
B1

9( · ,−3) d M−3 ≤
3
4
.

Then there is u ∈ C1,β(Qm
η ,Rd−m) with ∥u∥C1,β ≤ Cε such that 6M ∩ Qd

η = graph u and, for all
t ∈ (−η2/4, 0], it holds ∂6t ∩ Bη ⊂ 0.

Before proving the above result, we record the following consequence of Theorem 4.1

Proposition 7.2 (iteration of the improvement of flatness). Under the assumptions of Theorem 4.1, for
every X = (x, t) ∈6 ∩ Qη:

• If x ∈ 0, then there exists an m-dimensional half-plane T +

X such that ∂T +

X = Tx0 and

6 ∩ Qηk (X)⊂ {dist( · , x + T +

X )≤ 2εηk(1+β)
}

for every k ∈ N.

• If x /∈ 0, then there exists an m-dimensional plane TX such that

6 ∩ Qηk (X)⊂ {dist( · , x + TX )≤ 2εηk(1+β)
}

for every k ∈ N.
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Proof. This result is a straightforward consequence of an iteration of Theorem 4.1. Namely, given
X ∈6 ∩ Qη with x ∈ 0, we may find a sequence of half-planes T +

k such that

6 ∩ Qηk ⊂ {dist( · , T +

k )≤ ηk(1+β)ε}.

Moreover, |T +

k − T +

k−1| ≤ Cεηk(1+β)/ηk for some C depending only on E0 and α. Therefore, {T +

k }

converges to some half-plane T +

X for which the conclusion of the proposition holds true.
For the case x /∈0, one may see [Tonegawa 2019] or replicate the techniques of the previous sections. □

Remark 7.3. Given x ∈ 0 and T +

(x,t) as in Proposition 7.2, throughout the rest of the present section,
we let T(x,t) be the m-dimensional plane obtained by reflecting T +

(x,t) across Tx0. We note the following
conclusion of Theorem 4.1: there is C depending only on E0 and α such that, for every X ∈6∩Qη, it holds

|TX − S| ≤ Cε.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Up to a rotation, we may assume, without loss of generality, that T(0,0) defined in
Proposition 7.2 coincides with the plane S that satisfies the assumptions of the present result.

Step 1: 6 is the graph of a C1,β function over S(6). Let X ∈6 ∩ Qd
η and, for simplicity of notation, let

T = TX as defined in Remark 7.3; recall that |T − S| ≤ Cε. For any other point Y ∈6∩ Qd
η , we may write

|S⊥(x − y)| ≤ |T ⊥(x − y)| + |S⊥
− T ⊥

||x − y|

≤ Cερ(X, Y )1+β
+ Cερ(X, Y )

≤ 2Cερ(X, Y ).

If ε3 is smaller than some universal constant, we conclude

|S⊥(x − y)| ≤ 3Cερ(SX, SY ).

The above inequality, together with Proposition 7.2, yields

|T ⊥(x − y)| ≤ Cερ(SX, SY )1+β . (7-1)

Now, by using the identities S + S⊥
= T + T ⊥

= I , it may be checked by direct computations that

(I − S⊥T )S⊥(x − y)− S⊥T S(x − y)= S⊥T ⊥(x − y). (7-2)

Since |S − T | ≤ Cε, (I − S⊥T ) is invertible and |(I − S⊥T )−1
| ≤ 2 provided ε is small enough. In

particular, by letting L = (I − S⊥T )−1S⊥, we have |L| ≤ 2. Then (7-1) and (7-2) above give

|S⊥x − S⊥y − LT (Sx − Sy)| = |LT ⊥(x − y)| ≤ 2|T ⊥(x − y)| ≤ Cερ(SX, SY )1+β . (7-3)

This proves that, indeed, there is u ∈ C1,β(S(6 ∩ Qη); Rd−m) with ∥u∥C1,β ≤ Cε such that 6 ∩ Qη =

graph u.
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Step 2: Absence of holes. We now “split” the parabolic cylinder Qη/2 into two components, on two
opposite sides of 0. To this end, we define the sets

E ′

+
:= {x ′

∈ Bm
η/2 : x ′

m > γm(x ′′)}, E ′

−
:= {x ′

∈ Bm
η/2 : x ′

m < γm(x ′′)},

their parabolic counterparts
E ′

±
:= E ′

±
× (−η2/4, 0] ⊂ Rm,1

and, lastly,
E± = {(x, t) ∈ Rd,1

: (x ′, t) ∈ E±}.

Arguing for the positive side (as the argument applies for the other case) we claim that, if X1 = (x1, t1) ∈
6 ∩ E+, then

E ′

+
∩ {t ≤ t1} ⊂ S(6 ∩ Qη). (7-4)

To prove this, assume by contradiction that there is (x ′

0, t0) ∈ E ′
+

\ S(6) with t0 < t1. Since γ ∈ C1,α, it
is easy to see that there exist a smooth curve p : [t0, t1] → E ′

+
and ρ > 0 with the following properties:

p(t0)= x ′

0 and p(t1)= x ′

1,

Qm
ρ (p(t), t)⊂ E ′

+
,

Qm
ρ (p(t0), t0)⊂ S(6)c.

The fact that 6 is closed and Proposition 3.4 yield the existence of a time t̄ ∈ (t0, t1) such that
Qm
ρ (p(t), t)⊂ S(6)c for every t < t̄ and a point (y0, s0) ∈6 such that (y′

0, s0) ∈ ∂Bm
ρ (p(t̄))×[t̄ −ρ2, t̄].

Let us now consider a sequence rj ↘ 0 and define the dilations

M j
= Drj (M − (y0, s0)).

Since M has bounded maximal density ratio, the compactness theorems in [White 2021, Section 10]
yield that, up to passing to a subsequence, M j converges to a limit Brakke flow M∞.

Then (7-3) implies that there exists an m-dimensional half-plane T + such that

6M∞ ⊂ T +
× (−∞, 0].

Moreover, since (y0, s0) ∈6M , we have (0, 0) ∈6M∞ .
We finally show that this violates the maximum principle. Up to a change of coordinates, say

T +
= {xm+1 = · · · = xd = 0 and xm > 0} and let

f (x, t)=
|T ⊥x |

2

2
−

|x ′′
|
2

2m
+

|xm |
2

2
− xm +

1
2m

t,

where x ′′
= (x1, . . . , xm−1). Then f |6M∞∩{t≤0} has a local maximum at (0, 0). However, it holds

∂t f (0, 0)= 1/(2m) and

inf
T ∈Gr(m,d)
T ⊥∇ f (0,0)

T : D2 f (0, 0)= 1 − (m − 1) 1
m

=
1
m
,

which contradicts Proposition 3.7, thus proving (7-4).
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Step 3: Conclusion. Since, by assumption, (0, 0) ∈6M , by Proposition 3.4 it must be Mt(Br ) > 0 for
every t < 0 and r > 0. However, if there were t1 < 0 and r > 0 such that

Mt1(Br ∩ {xm < γm(x ′′)}) > 0,

by the previous step it should be E ′
−

∩{t ≤ t1}⊂ S(6∩Qη). However, this would contradict Proposition 5.1
with R = η, provided ε3 is chosen small enough. Therefore we have that, for every t < 0 sufficiently
close to 0, it must be

Mt(Br ∩ {xm > γm(x ′′)}) > 0

and, by the previous step, E ′
+

⊂ S(6 ∩ Qη) which, together with (7-3) amounts to saying that there exists
u : E ′

+
→ Rd−m such that

6∩(E+∪E−)= graphu = {(x, t) : Sx ∈ E ′

+
and S⊥x = u(Sx, t)}

and ∥u∥C1,β ≤ Cε.
We only have to prove that ∂6t ∩ Bη/2 ⊂ 0 for every t ∈ (−η2/4, 0]. If there were x ∈ ∂6t ∩ Bη/2 \0,

then by the fact that u ∈ C1,β there would be some blow-up of 6 around (x, t) that is contained in an
m-dimensional half-plane for all times. Arguing as in the previous step, one finds a contradiction to
Proposition 3.7. □

Appendix A: Proof of Lemma 3.2

Up to rescaling and translating, it is sufficient to prove that there exist A and 3 small and positive,
depending only on δ and α, such that, if 0 is an (m−1)-dimensional properly embedded submanifold of B2

with [0]C1,α(B2) ≤ A, then ∫ 0

−3

∫
|Ty0

⊥
∇91(y, t)| d0(y) dt ≤

χ0c(0)
2

+ δ. (A-1)

For brevity, we denote by 0y the space Ty0. Throughout the proof, C will denote constants (possibly
changing from one expression to another) depending only on m, d, α.

Case 1: 0 ∈ 0. We start by remarking that∫ 0

−3

∫
|0⊥

y ∇91( · , t)| d0 dt ≤

∫ 0

−3

∫
B2

|0⊥

y ∇9( · , t)| d0(y) dt + C0(B2)

∫ 0

−3

e1/(4t)

(−t)m/2
dt.

If A is smaller than some universal constant, then 0(B2)≤ C ; thus we may take 3 small depending on δ
so that the last term in the above inequality is smaller than δ/2. Therefore we reduce ourselves to proving
that, if A is small, then

I1 :=

∫ 0

−3

∫
B2

|0⊥

y ∇9( · , t)| d0 dt ≤
δ

2
.

Since [0]C1,α(B2) ≤ A is small, for every (y, t) ∈ 0× (−∞, 0),

|0⊥

y ∇9(y, t)| ≤ C
e|y|

2/t

(−t)1+m/2 |0⊥

y y| ≤ C A
e|y|

2/t

(−t)1+m/2 |y|
1+α.
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We then use the fact that, if A is smaller than some universal constant, then 0 ∩ B2 is the graph over 00

of some function γ : Rm−1
→ Rd−m+1 such that ∥γ ∥C1,α ≤ C A. In particular, by using the area formula

and the fact that ∥∇γ ∥L∞(B2) ≤ 1 for A small enough, we obtain∫
B2

|0⊥

y ∇9(y, t)| d0(y)≤ C A
1

(−t)1+m/2

∫
Rm−1

|y|
1+αe|y|

2/t dLm−1(y)= C A(−t)α/2−1

for some C depending only on m and α. Therefore, assuming 3≤ 1,

I1 ≤ C A
∫ 0

−1
(−t)α/2−1 dt ≤ C A.

We conclude the proof in the case 0 ∈ 0 by choosing A ≤ δ/(2C).

Case 2: 0 /∈ 0. Let E0 be the m-dimensional Hausdorff measure restricted to the exterior cone

C0 := {λy : λ≥ 1 and y ∈ 0}

with multiplicity, as defined in [White 2021, Section 7]. With similar computations to those in the proof
of [loc. cit., Theorem 7.1], we may show that∫ 0

−3

∫
|0⊥

y ∇91(y, t)| d0(y) dt ≤ − lim
τ↗0

∫
91( · , τ ) d E0 +

∫
91( · ,−3) d E0 + C3E0(B2)

=

∫
91( · ,−3) d E0 + C3E0(B2),

where the last equality comes from the fact that 0 /∈ 0.
In order to prove (A-1), we argue by contradiction: assume there is a sequence {0 j

} with 0 /∈ 0 j such
that ∥0 j

∥C1,α(B2) ≤ 1/j for which the left-hand side of (A-2) is greater than 1
2 + δ. One may show that,

up to extracting a subsequence, E0 j converges weakly to Hm ⌞ S+, where S+ is some m-dimensional
half-plane such that 0 /∈ Int(S+). Therefore

lim sup
j→∞

{∫
91( · ,−3)E0 j + C3E0 j (B2)

}
≤

∫
S+

91( · ,−3) dHm
+ C3Hm(B2 ∩ S+).

Since 0 /∈ Int(S+), the integral in the right-hand side of the above inequality is smaller than 1
2 for every

choice of 3. On the other hand, 3 may be chosen so small that

C3Hm(B2 ∩ S+)≤
δ

2
,

which contradicts the assumption made above, thus concluding the proof.

Appendix B: Proof of Lemma 3.6

We refer the reader to [Kasai and Tonegawa 2014, Lemma 9.4] for a detailed proof of Lemma 3.6. Since
some minor modifications are needed, in this section we sketch the outline of the proof.
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Let U ⊂ Rd be open, I ⊂ R be a nonempty interval, 0 be an (m−1)-dimensional C1,α submanifold of
U and let M ∈ BFm(U × I, 0). We assume that M satisfies a bound of the form

mdr(M,U × I )≤ E1 <∞ (B-1)

and we let 6 =6M be its space-time support.
Before proceeding, by virtue of Proposition 3.4, we fix small constants c1, c2 and R0, depending on E1

and 0, such that, for every (x, t) ∈6 and every R ≤ R0 such that BR(x)× (t −c1 R2, t)⋐U × I, it holds

Mt−c1 R2(BR/2(x))≥ c2 Rm .

By Definition 2.3, for almost every t ∈ I there exist an m-dimensional rectifiable set E ⊂ U and a
positive, integer-valued function θt : Et → N such that Mt = θt( · )Hm ⌞ Et . We choose a time t as above,
with the additional condition that s 7→ Ms(ϕ) is continuous at t for every ϕ ∈ Cc(U ). By [Tonegawa
2019, Proposition 3.3], almost every t ∈ I satisfies the latter condition.

We claim that, for every such t and for every B3r (x0)⋐ U, it holds

Hm((6t \ Et)∩ Br (x0))= 0; (B-2)
this clearly implies (3-4).

In order to prove (B-2), we argue by contradiction. Assume that there is (x0, t0) ∈ U × I and r > 0
such that B3r ⋐ U and Hm(A ∩ Br (x0)) > 0. Without loss of generality, we may take x0 = 0, t = 0 and
set A :=60 \ E0.

Let
Ak := {x ∈ A ∩ Br : M0(BR(x))≤ c2 Rm/2 for all R ∈ (0, r/k)}.

Since, for Hm-a.e. x ∈ Ec
0, it holds

lim
R↘0

M0(BR(x))
Rm = 0,

we have

0<Hm(A ∩ Br )= Hm
(⋃

k∈N

Ak

)
.

Therefore we may find k ∈ N such that b0 := Hm(Ak) > 0.
By standard measure-theoretic arguments, it is not hard to show that there exists c small universal such

that, for every R small enough, we may find N ∈ N and a finite collection of points {x j }
N
j=1 ⊂ Ak such

that {BR(x j )} are mutually disjoint and
N Rm

≥ cb0. (B-3)

By the definition of A, since x j ∈ Ak , we have

M0

( N⋃
j=1

BR(x j )

)
≤ Nc2

Rm

2
. (B-4)

On the other hand, by Proposition 3.4 and the fact that x j ∈60, we have

M−c1 R2

( N⋃
j=1

BR/2(x j )

)
≥ Nc2 Rm . (B-5)
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We now fix a cut-off function ϕ ∈ C∞
c (B1) such that ϕ ∈ [0, 1] everywhere, ϕ|B1/2 ≡ 1 and |∇ϕ| ≤ 4.

Then, given R small, we let ϕ0(x)= ϕ(x/(2r)), ϕj (x)= ϕ((x − x j )/R) and

ϕ̃ = ϕ0 −

N∑
j=1

ϕj .

Then clearly ϕ̃ ∈ [0, 1] everywhere and |∇ϕ̃| ≤ C/R. Notice, moreover, that
N∑

j=1

χBR/2(x j ) ≤

N∑
j=1

ϕj ≤

N∑
j=1

χBR(x j ).

For brevity, set s = −c1 R2. By (B-4) and (B-5), we have

M0(ϕ0)− Ms(ϕ0)= (M0(ϕ̃)− Ms(ϕ̃))+

(
M0

(∑
ϕj

)
− Ms

(∑
ϕj

))
≤ (M0(ϕ̃)− Ms(ϕ̃))+ (Nc2 Rm/2 − Nc2 Rm)

≤ (M0(ϕ̃)− Ms(ϕ̃))− c3b0 (B-6)

for some c3 small, where (B-3) was used in the last inequality.
We now estimate, by using Definition 2.3,

M0(ϕ̃)− Ms(ϕ̃)≤

∫ 0

s

∫
H · ∇ϕ̃ d Mt dt ≤

(∫ 0

s

∫
B2r

|H |
2
)1/2(∫ 0

s

∫
|∇ϕ̃|

2
)1/2

. (B-7)

By (B-1) and the fact that s = −c1 R2, we have, for some C large,∫ 0

s

∫
|∇ϕ̃|

2 d Mt dt ≤ (−s)∥∇ϕ̃∥
2
∞

Mt(B2r )≤ C E1rm
;

therefore (B-6) and (B-7) yield(∫ 0

−c2 R2

∫
B2r

|H |
2 d Mt dt

)1/2

≥

(
1

C E1rm

)1/2

(M0(ϕ0)− M−c1 R2(ϕ0)+ c3b0).

By assumption, t 7→ Mt(ϕ0) is continuous at 0. Thus we may choose R so small that the right-hand side
of the above inequality is larger than cb0/(E1rm)1/2 for some c small enough.

Finally, we consider the function ϕ̂=ϕ(x/(3r)). By Definition 2.3 and the Cauchy–Schwarz inequality,
we have

M0(ϕ̂)− M−c1 R2(ϕ̂)≤

∫ 0

−c1 R2

∫
B3r

(−ϕ̂|H |
2
+ ∇ϕ̂ · H) d Mt dt

≤ −

∫ 0

−c1 R2

∫
B3r

1
2
ϕ̂|H |

2 d Mt dt +

∫ 0

−c1 R2

∫
B3r

|∇ϕ̂|
2

2ϕ̂
d Mt dt

≤ −
1
2

∫ 0

−c1 R2

∫
B2r

|H |
2 d Mt dt + C E1rm R2

≤ −c
b2

0

E1rm ,

provided R is chosen small enough. This contradicts the continuity of t 7→ Mt(ϕ̂) at 0, thus concluding
the proof.
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OPTIMAL BLOWUP STABILITY FOR THREE-DIMENSIONAL WAVE MAPS
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We study corotational wave maps from .1C3/-dimensional Minkowski space into the three-sphere. We
establish the asymptotic stability of an explicitly known self-similar wave map under perturbations that
are small in the critical Sobolev space. This is accomplished by proving Strichartz estimates for a radial
wave equation with a potential in similarity coordinates. Compared to earlier work, the main novelty lies
with the fact that the critical Sobolev space is of fractional order.
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1. Introduction

The present work is concerned with the wave maps equation, the prototypical example of a geometric wave
equation. The wave maps equation is a natural generalization of the wave equation when the unknown
takes values in a Riemannian manifold. Here, we are only interested in the case where the manifold is
the round sphere; i.e., we consider maps U W R1;d ! Sd � RdC1, where R1;d is the .1Cd/-dimensional
Minkowski space. In this special case, the wave maps equation takes the form

@�@�U C .@
�U � @�U/U D 0; (1-1)

where � denotes the Euclidean inner product on RdC1 and Einstein’s summation convention1 is in
force. Equation (1-1) is a hyperbolic partial differential equation and it is natural to study the Cauchy
problem. To this end, one prescribes initial data U.0; � / W Rd ! Sd, @0U.0; � / W Rd ! RdC1, with

This work was supported by the Austrian Science Fund FWF, Projects P 30076 “Self-similar blowup in dispersive wave equations”
and P 34560 “Stable blowup in supercritical wave equations”.
MSC2020: primary 35L71; secondary 35B44, 35L15.
Keywords: nonlinear PDE, wave equations, blowup.

1As is common in relativity, we number the slots of a function on Minkowski space from 0 to d and @0 D �@0, whereas
@j D @j for j 2 f1; 2; : : : ; dg. Two indices, where one occurs upstairs and the other one downstairs, are automatically summed
over and Greek indices take on the values 0; 1; : : : ; d .
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U.0; � / � @0U.0; � /D 0 and aims to construct a unique solution to (1-1) satisfying these initial conditions.
Intriguingly, for d � 2, it is in general impossible to construct global-in-time solutions to the Cauchy
problem for the wave maps equation, even if the initial data .U.0; � /; @0U.0; � // are smooth and nicely
behaved towards infinity. For d � 3, this is evidenced by an explicit one-parameter family of self-similar
solutions. Indeed, for T > 0, let U T� .t; x/D F�.x=.T � t //, where F� W Rd ! Sd � RdC1 is given by

F�.�/ WD
1

d � 2Cj�j2

�
2
p
d � 2 �

d � 2� j�j2

�
D

 
sin.f�.�//

�
j�j

cos.f�.�//

!
;

with

f�.�/ WD 2 arctan
�
j�j
p
d � 2

�
:

Then U T� is a wave map, as one may convince oneself by a straightforward computation. The solution U T� ,
which was discovered in [Turok and Spergel 1990; Shatah 1988; Bizoń and Biernat 2015], starts from
smooth initial data but develops a singularity in finite time in the sense that the gradient blows up.
Moreover, by the finite speed of propagation property inherent to the wave maps equation, the behavior
of the data at spatial infinity is completely irrelevant. A natural question that arises immediately is as to
whether this explicit blowup solution has any bearing on the generic behavior of the Cauchy evolution.
Perhaps U T� actually belongs to a larger family of solutions which exhibit similar kinds of singular
behavior? And if so, how large is this family? To answer these questions it is necessary to study the
stability of U T� under perturbations of the initial data. For the case d D 3, we show that all solutions that
start out close to U T� develop a singularity with the same asymptotic profile as U T� . Furthermore, the
smallness of the perturbation is measured in the weakest possible (L2-based) Sobolev norm.

In order to state our main theorem precisely, we set

uT� .t; x/D
2

jxj
arctan

�
jxj

T � t

�
and define �T � R�R3 for T > 0 by

�T WD .Œ0;1/�R3/ n f.t; x/ 2 ŒT;1/�R3 W jxj � t �T g:

In words, �T is all of the future of the initial surface t D 0 minus the forward lightcone emanating from
the blowup point .T; 0/. Furthermore, for R > 0 and x0 2Rd, we set BdR.x0/ WD fx 2Rd W jx�x0j<Rg

and abbreviate BdR WD BdR.0/.

Theorem 1.1. There exist constants ı0;M > 0 such that the following holds. Let F W R3! S3 � R4 and
G W R3! R4 be given by

F.x/D

 
sin.jxjf .x// x

jxj

cos.jxjf .x//

!
; G.x/D

�
cos.jxjf .x//g.x/x
� sin.jxjf .x//jxjg.x/

�
for smooth, radial functions f; g W R3! R. Assume further that ı 2 Œ0; ı0� and

kj � jŒ.f; g/� .u1�.0; � /; @0u
1
�.0; � //�kH3=2�H1=2.B3

1Cı
/ �

ı

M
:
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Then there exists a T 2 Œ1� ı; 1C ı� and a unique smooth wave map U W�T ! S3 � R4 that satisfies
U.0; x/ D F.x/ and @0U.0; x/ D G.x/ for all x 2 R3. Furthermore, in the backward lightcone of the
point .T; 0/, we have the weighted Strichartz estimatesZ T

0

kj � j
� 4
5 .U.t; � /�U T� .t; � //k

2
L10.B3T�t /

dt � ı2;Z T

0

kj � j
� 4
15 .@jU.t; � /� @jU

T
� .t; � //k

6
L30=11.B3T�t /

dt � ı6

for j 2 f1; 2; 3g.

1.1. Discussion. We would like to make a couple of remarks.

1.1.1. Stability of blowup. Note that

U T� .t; 0/D
�
0
1

�
for all t 2 Œ0; T /. Hence, a scaling argument shows that

kj � j
� 4
5 .U T� .t; � /�U

T
� .t; 0//kL10.B3T�t /

' .T � t /�
1
2 ;

from which we infer thatZ T

0

kj � j
� 4
5 .U T� .t; � /�U

T
� .t; 0//k

2
L10.B3T�t /

dt '

Z T

0

.T � t /�1 dt D1:

Similarly, Z T

0

kj � j
� 4
15 @jU

T
� .t; � /k

6
L30=11.B3T�t /

dt '

Z T

0

.T � t /�1 dt D1:

Consequently, these Strichartz norms detect self-similar blowup and Theorem 1.1 shows that U T� is
asymptotically stable in the backward lightcone of the singularity. Put differently, our solution U can be
trivially written as

U.t; x/D U T� .t; x/CU.t; x/�U
T
� .t; x/„ ƒ‚ …

small

and this shows that U exhibits the same blowup as U T� modulo an error which is small in suitable
Strichartz spaces.

1.1.2. Optimality. Equation (1-1) is invariant under the scaling U.t; x/ 7!U.t=�; x=�/ for �> 0 and the
corresponding scaling-invariant Sobolev space is PHd=2� PHd=2�1.Rd /. Moreover, from the ill-posedness
of the wave maps equation below scaling [Shatah and Tahvildar-Zadeh 1994] it follows that the smallness
condition imposed on the initial data is measured in the optimal topology in terms of regularity.

1.1.3. Symmetry. The prescribed initial data belong to the class of corotational maps, a symmetry
preserved by the wave maps flow. Further, our Strichartz estimates are not translation-invariant and so are
inherently corotational.
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1.1.4. Maximal domain of existence. The domain on which we construct solutions is all of Œ0;1/�R3

except for the part of spacetime that is causally influenced by the singularity. Whether one can extend the
solution even further in a meaningful way is an intriguing open question.

1.1.5. Supercriticality. Lastly, we want to emphasize the fact that Theorem 1.1 is a large-data result for
an energy-supercritical geometric wave equation.

1.2. Related results. Due to the sheer volume of intriguing works on the wave maps equation, we can
only mention a handful of results which are directly linked to the present paper. For the local theory of
corotational wave maps at low regularity we refer to [Shatah and Tahvildar-Zadeh 1994]. The general
case is the focus of the works [Klainerman and Machedon 1995; Klainerman and Selberg 1997; Tao 2000;
Masmoudi and Planchon 2012]. Establishing results concerning the small data global Cauchy problem
is of course most delicate when one measures smallness in a scaling-invariant space. This challenging
problem was intensely studied in the 1990s and the beginning of the 2000s and was resolved in [Tataru
1998; 2001; 2005; Tao 2001a; 2001b; Klainerman and Rodnianski 2001; Shatah and Struwe 2002; Krieger
2003; 2004; Nahmod et al. 2003; Candy and Herr 2018].

Turning to the large-data problem, we start with the case d D 2, where the strongest results are available,
given that this is the energy-critical case where energy conservation yields invaluable global information.
However, despite the conservation of energy, finite-time blowup is possible, albeit via a different, more
complicated mechanism than in our case. Singularity formation takes place via a dynamical rescaling of a
soliton (a harmonic map). Consequently, already the construction of finite-time blowup is highly nontrivial
and was first achieved in [Krieger et al. 2008; Rodnianski and Sterbenz 2010; Raphaël and Rodnianski
2012], inspired by numerical evidence [Bizoń et al. 2001]; see also [Gao and Krieger 2015]. Stability
results for blowup are proven in [Raphaël and Rodnianski 2012; Krieger and Miao 2020]. Subsequently,
the question of large-data global existence has to be addressed in view of the fact that finite-time blowup
is possible. Since the blowup takes place via the shrinking of a harmonic map, the “first” harmonic map
provides a natural threshold for global existence. This is expressed in the threshold conjecture [Sterbenz
and Tataru 2010a; 2010b; Krieger and Schlag 2012; Lawrie and Oh 2016; Chiodaroli et al. 2018]; see
also the series of unpublished preprints [Tao 2008a; 2008b; 2008c; 2009a; 2009b] and the earlier [Struwe
2003; Côte et al. 2008] for the corotational setting. Recent works on energy-critical wave maps focus on
the precise asymptotic behavior and the soliton resolution conjecture [Côte et al. 2015a; 2015b; Côte
2015; Grinis 2017; Jia and Kenig 2017; Jendrej and Lawrie 2018; Duyckaerts et al. 2018].

The present paper is concerned with the energy-supercritical case d � 3, where the conservation of
energy is of no use for the study of the Cauchy problem. Therefore, the understanding of large-data
evolutions is still comparatively poor. The existence of self-similar blowup for d � 3 is established
in [Shatah 1988; Turok and Spergel 1990; Cazenave et al. 1998; Bizoń 2000; Bizoń and Biernat
2015]. Motivated by numerical evidence [Bizoń et al. 2000], the stability of self-similar blowup under
perturbations that are small in Sobolev spaces of sufficiently high order is proved in [Donninger et al.
2012; Donninger 2011; Costin et al. 2016; 2017; Chatzikaleas et al. 2017; Donninger and Glogić 2019;
Biernat et al. 2021]. We also remark that starting from dimension 7, another blowup mechanism occurs
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which is more reminiscent of the energy-critical case [Ghoul et al. 2018]; see [Dodson and Lawrie 2015;
Chiodaroli and Krieger 2017] for other large-data results. Blowup stability in critical Sobolev spaces has
so far been established for the four-dimensional wave maps equation [Donninger and Wallauch 2023] and
the simpler energy-critical wave equation in dimensions 3� d � 6 [Donninger 2017; Donninger and Rao
2020; Wallauch 2023]; see also [Bringmann 2020] for an extension to randomized perturbations.

We would like to emphasize that in contrast to previous work [Donninger and Wallauch 2023; Donninger
2017; Donninger and Rao 2020; Wallauch 2023], which relied crucially on the fact that the critical Sobolev
space is of integer order, the present paper is the first instance of an optimal blowup stability result in a
Sobolev space of fractional order. This seemingly technical feature turns out to be much more substantial
than one might expect. In fact, it adds several layers of new difficulties to the analysis, most notably
the necessity of developing a suitable interpolation technique that is compatible with the nonself-adjoint
spectral structure of the problem.

1.3. Outline of the proof. To prove Theorem 1.1 we follow the strategy laid out in [Donninger and
Wallauch 2023] and which itself built on the previous works [Donninger 2017; Donninger and Rao 2020].
However, in contrast to the four-dimensional case studied in [Donninger and Wallauch 2023], the optimal
Sobolev spaces here are of fractional order. This causes major additional problems throughout our analysis
of (1-1) which were not present in previous works.

The first step in analyzing (1-1) is the symmetry reduction. From the special corotational form of the
prescribed data and the preservation of that symmetry class by the wave maps flow it follows that the
associated solution U is of the form

U.t; x/D

 
sin.jxju.t; x// x

jxj

cos.jxju.t; x//

!
(1-2)

for a smooth function u W Œ0; T /�R3 ! R such that u.t; � / is radial for each t 2 Œ0; T /. Further, the
corotational ansatz simplifies (1-1) to the semilinear equation�

@2t � @
2
r �

4

r
@r

�
Qu.t; r/C

sin.2r Qu.t; r//� 2r Qu.t; r/
r3

D 0 (1-3)

for r > 0, where u.t; x/D Qu.t; jxj/. Note that (1-3) is a five-dimensional equation rather than a three-
dimensional one, as one would perhaps expect. Therefore, it is natural to view u as a radial function on
Œ0; T /�R5 instead of Œ0; T /�R3. Moreover, a Taylor expansion shows that the apparent singularity in
(1-3) is in fact removable and the nonlinearity is perfectly smooth. Theorem 1.1 is then essentially a
consequence of the following result.

Theorem 1.2. There exist ı0;M > 0 such that the following holds. Let f; g 2 C1.B5
1Cı

/ be radial and
let ı 2 Œ0; ı0� be such that

k.f; g/� .u1�.0; � /; @0u
1
�.0; � //kH3=2�H1=2.B5

1Cı
/ �

ı

M
:

Then there exists a blowup time T 2 Œ1� ı; 1C ı� and a unique smooth solution

u W f.t; x/ 2 Œ0; T /�R5 W jxj � T � tg ! R



900 ROLAND DONNINGER AND DAVID WALLAUCH

of (1-3) satisfying u.0; � /D f and @0u.0; � /D g on B5T . Furthermore, we have the Strichartz estimatesZ T

0

ku.t; � /�uT� .t; � /k
2
L10.B5T�t /

dt � ı2; (1-4)Z T

0

ku.t; � /�uT� .t; � /k
6
PW 1;30=11.B5T�t /

dt � ı6: (1-5)

We now give a nontechnical outline of the proof of Theorem 1.2.

� First, we perform preliminary coordinate transformations and choose the right functional setup. Given
the self-similar nature of the blowup, we recast (1-3) in the similarity coordinates

� D� log.T � t /C log.T /; �D
r

T � t
:

Then, we proceed to show that the operator corresponding to the free wave equation in these coordinates
is densely defined and closable in different topologies and that each of these closures generates a
semigroup S0. More precisely, we show that

kS0.�/kH2�H1.B51/
. e�

�
2 ; kS0.�/kH1�L2.B51/

. e
�
2 ;

which we interpolate to obtain
kS0.�/kH3=2�H1=2.B51/

. 1:

We then linearize the nonlinearity around uT� and study the resulting linear operator L. Utilizing [Costin
et al. 2017] enables us to infer that L, viewed as a densely defined operator on H 3=2 �H 1=2.B51/, has
precisely one eigenvalue � D 1 in the (closed) complex right half-plane with a corresponding rank-1
spectral projection P.

� To control the evolution, we next derive Strichartz estimates for S .�/.I�P/, where S is the semigroup
generated by L. We accomplish this by asymptotically constructing the resolvent of L and representing the
semigroup as the Laplace inversion of .��L/�1DWRL.�/. For the resolvent construction it is crucial that
the spectral equation .��L/uDf , with uD .u1; u2/ and f D .f1; f2/, reduces to the second-order ODE

.�2� 1/u001.�/C
�
2.�C 2/��

4

�

�
u01.�/C .�C 2/.�C 1/u1.�/�

16

.1C �2/2
u1.�/D F�.�/; (1-6)

with F�.�/D f2.�/C .�C2/f1.�/C�f 01.�/ and � 2 .0; 1/. The construction of RL.�/ is carried out by
an intricate asymptotic ODE analysis of (1-6) based on a Liouville–Green transform, Bessel asymptotics,
and Volterra iterations.

� Having done this, we turn to the somewhat lengthy task of obtaining Strichartz estimates by estimating
the oscillatory integrals occurring in the Laplace inversion of RL. A first idea would be to obtain estimates
of the form

kŒS .�/.I �P/f �1kLp1� .RC/L
q1 .B51/

. kf kH1�L2.B51/
;

kŒS .�/.I �P/f �1kLp2� .RC/L
q2 .B51/

. kf kH2�H1.B51/
;

(1-7)
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and interpolate between them, where ŒS .�/.I �P/f �1 denotes the first component of S .�/.I �P/f.
There is, however, a problem with this naive ansatz. In the H 1 �L2 universe the spectrum of L, �.L/,
satisfies ˚

z 2 C W Re z < 1
2

	
[f1g � �.L/:

Consequently, the best estimate one can hope for is of the form

kŒe�
�
2S .�/.I �P/f �1kLp1� .RC/L

q1 .B51/
. kf kH1�L2.B51/

: (1-8)

Thus, for the interpolation argument to work, the corresponding H 2 �H 1 estimate needs to compensate
for the added decay in � . In other words, we have to derive estimates of the type

kŒe
�
2S .�/.I �P/f �1kLp2� .RC/L

q2 .B51/
. kf kH2�H1.B51/

: (1-9)

However, we cannot rigorously exclude the existence of finitely many eigenvalues with real parts bigger
than �1

2
. But what we do know is that all of these possible eigenvalues have finite algebraic multiplicities.

Hence, the semigroup S .�/ generated by L satisfies

kS .�/.I �Q/.I �P/kH2�H1.B51/
.� e��

for any � >�1
2

, where Q is the spectral projection associated to all eigenvalues �i with �1
2
< Re�i < 0.

Furthermore, there might also be eigenvalues sitting on the boundary of the essential spectrum in the
H 2 �H 1 universe

�
i.e., the line Re z D�1

2

�
. Thus, we can only derive an estimate of the form

kŒe.
1
2
�ı/�S .�/.I �Q/.I �P/f �1kLp2� .RC/L

q2 .B51/
. kf kW 2;2=.1Cı/�W 1;2=.1Cı/.B51/

; (1-10)

with ı very close to 0. Hence, instead of proving (1-8), we show that

kŒe�.
1
2
�ı/�S .�/.I �P/f �1kLp1� .RC/L

q1 .B51/
. kf kW 1;2=.1�ı/�L2=.1�ı/.B51/

(1-11)

so that interpolation puts us in the correct spaces. As a consequence, we still have to control the evolution
on the image of Q. For this, we will make use of the following lemma.

Lemma 1.3. LetH be a Hilbert space. Then, for any densely defined operator T WD.T /�H !H with
finite rank, there exists a dense subset X �H with X �D.T / and a bounded linear operator yT WH !H

such that

T jX D yT jX :

By applying this result to Q, viewed as a densely defined unbounded operator on H 3=2 �H 1=2.B51/,
we manage to arrive at the desired estimates

kŒS .�/.I �P/f �1kLp� .RC/Lq.B51/
. kf kH3=2�H1=2.B51/

: (1-12)

Analogously, we derive other spacetime estimates involving (fractional) derivatives on the left-hand side.

� Finally, the full nonlinear problem is treated by fixed-point arguments in an appropriate Strichartz space.
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2. Transformations and semigroup theory

In all that follows we identify radial functions with their radial representatives. Moreover, any vector space,
for instance Hk.B51/ or C k.B51/, always denotes the corresponding radial subspace within that space.
Before we can properly analyze (1-3) in the lightcone �T WD f.t; r/2 Œ0;1/2 W r �T �tg, we first need the
right choice of coordinates. For our purposes, suitable coordinates are given by the similarity coordinates

� D� log.T � t /C log.T /; �D
r

T � t
: (2-1)

Thus, we set  .�; �/D Te��u.T �Te�� ; Te���/ and switch to the similarity coordinates, which turns
(1-3) into �

2C 3@� C @
2
� C 2�@�@�C 4�@� �

4

�
@�C .�

2
� 1/@2�

�
 C

sin.2� /� 2� 
�3

D 0; (2-2)

where we omit the arguments of  for brevity. Next, we define

 1.�; �/ WD  .�; �/;

 2.�; �/ WD .1C @� C �@�/ 1.�; �/;
which yields the system

@� 1 D  2� 1� �@� 1;

@� 2 D @
2
� 1C

4

�
@� 1� �@� 2� 2 2�

3 sin.2� 1/� 6� 1
2�3

;
(2-3)

with initial data
 1.0; �/D Tf .T�/;  2.0; �/D T

2g.T�/:

We also remark that in these coordinates the blowup function uT� is of the form

‰�.�/D

 
2
�

arctan.�/
2

1C�2

!
:

2.1. Semigroup theory. Motivated by the above evolution equation, we define the differential operator zL0
as

zL0u.�/ WD

 
��u01.�/�u1.�/Cu2.�/

u001.�/C
4
�
u01.�/� �u

0
2.�/� 2u2.�/

!
;

where uD .u1; u2/, with domain

D. zL0/ WD fu 2 C
3
�C 2.B51/ W u radialg:

We also define two inner products . � ; � /E1 and . � ; � /E2 on D. zL0/ as

.u; v/E1 WD

Z 1

0

u01.�/v
0
1.�/�

4 d�C

Z 1

0

u2.�/v2.�/�
4 d�Cu1.1/v1.1/

and

.u; v/E2 WD 8

Z 1

0

u001.�/v
00
1.�/�

4 d�C 32

Z 1

0

u01.�/v
0
1.�/�

2 d�C 2

Z 1

0

u02.�/v
0
2.�/�

4 d�

Cu1.1/v1.1/Cu2.1/v2.1/:

Further, we denote the associated norms by k � kEj . Then the following estimate holds.
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Lemma 2.1. The operator zL0 satisfies

Re. zL0u;u/E1 �
1
2
kuk2E1

for all u 2D. zL0/.

Proof. Integrating by parts shows

�

Z 1

0

u001.�/u
0
1.�/�

5 d�D�ju01.1/j
2
C 5

Z 1

0

ju01.�/j
2�4 d�C

Z 1

0

u01.�/u
00
1.�/�

5 d�;

and so

�Re
Z 1

0

u001.�/u
0
1.�/�

5 d�D�
ju001.1/j

2

2
C
5

2

Z 1

0

ju01.�/j
2�4 d�:

Consequently,Z 1

0

Œ zL0u�
0
1.�/u

0
1.�/�

4 d�D
1

2

Z 1

0

ju01.�/j
2�4 d�C

Z 1

0

u02.�/u
0
1.�/�

4 d��
1

2
ju01.1/j

2:

Similarly,Z 1

0

Œ zL0u�2.�/u2.�/�
4 d�

D
1

2

Z 1

0

ju2.�/j
2�4 d�C 4

Z 1

0

u01.�/u2.�/�
3 d�C

Z 1

0

u001.�/u2.�/�
4 d��

1

2
ju01.1/j

2:

Further, given thatZ 1

0

u001.�/u2.�/�
4 d�D u01.1/u2.1/�

Z 1

0

u01.�/u
0
2.�/�

4d�� 4

Z 1

0

u01.�/u2.�/�
3 d�;

we obtain

Re. zL0u;u/E1 D
1

2

Z 1

0

.ju01.�/j
2�4Cju2.�/j

2�4/ d��
1

2
.ju01.1/j

2
Cju2.1/j

2/

CRe
�
u2.1/u

0
1.1/�u

0
1.1/u1.1/� ju1.1/j

2
Cu2.1/u1.1/

�
:

By employing the elementary inequality

Re.a NbC a Nc � b Nc/� 1
2
.jaj2Cjbj2Cjcj2/;

with aD u2.1/, b D u2.1/, c D u1.1/ we deduce that

Re. zL0u;u/E1 �
1

2

Z 1

0

.ju01.�/j
2�4Cju2.�/j

2�4/ d� �
1

2
kuk2E1 : �

For the inner product . � ; � /E2 we can derive a similar but better estimate.

Lemma 2.2. The operator zL0 satisfies

Re. zL0u;u/E2 � �
1
2
kuk2E2

for all u 2D. zL0/.
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Proof. Let u 2D. zL0/. Integrating by parts as above shows that

Re
Z 1

0

Œ zL0u�
00
1.�/u

00
1.�/�

4d�DRe
�
�

Z 1

0

u
.3/
1 .�/u001.�/�

5d�C

Z 1

0

u002.�/u
00
1.�/�

4d�

�
�3

Z 1

0

ju001.�/j
2�4d�

D�
1

2

Z 1

0

ju001.�/j
2�4d��

ju001.1/j
2

2
CRe

Z 1

0

u002.�/u
00
1.�/�

4d�:

Similarly, we see that

Re
Z 1

0

Œ zL0u�
0
2.�/u

0
2.�/�

4d�DRe
Z 1

0

u
.3/
1 .�/u02.�/�

4d�CRe
�
4

Z 1

0

Œu001.�/u
0
2.�/�

3
�u01.�/u

0
2.�/�

2�d�

�
�
1

2

Z 1

0

ju02.�/j
2�4d��

ju02.1/j
2

2

DRe
�
�

Z 1

0

u001.�/u
00
2.�/�

5d��4

Z 1

0

u01.�/u
0
2.�/�

3d�

�
CRe.u001.1/u

0
2.1//�

ju02.1/j
2

2
�
1

2

Z 1

0

ju02.�/j
2�4d�:

It follows that

Re
Z 1

0

�
Œ zL0u�

00
1.�/u

00
1.�/C Œ

zL0u�
0
2.�/u

0
2.�/

�
�4 d�

D�
1

2
.ju001.1/j

2
Cju02.1/j

2/CRe.u001.1/u
0
2.1//�

1

2

Z 1

0

ju001.�/j
2�4 d�

�
1

2

Z 1

0

ju02.�/j
2�4 d�� 4Re

Z 1

0

u01.�/u
0
2.�/�

3 d�DW I1:

A short calculation then shows

8I1C 32Re
Z 1

0

Œ zL0u�
0
1.�/u

0
1.�/�

2 d� � �4

Z 1

0

ju001.�/j
2�4 d�� 4

Z 1

0

ju02.�/j
2�4 d�

� 16

Z 1

0

ju01.�/j
2�2 d��

1

2
.ju001.1/j

2
Cju02.1/j

2/

� 16ju01.1/j
2
CRe.u001.1/u

0
2.1//:

Consequently, adding up all the boundary terms yields

�
1
2
.ju001.1/j

2
Cju02.1/j

2/� 16ju01.1/j
2
CRe.u001.1/u

0
2.1//C Œ

zL0u�1.1/u1.1/C Œ zL0u�2.1/u2.1/

D�
1
2
.ju001.1/j

2
Cju02.1/j

2/� 16ju01.1/j
2
CRe.u001.1/u

0
2.1//CRe.u1.1/u2.1/�u01.1/u1.1//� ju1.1/j

2

CRe
�
u001.1/u2.1/C 4u

0
1.1/u2.1/�u

0
2.1/u2.1/

�
� 2ju2.1/j

2:

By again employing the inequality

Re.a NbC a Nc � b Nc/� 1
2
.jaj2Cjbj2Cjcj2/;

once with aD u2.1/, bD u01.1/, c D u1.1/ and once with aD u001.1/, bD u
0
2.1/, c D u2.1/, we obtain

Re. zL0u;u/E2 � �4
Z 1

0

ju001.�/j
2�4 d�� 4

Z 1

0

ju02.�/j
2�4 d�� 16

Z 1

0

ju01.�/j
2�2 d�

CRe.3u01.1/u2.1//� 15ju
0
1.1/j

2
�
1
2
ju1.1/j

2
� ju2.1/j

2

� �
1
2
kuk2E2 : �
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To be able to invoke the Lumer–Phillips theorem we carry on by showing the density of the range of
.1� zL0/.

Lemma 2.3. Let f 2 C1 �C1.B51/. Then there exists a u in D. zL0/ such that

.1� zL0/uD f:

Proof. The equation .�� zL0/uD f written out explicitly reads

.1C�/u1.�/C �u
0
1.�/�u2.�/D f1.�/;

.2C�/u2.�/C �u
0
2.�/�u

00
1.�/�

4

�
u01.�/D f2.�/

and the first of the above equations implies that

u2.�/D .1C�/u1.�/C �u
0
1.�/�f1.�/: (2-4)

Setting �D 1 and plugging this into the second one yields

.�2� 1/u001.�/C
�
6��

4

�

�
u01.�/C 6u1.�/D F1.�/; (2-5)

with F1.�/D f2.�/C 3f1.�/C �f 01.�/. A fundamental system for the homogeneous equation

.�2� 1/u001.�/C

�
6��

4

�

�
u01.�/C 6u1.�/D 0

is given by

 0.�/ WD
tanh�1.�/� �

�3
;  1.�/ WD �

�3;

and the Wronskian of these two is given by

W. 0;  1/.�/D�
1

�4.1� �2/
:

By the variation of constants formula, a solution u1 of (2-5) is then given by

u1.�/D  0.�/

Z 1

�

 1.s/F1.s/

W. 0;  1/.s/.s2� 1/
dsC 1.�/

Z �

0

 0.s/F1.s/

W. 0;  1/.s/.s2� 1/
ds

D
tanh�1.�/� �

�3

Z 1

�

sF1.s/ dsC �
�3

Z �

0

.s tanh�1.s/� s2/F1.s/ ds:

From standard ODE theory it follows that u1 2 C1..0; 1//. Moreover, a Taylor expansion shows that  0
is a smooth even function on Œ0; 1/ and so

� 7!  0.�/

Z 1

�

sF1.s/ ds 2 C
1.Œ0; 1//:

Next, we rescale according to �t D s to obtain that

i1.�/ WD �
�3

Z �

0

.s tanh�1.s/� s2/F1.s/ ds D
Z 1

0

t

�
tanh�1.�t/

�
� t

�
F1.�t/ dt:
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For � close to 0 a Taylor expansion shows that

tanh�1.�t/
�

� t D
�2t

3
�
�4t5

5
CO.�6t7/;

where the O-term is a smooth function. Consequently, we infer that i1 2 C1.Œ0; 1//, with

i 01.0/D i
.3/
1 .0/D 0: (2-6)

Thus, u1 2 C1.Œ0; 1// and by combining (2-6) with the fact that  0 is even, one easily establishes that
u1.0/ D u

.3/
1 .0/ D 0. Therefore, we are left with checking the behavior of u1 at � D 1. For this we

remark that we can recast u1 as

u1.�/D
tanh�1.�/

�3

Z 1

�

sF1.s/ dsC �
�3

Z �

0

s tanh�1.s/F1.s/ dsC r1.�/;

where r1 is a smooth function at �D 1. So, we only have to show that

v1.�/ WD tanh�1.�/
Z 1

�

sF1.s/ dsC

Z �

0

s tanh�1.s/F1.s/ ds

is regular enough at 1. Clearly, v1 is continuous at 1 and

v01.�/D
1

1� �2

Z 1

�

sF1.s/ ds:

Further,Z 1

�

sF1.s/ ds D

Z 0

��1

.sC 1/F1.sC 1/ ds D

Z 0

��1

1��2

.y.1� �2/C 1/F1.y.1� �
2/C 1/.1� �2/ ds:

Hence,

v01.�/D

Z 0

�.1C�/�1
.y.1� �2/C 1/F1.y.1� �

2/C 1/ ds

and this is visibly smooth at �D 1. Summarizing, we see that

u1 2 C
3.Œ0; 1�/; u01.0/D u

.3/
1 .0/D 0

and from (2-4) it follows that u 2D. zL0/. �

The last few lemmas allow us to invoke the Lumer–Phillips theorem. However, since we would rather
like to work in standard Hk spaces, we first prove the equivalences of the norms Ej with standard radial
Sobolev norms. For this we will require the following version of Hardy’s inequality

Lemma 2.4. The estimates
kj � j
�1f kL2.B51/

. kf kH1.B51/
;

kj � j
�2f kL2.B51/

. kf kH2.B51/

hold for all f 2 C 2.B51/.
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Proof. The first estimate is just Lemma 4.7 in [Donninger and Rao 2020]. For the second one, we let

E WH 2.B51/!H 2.R5/

be a bounded extension operator. Then, by Hardy’s inequality,

kj � j
�2f kL2.B51/

� kj � j
�2Ef kL2.R5/ . kEf k PH2.R5/

. kf kH2.B51/
: �

Lemma 2.5. The estimate

kj � j
�1f 0kL2.B51/

. kf kH2.B51/

holds for all f 2 C 2.B51/.

Proof. This is an immediate consequence of Lemma 4.1 in [Donninger and Schörkhuber 2016]. �

Lemma 2.6. The norms k � kEj and k � kHj�Hj�1.B51/
are equivalent on D. zL0/. Consequently, they are

also equivalent on H 2 �H 1.B51/.

Proof. For j D 1 this is Lemma 2.2 in [Donninger and Rao 2020]. For j D 2, the inequality

k � kH2�H1.B51/
. k � kE2

is an immediate consequence of the estimateZ 1

0

ju.�/j2�4 d� .
Z 1

0

ju0.�/j2�4 d�Cju.1/j2

and the triangle inequality. For the other inequality, we first note that

ju.1/j.
ˇ̌̌̌Z 1

0

@�.u.�/�
4/ d�

ˇ̌̌̌
. kukH1.B51/

Ckj � j
�1ukL2.B51/

. kukH1.B51/

for all u 2 C 1.B51/. Therefore,

ju1.1/j
2
Cju2.1/j

2 . k.u1; u2/k2H2�H1.B51/
:

Further, Z 1

0

ju01.�/j
2�2 d� . k.u1; u2/k2H2�H1.B51/

thanks to Lemma 2.5. Finally,Z 1

0

ju001.�/j
2�4 d� . k.u1; u2/k2H2�H1.B51/

C

Z 1

0

ju01.�/j
2�2 d� . k.u1; u2/k2H2�H1.B51/

: �

Thus, the Lumer–Phillips theorem immediately yields the following lemma.

Lemma 2.7. The operator zL0 is closable and its closure, denoted by L0, generates a semigroup S0 on
H 1 �L2.B51/ such that

kS0.�/f kH1�L2.B51/
. e

�
2 kf kH1�L2.B51/
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for all f 2H 1 �L2.B51/ and all � � 0. Furthermore, the restriction of S0 to H 2 �H 1.B51/ satisfies

kS0.�/f kH2�H1.B51/
. e�

�
2 kf kH2�H1.B51/

for all f 2H 2 �H 1.B51/ and all � � 0.

To proceed, we use that H 3=2 �H 1=2.B51/ is an exact interpolation space of H 2 �H 1.B51/ and
H 1�L2.B51/ of order 1

2
, see [Triebel 1995, p. 317, Section 4.3.1.1, Theorem 1], to conclude the next result.

Lemma 2.8. The semigroup S0 satisfies

kS0.�/f kH3=2�H1=2.B51/
. kf kH3=2�H1=2.B51/

for all f 2H 3=2 �H 1=2.B51/ and all � � 0.

It is also vital for us that S0 satisfies appropriate Strichartz estimates, provided we restrict T to the
interval

�
1
2
; 3
2

�
. This restriction leads to no loss of generality for us, as we are only interested in values

of T which lie close to 1 anyway. Henceforth, we assume that T 2
�
1
2
; 3
2

�
.

Lemma 2.9. Let p 2 Œ2;1� and q 2
�
10
3
;1

�
be such that 1

p
C
5
q
D 1. Then we have the estimate

kŒS0.�/f �1kLp� .RC/Lq.B51/
. kf kH3=2�H1=2.B51/

for all f 2H 3=2 �H 1=2.B51/. Furthermore, also the inhomogeneous estimateZ �

0

ŒS0.� � �/h.�/�1 d�


L
p
� .I /Lq.B

5
1/

. khkL1.I /H3=2�H1=2.B51/

holds for all h 2 L1.RC;H
3=2 �H 1=2.B51// and all intervals I � Œ0;1/ containing 0.

Proof. This follows by restricting the standard Strichartz estimates for the free wave equation to the
lightcone; see [Donninger and Wallauch 2023]. �

Lemma 2.10. The estimates

kŒS0.�/f �1kL2� .RC/W 1=2;5.B51/
. kf kH3=2�H1=2.B51/

;

kŒS0.�/f �1kL6� .RC/W 1;30=11.B51/
. kf kH3=2�H1=2.B51/

hold for all f 2H 3=2 �H 1=2.B51/. Furthermore, also the inhomogeneous estimatesZ �

0

ŒS0.� � �/h.�/�1 d�


L2� .RC/W 1=2;5.B51/

. khkL1.I /H3=2�H1=2.B51/
;Z �

0

ŒS0.� � �/h.�/�1 d�


L6� .RC/W 1;30=11.B51/

. khkL1.I /H3=2�H1=2.B51/

hold for all h 2 L1.RC;H
3=2 �H 1=2.B51// and all intervals I � Œ0;1/ containing 0.
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To get a better understanding of the dynamics of solutions which are close to uT� , we linearize the
nonlinearity around this solution. For this, we set ‰ DˆC‰�, where ‰� is the transformed blow up
solution uT� , and formally linearize the nonlinearity around‰�. This results in a linear operator L0 given by

L0u.�/D

�
0

16
.1C�2/2

u1.�/

�
and a formal nonlinear operator N given by

N .u/.�/ WD

�
0

N. �1 Cu1/.�/�N. �1/.�/�
16

.1C�2/2
u1.�/

�
:

Lastly, we define L WDL0CL0 and note that we have the following result.

Lemma 2.11. The operator L0 is a compact operator on H s �H s�1.B51/ for any s � 1.

Proof. This is an immediate consequence of the compactness of the embedding H s.B51/ ,!H s0.B51/ for
s > s0 � 0. �

Consequently, the bounded perturbation theorem implies that L will also generate a semigroup on
each of the previously employed Sobolev spaces H s �H s�1.B51/, which we denote by S. With this, we
can at least formally rewrite our equation in Duhamel form as

ˆ.�/D S .�/uC

Z �

0

S .� � �/N .ˆ.�// d�: (2-7)

To make sense of this equation, we will show in the following that S satisfies Strichartz estimates as in
Lemma 2.9, provided we project away the unstable direction. This will naturally give meaning to (2-7) in
an appropriate Strichartz space.

2.2. Spectral analysis of L. From now on L will always denote the version of L that is a densely defined
closed operator with

L WD.L/�H 2
�H 1.B51/!H 2

�H 1.B51/;

unless specifically stated otherwise. Then, for any � 2 C with Re� > �1
2

, we have � 2 �.L0/ since

kS0.�/f kH2�H1.B51/
. e�

1
2
�
kf kH2�H1.B51/

for all � � 0 and all f 2H 2 �H 1.B51/. As a consequence, the identity

��LD .1�L0RL0.�//.��L0/;

with RL0.�/ WD .��L0/
�1 implies that any spectral point � with Re� > �1 has to be an eigenvalue of

finite algebraic multiplicity by the spectral theorem for compact operators.

Lemma 2.12. The point spectrum �p.L/ of L is contained in the set fz 2C WRe z <0g[f1g. Furthermore,
the eigenvalue 1 has geometric and algebraic multiplicity 1 and an associated eigenfunction is given by

g.�/D

 1
1C�2

2
.1C�2/2

!
:
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Proof. That the point spectrum really is a subset of fz 2 C W Re z < 0g [ f1g follows as in [Donninger
and Wallauch 2023]. To discern the properties of the eigenvalue 1, we start by noting that obviously
g 2D.L/ and a straightforward computation shows that .1�L/g D 0. Moreover, the calculations in the
proof of Lemma 2.3 show that the equation .��L/uD 0 is equivalent to

u2.�/D .1C�/u1.�/C �u
0
1.�/ (2-8)

and the second-order linear differential equation

.�2� 1/u001.�/C
�
2.�C 2/��

4

�

�
u01.�/C .�C 2/.�C 1/u1.�/�

16

.1C �2/2
u1.�/D 0: (2-9)

For �D 1 we use reduction of order to obtain a second solution to (2-9),

Qg1.�/D
12�3 tanh�1.�/� 9�2� 1

�3.�2C 1/
:

Hence, any solution of (2-9) has to be a linear combination of g1 and Qg1. As Qg1 …H 1.B51/, we conclude
that an eigenfunction has to be a multiple of g since the second component of any eigenfunction is
uniquely determined by its first through (2-8). Therefore, the geometric multiplicity of the eigenvalue 1
is 1. Moving on, we define P to be the spectral projection associated to this eigenvalue, i.e.,

P WD

Z


RL.�/ d�;

where  W Œ0; 1�! C, .t/D 1C 1
2
e2�it . Moreover, as the essential spectrum of L0 is invariant under

compact perturbations, we see that dim P <1. Now, given that P is a projection, we can decompose
H 2 �H 1.B51/ into the closed subspaces rg P and ker P. This also yields a decomposition of L into
the operators LrgP and LkerP , which act as operators on rg P and ker P, respectively. The inclusion
hgi � rg P is immediate and we claim that in fact rg P D hgi. To show this, we first remark that the
finite-dimensional operator .IrgP �LrgP/ W rg P! rg P is nilpotent as its only eigenvalue is 0. Thus,
there exists a minimal n 2 N such that .IrgP �LrgP/

nu D 0 for all u 2 rg P. If n D 1, we are done.
If not, then there exists a v 2 rg P such that .IrgP �LrgP/v D g. This implies that v1 satisfies the
inhomogeneous ODE

.�2� 1/v001.�/C
�
6��

4

�

�
v01.�/C

�
6�

16

.1C�2/2

�
v1.�/DG.�/;

with

G.�/D g2.�/C 3g1.�/C �g
0
1.�/D

7C �2

.1C �2/2
:

By the variation of constants formula, v1 has to be of the form

v1.�/D c1g1.�/C c2 Qg1.�/�g1.�/

Z 1

�

Qg1.s/G.s/

.1� s2/W.g1; Qg1/.s/
ds� Qg1.�/

Z �

0

g1.s/G.s/

.1� s2/W.g1; Qg1/.s/
ds;

with c1; c2 2 C. Note that

W.g1; Qg1/.�/D
3

�4.1� �2/
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is strictly positive on .0; 1/ and therefore nonvanishing on that interval. Evidently, both

g1.�/G.�/

.1� �2/W.g1; Qg1/.�/
and

Qg1.�/G.�/

.1� �2/W.g1; Qg1/.�/

are continuous on Œ0; 1�. Consequently, since Qg1 …L2.B51/, we must have c2D 0. Furthermore, j Qg01.�/j '
.1� �/�1 near �D 1 and thus, for v to be in H 1.B51/, we must necessarily haveZ 1

0

g1.s/G.s/

.1� s2/W.g1; Qg1/.s/
ds D 0:

This is however impossible due to the strict positivity of the integrand on .0; 1/. �

Lemma 2.13. The essential spectrum of L, denoted by �e.L/ satisfies

�e.L/�
˚
z 2 C W Re.z/� �1

2

	
:

In addition, any spectral point � with Re� >�1
2

is an eigenvalue of finite algebraic multiplicity and there
exist only finitely many such spectral points.

Proof. The first claim is an immediate consequence of the growth bound

kS0.�/f kH2�H1.B51/
. e�

1
2
�
kf kH2�H1.B51/

:

The second follows from invoking Theorem B.1 in [Glogić 2022]. �

A calculation which is very similar to the one done in the proof of Lemma 2.6 in [Donninger and Rao
2020] yields our next result.

Lemma 2.14. Let � > �1
2

. Then there exist constants C�; K� > 0 such that

kRL.�/f kH2�H1.B51/
� C�kf kH2�H1.B51/

for all � 2 C satisfying j�j �K� and Re�� � and all f 2H 2 �H 1.B51/.

Let now Q be the spectral projection associated to the finite set of eigenvalues˚
� 2 �.L/ W �1

2
< Re� < 0

	
:

Moreover, we remark that when viewed as a densely defined, closed operator on H 3=2 �H 1=2.B51/, the
calculations in the proof of Lemma 2.12 show that in this case we have that

�.L/� fz 2 C W Re.z/� 0g[ f1g and �p.L/� fz 2 C W Re.z/ < 0g[ f1g

and 1 remains a simple eigenvalue. We denote by P the corresponding bounded projection P W

H 3=2 �H 1=2.B51/! hgi.

Lemma 2.15. Let � > �1
2

. Then there exists a constant C� > 0 such that

kS .�/.I �Q/.I �P/f kH2�H1.B51/
� C�e

��
kf kH2�H1.B51/

for all f 2H 2 �H 1.B51/ and all � � 0.
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Proof. This lemma follows immediately from Lemma 2.14 and the Gearhart–Prüss–Greiner theorem, see,
e.g., [Engel and Nagel 2000, p. 302, Theorem 1.11], since

�.LkerP\kerQ/�
˚
� 2 C W Re.�/� �1

2

	
: �

As the growth estimate from Lemma 2.15 does not help us at the critical regularity, at which analogous
considerations would yield an exponentially growing bound for the semigroup, a more sophisticated
analysis is needed. So, let f 2 C1 �C1.B51/ and set

Qf WD .I �Q/.I �P/f 2D.L/:

Then, for any � > �1
2

, Laplace inversion yields

S .�/ Qf D lim
N!1

1

2�i

Z �CiN

��iN

e��RL.�/ Qf d�I (2-10)

see [Engel and Nagel 2000, p. 234, Corollary 5.15]. Hence, to obtain enough qualitative information on
the semigroup S .I�Q/.I�P/, we need to investigate RL.�/. To that end we remark that uDRL.�/ Qf

implies .��L/uD Qf , which in turn implies

.�2� 1/u001.�/C
�
2.�C 2/��

4

�

�
u01.�/C .�C 2/.�C 1/u1�

16

.1C �2/2
u1.�/D F�.�/; (2-11)

where F�.�/D f2.�/C .�C 2/f1.�/C �f 01.�/. Accordingly, our next step will be a detailed analysis of
(2-11).

3. ODE analysis

3.1. Preliminary transformations. To put many of the tediously involved functions into a manageable
fashion, we introduce function of symbol type as follows. Let I � R, �0 2 R n I, and ˛ 2 R. We say that
a smooth function f W I ! C is of symbol type and write f .�/DO..�0� �/˛/ if

j@n�f .�/j.n j�0� �j
˛�n

for all � 2 I and all n 2 N0. Similarly, for g W C! R we write g.�/DO.h!i˛/ if

j@n!f .!/j.n h!i
˛�n;

where h!i denotes the Japanese bracket
p
1Cj � j2. Analogously,

h.�; �/DO..�� �0/˛h!iˇ / if j@n�@
k
!h.�; �/j.n;k j�0� �j

˛�n
h!iˇ�k

for all `; k 2 N and ˛; ˇ 2 R. Motivated by the spectral equation (2-11), we study the ODE

.1� �2/u00.�/C
�
4

�
� 2.�C 2/�

�
u0.�/� .�C 1/.�C 2/u.�/�V.�/u.�/D�F�.�/ (3-1)

for Re� 2
�
�
3
4
; 3
4

�
, �¤ 0, and an arbitrary even potential V 2 C1.Œ0; 1�/. To get rid of the first-order

term we set
v.�/D �2.1� �2/

�
2 u.�/;
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which, for F� D 0, turns (3-1) into

v00.�/C
�2C �2.2C 2���2/

�2.1� �2/2
v.�/D

V.�/

1� �2
v.�/: (3-2)

One of the main tools to study (3-2) is the diffeomorphism ' W .0; 1/! .0;1/, given by

'.�/ WD 1
2
.log.1C �/� log.1� �//:

Observe that
'0.�/D

1

1��2

and that the associated Liouville–Green potential Q' , defined by

Q'.�/ WD �
3

4

'00.�/2

'0.�/2
C
1

2

'000.�/

'0.�/
;

is given by

Q'.�/D
1

.1� �2/2
:

Hence, we rewrite (3-2) as

v00.�/C
�1C 2���2

.1� �2/2
v.�/�

2

'.�/2.1� �2/2
v.�/CQ'.�/v.�/

D
V.�/

1� �2
C

�
2

�2.1� �2/2
�

2

.1� �2/2
�

2

'.�/2.1� �2/2

�
v.�/: (3-3)

Next, we perform a Liouville–Green transformation, that is, we set

w.'.�// WD '0.�/
1
2 v.�/;

which transforms

v00.�/C
�1C 2���2

.1� �2/2
v.�/�

2

'.�/2.1� �2/2
v.�/CQ'.�/v.�/D 0 (3-4)

into

w00.'.�//� .1��/2w.'.�//�
2

'.�/2
w.'.�//D 0: (3-5)

This is now a Bessel equation with a fundamental system given by

cos.a.�/'.�//�
sin.a.�/'.�//
a.�/'.�/

and sin.a.�/'.�//C
cos.a.�/'.�//
a.�/'.�/

;

with a.�/D i.1��/. From this we infer that

b1.�; �/D
p
1� �2

�
sin.a.�/'.�//
a.�/'.�/

� cos.a.�/'.�//
�
;

b2.�; �/D
p
1� �2

�
sin.a.�/'.�//C

cos.a.�/'.�//
a.�/'.�/

�
is a fundamental system of (3-4).
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3.2. Construction of fundamental systems.

Lemma 3.1. There exist r > 0 and �0 2 Œ0; 1/ such that for � 2 Œ��; 1/, where �� WDminfr=j1��j; �0g,
and �¤ 0 with �3

4
� Re�� 3

4
the equation

v00.�/C
�2C �2.2C 2���2/

�2.1� �2/2
v.�/D 0 (3-6)

has a fundamental system of the form

h1.�; �/D
p
1� �2

�
1� �

1C �

�1��
2

Œ1C .1� �/O.h!i�1/CO.��1.1� �/2h!i�1/�;

h2.�; �/D
p
1� �2

�
1C �

1� �

�1��
2

Œ1C .1� �/O.h!i�1/CO.��1.1� �/2h!i�1/�;

where ! D Im�.

Proof. We rewrite (3-6) as

v00.�/C
2���2

.1� �2/2
v.�/D

2

�2.1� �2/
v.�/

and note that the equation

w00.�/C
2���2

.1� �2/2
w.�/D 0

has a fundamental system of solutions given by

w1.�; �/D
p
1� �2

�
1� �

1C �

�1��
2

;

w2.�; �/D
p
1� �2

�
1C �

1� �

�1��
2

:

The Wronskian of these solutions is given by

W.w1. � ; �/; w2. � ; �//D 2.1��/:

Therefore, Duhamel’s formula suggests the Volterra equation

w.�; �/D w1.�; �/C

Z �1

�

w1.�; �/w2.s; �/

.1��/s2.1� s2/
w.s; �/ ds�

Z �1

�

w2.�; �/w1.s; �/

.1��/s2.1� s2/
w.s; �/ ds (3-7)

for � > 1=j1��j. As w1. � ; �/ does not vanish on .0; 1/, we can divide (3-7) by w1. For the new variable
Qw D w=w1, we then obtain the equation

Qw.�; �/D 1C

Z �1

�

w1.s; �/w2.s; �/

.1��/s2.1� s2/
Qw.s; �/ ds�

Z �1

�

w2.�; �/w
2
1.s; �/

w1.�; �/.1��/s2.1� s2/
Qw.s; �/ ds

D 1C

Z �1

�

1�
�1C�
1��

1�s
1Cs

�1��
.1��/s2

Qw.s; �/ ds

DW 1C

Z �1

�

K.�; s; �/ Qw.s; �/ ds:
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From 1=j1��j � � � s; we conclude thatZ �1

1
j1��j

sup
�2Œ 1
j1��j

;s�

ˇ̌̌̌
1�

�1C�
1��

1�s
1Cs

�1��
.1��/s2

ˇ̌̌̌
ds .

Z �1

1
j1��j

1

s2j1��j
ds . 1

independent of �1 2 Œ1=j1��j; 1�. Consequently, we are able to set �1 D 1 and use Lemma B.1 in
[Donninger et al. 2011] to infer the existence of a unique solution Qw to (3-7) of the form

Qw.�; �/D 1CO.��1h!i�1/:

Strictly speaking, the O-term also depends on Re� but as this dependence is of no relevance to us, we
suppress it in our notation. Having established the existence of h1 D w Qw1, one proceeds in the same
manner as in [Donninger and Wallauch 2023, Lemma 4.1] to conclude that h1 is indeed of the desired
form and that a second solution h2 to (3-6) of the claimed form can be constructed. �

Without loss of generality we can assume that neither h1. � ; �/ nor h2. � ; �/ vanishes anywhere on
Œ��; 1/, as we can enlarge r and �0 if necessary. We now set O�� WDmin

˚
1
2
.�0C 1/; 2r=ja.�/j

	
2 .��; 1/

and with this we turn to the full equation (3-2).

Lemma 3.2. Equation (3-2) has a fundamental system of the form

 1.�; �/D b1.�; �/Œ1CO.�2h!i0/�;

 2.�; �/D b2.�; �/Œ1CO.�2h!i0/�CO.�h!i�2/

for all � 2 .0; O��� and all �¤ 0 with �3
4
� Re�� 3

4
.

Proof. We start by noting that for � 2 .0; O���, the functions b1 and b2 satisfy

b1.�; �/DO.�2h!i2/;

b2.�; �/DO.��1h!i�1/
(3-8)

and that their Wronskian is given by

W.b1. � ; �/; b2. � ; �//D i.1��/:

Therefore, we have to solve the fixed-point problem

b.�; �/D b1.�; �/�

Z �

0

b1.�; �/b2.s; �/ zV .s/

i.1��/.1� s2/
b.s; �/ dsC

Z �

0

b2.�; �/b1.s; �/ zV .s/

i.1��/.1� s2/
b.s; �/ ds; (3-9)

with
zV .�/D V.�/C

2

�2.1� �2/
�

2

1� �2
�

2

'.�/2.1� �2/
:

Observe that zV 2 C1.Œ0; 1//. We claim that b1. � ; �/ does not vanish on .0; 1/. This follows from the
fact that the zeros of J3=2 are all real (see [Olver 1974, p. 244, Theorem 6.2]) and any zero of b1. � ; �/
is a zero of J3=2. Since a.�/ always has nonzero imaginary part for Re� 2

�
�
3
4
; 3
4

�
, we see that the



916 ROLAND DONNINGER AND DAVID WALLAUCH

argument of the Bessel function is always nonreal. Hence, we can divide (3-9) by b1. Upon setting
Qb D b=b1 we obtain the Volterra equation

Qb.�; �/D 1�

Z �

0

b1.s; �/b2.s; �/ zV .s/

i.1��/.1� s2/
Qb.s; �/ dsC

Z �

0

b2.�; �/b
2
1.s; �/

zV .s/

i.1��/.1� s2/b1.�; �/
Qb.s; �/ ds

DW 1C

Z �

0

K.�; s; �/ Qb.s; �/ ds:

Using the estimates (3-8), we see that

jb2.�; �/b1.�; �/j. �h!i;
ˇ̌̌̌
b2.�; �/

b1.�; �/
b1.s; �/

2

ˇ̌̌̌
. sh!i

for all 0� s � � � O�� and so Z O��
0

sup
�2Œs; O���

jK.�; s; �/j ds . h!i�2:

Hence, a Volterra iteration yields the existence of a unique solution Qb.�; �/ to (3-9) that satisfies Qb.�; �/D
1CO.�2h!i0/. Furthermore, since all the involved functions behave like symbols,2 Appendix B of
[Donninger et al. 2011] shows that Qb.�; �/ D 1CO.�2h!i0/ and thus, we obtain the existence of a
solution to (3-2) of the form

 1.�; �/D b1.�; �/Œ1CO.�2h!i0/�:

To construct the second solution stated in the lemma, we pick a �1 2 .0; 1� such that  1 does not
vanish for � � minf�1; O��g DW Q�� for any � 2 C n f0g with �3

4
� Re� � 3

4
. Moreover, as Qb1.�; �/ WD

b1.�; �/
R Q��
� b1.s; �/

�2 ds is also a solution of (3-4), there exist constants c1.�/; c2.�/ such that

b2.�; �/D c1.�/b1.�; �/C c2.�/ Qb1.�; �/:

Explicitly, these constants are given by

c1.�/D
W.b2. � ; �/; Qb1. � ; �//

W.b1. � ; �/; Qb1. � ; �//
; c2.�/D�

W.b2. � ; �/; b1. � ; �//

W.b1. � ; �/; Qb1. � ; �//
:

Using that W.b2. � ; �/; b1. � ; �// D � 2� and W.b1. � ; �/; Qb1. � ; �// D �1, we infer that c2 D � 2� and
c1.�/D�W.b2. � ; �/; Qb1. � ; �//. Next, evaluating W.b2. � ; �/; Qb1. � ; �// at Q�� yields

W.b2. � ; �/; Qb1. � ; �//D�b2. Q��; �/b1. Q��; �/
�1
DO.h!i0/:

Keeping these facts in mind, we now turn our attention to constructing  2. For this, we remark that a
second solution of (3-2) is given by

Q 1.�; �/D  1.�; �/

Z Q��
�

 1.s; �/
�2 ds:

2Strictly speaking, O�� not differentiable at 12 .�0C 1/. However, this is inessential and can easily be remedied by using a
smoothed out version of O��.
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Considering this, we calculate

 2.�;�/ WD c1.�/ 1.�;�/Cc2 1.�;�/

Z Q��
�

 1.s;�/
�2ds

D c1.�/ 1.�;�/Cc2 1.�;�/

Z Q��
�

b1.s;�/
�2dsCc2 1.�;�/

Z Q��
�

Œ 1.s;�/
�2
�b1.s;�/

�2�ds

D b2.�;�/Œ1CO.�2h!i0/�Cc2 1.�;�/
Z Q��
�

O.s2h!i0/
b1.s;�/2Œ1CO.s2h!i0/�2

ds:

Since b1.�; �/�2 DO.��4h!i�4/, we obtainZ Q��
�

O.s2h!i0/
b1.s; �/2Œ1CO.s2h!i0/�2

ds DO.�0h!i�3/CO.��1h!i�4/DO.��1h!i�4/;

where the last inequality follows as we only consider values of � that are smaller than Q��. Finally, for j�j
large enough, we see that Q�� D O�� and so we can safely assume that Q�� D O��. �

One final Volterra iteration based on h1 and h2 yields the following result.

Lemma 3.3. There exists a fundamental system for (3-2) of the form

 3.�; �/D h1.�; �/Œ1C .1� �/O.h!i�1/CO.�0.1� �/2h!i�1/�;

 4.�; �/D h2.�; �/Œ1C .1� �/O.h!i�1/CO.�0.1� �/2h!i�1/�

for all � 2 Œ��; 1/ and all �¤ 0 with �3
4
� Re�� 3

4
.

Lemma 3.4. For � 2 Œ��; O��� the solutions  3 and  4 have the representations

 3.�; �/D c1;3.�/ 1.�; �/C c2;3.�/ 2.�; �/;

 4.�; �/D c1;4.�/ 1.�; �/C c2;4.�/ 2.�; �/;

with

c1;3.�/D
W.h1. � ; �/; b2. � ; �//.��/

i.1��/
CO.h!i�1/;

c2;3.�/D�
W.h1. � ; �/; b1. � ; �//.��/

i.1��/
CO.h!i�1/;

c1;4.�/D
W.h2. � ; �/; b2. � ; �//.��/

i.1��/
CO.h!i�1/;

c2;4.�/D�
W.h2. � ; �/; b1. � ; �//.��/

i.1��/
CO.h!i�1/:

Proof. We know the explicit representations

c1;3.�/D
W. 3. � ; �/;  2. � ; �//

W. 1. � ; �/;  2. � ; �//
; c2;3.�/D�

W. 3. � ; �/;  1. � ; �//

W. 1. � ; �/;  2. � ; �//
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and computing the connection coefficients reduces to calculating these Wronskians. Evaluating the
Wronskian W. 1. � ; �/;  2. � ; �// at �D 0 yields

W. 1. � ; �/;  2. � ; �//D i.1��/;

while an evaluation at �� yields

W. 3. � ; �/;  2. � ; �//

DW.h1. � ; �/; b2. � ; �//.��/Œ1CO.h!i�1/�C h1.��; �/b2.��; �/ŒO.h!i0/CO.h!i�1/�

DW.h1. � ; �/; b2. � ; �//.��/CO.h!i0/:

Consequently,

c1;3.�/D
W.h1. � ; �/; b2. � ; �//.��/

i.1��/
CO.h!i�1/

and the remaining coefficients are computed analogously. �

We can patch together the solutions of the “free equation” in the same fashion. To this end, let  f1 and
 f2 be the solutions obtained from Lemma 3.2 in the case V D 0 and, for notational convenience, we set
 f3 WD h1 and  f4 WD h2.

Lemma 3.5. For � 2 Œ��; O���, the solutions  f3 and  f4 have the representations

 f3.�; �/D cf1;3.�/ f1.�; �/C cf2;3.�/ f2.�; �/;

 f4.�; �/D cf1;4.�/ f1.�; �/C cf2;4.�/ f2.�; �/;

with

cf1;3.�/DD
W.h1. � ; �/; b2. � ; �//.��/

i.1��/
CO.h!i�1/;

cf2;3.�/D�
W.h1. � ; �/; b1. � ; �//.��/

i.1��/
CO.h!i�1/;

cf1;4.�/D
W.h2. � ; �/; b2. � ; �//.��/

i.1��/
CO.h!i�1/;

cf2;4.�/D�
W.h2. � ; �/; b1. � ; �//.��/

i.1��/
CO.h!i�1/:

Next, let � W Œ0; 1��
˚
z 2C W �1

2
� Re z � 3

4

	
! Œ0; 1�, ��.�/ WD �.�; �/, be a smooth cut-off function

that satisfies ��.�/ D 1 for � 2 Œ0; ���, ��.�/ D 0 for � 2 Œ O��; 1�, and j@k�@
`
!��.�/j � Ck;`h!i

k�` for
k; ` 2 N0. We then define two solutions of (3-2) as

v1.�; �/ WD ��.�/Œc1;4.�/ 1.�; �/C c2;4.�/ 2.�; �/�C .1���.�// 4.�; �/;

v2.�; �/ WD ��.�/Œc1;3.�/ 1.�; �/C c2;3.�/ 2.�; �/�C .1���.�// 3.�; �/;

and note that an evaluation at �D 1 yields

W.v1. � ; �/; v2. � ; �//DW. 4. � ; �/;  3. � ; �//D 2.1��/:

With this remark we return to the full equation (3-1).
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4. Resolvent construction

We now return to our specific potential V.�/D�16=.1C�2/2. Setting uj .�;�/D��2.1��2/��=2vj .�;�/
for j 2 f1; 2g yields two solutions to (3-1) with F� D 0.

Lemma 4.1. The solutions u1 and u2 are of the form

u1.�; �/D �
�2.1� �2/�

�
2 h2.�; �/Œ1C .1� �/O.h!i�1/CO.�0.1� �/2h!i�1/�

D ��2.1C �/1��Œ1C .1� �/O.h!i�1/CO.��1.1� �/2h!i�1/�;

u2.�; �/D �
�2.1� �2/�

�
2 h1.�; �/Œ1C .1� �/O.h!i�1/CO.�0.1� �/2h!i�1/�

D ��2.1� �/1��Œ1C .1� �/O.h!i�1/CO.��1.1� �/2h!i�1/�

for all �� O�� Dmin
˚
1
2
.�0C1/; 2r=ja.�/j

	
and all � 2 Cn f0g with �3

4
� Re�� 3

4
. Moreover, we have

u1. � ; �/ 2 C
1..0; 1�/ for all such values of �.

Proof. The explicit forms of u1 and u2 follow immediately from our ODE construction. To see that
u1 is smooth away from � D 0, we first remark that clearly u1. � ; �/ 2 C1.0; 1/. Furthermore, the
Frobenius indices of (2-9) at �D 1 are f0; 1��g. Hence, there exist coefficients c1.�/ and c2.�/ such
that c1.�/u1. � ; �/C c2.�/u2. � ; �/ is nontrivial and smooth on .0; 1�. However, since Re� � �1

2
, we

clearly have that u1. � ; �/ 2 C 2..0; 1�/, while u2. � ; �/ … C 2..0; 1�/ and so c2.�/D 0. �

4.1. Considerations on the point spectrum. We aim to establish H 3=2 �H 1=2-type Strichartz estimates
by proving bounds of the form

kŒe
�
2S .�/.I �P/f �1kLp�Lq.B51/

. kf kH2�H1.B51/
;

kŒe�
�
2S .�/.I �P/f �1kLp�Lq.B51/

. kf kH1�L2.B51/

and interpolating between these two. An obvious obstruction to the first estimate is the existence of
eigenvalues � of L with �1

2
� Re� < 0. Unfortunately, we cannot rigorously rule out such eigenvalues,

even though they are not expected to exist (see [Bizoń 2005; Donninger and Aichelburg 2010] for
numerical evidence). To circumvent this, we recall Lemmas 2.12 and 2.13, which tell us that

�u.L/ WD �.L/\
˚
� 2 C W Re� > �1

2

	
D f�1; : : : ; �n; 1g;

with n 2 N0 and where Re�i < 0 for i D 1; : : : ; n. Moreover, each element of �u.L/ is an eigenvalue
of finite algebraic multiplicity. This alone of course still does not settle our spectral problem, but the
following general property of finite-rank operators will enable us to deal with these eigenvalues.

Lemma 4.2. Let H be a Hilbert space. Then, for any densely defined operator T WD.T /�H !H with
finite rank, there exists a dense subset X �H with X �D.T / and a bounded linear operator yT WH !H

such that
T jX D yT jX :

Proof. If T is bounded, we choose X DH and zT the unique extension of T to all ofH. Consequently, we
may assume that T is not bounded. We prove the result by induction on the rank of T. Let dim rgT D 1.
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Then we have T x D '.x/x0 for a suitable x0 2H and a linear functional ' WD.T /�H ! C that is not
bounded. Thus, we find a sequence . Qyn/n2N �D.T / with k QynkH � 1 and j'. Qyn/j � n for all n 2N. We
set yn WD Qyn='. Qyn/. Then we have kynkH � 1=n and '.yn/D 1. Now let x 2D.T / be arbitrary and
set xn WD x�'.x/yn. Then we have '.xn/D '.x/�'.x/'.yn/D 0 and thus, xn 2 kerT . Furthermore,
kx� xnkH D j'.x/jkynk � j'.x/j=n and thus, xn! x as n!1. Consequently, kerT is dense in H.

Assume now that the claim has been established for operators with rank n. Let T be a densely defined
operator with rank nC 1 that is not bounded and let fe1; : : : ; enC1g be an orthonormal basis of rgT.
Further, denote by Pj W rgT ! spanfej g the associated orthonormal projections. Then T D

PnC1
jD1 PjT

and thus, at least one of the operators Tj WD PjT cannot be bounded. After relabeling we can assume
that T1 is not bounded. Since T1 has rank 1, we see by the above that kerT1 is dense in H. Consider
now the restriction of T to the kernel of T1. Then this is either a bounded operator and we are done or it
is not bounded and has rank n, and we can use the induction hypothesis to conclude as well. �

Recall now that Q WH 2�H 1.B51/!H 2�H 1.B51/ denotes the Riesz projection associated to the set
�u.L/ n f1g. We can of course also view Q as a potentially unbounded operator on H 3=2 �H 1=2.B51/

with domain D.Q/ D H 2 �H 1.B51/. Then Lemma 4.2 applies and we obtain a dense subset X �
H 3=2 �H 1=2.B51/ together with a bounded linear operator yQ on H 3=2 �H 1=2.B51/ which agrees with
Q on X. Concretely, we have the following lemma.

Lemma 4.3. There exists a dense subset X in H 3=2�H 1=2.B51/ with X �H 2�H 1.B51/ and a bounded
linear operator yQ: H 3=2 �H 1=2.B51/!H 3=2 �H 1=2.B51/ such that

yQjX DQjX :

Unfortunately, this does not help us with eigenvalues that lie on the line Re z D�1
2

. We can however
pick a 1� ı > 0 such that �u\

˚
z 2C W �1

2
.1�ı/�Re z ��1

2
.1�3ı/

	
D∅ and aim to prove estimates

of the form

kŒe.
1
2
�ı/�S .�/.I �Q/.I �P/f �1kLp�Lq.B51/

. k.I �Q/f kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/
;

kŒe�.
1
2
�ı/�S .�/.I �Q/.I �P/f �1kLp�Lq.B51/

. k.I �Q/f kW 1;2=.1�2ı/�L2=.1�2ı/.B51/
:

For this the following classification will be vital for us.

Lemma 4.4. Any point � 2 C n f0g with �1
2
� Re�� 3

4
is an eigenvalue of L if and only if c2;4.�/D 0.

Proof. Assume that c2;4.�/D 0. Then, as the Frobenius indices of (2-9) are f0;�3g at �D 0 and f0; 1��g
at �D 1, one readily checks u1. � ; �/ 2H 2.B51/ and from (2-4) we see that the associated vector-valued
function u1 satisfies u1. � ; �/ 2 H

2 �H 1.B51/. Thus, � 2 �p.L/. Conversely, let � 2 C n f0g be an
eigenvalue of L with Re� 2

�
�
1
2
; 3
4

�
and let f be an eigenfunction. Now, the first component of any

eigenfunction has to be a linear combination of u1 and u2. Since u2 …H 2
��
1
2
; 1
��

and u1 2H 2
��
1
2
; 1
��

,
f1 has to be a multiple of u1. However, given that j � j�2 1. � ; �/ 2 L2.B5��/ while ��2 2.�; �/' ��3

as �! 0, we see that u1. � ; �/ 2H 2.B51/ is only possible if c2;4.�/D 0. �
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4.2. The reduced resolvent. Lemma 4.4 enables us to construct a third solution to (3-1) with F� D 0,
whenever Re.�/ 2

�
�
1
2
; 3
4

�
and � … �.L/[f0g, by setting

u0.�; �/ WD u2.�; �/�
c2;3.�/

c2;4.�/
u1.�; �/:

Note that
W.u1. � ; �/; u0. � ; �//.�/D 2.1��/�

�4.1� �2/��:

So, to solve (3-1) when Re� 2
�
0; 3
4

�
, we make the ansatz

u.�; �/D�u0.�; �/

Z 1

�

u1.s; �/

W.u1. � ; �/; u0. � ; �//.s/

F�.s/

1� s2
ds

�u1.�; �/

Z �

0

u0.s; �/

W.u1. � ; �/; u0. � ; �//.s/

F�.s/

1� s2
ds

D�
u0.�; �/

2.1��/

Z 1

�

s4u1.s; �/F�.s/

.1� s2/1��
ds�

u1.�; �/

2.1��/

Z �

0

s4u0.s; �/F�.s/

.1� s2/1��
ds (4-1)

and one can check that u. � ; �/ 2H 2.B51/. However, for Re� � 0 we need some more considerations
stemming from the simple fact that for any F� with F�.1/¤ 0, one hasZ 1

�

s4u1.s; �/F�.s/

.1� s2/1��
ds D1

for all � 2 .0; 1/. To remedy this, we slightly modify our ansatz. Thus, for F� 2 C1.B51/, let �; �1 2
.0; 1/; c 2 C, and set

u.�; �/D cu0.�; �/�
u0.�; �/

2.1��/

Z �1

�

s4u1.s; �/F�.s/

.1� s2/1��
ds�

u1.�; �/

2.1��/

Z �

0

s4u0.s; �/F�.s/

.1� s2/1��
ds;

as well as

Uj .�; �/D
1

2.1��/

Z �

0

s4uj .s; �/

.1� s2/1��
ds

for j D 0; 1; 2. Integrating by parts yields

u.�; �/D u0.�; �/

�
cCU1.�; �/F�.�/�U1.�1; �/F�.�1/C

Z �1

�

U1.s; �/F
0
�.s/ ds

�
�u1.�; �/U0.�; �/F�.�/Cu1.�; �/

Z �

0

U0.s; �/F
0
�.s/ ds;

which, upon setting c D QcCU1.�1; �/F�.�1/ with Qc 2 C, reduces to

u0.�; �/

�
QcCU1.�; �/F�.�/C

Z �1

�

U1.s; �/F
0
�.s/ ds

�
�u1.�; �/U0.�; �/F�.�/Cu1.�; �/

Z �

0

U0.s; �/F
0
�.s/ ds

and also allows us to safely take the limit �1! 1.



922 ROLAND DONNINGER AND DAVID WALLAUCH

Lemma 4.5. Let f 2 C1.B51/ and Re� 2
�
�
1
2
; 3
4

�
with � … �p.L/[ f0g. Then the unique solution

u. � ; �/ 2H 2.B51/ of the equation

.1� �2/u00.�/C
�
4

�
� 2.�C 2/�

�
u0.�/� .�C 1/.�C 2/u.�/C

16

.1C �2/2
u.�/D�f .�/;

with � 2 .0; 1/ is given by

R.f /.�; �/ WD u0.�; �/Œb�.f /CU1.�; �/f .�/�Cu0.�; �/
Z 1

�

U1.s; �/f
0.s/ ds

�u1.�; �/U0.�; �/f .�/Cu1.�; �/

Z �

0

U0.s; �/f
0.s/ ds;

with

b�.f / WD �
f .1/

2�.1��/

Z 1

0

@sŒs
4u1.s; �/.1C s/

�1C��.1� s/� ds:

Proof. As the Frobenius indices of (2-9) are given by f0;�3g at �D 0 and f0; 1��g at �D 1, we see that
u0. � ; �/ 2H

2.B5
1=2
/\C 2.B51/, while u1. � ; �/ is smooth for 0 < � � 1. Therefore, one easily verifies

that R.f /. � ; �/ 2H 2.B5
1=2
/. To study the behavior of R.f /.�; �/ at � D 1, we rewrite the boundary

terms as

u2.�; �/Œb�.f /CU1.�; �/f .�/��u1.�; �/U2.�; �/f .�/� b�.f /
c2;3.�/

c2;4.�/
u1.�; �/:

Observe now that U2. � ; �/ and hence u1. � ; �/U2. � ; �/f is twice continuously differentiable at �D 1.
Further, since u1. � ; �/ 2 C 2..0; 1�/, the only remaining boundary term we have to check is

u2.�; �/Œb�.f /CU1.�; �/f .�/�:

For this we integrate by parts once more to infer that

U1.�;�/D�
u1.�;�/�

4.1��/�.1C�/�1C�

2�.1��/
C

1

2�.1��/

Z �

0

@sŒs
4u1.s;�/.1Cs/

�1C��.1�s/�ds: (4-2)

Then,

b�.f /CU1.�;�/f .�/

D
1

2�.1��/

�
Œf .�/�f .1/�

Z 1

0

@sŒs
4u1.s;�/.1Cs/

�1C��.1�s/�ds

�u1.�;�/�
4.1��/�.1C�/�1C�f .�/�f .�/

Z 1

�

@sŒs
4u1.s;�/.1Cs/

�1C��.1�s/�ds

�
(4-3)

and by using this form, one readily checks that u2.�; �/Œb�.f /CU1.�; �/f .�/� belongs to C 2..0; 1�/.
We turn to the integral terms, which we rewrite as

u2.�; �/

Z 1

�

U1.s; �/f
0.s/ dsCu1.�; �/

Z �

0

U2.s; �/f
0.s/ ds�

c2;3.�/

c2;4.�/
u1.�; �/

Z 1

0

U1.s; �/f
0.s/ ds:

In this form one can promptly verify by scaling that all these terms are elements of C 2..0; 1�/ as well. �
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For � > 0 we can use the ansatz (4-1) to recast R.f / in a simpler form.

Lemma 4.6. Let f 2 C1.B51/ and Re� 2
�
0; 3
4

�
. Then R.f / satisfies

R.f /.�; �/D�
u0.�; �/

2.1��/

Z 1

�

s4u1.s; �/f .s/

.1� s2/1��
ds�

u1.�; �/

2.1��/

Z �

0

s4u0.s; �/f .s/

.1� s2/1��
ds (4-4)

for all � 2 .0; 1/.

Proof. This can either be seen by directly undoing the integrations by parts in the construction of R.f /
or by noting that both R.f / and

zR.f /.�; �/ WD �
u0.�; �/

2.1��/

Z 1

�

s4u1.s; �/f .s/

.1� s2/1��
ds�

u1.�; �/

2.1��/

Z �

0

s4u0.s; �/f .s/

.1� s2/1��
ds

solve (3-1) and are elements of H 2.B51/ (that zR.f / 2H 2.B51/ for Re� > 0 follows in the same manner
as R.f / 2H 2.B51//. Given that both of these functions solve (3-1) their difference has to be a linear
combination of u1 and u0. However, as uj …H 2.B51/ for j D 1; 2, we see that R.f / and zR.f / have to
coincide. �

Having constructed a suitable solution to (3-1), we remark that we can copy the same construction in
the “free” case V D 0. This follows from the fact that L0 generates a semigroup on H 2�H 1.B51/ which
satisfies the growth bound kS0.�/kH2�H1.B51/

. e��=2. We denote the corresponding free solutions
by Rf.f /. For f 2 C1 �C1.B51/ we set

Qf D .I �Q/.I �P/f

and use Laplace inversion to explicitly write down ŒS .�/.I �Q/.I � P/f �1 for any such f and
� 2

�
�
1
2
; 3
4

�
as

ŒS .�/ Qf �1.�/D ŒS0.�/ Qf �1.�/C
1

2�i
lim
N!1

Z �CiN

��iN

e�� ŒRL.�/ Qf �RL0.�/
Qf �1 d�: (4-5)

5. A first set of Strichartz estimates

Using (4-5) we can obtain establish the desired Strichartz estimates on S by bounding the integral term

lim
N!1

Z �CiN

��iN

e�� ŒR.F�/.�; �/�Rf.F�/.�; �/� d�: (5-1)

To accomplish this we will need some preliminary lemmas.

5.1. Preliminary and technical lemmas. The first set of lemmas will be concerned with oscillatory integrals.

Lemma 5.1. Let ˛ > 0. Then ˇ̌̌̌Z
R

ei!aO.h!i�.1C˛// d!
ˇ̌̌̌
. hai�2

for any a 2 R.

Proof. Since the integral is absolutely convergent the claim follows by two integrations by parts. �
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Lemma 5.2. Let ˛ 2 .0; 1/. Thenˇ̌̌̌Z
R

ei!aO.h!i�˛/ d!
ˇ̌̌̌
. jaj˛�1hai�2

holds for a 2 R n f0g.

Proof. See Lemma 4.2 in [Donninger and Rao 2020]. �

Lemma 5.3. We have ˇ̌̌̌Z
R

ei!a.1���.�//O.��nh!i�.nC1// d!
ˇ̌̌̌
. hai�2

for all n� 1, � 2 .0; 1/, and a 2 R.

Proof. This can be proven in the same manner as Lemma 4.3 in [Donninger and Rao 2020]. �

Lemma 5.4. We have ˇ̌̌̌Z
R

ei!a.1���.�//O.��nh!i�n/ d!
ˇ̌̌̌
. jaj�1hai�2

for any n� 2, � 2 .0; 1/, and a 2 R n f0g.

Proof. This can be proven as Lemma 4.4 in [Donninger and Rao 2020]. �

Finally, by interpolating between Lemmas 5.3 and 5.4 one obtains the following result.

Lemma 5.5. We haveˇ̌̌̌Z
R

ei!a.1���.�//O.��nh!i�n/ d!
ˇ̌̌̌
. ��� jaj�.1��/hai�2

for any n� 2, � 2 .0; 1/, � 2 Œ0; 1�, and a 2 R n f0g.

We will also rely on the following estimate.

Lemma 5.6. Let ˛ 2 .0; 1/ and ˇ 2 Œ0; 1/. Then we have the estimateZ 1

0

s�ˇ jaC log.1˙ s/j�˛ ds . jaj�˛

for all a 2 R n f0g.

Proof. We only prove the “�” case as the “C” case can be shown analogously. For a < 0 the estimate

jaC log.1� s/j�˛ � jaj�˛

holds for all s 2 Œ0; 1� and so the claim follows. For a > 0 we change variables according to s D 1� eax

and computeZ 1

0

s�ˇ jaC log.1� s/j�˛ ds

D

Z 0

�1

.1� eax/�ˇ jaC axj�˛aeax dx

. jaj1�˛
Z 0

� 1
2

.1� eax/�ˇeax dx

Cjaj1�˛.1� e�
a
2 /�ˇe�

a
2

Z � 1
2

�2

j1C xj�˛ dxCjaj1�˛
Z �2
�1

.1� eax/�ˇeax dx:
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The claimed estimate is now an immediate consequence of the two identities

@x
.1� eax/1�ˇ

a.1�ˇ/
D�.1� eax/�ˇeax

and
.1� e�

a
2 /�ˇe�

a
2 . a�ˇ : �

Similarly, one can show the next technical lemma.

Lemma 5.7. Let ˛ 2 .0; 1/ and ˇ 2 Œ0; 1/. Then the estimateZ 1

0

s�ˇ
ˇ̌
a˙ 1

2
log.1� s2/

ˇ̌�˛
ds . jaj�˛

holds for all a 2 R n f0g.

Lastly, we will also require the following result on weighted norms.

Lemma 5.8. The estimate
kj � jf kL6.B51/

. kf kH1.B51/

holds for all f 2 C1.B51/.

Proof. This follows by a minor adaptation of the argument given in the proof of Lemma 4.8 in [Donninger
and Rao 2020]. �

5.2. Kernel estimates. We will now begin bounding the integral term (5-1). We start with the case
� D 1

2
� ı. Therefore, we suppose f 2 C1.B51/ and take a look at the difference R.f /�Rf.f /.

Lemma 5.9. Let Re�D 1
2
� ı and f 2 C1.B51/. Then, we can decompose R.f /�Rf.f / as

R.f /.�; �/�Rf.f /.�; �/D

9X
jD1

Gj .f /.�; �/;

where

G1.f /.�; �/D �
�2.1� �2/�

�
2 b1.�; �/

Z 1

�

s2��.s/Œb1.s; �/˛1.�; s; �/C b2.s; �/˛2.�; s; �/�

2.1��/.1� s2/1�
�
2

f .s/ ds

C ��2.1� �2/�
�
2 b1.�; �/Œ1CO.�2/�

Z 1

�

s2��.s/O.sh!i�2/

2.1��/.1� s2/1�
�
2

f .s/ ds;

G2.f /.�; �/D ��.�/�
�2.1� �2/�

�
2 b1.�; �/

Z 1

�

s2.1���.s//h2.s; �/ˇ1.�; s; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;

G3.f /.�; �/D .1���.�//�
�2.1� �2/�

�
2 h2.�; �/

Z 1

�

s2h2.s; �/1.�; s; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;

G4.f /.�; �/D .1���.�//�
�2.1� �2/�

�
2 h1.�; �/

Z 1

�

s2h2.s; �/2.�; s; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;



926 ROLAND DONNINGER AND DAVID WALLAUCH

G5.f /.�; �/D ��.�/�
�2.1� �2/�

�
2 b1.�; �/

Z �

0

s2b1.s; �/˛1.s; �; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;

G6.f /.�; �/D ��.�/�
�2.1� �2/�

�
2 b2.�; �/

Z �

0

s2b1.s; �/˛2.s; �; �/

2.1��/.1� s2/1�
�
2

f .s/ ds

C��.�/.1� �
2/�

�
2O.��1h!i�2/

Z �

0

s2b1.s; �/Œ1CO.s2/�

2.1��/.1� s2/1�
�
2

f .s/ ds;

G7.f /.�; �/D .1���.�//�
�2.1� �2/�

�
2 h2.�; �/

Z �

0

s2��.s/b1.s; �/ˇ1.s; �; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;

G8.f /.�; �/D .1���.�//�
�2.1� �2/�

�
2 h2.�; �/

Z �

0

s2.1���.s//h2.s; �/1.s; �; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;

G9.f /.�; �/D .1���.�//�
�2.1� �2/�

�
2 h2.�; �/

Z �

0

s2.1���.s//h1.s; �/2.s; �; �/

2.1��/.1� s2/1�
�
2

f .s/ ds;

where

j̨ .�; s; �/DO.h!i�1/CO.�2h!i0/CO.s2h!i0/CO.�2s2h!i0/;
ˇ1.�; s; �/DO.h!i�1/CO.�2h!i0/CO.s0.1� s/h!i�1/CO.�2s0.1� s/h!i�1/;
j .�; s; �/DO.h!i�1/CO.�0.1� �/h!i�1/CO.s0.1� s/h!i�1/CO.�0.1� �/s0.1� s/h!i�2/:

Proof. This follows by plugging the definitions of the uj into (4-4) and a straightforward calculation
using estimates like

 1.�; �/� f1.�; �/D b1.�; �/O.�
2
h!i0/

and
c2;3.�/� cf2;3.�/DO.h!i�1/: �

Next, we will recast the Gj into a more controllable form.

Lemma 5.10. The functions Gj .f / satisfy

G1.f /.�; �/D .1� �
2/�

�
2

Z 1

�

��.s/O.�0sh!i�1/

.1� s2/1�
�
2

f .s/ ds;

G2.f /.�; �/D ��.�/.1� �
2/�

�
2O.�0h!i2/

�

Z 1

�

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1.�; s; �/
2.1��/.1� s/1��

f .s/ ds;

G3.f /.�; �/D .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�1.�; s; �/
2.1��/.1� s/1��

f .s/ ds;

G4.f /.�; �/D .1���.�//�
�2.1� �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�2.�; s; �/
2.1��/.1� s/1��

f .s/ ds;
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G5.f /.�; �/D ��.�/.1� �
2/�

�
2

Z �

0

O.��1s2h!i�1/

.1� s2/1�
�
2

f .s/ ds;

G6.f /.�; �/D ��.�/.1� �
2/�

�
2

Z �

0

O.��1s2h!i�1/

.1� s2/1�
�
2

f .s/ ds;

G7.f /.�; �/D .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

��.s/O.s4h!i/ˇ1.s; �; �/

.1� s2/1�
�
2

f .s/ ds;

G8.f /.�; �/D .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�1.s; �; �/
2.1��/.1� s/1��

f .s/ ds;

G9.f /.�; �/D .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�2.s; �; �/
2.1��/.1C s/1��

f .s/ ds:

Motivated by this decomposition we define operators Tj .�/f .�/ for j D 1; : : : ; 9 and f 2C1.B51/ as

Tj .�/f .�/ WD lim
N!1

Z N

�N

ei!�Gj .f /
�
�; 1
2
� ıC i!

�
d!:

Given that the integrals above are absolutely convergent, which follows from Lemma 5.10, one concludes
that Tj .�/f .�/ is meaningful for all j D 1; : : : ; 9, � 2 R, � 2 .0; 1/, and f 2 C1.B51/. In addition, we
have the following estimates.

Lemma 5.11. The operators Tj satisfy the estimates

kTj .�/f kL2=.1�ı/� .RC/L45=8.B
5
1/
. kf kL2=.1�2ı/.B51/;

kTj .�/f kL1� .RC/L10=3.B51/
. kf kL2=.1�2ı/.B51/

for all f 2 C1.B51/ and j D 1; : : : ; 9.

Proof. We start with T1 and use

��.s/O.�0sh!i�1/D ��.s/O.��
4
5 s

7
4 h!i�1�

1
20 /; (5-2)

which holds for 0 < � � s. This enables us to use dominated convergence and Fubini’s theorem to
conclude that

T1.�/f .�/D

Z 1

�

Z
R

ei!� .1� �2/�
1
4
C ı
2
� i!
2

� 1
2
�ıCi!.s/O.�

� 4
5 s

7
4 h!i�1�

1
20 /

.1� s2/
3
4
C ı
2
� i!
2

f .s/ d! ds

D

Z 1

�

Z
R

ei!� .1� �2/�
1
4
C ı
2
� i!
2 1.0;�1/.s/

� 1
2
�ıCi!.s/O.�

� 4
5 s

7
4 h!i�1�

1
20 /

.1� s2/
3
4
C ı
2
� i!
2

f .s/ d! ds
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for some �1 < 1 and where 1.0;�1/ is the characteristic function of the interval .0; �1/. Consequently,
Lemma 5.1 yields

jT1.�/f .�/j. ��
4
5

Z �1

0

h� � 1
2

log.1� �2/C 1
2

log.1� s2/i�2s
7
4 jf .s/j ds

. ��
4
5 h�i�2

Z 1

0

s
7
4 jf .s/j ds . h�i�2��

4
5 kf kL2.B51/

kj � j
� 1
4 kL2..0;1//

. h�i�2��
4
5 kf kL2=.1�2ı/.B51/

:

Thus, given that

kj � j
� 4
5 kL45=8.B51/

D

�Z 1

0

��
1
2 d�

� 8
45

. 1;

we see that
kT1.�/f kL45=8.B51/

. h�i�2kf kL2=.1�2ı/.B51/

and so the estimates on T1 follow.
We move on to T2, which, after interchanging the order of integration and using an estimate similar to

(5-2), takes the form

T2.�/f .�/D

Z 1

�

Z
R

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
� i!
2 O.��

5
6 h!i

1
6 /

�

s2.1�� 1
2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1

�
�; s; 1

2
� ıC i!

�
.1� s/

1
2
Cı�i!

f .s/ d! ds

and we can apply Lemma 5.2 to infer that

jT2.�/f .�/j. ��
5
6

Z 1

�

h� C log.1� s/i�2
ˇ̌
� � 1

2
log.1� �2/C log.1� s/

ˇ̌� 1
6 s2jf .s/j.1� s/�

1
2
�ı ds:

Hence, Minkowski’s inequality implies that

kT2.�/f k
L
45
8 .B51/

.
Z 1

0

s2jf .s/j.1� s/�
1
2
�ı
h� C log.1� s/i�2

�

�Z 1

0

��
11
16 j� � 1

2
log.1� �2/C log.1� s/j�

15
16 d�

� 8
45

ds

and by employing Lemma 5.7 we obtain

kT2.�/f k
L
45
8 .B51/

.
Z 1

0

s2jf .s/j.1� s/�
1
2
�ı
h� C log.1� s/i�2j� C log.1� s/j�

1
6 ds:

By now changing variables according to s D 1� e�y and using Young’s inequality, we compute

kT2.�/f kL2=.1�ı/� .RC/L45=8.B
5
1/

.
Z 1

0

s2jf .s/j.1� s/�
1
2
�ı
h� C log.1� s/i�2j� C log.1� s/j�

1
6 ds


L
2=.1�ı/
� .RC/
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.
Z 1
0

.1� e�y/2jf .1� e�y/je�.
1
2
�ı/y
h� �yi�2j� �yj�

1
6 dy


L
2=.1�ı/
� .R/

. k.1� e�y/2jf .1� e�y/je�.
1
2
�ı/y
k
L
2=.1�2ı/
y .RC/

kh � i
�2
j � j
� 1
6 kL1.RC/

. kf kL2=.1�2ı/.B51/:

As a consequence, the first of the desired estimates on T2 follows. Since the second can be obtained
likewise we turn to T3. To bound T3, we employ Lemma 5.5 to deduce that

jT3.�/f .�/j. ��
5
6

Z 1

�

h� C log.1� s/i�2j� � log.1C �/C log.1� s/j�
1
6 s2jf .s/j.1� s/�

1
2
�ı ds:

So, Minkowski’s inequality combined with an application of Lemma 5.6 yields

kT3.�/f kL45=8.B51/
.
Z 1

0

h� C log.1� s/i�2j� C log.1� s/j�
1
6 s2jf .s/j.1� s/�

1
2
�ı ds

and one can bound T3 in the same manner as T2. Further, since the estimates on the remaining operators
can be established by analogous means, we conclude this proof. �

Unfortunately, the operators Tj alone do not suffice to establish the necessary estimates on the
semigroup S since one of the terms in the definition of F� consists of .�C 2/f1.�/. To remedy this we
define another set of operators PTj for j D 1; : : : ; 9 and f 2 C1.B51/ by

PTj .�/f .�/ WD lim
N!1

Z N

�N

i!ei!�Gj .f /
�
�; 1
2
� ıC i!

�
d!:

This additional power of ! spoils the absolute convergence of the integral and so, to see that PTj .�/f is
a meaningful expression, one cannot argue as simply as for the operators Tj . However, the following
lemma shows that the above-defined operators PTj .�/ exist as bounded linear operators from a dense
subset of W 1;2=.1�2ı/.B51/ into certain Strichartz spaces.

Lemma 5.12. The operators PTj satisfy the estimates

k PTj .�/f kL2=.1�ı/� .RC/L45=8.B
5
1/
. kf kW 1;2=.1�2ı/.B51/

;

k PTj .�/f kL1� .RC/L10=3.B51/
. kf kW 1;2=.1�2ı/.B51/

for all f 2 C1.B51/ and j D 1; : : : ; 9.

Proof. For PT1 we argue similarly as we did for T1 and use the identity

��.s/O.�0sh!i0/D ��.s/O.��
4
5 s

3
4 h!i�1�

1
20 /; (5-3)

which holds for 0 < � � s to infer that

PT1.�/f .�/D

Z 1

�

Z
R

ei!� .1� �2/�
1
4
C ı
2
� i!
2 1.0;�1/.s/

� 1
2
�ıCi!.s/O.�

� 4
5 s

3
4 h!i�1�

1
20 /

.1� s2/
3
4
C ı
2
� i!
2

f .s/ d! ds;
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with �1 < 1. Thus,

j PT1.�/f .�/j. ��
4
5

Z �1

0

˝
� � 1

2
log.1� �2/C 1

2
log.1� s2/

˛�2
s
3
4 jf .s/j ds

. h�i�2��
4
5 kj � j

�1f kL2.B51/
kj � j
� 1
4 kL2..0;1//

. h�i�2��
4
5 kj � j

�1f kL2.B51/
. h�i�2��

4
5 kf kH1.B51/

. h�i�2��
4
5 kf kW 1;2=.1�2ı/.B51/

by Lemma 2.4. Consequently, the claimed estimates on PT1 follow. For PT2, we perform one integration by
parts and exchange powers of � for decay in ! to derive that

PT2.�/f .�/D

Z
R

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
C ı
2
� i!
2 O.�0h!i2/

�

Z 1

�

s2.1�� 1
2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1

�
�; s; 1

2
� ıC i!

�
.1� s/

1
2
Cı�i!

f .s/ ds d!

D

Z
R

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
C ı
2
� i!
2 �O.��1h!i�1/

�

.1�� 1
2
�ıCi!.�//Œ1CO.��1.1� �/h!i�1/�ˇ1

�
�; �; 1

2
� ıC i!

�
.1� �/�

1
2
Cı�i!

f .�/ d!

C

Z 1

�

Z
R

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
� i!
2 O.��

9
10 h!i

1
10 /

�

@s
�
s2.1�� 1

2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1

�
�; s; 1

2
� ıC i!

�
f .s/

�
.1� s/�

1
2
Cı�i!

d! ds

DW B2.f /.�; �/C I2.f /.�; �/:

An application of Lemma 5.3 then yields

jB2.f /.�; �/j. h�i�2�jf .�/j

and the estimates for B2.f / follow from Lemma 5.8. To bound I2.f / we first remark that if the derivative
hits f , one can argue as for T2. Similarly, if the cut-off function gets differentiated, one can argue as
for PT1. Making use of Lemmas 5.3 and 5.5 one sees that the remaining terms yI2.f /.�; �/ satisfy

j yI2.f /.�; �/j. ��
11
10

Z 1

�

h� C log.1� s/i�2sjf .s/j.1� s/
1
2
�ı ds . h�i�2��

11
10

Z 1

0

sjf .s/j ds;

j yI2.f /.�; �/j. ��
5
6

Z 1

�

h� C log.1� s/i�2
ˇ̌
� � 1

2
log.1� �2/C log.1� s/

ˇ̌� 1
6 sjf .s/j.1� s/

1
2
�ı ds:

As a consequence, we can argue as we did for T2 to derive the desired estimates on PT2. For PT3 we
cannot straight away take the limit N !1 as the integral is not absolutely convergent. However, by
proceeding as before and performing a similar integration by parts, this can be remedied. More precisely,
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we compute that

PT3.�/f .�/

WD lim
N!1

Z iN

�iN

i!ei!� .1�� 1
2
�ıCi!.�//�

�2.1C �/
1
2
Cı�i! Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

s2.1�� 1
2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�

.1� 2i!/.1� s/
1
2
Cı�i!

1
�
�; s; 1

2
� ıC i!

�
f .s/ ds d!

D

Z
R

ei!� .1�� 1
2
�ıCi!.�//

2.1C �/
1
2
Cı�i! Œ1CO.��1.1� �/h!i�1/�

�
Œ1CO.��1.1� �/h!i�1/�O.h!i�1/1

�
�; �; 1

2
� ıC i!

�
.1� �/�

1
2
Cı�i!

f .�/ d!

C

Z 1

�

Z
R

ei!�
�
1�� 1

2
�ıCi!.�/

�
��2.1C �/

1
2
Cı�i! Œ1CO.��1.1� �/h!i�1/�

�

@s
�
s2.1�� 1

2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�1

�
�; s; 1

2
� ıC i!

�
f .s/

�
.1� s/�

1
2
Cı�i!

O.h!i�1/ d! ds;

and one can readily check that PT3 can be bounded in a similar fashion as PT2. Furthermore, as the remaining
PTj can be bounded by analogous means, we conclude this proof. �

As a result of the last two lemmas one readily establishes the following proposition.

Proposition 5.13. The difference of the semigroups S and S0 satisfies the Strichartz estimates

ke�.
1
2
�ı/� Œ.S .�/�S0.�//.I �Q/.I �P/f �1kL2=.1�2ı/� .RC/L45=8.B

5
1/

. k.I �Q/f kW 1;2=.1�2ı/�L2=.1�2ı/.B51/
;

ke�.
1
2
�ı/� Œ.S .�/�S0.�//.I �Q/.I �P/f �1kL1� .RC/L10=3.B51/

. k.I �Q/f kW 1;2=.1�2ı/�L2=.1�2ı/.B51/

for all f 2 C1 �C1.B51/.

Proof. By construction the first component of .S .�/�S0.�//.I�Q/.I�P/f with f 2C1�C1.B51/

is up to multiplicative constants given by

e.
1
2
�ı/�

� 9X
jD1

Tj .�/. Qf1C Qf2/C

9X
jD1

PTj .�/ Qf1

�
;

with Qfj D Œ.I �Q/.I � P/f �j for j D 1; 2. Consequently, the claim follows immediately from
Lemmas 5.11 and 5.12. �

5.3. Further estimates. To be able to control the nonlinearity, we will also need estimates on derivatives.
For this we have to exchange derivatives with integrals which are not absolutely convergent. We achieve
this by performing enough integrations by parts to render the oscillatory integral absolutely convergent.
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This allows us to invoke Lemma 5.14 (see below) and variations thereof, which enables us to carry out
said interchanging. After this we simply undo the integrations by parts.

Lemma 5.14 [Donninger and Wallauch 2023, Lemma 6.1]. Let f .!/DO.h!i�1�˛/ with ˛ > 0. Then

@a

Z
R

ei!af .!/ d! D i

Z
R

!ei!af .!/ d!

for a 2 R n f0g.

Suppose now, as before, that f 2 C1�C1.B51/, Qf D .I �Q/.I �P/f, and �D 1
2
� ıC i!. Then,

by using variations of Lemma 5.14, we obtain

@�ŒS .�/ Qf �1.�/D @�ŒS0.�/ Qf �1.�/C
1

2�i
lim
N!1

Z 1
2
�ıCiN

1
2
�ı�iN

e��@�ŒR.F�/.�; �/�Rf.F�/.�; �/� d�;

with

@�R.f /.�; �/D�
@�u0.�; �/

2.1��/

Z 1

�

s4u1.s; �/f .s/

.1� s2/1��
ds�

@�u1.�; �/

2.1��/

Z �

0

s4u0.s; �/f .s/

.1� s2/1��
ds:

Hence, our next step is to investigate the oscillatory integral above.

Lemma 5.15. Let Re�D 1
2
� ı and f 2 C1.B51/. Then we can decompose

@�ŒR.f /.�; �/�Rf.f /.�; �/�

as

@�ŒR.f /.�; �/�Rf.f /.�; �/�D

9X
jD1

G0j .f /.�; �/;

with

G01.f /.�; �/D .1� �
2/�

�
2

Z 1

�

��.s/O.��1sh!i�1/

.1� s2/1�
�
2

f .s/ ds;

G02.f /.�; �/D Œ��.1� �/
�1
C ��1���.�/.1� �

2/�
�
2O.�0h!i2/

�

Z 1

�

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1.�; s; �/
2.1��/.1� s/1��

f .s/ dsC zG2.f /.�; �/;

G03.f /.�; �/D

�
1��

1C �
� 2��1

�
G3.f /.�; �/

CO.��2.1� �/0h!i�1/.1���.�//��2.1C �/1��

�

Z 1

�

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�1.�; s; �/
2.1��/.1� s/1��

f .s/ dsC zG3.f /.�; �/;

G04.f /.�; �/D

�
�
1��

1� �
� 2��1

�
G4.f /.�; �/

CO.��2.1� �/0h!i�1/.1���.�//��2.1� �/1��

�

Z 1

�

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�2.�; s; �/
2.1��/.1� s/1��

f .s/ dsC zG4.f /.�; �/;
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G05.f /.�; �/D ��.�/.1� �
2/�

�
2

Z �

0

O.��2s2h!i�1/

.1� s2/1�
�
2

f .s/ ds;

G06.f /.�; �/D ��.�/.1� �
2/�

�
2

Z �

0

O.��2s2h!i�1/

.1� s2/1�
�
2

f .s/ ds;

G07.f /.�; �/D

�
1��

1C �
� 2��1

�
G7.f /.�; �/

CO.��2.1� �/0h!i�1/.1���.�//��2.1C �/1��

�

Z �

0

��.s/O.s4h!i/ˇ1.s; �; �/

.1� s2/1�
�
2

f .s/ dsC zG7.f /;

G08.f /.�; �/D

�
1��

1C �
� 2��1

�
G8.f /.�; �/

CO.��2.1� �/0h!i�1/.1���.�//��2.1C �/1��

�

Z �

0

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�1.s; �; �/
2.1��/.1� s/1��

f .s/ dsC zG8.f /;

G09.f /.�; �/D

�
1��

1C �
� 2��1

�
G9.f /.�; �/

CO.��2.1� �/0h!i�1/.1���.�//��2.1C �/1��

�

Z �

0

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�2.s; �; �/
2.1��/.1C s/1��

f .s/ dsC zG9.f /;

where zGj .f /.�; �/ are the terms obtained from differentiating either ˇ1 or j with respect to �.

Proof. This is just a straightforward computation. �
Proceeding as above, we define operators T 0j and PT 0j for j D 1; : : : ; 9 and f 2 C1.B51/ as

T 0j .�/f .�/ WD lim
N!1

Z N

�N

ei!�G0j .f /
�
�; 1
2
� ıC i!

�
d!;

PT 0j .�/f .�/ WD lim
N!1

Z N

�N

i!ei!�G0j .f /
�
�; 1
2
� ıC i!

�
d!:

Again, these integrals are not necessarily absolutely convergent. Nevertheless, the operators can be made
sense of, as is visible from the following lemma.

Lemma 5.16. The estimates

kT 0j .�/f kL6� .RC/L45=23.B51/
. kf kL2=.1�2ı/.B51/;

k PT 0j .�/f kL6� .RC/L45=23.B51/
. kf kW 1;2=.1�2ı/.B51/

hold for j D 1; : : : ; 9 and all f 2 C1.B51/.

Proof. We start with j D1, in which case we can take the limitN!1 for PT 01 and T 01. Combining this with

� 1
2
�ıCi!.s/O.�

�1sh!i�1/D � 1
2
�ıCi!.s/O.�

� 13
8 s

25
16 h!i�

17
16 /;
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which is valid for 0 < � � s, yields

T 01.�/f .�/D

Z 1

�

Z
R

ei!� .1� �2/�
1
4
C ı
2
� i!
2 1.0;�1/.s/

� 1
2
�ıCi!.s/O.�

� 13
8 s

25
16 h!i�

17
16 /

.1� s2/
1
4
C ı
2
� i!
2

f .s/ d! ds:

Thus, by employing Lemma 5.2 we obtain

jT 01.�/f .�/j. h�i
�2��

13
8

Z 1

0

s
25
16 jf .s/j ds . h�i�2��

13
8

�Z 1

0

s4jf .s/j2 ds

Z 1

0

s�
7
8 ds

�1
2

. h�i�2��
13
8 kf kL2.B51/

:

Consequently,
kT 01.�/f kL6� .RC/L45=23.B51/

. kf kL2=.1�2ı/.B51/:

Moreover, to bound k PT 01.�/f kL6� .RC/L45=23.B51/ one argues similarly to deduce that

k PT 01.�/f kL6� .RC/L45=23.B51/
. kj � j�1f kL2.B51/ . kf kW 1;2=.1�2ı/.B51/

by Lemma 2.4. For j D 2 we can again interchange the order of integration and take the limit N !1
in both T 02 and PT 02. Note that the hardest term over which we have to obtain control in order to bound
T 02 is given byZ 1

�

Z
R

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
C ı
2
� i!
2 O.��1h!i2/

�

s2.1�� 1
2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1

�
�; s; 1

2
� ıC i!

�
.1� 2i!/.1� s/

1
2
Cı�i!

f .s/ d! ds:

By using that
� 1
2
�ıCi!.�/O.�

�1
h!i0/D � 1

2
�ıCi!.�/O.�

� 5
2 h!i�

3
2 /

we deduce that

kT 02.�/f kL45=23.B51/
. kj � j�

5
2 kL45=23.B51/

Z 1

0

h� C log.1� s/i�2jf .s/js2.1� s/�
1
2
�ı ds:

Consequently, by employing previously used arguments, one readily establishes the desired estimate
on T 02. Next, when estimating PT 02 the hardest term is given byZ

R

Z 1

�

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
C ı
2
� i!
2 O.��1h!i3/

�

s2.1�� 1
2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1

�
�; s; 1

2
� ıC i!

�
.1� 2i!/.1� s/

1
2
Cı�i!

f .s/ ds d!

D

Z
R

ei!�� 1
2
�ıCi!.�/.1�� 1

2
�ıCi!.�//.1� �

2/�
1
4
C ı
2
� i!
2 O.�h!i1/.1� �/

1
2
�ıCi!

� Œ1CO.��1.1� �/h!i�1/�ˇ1
�
�; �; 1

2
� ıC i!

�
f .�/ d!

C

Z
R

Z 1

�

ei!�� 1
2
�ıCi!.�/.1� �

2/�
1
4
C ı
2
� i!
2 O.��1h!i/.1� s/

1
2
�ıCi!

� @s
�
s2.1�� 1

2
�ıCi!.s//Œ1CO.s�1.1� s/h!i�1/�ˇ1

�
�; s; 1

2
� ıC i!

�
f .s/

�
d! ds

DW PB 02.�/f .�/C
PI 02.�/f .�/:
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For PB 02.�/f .�/ we use Lemma 5.1 to compute that

j PB 02.�/f .�/j. h�i
�2��

1
6 jf .�/j:

Hence,

k PB 02.�/f kL6� .RC/L45=23.B51/
. kf kW 1;2=.1�2ı/.B51/

;

thanks to Lemma 2.4. Similarly,

j PI 02.�/f .�/j. h�i
�2��2�

1
6

Z 1

0

sjf .s/jC s2jf 0.s/j ds

and so,

k PI 02.�/f kL6� .RC/L45=23.B51/
. kf kW 1;2=.1�2ı/.B51/

:

We proceed with T 03, which we estimate according to

jT 03.�/f .�/j. �
�2

Z 1

0

s2jf .s/j.1� s/�
1
2
�ı
h� C log.1� s/i�2Œ1Cj� � log.1C�/C log.1� s/j�

1
8 � ds:

Further,

k��2Œ1Cj� � log.1C �/C log.1� s/j�
1
8 �k

L
45=23
� .B51/

. Œ1Cj� C log.1� s/j�
1
8 �

and the claimed estimate on T 03 follows. The bound on PT 03 follows by integrating parts once and then
arguing in similar fashion. Moving on, Lemma 5.2 shows that

jT 04.�/f .�/j. �
�2

Z 1

0

s2jf .s/j.1� s/�
1
2
�ı.1� �/�

1
2
�ı

� h� � log.1� �/C log.1� s/i�2Œ1Cj� � log.1� �/C log.1� s/j�
1

104 � ds:

Observe now, that the estimate

.1� �/
1
100 h� � log.1� �/C log.1� s/i�2 . h� C log.1� s/i�2

holds. Hence,

k��2.1� �/�
1
2
�ı
h� � log.1� �/C log.1� s/i�2Œ1Cj� � log.1� �/C log.1� s/j�

1

104 �k
L
45=23
� .B51/

. h� C log.1� s/i�2k.1� �/�
1
2
� 1
100
�ı Œ1Cj� � log.1� �/C log.1� s/j�

1

104 �k
L
45=23
� ..0;1//

. h�Clog.1�s/i�2k.1��/�
51
100
�ı
k
L
49=25
� ..0;1//

k1Cj��log.1��/Clog.1�s/j�
1

104 k
L
2205=2
� ..0;1//

. h� C log.1� s/i�2Œ1Cj� C log.1� s/j�
1

104 �:

Therefore,

kT 04.�/f kL45=23.B51/
.
Z 1

0

s2jf .s/j.1� s/�
1
2
�ı
h� C log.1� s/i�2Œ1Cj� C log.1� s/j�

1

104 � ds
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and the claimed estimate follows. Furthermore, estimating PT 04 is achieved by first integrating by parts
once in the s integral to recover decay in ! and a similar calculation. Analogously, one can bound the
remaining operators, so we conclude this proof. �

Proposition 5.17. The difference of S and S0 satisfies

ke�.
1
2
�ı/� Œ.S .�/�S0.�//.I�Q/.I�P/f �1kL6� .RC/W 1;45=23.B51/

.k.I�Q/f kW 1;2=.1�ı/�L2=.1�2ı/.B51/

for all f 2 C1 �C1.B51/.

With this result, our task of establishing Strichartz estimates on the W 1;2=.1�ı/ �L2=.1�2ı/ level has
come to an end and we move on to the next set of estimates.

6. Strichartz estimates in W 2;2=.1C2ı/

We now move on to W 2;2=.1C2ı/ �W 1;2=.1C2ı/-type Strichartz estimates, i.e., estimates of the form

kŒe.
1
2
�ı/�S .�/ Qf �1kLp� .RC/Lq.B51/

. k Qf kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/
:

For this we break the difference R.f /�Rf.f / into smaller pieces. The first part we look at is given by

W1.f /.�; �/ WD b�.f /u0.�; �/� bf�.f /uf0.�; �/:

Lemma 6.1. Let Re�D�1
2
C ı. Then we can decompose W1.f /.�; �/ as

W1.f /.�; �/D f .1/

3X
jD1

Hj .�; �/;

where

H1.�; �/ WD ��.�/.1� �
2/��O.�0h!i�2/;

H2.�; �/ WD .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

� ŒO.h!i�4/C .1� �/O.h!i�5/CO.��1.1� �/2h!i�5/�;

H3.�; �/ WD .1���.�//�
�2.1� �/1��Œ1CO.��1.1� �/h!i�1/�

� ŒO.h!i�4/C .1� �/O.h!i�5/CO.��1.1� �/2h!i�5/�:

Proof. We start by looking at

b�.f /D
f .1/

2�.1��/

Z 1

0

@sŒs
4u1.s; �/.1C s/

�1C��.1� s/� ds

D
f .1/

2�.1��/

�Z 1

0

��.s/@sŒs
4u1.s; �/.1C s/

�1C��.1� s/� ds

C

Z 1

0

.1���.s//@sŒs
4u1.s; �/.1C s/

�1C��.1� s/� ds

�
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and claim that b�.f / D f .1/O.h!i�3/. For the first of the above terms on the right side one readily
computes thatZ 1

0

��.s/@sŒs
4u1.s; �/.1C s/

�1C��.1� s/� ds D

Z 1

0

��.s/@sO.sh!i�1/ ds DO.h!i�1/:

The second term we split according toZ 1

0

.1���.s//@sŒs
2Œ1C .1� s/O.h!i�1/CO.s�1.1� s/2h!i�1/��.1� s/� ds

D

Z 1

0

.1���.s//@sŒs
2Œ1C .1� s/O.h!i�1/��.1� s/� ds

C

Z 1

0

.1���.s//@sŒs
2ŒO.s�1.1� s/2h!i�1/��.1� s/� ds

DW I1.�/C I2.�/:

Observe that I2.�/DO.h!i�1/, while an integration by parts yields

I1.�/DO.h!i�1/
Z 1

0

@s
�
.1���.s//@sŒs

2Œ1C .1� s/O.h!i�1/��
�
.1� s/1C� ds

DO.h!i�1/:

Consequently, the claim follows. Similarly, one computes that

b�.f /� bf�.f /D f .1/O.h!i
�4/:

Therefore, one establishes the desired decomposition by plugging in the explicit forms of the solutions
and a straightforward computation. �

Motivated by this decomposition we define the operators

Sj .�/f .�/D

Z
R

ei!�f .1/Hj
�
�;�1

2
C ıC i!

�
d!;

PSj .�/f .�/D

Z
R

!ei!�f .1/Hj
�
�;�1

2
C ıC i!

�
d!

for j D 1; 2; 3 and f 2 C1.B51/.

Lemma 6.2. The estimates

kSj .�/f kL2=.1C2ı/� .RC/L45.B
5
1/
. kf kW 1;2=.1C2ı/.B51/

;

kSj .�/f kL1� .RC/L10.B51/
. kf kW 1;2=.1C2ı/.B51/

and
k PSj .�/f kL2=.1C2ı/� .RC/L45.B

5
1/
. kf kW 2;2=.1C2ı/.B51/

;

k PSj .�/f kL1� .RC/L10.B51/
. kf kW 2;2=.1C2ı/.B51/

hold for j D 1; 2; 3 and f 2 C1.B51/.
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Proof. From Lemma 5.1 we see that
jS1.�/f .�/j. jf .1/jh�i�2I

hence, the bounds on S1 follow from the Sobolev embedding

W 1; 2
1C2ı ..0; 1// ,! L1.Œ0; 1�/

and Lemma 2.4. To establish the estimates on PS1 we use that

�
� 1
2
CıCi!.�/O.�

0
h!i�1/D �

� 1
2
CıCi!.�/O.�

� 1
100 h!i�1�

1
100 /

and employ Lemma 5.1 to establish that

j PS1.�/f .�/j. ��
1
100 jf .1/jh�i�2:

Consequently, the estimates on PS1 follow. The remaining bounds can be obtained in a similar fashion by
making use of Lemma 5.3. �

Next, we take a closer look at

W2.f /.�; �/ WD u0.�; �/U1.�; �/f .�/�uf0.�; �/Uf1.�; �/f .�/

�u1.�; �/U0.�; �/f .�/Cuf1.�; �/Uf0.�; �/f .�/:

Lemma 6.3. Let Re�D�1
2
C ı. Then we can decompose W2.f / as

W2.f /.�; �/D f .�/

8X
jD4

Hj .�; �/;

where

H4.�;�/ WD .1��
2/�

�
2 ��.�/

Z �

0

O.�0sh!i�1/

.1�s2/1�
�
2

ds;

H5.�;�/ WD .1���.�//�
�2.1C�/1��Œ1CO.��1.1��/h!i�1/�

Z �

0

��.s/O.sh!i�2/

.1�s2/1�
�
2

ˇ2.�;s;�/ds;

H6.�;�/ WD .1���.�//�
�2.1��/1��Œ1CO.��1.1��/h!i�1/�

Z �

0

��.s/O.sh!i�2/

.1�s2/1�
�
2

ˇ3.�;s;�/ds;

H7.�;�/ WD .1���.�//�
�2.1��/1��Œ1CO.��1.1��/h!i�1/�

�

Z �

0

s2.1���.s//Œ1CO.s�1.1�s/h!i�1/�3.�;s;�/
2.1��/.1�s/1��

ds;

H8.�;�/ WD .1���.�//�
�2.1C�/1��Œ1CO.��1.1��/h!i�1/�

�

Z �

0

s2.1���.s//Œ1CO.s�1.1�s/h!i�1/�4.�;s;�/
2.1��/.1Cs/1��

ds;

with ǰ and j as in Lemma 5.9.
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As before we define operators corresponding to the kernels Hj as

Sj .�/f .�/ WD lim
N!1

Z N

�N

ei!�f .�/Hj
�
�;�1

2
C ıC i!

�
d!;

PSj .�/f .�/ WD lim
N!1

Z N

�N

!ei!�f .�/Hj
�
�;�1

2
C ıC i!

�
d!

for j D 4; : : : ; 8 and f 2 C1.B51/.

Lemma 6.4. The estimates

kSj .�/f kL2=.1C2ı/� .RC/L45.B
5
1/
. kf kW 1;2=.1C2ı/.B51/

;

kSj .�/f kL1� .RC/L10.B51/
. kf kW 1;2=.1C2ı/.B51/

and
k PSj .�/f kL2=.1C2ı/� .RC/L45.B

5
1/
. kf kW 2;2=.1C2ı/.B51/

;

k PSj .�/f kL1� .RC/L10.B51/
. kf kW 2;2=.1C2ı/.B51/

hold for j D 4; : : : ; 8 and f 2 C1.B51/.

Proof. For j D4 exchanging a small power of � for decay in ! and applying Lemma 5.1 yields the estimate

jS4.�/f .�/j. h�i�2�2�ı jf .�/j:
So,

kS4.�/f .�/kL45� .B51/
. h�i�2k�2C

1
90f .�/kL45� ..0;1//

provided that ı is sufficiently small. Hence, from the embedding W 1;2=.1C2ı/..0; 1// ,! L45.Œ0; 1�/ we
conclude that

k�2C
1
90f .�/kL45� ..0;1// . k�

2C 1
90f .�/k

W
1;2=.1C2ı/
� ..0;1//

. kf .�/kW 1;2=.1C2ı/.B51/
Ck�1C

1
90f .�/kL1�..0;1//

. kf .�/kW 1;2=.1C2ı/.B51/
;

where the last inequality follows from Theorem 1 in [Ostermann 2025]. Hence the desired estimates
on S4 follow. To estimate PS4 one computes that

j PS4.�/f .�/j. h�i�2�1�ı jf .�/j

and so the estimates on PS4 follow from similar considerations. For j D 5 we apply Lemma 5.3 to see that

jS5.�/f .�/j. h�i�2�2jf .�/j;

j PS5.�/f .�/j. h�i�1�2jf .�/j:

Thus, the bounds on S5 and PS5 follow. Moreover, as the estimates for j D 6 can be obtained likewise,
we move on to S7. Here, an application of Lemma 5.3 shows that

jS7.�/f .�/j. ��1jf .�/j.1� �/
3
2
�ı

Z �

0

h� � log.1� �/C log.1� s/i�2s2

.1� s/
3
2
�ı

ds . h�i�2�2jf .�/j
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and again the desired bounds follow. To bound PS7 we integrate by parts once to see that

H7.�; �/D .1���.�//�
�2.1� �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

s2.1���.s//Œ1CO.s�1.1� s/h!i�1/�3.�; s; �/
2.1��/.1� s/1��

ds

D .1���.�//
2.1� �/Œ1CO.��1.1� �/h!i�1/�Œ1CO.��1.1� �/h!i�1/�

3.�; �; �/

2�.1��/

C .1���.�//�
�2.1� �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

@sŒs
2.1���.s//Œ1CO.s�1.1� s/h!i�1/�3.�; s; �/�

2�.1��/.1� s/��
ds:

By recasting H7 as such and employing Lemma 5.3, the claimed bounds follow. Finally, as S8 and PS8
can be bounded likewise, we conclude this proof. �

To proceed, we take a closer look at

W3.f /.�; �/ WD u0.�; �/

Z 1

�

U1.s; �/f
0.s/ ds�uf0.�; �/

Z 1

�

Uf1.s; �/f
0.s/ ds

Cu1.�; �/

Z �

0

U0.s; �/f
0.s/ ds�uf1.�; �/

Z �

0

Uf0.s; �/f
0.s/ ds:

Lemma 6.5. Let Re�D�1
2
C ı. Then we can decompose W3.�; �/ as

W3.f /.�; �/D

18X
jD9

Hj .f /.�; �/;

where

H9.f /.�; �/ WD .1� �
2/�

�
2 ��.�/

Z 1

�

f 0.s/

Z s

0

��.t/O.�0th!i�1/

.1� t2/1�
�
2

dt ds;

H10.f /.�; �/ WD .1� �
2/�

�
2 ��.�/

�

Z 1

�

f 0.s/

Z s

0

.1���.t//O.�0t2h!i/Œ1CO.t�1.1� t /h!i�1/�
.1� t /1��

ˇ4.�; t; �/ dt ds;

H11.f /.�; �/ WD .1���.�//�
�2.1� �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

f 0.s/

Z s

0

��.t/O.th!i�2/

.1� t2/1�
�
2

ˇ5.t; �; �/ dt ds;

H12.f /.�; �/ WD .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

f 0.s/

Z s

0

��.t/O.th!i�2/

.1� t2/1�
�
2

ˇ6.t; �; �/ dt ds;
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H13.f /.�; �/ WD .1���.�//�
�2.1� �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1� t /h!i�1/�3.�; t; �/
2.1��/.1� t /1��

dt ds;

H14.f /.�; �/ WD .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z 1

�

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1� t /h!i�1/�4.�; t; �/
2.1��/.1� t /1��

dt ds;

H15.f /.�; �/ WD .1� �
2/�

�
2 ��.�/

Z �

0

f 0.s/

Z s

0

O.�0th!i�1/

.1� t2/1�
�
2

dt ds;

H16.f /.�; �/ WD .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

f 0.s/

Z s

0

��.t/O.th!i�1/

.1� t2/1�
�
2

ˇ7.t; �; �/ dt ds;

H17.f /.�; �/ WD .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1� t /h!i�1/�5.�; t; �/
2.1��/.1� t /1��

dt ds;

H18.f /.�; �/ WD .1���.�//�
�2.1C �/1��Œ1CO.��1.1� �/h!i�1/�

�

Z �

0

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1� t /h!i�1/�6.�; t; �/
2.1��/.1C t /1��

dt ds;

with ǰ and j as in Lemma 5.9.

Continuing, we set

Sj .�/f .�/D lim
N!1

Z �N
N

ei!�Hj .f /
�
�;�1

2
C ıC i!

�
d!;

PSj .�/f .�/D lim
N!1

Z �N
N

!ei!�Hj .f /
�
�;�1

2
C ıC i!

�
d!

for j D 9; : : : ; 18 and f 2 C1.B51/.

Lemma 6.6. The estimates

kSj .�/f kL2=.1C2ı/� .RC/L45.B
5
1/
. kf kW 1;2=.1C2ı/.B51/

;

kSj .�/f kL1� .RC/L10.B51/
. kf kW 1;2=.1C2ı/.B51/

and
k PSj .�/f kL2=.1C2ı/� .RC/L45.B

5
1/
. kf kW 2;2=.1C2ı/.B51/

;

k PSj .�/f kL1� .RC/L10.B51/
. kf kW 2;2=.1C2ı/.B51/

hold for j D 9; : : : ; 18 and f 2 C1.B51/.
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Proof. Lemma 5.1 yields the estimate

jS9.�/f .�/j. h�i�2
Z 1

0

jf 0.s/js
7
4 ds

and so, from the Cauchy–Schwarz inequality we can immediately infer the desired estimates on S9.
Analogously, one derives that

k PS9.�/f kLp� .RC/Lq.B51/
. kj � j�1f kH1.B51/

. kf kH2.B51/
:

For j D 10 we perform an integration by parts to conclude that

H10.f /.�;�/

D .1��2/�
�
2 ��.�/

Z 1

�

f 0.s/
.1���.s//O.�0s2h!i0/Œ1CO.s�1.1�s/h!i�1/�

.1�s/��
ˇ1.�;s;�/ds

C.1��2/�
�
2 ��.�/

Z 1

�

f 0.s/

Z s

0

@t
�
.1���.t//O.�0t2h!i0/Œ1CO.t�1.1�t /h!i�1/�ˇ1.�; t;�/

�
.1�t /��

dt ds

DWB10.f /.�;�/CI10.f /.�;�/:

By employing Lemma 5.2 and substituting s D 1� e�y we estimateˇ̌̌̌Z
R

ei!�B10.f /.�;�
1
2
C ıC i!/ d!

ˇ̌̌̌
. ��

1
90

Z 1

�

ˇ̌
� � 1

2
log.1� �2/C log.1� s/

ˇ̌� 1
8 h� C log.1� s/i�2jf 0.s/js2C

1
90 .1� s/�

1
2
Cı ds

. ��
1
90

Z 1
0

ˇ̌
� � 1

2
log.1� �2/�y

ˇ̌� 1
8 h� �yi�2jf 0.1� e�y/j.1� e�y/2C

1
90 e�.

1
2
Cı/y ds

. ��
1
90

�Z 1
0

ˇ̌
� � 1

2
log.1� �2/�y

ˇ̌� 1
3 h� �yi�2 dy

�1�2ı
2

�

�Z 1
0

h� �yi�2jf 0.1� e�y/j
2

1C2ı .1� e�y/4e�y dy

�1C2ı
2

:

Observe thatZ 1
0

ˇ̌
��1

2
log.1��2/�y

ˇ̌� 1
3 h��yi�2dy .

Z
R

ˇ̌
1
2

log.1��2/Cy
ˇ̌� 1
3 hyi�2dy

.
Z � 1

2
log.1��2/C1

� 1
2

log.1��2/�1

ˇ̌
1
2

log.1��2/Cy
ˇ̌� 1
3 dyC

Z
R

hyi�2dy:

Thus, as Z � 1
2

log.1��2/C1

� 1
2

log.1��2/�1

ˇ̌
1
2

log.1� �2/Cy
ˇ̌� 1
3 dy D

Z 1

�1

jyj�
1
3 dy . 1;

we deduce thatZ
R

ei!�B10.f /
�
�;�1

2
C ıC i!

�
d!

2
L2� .RC/L

1
� .B

5
1/

.
Z 1
0

Z 1
0

h� �yi�2jf 0.1� e�y/j
2

1C2ı .1� e�y/4e�y dy d�:
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Hence, the bounds on
R

R
ei!�B10.f /

�
�;�1

2
C ıC i!

�
d! follow from Young’s inequality. To proceed,

we illustrate the general procedure on how to boundZ
R

ei!�I10.f /
�
�;�1

2
C ıC i!

�
d!;

with

zI10.f /.�; �/

D .1� �2/�
�
2 ��.�/

Z 1

�

f 0.s/

Z s

0

.1���.t//O.�0t2h!i0/O.t�2.1� t /0h!i�1/�ˇ1.�; t; �/
.1� t /��

dt ds;

i.e., the term we obtain when the t -derivative hits Œ1CO.t�1.1� t /h!i�1/�. Here, we use Lemma 5.3 to
derive thatˇ̌̌̌Z

R

ei!� zI10.f /
�
�;�1

2
C ıC i!

�
d!

ˇ̌̌̌
.
Z 1

0

jf 0.s/j

Z s

0

h� C log.1� t /i�2
t

.1� t /
1
2
�ı
dt ds:

So,Z
R

ei!� zI10.f /
�
�;�1

2
C ıC i!

�
d!


L
2=.1C2ı/
� .RC/L

45
� .B

5
1/

.
Z 1

0

jf 0.s/j

Z s

0

h� C log.1� t /i�2
t

.1� t /
1
2
�ı
dt


L
2=.1C2ı/
� .RC/

ds:

Furthermore,Z s

0

h� C log.1� t /i�2
t

.1� t /
1
2
�ı
dt


L
2=.1C2ı/
� .RC/

ds

D

Z � log.1�s/

0

h� �yi�2.1� e�y/e�.
1
2
Cı/ dy


L
2=.1C2ı/
� .RC/

and using Young’s inequality yieldsZ � log.1�s/

0

h� �yi�2.1� e�y/e�
y
2 dy


L
2=.1C2ı/
� .RC/

. k1.0;� log.1�s//.y/.1� e
�y/e�

y
2 k
L
3=2
y .R/

.
�Z s

0

.1� t /�
1
4 t
3
2 dt

�2
3

. .1� s/�
1
6 s

5
3 :

Thus,Z
R

ei!� zI10.f /
�
�;�1

2
C ıC i!

�
d!

2
L
2=.1C2ı/
� .RC/L

45
� .B

5
1/

.
�Z 1

0

jf 0.s/j.1� s/�
1
6 s

5
3 ds

�2
. kf k2

W 1;2=.1C2ı/.B51/

Z 1

0

.1� s/�
2
3 s�

3
4 ds

. kf k2
W 1;2=.1C2ı/.B51/

:

To bound the remaining terms, one integrates by parts once more and uses similar reasoning. Hence,

kS10.�/f kL2=.1C2ı/� .RC/L45.B
5
1/
. kf kW 1;2=.1C2ı/.B51/

:
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The second estimate on S10 then follows from similar reasoning and we move to PS10. To derive the stated
estimates on PS10, we again first take a look at B10.f /. Integrating by parts once again yields

B10.f /.�;�/

D .1��2/�
�
2 ��.�/

Z 1

�

f 0.s/
.1���.s//O.�0s2h!i0/Œ1CO.s�1.1�s/h!i�1/�

.1�s/��
ˇ4.�;s;�/ds

D .1��2/�
�
2 ��.�/f

0.�/.1���.�//O.�2h!i�1/Œ1CO.��1.1��/h!i�1/�.1��/1C�ˇ1.�;�;�/

C.1��2/�
�
2��.�/

Z 1

�

.1�s/1C�@s
�
f 0.s/.1���.s//O.�0s2h!i0/Œ1CO.s�1.1�s/h!i�1/�ˇ4.�;s;�/

�
ds

WDB110.f /.�;�/CB
2
10.f /.�/.�/:

Now, by using that ��.�/O.�2h!i�1/D ��.�/O.�h!i�2/ and Lemma 5.3, one establishes the estimateˇ̌̌̌Z
R

!ei!�B110.f /
�
�;�1

2
C ıC i!

�
d!

ˇ̌̌̌
. h�i�2�2jf 0.�/j

from which one concludes the desired bounds by already-exhibited means. Moreover, the remaining
kernels can be bounded by implementing essentially the same strategies that we used for j D 9; 10 in
Lemma 5.12 and we conclude this proof. �

These last couple of estimates now add together to our next set of Strichartz estimates.

Proposition 6.7. The difference of the semigroups S and S0 satisfies the Strichartz estimates

ke.
1
2
�ı/� Œ.S .�/�S0.�//.I�Q/.I�P/f �1kL2� .RC/L45.B51/

. k.I�Q/f kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/
;

ke.
1
2
�ı/� Œ.S .�/�S0.�//.I�Q/.I�P/f �1kL1� .RC/L10.B51/

. k.I�Q/f kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/

for all f 2 C1 �C1.B51/.

6.1. Even more estimates. Unfortunately, we still need one more estimate at theW 2;2=.1C2ı/�W 1;2=.1C2ı/

level, which is of the form

ke.
1
2
�ı/� Œ.S .�/�S0.�//.I �Q/.I �P/f �1kL6� .RC/W 1;9=2.B51/

. kf kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/
:

As done above we use a variant of Lemma 5.14 to reduce the problem to estimatingZ
R

ei!�@�ŒR.F�/.�; �/�Rf.F�/.�; �/� d!;Z
R

ei!�!@�ŒR.F�/.�; �/�Rf.F�/.�; �/� d!;

with �D�1
2
C ıC i!. For this we remark that

@�R.f /.�; �/ WD @�u0.�; �/Œb�.f /CU1.�; �/f .�/�C @�u0.�; �/
Z 1

�

U1.s; �/f
0.s/ ds

� @�u1.�; �/U0.�; �/f .�/C @�u1.�; �/

Z �

0

U0.s; �/f
0.s/ ds:
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We kick off this round of estimates by first looking at

W 01.f /.�; �/ WD b�.f / @�u0.�; �/� bf�.f / @�uf0.�; �/:

Lemma 6.8. Let Re�D�1
2
C ı. Then we can decompose W 01.f /.�; �/ as

W 01.f /.�; �/D f .1/

3X
jD1

H 0j .�; �/;

where

H 01.�;�/ WD��.�/.1��
2/��O.��1h!i�2/;

H 02.�;�/ WD Œ.1C�/
�1
h!i�2��1�H2.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/�1h!i�1/

�ŒO.h!i�4/C.1��/O.h!i�5/CO.��1.1��/2h!i�5/�C zH2.�;�/;

H 03.�;�/ WD Œ.1��/
�1
h!i�2��1�H3.�;�/

C.1���.�//�
�2.1��/1��O.��2.1��/�1h!i�1/

�ŒO.h!i�4/C.1��/O.h!i�5/CO.��1.1��/2h!i�5/�C zH3.�;�/;

where zHj .�; �/ are the terms we obtain when a �-derivative hits the perturbative terms

.1� �/O.h!i�5/CO.��1.1� �/2h!i�5/:

Proof. This follows immediately by differentiating W1 and noting that the derivatives which hit cut-offs
cancel each other. �

Proceeding, we set
S 0j .�/f .�/D

Z
R

ei!�f .1/Hj
�
�;�1

2
C ıC i!

�
d!;

PS 0j .�/f .�/D

Z
R

!ei!�f .1/Hj
�
�;�1

2
C ıC i!

�
d!

for j D 1; 2; 3 and f 2 C1.B51/.

Lemma 6.9. The estimates
kS 0j .�/f kL6� .RC/L9=2.B51/

. kf kW 1;2=.1C2ı/.B51/
;

k PS 0j .�/f kL6� .RC/L9=2.B51/
. kf kW 2;2=.1C2ı/.B51/

hold for j D 1; 2; 3 and f 2 C1.B51/.

Proof. In essence H 0j differs from Hj by a loss of either one power in � or one power of decay in !. But
since j � j�1 2 L9=2.B51/, this loss can be compensated for and the claimed estimates follow just as the
ones established in Lemma 6.2. �

Lemma 6.10. Let Re�D�1
2
C ı. Then we can decompose

W 02.f /.�; �/ WD @�u0.�; �/U1.�; �/f .�/� @�uf0.�; �/Uf1.�; �/f .�/

� @�u1.�; �/U0.�; �/f .�/C @�uf1.�; �/Uf0.�; �/f .�/
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as

W 02.f /.�; �/D f .�/

8X
jD4

Hj .�; �/;

where

H 04.�;�/D .1��
2/�

�
2 ��.�/

Z �

0

O.��1sh!i�1/

.1�s2/1�
�
2

ds;

H 05.�;�/D

�
1��

1C�
�2��1

�
H5.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/0h!i�1/

Z �

0

��.s/O.sh!i�2/

.1�s2/1�
�
2

ˇ2.�;s;�/dsC zH5.�;�/;

H 06.�;�/D

�
�
1��

1��
�2��1

�
H6.�;�/

C.1���.�//�
�2.1��/1��O.��2.1��/0h!i�1/

Z �

0

��.s/O.sh!i�2/

.1�s2/1�
�
2

ˇ3.�;s;�/dsC zH6.�;�/;

H 07.�;�/D

�
�
1��

1��
�2��1

�
H7.�;�/

C.1���.�//�
�2.1��/1��O.��2.1��/0h!i�1/

�

Z �

0

s2.1���.s//Œ1CO.s�1.1�s/h!i�1/�3.�;s;�/
2.1��/.1�s/1��

dsC zH7.�;�/;

H 08.�;�/D

�
1��

1C�
�2��1

�
H8.�;�/

C.1���.�//�
�2.1C�/1��O.��1.1��/0h!i�1/

�

Z �

0

s2.1���.s//Œ1CO.s�1.1�s/h!i�1/�4.�;s;�/
2.1��/.1Cs/1��

dsC zH8.�;�/;

with ǰ and j as in Lemma 5.9 and where zHj .�; �/ are the terms we obtain when @� hits either ǰ or j .

Again, we define operators corresponding to the kernels H 0j as

S 0j .�/f .�/ WD lim
N!1

Z N

�N

ei!�f .�/Hj
�
�;�1

2
C ıC i!

�
d!;

PS 0j .�/f .�/ WD lim
N!1

Z N

�N

!ei!�f .�/Hj
�
�;�1

2
C ıC i!

�
d!

for j D 4; : : : ; 8 and f 2 C1.B51/.

Lemma 6.11. The estimates
kS 0j .�/f kL6� .RC/L9=2.B51/

. kf kW 1;2=.1C2ı/.B51/
;

k PS 0j .�/f kL6� .RC/L9=2.B51/
. kf kW 2;2=.1C2ı/.B51/

hold for j D 4; : : : ; 8 and f 2 C1.B51/.

Proof. The lemma follows by adapting the proof of Lemma 6.4 slightly. �
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Lastly, we come to

W 03.f /.�; �/ WD @�u0.�; �/

Z 1

�

U1.s; �/f
0.s/ ds� @�uf0.�; �/

Z 1

�

Uf1.s; �/f
0.s/ ds

C @�u1.�; �/

Z �

0

U0.s; �/f
0.s/ ds� @�uf1.�; �/

Z �

0

Uf0.s; �/f
0.s/ ds:

Lemma 6.12. Let Re�D�1
2
C ı. Then we can decompose W 03.�; �/ as

W 03.f /.�; �/D

18X
jD9

H 0j .f /.�; �/;

where

H 09.f /.�;�/ WD .1��
2/�

�
2 ��.�/

Z 1

�

f 0.s/

Z s

0

��.t/O.��1th!i�1/

.1�t2/1�
�
2

dt ds;

H 010.f /.�;�/ WD .1��
2/�

�
2 ��.�/

�

Z 1

�

f 0.s/

Z s

0

.1���.t//
O.��1t2h!i/Œ1CO.t�1.1�t /h!i�1/�

.1�t /1��
ˇ4.�; t;�/dt ds

C zH10.f /.�;�/;

H 011.f /.�;�/ WD

�
�
1��

1��
�2��1

�
H11.f /.�;�/

C.1���.�//�
�2.1��/1��O.��2.1��/0h!i�1/

�

Z 1

�

f 0.s/

Z s

0

��.t/O.th!i�2/

.1�t2/1�
�
2

ˇ5.t;�;�/dt dsC zH11.f /.�;�/;

H 012.f /.�;�/ WD

�
1��

1C�
�2��1

�
H12.f /.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/0h!i�1/

�

Z 1

�

f 0.s/

Z s

0

��.t/O.th!i�2/

.1�t2/1�
�
2

ˇ6.t;�;�/dt dsC zH12.f /.�;�/;

H 013.f /.�;�/ WD

�
�
1��

1��
�2��1

�
H13.f /.�;�/

C.1���.�//�
�2.1��/1��O.��2.1��/0h!i�1/

�

Z 1

�

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1�t /h!i�1/�3.�; t;�/
2.1��/.1�t /1��

dt dsC zH13.f /.�;�/;

H 014.f /.�;�/ WD

�
1��

1C�
�2��1

�
H14.f /.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/0h!i�1/

�

Z 1

�

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1�t /h!i�1/�4.t;�;�/
2.1��/.1�t /1��

dt dsC zH14.f /.�;�/;
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H 015.f /.�;�/ WD .1��
2/�

�
2 ��.�/

Z �

0

f 0.s/

Z s

0

O.��1th!i�1/

.1�t2/1�
�
2

dt ds;

H 016.f /.�;�/ WD

�
1��

1C�
�2��1

�
H16.f /.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/0h!i�1/

�

Z �

0

f 0.s/

Z s

0

��.t/O.th!i�1/

.1�t2/1�
�
2

ˇ7.t;�;�/dt dsC zH16.f /.�;�/;

H 017.f /.�;�/ WD

�
1��

1C�
�2��1

�
H17.f /.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/0h!i�1/

�

Z �

0

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1�t /h!i�1/�5.�; t;�/
2.1��/.1�t /1��

dt dsC zH17.f /.�;�/;

H 018.f /.�;�/ WD

�
1��

1C�
�2��1

�
H18.f /.�;�/

C.1���.�//�
�2.1C�/1��O.��2.1��/0h!i�1/

�

Z �

0

f 0.s/

Z s

0

t2.1���.t//Œ1CO.t�1.1�t /h!i�1/�6.�; t;�/
2.1��/.1Ct /1��

dt dsC zH18.f /.�;�/;

with ǰ and j as in Lemma 5.9 and where zHj .f /.�; �/ are terms obtained when a �-derivative hits ǰ

or j .

One last time we define operators S 0j and PS 0j

S 0j .�/f .�/ WD lim
N!1

Z N

�N

ei!�H 0j .f /
�
�;�1

2
C ıC i!

�
d!;

PS 0j .�/f .�/ WD lim
N!1

Z N

�N

!ei!�H 0j .f /
�
�;�1

2
C ıC i!

�
d!

for j D 9; : : : ; 18 and f 2 C1.B51/.

Lemma 6.13. The estimates
kS 0j .�/f kL6� .RC/L9=2.B51/

. kf kW 1;2=.1C2ı/.B51/
;

k PS 0j .�/f kL6� .RC/L9=2.B51/
. kf kW 2;2=.1C2ı/.B51/

hold for j D 9; : : : ; 18 and f 2 C1.B51/.

Proof. The estimates can be established by adapting the procedures used in the proof of Lemma 6.6 in a
straightforward way. �

Proposition 6.14. The difference of S and S0 satisfies

ke.
1
2
�ı/� Œ.S .�/�S0.�//.I�Q/.I�P/f �1kL6� .RC/W 1;9=2.B51/

. k.I�Q/f kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/

for all f 2 C1 �C1.B51/.
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We now turn to interpolating the previously derived Strichartz estimates to obtain estimates on the
H 3=2�H 1=2 level. For the notation and conventions appearing in the context of interpolation throughout
the following proof we refer the reader to the Appendix and [Bergh and Löfström 1976]. We also recall
that we constructed a subset X �H 3 �H 2.B51/ which lies dense in H WDH 3=2 �H 1=2.B51/ such that
the spectral projection Q agrees on X with a bounded linear operator yQ WH!H.

Proposition 6.15. Let p 2 Œ2;1� and q 2 Œ5; 10� be such that 1
p
C
5
q
D 1. Then, the semigroup S satisfies

the Strichartz estimates
kŒS .�/.I �P/f �1kLp� .RC/Lq.B51/

. kf kH

for all f 2H. Furthermore, also the inhomogeneous estimateZ �

0

ŒS .� � �/.I �P/h.�/�1 d�


L
p
� .I /Lq.B

5
1/

. khkL1.I /H

holds for all h 2 L1.RC;H/ and all intervals I � Œ0;1/ containing 0.

Proof. We start by setting

kuk
p

Lp.RC;ea� d�/Lq.B
5
1/
WD

Z
RC

ku.�/k
p

Lq.B51/
ea� d�

for a 2 R and zS .�/D S .�/�S0.�/. Then, by a density argument we have that

kŒ zS .�/.I �Q/.I �P/f �1kL2=.1�2ı/.RC;e��.1C2ı/=.1�2ı/ d�/L45=8.B51/

D ke�.
1
2
Cı/� Œ zS .�/.I �Q/.I �P/f �1kL2=.1�2ı/� .RC/L45=8.B

5
1/

. k.I �Q/f kW 1;2=.1�2ı/�L2=.1�2ı/.B51/

for all f 2X thanks to Proposition 5.13. Similarly, from Proposition 6.7 we know that

kŒ zS .�/.I �Q/.I �P/f �1kL2=.1C2ı/.RC;e�1=.1C2ı/ d�/L45.B51/

D ke.
1
2
�ı/� Œ zS .�/.I �Q/.I �P/f �1kL2=.1C2ı/� .RC/L45.B

5
1/

. k.I �Q/f kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/
;

Hence, by invoking Proposition A.1 and using that

HDH
3
2 �H

1
2 .B51/D .W

2; 2
1C2ı �W 1; 2

1C2ı .B51/;W
1; 2
1�2ı �L

2
1�2ı .B51//Œ 1

2
�;

see [Triebel 1995, p. 317, Section 4.3.1.1, Theorem 1], we conclude that

kŒ zS .�/.I �Q/.I �P/f �1kL2.RC/L10.B51/
. k.I �Q/f kH: (6-1)

In addition, since

ke�.
1
2
�ı/� Œ zS .�/.I �Q/.I �P/f �1kL10=3.B51/

. k.I �Q/f kW 1;2=.1C2ı/�L2=.1C2ı/.B51/
;

ke.
1
2
�ı/� Œ zS .�/.I �Q/.I �P/f �1kL10.B51/

. k.I �Q/f kW 2;2=.1C2ı/�W 1;2=.1C2ı/.B51/
(6-2)
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for all � � 0 interpolating yields

kŒ zS .�/.I �Q/.I �P/f �1kL1.RC/L5.B51/
. k.I �Q/f kH

for all f 2 X. Hence, elementary interpolation between (6-1) and (6-2) combined with the estimates
on S0 in Lemma 2.9 yields

kŒS .�/.I �Q/.I �P/f �1kLp.RC/Lq.B51/
. k.I �Q/f kH;

where p 2 Œ2;1� and q 2 Œ5; 10� are such that 1
p
C
5
q
D 1. Furthermore, by construction Q agrees with a

bounded linear operator yQ WH!H on X and so

k.I �Q/f kH D k.I � yQ/f kH . kf kH

for all f 2X. Next, we turn to S .�/Q. From the Sobolev embedding H 2.B51/ ,! L10.B51/; we deduce
that

kŒS .�/Q.I �P/f �1kLp� .RC/Lq.B51/
. kŒS .�/Q.I �P/f �1kLp� .RC/H2.B51/

for all admissible pairs .p; q/. Given that the range of Q is contained in the union of finitely many
generalized eigenspaces corresponding to eigenvalues which all have negative real part, we infer the
existence of an " > 0 such that

kŒS .�/Q.I �P/f �1kH2.B51/
. e�"�kQf kH2�H1.B51/

on X. Moreover, since the range of Q is finite-dimensional, we see that

kQf kH2�H1.B51/
. kQf kH D k yQf kH . kf kH

for all f 2X. Thus, the estimate

kS .�/Œ.I �P/f �1kLp.RC/Lq.B51/
. kf kH

holds for all claimed pairs .p; q/ and all f 2X and by density for all f 2H. For the inhomogeneous esti-
mates one uses Minkowski’s inequality as in the proof of Lemma 3.7 in [Donninger and Wallauch 2023]. �

Analogously, one proves Strichartz estimates involving (fractional) derivatives.

Proposition 6.16. The estimates

kŒS .�/.I �P/f �1kL2� .RC/W 1=2;5.B51/
. kf kH;

kŒS .�/.I �P/f �1kL6� .RC/W 1;30=11.B51/
. kf kH

hold for all f 2H. Furthermore, also the inhomogeneous estimatesZ �

0

ŒS .� � �/.I �P/h.�/�1 d�


L2� .I /W 1=2;5.B51/

. khkL1.I /H;Z �

0

ŒS .� � �/.I �P/h.�/�1 d�


L6� .I /L30=11.B

5
1/

. khkL1.I /H

hold for all h 2 L1.RC;H/ and all intervals I � Œ0;1/ containing 0.
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Proof. Note that

.W 1; 9
2 .B51/; L

45
8 .B51//Œ 1

2
� DW

1
2
;5.B51/;

.W 1; 9
2 .B51/;W

1; 45
23 .B51//Œ 1

2
� DW

1; 30
11 .B51/;

thanks to [Triebel 1995, p. 317, Section 4.3.1.1, Theorem 1]. Consequently, the desired estimates follow
from Propositions 5.17, 6.14, A.1 and the arguments employed in the proof of Proposition 6.15. �

7. Nonlinear theory

We now take a closer look at our nonlinearity

N.u/.�/D
sin.4 arctan.�/C 2�u.�//� 2�u.�/

�3
�

sin.4 arctan.�//
�3

C
16

.1C �2/2
u.�/;

which we recast as

N.u/.�/D�
16.1� �2/

.1C �2/2„ ƒ‚ …
DWVN .�/

u1.�/
2
� 4

Z u.�/

0

cos.4 arctan.�/C 2�t/.u.�/� t /2 dt

by performing a Taylor expansion.

Lemma 7.1. The estimates

kN.u/kH1=2.B51/
. kuk2

L10.B51/
Ckuk3

L5.B51/
Ckuk4

L20=3.B51/

CkukW 1=2;5.B51/
kukL10.B51/

CkukW 1;30=11.B51/
kuk2

L60=7.B51/

and

kN.u/�N.v/kH1=2.B51/
. ku� vkL10.B51/.kukL10.B51/CkvkL10.B51/Ckuk

2

L20=3.B51/
Ckvk2

L20=3.B51/
/

Cku� vkL10.B51/
.kuk3

L6.B51/
Ckvk3

L6.B51/
/

Cku� vkL10.B51/
.kukW 1=2;5.B51/

CkvkW 1=2;5.B51/
/

Cku� vkW 1=2;5.B51/
.kukL10.B51/

CkvkL10.B51/
/

Cku� vkW 1;30=11.B51/
kuk2

L60=7.B51/

Cku� vkL60=7.B51/
kvkW 1;30=11.B51/

.kukL60=7.B51/
CkukL60=7.B51/

/

hold for all u; v 2 C1.B51/.

Proof. We start off with the easier quadratic term and use the product rule for fractional derivatives twice
to compute that

kVNu
2
kH1=2.B51/

. kVN kW 1=2;10=3.B51/
ku2kL5.B51/

CkVN kL5.B51/
ku2kW 1=2;10=3.B51/

. kuk2
L10.B51/

CkukW 1=2;5.B51/
kukL10.B51/

:



952 ROLAND DONNINGER AND DAVID WALLAUCH

For the cubic term, we use the Sobolev inequality k � kH1=2.B51/
. k � kW 1;5=3.B51/

to estimate thatZ u.�/

0

cos.4 arctan.�/C 2�t/.u.�/� t /2 dt

H
1=2
� .B51/

.
Z u.�/

0

cos.4 arctan.�/C 2�t/.u.�/� t /2 dt

W
1;5=3
� .B51/

. ku2u0kL5=3.B51/Cku
3
kL5=3.B51/

Cku4kL5=3.B51/

. ku0kL30=11.B51/kuk
2
L60=7.B51/

Ckuk3
L5.B51/

Ckuk4
L20=3.B51/

:

To establish local Lipschitz estimates we let u; v 2 C1.B51/ and again first take a look at the easier
quadratic term

kVN .u
2
� v2/kH1=2.B51/

. kVN kW 1=2;10=3.B51/
ku2� v2kL5.B51/

CkVN kL5.B51/
ku2� v2kW 1=2;10=3.B51/

. k.u� v/.uC v/kL5.B51/Ck.u� v/.uC v/kW 1=2;10=3.B51/

. ku� vkL10.B51/.kukL10.B51/CkvkL10.B51//

Cku� vkW 1=2;5.B51/
.kukL10.B51/

CkvkL10.B51/
/

Cku� vkL10.B51/
.kukW 1=2;5.B51/

CkvkW 1=2;5.B51/
/:

Next, consider the function n W R� Œ0; 1�! R,

n.x; �/ WD 4

Z x

0

cos.4 arctan.�/C 2�t/.x� t /2 dt

and note that

j@1n.x; �/j. jxj2; j@2n.x; �/j. jxj4; j@21n.x; �/j. jxj; j@1@2n.x; �/j. jxj
3:

Consequently,

kn.u; � /�n.v; � /kL5=3.B51/
. k.juj2Cjvj2/.u� v/kL5=3.B51/
. ku� vkL10.B51/.kuk

2
L4.B51/

Ckvk2
L4.B51/

/;

as well as

kn.u; � /�n.v; � /k PW 1;5=3.B51/
. k@2.n.u; � /�n.v; � //kL5=3.B51/Cku

0@1n.u; � /� v
0@1n.v; � /kL5=3.B51/

WDN1CN2:

For N1 we obtain

N1 . k.juj3Cjvj3/ju� vjkL5=3.B51/ . ku� vkL10.B51/.kuk
3
L6.B51/

Ckvk3
L6.B51/

/:

Further,

N2. k.u0�v0/@1n.u; �/kL5=3.B51/Ckv
0.@1n.u; �/�@1n.v; �//kL5=3.B51/

. kju0�v0ju2kL5=3.B51/Ckjv
0
j.jujCjvj/ju�vjkL5=3.B51/

. ku0�v0kL30=11.B51/kuk
2
L60=7.B51/

Cku�vkL60=7.B51/
kv0kL30=11.B51/

.kukL60=7.B51/
CkukL60=7.B51/

/: �
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Motivated by these estimates on the nonlinearity, we define the space X to be the completion of
C1c .RC �B51/ with respect to the norm

k�kX D k�kL2.RC/L10.B51/
Ck�kL12=5.RC/L60=7.B51/

Ck�kL3.RC/L15=2.B51/

Ck�kL4.RC/L20=3.B51/
Ck�kL2.RC/W 1=2;5.B51/

Ck�kL6.RC/W 1;30=11.B51/
:

Moreover, we set
Xı WD f� 2 X W k�kX � ıg

and for u 2H and � 2 C1c .RC �B51/ we define

Ku.�/.�/ WD

�
S .�/uC

Z �

0

S .� � �/N ..�.�/; 0// d� �C .u; �/.�/

�
1

;

where the correction term C, which we add to suppress the unstable direction induced by the eigenvalue 1,
is given by

C .u; �/.�/ WDP

�
e�uC

Z 1
0

e���N ..�.�/; 0// d�

�
:

Lemma 7.2. We have that Ku.�/ 2 X for all u 2H and all � 2 C1c .RC �B51/. Moreover,

kKu.�/kX . kukHCk�k2X Ck�k
4
X

for all u 2H and all � 2 C1c .RC �B51/.

Proof. We split Ku.�/ into

Ku.�/D

�
.I �P/S .�/uC .I �P/

Z �

0

S .� � �/N ..�.�/; 0// d�

�
1

C

�
PS .�/uCP

Z �

0

S .� � �/N ..�.�/; 0// d� �C .u; �/.�/

�
1

DW .I �P/Ku.�/CPKu.�/

and investigate .I �P/Ku.�/ and PKu.�/ separately. For the first one we observe that

.I �P/Ku.�/.�/D

�
S .�/.I �P/uC

Z �

0

S .� � �/.I �P/N ..�.�/; 0// d�

�
1

:

Hence, we use Propositions 6.15 and 6.16 to deduce that

k.I �P/Ku.�/kX . kukHC
Z �

0

ŒS .� � �/.I �P/N .�.�/; 0//�1 d�


X

. kukHC
Z 1
0

kN.�.�//kH1=2.B51/
d�

. kukHC
Z 1
0

k�.�/kW 1;30=11.B51/
k�.�/k2

L60=7.B51/
Ck�.�/k3

L5.B51/
d�

C

Z 1
0

k�.�/k4
L20=3.B51/

Ck�.�/k2
L10.B51/

Ck�.�/kW 1=2;5.B51/
k�.�/kL10.B51/

d�

. kukHCk�k2X Ck�k
4
X :



954 ROLAND DONNINGER AND DAVID WALLAUCH

We move on to PKu.�/, where we first discern that

PKu.�/.�/D

�Z 1
�

e���PN ..�.�/; 0// d�

�
1

:

We also remark that as P has rank 1, there exists a unique Qg 2 H such that Pf D .f ; Qg/Hg for all
f 2H. Hence,

kPKu.�/.�/kLp.B51/
CkPKu.�/.�/kW 1=2;5.B51/

CkPKu.�/.�/kW 1;30=11.B51/
. kN.�.�//kH1=2.B51/

for any 2� p �1. So,

kPKu.�/.�/kLp� .RC/Lq.B51/
.
Z 1
�

e���kN.�.�//kH1=2.B51/
d�


L
p
� .RC/

and Young’s inequality implies that

kPKu.�/.�/kLp� .RC/Lq.B51/
. kN.�/kL1.RC/H1=2.B51/

k1.�1;0�.�/e
�
kLp� .RC/

. k�k2X Ck�k
4
X :

As the remaining spacetime norms can be bounded likewise, one obtains the desired estimate

kPKu.�/kX . k�k2X Ck�k
4
X : �

Lemma 7.3. The estimate

kKu.�/�Ku. /kX . .k�kX Ck�k3X Ck kX Ck k
3
X /k� � kX

holds for all u 2H and all �; 2 C1c .RC �B51/.

Proof. Invoking Propositions 6.15 and 6.16 yields

k.I �P/.Ku.�/�Ku. //kX

.
Z 1
0

kN.�.�//�N. .�//kH1=2.B51/
d�

.
Z 1
0

k�.�/� .�/kL10.B51/
.k�.�/kL10.B51/

Ck .�/kL10.B51/
/

Ck�.�/� .�/kL10.B51/
.k�.�/k2

L20=3.B51/
Ck .�/k2

L20=3.B51/
/

Ck�.�/� .�/kW 1=2;5.B51/
.k�.�/kL10.B51/

Ck .�/kL10.B51/
/

Ck�.�/� .�/kL10.B51/
.k�.�/kW 1=2;5.B51/

Ck .�/kW 1=2;5.B51/
/

Ck�.�/� .�/kL10.B51/
.k�.�/k3

L6.B51/
Ck .�/k3

L6.B51/
/

Ck�.�/� .�/kW 1;30=11.B51/
k�.�/k2

L60=7.B51/

Ck�.�/� .�/kL60=7.B51/
k .�/kW 1;30=11.B51/

.k�.�/kL60=7.B51/
Ck .�/kL60=7.B51/

/ d�

. k� � kX .k�kX Ck kX Ck�k3X Ck k
3
X /:

Estimating P.Ku.�/�Ku. // can be done by employing the same strategy as in the proof of Lemma 7.2. �
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The last two lemmas combined with an application of the contraction mapping principle yield the next
result.

Lemma 7.4. For any u 2H fixed, the operator Ku extends to an operator on all of X . Moreover, there
exist ı > 0 and C > 1 such that there exists a unique � 2 Xı with

Ku.�/D �

whenever kukH � ı=C .

7.1. Proof of Theorem 1.2. To prove Theorem 1.2 we still have to get rid of the correction term C. We
achieve this by picking the right blowup time T close to 1. For this, we recall that the prescribed initial data

ˆ.0/D .�1.0; � /; �2.0; � //

are given by

�1.0; �/D  1.0; �/�
2 arctan.�/

�
D Tf .T�/�

2 arctan.�/
�

;

�2.0; �/D  2.0; �/�
2

1C �2
D T 2g.T�/�

2

1C �2
:

Furthermore, u1�Œ0� transformed to similarity coordinates is given by

 11�.0; �/D
2 arctan.T�/

�
;  12�.0; �/D

2T 2

1CT 2�2
:

This explicit dependence of T of the initial data motivates the definition of the operator

U W Œ1� ı; 1C ı�� .H
3
2 �H

1
2 /.B51Cı/!H

by

U .T; v/.�/D .T v1.T�/; T
2v2.T�//C . 

1
1�
.0; �/;  12�.0; �//�

�
2 arctan.�/

�
;

2

1C �2

�
:

Note that for ı 2
�
0; 1
2

�
and any v fixed, this defines a continuous map

U. � ; v/ W Œ1� ı; 1C ı�!H

(this follows as the first part of Lemma 8.2 in [Glogić 2025]). Also, the two identities

U .1; 0/D 0
and

ˆ.0; �/D U

�
T;

�
f .�/�

2 arctan.�/
�

; g.�/�
2

1C �2

��
hold. Furthermore, by arguing as in the proof of Lemma 8.2 in [Glogić 2025], one shows that the estimate

kU .T; v/kH . kvkH3=2�H1=2.B5
1Cı

/Cj1�T j

is true for all T 2 Œ1� ı; 1C ı�.

Lemma 7.5. There exist constants M � 1 and ı > 0 such that if v 2 H 3=2 �H 1=2.B5
1Cı

/ satisfies
kvkH3=2�H1=2.B5

1Cı
/ � ı=M, then there exists a unique T � 2 Œ1 � ı; 1 C ı� and a unique � 2 Xı

with � DKU .T �;v/.�/ and C .�;U .T �; v//D 0.
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Proof. Since

@T

�
2 arctan.T�/

�
;

2T 2

1CT 2�2

�ˇ̌̌̌
TD1

D 2g.�/;

the claim follows by an application of Brouwer’s fixed-point theorem; see the proof of Lemma 6.5 in
[Donninger 2017] for the details. �

This allows us to give rigorous meaning to the notion of solutions in our topology.

Definition 7.6. Let

�T WD f.t; r/ 2 Œ0; T /� Œ0;1/ W r � T � tg:

We say that u W �T ! R is a Strichartz solution of�
@2t � @

2
r �

4

r
@r

�
u.t; r/C

sin.2ru.t; r//� 2ru.t; r/
r3

D 0

if � Dˆ1 WD Œ‰�‰��1, with

‰.�; �/ WD

�
 .�; �/

.1C @� C �@�/ .�; �/

�
;  .�; �/ WD Te��u.T �Te�� ; Te���/;

belongs to X and satisfies

� DKˆ.0/.�/

and C .�;ˆ.0//D 0.

Proof of Theorem 1.2. Let ı > 0 be small enough, choose M � 0 sufficiently large, and, let v D

.f; g/�u1�Œ0� 2 C
1 �C1.B5

1Cı
/ be such that

k.f; g/�u1�Œ0�kH3=2�H1=2.B5
1Cı

/ �
ı

M
:

Then, by Lemmas 7.4 and 7.5 there exists a Strichartz solution u with that initial data. Therefore, the
associated � is the unique fixed point of K in Xı with vanishing correction term. Moreover, by standard
partition arguments one shows that this � is in fact the unique fixed point in all of X ; see for instance
[Donninger and Wallauch 2023, Lemma 7.6]. Furthermore, by classical Gronwall-type arguments one
shows that u is in fact a smooth function on �T, where T denotes the blowup time. We calculate

ı2 � k�k2
L2.RC/L10.B

5
1/
D

Z 1
0

k .�; � /� 2j � j�1 arctan.j � j/k2
L10.B51/

d�

D

Z T

0

k .� log.T � t /C logT; � /� 2j � j�1 arctan.j � j/k2
L10.B51/

dt

T � t

D

Z T

0

.T � t /�1 �� log.T � t /C logT;
:

T � t

�
� 2j � j�1 arctan

�
j � j

T � t

�2
L10.B5T�t /

dt

D

Z T

0

ku.t; � /�uT� .t; r/k
2
L10.B5T�t /

dt
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and similarly one computes

ı6 �

Z T

0

ku.t; � /�uT� .t; � /k
6
PW 1;30=11.B5T�t /

dt; (7-1)

completing the proof. �

Proof of Theorem 1.1. Establishing Theorem 1.1 reduces to two tasks. First one needs to prove that u can
be extended to all of

�5T WD .Œ0;1/�R5/nf.t;x/2 ŒT;1/�R5 W jxj � t�T g:

This is a consequence of N being a smooth bounded function away from r D 0 and we refer the reader to
Section 2 and Lemma 8.3 of [Donninger and Wallauch 2023], where this was done for one dimension
higher. Secondly, one has to show that all estimates on u ascend to estimates on

Uu.t; � /D

 
sin.j � j.u.t; � // �

j � j

cos.j � ju.t; � //

!
:

This procedure was also carried out for d D 4 in Section 8 of [Donninger and Wallauch 2023] and can be
adapted in a straightforward way to the three-dimensional case. �

Appendix: Interpolation theory

This appendix is concerned with our required interpolation result for weighted Strichartz spaces. The
presentation given here is based on the book by J. Bergh and J. Löfström [1976]. Following this reference,
we let .X0; X1/ be a tuple of Banach spaces out of which we form the Banach space .X0CX1; k�kX0CX1/,
where

kxkX0CX1 WD inf
xDx0Cx1;xj2Xj ;jD1;2

.kx0kX0 Ckx1kX1/

for x 2X0CX1. We now set S WD fz 2 C W 0� z � 1g and consider the set F.X0; X1/ consisting of all
continuous functions f W S !X0CX1 that are analytic on the interior of S . Moreover, for f to be an
element of F.X0; X1/, we require the function t 7! f .j C i t/, for j D 0; 1, to be a continuous function
from R to Xj which tends to 0 as jt j !1. Then, F.X0; X1/ is a vector space and by equipping it with
the norm

kf kF.X0;X1/ WDmax
˚
sup
t2R

kf .it/kX0 ; sup
t2R

kf .1C i t/kX1
	

it becomes a Banach space; see [Bergh and Löfström 1976, p. 88, Lemma 4.1.1]. Next, for � 2 .0; 1/, we
define the interpolation functor C� as follows. Let .X0; X1/Œ��DC� .X0; X1/ be the set of all x 2X0CX1
for which there exists an f 2 F.X0; X1/ with f .�/D x. Furthermore, for any such x we set

kxk.X0;X1/Œ�� WD inffkf kF.X0;X1/ W f 2 F.X0; X1/; f .�/D xg:

Then, ..X0; X1/Œ��; k � k.X0;X1/Œ��/ is Banach space and C� is an exact interpolation functor of order �
(see [Bergh and Löfström 1976, p. 88, Theorem 4.1.2.]). Moreover, for a given Sobolev norm k�kW s;q.B51/

,
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with s � 0 and 1 � q �1, as well as a 2 R, we let Lp.RC; ea� d�/W s;q.B51/ with 1 � p <1 be the
completion of C1c .RC �B51/ with respect to the norm

kf k
p

Lp.RC;ea� d�/W s;q.B51/
WD

Z
RC

kf .�; � /k
p

W s;q.B51/
ea� d�:

Finally, we once more employ [Triebel 1995, p. 317, Section 4.3.1.1, Theorem 1] to infer that for any
1� p; q0; q1 �1 and 0� s0; s1 <1 one has that

.W s0;q0.B51/;W
s1;q1.B51//Œ 1

2
� DW

s1=2;q1=2.B51/;

where s1=2D 1
2
.s0C s2/ and 1=q1=2D 1

2
.1=q0C1=q1/. Having concluded these preliminaries, we come

to the desired interpolation result.

Proposition A.1. Let 1� q0; q1 �1, 0� s0; s1 <1, 1� p0; p1 <1, and a 2 R. Then�
Lp0.RC; e

�ap0� d�/W s0;q0.B51/; L
p1.RC; e

ap1� d�/W s1;q1.B51/
�
Œ 1
2
� D L

p1=2.RC/W
s1=2;q1=2.B51/:

Proof. The proposition follows by slightly modifying the ideas of [Bergh and Löfström 1976, p. 107,
Theorem 5.1.2], which we illustrate here for the convenience of the reader. To simplify notation,
we set W0 D W s0;q0.B51/, W1 D W s1;q1.B51/ and p D p1=2. By construction, C1c .RC � B51/ lies
dense in Lp0.RC; e�ap0� d�/W0\Lp1.RC; eap1� d�/W1 and so by [Bergh and Löfström 1976, p. 91,
Theorem 4.2.2] also in�

Lp0.RC; e
�ap0� d�/W0; L

p1.RC; e
ap1� d�/W1

�
Œ 1
2
� and Lp.RC/.W0; W1/Œ 1

2
�:

Consequently, it suffices to consider C1c .RC �B51/. We start with the inequality

kuk.Lp0 .RC;e�ap0� d�/W0;Lp1 .RC;eap1� d�/W1/Œ1=2� � kukLp.RC/.W0;W1/Œ1=2� :

Let u2C1c .RC�B51/with u¤0. Then, for every ">0 and every � �0, there exists an f .�/2F.W0; W1/
with f .�/

�
1
2

�
D u.�; � / and

kf .�/kF.W0;W1/ � .1C "/ku.�; � /k.W0;W1/Œ1=2� :

Set

g.�/.z/D f .�/.z/e2a.
1
2
�z/�

�
ku.�/k.W0;W1/Œ1=2�

kukLp.RC/.W0;W1/Œ1=2�

�p. 1
p0
� 1
p1
/. 1
2
�z/

:

Then, clearly g.�/
�
1
2

�
D u.�; � / and since

p0Cp0
p

2

�
1

p0
�
1

p1

�
D p

one readily computes that

kg.�/.i t/k
p0
Lp0 .RC;e

�ap0� d�/W0
D

Z
RC

kf .�/.i t/k
p0
W0

�
ku.�/k.W0;W1/Œ1=2�

kukLp.RC/.W0;W1/Œ1=2�

�p0 p2 . 1p0� 1
p1
/
d�

� .1C "/p0kuk
�p0

p
2
. 1
p0
� 1
p1
/

Lp.RC/.W0;W1/Œ1=2�

Z
RC

ku.�; � /k
p

.W0;W1/Œ1=2�
d�

D .1C "/p0kuk
p0
Lp.RC/.W0;W1/Œ1=2�
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and similarly

kg.�/.1C i t/k
p1
Lp1 .RC;e

ap1� d�/W1
� .1C "/pkuk

p1
Lp.RC/.W0;W1/Œ1=2�

:

Hence, as " > 0 was chosen arbitrarily, the claim follows.
For the other inequality, we invoke [Bergh and Löfström 1976, p. 93, Lemma 4.3.2], which states that

any f 2 F.W0; W1/ satisfies

kf k.W0;W1/Œ�� �

�
1

1� �

Z
R

kf .it/kW0P0.�; t/ dt

�1���1
�

Z
R

kf .1C i t/kW1P1.�; t/ dt

��
; (A-1)

where

Pj .xC iy; t/ WD
e��.t�y/ sin.�x/

sin.�x/2C .cos.�x/� eij���.t�y//2

are the Poisson kernels of the strip S . Further, for u 2 C1c .RC�B51/ let f .�/ 2 F.W0; W1/ be such that
f .�/

�
1
2

�
Du.�; � /. Then, (A-1), Hölder’s inequality, and the identity 1=pD1=.2p0/C1=.2p1/ imply that

kukLp.RC/.W0;W1/Œ1=2�

� 4

Z
RC

�Z
R

kf .�/.i t/kW0P0
�
1
2
; t
�
dt

�1
2
�Z

R

kf .�/.1C i t/kW1P1
�
1
2
; t
�
dt

�1
2

L
p
� .RC/

� 4

e�a� Z
R

kf .�/.i t/kW0P0
�
1
2
; t
�
dt

 12
L
p0
� .RC/

ea� Z
R

kf .�/.1C i t/kW1P1
�
1
2
; t
�
dt

 12
L
p1
� .RC/

:

Next, by Minkowski’s inequalityZ
R

kf .�/.i t/kW0P0
�
1
2
; t
�
dt e�a�


L
p0
� .RC/

�

Z
R

k � kf .�/.i t/kW0e
�a�
k
L
p0
� .RC/

P0
�
1
2
; t
�
dt

� sup
t2R

kf .�/.i t/kLp0 .RC;e�ap0� d�/W0

Z
R

P0
�
1
2
; t
�
dt

and analogously one estimates the second factor. Observe now that for j D 0; 1Z
R

Pj
�
1
2
; t
�
dt D

Z
R

e��t

1C e�2�t
dt D

1

2
:

Therefore,
kuk

p

Lp.RC/.W0;W1/Œ1=2�
� sup
t2R

kf .�/.i t/k
1
2

Lp0 .RC;e
�ap0� d�/W0

sup
t2R

kf .�/.1C i t/k
1
2

Lp1 .RC;e
ap1� d�/W1

� kf kF.Lp.RC;e�ap0� d�/W0;Lp.RC;eap1� d�/W1/: �
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[Costin et al. 2017] O. Costin, R. Donninger, and I. Glogić, “Mode stability of self-similar wave maps in higher dimensions”,
Comm. Math. Phys. 351:3 (2017), 959–972. MR Zbl

[Côte 2015] R. Côte, “On the soliton resolution for equivariant wave maps to the sphere”, Comm. Pure Appl. Math. 68:11 (2015),
1946–2004. MR Zbl

[Côte et al. 2008] R. Côte, C. E. Kenig, and F. Merle, “Scattering below critical energy for the radial 4D Yang–Mills equation
and for the 2D corotational wave map system”, Comm. Math. Phys. 284:1 (2008), 203–225. MR Zbl

[Côte et al. 2015a] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, “Characterization of large energy solutions of the equivariant
wave map problem, I”, Amer. J. Math. 137:1 (2015), 139–207. MR Zbl

[Côte et al. 2015b] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, “Characterization of large energy solutions of the equivariant
wave map problem, II”, Amer. J. Math. 137:1 (2015), 209–250. MR Zbl

[Dodson and Lawrie 2015] B. Dodson and A. Lawrie, “Scattering for radial, semi-linear, super-critical wave equations with
bounded critical norm”, Arch. Ration. Mech. Anal. 218:3 (2015), 1459–1529. MR Zbl

[Donninger 2011] R. Donninger, “On stable self-similar blowup for equivariant wave maps”, Comm. Pure Appl. Math. 64:8
(2011), 1095–1147. MR Zbl

[Donninger 2017] R. Donninger, “Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation”,
Duke Math. J. 166:9 (2017), 1627–1683. MR Zbl

[Donninger and Aichelburg 2010] R. Donninger and P. C. Aichelburg, “A note on the eigenvalues for equivariant maps of the
SU.2/ sigma-model”, Appl. Math. Comput. Sci. 1:1 (2010), 73–82. MR Zbl
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In Gel’fand’s inverse problem, one aims to determine the topology, differential structure and Riemannian
metric of a compact manifold M with boundary from the knowledge of the boundary ∂M, the Neumann
eigenvalues λj and the boundary values of the eigenfunctions ϕj |∂M . We show that this problem has
a stable solution with quantitative stability estimates in a class of manifolds with bounded geometry.
More precisely, we show that finitely many eigenvalues and the boundary values of corresponding
eigenfunctions, known up to small errors, determine a metric space that is close to the manifold in the
Gromov–Hausdorff sense. We provide an algorithm to construct this metric space. This result is based on
an explicit estimate on the stability of the unique continuation for the wave operator.
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1. Introduction

Gel’fand’s inverse problem, formulated by I. Gel’fand [1957], concerns finding the topology, differential
structure and Riemannian metric of a compact manifold with boundary from the spectral data for the
Neumann Laplacian on the boundary, that is, the Neumann eigenvalues and the boundary values of the
corresponding eigenfunctions. The problem is closely related to an inverse problem for the wave equation
that can be solved using the boundary control method developed by Belishev [1987] on domains of Rn.
The uniqueness of Gel’fand’s inverse problem on manifolds was proved in 1992 by Belishev and Kurylev
[1992], see also [Anderson et al. 2004; Belishev 2007; 2017; Caday et al. 2019; Krupchyk et al. 2008;
Kurylev et al. 2018], in the form of an inverse spectral problem: the geometry of a compact Riemannian
manifold with boundary is uniquely determined by the boundary spectral data for the Neumann Laplacian.
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On a given domain of the Euclidean space, Gel’fand’s problem was reduced in [Nachman et al. 1988]
to inverse coefficient problems for elliptic equations which were solved in [Astala and Päivärinta 2006;
Nachman 1988; 1996; Sylvester and Uhlmann 1987], see also [Dos Santos Ferreira et al. 2009; Guillarmou
and Tzou 2011; Isozaki 2004; Kenig and Salo 2013; Kenig et al. 2007; Uhlmann 1998], and the stability of
the solutions of these problems has been studied in [Alessandrini 1988; Alessandrini and Sylvester 1990;
Sylvester and Uhlmann 1988]. Gel’fand’s inverse problem is ill-posed in the sense of Hadamard, as one can
make large changes to the geometry of the interior without affecting the boundary spectral data much. One
approach of stabilizing the inverse problem is to study the conditional stability by assuming a priori knowl-
edge of the desired quantities, for instance higher regularity of coefficients [Alessandrini 1988], and higher
regularity of Riemannian metrics if they are close to Euclidean [Stefanov and Uhlmann 1998]. For a general
Riemannian manifold, it is natural to impose a priori bounds on geometric parameters such as the diameter,
injectivity radius and sectional curvature. An abstract continuity result for the stability of the problem was
proved in [Anderson et al. 2004], however with no stability estimates, and the related determination of the
smooth structure was shown in [Fefferman et al. 2020]. With additional geometric assumptions, strong sta-
bility estimates for this problem can be obtained, e.g., [Bellassoued and Dos Santos Ferreira 2011; Stefanov
and Uhlmann 2005], when the metric is close to simple (i.e., with strictly convex boundary and no conjugate
points). One could also consider the inverse interior problem, that is, an inverse problem on closed
manifolds analogous to Gel’fand’s problem. For the inverse interior problem where the eigenfunctions are
measured in a ball of a closed manifold, the unique solvability of the problem was proved in [Krupchyk
et al. 2008] and a quantitative stability estimate for general metric has recently been obtained in [Bosi et al.
2022]. A quantitative stability of Gel’fand’s inverse problem for manifolds with boundary in the general
case was yet unknown. The main purpose of the present paper is to provide an answer to this question.

The key result for establishing the uniqueness of Gel’fand’s inverse problem was Tataru’s unique
continuation theorem [1995] for the wave operator. Its stability, i.e., quantitative unique continuation,
is essential to the stability of the inverse problem. The quantitative unique continuation for the wave
operator on Riemannian manifolds, from sets of the form 0 × [−T, T ], where 0 is the observation
region, has been investigated independently in [Bosi et al. 2016; 2018] for closed manifolds, and in
[Laurent and Léautaud 2019] when T is larger than the diameter of the manifold. Using [Bosi et al. 2016;
2018], the authors established a log-log type of stability estimate [Bosi et al. 2022] for the analogous
inverse problem on a closed manifold where spectral data are measured in a ball. However, for manifolds
with boundary, the quantitative unique continuation for arbitrary time T is yet unclear, partly due to the
lack of smoothness caused by geodesics touching the boundary. This brought substantial difficulty into
propagating the local unique continuation to a global one without losing any domain of dependence. It
turns out that it is beneficial for us to treat these geodesics as distance-minimizing paths in Alexandrov
spaces with curvature bounded above, instead of handling them in boundary normal coordinates. As
our main technical task occupying most of Sections 3 and 6, we focus on geometric issues brought by
geodesics near the boundary, and give a fully explicit stability estimate for the unique continuation in the
optimal domain of dependence. Our result also makes it possible to obtain quantitative stability of other
inverse problems that are solved using the boundary control method.
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We hope our results may have applications in medicine, especially to cancer treatment, more concretely,
to imaging necessary for radiation therapy (e.g., the navigation of cyber knives) and for ultrasound
surgery, see, e.g., [Western et al. 2015]. In these treatments, many thin beams of X-rays or high-amplitude
ultrasound waves are concentrated in the cancerous tissue and the planning of the treatment requires stable
imaging methods. A significant potential instance is the focused ultrasound surgery [Tempany et al. 2011],
where a cancerous tissue is destroyed by an excessive heat dose generated by focused ultrasound waves.
The location where the ultrasound waves are focused is determined by the intrinsic Riemannian metric
corresponding to the wave speed of acoustic waves; see [Dahl et al. 2009; Lassas 2018]. In particular, in
an anisotropic medium where the inverse problem is not uniquely solvable in Euclidean coordinates, see
[Sylvester 1990], it is beneficial to do imaging in the same Riemannian structure that determines the wave
propagation. The imaging of the Riemannian metric associated with the wave propagation is an inverse
problem for the wave equation, which is equivalent, see [Katchalov et al. 2004], to Gel’fand’s inverse
problem studied in this paper. Numerical methods to solve these problems have been studied in [de Hoop
et al. 2016; 2018]. The quantitative stability of reconstruction from other types of data, e.g., the Dirichlet-
to-Neumann map or the source-to-solution map for the wave equation, has not yet been studied; however, in
the light of [Bosi et al. 2022; Katchalov et al. 2004], we think a similar stability estimate might be possible.

Let (M, g) be a compact, connected, orientable Riemannian manifold of dimension n ⩾ 2 with smooth
boundary ∂M. We consider the manifold M in the class Mn(D, K1, K2, i0, r0) of bounded geometry
defined by the bounds on the diameter diam(M), the injectivity radius inj(M), the Riemannian curvature
tensor RM of M, and the second fundamental form S of the boundary ∂M embedded in M :

diam(M)⩽ D, inj(M)⩾ i0,

∥RM∥C0 ⩽ K 2
1 , ∥S∥C0 ⩽ K1,

5∑
i=1

∥∇
i RM∥C0 ⩽ K2,

4∑
i=1

∥∇
i S∥C0 ⩽ K2, (1-1)

where ∇
i denotes the i-th covariant derivative on M. The injectivity radius for a manifold with boundary

is defined in Section 2.1. In addition, we impose the lower bound on the following quantity rCAT(M)
(Definition 2.1):

rCAT(M)⩾ r0, (1-2)

where rCAT(M) is defined as the largest number r such that any pair of points with distance less than r is
connected by a unique distance-minimizing geodesic (possibly touching the boundary) of M. This quantity
is known to be positive for a compact Riemannian manifold with smooth boundary. For Riemannian
manifolds without boundary, the condition (1-2) is already incorporated in the lower bound for the
injectivity radius.

Denote by λj ( j ⩾ 1) the j-th eigenvalue of the (nonnegative) Laplace–Beltrami operator −1g on
(M, g) with the Neumann boundary condition at ∂M, and by ϕj a (smooth) eigenfunction with respect
to λj . We know that 0 = λ1 < λ2 ⩽ · · · ⩽ λj ⩽ λj+1 ⩽ · · · , and λj → +∞ as j → +∞. Assume the
eigenfunctions are orthonormalized with respect to the L2-norm of M. In particular ϕ1 = voln(M)−1/2.
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The Neumann boundary spectral data of M refers to the collection of data

(∂M, g
∂M , {λj , ϕj |∂M}

∞

j=1),

which consists of the boundary ∂M and its intrinsic metric g
∂M , the Neumann eigenvalues and the boundary

values of a choice of orthonormalized Neumann eigenfunctions.

Definition 1.1. We say a collection of data (∂M, g
∂M , {λ

a
j , ϕ

a
j |∂M}

J
j=1) is a δ-approximation of the

Neumann boundary spectral data of (M, g) (in C2) for some δ ⩾ J−1 if there exists a choice of Neumann
boundary spectral data {λj , ϕj |∂M}

∞

j=1 such that the following three conditions are satisfied for all j ⩽ δ−1:

(1) λa
j ∈ [0,∞), ϕa

j |∂M ∈ C2(∂M).

(2) |

√

λj −

√

λa
j |< δ.

(3) ∥ϕj −ϕa
j ∥C0,1(∂M)+∥∇

2
∂M(ϕj −ϕa

j )|∂M∥C0 < δ, where ∇
2
∂M denotes the second covariant derivative

with respect to the induced metric g
∂M on ∂M.

Let M1,M2 be two Riemannian manifolds with isometric boundaries, and let 8 : ∂M1 → ∂M2 be the
Riemannian isometry (diffeomorphism) between boundaries. We say the Neumann boundary spectral
data of M1,M2 are δ-close if the pull-back via 8 of the Neumann boundary spectral data of M2 (or M1)
is a δ-approximation of the Neumann boundary spectral data of M1 (or M2).

Note that the definition above is coordinate-free. The second covariant derivative of a function is
called the Hessian of the function, which is a symmetric (0, 2)-tensor. In a local coordinate on ∂M,
Definition 1.1(3) translates to (ϕj −ϕa

j )|∂M having small C2-norm. A similar definition in L2-norm was
seen in [Bosi et al. 2022].

If finite boundary spectral data {λj , ϕj |∂M}
J
j=1 are known without error, then this set of finite data is a

δ-approximation of the Neumann boundary spectral data with δ = J−1 by definition. If we are given a
certain choice of Neumann boundary spectral data, then Definition 1.1(3) is equivalent to the existence of
orthogonal matrices acting on eigenfunctions in eigenspaces, such that the condition is satisfied by the
given spectral data after applying these matrices.

The main purpose of this paper is to prove the following stability estimate for the reconstruction of a
manifold from the Neumann boundary spectral data.

Theorem 1. There exists δ0 = δ0(n, D, K1, K2, i0, r0) > 0 such that the following holds. If we are given
a δ-approximation of the Neumann boundary spectral data of a Riemannian manifold with boundary
M ∈ Mn(D, K1, K2, i0, r0) for δ < δ0, then one can construct a finite metric space X directly from the
given boundary data such that

dGH(M, X) < C1(log(|log δ|))−C2,

where dGH denotes the Gromov–Hausdorff distance between metric spaces. The constant C1 depends on
n, D, K1, K2, i0, r0, and the constant C2 explicitly depends only on n.

Theorem 1 implies the stability of Gel’fand’s inverse problem.
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Theorem 2. There exists δ0 = δ0(n, D, K1, K2, i0, r0) > 0 such that the following holds. Suppose two
Riemannian manifolds M1,M2 ∈ Mn(D, K1, K2, i0, r0) have isometric boundaries and their Neumann
boundary spectral data are δ-close for δ < δ0. Then M1 is diffeomorphic to M2, and

dGH(M1,M2) < C1(log(|log δ|))−C2 .

Remark 1.1. The dependency of C1, δ0 is not explicit. An explicit estimate with dependence additionally
on voln(M), voln−1(∂M) can be obtained, but this process results in a third logarithm. More details can
be found in the Appendix.

If any explicitness for the results is not of interest, the bounds (1-1) we assumed on the Riemannian
curvature tensor and the second fundamental form can be relaxed to bounds on Ricci curvatures of M, ∂M
and the mean curvature of ∂M, due to Corollary 2 in [Katsuda et al. 2007].

We do not know if the log-log type of estimates above is optimal. While strong (Hölder-type) stability
results [Bellassoued and Dos Santos Ferreira 2011; Stefanov and Uhlmann 1998; 2005] were known
near simple metrics, the stability of the problem is likely weak in the general case; see [Koch et al. 2021;
Mandache 2001].

The key result in proving Theorem 1 is a uniform stability estimate for the unique continuation in the
class of Riemannian manifolds with bounded geometry, and without loss of domain in the domain of
dependence. Let 0 be an open subset of the boundary ∂M and T > 0. The domain of influence of the
set 0 at a time t ∈ [0, T ] is defined as

M(0, t)= {x ∈ M : d(x, 0) < t}, (1-3)

where d is the intrinsic distance function of M. The double cone of influence of 0×[−T, T ] is defined as

K (0, T )= {(x, t) ∈ M × [−T, T ] : d(x, 0) < T − |t |}. (1-4)

Recall Tataru’s unique continuation theorem [1995]: if the Cauchy boundary data of a wave u vanish on
0× [−T, T ], i.e.,

u|0×[−T,T ] = 0, ∂nu|0×[−T,T ] = 0,

then the wave u vanishes in the double cone of influence K (0, T ), and in particular, the initial value
u( · , 0) vanishes in the domain of influence M(0, T ). Note that the domain K (0, T ) (and M(0, T ) for
the initial value) in this result is optimal due to finite speed of propagation of waves. The stability of the
unique continuation, i.e., quantitative unique continuation, asks if u is small when the Cauchy boundary
data are small.

Theorem 3. Let M be a compact, orientable Riemannian manifold with smooth boundary ∂M, and
let 0 (possibly 0 = ∂M) be a connected open subset of ∂M with smooth boundary. Suppose u ∈

H 2(M × [−T, T ]) is a solution of the wave equation (∂2
t −1g)u(x, t)= 0 with the Neumann boundary

condition ∂nu|∂M×[−T,T ] = 0 and the initial condition ∂t u( · , 0)= 0. Assume the Dirichlet boundary value
of u satisfies

u|∂M×[−T,T ] ∈ H 2(∂M × [−T, T ]).
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If
∥u( · , 0)∥H1(M) ⩽3, ∥u∥H2(0×[−T,T ]) ⩽ ε0,

then, for 0< h < h0, the following estimate holds:

∥u( · , 0)∥L2(M(0,T )) ⩽ C1/3
3 h−2/9 exp(h−C4n)

3+ h−1/2ε0

(log(1 + h + h3/23/ε0))1/6
+ C53h1/(3 max {n,3}).

The constants h0, C3, C4, C5 explicitly depend only on intrinsic geometric parameters of M and 0 (in
particular, independent of ε0).

Quantitative unique continuation for the wave operator has been investigated independently in [Bosi
et al. 2016; 2018] for closed manifolds and in [Laurent and Léautaud 2019], both inspired by the ideas in
[Tataru 1998]. In particular, the case for manifolds with boundary for large T was studied in [Laurent
and Léautaud 2019], however without addressing how the geometry of the manifold affects the estimate.
Our result explicitly shows how the constants depend on the geometry and how close the domain of
quantitative unique continuation can approach the optimal domain. These are crucial questions frequently
showing up in the stability of inverse problems. In Theorem 3, the stability estimate is obtained up to
the optimal domain for arbitrary T, and can be made fully explicit only in terms of intrinsic geometric
parameters. The estimate comprises two parts. One is by propagating local unique continuation up to the
√

h-neighborhood of the boundary of the optimal domain. This is the most technical part of the paper and
gives a global estimate (Theorem 3.1) on a domain arbitrarily close to the optimal domain, see Figure 1,
since h is a small parameter one can freely choose in advance. The second part is to estimate the L2-norm
on the region which the first part does not reach. Once we prove that this region has uniformly controlled
volume (Proposition 3.14), the second part of the estimate immediately follows from the a priori H 1-norm.
We remark that one can also balance the parameters ε0, h in Theorem 3 and arrive at a log-log type of
estimate with a single parameter ε0.

t
T

0

−T

M

Figure 1. Domains of unique continuation. The blue vertical line is 0× [−T, T ]. The domain
enclosed by the blue lines is the optimal domain K (0, T ). The domain enclosed by the red lines is
�(h) defined in (2-4), obtained by propagating local unique continuation. The distance between
the blue and red lines is

√
h.
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Equipped with Theorem 3, we can adopt the approach introduced in [Katsuda et al. 2004] to obtain a
stability estimate for Gel’fand’s inverse problem. Namely, we apply a quantitative version of the boundary
control method to evaluate an approximate volume for the domain of dependence. The error of the
approximate volume can be made arbitrarily small as long as sufficient boundary spectral data are known.
Then we define approximations to the boundary distance functions through slicing procedures, from
which the manifold can be reconstructed [Katsuda et al. 2007].

The method we use to obtain the quantitative unique continuation may be of independent interest.
Essentially it is proved by propagating local stability estimates to obtain a global estimate. However, the
presence of general manifold boundaries brings significant trouble in defining the process, especially
when the path of propagation touches the boundary. One straightforward approach would be to avoid the
boundary. Namely, one can approximate a geodesic touching the boundary with a curve in the interior of
the manifold, and propagate local estimates through balls along this curve. This approach works well if
the time domain is larger than the diameter of the manifold, in which case the domain of dependence
is smooth, i.e., the whole manifold. However, difficulties arise for an arbitrary time domain, where the
domain of dependence in the manifold has corners. An estimate obtained with this approach may not be
uniform in a class of manifolds.

Our method directly defines a series of noncharacteristic domains through which local estimates are
propagated, using the intrinsic distance of the manifold and the distance to the boundary. This is made
possible by directly handling geodesics near the boundary. These domains are globally defined in a
coordinate-free way. The boundaries of these domains normally have the shape of a hyperboloid and warp
quickly near the boundary (and the injectivity radius). In this way, the local estimates propagate (almost)
along distance-minimizing geodesics, and naturally produce a uniform global estimate depending only on
intrinsic geometric parameters.

This paper is organized as follows. We review relevant concepts and the unique continuation in
Section 2. Section 3 is devoted to proving Theorem 3, an explicit stability estimate for the unique
continuation from a subset of the boundary. Section 3 uses several technical lemmas, and their proofs
can be found in Section 6. In Section 4, we apply Theorem 3.1 to introduce the essential step of our
reconstruction method where we compute, in a stable way, how the Fourier coefficients of a function (with
respect to the basis of eigenfunctions) change, when the function is multiplied by an indicator function of
a union of balls with center points on the boundary. The new feature of this method is that it is directly
based on the unique continuation theorem. The main results, Theorems 1 and 2, are proved in Section 5,
with the dependency of constants on geometric parameters derived in the Appendix.

2. Preliminaries

2.1. Bounded geometry. Let (M, g) ∈ Mn(D, K1, K2, i0, r0) be a compact, connected, orientable Rie-
mannian manifold of dimension n ⩾ 2 with smooth boundary ∂M. The C0-norm of the Riemannian
curvature tensor RM appearing in (1-1) is defined as

∥RM∥C0 = sup
x∈M

|RM |x |,
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where |RM |x | denotes the operator norm of RM at x ∈ M as a multilinear operator to R. The C0-norms of S
and the covariant derivatives are defined in the same way. In this paper, we usually omit the subscript C0

for brevity.
Since the Riemannian curvature tensor is completely determined by the sectional curvatures, assuming

a bound on the curvature tensor is equivalent to assuming a bound on sectional curvatures. By the Gauss
equation, the bounds on the curvature tensor of M and the second fundamental form of ∂M yield a bound
on the curvature tensor R∂M of ∂M (when ∂M is at least two-dimensional), also denoted by K 2

1 . Without
loss of generality, assume K1, K2 > 0.

From now on, we write ∥A∥ = ∥A∥C0 for a tensor field A on M. For convenience, we define

∥RM∥Ck = ∥RM∥ +

k∑
i=1

∥∇
i RM∥, ∥S∥Ck = ∥S∥ +

k∑
i=1

∥∇
i S∥.

Then the curvature bound assumptions in (1-1) are written as

∥RM∥ ⩽ K 2
1 , ∥S∥ ⩽ K1, ∥R∂M∥ ⩽ K 2

1 ,

∥RM∥C5 ⩽ K 2
1 + K2, ∥S∥C4 ⩽ K1 + K2, ∥R∂M∥C4 ⩽ C(K1, K2).

The boundary ∂M is said to admit a boundary normal neighborhood of width r if the exponential map
(z, s) 7→ expz(snz) defines a homeomorphism from ∂M × [0, r ] to the r -neighborhood of ∂M, where nz

denotes the inward-pointing unit normal vector at z ∈ ∂M (see, e.g., Section 2.1.16 in [Katchalov et al.
2001]). The boundary injectivity radius ib(M) of M is defined as the largest number with the following
property that ∂M admits a boundary normal neighborhood of width r for any r < ib(M). The injectivity
radius inj(M) of M is usually defined as the largest number r ⩽ min{inj(∂M), ib(M)} satisfying the
following condition: the open ball Br (x) of radius r is a domain of Riemannian normal coordinates on M
centered at any x ∈ M with d(x, ∂M)⩾ r .

This definition of the injectivity radius for a manifold with boundary gives little information on the
geometry near the boundary. We find it convenient to consider the following quantity.

Definition 2.1. For x∈M, rCAT(x) is defined to be the largest number r such that the (distance-)minimizing
geodesic of M connecting x and any y ∈ Br (x) is unique. Define

rCAT(M)= inf
x∈M

rCAT(x).

We call this quantity the radius of radial uniqueness (or CAT radius).

The radius of radial uniqueness is positive for a compact Riemannian manifold with smooth boundary
(Lemma 6.2(1)). This definition is a natural extension of the injectivity radius for manifolds without
boundary. More precisely, for a Riemannian manifold without boundary, min{π/

√
K , rCAT} gives a lower

bound for the injectivity radius, where K is the upper bound for the sectional curvatures.
The radius of radial uniqueness has an immediate connection with metric spaces of curvature bounded

above in the sense of Alexandrov. A metric space has curvature bounded above (globally) by K > 0
if every minimizing geodesic triangle in the space has perimeter less than 2π/

√
K , and has each of its
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angles at most equal to the corresponding angle in a triangle with the same side-lengths in the surface of
constant curvature K. This space is denoted by CAT(K ). A CAT(K ) space has the property that any pair
of points with distance less than π/

√
K is connected by a unique (within the space) minimizing geodesic,

and the geodesic continuously depends on its endpoints. It is well known that a Riemannian manifold M
with smooth boundary is locally CAT(K ), where K is the upper bound for the sectional curvatures of M
and the second fundamental form of ∂M [Alexander et al. 1993, characterization theorem]. In fact,
more is known: the open ball around any point in M of the radius min{π/2

√
K , rCAT(M)} is CAT(K )

[Alexander and Bishop 1996, Theorem 4.3]. This is where the notation rCAT comes from. The CAT space
provides useful nondifferential tools to work with manifold boundaries where the standard differential
machinery is often problematic.

2.2. Wave operator and the unique continuation. The Laplace–Beltrami operator 1g with respect to
the metric g has the following form in local coordinates (x1, . . . , xn):

1g =
1√

det(gi j )

n∑
i, j=1

∂

∂x i

(√
det(gi j )gi j ∂

∂x j

)
. (2-1)

Then the wave operator P = ∂2
t −1g has the following form in local coordinates:

P =
∂2

∂t2 −
1√

det(gi j )

n∑
i, j=1

∂

∂x i

(√
det(gi j )gi j ∂

∂x j

)

=
∂2

∂t2 −

n∑
i, j=1

gi j ∂2

∂x i∂x j + lower-order terms. (2-2)

The Riemannian metric g approximates the standard Euclidean metric in small scale. In sufficiently small
coordinate charts, the Laplace–Beltrami operator is a strongly elliptic operator given by the formula (2-1).
However, the wave operator of the form above is only locally defined on manifolds, different from the
wave operator on Euclidean spaces with global coefficients.

In the boundary normal neighborhood of ∂M, it is convenient to use the boundary normal coordinate
(x1, . . . , xn−1, xn), where (x1, . . . , xn−1) is a choice of coordinate at the nearest point on ∂M and
xn

= d(x, ∂M). In other words, the coordinate (x1, . . . , xn−1, d(x, ∂M)) is defined by pushing forward
the local coordinate (x1, . . . , xn−1) on ∂M via the family of exponential maps z 7→ expz(snz) from the
boundary in the normal direction. Note that the choice of coordinate on ∂M is fixed. Hence by the Gauss
lemma, the metric g has the form of a product metric in such a coordinate:

g = (dxn)2 +

n−1∑
α,β=1

gαβ dxα dxβ .

On the boundary ∂M, two frequent choices of coordinate are the geodesic normal coordinate and the
harmonic coordinate. In this paper, we use the geodesic normal coordinate of ∂M. Namely, at any point
on ∂M, we have a geodesic normal coordinate (xα)n−1

α=1 in the ball (of ∂M) of a sufficiently small radius
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such that

1
2 |ξ |2 ⩽

n−1∑
α,β=1

gαβξαξβ ⩽ 2|ξ |2 (ξ ∈ Rn−1),

∥gαβ∥C1 ⩽ 2, ∥gαβ∥C4 ⩽ C(n, K1, K2, i0).

(2-3)

It is known that the radius of the ball in which the conditions above are satisfied is uniformly bounded
below by a positive number explicitly depending on n, ∥R∂M∥C1, i0 [Hebey and Vaugon 1995, Lemma 8;
Eichhorn 1991, Theorem A]. We denote this uniform radius by rg(∂M).

Recall that the wave operator P enjoys the unique continuation property from the boundary; namely if
the Cauchy boundary data of a wave u (a solution of the wave equation Pu =0) vanish on 0×[−T, T ], i.e.,

u|0×[−T,T ] = 0, ∂u
∂n

∣∣∣
0×[−T,T ]

= 0,

then the wave vanishes in the double cone of influence K (0, T ) defined in (1-4); see [Tataru 1995] or,
e.g., Theorem 3.16 in [Katchalov et al. 2001]. Here n denotes the unit normal vector field on ∂M pointing
inwards. We are interested in its stability: when the Cauchy boundary data are small on 0×[−T, T ], we
consider if the wave is small in the double cone. The following global stability result on Tataru’s unique
continuation principle [1995] was proved in [Bosi et al. 2016], from which the stability of the unique
continuation from a ball on a closed Riemannian manifold can be obtained [Bosi et al. 2016, Theorem 3.3].

Theorem 2.2 [Bosi et al. 2016, Theorem 1.2]. Let �bd be a bounded connected open subset of Rn
× R

and P be the wave operator (2-2). Assume u ∈ H 1(�bd) and Pu ∈ L2(�bd). In �bd, we assume the
existence of a finite number of connected open subsets �0

j and �j , j = 1, 2, . . . , J, a connected set ϒ
and functions ψj satisfying the following assumptions:

(1) ψj ∈ C2,1(�bd); p( · ,∇ψj ) ̸= 0 and ∇ψj ̸= 0 in �0
j , where p denotes the principle symbol of the

wave operator P.

(2) supp(u)∩ϒ = ∅; there exists ψmax, j ∈ R such that ∅ ̸= {y ∈ �0
j : ψj (y) > ψmax, j } ⊂ ϒ j , where

ϒj =�0
j ∩

(⋃ j−1
l=1 �l ∪ϒ

)
.

(3) �j = {y ∈�0
j −ϒ j : ψj (y) > ψmin, j } for some ψmin, j ∈ R, and dist(∂�0

j , �j ) > 0.

(4) � is connected, where �=
⋃J

j=1�j .

Then the following estimate holds for � and �0
=

⋃J
j=1�

0
j :

∥u∥L2(�) ⩽ C
∥u∥H1(�0)

(log(1 + ∥u∥H1(�0)/∥Pu∥L2(�0)))
θ
,

where θ ∈ (0, 1) is arbitrary, and the constant C explicitly depends on θ , ψj , dist(∂�0
j , �j ), ∥gi j

∥C1 ,
voln+1(�bd).

The intuition behind this result is propagating the unique continuation step by step to cover a large
domain, as long as the error introduced in each step is small. The set ϒ is the initial domain where the
function u vanishes, and �j is the domain propagated by the unique continuation at the j-th step. The
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estimate is obtained by propagating local stability estimates, and the assumptions make sure that certain
support conditions [Bosi et al. 2018, Assumption A1] required by the local stability estimates are satisfied
at every step. For some simple cases, one choice of the domains and functions is enough, for example if
the function u initially vanishes over a ball in Rn. However, these assumptions are rather restrictive for
general cases, and multiple iterations of the domains and functions need to be carefully constructed to
handle the difficulties brought by the geometry of the boundary and the injectivity radius. Note that the
constant in the estimate depends on higher derivatives of ψj in �0

j . It is crucial to construct the required
domains where ψj has uniformly bounded higher derivatives. Although Theorem 2.2 is formulated in
Euclidean spaces, it applies to manifolds since it is obtained by propagating local stability estimates,
which can be done in local coordinate charts.

2.3. Notation. We introduce notation that we will frequently use in this paper. Denote by volk the
k-dimensional Hausdorff measure on M. When the Hausdorff dimension of a set in question is clear, we
omit the subscript k. In particular, we denote by vol(M) the Riemannian volume of M, and by vol(∂M)
the Riemannian volume of ∂M with respect to the induced metric on ∂M.

Given an open subset 0 ⊂ ∂M, we define the following domain with a positive parameter h < 1 by

�0,T (h)= {(x, t) ∈ M × [−T, T ] : T − |t | − d(x, 0) >
√

h, d(x, ∂M −0) > h}, (2-4)

and we write�(h) for short. Note that�(h) is a subset of the double cone of influence K (0, T ), and�(h)
approximates K (0, T ) as h →0. If 0=∂M, the set above is defined with the last condition dropped. In this
paper, our consideration always includes the possibility that 0= ∂M. For the sole purpose of incorporating
this special case notationwise in later proofs, we set any distance from the empty set to be infinity.

Given a function u : ∂M × [−T, T ] → R and an open subset 0 ⊂ ∂M, we define the norm

∥u∥
2
H2,2(0×[−T,T ])

=

∫ T

−T

(
∥u( · , t)∥2

H2(0)
+ ∥∂t u( · , t)∥2

L2(0)
+ ∥∂2

t u( · , t)∥2
L2(0)

)
dt (2-5)

if u( · , t) ∈ H 2(0) and ∂t u( · , t), ∂2
t u( · , t) ∈ L2(0) for all |t | ⩽ T. We say u ∈ H 2,2(0× [−T, T ]) if

the norm above is finite, and we call it the H 2,2-norm.

3. Stability of the unique continuation

In this section, we obtain an explicit estimate on the stability of the unique continuation for the wave
operator, provided small Cauchy data on a connected open subset of the manifold boundary. First we
state this result as follows.

Theorem 3.1. Let M ∈ Mn(D, K1, K2, i0, r0) be a compact, orientable Riemannian manifold with
smooth boundary ∂M, and let 0 (possibly 0 = ∂M) be a connected open subset of ∂M with smooth
boundary. Denote by ib(0) the boundary injectivity radius of 0. Then there exist a constant C3 > 0
that explicitly depends on n, T , D, K1, ∥∇ RM∥C0 , ∥∇S∥C0 , i0, r0, voln(M), voln−1(0), an absolute
constant C4 > 0, and a sufficiently small constant h0 > 0, that explicitly depends on n, T , K1, K2, i0, r0,
ib(0), voln−1(∂M), such that the following holds.



974 DMITRI BURAGO, SERGEI IVANOV, MATTI LASSAS AND JINPENG LU

Suppose u ∈ H 2(M × [−T, T ]) is a solution of the nonhomogeneous wave equation Pu = f with
f ∈ L2(M × [−T, T ]). Assume the Cauchy data satisfy

u|∂M×[−T,T ] ∈ H 2,2(∂M × [−T, T ]),
∂u
∂n ∈ H 2,2(∂M × [−T, T ]). (3-1)

If

∥u∥H1(M×[−T,T ]) ⩽30, ∥u∥H2,2(0×[−T,T ]) +

∥∥∥∂u
∂n

∥∥∥
H2,2(0×[−T,T ])

⩽ ε0, (3-2)

then, for 0< h < h0, we have

∥u∥L2(�(h)) ⩽ C3 exp(h−C4n)
30 + h−1/2ε0(

log(1 + (30 + h−1/2ε0)/(∥Pu∥L2(M×[−T,T ]) + h−3/2ε0))
)1/2 .

The domain �(h) and the H 2,2-norm are defined in Section 2.3.
As a consequence, the following estimate holds for any θ ∈ (0, 1) by interpolation:

∥u∥H1−θ (�(h)) ⩽ Cθ
3 exp(h−C4n)

30 + h−1/2ε0(
log(1 + (30 + h−1/2ε0)/(∥Pu∥L2(M×[−T,T ]) + h−3/2ε0))

)θ/2 .
Remark 3.2. In Theorem 3.1, the different smoothness indexes of the Sobolev spaces in the qualitative
smoothness assumption u ∈ H 2(M ×[−T, T ]) and in the quantitative bounds for the Sobolev norms (3-2)
are related to the smooth extension of the weak solution of the wave equation to a boundary layer. We
note that the nonuniform smoothness assumptions are typical, and sometimes also optimal, for the weak
solutions of the wave equation with the Neumann boundary condition; see [Lasiecka and Triggiani 1991].
We also note that in Theorem 3.1 the assumption u ∈ H 2(M ×[−T, T ]) can be relaxed to the assumption
that u is a weak solution of the wave equation Pu = f with the Neumann boundary condition, where
f ∈ L2(M × [−T, T ]), and u and its Neumann boundary value ∂nu|∂M×[−T,T ] satisfy

u ∈ C([−T, T ]; H 1(M))∩ C1([−T, T ]; L2(M)),

∂nu|∂M×[−T,T ] ∈ L2(∂M × [−T, T ]).

Then, by [Lasiecka and Triggiani 1991, Theorem A], the Dirichlet boundary value is a well-defined
function u|∂M×[−T,T ] ∈ L2(∂M ×[−T, T ]). In this case, (3-1) can be viewed as an additional smoothness
requirement for the Dirichlet and the Neumann boundary values of u. This relaxation of the smoothness
assumptions only affects the last part of the proof of Lemma 3.5, and this lemma can be proved via the
weak version of Green’s formula.

Our method can also be used to derive a stability estimate for the unique continuation from any open
domain in the interior of M, as long as the boundary of the domain is smoothly embedded in M. In this
way, a stability estimate can be obtained on domains arbitrarily close to the double cone of influence
from the interior domain in question, which provides a generalization of Theorem 3.3 in [Bosi et al.
2016]. We remark that as the domain approaches the double cone of influence, the estimate above grows
exponentially. This exp-dependence and the log-type of the estimate itself eventually lead to the two
logarithms in Theorem 1. We also mention that Proposition 3.14 may be of independent interest, which
provides an explicit uniform bound for the Hausdorff measure of the boundary of the domain of influence.
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Most of this section is occupied by the proof of Theorem 3.1. First we properly extend the manifold,
the wave operator P and the wave u, so that Pu stays small on the manifold extension over 0, given
sufficiently small Cauchy data on 0. The extension of u is cut off near the boundary in the manifold
extension, from which we start propagating the unique continuation. Then we carefully construct a series
of domains satisfying the assumptions in Theorem 2.2 such that the union of these domains approximates
the double cone of influence. Thus Theorem 2.2 gives a stability estimate on domains arbitrarily close to
the double cone of influence.

The main difficulty lies in actually finding that series of domains satisfying the properties stated above,
as the assumptions in Theorem 2.2 (essentially assumptions for local estimates) are rather restrictive
for a general manifold with boundary. This requires us to directly deal with the intrinsic distance and
(distance-minimizing) geodesics of the manifold. In this section, we use several technical lemmas and
their proofs can be found in Section 6.

Theorem 3.1 yields the following stable continuation result on the whole domain of influence M(0, T ).

Proposition 3.3. Let M ∈ Mn(D, K1, K2, i0, r0) be a compact Riemannian manifold with smooth bound-
ary ∂M, and let 0 (possibly 0 = ∂M) be a connected open subset of ∂M with smooth boundary. Suppose
u ∈ H 2(M × [−T, T ]) is a solution of the wave equation Pu(x, t) = 0 with the Neumann boundary
condition ∂nu|∂M×[−T,T ] = 0 and the initial condition ∂t u( · , 0)= 0. Assume the Dirichlet boundary value
of u satisfies

u|∂M×[−T,T ] ∈ H 2,2(∂M × [−T, T ]).

If

∥u( · , 0)∥H1(M) ⩽3, ∥u∥H2,2(0×[−T,T ]) ⩽ ε0,

then, for 0< h < h0, the following estimate holds:

∥u( · , 0)∥L2(M(0,T )) ⩽ C1/3
3 h−2/9 exp(h−C4n)

3+ h−1/2ε0

(log(1 + h + h3/23/ε0))1/6
+ C53h1/(3 max {n,3}).

Here C3 explicitly depends on n, T , D, ∥RM∥C1 , ∥S∥C1 , i0, r0, vol(M), voln−1(0); C4 is an absolute
constant; C5 explicitly depends on n, ∥RM∥C1 , ∥S∥C1 , i0, vol(M), vol(∂M); h0 > 0 is a sufficiently small
constant explicitly depending on n, T , K1, K2, i0, r0, ib(0), vol(∂M).

We postpone the proof of Proposition 3.3 after the proof of Theorem 3.1.

3.1. Extension of manifolds. Let (M, g) ∈ Mn(D, K1, K2, i0, r0) be a compact, orientable Riemannian
manifold with bounded geometry defined in the Introduction.

Lemma 3.4. For sufficiently small δex explicitly depending on n, K1, K2, i0, vol(∂M), we can extend
(M, g) to a Riemannian manifold (M̃, g̃) with smooth boundary such that the following properties are
satisfied:

(1) M̃ − M lies in a normal neighborhood of ∂M in M̃, and d̃(x, ∂M)= δex for any x ∈ ∂ M̃, where d̃
denotes the distance function of M̃.
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(2) g̃ is of C3,1 in some atlas on M̃, in which

∥g̃i j |M̃−M∥C1 ⩽ C(K1), ∥g̃i j |M̃−M∥C4 ⩽ C(n, K1, K2, i0).

(3) ∥RM̃∥ ⩽ 2K 2
1 , ∥S∂ M̃∥ ⩽ 2K1 and ∥∇ RM̃∥ ⩽ 2K2, where S∂ M̃ denotes the second fundamental form

of ∂ M̃ in M̃.

As a consequence, we have:

(4) rCAT(M̃)⩾ min{C(K1), i0/4, r0/2}.

Proof. We glue a collar ∂M ×[−δex, 0] for 0< δex <min{1, i0/2} onto M by identifying ∂M ×{0} of the
collar with ∂M. Denote the topological space after the gluing procedure by M̃. Any (y, ρ)∈∂M×[−δex, 0]

admits coordinate charts by extending boundary normal coordinate charts at (y,−ρ) ∈ M. The transition
maps are clearly smooth and therefore M̃ is a smooth manifold.

Let {yi } be a maximal rg(∂M)/2-separated set (and hence an rg(∂M)/2-net) in ∂M. Let Ui be the ball
of radius rg(∂M) in ∂M around yi , and therefore {Ui } is an open cover of ∂M. We take a partition of
unity {φi } subordinate to {Ui } satisfying

∥φi∥Cs ⩽ C rg(∂M)−s for s ∈ [1, 4].

Then {Ũi := Ui ×[−δex, 0]} is an open cover of the collar ∂M ×[−δex, 0], and {φ̃i } is a partition of unity
subordinate to this cover satisfying the same bound on C s-norm, where φ̃i is defined by φ̃i (y, ρ)= φi (y)
for (y, ρ) ∈ ∂M × [−δex, 0].

We choose the geodesic normal coordinate (yα)n−1
α=1 on each Ui such that (2-3) holds. Within each

coordinate chart Ũi , we define the metric components at (y, ρ) ∈ Ũi as follows: g̃(i)ρρ = 1, and g̃(i)αρ = 0 for
α, β = 1, . . . , n − 1, and

g̃(i)αβ(y, ρ)= g(i)αβ(y, 0)+ ρ
∂g(i)αβ
∂ρ

(y, 0)+
ρ2

2

∂2g(i)αβ
∂ρ2 (y, 0)+

ρ3

6

∂3g(i)αβ
∂ρ3 (y, 0) for ρ ⩽ 0.

Then one can define a Riemannian metric g̃ on ∂M × [−δex, 0] through partition of unity:

g̃|(y,ρ) =
∑

i

φ̃i (y, ρ)g(i)|(y,ρ) =
∑

i

φi (y)g(i)|(y,ρ) for ρ ⩽ 0. (3-3)

At (y, ρ ∈ R+) ∈ M with respect to the boundary normal coordinate of ∂M in M, define g̃ = g. Due to
the Riccati equation (e.g., [Petersen 2006, Theorem 2, p. 44]), the derivatives of g(i)αβ with respect to ρ at
ρ = 0 up to the third order can be expressed in terms of the components of S, RM and ∇ RM . Then the
curvature bound assumptions (1-1) implies that g̃(i)αβ is of C4 within each coordinate chart Ũi .

Now let us consider the coordinate charts Ui ×[−δex, i0). In this coordinate, the components g̃(i)αβ are
of C3,1 in the normal direction, and C4 in other directions. Therefore g̃ is of C3,1 in the local coordinate
charts {Ui × [−δex, i0)}.

Furthermore, it follows from a straightforward calculation that, for ρ ⩽ 0,∣∣∣∣∂k+l g̃(i)αβ
∂xk

T ∂ρ
l
(y, ρ)−

∂k+l g(i)αβ
∂xk

T ∂ρ
l
(y, 0)

∣∣∣∣ ⩽ C(∥RM∥C5, ∥S∥C4)|ρ| for k + l ⩽ 4, l ⩽ 3.
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Note that ∂4g̃(i)αβ/∂ρ
4
=0 by definition. Recall that the C4-norm of φi is uniformly bounded by C rg(∂M)−4,

and rg(∂M) explicitly depends on n, ∥R∂M∥C1 , i0. Furthermore, the total number of coordinate charts Ui

is bounded by C(n, K1) vol(∂M) rg(∂M)−n+1. Hence by (3-3), the estimates above hold for g̃αβ and gαβ
with another constant C(n, ∥RM∥C5, ∥S∥C4, i0, vol(∂M)).

Therefore we can restrict the extension width δex to be sufficiently small explicitly depending only on
n, K1, K2, i0, vol(∂M) such that the matrix (g̃αβ) is nondegenerate and hence a metric, and

∥g̃αβ |M̃−M∥C1 ⩽ 4K1 + 4, ∥g̃αβ |M̃−M∥C4 ⩽ C(n, K1, K2, i0),

∥RM̃∥ ⩽ 2K 2
1 , ∥S∂ M̃∥ ⩽ 2K1, ∥∇ RM̃∥ ⩽ 2K2.

(3-4)

Here the first inequality is due to (2-3) and the definition that ∂ρgαβ |∂M = 2Sαβ , where Sαβ denotes the
components of the second fundamental form S of ∂M. The bound on S∂ M̃ follows from the bound on
∂ρ g̃αβ |M̃−M .

With this type of extension, g̃ is also a product metric in the collar, which implies that the integral curve
of ∂/∂ρ minimizes length and is hence a minimizing geodesic. This shows that, for any x = (y, ρ) ∈

∂M ×[−δex, 0], we have d̃(x, ∂M)= −ρ, which yields property (1). The property (4) is due to properties
(1)–(3) and Lemma 6.2(2). □

Coordinate system. From now on, we extend the manifold (M, g) to (M̃, g̃) such that Lemma 3.4 holds.
We say (M̃, g̃) is an extension of (M, g) with the extension width δex. We choose a coordinate system
on M̃ as follows.

In the boundary normal (tubular) neighborhood of ∂M, we choose the boundary normal coordinate
of ∂M. Let {yi } be a maximal rg(∂M)/2-separated set in ∂M, and Ui be the ball of radius rg(∂M) in ∂M
around yi . The proof of Lemma 3.4 shows that g̃ is of C3,1 in the coordinate charts Ui ×[−δex, i0). In
each coordinate chart, we choose the boundary normal coordinate (x1, . . . , xn−1, ρ(x)) of ∂M, where
(x1, . . . , xn−1) is the geodesic normal coordinate of ∂M such that (2-3) holds. The coordinate function
ρ(x) in the normal direction is defined as

ρ(x)=

{
d(x, ∂M) if x ∈ M,
−d̃(x, ∂M) if x ∈ M̃ − M .

(3-5)

Note that d̃(x, ∂M)= d(x, ∂M) for x ∈ M. Lemma 3.4(2) shows that the metric components on M̃ − M
have uniformly bounded C4-norm. On the other side, due to Lemma 6.1, we can find a uniform width
rb = rb(K1, i0) such that the C4-norm of metric components is uniformly bounded by C(n, K1, K2, i0)

in the boundary normal coordinate of width rb in M. Consequently, we have a uniform bound for the
C3,1-norm of metric components in the coordinate charts Ui × [−δex, i0).

For any point x ∈ M with d(x, ∂M) > rb/2, we choose the geodesic normal coordinate of M around x
of the radius min{rb/2, rg(x)} such that the C4-norm of metric components is uniformly bounded. By
[Hebey and Vaugon 1995, Lemma 8] and [Eichhorn 1991, Theorem A], this radius is uniformly bounded
below by n, ∥RM∥C1 , i0, rb. Denote by rg the minimum of this radius and rg(∂M), and therefore rg

explicitly depends only on n, ∥RM∥C1 , ∥S∥C1 , i0.
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Combining these two types of coordinates, we have a coordinate system on M̃ in which the metric
components satisfy the properties

1
4 |ξ |2 ⩽

n∑
i, j=1

g̃i jξiξj ⩽ 4|ξ |2 (ξ ∈ Rn),

∥g̃i j∥C1 ⩽ C(n, ∥RM∥C1, ∥S∥C1), ∥g̃i j∥C3,1 ⩽ C(n, K1, K2, i0). (3-6)

Observe that, for any x ∈ M̃, the ball B̃rg/2(x) of M̃ or the cylinder B∂M(y, rg/2)×(ρ−rg/2, ρ+rg/2)
is contained in at least one of the coordinate charts defined above, where x = (y, ρ) if x is in the boundary
normal coordinate of ∂M. To see this, it suffices to show that, for any y ∈ ∂M, the ball B∂M(y, rg/2) of
∂M is contained in at least one of Ui . The latter statement is a direct consequence of the fact that {yi } is
an (rg(∂M)/2)-net in ∂M.

3.2. Extension of functions. Let (M̃, g̃) be an extension of (M, g) satisfying Lemma 3.4 with the exten-
sion width δex. Points in the boundary normal neighborhood of ∂M have the coordinate (x1, . . . , xn−1,ρ(x)),
where ρ(x) is defined in (3-5). We write the coordinate as (xT , ρ(x)) for short, where xT = (x1, . . . , xn−1)

denotes the tangential coordinate.
We define an extension of functions on M to M̃ as follows. Given a function u on M and its Cauchy

data u, ∂u/∂n on ∂M, we extend u to a function ũex on M̃ by

ũex(xT , ρ, t)=

{
u(xT , ρ, t) if ρ ⩾ 0,

u(xT , 0, t)+ ρ ∂u
∂n (xT , 0, t) if ρ < 0.

For 0< h < δex, we define another function ũ : M̃ × [−T, T ] → R by ũ = u on M × [−T, T ], and

ũ(xT , ρ, t)= φ

(
ρ

h

)
ũex(xT , ρ, t) for ρ < 0, (3-7)

where φ is a monotone increasing smooth function vanishing on (−∞,−1] and equal to 1 on [0,∞)

with ∥φ∥C2 ⩽ 8. Then ũ = 0 when ρ ⩽ −h.

Lemma 3.5. Let (M̃, g̃) be an extension of (M, g) satisfying Lemma 3.4 with the extension width δex. Let
0 be a connected open subset of ∂M. Assume

u|∂M×[−T,T ] ∈ H 2,2(∂M × [−T, T ]),
∂u
∂n ∈ H 2,2(∂M × [−T, T ]).

Then we have

∥ũ∥
2
H1(�0×[−T,T ])

⩽ Ch−1
∥u∥

2
H1(0×[−T,T ])

+ Ch
∥∥∥∂u
∂n

∥∥∥2

H1(0×[−T,T ])
,

∥(∂2
t −1g̃)ũ∥

2
L2(�0×[−T,T ])

⩽ Ch−3
∥u∥

2
H2,2(0×[−T,T ])

+ Ch−1
∥∥∥∂u
∂n

∥∥∥2

H2,2(0×[−T,T ])
,

where �0 = 0× [−δex, 0] denotes the part of the manifold extension over 0, and the constants explicitly
depend on n, K1.

Furthermore, suppose u ∈ H 2(M × [−T, T ]) is a solution of the nonhomogeneous wave equation
Pu = f with f ∈ L2(M × [−T, T ]). Then ũ ∈ H 1(M̃ × [−T, T ]) and (∂2

t −1g̃)ũ ∈ L2(M̃ × [−T, T ]).
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Proof. First we estimate the H 1-norm of ũ over �0. Here we only estimate the dominating term in h;
the other terms can be done in the same way. Denote by ∂α, ∂n, ∂t the derivatives with respect to xα-,
xn-coordinates and time t , respectively. We denote ∂αu, ∂nu, ∂t u evaluated at (xT , 0, t) by uα, un, ut

and φ′(s)= (d/ds)φ(s), evaluated at s = ρ/h. In addition, whenever we write the function u without
specifying where it is evaluated, the evaluation is also done at (xT , 0, t). By the definition of ũ,

(∂n ũ)(xT , ρ, t)= h−1(u + ρun)φ
′
+ unφ. (3-8)

Since ũ vanishes unless ρ ∈ [−h, 0], we have

∥∂n ũ∥
2
L2(�0×[−T,T ])

=

∫ T

−T

∫
0

∫ 0

−δex

|h−1(u + ρun)φ
′
+ unφ|

2 dxT dρ dt

⩽ C
∫ T

−T

∫
0

∫ 0

−h
(h−2u2

+ h−2ρ2u2
n + u2

n) dxT dρ dt

⩽ Ch−1
∥u∥

2
L2(0×[−T,T ])

+ Ch
∥∥∥∂u
∂n

∥∥∥2

L2(0×[−T,T ])
.

Next we estimate the Laplacian of ũ over �0 for ρ ∈ [−h, 0]. In the boundary normal coordinate of
our choice, by definition (2-1) we have

1g̃ũ =

n∑
i, j=1

1√
|g̃|
∂i

(√
|g̃|g̃i j∂j ũ

)
=

1√
|g̃|
∂n

(√
|g̃|g̃nn∂n ũ

)
+

n−1∑
α,β=1

1√
|g̃|
∂α

(√
|g̃|g̃αβ∂β ũ

)
= A1 + A2,

where |g̃| denotes the determinant of the matrix (g̃i j ). We estimate A2 as

A2(xT , ρ, t)=

n−1∑
α,β=1

1√
|g̃|
∂α

(√
|g̃|g̃αβ∂β ũ

)
=

∑
α,β

∂α|g̃|

2|g̃|
g̃αβ∂β ũ + (∂α g̃αβ)(∂β ũ)+ g̃αβ∂α∂β ũ.

Hence we have

|A2(xT , ρ, t)| ⩽ C
∑
α,β

(|uβ | + h|unβ |)+ C
∑
α,β

|∂α∂β(u + ρun)|(xT , 0, t)

⩽ C
∑
α,β

(|uαβ | + h|unαβ |)+ C
∑
β

(|uβ | + h|unβ |),

where the constants explicitly depend on n, K1 due to the C1 metric bound (3-4).
Finally we estimate A1 and the time derivatives. Since g̃nn

= 1, we know that

A1(xT , ρ, t)=
∂n|g̃|

2|g̃|
∂n ũ + ∂2

n ũ.

We differentiate (3-8) again:

(∂2
n ũ)(xT , ρ, t)= h−2(u + ρun)φ

′′
+ 2h−1unφ

′.
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Hence we have

|((∂2
t − ∂2

n )ũ)(xT , ρ, t)| = |(ut t + ρuntt)φ− (∂2
n ũ)(xT , ρ, t)|

⩽ Ch−2
|u| + Ch−1

|un| + C |ut t | + Ch|untt |,

which leads to a similar estimate for (∂2
t ũ − A1)(xT , ρ, t) by (3-8). Thus,

|((∂2
t −1g̃)ũ)(xT ,ρ, t)|⩽Ch−2

|u|+Ch−1
|un|+C(|ut t |+h|untt |)+C

∑
α,β

(|uα|+|uαβ |+h|unα|+h|unαβ |),

where all terms on the right-hand side are boundary data evaluated at (xT , 0, t). Then the second estimate
of the lemma immediately follows from integrating the last inequality.

Now we additionally assume that u ∈ H 2(M ×[−T, T ]) is a (strong) solution of the nonhomogeneous
wave equation Pu = f with f ∈ L2(M × [−T, T ]). By the regularity result for the wave equation (e.g.,
Theorem 2.30 in [Katchalov et al. 2001]), the solution u is in the energy class

u ∈ C([−T, T ]; H 1(M))∩ C1([−T, T ]; L2(M)).

From the definition (3-7), the weak derivatives of ũ( · , t) exist on M̃ for any fixed t ∈ [−T, T ]. Since the
Cauchy data are in H 2,2, we have ũ( · , t) ∈ H 1(M̃) for all t directly by definition (3-7), and therefore
ũ ∈ H 1(M̃ × [−T, T ]).

Since the Cauchy data are in H 2,2, the definition (3-7) also indicates that ũ ∈ H 2,2((M̃ −M)×[−T, T ]).
Hence over M̃ − M,

f̃ex := (∂2
t −1g̃)ũ ∈ L2((M̃ − M)× [−T, T ]).

Define a function f̃ : M̃ × [−T, T ] → R by f̃ = f over M and f̃ = f̃ex over M̃ − M. Clearly
f̃ ∈ L2(M̃ × [−T, T ]). Thus the only part left is to show that (∂2

t −1g̃)ũ = f̃ on M̃ × [−T, T ] in the
weak form. Observe that the wave equation on either M or M̃ − M is well-defined pointwise. Then for
any test function ϕ ∈ H 1

0 (M̃ ×[−T, T ]), by applying the wave equation separately on M, M̃ − M and
Green’s formula, we have∫ T

−T

∫
M̃
(−∂t ũ ∂tϕ+ ⟨∇ũ,∇ϕ⟩g̃)=

∫ T

−T

∫
M∪(M̃−M)

(−∂t ũ ∂tϕ+ ⟨∇ũ,∇ϕ⟩g̃)

=

∫ T

−T

∫
M

f ϕ−

∫ T

−T

∫
∂M

∂u
∂nϕ+

∫ T

−T

∫
M̃−M

f̃exϕ+

∫ T

−T

∫
∂M

∂ ũ
∂nϕ.

Due to the definition (3-7), the normal derivative of ũ from either side of ∂M coincides and hence the
boundary terms cancel out. This shows that the wave equation is satisfied on M̃ ×[−T, T ] in the weak
form, with the source term in L2(M̃ × [−T, T ]). □

3.3. Distance functions. Later in the proof of Theorem 3.1, we will need to switch back and forth to
different distance functions. The following lemma shows relations between distance functions.

Lemma 3.6. Let (M̃, g̃) be an extension of (M, g) satisfying Lemma 3.4 with the extension width δex.
Denote the distance functions of M and M̃ by d and d̃ , respectively. Then there exists a uniform constant rb
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explicitly depending only on K1, i0 such that the following inequality holds for any x, y ∈ M as long as
δex ⩽ rb:

d̃(x, y)⩽ d(x, y)⩽ (1 + 3K1δex)d̃(x, y).

If x, y ∈ M̃ − M, then the second inequality holds after replacing d(x, y) with d(x⊥, y⊥), where x⊥

denotes the normal projection of x onto ∂M. If x ∈ M̃ − M, y ∈ M, then the second inequality holds for
d(x⊥, y).

Furthermore, if a minimizing geodesic of M̃ between x, y ∈ M̃ lies in the boundary normal (tubular)
neighborhood of ∂M of width δex, then we have

d∂M(x⊥, y⊥)⩽ (1 + 3K1δex)d̃(x, y),

where d∂M denotes the intrinsic distance function of ∂M.

Proof. The first inequality is trivial and we prove the second inequality. Consider any (distance) minimizing
geodesic γ̃ of M̃ from x to y; its length L(γ̃ ) satisfies L(γ̃ )= d̃(x, y) by definition. It is known that γ̃
is a C1 curve with arclength parametrization (e.g., Section 2 in [Alexander et al. 1987]). Observe that the
second inequality follows trivially if γ̃ lies entirely in M. Since the statement of the lemma is independent
of the choice of coordinate, we work in the boundary normal coordinate (x1, . . . , xn−1, ρ(x)) of ∂M.

Suppose γ̃ lies entirely in M̃ − int(M) with both endpoints x, y on ∂M. Consider the normal projection,
denoted by γ , of γ̃ onto the boundary ∂M with respect to the boundary normal coordinate. More precisely,
if γ̃ (s)= (x1(s), . . . , xn−1(s), xn(s)) in a boundary normal coordinate near a point on γ̃ , then its normal
projection has the form γ (s) = (x1(s), . . . , xn−1(s), 0). The fact that γ̃ is of C1 implies that xi (s) is a
C1 function for any i . Hence γ is a C1 (possibly not regular or simple) curve in ∂M from x to y with the
induced parametrization from γ̃ . Note that γ may not be differentiable with respect to its own arclength
parameter.

As a consequence, the length L(γ ) of γ can be written as

L(γ )=

∫ L(γ̃ )

0

√
g(γ ′(s), γ ′(s)) ds =

∫ L(γ̃ )

0

√
g(γ̃ ′

T (s)|γ (s), γ̃
′

T (s)|γ (s)) ds,

where γ̃ ′

T (s) denotes the vector field with constant coefficients in the frame (∂/∂x1, . . . , ∂/∂xn−1), with
the coefficients being the tangential components of the tangent vector γ̃ ′(s) of γ̃ . Note that γ̃ ′

T (s) is a
Jacobi field for the normal coordinate function ρ(x). For every fixed s, by the definition of the second
fundamental form (more precisely the shape operator),

∂

∂ρ
g̃ρ(γ̃ ′

T , γ̃
′

T )= 2g̃ρ(Sρ(γ̃ ′

T ), γ̃
′

T ),

where g̃ρ and Sρ denote the metric and the shape operator of the equidistant hypersurface from ∂M (in
M̃ − M) with distance |ρ| (i.e., the level set d̃( · , ∂M) = |ρ|). Observe that Lemma 6.1 holds in the
boundary normal neighborhood of ∂M regardless of which side the neighborhood extends to, thanks to
Lemma 3.4(3). Then the first part of Lemma 6.1 indicates that for sufficiently small |ρ| depending only
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on K1, i0, ∣∣∣ ∂
∂ρ

g̃ρ(γ̃ ′

T , γ̃
′

T )

∣∣∣ ⩽ 4K1g̃ρ(γ̃ ′

T , γ̃
′

T ).

Thus by Gronwall’s inequality, we have

g(γ̃ ′

T |γ , γ̃
′

T |γ )⩽ g̃ρ(γ̃ ′

T , γ̃
′

T )e
4K1|ρ|.

Since the extended metric g̃ is a product metric in the boundary normal coordinate, then g̃(γ̃ ′

T |γ̃ , γ̃
′

T |γ̃ )⩽
g̃(γ̃ ′, γ̃ ′). Hence for sufficiently small δex depending only on K1 and |ρ| ⩽ δex, we obtain

L(γ )⩽ e2K1|ρ|

∫ L(γ̃ )

0

√
g̃ρ(γ̃ ′

T (s), γ̃
′

T (s)) ds

⩽ e2K1δex

∫ L(γ̃ )

0

√
g̃(γ̃ ′(s), γ̃ ′(s)) ds ⩽ (1 + 3K1δex)d̃(x, y),

which yields the second inequality by definition.
In general, if γ̃ crosses ∂M with both endpoints in M, we can divide γ̃ into segments in M and segments

in M̃ − M. The lemma is trivially satisfied for the endpoints of any segment in M. Any (continuous)
segment in M̃ − M has endpoints on ∂M and lies entirely in M̃ − int(M). Thus we apply the argument
above for every segment in M̃ − M and the estimate follows. Finally, if the endpoints of γ̃ are not
both in M, then its projection γ is a curve between the projections of the endpoints of γ̃ onto M. This
concludes the proof for the first part of the lemma.

Now we prove the second part of the lemma. Let γ̃ be the minimizing geodesic of M̃ from x to y
lying in the boundary normal tubular neighborhood of ∂M. If γ̃ lies entirely in M or M̃ − int(M), one
can use the previous argument to project γ̃ to a curve on ∂M and show the same estimate as the first part.
The only difference is that when x, y are not in ∂M, the projection γ is a curve on ∂M from x⊥ to y⊥. In
general, the estimate follows from dividing γ̃ into segments in M and in M̃ − M, and projecting both
types of segments onto ∂M. □

Definition 3.7. For h < i0/2, we consider the submanifold

Mh = {x ∈ M : d(x, ∂M)⩾ h}.

Denote by dh : Mh × Mh → R the intrinsic distance function of the submanifold Mh , and we extend it to
any point x ∈ M̃ − Mh by

dh(x, z)= dh(x⊥h , z)+ h−1d̃(x, x⊥h ) for z ∈ Mh, x ∈ M̃ − Mh, (3-9)

where x⊥h ∈ ∂Mh is the unique normal projection of x ∈ M̃ − Mh onto ∂Mh within the boundary normal
neighborhood of ∂M such that d̃(x, x⊥h )= d̃(x, ∂Mh). In this definition we require at least one of the
points to belong to Mh . Note that a similar notation x⊥ denotes the normal projection of x onto ∂M.

Thus the path between z ∈ Mh and a point x ∈ M̃ − Mh realizing dh(x, z) is a broken curve consisting
of a geodesic of Mh and a vertical line of the boundary neighborhood (see Figure 2).
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In general, the intrinsic distance function of a manifold with boundary is at most of C1,1: the function
dh( · , z) is at most of C1,1 even on Mh −{z}. We need to smoothen it in order to match the C2,1 regularity
required by Theorem 2.2.

Definition 3.8. For a fixed z ∈ Mh and any x ∈ M, we denote by ds
h(x, z) the smoothening of dh(x, z) via

convolution in a ball of radius r < δex/2 around the center x with respect to the distance d̃ of M̃. More
precisely,

ds
h(x, z)= cnr−n

∫
M̃

k1

(
d̃(y, x)

r

)
dh(y, z) dy, (3-10)

where k1 : R → R is a nonnegative smooth mollifier supported on
[ 1

2 , 1
]
, and dy denotes the Riemannian

volume form on M̃. The constant cn is the normalization constant such that

cnr−n
∫

Rn
k1

(
|v|

r

)
dv = 1, (3-11)

where dv denotes the Euclidean volume form on Rn.

Lemma 3.9. Let δex be sufficiently small determined in Lemma 3.4. For sufficiently small r depending on
n, K1, K2, i0, r0, rg, the function ds

h( · , z) is of C2,1 on M for any fixed z ∈ Mh . Furthermore, in the coordi-
nate of our choice, the C2,1-norm of ds

h( · , z) is uniformly bounded explicitly depending on r , n, ∥RM∥C1 .

Proof. By Lemma 3.4(4), for sufficiently small δex, we know rCAT(M̃) is bounded below by C(K1, i0, r0).
We restrict the smoothening radius to be less than this lower bound: r < C(K1, i0, r0). Then for any
y ∈ B̃r (x), there is a unique minimizing geodesic between x and y. Furthermore, no conjugate points occur
along geodesics of length less than π/(2K1) [Alexander et al. 1993, Corollary 3]. Since B̃r (x)∩∂ M̃ =∅ for
any x ∈ M as r <δex/2, we know d̃( · , x) is simply a geodesic distance function in the ball of the smoothen-
ing radius around any x ∈ M. As a consequence, d̃( · , x) is differentiable on B̃r (x) and |∇d̃( · , x)| = 1.

By our choice of coordinate charts in Section 3.1, for any x ′
∈ M̃, the ball B̃rg/2(x

′) or the cylinder
B∂M(y, rg/2)× (ρ − rg/2, ρ + rg/2) is contained in at least one of the coordinate charts defined in
Lemma 3.4, where x ′

= (y, ρ) if x ′ is in the boundary normal coordinate of ∂M. Then by Lemma 3.6,
the ball B̃rg/4(x

′) of M̃ is contained in one of the coordinate charts if we choose a smaller rb depending
on K1. Hence, for r < rg/4, B̃r (x) is contained in one of these coordinate charts for any x ∈ M, and
therefore d̃( · , x) is of C2,1 on B̃r (x)−{x} by Lemma 3.4(2) and Theorem 2.1 in [DeTurck and Kazdan
1981]. Observe that d̃( · , x) is bounded below by r/2 in the support of k1, which yields a bound on higher
derivatives of d̃( · , x). This shows that the function ds

h( · , z) is of C2,1.
To estimate the C2,1-norm of ds

h( · , z), it suffices to estimate the C2,1-norm of d̃( · , y) on the annulus
B̃r (y)− B̃r/2(y). Due to the Hessian comparison theorem (e.g., [Petersen 2006, Theorem 27, p. 175]), for
sufficiently small r depending on K1, we have ∥∇̃

2d̃( · , y)∥ ⩽ 4r−1 on the annulus, where ∇̃
2 denotes

the second covariant derivative on M̃. In a local coordinate (x1, . . . , xn) on M̃, the covariant derivative
has the form (e.g., [Petersen 2006, Chapter 2, p. 32])

(∇̃2d̃( · , y))
(
∂

∂xk ,
∂

∂x l

)
=

∂2

∂xk∂x l d̃( · , y)−
n∑

i=1

0̃i
kl
∂

∂x i d̃( · , y), k, l = 1, . . . , n. (3-12)
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Hence in the coordinate charts of our choice, for sufficiently small r , (3-6) yields

∥d̃( · , y)∥C2 ⩽ Cr−1 on B̃r (y)− B̃r/2(y). (3-13)

An estimate on the C2,1-norm can be obtained by differentiating the Riccati equation in polar coordinates
g̃ = dr2

+ g̃r around y, where ∂r is the radial direction in the geodesic normal coordinate. Then on the
annulus, examining the proof of Lemma 8 in [Hebey and Vaugon 1995] gives a bound

∥∇̃
3d̃( · , y)∥ ⩽ C(n, ∥RM̃∥C1)r−2.

Hence by differentiating the formula (3-12), for sufficiently small r depending on n, K1, K2, i0, we obtain

∥d̃( · , y)∥C2,1 ⩽ C(n, ∥RM̃∥C1)r−2 on B̃r (y)− B̃r/2(y). (3-14)

Then a straightforward differentiation yields an estimate on the C2,1-norm of ds
h( · , z). □

3.4. Proof of Theorem 3.1. Now we prove the main technical result Theorem 3.1, by constructing the
functions and domains assumed in Theorem 2.2. The proof consists of several parts.

To begin with, let h be a positive number satisfying h <min{1/5, i0/10, rb/10}, where rb = rb(K1, i0)

is the width of the boundary normal neighborhood determined in Lemma 6.1. For sufficiently small h only
depending on n, K1, K2, i0, vol(∂M), we extend (M, g) to (M̃, g̃) with the extension width δex = 5h such
that Lemma 3.4 holds. Then we extend u to ũ by (3-7) with the cut-off width h. Let rg be the uniform
radii of C1 geodesic normal coordinates of M and ∂M such that metric bounds (3-6) hold. We have
shown that rg explicitly depends on n, ∥RM∥C1 , ∥S∥C1 , i0. Now we collect all these relevant parameters
and impose the following requirements on the choice of h due to technical reasons:

0< h <min
{ 1

10
,

T
8
,

i0
10
,

r0
10
,

rg

10
,

rb
10
,

ib(0)

10
,
π

12K1

}
. (3-15)

The part of the manifold extension over 0 is denoted by �0 = 0× [−5h, 0]. The number min{1, T −1
}

will be frequently used in this proof and we denote it by

aT = min{1, T −1
}. (3-16)

We restrict the choice of h once again such that, for sufficiently small h,

rCAT(Mh)⩾ min
{2r0

3
,
π

2K1

}
, rCAT(M̃)⩾ min

{2r0
3
,
π

2K1

}
. (3-17)

This is possible due to Lemma 6.2. We remark that the dependency of h is not explicit in Lemma 6.2(3),
and one can instead use the explicit lower bound in Lemma 6.2(2).

With the choice of δex = 5h and h as above, the function dh( · , z) defined in (3-9) is Lipschitz with a
Lipschitz constant 2h−1 (Lemma 6.3(3)). In Definition 3.8, we set the smoothening radius to be r = aT h3.
Then it follows that |ds

h(x, z)− dh(x, z)|< 2aT h2 for any x ∈ M (Lemma 6.3(4)).
Assume h is sufficiently small so that Lemma 3.9 holds. For any z ∈ Mh and x ∈ M satisfying

h/4 ⩽ dh(x, z) ⩽ min{i0/2, r0/2, π/(6K1)}, we have |∇x ds
h(x, z)| > 1 − 2h (Lemma 6.5). Outside the

injectivity radius this gradient can be 0 if cut points are involved. This lower bound being close to 1 is
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crucial for our method to ensure no loss of domain, and we define dh (3-9) with the h−1 scaling in the
boundary neighborhood specifically to guarantee it. While this lower bound is almost trivial when z is far
from ∂Mh , careful treatment is required when the manifold boundary is involved.

For |b| ⩽ 5h, we define the set

0b(h)= {x ∈ M̃ : ρ(x)= b, x⊥
∈ 0, d∂M(x⊥, ∂0)⩾ h}, (3-18)

where ∂0 denotes the boundary of 0 in ∂M. The function ρ(x) is the coordinate function in the normal
direction defined in (3-5). Note that if 0 = ∂M, the last two conditions above are automatically satisfied,
and then the set above is simply the level set for the normal coordinate function.

Recall that ũ, the extension of u to M̃ defined by (3-7), vanishes on 0b(0) for all b ⩽ −h. The set
0−2h(0) is the set from which we intend to propagate the unique continuation. More precisely, we start
the propagation from an h-net in 0−2h(8h). The reason of this specific choice is the following.

Sublemma 1. For sufficiently small h only depending on K1, we have

d̃(z, ∂(M ∪�0)− ∂ M̃)⩾ 7h for any z ∈ 0−2h(8h),

where �0 = 0× [−5h, 0] is the part of the manifold extension over 0.

Proof. Let y be a point in ∂(M ∪�0)− ∂ M̃ realizing the distance to z. Suppose d̃(z, y) < 7h. Then the
minimizing geodesic of M̃ from z to y lies in the boundary normal (tubular) neighborhood of ∂M of
width 5h. Hence Lemma 3.6 implies that

d∂M(z⊥, y⊥)⩽ (1 + 15K1h)d̃(z, y) < 7h(1 + 15K1h).

However, we know d∂M(z⊥, y⊥)⩾8h by the definition (3-18). Hence we get a contradiction for sufficiently
small h only depending on K1. □

Initial step. As the initial step, we propagate the unique continuation from outside the manifold M to a
region close to 0 in M.

Consider the function ξ : [0,+∞)→ R defined by

ξ(x)=
(h − x)3

h3 for x ∈ [0, h], (3-19)

and ξ(x)= 0 for x > h. The function ξ(x) on negative numbers can be defined in any way so that ξ(x)≥ 1
for x < 0, and ξ(x) is smooth on (−∞, h). The function ξ(x) is of C2,1 on R and monotone decreasing
on [0,+∞). Let {z0, j }

J (0)
j=1 be an h-net in 0−2h(8h): that is, for any z ∈ 0−2h(8h), there exists some z0, j

such that d̃(z, z0, j ) < h. We define

ψ0, j (x, t)=
(
(1 − ξ(6h − d̃(x, z0, j )))T − d̃(x, z0, j )

)2
− t2, (3-20)

and consider the following domains (see Figure 2):

�0
0, j = {(x, t) ∈ M̃ × [−T, T ] : ψ0, j (x, t) > h2, ρ(x) >−3h/2}. (3-21)
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M

∂M

Mh

x⊥h
x

z

0

−h
−2h

�0 0−2h(8h)

⋃
j �

0
0, j

Figure 2. Domains for the initial step. Enclosed by the red solid line is the domain we work in,
and it is close to 0.

Note that in general, the domain characterized by ψ0, j (x, t)> h2 has two connected components. Here we
define�0

0, j to be the connected component characterized by (1−ξ(6h−d̃(x, z0, j )))T −d̃(x, z0, j )>0.1 Ob-
serve that in this connected component, it holds that d̃(x, z0, j ) < 6h due to the definition of the function ξ .

Then we define
ϒ = {x ∈�0 : −2h ⩽ ρ(x)⩽ −h} × [−T, T ], (3-22)

�0, j = {(x, t) ∈�0
0, j −ϒ : ψ0, j (x, t) > 4h2

}. (3-23)

Now we prove that the conditions assumed in Theorem 2.2 are satisfied forψ0, j ,�0
0, j ,�0, j ,ϒ, ψmax,0 =

(T − h)2, and therefore Theorem 2.2 applies. A stability estimate will be derived at the end of the proof.

(1) We show that ψ0, j is of C2,1 and noncharacteristic in �0
0, j . Indeed, for any (x, t) ∈�0

0, j , we have
d̃(x, z0, j ) < 6h by the definition of ψ0, j . Hence any minimizing geodesic of M̃ from z0, j to x must
not intersect ∂ M̃ ; otherwise the length of such geodesic would exceed 6h due to the condition that
ρ(x) > −3h/2. Furthermore, by our choice h < min{r0/10, π/(12K1)} and (3-17), the minimizing
geodesic from z0, j to any x ∈ B̃6h(z0, j ) is unique and no conjugate points can occur. Therefore d̃( · , z0, j )

is a C2,1 geodesic distance function in �0
0, j , which shows that ψ0, j is of C2,1 in �0

0, j . Moreover, since
d̃(x, z0, j ) > h/2 for any (x, t) ∈�0

0, j by definition, the C2,1-norms of d̃( · , z0, j ) and ψ0, j are uniformly
bounded in �0

0, j due to (3-14).
Next we prove that ψ0, j is noncharacteristic in �0

0, j . For any (x, t) ∈�0
0, j ,

∇xψ0, j = 2
(
(1 − ξ(6h − d̃(x, z0, j )))T − d̃(x, z0, j )

)
(ξ ′T ∇x d̃(x, z0, j )− ∇x d̃(x, z0, j )).

Note that ξ ′ is evaluated at 6h − d̃(x, z0, j ) in the formula above. Since ξ ′ ⩽ 0, we have

|ξ ′T ∇x d̃(x, z0, j )− ∇x d̃(x, z0, j )| ⩾ |∇x d̃(x, z0, j )| = 1.
1Throughout the proof, whenever we define a domain using level sets of a similar function, we exactly mean this one type of

connected component.
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Hence,

p((x, t),∇ψ0, j )=

n∑
k,l=1

g̃kl(∂xkψ0, j )(∂xlψ0, j )− |∂tψj |
2
= |∇xψ0, j |

2
− |∂tψ0, j |

2

⩾ 4
(
(1 − ξ(6h − d̃(x, z0, j )))T − d̃(x, z0, j )

)2
− 4t2

= 4ψ2
0, j (x, t) > 4h2.

(2) The extended function ũ defined by (3-7) vanishes on ϒ. We claim that

∅ ̸= {(x, t) ∈�0
0, j : ψ0, j (x, t) > (T − h)2} ⊂ ϒ.

Indeed, for any (x, t) in the set, it satisfies that d̃(x, z0, j ) < h, which indicates ρ(x) < −h. On the
other hand, Sublemma 1 implies that x ∈�0, and therefore (x, t) ∈ϒ. For the nonemptyness, consider
the point x j ∈ 0−5h/4(0) such that d̃(x j , z0, j ) = 3h/4 (i.e., x j is the projection of z0, j onto 0−5h/4(0)).
By definition, we have ψ0, j (x j , 0) = (T − 3h/4)2 > (T − h)2. This also shows that (x j , 0) ∈ �0

0, j by
definition when T > 2h, which yields the nonemptyness.

(3) We show that distM̃×R(∂�
0
0, j , �0, j ) > 0. It suffices to prove �0, j ⊂�0

0, j . For any (x, t) ∈�0
0, j , we

have d̃(x, z0, j ) < 6h by the definition of ψ0, j , which implies that �0
0, j ⊂ M ∪�0 due to Sublemma 1.

This indicates that the boundaries of �0
0, j , �0, j are determined only by ψ0, j and ρ(x). Since we know

ρ(x) >−h for any (x, t) ∈�0, j by definition, clearly �0, j ⊂�0
0, j .

(4) We claim that
⋃J (0)

j=1 �0, j is connected and therefore its closure is connected. Take two reference points
z0, j1, z0, j2 satisfying d̃(z0, j1, z0, j2) < 3h. Consider (z⊥

0, j1, 0) ∈ ∂M × [−T, T ]. Directly checked by the
definition of�0, j , this point (z⊥

0, j1, 0) is in both�0, j1 and�0, j2 . In particular, this shows�0, j1 ∩�0, j2 ̸=∅
if d̃(z0, j1, z0, j2) < 3h. Since each �0, j is path connected, so is �0, j1 ∪�0, j2 . The claim follows from
the fact that for any two points in the h-net {z0, j } we can find a chain of {z0, j } such that every pair of
adjacent points in this chain has distance less than 3h.

In order to propagate further in subsequent steps, we need to estimate how much
⋃

j �0, j covers in the
original manifold M.

Sublemma 2.
(⋃

b∈[0,2h]
0b(8h)

)
× [−T + 6h, T − 6h] ⊂

⋃J (0)
j=1 �0, j .

Proof. For any (x, t) in the left-hand set, there exists j0 such that d̃(x, z0, j0) < 5h due to the definition of
h-net, which indicates that the ξ -term in ψ0, j0 (3-20) vanishes. Thus

ψ0, j0(x, t)= (T − d̃(x, z0, j0))
2
− t2 > (T − 5h)2 − (T − 6h)2 > 5h2,

where we used T > 8h. This shows that (x, t) is in both �0
0, j0 and �0, j0 . □

Subsequent steps. After the initial step, the reference set is moved to 0h(8h) and unique continuation is
propagated up to 02h(8h). Let {z1, j } be an h-net in 0h(10h)⊂ Mh with respect to dh . Note that here the
range of the j index is different from that of the j index in the initial step, and a precise notation would
be {z1, j }

J (1)
j=1 . We omit this dependence on the step number to keep the notations short. Set T1 = T − 6h

and ρ0 = min{i0/2, r0/2, rg/4, π/(6K1)}. We divide into two cases depending on if T is larger than ρ0.
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M

Mh

01 = 0h(10h) ⋃
j �

0
0, j

02

⋃
j �

0
j or

⋃
j �

0
1, j

Figure 3. Domains for Case 1 or the first step in Case 2. Enclosed by the red solid lines is the
domain we work in, and its boundary consists of two disjoint parts. This domain never reaches
outside distance ρ0, which is marked by the upper red dotted line. The blue dashed line 02 is the
reference set for the second step in Case 2.

Case 1: T ⩽ ρ0 = min{i0/2, r0/2, rg/4, π/(6K1)}. For any (x, t) ∈ M ×[−T1, T1], we define the C2,1

functions
ψj (x, t)=

(
(1 − ξ(d(x, ∂M)))T1 − ds

h(x, z1, j )
)2

− t2, (3-24)

and consider the domains2

�0
j = {(x, t) ∈ M × [−T1, T1] : ψj (x, t) > 8T 2h} − {x : ds

h(x, z1, j )⩽ h/2} × [−T1, T1]. (3-25)

Observe that ξ(d(x, ∂M)) < 1 in �0
j and hence �0

j never intersect with ∂M at any time. For any
(x, t) ∈�0

j , we have h/2< ds
h(x, z1, j ) < T1 ⩽ ρ0 − 6h by definition. Then Lemma 6.3(4) indicates that

h/4< dh(x, z1, j ) <min{i0/2, r0/2, π/(6K1)}, and hence Lemma 6.5 applies.
Then we define

�j =

{
(x, t) ∈�0

j −
⋃
j
�0, j : ψj (x, t) > 9T 2h

}
. (3-26)

Now we prove that the conditions assumed in Theorem 2.2 are satisfied for ψj , �0
j , �j , ψmax =

(T1 − 3h/4)2, together with relevant functions and domains in the initial step. The relevant domains are
illustrated in Figure 3.

First we show that ψj is noncharacteristic at any (x, t) ∈�0
j . For x ∈ M − Mh ,

∇xψj = 2
(
(1 − ξ(d(x, ∂M)))T1 − ds

h(x, z1, j )
)
(−ξ ′T1∇x d(x, ∂M)− ∇x ds

h(x, z1, j )).

Note that ξ ′ is evaluated at d(x, ∂M) in the formula above.
For x ∈ M − Mh with d(x, ∂Mh)⩾ aT h3, the vectors ∇x dh(x, z1, j ) and ∇x ds

h(x, z1, j ) only differ by
a small component C(n, K1, K2)h2 due to (6-9). In particular, ⟨∇x dh(x, z1, j ),∇x ds

h(x, z1, j )⟩ > 0 for

2The connected component characterized by (1 − ξ(d(x, ∂M)))T1 − ds
h(x, z1, j ) > 0.
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sufficiently small h depending on n, K1, K2. Hence by the definition of dh (3-9),

⟨∇x d(x, ∂M),∇x ds
h(x, z1, j )⟩ = −h⟨∇x dh(x, z1, j ),∇x ds

h(x, z1, j )⟩< 0.

Then by Lemma 6.5 and ξ ′ ⩽ 0, we have

| − ξ ′T1∇x d(x, ∂M)− ∇x ds
h(x, z1, j )| ⩾ |∇x ds

h(x, z1, j )|> 1 − 2h.

For x ∈ M − Mh with d(x, ∂Mh) < aT h3, we have |ξ ′(d(x, ∂M))|< 3a2
T h3 ⩽ 3T −1h3 at such points

by definitions (3-19) and (3-16). Therefore, for any x ∈ M − Mh and sufficiently small h, we have

|∇xψj |> 2|(1 − ξ)T1 − ds
h|(1 − 2h − 3h3)

> 2|(1 − ξ)T1 − ds
h|(1 − 3h). (3-27)

On the other hand, if x ∈ Mh , then the ξ -term vanishes and the estimate above holds. Hence, for any
(x, t) ∈�0

j ,

p((x, t),∇ψj )= |∇xψj |
2
− |∂tψj |

2

> 4((1 − ξ)T1 − ds
h)

2(1 − 3h)2 − 4t2

> 4ψj (x, t)− 24T 2h > 8T 2h.

(3-28)

This shows that ψj is noncharacteristic at any (x, t) ∈�0
j .

It is straightforward to show the connectedness of
(⋃

j �j
)
∪

(⋃
j �0, j

)
in the same way as we did for⋃

j �0, j in the initial step. The other conditions assumed in Theorem 2.2 follow from Sublemma 3 below
and Sublemma 2.

Sublemma 3. For sufficiently small h < 1
8 depending on K1, we have

∅ ̸= {(x, t) ∈�0
j : ψj (x, t) > (T1 − 3h/4)2} ⊂

( ⋃
b∈[0,2h]

0b(8h)
)

× [−T1, T1],

and distM̃×R(∂�
0
j , �j ) > 0.

Proof. The nonemptyness follows from definition. For any (x, t) in the left-hand set, we know ds
h(x, z1, j )<

3h/4 by definition. Hence it suffices to show that{
x : ds

h(x, z1, j )⩽ 3h/4
}

⊂
⋃

b∈[0,2h]

0b(8h). (3-29)

For any x in the left-side set in (3-29), Lemma 6.3(4) indicates that dh(x, z1, j )< h and hence ρ(x)< 2h.
This checks the condition on ρ(x) in (3-18). We proceed to check the rest of the conditions in (3-18).

If x ∈ Mh , then by Lemma 3.6,

d∂M(x⊥, z⊥

1, j )⩽ (1 + 15K1h)d̃(x, z1, j )⩽ (1 + 15K1h)dh(x, z1, j ) < h(1 + 15K1h).

If x ∈ M − Mh , then dh(x⊥h , z1, j ) < dh(x, z1, j ) < h by definition (3-9). Hence,

d∂M(x⊥, z⊥

1, j )= d∂M((x⊥h )⊥, z⊥

1, j )⩽ (1 + 15K1h)dh(x⊥h , z1, j ) < h(1 + 15K1h),

where we used the fact that (x⊥h )⊥ = x⊥.
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Therefore in either case, for sufficiently small h depending only on K1, we have d∂M(x⊥, z⊥

1, j ) < 2h.
Then the fact that d∂M(z⊥

1, j , ∂0)⩾ 10h yields x⊥
∈ 0 and d∂M(x⊥, ∂0) > 8h. This completes the proof

of (3-29) and consequently the first statement of the sublemma.
For the second statement, it suffices to prove �j ⊂�0

j . For any (x, t) ∈�j , clearly we have ψj (x, t)⩾
9T 2h > 8T 2h and (x, t) /∈

⋃
j �0, j by definition (3-26). To show (x, t) ∈ �0

j , we only need to show
(x, t) /∈ {x : ds

h(x, z1, j ) ⩽ h/2} × [−T1, T1]. This is a direct consequence of the fact that a larger
cylinder {x : ds

h(x, z1, j )⩽ 3h/4} × [−T1, T1] is strictly contained in the open set
⋃

j �0, j , due to (3-29)
and Sublemma 2. An explicit lower bound for the distance between their boundaries is estimated in
Lemma 6.6. □

Error estimate for Case 1. We prove that � =
(⋃

j �j
)
∪

(⋃
j �0, j

)
almost covers the domain of

influence in the original manifold M. More precisely, we prove that there exists C ′
= C ′(T, K1)

such that �(C ′h) ⊂ �. Since �(C ′h) ⊂ M × [−T, T ], it suffices to show that M × [−T, T ] −� ⊂

M × [−T, T ] −�(C ′h).
For any (x, t) ∈ M ×[−T, T ]−�, by the definitions (3-24), (3-25), (3-26), we know that one of the

following two situations must happen:

(1) d(x, ∂M) < h.

(2) x ∈ Mh and ds
h(x, z1, j ) > T1 −

√
t2 + 9T 2h for any z1, j .

We analyze these two situations separately as follows.

(1) By virtue of Sublemma 2 and the definition (3-18), the situation (1) implies that x⊥ /∈ 0, or x⊥
∈ 0

and d∂M(x⊥, ∂0) < 8h, or |t | > T − 6h. The condition x⊥ /∈ 0 indicates that d(x, ∂M − 0) < h. If
x⊥

∈ 0 and d∂M(x⊥, ∂0) < 8h, then, by the triangle inequality,

d(x, ∂0)⩽ d(x, x⊥)+ d(x⊥, ∂0)⩽ h + d∂M(x⊥, ∂0) < 9h,

which yields d(x, ∂M −0) < 9h due to ∂0 ⊂ ∂M −0. If |t |> T − 6h, then the following inequality is
trivially satisfied:

T − |t | −
√

6h < 6h −
√

6h < 0 ⩽ d(x, 0).

Note that if 0= ∂M, the first two possibilities automatically do not occur and hence only the last inequality
above is valid under the first situation.

(2) By Lemma 6.3(4), the situation (2) implies that dh(x, z1, j ) > T1 − |t | − 3T
√

h − 2h2 for x ∈ Mh and
any z1, j . Since {z1, j } is an h-net in 0h(10h) with respect to dh , we have

dh(x, 0h(10h)) > T1 − |t | − 3T
√

h − h − 2h2.

Then we apply Lemma 3.6 after replacing M, M̃ with Mh,M :

d(x, 0h(10h))(1 + 6K1h)⩾ dh(x, 0h(10h)) > T1 − |t | − 3T
√

h − h − 2h2,

where we used the fact that the second fundamental form of ∂Mh is bounded by 2K1 due to Lemma 6.1.
Hence by the triangle inequality,

d(x, 00(10h)) > (T1 − |t | − 3T
√

h − h − 2h2)(1 + 6K1h)−1
− h.
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03 ⋃
j �

0
2, j

02⋃
j �

0
1, j

Figure 4. Domains for the second step in Case 2. Enclosed by the red solid lines is the domain we
work in. The blue dashed line 03 is the reference set for the third step. From here, the procedure
is entirely done in M.

For any y ∈ 0−00(10h), y lies in the boundary normal neighborhood of ∂0 in 0 due to 10h < ib(0).
Hence d(y, 00(10h))⩽ d∂M(y, 00(10h))⩽ 10h. Then,

d(x, y)⩾ d(x, 00(10h))− d(y, 00(10h)) > (T − |t | − 3T
√

h − 7h − 2h2)(1 + 6K1h)−1
− 11h,

where we used T1 = T − 6h. Hence we arrive at

d(x, 0) > T − |t | − C(T, K1)
√

h.

Finally we combine these two situations together, and we have proved that (x, t)∈ M×[−T, T ]−�(Ch)
for C = max{C(T, K1)

2, 9} by definition (2-4). Therefore, there exists C ′
= C ′(T, K1) such that

�(C ′h) ⊂ �, and a stability estimate can be obtained on �(C ′h) from Theorem 2.2. The stability
estimate will be derived at the end of the proof.

Case 2: T > ρ0 = min{i0/2, r0/2, rg/4, π/(6K1)}. As Lemma 6.5 is only valid within the injectivity
radius, we define the procedure step by step and each step is done within the injectivity radius. Recall
that {z1, j } is an h-net in 0h(10h)⊂ Mh with respect to dh , and T1 = T − 6h. For the first step, we define
functions ψ1, j by adding to (3-24) another term associated with T1,

ψ1, j (x, t)=
(
(1 − ξ(d(x, ∂M))− ξ(ρ0 − ds

h(x, z1, j )))T1 − ds
h(x, z1, j )

)2
− t2, (3-30)

and consider the domains

�0
1, j = {(x, t) ∈ M × [−T1, T1] : ψ1, j (x, t) > 8T 2h} − {x : ds

h(x, z1, j )⩽ h/2} × [−T1, T1]. (3-31)

One can compare these definitions here with those in Case 1. Note that the regions �0
1, j stay within half

the injectivity radius due to the definition of the function ξ . The gradient of ψ1, j has the form

∇xψ1, j = 2
(
(1 − ξ(d(x, ∂M))− ξ(ρ0 − ds

h(x, z1, j )))T1 − ds
h(x, z1, j )

)
·
(
−ξ ′T1∇x d(x, ∂M)+ ξ ′T1∇x ds

h(x, z1, j )− ∇x ds
h(x, z1, j )

)
.

The vector part of ∇xψ1, j consists of ∇x d(x, ∂M) and ∇x ds
h(x, z j ), the same as in Case 1. Furthermore,

the form for the vector part is the same as that in Case 1 up to multiplication by a positive function, since
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ξ ′ ⩽ 0. Hence one obtains the same lower bounds for the length of the gradient and the principle symbol
as (3-27) and (3-28). It follows that ψ1, j is noncharacteristic in �0

1, j . And we define ψmax,1 and �1, j the
same as in Case 1 (see Figure 3). More precisely, define ψmax,1 = (T1 − 3h/4)2 and

�1, j =

{
(x, t) ∈�0

1, j −
⋃
j
�0, j : ψ1, j (x, t) > 9T 2h

}
. (3-32)

Since (3-29) is still valid, Sublemma 3 holds for ψ1, j , �0
1, j , �1, j . Hence Theorem 2.2 applies to the first

step. We stop the procedure right after the first step if T1 − ρ0 − 3T
√

h ⩽ 2h.
For the second step, we need to choose a new set of reference points. Observe that the first step

propagates past the level set 02 := {x ∈ Mh : dh(x, 0h(10h))= ρ0 − 4h} due to Lemma 6.3(4) and the
procedure-stopping criterion T1 − ρ0 − 3T

√
h > 2h. We choose the new reference points {z2, j } as an

h-net in 02 with respect to dh . At 02, the square of the maximal time allowed is (T1 −ρ0 + 4h)2 − 9T 2h,
and we set the time range T2 for the second step as T2 = T1 − ρ0 − 3T

√
h. The procedure-stopping

criterion indicates that T2 > 2h. Then we define the functions

ψ2, j (x, t)=
(
(1 − ξ(d(x, ∂M))− ξ(ρ0 − ds

h(x, z2, j )))T2 − ds
h(x, z2, j )

)2
− t2.

To apply Theorem 2.2, we need to ensure that small neighborhoods around the new reference points are
contained in the regions already propagated by the unique continuation in the first step. To that end, we
define ψmax,2 = (T2 − aT h)2, where aT = min{1, T −1

}, and

�0
2, j = {(x, t) ∈ M × [−T2, T2] : ψ2, j (x, t) > 8T 2h} − {x : ds

h(x, z2, j )⩽ aT h/2} × [−T2, T2],

�2, j =

{
(x, t) ∈�0

2, j −

((⋃
j
�1, j

)
∪

(⋃
j
�0, j

))
: ψ2, j (x, t) > 9T 2h

}
.

These domains are illustrated in Figure 4. The specific choice of ψmax,2 is justified in Sublemma 5 a bit
later, to ensure that ∅ ̸= {(x, t) ∈�0

2, j : ψ2, j (x, t) > ψmax,2} ⊂
(⋃

j �1, j
)
∪

(⋃
j �0, j

)
.

Now we define the remaining steps iteratively. We define the reference sets as

0i = {x ∈ Mh : dh(x, 01)= (i − 1)(ρ0 − 4h)}, i ⩾ 2,

where 01 = 0h(10h)⊂ Mh . The reference points {zi, j } are defined as an h-net in 0i with respect to dh .
Note that the range of the j index for each step i is different, and the notation {zi, j } here is short for
{zi, j }

J (i)
j=1. We define the C2,1 functions ψi, j as

ψi, j (x, t)=
(
(1 − ξ(d(x, ∂M))− ξ(ρ0 − ds

h(x, zi, j )))Ti − ds
h(x, zi, j )

)2
− t2,

where Ti = Ti−1 − ρ0 − 3T
√

h with T1 = T − 6h. We stop the procedure at the i-th step if Ti+1 ⩽ 2h or
0i+1 = ∅. The regions �0

i, j and �i, j for i ⩾ 2 are defined as3

�0
i, j = {(x, t) ∈ M × [−Ti , Ti ] : ψi, j (x, t) > 8T 2h} − {x : ds

h(x, zi, j )⩽ aT h/2} × [−Ti , Ti ],

�i, j =

{
(x, t) ∈�0

i, j −

i−1⋃
l=0

⋃
j
�l, j : ψi, j (x, t) > 9T 2h

}
,

3The connected component characterized by
(
1 − ξ(d(x, ∂M))− ξ(ρ0 − ds

h(x, zi, j ))
)
Ti − ds

h(x, zi, j ) > 0.
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t
T

�

∂M

−2h h

4h ρ

2ρ

M

−T

Figure 5. The procedure of a three-step propagation besides the initial step. The red solid lines
enclose the whole region �=

⋃
i, j �i, j propagated by the unique continuation. The black dotted

line represents the optimal region, while the blue dotted line represents the actual region we can
estimate.

where aT = min{1, T −1
} in (3-16). It follows that ψi, j is noncharacteristic in �0

i, j in the same way as
for ψ1, j . Due to Sublemma 5 below, Theorem 2.2 applies with ψmax,i = (Ti − aT h)2.

Sublemma 4. For i ⩾ 2 and any z ∈ 0i , we have dh(z, 0i−1)= ρ0 − 4h.

Proof. Let z1 ∈ 01 be a point in 01 such that dh(z, z1) = dh(z, 01). Take a minimizing geodesic
of Mh from z to z1 and the geodesic intersects with 0i−1 at zi−1 ∈ 0i−1. This geodesic has length
(i − 1)(ρ0 − 4h), and its segment from zi−1 to z1 has length at least (i − 2)(ρ0 − 4h) by definition.
Hence dh(z, 0i−1) ⩽ dh(z, zi−1) ⩽ ρ0 − 4h. On the other hand, for any z′

∈ 0i−1, we have dh(z, z′) ⩾
dh(z, 01)− dh(z′, 01)= ρ0 − 4h, which shows dh(z, 0i−1)⩾ ρ0 − 4h. □

Sublemma 5. For i ⩾ 2 and sufficiently small h < min{1/2, T/4} depending on n, K1, i0, we have
distM̃×R(∂�

0
i, j , �i, j ) > 0, and

∅ ̸= {(x, t) ∈�0
i, j : ψi, j (x, t) > (Ti − aT h)2} ⊂

i−1⋃
l=0

⋃
j
�l, j .

Proof. We prove the following stronger statement:

{x : ds
h(x, zi, j )⩽ aT h} × [−Ti − h, Ti + h] ⊂

i−1⋃
l=0

⋃
j
�l, j . (3-33)

More precisely, for any (x, t) in the left-hand set, we prove that if (x, t) /∈
⋃i−2

l=0
⋃

j �l, j , then (x, t) ∈⋃
j �i−1, j .
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By Sublemma 4 and the fact that {zi−1, j } is an h-net in 0i−1, we can find some zi−1, j0 such that
dh(zi, j , zi−1, j0) < ρ0 − 3h. Then for any (x, t) in the left-hand set in (3-33), Lemma 6.3(2) implies that
for sufficiently small h depending on n, K1, i0,

ds
h(x, zi−1, j0) < ds

h(x, zi, j )+ (ρ0 − 3h)(1 + CnK 2
1 h6) < ρ0 − 3h/2, (3-34)

which indicates that ξ(ρ0 − ds
h(x, zi−1, j0)) vanishes.

We claim that (x, t) ∈�i−1, j0 . To prove this, by the definition of ψi−1, j , �i−1, j and the condition that
(x, t) /∈

⋃i−2
l=0

⋃
j �l, j , we only need to show that

ψi−1, j0(x, t)=
(
(1 − ξ(d(x, ∂M)))Ti−1 − ds

h(x, zi−1, j0)
)2

− t2 > 9T 2h.

Since |t | ⩽ Ti + h, it is enough to show

(1 − ξ(d(x, ∂M)))Ti−1 − ds
h(x, zi−1, j0) > Ti + h + 3T

√
h.

Now since ds
h(x, zi, j )⩽ h/T, by the definition of dh and Lemma 6.3(4) we have

d(x, ∂M)⩾ h − dh(x, zi, j )h > h −

(
h
T

+
2h2

T

)
h > h −

2h2

T
,

which implies by the definition of ξ (3-19)

ξ(d(x, ∂M)) < ξ
(

h −
2h2

T

)
=

8h3

T 3 .

Since Ti = Ti−1 − ρ0 − 3T
√

h by definition, we have by (3-34)

(1 − ξ(d(x, ∂M)))Ti−1 − ds
h(x, zi−1, j0) > Ti−1 − ξ(d(x, ∂M))Ti−1 − ρ0 +

3h
2

> Ti + 3T
√

h +
3h
2

−
8h3

T 3 T

> Ti + 3T
√

h + h.
This proves (x, t) ∈�i−1, j0 and hence (3-33).

The inclusion (3-33) shows {x : ds
h(x, zi, j )⩽ aT h/2}× [−Ti , Ti ] is strictly contained in

⋃i−1
l=0

⋃
j �l, j ,

which implies that �i, j ⊂ �0
i, j . An explicit lower bound for the distance between their boundaries is

estimated in Lemma 6.6.
For the second statement of the sublemma, by (3-33),

{ψi, j (x, t) > (Ti − aT h)2} ⊂ {ds
h(x, zi, j ) < aT h} × (−Ti , Ti )⊂

i−1⋃
l=0

⋃
j
�l, j .

The nonemptyness directly follows from the definition of �0
i, j . □

Error estimate for Case 2. Finally we show that � =
⋃

i⩾0
⋃

j �i, j almost covers the domain of
influence in the original manifold M (see Figure 5). More precisely, we prove that there exists C ′

=

C ′(T, D, K1, i0, r0, rg) such that �(C ′h)⊂�. The idea of the proof is similar to that for Case 1, and we
omit the parts of the proof identical to Case 1.
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For any (x, t) ∈ M × [−T, T ] −�, one of the following two situations must happen:

(1) d(x, ∂M) < h.

(2) x ∈ Mh and ds
h(x, zi, j ) > (1 − ξ(ρ0 − ds

h(x, zi, j )))Ti −
√

t2 + 9T 2h for any zi, j (i ⩾ 1).

The situation (1) implies that d(x, ∂M −0) < 9h or d(x, 0) > T − |t | −
√

6h by the same argument
as for Case 1.

Now we focus on the situation (2) when x ∈ Mh . Lemma 6.3(4) yields that, for any zi, j (i ⩾ 1),

dh(x, zi, j ) > (1 − ξ(ρ0 − ds
h(x, zi, j )))Ti − |t | − 3T

√
h − 2h2. (3-35)

Let z1 ∈01 be a point in 01 such that dh(x, z1)= dh(x, 01), and take a minimizing geodesic of Mh from x
to z1. Observe that this minimizing geodesic intersects with each 0i at most once; otherwise it would fail
to minimize the distance dh(x, 01). Furthermore, due to the continuity of the distance function dh( · , 01),
if the minimizing geodesic intersects with 0i , then it intersects with 0l for all 1 ⩽ l < i . Suppose the
minimizing geodesic intersects with 0i at zi ∈ 0i for 1 ⩽ i ⩽ m, and the intersection does not occur at
any nonempty 0i for i > m. Then by Sublemma 4, we have

dh(x, 01)= d(x, z1)= dh(x, zm)+

m−1∑
i=1

dh(zi , zi+1)⩾ dh(x, zm)+ (m − 1)(ρ0 − 4h). (3-36)

We claim that dh(x, zm) ⩽ ρ0 − 3h. Suppose not, and by the inequality above, we have dh(x, 01) >

m(ρ0 − 4h). This implies that 0m+1 ̸= ∅ and any minimizing geodesic from x to 01 must intersect
with 0m+1, which is a contradiction.

Since 0m ̸= ∅ by assumption, the step m of our procedure takes place as long as Tm > 2h by our
stopping criterion. However if Tm ⩽ 2h, the procedure stops at some previous step.

(i) Tm > 2h. On 0m , we can find some zm, j such that dh(zm, zm, j ) < h since {zm, j } is an h-net.
Then it follows that dh(x, zm, j ) < ρ0 − 2h. Lemma 6.3(4) indicates that ds

h(x, zm, j ) < ρ0 − h. Hence
ξ(ρ0 − ds

h(x, zm, j )) in (3-35) vanishes. Then by (3-36),

dh(x, 01) > dh(x, zm, j )− h + (m − 1)(ρ0 − 4h)

> Tm − |t | − 3T
√

h − h − 2h2
+ (m − 1)(ρ0 − 4h)

= T1 − |t | − 3mT
√

h − h − 4(m − 1)h − 2h2,

where we used Tm = T1 − (m − 1)(ρ0 + 3T
√

h) by the definition of Ti .

(ii) Tm ⩽ 2h. From Tm = T1 − (m − 1)(ρ0 + 3T
√

h), we have

T1 ⩽ (m − 1)(ρ0 + 3T
√

h)+ 2h.

Hence by (3-36), we still get a similar estimate as the previous situation:

dh(x, 01)⩾ (m − 1)(ρ0 − 4h)⩾ T1 − 3(m − 1)T
√

h − 2h − 4(m − 1)h

⩾ T1 − |t | − 3(m − 1)T
√

h − 2h − 4(m − 1)h.
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From here, one can follow the rest of the estimates for Case 1 and obtain

d(x, 0) > T − |t | − C(m, T, K1)
√

h.

Combining these situations together, we have proved that (x, t) ∈ M × [−T, T ] − �(Ch) for C =

max{C(m, T, K1)
2, 9} by definition (2-4). Therefore, there exists C ′

=C ′(m, T, K1) such that�(C ′h)⊂�.
The only part left is to estimate the upper bound for m. By assumption, 0m ̸=∅ and hence 0m must be

taken before dh( · , 01) reaches outside the diameter of Mh . Due to Lemma 3.6 for Mh , M, the diameter
of Mh is bounded by 6D/5 for sufficiently small h depending only on K1. Thus by the definition of 0i ,
we have

m ⩽

[
6D
ρ0

]
+ 1,

where ρ0 = min{i0/2, r0/2, rg/4, π/(6K1)} depends only on n, ∥RM∥C1, ∥S∥C1, i0, r0.

Stability estimate. With all the functions and domains we have constructed, the only part left is to apply
Theorem 2.2. From the error estimate above, we have proved that there exists C ′

= C ′(T, D, K1, i0, r0, rg)

such that �(C ′h)⊂�=
⋃

i⩾0
⋃

j �i, j , where rg is a constant depending only on n, ∥RM∥C1, ∥S∥C1, i0.
Recall that ũ is an extension of u to M̃ defined by (3-7). Theorem 2.2 yields the following stability
estimate on � and hence on �(C ′h):

∥u∥L2(�(C ′h)) ⩽ ∥ũ∥L2(�) ⩽ C
∥ũ∥H1(�0)

(log(1 + ∥ũ∥H1(�0)/∥Pũ∥L2(�0)))
1/2 ,

where �0
=

⋃
i⩾0

⋃
j �

0
i, j . During the initial step, we have shown �0

0, j ⊂ M ∪�0 , and �0
i, j is defined in

M ×[−T, T ] for all i ⩾ 1. Hence �0
⊂ (M ∪�0)×[−T, T ]. Since the function x 7→ x(log(1+ x))−1/2

is nondecreasing on [0,+∞), we have

∥u∥L2(�(C ′h)) ⩽ C
∥ũ∥H1((M∪�0)×[−T,T ])

(log(1 + ∥ũ∥H1((M∪�0)×[−T,T ])/∥Pũ∥L2((M∪�0)×[−T,T ])))
1/2 .

Therefore, the desired stability estimate follows from Lemma 3.5 after replacing h by h/C ′. The number
of domains in each step is not consequential to the estimate as long as relevant quantities of ψi, j are
uniformly bounded. The dependency of the constant is calculated in the Appendix.

The second statement of the theorem is due to the following interpolation formula for bounded domains
with locally Lipschitz boundary:

∥u∥H1−θ ⩽ ∥u∥
θ
L2∥u∥

1−θ

H1 , θ ∈ (0, 1).

This concludes the proof of Theorem 3.1.

Remark 3.10. If we define dh (3-9) with h−2 scaling in the boundary neighborhood and require h < T −1,
then the level sets of ψj (3-24) automatically do not intersect with ∂M even without the ξ(d(x, ∂M))-term.
However, the extra condition h < T −1 is not ideal and we want to choose the parameter h as large as
possible for a large T, considering the stability estimate grows exponentially in h. In addition, we
frequently used the number aT = min{1, T −1

} exactly for the same purpose.
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Remark 3.11. In the definition of �0
i, j for Case 2, we removed the region where points are aT h/2-close

to the reference points, and this region is contained in the set propagated by the unique continuation from
previous steps by Sublemma 5. The h−1 scaling in the definition of dh (3-9) directly affects the order of
this number aT h/2. Without the scaling, the order of this number would be of h2.

3.5. Applications of the quantitative unique continuation. Due to the trace theorem, Theorem 3.1 yields
the following estimate on the initial value.

Corollary 3.12. Let M ∈ Mn(D, K1, K2, i0, r0) be a compact Riemannian manifold with smooth bound-
ary ∂M, and let 0 (possibly 0 = ∂M) be a connected open subset of ∂M with smooth boundary. Suppose
u ∈ H 2(M × [−T, T ]) is a solution of the wave equation Pu = 0. Assume the Cauchy data satisfy

u|∂M×[−T,T ] ∈ H 2,2(∂M × [−T, T ]),
∂u
∂n ∈ H 2,2(∂M × [−T, T ]).

If

∥u∥H1(M×[−T,T ]) ⩽30, ∥u∥H2,2(0×[−T,T ]) +

∥∥∥∂u
∂n

∥∥∥
H2,2(0×[−T,T ])

⩽ ε0,

then for sufficiently small h, we have

∥u(x, 0)∥L2(�(2h,0,3)) ⩽ C1/3
3 h−2/9 exp(h−C4n)

30 + h−1/2ε0

(log(1 + h + h3/230/ε0))1/6
,

where C3,C4 are constants independent of h, and their dependency on geometric parameters is stated in
Theorem 3.1. For a fixed t ∈ [−T, T ], the domain �(h, t,m) is defined as

�(h, t,m)= {x ∈ M : T − |t | − d(x, 0) > h1/m, d(x, ∂M −0) > h1/m
}. (3-37)

Proof. Observe that �(2h, 0, 3)× (−t0, t0)⊂�(h) with t0 = (
3
√

2 − 1) 3
√

h by definition. Then we take
θ =

1
3 in Theorem 3.1 and apply the trace theorem [Bergh and Löfström 1976, Theorem 6.6.1]: there

exists a constant C such that

∥u(x, 0)∥L2(�(2h,0,3)) ⩽ Ct−2/3
0 ∥u(x, t)∥H2/3(�(2h,0,3)×(−t0,t0))

⩽ 4Ch−2/9
∥u(x, t)∥H2/3(�(h)). □

Remark 3.13. Note that the constant C3 in Corollary 3.12 is not exactly the same as the constant C3 in
Theorem 3.1. However, they depend on the same set of geometric parameters. In this paper, we keep the
same notation for constants if operations do not introduce any new parameter.

The following independent result gives an explicit estimate on the Hausdorff measure of the boundary
of the domain of influence, which shows that the region Corollary 3.12 does not cover has a uniformly
controlled small volume.

Proposition 3.14. Let M be a compact Riemannian manifold with smooth boundary. For any measurable
subset 0 ⊂ ∂M and any t ⩾ 0, the following explicit estimate applies:

voln−1(∂M(0, t)) < C5(n, ∥RM∥C1, ∥S∥C1, i0, vol(M), vol(∂M)),
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where M(0, t) is defined in (1-3). As a consequence, the estimate above implies the following volume
estimate due to the coarea formula. Namely, for any t, γ ⩾ 0, we have

voln(M(0, t + γ )− M(0, t)) < C5(n, ∥RM∥C1, ∥S∥C1, i0, vol(M), vol(∂M))γ.

Proof. Denote the level set of the distance function by 6t = {x ∈ int(M) : d(x, 0) = t}. For any point
in 6t , there exists a minimizing geodesic from the point to the subset 0. These minimizing geodesics do
not intersect with 6t except at the initial points by definition. Moreover, they do not intersect each other
in the interior of M, as geodesics would fail to minimize distance past a common point in the interior
of M. Define l(x) to be the infimum of the distances between a point x ∈ 6t and the first intersection
points with the boundary along all minimizing geodesics from x to 0, and to be infinity if any minimizing
geodesic from x to 0 does not intersect ∂M −0.

For sufficiently small ε > 0 chosen later, define

6t(ε)= {x ∈6t : ε/2< l(x)⩽ ε}.

Denote by U (6t(ε)) the set of all points on all minimizing geodesics from 6t(ε) to 0 and consider the
set U (6t(ε))∩6t ′ for t ′

∈ [t − ε/4, t). Clearly the set U (6t(ε))∩6t ′ does not intersect with ∂M by
definition. Furthermore, it is contained in the C(n, ∥RM∥C1, ∥S∥C1)ε2-neighborhood of the boundary
∂M if ε is not greater than ε0(n, ∥RM∥C1, ∥S∥C1, i0), due to Lemma 6.7.

Since the distance function d( · , 0) is Lipschitz with the Lipschitz constant 1, it is differentiable almost
everywhere by Rademacher’s theorem and its gradient has length at most 1. The existence of minimizing
geodesics from 0 yields that the gradient of d( · , 0) has length at least 1 wherever it exists. Hence the
gradient of d( · , 0) has unit length almost everywhere. We apply the coarea formula (e.g., Theorem 3.1
in [Federer 1959]) to the sets U (6t(ε))∩6t ′ with the distance function d( · , 0). Then by Lemma 6.8
and Lemma 6.7, we have

ε

4
voln−1(6t(ε)) < 5n−1

∫ t

t−ε/4
voln−1(U (6t(ε))∩6t ′) dt ′

= 5n−1 voln

( ⋃
t ′∈[t−ε/4,t)

(U (6t(ε))∩6t ′)

)
< 5n−1C(n, ∥RM∥C1, ∥S∥C1)ε2 vol(∂M).

Then for ε ⩽ ε0 we get

voln−1(6t(ε)) < C(n, ∥RM∥C1, ∥S∥C1, vol(∂M))ε.

Hence we have an estimate on the measure of Ut(ε0) := {x ∈6t : l(x)⩽ ε0}:

voln−1(Ut(ε0))= voln−1

( ∞⋃
k=0

6t(ε02−k)

)
=

∞∑
k=0

voln−1(6t(ε02−k))

< C(n, ∥RM∥C1, ∥S∥C1, vol(∂M))ε0

∞∑
k=0

2−k

< C(n, ∥RM∥C1, ∥S∥C1, i0, vol(∂M)).
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As for the other part 6t − Ut(ε0), if t > ε0, the minimizing geodesics from the points of 6t − Ut(ε0) to
0 do not intersect the boundary within distance ε0. By the same argument as above, we can control the
measure in question in terms of the volume of the manifold,

ε0

2
voln−1(6t − Ut(ε0)) < 5n−1 vol(M),

which implies that
voln−1(6t − Ut(ε0)) < C(n, ∥RM∥C1, ∥S∥C1, i0, vol(M)).

Since the part of ∂M(0, t) on the boundary is bounded by vol(∂M), the measure estimate for ∂M(0, t)
follows.

If t ⩽ ε0, the domain of influence is contained in the boundary normal neighborhood of width t . The
minimizing geodesics from points of 6t − Ut(ε0) to 0 do not intersect the boundary within distance t/2.
Then by the same argument as before, we have

t
2

voln−1(6t − Ut(ε0)) < 5n−1 vol(∂M)t,

which completes the measure estimate for ∂M(0, t).
The n-dimensional volume estimate directly follows from the measure estimate for ∂M(0, t) and the

coarea formula. □

Due to the Sobolev embedding theorem and Corollary 3.12, we next prove Proposition 3.3.

Proof of Proposition 3.3. Due to Corollary 3.12, we only need an estimate in M(0, T )−�(2h, 0, 3). By
the definition (3-37) and Proposition 3.14, we have

vol(M(0, T )−�(2h, 0, 3)) < vol(M(0, T )− M(0, T − (2h)1/3))+ vol(∂M)(2h)1/3 < Ch1/3.

Since u(x, 0) ∈ H 1(M), by the Sobolev embedding theorem we have, for n ⩾ 3,

∥u(x, 0)∥L2n/(n−2)(M) ⩽ C∥u(x, 0)∥H1(M) ⩽ C3,

and, for n = 2,
∥u(x, 0)∥L6(M) ⩽ C∥u(x, 0)∥W 1,3/2(M) ⩽ C3.

Hence Hölder’s inequality gives an estimate on the L2-norm of u(x, 0) over M(0, T )−�(2h, 0, 3).
Then the proposition follows from Corollary 3.12, and the regularity result for the wave equation (e.g.,
Theorem 2.30 in [Katchalov et al. 2001]): namely,

max
t∈[−T,T ]

∥u(x, t)∥H1(M) ⩽ C(T )∥u(x, 0)∥H1(M).

This proves Proposition 3.3. □

4. Fourier coefficients and the multiplication by an indicator function

In this section, we present the essential step of our reconstruction method where we compute how the
Fourier coefficients of a function (with respect to the basis of eigenfunctions) change when the function
is multiplied by an indicator function of a union of balls with center points on the boundary. This step is
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based on the stability estimate for the unique continuation we have obtained in Section 3. The results in
this section will be applied to study the stability of the manifold reconstruction from boundary spectral
data in the next section.

Let M be a compact Riemannian manifold with smooth boundary ∂M. Given a small number η > 0,
we choose subsets of ∂M in the following way. Suppose {0i }

N
i=1 are disjoint open connected subsets of

∂M satisfying

∂M =

N⋃
i=1
0i , diam(0i )⩽ η,

where the diameter is measured with respect to the distance of M. Assume that every 0i contains a ball
(of ∂M) of radius η/6. Without loss of generality, we assume every ∂0i is smooth embedded and admits
a boundary normal neighborhood of width η/10. This is because one always has the choice to propagate
the unique continuation from the smaller ball of radius η/6. An error of order η does not affect our final
result.

Let α = (α0, α1, . . . , αN ), with αk ∈ [η, D] ∪ {0} (k = 0, . . . , N ), be a multi-index, where D is the
upper bound for the diameter of M. Set 00 = ∂M. We define the domain of influence associated with α by

Mα :=

N⋃
k=0

M(0k, αk)=

N⋃
k=0

{x ∈ M : d(x, 0k) < αk}. (4-1)

We will only be concerned with (nonempty) domains of influence with the initial time range αk ⩾ η.
Hence for sufficiently small η explicitly depending on geometric parameters, Proposition 3.3 applies with
h < η/100, since ib(0k)⩾ η/10 for all k ⩾ 1 by assumption.

We are given a function u ∈ H 3(M) with

∥u∥L2(M) = 1, ∥u∥H3(M) ⩽3.

Lemma 4.1. For a small parameter γ ∈ (0, N−2), we can construct a function u0 ∈ H 3(M) such that

u0|Mα
= 0, u0|Mc

α+γ
= u, ∥u0∥L2(M) ⩽ 1,

∥u0∥H s(M) ⩽ C03γ
−s for s ∈ [1, 3], (4-2)

where α+ γ = (α0 + γ, α1 + γ, . . . , αN + γ ), and C0 is a constant explicitly depending on geometric
parameters.

Proof. Let {xl} be a maximal γ /2-separated set in M, and {φl} be a partition of unity subordinate to the
open cover {Bγ /2(xl)} of M such that ∥φl∥Cs ⩽ Cγ−s. Then the desired function u0 can be defined as

u0(x)=

∑
supp(φl )∩Mα=∅

φl(x)u(x), x ∈ M. (4-3)

The first three conditions are clearly satisfied.
To prove the H s-norm condition, we only need to show that the number of nonzero terms in the sum

(4-3) is uniformly bounded. Given an arbitrary point x ∈ M, any Bγ /2(xl) with φl(x) ̸= 0 is contained
in Bγ (x). By the definition of a γ /2-separated set, {Bγ /4(xl)} do not intersect with each other. Hence
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it suffices to estimate the number of disjoint balls of radius γ /4 in a ball of radius γ . For sufficiently
small γ , the volume of a ball of radius γ is bounded from both sides by Cγ n, which yields that the
maximal number of balls is bounded by a constant independent of γ . To obtain an explicit estimate, it is
convenient to work in a Riemannian extension of M, for instance in M̃ defined in Lemma 3.4. Then an
explicit estimate for the maximal number follows from Lemma 3.6 and (6-4). □

Note that due to Proposition 3.14, we have

vol(Mα+γ − Mα) < (N + 1)C5γ < 2C5γ
1/2. (4-4)

4.1. Approximation results with spectral data without error. Suppose the first J Neumann boundary
spectral data {λj , ϕj |∂M}

J
j=1 are known without error. Let u ∈ H 3(M) be a given function with ∥u∥L2(M)=1

and ∥u∥H3(M) ⩽3. Let u0 be defined in Lemma 4.1. We define u J to be the projection of u0 onto the
first J eigenspaces VJ = span{ϕ1, . . . , ϕJ } ⊂ C∞(M) with respect to the L2(M)-norm:

u J =

J∑
j=1

⟨u0, ϕj ⟩ϕj ∈ VJ . (4-5)

We consider the following initial value problem for the wave equation with the Neumann boundary
condition:

∂2
t W −1gW = 0 on int(M)× R,

∂W
∂n

∣∣∣
∂M×R

= 0, ∂t W |t=0 = 0,

W |t=0 = v.

Denote by W (v) the solution of the wave equation above with the initial value v. Then we define U to be
the set of initial values v ∈ VJ for which the corresponding waves W (v) are small at all 0k ×[−αk, αk];
namely,

U(J,3, γ, ε1)=

N⋂
k=0

{v ∈ VJ : ∥v∥H1(M) ⩽ 3C03γ
−3, ∥W (v)∥H2,2(0k×[−αk ,αk ]) ⩽ ε1}. (4-6)

When the parameters J,3, γ, ε1 are clearly specified in a certain context, we denote this set by simply U
for short.

Note that since functions in VJ are smooth on M, the wave W (v) for v ∈ VJ is also smooth and hence
its H 2,2-norm is well-defined. Given the Fourier coefficients of v ∈ VJ , the conditions of U can be
checked only using the boundary spectral data. In fact, if a function v has the form v =

∑J
j=1 vjϕj , then

∥v∥H1(M) =
∑J

j=1(1 + λj )v
2
j , and the wave W (v) over ∂M is given by

W (v)(x, t)|∂M×R =

J∑
j=1

vj cos(
√
λj t)ϕj (x)|∂M . (4-7)

For convenience, we use the following equivalent Sobolev norm (e.g., Theorem 2.22 in [Katchalov
et al. 2001]) for a function v ∈ H s(M) with the Fourier expansion v =

∑
∞

j=1 vjϕj :

∥v∥2
H s(M) =

∞∑
j=1

(1 + λs
j )v

2
j for s ∈ [1, 3]. (4-8)
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Lemma 4.2. Let u ∈ H 3(M) be a given function with ∥u∥H3(M) ⩽3, and u0, u J be defined in Lemma 4.1
and (4-5). Then, for any ε1 > 0, there exists J0 = J0(D,3, γ, ε1) such that u J ∈ U(J,3, γ, ε1) for any
J ⩾ J0.

Proof. Assume J is sufficiently large such that λJ > 1. Suppose u0, u J have expansions:

u0 =

∞∑
j=1

djϕj , u J =

J∑
j=1

djϕj ∈ VJ .

By (4-8) we know

∥u0∥
2
H3(M) ⩾

∞∑
j=J+1

d2
j λ

3
j ⩾ λJ

∞∑
j=J+1

d2
j λ

2
j , (4-9)

and hence by (4-2),

∥u0 − u J ∥
2
H2(M) =

∞∑
j=J+1

(1 + λ2
j )d

2
j ⩽ 2

∞∑
j=J+1

λ2
j d2

j ⩽ 2C2
03

2λ−1
J γ

−6. (4-10)

As a consequence, u J satisfies the H 1-norm condition of U (4-6):

∥u J ∥H1(M) ⩽ ∥u0∥H1(M) + ∥u0 − u J ∥H1(M)

⩽ C03γ
−1

+
√

2C03λ
−1/2
J γ−3 < 3C03γ

−3.

Next we show that u J also satisfies the H 2,2-norm condition of U (4-6) for sufficiently large J. This
condition is trivially satisfied when αk = 0. Due to the finite speed propagation of waves, the condition
u0|Mα

= 0 implies that W (u0)|0k×(−αk ,αk) = 0 for all k with αk ̸= 0. Thus it suffices to show that
W (u0)− W (u J ) has small H 2,2-norm on ∂M × [−D, D].

Since u0 ∈ H 3(M), the regularity result for the wave equation (e.g., Theorem 2.45 in [Katchalov et al.
2001]) shows that

W (u0)|M×[−D,D] ∈ C([−D, D]; H 3(M))∩ C3([−D, D]; L2(M)).

Hence from (4-7), we have

(W (u0)− W (u J ))(x, t)|∂M×[−D,D] =

∞∑
j=J+1

dj cos(
√
λj t)ϕj (x)|∂M .

Then the trace theorem and (4-8) imply that

∥W (u0)− W (u J )∥
2
H2(∂M) ⩽ C∥W (u0)− W (u J )∥

2
H11/4(M)

= C
∞∑

j=J+1

(1 + λ
11/4
j )d2

j cos2(
√
λj t)⩽ 2C

∞∑
j=J+1

d2
j λ

11/4
j ⩽ C(3)λ−1/4

J γ−6,

where the last inequality is due to a similar estimate to (4-9). For the time derivatives, the trace theorem
and (4-8) imply

∥∂2
t W (u0)−∂

2
t W (u J )∥

2
L2(∂M)⩽C∥∂2

t W (u0)−∂
2
t W (u J )∥

2
H3/4(M)

= C
∞∑

j=J+1

(1+λ
3/4
j )d2

j λ
2
j cos2(

√
λj t)⩽ 2C

∞∑
j=J+1

d2
j λ

11/4
j ⩽C(3)λ−1/4

J γ−6.
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Similarly by using (4-9),

∥∂t W (u0)− ∂t W (u J )∥
2
L2(∂M) ⩽ C(3)λ−1

J γ
−6.

Hence by the definition of H 2,2-norm (2-5),

∥W (u0)− W (u J )∥
2
H2,2(∂M×[−D,D])

⩽ 2D C(3)(2λ−1/4
J γ−6

+ λ−1
J γ

−6)

⩽ C(D,3)λ−1/4
J γ−6.

Therefore, for all k = 0, . . . , N with αk ̸= 0, we have

∥W (u J )∥
2
H2,2(0k×[−αk ,αk ])

= ∥W (u0)− W (u J )∥
2
H2,2(0k×[−αk ,αk ])

⩽ C(D,3)λ−1/4
J γ−6.

For any ε1 > 0, choose sufficiently large J such that λJ ⩾ C(D,3)γ−24ε−8
1 and the lemma follows. □

Remark 4.1. The choice of J0 in Lemma 4.2 also depends on geometric parameters, which is brought in
when applying the trace theorem. Those relevant parameters are part of the parameters we considered
in Section 3, so we omit them in this section for brevity. The same goes for the next two propositions,
where the dependency on geometric parameters is brought in when applying Proposition 3.3.

We prove the following approximation result for finite spectral data.

Proposition 4.3. Let u ∈ H 3(M) be a given function with ∥u∥L2(M) = 1 and ∥u∥H3(M) ⩽ 3. Let
α = (α0, . . . , αN ), αk ∈ [η, D] ∪ {0}, be given, and Mα be defined in (4-1). Then, for any ε > 0, there
exists sufficiently large J = J (D, N ,3, η, ε) such that by only knowing the first J Neumann boundary
spectral data {λj , ϕj |∂M}

J
j=1 and the first J Fourier coefficients {aj }

J
j=1 of u, we can find {bj }

J
j=1 and

ua
=

∑J
j=1 bjϕj such that

∥ua
−χMα

u∥L2(M) < ε,

where χ denotes the characteristic function.

Proof. We consider the following minimization problem in U(J,3, γ, ε1) (denoted by U from now on)
defined in (4-6), where the parameters J, γ, ε1 will be determined later. Let umin ∈ U be the solution of
the minimization problem

∥umin − u∥L2(M) = min
w∈U

∥w− u∥L2(M). (4-11)

Observe that given the first J Fourier coefficients of u, finding the minimum of the norm ∥w−u∥L2(M) is
equivalent to finding the minimum of a polynomial in terms of the (J number of) Fourier coefficients
of w. Since the conditions of U (4-6) can be checked with finite boundary spectral data by (4-7) and (4-8),
the minimization problem transforms into a polynomial minimization problem in a bounded domain in RJ

(the space of Fourier coefficients). Hence the Fourier coefficients of the minimizer umin are solvable by
only using the finite spectral data.

Next, we investigate what properties this minimizer umin satisfies. By Proposition 3.3 and the fact that
the Neumann boundary condition is imposed, w ∈ U implies that ∥w∥L2(M(0k ,αk)) < ε2(h,3, η, γ, ε1) for
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all k = 0, 1, . . . , N with αk ̸= 0, where

ε2 = C1/3
3 h−2/9 exp(h−C4n)

3γ−3
+ h−1/2ε1

(log(1 + h3/2γ−33/ε1))1/6
+ C53γ

−3h1/(3n+3). (4-12)

Hence,

∥w∥L2(Mα)
< (N + 1)ε2.

Then, for any w ∈ U and in particular for w = umin,

∥w− u∥
2
L2(M) = ∥w− u∥

2
L2(Mα)

+ ∥w− u∥
2
L2(Mc

α)

> ∥u∥
2
L2(Mα)

− 4Nε2 + ∥w− u∥
2
L2(Mc

α)
. (4-13)

On the other hand the following estimate holds for u J :

∥u J − u∥
2
L2(M) ⩽ (∥u J − u0∥L2(M) + ∥u0 − u∥L2(M))

2

⩽ ∥u J − u0∥
2
L2(M) + 4∥u J − u0∥L2(M) + ∥u0 − u∥

2
L2(M)

⩽ C(3)λ−1/2
J γ−2

+ ∥u∥
2
L2(Mα)

+ ∥u0 − u∥
2
L2(Mα+γ−Mα)

,

where the last inequality is due to an estimate for ∥u J − u0∥L2 similar to (4-10), and the definition
of u0. The definition of partition of unity in (4-3), the Sobolev embedding theorem (see the proof of
Proposition 3.3) and (4-4) yield that

∥u0 − u∥L2(Mα+γ−Mα)
⩽ ∥u∥L2(Mα+γ−Mα)

< 2C53γ
1/(2 max{n,3}).

Hence,

∥u J − u∥
2
L2(M) < C(3)λ−1/2

J γ−2
+ ∥u∥

2
L2(Mα)

+ 4C2
53

2γ 1/(n+1).

For sufficiently large J = J (D,3, γ, ε1), we have u J ∈U by Lemma 4.2. This indicates that the minimizer
umin also satisfies

∥umin − u∥
2
L2(M) < C(3)λ−1/2

J γ−2
+ ∥u∥

2
L2(Mα)

+ 4C2
53

2γ 1/(n+1). (4-14)

Combining the two inequalities (4-13) and (4-14), we have

∥umin − u∥
2
L2(Mc

α)
< 4Nε2 + C(3)λ−1/2

J γ−2
+ 4C2

53
2γ 1/(n+1).

The fact that ∥umin∥L2(Mα)
< Nε2 implies that

∥χMα
u − (u − umin)∥

2
L2(M) = ∥umin −χMc

α
u∥

2
L2(M)

= ∥umin −χMc
α
u∥

2
L2(Mc

α)
+ ∥umin∥

2
L2(Mα)

< 4Nε2 + C(3)λ−1/2
J γ−2

+ 4C2
53

2γ 1/(n+1)
+ 4N 2ε2

2.

From our discussion at the beginning of this proof, we know the Fourier coefficients of umin are
solvable. Suppose we have found a minimizer umin =

∑J
j=1 cjϕj . Since the first J Fourier coefficients of

u are given as aj , we can replace the function u −umin in the last inequality by
∑J

j=1 ajϕj −umin and the
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error in L2-norm is controlled by 3λ−1/2
J . Hence by the Cauchy–Schwarz inequality, we obtain∥∥∥∥χMα

u −

J∑
j=1

(aj − cj )ϕj

∥∥∥∥2

L2(M)
< 8Nε2 + 8N 2ε2

2 + C(3)λ−1/2
J γ−2

+ 8C2
53

2γ 1/(n+1), (4-15)

which makes ua
:=

∑J
j=1 bjϕj with bj = aj − cj our desired function.

Finally, we determine the relevant parameters. For any ε > 0, we first choose and fix γ such that the
last (4-15) term 8C2

53
2γ 1/(n+1) is equal to ε2/4, and choose sufficiently large J such that the third term

is smaller than ε2/4. Then we choose ε2 so that the first two terms satisfy 8Nε2 + 8N 2ε2
2 = ε2/4. Next

we determine ε1. We choose and fix h < η/100 such that the second term in (4-12) is equal to ε2/2,
and choose ε1 such that the first term in (4-12) is equal to ε2/2. By Lemma 4.2, there exists sufficiently
large J such that u J ∈ U , which validates all the estimates. □

4.2. Approximation results with spectral data with error. Now suppose that not only do we not know
all the spectral data, we also only know them up to an error. More precisely, suppose we are given
a set of data {λa

j , ϕ
a
j |∂M} which is a δ-approximation of the Neumann boundary spectral data, where

λa
j ∈ R⩾0 and ϕa

j |∂M ∈ C2(∂M). By Definition 1.1, there exists a choice of Neumann boundary spectral
data {λj , ϕj |∂M}

∞

j=1 such that, for all j ⩽ δ−1,

|

√

λj −

√

λa
j |< δ, ∥ϕj −ϕa

j ∥C0,1(∂M) + ∥∇
2
∂M(ϕj −ϕa

j )|∂M∥< δ. (4-16)

Since ϕa
j ∈ C2(∂M) by assumption, the bound on the C0,1-norm above yields

∥ϕj −ϕa
j ∥C0(∂M) + |∇(ϕj −ϕa

j )|∂M |< δ for j ⩽ δ−1. (4-17)

In a local coordinate (x1, . . . , xn−1) on ∂M, for any f ∈ C2(∂M), we have the formula

(∇2
∂M f )

(
∂

∂xk ,
∂

∂x l

)
=

∂2 f
∂xk∂x l −

n−1∑
i=1

0i
kl
∂ f
∂x i , k, l = 1, . . . , n − 1.

Furthermore, we can choose to work in the geodesic normal coordinate. Then the norm of the second
covariant derivative (the Hessian), the formula above and (2-3) yield a bound Cδ on the second derivative
of (ϕj −ϕa

j )|∂M : ∣∣∣ ∂2

∂xk∂x l (ϕj −ϕa
j )|∂M

∣∣∣< Cδ for j ⩽ δ−1, k, l = 1, . . . , n − 1. (4-18)

We prove the following approximation result analogous to Proposition 4.3.

Proposition 4.4. Let u ∈ H 3(M) be a given function with ∥u∥L2(M) = 1 and ∥u∥H3(M) ⩽ 3. Let
α = (α0, . . . , αN ), αk ∈ [η, D] ∪ {0} be given, and Mα be defined in (4-1). Then, for any ε > 0, there
exists sufficiently large J = J (D, N ,3, η, ε) such that the following holds.

There exists δ=δ(D,vol(∂M),N,3, J,η,ε)⩽ J−1 such that by knowing a δ-approximation {λa
j , ϕ

a
j |∂M}

of the Neumann boundary spectral data, and knowing the first J Fourier coefficients {aj }
J
j=1 of u, we can

find {bj }
J
j=1 and ua

=
∑J

j=1 bjϕj such that

∥ua
−χMα

u∥L2(M) < ε.
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Here the known Fourier coefficients of u are with respect to {ϕj }, which is a choice of orthonormalized
eigenfunctions satisfying (4-16) for {λa

j , ϕ
a
j |∂M}.

Proof. Since we only know an approximation of the boundary spectral data, an error appears when we
determine if a function belongs to the space U (4-6) in the minimization problem (4-11). The norms
appearing in the conditions of U can be written in terms of the Fourier coefficients and boundary spectral
data. However in this case, the actual spectral data are unknown and we can only check these norm
conditions with a given approximation of the spectral data. First we need to estimate how these conditions
change when the spectral data are perturbed.

For a function v(x)=
∑J

j=1 vjϕj (x) with
∑J

j=1 v
2
j ⩽ 1, the error for the H 1-norm condition of U is∣∣∣∣∥v∥2

H1(M) −

J∑
j=1

(1 + λa
j )v

2
j

∣∣∣∣ =

J∑
j=1

|λj − λa
j |v

2
j < (2

√
λJ + δ)δ. (4-19)

For the H 2,2-norm condition of U , from (4-7) we know

W (v)(x, t)|∂M×R =

J∑
j=1

vj cos(
√
λj t)ϕj (x)|∂M .

To check if this condition is satisfied, we can only use the approximate spectral data:

W a(v)(x, t)|∂M×R =

J∑
j=1

vj cos(
√
λa

j t)ϕa
j (x)|∂M .

In fact, we are only concerned with a finite time range t ∈ [−D, D]. Since

|cos(
√

λj t)− cos(
√

λa
j t)| ⩽ |

√

λj t −

√

λa
j t |< Dδ,

we have the following estimate on the error:

∥W (v)− W a(v)∥H2(∂M) ⩽

∥∥∥∥ J∑
j=1

vj cos(
√

λj t)ϕj −

J∑
j=1

vj cos(
√
λa

j t)ϕj

∥∥∥∥
H2(∂M)

+

∥∥∥∥ J∑
j=1

vj cos(
√

λa
j t)ϕj −

J∑
j=1

vj cos(
√

λa
j t)ϕa

j

∥∥∥∥
H2(∂M)

⩽ Dδ
J∑

j=1

|vj |∥ϕj∥H2(∂M) +

J∑
j=1

|vj |∥ϕj −ϕa
j ∥H2(∂M)

< Dδ
J∑

j=1

∥ϕj∥H2(∂M) + C Jδ
√

vol(∂M),

where the last inequality is due to (4-17) and (4-18). By the trace theorem and (4-8), we know

∥ϕj∥
2
H2(∂M) ⩽ C∥ϕj∥

2
H3(M) = C(1 + λ3

j ),

and hence we obtain
∥W (v)− W a(v)∥H2(∂M) < C(D, vol(∂M))Jλ3/2

J δ.
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Similarly for the time derivatives, we have

∥∂t W (v)− ∂t W a(v)∥L2(∂M) < C(D, vol(∂M))JλJ δ,

∥∂2
t W (v)− ∂2

t W a(v)∥L2(∂M) < C(D, vol(∂M))Jλ3/2
J δ.

Therefore by definition (2-5), for some C ′

0 = C ′

0(D, vol(∂M)), we have

∥W (v)− W a(v)∥H2,2(∂M×[−D,D]) < C ′

0 Jλ3/2
J δ. (4-20)

Now following the proof of Proposition 4.3, we still consider the minimization problem (4-11), however
in a perturbed space of U . We define an approximate space U a of U as follows:

Ua
=

N⋂
k=0

{
v =

J∑
j=1

vjϕj :

J∑
j=1

v2
j ⩽ 1,

J∑
j=1

(1 + λa
j )v

2
j ⩽ 9C2

03
2γ−6

+ 3λ1/2
J δ,

∥W a(v)∥H2,2(0k×[−αk ,αk ]) ⩽ ε1 + C ′

0 Jλ3/2
J δ

}
.

Clearly this space U a can be determined with only Fourier coefficients and the given approximation
{λa

j , ϕ
a
j |∂M} of the boundary spectral data. Then we consider the minimization problem (4-11) with the

space U replaced by U a. Hence this perturbed minimization problem is solvable by only using the given
approximation of the spectral data.

By Lemma 4.2, there exists sufficiently large J such that u J ∈ U , and it follows from (4-19) and (4-20)
that u J ∈ U a. Then one can follow the rest of the proof for Proposition 4.3. The only part changed is ε2,
since the actual H 1- and H 2,2-norms of v ∈ U a differ from the original conditions of U . More precisely,
for any v ∈ U a, again by (4-19) and (4-20), we have

∥v∥H1(M) <
√

9C2
03

2γ−6
+ 6λ1/2

J δ < 3C03γ
−3

+ 3λ1/4
J

√
δ,

∥W (v)∥H2,2(0k×[−αk ,αk ]) < ε1 + 2C ′

0 Jλ3/2
J δ.

Therefore following the proof of Proposition 4.3, for δ < λ−1
J , one obtains an estimate almost the same as

(4-15) with ε2(δ):∥∥∥∥χMα
u −

J∑
j=1

(aj − cj )ϕj

∥∥∥∥2

L2(M)
< 8Nε2(δ)+ 8N 2ε2

2(δ)+ C(3)λ−1/2
J γ−2

+ 8C2
53

2γ 1/(n+1), (4-21)

where cj is the j-th Fourier coefficient of a minimizer, and

ε2(δ)= C1/3
3 h−2/9 exp(h−C4n)

3γ−3
+ h−1/2(ε1 + 2C ′

0 Jλ3/2
J δ)

(log(1 + h3/2γ−33/(ε1 + 2C ′

0 Jλ3/2
J δ)))1/6

+ C53γ
−3h1/(3n+3).

Finally we determine the relevant parameters. For any ε > 0, we first choose and fix γ, ε2(0), ε1 such
that the right-hand side of (4-21) with δ = 0 is equal to 3ε2/4 in the same way as in Proposition 4.3. By
Lemma 4.2 we choose and fix sufficiently large J such that u J ∈ U , which validates all the estimates if
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we restrict δ ⩽ J−1. At last we choose sufficiently small δ < λ−1
J such that

Nε2(δ)+ N 2ε2
2(δ)− Nε2(0)− N 2ε2

2(0) < ε
2/32,

and then the proposition follows. □

Remark 4.2. We point out that in Propositions 4.3 and 4.4, it suffices to know the boundary data on⋃
αi>0 0i to obtain the estimate for Mα with α0 = 0. This may be useful when only partial boundary

spectral data (measured only on a part of the boundary) are known.

5. Approximations to boundary distance functions

Let M be a compact Riemannian manifold with smooth boundary ∂M. For x ∈ M, the boundary distance
function rx : ∂M → R is defined by

rx(z)= d(x, z), z ∈ ∂M.

Then the boundary distance functions define a map R : M → L∞(∂M) by R(x)= rx . It is known that the
map R is a homeomorphism and the metric of the manifold can be reconstructed from its image R(M)
(e.g., Section 3.8 in [Katchalov et al. 2001]). Furthermore, the reconstruction is stable (Theorem 5.7).
Therefore, to construct a stable approximation of the manifold from boundary spectral data, we only
need to construct a stable approximation to the boundary distance functions R(M). In this section, we
construct an approximation to the boundary distance functions through slicing procedures.

Given η > 0, let {0i }
N
i=1 be a partition of the boundary ∂M into disjoint open connected subsets

satisfying the assumptions at the beginning of Section 4: diam(0i ) ⩽ η and every 0i contains a ball
(of ∂M) of radius η/6, where the diameter is measured with respect to the distance of M. We can also
choose 0i to be the closure of these open sets. For example, one can choose 0i to be the Voronoi regions
corresponding to a maximal η/2-separated set on ∂M with respect to the intrinsic distance d∂M of ∂M. It
is straightforward to check that these Voronoi regions satisfy our assumptions with

N ⩽ C(n, vol(∂M))η−n+1. (5-1)

The approximation results in Section 4 enable us to approximate the volume on M by only knowing
an approximation of the Neumann boundary spectral data.

Lemma 5.1. Let α= (α0, . . . , αN ), αk ∈ [η, D]∪{0}, be given, and Mα be defined in (4-1). Then, for any
ε > 0, there exists sufficiently small δ = δ(η, ε) such that by only knowing a δ-approximation {λa

j , ϕ
a
j |∂M}

of the Neumann boundary spectral data, we can compute a number vola(Mα) satisfying

|vola(Mα)− vol(Mα)|< ε.

Proof. Recall that ϕ1 = vol(M)−1/2 on M and it follows that

∥χMα
ϕ1∥

2
L2(M) =

vol(Mα)

vol(M)
.

Since the eigenspace with respect to λ1 = 0 is 1-dimensional, the Fourier coefficients of ϕ1 with respect
to any choice of orthonormalized Neumann eigenfunctions are (1, 0, . . . , 0, . . . ). Apply Proposition 4.4
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to u = ϕ1, and we obtain the Fourier coefficients of ua
=

∑J
j=1 bjϕj for sufficiently large J, and that the

L2-norm of ua approximates ∥χMα
ϕ1∥L2(M). Therefore

∑J
j=1 b2

j approximates vol(Mα)/ vol(M), and
equivalently vol(M)

∑J
j=1 b2

j approximates vol(Mα). If vol(M) is known, then vol(M)
∑J

j=1 b2
j is the

number we are looking for.
However, we do not exactly know vol(M) since we do not exactly know the first eigenfunction; we only

know an approximation of vol(M) in terms of the first approximate eigenfunction ϕa
1 . More precisely,

δ > ∥ϕ1 −ϕa
1∥C0(∂M) ⩾ |vol(M)−1/2

− ∥ϕa
1∥C0(∂M)|.

Hence an approximate volume can be defined as

vola(Mα) := ∥ϕa
1∥

−2
C0(∂M)

J∑
j=1

b2
j ,

and then it satisfies the statement of the lemma. □

Besides the conditions we discussed earlier for the partition {0i }, we need to further restrict the
choice of the partition. We start with the following independent lemma regarding the boundary distance
coordinate. One may refer to Section 2.1.21 in [Katchalov et al. 2001] for a brief introduction on this
subject. This type of coordinate will be used to reconstruct the inner part (bounded away from the
boundary) of the manifold.

Lemma 5.2. Let M ∈ Mn(D, K1, K2, i0). Then there exist a constant L and boundary points {zi }
L
i=1,

zi ∈ ∂M, such that the following two properties hold:

(1) For any x ∈ M with d(x, ∂M)⩾ i0/2, there exist n boundary points {zi1(x), . . . , zin(x)} ⊂ {zi }
L
i=1 such

that the distance functions (d( · , zi1(x)), . . . , d( · , zin(x))) define a bi-Lipschitz local coordinate in a
neighborhood of x.

(2) The map 8L : M → RL defined by

8L(x)= (d(x, z1), . . . , d(x, zL))

is bi-Lipschitz on {x ∈ M : d(x, ∂M) ⩾ i0/2}, where the Lipschitz constant and L depend only on
n, D, K1, K2, i0, vol(∂M).

Furthermore, the boundary points {zi }
L
i=1 can be chosen as any rL -maximal separated set on ∂M,

where rL < i0/8 is a constant depending only on n, D, K1, K2, i0.

Proof. Given x ∈ M with d(x, ∂M)⩾ i0/2, let z ∈∂M be a nearest boundary point; i.e., d(x, z)=d(x, ∂M).
Then it follows that z is not conjugate to x along the minimizing geodesic from x to z. That is to say, the
differential d expx |v is nondegenerate, where expx denotes the exponential map of M and v = exp−1

x (z).
Hence by the inverse function theorem, there exists a neighborhood of (x, v) ∈ T M (with respect to the
Sasaki metric on the tangent bundle) such that the exponential map is a diffeomorphism to a neighborhood
of z. Furthermore, one can find a uniform radius r1 depending on n, D, K1, K2, i0 for the size of these
neighborhoods [Katsuda et al. 2007, Lemma 4].
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We take {zi } to be an r2-net on ∂M (with respect to the intrinsic distance d∂M of ∂M), where the
parameter r2 < r1/8 is determined later. By definition, there exists z1 ∈ {zi } such that d∂M(z, z1) < r2.
Then we search for n − 1 points z2, . . . , zn such that ∂M exp−1

z1
(z j ) (for j = 2, . . . , n) form a basis in

Tz1(∂M), where ∂M exp denotes the exponential map of ∂M. We claim that this is possible for sufficiently
small r2 explicitly depending on r1, n, K1. This claim can be proved as follows. Take v2, . . . , vn to be an
orthonormal basis of Tz1(∂M), and consider the points z′

j = ∂M expz1
(svj )∈ ∂M for a fixed s ∈ (r1/4, r1/2).

By the definition of r2-net, there exist points z2, . . . , zn ∈ {zi } such that d∂M(z′

j , z j )< r2 (for j = 2, . . . , n).
We consider the triangle with the vertices z1, z′

j , z j . Since the lengths of the sides z1z′

j and z1z j are at
least r1/8, for sufficiently small r2 explicitly depending on K1, the angle of the triangle at z1 is small
(by Toponogov’s theorem) and therefore ∂M exp−1

z1
(z j ) (for j = 2, . . . , n) also form a basis. Then by the

same argument as Lemma 2.14 in [Katchalov et al. 2001], one can show z1, z2, . . . , zn are the desired
boundary points, from which a boundary distance coordinate is admitted in a neighborhood of x .

From now on, we choose {zi }
L
i=1 to be a maximal r2-separated set on ∂M, which is indeed an r2-net

by maximality. The cardinality L of this net is bounded by C(n, vol(∂M))r−n+1
2 . The bi-Lipschitzness

of the boundary distance coordinate follows from the fact that the differential of the exponential map is
uniformly bounded in the relevant domain by a constant depending on n, D, K1, K2, i0 [Katsuda et al.
2007, Lemma 3 and Proposition 1]. This concludes the proof for the first part of the lemma.

Next we prove the second part of the lemma. We claim that there exists r3> 0 such that8L with respect
to any maximal r3-separated set on ∂M is bi-Lipschitz on {x ∈ M : d(x, ∂M)⩾ i0/2}. Note that 8L is
automatically Lipschitz with the Lipschitz constant

√
L by the triangle inequality. Suppose there exist

a sequence of manifolds Mk ∈ Mn(D, K1, i0) and points xk, yk ∈ {x ∈ Mk : d(x, ∂Mk)⩾ i0/2} such that

|8L ,k(xk)−8L ,k(yk)|

dMk (xk, yk)
→ 0 as k → ∞,

where 8L ,k is defined with respect to some maximal 1/k-separated set on ∂Mk . The precompactness
of Mn(D, K1, i0) [Anderson et al. 2004, Theorem 3.1] yields that there exists a subsequence of Mk that
converges to a limit M in the C1-topology. We choose subsequences of xk , yk that converge to limit
points x, y ∈ M. The assumption implies that 8L(x)=8L(y) with respect to a dense subset of ∂M. Due
to the fact that the boundary distance map R is a homeomorphism [Katchalov et al. 2001, Lemma 3.30],
it follows that x = y. Moreover, we have d(x, ∂M)⩾ i0/2. However, for sufficiently large k such that
xk, yk ∈ Br1(x), the points xk, yk lie in the same boundary distance coordinate neighborhood by the first
part of the lemma, on which 8L ,k is locally bi-Lipschitz with a uniformly bounded Lipschitz constant.
This is a contradiction to the assumption. Therefore there exists some r3 > 0 depending on n, D, K1, i0

such that 8L with respect to any maximal r3-separated set on ∂M is bi-Lipschitz.
Finally, we further restrict {zi }

L
i=1 to be a maximal min{r1, r2, r3}-separated set on ∂M. Hence the

cardinality L satisfies
L ⩽ C(n, vol(∂M))min{r1, r2, r3}

−n+1,

which depends only on n, D, K1, K2, i0, vol(∂M). We define rL = min{r1, r2, r3}, which depends on
n, D, K1, K2, i0. □
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M M
∂M ∂MM∗

β

M∗

β[k,i]

0k 0k0i 0i

Figure 6. Subdomains from two subsets of the boundary. The former type is used to reconstruct
the inner part of the manifold, while the latter type is used to reconstruct the boundary normal
neighborhood.

Choice of partition. Let η > 0 be given. We choose boundary points {zi }
N
i=1 and a partition {0i }

N
i=1 of

∂M as follows. Let {z1, . . . , zL} be the boundary points determined in Lemma 5.2, and then we add N −L
number of boundary points such that {z1, . . . , zN } is a maximal η/2-separated set on ∂M. This is possible
because {z1, . . . , zL} can be chosen as any rL -maximal separated set on ∂M, with rL being a uniform
constant independent of η. We take {0i }

N
i=1 to be a partition of ∂M (e.g., Voronoi regions corresponding

to {zi }
N
i=1) satisfying the assumptions at the beginning of this section: diam(0i )⩽ η, zi ∈ 0i , and every

0i contains a ball (of ∂M) of radius η/6. The cardinality N of the partition is bounded above by (5-1).

Definition 5.3. Let η> 0 be given. For multi-indices β of the form β= (β0, β1, . . . , βN ), with β0 ∈ {0, 1},
β1, . . . , βN ∈ N, we consider the following two types of subdomains (see Figure 6):

(1) Given a multi-index β = (0, β1, . . . , βN ), we define a slicing of the manifold by

M∗

β =
⋂

i :βi>0
{x ∈ M : d(x, 0i ) ∈ [βiη− 2η, βiη)}. (5-2)

We also consider the following modified multi-index by setting specific components equal to zero:

β⟨l⟩ := (0, β1, . . . , βL , 0, . . . , 0, βl, 0, . . . , 0), l ∈ {L + 1, . . . , N }.

(2) Given a multi-index β = (1, β1, . . . , βN ), we define a modified multi-index by

β[k, i] := (1, 0, . . . , 0, βk, 0, . . . , 0, βi , 0, . . . , 0), k ̸= i.

In other words, β[k, i] can only have nonzero k-th and i-th components besides the 0-th component. Then
we define the subdomain

M∗

β[k,i] =
{

x ∈ M : d(x, ∂M)⩾ βkη− 2η, d(x, 0k) < βkη, d(x, 0i ) ∈ [βiη− 2η, βiη)
}
. (5-3)

By definition (5-2), we only slice the manifold from 0i if βi > 0. Hence M∗

β ⊂ M∗

β⟨l⟩ for any
l ∈{L+1, . . . , N }. Since the diameter of the manifold is bounded above by D, it suffices to consider a finite
number of choices βi ⩽ 2+ D/η for each βi . Notice that we always use a fixed number (independent of η)
of 0i to slice the manifold. This keeps the total number of slicings from growing too large as η gets small.

Similar to Lemma 5.1, we can also evaluate approximate volumes for vol(M∗

β⟨l⟩), vol(M∗

β[k,i]), and the
error can be made as small as needed given sufficient boundary spectral data.
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Lemma 5.4. Let η > 0 be given, and M∗

β⟨l⟩,M∗

β[k,l] be defined in Definition 5.3. Then, for any ε > 0,
there exists sufficiently small δ = δ(η, ε) such that by only knowing a δ-approximation {λa

j , ϕ
a
j |∂M} of the

Neumann boundary spectral data, we can compute numbers vola(M∗

β⟨l⟩), vola(M∗

β[k,i]) satisfying

|vola(M∗

β⟨l⟩)− vol(M∗

β⟨l⟩)|< 2L+1ε for any l ∈ {L + 1, . . . , N },

|vola(M∗

β[k,i])− vol(M∗

β[k,i])|< 4ε for any i ̸= k,

where L is a uniform constant independent of η determined in Lemma 5.2.

Proof. Observe that for any β = (0, β1, . . . , βN ) with β1, . . . , βN > 0, the subdomain M∗

β can be obtained
as a finite number of unions, intersections and complements of the subdomains Mα of the form (4-1) with
α0 = 0. More precisely,

M∗

β =

N⋂
i=1
(M(0i , βiη)− M(0i , βiη− 2η))

=

N⋂
i=1

M(0i , βiη)−
N⋃

i=1
M(0i , βiη− 2η).

Then the volume of M∗

β can be written in terms of the volumes of Mα with α0 = 0 through the following
operations. For any n-dimensional Hausdorff measurable subset �1, �2 ⊂ M,

vol(�1 −�2)= vol(�1 ∪�2)− vol(�2),

vol(�1 ∩�2)= vol(�1)+ vol(�2)− vol(�1 ∪�2).

Moreover, for any multi-indices α, α′,

vol(Mα ∪ Mα′)= vol(Mαmax), where (αmax)i = max{αi , α
′

i }.

Therefore the approximate volume vola(M∗

β) for M∗

β can be defined by replacing the volumes of Mα in
the expansion with the approximate volume vola(Mα).

On the other hand, for a multi-index of the form β[k, i], we have

M∗

β[k,i] = M(0k, βkη)∩ M(0i , βiη)− M(∂M, βkη− 2η)∪ M(0i , βiη− 2η).

Recall that the volume information from the whole boundary ∂M is incorporated in the α0-component of
the multi-index α. Thus the volume of M∗

β[k,l] can be written in terms of the volumes of Mα with α0 ⩾ 0.
For a multi-index of the form β⟨l⟩, the total number of volume terms of Mα in vol(M∗

β⟨l⟩) is at most 2L+1.
For a multi-index of the form β[k, i], the total number of volume terms of Mα in vol(M∗

β[k,i]) is at most 4.
Then the error estimates directly follow from Lemma 5.1. □

Now we are in place to define an approximation to the boundary distance functions R(M). We consider
the following candidate.

Definition 5.5. Let η, ε > 0 be given. For a multi-index β = (β0, β1, . . . , βN ) with β0 ∈ {0, 1},
β1, . . . , βN ∈ N+, if either of the following two situations happens, we associate with this β a piecewise
constant function rβ ∈ L∞(∂M) defined by

rβ(z)= βiη if z ∈ 0i :
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(1) β0 = 0; βiη > i0/2 for all i = 1, . . . , N, and vola(M∗

β⟨l⟩)⩾ ε for all l = L + 1, . . . , N.

(2) β0 = 1; there exists k ∈ {1, . . . , N } such that βkη ⩽ i0/2 and vola(M∗

β[k,i])⩾ ε for all i = 1, . . . , N
with i ̸= k.

We test all multi-indices β up to βi ⩽ 2+ D/η for each βi , and denote the set of all functions rβ chosen
this way by R∗

ε .

Intuitively, the first situation in Definition 5.5 describes a small neighborhood in the interior of the
manifold away from the boundary. The second situation describes a small neighborhood near the boundary
with the help of the boundary normal neighborhood. We prove that R∗

ε is an approximation to the boundary
distance functions R(M) for sufficiently small ε.

Proposition 5.6. Let M ∈ Mn(D, K1, K2, i0, r0). For any η > 0, there exist ε = ε(η) and sufficiently
small δ = δ(η) such that by only knowing a δ-approximation {λa

j , ϕ
a
j |∂M} of the Neumann boundary

spectral data we can construct a set R∗
ε ⊂ L∞(∂M) such that

dH (R∗

ε,R(M))⩽ C6
√
η,

where dH denotes the Hausdorff distance between subsets of the metric space L∞(∂M) and the constant
C6 depends only on n, D, K1, K2, i0, vol(∂M).

Proof. Let η<min{1, i0/8}. Given any x ∈ M, take a point x ′
∈ M such that d(x, x ′)⩽η and d(x ′, ∂M)⩾η.

Clearly there exist positive integers βi > 0 such that d(x ′, 0i )∈ [βiη−2η, βiη) for all i = 1, . . . , N. In fact,
there are two choices for each βi , and we choose the one satisfying d(x ′, 0i ) ∈ [βiη− 3η/2, βiη− η/2)
for all i . In particular, we see that each βi satisfies βiη− 2η ⩽ D.

If βiη > i0/2 for all i = 1, . . . , N, then we consider the multi-index β = (0, β1, . . . , βN ). It follows
from the triangle inequality that Bη/2(x ′)⊂ M∗

β . Since Bη/2(x ′) does not intersect ∂M, we have vol(M∗

β)>

vol(Bη/2(x ′))⩾ cnη
n for sufficiently small η, which implies that vol(M∗

β⟨l⟩)> cnη
n for all l = L+1, . . . , N.

We define
ε∗ = cnη

n/2, (5-4)

and set ε = 2−L−1ε∗ in Lemma 5.4. Then we consider the set of functions R∗
ε∗

. Since vola(M∗

β⟨l⟩) >

cnη
n
− ε∗ = ε∗ by Lemma 5.4, we have rβ ∈ R∗

ε∗
by the first situation in Definition 5.5. Then by the

condition diam(0i )⩽ η and the triangle inequality, we have

∥rx − rβ∥L∞(∂M) ⩽ ∥rx − rx ′∥L∞(∂M) + ∥rx ′ − rβ∥L∞(∂M) ⩽ η+ 2η = 3η. (5-5)

If there exists k ∈{1, . . . , N } such that βkη⩽ i0/2, then we consider the multi-index β= (1, β1, . . . , βN ).
Without loss of generality, assume k is the index such that βk = mini>0 βi . Hence

d(x ′, ∂M)= min{d(x ′, 01), . . . , d(x ′, 0N )} ⩾ βkη− 3η/2,

which shows x ′
∈ M∗

β[k,i] for all i = 1, . . . , N with i ̸= k by definition (5-3). Moreover, we also have
Bη/2(x ′)⊂ M∗

β[k,i] for all i . Thus by choosing the same ε∗ and ε as the previous case, we have rβ ∈ R∗
ε∗

by the second situation in Definition 5.5, and (5-5) still holds. This concludes the proof for one direction.
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On the other hand, given any rβ ∈R∗
ε∗

, Definition 5.5 and Lemma 5.4 indicates that either vol(M∗

β⟨l⟩)>0
for all l = L + 1, . . . , N, or there exists k such that vol(M∗

β[k,i]) > 0 for all i . Recall that β1, . . . , βN > 0
by definition.

(i) The first situation allows us to pick an arbitrary point xl in every M∗

β⟨l⟩. Then by diam(0i )⩽ η and
the triangle inequality, we have

∥rβ − rxl ∥L∞(01∪···∪0L∪0l ) ⩽ 3η for any l ∈ {L + 1, . . . , N }. (5-6)

Notice that all xl are in fact bounded away from the boundary. More precisely, for any xl , we know from
Definition 5.5 that

d(xl, 0i )⩾ βiη− 2η > i0/2 − 2η > i0/4 for all i = 1, . . . , L .

Since the boundary points {zi }
L
i=1 can be chosen as an rL -maximal separated set on ∂M, where rL < i0/8

is a uniform constant independent of η (Lemma 5.2), we have, for any xl ,

d(xl, ∂M) > i0/8.

Hence for any other j ∈ {L + 1, . . . , N } with j ̸= l, Lemma 5.2 yields that

d(xl, x j )⩽ C(n, D, K1, i0)|8L(xl)−8L(x j )| ⩽ C
√

L η,

where 8L( · )= (d( · , z1), . . . , d( · , zL)). Then it follows from the triangle inequality and (5-6) that

∥rβ − rxl ∥L∞(0j ) ⩽ ∥rβ − rx j ∥L∞(0j ) + ∥rx j − rxl ∥L∞(0j ) ⩽ (C
√

L + 3)η.

Thus by ranging j ̸= l over {L + 1, . . . , N }, we obtain

∥rβ − rxl ∥L∞(∂M) ⩽ (C
√

L + 3)η.

(ii) The second situation allows us to pick an arbitrary point xi in every M∗

β[k,i]. Observe from Definition 5.5
that, for any xi , we have

d(xi , ∂M)⩽ d(xi , 0k) < βkη ⩽ i0/2.

The fact that d(x, 0k)⩾ d(x, ∂M) implies that

∥rβ − rxi ∥L∞(0k∪0i ) ⩽ 2η.

For any other j ∈ {1, . . . , N } with j ̸= k, i , we have

d(xi , x j )⩽ C
√
η.

This is due to the fact that the diameter of the subdomain {x ∈ M : d(x, ∂M)⩾ βkη−2η, d(x, 0k) < βkη}

for βkη ⩽ i0/2 is bounded above by C
√
η. Hence by ranging j ̸= k, i over {1, . . . , N }, we obtain

∥rβ − rxi ∥L∞(∂M) ⩽ C
√
η+ 2η. □

Remark 5.1. We only used a fixed number (independent of η) of subsets of the boundary to slice the
manifold, so that the total number of slicings does not grow too large as η gets small. To reconstruct the
inner part of the manifold, we used L + 1 subsets with L being a uniform constant (however not explicit).
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Near the boundary, we took advantage of the boundary normal neighborhood and essentially only used
two subsets. Instead if we use all N subsets to slice the manifold, it would result in a third logarithm in
Theorem 1.

Remark 5.2. By virtue of Remark 4.2, the approximate volume for Mα with α0 = 0 in Lemma 5.1 can
be found by only knowing the boundary data on

⋃
αi>0 0i . This implies that the approximate volume for

M∗

β (with β0 = 0) in Lemma 5.4 can be found by only knowing the boundary data on
⋃
βi>0 0i . Thus in

a way similar to but simpler than Definition 5.5 and Proposition 5.6, one can define an approximation to
R(M) restricted on a part of the boundary using partial boundary spectral data. Furthermore in the case
of partial data, a similar calculation to that in the Appendix yields a log-log-log estimate on the stability
of the reconstruction of R(M).

The following result shows that the reconstruction of a manifold from R(M) is stable.

Theorem 5.7 [Katsuda et al. 2007, Theorem 1]. Let M be a compact Riemannian manifold with smooth
boundary. Suppose R∗ is an η-approximation to the boundary distance functions R(M) for sufficiently
small η. Then one can construct a finite metric space X directly from R∗ such that

dGH(M, X) < C7(n, D, K1, K2, i0) η
1/36,

where dGH denotes the Gromov–Hausdorff distance between metric spaces.

Finally we prove the main results Theorems 1 and 2.

Proof of Theorem 1. The estimate directly follows from Proposition 5.6 and Theorem 5.7. The dependency
of constants is derived in the Appendix.

The only part left is to find an upper bound for vol(∂M), vol(M) in terms of other geometric parameters.
Due to Corollary 2(b) in [Katsuda et al. 2007], the (intrinsic) diameter of ∂M is uniformly bounded by a
constant depending on n, D, ∥RM∥C1, ∥S∥C2, i0, however not explicitly. Then by the volume comparison
theorem for ∂M, vol(∂M) is uniformly bounded by the same set of parameters. As for vol(M), the
manifold M is covered by harmonic coordinate charts with the total number of charts bounded (not
explicitly) by a constant depending on n, D, ∥RM∥C1, ∥S∥C2, i0 [Katsuda et al. 2007, Theorem 3]. Away
from the boundary, the volumes of balls of a small radius are uniformly bounded. Near the boundary,
we can use the boundary normal neighborhood of ∂M since vol(∂M) is already shown to be bounded.
Hence vol(M) is uniformly bounded by the same set of parameters. □

Proof of Theorem 2. We take the first δ−1 Neumann boundary spectral data of M2, and by Definition 1.1,
this set of finite data (without error) is a δ-approximation of the Neumann boundary spectral data of M2.
By Proposition 5.6, we can construct an approximation to R(M2). On the other hand, the finite spectral
data of M2 is δ-close to the Neumann boundary spectral data of M1 by Definition 1.1, since the Neumann
boundary spectral data of M1 and M2 are δ-close by assumption. Then from the pull-back of the finite
spectral data of M2 via the boundary isometry, we can construct an approximation to R(M1). Since the
boundary isometry (diffeomorphism) preserves Riemannian metrics on the boundaries, the pull-back of
the finite spectral data via the boundary isometry produces an isometric approximation to the boundary
distance functions. Hence Theorem 2 follows from Corollary 1 in [Katsuda et al. 2007]. □
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6. Technical lemmas

This section contains the proofs of several lemmas used in Section 3. Some of the lemmas in this section,
especially Lemma 6.5, are important technical results, and we prove them here without interrupting the
structure of the main proof. Some other lemmas are known facts. We did not find precise references for
them, so we present short proofs here.

Lemma 6.1. Let (M, g) ∈ Mn(D, K1, K2, i0). Denote by Sρ the second fundamental form of the
equidistant hypersurface in M defined by the level set d( · , ∂M) = ρ for ρ < i0. Then there exists a
uniform constant rb explicitly depending only on K1, i0 such that, for any ρ ⩽ rb, we have ∥Sρ∥ ⩽ 2K1.

Moreover, if the metric components satisfy (2-3) with respect to a coordinate chart in a ball U of ∂M,
then the metric components with respect to the boundary normal coordinate in U × [0, rb] satisfy

∥gi j∥C1 ⩽ C(n, ∥RM∥C1, ∥S∥C1), ∥gi j∥C4 ⩽ C(n, K1, K2, i0) for all 1 ⩽ i, j ⩽ n.

Proof. At an arbitrary point z ∈ ∂M, take an arbitrary unit vector V in Tz(∂M) and extend it to V (ρ) ∈

Tγz,n(ρ)M (ρ < i0) via the parallel translation along γz,n, where γz,n denotes the geodesic of M from z
with the initial normal vector n at z. We still use the notation Sρ to denote the shape operator of the
equidistant hypersurface with distance ρ from ∂M. Consider the function

κV (ρ)= ⟨Sρ(V (ρ)), V (ρ)⟩g.

The bound on the second fundamental form of ∂M indicates |κV (0)| ⩽ K1. For convenience, we omit the
evaluation at ρ and use V to denote the vector field V (ρ).

Since V is a parallel vector field with respect to the normal vector field ∂/∂ρ (or simply ∂ρ), we have

d
dρ
κV = ⟨∇∂ρ (SρV ), V ⟩ + ⟨SρV,∇∂ρV ⟩ = ⟨(∇∂ρ Sρ)V, V ⟩.

Then the Riccati equation (e.g., [Petersen 2006, Theorem 2, p. 44]) leads to the formula

d
dρ
κV = −⟨S2

ρV, V ⟩ + RM(V, ∂ρ, V, ∂ρ). (6-1)

Due to the fact that Sρ is symmetric and |V | = 1, we have

⟨S2
ρV, V ⟩ = |SρV |

2 ⩾ |⟨SρV, V ⟩|
2.

Hence,
d

dρ
κV (ρ)⩽ −κ2

V (ρ)+ K 2
1 . (6-2)

On the other hand, we need a lower bound for dκV /dρ. This is possible because we a priori know
the solution of the Riccati equation exists up to i0, and the equidistant hypersurfaces vary smoothly in a
neighborhood of ∂M. This implies that there exists a positive number ρmax ⩽ i0/2 satisfying

ρmax = sup{ρ ∈ [0, i0/2] : ∥Sτ∥ ⩽ 2K1 for all τ ∈ [0, ρ]}.
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Hence, for any ρ ∈ [0, ρmax], we have |SρV | ⩽ 2K1 as the condition above is a closed condition. Then
from (6-1),

d
dρ
κV (ρ)⩾ −4K 2

1 − K 2
1 = −5K 2

1 . (6-3)

Combining (6-2) and (6-3), we have∣∣∣ d
dρ
κV (ρ)

∣∣∣ ⩽ 5K 2
1 , ρ ∈ [0, ρmax].

Thus for any ρ ⩽ min{ρmax, (10K1)
−1

}, we have |κV (ρ)| ⩽ 3K1/2. Since z and V are arbitrary, this
shows ∥Sρ∥ ⩽ 3K1/2.

We claim that the uniform constant rb can be chosen as rb = min{i0/2, (10K1)
−1

}. This choice is
obviously justified if ρmax = i0/2. Now if ρmax< i0/2, we prove that ρmax>(10K1)

−1. Suppose otherwise,
and it implies that ∥Sρ∥⩽ 3K1/2 satisfies for any ρ ⩽ ρmax. We know the solution of the Riccati equation
exists in a neighborhood of ρmax, and therefore there exists a larger ρ > ρmax satisfying the condition for
ρmax since ρmax < i0/2 by assumption. This contradicts the maximality of ρmax. As a consequence, our
estimate holds up to ρ ⩽ (10K1)

−1 in this case. On the other hand, the fact that (10K1)
−1 < ρmax < i0/2

justifies our choice of rb in this case. This completes the proof for the first part of the lemma.

For the second part, we consider the matrix Riccati equation in the boundary normal coordinate. This
time we use the Lie derivative version of the Riccati equation (e.g., [Petersen 2006, Proposition 7(3),
p. 47]). The components of the shape operator are denoted by Sl

α =
∑n−1

β=1 gβl Sαβ , where Sαβ denotes the
components of the second fundamental form of the equidistant hypersurfaces. Here the evaluation at ρ is
omitted. Then the Riccati equation has the form

d
dρ

Sαβ =

n−1∑
γ,l=1

gγ l Sγα Sl
β + RM

(
∂

∂xα
,
∂

∂ρ
,
∂

∂xβ
,
∂

∂ρ

)
.

By definition we have the equation on the distortion of metric:

d
dρ

gαβ = 2Sαβ .

Due to the first part of the lemma, dgαβ/dρ is uniformly bounded. As a consequence, gαβ is uniformly
bounded since it is bounded in the coordinate chart on ∂M. The tangential derivatives of gαβ are estimated
as follows.

The Riccati equation can be written in terms of (Sαβ) and (gαβ) using the formula for the matrix inverse.
We differentiate these two equations with respect to all tangential directions x1, . . . , xn−1, and we get a
system of first-order ODEs with the variable v:

v(ρ)=

(
. . . ,

∂gαβ
∂xT

(ρ), . . . ,
∂Sγ l

∂xT
(ρ), . . .

)
, α, β, γ, l = 1 . . . , n − 1,

where xT ranges over all tangential directions x1, . . . , xn−1. This system of equations can be written in
the form

d
dρ

v = B1v + B2v + ∇ R∗

M .
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The matrix B1 is obtained by differentiating the term of the S2 form in the Riccati equation, and only
consists of components of the second fundamental form (Sαβ) and the metric (gαβ). The matrix B2 is
obtained by differentiating the curvature term, and only consists of components of the curvature tensor
and (gαβ). The vector ∇ R∗

M absorbs all the remaining terms and is considered as a constant vector. More
precisely, the vector ∇ R∗

M is made up of components of the covariant derivative ∇ RM , and components
of RM , (Sαβ), (gαβ).

Due to the first part of the lemma, the components (Sαβ) and (gαβ) are uniformly bounded in the
boundary normal neighborhood of width rb. Then it follows that the components (gαβ) are also uniformly
bounded. This implies that the matrices B1, B2 have norms bounded above by C(n, K1), and the vector
∇ R∗

M has length bounded above by C(n, K1, ∥∇ RM∥). The initial condition |v(0)| is bounded above by
n, ∥∇S∥. Then the standard theory of ODEs yields a bound for |v| and hence for all components of v. In
particular, ∂gαβ/∂xT are uniformly bounded, which implies that ∥gi j∥C1 ⩽ C(n, ∥RM∥C1, ∥S∥C1) for all
1 ⩽ i, j ⩽ n.

We keep differentiating the matrix Riccati equation with respect to xT and ρ up to the fourth order. By the
same argument, all relevant coefficients of that system of ODEs are uniformly bounded by ∥RM∥C4 , (Sαβ),
(gαβ) and previous lower-order estimates. Since the initial condition at ρ= 0 is bounded by n, ∥gαβ(0)∥C4 ,
∥S∥C4 and ∥RM∥C3 , the C4 estimate for the metric components directly follows from (2-3). □

Lemma 6.2. (1) For any M ∈ Mn(K1), we have rCAT(M) > 0.
Assume further M ∈ Mn(D, K1, K2, i0). The submanifold Mh is defined in Definition 3.7. Suppose M̃

is an extension of M satisfying Lemma 3.4(1)–(3) with the extension width δex. Then:

(2) For sufficiently small h, δex explicitly depending on K1, K2, i0, we have

rCAT(Mh)⩾ min{C(n, ∥RM∥C1, ∥S∥C1), rCAT(M)},

rCAT(M̃)⩾ min
{

C(n, ∥RM∥C1, ∥S∥C1),
i0

4
,

rCAT(M)
2

}
.

(3) For sufficiently small h, δex, we have

rCAT(Mh)⩾ min
{

2rCAT
3

(M),
π

2K1

}
, rCAT(M̃)⩾ min

{
2rCAT

3
(M),

π

2K1

}
.

Proof. Due to the characterization theorem in [Alexander et al. 1993], any point x ∈ M has an open
ball Ux such that Ux has curvature bounded above by K 2

1 in the sense of Alexandrov. In particular, for
any point p, q ∈ Ux satisfying dUx (p, q) < π/K1, there is a unique minimizing geodesic in Ux (not
necessarily a minimizer of M) connecting p and q (e.g., Theorem 9.8 in [Alexander et al. 2024]).

(1) Suppose rCAT(M)= 0, and there exist sequences of points pi , qi , such that there are two minimizing
geodesics of M joining each pair of points pi , qi with d(pi , qi ) → 0. By the compactness of M, we
can find converging subsequences of points, still denoted by pi and qi . Let x be their limit point. For
sufficiently large i , there are two minimizing geodesics of M connecting pi , qi and they both lie in Ux ,
which is a contradiction to the property of Ux .
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(2) Given an arbitrary point p ∈ Mh , suppose q ∈ Mh is a point such that there are two minimizing
geodesics of Mh connecting p, q . Without loss of generality, assume dh(p, q)<min{π/(2K1), rCAT(M)}.
We choose h sufficiently small such that ∥S∂Mh ∥⩽2∥S∥ and ∥S∂Mh ∥C1 ⩽2∥S∥C1 . Recall that no conjugate
points occur along geodesics (of Mh) of length less than π/(2K1) [Alexander et al. 1993, Corollary 3].
Furthermore, we consider p, q to be the closest pair: dh(p, q)= rCAT(Mh). Then by the first variation
formula (e.g., Proposition 3 in [Alexander et al. 1993]), the two geodesics connecting p, q form a closed
geodesic of Mh . It is known that geodesics on manifolds with smooth boundary are of C1,1. Hence their
geodesic curvature exists almost everywhere and is bounded by C(n, ∥RM∥C1, ∥S∥C1) due to (6-14).
Now consider these two geodesics of Mh connecting p, q as a closed C1,1-curve of M, and it lies in the
ball of M centered at p of the radius min{π/(2K1), rCAT(M)}, which is CAT(K1) due to Theorem 4.3 in
[Alexander and Bishop 1996]. Hence by Corollary 1.2(c) in [Alexander and Bishop 1996], the length of
this closed curve is bounded below by C(n, ∥RM∥C1, ∥S∥C1), and therefore dh(p, q) is bounded below
by C(n, ∥RM∥C1, ∥S∥C1).

Next we derive a lower bound for rCAT(M̃). Suppose p, q ∈ M̃ is the closest pair of points such that there
are two minimizing geodesics of M̃ joining p, q. Assume d̃(p, q) < min{π/(4K1), i0/4, rCAT(M)/2}.
Then we immediately see that at least one of these two geodesics intersects M̃ − M. This implies that both
geodesics lie in the boundary normal (tubular) neighborhood of ∂M by assumption. Furthermore, the two
geodesics connecting p, q form a closed geodesic of M̃ by the first variation formula. We move inwards
on this closed geodesic along the family of geodesics normal to ∂M by distance δex < i0/2. This process
results in a closed C1,1-curve of M contained in the boundary normal neighborhood. For sufficiently
small δex depending on K1, K2, this closed C1,1-curve of M has length at most 3d̃(p, q) and its geodesic
curvature is bounded by C(n, ∥RM∥C1, ∥S∥C1) almost everywhere. Hence this closed curve of M lies in a
ball of M of the radius min{π/(2K1), rCAT(M)} (which is CAT(K1)), and therefore its length is bounded
below by C(n, ∥RM∥C1, ∥S∥C1) by Corollary 1.2(c) in [Alexander and Bishop 1996]. This shows that
the length of the original closed geodesic of M̃ is bounded below by C(n, ∥RM∥C1, ∥S∥C1), which gives
the lower bound for d̃(p, q).

(3) Here we only prove the statement for Mh; the proof for M̃ is the same. Suppose not, and we can
find pi , qi ∈ Mhi (hi → 0) such that there are two minimizing geodesics of Mhi connecting each pair
pi , qi with dhi (pi , qi ) <min{2rCAT(M)/3, π/(2K1)}. Moreover, we can assume qi is the closest point
from pi such that this happens, and therefore the two geodesics connecting pi , qi form a closed geodesic
of Mhi . Thus we have a sequence of closed C1-curves with lengths less than 4rCAT(M)/3. This sequence
of closed curves also has lengths uniformly bounded away from 0 due to (2). Hence by the Arzelà–Ascoli
theorem, we can find a subsequence converging to a limit closed curve in M of nonzero length (not
necessarily of C1). Let p, q ∈ M be the limit points of pi , qi . Since dhi converges to d (Lemma 3.6), the
lower semicontinuity of length yields that the limit closed curve has length at most 2d(p, q).

Consider the segment of the limit closed curve from p to q and the other segment from q to p. Both
segments must have lengths at least the distance d(p, q). Since the limit closed curve has length at most
2d(p, q), each segment is a minimizing geodesic of M. If these two segments do not coincide, then we
get two minimizing geodesics of M from p to q of lengths at most 2rCAT(M)/3, which contradicts the
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condition for rCAT(M). If the two segments coincide, we pick a point y ∈ M on the limit curve close
to p, and consider points y1, y2 on the closed geodesic of Mhi near (fixed) y at opposite sides from pi .
For sufficiently large i , the points y1, y2 can be arbitrarily close in Mhi and meanwhile bounded away
from pi . However, the angle between the geodesic segment of Mhi from pi to y1 and the segment from pi

to y2 is always π , since the curve in question is a closed C1-curve. This is a contradiction to the local
CAT condition for Mhi combined with (2). □

Lemma 6.3. Let h be sufficiently small determined at the beginning of Section 3.4. Let ds
h( · , z)

(Definition 3.8) be the smoothening of the function dh( · , z) (Definition 3.7 ) with the smoothening
radius r = aT h3, where aT = min{1, T −1

}. Then the following properties are satisfied for z, z1, z2 ∈ Mh ,
x ∈ M and x1, x2 ∈ M̃ :

(1) |dh(x1, z1)− dh(x1, z2)| ⩽ dh(z1, z2).

(2) |ds
h(x, z1)− ds

h(x, z2)| ⩽ (1 + CnK 2
1 h6)dh(z1, z2).

(3) For sufficiently small h only depending on K1, we have

|dh(x1, z)− dh(x2, z)|<
3h−1

2
d̃(x1, x2).

(4) For sufficiently small h depending on n, K1, i0, if dh(x, z) < i0, then

|ds
h(x, z)− dh(x, z)|< 2aT h2.

Proof. (1) This directly follows from the definition of dh .

(2) Let r = aT h3. Observe that the ball of radius h3 centered at any x ∈ M does not intersect ∂ M̃, and
hence the distance function d̃( · , x) for x ∈ M is simply a geodesic distance function. Due to (3-4), the
Jacobian Jx(v) of the exponential map expx(v) of M̃ at v ∈ Br (0)⊂ Tx M̃ satisfies

|Jx(v)− 1| ⩽ CnK 2
1 |v|2 ⩽ CnK 2

1 h6. (6-4)

Then it follows from (3-11) that∫
M̃

k1

(
d̃(y, x)

r

)
dy =

∫
Br (0)⊂Tx M̃

k1

(
|v|

r

)
Jx(v) dv ⩽ (1 + CnK 2

1 h6)

∫
Rn

k1

(
|v|

r

)
dv. (6-5)

This inequality (6-5), (3-11) and (1) yield (2).

(3) Recall that the second fundamental form of ∂Mh is bounded by 2K1 due to Lemma 6.1, and M̃ can
be considered as an extension of Mh by gluing a collar of width 6h. If x1, x2 ∈ Mh , then Lemma 3.6
applies by replacing M with Mh and we have

|dh(x1, z)− dh(x2, z)| ⩽ dh(x1, x2)⩽ (1 + 36K1h)d̃(x1, x2). (6-6)

If x1, x2 ∈ M̃ − Mh , then Lemma 3.6 yields

dh(x
⊥h
1 , x⊥h

2 )⩽ (1 + 36K1h)d̃(x1, x2).
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Then by the definition of dh (3-9) and (6-6), we have

|dh(x1, z)− dh(x2, z)| ⩽ |dh(x
⊥h
1 , z)− dh(x

⊥h
2 , z)| + h−1

|d̃(x1, x⊥h
1 )− d̃(x2, x⊥h

2 )|

⩽ dh(x
⊥h
1 , x⊥h

2 )+ h−1
|d̃(x1, ∂Mh)− d̃(x2, ∂Mh)|

⩽ (1 + 36K1h)d̃(x1, x2)+ h−1d̃(x1, x2).

Thus the desired estimate follows for sufficiently small h only depending on K1.
If x1 ∈ M̃ − Mh , x2 ∈ Mh , then similarly we have

|dh(x1, z)− dh(x2, z)| ⩽ |dh(x
⊥h
1 , z)− dh(x2, z)| + h−1d̃(x1, x⊥h

1 )

⩽ dh(x
⊥h
1 , x2)+ h−1d̃(x1, ∂Mh)

⩽ (1 + 36K1h)d̃(x1, x2)+ h−1d̃(x1, x2),

and the same estimate follows.

(4) In view of (6-4) and (6-5), the Jacobian only generates error terms of order at least h6. Hence we only
need to prove that for any point y in the ball (of M̃) of the smoothening radius aT h3 around the center
x ∈ M, it satisfies that |dh(y, z)− dh(x, z)|< 3aT h2/2, which is guaranteed by (3). □

Lemma 6.4. Let γ1, γ2 : [0, l] → Rn be two C1,1 curves. If ∥γ1 − γ2∥C0 ⩽ ε < l2/4 and ∥γ ′′

i ∥L∞ ⩽ κ for
i = 1, 2, then ∥γ ′

1 − γ ′

2∥C0 ⩽ C(κ)
√
ε.

Proof. Since γi is of C1,1, we know γ ′

i is absolutely continuous. Hence Taylor’s theorem with the integral
form of the remainder applies:

γi (s2)= γi (s1)+ γ
′

i (s1)(s2 − s1)+

∫ s2

s1

γ ′′

i (τ )(s2 − τ) dτ for all 0 ⩽ s1 < s2 ⩽ l.

From ∥γ ′′

i ∥L∞ ⩽ κ , we have

|γi (s2)− γi (s1)− γ
′

i (s1)(s2 − s1)| ⩽
κ

2
(s2 − s1)

2.

Taking the inequality above for γ1 and for γ2, adding them together and using the triangle inequality, we
obtain ∣∣(γ1(s2)− γ2(s2))− (γ1(s1)− γ2(s1))− (γ

′

1(s1)− γ
′

2(s1))(s2 − s1)
∣∣ ⩽ κ(s2 − s1)

2.

Then by ∥γ1 − γ2∥C0 ⩽ ε,

|γ ′

1(s1)− γ
′

2(s1)| ⩽
2ε

s2−s1
+ κ(s2 − s1).

Take s2 − s1 =
√
ε if exists, and we have

|γ ′

1(s1)− γ
′

2(s1)| ⩽ (κ + 2)
√
ε.

Since
√
ε < l/2, we can find s2 = s1 +

√
ε for any s1 ∈ [0, l/2]. For s1 ∈ (l/2, l], one can repeat the whole

process backwards. Hence the estimate above holds for all s1 ∈ [0, l], which proves the lemma. □
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Lemma 6.5. Let h be sufficiently small determined at the beginning of Section 3.4. Let ds
h( · , z)

(Definition 3.8) be the smoothening of the function dh( · , z) (Definition 3.7 ) with the smoothening
radius r = aT h3, where aT = min{1, T −1

}. Then, for sufficiently small h depending on n, K1, K2, given
any x ∈ M and z ∈ Mh satisfying h/4 ⩽ dh(x, z)⩽ min{i0/2, r0/2, π/(6K1)}, we have

|∇x ds
h(x, z)|> 1 − 2h.

Proof. Let r = aT h3. By the definition (3-10), we have

∇x ds
h(x, z)= cnr−n

∫
M̃

∇x k1

(
d̃(y, x)

r

)
dh(y, z) dy

= cnr−n
∫

B̃r (x)⊂M̃
k ′

1
1
r

(
− exp−1

x (y)

d̃(y, x)

)
dh(y, z) dy,

where expx denotes the exponential map of M̃ at x ∈ M. Now we change to the geodesic normal coordinate
of M̃ around x , and identify vectors in the tangent space Tx M̃ with points in Rn:

∇x ds
h(x, z)= cnr−n

∫
Br (0)⊂Tx M̃

k ′

1
1
r
(−v)

|v|
dh(expx(v), z)Jx(v) dv

= cnr−n
∫
Br (0)⊂Tx M̃

−∇v

(
k1

(
|v|

r

))
dh(expx(v), z)Jx(v) dv

= cnr−n
∫
Br (0)⊂Tx M̃

k1

(
|v|

r

)
∇v(dh(expx(v), z)Jx(v)) dv,

where Jx(v) denotes the Jacobian of expx at v. Here we have used integration by parts in the last equality.
It is known that |∇v Jx(v)| ⩽ C(n, K1, K2)|v| ⩽ C(n, K1, K2)h3 due to the C1-estimate for the metric

components [Hebey and Vaugon 1995, Lemma 8] and Lemma 3.4(3). Then by (3-11), we have∣∣∣∣cnr−n
∫
Br (0)

k1

(
|v|

r

)
dh(expx(v), z)(∇v Jx(v)) dv

∣∣∣∣
⩽ cnr−n

∫
Br (0)

k1

(
|v|

r

)
π

4K1
C(n, K1, K2)h3 dv ⩽ C(n, K1, K2)h3.

Hence we only need to estimate the lower bound for the length of the dominating term

A0 = cnr−n
∫
Br (0)⊂Tx M̃

k1

(
|v|

r

)
(∇v dh(expx(v), z))Jx(v) dv. (6-7)

We start by considering the following two simple cases.

Case 1: dh(z, ∂Mh) >min{i0/2, r0/2, π/(6K1)}. In this case, we know x ∈ Mh and no geodesic from z
to x intersects with ∂Mh in this case. Then the distance function dh( · , z) in the relevant domain is simply
a geodesic distance function with the second derivative bounded by 5/h for sufficiently small h depending
on K1 (e.g., [Petersen 2006, Theorem 27, p. 175]. Since the exponential map and its inverse are uniformly
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bounded up to C2 in the relevant domain for sufficiently small h depending on K1, K2, we have

|∇vdh(expx(v), z)− ∇vdh(expx(v), z)|v=0| ⩽ Ch−1
|v| ⩽ Ch2.

Note that vectors in Tv(Tx M̃) are identified with vectors in Tx M̃. Observe that at v = 0 we know

∇vdh(expx(v), z)|v=0 = (d expx |v=0)
−1

∇x dh(x, z)= ∇x dh(x, z).

Hence by the Jacobian estimate (6-4) and the normalization (3-11), we obtain

|∇x ds
h(x, z)− ∇x dh(x, z)| ⩽ |A0 − ∇x dh(x, z)| + C(n, K1, K2)h3

⩽ Ch2
+ C(n, K1, K2)h3,

which gives the desired lower bound for |∇x ds
h(x, z)| for sufficiently small h, due to |∇x dh(x, z)| = 1.

Case 2: x ∈ M−Mh and d̃(x, ∂Mh)>r . In this case, the gradient ∇x dh(x, z) is equal to h−1
∇x d̃(x, ∂Mh)

by the definition of dh (3-9). The second derivative of d̃( · , ∂Mh) is bounded by 2K1 on the second
fundamental forms of the equidistant hypersurfaces from ∂M in the boundary normal neighborhood of
∂M (Lemma 6.1). Hence we have

|∇vdh(expx(v), z)− ∇vdh(expx(v), z)|v=0| ⩽ C(K1)h−1
|v| ⩽ C(K1)h2. (6-8)

Then the same argument as in Case 1 shows that

|∇x ds
h(x, z)− ∇x dh(x, z)| ⩽ C(K1)h2

+ C(n, K1, K2)h3, (6-9)

which yields a lower bound considering |∇x dh(x, z)| = h−1.

The general case when x is close to ∂Mh requires more careful treatment. We spend the rest of the
proof addressing it.

Case 3: x ∈ M − Mh with d̃(x, ∂Mh)⩽ r or x ∈ Mh . Since dh(x, z)⩽ min{r0/2, π/(6K1)} is bounded
by the radius of radial uniqueness (3-17), the gradient |∇x dh(x, z)| equals 1 or h−1 depending on whether
x is in Mh . It is known that geodesics of Mh are of C1,1 and the second derivative of a geodesic exists
except at countably many switch points (switching between interior segments and boundary segments)
where both one-sided second derivatives exist (e.g., Section 2 in [Alexander et al. 1987]). Furthermore, the
second derivative exists and vanishes at intermittent points which are the accumulation points of switch
points. It was also proved that if the endpoints of a family of geodesics converge, then the geodesics
converge uniformly in C1 (see the first lemma in Section 4 of [Alexander et al. 1987]). However, the
estimates in that work were done in terms of an extrinsic parameter (depending on how a manifold is
embedded in the ambient space), and we show the following modification in terms of intrinsic parameters.

The manifold Mh has curvature bounded above by 4K 2
1 locally in the sense of Alexandrov due to

the characterization theorem in [Alexander et al. 1993]. Furthermore by [Alexander and Bishop 1996,
Theorem 4.3] and (3-17), for any z ∈ Mh , the ball of Mh around z of the radius min{2r0/3, π/(4K1)} is a
metric space of curvature bounded above by 4K 2

1 . Denote by γx , γy the minimizing geodesics of Mh from
x, y ∈ Mh to z. Denote the length of γx by L x (i.e., L x = dh(x, z)). The geodesics γx , γy are parametrized
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in the arclength parameter on [0, L x ], [0, L y] respectively. Without loss of generality, assume L x ⩽ L y .
Hence

dh(γy(L x), γx(L x))= dh(γy(L x), γy(L y))= L y − L x ⩽ dh(x, y),

where we used γx(L x) = γy(L y) = z. Then Corollary 9.13 in [Alexander et al. 2024] shows that if
dh(x, z)⩽ π/(6K1) and dh(x, y) is sufficiently small depending on K1, we have

∥γx − γy∥C0([0,Lx ]) < 2dh(x, y),

where the C0-norm is the uniform norm with respect to dh . This leads to ∥γx − γy∥C0([0,Lx ]) < Cd̃(x, y)
if d̃(x, y) is sufficiently small by (6-6). On the other hand, due to Lemma 6.1 and (6-14), the second
derivatives of γx , γy are bounded by C(n, K1, K2) whenever they exist in the boundary normal coordinate
of ∂Mh , and both one-sided second derivatives respect the same bound at switch points.

We lift the part of the curves γx , γy near x, y onto the tangent space Tx M̃. Without loss of generality,
assume all of γx , γy lie in the image of expx . Since the exponential map and its inverse are uniformly
bounded up to C2, the properties stated above satisfied by γx , γy are also satisfied by their lifts: namely,
if d̃(x, y) is sufficiently small depending on K1,

∥ exp−1
x ◦γx − exp−1

x ◦γy∥C0([0,Lx ]) < Cd̃(x, y),

and the second derivatives of exp−1
x ◦γx , exp−1

x ◦γy are uniformly bounded by C(n, K1, K2) in L∞-norm.
Here the C0-norm is the uniform norm with respect to the Euclidean distance in Tx M̃. Hence Lemma 6.4
applies:

∥(exp−1
x ◦γx)

′
− (exp−1

x ◦γy)
′
∥C0([0,Lx ]) < C(n, K1, K2)

√
d̃(x, y). (6-10)

At the starting point y = γy(0) of γy , we know γ ′
y(0)= −∇ydh(y, z) and hence

(exp−1
x ◦γy)

′(0)= (d expx |v)
−1γ ′

y(0)= −∇vdh(expx(v), z),

where v= exp−1
x (y). At the starting point x =γx(0) of γx , we simply have (exp−1

x ◦γx)
′(0)=−∇x dh(x, z)

by definition. Thus for sufficiently small h depending on K1, if y ∈ Mh and d̃(x, y)⩽ h3, the estimate
(6-10) at starting points gives

|∇vdh(expx(v), z)− ∇x dh(x, z)|< C
√

d̃(x, y)⩽ C(n, K1, K2)h3/2. (6-11)

The difference between this case and Case 1 is that the formula for ∇x ds
h(x, z) (at the beginning of

the proof) may split into two parts: the integral over points in Mh and over points in M − Mh . The key
observation is that in a small neighborhood intersecting ∂Mh , the gradient ∇x dh(x, z) for x ∈ M − Mh is
essentially normal to ∂Mh , which has almost the same direction as the normal component (with respect
to ∂Mh) of ∇x dh(x, z) for x ∈ Mh . A precise version of this observation will be shown later. The h−1

scaling in the definition of dh (3-9) plays a crucial role in obtaining the desired lower bound.
Denote the part of the integral A0 (6-7) over points in Mh by A1, and the part of A0 over points in

M − Mh by A2. We divide Case 3 into the following three situations depending on where x lies.
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Case 3(i): x ∈ Mh and d̃(x, ∂Mh) > r . In this case, the integral A0 only involves points in Mh and
A0 = A1. Then the same argument as in Case 1 and (6-11) imply that

|∇x ds
h(x, z)− ∇x dh(x, z)|< C(n, K1, K2)h3/2.

Case 3(ii): x ∈ ∂Mh . Denote by nx ∈ Tx(M̃) the outward-pointing unit vector normal to ∂Mh . The
estimate (6-11) yields the closeness between normal components:

|⟨∇vdh(expx(v), z), nx ⟩ − ⟨∇x dh(x, z), nx ⟩|< Ch3/2 if expx(v) ∈ Mh .

Since clearly ⟨∇x dh(x, z), nx ⟩ ⩾ 0 for x ∈ ∂Mh , we have

⟨∇vdh(expx(v), z), nx ⟩>−Ch3/2 if expx(v) ∈ Mh, (6-12)

which implies that ⟨A1, nx ⟩>−Ch3/2.
On the other hand, we replace the evaluation at v = 0 in the estimate (6-8) with v = exp−1

x (x ′) for
an arbitrary point x ′

∈ M − Mh close to x . Then consider their normal components similarly. Since
∇x dh(x ′, z) can be arbitrarily close to h−1nx and the exponential map only changes the inner product by
a higher-order C(K1)r2-term, we have

⟨∇vdh(expx(v), z), nx ⟩ ⩾ h−1
− Ch2 if expx(v) ∈ M − Mh . (6-13)

Furthermore by (6-8), the tangential component of ∇vdh(expx(v), z) can only have length at most Ch2 if
expx(v) ∈ M − Mh . This implies that |A2 − ⟨A2, nx ⟩nx |< Ch2.

(1) If cnr−n
∫
{v∈Br (0): expx (v)∈M−Mh}

k1(|v|/r) dv ⩾ h, then (6-13) yields that ⟨A2, nx ⟩ ⩾ 1 − Ch3. Thus
by (6-12),

|A0| ⩾ |⟨A0, nx ⟩| = |⟨A1 + A2, nx ⟩|> 1 − Ch3/2
− Ch3.

(2) If cnr−n
∫
{v∈Br (0): expx (v)∈M−Mh}

k1(|v|/r) dv < h, then by (6-11) and (3-11), we have

|A1|>

∣∣∣∣cnr−n
∫

{v∈Br (0): expx (v)∈Mh}

k1

(
|v|

r

)(
∇x dh(x, z)

)
Jx(v) dv

∣∣∣∣ − Ch3/2 > 1 − h − Ch3/2.

Observe that (6-13) implies that ⟨A2, nx ⟩> 0 for sufficiently small h. If ⟨A1, nx ⟩ ⩾ 0, then

|A0| = |A1 + A2| ⩾ |A1 + ⟨A2, nx ⟩nx | − |A2 − ⟨A2, nx ⟩nx |

> |A1| − Ch3/2 > 1 − h − Ch3/2
− Ch2.

If ⟨A1, nx ⟩< 0, then |⟨A1, nx ⟩|< Ch3/2 by (6-12). This shows that |A1 − ⟨A1, nx ⟩nx |> 1 − h − Ch3/2.
Hence we have

|A0| ⩾ |A1 + A2 − ⟨A1 + A2, nx ⟩nx |

⩾ |A1 − ⟨A1, nx ⟩nx | − |A2 − ⟨A2, nx ⟩nx |

> 1 − h − Ch3/2
− Ch2.
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Case 3(iii): x /∈ ∂Mh and d̃(x, ∂Mh)⩽ r . In this case, we choose an arbitrary point x0 ∈ ∂Mh such that
d̃(x0, x)⩽ r . By the triangle inequality, (6-11) yields that

|∇vdh(expx(v), z)− ∇vdh(expx(v), z)|v=v0 |< C(n, K1, K2)h3/2 if expx(v) ∈ Mh,

where v0 = exp−1
x (x0). Then we consider the normal component with respect to (d expx |v0)

−1nx0 ∈ Tx(M̃)
and replace the vector nx in Case 3(ii) with (d expx |v0)

−1nx0 . Since ⟨∇x dh(x, z)|x=x0, nx0⟩x0 ⩾ 0 with
respect the inner product of Tx0 M̃, after lifting the vectors onto Tx M̃ via the exponential map, we have〈

(d expx |v0)
−1(∇x dh(x, z)|x=x0), (d expx |v0)

−1(nx0)
〉
x ⩾ −C(K1)r2.

Then the rest of the argument in Case 3(ii) applies up to a higher-order term as d expx |v0 only changes
the inner product by a higher-order C(K1)r2-term.

Finally, combining all the cases together, we obtain

|∇x ds
h(x, z)| ⩾ |A0| − C(n, K1, K2)h3 > 1 − h − C(n, K1, K2)h3/2,

and therefore the lemma follows. □

Lemma 6.6. For i ⩾ 1 and sufficiently small h depending on n, T, K1, i0, we have

distM̃×R(∂�
0
i, j , �i, j ) >min

{
h3

100
,

h2

20T

}
.

For i = 0, we have

distM̃×R(∂�
0
0, j , �0, j ) >

h3

6T 2 .

Proof. There are two types of boundaries involved. The first type is from the level sets of ds
h( · , zi, j ). For

i ⩾ 2, the distance of the first type is from the boundary of the cylinder

{x : ds
h(x, zi, j )⩽ min{1, T −1

}h/2} × [−Ti , Ti ]

and the boundary of
⋃i−1

l=0
⋃

j �l, j . Since a larger cylinder

{x : ds
h(x, zi, j )⩽ min{1, T −1

}h} × [−Ti − h, Ti + h]

is also contained in
⋃i−1

l=0
⋃

j �l, j due to (3-33), the distance of this type is bounded below by the distance
between these two cylinders, which is bounded below by min{1, T −1

}h2/20 by Lemma 6.3(4,3) if h<1/10.
For i = 1, the distance of the first type is from the boundary of the cylinder

{x : ds
h(x, z1, j )⩽ h/2} × [−T1, T1]

and the boundary of
⋃

j �0, j . By (3-29) and Sublemma 2, the cylinder

{x : ds
h(x, z1, j )⩽ 3h/4} × [−T1, T1]

is contained in the open set
⋃

j �0, j , and hence the distance between the boundary of the cylinder and
that of

⋃
j �0, j is bounded away from 0. To obtain an explicit estimate, one can prove a slightly tighter
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estimate than Sublemma 2 if T > 10h:( ⋃
b∈[0,2h]

0b(8h)
)

× [−T + 11h/2, T − 11h/2] ⊂
⋃
j
�0, j .

With (3-29), this shows that a larger cylinder

{x : ds
h(x, z1, j )⩽ 3h/4} × [−T1 − h/2, T1 + h/2]

is contained in
⋃

j �0, j . Then Lemma 6.3(4,3) yields a lower bound h2/40 if h < 1/20.
For i ⩾ 1, the other type of boundary is generated by the level sets of ψi, j . Suppose boundary points

(x1, t1) and (x2, t2) belong to {ψi, j = 9T 2h} and {ψi, j = 8T 2h} respectively, and hence by the definition
of ψi, j we have(
(1 − ξ(d(x1, ∂M))− ξ(ρ0 − ds

h(x1)))Ti − ds
h(x1)

)2

−
(
(1 − ξ(d(x2, ∂M))− ξ(ρ0 − ds

h(x2)))Ti − ds
h(x2)

)2
− t2

1 + t2
2 = T 2h.

Then,

2T 2
|ξ(ρ0 − ds

h(x1))− ξ(ρ0 − ds
h(x2))| + 2T 2

|ξ(d(x1, ∂M))− ξ(d(x2, ∂M))|

+ 2T |ds
h(x1)− ds

h(x2)| + 2T |t1 − t2|> T 2h.

By the definition of ξ ,

6T 2

h
|ds

h(x1, zi, j )− ds
h(x2, zi, j )| +

6T 2

h
|d(x1, ∂M)− d(x2, ∂M)|

+ 2T |ds
h(x1, zi, j )− ds

h(x2, zi, j )| + 2T |t1 − t2|> T 2h.

Then it follows that at least one of the four absolute values must be larger than h2/24 if h < 3T, which
implies that at least one of |dh(x1, zi, j )−dh(x2, zi, j )|, |d(x1, ∂M)−d(x2, ∂M)| or |t1 − t2| is larger than
h2/50 by Lemma 6.3(4). Here we divided the smoothening radius by a constant to keep the error brought
by the convolution relatively small. Since d(x, ∂M)= d̃(x, ∂M) for x ∈ M, Lemma 6.3(3) yields that
at least one of d̃(x1, x2) or |t1 − t2| is larger than h3/100 and hence the lemma follows.

Finally for the initial step i = 0, the first type of boundary distance is from {ρ(x)= −3h/2} and the
boundary of ϒ, which is clearly bounded below by h/2. The second type of boundary distance is between
level sets of ψ0, j . One can follow the same argument as for i ⩾ 1 for this type of boundary distance, and
obtain a lower bound h3/6T 2. □

Lemma 6.7. Suppose γ (s) is a geodesic of M satisfying γ (0)∈ ∂M and the initial vector γ ′(0)∈ Tγ (0)∂M.
Then there exists a constant ε0 explicitly depending on n, ∥RM∥C1, ∥S∥C1, i0 such that, for any s ⩽ ε0,
we have d(γ (s), ∂M)⩽ C(n, ∥RM∥C1, ∥S∥C1)s2.

Proof. Without loss of generality, assume the geodesic γ (s) lies entirely in the interior of M except for
the initial point. Consider another geodesic of ∂M with the same initial point γ (0) and the same initial
vector γ ′(0). We claim that the distance between this geodesic of ∂M and γ (s) is bounded above by Cs2

for sufficiently small s. Clearly this claim yields the lemma.
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Denote the geodesics of M, ∂M in question with the arclength parametrization by γ1, γ2. Take ε0 < i0

and we consider the geodesics γi (s) (i = 1, 2) in a C1 boundary normal coordinate (x1, . . . , xn). Due to
Lemma 8 in [Hebey and Vaugon 1995] and Lemma 6.1, within a uniform radius explicitly depending on
n, ∥RM∥C1, ∥S∥C1, i0, the C1-norm of metric components is uniformly bounded by a constant explicitly
depending on n, ∥RM∥C1, ∥S∥C1 . Since γ1, γ2 have the same initial point and the same initial vector, we
know γ

j
1 (0)= γ

j
2 (0) and ∂sγ

j
1 (0)= ∂sγ

j
2 (0) for all j = 1, . . . , n, where γ j

i denotes the j-th component
of γi with respect to the coordinate x j. The fact that |∂sγ1(s)|M =|∂sγ2(s)|∂M = 1 yields |∂sγ

j
i (s)|⩽C for

any j due to the C0 metric bound in bilinear form. Moreover, the geodesic equation in local coordinates
has the form

∂2
s γ

j
+

∑
k,l

0
j
kl(∂sγ

k)(∂sγ
l)= 0,

and γ1, γ2 satisfy this equation with 0 j
kl of M, ∂M respectively. Hence by applying the C1 bound for

metric components, we have an estimate for the second derivative:

|∂2
s γ

j
i (s)| ⩽ C(n, ∥RM∥C1, ∥S∥C1) for all j = 1, . . . , n. (6-14)

Since γ1, γ2 lie entirely in int(M), ∂M by assumption, they are at least of C2 and hence

|γ
j

1 (s)− γ
j

2 (s)| ⩽
s2

2
sup

s′∈(0,s)
|∂2

s γ
j

1 (s
′)− ∂2

s γ
j

2 (s
′)| ⩽ C(n, ∥RM∥C1, ∥S∥C1)s2.

This implies d(γ1(s), γ2(s))⩽ C(n, ∥RM∥C1, ∥S∥C1)s2 due to the C0 metric bound. □

Lemma 6.8. Let At(ε)={x ∈6t : l(x)> ε} and denote by U (At(ε)) the set of all points on all minimizing
geodesics from At(ε) to 0. Then for sufficiently small ε explicitly depending on K1 and any t ′

∈ [t −ε/2, t),
we have

voln−1(At(ε)) < 5n−1 voln−1(U (At(ε))∩6t ′).

Proof. We define a function F : U (At(ε)) ∩6t ′ → At(ε) by mapping a point x ∈ U (At(ε)) ∩6t ′ to
the initial point of the particular minimizing geodesic containing x from At(ε) to 0. This function is
well-defined since minimizing geodesics cannot intersect at 6t ′ ; otherwise they would fail to minimize
length past an intersection point. To show the measure estimate in question, it suffices to show that
F is locally Lipschitz with a Lipschitz constant 5 for sufficiently small ε depending on K1. Since the
measure in question is an (n−1)-dimensional Hausdorff measure, the Lipschitz continuity of F implies
the measure estimate with the constant 5n−1 [Burago et al. 2001, Section 5.5.2].

Here we show that the function F is locally Lipschitz. For any point

y0 ∈ U (At(ε))∩ {x : t − ε/2 ⩽ d(x, 0)⩽ t},

there exists x0 ∈ U (At(ε))∩6t−ε such that x0 lies on a minimizing geodesic from y0 to 0, which indicates
d(y0, 0)= d(y0, x0)+ d(x0, 0). Observe that the geodesic segment from y0 to x0 does not intersect the
boundary. Then there exists a small neighborhood of y0 such that, for any y in this neighborhood, the
minimizing geodesic from x0 to y does not intersect the boundary. Thus the distance function d( · , x0) in
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the small neighborhood of y0 is just a geodesic distance function with the second derivative bounded by
3/ε for sufficiently small ε depending on K1 (e.g., [Petersen 2006, Theorem 27, p. 175]). Hence we have

d(y, 0)⩽ d(x0, 0)+ d(y, x0)= d(y0, 0)− d(y0, x0)+ d(y, x0)

⩽ d(y0, 0)+ ∇yd(y0, x0) · exp−1
y0
(y)+ 3

2ε
d(y, y0)

2
+ o(d(y, y0)

2).

This shows that the distance function d( · , 0) is a semiconcave function in

U (At(ε))∩ {x : t − ε/2 ⩽ d(x, 0)⩽ t}

for sufficiently small ε with the semiconcavity constant 3/ε. Now consider the gradient flow by the
distance function d( · , 0), and the function F is simply the gradient flow restricted to this region
U (At(ε))∩{x : t ′ ⩽ d(x, 0)⩽ t} for t ′

∈ [t −ε/2, t). By Lemma 2.1.4(i) in [Petrunin 2007], the restricted
gradient flow (or F) is locally Lipschitz with a Lipschitz constant e3/2 < 5. □

Appendix: Dependency of constants

In this section, we show explicitly how the constant in Theorem 1 depends on geometric parameters. We
first show the dependency of constants in Theorem 3.1, and then trace the dependency through the proofs
in Sections 4 and 5.

For i ⩾ 1, the lower bounds (3-27) and (3-28) hold:

min
(x,t)∈�0

i, j

|∇xψi, j |> 2T
√

h, min
(x,t)∈�0

i, j

p((x, t),∇ψi, j ) > 8T 2h.

From the definition (3-10), Lemma 3.4(3), (6-4), (3-13) and (3-14), for sufficiently small h depending on
n, K1, K2, i0, we have

∥ds
h(x, zi, j )∥C0(�0

i, j )
< ρ0 < i0, ∥∇x ds

h(x, zi, j )∥C0(�0
i, j )
< 2h−1,

∥∇
2
x ds

h(x, zi, j )∥C0(�0
i, j )
< C(n, i0)h−6,

∥∇
2
x ds

h(x, zi, j )∥Lip(�0
i, j )
< C(n, ∥RM∥C1, i0)h−9.

On the other hand, the C2,1-norm of d( · , ∂M) is bounded by 2∥S∥C1 for sufficiently small h. Therefore
by the definition of ψi, j , for sufficiently small h depending on n, K1, K2, i0,

∥ψi, j∥C0(�0
i, j )
< T 2, ∥ψi, j∥C1(�0

i, j )
< C(T )h−2,

∥ψi, j∥C2(�0
i, j )
< C(n, T, i0)h−7, ∥ψi, j∥C2,1(�0

i, j )
< C(n, T, ∥RM∥C1, i0)h−10.

For i = 0, we have

min
(x,t)∈�0

0, j

|∇xψ0, j |> 2h, min
(x,t)∈�0

0, j

p((x, t),∇ψ0, j ) > 4h2,

and the bounds above for ψi, j also hold for ψ0, j .
Now we calculate the parameters in the table (4.3) in [Bosi et al. 2016] for our case. The following

notation (until (A-1)) was used in that paper and is not used in our present paper; we write it here only
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for the convenience of the reader:

M1 ∼ M2 ∼ h−15, λ∼ h−15, R1 ∼ h17, ε0 ∼ h34,

R2 ∼ R ∼ h51, r ∼ h135, δ ∼ h138,

N = C(n, T, ∥RM∥C1, i0, ∥gi j
∥C1, vol(M), voln−1(0))h−135(n+1).

c161 ∼ c158 ∼ c155,N + c156 ∼ c155,N + c−1/(1−α)

156 , αN
=

1
2 .

The quotient c155, j/c155, j−1 is polynomial large in h, and c156 ∼ c106/c131 is also polynomial large, where
the exponents are explicit multiples of n. Therefore c161 has at most exponential growth with an explicit
exponent C4n for some absolute constant C4. Then we turn to the constant in our result:

C(h)∼ C
(
n, T, ∥RM∥C1, ∥S∥C1, i0, vol(M), voln−1(0)

)
h−C(n)h−C(n)

< C3
(
n, T, ∥RM∥C1, ∥S∥C1, i0, vol(M), voln−1(0)

)
exp(h−C4n), (A-1)

where we have used the fact that the C1-norm of metric components is bounded by a constant depending
on n, ∥RM∥C1, ∥S∥C1 . The dependency on the diameter D, r0 is introduced after replacing h by h/C ′

during the last part of the proof of Theorem 3.1.

From here, we come back to the notation of our present paper. Next we show the dependency of C1

and C2 in Theorem 1. The final parameter is η in Proposition 5.6 and we start from η to work out the
parameters J, δ. The criteria for determining parameters are already described during the proofs of relevant
lemmas and propositions in Sections 4 and 5. Let η ∈ (0, 1) be the parameter in Proposition 5.6. Then,

3= 1, N = C(n, vol(∂M))η−n+1,

ε(volume,M∗

β)= ε∗ = Cηn (Proposition 5.6),

and by Lemmas 5.1 and 5.4

ε = ε(projection)=
ε(volume,Mα)

2 vol(M)
=
ε(volume,M∗

β)

2L+12 vol(M)
= C(vol(M), L)ηn.

The following three parameters are determined by (4-21) in Proposition 4.4:

8C2
53

2γ 1/(n+1)
=
ε2

4
=⇒ γ =

(
ε2

32C2
53

2

)n+1

=

(
ε2

32C2
5

)n+1

,

C(3)λ−1/2
J γ−2 ⩽

ε2

4
=⇒ λJ ⩾ 16C2γ−4ε−4,

8Nε2(0)+ 8N 2ε2
2(0)=

ε2

4
< 1 =⇒ ε2(0)=

ε2

64N
.

(A-2)

By the formula for ε2(0) in (4-12),

ε2(0)= C1/3
3 h−2/9 exp(h−C4n)

3γ−3
+ h−1/2ε1

(log(1 + h3/2γ−33/ε1))1/6
+ C53γ

−3h1/(3n+3)

< C1/3
3 exp(h−C4n)

γ−3h−1

(log(1 + h3/2γ−3(1/ε1)))1/6
+ C5γ

−3h1/(3n+3). (A-3)
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We choose h such that the second term in (A-3) equals ε2(0)/2 = ε2/(128N ):

C5γ
−3h1/(3n+3)

=
ε2(0)

2
=⇒ h =

(
ε2(0)γ 3

2C5

)3n+3

=

(
ε6n+8

83n+3128NC6n+7
5

)3n+3

. (A-4)

Then the first term of (A-3) being ε2(0)/2 = ε2/(128N ) yields that

ε1 = h3/2γ−3 exp
(
−
γ−18h−61286 N 6C2

3 exp(6h−C4n)

ε12

)
, (A-5)

which indicates the choice of J by Lemma 4.2:

λJ ⩾ C(D,3)γ−24ε−8
1 = C(D)h−12 exp

(
8γ−18h−61286 N 6C2

3 exp(6h−C4n)

ε12

)
. (A-6)

For the choice of δ, choose Nε2(δ)+N 2ε2
2(δ)−Nε2(0)−N 2ε2

2(0)< ε
2/32, or simply Nε2(δ)−Nε2(0)<

ε2/64. By differentiating (A-3) with respect to ε1,

C1/3
3 exp(h−C4n)γ−6

√
h

(log(1 + h3/2γ−3(1/ε1)))2(ε
2
1 + h3/2γ−3ε1)

2C ′

0 Jλ3/2
J δ <

ε2

64N
.

Hence it suffices to choose δ satisfying

C1/3
3 exp(h−C4n)γ−3

hε1
C ′

0 Jλ3/2
J δ <

ε2

128N
. (A-7)

From now on, we absorb polynomial terms into exponential terms and denote by ∼ if two quantities
differ by a factor of some constant in the exponent. Inserting the choice of γ (A-2) to ε1 (A-5) and λJ

(A-6), we get
ε1 ∼ exp(−C36n+36

5 C2
3 exp(h−C4n)ε−36n−48 N 6),

λJ ∼ C(D) exp(C36n+36
5 C2

3 exp(h−C4n)ε−36n−48 N 6).

By Weyl’s asymptotic formula for eigenvalues: λj ∼ C(n, vol(M)) j2/n, we know

J ∼ C(n, vol(M))λn/2
J ,

and hence by (A-7), we have

δ ∼
1

C ′

0C1/3
3

ε6n+8 exp(−h−C4n)ε1

C6n+6
5 N Jλ3/2

J

∼ C(D, vol(∂M))C−1/3
3

exp(−C36n+36
5 C2

3 exp(h−C4n)ε−36n−48 N 6)

J
∼ C(n, D, vol(M), vol(∂M)) exp(−nC36n+36

5 C2
3 exp(h−C4n)ε−36n−48 N 6).

The terms we need to estimate are exp(h−C4n)ε−36n−48 N 6. By the choice of h (A-4), we get

exp(h−C4n)∼ exp
((

ε6n+8

NC6n+7
5

)−C4n(3n+3))
,
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which absorbs ε−36n−48 N 6. Then from

ε = C(vol(M), L)ηn, N ∼ η−n+1,

it follows that

δ ∼ C(n, D, vol(M), vol(∂M)) exp
(
−C(C3,C4,C5) exp(Cε−C4n(3n+3)(6n+9))

)
∼ C(n, D, vol(M), vol(∂M)) exp

(
−C(C3,C4,C5) exp(C(L)η−C ′

2(n))
)

∼ exp
(
− exp(C ′

1η
−C ′

2)
)
,

where C ′

1 = C ′

1(n, D, vol(M), vol(∂M),C3,C4,C5, L) and C ′

2 = C ′

2(n) > 1. The dependency of
C3,C4,C5 is stated in Proposition 3.3, and the dependency of L is stated in Lemma 5.2. Therefore we
obtain

η ∼ (C ′

1)
1/C ′

2(log(|log δ|))−1/C ′

2,

and the dependency of constants in Theorem 1 follows from Proposition 5.6 and Theorem 5.7. More
precisely, the constant C1 = C1(C ′

1,C ′

2,C6,C7) explicitly depends only on n, D, ∥RM∥C1 , ∥S∥C1 , i0, r0,
vol(M), vol(∂M), L , C6, C7, and the constant C2 = C2(C ′

2) explicitly depends only on n. Note that the
dependency of L , C6, C7 is not explicit. The choice of the parameter δ depends on all present parameters
including all curvature bounds assumed for K2, and the choice of small η in Theorem 5.7.

We remark that one can obtain an explicit estimate without using the parameter L . To do this, one can
use all N of 0i to slice the manifold, and evaluate an approximate volume for M∗

β similar to Lemma 5.4.
The error of the approximate volume would be 2Nε, and the parameter ε would be ε = C2−Nηn. In
addition, the constant C6 can be replaced by an absolute constant. However, the number 2N grows
exponentially in η. This process results in an explicit estimate with three logarithms, and the constants
explicitly depend only on n, D, ∥RM∥C1 , ∥S∥C1 , i0, r0, vol(M), vol(∂M).
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A NEW APPROACH TO THE MEAN-FIELD LIMIT
OF VLASOV–FOKKER–PLANCK EQUATIONS

DIDIER BRESCH, PIERRE-EMMANUEL JABIN AND JUAN SOLER

We introduce a novel approach to the mean-field limit of stochastic systems of interacting particles,
leading to the first ever derivation of the mean-field limit to the Vlasov–Poisson–Fokker–Planck system
for plasmas in dimension 2 together with a partial result in dimension 3. The method is broadly compatible
with second-order systems that lead to kinetic equations and it relies on novel estimates on the BBGKY
hierarchy. By taking advantage of the diffusion in velocity, those estimates bound weighted L p norms
of the marginals or observables of the system, uniformly in the number of particles. This allows us
to qualitatively derive the mean-field limit for very singular interaction kernels between the particles,
including repulsive Poisson interactions, together with quantitative estimates for a general kernel in L2.

1. Introduction

The rigorous derivation of kinetic models such as the Vlasov–Poisson system from many-particle systems
has been a long standing open question, ever since the introduction of the Vlasov–Poisson system
in [Vlasov 1938; 1967]. While our understanding of the mean-field limit for singular interactions has
made significant progress for first-order dynamics, the mean-field limit for second-order systems has
remained frustratingly less understood. This article proposes a new approach that is broadly applicable to
second-order systems with repulsive interactions and diffusion in velocity. In particular, this allows us to
derive for the first time the Vlasov–Poisson–Fokker–Planck system in dimensions higher than 1 without
any truncation or regularizing.

We more precisely consider the classical second-order Newton dynamics

d
dt

X i (t) = Vi (t), X i (t = 0)= X0
i ,

dVi (t) =
1
N

∑
j ̸=i

K (X i − X j ) dt + σ dWi , Vi (t = 0)= V 0
i ,

(1)

where the Wi are N independent Wiener processes. For simplicity we take the positions X i on the
torus 5d , while the velocities lie in Rd . The kernel K models the pairwise interaction between particles
and is taken to be repulsive throughout this paper, in the basic sense that it derives from a potential
K = −∇φ that is even and positive, φ ≥ 0.

Remark 1. For simplicity, we write φ(0) = 0 and K (0) = 0 even if φ and K are not continuous at 0.
This simplifies the notation by allowing us to sum over all j in (1) since the term j = i trivially vanishes.
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We naturally focus on singular kernels K with, as a main guiding example, the case of Coulombian
interactions

K = α
x

|x |d
+ K0(x), (2)

with α > 0 and K0 a smooth correction to periodize K . This corresponds, if d ≥ 3, to the choice
φ = α(d − 2)−1

|x |
2−d

+ correction, or, if d = 2, the choice φ = −α ln|x | + correction.
The Coulombian kernel (2) typically models electrostatic interactions between point charges, such as

ions or electrons in a plasma, when the velocities are small enough with respect to the speed of light. In
that setting, diffusion in (1) may for example represent collisions against a random background, such
as the collision of the faster electrons against the background of ions. Such random collisions may also
involve some friction in velocity, which we did not include in (1) but could be added to our method
without difficulty. This makes (1) with (2) one of the most classical and important starting points for the
modeling of plasmas; we refer in particular to the classical [Bogoliubov 1946].

Coulombian interactions are also a natural scaling in many models. The obvious counterpart to plasmas
concerns the Newtonian dynamics of point masses through gravitational interactions. This consists in
taking α < 0 in (2) and leads to attractive interactions with a negative potential and for this reason cannot
be handled with the method presented here.

The system (1) usually involves a very large number of particles, typically up to 1020–1025 in plasmas
for example. This makes the mean-field limit especially attractive. This is a kinetic, Vlasov–Fokker–Planck
equation posed on the limiting one-particle density f (t, x, v):

∂t f + v · ∇x f + (K ⋆x ρ) · ∇v f =
σ 2

2
1v f, with ρ =

∫
Rd

f dv. (3)

Well posedness for mean-field kinetic equations such as (3) is now reasonably well understood, including
for singular Coulombian interactions such as (2) in dimension d ≤ 3. For the nondiffusive case σ = 0,
weak solutions were established in [Arsenev 1975], while classical solutions were obtained in dimension 2
in [Ukai and Okabe 1978]. The dimension 3 case is harder and obtaining classical solutions requires more
difficult dispersive arguments and were only obtained later in [Lions and Perthame 1991; Pfaffelmoser
1992; Schaeffer 1991], see also the more recent [Gasser et al. 2000; Holding and Miot 2018; Loeper
2006; Pallard 2014]. In the case with diffusion σ > 0, we refer to [Victory 1991] for weak solutions, and
to [Bouchut 1993; Degond 1986; Ono and Strauss 2000; Rein and Weckler 1992; Victory and O’Dwyer
1990] for classical solutions.

Of course the mean-field scaling is not the only possible scaling on systems such as (1). We mention in
particular the likely even more critical Boltzmann–Grad limit, such as obtained in the classical [Lanford
1975] and the major results in [Bodineau et al. 2018; 2020; Gallagher et al. 2014; Pulvirenti and Simonella
2017; Pulvirenti et al. 2014]. We note as well that the derivation of macroscopic equations from mesoscopic
systems such as (3) is another important and challenging question. For example the passage to the fluid
macroscopic system from Vlasov–Poisson–Fokker–Planck has been approached in different low-field
(parabolic) or high-field (hyperbolic) regimes depending on the space dimension; see for example [Carrillo
et al. 2022; Goudon et al. 2005; Nieto et al. 2001; Poupaud and Soler 2000].
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Mean-field limits have been rigorously derived for general systems, including second-order dynamics
such as (1), in the case of Lipschitz interaction kernels K . We refer the reader to the classical works
[McKean 1967; Sznitman 1991] in the stochastic case and [Braun and Hepp 1977; Dobrushsin 1979]
for the deterministic case. Uniform-in-time propagation of chaos has also been obtained in the locally
Lipschitz case, notably in a close to convex case in [Bolley et al. 2010] and more recently in a nonconvex
setting in [Guillin et al. 2022].

There now exists a large literature on the question of the mean-field limits; see for example the survey
in [Golse 2016; Jabin 2014; Jabin and Wang 2017]. However in the specific case of second-order systems
such as (1) very little is known. In dimension d = 1, the Vlasov–Poisson–Fokker–Planck system was
derived in [Guillin et al. 2023; Hauray and Salem 2019]. In dimensions d ≥ 2, the only results for
unbounded interaction kernels were obtained in [Hauray and Jabin 2007; 2015]. But those are valid only
in the deterministic case σ = 0 and for only mildly singular kernels with

|K (x)| ≲ |x |
−α and |∇K | ≲ |x |

−α−1 for α < 1.

Jabin and Wang [2016] derived the mean-field limit with K ∈ L∞ and without extra derivative. Those
cannot cover Coulombian interactions, even in dimension 2.

More is known for singular interaction kernels K that are smoothed or truncated at some N-dependent
scale εN . In that truncated case, one can mention in particular [Ganguly and Victory 1989; Ganguly et al.
1991; Victory and Allen 1991; Wollman 2000] for the convergence of so-called particle methods. The
recent works [Boers and Pickl 2016; Lazarovici 2016; Lazarovici and Pickl 2017] in the deterministic
case and [Huang et al. 2020] in the stochastic case considerably extended the results for such truncated
kernels and allowed for almost reaching the critical physical scale εN ∼ N−1/d . One can also mention
[Carrillo et al. 2019] with polynomial cut-off. It is also possible to derive the Vlasov–Poisson system
directly from many-particle quantum dynamics such as the Hartree equation, for which we briefly refer to
[Golse and Paul 2019; Lafleche 2021; Saffirio 2020].

The mean-field limits for first-order systems with singular interactions appear to be more tractable. A
classical example concerns the dynamics of point vortices or stochastic point vortices where the mean-field
limit corresponds to the vorticity formulation of two-dimensional incompressible Euler or Navier–Stokes
equations. The interaction between vortices obey the Biot–Savart law, which has the same singularity as
the Coulombian kernel in dimension 2. In the deterministic case, the mean-field limit was classically
obtained for example in [Goodman and Hou 1991; Goodman et al. 1990] or [Schochet 1995; 1996] for
the two-dimensional Euler equation and extended remarkably to essentially any Riesz kernels in [Serfaty
2020]. In the stochastic case, we refer in particular to [Fournier et al. 2014; Jabin and Wang 2018; Osada
1987] for the limit to two-dimensional Navier–Stokes equations, to [Bresch et al. 2020; 2023] for singular
attractive kernels, or to [Nguyen et al. 2022] for multiplicative noise. Uniform-in-time propagation of
chaos was even recently obtained in [Guillin et al. 2024; Rosenzweig and Serfaty 2023].

One of the reasons second-order systems appear more difficult to handle stems from how the structure
of the singularity interacts with the distribution of velocities. Because of the term K (X i − X j ), the
singularity in pairwise interactions is typically localized on collisions X i = X j . For first-order systems this
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corresponds to a point singularity, while for second-order systems the presence of the additional velocity
variables makes it into a plane. In that regard, we also note that the derivation of macroscopic systems
directly from second-order dynamics is in fact better understood than the derivation of kinetic equations
like (3). We refer to the derivation of incompressible Euler equations in [Han-Kwan and Iacobelli 2021],
or to the derivation of monokinetic solutions to (3) (which are essentially equivalent to a macroscopic
system) in [Serfaty 2020].

The main argument in our proof is a new quantitative estimate on the so-called marginals of the system
through the BBGKY hierarchy. This leads to the propagation of some weighted L p estimates on the
marginals. It implies a weak propagation of chaos in the sense of [Sznitman 1991] but it applies more
broadly to initial data that are not chaotic or not close to being chaotic.

Recently, new approaches have been introduced to bound marginals on systems with appropriate
nondegenerate diffusion. Using relative entropy, Lacker [2023] was the first to derive quantitative
estimates comparing the marginals to the limiting tensorized solution, thus deriving optimal rates for the
propagation of chaos in O(1/N ), instead of O(1/

√
N ) on the convergence of the marginals (as observed

for smoother interactions in [Duerinckx 2021]). While formulated for first-order systems, the method
also applies to second-order systems with diffusion in velocity, as observed by Lacker. The method takes
advantage of the regularizing provided by the diffusion to avoid “losing” a derivative in the hierarchy
estimates. The use of the relative entropy however imposes that the interaction kernel belongs to an
exponential Orlicz space. In a different context of nonexchangeable systems, [Jabin et al. 2025] later
used the propagation of L2 norms on some equivalent of the marginals, again taking advantage of the
diffusion but requiring that the interaction kernel K be in L∞.

The present article focuses mostly on second-order singular systems, where our method combines this
general idea with a specific choice of weights for the L p norms that are propagated. Those weights are
based on a total energy reduced to k particles when dealing with the marginal of order k. They allow
us to take advantage of a further regularizing effect in the hierarchy to only require kernels K to be in
some L p with p > 1. The same idea to propagate L p norms on the marginals also applies to first-order
systems in confined domains, without then requiring weights.

A direct consequence of our approach is the first ever derivation of the mean-field limit for the repulsive
Vlasov–Poisson–Fokker–Planck over a finite time interval. This applies to any chaotic initial data in
dimension d = 2 and for initial data with more restrictive energy bound in any dimension d ≥ 3. We are
expecting to extend this derivation in a future work to any chaotic initial data in any dimension d ≥ 2 by
decomposing appropriately the initial data.

The paper is structured as follows: We start in Section 2 with the notation and main results. We first
state our main result, Theorem 2, that proves the convergence to the Vlasov–Fokker–Planck equation
as N tends to infinity followed with Theorem 3 proving quantitative estimates for singular kernels in L2.
We next introduce Proposition 5, which states the explicit propagation of weighted L p bounds on the
marginals. We in particular discuss more thoroughly the limitations and possible extensions of our
approach after stating Proposition 5. Section 3 is devoted to the proof of Proposition 5 and Theorem 2
from the key technical contribution of the article around Lemma 9 and ends with the proof of Theorem 3.
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2. Main results

2.1. The new result. We introduce the full N -particle joint law of the system fN which satisfies the
Liouville or forward Kolmogorov equation

∂t fN +

N∑
i=1

vi · ∇xi fN +

N∑
i=1

1
N

N∑
j=1

K (xi − x j ) · ∇vi fN =
σ 2

2

∑
i

1vi fN , (4)

which is a linear advection-diffusion equation. However the marginals fk,N of fN will also play a critical
role in the analysis. They correspond to the law of k among N particles and are represented through

fk,N (t, x1, v1, . . . , xk, vk) =

∫
5d(N−k)×Rd(N−k)

fN (t, x1, v1, . . . , xN , vN ) dxk+1 dvk+1 · · · dxN dvN . (5)

The question of well-posedness for (4) can be delicate and is separate from the issue of the mean-field limit
considered here. For this reason, we consider the notion of an entropy solution fN ∈ L∞(R+×5d N

×Rd N )

to (4), fully described later in Section 2.4, to which we impose some Gaussian decay in velocity:

sup
t≤1

∫
5d N ×Rd N

eβ
∑

i≤N |vi |
2

fN dx1 dv1 · · · dxN dvN ≤ V N for some β > 0, V > 0, (6)

for which we refer to the short discussion in Section 2.4.
Our main result is the derivation of the mean-field limit for a broad class of singular kernels.

Theorem 2. Assume that there exists some constant θ > 0 such that the potential φ satisfies∫
5

eθφ(x) dx < +∞ (7)

and that

K = −∇φ ∈ L p(5d) for some p > 1.

Let f be the unique smooth solution to the Vlasov equation (3) with initial data f 0
∈ C∞(5d

× Rd) such
that

∫
5d×Rd f 0eβ|v|

2
< ∞. Consider moreover an entropy solution fN to (4) (in the sense of Section 2.4)

satisfying (6) with initial data f 0
N ∈ L∞(5d N

×Rd N ). Assume that f 0
k,N converges weakly in L1 to ( f 0)⊗k

for each fixed k and that

∥ f 0
k,N ∥L∞(5d N ×Rd N ) ≤ Mk

for some M > 0 and for all k ≤ N. Then there exists T ∗ depending only on M , V , and ∥K∥L p such that
the fk,N , given by (5), weakly converge to

fk = f ⊗k in Lq
loc([0, T ⋆

] ×5kd
× Rkd)

for any k and any 2 < q < ∞, with 1/q + 1/p ≤ 1.

Our estimates can also provide quantitative rates of convergence though we need to use a stronger
assumption, namely K ∈ L2.
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Theorem 3. Assume the same conditions and hypotheses of Theorem 2, with moreover p = 2. We also
assume that there exists a constant C independent of N and εN → 0 such that∫

5kd×Rkd
| f 0

k,N − ( f 0)⊗k
|
2eλ(0)ek ≤ CkεN

for all k, with

ek(x1, v1, . . . , xk, vk) =

∑
i≤k

(1 + |vi |
2) +

1
N

∑
i, j≤k

φ(xi − x j ) (8)

and

λ(t) =
1

3(1 + t)
for a positive constant 3.

Then, there exists T ∗ such that fk,N converges strongly to fk in L2
loc([0, T ⋆

] × 5kd
× Rkd) for any k, and

we have the quantitative estimate

sup
t≤T ⋆

∫
5kd×Rkd

| fN ,k − f ⊗k
|
2eλ(t)ek ≤ C̃kεN

for some C̃ independent of N .

In addition to the mean-field limit, Theorem 2 implies the weak propagation of chaos in the sense of
the famous [Sznitman 1991], although with strong conditions on f 0

N . Theorem 2 also justifies for the first
time the convergence to the Vlasov–Poisson–Fokker–Planck in two space dimensions. More precisely,
we highlight the following result.

Corollary 4. Let d = 2, and consider the Poisson kernel K = −∇φ with its associated potential
φ(x) ≃ − ln|x |. Then, the convergence properties given by Theorem 2 hold true, leading to the Vlasov–
Poisson–Fokker–Planck system.

2.2. New stability estimates. Theorem 2 relies on a new approach to derive estimates on the BBGKY
hierarchy solved by the marginals fk,N , which is of significant interest in itself. In general, deriving
bounds on either the BBGKY or limiting Vlasov hierarchy is complex. We refer for example to [Golse
et al. 2013] for the Vlasov hierarchy, and to [Duerinckx and Saint-Raymond 2021] for the study of
long-time corrections to mean-field limits. Bounds on the hierarchy are critical for the derivation of
collisional models such as the Boltzmann equation, ever since [Lanford 1975]. Even a partial discussion of
the challenges in the collisional setting would go well beyond the scope of this paper, and we simply refer
again to [Bodineau et al. 2017; 2018; 2020; Gallagher et al. 2014; Kac 1956; Lanford 1975; Pulvirenti
et al. 2014; Pulvirenti and Simonella 2017].

The main difficulty in handling the hierarchy consists in the term

∇vi

∫
5d×Rd

K (xi − xk+1) fk+1,N dxk+1 dvk+1, (9)

as seen in (17), because this introduces the next-order marginal fk+1,N into the equation for fk,N . When
treated naively as a source term, it leads to a loss of one derivative on each equation of the hierarchy.
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However, it was noticed first in [Lacker 2023] and then in [Jabin et al. 2025] that one may avoid
this loss of derivative in the stochastic case for nondegenerate diffusion: any L2 estimate then gains an
additional H 1 dissipation which can be used to control the loss of one derivative. This idea still appears
applicable in the present kinetic context: even though we only have diffusion in velocity, the derivative
in (9) is also only on the velocity variable.

Both [Jabin et al. 2025] and [Lacker 2023] require high integrability on the kernel: K ∈ L∞ for [Jabin
et al. 2025] and some sort of exponential Orlicz space of the type

∫
eλ|K (x)| dx < C for [Lacker 2023].

Lacker [2023] used quantitative relative entropy estimates to prove uniqueness on the BBGKY hierarchy,
while [Jabin et al. 2025] proved uniqueness on a tree-indexed limiting hierarchy through L2 bounds.
Hence, in both cases, the corresponding bounds on the marginals was already known uniformly in N , and
the challenge was to prove that the norm of the difference with the limit is small.

This leads to a first key difference with respect to the present approach and to the first critical new idea
introduced in this paper. In essence, we note that the integral in (9) leads to a regularizing effect that has
the same scaling as the convolution at the limit: one has by Hölder estimates that∥∥∥∥∫

5d
K (xi − xk+1) f (x1, . . . , xk+1) dxk+1

∥∥∥∥
Lq (5dk)

≤ ∥K∥L p(5d )∥ f ∥Lq (5d(k+1)), (10)

provided that 1/p + 1/q ≤ 1.
Taking advantage of (10) for singular K ∈ L p with p small naturally leads us to try to propagate

Lq norms of the marginals fk,N for large exponents q; in opposition to [Jabin et al. 2025; Lacker 2023].
But it also leads to an additional major difficulty, due to the velocity variable in the unbounded space Rd

in (9). In fact, trying to use (10) in (9) as is would force the use of a mixed norm Lq
x L1

v on the marginals.
Unfortunately such mixed norms are notoriously ill-behaved on kinetic equations.

Instead, a more natural idea, from the point of view of kinetic equations, consists in using some
moments or fast decay in velocity. Even if they are less usual for kinetic equations, the use of Gaussian
moments is especially attractive in the current case because they are naturally tensorized. For example,
one has the extension of (10)∫

5dk×Rdk
e|v1|

2
+···+|vk |

2
∣∣∣∣∫

5d×Rd
K (xi − xk+1) fk+1,N dxk+1 dvk+1

∣∣∣∣q

≤ Cd∥K∥
q
L p(5d )

∫
5d(k+1)×Rd(k+1)

e|v1|
2
+···+|vk+1|

2
| fk+1,N |

q , (11)

still provided 1/p + 1/q ≤ 1.
However, pure Gaussian moments in velocity do not seem to be naturally propagated at the discrete

level of the hierarchy, even though they would trivially be propagated on the limiting mean-field equation
at least for short time. This leads to the final critical idea of the paper, which is to incorporate the potential
energy in the Gaussian: namely to consider eλ(t)ek instead of a pure Gaussian with ek defined by (8).

We observe that our definition of ek uses 1 + |vi |
2 but could just as well be reduced to |vi |

2 instead
as (11) suggests. The extra constant in ek allows us to normalize the weight of each marginal by a
factor eλ(0)k , which saves some extra numerical constants in the proof.
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We also remark that the use of a dynamical weights argument has been recently developed in [Bresch
et al. 2023] for first-order particle systems with singular kernels. We also note that Proposition 5, stated
below, shows the propagation of weighted Lq bounds on the marginals, without requiring the initial data
to be chaotic or close to chaotic as introduced in [Kac 1956]. It hence applies to a broader framework
than just the mean-field limit.

Proposition 5. Let us assume K ∈ L p(5d) for some p > 1 and define

λ(t) =
1

3(1 + t)
and L =

C
λ(1)θ

∥K∥
q
L p

for positive constants 3 and C , θ depending only on q , d , and σ , and provided that 1/q + 1/p ≤ 1.
Consider a renormalized solution fN to (4) satisfying (6) with initial data f 0

N ∈ L∞(5d N
× Rd N ) and

satisfying ∫
5kd×Rkd

| f 0
k,N |

qeλ(0)ek ≤ Fk
0 ,

sup
t≤1

∫
5Nd×RNd

| fN |
qeλ(t)eN ≤ F N

(12)

for some F > 0, F0 > 0, and q such that 2 ≤ q < ∞, with 1/q + 1/p ≤ 1. Then, one has that

sup
t≤T

∫
5kd×Rkd

| fk,N |
qeλ(t)ek ≤ 2k Fk

0 + Fk22k−N−1, (13)

where T is given by

T = min
(

1,
1

4L max(F0, F)

)
.

Proposition 5 shows that the corresponding Lq norm of a marginal at order k behaves like Ck for some
constant C . This is the expected scaling for propagation of chaos and tensorized marginals fk = f ⊗k .

However, Proposition 5 also presents several intriguing features that we want to highlight.

• Vlasov–Poisson–Fokker–Planck in higher dimensions. Proposition 5 handles just as easily Coulombian
interactions in any dimension d, and not only dimension d = 2 as Theorem 2. Therefore, Proposition 5
would imply some form of propagation of chaos for the Vlasov–Poisson–Fokker–Planck system in any
dimension if we are able to consider initial N -particle laws f 0

N which are f 0-chaotic as N → +∞ and
whose marginals f 0 and associated solution fn to the forward Kolmogorov equation satisfy (12). While
there are examples of such initial data, take f 0

N = Z exp(−eN ) for instance, they demand some sort of
truncation or decay of the configurations with high energy. This is not satisfying because we cannot
even take f 0

N = ( f 0)⊗N : Assumption (12) cannot hold in such a case as eλ(0)ek is not integrable if K
is the Poisson kernel in dimension d > 2. The issue is that by taking f 0

N = ( f 0)⊗N , we allow some
configurations with high potential energy. And roughly speaking the existence time T in the proposition
vanishes as the starting potential energy increases in that case.

• Repulsive potentials. Proposition 5 does require repulsive potentials φ ≥ 0 as this assumption is critical
in the proof. The repulsive assumption on the potential only appears to be needed to handle the discrete
many-particle system. The extension to nonrepulsive settings remains an open problem.
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• Extension to the stochastic case of mildly singular kernels. A special case concerns mildly singular
kernels K with K ∈ L p for some p > 1 such that φ ∈ L∞. In that situation, by considering φ +∥φ∥L∞

instead of φ, yielding the same interaction kernel K , we can always ensure that φ ≥ 0. For example this
easily extends for the first time to the stochastic settings the results of [Hauray and Jabin 2007; 2015],
which had been obtained only for deterministic second-order systems with

|K | ≲ |x |
−α for α < 1.

• Convergence for finite times. We finally emphasize that, like Theorem 2, Proposition 5 holds over a
finite time interval, independent of N . This may initially appear puzzling since we are dealing with linear
equations for any fixed N . However, because those estimates are essentially independent of N , they
also extend to the nonlinear limiting Vlasov equation. Moreover Proposition 5 includes a propagation of
Gaussian moments in velocity over the marginals from the term eλ(t)ek and the definition (8) of ek . The
propagation for all times of such moments for Vlasov–Poisson is only known in dimension d = 2, see
[Degond 1986; Ukai and Okabe 1978], and dimension d = 3, see [Bouchut 1993; Gasser et al. 2000;
Holding and Miot 2018; Lions and Perthame 1991; Ono and Strauss 2000; Pallard 2014; Pfaffelmoser
1992; Rein and Weckler 1992; Schaeffer 1991; Victory and O’Dwyer 1990] as cited in the introduction;
it also requires in dimension 3 the use of dispersion estimates that are not present in our proof. As we
already noted, Proposition 5 is in fact valid in any dimension which naturally limits it to some given finite
time interval.

2.3. The case of first-order systems. While we focus on second-order systems, we also emphasize that
our method directly applies to first-order systems on bounded domains (in a much simpler manner in
fact) and provides the mean-field limit under very weak assumptions on the kernel K again. Consider in
that case

d
dt

X i (t) =
1
N

∑
j ̸=i

K (X i − X j ) dt + σ dWi ,

X i (t = 0) = X0
i ,

(14)

fully on the torus 5d . The mean-field limit is similar to (3):

∂t f + (K ⋆x f ) · ∇x f =
σ 2

2
1x f. (15)

Similarly, the joint law fN (t, x1, . . . , xN ) solves an appropriately modified Liouville equation

∂t fN +

N∑
i=1

1
N

N∑
j=1

K (xi − x j ) · ∇xi fN =
σ 2

2

∑
i

1xi fN . (16)

Because system (14) does not involve velocities, many technical difficulties in our proofs actually vanish.
For example, we no longer need to add assumptions such as (6). We also do not need to require that K
derives from a potential, and hence do not require assumptions like (7). We then have the following
equivalent of Theorem 2.
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Theorem 6. Assume that

K ∈ L p(5d) for some p > 1, (div K )− ∈ L∞(5d),

where x− denotes the negative part of x. Let f be the unique smooth solution to the Vlasov equation (15)
with initial data f 0

∈ C∞(5d). Consider moreover an entropy solution fN to (16) (still in the sense of
Section 2.4) with initial data f 0

N ∈ L∞(5d N ). Assume that f 0
k,N converges weakly in L1 to ( f 0)⊗k for

each fixed k and that

∥ f 0
k,N ∥L∞(5d N ) ≤ Mk

for some M > 0 and for all k ≤ N. Then there exists T ∗ depending only on M , ∥K∥L p , and ∥(div K )−∥L∞

such that the fk,N , given by (5), weakly converge to fk = f ⊗k in Lq
loc([0, T ⋆

] ×5kd) for any k and any
2 < q < ∞, with 1/q + 1/p ≤ 1.

Because it is not our main focus, we do not give a distinct proof of Theorem 6.
As mentioned above, there exists now a large literature for the mean-field limit of first-order systems

in the stochastic case, with much recent progress for singular kernels. We refer for example to the
derivation of two-dimensional Navier–Stokes equations from a system of many vortices in [Fournier
et al. 2014; Jabin and Wang 2018; Osada 1987]. The derivation of the two-dimensional Keller–Segel
system, corresponding to attractive Coulombian potentials, was recently obtained in [Bresch et al. 2020;
Tardy 2024]; see also [Fournier and Tardy 2024] for a precise description of the collisions leading to
the blow-up. We also cite [Lacker 2023] which only requires the kernel to be in an Orlicz space similar
to Exp, together with [Lacker and Le Flem 2023] which obtains global-in-time regularity for Lipschitz
kernels with a smallness assumption on div K .

All those results require stronger assumptions on the kernel K than just K ∈ L p with p > 1 as here.
A similar scaling was however obtained in [Serfaty 2020] on first-order systems with no diffusion. The
breakthrough method in that seminal paper is based on a modulated energy between the empirical measure
and the limit and it applies to Riesz kernels where K ∼ 1/|x |

α with α < d (corresponding to K ∈ L p

with p > 1), with either a repulsive gradient flow or Hamiltonian interactions, or alternatively where
K ∗ f ∈ W 1,∞. Uniform-in-time propagation of chaos was later obtained in [Rosenzweig and Serfaty
2023] including diffusion with the restriction α < d − 1 using the modulated energy method and some
relaxation rates properties. This was recently improved in [Chodron de Courcel et al. 2023] to again
α < d combining precise relaxation rates with the new modulated free energy introduced in [Bresch
et al. 2020]. One obvious advantage of our method here is that it allows for a much more general
form of interaction, with singularities far away from the origin. On the other hand, Theorem 6 does
require a nonvanishing diffusion and is again only valid for a finite time, instead of the much stronger
uniform-in-time estimates above.

Contrary to the case of second-order systems, this short-time limitation appears less fundamental as
many limiting systems do not blow up, with the obvious exception of attractive interactions such as
Keller–Segel. We conjecture that the present method could lead to large-time results by taking advantage
of the full nondegenerate diffusion for first-order systems.
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2.4. Our notion of entropy solution for the hierarchy: the well-posedness of (4).

The definition. Being nonlinear, our estimates cannot be performed on any weak solutions. Moreover,
the concept of a solution for fN is carried over the marginals fk,N and not just the joint law fN , so we
also need an appropriate notion of entropy solutions on those marginals.

The hierarchy for the marginals from the Liouville equation. From (4), the fk,N solve the so-called
BBGKY hierarchy

∂t fk,N +

k∑
i=1

vi · ∇xi fk,N +

∑
i≤k

1
N

∑
j≤k

K (xi − x j ) · ∇vi fk,N

+
N −k

N

∑
i≤k

∇vi ·

∫
5d×Rd

fk+1,N K (xi − xk+1) dxk+1 dvk+1 =
σ 2

2

∑
i≤k

1vi fk,N . (17)

If fN belongs to L∞ and satisfies (6), then all marginals fk,N belong to L∞
t Lq

x,v for every q < ∞ with
similar Gaussian decay. For simplicity, we denote here abstractly by Lq

x,v any space Lq(5kd
× Rkd)

when there is no confusion about the dimension k, as in our case. We also denote by Lq
λek

the weighted
Lq space

∥ f ∥
q
Lq

λek

=

∫
5kd×Rkd

| f |
qeλek .

Since K ∈ L p for some p > 1, by using a direct Hölder inequality, those bounds on the fk,N imply that∫
5d×Rd

fk+1,N K (xi − xk+1) dxk+1 dvk+1 ∈ L∞

t Lq
x,v

for all q < ∞. This allows us to immediately and rigorously derive (17) from (4).

Definition of entropy solutions. We write the advection component of (17) as

Lk =

∑
i≤k

vi · ∇xi +
1
N

∑
i, j≤k

K (xi − x j ) · ∇vi . (18)

The argument above implies that the only difficulties to propagate our estimates in (17) stem from Lk .
Consequently we define our entropy solution as follows: a function fN ∈ L∞([0, 1] × 5d N

× Rd N )

satisfying (6) is an entropy solution if and only if all marginals fk,N for 1 ≤ k ≤ N , as defined by (5),
satisfy ∫ T

0

∫
5dk×Rdk

eλek | fk,N |
q−1sign( fk,N )Lk fk,N dx1 dv1 · · · dxk dvk dt ≥ 0 (19)

for any T ∈ [0, 1], any 1 < q < ∞, and any λ < λ0. Inequality (19) is still somewhat formal and should
be understood in the following rigorous sense: for some smooth convolution kernel Kε, one has that

lim inf
ε→0

∫ T

0

∫
5dk×Rdk

eλek |K ⊗k
ε ⋆ fk,N |

q−1sign(K ⊗k
ε ⋆ fk,N )K ⊗k

ε ⋆(Lk fk,N ) dx1 dv1 · · · dxk dvk dt ≥0, (20)
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where we define

K ⊗k
ε ⋆g =

∫
5dk×Rdk

Kε(x1−y1,v1−w1) · · · Kε(xk −yk,vk −wk)g(y1,w1, . . . , yk,wk)dy1 dw1 · · · dyk dwk,

with Kε → δ when ε → 0. However, it is usually more delicate to determine whether any weak solution fN

in L∞ and with the bound (6) is an entropy solution according to our definition. For linear advection-
diffusion equations such as (4), this is usually approached through the notion of renormalized solutions
as introduced in [DiPerna and Lions 1989]. In that context, (20) is obviously similar to the classical
commutator estimate at the basis of many methods for renormalized solutions.

Remark 7. (1) We first remark that (19) is automatically satisfied if we have classical solutions. Indeed,
Lk is an antisymmetric operator, so we expect it to propagate Lq norms such that, if all terms are
smooth, we have

| fk,N |
q−1sign( fk,N )Lk fk,N = Lk | fk,N |

q .

(2) We immediately observe that the reduced energy ek is formally invariant under the advection
component of (17):

Lkek =
2
N

∑
i, j≤k

vi · ∇xi φ(xi − x j ) +
2
N

∑
i, j≤k

K (xi − x j ) · vi = 0

since K = −∇xφ. In the same way, we have Lk8(ek) = 0 for any locally Lipschitz function 8.

(3) If K is smooth and fN is a classical solution to (4), we would hence immediately have equality
in (19). With K only in L p, it would be straightforward to obtain one entropy solution in the sense
defined above, through passing to the limit in a sequence of solutions for a smoother kernel K .

Remark 8. There exists an extensive literature on renormalized solutions with a comparably large variety
of potential assumptions that one may consider. While we cannot do justice to this question in this short
discussion, we briefly mention for instance [Hauray 2004] that studies the specific case of the Liouville
equation (4) for second-order systems without diffusion. In the present setting of a constant nonvanishing
diffusion, we also refer to [Bogachev et al. 2015; Le Bris and Lions 2008; 2019] that provide broad
results of well-posedness for velocity fields in L p.

We in particular note that renormalized solutions apply to the case K ∈ L p with p > 2 and fN in L∞

with ∇vi f q/2
N ∈ L2 for any q < ∞ and satisfying the extension of (6)

sup
t≤1

∫
5d N ×Rd N

eλ0ek fN dx1 dv1 · · · dxN dvN < ∞.

The latter estimates are natural for the Liouville equation (4), as demonstrated by Lemma 9 for the case
k = N in Section 3. In that situation, all marginals fk,N belong to L∞

t Lq
x,v for every q < ∞ with similar

exponential decay in ek and with as well ∇vi f q/2
k,N ∈ Lr

t,x,v for any r < 2. This regularity easily allows us
to prove that (20) holds for λ < λ0.
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We also mention that so-called mild solutions can also offer a natural way to prove (20). We simply refer
to [Bouchut 1993; Carrillo and Soler 1997] for such formulations through the Fokker–Planck kernel in the
whole space, or to [Clark 1993] or [Degond 1986; Victory and O’Dwyer 1990] for periodic conditions.

Strong solutions up to the first collision. We also emphasize that, in the case of repulsive kernels smooth
out of the origin but with singular potentials limx→0 φ(x) = +∞, a straightforward bound on the energy
of the system can easily lead to strong solutions on the many-particle system (1), bypassing the need for
entropy or renormalized solutions.

Very roughly, if K ∈ C∞(5d
\ {0}), then up to the conditional time of first collision in (1), we may

write

d
( N∑

i=1

|Vi |
2
+

1
N

∑
i ̸= j

φ(X i − X j )

)
= σ 2 dt +

N∑
i=1

2σ Vi · dWi .

This implies that, with probability 1, the total energy remains finite if it was so initially. Because
limx→0 φ(x) = +∞, it also implies that collisions almost surely never happen. This argument would in
particular apply to the Coulombian case in any dimension d ≥ 2.

To conclude this discussion of the well-posedness of (4) or (1) for a fixed N , we emphasize the estimates
that we described here cannot easily be made uniform in N . The previous discussion of the energy bound
on the system (1) for the Coulombian interaction in dimension d = 2 is an excellent illustration: if we
have the bound

N∑
i=1

|Vi |
2
+

1
N

∑
i ̸= j

φ(X i − X j ) ≤ E

with some large probability on some time interval and for φ(x) = − log|x |, then this only proves that, for
any i ̸= j ,

|X i − X j | ≥ e−N E ,

which is indeed finite for any fixed N but is completely unhelpful when considering the limit N → ∞.
Hence the present discussion remains focused on renormalized solutions for a fixed N . Quantitative

approaches to renormalized solutions have for example been introduced in [Crippa and De Lellis 2008],
which are based on the propagation of a sort of log-derivative on the characteristics; see also for example
the discussion on Eulerian variants in [Bresch and Jabin 2018]. This leads to an interesting and so far
mostly fully open question as to whether it would be possible to obtain quantitative bounds that would
combine the limit N → ∞ with some regularity estimates on the solution for a fixed N .

3. Proof of the main results

3.1. The BBGKY and Vlasov hierarchies. Using (3), the tensorized limits fk = f̄ ⊗k satisfy the Vlasov
hierarchy

∂t fk +

k∑
i=1

vi · ∇xi fk +

k∑
i=1

(
K ⋆

∫
Rd

f dv

)
· ∇vi fk =

σ 2

2

k∑
i=1

1vi fk . (21)
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To avoid repeating the analysis working on (17) or (21), we introduce the generalized hierarchy equation

∂t Fk,N +

k∑
i=1

vi · ∇xi Fk,N +

∑
i≤k

γ

N

∑
j≤k

K (xi − x j ) · ∇vi Fk,N

+
N − γ k

N

∑
i≤k

∇vi ·

∫
5d×Rd

Fk+1,N K (xi − xk+1) dxk+1 dvk+1 =
σ 2

2

∑
i≤k

1vi Fk,N + Rk,N . (22)

Note that (22) is exactly (21) for γ = 0, Rk,N = 0 and exactly (17) for γ = 1, Rk,N = 0. In the same
spirit we define

ek,γ =

∑
i≤k

(1 + |vi |
2) +

γ

N

∑
i, j≤k

φ(xi − x j ),

Lk,γ =

∑
i≤k

vi · ∇xi +
γ

N

∑
i, j≤k

K (xi − x j ) · ∇vi

and observe that we of course still have Lk,γ ek,γ = 0.
The main technical contribution of this section and of the paper is Lemma 9 stated in Section 3.2,

which provides estimates for the solutions to (17). We will then use the uniform bound on the k-marginals
fk,N for the proof of Proposition 5. Proposition 5 allows passing to the limit in the hierarchy (17), and a
final use of Lemma 9 leads to proving uniqueness of the limiting hierarchy (21) to conclude the result of
Theorem 2.

3.2. The key technical lemma. We first present the key technical lemma which links the k-marginal Lq
w

control to the (k+1)-marginal Lq
w estimate control.

Lemma 9. Assume that K ∈ L p(5d) for some p > 1. There exist some constants 3, C , and θ depending
only on q, d , and σ such that

∥Fk,N ∥
q
Lq

λ(t)ek

≤ ∥Fk,N (t = 0)∥
q
Lq

λ(0)ek

+ q
∫ t

0

∫
|Fk,N |

q−1sign(Fk,N )Rk,N eλ(s)ek,γ ds

+ k
N − γ k

N
C

λθ (t)
∥K∥

q
L p

∫ t

0
∥Fk+1,N (s)∥q

Lq
λ(s)ek+1

ds

for any entropy solution Fk,N to (22) (in the sense of Section 2.4) and satisfying (6) with Fk,N ∈ Lq
λ(t)ek,γ

and for any 2 ≤ q < ∞ such that 1/q + 1/p ≤ 1, with λ(t) defined by λ(t) = (3(1 + t))−1.

Proof. To be made fully rigorous, many calculations in this proof should involve a convolution kernel Kε,
estimating

d
dt

∫
|K ⊗k

ε ⋆ Fk,N |
qeλ(t)ek,γ ,

and passing to the limit in ε → 0 while using appropriately the entropy condition (20). For simplicity,
however, we will only present the corresponding formal calculations.

We hence calculate in a straightforward manner

d
dt

∫
|Fk,N |

qeλ(t)ek,γ = q
∫

|Fk,N |
q−1sign(Fk,N )∂t Fk,N eλ(t)ek,γ + λ′(t)

∫
ek,γ |Fk,N |

qeλ(t)ek,γ .
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Inserting now in this identity the definition of λ(t) and the (17), we find

d
dt

∫
|Fk,N |

qeλ(t)ek,γ

= −q
∫

|Fk,N |
q−1sign(Fk,N )(Lk,γ Fk,N )eλ(t)ek,γ + q σ 2

2

∫
|Fk,N |

q−1sign(Fk,N )

(∑
i≤k

1vi Fk,N

)
eλ(t)ek,γ

− q
N − γ k

N

∑
i≤k

∫
|Fk,N |

q−1sign(Fk,N )∇vi ·

∫
K (xi − xk+1)Fk+1,N dxk+1 dvk+1eλ(t)ek,γ

− 3λ2(t)
∫

ek,γ |Fk,N |
qeλ(t)ek,γ + q

∫
|Fk,N |

q−1sign(Fk,N )Rk,N eλ(t)ek,γ .

Note that
q|Fk,N |

q−1sign(Fk,N )(Lk,γ Fk,N ) = Lk,γ |Fk,N |
q ,

so that by integration by parts, we formally have

q
∫

|Fk,N |
q−1sign(Fk,N )(Lk,γ Fk,N )eλ(t)ek,γ = −

∫
|Fk,N |

q Lk,γ eλ(t)ek,γ = 0.

On the other hand, again by integration by parts,

q σ 2

2

∫
|Fk,N |

q−1sign(Fk,N )

(∑
i≤k

1vi Fk,N

)
eλ(t)ek,γ

= −q(q − 1)
∑
i≤k

σ 2

2

∫
|Fk,N |

q−2
|∇vi Fk,N |

2eλ(t)ek,γ

− 2qλ(t)
∑
i≤k

σ 2

2

∫
|Fk,N |

q−1sign(Fk,N )vi · ∇vi Fk,N eλ(t)ek,γ .

By the Cauchy–Schwartz inequality, since q ≥ 2, we obtain

q σ 2

2

∫
|Fk,N |

q−1sign(Fk,N )

(∑
i≤k

1vi Fk,N

)
eλ(t)ek,γ

≤ −q(q − 1)
∑
i≤k

σ 2

4

∫
|Fk,N |

q−2
|∇vi Fk,N |

2eλ(t)ek,γ +
q

q − 1
λ2 σ 2

2

∫
|Fk,N |

q
∑
i≤k

|vi |
2eλ(t)ek,γ .

Note that, since φ ≥ 0, we have
∑

i≤k |vi |
2
≤ ek and, therefore, combining all our estimates so far, we

deduce that
d
dt

∫
|Fk,N |

qeλ(t)ek,γ

≤ −q(q − 1)
∑
i≤k

σ 2

4

∫
|Fk,N |

q−2
|∇vi Fk,N |

2eλ(t)ek,γ

− q
N − γ k

N

∑
i≤k

∫
|Fk,N |

q−1sign(Fk,N )∇vi ·

∫
K (xi − xk+1)Fk+1,N dxk+1 dvk+1eλ(t)ek,γ

−
3

2
λ2(t)

∫
ek,γ |Fk,N |

qeλ(t)ek,γ + q
∫

|Fk,N |
q−1sign(Fk,N )Rk,N eλ(t)ek,γ ,

provided that 3 ≥ qσ 2/(q − 1).
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We integrate by parts the second term in the right-hand side to obtain∑
i≤k

∫
|Fk,N |

q−1sign(Fk,N )∇vi ·

∫
K (xi − xk+1)Fk+1,N dxk+1 dvk+1eλ(t)ek,γ = RH1 + RH2,

with

RH1 = −(q − 1)
∑
i≤k

∫
|Fk,N |

q−2
∇vi Fk,N

∫
K (xi − xk+1)Fk+1,N dxk+1 dvk+1eλ(t)ek,γ

and

RH2 = −2λ(t)
∑
i≤k

∫
|Fk,N |

q−1sign(Fk,N )vi

∫
K (xi − xk+1)Fk+1,N dxk+1 dvk+1eλ(t)ek,γ .

We perform a straightforward Cauchy–Schwartz inequality on both terms to find that

RH2 ≤λ2(t)
∑
i≤k

∫
|Fk,N |

q
|vi |

2eλ(t)ek,γ +

∑
i≤k

∫
|Fk,N |

q−2
∣∣∣∣∫ K (xi −xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣2

eλ(t)ek,γ ,

and similarly

RH1 ≤
σ 2

4

∑
i≤k

∫
|Fk,N |

q−2
|∇vi Fk,N |

2eλ(t)ek,γ

+
(q − 1)2

σ 2

∑
i≤k

∫
|Fk,N |

q−2
∣∣∣∣∫ K (xi − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣2

eλ(t)ek,γ .

Note that by Young estimates∫
|Fk,N |

q−2
∣∣∣∣∫ K (xi − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣2

eλ(t)ek,γ

≤
q − 2

q
λ2

∫
|Fk,N |

qeλ(t)ek,γ +
2

qλq−2

∫
eλ(t)ek,γ

∣∣∣∣∫ K (xi − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣q

.

Therefore, combining together all those terms, we obtain the further estimate∑
i≤k

∫
|Fk,N |

q−1sign(Fk,N )∇vi ·

∫
K (xi − xk+1)Fk+1,N dxk+1 dvk+1eλ(t)ek,γ

≤
σ 2

4

∑
i≤k

∫
|Fk,N |

q−2
|∇vi Fk,N |

2eλ(t)ek,γ + λ2(t)
(

1 +
(q − 2)(q − 1)2

qσ 2

) ∑
i≤k

∫
|Fk,N |

q(1 + |vi |
2)eλ(t)ek,γ

+
2

qλq−2

(
1 +

(q − 1)2

σ 2

) ∑
i≤k

∫
eλ(t)ek,γ

∣∣∣∣∫ K (xi − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣q

.

Hence, provided that

3 ≥ 2q
(

1 +
(q − 2)(q − 1)2

qσ 2

)
,

we obtain

d
dt

∫
|Fk,N |

qeλ(t)ek,γ ≤ Cq,σ,dk
N − γ k
λq−2 N

∫
eλ(t)ek,γ

∣∣∣∣∫ K (x1 − xk+1)Fk+1,N dxk+1dvk+1

∣∣∣∣q

.
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At this point is where we take advantage of the specific structure of the hierarchy. Denoting by q∗ the
conjugate of q, namely such that 1/q∗

+ 1/q = 1, we bound∣∣∣∣∫ K (x1 − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣q

≤

(∫
|K (x1 − xk+1)|

q∗

e−(q∗/q)λ(t)|vk+1|
2

dxk+1 dvk+1

)q/q∗∫
|Fk+1,N |

qeλ(t)|vk+1|
2

dxk+1 dvk+1,

which implies∣∣∣∣∫ K (x1 − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣q

≤
Cq,σ,d

λqd/(2q∗)(t)
∥K∥

q
L p

∫
|Fk+1,N |

qeλ(t)|vk+1|
2

dxk+1 dvk+1

since q ≥ p∗. Consequently∫
eλ(t)ek,γ

∣∣∣∣∫ K (x1 − xk+1)Fk+1,N dxk+1 dvk+1

∣∣∣∣q

≤
Cq,σ,d

λqd/(2q∗)(t)
∥K∥

q
L p

∫
|Fk+1,N |

qeλ(t)|vk+1|
2
+λ(t)ek,γ dx1 dv1 · · · dxk+1 dvk+1.

Note that

ek+1,γ = ek,γ + 1 + |vk+1|
2
+

2γ

N

∑
i≤k

φ(xi − xk+1) ≥ ek,γ + 1 + |vk+1|
2,

so that∫
eλ(t)ek

∣∣∣∣∫ K (xi − xk+1) fk+1,N dxk+1 dvk+1

∣∣∣∣q

≤
Cq,σ,d

λqd/(2q∗)(t)
∥K∥

q
L p

∫
| fk+1,N |

qeλ(t)ek+1 dx1 dv1 · · · dxk+1 dvk+1.

This finally lets us conclude, as claimed, that

d
dt

∫
| fk,N |

qeλ(t)ek,γ

≤ k
N − γ k

N
Cq,σ , d
λθq,d (t)

∥K∥
q
L p

∫
| fk+1,N |

qeλ(t)ek+1,γ + q
∫

|Fk,N |
q−1sign(Fk,N )Rk,N eλ(t)ek,γ . □

3.3. Proof of technical results. We start this subsection with the proof of Proposition 5.

Proof of Proposition 5. From the analysis in Section 3.1 and the assumptions (6) and (12) of Proposition 5,
we have that Fk,N = fk,N is a renormalized solution to (17) and thus (22) with γ = 1. Moreover, fk,N

satisfies the other assumptions in Lemma 9 with Rk,N = 0. Writing

Xk(t) =

∫
| fk,N |

qeλ(t)ek ,

we hence observe that, by Lemma 9, we have the coupled dynamical inequality system

Xk(t) ≤ Xk(0) + kL
∫ t

0
Xk+1(s) ds
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for any t ∈ [0, 1], where

L =
C

λθ (1)
∥K∥

q
L p .

From the assumptions of Proposition 5, we immediately have that

Xk(t) ≤ Fk
0 + kL

∫ t

0
Xk+1(s) ds. (23)

We now invoke the following simple lemma.

Lemma 10. Consider any sequence Xk(t) satisfying (23). Then one has

Xk(t) ≤

m∑
l=k

F l
0 L l−k t l−k (l − 1)!

(k − 1)! (l − k)!
+ Lm+1−k

∫ t

0
Xm+1(s)(t − s)m−k m!

(k − 1)! (m − k)!
ds. (24)

Assuming Lemma 10 holds, we use (24) up to m +1 = N to derive through the assumptions on fN that

Xk(t) ≤

N−1∑
l=k

F l
0 L l−k t l−k (l − 1)!

(k − 1)! (l − k)!
+ L N−k

∫ t

0
F N (t − s)N−1−k (N − 1)!

(k − 1)! (N − 1 − k)!
ds,

that is

Xk(t) ≤

N−1∑
l=k

F l
0 L l−k t l−k (l − 1)!

(k − 1)! (l − k)!
+ F N L N−k t N−k (N − 1)!

(k − 1)! (N − k)!
. (25)

Note that
(l − 1)!

(k − 1)! (l − k)!
=

( l−1
k−1

)
≤ 2l−1.

Hence (25) implies

Xk(t) ≤

N∑
l=k

F l
0 L l−k t l−k2l−1

+ F N L N−k t N−k2N−1

= 2k−1 Fk
0

N−1∑
l=k

F l−k
0 2l−k L l−k t l−k

+ Fk2k−1 F N−k L N−k t N−k2N−k

≤ 2k−1 Fk
0 (2 − 2k−N+1) + Fk2k−12k−N

≤ Fk
0 2k

+ Fk22k−N−1,

provided that 4Lt max(F0, F) < 1, which concludes the proof of the proposition. □

We finish with the quick proof of Lemma 10.

Proof of Lemma 10. Taking m = k in (24), we get

Xk(t) ≤ Fk
0 + L

∫ t

0
Xk+1(s)

k!

(k − 1)! (k − k)!
ds,
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which is our starting point. Moreover, assuming that (24) holds for m, we may use (23) to find

Xk(t) ≤

m∑
l=k

F l
0 L l−k t l−k (l − 1)!

(k − 1)! (l − k)!

+ Lm+1−k
∫ t

0

(
Fm+1

0 + L(m + 1)

∫ s

0
Xm+2(s) ds

)
(t − s)m−k m!

(k − 1)! (m − k)!
ds.

This yields

Xk(t) ≤

m∑
l=k

F l
0 L l−k t l−k (l − 1)!

(k − 1)! (l − k)!
+ Lm+1−k Fm+1

0
m!

(k − 1)! (m − k)!

∫ t

0
(t − s)m−k ds

+ Lm+2−k
∫ t

0
Xm+2(r)

∫ t

r
(t − s)m−k ds dr

(m + 1)!

(k − 1)! (m − k)!
,

or

Xk(t) ≤

m∑
l=k

F l
0 L l−k t l−k (l − 1)!

(k − 1)! (l − k)!
+ Lm+1−k Fm+1

0
m!

(k − 1)! (m + 1 − k)!
tm+1−k

+ Lm+2−k
∫ t

0
Xm+2(r)(t − r)m+1−k dr

(m + 1)!

(k − 1)! (m + 1 − k)!
,

as claimed. □

3.4. Proof of Theorem 2. The proof of Theorem 2 follows closely the steps in the proof of Proposition 5,
once appropriate bounds have been derived.

(1) Uniform bounds on fN in Lq
eN . First of all, note that from the assumptions of Theorem 2, we can

easily obtain a bound on f 0
N in Lq

λ0eN
for 3 large enough. Indeed∫

5d N ×Rd N
| f 0

N |
qeλ0eN = eN

∫
5d N ×Rd N

| f 0
N |

qe2λ0 ∑
i≤N |vi |

2
e(λ0/N )

∑
i, j≤N φ(xi −x j )−λ0 ∑

i≤N |vi |
2
.

We have straightforward Lr estimates on e(λ0/N )
∑

i, j≤N φ(xi −x j )−λ0 ∑
i≤N |vi |

2
as, by the Hölder inequality,∫

5d N ×Rd N
e(rλ0/N )

∑
i, j≤N φ(xi −x j )−rλ0 ∑

i≤N |vi |
2
=

C N

λ
N/2
0

∫
5d N

e(rλ0/N )
∑

i, j≤N φ(xi −x j )

≤
C N

λ
N/2
0

(
5i≤N

∫
5d N

erλ0 ∑
j≤N φ(xi −x j )

)1/N

≤
C N

λ
N/2
0

for some constant C and by assumption (7) in Theorem 2, provided that rλ0
≤ 1/θ . This implies, again

by Hölder’s inequality,∫
5d N ×Rd N

| f 0
N |

qeλ0eN ≤
C N

λ
N/2
0

∫
5d N ×Rd N

| f 0
N |

r∗qe2r∗λ0 ∑
i≤N |vi |

2

≤
C N

λ
N/2
0

∥ f 0
N ∥

qr∗
−1

L∞

∫
5d N ×Rd N

| f 0
N |

r∗qe2r∗λ0 ∑
i≤N |vi |

2
.
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Using now assumption (6), provided that 2r∗λ0 ≤ β, we conclude∫
5d N ×Rd N

| f 0
N |

qeλ0eN ≤

(
CV M

λ0

)N

(26)

for any q < ∞. We now choose any fixed 2 < q < ∞ such that 1/p + 1/q < 1, and we remark that
the Liouville equation (4) is included in (22) for γ = 1, Rk,N = 0, and k = N . Thus, we next invoke
Lemma 9 for fN with k = N and γ = 1 to find that fN solves

d
dt

∫
5d N ×Rd N

| fN (t, · , · )|qeλ(t)eN ≤ 0,

so that, from (26), we obtain

sup
t≤1

∫
5d N ×Rd N

| fN (t, · , · )|qeλ(t)eN ≤

(
CV M

λ0

)N

.

This finally implies that there exists some constant F > 0 such that

sup
t≤1

∫
5d N ×Rd N

| fN (t, · , · )|qeλ(t)eN ≤ F N . (27)

(2) Uniform estimates on the marginals and passing the limit in the hierarchy (17). First of all we can
perform the same bounds on each f 0

k,N to find similarly to (26) that∫
5kd×Rkd

| f 0
k,N |

qeλ0ek ≤

(
CV M

λ0

)k

.

As a consequence, every assumption of Proposition 5 holds and, in particular, assumption (12) holds.
This implies that, for some time T ∗ > 0 depending only on V , M , ∥K∥L p , and the choice of q , we have

sup
N

sup
t≤T ∗

∫
5kd×Rkd

| fk,N |
qeλ(t)ek ≤ Mk

for some constant M . At this point, we will no longer need the potential in the reduced energy ek , which
was required to handle the Lk operator that vanishes at the limit. For this reason and since φ ≥ 0, we
deduce from the previous inequality that

sup
N

sup
t≤T ∗

∫
5kd×Rkd

| fk,N |
qeλ(T ∗)

∑
i≤k |vi |

2
≤ Mk . (28)

These uniform bounds let us extract a converging subsequence such that all fk,N converge weak-⋆ to
some f̄k in L∞([0, T ∗

], Lq
x,v) which also satisfies

sup
t≤T ∗

∫
5kd×Rkd

| f̄k |
qeλ(T ∗)

∑
i≤k |vi |

2
≤ Mk, (29)

where we have used classical convex estimates. We emphasize that for the moment we only have
convergence of a subsequence, though we still denote it by N for simplicity. We eventually obtain the
convergence of the whole sequence only after the uniqueness of the limit is proved in the next step.
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From estimate (28) and since 1/q + 1/p ≤ 1, we may simply bound∥∥∥∥∑
i≤k

1
N

∑
j≤k

K (xi − x j ) · ∇vi fk,N

∥∥∥∥
L∞

t L1
x,v,loc

≲ k2

N
∥K∥L p∥ fk,N ∥L∞

t Lq
x,v

.

For any fixed k, the corresponding term vanishes as N → ∞. Similarly estimate (28) allows us to pass to
the limit ∫

5d×Rd
K (xi − xk+1) fk+1,N dxk+1 dvk+1 →

∫
5d×Rd

K (xi − xk+1) f̄k+1 dxk+1 dvk+1

for the weak-⋆ topology of L∞([0, T ∗
], Lq

x,v). It is straightforward to pass to the limit in the sense of
distributions in all other terms of the hierarchy (17), so we deduce that f̄k is a solution to the limiting
hierarchy (21) in the sense of distributions.

We can also easily identify the initial value of f̄k . From (17) and the bounds derived from (28),
we immediately obtain a uniform bound on ∂t fk,N in L∞

t W −1,q
x,v,loc. By the assumption of Theorem 2,

f 0
k,N converges weakly to ( f 0)⊗k , so we have

f̄k(t = 0) = ( f 0)⊗k .

(3) Uniqueness on the limiting hierarchy and conclusion. We first argue that f̄k is automatically a
renormalized solution to (21). Indeed, (21) can be seen as a linear advection-diffusion equation with a
locally Lipschitz velocity field (v1, . . . , vk) and a remainder

∇vi ·

∫
5d×Rd

K (xi − x j ) f̄k+1 dxk+1 dvk+1

that belongs to L∞
t Lq

x,v with q > 2 per our prior estimates.
Next we note that, since f is a classical solution to the Vlasov equation (3), the f ⊗k also yield

renormalized solutions to the Vlasov hierarchy (21) for every k ≥ 1. Due to the linearity in terms of
the sequence { fk}k∈N⋆ of the Vlasov hierarchy, we get that each Fk = f̄k − f ⊗k is also a renormalized
solution to the Vlasov Hierarchy (21) for every k. Moreover, since f̄k and f ⊗k are identical at the initial
time t = 0, we have that Fk(t = 0) = 0.

Furthermore, by (29) and the assumption of Gaussian decay on f 0, we have

sup
t≤T ∗

∫
5kd×Rkd

|Fk |
qeβ̃

∑
i≤k(1+|vi |)

2
≤ M̃k (30)

for some β̃ and some M̃ . Equation (21) corresponds to (22) in the case γ = 0, where ek,γ reduces
to ek,0 =

∑
i≤k(1 + |vi |)

2. Hence, provided we choose some 3̃ possibly lower than 3, we satisfy all
assumptions from Lemma 9.

Defining Yk =
∫

|Fk |
qeλ̃(t)ek,0 , we get for all k ∈ N⋆

Yk(t) ≤ k L̃
∫ t

0
Yk+1 ds. (31)
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We can then use Lemma 10 with F0 = 0 up to any arbitrary m to show, together with (30), that

Yk(t) ≤ L̃m+1−k M̃m+1
∫ t

0
(t − s)m−k m!

(k − 1)! (m − k)!
ds

≤ L̃m+1−k M̃m+1tm+1−k
( m

k−1

)
≤ 2k M̃k(2L̃ M̃t)m+1−k . (32)

By taking t < T0 with T0 small enough and sending m to ∞, we obtain that Yk(t) = 0, and hence f̄k = f ⊗k

on [0, T0]. This allows us to repeat the argument starting from t = T0 instead of t = 0 until we reach
the maximum time T ∗. This finally allows us to conclude as claimed that f̄k = f ⊗k over the whole
interval [0, T ∗

].
Coming back to our extracted subsequence on fk,N , since all such subsequences have the same limit,

we have convergence of the whole sequence to the f ⊗k , concluding the proof.

3.5. Proof of Theorem 3. The aim of this result is to provide a quantitative estimate between fk,N and
fk that satisfies (17) and (21), respectively, for the tensorized limits fk = f ⊗k . First let us note that
F N

k = fk,N − fk satisfies

∂t F N
k + Lk F N

k +
N −k

N

k∑
i=1

∇vi ·

∫
5d×Rd

F N
k+1K (xi − xk+1) dxk+1 dvk+1 =

σ 2

2

k∑
i=1

1vi Fk,N + Rk,N ,

where Lk is defined in (18) and

Rk,N =

k∑
i=1

[(
K ⋆

∫
Rd

f
)

(t, xi ) −
1
N

k∑
j=1

K (xi − x j )

]
· ∇vi fk .

−
N −k

N

k∑
i=1

∇vi ·

∫
5d×Rd

fk+1K (xi − xk+1) dxk+1 dvk+1. (33)

We again use Lemma 9 with q = 2 to deduce

d
dt

∫
5kd×Rkd

|Fk,N |
2eλ(t)ek,γ +

σ 2

4

∑
i≤k

∫
5kd×Rkd

|∇vi Fk,N |
2eλ(t)ek

≤ k N −k
N

C2,σ,d

λθ2,d (t)
∥K∥

2
L2

∫
5kd×Rkd

|Fk+1,N |
2eλ(t)ek+1

+ λ′(t)
∫

5kd×Rkd
ek |Fk,N |

2eλ(t)ek +

∫
5kd×Rkd

Rk,N Fk,N eλ(t)ek . (34)

Note that Rk,N may be written as

Rk,N =

k∑
i=1

1
N

k∑
j=1

[(
K ⋆

∫
Rd

f
)

(t, xi ) − K (xi − x j )

]
· ∇vi fk

−
N −k

N

k∑
i=1

[
∇vi ·

∫
5d×Rd

fk+1K (xi − xk+1) dxk+1 dvk+1 −

(
K ⋆

∫
Rd

f̄
)

(t, xi ) · ∇vi fk

]
. (35)
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Then, using that fk = f ⊗k , we have∫
5kd×Rkd

Rk,N Fk,N eλ(t)ek =

∫
5kd×Rkd

k
N

k∑
i=1

[(
K ⋆

∫
Rd

f
)

(t, xi ) − K (xi − x1)

]
· ∇vi fk Fk,N eλ(t)ek ,

where we have used the fact that the particles are interchangeable. Integrating by parts with respect to vi

and using Young’s inequality, we obtain∫
5kd×Rkd

Rk,N Fk,N eλ(t)ek ≤
σ 2

4
k
N

k∑
i=1

∫
5kd×Rkd

|∇vi Fk,N |
2eλ(t)ek +

1
σ 2

k
N

k∑
i=1

∫
5kd×Rkd

|R̃ 1
k,N |

2eλ(t)ek

+ λ(t)
∫

5kd×Rkd
ek |Fk,N |

2eλ(t)ek +
1
2

∫
5kd×Rkd

|R̃ 2
k,N |

2eλ(t)ek , (36)

where

R̃ 1
k,N =

[(
K ⋆

∫
Rd

f dx
)

(t, xi ) − K (xi − x1)

]
fk,

R̃ 2
k,N =

k∑
i=1

[(
K ⋆

∫
Rd

f dx
)

(t, xi ) − K (xi − x1)

]
fk .

We observe that
∥R̃ i

k,N ∥
2
L2

λ(t)ek

≤ Ck
∫

5kd×Rkd
| fk |

peλ(t)ek ,

with a constant C that does not depend on k. We have also used the fact that, in particular, K ∈ L2(5d)

and f ∈ L∞(5d
× Rd).

Then, using (13) and letting N → +∞, we get

sup
t≤T ∗

∫
5kd×Rkd

| fk |
peλ(t)ek,γ ≤ 2k Fk

0 .

We can insert this estimate into (36) for p = 2 to derive∫
5kd×Rkd

Rk,N Fk,N eλ(t)ek

≤
σ 2

4
k
N

k∑
i=1

∫
5kd×Rkd

|∇vi Fk,N |
2eλ(t)ek + λ(t)

∫
5kd×Rkd

ek |Fk,N |
2eλ(t)ek + Ck2k Fk

0 .

Once this estimate is incorporated into (34) and using that λ′(t) = −λ(t)/(1 + t), we can, following the
same lines of the proof of Proposition 5, repeat the estimate on the ODE inequality with the extra term
coming from the interaction of Fk,N with rest term Rk,N . This provides the conclusion that there exists T ∗

such that
sup
t≤T ⋆

∫
5kd×Rkd

| fN ,k − fk |
2eλ(t)ek,γ ≤ C̃kεN + C̃k

∫
5kd×Rkd

| f 0
N ,k − f 0

k |
2eλ(0)ek,γ ,

where C̃ is a positive constant that does not depend on N and εN = O(εN ), where ε < 1 depends on a
small enough T ∗. This expression can be deduced in a similar way as (32) in the proof of Theorem 2.
We finally emphasize that the quantitative bounds of Theorem 3 would allow us to recover the optimal
convergence rate in O(1/N ) recently obtained in [Lacker 2023].
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