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STABILITY AND LORENTZIAN GEOMETRY FOR
AN INVERSE PROBLEM OF A SEMILINEAR WAVE EQUATION

MATTI LASSAS, TONY LIIMATAINEN, LEYTER POTENCIANO-MACHADO AND TEEMU TYNI

This paper concerns an inverse boundary value problem for a semilinear wave equation on a globally hyper-
bolic Lorentzian manifold. We prove a Hölder stability result for recovering an unknown potential q of the
nonlinear wave equation�guCqumD 0, m� 4, from the Dirichlet-to-Neumann map. Our proof is based
on the recent higher-order linearization method and use of Gaussian beams. We also extend earlier unique-
ness results by removing the assumptions of convex boundary and that pairs of light-like geodesics can
intersect only once. For this, we construct special light-like geodesics and other general constructions in
Lorentzian geometry. We expect these constructions to be applicable in studies of related problems as well.
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1. Introduction

We consider the stability and uniqueness of an inverse problem for the nonlinear wave equation on an
.nC1/-dimensional, n�2, globally hyperbolic Lorentzian manifold. As is well known, any globally hyper-
bolic Lorentzian manifold N is isometric to a product manifold R�M equipped with the product metric

g D�ˇ.t; x/ dt2C h.t; x/: (1)

Here ˇ>0 is a smooth function and h.t; � /, t 2R, is a smooth one-parameter family of Riemannian metrics
on an n-dimensional manifold M ; see, e.g., [Bernal and Sánchez 2005]. Let ��M be a smooth subman-
ifold of dimension n with smooth boundary and let us denote the lateral boundary of Œ0; T ����N by

† WD Œ0; T �� @�:

In local coordinates .xa/ the d’Alembertian wave operator �g of g has the form

�guD�
nX

a;bD0

1p
jdet.g/j

@

@xa

�p
jdet.g/jgab @u

@xb

�
:
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Here we write .g�1/ab D .gab/, a; b D 0; : : : ; n, as usual. We consider the nonlinear wave equation8<:
�gu.t; x/C q.t; x/u.t; x/m D 0 in Œ0; T ���;
uD f on Œ0; T �� @�;
u.0; x/D @tu.0; x/D 0 on �;

(2)

where we assume that the exponent m is an integer greater than or equal to 4. The inverse problem we
study is the stability of recovery of the potential q from the Dirichlet-to-Neumann (DN) map

ƒ WH sC1
0 .†/!H s.†/; f 7! @�uf j†;

where uf is the unique small solution of (2) and @� is the normal derivative on†. Here alsoH sC1
0 andH s

refer to Sobolev spaces, where s 2 N will be specified later. See Section 1.4 for details about Sobolev
spaces and Section 2 for details about the well-posedness of the forward problem. The present work is a
continuation of the authors’ earlier work [Lassas et al. 2022], which considered the stability of a recovery
of the potential q of (2) in the Minkowski space of RnC1. We describe our main results in Section 1.1.

Studies of uniqueness and stability of the recovery of unknown parameters in inverse problems are
motivated by practical applications. Let us mention some results on inverse problems for linear wave
type equations. First results in this direction for the linear wave equation with vanishing initial data were
obtained in [Belishev 1987; Belishev and Kurylev 1992]. The approach there is called the boundary control
method and it combines both the wave propagation and controllability results [Katchalov et al. 2001]. The
boundary control method allows also an effective numerical algorithm [de Hoop et al. 2018]. Recently,
there have been several results on determining a Riemannian manifold from partial data boundary measure-
ments for the linear wave equation and related equations such as the ones in [Anderson et al. 2004; Helin
et al. 2018; Isozaki et al. 2017; Kian et al. 2019; Krupchyk et al. 2008; Kurylev et al. 2018b; Lassas 2018;
Lassas and Oksanen 2014]. However, the boundary control method has been applicable only in the cases
where the coefficients of the equation are time-independent, or when the lower-order terms are real analytic
in the time variable [Eskin 2007]. In a geometric setting it has been studied if it is possible to recover a
Riemannian metric g from the Dirichlet-to-Neumann map of the equation .@2t ��g/uD 0 in a stable way.
Earlier results for recovery of the metric are based on Tataru’s unique continuation principle, which yields
stability estimates of logarithmic type; see, e.g., [Bosi et al. 2022]. Later these results have been improved
by using different techniques and different assumptions. For example, in [Stefanov and Uhlmann 2005] it
was shown that a simple Riemannian metric g can be recovered in a Hölder stable way from the DN map.
For examples of instability of inverse problems for a wide class of equations; see [Koch et al. 2021].

Concerning the unique recovery of potentials for a linear counterpart of (2) with lower-order terms we
mention [Feizmohammadi et al. 2021; Stefanov 1989; Stefanov and Yang 2018]. These works make use
of propagation of singularities along bicharacteristics to determine integrals of the unknown coefficients
along light rays. In these results, the Dirichlet-to-Neumann or scattering operator needs to be known over
all of the lateral boundary †.

Moving on to inverse problems for nonlinear wave equations, Kurylev, Lassas and Uhlmann [Kurylev
et al. 2018a] observed that nonlinearity can be used as a beneficial tool in inverse problems for nonlinear
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wave equations. By exploiting the nonlinearity, some still unsolved inverse problems for linear hyperbolic
equations have recently been solved for their nonlinear counterparts. The first results in [Kurylev et al.
2018a], for the scalar wave equation with a quadratic nonlinearity, already showed that local measurements
of solutions of the nonlinear wave equation determine the global topology, differentiable structure and the
conformal class of the metric g on a globally hyperbolic .3C1/-dimensional Lorentzian manifold. The
results of [Kurylev et al. 2018a] use the so-called higher-order linearization method, which has made
inverse problems for nonlinear equations more approachable. The method has given rise to many new
results on inverse problems for nonlinear equations. We will explain the method later in this Introduction.

The authors of [Lassas et al. 2018] studied inverse problems for general semilinear wave equations on
Lorentzian manifolds, and in [Lassas et al. 2017] they studied the analogous problem for the Einstein–
Maxwell equations. The papers [Hintz et al. 2022a; 2022b] are closely related to this work. They use the
higher-order linearization method to study uniqueness for the inverse problem of (2). However, these
works have additional assumptions that the domain � of the time cylinder Œ0; T ��� is convex and that
light-like geodesics can only intersect once. These conditions are removed in the present work. Our
results will in particular improve results in [Hintz et al. 2022b].

The research of inverse problems for nonlinear equations is expanding fast. By using the higher-order
linearization method, inverse problems for nonlinear models have been studied for example in [Balehowsky
et al. 2022; Cârstea et al. 2019; Chen et al. 2021; 2022; de Hoop et al. 2019; 2020; Feizmohammadi and
Oksanen 2020; 2022; Kang and Nakamura 2002; Krupchyk and Uhlmann 2020a; 2020b; Kurylev et al.
2022; Lai et al. 2021; Lassas et al. 2021a; 2021b; Oksanen et al. 2024; Sun and Uhlmann 1997; Uhlmann
and Wang 2020; Wang and Zhou 2019].

1.1. Main results. The present work is a continuation of [Lassas et al. 2022] to the setting of globally
hyperbolic Lorentzian manifolds. In that work we considered a stability result for a recovery of the
potential q of (2) in RnC1. We denote by .N; g/ a globally hyperbolic manifold. We assume that the
dimension of N is nC 1, where n� 2. As explained earlier, we view N as the product manifold R�M

equipped with the product metric (1) and where M is an n-dimensional manifold. For T > 0, we fix a
time-interval Œ0; T �. We assume that � �M is an n-dimensional submanifold of M and that � has a
smooth nonempty boundary @�.

The finite propagation speed of solutions to the wave equation and the causal structure of .N; g/ cause
natural limitations on the parts of Œ0; T ��� where we can obtain information about the potential in the
inverse problem. Let W be a compact set belonging to both the chronological future IC.†/ and past
I�.†/ of the lateral boundary †D Œ0; T �� @�:

W � I�.†/\ IC.†/\ .Œ0; T ���/: (3)

(See Section 1.2 for the definitions of I˙.†/ and other basic Lorentzian geometry concepts.) This is
the domain which can be reached by sending waves from † so that the possible signals generated by
a nonlinear interaction of the waves can also be detected on †. We do not assume that Œ0; T �� @� is
convex or that light-like geodesics of .N; g/ can only intersect once.
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Below we use the notation H s
0 for the closure of the space of compactly supported smooth functions,

with respect to the Sobolev H s norm. The main result of this work is the following:

Theorem 1 (stability estimate). Suppose .N; g/, N DR�M, is an .nC1/-dimensional globally hyperbolic
Lorentzian manifold. Let T > 0 and let ��M be a submanifold with smooth nonempty boundary. Let
m � 4 be an integer, s 2 N with s C 1 > nC1

2
and r 2 R with r � s. Let j D 1; 2. Assume that

qj 2 C
sC1.R��/ satisfy kqj kC sC1 � c, j D 1; 2, for some c > 0. Let ƒj WH sC1

0 .†/!H r.†/ be the
corresponding Dirichlet-to-Neumann maps of the nonlinear wave equation (2).

Let "0 > 0, L> 0 and ı 2 .0; L/ be such that

kƒ1.f /�ƒ2.f /kH r .†/ � ı

for all f 2H sC1
0 .†/ with kf kH sC1.†/ � "0. Then there exists a constant C > 0, independent of q1; q2

and ı > 0, such that
kq1� q2kL1.W / � Cı

�.s;m/; (4)

where
�.s;m/D

8.m� 1/

2m.m� 1/.8s�nC 13/C 2m� 1
:

A corollary of the theorem is a uniqueness result, which improves the main result of [Hintz et al.
2022b] by allowing nonconvex boundary and light-like geodesics to intersect more than once.

Corollary 2 (uniqueness). Adopt the notation and assumptions of Theorem 1. Then the Dirichlet-to-
Neumann map ƒ uniquely determines the potential q within the set W .

We only consider the case m� 4 in this work as the other natural cases mD 2 or mD 3 would lead
to additional considerations. The reason is that our method leads to a density problem for products of
mC 1 solutions of the wave equation. The solutions we use do not yield density in the case mD 2, and
not even in the case mD 3, when light-like geodesics can intersect several times. We mention that the
authors of [Hintz et al. 2022b] needed to use different types of solutions in their uniqueness proof when
mD 2 than in the cases m � 3. We expect that both the cases mD 2 and mD 3 can be handled by a
method developed in [Feizmohammadi et al. 2023] for an elliptic equation with quadratic nonlinearity
transferred to the current hyperbolic setting. We consider the cases mD 2; 3 in a future work.

We explain next how our results are proved and how we are able to consider nonconvex boundaries
and the case where light-like geodesics can intersect more than once.

1.2. Sketch of the proof of Theorem 1. Let us discuss the main ideas behind the proof of Theorem 1.
We first discuss how to recover q uniquely from the DN map ƒ associated with (2). To avoid technical
details, the presentation here is slightly formal. We also only consider here the case mD 4 for simplicity,
while the case m> 4 is similar.

We first recall some notation and definitions in Lorentzian geometry following the books [Beem et al.
1996; O’Neill 1983]. Let .N; g/ be a Lorentzian manifold. A smooth path � W .a; b/!N is said to be
time-like if g. P�.s/; P�.s// < 0 for all s 2 .a; b/. The path � is causal if g. P�.s/; P�.s//� 0 and P�.s/¤ 0
for all s 2 .a; b/. For p; q 2N we write p� q if p¤ q and there is a future-pointing time-like path from
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p to q. Similarly, p < q if p ¤ q and there is a future-pointing causal path from p to q, and p � q when
p D q or p < q. The chronological future of p 2N is the set IC.p/D fq 2N j p� qg and the causal
future of p is JC.p/D fq 2N j p � qg. The chronological past I�.q/ and causal past J�.q/ of q 2N
are defined similarly. If A � N, then we define J˙.A/ D

S
p2A J

˙.p/. The sets I˙.p/ are always
open. If .N; g/ is in addition globally hyperbolic, then the sets J˙.p/ are closed, and the sets I˙.p/
and J˙.p/ are related by cl.I˙.p//D J˙.p/; see [O’Neill 1983, Lemmas 14.6 and 14.22]. Finally, a
geodesic from p 2N with initial direction � 2 TpN is denoted by 
p;�.t/D expp.t�/.

Consider fj 2H sC1
0 .†/, j D1; 2; 3; 4, with kfj kH sC1.†/�c0 for some constant c0>0. Let us denote

by u"1f1C���C"4f4 the solution to (2) with boundary data "1f1C� � �C "4f4, where "j > 0 are sufficiently
small parameters. We abbreviate the notation by writing E"D 0 when referring to "1 D � � � D "4 D 0. By
taking the mixed derivative @4"1���"4 jE"D0 of the solution u"1f1C���C"4f4 to (2) with respect to the parameters
"1; : : : ; "4, we see that the function

w WD
@

@"1
� � �

@

@"4

ˇ̌̌
E"D0

u"1f1C���C"4f4

solves the equation
�gw D�16qv1v2v3v4 in Œ0; T ��� (5)

with vanishing Cauchy and boundary data. Here the functions vj , j D 1; : : : ; 4, satisfy8<:
�gvj D 0 in Œ0; T ���;
vj D fj on Œ0; T �� @�;
vj jtD0 D @tvj jtD0 D 0 in �:

(6)

This way we have produced new linear equations from the nonlinear equation (2). If the DN map ƒ is
known, then the normal derivative of w is also known on †. This is true, because

@�w D @
4
"1���"4

jE"D0ƒ."1f1C � � �C "4f4/:

Let v0 be an auxiliary smooth function solving�gvD 0 in Œ0; T ���, with v0jtDT D @tv0jtDT D 0 in�.
The function v0 will compensate for the fact that @�w is known only on the lateral boundary †, but not
on ft D T g. The normal derivative @�w is known on ft D 0g due to the initial conditions. Multiplying (5)
by v0 and integrating by parts on Œ0; T ���, we arrive at the useful integral identityZ

†

v0@
4
"1���"4

jE"D0ƒ."1f1C � � �C "4f4/ dS D

Z
Œ0;T ���

v0�gw dVg

D�16

Z
Œ0;T ���

qv0v1v2v3v4 dVg : (7)

This means that the quantity Z
Œ0;T ���

qv0v1v2v3v4 dVg (8)

is known from the knowledge of the DN map ƒ. Since the functions vj , j D 1; : : : ; 4, were arbitrary
solutions to (6), we are able to choose suitable solutions vj so that the products of the form v0v1v2v3v4

become dense in L1.Œ0; T ���/. This recovers the potential q uniquely. The procedure we have now
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explained results in new equations, and an integral identity relating the DN map and the unknown q, by
differentiating solutions to the nonlinear equation (2) depending on several parameters. This procedure in
general is called the higher-order linearization method.

The earlier work [Lassas et al. 2022] by the authors studied an analogous stability problem in the
Minkowski space. There vj were chosen to be approximate plane waves so that the product v1v2v3v4 in
the integral (8) essentially becomes a delta function of a hyperplane. Hence the integral (8) in that work
became the Radon transformation of qv0 in Rn. Since the Radon transformation in Rn is invertible, this
recovered q. In 1C1 dimensions, the integral (8) becomes an integral of qv0 against a delta distribution,
in which case the recovery of pointwise values of qv0 is trivial. The auxiliary function v0 in the product
qv0 can be eliminated by choosing v0 suitably.

Motivated by the above explanation, in the present work we shall consider the so-called Gaussian beam
solutions vj to (6). One can think of Gaussian beams as wave packets traveling on light-like geodesics. In
Sections 3 and 5 we will show that by using the nonlinearity of (2) and Gaussian beams, one can produce
approximate delta distributions from the product v1v2v3v4 in (8). This uses the fact that Gaussian beams
are solutions to the linear wave equation (6) with exponential concentration to a neighborhood of a given
light-like geodesics up to a small error term. Thus, if two different geodesics intersect, then the product
of the corresponding Gaussian beams concentrates near the intersection points of the geodesics. The
product of four, instead of two, Gaussian beams is required to cancel oscillations of the product of the
solutions. (If oscillations would not be canceled, one would expect not to be able to recover q due to the
nonstationary phase.)

Let us explain how we use four Gaussian beams in (7) in more detail. Let us consider p0 2 W �
I�.†/\ IC.†/\ .Œ0; T ���/. We show that there exist two different geodesics 
1 and 
2 that pass
through p0 and that intersect † in a suitable manner. We distinguish two cases depending on whether 
1
and 
2 intersect only once or multiple times. Let us explain first the simpler case, where the geodesics

1 and 
2 intersect only at the point p0. Let v1 and v2 be Gaussian beam solutions to (6) with respect
to 
1 and 
2. Making the choice v3 D Nv1 and v4 D Nv2 yields v1v2v3v4 D jv1j2jv2j2. Evaluating this
product, one finds that the product jv1j2jv2j2 is an approximation of the delta distribution concentrated
at p0. Therefore, by using the integral identity (7) for this specific product v1v2v3v4, and the knowledge
of the DN map, we can recover qv0 at p0. We take v0 to be another Gaussian beam that is nonzero at p0.
This way we have recovered q at p0. Repeating the argument for all points of W recovers q on W .

Suppose next that 
1 and 
2 intersect at points x1 � � � � � xP , P � 2. Using arguments similar to those
above, the integral (8) reduces to an integral of qv0 against a sum of approximate delta functions located
at the intersection points x1; : : : ; xP . That is, by using (7), we know from the DN map ƒ the quantity

PX
kD1

q.xk/v0.xk/ (9)

up to an error, which can be made arbitrarily small by taking a parameter associated to the Gaussian
beams large enough. The task is then to decouple the information about qv0 at each single point xk from
the sum above.
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To decouple the information, the choice of v0 plays a crucial role. Recall that the only requirement
from v0 was that it satisfies the wave equation �gv0 D 0 with Cauchy data vanishing at t D T. We
show that there is a family .v.k/0 /P

kD1
of P functions, satisfying the required conditions for v0, with the

property that the matrix

V WD

0BBB@
v
.1/
0 .x1/ v

.1/
0 .x2/ � � � v

.1/
0 .xP /

v
.2/
0 .x1/ v

.2/
0 .x2/ � � � v

.2/
0 .xP /

:::
: : :

:::

v
.P /
0 .x1/ v

.P /
0 .x2/ � � � v

.P /
0 .xP /

1CCCA
is invertible. Thus, by using (9) for each v.k/0 in place of v0 separately we know the quantity

V

0B@q.x1/:::
q.xP /

1CA
from the DN map ƒ. Since V is a known invertible matrix, this uniquely recovers the values of the
unknown potential q at the points x1; : : : ; xP . We explain in Section 1.3 the idea of how the matrix V is
constructed, while complete statements and proofs about the matter are in Section 5.6. The matrix V is
called a separation matrix.

So far, we have sketched the proof of unique recovery of q from the DN map ƒ associated with (2).
We briefly discuss how to quantify the uniqueness result and thus to prove a stability estimate. To obtain a
stability estimate for q in terms of ƒ, instead of differentiating (2) with respect to "1; : : : ; "4, we take the
mixed finite differenceD4"1���"4 of u"1f1C���C"2f4 at E"D 0. (Recall that E"D 0 stands for "1D � � �D "4D 0.)
In this case, we obtain a slightly different version of the integral identity (7) given by

�16

Z
Œ0;T ���

qv0v1v2v3v4 dVg

D

Z
†

v0D
4
"1���"4

ˇ̌̌
E"D0

ƒ."1f1C � � �C "4f4/ dS C
1

"1 � � � "4

Z
Œ0;T ���

v0�g zR dVg :

Here the second integral on the right is a small error term, where zR is of the size O.h"1; : : : ; "4i7/ in
an energy space norm. For details, see (11) and (23)–(24). Here we also denote by h"1; : : : ; "4i7 an
unspecified homogeneous polynomial of order 7 in "1; : : : ; "4. If p0 2W is fixed, a stability result for q
at p0 follows by using Gaussian beams associated to the light-like geodesics 
1 and 
2 described above,
optimizing with respect to the parameters "1; : : : ; "4 and the parameters related to the Gaussian beams v1,
v2, v3 and v4. The implied constant of the stability estimate at the fixed-point estimate depends on p0.
To show that the constant can in fact be taken to be independent of p0 we must vary the geodesics 
1
and 
2 and the corresponding Gaussian beams smoothly. This requires some work, which is done in
Section 3. In addition, we must also use different separation matrices for different points in W . These
separation matrices will be constructed with respect to a suitable finite collection of solutions to �gvD 0.
The finite collection will called a separation filter, which is explained in the next section.
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Figure 1. The lateral boundary † (orange cylinder) intersects the lightcone (blue cone) of a
point x (apex of the cone) along the black curves. The point zsup is the latest and zinf the earliest
point on† which can be reached from x by an optimal geodesics. We call these optimal geodesics
boundary optimal geodesics.

1.3. Lorentzian geometry tools. To prove our main results, we make some constructions in Lorentzian
geometry. The main constructions we develop are boundary optimal geodesics and separation matrices.
We explain briefly what these are next. Since we expect the constructions to have applications in related
inverse problems as well, and they might also be of interest in Lorentzian geometry in general, this section
is written to be independent of the inverse problem we consider. We follow the terminology of the book
[O’Neill 1983], and we have included the used concepts of causality in Section 1.4 for an easy access.

Boundary optimal geodesics. Let us first explain what is a boundary optimal geodesic. As before we
consider the subset Œ0; T ��� of a globally hyperbolic smooth Lorentzian manifold R�M, dim.M/Dn�2,
equipped with the metric (1) and where� is a smooth submanifold ofM with boundary and of dimension n.
The lateral boundary † refers to the set Œ0; T �� @� as before. As is by now quite standard, see, e.g.,
[Kurylev et al. 2018a; O’Neill 1983], we say that a geodesic connecting the points x; y 2 N, x � y,
is optimal if the time separation function � of these points vanishes, �.x; y/D 0. The time separation
function is the supremum of lengths of piecewise smooth future-directed causal paths from x to y; see
(49) or [O’Neill 1983] for details. An optimal geodesic is always light-like.

Let us then consider a point x 2 I�.†/\.Œ0; T ���/. In the inverse problem of this paper, we consider
Gaussian beams that vanish on a neighborhood of ftDT g. For this, it is required to find past-directed light-
like geodesics of Œ0; T ��� from† to x 2 Œ0; T ���, which do not intersect the set ft DT g. In Lemma 15,
we show that we may find a point zinf of the lateral boundary † and an optimal past-directed geodesic 

from zinf to x. The situation is illustrated in Figure 1. In the figure, the point zinf 2†, is the point which
has the smallest time coordinate in the intersection of the light-like future of x (the upper cone) and†. The
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light-like geodesic 
 from zinf to x is not only optimal, i.e., �.x; zinf/D0, but it also necessarily intersects†
transversally even if † would be nonconvex. We call the geodesic 
 a boundary optimal geodesic.

Note that by deforming † in the figure to a nonconvex manifold, it is possible to find optimal geodesics
from x to points in †, which intersect † tangentially. Therefore, not all optimal geodesics are boundary
optimal geodesics. Similarly, for x 2 IC.†/\ .Œ0; T ���/, we also prove in Lemma 15 that we may
find a future-directed boundary optimal geodesic from zsup 2† to x also presented in Figure 1.

We remark that in inverse problems related to the one studied in this paper, convexity of the lateral
boundary is assumed to have light-like geodesics that intersect the boundary transversally; see, e.g., [Hintz
et al. 2022b]. By using boundary optimal geodesics of this paper, the convexity assumption in that work
can be dropped. We expect this to be true also in related inverse problems.

We make the notion of boundary optimal geodesics precise in the form of the following definition.
Below, the time coordinate, or the time function, of N is t .

Definition 3 (boundary optimal geodesic). Let .N; g/ be globally hyperbolic, N D R�M, � �M a
manifold with boundary and †D Œ0; T �� @�. We call a geodesic 
 W Œ0; 1�! Œ0; T ��� a past-directed
boundary optimal geodesic to x 2 J�.†/ if

(1) 
.0/ 2† and 
.1/D x,

(2) the time coordinate of 
.0/ equals

tinf D inff Qd 2 Œ0; T � j there is Qz 2† such that t . Qz/D Qd and �.x; Qz/ > 0g;

(3) 
 is an optimal geodesic connecting the points x and 
.0/.

Similarly, we call 
 a future-directed boundary optimal geodesic to x 2 JC.†/ if the time coordinate of

.0/ equals instead

tsup D supf Qd 2 Œ0; T � j there is Qz 2† such that t . Qz/D Qd and �. Qz; x/ > 0g:

We refer to both past- and future-directed boundary optimal geodesics to x respectively belonging to
J�.†/ and JC.†/ collectively as boundary optimal geodesics.

Remark 4. Boundary optimal geodesics are related to a recently introduced concept of null distance
[Allen and Burtscher 2022; Sormani and Vega 2016]. A null distance turns a Lorentzian manifold
admitting a suitable time function into a metric space in a conformally invariant way. In particular, a
globally hyperbolic manifold N becomes a metric space with a metric d WN �N ! Œ0;1/. We wish to
state here the following facts, even though we do not use them.

If 
 is a boundary optimal geodesic connecting z 2† to x, then jt .x/� t .z/j D d.x; z/. Moreover,
a boundary optimal geodesic minimizes the distance between x and its future causal lateral boundary
†\JC.x/ in the sense that

d.†\JC.x/; x/D d.zinf; x/;

where zinf 2†\J
C.x/ is the starting point of a past-directed boundary optimal geodesic to x. We have

similarly for the past causal lateral boundary †\J�.x/. In this sense, boundary optimal geodesics are
an analogue to Riemannian geodesics that minimize the distance to a boundary.
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x2
†


2


1 x1

Figure 2. Past-directed light-like geodesics (red dashed lines) that separate the intersection points
x1 and x2 of future-directed light-like geodesics (black). The geodesics in red and black intersect
† at times t < T and t > 0 respectively.

Separation matrices. Having explained what optimal and boundary optimal geodesics are, we are ready
to present what a separation matrix is and how it is constructed.

Definition 5 (separation matrix). Let x1; : : : ; xP 2 Œ0; T ��� and v1; : : : ; vP be solutions to �gv D 0
in Œ0; T ���. If the matrix 0BBB@

v1.x1/ v2.x1/ � � � vP .x1/

v1.x2/ v2.x2/ � � � vP .x2/
:::

: : :
:::

v1.xP / v2.xP / � � � vP .xP /

1CCCA (10)

is invertible, we call it a separation matrix.

In general, if x1; : : : ; xP 2 I�.†/\ .Œ0; T �� @�/ satisfy x1 < � � �< xP we show in Lemma 17 that
there are P solutions vk , k D 1; : : : ; P, to the wave equation �gv D 0 whose Cauchy data vanish on
ft D T g such that the corresponding matrix (10) is invertible and thus a separation matrix.

Let us consider here the simplest nontrivial case P D 2 and assume that x1; x2 2 I�.†/\.Œ0; T ��@�/
satisfy x1 < x2. To construct suitable solutions v1 and v2 in this case, we proceed by first choosing two
light-like geodesics as follows. The choice is illustrated in Figure 2, where the points x1 and x2 are
the intersection points of the black curves. (In our inverse problem the black curves are also geodesics,
but that is not important for the present discussion.) By the discussion above, we may find a boundary
optimal geodesic 
1 between x1 and x1;inf 2† and another boundary optimal geodesic 
2 connecting x2
to †. Next we note that if 
1 also meets x2, then we can perturb the initial direction of 
1 at x1 to have a
new light-like geodesic that does not meet x2. Indeed, if the new perturbed geodesic would still meet x2,
then it is a fact that there would be a shortcut path from x1 to † which has positive length. This would
contradict the condition �.x1; x1;inf/D 0. We refer to the proof of Lemma 17 for the details. We also
note that it is possible that 
2 meets x1.
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By the above discussion, we have the light-like geodesic 
1 from x1 to † which does not meet x2
and another light-like geodesic from x2 to †. Corresponding to these two geodesics there are respective
Gaussian beam solutions v1 and v2 to �gv D 0 with vanishing Cauchy data at ft D T g. By using the
properties of Gaussian beams, we know that v1 and v2 are concentrated to small neighborhoods of the
corresponding geodesics, respectively. See Section 3 for details. Thus we have for k; l D 1; 2 that

jvk.xl/j � 1; k D l;

jvk.xl/j � 1; k > l;

jvk.xl/j � c0; k < l;

where c0 > 0 is a constant. Therefore the matrix V in (10) in this case is approximately a lower triangular
matrix with ones on the diagonal. Thus V is invertible, and hence a separation matrix in our terminology.
Vaguely speaking, we can separate points by solutions to the wave equation �gv D 0. We mention that a
similar condition has been used in the study of inverse problems for elliptic equations in [Guillarmou
et al. 2019; Lassas et al. 2020].

Finally, we mention that when proving our stability result in this paper, we can only use finitely many
separation matrices. For this, we show that there are finitely many solutions v to �gvD 0 with vanishing
Cauchy data at ft D T g such that the separation matrices made out of these solutions can separate any
fixed number of points in I�.†/\ .Œ0; T ���/ that are distinct in a precise sense. In the definition below,
Ng is an auxiliary Riemannian metric on Œ0; T ���.

Definition 6 (separation filter). Let K � Œ0; T ��� be compact and P 2 N. A finite collection M �
C1.Œ0; T ���/ of solutions to�gvD 0 is called a separation filter if the following holds: For any points
x1; : : : ; xP 2K such that x1 < x2 < � � �< xP and d Ng.xk; xl/ > ı for xk ¤ xl , k; l D 1; : : : ; P, there are
v1; : : : ; vP 2M such that the matrix .vk.xl//Pk;lD1 in (53) is invertible (and thus a separation matrix).

In Lemma 18 we show that if K � I�.†/\ IC.†/\ .Œ0; T ���/, then a separation filter exists.

1.4. Preliminary definitions. The Sobolev spaces H s on a compact smooth manifold can be defined in
several ways (up to equivalent norms). We define Sobolev spaces first on the manifold N D R�M using
partition of unity on charts; see, e.g., [Hörmander 1983; Roe 1988; Taylor 2011]. Sobolev spaces on the
time cylinder Œ0; T ��� are then defined by restriction:

H s.Œ0; T ���/ WD ff jŒ0;T ��� j f 2H
s.R�M/g:

As usual, the dual space of H r.Œ0; T ���/, r � 0, is defined as

zH�r.Œ0; T ���/ WD ff 2H�r.R�M/ j suppf � Œ0; T ���g:

It is endowed with the norm

kgk zH�r .Œ0;T ���/ WD sup
jg.v/j

kvkH r .Œ0;T ��M/

;
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where the supremum is over all v 2 H r.Œ0; T ��M/, v ¤ 0, with supp v � Œ0; T ���. By the Riesz
representation theorem, one can always find f0 2H r.R�M/ so that for all v 2H r.R�M/

kf k zH�r .Œ0;T ���/ D kf0kH r .R�M/; f .v/D hf0; vi:

Additionally, if supp v � Œ0; T ���, then we have for all v 2H r.Œ0; T ��M/ the estimate

jf .v/j D jhf0; vij � kf k zH�r .Œ0;T ���/kvkH r .Œ0;T ���/:

Sobolev spaces of the manifold � with boundary are defined similarly. By the notation H s
0 we mean the

closure of the space of compactly supported smooth functions with respect to the Sobolev H s norm.

Structure of the paper. This paper is organized as follows. In Section 1.1 we present our main results
and explain briefly the structure of the proofs. Section 2 studies the forward problem of the nonlinear
equation (2). Most of the proofs of Section 2 are included in the Appendix. Section 3 concerns the
construction of Gaussian beams in Lorentzian manifolds. In Section 4 we construct the tools of Lorentzian
geometry which we use in our inverse problem. This section in particular shows it is possible distinguish
different points of a Lorentzian manifold by using solutions to the wave equation. The section introduces
the concepts of boundary optimal geodesics and separation matrices. Finally, in Section 5 we collect the
results we have obtained until that point to give a proof for our main theorem. For clarity, the proof is
split into several parts.

2. Well-posedness of the forward problem

To prove existence of small solutions for the nonlinear wave equation (2), we start by recalling the
corresponding results for the linear initial-boundary value problem8<:

�guD F in Œ0; T ���;
uD f on Œ0; T �� @�;

ujtD0 D u0; @tujtD0 D u1 in �:

Let s 2 N. Convenient spaces for solutions of the wave equation are called energy spaces Es, defined as

Es D
\

0�k�s

C k.Œ0; T � IH s�k.�//:

These spaces are equipped with the norm

kukEs D sup
0<t<T

X
0�k�s

k@kt u. � ; t /kH s�k.�/: (11)

As is the case with the Sobolev spaces H s.�/, the space Es is an algebra if s > n
2

and we have the norm
estimate

kuvkEs � CskukEskvkEs for all u; v 2Es:

The above facts are well known, see, e.g., [Choquet-Bruhat 2009, Appendix III, Definitions 3.4(2) and 3.5],
but for completeness of our presentation, we sketch a proof for them here for the case s 2N. For this, we
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let u; v 2Es and show that the pointwise product uv is in Es. Since

kuvkEs D sup
0<t<T

sX
kD0

k@kt .uv/kH s�k.�/;

it suffices to show that each term of the form

sup
0<t<T

k@at u @
b
t vkH s�k.�/

is finite for a C b D k and for each k D 0; : : : ; s. By using [Choquet-Bruhat 2009, Appendix III,
Definition 3.4(2)] or [Behzadan and Holst 2021, Corollary 6.3 or Theorem 7.4], we see that when
s1; s2 � s � 0 and s1C s2 > sC n

2
the following multiplication property holds in Lipschitz domains:

H s1.�/�H s2.�/�H s.�/:

Since u; v 2 Es we find @at u 2 H
s�a.�/ and @at v 2 H

s�b.�/ for all fixed t 2 Œ0; T � and the implied
norms are uniformly bounded in t . We have s�a, s�b � s�k � 0 and .s�a/C .s�b/ > .s�k/C n

2
,

since s > n
2

and aC b D k. This implies @at u@
b
t v 2H

s�k.�/ for all t 2 Œ0; T � with the implied norm
uniformly bounded in t as required.

Remark 7. We note that Es � H s.Œ0; T ���/. Conversely, due to the standard Sobolev embedding
H s.Œ0; T � � �/ � C k.Œ0; T � � �/, when s > k C nC1

2
, we have that H s0.Œ0; T � � �/ � Es, when

s0 > sC nC1
2

. In particular,

kukH s.Œ0;T ���/ . kukEs . kukH s0 .Œ0;T ���/: (12)

For the wave equations we consider, we need to assume certain compatibility conditions between the
boundary values and the initial data. The compatibility conditions for (2) to order 2 are given by

f jtD0 D u0j@�; @tf jtD0 D @tujf0g�@� D u1j@�;

@2t f jtD0 D @
2
t ujf0g�@� D ˇ

�1
jf0g�@�.�hu0j@�CF jf0g�@�/: (13)

Here the smooth function ˇ and g are related by (1). The compatibility conditions up to general order s are
obtained by setting @kt f jtD0D @

k
t ujf0g�@�, for kD 0; : : : ; s, and then solving for @kt ujf0g�@� in terms of

the initial data by using the equation �guD F. These conditions guarantee that at the boundary @� the
initial data .u0; u1/ is compatible with the corresponding boundary condition f . These conditions have
been discussed for example in [Katchalov et al. 2001, Section 2.3.7] in the simpler case where the metric
is time-independent. Especially, if @kt f jtD0 D 0 for all k D 0; : : : ; s, or if f is supported away from the
Cauchy surface ft D 0g, and F � 0 and u0 � u1 � 0, then the compatibility conditions of order s hold.

Proposition 8 (existence and estimates for the linear equation [Ikawa 1968; Lasiecka et al. 1986]). Assume
that .R�M;g/ is a globally hyperbolic Lorentzian manifold as in (1) and��M is a compact submanifold
with nonempty boundary. Let s 2 N be a positive integer and assume that F 2 Es, f 2 H sC1.†/,
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u0 2H
sC1.�/ and u1 2H s.�/ satisfy the compatibility conditions. Then the equation8<:

�guD F in Œ0; T ���;
uD f on †;
uD u0; @tuD u1 in ft D 0g ��

(14)

has a unique solution u 2EsC1 satisfying

kukEsC1 � C.kF kEs Ckf kH sC1.†/Cku0kH sC1.�/Cku1kH s.�// (15)

and @�uj† 2H s.†/.

As we could not find a proof for Proposition 8 in general for globally hyperbolic Lorentzian manifolds,
we have included one in the Appendix. The energy estimates of the linear problem (14) directly allow us
to conclude that the nonlinear problem (2) has a unique small solution in EsC1. The proof of the following
lemma is similar to the one in [Lassas et al. 2022, Proof of Lemma 1, Appendix A]. We omit the proof.

Lemma 9. Let m � 2 be an integer and � �M be a compact submanifold, dim.�/D dim.M/, with
nonempty boundary. Assume s 2N is such that sC1 > nC1

2
. Suppose that q 2 C sC1.Œ0; T ���/ satisfies

the a priori bound kqkC sC1 � c for some c > 0. Then there are � >0 and �>0 such that if f 2H sC1.†/

satisfies kf kH sC1.†/ � �, and @˛t f jtD0 D 0 for all ˛ D 0; : : : ; s on Œ0; T �� @�, then there is a unique
solution to 8<:

�guC qum D 0 in Œ0; T ���;
uD f on Œ0; T �� @�;
ujtD0 D @tujtD0 D 0 in �

(16)

in the ball
B�.0/ WD fu 2E

sC1
j kukEsC1 < �g �E

sC1:

Furthermore, the solution satisfies the estimate

kukEsC1 � C0kf kH sC1.†/;

where C0 > 0 is a constant independent of f and q.

If the boundary data of the nonlinear equation (16) depends on small parameters, we may expand the
corresponding solution u in terms of the small parameters. Indeed, let "1; : : : ; "m >0 be small parameters
and define

E"D ."1; : : : ; "m/:

Consider the boundary value in (16)

f .x/D

mX
jD1

"jfj .x/;

where fj 2H sC1.†/, j D1; : : : ; m, satisfies the compatibility conditions to order s and kf kH sC1.†/� �

for some � > 0. Let us denote in the usual multi-index notation

Nk D .k1; : : : ; km/;
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where kj 2 f0; : : : ; mg. Then by repeating the proof of Proposition 1 in [Lassas et al. 2022], we find
that u can be expanded as

uD

mX
jD1

"j vj C
X
j NkjDm

� m

k1; : : : ; km

�
"
k1
1 � � � "

km
m w NkCR: (17)

The functions vj , j D 1; : : : ; m, satisfy8<:
�gvj D 0 in Œ0; T ���;
vj D fj on Œ0; T �� @�;
vj jtD0 D 0; @tvj jtD0 D 0 in �

(18)

and the functions w Nk satisfy8<:
�gw NkC qv

k1
1 � � � v

km
m D 0 in Œ0; T ���;

w Nk D 0 on Œ0; T �� @�;
w NkjtD0 D 0; @tw NkjtD0 D 0 in �:

(19)

The remainder R is bounded in the energy spaces as follows:

kRkEsC2 � c.s; T /kqk
2
EsC1





 mX
jD1

"jfj





2m�1
H sC1.†/

;

k�RkEsC1 � C.s; T /kqk
2
EsC1





 mX
jD1

"jfj





2m�1
H sC1.†/

:

(20)

By using the expansion formula (17), we will next derive an integral equation which relates the
potential q to the DN map ƒ. In general, relating an unknown parameter/function in an inverse problem
for a nonlinear equation to a formula for solutions to linear equations is called a higher-order lineariza-
tion method. See for example [Kurylev et al. 2018a; Lassas et al. 2018; 2021b], where solutions are
differentiated with respect to small parameters. However, as we are interested in stability of our inverse
problem, we need accurate control on the remainder terms. For this reason, following [Lassas et al. 2022],
instead of differentiating we use finite differences Dm

E"
. The mixed finite difference of u at E"D 0, that is,

"1 D � � � D "m D 0, is defined by the formula

Dm
E"
jE"D0u"1f1C���C"mfm D

1

"1 � � � "m

X
�2f0;1gm

.�1/j� jCmu�1"1f1C���C�m"mfm ; (21)

where u"1f1C���C"mfm is the unique solution to (16) with f replaced by "1f1C � � � C "mfm. Then the
mixed finite difference Dm

E"
of the solution u of (16) takes the form

Dm
E"
jE"D0uDmŠw1;1;:::;1CD

m
"1"2���"m

jE"D0R; (22)

where R is a sum of the remainders of the solutions u�1"1f1C���C�m"mfm in (21).
For more details about the finite differences of u, we refer the reader to [Lassas et al. 2022, Appendix C].
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Let v0 be an auxiliary function solving �gv0 D 0 with v0jtDT D @tv0jtDT D 0 in �. By multiplying
the DN-map ƒ associated with (2) by v0 and integrating by parts over Œ0; T ���, we obtainZ
†

v0D
m
E"
jE"D0ƒ."1f1C � � �C "mfm/ dS

D

Z
†

v0D
m
E"
jE"D0@�u"1f1C���C"mfm dS

DmŠ

Z
Œ0;T ���

v0�gw1;1;:::;1 dVg C
1

"1 � � � "m

Z
Œ0;T ���

v0�g zR dVg :

Here we defined
zR WD "1"2 � � � "mDmE" jE"D0R (23)

and zR satisfies

kzRkEsC2 � c.s; T /kqk
2
EsC1

X
�2f0;1gm

k�1"1f1C � � �C �m"mfmk
2m�1
H sC1.†/

;

k� zRkEsC1 � C.s; T /kqk2EsC1
X

�2f0;1gm

k�1"1f1C � � �C �m"mfmk
2m�1
H sC1.†/

:
(24)

We have arrived at the following integral identity which connects the potential q with the DN-map ƒ.

Integral identity.

�mŠ

Z
Œ0;T ���

qv0v1v2 � � � vm dVg

D

Z
†

v0D
m
E"
jE"D0ƒ."1f1C � � �C "mfm/ dS C

1

"1"2 � � � "m

Z
Œ0;T ���

v0�zR dVg : (25)

Our analysis of the inverse problem is based on this formula.

3. Gaussian beams

In this section we record some facts about Gaussian beams. Gaussian beams on a Lorentzian manifold
.N; g/, dim.N /D nC1� 3, are approximate solutions to the wave equation �gvD 0. If s is a geodesic
parameter of a light-like geodesic 
 W Œs1; s2� ! N and .s; y/, y D .y1; : : : ; yn/ 2 Rn, are suitable
Fermi coordinates (see (26) below) on a neighborhood of the graph � of 
 , then a Gaussian beam in the
coordinates .s; y/ looks roughly like

eiy1��a� jyj
2

;

up to a normalization. By graph of 
 we mean the image set

� WD 
.Œs1; s2�/:

Here a>0 and � is a large parameter. Therefore, the qualitative behavior of a Gaussian beam is oscillation
in a direction y1 transversal to the geodesic 
 and Gaussian concentration around the graph of 
 .

The construction of Gaussian beams is well known; see, e.g., [Babich et al. 1985; Feizmohammadi
and Oksanen 2022; Ralston 1982]. We include details about the construction since we wish to keep
track of the constants that will be implicit in our stability estimate of Theorem 1. Our presentation



STABILITY AND LORENTZIAN GEOMETRY FOR AN INVERSE PROBLEM OF A SEMILINEAR WAVE EQUATION 1081

of the construction follows closely [Feizmohammadi and Oksanen 2022, Section 4] to which we refer
for omitted details. We mention here the recent work [Krupchyk et al. 2022], which constructs related
Gaussian beam quasimodes in a Riemannian setting by using more sophisticated methods, which lead to
better estimates.

Fermi coordinates are constructed by inverting the map

.s; y/ 7! exp
.s/

� nX
kD1

ykek.s/

�
2N: (26)

Here ek.s/ are the parallel transportations along a light-like geodesic 
 of the last n vectors of a frame
fe0; e1; : : : ; eng of T
.0/ with

e0 D P
.0/:

The other vectors of the frame are chosen so that, for j; k D 2; : : : n, it holds

g.e0; e0/D 0; g.e1; e1/D 0; g.e0; e1/D�2; g.ej ; ek/D ıjk : (27)

The frame fe0; e1; : : : ; eng is called a pseudo-orthonormal frame. (Due to relation to the usual light-cone
coordinates, we could also call it a lightcone frame.) Since the frame fe0.s/; e1.s/; : : : ; en.s/g is the
parallel transportation of fe0; e1; : : : ; eng along 
 , the conditions (27) hold for ej , j D 0; : : : ; n, replaced
with ej .s/ and e0.s/D P
.s/.

We work in the Fermi coordinates described above. In the Fermi coordinates .s; y/, the geodesic 

corresponds to .s; 0/ and the coordinate representation gj
 D g.s; 0/ of the metric g restricted to 

satisfies

gj
 D�2 ds dy1C

nX
kD2

dyk dyk :

Gaussian beams are constructed by using a WKB ansatz ei�‚.s;y/a.s; y/ to approximately solve the
equation �gv D 0 in the Fermi coordinates .s; y/. We have

�g.ei�‚a/D ei�‚.�2g.d‚; d‚/� 2i�g.d‚; da/C i�.�g‚/aC�ga/: (28)

We will choose a phase function ‚ and an amplitude function a so that the right-hand side of (28) is
O.��K/ in Hk.Œ0; T ���/ for given k � 0 and K 2N. To do so, we first approximately solve the eikonal
equation

g.d‚; d‚/D 0: (29)

After finding an (approximate) solution ‚ to the eikonal equation, we equate the last three terms of (28)
by inserting ‚ into

�2i�g.d‚; da/C i�.�g‚/aC�gaD 0:

By assuming an expansion of the form

aD a0C �
�1a1C �

�2a2C � � �C �
�NaN
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for the amplitude a, where N 2N is to be chosen later, we are led by equating the powers of � to a family
of N C 1 equations

�2ig.d‚; da0/C i.�g‚/a0 D 0; (30)

�2ig.d‚; daj /C i.�g‚/aj ��gaj�1 D 0; (31)

j D 1; : : : ; N. We solve these equations approximately and recursively in j starting from a0. Equations
(30) and (31) are called transport equations.

In what follows, we refer to [Feizmohammadi and Oksanen 2022] for omitted details. To solve the
eikonal equation (29) approximately, one sets

‚D

NX
jD0

‚j .s; y/;

where ‚j .s; y/ is a homogeneous polynomial of order j in y 2 Rn. We say that g.d‚; d‚/ vanishes to
order N on �, or that g.d‚; d‚/D 0 is satisfied to order N on �, if

.@˛yg.d‚; d‚//.s; 0/D 0;

where ˛ is any multi-index with j˛j �N. We set

‚0 D 0 and ‚1 D y1: (32)

It follows that

g.d‚; d‚/.s; 0/D 0 and .@ylg.d‚; d‚//.s; 0/D 0;

where l D 1; : : : ; n. That is, the eikonal equation (29) is satisfied to order 1 on �. The conditions (32)
imply the invariantly written conditions

‚.
.s//D 0 and r‚.
.s//D e1.s/:

To have that g.d‚; d‚/D 0 is satisfied to order 2 on � is more complicated. For this, one uses the
quadratic ansatz

‚2.s; y/D y �H.s/y;

where H.s/ is a complex n� n matrix and “ � ” refers to the usual Rn inner product and y 2 Rn. This
ansatz leads to the Riccati equation, which is a first-order matrix-valued ODE. For our purposes, the
form of the Riccati equation is not important and it suffices to say that one can find a complex solution
H.s/ to the equation with Im.H.s// > 0. The conditions Im.H.s// > 0 and ‚0 D 0 together imply the
invariantly written conditions

Im.r2‚.
.s///� 0 and Im.r2‚/.
.s//j P
.s/? > 0:

Here we use the notation P
.s/? to denote the algebraic complement to P
.s/ in T
.s/N. That is,
R P
.s/˚ P
.s/? D T
.s/N.
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Solving the eikonal equation to order 2 is enough to understand the qualitative properties of the phase
function ‚ needed in our inverse problem. However, we wish to have that

�g.eis‚.x/a.x//DOHk.Œ0;T ���/.�
�K/:

For this, we solve the eikonal equation to an order N, which depends on k and K. This can be done
by solving additional ODEs, but we omit the details. After finding ‚ so that g.d‚; d‚/ vanishes to
order N on �, the term �2g.d‚; d‚/ in the expansion (28) of �g.ei�‚a/ satisfies

�2g.d‚; d‚/� C0�
2
jyjNC1: (33)

We choose a specific N later.
Next we insert the phase function ‚ that we have constructed into the transport equations (30) and (31)

to find an amplitude function a. To solve the transport equations, we write

ak D �

�
jyj

ı0

�
bk; (34)

so that

aD �

�
jyj

ı0

� NX
kD0

��kbk :

Here � 2 C1c .R/ is a fixed cutoff function, which is identically 1 on a neighborhood of 0 2 R and ı0 > 0
is chosen small enough so that �.jyj=ı0/ is compactly supported in the domain of the Fermi coordinates.

We seek the bk , k D 1; : : : ; N, in the form

bk D

NX
jD0

bk;j .s; y/; (35)

where bk;j .s; y/ is a complex-valued homogeneous polynomial of order j in y. We are interested in the
specific form only of the leading term b0;0. The transport equation concerning b0 is

�2g.d‚; da0/C .�g‚/a0 D 0;
which is satisfied to order 0 if

�2g.d‚; db0;0/.s; 0/C .�g‚/b0;0.s; 0/D 0:

Here we used that �.jyj=ı0/D 1 to order 1 at y D 0. We have d‚.s; 0/D dy1 and g01.s; 0/D �1. It
is calculated in [Feizmohammadi and Oksanen 2022, Section 4.2] that .�g‚/.s; 0/D d

ds
log det.Y.s//,

where Y.s/ is a one-parameter nondegenerate matrix field which solves an ODE with the initial condition
Y.0/D In�n, the n�n identity matrix. Thus we have that the equation for b0;0.s/ is solved by

b0;0.s/D det.Y.s//�
1
2 ; (36)

with
b0;0.0/D 1: (37)

Recall that the terms a0, b0 and b0;j , j D 1; 2; : : : ; N, are related by (34)–(35). The terms b0;j ,
j D 1; 2; : : : ; N, are constructed by solving linear ODEs so that �2g.d‚; da0/C .�g‚/a0 D 0 is
satisfied to order N. The higher-order transport equations (31) concerning bk , k � 1, can be solved
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recursively to order N by using similar arguments. We omit the details, and only conclude that there is
C1 > 0 so that

j�2ig.d‚; da0/C i.�g‚/a0j � C1jyjNC1;

j�2ig.d‚; dak/C i.�g‚/ak ��gak�1j � C1jyjNC1;

k D 1; : : : ; N. Since aD a0C ��1a1C ��2a2C � � �C ��NaN , we have that

�2i�g.d‚;da/Ci�.�g‚/aC�ga

D �

NX
kD0

��k.�2ig.d‚;dak/Ci.�g‚/ak/C
NX
kD0

��k�gak

D �

NX
kD1

��k.�2ig.d‚;dak/Ci.�g‚/akC�gak�1/C�.�2ig.d‚;da0/Ci.�g‚/a0/C��N�gaN

D �OL1.jyjNC1/CO.��N /:

By additionally recalling from (33) that �2g.d‚; d‚/� C0�2jyjNC1, we have

e�i�‚�g.ei�‚a/D �2g.d‚; d‚/� 2i�g.d‚; da/C i�.�g‚/aC�ga

� C0�
2
jyjNC1CC1� jyj

NC1
CC2�

�N :

By redefining ı0 > 0 smaller, if necessary, we have that

jei�‚.s;y/j � Ce�c� jyj
2

for .s; y/ in the support of a. Recall that our aim is to show that

k�g.ei�‚.s;y/a.s; y//kHk.Œ0;T ���/ DO.��K/: (38)

Taking k derivatives of �g.ei�‚.s;y/a.s; y// gives

jr
k�g.ei�‚.s;y/a.s; y//j � C3e��cjyj

2
kX
lD0

�k�l.�2jyjNC1�l C � jyjNC1�l C ��N /: (39)

We calculate the integral of (39) squared using polar coordinates for the y-variable and the standard
formula

R1
0 r le��cr

2

dr � ��.lC1/=2 for l � 0. Note that since the light-like geodesic 
 of .N; g/ is
causal, Œ0; T ��� compact and .N; g/ globally hyperbolic, the geodesic 
 D 
.s/ exits Œ0; T ��� after a
finite parameter time r0. Thus the integration in the coordinate s will be over a finite interval Œ0; r0�. The
above discussion implies the estimate

k�g.ei�‚.s;y/a.s; y//k2Hk.M/
.

kX
lD0

�2.k�l/
�Z r0

0

e�2�cr
2

rn�1.�4r2NC2�2l C ��2N / dr

�

.
kX
lD0

�2.k�l/.�4��
nC2NC2�2l

2 C �
�2N�n

2 /

. �2kC4�
nC2C2N

2 D �2kC3�
n
2
�N
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for � and N large enough. (Here we have relaxed the notation and written A. B if there is a constant zC
independent of � such that A� zCB .) If p > 1, we may Lp-normalize the function ei�‚a so thatZ

M

j�
n
2p ei�‚ajp . �

n
2

Z 1
0

rn�1e��cr
2

. 1;

in which case we also have Z
M

jr
l.�

n
2p ei�‚a/j2 . �

n
p �2l��

n
2 :

Therefore, if we define N DN.n; k;K; p/ so that it satisfies

�2K D 2kC 3�
n

2
�N C

n

p
; (40)

we have (38). (If N above is not an integer, we redefine it as bN C 1c.)
By collecting the details of the construction and by defining

v� D �
n
2p ei�‚a

we have:

Proposition 10 (Gaussian beams). Let .N; g/ be a globally hyperbolic Lorentzian manifold, N D R�M

and dim.N /D nC 1� 3. Let � be a compact submanifold of M with boundary, and dim.�/D n. Let
T > 0 and let 
 be a light-like geodesic of .N; g/. Let k;K; l 2N and p � 2. There is �0 � 1 and a family
of functions .v� /� C1.Œ0; T ���/ such that for � � �0

k�gv�kHk.Œ0;T ���/ DO.��K/;

kv�kLp.Œ0;T ���/ DO.1/;

kv�kH l .Œ0;T ���/ DO.�
n
2p
�n
4
Cl/

(41)

as � !1. The function v� is called a Gaussian beam and it has the form

v� D �
n
2p ei�‚.x/a.x/;

where ‚ is a smooth complex function (independent of � ) on a neighborhood of 
.Œ0; L�/ satisfying

‚.
.s//D 0; r‚.
.s//D e1.s/;

Im.r2‚.
.s///� 0; Im.r2‚/.
.s//j P
.s/? > 0:
(42)

Here also
a.
.s//D a0.
.s//CO.��1/;

where
a0.
.s//D det.Y.s//�

1
2

is nonvanishing and independent of � . Here Y.s/ is a nondegenerate n�n matrix-valued function. The
support of a can be taken to be in any small neighborhood U of 
.Œ0; L�/ chosen beforehand. If s0 2 Œ0; L�,
we may arrange so that a0.
.s0//D 1.

The Gaussian beams can be corrected to be exact solutions to �v D 0.
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Corollary 11. Let us adopt the assumptions and notation of Proposition 10. Assume in addition that the
light-like geodesic 
 does not intersect ftD0g. Assume that l 02N satisfies k>l 0�1C nC1

2
. Then there are

Gaussian beams v� satisfying the conditions of Proposition 10 and functions r� 2C1.Œ0; T ���/ such that

v WD v� C r�

is a solution to 8<:
�gv D 0 in Œ0; T ���;
v D v� on Œ0; T �� @�;
vjtD0 D @tvjtD0 D 0 in �:

(43)

The functions r� satisfy
kr�kH l0 .Œ0;T ���/ DO.��K/: (44)

Proof. By assumption the graph of 
 has a neighborhood U which does not intersect a neighborhood of
ft D 0g. Let v� be Gaussian beams which are supported in U and satisfy the conditions of Proposition 10.
By Proposition 8, there exists a solution to8<:

�gr� D��gv� in Œ0; T ���;
r� D 0 on Œ0; T �� @�;
r� jtD0 D @tr� jtD0 D 0 in �:

Then v D v� C r� solves (43).
By Proposition 10 we have that k�gv�kHk.Œ0;T ���/ DO.��K/, where k;K can be chosen freely. By

Remark 7 for k > l 0 � 1C nC1
2

it holds that Hk.Œ0; T ���/ � El
0�1. Choosing k > l 0 � 1C nC1

2
in

Proposition 8 and using (12) shows that

kr�kH l0 .Œ0;T ���/ . kr�kE l0 . k�gv�kE l0�1 . k�gv�kHk.Œ0;T ���/ DO.��K/

as claimed. �

Remark 12. We shall also need solutions to the wave equation8<:
�gv D 0 in Œ0; T ���;
v D f on Œ0; T �� @�;
vjtDT D @tvjtDT D 0 in �;

(45)

where the Cauchy data of v vanishes at the top of the time cylinder. Solutions to (45) can be found as
follows. Consider the isometry h given by t 7! T � t and let Qg D h�g. Let Qf D f .T � t; x/ and let Qv be
the unique solution to 8<:

� Qg Qv D 0 in Œ0; T ���;
Qv D Qf on Œ0; T �� @�;
QvjtD0 D @t QvjtD0 D 0 in �:

Because the wave operator is invariant under isometries we have

h�.� Qg Qv/D�g.h� Qv/;

whence v.t; x/ WD .h� Qv/.t; x/D Qv.T � t; x/ solves (45).
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We next vary the initial point and direction of a light-like geodesic to construct a family of Gaussian
beams. The Gaussian beams will be constructed so that the implied constants of the family of Gaussian
beams are uniformly bounded. This uniformity of constants is essential when proving stability estimates.
We mention here a similar consideration in the Riemannian setting [Dos Santos Ferreira et al. 2020,
Section 4.1].

To obtain such Gaussian beams, we start with a lemma. We define the set PSO.N / of pseudo-
orthonormal frames as

PSO.N / WD f.e0; : : : ; en/ 2 .TN /nC1 j g.e0; e0/D 0; g.e1; e1/D 0; g.e0; e1/D�2;

g.ej ; ek/D ıjk for j; k D 2; 3; : : : ; ng:

The lemma especially says that on a neighborhood of any point of N there is a local pseudo-orthonormal
frame.

Lemma 13. Let z0 2N and let V0 2 Tz0N be a light-like vector. The set of pseudo-orthonormal frames
admits a local section E W U ! PSO.N / such that the first component .E.z0//0 of E at z0 is V0. Here U
is an open neighborhood of z0.

Proof. The existence of a pseudo-orthonormal frame e D .e0; e1; : : : ; en/ of the tangent space Tz0N over
the single point z0 with e0 D V0 was shown in [Feizmohammadi and Oksanen 2022]. By using local
coordinates .xk/ on a neighborhood U �M of z0 let us define the mapping

F.x;E/ W x.U/�R.nC1/�.nC1/! R.nC1/�.nC1/;

where x.U/� RnC1, by the conditions

F.x;E/jk D gx.Ej ; Ek/�gz0.ej ; ek/ if j � k;

F.x;E/jk D gx.ej ; Ek/�gz0.ej ; ek/ if j < k:

HereEj is the j -th column vector of the .nC1/�.nC1/matrixE. Here also gx.Ej ; Ek/DhEj ; g.x/Eki
and gx.ej ; Ek/Dhej ; g.x/Eki, where g.x/ is the coordinate representation matrix of g in the coordinates
.xk/. The perhaps ad hoc looking conditions for F.x;E/jk for j < k are related to the fact that local
sections E of PSO.M/ satisfying .E.z0//0 D V0 (should they exist) are not unique without additional
conditions. The conditions for F.x;E/jk for j < k remove this ambiguity.

We apply the implicit function theorem (see, e.g., [Renardy and Rogers 2004, Theorem 10.6]) to show
that there is a smooth mapping x 7!E.x/ such that F.x;E.x//D 0. In this case E is a smooth section
of PSO.N / by the conditions for F.x;E/jk for j � k and by the symmetry of g. To apply the implicit
function theorem, note that F.z0; e/D 0 and that

.DEF jxDz0;EDe.v//jk D gz0.vj ; ek/Cgz0.ej ; vk/ if j � k; (46)

.DEF jxDz0;EDe.v//jk D gz0.ej ; vk/ if j < k; (47)

where j; kD0; 1; : : : ; n and vD .v0; v1; : : : ; vn/2R.nC1/�.nC1/. Assume that .DEF jxDz0;EDe.v//D0.
Since g is symmetric, the condition (47) implies that gz0.vj ; ek/ D 0 for j > k. Substituting this
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into (46) then implies that gz0.ej ; vk/ D 0 for j � k. Thus we actually have that gz0.ej ; vk/ D 0 for
all j; k D 0; 1; : : : ; n. Since g is nondegenerate and e is a frame, it follows that each vk 2 RnC1 is the
zero vector of RnC1. Thus DEF jxDz0;EDe is injective, and also surjective by dimensionality. Thus,
by the implicit function theorem, and by redefining U smaller if necessary, there is a smooth mapping
E W U ! PSO.N /. This is our desired section. �

We remark that it is likely that another proof of the above lemma can be obtained by generalizing
the Gram–Schmidt procedure to the current situation. We also mention the similar construction [Dos
Santos Ferreira et al. 2020, Lemma 6.1] in the Riemannian setting.

In the next result jV0� P
x.s0/j is defined by using local coordinates.

Corollary 14. Let 
 be a light-like geodesic of .N; g/. Assume as in Proposition 10 and adopt its notation.
Let s0 be in the domain of 
 and let us define 
.s0/D z0 and P
.t0/D V0. Let also ı > 0. Then there is
�0 � 1 and a neighborhood U of z0 and a family of Gaussian beams

v� .x; � /

solving �gv� .x; � /D 0 in Œ0; T ��� (including the correction term) parametrized by x 2 U . Here “ � ”
refers to points in N and � � �0. The geodesics 
x corresponding to the Gaussian beams v� .x; � / satisfy
jV0� P
x.s0/j � ı and the implied constants of v� .x; � / in Proposition 10 and Corollary 11 are uniformly
bounded in x.

Proof. The proof is based on inspecting the construction of the Gaussian beams at the beginning of this
section that lead to Proposition 10, and by using Corollary 11 and Lemma 13.

Let v� be a Gaussian beam without the error term corresponding to the geodesic 
 as in Proposition 10.
Note that this implies that we have chosen initial data for the certain ODEs used in the construction (such
as the Riccati equation). Let us record these initial data and also define

v� .z0; � / WD v� . � /:

By Lemma 13 there is a local section E of PSO.M/ such that .E.z0//0D V0. We define a local vector
field V by

V.x/D .E.x//0:

By redefining the domain of E smaller, if necessary, we have that jV.x/� P
.0/j< ı. The section E also
defines a family of Fermi coordinates by the formula (26) parametrized by x. Since E is smooth, the
corresponding Fermi coordinates depend smoothly on x (say in any C k norm in the Fréchet sense). Also
the domain of the Fermi coordinates is uniformly bounded by the same reason. Let x 2 U and let us pass
to the Fermi coordinates determined by E.x/. We construct a Gaussian beam

v� .x; � /

with the following properties: (a) It corresponds to the geodesic 
x;V.x/ with initial data x 2M and
V.x/ 2 TxM. (b) It is constructed by exactly the same method described in the beginning of this section
by using the same initial data for the corresponding ODEs that we used for v� . Since the coefficients of
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the ODEs are determined by the smooth metric g and the initial data are the same as for v� , the Gaussian
beam v� .x; � / differs boundedly and uniformly in x from v� . � / (say in any C k.M/ norm). In particular,
the implied constants in Proposition 10 are uniform in x.

Finally, we use Corollary 11 to find correction terms for v� .x; � / such that the implied constants in (44)
are uniform in x. �

4. Separation of points

In this section .N; g/ is a globally hyperbolic smooth Lorentzian manifold without boundary. The length
of a piecewise smooth causal path ˛ W Œa; b�!N is defined as

l.˛/ WD

k�1X
jD0

Z ajC1

aj

p
�g. P̨ .s/; P̨ .s// ds; (48)

where a0 < a1 < � � � < ak�1 < ak are chosen such that ˛ is smooth on each interval .aj ; ajC1/ for
j D 0; : : : ; k�1. The time separation function, see, e.g., [O’Neill 1983], is denoted by � WN �N! Œ0;1/

and defined as

�.x; y/ WD

�
sup l.˛/; y 2 JC.x/;

0; y … JC.x/;
(49)

where the supremum is taken over all piecewise smooth future-directed causal curves ˛ W Œ0; 1�!N that
satisfy ˛.0/D x and ˛.1/D y. By [O’Neill 1983, Chapter 14, Lemma 16], we have that

�.x; z/ > 0 if and only if x� z: (50)

As before, we view N as the product manifold R�M and assume that ��M, dim.�/D dim.M/,
is a smooth compact manifold with boundary. As before, let † denote the lateral boundary Œ0; T �� @�.
Let us consider x 2 IC.†/\ I�.†/. We say that 
1 W Œ0; 1�! Œ0; T ��� is a future-directed optimal
geodesic connecting † to x if there is

z1 2 J
�.x/\† such that 
1.0/D z1; 
1.1/D x and �.z1; x/D 0:

Similarly, we say that 
2 W Œ0; 1�! Œ0; T ��� is a past-directed optimal geodesic connecting † to x if
there is

z2 2 J
C.x/\† such that 
2.0/D z2; 
2.1/D x and �.x; z2/D 0:

We always understand optimal geodesics as their maximal extensions. Note that by definition future/past-
directed optimal geodesics are always light-like. The next lemma says that such optimal geodesics always
exist. We assume the notation and assumptions used earlier in this section. The situation of the lemma is
illustrated in Figure 1, which can be found in Section 1.3 in the Introduction.

In the lemma we consider intersection times of geodesics and †. This means that if the geodesic is de-
noted by 
 W Œ0; 1�! Œ0; T ���, then the first intersection time is the smallest s0 2 Œ0; 1� such that 
.s0/2†.
Typically s0 will be 0. That the intersection in the lemma is transverse means that P
.s0/ is transversal
to the tangent space T
.s0/†. We do not claim anything about possible other intersections of 
 and †.
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Lemma 15 (boundary optimal geodesics). Let .N; g/ be globally hyperbolic,N DR�M. If x 2 IC.†/\
.Œ0; T ���/, there exists a future-directed optimal geodesic 
 W Œ0; 1�! Œ0; T ��� from† to x and the first
intersection of 
 and † is transverse. Similarly, if x 2 I�.†/\ .Œ0; T ���/, there exists a past-directed
optimal geodesic 
 W Œ0; 1�! Œ0; T ��� from † to x and the first intersection of 
 and † is transverse.

Proof. Existence: Let us first consider the claim about the existence of future-directed optimal geodesic.
For this, let us define

tsup D supf Qd 2 Œ0; T � j there is Qz 2† such that t . Qz/D Qd and �. Qz; x/ > 0g: (51)

Here � is defined on N � N. The number tsup will be the time coordinate of zsup in Figure 1. By
assumption x 2 IC.†/ and thus there is Qz 2† such that x 2 IC. Qz/ with �. Qz; x/ > 0 by (50). We also
have t . Qz/ 2 Œ0; T �. Consequently the supremum in (51) exists and tsup 2 Œ0; T �. Let zk 2† and t .zk/D tk
be such that tk! tsup as k!1. Since zk 2† and † is compact, we may pass to a subsequence so that
zk! zsup 2†. We also have t .zsup/D tsup by continuity of the time function t .

We claim that �.zsup; x/D 0. We argue by contradiction and assume the opposite that �.zsup; x/ > 0.
Then there is a timelike future-directed path � W Œ0; 1�! N connecting zsup to x by (50). Since � is
timelike and I�.x/ is open, we may deform � slightly on a neighborhood of zsup to a future-directed
timelike path that connects z0 2† to x so that t .z0/ > tsup. Thus x 2 IC.z0/ and we still have �.z0; x/ > 0
by (50). This is a contradiction to the definition of tsup. We conclude that �.z; x/D 0. Since .N; g/ is
globally hyperbolic, there is a future-directed light-like geodesic 
1 W Œ0; 1�!N from zsup to x of length
�.zsup; x/D 0; see [O’Neill 1983, Chapter 14, Proposition 19].

We note that 
1 is actually a path Œ0; 1�! Œ0; T ���. Indeed, if 
1 meets the complement of Œ0; T ���,
then 
1 necessarily intersects † at a parameter time s0 < 1 before it meets zsup at the parameter time 1.
Since 
1 is causal, it follows that t .
1.s0// > tsup D t .zsup/, where 
1.s0/ 2†. Since † is timelike, there
is point Oz 2† with tsup < t. Oz/ < t.
1.s0// and a future-directed timelike path O� connecting Oz to 
1.s0/.
Thus, a path achieved by composing the paths O� and 
1 has positive length by the definition (48). It
follows that �. Oz; x/ > 0 by the definition (49). We have arrived to a contradiction with the definition
of zsup, since t . Oz/ > tsup.

Transversality: We next show that the optimal geodesic 
 constructed above intersects the lateral boundary
† transversally. Assume that 
 is parametrized so that 
.0/D zsup. Let Stsup D ftsupg�M be the Cauchy
level surface at t D tsup. Let T D .T1; : : : ; Tn�1/ be a basis for the tangent space Tzsup@�. Then fT; �g,
where � is the normal vector to @� at zsup in Stsup , is a basis for TzsupStsup . Consequently, the tangent space
TzsupN is spanned by f@t ; T; �g, where @t is the coordinate vector of Œ0; T �. Let us write P
.0/ 2 TzsupN

in the form
P
.0/D . P
 t .0/; P
T .0/; P
�.0//:

Suppose now to the contrary that 
 does not intersect † transversally. Then it follows that P
�.0/D 0.
Indeed, if this is not the case, then Tzsup†CTzsup graph.
/ would be equal to TzsupN. Let us check whether
P
.0/ is normal to †tsup WD†\ft D tsupg. Since †tsup is space-like, the normal space

Nzsup†tsup WD fv 2 TzsupN j hv;wig D 0 for all w 2 Tzsup†tsupg
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(see [O’Neill 1983, p. 98 or p. 198]) is spanned by @t and �. To see this, note that a vector X 2 TzsupN,
X D a@t C b � T C c�, is in Nzsup†tsup if and only if b 2 Rn�1 is zero. Note P
�.0/ D 0; then if
P
.0/ 2 Nzsup†tsup , we must have P
.0/D . P
 t .0/; 0; 0/. But this is not possible, since 
 is light-like. So
P
.0/ is not normal to †tsup and by [O’Neill 1983, Chapter 10, Lemma 50] there exists a time-like curve �
from x to †tsup . By slightly deforming � we obtain another time-like curve Q� connecting x to z0 2 †
with t .z0/ > tsup. This contradicts the definition of tsup.

The claim about the past-directed optimal geodesic follows by defining

tinf D inff Qd 2 Œ0; T � j there is Qz 2† such that t . Qz/D Qd and �.x; Qz/ > 0g

and by using arguments analogous to the ones above to find zinf 2† with �.x; zinf/D 0. �

By using boundary optimal geodesics and related Gaussian beams we may separate points of Œ0; T ���
by solutions to �gv D 0. We mention here that separation of points by solutions has been beneficial in
the study of inverse problems for elliptic equations [Guillarmou et al. 2019; Lassas et al. 2020].

Proposition 16 (separation of points). Let .N; g/ be globally hyperbolic, N D R�M. Let x 2 I�.†/\
.Œ0; T ���/ and y 2N be such that y … J�.x/. Denote by vf the solution to�gvD 0 inN with vj†D f
and whose Cauchy data vanishes at t D T. Then there is f 2 C1.†/ such that

vf .x/¤ vf .y/:

If x 2 IC.†/\ .Œ0; T ���/ and x … J�.y/, we have the same claim for solutions of �gvD 0 in N with
vj† D f whose Cauchy data instead vanishes at t D 0.

Proof. We first claim that there is a past-directed light-like geodesic from † that meets the point x but
not y. We argue by contradiction and assume the opposite that all past-directed light-like geodesics
from † to x meet both x and y. Since x 2 I�.†/\ .Œ0; T ���/, by Lemma 15 we have that there is a
past-directed boundary optimal geodesic 
1 W Œ0; 1�! Œ0; T ��� with 
1.0/D z 2† and 
1.1/D x. The
first intersection of 
1 with † is transverse. If x … J�.y/, then by the assumption y … J�.x/ we have
that x and y are not causally connected. Thus 
1 cannot pass through y and we have found our light-like
geodesic. Therefore, we may assume that y � x.

Let Q
1 D Q
1.s/ be a past-directed light-like geodesic with Q
1.0/ 2 † such that Q
1 intersects †
transversally at s D 0, and which satisfies Q
1.Qs/D x for some Qs � 0. The geodesic Q
1 can be obtained by
perturbing the tangent vector of 
1 at 
1.1/D x slightly. Note that the condition of transversal intersection
is an open condition. By assumption Q
1 meets y. In this case we have a shortcut path, which has timelike
portion, obtained by traveling along Q
1 from x to a point y0 close to y, doing a shortcut from y0 to 
1
and then by continuing along 
1 to z; see [O’Neill 1983, Chapter 10, Proposition 46]. Since the shortcut
path has timelike portion, it has positive length. Since y � x, the shortcut path is also future-directed. It
follows that �.x; z/ > 0. This contradicts the optimality of 
1. We conclude that Q
1 is a past-directed
light-like geodesic from † that meets x but not y.

To conclude the proof, we use Proposition 10 and choose a Gaussian beam v� D �
n=4ei�‚a corre-

sponding to Q
1 with k >n, KD 1 and p; l D 2. We also choose the support of the amplitude a be so small
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that y … supp.a/ and supp.a/\ ft D T g D ∅. We will use the Sobolev embedding H l 0� L1, which
holds for l 0 > nC1

2
. Since k > n, we have k � n�1

2
> nC1

2
, which shows that we can take l 0 such that

nC1
2
< l 0 <k� n�1

2
. Applying Corollary 11 with these k and l 0 shows that there is r� 2C1.N / such that

vf WD �
�n
4 v D ��

n
4 v� C �

�n
4 r�

satisfies �gvf D 0 and

��
n
4 v� .x/D 1 and ��

n
4 v� .y/D 0 for all � � �0

and
k��

n
4 r�kL1.N/ � C�

�n
4 kr�kH l0 .N/ D �

�n
4O.��1/:

We mention for future reference that at any other point z 2 Œ0; T ��� we have

jvf .z/j � j�
�n
4 v� .z/jC j�

�n
4 r� .z/j � C

0
Cj��

n
4 r� .z/j � C (52)

for all � large enough. Here we used the above Sobolev embedding. Taking � large enough shows that

vf .x/¤ vf .y/:

The claim about the case x 2 IC.†/ and x … J�.y/ can be proved in similar way. �

We next consider the case where we have multiple points of Œ0; T ���, which we wish to separate by
solutions of the wave equation �gv D 0. The points will correspond to the intersection points of pairs of
geodesics we use for our inverse problem. The matrix (53) below will be a separation matrix in the sense
of Definition 5.

Lemma 17 (existence of separation matrix). Let .N; g/ be globally hyperbolic, N D R �M. Let
x1; : : : ; xP 2 I

�.†/ \ .Œ0; T � ��/ be such that x1 < x2 < � � � < xP . Denote by vf the solution of
�gvD 0 in Œ0; T ��� with vj†D f and whose Cauchy data vanishes at t D T . Then there are boundary
values fk 2 C1.†/ such that the matrix0BBB@

vf1.x1/ vf2.x1/ � � � vfP .x1/

vf1.x2/ vf2.x2/ � � � vfP .x2/:::
: : :

:::

vf1.xP / vf2.xP / � � � vfP .xP /

1CCCA (53)

is invertible.
If xk 2 IC.†/\ .Œ0; T ���/, we have the similar claim for solutions of �gv D 0 in Œ0; T ��� with

vj† D f whose Cauchy data instead vanishes at t D 0.

Proof. The proof is an iteration of the proof Proposition 16. First we let 
1 be a past-directed boundary
optimal geodesic that connects a point z 2† to the point x1. By the shortcut argument in the proof of
Proposition 16, we deduce after possibly redefining 
1 as its small perturbation that 
1 does not meet any
of the other points xk , kD 2; : : : ; P. Let vf1 be a Gaussian beam solution (including the correction term)
as in the proof of Proposition 16, where f1 2 C1.†/. Then there is �1 > 0 such that for � � �1 we have

vf1.x1/D 1 and vf1.xk/DO.��1�
n
4 /; k D 2; : : : ; P:
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Next, let 
2 be a past-directed boundary optimal geodesic that connects z 2 † to the point x2. By
repeating the above argument we find a boundary value f2 2 C1.†/ and a solution vf2 such that

vf2.x2/D 1 and vf2.xk/DO.��1�
n
4 /; k D 3; : : : ; P;

for all � � �2. Note that we do not claim that we have much control on the value of vf2 at x1 and it
might be that 
2 meets also the point x1. However, by (52) we know that jvf2 j at x1 is bounded by C
(possibly by defining �2 larger). This is illustrated in Figure 2, which can be found in Section 1.3 in the
Introduction. By repeating the above arguments, we find other solutions vfk , k D 3; : : : ; P, such that the
matrix (53) becomes of the form

V� D

0B@1 O.��1�
n
4 / O.��1�

n
4 /

#
: : : O.��1�

n
4 /

# # 1

1CA :
Here # means unspecified complex numbers bounded by some fixed constant. The determinant of this
matrix tends to 1 as �!1. Therefore, there is �0�1 such that the matrix (53) is invertible for all ���0. �

The previous lemma shows that if we are given a set of points x1 < � � � < xk , one can find a set of
Gaussian beams separating these points. However, for the proof of the stability estimate in Theorem 1,
we need a finite collection of Gaussian beams that separate any sufficiently distinct P 2N points. The
collection will be a separation filter in the sense of Definition 6. Existence of such a collection is the
content of the next lemma.

Let Ng be an auxiliary Riemannian metric on R�M.

Lemma 18 (existence of separation filter). Let P � 1 be an integer and let ı > 0. Suppose K �
I�.†/\ IC.†/\ .Œ0; T ���/ is a compact set. There exists a finite collection M� C1.Œ0; T ���/ of
solutions to �gvf D 0 with the following properties: Assume that x1; : : : ; xP 2K are any points such
that x1 < x2 < � � � < xP and d Ng.xk; xl/ > ı for xk ¤ xl , k; l D 1; : : : ; P. Then there are solutions
vf1 ; : : : ; vfP 2M corresponding to boundary values fk 2 C1.†/, and which have vanishing Cauchy
data at t D T, such that the matrix .vfk .xl//

P
k;lD1

in (53) is invertible. Thus M is a separation filter.

Proof. Case 1: If P D 1, then the situation is similar to the proof of Proposition 16. Applying Lemma 15
to x1, we find a past-directed boundary optimal geodesic 
 from † to x1, whose first intersection with †
is transverse. Using Corollary 11 we can then construct a Gaussian beam v (including the correction term
and with vanishing Cauchy data at ft D T g) corresponding to 
 such that

v.x1/D 1:

By continuity of v, the point x1 has a neighborhood B.x1/ such that

jv.z/j> 2
3

for all z 2 B.x1/:

Doing this for all points x 2K we find an open cover of K of the form[
x2K

B.x/
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and for each B.x/ the corresponding optimal geodesic and the respective Gaussian beam v. Because K
is compact, there is a finite subcover

R[
jD1

B.xj /

of K and the corresponding finite collection of Gaussian beams. Denoting this collection by M completes
the proof for P D 1.

Case 2: Suppose now P � 2. To begin, consider a complex matrix of the form0@d1 O
: : :

# dP

1A ; (54)

where all entries # are bounded by a fixed constant C > 0 and the diagonal entries satisfy jdj j > 2
3

,
j D 1; : : : ; P. When the elements of the upper triangular part O are of the size " > 0, the determinant of
the matrix in (54) equals

d1 � � � dP CO."/:

This can be seen by considering the definition of the determinant in terms of minors. Thus the matrix in
(54) is invertible when " is small enough.

We construct an open cover of K as follows. Let zK � JC.†/\ J�.†/\ .Œ0; T ���/ be an open
neighborhood of K. Let us fix x 2 zK and let Bı=2.x/ denote a ı

2
-radius ball centered at x with respect to

the metric Ng. Let us also define

V.x/ WD .JC.x/ nB ı
2
.x//\ .Œ0; T ���/:

Since JC.x/ is closed, the set V.x/ is compact for all x 2 zK. We define the subset of V.x/P�1 of ordered
points by

T .x/ WD f.x2; : : : ; xP / 2 V.x/P�1 W x � x2 � � � � � xP g:

Because the relation � is closed (see, e.g., [O’Neill 1983, Section 14, Lemma 22]), the set T .x/ is
compact as a closed subset of the compact set V.x/P�1.

Let " > 0 and let X D .x2; : : : ; xP / 2 T .x/. Recall that when constructing a Gaussian beam v, we
can bound its size in absolute value by using the estimate (52). Since x 2 I�.†/\ .Œ0; T ���/, there is
fX 2 C

1.†/ and a Gaussian beam vX (including the correction term and with vanishing Cauchy data at
ft D T g) and �X > 0 such that there is a neighborhood U".x/� Bı=3.x/ of x and neighborhoods B.xk/
of xk such that

jvfX j �
2
3

on U".x/;

jvfX j< " on B.xk/; k D 2; 3; : : : ; P;

jvfX j � C on Œ0; T ���;

(55)

where C > 0 is independent of " > 0. Here we have first normalized so that vfX .x/D 1. Then we have
chosen the �X large enough, so that the condition jvfX j< " holds on B.xk/, and jvfX j �C on Œ0; T ���.
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These conditions can be obtained since the correction term of a Gaussian beam can be made arbitrarily
small by taking the corresponding � large enough. Then, by the continuity of vfX and vfX .x/ D 1,
we have chosen the neighborhood U".x/ so that jvfX j �

2
3

. Note that since here �X depends on " and
vfX depends on �X , the neighborhood U".x/ depends on " as indicated in the notation. See the argument
in the proof of Proposition 16 for more details.

We now modify the open sets U".x/ slightly. Let us define

zU".x/ WD I
C.x/\U".x/:

We have that
jvfX j �

2
3

on zU".x/:

Moreover, we have
x � z for all z 2 zU".x/: (56)

We then have an open cover of T .x/ given by[
X2T .x/

B.x2/� � � � �B.xP /:

Since T .x/ is compact, we may pass to a finite open subcover[
X2J↑.x/

B.x2/� � � � �B.xP /;

where J↑.x/ is a finite subset of T .x/ and which depends on ". Note that for each X D .x2; : : : ; xP / 2
J↑.x/ there are associated neighborhoods B.x2/; : : : ; B.xP / of the points x2; : : : ; xP and an open set
zU".x/. This shows that to each point x 2 zK we can attach a finite collection

M".x/� C
1.Œ0; T ���/

of solutions with the following property: for any X 2 T .x/ there is some Gaussian beam solution
vfX 2M".x/ corresponding to a boundary value fX with the property (55) with U".x/ replaced by
zU".x/. We repeat the above argument for all x 2 zK. Note that if x 2K, then there is Qx 2 zK \ J�.x/
so that x 2 zU". Qx/. Thus, our construction yields an open cover of K � Œ0; T ��� by the sets zU".x/
described above. By compactness, finitely many sets zU".x/ suffice to cover K. Let x.j / 2 Œ0; T ��� be
the corresponding points, such that

R"[
jD1

zU".x
.j // (57)

is a finite subcover of K, where R" 2 N. To each of these finitely many points x.j / there is also attached
a finite subset J".x.j // � T .x.j //, j D 1; : : : ; R". Corresponding to this finite cover, we take as the
collection of boundary values M" the set

M↑ WD

R"[
jD1

M".x
.j //:
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Let then x1; x2; : : : ; xP 2K with x1<x2< � � �<xP and d Ng.xl ; xk/> ı for k¤ l with k; lD 1; : : : ; P.
Let us consider first the point x1 2 K. Corresponding to x1, there is an index j1 2 f1; : : : ; R"g and a
neighborhood zU".x.j1// of x1, where zU".x.j1// belongs to the finite subcover (57) of K. The radius of
zU".x

.j1// is less than ı
3

. Note that d Ng.x.j1/; xk/ > ı
2

for k D 2; 3; : : : ; P. Indeed, we have that

d Ng.x
.j1/; xk/� d Ng.x1; xk/� d Ng.x

.j1/; x1/ > ı�
ı

3
D
2ı

3
>
ı

2
: (58)

Moreover, (56) implies x.j1/ � x1. Thus x.j1/ � x2 � x3 � � � � � xP . Using this and (58), we obtain

.x2; x3; : : : ; xP / 2 T .x.j1//:

Consequently, using the definition of J".x.j1//, we find X D .x.j1/2 ; : : : ; x
.j1/
P / 2 J".x.j1// with the

associated neighborhoods B.x.j1/
k

/ of xk , k D 2; 3; : : : ; P, satisfying the following property: there is a
Gaussian beam solution vf1 2M" corresponding to a boundary value f1 such that

jvf1 j �
2
3

on zU".x.j1//;

jvf1 j< " on B.x.j1/
k

/; k D 2; 3; : : : ; P;

jvf1 j � C on Œ0; T ���:

Let us then proceed to the point x2. Much as above, regarding this point there is j2 2 f1; : : : ; R"g,
x.j2/ 2 Œ0; T ��� and neighborhoods zU".x.j2// of x2 and neighborhoods B.x.j2/

k
/ of xk , kD3; 4 : : : ; xP ,

and a Gaussian beam vf2 , such that

jvf2 j �
2
3

on zU".x.j2//;

jvf2 j< " on B.x.j2/
k

/; k D 3; 4; : : : ; P;

jvf2 j � C on Œ0; T ���:

Continuing in this manner, we have indices j1; j2; : : : ; jP and a set of Gaussian beams vfk , kD1; : : : ;P,
such that jvfk j �

2
3

on a neighborhood zU".x.jk// of xk and jvfk j< " on a neighborhood B.x.jk/
l

/ of xl
for l > k and jvfk j< C on Œ0; T ���.

The separation matrix (53) corresponding to the functions vfk and points xk is invertible for "� "0 for
"0 small enough. We set M WDM"0 . Finally, we note that the number of Gaussian beams used is

#MD #
�R"0[
jD1

M"0.x
.j //

�
�

R"0X
jD1

#.M"0.x
.j ///D

R"0X
jD1

#J"0.x
.j //;

which is finite. �

Remark 19. We will apply Lemma 17 as follows. Suppose the points x1 < � � �< xP are the intersection
points of two light-like geodesics 
1 and 
2. We will use Lemma 17 to show that there is a choice of P
solutions vf1 ; : : : ; vfP 2M which separate the points x1; : : : ; xP . Moreover, these solutions have zero
Cauchy data at t D T.

We also mention that we have a result similar to Lemma 18 for solutions that have vanishing Cauchy
data at ft D 0g. The result is obtained, for example, from Lemma 18 by considering the isometry t 7!T �t

as in Remark 12.
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5. Proof of the stability estimate: Theorem 1

Assume the conditions from Theorem 1, especially that

kƒ1.f /�ƒ2.f /kH r .†/ � ı;

where r � sC 1 and sC 1 > nC1
2

, and ı > 0. Here ƒ1 and ƒ2 are the DN maps of the nonlinear wave
equation (2) corresponding to the potentials q1 and q2, respectively. We show that we have explicit
control on the L1 norm of q1� q2 in terms of ı. The proof will be divided into several steps.

5.1. Step 1W integral identity from finite differences. Let j D 1; : : : ; m and "j > 0 be small parameters.
Let � be as in Lemma 9. Assume that fj 2H sC1.†/ is a family of functions satisfying @˛t fj jtD0 D 0
on Œ0; T �� @�, ˛ D 0; : : : ; s, and that

k"1f1C � � �C "mfmkH sC1.Œ0;T ���/ � �:

For l D 1; 2, we have that the boundary value problems8<:
�gul C qluml D 0 in Œ0; T ���;
ul D "1f1C � � �C "mfm on Œ0; T �� @�;
ul jtD0 D 0; @tul jtD0 D 0 in �

have unique small solutions ul D u"1f1C���C"mfm as described in Lemma 9. According to (17), the
solutions ul have expansions of the form

ul D "1vl;1C � � �C "mvl;mC
X
j EkjDm

� m

k1; : : : ; km

�
"
k1
1 � � � "

km
m w

l; Ek
CRl ;

where vl;j satisfy (18) and w
l; Ek

satisfy (19) with q replaced by ql . We also used the notation Ek D
.k1; : : : ; km/. In particular, we know by (19) that

w
l;E1
WD wl;.1;:::;1/

satisfy 8̂<̂
:
�gwl;E1C qlvl;1 � � � vl;m D 0 in Œ0; T ���;
w
l;E1
D 0 on Œ0; T �� @�;

w
l;E1
jtD0 D 0; @twl;E1jtD0 D 0 in �:

(59)

Note that since (18) for vl;j are independent of ql , we have by the uniqueness of solutions that

v1;j D v2;j DW vj ; j D 1; : : : ; m: (60)

Moreover, according to (20), the correction terms Rl for l D 1; 2 satisfy

kRlkEsC2 Ck�g RlkEsC1 � C.s; T /kqlk2EsC1k"1f1C � � �C "mfmk
2m�1
H sC1.†/

:

We apply the finite difference operator Dm
E"
jE"D0 of order m, defined in (21), to ul . By (22), we have

Dm
E"
jE"D0ul DmŠwl;E1C

1

"1 � � � "m
Rl ;
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where Rl contains sum of the remainder terms Rl appearing in the finite differences. Consequently, by
taking into account (59) and (60), we obtain

�gDmE" jE"D0ul D�mŠ qlv1 � � � vmC
1

"1 � � � "m
�g zRl ;

where zRl D "1 � � � "mRl , l D 1; 2.
We manipulate the integral identity (25) to relate the difference of the DN maps ƒ1 and ƒ2 to the

difference of the unknown potentials q1 and q2 in terms of vj . For this, consider an auxiliary function v0
which satisfies�gv0D0 in Œ0; T ���, with v0jtDT D@tv0jtDT D0 in�. Applying (25) to the difference
of the DN maps yields

�mŠ

Z
Œ0;T ���

.q1� q2/v0v1 � � � vm dVg

D
1

"1 � � � "m

Z
Œ0;T ���

v0�g.zR1� zR2/ dVg C
Z
†

v0D
m
E"
jE"D0.ƒ1�ƒ2/."1f1C � � �C "mfm/ dS: (61)

The finite difference Dm
E"
jE"D0 of ul is a sum of 2m terms. By using (61), we calculate

mŠ jhv0.q1� q2/; v1 � � � vmiL2.Œ0;T ���/j

� jhv0;D
m
E"D0

Œ.ƒ1�ƒ2/."1f1C� � �C"mfm/�iL2.†/jC ."1 � � � "m/
�1
jhv0;�g. zR1� zR2/iL2.Œ0;T ���/j

� 2m ."1 � � � "m/
�1
jhv0; .ƒ1�ƒ2/."1f1C � � �C "mfm/iL2.†/j

C ."1 � � � "m/
�1
jhv0;�g. zR1� zR2/iL2.Œ0;T ���/j

�2m ı ."1 � � � "m/
�1
kv0k zH�r .†/C ."1 � � � "m/

�1
k�g. zR1� zR2/kH sC1.Œ0;T ���/ kv0k zH�.sC1/.Œ0;T ���/

� 2m ı ."1 � � � "m/
�1
kv0k zH�r .†/CCsC1 ."1 � � � "m/

�1
k�g. zR1� zR2/kEsC1 kv0k zH�.sC1/.Œ0;T ���/

� Cm;sC1 ."1 � � � "m/
�1 .kv0k zH�r .†/Ckv0k zH�.sC1/.Œ0;T ���//

�

�
2m ıCC.s; T /.kq1k

2
EsC1

Ckq2k
2
EsC1

/

� mX
jD1

"j kfj kH sC1.†/

�2m�1�
� C ."1 � � � "m/

�1

�
ıC

� mX
jD1

"j kfj kH sC1.†/

�2m�1�
: (62)

Here we used the assumption kƒ1.f /�ƒ2.f /kH r .†/ � ı for f D "1f1C � � �C "mfm. We also used
that the norm in H sC1.Œ0; T ���/ is bounded by the norm in EsC1 up to a multiplicative factor CsC1
as noticed in Remark 7. The final constant C is given by

C DmaxfCm;sC1; C.s; T /.kq1k2EsC1 Ckq2k
2
EsC1

/g .kv0k zH�r .†/Ckv0k zH�.sC1/.Œ0;T ���//:

Here we have respectively denoted by zH�r.†/ and zH�.sC1/.Œ0; T ���/ the dual spaces of H r.†/ and
H sC1.Œ0; T ���/.

5.2. Step 2W approximation of a delta distribution by a product of Gaussian beams. Recall that .vj /mjD1
is a family solutions to �gvj D 0 as in (18). The second step of the proof of Theorem 1 is to choose
the solutions vj so that they allow us to obtain information about q1 � q2 on the left-hand side of the
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estimate (62). The boundary values corresponding to vj will be denoted by fj . We use the Gaussian
beam construction of Section 3 to produce approximate delta functions from products of Gaussian beams.
We shall need the following elementary results. Let f W Rd ! C be a Lipschitz function. We define the
Lipschitz seminorm of f as

kf kLip WD inffc � 0 j jf .x/�f .y/j � cjx�yjg:

Lemma 20. Let d 2 N , � > 0 and b be Lipschitz. The estimateˇ̌̌̌
b.z0/�

�
�

�

�d
2

Z
Rd
b.z/e�� jz�z0j

2

dz

ˇ̌̌̌
� cdkbkLip�

� 1
2

holds true for all z0 2Rd. In particular, the integral on the left converges uniformly to b.z0/ when �!1.
Here cd WD �

�
dC1
2

�
=�
�
d
2

�
.

We omit the proof of Lemma 20 as it can be proved similarly to the following more general result:

Lemma 21. Let � > 0, x 2 Rd
C

, d � 2, and assume x D .x1; : : : ; xd /, where x1 � 0. Let b W Rd
C
! C be

Lipschitz. Define a map ˆ W .�1; 0�!
�
1
2
; 1
�

by

ˆ.s/ WD
1
p
�

Z 1
s

e�t
2

dt: (63)

The estimate ˇ̌̌̌
b.x/�

1

ˆ.�
p
�x1/

�
�

�

�d
2

Z
Rd\fz1�0g

b.z/e�� jz�xj
2

dz

ˇ̌̌̌
� 2cdkbkLip�

� 1
2

holds true for all x 2 Rd \ fx1 � 0g. In particular, the integral on the left converges uniformly to b as
� !1. Here cd D �

�
dC1
2

�
=�
�
d
2

�
.

Proof. Let us write x D .x1; x0/ and assume without loss of generality that x0 D 0. To begin, recall the
identities Z

Rd
e�jzj

2

dz D �
d
2 and

Z
Rd
jzj e�jzj

2

dz D cd�
d
2 :

Note also thatZ
Rd\fz1�0g

e�� jz�xj
2

dz D

Z 1
0

Z
Rd�1

e��..s�x1/
2Cjz0j2/ dz0 ds D

��
�

�d
2
ˆ.�
p
�x1/:

Since b is Lipschitz in Rd
C

, we have

jb.��
1
2 sC x1; �

� 1
2 z0/� b.x1; 0/j � kbkLip�

� 1
2 j.s; z0/j
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for any x1 � 0 and.s; z0/ 2 Rd, s > �
p
�x1. Thus we may calculateˇ̌̌̌

ˆ.�
p
�x1/b.x1; 0/�

� �
�

�d
2

Z
Rd\fz1�0g

b.z/e�� jz�xj
2

dz

ˇ̌̌̌
D

� �
�

�d
2

Z
Rd\fz1�0g

.b.x1; 0/� b.z//e
�� jz�xj2 dz

D ��
d
2

Z 1
�
p
�x1

Z
Rd�1

.b.x1; 0/� b.�
� 1
2 sC x1; �

� 1
2 z0//e�jzj

2

dz0 ds

� kbkLip�
�d
2

Z 1
�
p
�x1

Z
Rd�1

j.s; z0/je�jzj
2

dz0 ds

� kbkLip�
� 1
2��

d
2

Z
Rd
jzje�jzj

2

dz D cdkbkLip�
� 1
2 :

Finally, dividing the above inequality by ˆ.�
p
�x1/, and observing that ˆ is monotone and satisfies

ˆ.0/D 1
2

and ˆ.s/! 1 as s!�1, we have the claim. �

We will apply Lemmas 20 and 21 with d D nC 1 and the function b will be a multiple of q1 � q2.
Lemma 20 will be applied for recovery of points that lie in W n† and Lemma 21 for recovery of points
on †.

To achieve the factor �d=2 D � .nC1/=2 appearing in Lemmas 20 and 21, we use the solutions of
Corollary 11 with pD 4 and scale them by a constant �1=8. This change amounts to scaling the boundary
values fj by �1=8. The estimates (41) and (44) still hold by taking k, l , K and N large enough. Moreover,
when applying Lemma 21, we modify the functions of Corollary 11 by multiplying them by ˆ.�

p
�x1/

with a suitable number x1 � 0.
Recall that Gaussian beams concentrate on light-like geodesics. We show that at the intersection

points of geodesics, the corresponding product of Gaussian beams approximates the delta function of the
intersection point. Taking this approach, one can recover information about the difference of the unknown
potentials q1 and q2 at points where the geodesics intersect. When the geodesics intersect only once, the
proof is simpler and instructive. For this reason, we first analyze the case where the geodesics intersect
only once and prove the general case after that.

5.3. Proof in the case of a single intersection point. Let p0 2 W , where W is as in (3). In this case
p0 2 I

C.†/ by assumption and by Lemma 15 there is a future-directed optimal geodesic 
1 from †

to p0 that does not intersect ft D 0g. By making a small perturbation of 
1, we have another geodesic

2 that intersects 
1 at p0 and does not intersect ft D 0g. Since the geodesics are causal, they exit the
compact set Œ0; T ��� in finite parameter time. By the assumption of this simplified case, 
1 and 
2
intersect only at p0. Let ı0 > 0 be small parameter so that the Fermi coordinates (26), associated to 
1
and 
2, are defined for jyj< ı0.

By Proposition 10 and Corollary 11 there is �0 > 0 such that, for j D 1; 2 and � � �0, we may choose

vj D �
1
8 .v�;j C rj / and fj D vj j†; j D 1; 2; (64)
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so that �g.v�;j C rj /D 0 in Œ0; T ���. Here the function v�;j stands for the Gaussian beam described
in Section 3 corresponding to the geodesic 
j . We also have that the correction term rj satisfies

rj j† D 0; j D 1; 2: (65)

By (34) and (35) and Proposition 10 applied with p D 4, we have for � � �0

v�;j .s; y/D �
n
8 ei�‚j .s;y/a.j /.s; y/; � � �0;

a.j /.s; y/D �

�
jyj

ı0

� NX
k0D0

��k
0

b
.j /

k0
.s; y/; � � �0;

b
.j /

k0
.s; y/D

NX
k00D0

b
.j /

k0;k00
.s; y/;

(66)

where b.j /
k0;k00

.s; y/ is a family of complex-valued homogeneous polynomials of order k00 in the vari-
able y. We emphasize that all functions on the right-hand sides of (66) are independent of � . Thanks to
Proposition 10, see also (36) and (37), we also have

b
.j /

k0
.0; 0/D b

.j /
0;0.0; 0/D 1; j D 1; 2: (67)

In addition, by (40), (41) and (44), we get for j D 1; 2 and k > l C 1
2
.n� 1/

kv�;j kH l .Œ0;T ���/ DO.�
�n
8
Cl/; � � �0;

krj kH l .Œ0;T ���/ DO.�
�K/; � � �0;

(68)

ifN satisfiesKD 1
2
.NC1�k/�1. (IfN defined this way is not an integer, we redefine it as bNC1c.) We

imposed the condition k > lC 1
2
.n�1/ to embed the energy space El into Hk.Œ0; T ���/; see Remark 7.

This condition is needed to control certain Sobolev norms in the following computations. Furthermore,
by (41) and assuming that l > 1

4
.nC 1/ (to embed H l.Œ0; T ���/ into L4.Œ0; T ���/) we get

kv�;j kL4.Œ0;T ���/ DO.1/; j D 1; 2; � � �0;

krj kL4.Œ0;T ���/ DO.�
�K/; j D 1; 2; � � �0:

(69)

Since �g is a linear operator, the complex conjugates of v1 and v2, denoted by Nv1 and Nv2, also solve
�gv D 0. We set

vj WD Nvj�2 and fj WD vj j†; j D 3; 4:

Combining the trace theorem with (65) and (68) in the case l D sC 3
2

, we obtain an estimate for the
boundary values fj for j D 1; 2; 3; 4 and � � �0, as

kfj kH sC1.†/ D kvj j†kH sC1.†/ D �
1
8 k.v�;j C rj /j†kH sC1.†/

� �
1
8 kv�;j kH sC3=2.Œ0;T ���/ � C�

s�n
8
C 13
8 :

(70)

For j D 5; : : : ; m, we choose Gaussian beams at fixed � D �0 as

vj D �
�
nC1
8

0 v1j�D�0 and fj D vj j†; j D 5; : : : ; m: (71)
Let us write

Ov D v5 � � � vm:
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Remark 22. We remark that by making �0 > 0 large enough, there exists c > 0 such that

j Ov.s; y/j> c (72)

in a neighborhood of .s; y/ D .0; 0/. Indeed, by taking l > nC1
2

and combining Morrey’s inequality
with (68), we deduce that both v�;1 and r1 are continuous functions for � � �0. In particular, the function v1
is continuous according to (64). Proposition 10 ensures that ‚1.0; 0/D 0 and b.1/0;0.0; 0/D 1. Looking
at (66) one has

a1.0; 0/D 1CO.�
�1/; � � �0:

Hence

��
nC1
8 v1.0; 0/D 1C �

�n
8 r1.0; 0/D 1CO.�

�n
8 /; � � �0;

where in the last equality, we have used (68) to deduce kr1kL1.Œ0;T ���/ D O.1/. Thus we have, by
redefining �0 if necessary,

j Ov.0; 0/j D .��
nC1
8 jv1.0; 0/j/

m�4 > 1
2

for all � � �0. By the continuity of Ov, we have (72) on a neighborhood of .0; 0/.

With these choices, we now analyze the left-hand side of (62). We decompose the product v1 � � � vm as
the sum of a leading term plus lower-order terms. A straightforward computation holding for � � �0 yields

v1 � � � vm D jv1j
2
jv2j

2
Ov

D �
1
2 jv�;1C r1j

2
jv�;2C r2j

2
Ov

D �
1
2 .jv�;1j

2
C v�;1 Nr1C r1 Nv�;1Cjr1j

2/.jv�;2j
2
C v�;2 Nr2C r2 Nv�;2Cjr2j

2/ Ov

D �
1
2 jv�;1j

2
jv�;2j

2
OvCL1; (73)

where L1 is a sum of products of terms each containing r1 or r2, or their complex conjugates, as well as
Ov as a factor. Consequently, we can choose .N; k; l;K/ in (68) so that together with the Cauchy–Schwarz
inequality, we obtain

kL1kL1.Œ0;T ���/ DO.�
�R/ (74)

for some R > 1. Indeed, let us analyze one term of L1, say �1=2v�;1jv�;2j2 Nr1 Ov. As Ov is continuous, it
is bounded in Œ0; T ���. Using (69), we have for � � �0

�
1
2 kv�;1jv�;2j

2
Nr1 OvkL1.Œ0;T ���/. �

1
2 kv�;1jv�;2j

2
Nr1kL1.Œ0;T ���/

. �
1
2 kv�;1kL4.Œ0;T ���/kv�;2k

2
L4.Œ0;T ���/

kr1kL4.Œ0;T ���/DO.�
1
2
�K/:

A similar analysis allows us to deduce that the L1.Œ0; T � � �/ norms of the other terms of L1 are
O.�1=2�K/. Therefore

kL1kL1.Œ0;T ���/ DO.�
1
2
�K/; � � �0:
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Thus we can take RDK � 1
2

in (74). Note that we can always find suitable parameters l , k, N and K
satisfying K D NC1�k

2
� 1, k > l C n�1

2
and l > nC1

2
> nC1

4
. One possible choice is

l D nC 1; k D 3nC 1; K D 2; N D 3.nC 1/:

Let us now analyze the leading term in the expansion (73):

�
1
2 jv�;1j

2
jv�;2j

2
Ov D �

nC1
2 ei�‚1.x/e�i�‚1.x/ei�‚2.x/e�i�‚2.x/ja.1/.x/j2 ja.2/.x/j2 Ov.x/:

For technical convenience, we consider a normal coordinate system .xa/naD0 centered at the point p0,
which is the unique intersection of the geodesics 
1 and 
2. At the center of the normal coordinates the
metric is the identity matrix and all Christoffel symbols vanish; see, e.g., [O’Neill 1983, Section 3]. At the
point p0 both the phase functions‚1 and‚2 vanish and their gradients are real. Using the properties (42),
we have the following Taylor expansion around p0:

‚1.x/�‚1.x/C‚2.x/�‚2.x/D 2i x � r
2 Im.‚1C‚2/jxD0xCO.jxj3/:

Here r2 Im.‚1C‚2/ is a positive definite matrix at p0 (i.e., at x D 0 in normal coordinates) by the last
two conditions of (42), because ‚1 and ‚2 are positive semidefinite and positive definite in directions
transversal to P
1 and P
2 respectively.

Recall from (66) that the amplitude a.j /, j D 1; 2, has the cut-off function � as a factor. Therefore, we
may redefine ı0 > 0 smaller, if necessary, so that at the intersection U1\U2 of the supports

Uj WD supp.a.j //D supp.vj;� /

we have Im.‚1C‚2/ > 0. Let us write

H WD 2r2 Im.‚1C‚2/jxD0 > 0 (75)

so that in the normal coordinates

‚1.x/�‚1.x/C‚2.x/�‚2.x/D ix �HxC y‚.x/; (76)

where y‚.x/DO.jxj3/. Using the precise expressions in (66) for a.j /, j D 1; 2, we see that

ja.1/.x/j2 ja.2/.x/j2 D jb
.1/
0 .x/j2 jb

.2/
0 .x/j2C ��1L2.x/;

where
kL2kL1.Œ0;T ���/ DO.1/: (77)

Via a calculation similar to the one done in deriving (73), we deduce in the coordinates .xa/naD0 that

�
1
2 jv�;1j

2
jv�;2j

2
Ov D �

nC1
2 j�1.x/j

2
j�2.x/j

2
jb
.1/
0 .x/j2jb

.2/
0 .x/j2 Ov.x/ei�

y‚.x/e��x�Hx

C ��1�
nC1
2 j�1.x/j

2
j�2.x/j

2
Ov.x/ei�

y‚.x/e��x�HxL2.x/„ ƒ‚ …
WDyL2.x/

: (78)

Here the functions �j , j D 1; 2, stand for the normal coordinate representations of �j , which in Fermi
coordinates .s; y/ corresponding to the geodesics 
j take the form �.jyj=ı0/. Note that �j .0/D 1. Recall
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that y‚.x/ D O.jxj3/. By using (77), making the change of variables x 7! ��1=2x and using the fact
� y‚.��1=2x/D ��1=2O.jxj3/DO.jxj3/ one calculates that

kyL2kL1.Œ0;T ���/ DO.�
�1/: (79)

(See (84) below for a similar calculation.)
For the sake of brevity, we set

q.x/D q1.x/� q2.x/; A.x/D j�1.x/j
2
j�2.x/j

2
jb
.1/
0 .x/j2 jb

.2/
0 .x/j2 Ov.x/: (80)

By Proposition 10, see also (67), we have in the normal coordinates that ‚j .0/ D 0 and b.j /0 .0/ D 1,
j D 1; 2. Note also that y‚.0/D 0. Thus one gets

A.0/D Ov.0/: (81)

Integrating in the normal coordinates, and combining (73) and (78), we findZ
Œ0;T ���

v0.q1� q2/v1 � � � vm dVg

D �
nC1
2

Z
B.p0/

v0.x/q.x/A.x/e
i� y‚.x/e��x�Hx dxC

Z
B.p0/

v0.x/q.x/.L1.x/CyL2.x// dx

D �
nC1
2

Z
B.p0/

v0.x/q.x/A.x/e
��x�Hx dxC

Z
B.p0/

v0.x/q.x/.L1.x/C yL2.x//dx

C �
nC1
2

Z
B.p0/

v0.x/q.x/A.x/.e
i� y‚.x/

� 1/e��x�Hx dx: (82)

(Recall that v0 is a function satisfying �gv0 D 0 with v0jtDT D @tv0jtDT D 0 in �.)
With slight abuse of notation, there are now two possible cases in the integral (82).

Case 1: If U1 \U2 \†D ∅, then B.p0/ is a ball in RnC1 centered at p0 such that U1 \U2 � B.p0/
and we can proceed without changes.

Case 2: If U1\U2\†¤∅, then B.p0/ is a ball in RnC1
C

centered at p0 such that U1\U2 �B.p0/. In
this case, we can similarly derive the identity (82) in boundary normal coordinates. As can be seen from
Lemma 21, to obtain a proper normalization, we scale by the constant 1=ˆ.�

p
�x1/. This is achieved by

multiplying the function v0 by 1=ˆ.�
p
�x1/. Since ˆ W .�1; 0�!

�
1
2
; 1
�
, this scaling will contribute to

redefining the constant of the stability estimate by a factor of at most 2. Here ˆ.s/ WD ��1=2
R1
s e�t

2

dt
is as in (63) and x1 denotes the first coordinate of p0 in local coordinates of RnC1

C
.

We now analyze each term in (82) above. Thanks to (62), we can control the term on the left-hand
side of (82) in terms of ı, "1; : : : ; "m and the size of fj . The first term after the second equality in (82)
contains information about q1 � q2 and will be analyzed last. At this point, the exponential function
e��x�Hx will play a crucial role, as it will act as an approximate delta function. This is due to the fact
that H is a positive definite matrix, see (75). By combining (74) and (79), and using the fact that both v0
and q are uniformly bounded, we have for � � �0 thatˇ̌̌̌Z

B.p0/

v0.x/q.x/.L1.x/C yL2.x// dx
ˇ̌̌̌
. ��1: (83)
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Making the change of variables x 7! ��1=2x, we obtainˇ̌̌̌
�
nC1
2

Z
B.p0/

v0.x/q.x/A.x/.e
i� y‚.x/

� 1/e��x�Hx dx

ˇ̌̌̌
D

ˇ̌̌̌Z
B.p0/

.v0qA/.�
� 1
2x/.ei�

y‚.��1=2x/
� 1/e�x�Hx dx

ˇ̌̌̌
. ��

1
2 : (84)

In the last inequality we used that jez1�ez2 j� jz1�z2jemaxfjz1j;jz2jg for all z1; z22C and y‚.x/DO.jxj3/
to deduce that

jei�
y‚.�
� 1
2 x/
� 1j � ��

1
2 jxj3e�

� 1
2 jxj3 ; � � �0:

We also used that the functions v0qA, e�x�Hx , jxj3 and e�
�1=2jxj3 are uniformly bounded in B.p0/.

Let us then analyze the first term after the second equality in (82). Since H is positive definite, there
exists another positive definite matrix B so that B2 DH. Making the change of variables x 7! Bx, we
deduce that in Case 1, where U1\U2\†D∅, we haveZ

B.p0/

v0.x/q.x/A.x/e
��x�Hx dx D

Z
RnC1

v0.Bz/q.Bz/A.Bz/jg.z/j
1
2 jdetBj�1e�� jzj

2

dz: (85)

For convenience, we set

b.z/ WD q.Bz/A.Bz/jg.z/j
1
2 jdetBj�1:

By using (81), we see that in normal coordinates

b.0/D .q1.0/� q2.0// Ov.0/jdetHj�
1
2 : (86)

The identities (82) and (85), combined with estimates (83) and (84) yieldˇ̌̌̌�
�

�

�nC1
2

Z
RnC1

v0.z/b.z/e
�� jzj2 dz

ˇ̌̌̌
. ��

1
2 C

ˇ̌̌̌Z
Œ0;T ���

v0.q1� q2/v1 � � � vm dVg

ˇ̌̌̌
:

Thanks to (62), the second term on the right can be controlled in terms of ı, "1; : : : ; "m and sizes of the
functions fj . Thereby, applying Lemma 20 with z0 D 0 and d D nC 1, we get

jb.0/j �

ˇ̌̌̌
b.0/�

�
�

�

�nC1
2

Z
RnC1

v0.z/b.z/e
�� jzj2 dz

ˇ̌̌̌
C

ˇ̌̌̌�
�

�

�nC1
2

Z
RnC1

v0.z/b.z/e
�� jzj2 dz

ˇ̌̌̌
. cnC1kv0bkC1��

1
2C��

1
2

C
�
ı"�11 � � �"

�1
m C"

�1
1 � � �"

�1
m ."1kf1kH sC1.†/C�� �C"mkfmkH sC1.†//

2m�1
�

.
C�;m;T;qj ;�M

�2m�10

�
2��

1
2C

�2m�10 ı

mM
"�11 � � �"

�1
m

C
1

m�1
"�11 � � �"

�1
m ."1kf1kH sC1.†/C�� �C"mkfmkH sC1.†//

2m�1

�
; (87)

where v0 can be chosen so that in normal coordinates v0.0/D 1. The above holds for any M > 0 and
�0 > 0. In the last step, we scaled ı by �2m�10 =.mM/. The coefficients 2 and 1=.m�1/ in front of ��1=2

and "�11 � � � "
�1
m in (87) were included to simplify formulas later on. We will determine the constants M

and �0 later. Their role in obtaining a stability estimate will be clarified in Lemma 23 below.
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In Case 2 we arrive at the same integral (82), but the integration is only over the half-space RnC1
C

and
due to scaling of v0 the integral is scaled by a constant 1=ˆ.�

p
�x1//. All other calculations after (82)

remain similar, but one needs to apply Lemma 21 instead of Lemma 20 to obtain the estimate (87). We
omit the details.

5.4. Step 3W optimizing the error terms. The last step of the proof of Theorem 1 (in this simplified
setting) is to choose � and "1; : : : ; "m in terms of ı to have the right-hand side of (87) as small as possible.
We begin by setting

"1 D � � � D "m DW ":

Note that by (70) and (71), we have for � � �0 that

"kfj kH sC1.†/ � "�
s�n

8
C 13
8 ; j D 1; 2; 3; 4; � � �0;

"kfj kH sC1.†/ � "�
s�n

4
C 3
2

0 ; j D 5; : : : ; m:

(88)

To guarantee the unique solvability of our nonlinear wave equation (16), we require the quantities on
the right-hand sides of (88) to be bounded by �, which was given by Lemma 9. Recall that �0 > 0 is a
fixed large parameter, which we chose at (71). The parameter was especially chosen so that the Gaussian
beams vj for j D 5; : : : ; m have small enough correction terms.

Lemma 23 shows how to choose the parameters � and " in (87) optimally given � > 0 and ı 2 .0;M/.
By choosing �0 � �, we will see that the optimal value for � is at least �0 and we also have that
"kfj kH sC1.†/ � �.

Lemma 23. Let C;M; s > 0 andm 2N. Let also �0 � 1, ı 2 .0;M/ and � 2 .0; 1/. Then there are " > 0,
� � �0 and �0 � � such that

f ."; �/ WD 2��
1
2 C

�2m�10 ı

mM
"�mC

1

m� 1
"m�1 � .2m�1/.s�

n
8
C 13
8
/

� Cs;m;M;�0 ı
8.m�1/

2m.m�1/.8s�nC13/C2m�1

and we also have
"�s�

n
8
C 13
8 � C�:

Proof. To simplify the notation, let us write Os WD .2m� 1/
�
s � n

8
C
13
8

�
and 
0 D �2m�10 =M. We take

�0 � � to be so that 
0 < 1. We will redefine �0 > 0 smaller later if necessary. A direct computation
shows that

@"f D�.
0ı/"
�m�1

C "m�1� Os; @�f D��
� 3
2 C

Os

m� 1
"m�1� Os�1:

Making @"f D @�f D 0, we obtain the critical points of f , namely

� D ..m� 1/Os�1/
2.2m�1/
2OsmC2m�1 .
0ı/

�
2.m�1/

2OsmC2m�1 ;

"D ..m� 1/Os�1/�
2Os

2OsmC2m�1 .
0ı/
4OsmC2m�1�2Os

.2OsmC2m�1/.2m�1/ :

(89)

(One can also verify that the Hessian of f at the critical point is positive definite, and hence the critical
point is a local minimum.)
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Note now that
� D ..m� 1/Os�1/

2.2m�1/
2OsmC2m�1 .
0ı/

�
2.m�1/

2OsmC2m�1

� ..m� 1/Os�1/
2.2m�1/
2OsmC2m�1 �

�
2.m�1/.2m�1/
2OsmC2m�1

0 ;

because by assumption 0 < ı <M and since 
0 D �2m�10 =M. Since the constant

..m� 1/Os�1/
2.2m�1/
2OsmC2m�1 > 0

and the exponent

�
2.m� 1/.2m� 1/

2OsmC 2m� 1
< 0

do not depend on �0, we may choose �0 so that �0 < C� and that � in (90) satisfies

� D ..m� 1/Os�1/
2.2m�1/
2OsmC2m�1 .
0ı/

�
2.m�1/

2OsmC2m�1 � �0:

With these choices, we have at the critical point of f ."; �/ given by (89)

"�s�
n
8
C 13
8 D "�

Os
2m�1 D .
0ı/

1
.2m�1/ D

�
�2m�10

M
ı

� 1
2m�1

� �0 < C�

for all 0 < ı < M. A straightforward calculation using (89) shows that ��1=2, .
0ı/"�m and "m�1� Os

are all bounded by Cs;m;M;�0 .
0ı/
.m�1/=.2OsmC2m�1/, where the constant Cs;m;M;�0 is independent of "

and � . �

Recall (86) and (87). We set "1 D � � � D "m DW " and apply Lemma 23 to obtain

jv0.p0/jjq1.p0/� q2.p0/jj Ov.p0/jjdetHj�
1
2

.
C�;T;qj ;�M

�2m�10

�
2��

1
2 C

�2m�10 ı

mM
"�mC

1

m� 1
"m�1 � .2m�1/.s�

n
8
C 13
8
/
�

� C0ı
8.m�1/

2m.m�1/.8s�nC13/C2m�1 : (90)

Since p0 2 I�.†/\.Œ0; T ���/, by Lemma 15 there exists a past-directed optimal geodesic from† to p0
such that the first intersection of the geodesic and † is transverse. Since the intersection is transverse, the
geodesic does not intersect ft D T g. Therefore, we may choose v0 to be a Gaussian beam corresponding
to the geodesic such that v0jtDT D @tv0jtDT D 0. We may assume by normalizing that v0.p0/ D 1.
Recall also that Ov.p0/ > c > 0 and jdetHj> 0 by (72) and (75) respectively. Dividing (90) by the norm
of v0.p0/ Ov.p0/jdetHj�1=2, we have a stability estimate

jq1.p0/� q2.p0/j � Cı
8.m�1/

2m.m�1/.8s�nC13/C2m�1 (91)

at the point p0. We next show that the constant C can be redefined to be independent of p0.

5.5. Step 4W uniformity of the constant C . So far we have obtained the estimate (91) regarding the differ-
ence of q1 and q2 at the single point p0. The constantC may at this point depend on p0. Next we argue that
the constant C can be redefined to be independent of p0. This will then yield (4) and conclude the proof
of Theorem 1 in the simplified setting, where we assumed that light-like geodesics can intersect only once.
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To show that C in (91) can be taken to be independent of p0, we first construct an open cover of
W � IC.†/\I�.†/ as follows. (Recall from (3) thatW is a compact set which we can reach and observe
from †.) Let z 2W . By Lemma 15 there are optimal light-like geodesics 
1 and 
2 that intersect at z and
which do not intersect ft D 0g. We may reparametrize so that 
1.0/D 
2.0/D z. Let "D j P
1.0/� P
2.0/j.
Here and below j � j denotes the Rn norm of vectors in local coordinates.

By Corollary 14 there are open neighborhoods U1 and U2 of z and families of Gaussian beams v� .x; l; � /
(including the correction term) parametrized by x 2 Ul , l D 1; 2, such that all the implied constants,
such as �0, in the construction of v� .x; l; � / are uniform in x. Moreover, still by using Corollary 14, the
geodesics 
x;l corresponding to the Gaussian beams v� .x; l; � / satisfy j P
l.0/� P
x;l.0/j � "

3
, l D 1; 2.

Then, for x 2 U1\U2, we also have that

j P
x;1.0/� P
x;2.0/j �
"

3
> 0: (92)

We conclude that the geodesics 
x;1 and 
x;2 intersect at x and do not have the same graph. We also set

Ovx. � /D .v� .x; l; � //
m�4
j�D�0;lD1

for x 2 U1\U2. By redefining �0 larger, if necessary, we have that j Ovx.x/j � d > 0 for all x 2 U1\U2.
In deriving (91) in this Section 5, we used normal coordinates. Normal coordinates are uniquely defined

by choosing an orthonormal basis at a point. By using a local orthonormal frame on a neighborhood U3
of z, we may find a family of normal coordinates smoothly parametrized by x 2 U3. It follows that
the contribution to C in (91) coming from the use of normal coordinates may be taken to be uniformly
bounded for all x 2 U3. All things considered, by repeating the arguments in this Section 5, we may take
the constant C to be uniform for all x 2 U1\U2\U3, where U1\U2\U3 is a neighborhood of z.

Recall that we aim to estimate the difference of q1 and q2 in the compact set W � IC.†/\I�.†/. By
covering first the compact set W by the sets U1\U2\U3 as described above and then passing to a finite
subcover, we have that (91) holds for all z 2W . Finally, we apply Lemma 18 with P D 1 to deduce that
there is a finite family of functions vz;0 satisfying�gvz;0D0 in Œ0; T ��� and vz;0jtDT D@tvz;0jtDT D0
and such that jvz;0.z/j � c >0. (Only finitely many of the functions vz;0 are actually distinct.) Combining
everything yields the estimate

j.vz;0.z/ Ovz.z/.q1� q2//.z/jjdetHzj�
1
2 � Cı

8.m�1/
2m.m�1/.8s�nC13/C2m�1 ; (93)

which holds for all z 2W . Here the point z corresponds to the origin 0 of normal coordinates centered
at z and all the quantities are expressed in these coordinates. The point z is also the point where the
geodesics 
z;1 and 
z;2 corresponding to the Gaussian beams v� .z; 1; � / and v� .z; 2; � / intersect.

By Remark 22, we have that jvz;0.z/j � c > 0 and hence j Ovz.z/j � d > 0 in (93). Let us estimate
jdetHzj, where

Hz D 2r2 Im.‚z;1.x/C‚z;2.x//jxDz :

Here‚z;1 and‚z;2 are the phase functions corresponding to the Gaussian beams v� .z; 1; � / and v� .z; 2; � /
respectively. Here also r2 is the invariant Hessian. In the normal coordinates centered at z we have
that the geodesics 
z;1 and 
z;2 are rays emanating in from origin. Since 
z;1 and 
z;2 do not have the
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same graphs, the rays are not same and there is a positive angle (in the RnC1 metric) between the rays in
the normal coordinates. Due to (92), the angle is uniformly bounded from below by a positive constant.
Consequently, using also the facts that

Im.r2‚z;l/.z/� 0; Im.r2‚z;l/.z/j P
z;l .0/? > 0

we conclude that there is h > 0 such that jdetHzj> h for all z 2W . Dividing (93) by jvz;0.z/j, j Ovx.x/j
and jdetHzj�1=2, and redefining C larger, if necessary, concludes the proof in the special case where we
assumed that light-like geodesics can intersect only once.

5.6. Step 5W multiple intersections. We have proven Theorem 1 in the special case, which assumed that
the used light-like geodesics intersect only once. In the case of multiple intersections, we can perform
a similar analysis as in the special case, but this leads to an estimate for a sum of terms regarding the
difference q1�q2 at the intersection points. To separate the contributions coming from several intersection
points, we will use separation matrices and a separation filter constructed in Lemmas 17 and 18. Most of
the work needed to handle the case of several intersections was already done in proving these two lemmas.

Let N be globally hyperbolic Lorentzian manifold. Let also Ng be an auxiliary Riemannian metric
on N. The following lemma shows that given a compact set K �N there is a bound on the number of
possible intersections of pairs of causal geodesics in K. We will apply the lemma with K D Œ0; T ���
and N D R�M. Let us recall some relevant facts. An open set O of N is convex if for every pair of
points p; q 2O with p ¤ q there is a unique geodesic 
 of O connecting the points. Each point in N
has a neighborhood that is convex [O’Neill 1983, Section 5, Proposition 7]. Let p 2N and let Up be its
convex neighborhood. By [O’Neill 1983, Section 14, Exercise 10] (see also [Minguzzi 2019]), and the
fact that Up is convex, it follows that p has a neighborhood Vp � Up with two properties:

(i) Any causal curve starting in Vp that leaves it never returns.

(ii) Two distinct geodesic segments in Vp can intersect at most once.

We mention that in [O’Neill 1983] the sets Vp are called causality neighborhoods. It follows from
conditions (i) and (ii) that any two distinct causal geodesics can intersect at most once in Vp.

Lemma 24. Let .N; g/ be a globally hyperbolic Lorentzian manifold and let K �N be a compact set.
There is P � 1 with the following property. Let 
1 and 
2 be two distinct causal geodesics. Then the
number of intersection points of 
1 and 
2 is bounded by P,

#.�1\�2/� P;

where �j �N are the graphs of the geodesics 
j , j D 1; 2.

Proof. Let 
1 and 
2 be as in the statement of the lemma. Because N is globally hyperbolic, every point
p 2N has a neighborhood Vp satisfying the conditions (i) and (ii). Because K is compact, there exists a
finite subcover

P[
aD1

Vpa �K
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formed of sets Vpa . Since a pair of distinct causal geodesics can intersect at most once within each Vpa ,
it follows that the number of intersections of 
1 and 
2 is bounded by P. �

Lemma 25. Let Ng be an auxiliary Riemannian metric on a globally hyperbolic Lorentzian manifold .N; g/
and let K �N be compact. Then there exists Q� > 0 such that for any pair of distinct causal geodesics 
1
and 
2 intersecting at points x1; : : : ; xP we have

d Ng.xj ; xk/� Q�; j ¤ k;

where d Ng.x; y/ is the distance induced by Ng.

Proof. Let xj and xk , xj ¤ xk , be intersection points of 
1 and 
2. Let fVpag
P
aD1 be a finite open cover

of K consisting of sets with properties (i) and (ii). Let Q� > 0 be a Lebesgue number (see, e.g., [Munkres
1975, Lemma 27.5]) of fVpag

P
aD1 with respect to the distance d Ng . It follows that the ball B Ng.xj ; Q�/

belongs to Vpa for some a 2 f1; : : : ; P g. Since the geodesics 
1 and 
2 can intersect at most once in Vpa ,
the point xk cannot belong to Vpa . Consequently, xk …B Ng.xj ; Q�/ and thus d Ng.xj ; xk/� Q� as claimed. �

By Lemma 24 we know that there is P 2N such that light-like geodesics can intersect at most P times
in Œ0; T ���. Let also Ng be an auxiliary Riemannian metric on Œ0; T ���.

Let 
1 and 
2 be future-directed light-like geodesics starting from † that intersect for the first time at
z and which do not intersect ft D 0g. Let

z1; : : : ; zP0

be the intersection points of 
1 and 
2 arranged as z1 � z2 � � � � � zP0 , where P0 � P and

z D z1:

As in (64), we choose
vj D �

1
8 .v�;j C rj /; j D 1; 2;

to be Gaussian beams associated to 
1 and 
2. We also choose

vj D Nvj�2; j D 3; 4; and Ov D .v1j�D�0/
m�4

as before. Since the product v1 � � � vm is supported on neighborhoods of the intersection points, the term

hv0.q1� q2/; v1 � � � vmiL2.Œ0;T ���/ D

Z
Œ0;T ���

v0.q1� q2/v1 � � � vm dVg

becomes a sum of terms
P0X
jD1

�
nC1
2

Z
B.zj /

v0.x/.q1� q2/.x/A.x/e
i� y‚.x/e

��x�Hzj x dVg ; (94)

where each set B.zj / is a neighborhood of zj , j D 1; : : : ; P0. Here y‚.x/ and A.x/ are defined similarly
to (76) and (80) respectively and

Hzj D 2r
2 Im.‚1.x/C‚2.x//jxDzj ; j D 1; : : : ; P0

as before.
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By Lemma 25 there is a uniform constant Q� > 0 independent of z1; : : : ; zP0 such that d Ng.zi ; zj /� Q� for
all i¤j . This implies we can use Lemma 18 to find a separation filter on Œ0; T ���. So, let MDfvfkgk2K
be a separation filter of Œ0; T ��� given by Lemma 18 with the compact set W as K and P0 as P. Here
fk 2 C

1.†/ and K is a finite index set. According to Lemma 18, the corresponding solutions vfk to
�gvD 0 in Œ0; T ��� can be chosen so that the associated separation matrix .vfk .zj //

P0
k;jD1

is invertible.
We note that if B.zj /\†¤∅ in (94), then the corresponding integrals can be taken over the half-space

RnC1
C

in boundary normal coordinates. As indicated by Lemma 21 we need to use the scaling factor
1=ˆ.�

p
�zj;1/ to recover the value of q1� q2 at zj . This can be achieved by scaling the functions vfk

of the separation matrices by 1=ˆ.�
p
�zj;1/. This amounts to scaling the matrix element of the upper

triangular parts of each of the separation matrices by 1=ˆ.�
p
�zj;1/ if B.zj /\†¤∅. Here zj;1 is the

first coordinate of zj in boundary normal coordinates. Recall from (63) that ˆ W .�1; 0�!
�
1
2
; 1
�
. Thus

by choosing a larger �0, if necessary, the separation matrices with scaled elements stay invertible. Much
as in Step 4, it is possible to make the choices of the boundary normal coordinates so that the choices
amount to redefining the constant C .

By repeating the calculation in (62) we have for each k 2 K that

jhvfk .q1� q2/; v1 � � � vmiL2.Œ0;T ���/j � Ck ."1 � � � "m/
�1

�
ıC

� mX
jD1

"j kfj kH sC1.†/

�2m�1�
:

We apply (94) with vfk in place of v0 and note that the integrals in (94) are the value of the integrand
at zk plus a term of size O.��1=2/ by calculations (75)–(87) and Lemmas 20 and 21. Optimizing as in
Section 5.4 in � and "1; : : : ; "m yields thatˇ̌̌̌ P0X

jD1

vfk .zj /.q1.zj /� q2.zj // Ov.zj /jdetHzj j
� 1
2

ˇ̌̌̌
� Cı

8.m�1/
2m.m�1/.8s�nC13/C2m�1

for all k D 1; : : : ; P0. Let us define a matrix A and a vector Q as

Akj D vfk .zj /; Qj D .q1.zj /� q2.zj // Ov.zj /jdetHzj j
� 1
2 ;

where j; k D 1; : : : ; P0. Since the separation matrix fvfk.xj /g
P0
k;jD1

is invertible, we have that

jQ1j � kQk D kA�1.AQ/k � kAk�1kAQk � kAk�1Cı
8.m�1/

2m.m�1/.8s�nC13/C2m�1 :

Recalling that z1 D z, we thus haveˇ̌
.q1.z/� q2.z// Ov.z/jdetHzj�

1
2

ˇ̌
� CkAk�1ı

8.m�1/
2m.m�1/.8s�nC13/C2m�1 : (95)

In (95), Ovz , detHz , but also kAk�1 depend on the point z. We argued in Section 5.5 that Ovz ,
jdetHzj�1=2 have norms which are uniformly bounded from below with respect to z. Since the separation
filter M is a finite collection, we may also bound kAk�1 uniformly when we consider different points
in W . Using these facts and by dividing by j Ov.z/ detHzj�1=2 and redefining C shows that

kq1� q2kL1.W / � Cı
8.m�1/

2m.m�1/.8s�nC13/C2m�1 :

This concludes the proof of Theorem 1.
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Appendix: Proof of Proposition 8

Before proceeding to the proof of Proposition 8, which concerns the well-posedness of the linear wave
equation (14), we need the following lemma.

Lemma 26. Let .R�M;g/ be a globally hyperbolic manifold. Let also t0 2R and let St0 D ft D t0g�M
be the corresponding Cauchy surface. Suppose V � St0 is a compact set in St0 and W is an open
neighborhood of V in R�M. Then there exists ">0 such that .Œt0; t0C"��M/\JC.V /�W . In particular
if V bU, where U is open in St0 , there exists " > 0 such that .Œt0; t0C"��M/\JC.V /� Œt0; t0C"��U.

Proof. For the first claim, assume that there is no such " > 0. Then there are numbers "k > 0 with "k! 0

as k!1 and points pk 2 .Œt0; t0C"k��M/\JC.V /, but pk 62W . Since W is open, any accumulation
points of pk , if existing, are not in W . As "k ! 0 there is " � "k for all sufficiently large k 2 N, say,
k � k0. It follows that pk 2 .Œt0; t0C "��M/\JC.V / for all k � k0.

Because R�M is foliated by the space-like Cauchy surfaces St , we have

Œt0; t0C "��M D
[

t2Œt0;t0C"�

St :

Also St � J�.ST / for all t � T, because if 
 is any nonextendible future-directed causal curve with

.s/2 St for some s 2R, then this curve intersects ST in the future. By [Bär et al. 2007, Corollary A.5.4],
the intersection J�.St0C"/\J

C.V / is compact. So Œt0; t0C "��M being a closed subset of J�.St0C"/
implies that .Œt0; t0C"��M/\JC.V / is compact and there exists a convergent subsequence pki ! p 2

.Œt0; t0C"��M/\JC.V /. Due to the construction, as "ki!0we have pki!p2ftD t0g�M\J
C.V /D

V �W . Thus p 2W , which is a contradiction.
Suppose now that W D .a; b/�U where t0 2 .a; b/� R. Then if " > 0 is so small that .Œt0; t0C "��

M/\JC.V /� .a; b/�U, we have .Œt0; t0C "��M/\JC.V /� Œt0; t0C "��U. If not, we would have
some p D .t; x/ 2 .Œt0; t0C "��M/\JC.V / with t 62 Œt0; t0C "� or x 62 U. Both options are invalid, so
also the second claim holds. �

Proof of Proposition 8. Let us first recall results in the special case where � is a domain �� Rn. From
[Lasiecka et al. 1986] we know that there exists a unique solution v 2EsC1 to the problem8<:

.@2t ��h/v D F in Œ0; T ���;
v D f on Œ0; T �� @�;
v D u0; @tv D u1 in ft D 0g ��;

(96)

if h.t; � / is a smooth 1-parameter family of Riemannian metrics on Rn and if we assume that F, f , u0 and
u1 satisfy the regularity and compatibility conditions of our proposition in Rn. Under these assumptions,
we also know from classical results such as [Ikawa 1968] that there exists a unique solution w 2EsC1 to8<:

.@2t ��h/wCAw DG in Œ0; T ���;
w D 0 on Œ0; T �� @�;
w D @tw D 0 in ft D 0g ��

(97)
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when A 2 C1.Œ0; T ���/ and G 2Es. By combining the mentioned results, we have that the problem8<:
.@2t ��h/uCAuD F in Œ0; T ���;
uD f on Œ0; T �� @�;
uD u0; @tuD u1 in ft D 0g ��

(98)

has a unique solution u 2EsC1 and the regularity results of [Ikawa 1968; Lasiecka et al. 1986] also show
that @�u2H s.Œ0; T ��@�/. Indeed, by solving first (96) for v 2EsC1 and then definingG WDAv 2EsC1

for the problem (97) we find w 2EsC1 (in fact w 2EsC2) solving (97) and so that u WD v�w solves (98).
Let us then explain how these results translate to the case of a globally hyperbolic manifold Œ0; T ��M

equipped with a Lorentzian metric gD ˇ.t; x/ dt2�h.t; x/. Here ˇ > 0 is a smooth function and h.t; � /
is a smooth 1-parameter family of Riemannian metrics on M. The function ˇ > 0 is bounded from above
and below by the compactness of Œ0; T ���. Via a conformal change of variables we obtain a scaled
metric Qg D dt2�ˇ�1h for which the wave operator transforms as

P WD ˇ
3
2�gˇ�

1
2 D� Qg CV D @2t ��ˇ�1hCV:

Here V.t; x/ is a smooth function and �ˇ�1h for each t 2 Œ0; T � is the Laplace–Beltrami operator of the
Riemannian metric .ˇ�1h/.t; � / on M. Then u solving (14) is equivalent to v WD ˇ1=2u solving8̂<̂

:
Pv D ˇ

3
2F in Œ0; T ���;

v D ˇ
1
2f on †;

v D ˇ
1
2u0; @tv D

1
2
ˇ�

1
2 @tˇu0Cˇ

1
2u1 in ft D 0g ��:

(99)

From [Hörmander 1983, Theorem 24.1.1] we know that there exists a unique solution to (99). (The
result of that work is not however sufficient to us.) Also, in local coordinates in � this equation is of the
form (98). Let us define

RD ˇ
3
2F; r D ˇ

1
2f; r0 D ˇ

1
2u0; r1 D

1
2
ˇ�

1
2 @tˇu0Cˇ

1
2u1:

Note that ft D 0g �M is a space-like Cauchy surface in R�M. Because ��M is a compact manifold,
there exists a finite atlas f.Uj ; 'j /gkjD1 covering �. Let �j be a partition of unity subordinate to fUj gkjD1
and let us denote the support of �j as

Vj D supp.�j /b Uj :
Let us also define

Rj D �jR; rj D �j j†r; r0;j D �j r0; r1;j D �j r1;

denote the corresponding coordinate representations as

zRj DRj ı'
�1
j ; Qrj D r ı'

�1
j ; Qr0;j D r0 ı'

�1
j Qr1;j D r1 ı'

�1
j ;

and let
zUj D 'j .Uj /:

We construct a solution to (14) by patching up local solutions following partly the proof of [Bär et al.
2007, Proposition 3.2.11]. As we will see, this is possible due to the finite speed of propagation of
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solutions to a wave equation. LetKj be an open set with compact closure such that Vj �Kj andKj �Uj .
If t 2 R, we may use Lemma 26 to deduce that there exists " > 0 so that

..t; t C "/��/\JC.Vj /� .t; t C "/�Kj � .t; t C "/�Uj

holds. (This is similar to [Bär et al. 2007, proof of Proposition 3.2.11].) Here JC is defined with respect
to the conformal metric Qg. We remark that JC of a set is conformally invariant. By the compactness of
Œ0; T �, there is a finite set of numbers "i > 0 and ti 2 R so that the intervals

Ii WD .ti ; ti C "i /

cover Œ0; T �. We are going to find a solution to our wave equation (14) iteratively in the index i so
that at each step of the iteration we have .Ii � �/ \ JC.Vj / � Ii � Uj , j D 1; : : : ; k. Let us set
t1 D 0 < t2 < � � �< tl and tl C "l D T and consider the set ..0; "1/��/\JC.Vj / first.

By the discussion around (98), we have that there is a unique solution Quj 2EsC1 to8̂̂̂<̂
ˆ̂:
zP Quj D zRj in .0; "1/� zUj ;
Quj D Qrj on .0; "1/� @ zUj \'j .@�/;
Quj D 0 on .0; "1/� @ zUj n'j .@�/;
Quj D Qr0;j ; @t Quj D Qr1;j in ft D 0g � zUj

(100)

in each coordinate chart zUj , j D 1; : : : ; k, in the time interval .0; "1/. (Here and below we understand
'j .@�/D∅ if Uj \ @�D∅.) Since our (14) satisfies the compatibility conditions (13), one can verify
by a direct calculation that (100) satisfies the compatibility conditions of [Ikawa 1968; Lasiecka et al.
1986] that were needed for the unique solvability of (98). In particular, at the intersection of ft D 0g
and @ zUj \'j .@�/ the compatibility conditions follow from the assumptions of the proposition we are
proving. At the intersection of ft D 0g and a neighborhood of @ zUj n'j .@�/ the initial values vanish due
to the cut-off functions �j . Thus (100) has a unique solution.

Next, let us define

uj D

�
Quj ı'j in Œ0; "1��Uj ;
0 in Œ0; "1�� .� nUj /:

By the finite speed of propagation of solutions to a wave equation, see for example [Bär et al. 2007,
Proposition 3.2.11], we have supp.uj / � JC.Vj /, and by the condition ..0; "1/ � �/ \ JC.Vj / �
.0; "1/�Kj � .0; "1/�Uj , we have that

Quj D 0 in a neighborhood of @ zUj n'j .@�/:

Consequently, uj is the smooth continuation of Quj ı'j WUj !R by zero and uj 2EsC1. We also continue
Quj smoothly by zero to Rn (or to RCn if Uj is a boundary chart.)

We now patch up the functions uj as

uD

kX
jD1

uj 2E
sC1
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to have a solution to (99) in the case T D "1. Indeed, we have on ..0; "1/�Uj / that

PuD
kX

jD1

.zP Quj / ı'j D
kX

jD1

zRj ı'j D

kX
jD1

�jRDR:

We also have that �
uD f on Œ0; "1�� @�;
uD r0; @tuD r1 in ft D 0g ��;

which is (99) for T D "1.
We continue iteratively and extend u to a solution of (14) in increasing time steps ti . At each iteration

step, which concerns the time-interval Ii , we use as the initial values QujtDti and @tujtDti . These are well
defined since ti < ti�1C "i�1. In this way, we found a unique solution u 2EsC1 to (99) in Œ0; T ���,
and consequently a unique solution to (14) in the class EsC1.

Next we show that the above regularity and unique existence results of solutions for (14) can be turned
into the energy estimate (15) by using the closed graph theorem. Consider the Banach space EsC1 and
define a linear map

A WEs �H sC1.†/�H sC1.�/�H s.�/!EsC1

by A.F; f; u0; u1/D u, where u is the unique solution to (14). To have the energy estimate (15) it is
sufficient to show that A is continuous. By the closed graph theorem, this is in turn equivalent to showing
that if �

.Fk; fk; u0;k; u1;k/! .F; f; u0; u1/ in Es �H sC1.†/�H sC1.�/�H s.�/;

A.Fk; fk; u0;k; u1;k/! u1 in EsC1;
then

u1 D A.F; f; u0; u1/:

Here Fk !�gu1 in D 0.Œ0; T ���/, fk ! u1j† in D0.†/, and similarly for t D 0, u0;k ! u1 and
u1;k ! @tu1 in D0.�/. Due to the uniqueness of limits, we have that u1 solves (14). Therefore, by
uniqueness of solutions to the wave equation, we have that uD A.F; h; u0; u1/. Hence A is a bounded
linear map and the energy estimate follows. �
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RIGIDITY FOR VON NEUMANN ALGEBRAS OF GRAPH PRODUCT GROUPS
I: STRUCTURE OF AUTOMORPHISMS

IONUT, CHIFAN, MICHAEL DAVIS AND DANIEL DRIMBE

We study various rigidity aspects of the von Neumann algebra L(0), where 0 is a graph product group
whose underlying graph is a certain cycle of cliques and the vertex groups are wreath-like product
property (T) groups. Using an approach that combines methods from Popa’s deformation/rigidity theory
with new techniques pertaining to graph product algebras, we describe all symmetries of these von
Neumann algebras and reduced C∗-algebras by establishing formulas in the spirit of Genevois and
Martin’s results on automorphisms of graph product groups.

1. Introduction

Graph product groups were introduced by E. Green [1990] in her Ph.D. thesis as natural generalizations
of classical right-angled Artin and Coxeter groups. Their study has become a trendy subject over the
years as they play key roles in various branches of topology and group theory. For example, over the last
decade graph product groups have been intensively studied through the lens of geometric group theory
resulting in many new important discoveries — [Agol 2013; Antolín and Minasyan 2015; Haglund and
Wise 2008; Minasyan and Osin 2015; Wise 2009], just to enumerate a few.

In a different direction, by using techniques from measured group theory, interesting orbit equivalence
rigidity results have been obtained for measure-preserving actions on probability spaces of specific classes
of graph product groups, including many right-angled Artin groups [Horbez and Huang 2022; Horbez
et al. 2023].

General graph product groups were considered in the analytic framework of von Neumann algebras
for the first time in [Caspers and Fima 2017]. Since then several structural results such as strong solidity,
absence/uniqueness of Cartan subalgebras, and classification of their tensor decompositions have been
established in [Caspers 2020; Caspers and Fima 2017; Chifan and Kunnawalkam Elayavalli 2024; Chifan
et al. 2018; Ding and Kunnawalkam Elayavalli 2024] for von Neumann algebras arising from these
groups and their actions on probability spaces. Since general graph product groups display such a rich
combinatorial structure, much remains to be done in this area, and understanding how this complexity is
reflected in the von Neumann algebras remains mysterious.

This paper is the first of two which will investigate new rigidity aspects for von Neumann algebras
of graph product groups through the powerful deformation/rigidity theory of Popa [2007]. This theory
provides a novel conceptual framework through which a large number of impressive structural and rigidity
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results for von Neumann algebras have been discovered over the last two decades; see the surveys [Ioana
2013; 2018; Popa 2007; Vaes 2013]. These two papers will analyze new inputs in this theory from the
perspective of graph product algebras. In the first paper, we completely describe the structure of all
∗-isomorphisms between von Neumann algebras arising from a large class of graph product groups; see
Section 4. In the second paper [Chifan et al. 2025], we investigate superrigidity aspects of these von
Neumann algebras.

1.1. Statements of the main results. To properly introduce our results, we briefly recall the construction
of graph product groups. Let G = (V , E ) be a finite simple graph (i.e., G does not admit more than one
edge between any two vertices, and no edge of G starts and ends at the same vertex). The graph product
group 0 = G {0v} of a given family of vertex groups {0v}v∈V is the quotient of the free product ∗v∈V 0v

by the relations [0u, 0v]= 1 whenever u and v are connected by an edge, (u, v)∈ E . Thus, graph products
can be thought of as groups that “interpolate” between the direct product

Ś

v∈V 0v (when G is complete)
and the free product ∗v∈V 0v (when G has n).

For any subgraph H = (U ,F ) of G , we denote by 0H the subgroup generated by 0H = ⟨0u : u ∈ U ⟩,
and we call it the full subgroup of G {0v} corresponding to H . A clique C of G is a maximal, complete
subgraph of G . The set of cliques of G will be denoted by cliq(G ). The full subgroups 0C for C ∈ cliq(G )
are called the clique subgroups of G {0v}.

In this paper we are interested in graph product groups arising from a specific class of graphs which
we introduce next. A graph G is called a simple cycle of cliques (the collection of such graphs we
abbreviate CC1) if there is an enumeration of its clique set cliq(G )= {C1, . . . ,Cn} with n ⩾ 4 such that
the subgraphs Ci, j := Ci ∩ Cj satisfy

Ci, j =

{
∅ if î − ĵ ∈ Zn \ {1̂, n̂ − 1},

̸= ∅ if î − ĵ ∈ {1̂, n̂ − 1},

C int
i := Ci \ (Ci−1,i ∪ Ci,i+1) ̸= ∅ for all i ∈ 1, n, with conventions 0 = n and n + 1 = 1.

(1-1)

Note this automatically implies the cardinality |Ci | ⩾ 3 for all i . Also such an enumeration cliq(G )=

{C1, . . . ,Cn} is called a consecutive cliques enumeration. A basic example of such a graph is any simple,
length n, cycle of triangles Fn = (Vn, En), which essentially looks like a flower-shaped graph with n
petals, shown in Figure 1. In fact any graph in CC1 is a two-level clustered graph that is a specific
retraction of Fn; for more details the reader may consult Section 4.

The goal of this paper is to describe the structure of all ∗-isomorphisms between graph product group
von Neumann algebras (i.e., group von Neumann algebras arising from graph product groups), where
the underlying graphs belong to CC1. To introduce our results, we first highlight a canonical family of
∗-isomorphisms between these algebras that are analogous to the graph product groups situation. Let
G ,H ∈ CC1 be isomorphic graphs, and fix σ : G → H an isometry. Let cliq(G )= {C1, . . . ,Cn} be a
consecutive cliques enumeration. Let 0G and 3H be graph product groups and assume that, for every
i ∈ 1, n, there are ∗-isomorphisms

θi−1,i : L(0Ci−1,i )→ L(3Cσ(Ci−1,i )
), ξi : L(0C int

i
)→ L(3σ(C int

i )), θi,i+1 : L(0Ci,i+1)→ L(3Cσ(Ci,i+1)
);
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. . .

Figure 1. A simple, length n cycle of triangles, which is an example of a graph that is in CC1.

here and in what follows we use the convention as before that n = 0 and n + 1 = 1. Results in Section 7.1
show these ∗-isomorphisms induce a unique ∗-isomorphism φθ,ξ,σ : L(0G )→ L(3H ) defined as

φθ,ξ,σ (x)=

{
θi−1,i (x) if x ∈ L(0Ci−1,i ),

ξi (x) if x ∈ L(0C int
i
)

for all i ∈ 1, n. (1-2)

When 0G = 3H , this construction yields a group of ∗-automorphisms of L(0G ), which we denote
by Locc,g(L(0G )). We also denote by Locc(L(0G )) the subgroup of all local automorphisms satisfying
σ = Id. Notice that

Locc(L(0G ))∼=

⊕
i

Aut(L(0Ci−1,i ))⊕ Aut(L(0C int
i
)),

and also Locc(L(0G ))⩽ Locc,g(L(0G )) has finite index.
Next, we highlight a class of automorphisms in Locc(L(0G )) needed to state our main results. Consider

n-tuples a = (ai,i+1)i and b = (bi )i of nontrivial unitaries ai,i+1 ∈ L(0Ci−1,i ) and bi ∈ L(0C int
i
) for

every i ∈ 1, n. If in (1-2), we let θi,i+1 = ad(ai,i+1) and ξi = ad(bi ), and then the corresponding local
automorphism φθ,ξ,Id is most of the time an outer automorphism of L(0) and will be denoted by φa,b

throughout. These automorphisms form a normal subgroup denoted by Locc,i (L(0G ))◁Locc(L(0G ));
see Section 7.1 for more details.

Developing an approach which combines outgrowths of prior methods in Popa’s deformation/rigidity
theory [Ioana et al. 2008] with a new technique on analyzing cancellation in cyclic relations of graph
von Neumann algebras (Section 5), we are able to describe all ∗-isomorphisms between these algebras
solely in terms of the aforementioned local isomorphisms. This can be viewed as a von Neumann algebra
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counterpart of very general and deep results of Genevois and Martin [2019, Corollary C] from geometric
group theory describing the structure of the automorphisms of graph product groups.

Theorem A. Let G ,H ∈ CC1, and let 0 = G {0v} and 3= H {3w} be graph products such that

(1) 0v and 3w are icc property (T) groups for all v ∈ V and w ∈ W ,

(2) there is a class C of countable groups which satisfies the s-unique prime factorization property (see
Definition 7.6) for which 0v and 3w belong to C for all v ∈ V and w ∈ W .

Let t > 0, and let 2 : L(0)t → L(3) be any ∗-isomorphism. Then t = 1 and one can find an isometry
σ : G → H , ∗-isomorphisms θi−1,i : L(0Ci−1,i )→ L(0Cσ(Ci−1,i )

) and ξi : L(0C int
i
)→ L(0σ(C int

i )) for all
i ∈ 1, n, and a unitary u ∈ L(3) such that 2= ad(u) ◦φθ,ξ,σ .

This theorem applies to fairly large classes of property (T) vertex groups, including: all fibered Rips
constructions considered in [Chifan et al. 2023a; 2024], and all wreath-like product groups WR(A, B ↷ I ),
where A is either abelian or icc, B is an icc subgroup of a hyperbolic group, and the action B ↷ I has
amenable stabilizers [Chifan et al. 2023b]. The result also implies that the fundamental group [Murray
and von Neumann 1936] of these graph product group II1-factors is always trivial; this means that if 0 is
a graph product group as in Theorem A, then {t > 0 : L(0)t ∼= L(0)} = 1. Recall that Popa [2006a] used
his deformation/rigidity theory for obtaining the first examples of II1-factors with trivial fundamental
group, hence answering a longstanding open problem of Kadison; see [Ge 2003]. Subsequently, a large
number of striking results on computations of fundamental groups of II1-factors were obtained; see
the introduction of [Chifan et al. 2024]. To our knowledge, Theorem A provides the first instance of
computing the fundamental group for nontrivial graph product von Neumann algebras which is not a
tensor product.

Specializing Theorem A to the case when the vertex groups 0v and 3w are the property (T) wreath-like
product groups as in [Chifan et al. 2023c, Theorem 7.5], we obtain a fairly concrete description of all
such isomorphisms between these graph product group von Neumann algebras; namely, they appear as
compositions between the canonical group-like isomorphisms and the clique-inner local automorphisms
of L(3) described above.

Theorem B. Let G ,H ∈ CC1, and let 0 = G {0v} and 3= H {3w} be graph product groups where all
vertex groups 0v, 3w are property (T) wreath-like product groups of the form WR(A, B ↷ I ), where A
is abelian, B is an icc subgroup of a hyperbolic group, and B ↷ I has infinite orbits.

Then, for any t > 0 and ∗-isomorphism2 :L(0)t →L(3), we have t = 1 and one can find a character
η ∈ Char(0), a group isomorphism δ ∈ Isom(0,3), a ∗-automorphism φa,b ∈ Locc,i(L(3)), and a unitary
u ∈ L(3) such that 2= ad(u) ◦φa,b ◦9η,δ.

In the statement of Theorem B and also throughout the paper, given a character η ∈ Char(0) and a
group isomorphism δ ∈ Isom(0,3), we denote by 9η,δ the ∗-isomorphism from L(0) to L(3) given by
9η,δ(ug)= η(g)vδ(g) for any g ∈ 0. Here, {ug : g ∈ 0} and {vh : h ∈3} are the canonical group unitaries
of L(0) and L(3), respectively.
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To this end we recall that in [Chifan et al. 2023c, Corollary 2.12] it was shown that the property (T)
regular wreath-like products covered by the previous theorem can be chosen to have trivial abelianization
and prescribed finitely presented outer automorphism groups. Using this, Theorem A yields the following.

Corollary C. Let G ∈ CC1, and fix cliq(G )= {C1, . . . ,Cn} a consecutive enumeration of its cliques. Let
0 = G {0v} be any graph product groups (as in Theorem B). Assume in addition that its vertex groups are
pairwise nonisomorphic and have trivial abelianization and trivial outer automorphisms. Then the outer
automorphisms satisfy the formula

Out(L(0))∼=

n⊕
i=1

U (L(0Ci−1,i ))⊕ U (L(0C int
i
)).

By applying Corollary C to the case when the underlying graph G is the n-petals flower-shaped
Fn = (Vn, En), see Figure 1, we obtain the slimmest types of outer automorphisms groups one could have
in this setup. Namely, we deduce that Out(L(0))∼=

⊕
v∈Vn

U (L(0v)).
We conclude our introduction with Corollary D, where we describe all ∗-isomorphisms of the reduced

C∗-algebras of graph product groups that we considered in Theorem B. This result can be seen as a
C∗-algebraic version of [Genevois and Martin 2019, Corollary C].

Corollary D. Let G ,H ∈ CC1, and let 0 = G {0v} and 3 = H {3w} be graph product groups (as in
Theorem B). Then, for any ∗-isomorphism 2 : C∗

r (0)→ C∗
r (3), there exist a character η ∈ Char(0),

a group isomorphism δ ∈ Isom(0,3), a ∗-automorphism φa,b ∈ Locc,i(L(3)), and a unitary u ∈ L(3)
such that 2= ad(u) ◦φa,b ◦9η,δ.

In fact, this result is a consequence of Theorem B since the graph product groups that we consider
have trivial amenable radical (see Lemma 4.3) and, consequently, their reduced C∗-algebras have unique
trace [Breuillard et al. 2017].

2. Preliminaries

2.1. Terminology. Throughout this document all von Neumann algebras are denoted by calligraphic
letters, e.g., M, N , P , Q, etc. All von Neumann algebras M considered in this document will be
tracial, i.e., endowed with a unital, faithful, normal linear functional τ :M→ C satisfying τ(xy)= τ(yx)
for all x, y ∈ M. This induces a norm on M with the formula ∥x∥2 = τ(x∗x)1/2 for all x ∈ M. The
∥ · ∥2-completion of M will be denoted by L2(M).

Given a von Neumann algebra M, we will denote by U (M) its unitary group and by Z(M) its center.
Given a unital inclusion N ⊂M of von Neumann algebras, we denote by N ′

∩M= {x ∈M : [x,N ] = 0}

the relative commmutant of N inside M, and by NM(N )= {u ∈ U (M) : uNu∗
= N } the normalizer

of N inside M. We say that the inclusion N is regular in M if NM(N )′′ = M and irreducible if
N ′

∩M = C1.

2.2. Graph product groups. In this preliminary section we briefly recall the notion of graph product
groups introduced by E. Green [1990] while also highlighting some of its features that are relevant to
this article. Let G = (V , E ) be a finite simple graph, where V and E denote its vertex and edge sets,
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respectively. Let {0v}v∈V be a family of groups called vertex groups. The graph product group associated
with this data, denoted by G {0v, v ∈ V } or simply G {0v}, is the group generated by 0v, v ∈ V , with
the only relations being [0u, 0v] = 1 whenever (u, v) ∈ E . Given any subset U ⊂ V , the subgroup
0U = ⟨0u : u ∈ U ⟩ of G {0v, v ∈ V } is called a full subgroup. This can be identified with the graph
product GU {0u, u ∈ U } corresponding to the subgraph GU of G , spanned by the vertices of U . For every
v ∈ V , we denote by lk(v) the subset of vertices w ̸= v such that (w, v) ∈ E . Similarly, for every U ⊆ V ,
we define lk(U )=

⋂
u∈U lk(u). We also use the convention that lk(∅)= V . Notice that U ∩ lk(U )=∅.

Graph product groups naturally admit many amalgamated free product decompositions. One such
decomposition — which is essential for deriving our main results — involves full subgroup factors in
[Green 1990, Lemma 3.20] as follows. For any w ∈ V , we have

G {0v} = 0V \{w} ∗
0lk(w)

0st(w), (2-1)

where st(w)= {w}∪ lk(w). Notice that 0lk(w) ≨ 0st(w), but it could be the case that 0lk(w) = 0V \{w} when
V = st(w). In this case the amalgam decomposition is called degenerate.

Similarly, for every subgraph U ⊂ G , we write st(U )= U ∪ lk(U ). A maximal complete subgraph
C ⊆ G is called a clique and the collections of all cliques of G will be denoted by cliq(G ). Below we
highlight various properties of full subgroups that will be useful in this paper. The first is [Antolín and
Minasyan 2015, Lemma 3.7], the second is [Antolín and Minasyan 2015, Proposition 3.13], while the
third is [Antolín and Minasyan 2015, Proposition 3.4].

Proposition 2.1 [Antolín and Minasyan 2015]. Let 0 = G {0v} be any graph product of groups with
g ∈ 0, and let S ,T ⊆ G be any subgraphs. Then the following hold:

(1) If g0T g−1
⊂ 0S , then there is h ∈ 0S such that g0T g−1

= h0T ∩S h−1. In particular, if S = T ,
then g0T g−1

= 0S .

(2) The normalizer of 0T inside 0 satisfies N0(0T )= 0T ∪link(T ).

(3) There exist D ⊆ S ∩ T and h ∈ 0T such that g0S g−1
∩0T = h0Dh−1.

2.3. Popa’s intertwining-by-bimodules techniques. We next recall the intertwining-by-bimodules tech-
nique of Popa [2006b, Theorem 2.1 and Corollary 2.3], which is a powerful criterion for identifying
intertwiners between arbitrary subalgebras of tracial von Neumann algebras.

Theorem 2.2 [Popa 2006b]. Let (M, τ ) be a tracial von Neumann algebra and P ⊂ pMp, Q ⊂ qMq
be von Neumann subalgebras. Then the following are equivalent:

(1) There exist projections p0 ∈ P , q0 ∈ Q, a ∗-homomorphism θ : p0P p0 → q0Qq0, and a nonzero
partial isometry v ∈ q0Mp0 such that θ(x)v = vx for all x ∈ p0P p0.

(2) There is no sequence (un)n≥1 ⊂ U(P) satisfying ∥EQ(x∗un y)∥2 → 0 for all x, y ∈ pM.

If one of these equivalent conditions holds, we write P ≺M Q and say that a corner of P embeds into
Q inside M. Moreover, if P p′

≺M Q for any nonzero projection p′
∈ P ′

∩ pMp, then write P ≺
s
M Q.
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Given an arbitrary graph product group, our next lemma clarifies the intertwining of subalgebras of
full subgroups in the associated graph product group von Neumann algebra.

Lemma 2.3. Let 0= G {0v} be any graph product of infinite groups, and let S ,T ⊆ G be any subgraphs.
If L(0S )≺L(0) L(0T ), then S ⊂ T .

Proof. By applying [Chifan and Ioana 2018, Lemma 2.2], there is g ∈0 such that [0S :0S ∩g0T g−1
]<∞.

By Proposition 2.1, one can find a subgraph P ⊆ S ∩T and k ∈ 0S such that 0S ∩ g0T g−1
= k0Pk−1.

Thus k0Pk−1 < 0S is a finite index subgroup. Since k ∈ 0S , it follows that 0P < 0S has finite index
as well. Since |0v| = ∞, for all v ∈ G , we must have that [0S : 0P ] = 1, and hence 0S = 0P . Thus,
S = P ⊂ S ∩ T , and hence S ⊂ T . □

Remark 2.4. The proof of Lemma 2.3 shows that if 0 = G {0v} is a graph product of infinite groups and
S ,T ⊆ G are subgraphs such that [0S : 0S ∩ g0T g−1

]<∞ for some g ∈ 0, then S ⊆ T .

2.4. Quasinormalizers of von Neumann algebras. Given an inclusion P ⊂ M of tracial von Neumann
algebras, we define the quasinormalizer QN M(P) as the subgroup of all elements x ∈ M for which
there exist x1, . . . , xn ∈ M such that Px ⊆

∑
xiP and xP ⊆

∑
Pxi ; see [Popa 1999, Definition 4.8].

Lemma 2.5 [Fang et al. 2011; Popa 2006b]. Let P ⊂ M be tracial von Neumann algebras. For any
projection p ∈ P , we have that W ∗(QN pMp(pP p))= pW ∗(QN M(P))p.

Given a group inclusion H < G, the quasinormalizer QNG(H) is the group of all g ∈ G for which
there exists a finite set F ⊂ G such that Hg ⊂ F H and gH ⊂ H F . The following result provides a
relation between the group theoretical quasinormalizer and the von Neumann algebraic one.

Lemma 2.6 [Fang et al. 2011, Corollary 5.2]. Let 3 < 0 be countable groups. Then we have that
W ∗(QN L(0)(L(3)))= L(QN0(3)).

We continue by computing the quasinormalizer of subalgebras of full subgroups in any graph product
group von Neumann algebra. More generally, we show the following.

Theorem 2.7. Let 0= G {0v} be any graph product of infinite groups, and let S ,T ⊆ G be any subgraphs.
Write M = L(0), and assume there exist x, x1, x2, . . . , xn ∈ M such that L(0S )x ⊆

∑n
k=1 xkL(0T ).

Thus S ⊆ T and x ∈ L(0T ∪lk(S )).

Proof. Using the proofs of [Chifan and Ioana 2018, Lemma 2.8 and Claim 2.3], we obtain that x belongs
to the ∥ · ∥2-closure of the linear span of {ug}g∈S . Here, S denotes the set of all elements g ∈ 0 for which
[0S : 0S ∩ g0T g−1

]<∞. By assuming that x ̸= 0, it follows that S is nonempty. Fix g ∈ S. By using
Remark 2.4, we derive that S ⊆ T , which gives the first part of the conclusion.

For proving the second part, note that by Proposition 2.1 one can find a subgraph P ⊆ S and k ∈ 0S

such that 0S ∩ g0T g−1
= k0Pk−1. Thus k0Pk−1 < 0S is a finite index subgroup. Since k ∈ 0S , this

further implies that 0P < 0S has finite index, and hence P = S . Using again that k ∈ 0S , we get
0S ∩g0T g−1

= k0Pk−1
=0S , and thus g−10S g<0T . By Proposition 2.1, one can find r ∈0T such that

g−10S g = r0S r−1. This relation implies in particular that gr ∈ N0(0S ), and since N0(0S )= 0S ⊔lk(S )

(see Proposition 2.1), we conclude that gr ∈ 0S ∪lk(S ). Therefore, g ∈ 0S ∪lk(S )0T ⊂ 0T ∪ lk(S ). This
gives the desired conclusion. □
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Corollary 2.8. Let 0 = G {0v} be any graph product of infinite groups, and let C ∈ cliq(G ) be a clique
with at least two vertices. Fix a vertex v ∈ C such that lk(C \ {v})= {v}. Write M = L(0), and assume
there exist x, x1, x2, . . . , xn ∈ M such that L(0C \{v})x ⊆

∑n
k=1 xkL(0C ). Then x ∈ L(0C ).

Proof. The result follows by applying Theorem 2.7 for S = C \ {v} and T = C . □

Lemma 2.9. Let 0 = G {0v} be a graph product of groups, and let C ∈ cliq(G ) be a clique. Let
P ⊂ pL(0C )p be a von Neumann subalgebra such that P ⊀L(0C ) L(0Cv̂ ) for any v ∈ C . If x ∈ L(0)
satisfies xP ⊂

∑n
i=1 L(0C )xi for some x1, . . . , xn ∈ L(0), then xp ∈ L(0C ).

Proof. Let g ∈ 0 \0C . From Proposition 2.1, there exist h ∈ 0C and D ⊂ C such that 0C ∩ g0C g−1
=

h0Dh−1. Note that Theorem 2.7 shows QN(1)
0 (0C )= 0C and therefore D ̸= C ; otherwise, we would get

g ∈ QN(1)
0 (0C )= 0C , a contradiction. Thus, from the assumption we deduce P ⊀L(0C ) L(0C ∩ g0C g−1)

for any g ∈ 0 \0C . The conclusion now follows from [Chifan and Ioana 2018, Lemma 2.7]. □

2.5. A result on normalizers in tensor product factors. Our next proposition describes the normalizer of
a II1-factor N inside the tensor product of N with another II1-factor.

Proposition 2.10. Let N and P be II1-factors and write M = N ⊗P . If u ∈ U (M) satisfies uNu∗
= N ,

then one can find a ∈ U (N ) and b ∈ U (P) such that u = a ⊗ b.

Proof. Let (ξi )i∈I ⊂ L2(P) be a Pimsner–Popa basis for the inclusion N ⊂ M, let u =
∑

i EN (uξ∗

i )⊗ ξi ,
and write ηi = EN (uξ∗

i ). If θ : N → N denotes the ∗-isomorphism θ = ad(u), then we have θ(x)u = ux
for all x ∈N . This combined with the above formula yields θ(x)ηi ⊗ξi = θ(x)u = ux = ηi x ⊗ξi . Hence,
for all x ∈ N and all i , we have

θ(x)ηi = ηi x . (2-2)

Let ui ∈ N be the partial isometry in the polar decomposition of ηi . Thus θ(x)ui = ui x for all x ∈ N
and all i . In particular, we get u∗

i ui ∈ N ′
∩N = C1, and hence ui ∈ U (N ) for all i . The prior relations

also imply that u∗

i xui = θ(x) = u∗

j xu j for all i, j ∈ I . In particular, we have ui u∗

j ∈ N ′
∩ N = C1,

and thus one can find scalars ci, j ∈ T such that ui = ci, j u j for all i, j ∈ I . Relation (2-2) also implies
that |ηi | ∈ N ′

∩ L2(N ) and, since N is a II1-factor, we get |ηi | ∈ C1. In conclusion, ηi ∈ CU (N ) for
all i , and one can find di, j ∈ C such that ηi = di, jηj for all i, j ∈ I . Fix j ∈ I with ηj ̸= 0. Using the
above relations, we have u =

∑
i ηi ⊗ ξi =

∑
i di, jηj ⊗ ξi = ηj ⊗

(∑
i di, jξi

)
= ηj ⊗ b, where we write

b =
∑

i di, jξi ∈ L2(P). Since ηj ∈ CU (N ), we get the desired conclusion. □

3. Wreath-like product groups

A new category of groups called wreath-like product groups were introduced in the previous work [Chifan
et al. 2023b]. To briefly recall their construction, let A and B be any countable groups, and assume that
B ↷ I is an action on a countable set. One says W is a wreath-like product of A and B ↷ I if it can be
realized as a group extension

1 →

⊕
i∈I

Ai ↪→ W ε↠ B → 1 (3-1)

which satisfies the following properties:
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(a) Ai ∼= A for all i ∈ I .

(b) The action by conjugation of W on
⊕

i∈I Ai permutes the direct summands according to the rule

wAiw
−1

= Aε(w)i for all w ∈ W, i ∈ I.

The class of all such wreath-like groups is denoted by WR(A, B ↷ I ). When I = B and the action
B ↷ I is by translation, this consists of so-called regular wreath-like product groups and we simply
denote their class by WR(A, B).

Notice that every classical generalized wreath product A ≀I B belongs to WR(A, B ↷ I ). However,
building examples of nonsplit wreath-like products is a far more involved problem. One way to approach
this is through the use of the so-called Magnus embedding [1939]: these are quotients groups of the form
0/[3,3], where 3◁0 is a normal subgroup. Methods of this type were used by Cohen and Lyndon
to produce many such quotients in the context of one-relator groups. The following result is a particular
case of [Chifan et al. 2023b, Corollary 4.6] and relies on the prior works [Dahmani et al. 2017; Osin
2007; Sun 2020].

Corollary 3.1. Let G be an icc hyperbolic group. For every infinite order element g ∈ G, there exists
d ∈ N such that, for every k ∈ N divisible by d, we have the following:

(a) G/[⟨⟨gk
⟩⟩, ⟨⟨gk

⟩⟩] ∈ WR(Z,G/⟨⟨gk
⟩⟩ ↷ I ), where ⟨gk

⟩ is normal in EG(g), the action G/⟨⟨gk
⟩⟩ ↷ I

is transitive, and all the stabilizers of elements of I are isomorphic to the finite group EG(g)/⟨gk
⟩.

Here, EG(g) denotes the elementary subgroup generated by g, ⟨gk
⟩ denotes the subgroup generated

by gk and ⟨⟨gk
⟩⟩ denotes the smallest normal subgroup that contains gk .

(b) G/⟨⟨gk
⟩⟩ is an icc hyperbolic group.

Developing a new quotienting method in the context of Cohen–Lyndon triples, [Chifan et al. 2023b,
Theorem 2.5] constructed many examples of property (T) regular wreath-like product groups as follows.

Theorem 3.2 [Chifan et al. 2023b]. Let G be a hyperbolic group. For every finitely generated group A,
there exists a quotient W of G such that W ∈ WR(A, B) for some hyperbolic group B.

For further use we also recall the following result on prescribed outer automorphisms of property (T)
regular wreath-like product groups established in [Chifan et al. 2023b, Theorem 6.9].

Theorem 3.3 [Chifan et al. 2023b]. For every finitely presented group Q and every finitely generated
group A0, there exist groups A, B and a regular wreath-like product W ∈ WR(A, B) with the following
properties:

(a) W has property (T) and has no nontrivial characters.

(b) A is the direct sum of |Q| copies of A0. In particular, A = A0 if Q = {1}.

(c) B is an icc normal subgroup of a hyperbolic group H and H/B ∼= Q. In particular, B is hyperbolic
whenever Q is finite.

(d) Out(W )∼= Q.
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Remark 3.4. Since A0 can be any finitely generated group, it follows that if we fix the group Q there
are infinitely many pairwise nonisomorphic regular wreath-like product groups W ∈ WR(A, B) which
satisfy (a)–(d) in the prior theorem.

3.1. Unique prime factorization for von Neumann algebras of wreath-like product groups. In this
subsection, more precisely in Theorem 3.6, we show that von Neumann algebras of certain wreath-like
product groups satisfy the unique prime factorization of Ozawa and Popa [2010]. First, we point out
the following structural result for commuting property (T) von Neumann subalgebras of von Neumann
algebras that arise from trace-preserving actions of certain wreath-like product groups.

Lemma 3.5. Let 0 be a wreath-like product group of the form WR(A, B ↷ I ), where A is abelian and B
is an icc subgroup of a hyperbolic group. Let 0↷N be a trace-preserving action and write M = N ⋊0.

If A,B ⊂ pMp are commuting property (T) von Neumann subalgebras, then A ≺M N or B ≺M N .

The proof of Lemma 3.5 follows from [Chifan et al. 2023c, Theorem 6.4], and the main ingredient of
its proof is Popa and Vaes’ structure theorem [2014] for normalizers in crossed products arising from
actions of hyperbolic group.

Theorem 3.6. Let 0i be a property (T) wreath-like product group of the form WR(A, B ↷ I ) for any
i ∈ 1, n, where A is abelian and B is an icc subgroup of a hyperbolic group.

If M := L(01)⊗ · · · ⊗ L(0n) = P1 ⊗ P2 is a tensor product decomposition into II1-factors, then
there exist a unitary u ∈ M, a decomposition M = P t

1 ⊗P1/t
2 , and a partition T1 ⊔ T2 = 1, n such that

L
(
Ś

k∈Sj
0k

)
= uP tj

j u∗ for any j ∈ {1, 2}.

Proof. To fix some notation, we have that 0i belongs to WR(Ai , Bi ↷ Ii ) for any i ∈ 1, n, where Ai is
abelian and Bi is an icc subgroup of a hyperbolic group. Note that, since P1 and P2 have property (T), by
applying Lemma 3.5, we obtain a map φ : 1, n → 1, 2 such that

Pφ(i) ≺M
⊗
k ̸=i

L(0k) for any i ∈ 1, n.

By [Drimbe et al. 2019, Lemma 2.8 (2)], there exists a partition 1, n = S1⊔S2 such that Pj ≺M L
(
Ś

k∈Sj
0k

)
for any j . By passing to relative commutants, we get L

(
Ś

k∈Sj
0k

)
≺M Pj , for any j . The conclusion of

the theorem follows by using standards arguments that rely on [Ozawa and Popa 2004, Proposition 12]
and [Ge 1996, Theorem A]. □

Corollary 3.7. Let 01, . . . , 0n and 31, . . . , 3m be property (T) wreath-like product groups of the form
WR(A, B ↷ I ), where A is abelian, B is an icc subgroup of a hyperbolic group, and B ↷ I has infinite
stabilizers.

If there exists t > 0 such that L(01 × · · · ×0n)
t
= L(31 × · · · ×3m), then t = 1, n = m, and there is

a unitary u ∈ L(01 × · · · ×0n) such that uT(01 × · · · ×0n)u∗
= T(31 × · · · ×3m).

Proof. The result follows directly by combining Theorem 3.6 and [Chifan et al. 2023b, Theorem 1.3]. □
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4. Graph product groups associated with cycles of cliques graphs

In this section we highlight a class of graphs considered to have good clustering properties. Specifically,
a graph G is called a simple cycle of cliques (and belongs to the class CC) if there is an enumeration
of its cliques set cliq(G )= {C1, . . . ,Cn} with n ⩾ 4 such that the subgraphs Ci, j := Ci ∩ Cj satisfy the
conditions

Ci, j =

{
∅ if î − ĵ ∈ Zn \ {1̂, n̂ − 1},

̸= ∅ if î − ĵ ∈ {1̂, n̂ − 1}.
(4-1)

Here, the classes î and ĵ belong to Z/nZ. We will also refer to cliq(G ) = {C1, . . . ,Cn} satisfying the
previous properties as the the consecutive enumeration of the cliques of G .

For every i ∈ 1, n, we define C int
i := Ci \ (Ci−1,i ∪ Ci,i+1), where we declare that 0 = n and n + 1 = 1.

When C int
i ̸= ∅ for all i ∈ 1, n, one says that G belongs to the class CC1. Most of our main results will

involve graphs of this form. Throughout this article we will use all these notations consistently.
A basic example of a graph in the class CC1 is a simple cycle of triangles called Fn , where n is the

number of cliques; see Figure 2 below for n = 16.
In fact every graph G ∈ CC1 appears as a two-level clustered graph which is a specific retraction of Fn

as follows. There exists a graph projection map 8 : G → Fn such that, for every vertex v ∈ Fn , the
cluster 8−1(v)⊂ G is a complete subgraph of G . In addition, whenever v,w ∈ Fn are connected in Fn ,
there are edges in G between all vertices of the corresponding clusters 8−1(v) and 8−1(w).

We continue by recording some elementary combinatorial properties of graph product groups associated
with graphs that are simple cycles of cliques. The proof of the following lemma is straightforward and
we leave it to the reader.

Figure 2. A cycle of 16 triangles is a simple example of a graph in CC1.
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Lemma 4.1. Let G ∈CC1, and let C1, . . . ,Cn be an enumeration of its consecutive cliques. Let {0v, v∈V }

be a collection of groups, and let 0G be the corresponding graph product group. We denote by {wi }
n
i=1 the

petal outer vertices of Fn and by {bi }
n
i=1 the petal base vertices of Fn .

Then 0G can be realized as a graph product 0′
Fn

associated to the graph Fn , where the vertex groups
are defined by

0′

wi
=

⊕
v∈C int

i

0v and 0′

bi
=

⊕
v∈Ci−1,i

0v for every i ∈ 1, n.

Proposition 4.2. Let G ∈ CC1, and let C1, . . . ,Cn be an enumeration of its consecutive cliques. Let
{0v, v ∈ V } be a collection of infinite groups, and let 0G be the corresponding graph product group. Then
the following properties hold:

(1) If g ∈0Ci−1△Ci and h ∈0Ci △Ci+1 satisfy gh ∈0G \C int
i

, then one can find a ∈0(Ci−1\Ci−1,i )∪Ci,i+1 , s ∈0C int
i

,
and b ∈ 0(Ci+1\Ci,i+1)∪Ci−1,i such that g = as and h = s−1b.

(2) Let g ∈ 0Ci−2,i−1∪Ci,i+1 , h ∈ 0Ci−1,i ∪Ci+1,i+2 , and k ∈ 0Ci,i+1∪Ci+2,i+3 such that

ghk ∈ 0Ci−2,i−1∪Ci−1,i ∪Ci+1,i+2∪Ci+2,i+3 .

Then one can find a ∈ 0Ci−2,i−1 , b ∈ 0Ci+2,i+3 , and s ∈ 0Ci,i+1 such that g = as and k = s−1b.

(3) For each i ∈ 1, n, let xi,i+1 ∈ 0Ci ∪Ci+1 such that x1,2x2,3 · · · xn−1,nxn,1 = 1. Then, for each i ∈ 1, n,
one can find ai ∈ 0Ci−1,i , bi ∈ 0C int

i
, and ci ∈ 0Ci,i+1 such that xi,i+1 = ai bi ci b−1

i+1a−1
i+2c−1

i+1. Here we
use the convention that n + 1 = 1, n + 2 = 2, etc.

Proof. Here 1 is the symmetric difference operation defined by A1B = (A ∪ B) \ (A ∩ B). We recall
the normal form [Green 1990, Theorem 3.9], which in graph product groups plays the role that reduced
words play in free product groups. If 1 ̸= g ∈ 0G is expressed as g = g1 · · · gn , we say g is in normal
form if each gi is a nonidentity element of some vertex group (called a syllable) and if it is impossible,
through repeated swapping of syllables (corresponding to adjacent vertices in G ), to bring together two
syllables from the same vertex group. By [Green 1990, Theorem 3.9], every 1 ̸= g ∈ 0G has a normal
form g = g1 · · · gn and it is unique up to a finite number of consecutive syllable shuffles. Moreover, given
any sequence of syllables g1 · · · gn , there is an inductive procedure for putting this sequence into normal
form: if h1 · · · hr is the normal form of g1 · · · gm , then the normal form of g1 · · · gm+1 is either

(i) h1 · · · hr if gm+1 = 1,

(ii) h1 · · · h j−1h j+1 · · · hr if h j shuffles to the end and gm+1 = h−1
j ,

(iii) h1 · · · h j−1h j+1 · · · hr (h j gm+1) if h j shuffles to the end, gm+1 ̸= h−1
j , and gm+1, h j belong to the

same vertex group, or

(iv) h1 · · · hr gm+1 if gm+1 is in a different vertex group from that of every syllable which can be shuffled
down.

Note that the normal form of an element g ∈ 0G has minimal syllable length with respect to all the
sequences of syllables representing g.
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We are now ready to prove the three assertions of the proposition. For (1), let g = g1 · · · gn and
h = h1 · · · hm be the normal forms of g and h. Then gh has a normal form gh = k1 · · · kr , determined
by the procedure described in the previous paragraph. By assumption, kj /∈

⋃
v∈C int

i
{0v} for all j ∈ 1, r .

Now, if gj /∈
⋃
v∈C int

i
{0v} for all j ∈ 1, n, then each hi ∈

⋃
v∈C int

i
{0v} is one of the syllables occurring in

the normal form of gh. Since this cannot happen, we have hi /∈
⋃
v∈C int

i
{0v} for all i ∈ 1,m, and hence

we can take a = g, b = h, and s the empty word. Assume that gj ∈
⋃
v∈C int

i
{0v} for some j ∈ 1, n. We

note that we may assume j = n since, if gi ∈
⋃
v∈Ci−1\Ci

{0v} for some i ∈ j + 1, n, then gj would be a
syllable in gh since it cannot be shuffled past gi , which shows that gj+1 · · · gn ∈

⋃
v∈Ci

{0v}. This implies
that g−1

n = hi for some i ∈ 1,m. Choosing the smallest such i and noting that h1, . . . , hi−1 ∈
⋃
v∈Ci

{0v}

(since it must be possible to shuffle hi up to gn as in (ii) of the previous paragraph), we may assume
that h1 = g−1

n . Continuing in this way we see that we can take a = g1 · · · gk−1, b = hn−k+2 · · · hm ,
and s = gk · · · gn , where gj /∈

⋃
v∈C int

i
{0v} for all j ∈ 1, k − 1 and h = g−1

n , . . . , g−1
k hn−k+2, . . . , hm .

Notice too that none of the syllables hn−k+2, . . . , hm can belong to
⋃
v∈C int

i
{0v} since the inverse of such

a syllable cannot be any of the syllables g1, . . . , gk−1. This proves (1).
For (2), let g = g1 · · · gn , h = h1 · · · hm , and k = k1 · · · kr be normal forms. If gi /∈

⋃
v∈Ci,i+1

{0v} for all
i ∈ 1, n, then kj /∈

⋃
v∈Ci,i+1

{0v} for all j ∈ 1, n since neither h nor ghk have normal forms with syllables
in

⋃
v∈Ci,i+1

{0v} by assumption, and hence we can take a = g, b = k, and s the empty word. Otherwise
we must have gj ∈ 0v for some v ∈ Ci,i+1, and as in the proof of part (1) we can assume j = n and
k1 = g−1

n (note that gj commutes with each syllable in the normal form of h). Continuing, we see that we
can take a = g1 · · · gl−1, b = kn−l+2 · · · kr , and s = gl · · · gn , where gj /∈

⋃
v∈Ci,i+1

{0v} for all j ∈ 1, l − 1
and k = g−1

n · · · g−1
l kn−l+2 · · · kr . This proves (2).

For (3), observe first that every xi,i+1 ∈ 0Ci ∪Ci+1 = 0Ci,i+1 × (0Ci \Ci+1 ∗0Ci+1\Ci ) can be written in the
form ãi b̃i c̃i d̃i ẽi f̃i , where

ãi ∈ 0Ci−1,i , b̃i ∈ 0C int
i
, c̃i ∈ 0Ci,i+1, d̃i ∈ 0C int

i+1
, ẽi ∈ 0Ci+1,i+2, f̃i ∈ 0Ci ∪Ci+1 .

Moreover, we can assume that the normal form of xi,i+1 is the sequence obtained by concatenating the
normal forms of ãi , b̃i , c̃i , d̃i , ẽi , f̃i , and if f̃i = f1 · · · fn is the normal form of f̃i , then f1 belongs to a
group 0v, where v is vertex in Ci \ Ci+1.

We continue by showing that we can assume f̃i = 1. Notice that this is the case if there is no syllable g
occurring in the normal form of xi,i+1 belonging to

⋃
v∈Ci+1\Ci

{0v}; indeed, in this case d̃i , ẽi = 1 and all
the syllables occurring in the normal form of f̃i can be shuffled up to the normal forms of ãi , b̃i , c̃i . So
it remains to assume that there is such a syllable g and assume by contradiction that f̃i ̸= 1. Notice that
our hypotheses imply that f −1

1 is a syllable in the normal form of xi−2,i−1xi−1,i , and g−1 is a syllable
in the normal form of xi+1,i+2xi+2,i+3. This implies that the normal form of x1,2x2,3 · · · xi−1,i xi,i+1

must still contain f1 as f −1
1 cannot shuffle past g to cancel with f1. Consequently, the normal form of

x1,2x2,3 · · · xn−1,nxn,1 must still contain f1 as f −1
1 cannot shuffle past g or g−1 to cancel with f1. This

gives a contradiction, and hence we can assume f̃i = 1.
Next, we observe that b̃i = d̃−1

i−1 for each i since our hypotheses imply that all the syllables oc-
curring in the normal form of b̃−1

i occur in the one for xi−1,i , and only d̃i−1 has normal form with
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syllables coming from
⋃
v∈C int

i
{0v}. To finish the proof, set ai = ãi , bi = b̃i , and ci = c̃i and note that,

since ẽi c̃i+1ãi+2 = 1 (being the only elements in our decompositions belonging to 0Ci+1,i+2), we have
xi,i+1 = ãi b̃i c̃i d̃i ẽi = ai bi ci b−1

i+1a−1
i+2(ai+2ẽi )= ai bi ci b−1

i+1a−1
i+2c−1

i+1. □

Lemma 4.3. Let 0 = G {0v, v ∈ V } be a graph product of groups such that G ∈ CC1. Then 0 has trivial
amenable radical.

Proof. Assume by contradiction that there exists a nontrivial amenable normal subgroup A of 0. Since 0 is
icc, we get that A is an infinite group. For anyw∈V , note that st(w) ̸=V and G {0v}=0V \{w}∗0lk(w)0st(w).
Since A is an amenable, normal subgroup of 0, it follows that L(A) ≺L(0) L(0lk(w)) [Vaes 2014,
Theorem A]. In particular, by using [Drimbe et al. 2019, Lemma 2.4], it follows that L(A)≺

s
L(0) L(0C )

for any C ∈ cliq(G ). Let C ,D ∈ cliq(G ) such that C ∩ D = ∅. Using [Vaes 2013, Lemma 2.7],
there is g ∈ 0 such that L(A)≺

s
L(0) L(0C ∩ g0D g−1). Note however that Proposition 2.1 implies that

0C ∩ g0D g−1
= 1. This shows that L(A)≺L(0) C1, and thus gives the contradiction that A is finite. □

We end this section by recording a result describing all automorphisms of graph product groups 0G

associated with graphs in the class CC1. This is a particular case of a powerful theorem in geometric
group theory established recently by Genevois and Martin [2019, Corollary C].

To state the result we briefly recall a special class of automorphisms of graph product groups. For
any isometry σ : G → G and any collection of group isomorphisms 8 = {φv : 0v → 0σ(v) : v ∈ V },
define the local automorphism (σ,8) to be the canonical automorphism of 0G induced by the maps⋃
v∈V 0v ∋ g → φσ(v)(g) ∈ 0G . One can easily observe that, under composition, these form a subgroup

of Aut(0G ) which is denoted by Loc(0G ). We denote by Loc0(0G ) the subgroup of local automorphisms
satisfying σ = Id. Notice that Loc0(0G ) is naturally isomorphic to

⊕
v∈V Aut(0v). Moreover, the

inclusion Loc0(0G )⩽ Loc(0G ) has finite index.

Theorem 4.4 [Genevois and Martin 2019]. Let 0G be a graph product associated with a graph G ∈ CC1.
Then its automorphism group Aut(0G ) is generated by the inner and the local automorphisms of 0G . In
fact we have Aut(0G )= Inn(0G )⋊Loc(0G ), and therefore

Aut(0G )∼= 0G ⋊
((⊕

v∈V

Aut(0v)
)
⋊Sym(0G )

)
,

Out(0G )∼=

(⊕
v∈V

Aut(0v)
)
⋊Sym(0G ).

(4-2)

Here, Sym(0G ) is an explicit finite subgroup of automorphisms of 0G .

Proof. One can easily check that the graphs in CC1 are atomic and therefore the conclusion follows
immediately from [Genevois and Martin 2019, Corollary C]. □

Remark 4.5. (1) If in the hypothesis of Theorem 4.4 we assume in addition that {0v}v∈V are pairwise
nonisomorphic, then we have Sym(0G )= 1 in the automorphism group formulae (4-2). The same holds
if instead we assume that any two cliques of G have different cardinalities and for any C ∈ cliq(G ) the
set {0v}v∈C consists of pairwise nonisomorphic subgroups.
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(2) One of the main goals of this paper is to establish both von Neumann algebraic and C∗-algebraic
analogs of Theorem 4.4, under various assumptions on the vertex groups. For the specific statements in
this direction, the reader may consult Corollaries 7.11 and 7.14 in Section 7.

5. Von Neumann algebraic cancellation in cyclic relations

In this section we establish a von Neumann algebraic analog of Proposition 4.2 (3) describing the structure
of all unitaries that satisfy a similar cyclic relation (Lemma 5.1). We start by first proving the following
von Neumann algebraic counterpart of Proposition 4.2 (1).

Lemma 5.1. Let 31,32, 6 < 0 be groups satisfying the following properties:

(1) 31 ∩32 =31 ∩6 =32 ∩6 = 1.

(2) For any g1 ∈ 31 ∨6 and g2 ∈ 32 ∨6 satisfying g1g2 ∈ 31 ∨32, one can find a1 ∈ 31, a2 ∈ 32

and s ∈6 such that g1 = a1s and g2 = s−1a2.

Then, for any y1 ∈ U (L(31 ∨6)) and y2 ∈ U (L(32 ∨6)) satisfying y1 y2 ∈ U (L(31 ∨32)), one can
find v1 ∈ U (L(31)), v2 ∈ U (L(32)), and x ∈ U (L(6)) such that y1 = v1x and y2 = x∗v2.

Above we used the notation that if 01, 02 < 0 are groups, then we denote by 01 ∨02 the subgroup
of 0 generated by 01 and 02.

Proof of Lemma 5.1. For each i = 1, 2, consider the Fourier expansion of yi =
∑

gi ∈3i ∨6
(yi )gi ugi . Since

y1 y2 ∈ L(31 ∨32) using condition (2), we have that

y = y1 y2 =

∑
g1∈31∨6
g2∈32∨6

g1g2∈31∨32

(y1)g1(y1)g2ug1g2 =

∑
a1∈31
a2∈32
s∈6

(y1)a1s(y2)s−1a2ua1a2 .

The above formula and basic approximations show that

1 =

∑
s∈6

EL(31)(y1us−1)EL(32)(us y2)y∗,

where the right-hand side is only ∥ · ∥1-summable. Using this in combination with the Cauchy–Schwarz
inequality, we further get

1 = τ

(∑
s∈6

EL(31)(y1us−1)EL(32)(us y2)y∗

)
⩽

∑
s∈6

|τ(EL(31)(y1us−1)EL(32)(us y2)y∗)|

⩽
∑
s∈6

∥EL(31)(y1us−1)∥2∥EL(32)(us y2)∥2

⩽

(∑
s∈6

∥EL(31)(y1us−1)∥2
2

)1/2(∑
s∈6

∥EL(32)(us y2)∥
2
2

)1/2

⩽ ∥y1∥2∥y2∥2 = 1.

Thus, we must have equality in the Cauchy–Schwarz inequality, and hence, for every s, there is cs ∈ C

satisfying
EL(31)(y1us−1)= cs yEL(32)(y

∗

2 us−1). (5-1)
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Taking absolute values, we get |EL(31)(y1us−1)| = |cs ||EL(32)(y
∗

2 us−1)|, and since 31 ∩32 = 1 we
conclude |EL(31)(y1us−1)| = |cs ||EL(32)(y

∗

2 us−1)| ∈ C1. Using the polar decomposition formula one can
find ds, es ∈ C and unitaries xs ∈ L(31), zs ∈ L(32) satisfying

EL(31)(y1us−1)= ds xs and EL(32)(y
∗

2 us−1)= eszs .

Combining these with (5-1), we get ds xs = cses yzs for all s ∈6; in particular, for every ds ̸= 0, we have
xs = (escs/ds)yzs . Hence, for all s, t ∈ 6 with ds, dt ̸= 0, we have x∗

t xs = (escset ct/ds d̂t)z∗
t zs . Again,

as 31 ∩32 = 1, one can find cs,t , ds,t ∈ C such that

xs = cs,t xt and zs = ds,t zt . (5-2)

Fix t ∈6. Using the prior relations, we see that

y1 =

∑
s∈6

EL(31)(y1us−1)us =

∑
s∈6

ds xsus =

∑
s∈6

dscs,t xt us = xt

(∑
s∈6

dscs,t us

)
.

In particular, this shows there are v1 ∈ U (L(31)) and x ∈ U (L(6)) such that y1 = v1x . Similarly, the
prior relations also imply that y2 = x∗v2 for some v2 ∈ U (L(32)). □

Theorem 5.2. Let G be a graph in the class CC1, and let C1, . . . ,Cn be an enumeration of its con-
secutive cliques. Let 0v, v ∈ V , be a collection of icc groups, and let 0G be the corresponding
graph product group. For each i ∈ 1, n, assume xi,i+1 = ai,i+1bi,i+1, where ai,i+1 ∈ U (L(0Ci,i+1))

and bi,i+1 ∈ U (L(0Ci ∪Ci+1\Ci,i+1). If x1,2x2,3 · · · xn−1,nxn,1 = 1, then for each i ∈ 1, n one can find
ai ∈ U (L(0Ci−1,i )), bi ∈ U (L(0C int

i
)), and ci ∈ U (L(0Ci,i+1)) such that xi,i+1 = ai bi ci b∗

i+1a∗

i+2c∗

i+1. Here,
we use the convention that n + 1 = 1 and n + 2 = 2.

Proof. Fix an arbitrary i ∈ 1, n. Using x1,2x2,3 · · · xn−1,nxn,1 = 1, it follows that

bi−1,i bi,i+1 = a∗

i−1,i x
∗

i−2,i−1 · · · x∗

1,2x∗

n,1 · · · x∗

i+1,i+2a∗

i,i+1.

Since ai−1,i , ai,i+1 ∈ L(0G \C int
i
) and x j, j+1, aj, j+1 ∈ L(0Cj ∪Cj+1), for any j ∈ 1, n, we get that

bi−1,i bi,i+1 = a∗

i−1,i x
∗

i−2,i−1 · · · x∗

1,2x∗

n,1 · · · x∗

i+1,i+2a∗

i,i+1 ∈ L(0G \C int
i
).

Since bi−1,i bi,i+1 ∈ L(0Ci−1∪Ci ∪Ci+1), we deduce that

bi−1,i bi,i+1 ∈ U (L(0Ci−1∪Ci+1)). (5-3)

Now, fix two words g1 ∈ 0(Ci−1∪Ci )\Ci−1,i and g2 ∈ 0(Ci ∪Ci+1)\Ci,i+1 such that g1g2 ∈ 0Ci−1∪Ci+1 . Using
Proposition 4.2 (1), there exist a1 ∈ 0(Ci−1\Ci )∪Ci,i+1 , b ∈ 0(Ci+1\Ci )∪Ci−1,i , and s ∈ 0C int

i
such that g1 = as

and g2 = s−1b. Thus, applying Lemma 5.1 for31 =0(Ci−1\Ci )∪Ci,i+1 , 32 =0(Ci+1\Ci )∪Ci−1,i , and 6=0C int
i

,
we derive from (5-3) that one can find unitaries xi−1 ∈ L(0(Ci−1\Ci )∪Ci,i+1) and zi−1 ∈ L(0C int

i
) such that

bi−1,i = xi−1zi−1.
Lemma 5.1 also implies from (5-3) that bi,i+1 = z∗

i−1 yi for some yi ∈ U (L(0(Ci+1\Ci )∪Ci−1,i )). Using
this with bi,i+1 = xi zi , we get that bi,i+1 = z∗

i−1 yi = xi zi . Hence, x∗

i z∗

i−1 = zi y∗

i =: ti,i+1 and note
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that ti,i+1 ∈ L(0Ci−1,i ∪Ci+1,i+2). Thus, xi,i+1 = ai,i+1bi,i+1 = ai,i+1z∗

i−1t∗

i,i+1zi = z∗

i−1ai,i+1t∗

i,i+1zi . In
conclusion, we showed that, for any i ∈ 1, n, we have

xi,i+1 = z∗

i−1ai,i+1ti,i+1zi . (5-4)

Now, we note that, since x1,2x2,3 · · · xn−1,nxn,1 = 1, we obviously have

a1,2t1,2a2,3t2,3 · · · an−1,ntn−1,nan,1tn,1 = 1.

Again we will use this relation together with the same argument from the proof of Lemma 5.1 to show
that xi,i+1 has the form described in the conclusion of the theorem. First, observe the cyclic relation and
use a similar argument as in the beginning of the proof to show that

w := ti−1,i ai,i+1ti,i+1ai+1,i+2ti+1,i+2ai+2,i+3

= a∗

i−1,i · · · t∗

1,2a∗

1,2t∗

n,1a∗

n,1 · · · t∗

i+2,i+3 ∈ L(0Ci−2,i−1∪Ci−1,i ∪Ci+1,i+2∪Ci+2,i+3).

Now, fix three words w1 ∈ 0Ci−2,i−1∪Ci,i+1 , w2 ∈ 0Ci−1,i ∪Ci+1,i+2 , and w3 ∈ 0Ci,i+1∪Ci+2,i+3 satisfying
w1w2w3 ∈ 0Ci−2,i−1∪Ci−1,i ∪Ci+1,i+2∪Ci+2,i+3 . Using Proposition 4.2 (2), we have w1 = as and w3 = s−1b,
where a ∈ 0Ci−2,i−1 , b ∈ 0Ci+2,i+3 , and s ∈ 0Ci,i+1 . Since ti,i+1ai+1,i+2 ∈ L(0Ci−1,i ∪Ci+1,i+2), we can write the
Fourier expansions

ti−1,i ai,i+1 =

∑
w1∈Ci−2,i−1∪Ci,i+1

(ti−1,i ai,i+1)w1uw1,

ti+1,i+2ai+2,i+3 =

∑
w3∈Ci,i+1∪Ci+2,i+3

(ti+1,i+2ai+2,i+3)w3uw3 .

All these observations imply that

w = (ti−1,i ai,i+1)(ti,i+1ai+1,i+2)(ti+1,i+2ai+2,i+3)

=

∑
s∈0Ci,i+1

EL(0Ci−2,i−1 )
(ti−1,i ai,i+1us−1)ti,i+1ai+1,i+2 EL(0Ci+2,i+3 )

(us ti+1,i+2ai+2,i+3),

where again the convergence is in ∥ · ∥1. Using this and the Cauchy–Schwarz inequality, we get

1 =

∑
s∈0Ci,i+1

|τ(EL(0Ci−2,i−1 )
(ti−1,i ai,i+1us−1)ti,i+1ai+1,i+2 EL(0Ci+2,i+3 )

(us ti+1,i+2ai+2,i+3)w
∗)|

⩽
∑

s∈0Ci,i+1

∥EL(0Ci−2,i−1 )
(ti−1,i ai,i+1us−1)∥2∥EL(0Ci+2,i+3 )

(a∗

i+2,i+3t∗

i+1,i+2us−1)∥2

⩽

( ∑
s∈0Ci,i+1

∥EL(0Ci−2,i−1 )
(ti−1,i ai,i+1us−1)∥2

2

)1/2( ∑
s∈0Ci,i+1

∥EL(0Ci+2,i+3 )
(a∗

i+2,i+3t∗

i+1,i+2us−1)∥2
2

)1/2

⩽ ∥ti−1,i ai,i+1∥2∥a∗

i+2,i+3t∗

i+1,i+2∥2 = 1.

Therefore, one can get scalars cs such that

EL(0Ci−2,i−1 )
(ti−1,i ai,i+1us−1)= cswEL(0Ci+2,i+3 )

(a∗

i+2,i+3t∗

i+1,i+2us−1)a∗

i+1,i+2t∗

i,i+1. (5-5)
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Thus, proceeding in the same fashion as in the proof of Lemma 5.1, one can find ds, es ∈ C, gs ∈

U (L(0Ci−2,i−1)), and hs ∈ U (L(0Ci+2,i+3)) such that

EL(0Ci−2,i−1 )
(ti−1,i ai,i+1us−1)= ds gs,

EL(0Ci+2,i+3 )
(a∗

i+2,i+3t∗

i+1,i+2us−1)a∗

i+1,i+2t∗

i,i+1 = eshs .
(5-6)

Hence, (5-5) gives that ds gs = cseswhs for all s ∈ 0Ci,i+1 , and finally employing the same arguments
as in the first part one can find scalars cs,t , ds,t such that gs = cs,t gt and hs = ds,t ht for all s, t ∈ 0Ci,i+1 .
Using (5-6), we derive that

ti−1,i ai,i+1 =

∑
s∈0Ci,i+1

ds gsus = ge

∑
s∈0Ci,i+1

dscs,eus .

This further implies that one can find unitaries ri−1 ∈ U (L(0Ci−2,i−1)) and pi−1 ∈ U (L(0Ci,i+1)) such that
ti−1,i ai,i+1 = ri−1 pi−1, and hence ti−1,i = ri−1 pi−1a∗

i,i+1. Similarly, we get ti,i+1 = ri pi a∗

i+1,i+2, and
hence, from (5-4), we deduce that

xi,i+1 = z∗

i−1ai,i+1ti,i+1zi = z∗

i−1ai,i+1ri pi a∗

i+1,i+2zi = ri z∗

i−1ai,i+1zi pi a∗

i+1,i+2. (5-7)

Now, one can see that, using the cyclic relation x1,2 · · · xn−1,nxn,1 = 1, we get that pi = r∗

i+2. This together
with (5-7) gives the desired conclusion by taking ai = ri , bi = z∗

i−1, and ci = ai,i+1. □

6. Rigid subalgebras of graph product group von Neumann algebras

In this section we classify all rigid subalgebras of von Neumann algebras associated with graph product
groups. This should be viewed as a counterpart of [Ioana et al. 2008, Theorem 4.3] for amalgamated
free product von Neumann algebras. In fact, the latter plays an essential role in deriving our result. For
convenience, we include a detailed proof of how it follows from this.

Theorem 6.1. Let 0 = G {0v} be a graph product group, let 0 ↷ P be any trace-preserving action,
and denote by M = P ⋊0 the corresponding crossed product von Neumann algebra. Let r ∈ M be a
projection, and let Q ⊂ rMr be a property (T) von Neumann subalgebra.

Then one can find a clique C ∈ cliq(G ) such that Q ≺M P ⋊0C . Moreover, if Q ⊀ P ⋊0C \{c} for all
c ∈ C , then one can find projections q ∈ Q and q ′

∈ Q′
∩ rMr with qq ′

̸= 0 and a unitary u ∈ M such
that uqQqq ′u∗

⊆ P ⋊0C . In particular, if P ⋊0C is a factor, then one can take q = 1 above.

Proof. Let G0 = (V0, E0)⊆ G = (V , E ) be a subgraph with |V0| minimal such that Q ≺ P ⋊0G0 . In the
remaining part we show that G0 is complete, which proves the conclusion.

Write N = P ⋊0G0 . Since Q ≺M N , one can find projections q ∈ Q and p ∈ N , a nonzero partial
isometry v ∈ pMq, and a ∗-isomorphism onto its image θ : qQq → R := θ(qQq) ⊆ pN p such that
θ(x)v = vx for all x ∈ qQq. Notice that vv∗

∈ R′
∩ pMp and v∗v ∈ (Q′

∩M)q. Moreover, one can
assume without any loss of generality that the support projection of EN (vv

∗) equals p.
Assume by contradiction that G0 is not complete. Thus, one can find v ∈ G0 such that 0G0 admits a

noncanonical amalgam decomposition 0G0 = 0G0\{v} ∗0lk(v) 0st(v); in particular, we have |st(v)| ⩽ |V0|− 1.
Since Q has property (T), R has property (T) as well. Using [Ioana et al. 2008, Theorem 5.1], we have
either (i) R ≺N P ⋊0G0\{v}, or (ii) R ≺N P ⋊0st(v). Assume (i). Define X := P ⋊0G0\{v}. As R ≺N X ,
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one can find projections e ∈ R and f ∈ X , a nonzero partial isometry w ∈ f N e, and a ∗-isomorphism
onto its image ψ : eRe → T := θ(eRe)⊆ f X f such that ψ(x)w = wx for all x ∈ eRe.

Next, we argue that wv ̸= 0. Otherwise, we would have 0 = wvv∗, and since w ∈ N , we get
0 = wEN (vv

∗). Therefore 0 = ws(EN (vv
∗)) = wp = w, which is a contradiction. Combining the

previous intertwining relations, we get φ(θ(x))wv = wθ(x)v = wvx for all x ∈ tQt ; here we write
0 ̸= t = θ−1(e). Taking the polar decomposition of wv in the prior intertwining relation, we obtain that
Q ≺M X = P⋊0G0\{v}. However, since |V0 \ {v}| = |V0|− 1, this contradicts the minimality of |V0|. In a
similar manner, one can show case (ii) also leads to a contradiction.

Next, we show the moreover part. Let S = P ⋊ 0C . From the first part of the proof one can
find projections q ∈ Q and s ∈ S, a nonzero partial isometry v0 ∈ sMq, and a ∗-isomorphism onto
its image θ : qQq → Y := θ(qQq) ⊆ sSs such that θ(x)v0 = v0x for all x ∈ qQq. We note that
v0v

∗

0 ∈ Y ′
∩ sMs and v∗

0v0 ∈ qQq ′
∩qMq . Moreover, one can assume without loss of generality that the

support projection of ES(v0v
∗

0) equals s. Observe that we have an amalgamated free product decomposition
M = (P ⋊0V \{c})∗P⋊0C\{c}(P ⋊0C ). Using the same argument as before, since Q⊀M P ⋊0C \{c}, we
must have that Y ⊀S P⋊0C \{c}. Therefore, by [Ioana et al. 2008, Theorem 1.2.1], we have that v0v

∗

0 ∈ S,
and hence the intertwining relation implies that v0qQqv∗

0 = Yv0v
∗

0 ⊆ S. If u is a unitary extending v0,
we further see that uqQqv∗

0v0u∗
⊆ S. Letting q ′

= v∗

0v0, we get the desired conclusion.
To see the last part, we note that, since P ⋊0C is a factor, after passing to a new unitary u, one can

replace q above with its central support in Q. □

7. Symmetries of graph product group von Neumann algebras

The main result of this section is a strong rigidity result describing all ∗-isomorphisms between factors
associated with a fairly large family of graph product groups arising from finite graphs in the class CC1

(Theorem 7.10). As a by-product, we obtain concrete descriptions of all symmetries of these factors
including such examples with trivial fundamental groups (Corollaries 7.11 and 7.12). However, to be
able to state and prove these results, we first need to introduce some new terminology and establish a few
preliminary results.

7.1. Local isomorphisms of graph product group von Neumann algebras. The isomorphism class of a
von Neumann algebra associated with a graph product group tends to be fairly abundant. As in the group
situation, a rich source of isomorphisms stems from both the isomorphism class of the underlying graph
and the isomorphism classes of the von Neumann algebras of the vertex groups. By analogy with the
group case, these are called local isomorphisms and we briefly explain their construction below.

Let G and H be simple finite graphs, and let 0G and 3H be graph product groups, where their
vertex groups are {0v, v ∈ V } and {3w, w ∈ W }, respectively. Assume G and H are isometric and fix
σ : G → H an isometry. In addition, assume that 8= {8σv , v ∈ V } is a collection of ∗-isomorphisms
8σv : L(0v)→ L(3σ(v)) for all v ∈ V . Then the following holds.

Theorem 7.1. There exists a unique ∗-isomorphism denoted by (8, σ) : L(0G )→ L(3H ) which extends
the maps

⋃
v∈V L(0v) ∋ x →8σv (x) ∈ L(3H ).
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Proof. We recall that a word for G is a finite sequence v = (v1, . . . , vn) of elements in V [Caspers and
Fima 2017, Definition 1.2]. The word v is called reduced if, whenever i < j and vi+1, . . . , vj−1 ∈ st(vj ),
we have vi ̸= vj . Following [Caspers and Fima 2017, Section 2.3], L(0G ) can be presented alternatively
as the graph product von Neumann algebra associated to the graph G and vertex von Neumann algebras
{L(0v)}v∈V .

We continue by proving the following claim: for any reduced word (v1, . . . , vn) in G and elements
ai ∈ L(0vi ) with τ(ai ) = 0, we have τ(8σv1

(a1) · · ·8
σ
vn
(an)) = 0. To show this, write wi = σ(vi ) ∈ W

and bi =8σvi
(ai ) ∈ L(3wi ) for any i . Note that the word (w1, . . . , wn) is reduced in H and τ(bi )= 0

for any i . By considering the Fourier series of bi , the claim follows by proving that, whenever hi ∈3wi

with hi ̸= 1, we have h1 · · · hn ̸= 1. Since (w1, . . . , wn) is a reduced word in H , it is easy to see that
h1 · · · hn is a reduced element of 3H in the sense of [Green 1990, Definition 3.5]. Applying [Green
1990, Theorem 3.9] implies that h1 · · · hn ̸= 1, hence proving the claim.

Finally, our theorem follows directly by applying [Caspers and Fima 2017, Proposition 2.22]. □

Hereafter, (8, σ) will be called the local isomorphism induced by σ and 8= {8σv , v ∈ V }. Whenever
G = H and 0v = 3v for all v, these are called local automorphisms and they form a subgroup of
Aut(L(0G )) under composition which will be denoted by Locv,g(L(0G )). The subgroup of local auto-
morphisms satisfying σ = Id is denoted by Locv(L(0G )); observe that it has finite index in Locv(L(0G )).
Moreover, we have u Locv(L(0G ))=

⊕
v∈V Aut(L(0v)). Next, we observe that most of the time (8, σ)

is an outer automorphism.

Proposition 7.2. Under the same assumptions as before, suppose in addition that G is a graph satisfying⋂
v∈V star(v)= ∅. Then (8, σ) is inner if and only if σ = Id and 8σv = Id for all v ∈ V .

Proof. Let M = L(0G ), and let u ∈ U (M) such that (8, σ) = ad(u). Fix v ∈ V . From the definitions
we have uL(0v)u∗

= L(0σ(v)). Using Theorem 2.7, we get that v = σ(v) and u ∈ U (L(0star(v))). As
this holds for all v ∈ V , we get σ = Id and also u ∈

⋂
v∈V L(0star(v))= C1. Hence (8, σ)= Id, and also

8σv = Id for all v ∈ V . □

When σ = Id, let Locv,i(L(0G )) be the set of all local automorphisms (8, σ) which satisfies the
following: for any v ∈ V , there exists a unitary uv ∈ L(0v) such that 8σv = ad(uv). It is easy to see that
Locv,i(L(0G )) forms a normal subgroup of Locv(L(0G )) under composition. Thus, when there exists
a v ∈ V for which 0v is an icc group, it follows from Proposition 7.2 that Locv,i(L(0G )), and hence
Out(L(0G )), is always an uncountable group. In conclusion, for this class of von Neumann algebras, in
general, one cannot expect rigidity results and computations of their symmetries of the same precision
level as the prior results [Popa and Vaes 2008; Vaes 2008].

Remark 7.3. It is worth mentioning that the class of local isomorphisms can be defined for all tracial
graph products [Caspers and Fima 2017] (regardless if they come form groups or not) with essentially the
same proofs.

Next, we highlight a family of ∗-isomorphisms between graph product von Neumann algebras that
is specific to graphs in the class CC1 and is related more to the clique algebras structure than to the
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vertex algebra structure as in the previous part. As before, let G ,H ∈ CC1 be isomorphic graphs, and
fix σ : G → H an isometry. Let cliq(G ) = {C1, . . . ,Cn} be a consecutive enumeration of the cliques
of G . Let 0G and 3H be graph product groups and assume, for every i ∈ 1, n, there are ∗-isomorphisms
θi−1,i : L(0Ci−1,i ) → L(3Cσ(Ci−1,i )

) and ξi : L(0C int
i
) → L(3σ(C int

i )). Here, and afterwards, we use the
notation C0,1 = Cn,1. Using Lemma 4.1, we can view 0G as a graph product group 0′

Fn
over the graph Fn ,

where the vertex groups satisfy 0′
wi

=
⊕

v∈C int
i
0v and 0′

bi
=

⊕
v∈Ci−1,i

0v . Similarly, 3H =3′
Fn

, where
3′

σ(wi )
=

⊕
v∈C int

i
3σ(v) and3′

σ(bi )
=

⊕
v∈Ci−1,i

3σ(v). Therefore, using Theorem 7.1, these isomorphisms
induce a unique ∗-isomorphism φθ,ξ,σ : L(0G )→ L(3H ):

φθ,ξ,σ (x)=

{
θi−1,i (x) if x ∈ L(0Ci−1,i ),

ξi (x) if x ∈ L(0C int
i
)

(7-1)

for all i ∈ 1, n.
When 0G =3H , this construction yields a group of automorphisms of L(0G ) that will be denoted by

Locc,g(L(0G )). We also denote by Locc(L(0G )) the subgroup of all automorphisms satisfying σ = Id.
Note: Locc(L(0G )) ∼=

⊕
i Aut(L(0Ci−1,i ))⊕ Aut(L(0C int

i
)) and also Locc(L(0G )) ⩽ Locc,g(L(0G )) has

finite index.
Next, we highlight a subgroup of automorphisms in Locc(L(0G )) that will be useful in stating our

main results. Namely, consider a family of nontrivial unitaries ai−1,i ∈ L(0Ci−1,i ) and bi ∈ L(0C int
i
) for

every i ∈ 1, n. If in the formula (7-1) we let θi−1,i = ad(ai−1,i ) and ξi = ad(bi ), then the corresponding
automorphism φθ,ξ,Id is an (most of the times outer) automorphism of L(0) which we will denote by
φa,b throughout this section. The set of all such automorphisms forms a normal subgroup denoted by
Locc,i(L(0G ))◁ Locc(L(0G )). From the definitions we also have Locv,i(L(0G )) < Locc,i(L(0G )) and
Locv(L(0G )) < Locc(L(0G )).

Proposition 7.4. The automorphism φa,b ∈ Locc,i(L(0G )) is inner if and only if ai,i+1 ∈ Z (L(0Ci−1,i ))

and bi ∈ Z (L(0C int
i
)) for all i ∈ 1, n.

Proof. Assume that φa,b ∈ Locc,i(L(0G )) is inner, and hence, there is a unitary u ∈ L(0G ) such that
φa,b(x)u = ux for any x ∈ L(0G ). Fix an arbitrary i ∈ 1, n. Then, for any x ∈ L(0Ci−1,i ), we have
ai−1,i xa∗

i,i−1 = uxu∗. Together with Theorem 2.7, this yields u∗ai,i−1 ∈L(0Ci−1,i )
′
∩L(0G )⊂L(0Ci−1∪Ci ).

Since ai,i+1 ∈ L(0Ci−1,i ), it follows that u ∈
⋂n

i=1 L(0Ci−1∪Ci ) = C1, and then it follows that ai,i+1 ∈

Z (L(0Ci−1,i )). Similarly, one can show that bi ∈ Z (L(0C int
i
)) for all i ∈ 1, n. This concludes one direction

of the proof. As for the converse, note that we trivially have φa,b = Id. □

7.2. Computations of symmetries of graph product group von Neumann algebras. Next, we introduce
a few preliminary results needed to describe the isomorphisms between von Neumann algebras arising
from graph product groups with property (T) vertex groups.

Theorem 7.5. Let 0 = G {0v} and 3= H {3w} be graph product groups, and assume that 0v and 3w
are icc property (T) groups for all v ∈ V and w ∈ W . Let θ : L(0)→ L(3) be any ∗-isomorphism. Then
there is a bijection σ : cliq(G )→ cliq(H ) such that, for every C ∈ cliq(G ), there is a unitary uC ∈ L(3)
such that θ(L(0C ))= uCL(3σ(C ))u∗

C .
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Proof. Fix C ∈ cliq(G ). Using the hypothesis and Corollary 2.8, it follows that θ(L(0C )) ⊆ L(3)
is a property (T) irreducible subfactor. By the first part of Theorem 6.1, there must exist a clique
σ(C ) ∈ cliq(H ) such that θ(L(0C ))≺L(3) L(0σ(C )). Now, we argue that, for every c ∈ σ(C ), we have
θ(L(0C )) ⊀L(3) L(0σ(C )\{c}). Indeed, if we assume θ(L(3C )) ≺L(3) L(0σ(C )\{c}), then by passing to
relative intertwining commutants we would get from [Vaes 2008, Lemma 3.5] that

L(3c)= L(3σ(C )\{c})′ ∩L(3)≺L(3) θ(L(0C ))
′
∩L(3)= θ(L(0C )

′
∩L(0))= C1,

which is a contradiction. Thus, by using that L(3σ(C )) is a factor and L(0C ) ⊂ L(0) is irreducible,
it follows from the moreover part of Theorem 6.1 that there exists a unitary uC ∈ L(3) that satisfies
uC θ(L(0C ))u∗

C ⊆ L(3σ(C )).
We now reverse the roles of 0 and 3: in a similar manner for every D ∈ cliq(H ), one can find

τ(D) ∈ cliq(G ) and a unitary wD ∈ L(0) satisfying L(3D)⊆ wC θ(L(0τ(D))w∗
D . Altogether these show

that
uC θ(L(0C ))u∗

C ⊆ L(3σ(C ))⊆ wσ(C )θ(L(0τ(σ (C )))w∗

σ(C ).

In particular, Theorem 2.7 implies that C = τ(σ (C )) and u∗
Cwσ(C ) ∈ θ(L(0C )). This combined with the

prior containment implies that uC θ(L(0C ))u∗
C = L(3σ(C )). As C = τ(σ (C )) for any clique C of G , it

follows in particular that σ is a bijection. □

Remarks. Theorem 7.5 still holds under the more general assumption that each vertex group 0v possesses
an infinite property (T) normal subgroup. The proof is essentially the same and is left to the reader.

We continue by recording a notion of unique prime factorization along with some examples that will
be needed in the first main result.

Definition 7.6. A family C of countable icc groups is said to satisfy the s-unique prime factorization if,
whenever

M = L(01 × · · · ×0m)
t
= L(31 × · · · ×3n)

for some 01, . . . , 0m , 31, . . . , 3n that belong to C and t > 0, we must have t = 1 and m = n, and there
exist a unitary u ∈ M and a permutation τ ∈ Sn such that uL(0i )u∗

= L(3τ(i)) for all i ∈ 1, n.

There are several classes of natural examples of groups that satisfy this unique factorization condition
in the literature, but for our paper only those which have property (T) will be relevant. Thus appealing to
the results in [Chifan et al. 2023a; 2023b; 2024; Das 2020], we have the following.

Corollary 7.7. Class C satisfies the s-unique prime factorization whenever C is one of the following:

(1) The class of property (T) fibered Rips constructions [Chifan et al. 2023a; 2024].

(2) The class of property (T) generalized wreath-like product groups WR(A, B ↷ I ), where A is abelian,
B is an icc subgroup of a hyperbolic group, and the action B ↷ I has infinite stabilizers [Chifan
et al. 2023b; Chifan et al. 2023c].

Proof. Part (1) is a direct consequence of [Chifan et al. 2023a; 2024; Das 2020]. Part (2) follows from
Theorem 3.6 and Corollary 3.7. □
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Proposition 7.8. Let 0 = G {0v} and 3= H {3w} be graph products such that

(1) 0v and 3w are icc property (T) groups for all v ∈ V and w ∈ W ,

(2) there is a class C of countable groups which satisfies the s-unique prime factorization property (see
Definition 7.6) for which 0v and 3w belong to C for all v ∈ V and w ∈ W .

Let 0< t < 1 be a scalar and 2 : L(0)t → L(3) be any ∗-isomorphism.
Then t = 1 and there is a bijection σ : cliq(G )→ cliq(H ) such that, for every C ∈ cliq(G ), there is a

unitary uC ∈ L(3) such that 2(L(0C ))= uCL(3σ(C ))u∗
C .

Proof. First we observe that it suffices to show that t = 1, as the rest of the statement follows from
Theorem 7.5.

Let D be a clique in G . Since L(0D) is a II1-factor, there is a projection p ∈L(0D) of trace τ(p)= t with
L(0)t = pL(0)p. As L(0D) has property (T) then so does pL(0D)p. Since pL(0D)p ⊂2−1(L(3)) :=N,
then by Theorem 6.1 one can find a clique F ∈ cliq(H ) such that pL(0D)p ≺N 2−1(L(3F )). Now,
observe that since the inclusion pL(0D)p ⊂N is irreducible, we can proceed as in the proof of Theorem 7.5
to deduce that pL(0D)p ⊀N 2−1(L(3F\{c})) for every c ∈ F . Thus, using the irreducibility condition
and the moreover part of Theorem 6.1, there exists u ∈ U (2−1(L(3))) satisfying

upL(0D)pu∗
⊂2−1(L(3F )). (7-2)

Also observe that (upL(0D)pu∗)′ ∩2−1(L(3F )) ⊆ up(L(0D))
′
∩L(0G )pu∗

= Cp. Hence (7-2) is an
irreducible inclusion of II1-factors.

Next, since2−1(L(3F )) has property (T) and2−1(L(3F ))⊂ pL(0)p ⊂L(0) :=M, by Theorem 6.1
one can find D ′

∈ cliq(G ) such that 2−1(L(3F ))≺M L(0D ′). Combining this with (7-2), we further get
pL(0D)p ≺M L(0D ′), which further implies by Lemma 2.3 that D ⊆ D ′, and since these are cliques we
conclude that D = D ′. In conclusion, the prior intertwining relation amounts to 2−1(L(3F ))≺M L(0D).
Since L(0D) is a II1-factor, we further obtain 2−1(L(3F )) ≺M upL(0D)pu∗. Since u ∈ pMp is a
unitary this further implies

2−1(L(3F ))≺pMp upL(0D)pu∗. (7-3)

By irreducibility, we have 2−1(L(3F )) ⊀pMp 2
−1(L(3F\{c}) for all c ∈ F . Thus, (7-3), (7-2),

and Lemma 2.9 further imply 2−1(L(3F )) ≺2−1(L(3F )) upL(0D)pu∗. Using [Chifan and Das 2018,
Lemma 2.3], this requires that the inclusion (7-2) has finite index, and consequently, we have

2−1(L(3F ))⊂ QN ′′

pMp(upL(0D)pu∗). (7-4)

Since D is a clique, Theorem 2.7 and Lemma 2.6 imply that QN0(0D)= 0D . Using this together with
Lemmas 2.5 and 2.6, we obtain

QN ′′

pMp(upL(0D)pu∗)= upQN ′′

M(L(0D))pu∗
= upL(QN0(0D))pu∗

= upL(0D)pu∗,

which together with (7-4) implies that 2−1(L(3F ))⊂ upL(0D)pu∗. Together with (7-2) it follows that
2−1(L(3F ))= upL(0D)pu∗. Finally, the strong unique prime factorization property implies p = 1 and
thus t = 1, as desired. □
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7.3. Proofs of the main results. With all the previous preparations at hand we are ready to prove the
first main result, namely Theorem A.

Theorem 7.9. Let G and H be graphs in the class CC1, and let 0 = G {0v} and 3= H {3w} be graph
product groups satisfying the following conditions:

(1) 0v and 3w are icc property (T) groups for all v ∈ V and w ∈ W .

(2) There is a class C of countable groups which satisfies the s-unique prime factorization property (see
Definition 7.6) for which 0v and 3w belong to C for all v ∈ V and w ∈ W .

Let t > 0, and let 2 : L(0)t → L(3) be any ∗-isomorphism. Then t = 1 and one can find an isometry
σ : G → H , ∗-isomorphisms θi−1,i : L(0Ci−1,i ) → L(0Cσ(Ci−1,i )

) and ξi : L(0C int
i
) → L(0σ(C int

i )) for all
i ∈ 1, n, and a unitary u ∈ L(3) such that 2= ad(u) ◦φθ,ξ .

Proof. Without loss of generality, we can assume t ⩽ 1 and from the prior theorem we have t = 1. Also
for simplicity we will omit 2 from the formulas. Using condition (2) in conjunction with Theorem 7.5,
one can find a bijection σ : cliq(G )→ cliq(H ) and unitaries u1, . . . , un ∈ M such that, for any i ∈ 1, n,
we have

uiL(0Ci )u
∗

i = L(3σ(Ci )). (7-5)

Next, condition (2) implies that, for any i ∈ 1, n, there exist a complete subgraph Di ⊂ σ(Ci ) and
a unitary ũi ∈ L(3σ(Ci )) such that ũiL(0Ci,i+1)ũ

∗

i = L(3Di ). Note that relation (7-5) still holds if we
replace ui by ũi . Therefore, for ease of notation, we denote ũi by ui . Hence, L(0Ci,i+1)= u∗

i L(3Di )ui =

u∗

i+1L(3Di+1)ui+1, and therefore L(3Di )ui u∗

i+1 = ui u∗

i+1L(3Di+1). By Theorem 2.7 this further implies
Di ⊆ Di+1, and similarly we get Di ⊇ Di+1; thus, Di = Di+1. Furthermore, we see that uiL(0Ci,i+1)u

∗

i =

ui+1L(0Ci,i+1)u
∗

i+1 = L(3Di ), and hence

u∗

i ui+1 ∈ NM(L(0Ci,i+1))= L(0Ci,i+1⊔lk(Ci,i+1))= L(0Ci ∪Ci+1).

Moreover, using Proposition 2.10, we further have that u∗

i ui+1 = ai,i+1bi,i+1, where ai,i+1 ∈ U (L(Ci,i+1))

and bi,i+1 ∈ U (L(0(Ci ∪Ci+1)\Ci,i+1)). To this end observe that if we let xi,i+1 := u∗

i ui+1 then we have
x1,2x2,3 · · · xn,1 = 1. Thus, using Theorem 5.2 for each i ∈ 1, n, one can find ai ∈ U (L(0Ci−1,i )),
bi ∈ U (L(0C int

i
)), and ci ∈ U (L(0Ci,i+1)) such that

u∗

i ui+1 = xi,i+1 = ai bi ci b∗

i+1a∗

i+2c∗

i+1. (7-6)

Using these relations recursively together with the commutation relations and performing the appropriate
cancellations, we see that, for every i ∈ 2, n, we have

ui = u1(u∗

1u2)(u∗

2u3) · · · (u∗

i−2ui−1)(u∗

i−1ui )

= u1(a1b1c1b∗

2a∗

3c∗

2)(a2b2c2b∗

3a∗

4c∗

3) · · · (ai−1bi−1ci−1b∗

i a∗

i+1c∗

i )

...

= u1a1b1c1a2a∗

i b∗

i a∗

i+1c∗

i . (7-7)
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Since a∗

i b∗

i a∗

i+1c∗

i ∈ U (L(0Ci )), we can see that by replacing each ui by u = u1a1b1c1a2 the relations
in (7-5) still hold. By writing Fi = σ(Ci ) for all i , we observe that in particular these relations imply
that uL(0Ci,i+1)u

∗
= L(3Fi,i+1) for all i . Passing to relative commutants in each clique algebra, we also

have uL(0C int
i
)u∗

= L(3F int
i
). We now notice that the s-unique prime factorization property of the groups

implies that the map σ arises from an isometry σ : G → H still denoted by the same letter. Altogether
these relations give the desired statement. □

Using the W∗-superrigid property (T) wreath-like product groups recently discovered in [Chifan et al.
2023b] as vertex groups in the previous result, one obtains an even more precise description of the
∗-isomorphisms between these von Neumann algebras; hence, we provide a proof for Theorem B.

Theorem 7.10. Let G and H be graphs in the class CC1, and let G = G {0v} and 3 = H {3w} be
graph product groups where all vertex groups 0v and 3w are property (T) wreath-like product groups
(as described in the second part of Corollary 7.7).

Then, for any t > 0 and ∗-isomorphism2 :L(0)t →L(3), we have t = 1, and one can find a character
η ∈ Char(0), a group isomorphism δ ∈ Isom(0,3), an automorphism of L(3) of the form φa,b (see the
notation after (7-1)), and a unitary u ∈ L(3) such that 2= ad(u∗) ◦φa,b ◦9η,δ.

Proof. From the prior result we have t =1. From Theorem 7.9 one can find a graph isomorphism σ :G →H

and a unitary u ∈ L(3) such that, for every clique Ci ∈ cliq(G ), we have u2(L(0Ci ))u
∗
= L(3σ(Ci )). In

particular, these relations imply that u2(L(0Ci,i+1))u
∗
= L(3σ(Ci,i+1)) and also uL(0C int

i
)u∗

= L(3σ(C int
i ))

for all i ∈ 1, n. Furthermore, using Corollary 3.7, one can find unitaries ai,i+1 ∈ 2(L(0Ci,i+1)) and
bi ∈2(L(0Ci,i+1)) such that

Tuai,i+12(0Ci,i+1)a
∗

i,i+1u∗
= T3σ(Ci,i+1) and Tubi2(0C int

i
)b∗

i u∗
= T3σ(C int

i ).

Hence, there exists an automorphism of L(3) of the form φa,b such that, by letting 2̃= φ−1
a,b ◦ ad(u) ◦2,

we have
T2̃(0Ci,i+1)= T3σ(Ci,i+1) and T2̃(0C int

i
)= T3σ(C int

i )

for any i ∈ 1, n. The conclusion trivially follows. □

Next, we record four immediate consequences of the prior result, and hence provide proofs to the other
main results of the introduction.

Corollary 7.11. Let G be a graph in the class CC1, and let 0 = G {0v} be the graph product groups
where all vertex groups 0v are property (T) wreath-like product groups (as described in the second part of
Corollary 7.7).

Then, for any automorphism 2 ∈ Aut(L(0)), one can find η ∈ Char(0), δ ∈ Aut(0), an automorphism
of L(0) of the form φa,b, and a unitary u ∈ L(0) such that 2= ad(u) ◦φa,b ◦9η,δ.

Corollary 7.12. Let G be a graph in the class CC1, and let 0 = G {0v} be the graph product groups
where all vertex groups 0v are property (T) wreath-like product groups (as described in the second part of
Corollary 7.7). Then the fundamental group F(L(0))= {1}.
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In particular, combining these results with Theorem 3.3 and Remark 3.4, we obtain examples when the
only outer automorphisms of von Neumann algebras of graph products are the only options discussed in
relation (7-1).

Corollary 7.13. Let G ∈ CC1, and fix cliq(G )= {C1, . . . ,Cn} a consecutive enumeration of its cliques.
Let 0 = G {0v} be the graph product groups where all vertex groups 0v are property (T) regular wreath-
like product groups (as described in the second part of Corollary 7.7) which in addition are pairwise
nonisomorphic, and have trivial abelianization and trivial outer automorphisms. Then

Out(L(0))∼=

n⊕
i=1

U (L(0Ci−1,i ))⊕ U (L(0C int
i
)).

Proof. Let2∈ Out(L(0)). By Theorem 7.10, one can find a character η∈ Char(0), a group automorphism
δ ∈ Aut(0), and an automorphism of L(0) of the form φa,b such that 2= φa,b ◦9η,δ . Note that, for any
v ∈ V , the restriction of η to 0v is a character of 0v and, by assumption, we get that η(g)= 1 for any
v ∈ V and g ∈0v . Next, recall that by Theorem 4.4 we have Aut(0)∼=0⋊

((⊕
v∈V Aut(0v)

)
⋊Sym(0)

)
.

Now, because the vertex groups are pairwise nonisomorphic, then Sym(0) = 1. Moreover, since all
automorphisms of the vertex groups are inner, it follows that 9η,δ is essentially an automorphism of the
form φa′,b′ , where a′ and b′ are collections of unitaries implemented by group elements. In conclusion,
we have that 2= φc,d , where c and d are some collections of unitaries, and the formula follows. □

Corollary 7.14. Let G and H be graphs in the class CC1, and let G = G {0v} and 3 = H {3w} be
graph product groups where all vertex groups 0v and 3w are property (T) wreath-like product groups
(as described in the second part of Corollary 7.7).

Then, for any ∗-isomorphism 2 : C∗
r (0) → C∗

r (3), one can find a character η ∈ Char(0), a group
isomorphism δ ∈ Isom(0,3), an automorphism of L(3) of the form φa,b, and a unitary u ∈ L(3) such
that 2= ad(u∗) ◦φa,b ◦9η,δ.

Proof. From Lemma 4.3, we get that 0 has trivial amenable radical, and hence, by [Breuillard et al. 2017,
Theorem 1.3], it follows that C∗

r (0) has unique trace. This implies that any ∗-isomorphism between
C∗

r (0) and C∗
r (3) lifts to a ∗-isomorphism of the associated von Neumann algebras. Now the result

follows from Theorem 7.10. □
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OBSERVABILITY OF THE SCHRÖDINGER EQUATION WITH
SUBQUADRATIC CONFINING POTENTIAL IN THE EUCLIDEAN SPACE

ANTOINE PROUFF

We consider the Schrödinger equation in Rd , d ≥ 1, with a confining potential growing at most quadratically.
Our main theorem characterizes open sets from which observability holds, provided they are sufficiently
regular in a certain sense. The observability condition involves the Hamiltonian flow associated with
the Schrödinger operator under consideration. It is obtained using semiclassical analysis techniques. It
allows us to provide an accurate estimation of the optimal observation time. We illustrate this result with
several examples. In the case of two-dimensional harmonic potentials, focusing on conical or rotation-
invariant observation sets, we express our observability condition in terms of arithmetical properties of the
characteristic frequencies of the oscillator.
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1. Introduction and main results

We are concerned with the observability of the Schrödinger equation with a confining potential in the
Euclidean space:

i∂tψ = Pψ, P = V (x)− 1
21, t ∈ R, x ∈ Rd , (1-1)

where V is a real-valued potential, bounded from below. Specific assumptions shall be stated below. The
general problem reads as follows: we wonder which measurable sets ω ⊂ Rd and times T > 0 satisfy

∃C > 0 : ∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt. Obs(ω, T )

When this property Obs(ω, T ) is true, we say that the Schrödinger equation (1-1) is observable from ω

in time T, or that ω observes the Schrödinger equation. The question consists in finding conditions on
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the pair (ω, T ) ensuring that one can recover a fraction of the mass of the initial data u, by observing
the solution ψ(t)= e−i t Pu of (1-1) in ω during a time T. We will often call ω the observation set and T
the observation time. As for the constant C in the inequality, we will refer to it as the observation cost
throughout the text. When an observation set ω is fixed, the infimum of times T > 0 such that Obs(ω, T )
holds is called the optimal observation time, and is denoted by T⋆ = T⋆(ω). It is clear that this so-called
observability inequality holds for ω = Rd in any time T > 0. This is because the propagator solving
the Schrödinger equation e−i t P is an isometry on L2(Rd).1 But from the viewpoint of applications, one
would like to find the smallest possible observation sets and the corresponding optimal times for which
the observability inequality holds.

The observability question for Schrödinger-type equations has been extensively investigated over the
past decades, mainly in compact domains of Rd or compact Riemannian manifolds. See the surveys of
Laurent [2014] or Macià [2015] for an overview. In a compact Riemannian manifold, Lebeau [1992]
showed that the so-called geometric control condition (introduced for the wave equation in [Rauch and
Taylor 1974; Bardos et al. 1992]) is sufficient to get observability of the Schrödinger equation in any time
T > 0. This means that all billiard trajectories have to enter the observation set in finite time. See for
instance [Phung 2001] for later developments in Euclidean domains. However, works by Haraux [1989]
and Jaffard [1990] on the torus show that this condition is not always necessary. Since then, considerable
efforts have been made to find the good geometric condition characterizing the observability of the
Schrödinger equation, depending on the geometrical context. This question is closely related to that of
understanding the concentration or delocalization of Laplace eigenfunctions or quasimodes, which rule
the propagation of states through the Schrödinger evolution; see [Burq and Zworski 2004]. The latter
properties are linked to the behavior of the underlying classical dynamics, which is supposed to drive
the quantum dynamics at high frequency. In the literature, mainly two different dynamical situations
have been investigated. On the one hand, complete integrability, meaning existence of many conserved
quantities, usually features symmetries that result in high multiplicity in the spectrum at the quantum
level. This allows for possible concentration of eigenfunctions. On the other hand, chaotic systems,
epitomized by the geodesic flow of negatively curved Riemannian manifolds, go along with strong
instability properties. For instance, quantum ergodicity states that most2 Laplace eigenfunctions are
delocalized on manifolds with ergodic geodesic flow. Here we collect a nonexhaustive list of references
illustrating this diversity of situations. On the torus, observability was investigated by several authors;
see, for example, [Haraux 1989; Jaffard 1990; Burq and Zworski 2004; 2012; 2019; Bourgain et al.
2013; Macià 2010; Anantharaman and Macià 2012; 2014]. General completely integrable systems were
studied by Anantharaman, Fermanian-Kammerer and Macià [Anantharaman et al. 2015]. As for the disk,
the question of characterizing open sets from which observability holds was solved by Anantharaman,
Léautaud and Macià [Anantharaman et al. 2016a; 2016b]. Macià and Rivière [2016; 2019] thoroughly

1Another consequence of this is that the condition Obs(ω, T ) is “open” with respect to T : if Obs(ω, T ) is true with cost
C > 0, then Obs(ω, T − ε) is true as soon as ε < 1/C . See Lemma A.3 in Appendix A for a precise statement.

2In fact, the situation is more complicated due to the possible existence of a sparse subsequence of eigenmodes concentrating
around unstable closed classical trajectories — a phenomenon known as scarring.



OBSERVABILITY OF THE SCHRÖDINGER EQUATION WITH CONFINING POTENTIAL 1149

described what happens on the sphere and on Zoll manifolds. In the negatively curved setting, we refer to
[Anantharaman 2008; Anantharaman and Rivière 2012; Eswarathasan and Rivière 2017; Dyatlov and Jin
2018; Jin 2018; Dyatlov et al. 2022]. See also [Privat et al. 2016] in connection with quantum ergodicity.

Recently, there has been a growing interest in the question of observability for the Schrödinger
equation in the Euclidean space, for which new difficulties arise due to the presence of infinity in space.
Täufer [2023] dealt with the observability of the free Schrödinger equation in Rd, showing that it is
observable from any nonempty periodic open set in any positive time. It relies on the Floquet–Bloch
transform and the theory of lacunary Fourier series. It was later generalized by Le Balc’h and Martin [2023]
to the case of periodic measurable observation sets with a periodic L∞ potential, in dimension 2.

Huang, Wang and Wang [Huang et al. 2022] characterized measurable sets for which the Schrödinger
equation (1-1) is observable, in dimension d = 1 when V (x)= |x |

2m, m ∈ N. They proved that, in the
case where m = 1 (resp. m ≥ 2), one has observability from ω ⊂ R in some time (resp. in any time) if
and only if

lim inf
x→+∞

|ω∩ [−x, x]|

|[−x, x]|
> 0, (1-2)

where | • | is the one-dimensional Lebesgue measure. Such a set is called “weakly thick”. Simultaneously,
Martin and Pravda-Starov [2021] provided a generalization of this condition in dimension d which turns
out to be necessary if d ≥ 1 and sufficient if d = 1 for observability to hold, in the case of the fractional
harmonic Schrödinger equation, namely (1-1) with P = (−1+|x |

2)s, where s ≥1. In the particular cases of
potentials or operators discussed above, the techniques that are used, mainly relying on abstract harmonic
analysis tools, provide very strong results. However, it seems that more general potentials remain out
of reach, since the arguments involved require the knowledge of precise spectral estimates on eigenvalues
and eigenfunctions, explicit asymptotics and symmetry properties. Moreover, regarding the case of the
harmonic oscillator, the existing results focus on the properties of the sets for which observability holds,
but given such a set, they do not give a hint of what would be the minimal time for which the observability
inequality holds. In fact they provide an upper bound for this optimal time independent of the open set,
corresponding to half a period of the classical harmonic oscillator. But it is reasonable to think that this
upper bound can be improved taking into account the geometry of the observation set.

To complete the picture, let us mention the study of observability for time-dependent quadratic
Hamiltonians in Rd by Waters [2023]. As for bounded potentials in dimension 1, a quantitative observabil-
ity result was obtained by Su, Sun and Yuan [Su et al. 2025]. See also [Wei et al. 2023] on the half-line.

Motivations, assumptions and notation. This work aims to address the issues discussed above, namely:

(a) find a robust method to prove that the Schrödinger equation is observable from a given set with less
restrictions on the dimension or the potential (e.g., variations of the harmonic potential like x · Ax
where A is a real symmetric positive-definite d × d matrix, or potentials of the form ⟨x⟩

2m with
m > 0 a real number);

(b) provide a more accurate upper bound for the optimal observation time depending on the shape of the
observation set.
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Throughout this work, we make the following assumptions on the potential:

Assumption 1.1. The potential V is C∞ smooth and satisfies, for some m > 0,

∃C, r > 0 : ∀|x | ≥ r, 1
C

⟨x⟩
2m

≤ V (x)≤ C⟨x⟩
2m, (1-3)

∀α ∈ Nd , ∃Cα > 0 : ∀x ∈ Rd , |∂αV (x)| ≤ Cα⟨x⟩
2m−|α|. (1-4)

Unless stated otherwise, we assume that the potential is subquadratic, namely 0< m ≤ 1.

Throughout the article, we shall refer to the left-hand side inequality in (1-3) by saying that the potential
is elliptic. In addition, the notion of principal symbol that we will use is made clear below.

Definition 1.2 (principal symbol). Let V0 and V be two potentials satisfying Assumption 1.1 above with
a power m > 0. We say that V0 and V have the same principal symbol if

∀α ∈ Nd , ∃Cα > 0 : ∀x ∈ Rd , |∂α(V − V0)(x)| ≤ Cα⟨x⟩
2m−1−|α|.

This defines an equivalence relation. The equivalence class of such a potential V is called the principal
symbol of V.

Classical spectral theory arguments ensure that the operator V (x) −
1
21 with domain C∞

c (R
d) is

essentially self-adjoint (from now on, its closure will be denoted by P) and that the evolution problem (1-1)
on L2(Rd) is well-posed. In fact, most of our results will depend only on the principal symbol of V,
namely they will not depend on perturbations of the potential of order ⟨x⟩

2m−1.
Our strategy emphasizes the role of the underlying classical dynamics ruling the evolution of high-energy

solutions to the Schrödinger equation (1-1), by means of the so-called quantum-classical correspondence
principle. This motivates the introduction of the symbol of the operator P, defined by

p(x, ξ) := V (x)+ 1
2 |ξ |2, (x, ξ) ∈ R2d.

This is a smooth function on the phase space R2d
≃ Rd

x × Rd
ξ , tending to +∞ as (x, ξ)→ ∞, since the

potential is elliptic. Throughout this text, typical phase space points will be denoted by ρ = (x, ξ), and
we will sometimes use the notation π : R2d

→ Rd for the projection (x, ξ) 7→ x . We will often refer to p
as the classical Hamiltonian, and to its quantization P as the quantum Hamiltonian. The Hamiltonian
flow (φt)t∈R on R2d, which preserves p, is defined as the flow generated by the Hamilton equation:

d
dt
φt(ρ)= J∇ p(φt(ρ)), φ0(ρ)= ρ. (1-5)

It is well-defined for all times under our assumptions. Here J =
( 0

−Id

Id
0

)
is the symplectic matrix.

Introducing (x t , ξ t)= φt(ρ) the position and momentum components of the flow, this can be rewritten as
d
dt

x t
= ξ t ,

d
dt
ξ t

= −∇V (x t),
(x0, ξ 0)= ρ. (1-6)

Hereafter, we will refer to the x-component of a trajectory of the Hamiltonian flow as a projected trajectory.
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1.1. Main result. Let us insist on the fact that the result below applies for confining potentials having
a subquadratic growth, i.e., 0 < m ≤ 1. We will explain later why we restrict ourselves to this case.
Throughout the article, the open ball of radius r centered at x ∈ Rd is denoted by Br (x). Our main result
reads as follows.

Theorem 1.3. Let V0 and V be potentials on Rd satisfying Assumption 1.1 with some m ∈ (0, 1],
having the same principal symbol. Set P = V (x)− 1

21 and denote by e−i t P the propagator solving the
Schrödinger equation

i∂tψ = Pψ.

Also denote by (φt
0)t∈R the Hamiltonian flow associated with the symbol p0(x, ξ)= V0(x)+ 1

2 |ξ |2. For
any Borel set ω ⊂ Rd, define for any R > 0 the thickened set

ωR =

⋃
x∈ω

BR(x),

and introduce for any T > 0 the classical quantity3

K∞

p0
(ω, T )= lim inf

ρ→∞

∫ T

0
1ω×Rd (φt

0(ρ)) dt = lim inf
ρ→∞

|{t ∈ (0, T ) : (π ◦φt
0)(ρ) ∈ ω}|.

Fix a Borel set ω ⊂ Rd.

(i) (sufficient condition) Assume there exists T0 > 0 such that

K∞

p0
:= K∞

p0
(ω, T0) > 0. (1-7)

Then there exists a constant L = L(d, T0, p0, p)> 0 such that for R = L/K∞
p0

, for any compact set K ⊂ Rd

and any T > T0, Obs(ωR \ K , T ) is true, namely:

∃C > 0 : ∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ωR\K ) dt.

(ii) (necessary condition) Assume there exists a time T > 0 such that Obs(ω, T ) is true with cost Cobs > 0,
that is to say,

∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ Cobs

∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt. (1-8)

Then there is a constant c = c(d, T, p0, p) such that for any R ≥ 1 and any compact set K ⊂ Rd, one has

K∞

p0
(ωR \ K, T )≥

1
Cobs

− c
⟨log R⟩

1/2

R
.

The rest of the introduction is organized as follows: in Section 1.2, we comment on Theorem 1.3 and
describe the main ideas of the proof. Then we discuss various examples of application. We begin with
examples in dimension 1 in Section 1.3. In Section 1.4, we investigate the particular case of harmonic

3 The integral makes sense when ω is Borel. Indeed, the map (t, ρ) 7→ 1ω×Rd (φ
t
0(ρ)) is then Lebesgue-measurable, so that

the same is true for t 7→ 1ω×Rd (φ
t
0(ρ)) when ρ is fixed. Tonelli’s theorem [Lerner 2014, Theorem 4.2.5] then shows that the

map ρ 7→
∫ T

0 1ω×Rd (φ
t
0(ρ)) dt is Lebesgue-measurable.
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oscillators in two dimensions. We specifically focus on conical and rotation-invariant observation
sets in Sections 1.4.1 and 1.4.3 respectively. These are cases where one can prove accurate estimates
on the optimal observation time — see for instance Proposition 1.5. Arithmetical properties of the
characteristic frequencies of the harmonic oscillator under consideration also play a key role, as evidenced
by Proposition 1.11. Then in Section 1.5, we present other consequences of Theorem 1.3 concerning
observability of eigenfunctions of the Schrödinger operator P and energy decay of the damped wave
equation. Lastly, we discuss the links between our work and the Kato smoothing effect in Section 1.6,
and provide with further explanations regarding the natural semiclassical scaling of the problem and the
criticality of quadratic potentials in Section 1.7.

1.2. Idea of proof and comments. The core of our work consists in establishing a suitable version of
Egorov’s theorem to relate the evolution through the Schrödinger flow of high-energy initial data on the
quantum side, to the action of the associated Hamiltonian flow on the classical side. This is done using
semiclassical analysis. To apply this theory, we approximate the indicator function of ω by a smooth
and sufficiently flat cut-off function. This is how the larger set ωR arises. Although Theorem 1.3 is not
a complete characterization of sets for which observability holds, it provides an almost necessary and
sufficient condition of observability, up to thickening the observation set, and it gives sharp results in many
concrete situations. See the examples given in Sections 1.3, 1.4 and 1.5 below. We review remarkable
features of this statement.

• The observability condition (1-7) we find is reminiscent of the geometric control condition that rules
the observability or control of the wave equation in a number of geometrical contexts, especially compact
Riemannian manifolds [Rauch and Taylor 1974; Bardos et al. 1988; 1992]. It reflects the importance of
the quantum-classical correspondence in this problem: high-energy solutions to the Schrödinger equation,
lifted to phase space, propagate along the trajectories of the Hamiltonian flow. Our constant K∞

p0
(ω, T ) is

to some extent different from the one quantifying the geometric control condition for the wave equation
(see the constant C(t) of Lebeau [1996] or the constant K(T ) of Laurent and Léautaud [2016]). Indeed,
the latter constant consists in averaging some function (typically the indicator function of ω) along
speed-one geodesics in a time interval [0, T ]. In contrast, our constant K∞

p0
(ω, T ) does the same, except

that the length of trajectories tends to infinity as their initial datum ρ goes to infinity in phase space. This
is consistent with the infinite speed of propagation of singularities for the Schrödinger equation.

• The necessary condition of Theorem 1.3 gives an estimate of the observation cost (from the set ω) of the
form Cobs ≥ K∞

p0
(ωR, T )−1

− o(1) as R → +∞. This is the expected lower bound while using Egorov’s
theorem to prove observability results; see [Laurent and Léautaud 2016] for a similar statement in the
context of the wave equation. As for an upper bound, it could be that Cobs is much larger than the lower
bound, due to localization of low-energy eigenmodes away from ω. In this respect, [Bourgain et al. 2013,
Appendix A] gives a hint of how one could quantify the unique continuation argument that we use in the
proof of Theorem 1.3 (see Appendix A). See also [Laurent and Léautaud 2016] for the wave equation.

• In the sufficient condition of Theorem 1.3, if one takes K =∅, the unique continuation step (Appendix A)
turns out to be unnecessary to prove observability from ωR . Indeed, it suffices to take R large enough so
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as to cover a sufficiently large compact set in phase space. This allows to capture all trajectories of the
Hamiltonian flow and have

inf
ρ∈R2d

|{t ∈ (0, T ) : (π ◦φt
0)(ρ) ∈ ωR}|> 0, (1-9)

instead of a positive lower bound for the liminf.4 From a unique continuation perspective, this corresponds
to taking R large enough so that ωR covers the region where low-energy modes might be localized. This
indicates, through Gårding inequality, that the observation cost from the set ωR is bounded from above
by the inverse of (1-9), up to a small error that vanishes in the limit R → +∞.

• Let us insist on the fact that the Schrödinger equation (1-1) does not contain any semiclassical parameter.
Instead, we artificially introduce a semiclassical parameter R → +∞, which we use to enlarge the
observation set. This is natural in view of the fact that remainders in the quantum-classical correspondence
are expressed in terms of derivatives of the symbol under consideration: scaling these symbols by 1/R
thus produces remainders of the same order.

• On the technical side, the noncompactness of the Euclidean space yields new difficulties. In our
problem, the use of semiclassical defect measures seems to be limited to very particular geometries of the
observation set: roughly speaking, only homogeneous symbols can be paired with such measures, which
would theoretically restrict the scope of the result to conical observation sets. Instead, we use (and prove)
a version of Egorov’s theorem to study the operator ei t P1ωe−i t P. The idea of using Egorov’s theorem was
introduced in control theory by Dehman and Lebeau [2009] and Laurent and Léautaud [2016]. Of course,
we must pay particular attention to the remainder terms, in connection with the noncompactness of the
ambient space. The great advantage of this is that we can describe the evolution of a fairly large class of
symbols on the phase space, which in turn allows to study observability for a variety of observation sets.

• Our result is very robust since it is valid for a fairly large class of potentials, with the noteworthy
property that the statement only involves the principal symbol of the potential. Indeed, up to enlarging
the parameter R, the fact that the dynamical condition (1-7) is fulfilled or not in ωR is independent of the
representative of the equivalence class of V0 (introduced in Definition 1.2) chosen to compute K∞

p (ωR, T ).
This is a consequence of Corollary 2.4. This was already evidenced in the context of propagation of
singularities for solutions to the perturbed harmonic Schrödinger equation; see [Mao and Nakamura 2009].
The stability under subprincipal perturbation of the potential fails to be true if one considers superquadratic
potentials (m > 1), as we can see by the examination of the trajectories of the flow. Take V0 satisfying
Assumption 1.1 for some m > 1, and perturb this potential with some W behaving like ⟨x⟩

2m−1. Consider
the Hamiltonian flow associated with the potential V = V0 + W. Then the second derivative of a trajectory
of the classical flow is given by

d2

dx2 x t
= −∇V0(x t)− ∇W (x t).

We remark that the perturbation is of order ∇W (x t)≈ ⟨x t
⟩

2(m−1), which may blow up when x t is large.
When m ≤ 1, the perturbation of the trajectory remains bounded, and can therefore be absorbed by

4In the proof of Theorem 1.3 (Section 3), we would be able to take A = 0 in (3-9) and b0 = 0 in (3-10), provided R is large
enough, in order to bypass the use of Appendix A.
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thickening the observation set. See Section 2.1 and the proof of Theorem 1.3 at the end of Section 3 for
further details.

• At the level of the Hamiltonian flow, the difference between m ≤ 1 and m > 1 can also be under-
stood by looking at the equation solved by the differential of the flow: differentiating the Hamilton
equation (1-5) yields

d
dt

dφt(ρ)= J Hess p(φt(ρ)) dφt(ρ).

We deduce that the differential of the flow behaves as

|dφt
| ≲ et |Hess p|,

which means that the norm of the Hessian of the Hamiltonian plays the role of a local Lyapunov exponent
for the classical dynamics. Yet Hess p is uniformly bounded on phase space if and only if m ≤ 1.
Incidentally, it is likely that for m < 1, one can exploit the decay of Hess p at infinity in the space variable
in order to get small remainders in the proof of Egorov’s theorem (see Proposition 3.3) instead of taking R
large. This might allow us to thicken ω by any positive ε rather than by a large parameter R. Since we are
mostly interested in quadratic potentials in this work, we chose not to refine our result in this direction.

• Going through the details of the proof, it appears that one could replace assumption (1-4) on the
potential by the weaker assumption5

∀α ∈ Nd , ∃Cα > 0 : ∀x ∈ Rd , |∂αV (x)| ≤ Cα⟨x⟩
max(0,2m−|α|).

This is consistent with the fact that there exist versions of Egorov’s theorem requiring only ∂αV (x)= O(1)
for all |α| ≥ 2; see [Robert 1987, Theorem (IV-10)].

• It is possible that the necessary condition can be slightly improved by propagating coherent states rather
than using Egorov’s theorem on quantum observables. This is discussed in more detail in Section 1.4.2.

1.3. Examples in dimension 1. The one-dimensional case gives an insight of how the potential can
influence the geometry of sets for which observability holds.

1.3.1. Harmonic potential. The one-dimensional harmonic oscillator corresponds to V (x)=
1
2 x2. The

Hamiltonian flow reads

φt(x, ξ)= (x cos t + ξ sin t,−x sin t + ξ cos t), (x, ξ) ∈ R2, t ∈ R.

Our dynamical condition (1-7) can then be written as

lim inf
(x,ξ)→∞

∫ T

0
1ω(x cos t + ξ sin t) dt > 0.

5In fact, in the case m< 1
2 , we make use of the decay of ∇V (x)= O(⟨x⟩

2m−1) in Proposition 2.5 (see the computation (2-16)).
But in fact, ∇V (x) = O(1) already gives (2-13), which is sufficient to obtain Corollary 2.6, that is used later in the proof
of Theorem 1.3.
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In view of the periodicity of the flow, it is relevant to consider T = 2π . Under this additional assumption,
condition (1-7) reduces to

K∞
:= lim inf

A→∞

∫ 2π

0
1ω(A sin t) dt > 0, (1-10)

where A has to be thought as (the square-root of) the energy p(x, ξ)=
1
2(x

2
+ ξ 2). We claim that this

is equivalent to the weak thickness (1-2) condition of [Huang et al. 2022]. Suppose that K∞ > 0. First,
notice that ∫ 2π

0
1ω(A sin t) dt = 2

∫ π/2

−π/2
1ω(A sin t) dt.

Second, fix c ∈ (0,K∞/2). Since the integrand is bounded by 1, we can slightly reduce the time interval
to
[
−
π
2 +

c
3 ,

π
2 −

c
3

]
so that y = A sin t defines a proper change of variables:

c
3

≤ lim inf
A→∞

∫ π/2

−π/2
1ω(A sin t) dt −

2
3

c ≤ lim inf
A→∞

∫ π/2−c/3

−π/2+c/3
1ω(A sin t) dt

≤ lim inf
A→∞

∫ π/2−c/3

−π/2+c/3
1ω(A sin t)

A|cos t |

A 2
π

×
c
3

dt =
3π
2c

lim inf
A→∞

1
A

∫ A sin(π/2−c/3)

−A sin(π/2−c/3)
1ω(y) dy.

We used the concavity inequality

cos t ≥ 1 −
2
π

|t | on
[
−
π

2
,
π

2

]
to get the third inequality. This gives

lim inf
A→∞

|ω∩ [−A, A]|

|[−A, A]|
> 0,

namely ω is weakly thick. Conversely, we can follow the same lines, using that the Jacobian |cos t | is
less than 1, to show that any weakly thick set satisfies (1-10). Although our main theorem allows us to
conclude that observability is true only on a slightly larger set, it is more precise than the previous result
from [Huang et al. 2022] with respect to the optimal observation time: we can estimate this optimal time
depending on the geometry of the observation set. In addition, our result is stable under subprincipal
perturbation of the potential. In particular, weak thickness of ω implies observability from ωR (for some R
given by Theorem 1.3) for any potential whose principal symbol is 1

2 x2 (or any positive multiple of x2).
Anticipating on the next paragraph, observe that a weakly thick set can contain arbitrarily large gaps,
hence is not necessarily thick (see [Huang et al. 2022, Example 4.12]).

1.3.2. Potentials having critical points. An interesting phenomenon appears when the potential possesses
a sequence of critical points going to infinity. To construct such a potential, we proceed as follows. We set

V (x)= (2 + sin(a log⟨x⟩))x2, x ∈ R, (1-11)

where a is a positive parameter to be chosen properly. See Figure 1, left, for an illustration.
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x

y

x

ξ

Figure 1. Case of a potential with critical points. Left: a potential V of the form (1-11). The
dotted lines correspond to the potentials x2 and 3x2. Right: some level sets of the Hamiltonian
p(x, ξ)= V (x)+ 1

2 |ξ |2. The corresponding picture for the harmonic potential is just a collection
of concentric ellipses.

One can check that Assumption 1.1 is fulfilled: V is subquadratic, elliptic (bounded from below by x2)
and each derivative yields a gain of ⟨x⟩

−1. Notice however that this is not a subprincipal perturbation of
the harmonic potential. For any x ∈ R, we have

V ′(x)=
x

⟨x⟩2

(
2⟨x⟩

2(2 + sin(a log⟨x⟩))+ ax2 cos(a log⟨x⟩)
)

=
x

⟨x⟩2

(
(4 + 2 sin(a log⟨x⟩))+ x2(4 + 2 sin(a log⟨x⟩))+ a cos(a log⟨x⟩)

)
.

Factorizing the last two terms, we can write, for a certain angle ϕa ,

V ′(x)=
x

⟨x⟩2

(
(4 + 2 sin(a log⟨x⟩))+ x2(4 +

√
4 + a2 sin(ϕa + a log⟨x⟩)

))
=

x
⟨x⟩2

(
(4 + 2 sin(a log⟨x⟩))+ 4x2

(
1 +

√
1
4

+

(a
4

)2
sin(ϕa + a log⟨x⟩)

))
.

When 1
4 +

(a
4

)2
> 1, which is true if and only if a> 2

√
3, we can find two sequences (x+

n )n∈N and (x−
n )n∈N

tending to infinity such that 
√

1
4

+

(a
4

)2
sin(ϕa + a log⟨x+

n ⟩)≥ −1 + η,√
1
4

+

(a
4

)2
sin(ϕa + a log⟨x−

n ⟩)≤ −1 − η

for some sufficiently small η > 0. The intermediate value theorem then implies that there exist infinitely
many points x0

n , with |x0
n | tending to infinity, where V ′(x0

n) = 0. Now we observe from (1-6) that the
trajectories of the Hamiltonian flow with initial data ρn = (x0

n , 0) are stationary, that is

φt(ρn)= ρn ∀t ∈ R.
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We deduce the following: assume that the Schrödinger equation (1-1) is observable from ω ⊂ R in some
time for this potential. Then the necessary condition of Theorem 1.3 tells us that there exists R > 0 such
that, for any n large enough, x0

n ∈ ωR . We can rephrase this as

∃n0 ∈ N : ∀n ≥ n0, ω∩ BR(x0
n) ̸= ∅. (1-12)

This is consistent with the phase portrait depicted in Figure 1, right: some energy might be trapped around
small closed trajectories encircling stable critical points. Hence, in order to have observability, ω cannot
be too far away from those points. In fact, one observes that (1-12) concerns all critical points, whatever
the sign of V ′′(x0

n) is.
In conclusion, the situation of a potential of the form (1-11) is in contrast with the previous case of the

harmonic potential 1
2 x2 where the weak thickness condition allowed for large gaps around any sequence

of points xn → ∞ satisfying |xn+1| ≫ |xn|. Notice that ω can still have large gaps away from critical
points though.

1.3.3. Sublinear potentials. Our last remark in the one-dimensional case concerns potentials having a
sublinear growth, namely m ∈

(
0, 1

2

]
. In this situation, the trajectories of the Hamiltonian flow whose

initial datum has purely potential energy (namely ξ = 0) do not escape far away from their initial location.
This is because d

dt
ξ t

= −V ′(x t)= O(⟨x t
⟩

2m−1),

which remains bounded uniformly as soon as m ≤
1
2 . For the same reason, m =

1
2 also appears to be critical

in Proposition 2.5. If observability from ω ⊂ R holds in some time for such a potential, the necessary
condition of Theorem 1.3 leads to the conclusion that ω has to intersect any interval of length 2R, for
some R > 0. Likewise, in higher dimension, any set from which the Schrödinger equation is observable
must satisfy

∃R > 0 : ∀x ∈ Rd , ω∩ BR(x) ̸= ∅. (1-13)

Therefore, sets observing the Schrödinger equation (1-1) for a sublinear potential cannot have arbitrarily
large holes.6 Although the case of bounded potentials (i.e., m = 0) is not in the scope of this article, let
us mention that this observation is consistent with recent results on the free Schrödinger equation. See
[Huang et al. 2022; Täufer 2023], as well as [Le Balc’h and Martin 2023] for the case of bounded periodic
potentials in two dimensions.

1.4. Observability of two-dimensional harmonic oscillators. As an application of Theorem 1.3, we study
the observability of harmonic oscillators in conical or rotation-invariant sets. Our results mainly concern
the two-dimensional case. The examples presented in this subsection suggest that there is no general
reformulation of our dynamical condition (1-7) in purely geometrical terms. That is to say, it seems
difficult to find an equivalent condition that would not involve the Hamiltonian flow (e.g., thickness, weak
thickness...). In contrast, by restricting ourselves to a certain class of potentials (harmonic oscillators at the
principal level here) and a certain class of observation sets (conical or rotation-invariant), one can indeed

6Notice that (1-13) is much weaker that the usual thickness condition of control theory:

∃R, c > 0 : ∀x ∈ Rd , |ω∩ BR(x)| ≥ c|BR(x)|.
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transform the dynamical condition into a geometrical one. Along the way, we will see that observability
properties are very sensitive to slight modifications of the coefficients of the harmonic oscillator under
consideration. This subsection culminates in Proposition 1.11, where we show that observability of
rotation-invariant sets is governed by Diophantine properties of the oscillator’s coefficients.

Let us first recall basics about general harmonic oscillators. Let A be a real symmetric positive-definite
d × d matrix and set HA =

1
2(x · Ax −1). Up to an orthonormal change of coordinates, one can assume

that A is diagonal, so that the potential can be written

VA(x)=
1
2

x · Ax =
1
2

d∑
j=1

ν2
j x2

j .

The characteristic frequencies of HA are those numbers ν1, ν2, . . . , νd , that we will always assume
to be positive. The corresponding Hamiltonian flow is explicit: denoting by x1(t), x2(t), . . . , xd(t)
and ξ1(t), ξ2(t), . . . , ξd(t) the components of φt, we can solve the Hamilton equations (1-6): x j (t)= cos(ν j t)x j (0)+

1
ν j

sin(ν j t)ξ j (0),

ξ j (t)= −ν j sin(ν j t)x j (0)+ cos(ν j t)ξ j (0)
∀ j ∈ {1, 2, . . . , d}. (1-14)

From this expression, we see that each coordinate is periodic, so the trajectories whose initial conditions
are of the form x j (0)= x0δ j= j0, ξ j (0)= ξ0δ j= j0 with x0, ξ0 ∈ R, are periodic, with period 2π/ν j0 (unless
both x0 and ξ0 vanish, in which case the trajectory is a point). Assuming d = 2, we can classify harmonic
oscillators into three categories. See Figure 2 for an illustration.

• The harmonic oscillator is isotropic7 if ν1 = ν2 = ν. In this situation, energy surfaces, that is, level
sets of the classical Hamiltonian, are concentric spheres in phase space (up to a symplectic change
of coordinates). Trajectories of the Hamiltonian flow are great circles on these spheres, so that their
projection on the x-variable “physical space” are ellipses. The flow is periodic, with period 2π/ν.

• The harmonic oscillator is said to be anisotropic rational when ν2/ν1 is a rational number different
from 1. Trajectories, although all closed, exhibit a more complicated behavior. Writing ν2/ν1 = p/q
with p and q coprime positive integers, the period of the flow is 2pπ/ν2 = 2qπ/ν1. Projected
trajectories are known in the physics literature as Lissajous curves [1857].

• We say a harmonic oscillator is anisotropic irrational when ν2/ν1 ∈ R \ Q. In that case, the
Hamiltonian flow is aperiodic. Trajectories are dense in invariant tori (see (1-15) below), yielding
projected trajectories that fill rectangles parallel to the eigenspaces of the matrix A.

In the multidimensional setting, the description of the flow can be achieved by examining the Q-vector
space generated by the characteristic frequencies. The dimension of the latter gives the number of periodic
decoupled “suboscillators” from which we can reconstruct the dynamics of the whole oscillator. This
was thoroughly explained by Arnaiz and Macià [2022a], who computed the set of quantum limits of
general harmonic oscillators, and studied their behavior when bounded perturbations of the potential are
added [2022b].

7For general dimension, we still call isotropic any harmonic oscillator having all its characteristic frequencies equal.
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x1

x2

x1

x2

Isotropic harmonic oscillator: ν2
ν1

= 1. Rational anisotropic harmonic oscillator: ν2
ν1

=
7
5 .

x1

x2

Irrational anisotropic harmonic oscillator: ν2
ν1

=
π
3 .

Figure 2. Typical projected trajectories of two-dimensional harmonic oscillators. Shading
indicates the course of the trajectory.

In order to understand well the classical dynamics of the harmonic oscillator, it is convenient to take
advantage of the complete integrability of this dynamical system. Here, the classical Hamiltonian is the
sum of the one-dimensional Hamiltonians 1

2(ν
2
j x2

j + ξ 2
j ), which are conserved by the flow, as one can

see from the explicit expression (1-14). This property implies that energy levels are foliated in (possibly
degenerate) invariant d-dimensional tori of the form

TE =
{
(x, ξ) ∈ R2d

: ∀ j, 1
2(ν

2
j x2

j + ξ 2
j )= E j

}
, E = (E1, E2, . . . , Ed) ∈ Rd

+
. (1-15)

The projection of these tori on the x-variable space yields rectangles, as in Figure 2, bottom.
The goal of the following examples is to highlight the fact that observability is sensitive to the global

properties of the Hamiltonian flow. We will show that isotropic and anisotropic harmonic oscillators
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behave differently with respect to observability, i.e., the sets that observe the Schrödinger equation are not
the same. One can already anticipate that the isotropic oscillator ν1 =ν2 has less such sets since its classical
trajectories are all ellipses, that is, they are very simple and only explore a small part of the classically
allowed region. It contrasts with the anisotropic situation ν1 ̸= ν2, where, in the rational case for instance,
trajectories visit more exhaustively the classically allowed region. It makes it harder to find a set that is not
reached by any of these trajectories. It is even more the case when ν1 and ν2 are rationally independent,
since the trajectories are then dense in the invariant torus to which they belong, as we already discussed.

1.4.1. Observability from conical sets. We first investigate the case where the observation set ω is conical,
namely it is invariant by dilations with positive scaling factor:

∀x ∈ Rd ,∀λ > 0, (x ∈ ω ⇐⇒ λx ∈ ω). (1-16)

We will see that exploiting the symmetries of harmonic oscillators is sometimes sufficient to obtain
satisfactory results, without the need of our main theorem (see Section 1.4.2). However, Theorem 1.3
will prove useful to estimate precisely the optimal observation time in some situations.

As we already noticed, it follows from the expression of the flow (1-14) that, whatever the characteristic
frequencies, the classical dynamics exhibits periodic trajectories contained in the coordinate axes. Those
starting from the origin are of the form

x j (t)=
1
ν j

sin(ν j t)ξ j (0), ξ j (t)= cos(t)ξ j (0)

for one j ∈ {1, 2, . . . , d}, and with all the other components being equal to zero. Thus it appears that a
general necessary condition for a conical ω to observe the Schrödinger equation (1-1), working for any
harmonic oscillator, is that it contains at least half of each line spanned by an eigenvector of A. Note that
this works in any dimension.

Proposition 1.4. Consider P = V (x)− 1
21, where V is a potential fulfilling Assumption 1.1 and having

principal symbol VA(x)=
1
2 x · Ax , A being a real symmetric positive-definite d × d matrix. Let ω ⊂ Rd

be a conical set and assume that it observes the Schrödinger equation in some time T > 0. Then v ∈ ω or
−v ∈ ω for any eigenvector v of A.

Now we place ourselves in dimension d = 2. We know from the above Proposition 1.4 that the closure
of a conical set which observes the Schrödinger equation has to contain at least half of any line spanned
by an eigenvector of the matrix A. Here, we exhibit a conical observation set, illustrated in Figure 3, that
behaves differently according to whether the harmonic oscillator is isotropic or not.

Proposition 1.5 (conical sets and anisotropy). Let d =2 and consider a potential V fulfilling Assumption 1.1,
and with principal symbol

VA(x)=
1
2 x · Ax, x ∈ R2,

where A is a real symmetric positive-definite matrix. Denote by ν+ ≥ ν− > 0 its characteristic frequencies.
Choose an orthonormal basis of eigenvectors (e+, e−) of A, so that Ae± = ν2

±
e±. For any ε ∈ (0, π/2),

define the two cones with aperture ε:

C±

ε =
{

x ∈ R2
: |x · e∓|< tan

(1
2ε
)
x · e±

}
. (1-17)
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ω(ε)

x1

ε

x2

Figure 3. The above projected trajectory is responsible for the lower bound on the optimal
observation time in (1-18). It is obtained with an oscillator such that ν+/ν− = 3.9. For ν+/ν− = 4,
one can choose the initial datum so that the curve goes back to the upper-right quadrant, passing
through the origin, without crossing the two cones. This yields a larger lower bound on the optimal
time, corresponding to the jump from ⌊3.9⌋ = 3 to ⌊4⌋ = 4 in (1-18).

Then the set ω(ε)= C+
ε ∪C−

ε observes the Schrödinger equation if and only if the oscillator is anisotropic,
that is, ν− < ν+. In that case, there exist constants C, c > 0, possibly depending on ν+, ν−, such that for
any ε ∈ (0, π/2),

T0 − Cε2
≤ T⋆(ω(ε))≤ T0 − cε2, where T0 =

π

ν+

(
2 +

⌊
ν+
ν−

⌋)
. (1-18)

This result does not distinguish between rational and irrational anisotropic oscillators: one cannot guess,
from the knowledge that observability from ω(ε) holds, whether the oscillator is rational or irrational.

Remark 1.6 (discontinuous behavior of T⋆). The time T0, obtained formally as the limiting optimal
observation time when ε→ 0, does not vary continuously with respect to ν+ and ν− because of the floor
function. This is related to special symmetry properties of the Hamiltonian flow that appear when ν+ is
a multiple of ν−, namely the projected trajectories can go from a quadrant to another one crossing the
origin, and thus avoiding to cross the observation cones. See Figure 3. From the proof, especially (4-29),
the constant C in the lower bound of (1-18) can be estimated by

C ≲
1/ν+

min(1, ν+/ν− − 1)
,
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up to a constant independent of ε and ν−, ν+. (A similar but more complicated lower bound is available
for the constant c from (4-14).) In particular we have

0 ≤ T0 − T⋆(ω(ε))≲
ε2/ν+

min(1, ν+/ν− − 1)
.

Therefore, if we fix ν− = 1 and let ν+ → 2 with ν+ < 2, the optimal observation time is of order
T⋆ ≈

3
2π + O(ε2), while in the limit ν+ = 2, we have T⋆ ≈ 2π + O(ε2). Since the constants involved

in the O(ε2) remainder are uniform in the limit ν+ → 2, taking ε small enough gives a case where the
optimal observation time depends discontinuously on ν−, ν+.

It is interesting to see what happens when ν+, ν− → ν, that is to say, when the operator P becomes
closer to an isotropic harmonic oscillator. As mentioned earlier, we know from Proposition 1.4 that
observability is not true for a set of the form C+

ε ∪ C−
ε for an isotropic oscillator (ε < π/2 is important

here). Thus it can seem surprising that the optimal observation time for such a set is bounded uniformly
in ν+, ν− as the frequencies tend to ν. Actually, degeneracy in this limit should be seen on the observation
cost, rather than on the optimal observation time. Indeed, computations suggest that the value of the
dynamical constant K∞

p (ω(ε), T ) tends to zero; see (4-13) in the proof. This would imply a blow up of
the observation cost as ν+, ν− → ν, in virtue of the necessary condition part of Theorem 1.3.

1.4.2. Refinement for the unperturbed isotropic harmonic oscillator. Theorem 1.3 allows us to conclude
whether an open set ω observes the Schrödinger equation provided this open set is in a sense “regular”:
the thickening process yields open sets that are sufficiently close to a cut-off function. But the quest of
characterizing general measurable sets seems to be more delicate. To understand the limitation of our
main theorem, we investigate the very particular case of the isotropic harmonic oscillator and conical
observation sets in dimension d ≥ 1. In this setting, we can take advantage of symmetries and exact
propagation of coherent states.

For the purpose of the statement, let us introduce some notation. A conical set in Rd is determined by
the subset6=ω∩Sd−1 in the unit sphere. When6⊂ Sd−1 we denote by ω(6) the conical set defined by

ω(6)=

{
x ∈ Rd

\ {0} :
x
|x |

∈6
}
. (1-19)

Moreover, for any subset 6 ⊂ Sd−1, we introduce the notation

−6 = {θ ∈ Sd−1
: −θ ∈6}.

The lower density of a measurable set6⊂ Sd−1, denoted by2−

6 , is the function Sd−1
→[0, 1] defined by

2−

6(θ)= lim inf
r→0

σ(6 ∩ Br (θ))

σ (Br (θ))
∀θ ∈ Sd−1, (1-20)

where Br (θ) is the ball of radius r centered at θ in Rd, and σ is the uniform probability measure on the
unit sphere Sd−1.

We insist on the fact that the statement below is proved for exact isotropic harmonic oscillators, and
not for perturbations of it.
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Proposition 1.7. Let P =
1
2(ν

2
|x |

2
−1) be an isotropic oscillator with characteristic frequency ν > 0.

Let 6 ⊂ Sd−1 be measurable, and ω(6) be the corresponding conical set. Set 6̂ = 6 ∪ −6 the
symmetrized version of 6.

(i) If the Schrödinger equation is observable from ω(6) in some time, then

inf
Sd−1

2−

6̂
> 0.

(ii) If 6̂ = 6 ∪ −6 has full measure, namely σ(Sd−1
\ 6̂) = 0, or equivalently 2−

6̂
(θ) = 1 for all

θ ∈ Sd−1, then ω(6) observes the Schrödinger equation, with optimal observation time T⋆ < 2π/ν.

Remark 1.8. The gap between the sufficient and the necessary conditions above can be thought as the
difference between 6 being the complement of a Cantor set (thus having full measure) and 6 being the
complement of a fat Cantor set; see [Stromberg 1981, Chapter 2, p. 80]. Regarding the estimate on the
optimal observation time, the strict inequality is due to Lemma A.3.

In fact, considering the propagation of coherent state, as investigated for instance by Combescure and
Robert [1997], one could conjecture that observability is characterized by the property

∃R > 0 : lim inf
ρ→∞

∫ T

0
|ω∩ BR(x t(ρ))| dt > 0, (1-21)

with x t(ρ)= (π ◦φt)(ρ). This type of integral can be rewritten as∫ T

0
|ω∩ BR(x t(ρ))| dt =

∫ T

0
∥1ω∥L1(BR(x t (ρ))) dt.

The necessary condition of Theorem 1.3, namely K∞
p (ωR, T ) > 0 for some R large enough, involves

the quantity ∫ T

0
1ωR (x

t(ρ)) dt =

∫ T

0
∥1ω∥L∞(BR(x t (ρ))) dt. (1-22)

Since the L1 norm in a ball of radius R is controlled by the L∞ norm (times a constant of order Rd),
we know that the dynamical condition (1-21) is stronger than the condition K∞

p (ωR, T ) > 0, involving
the L∞ norm as written in (1-22). In particular, if ω is dense but Lebesgue negligible, the condition
K∞

p (ωR, T ) > 0 will be satisfied, since then ωR = Rd for any R > 0, whereas (1-21) will not. In this
situation, Theorem 1.3 would then yield a trivial result, namely that observability holds from the whole
space, although it clearly does not hold from ω itself. Thus (1-21) seems to be a good guess to free
ourselves from thickening the observation set. In addition, this condition would be consistent with
the generalized geometric control condition introduced by Burq and Gérard [2020] in the context of
stabilization of the wave equation.

1.4.3. Observability from spherical sets. In this section, we investigate the observability properties of a
set consisting in a union of spherical layers. In the sequel, we refer to rotation-invariant (measurable) sets
as spherical sets. Such a set ω is completely determined by the data of a measurable set I ⊂ R+, such that

ω = ω(I )= {x ∈ Rd
: |x | ∈ I }. (1-23)
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Due to the thickening process that occurs when applying Theorem 1.3, we shall generally make further
assumptions, that ensure that a set and its thickened version are somewhat equivalent.

The existence of many periodic circular orbits of the Hamiltonian flow for radial potentials implies
that observability from ω(I ) does not hold for such Hamiltonians if I contains large gaps. In fact, the
proposition below works for slightly more general potentials.

Proposition 1.9. Let d ≥ 2. Suppose the Hamiltonian P is of the form P = V (x)− 1
21 with a potential V

satisfying Assumption 1.1 together with

(i) V (−x)= V (x),∀x ∈ Rd ;

(ii) there exists an orthogonal change of coordinates M such that

V (M SθM−1x)= V (x) ∀x ∈ Rd ,∀θ ∈ R,

where Sθ is the rotation of angle θ acting on the first two coordinates; in particular, for every
y ∈ Rd−2, the map Vy : (x1, x2) 7→ V (M(x1, x2, y)) is radial;

(iii) the map Ṽ0 such that Vy=0(x1, x2)= Ṽ0(|(x1, x2)|) is nondecreasing.

Then for any spherical set ω(I ), if observability holds from ω(I ) in some time T > 0, one has

∃r > 0 : ∀s ∈ R+ : I ∩ [s, s + r ] ̸= ∅. (1-24)

Remark 1.10. The hypotheses are fulfilled for harmonic oscillators in d dimensions having at least two
identical characteristic frequencies.

In dimension 2, Proposition 1.9 allows to conclude that spherical sets observing the Schrödinger
equation for isotropic harmonic oscillators have to occupy space somewhat uniformly — they cannot
contain arbitrarily large gaps. Therefore, we shall rule out isotropic harmonic oscillators from our study
of observability from spherical sets. Instead, we investigate how the anisotropy of a harmonic oscillator
can help to get observability from an observation set made of concentric rings. The proposition below
investigates, in dimension 2, the observability from spherical sets of the form ω(I ), where I =

⋃
In

is a countable union of open intervals in R+. We require additionally that |In| → +∞ (we drop this
assumption if there are only finitely many In’s). To any such set, we associate a number between 0 and 1
that quantifies the distribution of the annuli ω(In) at infinity:

κ⋆(I )= min
{
κ ∈ [0, 1] : lim inf

r→+∞

1
r
|I ∩ [κr, r ]| = 0

}
∈ [0, 1]. (1-25)

While investigating the observability property from such a set ω(I ), we will see that it is relevant to
compare the geometrical quantity κ⋆(I ) with a dynamical quantity that encodes relevant features of the
underlying Hamiltonian flow. This dynamical constant is expressed in terms of a function 3 : R⋆

+
→ [0, 1]

defined by

3(µ)=


tan
(
π/2
p+q

)
if µ=

p
q
, gcd(p, q)= 1, p − q ≡ 0 (mod 2),

sin
(
π/2
p+q

)
if µ=

p
q
, gcd(p, q)= 1, p − q ≡ 1 (mod 2),

0 if µ ∈ R \ Q.

(1-26)
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As far as the optimal observation time T⋆ is concerned, we shall use Diophantine properties of µ to
approximate irrational oscillators by rational ones, for which we can control T⋆ by the period of the flow.
This motivates the introduction of the irrationality exponent of an irrational number µ, defined by

τ(µ)= sup
{

s ∈ R :

∣∣∣µ−
p
q

∣∣∣< 1
qs for infinitely many coprime couples (p, q)

}
. (1-27)

Dirichlet’s approximation theorem tells us that τ(µ) ∈ [2,+∞] for any irrational number. Also keep in
mind that τ(µ)= 2 is achieved for Lebesgue-almost every irrational. See the lecture notes [Durand 2015]
or the books [Einsiedler and Ward 2011; Schmidt 1991] for further details.

Proposition 1.11 (spherical sets and anisotropy). Let d = 2 and consider a potential V fulfilling
Assumption 1.1, and with principal symbol

VA(x)=
1
2 x · Ax, x ∈ R2,

where A is a real symmetric positive-definite matrix. Denote by ν1 and ν2 the characteristic frequencies
of A, and assume that ν1 ̸= ν2. We fix I =

⋃
In a union of open intervals in R+, assuming that |In| → +∞.

Denote by ω(I ) the corresponding open spherical set in R2, as defined in (1-23). Then observability
from ω(I ) holds in some time T if and only if

κ⋆(I ) > 3
(
ν2
ν1

)
. (1-28)

Moreover, the optimal observation time T⋆ can be estimated as follows:

• If ν2/ν1 ∈ Q, writing ν2/ν1 = p/q with p, q positive coprime integers, then

T⋆ <
π

ν2
p =

π

ν1
q.

• If ν2/ν1 ∈ R \ Q is Diophantine, that is τ = τ(ν2/ν1) <∞, then

∀ε > 0, ∃cε,Cε > 0 : cε

(
1

κ⋆(I )

)1/(τ−1+ε)

≤ T⋆ ≤ Cε

(
1

κ⋆(I )

)τ−1+ε

. (1-29)

The constants cε and Cε may depend on ν1, ν2, but not on I.

Let us review the meaning of the different quantities involved in this statement.
The number κ⋆(I ) introduced in (1-25) encodes some notion of density of the set I. For instance,

κ⋆(I )=1 means that I has positive density in any window [κr, r ] with κ <1 as r →+∞. In contrast, κ⋆(I )
close to zero means that the annuli are extremely sparse at infinity. This quantity is well-defined, for
the map

κ 7→ lim inf
r→+∞

1
r

∫ r

κr
1I (s) ds

is nonincreasing and lower semicontinuous (even Lipschitz-continuous in fact). That it is nonincreasing
comes from the monotonicity of the integral and of the lower limit, whereas the continuity follows from
the fact that ∣∣∣∣1r

∫ r

κ2r
1I (s) ds −

1
r

∫ r

κ1r
1I (s) ds

∣∣∣∣≤ |κ2 − κ1|.
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Note. Beware of the fact that κ⋆(I ) does not coincide in general with the lower density of I defined by

2∞(I )= lim inf
r→+∞

|I ∩ [0, r ]|

|[0, r ]|
.

In fact, the two quantities satisfy

2∞(I )≤ κ⋆(I ) and κ⋆(I )= 0 ⇐⇒ 2∞(I )= 0.

The second assertion follows from the definition of κ⋆(I ). To check the first assertion, we write

|I ∩ [0, r ]|

|[0, r ]|
= κ⋆

|I ∩ [0, κ⋆r ]|

|[0, κ⋆r ]|
+

1
r
|I ∩ [κ⋆r, r ]| ≤ κ⋆ +

1
r
|I ∩ [κ⋆r, r ]|.

Then taking lower limits as r →+∞ and using the definition of κ⋆ yield the desired inequality. Notice that
the equality 2∞(I )= κ⋆(I ) is not true in general, as one can see from the example I =

⋃
n∈N

(
n, n +

1
2

)
,

for which we have 2∞(I )=
1
2 but κ⋆(I )= 1.

Given µ ∈ R⋆
+

, the constant 3(µ) defined in (1-26) is related to the flow of a harmonic oscillator with
characteristic frequencies ν1, ν2 such that µ= ν2/ν1. More precisely, it corresponds to the largest ratio
between the minimum and the maximum of the distance to the origin of a projected trajectory. This is the
content of the following lemma that we prove in Section 5.2.

Lemma 1.12. For all ν1, ν2 > 0, one has

3
(
ν2
ν1

)
= sup
ρ0∈R4\{0}

inft∈R|(π ◦φt)(ρ0)|

supt∈R|(π ◦φt)(ρ0)|
, (1-30)

where (φt)t∈R is the Hamiltonian flow of any two-dimensional harmonic oscillator with characteristic
frequencies ν1, ν2.

Thus we can refer to 3(µ) as the optimal “radial aspect ratio” of projected trajectories. Observability
from ω(I ) will depend on whether the critical trajectories that attain this maximal ratio spend sufficient
time in ω(I ), hence the criterion κ⋆(I ) > 3(ν2/ν2). See Figure 4 for an illustration of the case where
such trajectories are not seen by the observation set. Notice that maximizing the ratio in (1-30) with
respect to any nonzero initial data is the same as taking the upper limit as ρ0 → ∞ since the Hamiltonian
flow is homogeneous. Thus 3(µ) can be understood as a quantity that captures the behavior of the
flow at infinity. In addition, we remark that 3(µ)=3(1/µ), which means that this value depends only
on the spectrum of the matrix A, and not on the choice of a specific basis of R2. The maximum of 3
is reached exactly at 1, where it is equal to tan(π/4) = 1. This is consistent with the fact that in two
dimensions, isotropic harmonic oscillators are the only ones possessing circular orbits: the norm of the
trajectory |x t(ρ0)| is constant for well-chosen initial data.

The distinction between rational and irrational values of µ is natural in light of the complete integrability
of the flow of harmonic oscillators. When the ratio of characteristic frequencies µ= ν2/ν1 is rational,
writing µ= p/q with p, q a couple of coprime integers, one can check that the Hamiltonian flow of the
corresponding harmonic oscillator is periodic of period 2πp/ν2 = 2πq/ν1. In that case, there are many
orbits of the flow whose projection on the x-variable space stays away from the origin, thus producing a
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x1

x2

ω(I )

Figure 4. The above curve is a projected trajectory of a harmonic oscillator with ν2/ν1 =
4
3 ,

that does not intersect the observation set ω(I ). The existence of a sequence of energy layers
{p = En}, En → +∞, containing such curves would imply that observability from ω(I ) fails.

positive 3(µ), as one can see in Figure 2, top right. When µ is irrational, it is known that (nondegenerate)
trajectories are dense in the invariant torus to which they belong. In particular, any projected trajectory can
get arbitrarily close to the origin, up to waiting a long enough time, so that3(µ)= 0; see Figure 2, bottom.

Lastly, let us point out that the estimate (1-29) of the optimal observation time for Diophantine
irrational does not give any precise information for a given open set I, but is relevant for fixed ν1, ν2 in
the asymptotics κ⋆(I )≪ 1.

Remark 1.13. It can look surprising that Proposition 1.11 gives an exact characterization of spherical
sets for which observability holds, whereas Theorem 1.3 provides a necessary and sufficient condition
up to thickening the observation set. This improvement is made possible by the extra assumption
that |In| → +∞. This ensures that thickening the observation set by a radius R is negligible compared to
the width of the annulus ω(In), for n large.

Remark 1.14 (non-Diophantine irrationals). When µ = ν2/ν1 ∈ R \ Q, one can estimate T⋆, even if
τ = τ(µ) = +∞, using the so-called convergents of µ. These are the rational numbers arising in the
continued fraction expansion algorithm. Denote them in irreducible form by µ j = p j/q j . It is known that
this sequence is the most efficient way to approximate an irrational number by rationals (a result known
as Lagrange theorem; see [Durand 2015, Theorem 1.3] or [Einsiedler and Ward 2011; Schmidt 1991]).
These convergents satisfy

∀ j ∈ N,

∣∣∣µ−
p j

q j

∣∣∣< 1
q2

j
. (1-31)
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(This is why τ(µ) ≥ 2 holds for any irrational.) We will show in the proof of Proposition 1.11 the
following: when µ ∈ R \ Q, there exist constants c1, c2 > 0 and δ1, δ2 > 0, possibly depending on ν1, ν2,
such that

c1q j1 ≤ T⋆ ≤ c2q j2 (1-32)

(see (5-51) in the proof), where j1 is the largest index for which q j ≤ δ1/κ⋆, and j2 is the smallest index
for which q j ≥ δ2/κ⋆.

The bounds (1-29) are particularly interesting when τ has the smallest possible value, that is, τ = 2,
which is the case of Lebesgue-almost every irrational. However, we see that the lower and upper
bounds (1-29) get far apart as τ goes to infinity. This reflects the fact that the gaps between the denominators
of consecutive convergents get wider at each step of the continued fraction expansion. Irrationals having
an infinite irrationality exponent are known as Liouville numbers. There are many of them: the set of
Liouville numbers is an instance of a Lebesgue negligible set having the cardinality of the continuum. This
set is also Baire generic, as it can be written as a countable intersection of dense open sets. When ν2/ν1

is a Liouville number, the bounds (1-32) on the optimal observation time are very poor, owing to the
lacunary behavior of the q j ’s.

1.5. Other applications. Let us briefly discuss two other applications of Theorem 1.3.

1.5.1. Uniform observability of eigenfunctions. Under Assumption 1.1, the operator P is self-adjoint
with compact resolvent. Thus, its spectrum consists in a collection of eigenvalues with finite multiplicity.
A direct consequence of an observability inequality Obs(ω, T ) in a set ω is the fact that the eigenfunctions
of P are uniformly observable from ω:

∃c > 0 : ∀u ∈ L2(Rd),
(
Pu = λu =⇒ ∥u∥L2(ω) ≥ c∥u∥L2(Rd )

)
.

Theorem 1.3 thus furnishes a sufficient condition for this to hold. In particular, for anisotropic oscillators,
Proposition 1.5 implies that uniform observability of eigenfunctions from the two cones defined in (1-17)
is true. This can certainly be deduced from [Arnaiz and Macià 2022a], which characterizes quantum
limits of harmonic oscillators. From Proposition 1.11, we obtain a similar uniform estimate in spherical
sets satisfying the assumptions of the proposition together with the condition (1-28). This time, it is not
clear that one can deduce this result as easily from the knowledge of quantum limits [Arnaiz and Macià
2022a]. See also [Dicke et al. 2023] for details about spectral inequalities for the Hermite operator, and
[Martin 2022] for anisotropic Shubin operators.

1.5.2. Energy decay of the damped wave equation. Lastly, our study leads to stabilization results con-
cerning the damped wave equation{

∂2
t ψ + Pψ + 1ω∂tψ = 0,

(ψ, ∂tψ)|t=0 = U0 ∈ Dom P1/2
× L2 (1-33)

with damping in ω ⊂ Rd, provided P ≥ 0 (assume for instance that the potential V is nonnegative). This
equation comes with a natural energy

E(U0, t)=
1
2

(
∥P1/2ψ(t)∥2

L2 + ∥∂tψ(t)∥2
L2

)
,
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which decays over time. Let us recall that Anantharaman and Léautaud [2014, Theorem 2.3] proved that
an observability inequality Obs(ω, T ) implies a decay at rate t−1/2 for the damped wave equation (1-33),
meaning that there exists a constant C > 0 such that

E(U0, t)≤
C
t
(
∥Pu0∥

2
L2 + ∥P1/2u1∥

2
L2

)
∀t > 0

for all initial data in the domain of the damped wave operator, where U0 = (u0, u1) ∈ Dom P ×Dom P1/2.
Their result applies in our setting since P has compact resolvent under Assumption 1.1. Our examples
thus provide concrete situations where such a decay occurs.

1.6. Link with the Kato smoothing effect. The dynamical condition (1-7) concerns only what happens at
infinity in phase space. We will see that trajectories of the Hamiltonian flow escape from any compact
set (in the x variable) most of the time provided the initial data has large enough energy, namely p(ρ)
is large enough. This is the reason why one can remove any compact set from the observation without
losing observability: no energy can be trapped in a compact set. Quantitatively, we will check that, given
T > 0, there exist a constant C > 0 and E0 > 0 such that

∀r ≥ 0,∀ρ ∈ {p ≥ E0}, |{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd
}| =

∫ T

0
1Br (x t ) dt ≤ C

r
√

p(ρ)
(1-34)

(see Corollary 2.6). We can rephrase this by saying that compact sets are not classically observable. This
property is related to the Kato smoothing effect as follows. Writing (x t , ξ t)= φt(ρ), for any ε > 0 we
compute, using Fubini’s theorem,∫ T

0

√
p(ρ)

⟨x t ⟩1+ε
dt =

∫ T

0

(∫
+∞

⟨x t ⟩

(1 + ε)

√
p(ρ)

r2+ε
dr
)

dt =

∫
+∞

1
(1 + ε)

√
p(ρ)
r

(∫ T

0
1Br (0)(⟨x

t
⟩) dt

)
dr

r1+ε
.

From (1-34), we deduce that ∫ T

0

√
p(ρ)

⟨x t ⟩1+ε
dt ≤ C

∫
+∞

1
(1 + ε)

dr
r1+ε

,

and the latter integral is indeed convergent when ε > 0. This is the classical analogue to the so-called
Kato smoothing effect. In our context, the latter says roughly that∫ T

0
∥⟨x⟩

−(1+ε)/2 P1/4e−i t Pu∥
2
L2(Rd )

dt ≤ C∥u∥
2
L2(Rd )

.

See for instance [Doi 2005] for a thorough discussion on this topic. See also the survey of Robbiano [2013],
as well as [Robbiano and Zuily 2008; 2009; Burq 2004] for related results. The main phenomenon
responsible for this smoothing effect is the fact that P contains a Laplace–Beltrami operator associated with
a nontrapping metric (here a flat metric), that is to say all geodesics escape at infinity forward and backward
in time. In our case, working with a flat Laplacian enables us to compare the trajectories of the Hamiltonian
flow to straight lines, at least for some time near the origin. It would be interesting to see whether our study
can be adapted to operators of the form P = V (x)− 1

21g with a nontrapping metric g on Rd (sufficiently flat
at infinity). See [Macià and Nakamura, Lemma 3.1] for an alternative proof that nontrapping implies failure
of observability from bounded observation sets. The argument relies on semiclassical defect measures.
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1.7. Natural semiclassical scaling for homogeneous potentials. A way to comprehend what goes wrong
when the potential is superquadratic is to introduce the natural semiclassical scales associated to our
problem, based on an observation of [Macià and Nakamura]. Take for simplicity p(x, ξ)= |x |

2m
+ |ξ |2.

Following classical arguments, we recall in Appendix A that the observability inequality reduces to a
high-energy observability inequality: roughly speaking, we can restrict ourselves to L2 functions u that
are microlocalized around some level set {p = E} with E ≫ 1. Writing

p(x, ξ)= E ⇐⇒

∣∣∣∣ x
E1/2m

∣∣∣∣2m

+

∣∣∣∣ ξ

E1/2

∣∣∣∣2 = 1,

we may introduce a small Planck parameter h such that E = h−γ for some power γ > 0. Thus we have

|hγ /2m x |
2m

+ |hγ /2ξ |2 = 1.

This motivates the definition of an h-dependent Weyl quantization (see Appendix B)

Oph(a) := Op1(a(h
γ /2m x, hγ /2ξ))

for any classical observable a on the phase space. This quantization is properly “normalized” by choosing
γ = 2m/(m + 1): with this choice, the corresponding pseudodifferential calculus is expressed in powers
of h, since then hγ /2mhγ /2 = h. Therefore the relevant semiclassical Schrödinger operator is

Ph = Oph(p)= hγ P.

If one wants to express the observability inequality in terms of the associated propagator, one is then lead
to study

e−i t Pu = e−i th1−γ Ph/hu.

In other words, running the Schrödinger evolution on a time interval [0, T ] amounts to consider a
semiclassical time scale of order h1−γ

= h(1−m)/(1+m). It is then clear that this time blows up as h → 0
when m > 1. Yet the analysis of the quantum-classical correspondence, for long times, is much more
difficult. In particular, it restricts considerably the amount of classical observables whose evolution can be
described through the usual Egorov theorem. For this reason, we will not pursue in this direction and stick
to the case m ≤ 1. An interesting approach to study this would be to consider first particular potentials for
which the classical flow is completely integrable, e.g., anharmonic oscillators; see [Bambusi et al. 2022].
Indeed, observability of the Schrödinger equation has been successfully investigated taking advantage
of the completely integrable nature of the underlying classical dynamics in some particular geometrical
contexts (e.g., in the disk [Anantharaman et al. 2016a; 2016b] which corresponds morally to m = ∞; see
also [Anantharaman and Macià 2014] on the torus and [Anantharaman et al. 2015]).

1.8. Plan of the article. Section 2 is devoted to the study of the underlying classical dynamics: we show
that the Hamiltonian flow is roughly stable under subprincipal perturbations of the potential, and that
high-energy projected trajectories can cross compact sets only on a very short period of time. Then
we establish an instance of quantum-classical correspondence adapted to our context in Section 3, and
subsequently prove Theorem 1.3. This is the core of the article. Next, in Sections 4 and 5, we deal
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with the examples presented in Sections 1.4.1, 1.4.2 and 1.4.3 (observability from conical and spherical
sets respectively). Finally, we recall in Appendix A a classical result, related to the notion of unique
continuation, that shows that the sought observability inequality is equivalent to a similar high-energy
inequality. Appendix B collects reminders about pseudodifferential operators, as well as refined estimates
on the pseudodifferential calculus and the Gårding inequality needed for Section 3.

2. Study of the classical dynamics

In this section, we investigate the properties of the Hamiltonian flow (φt)t∈R associated with p. This study
consists essentially in analyzing the ODE system that defines φt, namely the Hamilton equation (1-5).
The dynamical condition of Theorem 1.3

K∞

p (ω, T )= lim inf
ρ→∞

∫ T

0
1ω×Rd (φt(ρ)) dt > 0

motivates the study of what can be referred to as “classical observability”.

Definition 2.1 (classical observability). Let q = q(t; ρ) be a Borel-measurable8 function on R × R2d.
Then we say that q is classically observable if

K∞

p (q) := lim inf
ρ→∞

∫
R

q(t;φt(ρ)) dt > 0. (2-1)

Of course, we will be specifically interested in the case where p contains a subquadratic potential
and q = 1(0,T )×ω×R2d , but it is interesting to work out this problem in a more general setting in order to
understand to what extent quadratic potentials are critical for the Schrödinger equation.

2.1. Invariance of classical observability under subprincipal perturbation. In this subsection, we
consider a set of classical symbols on R2d of order n1 in x and n2 in ξ , defined by

Sn1,n2 =

{
a ∈ C∞(R2d) : ∀α ∈ N2d , sup

(x,ξ)∈R2d

|∂αa(x, ξ)|
⟨x⟩n1−|α| + ⟨ξ⟩n2−|α|

<∞

}
.

A basic example is the classical Hamiltonian p(x, ξ)= V (x)+ 1
2 |ξ |2 that we consider: it belongs to S2m,2.

We draw the reader’s attention to the fact that this is not a standard symbol class in microlocal analysis.
Our aim here is simply to study symbols whose derivatives have similar decay properties as the classical
Hamiltonian p. We will not make use of any notion of pseudodifferential calculus in this subsection.

It is clear that these symbol classes are nested in the following way: if n1 ≤ n′

1 and n2 ≤ n′

2, then
Sn1,n2 ⊂ Sn′

1,n
′

2 (and this inclusion is even continuous with respect to the associated Fréchet structure).
Given n1, n2 ∈ R, a real-valued symbol a ∈ Sn1,n2 is said to be elliptic in Sn1,n2 if a(x, ξ)≥ c(⟨x⟩

n1 +⟨ξ⟩n2)

provided |(x, ξ)| is large enough. In addition, the binary relation

∀ f, g ∈ Sn1,n2, f = g (mod Sn1−1,n2−1) ⇐⇒ f − g ∈ Sn1−1,n2−1 (2-2)

8Recall that Borel-measurability is slightly stronger than Lebesgue-measurability. This restriction ensures that t 7→q(t;φt (ρ))
is Lebesgue-measurable. This is not a problem in our context since we will consider functions q that are continuous, or at worse,
indicator functions of Borel sets.
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is an equivalence relation, and the projection on the quotient space Sn1,n2/Sn1−1,n2−1 is called the principal
symbol. Two symbols are said to have the same principal symbol if they belong to the same equivalence
class through this projection. In the example of our classical Hamiltonian p, these notions of ellipticity
and principal symbol are consistent with the terminology used right after Assumption 1.1 regarding the
potential V.

The proposition below is essentially an application of Grönwall’s lemma.

Proposition 2.2 (stability estimate). Fix n1, n2 > 0 and let p1, p2 ∈ Sn1,n2 be elliptic symbols in Sn1,n2.
Assume they have the same principal symbol in the sense of (2-2). Consider the Hamiltonian flows (φt

1)t∈R

and (φt
2)t∈R associated with p1 and p2 respectively. Then there exists a constant C > 0 such that

|φt
2(ρ)−φ

t
1(ρ)| ≤ eCt⟨p1(ρ)⟩

max(0,1−2/n+)

∀ρ ∈ R2d ,∀t ≥ 0,

where n+ = max(n1, n2). In particular, when n1, n2 ≤ 2, there exists C > 0 such that

|φt
2(ρ)−φ

t
1(ρ)| ≤ eCt

∀ρ ∈ R2d ,∀t ≥ 0.

Remark 2.3. This result ensures that the distance between φt
1(ρ) and φt

2(ρ) is bounded provided n+ ≤ 2,
on a time interval [0, T ] independent of ρ. In our problem, this condition on n+ means exactly that the
potential is subquadratic.

Proof. In this proof, we write n+ = max(n1, n2) and n− = min(n1, n2). Set p̃ = p2 − p1, which belongs
to Sn1−1,n2−1 by assumption. The Hamilton equation (1-5) gives∣∣∣ d

dt
(φt

2(ρ)−φ
t
1(ρ))

∣∣∣= ∣∣J (∇ p2(φ
t
2(ρ))− ∇ p1(φ

t
1(ρ)))

∣∣
≤
∣∣∇ p2(φ

t
2(ρ))− ∇ p2(φ

t
1(ρ))

∣∣+ |∇ p̃(φt
1(ρ))|. (2-3)

By assumption, p1 and p2 are elliptic at infinity in Sn1,n2 , so that for any ρ = (x, ξ) large enough, one has
1
C
(⟨x⟩

n1 + ⟨ξ⟩n2)≤ |p j (ρ)| ≤ C(⟨x⟩
n1 + ⟨ξ⟩n2), j ∈ {1, 2}. (2-4)

From the definition of Sn1−1,n2−1, which contains p̃, we have

|∇ p̃(ρ)| ≤ C(⟨x⟩
n1−2

+ ⟨ξ⟩n2−2).

The ellipticity of p2, that is, the left-hand side of (2-4), then yields

|∇ p̃(ρ)| ≤ C
(
|p1(ρ)|

max(0,1−2/n1) + |p1(ρ)|
max(0,1−2/n2)

)
≤ C ′

|p1(ρ)|
max(0,1−2/n+),

provided |ρ| is large enough. On the whole phase space we obtain

|∇ p̃(ρ)| ≤ C + C |p1(ρ)|
max(0,1−2/n+) ∀ρ ∈ R2d . (2-5)

Now we deal with the other term in (2-3): the mean-value inequality yields∣∣∇ p2(φ
t
2(ρ))− ∇ p2(φ

t
1(ρ))

∣∣≤ |φt
2(ρ)−φ

t
1(ρ)| × sup

s∈[0,1]

∣∣Hess p2
(
(1 − s)φt

1(ρ)+ sφt
2(ρ)

)∣∣. (2-6)

Write for short ρt
s = (1 − s)φt

1(ρ)+ sφt
2(ρ). Using that p2 ∈ Sn1,n2, we obtain

|Hess p2(ρ
t
s)| ≤ C

(
⟨(1 − s)x t

1 + sx t
2⟩

n1−2
+ ⟨(1 − s)ξ t

1 + sξ t
2⟩

n2−2),
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where we wrote φt
j (ρ)= (x t

j , ξ
t
j ), j ∈ {1, 2}. Then we use the classical inequality ⟨a + b⟩ ≤ 2(⟨a⟩+ ⟨b⟩)

to get

|Hess p2(ρ
t
s)| ≤ C

(
(⟨x t

1⟩ + ⟨x t
2⟩)

max(0,n1−2)
+ (⟨ξ t

1⟩ + ⟨ξ t
2⟩)

max(0,n2−2))
≤ C ′

(
⟨x t

1⟩
max(0,n1−2)

+ ⟨ξ t
1⟩

max(0,n2−2))
+ C ′

(
⟨x t

2⟩
max(0,n1−2)

+ ⟨ξ t
2⟩

max(0,n2−2)).
Next we use the ellipticity of p1 and p2 and the fact that they are conserved by the corresponding flows:

|Hess p2(ρ
t
s)| ≤ C

(
|p1(φ

t
1(ρ))|

max(0,1−2/n+) + |p2(φ
t
2(ρ))|

max(0,1−2/n+)
)

= C
(
|p1(ρ)|

max(0,1−2/n+) + |p2(ρ)|
max(0,1−2/n+)

)
,

which holds for |ρ| large enough. Up to adding a constant, this works for all ρ ∈ Rd. Finally we use the
fact that p1 and p2 are comparable (a consequence of ellipticity) to obtain

|Hess p2(ρ
t
s)| ≤ C + C |p1(ρ)|

max(0,1−2/n+) ∀ρ ∈ R2d .

Plugging this into (2-6), that results in∣∣∇ p2(φ
t
2(ρ))− ∇ p2(φ

t
1(ρ))

∣∣≤ C |φt
2(ρ)−φ

t
1(ρ)| × (1 + |p1(ρ)|

max(0,1−2/n+))

for all ρ ∈ R2d. Putting this together with (2-5), we estimate the right-hand side of (2-3) from above as∣∣∣ d
dt
(φt

2(ρ)−φ
t
1(ρ))

∣∣∣≤ C(1 + |φt
2(ρ)−φ

t
1(ρ)|)× (1 + |p1(ρ)|

max(0,1−2/n+)).

We deduce that ∣∣∣ d
dt

⟨φt
2(ρ)−φ

t
1(ρ)⟩

∣∣∣= ∣∣∣∣ d
dt
(φt

2(ρ)−φ
t
1(ρ)) ·

φt
2(ρ)−φ

t
1(ρ)

⟨φt
2(ρ)−φ

t
1(ρ)⟩

∣∣∣∣
≤ C⟨φt

2(ρ)−φ
t
1(ρ)⟩(1 + |p1(ρ)|

max(0,1−2/n+))

for any ρ ∈ R2d. We conclude by Grönwall’s lemma that

⟨φt
2(ρ)−φ

t
1(ρ)⟩ ≤ eCt⟨p1(ρ)⟩

max(0,1−2/n+)

∀ρ ∈ R2d ,∀t ≥ 0,

which gives the sought result. □

The result below roughly states that our dynamical condition is invariant under subprincipal perturbation
of the potential V, under the assumption that V is subquadratic.

Corollary 2.4. Fix 0< n1, n2 ≤ 2 and let p1, p2 ∈ Sn1,n2 be elliptic symbols in Sn1,n2, and assume they
have the same principal symbol in the sense of (2-2). Consider the Hamiltonian flows (φt

1)t∈R and (φt
2)t∈R

associated with p1 and p2 respectively. For any T > 0, there exists a constant C = CT > 0 such that the
following holds: for any function q = q(t; ρ), Lipschitz in ρ and such that

supp q ⊂ [−T, T ] × R2d ,

one has ∣∣∣∣∫
R

q(t;φt
2(ρ)) dt −

∫
R

q(t;φt
1(ρ)) dt

∣∣∣∣≤ C∥∇ρq∥L∞(R×R2d ) ∀ρ ∈ R2d .

In particular,
|K∞

p2
(q)−K∞

p1
(q)| ≤ C∥∇ρq∥L∞(R×R2d ).
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Proof. This is a direct application of the mean-value inequality and Proposition 2.2, observing that
n+ = max(n1, n2)≤ 2:∣∣∣∣∫

R

q(t;φt
2(ρ)) dt −

∫
R

q(t;φt
1(ρ)) dt

∣∣∣∣
≤

∫ T

−T
∥∇ρq∥L∞(R×R2d )|φ

t
2(ρ)−φ

t
1(ρ)| dt ≤ 2T eCT

∥∇ρq∥L∞(R×R2d ).

Taking lower limits in ρ yields the second claim. □

2.2. Quantitative estimates of classical (non)observability. In this subsection, we show that 1(0,T )×Br (0)×Rd

is not classically observable in the sense of Definition 2.1 when the Hamiltonian is of the form p(x, ξ)=
V (x)+ 1

2 |ξ |2. Actually for this class of Hamiltonians, we can prove a more precise result.

Proposition 2.5. Let p be a symbol of the form p(x, ξ)= V (x)+ 1
2 |ξ |2, with V fulfilling Assumption 1.1

with an arbitrary m > 0.

• If m ≥
1
2 , there exists a constant C > 0 and E0 > 0 such that for all E ≥ E0, one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, E (1/2)(1/m−1)

] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E
.

• If m < 1
2 , then for any ε > 0 small enough, there exists a constant C > 0 and E0 > 0 such that for all

E ≥ E0, one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, E (1/2)(1/m−1)−ε

] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E
.

Corollary 2.6 (classical nonobservability). Under the assumptions of the proposition above, one has:

• If m < 1, then for any T ≥ 0, there exists a constant C > 0 and E0 > 0 such that for all E ≥ E0,
one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C

r
√

E
.

• If m ≥ 1, there exists a constant C > 0 and E0 > 0 such that for all E ≥ E0 and for all T ≥ 0, one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C

r(1 + T )
E1/(2m) .

Remark 2.7. The corollary implies in particular that when r and T are fixed, the function 1(0,T )×Br (0)×Rd

is not classically observable in the sense of Definition 2.1.

Let us explain the meaning of the typical scales appearing in Proposition 2.5 and the subsequent
corollary. When V satisfies Assumption 1.1 with an arbitrary m > 0, one can single out a typical time
scale in the energy layer {p(ρ)= E} of order τ ≈ E (1/2)(1/m−1), which corresponds roughly speaking to
the “period” of the trajectories of the flow, or rather, to the time needed to go from one turning point of a
projected trajectory to another. We observe that for the harmonic oscillator, one has m = 1; hence τ ≈ 1
is indeed independent of the energy layer. Following this observation, we understand the criticality of
quadratic potentials in our problem: if m > 1, the typical time scale of evolution of the flow tends to
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zero as the energy goes to infinity, which means that the flow mixes the phase space more and more in
the high-energy limit in a time interval of the form [0, T ] with T > 0 fixed. On the contrary, for m < 1,
the flow gets nicer on such a time interval because τ → +∞ as E → +∞. We also have a typical
scale with respect to the space variable, which is r ≈ E1/(2m). This is the approximate diameter of the
classically allowed region KE = {x ∈ Rd

: V (x)≤ E}. This scale also appears naturally when one looks
for a trajectory t 7→ φt(ρ)= (x t(ρ), ξ t(ρ)) such that |x t(ρ)| = constant (think for instance of the case
of radial potentials). Differentiating |x t(ρ)|2 with respect to time, one gets x t(ρ) · ξ t(ρ) = 0 for all t ,
and differentiating again leads to |ξ t(ρ)|2 − x t(ρ) · ∇V (x t(ρ)) = 0. Yet |∇V (x t(ρ))| ≲ |x t(ρ)|2m−1,
and p is preserved by the flow. From this we can deduce that |x t(ρ)| ≈ p(ρ)1/(2m). So if r is larger than
p(ρ)1/(2m), such trajectories will always stay in Br (0)×Rd. Finally, if ρ0 = (x0, ξ0) ∈ {p(ρ)= E} is such
that |x0| ≤ r , with r ≤ εp(ρ)1/(2m), ε being sufficiently small, the momentum of the trajectory satisfies
|ξ0| ≳

√
p(ρ). Therefore, we can expect that the measure of times t ∈ [0, τ ] such that |x t(ρ)| ≲ r will be

of order r/
√

p(ρ).
The proof of Proposition 2.5 relies on the lemma below.

Lemma 2.8. Let a, b, c > 0. Let I ⊂ R be a measurable set such that

∀(t1, t2) ∈ I × I, a|t2 − t1|2 − b|t2 − t1| + c ≥ 0.

Then
|I ∩ [0, τ ]| ≤

8ac
b2 τ ∀τ ≥

b
2a
. (2-7)

Remark 2.9. Observe that the left-hand side of (2-7) is always bounded by τ . Thus, the lemma is mainly
relevant in the case where ac ≪ b2, in which case the discriminant of the polynomial aX2

− bX + c
is positive.

Proof of Lemma 2.8. First assume that the discriminant of the polynomial aX2
− bX + c is positive.

Denote by z− ≤ z+ the (real) roots of the polynomial. Then

b
2a

=
z++z−

2
≤ z+ ≤ z+ + z− =

b
a

and z− =
z+z−

z+

=
c/a
z+

≤
2c
b
.

Since a > 0, we deduce that any t such that at2
− bt + c ≥ 0 satisfies

t ≤ z− ≤
2c
b

or t ≥ z+ ≥
b

2a
. (2-8)

We deduce that ∣∣∣I ∩

[
0, b

2a

]∣∣∣≤ ∣∣{t ∈ [0, z+] : at2
− bt + c ≥ 0

}∣∣≤ |[0, z−]| ≤
2c
b
. (2-9)

Now if τ ≥ b/(2a), we split the interval [0, τ ] as follows:

[0, τ ] =

n⋃
k=1

[k−1
n
τ,

k
n
τ
]
, with n =

⌈
τ

b/2a

⌉
≥ 1.

On each piece, we have∣∣∣I ∩

[k−1
n
τ,

k
n
τ
]∣∣∣= ∣∣∣(I −

k−1
n
τ
)

∩

[
0, 1

n
τ
]∣∣∣≤ ∣∣∣(I −

k−1
n
τ
)

∩

[
0, b

2a

]∣∣∣,
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where the last inequality is due to the definition of n. We can apply (2-9) with I − (k − 1)τ/n instead
of I, since the former set satisfies the assumptions of the lemma. Then, summing over k yields

|I ∩ [0, τ ]| ≤ n 2c
b

≤

(
τ

b/2a
+ 1

)2c
b

≤
8ac
b2 τ,

which is the desired estimate. Finally if the discriminant is nonpositive, i.e., b2
≤ 4ac, then

|I ∩ [0, τ ]| ≤ τ ≤
4ac
b2 τ. □

Proof of Proposition 2.5. Let us write for short E = p(ρ), and introduce the components of the flow
(x t , ξ t) = φt(ρ). Assume E > 0. The core of the argument is to compare x t to the straight trajectory
t 7→ x0

+ tξ 0, which is of course easier to handle. In order to have two distinct points of the initial
trajectory to be in the ball Br (0), its distance to the straight trajectory has to be very small or very large,
which is possible in a time interval which is either small or large respectively. Introduce

I = Iρ,r = {t ∈ R : x t
∈ Br (0)}.

This set is measurable. Moreover, for any t1 ≤ t2, using the Hamilton equation and the Taylor formula at
order 1 with integral remainder, one has

x t2 = x t1 + (t2 − t1)ξ t1 − (t2 − t1)2
∫ 1

0
(1 − s)∇V (x (1−s)t1+st2) ds.

Assume now that t1, t2 ∈ I. Then the inverse triangle inequality leads to

2r ≥ |t2 − t1||ξ t1 | − (t2 − t1)2 sup
t∈[t1,t2]

|∇V (x t)|. (2-10)

At this stage we have to estimate differently the term involving ∇V, depending on whether m is greater
or less than 1

2 (or roughly speaking on whether the potential is approximately convex of concave).

Case m ≥
1
2 : Using that V satisfies Assumption 1.1, we have

|ξ t1 | =

√
2(E − V (x t1))≥

√
max(0, E − C⟨r⟩2m)

for some constant C ≥ 1. Moreover, one can roughly estimate the remainder using the triangle inequality:

sup
t∈[t1,t2]

|∇V (x t)| ≤ C sup
t∈[t1,t2]

⟨x t
⟩

2m−1.

Now we take advantage of the fact that V is elliptic: up to enlarging the constant C , one has

−C +
1
C

⟨x⟩
2m

≤ V (x)≤ V (x)+ 1
2
|ξ |2 ∀(x, ξ) ∈ R2d .

Therefore if E is large enough (say larger than C), we obtain ⟨x t
⟩

2m−1
≤ C E1−1/(2m), with a possibly

larger constant C
(
we use m ≥

1
2 here

)
. Inequality (2-10) then becomes

2r ≥ |t2 − t1|
√

max(0, E − C⟨r⟩2m)− C E1−1/(2m)
|t2 − t1|2.



OBSERVABILITY OF THE SCHRÖDINGER EQUATION WITH CONFINING POTENTIAL 1177

Set

a = C E1−1/(2m), b =

√
max(0, E − C⟨r⟩2m), c = 2r and τ = E (1/2)(1/m−1). (2-11)

We have τ ≥ b/(2a) since we can assume that C ≥ 1:

b
2a

=

√
max(0, E − C⟨r⟩2m)

2C
E1/(2m)−1

≤
1

2C
E (1/2)(1/m−1)

≤ τ.

With this notation, we have that any t1, t2 ∈ I satisfy

a|t2 − t1|2 − b|t2 − t1| + c ≥ 0.

Therefore, assuming first that C⟨r⟩
2m

≤ E/2, we have b≥
√

E/2>0, so that Lemma 2.8 applies. We obtain

|I ∩ [0, E (1/2)(1/m−1)
]| ≤

8ac
b2 τ ≤

8C E1−1/(2m)
× 2r

E/2
E (1/2)(1/m−1)

= 32C
r

√
E
.

If on the contrary we have ⟨r⟩ ≥ (E/2C)1/(2m), as soon as E ≥ 22m+1C we have r ≥
1
2(E/2C)1/(2m), and

we check that

|I ∩ [0, E (1/2)(1/m−1)
]| ≤ E (1/2)(1/m−1)

=
r

√
E

×
E1/(2m)

r
≤

r
√

E
× 21+1/(2m)C1/(2m).

This is valid for any r > 0, but in fact r = 0 works as well since B0(0)=∅. In addition, this is independent
of the point ρ ∈ {p = E}, whence the result.

Case m < 1
2 : In the situation where the potential is “sublinear”, the inequality ⟨x t

⟩
2m−1 ≲ E1−1/(2m) is

false in general since the power 2m − 1 is nonpositive (such an inequality would require V (x t) to be
controlled from below by E , which is possible near turning points of the trajectory but not in the well).
Thus, a priori we can only have |∇V (x t)| ≤ C , which leads to

2r ≥ |t2 − t1||ξ t1 | − C |t2 − t1|2 ≥ |t2 − t1|
√

max(0, E − C⟨r⟩2m)− C |t2 − t1|2

≥ |t2 − t1|
√

max(0, E − C⟨r⟩)− C |t2 − t1|2. (2-12)

This coincides with the previous case for the critical value m =
1
2 : for any t1, t2 ∈ I, we have

a|t2 − t1|2 − b|t2 − t1| + c ≥ 0,

where a, b, c are defined in (2-11)
(
with m =

1
2

)
. Then the first step of the proof tells us that there

exists C > 0 such that for all E large enough, we have∣∣{t ∈ [0,
√

E] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E

∀r ≥ 0,∀ρ ∈ {p = E}. (2-13)

We shall use this additional information to improve (2-12), and then bootstrap this procedure to reach the
critical time E (1/2)(1/m−1). We will work this out by induction, taking (2-13) as our basis step. Consider n ≥

0 and suppose there exist γn ∈
[ 1

2 ,
1
2

( 1
m − 1

))
and Cn ≥ 1 such that when E is large enough, one has∣∣{t ∈ [0, Eγn ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ Cn

r
√

E
∀r ≥ 0,∀ρ ∈ {p = E}. (2-14)
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We first deduce from the Taylor formula a bound slightly more precise than (2-10):

2r ≥ |t2 − t1||ξ t1 | − |t2 − t1|
∫ t2

t1
|∇V (x t)| dt

≥ |t2 − t1|
√

max(0, E − C⟨r⟩2m)− |t2 − t1|
∫ t2

t1
|∇V (x t)| dt. (2-15)

Take δ ∈ [0, 1] to be chosen later. We have∫ t2

t1
|∇V (x t)|dt ≤ C

∫ t2

t1
⟨x t

⟩
2m−1 dt = C

∫
+∞

0

(∫ t2

t1
1u≤⟨x t ⟩2m−1 dt

)
du

≤ C
∫

+∞

0
|{t ∈ [t1, t2] : u ≤ |x t

|
2m−1

}|du

≤ C
∫ Eδ(1−1/(2m))

0
|t2 − t1|du +C

∫
+∞

Eδ(1−1/(2m))
|{t ∈ [t1, t2] : |x t

| ≤ u−1/(1−2m)
}|du. (2-16)

The first inequality follows from our assumptions on V, the equality is a consequence of Fubini’s theorem,
then we use that 2m−1 ≤ 0 to deduce ⟨x s

⟩
2m−1

≤ |x s
|
2m−1, and finally we split the integral over u into two

pieces. To estimate the second piece, we split the interval [t1, t2] into N =⌈|t2−t1|/Eγn⌉ intervals of length
less than Eγn. On the k-th piece, we use the induction hypothesis (2-14), with ρk = φt1+(k−1)|t2−t1|/N (ρ)

instead of ρ, namely setting t̃k = t1 + (k − 1)|t2 − t1|/N , we have∣∣{t ∈ [t̃k, t̃k+1] : |x t
| ≤ u−1/(1−2m)}∣∣≤ ∣∣{s ∈ [0, Eγn ] : |x s+t̃k | ≤ u−1/(1−2m)}∣∣≤ Cn

√
E

u−1/(1−2m).

Summing over k ∈ {1, 2, . . . , N } yields∣∣{t ∈ [t1, t2] : |x t
| ≤ u−1/(1−2m)}∣∣≤ Cn

√
E

u−1/(1−2m)
⌈

|t2 − t1|
Eγn

⌉
,

provided E is large enough. Integrating over u, we obtain a bound for the second term in (2-16):∫
+∞

Eδ(1−1/(2m))

∣∣{t ∈ [t1, t2] : |x t
| ≤ u−1/(1−2m)}∣∣ du

≤
Cn

E1/2

(
|t2 − t1|

Eγn
+ 1

)∫
+∞

Eδ(1−1/(2m))
u−1/(1−2m) du

=
Cn

E1/2

(
|t2 − t1|

Eγn
+ 1

)
×

−1

1 −
1

1−2m

Eδ(1−1/(2m))(1−1/(1−2m))

=

(
1/2
m

− 1
)

×
Cn

E1/2

(
|t2 − t1|

Eγn
+ 1

)
Eδ.

In the end we obtain∫ t2

t1
|∇V (x t)| dt ≤

C
2

|t2 − t1|(Eδ(1−1/(2m))
+ Eδ−1/2−γn )+ C Eδ−1/2

for some constant C > 0. By choosing δ = m(2γn + 1)
(
we have indeed δ ∈ [2m, 1) ⊂ [0, 1) when

γn ∈
[ 1

2 ,
1
2

( 1
m − 1

)))
, we obtain∫ t2

t1
|∇V (x t)| dt ≤ C |t2 − t1|E (2m−1)γn+m−1/2

+ C Eδ−1/2.
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Going back to (2-15), if t1, t2 ∈ I, i.e., x t1 and x t2 lie in Br (0), we deduce

2r ≥ |t2 − t1|
(√

max(0, E − C⟨r⟩2m)− C Eδ−1/2)
− C E1/2−γn+1 |t2 − t1|2,

where we set γn+1 = (1 − 2m)γn + 1 − m. Now set

a = C E1/2−γn+1, b =

√
max(0, E − C⟨r⟩2m)− C Eδ−1/2 and c = 2r.

Assuming first that C⟨r⟩
2m

≤ E/2 and recalling that δ < 1, we know that for E large enough, we have
b ≥

√
E/3. Any t1, t2 ∈ I satisfy

a|t2 − t1|2 − b|t2 − t1| + c ≥ 0,

so we apply Lemma 2.8 with τ = Eγn+1 ≥ b/(2a) to get

|I ∩ [0, Eγn+1]| ≤
8ac
b2 Eγn+1 ≤

16C E1/2

E/3
r =

48C
√

E
r.

When C⟨r⟩
2m

≥ E/2, assuming that E is large enough we have r ≥
1
2(E/2C)1/(2m) and we conclude as

in the previous step that

|{t ∈ [0, Eγn+1] : x t
∈ Br (0)}| ≤

r
√

E

Eγn+1+1/2

r
≤

r
√

E
21+1/(2m)C1/(2m)Eγn+1−(1/2)(1/m−1).

Since by the induction hypothesis we have γn ∈
[ 1

2 ,
1
2

( 1
m − 1

))
, then γn+1 belongs to the same interval

because by definition, γn+1 ≥ 1 − m ≥
1
2 , and we have

γ − γn+1
1
2

= (1 − 2m)
γ − γn

1
2

, where γ =
1
2

( 1
m

− 1
)
. (2-17)

Therefore we see that γn+1 − γ < 0, so as soon as E is large enough, we have

|{t ∈ [0, Eγn+1] : x t
∈ Br (0)}| ≤ Cn+1

r
√

E

for any r ≥ 0, and for some constant Cn+1. Thus we have constructed by induction a nondecreasing
sequence (γn)n∈N for which (2-14) holds. We deduce from (2-17) that it converges to γ =

1
2

( 1
m − 1

)
,

which yields the final result. □

Proof of Corollary 2.6. Firstly we treat the case where m< 1. For ε small enough, E (1/2)(1/m−1)−ε
→ +∞

as E → +∞, so we can write, using Proposition 2.5,∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ ∣∣{t ∈ [0, E (1/2)(1/m−1)−ε
] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C

r
√

E
,

provided E is large enough, for all ρ ∈ {p = E} and all r ≥ 0. Now in the case where m ≥ 1, we know
that E (1/2)(1/m−1) remains bounded as E → +∞. By Proposition 2.5 again, there is a E0 > 0 such that
for any E ≥ E0, we have∣∣{t ∈ [0, E (1/2)(1/m−1)

] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E
, (2-18)
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whenever r ≥ 0 and ρ ∈ {p(ρ)= E}. Let n = ⌈T/E (1/2)(1/m−1)
⌉. Writing tk = kT/n and ρk = φtk (ρ) for

any k ∈ {0, 1, . . . , n}, we have

∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ n∑
k=1

∣∣{t ∈ [tk−1, tk] : φt(ρ) ∈ Br (0)× Rd}∣∣
=

n∑
k=1

∣∣{t ∈
[
0, 1

n T
]
: φt+tk−1(ρ) ∈ Br (0)× Rd}∣∣

≤

n∑
k=1

∣∣{t ∈ [0, E (1/2)(1/m−1)
] : φt(ρk−1) ∈ Br (0)× Rd}∣∣.

The last inequality comes from the definition of n. Estimate (2-18) applies to each piece of this sum. We
conclude that∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ nC

r
√

E
≤

1 + T
E (1/2)(1/m−1) × C

r
√

E
= C

r(1 + T )
E1/(2m)

(we can ensure that n ≤ (1+ T )/E (1/2)(1/m−1) in the second equality up to enlarging E0 so that it is larger
than 1, independently of T ). □

2.3. Continuity of the composition by the flow in symbol classes. From now on we go back to a sub-
quadratic potential, that is to say we suppose our classical Hamiltonian is of the form p(x, ξ)=V (x)+1

2 |ξ |2,
with V satisfying Assumption 1.1 with m ∈ (0, 1]. In the course of our study, we will need to check that
the composition of a symbol with the Hamiltonian flow is still well-behaved in a suitable symbol class, in
the sense that its derivatives remain controlled properly. The following lemma is common in the context
of the quantum-classical correspondence; see for instance [Bouzouina and Robert 2002, Lemma 2.2]. We
reproduce a proof to obtain an estimate adapted to our context and to keep track of the dependence of
constants on the parameters of the problem. We recall that a function a ∈ C∞(R2d) is said to be a symbol
in the class S(1) if all its derivatives are bounded. The quantities

|a|
ℓ
S(1) = max

α∈N2d

0≤|α|≤ℓ

sup
ρ∈R2d

|∂αa(ρ)|, ℓ ∈ N,

endow the vector space S(1) with a Fréchet structure (see Appendix B for further details).

Lemma 2.10. Let a be a symbol in S(1). Then the function a ◦ φt still belongs to S(1), and stays in a
bounded subset of S(1) locally uniformly with respect to t . More precisely, for any fixed T > 0, for any
nonzero multi-index α ∈ N2d, we have the derivative estimate

∥∂α(a ◦φt)∥∞ ≤ Cα(T, p) max
1≤|β|≤|α|

∥∂βa∥∞,

uniformly in t ∈ [−T, T ]. The constants Cα(T, p) depend only on T and on the sup-norm of derivatives
of order {2, 3, . . . , |α| + 1} of p.

Proof. In all the proof, t ranges in a compact set, say [−T, T ] for some fixed T > 0.
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Step 1: Control of differentials of the Hamiltonian flow. Differentiating the Hamilton equation (1-5)
defining the flow φt, we get

d
dt

dφt(ρ)= J Hess p(φt(ρ)) dφt(ρ).

By assumption on the potential V (see (1-4)), we observe that the Hessian of p is bounded. Since
dφ0(ρ)= Id for any ρ ∈ R2d, we classically deduce using Grönwall’s lemma that

∥dφt(ρ)∥ ≤ eT |J Hess p|∞ ≤ eT |Hess p|∞ ∀ρ ∈ R2d ,∀t ∈ [−T, T ].

For higher-order differentials, we proceed by induction. Suppose that for some k ≥ 1, all the differentials
of order ≤ k of φt are bounded uniformly in t on R2d, with a bound involving derivatives of order k + 1
of p. Differentiating the Hamilton equation k+1 times, the Faà di Bruno formula shows that d

dt dk+1φt(ρ)

is a sum of terms of the form

J dℓ(∇ p)(φt(ρ)).
(
dk1φt(ρ), dk2φt(ρ), . . . , dkℓφt(ρ)

)
,

where 1 ≤ ℓ≤ k + 1 and k1 + k2 +· · ·+ kℓ = k + 1. Such terms are bounded uniformly in t ∈ [−T, T ] by
the induction hypothesis as soon as ℓ≥ 2 (note that all the differentials of order ≥ 2 of p are bounded).
So in fact the ODE on dk+1φt(ρ) can be written

d
dt

dk+1φt(ρ)= J Hess p(φt(ρ)) dk+1φt(ρ)+ R(t, ρ),

where R(t, ρ) satisfies

|R(t, ρ)|∞ ≤ C(T, p) ∀ρ ∈ R2d ,∀t ∈ [−T, T ],

where the constant C(T, p) depends only on the sup-norm of derivatives of order {2, 3, . . . , k + 2} of p.
We conclude by Grönwall’s lemma again, together with Duhamel’s formula that dk+1φt(ρ) is bounded
similarly: given that k + 1 ≥ 2, we have dk+1φ0(ρ)= 0 for every ρ ∈ R2d, so that

∥dk+1φt(ρ)∥ ≤

∫
|t |

0
C(T, p)e|Hess p|∞|t−s| ds ≤ T C ′(T, p).

This finishes the induction.

Step 2: Estimates of derivatives of a ◦φt. We estimate the derivatives in x or ξ . Let α ∈ N2d
\ {0}, and

denote by (x t
1, x t

2, . . . , x t
d , ξ

t
1, ξ

t
2 . . . , ξ

t
d) the components of the flow. The chain rule together with the

Faà di Bruno formula yield that ∂α(a ◦φt) can be expressed as a sum of terms of the form

(∂ α̃x ∂
β̃
ξ a) ◦φt

×

∏
j1∈α̃

∂α j1 x j1 ×

∏
j2∈β̃

∂β j2 ξ j2,

where α̃, β̃ ∈ Nd are such that 1 ≤ |α̃|+ |β̃| ≤ |α| and α j1, β j2 ∈ N2d
\ {0} satisfy

∑
j1 α j1 +

∑
j2 β j2 = α.

(By j1 ∈ α̃, j2 ∈ β̃, we mean that j1, j2 ∈ {1, 2, . . . , d} are indices for which α̃ and β̃ are nonzero.) The
claim follows immediately from the bounds on the derivatives of x t

j and ξ t
j proved in Step 1. □



1182 ANTOINE PROUFF

3. Proof of the main theorem

We start with a lemma that will enable us to replace 1ωR\Br (0) in the observability inequality with a
well-behaved symbol.

Lemma 3.1 (mollifying the observation set). Let ω ⊂ Rd and denote by ωR the open set

ωR =

⋃
x∈ω

BR(x), R > 0.

There exists a symbol a = aR ∈ S(1) depending only on the x variable such that

1ωR/2(x)≤ aR(x)≤ 1ωR (x) ∀x ∈ Rd .

In addition, it satisfies the seminorm estimates

∀ℓ ∈ N, ∃Cℓ > 0 : ∀R ≥ 1, |aR|
ℓ
S(1) ≤ Cℓ and |∇aR|

ℓ
S(1) ≤

Cℓ
R
.

The constants involved do not depend on ω.

Proof. Fix κ ∈ C∞
c (R

d) a mollifier with the following properties:

κ(x)≥ 0,∀x ∈ Rd , supp κ ⊂ B1(0) and
∫

Rd
κ(x) dx = 1.

For any r > 0, set κr = r−dκ( • /r), so that ∥κr∥L1(Rd ) = 1. Set, for any R > 0,

aR(x)= (κR/4 ∗ 1ω3R/4)(x) ∀x ∈ Rd .

We check that aR defined in this way satisfies the required properties. We first observe that, by definition, aR

is nonnegative, and that aR ≤ 1 by Young’s inequality. Now by standard properties of convolution, the
support of aR is contained in ω3R/4 + BR/4(0) ⊂ ωR (recall that the support of κ is a compact subset
of B1(0)), which proves that aR ≤ 1ωR . On the other hand, if x ∈ ωR/2, then κR/4(x − • ) is supported
inω3R/4, so that aR(x)=1, which proves that aR ≥1ωR/2 . Differentiating under the integral sign, we see that
∥∂αaR∥∞ is of order 1/R|α| for any multi-index α∈Nd, which yields the desired seminorm estimates (R ≥1
is important here). The constants depend only on the supremum norms of derivatives of κ , and not on ω. □

Remark 3.2. The symbol aR can be considered as a semiclassical symbol, with Planck parameter 1/R2,
since by construction each derivative yields a gain of 1/R. However in view of Lemma 2.10, this property
is not preserved by composition by the Hamiltonian flow, since all the derivatives of aR ◦φt of order ≥ 1
behave as 1/R. This comes from the fact that, when differentiating aR ◦φt twice or more, the second,
third, and higher-order derivatives can hit φt instead of aR .

We prove a version of Egorov’s theorem taking into account the above remark. Our approach is very
classical; see [Bouzouina and Robert 2002] or [Zworski 2012, Chapter 11] for refinements. We refer
again to Appendix B for an account on the Weyl quantization Op.
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Proposition 3.3 (Egorov). Let a ∈ S(1). Then the symbol a ◦φt lies in S(1) with seminorm estimates

∀T > 0,∀ℓ ∈ N, ∃Cℓ(T, p) > 0 : |a ◦φt
|
ℓ
S(1) ≤ Cℓ(T, p)|a|

ℓ
S(1) ∀t ∈ [−T, T ],

and one has
ei t POp(a)e−i t P

= Op(a ◦φt)+ Ra(t), (3-1)

where the remainder term Ra(t) is a bounded operator satisfying

∀T > 0, ∃C(T, p) > 0 : ∥Ra(t)∥L2→L2 ≤ C(T, p)|∇a|
kd
S(1) ∀t ∈ [−T, T ],

for some integer kd depending only on the dimension.

Proof. The claim that a ◦φt
∈ S(1) and the subsequent seminorm estimates are provided by Lemma 2.10.

To prove (3-1), we follow the classical method that consists in differentiating the time dependent operator

Q(s)= e−is POp(a ◦φs)eis P ,

and estimating this derivative. For the sake of simplicity, let us introduce as = a ◦φs. All the operators in
this composition map S(Rd) to itself continuously, so that Q(s)u can be differentiated using the chain
rule, for any u ∈ S(Rd). From now on, we will omit to write u. Recalling that d

ds as = {p, as} by definition
of φs, we have d

ds
Op(as)= Op({p, as})

(rigorously, one may apply the dominated convergence theorem to the pairing ⟨v,Op(as)u⟩S′,S(Rd ) for
two Schwartz functions u and v). Therefore we get

d
ds

Q(s)= −ie−is P(
[P,Op(as)] + iOp({p, as})

)
eis P

= −ie−is POp(R3(s))eis P . (3-2)

The symbol R3(s) above is nothing but the remainder of order 3 in the pseudodifferential calculus
between p and as . Proposition B.5 provides a bound on this remainder in terms of seminorms of as . Recall
that, in the subcritical case m ≤ 1, ∂α p ∈ S(1) whenever |α| ≥ 2. Therefore according to Proposition B.5,
for any seminorm index ℓ ∈ N, there exist a constant Cℓ > 0 as well as an integer k ≥ 0 such that

|R3(s)|ℓS(1) ≤ Cℓ|d3as |
k
S(1)|d

3 p|
k
S(1).

Then we use Lemma 2.10 to obtain

|R3(s)|ℓS(1) ≤ Cℓ(T, p)|∇a|
k
S(1)

for any s ∈ [−T, T ]. Therefore, the Calderón–Vaillancourt theorem (Theorem B.2) tells us that the norm
of Op(R3(s)) is bounded, uniformly in s ∈ [−T, T ], by a seminorm of ∇a, and a constant depending
only on T and p. Plugging this into (3-2), given that the propagator eis P is an isometry, we obtain the
same bound on d

ds Q(s). Integrating this in s, we obtain from the mean-value inequality

∀t ∈ [−T, T ], ∥Q(t)− Q(0)∥L2→L2 ≤ 2T sup
s∈[−T,T ]

∥∥∥ d
ds

Q(s)
∥∥∥

L2→L2
≤ C(T, p)|∇a|

kd
S(1),

where the integer kd depends only on the dimension. Conjugating by the propagator, which is an isometry
on L2, yields the desired result. □
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We are now in a position to prove our main result.

Proof of Theorem 1.3. We fix ω ⊂ Rd, a compact set K ⊂ Rd, and we introduce ω̃(R) = (ω \ K R)R

for R> 0. One can verify that ω̃(R)⊂ωR \ K. By Lemma 3.1, there exists a symbol aR ∈ S(1) depending
on the parameter R > 0 such that

1(ω\K R)×Rd ≤ aR ≤ 1ω̃(R)×Rd ∀R > 0, (3-3)

and |∇aR|
ℓ
S(1) ≤ cd,ℓ/R for any ℓ ∈ N, with a constant cd,ℓ depending only on the dimension and ℓ,

uniformly in R ≥ 1. Notice that the symbol depends on ω and K but not its seminorms. On the quantum
side, one can regard the functions in (3-3) as multiplication operators, and understand the inequalities
in the sense of self-adjoint operators. Conjugating by the Schrödinger propagator does not change the
inequalities, so that

ei t P1ω\K R e−i t P
≤ ei t POp(aR)e−i t P

≤ ei t P1ω̃(R)e−i t P
∀t ∈ R.

Then we use Egorov’s theorem (Proposition 3.3) and we integrate with respect to t to get∫ T0

0
ei t P1(ω\K R)×Rd e−i t P dt ≤

∫ T0

0
Op(aR ◦φt) dt + RR ≤

∫ T0

0
ei t P1ω̃(R)e−i t P dt, (3-4)

where the remainder term RR is a bounded operator with

∥RR∥L2→L2 ≤ C |∇aR|
kd
S(1) ≤

C ′

R
∀R ≥ 1. (3-5)

The constant C ′ above depends only on p and T0 (and of course on the dimension d), but not on ω or K.
One can check that the quantization and the integral over t in the middle term of (3-4) commute.9

On the classical side, using the same notation as in (2-1), we introduce the quantity

K∞

p0
(aR1(0,T ))= lim inf

ρ→∞

∫ T

0
aR(φ

t
0(ρ)) dt,

and similarly for p instead of p0, replacing the flow φt
0 by φt. We claim that, for any T > 0, there exists a

constant C ′′ > 0 depending only on the dimension, on T and on the Hamiltonians p0 and p, such that,
for any compact K̃, and for any R > 0,

K∞

p0
(ω, T )≤ K∞

p (aR1(0,T ))+
C ′′

R
,

K∞

p (aR1(0,T ))≤ K∞

p0
(ωR \ K̃, T )+ C ′′

R
.

(3-6)

The constant C ′′ does not depend on ω or K from which we built aR neither. The proof of the first
inequality in (3-6) reads as follows: Corollary 2.6 shows that the quantity in the left-hand side does not
change if we remove a compact set:

K∞

p0
(ω, T )= K∞

p0
(ω \ K R, T ) ∀R > 0. (3-7)

Now we use that 1(ω\K R)×Rd ≤ aR to get

K∞

p0
(ω \ K R, T )≤ K∞

p0
(aR1(0,T )). (3-8)

9One can see this by pairing the operator under consideration with two Schwartz functions and use the dominated convergence
theorem.
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Then we switch from p0 to p, having the same principal symbol, using Corollary 2.4: the function aR1(0,T )
is compactly supported in time and cd,1/R-Lipschitz in the variable ρ, so that

K∞

p0
(aR1(0,T ))≤ K∞

p (aR1(0,T ))+
C ′′

R
∀R > 0.

Putting this together with (3-7) and (3-8) yields the first inequality in (3-6). The second inequality in (3-6)
is proved using similar arguments: Corollary 2.4 leads to

K∞

p (aR1(0,T ))≤ K∞

p0
(aR1(0,T ))+

C ′′

R
∀R > 0.

Then we use from the construction of aR in (3-3) that aR is supported in ωR × Rd, and we apply
Corollary 2.6 to remove a compact set K̃ . This leads to the sought inequality.

Sufficient condition. We wish to bound the left-hand side of (3-4) from below. The high-energy classical
observability constant K∞

p0
:= K∞

p0
(ω, T0) is assumed to be positive. From the first inequality in (3-6),

with T0 in place of T, we can write

∃A > 0 : ∀|ρ| ≥ A,
∫ T0

0
(aR ◦φt)(ρ) dt ≥

1
2
K∞

p0
−

C ′′

R
= cR. (3-9)

Take a cut-off function χ ∈ C∞
c (R

2d) such that χ ≡ 1 on the unit ball, and set χR = χ( • /(A + R)).
Then χR has compact support, equals one on the ball BA(0), and it satisfies ∥∂αχR∥∞ = O(1/R|α|), with
constants independent of ω again.10 We split the symbol in the left-hand side of (3-9) using this cut-off
function: we write ∫ T0

0
aR ◦φt dt = b0 + b∞, (3-10)

where we set

b0 = χR ×

(∫ T0

0
aR ◦φt dt − cR

)
and b∞ = (1 −χR)

∫ T0

0
aR ◦φt dt + cRχR.

Using the Leibniz formula and Lemma 2.10, we can prove that b0 ∈ S(1). Moreover, b0 is compactly
supported in R2d, so that Op(b0) is a compact operator by [Zworski 2012, Theorem 4.28]. As for b∞, the
Leibniz formula and Lemma 2.10 lead to the following estimates on derivatives: for all α ∈ N2d, one has

∥∂αb∞∥∞ ≤ Cα max
α1+α2=α

∥∂α1(1 −χR)∥∞ ×

∫ T0

0
∥∂α2(aR ◦φt)∥∞ dt + cR

Cα
R|α|

≤ Cα,T0,p

(
1

R|α|
+

1
R

)
.

The last inequality comes from distinguishing the cases α2 = 0 and α2 ̸= 0. In the first case, we have
∂α1(1 − χR) = O(R−|α|) and |aR ◦ φt

| ≤ 1. Otherwise, Lemma 2.10 tells us that ∂α2(aR ◦ φt) behaves
like |∇aR|

|α|

S(1) = O(1/R), R ≥ 1. In particular, b∞ ∈ S(1) and |Hess b∞|
ℓ
S(1) = O(1/R) for any ℓ ∈ N,

with a constant independent of ω and K. In addition, we have b∞ ≥ cR in view of (3-9). Therefore, the
Gårding inequality (Proposition B.6) yields

Op(b∞)≥

(
cR −

C1

R

)
Id.

10The parameter A depends on R, but this will not be a problem in the sequel. The phase space region localized at distance ≤ A
from the origin will be handled by Proposition A.1.
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The constant C1 is independent of ω and K in view of the seminorm estimates of Hess b∞ discussed
above. Going back to (3-4), we have proved∫ T

0
ei t P1ω̃(R)e−i t P dt ≥ cR Id +Op(b0)+ R ∀R ≥ 1.

As we have seen in the course of the proof, Op(b0) is a compact self-adjoint operator and ∥R∥L2→L2 ≤C2/R,
with a constant C2 depending only on the dimension, on T0 and on the Hamiltonians p0, p. In view of the
definition of cR in (3-9), taking R = 4(C ′′

+C2 + T0)/K
∞
p0

, we obtain the desired observability inequality,
up to a compact operator: ∫ T0

0
ei t P1ω̃(R)e−i t P dt − Op(b0)≥

1
4K

∞

p0
Id.

Notice that indeed R ≥ 1, since K∞
p0

≤ T0. Proposition A.1 then applies (see Remark A.2). It yields the
sought observability inequality on ω̃(R)⊂ ωR \ K, in any time T > T0.

Necessary condition. Consider the symbol aR from (3-3) with K = ∅. We fix R ≥ 1 (not necessarily
large), K̃ compact, and we estimate the observation cost Cobs in (1-8) using the quantity K∞

p0
(ωR \ K̃, T ).

We will track carefully the dependence of remainders on the parameter R. Write for short

⟨aR⟩T (ρ)=

∫ T

0
(aR ◦φt)(ρ) dt, ρ ∈ R2d ,

and pick a point ρ0 ∈ R2d such that

⟨aR⟩T (ρ0)≤ inf
ρ∈R2d

⟨aR⟩T (ρ)+
1
R
.

Notice that in virtue of the second inequality of (3-6), we have

⟨aR⟩T (ρ0)≤ K∞

p (aR1(0,T ))+
1
R

≤ K∞

p0
(ωR \ K̃, T )+ C ′′

+1
R

. (3-11)

Differentiating under the integral sign and using Lemma 2.10, we check that ⟨aR⟩T is Lipschitz as a
function of ρ:

∀ρ ∈ R2d , |∇⟨aR⟩T (ρ)| ≤ T sup
t∈[0,T ]

|∇(aR ◦φt)(ρ)| ≤ C(T, p)∥∇aR∥∞ ≤
c
R
. (3-12)

Consider a Gaussian wave packet centered at ρ0, namely, writing ρ0 = (x0, ξ0), we define

w(x)= π−d/4 exp
(
−

1
2 |x − x0|

2)eiξ0·x , x ∈ Rd .

It is properly normalized: ∥w∥L2 = 1. A classical computation (see [Folland 1989, Proposition (1.48)])
shows that the Wigner transform of w is the Gaussian in the phase space centered at ρ0, defined by
ρ 7→ π−d exp(−|ρ− ρ0|

2), that is to say,

(w,Op(⟨a2R⟩T )w)L2 =π−d
∫

R2d
⟨a2R⟩T (ρ) exp(−|ρ−ρ0|

2) dρ=π−d
∫

R2d
⟨a2R⟩T (ρ0+ρ) exp(−|ρ|

2) dρ.
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Note that it is a nonnegative quantity. Taking an arbitrary A > 0 and splitting the integral over R2d into
two pieces, we obtain

(w,Op(⟨a2R⟩T )w)L2

≤

∫
BA(0)

(
⟨a2R⟩T (ρ0)+ A∥∇⟨a2R⟩T ∥∞

)
π−de−|ρ|

2
dρ+

∫
R2d\BA(0)

∥⟨a2R⟩T ∥∞π
−de−|ρ|

2
dρ

≤ ⟨a2R⟩T (ρ0)+ A c
R

+ T
∫

R2d\BA(0)
π−de−|ρ|

2
dρ

≤ K∞

p0
(ωR \ K̃, T )+

C ′′
+ 1 + Ac

R
+ T e−A2/2 2d .

We used (3-12) and (3-11) to obtain the last two inequalities. We take A = |2 log R|
1/2 to obtain

(w,Op(⟨a2R⟩T )w)L2 ≤ Kp0(ωR \ K̃, T )+ C̃
1 + |log R|

1/2

R

for some constant C̃ > 0 independent of R. Going back to the left-hand side of (3-4) (recall that we
chose K = ∅ here) with T in place of T0, as well as (3-5), taking the inner product with w on both sides,
we deduce that ∫ T

0
∥e−i t Pw∥

2
L2(ω)

dt ≤ Kp0(ωR \ K̃, T )+ C̃
1 + |log R|

1/2

R
+

C ′

R
.

By assumption, Obs(ω, T ) is true with a cost Cobs > 0. Recalling that ∥w∥L2 = 1, we can bound the
left-hand side from below by C−1

obs. We arrive at

Kp0(ωR \ K̃, T )≥
1

Cobs
− C̃

1 + |log R|
1/2

R
−

C ′

R
,

which yields the sought result. □

4. Proofs of observability results from conical sets

In this section, we give proofs of the results presented in Sections 1.4.1 and 1.4.2, which concern
observation sets that are conical in the sense of (1-16). Propositions 1.4, 1.5 and 1.7 are proved in
Sections 4.1, 4.2 and 4.3 respectively.

4.1. Proof of Proposition 1.4. Let us prove the converse statement: assume there exists a normalized
eigenvector e of A such that e ̸∈ ω and −e ̸∈ ω. Let ν > 0 be such that Ae = ν2e. We claim the following.

Lemma 4.1. There exists a constant c > 0 such that for any R > 0, one has

∀s ∈ R, (se ∈ ωR =⇒ |s| ≤ cR).

Proof. If s ∈ R is such that se ∈ωR , then there exists y ∈ω\{0} such that |se− y| ≤ R. Moreover, since e
belongs to the complement of the closed set ω∪ −ω, there exists ε > 0 such that

∀x ∈ (ω∪ −ω) \ {0},

∣∣∣∣e −
x
|x |

∣∣∣∣≥ ε.
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We apply this to x = sign(s)y to obtain

|s| ≤
1
ε

∣∣∣∣se − |s|
y

|y|

∣∣∣∣≤ 1
ε
|se − y| +

1
ε
|y|

∣∣∣∣1 −
|s|
|y|

∣∣∣∣≤ 1
ε
|se − y| +

1
ε
|se − y| ≤

2R
ε
.

We used the inverse triangle inequality to obtain the second to last inequality. □

Using this lemma, for any T > 0 and any η > 0, we can estimate the quantity∫ T

0
1ωR×Rd (φt(0, ηe)) dt =

∫ T

0
1ωR

(
η

ν
sin(νt)e

)
dt ≤

∫ 2Nπ/ν

0
1ωR

(
η

ν
sin(νt)e

)
dt,

where N = ⌈νT/2π⌉. Using the periodicity of the sine and a change of variable, we deduce∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

N
ν

∫ 2π

0
1ωR

(
η

ν
sin(t)e

)
dt =

2N
ν

∫ π/2

−π/2
1ωR

(
η

ν
sin(t)e

)
dt.

Provided η ̸= 0, we make the change of variables s = η sin t , for which we have dt = (η2
− s2)−1/2 ds;

this leads to ∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

2N
ν

∫
|η|

−|η|

1ωR

( s
ν

e
) ds√

η2 − s2
.

From Lemma 4.1 above, we conclude that, for any η large enough,∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

2N
ν

∫ cRν

−cRν

ds√
η2 − s2

.

An extra change of variables yields∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

2N
ν

∫ cRν/η

−cRν/η

ds
√

1 − s2
= O

( R
η

)
as η tends to infinity and R is fixed. We deduce that, for any R > 0,

lim inf
ρ→∞

∫ T

0
1ωR×Rd (φt(ρ)) dt = 0.

The necessary condition of Theorem 1.3 then proves that observability cannot hold from ω in time T. □

4.2. Proof of Proposition 1.5. We first reduce to the case where the matrix A is diagonal in the canonical
basis of R2. Then we investigate the isotropic and anisotropic cases separately.

Step 1: Reduction to positive cones containing half coordinate axes. Let S : R2
→ R2 be a linear symplectic

mapping. Then ∇(p ◦ S)= S∗(∇ p) ◦ S, and we observe that

d
dt

S−1φt(Sρ)= S−1 J (S−1)∗S∗
∇ p(φt(Sρ))= J∇(p ◦ S)(S−1φt(Sρ)).

This means that the conjugation of the Hamiltonian flow of p by S is the Hamiltonian flow of p ◦ S. Thus,
for any measurable set C ⊂ R2

× R2,∫ T

0
1C(φ

t(ρ)) dt =

∫ T

0
1S−1C((S

−1φt S)(S−1ρ)) dt,
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and finally, since S−1ρ → ∞ if and only if ρ → ∞, we deduce that

lim inf
ρ→∞

∫ T

0
1C(φ

t(ρ)) dt = lim inf
ρ→∞

∫ T

0
1S−1C((S

−1φt S)(ρ)) dt. (4-1)

Denote by Q the orthogonal matrix that diagonalizes A as follows:

Q−1 AQ =

(
ν2
−

0
0 ν2

+

)
, with Q

(
1
0

)
= e− and Q

(
0
1

)
= e+.

We apply the above observation (4-1) to the map

S =

(
Q 0
0 Q

)
.

It is indeed symplectic since Q = (Q−1)∗ is an orthogonal matrix. When the subset of the phase space C
is of the form ω(ε) given in the statement, the resulting set S−1C is ω̃(ε)= C1

ε ∪ C2
ε , where

C1
ε =

{
(x1, x2) ∈ R2

: |x2|< tan
( 1

2ε
)
x1
}

and C2
ε =

{
(x1, x2) ∈ R2

: |x1|< tan
( 1

2ε
)
x2
}
.

The corresponding Hamiltonian is

(p ◦ S)(x, ξ)=
1
2(Qx · AQx + |Qξ |2)=

1
2(ν

2
−

x1
2
+ ν2

+
x2

2
+ |ξ |2).

That is to say, we have reduced the problem to the study of observability from ω̃(ε) for the above
Hamiltonian: the Schrödinger equation is observable from ω(ε) in time T for the Hamiltonian p is and
only if it is observable from ω̃(ε) in time T for the Hamiltonian p ◦ S. From now on, we write ω(ε)
instead of ω̃(ε), p instead of p ◦ S respectively, and (ν1, ν2)= (ν−, ν+).

Step 2: Isotropic case. The case where ν+ = ν− = ν follows from Proposition 1.4. Indeed, since ε < π/2,
one has ω(ε)∩ L± = {0}, where L± = {x2 = ±x1} are eigenspaces of A = ν2 Id. Therefore, isotropic
oscillators are not observable from ω(ε).

Anisotropic case. We assume that the harmonic oscillator is anisotropic, i.e., ν1 <ν2, and we want to show
that ω(ε) observes the Schrödinger equation. Anticipating the use of Theorem 1.3 where the observation
set has to be enlarged, we will rather prove that the dynamical condition in (1-7) is satisfied by the smaller
set ω(ε/2) = C1

ε/2 ∪ C2
ε/2. We fix an initial point ρ0

= (x0
1 , x0

2; ξ 0
1 , ξ

0
2 ) ∈ R2

× R2. We write the space
components of the flow as follows:

x t
j = cos(ν j t)x0

j +
1
ν j

sin(ν j t)ξ 0
j = A j sin(ν j t + θ j ), j ∈ {1, 2}, t ∈ R,

with A j =

√
(x0

j )
2
+

(
ξ 0

j

ν j

)2

and cos θ j =
ξ 0

j /ν j

A j
, sin θ j =

x0
j

A j
.

Our first goal will be to prove that the dynamical condition (1-7) is satisfied in the time interval [0, T0],
where T0 is given in (1-18). We can consider ρ0 to be nonzero since we are interested in what happens at
infinity. Therefore A1 > 0 or A2 > 0. Also keep in mind that ρ0

→ ∞ if and only if |(A1, A2)| → +∞.
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Step 3: Time spent in C2
ε/2. First we look at the possibility to be in the cone C2

ε/2. This will certainly
be the case provided A1 is very small compared to A2, that is to say the projected trajectory (x t

1, x t
2) is

almost contained in the ordinate axis. We prove∫ T0

0
1C2

ε/2
(x t

1, x t
2) dt ≥

π

ν2

(
1 −

A1/A2

tan(ε/4)

)
. (4-2)

Suppose t ∈ [0, T0] is such that sin(ν2t + θ2)≥ δ, namely x t
2 ≥ A2δ. Assuming that A2 > 0, one has

|x t
1| ≤ A1 ≤

A1

A2δ
x t

2. (4-3)

We want to quantify the amount of t such that this holds. In the following estimate, we use the fact that
T0 ≥ 2π/ν2 and the classical concavity inequality sin x ≥ 2x/π for all x ∈ [0, π/2]:∫ T0

0
1sin(ν2t+θ2)≥δ dt ≥

∫ 2π/ν2

0
1sin(ν2t)≥δ dt ≥

1
ν2

∫ 2π

0
1sin t≥δ dt ≥

2
ν2

∫ π/2

0
12t/π≥δ dt =

π

ν2
(1 − δ).

Now in (4-2), we wish A1/(A2δ) to be strictly less than tan(ε/4), that is to say δ > A1/(A2 tan(ε/4)).
Therefore, for any δ satisfying this condition, the time spent by the trajectory in C2

ε/2 can be bounded
from below by ∫ T0

0
1x t

2≥A2δ dt ≥

∫ T0

0
1sin(ν2t+θ2)≥δ dt ≥

π

ν2
(1 − δ),

so that, maximizing the right-hand side with respect to δ, one obtains (4-3). Notice that this inequality
is useful only if A1/A2 is small enough. In the opposite case where A1/A2 is large, we use another
argument (ν1 and ν2 do not play a symmetric role here).

Step 4: Time spent in C1
ε/2. Let us now consider the times when the trajectory is in the other cone C1

ε/2.
Set η = ⌊ν2/ν1⌋ + 1 − ν2/ν1 ∈ (0, 1]. The main claim in this step of the proof is

∃t2 ∈ [0, T0] : x t2
2 = 0 and x t2

1 ≥ A1δ1, where δ1 = min
(
ν1
ν2
η, 1 −

ν1
ν2

)
. (4-4)

Denote by t1 the first zero of sin(ν1t +θ1) in [0, T0]. It exists since by definition, T0 ≥ π/ν2(1+ν2/ν1)≥

π/ν1. It turns out that t1 is given by

t1 =
π

ν1

(⌈
θ1
π

⌉
−
θ1
π

)
.

Then t1 ∈ [0, π/ν1), and we know that sin(ν1t + θ1) has constant sign on I1 := [0, t1], on I2 :=

[t1, t1 + π/ν1] ∩ [0, T0] and on I3 := [t1 + π/ν1, t1 + 2π/ν1] ∩ [0, T0]. Observe that I1 is possibly
reduced to a singleton, I2 is always nontrivial, and I3 is possibly empty. One can check this from the fact
that T0 can be rewritten

T0 =
π

ν1
+ (1 + η)

π

ν2
. (4-5)

Because T0 ≥ π/ν1, we know that sin(ν1t + θ1) vanishes at least once in [0, T0]. We first distinguish
cases according to whether there are a single one or more than two of these zeroes in this interval.
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t ′

1 0 t2 t1

T0 t

Figure 5. The dashed line is t 7→ A1 sin(ν1t + θ1), the gray line is t 7→ A2 sin(ν2t + θ2), with ν2/ν1 = 1.7.

Case 1: Assume first t1 is the only zero in [0, T0]. This case is illustrated in Figure 5. In view of (4-5), t1
lies at distance > (1 + η)π/ν2 from the boundary of [0, T0], otherwise t1 +π/ν1 or t1 −π/ν1 is another
zero in [0, T0]. In particular, the intervals [0, t1] and [t1, T0] have length ≥ (1 + η)π/ν2. We know that
sin(ν1t + θ1)≥ 0 on one of these intervals, that we denote by Ĩ. Given that Ĩ has length ≥ (1+η)π/ν2, it
contains a zero of sin(ν2t + θ2), lying at distance ≥ (π/ν2)(η/2) from the boundary of Ĩ . We denote such
a zero by t2. Given that the only zero of sin(ν1t + θ1) in Ĩ is t1, we deduce that the distance between t2
and the closest zero t ′

1 of sin(ν1t + θ1) is at least (π/ν2)(η/2). Then the inequality sin x ≥ 2x/π
on x ∈ [0, π/2] yields

sin(ν1t2 + θ1)= sin(ν1(t2 − t ′

1)+ ν1t ′

1 + θ1)= sin(ν1|t2 − t ′

1|)≥
2ν1
π

|t2 − t ′

1| ≥
ν1
ν2
η. (4-6)

The absolute value resulting from the second inequality is due to the fact that we chose t2 in an interval
where sin(ν1t + θ1)≥ 0, or equivalently, ν1t1 + θ1 is an even or odd multiple of π according to the sign
of t2 − t1. We conclude that x t2

2 = 0 by definition of t2 and that we have x t2
1 ≥ A1ν1η/ν2 in virtue of (4-6),

hence the claim (4-4).

Case 2: Now we treat the case where t1 +π/ν1 also lies in [0, T0]. The situation is illustrated in Figure 6.
The interval J1 := [t1, t1 + π/ν1] is contained in [0, T0]. As we already mentioned, sin(ν1t + θ1) has
constant sign on J1.

Subcase 2a: If sin(ν1t + θ1)≥ 0 on J1, since J1 has length π/ν1 >π/ν2, then t 7→ sin(ν2t + θ2) vanishes
in J1, and we can choose a zero t2 at distance ≥ (π/2)(1/ν1 − 1/ν2) from the boundary of J1. This is
illustrated in Figure 6, left. Reproducing the previous argument with the concavity inequality for the sine
function, we deduce that

sin(ν1t2 + θ1)≥
2ν1
π

×
π

2

( 1
ν1

−
1
ν2

)
= 1 −

ν1
ν2
.

Therefore in this case, there is t2 ∈ [0, T0] with x t2
2 = 0 and x t2

1 ≥ (1 − ν1/ν2)A1, hence the claim (4-4).

Subcase 2b: In the remaining case where sin(ν1t + θ1)≤ 0 on J1, we introduce some additional notation;
see Figure 6, right. We denote by t− (resp. t+) the largest (resp. smallest) zero of sin(ν2t + θ2) which
is < t1 (resp. > t1 +π/ν1), given respectively by

t− =
π

ν2

(⌈
ν2t1+θ2
π

⌉
− 1 −

θ2
π

)
and t+ =

π

ν2

(⌊
ν2(t1+π/ν1)+θ2

π

⌋
+ 1 −

θ2
π

)
.
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0
t1 t2

t1 +
π
ν1

T0

t
0 t− t1 t1 +

π
ν1

t+
T0

t

sin(ν1t + θ1)≥ 0 for t ∈ J1 = [t1, t1 +π/ν1]. sin(ν1t + θ1)≤ 0 for t ∈ J1 = [t1, t1 +π/ν1].

Figure 6. The dashed line is t 7→ A1 sin(ν1t + θ1), the gray line is t 7→ A2 sin(ν2t + θ2), with ν2/ν1 = 1.2.

They both have the property that sin(ν1t± + θ1) > 0, but we wish to quantify this statement in order to
have a uniform lower bound. We observe that we can write

t+ − t− =
π

ν2

(
k + 1 +

⌊
ν2
ν1

⌋)
,

with k ∈ {0, 1}. Indeed, from the definition of t+ and t− and the properties of the floor and ceiling
functions, we see that

k =

⌊
ν2(t1+π/ν1)+θ2

π

⌋
−

⌈
ν2t1+θ2
π

⌉
+ 1 −

⌊
ν2
ν1

⌋
is an integer satisfying

−1 ≤
ν2
ν1

− 1 −

⌊
ν2
ν1

⌋
< k ≤ 1 +

ν2
ν1

−

⌊
ν2
ν1

⌋
< 2,

whence k = 0 or 1. In particular, we remark that the distance between t− and t+ is always less than T0.
This implies that either t− or t+ belongs to [0, T0].

Subcase 2b(i): Suppose t− and t+ both belong to [0, T0]. We have

(t+ − t−)−
π

ν1
=
π

ν2

(
k + 1 +

⌊
ν2
ν1

⌋
−
ν2
ν1

)
=
π

ν2
(k + η)≥

π

ν2
η.

Recalling that t− < t1 and t+ > t1 +π/ν1, we deduce that either t1 − t− ≥ πη/2ν2 or t+ − (t1 +π/ν1)≥

πη/2ν2. We call t2 the zero, among t− and t+, that satisfies this property. Then, the concavity inequality
for the sine function allows to conclude that x t2

1 ≥ A1ν1η/ν2 again.

Subcase 2b(ii): If t− ̸∈ [0, T0], so that t+ ∈ [0, T0], we can estimate the distance of t+ from t1 + π/ν1

and T0 as

t+ −

(
t1 +

π

ν1

)
= t+ − t− −

π

ν1
− (t1 − t−)=

π

ν2
(k + η)− (t1 − t−)≥

π

ν2
η−

π

ν2
(1 − k), (4-7)

where we used the fact that |t1 − t−| ≤ π/ν2 by construction in the last inequality; and

T0 − t+ = T0 − (t+ − t−)− t− =
π

ν2
(1 − k)− t− ≥

π

ν2
(1 − k), (4-8)

where this time we have used that t− < 0 by assumption.
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Now observe that t+ satisfies by definition

t1 +
2π
ν1

− t+ =
π

ν1
−

(
t+ −

(
t1 +

π

ν1

))
≥
π

ν1
−
π

ν2
.

Thus, if |t+ − (t1 +π/ν1)| ≥ (π/2)min(η/ν2, 1/ν1 − 1/ν2), then t2 = t+ lies at distance greater or equal
to (π/2)min(η/ν2, 1/ν1 − 1/ν2) from the boundary of the interval [t1 +π/ν1, t1 + 2π/ν1], to which it
belongs. This allows us to deduce that x t2

1 ≥ A1δ1 using the inequality sin x ≥ 2x/π on [0, π/2] again,
and x t2

2 = 0 by definition of t2 = t+. If on the contrary |t+ − (t1 +π/ν1)| ≤ (π/2)min(η/ν2, 1/ν1 −1/ν2),
then from (4-7), it follows that k = 0, so t2 = t+ +π/ν2 ≤ T0 from (4-8). Then

t1 +
2π
ν1

− t2 =
π

ν1
−
π

ν2
−

(
t+ −

(
t1 +

π

ν1

))
≥
π

2

( 1
ν1

−
1
ν2

)
.

In particular, t2 lies again at large enough distance of the boundary of [t1 +π/ν1, t1 +2π/ν1]. We deduce
as before that x t2

1 ≥ A1δ1 and x t2
2 = 0.

Subcase 2b(iii): It remains to deal with the case where t+ ̸∈ [0, T0], hence t− ∈[0, T0], which is symmetrical.
We write

t1 − t− = −

(
t+ − t1 −

π

ν1

)
+ t+ − t− −

π

ν1
≥ −

π

ν2
+
π

ν2
(k + η)=

π

ν2
η−

π

ν2
(1 − k), (4-9)

t− = T0 − (t+ − t−)+ t+ − T0 ≥
π

ν2
(1 − k), (4-10)

using respectively that |t1 + π/ν1 − t+| ≤ π/ν2 by construction of t+, and t+ > T0 by assumption. By
definition of t− we have

t− −

(
t1 −

π

ν1

)
=
π

ν1
− (t1 − t−)≥

π

ν1
−
π

ν2
,

so t2 = t− satisfies x t2
1 ≥ A1δ1 and x t2

2 = 0 provided |t1 − t−| ≥ (π/2)min(η/ν2, 1/ν1 −1/ν2). Otherwise,
k = 0 in virtue of (4-9), so (4-10) ensures that t2 = t− −π/ν2 ≥ 0. Then we check that

t2 −

(
t1 −

π

ν1

)
=
π

ν1
−
π

ν2
− (t1 − t−)≥

π

2

( 1
ν1

−
1
ν2

)
,

and we conclude similarly to the previous case.

The discussion above shows that (4-4) is true. In particular, (x t2
1 , x t2

2 ) is in the cone C1
ε/2. Using that the

sine function is 1-Lipschitz, we know that for t in a neighborhood of 0, we have

|x t2+t
2 | ≤ A2ν2|t | and x t2+t

1 ≥ A1(δ1 − ν1|t |).

So for t small enough, (x t2+t
1 , x t2+t

2 ) will remain in the cone C1
ε/2. Quantitatively, as soon as t fulfills the

condition

|t |<

δ1

ν1

1 +
ν2

ν1

A2/A1

tan(ε/4)

, (4-11)

we compute that

x t2+t
1 > A1

δ1
ν2

ν1

A2/A1

tan(ε/4)

1 +
ν2

ν1

A2/A1

tan(ε/4)

>
A2ν2

tan(ε/4)
|t | ≥

|x t2+t
2 |

tan(ε/4)
.
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This means that for t satisfying (4-11), the point (x t2+t
1 , x t2+t

2 ) belongs indeed to the cone C1
ε/2. In the

case where t2 = 0 or t2 = T0, we may restrict ourselves to times t satisfying t ≥ 0 or t ≤ 0 in addition
to (4-11), so that in the end, we obtain

∫ T0

0
1C1

ε/2
(x t

1, x t
2) dt ≥ min

T0,

δ1

ν1

1 +
ν2

ν1

A2/A1

tan(ε/4)

. (4-12)

Step 5: Upper bound on the optimal observation time. Now that we have (4-3) and (4-12) at hand, we can
obtain a lower bound independent of the values of A1 and A2. If on the one hand A1/A2 ≤ tan(ε/4)/2,
then (4-3) yields ∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥
π

2ν2
,

while on the other hand, if A2/A1 ≤ 2/tan(ε/4), then (4-12) leads to

∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥ min

T0,

δ1

ν1

1 +
ν2

ν1

2
tan2(ε/4)

≥
ε2

16
min

(
T0,

δ1
ν1+2ν2

)
(4-13)

(to get the second inequality, use that ε/4 ≤ tan(ε/4)≤ 1 since ε ≤ π/2 by assumption). On the whole,
we have ∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥
ε2

32
min

(
π

ν2
,

δ1
ν1+ν2

)
= cε2, (4-14)

and setting Tε = T0 − cε2/2, we deduce∫ Tε

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥

∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt −
c
2
ε2

≥
c
2
ε2.

Therefore the dynamical condition (1-7) holds in time Tε. Setting T = T0−cε2/4>Tε, we use Theorem 1.3
to conclude that observability is true on [0, T ] from ω(ε/2)R \ K, for some R > 0 and for any compact
set K. We can take K to be a ball with radius large enough so that ω(ε/2)R \ K ⊂ ω(ε) (this can be
justified by an argument similar to Lemma 4.1). We conclude that observability holds from ω(ε) in
time T. This proves the upper bound in (1-18).

Step 6: Lower bound on the optimal observation time. Fix ε ∈ (0, π/4). We recall that ν2 > ν1. Our
objective is to exhibit trajectories (x t

1, x t
2) that do not meet the set ω(2ε). They typically look like the

one shown in Figure 3. Take δ > 0 a small parameter to be chosen later. These trajectories we look for
are of the form

x t
1 = A1 sin

(
π
ν1
ν2
(1 − δ)− ν1t

)
and x t

2 = A2s sin(πδ+ ν2t), (4-15)

with s ∈ {+1,−1}, and A1, A2 > 0 to be tuned properly later on as well.
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0
t0

t1
t2 T0

t

Figure 7. The dashed line is t 7→ x t
1, the gray line is t 7→ x t

2, with ν2/ν1 = 3.9, as defined in (4-15).

Let us introduce three remarkable times t0, t1 and t2: provided δ < 1
2 , the first zeroes of x t

1 and x t
2 in

the interval [0, T0] coincide and are given by

t0 =
π

ν2
(1 − δ).

The next zero of x t
1 is

t1 = t0 +
π

ν1
.

As for x t
2, its first zero that is strictly larger than t1 is given by

t2 =
π

ν2

(
1 +

⌊
δ+

ν2
π

t1
⌋

− δ
)

=
π

ν2

(
1 +

⌊
1 +

ν2
ν1

⌋
− δ

)
= T0 −

π

ν2
δ. (4-16)

This is illustrated in Figure 7. Notice that t2 ≤ T0. By construction, the interval [t1, t2] has length
t2 − t1 ∈ (0, π/ν2], and x t

2 has constant sign on this interval. We choose the sign s involved in the
definition (4-15) of x t

2 in such a way that x t
2 ≤ 0 on [t1, t2]. In particular, the projected trajectory (x t

1, x t
2)

cannot cross C2
2ε in the time interval [t1, t2]. Likewise, since x0

1 > 0, it follows that x t
1 ≤ 0 on [t0, t1], by

definition of t0, t1. In particular, the curve (x t
1, x t

2) cannot be in C1
2ε for t ∈ [t0, t1].

Set T = t2 −πδ/ν2. In each interval [0, t0], [t0, t1] and [t1, T ], we want to exclude the possibility for
the trajectory to be in C1

2ε or C2
2ε by suitably choosing the parameters δ, A1, A2.

To achieve this goal, we are interested in estimating from above and from below x t
1 and x t

2 in these
intervals. We first deal with x t

1. Recalling that the sine function is 1-Lipschitz, we know that

|x t
1| ≤ A1ν1 min(|t − t0|, |t − t1|) ∀t ∈ R. (4-17)

We obtain lower estimates by roughly bounding from below sin x on [0, π] by the “triangle” function
(2/π)min(x, π − x). For t ∈ [0, t0], that leads to

|x t
1| ≥ A1

2
π

min
(
ν1|t0 − t |, |π − ν1(t0 − t)|

)
≥ A1

2ν1
π

min
(
|t0 − t |,

∣∣∣ π
ν1

−
π

ν2
+ δ

π

ν2
+ t
∣∣∣)

≥ A1
2ν1
π

min
(
|t0 − t |, π

ν1
−
π

ν2

)
, (4-18)

for t ∈ [t0, t1] we obtain

|x t
1| ≥ A1

2ν1
π

min(|t − t0|, |t − t1|), (4-19)

while for t ∈ [t1, T ], we obtain

|x t
1| ≥ A1

2
π

min
(
ν1|t − t1|, |π − ν1(t − t1)|

)
≥ A1

2ν1
π

min
(
|t − t1|,

∣∣∣ π
ν1

+ t1 − t
∣∣∣)

≥ A1
2ν1
π

min
(
|t1 − t |, π

ν1
+ t1 − T

)
.
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The last inequality rests on the fact that π/ν1 + t1 ≥ T. More quantitatively, we have

π

ν2
+ t1 = T0 +

π

ν2

(
1 +

ν2
ν1

+ 1 − δ− 2 −

⌊
ν2
ν1

⌋)
= T +

π

ν2
δ+

π

ν2

(
ν2
ν1

−

⌊
ν2
ν1

⌋)
. (4-20)

In particular,
π

ν1
+ t1 − T = π

( 1
ν1

−
1
ν2

)
+

(
π

ν2
+ t1 − T

)
≥ π

( 1
ν1

−
1
ν2

)
+
π

ν2
δ, (4-21)

which leads to
|x t

1| ≥ A1
2ν1
π

min
(
|t1 − t |, π

( 1
ν1

−
1
ν2

))
∀t ∈ [t1, T ].

We obtain a similar estimate for x t
2: it vanishes at t0 and t2, so using again that the sine function is

1-Lipschitz we get
|x t

2| ≤ A2ν2 min(|t0 − t |, |t2 − t |) ∀t ∈ R. (4-22)

Near, t1, we want an accurate upper bound using the fact that x t1
2 ≤ 0 (recall that we chose the sign s

in (4-15) so that this is true): for any t ∈ R, we have

x t
2 ≤ x t

2 − x t1
2 ≤ A2ν2|t − t1|. (4-23)

As for a lower bound, we obtain, for t ∈ [0, t0],

|x t
2| ≥ A2

2
π

min
(
ν2|t0 − t |, |π − ν2(t0 − t)|

)
≥ A2

2ν2
π

min
(
|t0 − t |, δ π

ν2
+ t
)

≥ A2
2ν2
π

min
(
|t0 − t |, δ π

ν2

)
, (4-24)

and, for t ∈ [t1, T ],

|x t
2| ≥ A2

2
π

min
(
|π − ν2(t2 − t)|, ν2|t2 − t |

)
≥ A2

2ν2
π

min
(∣∣∣ π
ν2

− (t2 − t)
∣∣∣, |t2 − t |

)
≥ A2

2ν2
π

min
(
|t − t1|,

π

ν2
δ
)
. (4-25)

This time, the last inequality holds true since on the one hand, t2 − t ≥ t2 − T = πδ/ν2, and on the other
hand, thanks to (4-20) and (4-16), we check that, for any t ∈ [t1, T ],

π

ν2
− (t2 − t)= (t − t1)+

(
π

ν2
+ t1

)
− t2 = (t − t1)+

π

ν2

(
ν2
ν1

−

⌊
ν2
ν1

⌋)
≥ t − t1.

Now we show that the two conditions

2ν1
ν2
ε ≤

A2
A1
δ, (4-26)

2ν2
ν1
ε ≤

A1
A2

min
(

1, ν2
ν1

− 1
)

(4-27)

imply that the curve (x t
1, x t

2) does not cross the set ω(2ε) in the interval [0, T ]. We study the three
intervals [0, t0], [t0, t1] and [t1, T ] separately.
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• Let t ∈ [0, t0]. On the one hand, the condition (4-26) implies that

A1ν1|t − t0|
4ε
π

≤ A2
2ν2
π

min
(
|t − t0|, δ

π

ν2

)
(recall that t0 ≤ π/ν2 and δ ≤ 1/2). Using that tan ε ≤ 4ε/π for ε ∈ [0, π/4], we obtain

A1ν1|t − t0| tan ε ≤ A2
2ν2
π

min
(
|t − t0|, δ

π

ν2

)
,

which leads to tan(ε)|x t
1| ≤ |x t

2| in virtue of (4-17) and (4-24). Therefore (x t
1, x t

2) ̸∈ C1
2ε. On the other

hand, the condition (4-27) implies that

A2ν2|t0 − t |4ε
π

≤ A1
2ν1
π

min
(
|t0 − t |, π

ν1
−
π

ν2

)
(recall again that t0 ≤ π/ν2). Using that tan ε ≤ 4ε/π for ε ∈ [0, π/4], we obtain

A2ν2|t0 − t | tan ε ≤ A1
2ν1
π

min
(
|t0 − t |, π

ν1
−
π

ν2

)
,

which leads to tan(ε)|x t
2| ≤ |x t

1| in virtue of (4-22) and (4-18). Therefore (x t
1, x t

2) ̸∈ C2
2ε.

• On [t0, t1], the situation is slightly simpler because we already know that x t
1 ≤ 0 on this interval, which

means that the trajectory does not cross C1
2ε by construction. In addition, condition (4-27) implies that

A2ν2 min(|t0 − t |, |t1 − t |)4ε
π

≤ A1
2ν1
π

min(|t − t0|, |t1 − t |).

Then (4-22), (4-23) and (4-19) yield tan(ε)x t
2 ≤ |x t

1|; hence (x t
1, x t

2) ̸∈ C2
2ε.

• We finally consider t ∈ [t1, T ]. Notice that by construction, x t
2 ≤ 0 on [t1, T ], so that the trajectory does

not enter C2
2ε. To disprove the fact that it meets C1

2ε, we check that the condition (4-26) implies

A1ν1|t − t1|
4ε
π

≤ A2
2ν2
π

min
(
|t − t1|,

π

ν2
δ
)
,

owing to the fact that π/ν2 ≥ T − t1 ≥ t − t1 (this can be deduced from (4-21)). Then (4-17) and (4-25)
lead to tan(ε)|x t

1| ≤ |x t
2|, which shows indeed that (x t

1, x t
2) ̸∈ C1

2ε.

To sum up, in order to ensure that t 7→ (x t
1, x t

2) does not cross ω(2ε), it suffices to choose A1/A2 properly,
as well as δ, so that (4-26) and (4-27) are fulfilled. If we set

δ =
4ε2

min(1, ν2/ν1 − 1)
and

A1

A2
= 2ε

ν2/ν1

min(1, ν2/ν1 − 1)
, (4-28)

we can check that these two conditions are indeed satisfied.
The conclusion is as follows: we consider a sequence of initial data of the form

ρn =

(
A1,n sin

(
π
ν1
ν2
(1 − δ)

)
, A2,ns sin(πδ)

)
,

with A1,n/A2,n as in (4-28) and A1,n, A2,n →∞ as n →∞. The x component of the trajectory t 7→φt(ρn)

is then of the same form as the projected trajectory (x t
1, x t

2) that we studied. Given that these trajectories do
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not cross ω(2ε), we conclude that the observability condition of Theorem 1.3 is not true in time T, namely

K∞

p0
(ω(2ε), T )= 0.

Yet for any R > 0, as we have already seen earlier, ω(ε)R is contained in ω(2ε) modulo a compact set.
Thus for any R > 0, there exists a compact set K (R)⊂ Rd such that

K∞

p0
(ω(ε)R \ K (R), T )≤ K∞

p0
(ω(2ε), T )= 0.

We conclude thanks to the necessary condition in Theorem 1.3 that observability cannot hold in ω(ε)
in time T. It remains to see that by definition (recall (4-16) and (4-28)), we have

T = t2 −
π

ν2
δ = T0 − 2 π

ν2
δ = T0 − Cε2. (4-29)

This ends the proof of the lower bound of the optimal observation time. □

4.3. Proof of Proposition 1.7. The aim of this proposition is to study observability from measurable
conical sets for the (exact) isotropic harmonic oscillator. We first simplify the situation owing to periodicity
properties of the isotropic quantum harmonic oscillator.

Step 1: Upper bound of the optimal observation time. First recall that there exists a complex number z of
modulus 1 such that

eiπ P/νu = zu(− • ) ∀u ∈ L2(Rd). (4-30)

See for instance11 [Zworski 2012, Section 11.3.1] or [Folland 1989, (4.26)]. In particular, the propagator
e−i t P is 2π/ν-periodic modulo multiplication by z2. This enables us to show that observability holds in
some time T if and only if it holds in time 2π/ν: assume the Schrödinger equation is observable from
ω ⊂ Rd in some time T ; let k be an integer such that 2πk/ν ≥ T. The aforementioned 2π/ν-periodicity
of the harmonic oscillator leads to

∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt ≤ C
∫ 2πk/ν

0
∥e−i t Pu∥

2
L2(ω)

dt

= Ck
∫ 2π/ν

0
∥e−i t Pu∥

2
L2(ω)

dt (4-31)

for any u ∈ L2 so that observability holds in ω in time 2π/ν. In particular, the optimal observation time
is always ≤ 2π/ν. We can further reduce the observation time by (2Ck)−1 (see Lemma A.3), so that the
optimal observation time is in fact T⋆ < 2π/ν. Incidentally, the property (4-30) yields∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt ≤

∫ 2π/ν

0
∥e−i t Pu∥

2
L2(ω)

dt ≤ 2
∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt, (4-32)

which will be useful later on.

11The property (4-30) can be derived from the fact that the spectrum of P is made of half integer multiples of ν, together with
parity properties of eigenfunctions.
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Step 2: Necessary condition. Assume observability holds from ω = ω(6) in some time T. Let k be a
positive integer such that 2πk/ν ≥ T. Using (4-31) and (4-32), we obtain

∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt ≤ 2Ck
∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt.

We choose for u a particular coherent state. Following [Combescure and Robert 2012], for any ρ0 = (x0, ξ0),
we set

ϕρ0(x)=

(
ν

π

)d/4
e−(i/2)ξ0·x0+iξ0·x exp

(
−
ν

2
|x − x0|

2
)
.

Then

e−i t Pϕρ0 = e−(i/2)tνdϕρt , (4-33)

where ρt = φt(ρ0) is the evolution of ρ0 in phase space along the Hamiltonian flow associated with
p(x, ξ)=

1
2(ν

2
|x |

2
+ |ξ |2), that is to say,

ρt =

(
cos(νt)x0 + sin(νt)ξ0

ν
,−ν sin(νt)x0 + cos(νt)ξ0

)
.

Equation (4-33) can be checked by observing that the derivative of both sides agree, or by applying
[Combescure and Robert 2012, Proposition 3]. Selecting an initial datum of the form ρ0 = (0, ξ0) with a
nonzero ξ0, the observability inequality implies

1 = ∥ϕρ0∥
2
L2(Rd )

≤ C
∫ T

0
∥ϕρt ∥

2
L2(ω)

dt ≤ 2kC
∫ π/ν

0
∥ϕρt ∥

2
L2(ω∪−ω)

dt

= 2kC
(
π

ν

)d/2
∫ π/ν

0

∫
ω∪−ω

∣∣∣exp
(
−
ν

2

∣∣∣x − sin(νt)ξ0
ν

∣∣∣2)∣∣∣2 dx dt

= 4k C
ν

(
π

ν

)d/2
∫ π/2

0

∫
ω∪−ω

exp
(
−ν

∣∣∣x − sin(t)ξ0
ν

∣∣∣2) dx dt. (4-34)

We used a change of variables in the integral over t and the fact that sin(x)= sin(π − x) to obtain the
last equality. Next we truncate the integrals in t and in x using respectively a small parameter δ > 0 and a
large parameter R > 0:∫ π/2

0

(
π

ν

)d/2
∫
ω∪−ω

exp
(
−ν

∣∣∣x−sin(t)ξ0
ν

∣∣∣2)dx dt

≤πδ+

∫ (π/2)(1−δ)

π/2δ

(
π

ν

)d/2
(∫

ω∪−ω

exp
(
−ν

∣∣∣x−sin(t)ξ0
ν

∣∣∣2)1BR(sin(t)ξ0/ν)(x)dx+

∫
Rd\BR(0)

e−ν|x |
2
dx
)

dt.

The rightmost integral is controlled by c/R for some constant c > 0. Therefore∫ π/2

0

(
π

ν

)d/2
∫
ω∪−ω

exp
(
−ν

∣∣∣x − sin(t)ξ0
ν

∣∣∣2) dx dt

≤ πδ+
c
R

+

(
π

ν

)d/2
∫ (π/2)(1−δ)

πδ/2

∣∣∣(ω∪ −ω)∩ BR

(
sin(t)ξ0

ν

)∣∣∣ dt.
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We get rid of the sine in the right-hand side by noting that cos t ≥1−2t/π≥δ for any t ∈[πδ/2, π(1−δ)/2],
and changing variables:∫ π(1−δ)/2

πδ/2

∣∣∣(ω∪ −ω)∩ BR

(
sin(t)ξ0

ν

)∣∣∣ dt ≤

∫ π(1−δ)/2

πδ/2

∣∣∣(ω∪ −ω)∩ BR

(
sin(t)ξ0

ν

)∣∣∣ |cos t |
δ

dt

=
1
δ

∫ sin(π(1−δ)/2)

sin(πδ/2)

∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣ ds.

Using that sin x ≥ 2x/π on [0, π/2], we finally deduce that∫ π/2

0

(
π

ν

)d/2
∫
ω∪−ω

exp
(
−ν

∣∣∣x − sin(t)ξ0
ν

∣∣∣2) dx dt

≤ πδ+
c
R

+
1
δ

(
π

ν

)d/2
∫ 1

δ

∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣ ds. (4-35)

We plug this into (4-34) to obtain

1
2

=
1
2
∥ϕρ0∥

2
L2(Rd )

≤ 4k C
δν

(
π

ν

)d/2
∫ 1

δ

∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣ ds, (4-36)

where we absorbed the remainder terms of (4-35) in the left-hand side by choosing δ sufficiently small
and R sufficiently large. We now use a scaling argument in the right-hand side, which is possible since
the set ω∪ −ω is conical: for any s ∈ [δ, 1], writing

θ0 =
ξ0

|ξ0|
and r =

νR
δ|ξ0|

, (4-37)

we have ∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣= (
s |ξ0|

ν

)d ∣∣(ω∪ −ω)∩ BνR/s|ξ0|(θ0)
∣∣

≤

( R
δ

)d
r−d

|(ω∪ −ω)∩ Br (θ0)|.

After integrating over the s variable, the estimate (4-36) becomes

1 = ∥ϕρ0∥
2
L2(Rd )

≤ 8k C
δν

(
π

ν

)d/2( R
δ

)d
r−d

∣∣(ω∪ −ω)∩ Br (θ0)
∣∣. (4-38)

We now reformulate the right-hand side in terms of the lower density 2−

6̂
defined in (1-20). To do so, we

observe that the triangle inequality yields, for r ∈ (0, 1),

∀x ∈ Br (θ0), ||x | − 1| ≤ |x − θ0| and
∣∣∣∣ x
|x |

− θ0

∣∣∣∣= ∣∣∣∣ x−θ0
|x |

+
θ0
|x |
(1 − |x |)

∣∣∣∣≤ 2r
1−r

,

which in turn leads to

Br (θ0)⊂

{
x ∈ Rd

: 1 − r ≤ |x | ≤ 1 + r and
∣∣∣∣ x
|x |

− θ0

∣∣∣∣≤ 2r
1−r

}
, r ∈ (0, 1).
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Recall that if |ξ0| is large enough, then (4-37) implies r ∈ (0, 1). We conclude by a spherical change of
coordinates that

|(ω∪ −ω)∩ Br (θ0)| ≤

∫ 1+r

1−r

∫
Sd−1

1|θ−θ0|≤2r/(1−r)1ω∪−ω(r̃θ)cd r̃d−1 dσ(θ) dr̃

≤

∫ 1+r

1−r

∫
Sd−1∩B2r/(1−r)(θ0)

16̂(θ)cd2d−1 dσ(θ) dr̃

= cd2d−1
× 2rσ(6̂ ∩ B2r/(1−r)(θ0)). (4-39)

In addition, one has

σ(Br (θ0))≤ c′

drd−1. (4-40)

(In the above estimates, cd and c′

d are constants depending only on the dimension.) Combining (4-38),
(4-39) and (4-40), we obtain

1 = ∥ϕρ0∥
2
L2(Rd )

≤ cdc′

d2d+3k C
δν

(
π

ν

)d/2( R
δ

)d
×

( 2
1−r

)d−1 1

c′

d

(
2r

1−r

)d−1 σ(6̂ ∩ B2r/(1−r)(θ0))

≤ cdc′

d2d+3k C
δν

(
π

ν

)d/2( R
δ

)d( 2
1−r

)d σ(6̂∩B2r/(1−r)(θ0))

σ (B2r/(1−r)(θ0))
.

Recalling that r behaves as 1/|ξ0|, it remains to let ξ0 → ∞ with ξ0/|ξ0| = θ0 arbitrary, to deduce that

1 ≤ cdc′

d2d+3k C
δν

(
π

ν

)d/2(2R
δ

)d
2−

6̂
(θ0) ∀θ0 ∈ Sd−1.

This concludes the proof of the necessary condition.

Step 3: Sufficient condition. Write for short ω= ω(6) again. The fact that 6̂ =6∪−6 has full measure,
namely σ(Sd−1

\ 6̂)= 0, implies that Rd
\ (ω∪−ω) is Lebesgue negligible (recall the definition of ω(6)

in (1-19)). Therefore the left-hand side of (4-32) with k = 1 yields∫ 2π/ν

0
∥e−i t Pu∥

2
L2(ω)

dt ≥

∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt =

∫ π/ν

0
∥e−i t Pu∥

2
L2(Rd )

dt =
π

ν
∥u∥

2
L2(Rd )

,

where we used the fact that the propagator is an isometry. □

5. Proofs of observability results from spherical sets

In this section, we give proofs of the results presented in Section 1.4.3, which concern observation sets
that are spherical in the sense of (1-23). Propositions 1.9 and 1.11 are proved in Sections 5.1 and 5.3
respectively. Section 5.2 is dedicated to the proof of Lemma 1.12.

5.1. Proof of Proposition 1.9. The rotation Sθ of angle θ reads

Sθ y =
(
cos θy1 + sin θy2,− sin θy1 + cos θy2, y3, . . . , yd

)
, y = (y1, y2, . . . , yd) ∈ Rd .
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In the sequel, we set L0 to be the two-dimensional plane spanned by the vectors

e1 = M(1, 0, 0, . . . , 0) and e2 = M(0, 1, 0, 0, . . . 0).

The two linear maps

5L0 =
1
2 M(Id −Sπ )M−1 and 5L⊥

0
=

1
2 M(Id +Sπ )M−1

are the orthogonal projectors on L0 and L⊥

0 respectively, since M is orthogonal. With the notation of (iii),
we can write, with a slight abuse of notation,

V (x0)= Ṽ0(|M−1x0|) ∀x0 ∈ L0. (5-1)

Let us investigate the properties of the gradient of V on L0.

Lemma 5.1. Let x0 ∈ L0. Then

∇V (x0) ∈ L0 and ∃c = c(|x0|)≥ 0 : ∇V (x0)= cx0.

Proof. Assumptions (i) and (ii) (with θ = π ) yield, for any x ∈ Rd ,

−∇V (−x)= ∇V (x) and M S−πM−1
∇V (M SπM−1x)= ∇V (x). (5-2)

Yet since x0 ∈ L0, we have 5L0 x0 = x0 so that

x0 = −M SπM−1x0, (5-3)

and noticing that Sπ = S−π , we obtain combining the two equations (5-2):

∇V (x0)= −∇V (−x0)= −M SπM−1
∇V (−M SπM−1x0)= −M SπM−1

∇V (x0).

That means exactly that 5L⊥

0
∇V (x0)= 0, or in other words, ∇V (x0) ∈ L0.

Next we prove that ∇V (x0) is collinear with x0. We first get rid of the case x0 = 0: the first equation
in (5-2) implies that ∇V (0)= 0. From now on, we assume that x0 ̸= 0. We compute

d
dθ

M SθM−1
=

d
dθ
(
M SθM−15L0 + M SθM−15L⊥

0

)
= M Sθ+π/2 M−15L0 .

This is true because M SθM−15L⊥

0
is independent of θ (M SθM−1 is the identity in L⊥

0 ). Therefore,
differentiating the equality V (x)= V (M SθM−1x) at θ = 0, we obtain

0 =
d

dθ
V (x0)|θ=0 =

d
dθ

V (M SθM−1x0)|θ=0 = ∇V (x0) · M Sπ/2 M−15L0 x0

= ∇V (x0) · M Sπ/2 M−1x0.

This means that ∇V (x0) is orthogonal to M Sπ/2 M−1x0. Yet the plane L0 is invariant by M SθM−1 and
x0 ⊥ M Sπ/2 M−1x0. Since ∇V (x0) ∈ L0 and L0 has dimension 2, we deduce that ∇V (x0) = cx0 for
some c ∈ R. We claim that c ≥ 0 as a consequence of (iii) that Ṽ0 is nondecreasing. Indeed for t > 0
close to zero, using (5-1), the Taylor formula at order 1 yields

0 ≤ Ṽ0((1 + t)|M−1x0|)− Ṽ0(|M−1x0|)= V (x0 + t x0)− V (x0)= t∇V (x0) · x0 + o(t).
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Dividing by t > 0, we find that ∇V (x0) ·x0 = c|x0|
2
≥ 0. Thus c = ∇V (x0) ·x0/|x0|

2 depends only on |x0|

since V restricted to L0 is radial. □

This lemma allows us to exhibit periodic circular orbits of the Hamiltonian flow of p. For any x0 ∈ L0,
denoting by c the scalar such that ∇V (x0)= cx0, the phase space curve

x t
= M S√

ct M−1x0, ξ t
=

√
cM S√

ct+π/2 M−1x0 (5-4)

is the trajectory of the Hamiltonian flow with initial data (x0,
√

cM Sπ/2 M−1x0). This follows from
uniqueness in the Picard–Lindelöf theorem, since the above curve solves on the one hand

d
dt

x t
=

√
cM S√

ct+π/2 M−15L0 x0 = ξ t ,

and on the other hand, in view of (5-3) and observing that |x t
| = |x0| for any t ,

d
dt
ξ t

= cM S√
ct+πM−15L0 x0 = cM S√

ct M−1(5L⊥

0
−5L0)x0 = −cx t

= −∇V (x t).

To conclude, we argue as follows: since by assumption observability holds from ω(I ) in time T > 0,
the necessary condition of Theorem 1.3 implies that there exists R > 0 such that

∃ϵ > 0, ∃A > 0 : ∀|ρ| ≥ A,
∫ T

0
1ω(I )R×Rd (φt(ρ)) dt ≥ ϵ.

Let x0 ∈ L0 be such that |x0| ≥ A. We consider the Hamiltonian trajectory issued from the point
(x0,

√
c(x0)M−1Sπ/2 Mx0) constructed in (5-4). Then |x t

| is constant over time, which implies that

ϵ ≤

∫ T

0
1ω(I )R×Rd (φt(ρ)) dt =

∫ T

0
1ω(I )R (x

t) dt = T 1IR (|x0|),

whence |x0| ∈ IR . We deduce that
∀s ∈ R+, IR ∩ [s, s + A] ̸= ∅,

which implies the desired result (1-24) with r = A + 2R. □

5.2. Proof of Lemma 1.12. Firstly we assume that ν2/ν1 is rational: we write it as an irreducible
fraction p/q . The number T = 2πp/ν2 = 2πq/ν1 is the period of the Hamiltonian flow associated with
1
2(x · Ax + |ξ |2). Without loss of generality, we can assume that A is diagonal, and that the eigenvectors
associated with ν2

1 and ν2
2 are the vectors (1, 0) and (0, 1) of the canonical basis of R2.

We want to prove that 3(ν2/ν1) defined in (1-26) is equal to the quantity

30 = sup
ρ0∈R4\{0}

mint∈[0,T ]|(π ◦φt)(ρ0)|

maxt∈[0,T ]|(π ◦φt)(ρ0)|
, (5-5)

where we recall that π : (x, ξ) 7→ x .
We start with two remarks, related to explicit expressions of the Hamiltonian flow. First we can replace

the supremum on R4 by a maximum on a compact set parametrizing trajectories, e.g., the unit sphere S3,
because the Hamiltonian flow is homogeneous of degree 1, that is φt(λρ0)= λφt(ρ0) for any scalar λ ∈ R
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(it fact φt is a linear map for all t). Second, since |x t
|
2
= |x t

1|
2
+|x t

2|
2, it will be easier to compute 32

0. In
view of these remarks, and writing the Hamiltonian trajectories in action-angle coordinates:

x t
1 = A1 sin(ν1t + θ1) and x t

2 = A2 sin(ν2t + θ2), (5-6)

we want to study

32
0 = sup

A2
1+A2

2=1
θ1,θ2∈R

mint∈[0,T ]

(
A2

1 sin2(ν1t + θ1)+ A2
2 sin2(ν2t + θ2)

)
maxt∈[0,T ]

(
A2

1 sin2(ν1t + θ1)+ A2
2 sin2(ν2t + θ2)

)
= sup

λ∈[0,1]

θ1,θ2∈R

mint1∈[0,T ]

(
(1 − λ) sin2(ν1t1 + θ1)+ λ sin2(ν2t1 + θ2)

)
maxt2∈[0,T ]

(
(1 − λ) sin2(ν1t2 + θ1)+ λ sin2(ν2t2 + θ2)

)
= sup

λ∈[0,1]

θ1,θ2∈R

mint1∈[0,T ]

(
(1 − λ) sin2(ν1t1 + θ1)+ λ sin2(ν2t1 + θ2)

)
1 − mint2∈[0,T ]

(
(1 − λ) cos2(ν1t2 + θ1)+ λ cos2(ν2t2 + θ2)

) .
In view of the periodicity in the variables θ1 and θ2, the supremum in the variables λ, θ1, θ2 is in fact
a supremum over (λ, θ1, θ2) ∈ [0, 1] × [0, 2π ] × [0, 2π ]. A compactness and continuity argument
shows that this supremum is attained for some triple (λ, θ1, θ2). Furthermore, one can check that
maxλ,θ1,θ2 = maxθ1,θ2 maxλ. Thus we should simplify the problem first by considering fixed values for θ1

and θ2, and maximizing with respect to these variables ultimately. Therefore our objective is to compute

32
θ1,θ2

= max
λ∈[0,1]

mint1∈[0,T ]

(
(1 − λ) sin2(ν1t1 + θ1)+ λ sin2(ν2t1 + θ2)

)
1 − mint2∈[0,T ]

(
(1 − λ) cos2(ν1t2 + θ1)+ λ cos2(ν2t2 + θ2)

) . (5-7)

We can further simplify this by rewriting in more pleasant terms the minima in the numerator and the
denominator. It relies on the following fact.

Step I: Simplification of the optimization problem. The minimum we want to estimate involves a sum of
two squared sine functions that oscillate at different frequencies. Intuitively, it looks reasonable that the
minimum of such a sum is attained between two zeroes that achieve the minimal distance between a zero
of the first sine function, and a zero of the second. This is a motivation to introduce

d0 = d0(θ1, θ2)=
4pq

T
min

sin(ν j t j +θ j )=0
j=1,2

|t1 − t2|. (5-8)

It is indeed a minimum, and not only an infimum, thanks to the rational ratio between ν1 and ν2, or
equivalently, thanks to the periodicity of the Hamiltonian flow. We can give an explicit expression of this
quantity reasoning as follows: the numbers t1 and t2 are such that sin(ν j t j + θ j )= 0, j = 1, 2, if and only
if there exist two integers k1 and k2 such that

ν j t j + θ j = k jπ.

Therefore

|t1 − t2| =

∣∣∣π(k1
ν1

−
k2
ν2

)
−

(
θ1
ν1

−
θ2
ν2

)∣∣∣= T
2pq

∣∣∣(k1 p − k2q)−
(

p θ1
π

− q θ2
π

)∣∣∣.
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Yet since p and q are coprime integers, it follows from Bézout’s identity that k1 p − k2q can take any
value in Z when we vary k1 and k2. We deduce that

d0 = 2 dist
(

p θ1
π

− q θ2
π
,Z
)

= dist
(

p θ1
π/2

− q θ2
π/2

, 2Z
)
.

Incidentally, this expression implies that d0 ∈ [0, 1]. Now we claim that

min
t∈[0,T ]

(
(1 − λ) sin2(ν1t + θ1)+ λ sin2(ν2t + θ2)

)
= min

s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

))
. (5-9)

This amounts to proving that the minimum in t in the left-hand side of (5-9) is attained between two zeros
t1, t2 of sin(ν1t + θ1) and sin(ν2t + θ2) such that |t2 − t1| = T d0/4pq. We first show that the minimum
in s (in the right-hand side) is less than the minimum in t (in the left-hand side). To do so, we pick
t0 ∈ [0, T ] that attains the minimum in t . We choose t j two zeroes of sin(ν j t + θ j ) respectively, j = 1, 2,
that are the closest possible to t0. Due to periodicity, they satisfy |t j − t0| ≤ π/(2ν j ). That t0 attains the
minimum means that it is a critical point of the function

F : t 7→ (1 − λ) sin2(ν1t + θ1)+ λ sin2(ν2t + θ2)= (1 − λ) sin2(ν1(t − t1))+ λ sin2(ν2(t − t2)). (5-10)

Classical trigonometry formulae then yield

(1 − λ)ν1 sin(2ν1(t0 − t1))+ λν2 sin(2ν2(t0 − t2))= F ′(t0)= 0. (5-11)

Recalling that |2ν j (t0 − t j )| ≤ π , we see that sin(2ν j (t0 − t j )) is of the same sign as t0 − t j , thus leading
to the condition that

(t0 − t1)(t0 − t2)≤ 0,

or in other words, t0 lies between t1 and t2. Let s0 ∈ [0, 1] be such that t0 = (1 − s0)t1 + s0t2. We obtain

F(t0)= (1 − λ) sin2(ν1(t0 − t1))+ λ sin2(ν2(t0 − t2))

= (1 − λ) sin2(ν1s0(t2 − t1))+ λ sin2(ν2(1 − s0)(t1 − t2)).

We finally use that |t1 − t2| ≥ T d0/4pq and the monotonicity of the sine function on [0, π/2] to deduce
one inequality in (5-9), namely:

min
t∈[0,T ]

F(t)≥ min
s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

))
. (5-12)

To check the converse inequality, we proceed as follows: we pick t1 and t2, zeroes of sin(ν j t + θ j )

respectively, that satisfy |t1 − t2| = T d0/4pq. Denote by J the closed interval with endpoints t1, t2. Let
t0 ∈ J be a point where F restricted to J attains its minimum. Then introducing a parameter s ∈ [0, 1]

such that t = (1 − s)t1 + st2, we obtain

F(t0)≤ F(t)= (1 − λ) sin2
(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

)
for all s ∈ [0, 1]. This results in

min
t∈[0,T ]

F(t)≤ min
s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

))
,
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which shows together with (5-12) that (5-9) is true. We observe in the definition of 3θ1,θ2 (see (5-7)) that
a similar minimum is involved with cosine functions instead of sine functions. To reduce to the case of
sine functions and use (5-9), we simply recall that cos(x)= sin(x +π/2). We obtain

min
t∈[0,T ]

(
(1 − λ) cos2(ν1t + θ1)+ λ cos2(ν2t + θ2)

)
= min

t∈[0,T ]

(
(1 − λ) sin2

(
ν1t + θ1 +

π

2

)
+ λ sin2

(
ν2t + θ2 +

π

2

))
= min

s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sdπ/2

)
+ λ sin2

(
π/2

q
(1 − s)dπ/2

))
,

where we set (recall the definition of d0 in (5-8))

dπ/2 = dπ/2(θ1, θ2)= d0

(
θ1 +

π

2
, θ2 +

π

2

)
= dist

(
p θ1
π/2

− q θ2
π/2

+ p − q, 2Z
)
.

Depending on whether p and q have the same parity, we can state that

dπ/2 =

{
d0 if p − q ≡ 0 (mod 2),

1 − d0 if p − q ≡ 1 (mod 2).

With this at hand, we can rewrite 32
θ1,θ2

defined in (5-7) as

32
θ1,θ2

= max
λ∈[0,1]

mins1∈[0,1]

(
(1 − λ) sin2

(
π/2

p s1d0

)
+ λ sin2

(
π/2

q (1 − s1)d0

))
1 − mins2∈[0,1]

(
(1 − λ) sin2

(
π/2

p s2dπ/2
)

+ λ sin2
(
π/2

q (1 − s2)dπ/2
)) .

Step II: Computation of 32
θ1,θ2

. We set, for any λ ∈ [0, 1] and s ∈ [0, 1],

gλ(s)= gλ,d0(s)= (1 − λ) sin2
(π/2

p
sd0

)
+ λ sin2

(π/2
q
(1 − s)d0

)
.

In the perspective of computing 32
θ1,θ2

, we first show the following result.

Lemma 5.2. One has
max
λ∈[0,1]

min
s∈[0,1]

gλ(s)= gλ0(s0)= sin2
(
π/2
p+q

d0

)
,

where s0 = p/(p + q) and λ0 = q/(p + q).

Proof. Firstly, we observe that gλ(s0) is independent of λ, since it solves

sin2
(π/2

p
s0d0

)
= sin2

(π/2
q
(1 − s0)d0

)
.

This remarkable property implies that for any λ ∈ [0, 1], we have

∀λ′
∈ [0, 1], min

s∈[0,1]

gλ′(s)≤ gλ′(s0)= gλ(s0),

which results in
max
λ′∈[0,1]

min
s∈[0,1]

gλ′(s)≤ gλ(s0) ∀λ ∈ [0, 1].
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Now we to show that the equality is reached when λ = λ0 introduced in the statement. Noticing that
(1 − λ0)/p = λ0/q = 1/(p + q), we obtain, using classical trigonometry formulae,

g′

λ0
(s)= π

2
d0

(
2 1

p
(1−λ0)cos

(
π/2

p
sd0

)
sin
(
π/2

p
sd0

)
−2 1

q
λ0 cos

(
π/2

q
(1−s)d0

)
sin
(
π/2

q
(1−s)d0

))
=
π/2
p+q

d0

(
sin
(
π

p
sd0

)
−sin

(
π

q
(1−s)d0

))
=

π

p+q
d0 cos

(
π

2
d0

( s
p

+
1−s

q

))
sin
(
π

2
d0

( s
p

−
1−s

q

))
=

π

p+q
d0 cos

(
π

2
d0

( s
p

+
1−s

q

))
sin
(
π

2
d0

( 1
p

+
1
q

)
(s −s0)

)
.

We observe that the cosine is always nonnegative for any s ∈ [0, 1], because d0 ≤ 1. As for the sine, it is
nonpositive for s ≤ s0 and nonnegative for s ≥ s0. We deduce that g′

λ0
(s)≤ 0 on [0, s0] and g′

λ0
(s)≥ 0

on [s0, 1]. Therefore, the minimum of gλ0 is attained at s0. □

Regarding the denominator in the definition of 32
θ1,θ2

, observing that λ0 and s0 in the above lemma do
not dependent on d0 or dπ/2, we find

min
λ∈[0,1]

(
1 − min

s∈[0,1]

(
(1 − λ) sin2

(
π/2

q
sdπ/2

)
+ λ sin2

(
π/2

p
(1 − s)dπ/2

)))
= 1 − max

λ∈[0,1]

min
s∈[0,1]

gλ,dπ/2(s)

= 1 − gλ0,dπ/2(s0)

= cos2
(
π/2
p+q

dπ/2
)
.

This implies that λ0 maximizes the minimum of the numerator and minimizes the maximum of the
denominator at once. Moreover, when λ= λ0, the minimum of the denominator and the maximum of the
numerator are reached at a common value s0. Therefore

32
θ1,θ2

=

sin2
(
π/2
p+q d0

)
cos2

(
π/2
p+q dπ/2

) .
When p and q have the same parity, we have dπ/2 = d0, so that

3θ1,θ2 = tan
(
π/2
p+q

d0

)
. (5-13)

When they do not have the same parity, then dπ/2 = 1 − d0 and we obtain

3θ1,θ2 =

sin
(
π/2
p+q d0

)
cos
(
π/2
p+q (1 − d0)

) = sin
(
π/2
p+q

)
− cos

(
π/2
p+q

) sin
(
π/2
p+q (1 − d0)

)
cos
(
π/2
p+q (1 − d0)

)
= sin

(
π/2
p+q

)
− cos

(
π/2
p+q

)
tan
(
π/2
p+q

(1 − d0)
)
. (5-14)
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Recall that in the above formulae, the dependence on the phase shifts θ1 and θ2 is hidden in d0. Thus
it remains to optimize over these parameters θ1, θ2 to compute the quantity 30 defined in (5-5). In the
first case (5-13), we notice that d0 ≤ 1, and that the equality is achieved for θ1 = π/(2p) and θ2 = 0, for
instance, so that

30 = tan
(
π/2
p+q

)
.

In the second case (5-14), the maximum is reached for d0 = 1 as well, so that

30 = sin
(
π/2
p+q

)
.

The conclusion is that 30 =3(p/q), where the function 3 is the one defined in (1-26).

Step III: Irrational case. We now consider the case where ν2/ν1 ̸∈ Q. To obtain the sought result, it
suffices to show that for any nonzero initial data (A1, A2, θ1, θ2) of the flow (in action-angle coordinates),
the projected trajectory

x t
1 = A1 sin(ν1t + θ1), x t

2 = A2 sin(ν2t + θ2),

satisfies inft∈R|x t
| = 0. Let us consider the convergents (p j/q j ) j∈N of ν2/ν1, in irreducible form (see

Remark 1.14). In view of (1-31), we introduce ϵ j ∈ [−1, 1] such that

ν2

ν1
=

p j

q j
+
ϵ j

q2
j
. (5-15)

We exhibit a sequence of times (t j ) j∈N such that x t j
1 = 0 and x t j

2 → 0 as j → ∞. Since p j and q j are
coprime integers, we can fix for each j ∈ N a pair of Bézout coefficients (k j , l j ) ∈ Z2 such that

k j p j − l j q j = 1, with |k j | ≤ q j . (5-16)

Set

a j =

⌊
θ1
π

p j −
θ2
π

q j

1 + ϵ j
k j
q j

⌋
and t j =

a j k jπ−θ1

ν1
. (5-17)

By definition of t j , we have x t j
1 = 0. Thus it remains to check that x t j

2 → 0 as j → ∞. We have

ν2t j + θ2 − a j l jπ =

(
p j

q j
+
ϵ j

q2
j

)
×π

(
a j k j −

θ1

π

)
+ θ2 − a j l jπ

=
p j

q j
a j k jπ − a j l jπ +

ϵ j

q2
j
×π

(
a j k j −

θ1

π

)
+
π

q j

(
θ2

π
q j −

θ1

π
p j

)
= a j

π

q j
+ a jϵ j

k j

q2
j
π −

θ1ϵ j

q2
j

−
π

q j

(
θ1

π
p j −

θ2

π
q j

)

=
π

q j

(
1 + ϵ j

k j

q j

)(
a j −

θ1
π

p j −
θ2
π

q j

1 + ϵ j
k j
q j

)
−
θ1ϵ j

q2
j
.
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We used (5-15) to obtain the first equality and (5-16) for the third. In the last line, the two factors between
parentheses are bounded. Indeed, the first factor is bounded by 2 since we chose k j such that |k j | ≤ q j

in (5-16) and because |ϵ j | ≤ 1 from (5-15). The second factor is bounded by 1 due to the definition
of a j (5-17). Recalling that q j → ∞ since ν2/ν1 is irrational, we obtain ν2t j + θ2 = a j l jπ + o(1) as
j → ∞, hence x t j

2 → 0, and the proof of Lemma 1.12 is complete. □

5.3. Proof of Proposition 1.11. As we did in Section 5.2, we assume without loss of generality that A is
diagonal, with eigenvalues ν2

1 and ν2
2 associated with the eigenvectors (1, 0) and (0, 1) in R2.

Step 1: Construction of an equivalent shrunk observation set. Recall that the sufficient condition of
Theorem 1.3 implies observability from an “enlarged” observation set. This leads us to construct a shrunk
set Ĩ ⊂ I, such that ĨR = Ĩ +(−R, R) is contained in I up to a bounded set, so that the same is true for the
sets ω( Ĩ ) and ω(I ). In the lemma below, when I ⊂ R+, we use the notation IR :=

⋃
s∈I (s − R, s + R).

Lemma 5.3 (shrunk observation set). Let I =
⋃

n In , where In ⊂ R+ are open intervals, with |In| → +∞

if the union is infinite. Then there exists a family of disjoint open intervals ( J̃n)n in R+ (with | J̃n| → +∞

if there are infinitely many of them) such that the set Ĩ =
⋃

n J̃n satisfies the following:

(i) Ĩ ⊂ I .

(ii) For any R > 0, the set ĨR \ I is bounded.

(iii) For any R > 0, one has κ⋆( Ĩ )= κ⋆( ĨR)= κ⋆(I )= κ⋆(IR).

Proof. Recall the definition of κ⋆ in (1-25). We write the open set I as a union of disjoint open intervals
I =

⋃
n Jn . Let us fix R > 0. We first deal with the case where there are only finitely many Jn’s. If I

is bounded, one has κ⋆(I ) = κ⋆(IR) = 0 and Ĩ = ∅ satisfies the conclusions of the lemma. If I is not
bounded, then there is an index n0 for which Jn0 is of the form Jn0 = (a,+∞). Then for any R > 0 the
equality κ⋆(I )= κ⋆(IR)= 1 and Ĩ = Jn0 satisfies the conclusions of the lemma as well.

We now consider the case where there are infinitely many Jn’s. By assumption, one has |Jn| → +∞

as n → ∞. Writing Jn = (an, bn), with an < bn <∞, we define for any index n the interval

J̃n =
(
an +

1
2

√
4 + δn, bn −

1
2

√
4 + δn

)
, where δn = min(an, bn − an).

Since the Jn’s are disjoint and |Jn| = bn − an → +∞, we also have an → +∞, so δn → +∞ too.
Incidentally, one readily checks that | J̃n| → +∞ as well. Thus, defining

Ĩ =

⋃
n

J̃n,

we have Ĩ ⊂ I, namely the property (i), and given any R > 0, there are finitely many n’s such that
R ≥

√
δn/2. This implies that the thickened set ĨR is contained in I modulo a bounded set, and hence

we obtain (ii). The crucial point of this construction is claim (iii). As a consequence of the inclusions
Ĩ ⊂ ĨR and I ⊂ IR , we have κ⋆( Ĩ ) ≤ κ⋆( ĨR) and κ⋆(I ) ≤ κ⋆(IR). Moreover, in virtue of (ii), we
can write ĨR = ( ĨR ∩ I ) ∪ A, where A = ĨR \ I is bounded. Since (1/r)|A ∩ [0, r ]| ≤ (1/r)|A| → 0
as r → +∞, one can check that κ⋆( ĨR) ≤ κ⋆( ĨR ∩ I ) ≤ κ⋆(I ). To sum up, we have proved so far that
κ⋆( Ĩ )≤ κ⋆( ĨR)≤ κ⋆(I )≤ κ⋆(IR).
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Thus, in order to prove (iii), it remains to check that κ⋆(IR)≤κ⋆( Ĩ ). Unless we are in the straightforward
case κ⋆(IR)= 0, we pick κ ∈ (0, κ⋆(IR)), so that by definition of κ⋆, we have

∃c > 0, ∃r0 > 0 : ∀r ≥ r0,
1
r
|IR ∩ [κr, r ]| ≥ c. (5-18)

In the sequel, to simplify notation, we write J R
n = (Jn)R . Up to enlarging r0, we can assume that for

any index n such that J R
n ∩ [κr0,+∞) ̸= ∅, we have δn ≥ 5 + 8R (recall that δn → +∞). Fix an r ≥ r0.

Then there is a finite (possibly empty) set of indices {nk}k such that J R
nk

⊂ [κr, r ]. Assume first that

1
r

∣∣∣∣⋃
k

J R
nk

∩ [κr, r ]

∣∣∣∣= 1
r

∑
k

|J R
nk

| ≥
c
2
. (5-19)

Then
1
r
| Ĩ ∩ [κr, r ]| ≥

1
r

∑
k

| J̃nk | =
1
r

∑
k

(
|J R

nk
| −

(√
4 + δnk + 2R

))
≥

1
r

∑
k

(
1 −

√
4 + δnk + 2R
δnk + 2R

)
|J R

nk
| ≥

1
r

∑
k

(
1 −

√
4
δ2

n
+

1
δnk

−
2R

δn + 2R

)
|J R

nk
|.

To obtain the second to last inequality, we used the fact that by definition of δn , we have |Jn| ≥ δn , which
implies in particular that |J R

n | ≥ δn + 2R. Using in the last line that δnk ≥ 5 + 8R, together with (5-19),
we obtain

1
r
| Ĩ ∩ [κr, r ]| ≥

(
1 −

√
9
25

−
1
5

)
1
r

∑
k

|J R
nk

| ≥
1
5

×
c
2
. (5-20)

Otherwise, if now (5-19) is not satisfied, then recalling (5-18), we have

1
r

∣∣∣∣(IR \

⋃
k

J R
nk

)
∩ [κr, r ]

∣∣∣∣≥ c
2
.

Any interval J R
n ⊂ IR \

⋃
k J R

nk
intersecting [κr, r ] must contain κr or r , otherwise it would satisfy

J R
n ∩ [κr, r ] = ∅, or J R

n ⊂ (κr, r) (the latter would imply that n ∈ {nk}k). Therefore, there are at most
two such intervals. We deduce that there is an index n⋆ such that J R

n⋆ ̸⊂ [κr, r ] but J R
n⋆ ∩[κr, r ] ̸= ∅, with

1
r
|J R

n⋆ ∩ [κr, r ]| ≥
c
4
.

Writing J R
n⋆ = (an⋆−R, bn⋆+R), the fact that J R

n⋆∩[κr, r ] ̸=∅ imposes that an⋆−R ≤ r ; hence an⋆ ≤ r +R.
Thus we obtain

1
r
| Ĩ ∩ [κr, r ]| ≥

1
r
| J̃n⋆ ∩ [κr, r ]| ≥

1
r
(
|J R

n⋆ ∩ [κr, r ]| −
√

4 + δn⋆ − 2R
)

≥
c
4

−

√
4 + r + R + 2R

r
. (5-21)

We used the fact that δn⋆ ≤ an⋆ ≤ r + R to obtain the last inequality. In view of the estimates (5-20)
and (5-21), in any case we have

1
r
| Ĩ ∩ [κr, r ]| ≥ min

(
c

10
,

c
4

−

√
4 + r + R + 2R

r

)
.
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We conclude that

lim inf
r→+∞

1
r
| Ĩ ∩ [κr, r ]|> 0.

Recalling that κ is any arbitrary number < κ⋆(IR), we finally get the desired converse inequality
κ⋆( Ĩ )≥ κ⋆(IR). Thus (iii) is proved, which concludes the proof of the lemma. □

In the sequel, we will proceed as follows: to prove that κ⋆(I ) > 3(ν2/ν1) is a sufficient condition to
have observability from ω(I ), we will check that the dynamical condition (1-7) of Theorem 1.3 is true in
the smaller set ω( Ĩ ), where Ĩ is given by Lemma 5.3. To show that it is also necessary, we will check
that the condition (1-7) is violated in the larger set ω(I )R = ω(IR) for any R > 0.

Step 2: Geometric condition of observability for rationally dependent characteristic frequencies. We
investigate the validity of the dynamical condition (1-7) of Theorem 1.3. In the case where ν2/ν1 ∈ Q,
writing ν2/ν1 = p/q as an irreducible fraction, the period of the Hamiltonian flow is given by T0 =

2πp/ν2 = 2πq/ν1. We write for short 3=3(ν2/ν1) and κ⋆ = κ⋆(I ). Our goal now is to reformulate the
dynamical condition (1-7) using the area formula.

Proposition 5.4 (area formula [Evans and Gariepy 2015, Theorem 3.9]). Let J ⊂ R be a bounded interval
and let γ : J → Rn be a Lipschitz curve. Then γ is differentiable at Lebesgue-almost every point in J and
for any Borel set E ⊂ Rn, one has∫

J
1E(γ (t))|γ ′(t)| dt =

∫
Im γ∩E

#γ−1({x}) dH1(x).

Here, Im γ = {γ (t) : t ∈ J } ⊂ Rn, #γ−1({x}) stands for the cardinality of the set {t ∈ J : γ (t)= x}, and H1

is the one-dimensional Hausdorff measure.

We will apply this formula to a curve of the form γ : t 7→ |x t
| ∈ R defined on J = (0, T ), where

t 7→ (x t , ξ t) is a trajectory of the Hamiltonian flow. Calculations will involve the inverse Jacobian |γ ′(t)|−1.
Using anisotropy12 of the harmonic oscillator (p ̸= q), we can check that the Jacobian vanishes only at a
finite number of points.

Lemma 5.5. Let t 7→ (x t , ξ t) be a trajectory of the Hamiltonian flow of an anisotropic harmonic oscillator,
with initial datum ρ0 = (x0, ξ0). Then the curve γ : R ∋ t 7→ |x t

| ∈ R+ is Lipschitz with constant
√

2p(ρ0).
If ρ0 ̸= 0, then γ is of class C∞ in R \ {γ = 0}. Moreover, the set

Sγ := {t ∈ R : γ (t)= 0 or γ ′(t)= 0}

is locally finite, namely for any bounded interval I ⊂ R, the set Sγ ∩ I is finite. In addition, for any
bounded interval I ⊂ R, one has

∃k = k(I ) ∈ N : ∀s ∈ R+, #γ−1({s})∩ I ≤ k. (5-22)

12In the excluded isotropic case (p = q = 1), one can choose (x0, ξ0) so that |x t
| is constant, as we did in the proof of

Proposition 1.9 (see Section 5.1). In such a situation, the set Im γ ⊂ R+ is reduced to a point. This is a very singular situation,
since the Jacobian |γ ′(t)| is identically zero.
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Proof. That γ is Lipschitz follows from the inverse triangle inequality, the Hamilton equations (1-6) and
the fact that p(x, ξ)= V (x)+ 1

2 |ξ |2 is preserved by the flow:

|γ (t2)− γ (t1)| ≤ |x t2 − x t1 | ≤ |t2 − t1| sup
t∈R

|ξ t
| ≤ |t2 − t1|

√
2p(ρ0).

From now on, we assume that ρ0 ̸= 0. First notice that the set {γ = 0} is closed since γ is continuous.
Given that t 7→ x t is smooth, the curve γ is smooth in a neighborhood of any point t ∈ R \ {γ = 0}, so
that γ ∈ C∞(R \ {γ = 0}). To show that Sγ is locally finite, it is sufficient to prove that it is closed and
also discrete, namely that it is made of isolated points.13

We first check that it is closed by observing that the map f : t 7→γ 2(t)=|x t
|
2 belongs to C∞(R) and that

Sγ = {t ∈ R : f ′(t)= 0}. (5-23)

To check this equality, we use the fact that f ′(t)=2γ (t)γ ′(t) for all t ∈R\Sγ . If t ̸∈ Sγ , then it follows that
γ (t)γ ′(t) ̸=0. Conversely, if t ∈ Sγ , either γ (t) ̸=0, so that γ ′(t)=0, in which case f ′(t)=2γ (t)γ ′(t)=0;
or γ (t)= 0, which implies that x t

= 0, hence f ′(t)= 2x t
· ξ t

= 0. This justifies (5-23).
Thus it remains to show that Sγ is discrete. Let us compute the derivatives of f up to order 4:

f ′(t)= 2x t
· ξ t , (5-24)

f (2)(t)= 2|ξ t
|
2
− 2x t

· Ax t , (5-25)

f (3)(t)= −4ξ t
· Ax t

− 2ξ t
· Ax t

− 2x t
· Aξ t

= −8ξ t
· Ax t , (5-26)

f (4)(t)= 8(|Ax t
|
2
− ξ t

· Aξ t). (5-27)

Let us write the Taylor expansion of f ′ at order 3 near t0 ∈ R:

f ′(t)= f ′(t0)+ (t − t0) f (2)(t0)+
(t − t0)2

2
f (3)(t0)+

(t − t0)3

6
f (4)(t0)+ o((t − t0)3). (5-28)

Suppose that t0 ∈ Sγ . Then f ′(t0)= 0 in virtue of (5-23). If f (2)(t0) ̸= 0, then (5-28) yields

| f ′(t)| ≥
| f (2)(t0)|

2
|t − t0|

for all t in a neighborhood U of t0. In particular, Sγ ∩ U = {t0}, meaning that t0 is isolated. Likewise,
if f (2)(t0)= 0 but f (3)(t0) ̸= 0, then (5-28) leads to

| f ′(t)| ≥
| f (3)(t0)|

4
|t − t0|2

in a neighborhood of t0, so that t0 is isolated again.
Now, if f (2)(t0) = f (3)(t0) = 0, we show that necessarily f (4)(t0) ̸= 0. In view of (5-24), (5-25),

and (5-26), we have

x t0 · ξ t0 = 0, |ξ t0 |2 = x t0 · Ax t0, and ξ t0 · Ax t0 = 0. (5-29)

13If S ⊂R is closed and discrete, the for any compact interval I ⊂R, the set S ∩ I is compact. Since S is discrete, the set S ∩ I
can be covered by open sets containing at most one element of S. Then, extracting a finite subcovering shows that S ∩ I is finite.
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The first and third equalities mean that ξ t0 ⊥ x t0 and ξ t0 ⊥ Ax t0. Moreover, the second equality ensures
that x t0 ̸= 0 and ξ t0 ̸= 0, otherwise (x t0, ξ t0) = (0, 0); hence ρ0 = 0. Since we are in two dimensions,
we deduce that Ax t0 and x t0 are parallel, and therefore x t0 is an eigenvector of A. Since ξ t0 ⊥ x t0 and
ξ t0 ̸= 0, we deduce that ξ t0 is also an eigenvector, associated with a different eigenvalue since A has
two distinct eigenvalues by assumption. We relabel ν1 and ν2 so that Ax t0 = ν2

x x t0 and Aξ t0 = ν2
ξ ξ

t0 .
Plugging this into the second equality in (5-29) yields |ξ t0 |2 = ν2

x |x
t0 |2, from which we deduce that the

fourth derivative (5-27) cannot vanish at t0, given that the oscillator is anisotropic (νx ̸= νξ ):

|Ax t0 |2 − ξ t0 · Aξ t0 = ν4
x |x

t0 |2 − ν2
ξ |ξ

t0 |2 = ν2
x (ν

2
x − ν2

ξ )|x
t0 |2 ̸= 0.

Therefore (5-28) implies that

| f ′(t)| ≥
| f (4)(t0)|

12
|t − t0|3

in a neighborhood of t0, that is to say the critical point t0 is again isolated. To sum up, the above argument
shows that there exists a neighborhood U of t0 such that U ∩ Sγ = {t0}, so Sγ is indeed a discrete set.

Now fix I ⊂ R a bounded interval. We have just shown that n = #(Sγ ∩ I ) is finite. To prove (5-22),
we observe that the complement of Sγ in I is a union of at most n + 1 open intervals in I, on which γ ′

does not vanish and has constant sign (use the intermediate value theorem). Therefore γ is one-to-one
in each of these intervals. We infer that

∀s ∈ R, #{t ∈ I : γ (t)= s} ≤ n + 1 + #(Sγ ∩ I )= 2n + 1. □

Let us assume that κ⋆ ≤3 and fix R > 0. Recalling that κ⋆ = κ⋆(I )= κ⋆(IR) from (iii) in Lemma 5.3,
we know that there exists a sequence (rn)n∈N tending to +∞ along which

1
rn

|IR ∩ [κ⋆rn, rn]| n→∞
−−−→ 0. (5-30)

According to Step II of Section 5.2, considering actions

(A1, A2)= (
√

1 − λ0,
√
λ0)=

(√
p

p + q
,

√
q

p + q

)
and initial angles (θ1, θ2)= (π/(2p), 0), one obtains a trajectory of the Hamiltonian flow t 7→ (x t , ξ t)

such that
min

t∈[0,T ]

|x t
| =3 max

t∈[0,T ]

|x t
|, (5-31)

that is to say a trajectory that attains the supremum (5-5). Here T is any real number larger than the
period of the flow T0. In view of the homogeneity of degree 1 of the Hamiltonian flow, we know that
t 7→ (cx t , cξ t) is still a trajectory of the Hamiltonian flow, for any scalar c ∈ R. Note that (5-31) above
ensures that |x t

| is bounded from below by a positive constant for all times. Therefore, Lemma 5.5
implies that the curve γ : (0, T ) ∋ t 7→ |x t

| is smooth. The corresponding set Sγ of Lemma 5.5 is nothing
but Sγ = {γ ′

̸= 0}. A consequence of this lemma is that Sγ has vanishing measure. Thus we write

(0, T ) \ Sγ =

⋃
N∈N

BN , where BN = {t ∈ (0, T ) : |γ ′(t)| ≥ 2−N
}. (5-32)
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Fix an arbitrary N ∈ N and a scalar c > 0. Then we obtain∫
BN

1IR (c|x
t
|) dt ≤

2N

c

∫
BN

1IR (cγ (t))|cγ
′(t)| dt =

2N

c

∫
cγ (BN )

1IR (s)#
{

t ∈ (0, T ) : γ (t)=
s
c

}
ds

≤
2N k

c

∫
cγ (BN )

1IR (s) ds ≤
2N k

c

∫ c max γ

c3max γ
1IR (s) ds, (5-33)

where the equality results from the area formula (Proposition 5.4) applied to E = IR . The integer k is
the one from Lemma 5.5 (5-22). The last inequality follows from the fact that |x t

| spans the interval
[3max γ,max γ ] by construction (recall (5-31)). Thus taking c = cn = rn/max γ , with (rn)n∈N the
sequence from (5-30), we obtain∫

BN

1IR (cnγ (t)) dt ≤ 2N k(max γ )× 1
rn

|IR ∩ [3rn, rn]| n→∞
−−−→ 0,

by (5-30), since 3≥ κ⋆. Now going back to (5-32), since the set Sγ is negligible, monotone convergence
ensures that |BN | → T as N → ∞. We finally obtain that∫ T

0
1ω(IR)(cnx t) dt ≤ |(0, T ) \ BN | +

∫
BN

1IR (cn|x t
|) dt = T − |BN | + o(1)

as n → ∞. We let N → ∞ to conclude that the dynamical condition (1-7) is not fulfilled, namely

lim inf
ρ→∞

∫ T

0
1ω(I )R×Rd (φt(ρ)) dt = 0.

The parameter R > 0 is arbitrary. Therefore the necessary condition of Theorem 1.3 tells us that
observability from ω(I ) in time T does not hold, and T ≥ T0 itself is arbitrary.

We turn to the case where κ⋆ > 3. This time, we take T = T0 to be the period of the Hamiltonian
flow and check that the observability condition (1-7) holds in ω( Ĩ ). We pick κ ∈ (3, κ⋆). In virtue of
Lemma 5.3(iii), we have κ⋆ = κ⋆(I )= κ⋆( Ĩ ) so that

∃c > 0, ∃r0 > 0 : ∀r ≥ r0,
1
r
| Ĩ ∩ [κr, r ]| ≥ c. (5-34)

Let (x t , ξ t) be a trajectory of the Hamiltonian flow with initial datum ρ0. One can estimate r̃ = max|x t
|

from below as follows: since the time t0 at which the maximum is reached is also a (local) maximum
of |x t

|
2, the second derivative satisfies

d2

dt2 |x t
|
2
|t=t0 = 2|ξ t0 |2 − 2x t0 · Ax t0 ≤ 0.

Thus

r̃2
:= |x t0 |2 ≥ x t0 ·

A
∥A∥

x t0 ≥
1

∥A∥

( 1
2

x t0 · Ax t0 +
1
2
|ξ t0 |2

)
=

1
∥A∥

p(ρ0). (5-35)

Provided |ρ0| is large enough so that p(ρ0) ≥ ∥A∥r2
0 , we see in particular that r̃ ≥ r0. Introduce

γ : (0, T ) ∋ t 7→ |x t
|. We know from Lemma 5.5 that γ is Lipschitz with constant

√
2p(ρ0)≤

√
2∥A∥r̃
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(this inequality is a consequence of (5-35) above). In particular, we have |γ ′(t)| ≤
√

2∥A∥r̃ outside the
set Sγ from Lemma 5.5. Thus we can apply again the area formula (Proposition 5.4):∫ T

0
1ω( Ĩ )(x

t) dt =

∫ T

0
1 Ĩ (|x

t
|) dt ≥ (2∥A∥)−1/2 1

r̃

∫ T

0
1 Ĩ (γ (t))|γ

′(t)| dt

= (2∥A∥)−1/2 1
r̃

∫
γ ((0,T ))

1 Ĩ (s)#{t ∈ (0, T ) : γ (t)= s} ds

≥ (2∥A∥)−1/2 1
r̃

∫
γ ((0,T ))

1 Ĩ (s) ds. (5-36)

This time, one has γ ((0, T ))⊃ [3r̃ , r̃ ] ⊃ [κ r̃ , r̃ ] (by definition of 3; see (5-5)). This means that∫ T

0
1ω( Ĩ )(x

t) dt ≥ (2∥A∥)−1/2 1
r̃

∫ r̃

κ r̃
1 Ĩ (s) ds ≥ (2∥A∥)−1/2c, (5-37)

where the last inequality is due to (5-34) (recall that r̃ ≥ r0). Therefore the dynamical condition (1-7)
of Theorem 1.3 is satisfied. In fact, the explicit expression of the Hamiltonian flow in action-angle
coordinates (5-6) shows that |x t

|
2 is (T0/2)-periodic.14 Therefore, setting c̃ := (2∥A∥)−1/2c, the dynamical

condition (1-7) is equivalently satisfied in time T0/2 − c̃/4:∫ T0/2−c̃/4

0
1ω( Ĩ )(x

t) dt ≥
1
2

∫ T0

0
1ω( Ĩ )(x

t) dt −
c̃
4

≥ (2∥A∥)−1/2 c
4
.

By Theorem 1.3, this implies that observability holds from ω( Ĩ )R \ K for some R > 0 and any compact
set K ⊂ Rd in any time > T0/2 − c̃/4, which in turn implies observability from ω(I ) in virtue of
Lemma 5.3(ii). Incidentally, the optimal observation time is strictly smaller than T0/2.

Step 3: Diophantine approximation in the irrational case. We assume that ν2/ν1 ∈ R \ Q and denote
by p j/q j the reduced fraction expression of its convergents (see Remark 1.14). We investigate the validity
of the dynamical condition (1-7) by approximating the trajectories of the “irrational” Hamiltonian flow by
the trajectories of the “rational” Hamiltonian flow obtained by replacing ν2/ν1 with its convergent p j/q j .
For instance, a projected trajectory of the irrational harmonic oscillator of the form

x t
1 = A1 sin(ν1t + θ1), x t

2 = A2 sin(ν2t + θ2), (5-38)

should be compared to

x t
j,1 = A1 sin(ν1t + θ1), x t

j,2 = A2 sin
(

p j

q j
ν1t + θ2

)
, (5-39)

which is a trajectory of the Hamiltonian flow of the (rational) harmonic oscillator with characteristic
frequencies ν1 and p jν1/q j , whose classical Hamiltonian is

p j (x, ξ)=
1
2

(
ν2

1 x2
1 +

p2
j

q2
j
ν2

1 x2
2

)
+

1
2
(ξ 2

1 + ξ 2
2 ).

14One can check that the projected trajectories of rational harmonic oscillators are invariant by point reflection with respect to
the origin or axial symmetry with respect to some coordinate axis, depending on whether p and q have the same parity or not.
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The distance between these two trajectories is

|x t
− x t

j | = |x t
2 − x t

j,2| ≤ A2|ν2 −
p j

q j
ν1||t | ≤ A2

ν1|t |
q2

j
, (5-40)

owing to the fact that the sine function is 1-Lipschitz and to the Diophantine approximation result (1-31).
We already know from Lemma 1.12 that

min
t∈[0,T j ]

|x t
j | ≤3 j max

t∈[0,T j ]
|x t

j |, where T j =
2π
ν1

q j , 3 j =3

(
p j

q j

)
.

The time T j is the period of the flow of the rational harmonic oscillator with characteristic frequencies ν1

and p jν1/q j . Let us set

m j = min
t∈R

|x t
j | and M j = max

t∈R
|x t

j |. (5-41)

Although the trajectory t 7→ x t
j is T j -periodic, it will be convenient to compare x t

j and x t on smaller
times. Then in view of (5-40), on the time interval [0, ηT j ], where η ∈ (0, 1], the norm |x t

| spans an
interval J ηj such that

J ηj ⊂

[
m j − A2η

2π
q j
,M j + A2η

2π
q j

]
, (5-42)

and if η = 1, since |x t
j | attains m j and M j on the time interval [0, T j ], we have[

m j + A2
2π
q j
,M j − A2

2π
q j

]
⊂ J 1

j . (5-43)

So now, according to the value of κ⋆, we check whether the dynamical condition (1-7) of Theorem 1.3 is
satisfied, using the area formula.

Step 4: Geometric condition of observability for rationally independent characteristic frequencies.
Take η = 1, that is, we consider a whole period of the rational Hamiltonian flow. We first establish a
lower bound on the time spent by t 7→ x t in ω( Ĩ ). We consider κ⋆ > 0 here. From Lemma 5.5, we know
that γ : (0, T j ) ∋ t 7→ |x t

| is Lipschitz with constant
√

2p(ρ0). Yet, similarly to (5-35), we have

p(ρ0)≤ ∥A∥M̃2
j , where M̃ j = max

t∈[0,T j ]
|x t

|,

so that γ is Lipschitz with constant
√

2∥A∥M̃ j . Applying the area formula (Proposition 5.4), we obtain
as in (5-36) the lower bound∫ T j

0
1ω( Ĩ )(x

t) dt ≥ (2∥A∥)−1/2 1
M̃ j

∫
J 1

j

1 Ĩ (s) ds,

and in view of (5-43) and (5-42) with η = 1, we deduce that∫ T j

0
1ω( Ĩ )(x

t) dt ≥
(2∥A∥)−1/2

M j + A2
2π
q j

∫ M j −2π A2/q j

m j +2π A2/q j

1 Ĩ (s) ds.
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Observing that A2 ≤ M j and that m j ≤3 j M j , we obtain∫ T j

0
1ω( Ĩ )(x

t) dt ≥
(2∥A∥)−1/2

M j
(
1 +

2π
q j

) ∫ M j (1−2π/q j )

M j (3 j +2π/q j )

1 Ĩ (s) ds. (5-44)

Setting

r = M j

(
1 −

2π
q j

)
and 3̃ j =

3 j +
2π
q j

1 −
2π
q j

, (5-45)

we can write the lower bound in (5-44) under the form∫ T j

0
1ω( Ĩ )(x

t) dt ≥ (2∥A∥)−1/2
1 −

2π
q j

1 +
2π
q j

×
1
r

∫ r

3̃ j r
1 Ĩ (s) ds. (5-46)

We assume that q j > 2π so that r > 0, which is the case for j large enough since q j → ∞. The above
estimate (5-46) is valid for any trajectory of the (irrational) Hamiltonian flow with initial datum ρ0 ̸= 0.
In addition, we remark that M j defined in (5-41) tends to infinity as ρ0 → ∞, so that r defined in (5-45)
tends to +∞ as ρ0 → ∞ too. Thus (5-46) leads to

lim inf
ρ→∞

∫ T j

0
1ω( Ĩ )×Rd (φ

t(ρ)) dt ≥ (2∥A∥)−1/2
1 −

2π
q j

1 +
2π
q j

× lim inf
r→+∞

1
r
| Ĩ ∩ [3̃ jr, r ]|. (5-47)

In order to deduce a positive lower bound, it suffices that 3̃ j < κ⋆ = κ⋆( Ĩ ) = κ⋆(I ). This is achieved
provided q j ≥ 6π/κ⋆ ≥ 6π . Indeed, under this condition, we have on the one hand

1 −
2π
q j

1 +
2π
q j

≥
1 −

2π
6π

1 +
2π
6π

=
1
2
, (5-48)

and on the other hand, recalling the definition of 3̃ j in (5-45), the formula (1-26) for 3 j , and using that
sin x ≤ x and tan x ≤ 4x/π for x ∈ [0, π/4], we obtain

3̃ j ≤

4
π

×
π/2

p j+q j
+

2π
q j

1 −
2π
6π

≤ 3
1 +π

q j
≤

1
2

( 1
π

+ 1
)
κ⋆ < κ⋆. (5-49)

Now we turn to the upper bound on the time spent by projected trajectories of the (irrational) Hamiltonian
flow in ω(I )R , for a fixed R > 0. We consider κ⋆ ∈ [0, 1] arbitrary now, with the convention 1/κ⋆ = +∞

if κ⋆ = 0. We go back to η ∈ (0, 1]. We select a curve t 7→ (x t
j , ξ

t
j ) of the rational flow that maximizes

the ratio mint |x t
j |/maxt |x t

j |, namely that satisfies

m j = min
t∈[0,T j ]

|x t
j | =3 j max

t∈[0,T j ]
|x t

j | =3 j M j .

This curve is of the form (5-39) for well-chosen action and angle variables. We consider t 7→ (x t , ξ t)

the corresponding trajectory of the irrational flow given by (5-38), that is the integral curve obtained
by substituting ν2 for p jν1/q j in (5-39). Notice that this trajectory depends on j. We still write
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γ (t)= |x t
|. By Lemma 5.5, we know that it is a Lipschitz map and that there exists an integer k0 such

that #γ−1(s)∩ [0, T j ] ≤ k0 for all s ∈ R+. Reproducing the computation (5-33), we find∫
BN

1IR (c|x
t
|) dt ≤

2N k0

c

∫ c max γ

c3 j max γ
1IR (s) ds ≤

2N k0

c

∫
cJ ηj

1IR (s) ds,

where we recall that the parameter c > 0 is an arbitrary scaling factor, and BN is defined similarly
to (5-32) by

BN = {t ∈ [0, ηT j ] : |γ ′(t)| ≥ 2−N
}.

In view of (5-42), this leads to∫
BN

1IR (c|x
t
|) dt ≤

2N k0

c

∫ c(M j +2π A2η/q j )

c(m j −2π A2η/q j )

1IR (s) ds.

As we did before in (5-44), we use the fact that A2 ≤ M j , together with m j = 3 j M j (the equality is
important here) to obtain ∫

BN

1IR (c|x
t
|) dt ≤

2N k0

c

∫ cM j (1+2πη/q j )

cM j (3 j −2πη/q j )

1IR (s) ds.

Defining now

r = M j

(
1 + η

2π
q j

)
and 3̃ j =

3 j − η 2π
q j

1 + η 2π
q j

,

we end up with ∫
BN

1IR (c|x
t
|) dt ≤ 2N k0 M j

(
1 + η

2π
q j

)
1
cr

∫ cr

3̃ j cr
1IR (s) ds.

We finally prove that this upper bound tends to zero along a well-chosen sequence of parameters c
provided 3̃ j ≥ κ⋆. This is fulfilled whenever q j ≤ δ/κ⋆, for a small enough constant δ. To see this, we can
use that tan x ≥ x and sin x ≥ 2x/π on [0, π/2] to control 3 j from below by 1/(p j + q j ). Then (1-31)
leads to p j/q j ≤ ν2/ν1 + 1, which yields

3 j ≥
1

p j + q j
≥

1
q j
(
2 +

ν2
ν1

) =:
C
q j
.

Assuming that η < C/(2π)≤ 1, we obtain

3̃ j ≥

C−2πη
q j

1 + η 2π
q j

≥
1
q j

×
C − 2πη
1 + 2πη

≥
C − 2πη
δ(1 + 2πη)

κ⋆.

This yields 3̃ j ≥ κ⋆ if δ is small enough, so that by definition of κ⋆, letting c → +∞, we obtain

lim inf
c→+∞

∫ ηT j

0
1ω(IR)(cx t) dt ≤ |[0, ηT j ] \ BN | + 2N k0 M j

(
1 + η

2π
q j

)
lim inf
c→+∞

1
cr

∫ cr

3̃ j cr
1IR (s) ds

= ηT j − |BN |, (5-50)

which tends to zero as N → ∞.
The general conclusion is the following: if κ⋆ > 0 and j ∈ N is such that q j ≥ 6π/κ⋆, we know

by (5-49) that 3̃ j < κ⋆, so that by definition of κ⋆, the estimate (5-47), together with (5-48), proves that
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the dynamical condition (1-7) of Theorem 1.3 holds for ω( Ĩ ) in time T j = 2πq j/ν1. If on the contrary
κ⋆ ∈ [0, 1], and q j ≤ δ/κ⋆ for some δ > 0 depending only on ν2/ν1, then, from (5-50), the dynamical
condition (1-7) is violated in ω(I )R for any R > 0 on the time interval [0, ηT j ], where η > 0 depends
only on ν2/ν1 again. Theorem 1.3 then implies that the Schrödinger equation is observable from ω(I ) if
and only if κ⋆ > 0. If indeed κ⋆ > 0, then the optimal observation time T⋆ = T⋆(ω(I )) is controlled as
follows: there exist constants C, c > 0 such that

cq j1 ≤ T⋆ ≤ Cq j2, (5-51)

where j1 is the largest index such that q j ≤ δ/κ⋆ and j2 is the smallest index such that q j ≥ 6π/κ⋆.
To go from (5-51) to the desired estimate (1-29) in the case where ν2/ν1 is Diophantine, we use the

fact that the irrationality exponent τ , defined in (1-27), is related to the growth of the q j ’s. This comes
from the formula

τ(µ)= 1 + lim sup
j→∞

log q j+1

log q j

(see [Durand 2015, Proposition 1.8] or [Sondow 2004, Theorem 1]). When τ is finite, we deduce in
particular that for any ε > 0, we have, for any j large enough,

log q j+1

log q j
≤ τ − 1 + ε,

which leads to the existence of a constant Cε > 0 such that

q j+1 ≤ Cεq j
τ−1+ε

∀ j ∈ N.

By definition of the indices j1 and j2, we obtain

δ

κ⋆
≤ q j1+1 ≤ Cεq j1

τ−1+ε and q j2 ≤ Cεq j2−1
τ−1+ε

≤ Cε
(6π
κ⋆

)τ−1+ε

.

Plugging this into (5-51), we finally deduce (1-29). This concludes the proof of Proposition 1.11. □

Appendix A: Reduction to a weaker observability inequality

The following proposition shows that Obs(ω, T ) is equivalent to a similar inequality with a remainder
involving a compact operator. The argument goes back to Bardos, Lebeau and Rauch [Bardos et al. 1992].
This reformulation of the problem paves the way for the use of microlocal analysis: we are interested
in the propagation of high-energy modes through the Schrödinger evolution, discarding anything that is
microlocalized near a fixed energy sublevel {p ≤ cst}. An alternative route could be to slice the phase
space according to energy layers of the Hamiltonian p(x, ξ)= V (x)+ 1

2 |ξ |2; see [Lebeau 1992; Burq
and Zworski 2012; Anantharaman and Macià 2014].

Proposition A.1. Suppose P is a self-adjoint operator with compact resolvent, and let B be a bounded
operator on L2(Rd) satisfying the unique continuation property:

for any eigenfunction u of P, Bu = 0 =⇒ u = 0. (A-1)
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Let T0 > 0 and assume there exists a compact self-adjoint operator K such that

∃C0 > 0 : ∀u ∈ L2(Rd), ∥u∥
2
L2 ≤ C0

∫ T0

0
∥Be−i t Pu∥

2
L2 dt + (u, K u)L2 . (A-2)

Then for every T > T0, there exists C > 0 such that

∀u ∈ L2(Rd), ∥u∥
2
L2 ≤ C

∫ T

0
∥Be−i t Pu∥

2
L2 dt.

Remark A.2. The operators of the form P =V (x)− 1
21 that we consider, with V subject to Assumption 1.1,

satisfy the unique continuation property of the statement when B is the multiplication by the indicator
function of a nonempty open set. See [Le Rousseau et al. 2022, Theorem 5.2].

Proof. Let us introduce, for any S ∈ R,

AS =

∫ S

0
ei t P B∗Be−i t P dt,

and denote by IS its kernel (the space of so-called invisible solutions). One can check that

IS =

⋂
t∈[0,S]

ker Be−i t P
= {u ∈ L2(Rd) : ∀t ∈ [0, S], Be−i t Pu = 0},

using the fact that ei t P B∗Be−i t P
≥ 0 for all t ∈ R as operators, and that the map t 7→ Be−i t P is strongly

continuous. The space IS is a closed linear subspace of L2(Rd), both for the strong and the weak
topology (use for instance that AS is a bounded operator). Moreover, one has the property that S1 ≤ S2

yields IS1 ⊃ IS2 . It implies that for any S, the set

I−

S =

⋃
S′>S

IS′

is also a linear subspace, contained in IS .

Step 1: IT0 is finite-dimensional. This assertion is a consequence of the fact that K is coercive on IT0 ,
namely

∀u ∈ IT0, ∥u∥L2 ≤ ∥K u∥L2,

which follows directly from assumption (A-2) and the Cauchy–Schwarz inequality. Setting W =Ran K|IT0
,

we deduce that K : IT0 → W is one-to-one and its inverse K −1 is bounded as an operator in L(W,IT0).
Now denote by BIT0

the closed unit ball of IT0 . Since IT0 is strongly and weakly closed, the same holds
for its closed unit ball as a subset of L2(Rd). We deduce that BIT0

is weakly compact. The compactness
of K implies that K (BIT0

) is (strongly) compact in L2(Rd). Since it is contained in W, it is compact
in W. Therefore the fact that K −1

: W → IT0 is bounded implies that BIT0
= K −1(K (BIT0

)) is compact.
We deduce by the Riesz theorem that IT0 is finite-dimensional.

Step 2: I−

T0
is stable by P. Let us check that I−

T0
⊂ Dom P. Let u ∈ I−

T0
and set

uϵ =
e−iϵPu − u

ϵ
∀ϵ ̸= 0.
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By definition of I−

T0
, the function u belongs to IT0+ϵ0 for some ϵ0 > 0, so that uϵ ∈ I−

T0
for any ϵ ∈ (0, ϵ0).

Recall from the previous step that IT0 ⊃ I−

T0
is finite-dimensional. We observe that v 7→ ∥(P − i)−1v∥L2

is a norm on IT0 , so it is equivalent to the L2 norm. Yet we see that

(P − i)−1uϵ =
e−iϵP(P − i)−1u − (P − i)−1u

ϵ
,

with (P − i)−1u ∈ Dom P, so that (P − i)−1uϵ converges as ϵ → 0. Since

∀ϵ1, ϵ2 ∈ (0, ϵ0), ∥uϵ2 − uϵ1∥L2 ≤ C∥(P − i)−1uϵ2 − (P − i)−1uϵ1∥L2,

we deduce that (uϵ)ϵ is a Cauchy sequence, hence it converges, which means that u ∈ Dom P. Thus
I−

T0
⊂ Dom P. It remains to see that limϵ→0 uϵ = −i Pu belongs to I−

T0
, which is a consequence of the

fact that I−

T0
is finite-dimensional, hence closed.

Step 3: I−

T0
= {0}. This results from the unique continuation property (A-1). Indeed, we can argue as

follows: from the previous steps, I−

T0
is a finite-dimensional linear subspace of L2(Rd) which is stable by

the self-adjoint operator P. Therefore there exists a basis (u1, u2, . . . , un) of I−

T0
made of eigenvectors

of P. By definition of IS , these eigenvectors satisfy in particular Bu j = 0. So by the unique continuation
result (A-1), we find that I−

T0
must be trivial.

Step 4: Conclusion. Let T > T0. We want to show that AT ≥ c for some c > 0. To do this, it suffices
to prove that AT is invertible, because AT is self-adjoint and AT ≥ 0. The assumption (A-2) implies
that the self-adjoint operator AT + K is invertible, meaning that zero does not belong to its spectrum.
Since K is compact and self-adjoint, we classically know that AT has the same essential spectrum as
AT + K , so in particular zero is not in the essential spectrum of AT . It is not an eigenvalue neither since
ker AT ⊂ I−

T0
= {0}. Therefore AT is invertible, and the conclusion follows. □

The following lemma is not related to the previous proposition. Still, it is worth stating it properly
since we use it on several occasions throughout the article.

Lemma A.3. Let ω⊂ Rd be measurable. Assume Obs(ω, T ) holds in some time T > 0 with a cost C > 0,
namely

∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt.

Then Obs(ω, T − ε) holds for any ε < 1/C.

Proof. We use the fact that the propagator e−i t P is an isometry on L2(Rd) to get

C
∫ T

T −ε

∥e−i t Pu∥
2
L2(ω)

dt ≤ C
∫ T

T −ε

∥e−i t Pu∥
2
L2(Rd )

dt = Cε∥u∥
2
L2(Rd )

.

Thus we can absorb this term in the left-hand side of the observability inequality provided Cε < 1:

(1 − Cε)∥u∥
2
L2(Rd )

≤ C
∫ T −ε

0
∥e−i t Pu∥

2
L2(ω)

dt,

namely Obs(ω, T − ε) holds with cost C(1 − Cε)−1. □
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Appendix B: Pseudodifferential operators

We recall below basics of the theory of pseudodifferential operators (see the textbooks [Hörmander 1985;
Lerner 2010; Martinez 2002; Zworski 2012] for further details). We will also need a precise bound on
the remainder of the pseudodifferential calculus and of the sharp Gårding inequality. This is why we
reproduce the proofs of these results below.

B.1. Weyl quantization. Let a ∈ S(R2d). We define the operator Op(a) acting on the Schwartz class
S(Rd) by

[Op(a)u](x)= (2π)−d
∫

R2d
ei(x−y)·ξa

( x+y
2
, ξ
)

u(y) dy dξ, u ∈ S(Rd), x ∈ Rd .

It is known that Op(a) : S(Rd) → S(Rd) is continuous. The quantization Op extends to tempered
distributions: for any a ∈ S′(R2d), the operator Op(a) : S(Rd)→ S′(Rd) is continuous.

B.2. Symbol classes.

Definition B.1 (symbol classes). Let f be an order function.15 Then the symbol class S( f ) is the set of
functions a ∈ C∞(R2d) satisfying

∀α ∈ N2d , ∃Cα > 0 : ∀ρ ∈ R2d , |∂αa(ρ)| ≤ Cα f (ρ).

Collecting the best constants Cα for each α, the quantities

|a|
ℓ
S( f ) = max

|α|≤ℓ
Cα, ℓ ∈ N,

are seminorms that turn the vector space S( f ) into a Fréchet space.

Any a ∈ S( f ) is a tempered distribution and yields a continuous linear operator Op(a) :S(Rd)→S(Rd).

B.3. L2-boundedness of pseudodifferential operators.

Theorem B.2 (Calderón–Vaillancourt). There exist constants Cd , kd > 0 depending only on the dimen-
sion d such that, for any a ∈ S(1), the operator Op(a) can be extended to a bounded operator on L2(Rd)

with the bound
∥Op(a)∥L2→L2 ≤ Cd |a|

kd
S(1).

B.4. Refined estimate in the pseudodifferential calculus. Let a1, a2 be two symbols. We have seen
previously that the composition Op(a1)Op(a2) makes sense as an operator on the Schwartz space. This
operator is also a pseudodifferential operator, whose symbol is denoted by a1 # a2, called the Moyal
product of a1 and a2, and satisfies

Op(a1)Op(a2)= Op(a1 # a2). (B-1)

15A positive function f on the phase space is said to be an order function if

∃C > 0, ∃N > 0 : ∀ρ, ρ0 ∈ R2d , f (ρ)≤ C⟨ρ− ρ0⟩
N f (ρ0).
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More generally, one can define the h-Moyal product, depending on a parameter h ∈ (0, 1], as

(a1 #h a2)(ρ)= e−
1
2 ihσ(∂ρ1 ,∂ρ2 )a1(ρ1)a2(ρ2)|ρ1=ρ2=ρ,

where σ is the canonical symplectic form on R2d. Taking h = 1, one gets a formula for the Moyal product
in (B-1) above. The h-Moyal product is known to be a bilinear continuous map between symbol classes;
see [Zworski 2012, Theorem 4.17] or [Lerner 2010, Theorem 2.3.7] for instance.

Proposition B.3 (continuity of Moyal product). Let f1, f2 be two order functions. Then the map

S( f1)× S( f2)→ S( f1 f2), (a1, a2) 7→ a1 #h a2

is bilinear continuous, with constants independent of h ∈ (0, 1]. More precisely, for any ℓ ∈ N, there exist
k ∈ N and Cℓ > 0 such that

|a1 #h a2|
ℓ
S( f1 f2)

≤ Cℓ|a1|
k
S( f1)

|a2|
k
S( f2)

∀h ∈ (0, 1],∀(a1, a2) ∈ S( f1)× S( f2).

A stationary phase argument leads to an asymptotic expansion of the Moyal product

a1 # a2 ∼

∑
j

(−i/2) j

j !
σ(∂ρ1, ∂ρ2)

j a1(ρ1)a2(ρ2)|ρ=ρ1=ρ2 .

In the sequel, we denote by R j0(a1, a2) the remainder of order j0 in this asymptotic expansion, namely

R j0(a1, a2)(ρ)= a1 # a2 −

j0−1∑
j=0

(−i/2) j

j !
σ(∂ρ1, ∂ρ2)

j a1(ρ1)a2(ρ2)|ρ1=ρ2=ρ .

Estimates on this remainder term are usually stated as follows.

Proposition B.4 (pseudodifferential calculus). Let f1, f2 be two order functions. Then for any integer
j0 ≥ 1, the map

S( f1)× S( f2)→ S( f1 f2), (a1, a2) 7→ R j0(a1, a2),

is bilinear continuous.

In our study, it will be convenient to have a slightly more precise statement. Actually, the explicit
formula for the remainder allows to prove that its seminorms are controlled not only by the seminorms
of a1 and a2 but more precisely by the seminorms of the derivatives d j0a1 and d j0a2.

Proposition B.5 (refined estimate). Let f1, f2 be two order functions. Then, for any j0 ≥ 1,

∀ℓ ∈ N, ∃k ∈ N, ∃Cℓ > 0 : |R j0(a1, a2)|
ℓ
S( f1 f2)

≤ Cℓ|d j0a1|
k
S( f1)

|d j0a2|
k
S( f2)

,

for all (a1, a2) ∈ S( f1)× S( f2).

Proof. We outline the arguments of the proof, which are classical, trying to keep track of constants
carefully. The starting point of this result is the explicit expression of the remainder (see [Zworski 2012,
Theorem 4.11] for instance):

R j0(a1, a2)(ρ)=

(
−i
2

) j0
∫ 1

0

(1 − t) j0−1

( j0 − 1)!
e−

1
2 i tσ(∂ρ1 ,∂ρ2 )σ(∂ρ1, ∂ρ2)

j0a1(ρ1)a2(ρ2)|ρ1=ρ2=ρ dt.
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The binomial expansion of σ(∂ρ1, ∂ρ2)
j0 exhibits a particular structure: we observe that the integrand of

the integral over t can be written as a sum of terms of the form

e−
1
2 i tσ(∂ρ1 ,∂ρ2 )(∂α1a1)(ρ1)(∂

α2a2)(ρ2)|ρ1=ρ2=ρ

with |α1| = |α2| = j0, which corresponds exactly to ∂α1a1 #t ∂
α2a2. By Proposition B.3, we know that the

Moyal product is a bilinear continuous map S( f1)× S( f2)→ S( f1 f2) with respect to the Fréchet space
topology, with seminorm estimates independent of t ∈ (0, 1]. This yields

|R j0(a1, a2)|
0
S( f1 f2)

≤ C0|d j0a1|
k
S( f1)

|d j0a2|
k
S( f2)

. (B-2)

In order to handle seminorms of order ℓ≥ 0, we use the Leibniz formula:

∂R j0(a1, a2)= R j0(∂a1, a2)+ R j0(a1, ∂a2),

and we apply (B-2). The result follows. □

B.5. Positivity. Heuristically, the quantization of a nonnegative symbol is an almost-nonnegative operator.
The formal statement, known as the Gårding inequality, says that the negative part of the operator is con-
trolled in terms of the Planck parameter in semiclassical analysis, or exhibits some decay at infinity in the
phase space in microlocal analysis. In the main part of the article, we need to apply the Gårding inequality
to a symbol in S(1) whose derivatives, of any order, behave like 1/R, where R is a large parameter.
Unfortunately, such a symbol does not fit in the semiclassical framework, in which derivatives of order j
behave like 1/R j. Thus we provide in this paragraph a refined statement of the sharp Gårding inequality
that keeps track of the dependence of the remainder term on the seminorms of the derivatives of the symbol.

Proposition B.6 (sharp Gårding inequality). There exists a constant cd > 0 and an integer kd ≥ 0
depending only on the dimension d such that the following holds. For any real-valued symbol a ∈ S(1)
satisfying a ≥ 0, one has

Op(a)≥ −cd |Hess a|
kd
S(1) Id .

Proof. We redo the usual proof (see for instance [Zworski 2012]) using the refined estimate on the
remainder in the pseudodifferential calculus (Proposition B.5). Let us prove that for z sufficiently negative,
the operator Op(a − z) is invertible, which in turn shows that it is nonnegative by classical arguments.

Step 1: Estimate of the derivatives of (a − z)−1. Using the assumption that a ≥ 0, we classically have

|∇a(ρ)| ≤

√
2|Hess a|∞a(ρ) ∀ρ ∈ R2d (B-3)

(see [Zworski 2012, Lemma 4.31] for instance). Besides, the Faà di Bruno formula tells us that, for any
nonzero α ∈ N2d, the partial derivative ∂α(a − z)−1 can be computed as a sum of terms of the form

1
(a − z)1+ℓ

ℓ∏
j=1

∂α j a,
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with 1 ≤ ℓ≤ |α|,
∑ℓ

j=1 α j = α, |α j | ̸= 0 for all j. Denote by ℓ′ the number indices j such that |α j | = 1.
We apply (B-3) to the ℓ′ factors of the form ∂α j a corresponding to these indices, and we bound the ℓ− ℓ′

other ones by seminorms of the Hessian of a (recall that |α j | ≥ 2 for those remaining indices). We obtain∣∣∣∣ 1
(a − z)1+ℓ

ℓ∏
j=1

∂α j a
∣∣∣∣≤ 1

|a − z|1+ℓ
(2|Hess a|∞a(ρ))ℓ

′/2(|Hess a|
|α|

S(1))
ℓ−ℓ′ .

We deduce that∣∣∣∣ 1
(a − z)1+ℓ

ℓ∏
j=1

∂α j a
∣∣∣∣≤ 1

|a − z|1+ℓ
2ℓ

′/2
|a(ρ)|ℓ

′/2(|Hess a|
|α|

S(1))
ℓ−ℓ′/2

≤
1

|a − z|1+ℓ
2ℓ

′

(|a − z|ℓ
′/2

+ |z|ℓ
′/2)(|Hess a|

|α|

S(1))
ℓ−ℓ′/2.

Putting together all the terms in the Faà di Bruno formula, and using that a − z ≥ |z| (since z ≤ 0), we
finally get that there exists a constant C > 0 (depending on |α|) such that∣∣∣∣∂α 1

a − z

∣∣∣∣≤ C
|z|

max
1≤ℓ≤|α|

0≤ℓ′≤ℓ

(
|Hess a|

|α|

S(1)

|z|

)ℓ−ℓ′/2
.

Assuming that |z| ≥ |Hess a|
|α|

S(1), we arrive at∣∣∣∣∂α 1
a − z

∣∣∣∣≤ C
|z|

√
|Hess a|

|α|

S(1)

|z|
. (B-4)

Step 2: Invertibility of Op(a − z). From the previous step, we know that a − z and (a − z)−1 are in S(1)
with explicit seminorm estimates, provided |z| is large enough. We perform the pseudodifferential calculus,

Op(a − z)Op
(

1
a − z

)
= Id +0 + Op(R2),

keeping in mind that the second term in the asymptotic expansion vanishes because both symbols are
functions of the same symbol. According to the Calderón–Vaillancourt theorem (Theorem B.2), our
refined estimate on the remainder (Proposition B.5), and finally to (B-4), we obtain

∥Op(R2)∥L2→L2 ≤ Cd |R2|
kd
S(1) ≤ Cd |Hess a|

k′

1
S(1)|Hess(a − z)−1

|
k′

2
S(1) ≤ C

(
|Hess a|

k
S(1)

|z|

)3/2

for some constant C and some integer k independent of a and z, and provided z is negative enough.
Actually when z ≤ −(2C)2/3|Hess a|

k
S(1), we obtain that ∥Op(R2)∥ ≤

1
2 , so that Id +Op(R2) is invertible

by Neumann series. This leads classically to the invertibility of Op(a − z). □
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GLOBAL WELL-POSEDNESS
FOR TWO-DIMENSIONAL INHOMOGENEOUS VISCOUS FLOWS

WITH ROUGH DATA VIA DYNAMIC INTERPOLATION

RAPHAËL DANCHIN

We consider the evolution of two-dimensional incompressible flows with variable density, only bounded
and bounded away from zero. Assuming that the initial velocity belongs to a suitable critical subspace
of L2, we prove a global-in-time existence and stability result for the initial (boundary) value problem.

Our proof relies on new time decay estimates for finite energy weak solutions and on a “dynamic
interpolation” argument. We show that the constructed solutions have a uniformly C1 flow, which ensures
the propagation of geometrical structures in the fluid and guarantees that the Eulerian and Lagrangian formu-
lations of the equations are equivalent. By adopting this latter formulation, we establish the uniqueness of
the solutions for prescribed data and the continuity of the flow map in an energy-like functional framework.

In contrast with prior works, our results hold in the critical regularity setting without any smallness
assumption. Our approach uses only elementary tools and applies indistinctly to the cases where the fluid
domain is the whole plane, a smooth two-dimensional bounded domain, or the torus.

Introduction

An extensive literature has been devoted to the mathematical analysis of the Navier–Stokes equations that
govern the evolution of the velocity field u = u(t, x) and pressure function P = P(t, x) of homogeneous
incompressible viscous flows in a domain � of Rd . Recall that these equations read as

ut + div(u ⊗ u) − µ1u + ∇ P = 0 in R+ × �,

div u = 0 in R+ × �,

u|t=0 = u0 in �

(NS)

and, if � has a boundary, are supplemented with homogeneous Dirichlet boundary conditions for the
velocity.

The global existence theory for (NS) originated in the paper by J. Leray [1934b]. In the case � = R3,
by combining the energy balance associated to (NS),

1
2
∥u(t)∥2

L2 + µ

∫ t

0
∥∇u∥

2
L2 dτ =

1
2
∥u0∥

2
L2, (0-1)

with compactness arguments, he constructed, for any divergence-free u0 in L2(R3
; R3), a global distri-

butional solution of (NS) satisfying (0-1) with an inequality (viz. the left-hand side is bounded by the
right-hand side).
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It is by now well understood that Leray’s result is true in any open subset � of Rd with d = 2, 3; see
for instance the first part of [Chemin et al. 2006]. However, despite the numerous papers devoted to the
topic and significant recent progresses, the question of uniqueness of finite energy solutions in the case
d = 3 has not been completely solved yet. The two-dimensional situation is much better understood: finite
energy solutions are unique and do satisfy (0-1) with an equality. Although uniqueness in dimension 2
could be hinted from [Leray 1934a], it has been established only by O. A. Ladyzhenskaya [1959] and
J.-L. Lions and G. Prodi [Lions and Prodi 1959].

In the present paper, we are concerned with inhomogeneous, that is, with variable density, incompressible
viscous flows. The evolution of these flows, which can be encountered in models of geophysics or mixtures,
is often described by the following inhomogeneous incompressible Navier–Stokes equations:

ρt + div(ρu) = 0 in R+ × �,

(ρu)t + div(ρu ⊗ u) − µ1u + ∇ P = 0 in R+ × �,

div u = 0 in R+ × �.

(INS)

Above, u and P still denote the velocity and the pressure, respectively, and ρ = ρ(t, x) stands for the
density, which for obvious physical reasons has to be nonnegative. If we supplement (INS) with initial
data and boundary conditions

ρ|t=0 = ρ0, u|t=0 = u0 and u|∂� = 0, (0-2)

then the energy balance associated to (INS) reads as

1
2
∥(

√
ρu)(t)∥2

L2 + µ

∫ t

0
∥∇u∥

2
L2 dτ =

1
2
∥
√

ρ0u0∥
2
L2 . (0-3)

The divergence-free condition ensures that the Lebesgue norms of ρ are conserved and that,

for all t ∈ R+, inf
x∈�

ρ(t, x) = inf
x∈�

ρ0(x) and sup
x∈�

ρ(t, x) = sup
x∈�

ρ0(x). (0-4)

In the torus case, we have in addition the conservation of total momentum∫
T2

(ρu)(t, x) dx =

∫
T2

(ρ0u0)(x) dx . (0-5)

Like (NS), equations (INS) have a scaling invariance (if � is stable by dilation): they are invariant for all
λ > 0 by the transform

(ρ, u, P)(t, x)⇝ (ρ, λu, λ2 P)(λ2t, λx). (0-6)

Although (INS) is of hyperbolic-parabolic-type while (NS) is parabolic, similar results hold for the initial
value (or boundary value) problem. For instance:

• In any dimension, provided ρ0 is bounded and nonnegative and
√

ρ0u0 is in L2, there exists a global
weak solution satisfying (0-3) with inequality.1

1First proved by A. V. Kazhikhov [1974] if ρ0 > 0, then for general ρ0 ≥ 0 by J. Simon [1990]. P.-L. Lions [1996] pointed
out that the density is a renormalized solution of the mass equation and treated density dependent viscosity coefficients. He also
considered unbounded densities.
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• Smooth enough data with density bounded and bounded away from zero generate a unique local-in-
time smooth solution, which is global in the two-dimensional case and also in higher dimensions if
the initial velocity is small.2

In dimension 2, the quantities that come into play in the energy balance (0-3) are scaling invariant in
the sense of (0-6). However, unlike the case with constant density, it is not known whether finite energy
two-dimensional weak solutions with bounded density, albeit having critical regularity, are unique.

In order to explain the difference between the variable and constant density cases and to motivate the
assumptions that will be made in this paper, let us sketch the proof of the uniqueness of finite energy
solutions for (NS) in dimension 2. Assume that we are given two solutions (u, P) and (ũ, P̃) pertaining
to the same finite energy initial velocity u0. Then, δu := ũ − u and δP := P̃ − P satisfy{

δut + div(u ⊗ δu) − µ1δu + ∇δP = −div(δu ⊗ ũ) in R+ × �,

div δu = 0 in R+ × �.

Taking the L2(�; R2) scalar product with δu, integrating by parts where needed and using the Hölder
inequality to bound the right-hand side yields

1
2

d
dt

∥δu∥
2
L2 + µ∥∇δu∥

2
L2 ≤ ∥∇ũ∥L2∥δu∥

2
L4,

which, in light of the celebrated Ladyzhenskaya inequality

∥z∥2
L4 ≤ C∥z∥L2∥∇z∥L2, (0-7)

leads to

1
2

d
dt

∥δu∥
2
L2 + µ∥∇δu∥

2
L2 ≤ C∥∇ũ∥L2∥δu∥L2∥∇δu∥L2 ≤

µ

2
∥∇δu∥

2
L2 +

C2

2µ
∥∇ũ∥

2
L2∥δu∥

2
L2 .

At this stage, Gronwall’s lemma allows us to conclude that

∥δu(t)∥2
L2 + µ

∫ t

0
∥∇δu∥

2
L2 dτ ≤ e(C2/µ)

∫ t
0 ∥∇ũ∥

2
L2 dτ

∥δu(0)∥2
L2 .

Owing to (0-1), the exponential term is finite. Hence we have δu ≡ 0 if ũ(0) = u(0).

In contrast, when comparing two finite energy solutions (ρ, u, P) and (ρ̃, ũ, P̃) of (INS), we get the
following system for δρ := ρ̃ − ρ, δu, and δP:

δρt + div(δρu) = −div(ρ̃δu),

(ρδu)t + div(ρu ⊗ ∇δu) − µ1δu + ∇δP = −(δρũ)t − div(ρu ⊗ δu) − div(ρδu ⊗ ũ),

div δu = 0.

Since ρ̃ is only bounded, the first line is a transport equation by the divergence-free vector field u, with
a source term that has (at most) the regularity C−1 with respect to the space variable. Now, in order to
control the propagation of negative regularity in a transport equation, we need

∇u ∈ L1
loc(R+; L∞). (0-8)

2First established by O. A. Ladyzhenskaya and V. A. Solonnikov [1975].
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However, this property generally fails for finite energy solutions of (INS) and even for the two-dimensional
heat equation. In fact, the set of functions u0 such that the solution u to the free heat equation with initial
data u0 satisfies ∇u ∈ L1(R+; L∞) is the homogeneous Besov space Ḃ−1

∞,1, and L2 is not embedded in
this space.

To avoid working in spaces with negative regularity, one can recast (INS) in the Lagrangian coordinate
system as in [Danchin and Mucha 2019]. Then, the density becomes time-independent and the velocity
equation keeps its parabolicity (at least for small time). However, the equivalence between the Eulerian
and Lagrangian formulations of (INS) in our low-regularity context still requires (0-8), a property that
cannot be expected if u0 is only in L2 since it fails for the heat flow.

To make a long story short, it is not clear that uniqueness holds for (INS) in the framework of just
finite energy solutions.

Before describing in more detail the main objective of the article, let us recall some recent results on
the well-posedness theory for (INS). A number of works have been devoted to this issue under weaker
assumptions than in [Ladyzhenskaya and Solonnikov 1975]. This is mainly to relax the positivity condition
on the density or the regularity assumptions on the initial data. Regarding the first question, it has been
observed by Y. Cho and H. Kim [2004] that (INS) is well-posed for smooth enough data and, possibly,
vanishing densities satisfying a suitable compatibility condition. Recently, J. Li [2017] discovered that this
condition is no longer needed if one considers H 1 regularity for the velocity, and the full well-posedness
theory for general only bounded (not necessarily positive) initial densities and H 1 velocities has been
carried out in a joint work with P. B. Mucha [Danchin and Mucha 2019].

Regarding the minimal regularity requirement of the velocity for well-posedness, the scaling invariance
of (INS) pointed out in (0-6) suggests (if �= Rd ) that one should take ρ0 ∈ L∞(Rd) and u0 ∈ Ḣ d/2−1(Rd).
In the constant density case and for d = 3, this assumption is in accordance with the well-known Fujita
and Kato theorem [1964]. However, as, again, ∇et1u0 need not be in L1

loc(R+; L∞) if u0 ∈ Ḣ d/2−1(Rd),
it is not clear that uniqueness may be achieved if there is no additional regularity in the variable density
case. In this direction, it has been proved in [Danchin 2003; 2004] that if u0 belongs to the homogeneous
Besov space Ḃd/2−1

2,1 (Rd), a large subspace of Ḣ d/2−1(Rd) with the same scaling invariance, then (INS)
is globally well-posed in dimension 2 (or in higher dimensions if u0 is small) provided ρ0 is close to
some positive constant in the homogeneous Besov space Ḃd/2

2,1 (Rd). This result is satisfactory as regards
the regularity requirement for the velocity, since it is critical and closely related to the L2 space, but the
condition on the density is rather restrictive both because ρ0 has to be almost constant and since it has to
be continuous (the space Ḃd/2

2,1 (Rd) is embedded in the set Cb(R
d) of bounded and continuous functions

on Rd). The result of [Danchin 2003] has been significantly improved recently in the two-dimensional
case: H. Abidi and G. Gui [2021] established the global well-posedness without any smallness condition
on the data if ρ0 − 1 is in Ḃ1

2,1(R
2) and u0 belongs to Ḃ0

2,1(R
2). The corresponding result in dimension 3

has been obtained with completely different techniques by H. Xu [2022] (for small u0 of course). As said
before, works based on the use of critical Besov spaces for the density precludes considering the case
of densities that are discontinuous along an interface, a situation which is of particular interest if one
believes (INS) to be a relevant model for mixtures of incompressible viscous flows with different densities.
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This very situation — sometimes called the density patch problem — has been extensively studied lately,
see, e.g., [Danchin and Mucha 2019; Gancedo and García-Juárez 2018; Liao and Zhang 2019].

Well-posedness results for only bounded initial density, bounded away from zero, and smooth enough
velocity have been obtained in a joint work with P. B. Mucha [Danchin and Mucha 2013b], then improved
by M. Paicu, P. Zhang and Z. Zhang in [Paicu et al. 2013] (there, u0 is in H s(R2) for some s > 0 if
d = 2, and in H 1(R3) if d = 3). In the whole space case, the critical regularity index has been reached
in an intriguing work by P. Zhang [2020]. He established the global existence for any small enough
divergence-free u0 with coefficients in Ḃ1/2

2,1 (R3) while ρ0 is only bounded and bounded away from zero.
It has been observed recently in a joint work with S. Wang [Danchin and Wang 2023] that Zhang’s
solutions actually satisfy (0-8) and are thus unique.

The main goal of the present paper is to investigate the counterpart in dimension 2 and for large initial
data of Zhang’s result recalled just above: we want to establish a global well-posedness result for general
divergence-free velocity fields u0 with critical regularity of L2-type and densities ρ0 simply satisfying

ρ∗ := ess inf
x∈�

ρ0(x) > 0,

ρ∗
:= ess sup

x∈�

ρ0(x) < ∞.
(0-9)

According to [Abidi and Gui 2021], a good candidate to achieve the Lipschitz property within a critical
regularity framework of L2-type is the space Ḃ0

2,1. However, owing to the use of Fourier analysis
techniques, rather strong regularity assumptions on the density were made in that work. Here, since we
want to consider only bounded densities, we shall adopt a completely different approach. In fact, we shall
combine real interpolation and three levels of time decay estimates (corresponding to Ḣ−1, L2, and Ḣ 1

data, respectively) for a linearized version of (INS) that can be obtained just by energy arguments and
basic properties of the Stokes system, so as to work out a space for u0 that coincides with Ḃ0

2,1 if ρ0 is
smooth (but that might depend on it if it is not). The overall strategy is so robust that it can be adapted to
other systems.

The rest of the paper is structured as follows: in the next section we state our main results and explain
the key steps of the proof. Then, in Section 2, we establish a first family of time decay estimates pertaining
to the case where u0 is just in L2 and construct corresponding global finite energy weak solutions for (INS).
Section 3 is devoted to proving more a priori decay estimates. The final goal is to establish that, under
a slightly stronger assumption on the initial velocity very close to the regularity Ḃ0

2,1, the Lipschitz
property (0-8) is satisfied. Finally, we establish in Section 4 the existence and uniqueness of a solution
under this assumption, assuming only (0-9) and that the velocity belongs to the aforementioned space.
The same method also provides stability estimates for the flow map in the energy space.

Notation. In the rest of the paper, � will be either a C2 bounded domain of R2, a two-dimensional torus,
or R2. It will be convenient to use the same notation Ḣ s(�) to designate:

• the classical homogeneous Sobolev space if � = R2,

• the subset of functions of H s with mean value 0 if � = T2,
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• the space H s
0 (�) (that is the completion of C∞

c (�) for the H s(R2) norm) if � is a bounded domain
and s ∈ [0, 1],

• the dual of H−s
0 (�) if � is a bounded domain and s ∈ [−1, 0].

We designate by L2
σ (�) the set of divergence-free vector fields with coefficients in L2(�) (such that

u0 · n = 0 at ∂� in the bounded domain case, with n being the unit exterior normal vector to ∂�), and
denote by P the orthogonal projector from L2(�; R2) to L2

σ (�).
For any normed space X , Lebesgue index q ∈ [1, ∞], and time T ∈ [0, ∞], we shall define

∥z∥Lq
T (X) :=

∥∥∥z(t)∥X
∥∥

Lq (0,T )
,

omitting T if it is ∞. In the case where z has several components in X , we keep the same notation for
the norm.

As usual, C designates harmless positive real numbers, and we shall often write A ≲ B instead of
A ≤ C B. To emphasize the dependency with respect to parameters a1, . . . , an , we adopt the notation
Ca1,...,an . The notation Cρ,v stands for various “constants” that only depend (algebraically) on the
infimum and supremum of ρ and on “energy-like” norms of v, that is, on norms that could be eventually
bounded by ∥u0∥L2 if (ρ, v) were a solution to (INS). Obvious examples are ∥v∥L∞(L2) or ∥∇v∥L2(L2)

(remember (0-3)) but also ∥v∥L4(L4) (use (0-7)) and so on.

1. Results and strategy

The first step is to exhibit time decay estimates for finite energy solutions. More precisely, we shall
establish the following statement.

Theorem 1.1. Let u0 be in L2
σ (�) and ρ0 satisfy (0-9). Then, (INS) supplemented with (0-2) admits a

global solution (ρ, u, P) satisfying (0-4) (and (0-5) if � = T2), u ∈ L∞(R+; L2
σ ), ∇u ∈ L2(R+ × �),

and
1
2
∥(

√
ρu)(t)∥2

L2 + µ

∫ t

0
∥∇u∥

2
L2 dτ ≤

1
2
∥
√

ρ0u0∥
2
L2, t > 0. (1-1)

Furthermore, there exists a constant C depending only on �, ρ∗, and ρ∗ such that, for all t > 0, we have

∥∇
ku(t)∥L2 ≤ C(µt)−k/2

∥u0∥L2 for k = 0, 1, 2,

∥∇
k(ut , u̇)(t)∥L2 ≤ C(µt)−1−k/2

∥u0∥L2 for k = 0, 1,

∥∇ P(t)∥L2 ≤ Ct−1
∥u0∥L2,

where u̇ denotes the convective derivative of u; that is, u̇ := ut + u · ∇u.

Two remarks are in order:

• The constructed solutions satisfy more time decay estimates: see (2-11), (2-21), (2-26), Proposition 3.1
with s ′

= 0, and Proposition 3.2 with p = 2.
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• As pointed out in [Danchin et al. 2024] for H 1
0 (�) initial velocities, exponential time decay estimates

hold if � is bounded. Following the proof of Lemma 5 therein, one can show that there exists a positive
constant c� depending only on � such that,

for all t ∈ R+, ∥(
√

ρu)(t)∥L2 ≤ e−c�µt/ρ∗

∥
√

ρ0u0∥L2 .

From this inequality, one can deduce exponential decay for

∥tk/2
∇

ku∥L2, ∥t1+k/2
∇

kut∥L2, and ∥t1+k/2
∇

k u̇∥L2 .

However, as exponential decay does not hold if � = R2 and since we strive for a unified approach, we
refrain from tracking it in the rest of the paper to simplify the presentation.

As underlined in the Introduction, in order to establish the uniqueness of solutions, we need a functional
space that ensures (0-8). At the same time, we want our functional framework to be critical, to allow
any initial density just bounded and bounded away from zero, and to be strongly related to the energy
space L2. Note that Theorem 1.1 ensures that ∇u belongs to the weak L1 space for the time variable with
values in the Sobolev space H 1. This latter space “almost” embeds in L∞. A classical way to improve
embeddings is to work out a space by means of real interpolation with second parameter equal to 1.
In our context, since energy arguments play an important role, it is natural to interpolate from Sobolev
spaces and to consider3

[Ḣ−s, Ḣ s
]1/2,1 for some s ∈ (0, 1). (1-2)

This definition gives the Besov space Ḃ0
2,1 (independently of the value of s).

Let us briefly explain why in the simpler situation where u is the solution of the free heat equation in
R2, supplemented with initial data u0 in Ḃ0

2,1, we do have (0-8). We start from the two inequalities

t∥∇u(t)∥L∞ ≤ C min(t s/2
∥u0∥Ḣ s , t−s/2

∥u0∥Ḣ−s ), (1-3)

which may be easily derived by using the explicit formula for u in the Fourier space.

Then, we use the characterization of real interpolation spaces in terms of atomic decomposition like
in, e.g., [Lions and Peetre 1964]. In our setting, it reads z ∈ Ḃ0

2,1 if and only if there exists a sequence
(z j )j∈Z of Ḣ−s

∩ Ḣ s satisfying

z =

∑
j∈Z

z j and
∑
j∈Z

(2− j/2
∥z j∥Ḣ s + 2 j/2

∥z j∥Ḣ−s ) < ∞.

The infimum of the above sum on all admissible decompositions of z defines a norm on Ḃ0
2,1. Now, take

the decomposition

u0 =

∑
j∈Z

u0, j , with
∑
j∈Z

(2− j/2
∥u0, j∥Ḣ s + 2 j/2

∥u0, j∥Ḣ−s ) ≤ 2∥u0∥Ḃ0
2,1

, (1-4)

3One could prefer to interpolate between Lebesgue spaces and consider the velocity in the Lorentz space L2,1. However we
do not know how to handle (INS) in this space. The reader is referred to [Danchin 2024] where the space L2,1 is used for solving
the two-dimensional system for pressureless gases.
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and solve all the heat equations
(u j )t − 1u j = 0, u j |t=0 = u0, j .

As the heat equation is linear, we have u =
∑

j u j , and thus∫
∞

0
∥∇u∥L∞ dt ≤

∑
j∈Z

∫
∞

0
∥∇u j∥L∞ dt. (1-5)

Now, for every j in Z and Aj > 0, we have, due to (1-3),∫
∞

0
∥∇u j∥L∞ dt ≤

∫ Aj

0
∥∇u j∥L∞ dt +

∫
∞

Aj

∥∇u j∥L∞ dt

≲ ∥u0, j∥Ḣ s

∫ Aj

0
t−1+s/2 dt + ∥u0, j∥Ḣ−s

∫
∞

Aj

t−1−s/2 dt

≲ ∥u0, j∥Ḣ s As/2
j + ∥u0, j∥Ḣ−s A−s/2

j .

Hence, choosing Aj = 2− j/s and remembering (1-4) and (1-5) gives (0-8) (globally in time).
This “dynamic interpolation approach” has been used before by T. Hmidi and S. Keraani [2008] for

the transport equation and by Zhang [2020] for the velocity equation of (INS) (in dimension 3 and for
small velocities). In both cases however, the initial data was decomposed according to a Littlewood–Paley
decomposition. The additional flexibility that consists here in using general atomic decompositions
enables us to do without Fourier analysis and to treat general domains.

As our aim is to prove (0-8) for (INS), we have to consider instead of the heat equation a linear system
which captures both the effects of the density and of the convection. To this end, we consider

(ρu)t + div(v ⊗ u) − 1u + ∇ P = 0 in R+ × �,

div u = 0 in R+ × �,

u|t=0 = u0 in �,

(1-6)

where the (smooth enough) triplet (ρ, v, u0) is given with ρ bounded and bounded away from zero,

ρt + div(ρv) = 0, div v = 0, and v|∂� = 0. (1-7)

Clearly, if we succeed in proving (1-3) for (1-6) with a constant that only depends on ρ∗, ρ∗, and on
energy-like norms of v, then repeating the above dynamic interpolation procedure will yield (0-8) for the
solutions of (1-6) supplemented with initial data in Ḃ0

2,1, and then for (INS) if taking v = u.
The way to get (1-3) is to prove beforehand three families of time weighted estimates for (1-6)

corresponding to initial data u0 in L2, Ḣ 1, and Ḣ−1, respectively. The estimate in Ḣ−1 will be obtained
by duality from the estimate in Ḣ 1. This will lead us to consider the backward system associated with (1-6),
and it is rather ∥P(ρu)(t)∥Ḣ−1 and, more generally, ∥P(ρu)(t)∥Ḣ−s for s ∈ (0, 1) that can be estimated.
In the end, combining the three families of inequalities with suitable Gagliardo–Nirenberg inequalities
yields, instead of (1-3),

t∥∇u(t)∥L∞ ≤ Cρ,v min(t s/2
∥u0∥Ḣ s , t−s/2

∥P(ρ0u0)∥Ḣ−s ). (1-8)

Above, Cρ,v only depends on ρ∗, ρ∗, and on energy-like norms of v.
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As a consequence, the suitable interpolation space to carry out our dynamic interpolation procedure
for (1-6) is the one that is given in the following definition.

Definition 1.2. Let s be in (0, 1) and a be a measurable function on � with positive lower bound. We
denote by B̃0,s

a,1(�) the set of vector fields z in L2
σ (�) such that there exists a sequence (z j )j∈Z of L2

σ (�)

satisfying:

• z =
∑

j∈Z z j in the sense of distributions,

• for all j ∈ Z, we have P(az j ) ∈ Ḣ−s(�) and z j ∈ Ḣ s(�),

•
∑

j∈Z(2− j/2
∥z j∥Ḣ s + 2 j/2

∥P(az j )∥Ḣ−s ) is finite.

The infimum on all admissible decompositions of z defines a norm on B̃0,s
a,1(�).

Let us highlight a few properties of these spaces.

• (B̃0,s
a,1(�))s∈(0,1) is a family of nested Banach spaces: if 0 < s ′ < s < 1, then B̃0,s

a,1(�) ↪→ B̃0,s′

a,1 (�).

• Owing to (1-2), if a is a positive constant, then B̃0,s
a,1 is nothing other than Ḃ0

2,1, and if a has a positive
lower bound a∗, then it embeds in L2. Indeed, decomposing z ∈ B̃0,s

a,1 according to Definition 1.2 and
using the fact that P is an L2 orthogonal projector, one may write, for all j ∈ Z,

∥z j∥
2
L2 ≤ a−1

∗

∫
�

P(az j ) · z j dx ≤ a−1
∗

(2 j/2
∥P(az j )∥Ḣ−1/2)(2− j/2

∥z j∥Ḣ1/2), (1-9)

which implies, by Young’s inequality, that

∥z∥L2 ≤
1

2
√

a∗

∥z∥B̃0,s
a,1

.

• If a is bounded and s = 2/p − 1 for some p ∈ (1, 2), then the critical Besov space

Ḃ−1+2/p
p,1 := [L p, Ẇ 2s

p ]1/2,1

is embedded in B̃0,s
a,1. Indeed, if z ∈ Ḃ−1+2/p

p,1 , then there exists a sequence (z j )j∈Z of the nonhomoge-
neous Sobolev space W 2s

p such that

z =

∑
j∈Z

z j and
∑
j∈Z

(2− j/2
∥z j∥W 2s

p
+ 2 j/2

∥z j∥L p) ≤ 2∥z∥Ḃ−1+2/p
p,1

.

Now, the fact that P : L p
→ L p and the embeddings Ẇ 2s

p ↪→ Ḣ s and L p ↪→ Ḣ−s allow us to write

∥z j∥Ḣ s ≤ C∥z j∥Ẇ 2s
p

and ∥P(az j )∥Ḣ−s ≤ C∥P(az j )∥L p ≤ C∥a∥L∞∥z j∥L p ,

which gives our claim.

• For general measurable functions a bounded and bounded away from zero, the space B̃0,s
a,1 might depend

on s. However, in the case s ∈
(
0, 1

2

)
, if a is positive and piecewise constant along a finite number of

Lipschitz curves, then it coincides with Ḃ0
2,1. Indeed, in this case the space Ḣ−s is stable by multiplication

by piecewise constant functions.

Our main global existence and uniqueness statement reads as follows.
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Theorem 1.3. Let ρ0 satisfy (0-9) and u0 be in B̃0,s
ρ0,1 for some s ∈ (0, 1). Then, (INS) supplemented

with (0-2) admits a unique global solution (ρ, u, ∇ P) satisfying all the properties stated in Theorem 1.1
(and the remarks that follow) and the energy balance (0-3). In addition, we have

u ∈ C(R+; L2), ∇u ∈ L1(R+; Cb ∩ Ḣ 1),
√

t(u̇, ∇ P, ∇2u) ∈ L4/3(R+; L4)

and, for all t ∈ R+, we have u(t) ∈ B̃0,s
ρ(t),1 with the inequality

∥u(t)∥B̃0,s
ρ(t),1

≤ C∥u0∥B̃0,s
ρ0,1

. (1-10)

Remark 1.4. As a by-product of the proof of the uniqueness, we get a stability result with respect to the
initial data in the energy space (see Theorem 4.2 below).

Remark 1.5. Owing to ∇u ∈ L1(R+; Cb(�)), the flow of u has C1 regularity with respect to the space
variable, which means that the geometrical structures of the fluid during the evolution are conserved. For
example, if ρ0 takes two different positive values across a C1 interface, then it remains so forever: the
interface is just transported by the flow and keeps its C1 regularity. Likewise, the (local) H 2 regularity of
the interfaces is preserved since ∇

2u ∈ L1(R+; L2(�)).

Remark 1.6. As said before, for � = R3, a result in the same spirit has been obtained by Zhang [2020]
in the small velocity case; see also [Danchin and Wang 2023]. An important difference with our situation
is that, in dimension 3, the critical space for the velocity is Ḃ1/2

2,1 := [L2, Ḣ 1
]1/2,1. Hence, it is enough

to prove time weighted energy estimates in L2 and Ḣ 1, and the relevant critical space for u0 does not
depend on ρ0.

To simplify the presentation, we assume hereafter that s =
1
2 . We use the short notation B̃0

ρ0,1 for B̃0,1/2
ρ0,1 .

Let us briefly present the main steps of the proof of Theorem 1.3. The global existence of a solution
being ensured by prior results, the main point is to exhibit enough regularity of the solution to ensure
uniqueness. As already explained at length in the Introduction, the key is to establish (0-8), and this will
be actually performed on the linear system (1-6).

The first step is to prove energy-type weighted estimates for (1-6) that require only u0 to be in L2

and the density to be bounded and bounded away from zero. The three principles guiding our search for
estimates are:

• taking convective derivatives Dt := ∂t + v · ∇ (since Dtρ = 0) rather than space derivatives, since ρ

has no regularity,

• using differential operators
√

t∇, t∂t , and t Dt (that are of order 0 in the parabolic scaling),

• transferring time regularity to space regularity by means of the maximal regularity properties of the
Stokes system (see the Appendix), observing that

µ1u − ∇ P = ρu̇ and div u = 0 in �, with u̇ := ∂t u + v · ∇u. (1-11)

In the end, this allows us to control quantities like ∥
√

t∇u(t)∥L2 , ∥t∂t u(t)∥L2 , ∥t u̇(t)∥L2 , or ∥t∇2u(t)∥L2

in terms of ∥u0∥L2 , ρ∗, ρ∗, and energy-like norms of v.
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The second step is to propagate the Ḣ 1 and the Ḣ−1 norms. On the one hand, Ḣ 1 estimates for (INS)
have been known since [Ladyzhenskaya and Solonnikov 1975] (we shall also derive time weighted
versions of these estimates). On the other hand, propagating negative Sobolev regularity seems to be new.
This will be achieved by duality after observing that the backward system associated with (1-6) satisfies the
same family of estimates in Ḣ s . However, owing to the density dependent structure of the latter system, we
will have only access to ∥P(ρu)(t)∥Ḣ−s , whence the “weighted” definition of the interpolation space B̃0,s

ρ,1.
The third step is devoted to propagating the regularity B̃0

ρ,1 and to bounding ∇u in L1(R+; L∞) in
terms of the data only. In passing, we exhibit some controls of other critical norms (like, e.g., that of u̇ in
L1(R+; L2)) that will be needed in the proof of uniqueness and stability. All these bounds rely on the
dynamic interpolation method that has been described above for the heat equation. In the end, we get∫

∞

0
∥∇u∥L∞ dt +

∫
∞

0
∥u̇∥L2 dt +

(∫
∞

0
t2/3

∥u̇∥
4/3
L4 dt

)3/4

≤ C∥u0∥B̃0
ρ0,1

.

The fourth step is the proof of existence of a global solution corresponding to the assumptions of
Theorems 1.1 or 1.3. For Theorem 1.1, the overall strategy is standard: we smooth out the data, resort to
classical results that ensure the existence of a sequence of global smooth solutions for (INS), and use the
aforementioned estimates and compactness to pass to the limit. For Theorem 1.3, it is a bit the same,
except that one has to be careful when smoothing out the velocity, owing to the “exotic” definition of the
space B̃0

ρ0,1. The easiest way is to truncate a decomposition of u0 so as to have an approximate initial
velocity in the smoother space H 1/2.

The last step is devoted to uniqueness and stability for (INS). As in [Danchin and Mucha 2019], we
reformulate (INS) in Lagrangian coordinates. The properties of the solutions provided by Theorem 1.3, in
particular (0-8), ensure that the two formulations are equivalent. The gain is that we do not have to worry
about the density as it is time-independent. As for the difference of the two velocities in Lagrangian
coordinates, it satisfies a parabolic-type equation and may be estimated in

L∞(R+; L2) ∩ L2(R+; Ḣ 1).

The computations are in the spirit of those of [Danchin et al. 2024]. However, in our case the velocity is
less regular by one derivative, which requires some care.

As a concluding remark, we want to point out that, in contrast with numerous recent works dedicated to
the inhomogeneous incompressible Navier–Stokes equations, our approach does not use Fourier analysis
at all. It just relies on very basic energy arguments, interpolation, embedding, and on the classical
regularity theory for the Stokes system (this is the only place where some assumptions have to be made on
the fluid domain). For simplicity here we considered R2, T2, or C2 bounded domains, but more general
domains could be treated in the same way.

Hereafter we shall focus on the case µ = 1 for simplicity. The general case follows due to the rescaling

ρ(t, x) := ρ̃(µt, x),

u(t, x) := µũ(µt, x),

P(t, x) := µ2 P̃(µt, x).
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2. Weak solutions with time decay

This section is devoted to proving Theorem 1.1: we here construct finite energy weak solutions satisfying
algebraic time decay estimates of different orders, without requiring more regularity on u0 than L2. The
exponential decay that can be expected in the bounded domain case (see [Danchin et al. 2024]), is not
addressed to simplify the presentation, as it is not needed for achieving the main result of the paper.

2.1. Time decay estimates for the linearized momentum equation. We here aim at proving time weighted
energy estimates for the linear system (1-6) in the case where the (smooth enough) given pair (ρ, v)

satisfies (1-7) and

ρ∗ = inf
(t,x)∈R+×�

ρ(t, x) > 0,

ρ∗
= sup

(t,x)∈R+×�

ρ(t, x) < ∞.
(2-1)

System (1-6) is supplemented with a divergence-free initial velocity field u0, vanishing at the boundary in
the bounded domain case and, in the torus case, such that∫

T2
(ρ0u0)(x) dx = 0.

This latter assumption is not restrictive owing to the Galilean invariance of the system and will enable us
to use freely the Gagliardo–Nirenberg inequality (A-2).

We aim at proving energy estimates for the solution with time weights tk/2 for k ∈ {0, 1, 2, 3}. We
strive for bounds depending only on ρ∗, ρ∗, ∥u0∥L2 , and on energy-type norms of v in the meaning
given at the end of the Introduction of the paper. This latter point is fundamental for getting not only
Theorem 1.1 but also Theorem 1.3.

Before proceeding, let us warn the reader that we unfortunately did not find a way to avoid the tedious
calculations that will follow, since it is has to be checked with the greatest care that only “energy-type
norms” come into play.

The basic energy balance. Taking the L2 scalar product of (1-6) with u yields

1
2

d
dt

∥
√

ρu∥
2
L2 + ∥∇u∥

2
L2 = 0. (2-2)

From this, we get, for all t ∈ R+,

∥(
√

ρu)(t)∥2
L2 + 2

∫ t

0
∥∇u∥

2
L2 dτ = ∥

√
ρ0u0∥

2
L2 . (2-3)

As ρ∗ > 0, combining (2-3) with the Gagliardo–Nirenberg inequality (A-1) recalled in the Appendix
yields, for all 2 ≤ p < ∞,

∥u∥Lq (L p) ≤ C pρ
−1/2
∗

∥
√

ρ0u0∥L2, with 1
p

+
1
q

=
1
2
. (2-4)
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Estimates with weight
√

t . Let us rewrite (1-6) as

1u − ∇ P = ρu̇ and div u = 0 in �, with u̇ := ut + v · ∇u. (2-5)

Taking the L2(�; R2) scalar product of (2-5) with t u̇ yields, for all t ≥ 0,∫
�

ρt |u̇|
2 dx = t

∫
�

1u · ut dx − t
∫

�

∇ P · ut dx + t
∫

�

(1u − ∇ P) · (v · ∇u) dx .

As div u = 0, integrating by parts and using again (2-5) yields

1
2

d
dt

∫
�

t |∇u|
2 dx −

1
2

∫
�

|∇u|
2 dx +

∫
�

ρt |u̇|
2 dx =

∫
�

ρt u̇ · (v · ∇u) dx . (2-6)

Remembering (2-2) and performing a time integration, we get, for all t ≥ 0,

1
4

∫
�

ρ(t)|u(t)|2 dx +
t
2

∫
�

|∇u(t)|2 dx +

∫ t

0

∫
�

τρ|u̇|
2 dx dτ

=
1
4

∫
�

ρ0|u0|
2 dx +

∫ t

0

∫
�

τρu̇ · (v · ∇u) dx dτ. (2-7)

Of course, since ut = u̇ − v · ∇u, one can write

1
4∥

√
ρut∥

2
L2 ≤

1
2∥

√
ρu̇∥

2
L2 +

1
2∥

√
ρv · ∇u∥

2
L2 .

Hence, adding up this inequality multiplied by t with (2-7) and using Young’s inequality to bound the
last term of (2-7), we discover that

∥

√
ρ(t)u(t)∥2

L2 + 2∥
√

t∇u(t)∥2
L2 +

∫ t

0
(∥

√
ρτ u̇∥

2
L2 + ∥

√
ρτuτ∥

2
L2) dτ

≤ ∥
√

ρ0u0∥
2
L2 + 6

∫ t

0
∥
√

ρτv · ∇u∥
2
L2 dτ. (2-8)

Combining Hölder’s inequality, Ladyzhenskaya’s inequality (0-7), and Young’s inequality yields

∥
√

ρv · ∇u∥
2
L2 ≤

ε

ρ∗
∥∇

2u∥
2
L2 +

ρ∗

ε
∥
√

ρv∥
4
L4∥∇u∥

2
L2, ε > 0, (2-9)

and taking advantage of the regularity theory of the Stokes system (recalled in the Appendix) gives

∥∇
2u∥

2
L2 + ∥∇ P∥

2
L2 ≤ C�ρ∗

∥
√

ρu̇∥
2
L2 . (2-10)

Hence, choosing ε > 0 suitably small in (2-9), using (2-10), then reverting to (2-8) and applying Gronwall’s
lemma allows us to conclude that there exist positive constants c� and C�, depending only on �, such that

X1(t) ≤ ∥
√

ρ0u0∥
2
L2eCv

1 (t), with Cv
1 (t) := C�ρ∗

∫ t

0
∥
√

ρv∥
4
L4 dτ, (2-11)

where

X1(t) :=∥(
√

ρu)(t)∥2
L2+2∥

√
t∇u(t)∥2

L2+
1
2

∫ t

0

(
∥
√

ρτ u̇∥
2
L2+∥

√
ρτuτ∥

2
L2+

c�

ρ∗
∥
√

τ(∇2u, ∇ P)∥2
L2

)
dτ.
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Estimates with weight t . Applying ∂t to (1-6) gives

ρut t + ρv · ∇ut − 1ut + ∇ Pt = −ρt u̇ − ρvt · ∇u. (2-12)

As div ut = 0, testing (2-12) by t2ut then observing that

ρt = −div(ρv) and |ut |
2
= |u̇|

2
− 2u̇ · (v · ∇u) + |v · ∇u|

2

gives, after performing a few integration by parts,

1
2

d
dt

∫
�

ρt2
|ut |

2 dx +

∫
�

t2
|∇ut |

2 dx =

∫
�

tρ|u̇|
2 dx − 2

∫
�

ρt u̇ · (v · ∇u) dx +

∫
�

tρ|v · ∇u|
2 dx

+

∫
�

t2 div(ρv)u̇ · ut dx −

∫
�

t2ρ(vt · ∇u) · ut dx .

Adding up twice (2-2) and (2-6) to this latter inequality, we obtain

d
dt

∫
�

(
ρ|u|

2
+ t |∇u|

2
+

ρt2

2
|ut |

2
)

dx +

∫
�

(|∇u|
2
+ ρt |u̇|

2
+ t2

|∇ut |
2) dx

=

∫
�

ρt |v · ∇u|
2 dx +

∫
�

t2 div(ρv)u̇ · ut dx −

∫
�

t2ρ(vt · ∇u) · ut dx =: I1 + I2 + I3. (2-13)

Thanks to (2-9), (2-10) and Young’s inequality, we have

I1 ≤
1
2∥

√
ρt u̇∥

2
L2 + Cρ∗

∥
√

ρv∥
4
L4∥

√
t∇u∥

2
L2 . (2-14)

For the term I2, an integration by parts yields

I2 = −

∫
�

t2(ρv · ∇u̇) · ut dx −

∫
�

t2(ρv · ∇ut) · u̇ dx =: I21 + I22.

By (0-7), Hölder’s and Young’s inequalities, and (2-1), we have, for some constant C depending only on
ρ∗, ρ∗, and �,

I21 ≤ C∥t∇u̇∥L2∥
√

ρv∥L4∥tut∥
1/2
L2 ∥t∇ut∥

1/2
L2

≤
1
10(∥t∇ut∥

2
L2 + ∥t∇u̇∥

2
L2) + C∥

√
ρv∥

4
L4∥

√
ρtut∥

2
L2 . (2-15)

The same arguments lead to

I22 ≤
1
10(∥t∇ut∥

2
L2 + ∥t∇u̇∥

2
L2) + C∥

√
ρv∥

4
L4∥

√
ρt u̇∥

2
L2 . (2-16)

For I3, one has, still owing to Hölder’s and Young’s inequalities and (A-1) or (A-2),

I3 ≤ ∥
√

ρt vt∥L2∥t
√

ρ ut∥L4∥
√

t∇u∥L4

≤
1

10∥t∇ut∥L2∥∇u∥L2 + C∥
√

ρtvt∥
2
L2∥t

√
ρut∥L2∥t∇2u∥L2 . (2-17)

Hence, inserting (2-14)–(2-17) in (2-13) gives

d
dt
(
∥
√

ρu∥
2
L2 +∥

√
t∇u∥

2
L2 +

1
2∥

√
ρtut∥

2
L2

)
+

1
2(∥∇u∥

2
L2 +∥

√
ρt u̇∥

2
L2 +∥t∇ut∥

2
L2)−

1
4∥t∇u̇∥

2
L2

≲ ∥
√

ρv∥
4
L4(∥

√
ρt (u̇, ut)∥

2
L2 + ∥

√
t∇u∥

2
L2) + ∥

√
ρt vt∥

2
L2∥t

√
ρut∥L2∥t∇2u∥L2 . (2-18)
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To close the estimate, we have to bound ∥
√

ρt u̇∥L2 , ∥t∇2u∥L2 , and ∥t∇u̇∥L2 . For the first two terms,
one may use (0-7), (2-10) and the definition of u̇ to get

∥t (∇2u, ∇ P)∥L2 ≤ C�(
√

ρ∗
∥t

√
ρut∥L2 + ∥ρt1/4v∥L4∥

√
t∇u∥

1/2
L2 ∥t∇2u∥

1/2
L2 )

≤
1
2∥t∇2u∥L2 + C�(

√
ρ∗

∥t
√

ρut∥L2 + ∥ρt1/4v∥
2
L4∥

√
t∇u∥L2).

This, in the end, implies that

1
4
∥
√

ρt u̇∥L2 +
c�

√
ρ∗

∥t∇2u, t∇ P∥L2 ≤ C(∥t
√

ρut∥L2 + ∥t1/4v∥
2
L4∥

√
t∇u∥L2). (2-19)

Finally, from the definition of u̇, Hölder’s inequality and (0-7), we may write

∥t∇u̇∥L2 ≤ ∥t∇ut∥L2 + ∥t∇v · ∇u∥L2 + ∥tv · ∇
2u∥L2

≤ ∥t∇ut∥L2 + ∥
√

t∇v∥L4∥∇u∥
1/2
L2 ∥t∇2u∥

1/2
L2 + C∥v∥L4∥t u̇∥

1/2
L2 ∥t∇u̇∥

1/2
L2 ,

which implies that

∥t∇u̇∥L2 ≤ 2∥t∇ut∥L2 +
1
4∥∇u∥L2 + C(∥

√
t∇v∥

2
L4∥t∇2u∥L2 + ∥v∥

2
L4∥

√
ρt u̇∥L2). (2-20)

Let us set

X2(t) := ∥(
√

ρu)(t)∥2
L2 + ∥

√
t∇u(t)∥2

L2 +
1
4
∥
√

ρtut∥
2
L2 +

1
16

∥
√

ρt u̇∥
2
L2 +

c�

ρ∗
∥t (∇2u, ∇ P)∥2

L2

+
1

16

∫ t

0
(∥∇u∥

2
L2 + ∥

√
ρτ u̇∥

2
L2 + ∥τ∇uτ∥

2
L2 + ∥τ∇u̇∥

2
L2) dτ.

Integrating (2-18) on [0, t], taking advantage of (2-19) and (2-20), and then, finally, using Gronwall’s
lemma, we conclude that there exists a constant C depending only on �, ρ∗, and ρ∗ such that

X2(t) ≤ ∥u0∥
2
L2eCv

2 (t),

with Cv
2 (t) := C

(
sup

τ∈[0,t]
∥τ 1/4v(τ)∥4

L4 +

∫ t

0
(∥

√
ρv∥

4
L4 + ∥

√
τ∇v∥

4
L4 + ∥

√
ρτvτ∥

2
L2) dτ

)
. (2-21)

Estimates with weight t3/2. Let Dt := ∂t + v · ∇ and ü := Dt u̇. We have4

ρü − 1u̇ + ∇ Ṗ = F := ∇v · ∇ P − 1v · ∇u − 2∇
2u · ∇v. (2-22)

Taking the L2(�; R2) scalar product with t3ü, we readily get

1
2

d
dt

∥t3/2
∇u̇(t)∥2

L2 + ∥t3/2√ρü∥
2
L2 =

3
2
∥t∇u̇∥

2
L2 +

5∑
i=1

Ji , (2-23)

with

J1 :=

∫
�

1u̇ · (t3v · ∇u̇) dx, J2 := −

∫
�

∇ Ṗ · (t3v · (∇v · ∇u)) dx,

J3 :=

∫
�

∇ Ṗ · (t3vt · ∇u) dx, J4 :=

∫
�

∇ Ṗ · (t3v · (v · ∇
2u)) dx, J5 :=

∫
�

F · t3ü dx .

4Here we use the notation (∇2u · ∇v)i
:=
∑

1≤ j,k≤d ∂kv j ∂j ∂kui .
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For any ε > 0, the terms J1 through J5 may be bounded as follows by combining Hölder’s inequality,
Young’s inequality, and (A-1) with p = 4 or p = 6 (and (A-4) for J4):

J1 ≤ ∥t3/2
∇

2u̇∥L2∥v∥L4∥t3/2
∇u̇∥L4

≤ ε∥t3/2
∇

2u̇∥
2
L2 + Cε∥v∥

4
L4∥t3/2

∇u̇∥
2
L2,

J2 ≤ ∥t3/2
∇ Ṗ∥L2∥t1/6v∥L6∥

√
t∇v∥L6∥t5/6

∇u∥L6

≤ C∥t3/2
∇ Ṗ∥L2∥t1/6v∥L6∥

√
t∇v∥L6∥

√
t∇u∥

1/3
L2 ∥t∇2u∥

2/3
L6

≤ ε∥t3/2
∇ Ṗ∥

2
L2 + Cε∥t1/6v∥

2
L6∥

√
t∇v∥

2
L6∥

√
t∇u∥

2/3
L2 ∥t∇2u∥

4/3
L2 ,

J3 ≤ ∥t3/2
∇ Ṗ∥L2∥tvt∥L4∥t1/2

∇u∥L4

≤ ε∥t3/2
∇ Ṗ∥

2
L2 + Cε∥tvt∥

4
L4∥t1/2

∇u∥
2
L2 + ∥t1/2

∇
2u∥

2
L2,

J4 ≤ ∥t3/2
∇ Ṗ∥L2∥t1/6v∥

2
L6∥t7/6

∇
2u∥L6

≤ C∥t3/2
∇ Ṗ∥L2∥t1/6v∥

2
L6∥

√
ρt u̇∥

1/3
L2 ∥t3/2

∇u̇∥
2/3
L2

≤ ε∥t3/2
∇ Ṗ∥

2
L2 + Cε∥

√
ρt u̇∥

2
L2 + Cε∥t1/6v∥

6
L6∥t3/2

∇u̇∥
2
L2,

J5 ≤ ε∥t3/2√ρü∥
2
L2 +

Cε

ρ∗
∥t3/2 F∥

2
L2 .

Thanks to Hölder’s inequality, (0-7), and (A-4), we have

∥t3/2 F∥
2
L2 ≤ ∥

√
t∇v∥

2
L4∥t (∇ P, ∇2u)∥2

L4 + ∥t∇2v∥
2
L4∥

√
t∇u∥

2
L4

≲ ∥
√

t∇v∥
2
L4∥

√
ρt u̇∥L2∥t3/2

∇u̇∥L2 + ∥t∇2v∥
2
L4∥

√
t∇u∥L2∥

√
t∇2u∥L2

≲ ∥
√

ρt u̇∥
2
L2 + ∥

√
t∇2u∥

2
L2 + ∥

√
t∇v∥

4
L4∥t3/2

∇u̇∥
2
L2 + ∥t∇2v∥

4
L4∥

√
t∇u∥

2
L2 .

To close the estimates, we need to bound

t3/2
∇ Ṗ and t3/2

∇
2u̇ in L2(R+ × �).

Now, we observe that the couple (u̇, ∇ Ṗ) satisfies the inhomogeneous Stokes system

−1u̇ + ∇ Ṗ = F − ρü and div u̇ = Tr(∇v · ∇u) in �, (2-24)

with boundary condition u̇|∂� = 0 if � is a bounded domain, u̇(t) → 0 at infinity (due to u̇(t) ∈ L2 for
all t > 0) in the case � = R2, and ∫

T2
ρu̇ dx = 0 if � = T2.

Hence, applying (A-4) with p = 2 guarantees that

∥∇
2u̇, ∇ Ṗ∥

2
L2 ≲ ∥F∥

2
L2 + ∥ρü∥

2
L2 + ∥∇

2v ⊗ ∇u∥
2
L2 + ∥∇v ⊗ ∇

2u∥
2
L2 . (2-25)
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The last two terms are parts of F . Hence bounding ∥t3/2 F∥L2 as above and putting this together with the
previous inequalities, we conclude after time integration that

X3(t) := ∥t3/2
∇u̇(t)∥2

L2 +

∫ t

0
∥τ 3/2(

√
ρü, ∇ Ṗ, ∇2u̇)∥2

L2 dτ

≲
∫ t

0
(∥v∥

4
L4 + ∥τ 1/6v∥

6
L6 + ∥τ 1/2

∇v∥
4
L4)∥τ

3/2
∇u̇∥

2
L2 dτ

+

∫ t

0
∥τ 1/2

∇
2u,

√
ρτ u̇∥

2
L2 dτ +

∫ t

0
(∥τvτ∥

4
L4 + ∥τ∇

2v∥
4
L4)∥τ

1/2
∇u∥

2
L2 dτ

+

∫ t

0
∥τ 1/6v∥

2
L6∥

√
τ∇v∥

2
L6∥

√
τ∇u∥

2/3
L2 ∥τ∇

2u∥
4/3
L2 dτ.

After using Gronwall’s lemma and the inequalities of the previous steps, we get

X3(t) ≤ C∥u0∥
2
L2eCv

3 (t),

with Cv
3 (t) := C

∫ t

0

(
∥v∥

4
L4 + (1 + ∥τ 1/4v∥

4
L4)∥v∥

3
L6 + ∥τ 1/6v∥

6
L6 + ∥

√
τ∇v∥

3
L6

+ ∥τ 1/2vτ∥
2
L2 + ∥τ 1/2

∇v∥
4
L4 + ∥τ∇

2v∥
4
L4 + ∥τvτ∥

4
L4

)
dτ. (2-26)

2.2. The proof of Theorem 1.1. Let us fix some data (ρ0, u0) such that u0 ∈ L2 and 0<ρ∗ ≤ρ0 ≤ρ∗ <∞.
Then we smooth out the velocity so as to get a sequence (un

0)n∈N of H 1 divergence-free vector fields
(vanishing at ∂� in the bounded domain case) that converges strongly to u0 in L2. It is known (see
[Danchin and Mucha 2019] for the bounded domain or torus cases and [Paicu et al. 2013] for the R2

case) that such data generate a unique global solution (ρn, un, ∇ Pn) with relatively smooth velocity.
In particular, the computations leading to the estimates of the previous subsection may be justified for
ρ = ρn , u = v = un , and we get, for all t ≥ 0 for some constant depending only on ρ∗, ρ∗, and �,

Xn
0(t) := ∥(

√
ρnun)(t)∥2

L2 + 2
∫ t

0
∥∇un

∥
2
L2 dτ ≤ ∥

√
ρ0un

0∥
2
L2, (2-27)

Xn
1(t) ≤ ∥

√
ρ0un

0∥
2
L2eCn

1 (t), with Cn
1 (t) := C

∫ t

0
∥un

∥
4
L4 dτ, (2-28)

Xn
2(t) ≤ ∥

√
ρ0un

0∥
2
L2eCn

2 (t),

with Cn
2 (t) := C

(
sup

τ∈[0,t]
∥τ 1/4un(τ )∥4

L4 +

∫ t

0
(∥un

∥
4
L4 + ∥

√
τ∇un

∥
4
L4 + ∥

√
τun

τ∥
2
L2) dτ

)
, (2-29)

Xn
3(t) ≤ C∥un

0∥
2
L2eCn

3 (t),

with Cn
3 (t) := C

∫ t

0

(
(1 + ∥τ 1/4un

∥
4
L4)∥un

∥
3
L6 + ∥τ 1/6un

∥
6
L6 + ∥

√
τ∇vn

∥
3
L6

+ ∥τ 1/2vn
τ ∥

2
L2 + ∥un, τ 1/2

∇un, τ∇
2un, τun

τ∥
4
L4

)
dτ. (2-30)

Above, Xn
j for j ∈ {1, 2, 3} are the quantities defined in (2-11), (2-21), and (2-26), respectively, pertaining

to (ρn, un, ∇ Pn).
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The fundamental point is that all the norms coming into play in Cn
1 , Cn

2 , and Cn
3 may be bounded by

means of M := supn∈N ∥un
0∥L2 , ρ∗, and ρ∗. For Cn

1 , this just stems from (2-4) with p = 4. Hence we
have, for some CM := C(ρ∗, ρ

∗, M),
sup
t∈R+

Xn
1(t) ≤ CM .

Combining with (0-7) and (2-27), we thus get

sup
t∈R+

∥t1/4un(t)∥4
L4 ≲ ∥un

∥
2
L∞(L2)

∥
√

t∇un
∥

2
L∞(L2)

≲ M2CM , (2-31)

∥
√

t∇un
∥

4
L4(L4)

≲ ∥
√

t∇un
∥

2
L∞(L2)

∥
√

t∇2un
∥

2
L2(L2)

≲ C2
M , (2-32)

∥
√

ρtun
t ∥

2
L2(L2)

≲ CM ; (2-33)

whence, remembering (2-29), we have, up to a change of CM ,

Xn
2(t) ≤ CM for all t ≥ 0.

Finally, one has to bound the terms of Cn
3 independently of n. Let us just treat the third term as an

example. We write that, owing to (A-1) with p = 6,∫
∞

0
∥t1/6un

∥
6
L6 dt ≲

∫
∞

0
∥un

∥
2
L2∥

√
t∇un

∥
2
L2∥∇un

∥
2
L2 dt

≤ ∥un
∥

2
L∞(L2)

∥
√

t∇un
∥

2
L∞(L2)

∥∇un
∥

2
L2(L2)

≲ M4CM .

As a conclusion, we deduce that there exists a constant, still denoted by CM , such that, for all n ∈ N, we
have

sup
t∈R+

(Xn
0(t) + Xn

1(t) + Xn
2(t) + Xn

3(t)) ≤ CM .

Regarding the density, the divergence-free property of un clearly ensures that,

for all n ∈ N, for all t ∈ R+, ρ∗ ≤ ρn(t) ≤ ρ∗.

At this point, arguing as in the classical proofs of global existence of weak solutions for (INS) (see, e.g.,
[Boyer and Fabrie 2013; Lions 1996]), one can conclude that (ρn, un, ∇ Pn)n∈N converges weakly, up to
a subsequence, to a global distributional solution of (INS) satisfying not only (2-1) and the usual energy
inequality (0-3), but also

sup
t∈R+

(X1(t) + X2(t) + X3(t)) ≤ Cρ∗,ρ∗,∥u0∥L2 .

3. More decay estimates

The goal of this section is to prove that the solutions to the linearized momentum equation (1-6), with ρ

satisfying (2-1) and v verifying the regularity properties listed in Theorem 1.1 supplemented with
divergence-free u0 in B̃0

ρ0,1, satisfy (0-8). Achieving this requires several steps. The cornerstones are
estimates in Ḣ 1 and Ḣ−1 for the solution to (1-6) (in addition to the estimates that have been proved
hitherto) and the interpolation method that has been described in Section 1.
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3.1. A priori estimates involving Ḣ1 regularity of u0. In this section, we consider system (1-6) with
some source term g. Our aim is to prove estimates of u in Ḣ 1 in terms of ∇u0 ∈ L2 and g in L2(L2).
Considering here a source term will be needed when proving estimates in Ḣ−1 by means of a duality
method.

Basic estimates in Ḣ 1. Let f := g/ρ. Taking the L2 scalar product of the first line of (1-6) with ut yields,
after integrating by parts in the term with 1u,

1
2

d
dt

∥∇u∥
2
L2 + ∥

√
ρ ut∥

2
L2 =

∫
�

√
ρ( f − v · ∇u) · (

√
ρut) dx . (3-1)

By virtue of Young’s and Hölder’s inequality, we have∫
�

√
ρ( f − v · ∇u) · (

√
ρut) dx ≤

1
2
∥
√

ρut∥
2
L2 + ∥

√
ρ f ∥

2
L2 + ∥

√
ρv · ∇u∥

2
L2 .

Since u̇ = ut + v · ∇u, we may write

∥
√

ρu̇∥L2 ≤ ∥
√

ρut∥L2 + ∥
√

ρv · ∇u∥L2 .

Remembering (2-9), this yields, for some constant c� depending only on �,

d
dt

∥∇u∥
2
L2 +

1
4
∥
√

ρ(ut , u̇)∥2
L2 +

c�

ρ∗
∥∇

2u, ∇ P∥
2
L2 ≤ 4∥

√
ρ f ∥

2
L2 . (3-2)

In the end, combining with Gronwall’s lemma and remembering that f = g/ρ, we get

∥∇u(t)∥2
L2 +

1
4

∫ t

0
∥
√

ρ(ut , u̇)∥2
L2 dτ +

c�

ρ∗

∫ t

0
∥∇

2u, ∇ P∥
2
L2 dτ

≤ eCρ∗
∫ t

0 ∥
√

ρv∥
4
L4 dτ

(
∥∇u0∥

2
L2 + 4

∫ t

0
e−Cρ∗

∫ τ

0 ∥
√

ρv∥
4
L4 dτ ′

∥∥∥∥ g
√

ρ

∥∥∥∥2

L2
dτ

)
. (3-3)

Decay estimates with weight
√

t . Assuming in the rest of this section that g ≡ 0, we proceed as when
proving (2-21) except that we take the L2 scalar product of (2-12) with tut instead of t2ut . In this way,
we get

1
2

d
dt

(
∥
√

ρtut∥
2
L2 +

1
2
∥∇u∥

2
L2

)
+ ∥

√
t∇ut∥

2
L2

=

∫
�

t div(ρv)u̇ · ut dx −

∫
�

tρ(vt · ∇u) · ut dx −

∫
�

ρ(v · ∇u) · ut dx . (3-4)

Combining (A-1), Young’s inequality, and (2-9) gives

−2
∫

�

ρ(v · ∇u) · ut dx ≤
1
2
∥
√

ρut∥
2
L2 +

c�

ρ∗
∥∇

2u∥
2
L2 + Cρ∗

∥
√

ρv∥
4
L4∥∇u∥

2
L2 .

Hence, adding half (3-2) to (3-4) yields

1
2

d
dt

(∥
√

ρtut∥
2
L2 + ∥∇u∥

2
L2) + ∥

√
t∇ut∥

2
L2 +

1
6
∥
√

ρ(ut , u̇)∥2
L2 + c�∥∇

2u, ∇ P∥
2
L2

≤ C∥
√

ρv∥
4
L4∥∇u∥

2
L2 +

∫
�

t div(ρv)u̇ · ut dx −

∫
�

tρ(vt · ∇u) · ut dx . (3-5)
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We integrate by parts in the second term of the right-hand side, which gives∫
�

t div(ρv)u̇ · ut dx = −

∫
�

t (ρv · ∇u̇) · ut dx −

∫
�

t (ρv · ∇ut) · u̇ dx .

The two integrals may be handled as when proving (2-21). We get∫
�

t div(ρv)u̇ · ut dx ≤
1
4
∥
√

t(∇u̇, ∇ut)∥
2
L2 + C∥

√
ρv∥

4
L4∥

√
ρt(u̇, ut)∥

2
L2 .

To bound the last term of (3-5), we proceed as follows (for all ε > 0):∫
�

tρ(vt · ∇u) · ut dx ≤ ∥
√

ρtvt∥L2∥
√

ρtut∥L4∥∇u∥L4

≤ ε∥∇2u∥
2
L2 + ε∥

√
t∇ut∥

2
L2 + Cε∥

√
ρtvt∥

2
L2∥

√
ρtut∥L2∥∇u∥L2 .

From the definition of u̇ and (2-10), it is easy to get

∥
√

t(∇2u, ∇ P,
√

ρu̇)∥L2 ≤ C(∥
√

ρtut∥L2 + ∥
√

ρv∥
2
L4∥

√
t∇u∥L2). (3-6)

By Hölder’s inequality, (A-1), and (A-4) with p = 4, we also notice that

∥
√

t∇u̇∥L2 − ∥
√

t∇ut∥L2 ≲ ∥
√

t∇v∥L4∥∇u∥
1/2
L2 ∥∇

2u∥
1/2
L2 + ∥v∥L4∥

√
ρt u̇∥

1/2
L2 ∥

√
t∇u̇∥

1/2
L2

which implies that

∥
√

t∇u̇∥L2 ≤ 2∥
√

t∇ut∥L2 +
1
4∥∇

2u∥L2 + C(∥
√

t∇v∥
2
L4∥∇u∥L2 + ∥v∥

2
L4∥

√
ρt u̇∥L2).

Inserting all the above inequalities in (3-5) then using Gronwall’s lemma and (2-11), we discover that

Y1(t)≲ ∥∇u0∥
2
L2eC̃v

1 (t), with C̃v
1 (t) := C

∫ t

0
(∥

√
τ∇v, v∥

4
L4 + ∥

√
ρτvτ∥

2
L2) dτ, (3-7)

where

Y1(t) := ∥
√

ρt(ut , u̇)∥2
L2 + ∥∇u∥

2
L2 +

c�

ρ∗
∥
√

t(∇2u, ∇ P)∥2
L2

+

∫ t

0

(
∥
√

τ(∇uτ , ∇u̇)∥2
L2 + ∥

√
ρ(uτ , u̇)∥2

L2 +
c�

ρ∗
∥∇

2u, ∇ P∥
2
L2

)
dτ.

Decay estimates with weight t . Still assuming f ≡ 0, we now take the L2 scalar product of (2-22) with
t Dt(t u̇) and get

1
2

d
dt

∥∇(t u̇)∥2
L2 + ∥

√
ρDt(t u̇)∥2

L2 =

∫
�

(t F − t∇ Ṗ + ρu̇) · Dt(t u̇) dx +

∫
�

1(t u̇) · (v · ∇(t u̇)) dx .

Hence, for all ε > 0,

1
2

d
dt

∥∇(t u̇(t))∥2
L2 + ∥

√
ρDt(t u̇)∥2

L2

≤ ε(∥∇2(t u̇)∥2
L2 + ∥

√
ρDt(t u̇)∥2

L2) +
1
ε

(
∥v · ∇(t u̇)∥2

L2 + ∥
√

ρu̇∥
2
L2 +

∥∥∥∥ t F − t∇̇ P
√

ρ

∥∥∥∥2

L2

)
. (3-8)

To continue, we must estimate t Ṗ and t∇2u̇. To this end, we recall inequality (2-25) and observe that

∥
√

ρt ü∥L2 ≤ ∥
√

ρDt(t u̇)∥L2 + ∥
√

ρu̇∥L2 .
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Hence, taking ε small enough in (3-8) yields

∥∇(t u̇(t))∥2
L2 + ∥

√
ρDt(t u̇), ∇(t Ṗ), ∇2(t u̇)∥2

L2

≲ ∥
√

ρu̇∥
2
L2 + ∥v · ∇(t u̇)∥2

L2 + ∥t∇2v ⊗ ∇u∥
2
L2 + ∥t∇2u ⊗ ∇v∥

2
L2 + ∥t∇v · ∇ P∥

2
L2 . (3-9)

We can bound the first term of the right-hand side according to (3-3). To bound the other terms, we have

∥v · ∇(t u̇)∥2
L2 ≤

C
ε

∥v∥
4
L4∥∇(t u̇)∥2

L2 + ε∥∇2(t u̇)∥2
L2,

∥t∇2v ⊗ ∇u∥
2
L2 ≲ ∥t∇2v∥

2
L4(∥∇u∥

2
L2∥∇

2u∥
2
L2)

1/2,

∥t∇2u ⊗ ∇v∥
2
L2 + ∥t∇v · ∇ P∥

2
L2 ≲ ∥

√
t(∇2u, ∇ P)∥2

L4∥
√

t∇v∥
2
L4 .

Using regularity estimates for (2-5) and (0-7) yields

∥
√

t(∇2u, ∇ P)∥2
L4 ≲ ∥

√
t u̇∥

2
L4 ≲ ∥u̇∥L2∥t∇u̇∥L2 .

Hence

∥t∇2u ⊗ ∇v∥
2
L2 + ∥t∇v · ∇ P∥

2
L2 ≲ ∥

√
t∇v∥

2
L4∥u̇∥L2∥t∇u̇∥L2 ≲ ∥u̇∥

2
L2 + ∥

√
t∇v∥

4
L4∥t∇u̇∥

2
L2 .

Plugging all these inequalities in (3-8), using (3-3), and integrating on [0, t] gives

Y2(t) := ∥∇(t u̇(t))∥2
L2 +

∫ t

0
∥
√

ρDτ (τ u̇), ∇(τ Ṗ), ∇2(τ u̇)∥2
L2 dτ

≲
∫ t

0
(∥v∥

4
L4 + ∥

√
τ∇v∥

4
L4)∥τ∇u̇∥

2
L2 dτ + ∥∇u0∥

2
L2eC

∫ t
0 ∥v∥

4
L4 dτ

(1 + ∥τ∇
2v∥

4
L4

t (L4)
).

At this stage, Gronwall’s lemma enables us to conclude

Y2(t) ≤ C∥∇u0∥
2
L2eC̃v

2 (t), with C̃v
2 (t) := C

∫ t

0
∥v,

√
τ∇v, τ∇

2v∥
4
L4 dτ. (3-10)

Estimates in Ḣ s for s ∈ (0, 1). If we denote by E the linear operator that associates to (u0, g) the
solution u to (1-6) on R+ × �, then the previous inequalities (2-3) and (3-3) and the fact that the norms
in L2(ρ dx) or L2(dx) are equivalent (recall (0-4)) ensure that

• E maps L2(�) × L2(R+; Ḣ−1(�)) to L∞(R+; L2(�)) ∩ L2(R+; Ḣ 1(�)),

• E maps Ḣ 1(�) × L2(R+; L2(�)) to L∞(R+; Ḣ 1(�)) ∩ L2(R+; Ḣ 2(�)).

Consequently, the complex interpolation theory ensures that, for all s ∈ [0, 1],

E : Ḣ s(�) × L2(R+; Ḣ s−1(�)) → L∞(R+; Ḣ s(�)) ∩ L2(R+; Ḣ s+1(�)),

with, for some constant Cρ depending only on ρ∗ and ρ∗, we have the bound

sup
t∈[0,T ]

∥u(t)∥2
Ḣ s +

∫ T

0
∥u∥

2
Ḣ s+1 dt ≤ CρeCsρ∗

∫ T
0 ∥

√
ρv∥

4
L4 dt

(
∥u0∥

2
Ḣ s +

∫ T

0
∥g∥

2
Ḣ s−1 dt

)
. (3-11)

For g ≡ 0, due to (2-21) and (3-10), for all t > 0, the linear operator that associates to u0 the function
t u̇(t) — with u being the solution to (1-6) with no source term — maps L2 to L2 and Ḣ 1 to Ḣ 1. Hence it
maps Ḣ s to Ḣ s for all s ∈ [0, 1], and we have

∥t u̇(t)∥Ḣ s ≤ Ce(s/2)C̃v
2 (t)

∥u0∥Ḣ s for all t > 0. (3-12)
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3.2. Estimates in negative Sobolev spaces. We here prove estimates for (1-6) in the case of initial data
in Sobolev space with negative regularity.

Data in Ḣ−1. To estimate
√

ρu in L2(0, T × �), we consider the backward parabolic system
ρwt + ρv · ∇w + 1w + ∇Q = ρu,

div w = 0,

w|t=T = 0.

(3-13)

By definition of w, we have∫ T

0

∫
�

u · (ρu) dx dt =

∫ T

0

∫
�

u · (ρwt + ρv · ∇w + 1w + ∇Q) dx dt.

Integrating by parts and remembering that ∂tρ + div(ρv) = 0 and div w = 0 yields∫ T

0

∫
�

ρ|u|
2 dx dt = −

∫ T

0

∫
�

(ρu̇ − 1u + ∇ P) · w dx dt +

∫
�

((ρu)(T ) · w(T ) − ρ0u0 · w(0)) dx .

As w(T ) = 0 and u satisfies (1-6), we conclude that∫ T

0

∫
�

ρ|u|
2 dx dt = −

∫
�

ρ0u0 · w(0) dx ≤ ∥ρ0u0∥Ḣ−1∥∇w(0)∥L2 .

Adapting the proof of (3-3) to (3-13) yields

∥∇w(0)∥2
L2 ≤ eρ∗

∫ T
0 ∥

√
ρ v∥

4
L4 dt

∥
√

ρu∥
2
L2(0,T ×�)

.

Hence we have
∥
√

ρu∥L2(0,T ×�) ≤ ∥ρ0u0∥Ḣ−1e(ρ∗/2)
∫ T

0 ∥
√

ρv∥
4
L4 dt

. (3-14)

In order to bound P(ρu)(T ) in Ḣ−1, we start from

∥P(ρu)(T )∥Ḣ−1 = sup
∥wT ∥Ḣ1=1

div w=0

∫
�

(ρu)(T ) · wT dx

and solve (3-13) with no source term and data wT at time t = T . Hence,

0 =

∫ T

0

∫
�

(ρwt + ρv · ∇w + 1w + ∇Q) · u dx dt

= −

∫ T

0

∫
�

ρ(∂t u + v · ∇u − 1u) · w dx dt +

∫
�

(ρ(T )u(T ) · wT − ρ0u0 · w(0)) dx .

Since u satisfies (1-6) and div w = 0, we get∫
�

(ρu)(T ) · wT dx =

∫
�

ρ0u0 · w(0) dx . (3-15)

As
∥∇w(0)∥L2 ≤ e(ρ∗/2)

∫ T
0 ∥

√
ρv∥

4
L4 dt

∥∇wT ∥L2,

we conclude that
∥P(ρu)(T )∥Ḣ−1 ≤ ∥P(ρ0u0)∥Ḣ−1e(ρ∗/2)

∫ T
0 ∥

√
ρv∥

4
L4 dt

. (3-16)
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Estimates in Ḣ−s for s ∈ (0, 1). We start from

∥P(ρu)(T )∥Ḣ−s = sup
∥wT ∥Ḣs =1

div w=0

∫
�

(ρu)(T ) · wT dx .

Using (3-15), we get, for any divergence-free wT ∈ Ḣ s with norm equal to 1,∣∣∣∣∫
�

(ρu)(T ) · wT dx
∣∣∣∣≤ ∥P(ρ0u0)∥Ḣ−s ∥w(0)∥Ḣ s ,

where w is the solution of (3-13) with no source term and data wT at time T .
Keeping (3-11) in mind, we easily conclude that

∥P(ρu)(T )∥Ḣ−s ≤ C∥P(ρ0u0)∥Ḣ−s e(Cs/2)ρ∗
∫ T

0 ∥
√

ρ v∥
4
L4 dτ

. (3-17)

3.3. More time decay estimates. In this section, we point out a number of time decay estimates for (1-6)
in Sobolev and Lebesgue spaces that may be deduced from what we proved hitherto and basic interpolation
results.

Sobolev decay estimates. These are summarized in the following proposition.

Proposition 3.1. The following estimates hold:

• For any 0 ≤ s ≤ 2 and 0 ≤ s ′
≤ 1, we have

∥u(t)∥Ḣ s ≤ Cρ,vt−(s+s′)/2
∥P(ρ0u0)∥Ḣ−s′ , t > 0. (3-18)

• For any 0 ≤ s, s ′
≤ 1,

∥tut(t)∥Ḣ s + ∥t u̇(t)∥Ḣ s ≤ Cρ,v t−(s+s′)/2
∥P(ρ0u0)∥Ḣ−s′ , t > 0. (3-19)

• For any 0 ≤ s ≤ 1,
∥t u̇(t), u(t)∥Ḣ1 ≤ CeC̃v

2 (t)+C̃v
3 (t)t (s−1)/2

∥u0∥Ḣ s , (3-20)

∥u̇(t), ut(t)∥L2 ≤ CeC̃v
2 (t)+C̃v

3 (t)t−(2−s)/2
∥u0∥Ḣ s , (3-21)

∥u̇(t)∥Ḣ s ≤ CeC̃v
2 (t)+C̃v

3 (t)t−(1+s)/2
∥u0∥Ḣ1 . (3-22)

Proof. The previous sections guarantee that

tk/2
∥∇

ku(t)∥L2 ≤ Cρ,v∥u0∥L2 for k = 0, 1, 2, (3-23)

t1+k/2
∥∇

k(ut , u̇)(t)∥L2 ≤ Cρ,v∥u0∥L2 for k = 0, 1. (3-24)

The key observation for proving (3-18) is that having the density bounded and bounded away from zero
ensures that

∥P(ρz)∥L2 ≃ ∥z∥L2 for all z ∈ L2
σ . (3-25)

Indeed, since P is an L2 orthogonal projector, we may write

∥P(ρz)∥L2 ≤ ∥ρz∥L2 ≤ ρ∗
∥z∥L2
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and

ρ∗∥z∥2
L2 ≤

∫
�

ρ|z|2 dx =

∫
�

P(ρz) · z dx

≤ ∥P(ρz)∥L2∥z∥L2 .

Inequality (3-18) in the case s ′
= 0 thus follows from (3-23), with k = 0, 2, and complex interpolation. In

order to attain negative values of s ′, we use again (3-25) then argue by duality as follows for all t > 0:

∥P(ρu)(t)∥L2 = sup
∥w∥L2

σ
=1

∫
�

(ρu)(t) · w dx = sup
∥w∥L2

σ
=1

∫
�

ρ0u0 · w(0) dx

≤ ∥P(ρ0u0)∥Ḣ−s′ sup
∥w∥L2

σ
=1

∥w(0)∥Ḣ s′ ,

where w(0) stands for the solution at time t = 0 of the backward Stokes system (3-13) with no source
term and data w at time t . Now, using the inequality we have just proved (that, obviously, also holds
for (3-13)), we discover that

∥w(0)∥Ḣ s′ ≤ Ct−s′/2
∥w∥L2,

whence

∥ρ(t)u(t)∥L2 ≤ Ct−s′/2
∥P(ρ0u0)∥Ḣ−s′ . (3-26)

Since inequality (3-23) is valid on any interval [t0, t] (if replacing u0 by u(t0) and t by t − t0, of course),
one can assert that, for all s ∈ [0, 2], we have

∥u(t)∥Ḣ s ≤ Ct−s/2∥∥(ρu)
( 1

2 t
)∥∥

L2,

which, combined with (3-26)
(
at time 1

2 t
)

completes the proof of (3-18) for all 0 ≤ s ≤ 2 and 0 ≤ s ′
≤ 1.

Next, using (3-24), with k = 0, 1, and complex interpolation yields (3-19) for s ′
= 0 and all s ∈ [0, 1].

Since the inequality also holds if u0 is replaced with u
( 1

2 t
)
, using again (3-26) yields the desired inequality

for all s ′
∈ [0, 1].

By the same token, combining the above result with the continuity properties resulting from inequalities
(2-26), (3-3), (3-7) and (3-10) gives the last three inequalities of the statement. The details are left to
the reader. □

Decay estimates in Lebesgue spaces. Inequalities (3-23) and (3-24) also imply the following result.

Proposition 3.2. The following inequalities hold:

• If 1 < p ≤ 2 ≤ q ≤ ∞ then

∥u(t)∥Lq + ∥
√

t∇u(t)∥Lq ≤ Cρ,vt1/q−1/p
∥u0∥L p . (3-27)

• If 1 < p ≤ 2 ≤ q < ∞ then

∥t (u̇, ut , ∇
2u, ∇ P)(t)∥Lq ≤ Cρ,vt1/q−1/p

∥u0∥L p . (3-28)
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Proof. Combining the Gagliardo–Nirenberg inequality (A-1) and (3-23) with k = 0, 1, 2, it is easy to get

∥u(t)∥Lq + ∥
√

t∇u(t)∥Lq ≤ Cρ,vt1/q−1/2
∥u0∥L2, 2 ≤ q < ∞, (3-29)

while (3-24) ensures that
∥ut(t), u̇(t)∥Lq ≤ Cρ,vt1/q−3/2

∥u0∥L2 . (3-30)

Since (u, ∇ P) satisfies the Stokes system (2-5), inequality (A-4) gives

∥∇
2u(t)∥Lq + ∥∇ P(t)∥Lq ≤ Cρ,vt1/q−3/2

∥u0∥L2, 2 ≤ q < ∞. (3-31)

Remember that5

∥z∥L∞ ≤ C∥z∥1/2
L4 ∥∇z∥1/2

L4 . (3-32)

Taking first z = u and using (3-29) with p = 4, then z = ∇u and using (3-31) with p = 4 allows us to
reach the index q = ∞ in (3-29).

In (3-29) and (3-31), the term ∥u0∥L2 may be replaced with
∥∥u
( 1

2 t
)∥∥

L2 . Consequently, using (2-1),
(3-26), embedding L p ↪→ Ḣ−1+2/p for all 1 < p ≤ 2, and the fact that P : L p

→ L p ensures that

∥u(t)∥L2 ≃ ∥P(ρu)(t)∥L2 ≤ Cρ,vt1/2−1/p
∥P(ρ0u0)∥Ḣ1−2/p

≤ Cρ,vt1/2−1/p
∥P(ρ0u0)∥L p ≤ Cρ,vt1/2−1/p

∥u0∥L p ,

which, plugged into (3-29) and (A-4), completes the proofs of (3-27) and (3-28) for all admissible values
of p and q. □

Decay estimates for L2-in-time norms. Putting together (2-3), (2-11), (2-21), and (2-26), we see that∫ t

0

(
∥∇u∥

2
L2 + ∥

√
τ(∇2u, ∇ P)∥2

L2 + ∥
√

τ(u̇, uτ )∥
2
L2

+ ∥τ(∇uτ , ∇u̇)∥2
L2 + ∥τ 3/2ü∥

2
L2 + ∥τ 3/2(∇2u̇, ∇ Ṗ)∥2

L2

)
dτ ≤ Cρ,v∥u0∥

2
L2 . (3-33)

This will enable us to prove the following family of decay estimates.

Proposition 3.3. The following inequalities hold:

∥τ 1/2−1/q
∇u∥L2

t (Lq ) ≤ Cρ,v∥u0∥L2 for all 2 ≤ q ≤ ∞, (3-34)

∥τ 1−1/q(u̇, ut)∥L2
t (Lq ) ≤ Cρ,v∥u0∥L2 for all 2 ≤ q ≤ ∞, (3-35)

∥τ 1−1/q(∇2u, ∇ P)∥L2
t (Lq ) ≤ Cρ,v∥u0∥L2 for all 2 ≤ q < ∞, (3-36)

∥τ 3/2−1/q
∇u̇∥L2

t (Lq ) ≤ Cρ,v∥u0∥L2 for all 2 ≤ q < ∞. (3-37)

Proof. Except for q = ∞, inequality (3-34) follows from the Gagliardo–Nirenberg inequality (A-1) and
the fact that

∥∇u∥L2
t (L2) + ∥

√
τ∇

2u∥L2
t (L2) ≤ Cρ,v∥u0∥L2 .

5In the torus case, this inequality holds under the assumption
∫

T2 az dx = 0 for some nonnegative function a with mean
value 1. The idea of the proof is similar to that of (A-2).
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Similarly, except for the case q = ∞, inequality (3-35) for u̇ stems from (A-1) and

∥τ∇u̇∥L2
t (L2) + ∥

√
τ u̇∥L2

t (L2) ≤ Cρ,v∥u0∥L2 .

Now, since (u, P) satisfies (2-5), the regularity properties of the Stokes system pointed out in (A-4) and
(3-35) guarantee that

∥τ 1−1/q(∇2u, ∇ P)∥L2
t (Lq ) ≤ Cρ,v∥u0∥L2 for all 2 ≤ q < ∞.

Putting together this latter inequality and (3-34) with q = 4 and remembering (3-32) yields (3-34)
for q = ∞.

Note that (3-33) also implies that

∥τ 3/2
∇

2u̇∥L2
t (L2) + ∥τ∇u̇∥L2

t (L2) ≤ Cρ,v∥u0∥L2,

and thus (3-37) by (A-1). Using it with q = 4 as well as (3-35) (also with q = 4) and (3-32) gives (3-35)
for u̇ and q = ∞.

To prove that ut satisfies (3-35), it suffices to check that

∥τ 1−1/qv · ∇u∥L2
t (Lq ) ≤ Cρ,v∥u0∥L2 for all 2 ≤ q ≤ ∞.

Now, by Hölder’s inequality, we have

∥τ 1−1/qv · ∇u∥L2
t (Lq ) ≤ ∥τ 1/2v∥L∞

t (L∞)∥τ
1/2−1/q

∇u∥L2
t (Lq ).

The term with v is energy-like (see (3-27)), which completes the proof. □

3.4. The Lipschitz control and other properties needed for stability. In the present subsection, we point
out some additional properties of the velocity field that are valid in the case where u0 is in B̃0

ρ0,1. The
most important one is the Lipschitz control. We shall also prove that the regularity B̃0

ρ0,1 is preserved by
the flow, and that other norms that will be needed in the proof of uniqueness and stability are finite.

These results follow from the Sobolev estimates we proved in the previous section and on the dynamic
interpolation argument presented for the heat equation in Section 1.

Now, fix some u0 in B̃0
ρ0,1 and a sequence (u0, j )j∈Z of L2

σ such that

u0 =

∑
j∈Z

u0, j , with P(ρ0u0, j ) ∈ Ḣ−1/2, u0, j ∈ Ḣ 1/2 for all j ∈ Z

and
∑
j∈Z

(2− j/2
∥u0, j∥Ḣ1/2 + 2 j/2

∥P(ρ0u0, j )∥Ḣ−1/2) ≤ 2∥u0∥B̃0
ρ0,1

. (3-38)

Then, for each j ∈ Z, we solve the linear system
ρ∂t u j + ρv · ∇u j − 1u j + ∇ Pj = 0,

div u j = 0,

u j |t=0 = u0, j .

(3-39)

From (3-38) and the uniqueness properties of system (1-6) in the energy space, we deduce that

u =

∑
j∈Z

u j . (3-40)
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The Lipschitz bound. Recall the Gagliardo–Nirenberg inequality

∥∇z∥L∞ ≤ C∥z∥1/4
L4 ∥∇

2z∥3/4
L4 . (3-41)

Combined with the elliptic estimates for the Stokes system and Sobolev embedding, this implies that, for
all t > 0 and j ∈ Z,

∥∇u j (t)∥L∞ ≤ Ct−3/4
∥u j (t)∥

1/4
L4 ∥t u̇ j (t)∥

3/4
L4 ≤ Ct−3/4

∥u j (t)∥
1/4
Ḣ1/2∥t u̇ j (t)∥

3/4
Ḣ1/2 .

Hence, taking advantage of (3-11) and (3-12) gives

∥∇u j (t)∥L∞ ≤ Cρ,vt−3/4
∥u0, j∥Ḣ1/2 .

Since we also have

∥∇u j (t)∥L∞ ≤ Cρ,vt−3/4∥∥u j
( 1

2 t
)∥∥

Ḣ1/2,

we conclude in light of (3-18) that

∥∇u j (t)∥L∞ ≤ Cρ,vt−5/4
∥P(ρ0u0, j )∥Ḣ−1/2 .

Hence, arguing as in Section 1, we conclude that∫
∞

0
∥∇u∥L∞ dt ≤ Cρ,v∥u0∥B̃0

ρ0,1
. (3-42)

Remark 3.4. Recall the more accurate interpolation inequality

∥∇z∥Ḃ1/2
4,1

≤ C∥z∥1/2
L4 ∥∇

2z∥3/4
L4 . (3-43)

Repeating the above dynamic interpolation procedure thus actually gives∫
∞

0
∥∇u∥Ḃ1/2

4,1
dt ≤ Cρ,v ∥u0∥B̃0

ρ0,1
.

Since Ḃ1/2
4,1 ↪→ Cb, this ensures that the flow of the velocity field is uniformly C1 with respect to the space

variable.

Propagating the initial regularity. Owing to (3-11) and to (3-17) with s =
1
2 , we have, for all j ∈Z and t ≥0,

∥u j (t)∥Ḣ1/2 ≤ Cρ,v∥u0, j∥Ḣ1/2 and ∥P(ρu j )(t)∥Ḣ−1/2 ≤ Cρ,v∥P(ρ0u0, j )∥Ḣ−1/2 .

Hence, multiplying the first (resp. second) inequality by 2− j/2 (resp. 2 j/2) then summing over j ∈ Z yields

∥u(t)∥B̃0
ρ(t),1

≤ Cρ,v∥u0∥B̃0
ρ0,1

.

Additional bounds for the pressure and the time derivative of the velocity. In addition to the Lipschitz
bound on velocity, our proof of uniqueness will require that

√
t u̇ and

√
t∇ P are in L4/3(R+; L4), and we

will also need the property that u̇ and
√

t Du̇ are in L1(R+; L2) to prove the stability of the flow map.
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Again, in light of the decomposition (3-40) and of the triangle inequality, in order to prove that
√

t u̇ is
in L4/3(R+; L4), it suffices to estimate t u̇ j for all j ∈ Z. Now, owing to the Sobolev embedding and the
inequalities

(
that stem from (3-12) and (3-19) with s = s ′

=
1
2

)
∥u̇ j (t)∥Ḣ1/2 ≤ Cρ,vt−1

∥u0, j∥Ḣ1/2 and ∥u̇ j (t)∥Ḣ1/2 ≤ Cρ,vt−3/2
∥P(ρ0u0, j )∥Ḣ−1/2,

we may write, for all Aj > 0,

∥
√

t u̇ j∥
4/3
L4/3(R+;L4)

≤ C
∫

∞

0
t2/3

∥u̇ j∥
4/3
Ḣ1/2 dt

≤ Cρ,v

(∫ Aj

0
t2/3(t−1

∥u0, j∥Ḣ1/2)
4/3 dt +

∫
∞

Aj

t2/3(t−3/2
∥P(ρ0u0, j )∥Ḣ−1/2)

4/3 dt
)

≤ Cρ,v(A1/3
j ∥u0, j∥

4/3
Ḣ1/2 + A−1/3

j ∥P(ρ0u0, j )∥
4/3
Ḣ−1/2), (3-44)

which gives, if taking Aj = 2−2 j and using (A-4),

∥(
√

t u̇,
√

t∇2u,
√

t∇ P)∥L4/3(R+;L4) ≤ Cρ,v∥u0∥B̃0
ρ0,1

. (3-45)

Similarly, in order to bound u̇ in L1(R+; L2), it suffices to get appropriate bounds in terms of the data
for u̇ j in L1(R+; L2) and for all j ∈ Z. The inequalities (that stem from (2-21) and (3-7))

∥u̇ j (t)∥L2 ≤ Cρ,vt−1
∥u0, j∥L2 and ∥u̇ j (t)∥L2 ≤ Cρ,vt−1/2

∥∇u0, j∥L2

and complex interpolation give
∥u̇ j (t)∥L2 ≤ Cρ,vt−3/4

∥u0, j∥Ḣ1/2 .

Furthermore, combining with (3-19), we discover that, for all j ∈ Z,

∥u̇ j (t)∥L2 ≤ Cρ,vt−5/4
∥P(ρ0u0, j )∥Ḣ−1/2 .

Hence we have, for all j ∈ Z and Aj > 0,∫
∞

0
∥u̇ j (t)∥L2 dt ≤

∫ Aj

0
∥u̇ j (t)∥L2 dt +

∫
∞

Aj

∥u̇ j (t)∥L2 dt

≤ Cρ,v

(∫ Aj

0
(t−3/4

∥u0, j∥Ḣ1/2) dt +

∫
∞

Aj

(t−5/4
∥P(ρ0u0, j )∥Ḣ−1/2) dt

)
≤ Cρ,v(A1/4

j ∥u0, j∥Ḣ1/2 + A−1/4
j ∥P(ρ0u0, j )∥Ḣ−1/2).

Taking Aj = 2−2 j , summing over j , then using the regularity properties of the Stokes system thus gives

∥∇
2u, ∇ P, u̇∥L1(R+;L2) ≤ Cρ,v∥u0∥B̃0

ρ0,1
. (3-46)

In the same way, one can prove that

∥
√

t Du̇∥L1(R+;L2) ≤ Cρ,v ∥u0∥B̃0
ρ0,1

. (3-47)

It suffices to use, as a consequence of (3-19) and (3-20), that

∥
√

t∇u̇ j (t)∥L2 ≤ Cρ,vt−3/4
∥u0, j∥Ḣ1/2 and ∥

√
t∇u̇ j (t)∥L2 ≤ Cρ,vt−5/4

∥P(ρ0u0, j )∥Ḣ−1/2 .
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4. A global well-posedness result for large data

This section is devoted to the proof of Theorem 1.3 and of stability estimates.

4.1. The proof of existence. Consider data (ρ0, u0) satisfying the hypotheses of Theorem 1.3. Since
the space B̃0

ρ0,1 is embedded in L2
σ , Theorem 1.1 provides us with a global weak solution (ρ, u, ∇ P)

satisfying the properties therein, and it is only a matter of checking that this solution has the additional
properties that are listed in Theorem 1.3. To do so, we fix some decomposition

∑
j u0, j of u0 given by

Definition 1.2 and look, for all j ∈ Z, at the solution u j to the linear system (1-6) with density ρ, transport
field u, and initial data u0, j . Since each u0, j is in L2

σ ∩ Ḣ 1/2 and P(ρ0u0, j ) ∈ Ḣ−1/2, standard techniques
yield a unique global solution (u j , ∇ Pj ) that satisfies, for all t ≥ 0,

1
2
∥

√
ρ(t)u j (t)∥2

L2 +

∫ t

0
∥∇u j∥

2
L2 dτ =

1
2
∥
√

ρ0u0, j∥
2
L2, (4-1)

∥P(ρu j )(t)∥Ḣ−1/2 ≤ C(ρ∗, ρ
∗, ∥u0∥L2)∥P(ρ0u0, j )∥Ḣ−1/2, (4-2)

∥u j (t)∥Ḣ1/2 ≤ C(ρ∗, ρ
∗, ∥u0∥L2)∥u0, j∥Ḣ1/2 . (4-3)

Remembering (1-9), this ensures that the L2-valued series
∑

j u j converges normally on R+. Its sum ũ
thus also belongs to the energy space. Furthermore, as for each j ∈ Z, we have u j ∈ C(R+; L2) (observe
that t3/4u j

t is in L∞(R+; L2) owing to (3-21)), and we deduce that ũ ∈ C(R+; L2). Next, if we define
un

:=
∑

| j |≤n u j , then we see that, for all n ∈ N,

∂t(ρ(un
− ũ)) + div(ρu ⊗ (un

− ũ)) − 1(un
− ũ) + ∇(Pn

− P̃) = 0, div(un
− ũ) = 0,

which implies

1
2
∥

√
ρ(t)(un

− ũ)(t)∥2
L2 +

∫ t

0
∥∇(un

− ũ)∥2
L2 dτ =

1
2
∥
√

ρ0(un(0) − u(0))∥2
L2 .

As the right-hand side tends to 0 for n going to 0, the velocity field ũ satisfies the energy balance (0-3),
and it is also easy to conclude that, like u, it satisfies (1-6) with density ρ, transport field u, and initial
data u0. In particular,

∂t(ρ(u − ũ)) + div(ρu ⊗ (u − ũ)) − 1(u − ũ) + ∇(P − P̃) = 0, div(u − ũ) = 0.

As (u−ũ)(0)= 0 and the two solutions are in the energy space, they must coincide. Now, inequalities (4-2)
and (4-3) ensure that one can propagate the regularity B̃0

ρ0,1, getting (1-10). Likewise, the justification that u
satisfies (0-8), that (u̇,

√
t Du̇, D2u, ∇ P) ∈ L1(R+; L2), and that

√
t u̇ ∈ L4/3(R+; L4) may be achieved

by following the arguments of the previous section. The fundamental point is that all the bounds that
are needed for the u j in the process only depend on ρ∗, ρ∗, ∥u0∥L2 , ∥P(ρ0u0, j )∥Ḣ−1/2 , and ∥u0, j∥Ḣ1/2 .

4.2. The proof of uniqueness. Let (ρ1, u1, ∇ P1) and (ρ2, u2, ∇ P2) be two solutions fulfilling the
properties listed in Theorem 1.3 and corresponding to data (ρ1

0 , u1
0) and (ρ2

0 , u2
0), respectively. As in

[Danchin and Mucha 2019], in order to prove that

(ρ1, u1, ∇ P1) ≡ (ρ2, u2, ∇ P2)
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in the case where the two initial data coincide, we shall compare the solutions at the level of their own
Lagrangian coordinates. To do so, we consider, for i = 1, 2, the flow X i of ui that is defined by the
(integrated) ODE

X i (t, y) = y +

∫ t

0
ui (τ, X i (τ, y)) dτ. (4-4)

Since ∇ui is in L1(R+; L∞) and
√

tui is in L∞(0, T × �) (see (3-27) with p = 2 and q = ∞), there
exists a unique continuous flow X i on (0, T ) × � that is Lipschitz with respect to the space variable.

In Lagrangian coordinates the density is equal to the initial density. As for the velocity and the pressure
defined by

Qi (t, y) = P i (t, X i (t, y)) and vi (t, y) = ui (t, X i (t, y)), (4-5)

they satisfy {
ρi

0v
i
t − divvi ∇vi vi

+ ∇vi Qi
= 0,

divvi vi
= 0,

(4-6)

where
∇vi := (Ai )⊤∇y and divvi := divy(Ai

· ) = (Ai )⊤ : ∇y, with Ai
:= (DX i )−1.

The fact that ∇ui is in L1(R+; L∞) and the other properties of regularity ensure that (INS) and (4-6)
(with time-independent density) are equivalent.

Observe that, due to (4-4) and the definition of vi , we have

DX i (t, y) = Id +

∫ t

0
Dvi (τ, y) dτ. (4-7)

Hence, since det DX i
≡ 1 (owing to div vi

= 0), we have, for i = 1, 2,

Ai (t) = Id +

( ∫ t
0 ∂2v

i,2 dτ −
∫ t

0 ∂2v
i,1 dτ

−
∫ t

0 ∂1v
i,2 dτ

∫ t
0 ∂1v

i,1 dτ

)
. (4-8)

Hence δA := A2
− A1 depends linearly on ∇δv (with δv := v2

− v1) as follows:

δA(t) =

( ∫ t
0 ∂2δv

2 dτ −
∫ t

0 ∂2δv
1 dτ

−
∫ t

0 ∂1δv
2 dτ

∫ t
0 ∂1δv

1 dτ

)
. (4-9)

Now, setting 1vi := divvi ∇vi and δQ := Q2
− Q1, we discover that (δv, δQ) satisfies{

ρ1
0δvt − 1v1δv + ∇v1δQ = (1v2 − 1v1)v2

− (∇v2 − ∇v1)Q2
− δρ0v

2
t ,

divv1 δv = (divv1 − divv2)v2
= −div(δAv2).

(4-10)

In order to prove uniqueness in the case where the initial data are the same and, more generally, stability
estimates with respect to the initial data, using the basic energy method — which consists of taking the
L2 scalar product of (4-10) with δv — is not appropriate, since one cannot eliminate the pressure term
(there is no reason why we should have divv1 δv = 0). To overcome the difficulty, we proceed as in
[Danchin and Mucha 2019], solving first the equation

divv1 w = −div(δAv2) = −δA⊤
: ∇v2, with δA := A2

− A1. (4-11)
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Then, we look at the system for z := δv − w, namely{
ρ1

0 zt − 1v1 z + ∇v1δQ = (1v2 − 1v1)v2
− (∇v2 − ∇v1)Q2

− ρ1
0wt + 1v1w − δρ0v

2
t ,

divv1 z = 0,
(4-12)

supplemented with z|t=0 = δv0.

Solving (4-11) relies on the following lemma.

Lemma 4.1. Assume that � is a C2 bounded domain, the torus, or the whole space. Fix T > 0 and define

ET := {w ∈ C([0, T ]; L2), ∇w ∈ L2(0, T × �), w|∂� = 0 and wt ∈ L4/3(0, T × �)}.

There exists a constant c depending only on � such that, whenever the divergence-free vector field u
satisfies

∥∇u∥L2(0,T ×�) + ∥∇u∥L1(0,T ;L∞) ≤ c (4-13)

then, for all vector fields k ∈ C([0, T ]; L2) such that div k ∈ L2(0, T ×�) and kt ∈ L4/3(0, T ×�), there
exists a vector field w in the space ET satisfying

div(Aw) = div k

(where A is defined from u as in (4-8)) and the inequalities

∥w(t)∥L2 ≤ C∥k(t)∥L2 for all t ∈ [0, T ], (4-14)

∥∇w∥L2
T (L2) ≤ C∥ div k∥L2

T (L2), (4-15)

∥wt∥L4/3
T (L4/3)

≤ C(∥kt∥L4/3
T (L4/3)

+ ∥∇u∥L2
T (L2)∥w∥L4

T (L4)). (4-16)

Proof. With the notation of Lemma A.1 in the Appendix, we introduce the map

8 : w 7→ z := B(k + (Id − A)w).

It is only a matter of proving that 8 admits a fixed point. That 8 maps ET to ET follows from Lemma A.1
and easy modifications of the computations below. Hence, as ET is a Banach space, it suffices to show
that the linear map 8 is strictly contractive. To do so, take two elements w1 and w2 of ET . Then, we have

8(w2) − 8(w1) = B((Id − A)δw), with δw := w2
− w1.

Remembering (4-8) and that B : L2
→ L2, we thus have

∥8(w2) − 8(w1)∥L∞

T (L2) ≤ C∥∇u∥L1
T (L∞)∥δw∥L∞

T (L2). (4-17)

Next, using again (4-8) and the fact that

div((Id − A)δw) = (Id − A⊤) : ∇δw,

we readily get
∥∇(8(w2) − 8(w1))∥L2

T (L2) ≤ C∥∇u∥L1
T (L∞)∥∇δw∥L2

T (L2). (4-18)

Finally, using
((Id − A)δw)t = (Id − A)δwt − Atδw
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yields, for almost every t ∈ [0, T ],

∥(8(w2) − 8(w1))t(t)∥L4/3 ≲ ∥(Id − A(t))δwt(t)∥L4/3 + ∥At(t)δw(t)∥L4/3

≲ ∥∇u∥L1
t (L∞)∥δwt(t)∥L4/3 + ∥∇u(t)∥L2∥δw(t)∥L4

≲ ∥∇u∥L1
t (L∞)∥δwt(t)∥L4/3 + ∥∇u(t)∥L2∥δw(t)∥1/2

L2 ∥∇δw(t)∥1/2
L2 . (4-19)

Combining (4-17)–(4-19), we conclude

∥(8(w2) − 8(w1)∥ET ≤ C(∥∇u∥L1
T (L∞) + ∥∇u∥L2

T (L2))∥δw∥ET .

Hence, if (4-13) is satisfied with a suitable small c > 0 then 8 is contractive, which ensures the existence
of w in ET satisfying the desired equation. Finally, using the fact that we thus have w =Bk+B((Id− A)w)

and that
div((Id − A)w) = (Id − A⊤) : ∇w,

((Id − A)w)t = (Id − A)wt − Atw,

mimicking the above calculations gives (4-14), (4-15), and (4-16). □

In what follows, we assume that T has been chosen such that (4-13) is satisfied for u1 and u2, and we
define w on [0, T ] × � according to the above lemma with k = −δAv2. We shall use repeatedly that,
owing to (4-9) and the Cauchy–Schwarz inequality, we have

max(∥t−1/2δA∥L∞

T (L2), ∥(δA)t∥L2(0,T ×�)) ≤ ∥∇δv∥L2(0,T ×�). (4-20)

Hence, thanks to (4-14), we have, for all t ∈ [0, T ],

∥w(t)∥L2 ≤ C∥
√

tv2(t)∥L∞∥∇δv∥L2(0,t×�). (4-21)

Next, as

(δAv2)t = δAtv
2
+ δAv2

t ,

inequality (4-16) (before time integration) and (4-9) guarantee that

∥wt∥L4/3 ≤ C(∥∇v1
∥L2∥w∥L4 + ∥∇δv∥L2∥v2

∥L4 + ∥δA∥L2∥v2
t ∥L4). (4-22)

Finally, using div(δAv2) = δA⊤
: ∇v2, inequalities (4-15) and (4-20) yield

∥Dw(t)∥L2 ≤ C∥∇δv∥L2
t (L2)∥

√
t∇v2

∥L∞
t (L∞). (4-23)

Now, taking the L2(0, t ×�) scalar product of the first equation of (4-12) with z and integrating by parts
in some terms yields

1
2
∥

√
ρ1

0 z∥2
L∞(0,t;L2)

+

∫ t

0
∥∇v1 z∥2

L2 dτ =
1
2
∥

√
ρ1

0δu0∥
2
L2 +

5∑
j=1

Ij (t), (4-24)
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with

I1(t) := −

∫ t

0

∫
�

(δA(A2)⊤ + A1δA⊤)∇v2
: ∇z dx dτ,

I2(t) := −

∫ t

0

∫
�

δA⊤
∇Q2

· z dx dτ, I3(t) := −

∫ t

0

∫
�

ρ1
0wτ · z dx dτ,

I4(t) := −

∫ t

0

∫
�

(A1)⊤∇w : (A1)⊤∇z dx dτ, I5(t) := −

∫ t

0

∫
�

δρ0v
2
t · z dx dτ. (4-25)

We shall often use that, due to (4-8),

∥∇z∥L2(0,T ×�) ≃ ∥∇v1 z∥L2(0,T ×�). (4-26)

From this we easily get

I1(t) ≤ C
∫ t

0
∥τ−1/2δA(τ )∥L2∥

√
τ∇v2(τ )∥L∞∥∇v1 z(τ )∥L2 dτ.

Hence, using (4-20) and Young’s inequality,

I1 ≤ C∥
√

τ∇v2
∥

2
L2

t (L∞)
∥∇δv∥

2
L2(0,t×�)

+
1
8

∫ t

0
∥∇v1 z∥2

L2 dτ. (4-27)

Next, by (4-20), (4-26), Hölder’s inequality, and (0-7), we have

I2 ≤ C
∫ t

0
∥τ−1/2δA∥L2∥

√
τ∇Q2

∥L4∥z∥1/2
L2 ∥∇z∥1/2

L2 dτ

≤
1
8

∫ t

0
∥∇v1 z∥2

L2 dτ + C∥τ−1/2δA∥
4/3
L∞

t (L2)
∥z∥2/3

L∞
t (L2)

∫ t

0
∥
√

τ∇Q2
∥

4/3
L4 dτ.

Hence, in light of (4-20), Young’s inequality, and (0-9), we have

I2 ≤
1
8

∫ t

0

(
∥∇v1 z∥2

L2 +
1
4
∥∇δv∥

2
L2

)
dτ + C∥

√
ρ1

0 z∥2
L∞

t (L2)
∥
√

τ∇Q2
∥

4
L4/3

t (L4)
. (4-28)

In order to bound I3, we start with the inequality

I3 ≤ ρ∗

∫ t

0
∥wτ∥L4/3∥z∥L4 dτ.

Taking advantage of (4-22) to bound wτ and of the Gagliardo–Nirenberg and Young inequalities yields

I3 ≲
∫ t

0
∥z∥1/2

L2 ∥∇z∥1/2
L2 (∥∇v1

∥L2∥w∥L4 + ∥v2
∥L4∥∇δv∥L2 + ∥δA∥L2∥v2

τ∥L4) dτ

≤
1
8

∫ t

0
∥∇v1 z∥2

L2 dτ +
1
32

∫ t

0
∥∇δv∥

2
L2 dτ + C

∫ t

0
∥v2

∥
4
L4∥z∥2

L2 dτ + I31 + I32,

with

I31 := C
∫ t

0
∥z∥2/3

L2 ∥∇v1
∥

4/3
L2 ∥w∥

2/3
L2 ∥∇w∥

2/3
L2 dτ and I32 := C

∫ t

0
∥z∥2/3

L2 ∥δA∥
4/3
L2 ∥v2

τ∥
4/3
L4 dτ.
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Just using (4-20) yields

I32 ≤ ∥∇δv∥
4/3
L2

t (L2)
∥z∥2/3

L∞
t (L2)

∥
√

τv2
τ∥

4/3
L4/3

t (L4)
.

In order to bound I31, one has to use (4-21) and (4-23), which yields

I31 ≤ C
∫ t

0
∥z∥2/3

L2 ∥∇v1
∥

4/3
L2 ∥

√
τv2

∥
2/3
L∞∥∇δv∥

2/3
L2

τ (L2)
∥τ−1/2δA(τ )∥

2/3
L2 ∥

√
τ∇v2

∥
2/3
L∞ dτ

≤ C∥∇δv∥
4/3
L2

t (L2)
∥z∥2/3

L∞
t (L2)

∫ t

0
∥
√

τv2
∥

2/3
L∞∥∇v1

∥
4/3
L2 ∥

√
τ∇v2

∥
2/3
L∞ dτ.

This enables us to get the following bound for I3:

I3(t)

≤
1
8
∥∇v1 z∥2

L2
t (L2)

+
1
16

∥∇δv∥
2
L2

t (L2)

+C
(
∥v2

∥
4
L4

t (L4)
+

(∫ t

0
∥
√

τv2
∥

2/3
L∞∥∇v1

∥
4/3
L2 ∥

√
τ∇v2

∥
2/3
L∞ dτ

)3

+∥
√

τv2
τ∥

4
L4/3

t (L4)

)
∥

√
ρ1

0 z∥2
L∞

t (L2)
. (4-29)

Next, thanks to (4-23), (4-20), and the Cauchy–Schwarz and Young inequalities,

I4 ≤ C
∫ t

0
∥∇w∥L2∥∇v1 z∥L2 dτ ≤ C

∫ t

0
∥τ−1/2δA∥L2∥

√
τ∇v2

∥L∞∥∇v1 z∥L2 dτ

≤
1
8

∫ t

0
∥∇v1 z∥2

L2 dτ + C∥
√

τ∇v2
∥

2
L2(0,t;L∞)

∥∇δv∥
2
L2(0,t×�)

. (4-30)

Finally, it is obvious that

I5(t) ≤

∥∥∥∥ δρ0√
ρ1

0

∥∥∥∥
L∞

∥

√
ρ1

0 z∥L∞
t (L2)∥v

2
t ∥L1

t (L2). (4-31)

So plugging (4-27)–(4-31) into (4-24) and taking t = T yields

∥

√
ρ1

0 z∥2
L∞

T (L2)
+ ∥∇v1 z∥2

L2
T (L2)

≤ ∥

√
ρ1

0δu0∥
2
L2 + A(T )∥

√
ρ1

0 z∥2
L∞

T (L2)

+

(1
8

+ C∥
√

t∇v2
∥

2
L2

T (L∞)

)
∥∇δv∥

2
L2

T (L2)
+ 2

∥∥∥∥ δρ0
√

ρ1
0

∥∥∥∥2

L∞

∥v2
t ∥

2
L1

T (L2)
,

with

A(T ) := C
(
∥v2

∥
4
L4

T (L4)
+ ∥

√
tv2

t ∥
4
L4/3

T (L4)
+ ∥

√
τ∇Q2

∥
4
L4/3

T (L4)

+

(∫ t

0
∥
√

τv2
∥

2/3
L∞∥∇v1

∥
4/3
L2 ∥

√
τ∇v2

∥
2/3
L∞ dτ

)3)
.

The regularity properties of the constructed solutions guarantee that A(∞) is finite, and the Lebesgue
dominated convergence theorem thus ensures that if T is small enough then

max(8C∥
√

t∇v2
∥

2
L2

T (L∞)
, 2A(T )) ≤ 1. (4-32)

Under this hypothesis, the above inequality becomes

1
2∥

√
ρ1

0 z∥2
L∞

T (L2)
+ ∥∇v1 z∥2

L2
T (L2)

≤ ∥

√
ρ1

0δu0∥
2
L2 +

1
4∥∇δv∥

2
L2

T (L2)
+ C∥δρ0∥

2
L∞∥v2

t ∥
2
L1

T (L2)
. (4-33)
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Since ∇δv = ∇z + ∇w and owing to (4-20), (4-23), and (4-26), we may write

∥∇δv∥
2
L2

T (L2)
≤ 2∥∇z∥2

L2
T (L2)

+ 2∥∇w∥
2
L2

T (L2)
≤

5
2∥∇v1 z∥2

L2
T (L2)

s + C∥
√

t∇v2
∥

2
L2

T (L∞)
∥∇δv∥

2
L2

T (L2)
.

Hence, under assumption (4-32) (up to a change of C if needed), we have

∥∇δv∥
2
L2(0,T ×�)

≤ 3∥∇v1 z∥2
L2(0,T ×�)

. (4-34)

Plugging this inequality into (4-33) gives

1
2∥

√
ρ1

0 z∥2
L∞

T (L2)
+

1
4∥∇v1 z∥2

L2
T (L2)

≤ C(∥
√

ρ1
0δu0∥

2
L2 + ∥δρ0∥

2
L∞∥v2

t ∥
2
L1

T (L2)
). (4-35)

In the case where the two solutions correspond to the same initial data, this ensures that z ≡ 0 on [0, T ].
Remembering (4-34) and (4-21), one can conclude uniqueness on [0, T ] and then on R+ by a standard
bootstrap argument.

4.3. Continuity of the flow map. We consider here the case where the two previous solutions correspond
to possibly different data. To begin with, we have to observe that (4-34) and (4-35) together imply that if

∥
√

tv2
∥L∞(R+×�) ≤ K , (4-36)

then, in light of inequalities (4-21), (4-34) and (4-35), there exists some constant c > 0 such that if
Ã(T0) ≤ c, then we have

∥

√
ρ1

0 δv∥L∞

T0
(L2) + ∥∇v1δv∥L2

T0
(L2) ≤ C(1 + K )(∥

√
ρ1

0δu0∥L2 + ∥δρ0∥L∞), (4-37)

where we define, for all T ∈ [0, ∞],

Ã(T ) := ∥v2
∥

4
L4

T (L4)
+∥

√
t(v2

t , ∇Q2)∥
4/3
L4/3

T (L4)
+ (1+ K )(∥∇v1

∥
2
L2

T (L2)
+∥

√
τ∇v2

∥
2
L2

T (L∞)
)+∥v2

t ∥L1
T (L2).

Now, if we consider data that belong to a bounded subset of B̃0
ρ0,1, then K in (4-36) and Ã(∞) can be

uniformly bounded. By iterating the procedure that led to (4-37), this allows us to get in the end

∥

√
ρ1

0 δv∥L∞

T (L2) + ∥∇v1δv∥L2
T (L2) ≤ CeC Ã(∞)(∥

√
ρ1

0δu0∥L2 + ∥δρ0∥L∞). (4-38)

Then, reverting to the Eulerian coordinates gives the following stability statement.

Theorem 4.2. Consider two solutions (ρ1, u1, P1) and (ρ2, u2, P2) corresponding to initial data (ρ1
0 , u1

0)

and (ρ2
0 , u2

0) given by Theorem 1.3. Assume that

0 < ρ∗ ≤ ρ1
0 , ρ2

0 ≤ ρ∗ and max(∥u1
0∥B̃0

ρ1
0 ,1

, ∥u2
0∥B̃0

ρ2
0 ,1

) ≤ M.

Then we have

∥

√
ρ1

0 δu∥L∞

T (L2) + ∥∇δu∥L2
T (L2) ≤ Cρ∗,ρ∗,M(∥

√
ρ1

0δu0∥L2 + ∥δρ0∥L∞) (4-39)

and, for all p ∈ [2, ∞),

∥δρ(t)∥Ẇ −1,p ≤ C p,ρ∗,ρ∗,M(∥δρ0∥Ẇ −1,p + t1/2+1/p(∥
√

ρ1
0δu0∥L2 + ∥δρ0∥L∞)). (4-40)
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Proof. Although our regularity assumptions are weaker, we shall follow [Danchin et al. 2024] to bound
the difference of the velocities. The starting point is the relation

∇yδv = K1 + K2 + K3, with K1(t, y) := ∇yδX (t, y) · ∇x u2(t, X2(t, y)),

K2(t, y) := ∇y X1(t, y) · ∇xδu(t, X2(t, y)),

K3(t, y) := ∇y X1(t, y) · (∇x u1(t, X2(t, y)) − ∇x u1(t, X2(t, y))).

Since ∇δu(t, X2(t, y)) = A⊤

1 (t, y)K2(t, y) and the flow X2 is measure-preserving, the above decomposi-
tion implies that

∥∇δu∥L2 ≤ ∥A1∥L∞(∥∇δv∥L2 + ∥K1∥L2 + ∥K3∥L2).

Bounding K1 may be done as in [Danchin et al. 2024]. We get, for all t ≥ 0,

∥K1(t)∥L2 ≤ C∥
√

t∇u2(t)∥L∞∥∇δv∥L2
t (L2).

For bounding K3, we use the relation

K3(t, y) = ∇ X1(t, y) ·

(∫ 2

1
(∇2u1(t, X s(t, y))) ·

(d X s

ds
(t, y)

)
ds
)

,

where the “interpolating flow” X s stands for the solution to

X s(t, y) = y +

∫ t

0
((2 − s)u1(τ, X s(τ, y)) + (s − 1)u2(τ, X s(τ, y))) dτ.

As X s(t, · ) is also measure-preserving, it is easy to prove that (again, see [Danchin et al. 2024])∥∥∥d X s

ds
(t, · )

∥∥∥
L4

≤ C∥δu∥L1
t (L4).

Thanks to that and to Hölder’s inequality, we deduce that

∥K3(t)∥L2 ≤ C(1 + ∥∇u1
∥L1

t (L∞))∥t3/4
∇

2u1(t)∥L4∥δu∥L4
t (L4).

Hence, in the end, if T is chosen such that

max
(∫ T

0
∥∇u1(t)∥L∞ dt,

∫ T

0
∥∇u2(t)∥L∞ dt

)
≤ 1,

then we have, using also (A-4),

∥∇δu∥L2
T (L2) ≲ (1 + ∥

√
t∇u2

∥L2
T (L∞))∥∇δv∥L2

T (L2) + ∥t3/4u̇1
∥L2

T (L4)∥δu∥L4
T (L4).

The last term may be handled by means of (0-7), and one ends up with

∥∇δu∥L2
T (L2) ≲ (1 + ∥

√
t∇u2

∥L2
T (L∞))∥∇δv∥L2

T (L2) + ∥t3/4u̇1
∥

2
L2

T (L4)
∥

√
ρ1δu∥L∞

T (L2). (4-41)

Remember that the constructed solutions satisfy
√

t∇u2
∈ L2(R+; L∞) and note that, since

∥t3/4u̇1
∥L2

T (L4) ≤ C∥t u̇1
∥

1/2
L∞

T (L2)
∥
√

t Du̇1
∥

1/2
L1

T (L2)
,
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inequalities (2-21) and (3-47) guarantee that t3/4u̇1 is in L2(R+; L4). So we are left with bounding
√

ρ1δu in L∞(0, T ; L2). To do so, we use, as in [Danchin et al. 2024], the relation√
ρ1

0(y)δv(t, y) =

√
ρ1(t, X1(t, y))

(
δu(t, X1(t, y)) +

∫ 2

1
Du2(t, X s(t, y))

d X s

ds
(t, y) ds

)
.

Hence, as all the flows X s are measure-preserving and ρ1 is bounded from below,

∥

√
ρ1(t)δu(t)∥L2 ≤ ∥

√
ρ1

0δv(t)∥L2 + C
√

ρ∗∥Du2(t)∥L4∥δu∥L1
t (L4)

≤ ∥

√
ρ1

0δv(t)∥L2 + C∥t3/4 Du2(t)∥L4∥δu∥L4
t (L4)

≤ ∥

√
ρ1

0δv(t)∥L2 + C∥
√

t Du2(t)∥1/2
L2 ∥t D2u2(t)∥1/2

L2 ∥∇δu∥
1/2
L2

t (L2)
∥

√
ρ1(t)δu∥

1/2
L∞

t (L2)
.

Since both the terms with
√

t Du2 and with t D2u2 may be bounded in terms of ρ∗, ρ∗, and ∥u2
0∥L2 only,

we end up with

∥

√
ρ1δu∥L∞

T (L2) ≤ 2∥

√
ρ1

0δv∥L∞

T (L2) + C(ρ∗, ρ
∗, ∥u2

0∥L2)∥∇δu∥L2
T (L2).

Putting this inequality together with (4-41) and remembering (4-38) allows us to conclude that there
exists an absolute constant C such that, for small enough T , we have

∥

√
ρ1

0 δu∥L∞

T (L2) + ∥∇δu∥L2
T (L2) ≤ C(∥

√
ρ1

0δu0∥L2 + ∥δρ0∥L∞),

then arguing by induction and using the bounds on u1 and u2 in terms of the data yields (4-39).
Finally, the difference between the (Eulerian) densities may be bounded by resorting to the classical

theory of transport equation. Indeed, we have

∂tδρ + div(δρu2) = −div(ρ1δu).

Hence, we may write, for all p ∈ [1, ∞] and t ≥ 0,

∥δρ(t)∥Ẇ −1,p ≤

(
∥δρ0∥Ẇ −1,p +

∫ t

0
e−

∫ τ

0 ∥∇u2
∥L∞ dτ ′

∥ρ1δu∥L p dτ

)
e
∫ t

0 ∥∇u2
∥L∞ dτ

≤ (∥δρ0∥Ẇ −1,p + ρ∗t1/2+1/p
∥δu∥L2p/(p−2)

t (L p)
)e
∫ t

0 ∥∇u2
∥L∞ dτ .

Combining inequality (4-39) with the Gagliardo–Nirenberg inequality provides us with a control of δu in
L2p/(p−2)(R+; L p) for all p ∈ [2, ∞). In the end, we get (4-40). □

Remark 4.3. In the bounded or torus cases, one can take advantage of exponential decay to get a
time-independent bound. The details are left to the reader.

Appendix

Here we recall some results that played a key role throughout the paper. The first one is the following
Gagliardo–Nirenberg inequality that extends (0-7):

∥z∥L p ≤ C p∥z∥2/p
L2 ∥∇z∥1−2/p

L2 , 2 ≤ p < ∞. (A-1)
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It holds with the same constant in R2 and for any z ∈ H 1
0 (�) in a general domain �, or in the torus T2

provided the mean value of z is zero. In the torus case, however, we rather are in situations where∫
T2

az dx = 0

for some nonnegative measurable function a with positive mean value (say 1 with no loss of generality).
Then, we claim that

∥z∥L p ≤ C p,a∥z∥2/p
L2 ∥∇z∥1−2/p

L2 , with C p,a := C p log(p−2)/p(e + ∥a∥L2). (A-2)

Indeed, decomposing z into z = z̄ + z̃ with z̄ :=
∫

T2 z dx , we have∫
T2

|z|p dx =

∫
T2

|z|2|z̃ + z̄|p−2 dx

≲ |z̄|p−2
∥z∥2

L2 +

∫
T2

|z|2|z̃|p−2 dx

≲ |z̄|p−2
∥z∥2

L2 + ∥z∥2
L p∥z̃∥p−2

L p .

Now, z̃ is mean-free and thus satisfies (A-1). Besides, according to [Danchin and Mucha 2019, (A.2)],

|z̄| ≤ C log(e + ∥a∥L2)∥∇z∥L2 .

Hence,

∥z∥p
L p ≤ C log(e + ∥a∥L2)∥∇z∥p−2

L2 ∥z∥2
L2 + C p∥z∥2

L p(∥z̃∥2/p
L2 ∥∇z1−2/p

L2 )p−2.

Then, (A-2) follows from ∥z̃∥L2 ≤ ∥z∥L2 . □

Next, we recall a well-known result for the inhomogeneous Stokes equations

−1w + ∇Q = f and div w = g in �, (A-3)

with data f ∈ L p(�) and g ∈ Ẇ 1,p(�), 1 < p < ∞.
In the bounded domain case (with g having mean value 0), it is known (see, e.g., [Galdi 2011]) that

(A-3) admits a unique solution (w, ∇Q) ∈ W 2,p(�)× L p(�) such that w|∂� = 0, and that the following
bound holds:

∥∇
2w, ∇Q∥L p ≤ C(∥ f ∥L p + ∥∇g∥L p). (A-4)

A similar result holds in � = R2 or � = T2 provided we consider only solutions such that w → 0 at
infinity (R2 case) or

∫
T2 aw dx = 0 for some nonnegative bounded function a with mean value 1 (torus

case). Indeed, one can set

∇Q = Q f, with Q := −(−1)−1
∇ div,

then solve the Poisson equation −1w = f +∇Q. Uniqueness is given by the supplementary conditions
that are prescribed above.

Finally, in the proof of stability and uniqueness, we used the following result.
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Lemma A.1. Assume that � is a C2 bounded domain, the torus, or the whole space. Then, there exists a
linear operator B that maps L p to L p for all p ∈ (1, ∞) such that, for all k ∈ L p(�; Rd) (with mean
value 0 in the case � = Td ), we have

div(Bk) = div k.

Furthermore, if div k ∈ Lq(�) for some q ∈ (1, ∞), then we have Bk ∈ W 1,q
0 (�; Rn) with ∥∇Bk∥Lq ≤

C∥ div k∥Lq , and if k (seen as a function from R+ to some space Lr with 1 < r < ∞) is differentiable for
almost every t ∈ R+, then so is Bk, and we have ∥(Bk)t∥Lr ≤ C∥kt∥Lr for almost every t ∈ R+.

Proof. Whenever � is a C2 bounded domain, the existence of B as well as the first two properties have
been established in [Danchin and Mucha 2013a]. The third one stems from the fact that, owing to the
continuity and linearity of B, we may write in the Lr meaning

(Bk)t(t) = lim
h→0

Bk(t + h) −Bk(t)
h

= lim
h→0

B
(

k(t + h) − k(t)
h

)
= Bkt .

If � is the torus or the whole space, then one can just set B := −(−1)−1
∇ div. □

Acknowledgments

The author is indebted to P. Auscher for clarifying some properties of the real interpolation space in
which the initial velocity is taken, and to the anonymous referee for insightful remarks.

References

[Abidi and Gui 2021] H. Abidi and G. Gui, “Global well-posedness for the 2-D inhomogeneous incompressible Navier–Stokes
system with large initial data in critical spaces”, Arch. Ration. Mech. Anal. 242:3 (2021), 1533–1570. MR Zbl

[Boyer and Fabrie 2013] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations
and related models, Appl. Math. Sci. 183, Springer, 2013. MR Zbl

[Chemin et al. 2006] J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics: an introduction to
rotating fluids and the Navier–Stokes equations, Oxford Lect. Ser. Math. Appl. 32, Oxford Univ. Press, 2006. MR Zbl

[Cho and Kim 2004] Y. Cho and H. Kim, “Unique solvability for the density-dependent Navier–Stokes equations”, Nonlinear
Anal. 59:4 (2004), 465–489. MR Zbl

[Danchin 2003] R. Danchin, “Density-dependent incompressible viscous fluids in critical spaces”, Proc. Roy. Soc. Edinburgh
Sect. A 133:6 (2003), 1311–1334. MR Zbl

[Danchin 2004] R. Danchin, “Local and global well-posedness results for flows of inhomogeneous viscous fluids”, Adv.
Differential Equations 9:3-4 (2004), 353–386. MR Zbl

[Danchin 2024] R. Danchin, “Global solutions for two-dimensional viscous pressureless flows with large variations of density”,
Probab. Math. Phys. 5:1 (2024), 55–88. MR Zbl

[Danchin and Mucha 2013a] R. Danchin and P. B. Mucha, “Divergence”, Discrete Contin. Dyn. Syst. Ser. S 6:5 (2013),
1163–1172. MR Zbl

[Danchin and Mucha 2013b] R. Danchin and P. B. Mucha, “Incompressible flows with piecewise constant density”, Arch. Ration.
Mech. Anal. 207:3 (2013), 991–1023. MR Zbl

[Danchin and Mucha 2019] R. Danchin and P. B. Mucha, “The incompressible Navier–Stokes equations in vacuum”, Comm.
Pure Appl. Math. 72:7 (2019), 1351–1385. MR Zbl

[Danchin and Wang 2023] R. Danchin and S. Wang, “Global unique solutions for the inhomogeneous Navier–Stokes equations
with only bounded density, in critical regularity spaces”, Comm. Math. Phys. 399:3 (2023), 1647–1688. MR Zbl

https://doi.org/10.1007/s00205-021-01710-y
https://doi.org/10.1007/s00205-021-01710-y
http://msp.org/idx/mr/4334732
http://msp.org/idx/zbl/1477.35114
https://doi.org/10.1007/978-1-4614-5975-0
https://doi.org/10.1007/978-1-4614-5975-0
http://msp.org/idx/mr/2986590
http://msp.org/idx/zbl/1286.76005
https://doi.org/10.1093/oso/9780198571339.001.0001
https://doi.org/10.1093/oso/9780198571339.001.0001
http://msp.org/idx/mr/2228849
http://msp.org/idx/zbl/1205.86001
https://doi.org/10.1016/j.na.2004.07.020
http://msp.org/idx/mr/2094425
http://msp.org/idx/zbl/1066.35070
https://doi.org/10.1017/S030821050000295X
http://msp.org/idx/mr/2027648
http://msp.org/idx/zbl/1050.76013
https://doi.org/10.57262/ade/1355867948
http://msp.org/idx/mr/2100632
http://msp.org/idx/zbl/1103.35085
https://doi.org/10.2140/pmp.2024.5.55
http://msp.org/idx/mr/4696082
http://msp.org/idx/zbl/1532.35338
https://doi.org/10.3934/dcdss.2013.6.1163
http://msp.org/idx/mr/3039690
http://msp.org/idx/zbl/1262.35079
https://doi.org/10.1007/s00205-012-0586-4
http://msp.org/idx/mr/3017294
http://msp.org/idx/zbl/1260.35107
https://doi.org/10.1002/cpa.21806
http://msp.org/idx/mr/3957394
http://msp.org/idx/zbl/1420.35182
https://doi.org/10.1007/s00220-022-04592-7
https://doi.org/10.1007/s00220-022-04592-7
http://msp.org/idx/mr/4580531
http://msp.org/idx/zbl/1514.35312


1270 RAPHAËL DANCHIN

[Danchin et al. 2024] R. Danchin, P. B. Mucha, and T. Piasecki, “Stability of the density patches problem with vacuum for
incompressible inhomogeneous viscous flows”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 41:4 (2024), 897–931. MR Zbl

[Fujita and Kato 1964] H. Fujita and T. Kato, “On the Navier–Stokes initial value problem, I”, Arch. Ration. Mech. Anal. 16
(1964), 269–315. MR Zbl

[Galdi 2011] G. P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations: steady-state problems, 2nd
ed., Springer, 2011. MR Zbl

[Gancedo and García-Juárez 2018] F. Gancedo and E. García-Juárez, “Global regularity of 2D density patches for inhomogeneous
Navier–Stokes”, Arch. Ration. Mech. Anal. 229:1 (2018), 339–360. MR Zbl

[Hmidi and Keraani 2008] T. Hmidi and S. Keraani, “Incompressible viscous flows in borderline Besov spaces”, Arch. Ration.
Mech. Anal. 189:2 (2008), 283–300. MR Zbl

[Kazhikhov 1974] A. V. Kazhikhov, “Solvability of the initial-boundary value problem for the equations of the motion of an
inhomogeneous viscous incompressible fluid”, Dokl. Akad. Nauk SSSR 216 (1974), 1008–1010. In Russian; translated in Soviet
Phys. Dokl. 19:6 (1974), 331–332. MR Zbl

[Ladyzhenskaya 1959] O. A. Ladyzhenskaia, “Solution ‘in the large’ of the nonstationary boundary value problem for the
Navier–Stokes system with two space variables”, Comm. Pure Appl. Math. 12 (1959), 427–433. MR Zbl

[Ladyzhenskaya and Solonnikov 1975] O. A. Ladyzhenskaya and V. A. Solonnikov, “Unique solvability of an initial- and
boundary-value problem for viscous incompressible nonhomogeneous fluids”, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. (LOMI) 52 (1975), 52–109. In Russian; translated in J. Soviet Math. 9:5 (1978), 697–749. MR Zbl

[Leray 1934a] J. Leray, “Essai sur le mouvement d’un liquide visqueux emplissant l’espace”, J. Math. Pures Appl. 13 (1934),
331–418. Zbl

[Leray 1934b] J. Leray, “Sur le mouvement d’un liquide visqueux emplissant l’espace”, Acta Math. 63:1 (1934), 193–248. MR
Zbl

[Li 2017] J. Li, “Local existence and uniqueness of strong solutions to the Navier–Stokes equations with nonnegative density”,
J. Differential Equations 263:10 (2017), 6512–6536. MR Zbl

[Liao and Zhang 2019] X. Liao and P. Zhang, “Global regularity of 2D density patches for viscous inhomogeneous incompressible
flow with general density: low regularity case”, Comm. Pure Appl. Math. 72:4 (2019), 835–884. MR Zbl

[Lions 1996] P.-L. Lions, Mathematical topics in fluid mechanics, I: Incompressible models, Oxford Lect. Ser. Math. Appl. 3,
Oxford Univ Press, 1996. MR Zbl

[Lions and Peetre 1964] J.-L. Lions and J. Peetre, “Sur une classe d’espaces d’interpolation”, Inst. Hautes Études Sci. Publ.
Math. 19 (1964), 5–68. MR Zbl

[Lions and Prodi 1959] J.-L. Lions and G. Prodi, “Un théorème d’existence et unicité dans les équations de Navier–Stokes en
dimension 2”, C. R. Acad. Sci. Paris 248 (1959), 3519–3521. MR Zbl

[Paicu et al. 2013] M. Paicu, P. Zhang, and Z. Zhang, “Global unique solvability of inhomogeneous Navier–Stokes equations
with bounded density”, Comm. Partial Differential Equations 38:7 (2013), 1208–1234. MR Zbl

[Simon 1990] J. Simon, “Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure”, SIAM J.
Math. Anal. 21:5 (1990), 1093–1117. MR Zbl

[Xu 2022] H. Xu, “Maximal L1 regularity for solutions to inhomogeneous incompressible Navier–Stokes equations”, J. Differ-
ential Equations 335 (2022), 1–42. MR Zbl

[Zhang 2020] P. Zhang, “Global Fujita–Kato solution of 3-D inhomogeneous incompressible Navier–Stokes system”, Adv. Math.
363 (2020), art. id. 107007. MR Zbl

Received 6 Jul 2023. Accepted 20 Mar 2024.

RAPHAËL DANCHIN: danchin@u-pec.fr
LAMA, UMR 8050, Université Paris-Est Créteil Val de Marne, Créteil Cedex, France

mathematical sciences publishers msp

https://doi.org/10.4171/aihpc/83
https://doi.org/10.4171/aihpc/83
http://msp.org/idx/mr/4755504
http://msp.org/idx/zbl/1532.35338
https://doi.org/10.1007/BF00276188
http://msp.org/idx/mr/166499
http://msp.org/idx/zbl/0126.42301
https://doi.org/10.1007/978-0-387-09620-9
http://msp.org/idx/mr/2808162
http://msp.org/idx/zbl/1245.35002
https://doi.org/10.1007/s00205-018-1218-4
https://doi.org/10.1007/s00205-018-1218-4
http://msp.org/idx/mr/3799095
http://msp.org/idx/zbl/1394.35322
https://doi.org/10.1007/s00205-008-0115-7
http://msp.org/idx/mr/2413097
http://msp.org/idx/zbl/1147.76014
https://www.mathnet.ru/eng/dan38359
https://www.mathnet.ru/eng/dan38359
http://msp.org/idx/mr/430562
http://msp.org/idx/zbl/0426.35025
https://doi.org/10.1002/cpa.3160120303
https://doi.org/10.1002/cpa.3160120303
http://msp.org/idx/mr/108962
http://msp.org/idx/zbl/0103.19502
https://doi.org/10.1007/BF01085325
http://msp.org/idx/mr/425391
http://msp.org/idx/zbl/0376.76021
http://msp.org/idx/zbl/60.0726.05
https://doi.org/10.1007/BF02547354
http://msp.org/idx/mr/1555394
http://msp.org/idx/zbl/60.0726.05
https://doi.org/10.1016/j.jde.2017.07.021
http://msp.org/idx/mr/3693182
http://msp.org/idx/zbl/1370.76026
https://doi.org/10.1002/cpa.21782
https://doi.org/10.1002/cpa.21782
http://msp.org/idx/mr/3914884
http://msp.org/idx/zbl/1409.35166
http://msp.org/idx/mr/1422251
http://msp.org/idx/zbl/0866.76002
https://doi.org/10.1007/BF02684796
http://msp.org/idx/mr/165343
http://msp.org/idx/zbl/0148.11403
http://msp.org/idx/mr/108964
http://msp.org/idx/zbl/0091.42105
https://doi.org/10.1080/03605302.2013.780079
https://doi.org/10.1080/03605302.2013.780079
http://msp.org/idx/mr/3169743
http://msp.org/idx/zbl/1314.35086
https://doi.org/10.1137/0521061
http://msp.org/idx/mr/1062395
http://msp.org/idx/zbl/0702.76039
https://doi.org/10.1016/j.jde.2022.07.008
http://msp.org/idx/mr/4454275
http://msp.org/idx/zbl/1495.35143
https://doi.org/10.1016/j.aim.2020.107007
http://msp.org/idx/mr/4056004
http://msp.org/idx/zbl/1434.35071
mailto:danchin@u-pec.fr
http://msp.org


ANALYSIS AND PDE
Vol. 18 (2025), No. 5, pp. 1271–1308

DOI: 10.2140/apde.2025.18.1271 msp

QUANTITATIVE STABILITY FOR
COMPLEX MONGE–AMPÈRE EQUATIONS, I

HOANG-SON DO AND DUC-VIET VU

We generalize several known stability estimates for complex Monge–Ampère equations to the setting
of low (or high) energy potentials. We apply our estimates to obtain, among other things, a quantitative
domination principle, and metric properties of the space of potentials of finite energy. Further applications
will be given in subsequent papers.

1. Introduction

Let (X, ω) be a compact Kähler manifold of dimension n and let α be a big cohomology (1, 1)-class
in X. Let θ be a closed smooth real (1, 1)-form in α. For u ∈ PSH(X, θ), we put θu := ddcu + θ . Let
φ ∈ PSH(X, θ) such that φ ≤ 0 and

∫
X θ

n
φ > 0, where θn

φ denotes the non-pluripolar self-product of θφ (see
[Bedford and Taylor 1987; Boucksom et al. 2010]). Denote by PSH(X, θ, φ) the set of θ -psh functions u
with u ≤ φ. Note that it is slightly different from the usual definition of PSH(X, θ, φ) in which u is only
required to be more singular than φ. This difference is not essential. We say that φ is a model θ-psh
function (see [Darvas et al. 2018b; Ross and Witt Nyström 2014]) if φ = Pθ [φ] and

∫
X θ

n
φ > 0, where

Pθ [φ] :=
(
sup{ψ ∈ PSH(X, θ) : ψ ≤ 0, ψ ≤ φ+ O(1)}

)∗
.

The function Pθ [φ] is called a roof-top envelope in [Darvas et al. 2018b]. By [Darvas et al. 2018b], the
function Pθ [u] is a model one for every u ∈ PSH(X, θ) with

∫
X θ

n
u > 0, and for every u ∈ PSH(X, θ, φ)

with
∫

X θ
n
u =

∫
X θ

n
φ we have Pθ [u] = Pθ [φ].

Let φ be now a model θ-psh function. Let E(X, θ, φ) be the space of θ-psh functions u ≤ φ with∫
X θ

n
u =

∫
X θ

n
φ . Let µ be a non-pluripolar measure with µ(X) =

∫
X θ

n
φ . It was proved in [Darvas

et al. 2021a] (see also [Darvas et al. 2018b; Do and Vu 2022a]) that the Monge–Ampère equation with
prescribed singularities

(ddcu + θ)n = µ, u ∈ PSH(X, θ, φ), (1-1)

admits a unique solution u ∈ E(X, θ, φ) and supX (u −φ)= 0. We note that the left-hand side of (1-1)
denotes the non-pluripolar self-product of θu (see [Bedford and Taylor 1987; Boucksom et al. 2010; Guedj
and Zeriahi 2007; Vu 2021]). We refer to [Boucksom et al. 2010; Cegrell 1998; Dinew 2009; Kołodziej
1998; Yau 1978], to cite a few, for the well-known case where α is big and φ is a potential of minimal
singularities in α.
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The aim of this paper is to study the following stability question for (1-1).

Problem 1.1. Let θ, φ be as above. Let u j ∈E(X, θ, φ) for j =1, 2 andµj := θ
n
u j

for j =1, 2. Compare u1

with u2 in terms of a suitable “distance” between µ1, µ2.

To our best knowledge, there has been no available quantitative comparison between potentials of finite
energy in general, even in the case where α is Kähler and φ ≡ 0. The closest result that we know of is the
uniqueness property (by [Dinew 2009] in the Kähler case and by [Boucksom et al. 2010; Darvas et al.
2021a] in the present setting) which says that u1 = u2 if µ1 = µ2. There were however some concrete
estimates for the distance between u1, u2 in terms of µ1, µ2 but one had to assume some extra assumption
(i.e., u1, u2 ∈ E1(X, θ, φ)); see [Błocki 2003; Guedj and Zeriahi 2012]. We will explain details below.

The goal of this paper is to solve Problem 1.1 for any potential of high or low energy. As one will see
in our applications later in this paper or in our subsequent paper, it is crucial to consider Problem 1.1 for
potentials in low energy.

Let W̃− be the set of convex, nondecreasing functions χ : R≤0 → R≤0 such that χ(0)= 0 and χ ̸≡ 0.
Let W− be the subset of χ ∈ W̃− such that χ(−∞)= −∞. Note that in general χ ∈ W̃− can be bounded.
It is crucial in our method that we consider also bounded weights χ ∈ W̃−. Let M ≥ 1 be a constant
and W+

M the usual space of increasing concave functions χ : R≤0 → R≤0 such that χ(0)= 0, χ < 0 on
(−∞, 0), and |tχ ′(t)| ≤ M |χ(t)| for every t ≤ 0.

Let ϱ :=
∫

X θ
n
φ . For χ ∈ W̃−

∪W+

M and u ∈ PSH(X, θ, φ), let

E0
χ,θ,φ(u) := −ϱ−1

∫
X
χ(u −φ)θn

u ,

which is called the (normalized) χ -energy of u (with respect to θ, φ). We define

Eχ (X, θ, φ) := {u ∈ E(X, θ, φ) : E0
χ,θ,φ(u) <∞}.

Certainly if χ is bounded, then Eχ (X, θ, φ)= E(X, θ, φ). We would like to point out however that our
method is not about the finiteness of E0

χ,θ,φ(u) but estimating the size of that quantity. Thus whether χ is
bounded or not does not make much difference for our later arguments. Put

I 0
χ (u, v) := ϱ−1

∫
{u<v}

χ(u − v)(θn
v − θn

u )+ ϱ
−1

∫
{u>v}

χ(v− u)(θn
u − θn

v )

for u, v ∈ Eχ (X, θ, φ). The factor ϱ−1 in the defining formulae for E0
χ,θ,φ(u) and I 0

χ (u, v) plays the role
of a normalizing constant. In geometric applications it is important to treat the case where ϱ→ 0, i.e., to
obtain estimates uniformly as ϱ→ 0.

Clearly if θn
u = θn

v , then I 0
χ (u, v) = 0. We will see later that each term in the sum defining I 0

χ (u, v)
is nonnegative. We recall that there is a natural (quasi)metric on the space Eχ (X, θ, φ) constructed in
[Darvas 2019; 2024; Gupta 2023], and see [Darvas et al. 2018a; Di Nezza and Lu 2020; Trusiani 2022;
Xia 2023] as well. The functional I 0

χ (u, v) has an intimate relation with these quasimetrics. We refer to
the end of Section 3 for details on this connection. Here is our main result.
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Theorem 1.2. Let θ be a closed smooth real (1, 1)-form and φ be a negative θ -psh function such that

ϱ :=

∫
X
θn
φ > 0.

Let χ, χ̃ ∈ W̃−
∪W+

M (M ≥ 1) such that χ̃ ≤ χ , and if χ ∈ W̃−, then limt→−∞(χ(t)/χ̃(t))= 0. Let B ≥ 1
be a constant and let u j , ψj ∈ E(X, θ, φ) satisfy u1 ≤ u2 and

E0
χ̃ ,θ,φ(u j )+ E0

χ̃ ,θ,φ(ψj )≤ B

for j = 1, 2. Then there exist a constant C > 0 depending only on n, χ̃(−1) and M, and a continuous
increasing function f : R≥0 → R≥0 depending only on χ, χ̃ such that f (0)= 0 and∫

X
−χ(u1 − u2)(θ

n
ψ1

− θn
ψ2
)≤ CϱB2 f ◦n(I 0

χ (u1, u2)), (1-2)

where f ◦n
:= f ◦ f ◦ · · · ◦ f (n-iterate of f ). Moreover, if φ = Pθ [φ] and supX u1 = supX u2 then∫

X
−χ(u1 − u2)(θ

n
ψ1

+ θn
ψ2
)≤ ϱ g(I 0

χ (u1, u2)), (1-3)

where g : R≥0 → R≥0 is a continuous increasing function depending only on n,M, X, ω, θ, χ, χ̃ and B
such that g(0)= 0.

If χ ∈ W+

M , then one can certainly apply Theorem 1.2 to χ̃ = χ . Nevertheless, we underline that
in applications it is of crucial importance to consider χ ∈ W̃−. In this case in order to have (1-3), it is
necessary to require an upper bound for χ̃-energy of u j , where χ̃ “dominates” χ as in the statement of
Theorem 1.2. We refer to Section 3.4 for details.

One sees that (1-3) implies, in particular, that if I 0
χ (u1, u2)→ 0, then the expression in the left-hand

side also converges to 0. Theorem 1.2 follows from Theorems 3.1 and 3.2 below, where the functions
f and g are given explicitly. We note that the single Theorem 1.2 contains the following three important
results in pluripotential theory: uniqueness of solutions of complex Monge–Ampère equations, domination
principle, and comparison of capacities. We obtain indeed quantitative (hence stronger) versions of these
results for which we refer to Section 4. The quantitative version of uniqueness theorem (see Theorem 4.2
below) provides an answer to Problem 1.1. Readers can also find, in Section 4, a quantitative version of
the fact that the convergence in Darvas’s metric in Eχ (X, θ, φ) implies the convergence in capacity. Notice
that such an estimate seems to be not reachable by using the usual plurisubharmonic envelope method.

The main novelty of Theorem 1.2 is that it deals with arbitrary weights. Similar statements was already
known for χ(t) = t (see [Berman et al. 2019; Błocki 2003; Guedj and Zeriahi 2012; Trusiani 2023]).
However the proof there only work exclusively for this case. One should notice that the weight χ(t)= t is
very special: it is linear and lies in the middle between higher energy weights and lower energy weights.
As to the proof of Theorem 1.2, going up to the space of higher energy weights or going down to the
space of lower energy weights are equally difficult. We will explain this point in more details in the
paragraph after Theorem 1.3 below.

The key in the proof of Theorem 1.2 is Proposition 3.5 in Section 3, a simplified version of which we
state here for readers’ convenience.
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Theorem 1.3. Let χ, χ̃ ∈ W̃−
∪ W+

M such that χ̃ ≤ χ and χ ∈ C 1(R). Let u1, u2, u3 ∈ E(X, θ, φ)
such that u1 ≤ u2 and u j − φ is bounded ( j = 1, 2, 3), where φ is a negative θ-psh function satisfying
ϱ := vol(θφ) > 0. Then there exist a constant C > 0 depending only on n, χ̃(−1) and M such that∫

X
χ ′(u1 − u2) d(u1 − u2)∧ dc(u1 − u2)∧ θ

n−1
u3

≤ CϱB2 f ◦(n−1)(I 0
χ (u1, u2)),

where B :=
∑3

j=1 max{E0
χ̃ ,θ,φ

(u j ), 1} and f : R≥0 → R≥0 is a continuous function such that f (0)= 0 if
one has either χ ∈ W+

M or χ ∈ W̃− and limt→−∞(χ(t)/χ̃(t))= 0.

As far as we know, all of previous works related to Theorem 1.3 only concern χ(t)= t . In this case,
Theorem 1.3 is known with an explicit f and without χ̃ if φ is of minimal singularity in the cohomology
class of θ , by [Błocki 2003; Guedj and Zeriahi 2012].

The key ingredients in previous versions of Theorem 1.3 for χ(t)= t are integration by parts arguments.
Direct generalization of such reasoning immediately break down if χ ̸= id: in a more precise but technical
level, the integration by parts arguments give terms like χ ′(u1 − u2)d(u1 − u3)∧ dc(u1 − u3), such a
quantity is easy to bound if χ = id (hence χ ′

≡ 1), but not if χ ̸= id.
In order to prove Theorem 1.3, we still use this strategy but need to use a so-called “monotonicity

argument” from [Do and Vu 2022a; Vu 2021; 2022] to deal with general χ . In a nutshell it is about using
intensively the plurilocality of Monge–Ampère operators together with the monotonicity of pluricomplex
energy which allows one to bound from above “Monge–Ampère quantities” of bad potentials by that of
nicer potentials. This method is a flexible tool to deal with “low regularity”, and was a key in the proof of
the convexity of the class of potentials of finite χ -energy in [Vu 2022], as well as giving a characterization
of the class of Monge–Ampère measures with potentials of finite χ -energy in [Do and Vu 2022a].

We refer to the end of the paper for some applications of our main results. Furthermore, the quantitative
domination principle obtained in Section 4 was used crucially in [Dang and Vu 2023] to describe the
degeneration of conic Kähler–Einstein metrics. We note also that the present paper is the first part of
the manuscript [Do and Vu 2022b], in which we give a more or less satisfactory treatment for a much
more general question than Problem 1.1: precisely, we establish quantitative stability when both the
cohomology class and the singularity type vary. The second part of [Do and Vu 2022b], where this
generalization is treated, will be submitted separately due to the length constraint.

The paper is organized as follows. In Section 2, we recall the integration by parts formula from [Vu
2022], auxiliary facts about weights are also collected there. Theorems 1.2 and 1.3 are proved in Section 3.
Applications will be given in Section 4.

2. Preliminaries

2.1. Integration by parts. In this subsection, we recall the integration by parts formula obtained in [Vu
2022, Theorem 2.6]. This formula will play a key role in our proof of main results later.

Let X be a compact Kähler manifold. Let T1, . . . , Tm be closed positive (1, 1)-currents on X. Let T be a
closed positive current of bidegree (p, p) on X. The T -relative non-pluripolar product

〈∧m
j=1Tj ∧̇T

〉
is de-

fined in a way similar to that of the usual non-pluripolar product (see [Vu 2021]). The product
〈∧m

j=1Tj ∧̇T
〉
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is a closed positive current of bidegree (m + p,m + p); and the wedge product
〈∧m

j=1Tj ∧̇T
〉

as an operator
on currents is symmetric with respect to T1, . . . , Tm and is homogeneous. In latter applications, we will
only use the case where T is the non-pluripolar product of some closed positive (1, 1)-currents, say, T =

⟨Tm+1∧· · ·∧Tm+l⟩, where Tj are (1, 1)-currents for m+1≤ j ≤m+l. In this case, ⟨T1∧· · ·∧Tm∧̇T ⟩ is sim-
ply equal to

〈∧m+l
j=1 Tj

〉
. We usually remove the bracket ⟨ ⟩ in the non-pluripolar product to ease the notation.

Recall that a dsh function on X is the difference of two quasi-plurisubharmonic (quasi-psh for short)
functions on X (see [Dinh and Sibony 2006]). These functions are well-defined outside pluripolar sets.
Let v be a dsh function on X. Let T be a closed positive current on X. We say that v is T -admissible if
there exist quasi-psh functions ϕ1, ϕ2 such that v= ϕ1 −ϕ2 and T has no mass on {ϕj = −∞} for j = 1, 2.
In particular, if T has no mass on pluripolar sets, then every dsh function is T -admissible.

Assume now that v is T -admissible. Let ϕ1, ϕ2 be quasi-psh functions such that v = ϕ1 − ϕ2 and T
has no mass on {ϕ j = −∞} for j = 1, 2. Let

ϕ j,k := max{ϕ j ,−k}

for every j = 1, 2 and k ∈ N. Put vk := ϕ1,k −ϕ2,k . Put

Qk := dvk ∧ dcvk ∧ T =
1
2 ddcv2

k ∧ T − vkddcvk ∧ T.

By the plurifine locality with respect to T (see [Vu 2021, Theorem 2.9]) applied to the right-hand side of
the last equality, we have

1⋂2
j=1{ϕ j>−k}

Qk = 1⋂2
j=1{ϕ j>−k}

Qs (2-1)

for every s ≥ k. We say that ⟨dv ∧ dcv∧̇T ⟩ is well-defined if the mass of 1⋂2
j=1{ϕ j>−k}

Qk is uniformly
bounded on k. In this case, using (2-1) implies that there exists a positive current Q on X such that for
every bounded Borel form 8 with compact support on X such that

⟨Q,8⟩ = lim
k→∞

⟨1⋂2
j=1{ϕ j>−k}

Qk,8⟩,

and we define ⟨dv ∧ dcv∧̇T ⟩ to be the current Q. This agrees with the classical definition if v is the
difference of two bounded quasi-psh functions. One can check that this definition is independent of the
choice of ϕ1, ϕ2. By [Vu 2022, Lemma 2.5], if v is bounded, then ⟨dv∧ dcv∧̇T ⟩ is well-defined.

Let w be another T -admissible dsh function. If T is of bidegree (n − 1, n − 1), we can also define
the current ⟨dv ∧ dcw∧̇T ⟩ by a similar procedure as above. More precisely, we say ⟨dv ∧ dcw∧̇T ⟩ is
well-defined if ⟨dv∧ dcv∧̇T ⟩, ⟨dw∧ dcw∧̇T ⟩, and ⟨d(v+w)∧ dc(v+w)∧̇T ⟩ are well-defined. In this
case, as in the classical case of bounded potentials, the defining formula for ⟨dv∧ dcw∧̇T ⟩ is obvious:

2⟨dv∧ dcw∧̇T ⟩ = ⟨d(v+w)∧ dc(v+w)∧̇T ⟩ − ⟨dv∧ dcv∧̇T ⟩ − ⟨dw∧ dcw∧̇T ⟩.

As above, if v,w are bounded T -admissible, then ⟨dv∧ dcw∧̇T ⟩ is well-defined and given by the above
formula. The following Cauchy–Schwarz inequality is clear from definition.

Lemma 2.1. Assume that ⟨dv ∧ dcw∧̇T ⟩ is well-defined. Then, for every positive Borel function χ ,
we have ∫

X
χ⟨dv∧ dcw∧̇T ⟩ ≤

(∫
X
χ⟨dv∧ dcv∧̇T ⟩

)1/2(∫
X
χ⟨dw∧ dcw∧̇T ⟩

)1/2

.
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We put
⟨ddcv∧̇T ⟩ := ⟨ddcϕ1∧̇T ⟩ − ⟨ddcϕ2∧̇T ⟩,

which is independent of the choice of ϕ1, ϕ2. The following integration by parts formula is crucial for
us later.

Theorem 2.2 ([Vu 2022, Theorem 2.6] or [Do and Vu 2022a, Theorem 3.1]). Let T be a closed positive
current of bidegree (n − 1, n − 1) on X. Let v,w be bounded T -admissible dsh functions on X. If
χ : R → R is a C 3 function then∫

X
χ(w)⟨ddcv∧̇T ⟩ =

∫
X
vχ ′′(w)⟨dw∧ dcw∧̇T ⟩ +

∫
X
vχ ′(w)⟨ddcw∧̇T ⟩

= −

∫
X
χ ′(w)⟨dw∧ dcv∧̇T ⟩. (2-2)

Since the case where T is a non-pluripolar product of (1, 1)-currents plays an important role in the
study of complex Monge–Ampère equations, we present below an equivalent natural way to define the
current ⟨dϕ ∧ dcϕ∧̇T ⟩ in this setting. It is just for the purpose of clarification.

Lemma 2.3. Let u1, . . . , um be negative psh functions on an open subset U in Cn such that T :=

⟨ddcu1 ∧ · · · ∧ ddcum⟩ is well-defined. Let v be the difference of two bounded psh functions on U. For
k ∈ N, put u j,k := max{u j ,−k} and

Tk := ddcu1,k ∧ · · · ∧ ddcum,k .

Then
dv∧ dcv∧ T = dv∧ dcv∧ Tk

on
⋂m

j=1{u j >−k}.

Proof. Put
ψk := k−1 max{u1 + · · · + um,−k} + 1.

Observe ψk Tk = ψk T. Now regularizing v and using the continuity of Monge–Ampère operators of
bounded potentials, we obtain

ψkdv∧ dcv∧ T = ψkdv∧ dcv∧ Tk .

Hence
dv∧ dcv∧ T = dv∧ dcv∧ Tk

on U :=
⋂m

j=1{u j >−k/(2m)}
(
for ψk ≥

1
2 on U

)
. Note that dv∧ dcv∧ Tk = dv∧ dcv∧ Tk/(2m) on U

by the plurifine locality. Thus the desired assertion follows. □

Let T1, . . . , Tm be closed positive (1, 1)-currents on X. Let n := dim X. Consider now

T := ⟨T1 ∧ · · · ∧ Tm⟩.

Note that T has no mass on pluripolar sets. Let ϕ1, ϕ2 be negative quasi-psh function on X. Let ϕ j,k

( j = 1, 2) be as before and v := ϕ1 −ϕ2. In the moment, we work locally. Let U be an open small enough
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local chart (biholomorphic to a polydisk in Cn) in X such that Tj = ddcu j for j = 1, . . . ,m, where u j

are negative psh functions on U. Put u j,k := max{u j ,−k} for k ∈ N, and

Tk := ddcu1,k ∧ · · · ∧ ddcum,k, Q′

k := dvk ∧ dcvk ∧ Tk .

Put Ak :=
⋂2

j=1{ϕ j >−k} ∩
⋂m

j=1{u j >−k}. By plurifine properties of Monge–Ampère operators,

1Ak Q′

k = 1Ak Q′

s

for every s ≥ k. One can check that the condition that (1Ak Q′

k)k is of mass bounded uniformly (on
compact subsets in U ) in k is independent of the choice of potentials.

Proposition 2.4. The current 1Ak Q′

k is of mass bounded uniformly in k on compact subsets in U for
every U (small enough biholomorphic to a polydisk in Cn) if and only if the current ⟨dv ∧ dcv∧̇T ⟩ is
well-defined. In this case

⟨dv∧ dcv∧̇T ⟩ = lim
k→∞

1Ak Q′

k . (2-3)

Proof. By writing a smooth form of bidegree (n − m − 1, n − m − 1) as the difference of two smooth
positive forms, we can assume without loss of generality that T is of bidegree (n − 1, n − 1) (hence
m = n − 1). Assume that ⟨dv∧ dcv∧̇T ⟩ is well-defined. We will check that 1Ak Q′

k is of mass bounded
uniformly in k on compact subsets in U. Let χ be a nonnegative smooth function compactly supported
on U. Put

ψ := ϕ1 +ϕ2 + u1 + · · · + um, ψk := k−1 max{ψ,−k} + 1,

and ϕ jk := max{ϕj ,−k} for 1 ≤ j ≤ 2. Observe that 0 ≤ ψk ≤ 1 and if ψk > 0, then ϕj > −k
for 1 ≤ j ≤ 2; and

ψk(x)≥ 1 − s/k (2-4)

for every x ∈ As/(m+2) and 1 ≤ s ≤ k. Recall vk := ϕ1k − ϕ2k which is bounded (but not necessarily
uniformly in k). Observe that ⟨dv ∧ dcv∧̇T ⟩ has no mass on pluripolar sets because T is so (see, for
example, [Vu 2021, Lemma 2.1]). Put Q′′

k := ψk Qk = ψk1Ak Q′

k . By (2-4) and Lemma 2.3, we have

⟨dv∧ dcv∧̇T ⟩ = lim
k→∞

ψkdvk ∧ dcvk ∧ T

= lim
k→∞

ψkdvk ∧ dcvk ∧ Tk = lim
k→∞

Q′′

k (2-5)

on U. On the other hand, by (2-4) again, we see that the claim that Q′′

k is of mass uniformly bounded on
compact subsets in U is equivalent to that 1Ak Q′

k is so. This together with (2-5) yields the desired assertion.
Conversely, suppose now that 1Ak Q′

k is of mass bounded uniformly in k on compact subsets in U for
every U. Thus there exists a positive current R on U such that 1Ak R = 1Ak Q′

k for every k and U. Set

ψ̃ := ϕ1 +ϕ2, ψ̃k := k−1 max{ψ̃,−k} + 1.

Let s ∈ N with s ≥ k. Observe
ψs R = ψ̃kψs R + (1 − ψ̃k)ψs R.
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The second term in the right-hand side of the last inequality tends to 0 (uniformly in s) because ψ̃k converges
pointwise to 1 outside a pluripolar set and R has no mass on pluripolar sets. Using Lemma 2.3, we have

ψ̃kψs R = ψ̃kψsdvs ∧ dcvs ∧ Ts

= ψ̃kψsdvs ∧ dcvs ∧ T = ψ̃kψsdvk ∧ dcvk ∧ T.

Here we used the plurifine topology properties with respect to T (see [Vu 2021, Theorem 2.9]), thanks
to the fact that ϕ j,k = ϕ j,s on {ψ̃k ̸= 0} for j = 1, 2 (recall s ≥ k), and they are bounded psh functions.
Letting s → ∞ gives

ψ̃k R = ψ̃k1⋃m
j=1{u j>−∞}dvk ∧ dcvk ∧ T = ψ̃kdvk ∧ dcvk ∧ T

because the current dvk ∧ dcvk ∧ T has no mass on pluripolar sets. Now letting k → ∞ gives the
desired assertion. □

Thanks to Proposition 2.4, we can use the right-hand side of (2-3) to define ⟨dv∧ dcv∧̇T ⟩ in the case
where T is the non-pluripolar product of some closed positive (1, 1)-currents. By the same reason, in
this case, we will use the expression dv∧ dcw∧ T1 ∧ . . .∧ Tn−1 to denote

〈
dv∧ dcw∧̇⟨T1 ∧ · · · ∧ Tn−1⟩

〉
whenever it is well-defined.

2.2. Auxiliary facts on weights. In this subsection, we present some facts about weights needed for the
proofs of main results.

Recall that W̃− is the set of all convex, nondecreasing functions χ : R≤0 → R≤0 such that χ(0)= 0
and χ ̸≡ 0. Let M ≥ 1 be a constant and W+

M the usual space of increasing concave functions
χ : R≤0 → R≤0 such that χ(0) = 0, χ < 0 on (−∞, 0), and |tχ ′(t)| ≤ M |χ(t)| for every t ≤ 0.
We have the following lemmas.

Lemma 2.5. Let c > 0, 0< δ < 1 and χ : R → R such that χ(t)= ct for every t ≥ −δ and χ |(−∞,0] ∈

W̃−
∪W+

M (M ≥ 1). Let g be a smooth radial cut-off function supported in [−1, 1] on R, i.e., g(t)= g(−t)
for t ∈ R, 0 ≤ g ≤ 1 and

∫
R

g(t) dt = 1. Put gϵ(t) := ϵ−1g(ϵt) for every constant ϵ > 0 and χϵ := χ ∗ gϵ
(the convolution of χ with gϵ).

(i) If χ |(−∞,0] ∈ W̃−, then χϵ |(−∞,0] ∈ W̃− for every 0< ϵ < δ, χϵ ↘ χ as ϵ↘ 0 and sup(χϵ−χ)≤ cϵ.

(ii) If χ |(−∞,0] ∈ W+

M and 0< ϵ < δ2/2 then χϵ |(−∞,0] ∈ W+

M/(1−δ). Moreover, if 0< ϵ < δ2/8 then

χ ϵ := χϵ( · + ϵ)− cϵ ∈ W+

M/(1−δ)2
, χ ϵ ≥ χ − cϵ,

and χ ϵ converges uniformly to χ as ϵ → 0 on compact subsets in R.

Proof. Part (i) follows from [Do and Vu 2022a, Lemma 2.1]. Part (ii) can be obtained more or less by
similar arguments as in the last reference. We provide details for readers’ convenience. It is clear that χϵ
is a concave, increasing function with χϵ(0)= 0. We will show that

χ ′

ϵ(t)≤
M

1 − δ

χϵ(t)
t

(2-6)

for every t < 0 and 0< ϵ < δ2/2.
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If t <−δ/2 then

χ ′

ϵ(t)=

∫ ϵ

−ϵ

χ ′(t − s)gϵ(s) ds ≤

∫ ϵ

−ϵ

Mχ(t − s)
t − s

gϵ(s) ds

≤

∫ ϵ

−ϵ

Mχ(t − s)
t + ϵ

gϵ(s) ds =
Mχϵ(t)
t + ϵ

=
Mt

t + ϵ

χϵ(t)
t

≤
M

1 − δ

χϵ(t)
t

for every 0< ϵ < δ2/2.
On the other hand, if t ≥ −δ/2, then χϵ(t)= χ(t)= ct for every 0< ϵ < δ2/2. As a consequence,

χ ′

ϵ(t)= χ ′(t)≤
Mχ(t)

t
= M

χϵ(t)
t
.

Thus, (2-6) follows. Hence, χϵ |(−∞,0] ∈ W+

M/(1−δ).
Now, we consider χ ϵ . Since χ is increasing, one sees that χ ϵ ≥ χ − cϵ and χ ϵ converges uniformly

to χ as ϵ→ 0 on compact subsets in R. It remains to show that χ ϵ ∈W+

M(1+δ)/(1−δ) for every 0<ϵ < δ2/8.
Note that

χ ϵ = hϵ ∗ gϵ,

where hϵ(t)= χ(t + ϵ)− cϵ. The function χ ϵ(t) is concave, increasing and χ + ϵ(0)= 0.
If −δ/2 ≤ t < 0 then hϵ(t)= χ(t)= ct for every 0< ϵ < δ2/2. Therefore

h′

ϵ(t)= χ ′(t)≤
Mχ(t)

t
= M

hϵ(t)
t
.

If t <−δ/2 then

h′

ϵ(t)= χ ′(t + ϵ)≤ M
χ(t + ϵ)

t + ϵ

≤ M
χ(t + ϵ)− cϵ

t + ϵ
= M

hϵ(t)
t + ϵ

=
Mt

t + ϵ

hϵ(t)
t

≤
M

1 − δ

hϵ(t)
t

for every 0< ϵ < δ2/2.
Then, for every 0 < ϵ < δ2/2, we have hϵ ∈ W+

M/(1−δ) and hϵ = ct for every t ≥ −δ/2. Hence, for
every 0< ϵ < δ2/8, we have

χ ϵ = hϵ ∗ gϵ ∈ W+

M/((1−δ)(1−δ/2)) ⊂ W+

M/(1−δ)2
. □

Lemma 2.6. Let χ, χ̃ ∈ W̃−
∪W+

M (M ≥ 1) such that χ̃ ≤ χ . Then there exist sequences of functions
χj , χ̃j ∈ W̃−

∪W+

Mj
(with Mj ↘ M as j → ∞ ) satisfying the following conditions:

• χj ∈ C ∞(R) for every j .

• χj ≥ χ̃j and χj ≥ χ − 2− j for every j big enough.

• χ̃ − 2− j
≤ χ̃j ≤ χ̃ on (−∞,−1] for every j big enough.

• χj converges uniformly to χ on compact subsets in R≤0.

Proof. We split the proof into two cases.

Case 1: χ ∈ W̃−. For every j ≥ 1, we set

χ j (t)=

{
max{χ(t), cj t} if t < 0,

cj t if t ≥ 0,
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where

cj :=
−χ(−2− j )

2− j ·

Then χ j satisfies the hypothesis of Lemma 2.5 for δ := 2− j. Let g be a smooth radial cut-off function
supported in [−1, 1] on R, i.e., g(t)= g(−t) for t ∈ R, 0 ≤ g ≤ 1 and

∫
R

g(t) dt = 1. For every j ≥ 1,
we define

χj = χ j ∗ g4− j−1 and χ̃j = χ̃ .

By Lemma 2.5, χj and χ̃j satisfy the desired conditions.

Case 2: χ ∈ W+

M . Since χ ≥ χ̃ , we also have χ̃ ∈ W+

M . Assume that g and cj are as in Case 1. For
every j ≥ 1, we define

χ j (t)=

{
min{χ(t), cj t} if t < 0,

cj t if t ≥ 0,

and
χj (t)= (χ j ( · + 4− j−1) ∗ g4− j−1)(t)− cj 4− j−1.

We also set χ̃j (t)= min{χ̃(t), χj (t)}. By Lemma 2.5, χj and χ̃j satisfy the desired conditions. □

Let φ be a negative θ-psh function. We denote by PSH(X, θ, φ) the set of θ-psh functions u ≤ φ.
Recall that by monotonicity, we always have

∫
X θ

n
u ≤

∫
X θ

n
φ , where for every θ-psh function v, we put

θv := ddcv+ θ . We also define by E(X, θ, φ) the set of u ∈ PSH(X, θ, φ) of full Monge–Ampère mass
with respect to φ, i.e.,

∫
X θ

n
u =

∫
X θ

n
φ .

Let χ ∈ W̃−
∪W+

M , and u ∈ PSH(X, θ, φ). We put

Eχ,θ,φ(u) :=

∫
X

−χ(u −φ)θn
u .

We also define by Eχ (X, θ, φ) the set of u ∈ E(X, θ, φ) with Eχ,θ,φ(u) <∞.

Lemma 2.7. Let χ ∈ W̃−
∪W+

M and u1, u2 ∈ Eχ (X, θ, φ). Then there exists a constant C1 > 0 depending
only on n and M such that

−

∫
X
χ(u1 −φ)θn

u2
≤ C1

2∑
j=1

Eχ,φ,θ (u j ),

and

Eχ,θ,φ(au1 + (1 − a)u2)≤ C1

2∑
j=1

Eχ,θ,φ(u j )

for every 0< a < 1. Furthermore if u1 ≥ u2, then

Eχ,φ,θ (u1)≤ C2 Eχ,φ,θ (u2)

for some constant C2 depending only on n and M.

Proof. The first and third inequalities are from [Do and Vu 2022a, Lemma 3.2] (see also [Guedj and
Zeriahi 2007, Propositions 2.3, 2.5] for the case where φ = 0 and θ is a Kähler form). The second
desired inequality was implicitly proved in the proof of convexity of finite energy classes in [Vu 2022,
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Proposition 3.3] (in a much broader context). Alternatively one can use properties of envelopes in [Darvas
et al. 2018b] to get the same conclusion. We prove here the second desired inequality using ideas from [Vu
2022] for readers’ convenience. We only consider χ ∈ W̃−. The case where χ ∈ W+

M is done similarly.
Considering u j − ϵ for ϵ > 0 instead of u j , and taking ϵ → 0 later, without loss of generality, we

can assume that u j < φ ≤ 0 for j = 1, 2. By replacing u j , θ by u j −φ, θφ respectively, we can assume
that φ = 0, but θ is no longer a smooth form but a closed positive (1, 1)-current. This change causes no
trouble for us. Let v := au1 + (1 − a)u2. Observe that X ⊂ {u1 < u2} ∪ {u1 > 2u2}. Hence

Eχ,θ (v)≤

∫
{u1<u2}

−χ(v)θn
v +

∫
{u1>2u2}

−χ(v)θn
v

≤

n∑
k=0

(∫
{u1<u2}

−χ(u1)θ
k
u1

∧ θn−k
u2

+

∫
{u1>2u2}

−χ((1 + a)u2)θ
k
u1

∧ θn−k
u2

)

≤

n∑
k=0

∫
{u1<u2}

−χ(u1)θ
k
u1

∧ θn−k
max{u1,u2}

+

n∑
k=0

∫
{u1>2u2}

−2k+1χ(u2)θ
k
max{u1/2,u2}

∧ θn−k
u2

≤

n∑
k=0

(∫
X

−χ(u1)θ
k
u1

∧ θn−k
max{u1,u2}

+ 2k+1
∫

X
−χ(u2)θ

k
max{u1/2,u2}

∧ θn−k
u2

)
≲ Eχ,θ (u1)+ Eχ,θ (max{u1, (u1 + u2)/2})+ Eχ,θ (u2)+ Eχ,θ (max{u1/4 + u2/2, u2})

≲ Eχ,θ (u1)+ Eχ,θ (u2),

where the two last estimates hold due to the first and third inequalities of the lemma. □

Lemma 2.8. Let χ, χ̃ ∈ W̃−
∪ W+

M such that χ̃ ≤ χ and let u1, u2, . . . , un+1 ∈ E(X, θ, φ). Define
ϱ := vol(θφ). Then there exists a constant C > 0 depending only on n and M such that

−

∫
X
χ(ϵ(u1 −φ))θu2 ∧ · · · ∧ θun+1 ≤ C Bϱ(1 − χ̃(−1))Q0(ϵ)

for every 0< ϵ ≤ 1, where

B = 1 + max
1≤ j≤n+1

Eχ̃ ,θ,φ(u j )/ϱ and Q0(ϵ) := sup
{t≤−1}

χ(ϵt)
χ̃(t)

·

Proof. Let L be the left-hand side of the desired inequality. We have

L ≤ −

∫
{u1≥φ−1}

χ(ϵ(u1 −φ))θu2 ∧ · · · ∧ θun+1 −

∫
{u1<φ−1}

χ(ϵ(u1 −φ))θu2 ∧ · · · ∧ θun+1

≤ −χ(−ϵ)ϱ− Q0(ϵ)

∫
{u1<φ−1}

χ̃(u1 −φ)θu2 ∧ · · · ∧ θun+1

≤ −ϱQ0(ϵ)χ̃(−1)− Q0(ϵ)

∫
X
χ̃(u1 −φ)θu2 ∧ · · · ∧ θun+1

≤ −ϱQ0(ϵ)χ̃(−1)+ C Q0(ϵ) max
1≤ j≤n+1

Eχ̃ ,θ,φ(u j ),

where C > 0 depends only on n and M. The last estimate holds due to Lemma 2.7. Thus the desired
inequality follows. □
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By the convexity/concavity and by the assumption χ̃ ≤ χ , we have{
Q0(ϵ)≥ ϵQ0(1) if χ ∈ W̃−,

Q0(ϵ)≤ ϵQ0(1) if χ ∈ W+

M
(2-7)

for every 0< ϵ ≤ 1. Moreover, if χ ∈ W̃− and χ(t)/χ̃(t)→ 0 as t → −∞, then by the definition of Q0,
we also have

Q0(ϵ)≤
χ(−ϵ1/2)

χ̃(−1)
+ sup

{t≤−ϵ−1/2}

χ(t)
χ̃(t)

ϵ→0+

−−→ 0. (2-8)

Let u1, u2 ∈ Eχ (X, θ, φ), and v := max{u1, u2}. Put

ν(u1, u2) := χ(−|u1 − u2|)(θ
n
u2

− θn
u1
)

and

Iχ (u1, u2) :=

∫
{u1<u2}

ν(u1, u2)+

∫
{u1>u2}

ν(u2, u1)

=

∫
X
ν(u1, v)+

∫
X
ν(u2, v). (2-9)

Proposition 2.9. Let χ ∈ W̃−
∪W+

M . Let φ is a negative θ -psh function and u1, u2 ∈ Eχ (X, θ, φ). Then

Iχ (u1, u2)≥ 0.

Proof. Define µ = θn
u2

− θn
u1

. Since χ is absolutely continuous, we have χ is differentiable almost
everywhere and −χ(t)=

∫ 0
t χ

′(s) ds for every t < 0. Hence∫
{u1<u2}

ν(u1, u2)= −

∫
{u1<u2}

(∫ 0

u1−u2

χ ′(t) dt
)

dµ

= −

∫
{u1<u2}

(∫ 0

−∞

χ ′(t)1{u1<u2+t} dt
)

dµ

= −

∫ 0

−∞

χ ′(t)µ{u1 < u2 + t} dt.

Moreover, it follows from [Darvas et al. 2021a, Lemma 2.3] that µ{u1< u2+t}≤ 0 for every t ≤ 0. Hence∫
{u1<u2}

ν(u1, u2)= −

∫ 0

−∞

χ ′(t)µ{u1 < u2 + t} dt ≥ 0.

Similarly, ∫
{u2<u1}

ν(u2, u1)≥ 0.

Thus

Iχ (u1, u2)=

∫
{u1<u2}

ν(u1, u2)+

∫
{u2<u1}

ν(u2, u1)≥ 0. □
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3. Stability for weighted potentials

3.1. Main results. Let χ, χ̃ ∈ W̃−
∪W+

M (M ≥ 1) such that χ̃ ≤ χ . For each constant t ≥ 0, we let

Q(t)= Qχ,χ̃ (t) :=


1 if t ≥ 1,

(Q0(t)/Q0(1))1/2 if 0< t < 1 and χ ∈ W̃−,

t1/2 if 0< t < 1 and χ ∈ W+

M ,

lims→0+ Q(s) if t = 0,

(3-1)

where Q0 is defined as in Lemma 2.8. We remove the subscript χ, χ̃ from Qχ,χ̃ if χ, χ̃ are clear from
the context. Note that Q is increasing continuous function in t and

Q(0)= 0 if either χ ∈ W+

M or lim
t→−∞

χ(t)
χ̃(t)

= 0. (3-2)

For the convenience, we normalize energies with respect to ϱ :=
∫

X θ
n
φ as

E0
χ̃ ,θ,φ := ϱ−1 Eχ̃ ,θ,φ, I 0

χ (u1, u2)= ϱ−1 Iχ (u1, u2).

Theorem 3.1. Let θ be a closed smooth real (1, 1)-form and φ be a negative θ-psh function such that
ϱ := vol(θφ) > 0. Let χ, χ̃ ∈ W̃−

∪ W+

M (M ≥ 1) such that χ̃ ≤ χ . Let B ≥ 1 be a constant and let
u j , ψj ∈ E(X, θ, φ) satisfy u1 ≤ u2 and

E0
χ̃ ,θ,φ(u j )+ E0

χ̃ ,θ,φ(ψj )≤ B

for j = 1, 2. Then there exists a constant Cn > 0 depending only on n and M such that∫
X

−χ(u1 − u2)(θ
n
ψ1

− θn
ψ2
)≤ CnϱB2(1 − χ̃(−1))2 Q◦n(I 0

χ (u1, u2)), (3-3)

where Q is defined by (3-1), and Q◦n
:= Q ◦ Q ◦ · · · ◦ Q (n-iterate of Q).

Since the measure θn
ψ1

− θn
ψ2

is not positive, we need the following consequence of the above theorem
for later applications on stability estimates.

Theorem 3.2. Let θ be a closed smooth real (1, 1)-form and φ be a negative θ-psh function such that
φ = Pθ [φ], ϱ := vol(θφ) > 0 and θ ≤ Aω for some constant A ≥ 1. Let χ, χ̃ ∈ W̃−

∪W+

M (M ≥ 1) such
that χ̃ ≤ χ . Let B ≥ 1 be a constant and u1, u2, ψ ∈ E(X, θ, φ) satisfying

E0
χ̃ ,θ,φ(u1)+ E0

χ̃ ,θ,φ(u2)+ E0
χ̃ ,θ,φ(ψ)≤ B

for j = 1, 2. Then, for every constant m > 0 and 0 < γ < 1, there exists a constant C > 0 depending
on n,M, X, ω,m and γ such that∫

X
−χ(−|u1 − u2|)θ

n
ψ ≤ −ϱχ(−|a1 − a2| − λ

m)+ CϱA(1−γ )/m(B − χ̃(−A))2(1 − χ̃(−1))2λγ ,

where aj := supX u j and λ= Q◦n(I 0
χ (u1, u2)).
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3.2. Proof of Theorem 3.1. Here is the first step in the proof of Theorem 3.1.

Lemma 3.3. If Theorem 3.1 holds for u j , ψj of the same singularity type as φ, then it holds for the
general case.

Proof. Let u j , ψj ( j = 1, 2) be as in the statement of Theorem 3.1. For every k > 0, we define
u j,k := max{u j , φ − k} and ψ j,k = max{ψj , φ − k}. By Lemma 2.7, there exists a constant C1 > 0
depending only on n and M such that

E0
χ̃ ,θ,φ(u j,k)+ E0

χ̃ ,θ,φ(ψ j,k)≤ C1 B

for j = 1, 2 and for every k > 0. Therefore, by the assumption, there exists a constant C2 > 0 depending
only on n and M such that∫

X
−χ(u1,k − u2,k)(θ

n
ψ1,l

− θn
ψ2,l
)≤ C2ϱB2(1 − χ̃(−1))2 Q◦(n)(I 0

χ (u1,k, u2,k))

for every k, l > 0. Letting l → ∞ and using [Darvas et al. 2021b, Theorem 2.2], we get∫
X

−χ(u1,k − u2,k)(θ
n
ψ1

− θn
ψ2
)≤ C2ϱB2(1 − χ̃(−1))2 Q◦(n)(I 0

χ (u1,k, u2,k)) (3-4)

for every k > 0. We will show that

Iχ (u1, u2)= lim
k→∞

Iχ (u1,k, u2,k). (3-5)

Define
f := χ(u1 − u2)(θ

n
u2

− θn
u1
), fk := χ(u1,k − u2,k)(θ

n
u2,k

− θn
u1,k
).

We have

Iχ (u1,k, u2,k)=

∫
X

fk =

∫
{u1>φ−k}

fk +

∫
{u1≤φ−k}

fk

=

∫
{u1>φ−k}

f +

∫
{u1≤φ−k}

fk

= Iχ (u1, u2)−

∫
{u1≤φ−k}

f +

∫
{u1≤φ−k}

fk .

Then

|Iχ (u1,k, u2,k)− Iχ (u1, u2)| =

∣∣∣∣∫
{u1≤φ−k}

f −

∫
{u1≤φ−k}

fk

∣∣∣∣
≤

∫
{u1≤φ−k}

µ+

∫
{u1≤φ−k}

−χ(u1,k − u2,k)(θ
n
u2,k

+ θn
u1,k
)

≤

∫
{u1≤φ−k}

µ+

∫
{u1≤φ−k}

−χ(−k)(θn
u2,k

+ θn
u1,k
),

where µ= −χ(u1 −φ)(θn
u1

+ θn
u2
). By Lemma 2.7, we have

∫
X µ<∞. Then it follows from Lebesgue’s

dominated convergence theorem that limk→∞

∫
{u1≤φ−k}

µ= 0. Therefore,

lim sup
k→∞

|Iχ (u1,k, u2,k)− Iχ (u1, u2)| ≤ lim sup
k→∞

∫
{u1≤φ−k}

−χ(−k)(θn
u1,k

+ θn
u2,k
). (3-6)
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By the fact that∫
X
θn

u1,k
=

∫
X
θn

u2,k
=

∫
X
θn
φ , 1{u1>φ−k}θ

n
u j,k

= 1{u1>φ−k}θ
n
u j

( j = 1, 2),

we have

−χ(−k)
∫

{u1≤φ−k}

(θn
u1,k

+ θn
u2,k
)= −χ(−k)

∫
{u1≤φ−k}

(θn
u1

+ θn
u2
)≤

∫
{u1≤φ−k}

µ. (3-7)

By using (3-6), (3-7) and the fact limk→∞

∫
{u1≤φ−k}

µ= 0, we get (3-5). Now, combining (3-4) and (3-5),
we obtain ∫

X
−χ(u1 − u2)(θ

n
ψ1

− θn
ψ2
)≤ C2ϱB2(1 − χ̃(−1))2 Q◦(n)(I 0

χ (u1, u2)). □

Lemma 3.4. Let M ≥ 1 and χ, χ̃ ∈ W̃−
∪W+

M such that χ̃ ≤ χ and χ ∈ C 1(R). Let u1, u2, . . . , un+2 ∈

E(X, θ, φ) such that u1 ≤ u2 and u j − φ is bounded ( j = 1, 2, . . . , n + 2), where φ is a negative θ-psh
function satisfying ϱ := vol(θφ) > 0. Set

T = θu4 ∧ · · · ∧ θun+2, I =

∣∣∣∣∫
X
χ ′(u1 − u2) d(u1 − u2)∧ dc(u1 − u3)∧ T

∣∣∣∣,
and

J =

∫
X
χ ′(u1 − u2) d(u1 − u2)∧ dc(u1 − u2)∧ T.

Then there exists C > 0 depending only on n and M such that

I ≤ CϱB(1 − χ̃(−1))Q(J/ϱ),

where B :=
∑n+2

j=1 max{E0
χ̃ ,θ,φ

(u j ), 1} and Q is defined by (3-1).

Clearly if χ, χ̃ ∈ W̃−, then the above constant C does not depend on M.

Proof. In this proof, we use the symbols ≲ and ≳ for inequalities modulo a constant depending only on n
and M. By Theorem 2.2 and Lemma 2.7, we have

I =

∣∣∣∣∫
X

−χ(u1 − u2) ddc(u1 − u3)∧ T
∣∣∣∣ ≲ ϱB = ϱB Q(1).

Therefore, without loss of generality, we can assume that J/ϱ< 1. Approximating u3 by u3−δ with δ↘ 0,
we can assume that u3 < φ on X.

For each 0< ϵ < 1
2 we let

U (ϵ)= {u1 − u2 < ϵ(u1 + u3 − 2φ)}, V (ϵ)= {u1 − u2 > ϵ(u1 + u3 − 2φ)},

and 0(ϵ)={u1−u2 = ϵ(u1+u3−2φ)}. Since 0(ϵ1)∩0(ϵ2)=∅ for every ϵ1 ̸= ϵ2 (note u3<φ), we have∫
0(ϵ)

d(u1 − u3)∧ dc(u1 − u3)∧ T = 0 (3-8)

for almost everywhere ϵ ∈
(
0, 1

2

)
.
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Let 0< ϵ < 1
2 be a constant satisfying (3-8). To simplify the notation, from now on, we write U, V, 0

for U (ϵ), V (ϵ), 0(ϵ) respectively. Define

ũ1 =
u1 + ϵu3

1 + ϵ
, ũ2 = max

{
u2 + ϵu3

1 + ϵ
,
(1 − ϵ)u1 + 2ϵφ

1 + ϵ

}
and ϕ̃ = ũ1 − ũ2.

Then ϕ := (u1 − u2)= (1 + ϵ)ϕ̃ on U. Hence

I =

∣∣∣∣∫
X

−χ(ϕ) ddc(u1 − u3)∧ T
∣∣∣∣

≤

∣∣∣∣∫
U

−χ(ϕ) ddc(u1 − u3)∧ T
∣∣∣∣ + ∣∣∣∣∫

X\U
−χ(ϕ) ddc(u1 − u3)∧ T

∣∣∣∣
≤

∣∣∣∣∫
U

−χ((1 + ϵ)ϕ̃) ddc(u1 − u3)∧ T
∣∣∣∣ + ∣∣∣∣∫

X\U
−χ(ϕ)(θu1 + θu3)∧ T

∣∣∣∣
≤

∣∣∣∣∫
U

−χ((1 + ϵ)ϕ̃) ddc(u1 − u3)∧ T
∣∣∣∣ + ∣∣∣∣∫

X\U
−χ(ϵ(u1 + u3 − 2φ))(θu1 + θu3)∧ T

∣∣∣∣
:= I1 + I2,

where in the last inequality we used the fact that χ is increasing and ϕ ≥ ϵ(u1 + u2 − 2φ) on X\U. By
Lemma 2.7, we have E0

χ̃ ,θ,φ

( 1
2(u1 + u3)

)
≲ B. Therefore, it follows from Lemma 2.8 that

I2 ≤ 2
∫

X
−χ

(
2ϵ

( 1
2(u1 + u3)−φ

))
θ(u1+u3)/2 ∧ T ≲ Bϱ(1 − χ̃(−1))Q0(2ϵ). (3-9)

In order to estimate I1, we divide it into two terms

I1 ≤

∣∣∣∣∫
X

−χ((1 + ϵ)ϕ̃) ddc(u1 − u3)∧ T
∣∣∣∣ + ∣∣∣∣∫

X\U
−χ((1 + ϵ)ϕ̃) ddc(u1 − u3)∧ T

∣∣∣∣
:= I3 + I4.

Note that ũ1 − ũ2 = ϵ(u1 + u3 − 2φ)/(1 + ϵ) on X \ U. Hence

I4 ≤

∫
X\U

−χ((1 + ϵ)ϕ̃)(θu1 + θu3)∧ T ≤

∫
X\U

−χ(ϵ(u1 + u2 − 2φ))(θu1 + θu3)∧ T .

Using Lemma 2.8 again, we get

I4 ≲ Bϱ(1 − χ̃(−1))Q0(2ϵ). (3-10)

Using integration by parts, we have

I3 = (1 + ϵ)

∣∣∣∣∫
X
χ ′((1 + ϵ)ϕ̃) dϕ̃ ∧ dc(u1 − u3)∧ T

∣∣∣∣.
Moreover, by the Cauchy–Schwarz inequality and by the choice of ϵ (see (3-8)), we get∫

0

χ ′((1 + ϵ)ϕ̃) dϕ̃ ∧ dc(u1 − u3)∧ T = 0.
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Hence
I3 = (1 + ϵ)

∣∣∣∣∫
U∪V

χ ′((1 + ϵ)ϕ̃)dϕ̃ ∧ dc(u1 − u3)∧ T
∣∣∣∣ ≤ (1 + ϵ)(I5 I6)

1/2, (3-11)

where

I5 =

∫
U∪V

χ ′((1 + ϵ)ϕ̃) d(u1 − u3)∧ dc(u1 − u3)∧ T,

I6 =

∫
U∪V

χ ′((1 + ϵ)ϕ̃) dϕ̃ ∧ dcϕ̃ ∧ T.

Since (1 + ϵ)ϕ̃ ≤ ϵ(u1 + u3 − 2φ), if χ ∈ W̃− (hence χ ′ is nonnegative and increasing on R≤0) then

I5 ≤

∫
X
χ ′(ϵ(u1 + u3 − 2φ)) d(u1 − u3)∧ dc(u1 − u3)∧ T

≲
∫

X
χ ′(ϵ(u1 + u3 − 2φ)) d(u1 −φ)∧ dc(u1 −φ)∧ T

+

∫
X
χ ′(ϵ(u1 + u3 − 2φ)) d(u3 −φ)∧ dc(u3 −φ)∧ T

≤

∫
X
χ ′(ϵ(u1 −φ)) d(u1 −φ)∧ dc(u1 −φ)∧ T +

∫
X
χ ′(ϵ(u3 −φ)) d(u3 −φ)∧ dc(u3 −φ)∧ T

= ϵ−1
∫

X
−χ(ϵ(u1 −φ)) ddc(u1 −φ)∧ T + ϵ−1

∫
X

−χ(ϵ(u3 −φ)) ddc(u3 −φ)∧ T

≲ Bϱ(1 − χ̃(−1))ϵ−1 Q0(ϵ),

where the last estimate holds due to Lemma 2.8.
Define v1 := (u1 + 2u3)/3 and v2 := (2u1 + u3)/3. Since

(1 + ϵ)(ũ1 − ũ2)≥ u1 + u3 − 2φ, u1 − u3 = −3(v1 − v2),

one sees that if χ ∈ W+

M (hence χ ′ is nonnegative and decreasing in R≤0) then

I5 ≤

∫
X
χ ′((u1 + u3 − 2φ)) d(u1 − u3)∧ dc(u1 − u3)∧ T

≲
∫

X
χ ′((u1 + u3 − 2φ))

(
d(v1 −φ)∧ dc(v1 −φ)+ d(v2 −φ)∧ dc(v2 −φ)

)
∧ T

≤

∫
X
χ ′(3(v1 −φ)) d(v1 −φ)∧ dc(v1 −φ)∧ T +

∫
X
χ ′(3(v2 −φ)) d(v2 −φ)∧ dc(v2 −φ)∧ T

=
1
3

∫
X

−χ(3(v1 −φ)) ddc(v1 −φ)∧ T +
1
3

∫
X

−χ(3(v2 −φ)) ddc(v2 −φ)∧ T

≤

∫
X

−χ(3(v1 −φ))(θv1 + θφ)∧ T +

∫
X

−χ(3(v2 −φ))(θv2 + θφ)∧ T

≤ 3M
∫

X
−χ(v1 −φ)(θv1 + θφ)∧ T + 3M

∫
X

−χ(v2 −φ)(θv2 + θφ)∧ T

≲ Bϱ,
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where the two last estimates hold due to Lemma 2.7 and the fact

log(−χ(3t))− log(−χ(t))=

∫ 3t

t

χ ′(s)
χ(s)

ds ≤

∫ 3t

t

M
s

ds = M log 3

for every χ ∈ W+

M and t ≤ 0. Combining the estimates in both cases, we obtain

I5 ≲ Bϱ(1 − χ̃(−1))
Q(ϵ)2

ϵ
, (3-12)

where we used the inequality Q(ϵ)≥ ϵ1/2 if χ ∈ W̃ +

M . Now, we estimate I6. Since U, V are open in the
plurifine topology and

(1 + ϵ)ϕ̃ =

{
ϕ on U,

ϵ(u1 + u3 − 2φ) on V,

we have

I6 =

∫
U
χ ′((1 + ϵ)ϕ̃) dϕ̃ ∧ dcϕ̃ ∧ T +

∫
V
χ ′((1 + ϵ)ϕ̃) dϕ̃ ∧ dcϕ̃ ∧ T

= (1 + ϵ)−2
∫

U
χ ′(ϕ) dϕ ∧ dcϕ ∧ T

+
ϵ2

(1 + ϵ)2

∫
V
χ ′(ϵ(u1 + u3 − 2φ)) d(u1 + u3 − 2φ)∧ dc(u1 + u3 − 2φ)∧ T

≤ J + ϵ2
∫

X
χ ′(ϵ(u1 + u3 − 2φ)) d(u1 + u3 − 2φ)∧ dc(u1 + u3 − 2φ)∧ T

= J + ϵ

∫
X

−χ(ϵ(u1 + u3 − 2φ)) ddc(u1 + u3 − 2φ)∧ T.

Therefore, it follows from Lemma 2.8 that

I6 ≲ J + Bϱ(1 − χ̃(−1))ϵQ0(2ϵ). (3-13)

Combining (3-9)–(3-13), we get

I ≤ I1 + I2 ≤ I3 + I4 + I2

≲ (I5 I6)
1/2

+ I4 + I2

≲ (Bϱ(1 − χ̃(−1))ϵ−1 J )1/2 Q(ϵ)+ Bϱ(1 − χ̃(−1))Q(2ϵ)2.

Letting ϵ ↘ J/(2ϱ) (and supposing ϵ satisfies (3-8)), we obtain

I ≲ Bϱ(1 − χ̃(−1))Q(J/ϱ). □

Proposition 3.5. Let χ, χ̃ ∈ W̃−
∪ W+

M such that χ̃ ≤ χ and χ ∈ C 1(R). Let u1, u2, u3 ∈ E(X, θ, φ)
such that u1 ≤ u2 and u j − φ is bounded ( j = 1, 2, 3), where φ is a negative θ-psh function satisfying
ϱ := vol(θφ) > 0. Then there exists a constant Cn > 0 depending only on n and M such that∫

X
χ ′(u1 − u2) d(u1 − u2)∧ dc(u1 − u2)∧ θ

n−1
u3

≤ CnϱB2(1 − χ̃(−1))2 Q◦(n−1)(I 0
χ (u1, u2)), (3-14)

where B :=
∑3

j=1 max{E0
χ̃ ,θ,φ

(u j ), 1} and Q is defined by (3-1).
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Proof. Let

ϕ := u1 − u2, T :=

n−1∑
j=1

θ j
u1

∧ θn−1− j
u2

and
Tk,l := θ k

u1
∧ θ l

u2
∧ θn−k−l−1

u3
, Lk,l :=

∫
X
χ ′(ϕ) dϕ ∧ dcϕ ∧ Tk,l .

Observe
θn

u2
− θn

u1
= −ddcϕ ∧ T

and
Lk,n−1−k ≤

∫
X
χ ′(ϕ) dϕ ∧ dcϕ ∧ T = ϱI 0

χ (u1, u2) (3-15)

by integration by parts. We now prove by inverse induction on m := k + l that

Lk,l ≤ Cm,nϱB2(1 − χ̃(−1))2 Q◦(n−1−k−l)(I 0
χ (u1, u2)) (3-16)

for some constant Cm,n > 1 depending only on m, n and M. The desired assertion (3-14) is the case where
k = l = 0. In what follows we use the symbols ≲ and ≳ for inequalities modulo a constant depending
only on n and M. We have checked (3-16) for k + l = n −1. Suppose that (3-16) holds for k + l = m with
0<m ≤ n −1. We will verify it for Lk−1,l , where k + l = m and k > 1. The case Lk,l−1 is done similarly.

Denote Sk−1,l = θ k−1
u1

∧ θ l
u2

∧ θn−k−l−1
u3

. Then

Lk−1,l − Lk,l =

∫
X
χ ′(ϕ) dϕ ∧ dcϕ ∧ ddc(u3 − u1)∧ Sk−1,l .

Using integration by parts, we have

Lk−1,l − Lk,l =

∫
X

−χ(ϕ) ddc(ϕ)∧ ddc(u3 − u1)∧ Sk−1,l

=

∫
X

−χ(ϕ) ddc(u3 − u1)∧ Tk,l −

∫
X

−χ(ϕ) ddc(u3 − u1)∧ Tk−1,l+1

=

∫
X
χ ′(ϕ) dϕ ∧ dc(u3 − u1)∧ Tk,l −

∫
X
χ ′(ϕ) dϕ ∧ dc(u3 − u1)∧ Tk−1,l+1.

Therefore, it follows from Lemma 3.4 that

Lk−1,l − Lk,l ≲ ϱB(1 − χ̃(−1))
(
Q(Lk,l/ϱ)+ Q(Lk−1,l+1/ϱ)

)
.

Hence, by using the inductive hypothesis, we get

Lk−1,l ≲ ϱB2(1 − χ̃(−1))2 Q◦(n−1−m)(I 0
χ (u1, u2))

+ ϱB(1 − χ̃(−1))Q
(
Cm,n B2(1 − χ̃(−1))2 Q◦(n−1−m)(I 0

χ (u1, u2))
)

≲ ϱB2(1 − χ̃(−1))2 Q◦(n−m)(I 0
χ (u1, u2)).

Here we use the fact Q(t1)≤ (t1/t2)1/2 Q(t2) for every t1 > t2 > 0 (see Lemma 3.6).
Thus (3-16) holds for Lk−1,l . □

Lemma 3.6. The function h(t)= (Q(t))2/t is nonincreasing in R>0.
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Proof. If χ ∈ W+

M then

h(t)=


1
t

if t ≥ 1,

1 if 0< t < 1

is a nonincreasing function.
We consider the case χ ∈ W̃−. We have

h(t)=


1
t

if t ≥ 1,

Q0(t)
t Q0(1)

if 0< t < 1.

It is clear that h is decreasing in [1,∞). We need to show that h is nonincreasing in (0, 1). Since χ is
convex, we have

χ(t1s)
t1s

≤
χ(t2s)

t2s

for every 0< t2 < t1 < 1 and s < 0. Dividing both sides of the last estimate by χ̃(s)/s, we get

χ(t1s)
t1χ̃(s)

≤
χ(t2s)
t2χ̃(s)

.

Taking the supremum of both sides, we obtain

Q0(t1)
t1

= sup
s≤−1

χ(t1s)
t1χ̃(s)

≤ sup
s≤−1

χ(t2s)
t2χ̃(s)

=
Q0(t2)

t2
.

Then h(t1)≤ h(t2). Hence h is nonincreasing in (0, 1). □

End of the proof of Theorem 3.1. By Lemma 3.3, we can assume that u j , ψj are of the same singularity
type as φ. Now let (χj ) j∈N, (χ̃j ) j∈N be the sequences approximating χ , χ̃ respectively in Lemma 2.6.
By Lebesgue’s dominated convergence theorem, observe that

lim
j→∞

I 0
χj
(u1, u2)= I 0

χ (u1, u2)

and
lim

j→∞

∫
X

−χj (u1 − u2)(θ
n
ψ1

− θn
ψ2
)=

∫
X

−χ(u1 − u2)(θ
n
ψ1

− θn
ψ2
).

On the other hand, for ϵ ∈ (0, 1] we also get

lim
j→∞

Qχj ,χ̃j (ϵ)= Qχ,χ̃ (ϵ),

because for t ≤ −1, one has

χj (ϵt)
χ̃j (t)

≤
χj (ϵt)
χ̃(t)

≤
χ(ϵt)− 2− j

χ̃(t)
and

χj (ϵt)
χ̃j (t)

≥
χj (ϵt)

χ̃(t)− 2− j ,

which converges to χ(ϵt)/χ̃(t) (by Lemma 2.6). Hence, by considering χj , χ̃j instead of χ, χ̃ , we can
further assume that χ ∈ C 1(R).
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Let L be the left-hand side of the desired inequality. We have

L =

∫
X

−χ(u1 − u2)(θ
n
ψ1

− θn
u1
)−

∫
X

−χ(u1 − u2)(θ
n
ψ2

− θn
u1
)

=

∫
X

−χ(u1 − u2) ddc(ψ1 − u1)∧ T1 −

∫
X

−χ(u1 − u2) ddc(ψ2 − u1)∧ T2

= L1 − L2,

where Tj =
∑n−1

l=0 θ
l
ψj

∧ θn−l−1
u1

. Using integration by parts and Lemma 3.4, we get

L1 =

∫
X
χ ′(u1 − u2) d(u1 − u2)∧ dc(ψ1 − u1)∧ T1

≤ C1ϱB(1 − χ̃(−1))Q
(
ϱ−1

∫
X
χ ′(u1 − u2) d(u1 − u2)∧ dc(u1 − u2)∧ T1

)
,

where C1 > 0 depends only on n and M. Observe that there is a dimensional constant C ′

1 such that

T1 ≤ C ′

1θ
n−1
(ψ1+u1)/2.

Moreover one has
Eχ̃ ,θ,φ((ψ1 + u1)/2)≲ Eχ̃ ,θ,φ(ψ1)+ Eχ̃ ,θ,φ(u1)

by Lemma 2.7. Hence, it follows from Proposition 3.5 (applied to u3 := (ψ1 + u1)/2) that

ϱ−1
∫

X
χ ′(u1 − u2) d(u1 − u2)∧ dc(u1 − u2)∧ T1 ≤ C2 B2(1 − χ̃(−1))2 Q◦(n−1)(I 0

χ (u1, u2)),

where C2 > 1 depends only on n and M. Then

L1 ≤ C3ϱB2(1 − χ̃(−1))2 Q◦n(I 0
χ (u1, u2)),

where C3> 0 depends only on n and M. Here we use the fact Q(t1)≤ (t1/t2)1/2 Q(t2) for every t1> t2> 0
(Lemma 3.6).

By the same arguments, we also have

−L2 ≤ C4ϱB2(1 − χ̃(−1))2 Q◦n(I 0
χ (u1, u2)),

where C4 > 0 depends only on n and M.
Hence

L = L1 − L2 ≤ (C3 + C4)ϱB2(1 − χ̃(−1))2 Q◦n(I 0
χ (u1, u2)). □

3.3. Proof of Theorem 3.2. Recall that for every Borel set E in X, we define

capθ,φ(E) := sup
{∫

E
θn

h : h ∈ PSH(X, θ), φ− 1 ≤ h ≤ φ

}
.

The following is an improvement of results from [Darvas et al. 2018b; 2021a] (see also [Boucksom et al.
2010; Kołodziej 2003]).
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Theorem 3.7. Let A ≥ 1 be a constant and let θ be a closed smooth real (1, 1)-form such that θ ≤ Aω.
Let φ ∈ PSH(X, θ) and 0 ≤ f ∈ L p(X) for some constant p > 1 such that φ = P[φ] and 0<

∫
X f ωn

=∫
X θ

n
φ := ϱ. Assume u ∈ E(X, θ, φ) satisfies supX (u −φ)= 0 and θn

u = f ωn. Then, there exists a constant
C ≥ 1 depending only on X, ω, n and p such that

u ≥ φ− C A
(
log ∥ f volω(X)q/ϱ∥L p + log A + 1

)
, (3-17)

where volω(X) :=
∫

X ω
n and q = p/(p − 1).

By Hölder inequalities, one sees that

1 =

∫
X

f
ϱ
ωn

≤ ∥ f/ϱ∥L p(volω(X))q ,

and then log ∥ f volω(X)q/ϱ∥L p ≥ 0.

Proof. Without loss of generality, we can assume that volω(X)= 1. Recall that there exists a constant ν > 0
depending only on X, ω such that ∫

X
exp(−ψ/ν)ωn

≤ C2
0

for every ψ ∈ PSH(X, ω) with supX ψ = 0, where C0 ≥ 1 is a constant depending only on X and ω.
Consequently, one gets ∫

X
exp(−ψ/(Aν))ωn

≤ C2
0

for every ψ ∈ PSH(X, θ) ⊂ PSH(X, Aω) with supX ψ = 0. By the same arguments as in the proof of
[Darvas et al. 2018b, Proposition 4.30] (use [Darvas et al. 2021a, Lemma 3.9] instead of [Darvas et al.
2018b, Lemma 4.9]), we have∫

E
ωn

≤ C2
0 exp

(
−

1
2Aν

(capθ,φ(E)

ϱ

)−1/n)
for every Borel set E ⊂ X. Therefore, by the Hölder inequality and the fact that e−1/t

≤ m! tm for
every m ∈ N and every t > 0, there exists A0 > 0 depending only on X, ω, n and p such that

ϱ−1
∫

E
θn

u =

∫
E
( f/ϱ)ωn

≤ ∥ f/ϱ∥L p

(∫
E
ωn

)1/q

≤ A0 A2n
∥ f/ϱ∥L p

capθ,φ(E)
2

ϱ2 (3-18)

for every Borel set E ⊂ X, where 1/p+1/q = 1. On the other hand, letting b = (Aνq)−1 and B0 = (C2
0)

1/q,
we have

ϱ−1
∫

X
e−bwθn

u ≤ ∥ f/ϱ∥L p

(∫
X

e−bqwωn
)1/q

≤ B0∥ f/ϱ∥L p (3-19)

for every w ∈ PSH(X, θ) with supX w = 0.



QUANTITATIVE STABILITY FOR COMPLEX MONGE–AMPÈRE EQUATIONS, I 1293

For every h ∈ PSH(X, θ) with φ− 1 ≤ h ≤ φ, for each 0 ≤ t ≤ 1 and s > 0, we have

tn
∫

{u<φ−t−s}

θn
h ≤

∫
{u<(1−t)φ+th−s}

θn
(1−t)φ+th ≤

∫
{u<(1−t)φ+th−s}

θn
u ≤

∫
{u<φ−s}

θn
u ,

where the third estimate holds due to the comparison principle [Darvas et al. 2021a, Lemma 2.3]. Then

tncapθ,φ(u < φ− t − s)≤

∫
{u<φ−s}

θn
u (3-20)

for every 0 ≤ t ≤ 1, s > 0. Therefore, it follows from (3-18) that

tnϱ−1capθ,φ(u < φ− t − s)≤ A1ϱ
−2capθ,φ(u < φ− s)2,

where A1 = A0 A2n
∥ f/ϱ∥L p . Putting g(s)= ϱ−1/ncapθ,φ(u < φ− s)1/n, the above inequality becomes

tg(t + s)≤ A1/n
1 g(s)2.

Hence, it follows from [Eyssidieux et al. 2009, Lemma 2.4 and Remark 2.5] that if g(s0) < 1/(2A1/n
1 )

then g(s)= 0 for all s ≥ s0 + 2. Moreover, by (3-20) and the condition (3-19), we have

g(s + 1)n ≤ ϱ−1
∫

{u<φ−s}

θn
u ≤ ϱ−1

∫
X

eb(φ−u−s)θn
u ≤ B1 e−bs

for every s > 0, where B1 = B0∥ f/ϱ∥L p . Then g(s + 1) < 1/(2A1/n
1 ) provided that

s >
n log 2 + log A1

b
+

log B1

b
·

Hence g(s)= 0 for every

s ≥
n log 2 + log A1

b
+

log B1

b
+ 4.

Thus

u ≥ φ−

(
n log 2 + log A1

b
+

log B1

b
+ 4

)
= φ− C1 log ∥ f/ϱ∥L p − C2,

where C1 = 2/b = 2νq A and

C2 = 4 +
n log 2 + log A0 + log B0 + 2n log A

b
= 4 + νq(n log 2 + log A0 + log B0 + 2n log A)A. □

Lemma 3.8. There exists a constant C>0 depending only on n, X andω such that for every u ∈PSH(X,ω)
satisfying supX u = 0 and for every constant 0< t ≤ 1, one has∫

{u>−t}
ωn

≥ Ct2n. (3-21)
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Proof. Let (Uj , ϕj )
m
j=1 be such that Uj ⊂ X are open, ϕj :4B→Uj are biholomorphic and

⋃m
j=1 ϕj (B)= X

(where B is the open unit ball in Cn), and there is a smooth psh function ρj in Uj such that ddcρj = ω

for 1 ≤ j ≤ m. Let
Cρ = sup

1≤ j≤m
sup
2B

∥∇(ρj ◦ϕj )∥.

Assume u(z0)=0. Then there exists 1≤ j0 ≤m such that z0 ∈ϕ j0(B). Letw0 =ϕ−1
j0 (z0), û(w)=u◦ϕ j0(w)

and ρ̂(w) = ρ j0 ◦ ϕ j0(w)− ρ j0 ◦ ϕ j0(w0). By the plurisubharmonicity of û + ρ̂, for every t > 0 and
0< r < 1, we have

0 = (û + ρ̂)(w0)≤
1

volCn (rB)

∫
rB

(û + ρ̂) dV2n

≤ Cρr +
1

c2nr2n

∫
rB

û dV2n

≤ Cρr −
t

c2nr2n

∫
rB∩{û≤−t}

dV2n

≤ Cρr − t +
t

c2nr2n

∫
rB∩{û>−t}

dV2n

≤ Cρr − t +
Cωt
r2n volω({u >−t}),

where c2n = volCn (B) and Cω > 0 is a constant depending only on n, X, ω. It follows that

volω({u >−t})≥
r2n

Cω

(
1 −

Cρr
t

)
.

Hence, for every 0< t < 1, by choosing r = t/(1 + Cρ), we have

volω({u >−t})≥ Ct2n,

where C = 1/Cω(1 + Cρ)2n+1 depends only on n, X and ω. □

End of the proof of Theorem 3.2. Without loss of generality, we can assume that u1 ≤ u2. Let Wt =

{u1 > a1 − t} for 0< t ≤ 1. We have∫
Wt

−χ(u1 − u2)ω
n

≤

∫
Wt

−χ(u1 − a2)ω
n

≤ −btχ(a1 − a2 − t), (3-22)

where bt := vol(Wt).
It follows from Lemma 3.8 that Wt ̸= ∅. Moreover,

bt :=

∫
Wt

ωn
≥ C1

( t
A

)2n
, (3-23)

where C1 > 0 is a constant depending only on n, X and ω. By [Darvas et al. 2021a, Theorem A] (see also
[Do and Vu 2022a, Theorem 3]), there exists a unique ϕ ∈ E(X, θ, φ) with supX (ϕ−φ)= 0 such that

θn
ϕ =

ϱ

bt
1Wtω

n.
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It follows from Theorem 3.7 that

φ− C2 A(− log t + log A + 1)≤ ϕ ≤ φ (3-24)

for some constant C2 ≥ 1 depending only on n, X and ω. Thus, we have

E0
χ̃ ,θ,φ(ϕ)≤ −χ̃

(
−C2 A(− log t + log A + 1)

)
≤ −C3

(
log Ae

t

)M
χ̃(−A),

where C3 > 0 depends only on n, X, ω and M.
Hence, it follows from Theorem 3.1 that∫

X
−χ(u1 − u2)(θ

n
ψ − θn

ϕ )≤ C4ϱ
(

log Ae
t

)2M
(B − χ̃(−A))2(1 − χ̃(−1))2λ, (3-25)

where λ= Q◦(n)(I 0
χ (u1, u2)) and C4 > 0 depends only on n, X, ω and M.

Combining (3-22) and (3-25), we get∫
X

−χ(u1 − u2)θ
n
ψ ≤ −ϱχ(a1 − a2 − t)+ C4ϱ

(
log Ae

t

)2M
(B − χ̃(−A))2(1 − χ̃(−1))2λ.

Letting t → λm, we get∫
X

−χ(u1 − u2)θ
n
ψ ≤ −ϱχ(a1 − a2 − λm)+ C4ϱ

(
log Ae

λm

)2M
(B − χ̃(−A))2(1 − χ̃(−1))2λ

≤ −ϱχ(a1 − a2 − λm)+ C5ϱ
A(1−γ )/m

λ1−γ
(B − χ̃(−A))2(1 − χ̃(−1))2λ

≤ −ϱχ(a1 − a2 − λm)+ C5ϱA(1−γ )/m(B − χ̃(−A))2(1 − χ̃(−1))2λγ ,

where C5 > 0 depends only on n, X, ω,M,m and γ . □

Remark 3.9. The hypothesis that χ̃ ≤ χ in Theorems 3.1 and 3.2 can be slightly relaxed: the same
statement remains true if χ̃ ≤χ on (−∞,−1] and χ(−1)=−1. Indeed, we only need the inequality χ̃ ≤χ

to guarantee that Eχ,θ,φ(u)≤ Eχ̃ ,θ,φ(u) for u ∈ PSH(X, θ, φ). If we only have χ̃ ≤ χ on (−∞,−1], then

Eχ,θ,φ(u)≤ Eχ̃ ,θ,φ(u)−χ(−1) vol(θφ).

This is still sufficient for the proof of Theorems 3.1 and 3.2.
Later we will apply Theorem 3.2 to the special case where χ(t) = max{t,−1} and χ̃ ∈ W̃− with

χ̃(−1) = −1. In this case, we can compute explicitly Q0,χ,χ̃ (ϵ) = sup{t≤−1} χ(ϵt)/χ̃(t) as follows.
Observe that

Q0,χ,χ̃ (ϵ)= max
{

sup
−ϵ−1≤t≤−1

χ(ϵt)
χ̃(t)

, sup
t≤−ϵ−1

χ(ϵt)
χ̃(t)

}
= max

{
sup

−ϵ−1≤t≤−1

ϵt
χ̃(t)

,
−1

χ̃(−ϵ−1)

}
.

Since χ̃ ∈ W̃−, the function t/χ̃(t) is decreasing; hence Q0,χ,χ̃ (ϵ)= (−χ̃(−ϵ−1))−1.
If χ(t)= χ̃(t)= −(−t)p for some constant p> 0, then one sees directly that Q0,χ,χ̃ (ϵ)= ϵ

p. However
we will not use this special case in applications.
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3.4. A counterexample. Let

χ(t) := − log(−t + 1) ∈ W−.

In this subsection, to simplify the notation, we define Eχ (u) := Eχ,ω,0(u), where by 0 we mean the
constant function equal to 0. Our goal in this subsection is to construct sequences of functions um, vm ∈

PSH(X, ω)∩ L∞(X) such that

(i) 0 ≥ um ≥ vm , supX um = supX vm = 0,

(ii) um, vm → 0 in L1 as m → ∞,

(iii) supm(Eχ (um)+ Eχ (vm)) <∞ and limm→∞ Iχ (um, vm)= 0 but

(iv) inf
m

∫
X

−χ(um − vm)(ddcvm +ω)n > 0.

As a consequence of our construction of um, vm below, we see that Theorem 1.2 (and Theorem 1.3)
does not hold in general if χ = χ̃ ∈ W−. Here is our construction. On the unit ball B of Cn, we define

ϕm = max{log |z|,−em
} and Fm = {z ∈ B : log |z| = −em

}, m > 0.

Lemma 3.10. We have ∫
Fm

(ddcϕm)
k
∧ (ddc

|z|2)n−k
=

{
O(e−em

) if k < n,
c if k = n,

(3-26)

where c :=
∫
{z=0}

(ddc log |z|)n > 0.

Proof. The case k = n follows from Stokes’ theorem. We consider now k < n. Let Br be the ball of radius
r > 0 centered at 0 in Cn. Observe that ϕm = log |z| on an open neighborhood of ∂B2e−em . Using this and
Stokes’ theorem, we obtain∫

Fm

(ddcϕm)
k
∧ (ddc

|z|2)n−k
≤

∫
B2e−em

(ddcϕm)
k
∧ (ddc

|z|2)n−k

=

∫
B2e−em

(ddc log |z|)k ∧ (ddc
|z|2)n−k .

By direct computations (and approximating log |z| by 1
2 log(|z|2 + ϵ) as ϵ → 0), we see that∫

B2e−em

(ddc log |z|)k ∧ (ddc
|z|2)n−k

= O(e−em
).

Hence the desired assertion for k < n follows. □

Let g : B → U be a biholomorphic mapping from B to an open subset U of X. Let ψ ∈ C∞

0 (B) such
that 0 ≤ ψ ≤ 1 and ψ |B1/2 = 1. Let

ϕ̃m = (ϕmψ) ◦ g−1.
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Then there exists a constant A ≥1 such that ϕ̃m is Aω-psh for every m>0. Now, for all m> A−n, we define

um =
ϕ̃m

n
√

m + 1
and vm =

ϕ̃m+1
n
√

m
.

We have um, vm ∈ PSH(X, ω)∩ L∞(X) with supX um = supX vm = 0 and 0 ≥ um ≥ vm
L1

−→ 0 as m → ∞.
Put µm := (ddcum +ω)n and νm = (ddcvm +ω)n. We have

1X\g(Fm)µm + 1X\g(Fm+1)νm ≤ C1ω
n (3-27)

for every m, where C1 > 0 is a constant. By (3-26), we also have

µm(g(Fm))=
c

m + 1
+ O(e−em

) and νm(g(Fm+1))=
c
m

+ O(e−em
). (3-28)

By (3-27), (3-28) and by the fact vm
L1

−→ 0, there exists C2 > 0 such that

Eχ (vm)≤ C1

∫
X\g(Fm+1)

−χ(vm)ω
n
−χ

(
−em+1

n
√

m

)(
c
m

+ O(e−em
)

)
≤ C2

for every m ≫ 1. Hence, supm Eχ (vm) <∞. Since vm ≤ um ≤ 0, we also have supm Eχ (um) <∞. On
the other hand, ∫

X
−χ(vm − um)(ddcvm +ω)n ≥

∫
g(Fm+1)

−χ(vm − um)(ddcvm +ω)n

≥
c
m

log
(

em+1

n
√

m
−

em

n
√

m + 1
+ 1

)
≥

c
m

log
(
(e − 1)em

n
√

m + 1

)
≥

c
2

for m ≫ 1. It remains to show that limm→∞ Iχ (um, vm)= 0. By (3-27) and (3-28), we have

Iχ (um, vm)=

∫
X\g(Fm∪Fm+1)

−χ(vm − um)(νm −µm)

−χ((vm − um)(e−em+1
))νm(g(Fm+1))+χ((vm − um)(e−em

))µm(g(Fm))

≤ C1

∫
X

|vm |ωn
+

c
m

log
(

em+1

n
√

m
−

em

n
√

m + 1
+ 1

)
−

c
m + 1

log
(

em

n
√

m
−

em

n
√

m + 1
+ 1

)
+ O(e−em

)

≤ C1

∫
X

|vm |ωn
+

c
m

log
(

e
n
√

m
−

1
n
√

m + 1
+ e−m

)
−

c
m + 1

log
(

1
n
√

m
−

1
n
√

m + 1
+ e−m

)
+

c
m + 1

+ O(e−em
)

m→∞
−−−→ 0.

Hence we get limm→∞ Iχ (um, vm)= 0.
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4. Applications

4.1. Quantitative version of Dinew’s uniqueness theorem. For every Borel set E in X, recall that the
capacity of E is given by

cap(E)= capω(E)= sup
{w∈PSH(X,ω):0≤w≤1}

∫
E
ωn
w.

We usually remove the subscript ω from capω if ω is clear from the context. There are generalizations
of capacity in big cohomology classes, many of them are comparable; see Theorem 4.8 below and [Lu
2021]. Recall that a sequence of Borel functions (u j )j is said to converge to a Borel function u in capacity
if for every constant ϵ > 0, we have that cap({|u j − u| ≥ ϵ}) converges to 0 as j → ∞. Recall that
for u j , u ∈ PSH(X, ω), if u j → u in capacity, then u j → u in L1.

The convergence in capacity is of great importance in pluripotential theory in part because it implies
the convergence of Monge–Ampère operators under reasonable circumstances. To study quantitatively
the convergence in capacity, it is convenient to introduce the following distance function on PSH(X, ω):

dcap(u, v) := sup
{w∈PSH(X,ω):0≤w≤1}

∫
X

|u − v|1/2ωn
w

for every u, v ∈ PSH(X, ω) (note that dcap(u, v) <∞ thanks to the Chern–Levine–Nirenberg inequality).
The number 1

2 in the definition of dcap can be replaced by any constant in (0, 1). One can see that
for u j , u ∈ PSH(X, ω) for j ∈ N, dcap(u j , u) → 0 if and only if |u j − u| → 0 in capacity. Indeed, if
dcap(u j , u)→ 0, then it is clear that |u j − u| → 0 in capacity. For the converse statement, assume that
|u j − u| converges to 0 in capacity, i.e., for every constant δ > 0, we have

lim
j→∞

cap({|u j − u| ≥ δ})= 0.

In particular, the L1-norm of u j is bounded uniformly in j. Consequently∫
X

|u j − u|
1/2ωn

w ≤

∫
{|u j −u|≤δ}

|u j − u|
1/2ωn

w +

∫
{|u j −u|≥δ}

|u j − u|
1/2ωn

w

≤ δ1/2
∫

X
ωn

+

(∫
{|u j −u|≥δ}

ωn
w

)1/2(∫
{|u j −u|≥δ}

|u j − u|ωn
w

)1/2

(Hölder’s inequality)

≲ δ1/2
∫

X
ωn

+
(
cap({|u j − u| ≥ δ})

)1/2
,

by Chern–Levine–Nirenberg inequality. Hence dcap(u j , u)→ 0 if |u j −u| → 0 in capacity. The following
result is an immediate consequence of the Chern–Levine–Nirenberg inequality.

Proposition 4.1. Let θ ≤ Aω be a closed smooth real (1, 1)-form (where A ≥ 1 is a constant) and φ be
a model θ-psh function with ϱ :=

∫
X θ

n
φ > 0. Let 0 ≤ w ≤ 1 is an ω-psh function and ψ is the unique

solution to the problem 
u ∈ E(X, θ, φ),
θn

u =
ϱ

vol(X)
(ddcw+ω)n,

supX u = 0.

(4-1)
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Then there exists a constant C > 0 depending only on X and ω such that∫
X

|ψ |θn
ψ ≤ C Aϱ.

Here is the main result of this subsection.

Theorem 4.2. Let θ ≤ Aω be a closed smooth real (1, 1)-form (A ≥ 1) and let φ be a model θ -psh function
such that ϱ := vol(θφ) > 0. Let B ≥ 1, χ̃ ∈ W̃− and u1, u2 ∈ E(X, θ, φ) such that χ̃(−1)= −1 and

E0
χ̃ ,θ,φ(u1)+ E0

χ̃ ,θ,φ(u2)≤ B.

Let χ(t)= max{t,−1}. Then, for every 0< γ < 1, there exists C > 0 depending only on n, X, ω and γ
such that

dcap(u1, u2)
2
≤ C (A + |a1 − a2|)

(
|a1 − a2| + A(A + B)2λγ

)
, (4-2)

where

aj := sup
X

u j , λ=
1

h◦n(1/I 0
χ (u1, u2))

and h(s)= (−χ̃(−s))1/2.

One sees that for u1, u2 ∈ E(X, θ, φ), we can find a common χ̃ ∈ W− so that the assumption in
Theorem 4.2 is satisfied. Thus if supX u1 = supX u2 = 0, and θn

u1
= θn

u2
, then the right-hand side of (4-2)

vanishes; hence u1 = u2. We then recover Dinew’s uniqueness theorem for prescribed singularities
potentials [Boucksom et al. 2010; Darvas et al. 2018b; Dinew 2009].

Proof. Suppose that w is an arbitrary ω-psh function satisfying 0 ≤w ≤ 1 and ψ is the unique solution to
the problem 

u ∈ E(X, θ, φ),
θn

u =
ϱ

vol(X)
(ddcw+ω)n,

supX u = 0.

(4-3)

We split the proof into two cases.

Case 1: Assume now that I 0
χ (u1, u2)≤ 1. Hence, we get λ= Q◦n

χ,χ̃
(I 0
χ (u1, u2)) (see Remark 3.9), and

one has −χ̃(−A)≤ A because χ̃(−1)= −1. It follows from Theorem 3.2 and Proposition 4.1 that, for
every 0< γ < 1, there exists C1 > 0 depending only on n, X, ω and γ such that

I :=

∫
X

−χ(−|u1 − u2|)θ
n
ψ ≤ −ϱχ(−|a1 − a2| − λ)+ C1ϱA(A + B)2λγ . (4-4)

Moreover
ϱ

vol(X)

∫
X

|u1 − u2|
1/2(ddcw+ω)n =

∫
X

|u1 − u2|
1/2θn

ψ

=

∫
{|u1−u2|≤1}

|u1 − u2|
1/2θn

ψ +

∫
{|u1−u2|>1}

|u1 − u2|
1/2θn

ψ

≤ I 1/2
((∫

{|u1−u2|≤1}

θn
ψ

)1/2

+

(∫
{|u1−u2|>1}

|u1 − u2|θ
n
ψ

)1/2)
,
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where the last estimate holds due to the Cauchy–Schwarz inequality. Moreover, it follows from Chern–
Levine–Nirenberg inequality [Kołodziej 2005] that∫

X
|u1 − a1 − u2 + a2|θ

n
ψ =

ϱ

vol(X)

∫
X

|u1 − a1 − u2 + a2|(ddcw+ω)n

≤ C2ϱ(∥u1 − a1∥L1(X) + ∥u2 − a2∥L1(X))

≤ ϱC3 A, (4-5)

where C2,C3 > 0 depend only on X and ω. Here, the last estimate holds due to the compactness of
{u ∈ PSH(X, ω) : supX u = 0} in L1(X).

Hence
ϱ

vol(X)

∫
X

|u1 − u2|
1/2(ddcw+ω)n ≤ C4 I 1/2ϱ1/2(A + |a1 − a2|)

1/2, (4-6)

where C4 > 0 depends only on X and ω.
Combining (4-4) and (4-6), we get(∫

X
|u1 − u2|

1/2(ddcw+ω)n
)2

≤ C5(A + |a1 − a2|)
(
−χ(−|a1 − a2| − λ)+ A(A + B)2λγ

)
≤ C5(A + |a1 − a2|)(|a1 − a2| + λ+ A(A + B)2λγ )

≤ C6(A + |a1 − a2|)(|a1 − a2| + A(A + B)2λγ ),

where C5,C6 > 0 depend only on n, X, ω and γ . Since w is arbitrary, we obtain the desired inequality.

Case 2: We treat now the case where I 0
χ (u1, u2)≥ 1.

Observe that λ ≥ 1 in this case. Hence the right-hand side of (4-2) is greater than or equal to
C(A + |a1 − a2|) because A ≥ 1 and λ≥ 1. On the other hand, Hölder’s inequality gives(∫

X
|u1 − u2|

1/2(ddcw+ω)n
)2

≲
∫

X
|u1 − u2|(ddcw+ω)n

≤

∫
X

|u1 − a1 − u2 + a2|(ddcw+ω)n + |a1 − a2|

∫
X
ωn

≲ A + |a1 − a2|

by (4-5). Thus the desired estimate holds. □

Remark 4.3. If B ≥ A then the inequality (4-2) is equivalent to

dcap(u1, u2)
2
≤ C̃ (A + |a1 − a2|)(|a1 − a2| + A B2λγ ),

where C̃ > 0 depends only on n, X, ω and γ .

4.2. Quantitative version for the domination principle.

Theorem 4.4. Let A ≥ 1 be a constant and let θ ≤ Aω be a closed smooth real (1, 1)-form and φ be a
model θ-psh function, and ϱ := vol(θφ) > 0. Let B ≥ 1 be a constant, χ̃ ∈ W̃− and u1, u2 ∈ E(X, θ, φ)
such that χ̃(−1)= −1 and

E0
χ̃ ,θ,φ(u1)+ E0

χ̃ ,θ,φ(u2)≤ B.
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Assume that there exists a constant 0 ≤ c < 1 and a Radon measure µ on X satisfying θn
u1

≤ cθn
u2

+ϱµ on
{u1 < u2} and cµ :=

∫
{u1<u2}

dµ≤ 1. Then there exists a constant C > 0 depending only on n, X and ω
such that

capω{u1 < u2 − ϵ} ≤
C vol(X)(A + B)2

ϵ(1 − c)h◦n(1/cµ)

for every 0< ϵ < 1, where h(s)= (−χ̃(−s))1/2 for every 0 ≤ s ≤ ∞.
In particular, if cµ = 0 then capω{u1 < u2 − ϵ} = 0 for every ϵ > 0, and then u1 ≥ u2 on whole X.

The standard domination principle corresponds to the case where c = 0 and µ := 0. A non-
quantitative version of this domination principle (i.e., for µ= 0) in the non-Kähler setting was obtained
in [Guedj and Lu 2023].

Proof of Theorem 4.4. Let w be an arbitrary ω-psh function satisfying 0 ≤ w ≤ 1 and ψ is the unique
solution to (4-1). Let v=max{u1, u2} and χ(t)=max{t,−1}≥ χ̃(t). By Theorem 3.1 and Proposition 4.1,
there exists a constant C1 > 0 depending only on n, X an ω such that

I1 :=

∫
X

−χ(u1 − v)(θn
ψ − θn

u1
)≤ C1ϱ(A + B)2 Q◦(n)(I 0

χ (u1, v)), (4-7)

I2 :=

∫
X

−χ(u1 − v)(θn
u2

− θn
u1
)≤ C1ϱ(A + B)2 Q◦(n)(I 0

χ (u1, v)). (4-8)

Moreover, by the fact θn
v = θn

u2
on {u1< u2} and by the assumption θn

u1
≤ cθn

u2
+ϱµ on {u1< u2}, we have

I 0
χ (u1, v)= ϱ−1

∫
{u1<u2}

−χ(u1 − v)(θn
u1

− θn
u2
)≤ ϱ−1

∫
{u1<u2}

−χ(u1 − v)(θn
u1

− cθn
u2
)≤ cµ. (4-9)

Combining (4-7), (4-8) and (4-9), we get

(1 − c)
∫

X
−χ(u1 − v)θn

ψ =

∫
X

−χ(u1 − v)(θn
u1

− cθn
u2
)+ (1 − c)I1 + cI2

≤

∫
X

−χ(u1 − v)(θn
u1

− cθn
u2
)+ C1ϱ(A + B)2 Q◦n(cµ)

≤ ϱcµ + C1ϱ(A + B)2 Q◦n(cµ)

≤ Cϱ(A + B)2 Q◦n(cµ),

where C = C1 + 1. Hence∫
{u1<u2−ϵ}

ωn
w =

vol(X)
ϱ

∫
{u1<u2−ϵ}

θn
ψ ≤

C vol(X)(A + B)2 Q◦n(cµ)
(1 − c)ϵ

for every 0< ϵ < 1. Since w is arbitrary, it follows that

capω{u1 < u2 − ϵ} ≤
C vol(X)(A + B)2 Q◦n(cµ)

(1 − c)ϵ
. (4-10)
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Moreover, by the definition of χ and the formula of Q, we have

Q(s)=
1

(−χ̃(−1/s))1/2
=

1
h(1/s)

for every 0< s ≤ 1, and Q(0)= 0. Then

Q◦n(s)=
1

h◦n(1/s)
(4-11)

for every 0 ≤ s ≤ 1. □

4.3. Relation to Darvas’s metrics on the space of potentials of finite energy. Let χ ∈ W−
∪W+

M . Let
θ be a closed smooth real (1, 1)-form in a big cohomology class. When θ is Kähler, it was proved in
[Darvas 2015; 2017; 2024] that there is a natural metric dχ on Eχ (X, θ) which makes the last space to be a
complete metric space. When χ(t)= t , such metrics have a long history and play an important role in the
study of complex Monge–Ampère equations. We refer to these last references and [Berman et al. 2020;
2021] for more details. We now draw the connection between Iχ (u, v) and the metric on Eχ (X, θ). Let

Ĩχ (u, v)=

∫
{u<v}

−χ(u − v)(θn
v + θn

u )+

∫
{u>v}

−χ(v− u)(θn
u + θn

v )≥ Iχ (u, v).

By [Darvas 2015; 2017; 2024], there exists a constant C > 0 such that

C−1 Ĩχ (u, v)≤ dχ (u, v)≤ C Ĩχ (u, v)

for every u, v ∈ Eχ (X, θ) and θ is Kähler. It was proved in [Gupta 2023] (and also [Darvas 2015; Darvas
et al. 2018a; Di Nezza and Lu 2020; Trusiani 2022; Xia 2023]) that Ĩχ (u, v) satisfies a quasitriangle
inequality, and the convergence in Ĩχ (u, v) implies the convergence in capacity by using the plurisub-
harmonic envelope. Such a method is not quantitative. We present below quantitative version of this fact
by using our approach.

Theorem 4.5. Let θ ≤ Aω be a closed smooth real (1, 1)-form (A ≥ 1 is a constant) and φ be a
model θ-psh function with ϱ := vol(θφ) > 0. Let B ≥ 1, χ̃ ∈ W− and u1, u2 ∈ E(X, θ, φ) such that
χ̃(−1)= −1 and

E0
χ̃ ,θ,φ(u1)+ E0

χ̃ ,θ,φ(u2)≤ B.

Then there exist C > 0 depending only on n, X and ω such that

dcap(u1, u2)
2
≤

C
(

A + |supX u1 − supX u2|
)
(A + B)2

h◦n(ϱ/ Ĩχ̃ (u1, u2))
,

where h(s)= (−χ̃(−s))1/2 for every 0 ≤ s ≤ ∞.

We note that the quantities aj := |supX u j | for j = 1, 2 (hence |a1 − a2|) can be bounded by a function
of B and χ̃ as follows. Since φ is a model, we have −aj = supX (u j −φ). It follows that

B ≥ E0
χ̃ ,θ,φ(u j )≥ −χ̃(−aj ).
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Consequently, we get aj ≤−χ̃−1(−B) for j = 1, 2, where χ̃−1 denotes the inverse map of χ̃ : R≤0 → R≤0.
Thus by Theorem 4.5, one sees that if Ĩχ̃ (u1, u2) is small, then so is dcap(u1, u2) (uniformly in u1, u2 ∈

E(X, θ, φ) of χ̃ -energy bounded by a fixed constant).

Proof. Let χ(t)= max{t,−1}. Suppose that w is an arbitrary ω-psh function satisfying 0 ≤ w ≤ 1. By
the proof of Theorem 4.2 (see (4-6)), there exists C1 > 0 depending only on X and ω such that(∫

X
|u1 − u2|

1/2(ddcw+ω)n
)2

≤ C1
(

A + |sup
X

u1 − sup
X

u2|
)
ϱ−1

∫
X

−χ(−|u1 − u2|)θ
n
ψ , (4-12)

where ψ is defined by (4-3). Moreover, it follows from Theorem 3.1 (applied to u1,max{u1, u2},
ψ1 := ψ,ψ2 := u1) and Proposition 4.1 that∫

X
−χ(−|u1 − u2|)θ

n
ψ ≤ Ĩχ (u1, u2)+ C2ϱ(A + B)2 Q◦(n)

χ,χ̃
(I 0
χ (u1, u2)),

where C2 > 0 depends only on n. Therefore, since

Q◦(n)(s)=
1

h◦(n)(1/s)
and Iχ (u1, u2)≤ Ĩχ (u1, u2)≤ Ĩχ̃ (u1, u2)),

we obtain ∫
X

−χ(−|u1 − u2|)θ
n
ψ ≤

C3ϱ(A + B)2

h◦(n)(ϱ/ Ĩχ̃ (u1, u2))
, (4-13)

where C3 > 0 depends only on n, X and ω. Combining (4-12) and (4-13), we get(∫
X

|u1 − u2|
1/2(ddcw+ω)n

)2

≤
C

(
A + |supX u1 − supX u2|

)
(A + B)2

h◦(n)(ϱ/ Ĩχ̃ (u1, u2))
,

where C > 0 depends only on n, X and ω. Since w is arbitrary, we get the desired inequality. □

Remark 4.6. Consider now a weight χ̃ ∈ W+

M with χ̃(−1)= −1. One sees that χ̃(t)≤ (−t)M χ̃(−1)=

−(−t)M for −1 ≤ t ≤ 0, and χ̃(t)≤ χ̃0(t) := t for t ≤−1. Consequently, using Hölder’s inequality, we get

ρ−1 Ĩχ̃0(u1, u2)≤ 2(ρ−1 Ĩχ̃ (u1, u2))
1/M

+ ρ−1 Ĩχ̃ (u1, u2).

Hence, Theorem 4.5 applied to χ̃0 shows that if ρ−1 Ĩχ̃ (u1, u2)→ 0 and the normalized χ̃-energies of
u1, u2 are uniformly bounded, then dcap(u1, u2)→ 0.

When χ̃ ∈ W+

M , we have another version of Theorem 4.5 which is more explicit.

Theorem 4.7. Let θ ≤ Aω be a closed smooth real (1, 1)-form (A ≥ 1) and φ be a model θ-psh
function such that ϱ := vol(θφ) > 0. Let B ≥ 1, χ̃ ∈ W+

M (M ≥ 1) and u1, u2 ∈ E(X, θ, φ) be such that
χ̃(−1)= −1 and

E0
χ̃ ,θ,φ(u1)+ E0

χ̃ ,θ,φ(u2)≤ B.

Then there exists C > 0 depending only on n and M such that∫
X

−χ̃(−|u1 − u2|)θ
n
ψ ≤ CϱB2( Ĩχ̃ (u1, u2)/ϱ)

2−n
(4-14)
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for every ψ ∈ PSH(X, θ) with φ− 1 ≤ ψ ≤ φ. Moreover, if supX u1 = supX u2 then there exists C ′ > 0
depending on n, X, ω, A and M such that

Ĩχ̃ (u1, u2)≤ C ′ϱA1/2 B2(I 0
χ̃ (u1, u2))

2−n−1
.

Proof. The case I 0
χ̃
(u1, u2)≥ 1 is trivial because

Ĩχ̃ (u1, u2)/ϱ ≥ I 0
χ̃ (u1, u2)≥ 1,

whereas the left-hand side of (4-14) is always bounded by a constant (depending on M) times B. Thus,
from now on, it suffices to assume that I 0

χ̃
(u1, u2) < 1.

Denote v = max{u1, u2}. By Lemma 2.7, we have v ∈ E(X, θ, φ) and E0
χ̃ ,θ,φ

(v)≤ C1 B, where C1 > 0
depends only on n and M. Taking χ = χ̃ and using Theorem 3.1, we get∫

X
−χ̃(u j − v)θn

ψ ≤

∫
X

−χ̃(u j − v)θn
u j

+ C2ϱB2(I 0
χ̃ (u j , v))

2−n
(4-15)

for j = 1, 2, where C2 > 0 depends on n and M. Note that∫
X

−χ̃(u1 − v)θn
u1

+

∫
X

−χ̃(u2 − v)θn
u2

≤

∫
X

−χ̃(−|u1 − u2|)(θ
n
u1

+ θn
u2
)= Ĩχ̃ (u1, u2),

I 0
χ̃ (u1, v)+ I 0

χ̃ (u2, v)= I 0
χ̃ (u1, u2)≤ ϱ−1 Ĩχ̃ (u1, u2).

Hence, by (4-15), we get∫
X

−χ̃(−|u1−u2|)θ
n
ψ =

∫
X

−χ̃(u1−v)θn
ψ+

∫
X

−χ̃(u2−v)θn
ψ

≤

∫
X

−χ̃(u1−v)θn
u1

+

∫
X

−χ̃(u2−v)θn
u2

+C2ϱB2((I 0
χ̃ (u1,v))

2−n
+(I 0

χ̃ (u2,v))
2−n)

≤ Ĩχ̃ (u1,u2)+2C2ϱB2( Ĩχ̃ (u1,u2)/ϱ)
2−n

≤ C3ϱB2( Ĩχ̃ (u1,u2)/ϱ)
2−n
,

where C3 > 0 depends on n and M. Here, the last estimate holds due to the fact that Ĩχ̃ (u1, u2)≤ ϱB.
Now, we consider the case supX u1 = supX u2. By Theorem 3.2

(
choose m = 1 and γ =

1
2

)
, there

exists C4 > 0 depending only on n, X, ω and M such that

Ĩχ̃ (u1, u2)≤

∫
X

−χ̃(−|u1 − u2|)(θ
n
u1

+ θn
u2
)

≤ −2ϱχ̃(−(I 0
χ̃ (u1, u2))

2−n
)+ C4ϱA1/2 B2(I 0

χ̃ (u1, u2))
2−n−1

. (4-16)

Moreover, since χ̃ is concave, we have

χ̃(t)
t

≤
χ̃(−1)

−1
= 1

for every −1< t < 0. Hence, by (4-16), we have

Ĩχ̃ (u1, u2)≤ 2ϱ(I 0
χ̃ (u1, u2))

2−n
+ C4ϱA1/2 B2(I 0

χ̃ (u1, u2))
2−n−1

≤ (2 + C4)ϱA1/2 B2(I 0
χ̃ (u1, u2))

2−n−1
. □
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4.4. Comparison of capacities. For every Borel subset E in X and for every ϕ ∈ PSH(X, θ), we recall
again that

capθ,ϕ(E)= sup
{∫

E
θn
ψ : ψ ∈ PSH(X, θ), ϕ− 1 ≤ ψ ≤ ϕ

}
.

In [Lu 2021], it was shown that if ϕj ( j = 1, 2) is a θj -psh function with
∫

X (θj + ddcϕj )
n > 0 then

there exists a continuous function f : R≥0 → R≥0 with f (0)= 0 such that capθ1,ϕ1
(E)≤ f (capθ2,ϕ2

(E))
for every Borel set E ⊂ X. As an application of our main results, we obtain the following quantitative
comparison of capacities for the case where ϕj is a model θj -psh function.

Theorem 4.8 (comparison of capacities). Assume that θ1, θ2 ≤ Aω are closed smooth real (1, 1)-forms
representing big cohomology classes and, for j = 1, 2, that φj is a model θj -psh function satisfying∫

X (ddcφj + θj )
n

= ϱj > 0. Then, for every 0< γ < 1, there exists C > 0 depending only on n, X, ω, A
and γ such that

capθ1,φ1
(E)

ϱ1
≤ C

(capθ2,φ2
(E)

ϱ2

)2−nγ

for every Borel set E ⊂ X.

We now prove Theorem 4.8. First, we need the following lemma.

Lemma 4.9. Let A, B > 0 be constants. Let θ be a closed smooth real (1, 1)-form representing a big
cohomology class such that θ ≤ Aω. Assume that u, v are θ -psh functions satisfying v ≤ u ≤ v+ B. Then∫

X
(−ψ)θn

u ≤

∫
X
(−ψ)θn

v + n An B
∫

X
ωn

for every negative Aω-psh function ψ .

Proof. Using approximations, we can assume that ψ is smooth. Let

T =

n−1∑
l=0

θ l
u ∧ θn−l−1

v .

We have θn
u − θn

v = ddc(u − v)∧ T. Moreover, using integration by parts (Theorem 2.2), we get∫
X
(−ψ)ddc(u − v)∧ T =

∫
X
(u − v)ddc(−ψ)∧ T ≤ A

∫
X
(u − v)ω∧ T ≤ n An B

∫
X
ωn.

Hence ∫
X
(−ψ)θn

u ≤

∫
X
(−ψ)θn

v + n An B
∫

X
ωn. □

Proof of Theorem 4.8. By the inner regularity of capacities (see [Darvas et al. 2018b, Lemma 4.2]), we
only need consider the case where E is compact. Since the case capθ2,φ2

(E)= ϱ2 is trivial, we can also
assume that capθ2,φ2

(E) < ϱ2. In particular, by Darvas et al. 2021a, Proposition 3.7; 2021b, Lemma 2.7],
we have

sup
X

h∗

E,θ2,φ2
= sup

X
(h∗

E,θ2,φ2
−φ2)= 0,

where
hE,θ2,φ2 = sup

{
w ∈ PSH(X, θ2) : w|E ≤ φ2 − 1, w ≤ φ2

}
.
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Set χ(t) = χ̃(t) = t . We will use Theorem 3.2 for u1 = (hE,θ2,φ2)
∗ and u2 = φ2. It is clear that

E0
χ̃ ,θ2,φ2

(u2)= 0 and u1 = u2 −1 on E \ N, where N is a pluripolar set. Moreover, it follows from [Darvas
et al. 2021a, Proposition 3.7] that

I 0
χ (u1, u2)≤ E0

χ̃ ,θ2,φ2
(u1)= ϱ−1

2 capθ2,φ2
(E)≤ 1.

By Theorem 3.2, for every 0< γ < 1 and B ≥ 1, there exists C > 0 depending only on X, ω, n, A and γ
such that ∫

E
θn
ψ ≤

∫
X
χ(−|u1 − u2|)θ

n
ψ ≤ Cϱ2 A(A + B)2(capθ2,φ2

(E)/ϱ2)
2−nγ , (4-17)

for every compact set E and for each ψ ∈ E(X, θ2, φ2) with E0
χ̃ ,θ2,φ2

(ψ)≤ B. Let ϕ ∈ E(X, θ1, φ1) such
that φ1 − 1 ≤ ϕ ≤ φ1 and

∫
E(θ1 + ddcϕ)n ≥

1
2 capθ1,φ1

(E). By [Darvas et al. 2021a], there exists a unique
function ψ0 ∈ E(X, θ2, φ2) such that supX ψ0 = 0 and

(ddcψ0 + θ2)
n

=
ϱ2

ϱ1
(ddcϕ+ θ1)

n.

When ψ = ψ0, we have ∫
E
θn
ψ ≥

ϱ2

2ϱ1
capθ1,φ1

(E). (4-18)

Moreover, by using Lemma 4.9 for ϕ, φ1 and using the fact that (ddcφ2 + θ2)
n
≤ 1{φ2=0}θ

n
2 (see [Darvas

et al. 2018b, Theorem 3.8]), we have

ϱ1 E0
χ̃ ,θ2,φ2

(ψ0)=

∫
X
(φ2 −ψ0)(ddcϕ+ θ1)

n
≤

∫
X
(−ψ0)(ddcφ1 + θ1)

n
+ n An

∫
X
ωn

≤ B, (4-19)

where B ≥ 1 depends only on A, X, ω, n. Combining (4-17), (4-18) and (4-19), we get

capθ1,φ1
(E)≤

2ϱ1

ϱ2

∫
E
θn
ψ0

≤
2ϱ1

ϱ2

∫
X
χ(−|u1 − u2|)θ

n
ψ0

≤ 2Cϱ1 A(A + B)2(capθ2,φ2
(E)/ϱ2)

2−nγ . □
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