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We consider the Schrödinger equation in Rd , d ≥ 1, with a confining potential growing at most quadratically.
Our main theorem characterizes open sets from which observability holds, provided they are sufficiently
regular in a certain sense. The observability condition involves the Hamiltonian flow associated with
the Schrödinger operator under consideration. It is obtained using semiclassical analysis techniques. It
allows us to provide an accurate estimation of the optimal observation time. We illustrate this result with
several examples. In the case of two-dimensional harmonic potentials, focusing on conical or rotation-
invariant observation sets, we express our observability condition in terms of arithmetical properties of the
characteristic frequencies of the oscillator.
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1. Introduction and main results

We are concerned with the observability of the Schrödinger equation with a confining potential in the
Euclidean space:

i∂tψ = Pψ, P = V (x)− 1
21, t ∈ R, x ∈ Rd , (1-1)

where V is a real-valued potential, bounded from below. Specific assumptions shall be stated below. The
general problem reads as follows: we wonder which measurable sets ω ⊂ Rd and times T > 0 satisfy

∃C > 0 : ∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt. Obs(ω, T )

When this property Obs(ω, T ) is true, we say that the Schrödinger equation (1-1) is observable from ω

in time T, or that ω observes the Schrödinger equation. The question consists in finding conditions on
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the pair (ω, T ) ensuring that one can recover a fraction of the mass of the initial data u, by observing
the solution ψ(t)= e−i t Pu of (1-1) in ω during a time T. We will often call ω the observation set and T
the observation time. As for the constant C in the inequality, we will refer to it as the observation cost
throughout the text. When an observation set ω is fixed, the infimum of times T > 0 such that Obs(ω, T )
holds is called the optimal observation time, and is denoted by T⋆ = T⋆(ω). It is clear that this so-called
observability inequality holds for ω = Rd in any time T > 0. This is because the propagator solving
the Schrödinger equation e−i t P is an isometry on L2(Rd).1 But from the viewpoint of applications, one
would like to find the smallest possible observation sets and the corresponding optimal times for which
the observability inequality holds.

The observability question for Schrödinger-type equations has been extensively investigated over the
past decades, mainly in compact domains of Rd or compact Riemannian manifolds. See the surveys of
Laurent [2014] or Macià [2015] for an overview. In a compact Riemannian manifold, Lebeau [1992]
showed that the so-called geometric control condition (introduced for the wave equation in [Rauch and
Taylor 1974; Bardos et al. 1992]) is sufficient to get observability of the Schrödinger equation in any time
T > 0. This means that all billiard trajectories have to enter the observation set in finite time. See for
instance [Phung 2001] for later developments in Euclidean domains. However, works by Haraux [1989]
and Jaffard [1990] on the torus show that this condition is not always necessary. Since then, considerable
efforts have been made to find the good geometric condition characterizing the observability of the
Schrödinger equation, depending on the geometrical context. This question is closely related to that of
understanding the concentration or delocalization of Laplace eigenfunctions or quasimodes, which rule
the propagation of states through the Schrödinger evolution; see [Burq and Zworski 2004]. The latter
properties are linked to the behavior of the underlying classical dynamics, which is supposed to drive
the quantum dynamics at high frequency. In the literature, mainly two different dynamical situations
have been investigated. On the one hand, complete integrability, meaning existence of many conserved
quantities, usually features symmetries that result in high multiplicity in the spectrum at the quantum
level. This allows for possible concentration of eigenfunctions. On the other hand, chaotic systems,
epitomized by the geodesic flow of negatively curved Riemannian manifolds, go along with strong
instability properties. For instance, quantum ergodicity states that most2 Laplace eigenfunctions are
delocalized on manifolds with ergodic geodesic flow. Here we collect a nonexhaustive list of references
illustrating this diversity of situations. On the torus, observability was investigated by several authors;
see, for example, [Haraux 1989; Jaffard 1990; Burq and Zworski 2004; 2012; 2019; Bourgain et al.
2013; Macià 2010; Anantharaman and Macià 2012; 2014]. General completely integrable systems were
studied by Anantharaman, Fermanian-Kammerer and Macià [Anantharaman et al. 2015]. As for the disk,
the question of characterizing open sets from which observability holds was solved by Anantharaman,
Léautaud and Macià [Anantharaman et al. 2016a; 2016b]. Macià and Rivière [2016; 2019] thoroughly

1Another consequence of this is that the condition Obs(ω, T ) is “open” with respect to T : if Obs(ω, T ) is true with cost
C > 0, then Obs(ω, T − ε) is true as soon as ε < 1/C . See Lemma A.3 in Appendix A for a precise statement.

2In fact, the situation is more complicated due to the possible existence of a sparse subsequence of eigenmodes concentrating
around unstable closed classical trajectories — a phenomenon known as scarring.
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described what happens on the sphere and on Zoll manifolds. In the negatively curved setting, we refer to
[Anantharaman 2008; Anantharaman and Rivière 2012; Eswarathasan and Rivière 2017; Dyatlov and Jin
2018; Jin 2018; Dyatlov et al. 2022]. See also [Privat et al. 2016] in connection with quantum ergodicity.

Recently, there has been a growing interest in the question of observability for the Schrödinger
equation in the Euclidean space, for which new difficulties arise due to the presence of infinity in space.
Täufer [2023] dealt with the observability of the free Schrödinger equation in Rd, showing that it is
observable from any nonempty periodic open set in any positive time. It relies on the Floquet–Bloch
transform and the theory of lacunary Fourier series. It was later generalized by Le Balc’h and Martin [2023]
to the case of periodic measurable observation sets with a periodic L∞ potential, in dimension 2.

Huang, Wang and Wang [Huang et al. 2022] characterized measurable sets for which the Schrödinger
equation (1-1) is observable, in dimension d = 1 when V (x)= |x |

2m, m ∈ N. They proved that, in the
case where m = 1 (resp. m ≥ 2), one has observability from ω ⊂ R in some time (resp. in any time) if
and only if

lim inf
x→+∞

|ω∩ [−x, x]|

|[−x, x]|
> 0, (1-2)

where | • | is the one-dimensional Lebesgue measure. Such a set is called “weakly thick”. Simultaneously,
Martin and Pravda-Starov [2021] provided a generalization of this condition in dimension d which turns
out to be necessary if d ≥ 1 and sufficient if d = 1 for observability to hold, in the case of the fractional
harmonic Schrödinger equation, namely (1-1) with P = (−1+|x |

2)s, where s ≥1. In the particular cases of
potentials or operators discussed above, the techniques that are used, mainly relying on abstract harmonic
analysis tools, provide very strong results. However, it seems that more general potentials remain out
of reach, since the arguments involved require the knowledge of precise spectral estimates on eigenvalues
and eigenfunctions, explicit asymptotics and symmetry properties. Moreover, regarding the case of the
harmonic oscillator, the existing results focus on the properties of the sets for which observability holds,
but given such a set, they do not give a hint of what would be the minimal time for which the observability
inequality holds. In fact they provide an upper bound for this optimal time independent of the open set,
corresponding to half a period of the classical harmonic oscillator. But it is reasonable to think that this
upper bound can be improved taking into account the geometry of the observation set.

To complete the picture, let us mention the study of observability for time-dependent quadratic
Hamiltonians in Rd by Waters [2023]. As for bounded potentials in dimension 1, a quantitative observabil-
ity result was obtained by Su, Sun and Yuan [Su et al. 2025]. See also [Wei et al. 2023] on the half-line.

Motivations, assumptions and notation. This work aims to address the issues discussed above, namely:

(a) find a robust method to prove that the Schrödinger equation is observable from a given set with less
restrictions on the dimension or the potential (e.g., variations of the harmonic potential like x · Ax
where A is a real symmetric positive-definite d × d matrix, or potentials of the form ⟨x⟩

2m with
m > 0 a real number);

(b) provide a more accurate upper bound for the optimal observation time depending on the shape of the
observation set.
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Throughout this work, we make the following assumptions on the potential:

Assumption 1.1. The potential V is C∞ smooth and satisfies, for some m > 0,

∃C, r > 0 : ∀|x | ≥ r, 1
C

⟨x⟩
2m

≤ V (x)≤ C⟨x⟩
2m, (1-3)

∀α ∈ Nd , ∃Cα > 0 : ∀x ∈ Rd , |∂αV (x)| ≤ Cα⟨x⟩
2m−|α|. (1-4)

Unless stated otherwise, we assume that the potential is subquadratic, namely 0< m ≤ 1.

Throughout the article, we shall refer to the left-hand side inequality in (1-3) by saying that the potential
is elliptic. In addition, the notion of principal symbol that we will use is made clear below.

Definition 1.2 (principal symbol). Let V0 and V be two potentials satisfying Assumption 1.1 above with
a power m > 0. We say that V0 and V have the same principal symbol if

∀α ∈ Nd , ∃Cα > 0 : ∀x ∈ Rd , |∂α(V − V0)(x)| ≤ Cα⟨x⟩
2m−1−|α|.

This defines an equivalence relation. The equivalence class of such a potential V is called the principal
symbol of V.

Classical spectral theory arguments ensure that the operator V (x) −
1
21 with domain C∞

c (R
d) is

essentially self-adjoint (from now on, its closure will be denoted by P) and that the evolution problem (1-1)
on L2(Rd) is well-posed. In fact, most of our results will depend only on the principal symbol of V,
namely they will not depend on perturbations of the potential of order ⟨x⟩

2m−1.
Our strategy emphasizes the role of the underlying classical dynamics ruling the evolution of high-energy

solutions to the Schrödinger equation (1-1), by means of the so-called quantum-classical correspondence
principle. This motivates the introduction of the symbol of the operator P, defined by

p(x, ξ) := V (x)+ 1
2 |ξ |2, (x, ξ) ∈ R2d.

This is a smooth function on the phase space R2d
≃ Rd

x × Rd
ξ , tending to +∞ as (x, ξ)→ ∞, since the

potential is elliptic. Throughout this text, typical phase space points will be denoted by ρ = (x, ξ), and
we will sometimes use the notation π : R2d

→ Rd for the projection (x, ξ) 7→ x . We will often refer to p
as the classical Hamiltonian, and to its quantization P as the quantum Hamiltonian. The Hamiltonian
flow (φt)t∈R on R2d, which preserves p, is defined as the flow generated by the Hamilton equation:

d
dt
φt(ρ)= J∇ p(φt(ρ)), φ0(ρ)= ρ. (1-5)

It is well-defined for all times under our assumptions. Here J =
( 0

−Id

Id
0

)
is the symplectic matrix.

Introducing (x t , ξ t)= φt(ρ) the position and momentum components of the flow, this can be rewritten as
d
dt

x t
= ξ t ,

d
dt
ξ t

= −∇V (x t),
(x0, ξ 0)= ρ. (1-6)

Hereafter, we will refer to the x-component of a trajectory of the Hamiltonian flow as a projected trajectory.
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1.1. Main result. Let us insist on the fact that the result below applies for confining potentials having
a subquadratic growth, i.e., 0 < m ≤ 1. We will explain later why we restrict ourselves to this case.
Throughout the article, the open ball of radius r centered at x ∈ Rd is denoted by Br (x). Our main result
reads as follows.

Theorem 1.3. Let V0 and V be potentials on Rd satisfying Assumption 1.1 with some m ∈ (0, 1],
having the same principal symbol. Set P = V (x)− 1

21 and denote by e−i t P the propagator solving the
Schrödinger equation

i∂tψ = Pψ.

Also denote by (φt
0)t∈R the Hamiltonian flow associated with the symbol p0(x, ξ)= V0(x)+ 1

2 |ξ |2. For
any Borel set ω ⊂ Rd, define for any R > 0 the thickened set

ωR =

⋃
x∈ω

BR(x),

and introduce for any T > 0 the classical quantity3

K∞

p0
(ω, T )= lim inf

ρ→∞

∫ T

0
1ω×Rd (φt

0(ρ)) dt = lim inf
ρ→∞

|{t ∈ (0, T ) : (π ◦φt
0)(ρ) ∈ ω}|.

Fix a Borel set ω ⊂ Rd.

(i) (sufficient condition) Assume there exists T0 > 0 such that

K∞

p0
:= K∞

p0
(ω, T0) > 0. (1-7)

Then there exists a constant L = L(d, T0, p0, p)> 0 such that for R = L/K∞
p0

, for any compact set K ⊂ Rd

and any T > T0, Obs(ωR \ K , T ) is true, namely:

∃C > 0 : ∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ωR\K ) dt.

(ii) (necessary condition) Assume there exists a time T > 0 such that Obs(ω, T ) is true with cost Cobs > 0,
that is to say,

∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ Cobs

∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt. (1-8)

Then there is a constant c = c(d, T, p0, p) such that for any R ≥ 1 and any compact set K ⊂ Rd, one has

K∞

p0
(ωR \ K, T )≥

1
Cobs

− c
⟨log R⟩

1/2

R
.

The rest of the introduction is organized as follows: in Section 1.2, we comment on Theorem 1.3 and
describe the main ideas of the proof. Then we discuss various examples of application. We begin with
examples in dimension 1 in Section 1.3. In Section 1.4, we investigate the particular case of harmonic

3 The integral makes sense when ω is Borel. Indeed, the map (t, ρ) 7→ 1ω×Rd (φ
t
0(ρ)) is then Lebesgue-measurable, so that

the same is true for t 7→ 1ω×Rd (φ
t
0(ρ)) when ρ is fixed. Tonelli’s theorem [Lerner 2014, Theorem 4.2.5] then shows that the

map ρ 7→
∫ T

0 1ω×Rd (φ
t
0(ρ)) dt is Lebesgue-measurable.
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oscillators in two dimensions. We specifically focus on conical and rotation-invariant observation
sets in Sections 1.4.1 and 1.4.3 respectively. These are cases where one can prove accurate estimates
on the optimal observation time — see for instance Proposition 1.5. Arithmetical properties of the
characteristic frequencies of the harmonic oscillator under consideration also play a key role, as evidenced
by Proposition 1.11. Then in Section 1.5, we present other consequences of Theorem 1.3 concerning
observability of eigenfunctions of the Schrödinger operator P and energy decay of the damped wave
equation. Lastly, we discuss the links between our work and the Kato smoothing effect in Section 1.6,
and provide with further explanations regarding the natural semiclassical scaling of the problem and the
criticality of quadratic potentials in Section 1.7.

1.2. Idea of proof and comments. The core of our work consists in establishing a suitable version of
Egorov’s theorem to relate the evolution through the Schrödinger flow of high-energy initial data on the
quantum side, to the action of the associated Hamiltonian flow on the classical side. This is done using
semiclassical analysis. To apply this theory, we approximate the indicator function of ω by a smooth
and sufficiently flat cut-off function. This is how the larger set ωR arises. Although Theorem 1.3 is not
a complete characterization of sets for which observability holds, it provides an almost necessary and
sufficient condition of observability, up to thickening the observation set, and it gives sharp results in many
concrete situations. See the examples given in Sections 1.3, 1.4 and 1.5 below. We review remarkable
features of this statement.

• The observability condition (1-7) we find is reminiscent of the geometric control condition that rules
the observability or control of the wave equation in a number of geometrical contexts, especially compact
Riemannian manifolds [Rauch and Taylor 1974; Bardos et al. 1988; 1992]. It reflects the importance of
the quantum-classical correspondence in this problem: high-energy solutions to the Schrödinger equation,
lifted to phase space, propagate along the trajectories of the Hamiltonian flow. Our constant K∞

p0
(ω, T ) is

to some extent different from the one quantifying the geometric control condition for the wave equation
(see the constant C(t) of Lebeau [1996] or the constant K(T ) of Laurent and Léautaud [2016]). Indeed,
the latter constant consists in averaging some function (typically the indicator function of ω) along
speed-one geodesics in a time interval [0, T ]. In contrast, our constant K∞

p0
(ω, T ) does the same, except

that the length of trajectories tends to infinity as their initial datum ρ goes to infinity in phase space. This
is consistent with the infinite speed of propagation of singularities for the Schrödinger equation.

• The necessary condition of Theorem 1.3 gives an estimate of the observation cost (from the set ω) of the
form Cobs ≥ K∞

p0
(ωR, T )−1

− o(1) as R → +∞. This is the expected lower bound while using Egorov’s
theorem to prove observability results; see [Laurent and Léautaud 2016] for a similar statement in the
context of the wave equation. As for an upper bound, it could be that Cobs is much larger than the lower
bound, due to localization of low-energy eigenmodes away from ω. In this respect, [Bourgain et al. 2013,
Appendix A] gives a hint of how one could quantify the unique continuation argument that we use in the
proof of Theorem 1.3 (see Appendix A). See also [Laurent and Léautaud 2016] for the wave equation.

• In the sufficient condition of Theorem 1.3, if one takes K =∅, the unique continuation step (Appendix A)
turns out to be unnecessary to prove observability from ωR . Indeed, it suffices to take R large enough so
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as to cover a sufficiently large compact set in phase space. This allows to capture all trajectories of the
Hamiltonian flow and have

inf
ρ∈R2d

|{t ∈ (0, T ) : (π ◦φt
0)(ρ) ∈ ωR}|> 0, (1-9)

instead of a positive lower bound for the liminf.4 From a unique continuation perspective, this corresponds
to taking R large enough so that ωR covers the region where low-energy modes might be localized. This
indicates, through Gårding inequality, that the observation cost from the set ωR is bounded from above
by the inverse of (1-9), up to a small error that vanishes in the limit R → +∞.

• Let us insist on the fact that the Schrödinger equation (1-1) does not contain any semiclassical parameter.
Instead, we artificially introduce a semiclassical parameter R → +∞, which we use to enlarge the
observation set. This is natural in view of the fact that remainders in the quantum-classical correspondence
are expressed in terms of derivatives of the symbol under consideration: scaling these symbols by 1/R
thus produces remainders of the same order.

• On the technical side, the noncompactness of the Euclidean space yields new difficulties. In our
problem, the use of semiclassical defect measures seems to be limited to very particular geometries of the
observation set: roughly speaking, only homogeneous symbols can be paired with such measures, which
would theoretically restrict the scope of the result to conical observation sets. Instead, we use (and prove)
a version of Egorov’s theorem to study the operator ei t P1ωe−i t P. The idea of using Egorov’s theorem was
introduced in control theory by Dehman and Lebeau [2009] and Laurent and Léautaud [2016]. Of course,
we must pay particular attention to the remainder terms, in connection with the noncompactness of the
ambient space. The great advantage of this is that we can describe the evolution of a fairly large class of
symbols on the phase space, which in turn allows to study observability for a variety of observation sets.

• Our result is very robust since it is valid for a fairly large class of potentials, with the noteworthy
property that the statement only involves the principal symbol of the potential. Indeed, up to enlarging
the parameter R, the fact that the dynamical condition (1-7) is fulfilled or not in ωR is independent of the
representative of the equivalence class of V0 (introduced in Definition 1.2) chosen to compute K∞

p (ωR, T ).
This is a consequence of Corollary 2.4. This was already evidenced in the context of propagation of
singularities for solutions to the perturbed harmonic Schrödinger equation; see [Mao and Nakamura 2009].
The stability under subprincipal perturbation of the potential fails to be true if one considers superquadratic
potentials (m > 1), as we can see by the examination of the trajectories of the flow. Take V0 satisfying
Assumption 1.1 for some m > 1, and perturb this potential with some W behaving like ⟨x⟩

2m−1. Consider
the Hamiltonian flow associated with the potential V = V0 + W. Then the second derivative of a trajectory
of the classical flow is given by

d2

dx2 x t
= −∇V0(x t)− ∇W (x t).

We remark that the perturbation is of order ∇W (x t)≈ ⟨x t
⟩

2(m−1), which may blow up when x t is large.
When m ≤ 1, the perturbation of the trajectory remains bounded, and can therefore be absorbed by

4In the proof of Theorem 1.3 (Section 3), we would be able to take A = 0 in (3-9) and b0 = 0 in (3-10), provided R is large
enough, in order to bypass the use of Appendix A.
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thickening the observation set. See Section 2.1 and the proof of Theorem 1.3 at the end of Section 3 for
further details.

• At the level of the Hamiltonian flow, the difference between m ≤ 1 and m > 1 can also be under-
stood by looking at the equation solved by the differential of the flow: differentiating the Hamilton
equation (1-5) yields

d
dt

dφt(ρ)= J Hess p(φt(ρ)) dφt(ρ).

We deduce that the differential of the flow behaves as

|dφt
| ≲ et |Hess p|,

which means that the norm of the Hessian of the Hamiltonian plays the role of a local Lyapunov exponent
for the classical dynamics. Yet Hess p is uniformly bounded on phase space if and only if m ≤ 1.
Incidentally, it is likely that for m < 1, one can exploit the decay of Hess p at infinity in the space variable
in order to get small remainders in the proof of Egorov’s theorem (see Proposition 3.3) instead of taking R
large. This might allow us to thicken ω by any positive ε rather than by a large parameter R. Since we are
mostly interested in quadratic potentials in this work, we chose not to refine our result in this direction.

• Going through the details of the proof, it appears that one could replace assumption (1-4) on the
potential by the weaker assumption5

∀α ∈ Nd , ∃Cα > 0 : ∀x ∈ Rd , |∂αV (x)| ≤ Cα⟨x⟩
max(0,2m−|α|).

This is consistent with the fact that there exist versions of Egorov’s theorem requiring only ∂αV (x)= O(1)
for all |α| ≥ 2; see [Robert 1987, Theorem (IV-10)].

• It is possible that the necessary condition can be slightly improved by propagating coherent states rather
than using Egorov’s theorem on quantum observables. This is discussed in more detail in Section 1.4.2.

1.3. Examples in dimension 1. The one-dimensional case gives an insight of how the potential can
influence the geometry of sets for which observability holds.

1.3.1. Harmonic potential. The one-dimensional harmonic oscillator corresponds to V (x)=
1
2 x2. The

Hamiltonian flow reads

φt(x, ξ)= (x cos t + ξ sin t,−x sin t + ξ cos t), (x, ξ) ∈ R2, t ∈ R.

Our dynamical condition (1-7) can then be written as

lim inf
(x,ξ)→∞

∫ T

0
1ω(x cos t + ξ sin t) dt > 0.

5In fact, in the case m< 1
2 , we make use of the decay of ∇V (x)= O(⟨x⟩

2m−1) in Proposition 2.5 (see the computation (2-16)).
But in fact, ∇V (x) = O(1) already gives (2-13), which is sufficient to obtain Corollary 2.6, that is used later in the proof
of Theorem 1.3.
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In view of the periodicity of the flow, it is relevant to consider T = 2π . Under this additional assumption,
condition (1-7) reduces to

K∞
:= lim inf

A→∞

∫ 2π

0
1ω(A sin t) dt > 0, (1-10)

where A has to be thought as (the square-root of) the energy p(x, ξ)=
1
2(x

2
+ ξ 2). We claim that this

is equivalent to the weak thickness (1-2) condition of [Huang et al. 2022]. Suppose that K∞ > 0. First,
notice that ∫ 2π

0
1ω(A sin t) dt = 2

∫ π/2

−π/2
1ω(A sin t) dt.

Second, fix c ∈ (0,K∞/2). Since the integrand is bounded by 1, we can slightly reduce the time interval
to
[
−
π
2 +

c
3 ,

π
2 −

c
3

]
so that y = A sin t defines a proper change of variables:

c
3

≤ lim inf
A→∞

∫ π/2

−π/2
1ω(A sin t) dt −

2
3

c ≤ lim inf
A→∞

∫ π/2−c/3

−π/2+c/3
1ω(A sin t) dt

≤ lim inf
A→∞

∫ π/2−c/3

−π/2+c/3
1ω(A sin t)

A|cos t |

A 2
π

×
c
3

dt =
3π
2c

lim inf
A→∞

1
A

∫ A sin(π/2−c/3)

−A sin(π/2−c/3)
1ω(y) dy.

We used the concavity inequality

cos t ≥ 1 −
2
π

|t | on
[
−
π

2
,
π

2

]
to get the third inequality. This gives

lim inf
A→∞

|ω∩ [−A, A]|

|[−A, A]|
> 0,

namely ω is weakly thick. Conversely, we can follow the same lines, using that the Jacobian |cos t | is
less than 1, to show that any weakly thick set satisfies (1-10). Although our main theorem allows us to
conclude that observability is true only on a slightly larger set, it is more precise than the previous result
from [Huang et al. 2022] with respect to the optimal observation time: we can estimate this optimal time
depending on the geometry of the observation set. In addition, our result is stable under subprincipal
perturbation of the potential. In particular, weak thickness of ω implies observability from ωR (for some R
given by Theorem 1.3) for any potential whose principal symbol is 1

2 x2 (or any positive multiple of x2).
Anticipating on the next paragraph, observe that a weakly thick set can contain arbitrarily large gaps,
hence is not necessarily thick (see [Huang et al. 2022, Example 4.12]).

1.3.2. Potentials having critical points. An interesting phenomenon appears when the potential possesses
a sequence of critical points going to infinity. To construct such a potential, we proceed as follows. We set

V (x)= (2 + sin(a log⟨x⟩))x2, x ∈ R, (1-11)

where a is a positive parameter to be chosen properly. See Figure 1, left, for an illustration.
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x

y

x

ξ

Figure 1. Case of a potential with critical points. Left: a potential V of the form (1-11). The
dotted lines correspond to the potentials x2 and 3x2. Right: some level sets of the Hamiltonian
p(x, ξ)= V (x)+ 1

2 |ξ |2. The corresponding picture for the harmonic potential is just a collection
of concentric ellipses.

One can check that Assumption 1.1 is fulfilled: V is subquadratic, elliptic (bounded from below by x2)
and each derivative yields a gain of ⟨x⟩

−1. Notice however that this is not a subprincipal perturbation of
the harmonic potential. For any x ∈ R, we have

V ′(x)=
x

⟨x⟩2

(
2⟨x⟩

2(2 + sin(a log⟨x⟩))+ ax2 cos(a log⟨x⟩)
)

=
x

⟨x⟩2

(
(4 + 2 sin(a log⟨x⟩))+ x2(4 + 2 sin(a log⟨x⟩))+ a cos(a log⟨x⟩)

)
.

Factorizing the last two terms, we can write, for a certain angle ϕa ,

V ′(x)=
x

⟨x⟩2

(
(4 + 2 sin(a log⟨x⟩))+ x2(4 +

√
4 + a2 sin(ϕa + a log⟨x⟩)

))
=

x
⟨x⟩2

(
(4 + 2 sin(a log⟨x⟩))+ 4x2

(
1 +

√
1
4

+

(a
4

)2
sin(ϕa + a log⟨x⟩)

))
.

When 1
4 +

(a
4

)2
> 1, which is true if and only if a> 2

√
3, we can find two sequences (x+

n )n∈N and (x−
n )n∈N

tending to infinity such that 
√

1
4

+

(a
4

)2
sin(ϕa + a log⟨x+

n ⟩)≥ −1 + η,√
1
4

+

(a
4

)2
sin(ϕa + a log⟨x−

n ⟩)≤ −1 − η

for some sufficiently small η > 0. The intermediate value theorem then implies that there exist infinitely
many points x0

n , with |x0
n | tending to infinity, where V ′(x0

n) = 0. Now we observe from (1-6) that the
trajectories of the Hamiltonian flow with initial data ρn = (x0

n , 0) are stationary, that is

φt(ρn)= ρn ∀t ∈ R.
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We deduce the following: assume that the Schrödinger equation (1-1) is observable from ω ⊂ R in some
time for this potential. Then the necessary condition of Theorem 1.3 tells us that there exists R > 0 such
that, for any n large enough, x0

n ∈ ωR . We can rephrase this as

∃n0 ∈ N : ∀n ≥ n0, ω∩ BR(x0
n) ̸= ∅. (1-12)

This is consistent with the phase portrait depicted in Figure 1, right: some energy might be trapped around
small closed trajectories encircling stable critical points. Hence, in order to have observability, ω cannot
be too far away from those points. In fact, one observes that (1-12) concerns all critical points, whatever
the sign of V ′′(x0

n) is.
In conclusion, the situation of a potential of the form (1-11) is in contrast with the previous case of the

harmonic potential 1
2 x2 where the weak thickness condition allowed for large gaps around any sequence

of points xn → ∞ satisfying |xn+1| ≫ |xn|. Notice that ω can still have large gaps away from critical
points though.

1.3.3. Sublinear potentials. Our last remark in the one-dimensional case concerns potentials having a
sublinear growth, namely m ∈

(
0, 1

2

]
. In this situation, the trajectories of the Hamiltonian flow whose

initial datum has purely potential energy (namely ξ = 0) do not escape far away from their initial location.
This is because d

dt
ξ t

= −V ′(x t)= O(⟨x t
⟩

2m−1),

which remains bounded uniformly as soon as m ≤
1
2 . For the same reason, m =

1
2 also appears to be critical

in Proposition 2.5. If observability from ω ⊂ R holds in some time for such a potential, the necessary
condition of Theorem 1.3 leads to the conclusion that ω has to intersect any interval of length 2R, for
some R > 0. Likewise, in higher dimension, any set from which the Schrödinger equation is observable
must satisfy

∃R > 0 : ∀x ∈ Rd , ω∩ BR(x) ̸= ∅. (1-13)

Therefore, sets observing the Schrödinger equation (1-1) for a sublinear potential cannot have arbitrarily
large holes.6 Although the case of bounded potentials (i.e., m = 0) is not in the scope of this article, let
us mention that this observation is consistent with recent results on the free Schrödinger equation. See
[Huang et al. 2022; Täufer 2023], as well as [Le Balc’h and Martin 2023] for the case of bounded periodic
potentials in two dimensions.

1.4. Observability of two-dimensional harmonic oscillators. As an application of Theorem 1.3, we study
the observability of harmonic oscillators in conical or rotation-invariant sets. Our results mainly concern
the two-dimensional case. The examples presented in this subsection suggest that there is no general
reformulation of our dynamical condition (1-7) in purely geometrical terms. That is to say, it seems
difficult to find an equivalent condition that would not involve the Hamiltonian flow (e.g., thickness, weak
thickness...). In contrast, by restricting ourselves to a certain class of potentials (harmonic oscillators at the
principal level here) and a certain class of observation sets (conical or rotation-invariant), one can indeed

6Notice that (1-13) is much weaker that the usual thickness condition of control theory:

∃R, c > 0 : ∀x ∈ Rd , |ω∩ BR(x)| ≥ c|BR(x)|.
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transform the dynamical condition into a geometrical one. Along the way, we will see that observability
properties are very sensitive to slight modifications of the coefficients of the harmonic oscillator under
consideration. This subsection culminates in Proposition 1.11, where we show that observability of
rotation-invariant sets is governed by Diophantine properties of the oscillator’s coefficients.

Let us first recall basics about general harmonic oscillators. Let A be a real symmetric positive-definite
d × d matrix and set HA =

1
2(x · Ax −1). Up to an orthonormal change of coordinates, one can assume

that A is diagonal, so that the potential can be written

VA(x)=
1
2

x · Ax =
1
2

d∑
j=1

ν2
j x2

j .

The characteristic frequencies of HA are those numbers ν1, ν2, . . . , νd , that we will always assume
to be positive. The corresponding Hamiltonian flow is explicit: denoting by x1(t), x2(t), . . . , xd(t)
and ξ1(t), ξ2(t), . . . , ξd(t) the components of φt, we can solve the Hamilton equations (1-6): x j (t)= cos(ν j t)x j (0)+

1
ν j

sin(ν j t)ξ j (0),

ξ j (t)= −ν j sin(ν j t)x j (0)+ cos(ν j t)ξ j (0)
∀ j ∈ {1, 2, . . . , d}. (1-14)

From this expression, we see that each coordinate is periodic, so the trajectories whose initial conditions
are of the form x j (0)= x0δ j= j0, ξ j (0)= ξ0δ j= j0 with x0, ξ0 ∈ R, are periodic, with period 2π/ν j0 (unless
both x0 and ξ0 vanish, in which case the trajectory is a point). Assuming d = 2, we can classify harmonic
oscillators into three categories. See Figure 2 for an illustration.

• The harmonic oscillator is isotropic7 if ν1 = ν2 = ν. In this situation, energy surfaces, that is, level
sets of the classical Hamiltonian, are concentric spheres in phase space (up to a symplectic change
of coordinates). Trajectories of the Hamiltonian flow are great circles on these spheres, so that their
projection on the x-variable “physical space” are ellipses. The flow is periodic, with period 2π/ν.

• The harmonic oscillator is said to be anisotropic rational when ν2/ν1 is a rational number different
from 1. Trajectories, although all closed, exhibit a more complicated behavior. Writing ν2/ν1 = p/q
with p and q coprime positive integers, the period of the flow is 2pπ/ν2 = 2qπ/ν1. Projected
trajectories are known in the physics literature as Lissajous curves [1857].

• We say a harmonic oscillator is anisotropic irrational when ν2/ν1 ∈ R \ Q. In that case, the
Hamiltonian flow is aperiodic. Trajectories are dense in invariant tori (see (1-15) below), yielding
projected trajectories that fill rectangles parallel to the eigenspaces of the matrix A.

In the multidimensional setting, the description of the flow can be achieved by examining the Q-vector
space generated by the characteristic frequencies. The dimension of the latter gives the number of periodic
decoupled “suboscillators” from which we can reconstruct the dynamics of the whole oscillator. This
was thoroughly explained by Arnaiz and Macià [2022a], who computed the set of quantum limits of
general harmonic oscillators, and studied their behavior when bounded perturbations of the potential are
added [2022b].

7For general dimension, we still call isotropic any harmonic oscillator having all its characteristic frequencies equal.
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x1

x2

x1

x2

Isotropic harmonic oscillator: ν2
ν1

= 1. Rational anisotropic harmonic oscillator: ν2
ν1

=
7
5 .

x1

x2

Irrational anisotropic harmonic oscillator: ν2
ν1

=
π
3 .

Figure 2. Typical projected trajectories of two-dimensional harmonic oscillators. Shading
indicates the course of the trajectory.

In order to understand well the classical dynamics of the harmonic oscillator, it is convenient to take
advantage of the complete integrability of this dynamical system. Here, the classical Hamiltonian is the
sum of the one-dimensional Hamiltonians 1

2(ν
2
j x2

j + ξ 2
j ), which are conserved by the flow, as one can

see from the explicit expression (1-14). This property implies that energy levels are foliated in (possibly
degenerate) invariant d-dimensional tori of the form

TE =
{
(x, ξ) ∈ R2d

: ∀ j, 1
2(ν

2
j x2

j + ξ 2
j )= E j

}
, E = (E1, E2, . . . , Ed) ∈ Rd

+
. (1-15)

The projection of these tori on the x-variable space yields rectangles, as in Figure 2, bottom.
The goal of the following examples is to highlight the fact that observability is sensitive to the global

properties of the Hamiltonian flow. We will show that isotropic and anisotropic harmonic oscillators
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behave differently with respect to observability, i.e., the sets that observe the Schrödinger equation are not
the same. One can already anticipate that the isotropic oscillator ν1 =ν2 has less such sets since its classical
trajectories are all ellipses, that is, they are very simple and only explore a small part of the classically
allowed region. It contrasts with the anisotropic situation ν1 ̸= ν2, where, in the rational case for instance,
trajectories visit more exhaustively the classically allowed region. It makes it harder to find a set that is not
reached by any of these trajectories. It is even more the case when ν1 and ν2 are rationally independent,
since the trajectories are then dense in the invariant torus to which they belong, as we already discussed.

1.4.1. Observability from conical sets. We first investigate the case where the observation set ω is conical,
namely it is invariant by dilations with positive scaling factor:

∀x ∈ Rd ,∀λ > 0, (x ∈ ω ⇐⇒ λx ∈ ω). (1-16)

We will see that exploiting the symmetries of harmonic oscillators is sometimes sufficient to obtain
satisfactory results, without the need of our main theorem (see Section 1.4.2). However, Theorem 1.3
will prove useful to estimate precisely the optimal observation time in some situations.

As we already noticed, it follows from the expression of the flow (1-14) that, whatever the characteristic
frequencies, the classical dynamics exhibits periodic trajectories contained in the coordinate axes. Those
starting from the origin are of the form

x j (t)=
1
ν j

sin(ν j t)ξ j (0), ξ j (t)= cos(t)ξ j (0)

for one j ∈ {1, 2, . . . , d}, and with all the other components being equal to zero. Thus it appears that a
general necessary condition for a conical ω to observe the Schrödinger equation (1-1), working for any
harmonic oscillator, is that it contains at least half of each line spanned by an eigenvector of A. Note that
this works in any dimension.

Proposition 1.4. Consider P = V (x)− 1
21, where V is a potential fulfilling Assumption 1.1 and having

principal symbol VA(x)=
1
2 x · Ax , A being a real symmetric positive-definite d × d matrix. Let ω ⊂ Rd

be a conical set and assume that it observes the Schrödinger equation in some time T > 0. Then v ∈ ω or
−v ∈ ω for any eigenvector v of A.

Now we place ourselves in dimension d = 2. We know from the above Proposition 1.4 that the closure
of a conical set which observes the Schrödinger equation has to contain at least half of any line spanned
by an eigenvector of the matrix A. Here, we exhibit a conical observation set, illustrated in Figure 3, that
behaves differently according to whether the harmonic oscillator is isotropic or not.

Proposition 1.5 (conical sets and anisotropy). Let d =2 and consider a potential V fulfilling Assumption 1.1,
and with principal symbol

VA(x)=
1
2 x · Ax, x ∈ R2,

where A is a real symmetric positive-definite matrix. Denote by ν+ ≥ ν− > 0 its characteristic frequencies.
Choose an orthonormal basis of eigenvectors (e+, e−) of A, so that Ae± = ν2

±
e±. For any ε ∈ (0, π/2),

define the two cones with aperture ε:

C±

ε =
{

x ∈ R2
: |x · e∓|< tan

(1
2ε
)
x · e±

}
. (1-17)
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ω(ε)

x1

ε

x2

Figure 3. The above projected trajectory is responsible for the lower bound on the optimal
observation time in (1-18). It is obtained with an oscillator such that ν+/ν− = 3.9. For ν+/ν− = 4,
one can choose the initial datum so that the curve goes back to the upper-right quadrant, passing
through the origin, without crossing the two cones. This yields a larger lower bound on the optimal
time, corresponding to the jump from ⌊3.9⌋ = 3 to ⌊4⌋ = 4 in (1-18).

Then the set ω(ε)= C+
ε ∪C−

ε observes the Schrödinger equation if and only if the oscillator is anisotropic,
that is, ν− < ν+. In that case, there exist constants C, c > 0, possibly depending on ν+, ν−, such that for
any ε ∈ (0, π/2),

T0 − Cε2
≤ T⋆(ω(ε))≤ T0 − cε2, where T0 =

π

ν+

(
2 +

⌊
ν+
ν−

⌋)
. (1-18)

This result does not distinguish between rational and irrational anisotropic oscillators: one cannot guess,
from the knowledge that observability from ω(ε) holds, whether the oscillator is rational or irrational.

Remark 1.6 (discontinuous behavior of T⋆). The time T0, obtained formally as the limiting optimal
observation time when ε→ 0, does not vary continuously with respect to ν+ and ν− because of the floor
function. This is related to special symmetry properties of the Hamiltonian flow that appear when ν+ is
a multiple of ν−, namely the projected trajectories can go from a quadrant to another one crossing the
origin, and thus avoiding to cross the observation cones. See Figure 3. From the proof, especially (4-29),
the constant C in the lower bound of (1-18) can be estimated by

C ≲
1/ν+

min(1, ν+/ν− − 1)
,



1162 ANTOINE PROUFF

up to a constant independent of ε and ν−, ν+. (A similar but more complicated lower bound is available
for the constant c from (4-14).) In particular we have

0 ≤ T0 − T⋆(ω(ε))≲
ε2/ν+

min(1, ν+/ν− − 1)
.

Therefore, if we fix ν− = 1 and let ν+ → 2 with ν+ < 2, the optimal observation time is of order
T⋆ ≈

3
2π + O(ε2), while in the limit ν+ = 2, we have T⋆ ≈ 2π + O(ε2). Since the constants involved

in the O(ε2) remainder are uniform in the limit ν+ → 2, taking ε small enough gives a case where the
optimal observation time depends discontinuously on ν−, ν+.

It is interesting to see what happens when ν+, ν− → ν, that is to say, when the operator P becomes
closer to an isotropic harmonic oscillator. As mentioned earlier, we know from Proposition 1.4 that
observability is not true for a set of the form C+

ε ∪ C−
ε for an isotropic oscillator (ε < π/2 is important

here). Thus it can seem surprising that the optimal observation time for such a set is bounded uniformly
in ν+, ν− as the frequencies tend to ν. Actually, degeneracy in this limit should be seen on the observation
cost, rather than on the optimal observation time. Indeed, computations suggest that the value of the
dynamical constant K∞

p (ω(ε), T ) tends to zero; see (4-13) in the proof. This would imply a blow up of
the observation cost as ν+, ν− → ν, in virtue of the necessary condition part of Theorem 1.3.

1.4.2. Refinement for the unperturbed isotropic harmonic oscillator. Theorem 1.3 allows us to conclude
whether an open set ω observes the Schrödinger equation provided this open set is in a sense “regular”:
the thickening process yields open sets that are sufficiently close to a cut-off function. But the quest of
characterizing general measurable sets seems to be more delicate. To understand the limitation of our
main theorem, we investigate the very particular case of the isotropic harmonic oscillator and conical
observation sets in dimension d ≥ 1. In this setting, we can take advantage of symmetries and exact
propagation of coherent states.

For the purpose of the statement, let us introduce some notation. A conical set in Rd is determined by
the subset6=ω∩Sd−1 in the unit sphere. When6⊂ Sd−1 we denote by ω(6) the conical set defined by

ω(6)=

{
x ∈ Rd

\ {0} :
x
|x |

∈6
}
. (1-19)

Moreover, for any subset 6 ⊂ Sd−1, we introduce the notation

−6 = {θ ∈ Sd−1
: −θ ∈6}.

The lower density of a measurable set6⊂ Sd−1, denoted by2−

6 , is the function Sd−1
→[0, 1] defined by

2−

6(θ)= lim inf
r→0

σ(6 ∩ Br (θ))

σ (Br (θ))
∀θ ∈ Sd−1, (1-20)

where Br (θ) is the ball of radius r centered at θ in Rd, and σ is the uniform probability measure on the
unit sphere Sd−1.

We insist on the fact that the statement below is proved for exact isotropic harmonic oscillators, and
not for perturbations of it.
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Proposition 1.7. Let P =
1
2(ν

2
|x |

2
−1) be an isotropic oscillator with characteristic frequency ν > 0.

Let 6 ⊂ Sd−1 be measurable, and ω(6) be the corresponding conical set. Set 6̂ = 6 ∪ −6 the
symmetrized version of 6.

(i) If the Schrödinger equation is observable from ω(6) in some time, then

inf
Sd−1

2−

6̂
> 0.

(ii) If 6̂ = 6 ∪ −6 has full measure, namely σ(Sd−1
\ 6̂) = 0, or equivalently 2−

6̂
(θ) = 1 for all

θ ∈ Sd−1, then ω(6) observes the Schrödinger equation, with optimal observation time T⋆ < 2π/ν.

Remark 1.8. The gap between the sufficient and the necessary conditions above can be thought as the
difference between 6 being the complement of a Cantor set (thus having full measure) and 6 being the
complement of a fat Cantor set; see [Stromberg 1981, Chapter 2, p. 80]. Regarding the estimate on the
optimal observation time, the strict inequality is due to Lemma A.3.

In fact, considering the propagation of coherent state, as investigated for instance by Combescure and
Robert [1997], one could conjecture that observability is characterized by the property

∃R > 0 : lim inf
ρ→∞

∫ T

0
|ω∩ BR(x t(ρ))| dt > 0, (1-21)

with x t(ρ)= (π ◦φt)(ρ). This type of integral can be rewritten as∫ T

0
|ω∩ BR(x t(ρ))| dt =

∫ T

0
∥1ω∥L1(BR(x t (ρ))) dt.

The necessary condition of Theorem 1.3, namely K∞
p (ωR, T ) > 0 for some R large enough, involves

the quantity ∫ T

0
1ωR (x

t(ρ)) dt =

∫ T

0
∥1ω∥L∞(BR(x t (ρ))) dt. (1-22)

Since the L1 norm in a ball of radius R is controlled by the L∞ norm (times a constant of order Rd),
we know that the dynamical condition (1-21) is stronger than the condition K∞

p (ωR, T ) > 0, involving
the L∞ norm as written in (1-22). In particular, if ω is dense but Lebesgue negligible, the condition
K∞

p (ωR, T ) > 0 will be satisfied, since then ωR = Rd for any R > 0, whereas (1-21) will not. In this
situation, Theorem 1.3 would then yield a trivial result, namely that observability holds from the whole
space, although it clearly does not hold from ω itself. Thus (1-21) seems to be a good guess to free
ourselves from thickening the observation set. In addition, this condition would be consistent with
the generalized geometric control condition introduced by Burq and Gérard [2020] in the context of
stabilization of the wave equation.

1.4.3. Observability from spherical sets. In this section, we investigate the observability properties of a
set consisting in a union of spherical layers. In the sequel, we refer to rotation-invariant (measurable) sets
as spherical sets. Such a set ω is completely determined by the data of a measurable set I ⊂ R+, such that

ω = ω(I )= {x ∈ Rd
: |x | ∈ I }. (1-23)
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Due to the thickening process that occurs when applying Theorem 1.3, we shall generally make further
assumptions, that ensure that a set and its thickened version are somewhat equivalent.

The existence of many periodic circular orbits of the Hamiltonian flow for radial potentials implies
that observability from ω(I ) does not hold for such Hamiltonians if I contains large gaps. In fact, the
proposition below works for slightly more general potentials.

Proposition 1.9. Let d ≥ 2. Suppose the Hamiltonian P is of the form P = V (x)− 1
21 with a potential V

satisfying Assumption 1.1 together with

(i) V (−x)= V (x),∀x ∈ Rd ;

(ii) there exists an orthogonal change of coordinates M such that

V (M SθM−1x)= V (x) ∀x ∈ Rd ,∀θ ∈ R,

where Sθ is the rotation of angle θ acting on the first two coordinates; in particular, for every
y ∈ Rd−2, the map Vy : (x1, x2) 7→ V (M(x1, x2, y)) is radial;

(iii) the map Ṽ0 such that Vy=0(x1, x2)= Ṽ0(|(x1, x2)|) is nondecreasing.

Then for any spherical set ω(I ), if observability holds from ω(I ) in some time T > 0, one has

∃r > 0 : ∀s ∈ R+ : I ∩ [s, s + r ] ̸= ∅. (1-24)

Remark 1.10. The hypotheses are fulfilled for harmonic oscillators in d dimensions having at least two
identical characteristic frequencies.

In dimension 2, Proposition 1.9 allows to conclude that spherical sets observing the Schrödinger
equation for isotropic harmonic oscillators have to occupy space somewhat uniformly — they cannot
contain arbitrarily large gaps. Therefore, we shall rule out isotropic harmonic oscillators from our study
of observability from spherical sets. Instead, we investigate how the anisotropy of a harmonic oscillator
can help to get observability from an observation set made of concentric rings. The proposition below
investigates, in dimension 2, the observability from spherical sets of the form ω(I ), where I =

⋃
In

is a countable union of open intervals in R+. We require additionally that |In| → +∞ (we drop this
assumption if there are only finitely many In’s). To any such set, we associate a number between 0 and 1
that quantifies the distribution of the annuli ω(In) at infinity:

κ⋆(I )= min
{
κ ∈ [0, 1] : lim inf

r→+∞

1
r
|I ∩ [κr, r ]| = 0

}
∈ [0, 1]. (1-25)

While investigating the observability property from such a set ω(I ), we will see that it is relevant to
compare the geometrical quantity κ⋆(I ) with a dynamical quantity that encodes relevant features of the
underlying Hamiltonian flow. This dynamical constant is expressed in terms of a function 3 : R⋆

+
→ [0, 1]

defined by

3(µ)=


tan
(
π/2
p+q

)
if µ=

p
q
, gcd(p, q)= 1, p − q ≡ 0 (mod 2),

sin
(
π/2
p+q

)
if µ=

p
q
, gcd(p, q)= 1, p − q ≡ 1 (mod 2),

0 if µ ∈ R \ Q.

(1-26)
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As far as the optimal observation time T⋆ is concerned, we shall use Diophantine properties of µ to
approximate irrational oscillators by rational ones, for which we can control T⋆ by the period of the flow.
This motivates the introduction of the irrationality exponent of an irrational number µ, defined by

τ(µ)= sup
{

s ∈ R :

∣∣∣µ−
p
q

∣∣∣< 1
qs for infinitely many coprime couples (p, q)

}
. (1-27)

Dirichlet’s approximation theorem tells us that τ(µ) ∈ [2,+∞] for any irrational number. Also keep in
mind that τ(µ)= 2 is achieved for Lebesgue-almost every irrational. See the lecture notes [Durand 2015]
or the books [Einsiedler and Ward 2011; Schmidt 1991] for further details.

Proposition 1.11 (spherical sets and anisotropy). Let d = 2 and consider a potential V fulfilling
Assumption 1.1, and with principal symbol

VA(x)=
1
2 x · Ax, x ∈ R2,

where A is a real symmetric positive-definite matrix. Denote by ν1 and ν2 the characteristic frequencies
of A, and assume that ν1 ̸= ν2. We fix I =

⋃
In a union of open intervals in R+, assuming that |In| → +∞.

Denote by ω(I ) the corresponding open spherical set in R2, as defined in (1-23). Then observability
from ω(I ) holds in some time T if and only if

κ⋆(I ) > 3
(
ν2
ν1

)
. (1-28)

Moreover, the optimal observation time T⋆ can be estimated as follows:

• If ν2/ν1 ∈ Q, writing ν2/ν1 = p/q with p, q positive coprime integers, then

T⋆ <
π

ν2
p =

π

ν1
q.

• If ν2/ν1 ∈ R \ Q is Diophantine, that is τ = τ(ν2/ν1) <∞, then

∀ε > 0, ∃cε,Cε > 0 : cε

(
1

κ⋆(I )

)1/(τ−1+ε)

≤ T⋆ ≤ Cε

(
1

κ⋆(I )

)τ−1+ε

. (1-29)

The constants cε and Cε may depend on ν1, ν2, but not on I.

Let us review the meaning of the different quantities involved in this statement.
The number κ⋆(I ) introduced in (1-25) encodes some notion of density of the set I. For instance,

κ⋆(I )=1 means that I has positive density in any window [κr, r ] with κ <1 as r →+∞. In contrast, κ⋆(I )
close to zero means that the annuli are extremely sparse at infinity. This quantity is well-defined, for
the map

κ 7→ lim inf
r→+∞

1
r

∫ r

κr
1I (s) ds

is nonincreasing and lower semicontinuous (even Lipschitz-continuous in fact). That it is nonincreasing
comes from the monotonicity of the integral and of the lower limit, whereas the continuity follows from
the fact that ∣∣∣∣1r

∫ r

κ2r
1I (s) ds −

1
r

∫ r

κ1r
1I (s) ds

∣∣∣∣≤ |κ2 − κ1|.
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Note. Beware of the fact that κ⋆(I ) does not coincide in general with the lower density of I defined by

2∞(I )= lim inf
r→+∞

|I ∩ [0, r ]|

|[0, r ]|
.

In fact, the two quantities satisfy

2∞(I )≤ κ⋆(I ) and κ⋆(I )= 0 ⇐⇒ 2∞(I )= 0.

The second assertion follows from the definition of κ⋆(I ). To check the first assertion, we write

|I ∩ [0, r ]|

|[0, r ]|
= κ⋆

|I ∩ [0, κ⋆r ]|

|[0, κ⋆r ]|
+

1
r
|I ∩ [κ⋆r, r ]| ≤ κ⋆ +

1
r
|I ∩ [κ⋆r, r ]|.

Then taking lower limits as r →+∞ and using the definition of κ⋆ yield the desired inequality. Notice that
the equality 2∞(I )= κ⋆(I ) is not true in general, as one can see from the example I =

⋃
n∈N

(
n, n +

1
2

)
,

for which we have 2∞(I )=
1
2 but κ⋆(I )= 1.

Given µ ∈ R⋆
+

, the constant 3(µ) defined in (1-26) is related to the flow of a harmonic oscillator with
characteristic frequencies ν1, ν2 such that µ= ν2/ν1. More precisely, it corresponds to the largest ratio
between the minimum and the maximum of the distance to the origin of a projected trajectory. This is the
content of the following lemma that we prove in Section 5.2.

Lemma 1.12. For all ν1, ν2 > 0, one has

3
(
ν2
ν1

)
= sup
ρ0∈R4\{0}

inft∈R|(π ◦φt)(ρ0)|

supt∈R|(π ◦φt)(ρ0)|
, (1-30)

where (φt)t∈R is the Hamiltonian flow of any two-dimensional harmonic oscillator with characteristic
frequencies ν1, ν2.

Thus we can refer to 3(µ) as the optimal “radial aspect ratio” of projected trajectories. Observability
from ω(I ) will depend on whether the critical trajectories that attain this maximal ratio spend sufficient
time in ω(I ), hence the criterion κ⋆(I ) > 3(ν2/ν2). See Figure 4 for an illustration of the case where
such trajectories are not seen by the observation set. Notice that maximizing the ratio in (1-30) with
respect to any nonzero initial data is the same as taking the upper limit as ρ0 → ∞ since the Hamiltonian
flow is homogeneous. Thus 3(µ) can be understood as a quantity that captures the behavior of the
flow at infinity. In addition, we remark that 3(µ)=3(1/µ), which means that this value depends only
on the spectrum of the matrix A, and not on the choice of a specific basis of R2. The maximum of 3
is reached exactly at 1, where it is equal to tan(π/4) = 1. This is consistent with the fact that in two
dimensions, isotropic harmonic oscillators are the only ones possessing circular orbits: the norm of the
trajectory |x t(ρ0)| is constant for well-chosen initial data.

The distinction between rational and irrational values of µ is natural in light of the complete integrability
of the flow of harmonic oscillators. When the ratio of characteristic frequencies µ= ν2/ν1 is rational,
writing µ= p/q with p, q a couple of coprime integers, one can check that the Hamiltonian flow of the
corresponding harmonic oscillator is periodic of period 2πp/ν2 = 2πq/ν1. In that case, there are many
orbits of the flow whose projection on the x-variable space stays away from the origin, thus producing a
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x1

x2

ω(I )

Figure 4. The above curve is a projected trajectory of a harmonic oscillator with ν2/ν1 =
4
3 ,

that does not intersect the observation set ω(I ). The existence of a sequence of energy layers
{p = En}, En → +∞, containing such curves would imply that observability from ω(I ) fails.

positive 3(µ), as one can see in Figure 2, top right. When µ is irrational, it is known that (nondegenerate)
trajectories are dense in the invariant torus to which they belong. In particular, any projected trajectory can
get arbitrarily close to the origin, up to waiting a long enough time, so that3(µ)= 0; see Figure 2, bottom.

Lastly, let us point out that the estimate (1-29) of the optimal observation time for Diophantine
irrational does not give any precise information for a given open set I, but is relevant for fixed ν1, ν2 in
the asymptotics κ⋆(I )≪ 1.

Remark 1.13. It can look surprising that Proposition 1.11 gives an exact characterization of spherical
sets for which observability holds, whereas Theorem 1.3 provides a necessary and sufficient condition
up to thickening the observation set. This improvement is made possible by the extra assumption
that |In| → +∞. This ensures that thickening the observation set by a radius R is negligible compared to
the width of the annulus ω(In), for n large.

Remark 1.14 (non-Diophantine irrationals). When µ = ν2/ν1 ∈ R \ Q, one can estimate T⋆, even if
τ = τ(µ) = +∞, using the so-called convergents of µ. These are the rational numbers arising in the
continued fraction expansion algorithm. Denote them in irreducible form by µ j = p j/q j . It is known that
this sequence is the most efficient way to approximate an irrational number by rationals (a result known
as Lagrange theorem; see [Durand 2015, Theorem 1.3] or [Einsiedler and Ward 2011; Schmidt 1991]).
These convergents satisfy

∀ j ∈ N,

∣∣∣µ−
p j

q j

∣∣∣< 1
q2

j
. (1-31)
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(This is why τ(µ) ≥ 2 holds for any irrational.) We will show in the proof of Proposition 1.11 the
following: when µ ∈ R \ Q, there exist constants c1, c2 > 0 and δ1, δ2 > 0, possibly depending on ν1, ν2,
such that

c1q j1 ≤ T⋆ ≤ c2q j2 (1-32)

(see (5-51) in the proof), where j1 is the largest index for which q j ≤ δ1/κ⋆, and j2 is the smallest index
for which q j ≥ δ2/κ⋆.

The bounds (1-29) are particularly interesting when τ has the smallest possible value, that is, τ = 2,
which is the case of Lebesgue-almost every irrational. However, we see that the lower and upper
bounds (1-29) get far apart as τ goes to infinity. This reflects the fact that the gaps between the denominators
of consecutive convergents get wider at each step of the continued fraction expansion. Irrationals having
an infinite irrationality exponent are known as Liouville numbers. There are many of them: the set of
Liouville numbers is an instance of a Lebesgue negligible set having the cardinality of the continuum. This
set is also Baire generic, as it can be written as a countable intersection of dense open sets. When ν2/ν1

is a Liouville number, the bounds (1-32) on the optimal observation time are very poor, owing to the
lacunary behavior of the q j ’s.

1.5. Other applications. Let us briefly discuss two other applications of Theorem 1.3.

1.5.1. Uniform observability of eigenfunctions. Under Assumption 1.1, the operator P is self-adjoint
with compact resolvent. Thus, its spectrum consists in a collection of eigenvalues with finite multiplicity.
A direct consequence of an observability inequality Obs(ω, T ) in a set ω is the fact that the eigenfunctions
of P are uniformly observable from ω:

∃c > 0 : ∀u ∈ L2(Rd),
(
Pu = λu =⇒ ∥u∥L2(ω) ≥ c∥u∥L2(Rd )

)
.

Theorem 1.3 thus furnishes a sufficient condition for this to hold. In particular, for anisotropic oscillators,
Proposition 1.5 implies that uniform observability of eigenfunctions from the two cones defined in (1-17)
is true. This can certainly be deduced from [Arnaiz and Macià 2022a], which characterizes quantum
limits of harmonic oscillators. From Proposition 1.11, we obtain a similar uniform estimate in spherical
sets satisfying the assumptions of the proposition together with the condition (1-28). This time, it is not
clear that one can deduce this result as easily from the knowledge of quantum limits [Arnaiz and Macià
2022a]. See also [Dicke et al. 2023] for details about spectral inequalities for the Hermite operator, and
[Martin 2022] for anisotropic Shubin operators.

1.5.2. Energy decay of the damped wave equation. Lastly, our study leads to stabilization results con-
cerning the damped wave equation{

∂2
t ψ + Pψ + 1ω∂tψ = 0,

(ψ, ∂tψ)|t=0 = U0 ∈ Dom P1/2
× L2 (1-33)

with damping in ω ⊂ Rd, provided P ≥ 0 (assume for instance that the potential V is nonnegative). This
equation comes with a natural energy

E(U0, t)=
1
2

(
∥P1/2ψ(t)∥2

L2 + ∥∂tψ(t)∥2
L2

)
,
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which decays over time. Let us recall that Anantharaman and Léautaud [2014, Theorem 2.3] proved that
an observability inequality Obs(ω, T ) implies a decay at rate t−1/2 for the damped wave equation (1-33),
meaning that there exists a constant C > 0 such that

E(U0, t)≤
C
t
(
∥Pu0∥

2
L2 + ∥P1/2u1∥

2
L2

)
∀t > 0

for all initial data in the domain of the damped wave operator, where U0 = (u0, u1) ∈ Dom P ×Dom P1/2.
Their result applies in our setting since P has compact resolvent under Assumption 1.1. Our examples
thus provide concrete situations where such a decay occurs.

1.6. Link with the Kato smoothing effect. The dynamical condition (1-7) concerns only what happens at
infinity in phase space. We will see that trajectories of the Hamiltonian flow escape from any compact
set (in the x variable) most of the time provided the initial data has large enough energy, namely p(ρ)
is large enough. This is the reason why one can remove any compact set from the observation without
losing observability: no energy can be trapped in a compact set. Quantitatively, we will check that, given
T > 0, there exist a constant C > 0 and E0 > 0 such that

∀r ≥ 0,∀ρ ∈ {p ≥ E0}, |{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd
}| =

∫ T

0
1Br (x t ) dt ≤ C

r
√

p(ρ)
(1-34)

(see Corollary 2.6). We can rephrase this by saying that compact sets are not classically observable. This
property is related to the Kato smoothing effect as follows. Writing (x t , ξ t)= φt(ρ), for any ε > 0 we
compute, using Fubini’s theorem,∫ T

0

√
p(ρ)

⟨x t ⟩1+ε
dt =

∫ T

0

(∫
+∞

⟨x t ⟩

(1 + ε)

√
p(ρ)

r2+ε
dr
)

dt =

∫
+∞

1
(1 + ε)

√
p(ρ)
r

(∫ T

0
1Br (0)(⟨x

t
⟩) dt

)
dr

r1+ε
.

From (1-34), we deduce that ∫ T

0

√
p(ρ)

⟨x t ⟩1+ε
dt ≤ C

∫
+∞

1
(1 + ε)

dr
r1+ε

,

and the latter integral is indeed convergent when ε > 0. This is the classical analogue to the so-called
Kato smoothing effect. In our context, the latter says roughly that∫ T

0
∥⟨x⟩

−(1+ε)/2 P1/4e−i t Pu∥
2
L2(Rd )

dt ≤ C∥u∥
2
L2(Rd )

.

See for instance [Doi 2005] for a thorough discussion on this topic. See also the survey of Robbiano [2013],
as well as [Robbiano and Zuily 2008; 2009; Burq 2004] for related results. The main phenomenon
responsible for this smoothing effect is the fact that P contains a Laplace–Beltrami operator associated with
a nontrapping metric (here a flat metric), that is to say all geodesics escape at infinity forward and backward
in time. In our case, working with a flat Laplacian enables us to compare the trajectories of the Hamiltonian
flow to straight lines, at least for some time near the origin. It would be interesting to see whether our study
can be adapted to operators of the form P = V (x)− 1

21g with a nontrapping metric g on Rd (sufficiently flat
at infinity). See [Macià and Nakamura, Lemma 3.1] for an alternative proof that nontrapping implies failure
of observability from bounded observation sets. The argument relies on semiclassical defect measures.
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1.7. Natural semiclassical scaling for homogeneous potentials. A way to comprehend what goes wrong
when the potential is superquadratic is to introduce the natural semiclassical scales associated to our
problem, based on an observation of [Macià and Nakamura]. Take for simplicity p(x, ξ)= |x |

2m
+ |ξ |2.

Following classical arguments, we recall in Appendix A that the observability inequality reduces to a
high-energy observability inequality: roughly speaking, we can restrict ourselves to L2 functions u that
are microlocalized around some level set {p = E} with E ≫ 1. Writing

p(x, ξ)= E ⇐⇒

∣∣∣∣ x
E1/2m

∣∣∣∣2m

+

∣∣∣∣ ξ

E1/2

∣∣∣∣2 = 1,

we may introduce a small Planck parameter h such that E = h−γ for some power γ > 0. Thus we have

|hγ /2m x |
2m

+ |hγ /2ξ |2 = 1.

This motivates the definition of an h-dependent Weyl quantization (see Appendix B)

Oph(a) := Op1(a(h
γ /2m x, hγ /2ξ))

for any classical observable a on the phase space. This quantization is properly “normalized” by choosing
γ = 2m/(m + 1): with this choice, the corresponding pseudodifferential calculus is expressed in powers
of h, since then hγ /2mhγ /2 = h. Therefore the relevant semiclassical Schrödinger operator is

Ph = Oph(p)= hγ P.

If one wants to express the observability inequality in terms of the associated propagator, one is then lead
to study

e−i t Pu = e−i th1−γ Ph/hu.

In other words, running the Schrödinger evolution on a time interval [0, T ] amounts to consider a
semiclassical time scale of order h1−γ

= h(1−m)/(1+m). It is then clear that this time blows up as h → 0
when m > 1. Yet the analysis of the quantum-classical correspondence, for long times, is much more
difficult. In particular, it restricts considerably the amount of classical observables whose evolution can be
described through the usual Egorov theorem. For this reason, we will not pursue in this direction and stick
to the case m ≤ 1. An interesting approach to study this would be to consider first particular potentials for
which the classical flow is completely integrable, e.g., anharmonic oscillators; see [Bambusi et al. 2022].
Indeed, observability of the Schrödinger equation has been successfully investigated taking advantage
of the completely integrable nature of the underlying classical dynamics in some particular geometrical
contexts (e.g., in the disk [Anantharaman et al. 2016a; 2016b] which corresponds morally to m = ∞; see
also [Anantharaman and Macià 2014] on the torus and [Anantharaman et al. 2015]).

1.8. Plan of the article. Section 2 is devoted to the study of the underlying classical dynamics: we show
that the Hamiltonian flow is roughly stable under subprincipal perturbations of the potential, and that
high-energy projected trajectories can cross compact sets only on a very short period of time. Then
we establish an instance of quantum-classical correspondence adapted to our context in Section 3, and
subsequently prove Theorem 1.3. This is the core of the article. Next, in Sections 4 and 5, we deal
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with the examples presented in Sections 1.4.1, 1.4.2 and 1.4.3 (observability from conical and spherical
sets respectively). Finally, we recall in Appendix A a classical result, related to the notion of unique
continuation, that shows that the sought observability inequality is equivalent to a similar high-energy
inequality. Appendix B collects reminders about pseudodifferential operators, as well as refined estimates
on the pseudodifferential calculus and the Gårding inequality needed for Section 3.

2. Study of the classical dynamics

In this section, we investigate the properties of the Hamiltonian flow (φt)t∈R associated with p. This study
consists essentially in analyzing the ODE system that defines φt, namely the Hamilton equation (1-5).
The dynamical condition of Theorem 1.3

K∞

p (ω, T )= lim inf
ρ→∞

∫ T

0
1ω×Rd (φt(ρ)) dt > 0

motivates the study of what can be referred to as “classical observability”.

Definition 2.1 (classical observability). Let q = q(t; ρ) be a Borel-measurable8 function on R × R2d.
Then we say that q is classically observable if

K∞

p (q) := lim inf
ρ→∞

∫
R

q(t;φt(ρ)) dt > 0. (2-1)

Of course, we will be specifically interested in the case where p contains a subquadratic potential
and q = 1(0,T )×ω×R2d , but it is interesting to work out this problem in a more general setting in order to
understand to what extent quadratic potentials are critical for the Schrödinger equation.

2.1. Invariance of classical observability under subprincipal perturbation. In this subsection, we
consider a set of classical symbols on R2d of order n1 in x and n2 in ξ , defined by

Sn1,n2 =

{
a ∈ C∞(R2d) : ∀α ∈ N2d , sup

(x,ξ)∈R2d

|∂αa(x, ξ)|
⟨x⟩n1−|α| + ⟨ξ⟩n2−|α|

<∞

}
.

A basic example is the classical Hamiltonian p(x, ξ)= V (x)+ 1
2 |ξ |2 that we consider: it belongs to S2m,2.

We draw the reader’s attention to the fact that this is not a standard symbol class in microlocal analysis.
Our aim here is simply to study symbols whose derivatives have similar decay properties as the classical
Hamiltonian p. We will not make use of any notion of pseudodifferential calculus in this subsection.

It is clear that these symbol classes are nested in the following way: if n1 ≤ n′

1 and n2 ≤ n′

2, then
Sn1,n2 ⊂ Sn′

1,n
′

2 (and this inclusion is even continuous with respect to the associated Fréchet structure).
Given n1, n2 ∈ R, a real-valued symbol a ∈ Sn1,n2 is said to be elliptic in Sn1,n2 if a(x, ξ)≥ c(⟨x⟩

n1 +⟨ξ⟩n2)

provided |(x, ξ)| is large enough. In addition, the binary relation

∀ f, g ∈ Sn1,n2, f = g (mod Sn1−1,n2−1) ⇐⇒ f − g ∈ Sn1−1,n2−1 (2-2)

8Recall that Borel-measurability is slightly stronger than Lebesgue-measurability. This restriction ensures that t 7→q(t;φt (ρ))
is Lebesgue-measurable. This is not a problem in our context since we will consider functions q that are continuous, or at worse,
indicator functions of Borel sets.
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is an equivalence relation, and the projection on the quotient space Sn1,n2/Sn1−1,n2−1 is called the principal
symbol. Two symbols are said to have the same principal symbol if they belong to the same equivalence
class through this projection. In the example of our classical Hamiltonian p, these notions of ellipticity
and principal symbol are consistent with the terminology used right after Assumption 1.1 regarding the
potential V.

The proposition below is essentially an application of Grönwall’s lemma.

Proposition 2.2 (stability estimate). Fix n1, n2 > 0 and let p1, p2 ∈ Sn1,n2 be elliptic symbols in Sn1,n2.
Assume they have the same principal symbol in the sense of (2-2). Consider the Hamiltonian flows (φt

1)t∈R

and (φt
2)t∈R associated with p1 and p2 respectively. Then there exists a constant C > 0 such that

|φt
2(ρ)−φ

t
1(ρ)| ≤ eCt⟨p1(ρ)⟩

max(0,1−2/n+)

∀ρ ∈ R2d ,∀t ≥ 0,

where n+ = max(n1, n2). In particular, when n1, n2 ≤ 2, there exists C > 0 such that

|φt
2(ρ)−φ

t
1(ρ)| ≤ eCt

∀ρ ∈ R2d ,∀t ≥ 0.

Remark 2.3. This result ensures that the distance between φt
1(ρ) and φt

2(ρ) is bounded provided n+ ≤ 2,
on a time interval [0, T ] independent of ρ. In our problem, this condition on n+ means exactly that the
potential is subquadratic.

Proof. In this proof, we write n+ = max(n1, n2) and n− = min(n1, n2). Set p̃ = p2 − p1, which belongs
to Sn1−1,n2−1 by assumption. The Hamilton equation (1-5) gives∣∣∣ d

dt
(φt

2(ρ)−φ
t
1(ρ))

∣∣∣= ∣∣J (∇ p2(φ
t
2(ρ))− ∇ p1(φ

t
1(ρ)))

∣∣
≤
∣∣∇ p2(φ

t
2(ρ))− ∇ p2(φ

t
1(ρ))

∣∣+ |∇ p̃(φt
1(ρ))|. (2-3)

By assumption, p1 and p2 are elliptic at infinity in Sn1,n2 , so that for any ρ = (x, ξ) large enough, one has
1
C
(⟨x⟩

n1 + ⟨ξ⟩n2)≤ |p j (ρ)| ≤ C(⟨x⟩
n1 + ⟨ξ⟩n2), j ∈ {1, 2}. (2-4)

From the definition of Sn1−1,n2−1, which contains p̃, we have

|∇ p̃(ρ)| ≤ C(⟨x⟩
n1−2

+ ⟨ξ⟩n2−2).

The ellipticity of p2, that is, the left-hand side of (2-4), then yields

|∇ p̃(ρ)| ≤ C
(
|p1(ρ)|

max(0,1−2/n1) + |p1(ρ)|
max(0,1−2/n2)

)
≤ C ′

|p1(ρ)|
max(0,1−2/n+),

provided |ρ| is large enough. On the whole phase space we obtain

|∇ p̃(ρ)| ≤ C + C |p1(ρ)|
max(0,1−2/n+) ∀ρ ∈ R2d . (2-5)

Now we deal with the other term in (2-3): the mean-value inequality yields∣∣∇ p2(φ
t
2(ρ))− ∇ p2(φ

t
1(ρ))

∣∣≤ |φt
2(ρ)−φ

t
1(ρ)| × sup

s∈[0,1]

∣∣Hess p2
(
(1 − s)φt

1(ρ)+ sφt
2(ρ)

)∣∣. (2-6)

Write for short ρt
s = (1 − s)φt

1(ρ)+ sφt
2(ρ). Using that p2 ∈ Sn1,n2, we obtain

|Hess p2(ρ
t
s)| ≤ C

(
⟨(1 − s)x t

1 + sx t
2⟩

n1−2
+ ⟨(1 − s)ξ t

1 + sξ t
2⟩

n2−2),
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where we wrote φt
j (ρ)= (x t

j , ξ
t
j ), j ∈ {1, 2}. Then we use the classical inequality ⟨a + b⟩ ≤ 2(⟨a⟩+ ⟨b⟩)

to get

|Hess p2(ρ
t
s)| ≤ C

(
(⟨x t

1⟩ + ⟨x t
2⟩)

max(0,n1−2)
+ (⟨ξ t

1⟩ + ⟨ξ t
2⟩)

max(0,n2−2))
≤ C ′

(
⟨x t

1⟩
max(0,n1−2)

+ ⟨ξ t
1⟩

max(0,n2−2))
+ C ′

(
⟨x t

2⟩
max(0,n1−2)

+ ⟨ξ t
2⟩

max(0,n2−2)).
Next we use the ellipticity of p1 and p2 and the fact that they are conserved by the corresponding flows:

|Hess p2(ρ
t
s)| ≤ C

(
|p1(φ

t
1(ρ))|

max(0,1−2/n+) + |p2(φ
t
2(ρ))|

max(0,1−2/n+)
)

= C
(
|p1(ρ)|

max(0,1−2/n+) + |p2(ρ)|
max(0,1−2/n+)

)
,

which holds for |ρ| large enough. Up to adding a constant, this works for all ρ ∈ Rd. Finally we use the
fact that p1 and p2 are comparable (a consequence of ellipticity) to obtain

|Hess p2(ρ
t
s)| ≤ C + C |p1(ρ)|

max(0,1−2/n+) ∀ρ ∈ R2d .

Plugging this into (2-6), that results in∣∣∇ p2(φ
t
2(ρ))− ∇ p2(φ

t
1(ρ))

∣∣≤ C |φt
2(ρ)−φ

t
1(ρ)| × (1 + |p1(ρ)|

max(0,1−2/n+))

for all ρ ∈ R2d. Putting this together with (2-5), we estimate the right-hand side of (2-3) from above as∣∣∣ d
dt
(φt

2(ρ)−φ
t
1(ρ))

∣∣∣≤ C(1 + |φt
2(ρ)−φ

t
1(ρ)|)× (1 + |p1(ρ)|

max(0,1−2/n+)).

We deduce that ∣∣∣ d
dt

⟨φt
2(ρ)−φ

t
1(ρ)⟩

∣∣∣= ∣∣∣∣ d
dt
(φt

2(ρ)−φ
t
1(ρ)) ·

φt
2(ρ)−φ

t
1(ρ)

⟨φt
2(ρ)−φ

t
1(ρ)⟩

∣∣∣∣
≤ C⟨φt

2(ρ)−φ
t
1(ρ)⟩(1 + |p1(ρ)|

max(0,1−2/n+))

for any ρ ∈ R2d. We conclude by Grönwall’s lemma that

⟨φt
2(ρ)−φ

t
1(ρ)⟩ ≤ eCt⟨p1(ρ)⟩

max(0,1−2/n+)

∀ρ ∈ R2d ,∀t ≥ 0,

which gives the sought result. □

The result below roughly states that our dynamical condition is invariant under subprincipal perturbation
of the potential V, under the assumption that V is subquadratic.

Corollary 2.4. Fix 0< n1, n2 ≤ 2 and let p1, p2 ∈ Sn1,n2 be elliptic symbols in Sn1,n2, and assume they
have the same principal symbol in the sense of (2-2). Consider the Hamiltonian flows (φt

1)t∈R and (φt
2)t∈R

associated with p1 and p2 respectively. For any T > 0, there exists a constant C = CT > 0 such that the
following holds: for any function q = q(t; ρ), Lipschitz in ρ and such that

supp q ⊂ [−T, T ] × R2d ,

one has ∣∣∣∣∫
R

q(t;φt
2(ρ)) dt −

∫
R

q(t;φt
1(ρ)) dt

∣∣∣∣≤ C∥∇ρq∥L∞(R×R2d ) ∀ρ ∈ R2d .

In particular,
|K∞

p2
(q)−K∞

p1
(q)| ≤ C∥∇ρq∥L∞(R×R2d ).
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Proof. This is a direct application of the mean-value inequality and Proposition 2.2, observing that
n+ = max(n1, n2)≤ 2:∣∣∣∣∫

R

q(t;φt
2(ρ)) dt −

∫
R

q(t;φt
1(ρ)) dt

∣∣∣∣
≤

∫ T

−T
∥∇ρq∥L∞(R×R2d )|φ

t
2(ρ)−φ

t
1(ρ)| dt ≤ 2T eCT

∥∇ρq∥L∞(R×R2d ).

Taking lower limits in ρ yields the second claim. □

2.2. Quantitative estimates of classical (non)observability. In this subsection, we show that 1(0,T )×Br (0)×Rd

is not classically observable in the sense of Definition 2.1 when the Hamiltonian is of the form p(x, ξ)=
V (x)+ 1

2 |ξ |2. Actually for this class of Hamiltonians, we can prove a more precise result.

Proposition 2.5. Let p be a symbol of the form p(x, ξ)= V (x)+ 1
2 |ξ |2, with V fulfilling Assumption 1.1

with an arbitrary m > 0.

• If m ≥
1
2 , there exists a constant C > 0 and E0 > 0 such that for all E ≥ E0, one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, E (1/2)(1/m−1)

] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E
.

• If m < 1
2 , then for any ε > 0 small enough, there exists a constant C > 0 and E0 > 0 such that for all

E ≥ E0, one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, E (1/2)(1/m−1)−ε

] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E
.

Corollary 2.6 (classical nonobservability). Under the assumptions of the proposition above, one has:

• If m < 1, then for any T ≥ 0, there exists a constant C > 0 and E0 > 0 such that for all E ≥ E0,
one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C

r
√

E
.

• If m ≥ 1, there exists a constant C > 0 and E0 > 0 such that for all E ≥ E0 and for all T ≥ 0, one has

∀r ≥ 0,∀ρ ∈ {p = E},
∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C

r(1 + T )
E1/(2m) .

Remark 2.7. The corollary implies in particular that when r and T are fixed, the function 1(0,T )×Br (0)×Rd

is not classically observable in the sense of Definition 2.1.

Let us explain the meaning of the typical scales appearing in Proposition 2.5 and the subsequent
corollary. When V satisfies Assumption 1.1 with an arbitrary m > 0, one can single out a typical time
scale in the energy layer {p(ρ)= E} of order τ ≈ E (1/2)(1/m−1), which corresponds roughly speaking to
the “period” of the trajectories of the flow, or rather, to the time needed to go from one turning point of a
projected trajectory to another. We observe that for the harmonic oscillator, one has m = 1; hence τ ≈ 1
is indeed independent of the energy layer. Following this observation, we understand the criticality of
quadratic potentials in our problem: if m > 1, the typical time scale of evolution of the flow tends to
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zero as the energy goes to infinity, which means that the flow mixes the phase space more and more in
the high-energy limit in a time interval of the form [0, T ] with T > 0 fixed. On the contrary, for m < 1,
the flow gets nicer on such a time interval because τ → +∞ as E → +∞. We also have a typical
scale with respect to the space variable, which is r ≈ E1/(2m). This is the approximate diameter of the
classically allowed region KE = {x ∈ Rd

: V (x)≤ E}. This scale also appears naturally when one looks
for a trajectory t 7→ φt(ρ)= (x t(ρ), ξ t(ρ)) such that |x t(ρ)| = constant (think for instance of the case
of radial potentials). Differentiating |x t(ρ)|2 with respect to time, one gets x t(ρ) · ξ t(ρ) = 0 for all t ,
and differentiating again leads to |ξ t(ρ)|2 − x t(ρ) · ∇V (x t(ρ)) = 0. Yet |∇V (x t(ρ))| ≲ |x t(ρ)|2m−1,
and p is preserved by the flow. From this we can deduce that |x t(ρ)| ≈ p(ρ)1/(2m). So if r is larger than
p(ρ)1/(2m), such trajectories will always stay in Br (0)×Rd. Finally, if ρ0 = (x0, ξ0) ∈ {p(ρ)= E} is such
that |x0| ≤ r , with r ≤ εp(ρ)1/(2m), ε being sufficiently small, the momentum of the trajectory satisfies
|ξ0| ≳

√
p(ρ). Therefore, we can expect that the measure of times t ∈ [0, τ ] such that |x t(ρ)| ≲ r will be

of order r/
√

p(ρ).
The proof of Proposition 2.5 relies on the lemma below.

Lemma 2.8. Let a, b, c > 0. Let I ⊂ R be a measurable set such that

∀(t1, t2) ∈ I × I, a|t2 − t1|2 − b|t2 − t1| + c ≥ 0.

Then
|I ∩ [0, τ ]| ≤

8ac
b2 τ ∀τ ≥

b
2a
. (2-7)

Remark 2.9. Observe that the left-hand side of (2-7) is always bounded by τ . Thus, the lemma is mainly
relevant in the case where ac ≪ b2, in which case the discriminant of the polynomial aX2

− bX + c
is positive.

Proof of Lemma 2.8. First assume that the discriminant of the polynomial aX2
− bX + c is positive.

Denote by z− ≤ z+ the (real) roots of the polynomial. Then

b
2a

=
z++z−

2
≤ z+ ≤ z+ + z− =

b
a

and z− =
z+z−

z+

=
c/a
z+

≤
2c
b
.

Since a > 0, we deduce that any t such that at2
− bt + c ≥ 0 satisfies

t ≤ z− ≤
2c
b

or t ≥ z+ ≥
b

2a
. (2-8)

We deduce that ∣∣∣I ∩

[
0, b

2a

]∣∣∣≤ ∣∣{t ∈ [0, z+] : at2
− bt + c ≥ 0

}∣∣≤ |[0, z−]| ≤
2c
b
. (2-9)

Now if τ ≥ b/(2a), we split the interval [0, τ ] as follows:

[0, τ ] =

n⋃
k=1

[k−1
n
τ,

k
n
τ
]
, with n =

⌈
τ

b/2a

⌉
≥ 1.

On each piece, we have∣∣∣I ∩

[k−1
n
τ,

k
n
τ
]∣∣∣= ∣∣∣(I −

k−1
n
τ
)

∩

[
0, 1

n
τ
]∣∣∣≤ ∣∣∣(I −

k−1
n
τ
)

∩

[
0, b

2a

]∣∣∣,
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where the last inequality is due to the definition of n. We can apply (2-9) with I − (k − 1)τ/n instead
of I, since the former set satisfies the assumptions of the lemma. Then, summing over k yields

|I ∩ [0, τ ]| ≤ n 2c
b

≤

(
τ

b/2a
+ 1

)2c
b

≤
8ac
b2 τ,

which is the desired estimate. Finally if the discriminant is nonpositive, i.e., b2
≤ 4ac, then

|I ∩ [0, τ ]| ≤ τ ≤
4ac
b2 τ. □

Proof of Proposition 2.5. Let us write for short E = p(ρ), and introduce the components of the flow
(x t , ξ t) = φt(ρ). Assume E > 0. The core of the argument is to compare x t to the straight trajectory
t 7→ x0

+ tξ 0, which is of course easier to handle. In order to have two distinct points of the initial
trajectory to be in the ball Br (0), its distance to the straight trajectory has to be very small or very large,
which is possible in a time interval which is either small or large respectively. Introduce

I = Iρ,r = {t ∈ R : x t
∈ Br (0)}.

This set is measurable. Moreover, for any t1 ≤ t2, using the Hamilton equation and the Taylor formula at
order 1 with integral remainder, one has

x t2 = x t1 + (t2 − t1)ξ t1 − (t2 − t1)2
∫ 1

0
(1 − s)∇V (x (1−s)t1+st2) ds.

Assume now that t1, t2 ∈ I. Then the inverse triangle inequality leads to

2r ≥ |t2 − t1||ξ t1 | − (t2 − t1)2 sup
t∈[t1,t2]

|∇V (x t)|. (2-10)

At this stage we have to estimate differently the term involving ∇V, depending on whether m is greater
or less than 1

2 (or roughly speaking on whether the potential is approximately convex of concave).

Case m ≥
1
2 : Using that V satisfies Assumption 1.1, we have

|ξ t1 | =

√
2(E − V (x t1))≥

√
max(0, E − C⟨r⟩2m)

for some constant C ≥ 1. Moreover, one can roughly estimate the remainder using the triangle inequality:

sup
t∈[t1,t2]

|∇V (x t)| ≤ C sup
t∈[t1,t2]

⟨x t
⟩

2m−1.

Now we take advantage of the fact that V is elliptic: up to enlarging the constant C , one has

−C +
1
C

⟨x⟩
2m

≤ V (x)≤ V (x)+ 1
2
|ξ |2 ∀(x, ξ) ∈ R2d .

Therefore if E is large enough (say larger than C), we obtain ⟨x t
⟩

2m−1
≤ C E1−1/(2m), with a possibly

larger constant C
(
we use m ≥

1
2 here

)
. Inequality (2-10) then becomes

2r ≥ |t2 − t1|
√

max(0, E − C⟨r⟩2m)− C E1−1/(2m)
|t2 − t1|2.
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Set

a = C E1−1/(2m), b =

√
max(0, E − C⟨r⟩2m), c = 2r and τ = E (1/2)(1/m−1). (2-11)

We have τ ≥ b/(2a) since we can assume that C ≥ 1:

b
2a

=

√
max(0, E − C⟨r⟩2m)

2C
E1/(2m)−1

≤
1

2C
E (1/2)(1/m−1)

≤ τ.

With this notation, we have that any t1, t2 ∈ I satisfy

a|t2 − t1|2 − b|t2 − t1| + c ≥ 0.

Therefore, assuming first that C⟨r⟩
2m

≤ E/2, we have b≥
√

E/2>0, so that Lemma 2.8 applies. We obtain

|I ∩ [0, E (1/2)(1/m−1)
]| ≤

8ac
b2 τ ≤

8C E1−1/(2m)
× 2r

E/2
E (1/2)(1/m−1)

= 32C
r

√
E
.

If on the contrary we have ⟨r⟩ ≥ (E/2C)1/(2m), as soon as E ≥ 22m+1C we have r ≥
1
2(E/2C)1/(2m), and

we check that

|I ∩ [0, E (1/2)(1/m−1)
]| ≤ E (1/2)(1/m−1)

=
r

√
E

×
E1/(2m)

r
≤

r
√

E
× 21+1/(2m)C1/(2m).

This is valid for any r > 0, but in fact r = 0 works as well since B0(0)=∅. In addition, this is independent
of the point ρ ∈ {p = E}, whence the result.

Case m < 1
2 : In the situation where the potential is “sublinear”, the inequality ⟨x t

⟩
2m−1 ≲ E1−1/(2m) is

false in general since the power 2m − 1 is nonpositive (such an inequality would require V (x t) to be
controlled from below by E , which is possible near turning points of the trajectory but not in the well).
Thus, a priori we can only have |∇V (x t)| ≤ C , which leads to

2r ≥ |t2 − t1||ξ t1 | − C |t2 − t1|2 ≥ |t2 − t1|
√

max(0, E − C⟨r⟩2m)− C |t2 − t1|2

≥ |t2 − t1|
√

max(0, E − C⟨r⟩)− C |t2 − t1|2. (2-12)

This coincides with the previous case for the critical value m =
1
2 : for any t1, t2 ∈ I, we have

a|t2 − t1|2 − b|t2 − t1| + c ≥ 0,

where a, b, c are defined in (2-11)
(
with m =

1
2

)
. Then the first step of the proof tells us that there

exists C > 0 such that for all E large enough, we have∣∣{t ∈ [0,
√

E] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E

∀r ≥ 0,∀ρ ∈ {p = E}. (2-13)

We shall use this additional information to improve (2-12), and then bootstrap this procedure to reach the
critical time E (1/2)(1/m−1). We will work this out by induction, taking (2-13) as our basis step. Consider n ≥

0 and suppose there exist γn ∈
[ 1

2 ,
1
2

( 1
m − 1

))
and Cn ≥ 1 such that when E is large enough, one has∣∣{t ∈ [0, Eγn ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ Cn

r
√

E
∀r ≥ 0,∀ρ ∈ {p = E}. (2-14)
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We first deduce from the Taylor formula a bound slightly more precise than (2-10):

2r ≥ |t2 − t1||ξ t1 | − |t2 − t1|
∫ t2

t1
|∇V (x t)| dt

≥ |t2 − t1|
√

max(0, E − C⟨r⟩2m)− |t2 − t1|
∫ t2

t1
|∇V (x t)| dt. (2-15)

Take δ ∈ [0, 1] to be chosen later. We have∫ t2

t1
|∇V (x t)|dt ≤ C

∫ t2

t1
⟨x t

⟩
2m−1 dt = C

∫
+∞

0

(∫ t2

t1
1u≤⟨x t ⟩2m−1 dt

)
du

≤ C
∫

+∞

0
|{t ∈ [t1, t2] : u ≤ |x t

|
2m−1

}|du

≤ C
∫ Eδ(1−1/(2m))

0
|t2 − t1|du +C

∫
+∞

Eδ(1−1/(2m))
|{t ∈ [t1, t2] : |x t

| ≤ u−1/(1−2m)
}|du. (2-16)

The first inequality follows from our assumptions on V, the equality is a consequence of Fubini’s theorem,
then we use that 2m−1 ≤ 0 to deduce ⟨x s

⟩
2m−1

≤ |x s
|
2m−1, and finally we split the integral over u into two

pieces. To estimate the second piece, we split the interval [t1, t2] into N =⌈|t2−t1|/Eγn⌉ intervals of length
less than Eγn. On the k-th piece, we use the induction hypothesis (2-14), with ρk = φt1+(k−1)|t2−t1|/N (ρ)

instead of ρ, namely setting t̃k = t1 + (k − 1)|t2 − t1|/N , we have∣∣{t ∈ [t̃k, t̃k+1] : |x t
| ≤ u−1/(1−2m)}∣∣≤ ∣∣{s ∈ [0, Eγn ] : |x s+t̃k | ≤ u−1/(1−2m)}∣∣≤ Cn

√
E

u−1/(1−2m).

Summing over k ∈ {1, 2, . . . , N } yields∣∣{t ∈ [t1, t2] : |x t
| ≤ u−1/(1−2m)}∣∣≤ Cn

√
E

u−1/(1−2m)
⌈

|t2 − t1|
Eγn

⌉
,

provided E is large enough. Integrating over u, we obtain a bound for the second term in (2-16):∫
+∞

Eδ(1−1/(2m))

∣∣{t ∈ [t1, t2] : |x t
| ≤ u−1/(1−2m)}∣∣ du

≤
Cn

E1/2

(
|t2 − t1|

Eγn
+ 1

)∫
+∞

Eδ(1−1/(2m))
u−1/(1−2m) du

=
Cn

E1/2

(
|t2 − t1|

Eγn
+ 1

)
×

−1

1 −
1

1−2m

Eδ(1−1/(2m))(1−1/(1−2m))

=

(
1/2
m

− 1
)

×
Cn

E1/2

(
|t2 − t1|

Eγn
+ 1

)
Eδ.

In the end we obtain∫ t2

t1
|∇V (x t)| dt ≤

C
2

|t2 − t1|(Eδ(1−1/(2m))
+ Eδ−1/2−γn )+ C Eδ−1/2

for some constant C > 0. By choosing δ = m(2γn + 1)
(
we have indeed δ ∈ [2m, 1) ⊂ [0, 1) when

γn ∈
[ 1

2 ,
1
2

( 1
m − 1

)))
, we obtain∫ t2

t1
|∇V (x t)| dt ≤ C |t2 − t1|E (2m−1)γn+m−1/2

+ C Eδ−1/2.
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Going back to (2-15), if t1, t2 ∈ I, i.e., x t1 and x t2 lie in Br (0), we deduce

2r ≥ |t2 − t1|
(√

max(0, E − C⟨r⟩2m)− C Eδ−1/2)
− C E1/2−γn+1 |t2 − t1|2,

where we set γn+1 = (1 − 2m)γn + 1 − m. Now set

a = C E1/2−γn+1, b =

√
max(0, E − C⟨r⟩2m)− C Eδ−1/2 and c = 2r.

Assuming first that C⟨r⟩
2m

≤ E/2 and recalling that δ < 1, we know that for E large enough, we have
b ≥

√
E/3. Any t1, t2 ∈ I satisfy

a|t2 − t1|2 − b|t2 − t1| + c ≥ 0,

so we apply Lemma 2.8 with τ = Eγn+1 ≥ b/(2a) to get

|I ∩ [0, Eγn+1]| ≤
8ac
b2 Eγn+1 ≤

16C E1/2

E/3
r =

48C
√

E
r.

When C⟨r⟩
2m

≥ E/2, assuming that E is large enough we have r ≥
1
2(E/2C)1/(2m) and we conclude as

in the previous step that

|{t ∈ [0, Eγn+1] : x t
∈ Br (0)}| ≤

r
√

E

Eγn+1+1/2

r
≤

r
√

E
21+1/(2m)C1/(2m)Eγn+1−(1/2)(1/m−1).

Since by the induction hypothesis we have γn ∈
[ 1

2 ,
1
2

( 1
m − 1

))
, then γn+1 belongs to the same interval

because by definition, γn+1 ≥ 1 − m ≥
1
2 , and we have

γ − γn+1
1
2

= (1 − 2m)
γ − γn

1
2

, where γ =
1
2

( 1
m

− 1
)
. (2-17)

Therefore we see that γn+1 − γ < 0, so as soon as E is large enough, we have

|{t ∈ [0, Eγn+1] : x t
∈ Br (0)}| ≤ Cn+1

r
√

E

for any r ≥ 0, and for some constant Cn+1. Thus we have constructed by induction a nondecreasing
sequence (γn)n∈N for which (2-14) holds. We deduce from (2-17) that it converges to γ =

1
2

( 1
m − 1

)
,

which yields the final result. □

Proof of Corollary 2.6. Firstly we treat the case where m< 1. For ε small enough, E (1/2)(1/m−1)−ε
→ +∞

as E → +∞, so we can write, using Proposition 2.5,∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ ∣∣{t ∈ [0, E (1/2)(1/m−1)−ε
] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C

r
√

E
,

provided E is large enough, for all ρ ∈ {p = E} and all r ≥ 0. Now in the case where m ≥ 1, we know
that E (1/2)(1/m−1) remains bounded as E → +∞. By Proposition 2.5 again, there is a E0 > 0 such that
for any E ≥ E0, we have∣∣{t ∈ [0, E (1/2)(1/m−1)

] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ C
r

√
E
, (2-18)
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whenever r ≥ 0 and ρ ∈ {p(ρ)= E}. Let n = ⌈T/E (1/2)(1/m−1)
⌉. Writing tk = kT/n and ρk = φtk (ρ) for

any k ∈ {0, 1, . . . , n}, we have

∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ n∑
k=1

∣∣{t ∈ [tk−1, tk] : φt(ρ) ∈ Br (0)× Rd}∣∣
=

n∑
k=1

∣∣{t ∈
[
0, 1

n T
]
: φt+tk−1(ρ) ∈ Br (0)× Rd}∣∣

≤

n∑
k=1

∣∣{t ∈ [0, E (1/2)(1/m−1)
] : φt(ρk−1) ∈ Br (0)× Rd}∣∣.

The last inequality comes from the definition of n. Estimate (2-18) applies to each piece of this sum. We
conclude that∣∣{t ∈ [0, T ] : φt(ρ) ∈ Br (0)× Rd}∣∣≤ nC

r
√

E
≤

1 + T
E (1/2)(1/m−1) × C

r
√

E
= C

r(1 + T )
E1/(2m)

(we can ensure that n ≤ (1+ T )/E (1/2)(1/m−1) in the second equality up to enlarging E0 so that it is larger
than 1, independently of T ). □

2.3. Continuity of the composition by the flow in symbol classes. From now on we go back to a sub-
quadratic potential, that is to say we suppose our classical Hamiltonian is of the form p(x, ξ)=V (x)+1

2 |ξ |2,
with V satisfying Assumption 1.1 with m ∈ (0, 1]. In the course of our study, we will need to check that
the composition of a symbol with the Hamiltonian flow is still well-behaved in a suitable symbol class, in
the sense that its derivatives remain controlled properly. The following lemma is common in the context
of the quantum-classical correspondence; see for instance [Bouzouina and Robert 2002, Lemma 2.2]. We
reproduce a proof to obtain an estimate adapted to our context and to keep track of the dependence of
constants on the parameters of the problem. We recall that a function a ∈ C∞(R2d) is said to be a symbol
in the class S(1) if all its derivatives are bounded. The quantities

|a|
ℓ
S(1) = max

α∈N2d

0≤|α|≤ℓ

sup
ρ∈R2d

|∂αa(ρ)|, ℓ ∈ N,

endow the vector space S(1) with a Fréchet structure (see Appendix B for further details).

Lemma 2.10. Let a be a symbol in S(1). Then the function a ◦ φt still belongs to S(1), and stays in a
bounded subset of S(1) locally uniformly with respect to t . More precisely, for any fixed T > 0, for any
nonzero multi-index α ∈ N2d, we have the derivative estimate

∥∂α(a ◦φt)∥∞ ≤ Cα(T, p) max
1≤|β|≤|α|

∥∂βa∥∞,

uniformly in t ∈ [−T, T ]. The constants Cα(T, p) depend only on T and on the sup-norm of derivatives
of order {2, 3, . . . , |α| + 1} of p.

Proof. In all the proof, t ranges in a compact set, say [−T, T ] for some fixed T > 0.
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Step 1: Control of differentials of the Hamiltonian flow. Differentiating the Hamilton equation (1-5)
defining the flow φt, we get

d
dt

dφt(ρ)= J Hess p(φt(ρ)) dφt(ρ).

By assumption on the potential V (see (1-4)), we observe that the Hessian of p is bounded. Since
dφ0(ρ)= Id for any ρ ∈ R2d, we classically deduce using Grönwall’s lemma that

∥dφt(ρ)∥ ≤ eT |J Hess p|∞ ≤ eT |Hess p|∞ ∀ρ ∈ R2d ,∀t ∈ [−T, T ].

For higher-order differentials, we proceed by induction. Suppose that for some k ≥ 1, all the differentials
of order ≤ k of φt are bounded uniformly in t on R2d, with a bound involving derivatives of order k + 1
of p. Differentiating the Hamilton equation k+1 times, the Faà di Bruno formula shows that d

dt dk+1φt(ρ)

is a sum of terms of the form

J dℓ(∇ p)(φt(ρ)).
(
dk1φt(ρ), dk2φt(ρ), . . . , dkℓφt(ρ)

)
,

where 1 ≤ ℓ≤ k + 1 and k1 + k2 +· · ·+ kℓ = k + 1. Such terms are bounded uniformly in t ∈ [−T, T ] by
the induction hypothesis as soon as ℓ≥ 2 (note that all the differentials of order ≥ 2 of p are bounded).
So in fact the ODE on dk+1φt(ρ) can be written

d
dt

dk+1φt(ρ)= J Hess p(φt(ρ)) dk+1φt(ρ)+ R(t, ρ),

where R(t, ρ) satisfies

|R(t, ρ)|∞ ≤ C(T, p) ∀ρ ∈ R2d ,∀t ∈ [−T, T ],

where the constant C(T, p) depends only on the sup-norm of derivatives of order {2, 3, . . . , k + 2} of p.
We conclude by Grönwall’s lemma again, together with Duhamel’s formula that dk+1φt(ρ) is bounded
similarly: given that k + 1 ≥ 2, we have dk+1φ0(ρ)= 0 for every ρ ∈ R2d, so that

∥dk+1φt(ρ)∥ ≤

∫
|t |

0
C(T, p)e|Hess p|∞|t−s| ds ≤ T C ′(T, p).

This finishes the induction.

Step 2: Estimates of derivatives of a ◦φt. We estimate the derivatives in x or ξ . Let α ∈ N2d
\ {0}, and

denote by (x t
1, x t

2, . . . , x t
d , ξ

t
1, ξ

t
2 . . . , ξ

t
d) the components of the flow. The chain rule together with the

Faà di Bruno formula yield that ∂α(a ◦φt) can be expressed as a sum of terms of the form

(∂ α̃x ∂
β̃
ξ a) ◦φt

×

∏
j1∈α̃

∂α j1 x j1 ×

∏
j2∈β̃

∂β j2 ξ j2,

where α̃, β̃ ∈ Nd are such that 1 ≤ |α̃|+ |β̃| ≤ |α| and α j1, β j2 ∈ N2d
\ {0} satisfy

∑
j1 α j1 +

∑
j2 β j2 = α.

(By j1 ∈ α̃, j2 ∈ β̃, we mean that j1, j2 ∈ {1, 2, . . . , d} are indices for which α̃ and β̃ are nonzero.) The
claim follows immediately from the bounds on the derivatives of x t

j and ξ t
j proved in Step 1. □
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3. Proof of the main theorem

We start with a lemma that will enable us to replace 1ωR\Br (0) in the observability inequality with a
well-behaved symbol.

Lemma 3.1 (mollifying the observation set). Let ω ⊂ Rd and denote by ωR the open set

ωR =

⋃
x∈ω

BR(x), R > 0.

There exists a symbol a = aR ∈ S(1) depending only on the x variable such that

1ωR/2(x)≤ aR(x)≤ 1ωR (x) ∀x ∈ Rd .

In addition, it satisfies the seminorm estimates

∀ℓ ∈ N, ∃Cℓ > 0 : ∀R ≥ 1, |aR|
ℓ
S(1) ≤ Cℓ and |∇aR|

ℓ
S(1) ≤

Cℓ
R
.

The constants involved do not depend on ω.

Proof. Fix κ ∈ C∞
c (R

d) a mollifier with the following properties:

κ(x)≥ 0,∀x ∈ Rd , supp κ ⊂ B1(0) and
∫

Rd
κ(x) dx = 1.

For any r > 0, set κr = r−dκ( • /r), so that ∥κr∥L1(Rd ) = 1. Set, for any R > 0,

aR(x)= (κR/4 ∗ 1ω3R/4)(x) ∀x ∈ Rd .

We check that aR defined in this way satisfies the required properties. We first observe that, by definition, aR

is nonnegative, and that aR ≤ 1 by Young’s inequality. Now by standard properties of convolution, the
support of aR is contained in ω3R/4 + BR/4(0) ⊂ ωR (recall that the support of κ is a compact subset
of B1(0)), which proves that aR ≤ 1ωR . On the other hand, if x ∈ ωR/2, then κR/4(x − • ) is supported
inω3R/4, so that aR(x)=1, which proves that aR ≥1ωR/2 . Differentiating under the integral sign, we see that
∥∂αaR∥∞ is of order 1/R|α| for any multi-index α∈Nd, which yields the desired seminorm estimates (R ≥1
is important here). The constants depend only on the supremum norms of derivatives of κ , and not on ω. □

Remark 3.2. The symbol aR can be considered as a semiclassical symbol, with Planck parameter 1/R2,
since by construction each derivative yields a gain of 1/R. However in view of Lemma 2.10, this property
is not preserved by composition by the Hamiltonian flow, since all the derivatives of aR ◦φt of order ≥ 1
behave as 1/R. This comes from the fact that, when differentiating aR ◦φt twice or more, the second,
third, and higher-order derivatives can hit φt instead of aR .

We prove a version of Egorov’s theorem taking into account the above remark. Our approach is very
classical; see [Bouzouina and Robert 2002] or [Zworski 2012, Chapter 11] for refinements. We refer
again to Appendix B for an account on the Weyl quantization Op.
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Proposition 3.3 (Egorov). Let a ∈ S(1). Then the symbol a ◦φt lies in S(1) with seminorm estimates

∀T > 0,∀ℓ ∈ N, ∃Cℓ(T, p) > 0 : |a ◦φt
|
ℓ
S(1) ≤ Cℓ(T, p)|a|

ℓ
S(1) ∀t ∈ [−T, T ],

and one has
ei t POp(a)e−i t P

= Op(a ◦φt)+ Ra(t), (3-1)

where the remainder term Ra(t) is a bounded operator satisfying

∀T > 0, ∃C(T, p) > 0 : ∥Ra(t)∥L2→L2 ≤ C(T, p)|∇a|
kd
S(1) ∀t ∈ [−T, T ],

for some integer kd depending only on the dimension.

Proof. The claim that a ◦φt
∈ S(1) and the subsequent seminorm estimates are provided by Lemma 2.10.

To prove (3-1), we follow the classical method that consists in differentiating the time dependent operator

Q(s)= e−is POp(a ◦φs)eis P ,

and estimating this derivative. For the sake of simplicity, let us introduce as = a ◦φs. All the operators in
this composition map S(Rd) to itself continuously, so that Q(s)u can be differentiated using the chain
rule, for any u ∈ S(Rd). From now on, we will omit to write u. Recalling that d

ds as = {p, as} by definition
of φs, we have d

ds
Op(as)= Op({p, as})

(rigorously, one may apply the dominated convergence theorem to the pairing ⟨v,Op(as)u⟩S′,S(Rd ) for
two Schwartz functions u and v). Therefore we get

d
ds

Q(s)= −ie−is P(
[P,Op(as)] + iOp({p, as})

)
eis P

= −ie−is POp(R3(s))eis P . (3-2)

The symbol R3(s) above is nothing but the remainder of order 3 in the pseudodifferential calculus
between p and as . Proposition B.5 provides a bound on this remainder in terms of seminorms of as . Recall
that, in the subcritical case m ≤ 1, ∂α p ∈ S(1) whenever |α| ≥ 2. Therefore according to Proposition B.5,
for any seminorm index ℓ ∈ N, there exist a constant Cℓ > 0 as well as an integer k ≥ 0 such that

|R3(s)|ℓS(1) ≤ Cℓ|d3as |
k
S(1)|d

3 p|
k
S(1).

Then we use Lemma 2.10 to obtain

|R3(s)|ℓS(1) ≤ Cℓ(T, p)|∇a|
k
S(1)

for any s ∈ [−T, T ]. Therefore, the Calderón–Vaillancourt theorem (Theorem B.2) tells us that the norm
of Op(R3(s)) is bounded, uniformly in s ∈ [−T, T ], by a seminorm of ∇a, and a constant depending
only on T and p. Plugging this into (3-2), given that the propagator eis P is an isometry, we obtain the
same bound on d

ds Q(s). Integrating this in s, we obtain from the mean-value inequality

∀t ∈ [−T, T ], ∥Q(t)− Q(0)∥L2→L2 ≤ 2T sup
s∈[−T,T ]

∥∥∥ d
ds

Q(s)
∥∥∥

L2→L2
≤ C(T, p)|∇a|

kd
S(1),

where the integer kd depends only on the dimension. Conjugating by the propagator, which is an isometry
on L2, yields the desired result. □
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We are now in a position to prove our main result.

Proof of Theorem 1.3. We fix ω ⊂ Rd, a compact set K ⊂ Rd, and we introduce ω̃(R) = (ω \ K R)R

for R> 0. One can verify that ω̃(R)⊂ωR \ K. By Lemma 3.1, there exists a symbol aR ∈ S(1) depending
on the parameter R > 0 such that

1(ω\K R)×Rd ≤ aR ≤ 1ω̃(R)×Rd ∀R > 0, (3-3)

and |∇aR|
ℓ
S(1) ≤ cd,ℓ/R for any ℓ ∈ N, with a constant cd,ℓ depending only on the dimension and ℓ,

uniformly in R ≥ 1. Notice that the symbol depends on ω and K but not its seminorms. On the quantum
side, one can regard the functions in (3-3) as multiplication operators, and understand the inequalities
in the sense of self-adjoint operators. Conjugating by the Schrödinger propagator does not change the
inequalities, so that

ei t P1ω\K R e−i t P
≤ ei t POp(aR)e−i t P

≤ ei t P1ω̃(R)e−i t P
∀t ∈ R.

Then we use Egorov’s theorem (Proposition 3.3) and we integrate with respect to t to get∫ T0

0
ei t P1(ω\K R)×Rd e−i t P dt ≤

∫ T0

0
Op(aR ◦φt) dt + RR ≤

∫ T0

0
ei t P1ω̃(R)e−i t P dt, (3-4)

where the remainder term RR is a bounded operator with

∥RR∥L2→L2 ≤ C |∇aR|
kd
S(1) ≤

C ′

R
∀R ≥ 1. (3-5)

The constant C ′ above depends only on p and T0 (and of course on the dimension d), but not on ω or K.
One can check that the quantization and the integral over t in the middle term of (3-4) commute.9

On the classical side, using the same notation as in (2-1), we introduce the quantity

K∞

p0
(aR1(0,T ))= lim inf

ρ→∞

∫ T

0
aR(φ

t
0(ρ)) dt,

and similarly for p instead of p0, replacing the flow φt
0 by φt. We claim that, for any T > 0, there exists a

constant C ′′ > 0 depending only on the dimension, on T and on the Hamiltonians p0 and p, such that,
for any compact K̃, and for any R > 0,

K∞

p0
(ω, T )≤ K∞

p (aR1(0,T ))+
C ′′

R
,

K∞

p (aR1(0,T ))≤ K∞

p0
(ωR \ K̃, T )+ C ′′

R
.

(3-6)

The constant C ′′ does not depend on ω or K from which we built aR neither. The proof of the first
inequality in (3-6) reads as follows: Corollary 2.6 shows that the quantity in the left-hand side does not
change if we remove a compact set:

K∞

p0
(ω, T )= K∞

p0
(ω \ K R, T ) ∀R > 0. (3-7)

Now we use that 1(ω\K R)×Rd ≤ aR to get

K∞

p0
(ω \ K R, T )≤ K∞

p0
(aR1(0,T )). (3-8)

9One can see this by pairing the operator under consideration with two Schwartz functions and use the dominated convergence
theorem.
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Then we switch from p0 to p, having the same principal symbol, using Corollary 2.4: the function aR1(0,T )
is compactly supported in time and cd,1/R-Lipschitz in the variable ρ, so that

K∞

p0
(aR1(0,T ))≤ K∞

p (aR1(0,T ))+
C ′′

R
∀R > 0.

Putting this together with (3-7) and (3-8) yields the first inequality in (3-6). The second inequality in (3-6)
is proved using similar arguments: Corollary 2.4 leads to

K∞

p (aR1(0,T ))≤ K∞

p0
(aR1(0,T ))+

C ′′

R
∀R > 0.

Then we use from the construction of aR in (3-3) that aR is supported in ωR × Rd, and we apply
Corollary 2.6 to remove a compact set K̃ . This leads to the sought inequality.

Sufficient condition. We wish to bound the left-hand side of (3-4) from below. The high-energy classical
observability constant K∞

p0
:= K∞

p0
(ω, T0) is assumed to be positive. From the first inequality in (3-6),

with T0 in place of T, we can write

∃A > 0 : ∀|ρ| ≥ A,
∫ T0

0
(aR ◦φt)(ρ) dt ≥

1
2
K∞

p0
−

C ′′

R
= cR. (3-9)

Take a cut-off function χ ∈ C∞
c (R

2d) such that χ ≡ 1 on the unit ball, and set χR = χ( • /(A + R)).
Then χR has compact support, equals one on the ball BA(0), and it satisfies ∥∂αχR∥∞ = O(1/R|α|), with
constants independent of ω again.10 We split the symbol in the left-hand side of (3-9) using this cut-off
function: we write ∫ T0

0
aR ◦φt dt = b0 + b∞, (3-10)

where we set

b0 = χR ×

(∫ T0

0
aR ◦φt dt − cR

)
and b∞ = (1 −χR)

∫ T0

0
aR ◦φt dt + cRχR.

Using the Leibniz formula and Lemma 2.10, we can prove that b0 ∈ S(1). Moreover, b0 is compactly
supported in R2d, so that Op(b0) is a compact operator by [Zworski 2012, Theorem 4.28]. As for b∞, the
Leibniz formula and Lemma 2.10 lead to the following estimates on derivatives: for all α ∈ N2d, one has

∥∂αb∞∥∞ ≤ Cα max
α1+α2=α

∥∂α1(1 −χR)∥∞ ×

∫ T0

0
∥∂α2(aR ◦φt)∥∞ dt + cR

Cα
R|α|

≤ Cα,T0,p

(
1

R|α|
+

1
R

)
.

The last inequality comes from distinguishing the cases α2 = 0 and α2 ̸= 0. In the first case, we have
∂α1(1 − χR) = O(R−|α|) and |aR ◦ φt

| ≤ 1. Otherwise, Lemma 2.10 tells us that ∂α2(aR ◦ φt) behaves
like |∇aR|

|α|

S(1) = O(1/R), R ≥ 1. In particular, b∞ ∈ S(1) and |Hess b∞|
ℓ
S(1) = O(1/R) for any ℓ ∈ N,

with a constant independent of ω and K. In addition, we have b∞ ≥ cR in view of (3-9). Therefore, the
Gårding inequality (Proposition B.6) yields

Op(b∞)≥

(
cR −

C1

R

)
Id.

10The parameter A depends on R, but this will not be a problem in the sequel. The phase space region localized at distance ≤ A
from the origin will be handled by Proposition A.1.
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The constant C1 is independent of ω and K in view of the seminorm estimates of Hess b∞ discussed
above. Going back to (3-4), we have proved∫ T

0
ei t P1ω̃(R)e−i t P dt ≥ cR Id +Op(b0)+ R ∀R ≥ 1.

As we have seen in the course of the proof, Op(b0) is a compact self-adjoint operator and ∥R∥L2→L2 ≤C2/R,
with a constant C2 depending only on the dimension, on T0 and on the Hamiltonians p0, p. In view of the
definition of cR in (3-9), taking R = 4(C ′′

+C2 + T0)/K
∞
p0

, we obtain the desired observability inequality,
up to a compact operator: ∫ T0

0
ei t P1ω̃(R)e−i t P dt − Op(b0)≥

1
4K

∞

p0
Id.

Notice that indeed R ≥ 1, since K∞
p0

≤ T0. Proposition A.1 then applies (see Remark A.2). It yields the
sought observability inequality on ω̃(R)⊂ ωR \ K, in any time T > T0.

Necessary condition. Consider the symbol aR from (3-3) with K = ∅. We fix R ≥ 1 (not necessarily
large), K̃ compact, and we estimate the observation cost Cobs in (1-8) using the quantity K∞

p0
(ωR \ K̃, T ).

We will track carefully the dependence of remainders on the parameter R. Write for short

⟨aR⟩T (ρ)=

∫ T

0
(aR ◦φt)(ρ) dt, ρ ∈ R2d ,

and pick a point ρ0 ∈ R2d such that

⟨aR⟩T (ρ0)≤ inf
ρ∈R2d

⟨aR⟩T (ρ)+
1
R
.

Notice that in virtue of the second inequality of (3-6), we have

⟨aR⟩T (ρ0)≤ K∞

p (aR1(0,T ))+
1
R

≤ K∞

p0
(ωR \ K̃, T )+ C ′′

+1
R

. (3-11)

Differentiating under the integral sign and using Lemma 2.10, we check that ⟨aR⟩T is Lipschitz as a
function of ρ:

∀ρ ∈ R2d , |∇⟨aR⟩T (ρ)| ≤ T sup
t∈[0,T ]

|∇(aR ◦φt)(ρ)| ≤ C(T, p)∥∇aR∥∞ ≤
c
R
. (3-12)

Consider a Gaussian wave packet centered at ρ0, namely, writing ρ0 = (x0, ξ0), we define

w(x)= π−d/4 exp
(
−

1
2 |x − x0|

2)eiξ0·x , x ∈ Rd .

It is properly normalized: ∥w∥L2 = 1. A classical computation (see [Folland 1989, Proposition (1.48)])
shows that the Wigner transform of w is the Gaussian in the phase space centered at ρ0, defined by
ρ 7→ π−d exp(−|ρ− ρ0|

2), that is to say,

(w,Op(⟨a2R⟩T )w)L2 =π−d
∫

R2d
⟨a2R⟩T (ρ) exp(−|ρ−ρ0|

2) dρ=π−d
∫

R2d
⟨a2R⟩T (ρ0+ρ) exp(−|ρ|

2) dρ.
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Note that it is a nonnegative quantity. Taking an arbitrary A > 0 and splitting the integral over R2d into
two pieces, we obtain

(w,Op(⟨a2R⟩T )w)L2

≤

∫
BA(0)

(
⟨a2R⟩T (ρ0)+ A∥∇⟨a2R⟩T ∥∞

)
π−de−|ρ|

2
dρ+

∫
R2d\BA(0)

∥⟨a2R⟩T ∥∞π
−de−|ρ|

2
dρ

≤ ⟨a2R⟩T (ρ0)+ A c
R

+ T
∫

R2d\BA(0)
π−de−|ρ|

2
dρ

≤ K∞

p0
(ωR \ K̃, T )+

C ′′
+ 1 + Ac

R
+ T e−A2/2 2d .

We used (3-12) and (3-11) to obtain the last two inequalities. We take A = |2 log R|
1/2 to obtain

(w,Op(⟨a2R⟩T )w)L2 ≤ Kp0(ωR \ K̃, T )+ C̃
1 + |log R|

1/2

R

for some constant C̃ > 0 independent of R. Going back to the left-hand side of (3-4) (recall that we
chose K = ∅ here) with T in place of T0, as well as (3-5), taking the inner product with w on both sides,
we deduce that ∫ T

0
∥e−i t Pw∥

2
L2(ω)

dt ≤ Kp0(ωR \ K̃, T )+ C̃
1 + |log R|

1/2

R
+

C ′

R
.

By assumption, Obs(ω, T ) is true with a cost Cobs > 0. Recalling that ∥w∥L2 = 1, we can bound the
left-hand side from below by C−1

obs. We arrive at

Kp0(ωR \ K̃, T )≥
1

Cobs
− C̃

1 + |log R|
1/2

R
−

C ′

R
,

which yields the sought result. □

4. Proofs of observability results from conical sets

In this section, we give proofs of the results presented in Sections 1.4.1 and 1.4.2, which concern
observation sets that are conical in the sense of (1-16). Propositions 1.4, 1.5 and 1.7 are proved in
Sections 4.1, 4.2 and 4.3 respectively.

4.1. Proof of Proposition 1.4. Let us prove the converse statement: assume there exists a normalized
eigenvector e of A such that e ̸∈ ω and −e ̸∈ ω. Let ν > 0 be such that Ae = ν2e. We claim the following.

Lemma 4.1. There exists a constant c > 0 such that for any R > 0, one has

∀s ∈ R, (se ∈ ωR =⇒ |s| ≤ cR).

Proof. If s ∈ R is such that se ∈ωR , then there exists y ∈ω\{0} such that |se− y| ≤ R. Moreover, since e
belongs to the complement of the closed set ω∪ −ω, there exists ε > 0 such that

∀x ∈ (ω∪ −ω) \ {0},

∣∣∣∣e −
x
|x |

∣∣∣∣≥ ε.
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We apply this to x = sign(s)y to obtain

|s| ≤
1
ε

∣∣∣∣se − |s|
y

|y|

∣∣∣∣≤ 1
ε
|se − y| +

1
ε
|y|

∣∣∣∣1 −
|s|
|y|

∣∣∣∣≤ 1
ε
|se − y| +

1
ε
|se − y| ≤

2R
ε
.

We used the inverse triangle inequality to obtain the second to last inequality. □

Using this lemma, for any T > 0 and any η > 0, we can estimate the quantity∫ T

0
1ωR×Rd (φt(0, ηe)) dt =

∫ T

0
1ωR

(
η

ν
sin(νt)e

)
dt ≤

∫ 2Nπ/ν

0
1ωR

(
η

ν
sin(νt)e

)
dt,

where N = ⌈νT/2π⌉. Using the periodicity of the sine and a change of variable, we deduce∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

N
ν

∫ 2π

0
1ωR

(
η

ν
sin(t)e

)
dt =

2N
ν

∫ π/2

−π/2
1ωR

(
η

ν
sin(t)e

)
dt.

Provided η ̸= 0, we make the change of variables s = η sin t , for which we have dt = (η2
− s2)−1/2 ds;

this leads to ∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

2N
ν

∫
|η|

−|η|

1ωR

( s
ν

e
) ds√

η2 − s2
.

From Lemma 4.1 above, we conclude that, for any η large enough,∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

2N
ν

∫ cRν

−cRν

ds√
η2 − s2

.

An extra change of variables yields∫ T

0
1ωR×Rd (φt(0, ηe)) dt ≤

2N
ν

∫ cRν/η

−cRν/η

ds
√

1 − s2
= O

( R
η

)
as η tends to infinity and R is fixed. We deduce that, for any R > 0,

lim inf
ρ→∞

∫ T

0
1ωR×Rd (φt(ρ)) dt = 0.

The necessary condition of Theorem 1.3 then proves that observability cannot hold from ω in time T. □

4.2. Proof of Proposition 1.5. We first reduce to the case where the matrix A is diagonal in the canonical
basis of R2. Then we investigate the isotropic and anisotropic cases separately.

Step 1: Reduction to positive cones containing half coordinate axes. Let S : R2
→ R2 be a linear symplectic

mapping. Then ∇(p ◦ S)= S∗(∇ p) ◦ S, and we observe that

d
dt

S−1φt(Sρ)= S−1 J (S−1)∗S∗
∇ p(φt(Sρ))= J∇(p ◦ S)(S−1φt(Sρ)).

This means that the conjugation of the Hamiltonian flow of p by S is the Hamiltonian flow of p ◦ S. Thus,
for any measurable set C ⊂ R2

× R2,∫ T

0
1C(φ

t(ρ)) dt =

∫ T

0
1S−1C((S

−1φt S)(S−1ρ)) dt,
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and finally, since S−1ρ → ∞ if and only if ρ → ∞, we deduce that

lim inf
ρ→∞

∫ T

0
1C(φ

t(ρ)) dt = lim inf
ρ→∞

∫ T

0
1S−1C((S

−1φt S)(ρ)) dt. (4-1)

Denote by Q the orthogonal matrix that diagonalizes A as follows:

Q−1 AQ =

(
ν2
−

0
0 ν2

+

)
, with Q

(
1
0

)
= e− and Q

(
0
1

)
= e+.

We apply the above observation (4-1) to the map

S =

(
Q 0
0 Q

)
.

It is indeed symplectic since Q = (Q−1)∗ is an orthogonal matrix. When the subset of the phase space C
is of the form ω(ε) given in the statement, the resulting set S−1C is ω̃(ε)= C1

ε ∪ C2
ε , where

C1
ε =

{
(x1, x2) ∈ R2

: |x2|< tan
( 1

2ε
)
x1
}

and C2
ε =

{
(x1, x2) ∈ R2

: |x1|< tan
( 1

2ε
)
x2
}
.

The corresponding Hamiltonian is

(p ◦ S)(x, ξ)=
1
2(Qx · AQx + |Qξ |2)=

1
2(ν

2
−

x1
2
+ ν2

+
x2

2
+ |ξ |2).

That is to say, we have reduced the problem to the study of observability from ω̃(ε) for the above
Hamiltonian: the Schrödinger equation is observable from ω(ε) in time T for the Hamiltonian p is and
only if it is observable from ω̃(ε) in time T for the Hamiltonian p ◦ S. From now on, we write ω(ε)
instead of ω̃(ε), p instead of p ◦ S respectively, and (ν1, ν2)= (ν−, ν+).

Step 2: Isotropic case. The case where ν+ = ν− = ν follows from Proposition 1.4. Indeed, since ε < π/2,
one has ω(ε)∩ L± = {0}, where L± = {x2 = ±x1} are eigenspaces of A = ν2 Id. Therefore, isotropic
oscillators are not observable from ω(ε).

Anisotropic case. We assume that the harmonic oscillator is anisotropic, i.e., ν1 <ν2, and we want to show
that ω(ε) observes the Schrödinger equation. Anticipating the use of Theorem 1.3 where the observation
set has to be enlarged, we will rather prove that the dynamical condition in (1-7) is satisfied by the smaller
set ω(ε/2) = C1

ε/2 ∪ C2
ε/2. We fix an initial point ρ0

= (x0
1 , x0

2; ξ 0
1 , ξ

0
2 ) ∈ R2

× R2. We write the space
components of the flow as follows:

x t
j = cos(ν j t)x0

j +
1
ν j

sin(ν j t)ξ 0
j = A j sin(ν j t + θ j ), j ∈ {1, 2}, t ∈ R,

with A j =

√
(x0

j )
2
+

(
ξ 0

j

ν j

)2

and cos θ j =
ξ 0

j /ν j

A j
, sin θ j =

x0
j

A j
.

Our first goal will be to prove that the dynamical condition (1-7) is satisfied in the time interval [0, T0],
where T0 is given in (1-18). We can consider ρ0 to be nonzero since we are interested in what happens at
infinity. Therefore A1 > 0 or A2 > 0. Also keep in mind that ρ0

→ ∞ if and only if |(A1, A2)| → +∞.
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Step 3: Time spent in C2
ε/2. First we look at the possibility to be in the cone C2

ε/2. This will certainly
be the case provided A1 is very small compared to A2, that is to say the projected trajectory (x t

1, x t
2) is

almost contained in the ordinate axis. We prove∫ T0

0
1C2

ε/2
(x t

1, x t
2) dt ≥

π

ν2

(
1 −

A1/A2

tan(ε/4)

)
. (4-2)

Suppose t ∈ [0, T0] is such that sin(ν2t + θ2)≥ δ, namely x t
2 ≥ A2δ. Assuming that A2 > 0, one has

|x t
1| ≤ A1 ≤

A1

A2δ
x t

2. (4-3)

We want to quantify the amount of t such that this holds. In the following estimate, we use the fact that
T0 ≥ 2π/ν2 and the classical concavity inequality sin x ≥ 2x/π for all x ∈ [0, π/2]:∫ T0

0
1sin(ν2t+θ2)≥δ dt ≥

∫ 2π/ν2

0
1sin(ν2t)≥δ dt ≥

1
ν2

∫ 2π

0
1sin t≥δ dt ≥

2
ν2

∫ π/2

0
12t/π≥δ dt =

π

ν2
(1 − δ).

Now in (4-2), we wish A1/(A2δ) to be strictly less than tan(ε/4), that is to say δ > A1/(A2 tan(ε/4)).
Therefore, for any δ satisfying this condition, the time spent by the trajectory in C2

ε/2 can be bounded
from below by ∫ T0

0
1x t

2≥A2δ dt ≥

∫ T0

0
1sin(ν2t+θ2)≥δ dt ≥

π

ν2
(1 − δ),

so that, maximizing the right-hand side with respect to δ, one obtains (4-3). Notice that this inequality
is useful only if A1/A2 is small enough. In the opposite case where A1/A2 is large, we use another
argument (ν1 and ν2 do not play a symmetric role here).

Step 4: Time spent in C1
ε/2. Let us now consider the times when the trajectory is in the other cone C1

ε/2.
Set η = ⌊ν2/ν1⌋ + 1 − ν2/ν1 ∈ (0, 1]. The main claim in this step of the proof is

∃t2 ∈ [0, T0] : x t2
2 = 0 and x t2

1 ≥ A1δ1, where δ1 = min
(
ν1
ν2
η, 1 −

ν1
ν2

)
. (4-4)

Denote by t1 the first zero of sin(ν1t +θ1) in [0, T0]. It exists since by definition, T0 ≥ π/ν2(1+ν2/ν1)≥

π/ν1. It turns out that t1 is given by

t1 =
π

ν1

(⌈
θ1
π

⌉
−
θ1
π

)
.

Then t1 ∈ [0, π/ν1), and we know that sin(ν1t + θ1) has constant sign on I1 := [0, t1], on I2 :=

[t1, t1 + π/ν1] ∩ [0, T0] and on I3 := [t1 + π/ν1, t1 + 2π/ν1] ∩ [0, T0]. Observe that I1 is possibly
reduced to a singleton, I2 is always nontrivial, and I3 is possibly empty. One can check this from the fact
that T0 can be rewritten

T0 =
π

ν1
+ (1 + η)

π

ν2
. (4-5)

Because T0 ≥ π/ν1, we know that sin(ν1t + θ1) vanishes at least once in [0, T0]. We first distinguish
cases according to whether there are a single one or more than two of these zeroes in this interval.
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t ′

1 0 t2 t1

T0 t

Figure 5. The dashed line is t 7→ A1 sin(ν1t + θ1), the gray line is t 7→ A2 sin(ν2t + θ2), with ν2/ν1 = 1.7.

Case 1: Assume first t1 is the only zero in [0, T0]. This case is illustrated in Figure 5. In view of (4-5), t1
lies at distance > (1 + η)π/ν2 from the boundary of [0, T0], otherwise t1 +π/ν1 or t1 −π/ν1 is another
zero in [0, T0]. In particular, the intervals [0, t1] and [t1, T0] have length ≥ (1 + η)π/ν2. We know that
sin(ν1t + θ1)≥ 0 on one of these intervals, that we denote by Ĩ. Given that Ĩ has length ≥ (1+η)π/ν2, it
contains a zero of sin(ν2t + θ2), lying at distance ≥ (π/ν2)(η/2) from the boundary of Ĩ . We denote such
a zero by t2. Given that the only zero of sin(ν1t + θ1) in Ĩ is t1, we deduce that the distance between t2
and the closest zero t ′

1 of sin(ν1t + θ1) is at least (π/ν2)(η/2). Then the inequality sin x ≥ 2x/π
on x ∈ [0, π/2] yields

sin(ν1t2 + θ1)= sin(ν1(t2 − t ′

1)+ ν1t ′

1 + θ1)= sin(ν1|t2 − t ′

1|)≥
2ν1
π

|t2 − t ′

1| ≥
ν1
ν2
η. (4-6)

The absolute value resulting from the second inequality is due to the fact that we chose t2 in an interval
where sin(ν1t + θ1)≥ 0, or equivalently, ν1t1 + θ1 is an even or odd multiple of π according to the sign
of t2 − t1. We conclude that x t2

2 = 0 by definition of t2 and that we have x t2
1 ≥ A1ν1η/ν2 in virtue of (4-6),

hence the claim (4-4).

Case 2: Now we treat the case where t1 +π/ν1 also lies in [0, T0]. The situation is illustrated in Figure 6.
The interval J1 := [t1, t1 + π/ν1] is contained in [0, T0]. As we already mentioned, sin(ν1t + θ1) has
constant sign on J1.

Subcase 2a: If sin(ν1t + θ1)≥ 0 on J1, since J1 has length π/ν1 >π/ν2, then t 7→ sin(ν2t + θ2) vanishes
in J1, and we can choose a zero t2 at distance ≥ (π/2)(1/ν1 − 1/ν2) from the boundary of J1. This is
illustrated in Figure 6, left. Reproducing the previous argument with the concavity inequality for the sine
function, we deduce that

sin(ν1t2 + θ1)≥
2ν1
π

×
π

2

( 1
ν1

−
1
ν2

)
= 1 −

ν1
ν2
.

Therefore in this case, there is t2 ∈ [0, T0] with x t2
2 = 0 and x t2

1 ≥ (1 − ν1/ν2)A1, hence the claim (4-4).

Subcase 2b: In the remaining case where sin(ν1t + θ1)≤ 0 on J1, we introduce some additional notation;
see Figure 6, right. We denote by t− (resp. t+) the largest (resp. smallest) zero of sin(ν2t + θ2) which
is < t1 (resp. > t1 +π/ν1), given respectively by

t− =
π

ν2

(⌈
ν2t1+θ2
π

⌉
− 1 −

θ2
π

)
and t+ =

π

ν2

(⌊
ν2(t1+π/ν1)+θ2

π

⌋
+ 1 −

θ2
π

)
.
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0
t1 t2

t1 +
π
ν1

T0

t
0 t− t1 t1 +

π
ν1

t+
T0

t

sin(ν1t + θ1)≥ 0 for t ∈ J1 = [t1, t1 +π/ν1]. sin(ν1t + θ1)≤ 0 for t ∈ J1 = [t1, t1 +π/ν1].

Figure 6. The dashed line is t 7→ A1 sin(ν1t + θ1), the gray line is t 7→ A2 sin(ν2t + θ2), with ν2/ν1 = 1.2.

They both have the property that sin(ν1t± + θ1) > 0, but we wish to quantify this statement in order to
have a uniform lower bound. We observe that we can write

t+ − t− =
π

ν2

(
k + 1 +

⌊
ν2
ν1

⌋)
,

with k ∈ {0, 1}. Indeed, from the definition of t+ and t− and the properties of the floor and ceiling
functions, we see that

k =

⌊
ν2(t1+π/ν1)+θ2

π

⌋
−

⌈
ν2t1+θ2
π

⌉
+ 1 −

⌊
ν2
ν1

⌋
is an integer satisfying

−1 ≤
ν2
ν1

− 1 −

⌊
ν2
ν1

⌋
< k ≤ 1 +

ν2
ν1

−

⌊
ν2
ν1

⌋
< 2,

whence k = 0 or 1. In particular, we remark that the distance between t− and t+ is always less than T0.
This implies that either t− or t+ belongs to [0, T0].

Subcase 2b(i): Suppose t− and t+ both belong to [0, T0]. We have

(t+ − t−)−
π

ν1
=
π

ν2

(
k + 1 +

⌊
ν2
ν1

⌋
−
ν2
ν1

)
=
π

ν2
(k + η)≥

π

ν2
η.

Recalling that t− < t1 and t+ > t1 +π/ν1, we deduce that either t1 − t− ≥ πη/2ν2 or t+ − (t1 +π/ν1)≥

πη/2ν2. We call t2 the zero, among t− and t+, that satisfies this property. Then, the concavity inequality
for the sine function allows to conclude that x t2

1 ≥ A1ν1η/ν2 again.

Subcase 2b(ii): If t− ̸∈ [0, T0], so that t+ ∈ [0, T0], we can estimate the distance of t+ from t1 + π/ν1

and T0 as

t+ −

(
t1 +

π

ν1

)
= t+ − t− −

π

ν1
− (t1 − t−)=

π

ν2
(k + η)− (t1 − t−)≥

π

ν2
η−

π

ν2
(1 − k), (4-7)

where we used the fact that |t1 − t−| ≤ π/ν2 by construction in the last inequality; and

T0 − t+ = T0 − (t+ − t−)− t− =
π

ν2
(1 − k)− t− ≥

π

ν2
(1 − k), (4-8)

where this time we have used that t− < 0 by assumption.
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Now observe that t+ satisfies by definition

t1 +
2π
ν1

− t+ =
π

ν1
−

(
t+ −

(
t1 +

π

ν1

))
≥
π

ν1
−
π

ν2
.

Thus, if |t+ − (t1 +π/ν1)| ≥ (π/2)min(η/ν2, 1/ν1 − 1/ν2), then t2 = t+ lies at distance greater or equal
to (π/2)min(η/ν2, 1/ν1 − 1/ν2) from the boundary of the interval [t1 +π/ν1, t1 + 2π/ν1], to which it
belongs. This allows us to deduce that x t2

1 ≥ A1δ1 using the inequality sin x ≥ 2x/π on [0, π/2] again,
and x t2

2 = 0 by definition of t2 = t+. If on the contrary |t+ − (t1 +π/ν1)| ≤ (π/2)min(η/ν2, 1/ν1 −1/ν2),
then from (4-7), it follows that k = 0, so t2 = t+ +π/ν2 ≤ T0 from (4-8). Then

t1 +
2π
ν1

− t2 =
π

ν1
−
π

ν2
−

(
t+ −

(
t1 +

π

ν1

))
≥
π

2

( 1
ν1

−
1
ν2

)
.

In particular, t2 lies again at large enough distance of the boundary of [t1 +π/ν1, t1 +2π/ν1]. We deduce
as before that x t2

1 ≥ A1δ1 and x t2
2 = 0.

Subcase 2b(iii): It remains to deal with the case where t+ ̸∈ [0, T0], hence t− ∈[0, T0], which is symmetrical.
We write

t1 − t− = −

(
t+ − t1 −

π

ν1

)
+ t+ − t− −

π

ν1
≥ −

π

ν2
+
π

ν2
(k + η)=

π

ν2
η−

π

ν2
(1 − k), (4-9)

t− = T0 − (t+ − t−)+ t+ − T0 ≥
π

ν2
(1 − k), (4-10)

using respectively that |t1 + π/ν1 − t+| ≤ π/ν2 by construction of t+, and t+ > T0 by assumption. By
definition of t− we have

t− −

(
t1 −

π

ν1

)
=
π

ν1
− (t1 − t−)≥

π

ν1
−
π

ν2
,

so t2 = t− satisfies x t2
1 ≥ A1δ1 and x t2

2 = 0 provided |t1 − t−| ≥ (π/2)min(η/ν2, 1/ν1 −1/ν2). Otherwise,
k = 0 in virtue of (4-9), so (4-10) ensures that t2 = t− −π/ν2 ≥ 0. Then we check that

t2 −

(
t1 −

π

ν1

)
=
π

ν1
−
π

ν2
− (t1 − t−)≥

π

2

( 1
ν1

−
1
ν2

)
,

and we conclude similarly to the previous case.

The discussion above shows that (4-4) is true. In particular, (x t2
1 , x t2

2 ) is in the cone C1
ε/2. Using that the

sine function is 1-Lipschitz, we know that for t in a neighborhood of 0, we have

|x t2+t
2 | ≤ A2ν2|t | and x t2+t

1 ≥ A1(δ1 − ν1|t |).

So for t small enough, (x t2+t
1 , x t2+t

2 ) will remain in the cone C1
ε/2. Quantitatively, as soon as t fulfills the

condition

|t |<

δ1

ν1

1 +
ν2

ν1

A2/A1

tan(ε/4)

, (4-11)

we compute that

x t2+t
1 > A1

δ1
ν2

ν1

A2/A1

tan(ε/4)

1 +
ν2

ν1

A2/A1

tan(ε/4)

>
A2ν2

tan(ε/4)
|t | ≥

|x t2+t
2 |

tan(ε/4)
.
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This means that for t satisfying (4-11), the point (x t2+t
1 , x t2+t

2 ) belongs indeed to the cone C1
ε/2. In the

case where t2 = 0 or t2 = T0, we may restrict ourselves to times t satisfying t ≥ 0 or t ≤ 0 in addition
to (4-11), so that in the end, we obtain

∫ T0

0
1C1

ε/2
(x t

1, x t
2) dt ≥ min

T0,

δ1

ν1

1 +
ν2

ν1

A2/A1

tan(ε/4)

. (4-12)

Step 5: Upper bound on the optimal observation time. Now that we have (4-3) and (4-12) at hand, we can
obtain a lower bound independent of the values of A1 and A2. If on the one hand A1/A2 ≤ tan(ε/4)/2,
then (4-3) yields ∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥
π

2ν2
,

while on the other hand, if A2/A1 ≤ 2/tan(ε/4), then (4-12) leads to

∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥ min

T0,

δ1

ν1

1 +
ν2

ν1

2
tan2(ε/4)

≥
ε2

16
min

(
T0,

δ1
ν1+2ν2

)
(4-13)

(to get the second inequality, use that ε/4 ≤ tan(ε/4)≤ 1 since ε ≤ π/2 by assumption). On the whole,
we have ∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥
ε2

32
min

(
π

ν2
,

δ1
ν1+ν2

)
= cε2, (4-14)

and setting Tε = T0 − cε2/2, we deduce∫ Tε

0
1(x t

1,x
t
2)∈ω(ε/2)

dt ≥

∫ T0

0
1(x t

1,x
t
2)∈ω(ε/2)

dt −
c
2
ε2

≥
c
2
ε2.

Therefore the dynamical condition (1-7) holds in time Tε. Setting T = T0−cε2/4>Tε, we use Theorem 1.3
to conclude that observability is true on [0, T ] from ω(ε/2)R \ K, for some R > 0 and for any compact
set K. We can take K to be a ball with radius large enough so that ω(ε/2)R \ K ⊂ ω(ε) (this can be
justified by an argument similar to Lemma 4.1). We conclude that observability holds from ω(ε) in
time T. This proves the upper bound in (1-18).

Step 6: Lower bound on the optimal observation time. Fix ε ∈ (0, π/4). We recall that ν2 > ν1. Our
objective is to exhibit trajectories (x t

1, x t
2) that do not meet the set ω(2ε). They typically look like the

one shown in Figure 3. Take δ > 0 a small parameter to be chosen later. These trajectories we look for
are of the form

x t
1 = A1 sin

(
π
ν1
ν2
(1 − δ)− ν1t

)
and x t

2 = A2s sin(πδ+ ν2t), (4-15)

with s ∈ {+1,−1}, and A1, A2 > 0 to be tuned properly later on as well.



OBSERVABILITY OF THE SCHRÖDINGER EQUATION WITH CONFINING POTENTIAL 1195

0
t0

t1
t2 T0

t

Figure 7. The dashed line is t 7→ x t
1, the gray line is t 7→ x t

2, with ν2/ν1 = 3.9, as defined in (4-15).

Let us introduce three remarkable times t0, t1 and t2: provided δ < 1
2 , the first zeroes of x t

1 and x t
2 in

the interval [0, T0] coincide and are given by

t0 =
π

ν2
(1 − δ).

The next zero of x t
1 is

t1 = t0 +
π

ν1
.

As for x t
2, its first zero that is strictly larger than t1 is given by

t2 =
π

ν2

(
1 +

⌊
δ+

ν2
π

t1
⌋

− δ
)

=
π

ν2

(
1 +

⌊
1 +

ν2
ν1

⌋
− δ

)
= T0 −

π

ν2
δ. (4-16)

This is illustrated in Figure 7. Notice that t2 ≤ T0. By construction, the interval [t1, t2] has length
t2 − t1 ∈ (0, π/ν2], and x t

2 has constant sign on this interval. We choose the sign s involved in the
definition (4-15) of x t

2 in such a way that x t
2 ≤ 0 on [t1, t2]. In particular, the projected trajectory (x t

1, x t
2)

cannot cross C2
2ε in the time interval [t1, t2]. Likewise, since x0

1 > 0, it follows that x t
1 ≤ 0 on [t0, t1], by

definition of t0, t1. In particular, the curve (x t
1, x t

2) cannot be in C1
2ε for t ∈ [t0, t1].

Set T = t2 −πδ/ν2. In each interval [0, t0], [t0, t1] and [t1, T ], we want to exclude the possibility for
the trajectory to be in C1

2ε or C2
2ε by suitably choosing the parameters δ, A1, A2.

To achieve this goal, we are interested in estimating from above and from below x t
1 and x t

2 in these
intervals. We first deal with x t

1. Recalling that the sine function is 1-Lipschitz, we know that

|x t
1| ≤ A1ν1 min(|t − t0|, |t − t1|) ∀t ∈ R. (4-17)

We obtain lower estimates by roughly bounding from below sin x on [0, π] by the “triangle” function
(2/π)min(x, π − x). For t ∈ [0, t0], that leads to

|x t
1| ≥ A1

2
π

min
(
ν1|t0 − t |, |π − ν1(t0 − t)|

)
≥ A1

2ν1
π

min
(
|t0 − t |,

∣∣∣ π
ν1

−
π

ν2
+ δ

π

ν2
+ t
∣∣∣)

≥ A1
2ν1
π

min
(
|t0 − t |, π

ν1
−
π

ν2

)
, (4-18)

for t ∈ [t0, t1] we obtain

|x t
1| ≥ A1

2ν1
π

min(|t − t0|, |t − t1|), (4-19)

while for t ∈ [t1, T ], we obtain

|x t
1| ≥ A1

2
π

min
(
ν1|t − t1|, |π − ν1(t − t1)|

)
≥ A1

2ν1
π

min
(
|t − t1|,

∣∣∣ π
ν1

+ t1 − t
∣∣∣)

≥ A1
2ν1
π

min
(
|t1 − t |, π

ν1
+ t1 − T

)
.
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The last inequality rests on the fact that π/ν1 + t1 ≥ T. More quantitatively, we have

π

ν2
+ t1 = T0 +

π

ν2

(
1 +

ν2
ν1

+ 1 − δ− 2 −

⌊
ν2
ν1

⌋)
= T +

π

ν2
δ+

π

ν2

(
ν2
ν1

−

⌊
ν2
ν1

⌋)
. (4-20)

In particular,
π

ν1
+ t1 − T = π

( 1
ν1

−
1
ν2

)
+

(
π

ν2
+ t1 − T

)
≥ π

( 1
ν1

−
1
ν2

)
+
π

ν2
δ, (4-21)

which leads to
|x t

1| ≥ A1
2ν1
π

min
(
|t1 − t |, π

( 1
ν1

−
1
ν2

))
∀t ∈ [t1, T ].

We obtain a similar estimate for x t
2: it vanishes at t0 and t2, so using again that the sine function is

1-Lipschitz we get
|x t

2| ≤ A2ν2 min(|t0 − t |, |t2 − t |) ∀t ∈ R. (4-22)

Near, t1, we want an accurate upper bound using the fact that x t1
2 ≤ 0 (recall that we chose the sign s

in (4-15) so that this is true): for any t ∈ R, we have

x t
2 ≤ x t

2 − x t1
2 ≤ A2ν2|t − t1|. (4-23)

As for a lower bound, we obtain, for t ∈ [0, t0],

|x t
2| ≥ A2

2
π

min
(
ν2|t0 − t |, |π − ν2(t0 − t)|

)
≥ A2

2ν2
π

min
(
|t0 − t |, δ π

ν2
+ t
)

≥ A2
2ν2
π

min
(
|t0 − t |, δ π

ν2

)
, (4-24)

and, for t ∈ [t1, T ],

|x t
2| ≥ A2

2
π

min
(
|π − ν2(t2 − t)|, ν2|t2 − t |

)
≥ A2

2ν2
π

min
(∣∣∣ π
ν2

− (t2 − t)
∣∣∣, |t2 − t |

)
≥ A2

2ν2
π

min
(
|t − t1|,

π

ν2
δ
)
. (4-25)

This time, the last inequality holds true since on the one hand, t2 − t ≥ t2 − T = πδ/ν2, and on the other
hand, thanks to (4-20) and (4-16), we check that, for any t ∈ [t1, T ],

π

ν2
− (t2 − t)= (t − t1)+

(
π

ν2
+ t1

)
− t2 = (t − t1)+

π

ν2

(
ν2
ν1

−

⌊
ν2
ν1

⌋)
≥ t − t1.

Now we show that the two conditions

2ν1
ν2
ε ≤

A2
A1
δ, (4-26)

2ν2
ν1
ε ≤

A1
A2

min
(

1, ν2
ν1

− 1
)

(4-27)

imply that the curve (x t
1, x t

2) does not cross the set ω(2ε) in the interval [0, T ]. We study the three
intervals [0, t0], [t0, t1] and [t1, T ] separately.
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• Let t ∈ [0, t0]. On the one hand, the condition (4-26) implies that

A1ν1|t − t0|
4ε
π

≤ A2
2ν2
π

min
(
|t − t0|, δ

π

ν2

)
(recall that t0 ≤ π/ν2 and δ ≤ 1/2). Using that tan ε ≤ 4ε/π for ε ∈ [0, π/4], we obtain

A1ν1|t − t0| tan ε ≤ A2
2ν2
π

min
(
|t − t0|, δ

π

ν2

)
,

which leads to tan(ε)|x t
1| ≤ |x t

2| in virtue of (4-17) and (4-24). Therefore (x t
1, x t

2) ̸∈ C1
2ε. On the other

hand, the condition (4-27) implies that

A2ν2|t0 − t |4ε
π

≤ A1
2ν1
π

min
(
|t0 − t |, π

ν1
−
π

ν2

)
(recall again that t0 ≤ π/ν2). Using that tan ε ≤ 4ε/π for ε ∈ [0, π/4], we obtain

A2ν2|t0 − t | tan ε ≤ A1
2ν1
π

min
(
|t0 − t |, π

ν1
−
π

ν2

)
,

which leads to tan(ε)|x t
2| ≤ |x t

1| in virtue of (4-22) and (4-18). Therefore (x t
1, x t

2) ̸∈ C2
2ε.

• On [t0, t1], the situation is slightly simpler because we already know that x t
1 ≤ 0 on this interval, which

means that the trajectory does not cross C1
2ε by construction. In addition, condition (4-27) implies that

A2ν2 min(|t0 − t |, |t1 − t |)4ε
π

≤ A1
2ν1
π

min(|t − t0|, |t1 − t |).

Then (4-22), (4-23) and (4-19) yield tan(ε)x t
2 ≤ |x t

1|; hence (x t
1, x t

2) ̸∈ C2
2ε.

• We finally consider t ∈ [t1, T ]. Notice that by construction, x t
2 ≤ 0 on [t1, T ], so that the trajectory does

not enter C2
2ε. To disprove the fact that it meets C1

2ε, we check that the condition (4-26) implies

A1ν1|t − t1|
4ε
π

≤ A2
2ν2
π

min
(
|t − t1|,

π

ν2
δ
)
,

owing to the fact that π/ν2 ≥ T − t1 ≥ t − t1 (this can be deduced from (4-21)). Then (4-17) and (4-25)
lead to tan(ε)|x t

1| ≤ |x t
2|, which shows indeed that (x t

1, x t
2) ̸∈ C1

2ε.

To sum up, in order to ensure that t 7→ (x t
1, x t

2) does not cross ω(2ε), it suffices to choose A1/A2 properly,
as well as δ, so that (4-26) and (4-27) are fulfilled. If we set

δ =
4ε2

min(1, ν2/ν1 − 1)
and

A1

A2
= 2ε

ν2/ν1

min(1, ν2/ν1 − 1)
, (4-28)

we can check that these two conditions are indeed satisfied.
The conclusion is as follows: we consider a sequence of initial data of the form

ρn =

(
A1,n sin

(
π
ν1
ν2
(1 − δ)

)
, A2,ns sin(πδ)

)
,

with A1,n/A2,n as in (4-28) and A1,n, A2,n →∞ as n →∞. The x component of the trajectory t 7→φt(ρn)

is then of the same form as the projected trajectory (x t
1, x t

2) that we studied. Given that these trajectories do
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not cross ω(2ε), we conclude that the observability condition of Theorem 1.3 is not true in time T, namely

K∞

p0
(ω(2ε), T )= 0.

Yet for any R > 0, as we have already seen earlier, ω(ε)R is contained in ω(2ε) modulo a compact set.
Thus for any R > 0, there exists a compact set K (R)⊂ Rd such that

K∞

p0
(ω(ε)R \ K (R), T )≤ K∞

p0
(ω(2ε), T )= 0.

We conclude thanks to the necessary condition in Theorem 1.3 that observability cannot hold in ω(ε)
in time T. It remains to see that by definition (recall (4-16) and (4-28)), we have

T = t2 −
π

ν2
δ = T0 − 2 π

ν2
δ = T0 − Cε2. (4-29)

This ends the proof of the lower bound of the optimal observation time. □

4.3. Proof of Proposition 1.7. The aim of this proposition is to study observability from measurable
conical sets for the (exact) isotropic harmonic oscillator. We first simplify the situation owing to periodicity
properties of the isotropic quantum harmonic oscillator.

Step 1: Upper bound of the optimal observation time. First recall that there exists a complex number z of
modulus 1 such that

eiπ P/νu = zu(− • ) ∀u ∈ L2(Rd). (4-30)

See for instance11 [Zworski 2012, Section 11.3.1] or [Folland 1989, (4.26)]. In particular, the propagator
e−i t P is 2π/ν-periodic modulo multiplication by z2. This enables us to show that observability holds in
some time T if and only if it holds in time 2π/ν: assume the Schrödinger equation is observable from
ω ⊂ Rd in some time T ; let k be an integer such that 2πk/ν ≥ T. The aforementioned 2π/ν-periodicity
of the harmonic oscillator leads to

∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt ≤ C
∫ 2πk/ν

0
∥e−i t Pu∥

2
L2(ω)

dt

= Ck
∫ 2π/ν

0
∥e−i t Pu∥

2
L2(ω)

dt (4-31)

for any u ∈ L2 so that observability holds in ω in time 2π/ν. In particular, the optimal observation time
is always ≤ 2π/ν. We can further reduce the observation time by (2Ck)−1 (see Lemma A.3), so that the
optimal observation time is in fact T⋆ < 2π/ν. Incidentally, the property (4-30) yields∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt ≤

∫ 2π/ν

0
∥e−i t Pu∥

2
L2(ω)

dt ≤ 2
∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt, (4-32)

which will be useful later on.

11The property (4-30) can be derived from the fact that the spectrum of P is made of half integer multiples of ν, together with
parity properties of eigenfunctions.
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Step 2: Necessary condition. Assume observability holds from ω = ω(6) in some time T. Let k be a
positive integer such that 2πk/ν ≥ T. Using (4-31) and (4-32), we obtain

∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt ≤ 2Ck
∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt.

We choose for u a particular coherent state. Following [Combescure and Robert 2012], for any ρ0 = (x0, ξ0),
we set

ϕρ0(x)=

(
ν

π

)d/4
e−(i/2)ξ0·x0+iξ0·x exp

(
−
ν

2
|x − x0|

2
)
.

Then

e−i t Pϕρ0 = e−(i/2)tνdϕρt , (4-33)

where ρt = φt(ρ0) is the evolution of ρ0 in phase space along the Hamiltonian flow associated with
p(x, ξ)=

1
2(ν

2
|x |

2
+ |ξ |2), that is to say,

ρt =

(
cos(νt)x0 + sin(νt)ξ0

ν
,−ν sin(νt)x0 + cos(νt)ξ0

)
.

Equation (4-33) can be checked by observing that the derivative of both sides agree, or by applying
[Combescure and Robert 2012, Proposition 3]. Selecting an initial datum of the form ρ0 = (0, ξ0) with a
nonzero ξ0, the observability inequality implies

1 = ∥ϕρ0∥
2
L2(Rd )

≤ C
∫ T

0
∥ϕρt ∥

2
L2(ω)

dt ≤ 2kC
∫ π/ν

0
∥ϕρt ∥

2
L2(ω∪−ω)

dt

= 2kC
(
π

ν

)d/2
∫ π/ν

0

∫
ω∪−ω

∣∣∣exp
(
−
ν

2

∣∣∣x − sin(νt)ξ0
ν

∣∣∣2)∣∣∣2 dx dt

= 4k C
ν

(
π

ν

)d/2
∫ π/2

0

∫
ω∪−ω

exp
(
−ν

∣∣∣x − sin(t)ξ0
ν

∣∣∣2) dx dt. (4-34)

We used a change of variables in the integral over t and the fact that sin(x)= sin(π − x) to obtain the
last equality. Next we truncate the integrals in t and in x using respectively a small parameter δ > 0 and a
large parameter R > 0:∫ π/2

0

(
π

ν

)d/2
∫
ω∪−ω

exp
(
−ν

∣∣∣x−sin(t)ξ0
ν

∣∣∣2)dx dt

≤πδ+

∫ (π/2)(1−δ)

π/2δ

(
π

ν

)d/2
(∫

ω∪−ω

exp
(
−ν

∣∣∣x−sin(t)ξ0
ν

∣∣∣2)1BR(sin(t)ξ0/ν)(x)dx+

∫
Rd\BR(0)

e−ν|x |
2
dx
)

dt.

The rightmost integral is controlled by c/R for some constant c > 0. Therefore∫ π/2

0

(
π

ν

)d/2
∫
ω∪−ω

exp
(
−ν

∣∣∣x − sin(t)ξ0
ν

∣∣∣2) dx dt

≤ πδ+
c
R

+

(
π

ν

)d/2
∫ (π/2)(1−δ)

πδ/2

∣∣∣(ω∪ −ω)∩ BR

(
sin(t)ξ0

ν

)∣∣∣ dt.
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We get rid of the sine in the right-hand side by noting that cos t ≥1−2t/π≥δ for any t ∈[πδ/2, π(1−δ)/2],
and changing variables:∫ π(1−δ)/2

πδ/2

∣∣∣(ω∪ −ω)∩ BR

(
sin(t)ξ0

ν

)∣∣∣ dt ≤

∫ π(1−δ)/2

πδ/2

∣∣∣(ω∪ −ω)∩ BR

(
sin(t)ξ0

ν

)∣∣∣ |cos t |
δ

dt

=
1
δ

∫ sin(π(1−δ)/2)

sin(πδ/2)

∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣ ds.

Using that sin x ≥ 2x/π on [0, π/2], we finally deduce that∫ π/2

0

(
π

ν

)d/2
∫
ω∪−ω

exp
(
−ν

∣∣∣x − sin(t)ξ0
ν

∣∣∣2) dx dt

≤ πδ+
c
R

+
1
δ

(
π

ν

)d/2
∫ 1

δ

∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣ ds. (4-35)

We plug this into (4-34) to obtain

1
2

=
1
2
∥ϕρ0∥

2
L2(Rd )

≤ 4k C
δν

(
π

ν

)d/2
∫ 1

δ

∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣ ds, (4-36)

where we absorbed the remainder terms of (4-35) in the left-hand side by choosing δ sufficiently small
and R sufficiently large. We now use a scaling argument in the right-hand side, which is possible since
the set ω∪ −ω is conical: for any s ∈ [δ, 1], writing

θ0 =
ξ0

|ξ0|
and r =

νR
δ|ξ0|

, (4-37)

we have ∣∣∣(ω∪ −ω)∩ BR

(
s ξ0
ν

)∣∣∣= (
s |ξ0|

ν

)d ∣∣(ω∪ −ω)∩ BνR/s|ξ0|(θ0)
∣∣

≤

( R
δ

)d
r−d

|(ω∪ −ω)∩ Br (θ0)|.

After integrating over the s variable, the estimate (4-36) becomes

1 = ∥ϕρ0∥
2
L2(Rd )

≤ 8k C
δν

(
π

ν

)d/2( R
δ

)d
r−d

∣∣(ω∪ −ω)∩ Br (θ0)
∣∣. (4-38)

We now reformulate the right-hand side in terms of the lower density 2−

6̂
defined in (1-20). To do so, we

observe that the triangle inequality yields, for r ∈ (0, 1),

∀x ∈ Br (θ0), ||x | − 1| ≤ |x − θ0| and
∣∣∣∣ x
|x |

− θ0

∣∣∣∣= ∣∣∣∣ x−θ0
|x |

+
θ0
|x |
(1 − |x |)

∣∣∣∣≤ 2r
1−r

,

which in turn leads to

Br (θ0)⊂

{
x ∈ Rd

: 1 − r ≤ |x | ≤ 1 + r and
∣∣∣∣ x
|x |

− θ0

∣∣∣∣≤ 2r
1−r

}
, r ∈ (0, 1).
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Recall that if |ξ0| is large enough, then (4-37) implies r ∈ (0, 1). We conclude by a spherical change of
coordinates that

|(ω∪ −ω)∩ Br (θ0)| ≤

∫ 1+r

1−r

∫
Sd−1

1|θ−θ0|≤2r/(1−r)1ω∪−ω(r̃θ)cd r̃d−1 dσ(θ) dr̃

≤

∫ 1+r

1−r

∫
Sd−1∩B2r/(1−r)(θ0)

16̂(θ)cd2d−1 dσ(θ) dr̃

= cd2d−1
× 2rσ(6̂ ∩ B2r/(1−r)(θ0)). (4-39)

In addition, one has

σ(Br (θ0))≤ c′

drd−1. (4-40)

(In the above estimates, cd and c′

d are constants depending only on the dimension.) Combining (4-38),
(4-39) and (4-40), we obtain

1 = ∥ϕρ0∥
2
L2(Rd )

≤ cdc′

d2d+3k C
δν

(
π

ν

)d/2( R
δ

)d
×

( 2
1−r

)d−1 1

c′

d

(
2r

1−r

)d−1 σ(6̂ ∩ B2r/(1−r)(θ0))

≤ cdc′

d2d+3k C
δν

(
π

ν

)d/2( R
δ

)d( 2
1−r

)d σ(6̂∩B2r/(1−r)(θ0))

σ (B2r/(1−r)(θ0))
.

Recalling that r behaves as 1/|ξ0|, it remains to let ξ0 → ∞ with ξ0/|ξ0| = θ0 arbitrary, to deduce that

1 ≤ cdc′

d2d+3k C
δν

(
π

ν

)d/2(2R
δ

)d
2−

6̂
(θ0) ∀θ0 ∈ Sd−1.

This concludes the proof of the necessary condition.

Step 3: Sufficient condition. Write for short ω= ω(6) again. The fact that 6̂ =6∪−6 has full measure,
namely σ(Sd−1

\ 6̂)= 0, implies that Rd
\ (ω∪−ω) is Lebesgue negligible (recall the definition of ω(6)

in (1-19)). Therefore the left-hand side of (4-32) with k = 1 yields∫ 2π/ν

0
∥e−i t Pu∥

2
L2(ω)

dt ≥

∫ π/ν

0
∥e−i t Pu∥

2
L2(ω∪−ω)

dt =

∫ π/ν

0
∥e−i t Pu∥

2
L2(Rd )

dt =
π

ν
∥u∥

2
L2(Rd )

,

where we used the fact that the propagator is an isometry. □

5. Proofs of observability results from spherical sets

In this section, we give proofs of the results presented in Section 1.4.3, which concern observation sets
that are spherical in the sense of (1-23). Propositions 1.9 and 1.11 are proved in Sections 5.1 and 5.3
respectively. Section 5.2 is dedicated to the proof of Lemma 1.12.

5.1. Proof of Proposition 1.9. The rotation Sθ of angle θ reads

Sθ y =
(
cos θy1 + sin θy2,− sin θy1 + cos θy2, y3, . . . , yd

)
, y = (y1, y2, . . . , yd) ∈ Rd .



1202 ANTOINE PROUFF

In the sequel, we set L0 to be the two-dimensional plane spanned by the vectors

e1 = M(1, 0, 0, . . . , 0) and e2 = M(0, 1, 0, 0, . . . 0).

The two linear maps

5L0 =
1
2 M(Id −Sπ )M−1 and 5L⊥

0
=

1
2 M(Id +Sπ )M−1

are the orthogonal projectors on L0 and L⊥

0 respectively, since M is orthogonal. With the notation of (iii),
we can write, with a slight abuse of notation,

V (x0)= Ṽ0(|M−1x0|) ∀x0 ∈ L0. (5-1)

Let us investigate the properties of the gradient of V on L0.

Lemma 5.1. Let x0 ∈ L0. Then

∇V (x0) ∈ L0 and ∃c = c(|x0|)≥ 0 : ∇V (x0)= cx0.

Proof. Assumptions (i) and (ii) (with θ = π ) yield, for any x ∈ Rd ,

−∇V (−x)= ∇V (x) and M S−πM−1
∇V (M SπM−1x)= ∇V (x). (5-2)

Yet since x0 ∈ L0, we have 5L0 x0 = x0 so that

x0 = −M SπM−1x0, (5-3)

and noticing that Sπ = S−π , we obtain combining the two equations (5-2):

∇V (x0)= −∇V (−x0)= −M SπM−1
∇V (−M SπM−1x0)= −M SπM−1

∇V (x0).

That means exactly that 5L⊥

0
∇V (x0)= 0, or in other words, ∇V (x0) ∈ L0.

Next we prove that ∇V (x0) is collinear with x0. We first get rid of the case x0 = 0: the first equation
in (5-2) implies that ∇V (0)= 0. From now on, we assume that x0 ̸= 0. We compute

d
dθ

M SθM−1
=

d
dθ
(
M SθM−15L0 + M SθM−15L⊥

0

)
= M Sθ+π/2 M−15L0 .

This is true because M SθM−15L⊥

0
is independent of θ (M SθM−1 is the identity in L⊥

0 ). Therefore,
differentiating the equality V (x)= V (M SθM−1x) at θ = 0, we obtain

0 =
d

dθ
V (x0)|θ=0 =

d
dθ

V (M SθM−1x0)|θ=0 = ∇V (x0) · M Sπ/2 M−15L0 x0

= ∇V (x0) · M Sπ/2 M−1x0.

This means that ∇V (x0) is orthogonal to M Sπ/2 M−1x0. Yet the plane L0 is invariant by M SθM−1 and
x0 ⊥ M Sπ/2 M−1x0. Since ∇V (x0) ∈ L0 and L0 has dimension 2, we deduce that ∇V (x0) = cx0 for
some c ∈ R. We claim that c ≥ 0 as a consequence of (iii) that Ṽ0 is nondecreasing. Indeed for t > 0
close to zero, using (5-1), the Taylor formula at order 1 yields

0 ≤ Ṽ0((1 + t)|M−1x0|)− Ṽ0(|M−1x0|)= V (x0 + t x0)− V (x0)= t∇V (x0) · x0 + o(t).
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Dividing by t > 0, we find that ∇V (x0) ·x0 = c|x0|
2
≥ 0. Thus c = ∇V (x0) ·x0/|x0|

2 depends only on |x0|

since V restricted to L0 is radial. □

This lemma allows us to exhibit periodic circular orbits of the Hamiltonian flow of p. For any x0 ∈ L0,
denoting by c the scalar such that ∇V (x0)= cx0, the phase space curve

x t
= M S√

ct M−1x0, ξ t
=

√
cM S√

ct+π/2 M−1x0 (5-4)

is the trajectory of the Hamiltonian flow with initial data (x0,
√

cM Sπ/2 M−1x0). This follows from
uniqueness in the Picard–Lindelöf theorem, since the above curve solves on the one hand

d
dt

x t
=

√
cM S√

ct+π/2 M−15L0 x0 = ξ t ,

and on the other hand, in view of (5-3) and observing that |x t
| = |x0| for any t ,

d
dt
ξ t

= cM S√
ct+πM−15L0 x0 = cM S√

ct M−1(5L⊥

0
−5L0)x0 = −cx t

= −∇V (x t).

To conclude, we argue as follows: since by assumption observability holds from ω(I ) in time T > 0,
the necessary condition of Theorem 1.3 implies that there exists R > 0 such that

∃ϵ > 0, ∃A > 0 : ∀|ρ| ≥ A,
∫ T

0
1ω(I )R×Rd (φt(ρ)) dt ≥ ϵ.

Let x0 ∈ L0 be such that |x0| ≥ A. We consider the Hamiltonian trajectory issued from the point
(x0,

√
c(x0)M−1Sπ/2 Mx0) constructed in (5-4). Then |x t

| is constant over time, which implies that

ϵ ≤

∫ T

0
1ω(I )R×Rd (φt(ρ)) dt =

∫ T

0
1ω(I )R (x

t) dt = T 1IR (|x0|),

whence |x0| ∈ IR . We deduce that
∀s ∈ R+, IR ∩ [s, s + A] ̸= ∅,

which implies the desired result (1-24) with r = A + 2R. □

5.2. Proof of Lemma 1.12. Firstly we assume that ν2/ν1 is rational: we write it as an irreducible
fraction p/q . The number T = 2πp/ν2 = 2πq/ν1 is the period of the Hamiltonian flow associated with
1
2(x · Ax + |ξ |2). Without loss of generality, we can assume that A is diagonal, and that the eigenvectors
associated with ν2

1 and ν2
2 are the vectors (1, 0) and (0, 1) of the canonical basis of R2.

We want to prove that 3(ν2/ν1) defined in (1-26) is equal to the quantity

30 = sup
ρ0∈R4\{0}

mint∈[0,T ]|(π ◦φt)(ρ0)|

maxt∈[0,T ]|(π ◦φt)(ρ0)|
, (5-5)

where we recall that π : (x, ξ) 7→ x .
We start with two remarks, related to explicit expressions of the Hamiltonian flow. First we can replace

the supremum on R4 by a maximum on a compact set parametrizing trajectories, e.g., the unit sphere S3,
because the Hamiltonian flow is homogeneous of degree 1, that is φt(λρ0)= λφt(ρ0) for any scalar λ ∈ R
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(it fact φt is a linear map for all t). Second, since |x t
|
2
= |x t

1|
2
+|x t

2|
2, it will be easier to compute 32

0. In
view of these remarks, and writing the Hamiltonian trajectories in action-angle coordinates:

x t
1 = A1 sin(ν1t + θ1) and x t

2 = A2 sin(ν2t + θ2), (5-6)

we want to study

32
0 = sup

A2
1+A2

2=1
θ1,θ2∈R

mint∈[0,T ]

(
A2

1 sin2(ν1t + θ1)+ A2
2 sin2(ν2t + θ2)

)
maxt∈[0,T ]

(
A2

1 sin2(ν1t + θ1)+ A2
2 sin2(ν2t + θ2)

)
= sup

λ∈[0,1]

θ1,θ2∈R

mint1∈[0,T ]

(
(1 − λ) sin2(ν1t1 + θ1)+ λ sin2(ν2t1 + θ2)

)
maxt2∈[0,T ]

(
(1 − λ) sin2(ν1t2 + θ1)+ λ sin2(ν2t2 + θ2)

)
= sup

λ∈[0,1]

θ1,θ2∈R

mint1∈[0,T ]

(
(1 − λ) sin2(ν1t1 + θ1)+ λ sin2(ν2t1 + θ2)

)
1 − mint2∈[0,T ]

(
(1 − λ) cos2(ν1t2 + θ1)+ λ cos2(ν2t2 + θ2)

) .
In view of the periodicity in the variables θ1 and θ2, the supremum in the variables λ, θ1, θ2 is in fact
a supremum over (λ, θ1, θ2) ∈ [0, 1] × [0, 2π ] × [0, 2π ]. A compactness and continuity argument
shows that this supremum is attained for some triple (λ, θ1, θ2). Furthermore, one can check that
maxλ,θ1,θ2 = maxθ1,θ2 maxλ. Thus we should simplify the problem first by considering fixed values for θ1

and θ2, and maximizing with respect to these variables ultimately. Therefore our objective is to compute

32
θ1,θ2

= max
λ∈[0,1]

mint1∈[0,T ]

(
(1 − λ) sin2(ν1t1 + θ1)+ λ sin2(ν2t1 + θ2)

)
1 − mint2∈[0,T ]

(
(1 − λ) cos2(ν1t2 + θ1)+ λ cos2(ν2t2 + θ2)

) . (5-7)

We can further simplify this by rewriting in more pleasant terms the minima in the numerator and the
denominator. It relies on the following fact.

Step I: Simplification of the optimization problem. The minimum we want to estimate involves a sum of
two squared sine functions that oscillate at different frequencies. Intuitively, it looks reasonable that the
minimum of such a sum is attained between two zeroes that achieve the minimal distance between a zero
of the first sine function, and a zero of the second. This is a motivation to introduce

d0 = d0(θ1, θ2)=
4pq

T
min

sin(ν j t j +θ j )=0
j=1,2

|t1 − t2|. (5-8)

It is indeed a minimum, and not only an infimum, thanks to the rational ratio between ν1 and ν2, or
equivalently, thanks to the periodicity of the Hamiltonian flow. We can give an explicit expression of this
quantity reasoning as follows: the numbers t1 and t2 are such that sin(ν j t j + θ j )= 0, j = 1, 2, if and only
if there exist two integers k1 and k2 such that

ν j t j + θ j = k jπ.

Therefore

|t1 − t2| =

∣∣∣π(k1
ν1

−
k2
ν2

)
−

(
θ1
ν1

−
θ2
ν2

)∣∣∣= T
2pq

∣∣∣(k1 p − k2q)−
(

p θ1
π

− q θ2
π

)∣∣∣.
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Yet since p and q are coprime integers, it follows from Bézout’s identity that k1 p − k2q can take any
value in Z when we vary k1 and k2. We deduce that

d0 = 2 dist
(

p θ1
π

− q θ2
π
,Z
)

= dist
(

p θ1
π/2

− q θ2
π/2

, 2Z
)
.

Incidentally, this expression implies that d0 ∈ [0, 1]. Now we claim that

min
t∈[0,T ]

(
(1 − λ) sin2(ν1t + θ1)+ λ sin2(ν2t + θ2)

)
= min

s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

))
. (5-9)

This amounts to proving that the minimum in t in the left-hand side of (5-9) is attained between two zeros
t1, t2 of sin(ν1t + θ1) and sin(ν2t + θ2) such that |t2 − t1| = T d0/4pq. We first show that the minimum
in s (in the right-hand side) is less than the minimum in t (in the left-hand side). To do so, we pick
t0 ∈ [0, T ] that attains the minimum in t . We choose t j two zeroes of sin(ν j t + θ j ) respectively, j = 1, 2,
that are the closest possible to t0. Due to periodicity, they satisfy |t j − t0| ≤ π/(2ν j ). That t0 attains the
minimum means that it is a critical point of the function

F : t 7→ (1 − λ) sin2(ν1t + θ1)+ λ sin2(ν2t + θ2)= (1 − λ) sin2(ν1(t − t1))+ λ sin2(ν2(t − t2)). (5-10)

Classical trigonometry formulae then yield

(1 − λ)ν1 sin(2ν1(t0 − t1))+ λν2 sin(2ν2(t0 − t2))= F ′(t0)= 0. (5-11)

Recalling that |2ν j (t0 − t j )| ≤ π , we see that sin(2ν j (t0 − t j )) is of the same sign as t0 − t j , thus leading
to the condition that

(t0 − t1)(t0 − t2)≤ 0,

or in other words, t0 lies between t1 and t2. Let s0 ∈ [0, 1] be such that t0 = (1 − s0)t1 + s0t2. We obtain

F(t0)= (1 − λ) sin2(ν1(t0 − t1))+ λ sin2(ν2(t0 − t2))

= (1 − λ) sin2(ν1s0(t2 − t1))+ λ sin2(ν2(1 − s0)(t1 − t2)).

We finally use that |t1 − t2| ≥ T d0/4pq and the monotonicity of the sine function on [0, π/2] to deduce
one inequality in (5-9), namely:

min
t∈[0,T ]

F(t)≥ min
s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

))
. (5-12)

To check the converse inequality, we proceed as follows: we pick t1 and t2, zeroes of sin(ν j t + θ j )

respectively, that satisfy |t1 − t2| = T d0/4pq. Denote by J the closed interval with endpoints t1, t2. Let
t0 ∈ J be a point where F restricted to J attains its minimum. Then introducing a parameter s ∈ [0, 1]

such that t = (1 − s)t1 + st2, we obtain

F(t0)≤ F(t)= (1 − λ) sin2
(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

)
for all s ∈ [0, 1]. This results in

min
t∈[0,T ]

F(t)≤ min
s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sd0

)
+ λ sin2

(
π/2

q
(1 − s)d0

))
,
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which shows together with (5-12) that (5-9) is true. We observe in the definition of 3θ1,θ2 (see (5-7)) that
a similar minimum is involved with cosine functions instead of sine functions. To reduce to the case of
sine functions and use (5-9), we simply recall that cos(x)= sin(x +π/2). We obtain

min
t∈[0,T ]

(
(1 − λ) cos2(ν1t + θ1)+ λ cos2(ν2t + θ2)

)
= min

t∈[0,T ]

(
(1 − λ) sin2

(
ν1t + θ1 +

π

2

)
+ λ sin2

(
ν2t + θ2 +

π

2

))
= min

s∈[0,1]

(
(1 − λ) sin2

(
π/2

p
sdπ/2

)
+ λ sin2

(
π/2

q
(1 − s)dπ/2

))
,

where we set (recall the definition of d0 in (5-8))

dπ/2 = dπ/2(θ1, θ2)= d0

(
θ1 +

π

2
, θ2 +

π

2

)
= dist

(
p θ1
π/2

− q θ2
π/2

+ p − q, 2Z
)
.

Depending on whether p and q have the same parity, we can state that

dπ/2 =

{
d0 if p − q ≡ 0 (mod 2),

1 − d0 if p − q ≡ 1 (mod 2).

With this at hand, we can rewrite 32
θ1,θ2

defined in (5-7) as

32
θ1,θ2

= max
λ∈[0,1]

mins1∈[0,1]

(
(1 − λ) sin2

(
π/2

p s1d0

)
+ λ sin2

(
π/2

q (1 − s1)d0

))
1 − mins2∈[0,1]

(
(1 − λ) sin2

(
π/2

p s2dπ/2
)

+ λ sin2
(
π/2

q (1 − s2)dπ/2
)) .

Step II: Computation of 32
θ1,θ2

. We set, for any λ ∈ [0, 1] and s ∈ [0, 1],

gλ(s)= gλ,d0(s)= (1 − λ) sin2
(π/2

p
sd0

)
+ λ sin2

(π/2
q
(1 − s)d0

)
.

In the perspective of computing 32
θ1,θ2

, we first show the following result.

Lemma 5.2. One has
max
λ∈[0,1]

min
s∈[0,1]

gλ(s)= gλ0(s0)= sin2
(
π/2
p+q

d0

)
,

where s0 = p/(p + q) and λ0 = q/(p + q).

Proof. Firstly, we observe that gλ(s0) is independent of λ, since it solves

sin2
(π/2

p
s0d0

)
= sin2

(π/2
q
(1 − s0)d0

)
.

This remarkable property implies that for any λ ∈ [0, 1], we have

∀λ′
∈ [0, 1], min

s∈[0,1]

gλ′(s)≤ gλ′(s0)= gλ(s0),

which results in
max
λ′∈[0,1]

min
s∈[0,1]

gλ′(s)≤ gλ(s0) ∀λ ∈ [0, 1].
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Now we to show that the equality is reached when λ = λ0 introduced in the statement. Noticing that
(1 − λ0)/p = λ0/q = 1/(p + q), we obtain, using classical trigonometry formulae,

g′

λ0
(s)= π

2
d0

(
2 1

p
(1−λ0)cos

(
π/2

p
sd0

)
sin
(
π/2

p
sd0

)
−2 1

q
λ0 cos

(
π/2

q
(1−s)d0

)
sin
(
π/2

q
(1−s)d0

))
=
π/2
p+q

d0

(
sin
(
π

p
sd0

)
−sin

(
π

q
(1−s)d0

))
=

π

p+q
d0 cos

(
π

2
d0

( s
p

+
1−s

q

))
sin
(
π

2
d0

( s
p

−
1−s

q

))
=

π

p+q
d0 cos

(
π

2
d0

( s
p

+
1−s

q

))
sin
(
π

2
d0

( 1
p

+
1
q

)
(s −s0)

)
.

We observe that the cosine is always nonnegative for any s ∈ [0, 1], because d0 ≤ 1. As for the sine, it is
nonpositive for s ≤ s0 and nonnegative for s ≥ s0. We deduce that g′

λ0
(s)≤ 0 on [0, s0] and g′

λ0
(s)≥ 0

on [s0, 1]. Therefore, the minimum of gλ0 is attained at s0. □

Regarding the denominator in the definition of 32
θ1,θ2

, observing that λ0 and s0 in the above lemma do
not dependent on d0 or dπ/2, we find

min
λ∈[0,1]

(
1 − min

s∈[0,1]

(
(1 − λ) sin2

(
π/2

q
sdπ/2

)
+ λ sin2

(
π/2

p
(1 − s)dπ/2

)))
= 1 − max

λ∈[0,1]

min
s∈[0,1]

gλ,dπ/2(s)

= 1 − gλ0,dπ/2(s0)

= cos2
(
π/2
p+q

dπ/2
)
.

This implies that λ0 maximizes the minimum of the numerator and minimizes the maximum of the
denominator at once. Moreover, when λ= λ0, the minimum of the denominator and the maximum of the
numerator are reached at a common value s0. Therefore

32
θ1,θ2

=

sin2
(
π/2
p+q d0

)
cos2

(
π/2
p+q dπ/2

) .
When p and q have the same parity, we have dπ/2 = d0, so that

3θ1,θ2 = tan
(
π/2
p+q

d0

)
. (5-13)

When they do not have the same parity, then dπ/2 = 1 − d0 and we obtain

3θ1,θ2 =

sin
(
π/2
p+q d0

)
cos
(
π/2
p+q (1 − d0)

) = sin
(
π/2
p+q

)
− cos

(
π/2
p+q

) sin
(
π/2
p+q (1 − d0)

)
cos
(
π/2
p+q (1 − d0)

)
= sin

(
π/2
p+q

)
− cos

(
π/2
p+q

)
tan
(
π/2
p+q

(1 − d0)
)
. (5-14)
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Recall that in the above formulae, the dependence on the phase shifts θ1 and θ2 is hidden in d0. Thus
it remains to optimize over these parameters θ1, θ2 to compute the quantity 30 defined in (5-5). In the
first case (5-13), we notice that d0 ≤ 1, and that the equality is achieved for θ1 = π/(2p) and θ2 = 0, for
instance, so that

30 = tan
(
π/2
p+q

)
.

In the second case (5-14), the maximum is reached for d0 = 1 as well, so that

30 = sin
(
π/2
p+q

)
.

The conclusion is that 30 =3(p/q), where the function 3 is the one defined in (1-26).

Step III: Irrational case. We now consider the case where ν2/ν1 ̸∈ Q. To obtain the sought result, it
suffices to show that for any nonzero initial data (A1, A2, θ1, θ2) of the flow (in action-angle coordinates),
the projected trajectory

x t
1 = A1 sin(ν1t + θ1), x t

2 = A2 sin(ν2t + θ2),

satisfies inft∈R|x t
| = 0. Let us consider the convergents (p j/q j ) j∈N of ν2/ν1, in irreducible form (see

Remark 1.14). In view of (1-31), we introduce ϵ j ∈ [−1, 1] such that

ν2

ν1
=

p j

q j
+
ϵ j

q2
j
. (5-15)

We exhibit a sequence of times (t j ) j∈N such that x t j
1 = 0 and x t j

2 → 0 as j → ∞. Since p j and q j are
coprime integers, we can fix for each j ∈ N a pair of Bézout coefficients (k j , l j ) ∈ Z2 such that

k j p j − l j q j = 1, with |k j | ≤ q j . (5-16)

Set

a j =

⌊
θ1
π

p j −
θ2
π

q j

1 + ϵ j
k j
q j

⌋
and t j =

a j k jπ−θ1

ν1
. (5-17)

By definition of t j , we have x t j
1 = 0. Thus it remains to check that x t j

2 → 0 as j → ∞. We have

ν2t j + θ2 − a j l jπ =

(
p j

q j
+
ϵ j

q2
j

)
×π

(
a j k j −

θ1

π

)
+ θ2 − a j l jπ

=
p j

q j
a j k jπ − a j l jπ +

ϵ j

q2
j
×π

(
a j k j −

θ1

π

)
+
π

q j

(
θ2

π
q j −

θ1

π
p j

)
= a j

π

q j
+ a jϵ j

k j

q2
j
π −

θ1ϵ j

q2
j

−
π

q j

(
θ1

π
p j −

θ2

π
q j

)

=
π

q j

(
1 + ϵ j

k j

q j

)(
a j −

θ1
π

p j −
θ2
π

q j

1 + ϵ j
k j
q j

)
−
θ1ϵ j

q2
j
.
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We used (5-15) to obtain the first equality and (5-16) for the third. In the last line, the two factors between
parentheses are bounded. Indeed, the first factor is bounded by 2 since we chose k j such that |k j | ≤ q j

in (5-16) and because |ϵ j | ≤ 1 from (5-15). The second factor is bounded by 1 due to the definition
of a j (5-17). Recalling that q j → ∞ since ν2/ν1 is irrational, we obtain ν2t j + θ2 = a j l jπ + o(1) as
j → ∞, hence x t j

2 → 0, and the proof of Lemma 1.12 is complete. □

5.3. Proof of Proposition 1.11. As we did in Section 5.2, we assume without loss of generality that A is
diagonal, with eigenvalues ν2

1 and ν2
2 associated with the eigenvectors (1, 0) and (0, 1) in R2.

Step 1: Construction of an equivalent shrunk observation set. Recall that the sufficient condition of
Theorem 1.3 implies observability from an “enlarged” observation set. This leads us to construct a shrunk
set Ĩ ⊂ I, such that ĨR = Ĩ +(−R, R) is contained in I up to a bounded set, so that the same is true for the
sets ω( Ĩ ) and ω(I ). In the lemma below, when I ⊂ R+, we use the notation IR :=

⋃
s∈I (s − R, s + R).

Lemma 5.3 (shrunk observation set). Let I =
⋃

n In , where In ⊂ R+ are open intervals, with |In| → +∞

if the union is infinite. Then there exists a family of disjoint open intervals ( J̃n)n in R+ (with | J̃n| → +∞

if there are infinitely many of them) such that the set Ĩ =
⋃

n J̃n satisfies the following:

(i) Ĩ ⊂ I .

(ii) For any R > 0, the set ĨR \ I is bounded.

(iii) For any R > 0, one has κ⋆( Ĩ )= κ⋆( ĨR)= κ⋆(I )= κ⋆(IR).

Proof. Recall the definition of κ⋆ in (1-25). We write the open set I as a union of disjoint open intervals
I =

⋃
n Jn . Let us fix R > 0. We first deal with the case where there are only finitely many Jn’s. If I

is bounded, one has κ⋆(I ) = κ⋆(IR) = 0 and Ĩ = ∅ satisfies the conclusions of the lemma. If I is not
bounded, then there is an index n0 for which Jn0 is of the form Jn0 = (a,+∞). Then for any R > 0 the
equality κ⋆(I )= κ⋆(IR)= 1 and Ĩ = Jn0 satisfies the conclusions of the lemma as well.

We now consider the case where there are infinitely many Jn’s. By assumption, one has |Jn| → +∞

as n → ∞. Writing Jn = (an, bn), with an < bn <∞, we define for any index n the interval

J̃n =
(
an +

1
2

√
4 + δn, bn −

1
2

√
4 + δn

)
, where δn = min(an, bn − an).

Since the Jn’s are disjoint and |Jn| = bn − an → +∞, we also have an → +∞, so δn → +∞ too.
Incidentally, one readily checks that | J̃n| → +∞ as well. Thus, defining

Ĩ =

⋃
n

J̃n,

we have Ĩ ⊂ I, namely the property (i), and given any R > 0, there are finitely many n’s such that
R ≥

√
δn/2. This implies that the thickened set ĨR is contained in I modulo a bounded set, and hence

we obtain (ii). The crucial point of this construction is claim (iii). As a consequence of the inclusions
Ĩ ⊂ ĨR and I ⊂ IR , we have κ⋆( Ĩ ) ≤ κ⋆( ĨR) and κ⋆(I ) ≤ κ⋆(IR). Moreover, in virtue of (ii), we
can write ĨR = ( ĨR ∩ I ) ∪ A, where A = ĨR \ I is bounded. Since (1/r)|A ∩ [0, r ]| ≤ (1/r)|A| → 0
as r → +∞, one can check that κ⋆( ĨR) ≤ κ⋆( ĨR ∩ I ) ≤ κ⋆(I ). To sum up, we have proved so far that
κ⋆( Ĩ )≤ κ⋆( ĨR)≤ κ⋆(I )≤ κ⋆(IR).
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Thus, in order to prove (iii), it remains to check that κ⋆(IR)≤κ⋆( Ĩ ). Unless we are in the straightforward
case κ⋆(IR)= 0, we pick κ ∈ (0, κ⋆(IR)), so that by definition of κ⋆, we have

∃c > 0, ∃r0 > 0 : ∀r ≥ r0,
1
r
|IR ∩ [κr, r ]| ≥ c. (5-18)

In the sequel, to simplify notation, we write J R
n = (Jn)R . Up to enlarging r0, we can assume that for

any index n such that J R
n ∩ [κr0,+∞) ̸= ∅, we have δn ≥ 5 + 8R (recall that δn → +∞). Fix an r ≥ r0.

Then there is a finite (possibly empty) set of indices {nk}k such that J R
nk

⊂ [κr, r ]. Assume first that

1
r

∣∣∣∣⋃
k

J R
nk

∩ [κr, r ]

∣∣∣∣= 1
r

∑
k

|J R
nk

| ≥
c
2
. (5-19)

Then
1
r
| Ĩ ∩ [κr, r ]| ≥

1
r

∑
k

| J̃nk | =
1
r

∑
k

(
|J R

nk
| −

(√
4 + δnk + 2R

))
≥

1
r

∑
k

(
1 −

√
4 + δnk + 2R
δnk + 2R

)
|J R

nk
| ≥

1
r

∑
k

(
1 −

√
4
δ2

n
+

1
δnk

−
2R

δn + 2R

)
|J R

nk
|.

To obtain the second to last inequality, we used the fact that by definition of δn , we have |Jn| ≥ δn , which
implies in particular that |J R

n | ≥ δn + 2R. Using in the last line that δnk ≥ 5 + 8R, together with (5-19),
we obtain

1
r
| Ĩ ∩ [κr, r ]| ≥

(
1 −

√
9
25

−
1
5

)
1
r

∑
k

|J R
nk

| ≥
1
5

×
c
2
. (5-20)

Otherwise, if now (5-19) is not satisfied, then recalling (5-18), we have

1
r

∣∣∣∣(IR \

⋃
k

J R
nk

)
∩ [κr, r ]

∣∣∣∣≥ c
2
.

Any interval J R
n ⊂ IR \

⋃
k J R

nk
intersecting [κr, r ] must contain κr or r , otherwise it would satisfy

J R
n ∩ [κr, r ] = ∅, or J R

n ⊂ (κr, r) (the latter would imply that n ∈ {nk}k). Therefore, there are at most
two such intervals. We deduce that there is an index n⋆ such that J R

n⋆ ̸⊂ [κr, r ] but J R
n⋆ ∩[κr, r ] ̸= ∅, with

1
r
|J R

n⋆ ∩ [κr, r ]| ≥
c
4
.

Writing J R
n⋆ = (an⋆−R, bn⋆+R), the fact that J R

n⋆∩[κr, r ] ̸=∅ imposes that an⋆−R ≤ r ; hence an⋆ ≤ r +R.
Thus we obtain

1
r
| Ĩ ∩ [κr, r ]| ≥

1
r
| J̃n⋆ ∩ [κr, r ]| ≥

1
r
(
|J R

n⋆ ∩ [κr, r ]| −
√

4 + δn⋆ − 2R
)

≥
c
4

−

√
4 + r + R + 2R

r
. (5-21)

We used the fact that δn⋆ ≤ an⋆ ≤ r + R to obtain the last inequality. In view of the estimates (5-20)
and (5-21), in any case we have

1
r
| Ĩ ∩ [κr, r ]| ≥ min

(
c

10
,

c
4

−

√
4 + r + R + 2R

r

)
.
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We conclude that

lim inf
r→+∞

1
r
| Ĩ ∩ [κr, r ]|> 0.

Recalling that κ is any arbitrary number < κ⋆(IR), we finally get the desired converse inequality
κ⋆( Ĩ )≥ κ⋆(IR). Thus (iii) is proved, which concludes the proof of the lemma. □

In the sequel, we will proceed as follows: to prove that κ⋆(I ) > 3(ν2/ν1) is a sufficient condition to
have observability from ω(I ), we will check that the dynamical condition (1-7) of Theorem 1.3 is true in
the smaller set ω( Ĩ ), where Ĩ is given by Lemma 5.3. To show that it is also necessary, we will check
that the condition (1-7) is violated in the larger set ω(I )R = ω(IR) for any R > 0.

Step 2: Geometric condition of observability for rationally dependent characteristic frequencies. We
investigate the validity of the dynamical condition (1-7) of Theorem 1.3. In the case where ν2/ν1 ∈ Q,
writing ν2/ν1 = p/q as an irreducible fraction, the period of the Hamiltonian flow is given by T0 =

2πp/ν2 = 2πq/ν1. We write for short 3=3(ν2/ν1) and κ⋆ = κ⋆(I ). Our goal now is to reformulate the
dynamical condition (1-7) using the area formula.

Proposition 5.4 (area formula [Evans and Gariepy 2015, Theorem 3.9]). Let J ⊂ R be a bounded interval
and let γ : J → Rn be a Lipschitz curve. Then γ is differentiable at Lebesgue-almost every point in J and
for any Borel set E ⊂ Rn, one has∫

J
1E(γ (t))|γ ′(t)| dt =

∫
Im γ∩E

#γ−1({x}) dH1(x).

Here, Im γ = {γ (t) : t ∈ J } ⊂ Rn, #γ−1({x}) stands for the cardinality of the set {t ∈ J : γ (t)= x}, and H1

is the one-dimensional Hausdorff measure.

We will apply this formula to a curve of the form γ : t 7→ |x t
| ∈ R defined on J = (0, T ), where

t 7→ (x t , ξ t) is a trajectory of the Hamiltonian flow. Calculations will involve the inverse Jacobian |γ ′(t)|−1.
Using anisotropy12 of the harmonic oscillator (p ̸= q), we can check that the Jacobian vanishes only at a
finite number of points.

Lemma 5.5. Let t 7→ (x t , ξ t) be a trajectory of the Hamiltonian flow of an anisotropic harmonic oscillator,
with initial datum ρ0 = (x0, ξ0). Then the curve γ : R ∋ t 7→ |x t

| ∈ R+ is Lipschitz with constant
√

2p(ρ0).
If ρ0 ̸= 0, then γ is of class C∞ in R \ {γ = 0}. Moreover, the set

Sγ := {t ∈ R : γ (t)= 0 or γ ′(t)= 0}

is locally finite, namely for any bounded interval I ⊂ R, the set Sγ ∩ I is finite. In addition, for any
bounded interval I ⊂ R, one has

∃k = k(I ) ∈ N : ∀s ∈ R+, #γ−1({s})∩ I ≤ k. (5-22)

12In the excluded isotropic case (p = q = 1), one can choose (x0, ξ0) so that |x t
| is constant, as we did in the proof of

Proposition 1.9 (see Section 5.1). In such a situation, the set Im γ ⊂ R+ is reduced to a point. This is a very singular situation,
since the Jacobian |γ ′(t)| is identically zero.
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Proof. That γ is Lipschitz follows from the inverse triangle inequality, the Hamilton equations (1-6) and
the fact that p(x, ξ)= V (x)+ 1

2 |ξ |2 is preserved by the flow:

|γ (t2)− γ (t1)| ≤ |x t2 − x t1 | ≤ |t2 − t1| sup
t∈R

|ξ t
| ≤ |t2 − t1|

√
2p(ρ0).

From now on, we assume that ρ0 ̸= 0. First notice that the set {γ = 0} is closed since γ is continuous.
Given that t 7→ x t is smooth, the curve γ is smooth in a neighborhood of any point t ∈ R \ {γ = 0}, so
that γ ∈ C∞(R \ {γ = 0}). To show that Sγ is locally finite, it is sufficient to prove that it is closed and
also discrete, namely that it is made of isolated points.13

We first check that it is closed by observing that the map f : t 7→γ 2(t)=|x t
|
2 belongs to C∞(R) and that

Sγ = {t ∈ R : f ′(t)= 0}. (5-23)

To check this equality, we use the fact that f ′(t)=2γ (t)γ ′(t) for all t ∈R\Sγ . If t ̸∈ Sγ , then it follows that
γ (t)γ ′(t) ̸=0. Conversely, if t ∈ Sγ , either γ (t) ̸=0, so that γ ′(t)=0, in which case f ′(t)=2γ (t)γ ′(t)=0;
or γ (t)= 0, which implies that x t

= 0, hence f ′(t)= 2x t
· ξ t

= 0. This justifies (5-23).
Thus it remains to show that Sγ is discrete. Let us compute the derivatives of f up to order 4:

f ′(t)= 2x t
· ξ t , (5-24)

f (2)(t)= 2|ξ t
|
2
− 2x t

· Ax t , (5-25)

f (3)(t)= −4ξ t
· Ax t

− 2ξ t
· Ax t

− 2x t
· Aξ t

= −8ξ t
· Ax t , (5-26)

f (4)(t)= 8(|Ax t
|
2
− ξ t

· Aξ t). (5-27)

Let us write the Taylor expansion of f ′ at order 3 near t0 ∈ R:

f ′(t)= f ′(t0)+ (t − t0) f (2)(t0)+
(t − t0)2

2
f (3)(t0)+

(t − t0)3

6
f (4)(t0)+ o((t − t0)3). (5-28)

Suppose that t0 ∈ Sγ . Then f ′(t0)= 0 in virtue of (5-23). If f (2)(t0) ̸= 0, then (5-28) yields

| f ′(t)| ≥
| f (2)(t0)|

2
|t − t0|

for all t in a neighborhood U of t0. In particular, Sγ ∩ U = {t0}, meaning that t0 is isolated. Likewise,
if f (2)(t0)= 0 but f (3)(t0) ̸= 0, then (5-28) leads to

| f ′(t)| ≥
| f (3)(t0)|

4
|t − t0|2

in a neighborhood of t0, so that t0 is isolated again.
Now, if f (2)(t0) = f (3)(t0) = 0, we show that necessarily f (4)(t0) ̸= 0. In view of (5-24), (5-25),

and (5-26), we have

x t0 · ξ t0 = 0, |ξ t0 |2 = x t0 · Ax t0, and ξ t0 · Ax t0 = 0. (5-29)

13If S ⊂R is closed and discrete, the for any compact interval I ⊂R, the set S ∩ I is compact. Since S is discrete, the set S ∩ I
can be covered by open sets containing at most one element of S. Then, extracting a finite subcovering shows that S ∩ I is finite.
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The first and third equalities mean that ξ t0 ⊥ x t0 and ξ t0 ⊥ Ax t0. Moreover, the second equality ensures
that x t0 ̸= 0 and ξ t0 ̸= 0, otherwise (x t0, ξ t0) = (0, 0); hence ρ0 = 0. Since we are in two dimensions,
we deduce that Ax t0 and x t0 are parallel, and therefore x t0 is an eigenvector of A. Since ξ t0 ⊥ x t0 and
ξ t0 ̸= 0, we deduce that ξ t0 is also an eigenvector, associated with a different eigenvalue since A has
two distinct eigenvalues by assumption. We relabel ν1 and ν2 so that Ax t0 = ν2

x x t0 and Aξ t0 = ν2
ξ ξ

t0 .
Plugging this into the second equality in (5-29) yields |ξ t0 |2 = ν2

x |x
t0 |2, from which we deduce that the

fourth derivative (5-27) cannot vanish at t0, given that the oscillator is anisotropic (νx ̸= νξ ):

|Ax t0 |2 − ξ t0 · Aξ t0 = ν4
x |x

t0 |2 − ν2
ξ |ξ

t0 |2 = ν2
x (ν

2
x − ν2

ξ )|x
t0 |2 ̸= 0.

Therefore (5-28) implies that

| f ′(t)| ≥
| f (4)(t0)|

12
|t − t0|3

in a neighborhood of t0, that is to say the critical point t0 is again isolated. To sum up, the above argument
shows that there exists a neighborhood U of t0 such that U ∩ Sγ = {t0}, so Sγ is indeed a discrete set.

Now fix I ⊂ R a bounded interval. We have just shown that n = #(Sγ ∩ I ) is finite. To prove (5-22),
we observe that the complement of Sγ in I is a union of at most n + 1 open intervals in I, on which γ ′

does not vanish and has constant sign (use the intermediate value theorem). Therefore γ is one-to-one
in each of these intervals. We infer that

∀s ∈ R, #{t ∈ I : γ (t)= s} ≤ n + 1 + #(Sγ ∩ I )= 2n + 1. □

Let us assume that κ⋆ ≤3 and fix R > 0. Recalling that κ⋆ = κ⋆(I )= κ⋆(IR) from (iii) in Lemma 5.3,
we know that there exists a sequence (rn)n∈N tending to +∞ along which

1
rn

|IR ∩ [κ⋆rn, rn]| n→∞
−−−→ 0. (5-30)

According to Step II of Section 5.2, considering actions

(A1, A2)= (
√

1 − λ0,
√
λ0)=

(√
p

p + q
,

√
q

p + q

)
and initial angles (θ1, θ2)= (π/(2p), 0), one obtains a trajectory of the Hamiltonian flow t 7→ (x t , ξ t)

such that
min

t∈[0,T ]

|x t
| =3 max

t∈[0,T ]

|x t
|, (5-31)

that is to say a trajectory that attains the supremum (5-5). Here T is any real number larger than the
period of the flow T0. In view of the homogeneity of degree 1 of the Hamiltonian flow, we know that
t 7→ (cx t , cξ t) is still a trajectory of the Hamiltonian flow, for any scalar c ∈ R. Note that (5-31) above
ensures that |x t

| is bounded from below by a positive constant for all times. Therefore, Lemma 5.5
implies that the curve γ : (0, T ) ∋ t 7→ |x t

| is smooth. The corresponding set Sγ of Lemma 5.5 is nothing
but Sγ = {γ ′

̸= 0}. A consequence of this lemma is that Sγ has vanishing measure. Thus we write

(0, T ) \ Sγ =

⋃
N∈N

BN , where BN = {t ∈ (0, T ) : |γ ′(t)| ≥ 2−N
}. (5-32)
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Fix an arbitrary N ∈ N and a scalar c > 0. Then we obtain∫
BN

1IR (c|x
t
|) dt ≤

2N

c

∫
BN

1IR (cγ (t))|cγ
′(t)| dt =

2N

c

∫
cγ (BN )

1IR (s)#
{

t ∈ (0, T ) : γ (t)=
s
c

}
ds

≤
2N k

c

∫
cγ (BN )

1IR (s) ds ≤
2N k

c

∫ c max γ

c3max γ
1IR (s) ds, (5-33)

where the equality results from the area formula (Proposition 5.4) applied to E = IR . The integer k is
the one from Lemma 5.5 (5-22). The last inequality follows from the fact that |x t

| spans the interval
[3max γ,max γ ] by construction (recall (5-31)). Thus taking c = cn = rn/max γ , with (rn)n∈N the
sequence from (5-30), we obtain∫

BN

1IR (cnγ (t)) dt ≤ 2N k(max γ )× 1
rn

|IR ∩ [3rn, rn]| n→∞
−−−→ 0,

by (5-30), since 3≥ κ⋆. Now going back to (5-32), since the set Sγ is negligible, monotone convergence
ensures that |BN | → T as N → ∞. We finally obtain that∫ T

0
1ω(IR)(cnx t) dt ≤ |(0, T ) \ BN | +

∫
BN

1IR (cn|x t
|) dt = T − |BN | + o(1)

as n → ∞. We let N → ∞ to conclude that the dynamical condition (1-7) is not fulfilled, namely

lim inf
ρ→∞

∫ T

0
1ω(I )R×Rd (φt(ρ)) dt = 0.

The parameter R > 0 is arbitrary. Therefore the necessary condition of Theorem 1.3 tells us that
observability from ω(I ) in time T does not hold, and T ≥ T0 itself is arbitrary.

We turn to the case where κ⋆ > 3. This time, we take T = T0 to be the period of the Hamiltonian
flow and check that the observability condition (1-7) holds in ω( Ĩ ). We pick κ ∈ (3, κ⋆). In virtue of
Lemma 5.3(iii), we have κ⋆ = κ⋆(I )= κ⋆( Ĩ ) so that

∃c > 0, ∃r0 > 0 : ∀r ≥ r0,
1
r
| Ĩ ∩ [κr, r ]| ≥ c. (5-34)

Let (x t , ξ t) be a trajectory of the Hamiltonian flow with initial datum ρ0. One can estimate r̃ = max|x t
|

from below as follows: since the time t0 at which the maximum is reached is also a (local) maximum
of |x t

|
2, the second derivative satisfies

d2

dt2 |x t
|
2
|t=t0 = 2|ξ t0 |2 − 2x t0 · Ax t0 ≤ 0.

Thus

r̃2
:= |x t0 |2 ≥ x t0 ·

A
∥A∥

x t0 ≥
1

∥A∥

( 1
2

x t0 · Ax t0 +
1
2
|ξ t0 |2

)
=

1
∥A∥

p(ρ0). (5-35)

Provided |ρ0| is large enough so that p(ρ0) ≥ ∥A∥r2
0 , we see in particular that r̃ ≥ r0. Introduce

γ : (0, T ) ∋ t 7→ |x t
|. We know from Lemma 5.5 that γ is Lipschitz with constant

√
2p(ρ0)≤

√
2∥A∥r̃
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(this inequality is a consequence of (5-35) above). In particular, we have |γ ′(t)| ≤
√

2∥A∥r̃ outside the
set Sγ from Lemma 5.5. Thus we can apply again the area formula (Proposition 5.4):∫ T

0
1ω( Ĩ )(x

t) dt =

∫ T

0
1 Ĩ (|x

t
|) dt ≥ (2∥A∥)−1/2 1

r̃

∫ T

0
1 Ĩ (γ (t))|γ

′(t)| dt

= (2∥A∥)−1/2 1
r̃

∫
γ ((0,T ))

1 Ĩ (s)#{t ∈ (0, T ) : γ (t)= s} ds

≥ (2∥A∥)−1/2 1
r̃

∫
γ ((0,T ))

1 Ĩ (s) ds. (5-36)

This time, one has γ ((0, T ))⊃ [3r̃ , r̃ ] ⊃ [κ r̃ , r̃ ] (by definition of 3; see (5-5)). This means that∫ T

0
1ω( Ĩ )(x

t) dt ≥ (2∥A∥)−1/2 1
r̃

∫ r̃

κ r̃
1 Ĩ (s) ds ≥ (2∥A∥)−1/2c, (5-37)

where the last inequality is due to (5-34) (recall that r̃ ≥ r0). Therefore the dynamical condition (1-7)
of Theorem 1.3 is satisfied. In fact, the explicit expression of the Hamiltonian flow in action-angle
coordinates (5-6) shows that |x t

|
2 is (T0/2)-periodic.14 Therefore, setting c̃ := (2∥A∥)−1/2c, the dynamical

condition (1-7) is equivalently satisfied in time T0/2 − c̃/4:∫ T0/2−c̃/4

0
1ω( Ĩ )(x

t) dt ≥
1
2

∫ T0

0
1ω( Ĩ )(x

t) dt −
c̃
4

≥ (2∥A∥)−1/2 c
4
.

By Theorem 1.3, this implies that observability holds from ω( Ĩ )R \ K for some R > 0 and any compact
set K ⊂ Rd in any time > T0/2 − c̃/4, which in turn implies observability from ω(I ) in virtue of
Lemma 5.3(ii). Incidentally, the optimal observation time is strictly smaller than T0/2.

Step 3: Diophantine approximation in the irrational case. We assume that ν2/ν1 ∈ R \ Q and denote
by p j/q j the reduced fraction expression of its convergents (see Remark 1.14). We investigate the validity
of the dynamical condition (1-7) by approximating the trajectories of the “irrational” Hamiltonian flow by
the trajectories of the “rational” Hamiltonian flow obtained by replacing ν2/ν1 with its convergent p j/q j .
For instance, a projected trajectory of the irrational harmonic oscillator of the form

x t
1 = A1 sin(ν1t + θ1), x t

2 = A2 sin(ν2t + θ2), (5-38)

should be compared to

x t
j,1 = A1 sin(ν1t + θ1), x t

j,2 = A2 sin
(

p j

q j
ν1t + θ2

)
, (5-39)

which is a trajectory of the Hamiltonian flow of the (rational) harmonic oscillator with characteristic
frequencies ν1 and p jν1/q j , whose classical Hamiltonian is

p j (x, ξ)=
1
2

(
ν2

1 x2
1 +

p2
j

q2
j
ν2

1 x2
2

)
+

1
2
(ξ 2

1 + ξ 2
2 ).

14One can check that the projected trajectories of rational harmonic oscillators are invariant by point reflection with respect to
the origin or axial symmetry with respect to some coordinate axis, depending on whether p and q have the same parity or not.
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The distance between these two trajectories is

|x t
− x t

j | = |x t
2 − x t

j,2| ≤ A2|ν2 −
p j

q j
ν1||t | ≤ A2

ν1|t |
q2

j
, (5-40)

owing to the fact that the sine function is 1-Lipschitz and to the Diophantine approximation result (1-31).
We already know from Lemma 1.12 that

min
t∈[0,T j ]

|x t
j | ≤3 j max

t∈[0,T j ]
|x t

j |, where T j =
2π
ν1

q j , 3 j =3

(
p j

q j

)
.

The time T j is the period of the flow of the rational harmonic oscillator with characteristic frequencies ν1

and p jν1/q j . Let us set

m j = min
t∈R

|x t
j | and M j = max

t∈R
|x t

j |. (5-41)

Although the trajectory t 7→ x t
j is T j -periodic, it will be convenient to compare x t

j and x t on smaller
times. Then in view of (5-40), on the time interval [0, ηT j ], where η ∈ (0, 1], the norm |x t

| spans an
interval J ηj such that

J ηj ⊂

[
m j − A2η

2π
q j
,M j + A2η

2π
q j

]
, (5-42)

and if η = 1, since |x t
j | attains m j and M j on the time interval [0, T j ], we have[

m j + A2
2π
q j
,M j − A2

2π
q j

]
⊂ J 1

j . (5-43)

So now, according to the value of κ⋆, we check whether the dynamical condition (1-7) of Theorem 1.3 is
satisfied, using the area formula.

Step 4: Geometric condition of observability for rationally independent characteristic frequencies.
Take η = 1, that is, we consider a whole period of the rational Hamiltonian flow. We first establish a
lower bound on the time spent by t 7→ x t in ω( Ĩ ). We consider κ⋆ > 0 here. From Lemma 5.5, we know
that γ : (0, T j ) ∋ t 7→ |x t

| is Lipschitz with constant
√

2p(ρ0). Yet, similarly to (5-35), we have

p(ρ0)≤ ∥A∥M̃2
j , where M̃ j = max

t∈[0,T j ]
|x t

|,

so that γ is Lipschitz with constant
√

2∥A∥M̃ j . Applying the area formula (Proposition 5.4), we obtain
as in (5-36) the lower bound∫ T j

0
1ω( Ĩ )(x

t) dt ≥ (2∥A∥)−1/2 1
M̃ j

∫
J 1

j

1 Ĩ (s) ds,

and in view of (5-43) and (5-42) with η = 1, we deduce that∫ T j

0
1ω( Ĩ )(x

t) dt ≥
(2∥A∥)−1/2

M j + A2
2π
q j

∫ M j −2π A2/q j

m j +2π A2/q j

1 Ĩ (s) ds.
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Observing that A2 ≤ M j and that m j ≤3 j M j , we obtain∫ T j

0
1ω( Ĩ )(x

t) dt ≥
(2∥A∥)−1/2

M j
(
1 +

2π
q j

) ∫ M j (1−2π/q j )

M j (3 j +2π/q j )

1 Ĩ (s) ds. (5-44)

Setting

r = M j

(
1 −

2π
q j

)
and 3̃ j =

3 j +
2π
q j

1 −
2π
q j

, (5-45)

we can write the lower bound in (5-44) under the form∫ T j

0
1ω( Ĩ )(x

t) dt ≥ (2∥A∥)−1/2
1 −

2π
q j

1 +
2π
q j

×
1
r

∫ r

3̃ j r
1 Ĩ (s) ds. (5-46)

We assume that q j > 2π so that r > 0, which is the case for j large enough since q j → ∞. The above
estimate (5-46) is valid for any trajectory of the (irrational) Hamiltonian flow with initial datum ρ0 ̸= 0.
In addition, we remark that M j defined in (5-41) tends to infinity as ρ0 → ∞, so that r defined in (5-45)
tends to +∞ as ρ0 → ∞ too. Thus (5-46) leads to

lim inf
ρ→∞

∫ T j

0
1ω( Ĩ )×Rd (φ

t(ρ)) dt ≥ (2∥A∥)−1/2
1 −

2π
q j

1 +
2π
q j

× lim inf
r→+∞

1
r
| Ĩ ∩ [3̃ jr, r ]|. (5-47)

In order to deduce a positive lower bound, it suffices that 3̃ j < κ⋆ = κ⋆( Ĩ ) = κ⋆(I ). This is achieved
provided q j ≥ 6π/κ⋆ ≥ 6π . Indeed, under this condition, we have on the one hand

1 −
2π
q j

1 +
2π
q j

≥
1 −

2π
6π

1 +
2π
6π

=
1
2
, (5-48)

and on the other hand, recalling the definition of 3̃ j in (5-45), the formula (1-26) for 3 j , and using that
sin x ≤ x and tan x ≤ 4x/π for x ∈ [0, π/4], we obtain

3̃ j ≤

4
π

×
π/2

p j+q j
+

2π
q j

1 −
2π
6π

≤ 3
1 +π

q j
≤

1
2

( 1
π

+ 1
)
κ⋆ < κ⋆. (5-49)

Now we turn to the upper bound on the time spent by projected trajectories of the (irrational) Hamiltonian
flow in ω(I )R , for a fixed R > 0. We consider κ⋆ ∈ [0, 1] arbitrary now, with the convention 1/κ⋆ = +∞

if κ⋆ = 0. We go back to η ∈ (0, 1]. We select a curve t 7→ (x t
j , ξ

t
j ) of the rational flow that maximizes

the ratio mint |x t
j |/maxt |x t

j |, namely that satisfies

m j = min
t∈[0,T j ]

|x t
j | =3 j max

t∈[0,T j ]
|x t

j | =3 j M j .

This curve is of the form (5-39) for well-chosen action and angle variables. We consider t 7→ (x t , ξ t)

the corresponding trajectory of the irrational flow given by (5-38), that is the integral curve obtained
by substituting ν2 for p jν1/q j in (5-39). Notice that this trajectory depends on j. We still write
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γ (t)= |x t
|. By Lemma 5.5, we know that it is a Lipschitz map and that there exists an integer k0 such

that #γ−1(s)∩ [0, T j ] ≤ k0 for all s ∈ R+. Reproducing the computation (5-33), we find∫
BN

1IR (c|x
t
|) dt ≤

2N k0

c

∫ c max γ

c3 j max γ
1IR (s) ds ≤

2N k0

c

∫
cJ ηj

1IR (s) ds,

where we recall that the parameter c > 0 is an arbitrary scaling factor, and BN is defined similarly
to (5-32) by

BN = {t ∈ [0, ηT j ] : |γ ′(t)| ≥ 2−N
}.

In view of (5-42), this leads to∫
BN

1IR (c|x
t
|) dt ≤

2N k0

c

∫ c(M j +2π A2η/q j )

c(m j −2π A2η/q j )

1IR (s) ds.

As we did before in (5-44), we use the fact that A2 ≤ M j , together with m j = 3 j M j (the equality is
important here) to obtain ∫

BN

1IR (c|x
t
|) dt ≤

2N k0

c

∫ cM j (1+2πη/q j )

cM j (3 j −2πη/q j )

1IR (s) ds.

Defining now

r = M j

(
1 + η

2π
q j

)
and 3̃ j =

3 j − η 2π
q j

1 + η 2π
q j

,

we end up with ∫
BN

1IR (c|x
t
|) dt ≤ 2N k0 M j

(
1 + η

2π
q j

)
1
cr

∫ cr

3̃ j cr
1IR (s) ds.

We finally prove that this upper bound tends to zero along a well-chosen sequence of parameters c
provided 3̃ j ≥ κ⋆. This is fulfilled whenever q j ≤ δ/κ⋆, for a small enough constant δ. To see this, we can
use that tan x ≥ x and sin x ≥ 2x/π on [0, π/2] to control 3 j from below by 1/(p j + q j ). Then (1-31)
leads to p j/q j ≤ ν2/ν1 + 1, which yields

3 j ≥
1

p j + q j
≥

1
q j
(
2 +

ν2
ν1

) =:
C
q j
.

Assuming that η < C/(2π)≤ 1, we obtain

3̃ j ≥

C−2πη
q j

1 + η 2π
q j

≥
1
q j

×
C − 2πη
1 + 2πη

≥
C − 2πη
δ(1 + 2πη)

κ⋆.

This yields 3̃ j ≥ κ⋆ if δ is small enough, so that by definition of κ⋆, letting c → +∞, we obtain

lim inf
c→+∞

∫ ηT j

0
1ω(IR)(cx t) dt ≤ |[0, ηT j ] \ BN | + 2N k0 M j

(
1 + η

2π
q j

)
lim inf
c→+∞

1
cr

∫ cr

3̃ j cr
1IR (s) ds

= ηT j − |BN |, (5-50)

which tends to zero as N → ∞.
The general conclusion is the following: if κ⋆ > 0 and j ∈ N is such that q j ≥ 6π/κ⋆, we know

by (5-49) that 3̃ j < κ⋆, so that by definition of κ⋆, the estimate (5-47), together with (5-48), proves that
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the dynamical condition (1-7) of Theorem 1.3 holds for ω( Ĩ ) in time T j = 2πq j/ν1. If on the contrary
κ⋆ ∈ [0, 1], and q j ≤ δ/κ⋆ for some δ > 0 depending only on ν2/ν1, then, from (5-50), the dynamical
condition (1-7) is violated in ω(I )R for any R > 0 on the time interval [0, ηT j ], where η > 0 depends
only on ν2/ν1 again. Theorem 1.3 then implies that the Schrödinger equation is observable from ω(I ) if
and only if κ⋆ > 0. If indeed κ⋆ > 0, then the optimal observation time T⋆ = T⋆(ω(I )) is controlled as
follows: there exist constants C, c > 0 such that

cq j1 ≤ T⋆ ≤ Cq j2, (5-51)

where j1 is the largest index such that q j ≤ δ/κ⋆ and j2 is the smallest index such that q j ≥ 6π/κ⋆.
To go from (5-51) to the desired estimate (1-29) in the case where ν2/ν1 is Diophantine, we use the

fact that the irrationality exponent τ , defined in (1-27), is related to the growth of the q j ’s. This comes
from the formula

τ(µ)= 1 + lim sup
j→∞

log q j+1

log q j

(see [Durand 2015, Proposition 1.8] or [Sondow 2004, Theorem 1]). When τ is finite, we deduce in
particular that for any ε > 0, we have, for any j large enough,

log q j+1

log q j
≤ τ − 1 + ε,

which leads to the existence of a constant Cε > 0 such that

q j+1 ≤ Cεq j
τ−1+ε

∀ j ∈ N.

By definition of the indices j1 and j2, we obtain

δ

κ⋆
≤ q j1+1 ≤ Cεq j1

τ−1+ε and q j2 ≤ Cεq j2−1
τ−1+ε

≤ Cε
(6π
κ⋆

)τ−1+ε

.

Plugging this into (5-51), we finally deduce (1-29). This concludes the proof of Proposition 1.11. □

Appendix A: Reduction to a weaker observability inequality

The following proposition shows that Obs(ω, T ) is equivalent to a similar inequality with a remainder
involving a compact operator. The argument goes back to Bardos, Lebeau and Rauch [Bardos et al. 1992].
This reformulation of the problem paves the way for the use of microlocal analysis: we are interested
in the propagation of high-energy modes through the Schrödinger evolution, discarding anything that is
microlocalized near a fixed energy sublevel {p ≤ cst}. An alternative route could be to slice the phase
space according to energy layers of the Hamiltonian p(x, ξ)= V (x)+ 1

2 |ξ |2; see [Lebeau 1992; Burq
and Zworski 2012; Anantharaman and Macià 2014].

Proposition A.1. Suppose P is a self-adjoint operator with compact resolvent, and let B be a bounded
operator on L2(Rd) satisfying the unique continuation property:

for any eigenfunction u of P, Bu = 0 =⇒ u = 0. (A-1)
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Let T0 > 0 and assume there exists a compact self-adjoint operator K such that

∃C0 > 0 : ∀u ∈ L2(Rd), ∥u∥
2
L2 ≤ C0

∫ T0

0
∥Be−i t Pu∥

2
L2 dt + (u, K u)L2 . (A-2)

Then for every T > T0, there exists C > 0 such that

∀u ∈ L2(Rd), ∥u∥
2
L2 ≤ C

∫ T

0
∥Be−i t Pu∥

2
L2 dt.

Remark A.2. The operators of the form P =V (x)− 1
21 that we consider, with V subject to Assumption 1.1,

satisfy the unique continuation property of the statement when B is the multiplication by the indicator
function of a nonempty open set. See [Le Rousseau et al. 2022, Theorem 5.2].

Proof. Let us introduce, for any S ∈ R,

AS =

∫ S

0
ei t P B∗Be−i t P dt,

and denote by IS its kernel (the space of so-called invisible solutions). One can check that

IS =

⋂
t∈[0,S]

ker Be−i t P
= {u ∈ L2(Rd) : ∀t ∈ [0, S], Be−i t Pu = 0},

using the fact that ei t P B∗Be−i t P
≥ 0 for all t ∈ R as operators, and that the map t 7→ Be−i t P is strongly

continuous. The space IS is a closed linear subspace of L2(Rd), both for the strong and the weak
topology (use for instance that AS is a bounded operator). Moreover, one has the property that S1 ≤ S2

yields IS1 ⊃ IS2 . It implies that for any S, the set

I−

S =

⋃
S′>S

IS′

is also a linear subspace, contained in IS .

Step 1: IT0 is finite-dimensional. This assertion is a consequence of the fact that K is coercive on IT0 ,
namely

∀u ∈ IT0, ∥u∥L2 ≤ ∥K u∥L2,

which follows directly from assumption (A-2) and the Cauchy–Schwarz inequality. Setting W =Ran K|IT0
,

we deduce that K : IT0 → W is one-to-one and its inverse K −1 is bounded as an operator in L(W,IT0).
Now denote by BIT0

the closed unit ball of IT0 . Since IT0 is strongly and weakly closed, the same holds
for its closed unit ball as a subset of L2(Rd). We deduce that BIT0

is weakly compact. The compactness
of K implies that K (BIT0

) is (strongly) compact in L2(Rd). Since it is contained in W, it is compact
in W. Therefore the fact that K −1

: W → IT0 is bounded implies that BIT0
= K −1(K (BIT0

)) is compact.
We deduce by the Riesz theorem that IT0 is finite-dimensional.

Step 2: I−

T0
is stable by P. Let us check that I−

T0
⊂ Dom P. Let u ∈ I−

T0
and set

uϵ =
e−iϵPu − u

ϵ
∀ϵ ̸= 0.
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By definition of I−

T0
, the function u belongs to IT0+ϵ0 for some ϵ0 > 0, so that uϵ ∈ I−

T0
for any ϵ ∈ (0, ϵ0).

Recall from the previous step that IT0 ⊃ I−

T0
is finite-dimensional. We observe that v 7→ ∥(P − i)−1v∥L2

is a norm on IT0 , so it is equivalent to the L2 norm. Yet we see that

(P − i)−1uϵ =
e−iϵP(P − i)−1u − (P − i)−1u

ϵ
,

with (P − i)−1u ∈ Dom P, so that (P − i)−1uϵ converges as ϵ → 0. Since

∀ϵ1, ϵ2 ∈ (0, ϵ0), ∥uϵ2 − uϵ1∥L2 ≤ C∥(P − i)−1uϵ2 − (P − i)−1uϵ1∥L2,

we deduce that (uϵ)ϵ is a Cauchy sequence, hence it converges, which means that u ∈ Dom P. Thus
I−

T0
⊂ Dom P. It remains to see that limϵ→0 uϵ = −i Pu belongs to I−

T0
, which is a consequence of the

fact that I−

T0
is finite-dimensional, hence closed.

Step 3: I−

T0
= {0}. This results from the unique continuation property (A-1). Indeed, we can argue as

follows: from the previous steps, I−

T0
is a finite-dimensional linear subspace of L2(Rd) which is stable by

the self-adjoint operator P. Therefore there exists a basis (u1, u2, . . . , un) of I−

T0
made of eigenvectors

of P. By definition of IS , these eigenvectors satisfy in particular Bu j = 0. So by the unique continuation
result (A-1), we find that I−

T0
must be trivial.

Step 4: Conclusion. Let T > T0. We want to show that AT ≥ c for some c > 0. To do this, it suffices
to prove that AT is invertible, because AT is self-adjoint and AT ≥ 0. The assumption (A-2) implies
that the self-adjoint operator AT + K is invertible, meaning that zero does not belong to its spectrum.
Since K is compact and self-adjoint, we classically know that AT has the same essential spectrum as
AT + K , so in particular zero is not in the essential spectrum of AT . It is not an eigenvalue neither since
ker AT ⊂ I−

T0
= {0}. Therefore AT is invertible, and the conclusion follows. □

The following lemma is not related to the previous proposition. Still, it is worth stating it properly
since we use it on several occasions throughout the article.

Lemma A.3. Let ω⊂ Rd be measurable. Assume Obs(ω, T ) holds in some time T > 0 with a cost C > 0,
namely

∀u ∈ L2(Rd), ∥u∥
2
L2(Rd )

≤ C
∫ T

0
∥e−i t Pu∥

2
L2(ω)

dt.

Then Obs(ω, T − ε) holds for any ε < 1/C.

Proof. We use the fact that the propagator e−i t P is an isometry on L2(Rd) to get

C
∫ T

T −ε

∥e−i t Pu∥
2
L2(ω)

dt ≤ C
∫ T

T −ε

∥e−i t Pu∥
2
L2(Rd )

dt = Cε∥u∥
2
L2(Rd )

.

Thus we can absorb this term in the left-hand side of the observability inequality provided Cε < 1:

(1 − Cε)∥u∥
2
L2(Rd )

≤ C
∫ T −ε

0
∥e−i t Pu∥

2
L2(ω)

dt,

namely Obs(ω, T − ε) holds with cost C(1 − Cε)−1. □
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Appendix B: Pseudodifferential operators

We recall below basics of the theory of pseudodifferential operators (see the textbooks [Hörmander 1985;
Lerner 2010; Martinez 2002; Zworski 2012] for further details). We will also need a precise bound on
the remainder of the pseudodifferential calculus and of the sharp Gårding inequality. This is why we
reproduce the proofs of these results below.

B.1. Weyl quantization. Let a ∈ S(R2d). We define the operator Op(a) acting on the Schwartz class
S(Rd) by

[Op(a)u](x)= (2π)−d
∫

R2d
ei(x−y)·ξa

( x+y
2
, ξ
)

u(y) dy dξ, u ∈ S(Rd), x ∈ Rd .

It is known that Op(a) : S(Rd) → S(Rd) is continuous. The quantization Op extends to tempered
distributions: for any a ∈ S′(R2d), the operator Op(a) : S(Rd)→ S′(Rd) is continuous.

B.2. Symbol classes.

Definition B.1 (symbol classes). Let f be an order function.15 Then the symbol class S( f ) is the set of
functions a ∈ C∞(R2d) satisfying

∀α ∈ N2d , ∃Cα > 0 : ∀ρ ∈ R2d , |∂αa(ρ)| ≤ Cα f (ρ).

Collecting the best constants Cα for each α, the quantities

|a|
ℓ
S( f ) = max

|α|≤ℓ
Cα, ℓ ∈ N,

are seminorms that turn the vector space S( f ) into a Fréchet space.

Any a ∈ S( f ) is a tempered distribution and yields a continuous linear operator Op(a) :S(Rd)→S(Rd).

B.3. L2-boundedness of pseudodifferential operators.

Theorem B.2 (Calderón–Vaillancourt). There exist constants Cd , kd > 0 depending only on the dimen-
sion d such that, for any a ∈ S(1), the operator Op(a) can be extended to a bounded operator on L2(Rd)

with the bound
∥Op(a)∥L2→L2 ≤ Cd |a|

kd
S(1).

B.4. Refined estimate in the pseudodifferential calculus. Let a1, a2 be two symbols. We have seen
previously that the composition Op(a1)Op(a2) makes sense as an operator on the Schwartz space. This
operator is also a pseudodifferential operator, whose symbol is denoted by a1 # a2, called the Moyal
product of a1 and a2, and satisfies

Op(a1)Op(a2)= Op(a1 # a2). (B-1)

15A positive function f on the phase space is said to be an order function if

∃C > 0, ∃N > 0 : ∀ρ, ρ0 ∈ R2d , f (ρ)≤ C⟨ρ− ρ0⟩
N f (ρ0).
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More generally, one can define the h-Moyal product, depending on a parameter h ∈ (0, 1], as

(a1 #h a2)(ρ)= e−
1
2 ihσ(∂ρ1 ,∂ρ2 )a1(ρ1)a2(ρ2)|ρ1=ρ2=ρ,

where σ is the canonical symplectic form on R2d. Taking h = 1, one gets a formula for the Moyal product
in (B-1) above. The h-Moyal product is known to be a bilinear continuous map between symbol classes;
see [Zworski 2012, Theorem 4.17] or [Lerner 2010, Theorem 2.3.7] for instance.

Proposition B.3 (continuity of Moyal product). Let f1, f2 be two order functions. Then the map

S( f1)× S( f2)→ S( f1 f2), (a1, a2) 7→ a1 #h a2

is bilinear continuous, with constants independent of h ∈ (0, 1]. More precisely, for any ℓ ∈ N, there exist
k ∈ N and Cℓ > 0 such that

|a1 #h a2|
ℓ
S( f1 f2)

≤ Cℓ|a1|
k
S( f1)

|a2|
k
S( f2)

∀h ∈ (0, 1],∀(a1, a2) ∈ S( f1)× S( f2).

A stationary phase argument leads to an asymptotic expansion of the Moyal product

a1 # a2 ∼

∑
j

(−i/2) j

j !
σ(∂ρ1, ∂ρ2)

j a1(ρ1)a2(ρ2)|ρ=ρ1=ρ2 .

In the sequel, we denote by R j0(a1, a2) the remainder of order j0 in this asymptotic expansion, namely

R j0(a1, a2)(ρ)= a1 # a2 −

j0−1∑
j=0

(−i/2) j

j !
σ(∂ρ1, ∂ρ2)

j a1(ρ1)a2(ρ2)|ρ1=ρ2=ρ .

Estimates on this remainder term are usually stated as follows.

Proposition B.4 (pseudodifferential calculus). Let f1, f2 be two order functions. Then for any integer
j0 ≥ 1, the map

S( f1)× S( f2)→ S( f1 f2), (a1, a2) 7→ R j0(a1, a2),

is bilinear continuous.

In our study, it will be convenient to have a slightly more precise statement. Actually, the explicit
formula for the remainder allows to prove that its seminorms are controlled not only by the seminorms
of a1 and a2 but more precisely by the seminorms of the derivatives d j0a1 and d j0a2.

Proposition B.5 (refined estimate). Let f1, f2 be two order functions. Then, for any j0 ≥ 1,

∀ℓ ∈ N, ∃k ∈ N, ∃Cℓ > 0 : |R j0(a1, a2)|
ℓ
S( f1 f2)

≤ Cℓ|d j0a1|
k
S( f1)

|d j0a2|
k
S( f2)

,

for all (a1, a2) ∈ S( f1)× S( f2).

Proof. We outline the arguments of the proof, which are classical, trying to keep track of constants
carefully. The starting point of this result is the explicit expression of the remainder (see [Zworski 2012,
Theorem 4.11] for instance):

R j0(a1, a2)(ρ)=

(
−i
2

) j0
∫ 1

0

(1 − t) j0−1

( j0 − 1)!
e−

1
2 i tσ(∂ρ1 ,∂ρ2 )σ(∂ρ1, ∂ρ2)

j0a1(ρ1)a2(ρ2)|ρ1=ρ2=ρ dt.
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The binomial expansion of σ(∂ρ1, ∂ρ2)
j0 exhibits a particular structure: we observe that the integrand of

the integral over t can be written as a sum of terms of the form

e−
1
2 i tσ(∂ρ1 ,∂ρ2 )(∂α1a1)(ρ1)(∂

α2a2)(ρ2)|ρ1=ρ2=ρ

with |α1| = |α2| = j0, which corresponds exactly to ∂α1a1 #t ∂
α2a2. By Proposition B.3, we know that the

Moyal product is a bilinear continuous map S( f1)× S( f2)→ S( f1 f2) with respect to the Fréchet space
topology, with seminorm estimates independent of t ∈ (0, 1]. This yields

|R j0(a1, a2)|
0
S( f1 f2)

≤ C0|d j0a1|
k
S( f1)

|d j0a2|
k
S( f2)

. (B-2)

In order to handle seminorms of order ℓ≥ 0, we use the Leibniz formula:

∂R j0(a1, a2)= R j0(∂a1, a2)+ R j0(a1, ∂a2),

and we apply (B-2). The result follows. □

B.5. Positivity. Heuristically, the quantization of a nonnegative symbol is an almost-nonnegative operator.
The formal statement, known as the Gårding inequality, says that the negative part of the operator is con-
trolled in terms of the Planck parameter in semiclassical analysis, or exhibits some decay at infinity in the
phase space in microlocal analysis. In the main part of the article, we need to apply the Gårding inequality
to a symbol in S(1) whose derivatives, of any order, behave like 1/R, where R is a large parameter.
Unfortunately, such a symbol does not fit in the semiclassical framework, in which derivatives of order j
behave like 1/R j. Thus we provide in this paragraph a refined statement of the sharp Gårding inequality
that keeps track of the dependence of the remainder term on the seminorms of the derivatives of the symbol.

Proposition B.6 (sharp Gårding inequality). There exists a constant cd > 0 and an integer kd ≥ 0
depending only on the dimension d such that the following holds. For any real-valued symbol a ∈ S(1)
satisfying a ≥ 0, one has

Op(a)≥ −cd |Hess a|
kd
S(1) Id .

Proof. We redo the usual proof (see for instance [Zworski 2012]) using the refined estimate on the
remainder in the pseudodifferential calculus (Proposition B.5). Let us prove that for z sufficiently negative,
the operator Op(a − z) is invertible, which in turn shows that it is nonnegative by classical arguments.

Step 1: Estimate of the derivatives of (a − z)−1. Using the assumption that a ≥ 0, we classically have

|∇a(ρ)| ≤

√
2|Hess a|∞a(ρ) ∀ρ ∈ R2d (B-3)

(see [Zworski 2012, Lemma 4.31] for instance). Besides, the Faà di Bruno formula tells us that, for any
nonzero α ∈ N2d, the partial derivative ∂α(a − z)−1 can be computed as a sum of terms of the form

1
(a − z)1+ℓ

ℓ∏
j=1

∂α j a,
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with 1 ≤ ℓ≤ |α|,
∑ℓ

j=1 α j = α, |α j | ̸= 0 for all j. Denote by ℓ′ the number indices j such that |α j | = 1.
We apply (B-3) to the ℓ′ factors of the form ∂α j a corresponding to these indices, and we bound the ℓ− ℓ′

other ones by seminorms of the Hessian of a (recall that |α j | ≥ 2 for those remaining indices). We obtain∣∣∣∣ 1
(a − z)1+ℓ

ℓ∏
j=1

∂α j a
∣∣∣∣≤ 1

|a − z|1+ℓ
(2|Hess a|∞a(ρ))ℓ

′/2(|Hess a|
|α|

S(1))
ℓ−ℓ′ .

We deduce that∣∣∣∣ 1
(a − z)1+ℓ

ℓ∏
j=1

∂α j a
∣∣∣∣≤ 1

|a − z|1+ℓ
2ℓ

′/2
|a(ρ)|ℓ

′/2(|Hess a|
|α|

S(1))
ℓ−ℓ′/2

≤
1

|a − z|1+ℓ
2ℓ

′

(|a − z|ℓ
′/2

+ |z|ℓ
′/2)(|Hess a|

|α|

S(1))
ℓ−ℓ′/2.

Putting together all the terms in the Faà di Bruno formula, and using that a − z ≥ |z| (since z ≤ 0), we
finally get that there exists a constant C > 0 (depending on |α|) such that∣∣∣∣∂α 1

a − z

∣∣∣∣≤ C
|z|

max
1≤ℓ≤|α|

0≤ℓ′≤ℓ

(
|Hess a|

|α|

S(1)

|z|

)ℓ−ℓ′/2
.

Assuming that |z| ≥ |Hess a|
|α|

S(1), we arrive at∣∣∣∣∂α 1
a − z

∣∣∣∣≤ C
|z|

√
|Hess a|

|α|

S(1)

|z|
. (B-4)

Step 2: Invertibility of Op(a − z). From the previous step, we know that a − z and (a − z)−1 are in S(1)
with explicit seminorm estimates, provided |z| is large enough. We perform the pseudodifferential calculus,

Op(a − z)Op
(

1
a − z

)
= Id +0 + Op(R2),

keeping in mind that the second term in the asymptotic expansion vanishes because both symbols are
functions of the same symbol. According to the Calderón–Vaillancourt theorem (Theorem B.2), our
refined estimate on the remainder (Proposition B.5), and finally to (B-4), we obtain

∥Op(R2)∥L2→L2 ≤ Cd |R2|
kd
S(1) ≤ Cd |Hess a|

k′

1
S(1)|Hess(a − z)−1

|
k′

2
S(1) ≤ C

(
|Hess a|

k
S(1)

|z|

)3/2

for some constant C and some integer k independent of a and z, and provided z is negative enough.
Actually when z ≤ −(2C)2/3|Hess a|

k
S(1), we obtain that ∥Op(R2)∥ ≤

1
2 , so that Id +Op(R2) is invertible

by Neumann series. This leads classically to the invertibility of Op(a − z). □
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