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DAMPED STRICHARTZ ESTIMATES
AND THE INCOMPRESSIBLE EULER–MAXWELL SYSTEM

DIOGO ARSÉNIO AND HAROUNE HOUAMED

Euler–Maxwell systems describe the dynamics of inviscid plasmas. We consider an incompressible two-
dimensional version of such a system and prove the existence and uniqueness of global weak solutions,
uniformly with respect to the speed of light c 2 .c0;1/, for some threshold value c0 > 0 depending only
on the initial data. In particular, the condition c > c0 ensures that the velocity of the plasma nowhere
exceeds the speed of light and allows us to analyze the singular regime c!1.

The functional setting for the fluid velocity lies in the framework of Yudovich’s solutions of the two-
dimensional Euler equations, whereas the analysis of the electromagnetic field hinges upon the refined
interactions between the damping and dispersive phenomena in Maxwell’s equations in the whole space.
This analysis is enabled by the new development of a robust abstract method allowing us to incorporate the
damping effect into a variety of existing estimates. The use of this method is illustrated by the derivation
of damped Strichartz estimates (including endpoint cases) for several dispersive systems (including the
wave and Schrödinger equations), as well as damped maximal regularity estimates for the heat equation.
The ensuing damped Strichartz estimates supersede previously existing results on the same systems.
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1. Introduction

We are concerned with the existence and uniqueness of solutions to the incompressible Euler–Maxwell
system 8̂̂̂<̂

ˆ̂:
@tuCu � ruD�rpC j �B; divuD 0 (Euler’s equation);
1
c
@tE �r �B D�j; divE D 0 (Ampère’s equation);
1
c
@tBCr �E D 0; divB D 0 (Faraday’s equation);

j D �.cECP.u�B//; div j D 0 (Ohm’s law)

(1-1)

for some initial data .u;E;B/jtD0 D .u0; E0; B0/, with the two-dimensional normal structure on the
vector fields

u.t; x/D

0@u1.t; x/u2.t; x/

0

1A ; E.t; x/D

0@E1.t; x/E2.t; x/

0

1A and B.t; x/D

0@ 0

0

b.t; x/

1A ; (1-2)

where .t; x/ 2 Œ0;1/�R2 and P D Id���1r div denotes Leray’s projector onto divergence-free vector
fields. We will later see that the normal structure (1-2) is propagated by the flow and is therefore persistent.

Taking the divergence of Maxwell’s system, which is made up of Ampère and Faraday’s equations,
notice that the divergence-free conditions divE D 0 and divB D 0 are also propagated by the evolution
of the system, provided they hold initially. (In fact, notice that the condition divB D 0 is a trivial
consequence of the normal structure (1-2). Nevertheless, it is physically relevant, since magnetic fields
are solenoidal.)

This model describes the evolution of a plasma, i.e., a charged gas or an electrically conducting fluid,
subject to the self-induced electromagnetic Lorentz force j �B . Here, the field u denotes the velocity of
the fluid, E and B are the electric and magnetic fields, respectively, whereas j denotes the electric current.
Moreover, the positive constants c and � represent the speed of light and the electrical conductivity,
respectively. We refer to [Biskamp 1993; Davidson 2001] for details about the physical principles behind
the modeling of plasmas.

It is readily seen that any smooth solution .u;E;B/ 2 C 1c .Œ0;1/�R2/ of (1-1) satisfies the energy
inequality

ku.t/k2
L2
CkE.t/k2

L2
CkB.t/k2

L2
C
2

�

Z t

0

kj.�/k2
L2
d� � E20 (1-3)

for all t � 0, where we define
E0 WD k.u0; E0; B0/kL2 :
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(Observe that (1-3) actually holds with an equality sign for smooth functions, but this will not be used.)
This is the only known global a priori estimate for solutions of (1-1), and the ensuing natural bound

.u;E;B/ 2 L1.Œ0;1/IL2.R2//

is insufficient to guarantee the existence of global weak solutions to (1-1). At least, no known method
has so far been able to build such solutions, and the same holds for the classical two-dimensional
incompressible Euler system

@tuCu � ruD�rp; divuD 0; (1-4)

which corresponds to the case .E;B/D 0. This is due to the fact that the nonlinear terms in (1-1) and (1-4)
are, in general, not stable under weak convergence of solutions.

1.1. Main results. Our main result on the Euler–Maxwell system (1-1) establishes the global existence
and uniqueness of weak solutions for any initial data in suitable spaces, provided the speed of light c is
sufficiently large. Note that this is seemingly the only known global existence result for incompressible
Euler–Maxwell systems. It reads as follows.

Theorem 1.1. Let p and s be any real numbers in .2;1/ and
�
7
4
; 2
�
, respectively. For any initial data

.u0; E0; B0/ 2 ..H
1
\ PW 1;p/�H s

�H s/.R2/;

with divu0 D divE0 D divB0 and the two-dimensional normal structure (1-2), there is a constant
c0 > 0 such that, for any speed of light c 2 .c0;1/, there is a global weak solution .u;E;B/ to the
two-dimensional Euler–Maxwell system (1-1), with the normal structure (1-2), satisfying the energy
inequality (1-3) and enjoying the additional regularity

u 2 L1.RCIH 1
\ PW 1;p/; .E;B/ 2 L1.RCIH s/;

.cE;B/ 2 L2.RCI PH 1/; cE 2 L2.RCI PH s/; .E;B/ 2 L2.RCI PW 1;1/:
(1-5)

It is to be emphasized that the bounds in (1-5) are uniform in c 2 .c0;1/ for any given initial data.
If , furthermore, the initial vorticity !0 WD r � u0 belongs to L1.R2/, then the solution enjoys the

global bound
! WD r �u 2 L1.RCIL1/;

and it is unique in the space of all solutions . Nu;E;B/ to the Euler–Maxwell system (1-1) satisfying the
bounds, locally in time,

. Nu;E;B/ 2 L1t L
2
x; Nu 2 L2tL

1
x ;

Nj 2 L2t;x;

and having the same initial data.

Theorem 1.1 is a simple and more accessible reformulation of the results from Section 3, which are
stated therein in full detail in the setting of Besov and Chemin–Lerner spaces (see Appendix A for a
precise definition of these spaces). Indeed, it is readily seen that Theorem 1.1 follows directly from the
combination of Theorems 3.1, 3.2, 3.3 and Corollary 3.13 with straightforward embeddings of functional
spaces. The respective proofs of these results are also provided in complete detail in Section 3.
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One should note that the constant c0 in the above statement depends on norms of the initial data. Thus,
for any given c > 0, the condition c0 < c can be interpreted, in a fully equivalent way, as a smallness
condition on the initial data. In fact, a careful inspection of (3-4) in the statement of Theorem 3.3 readily
provides an explicit expression for c0 in terms of the norms of .u0; E0; B0/ in .H 1\ PW 1;p/�H s �H s .
More specifically, for any given initial data, one could set, for example,

c0 Dmaxf1; .ku0kH1\ PW 1;p Ck.E0; B0/kH s /CeCE50 g

for some suitable large constant C > 0 which only depends on p and s, and is independent of the initial
data. Then, with this definition of c0, it is straightforward to show that the condition c > c0 implies the
validity of (3-4). In particular, for a given speed of light c, we observe that the existence of solutions is a
consequence of the smallness of the initial data. Finally, we also note that it is not difficult to provide
sharper formulas for c0, with increasing complexity.

A detailed scaling analysis of solutions to the Euler–Maxwell system (1-1) is conducted in Section 3.1,
which further clarifies the significance of the initial conditions of our main results and their dependence
on the physical constants c and � .

We have already emphasized that the bounds (1-5) on the solutions of the incompressible Euler–
Maxwell system (1-1) are uniform with respect to the speed of light c > c0. This crucial feature allows
us to deduce a simple but powerful convergence result in the asymptotic regime c !1, which is of
particular interest. We refer to [Arsénio et al. 2015] for a thorough discussion of this regime in the context
of incompressible Navier–Stokes–Maxwell systems.

Generally speaking, the physical relevance of the regime c!1 in Euler–Maxwell systems stems from
the fact that the limiting magnetohydrodynamic systems are suitable to describe the behavior of flows which
are influenced by self-induced magnetic fields. This is the case, for instance, of the terrestrial magnetic
field, which is sustained by the earth’s core through the dynamo effect, or the solar magnetic field, which
is responsible for sunspots, or the galactic magnetic field, which plays a role in the formation of stars. We
refer to [Davidson 2001] for more details on the physical background of magnetohydrodynamic systems.

The next result follows directly from Theorem 1.1 and establishes a magnetohydrodynamic system
by taking the limit of the Euler–Maxwell system (1-1) in the singular regime c!1. Observe that it
recovers the classical Yudovich theorem for the incompressible Euler system (1-4) by setting B � 0.

Corollary 1.2. For any given initial data .u0; E0; B0/ as in Theorem 1.1
�

for some p 2 .2;1/ and
s 2

�
7
4
; 2
��

, consider the global solution .uc ; Ec ; Bc/ constructed therein for each c 2 .c0;1/. Then,
the set of solutions f.uc ; Ec ; Bc/gc>c0 is relatively compact in L2t;x;loc. In particular, for any sequence
f.ucn ; Ecn ; Bcn/gn2N, with cn!1, there is a convergent subsequence (which we do not distinguish, for
simplicity)

.ucn ; Ecn ; Bcn/
n!1
�����! .u; 0; B/ in L2t;x;loc; (1-6)

where .u; B/D ..u1; u2; 0/; .0; 0; b// has the normal structure (1-2) and is a global weak solution of the
system �

@tuCu � ruD�rp; divuD 0;
@tb�

1
�
�bCu � rb D 0;

(1-7)
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with the bounds

u 2 L1.RCIH 1
\ PW 1;p/; b 2 L1.RCIH 1/\L2.RCI PH 1

\ PH 2
\ PW 1;1/:

If , furthermore, the initial vorticity !0 belongs to L1.R2/, then the solution .u; b/ to (1-7) satisfies
the additional bound ! 2 L1.RCIL1/ and is unique in the space of all solutions . Nu; Nb/ satisfying the
bounds, locally in time,

Nu 2 L1t L
2
x \L

2
tL
1
x ;

Nb 2 L1t L
2
x \L

2
t
PH 1
x ;

and having the same initial data. Moreover, one has the convergence

.uc ; Ec ; Bc/
c!1
����! .u; 0; B/ in L2t;x;loc; (1-8)

without extraction of subsequences.

Remark. Note that (1-7) is a simple form of a magnetohydrodynamic system. Indeed, the equations for
u and b are not genuinely coupled, for the incompressible Euler equation does not contain an external
magnetic force. This can be interpreted as a consequence of the two-dimensional normal structure (1-2).
More specifically, whenever the electric current is given by j D r �B , a straightforward calculation
exploiting (1-2) shows that the Lorentz force satisfies

j �B D .r �B/�B D�1
2
r.b2/;

which can be absorbed in the pressure gradient. In particular, since u is independent of b in this regime,
there can be no Alfvén waves (see [Davidson 2001] for an introduction to Alfvén waves). Therefore,
in this case, the limiting magnetohydrodynamic system loses the feature of some important physical
effects (such as Alfvén waves). This suggests that extending the results of the present article beyond the
two-dimensional normal structure (1-2) is of particular interest and significance.

Proof. We begin by showing the relative compactness of the set of solutions f.uc ; Ec ; Bc/gc>c0 in
L2t;x.K/ for any compact set K � RC �R2. To that end, note that the energy inequality (1-3) and the
global bounds (1-5) on the solutions hold uniformly in c. In particular, it is readily seen that Ec! 0 in
L2t;x;loc as c!1. Therefore, we only need to focus on f.uc ; Bc/gc>c0 .

Now, one can show from (1-5) that uc 2 L1t;x and Bc 2 L2tL
1
x (for instance, using the Gagliardo–

Nirenberg convexity inequality (3-16), which is recalled later on). It therefore follows directly from (1-9)
that @tucDP.j c�Bc/�P.uc �ruc/ is uniformly bounded in L1t;locL

2
x . Similarly, it is readily seen from

Faraday’s equation @tBc D�cr �Ec that @tBc is uniformly bounded in L2t;x . Then, further combining
these controls of @tuc and @tBc with the uniform bound .ucn ; Bcn/2L1t H

1
x and the compactness of the

embedding H 1
loc � L

2
loc, we deduce that f.uc ; Bc/gc>c0 is relatively compact in the topology of L2t;x;loc

by a classical compactness result by Aubin and Lions. (See [Simon 1987] for a thorough discussion of
such compactness results and, in particular, Section 9 therein, for convenient results which are easily
applicable to our setting.)



1314 DIOGO ARSÉNIO AND HAROUNE HOUAMED

Next, for any convergent subsequence (1-6), employing Ohm’s law to substitute cnEcn into Faraday’s
equation in (1-1), observe that we only have to pass to the limit in the system8̂<̂

:
@tu

cn Cucn � rucn D�rpcn C j cn �Bcn ; divucn D 0;
1
cn
@tE

cn �r �Bcn D�j cn ; divBcn D 0;

@tB
cn C

1
�
r � j cn Cucn � rBcn D 0:

(1-9)

Moreover, up to further extraction of subsequences, it is also possible to assume that one has the weak
convergence

j cn *j in L2t;x :

All in all, passing to the limit n!1 in (1-9) in the sense of distributions and exploiting the strong
convergence (1-6), we find that8̂<̂

:
@tuCu � ruD�rpC j �B; divuD 0;

r �B D j; divB D 0;

@tBC
1
�
r � j Cu � rB D 0:

Then, recalling the vector identityr�.r�B/Dr.divB/��B and noticing that .r�B/�BD�1
2
r.b2/,

we conclude that .u; b/ is a solution of (1-7).
Finally, if we further assume the pointwise boundedness of the initial vorticity !0, then !c Dr �uc

remains uniformly bounded in L1t;x , thereby yielding a similar bound for the limiting system (1-7). These
bounds then fall in the framework of Yudovich’s uniqueness theorem (see [Majda and Bertozzi 2002,
Section 8.2.4], for instance), which guarantees the uniqueness of the solution u to the incompressible
two-dimensional Euler system. Alternatively, one can also deduce the uniqueness of u by reproducing the
arguments from Section 3.9 below, by setting .E;B/D 0. As for the uniqueness of b, it easily follows
from classical energy estimates on the heat equation.

At last, the uniqueness of the limit point .u; 0; B/ allows us to deduce the validity of (1-8), which
completes the proof of the corollary. �

1.2. Other models of incompressible plasmas. The Euler–Maxwell system (1-1) can be seen as the
inviscid version of the Navier–Stokes–Maxwell system given by8̂̂̂̂

<̂
ˆ̂̂:
@tuCu � ru� ��uD�rpC j �B; divuD 0;
1
c
@tE �r �B D�j; divE D 0;
1
c
@tBCr �E D 0; divB D 0;

j D �.cECP.u�B//; div j D 0;

(1-10)

where � > 0 denotes the viscosity of the fluid.
The derivation of (1-10) has been established rigorously in [Arsénio and Saint-Raymond 2019] through

the analysis of the viscous incompressible hydrodynamic regimes of Vlasov–Maxwell–Boltzmann systems.
In particular, it follows from the results therein that (1-10) can be obtained by letting ı! 0, with ı > 0,
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in the more complete system8̂̂̂̂
<̂
ˆ̂̂:
@tuCu � ru� ��uD�rpC ıcnEC j �B; divuD 0;
1
c
@tE �r �B D�j; divE D ın;
1
c
@tBCr �E D 0; divB D 0;

j � ınuD �
�
�
c
ı
rnC cECu�B

�
;

(1-11)

which takes the Coulomb force nE into account, where n is the electric charge density.
The work performed in [Arsénio and Saint-Raymond 2019] addresses the viscous incompressible

regimes of Vlasov–Maxwell–Boltzmann systems only. However, inviscid incompressible regimes can
also be achieved as an asymptotic limit of collisional kinetic equations. For instance, the incompressible
Euler limit of the Boltzmann equation has been established in [Saint-Raymond 2003; 2009b]. (A general
discussion of hydrodynamic regimes of the Boltzmann equation can also be found in [Saint-Raymond
2009a].) Similarly, in the vein of the results from [Arsénio and Saint-Raymond 2019], it is possible to
derive (1-1) by considering the incompressible Euler regime of Vlasov–Maxwell–Boltzmann systems, at
least formally. However, this remains to be done rigorously.

The well-posedness theory established in this article only concerns (1-1) and does not encompass
the inviscid version of (1-11) (i.e., the corresponding Euler–Maxwell system obtained by setting � D 0
in (1-11)). However, we are hopeful that some adaptation of our results can be implemented to show the
existence and uniqueness of solutions to (1-11), with � D 0. Nevertheless, for the sake of simplicity, we
are going to stick to (1-1).

It turns out that there is yet another version of incompressible Navier–Stokes–Maxwell systems which
is commonly found in the literature. It reads8̂̂̂̂

<̂
ˆ̂̂:
@tuCu � ru� ��uD�rpC j �B; divuD 0;
1
c
@tE �r �B D�j; divB D 0;
1
c
@tBCr �E D 0;

j D �.cECu�B/;

(1-12)

and a corresponding incompressible Euler–Maxwell system is given by setting �D 0. We refer to [Arsénio
and Gallagher 2020; Germain et al. 2014; Masmoudi 2010] for details on the construction of global
solutions to (1-12), with � > 0.

Unlike (1-10) and (1-11), it is to be emphasized that this model is not obtained as an asymptotic regime
of Vlasov–Maxwell–Boltzmann systems, as shown in [Arsénio and Saint-Raymond 2019]. Furthermore,
when compared to (1-10) and (1-11), it has the major drawback of not providing a strong control of divE.
For this reason, we do not make any claim concerning the extension of our work to the above model. It
would, however, be interesting to clarify the well-posedness of the nonviscous version of (1-12).

Finally, we observe that there is also a rich family of compressible Euler–Maxwell systems which
are commonly used to model the behavior of plasmas. The study of such systems is challenging, and
corresponding results tend to focus on the stability of smooth solutions near specific equilibrium states.
We refer to [Germain and Masmoudi 2014; Guo et al. 2016] for foundational results on three-dimensional
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compressible Euler–Maxwell systems. We note that the results therein do not require any specific vector
structure, such as the normal structure (1-2). However, they are sensitive to the speed of light c and,
therefore, may not provide uniform bounds as c tends to infinity.

1.3. Strategy of proof. We lay out now the strategy and the key ideas leading to the proof of Theorem 1.1,
which will be implemented in Section 3 to establish the more precise Theorems 3.1, 3.2 and 3.3.

Observe first that, even if we add a dissipation term ��u to the first equation of (1-1), thereby yielding
the incompressible Navier–Stokes–Maxwell system (1-10), it is still unknown whether or not global
weak solutions do exist when the initial data are only square-integrable. This is due to the lack of strong
compactness (or regularity) in electromagnetic fields .E;B/, combined with the lack of stability of
the source term j �B in weak topologies (see [Arsénio and Gallagher 2020] for further details). The
same difficulty persists in the inviscid version of the same system, which stems from the propagation of
singularities in Maxwell’s system, as a result of its hyperbolic nature. The construction of solutions in L2

to (1-1) is thus highly challenging — all the more so than in the viscous case.
One should therefore treat this system in some higher-regularity spaces. To this end, inspired by known

results on the well-posedness of the two-dimensional Euler system (1-4), we shall look at the equivalent
vorticity formulation of (1-1), which reads as8̂̂̂̂

<̂
ˆ̂̂:
@t!Cu � r! D�j � rB; divuD 0;
1
c
@tE �r �BC �cE D��P.u�B/; divE D 0;
1
c
@tBCr �E D 0; divB D 0;

j D �.cECP.u�B//; div j D 0;

(1-13)

where ! WD r �u and u can be reconstructed from ! through the Biot–Savart law

uD���1r �!: (1-14)

Observe that the normal structure (1-2) has been used in (1-13) to write r � .j �B/D�j � rB . This is
crucial.

Much of our analysis of (1-13) will hinge on the dispersive properties of the damped Maxwell system8̂̂<̂
:̂
1
c
@tE �r �BC �cE D��P.u�B/;

1
c
@tBCr �E D 0;

divuD divE D divB D 0:

(1-15)

This will require us to interpret the role of the velocity field u in (1-15), in the spatial variable x, as that
of a coefficient in the algebra L1x \ PH

1
x (or some weaker variant), thereby allowing us to view (1-15) as

a linear system in .E;B/ and produce closed estimates on the electromagnetic field.
To be precise, the treatment of the source term ��P.u�B/ in (1-15) will necessitate the control of

the velocity field u in a suitable algebra acting on PH s
x for appropriate values of s. In particular, according

to the classical paradifferential product law

kfgk PH s.Rd /
. kf k

L1\ PB
d=2
2;1.R

d /
kgk PH s.Rd /

;
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which holds for any s 2
�
�
1
2
d; 1

2
d
�

and d � 1, it will be natural to seek the control of u (in the space
variable) in the weaker algebra L1\ PB12;1.R

2/; see Appendix A for a definition of Besov spaces.
In the context of two-dimensional viscous flows, such a control is expected in view of the strong bounds

provided by the energy dissipation inequality. For example, in [Arsénio and Gallagher 2020, Theorem 1.2],
the existence of weak solutions to a two-dimensional incompressible Navier–Stokes–Maxwell system
was established by proving a uniform control of the velocity field in the algebra L1x \ PH

1
x .R

2/. More
precisely, by building upon the methods from [Masmoudi 2010], it was shown therein (see [Arsénio and
Gallagher 2020, Proposition 2.1]) that the control of the velocity field in the space L2t .L

1
x \

PH 1
x / was

sufficient to propagate some PH s-regularity, with �1 < s < 1, in Maxwell’s equations (1-15), uniformly
as c!1.

In the setting of two-dimensional incompressible electrically conducting ideal fluids (i.e., plasmas),
which is the focus of our work, global energy estimates are nowhere near as good as their viscous
counterpart and, thus, fail to yield the control of u in a useful algebra. Instead, we need to take Yudovich’s
approach of propagating the L2x \L

p
x -norm of the vorticity !, for some given p > 2, by exploiting the

transport equation
@t!Cu � r! D�j � rB; (1-16)

thereby providing a bound on u in the algebraL1t .L
1
x \

PH 1
x /, by classical Sobolev embeddings combined

with standard estimates on the Biot–Savart law (1-14). We refer to [Bahouri et al. 2011, Section 7.2] for a
modern treatment of global existence results for two-dimensional perfect incompressible fluids and the
Yudovich theorem.

In particular, elementary estimates on transport equations, which are performed in detail in Section 3.4,
show that the control of ! in L1t L

p
x follows from the control of the initial vorticity !0 and the nonlinear

source term j � rB in Lpx and L1tL
p
x , respectively. Since j is naturally bounded in L2t;x , by virtue of the

energy inequality (1-3), we conclude that rB should be controlled in L2tL
1
x .

Now, experience shows that such a Lipschitz bound on B cannot easily follow from energy estimates
on the wave system (1-15). Indeed, energy estimates on hyperbolic systems are typically performed
in L2x . Therefore, in order to control rB in L1x , an energy estimate on (1-15) would lead us, in view
of classical Sobolev embeddings, to seek a bound of B in H 2Cı

x , with a small parameter ı > 0. To
that end, the source term ��P.u�B/ in (1-15) would also need to be controlled in H 2Cı

x . However,
employing paradifferential calculus to control u�B would require that ru be bounded in L1x \ PH

1
x at

least. Unfortunately, such uniform bounds on perfect incompressible two-dimensional flows are largely
out of reach in our context. This is where the damped dispersive properties of (1-15), on the whole
Euclidean plane R2, come into play.

Maxwell’s system (1-15) can be rewritten as a system of wave equations (more on this later on, see
(1-17)). Thus, heuristically, one expects to be able to employ Strichartz estimates for the wave equation to
control the electromagnetic field .E;B/. In particular, by paying close attention to the admissibility criteria
of functional spaces in Strichartz estimates (see [Bahouri et al. 2011, Section 8.3] or [Keel and Tao 1998]),
one observes that it is possible to control the Lipschitz norm of a solution to a two-dimensional wave
equation, provided one can bound 7

4
derivatives of the initial data and the source term in some appropriate
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functional spaces (in some Besov spaces, for instance) of L2 space-integrability. (For simplicity, we have
omitted here the consideration of time integrability in Strichartz estimates and focused solely on space
regularity and integrability.) Loosely speaking, such an estimate is better than a Sobolev embedding,
which would require the control of over two derivatives in L2.R2/ in order to bound a Lipschitz norm.
This should give the reader some intuition concerning the special role played by the regularity parameter
s D 7

4
in Theorem 1.1.

Thus, so far, our strategy seems to yield some promising closed estimates. Indeed, on the one hand,
the transport equation (1-16) gives us a bound on the L1t .L

2
x \L

p
x /-norm of the vorticity ! provided

rB is controlled in L2tL
1
x , while, on the other hand, a control of rB in L2tL

1
x can be achieved through

dispersive estimates on the wave system (1-15) if the velocity field u is sufficiently smooth (at least
L1t .L

1
x \

PH 1
x /, say).

However, such a roadmap may not lead to global estimates in time. To see this, we need to take a
closer look at the temporal norms associated with our strategy. Specifically, it is important to note that
the classical Strichartz estimates for the two-dimensional wave equation do not actually give a global
control of rB in L2tL

1
x . Instead, they only allow us to control rB in L4tL

1
x globally, which then leads

to a control in L2tL
1
x locally in time. This difficulty is solved by complementing our strategy with a

careful study of the damping phenomenon in (1-15) produced by the term �cE. To that end, we provide,
in Section 2, a robust analysis of the damping effect on general semigroup flows, which is formulated in
precise terms in Lemma 2.1 (the damping lemma). We also give applications of the damping lemma to
parabolic and dispersive equations in Sections 2.2 and 2.3, respectively.

Concerning Maxwell’s system (1-15), the ensuing time decay of the electromagnetic field is encapsulated
in Corollary 2.12. It is shown therein that (1-15) forms a damped hyperbolic system which is best
understood by decomposing the frequencies of the solutions relative to the magnitude of the speed of
light c > 0.

Indeed, by appropriately combining Ampère’s equation and Faraday’s equation from (1-15) and using
that r � .r �B/D��B , observe that B solves the damped wave equation

1

c2
@2tBC �@tB ��B D��r � .u�B/; (1-17)

where the damping term �@tB comes from the term �cE in (1-15).
Heuristically, since waves described by (1-17) typically propagate with a characteristic speed c, it

is then natural to expect a consistent hyperbolic behavior of the solutions of (1-15) on the range of
frequencies larger than a suitable multiple of the speed of light c. In particular, Corollary 2.12 will confirm
that solutions to (1-17) enjoy dispersive properties for those high frequencies, which are analogous to the
nondamped case (obtained by setting � D 0 in (1-17)) with drastically improved long-time integrability.

On the remaining range of frequencies, i.e., on frequencies slower than c, the same result will establish
that the behavior of solutions to (1-15) is largely dictated by the heat equation

�@tB ��B D��r � .u�B/;

which is formally achieved in the asymptotic regime c!1 from (1-17).
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All in all, the application of the sharp damped dispersive estimates from Section 2 to Maxwell’s
equations (1-15) will allow us to obtain closed estimates on the incompressible Euler–Maxwell system (1-1)
which hold globally and lead to Theorem 1.1. The precise nonlinear analysis of (1-1) is detailed in
Section 3 with complete proofs of our main theorems.

It is difficult to pinpoint the exact source of the breakdown of our proofs for small values of light
velocity c. However, one can argue that the degeneracy of Maxwell’s system in the limit c! 0 results in
a loss of the damped dispersive properties which are central to our nonlinear analysis. We believe that this
provides some evidence that our method cannot be extended to the whole range of c > 0. Nevertheless,
we are hopeful that other techniques may be used to construct solutions in the remaining range of light
velocities.

1.4. Notation. Allow us to clarify some notation which will be used repeatedly throughout this article.
First of all, for clarity and convenience, note that all relevant functional spaces of Besov and Chemin–

Lerner types are introduced in precise detail in Appendix A.
Next, Leray’s projector

P W L2.R3IR3/! L2.R3IR3/

onto divergence-free vector fields, which is used in (1-1), and the corresponding orthogonal projector
P? D Id�P onto conservative fields are given by

P D Id���1r div; P? D��1r div :

Finally, when necessary, we will employ the letter C to denote a generic constant, which is allowed
to differ from one estimate to another, and we will resort to the use of indices to distinguish specific
constants. We will also often write A. B to denote A� CB for some positive constant C which only
depends on fixed parameters, and A� B whenever A. B and B . A are simultaneously true.

2. The effect of damping on semigroup flows

Here, we analyze the effect of damping on evolution flows, which are generally described by semigroups.
More specifically, in Section 2.1, we begin by establishing a robust and general result — called the
damping lemma — showing how damping terms act on integral operators. Then, in Sections 2.2 and 2.3,
this result is applied to the context of damped parabolic and Strichartz estimates, which will be crucial to
our analysis of Maxwell’s system in Section 3. In particular, in Section 2.3, we give complete and sharp
formulations of Strichartz estimates for the damped Schrödinger, half-wave, wave and Maxwell equations
in Euclidean spaces.

2.1. The damping lemma. The result below provides a general and robust principle allowing us to take
into account the influence of a damping term e�˛t , with ˛ > 0, on an integral operator.

Lemma 2.1 (the damping lemma). Let X and Y be Banach spaces and, for each s; t 2 Œ0; T /, with T > 0,
let K.t; s/ WX ! Y be an operator-valued kernel from X to Y such that

K.t; s/ 2 L1.Œ0; T /� Œ0; T /IL.X; Y //;
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where L.X; Y / denotes the Banach space of bounded linear operators from X to Y . Further suppose that
there are 0 < p0 � q0 �1, with q0 � 1, and a constant A > 0 such that the estimateZ T

0

�.t; s/K.t; s/f .s/ ds


Lq0 .Œ0;T /IY /

� Akf kLp0 .Œ0;T /IX/ (2-1)

holds for all f 2 Lp0.Œ0; T /IX/ and any �.t; s/ 2 L1.Œ0; T /2IR/, with k�kL1 � 1.
Then, for any ˛ � 0 and p0 � p � q � q0, with q � 1, one has the damped estimateZ T

0

e�˛jt�sj�.t; s/K.t; s/f .s/ ds


Lq.Œ0;T /IY /

� CˇA
�

T

1C˛T

�ˇ
kf kLp.Œ0;T /IX/

for all f 2 Lp.Œ0; T /IX/ and any �.t; s/ 2 L1.Œ0; T /2IR/, with k�kL1 � 1, where ˇ � 0 is defined by

ˇ D
1

q
�
1

q0
C

1

p0
�
1

p

and Cˇ > 0 only depends on ˇ.

Proof. For ˛ D 0, the result follows straightforwardly from Hölder’s inequality on the domain Œ0; T / for
all integrability parameters merely satisfying 0 < q � q0 �1 and 0 < p0 � p �1. We assume now
that ˛ > 0 and 0 < p0 � p � q � q0 �1, with q � 1.

For convenience of notation, we extend the definition of the kernel K and the functions � and f to all
real values of t and s by setting them equal to zero whenever t or s fall outside of the interval Œ0; T /.

We begin with the use of a partition

1ft¤sg D
X
j2Z

1f2j�jt�sj<2jC1g

to deduce thatZ T

0

e�˛jt�sj�.t; s/K.t; s/f .s/ ds


Lq.RIY /

�

X
j2Z

2j<T

e�˛2
j

Z T

0

�j .t; s/K.t; s/f .s/ ds


Lq.RIY /

; (2-2)

where we have defined
�j .t; s/D 1f2j�jt�sj<2jC1ge

�˛.jt�sj�2j /�.t; s/:

Observe that k�j kL1 � 1.
Then, we further decompose the domain of t into the disjoint union[

k2Z

f2jk � t < 2j .kC 1/g

to writeZ T

0

�j .t; s/K.t; s/f .s/ds


Lq.RIY /

D

Z T

0

�jKf .s/ds


Lq.Œ2jk;2j.kC1//IY /


`q.k2Z/

� 2
j. 1
q
� 1
q0
/
Z T

0

�jKf .s/ds


Lq0 .Œ2jk;2j.kC1//IY /


`q.k2Z/

; (2-3)

where we employed Hölder’s inequality.
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Now, notice that
2j .k� 2/ < t � jt � sj � s � t Cjt � sj< 2j .kC 3/

whenever 2j � jt � sj< 2jC1 and 2jk � t < 2j .kC 1/. In particular, using (2-1), it follows thatZ T

0

�jKf .s/ ds


Lq0 .Œ2jk;2j .kC1//IY /

�

Z T

0

�jKf .s/1f2j .k�2/<s<2j .kC3/g ds


Lq0 .RIY /

� A

2X
nD�2

kf kLp0 .Œ2j .kCn/;2j .kC1Cn//IX/

� A2
j. 1
p0
� 1
p
/

2X
nD�2

kf kLp.Œ2j .kCn/;2j .kC1Cn//IX/; (2-4)

where we applied Hölder’s inequality again.
All in all, combining (2-2), (2-3) with (2-4), and recalling that `p � `q because p � q, we infer thatZ T

0

e�˛jt�sj�.t; s/K.t; s/f .s/ ds


Lq.RIY /

� 5A
X
j2Z

2j<T

e�˛2
j

2
j. 1
q
� 1
q0
C 1
p0
� 1
p
/kf kLp.Œ2jk;2j .kC1//IX/`q.k2Z/

� 5Akf kLp.RIX/
X
j2Z

2j<T

e�˛2
j

2
j. 1
q
� 1
q0
C 1
p0
� 1
p
/
: (2-5)

It only remains to evaluate the constant resulting from the above sum in j 2 Z. If pD p0 and qD q0, the
lemma trivially holds and there is nothing to prove. Thus, we may assume that ˇ > 0, thereby ensuring
that the sum converges.

Now, observing that the function e�x.1Cx/1Cˇ reaches its maximum on Œ0;1/ at x D ˇ, we obtain

eˇ .1Cˇ/�.1Cˇ/
X
j2Z

2j<T

e�˛2
j

2jˇ �
X
j2Z

2j<T

2jˇ

.1C˛2j /1Cˇ
�

X
j2Z

2j<T

Z j

j�1

2.1Cu/ˇ

.1C˛2u/1Cˇ
du

�
2ˇ

log 2

Z T

0

xˇ�1

.1C˛x/1Cˇ
dx D

2ˇ

ˇ log 2

�
T

1C˛T

�ˇ
: (2-6)

Therefore, incorporating (2-6) into the estimate (2-5) concludes the proof of the lemma. �

2.2. Damped parabolic estimates. Let us consider the general solution w.t; x/ of a damped heat equation
on the Euclidean space Rd for any dimension d � 1�

@twC˛w��w D f;

wjtD0 D w0;
(2-7)

where .t; x/ 2 Œ0; T /�Rd , with T > 0 (T D1 may also be considered), the damping constant satisfies
˛ � 0, the right-hand side f .t; x/ is a source term and w0.x/ is an initial datum.
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Such equations naturally appear in dissipative physical systems. For instance, the heat equation (2-7)
provides the linear structure of the damped incompressible Navier–Stokes equations, which arise from
hydrodynamic regimes of inelastic particle systems.

Using standard semigroup notation, the solution w.t; x/ can be represented as

w.t/D e�t.˛��/w0C

Z t

0

e�.t�s/.˛��/f .s/ ds: (2-8)

We are now going explore the jungle of parabolic smoothing estimates in Besov spaces for (2-8) by first
reviewing the available results for the case ˛ D 0 and, then, extending these results to the setting ˛ > 0.

When f � 0 and ˛ D 0, direct parabolic estimates on the semigroup et� yield the following result.

Proposition 2.2. Let � 2 R, p 2 Œ1;1� and q 2 Œ1;1�. If ˛ D 0, w0 belongs to PB�p;q and f � 0, then
the solution of the heat equation (2-7) satisfies

ket�w0kL1.Œ0;1/I PB�p;q/
. kw0k PB�p;q :

Furthermore, if q <1, one also has the estimate

ket�w0kLq.Œ0;1/I PB�C2=qp;1 /
. kw0k PB�p;q :

Remark. The above result somewhat reinforces the estimate

ket�w0kLq.Œ0;1/ILp/ . kw0k PB�2=qp;q

for any 1�p; q �1, which is commonly found in the literature; see [Bahouri et al. 2011, Theorem 2.34],
for instance.

Remark. Note that taking p D q D 2 in the above proposition yields the estimate

ket�w0kL2.Œ0;1/I PB�C12;1 /
. kw0k PH� ;

where we used that PH� D PB�2;2 (see Appendix A for a precise definition of all relevant homogeneous
spaces).

Remark. Throughout this section, we will routinely use the basic estimate

ket��kukLp � Ce
�C�t2

2k

k�kukLp (2-9)

for any t > 0, p 2 Œ1;1� and any dyadic block �k , with k 2Z, where C and C� are positive independent
constants. We refer to [Bahouri et al. 2011, Lemma 2.4] for a justification of (2-9).

Proof. The first part of the statement is a straightforward consequence of the definition of the homogeneous
Besov norm. More precisely, using (2-9), we obtain

ket�w0k PB�p;q
D

�X
k2Z

.2k�ket��kw0kLp /
q

�1
q

.
�X
k2Z

e�C�t2
2k

.2k�k�kw0kLp /
q

�1
q

. kw0k PB�p;q ;

which, upon taking the supremum in t > 0, concludes the justification of the first estimate.
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The second part of the statement is more subtle. Indeed, assuming now that q <1 and using (2-9),
we find that

ket�w0k PB�C2=qp;1

D

X
k2Z

2k.�C
2
q
/
ket��kw0kLp .

X
k2Z

e�C�t2
2k

2k.�C
2
q
/
k�kw0kLp :

Next, further employing Hölder’s inequality and taking a fixed positive value �> 0 such that .q�1/�< 1,
we infer that

ket�w0k PB�C2=qp;1

.
�X
k2Z

.t22k/�e�C�t2
2k

�q�1
q
�X
k2Z

1

t
e�C�t2

2k

.t22k/1��.q�1/.2k�k�kw0kLp /
q

�1
q

: (2-10)

Now, for any positive t , considering the unique j 2 Z such that 22j � t < 22.jC1/, we find, since
� > 0, that

sup
t>0

X
k2Z

.t22k/�e�C�t2
2k

� 22� sup
j2Z

X
k2Z

.22.jCk//�e�C�2
2.jCk/

D 22�
X
k2Z

.22k/�e�C�2
2k

<1; (2-11)

whereas, since �.q� 1/ < 1, we evaluateZ 1
0

e�C�t2
2k

.t22k/1��.q�1/
dt

t
D

Z 1
0

e�C�t t��.q�1/ dt <1:

Therefore, integrating (2-10) in time, we finally arrive at the estimate

ket�w0kLqt PB
�C2=q
p;1

. sup
t>0

�X
k2Z

.t22k/�e�C�t2
2k

�q�1
q
�X
k2Z

Z 1
0

e�C�t2
2k

.t22k/1��.q�1/
dt

t
.2k�k�kw0kLp /

q

�1
q

. kw0k PB�p;q ;

which concludes the proof of the proposition. �

In view of the preceding result, the effect of the damping term e�˛t on the initial data can be taken
into account through a straightforward application of Hölder’s inequality, thereby providing the following
corollary.

Corollary 2.3. Let � 2 R, p 2 Œ1;1� and q 2 Œ1;1�. If ˛ � 0, w0 belongs to PB�p;q and f � 0, then the
solution of the heat equation (2-7) satisfies

ke�t.˛��/w0kLm.Œ0;T /I PB�p;q/
.
�

T

1C˛T

� 1
m
kw0k PB�p;q

for every 0 < m�1. Furthermore, if 0 < m� q <1, one also has the estimate

ke�t.˛��/w0kLm.Œ0;T /I PB�C2=qp;1 /
.
�

T

1C˛T

� 1
m
� 1
q
kw0k PB�p;q

:
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Proof. A direct use of Hölder’s inequality followed by an application of Proposition 2.2 yields

ke�t.˛��/w0kLm.Œ0;T /I PB�p;q/
� ke�t˛kLm.Œ0;T //ke

t�w0kL1.Œ0;T /I PB�p;q/
.
�

T

1C˛T

� 1
m
kw0k PB�p;q

for all 0 < m�1 and

ke�t.˛��/w0kLm.Œ0;T /I PB�C2=qp;1 /
� ke�t˛k

L.1=m�1=q/
�1
.Œ0;T //

ket�w0kLq.Œ0;T /I PB�C2=qp;1 /

.
�

T

1C˛T

� 1
m
� 1
q
kw0k PB�p;q

for all 0 < m� q <1, which completes the proof. �

Parabolic estimates are more involved when one includes a nonzero source term f . The coming results
contain a wide range of smoothing estimates for the inhomogeneous heat equation. In preparation of
these results, in order to reach a broader range of applicability, we are now going to introduce symbols

a.t; s; �/ 2 L1.Œ0; T /� Œ0; T /�Rd /;

which act as multipliers on the Fourier variable � 2Rd and are dependent on the time variables t; s 2 Œ0; T /,
thereby leading to time-dependent Fourier multipliers a.t; s;D/.

Definition. For a given 1 � p � 1, we say that a.t; s;D/ is bounded if there is a constant Ca > 0,
independent of t and s, such that

ka.t; s;D/f k PB0p;1
� Cakf k PB0p;1

(2-12)

for every f 2 PB0p;1.R
d / and almost every .t; s/ 2 Œ0; T /2. That is, the multiplier a.t; s;D/ is bounded

if it is bounded over the Besov space PB0p;1.R
d /, uniformly in t and s. The norm of a.t; s;D/, which we

denote by

ka.t; s;D/kMp ;

is defined as the smallest possible constant Ca > 0 that fits in (2-12).

Remark. Equivalently, it is readily seen that (2-12) holds if and only if there is a constant C 0a > 0,
independent of t and s, such that

ka.t; s;D/�kf kLp � C
0
akf kLp (2-13)

for every k 2 Z, f 2 Lp.Rd / and almost every .t; s/ 2 Œ0; T /2.

Remark. Observe that (2-12) and (2-13) hold if and only if one has

ka.t; s;D/f k PB�p;q
� Ca;�;qkf k PB�p;q

;

with Ca;�;q > 0, for all � 2 R, q 2 Œ1;1� and every f 2 PB�p;q.R
d /.
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Since the space of Fourier multipliers over L2.Rd / is isomorphic to L1.Rd /, it is readily seen, when
p D 2, that proving (2-12) and (2-13) is equivalent to establishing a bound

a.t; s; �/ 2 L1.Œ0; T /� Œ0; T /�Rd /:

More generally, when p ¤ 2, in order to ensure that (2-12) or (2-13) hold, it is sufficient to require that

F�1Œa.t; s; �/'.2�k�/� 2 L1.Rd /;

uniformly in t , s and k, where '.2�k�/ is a smooth compactly supported cutoff function used to define
a Littlewood–Paley dyadic decomposition (see Appendix A). Therefore, in view of the straightforward
classical estimate

kF�1Œa.t; s; �/'.2�k�/�.x/kL1x . 2
�k d

2 k.1C 2kjxj/NF�1Œa.t; s; �/'.2�k�/�.x/kL2x
. 2�k

d
2

X
˛2Nd

j˛j�N

k2kj˛j@˛� Œa.t; s; �/'.2
�k�/�kL2

�

. 2�k
d
2

X
˛;ˇ2Nd

j˛jCjˇ j�N

k2kj˛j@˛� a.t; s; �/.@
ˇ'/.2�k�/kL2

�
;

where we have used Plancherel’s theorem and N is any integer larger than 1
2
d , we see that (2-12) and

(2-13) both hold as soon as a.t; s; �/ is sufficiently differentiable in � (except possibly at the origin � D 0)
and satisfies the estimate

kj�jj˛j@˛� a.t; s; �/kL1t;s;�
<1 (2-14)

for every multi-index ˛ 2 Nd with j˛j �
�
1
2
d
�
C 1. Observe that the above criterion establishes the

boundedness of a.t; s;D/ over PB0p;1.R
d /, uniformly in t and s, for all values of 1� p �1, including

the endpoints. Later on, we will be making use of (2-14) to show the boundedness of multipliers.
We return now to the smoothing estimates for the heat equation with a nontrivial source term f . The

next result provides a large array of such estimates in the classical case ˛ D 0.

Proposition 2.4. Let � 2 R, 1 < r < m <1 and p 2 Œ1;1�. If f belongs to Lr.Œ0; T /I PB�C2=rp;1 / and
w0 D 0, then the solution of the heat equation (2-7), with ˛ D 0, satisfiesZ t

0

e.t�s/�a.t; s;D/f .s/ ds


Lm.Œ0;T /; PB

�C2C2=m
p;1 /

. kakMpkf kLr .Œ0;T /; PB�C2=rp;1 /

for any Fourier multiplier a.t; s;D/.

Remark. We refer to [Arsénio 2019, Lemma 2] for a complete justification of the preceding proposition in
the case a.t; s;D/D Id. A straightforward adaptation of this proof readily extends the result to nontrivial
multipliers a.t; s;D/.

Remark. The endpoint case r Dm above corresponds formally to a maximal gain of two derivatives
on the solution of the heat equation. However, the method of proof of this result relies on the Hardy–
Littlewood–Sobolev inequality, which typically falls short for endpoint settings. It is therefore not possible
to extend the proof of [Arsénio 2019, Lemma 2] to the case r Dm.
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The next result generalizes Proposition 2.4 to incorporate the action of a damping term.

Proposition 2.5. Let � 2 R, p 2 Œ1;1� and

1� r �m�1; 0 < � < 1C
1

m
�
1

r
� 1;

or

1 < r < m <1; 0 < � D 1C
1

m
�
1

r
< 1:

Then, for any ˛ � 0, one has the estimateZ t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


Lm.Œ0;T /; PB

�C2�
p;1 /

.
�

T

1C˛T

�1C 1
m
� 1
r
��
kakMpkf kLr .Œ0;T /; PB�p;1/

(2-15)

for any f in Lr.Œ0; T /I PB�p;1/ and any Fourier multiplier a.t; s;D/.

Remark. We emphasize that any implicit constant involved in the estimate of Proposition 2.5 is indepen-
dent of T and ˛. Moreover, it is permitted to set T D1 and ˛ > 0 therein, in order to deduce a global
estimate.

Remark. Observe that, choosing any 1 � r � m �1, 1 � p; q �1 and � 2 R, one has the simple
estimateZ t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


Lm.Œ0;T /; PB�p;q/

. kakMp

Z t

0

e�˛.t�s/kf .s/k PB�p;q
ds


Lm.Œ0;T //

.
�

T

1C˛T

�1C 1
m
� 1
r
kakMpkf kLr .Œ0;T /; PB�p;q/

for all ˛ � 0, which corresponds to the case � D 0 in the previous proposition.

Proof in the case 1 < r �m<1. First of all, notice that the case

1 < r < m <1; 0 < � D 1C
1

m
�
1

r
< 1

follows from a direct application of Proposition 2.4 by absorbing the damping term e�˛.t�s/ into the
multiplier a.t; s;D/.

In order to treat the remaining case

1 < r �m<1; 0 < � < 1C
1

m
�
1

r
� 1;

we introduce auxiliary parameters

1 < r0 < r �m<m0 <1

such that

� D 1C
1

m0
�
1

r0
:
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In particular, in view of Proposition 2.4, we haveZ t

0

e.t�s/�a.t; s;D/f .s/ ds


Lm0 .Œ0;T /; PB

�C2�
p;1 /

. kakMpkf kLr0 .Œ0;T /; PB�p;1/:

Then, an application of the damping lemma (Lemma 2.1) implies, for any ˛� 0, that (2-15) holds, thereby
concluding the proof. �

For the sake of completeness, since the preceding proof fails to treat the cases r D 1 and mD1, we
provide now an alternative justification of Proposition 2.5, based on the proof of Lemma 2 from [Arsénio
2019], which works in full generality.

General proof. Following [Arsénio 2019], we begin by using (2-9) and (2-13) to deduce the existence of
an independent constant C� > 0 such that�k Z t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


Lp
.
Z t

0

e�.t�s/.˛CC�2
2k/
k�kf .s/kLp ds:

For simplicity, we omit the norm kakMp , which we absorb in the implicit constants. It then follows thatZ t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


PB
�C2�
p;1

.
Z t

0

X
k2Z

e�.t�s/.˛CC�2
2k/2k.�C2�/k�kf .s/kLp ds

.
Z T

0

jt � sj��e�˛.t�s/kf .s/k PB�p;1
ds;

where we have used (2-11), with the assumption that � > 0, to deduce thatX
k2Z

22k�e�C�.t�s/2
2k

. jt � sj�� :

Next, if � D 1C 1=m� 1=r , by virtue of the Hardy–Littlewood–Sobolev inequality, which holds
because 0 < � < 1 and 1 < m; r <1, we infer thatZ t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


Lm PB

�C2�
p;1

.
Z T

0

jt � sj��kf .s/k PB�p;1
ds


Lm
. kf k

Lr PB�p;1
:

Similarly, if 0 < � < 1C 1=m� 1=r � 1, we deduce from Young’s convolution inequality thatZ t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


Lm PB

�C2�
p;1

.
Z T

0

jt � sj��e�˛.t�s/kf .s/k PB�p;1
ds


Lm

.
�Z T

0

.t��e�˛t /.1C
1
m
� 1
r
/
�1

dt

�1C 1
m
� 1
r

kf k
Lr PB�p;1

.
�

T

1C˛T

�1C 1
m
� 1
r
��
kf k

Lr PB�p;1
;

which concludes the proof of the proposition. �
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The shortcomings of Propositions 2.4 and 2.5 in the case r D m, with � D 1, naturally bring the
question of the maximal regularity of the Laplacian in Banach spaces.

For a given Banach space X such that the Laplacian operator � is defined on a dense subspace of X ,
we say that the Laplacian (or another elliptic operator) has maximal Lp-regularity on Œ0; T / for some
1 < p <1 if the solution (2-8) of the heat equation (without damping, i.e., ˛ D 0) for a null initial data,
i.e., w0 D 0, is differentiable almost everywhere in t , takes values almost everywhere in the domain of �
and satisfies the estimate

k@twkLp.Œ0;T /IX/Ck�wkLp.Œ0;T /IX/ � Cpkf kLp.Œ0;T /IX/

for any source term f 2 Lp.Œ0; T /IX/. We refer to [Kunstmann and Weis 2004] for an introduction to
the theory of maximal Lp-regularity for parabolic equations.

The next important result, extracted from [Arsénio and Gallagher 2020], establishes the maximal
regularity of the Laplacian in all homogeneous Besov spaces PB�p;q . In particular, this result provides the
basis which will allow us (in Section 3.6, for instance) to obtain stronger estimates, with sharp gains of
parabolic regularity, by avoiding the use of Chemin–Lerner spaces.

Proposition 2.6 [Arsénio and Gallagher 2020]. Let � 2 R, p; q 2 Œ1;1� and r 2 .1;1/. If f belongs to
Lr.Œ0; T /I PB�p;q/ and w0 D 0, then the solution of the heat equation (2-7), with ˛ � 0, satisfiesZ t

0

e�.t�s/.˛��/a.t; s;D/f .s/ ds


Lr .Œ0;T /; PB

�C2
p;q /

. kakMpkf kLr .Œ0;T /; PB�p;q/

for any Fourier multiplier a.t; s;D/. The result remains valid if r D q D 1 or r D q D1.

Remark. Again, it is to be emphasized that any implicit constant involved in the above estimate is
independent of T and ˛. In particular, one can set T D1 therein.

Remark. We refer to [Arsénio and Gallagher 2020, Proposition 3.1] or [Arsénio 2019, Lemma 3] for
a proof of Proposition 2.6 in the case a.t; s;D/D Id and ˛ D 0. The original proof from [Arsénio and
Gallagher 2020] deals first with the case q D 1 and then relies on an interpolation argument. The proof
from [Arsénio 2019], however, offers a self-contained approach which avoids interpolation altogether.

Remark. In fact, the original statements of Proposition 3.1 in [Arsénio and Gallagher 2020] and Lemma 3
in [Arsénio 2019] only cover the range of parameters 1� q � r <1. Nevertheless, it is readily seen that
the corresponding proofs can be used mutatis mutandis to show identical bounds on the adjoint operator,
which is defined by Z T

t

e�.s�t/.˛��/a.s; t;D/g.s/ ds:

It then follows from a standard duality argument that these results hold for values 1 < r � q �1 as well.

For the sake of completeness and clarity, we provide now a full justification of Proposition 2.6, based
on a straightforward adaptation of the proof of [Arsénio 2019, Lemma 3].
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Proof. First, noticing that the damping term e�˛.t�s/ can be absorbed into the bounded multiplier
a.t; s;D/, we assume, without loss of generality, that ˛ D 0. Then, we follow the proof of Lemma 3
from [Arsénio 2019].

We start by considering the case 1 � q � r <1. By duality, it is enough to prove that, if g is a
nonnegative function in Lb

0

.Œ0; T // with b D r=q � 1 and 1=bC 1=b0 D 1, thenZ T

0

g.t/

Z t

0

e.t�s/�a.t; s;D/f .s/ ds

q
PB
�C2
p;q

dt . kakqMpkf k
q

Lr .Œ0;T /; PB�p;q/
kgkLb0 .Œ0;T //:

To this end, using (2-9) and (2-13), we deduce the existence of a constant C� > 0 such thatZ T

0

g.t/

Z t

0

e.t�s/�a.t; s;D/f .s/ ds

q
PB
�C2
p;q

dt

D

X
k2Z

Z T

0

g.t/

Z t

0

e.t�s/�a.t; s;D/�kf .s/ ds

q
Lp
2k.�C2/q dt

. kakqMp
X
k2Z

Z T

0

g.t/

�Z t

0

e�C�.t�s/2
2k

k�kf .s/kLp ds

�q
2k.�C2/q dt

. kakqMp
X
k2Z

Z T

0

g.t/

Z t

0

e�C�.t�s/2
2k

k�kf .s/k
q
Lp ds 2

k.�qC2/ dt:

For simplicity, we omit the norm kakMp in the remaining estimates.
Next, we define a maximal operator by

Mg.s/D sup
�>0

�

Z T

0

e��js�t jjg.t/j dt:

Classical results from harmonic analysis (see [Grafakos 2014, Theorems 2.1.6 and 2.1.10]) establish
that M is bounded over Lc.Œ0; T // for any 1 < c �1. One can then writeZ T

0

g.t/

Z t

0

e.t�s/�a.t; s;D/f .s/ ds

q
PB
�C2
p;q

dt

.
X
k2Z

Z T

0

�
22k

Z T

s

g.t/e�C�.t�s/2
2k

dt

�
k�kf .s/k

q
Lp2

k�q ds

.
X
k2Z

Z T

0

Mg.s/k�kf .s/k
q
Lp2

k�q ds D

Z T

0

Mg.s/kf .s/k
q

PB�p;q
ds:

Therefore, by the boundedness properties of Mg and Hölder’s inequality, we conclude thatZ T

0

g.t/

Z t

0

e.t�s/�a.t; s;D/f .s/ ds

q
PB
�C2
p;q

dt . kMgkLb0kf k
q

Lr PB�p;q
. kgkLb0kf k

q

Lr PB�p;q
;

which completes the proof of the proposition in the case 1� q � r <1.
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Now, observe that the exact same proof applies to the adjoint operatorZ T

t

e.s�t/�a.s; t;D/f .s/ ds;

thereby leading to the estimateZ T

t

e.s�t/�a.s; t;D/f .s/ ds


Lr .Œ0;T /; PB

�C2
p;q /

. kf k
Lr .Œ0;T /; PB�p;q/

whenever 1� q � r <1. Then, a standard duality argument establishes thatZ t

0

e.t�s/�a.t; s;D/f .s/ ds


Lr
0
.Œ0;T /; PB��

p0;q0
/

. kf k
Lr
0
.Œ0;T /; PB

�.�C2/

p0;q0
/

for parameter values in the range 1 < r 0 � q0 �1. Therefore, replacing p, q, r and � by p0, q0, r 0 and
�.� C 2/, respectively, shows the proposition in the case 1 < r � q �1, which concludes the proof. �

2.3. Damped Strichartz estimates. We focus now on the interaction between damping and dispersion.
More precisely, we are going to explore how the damping lemma (Lemma 2.1) applies to Strichartz
estimates. To that end, we first recall the general result on Strichartz estimates for abstract semigroups
from [Keel and Tao 1998]. We also refer to [Bahouri et al. 2011, Chapter 8] for a comprehensive exposition
of Strichartz estimates.

Proposition 2.7 [Keel and Tao 1998]. Let H be a Hilbert space and .X; dx/ be a measure space. For
each t 2 Œ0; T /, with T > 0, let U.t/ WH ! L2.X/ be an operator such that

U.t/ 2 L1.Œ0; T /IL.H;L2.X///
and, for some � > 0,

kU.t/U.s/�gkL1.X/ .
1

jt � sj�
kgkL1.X/

for all t; s 2 Œ0; T /, with t ¤ s, and all g 2 L1.X/\L2.X/.
Then, the estimate

kU.t/f kLqt L
r
x
. kf kH

and its dual version Z T

0

U.t/�g.t/ dt


H

. kgk
L
q0

t L
r0
x

hold for any exponent pair .q; r/ 2 Œ2;1�2, which is admissible in the sense that

1

q
C
�

r
D
�

2
and .q; r; �/¤ .2;1; 1/:

Furthermore, if . Qq; Qr/ 2 Œ2;1�2 is also an admissible exponent pair, then the estimateZ T

0

�.t; s/U.t/U.s/�g.s/ ds


L
q
t L
r
x

. k�kL1kgkL Qq0t LQr0x

holds for any �.t; s/ 2 L1.Œ0; T /2IR/.
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Remark. In fact, the statement of the result from [Keel and Tao 1998] only considers the function
�.t; s/ D 1fs�tg. However, a straightforward alteration of the proof from [Keel and Tao 1998] easily
shows that the result actually holds for all �.t; s/ 2 L1.Œ0; T /2IR/. A detailed proof valid for all �.t; s/
can also be found in Section 8.2 of [Bahouri et al. 2011].

By combining the damping lemma with the preceding proposition, we obtain the damped Strichartz
estimates, which are stated in precise terms in the next result.

Proposition 2.8 (damped Strichartz estimates). Let H be a Hilbert space and .X; dx/ be a measure
space. For each t 2 Œ0; T /, with T > 0, let U.t/ WH ! L2.X/ be an operator such that

U.t/ 2 L1.Œ0; T /IL.H;L2.X///
and, for some � > 0,

kU.t/U.s/�gkL1.X/ .
1

jt � sj�
kgkL1.X/

for all t; s 2 Œ0; T /, with t ¤ s, and all g 2 L1.X/\L2.X/.
Then, for any ˛ � 0, the estimate

ke�˛tU.t/f kLqt L
r
x
.
�

T

1C˛T

�1
q
C�
r
��
2
kf kH

and its dual version Z T

0

e�˛tU.t/�g.t/ dt


H

.
�

T

1C˛T

�1
q
C�
r
��
2
kgk

L
q0

t L
r0
x

hold for any exponent pair .q; r/ 2 Œ1;1�� Œ2;1�, which is admissible in the sense that

1

q
C
�

r
�
�

2
;

1

2
C
�

r
�
�

2
and .r; �/¤ .1; 1/:

Furthermore, if . Qq; Qr/ 2 Œ1;1�� Œ2;1� is also an admissible exponent pair such that

1

q
C
1

Qq
� 1;

then the estimateZ T

0

e�˛jt�sj�.t; s/U.t/U.s/�g.s/ ds


L
q
t L
r
x

.
� T

1C˛T

�1
q
C 1
Qq
C�. 1

r
C 1
Qr
/��
k�kL1kgkL Qq

0

t L
Qr0
x

holds for any �.t; s/ 2 L1.Œ0; T /2IR/.

Proof. First of all, observe that all hypotheses of Proposition 2.7 are satisfied by U.t/. Then, introducing
the parameter q0 2 Œ2;1� by setting

1

q0
D �

�
1

2
�
1

r

�
; (2-16)

we see that the exponent pair .q0; r/ 2 Œ2;1�2 is admissible for Proposition 2.7. Therefore, it follows
from Proposition 2.7, with an application of Hölder’s inequality, that

ke�˛tU.t/f kLqt L
r
x
� ke�˛tk

L.1=q�1=q0/
�1
.Œ0;T //

kU.t/f k
L
q0
t L

r
x
.
�

T

1C˛T

�1
q
� 1
q0
kf kH ;
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which establishes the first estimate of the proposition. The second estimate then ensues from a dual
reformulation of the first estimate.

It only remains to justify the validity of the third estimate. To that end, employing (2-16), we introduce
auxiliary parameters q0; Qq0 2 Œ2;1�, so that the exponent pairs .q0; r/; . Qq0; Qr/ 2 Œ2;1�2 are admissible
for Proposition 2.7. In particular, it follows thatZ T

0

�.t; s/U.t/U.s/�g.s/ ds


L
q0
t L

r
x

. k�kL1kgk
L
Qq0
0
t L
Qr0
x

for any �.t; s/ 2 L1.Œ0; T /2IR/. Therefore, noticing that Qq00 � Qq
0 � q � q0, we conclude from an

application of Lemma 2.1 thatZ T

0

e�˛jt�sj�.t; s/U.t/U.s/�g.s/ ds


L
q
t L
r
x

.
�

T

1C˛T

�1
q
� 1
q0
C 1

Qq0
0

� 1
Qq0

k�kL1kgkL Qq
0

t L
Qr0
x
;

which completes the proof. �

Remark. We do not make any claim of optimality of Proposition 2.8. It would be interesting, though, to
test the sharpness of the admissibility criteria for the exponent pairs .q; r/ and . Qq; Qr/ in connection with
the sensitivity in T and ˛ of the estimates.

We proceed now to specific formulations of the damped Strichartz estimates for the Schrödinger and
wave equations, as well as for Maxwell’s system.

Corollary 2.9 (damped Schrödinger equation). Let d � 1 and consider a solution u.t; x/ of the damped
Schrödinger equation �

.@t C˛� i�/u.t; x/D F.t; x/;

u.0; x/D f .x/;

with ˛ � 0, t 2 Œ0; T / and x 2 Rd .
For any exponent pairs .q; r/; . Qq; Qr/ 2 Œ1;1�� Œ2;1� which are admissible in the sense that

2

q
C
d

r
�
d

2
; 1C

d

r
�
d

2
and .r; d/¤ .1; 2/;

and similarly for . Qq; Qr/, and such that
1

q
C
1

Qq
� 1;

one has the estimate

kukLqt L
r
x
.
�

T

1C˛T

�1
q
Cd
2
. 1
r
� 1
2
/
kf kL2x C

�
T

1C˛T

�1
q
C 1
Qq
Cd
2
. 1
r
C 1
Qr
�1/
kF k

L
Qq0

t L
Qr0
x
:

Proof. The solution u.t; x/ can be expressed by Duhamel’s representation formula as

u.t/D e�˛tU.t/f C

Z t

0

e�˛.t�s/U.t/U.s/�F.s/ ds D e�˛tU.t/f C

Z t

0

e�˛.t�s/U.t � s/F.s/ ds;

where
U.t/D eit� and U.t/� D e�it�:
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In particular, one has the explicit formula (see Section 8.1.2 in [Bahouri et al. 2011])

U.t/f .x/D
1

.4�it/d=2

Z
Rd
e�
jx�yj2

4it f .y/ dy;

which readily implies that U.t/ satisfies all hypotheses of Proposition 2.8 with H D L2.Rd /, X D Rd

and � D 1
2
d . Therefore, we conclude that the corollary follows from a direct application of the damped

Strichartz estimates of Proposition 2.8. �

Corollary 2.10 (damped half-wave equation). Let d � 2, and consider a solution u.t; x/ of the damped
half-wave equation �

.@t C˛� i jDj/u.t; x/D F.t; x/;

u.0; x/D f .x/;

with ˛ � 0, t 2 Œ0; T / and x 2 Rd .
For any exponent pairs .q; r/; . Qq; Qr/ 2 Œ1;1�� Œ2;1� which are admissible in the sense that

2

q
C
d�1

r
�
d�1

2
; 1C

d�1

r
�
d�1

2
and .r; d/¤ .1; 3/;

and similarly for . Qq; Qr/, and such that
1

q
C
1

Qq
� 1;

one has the estimate

2�j
dC1
2
. 1
2
� 1
r
/
k�jukLqt L

r
x

.
� T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�jf kL2x C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j
dC1
2
. 1
2
� 1
Qr
/
k�jF kL Qq

0

t L
Qr0
x

for all j 2 Z.

Remark. If Qq0 � p � q, then further multiplying the preceding estimate by 2j� for some � 2 R and
summing over j 2 Z in the `p-norm leads to

kuk
L
q
t
PB
��..dC1/=2/.1=2�1=r/
r;p;x

.
�

T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
kf k PB�2;p;x

C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/
kF k

L
Qq0

t
PB
�C..dC1/=2/.1=2�1=Qr/

Qr0;p;x

:

Proof. The solution u.t; x/ can be expressed by Duhamel’s representation formula as

u.t/D e�˛te˙it jDjf C

Z t

0

e�˛.t�s/e˙i.t�s/jDjF.s/ ds:

For each j 2 Z, we introduce now the flow

Uj .t/f .x/ WD e
˙it jDj 

�
D

2j

�
f .x/;

where  .�/ is a smooth compactly supported function such that 0 … supp and  � 1 on
˚
1
2
� j�j � 2

	
.

In particular, if �j is the Littlewood–Paley frequency cutoff operator, defined in Appendix A, which
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localizes frequencies to f2j�1 � j�j � 2jC1g, one has the representation

�ju.t/D e
�˛tUj .t/�jf C

Z t

0

e�˛.t�s/Uj .t � s/�jF.s/ ds

D e�˛tUj .t/�jf C

Z t

0

e�˛.t�s/Uj .t/Uj .s/
��jF.s/ ds:

We are now going to apply Proposition 2.8 to the operator U0.t/ in order to control �0u.t/.
Classical results, based on the stationary phase method, establish that

kU0.t/U0.s/
�f kL1.Rd / .

1

jt � sj.d�1/=2
kf kL1.Rd /

for all t ¤ s and f 2L1.Rd /. (Proposition 8.15 from [Bahouri et al. 2011] contains a precise justification
of the preceding dispersive estimate, and we further refer to Section 8.1.3 from the same work for
more details on the stationary phase method.) It therefore follows that U0.t/ satisfies all hypotheses of
Proposition 2.8 with H D L2.Rd /, X D Rd and � D 1

2
.d � 1/. Hence, we conclude that

k�0ukLqt L
r
x
.
�

T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�0f kL2x C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/
k�0F kL Qq

0

t L
Qr0
x

(2-17)

for all admissible exponent pairs.
In order to recover an estimate for all components �ju, where j 2 Z, we conduct a simple scaling

argument by introducing

uj .t; x/ WD u
�
t

2j
;
x

2j

�
; Fj .t; x/ WD

1

2j
F
�
t

2j
;
x

2j

�
; fj .x/ WD f

�
x

2j

�
:

Noticing that

�0uj .t; x/D .�ju/
�
t

2j
;
x

2j

�
; �0Fj .t; x/D

1

2j
.�jF /

�
t

2j
;
x

2j

�
; �0fj .x/D .�jf /

�
x

2j

�
and that uj .t; x/ solves �

.@t C 2
�j˛� i jDj/uj .t; x/D Fj .t; x/;

uj .0; x/D fj .x/

on Œ0; 2jT /, we obtain, applying (2-17) to uj ,

2j.
1
q
Cd
r
/
k�jukLqt L

r
x

D k�0uj kLqt L
r
x

.
�
2jT

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�0fj kL2x C

�
2jT

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/
k�0Fj kL Qq

0

t L
Qr0
x

D

�
2jT

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
2j

d
2 k�jf kL2x C

�
2jT

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j.�
1
Qq
Cd.1� 1

Qr
//
k�jF kL Qq

0

t L
Qr0
x
:
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Finally, reorganizing the terms above, we deduce that

k�jukLqt L
r
x
.
�

T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
2j

dC1
2
. 1
2
� 1
r
/
k�jf kL2x

C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j
dC1
2
.1� 1

r
� 1
Qr
/
k�jF kL Qq

0

t L
Qr0
x
;

which concludes the proof. �

Corollary 2.11 (damped wave equation). Let d � 2, and consider a solution u.t; x/ of the damped wave
equation 8<:

.@2t C˛@t ��/u.t; x/D F.t; x/;

u.0; x/D f .x/;

@tu.0; x/D g.x/;

with ˛ � 0, t 2 Œ0; T / and x 2 Rd .
For any exponent pairs .q; r/; . Qq; Qr/ 2 Œ1;1�� Œ2;1� which are admissible in the sense that

2

q
C
d�1

r
�
d�1

2
; 1C

d�1

r
�
d�1

2
and .r; d/¤ .1; 3/;

and similarly for . Qq; Qr/, and such that
1

q
C
1

Qq
� 1;

one has the high-frequency estimate

2�j
dC1
2
. 1
2
� 1
r
/
k�j .@tu;ru/kLqt L

r
x
.
�

T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�j .g;rf /kL2x

C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j
dC1
2
. 1
2
� 1
Qr
/
k�jF kL Qq

0

t L
Qr0
x

for all j 2 Z with 2j � ˛, and the low-frequency estimates

2�jd.
1
2
� 1
r
/
k�j @tukLqt L

r
x
.
�

T

1C˛T

�1
q
k�jgkL2x C

1

˛

�
˛22jT

˛C22jT

�1
q
2j.1�

2
q
/
k�jrf kL2x

C

�
T

1C˛T

�1
q
C 1
Qq
2jd.

1
2
� 1
Qr
/
k�jF kL Qq

0

t L
Qr0
x

and

2�j.d.
1
2
� 1
r
/� 2

q
/
k�jrukLqt L

r
x
. 1
˛

�
˛22jT

˛C22jT

�1
q
2j k�jgkL2x C

�
˛22jT

˛C22jT

�1
q
k�jrf kL2x

C
1

˛

�
˛22jT

˛C22jT

�1
q
C 1
Qq
2j.1Cd.

1
2
� 1
Qr
/� 2
Qq
/
k�jF kL Qq

0

t L
Qr0
x

for all j 2 Z with 2j � ˛.

Remark. Summing the preceding inequalities in j easily leads to damped Strichartz estimates in Besov
spaces with summability in `p for any Qq0 � p � q. However, due to the dichotomy of the statement of
Corollary 2.11 into high and low frequencies, the resulting estimates cannot be stated with homogeneous
Besov spaces in a unified format, which is natural because the damped wave equation does not enjoy any



1336 DIOGO ARSÉNIO AND HAROUNE HOUAMED

scaling invariance. Observe, though, that the high- and low-frequency estimates match in the borderline
case ˛ D 2j , with r D Qr D 2.

Remark. Corollary 2.11 is optimal in the loose sense that it provides a similar result as Corollary 2.10 for
high frequencies. Moreover, it recovers the optimal Strichartz estimates for the classical wave equation in
the limit ˛! 0. Corollary 2.11 also displays optimality in its control of low frequencies. Indeed, let us
consider a solution uc.t; x/ for each c > 0 of the damped wave equation8<:

.c�2@2t C˛@t ��/uc.t; x/D F.t; x/;

uc.0; x/D f .x/;

@tuc.0; x/D g.x/

on t 2 Œ0; T /. In particular, it follows that Quc.t; x/ WD uc.c�1t; x/ solves8<:
.@2t C c˛@t ��/ Quc.t; x/D F.c

�1t; x/;

Quc.0; x/D f .x/;

@t Quc.0; x/D c
�1g.x/

on t 2 Œ0; cT /. Therefore, applying Corollary 2.11 to Quc , with r D Qr D 2, yields the low-frequency
estimates

k�j @tuckLqt L
2
x
. 1

c2

�
T

1Cc2˛T

�1
q
k�jgkL2x C

1

˛

�
˛22jT

˛C22jT

�1
q
2j.1�

2
q
/
k�jrf kL2x

C c2
�

T

1Cc2˛T

�1
q
C 1
Qq
k�jF kL Qq

0

t L
2
x

and

2j
2
q k�jruckLqt L

2
x
.

1

c2˛

�
˛22jT

˛C22jT

�1
q
2j k�jgkL2x C

�
˛22jT

˛C22jT

�1
q
k�jrf kL2x

C
1

˛

�
˛22jT

˛C22jT

�1
q
C 1
Qq
2j.1�

2
Qq
/
k�jF kL Qq

0

t L
2
x

for all j 2 Z with 2j � c˛. Finally, letting c tend to infinity and denoting the limit of uc (in the sense of
distributions) by u, we obtain the estimates

k�j @tukLqt L
2
x
. 1
˛

�
˛22jT

˛C22jT

�1
q
2j2.1�

1
q
/
k�jf kL2x C

1

˛
k�jF kLqt L

2
x

and

2j
2
q k�jukLqt L

2
x
.
� ˛22jT

˛C 22jT

�1
q
k�jf kL2x C

1

˛

�
˛22jT

˛C22jT

�1
q
C 1
Qq
2�j

2
Qq k�jF kL Qq

0

t L
2
x

for all j 2 Z and every q; Qq 2 Œ1;1� such that 1=qC 1= Qq � 1, which are optimal parabolic estimates for
the heat equation

.˛@t ��/uD F

with initial data u.0; x/D f .x/.
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Remark. Other attempts at establishing Strichartz estimates for the damped wave equation can be found
in [Inui 2019; Inui and Wakasugi 2021]. However, the results obtained therein are suboptimal. Indeed,
Corollary 2.11 supersedes the results from those two works in both the breadth of the range of integrability
parameters that it handles and the sharpness of regularity gains that it produces.

Proof. We begin by introducing

e.t; x/ WD @tu.t; x/ and b.t; x/ WD i jDju.t; x/:

It then follows that .e; b/ is a solution of the system

@te� i jDjbC˛e D F;

@tb� i jDje D 0;

with initial data .e.0; x/; b.0; x//D .g.x/; i jDjf .x//. This system is reminiscent of Maxwell’s equations,
which are studied in Section 3, and it can be recast as

@t

�
e

b

�
D L

�
e

b

�
C

�
F

0

�
;

where

LD L.D/ WD
�
�˛ i jDj

i jDj 0

�
:

Now, a straightforward computation shows that L.�/, where � 2 Rd , has the eigenvalues

�˙.�/D�
1
2
˛˙

p
1
4
˛2� j�j2 (2-18)

in the complex field C. Moreover, exploiting the trivial identities �CC�� D�˛ and �C�� D j�j2, one
can readily verify that �

e

b

�
D PC

�
e

b

�
CP�

�
e

b

�
provides an eigenvector decomposition, where

PC

�
e

b

�
D

1

�C���

�
�CeC i jDjb

i jDje���b

�
and P�

�
e

b

�
D

1

����C

�
��eC i jDjb

i jDje��Cb

�
are the projections onto the eigenspaces associated with �C.D/ and ��.D/

�
when these eigenvalues

are distinct, i.e., when j�j ¤ 1
2
˛
�
, respectively. In particular, this decomposition allows us to deduce the

representation formula�
e

b

�
.t/D PC

�
e

b

�
.t/CP�

�
e

b

�
.t/

D

0@ et�C�C�e
t����

�C���
g� et�C�et��

�C���
jDj2f

et�C�et��

�C���
i jDjg�

et�C��e
t���C

�C���
i jDjf

1AC Z t

0

0@e.t�s/�C�C�e.t�s/�����C���
F

e.t�s/�C�e.t�s/��

�C���
i jDjF

1Ads: (2-19)
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We want now to use (2-19) to deduce an estimate on �0e and �0b, which, by a scaling argument
in the spirit of the proof of Corollary 2.10, will then result in a control on each dyadic component �j e
and �j b, with j 2 Z. Note, however, that the eigenvalues �˙.�/ are of a fundamentally different nature
depending on the relative size of the frequencies

˚
1
2
� j�j � 2

	
with respect to ˛ � 0, which leads us to

consider several cases.
More specifically, on the one hand, when �˙ 2 R

�
i.e., when j�j � 1

2
˛
�
, we are going to employ the

elementary controls

�˛ � �� � �
˛

2
� �

2j�j2

˛
� �C � �

j�j2

˛
;

0�
et�C � et��

�C���
D

R �C
��

tets ds

�C���
� tet�C � te�t

j�j2

˛ ;

(2-20)

while, on the other hand, when �˙ 2 C nR
�
i.e., when j�j � 1

2
˛
�
, we are going to use the properties

j�˙j D j�j; je
�t�˙ j D e�

˛
2
t ;ˇ̌̌̌

et�C � et��

�C���

ˇ̌̌̌
D e�

˛
2
t
jsin.t

p
j�j2� 1

4
˛2/jp

j�j2� 1
4
˛2

� te�
˛
2
t :

(2-21)

Considering that the dyadic operator �0 localizes frequencies to
˚
1
2
� j�j � 2

	
, we will then distinguish

three cases:

� The complex case, where 0 � ˛ � 1
2

, so that �˙ and .�C � ��/�1 are complex and smooth on˚
1
2
� j�j � 2

	
.

� The degenerate case, where 1
2
< ˛ < 5 and the eigenvalues may be equal.

� The real case, where ˛� 5, which implies that the eigenvalues are real and the damping phenomenon
dominates the behavior of solutions on

˚
1
2
� j�j � 2

	
.

The complex case. We begin by considering the range 0� ˛ � 1
2

. In this setting, it is readily seen that the
functions �C.�/, ��.�/ and .�C.�/���.�//�1, as well as any number of their derivatives, are uniformly
bounded on

˚
1
3
< j�j < 3

	
, uniformly in ˛ 2

�
0; 1
2

�
. In particular, by virtue of the criterion (2-14) for

the boundedness of multipliers, further introducing a smooth cutoff function  .�/ compactly supported
inside

˚
1
3
< j�j< 3

	
and such that  � 1 on

˚
1
2
� j�j � 2

	
, it follows that �C.�/ .�/, ��.�/ .�/ and

.�C.�/���.�//
�1 .�/ are the symbols of bounded Fourier multipliers over any homogeneous Besov

space. Therefore, we deduce from (2-19) that

k�0.e; b/kLqt L
r
x

.
X
˙

ket�˙�0.f; g/kLqt L
r
x
C

Z t

0

e.t�s/�˙�0F ds


L
q
t L
r
x

D

X
˙

ke�
˛
2
te˙itı.D/�0.f; g/kLqt L

r
x
C

Z t

0

e�
˛
2
.t�s/e˙i.t�s/ı.D/�0F ds


L
q
t L
r
x

; (2-22)
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where we introduced the notation

ı.�/ WD
p
j�j2� 1

4
˛2

for convenience.
Now, classically, the stationary phase method can be used (see [Bahouri et al. 2011, Proposition 8.15],

for instance) to show that ˇ̌̌̌Z
Rd
eix��e˙it j�j .�/ d�

ˇ̌̌̌
�

C 

t .d�1/=2

for all t > 0, where the constant C > 0 is independent of t and x, and  is any smooth compactly
supported function whose support does not contain the origin. A similar estimate holds, uniformly in
˛ 2

�
0; 1
2

�
, if one replaces j�j by ı.�/ and if the support of  is disjoint from the closed ball

˚
j�j � 1

2
˛
	
.

More precisely, we claim that ˇ̌̌̌Z
Rd
eix��e˙itı.�/ .�/ d�

ˇ̌̌̌
�

C 

t .d�1/=2
(2-23)

whenever supp �
˚
j�j> 1

4
�
1
2
˛
	
, where C > 0 is independent of t > 0, x 2 Rd and ˛ 2

�
0; 1
2

�
. For

the sake of completeness, we provide a justification of (2-23) in Appendix B.
Therefore, introducing the flow

U.t/f .x/ WD e˙itı.D/ .D/f .x/

for some fixed compactly supported cutoff  .�/ such that supp �
˚
j�j > 1

4
�

˛
2

	
and  � 1 on˚

1
2
� � � 2

	
, we see, in view of (2-23), that U.t/ satisfies all hypotheses of Proposition 2.8 with

H D L2.Rd /; X D Rd and � D 1
2
.d � 1/:

Hence, we conclude from (2-22) that

k�0.e; b/kLqt L
r
x

.
�

T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�0.f; g/kL2x C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/
k�0F kL Qq

0

t L
Qr0
x

(2-24)

for all admissible exponent pairs, when 0� ˛ � 1
2

.

The degenerate case. We are now looking at the range 1
2
< ˛ < 5. This case is easily settled by the use

of (2-20) and (2-21), which allows us to deduce, whenever 1
2
� j�j � 2, thatet�C � et���C���


Lct

� kte�
t
20 kLct

.
�
T 2

1CT 2

�1
c
� 2

1
c

�
T

1CT

�2
c .

�
T

1CT

�1
c
;

et�C�C� et�����C���


Lct

� ket�CkLct C

�� et�C � et���C���


Lct

.
�
T

1CT

�1
c
;

et�C��et���C�C���


Lct

� ket�CkLct C

�C et�C � et���C���


Lct

.
�
T

1CT

�1
c
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for any 1� c �1. Indeed, incorporating these controls into (2-19) and recalling that the space of Fourier
multipliers on L2.Rd / is isomorphic to L1.Rd / leads to

k�0.e; b/kLqt L
r
x

. k�0.e; b/kLqt L2x

.
�
T

1CT

�1
q
k�0.f; g/kL2x C

�
T

1CT

�1
q
C 1
Qq
k�0F kL Qq

0

t L
2
x

.
�
T

1CT

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�0.f; g/kL2x C

�
T

1CT

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/
k�0F kL Qq

0

t L
Qr0
x

(2-25)

for all admissible exponent pairs, when 1
2
< ˛ < 5.

The real case. In the remaining case, we assume that ˛ � 5. In particular, when 1
2
� j�j � 2,

�C��� D
p
˛2� 4j�j2 �

p

˛2� 16� 3
5
˛:

Furthermore, employing (2-20), one finds that

ket�CkLct � ke
� t
4˛ kLct

.
�
˛T

˛CT

�1
c

and ket��kLct � ke
�˛t
2 kLct

.
�

T

1C˛T

�1
c

for any 1� c �1. Therefore, we deduce from (2-19) and (2-20) that

k�0ekLqt L
r
x
. k�0ekLqt L2x

.
�
˛1�2qT

˛CT
C

T

1C˛T

�1
q
k�0gkL2x C

�
˛1�qT

˛CT
C
˛�qT

1C˛T

�1
q
k�0f kL2x

C

�
˛1�2.1=qC1= Qq/

�1

T

˛CT
C

T

1C˛T

�1
q
C 1
Qq
k�0F kL Qq

0

t L
2
x

.
�

T

1C˛T

�1
q
k�0gkL2x C

�
˛1�qT

˛CT

�1
q
k�0f kL2x C

�
T

1C˛T

�1
q
C 1
Qq
k�0F kL Qq

0

t L
Qr0
x

(2-26)

and

k�0bkLqt L
r
x

. k�0bkLqt L2x

.
�
˛1�qT

˛CT
C
˛�qT

1C˛T

�1
q
k�0gkL2x C

�
˛T

˛CT
C
˛�2qT

1C˛T

�1
q
k�0f kL2x

C

�
˛1�.1=qC1= Qq/

�1

T

˛CT
C
˛�.1=qC1= Qq/

�1

T

1C˛T

�1
q
C 1
Qq
k�0F kL Qq

0

t L
2
x

.
�
˛1�qT

˛CT

�1
q
k�0gkL2x C

�
˛T

˛CT

�1
q
k�0f kL2x C

�
˛1�.1=qC1= Qq/

�1

T

˛CT

�1
q
C 1
Qq
k�0F kL Qq

0

t L
Qr0
x

(2-27)

for all admissible exponent pairs, whenever ˛ � 5.
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Scaling argument and conclusion of proof. We are now in a position to conclude the justification of the
corollary. In order to deduce an estimate on �j .e; b/ for all j 2 Z from (2-24)–(2-27), we conduct now a
scaling analysis in the spirit of the proof of Corollary 2.10. To that end, we introduce

.ej ; bj /.t; x/ WD .e; b/
� t
2j
;
x

2j

�
; Fj .t; x/ WD

1

2j
F
� t
2j
;
x

2j

�
;

fj .x/ WD 2
jf
� x
2j

�
; gj .x/ WD g

� x
2j

�
and observe that .ej ; bj / solves

@tej � i jDjbj C 2
�j˛ej D Fj ;

@tbj � i jDjej D 0

on Œ0; 2jT /, with initial data .ej .0; x/; bj .0; x//D .gj .x/; i jDjfj .x//.
Then, noticing that

k�j .e; b/kLqt L
r
x
D 2�j.

1
q
Cd
r
/
k�0.ej ; bj /kLqt L

r
x
;

k�jgkL2x D 2
�j d

2 k�0gj kL2x ;

k�jf kL2x D 2
�j.1Cd

2
/
k�0fj kL2x ;

k�jF kL Qq
0

t L
Qr0
x
D 2j.

1
Qq
�d.1� 1

Qr
//
k�0Fj kL Qq

0

t L
Qr0
x

and applying (2-24) and (2-25) to .ej ; bj / yields the estimate

k�j .e; b/kLqt L
r
x
.
�

T

1C˛T

�1
q
Cd�1

2
. 1
r
� 1
2
/
2j

dC1
2
. 1
2
� 1
r
/
k�j .g;rf /kL2x

C

�
T

1C˛T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j
dC1
2
.1� 1

r
� 1
Qr
/
k�jF kL Qq

0

t L
Qr0
x

whenever 2j � ˛.
Similarly, if 2j � ˛, then, applying (2-25), (2-26) and (2-27) to .ej ; bj / leads to the controls

k�j ekLqt L
r
x
.
�

T

1C˛T

�1
q
2jd.

1
2
� 1
r
/
k�jgkL2x C

1

˛

�
˛T

˛C22jT

�1
q
2j.1Cd.

1
2
� 1
r
//
k�jrf kL2x

C

�
T

1C˛T

�1
q
C 1
Qq
2jd.1�

1
r
� 1
Qr
/
k�jF kL Qq

0

t L
Qr0
x

and

k�j bkLqt L
r
x
. 1
˛

�
˛T

˛C22jT

�1
q
2j.1Cd.

1
2
� 1
r
//
k�jgkL2x C

�
˛T

˛C22jT

�1
q
2jd.

1
2
� 1
r
/
k�jrf kL2x

C
1

˛

�
˛T

˛C22jT

�1
q
C 1
Qq
2j.1Cd.1�

1
r
� 1
Qr
//
k�jF kL Qq

0

t L
Qr0
x
;

which concludes the proof of the corollary. �
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Corollary 2.12 (damped Maxwell equations). Let d D 2 or d D 3 and consider a solution .E;B/.t; x/ W
Œ0; T /�Rd ! R6 of the damped Maxwell system8̂<̂

:
1
c
@tE �r �BC �cE DG;
1
c
@tBCr �E D 0;

divB D 0

for some initial data .E;B/.0; x/D .E0; B0/.x/, where � � 0 and c > 0.
For any exponent pairs .q; r/; . Qq; Qr/ 2 Œ1;1�� Œ2;1� which are admissible in the sense that

2

q
C
d�1

r
�
d�1

2
; 1C

d�1

r
�
d�1

2
and .r; d/¤ .1; 3/;

and similarly for . Qq; Qr/, and such that
1

q
C
1

Qq
� 1;

one has the high-frequency estimate

2�j
dC1
2
. 1
2
� 1
r
/
k�j .PE;B/kLqt .Œ0;T /IL

r
x/

. c
d�1
2
. 1
2
� 1
r
/� 2

q

�
c2T

1C�c2T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�j .PE0; B0/kL2x

C c1C
d�1
2
.1� 1

r
� 1
Qr
/� 2

q
� 2
Qq

�
c2T

1C�c2T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j
dC1
2
. 1
2
� 1
Qr
/
k�jPGkL Qq

0

t .Œ0;T /IL
Qr0
x /

for all j 2 Z with 2j � �c, and the low-frequency estimates

2�jd.
1
2
� 1
r
/
k�jPEkLqt .Œ0;T /IL

r
x/
.
�

T

1C�c2T

�1
q
k�jPE0kL2x C

1

�c

�
�22jT

�C22jT

�1
q
2j.1�

2
q
/
k�jB0kL2x

C c
�

T

1C�c2T

�1
q
C 1
Qq
2jd.

1
2
� 1
Qr
/
k�jPGkL Qq

0

t .Œ0;T /IL
Qr0
x /

and

2�j.d.
1
2
� 1
r
/� 2

q
/
k�jBkLqt .Œ0;T /IL

r
x/
. 1

�c

�
�22jT

�C22jT

�1
q
2j k�jPE0kL2x C

�
�22jT

�C22jT

�1
q
k�jB0kL2x

C
1

�

�
�22jT

�C22jT

�1
q
C 1
Qq
2j.1Cd.

1
2
� 1
Qr
/� 2
Qq
/
k�jPGkL Qq

0

t .Œ0;T /IL
Qr0
x /

for all j 2 Z with 2j � �c.

Remark. Corollary 2.12 only provides estimates of the magnetic field B and the divergence-free part of
the electric field PE. Notice, though, that the divergent component P?E can also be estimated directly
from Maxwell’s system. Indeed, applying the projector P? to Ampère’s equation yields

@tP
?EC �c2P?E D cP?G;

which leads to the representation formula

P?E.t/D e��c
2tP?E0C c

Z t

0

e��c
2.t�s/P?G.s/ ds:
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A direct estimate then easily gives

2�jd.
1
2
� 1
r
/
k�jP

?EkLqt L
r
x

. k�jP?EkLqt L2x

.
�

T

1C�c2T

�1
q
k�jP

?E0kL2x C c
�

T

1C�c2T

�1
q
C 1
Qq
k�jP

?Gk
L
Qq0

t L
2
x

.
�

T

1C�c2T

�1
q
k�jP

?E0kL2x C c
�

T

1C�c2T

�1
q
C 1
Qq
2jd.

1
2
� 1
Qr
/
k�jP

?Gk
L
Qq0

t L
Qr0
x

for any q; Qq 2 Œ1;1� and r; Qr 2 Œ2;1�, with 1=qC 1= Qq � 1.

Proof. Since B.t; x/ is a solenoidal field, we begin by introducing a vector potential A.t; x/, with
t 2 Œ0; cT / and x 2 Rd , such that

B.t; x/Dr �A.ct; x/: (2-28)

Faraday’s equation c�1@tB Cr �E D 0 then implies that .@tA/.ct; x/CE.t; x/ must be curl-free,
whereby there exists a scalar potential '.t; x/, with t 2 Œ0; cT / and x 2 Rd , such that

E.t; x/Dr'.ct; x/� .@tA/.ct; x/: (2-29)

Observe that A and ' are not uniquely determined. Indeed, for any scalar-valued potential  .t; x/, it is
possible to apply the transformations

A.t; x/ 7! A.t; x/Cr .t; x/;

'.t; x/ 7! '.t; x/C @t .t; x/
(2-30)

to produce new potentials representing the same electromagnetic field .E;B/. Any particular choice of A
and ' is called a gauge.

Different choices of gauge lead to different insights into Maxwell’s equations. It is therefore important
to carefully select the properties fixing the gauge. A standard example of gauge fixing is the Coulomb
gauge, which merely requires that A be solenoidal, i.e., divAD 0. The Lorenz gauge, which imposes the
condition

divA.t; x/D @t'.t; x/

is another classical example with the property that it produces decoupled wave equations on A and '
when there is no damping, i.e., � D 0.

Here, we introduce a damped Lorenz gauge by selecting potentials A and ' solving

divA.t; x/D @t'.t; x/C �c'.t; x/: (2-31)

Observe that it is always possible to find a damped Lorenz gauge. Indeed, starting from any other gauge
.A; '/, one can apply the transformations (2-30) with any solution  .t; x/ of the damped wave equation

@2t C �c@t �� D divA� @t' � �c';

thereby producing new potentials satisfying (2-31).
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Now, by inserting (2-28) and (2-29) into Ampère’s equation and then employing (2-31), a straight-
forward calculation shows that the damped Lorenz gauge is a solution of the damped wave system

.@2t C �c@t ��/A.t; x/D�G.c
�1t; x/ (2-32)

on t 2 Œ0; cT /.
Therefore, applying the Strichartz estimates for damped wave equations from Corollary 2.11 to this

system, we find, concerning high frequencies, that

c
1
q 2�j

dC1
2
. 1
2
� 1
r
/
k�j .PE;B/kLqt .Œ0;T /IL

r
x/

. 2�j
dC1
2
. 1
2
� 1
r
/
k�j .@tPA;rPA/kLqt .Œ0;cT /IL

r
x/

.
�

cT

1C�c2T

�1
q
Cd�1

2
. 1
r
� 1
2
/
k�j .PE0; B0/kL2x

C c1�
1
Qq

�
cT

1C�c2T

�1
q
C 1
Qq
Cd�1

2
. 1
r
C 1
Qr
�1/

2j
dC1
2
. 1
2
� 1
Qr
/
k�jPGkL Qq

0

t .Œ0;T /IL
Qr0
x /

for all j 2 Z with 2j � �c.
As for low frequencies, i.e., when j 2 Z with 2j � �c, we obtain similarly from Corollary 2.11 that

c
1
q 2�jd.

1
2
� 1
r
/
k�jPEkLqt .Œ0;T /IL

r
x/

D 2�jd.
1
2
� 1
r
/
k�j @tPAkLqt .Œ0;cT /IL

r
x/

.
�

cT

1C�c2T

�1
q
k�jPE0kL2x C

1

�c

�
�c22jT

�C22jT

�1
q
2j.1�

2
q
/
k�jB0kL2x

C c1�
1
Qq

�
cT

1C�c2T

�1
q
C 1
Qq
2jd.

1
2
� 1
Qr
/
k�jPGkL Qq

0

t .Œ0;T /IL
Qr0
x /

and

c
1
q 2�j.d.

1
2
� 1
r
/� 2

q
/
k�jBkLqt .Œ0;T /IL

r
x/

. 2�j.d.
1
2
� 1
r
/� 2

q
/
k�jrPAkLqt .Œ0;cT /IL

r
x/

. 1

�c

�
�c22jT

�C22jT

�1
q
2j k�jPE0kL2x C

�
�c22jT

�C22jT

�1
q
k�jB0kL2x

C c1�
1
Qq
1

�c

�
�c22jT

�C22jT

�1
q
C 1
Qq
2j.1Cd.

1
2
� 1
Qr
/� 2
Qq
/
k�jPGkL Qq

0

t .Œ0;T /IL
Qr0
x /
;

which concludes the proof of the corollary. �

The global low-frequency estimates from Corollaries 2.11 and 2.12 can be refined by considering
the maximal regularity of the heat equation (without damping) discussed in Section 2.2. The next two
results provide such low-frequency parabolic estimates for the wave equation and Maxwell’s system,
respectively.
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Proposition 2.13. Let d � 2, and consider a solution u.t; x/ of the damped wave equation

.@2t C˛@t ��/u.t; x/D F.t; x/;

u.0; x/D f .x/;

@tu.0; x/D g.x/;

with ˛ > 0, t 2 Œ0; T / and x 2 Rd .
For any � 2 C1c .R

d / and � 2 R, one has the low-frequency estimates

k�.˛�1D/@tukLmt .Œ0;T /I PB
�C2=m
2;q /

. ˛�
1
m kgk PB�C2=m2;q

C˛
1
m
�1
kf k PB�C22;m

C˛�.1C
1
m
� 1
r
/
kF k

Lrt .Œ0;T /I
PB
�C2=m
2;q /

for any 1 < r �m<1 and 1� q �1, as well as

k�.˛�1D/ruk
Lmt .Œ0;T /I

PB
�C2=m
2;1 /

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

C˛
1
m
� 1
r kF k

Lrt .Œ0;T /I
PB
��1C2=r
2;1 /

for any 1 < r < m <1, and

k�.˛�1D/ruk
Lmt .Œ0;T /I

PB
�C2=m
2;q /

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

CkF k
Lmt .Œ0;T /I

PB
��1C2=m
2;q /

for any 1 < m <1 and 1� q �1.

Proof. Following the proof of Corollary 2.11, we consider

e.t; x/ WD @tu.t; x/ and b.t; x/ WD i jDju.t; x/:

In particular, one has the representation formula (2-19), which, for any given choice of 0 < A< 1
2

, can be
recast as

e.t/D e
A
˛
t�m2.t;D/g� e

A
˛
t�m1.t;D/jDj

2f C

Z t

0

e
A
˛
.t�s/�m2.t � s;D/F ds

D .e
A
˛
t�
jDj2mC2 .t;D/� e

�At˛m�2 .t;D//g� e
A
˛
t�m1.t;D/jDj

2f

C

Z t

0

.e
A
˛
.t�s/�

jDj2mC2 .t � s;D/� e
�A.t�s/˛m�2 .t � s;D//F ds;

b.t/D e
A
˛
t�m1.t;D/i jDjg� e

A
˛
t�m3.t;D/i jDjf C

Z t

0

e
A
˛
.t�s/�m1.t � s;D/i jDjF ds;

(2-33)

with the time-dependent Fourier multipliers

m1.t; �/D
et�C � et��

�C���
eAt

j�j2

˛ ; m2.t; �/D
et�C�C� e

t����

�C���
eAt

j�j2

˛ ;

mC2 .t; �/D
et�C�C

j�j2.�C���/
eAt

j�j2

˛ ; m�2 .t; �/D
et����

�C���
eAt˛;

m3.t; �/D
et�C��e

t���C

�C���
eAt

j�j2

˛ ;

(2-34)

where the eigenvalues �C.�/ and ��.�/ are defined in (2-18).
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Then, making use of the elementary controls (2-20), one can show that

km11fj�j� 1
4
˛gkL

1
t;�
. ˛�1; kmC2 1fj�j� 1

4
˛gkL

1
t;�
. ˛�2;

km�2 1fj�j� 1
4
˛gkL

1
t;�
. 1; km31fj�j�˛RgkL1

t;�
. 1:

In particular, since the space of Fourier multipliers over L2.Rd / is isomorphic to L1.Rd /, we conclude
that

1fjDj� 1
4
˛gm1; 1fjDj� 1

4
˛gm

˙
2 and 1fjDj� 1

4
˛gm3

are bounded in the sense that they satisfy (2-12) for p D 2.
Therefore, applying Propositions 2.2 and 2.4 to the representation formulas (2-33) by suitably scaling

time by A=˛, we obtain the estimates

k1fjDj� 1
4
˛gekLmt PB

�C2=m
2;q

. ˛
1
m
�2
k1fjDj� 1

4
˛ggk PB�C22;m

C˛�
1
m kgk PB�C2=m2;q

C˛
1
m
�1
kf k PB�C22;m

C˛
1
m
� 1
r
�1
k1fjDj� 1

4
˛gF kLrt PB

�C2=r
2;1

C˛�.1C
1
m
� 1
r
/
kF k

Lrt
PB
�C2=m
2;q

. ˛�
1
m kgk PB�C2=m2;q

C˛
1
m
�1
kf k PB�C22;m

C˛�.1C
1
m
� 1
r
/
kF k

Lrt
PB
�C2=m
2;q

(2-35)

and
k1fjDj� 1

4
˛gbkLmt PB

�C2=m
2;1

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

C˛
1
m
� 1
r kF k

Lrt
PB
��1C2=r
2;1

(2-36)

for any 1 < r < m <1 and 1� q �1.
If, instead of Proposition 2.4, one uses Proposition 2.6, then one arrives at the estimates

k1fjDj� 1
4
˛gekLmt PB

�C2=m
2;q

. ˛�
1
m kgk PB�C2=m2;q

C˛
1
m
�1
kf k PB�C22;m

C˛�1kF k
Lmt
PB
�C2=m
2;q

(2-37)

and
k1fjDj� 1

4
˛gbkLmt PB

�C2=m
2;q

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

CkF k
Lmt
PB
��1C2=m
2;q

(2-38)

for any 1 < m <1 and 1� q �1.
In order to handle frequencies lying in the range

˚
1
4
˛ < j�j � ˛R

	
for any choice of parameter R > 1

with 2AR2 < 1, we employ (2-20) and (2-21) to deduce that the multipliers in (2-33) satisfy

km11f 1
4
˛<j�j�˛RgkL

1
t;�
. ˛�1;

km21f 1
4
˛<j�j�˛RgkL

1
t;�
� k��m11f 1

4
˛<j�j�˛RgkL

1
t;�
Cket.�CCA

j�j2

˛
/1f 1

4
˛<j�j�˛RgkL

1
t;�
. 1;

km31f 1
4
˛<j�j�˛RgkL

1
t;�
� k�Cm11f 1

4
˛<j�j�˛RgkL

1
t;�
Cket.�CCA

j�j2

˛
/1f 1

4
˛<j�j�˛RgkL

1
t;�
. 1:

Therefore, as previously, by the boundedness of multipliers and the fact that ke�atkLpt .Œ0;1// D a
�1=p

for any a > 0 and 1� p �1 (no need to use Propositions 2.2, 2.4 or 2.6, here), we conclude from (2-33)
that
k1f 1

4
˛<jDj�˛RgekLmt PB

�C2=m
2;q

. ˛�
1
m kgk PB�C2=m2;q

C˛�
1
m
�1
k1fjDj�˛Rgf k PB�C2C2=m2;q

C˛�.1C
1
m
� 1
r
/
kF k

Lrt
PB
�C2=m
2;q

. ˛�
1
m kgk PB�C2=m2;q

C˛
1
m
�1
kf k PB�C22;m

C˛�.1C
1
m
� 1
r
/
kF k

Lrt
PB
�C2=m
2;q

(2-39)
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and

k1f 1
4
˛<jDj�˛RgbkLmt PB

�C2=m
2;q

. ˛�
1
m
�1
k1fjDj�˛Rggk PB�C1C2=m2;q

C˛�
1
m k1fjDj�˛Rgf k PB�C1C2=m2;q

C˛�2�
1
m
C 1
r k1fjDj�˛RgF kLrt PB

�C1C2=m
2;q

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

C˛
1
m
� 1
r kF k

Lrt
PB
��1C2=r
2;1

(2-40)

for any 1� r �m<1 and 1� q �1.
All in all, combining (2-35), (2-37) and (2-39), we obtain

k1fjDj�˛RgekLmt PB
�C2=m
2;q

. ˛�
1
m kgk PB�C2=m2;q

C˛
1
m
�1
kf k PB�C22;m

C˛�.1C
1
m
� 1
r
/
kF k

Lrt
PB
�C2=m
2;q

for any 1 < r �m<1 and 1� q �1. Similarly, combining (2-36), (2-38) and (2-40), we deduce that

k1fjDj�˛RgbkLmt PB
�C2=m
2;1

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

C˛
1
m
� 1
r kF k

Lrt
PB
��1C2=r
2;1

for any 1 < r < m <1 and

k1fjDj�˛RgbkLmt PB
�C2=m
2;q

. ˛
1
m
�1
kgk PB�C12;m

C˛
1
m kf k PB�C12;m

CkF k
Lmt
PB
��1C2=m
2;q

for any 1 < m <1 and 1� q �1.
Finally, selectingR large enough that supp��fj�j�Rg yields the desired estimates on �.˛�1D/.e; b/,

thereby concluding the proof. �

Remark. The preceding proof raises a question — is it possible to extend the statement of Proposition 2.13
from the L2-setting (in space integrability) to a general Lp-setting, with p¤ 2? Such an extension would
require dealing with the boundedness of the multipliers defined in (2-34) over Lp . This is related to the
boundedness of the Bochner–Riesz multiplier .1� j�j2/1=2

C
, which is notoriously challenging and remains

unsettled in general dimensions. We will therefore not be going into further detail on this subject.

Corollary 2.14. Let d D 2 or d D 3, and consider a solution .E;B/.t; x/ W Œ0; T /�Rd ! R6 of the
damped Maxwell system 8<:

1
c
@tE �r �BC �cE DG;
1
c
@tBCr �E D 0;

divB D 0

for some initial data .E;B/.0; x/D .E0; B0/.x/, where � > 0 and c > 0.
For any � 2 C1c .R

d / and s 2 R, one has the low-frequency estimates

k�.c�1D/PEk
Lmt .Œ0;T /I

PB
sC2=m
2;q /

. c�
2
m kPE0k PBsC2=m2;q

C c�1kB0k PBsC12;m

C c�1C
2
r
� 2
m kPGk

Lrt .Œ0;T /I
PB
sC2=m
2;q /

for any 1 < r �m<1 and 1� q �1, as well as

k�.c�1D/Bk
Lmt .Œ0;T /I

PB
sC2=m
2;1 /

. c�1kPE0k PBsC12;m

CkB0k PBs2;m
CkPGk

Lrt .Œ0;T /I
PB
s�1C2=r
2;1 /
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for any 1 < r < m <1, and

k�.c�1D/Bk
Lmt .Œ0;T /I

PB
sC2=m
2;q /

. c�1kPE0k PBsC12;m

CkB0k PBs2;m
CkPGk

Lmt .Œ0;T /I
PB
s�1C2=m
2;q /

for any 1 < m <1 and 1� q �1.

Proof. We follow the steps of the proof of Corollary 2.12, which involves first fixing a damped Lorenz
gauge satisfying (2-28), (2-29) and (2-31). Then, applying Proposition 2.13 instead of Corollary 2.11 to
the damped wave system (2-32), we find, for any � 2 C1c .R

d / and s 2 R, that

k�.c�1D/PEk
Lmt .Œ0;T /I

PB
sC2=m
2;q /

D c�
1
m k�.c�1D/@tPAkLmt .Œ0;cT /I PB

sC2=m
2;q /

. c�
2
m kPE0k PBsC2=m2;q

C c�1kB0k PBsC12;m

C c�1C
2
r
� 2
m kPGk

Lrt .Œ0;T /I
PB
sC2=m
2;q /

;

for any 1 < r �m<1 and 1� q �1. We also obtain

k�.c�1D/Bk
Lmt .Œ0;T /I

PB
sC2=m
2;1 /

. c�
1
m k�.c�1D/rPAk

Lmt .Œ0;cT /I
PB
sC2=m
2;1 /

. c�1kPE0k PBsC12;m

CkB0k PBs2;m
CkPGk

Lrt .Œ0;T /I
PB
s�1C2=r
2;1 /

;

for any 1 < r < m <1, whereas the limiting case 1 < r Dm<1 yields

k�.c�1D/Bk
Lmt .Œ0;T /I

PB
sC2=m
2;q /

. c�
1
m k�.c�1D/rPAk

Lmt .Œ0;cT /I
PB
sC2=m
2;q /

. c�1kPE0k PBsC12;m

CkB0k PBs2;m
CkPGk

Lmt .Œ0;T /I
PB
s�1C2=m
2;q /

for any 1� q �1, which concludes the proof. �

3. Perfect incompressible two-dimensional plasmas

We are now going to apply the damped Strichartz estimates for Maxwell’s system, established in the
preceding section, to the analysis of the two-dimensional incompressible Euler–Maxwell system (1-1).
The main goal of this section is to establish Theorems 3.1, 3.2 and 3.3 below.

In order to conveniently state the results, recall first that we denote the initial energy by

E0 WD k.u0; E0; B0/kL2 :

For ease of notation, we also introduce a natural frequency decomposition of Besov and Chemin–Lerner
spaces with respect to the speed of light c > 0. More precisely, we define the Besov seminorms

kf k PBsp;q;<
WD

� X
k2Z
2k<�c

2ksqk�kf k
q
Lp

�1
q

and kf k PBsp;q;>
WD

� X
k2Z
2k��c

2ksqk�kf k
q
Lp

�1
q

;

as well as the Chemin–Lerner seminorms

kf kzLrt PB
s
p;q;<

WD

� X
k2Z
2k<�c

2ksqk�kf k
q

LrtL
p
x

�1
q

and kf kzLrt PB
s
p;q;>

WD

� X
k2Z
2k��c

2ksqk�kf k
q

LrtL
p
x

�1
q
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for any s 2 R and 0 < p; q; r �1 (with obvious modifications if q is infinite), where the constant � > 0
is the electrical conductivity used in the original Euler–Maxwell system (1-1).

Theorem 3.1. Let p and " be any real numbers in .2;1/ and .0; 1/, respectively. There is a constant
C� > 0 such that, if the initial data .u0; E0; B0/, with divu0D divE0D divB0, has the two-dimensional
normal structure (1-2) and belongs to ..H 1\ PW 1;p/� .H 1\ PB

7=4
2;1 /

2/.R2/ with

.E0Cku0k PH1\ PW 1;p Ck.E0; B0/k PH1 C c
� 3
4 k.E0; B0/k PB7=42;1

/C�e
C�E4C"0 < c; (3-1)

where c > 0 is the speed of light, then there is a global weak solution .u;E;B/ 2 L1.RCIL2/ to the
two-dimensional Euler–Maxwell system (1-1), with the normal structure (1-2), satisfying the energy
inequality (1-3) and enjoying the additional regularity

u 2 L1.RCI PH 1
\ PW 1;p/; .E;B/ 2 L1.RCI PH 1/; c�

3
4 .E;B/ 2 zL1.RCI PB

7=4
2;1 /;

.cE;B/ 2 L2.RCI PH 1/; B 2 L2.RCI PB22;1;</;

.E;B/ 2 zL2.RCI PB11;1;>/; c
1
4E 2 zL2.RCI PB

7=4
2;1 /; c

1
4B 2 zL2.RCI PB

7=4
2;1;>/:

(3-2)

It is to be emphasized that the bounds in (3-2) are uniform in any set of initial data such that the left-hand
side of (3-1) remains bounded.

Remark. For any fixed initial data .u0; E0; B0/ satisfying the requirements of Theorem 3.1, it is possible
to improve the uniform controls (3-2) by showing that the bound

.E;B/ 2 zL1.RCI PB
7=4
2;1 /

holds uniformly as c!1. This is clarified in Section 3.11 below.

Remark. Note that we do not make any claim concerning the uniqueness of solutions produced by
Theorem 3.1. However, Theorem 3.2 below strengthens the statement of Theorem 3.1 by achieving such
uniqueness, provided the initial vorticity is bounded pointwise.

Remark. Employing the bounds (3-2), one can easily show that .rE;rB/ 2 L2.RCIL1/. Indeed,
making use of straightforward embeddings in Besov and Chemin–Lerner spaces, we deduce that

krEkL2.RCIL1/ � krEkzL2.RCI PB0
1;1/
. kEkzL2.RCI PB1

1;1;</
CkEkzL2.RCI PB1

1;1;>/

. kcEkzL2.RCI PB01;1;</CkEkzL2.RCI PB11;1;>/

. kcEkzL2.RCI PB12;1;</CkEkzL2.RCI PB11;1;>/
and

krBkL2.RCIL1/ � krBkL2.RCI PB0
1;1/
. kBk

L2.RCI PB1
1;1;</

CkBkzL2.RCI PB1
1;1;>/

. kBk
L2.RCI PB22;1;</

CkBkzL2.RCI PB1
1;1;>/

: (3-3)
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Remark. The initial condition (3-1) can be interpreted as a mere strengthening of the property that the
velocity of the fluid cannot exceed the speed of light, i.e.,

kukL1t;x � c:

On purely physical grounds, this condition seems therefore quite reasonable and is not very restrictive.

The previous result only covers the case !0 2 L2\Lp in the range of parameters p 2 .2;1/. The
next result strengthens Theorem 3.1 by assuming that !0 2 L2\L1.

Theorem 3.2. If , in addition to all hypotheses of Theorem 3.1, for some given p 2 .2;1/, one also
assumes that !0 2 L1 (but not necessarily ru0 2 L1), then the solution produced by Theorem 3.1
satisfies the additional bound ! 2 L1.RCIL1/ and is unique in the space of all solutions . Nu;E;B/ to
the Euler–Maxwell system (1-1) satisfying the bounds, locally in time,

. Nu;E;B/ 2 L1t L
2
x; Nu 2 L2tL

1
x ;

Nj 2 L2t;x;

and having the same initial data.

We address the propagation of regularity in the Euler–Maxwell system (1-1) with the following result.

Theorem 3.3. Consider parameters p 2 .2;1/, "2 .0; 1/, s 2
�
7
4
; 2
�

and n2 Œ1;1�. There is a constant
C��>0 such that, if the initial data .u0; E0; B0/, with divu0D divE0D divB0, has the two-dimensional
normal structure (1-2) and belongs to ..H 1\ PW 1;p/� .H 1\ PBs2;n/

2/.R2/ with

.E0Cku0k PH1\ PW 1;p Ck.E0; B0/k PH1 C c
1�s
k.E0; B0/k PBs2;n

/C��e
C��E4C"0 < c; (3-4)

where c > 0 is the speed of light, then there is a global weak solution .u;E;B/ 2 L1.RCIL2/ to the
two-dimensional Euler–Maxwell system (1-1), with the normal structure (1-2), satisfying the energy
inequality (1-3) and enjoying the additional regularity

u 2 L1.RCI PH 1
\ PW 1;p/; .E;B/ 2 L1.RCI PH 1/; c1�s.E;B/ 2 zL1.RCI PBs2;n/;

.cE;B/ 2 L2.RCI PH 1/; B 2 L2.RCI PB22;1;</;

c
7
4
�s.E;B/ 2 zL2.RCI PB

s�3=4
1;n;>/; c2�sE 2 zL2.RCI PBs2;n/; c2�sB 2 zL2.RCI PBs2;n;>/:

(3-5)

It is to be emphasized that the bounds in (3-5) are uniform in any set of initial data such that the left-hand
side of (3-4) remains bounded.

Remark. As in the case of Theorem 3.1, for any fixed initial data .u0; E0; B0/ satisfying the requirements
of Theorem 3.3, it is possible to improve the uniform controls (3-5) by showing that the bound

.E;B/ 2 zL1.RCI PBs2;n/

holds uniformly as c!1. This is clarified in Section 3.11 below.

The remainder of this section builds up to the proofs of Theorems 3.1, 3.2 and 3.3 by implementing
the strategy discussed in Section 1.3. The proofs of the theorems per se are given in Sections 3.8, 3.9
and 3.10, respectively.
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3.1. Dimensional analysis. Prior to discussing specific elements of the proofs of the above theorems,
we provide here a dimensional analysis of the Euler–Maxwell system (1-1), which, we hope, will shed
light on the initial conditions (3-1) and (3-4).

Specifically, assuming that .u;E;B/ is a solution of (1-1) for some fixed light velocity c > 0 and
initial data .u0; E0; B0/, we observe, defining

u�.t; x/D �u.�2t; �x/; E�.t; x/D �E.�2t; �x/; B�.t; x/D �B.�2t; �x/; (3-6)

for any � > 0, that .u�; E�; B�/ also solves (1-1) with a rescaled speed of light c� D �c (the electrical
conductivity � remains unchanged) and for the initial data

u�0.x/D �u.�x/; E�0 .x/D �E.�x/; B�0 .x/D �B.�x/:

In particular, we readily compute

k.u�0 ; E
�
0 ; B

�
0 /kL2 Cku

�
0k PW 1;p Ck.u

�
0 ; E

�
0 ; B

�
0 /k PH1 C c

�3=4

�
k.E�0 ; B

�
0 /k PB7=42;1

D �.��1k.u0; E0; B0/kL2 C�
1� 2

p ku0k PW 1;p Ck.u0; E0; B0/k PH1 C c
� 3
4 k.E0; B0/k PB7=42;1

/;

which, by an optimization procedure in �, implies that Theorem 3.1 still holds if one replaces assump-
tion (3-1) with the weaker inequality

.E.p�2/=.2p�2/0 ku0k
p=.2p�2/

PW 1;p
Ck.u0; E0; B0/k PH1 C c

� 3
4 k.E0; B0/k PB7=42;1

/C�e
C�E4C"0 < c; (3-7)

where the independent constant C�>0may take a different value. Note that this inequality is now invariant
with respect to the parabolic scaling (3-6). Similarly, the same procedure can be used to optimize (3-4)
and replace it with a scaling invariant assumption.

It turns out that the parabolic scaling (3-6) is the only available invariant dilation which leaves the
electrical conductivity � unchanged. However, if one allows � to be redefined according to the dilation,
then other scalings become available. For example, introducing the hyperbolic scaling

u�.t; x/D u.�t; �x/; E�.t; x/DE.�t; �x/; B�.t; x/D B.�t; �x/ (3-8)

for any � > 0, we see that .u�; E�; B�/ now solves (1-1) with a rescaled electrical conductivity ��D ��
(the speed of light c remains unchanged) and for the initial data

u�0.x/D u.�x/; E�0 .x/DE.�x/; B�0 .x/D B.�x/:

In particular, by setting �D ��1, it is now possible to deduce how the constants C� and C�� in (3-1)
and (3-4), respectively, depend on � . More precisely, this process allows us to show that Theorem 3.1
holds if one further replaces (3-7) by the assumption

.E.p�2/=.2p�2/0 ku0k
p=.2p�2/

PW 1;p
Ck.u0; E0; B0/k PH1C.�c/

� 3
4 k.E0; B0/k PB7=42;1

/C�e
C��

4C"E4C"0 <c (3-9)

for some constant C� > 0 which is now independent of the electrical conductivity � . Observe that (3-9)
is now invariant with respect to both the parabolic scaling (3-6) and the hyperbolic scaling (3-8). As
previously noted, the same process can be applied to improve (3-4).
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3.2. Approximation procedure and stability. The proofs of Theorems 3.1, 3.2 and 3.3 proceed by
compactness arguments. More specifically, they follow the standard procedure of first considering smooth
solutions to a regularized approximation of the original system (1-1), where all formal estimates can be
conducted with full rigor, and then showing the stability of the approximation as it converges towards the
original system.

Such approximation procedures are absolutely classical in the field of fluid dynamics. We are therefore
only going to outline an example of approximation which can be used here to conveniently establish
our results. Specifically, for any integer n � 1, we consider the unique solution .un; En; Bn/ to the
approximate Navier–Stokes–Maxwell system8̂̂̂̂

<̂
ˆ̂̂:
@tunC .Snun/ � run�

1
n
�un D�rpnC .Snjn/�Bn; divun D 0;

1
c
@tEn�r �Bn D�jn; divEn D 0;
1
c
@tBnCr �En D 0; divBn D 0;
jn D �.cEnCSnP.un �Bn//; div jn D 0;

(3-10)

for the initial data .un; En; Bn/jtD0 D Sn.u0; E0; B0/, with the two-dimensional normal structure (1-2),
where Sn denotes the Fourier multiplier operator defined in Appendix A which restricts frequencies to
the domain fj�j � 2ng. The construction of the solution .un; En; Bn/ is a standard procedure. One can,
for instance, follow and adapt the steps detailed in [Lemarié-Rieusset 2016, Section 12.2].

Note that other approximation schemes can be employed. In particular, the dissipation term�.1=n/�un
is not essential. However, as a matter of convenience, the use of this term allows us to comfortably construct
the approximate solution .un; En; Bn/ by relying on methods from the analysis of the incompressible
Navier–Stokes system.

Observe that the corresponding energy inequality

1

2
.kun.t/k

2
L2
CkEn.t/k

2
L2
CkBn.t/k

2
L2
/C

Z t

0

�
1

n
krun.�/k

2
L2
C
1

�
kjn.�/k

2
L2

�
d�

�
1

2
kSn.u0; E0; B0/k

2
L2
�
1

2
k.u0; E0; B0/k

2
L2

for all t � 0 is now fully justified and, since the initial data is smooth, it is possible to show that
.un; En; Bn/ remains smooth for all times, albeit not uniformly in n.

The above energy inequality only allows us to deduce the uniform bounds

.un; En; Bn/ 2 L
1
t L

2
x and jn 2 L

2
t;x;

which are insufficient to establish the stability of the nonlinear terms

.Snun/ � run; .Snjn/�Bn and SnP.un �Bn/

in the limit n!1. The general strategy is therefore to show that the bounds and properties stated in
Theorems 3.1, 3.2 and 3.3 can be fully justified on the smooth system (3-10) uniformly in n. Such uniform
bounds are then sufficient to show the strong relative compactness of f.un; En; Bn/g1nD1 in L2t;x;loc, which
then allows us to take the limit n!1 (up to extraction of subsequences) and establish the asymptotic
stability of (3-10), thereby yielding suitable solutions of the original Euler–Maxwell system (1-1).
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In what follows, for the sake of simplicity, keeping in mind that all computations can be fully justified
on the approximate system (3-10), we shall perform all estimates formally on the original system (1-1).
In particular, we emphasize that, even though, strictly speaking, the dissipation operator �.1=n/� cannot
be ignored, it is self-adjoint and therefore will not impact the energy estimates which are performed in
the proofs below.

3.3. Paradifferential calculus and the normal structure. The use of Besov and Chemin–Lerner spaces
in the analysis of nonlinear systems often requires a careful use of product estimates. Such results
from paradifferential calculus are rather standard, but their applicability is limited. In the following
paradifferential lemma, we show how the normal structure (1-2) can be exploited to extend the range of
applicability of classical product estimates. This plays a central role in our analysis of (1-1).

Lemma 3.4. Let F;G W Rt �R2x! R3 be solenoidal vector fields with the normal structure

F.t; x1; x2/D

0@F1.t; x1; x2/F2.t; x1; x2/

0

1A and G.t; x1; x2/D

0@ 0

0

G3.t; x1; x2/

1A : (3-11)

Further consider integrability parameters in Œ1;1� such that

1

a
D

1

a1
C
1

a2
and 1

c
D
1

c1
C
1

c2
:

Then, recalling that P D .��/�1 curl curl denotes Leray’s projector onto solenoidal vector fields, one
has the product estimate

kP.F �G/kzLat PB
sCt�1
2;c .R2/

. kF kzLa1t PBs2;c1 .R2/
kGkzLa2t PB

t
2;c2

.R2/
(3-12)

for any s 2 .�1; 1/ and t 2 .�1; 2/, with sC t > 0. Furthermore, in the endpoint case s D 1, one has

kP.F �G/kzLat PB
t
2;c.R

2/
. kF k

L
a1
t L
1
x .R2/\zL

a1
t
PB12;1.R

2/
kGkzLa2t PB

t
2;c.R

2/
(3-13)

for any t 2 .�1; 2/.

Remark. The significance of the preceding lemma lies in the fact that it allows us to consider parameters
in the range t 2 Œ1; 2/. Without the normal structure (3-11), we would be restricted to values t < 1.

Remark. A straightforward simplification of the proof below yields a corresponding result in Besov
spaces for vector fields independent of the time variable t .

Proof. We are going to use the paradifferential decomposition

F �G D TFG �TGF CR.F;G/;

where the paraproducts are defined by

TFG D
X
j2Z

Sj�2F ��jG;

TGF D
X
j2Z

Sj�2G ��jF D�
X
j2Z

�jF �Sj�2G
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and the remainder is given by

R.F;G/D
X
j;k2Z
jj�kj�2

�jF ��kG:

In particular, by virtue of the solenoidal and normal structures of F and G, one has

r � .F �G/D F � .r �G/;

which leads to the identity

r � .F �G/Dr �TFG �Tr�GF Cr �R.F;G/:

We therefore conclude, by standard embeddings of Besov spaces, that

kP.F �G/kzLat PB
sCt�1
2;c

. kr � .F �G/kzLat PBsCt�22;c

. kTFGkzLat PBsCt�12;c

CkTr�GF kzLat PB
sCt�2
2;c

CkR.F;G/kzLat PB
sCt
1;c

for every s; t 2 R.
Next, employing the classical paradifferential estimates (A-6) and (A-7) presented in the appendix and

further exploiting standard embeddings of Besov spaces, we find that

kP.F �G/kzLat PB
sCt�1
2;c

. kF kzLa1t PBs�11;c1
kGkzLa2t PB

t
2;c2

CkF kzLa1t PB
s
2;c1

kr �GkzLa2t PB
t�2
1;c2

CkF kzLa1t PB
s
2;c1

kGkzLa2t PB
t
2;c2

. kF kzLa1t PBs2;c1
kGkzLa2t PB

t
2;c2

for any s < 1 and t < 2, such that sC t > 0. This establishes (3-12).
As for the endpoint case sD 1, if, in addition to (A-6), one also uses (A-8), then similar bounds lead to

kP.F �G/kzLat PB
t
2;c

. kF k
L
a1
t L
1
x
kGkzLa2t PB

t
2;c

CkF kzLa1t PB
1
2;1

kr �GkzLa2t PB
t�2
1;c
CkF kzLa1t PB

1
2;1

kGkzLa2t PB
t
2;c

. kF k
L
a1
t L
1
x \zL

a1
t
PB12;1
kGkzLa2t PB

t
2;c

for any �1 < t < 2, thereby establishing (3-13) and concluding the proof of the lemma. �

The following ad hoc variant of a paraproduct estimate will be useful when handling vorticities which
are bounded pointwise.

Lemma 3.5. Let F;G W R2x! R3 be solenoidal vector fields with the normal structure (3-11). Then, one
has the product estimate

kP.F �G/k PB12;1.R2/
. kF kL2.R2/kGk PB1

1;1.R
2/
CkF k PH1.R2/

kGk PH1.R2/
: (3-14)

Remark. The above statement is phrased in terms of mere Besov spaces. As usual, a straightforward
extension of the same result to Chemin–Lerner spaces also exists.



DAMPED STRICHARTZ ESTIMATES AND THE INCOMPRESSIBLE EULER–MAXWELL SYSTEM 1355

Proof. We employ the method of proof of Lemma 3.4. In particular, we obtain

kP.F �G/k PB12;1
. kTFGk PB12;1 CkTr�GF k PB02;1 CkR.F;G/k PB12;1 :

Then, by virtue of the classical paradifferential estimates (A-6), (A-7) and (A-8) , we arrive at

kP.F �G/k PB12;1
. kF kL2kGk PB1

1;1
Ckr �Gk PB�1

1;2
kF k PB12;2

CkF k PB02;1
kGk PB1

1;1

. kF kL2kGk PB1
1;1
CkGk PB0

1;2
kF k PB12;2

:

Finally, an application of the two-dimensional embedding PB12;2 � PB
0
1;2 concludes the proof. �

3.4. Controlling the vorticity. In order to carry out our strategy, previously laid out in Section 1.3,
we need to control the vorticity ! in Lpx , with p � 2, by exploiting Yudovich’s approach of the two-
dimensional incompressible Euler equations (1-4). The following basic lemma provides us with a simple
tool to do so.

Lemma 3.6. Let .u;E;B/ 2 C 1.Œ0; T /�R2/\L1.Œ0; T /IH 1.R2// be a smooth solution to (1-1) for
some T > 0, with the two-dimensional normal structure (1-2). Then, for all t 2 .0; T /,

k!.t/kL2x � k!.0/kL2x Ckj kL2.Œ0;t/IL2x/krBkL2.Œ0;t/IL
1
x /
;

k!.t/kLpx . k!.0/kLpx Ckj k
2=p

L2.Œ0;t/I PB02;1/
kj k

1�2=p

L2.Œ0;t/I PB12;1/
krBkL2.Œ0;t/IL1x /;

k!.t/kL1x . k!.0/kL1x Ckj kL2.Œ0;t/IL1x /krBkL2.Œ0;t/IL1x /
. k!.0/kL1x Ckj kL2.Œ0;t/I PB12;1/krBkL2.Œ0;t/IL1x /

for any 2 < p <1.

Proof. By slight abuse of language, we assume here that the vorticity ! is defined as the scalar function
! D @1u2� @2u1 and that

uD

�
u1
u2

�
and j D

�
j1
j2

�
:

In particular, a straightforward computation shows that the transport equation (1-16) can then be recast as

@t!Cu � r! D�j � rb; (3-15)

where b.t; x/ is the third component of the magnetic field B.t; x/ as defined in (1-2).
Next, supposing, for simplicity, that p is finite and introducing the test function '.x/D e�jxj

2

, we
multiply the above vorticity transport equation by p!j!jp�2'."x/, where 0 < " < 1, and then integrate
in space. This yields, since u is divergence-free,

d

dt

Z
R2
j!jp'."x/ dx � p

Z
R2
jj jjrbjj!jp�1'."x/ dxC "

Z
R2
j!jpu � r'."x/ dx

� pkj kLpx krbkL
1
x

�Z
R2
j!jp'."x/ dx

�p�1
p

C "k!k
p�1

L1x
k!kL2xkukL2xkr'kL

1
x
;
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whereby, if ! is nontrivial,

d

dt

�Z
R2
j!jp'."x/ dx

�1
p

� kj kLpx krbkL
1
x
C

"k!k
p�1

L1x
k!kL2xkukL2xkr'kL

1
x

p
�R

R2
j!jp'."x/ dx

�.p�1/=p :

Finally, further integrating in time and letting " tend to zero, we conclude that

k!.t/kLpx � k!.0/kL
p
x
Ckj kL2.Œ0;t/ILpx /krbkL2.Œ0;t/IL1x /

for any t 2 .0; T /. A classical modification of this argument gives the same result for an infinite value of
the parameter p.

Now, if p D 2, the proof is finished. If 2 < p < 1, we further employ the following convexity
inequality (see [Bergh and Löfström 1976] for details on interpolation theory)

kj k
L2.Œ0;t/I PH1�2=p/

. kj k2=p
L2.Œ0;t/I PB02;1/

kj k
1�2=p

L2.Œ0;t/I PB12;1/
;

in combination with the classical two-dimensional Sobolev embedding PH 1�2=p � Lp, to conclude that

k!.t/kLpx . k!.0/kLpx Ckj k
2=p

L2.Œ0;t/I PB02;1/
kj k

1�2=p

L2.Œ0;t/I PB12;1/
krbkL2.Œ0;t/IL1x /:

Finally, the case pD1 is settled with an application of the continuous embeddings PB12;1 � PB
0
1;1 � L

1,
valid in two dimensions, thereby completing the proof of the lemma. �

Remark. Recall that the approximation procedure presented in Section 3.2 relies on a viscous approxi-
mation of the Euler system. It is therefore important to emphasize here that the method of proof of the
preceding lemma also applies to viscous approximations of the transport equation (3-15). Indeed, observe
that multiplying the transport-diffusion equation

@t!Cu � r! ��! D�j � rb

by ˇ0.!/, for some convex nonnegative renormalization ˇ 2 C 2.R/ with ˇ.0/D 0, and then integrating
in space leads, at least formally, to the estimate

d

dt

Z
R2
ˇ.!/ dx �

d

dt

Z
R2
ˇ.!/ dxC

Z
R2
jr!j2ˇ00.!/ dx D

Z
R2
.j � rb/ˇ0.!/ dx:

This observation can be exploited to derive the estimates stated in Lemma 3.6 in spite of the diffusion
term. Thus, we conclude that the approximated system (3-10) is well-suited for an application of the
estimates from Lemma 3.6.

Recall now that the space PH 1.R2/ barely fails to embed into L1.R2/. Thus, the bounds produced
in the preceding lemma will be very useful to recover, by interpolation, an L1-bound on the velocity
field u, as explained in the following simple result.

Lemma 3.7. Let .u;E;B/ be a smooth solution to (1-1), with the two-dimensional normal structure (1-2).
Then, for all T > 0,

ku.T /kL1x . ku.T /k
.p�2/=.2.p�1//

L2x
.ku.0/k PW 1;p

x
Ckj k

2=p

L2t
PB02;1
kj k

1�2=p

L2t
PB12;1
krBkL2tL

1
x
/

p
2.p�1/

for any 2 < p <1, where all time-norms are taken over the interval Œ0; T /.
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Proof. This result follows from the classical Gagliardo–Nirenberg interpolation inequality in two space-
dimensions. For the sake of convenience, we provide a brief justification of the precise inequality which
is employed here.

Specifically, for any k 2 Z and 2k �R < 2kC1, we estimate that

kukL1 �kSkukL1C

1X
iDk

k�iukL1 . 2kkukL2C
1X
iDk

2i.
2
p
�1/
krukLp .RkukL2CR

�.1� 2
p
/
krukLp ;

which yields, upon optimization of the interpolation parameter value R > 0, the Gagliardo–Nirenberg
inequality

kukL1.R2/ . kuk
.p�2/=.2.p�1//

L2.R2/
kruk

p=.2.p�1//

Lp.R2/
(3-16)

for any 2 < p �1.
Then, combining this convexity inequality with the estimates from Lemma 3.6 and recalling the

equivalence krukLp � k!kLp , because u is divergence-free, concludes the proof of the lemma. �

Remark. Note that the proof of (3-16) can be adapted to establish, for any divergence-free field u, that

kukL1.R2/ . kuk
.p�2/=.2.p�1//

L2.R2/
kr �uk

p=.2.p�1//

Lp.R2/
(3-17)

for all values 2 < p �1. Indeed, this follows from the observation that

k�iukL1 . 2�ik�ir �ukL1 . 2i.
2
p
�1/
kr �ukLp ;

provided divuD 0.

3.5. Control of high-frequency damped electromagnetic waves. The following result follows from a
simple but careful combination of the damped Strichartz estimates for high electromagnetic frequencies,
established in Section 2.3, with the paradifferential product estimates from Lemma 3.4.

Lemma 3.8. Let d D 2. Assume that .E;B/ is a smooth solution to (1-15) for some initial data .E0; B0/
and some divergence-free vector field u, with the normal structure (1-2).

Then, for any exponents 1� p � q �1, 2� r �1 and 1� n�1 which are admissible in the sense
that

2

q
C
1

r
�
1

2
; (3-18)

one has the high-frequency estimate over any time interval Œ0; T / for any 0 < ˛ < 1 and s < 2, with
˛C s > 0,

k.E;B/kzLqt PB
sC˛�7=4C3=.2r/
r;n;>

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBsC˛�12;n;>

C c
1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kuk1�˛

L1t
PB02;1
kuk˛

L1t
PB12;1
kBkzLpt PB

s
2;1

:

In the endpoint cases ˛ D 1 and ˛ D 0, one also has the respective estimates

k.E;B/kzLqt PB
s�.3=2/.1=2�1=r/
r;n;>

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBs2;n;>
C c

1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kuk

L1t;x\L
1
t
PB12;1
kBkzLpt PB

s
2;n

(3-19)
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for any �1 < s < 2 and

k.E;B/kzLqt PB
s�7=4C3=.2r/
r;n;>

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBs�12;n;>
Cc

1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kuk

L1t
PB02;1
kBkzLpt PB

s
2;n

for any 0 < s < 2.

Proof. Considering Maxwell’s system (1-15) and applying Corollary 2.12, with Qr D 2 and Qq D p0, yields
the high-frequency estimate

2�j
3
2
. 1
2
� 1
r
/
k�j .E;B/kLqt L

r
x
. c

1
2
. 1
2
� 1
r
/� 2

q .k�j .E0; B0/kL2x C c
2
p
�1
k�jP.u�B/kLpt L

2
x
/

for all j 2 Z with 2j � �c, where 1 � p � q � 1 and 2 � r � 1 must satisfy (3-18). It is to be
emphasized that, thanks to the damping phenomenon in (1-15), all estimates here hold uniformly over
any time interval Œ0; T /, where T D1 is allowed.

Next, summing the preceding estimate in j and utilizing the paradifferential product law (3-13), we
deduce that1f2j��cg2

j.s� 3
2
. 1
2
� 1
r
//
k�j .E;B/kLqt L

r
x


`n

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBs2;n;>
C c

1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kP.u�B/kzLpt PB

s
2;n

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBs2;n;>
C c

1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kuk

L1t;x\
zL1t
PB12;1
kBkzLpt PB

s
2;n

for any �1 < s < 2. If, instead of using (3-13), one employs the paradifferential product law (3-12), then
one arrives at the estimate1f2j��cg2

j.sC˛� 7
4
C 3
2r
/
k�j .E;B/kLqt L

r
x


`n

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBsC˛�12;n;>

C c
1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kP.u�B/kzLpt PB

sC˛�1
2;n

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBsC˛�12;n;>

C c
1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kukzL1t PB

˛
2;1
kBkzLpt PB

s
2;1

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBsC˛�12;n;>

C c
1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kuk1�˛

zL1t
PB02;1
kuk˛

zL1t
PB12;1
kBkzLpt PB

s
2;1

;

which is valid for any 0 < ˛ < 1 and s < 2, with ˛C s > 0, where we exploited the fact that zL1t PB
˛
2;1 is

an interpolation space between zL1t PB
0
2;1 and zL1t PB

1
2;1 (see [Bergh and Löfström 1976] for details on

interpolation theory).
Similarly, the case ˛ D 0 yields1f2j��cg2

j.s� 7
4
C 3
2r
/
k�j .E;B/kLqt L

r
x


`n

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBs�12;n;>
C c

1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kP.u�B/kzLpt PB

s�1
2;n

. c
1
2
. 1
2
� 1
r
/� 2

q k.E0; B0/k PBs�12;n;>
C c

1
2
. 1
2
� 1
r
/C2. 1

p
� 1
q
/�1
kukzL1t PB

0
2;1
kBkzLpt PB

s
2;n

for any 0 < s < 2. This completes the justification of the high-frequency estimates. �
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3.6. Control of low-frequency damped electromagnetic waves. The statement of Corollary 2.12 has
clearly emphasized how solutions to the damped Maxwell system enjoy intrinsically different properties
on the distinct ranges of low and high frequencies.

In particular, the combination of Corollary 2.12 with the paradifferential Lemma 3.4 resulted in the
nonlinear high-frequency estimates of Lemma 3.8. A similar strategy based on the same corollary could
now be employed to deduce suitable nonlinear low-frequency estimates.

However, in the next lemma, we are instead going to exploit the refined estimates established in
Corollary 2.14, which are a consequence of the maximal parabolic regularity studied in Section 2.2, to
obtain a sharper control of low frequencies. This will lead to stronger statements of our main theorems.

Lemma 3.9. Let d D 2. Assume that .E;B/ is a smooth solution to (1-15) for some initial data .E0; B0/
and some divergence-free vector field u, with the normal structure (1-2).

Then, for any exponents 1<p� q <1 and 1� n�1, one has the following low-frequency estimates
over any time interval Œ0; T /. For any 0 < ˛ < 1 and s < 2, with ˛C s > 0,

kEk
L
q
t
PB
sC˛�1
2;n;<

. c�
2
q kE0k PBsC˛�12;n;<

C c�1kB0k PBsC˛�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kuk1�˛

L1t
PB02;1
kuk˛

L1t
PB12;1
kBk

L
p
t
PBs2;1

;

kBk
L
q
t
PB
sC˛C2=q�2=p
2;1;<

. c�1kE0k PBsC˛C1�2=p2;q;<

CkB0k PBsC˛�2=p2;q;<

Ckuk1�˛
L1t
PB02;1
kuk˛

L1t
PB12;1
kBk

L
p
t
PBs2;1

: (3-20)

In the endpoint case ˛ D 1, with �1 < s < 2, one also has the estimates

kEk
L
q
t
PBs2;n;<

.c�
2
q kE0k PBs2;n;<

Cc�1kB0k PBsC1�2=q2;q;<

Cc2.
1
p
� 1
q
/�1
kuk

L1t;x\L
1
t
PB12;1
kBk

L
p
t
PBs2;n

; (3-21)

as well as, if p < q,

kBk
L
q
t
PB
sC1C2=q�2=p
2;1;<

. c�1kE0k PBsC2�2=p2;q;<

CkB0k PBsC1�2=p2;q;<

Ckuk
L1t;x\L

1
t
PB12;1
kBk

L
p
t
PBs2;1

and, if p D q,

kBk
L
q
t
PB
sC1
2;n;<

. c�1kE0k PBsC2�2=q2;q;<

CkB0k PBsC1�2=q2;q;<

Ckuk
L1t;x\L

1
t
PB12;1
kBk

L
q
t
PBs2;n

: (3-22)

Finally, in the remaining endpoint case ˛ D 0, with 0 < s < 2,

kEk
L
q
t
PBs�12;n;<

. c�
2
q kE0k PBs�12;n;<

C c�1kB0k PBs�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kuk

L1t
PB02;1
kBk

L
p
t
PBs2;n

;

as well as, if p < q,

kBk
L
q
t
PB
sC2=q�2=p
2;1;<

. c�1kE0k PBsC1�2=p2;q;<

CkB0k PBs�2=p2;q;<

Ckuk
L1t
PB02;1
kBk

L
p
t
PBs2;1

and, if p D q,

kBk
L
q
t
PBs2;n;<

. c�1kE0k PBsC1�2=q2;q;<

CkB0k PBs�2=q2;q;<

Ckuk
L1t
PB02;1
kBk

L
q
t
PBs2;n

: (3-23)
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Remark. The devil is in the details. In the statement of Lemma 3.9 and its corresponding proof below,
we have paid painstaking attention to the summability index of Besov spaces, occasionally referred to as
the third index. Thus, in the above statement, sometimes the third index is q, other times it is n, 1 or1.
Either way, we believe that these defining values of Besov spaces are optimal, which is a crucial step to
reach sharp statements of our main results.

Proof. Let us consider some fixed regularity parameters s 2 R and 0� ˛ � 1.
On the one hand, an application of Corollary 2.12 with r D Qr D 2 (note that this is the best possible

choice for r and Qr , since all other estimates for values 2� r; Qr �1 follow from the case r D Qr D 2 by
Sobolev embeddings) and Qq D p0 gives

2j.sC˛�1/k�jEkLqt L
2
x
. c�

2
q kE0k PBsC˛�12;1;<

C c�1kB0k PBsC˛�2=q2;1;<

C c2.
1
p
� 1
q
/�1
kP.u�B/k

L
p
t
PB
sC˛�1
2;1

and

2j.sC˛C
2
q
� 2
p
/
k�jBkLqt L

2
x
. c�1kE0k PBsC˛C1�2=p2;1;<

CkB0k PBsC˛�2=p2;1;<

CkP.u�B/k
L
p
t
PB
sC˛�1
2;1

for all j 2 Z with 2j < �c, where 1� p � q �1.
On the other hand, employing Corollary 2.14 yields1f2j< 1

2
�cg2

j.sC˛�1/
k�jEkL2x


L
q
t `
n
j

. c�
2
q kE0k PBsC˛�12;n;<

C c�1kB0k PBsC˛�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kP.u�B/k

L
p
t
PB
sC˛�1
2;n

for any 1 < p � q <1 and 1� n�1, as well as1f2j< 1
2
�cg2

j.sC˛C 2
q
� 2
p
/
k�jBkL2x


L
q
t `
1
j

. c�1kE0k PBsC˛C1�2=p2;q;<

CkB0k PBsC˛�2=p2;q;<

CkP.u�B/k
L
p
t
PB
sC˛�1
2;1

for any 1 < p < q <1, and1f2j< 1
2
�cg2

j.sC˛/
k�jBkL2x


L
q
t `
n
j

. c�1kE0k PBsC˛C1�2=q2;q;<

CkB0k PBsC˛�2=q2;q;<

CkP.u�B/k
L
q
t
PB
sC˛�1
2;n

for any 1 < q <1 and 1� n�1.
On the whole, combining the above estimates, we arrive at the conclusion that

kEk
L
q
t
PB
sC˛�1
2;n;<

. c�
2
q kE0k PBsC˛�12;n;<

C c�1kB0k PBsC˛�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kP.u�B/k

L
p
t
PB
sC˛�1
2;n

for any 1 < p � q <1 and 1� n�1, as well as

kBk
L
q
t
PB
sC˛C2=q�2=p
2;1;<

. c�1kE0k PBsC˛C1�2=p2;q;<

CkB0k PBsC˛�2=p2;q;<

CkP.u�B/k
L
p
t
PB
sC˛�1
2;1

for any 1 < p < q <1, and

kBk
L
q
t
PB
sC˛
2;n;<

. c�1kE0k PBsC˛C1�2=q2;q;<

CkB0k PBsC˛�2=q2;q;<

CkP.u�B/k
L
q
t
PB
sC˛�1
2;n

for any 1 < q <1 and 1� n�1.
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We are now going to apply the paradifferential product inequalities from Lemma 3.4 to the three
preceding controls. More precisely, setting ˛ D 1, restricting the range of s to .�1; 2/ and utilizing the
product law (3-13) to handle the nonlinear term u�B , we obtain

kEk
L
q
t
PBs2;n;<

. c�
2
q kE0k PBs2;n;<

C c�1kB0k PBsC1�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kuk

L1t;x\L
1
t
PB12;1
kBk

L
p
t
PBs2;n

for any 1 < p � q <1 and 1� n�1, as well as

kBk
L
q
t
PB
sC1C2=q�2=p
2;1;<

. c�1kE0k PBsC2�2=p2;q;<

CkB0k PBsC1�2=p2;q;<

Ckuk
L1t;x\L

1
t
PB12;1
kBk

L
p
t
PBs2;1

for any 1 < p < q <1, and

kBk
L
q
t
PB
sC1
2;n;<

. c�1kE0k PBsC2�2=q2;q;<

CkB0k PBsC1�2=q2;q;<

Ckuk
L1t;x\L

1
t
PB12;1
kBk

L
q
t
PBs2;n

for any 1 < q <1 and 1� n�1.
Similarly, choosing parameters 0 < ˛ < 1 and s < 2, with ˛C s > 0, utilizing (3-12) instead of (3-13),

and exploiting again the fact that L1t PB
˛
2;1 is an interpolation space between L1t PB

0
2;1 and L1t PB

1
2;1, we

find that

kEk
L
q
t
PB
sC˛�1
2;n;<

. c�
2
q kE0k PBsC˛�12;n;<

C c�1kB0k PBsC˛�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kuk1�˛

L1t
PB02;1
kuk˛

L1t
PB12;1
kBk

L
p
t
PBs2;1

for any 1 < p � q <1 and 1� n�1, as well as

kBk
L
q
t
PB
sC˛C2=q�2=p
2;1;<

. c�1kE0k PBsC˛C1�2=p2;q;<

CkB0k PBsC˛�2=p2;q;<

Ckuk1�˛
L1t
PB02;1
kuk˛

L1t
PB12;1
kBk

L
p
t
PBs2;1

for any 1 < p � q <1.
Finally, the case ˛D 0, with 0 < s < 2, is handled with the same product estimate (3-12) and results in

kEk
L
q
t
PBs�12;n;<

. c�
2
q kE0k PBs�12;n;<

C c�1kB0k PBs�2=q2;q;<

C c2.
1
p
� 1
q
/�1
kuk

L1t
PB02;1
kBk

L
p
t
PBs2;n

for any 1 < p � q <1 and 1� n�1, as well as

kBk
L
q
t
PB
sC2=q�2=p
2;1;<

. c�1kE0k PBsC1�2=p2;q;<

CkB0k PBs�2=p2;q;<

Ckuk
L1t
PB02;1
kBk

L
p
t
PBs2;1

for any 1 < p < q <1, and

kBk
L
q
t
PBs2;n;<

. c�1kE0k PBsC1�2=q2;q;<

CkB0k PBs�2=q2;q;<

Ckuk
L1t
PB02;1
kBk

L
q
t
PBs2;n

for any 1<q <1 and 1�n�1, thereby completing the justifications of all low-frequency estimates. �

Note that the estimates from Lemma 3.9 do not include the value q D1. Rather than providing a
technical extension of the preceding proof to incorporate the value q D1, we show in the next result a
simple energy estimate on Maxwell’s system (1-15), which corresponds to the case q D1 in Lemma 3.9.
This energy estimate allows us to propagate the PH 1

x -norm of electromagnetic fields, which will come in
handy in the proof of Theorem 3.1 below.
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Lemma 3.10. Let d D 2. Assume that .E;B/ is a smooth solution to (1-15) for some initial data .E0; B0/
and some divergence-free vector field u, with the normal structure (1-2).

Then, one has the estimates

k.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
. k.E0; B0/k PH1

x
CkukL1t L

2
x
krBkL2tL

1
x
;

k.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
. k.E0; B0/k PH1

x
Ckuk1�˛

L1t
PB02;1
kuk˛

L1t
PB12;1
kBk

L2t
PB2�˛2;1

;

k.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
. k.E0; B0/k PH1

x
Ckuk

L1t;x\L
1
t
PB12;1
kBk

L2t
PH1
x

(3-24)

over any time interval Œ0; T / for any 0 < ˛ < 1.

Proof. We perform a classical energy estimate on (1-15). More precisely, defining

. zE; zB/ WD .r �E;r �B/;

we observe from (1-15) that . zE; zB/ solves the system(
1
c
@t zE �r � zBC �c zE D��r � .u�B/D �.u � r/B � �.B � r/u;
1
c
@t zBCr � zE D 0;

where we employed the fact that u and B are divergence-free fields. In fact, the preceding step holds in
any dimension d D 2 or d D 3.

However, restricting ourselves to the two-dimensional setting and assuming that the field .u;E;B/
satisfies the structure (1-2) allows us to discard the term .B �r/u. To be precise, we now have that . zE; zB/
solves (

1
c
@t zE �r � zBC �c zE D��u� zB;
1
c
@t zBCr � zE D 0:

Thus, multiplying the first equation by zE, the second by zB and integrating in time and space, we deduce
that

1

2c
k. zE; zB/.T /k2

L2x
C �ck zEk2

L2t .Œ0;T /IL
2
x/

�
1

2c
k. zE; zB/.0/k2

L2x
C �ku� zBkL2t .Œ0;T /IL

2
x/
k zEkL2t .Œ0;T /IL

2
x/

�
1

2c
k. zE; zB/.0/k2

L2x
C
�

2c
ku� zBk2

L2t .Œ0;T /IL
2
x/
C
�c

2
k zEk2

L2t .Œ0;T /IL
2
x/
:

Further employing the fact that

k.E;B/k PH1
x
D k.rE;rB/kL2x D k.

zE; zB/kL2x ;

we arrive at the estimate

k.E;B/.T /k2
PH1
x

C �c2kEk2
L2t .Œ0;T /I

PH1
x /
� k.E0; B0/k

2
PH1
x

C �ku� zBk2
L2t .Œ0;T /IL

2
x/
:

Therefore, the proof will be completed upon controlling the nonlinear term ku� zBk2
L2t .Œ0;T /IL

2
x/

.
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To this end, an elementary application of Hölder’s inequality first leads to

ku� zBkL2t;x
� kukL1t L

2
x
krBkL2tL

1
x
;

thereby completing the justification of the first estimate of the lemma.
Alternatively, following the proof of Lemma 3.9, one can use the paraproduct estimates from Lemma 3.4

again. More specifically, utilizing the product law (3-13), we obtain

ku� zBkL2t;x
D kP.u�B/k

L2t
PH1
x
. kuk

L1t;x\L
1
t
PB12;1
kBk

L2t
PH1
x
:

Similarly, choosing a parameter 0 < ˛ < 1, utilizing (3-12) instead of (3-13), and exploiting the fact that
L1t
PB˛2;2 is an interpolation space between L1t PB

0
2;1 and L1t PB

1
2;1, we finally infer that

ku� zBkL2t;x
D kP.u�B/k

L2t
PH1
x
. kuk

L1t
PB˛2;2
kBk

L2t
PB2�˛2;1
. kuk1�˛

L1t
PB02;1
kuk˛

L1t
PB12;1
kBk

L2t
PB2�˛2;1

;

which concludes the proof. �

3.7. Almost-parabolic estimates on the magnetic field. In the singular limit c!1, Maxwell’s equa-
tions (1-15) formally converge towards the parabolic system

@tBC .u � r/B �
1

�
�B D .B � r/u;

where we employed the fact that u and B are divergence-free. This holds in both dimensions d D 2
and d D 3. Further assuming the two-dimensional normal structure (1-2), the preceding system reduces
to the simple transport-diffusion equation

@tbCu � rb�
1

�
�b D 0;

which satisfies the energy inequality
1

2
kb.T /k2

L2x
C
1

�
krbk2

L2x
�
1

2
kb.0/k2

L2x
(3-25)

for all T > 0, at least formally.
The estimates provided by Lemma 3.9 fail to fully capture this asymptotic parabolic behavior of

Maxwell’s equations, because they always contain a control of the nonlinear term u � rb, whereas this
term does not contribute to the energy dissipation inequality (3-25).

The next result establishes a singular almost-parabolic energy estimate for Maxwell’s system (1-15)
which recovers the classical a priori estimate (3-25) (up to multiplicative constants) for the heat equation in
the limit c!1. This is crucial to our work, as it will allow us to construct solutions to the Euler–Maxwell
system (1-1) for arbitrarily large initial data as the speed of light c tends to infinity.

Lemma 3.11. Let d D 2. Assume that .E;B/ is a smooth solution to (1-15) for some initial data .E0; B0/
and some divergence-free vector field u, with the normal structure (1-2).

Then, one has the estimate

kBkL1t L
2
x
CkrBkL2tL

2
x
. kB0kL2x C c

�1
k.E0; B0/k PH1

x
C c�1kukL1t L

2
x
krBkL2tL

1
x

(3-26)

over any time interval Œ0; T /.
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Proof. First, we observe that taking the curl of Ampère’s equation in (1-15) and then employing Faraday’s
equation to substitute r �E D�.1=c/@tB , when necessary, leads to the system

@tBC .u � r/B �
1

�
�B D .B � r/uC

1

�c
@t .r �E/;

where we have also used that u and B are divergence-free. This holds in any dimension d D 2 or d D 3.
Then, further assuming that .u;E;B/ has the two-dimensional normal structure (1-2) yields

@tbCu � rb�
1

�
�b D

1

�c
@t .curlE/:

Now, the elementary observation thatZ
R2
.u � rb/b dx D

1

2

Z
R2
u � r.b2/ dx D�

1

2

Z
R2
.divu/b2 dx D 0;

which is a consequence of the incompressibility of u, allows us to deduce the parabolic energy estimate

1

2

d

dt

Z
R2
b2 dxC

1

�

Z
R2
jrbj2 dx D

1

�c

d

dt

Z
R2
.curlE/b dxC 1

�

Z
R2
.curlE/2 dx; (3-27)

where we used Faraday’s equation again to substitute @tb D�c curlE.
Then, integrating in time, we infer that

1

2
kb.T /k2

L2x
C
1

�
krbk2

L2t .Œ0;T /IL
2
x/

�
1

2
kb.0/k2

L2x
C

1

�c

Z
R2

curlE.T /b.T / dx� 1

�c

Z
R2

curlE.0/b.0/ dxC 1

�
kcurlEk2

L2t .Œ0;T /IL
2
x/

�
1

2
kb.0/k2

L2x
C
1

4
.kb.0/k2

L2x
Ckb.T /k2

L2x
/C

1

�2c2
.kE.0/k2

PH1
x

CkE.T /k2
PH1
x

/C
1

�
kEk2

L2t .Œ0;T /I
PH1
x /
;

which leads to

1

4
kB.T /k2

L2x
C
1

�
krBk2

L2t .Œ0;T /IL
2
x/

�
3

4
kB0k

2

L2x
C

1

�2c2
kE0k

2
PH1
x

C
1

�2c2
.kE.T /k2

PH1
x

C �kcEk2
L2t .Œ0;T /I

PH1
x /
/: (3-28)

Finally, combining (3-28) with the energy estimates (3-24) shows that (3-26) holds, thereby reaching the
conclusion of the proof. �

Remark. The identity (3-27) contains the crucial calculation which enables us to extract a uniform bound
on B in L2t PH

1
x , with remainder terms of order c�1. This estimate will play an important role in the

control of the low frequencies of nonlinear source terms in the Euler–Maxwell system.

3.8. Proof of Theorem 3.1. We proceed to the proof of our first main result — Theorem 3.1. Recall
that we are taking the liberty of assuming, for simplicity, to be dealing with a smooth solution .u;E;B/
of (1-1) for some smooth initial data .u0; E0; B0/, and that the justification of the theorem is only fully
completed by relying on the approximation procedure laid out in Section 3.2.
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Our proof hinges upon the preliminary lemmas established in Sections 3.4–3.7. Accordingly, we begin
by carefully gathering all the relevant estimates on an arbitrary time interval Œ0; T /. We will then move
on to construct the energy functional which will produce the uniform bounds we are seeking.

Control of velocity field. The control of u is obtained from Lemmas 3.6 and 3.7. Recalling the equivalence
krukLax � k!kLax for any value 1 < a <1, these lemmas provide the estimates

kuk
L1t

PH1
x
. ku0k PH1

x
Ckj kL2t;x

krBkL2tL
1
x
;

kuk
L1t

PW
1;p
x
. ku0k PW 1;p

x
Ckj k

2=p

L2t;x
kj k

1�2=p

L2t
PH1
x

krBkL2tL
1
x
;

kukL1t;x . kuk
.p�2/=.2.p�1//

L1t L
2
x

kuk
p=.2.p�1//

L1t
PW
1;p
x

. kukp�2=.2.p�1//
L1t L

2
x

.ku0k PW 1;p
x
Ckj k

2=p

L2t;x
kj k

1�2=p

L2t
PH1
x

krBkL2tL
1
x
/p=.2.p�1//;

(3-29)

where 2 < p <1 is a fixed value.

Control of high electromagnetic frequencies. The control of high frequencies of .E;B/ is obtained from
Lemma 3.8. Specifically, setting s D 7

4
in (3-19) allows us to deduce that

c�
3
4 k.E;B/kzL1t PB

7=4
2;1;>

C c
1
4 k.E;B/kzL2t PB

7=4
2;1;>

Ck.E;B/kzL2t PB
1
1;1;>

. c�
3
4 k.E0; B0/k PB7=42;1;>

C c�
3
4 kuk

L1t;x\L
1
t
PH1
x
kBkzL2t PB

7=4
2;1

:

Then, further decomposing high and low frequencies in the last term above, we obtain

kBkzL2t PB
7=4
2;1

. kBkzL2t PB7=42;1;< CkBkzL2t PB7=42;1;> . kBk
1=4

zL2t
PB12;1;<

kBk
3=4

zL2t
PB22;1;<

CkBkzL2t PB
7=4
2;1;>

. kBk1=4
L2t
PH1
x

kBk
3=4

L2t
PB22;1;<

CkBkzL2t PB
7=4
2;1;>

;

which yields the estimate

c�
3
4 k.E;B/kzL1t PB

7=4
2;1;>

C c
1
4 k.E;B/kzL2t PB

7=4
2;1;>

Ck.E;B/kzL2t PB
1
1;1;>

. c�
3
4 k.E0; B0/k PB7=42;1;>

C c�
3
4 kuk

L1t;x\L
1
t
PH1
x
.kBk

1=4

L2t
PH1
x

kBk
3=4

L2t
PB22;1;<

CkBkzL2t PB
7=4
2;1;>

/: (3-30)

Observe that the choice of regularity parameter s D 7
4

is dictated by the need to control rB in L2tL
1
x , as

anticipated in the strategy presented in Section 1.3. Further notice that it is therefore crucial to be able to
set a regularity parameter s with a value greater than one in (3-19). This flexibility comes from the use of
the normal structure (1-2), which we exploited in the product estimates established in Section 3.3.

Control of low electromagnetic frequencies. The control of low frequencies of .E;B/ is deduced from
Lemmas 3.9 and 3.10. Here also, the choice of parameters is dictated by the need to control rB in L2tL

1
x .

Thus, since PB22;1.R
2/ is contained in L1.R2/, one could, for instance, set s D 2 in (3-23), which gives

kBk
L2t
PB22;1;<

. c�1kE0k PB22;2;< CkB0k PB12;2;< CkukL1t L2xkBkL2t PB22;1 :

But, due to the coefficient kukL1t L2x , such an estimate would eventually lead to a smallness condition,
uniform in c, on the initial energy E0, which is not desirable. Therefore, instead, we employ (3-20)
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and (3-22). More precisely, by setting s D 1 in (3-22) and s D 2�˛ in (3-20), for any choice 0 < ˛ < 1,
we obtain the respective estimates

kBk
L2t
PB22;1;<

. c�1kE0k PB22;2;< CkB0k PB12;2;< CkukL1t;x\L1t PH1
x
kBk

L2t
PB12;1
;

kBk
L2t
PB22;1;<

. c�1kE0k PB22;2;< CkB0k PB12;2;< Ckuk
1�˛
L1t L

2
x
kuk˛

L1t
PH1
x

kBk˛
L2t
PB12;1
kBk1�˛

L2t
PB22;1

:

In fact, it is possible to straightforwardly adapt the proofs of the above estimates to derive the more useful
combined control, where we split the high and low frequencies of B in the right-hand side,

kBk
L2t
PB22;1;<

. c�1kE0k PB22;2;< CkB0k PB12;2;< CkukL1t;x\L1t PH1
x
k1fjDj� 1

2
�cgBkL2t PB

1
2;1

Ckuk1�˛
L1t L

2
x
kuk˛

L1t
PH1
x

k1fjDj< 1
2
�cgBk

˛

L2t
PB12;1
k1fjDj< 1

2
�cgBk

1�˛

L2t
PB22;1

. k.E0; B0/k PH1
x
Ckuk

L1t;x\L
1
t
PH1
x
.c�1kBk

L2t
PB22;1;<

C c�
3
4 kBkzL2t PB

7=4
2;1;>

/

Ckuk1�˛
L1t L

2
x
kuk˛

L1t
PH1
x

kBk˛
L2t
PH1
x

kBk1�˛
L2t
PB22;1;<

: (3-31)

Further combining the preceding estimate with the energy estimate (3-24) from Lemma 3.10, we obtain

k.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
CkBk

L2t
PB22;1;<

. k.E0; B0/k PH1
x
Ckuk

L1t;x\L
1
t
PH1
x
.c�1kBk

L2t
PB22;1;<

C c�
3
4 kBkzL2t PB

7=4
2;1;>

/

Ckuk1�˛
L1t L

2
x
kuk˛

L1t
PH1
x

kBk˛
L2t
PH1
x

kBk1�˛
L2t
PB22;1;<

:

Finally, by a classical use of Young’s inequality ab � ˛a1=˛C .1�˛/b1=.1�˛/, with a; b � 0, aimed at
absorbing the term kBk1�˛

L2t
PB22;1;<

with the above left-hand side, we conclude that

k.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
CkBk

L2t
PB22;1;<

. k.E0; B0/k PH1
x
Ckuk

L1t;x\L
1
t
PH1
x
.c�1kBk

L2t
PB22;1;<

C c�
3
4 kBkzL2t PB

7=4
2;1;>

/

Ckuk
1=˛�1

L1t L
2
x

kuk
L1t

PH1
x
kBk

L2t
PH1
x
: (3-32)

Parabolic stability of magnetic field. The parabolic stability of the magnetic field comes as a result of the
almost-parabolic estimates established in Lemma 3.11, which we conveniently reproduce here:

kBk
L2t
PH1
x
. kB0kL2x C c

�1
k.E0; B0/k PH1

x
C c�1kukL1t L

2
x
krBkL2tL

1
x
: (3-33)

This estimate will serve to control the term kBk
L2t
PH1
x

in (3-32).

Ohm’s law estimate. Finally, we need to employ Ohm’s law from (1-1) to control the electric current j .
More precisely, by Ohm’s law and the normal structure (1-2), we have

kj k
L2t
PH1
x
. ckEk

L2t
PH1
x
CkP.u�B/k

L2t
PH1
x
. ckEk

L2t
PH1
x
CkukL1t L

2
x
krBkL2tL

1
x
; (3-34)

which will be used to control kj k
L2t
PH1
x

in (3-29).
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Nonlinear energy estimate. We are now in a position to derive the global nonlinear energy estimate
which will yield a uniform bound on solutions to (1-1). Thus, inspired by the above set of estimates, we
introduce the energy H.t1; t2/, with 0� t1 � t2, by setting

H.t1; t2/ WDkukL1t PH1
x
CE.p�2/=.2.p�1//0 kuk

p=.2.p�1//

L1t
PW
1;p
x

Cc�
3
4 k.E;B/kzL1t PB

7=4
2;1;>

Cc
1
4 k.E;B/kzL2t PB

7=4
2;1;>

Ck.E;B/kzL2t PB
1
1;1;>

Ck.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
CkBk

L2t
PB22;1;<

;

where all time-norms are taken over the interval Œt1; t2/. Since .u;E;B/ is assumed, without any loss
of generality, to be a smooth solution of (1-1), observe that H.t1; t2/ is continuous on f0� t1 � t2g. In
particular, we can further define the continuous function

H.t/WDH.t; t/Dku.t/k PH1
x
CE.p�2/=.2.p�1//0 ku.t/k

p=.2.p�1//

PW
1;p
x

Cc�
3
4 k.E;B/.t/k PB7=42;1;>

Ck.E;B/.t/k PH1
x

for every t � 0. Note that
H.t/�H.t1; t2/

for all t 2 Œt1; t2�.
It will also be useful to assign the notation

J .t1; t2/ WD kj kL2t;x

to the dissipation produced by the electric current in (1-3), where the L2-norm is taken over the time-
interval Œt1; t2/, as well. In particular, one has the uniform bound

J .t1; t2/�
�
�

2

�1
2 E0 (3-35)

by virtue of the energy inequality (1-3).
Observe now that all the above estimates, which were stated on the time-interval Œ0; T /, could equally

well be written over any other finite time-interval Œt1; t2/, provided one replaces the initial data .u0; E0; B0/
by the data at time t1. Thus, employing the energy inequality (1-3), the energies H.t1; t2/ and H.t/, and
the embedding

krBkL2tL
1
x
� kBk

L2t
PB1
1;1
. kBk

L2t
PB22;1;<

CkBkzL2t PB
1
1;1;>

�H.t1; t2/;

one can write the parabolic stability estimate (3-33) as

kBk
L2t
PH1
x
. E0C c�1H.t1/C c�1E0H.t1; t2/ (3-36)

and the Ohm’s law estimate (3-34) as

kj k
L2t
PH1
x
. .1C E0/H.t1; t2/; (3-37)

which are linear in H.t1; t2/.
Then, incorporating the linear estimate (3-37) into the velocity control (3-29), we obtain

kuk
L1t

PH1
x
.H.t1/CJ .t1; t2/H.t1; t2/;

kukL1t;x . E
p�2
2.p�1/

0 kuk
p

2.p�1/

L1t
PW
1;p
x

.H.t1/C E
p�2
2.p�1/

0 .1C E0/
p�2
2.p�1/J .t1; t2/

1
p�1H.t1; t2/:

(3-38)
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Furthermore, the use of (3-36) and (3-38) in the high-frequency control (3-30) leads to

c�
3
4 k.E;B/kzL1t PB

7=4
2;1;>

C c
1
4 k.E;B/kzL2t PB

7=4
2;1;>

Ck.E;B/kzL2t PB
1
1;1;>

.H.t1/C c�
3
4H.t1; t2/.E0C c�1H.t1/C c�1E0H.t1; t2//

1
4H.t1; t2/

3
4 C c�1H.t1; t2/2

.H.t1/C c�
3
4 E1=40 H.t1; t2/

7
4 C c�1.1C E1=40 /H.t1; t2/2

.H.t1/C�H.t1; t2/C��
1
3 c�1E1=30 H.t1; t2/2C c�1.1C E1=40 /H.t1; t2/2 (3-39)

for any � > 0, whereas a similar procedure applied to the low-frequency estimate (3-32) yields

k.E;B/k
L1t

PH1
x
C ckEk

L2t
PH1
x
CkBk

L2t
PB22;1;<

.H.t1/C c�1H.t1; t2/2C E1=˛�10 .H.t1/CJ .t1; t2/H.t1; t2//.E0C c�1H.t1/C c�1E0H.t1; t2//

. .1C E1=˛0 /H.t1/C E1=˛0 J .t1; t2/H.t1; t2/C .1C E1=˛C10 /c�1H.t1; t2/2: (3-40)

All in all, summing estimates (3-38), (3-39) and (3-40) together and setting � in (3-39) small enough
that the term �H.t1; t2/ can be absorbed by the resulting left-hand side, we finally arrive at the crucial
nonlinear energy estimate

H.t1; t2/. .1CE1=˛0 /H.t1/C.1CE1=˛0 /J .t1; t2/H.t1; t2/

CE.p�2/=.2.p�1//0 .1CE.p�2/=.2.p�1//0 /J .t1; t2/
1
p�1H.t1; t2/C.1CE1=˛C10 /c�1H.t1; t2/2

for any 0� t1 � t2, which, using (3-35), can be slightly simplified to

H.t1; t2/� C�.1C E1=˛0 /H.t1/CC�.1C E1=˛C.p�2/=.p�1/0 /J .t1; t2/
1
p�1H.t1; t2/

CC�.1C E1=˛C10 /c�1H.t1; t2/2; (3-41)

where C� > 0 only depends on fixed parameters (in particular, it is independent of time, the speed of
light c and the initial data). We are now going to show that (3-41) leads to a global bound on H.t1; t2/.

Conclusion of proof. Let us consider a partition of time

0D t0 < t1 < � � �< tn < tnC1 D1

such that, for every i D 0; 1; : : : ; n� 1,

C�.1C E1=˛C.p�2/=.p�1/0 /J .ti ; tiC1/
1
p�1 D

1
2

and C�.1C E1=˛C.p�2/=.p�1/0 /J .tn; tnC1/
1
p�1 �

1
2
:

In particular, by virtue of (3-35), one has, for any t 2 Œti ; tiC1� with i D 0; 1; : : : ; n, that

i

.2C�.1C E1=˛C.p�2/=.p�1/0 //2.p�1/
D

i�1X
kD0

J .tk; tkC1/2 � J .t0; t /2 �
�

2
E20 : (3-42)

It then follows from (3-41) that

H.ti ; t /� 2C�.1C E1=˛0 /H.ti /C 2C�.1C E1=˛C10 /c�1H.ti ; t /2 (3-43)

for all i D 0; : : : ; n and t 2 Œti ; tiC1�.
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Next, for fixed i , we introduce the quadratic polynomial

p.X/D 2C�.1C E1=˛C10 /c�1X2�X C 2C�.1C E1=˛0 /H.ti /;
whose roots

�˙ D
1˙

p
1� 16C 2� .1C E1=˛C10 /.1C E1=˛0 /c�1H.ti /

4C�.1C E1=˛C10 /c�1

are real and distinct, provided

H.ti / <
c

16C 2� .1C E1=˛C10 /.1C E1=˛0 /
: (3-44)

Observe that (3-43) can be rewritten as
p.H.ti ; t //� 0

for all t 2 Œti ; tiC1�. Therefore, by continuity of H.ti ; t / and assuming that (3-44) is satisfied, we deduce
that H.ti ; t /� �� for all t 2 Œti ; tiC1� if it is true for t D ti , i.e., H.ti /� ��.

Now, it is readily seen that (3-44) implies H.ti /� �� if we assume, without any loss of generality, that
2C�.1C E1=˛0 /� 1. Thus, by continuity of t 7!H.ti ; t /, we conclude that (3-44) is sufficient to deduce
the bound

H.t/�H.ti ; t /� �� � 4C�.1C E1=˛0 /H.ti /

for all t 2 Œti ; tiC1�, where we used the elementary inequality 1�
p
1� z � z for all z 2 Œ0; 1� in the last

step. Then, a straightforward iterative process leads us to the estimate

H.ti ; t /� 4C�.1C E1=˛0 /H.ti /� Œ4C�.1C E1=˛0 /�iC1H.t0/

for each i D 0; 1; : : : ; n and all t 2 Œti ; tiC1�, if the initial data satisfies

H.t0/ <
c

4C�.1C E1=˛C10 /Œ4C�.1C E1=˛0 /�iC1
:

Further noticing, for any t 2 Œti ; tiC1�, that

H.t0; t /�H.ti ; t /C
i�1X
kD0

H.tk; tkC1/;

we conclude, in view of (3-42), that one has the global bound

H.0; t/�
iX

kD0

Œ4C�.1C E1=˛0 /�kC1H.0/D 4C�.1C E1=˛0 /
Œ4C�.1C E1=˛0 /�iC1� 1

4C�.1C E1=˛0 /� 1
H.0/

� 2Œ4C�.1C E1=˛0 /�iC1H.0/� 2Œ4C�.1C E1=˛0 /�1CŒ2C�.1CE1=˛C.p�2/=.p�1/0 /�2.p�1/J .0;t/2H.0/;

provided
H.0/ <

c

4C�.1C E1=˛C10 /Œ4C�.1C E1=˛0 /�1CŒ2C�.1CE1=˛C.p�2/=.p�1/0 /�2.p�1/.�=2/E20

�
c

4C�.1C E1=˛C10 /Œ4C�.1C E1=˛0 /�1Cn

holds initially.
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Summarizing the preceding developments, we have now established the existence of an independent
constant C� > 0 such that, if the smooth solution .u;E;B/ has initial data satisfying

4C�.1C E1=˛C10 /Œ4C�.1C E1=˛0 /�1CŒ2C�.1CE1=˛C.p�2/=.p�1/0 /�2.p�1/.�=2/E20H.0/ < c; (3-45)

then the bound

H.0; t/� 2Œ4C�.1C E1=˛0 /�1CŒ2C�.1CE1=˛C.p�2/=.p�1/0 /�2.p�1/J .0;t/2H.0/ (3-46)

holds globally for any t 2 Œ0;1/. In view of the approximation procedure laid out in Section 3.2,
this uniform control allows us to complete the construction of solutions claimed in the statement of
Theorem 3.1.

Moreover, observe that all global bounds on .u;E;B/ stated in (3-2) are a direct consequence of (3-36)
and (3-46).

Finally, in order to deduce the simpler initial condition (3-1) from (3-45), there only remains to notice,
for any given " > 0, by taking 0 < ˛ < 1 and 2 < p < 1 sufficiently close to the values 1 and 2,
respectively, that

4C�.1C E1=˛C10 /Œ4C�.1C E1=˛0 /�1CŒ2C�.1CE1=˛C.p�2/=.p�1/0 /�2.p�1/.�=2/E20 � C��e
C��E4C"0

for some large independent constant C��>0. Then, since the global bound (3-46) holds for that particular
choice of p close to 2, one can use the ensuing uniform controls on the solution .u;E;B/ in combination
with (3-29) to propagate the Lpx -norm of the vorticity ! for higher values 2 < p <1, which completes
the proof of Theorem 3.1. �

3.9. Proof of Theorem 3.2. The proof of Theorem 3.2 is a continuation of that of Theorem 3.1. Thus,
assuming that the solution .u;E;B/ produced by Theorem 3.1 is already constructed, we observe that
Lemma 3.6 provides us with the additional bound

k!.t/kL1x . k!.0/kL1x Ckj kL2.Œ0;t/IL1x /krBkL2.Œ0;t/IL1x /

. k!.0/kL1x C .kj kL2.Œ0;t/I PB0
1;1;</

Ckj k
L2.Œ0;t/I PB0

1;1;>/
/krBkL2.Œ0;t/IL1x /

for any t � 0, which, when combined with Ohm’s law, the two-dimensional embedding PB12;1 � PB
0
1;1 and

the paradifferential product law (3-14), further yields

k!.t/kL1x . k!.0/kL1x C .kj kL2t PB12;1;< C ckEkL2t PB01;1;> CkP.u�B/kL2t PB12;1/krBkL2tL1x
. k!.0/kL1x C

�
ckj k

L2t
PB02;1;<

CkEk
L2t
PB1
1;1;>

CkukL1t L
2
x
kBk

L2t
PB1
1;1
Ckuk

L1t
PH1
x
kBk

L2t
PH1
x

�
krBkL2tL

1
x
:

Now, recall from (3-3) that rB belongs to L2.RCI PB0
1;1/ � L

2.RCIL1x /. Therefore, by virtue of
the energy inequality (1-3), the global bounds (3-2) and the assumption that the initial vorticity belongs
to L1x , we conclude the pointwise boundedness of !.t/ for all times.
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Observe, though, that the ensuing bound ! 2 L1t;x is global in time, but it is not uniform in c. Never-
theless, it is possible to derive another global bound on the vorticity in L1t;x , uniformly in c, by employing
Ohm’s law to control j in L2t PB

1
2;1;< and requiring the additional initial assumption that E0 2 PB12;1.

Specifically, the use of Ohm’s law to expand the low frequencies of j leads to the necessity of
controlling cE uniformly in the space L2t PB

1
2;1;<, which can be achieved by relying on the low-frequency

estimates from Lemma 3.9. More precisely, by combining (3-21), with s D 1, and (3-20), with s D 2�˛
and 0 < ˛ < 1, it is possible to establish, by repeating the steps leading to (3-31), that

ckEk
L2t
PB12;1;<

. kE0k PB12;1 CkB0k PH1
x
Ckuk

L1t;x\L
1
t
PH1
x
.c�1kBk

L2t
PB22;1;<

C c�
3
4 kBkzL2t PB

7=4
2;1;>

/

Ckuk1�˛
L1t L

2
x
kuk˛

L1t
PH1
x

kBk˛
L2t
PH1
x

kBk1�˛
L2t
PB22;1;<

:

All terms in the right-hand side of this estimate are now uniformly controlled (in c) by the bounds (3-2),
provided one further assumes that the initial data E0 belongs to PB12;1. This concludes the justification of
the bound ! 2 L1t;x , uniformly in c.

We turn now to the uniqueness of solutions to (1-1), which rests upon Yudovich’s fundamental ideas.
To that end, suppose that

.ui ; Ei ; Bi / 2 L
1.Œ0; T /IL2x/;

with i D 1; 2, are two weak solutions to the two-dimensional incompressible Euler–Maxwell system (1-1)
for the same initial data and for some existence time T > 0. We are going to establish a weak-strong
uniqueness principle by requiring a control on the solution .u2; E2; B2/ which is stronger than the one
on .u1; E1; B1/.

In a natural way, we denote the vorticities and electric currents associated to each solution by !i and ji ,
respectively. Furthermore, we assume that each solution satisfies its corresponding energy inequality
(1-3) and that

u1 2 L
2.Œ0; T /IL1x /; !2 2

\
2�q�1

Lq
0

.Œ0; T /ILqx/; j2 2 L
1.Œ0; T /IL1x /:

By virtue of the Gagliardo–Nirenberg inequality (3-17), recall that the above bounds are sufficient to
imply that

u2 2 L
2.Œ0; T /IL1x /

as well. Note that we are not requiring here that the solutions have the normal structure (1-2).
Next, a straightforward duality argument on (1-1), similar to the computation which gives the energy

inequality (1-3), leads to
d

dt

Z
R2
.u1 �u2CE1 �E2CB1 �B2/ dxC

2

�

Z
R2
j1 � j2 dx

D�

Z
R2
.u2˝ .u1�u2// W r.u1�u2/ dx

C

Z
R2
...j1� j2/� .B1�B2// �u2� .j2 � .B1�B2// � .u1�u2// dx:

It is to be emphasized that the solutions considered here have sufficient regularity and integrability to
justify the above computation rigorously.
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We introduce now the modulated energy

F".t/ WD
1
2
.k Qu.t/k2

L2
Ck zE.t/k2

L2
Ck zB.t/k2

L2
/C ";

where
Qu WD u1�u2; zE WDE1�E2; zB WD B1�B2;

and " > 0 merely ensures the positivity of F".
Then, integrating the preceding identity in time and combining the result with the energy inequality (1-3)

for each solution, we deduce the estimate

F".t/C
1

�

Z t

0

k Qj .�/k2
L2x
d�

� "�

Z t

0

Z
R2
Œ.. Qu � r/u2/ � QuC . Qj � zB/ �u2� .j2 � zB/ � Qu�.�/ dx d�

� "C

Z t

0

kru2kLqxk Quk
2=q

L1x
k Quk

2=q0

L2x
d� C

Z t

0

k Qj kL2x Œk
zBkL2xku2kL

1
x
Ckj2kL1x k

zBkL2xk QukL2x � d�

� "C

Z t

0

kru2kLqxk Quk
2=q

L1x
k Quk

2=q0

L2x
d� C

1

2�

Z t

0

k Qj .�/k2
L2x
d�

C

Z t

0

h
�

2
k zBk2

L2x
ku2k

2
L1x
Ckj2kL1x k

zBkL2xk QukL2x

i
d�

for all t 2 Œ0; T / and any 2� q <1, where we have defined Qj WD j1� j2.
The next step relies on a classical sharp estimate on the Biot–Savart law (1-14). More precisely, by

exploiting that the map ! 7! r.���1r �!/D ru produces a Calderón–Zygmund singular integral
operator, it is possible to show that

krukLa.R2/ � CBS
a2

a�1
kr �ukLa.R2/

for all 1 < a <1 and any divergence-free vector field u, where CBS > 0 is independent of a. We refer to
[Bahouri et al. 2011, Section 7.1.1] for more details concerning the Biot–Savart law and to [Grafakos
2014, Section 6.2.3] for a Fourier multiplier theorem which can be used to obtain the correct dependence
of the above Biot–Savart estimate in the parameter a.

Thus, we deduce from the previous bound that

F".t/� "C

Z t

0

2CBSqk!2kLqxk Quk
2=q

L1x
F".�/

1
q0 C Œ�ku2k

2
L1x
Ckj2kL1x �F".�/ d�:

Moreover, denoting the right-hand side of the above inequality by G".t/ and observing that it is absolutely
continuous on Œ0; T /, we obtain

d

dt
G".t/� 2CBSqk!2kLqxk Quk

2=q

L1x
G".t/

1
q0 C Œ�ku2k

2
L1x
Ckj2kL1x �G".t/

for almost every t 2 Œ0; T /. Therefore, further introducing the absolutely continuous functional

‚".t/ WDG".t/e
�
R t
0 Œ�ku2k

2

L1x
Ckj2kL1x

�.�/ d�
;
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we see that
d

dt
‚".t/� 2CBSqk!2kLqxk Quk

2=q

L1x
‚".t/

1
q0 e
� 1
q

R t
0 Œ�ku2k

2

L1x
Ckj2kL1x

�.�/ d�
;

whence
d

dt
‚".t/

1
q � 2CBSk!2kLqxk Quk

2=q

L1x
e
� 1
q

R t
0 Œ�ku2k

2

L1x
Ckj2kL1x

�.�/ d�
:

Observe that all technical difficulties incurred when dividing by ‚".t/1=q
0

in the last step are removed by
the use of " > 0.

Now, integrating in time leads to

F".t/
1
q �G".t/

1
q � "e

1
q

R t
0 Œ�ku2k

2

L1x
Ckj2kL1x

�.�/ d�

C 2CBS

Z t

0

k!2.�/kLqxk Qu.�/k
2=q

L1x
e
1
q

R t
� Œ�ku2k

2

L1x
Ckj2kL1x

�.s/ ds
d�;

whereby, letting "! 0, we end up with

1

2
.k Qu.t/k2

L2
Ck zE.t/k2

L2
Ck zB.t/k2

L2
/

�

�
2CBS

Z t

0

k!2.�/kLqxk Qu.�/k
2=q

L1x
d�

�q
e

R t
0 Œ�ku2k

2

L1x
Ckj2kL1x

�.s/ds

�.2CBSk!2kLq0 .Œ0;t/ILqx//
q
k Quk2

L2.Œ0;t/IL1x /
e
�ku2k

2

L2.Œ0;t/IL1x /
Ckj2kL1.Œ0;t/IL1x /

�.2CBSk!2kL1.Œ0;t/IL1x //
q�2.2CBSk!2kL2.Œ0;t/IL2x//

2
k Quk2

L2.Œ0;t/IL1x /
e
�ku2k

2

L2.Œ0;t/IL1x /
Ckj2kL1.Œ0;t/IL1x /:

Finally, considering values t 2 Œ0; T / such that

k!2kL1.Œ0;t/IL1x / <
1

2CBS

and then letting q tend to infinity, we conclude that . Qu; zE; zB/.t/D 0, thereby establishing the uniqueness
of solutions on a time interval Œ0; t/ for some t 2 .0; T /.

Now, observe that this argument can be reproduced on any time interval Œt0; T /, with t0 > 0 and such
that . Qu; zE; zB/.t0/D 0, to prove the uniqueness of solutions on Œt0; t / for some t 2 .t0; T /. In other words,
we have shown that the set

S D

�
t 2 Œ0; T / W

Z t

0

k. Qu; zE; zB/.s/kL2x ds D 0

�
is open. Since the function t 7!

R t
0 k. Qu;

zE; zB/.s/kL2x ds is continuous, the set S is actually both open and
closed. Furthermore, it is nonempty and Œ0; T / is connected. We conclude that S D Œ0; T / and, therefore,
that both solutions .u1; E1; B1/ and .u2; E2; B2/ match on the whole interval of existence Œ0; T /. This
completes the proof of the weak-strong uniqueness principle and concludes the proof of the theorem. �

Remark. In view of the estimates on the electric current j established in the preceding proof, it seems
also possible to propagate the boundedness of the PBsp;1-norms of the vorticity, with p 2 .1;1/ and
sD 2=p, by making use of the methods developed in [Vishik 1998] to prove the global well-posedness of
the two-dimensional incompressible Euler system in critical spaces. We also refer to [Abidi et al. 2010;
Hassainia 2022] for well-posedness results of similar models in critical spaces.
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Remark. It is possible to propagate the boundedness of Lp-norms of the vorticity for values 1� p < 2.
Indeed, a variation of the proof of Lemma 3.6 gives

k!.t/kLpx � k!.0/kL
p
x
Ckj kL2.Œ0;t/IL2x/krBkL2.Œ0;t/IL2p=.2�p/x /

� k!.0/kLpx Ckj kL2.Œ0;t/IL2x/krBk
2=p�1

L2.Œ0;t/IL2x/
krBk

2�2=p

L2.Œ0;t/IL1x /

for any t > 0. It is then readily seen that the terms involving rB are controlled by the bounds (3-2)
and (3-3), whereas the electric current j remains bounded by virtue of the energy inequality (1-3).

3.10. Proof of Theorem 3.3. The proof of Theorem 3.3 builds upon the estimates established in
Theorem 3.1. Thus, following the proof of that theorem, we assume that we have a smooth solution
.u;E;B/ of (1-1) for some smooth initial data .u0; E0; B0/, and we only derive the bounds relevant to
our argument through formal estimates on .u;E;B/, keeping in mind that the full justification of the
result is then completed by carrying out the approximation strategy laid out in Section 3.2.

Now, the proof of Theorem 3.1 establishes that the bound (3-45) on the initial data .u0; E0; B0/ implies
the global uniform bound (3-46) on the solution .u;E;B/. In particular, combining the two inequalities
(3-45) and (3-46), we see that, for any 0 < A < 1, if the initial data satisfies (3-45) with its right-hand
side replaced by Ac, then the solution .u;E;B/ satisfies the estimate

H.0; T / <
Ac

2C�.1C E1=˛C10 /
(3-47)

for all T 2 Œ0;1/. This global bound will come in handy below, with some small but fixed value for the
constant A.

Next, in order to derive a higher-regularity estimate on the field .E;B/, we extend the control of high
electromagnetic frequencies (3-30) to higher smoothness parameters. Specifically, a direct application of
estimate (3-19) from Lemma 3.8 yields

c1�sk.E;B/kzL1t PB
s
2;n;>
C c2�sk.E;B/kzL2t PB

s
2;n;>
C c

7
4
�s
k.E;B/kzL2t PB

s�3=4
1;n;>

. c1�sk.E0; B0/k PBs2;n;> C c
1�s
kuk

L1t;x\L
1
t
PH1
x
kBkzL2t PB

s
2;n

on any time interval Œ0; T / for any 7
4
< s < 2 and 1 � n �1. Then, recalling that the energy H.0; T /

controls the velocity u in L1t;x \L
1
t
PH 1
x (thanks to the Gagliardo–Nirenberg interpolation inequality

(3-16)) and the magnetic field B in L2t PB
2
2;1;<, we infer that the last term above can be bounded by

c1�sH.0; T /.kBk2�s
zL2t
PB12;1;<

kBks�1
zL2t
PB22;1;<

CkBkzL2t PB
s
2;n;>

/

. c1�sH.0; T /.kBk2�s
L2t
PH1
x

kBks�1
L2t
PB22;1;<

CkBkzL2t PB
s
2;n;>

/

. c1�sH.0; T /..E0C c�1H.0/C c�1E0H.0; T //2�sH.0; T /s�1CkBkzL2t PBs2;n;>/;

where we also employed (3-36) in the last step to control B in L2t PH
1
x .
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All in all, combining the preceding inequalities and making use of (3-47), we arrive at

c1�sk.E;B/kzL1t PB
s
2;n;>
C c2�sk.E;B/kzL2t PB

s
2;n;>
C c

7
4
�s
k.E;B/kzL2t PB

s�3=4
1;n;>

. c1�sk.E0; B0/k PBs2;n;> C c
1�sE2�s0 H.0; T /sC c�1.1C E2�s0 /H.0; T /2CAc2�skBkzL2t PBs2;n;> :

Thus, setting the value of the constant A small enough (with respect to fixed parameters only) that the
last term above can be absorbed by the left-hand side, the previous estimate can be recast as

c1�sk.E;B/kzL1t PB
s
2;n;>
C c2�sk.E;B/kzL2t PB

s
2;n;>
C c

7
4
�s
k.E;B/kzL2t PB

s�3=4
1;n;>

. c1�sk.E0; B0/k PBs2;n;> C c
1�sE2�s0 H.0; T /sC c�1.1C E2�s0 /H.0; T /2;

which provides the pursued uniform control of the solution .u;E;B/ in higher-regularity spaces.
Finally, it only remains to notice that

c�
3
4 k.E0; B0/k PB7=42;1

� c�
3
4 k.E0; B0/k PB7=42;1;<

C c�
3
4 k.E0; B0/k PB7=42;1;>

. k.E0; B0/k PH1 C c
1�s
k.E0; B0/k PBs2;n

;

which allows us to deduce that a suitable choice of independent constant C�� > 0 in the initial assump-
tion (3-4) implies the corresponding initial condition (3-1) in Theorem 3.1, with its right-hand side replaced
by Ac (this is necessary to guarantee the validity of (3-47)), thus completing the proof of the theorem. �

3.11. Uniform bounds for fixed initial data. As previously mentioned, the controls (3-2) and (3-5), from
Theorems 3.1 and 3.3, hold for any families of initial data such that the left-hand sides of (3-1) and (3-4)
remain respectively bounded. In particular, within such families, the corresponding collection of global
solutions only satisfies the respective uniform bounds

c�
3
4 .E;B/ 2 zL1.RCI PB

7=4
2;1 /; c1�s.E;B/ 2 zL1.RCI PBs2;n/:

Thus, there is, in general, no bound on the size of the electromagnetic field .E;B/ in zL1.RCI PB7=42;1 /

and zL1.RCI PBs2;n/, uniformly in c, if the corresponding family of initial data .E0; B0/ only satisfies a
uniform control

c�
3
4 .E0; B0/ 2 PB

7=4
2;1 and c1�s.E0; B0/ 2 PB

s
2;n;

respectively.
For example, such sets of initial electromagnetic fields occur naturally when considering mollifications

.uc0; E
c
0 ; B

c
0/D 'c � .u0; E0; B0/;

where 'c.x/ D c2'.cx/ is a classical approximate identity and .u0; E0; B0/ is a given initial data
satisfying

.E0Cku0k PH1\ PW 1;p Ck.E0; B0/k PH1/C���e
C���E4C"0 < c; (3-48)

with C��� > 0. Indeed, it is readily seen that .uc0; E
c
0 ; B

c
0/ satisfies the bounds (3-1) and (3-4), provided

(3-48) holds for some suitable constant C���.
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We are now going to show that the solutions constructed in Theorems 3.1 and 3.3 have, in fact, an
electromagnetic field which remains uniformly bounded in

zL1.RCI PB
7=4
2;1 / and zL1.RCI PBs2;n/;

provided that their corresponding initial values are selected within a bounded family of PB7=42;1 and PBs2;n,
respectively. In particular, such uniform bounds hold whenever one considers fixed initial data independent
of c. This is of special significance in the study of the limiting regime c!1 in order to derive sharp
asymptotic bounds.

The next result provides a suitable energy estimate on the damped Maxwell system (1-15), and the ensu-
ing corollary clarifies the uniform boundedness properties of the solutions built in Theorems 3.1 and 3.3.

Lemma 3.12. Let d D 2. Assume that .E;B/ is a smooth solution to (1-15) for some initial data .E0; B0/
and some divergence-free vector field u, with the normal structure (1-2).

Then, one has the estimate

k.E;B/kzL1t PB
s
2;n
C ckEkzL2t PB

s
2;n

. k.E0; B0/k PBs2;n CkukL1t;x\L1t PH1
x
.kBk

L2t
PH1
x
CkBk

L2t
PB22;1;<

CkBkzL2t PB
s
2;n;>

/ (3-49)

over any time interval Œ0; T / for any 1 < s < 2 and 1� n�1.

Proof. This result follows from a direct energy estimate on the damped Maxwell system (1-15) and is an
extension of Lemma 3.10.

In order to show (3-49), we first localize (1-15) in frequencies by applying �j , for j 2 Z, and then
perform a classical energy estimate on each dyadic frequency component .�jE;�jB/. This procedure
yields the control
1

2c
k.�jE;�jB/.T /k

2
L2x
C �ck�jEk

2
L2t .Œ0;T /IL

2
x/

�
1

2c
k.�jE;�jB/.0/k

2
L2x
C �k�jP.u�B/kL2t .Œ0;T /IL

2
x/
k�jEkL2t .Œ0;T /IL

2
x/

�
1

2c
k.�jE;�jB/.0/k

2

L2x
C
�

2c
k�jP.u�B/k

2

L2t .Œ0;T /IL
2
x/
C
�c

2
k�jEk

2

L2t .Œ0;T /IL
2
x/
:

Then, summing over j in `n, with 1� n�1, we deduce, for any s 2 R, that

k.E;B/kzL1t .Œ0;T /I PB
s
2;n/
C ckEkzL2t .Œ0;T /I PB

s
2;n/
. k.E0; B0/k PBs2;n CkP.u�B/kzL2t .Œ0;T /I PBs2;n/:

Next, by the paradifferential product law (3-13), we see that

kP.u�B/kzL2t PB
s
2;n
. kuk

L1t;x\L
1
t
PB12;1
kBkzL2t PB

s
2;n

for any �1 < s < 2 and 1� n�1. Therefore, combining the preceding inequalities, we conclude that

k.E;B/kzL1t PB
s
2;n
C ckEkzL2t PB

s
2;n

. k.E0; B0/k PBs2;n CkukL1t;x\L1t PB12;1.kBkzL2t PBs2;n;< CkBkzL2t PBs2;n;>/

. k.E0; B0/k PBs2;n CkukL1t;x\L1t PB12;1.kBk
2�s
zL2t
PB12;1;<

kBks�1
zL2t
PB22;1;<

CkBkzL2t PB
s
2;n;>

/

for all 1 < s < 2 and 1� n�1.
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Finally, combining the previous estimate with straightforward embeddings of Besov spaces proves
(3-49), thereby concluding the proof of the lemma. �

Corollary 3.13. Consider parameters p 2 .2;1/, 7
4
� s < 2 and 1� n�1 such that nD 1 if s D 7

4
.

For any fixed initial data

.u0; E0; B0/ 2 ..H
1
\ PW 1;p/� .H 1

\ PBs2;n/� .H
1
\ PBs2;n//.R

2/

satisfying the assumptions of Theorem 3.1
�
if s D 7

4
and n D 1

�
or Theorem 3.3

�
if s > 7

4

�
, the

corresponding global solutions .uc ; Ec ; Bc/ constructed therein satisfy the bounds

uc 2 L1.RCIH 1
\ PW 1;p/; .Ec ; Bc/ 2 L1.RCIH 1/; .Ec ; Bc/ 2 zL1.RCI PBs2;n/;

.cEc ; Bc/ 2 L2.RCI PH 1/; Bc 2 L2.RCI PB22;1;</;

c
7
4
�s.Ec ; Bc/ 2 zL2.RCI PB

s�3=4
1;n;>/; cEc 2 zL2.RCI PBs2;n/; c

1
4Bc 2 zL2.RCI PBs2;n;>/;

uniformly in c.

Proof. This result follows from a straightforward combination of Theorems 3.1 and 3.3 with Lemma 3.12.
Indeed, it is readily seen that the uniform bounds (3-2) and (3-5) are sufficient to control the right-hand
side of (3-49) for appropriate values of .s; n/, thereby showing the improved uniform boundedness of the
solutions .uc ; Ec ; Bc/. �

Appendix A: Littlewood–Paley decompositions and Besov spaces

We recall here the fundamentals of Littlewood–Paley decompositions and introduce a precise definition
of Besov spaces.

A.1. Littlewood–Paley decompositions. We are going to use the Fourier transform

Ff .�/D Of .�/ WD
Z

Rd
e�i��xf .x/ dx

and its inverse
F�1g.x/D Qg.x/ WD

1

.2�/d

Z
Rd
eix��g.�/ d�

in any dimension d � 1.
Now, consider smooth cutoff functions  .�/; '.�/ 2 C1c .R

d / satisfying

 ; ' � 0 are radial; supp � fj�j � 1g; supp' �
˚
1
2
� j�j � 2

	
and

1D  .�/C

1X
kD0

'.2�k�/ for all � 2 Rd :

Defining the scaled cutoffs
 k.�/ WD  .2

�k�/; 'k.�/ WD '.2
�k�/

for each k 2 Z, so that

supp k � fj�j � 2
k
g; supp'k � f2

k�1
� j�j � 2kC1g;
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it is readily seen that

1�  C

1X
kD0

'k

provides us with a dyadic partition of unity of Rd . Notice also that

1�  j C

1X
kDj

'k

for any j 2 Z and

1�

1X
kD�1

'k

away from the origin � D 0.
Next, denoting the space of tempered distributions by S 0, we introduce the Fourier multiplier operators

Sk; �k W S 0.Rd /! S 0.Rd /;
with k 2 Z, defined by

Skf WD F�1 kFf D .F�1 k/�f and �kf WD F�1'kFf D .F�1'k/�f: (A-1)

The Littlewood–Paley decomposition of f 2 S 0 is then given by

S0f C

1X
kD0

�kf D f;

where the series is convergent in S 0.
Similarly, one can verify that the homogeneous Littlewood–Paley decomposition

1X
kD�1

�kf D f

holds in S 0 if f 2 S 0 satisfies
lim

k!�1
kSkf kL1 D 0: (A-2)

Observe that (A-2) holds if Of is locally integrable around the origin, or whenever S0f belongs to Lp.Rd /
for some 1� p <1. In particular, note that (A-2) excludes all nonzero polynomials.

A.2. Besov spaces. For any s 2 R and 1 � p; q �1, we define now the homogeneous Besov space
PBsp;q.R

d / as the subspace of tempered distributions satisfying (A-2) endowed with the norm

kf k PBsp;q.Rd /
D

�X
k2Z

2ksqk�kf k
q

Lp.Rd /

�1
q

if q <1, and
kf k PBsp;q.Rd /

D sup
k2Z

.2ksk�kf kLp.Rd //

if q D1. One can show that PBsp;q is a Banach space if s < d=p, or if s D d=p and q D 1; see [Bahouri
et al. 2011, Theorem 2.25].
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We also consider here the homogeneous Sobolev space PH s.Rd / for any real value s 2 R, which is
defined as the subspace of tempered distributions whose Fourier transform is locally integrable equipped
with the norm

kf k PH s D

�Z
Rd
j�j2sj Of .�/j2 d�

�1
2

:

One verifies that PH s is a Hilbert space if and only if s < 1
2
d ; see [Bahouri et al. 2011, Proposition 1.34].

Moreover, it is possible to show that PH s D PBs2;2 whenever s < 1
2
d .

A.3. Chemin–Lerner spaces. For any time T >0 and any choice of parameters s 2R and 1�p; q; r �1,
with s < d=p (or s D d=p and q D 1), the spaces

Lr.Œ0; T /I PBsp;q.R
d //

are naturally defined asLr -spaces with values in the Banach spaces PBsp;q . In addition to these vector-valued
Lebesgue spaces, we define the spaces

zLr.Œ0; T /I PBsp;q.R
d //

as the subspaces of tempered distributions such that

lim
k!�1

kSkf kLr .Œ0;T /ILp.Rd // D 0;

endowed with the norm

kf kzLr .Œ0;T /IBsp;q.Rd //
D

� 1X
kD�1

2ksqk�kf k
q

Lr .Œ0;T /ILp.Rd //

�1
q

if q <1, and with the obvious modifications in the case q D1.
One can easily check that, if q � r , then

Lr.Œ0; T /I PBsp;q.R
d //� zLr.Œ0; T /I PBsp;q.R

d //

and that, if q � r , then
zLr.Œ0; T /I PBsp;q.R

d //� Lr.Œ0; T /I PBsp;q.R
d //:

We refer the reader to [Bahouri et al. 2011, Section 2.6.3] for more details on Chemin–Lerner spaces.

A.4. Embeddings. We present now a few embeddings and inequalities in Besov spaces which are
routinely used throughout this work.

First, a direct application of Young’s convolution inequality to (A-1) yields

k�kf kLr .Rd / . 2
kd. 1

p
� 1
r
/
k�kf kLp.Rd / (A-3)

for any 1� p � r �1. A suitable use of (A-3) then leads to the embedding

kf k PBsr;q.Rd /
. kf k PBsCd.1=p�1=r/p;q .Rd /

(A-4)

for any 1� p � r �1, 1� q �1 and s 2 R, which can be interpreted as a Sobolev embedding in the
framework of Besov spaces.
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Moreover, recalling that `q � `r , for all 1� q � r �1, one has

PBsp;q.R
d /� PBsp;r.R

d /

for all s 2 R, 1� p �1 and 1� q � r �1.
Next, observe that

kf kLp.Rd / D

X
k2Z

�kf


Lp.Rd /

�

X
k2Z

k�kf kLp.Rd / D k�kf k PB0p;1.Rd /
(A-5)

for every 1� p �1. Therefore, by combining (A-4) and (A-5), we obtain

kf kL1.Rd / . kf k PBd=22;1 .R
d /
:

This estimate is particularly useful in view of the failure of the embedding of the Sobolev space PHd=2.Rd /

into L1.Rd /.
Further considering any cutoff function � 2 C1c .R

d / such that 1fj�j�1g � �.�/ � 1fj�j�2g, one can
show, for any c > 0, ˛ > 0 and 1� p �1, that��D

c

�
f

PB
sC˛
p;1 .R

d /
. c˛kf k PBsp;1.Rd /

and

c˛
.1��/�D

c

�
f

PBsp;1.R

d /
. kf k PBsC˛p;1 .Rd /

;

where the operator m.D/ denotes the Fourier multiplier associated with the symbol m.�/ for any m 2
C1c .R

d /.
Finally, we mention another essential inequality in Besov spaces which is related to their interpolation

properties. Specifically, one has the interpolation, or convexity, inequality

kf k PBsp;1
. kf k1��

PB
s0
p;1

kf k�
PB
s1
p;1

for any p 2 Œ1;1�, s; s0; s1 2 R and � 2 .0; 1/ such that s D .1� �/s0C �s1 and s0 ¤ s1.
Note that the preceding estimates and embeddings can be adapted to the setting of Chemin–Lerner

spaces in a straightforward way.

A.5. Paradifferential product estimates. Here, we recall the basic principles of paraproduct decomposi-
tions and some essential paradifferential product estimates that follow from it.

For any two suitable tempered distributions f and g, introducing the paraproduct

Tf g D
X
j2Z

Sj�2f�jg

readily leads to the decomposition

fg D Tf gCTgf CR.f; g/;
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where

R.f; g/D
X
j;k2Z
jj�kj�2

�jf�kg

is the remainder. For any choice of integrability parameters in Œ1;1� such that

1

a
D

1

a1
C
1

a2
;

1

b
D
1

b1
C
1

b2
;

1

c
D
1

c1
C
1

c2
;

it can be shown, in the context of Chemin–Lerner spaces, that

kTf gkzLat PB
˛Cˇ

b;c

. kf kzLa1t PB˛b1;c1
kgkzLa2t PB

ˇ

b2;c2

(A-6)

for any ˛ < 0 and ˇ 2 R, and that

kR.f; g/kzLat PB
˛Cˇ

b;c

. kf kzLa1t PB˛b1;c1
kgkzLa2t PB

ˇ

b2;c2

(A-7)

for any ˛; ˇ 2 R with ˛Cˇ > 0. Moreover, one has the endpoint estimates

kTf gkzLat PB
ˇ

b;c

. kf k
L
a1
t L

b1
x

kgkzLa2t PB
ˇ

b2;c

(A-8)

for all ˇ 2 R and

kR.f; g/kLat L
b
x
. kf kzLa1t PB˛b1;c1

kgkzLa2t PB
�˛
b2;c2

for all ˛ 2 R, provided 1=c1C1=c2 D 1. Similar bounds hold for Besov spaces, and we refer to [Bahouri
et al. 2011, Section 2.6] for more details on such paradifferential estimates.

We finally recall two important product rules of paradifferential calculus in the context of Besov spaces,
which are direct consequences of the preceding bounds. First, exploiting (A-6) and (A-7) (for Besov
spaces), we have

kfgk PBsCt�d=22;1

. kf k PH skgk PH t

for any �1
2
d < s; t < 1

2
d , with sC t > 0.

Second, we find that

kfgk PH s . kf kL1\ PBd=22;1

kgk PH s

for all �1
2
d < s < 1

2
d , which follows from a suitable combination of (A-6), (A-7) and (A-8) (for Besov

spaces, as well).

Appendix B: Oscillatory integrals and dispersion

We give here a justification of the dispersive estimate (2-23) employing the stationary phase method.
This method is classical and we will rely on [Bahouri et al. 2011], when needed, to refer the reader to
complete details on the technical results pertaining to the method.
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Generally speaking, we are considering here oscillatory integrals of the form

I .t/D

Z
Rd
eit�.�/ .�/ d�

for smooth test functions  2C1c .R
d / and t 2R, where the smooth phase �.�/ only needs to be defined

on the support of  . It is readily seen that

jI .t/j � k kL1.Rd /:

We seek now to understand the asymptotic behavior of I .t/ when jt j is large, which requires us to
exploit the cancellations in the integral I .t/ due to the oscillatory term eit�.�/. There are two cases to
consider: the stationary phase and the nonstationary phase.

The stationary phase. This case analyzes the asymptotic behavior of I .t/ near critical points of the
phase, i.e., near points in the integration domain where r�.�/D 0. More precisely, we suppose here that

jr�.�/j � "0

for some "0 2 .0; 1� and for all � 2 supp . Under such assumptions, Theorem 8.9 from [Bahouri et al.
2011] establishes that, for any positive integer N , there is a constant CN;�; > 0 such that

jI .t/j � CN;�; 

Z
supp 

d�

.1C "0t jr�.�/j2/N
(B-1)

for all t > 0.

The nonstationary phase. The decay of I .t/ is better when r� does not vanish on the support of  .
More precisely, assuming now that

jr�.�/j � "0

for some "0 2 .0; 1� and for all � 2 supp , Theorem 8.8 from [Bahouri et al. 2011] shows that, for any
positive integer N , there is a constant CN;�; > 0 such that

jI .t/j �
CN;�; 

."0t /N
(B-2)

for all t > 0.
The asymptotic estimate (B-2) always offers a faster decay than (B-1) and, therefore, the oscillatory

integral I .t/ can be treated as a remainder term wherever the phase r� does not vanish. In conclusion,
the overall asymptotic behavior of I .t/ is, in general, determined by the critical points of the phase.

All in all, as explained in Theorem 8.12 from [Bahouri et al. 2011], it is possible to combine the
preceding estimates to show, for all  2 C1c .R

d /, "0 2 .0; 1� and any positive numbers N and N 0, that
there are positive constants CN and CN 0 such that

jI .t/j �
CN

."0t /N
CCN 0

Z
A�

d�

.1C "0t jr�.�/j2/N
0 (B-3)

for all t > 0, where the set A� is defined as

A� WD f� 2 supp W jr�.�/j � "0g:
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We are now in a position to prove (2-23). To be precise, we are going to establish the equivalent
estimate (up to a scaling of the variable x)ˇ̌̌̌Z

Rd
eit�.x;�/ .�/ d�

ˇ̌̌̌
�

C 

t .d�1/=2
(B-4)

for all t > 0 and x 2 Rd , where the phase is defined by

�.x; �/D x � �˙ ı.�/; with ı.�/D
p
j�j2� 1

4
˛2 and 0� ˛ � 1

2
;

and the test function  2 C1c .R
d / satisfies supp �

˚
1
4
< j�j<R

	
for some R > 1

4
, while the constant

C > 0 is independent of t , x and ˛.
To that end, noting that �.x; �/ is smooth on the support of  and setting "0 D 1

2
, N D 1

2
.d � 1/ and

N 0 D d in (B-3), we find thatˇ̌̌̌Z
Rd
eit�.x;�/ .�/ d�

ˇ̌̌̌
.

1

t .d�1/=2
C

Z
A

d��
1C t

ˇ̌
x˙ �

ı.�/

ˇ̌2�d ;
where

A WD

�
1

4
< j�j<R;

ˇ̌̌̌
x˙

�

ı.�/

ˇ̌̌̌
�
1

2

�
:

Now, notice that x ¤ 0 if A is nonempty. In particular, for any � 2 A, we can write the decomposition

� D �1C �
0; with �1 WD

�
� � x

jxj2

�
x and �0 WD � � �1;

whence, since �0 � x D 0,ˇ̌̌̌
x˙

�

ı.�/

ˇ̌̌̌2
D

ˇ̌̌̌
x˙

�1

ı.�/

ˇ̌̌̌2
C

ˇ̌̌̌
�0

ı.�/

ˇ̌̌̌2
�
j�0j2

ı.�/2
�
j�0j2

R2
:

We therefore conclude thatˇ̌̌̌Z
Rd
eit�.x;�/ .�/ d�

ˇ̌̌̌
.

1

t .d�1/=2
C

Z
fj� 0j<Rg�Rd�1

d�0

.1C t j�0j2/d
.

1

t .d�1/=2
;

which completes the justification of (B-4). �
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We consider the notion of equivariant uniform property Gamma for actions of countable discrete groups
on C∗-algebras that admit traces. In case the group is amenable and the C∗-algebra has a compact
tracial state space, we prove that this property implies a kind of tracial local-to-global principle for the
C∗-dynamical system, generalizing a recent such principle for C∗-algebras exhibited in work of Castillejos
et al. For actions on simple nuclear Z-stable C∗-algebras, we use this to prove that equivariant uniform
property Gamma is equivalent to equivariant Z-stability, generalizing a result of Gardella, Hirshberg, and
Vaccaro.
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Introduction

This article aims to extend the fine structure theory for actions of amenable groups on finite simple
C∗-algebras, in particular those covered by the Elliott program. The classification of such C∗-algebras,
which mirrors the celebrated Connes–Haagerup classification of injective factors [Connes 1976; Haagerup
1987], has been nearly completed as a culmination of numerous articles by many researchers over the
past decade, such as [Elliott et al. 2024; 2020; Gong and Lin 2020; 2022; Gong et al. 2020a; 2020b;
Schafhauser 2020; Tikuisis et al. 2017]. Furthermore, Carrion, Gabe, Schafhauser, Tikuisis, and White
have announced an eagerly awaited new conceptual proof of the classification theorem [Carrión et al.
2023b], which does not directly rely on the prior works related to tracial approximation. By now it has
been recognized that the next natural step is to understand the underlying symmetries of classifiable
C∗-algebras, which can be interpreted as the goal to classify group actions on them. This mirrors the work
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of Connes, Jones, Ocneanu and others [Connes 1977; Jones 1980; Katayama et al. 1998; Kawahigashi
et al. 1992; Masuda 2007; 2013; Ocneanu 1985; Sutherland and Takesaki 1989]. When it comes to
classifying group actions on C∗-algebras, a number of researchers have introduced many sophisticated
methods over the years to classify specific kinds of group actions utilizing certain Rokhlin-type properties
[Evans and Kishimoto 1997; Izumi 2004a; 2004b; Izumi and Matui 2010; 2021a; 2021b; Katsura and
Matui 2008; Kishimoto 1995; 1998a; 1998b; Matui 2008; 2010; 2011; Nakamura 2000; Sato 2010;
Szabó 2021a]. In direct comparison to the generality achieved for actions on von Neumann algebras, the
implementation of the involved methods (in particular the Evans–Kishimoto intertwining argument) for
actions on C∗-algebras remained challenging beyond some specific classes of actions or acting groups.

To combat these methodological obstacles, the first author introduced a categorical framework in
[Szabó 2021c] to open up the classification of C∗-dynamics up to cocycle conjugacy to methodology
directly inspired by [Elliott 2010]. For actions on classifiable C∗-algebras without traces, the so-called
Kirchberg algebras [1995], this idea led to the recent breakthrough in [Gabe and Szabó 2022; 2024]. The
main result of said work implies that, given any countable amenable group G, any outer G-action on a
Kirchberg algebra is uniquely determined by its KK G-class up to cocycle conjugacy.

Although one might be tempted to guess that similar breakthrough results ought to be in reach for
actions on finite classifiable C∗-algebras, one still has a long way to go before such a goal can be achieved.
In analogy to the original obstacles to classify all simple nuclear C∗-algebras [Rørdam 2003; Toms 2008;
Villadsen 1999], there are basic structural questions to be settled before a classification theory such as in
[Gabe and Szabó 2024] can be attempted on finite C∗-algebras. When concerned with just the underlying
C∗-algebras, this is already a serious challenge. On the one hand, there is the question whether the
C∗-algebras under consideration automatically satisfy certain properties predicted by classification. For
the purpose of this article we highlight the property of Jiang–Su stability. If Z is the so-called Jiang–Su
algebra from [Jiang and Su 1999], then a C∗-algebra A is called Jiang–Su stable or Z-stable when
A ∼= A ⊗Z. Although this might seem like a technical property at first glance, it becomes natural with
more context: Firstly, Z behaves (as a C∗-algebra) very much like an infinite-dimensional version of the
complex numbers C, for instance at the level of K -theory and traces. Secondly, there is by now a pile of
evidence that Z-stability holds automatically for many C∗-algebras arising from various constructions like
the crossed product [Kerr 2020; Kerr and Naryshkin 2021; Kerr and Szabó 2020; Toms and Winter 2013].
The discovery that Z-stability does in fact not hold automatically for all simple nuclear C∗-algebras has,
among other things, led to the nearly proven Toms–Winter conjecture, which asserts that Z-stability can
only hold or fail in conjunction with some other, a priori different, regularity conditions.

On the other hand, there is the question about precisely what additional structural consequences (not
necessarily equivalent characterizations) are shared by Jiang–Su stable C∗-algebras, a good example of
which is the recent breakthrough work [Castillejos et al. 2021b] (which was in turn continuing work
from [Bosa et al. 2019; Matui and Sato 2014a; Sato et al. 2015]). The most novel technical achievement
therein can be identified as the tracial local-to-global principle for C∗-algebras satisfying the so-called
uniform property Gamma, which is a weaker assumption than Jiang–Su stability. Said principle concerns
the behavior of elements in a given C∗-algebra A with respect to the 2-seminorm ∥ · ∥2,τ induced by
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individual tracial states τ on A on the one hand, and the behavior with respect to the uniform tracial
2-norm ∥ · ∥u = supτ ∥ · ∥2,τ on the other hand. While the latter is often of interest in the deeper structure
and classification theory for C∗-algebras, the former can be understood by studying the tracial von
Neumann algebra πτ (A)′′ arising as the weak closure of A under the GNS representation associated to an
individual trace τ . In a nutshell, the tracial local-to-global principle asserts that any suitable behavior
that can be observed one trace at a time can also be observed uniformly, which often allows one to
transfer, so to speak, phenomena from von Neumann algebras to the C∗-algebraic context. This became
in turn the main technical driving force behind the main results in [Castillejos et al. 2021b; 2022], which
can be summarized by saying that the Toms–Winter conjecture holds for all simple nuclear C∗-algebras
having the uniform property Gamma. Whether the latter property automatically holds for simple nuclear
nonelementary C∗-algebras is presently unknown but is of high interest as it currently represents the main
obstacle towards a full solution to the Toms–Winter conjecture.

When we turn our attention to C∗-dynamics instead of C∗-algebras, we can (and should) study analogous
well-behavedness properties as for C∗-algebras, one important example of which is equivariant Jiang–Su
stability. An action α : G ↷ A on a C∗-algebra is called (equivariantly) Jiang–Su stable or Z-stable, if α is
cocycle conjugate to α ⊗ idZ : G ↷ A ⊗Z . Assuming G is amenable, it is presently open if this happens
automatically when A is simple nuclear and Z-stable; see [Szabó 2021b, Conjecture A]. We note that the
analogous question for nonamenable groups is known to have a negative answer [Gardella and Lupini
2021; Jones 1983], although recent insights as in [Gardella et al. 2024; Suzuki 2021] leave some hope for
the class of amenable actions of nonamenable groups, which we shall not investigate in this article. If
one stresses the point again that Z essentially looks like an infinite-dimensional version of C, it should
not come as a surprise that we can only expect a classification of G-actions on classifiable C∗-algebras
by reasonable invariants if they are equivariantly Z-stable. The existing work in this direction seems to
indicate that equivariant Jiang–Su stability may indeed hold automatically whenever one can reasonably
expect it [Gardella et al. 2022; Matui and Sato 2012; 2014b; Sato 2019; Szabó 2018a; Wouters 2023].
The other possible line of investigation, namely further structural consequences of equivariant Jiang–Su
stability for group actions, was initiated in [Gardella et al. 2022] as a direct adaption of techniques in
[Castillejos et al. 2021b], albeit under rather restrictive assumptions on the actions. We recall one of the
key concepts from both said paper and the present work but restrict ourselves in this introduction to the
case of unital simple C∗-algebras for convenience, despite actually investigating the concept in broader
generality.1

Definition A. Let G be a countable discrete group. Let A be a separable unital simple C∗-algebra such
that all 2-quasitraces on A are traces and T (A) ̸= ∅. Given a free ultrafilter ω on N, form the uniform
tracial ultrapower Aω of A. An action α : G ↷ A is said to have equivariant uniform property Gamma if,
for any k ≥ 2, there exist pairwise orthogonal projections p1, . . . , pk ∈ (Aω

∩ A′)α
ω

such that

τ(ap j ) =
1
k
τ(a) for all j = 1, . . . , k, a ∈ A, τ ∈ Tω(A).

1The reader might consult Definitions 1.7, 1.8, and 2.1 and compare with [Gardella et al. 2022, Definition 3.1].
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One can observe easily (Remark 2.2) that equivariant uniform property Gamma is always implied by
equivariant Jiang–Su stability. This is important to note because it means that all nontrivial consequences
of this property will also hold for Jiang–Su stable actions, and may in fact turn out to be useful for
subsequent applications. The most important technical consequence relevant to the present work is the
tracial local-to-global principle for C∗-dynamical systems over amenable groups. An ad hoc version
of this principle appeared in [Gardella et al. 2022, Lemma 4.5] but is only applicable (see [Gardella
et al. 2022, Remark 2.2]) for actions that induce an action on tracial states with finite orbits of uniformly
bounded size. This assumption appeared not only as a prerequisite for the theory in [Gardella et al.
2022] but is implicitly crucial for the usefulness of the conclusion of this ad hoc principle, which only
involves tracial states that are fixed by the action.2 In this article we aim to remove any assumptions
about how actions G ↷ A are allowed to act on the traces of A, as well as strengthen the conclusion
of the tracial local-to-global principle compared to [Gardella et al. 2022], in such a way as to directly
generalize and strengthen the known principle for C∗-algebras [Castillejos et al. 2021b, Lemma 4.1]. In
addition to formulating our result in the language of ∗-polynomials as all prior papers did, we would also
like to promote the following (formally equivalent) formulation of the tracial local-to-global principle for
C∗-dynamics, which becomes our main technical result. We not only restrict ourselves for the moment
to actions on unital simple nuclear C∗-algebras (similarly to before) for convenience but give a slightly
weaker version here that is easier to state. We treat a stronger version of the statement in broader generality
in the main body of the paper; see Theorems 4.2 and 4.6.

Theorem B. Let G be a countable amenable group and A a separable unital simple nuclear C∗-algebra.
Let α : G ↷ A be an action with equivariant uniform property Gamma. Let δ : G ↷ D be an action on a
separable C∗-algebra and B ⊆ D a δ-invariant C∗-subalgebra. Suppose that ϕ : (B, δ) → (Aω, αω) is an
equivariant ∗-homomorphism. Then ϕ extends to an equivariant ∗-homomorphism ϕ̄ : (D, δ) → (Aω, αω)

if and only if , for every trace τ ∈ Tω(A)w
∗

, there exists a ∗-homomorphism ϕτ
: (D, δ)→ (παω

τ (Aω)′′, αω)

with ϕτ
|B = παω

τ ◦ϕ.3 Here πτ denotes the GNS representation associated to the trace τ , and παω

τ denotes
the direct sum representation

⊕
g∈G πτ ◦ αω

g−1 .

Not unlike previous approaches, the proof of this main result factors through a kind of dynamical
version of CPoU (the existence of so-called complemented partitions of unity) that we establish along
the way; see Lemma 3.2. There are two things to note about this, however. Firstly, the present version
of dynamical CPoU does not generally match the property suggested for this purpose in [Gardella et al.
2022], and based on our work we are in fact uncertain whether that property can be expected to hold
even under the validity of the above theorem. Secondly, we would like to propose a slight perspective
shift by viewing the above local-to-global principle as the primary conceptual property to be studied and
exploited instead of the dynamical CPoU, which we feel — especially compared to previous iterations —
to be rather unwieldy by itself due to its elaborate technical nature.

2This uses that if α : G ↷ A is assumed to induce an action G ↷ T (A) with finite orbits of uniformly bounded cardinality
M > 0, then one has ∥ · ∥2,u ≤ M∥ · ∥2,T (A)α as norms on A.

3In actuality one may even allow ϕτ to have range in the tracial ultrapower of this von Neumann algebra, but this requires
more cumbersome notation to state rigorously.
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In the main body of the paper, we actually prove a stronger version of Theorem B for a class of actions
on much more general C∗-algebras. We would like to comment that the starting point of our theory
presumes that the underlying C∗-algebra satisfies a kind of weak CPoU, namely the one shown to hold for
nuclear C∗-algebras in [Castillejos et al. 2021b, Lemma 3.6]. Fortunately, a result in the recent preprint
[Carrión et al. 2023a] implies that this kind of weak CPoU in fact holds automatically for all C∗-algebras
with compact tracial state space, which we can use to our advantage.

As for the rest of the paper, we apply Theorem B (or rather Theorems 4.2 and 4.6) to gain insight
on equivariant Jiang–Su stability. A famous argument due to Matui and Sato [2012] and the main
result of [Szabó 2021b] allows us to argue (as explained in Section 5) that an action α as above is
equivariantly Jiang–Su stable if and only if A ∼= A ⊗Z and α is uniformly McDuff, i.e., there exist unital
∗-homomorphisms

Mn → (Aω
∩ A′)α

ω

for all n ∈ N.

Once we note that the latter property is known to hold one trace at a time as a consequence of Ocneanu’s
theorem [1985] (in the generality we need it, this is imported from [Szabó and Wouters 2024]), the above
result can be applied to the α-equivariant inclusion

1n ⊗ idA : A → Mn(A)

to deduce the following consequence. As before, we note that we prove this result in greater generality
than stated here; see Theorem 5.7.

Corollary C ( cf. [Gardella et al. 2022, Theorem 7.6]). Let α : G ↷ A be an action of a countable
amenable group on a separable unital simple nuclear Z-stable C∗-algebra. Then α has equivariant
uniform property Gamma if and only if α is equivariantly Jiang–Su stable.

We expect the main result of this article to have an impact on subsequent applications of equivariant
uniform property Gamma or equivariant Jiang–Su stability, in particular in the context of classifying
actions on tracial C∗-algebras.

As far as potential further research is concerned, let us point out that, for group actions α : G ↷ A that
are assumed to be “sufficiently free”,4 the theory pursued in this article can be seen as an instance where
one studies uniform property Gamma for the inclusion of C∗-algebras A ⊆ A⋊α,r G in such a way as to
strengthen uniform property Gamma for A. It is a tantalizing issue to determine a common framework
encompassing all applications of interest regarding uniform property Gamma for more general inclusions
of C∗-algebras. For instance, it has been hypothesized in past work [Kerr and Szabó 2020, Remark 9.6]
that, for a free minimal action G ↷ X of an amenable group on a compact metric space, some desirable
dynamical properties ought to follow from a different kind of uniform property Gamma for the inclusion
C(X) ⊆ C(X)⋊ G, namely the one that strengthens uniform property Gamma for the crossed product;
see also [Liao and Tikuisis 2022].

4A priori, this may have several different interpretations.
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1. Preliminaries

Notation 1.1. Throughout this paper, we will use the following notation and conventions unless specified
otherwise:

• By default, ω denotes some free ultrafilter on N. At times it can make it easier to state a claim using
two free ultrafilters, in which case we denote a second one by κ .

• If F is a finite subset inside another set M , we often denote this by F ⋐ M .

• K denotes the compact operators on the Hilbert space ℓ2(N).

• Let A be a C∗-algebra. We denote its positive elements by A+ and its minimal unitization by Ã. We
will also make use of its Pedersen ideal, denoted by P(A). We assume the reader is familiar with the
basic properties of this object. Given a positive element a ∈ A and ε > 0, we denote by (a − ε)+ the
positive part of the self-adjoint element a − ε1 Ã.

• The topological cone of lower semicontinuous traces on A+ will be denoted by T̃ (A); cf. [Elliott
et al. 2011]. We call such a trace τ on A trivial if it is {0, ∞}-valued. It is well known that trivial
traces are in one-to-one correspondence with the ideal lattice of A by mapping a trivial trace τ to
the linear span of τ−1(0). The set of nontrivial lower semicontinuous traces on A+ will be denoted
by T +(A) and the set of tracial states will be denoted by T (A). In this paper, we say that a compact
subset K ⊂ T +(A) is a compact generator for T +(A) if R>0K = T +(A).5

• In addition, we denote by QT̃2(A) the set of lower semicontinuous 2-quasitraces (see [Blanchard
and Kirchberg 2004, Definition 2.22]) on A, which contains T̃ (A). We usually only mention them
to assume in appropriate contexts that there are no genuine quasitraces, i.e., QT̃2(A) = T̃ (A).

We recall the following existence theorem for traces. This follows from a combination of the work
of Blackadar and Cuntz [1982, Theorem 1.5] and Haagerup [2014]; see also [Blanchard and Kirchberg
2004, Remark 2.29 (i)].

Theorem 1.2. Let A be a simple, exact C∗-algebra such that A ⊗ K contains no infinite projections. Then
QT̃2(A) = T̃ (A) and T +(A) ̸= ∅.

In particular, this implies that each stably finite, simple, separable, nuclear C∗-algebra admits a
nontrivial trace.

Definition 1.3 [Kirchberg 2006, Definition 1.1; Kirchberg and Rørdam 2014, Definition 4.3]. Let A be a
C∗-algebra with an action α : G ↷ A of a discrete group.

(1) The ultrapower of A is defined as

Aω := ℓ∞(A)/
{
(an)n∈N ∈ ℓ∞(A) : lim

n→ω
∥an∥ = 0

}
.

(2) Pointwise application of α on representing sequences induces an action on the ultrapower, which we
will denote by αω : G ↷ Aω.

5In case A is simple, an example of such a compact generator is given by {τ ∈ T +(A) | τ(a) = 1} for some a ∈ P(A)+ \ {0}.
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(3) There is a natural inclusion A ⊂ Aω by identifying an element of A with its constant sequence.
Define

Aω ∩ A′
:= {x ∈ Aω | [x, A] = 0} and Aω ∩ A⊥

:= {x ∈ Aω | x A = Ax = 0}.

The quotient
Fω(A) := (Aω ∩ A′)/(Aω ∩ A⊥)

is called the (corrected) central sequence algebra. If A is σ -unital, then Fω(A) is unital, where the
unit is represented by a sequential approximate unit (en)n∈N.

(4) Since A is αω-invariant, so are Aω ∩ A′ and Aω ∩ A⊥. Thus, αω induces an action on Fω(A), which
we will denote by α̃ω : G ↷ Fω(A).

Definition 1.4. Let A be a C∗-algebra. A sequence of tracial states (τn)n∈N on A defines a trace on Aω

via
[(an)n∈N] 7→ lim

n→ω
τn(an).

A trace of this form is called a limit trace. The set of all limit traces on Aω will be denoted by Tω(A).
More generally, following [Szabó 2021b, Definition 2.1], a sequence (τn)n∈N in T̃ (A) defines a lower
semicontinuous trace τ : ℓ∞(A)+ → [0, ∞] by

τ((an)n∈N) = sup
ε>0

lim
n→ω

τn((an − ε)+).

This trace is the lower semicontinuous regularization of the trace given by limn→ω τn(an); see [Elliott
et al. 2011, Lemma 3.1]. This regularization ensures that τ((an)n∈N) = 0 if limn→ω ∥an∥ = 0, so τ also
induces a lower semicontinuous trace on Aω. A trace of this form on Aω is called a generalized limit
trace. The set of all generalized limit traces is denoted by T̃ω(A).

For the next part, assume A is separable. For any a ∈ A+ and τ ∈ T̃ω(A), we can define a trace

τa : (Aω ∩ A′)+ → [0, ∞], x 7→ τ(ax).

We have that τa(x) ≤ ∥x∥τ(a), so this trace is bounded whenever τ(a) < ∞. Note that this trace also
induces a trace on Fω(A), which by abuse of notation will also be denoted by τa . Clearly this yields a
tracial state under the assumption τ(a) = 1. Let us say that a given tracial state τ on Fω(A) is a canonical
trace if it belongs to the weak-∗-closed convex hull of {τa | τ ∈ T̃ω(A), a ∈ A+, τ (a) = 1}.

Remark 1.5. We point out that it is not necessary to consider generalized limit traces in an important
subcase that often occurs in the literature. Namely, assume A is a separable simple C∗-algebra with
∅ ̸= T +(A) = R>0T (A) such that T (A) is compact.6 Then it follows by [Castillejos and Evington 2021,
Proposition 2.3] that every generalized limit trace τ ∈ T̃ω(A) that is finite on some nonzero positive
element of A is a multiple of an ordinary limit trace.

Next we recall how various versions of tracial ultrapowers are defined.

6For instance, this is automatic when A is separable, simple, nuclear, unital, and stably finite.
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Definition 1.6 [Ando and Haagerup 2014, Propositions 3.1 and 3.2]. Suppose M is a finite von Neumann
algebra with faithful normal tracial state τ . Then the tracial von Neumann algebra ultrapower is defined as

Mω
:= ℓ∞(M)/

{
(xn)n∈N ∈ ℓ∞(M) | lim

n→∞
∥xn∥2,τ = 0

}
. (1-1)

This is again a von Neumann algebra with a faithful normal tracial state τω that is defined on representative
sequences by τω((xn)n∈N) = limn→ω τ(xn).

The notation used for the tracial von Neumann algebra ultrapower is the same as for the uniform tracial
ultrapower of a suitable C∗-algebra as defined below. It will be clear from context which of the two
notions we use. In the special case that A is a C∗-algebra with unique tracial state τ and no unbounded
traces, the uniform tracial ultrapower Aω is naturally isomorphic, by Kaplansky’s density theorem, to the
von Neumann tracial ultrapower (πτ (A)′′)ω, where πτ denotes the GNS representation associated to τ .
Note that on a tracial von Neumann algebra (M, τ ), the topology induced by the ∥ · ∥2,τ -norm agrees
with the ∗-strong operator topology on bounded subsets. So equivalently, in (1-1) one can quotient out
by the sequences that converge to 0 in the ∗-strong operator topology, which makes the construction
equivalent to the Ocneanu ultrapower; cf. [Ando and Haagerup 2014].

Definition 1.7. Let A be a C∗-algebra. Given a constant p ≥ 1 and τ ∈ T (A), we define a seminorm
∥ · ∥p,τ on A by

∥a∥p,τ = τ(|a|
p)1/p, a ∈ A.

We will in particular appeal to the cases p = 1 or p = 2 subsequently. For a nonempty set X ⊂ T (A), we
define a seminorm ∥ · ∥2,X on A by

∥a∥2,X := sup
τ∈X

∥a∥2,τ

for all a ∈ A. The seminorm ∥ · ∥2,T (A) is also denoted by ∥ · ∥2,u . This is a norm if and only if, for all
nonzero a ∈ A, there exists some τ ∈ T (A) such that τ(a∗a) > 0, which is in particular the case when A
is simple with T (A) nonempty.

We note that in the construction below, we deviate from other sources by making a very explicit
distinction in terminology between C∗-algebras that do or do not admit nontrivial unbounded traces.

Definition 1.8 ( cf. [Castillejos et al. 2021b, Section 1.3]7). Let A be a C∗-algebra with T (A) ̸= ∅. Then
the trace-kernel ideal (with respect to bounded traces) inside Aω is defined by

J b
A :=

{
[(an)n∈N] ∈ Aω | lim

n→ω
∥an∥2,T (A) = 0

}
.

The uniform bounded tracial ultrapower is defined as the quotient

Aω,b
:= Aω/J b

A.

Whenever ∥ · ∥2,T (A) defines a norm on A, there also exists a canonical embedding of A into Aω,b. Then
Aω,b

∩ A′ is called the uniform bounded tracial central sequence algebra. Whenever we have an action

7The cited source assumes separability, but we generalize the definition beyond that case.
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α : G ↷ A of a discrete group, the ideal J b
A is αω-invariant. Hence, there is an induced action on the

uniform bounded tracial ultrapower, which we will denote by αω
: G ↷ Aω,b.

Clearly, every limit trace vanishes on J b
A and hence also induces a tracial state on Aω,b. We will also

use Tω(A) to denote the collection of limit traces on Aω,b. Note that

J b
A = {x ∈ Aω : ∥x∥2,Tω(A) = 0},

so in particular ∥ · ∥2,Tω(A) defines a norm on Aω,b.
Finally, if we assume A is a simple C∗-algebra such that QT̃2(A)= T̃ (A) and ∅ ̸= T +(A)= R>0

·T (A)

with T (A) compact, then we simply call JA = J b
A the trace-kernel ideal, Aω

= Aω,b the uniform tracial
ultrapower, and Aω

∩ A′ the uniform tracial central sequence algebra.

Remark 1.9. Our choice to add the extra “bounded” in the terminology above and the extra letter “b”
in the notation, which is usually not included in other sources such as the ones we cite, is deliberate
and has the purpose to not overuse the word “uniform”, in particular in cases where it becomes rather
misleading. This is most apparent for nonsimple C∗-algebras; if B is any unital simple C∗-algebra with
T (B) ̸= ∅, then the above construction applied to A = B ⊕ K yields Aω,b

= Bω by virtue of the fact
that the canonical trace on K is unbounded. Since one of the two tracial direct summands is entirely
forgotten in this construction, this object seems unfit to be called “uniform tracial”. However, even
the case of simple C∗-algebras is enough to illustrate why one should not equate Aω,b with the object
capturing all “uniform tracial” data. Namely, the range result [Gong and Lin 2022] combined with a
little playing around with invariants allows one to see that, given any metrizable Choquet simplex S with
∂e S admitting some isolated point, there exists a (nonunital) classifiable C∗-algebra A such that T +(A)

has a Choquet base affinely homeomorphic to S, yet A has a unique tracial state τ . In this scenario,
we have Aω,b ∼= (πτ (A)′′)ω ∼= Rω as a consequence of Connes’ theorem. So despite A having a rich
tracial structure, the only trace captured by this construction is τ , which compels us to not apply the word
“uniform” or the notation “Aω” to such an example.

Note that the phenomenon discussed here is also what motivated us to subsequently revise the definition
of (equivariant) uniform property Gamma in the spirit of [Castillejos and Evington 2021], as well as
introduce an auxiliary version of it that explicitly only takes into account tracial states, even when the
surrounding C∗-algebra may have other unbounded traces.

Remark 1.10. Let A be a σ -unital C∗-algebra with T (A) ̸= ∅. By [Castillejos et al. 2021b, Proposi-
tion 1.11] the uniform bounded tracial ultrapower Aω,b is unital if and only if T (A) is compact.8 Moreover,
[Castillejos et al. 2021b, Lemma 1.10] shows that, in that case, the natural map Aω ∩ A′

→ Aω,b
∩ A′

factors through Fω(A). In case A is separable, this natural map is surjective by a combination of
Propositions 4.5 (iii) and 4.6 in [Kirchberg and Rørdam 2014] (the unitality hypothesis in the second cited
proposition is not needed, as it suffices to take a unit in the minimal unitization for the proof).

As we have argued above, there are some issues if one is trying to define the object Aω for a C∗-algebra
A that may possess many unbounded traces. In fact, trying to find a viable general definition that has the

8The cited statement assumes separability of A, but a closer look at the proof shows that σ -unitality is sufficient.
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same level of utility as in the case of unital C∗-algebras has eluded a number of researchers for years.
By introducing the next few definitions and observations, however, we wish to promote the viewpoint
that there is a rather natural way to define the object Aω

∩ A′ for any separable C∗-algebra A, even if we
do not know at present how to properly define the object Aω itself. Since we are unsure of the viability
of this definition when A admits genuine quasitraces, we wish to be cautious and shall only define the
concepts below under the assumption that A does not admit them.9

Definition 1.11. Let A be a separable C∗-algebra with QT̃2(A)= T̃ (A) and T +(A) ̸=∅. The trace-kernel
ideal JA inside Fω(A) is defined as the set of elements x ∈ Fω(A) such that, for every generalized limit
trace τ ∈ T̃ω(A) and a ∈ A+ with 0 < τ(a) < ∞, we have τa(x∗x) = 0. With some abuse of notation, we
denote the quotient by

Aω
∩ A′

= Fω(A)/JA. (1-2)

It is clear from construction that a canonical trace on Fω(A) vanishes on JA, so it descends to a tracial
state on Aω

∩ A′. As before, we call a given tracial state on Aω
∩ A′ a canonical trace if it is induced by

a canonical trace on Fω(A), or equivalently if it belongs to the weak-∗-closed convex hull of the tracial
states τa on Aω

∩ A′, where τ ∈ T̃ω(A) and a ∈ A+ with τ(a) = 1.
If α : G ↷ A is an action of a discrete group with induced action α̃ω : G ↷ Fω(A), then clearly JA is

α̃ω-invariant, so we obtain an induced action αω
: G ↷ Aω

∩ A′.

Remark 1.12. In the case that A is simple, and QT̃2(A) = T̃ (A) and ∅ ̸= T +(A) = R>0T (A) with T (A)

compact, it follows from Remarks 1.5 and 1.10 that Fω(A)/JA = Aω,b
∩ A′, so the notation Aω

∩ A′ is
consistent with the last part of Definition 1.8.

Remark 1.13 (see remark after [Kirchberg and Rørdam 2014, Definition 4.3]). Let p ≥ 1 be any constant.
Given any element x in a C∗-algebra B with a tracial state θ , one has the inequalities

∥x∥1,θ ≤ ∥x∥p,θ ≤ ∥x∥
1/p
1,θ ∥x∥

1−1/p.

This implies that an element in either Definition 1.8 or 1.11 belongs to the trace-kernel ideal if and only
if its tracial p-norms vanish with respect to the appropriately chosen (limit) traces. We will frequently
use this without further mention for p = 1.

Remark 1.14. One of Kirchberg’s initial observations about Fω(A), which attests to the naturality of its
construction, is that it is a stable invariant. We are about to argue that the same applies to the construction
A 7→ Aω

∩ A′. For this purpose, let {ek,ℓ | k, ℓ ≥ 1} be a set of matrix units generating K, and let 1n ∈ K be
the increasing approximate unit given by 1n =

∑n
j=1 e j, j . We recall (see [Kirchberg 2006, Proposition 1.9,

Corollary 1.10]) that there is a canonical isomorphism θ : Fω(A) → Fω(A ⊗ K) defined as follows: given
an element x ∈ Fω(A) represented by a central sequence (xn)n∈N in A, it is sent to the element θ(x)

represented by the central sequence (xn ⊗ 1n)n∈N.

9At the same time, we note that the concepts make sense formally anyway, and none of the subsequent arguments hinge on
the assumption that A does not admit genuine quasitraces.
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Proposition 1.15. Let A be a separable C∗-algebra with QT̃2(A) = T̃ (A) and T +(A) ̸= ∅. Then the
canonical isomorphism Fω(A) ∼= Fω(A ⊗ K) preserves the canonical traces on both sides. Consequently,
it descends to a canonical isomorphism

Aω
∩ A′ ∼= (A ⊗ K)ω ∩ (A ⊗ K)′.

Proof. As we set up before the proposition, we denote the canonical isomorphism by θ . It is clear that it
induces an affine homeomorphism between all tracial states on Fω(A) and on Fω(A⊗K) via τ 7→ τ ◦θ−1.
The claim amounts to showing that the image of the canonical traces on the left is equal to the canonical
traces on the right.

Let Tr be the unique lower semicontinuous trace on K with Tr(e1,1) = 1. We keep in mind that the
assignment T̃ (A) → T̃ (A ⊗ K) given by τ 7→ τ ⊗ Tr is an affine homeomorphism. Given a generalized
limit trace τ ∈ T̃ω(A) induced by a sequence (τn)n∈N in T̃ (A), let us denote by τ s

∈ T̃ω(A ⊗ K) the
generalized limit trace induced by the sequence (τn ⊗Tr)n∈N in T̃ (A⊗K). Clearly the assignment τ 7→ τ s

is also a bijection between generalized limit traces. Let such a generalized limit trace τ be given on Aω.
Given a ∈ (A ⊗ K)+, we can write a =

∑
∞

k,ℓ=1 ak,ℓ ⊗ ek,ℓ for uniquely determined elements ak,ℓ ∈ A. It
then follows from [Castillejos and Evington 2021, Proposition 2.9] that we have a norm-convergent sum
expression

τ s
a ◦ θ =

∞∑
ℓ=1

τaℓ,ℓ
. (1-3)

Applied to a = b ⊗ e1,1 for some b ∈ A+ with τ(b) = 1, this gives τb ◦ θ−1
= τ s

a . From this we can infer
that canonical traces are mapped to canonical traces. The general expression (1-3) applied to a ∈ (A⊗K)+

with τ s(a) = 1 shows that we have a bijection. □

We give two more technical lemmas that will be useful later on.

Lemma 1.16. Let A be a C∗-algebra with positive element a ∈ A+. Let (εn)n∈N be a sequence of
positive constants such that limn→∞ εn = 0, and let (bn)n∈N be a sequence of positive elements such that
∥bn − a∥ < εn . For each τ ∈ T̃ω(A) and c ∈ Fω(A), one has

lim
n→∞

τ(bn−εn)+(c) = τa(c).

Proof. For each n ∈ N, there exists a contraction dn ∈ A such that (bn − εn)+ = dnad∗
n by [Kirchberg

and Rørdam 2002, Lemma 2.2]. This implies that τ(bn−εn)+(c) ≤ τa(c). Since the sequence (bn − εn)+

converges to a and τ is lower semicontinuous, this leads to the desired result. □

Lemma 1.17. Let A be a simple C∗-algebra with a ∈ P(A)+ \ {0}, and let K be a compact generator
for T +(A) ̸= ∅. Take a generalized limit trace τ ∈ T̃ω(A) such that 0 < τ(a) < ∞. Then there exists a
sequence (θn)n∈N in K such that the associated generalized limit trace θ on Aω is a scalar multiple of τ

and such that, for each sequence (bn)n∈N representing an element of Aω, we have that

θ((abn)n∈N) = lim
n→ω

θn(abn). (1-4)
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Proof. The fact that there exists a sequence (θn)n∈N in K such that the associated generalized limit trace is
a multiple of τ follows directly from [Szabó 2021b, Lemma 2.10 and Remark 2.11]. Let B := a1/2 Aa1/2

denote the hereditary subalgebra generated by a1/2. Then B ⊆ P(A); see for example [Pedersen 1979,
Proposition 5.6.2]. Since K is compact, we claim that supσ∈K ∥σ |B∥ < ∞. Suppose that this would
not be the case; then, for all n ∈ N, we could find a σn ∈ K and a positive contraction dn ∈ B such that
σn(dn) ≥ n2n . Consider d :=

∑
∞

n=1 2−ndn ∈ B and σ = limn→ω σn ∈ K (using the compactness of K ).
Then, for each n ∈ N, we would get

σ(d) = lim
n→ω

σn(d) ≥ lim
n→ω

σn(2−ndn) = ∞,

but this is a contradiction, since d belongs to the Pedersen ideal. As a consequence we get that, when
restricted to the hereditary subalgebra a1/2ℓ∞(A)a1/2 ⊆ ℓ∞(B), the trace formed by limn→ω θn is already
bounded and hence continuous, so formula (1-4) holds. □

The following proposition is a useful lifting property in various contexts. The proof relies on the concept
of G-σ -ideals; see [Szabó 2018c, Definition 4.1]. Let α : G ↷ A and β : G ↷ B be actions on C∗-algebras.
As in [Kirchberg 2006], we call an equivariant surjective ∗-homomorphism π : (A, α) → (B, β) strongly
locally semisplit, if for every separable β-invariant C∗-subalgebra D ⊆ B, there exists an equivariant
c.p.c. order-zero map φ : (D, β) → (A, α) such that π ◦ φ = idD .

Proposition 1.18. Let A be a separable simple C∗-algebra with QT̃2(A) = T̃ (A) and T +(A) ̸= ∅. Let
α : G ↷ A be an action of a countable discrete group. Then the quotient map

(Fω(A), α̃ω) → (Aω
∩ A′, αω)

is strongly locally semisplit.

Proof. By [Szabó 2018c, Proposition 4.5 (ii)], it suffices to prove that JA ⊂ Fω(A) is a G-σ -ideal. Fix an
element 0 ̸= a ∈ P(A)+ and a compact generator K ⊂ T +(A).10 By [Szabó 2021b, Proposition 2.4] and
Lemma 1.16, we can conclude that JA coincides with the ideal of those elements x ∈ Fω(A) such that
τa(x∗x) = 0 for all τ ∈ T̃ω(A) induced by any sequence τn ∈ K . Since a belongs to the Pedersen ideal
and K is compact, this further implies that an element x ∈ Fω(A) represented by a sequence (xn)n∈N in A
belongs to JA precisely when limn→ω maxτ∈K τ(a1/2x∗

n xna1/2) = 0.
We proceed to show that JA is a G-σ -ideal. Let D ⊂ Fω(A) be a separable α̃ω-invariant C∗-subalgebra.

Let (dk,n)n,k∈N and (ck,n)n,k∈N be two bounded double sequences in A such that, for each k ∈ N, the
sequences (dk,n)n∈N and (ck,n)n∈N are approximately central, the set {d(k)

= [(dk,n)n∈N] | k ∈ N} defines
a dense subset in the unit ball of D, and the set {c(k)

= [(ck,n)n∈N] | k ∈ N} defines a dense subset in the
unit ball of D ∩JA. By Kasparov’s lemma [1988, Lemma 1.4], we can find, for any ε > 0, F ⋐ G, and
m ∈ N, a positive element e ∈ JA such that

max
k≤m

∥[e, d(k)
]∥ ≤ ε, max

k≤m
∥(1 − e)c(k)

∥ ≤ ε, and max
g∈F

∥e − α̃ω(e)∥ ≤ ε.

10As pointed out in the footnote after defining compact generators in Notation 1.1, this always exists as a consequences of
simplicity.
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Let b ∈ A be a strictly positive contraction. If we represent e by an approximately central sequence
(en)n∈N of positive contractions in A, then it follows that

max
k≤m

lim
n→ω

∥[en, dk,n]b∥ ≤ ε, max
k≤m

lim
n→ω

∥(1 − en)ck,nb∥ ≤ ε,

and
max
g∈F

lim
n→ω

∥(en − αg(en))b∥ ≤ ε, lim
n→ω

max
τ∈K

τ(a1/2ena1/2) = 0.

Appealing to Kirchberg’s ε-test [Kirchberg and Rørdam 2014, Lemma 3.1], we can find another approxi-
mately central sequence (en)n∈N of positive contractions in A satisfying the stronger property

lim
n→ω

(∥[en, dk,n]b∥ +∥(1 − en)ck,nb∥ +∥(en − αg(en))b∥) = 0 and lim
n→ω

max
τ∈K

τ(a1/2ena1/2) = 0

for all k ∈ N and g ∈ G. This means that this sequence represents a positive contraction e ∈ (JA ∩ D′)α̃ω

such that ec = c for all c ∈ JA ∩ D. This finishes the proof. □

To end this preliminary section, we prove the following tracial inequality.

Lemma 1.19. Let B be a C∗-algebra with a, b ∈ B+ and τ ∈ T (B). Then

∥a − b∥
2
2,τ ≤ ∥a2

− b2
∥1,τ .

Proof. If we replace B by its weak closure of the GNS representation πτ (B)′′, it is enough to show this in
the case that B is a von Neumann algebra with faithful normal tracial state τ .

Historically, this was proved by Powers and Størmer [1970, Lemma 4.1] in the case B = Mn(C)

for some n ∈ N. When B is a von Neumann algebra with faithful normal tracial state τ , this follows
from applying [Haagerup 1975, Lemma 2.10], which is formulated for the space L2(B, τ ), to elements
in B ⊂ L2(B, τ ). For the reader’s convenience we give here a more direct proof using an idea from
[Anantharaman and Popa 2014, Theorem 7.3.7].

Given a, b ∈ B+, let p and q denote the spectral projections of a − b corresponding to [0, +∞) and
(−∞, 0), respectively. This means that a − b = (p − q)|a − b| and p ⊥ q . First of all, we have

τ((a2
− b2)p) − τ((a − b)2 p) = τ(b(a − b)p) + τ((a − b)bp) = 2τ(b1/2(a − b)pb1/2) ≥ 0

since (a − b)p ≥ 0. So we get
τ((a − b)2 p) ≤ τ((a2

− b2)p), (1-5)

and in a similar way we can obtain that

τ((b − a)2q) ≤ τ((b2
− a2)q). (1-6)

Combining (1-5) and (1-6) gives

τ((a − b)2) = τ((a − b)2(p + q)) ≤ τ((a2
− b2)(p − q)).

Also,

τ((a2
− b2)(p − q)) = τ(p(a2

− b2)p) + τ(q(b2
− a2)q) ≤ τ(|a2

− b2
|(p + q)) ≤ ∥a2

− b2
∥1,τ

since ∥p + q∥ ≤ 1. This implies the result. □
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2. Equivariant uniform property Gamma

The notion of uniform property Gamma was introduced in [Castillejos et al. 2021b] and further studied
in [Castillejos et al. 2022], where it served as a uniform C∗-algebraic version of property Gamma
introduced by Murray and von Neumann for II1 factors [1943]. Recently, a dynamical version of this
property was introduced in the separable unital setting in [Gardella et al. 2022] called the equivariant
uniform property Gamma. Here we revise the definition to account for separable C∗-algebras with
possibly unbounded traces, generalizing the concept called “stabilised property Gamma” by Castillejos
and Evington [2021, Definition 2.5]. We choose not to adopt that name because one can argue that
uniform property Gamma ought to be a stable property in the first place, just like property Gamma is for
von Neumann algebras. In light of recent work by Lin [2023] who proposed a more general framework
for C∗-algebras that admit genuine quasitraces, we shall state the definition only in the absence of such.

For separable unital simple exact C∗-algebras, the definition below corresponds to the earlier definition
given in [Gardella et al. 2022] (see Proposition 2.4 below) but not in the nonsimple case, as demonstrated
by C∗-algebras that arise as extensions of unital classifiable C∗-algebras by the compacts (see the type of
example mentioned in Remark 1.9, for instance).

Definition 2.1. Let A be a separable C∗-algebra with QT̃2(A) = T̃ (A) and T +(A) ̸=∅, and let α : G ↷ A
be an action by a countable discrete group. We say that α has equivariant uniform property Gamma
(or equivariant property Gamma for short) if, for all n ∈ N, there exist pairwise orthogonal projections
p1, . . . , pn ∈ (Aω

∩ A′)α
ω

such that, for all a ∈ A+ and τ ∈ T̃ω(A) with τ(a) < ∞,

τa(pi ) =
1
n
τ(a).

Remark 2.2. We can notice immediately from the naturality of the isomorphism in Proposition 1.15 that
equivariant uniform property Gamma is preserved under stable cocycle conjugacy. That is, if A and B
are C∗-algebras as above and we have actions α : G ↷ A and β : G ↷ B such that α ⊗ idK is cocycle
conjugate to β ⊗ idK, then αω is conjugate to βω via a map preserving the canonical traces. In particular,
equivariant uniform property Gamma holds for α if and only if it holds for β.

Next, we observe (cf. [Castillejos et al. 2021b, Proposition 2.3]) that, whenever α : G ↷ A is an
equivariantly Z-stable action on a separable C∗-algebra with QT̃2(A) = T̃ (A) and T +(A) ̸= ∅, it
automatically has equivariant property Gamma. Indeed, a cocycle conjugacy between α and α ⊗ idZ is
easily seen to give rise to a unital ∗-homomorphism

Zω
∩Z ′

→ (Aω
∩ A′)α

ω

.

For this purpose one chooses an approximate unit en ∈ A and considers a sequence of maps Z → A ⊗Z ,
x 7→ en ⊗ x , composed with such a cocycle conjugacy, which is seen to induce such a homomorphism. It
is well known that Zω

∩Z ′ admits unital embeddings of matrix algebras of arbitrary size n ≥ 2. So if we
fix n and define p1, . . . , pn ∈ (Aω

∩ A′)α
ω

as the image of the canonical rank-one projections inside a
matrix algebra under the aforementioned ∗-homomorphism, then they satisfy the necessary requirements
for equivariant property Gamma by uniqueness of the trace on the n × n matrices.
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The following is a version of equivariant property Gamma for possibly nonseparable C∗-algebras that
exclusively takes into account the bounded traces. This agrees with [Gardella et al. 2022, Definition 3.1] for
separable unital C∗-algebras but not with the general definition of equivariant property Gamma given above.

Definition 2.3. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact, and let α : G ↷ A
be an action of a countable discrete group. We say that α has local equivariant property Gamma with
respect to bounded traces if, for all n ∈ N and ∥ · ∥2,Tω(A)-separable subsets S ⊂ Aω,b, there exist pairwise
orthogonal projections p1, . . . , pn ∈ (Aω,b)α

ω

∩ S′ such that τ(api ) = τ(a)/n for all a ∈ S and τ ∈ Tω(A).

In the unital separable simple setting, Definitions 2.1 and 2.3 are equivalent. We prove this fact in a
slightly more general setting in the proposition below.

Proposition 2.4. Let A be a simple separable C∗-algebra with QT̃2(A) = T̃ (A), and such that T (A) ̸=∅
is compact and T +(A) = R>0T (A).11 Then an action α : G ↷ A of a countable discrete group has
equivariant property Gamma if and only if α has local equivariant property Gamma with respect to
bounded traces.

Proof. The assumptions on A imply that every generalized limit trace on A that is finite on some nonzero
positive element of A is a multiple of an ordinary limit trace (see Remark 1.5) and that Aω

∩ A′
= Aω,b

∩ A′

(see Remark 1.12). Therefore, it suffices to show that the existence of pairwise orthogonal projections
p1, . . . , pn ∈ (Aω

∩ A′)α
ω

such that τ(api ) = τ(a)/n for all a ∈ A and τ ∈ Tω(A) implies, for any
∥ · ∥2,Tω(A)-separable S ⊂ Aω, the existence of pairwise orthogonal projections p′

1, . . . , p′
n ∈ (Aω

∩ S′)α
ω

such that τ(ap′

i ) = τ(a)/n for all a ∈ S and τ ∈ Tω(A). This follows by a standard reindexation argument,
which we omit. □

The next part of this section is devoted to proving an equivalence between equivariant property Gamma
for an action α : G ↷ A and local equivariant property Gamma with respect to bounded traces for its
induced action αω

: G ↷ Aω
∩ A′, at least in the setting when A is simple nuclear and has stable rank

one.12 Recall that A is said to have stable rank one if the invertibles of Ã are dense in Ã. We start by
observing the following description of the tracial state space of Aω

∩ A′.

Proposition 2.5. Let A be a separable, simple, nuclear C∗-algebra with uniform property Gamma and
stable rank one. Then every tracial state on Aω

∩ A′ is a canonical trace, i.e., one has

T (Aω
∩ A′) = convw∗

{τa | τ ∈ T̃ω(A), a ∈ A+, τ (a) = 1}.

Proof. Using exactly the same argument as in the proof of [Castillejos and Evington 2021, Lemma 3.3]
and modifying it as hinted in the remark stated before [Castillejos and Evington 2021, Theorem 3.4], we
may appeal to [Antoine et al. 2022, Theorem 7.13] (since we assume stable rank one) and pick a nonzero
hereditary C∗-subalgebra B ⊂ A ⊗ K with T +(B) = R>0T (B) and for which T (B) is nonempty and

11We note that this is automatic if one assumes, e.g., that A has continuous scale (see [Lin 1991, Definition 2.5]), which is a
rather common assumption in the context of classification.

12Although we use it in the proof, it is likely that stable rank one is not so important for the claim to hold, although we take
no guess as to pinning down the correct general assumptions. We note, however, that simple finite Z-stable C∗-algebras have
stable rank one; see [Fu et al. 2022; Rørdam 2004].
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compact. By Brown’s theorem, it follows that A and B are stably isomorphic. Proposition 1.15 implies
that we have an isomorphism Aω

∩ A′ ∼= Bω
∩ B ′ that induces a bijection between the canonical traces on

the left and the right. Hence the claim holds for A if and only if it holds for B.
Now B has uniform property Gamma (see Remark 2.2), so [Castillejos et al. 2021b, Lemma 3.7]

implies that B has CPoU. By the “no silly trace” theorem [Castillejos et al. 2021a, Proposition 2.5],13 one
has that T (Bω) is the weak-∗-closed convex hull of the limit traces. If B is unital, then the claim follows
directly from [Castillejos et al. 2021b, Proposition 4.6]. If B is nonunital, we can extend the inclusion
map B ⊂ Bω to a unital inclusion B†

⊂ Bω. From this point of view, we have a trivial equality of algebras

Bω
∩ B ′

= Bω
∩ (B†)′ ∩ {1Bω − 1B†}

⊥.

In this case it follows from [Castillejos and Evington 2020, Proposition 5.7] that T (Bω
∩ B ′) is the closed

convex hull of traces of the form τa , where τ ∈ Tω(B) is a limit trace and a ∈ B† is a positive element
with τ(a) = 1. If (en)n∈N is an increasing approximate unit in B, then bn = enaen ∈ B converges to a
strictly, and hence ∥bn − a∥2,τ → 0. This implies the convergence of tracial states τ(bn)

−1τbn → τa in
the norm topology, so we observe the equality

T (Bω
∩ B ′) = convw∗

{τb | τ ∈ Tω(B), b ∈ B+, τ (b) = 1}. □

Theorem 2.6. Let A be a separable, simple, nuclear C∗-algebra with stable rank one. Then α : G ↷ A
has equivariant uniform property Gamma if and only if αω

: G ↷ Aω
∩ A′ has local equivariant uniform

property Gamma with respect to bounded traces.

Proof. In order to increase readability in this proof, let us specify another free ultrafilter κ on N (which
may or may not be equal to ω).

We shall show the “if” part first, which actually holds for arbitrary separable simple C∗-algebras with
QT̃2(A) = T̃ (A) and T +(A) ̸= ∅. Let k ≥ 2. Assuming αω has local equivariant property Gamma with
respect to bounded traces, we can find pairwise orthogonal projections p1, . . . , pk ∈ ((Aω

∩ A′)κ,b)(α
ω)κ

such that
τ(ap j ) =

1
k
τ(a) for j = 1, . . . , k, a ∈ A, τ ∈ Tκ(Aω

∩ A′).

For each j = 1, . . . , k, let p j be represented by a sequence of positive contractions (p j,n)n∈N in Aω
∩ A′.

Let in turn each element p j,n be represented by a central sequence (x j,n,ℓ)ℓ∈N of positive contractions
in A. Traces in Tκ(Aω

∩ A′) in particular include limit traces associated to sequences of canonical traces.
Let C ⊂ P(A)+ \ {0} be a countable dense subset. Let K ⊂ T +(A) be a compact generator. By the
conclusion of Lemma 1.17, it follows, for all a ∈ C and all sequences (θℓ)ℓ∈N in K , that, if τ is the limit
trace on Aω induced by (θℓ)ℓ∈N and τa is the induced bounded trace on Aω

∩ A′ that we view in a trivial
way as a multiple of a (constant) limit trace on (Aω

∩ A′)κ,b, then

0 = lim
n→κ

∥p j,n − p2
j,n∥1,τa = lim

n→κ
τ(a|p j,n − p2

j,n|)
Lemma 1.17

= lim
n→κ

lim
ℓ→ω

θℓ(a|x j,n,ℓ − x2
j,n,ℓ|).

13Strictly speaking the conclusion is about the reduced tracial product B∞ in the reference, but this makes no difference to
the argument there.
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Since the sequence (θℓ)ℓ∈N in K was arbitrary, we may rewrite this as

0 = lim
n→κ

lim
ℓ→ω

max
θ∈K

θ(a|x j,n,ℓ − x2
j,n,ℓ|).

We may argue in a completely analogous fashion to see that

0 = lim
n→κ

lim
ℓ→ω

max
θ∈K

θ(a|x j,n,ℓ − αg(x j,n,ℓ)|), g ∈ G,

as well as

0 = lim
n→κ

lim
ℓ→ω

max
θ∈K

∣∣∣θ(ax j,n,ℓ) −
1
k
θ(a)

∣∣∣ = lim
n→κ

lim
ℓ→ω

max
θ∈K

θ(ax j,n,ℓxi,n,ℓ)

for all i, j = 1, . . . , k with i ̸= j . Lastly, we have by definition that (x j,n,ℓ)ℓ∈N is a central sequence
as ℓ → ω. Appealing to Kirchberg’s ε-test, we can find central sequences of positive contractions e( j)

ℓ

in A for j = 1, . . . , k satisfying, for all a ∈ C , the properties

0 = lim
ℓ→ω

max
θ∈K

∣∣∣θ(ae( j)
ℓ ) −

1
k
θ(a)

∣∣∣ = lim
ℓ→ω

max
θ∈K

θ(a|e( j)
ℓ − e( j)2

ℓ |)

and

0 = lim
ℓ→ω

max
θ∈K

θ(ae( j)
ℓ e(i)

ℓ ) = lim
ℓ→ω

max
θ∈K

θ(a|e( j)
ℓ − αg(e

( j)
ℓ )|), g ∈ G and i ̸= j.

We consider the resulting elements e j ∈ Aω
∩ A′ represented by (e( j)

ℓ )ℓ∈N. Given that C was dense
in A+, we may conclude that they are pairwise orthogonal projections belonging to (Aω

∩ A′)α
ω

satisfying
τa(e j ) = τ(a)/k for all τ ∈ T̃ω(A) and a ∈ C with τ(a) < ∞. In conclusion, this shows that α has
equivariant uniform property Gamma.

For the “only if” part, suppose that α has equivariant property Gamma. Given k ≥ 2, there exist
pairwise orthogonal projections p1, . . . , pk ∈ (Aω

∩ A′)α
ω

such that, for all a ∈ A+ and τ̃ ∈ T̃ω(A) with
τ̃ (a) < ∞,

τ̃a(p j ) =
1
k
τ̃ (a) for j = 1, . . . , k.

As above, choose a compact generator K ⊂ T +(A). If we represent each element p j by a central sequence
of positive contractions (p j,n)n∈N in A, then we can argue as before and see that, for all a ∈ P(A)+ \ {0},
g ∈ G, and i ̸= j , one has the limit properties

0 = lim
n→ω

max
θ∈K

∣∣∣θ(ap j,n) −
1
k
θ(a)

∣∣∣ = lim
n→ω

max
θ∈K

θ(a|p j,n − αg(p j,n)|)

and

0 = lim
n→ω

max
θ∈K

θ(ap j,n pi,n) = lim
n→ω

max
θ∈K

θ(a|p j,n − p2
j,n|).

Now take a countable subset S ⊂ (Aω
∩ A′)κ,b whose closure would represent a separable subset as

in Definition 2.3. Without loss of generality, let us assume S consists of positive elements. Choose a
countable subset S0 ⊂ (Aω

∩ A′)+ such that every element of S is represented by a bounded S0-valued
sequence. Next, choose an increasing sequence of finite sets Fn ⊂ P(A)+ \ {0} such that their union is
dense in A+ and every element in S0 has a representing sequence in

∏
n∈N Fn . Appealing to the above
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stated properties of the sequences (p j,n)n∈N for j = 1, . . . , n, we may find an increasing sequence of
natural numbers ℓ 7→ nℓ such that the resulting subsequences satisfy

0 = lim
ℓ→∞

max
a∈Fℓ

∥[a, p j,nℓ
]∥ = lim

ℓ→∞

max
a∈Fℓ

max
θ∈K

θ(a|p j,nℓ
− αg(p j,nℓ

)|), (2-1)

0 = lim
ℓ→∞

max
a∈Fℓ

max
θ∈K

θ(ap j,nℓ
pi,nℓ

) = lim
ℓ→∞

max
a∈Fℓ

max
θ∈K

θ(a|p j,nℓ
− p2

j,nℓ
|), (2-2)

and

0 = lim
ℓ→∞

max
a,b∈Fℓ

max
θ∈K

∣∣∣θ(abp j,nℓ
) −

1
k
θ(ab)

∣∣∣ (2-3)

for all i, j = 1, . . . , k with i ̸= j . By the choice of the sets Fℓ, we can see that (p j,nℓ
)ℓ∈N defines a central

sequence in A, and its induced element e j ∈ Aω
∩ A′ commutes with elements in S0. We keep in mind the

conclusion of Lemma 1.17. Then conditions (2-1) and (2-2) imply that e1, . . . , ek are pairwise orthogonal
projections in (Aω

∩ A′)α
ω

. Condition (2-3) implies that, for all j = 1, . . . , k, τ ∈ T̃ω(A), every a ∈ A+

with τ(a) = 1, and every b ∈ S0, we have

τa(be j ) = τ(abe j ) =
1
k
τ(ab) =

1
k
τa(b).

By Proposition 2.5, the weak-∗-closed convex hull of such tracial states τa yields the whole tracial state
space of Aω

∩ A′. In other words, we may conclude

τ(be j ) =
1
k
τ(b) for all j = 1, . . . , k, b ∈ S0 and τ ∈ T (Aω

∩ A′).

We may view e j as constant elements inside (Aω
∩ A′)κ,b. Since every element in S was represented

by a sequence in S0, we may conclude that the elements e1, . . . , ek satisfy the required property from
Definition 2.3 applied to the action

αω
: G ↷ Aω

∩ A′.

We conclude that αω has local equivariant property Gamma with respect to bounded traces. □

3. Dynamical complemented partitions of unity

This section contains the most involved technical arguments of the article, namely the proof that local
equivariant property Gamma implies the existence of a dynamical version of complemented partitions
of unity [Castillejos et al. 2021b, Definition 3.1], or dynamical CPoU for short. In the case where the
induced action on the tracial state space has the property that all orbits are finite with uniformly bounded
cardinality, a different iteration of dynamical CPoU was proved in [Gardella et al. 2022, Theorem 4.3].
However, we note that the general statement we prove is a weaker and more intricate version compared
to earlier versions but will nevertheless be sufficient to deduce the tracial local-to-global principle.

The starting point for the approach in this section is the following weaker version of CPoU shown in
[Castillejos et al. 2021b, Lemma 3.6] for nuclear C∗-algebras, which turns out to hold automatically with
the aid of the theory of tracially complete C∗-algebras [Carrión et al. 2023a].



EQUIVARIANT PROPERTY GAMMA AND THE TRACIAL LOCAL-TO-GLOBAL PRINCIPLE FOR C∗-DYNAMICS 1403

Proposition 3.1. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Then, for every
∥ · ∥2,Tω(A)-separable subset S ⊂ Aω,b, every k ∈ N, every family a1, . . . , ak ∈ A+, and every

δ > sup
τ∈T (A)

min
i=1,...,k

τ(ai ),

there exist e1, . . . , ek ∈ (Aω,b
∩ S′)1

+
such that, for all τ ∈ Tω(A),

• τ
(∑k

i=1 ei
)
= 1,

• τ(ai ei ) ≤ δτ(ei ) for i = 1, . . . , k.

Proof. Let S, k, a1, . . . , ak , and δ be chosen as in the assumption. Set

δ0 := sup
τ∈T (A)

min
i=1,...,k

τ(ai ) < δ.

Since S is ∥ · ∥2,Tω(A)-separable, it is first of all clear that one may find a nondegenerate separable C∗-
subalgebra A0 ⊆ A containing the tuple a1, . . . , ak such that every element of S can be represented by a
bounded sequence in A0. As every tracial state on A restricts to one on A0, the tracial state space of A0

is still nonempty and compact, and furthermore

sup
τ∈T (A0)

min
i=1,...,k

τ(ai ) ≥ δ0.

Let η > 0. We claim that there exists a finite set Fη ⋐ A and εη > 0 such that, if ρ is any state on A with

max
x∈Fη

|ρ(x∗x) − ρ(xx∗)| < εη,

then mini=1,...,k ρ(ai ) < δ0 + η. If we suppose for a moment that this were false, then it follows that, for
every finite set F ⋐ A and every ε > 0, there exists a state ρ(F,ε) on A with

max
x∈F

|ρ(F,ε)(x∗x) − ρ(F,ε)(xx∗)| < ε and min
i=1,...,k

ρ(F,ε)(ai ) ≥ δ0 + η.

We can view ρ(F,ε) as a net of states by equipping the set of pairs (F, ε) with the obvious order. By the
Banach–Anaoglu theorem, there exists a subset (ρλ)λ∈3 that weak-∗-converges to a positive functional
ρ ′ with norm at most one on A. By the properties of the net ρ(F,ε), it is clear that ρ ′ is tracial. Hence
mini=1,...,k ρ ′(ai ) ≤ δ0, while at the same time

min
i=1,...,k

ρ ′(ai ) = lim
(F,ε)

min
i=1,...,k

ρ(F,ε)(ai ) ≥ δ0 + η,

which is a contradiction.
Using this intermediate claim, we choose for each n ≥ 1 a finite set Fn ⋐ A and εn > 0 satisfying the

above conclusion for η = 1/n. Let A1 ⊆ A be the C∗-algebra generated by A0 and all the finite sets Fn ,
which is clearly still separable. Since A1 contains all the finite sets Fn , it follows that every tracial state τ

on A1 must satisfy

min
i=1,...,k

τ(ai ) ≤ δ0 +
1
n
, n ≥ 1,
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which leads to

sup
τ∈T (A1)

min
i=1,...,k

τ(ai ) = δ0 < δ.

By all the properties arranged for the subalgebra A1 ⊆ A so far, it is clear for proving our main claim that
we may swap A for the subalgebra A1. In other words, we may assume without loss of generality that A
is separable.

By [Carrión et al. 2023a, Definition 3.19, Proposition 3.23], the tracial completion AT (A) of A yields
a factorial tracially complete C∗-algebra. Note that as per the ultraproduct construction of tracially
complete C∗-algebras in [Carrión et al. 2023a], the object (AT (A))ω in that sense becomes canonically
isomorphic to the C∗-algebra Aω,b as considered in Definition 1.8. Because A is separable, AT (A) is
∥ · ∥2,T (A)-separable. Thus we may directly apply [Carrión et al. 2023a, Theorem 6.15] (inserting the unit
in place of the projection q appearing there) and find the elements e1, . . . , ek ∈ (Aω,b

∩ S′)1
+

with the
desired properties. □

The main achievement of this section is the following technical lemma.

Lemma 3.2. Given ε > 0 and t ∈ (0, 1), there exists a universal constant η = η(ε, t) > 0 such that the
following holds: Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let G be a countable
discrete group, and let α : G ↷ A be an action with local equivariant property Gamma with respect to
bounded traces. Suppose that F, H ⋐ G are finite subsets such that

|gH1H | < η|H | for all g ∈ F.

Then, for every ∥ · ∥2,Tω(A)-separable subset S ⊂ Aω,b, every family a1, . . . , ak ∈ (Aω,b)+, and every
constant δ > 0 with

δ

|H |
> sup

τ∈Tω(A)

min
i=1,...,k

τ(ai ), (3-1)

there exist pairwise orthogonal projections p1, . . . , pk ∈ Aω,b
∩ S′ such that, for all τ ∈ Tω(A), one has

τ(p1 + · · · + pk) > t, (3-2)

τ(ai pi ) ≤ δτ(pi ) for i = 1, . . . , k, (3-3)

max
g∈F

k∑
i=1

∥αω
g (pi ) − pi∥

2
2,τ < ε. (3-4)

Remark 3.3. A standard argument shows that the statement in Lemma 3.2 is equivalent to the existence
of a universal constant η(ε, t) > 0 satisfying the following statement (using approximations instead of the
uniform bounded tracial ultrapower):

If α : G ↷ A is an action and F, H ⋐ G are all given as in Lemma 3.2, then, for every finite subset
S ⋐ A, every ξ > 0, every family a1, . . . , ak ∈ A+, and every δ > 0 with

δ

|H |
> sup

τ∈T (A)

min
i=1,...,k

τ(ai ), (3-5)
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there exist pairwise orthogonal contractions e1, . . . , ek ∈ A+ such that

∥[ei , x]∥2,u < ξ for x ∈ S, i = 1, . . . , k,

∥ei − e2
i ∥2,u < ξ for i = 1, . . . , k,

τ (e1 + · · · + ek) > t − ξ for τ ∈ T (A),

τ (ai ei ) < δτ(ei ) + ξ for τ ∈ T (A), i = 1, . . . , k,

max
g∈F

k∑
i=1

∥αg(ei ) − ei∥2,τ < ε + ξ for τ ∈ T (A).

In particular, this means that it suffices to prove Lemma 3.2 for positive elements a1, . . . , ak taken
in A instead of Aω,b. In this case, (3-1) and (3-5) are equivalent.

The proof of Lemma 3.2 is an adapted version of the proof in the nondynamical setting (cf. [Castillejos
et al. 2021b, Section 3]) but also incorporates new ideas related to the dynamical structure. Before
we delve into the details, we shall give an overview of the strategy. The construction of the pairwise
orthogonal projections p1, . . . , pk in the statement of Lemma 3.2 is done in three steps:

(1) Instead of producing pairwise orthogonal projections p1, . . . , pk , we start by producing (not yet
pairwise orthogonal) positive contractions e1, . . . , ek ∈ Aω,b

∩ S′ that satisfy

τ(e1 + · · · + ek) = 1, τ (ai ei ) ≤ δτ(ei ) for i = 1, . . . , k, τ ∈ Tω(A),

and that are approximately invariant under αω in the right sense. This is done in Lemma 3.4 and is the
only part of the proof that makes use of the approximate Følner property that appears in the assumption
of the lemma.

(2) Next, we use equivariant property Gamma to turn these contractions into orthogonal projections
p′

1, . . . , p′

k ∈ Aω,b
∩ S′. As a consequence of this procedure we get that

τ(p′

1 + · · · + p′

k) =
1
k

for τ ∈ Tω(A),

but they still satisfy (3-3) and are still approximately invariant in the right sense. This is done in Lemma 3.6.

(3) In order to enlarge the trace of the sum of the projections, we repeat the above steps underneath the
projection 1Aω −

∑k
i=1 p′

i .
14 We continue this procedure inductively until we end up with orthogonal

projections p1, . . . , pk whose sum exceeds t in trace and that still satisfy (3-3). If everything is done
carefully from the start and η > 0 is chosen correctly, we can control the error in the invariance of the
projections and make sure they satisfy (3-4) in the end. (We note, informally, that this error grows with
the number of times this procedure is repeated, which is the ultimate reason why we cannot simply work
with t = 1 in the statement.)

We shall now implement the above strategy. Combining the contractions arising from Proposition 3.1
with an averaging argument over suitable Følner sets allows us to carry out the first step.

14For this one actually needs a somewhat stronger version of the second step; see Lemma 3.7.
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Lemma 3.4. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let α : G ↷ A be an
action by a countable discrete group. Let ε > 0, and let finite subsets F ⋐ G and H ⋐ G be given such
that |gH1H | < ε|H | for all g ∈ F. Then, for all ∥ · ∥2,Tω(A)-separable subsets S ⊂ Aω,b, all δ > 0, and
all a1, . . . , ak ∈ A+ with

δ

|H |
> sup

τ∈T (A)

min
i=1,...,k

τ(ai ),

there exist e1, . . . , ek ∈ (Aω,b
∩ S′)1

+
such that, for τ ∈ Tω(A),

• τ
(∑k

i=1 ei
)
= 1,

• τ(ai ei ) ≤ δτ(ei ) for i = 1, . . . , k, and

• maxg∈F
∑k

i=1 ∥αω
g (ei ) − ei∥1,τ < ε.

Proof. Given S ⊂ Aω,b, δ > 0, and a1, . . . , ak ∈ A+ as above, we define

a′

i :=
1

|H |

∑
g∈H

αg−1(ai ), i = 1, . . . , k.

Note that, for each τ ∈ T (A), the trace 1
|H |

∑
g∈H τ ◦ αg−1 is again an element of T (A), so we see that

δ

|H |
> sup

τ∈T (A)

min
i=1,...,k

τ(a′

i ).

By Proposition 3.1, we know that there exist

e′

1, . . . , e′

k ∈

(
Aω

∩

(⋃
g∈G

αω
g (S)

)′)1

+

such that, for τ ∈ Tω(A),

τ

( k∑
i=1

e′

i

)
= 1, (3-6)

τ(a′

i e
′

i ) ≤
δ

|H |
τ(e′

i ) for i = 1, . . . , k.

In particular, this last equation implies that

τ(αg−1(ai )e′

i ) ≤ δτ(e′

i ), g ∈ H, τ ∈ Tω(A). (3-7)

Now, for i = 1, . . . , k, define

ei := |H |
−1

∑
g∈H

αω
g (e′

i ).

Clearly this still is a positive contraction in Aω
∩ S′. Notice that

τ

( k∑
i=1

ei

)
= |H |

−1
∑
g∈H

(τ ◦ αω
g )

( k∑
i=1

e′

i

)
(3-6)
= 1 for τ ∈ Tω(A).
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For τ ∈ Tω(A) and i = 1, . . . , k, we have

τ(ai ei ) = |H |
−1τ

(
ai

∑
g∈H

αω
g (e′

i )

)
= |H |

−1
∑
g∈H

(τ ◦ αω
g )(αg−1(ai )e′

i )

(3-7)
≤ |H |

−1
∑
g∈H

δ(τ ◦ αω
g )(e′

i ) = δτ(ei ).

Lastly, we see that, for g ∈ F and τ ∈ Tω(A), we have

k∑
i=1

∥αω
g (ei ) − ei∥1,τ ≤ |H |

−1
k∑

i=1

∑
h∈gH1H

∥αω
h (e′

i )∥1,τ = |H |
−1

∑
h∈gH1H

k∑
i=1

τ(αω
h (e′

i ))

(3-6)
= |H |

−1
|gH1H | < ε. □

Analogously as in the nondynamical setting (cf. [Castillejos et al. 2021b, Lemma 2.4]), (local) equi-
variant property Gamma allows one to replace positive contractions by projections without changing
the tracial values in Aω,b. A different generalization of this lemma was proved in [Gardella et al. 2022,
Proposition 3.4], but for the purposes of this paper we need a way to control the (tracially) approximate
fixedness of the elements for the action.

Lemma 3.5. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact, and let α : G ↷ A be an
action of a countable discrete group. Assume that α has local equivariant property Gamma with respect
to bounded traces. Let S ⊂ Aω,b be a ∥ · ∥2,Tω(A)-separable subset, and let b ∈ Aω,b

∩ S′ be a positive
contraction. Then there exists a projection p ∈ Aω,b

∩ S′ such that

τ(ap) = τ(ab) for a ∈ S, τ ∈ Tω(A), (3-8)

and such that, for all g ∈ G and τ ∈ Tω(A), one has

∥αω
g (p) − p∥

2
2,τ ≤ ∥αω

g (b)1/2
− b1/2

∥2,τ∥α
ω
g (b)1/2

+ b1/2
∥2,τ . (3-9)

Proof. Fix n ∈ N. By a common reindexation trick, it suffices to find a positive contraction p ∈ Aω,b
∩ S′

satisfying (3-8), (3-9), and ∥p − p2
∥

2
2,Tω(A) ≤ 1/n. An element p satisfying all the necessary properties

except (3-9) is constructed in the proof of [Castillejos et al. 2021b, Lemma 2.4] with the use of uniform
property Gamma. We show that when the construction is carried out using (local) equivariant property
Gamma instead, the resulting projection also satisfies the extra condition (3-9).

Just as in [Castillejos et al. 2021b], we define functions f1, . . . , fn ∈C([0, 1]) such that fi |[0,(i−1)/n] =0,
fi |[i/n,1] = 1, and fi is linear on [(i − 1)/n, i/n]. Note that not only (1/n)

∑n
i=1 fi = id[0,1], but the

monotonicity of each fi also implies

1
n

n∑
i=1

| fi (t1) − fi (t2)| = |t1 − t2|, t1, t2 ∈ [0, 1]. (3-10)

By local equivariant property Gamma with respect to bounded traces, we can find pairwise orthogonal
projections p1, . . . , pn ∈ (Aω,b)α

ω

∩ S′
∩ {b}

′ such that τ(pi x) = τ(x)/n for i = 1, . . . , n, τ ∈ Tω(A),
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x ∈ C∗(S ∪ {b}). Define

p :=

n∑
i=1

pi fi (b) ∈ Aω,b
∩ S′.

By repeating the arguments in the proof of [Castillejos et al. 2021b, Lemma 2.4] verbatim, we may
conclude that ∥p − p2

∥
2
2,Tω(A) ≤ 1/n and τ(ap) = τ(ab) for all a ∈ S and τ ∈ Tω(A). We need to show

that (3-9) holds as well. Fix τ ∈ Tω(A) and g ∈ G. By [Connes 1976, I.1], there exists a positive Radon
measure ν on [0, 1]

2 such that, for every pair of functions h1, h2 ∈ C0((0, 1]), the functions (s, t) 7→ h1(s)
and (s, t) 7→ h2(t) are square integrable and

∥h1(α
ω
g (b)) − h2(b)∥2

2,τ =

∫
[0,1]2

|h1(s) − h2(t)|2 dν(s, t).

Then we get

∥αω
g (p) − p∥

2
2,τ =

∥∥∥∥ n∑
i=1

pi ( fi (α
ω
g (b)) − fi (b))

∥∥∥∥2

2,τ

=
1
n

n∑
i=1

∥ fi (α
ω
g (b)) − fi (b)∥2

2,τ

=
1
n

n∑
i=1

∫
[0,1]2

| fi (s) − fi (t)|2 dν(s, t)

≤
1
n

n∑
i=1

∫
[0,1]2

| fi (s) − fi (t)| dν(s, t)

(3-10)
=

∫
[0,1]2

|s − t | dν(s, t)

≤

√∫
[0,1]2

|s1/2
− t1/2

|
2 dν(s, t)

√∫
[0,1]2

|s1/2
+ t1/2

|
2 dν(s, t)

= ∥αω
g (b)1/2

− b1/2
∥2,τ∥α

ω
g (b)1/2

+ b1/2
∥2,τ . □

Using Lemma 3.5, we can construct orthogonal projections that play a similar role to the positive
elements in Lemma 3.4.

Lemma 3.6. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let α : G ↷ A be an
action by a countable discrete group and assume it has local equivariant property Gamma with respect to
bounded traces. Let ε > 0, F ⋐ G, and H ⋐ G be such that |gH1H | < ε|H | for all g ∈ F. Then, for
every ∥ · ∥2,Tω(A)-separable subset S ⊂ Aω,b, all δ > 0, and all a1, . . . , ak ∈ A+ with

δ

|H |
> sup

τ∈T (A)

min
i=1,...,k

τ(ai ),

there exist pairwise orthogonal projections p1, . . . , pk ∈ Aω,b
∩ S′ such that, for all τ ∈ Tω(A),

• τ
(∑k

i=1 pi
)
= 1/k,

• τ(ai pi ) ≤ δτ(pi ) for i = 1, . . . , k, and

• maxg∈F
∑k

i=1 ∥αω
g (pi ) − pi∥

2
2,τ < 2

√
ε/k.



EQUIVARIANT PROPERTY GAMMA AND THE TRACIAL LOCAL-TO-GLOBAL PRINCIPLE FOR C∗-DYNAMICS 1409

Proof. By Lemma 3.4, we can find e1, . . . , ek ∈ (Aω,b
∩ S′)1

+
such that, for all τ ∈ Tω(A),

τ

( k∑
i=1

ei

)
= 1, (3-11)

τ(ai ei ) ≤ δτ(ei ) for i = 1, . . . , k, (3-12)

max
g∈F

k∑
i=1

∥αω
g (ei ) − ei∥1,τ < ε. (3-13)

Let S0 = S ∪ {1Aω,b, a1, . . . , ak}. Apply Lemma 3.5 for each i ∈ {1, . . . , k} and find a projection
pi ∈ Aω,b

∩ S′

0 such that, for all a ∈ S0, τ ∈ Tω(A), and g ∈ G, we have

τ(api ) = τ(aei ), (3-14)

∥αω
g (pi ) − pi∥

2
2,τ ≤ ∥αω

g (ei )
1/2

− e1/2
i ∥2,τ∥α

ω
g (ei )

1/2
+ e1/2

i ∥2,τ . (3-15)

This already implies the two following facts:

τ

( k∑
i=1

pi

)
(3-14)
= τ

( k∑
i=1

ei

)
(3-11)
= 1 for τ ∈ Tω(A), (3-16)

τ(ai pi )
(3-14)
= τ(ai ei )

(3-12)
≤ δτ(ei )

(3-14)
= δτ(pi ) for i = 1, . . . , k, τ ∈ Tω(A). (3-17)

Furthermore, we get, for g ∈ F and τ ∈ Tω(A), that

k∑
i=1

∥αω
g (pi ) − pi∥

2
2,τ

(3-15)
≤

k∑
i=1

∥αω
g (ei )

1/2
− e1/2

i ∥2,τ∥α
ω
g (ei )

1/2
+ e1/2

i ∥2,τ

≤

k∑
i=1

∥αω
g (ei )

1/2
− e1/2

i ∥2,τ (∥α
ω
g (ei )

1/2
∥2,τ + ∥e1/2

i ∥2,τ )

Lemma 1.19
≤

k∑
i=1

∥αω
g (ei ) − ei∥

1/2
1,τ (∥αω

g (ei )
1/2

∥2,τ + ∥e1/2
i ∥2,τ )

=

k∑
i=1

∥αω
g (ei ) − ei∥

1/2
1,τ τ(αω

g (ei ))
1/2

+

k∑
i=1

∥αω
g (ei ) − ei∥

1/2
1,τ τ(ei )

1/2

≤

√
k∑

i=1

∥αω
g (ei ) − ei∥1,τ

k∑
i=1

(τ ◦ αω
g )(ei ) +

√
k∑

i=1

∥αω
g (ei ) − ei∥1,τ

k∑
i=1

τ(ei )

(3-11),(3-13)
< 2

√
ε. (3-18)

Set

S1 = S ∪ C∗({a1, . . . , ak} ∪ {αω
g (p j ) | 1 ≤ j ≤ k, g ∈ G}) ⊂ Aω,b.
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Since A has local equivariant property Gamma with respect to bounded traces, we can find pairwise
orthogonal projections r1, . . . , rk ∈ (Aω,b)α

ω

∩ S′

1 such that

τ(ri a) =
1
k
τ(a) for τ ∈ Tω(A), a ∈ S1, i = 1, . . . , k. (3-19)

Set p′

i := ri pi . Then clearly p′

1, . . . , p′

k ∈ Aω,b
∩ S′ are pairwise orthogonal projections. We get, for each

τ ∈ Tω(A), that

τ

( k∑
i=1

p′

i

)
= τ

( k∑
i=1

ri pi

)
(3-19)
=

1
k
τ

( k∑
i=1

pi

)
(3-16)
=

1
k
.

For i = 1, . . . , k and τ ∈ Tω(A), we get

τ(ai p′

i ) = τ(airi pi )
(3-19)
=

1
k
τ(ai pi )

(3-17)
≤

δ

k
τ(pi )

(3-19)
= δτ(p′

i ).

Lastly, for g ∈ F and τ ∈ Tω(A), we get

k∑
i=1

∥αω
g (p′

i ) − p′

i∥
2
2,τ

(3-19)
=

1
k

k∑
i=1

∥αω
g (pi ) − pi∥

2
2,τ

(3-18)
<

2
√

ε

k
.

Hence the projections p′

i satisfy all the required properties. This finishes the proof. □

In order to carry out the inductive argument to enlarge the trace of the sum of the constructed orthogonal
projections, we need a stronger version of the previous lemma that allows us to find the orthogonal
projections under an arbitrary tracially constant projection q .

Lemma 3.7. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let α : G ↷ A be an
action by a countable discrete group and assume it has local equivariant property Gamma with respect
to bounded traces. Let ε > 0, F ⋐ G, and H ⋐ G be such that |gH1H | < ε|H | for all g ∈ F. Choose
δ > 0 and a1, . . . , ak ∈ A+ such that

δ

|H |
> sup

τ∈T (A)

min
i=1,...,k

τ(ai ).

For every µ ∈ (0, 1] and ∥ ·∥2,Tω(A)-separable subset S0 ⊂ Aω,b, there exists a ∥ ·∥2,Tω(A)-separable subset
S ⊂ Aω,b such that, if q ∈ Aω,b

∩ S′ is a projection with τ(q) = µ for all τ ∈ Tω(A), there exist pairwise
orthogonal projections p1, . . . , pk ∈ Aω,b

∩ S′

0 ∩ {αω
g (q) | g ∈ G}

′ such that, for all τ ∈ Tω(A),

•
∑k

i=1 τ(pi q) = µ/k,

• τ(ai pi q) ≤ δτ(pi q) for i = 1, . . . , k,

• maxg∈F
∑k

i=1 ∥q(αω
g (pi ) − pi )∥

2
2,τ ≤ 2µ

√
ε/k, and

•
∑k

i=1 ∥αω
g (pi )(α

ω
g (q) − q)∥2

2,τ ≤ (1/k)∥αω
g (q) − q∥

2
2,Tω(A) for all g ∈ G.

Proof. Let ε > 0, F, H ⋐ G, δ > 0, and a1, . . . , ak ∈ A+ be as in the statement of the lemma. In order
to prove the claim, it suffices to prove the following local statement:
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For every µ ∈ (0, 1], ζ > 0, T ⋐ A, and E ⋐ G, there exist S ⋐ A and ξ > 0 such that, if q ∈ A1
+

satisfies
∥q − q2

∥2,u < ξ, sup
τ∈T (A)

|τ(q) − µ| < ξ, and ∥[q, s]∥2,u < ξ for s ∈ S,

then there exist pairwise orthogonal projections p1, . . . , pk ∈ A1
+

such that

∥pi − p2
i ∥2,u < ζ,

∥[pi , t]∥2,u < ζ for t ∈ T ∪ {αg(q) | g ∈ E},

sup
τ∈T (A)

∣∣∣∣ k∑
i=1

τ(pi q) −
µ

k

∣∣∣∣ < ζ,

τ(ai pi q) < δτ(pi q) + ζ for τ ∈ T (A),

sup
τ∈T (A)

max
g∈F

k∑
i=1

∥q(αg(pi ) − pi∥
2
2,τ <

2µ
√

ε

k
+ ζ,

sup
τ∈T (A)

max
g∈E

k∑
i=1

∥αg(pi )
1/2(αg(q) − q)∥2

2,τ <
1
k
∥αg(q) − q∥

2
2,u + ζ.

We prove this local statement by contradiction. Suppose there exist µ ∈ (0, 1], ζ > 0, T ⋐ A, and
E ⋐ G for which the statement does not hold. In other words, this means that, for every ∅ ̸= S ⋐ A, we
can find a qS ∈ A1

+
such that

∥qS − q2
S∥2,u < 1/|S|, sup

τ∈T (A)

|τ(qS) − µ| < 1/|S|, and ∥[qS, s]∥2,u < 1/|S| for s ∈ S,

but there exist no pairwise orthogonal projections p1, . . . , pk ∈ A1
+

satisfying

∥pi − p2
i ∥2,u < ζ, (3-20)

∥[pi , t]∥2,u < ζ for t ∈ T ∪ {αg(qS) | g ∈ E}, (3-21)

sup
τ∈T (A)

∣∣∣∣ k∑
i=1

τ(pi qS) −
µ

k

∣∣∣∣ < ζ, (3-22)

τ(ai pi qS) < δτ(pi qS) + ζ for τ ∈ T (A), (3-23)

sup
τ∈T (A)

max
g∈F

k∑
i=1

∥qS(αg(pi ) − pi∥
2
2,τ <

2µ
√

ε

k
+ ζ, (3-24)

sup
τ∈T (A)

max
g∈E

k∑
i=1

∥αg(pi )
1/2(αg(qS) − qS)∥

2
2,τ <

1
k
∥αg(qS) − qS∥

2
2,u + ζ. (3-25)

In this way we get a net (qS)S indexed by the finite subsets of A equipped with inclusion as the natural
partial order. We can take a free ultrafilter ω̃ on this index set of finite subsets of A as follows. For each
I ⋐ A consider the set

PI = {J ⋐ A | I ⊆ J }.
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As the collection of PI is closed under finite intersections, they form a filter basis and hence there is a
minimal filter on the set of finite subsets of A containing all the sets PI for I ⋐ A. This filter will be free
and can be extended to a free ultrafilter ω̃ by Zorn’s lemma.

Similarly as in Definitions 1.3 and 1.8, we can define the norm and bounded tracial ultrapower of A over
the ultrafilter ω̃. We also get a set of limit traces Tω̃(A) over ω̃. Then the net (qS)S defines a projection
q ∈ Aω̃,b

∩ A′ with value µ on all limit traces on Aω̃,b. By Lemma 3.6, we can find pairwise orthogonal
projections p′

1, . . . , p′

k ∈ A1
+

such that

∥p′

i − p′

i
2
∥2,u < ζ for i = 1, . . . , k, (3-26)

∥[p′

i , t]∥2,u < ζ for t ∈ T, (3-27)

sup
τ∈T (A)

∣∣∣∣τ( k∑
i=1

p′

i

)
−

1
k

∣∣∣∣ <
1
4
ζ, (3-28)

τ(ai p′

i ) < δτ(p′

i ) + ζ for i = 1, . . . , k, τ ∈ T (A), (3-29)

max
g∈F

k∑
i=1

∥αg(p′

i ) − p′

i∥
2
2,τ <

2
√

ε

k
for τ ∈ T (A). (3-30)

Since q ∈ Aω̃,b
∩ A′, it follows, for each τ ∈ Tω̃(A) and g ∈ G, that the assignment

A → C : a 7→ τ(aαω̃
g (q))/τ(αω̃

g (q)) = τ(aαω̃
g (q))/µ

defines a tracial state on A. In particular, we get that, for τ ∈ Tω̃(A), the following hold:∣∣∣∣τ( k∑
i=1

p′

iα
ω̃
g (q)

)
−

µ

k

∣∣∣∣ (3-28)
<

1
4
µζ ≤

1
4
ζ for g ∈ G, (3-31)

τ(ai p′

i q)
(3-29)
< δτ(p′

i q) + µζ ≤ δτ(p′

i q) + ζ, (3-32)

max
g∈F

k∑
i=1

∥q(αg(p′

i ) − p′

i )∥
2
2,τ

(3-30)
<

2µ
√

ε

k
. (3-33)

Next we show that, for all τ ∈ Tω̃(A) and g ∈ G,

k∑
i=1

∥αg(p′

i )
1/2(αω̃

g (q) − q)∥2
2,τ <

1
k
∥αω̃

g (q) − q∥
2
2,u + ζ. (3-34)

Fix τ ∈ Tω̃(A) and g ∈ G. Assume τ(qαω̃
g (q)) > 0. Then the map

A → C, a 7→ τ(aqαω̃
g (q))/τ(qαω̃

g (q))

defines a tracial state on A. This means that∣∣∣∣τ( k∑
i=1

αg(p′

i )qαω̃
g (q)

)
−

1
k
τ(qαω̃

g (q))

∣∣∣∣ (3-28)
<

1
4
ζ τ(qαω̃

g (q)) ≤
1
4
ζ. (3-35)
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Note that, if τ(qαω̃
g (q)) = 0, then

τ

( k∑
i=1

αg(p′

i )qαω̃
g (q)

)
= 0 =

1
k
τ(qαω̃

g (q)),

and hence (3-35) also holds in this case. Now

τ

( k∑
i=1

αg(p′

i )(α
ω̃
g (q) − q)2

)
= τ

( k∑
i=1

αg(p′

i )(α
ω̃
g (q) + q − αω̃

g (q)q − qαω̃
g (q))

)
(3-31),(3-35)

<
1
k
τ(αω̃

g (q) + q − αω̃
g (q)q − qαω̃

g (q)) + ζ

=
1
k
τ((αω̃

g (q) − q)2) + ζ.

This proves (3-34). If we combine this with (3-26), (3-27), and (3-31)–(3-33), we can conclude that, for
some qS in the net, (3-20)–(3-25) must hold. This gives the desired contradiction. □

Proof of Lemma 3.2. Given ε > 0 and t ∈ (0, 1), choose η > 0 small enough that

4
⌈ t

1−t

⌉
√

η < ε. (3-36)

We show that such a constant η satisfies the required properties. Let α : G ↷ A, finite sets F, H ⋐ G,
and S ⊂ Aω,b be given as in the statement of the lemma. By Remark 3.3, it suffices to consider δ > 0 and
a1, . . . , ak ∈ A+ such that

δ

|H |
> sup

τ∈T (A)

min
i=1,...,k

τ(ai ).

We construct the pairwise orthogonal projections p1, . . . , pk in N := k⌈t/(1 − t)⌉ steps. Define a
sequence (sn) in [0, 1) inductively by setting s0 = 0 and setting si+1 = si + (1 − si )/k. Note that, when
s < t , we have s + (1− s)/k > s + (1− t)/k. If we assumed for a moment that sN < t , then this sequence
is less than t for all of the first N steps, leading to sN > N (1 − t)/k ≥ t , which is a contradiction; hence
we must have sN > t . Next, we construct separable subsets S0, . . . , SN as follows: Set SN := S. Given
i ∈ {1, . . . , N } such that Si is defined, let Si−1 be the union of Si and the set determined by Lemma 3.7
with 1 − si−1 in place of µ and Si in place of S0.

In the initial step, we set p(0)
1 = · · · = p(0)

k = 0. Now suppose that, for some n ∈ N, we have pairwise
orthogonal projections p(n)

1 , . . . , p(n)
k ∈ Aω,b

∩ S′
n such that, for all τ ∈ Tω(A),

τ(p(n)
1 + · · · + p(n)

k ) = sn, (3-37)

τ(ai p(n)
i ) ≤ δτ(p(n)

i ) for i = 1, . . . , k, (3-38)

max
g∈F

k∑
i=1

∥αω
g (p(n)

i ) − p(n)
i ∥

2
2,τ ≤

4n
√

η

k
, (3-39)

max
g∈F

∥∥∥∥ k∑
i=1

αω
g (p(n)

i ) −

k∑
i=1

p(n)
i

∥∥∥∥2

2,Tω(A)

≤ 2sn
√

η. (3-40)
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Note that the p(0)
i trivially satisfy (3-37)–(3-40). We show that we can construct pairwise orthogonal

projections p(n+1)
1 , . . . , p(n+1)

k ∈ Aω,b
∩ S′

n+1 such that, for all τ ∈ Tω(A),

τ(p(n+1)
1 + · · · + p(n+1)

k ) = sn+1, (3-41)

τ(ai p(n+1)
i ) ≤ δτ(p(n+1)

i ) for i = 1, . . . , k, (3-42)

max
g∈F

k∑
i=1

∥αω
g (p(n+1)

i ) − p(n+1)
i ∥

2
2,τ ≤

4(n + 1)
√

η

k
, (3-43)

max
g∈F

∥∥∥∥ k∑
i=1

αω
g (p(n+1)

i ) −

k∑
i=1

p(n+1)
i

∥∥∥∥2

2,Tω(A)

≤ 2sn+1
√

η. (3-44)

Define

q := 1Aω,b −

k∑
i=1

p(n)
i .

Note that q is a projection in Aω,b
∩ S′

n with τ(q) = 1 − sn for all τ ∈ Tω(A). By Lemma 3.7 and our
choice of Sn , we can find pairwise orthogonal projections

r1, . . . , rk ∈ Aω,b
∩ S′

n+1 ∩ {αω
g (q) | g ∈ G}

′

such that, for all τ ∈ Tω(A),

τ

( k∑
i=1

ri q
)

=
1 − sn

k
, (3-45)

τ(airi q) ≤ δτ(ri q) for i = 1, . . . , k, (3-46)

max
g∈F

k∑
i=1

∥q(αω
g (ri ) − ri )∥

2
2,τ ≤

2(1 − sn)
√

η

k
, (3-47)

k∑
i=1

∥αω
g (ri )(α

ω
g (q) − q)∥2

2,τ ≤
1
k
∥αω

g (q) − q∥
2
2,Tω(A) for g ∈ G. (3-48)

Define

p(n+1)
i := p(n)

i + qri .

By construction (recall that Sn+1 ⊂ Sn), the elements p(n+1)
1 , . . . , p(n+1)

k are pairwise orthogonal pro-
jections in Aω,b

∩ S′

n+1. We show that they satisfy (3-41)–(3-44). Fix τ ∈ Tω(A). Note first of all
that

τ

( k∑
i=1

p(n+1)
i

)
= τ

( k∑
i=1

p(n)
i

)
+ τ

( k∑
i=1

qri

)
(3-37),(3-45)

= sn +
1
k
(1 − sn) = sn+1.

Moreover, for i = 1, . . . , k, we have

τ(ai p(n+1)
i ) = τ(ai p(n)

i ) + τ(ai qri )
(3-38),(3-46)

≤ δτ(p(n)
i ) + δτ(qri ) = δτ(p(n+1)

i ).
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This shows already that the projections satisfy (3-41) and (3-42). Next we prove that they satisfy (3-43).
Note that p(n)

i is orthogonal to q for i = 1, . . . , k. Hence, we get, for each g ∈ G and τ ∈ Tω(A), that
k∑

i=1

∥αω
g (p(n+1)

i ) − p(n+1)
i ∥

2
2,τ

=

k∑
i=1

τ((αω
g (p(n+1)

i ) − p(n+1)
i )2)

=

k∑
i=1

(
τ((αω

g (p(n)
i ) − p(n)

i )2) + τ((αω
g (qri ) − qri )

2) − 2τ(αω
g (p(n)

i )qri ) − 2τ(p(n)
i αω

g (qri ))
)

≤

k∑
i=1

∥αω
g (p(n)

i ) − p(n)
i ∥

2
2,τ +

k∑
i=1

∥αω
g (qri ) − qri∥

2
2,τ . (3-49)

For i = 1, . . . , k, we have

∥αω
g (qri ) − qri∥

2
2,τ ≤ (∥(αω

g (q) − q)αω
g (ri )∥2,τ + ∥q(αω

g (ri ) − ri )∥2,τ )
2

≤ 2(∥(αω
g (q) − q)αω

g (ri )∥
2
2,τ + ∥q(αω

g (ri ) − ri )∥
2
2,τ ).

Combining this with (3-49), we find that, for g ∈ F ,
k∑

i=1

∥αω
g (p(n+1)

i ) − p(n+1)
i ∥

2
2,τ

≤

k∑
i=1

∥αω
g (p(n)

i ) − p(n)
i ∥

2
2,τ + 2

k∑
i=1

(∥(αω
g (q) − q)αω

g (ri )∥
2
2,τ + ∥q(αω

g (ri ) − ri )∥
2
2,τ )

(3-39),(3-48)
≤

4n
√

η

k
+

2
k

∥∥∥∥ k∑
i=1

αω
g (p(n)

i ) −

k∑
i=1

p(n)
i

∥∥∥∥2

2,Tω(A)

+ 2
k∑

i=1

∥q(αω
g (ri ) − ri )∥

2
2,τ

(3-40),(3-47)
≤

4n
√

η

k
+

4sn
√

η

k
+

4(1 − sn)
√

η

k
=

4(n + 1)
√

η

k
.

Lastly, we show that the elements p(n+1)
i satisfy (3-44). We get, for each g ∈ G, that

k∑
i=1

(αω
g (p(n+1)

i ) − p(n+1)
i ) =

k∑
i=1

(αω
g (p(n)

i ) − p(n)
i ) + αω

g

(
q
( k∑

j=1

r j

))
− q

( k∑
j=1

r j

)

= q − αω
g (q) + αω

g

(
q
( k∑

j=1

r j

))
− q

( k∑
j=1

r j

)

= q
(

1 −

k∑
j=1

r j

)
− αω

g

(
q
(

1 −

k∑
j=1

r j

))

= q
( k∑

j=1

(αω
g (r j ) − r j )

)
+ q

(
1 −

k∑
j=1

αω
g (r j )

)
− αω

g

(
q
(

1 −

k∑
j=1

r j

))

= q
( k∑

j=1

(αω
g (r j ) − r j )

)
+ (q − αω

g (q))

(
1 −

k∑
j=1

αω
g (r j )

)
.
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Keeping in mind that q is a projection and the elements r j are pairwise orthogonal projections, we have,
for all g ∈ F and τ ∈ Tω(A), that∥∥∥∥ k∑

i=1

αω
g (p(n+1)

i ) −

k∑
i=1

p(n+1)
i

∥∥∥∥2

2,τ

= τ

(( k∑
i=1

αω
g (p(n+1)

i ) −

k∑
i=1

p(n+1)
i

)2)
= τ

((
αω

g (p(n)
i + qri ) −

k∑
i=1

p(n)
i + qri

)2)
= τ

(( k∑
i=1

q(αω
g (ri ) − ri ) + (q − αω

g (q))(1 − αω
g (ri ))

)2)
= τ

(
q
( k∑

i, j=1

αω
g (rir j ) + rir j − riα

ω
g (r j ) − αω

g (ri )r j

)
+ (q − αω

g (q))2
(

1 −

k∑
j=1

αω
g (r j )

))
− 2τ

(( k∑
j=1

r j

)
q(1 − αω

g (q))

(
1 −

k∑
j=1

αω
g (r j )

))
≤ τ

(
q
( k∑

i, j=1

αω
g (rir j ) + rir j − riα

ω
g (r j ) − αω

g (ri )r j

)
+ (q − αω

g (q))2
)

≤ τ

(
q
( k∑

i=1

αω
g (ri ) + ri − riα

ω
g (ri ) − αω

g (ri )ri

)
+ (q − αω

g (q))2
)

= τ

(
q
( k∑

i=1

(αω
g (ri ) − ri )

2
)

+ (q − αω
g (q))2

)
=

k∑
i=1

∥q(ri − αω
g (ri ))∥

2
2,τ + ∥q − αω

g (q)∥2
2,τ

(3-40),(3-47)
≤ 2

(
sn +

1
k
(1 − sn)

)
√

η = 2sn+1
√

η.

In the first inequality in the above computation, we used the fact that q commutes with all the elements ri ,
thus the term

(∑k
j=1 r j

)
q(1 − αω

g (q))
(
1 −

∑k
j=1 αω

g (r j )
)

is a product of two positive elements, whose
trace value must be nonnegative. In the second inequality, we used the pairwise orthogonality of the
projections ri , so the mixed terms in the double sum appearing above contribute the trace value of
−(riα

ω
g (r j ) + αω

g (ri )r j ), which likewise is nonpositive.
As explained before, one has sN > t . So if we start the inductive procedure with the projections

p(0)
1 = · · · = p(0)

k = 0, then after N steps we obtain projections p(N )
1 , . . . , p(N )

k satisfying

k∑
i=1

τ(p(N )
i ) > t for τ ∈ Tω(A).

Moreover, at that point we have

τ(ai p(N )
i )

(3-42)
≤ δτ(p(N )

i ) for i = 1, . . . , k, τ ∈ Tω(A),

max
g∈F

k∑
i=1

∥αω
g (p(N )

i ) − p(N )
i ∥

2
2,τ

(3-43)
≤

4N
√

η

k
(3-36)
< ε.

We conclude that p(N )
1 , . . . , p(N )

k satisfy all the required properties. □
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4. Dynamical tracial local-to-global principle

Here we prove our main technical result, namely that equivariant property Gamma implies a tracial local-
to-global principle for actions of amenable groups. Roughly, this means that whenever a ∗-polynomial
identity has (local) approximate solutions one tracial presentation at a time, then it has (global) approximate
solutions in the uniform tracial 2-norm. We begin by precisely defining these polynomial identities.

Definition 4.1 ( cf. [Gardella et al. 2022, Definition 4.4]). Let G be a discrete group, and let X be a
countable set of noncommutative variables. A noncommutative G-∗-polynomial in the variables X is a
noncommutative ∗-polynomial in the variables {g · x | g ∈ G, x ∈ X}.

Let A be a C∗-algebra with action α : G ↷ A. Suppose that h(x1, . . . , xr ) is a G-∗-polynomial in r
noncommuting variables. Given a tuple (a1, . . . , ar ) ∈ Ar , the evaluation h(a1, . . . , ar ) is computed by
interpreting g · xi as αg(ai ) for g ∈ G and i = 1, . . . , r .

The main theorem that we prove in this section is the following.

Theorem 4.2. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact, and with weak CPoU.
Let α : G ↷ A be an action by an amenable countable discrete group and assume it has local equivariant
property Gamma with respect to bounded traces. For each m ∈ N, let

hm(x1, . . . , xrm , z1, . . . , zsm )

be a G-∗-polynomial in rm + sm noncommuting variables. Let (ai )i∈N be a sequence in Aω,b. Suppose,
for every ε > 0, ℓ ∈ N, and τ ∈ Tω(A)w

∗

, there exist contractions (yτ
i )i∈N in Aω,b such that

∥hm(a1, . . . , arm , yτ
1 , . . . , yτ

sm
)∥2,τ < ε for m = 1, . . . , ℓ.

Then there exist contractions (yi )i∈N in Aω,b such that

hm(a1, . . . , arm , y1, . . . , ysm ) = 0 for all m ∈ N. (4-1)

We reduce the complexity of the polynomials involved in the proof of this result with the following.

Lemma 4.3. Let G be a countable discrete group. Consider sets of variables X = {xi | i ∈ N} and
Z = {zi | i ∈ N}. Assume

P = {hm(x1, . . . , xrm , z1, . . . , zsm ) | m ∈ N}

is a countable set of noncommutative G-∗-polynomials in the variables X ∪ Z. Then there exists another
set of variables Z ′

= {z′

i | i ∈ N} and another countable set of noncommutative G-∗-polynomials

P ′
= {h′

m(x1, . . . , xr ′
m
, z′

1, . . . , z′

s′
m
) | m ∈ N}

in the variables X ∪ Z ′ such that every G-∗-polynomial h′
m satisfies one of the following properties:

(1) h′
m(x1, . . . , xr ′

m
, 0, . . . , 0) = 0 (i.e., no terms in the polynomial with variables only in X ) and

h′
m(1, . . . , 1, z′

1, . . . , z′

s′
m
) is an ordinary ∗-polynomial in the variables Z ′;

(2) h′
m(x1, . . . , xr ′

m
, z′

1, . . . , z′

s′
m
) = ∥h′

m(x1, . . . , xr ′
m
, 0, . . . , 0)∥z′

s′
m

− h′
m(x1, . . . , xr ′

m
, 0, . . . , 0);

(3) h′
m(x1, . . . , xr ′

m
, z′

1, . . . , z′

s′
m
) = g · z′

i − z′

j for some 1 ≤ i, j ≤ s ′
m and some g ∈ G.
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Moreover we have that, for every action β : G ↷ B on any C∗-algebra, any sequence (bi )i∈N in B, and
subset T ⊂ T (B) the following two statements hold:

(a) There exist contractions (yi )i∈N in B such that

∥hm(b1, . . . , brm , y1, . . . , ysm )∥2,T = 0 for all m ∈ N

if and only if there exist contractions (y′

i )i∈N in B such that

∥h′

m(b1, . . . , br ′
m
, y′

1, . . . , y′

s′
m
)∥2,T = 0 for all m ∈ N.

(b) For each ε > 0 and each ℓ ∈ N, there exist contractions (yi )i∈N in B such that

∥hm(b1, . . . , brm , y1, . . . , ysm )∥2,T < ε for m = 1, . . . , ℓ

if and only if , for each ε′ > 0 and each ℓ′
∈ N, there exist contractions (y′

i )i∈N in B such that

∥h′

m(b1, . . . , br ′
m
, y′

1, . . . , y′

s′
m
)∥2,T < ε′ for m = 1, . . . , ℓ′.

Proof. Define
Z ′

= {zi | i ∈ N} ∪ {zi,g | i ∈ N, g ∈ G \ {e}} ∪ {wm | m ∈ N}.

For each m ∈ N, we can take the G-∗-polynomial hm in the variables X ∪ Z and define h′′
m in the variables

X ∪ Z ′ by replacing every instance of a variable g · zi for some i ∈ N and g ∈ G \ {e} by zi,g, e.g., the
polynomial g · z1 − z2 would be transformed into z1,g − z2. Next, we define a new G-∗-polynomial h′′′

m

for each m ∈ N by setting

h′′′

m(X ∪ Z ′) = h′′

m(X ∪ Z ′) + ∥hm(x1, . . . , xrm , 0, . . . , 0)∥wm − hm(x1, . . . , xrm , 0, . . . , 0). (4-2)

Set P ′

1 := {h′′′
m(X ∪ Z ′) | m ∈ N}. All the polynomials in this set are of type (1) mentioned in the statement

of this lemma. Next, define the sets of G-∗-polynomials

P ′

2 := {∥hm(x1, . . . , xrm , 0, . . . , 0)∥wm − hm(x1, . . . , xrm , 0, . . . , 0) | m ∈ N}

and
P ′

3 := {g · zi − zi,g | i ∈ N, g ∈ G \ {e}}.

These sets consist of polynomials of type (2) and (3), respectively.
Consider P ′

=P ′

1 ∪P ′

2 ∪P ′

3. The G-∗-polynomials in this set are all of the right form, and we claim that
this does the job. It suffices to show part (a). This is because, for a given C∗-algebra B, action β : G ↷ B,
sequence (bi )i∈N ∈ B, and subset T ⊂ T (B), statement (b) immediately follows from statement (a) when
applied to the C∗-algebra Bω, with action βω, sequence (bi )i∈N in B ⊂ Bω, and the set of limit traces
on Bω arising from sequences of traces in T .

To show part (a), fix a C∗-algebras B, an action β : G ↷ B, a sequence (bi )i∈N, and subset T ⊂ T (B).
Let (yi )i∈N be any sequence of contractions in B. For notational brevity, we denote these sequences by
b̄ = (bi )i and ȳ = (yi )i . Furthermore we shall also write (exclusively in this proof), for two elements
x, y ∈ B, the expression “x =T y” as shorthand for ∥x − y∥2,T = 0.
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We set yi,g = βg(yi ) for i ∈ N and g ∈ G \ {e} and

wm =

 0, hm(b1, . . . , brm , 0, . . . , 0) = 0,

hm(b1, . . . , brm , 0, . . . , 0)

∥hm(b1, . . . , brm , 0, . . . , 0)∥
, hm(b1, . . . , brm , 0, . . . , 0) ̸= 0.

Then the tuple
z̄ := (yi )i∈N × (yi,g)i∈N,g∈G\{e} × (wm)m∈N

represents a choice for the free variables of Z ′ inside B. By definition we have p(b̄, z̄) = 0 for all
p ∈ P ′

2 ∪P ′

3. By definition of the polynomials h′′′
m , we have

h′′′

m(b1, . . . , brm , z̄) = h′′

m(b1, . . . , brm , z̄) + q(b̄, z̄) = h′′

m(b1, . . . , brm , z̄)

for some ∗-polynomial q ∈ P ′

2. Due to the vanishing of all the ∗-polynomials of P ′

3 in z̄ and given how
the polynomial h′′

m arises from the polynomial hm via substitution of variables, we may finally observe

hm(b1, . . . , brm , y1, . . . , ysm ) = h′′

m(b1, . . . , brm , z̄).

This shows immediately that if the sequence (yi )i satisfies

∥hm(b1, . . . , brm , y1, . . . , ysm )∥2,T = 0 for all m ∈ N,

then we also have ∥p(b̄, z̄)∥2,T = 0 for all p ∈ P ′. In particular, we get the “only if” part in (a).
Conversely, suppose that

z̄ := (yi )i∈N × (yi,g)i∈N,g∈G\{e} × (wm)m∈N

is an arbitrary tuple with values in the unit ball of B representing a choice for the free variables in Z ′ such
that p(b̄, z̄) = 0 for all p ∈ P ′. By doing the above computations in reverse, we can see that p(z̄) =T 0
for p ∈ P ′

3 forces yi,g =T βg(yi ) for all g ∈ G \ {e}. Moreover, the vanishing p(b̄, z̄) =T 0 for p ∈ P ′

2
forces the equation

wm =
hm(b1, . . . , brm , 0, . . . , 0)

∥hm(b1, . . . , brm , 0, . . . , 0)∥

when hm(b1, . . . , brm , 0, . . . , 0) ̸= 0. Similar to how we argued above, this implies, for all m ≥ 1, that

h′′′

m(b1, . . . , brm , z̄) = h′′

m(b1, . . . , brm , z̄) + q(b̄, z̄) =T h′′

m(b1, . . . , brm , z̄)

for some ∗-polynomial q ∈ P ′

2. Given how the polynomial h′′
m arises from the polynomial hm via

substituion of variables, we may finally observe

hm(b1, . . . , brm , y1, . . . , ysm ) =T h′′

m(b1, . . . , brm , z̄), m ≥ 1.

This shows the “if” part of (a) and finishes the proof. □

Proof of Theorem 4.2. Equation (4-1) is equivalent to

∥hm(a1, . . . , arm , y1, . . . , ysm )∥2,Tω(A) = 0 for all m ∈ N.

By the previous lemma, we may assume that the ∗-polynomials hm are all of one of the following types:
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(1) hm(a1, . . . , arm , 0, . . . , 0) = 0 and hm(1Aω,b, . . . , 1Aω,b, z1, . . . , zsm ) is an ordinary ∗-polynomial.

(2) hm is of the form ∥hm(x1, . . . , xrm , 0, . . . , 0)∥zi − hm(x1, . . . , xrm , 0, . . . , 0) for some i ∈ N. Equiv-
alently, since this doesn’t change the solutions, we may assume that hm(a1, . . . , arm , z1, . . . , zsm ) is
of the form zi − a for some i ∈ N and a ∈ C∗({αω

g (ai ) | i ∈ N, g ∈ G}) with ∥a∥ = 1.

(3) hm is of the form g · zi − z′

i for some i, i ′
∈ N and g ∈ G.

By Kirchberg’s ε-test, it suffices to find, for each ε > 0 and ℓ ∈ N, contractions (yi )i∈N in Aω,b such
that

∥hm(a1, . . . , arm , y1, . . . , ysm )∥2,τ ≤ ε for m = 1, . . . , ℓ and τ ∈ Tω(A).

Choose ε > 0 and ℓ ∈ N arbitrarily. Denote by F ⋐ G the set of g ∈ G appearing in hm for some
m = 1, . . . , ℓ. Set

δ =
1
18ε2. (4-3)

Choose t ∈ (0, 1) such that
1 − t < 1

2ε2. (4-4)

Let η > 0 be the universal constant from Lemma 3.2 corresponding to the tuple (δ2, t). Since G is
amenable, we can find H ⋐ G such that |gH1H | < η|H | for each g ∈ F . By assumption, for each
τ ∈ Tω(A)w

∗

, we can find contractions (yτ
i )i∈N ∈ Aω,b such that

∥hm(a1, . . . , arm , yτ
1 , . . . , yτ

sm
)∥2

2,τ <
ε2

2ℓ|H |
for m = 1, . . . , ℓ.

Define

bτ
:=

ℓ∑
m=1

|hm(a1, . . . , arm , yτ
1 , . . . , yτ

sm
)|2 ∈ Aω,b. (4-5)

Then we get

τ(bτ ) =

ℓ∑
m=1

∥hm(a1, . . . , arm , yτ
1 , . . . , yτ

sm
)∥2

2,τ <
ε2

2|H |
.

By continuity and compactness of Tω(A)w
∗

, we can find finitely many tracial states τ1, . . . , τk ∈ Tω(A)w
∗

such that
ε2

2|H |
> sup

τ∈Tω(A)

min
i=1,...,k

τ(bτi ).

By Lemma 3.2, it follows that we can find pairwise orthogonal projections

p1, . . . , pk ∈ Aω,b
∩

(⋃
g∈G

αω
g ({yτ1

i , . . . , yτn
i , ai | i ∈ N})

)′

such that, for τ ∈ Tω(A),

τ

( k∑
j=1

p j

)
> t, (4-6)

τ(bτ j p j ) ≤
1
2ε2τ(p j ) for j = 1, . . . , k, (4-7)

max
g∈F

k∑
j=1

∥αg(p j ) − p j∥
2
2,τ < δ2. (4-8)
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Define yi =
∑k

j=1 p j yτ j
i for i ∈ N. We show that, for τ ∈ Tω(A) and m = 1, . . . , ℓ,∣∣∣∣τ(|hm(a1, . . . , arm , y1, . . . , ysm )|2) − τ

( k∑
j=1

p j |hm(a1, . . . , arm , yτ j
1 , . . . , yτ j

sm )|2
)∣∣∣∣ < 1

2ε2. (4-9)

We distinguish three cases. First, assume that hm(a1, . . . , arm , 0, . . . , 0) = 0 and that

hm(1Aω,b, . . . , 1Aω,b, z1, . . . , zsm )

is an ordinary ∗-polynomial. In this case

|hm(a1, . . . , arm , y1, . . . , ysm )|2 =

k∑
j=1

p j |hm(a1, . . . , arm , yτ j
1 , . . . , yτ j

sm )|2

since p1, . . . , pk are pairwise orthogonal projections. Second, assume hm is of the form zi − a for some
i ∈ N and some element a ∈ C∗({αω

g (ai ) | i ∈ N, g ∈ G}) with ∥a∥ = 1. In this case we have∣∣∣∣τ(|hm(a1, . . . , arm , y1, . . . , ysm )|2) − τ

( k∑
j=1

p j |hm(a1, . . . , arm , yτ j
1 , . . . , yτ j

sm )|2
)∣∣∣∣

=

∣∣∣∣τ(∣∣∣∣ k∑
j=1

p j yτ j
i − a

∣∣∣∣2)
− τ

( k∑
j=1

p j |y
τ j
i − a|

2
)∣∣∣∣ =

∣∣∣∣τ(|a|
2) − τ

( k∑
j=1

p j |a|
2
)∣∣∣∣

≤ τ

(
1 −

k∑
j=1

p j

)
(4-6)
< 1 − t

(4-4)
< 1

2ε2.

Third, assume hm is of the form g · zi − zi ′ for some i, i ′
∈ N and g ∈ F . Then we have∣∣∣∣τ(|hm(a1, . . . , arm , y1, . . . , ysm )|2) − τ

( k∑
j=1

p j |hm(a1, . . . , arm , yτ j
1 , . . . , yτ j

sm )|2
)∣∣∣∣

=

∣∣∣∣τ(∣∣∣∣αω
g

( k∑
j=1

p j yτ j
i

)
−

k∑
j ′=1

p j ′ y
τ j ′

i ′

∣∣∣∣2)
− τ

( k∑
j=1

p j |α
ω
g (yτ j

i ) − yτ j
i ′ |

2
)∣∣∣∣

=

∣∣∣∣τ( k∑
j=1

(αω
g (p j ) − p j )α

ω
g (|yτ j

i |
2)

)
− τ

( k∑
j=1

(αω
g (p j ) − p j )α

ω
g (yτ j

i )∗
k∑

j ′=1

p j ′ y
τ j ′

i ′

)

− τ

(( k∑
j ′=1

p j ′ y
τ j ′

i ′

)∗ k∑
j=1

(αω
g (p j ) − p j )α

ω
g (yτ j

i )

)∣∣∣∣
≤

∥∥∥∥ k∑
j=1

(αω
g (p j ) − p j )α

ω
g (|yτ j

i |
2)

∥∥∥∥
2,τ

+ 2
∥∥∥∥ k∑

j=1

(αω
g (p j ) − p j )α

ω
g (yτ j

i )

∥∥∥∥
2,τ

∥∥∥∥ k∑
j=1

p j yτ j
i ′

∥∥∥∥
2,τ

≤

∥∥∥∥ k∑
j=1

(αω
g (p j ) − p j )α

ω
g (|yτ j

i |
2)

∥∥∥∥
2,τ

+ 2
∥∥∥∥ k∑

j=1

(αω
g (p j ) − p j )α

ω
g (yτ j

i )

∥∥∥∥
2,τ

. (4-10)



1422 GÁBOR SZABÓ AND LISE WOUTERS

Note that, for any g ∈G and any positive contractions c1, . . . , ck ∈ Aω,b commuting with the p j and αω
g (p j ),

one has that∥∥∥∥ k∑
i=1

(αω
g (pi )− pi )ci

∥∥∥∥2

2,τ

=

k∑
i=1

τ((αω
g (pi )− pi )

2c2
i )+

k∑
i, j=1
i ̸= j

τ(ci (α
ω
g (pi )− pi )(α

ω
g (p j )− p j )c j )

≤

k∑
i=1

(
τ((αω

g (pi )− pi )
2)−

∑
j=1,...,k

j ̸=i

τ(ciα
ω
g (pi )p j c j )−

∑
j=1,...,k

j ̸=i

τ(ci piα
ω
g (p j )c j )

)

≤

k∑
i=1

∥αω
g (pi )− pi∥

2
2,τ ,

where in the last inequality we used the tracial property and the fact that the ci commute with the p j

and αω
g (p j ) to show that the last two terms can be rewritten as the negative of the trace of positive

elements.
In particular we have, for g ∈ F , that∥∥∥∥ k∑

j=1

(αω
g (p j ) − p j )α

ω
g (|yτ j

i |
2)

∥∥∥∥
2,τ

≤

√
k∑

i=1

∥αω
g (pi ) − pi∥

2
2,τ

(4-8)
< δ

(4-3)
=

1
18ε2. (4-11)

For j = 1, . . . , k, we have that αω
g (yτ j

i ) is a contraction that can be written as a linear combination of
positive contractions commuting with the pi and αω

g (pi ). An application of the triangle inequality yields∥∥∥∥ k∑
i=1

(αω
g (pi ) − pi )α

ω
g (yτ j

i )

∥∥∥∥
2,τ

≤ 4

√
k∑

i=1

∥αω
g (pi ) − pi∥

2
2,τ

(4-8)
< 4δ

(4-3)
=

2
9ε2. (4-12)

Combining (4-10) with (4-11) and (4-12), we get∣∣∣∣τ(|hm(a1, . . . , arm , y1, . . . , ysm )|2) − τ

( k∑
j=1

p j |hm(a1, . . . , arm , yτ j
1 , . . . , yτ j

sm )|2
)∣∣∣∣ < 9

18ε2
=

1
2ε2.

Thus, we have indeed shown that (4-9) holds for all τ ∈ Tω(A) and m = 1, . . . , ℓ. From (4-5) we see that
k∑

j=1

p j |hm(a1, . . . , arm , yτ j
1 , . . . , yτ j

sm )|2 ≤

k∑
j=1

p j bτ j for m = 1, . . . , ℓ. (4-13)

As a consequence, for τ ∈ Tω(A) and m = 1, . . . , ℓ, we get

∥hm(a1, . . . ,arm , y1, . . . , ysm )∥2
2,τ = τ(|hm(a1, . . . ,arm , y1, . . . , ysm )|2)

(4-9)
< τ

( k∑
j=1

p j |hm(a1, . . . ,arm , yτ j
1 , . . . , yτ j

sm )|2
)

+
1
2ε2

(4-13)
≤

k∑
j=1

τ(p j bτ j )+ 1
2ε2 (4-7)

≤

k∑
j=1

1
2ε2τ(p j )+

1
2ε2

≤
1
2ε2

+
1
2ε2

= ε2. □

The next theorem gives an alternative formulation of the tracial local-to-global principle that is
convenient to use in certain applications. Before we state it, we introduce some notation.
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Notation 4.4. Let A be a C∗-algebra with an action α : G ↷ A of a countable discrete group. Given a
tracial state τ ∈ T (A), denote by πτ : A → B(Hτ ) the corresponding GNS representation. Then we define
the representation

πα
τ : A → B(ℓ2(G, Hτ )), πα

τ (x)(ξ)(h) = πτ (α
−1
h (x))ξ(h).

The left-regular representation λ : G → U(ℓ2(G, Hτ )), defined by (g ·ξ)(h) = ξ(g−1h) for ξ ∈ ℓ2(G, Hτ )

and g, h ∈ G, implements the action α on πα
τ (A), so we get a continuous extension of the action

α : G ↷ πα
τ (A)′′ on the weak closure.

Notice that πα
τ (A)′′ ⊆

∏
g∈G πτ (A)′′. The trace τ on A extends to a faithful normal trace on πτ (A)′′

and, by composition with the natural quotient map qg :
∏

g∈G πτ (A)′′ → πτ (A)′′ onto the summand
with index g ∈ G, also to a normal trace on

∏
g∈G πτ (A)′′, which we will denote by τ̃g. Notice that

τ̃g ◦ πα
τ = τ ◦ α−1

g . Let (cg)g∈G be a sequence in (0, 1) such that
∑

g∈G cg = 1. Then τ̃ :=
∑

g∈G cg τ̃g

defines a faithful normal tracial state on
∏

g∈G πτ (A)′′ and hence also on the subalgebra πα
τ (A)′′. In this

way we can form the tracial von Neumann algebra ultrapower (πα
τ (A)′′)ω. Note that, on bounded subsets

of
∏

g∈G πτ (A)′′, the strong operator topology is induced by the norm ∥ · ∥2,τ̃ , or equivalently by the
seminorms {∥ · ∥2,τ̃g | g ∈ G}. Since πα

τ (A)′′ is a von Neumann subalgebra, it follows that on bounded
subsets its strong operator topology is also induced by (the restrictions of) these (semi)norms.

Remark 4.5. With the above notation and terminology, the condition in Theorem 4.2 that requires, for
every ε > 0, ℓ ∈ N, and τ ∈ Tω(A)w

∗

, the existence of contractions (yi )i∈N in Aω,b such that

∥hm(a1, . . . , arm , y1, . . . , ysm )∥2,τ < ε for m = 1, . . . , ℓ

is equivalent to the following statement (by Kaplansky’s density theorem): for every ε > 0, ℓ ∈ N, and
τ ∈ Tω(A)w

∗

, there exist contractions (y′

i )i∈N in παω

τ (Aω,b)′′ such that

∥hm(a1, . . . , arm , y′

1, . . . , y′

sm
)∥2,τ̃ < ε for m = 1, . . . , ℓ.

Making use of the tracial von Neumann algebra ultrapowers, this is also equivalent to the follow-
ing statement: for every τ ∈ Tω(A)w

∗

, there are contractions (y′′

i )i∈N in (παω

τ (Aω,b)′′)κ such that
hm(a1, . . . , arm , y′′

1 , . . . , y′′
s ) = 0 for every m ∈ N.

Theorem 4.6. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let α : G ↷ A be an
action by an amenable countable discrete group G and assume it has local equivariant property Gamma
with respect to bounded traces. Let ω and κ be two free ultrafilters on N. Let δ : G ↷ D be an
action on a separable C∗-algebra and let B ⊂ D be a separable, δ-invariant C∗-subalgebra. Suppose
ϕ : (B, δ) → (Aω,b, αω) is an equivariant ∗-homomorphism. Then the following are equivalent:

(1) For every τ ∈ Tω(A)w
∗

, there exists an equivariant ∗-homomorphism

ϕτ
: (D, δ) → ((παω

τ (Aω,b)′′)κ , (αω)κ)

such that ϕτ
|B = παω

τ ◦ ϕ.

(2) There is an equivariant ∗-homomorphism ϕ̄ : (D, δ) → (Aω,b, αω) with ϕ̄|B = ϕ.
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Proof. It is clear that (2) implies (1). To prove the other implication, take a countable dense Q[i]-∗-
subalgebra C ⊂ D such that it is δ-invariant and such that C ∩ B is also dense in B. By inductively
enlarging C we may in addition assume that, for each contraction x ∈ C , one has 1 −

√
1 − x∗x ∈ C .

Let P denote the countable family of G-∗-polynomials with coefficients in Aω,b in the variables {Xc}c∈C

encoding all relations in C :

• g · Xc − Xδg(c) for all c ∈ C and g ∈ G,

• λXc + Xc′ − Xλc+c′ for all c, c′
∈ C and λ ∈ Q[i],

• Xc Xc′ − Xcc′ for c, c′
∈ C ,

• X∗
c − Xc∗ for c ∈ C ,

• ϕ(b) − Xb for b ∈ B ∩ C .

It follows from (1) that, for every τ ∈ Tω(A)w
∗

, the equations in P have exact solutions in (παω

τ (Aω,b)′′)κ .
By Remark 4.5 this means precisely that all conditions to apply Theorem 4.2 are fulfilled, and we can
find exact solutions to all equations in P in Aω,b. This is equivalent to the existence of a Q[i]-linear,
∗-preserving, multiplicative, equivariant map ϕ̄ : C → Aω,b with ϕ̄|B∩C = ϕ|B∩C . We observe that ϕ̄

is contractive. Indeed, if x ∈ C is a contraction, then y = 1 −
√

1 − x∗x is a self-adjoint element also
belonging to C , which satisfies

x∗x + y2
− 2y = x∗x + (y − 1)2

− 1 = 0.

Hence
ϕ̄(x)∗ϕ̄(x) + ϕ̄(y)2

− 2ϕ̄(y) = 0,

or equivalently,
ϕ̄(x)∗ϕ̄(x) + (1 − ϕ̄(y))2

= 1.

We see that ϕ̄(x)∗ϕ̄(x) is a contraction, and hence ϕ̄(x) is as well. In conclusion, ϕ extends to an
equivariant ∗-homomorphism ϕ̄ : (D, δ) → (Aω,b, αω) with ϕ̄B = ϕ. □

In many cases of interest we get the following corollary from Proposition 2.4, which directly generalizes
and recovers the technical machinery related to uniform property Gamma from the nondynamical setting;
see [Castillejos et al. 2021b, Lemma 4.1]. We note that, upon close inspection of our proof so far, this
particular corollary can be obtained based on [Castillejos et al. 2021b, Lemma 3.6] without relying on the
preprint [Carrión et al. 2023a].

Corollary 4.7. Let A be a separable, simple, nuclear C∗-algebra with T (A) nonempty and compact, and
such that T +(A) = R>0T (A). Let α : G ↷ A be an action by a countable amenable discrete group that
has equivariant property Gamma. Then α satisfies the conclusion of Theorems 4.2 and 4.6.

Remark 4.8. For potential subsequent applications of the theory in this article, let us reflect on how we
ended up with the main result of this section. It is worthwhile to note that the amenability of the group G
is used (in the proof of Theorem 4.2) through the Følner condition exclusively for the purpose of having
access to a finite set H ⋐ G that satisfies the conclusion of Lemma 3.4. At no other point in the whole
chain of argument is it necessary to know that H is actually a set that is almost invariant with respect
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to F , or anything else about H for that matter. This culminates in the following more explicit observation,
which we suspect may be, at some point, interesting to consider for certain actions of nonamenable
groups.

Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let α : G ↷ A be an action of a
countable discrete group. Suppose that, for all ε > 0 and F ⋐ G, there exists a finite subset H ⋐ G that
satisfies the same conclusion as in Lemma 3.4. If α has local equivariant property Gamma with respect to
bounded traces, then α also satisfies the conclusion of Theorems 4.2 and 4.6.

5. Equivariant Jiang–Su stability

In this section we use the dynamical tracial local-to-global principle derived in the previous section
combined with von Neumann algebraic results to conclude that, for actions of countable amenable
groups on separable, simple, nuclear, finite, Z-stable C∗-algebras, equivariant property Gamma implies
equivariant Z-stability. Although one can get by with known variations of Ocneanu’s theorem [1985], for
many applications treated in this section, our most general results here need a more general McDuff-type
theorem for actions of amenable groups on von Neumann algebras, which we import from our recent
work [Szabó and Wouters 2024].

We begin by reducing the problem of equivariant Z-stability to the existence of so-called tracially
large c.p.c. order-zero maps Mn → Fω(A)α̃ω for n ≥ 2. The argument is well known to experts and traces
back to the work of Matui and Sato [2012]. It makes use of an equivariant version of their property (SI),
for which the general framework needed here was developed in [Szabó 2021b].

Definition 5.1 [Szabó 2021b, Definition 2.5; Castillejos et al. 2023, Definition 1.3]. Let A be a separable,
simple C∗-algebra with T +(A) ̸= ∅.

(1) We say that a positive contraction f ∈ Fω(A) is tracially supported at 1 if the following holds: for
every nonzero positive element a ∈P(A), there exists a constant κ = κ( f, a) > 0 such that, for every
τ ∈ T̃ω(A) with 0 < τ(a) < ∞, one has infk∈N τa( f k) ≥ κτ(a).

(2) A positive element e ∈ Fω(A) is called tracially null if e ∈ JA in the sense of Definition 1.11.

(3) Let B be a unital C∗-algebra. A c.p.c. order-zero map φ : B → Fω(A) is called tracially large if
τa ◦ φ(1) = τ(a) for all nonzero positive elements a ∈ P(A) and τ ∈ T̃ω(A) with τ(a) < ∞.

Remark 5.2. It follows from [Szabó 2021b, Proposition 2.4] that any of the conditions above hold for all
nonzero positive elements a ∈ P(A) if and only if they hold for just a single such element, so in practice
it suffices to check them for a single a ∈ P(A)+ \ {0}.

Definition 5.3 [Szabó 2021b, Definition 2.7]. Let A be a separable, simple C∗-algebra with T +(A) ̸= ∅
and an action α : G ↷ A of a countable discrete group. We say that α has equivariant property (SI) if the
following holds:

Whenever e, f ∈ Fω(A)α̃ω are two positive contractions such that f is tracially supported at 1 and e is
tracially null, there exists a contraction s ∈ Fω(A)α̃ω such that f s = s and s∗s = e.
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It follows from [Szabó 2021b, Corollary 4.3] that all actions of amenable groups on nonelementary,
separable, simple, nuclear C∗-algebras with strict comparison have property (SI). Combined with the
following theorem, it gives a powerful sufficient criterion for equivariant Jiang–Su stability. This is not
new to the experts but has never been formally stated in this generality before, so we shall give the proof
for the reader’s convenience.

Theorem 5.4. Let A be a separable, simple C∗-algebra with T +(A) ̸=∅, and let α : G ↷ A be an action
of a countable discrete group with equivariant property (SI). Then α is equivariantly Z-stable if and only
if , for every n ∈ N, there exists a unital ∗-homomorphism Mn → (Aω

∩ A′)α
ω

.

Proof. Since the “only if” part can be obtained with the standard argument sketched in Remark 2.2,
we prove the “if” part. Given n ∈ N, let φ′

: Mn → (Aω
∩ A′)α

ω

be a unital ∗-homomorphism. By
Proposition 1.18, we can find a tracially large c.p.c. order-zero map φ : Mn → Fω(A)α̃ω that lifts φ′. Set
e := 1Fω(A) − φ(1), and set f := φ(e1,1). Both are positive contractions in Fω(A)α̃ω . Since φ is tracially
large, we can conclude immediately that e is tracially null. Since e1,1 is a projection, it follows that
φ(e1,1) − φ(e1,1)

m is tracially null for any m ≥ 1. Moreover, for every τ ∈ T̃ω(A) and a ∈ P(A)+ \ {0}

such that τ(a) < ∞, the functional τa ◦φ is a bounded trace and therefore a multiple of the unique tracial
state on Mn . So, for every k ∈ N, we have

τa( f k) = τa(φ(e1,1)
k) = τa(φ(e1,1)) =

1
n
τ(a).

This proves that f is tracially supported at 1.
Since α has equivariant property (SI), we can find a contraction s ∈ Fω(A)α̃ω such that f s = s and s∗s =e.

By [Rørdam and Winter 2010, Theorem 5.1], this implies the existence of a unital ∗-homomorphism
from the dimension drop algebra Zn,n+1 into Fω(A)α̃ω . As Z is an inductive limit of those algebras, we
find a unital ∗-homomorphism Z → Fω(A)α̃ω .15 This implies equivariant Z-stability by [Szabó 2018b,
Corollary 3.8]. □

We shall now prove that, for actions of amenable groups on simple nuclear Z-stable C∗-algebras,
equivariant uniform property Gamma is equivalent to equivariant Z-stability. We end up giving two
separate arguments to prove this result in two cases. Firstly, we prove this result for actions on C∗-algebras
that have a compact nonempty tracial state space and no unbounded traces, for which it is sufficient to
appeal to Corollary 4.7. Secondly, we prove the result in full generality, but this requires the full power
of our theory based on the results from [Carrión et al. 2023a].

Let us proceed in the first case.

Theorem 5.5. Let A be a separable, nuclear, simple Z-stable C∗-algebra with T (A) nonempty and
compact, and such that T +(A) = R>0T (A). Let α : G ↷ A be an action of a countable discrete amenable
group. If α has equivariant property Gamma, then α is equivariantly Z-stable.

Proof. By Theorem 5.4, it suffices to construct a unital ∗-homomorphism Mn → (Aω
∩ A′)α

ω

for n ≥ 2.
We appeal to Corollary 4.7 and hence know that α obeys the conclusion of Theorem 4.2.

15This is a standard reindexation trick. Alternatively one can deduce this for example by a combination of Corollary 3.9 and
Lemma 4.2 in [Barlak and Szabó 2016].
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Let (ak)k∈N be a dense sequence in A. Then the existence of such a desired ∗-homomorphism is
equivalent to the existence of elements e1,1, e2,1, . . . , en,1 ∈ Aω satisfying the equations

ei,1e j,1 = 0, e∗

i,1e j,1 = δi j e1,1, e2
1,1 = e1,1, αω

g (ei,1) = ei,1, and akei,1 − ei,1ak = 0

for all g ∈ G, i, j = 2, . . . , n, and k ∈ N. By Theorem 4.2, it suffices to show that, for each ε > 0, finite
subset F ⋐ G, m ∈ N, and every tracial state τ ∈ T (A), there exists contractions f1,1, f2,1, . . . , fn,1 ∈ A
satisfying

∥ fi,1 f j,1∥2,τ < ε, ∥ f ∗

i,1 f j,1 − δi j f1,1∥2,τ < ε, ∥ f 2
1,1 − f1,1∥2,τ < ε,

∥αg( fi,1) − fi,1∥2,τ < ε, and ∥ak fi,1 − fi,1ak∥2,τ < ε

for all g ∈ F , i, j = 2, . . . , n, and 1 ≤ k ≤ m. This is the case, however, if and only if, for every
τ ∈ T (A), there exists a unital equivariant ∗-homomorphism Mn → ((πα

τ (A)′′)ω ∩ A′)α
ω

. Since A is
nuclear, the tracial von Neumann algebra Nτ := πα

τ (A)′′ is injective; see for example [Blackadar 2006,
Theorem IV.2.2.13]. Since it does not have any direct summand of type I, it follows from Connes’
theorem [1976] that Nτ ⊗R ∼= Nτ . Hence the claim follows directly from [Szabó and Wouters 2024,
Theorem A]. □

Next we proceed in the second and more general case.

Lemma 5.6. Let A be a σ -unital C∗-algebra with T (A) nonempty and compact. Let α : G ↷ A be an
action by a countable discrete amenable group G and assume it has local equivariant property Gamma
with respect to bounded traces. Then the following are equivalent:

(1) For all τ ∈ T (A), there exists a unital ∗-homomorphisms ϕτ
: Mn → ((πα

τ (A)′′)ω)α
ω

.

(2) There exists a unital ∗-homomorphism ϕ : Mn → (Aω,b)α
ω

.

Proof. For each τ ∈ T (A), the map πα
τ induces a unital ∗-homomorphism

(Aω,b)α
ω

→ ((πα
τ (A)′′)ω)α

ω

,

so (2) implies (1). We use the fact that α has local equivariant property Gamma to prove the other
implication. By Theorem 4.6 the following are equivalent:

(a) For all τ ∈ Tω(A)w
∗

, there exists a unital equivariant ∗-homomorphism

ϕτ
: (Mn, idMn ) → ((παω

τ (Aω,b)′′)κ , (αω)κ).

(b) There exists a unital equivariant ∗-homomorphism ϕ : (Mn, idMn ) → (Aω,b, αω).

Statement (b) is equivalent to statement (2) above. Hence, in order to prove the implication it suffices
to prove that statement (1) implies (a). Take τ ∈ Tω(A)w

∗

and denote its restriction to A by σ . The
canonical map A → Aω,b induces an equivariant ∗-homomorphism (πα

σ (A), α) → (παω

τ (Aω,b)′′, αω) that
is continuous on the unit ball with respect to the strong operator topology. Hence, it can be extended to a
unital equivariant ∗-homomorphism πα

σ (A)′′ → παω

τ (Aω,b)′′. Combining this with (1), this means we can
find a unital ∗-homomorphism Mn → ((παω

τ (Aω,b)′′)κ)(α
ω)κ . This ends the proof. □
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Theorem 5.7. Let A be a separable, simple, nuclear Z-stable C∗-algebra such that T +(A) ̸= ∅. Let
α : G ↷ A be an action of a countable discrete amenable group. If α has equivariant property Gamma,
then α is equivariantly Z-stable.

Proof. Combining [Szabó 2021b, Corollary 4.3] with Theorem 5.4, we see that, given n ≥ 2, it suffices
to construct a unital ∗-homomorphism Mn → (Aω

∩ A′)α
ω

. For convenience, let us specify a (possibly
different) free ultrafilter κ on N. It suffices to show that we can construct a unital ∗-homomorphism
Mn → ((Aω

∩ A′)κ,b)(α
ω)κ , as a reindexation trick will then yield the required unital ∗-homomorphism

Mn → (Aω
∩ A′)α

ω

. By Theorem 2.6, we conclude that αω
= G ↷ Aω

∩ A′ has local equivariant
property Gamma with respect to bounded traces. Thus, by Lemma 5.6, it suffices to prove that, for all
τ ∈ T (Aω

∩ A′), there exists a unital ∗-homomorphism ϕτ
: Mn → ((παω

τ (Aω
∩ A′)′′)κ)(α

ω)κ . We note that
the C∗-algebra A has uniform property Gamma. Using the same trick as in the proof of Proposition 2.5,
we conclude that Aω

∩ A′ ∼= Bω
∩ B ′ for a hereditary subalgebra B ⊂ A⊗K such that T +(B) = R>0T (B)

and T (B) is compact. Using [Castillejos et al. 2022, Theorem 4.6], we can hence conclude that there
exists a unital ∗-homomorphism M2 → Aω

∩ A′. By a standard reindexation trick, we can argue that such
a ∗-homomorphism can be chosen to additionally commute with any specified separable subset of Aω

∩ A′.
Fix τ ∈ T (Aω

∩ A′). We show first that Nτ := παω

τ (Aω
∩ A′)′′ contains a ∥·∥2,τ -separable, αω-invariant

von Neumann subalgebra that tensorially absorbs the hyperfinite II1-factor. By the aforementioned
property of A, we can find a unital embedding φ1 : M2 → παω

τ (Aω
∩ A′) ⊆ Nτ . Set

B1 := C∗

(⋃
g∈G

αω
g (φ1(M2))

)
.

Using that B1 is a separable subquotient of Aω
∩ A′, we again use the aforementioned property of A and

find a unital embedding
φ2 : M2 → παω

τ (Aω ∩ A′) ∩ B ′

1 ⊆ Nτ ∩ B ′

1.

Set

B2 := C∗

(
B1 ∪

⋃
g∈G

αω
g (φ2(M2))

)
.

Carry on with this procedure inductively, i.e., given the C∗-algebra Bi ⊂ παω

τ (Aω
∩ A′), find a unital

∗-homomorphism φi+1 : M2 → παω

τ (Aω
∩ A′) ∩ B ′

i and set

Bi+1 := C∗

(
Bi ∪

⋃
g∈G

αω
g (φi+1(M2))

)
.

Define B :=
⋃

i∈N Bi
∥·∥2,τ ⊂ Nτ . Then B is a ∥ · ∥2,τ -separable, αω-invariant von Neumann subalgebra

of Nτ such that additionally B ∼= B⊗R by [Szabó and Wouters 2024, Corollary 3.8] because it satisfies
the McDuff-type criterion (existence of a unital ∗-homomorphism R → Bω) by construction. Denote
the restriction of αω to B by β. By [Szabó and Wouters 2024, Theorem A], it follows that β is cocycle
conjugate to β ⊗ idR. In particular, we can find a unital ∗-homomorphism

Mn → (Bκ)β
κ

⊂ ((παω

τ (Aω
∩ A′)′′)κ)(α

ω)κ . □
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MULTIJET BUNDLES AND APPLICATION TO
THE FINITENESS OF MOMENTS FOR ZEROS OF GAUSSIAN FIELDS

MICHELE ANCONA AND THOMAS LETENDRE

We define a notion of multijet for functions on Rn, which extends the classical notion of jets in the sense
that the multijet of a function is defined by contact conditions at several points. For all p ⩾ 1 we build a
vector bundle of p-multijets, defined over a well-chosen compactification of the configuration space of
p distinct points in Rn. As an application, we prove that the linear statistics associated with the zero set
of a centered Gaussian field on a Riemannian manifold have a finite p-th moment as soon as the field
is of class C p and its (p−1)-jet is nowhere degenerate. We prove a similar result for the linear statistics
associated with the critical points of a Gaussian field and those associated with the vanishing locus of a
holomorphic Gaussian field.
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1. Introduction

This paper is concerned with two different but related problems. The first one is to define a natural notion
of multijet for a Ck function on Rn, generalizing the usual notion of k-jet. By multijet we mean that
we want to consider a collection of jets at different points in Rn and patch them together in a relevant
way. The second one is to find natural conditions on a Gaussian field f : Rn

→ Rr ensuring that the
(n−r)-dimensional volume of f −1(0)∩ B admits finite higher moments, where B stands for the unit ball
in Rn. One way to tackle this second problem is by considering the multijet of the random field f . In the
following, we give more details about our contributions concerning the previous two problems, as well as
some variations on these questions.
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1.1. Multijet bundles. Let us start by recalling some standard facts about jets. See [Saunders 1989] for
background on this matter. Let x ∈ Rn and k ⩾ 0. Two smooth functions f and g on Rn are said to have
the same k-jet at x if f − g vanishes at x , as well as all its partial derivatives up to order k. Having the
same k-jet at x is an equivalence relation on C∞(Rn), and the space Jk(R

n)x of k-jets at x is the set of
equivalence classes for this relation. We denote by jk( f, x) the k-jet of f at x , that is, its class in Jk(R

n)x .
The map jk( · , x) is a linear surjection from C∞(Rn) onto the finite-dimensional vector space Jk(R

n)x .
Of course, jk( f, x) makes sense even if f is only Ck and defined on some neighborhood of x .

Considering the family of k-jet spaces for all x ∈ Rn, the set Jk(R
n) =

⊔
x∈Rn Jk(R

n)x is equipped
with a natural vector bundle structure over Rn. Then, if � ⊂ Rn is open and f : � → R is Ck, the map
jk( f, · ) is a local section of Jk(R

n) → Rn over �. These definitions are well-behaved with respect to
smooth changes of coordinates, so one can define similarly the vector bundle of k-jets of functions on a
manifold M. More generally, if E → M is a vector bundle over M, there is a corresponding vector bundle
Jk(M, E) → M of k-jets of sections of E → M.

In this paper, we are interested in defining similarly a notion of multijet and the associated vector
bundles. That is, we want to consider smooth functions on Rn up to an equivalence relation defined by
the vanishing of some derivatives at several points.

Let us make this more precise. Let p ⩾ 1 and 1p = {(x1, . . . , x p) ∈ (Rn)p
| ∃i ̸= j such that xi = x j }

denote the diagonal in (Rn)p. Given x = (x1, . . . , x p) /∈ 1p, we say that f and g have the same multijet
at x if f (xi )= g(xi ) for all i ∈ [[1, p]] (here we use the notation [[a, b]]= [a, b]∩N). This is an equivalence
relation on functions, defined by the vanishing of f −g on the set {x1, . . . , x p} ⊂ Rn, that is, by p indepen-
dent linear conditions. Thus the corresponding set of classes is a vector space of dimension p, which we
denote by MJ p(R

n)x . We also denote by mjp( f, x) the class of f in this space, that is, its multijet at x .
As will be explained later, this defines a vector bundle MJ p(R

n) of rank p over (Rn)p
\1p. Moreover,

for all x /∈ 1p the linear map mjp( · , x) : C∞(Rn) → MJ p(R
n)x is surjective, and, for all smooth f , its

multijet mjp( f, · ) is smooth. We would like to extend this picture over the whole of (Rn)p. Note that the
surjectivity conditions rule out defining MJ p(R

n) as J0(R
n)p with mjp( f, x) = ( j0( f, xi ))1⩽i⩽p. When

x /∈ 1p, the previous notion of multijet is defined by p independent linear conditions: vanishing at each
of the xi . The main issue is that, when x ∈ 1p, these conditions are no longer independent and we need
to replace them by another p-tuple of independent conditions.

A first natural idea is to look at vanishing with multiplicities. In dimension n = 1 this works very
well. Let x ∈ Rp be a permutation of (y1, . . . , y1, . . . , ym, . . . , ym), where (y j )1⩽ j⩽m ∈ Rm

\ 1m and
y j appears exactly k j + 1 times. We say that f and g have the same multijet at x if ( f − g)(k)(y j ) = 0
for all j ∈ [[1, m]] and k ∈ [[0, k j ]]. In this sense, having the same multijet is equivalent to having
the same Hermite interpolating polynomials at x . Thus, we can define MJ p(R) as the trivial bundle
Rp−1[X ] × Rp

→ Rp and mjp( f, x) as the Hermite interpolating polynomial of f at x .
If n > 1, the previous approach fails already for p = 2. Let us consider x ∈ Rn and the corresponding

x = (x, x) ∈ 12. Asking for the vanishing of f − g and its differential at x gives us n + 1 independent
conditions, which define the 1-jet space J1(R

n)x . This space has dimension n + 1 > 2; hence it is too
large to be the MJ 2(R

n)x we are looking for. The next natural idea is to ask only for the vanishing
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at x of f − g and one of its directional derivatives. But whatever choice of directional derivative we
make will lead to mj2( f, · ) not being continuous at x for most f ∈ C∞(Rn). Actually, one cannot extend
MJ 2(R

n) nicely over (Rn)2 if n > 1. However, we can extend it nicely over a larger space: the blow-up
Bl12((R

n)2) of (Rn)2 along 12. The key idea is that Bl12((R
n)2) contains (Rn)2

\ 12 as a dense open
subset and that points in the complement of (Rn)2

\ 12 can be described by the following data: a base
point x ∈ Rn and a direction u ∈ RPn−1. This data tells us exactly which directional derivative to consider
at the corresponding point in the exceptional locus of Bl12((R

n)2). We will come back to this example
later; see Example 5.9.

This long discussion shows that there is a natural way to define a multijet bundle MJ p(R
n) over the

configuration space (Rn)p
\1p, but that it does not extend nicely over (Rn)p in general. The case p = 2

hints that it might however be possible to define a natural multijet bundle over a slightly larger space,
containing a copy of (Rn)p

\1p as a dense open subset. Our first main contribution is to define such an
object. Its main properties are gathered in the following statement, where Ck(Rn, V ) denotes the space of
Ck functions from Rn to V.

Theorem 1.1 (existence of multijet bundles). Let n ⩾ 1 and p ⩾ 1 and let V be a real vector space of
finite dimension r ⩾ 1. There exist a smooth manifold C p[R

n
] of dimension np without boundary and a

smooth vector bundle MJ p(R
n, V ) → C p[R

n
] of rank r p with the following properties:

(1) There exists a smooth proper surjection π : C p[R
n
] → (Rn)p such that π−1((Rn)p

\ 1p) is a dense
open subset of C p[R

n
], and π restricted to π−1((Rn)p

\ 1p) is a C∞-diffeomorphism onto (Rn)p
\ 1p.

(2) There exists a map mjp : C p−1(Rn, V ) × C p[R
n
] → MJ p(R

n, V ) such that

• for all z ∈ C p[R
n
], the linear map mjp( · , z) : C p−1(Rn, V ) → MJ p(R

n, V )z is surjective;

• for all f ∈ C l+p−1(Rn, V ), the section mjp( f, · ) of MJ p(R
n, V ) → C p[R

n
] is C l.

(3) Let z ∈ C p[R
n
] be such that π(z) = (x1, . . . , x p) /∈ 1p. Then for all f ∈ C p−1(Rn, V ) we have

mjp( f, z) = 0 ⇐⇒ ∀i ∈ [[1, p]], f (xi ) = 0.

(4) Let z ∈C p[R
n
] be such that π(z) is obtained as a permutation of (y1, . . . , y1, . . . , ym, . . . , ym), where

y j appears exactly k j + 1 times and y1, . . . , ym are pairwise distinct vectors in Rn. Then, there exists a
linear surjection 2z :

∏m
i=1 Jk j (R

n, V )y j → MJ p(R
n, V )z such that

∀ f ∈ C p−1(Rn, V ), mjp( f, z) = 2z( jk1
( f, y1), . . . , jkm

( f, ym)).

Remark 1.2. In Theorem 1.1, the manifold C p[R
n
] does not depend on V. Part (1) means that we can

consider (Rn)p
\ 1p as a dense open subset in C p[R

n
]. Part (2) consists of properties that we expect any

reasonable notion of multijet to satisfy. Part (3) means that, as in the previous discussions, if π(z) /∈ 1p

then MJ p(R
n)z = C p−1(Rn, V )/ ∼, where f ∼ g if and only if f (xi ) = g(xi ) for all i ∈ [[1, p]]. Part (4)

means that, more generally, mjp( f, z) only depends on the collection of jets ( jk j
( f, y j ))1⩽ j⩽m . In

particular, mjp( f, z) still makes sense if f is only Ck j on some neighborhood of y j . This last condition
also means that we can think of mjp( f, z) intuitively as a family of p independent linear combinations of
partial derivatives of f , up to order k j at y j . However this family is neither explicit nor unique in general.
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Let us now introduce some definitions and notation.

Definition 1.3 (multijets). Let �⊂ Rn be open. We let C p[�]=π−1(�p) and denote by MJ p(�, V )→

C p[�] the restriction of MJ p(R
n, V ) to C p[�]. We call MJ p(�, V )→C p[�] the bundle of p-multijets

of functions from � to V. Its fiber MJ p(R
n, V )z above z ∈ C p[�] is the space of p-multijets at z. If

V =R, we drop it from the notation and write MJ p(�)→C p[�]. Let f :�→ V be of class C p−1, we call
the section mjp( f, · ) of MJ p(�, V ) the p-multijet of f and its value at z ∈C p[�] the p-multijet of f at z.

The manifold C p[R
n
] is what is called in the literature a “compactification” of the configuration space

(Rn)p
\ 1p. We will use this terminology, even though it is ill-chosen in our case since C p[R

n
] is not

compact. However C p[R
n
] contains a diffeomorphic copy of (Rn)p

\1p as a dense open subset and it
is equipped with a proper surjection onto (Rn)p so that, in a sense, it is locally a compactification of
(Rn)p

\ 1p.
Compactifications of configuration spaces are built to understand how a configuration (ordered or

not) of p distinct points can degenerate as these points converge toward one another. They are usually
obtained by blowing up various pieces of the diagonal. Points in the exceptional locus then correspond
to singular configurations, with some extra data encoding along which paths regular configurations are
allowed to degenerate in order to reach this singular configuration. The hope is that the extra data
attached to singular configurations is enough to lift the singularities of the problem under considera-
tion. The simplest example of this kind is the blow-up Bl12((R

n)2) discussed above. More evolved
examples are the space defined by Le Barz [1988], the compactification of Fulton and MacPherson
[1994] (see also [Axelrod and Singer 1994; Sinha 2004]), Olver’s multispace [2001], the polydiagonal
compactification of Ulyanov [2002], the construction of Evain [2005] using Hilbert schemes, and
many others.

In dimension n = 1, most of the compactifications of configuration spaces that we found in the literature
coincide and can be used to define multijets; see for example [Ancona 2021], where Olver’s multispace is
used. In higher dimensions they are different and none of them exactly suited our needs. Thus to the
best of our knowledge, the manifold C p[R

n
] in Theorem 1.1 is a new addition to the previous list. We

define it by resolving the singularities of some real-algebraic variety, using Hironaka’s theorem [1964a;
1964b]. In particular, C p[R

n
] is obtained by a sequence of blow-ups along 1p. Note that this sequence

of blow-ups is neither explicit nor unique. Actually, C p[R
n
] itself is not uniquely defined, but this is not

an issue for the applications we have in mind.

1.2. Finiteness of moments for zeros of Gaussian fields. Let us now describe our contributions con-
cerning zeros of Gaussian fields. Let n ⩾ 1 and let r ∈ [[1, n]]. In the following n will always denote the
dimension of the ambient space and r the codimension of the random objects we are interested in.

Let � ⊂ Rn be open and let f : � → Rr be a centered Gaussian field of class C1. We will always
assume that f is nondegenerate, in the sense that det Var( f (x)) > 0 for all x ∈ �. Under this hypothesis
the zero set Z = f −1(0) is almost surely (n−r)-rectifiable; see [Armentano et al. 2023b]. As such, it
admits a well-defined (n−r)-dimensional volume measure dVolZ induced by the Euclidean metric on Rn.
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We denote by ν the random Radon measure on � defined by

∀φ ∈ C 0
c (�), ⟨ν, φ⟩ =

∫
Z

φ(x) dVolZ (x), (1-1)

where C 0
c (�) denotes the space of continuous functions on � with compact support.

Actually, ⟨ν, φ⟩ makes sense as an almost surely defined random variable as soon as φ ∈ L∞(�) and
has compact support. This kind of test-function includes C 0

c (�) and indicator functions of bounded Borel
subsets, which are the examples we are most interested in. Random variables of the type ⟨ν, φ⟩ are called
the linear statistics of ν (or of f ). Understanding the distribution of these linear statistics is one way to
understand the distribution of the random measure ν, or equivalently of the random set Z . For example, if
B ⊂ � is a bounded Borel set and 1B denotes its indicator function, then ⟨ν, 1B⟩ is the (n−r)-dimensional
volume of Z ∩ B.

In this setting, a classical question is to determine conditions on the field f ensuring that its linear
statistics admit finite moments. If n = r = 1, such conditions were first obtained in [Belyaev 1966].
More generally see [Azaïs and Wschebor 2009, Theorem 3.6], which holds even if f is not Gaussian.
If n ⩾ r = 1, a similar result is proved in [Armentano et al. 2023a]; see also [Armentano et al. 2019,
Theorem 4.4]. For a survey of previous results for hypersurfaces (i.e., r = 1), we refer to [Azaïs and
Wschebor 2009, Chapter 3, Section 2.7] in dimension n = 1 and to the introduction of [Armentano et al.
2023a] in dimension n ⩾ 1. Note that [Priya 2020, Theorem 1.2] implies the finiteness of all moments of
the nodal length for some Gaussian fields in R2. This problem was also studied in [Malevich and Volodina
1993] for points in R2.

Our second main result gives simple conditions on the field f ensuring the finiteness of the p-th
moments of its linear statistics in any dimension and codimension. These conditions are of two kinds: we
require the field to be regular enough, and to be nondegenerate in the following sense.

Definition 1.4 (p-nondegeneracy). Let p ⩾ 1 and let f : � → Rr be a C p centered Gaussian field. We
say that the field f is p-nondegenerate if for all x ∈ � the centered Gaussian vector

( f (x), Dx f, . . . , D p
x f ) ∈

p⊕
k=0

Symk(Rn) ⊗ Rr

is nondegenerate, where Symk(Rn) denotes the space of symmetric k-linear forms on Rn and Dk
x f ∈

Symk(Rn) ⊗ Rr stands the k-th differential of f at x .

Remark 1.5. If f = ( f1, . . . , fr ), the p-nondegeneracy condition means more concretely that for all
x ∈ � the Gaussian vector (∂α fi (x))1⩽i⩽r;|α|⩽p is nondegenerate, where we used multi-index notation
(see Section 2.2). More abstractly, this condition means that the p-jet jp( f, x) of f is nondegenerate for
all x ∈ �.

Theorem 1.6 (finiteness of moments). Let n ⩾ 1, let r ∈ [[1, n]] and let p ⩾ 1. Let � ⊂ Rn be open,
let f : � → Rr be a centered Gaussian field and let ν be defined as in (1-1). If f is C p and (p−1)-
nondegenerate then E[|⟨ν, φ⟩|

p
] < +∞ for all φ ∈ L∞(�) with compact support.
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Example 1.7. Let us give some examples of fields satisfying the assumptions of Theorem 1.6.

• The Bargmann–Fock field, i.e., the smooth stationary Gaussian field on Rn whose covariance function
is x 7→ e−∥x∥

2/2, satisfies the hypotheses of Theorem 1.6.

• Let f : Rn
→ R be a stationary C p centered Gaussian field. If the support of its spectral measure has

nonempty interior then f is (p−1)-nondegenerate.

• In codimension r , if ( fi )1⩽i⩽r are r independent (p−1)-nondegenerate C p Gaussian fields then so is
f = ( f1, . . . , fr ).

• The Berry field, i.e., the smooth stationary Gaussian field f on Rn whose spectral measure is the
uniform measure on Sn−1, is 1-nondegenerate but not 2-nondegenerate. Indeed it almost surely satisfies
1 f + f = 0, so that ( f (x), Dx f, D2

x f ) is degenerate for all x ∈ Rn.

We can consider the same question in a more geometric setting. Let (M, g) be a Riemannian manifold
of dimension n ⩾ 1 without boundary and let E → M be a smooth vector bundle of rank r ∈ [[1, n]]

over M. Let s be a centered Gaussian field on M with values in E , in the sense that s is a random section
of E → M such that for all m ⩾ 1 and all x1, . . . , xm ∈ M the random vector (s(x1), . . . , s(xm)) is a
centered Gaussian. We assume that s is almost surely C1 and that det Var(s(x)) > 0 for all x ∈ M.

As in the Euclidean setting, Z = s−1(0) is almost surely (n−r)-rectifiable. As before, we denote by ν

the random Radon measure on M defined by integrating over Z with respect to the (n−r)-dimensional
volume measure dVolZ induced by g. For all φ ∈ L∞(M) with compact support, we define the linear
statistic ⟨ν, φ⟩ as in (1-1). In this context Definition 1.4 adapts as follows.

Definition 1.8 (p-nondegeneracy for Gaussian sections). Let p ⩾ 1 and let s be a C p centered Gaussian
field on M with values in E . We say that s is p-nondegenerate if, for all x ∈ M, the centered Gaussian
vector jp(s, x) ∈ Jp(M, E)x is nondegenerate.

Theorem 1.9 (finiteness of moments for zeros of Gaussian sections). Let p ⩾ 1, let s be a centered
Gaussian field on M with values in E and let ν be defined as in (1-1). If s is C p and (p−1)-nondegenerate
then E[|⟨ν, φ⟩|

p
] < +∞ for all φ ∈ L∞(M) with compact support.

We are aware of the very recent paper [Gass and Stecconi 2024], in which the authors prove a result
similar to Theorem 1.6, as well as its analogue for zeros of Gaussian fields on a Riemannian manifold.
Their work and ours are independent, and the proofs are different. Their idea is to compare the Kac–Rice
densities (see Section 6.3) of the field f with those of a well-chosen Gaussian polynomial P. Then
they deduce the result for f from the result for P, which is a consequence of Bézout’s theorem. Our
proof follows a different path, as it relies on the multijet bundle that we defined in Theorem 1.1. Our
idea is to observe that the zero set of F : (x1, . . . , x p) 7→ ( f (x1), . . . , f (x p)) in the configuration space
�p

\ 1p is exactly the vanishing locus of the multijet mjp( f, · ) restricted to �p
\ 1p ⊂ C p[�]. Instead

of working with F, which degenerates along 1p, we work with the field mjp( f, · ) that we built to be
nondegenerate everywhere. Then, we deduce Theorem 1.6 from the Kac–Rice formula for the expectation
(see Proposition 6.17) applied to the p-multijet of f and a compactness argument.
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1.3. Higher-order multijets and holomorphic multijets. Let us now discuss two important variations
on our main results, Theorems 1.1 and 1.9. In Section 1.1, we said that two functions f and g on Rn

have the same p-multijet at a point x = (x1, . . . , x p) ∈ (Rn)p
\ 1p if and only if f and g have the same

value, i.e., the same 0-jet, at xi for all i ∈ [[1, p]]. In a sense, the p-multijet of f at x is obtained by
patching together the 0-jets of f at each of the xi in a relevant way. A natural generalization is to define
a higher-order multijet of f at x by patching together the k-jets of f at each of the xi . We define such a
higher-order multijet in Section 7. More generally, we define a multijet bundle adapted to a differential
operator D. The case of higher-order multijets corresponds to D = jk . The analogue of Theorem 1.1 in
this framework is Theorem 7.4 below. We use it to prove an analogue of Theorem 1.9 adapted to D; see
Theorem 7.8 for a general statement. In the special case where D = D is the standard differential, the
statement is the following.

Theorem 1.10 (finiteness of moments for critical points). Let M be a smooth manifold without boundary.
Let f : M → R be a centered Gaussian field and let νD denote the counting measure of its critical locus.
Let p ⩾ 1, we assume that f is C2p and (2p−1)-nondegenerate. Then, for all φ ∈ L∞

c (M), we have
E[|⟨νD, φ⟩|

p
] < +∞.

Another variation on Theorem 1.1 is to define holomorphic multijets for holomorphic maps. This is
done in Section 8, and more precisely in Theorem 8.2. This is used to prove a holomorphic version of
Theorem 1.9. The general statement is given in Theorem 8.13. For a holomorphic Gaussian field on an
open subset of Cn, it takes the following form.

Theorem 1.11 (finiteness of moments for zeros of holomorphic Gaussian fields). Let � ⊂ Cn be open and
let f : � → Cr be a centered holomorphic Gaussian field, where r ∈ [[1, n]]. Let ν be as in Definition 6.11.
Let p ⩾ 1, we assume that, for all x ∈ �, the complex Gaussian vector

( f (x), Dx f, . . . , D p−1
x f ) ∈

p−1⊕
k=0

Symk(Cn) ⊗ Cr

is nondegenerate. Then, for all φ ∈ L∞
c (�), we have E[|⟨ν, φ⟩|

p
] < +∞.

Note that Theorems 1.10 and 1.11 are not consequences of Theorem 1.9. Indeed, if f : M → R is
a smooth Gaussian field then D f cannot be 1-nondegenerate because D2 f is symmetric. Similarly, if
M is a complex manifold and s is holomorphic, then s is never 1-nondegenerate because it satisfies the
Cauchy–Riemann equations.

Gass and Stecconi [2024] proved, independently and by a different method, results analogous to
Theorems 1.10 and 1.11. Actually, they prove Theorem 1.10 under the weaker and optimal hypotheses
that f is C p+1 and p-nondegenerate. The finiteness of the third moment for the number of critical points
of a stationary Gaussian field on Rd was proved in [Beliaev et al. 2024, Theorem 1.6]. For holomorphic
Gaussian fields in dimension n = 1, see [Nazarov and Sodin 2012].

1.4. Organization of the paper. In Section 2 we gather useful notation that appears in several parts of
the paper. In Section 3 we discuss Kergin interpolation, which is a multivariate polynomial interpolation
appearing in the definition of multijets. Section 4 is dedicated to evaluations maps on spaces of polynomials,
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and more precisely the properties of their kernels. We define our multijet bundles and prove Theorem 1.1
in Section 5. Section 6 is concerned with the application of multijets to the finiteness of moments for
the zeros of Gaussian fields and the proofs of Theorems 1.6 and 1.9. Multijets adapted to a differential
operator are discussed in Section 7, where we also prove the analogue of Theorem 1.9 for critical points.
Finally, holomorphic multijets are defined in Section 8, where we prove the analogue of Theorem 1.9 for
holomorphic Gaussian fields.

2. Notation: partitions and function spaces

The goal of this section is to quickly introduce definitions and notation that will appear in different parts
of the paper. We gather them here for the reader’s convenience.

2.1. Sets, partitions and diagonals. In this paper, we denote by N the set of nonnegative integers. Let a
and b ∈ N, we use the following notation for integer intervals [[a, b]] = [a, b] ∩ N.

Let A be a nonempty finite set. For simplicity, in all the notation introduced in this section, if A =[[1, p]]

we allow ourselves to replace A by p in the indices and exponents. We denote by |A| the cardinality
of A. Let M be any set. We denote by M A the Cartesian product of |A| copies of M indexed by the
elements of A. A generic element of M A is usually denoted by x = (xa)a∈A. If ∅ ̸= B ⊂ A, we denote
by x B = (xa)a∈B .

Definition 2.1 (large diagonal). We denote by 1A the large diagonal in M A, that is,

1A = {(xa)a∈A ∈ M A
| ∃a, b ∈ A such that a ̸= b and xa = xb}.

Definition 2.2 (partitions). Let A be a nonempty and finite set, a partition of A is a family I ={I1, . . . , Im}

of nonempty disjoint subsets of A such that
⊔m

i=1 Ii = A. The subsets I1, . . . , Im are called the cells of I.
Given a ∈ A, we denote by [a]I the only cell of I that contains a. Finally, we denote by PA the set of
partitions of A.

Definition 2.3 (clustering partition). Let x = (xa)a∈A ∈ M A. We denote by I(x) ∈ PA the only partition
such that for all a and b ∈ A we have xa = xb if and only if [a]I(x) = [b]I(x).

Example 2.4. If x = (x, . . . , x) then I(x) = {A}. If x ∈ M A
\ 1A then I(x) = {{a} | a ∈ A} = I0.

Definition 2.5 (strata of the diagonal). For all I ∈ PA, we set 1A,I = {x ∈ M A
| I(x) = I}, so that

1A,I0 = M A
\ 1A and 1A =

⊔
I ̸=I0

1A,I .

Definition 2.6 (diagonal inclusions). Let I ∈ PA. We denote by ιI : MI
\ 1I → 1A,I the bijection

defined by ιI((yI )I∈I) = (y[a]I )a∈A.

2.2. Spaces of functions, sections and jets. We use the following multi-index notation. Let α =

(α1, . . . , αn) ∈ Nn. We denote its length by |α| = α1 +· · ·+αn . Let ∂i denote the i-th partial derivative in
some product space we denote by ∂α

= ∂
α1
1 · · · ∂

αn
n . Finally, if X = (X1, . . . , Xn), we let Xα

= Xα1
1 · · · Xαn

n .

Definition 2.7 (polynomials). We denote by Rd [X ] the space of real polynomials in n variables of degree
at most d , where d ∈ N and X = (X1, . . . , Xn) is multivariate.
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Definition 2.8 (symmetric forms and differentials). Let k ∈ N. We denote by Symk(Rn) the space of
symmetric k-linear forms on Rn. Let V be a finite-dimensional real vector space. Then Symk(Rn)⊗ V
is the space of symmetric k-linear maps from Rn to V. Given a Ck map f : Rn

→ V, we denote by
Dk

x f ∈ Symk(Rn) ⊗ V its k-th differential at x ∈ Rn.

Let M and N be two manifolds without boundary. For all k ∈ N ∪ {∞}, we denote by Ck(M, N ) the
space of Ck maps from M to N. If N = R, we drop it from the notation and we simply write Ck(M). We
denote by L1

loc(M) the space of locally integrable functions on M. We denote by C 0
c (M) (resp. L∞

c (M))
the space of continuous (resp. L∞) functions on M with compact support. Finally, for any Borel subset
B ⊂ M, we denote by 1B : M → R its indicator function.

Let E → M be a vector bundle of finite rank over M, we denote by Ex the fiber above x ∈ M. For all
k ∈ N ∪ {∞}, we denote by 0k(M, E) the space of Ck sections of E → M.

Definition 2.9 (jets). Let k ∈ N, we denote by Jk(M, E) → M the vector bundle of k-jets of sections of
E → M. If E = V × M is trivial with fiber V, we denote its k-jet bundle by Jk(M, V ) → M. If V = R, we
simply write Jk(M) → M. Given s ∈ 0k(M, E), we denote by jk(s, x) ∈ Jk(M, E)x its k-jet at x ∈ M.

3. Divided differences and Kergin interpolation

An important step in our construction of a multijet for Ck functions is to reduce the problem to that
of defining a multijet for polynomials. This is done by polynomial interpolation. In several variables,
polynomial interpolation is rather ill-behaved, at least compared with the one-variable case. However,
a multivariate polynomial interpolation suiting our needs was defined by Kergin [1980]. A constructive
version of his proof was then given in [Micchelli and Milman 1980], using a multivariate version of the so-
called divided differences. In this section, we give the definitions of these objects and recall their relevant
properties. We refer to the survey [Lorentz 2000] for more background on polynomial interpolation in Rn.

3.1. Divided differences. In this section, we recall the definition of multivariate divided differences; see
[Micchelli and Milman 1980]. Let k ∈ N. We denote by σk the standard simplex of dimension k, that is,

σk =

{
t = (t0, . . . , tk) ∈ [0, 1]

k+1
∣∣∣ k∑

i=0

ti = 1
}

⊂ Rk+1. (3-1)

The simplex σk is a subset of
{
t ∈ Rk+1

|
∑

ti = 1
}
, and we denote by νk the (k-dimensional) Lebesgue

measure on this hyperplane, normalized so that νk(σk) = 1/k! . One can check that its restriction to σk

satisfies ∫
σk

φ(t) dνk(t) =

∫
t1,...,tk⩾0∑k

i=1 ti⩽1

φ

(
1 −

k∑
i=1

ti , t1, . . . , tk

)
dt1 · · · dtk, (3-2)

where dt1 · · · dtk is the Lebesgue measure on Rk. For any x = (x0, . . . , xk) ∈ (Rn)k+1, we denote by σ(x)

the convex hull of the xi and we define υx : t 7→
∑k

i=0 ti xi from σk onto σ(x). Recalling Definition 2.8,
we have the following.



1442 MICHELE ANCONA AND THOMAS LETENDRE

Definition 3.1 (divided differences). Let x = (xi )0⩽i⩽k ∈ (Rn)k+1 and let f be a Ck function defined on
some open neighborhood of σ(x) in Rn. We define the divided difference of f at x by

f [x0, . . . , xk] =

∫
σk

Dk
υx (t) f dνk(t) ∈ Symk(Rn),

that is, as the average of Dk f over σ(x) with respect to the pushed-forward measure (υx)∗(νk).

Remark 3.2. • If x = (x, . . . , x) for some x ∈ Rn then f [x, . . . , x] = (1/k!)Dk
x f .

• Definition 3.1 is invariant under permutation of (x0, . . . , xk).

• When n = 1, Definition 3.1 coincides with the classical definition of divided differences, under the
canonical isomorphism Symk(R) ≃ R. This is known as the Hermite–Genocchi formula [Micchelli and
Milman 1980].

Lemma 3.3 (regularity of divided differences). For all x ∈ (Rn)k+1, the map f 7→ f [x0, . . . , xk] is linear.
Moreover, if f is of class Ck+l then x 7→ f [x0, . . . , xk] is of class C l.

Proof. The linearity with respect to f is clear. The regularity with respect to x is obtained by derivation
under the integral, using Definition 3.1 and (3-2). □

3.2. Kergin interpolation. This section is dedicated to Kergin interpolation. In the following, we recall
the construction of Kergin interpolation in [Micchelli and Milman 1980], which relies on the divided
differences introduced in Definition 3.1. We will use the notation introduced in Definition 2.7.

Proposition 3.4 (Kergin interpolation). Let x ∈ (Rn)p and let f be a function of class C p−1 defined on
some neighborhood of σ(x) in Rn. There exists a unique polynomial K ( f, x) ∈ Rp−1[X ] such that, for
all nonempty I ⊂ [[1, p]], we have f [x I ] = (K ( f, x))[x I ]. Moreover,

K ( f, x) =

p∑
k=1

f [x1, . . . , xk](X − x1, . . . , X − xk−1). (3-3)

Proof. This is the content of [Bojanov et al. 1993, Theorem 12.5] for m = 0. See also [Micchelli and
Milman 1980]. □

Remark 3.5. In particular, Proposition 3.4 implies the following:

• The restriction of K ( · , x) to Rp−1[X ] is the identity.

• If x appears with multiplicity at least k + 1 in x , then

Dk
x f = k! f [x, . . . , x︸ ︷︷ ︸

k+1 times

] = k! (K ( f, x))[x, . . . , x︸ ︷︷ ︸
k+1 times

] = Dk
x(K ( f, x)).

• The map P 7→ (P[x1, . . . , x j ])1⩽ j⩽p is an isomorphism from Rp−1[X ] to
⊕p−1

j=0 Sym j (Rn) whose
inverse map is given by (S j )0⩽ j⩽p−1 7→

∑p−1
j=0 S j (X − x1, . . . , X − x j ).

Definition 3.6 (Kergin polynomial). The polynomial K ( f, x) from Proposition 3.4 is called the Kergin
interpolating polynomial of f at x .
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Example 3.7. If n = 1, then K ( f, x) is the Hermite interpolating polynomial of f at x ∈ Rp. If
x = (x, . . . , x), then K ( f, x) is the Taylor polynomial of order p − 1 of f at x ∈ Rn.

Lemma 3.8 (regularity of the Kergin polynomial). For all x ∈ (Rn)p, the map K ( · , x) is linear. Moreover,
if f is C l+p−1 then K ( f, · ) is of class C l .

Proof. This is a consequence of Lemma 3.3 and (3-3). □

We need to prove a form of compatibility in Kergin interpolation, when the set of interpolation points is
refined. We will use this fact to prove that the multijet bundle we define below satisfies (4) in Theorem 1.1.
The following lemma is stated using the clustering partition I(x) from Definition 2.3.

Lemma 3.9 (compatibility in Kergin interpolation). For all x ∈ (Rn)p the linear map from Rp−1[X ] to∏
I∈I(x) R|I |−1[X ] defined by (K ( · , x I ))I∈I(x) : P 7→ (K (P, x I ))I∈I(x) is surjective.

Proof. Let x ∈ (Rn)p and let us write I = I(x) for simplicity. As explained at the end of Section 2.1,
there exists a unique y = (yI )I∈I ∈ (Rn)I \ 1I such that x = ιI(y). Let (χI )I∈I be smooth functions on
Rn with pairwise disjoint compact supports and such that χI is equal to 1 in a neighborhood of yI .

Let (PI )I∈I ∈
∏

I∈I R|I |−1[X ]. We consider the function f =
∑

I∈I χI PI ∈ C∞(Rn). Let P = K ( f, x)

and let us prove that K (P, x I ) = PI for all I ∈ I. For all k ⩽ |I | − 1 we have Dk
yI

P = Dk
yI

f = Dk
yI

PI .
Indeed yI appears with multiplicity |I | in x (see Remark 3.5) and f is equal to PI in a neighborhood
of yI . Recalling Example 3.7, we know that K (P, x I ) is the Taylor polynomial of order |I | − 1 at yI

of P , and hence of PI . Since PI ∈ R|I |−1[X ], we get K (P, x I ) = PI . □

4. Evaluation maps and their kernels

The goal of this section is to study evaluation maps on spaces of polynomials and their kernels. Defining
multijets is closely related to these objects. Indeed, let n ⩾ 1 and p ⩾ 1 and recall that 1p stands for
the large diagonal in (Rn)p; see Definition 2.1. As explained in the Introduction, when x /∈ 1p we
want the multijet of a C p−1 function f at x to be the class of f in C p−1(Rn)/ ∼, where f ∼ g if and
only if ( f (xi ))1⩽i⩽p = (g(xi ))1⩽i⩽p. The Kergin interpolation of Section 3.2 shows that any such class
can be represented by a polynomial. Hence, the space of p-multijets at x is canonically isomorphic to
Rp−1[X ]/ ker evx , where evx : P 7→ (P(x1), . . . , P(x p)).

Definition 4.1 (Grassmannian). Let V be a vector space of finite dimension N and k ∈ [[0, N ]]. We denote
by Grk(V ) the Grassmannian of vector subspaces of V of codimension k.

Remark 4.2. Beware that this notation is slightly unusual, since in most textbooks Grk(V ) stands for the
Grassmannian of subspaces of dimension k.

Let us denote by Lreg(V, Rk) ⊂ V ∗
⊗ Rk the open dense subset of linear surjective maps from V to Rk.

The group GLk(R) acts on Lreg(V, Rk) by multiplication on the left. On the other hand, L 7→ker(L) defines
a surjective map from Lreg(V, Rk) to Grk(V ), and ker(L1)=ker(L2) if and only if there exists M ∈GLk(R)

such that L2 = M L1. Thus, one can identify Grk(V ) with the orbit space Lreg(V, Rk)/ GLk(R) of the
previous action. This is one of the many ways to describe Grk(V ) as a smooth real-algebraic manifold.
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Definition 4.3 (evaluation map). Let x ∈ (Rn)p. We set evx : f 7→ ( f (x1), . . . , f (x p)) from any space of
functions defined at the xi to Rp. The source space will always be clear from the context.

Lemma 4.4 (nondegeneracy of evx ). Let x /∈ 1p. Then evx : Rp−1[X ] → Rp is surjective.

Proof. Since x /∈ 1p, we have I(x) = {{1}, . . . , {p}} and evx = (K ( · , xi ))1⩽i⩽p under the canonical
identification R0[X ] ≃ R. Hence this is just a special case of Lemma 3.9. Alternatively, in the right basis,
one can extract a Vandermonde matrix from that of evx . □

Lemma 4.4 shows that the following map is well-defined from (Rn)p
\ 1p to Grp(Rp−1[X ]):

G : x 7−→ ker evx . (4-1)

Lemma 4.5 (algebraicity of G). The map G : (Rn)p
\ 1p → Grp(Rp−1[X ]) is algebraic.

Proof. Recalling the previous discussion, we have Lreg(Rp−1[X ], Rp)/ GLp(R) ≃ Grp(Rp−1[X ]), where
the isomorphism is obtained as the quotient map of ker : L 7→ ker(L). In particular,

ker : Lreg(Rp−1[X ], Rp) −→ Grp(Rp−1[X ]) ≃ Lreg(Rp−1[X ], Rp)/ GLp(R)

is just the canonical projection, which is algebraic.
Writing ev : x 7→ evx , we have G = ker ◦ ev. Thus it is enough to prove that ev is algebraic from

(Rn)p
\ 1p to Lreg(Rp−1[X ], Rp). In the basis of Rp−1[X ] formed by the monomials (Xα)|α|<p, the

matrix of evx is (xα
i )1⩽i⩽p;|α|<p, which depends algebraically on x . □

Let x ∈ (Rn)p
\ 1p, we defined G(x) ∈ Grp(Rp−1[X ]) by (4-1). For any nonempty I ⊂ [[1, p]], we

define similarly

GI (x) = ker evx I ∈ Gr|I |(R|I |−1[X ]) and G̃ I (x) = ker evx I ∈ Gr|I |(Rp−1[X ]). (4-2)

Because of the interpolation properties of the Kergin polynomials (see Remark 3.5), we have that
evx I = (evx I )|R|I |−1[X ] ◦ K ( · , x I ) on Rp−1[X ]. Hence G̃ I (x) = K ( · , x I )

−1(GI (x)). Since K ( · , x I ) is
surjective from Rp−1[X ] to R|I |−1[X ], this shows that G̃ I (x) has indeed codimension |I |, like GI (x).

This collection of subspaces satisfies some incidence relations that will be useful in the following. For
all nonempty I ⊂ [[1, p]], we have G(x) ⊂ G̃ I (x). Actually, we can be more precise: for any I ∈ Pp, we
have G(x) =

⋂
I∈I G̃ I (x), and this intersection is transverse by a codimension argument.

Remark 4.6. The map G : (Rn)p
\ 1p → Grp(Rp−1[X ]) does not admit an extension as a regular map

from (Rn)p to Grp(Rp−1[X ]), except if n = 1 or p = 1, that is, if Grp(Rp−1[X ]) is a point.
For example, when n = 2 = p, the Grassmannian Grp(Rp−1[X ]) is the set of lines in R1[X1, X2].

Taking x = R(cos θ, sin θ) ∈ R2
\ {0}, the reader can check that G(0, x) = Span(X1 sin θ − X2 cos θ),

which does not converge as R → 0. However, in this case, G(0, · ) extends to the blow-up Bl0(R2) of R2

at 0 and similarly G extends smoothly to Bl12((R
2)2). This suggests that, even though G does not extend

smoothly to (Rn)p, it might extend to a larger space.
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5. Definition of the multijet bundles

In this section we define the vector bundle MJ p(R
n, V ) → C p[R

n
] of p-multijets for functions from Rn

to some finite-dimensional vector space V and prove Theorem 1.1. The singularity of G along 1p makes
it impossible to define such a bundle over (Rn)p, which is why we define it over a compactification
C p[R

n
] of the configuration space (Rn)p

\ 1p.
The manifold C p[R

n
] does not depend on V. It is defined in Section 5.1. In the next two sections, we

work in the case V = R. All important ideas appear in this case but the notation is slightly simpler. In
Section 5.2, we define the bundle MJ p(R

n). In Section 5.3, we prove that p-multijets are local, in the
sense of (4) in Theorem 1.1. Finally, we define the bundle MJ p(R

n, V ) of multijets for vector-valued
maps and prove Theorem 1.1 in Section 5.4.

5.1. Definition of the basis C p[R
n]. In this section, we define the basis C p[R

n
] over which our p-multijet

bundles are defined. This is a smooth manifold, obtained a compactification of the configuration space
(Rn)p

\ 1p such that (GI )I⊂[[1,p]] extends smoothly to C p[R
n
]. Let us first introduce some notation. We

denote by 50 the projection from the product space

(Rn)p
×

∏
∅̸=I⊂[[1,p]]

Gr|I |(R|I |−1[X ])

onto the factor (Rn)p. Similarly, we denote by 5I the projection onto Gr|I |(R|I |−1[X ]). Then, let

6 = {(x, (GI (x))I⊂[[1,p]]) | x ∈ (Rn)p
\ 1p} ⊂ (Rn)p

×

∏
∅̸=I⊂[[1,p]]

Gr|I |(R|I |−1[X ]) (5-1)

denote the graph of the map (GI )I⊂[[1,p]]. We denote by 6 the closure of 6 in the product space on the
right-hand side of (5-1).

Lemma 5.1 (surjectivity of (50)|6). Let x ∈ (Rn)p. Then there exists z ∈ 6 such that 50(z) = x.

Proof. Let (xn)n∈N be a sequence of points in (Rn)p
\ 1p converging to x . Since Grassmannians

are compact manifolds, up to extracting subsequences finitely many times, we can assume that for all
nonempty I ⊂ [[1, p]] there exists G I ∈ Gr|I |(R|I |−1[X ]) such that GI (xn) n→+∞

−−−−→ G I . Then

(xn, (GI (xn))I⊂[[1,p]]) n→+∞
−−−−→ (x, (G I )I⊂[[1,p]]) = z ∈ 6. □

Lemma 5.2 (location of the new points). We have 6 \ 6 ⊂ 5−1
0 (1p).

Proof. Since 6 is the graph of a continuous function on (Rn)p
\ 1p, it is closed in the open subset

5−1
0 ((Rn)p

\ 1p). Hence 6 ∩ 5−1
0 ((Rn)p

\ 1p) = 6 and 6 \ 6 ⊂ 5−1
0 (1p). □

Lemma 5.3 (algebraicity of 6 and 6). The graph 6 is a smooth real-algebraic manifold and (50)|6 :

6 → (Rn)p
\ 1p is an isomorphism. Moreover, 6 is a real-algebraic variety whose singular locus is

contained in 6 \ 6.

Proof. By Lemma 4.5, the set 6 is the graph of an algebraic map, hence a smooth real-algebraic manifold.
Additionally, 50 is algebraic and its restriction to 6 is the inverse of x 7→ (x, (GI (x))I⊂[[1,p]]). Thus
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(50)|6 is an algebraic isomorphism from 6 onto (Rn)p
\1p. Since 6 is real-algebraic, so is its closure 6.

By Lemma 5.2, we know that 6 ∩ 5−1
0 ((Rn)p

\ 1p) = 6 is smooth. Hence, the singular locus of 6 is
contained in 6 ∩ 5−1

0 (1p) = 6 \ 6. □

Example 5.4. In simple cases, we understand very well what 6 is.

• If p = 1 and n ⩾ 1, then 1p = ∅ and Grp(Rp−1[X ]) = {{0}}, so that 6 = 6 = Rn.

• If n = 1 and p ⩾ 1, then Gr|I |(R|I |−1[X ]) = {{0}} for all I ⊂ [[1, p]] and 6 = Rp.

• If p = 2 and n ⩾ 2, then for x ̸= y in Rn we know that G(x, y) ⊂ R1[X ] is the subspace of affine forms
on Rn vanishing at x and y, i.e., on the affine line through x and y. Thus G(x, y) encodes this line. As
y → x , the accumulation points of G(x, y) correspond to all the affine lines passing through x , and they
encode “the direction from which y converges to x”. In this case, one can check that 6 = Bl12((R

n)2).

In the previous examples the variety 6 is smooth, hence the following natural question.

Question. Is 6 smooth for all n ⩾ 1 and p ⩾ 1?

Lacking a positive answer to this question, since we want C p[R
n
] to be a smooth manifold, we will

define it by resolving the singularities of 6. The existence of a resolution of singularities is given by
Hironaka’s theorem [1964a; 1964b]. Our references on this matter are [Kollár 2007; Włodarczyk 2005].
See also [Hauser 2003] for a softer introduction to this theory.

Proposition 5.5 (resolution of singularities). There exists a smooth manifold C p[R
n
] without boundary of

dimension np and a smooth proper 5 : C p[R
n
] → (Rn)p

×
∏

∅̸=I⊂[[1,p]]
Gr|I |(R|I |−1[X ]) such that

(1) 5(C p[R
n
]) = 6;

(2) 5−1(6) is an open dense subset of C p[R
n
];

(3) 5|5−1(6) is C∞-diffeomorphism from 5−1(6) onto 6.

Proof. We apply Hironaka’s theorem [Kollár 2007, Theorem 3.27] to resolve the singularities of 6. Since
6 is algebraic by Lemma 5.3, there exists a smooth real-algebraic manifold C p[R

n
] and a projective

morphism 5 : C p[R
n
] → 6 such that 5 is an isomorphism over the smooth locus of 6.

In particular C p[R
n
] is smooth, the map 5 : C p[R

n
]→ (Rn)p

×
∏

∅̸=I⊂[[1,p]]
Gr|I |(R|I |−1[X ]) is smooth

and proper, and 5(C p[R
n
]) ⊂ 6. Since 6 is contained in the smooth locus of 6, the restriction of 5 to

5−1(6) is an isomorphism; in particular (3) is satisfied.
According to [Włodarczyk 2005, Theorem 1.0.2], the manifold C p[R

n
] and the projection 5 are

obtained by a sequence of blow-ups along smooth submanifolds that do not intersect the regular locus
of 6, and hence 6. This ensures that conditions (1) and (2) are satisfied. □

The following corollary proves the existence of the manifold C p[R
n
] and the proper surjection π :

C p[R
n
] → (Rn)p satisfying (1) in Theorem 1.1.

Corollary 5.6 (existence of the basis C p[R
n
]). There exists a smooth manifold C p[R

n
] without boundary

of dimension np and a smooth proper surjection π : C p[R
n
] → (Rn)p such that
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(1) the open subset π−1((Rn)p
\1p) is dense in C p[R

n
] and π induces a C∞-diffeomorphism from this

set onto (Rn)p
\ 1p;

(2) for any nonempty I ⊂ [[1, p]], the map GI ◦ π admits a unique smooth extension to C p[R
n
].

Proof. We consider 5 : C p[R
n
] → (Rn)p

×
∏

∅̸=I⊂[[1,p]]
Gr|I |(R|I |−1[X ]) given by Proposition 5.5 and

we let π = 50 ◦ 5. Since Grassmannians are compact, 50 is proper. Hence π is smooth and proper
because 5 and 50 are. The surjectivity of π is given by Lemma 5.1 and (1) in Proposition 5.5.

Item (1) in Corollary 5.6 is a consequence of Lemmas 5.2 and 5.3 and of conditions (2) and (3) in
Proposition 5.5. Let I ⊂ [[1, p]] be nonempty. On the dense open subset π−1((Rn)p

\ 1p) we have
GI ◦ π = 5I ◦ 5 by definition. In the last equality, the right-hand side is well-defined and smooth
on C p[R

n
], which yields the unique extension we are looking for. □

Since it is defined using Hironaka’s theorem, the manifold C p[R
n
] is not unique. However, the value

of the smooth extension of GI ◦ π = 5I ◦ 5 at z ∈ C p[R
n
] only depends on 5(z) ∈ 6. So this extension

does not really depend on the choice of a resolution of singularities. In the following we choose once
and for all a realization of π : C p[R

n
] → (Rn)p as in Corollary 5.6. Thanks to (1), we can identify the

configuration space (Rn)p
\1p with its open dense preimage by π . Under this identification, (2) states

that the maps (GI )I⊂[[1,p]] extend smoothly to C p[R
n
]. So, from now on, we consider GI as a smooth map

from C p[R
n
] to Gr|I |(R|I |−1[X ]).

5.2. Definition of the bundle MJ p(R
n). Now that we have defined the base space C p[R

n
] of our multijet

bundle, we can define the bundle itself. The purpose of this section is to construct the vector bundle
MJ p(R

n) → C p[R
n
] of multijets for functions from Rn to R, and the associated multijet map. The

construction for vector-valued maps, explained in Section 5.4, is basically a fiberwise direct sum of this
simpler case.

Recall that we defined the projections

C p[R
n
]

5
−→ 6

50
−→ (Rn)p

and that π = 50 ◦ 5. Thanks to Corollary 5.6, and under the identification discussed above, the map
G = G[[1,p]] defined by (4-1) extends as a smooth map from C p[R

n
] to Grp(Rp−1[X ]). Seen as a collection

of subspaces of Rp−1[X ] indexed by C p[R
n
], this means that G defines a smooth vector sub-bundle of

corank p in the trivial bundle Rp−1[X ]×C p[R
n
]→ C p[R

n
]. We define our multijet bundle as the quotient

of this trivial bundle by G.

Definition 5.7 (vector bundle of multijets). Let n ⩾ 1 and p ⩾ 1. The vector bundle of multijets of order p
on Rn is the smooth vector bundle of rank p over C p[R

n
] defined by

MJ p(R
n) = (Rp−1[X ] × C p[R

n
])/G.

In particular, for any z ∈ C p[R
n
], the fiber MJ p(R

n)z = Rp−1[X ]/G(z) only depends on 5(z) ∈ 6.

Recalling the definition of Kergin polynomials given in Section 3.2, we can now define the p-multijet
of a C p−1 function on Rn.
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Definition 5.8 (multijet of a function). Let f ∈ C p−1(Rn) and z ∈ C p[R
n
]. The multijet of f at z is the

element of MJ p(R
n)z defined as

mjp( f, z) = K ( f, π(z)) mod G(z).

In particular, as an element of Rp−1[X ]/G(z), the multijet mjp( f, z) only depends on 5(z) ∈ 6.

Example 5.9. In Example 5.4 we saw that in simple cases 6 is smooth. In these cases we set C p[R
n
] = 6

and we can describe the bundle MJ p(R
n) → C p[R

n
] and the map mjp.

• If p = 1, then C1[R
n
] = Rn and G : x 7→ {0} ⊂ R0[X ] ≃ R. Thus MJ 1(R

n) is the trivial bundle
R × Rn

→ Rn. Moreover, if f ∈ C 0(Rn) then K ( f, x) = f (x) ∈ R0[X ] ≃ R and mj1( f, x) = f (x) for all
x ∈ Rn.

• If n = 1, then C p[R] = Rp and G : x 7→ {0} ⊂ Rp−1[X ]. Thus MJ p(R) is the trivial bundle
Rp−1[X ]× Rp

→ Rp. If f ∈ C p−1(R) then mjp( f, x) = K ( f, x) is the Hermite interpolating polynomial
of f at x ; see Example 3.7.

Given x = (x1, . . . , x p) /∈ 1p, Lemma 4.4 shows that evx : Rp−1[X ] → Rp is an isomorphism. We can
then consider the Lagrange basis (L i (x))1⩽i⩽p of Rp−1[X ] which is the preimage by evx of the canonical
basis of Rp. We then have mjp( f, x) = K ( f, x) =

∑p
i=1 f (xi )L i (x). Geometrically, this means that

the map (P, x) 7→ (evx(P), x) defines a local trivialization of MJ p(R) → C p[R] over Rp
\ 1p and

that x 7→ (L i (x))1⩽i⩽p is the corresponding frame. Moreover, it is tautological that mjp( f, x) reads as
( f (x1), . . . , f (x p)) in this trivialization.

In this example, one can also define a global trivialization of MJ p(R) by considering the global
frame of Newton polynomials x 7→ (Nk(x))1⩽k⩽p, where Nk(x) =

∏
1⩽i<k(X − xi ). By (3-3) we have

K ( f, x) =
∑p

k=1 f [x1, . . . , xk]Nk(x), so that mjp( f, x) reads as ( f [x1, . . . , xk])1⩽k⩽p in this trivializa-
tion, where the divided differences are the classical ones in dimension 1. In this setting, we used in
[Ancona and Letendre 2021] a strategy that can be roughly summarized as replacing ( f (xi ))1⩽i⩽p by
( f [x1, . . . , xk])1⩽k⩽p. Our present point of view shows that we were actually considering mjp( f, x) all
along, but read in different trivializations.

• If p = 2, we saw that C2[R
n
] = Bl12((R

n)2). Given z ∈ C2[R
n
], if π(z) = (x1, x2) /∈ 12, we know that

G(z) ⊂ R1[X ] is the subspace of affine forms vanishing on the line L z ⊂ Rn through x1 and x2. It is then
natural to think of the class of P modulo G(z) as its restriction to L z . Parametrizing L z by

t 7→ x1 +
x2 − x1

∥x2 − x1∥
t,

one can check that
P 7→ P

(
x1 +

x2 − x1

∥x2 − x1∥
T
)

induces an isomorphism MJ 2(R
n)z ≃ R1[T ] ≃ R2, where T is univariate and the second isomorphism is

obtained by reading coordinates in the canonical basis (1, T ) of R1[T ].
Recalling Definition 3.1, we have

P[x1, x2] ·
x2 − x1

∥x2 − x1∥
T =

(∫ 1

0
Dx1+t (x2−x1) P · (x2 − x1) dt

)
T

∥x2 − x1∥
=

P(x2) − P(x1)

∥x2 − x1∥
T,
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and P = K (P, x1, x2) is given by (3-3). Letting P̃(z) = P(x2) − P(x1)/∥x2 − x1∥, we have

P
(

x1 +
x2 − x1

∥x2 − x1∥
T
)

= K (P, x1, x2)

(
x1 +

x2 − x1

∥x2 − x1∥
T
)

= P(x1) + P̃(z)T .

Thus, the previous isomorphism MJ 2(R
n)z → R2 is (P mod G(z)) 7→ (P(π(z)1), P̃(z)).

Let us now consider z ∈ π−1(12). This exceptional divisor is the projectivized normal bundle of 12

in (Rn)2. So we can think of z as a point in the diagonal, say (x, x) ∈ 12, and a line in (Rn)2 which is
orthogonal to 12, say spanned by (u, −u) with u ∈ Sn−1. Then z = limε→0(x +εu, x −εu) in C2[R

n
]. By

continuity, G(z) is the space of affine forms vanishing on the line L z ⊂ Rn parametrized by t 7→ x + tu. As
above, mapping P to the coefficients of P(x +T u)= P(x)+(Dx P ·u)T ∈ R1[T ] induces an isomorphism
MJ 2(R

n)z → R2. Letting P̃(z)= Dx P ·u, this isomorphism is again (P mod G(z)) 7→ (P(π(z)1), P̃(z)).
Actually, one can check that everything depends smoothly on the base point z ∈ C2[R

n
], so that

the bundle map (P mod G(z), z) 7→ (P(π(z)1), P̃(z), z) defines a global trivialization MJ 2(R
n) →

R2
× C2[R

n
]. If f ∈ C1(Rn), with the same notation as above, mj2( f, z) reads in this trivialization as(

f (x1),
f (x2) − f (x1)

∥x2 − x1∥

)
if z /∈ π−1(12) and as ( f (x), Dx f · u) otherwise.

In these examples, the multijet bundle MJ p(R
n) → C p[R

n
] is trivial. This raises the following.

Question. Is MJ p(R
n) → C p[R

n
] trivial for all n ⩾ 1 and p ⩾ 1?

The following two lemmas prove that the bundle map mjp : C p−1(Rn)×C p[R
n
] →MJ p(R

n) satisfies
(2) and (3) in Theorem 1.1.

Lemma 5.10 (regularity of multijets). The map mjp( · , z) : C p−1(Rn) →MJ p(R
n)z is a linear surjection

for all z ∈ C p[R
n
]. Additionally, let l ⩾ 0 and let f ∈ C l+p−1(Rn). Then mjp( f, · ) is a section of class C l

of MJ p(R
n) → C p[R

n
].

Proof. Let z ∈ C p[R
n
]. The map K ( · , π(z)) : C p−1(Rn) → Rp−1[X ] is linear by Lemma 3.8. It is also

surjective since its restriction to Rp−1[X ] is the identity. Since mjp( · , z) is the composition of K ( · , π(z))
with the canonical projection from Rp−1[X ] onto MJ p(R

n)z , it is a linear surjection.
Let l ⩾ 0 and let f ∈ C l+p−1(Rn). By Lemma 3.8, we have K ( f, · ) ∈ C l((Rn)p, Rp−1[X ]). Since

π is smooth, we get K ( f, · ) ◦ π ∈ C l(C p[R
n
], Rp−1[X ]). In other words, K ( f, · ) ◦ π defines a section

of class C l of the trivial bundle Rp−1[X ] × C p[R
n
] → C p[R

n
]. Since G is a smooth sub-bundle of

Rp−1[X ] × C p[R
n
], projecting onto the quotient bundle MJ p(R

n) does not decrease the regularity. □

Lemma 5.11 (multijets and evaluation). Let z ∈ C p[R
n
] be such that π(z) = (x1, . . . , x p) /∈ 1p. Then for

all f ∈ C p−1(Rn) we have mjp( f, z) = 0 if and only if , for all i ∈ [[1, p]], f (xi ) = 0.

Proof. Let us denote by x = (x1, . . . , x p) = π(z) /∈ 1p. For all f ∈ C p−1(Rn), we have

mjp( f, z) = 0 ⇐⇒ K ( f, x) ∈ G(x) ⇐⇒ evx(K ( f, x)) = 0 ⇐⇒ evx( f ) = 0,

since K ( f, x) interpolates the values of f on at x1, . . . , x p (see Remark 3.5). □
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Actually, we can describe more precisely the relation between multijets and evaluation outside of the
diagonal. This will appear in the proof of Theorem 6.26 below. Thanks to Lemma 4.4, the smooth bundle
map ev : (P, x) 7→ (evx(P), x) from Rp−1[X ]× ((Rn)p

\1p) to Rp
× ((Rn)p

\1p) is surjective and its
kernel is exactly the sub-bundle ker ev=G. Thus it induces a smooth bundle map τ :MJ p(R

n)|(Rn)p\1p →

Rp
×((Rn)p

\1p) defined by τ(P mod G(x)) = (evx(P), x), which is bijective. Thus τ defines a smooth
local trivialization of MJ p(R

n) over (Rn)p
\ 1p. Moreover, for all f ∈ C p−1(Rn) and z ∈ C p[R

n
] such

that x = π(z) /∈ 1p we have

τ(mjp( f, z)) = τ(K ( f, x) mod G(x)) = (evx(K ( f, x)), x) = (evx( f ), x).

Hence mjp( f, z) simply reads as ( f (x1), . . . , f (x p)) in this trivialization.

5.3. Localness of multijets. The goal of this section is to prove that the multijet bundle MJ p(R
n) →

C p[R
n
] defined in the previous section satisfies (4) in Theorem 1.1. Let z ∈ C p[R

n
], let x = π(z) and let

I = I(x) be as in Definition 2.3. As explained in Section 2.1, there is a unique y = (yI )I∈I ∈ RI
\ 1I

such that x = ιI(y). Recalling that we dropped V = R from the notation in the present case, we can
restate (4) in Theorem 1.1 as: there exists 2z :

∏
I∈I J|I |−1(R

n)yI → MJ p(R
n)z a linear surjection such

that mjp( f, z) = 2z(( j|I |−1( f, yI ))I∈I) for all f ∈ C p−1(Rn).
This property is fundamental. First, it shows that mjp( f, z) is obtained by patching together (part of)

the jets of order |I |−1 of f at yI , which justifies the name multijet. Second, it shows that mjp( f, z) only
depends on the values of f in arbitrarily small neighborhoods of the yI . This is not obvious at all since
the definition of mjp( f, z) involves divided differences of f , which are obtained by integrating on the
whole convex hull σ(x) of the xi (see Definition 3.1). In particular, it shows that mjp( f, z) makes sense
even if f is only C|I |−1 in some neighborhood of yI for all I ∈ I. Hence Definition 1.3 makes sense even
if � is not convex.

In the following, we consider what we think of as the I -th part of a multijet, where I ⊂ [[1, p]]. This is
just a variation on what we did in Definitions 5.7 and 5.8 and it is defined as follows.

Definition 5.12 (I -multijets). Let n ⩾ 1 and p ⩾ 1 and let I ⊂ [[1, p]] be nonempty, we define the bundle
of I -multijets as the following smooth bundle of rank |I | over C p[R

n
]:

MJ I (R
n) = (R|I |−1[X ] × C p[R

n
])/GI .

Let f ∈ C|I |−1(Rn) and z ∈ C p[R
n
]. We define by mjI ( f, z) = K ( f, π(z)I ) mod GI (z) ∈ MJ I (R

n)z the
I -multijet of f at z.

As explained in Section 5.1, for all ∅ ̸= I ⊂ [[1, p]] we have a map GI : C p[R
n
] → Gr|I |(R|I |−1[X ])

extending the one on (Rn)p
\ 1p. Let z ∈ C p[R

n
] and x = π(z). As in Section 4 we define G̃ I (z) =

K ( · , x I )
−1(GI (z)) ∈ Gr|I |(Rp−1[X ]), where K ( · , x I ) : Rp−1[X ] → R|I |−1[X ]. Note that G̃ I (z) has the

same codimension as GI (z) since K ( · , x I ) is surjective.

Lemma 5.13 (compatibility of the GI ). For all I ⊂ [[1, p]] and z ∈ C p[R
n
] we have G(z) ⊂ G̃ I (z).

Proof. Recall from Section 4 that G(z)⊂G̃I (z) for any z∈(Rn)p
\1p⊂C p[R

n
], that is, K ( · ,π(z)I )(G(z))⊂

GI (z). This incidence relation is a closed condition. By construction, the subset (Rn)p
\ 1p is dense
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in C p[R
n
] and both terms in the previous inclusion are continuous with respect to z; see Lemma 3.8

and Corollary 5.6. Hence the inclusion actually holds for any z ∈ C p[R
n
]. Thus G(z) ⊂ G̃ I (z) for all

z ∈ C p[R
n
]. □

Let ∅ ̸= I ⊂ [[1, p]], let z ∈ C p[R
n
] and x = π(z). We consider mjI ( · , z) : Rp−1[X ] → MJ I (R

n)z

from Definition 5.12. This linear map is surjective as the composition of K ( · , x I ) and the projection
modulo GI (z). Moreover, ker(mjI ( · , z)) = G̃ I (z) contains G(z) by Lemma 5.13. Hence, mjI ( · , z)
induces a surjective linear map from MJ p(R

n)z = Rp−1[X ]/G(z) onto MJ I (R
n)z that we still denote

by mjI ( · , z). This is summarized in the following commutative diagram, where the vertical arrows are
the canonical projections and all arrows are surjective:

Rp−1[X ] R|I |−1[X ]

MJ p(R
n)z MJ I (R

n)z

K ( · ,x I )

mjI ( · ,z)

mjI ( · ,z)

(5-2)

Note that (P, z) 7→ (K (P, π(z)I ), z) is a smooth bundle map over C p[R
n
] from Rp−1[X ] × C p[R

n
]

to R|I |−1[X ] × C p[R
n
]. Hence, the previous diagram (5-2) defines a smooth surjective bundle map

mjI : (P mod G(z)) 7→ (P mod GI (z)) from MJ p(R
n) to MJ I (R

n) over C p[R
n
].

Definition 5.14 (partitioned multijet). For all I ∈ Pp and z ∈ C p[R
n
], we define a linear map from

MJ p(R
n)z to

∏
I∈I MJ I (R

n)z by mjI( · , z) : α 7→ (mjI (α, z))I∈I .

As above, mjI : (α, z) 7→ mjI(α, z) defines a smooth bundle map over C p[R
n
] from MJ p(R

n)

to
⊕

I∈I MJ I (R
n), which is obtained as the quotient of (P, z) 7→ ((K (P, π(z)I )I∈I, z). However,

mjI( · , z) is not surjective in general. The following lemma proves its surjectivity in some cases.

Lemma 5.15 (splitting of multijets). Let z ∈ C p[R
n
], let x = π(z) and let I(x) be defined as in

Definition 2.3. Then mjI(x)( · , z) : MJ p(R
n)z →

∏
I∈I(x) MJ I (R

n)z is an isomorphism.

Proof. The map mjI(x)( · , z) is linear between two spaces of the same dimension p =
∑

I∈I(x)|I |, so
it is enough to prove its surjectivity. Let (αI )I∈I(x) ∈

∏
I∈I(x) MJ I (R

n)z . For each I ∈ I(x) there
exists PI ∈ R|I |−1[X ] such that αI = PI mod GI (z). By Lemma 3.9, there exists P ∈ Rp−1[X ] such that
K (P, x I ) = PI for all I ∈ I(x). Let α = P mod G(z) ∈ MJ p(R

n)z . Then, for all I ∈ I(x), we have

mjI (α, z) = mjI (P, z) = K (P, x I ) mod GI (z) = PI mod GI (z) = αI .

Hence mjI(x)(α, z) = (αI )I∈I(x), and mjI(x)( · , z) is indeed surjective. □

Let k ∈ N and let x ∈ Rn. By definition, two maps f and g ∈ Ck(Rn) have the same k-jet at x if and
only if they have the same Taylor polynomial of order k at x . Let x = (x, . . . , x). Recalling Example 3.7,
the linear map K ( · , x) : Ck(Rn) → Rk[X ] is surjective, and it induces an isomorphism Jk(R

n)x ≃ Rk[X ].
Let z ∈ C p[R

n
], let x = π(z), let I = I(x) and let (yI )I∈I = ι−1

I (x); see Definitions 2.3 and 2.6.
For all I ∈ I, the canonical isomorphism J|I |−1(R

n)yI ≃ R|I |−1[X ] allows us to see the projection from
R|I |−1[X ] onto MJ I (R

n)z as a canonical linear surjection ϖz,I : J|I |−1(R
n)yI → MJ I (R

n)z .
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Definition 5.16 (gluing map). Let z ∈ C p[R
n
], let x = π(z) and let (yI )I∈I = ι−1

I (x), where I = I(x).
We define ϖz : (αI )I∈I 7→ (ϖz,I (αI ))I∈I from

∏
I∈I J|I |−1(R

n)yI to
∏

I∈I MJ I (R
n)z . We also define

2z = mjI( · , z)−1
◦ ϖz .

We can now check that 2z satisfies (4) in Theorem 1.1.

Lemma 5.17 (localness of multijets). For all z ∈ C p[R
n
], the map 2z is a linear surjection from∏

I∈I J|I |−1(R
n)yI to MJ p(R

n)z . Moreover, it is the only map such that

∀ f ∈ C p−1(Rn), 2z(( j|I |−1( f, yI ))I∈I) = mjp( f, z).

Proof. With the same notation as in Definition 5.16, for all I ∈ I the map ϖz,I is a linear surjection
by definition. Hence so is ϖz . Since mjI( · , z) is an isomorphism by Lemma 5.15, the map 2z =

mjI( · , z)−1
◦ ϖz is also a linear surjection.

Let f ∈ C p−1(Rn). For all I ∈ I, the image of j|I |−1( f, yI ) under the canonical isomorphism
J|I |−1(R

n)yI ≃ R|I |−1[X ] is the Taylor polynomial K ( f, x I ). Hence

ϖz,I ( j|I |−1( f, yI )) = K ( f, x I ) mod GI (z) = mjI (K ( f, x I ), z).

Thus, we have

ϖz(( j|I |−1( f, yI ))I∈I) = (mjI (K ( f, x I ), z))I∈I = mjI(mjp( f, z), z),

and finally
2z(( j|I |−1( f, yI ))I∈I) = mjp( f, z).

Since the yI are pairwise distinct, every element of
∏

I∈I J|I |−1(R
n)yI can be realized as ( j|I |−1( f,yI ))I∈I

for some f ∈ C∞(Rn). Hence the previous relation completely defines 2z . □

5.4. Multijets of vector-valued maps. So far we have only defined multijets of real-valued functions. In
this section, we extend the previous construction to maps from Rn to some vector space V of dimension
r ⩾ 1. Let π : C p[R

n
] → (Rn)p be given by Corollary 5.6 as before. We define MJ p(R

n, V ) → C p[R
n
]

as the tensor product of the bundle MJ p(R
n) → C p[R

n
] from Definition 5.7 with the trivial bundle

V × C p[R
n
] → C p[R

n
].

Definition 5.18 (multijet bundle of vector-valued maps). Let n ⩾ 1 and p ⩾ 1; let V be a real vector
space of dimension r ⩾ 1. We define the bundle of p-multijets of V -valued maps on Rn as the following
smooth bundle of rank pr over C p[R

n
]:

MJ p(R
n, V ) = MJ p(R

n) ⊗ V .

Definition 5.19 (multijet of a map). Let (v1, . . . , vr ) denote a basis of V. Let z ∈ C p[R
n
] and let

f =
∑r

i=1 fivi ∈ C p−1(Rn, V ). We define by mjp( f, z) =
∑r

i=1 mjp( fi , z) ⊗ vi ∈ MJ p(R
n, V )z the

p-multijet of f at z.

Lemma 5.20 (independence from the basis). In Definition 5.19, the vector mjp( f, z) does not depend on
the choice of the basis (v1, . . . , vr ).
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Proof. Let (w1, . . . , wr ) be another basis of V. There exists a matrix (ai j )1⩽i, j⩽r ∈ GLr (R) such that
vi =

∑r
j=1 ai jw j for all i ∈ [[1, r ]]. Letting g j =

∑r
i=1 ai j fi for all j ∈ [[1, r ]], we get

f =

r∑
i=1

fivi =

∑
1⩽i, j⩽r

ai j fiw j =

r∑
j=1

g jw j .

Then, by linearity of the p-multijet for functions, we have
r∑

j=1

mjp(g j , z) ⊗ w j =

∑
1⩽i, j⩽r

ai j mjp( fi , z) ⊗ w j =

r∑
i=1

mjp( fi , z) ⊗ vi . □

Example 5.21. If V = Rr , then for all z ∈ C p[R
n
] and f = ( f1, . . . , fr ) ∈ C p−1(Rn, Rr ) we have

MJ p(R
n, Rr )z = MJ p(R

n)z ⊗ Rr
≃ (MJ p(R

n)z)
r ,

and under this canonical isomorphism mjp( f, z) = (mjp( fi , z))1⩽i⩽r , as one would expect.

Let x ∈Rn and k ∈N. We have a canonical isomorphism Jk(R
n, V )x ≃Jk(R

n)x ⊗V. If (v1, . . . , vr ) is a
basis of V, this isomorphism is totally determined by the fact that the image of jk( f, x) is

∑r
i=1 jk( fi , x)⊗vi

for all f =
∑r

i=1 fivi ∈ Ck(Rn, V ). As in the proof of Lemma 5.20, this does not depend on the choice
of the basis (v1, . . . , vr ).

Definition 5.22 (gluing map for vector-valued multijets). Let z ∈ C p[R
n
], let x = π(z), let I = I(x) and

let (yI )I∈I = ι−1
I (x). Using the previous canonical isomorphisms, we have∏

I∈I

J|I |−1(R
n, V )yI =

∏
I∈I

J|I |−1(R
n)yI ⊗ V =

(∏
I∈I

J|I |−1(R
n)yI

)
⊗ V .

Recalling Definition 5.16, we define a linear map

2z :

∏
I∈I

J|I |−1(R
n, V )yI → MJ p(R

n, V )z

by 2z(α ⊗ v) = 2z(α) ⊗ v for all α ∈
∏

I∈I J|I |−1(R
n)yI and all v ∈ V.

We now have everything we need to prove Theorem 1.1.

Proof of Theorem 1.1. The base space C p[R
n
] and the projection π are given by Corollary 5.6. In

particular, they satisfy (1) in Theorem 1.1. Definition 5.19 and Lemma 5.10 show that mjp satisfies (2).
Similarly, (3) is satisfied thanks to Lemma 5.11 and the definition of mjp for V -valued maps.

Let us check that the linear maps 2z from Definition 5.22 satisfy (4). Let z ∈ C p[R
n
], let x = π(z), let

I =I(x) and let (yI )I∈I = ι−1
I (x). Let us also denote by (v1, . . . , vr ) a basis of V. Let α ∈MJ p(R

n, V )z .
There exists α1, . . . , αr ∈ MJ p(R

n)z such that α =
∑r

i=1 αi ⊗ vi . By Lemma 5.17, for each i ∈ [[1, r ]],
there exists βi ∈

∏
I∈I J|I |−1(R

n)yI such that αi = 2z(βi ). Hence,

2z

( r∑
i=1

βi ⊗ vi

)
=

r∑
i=1

2z(β) ⊗ vi = α,

and 2z is indeed surjective.
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Finally, let us consider f =
∑r

i=1 fivi ∈ C p−1(Rn, V ). Then, by Lemma 5.17 once again,

2z(( j|I |−1( f, yI ))I∈I) = 2z

( r∑
i=1

( j|I |−1( fi , yI ))I∈I ⊗ vi

)
=

r∑
i=1

2z(( j|I |−1( fi , yI ))I∈I) ⊗ vi

=

r∑
i=1

mjp( fi , z) ⊗ vi = mjp( f, z). □

Remark 5.23. Another way to define MJ p(R
n, V ) and mjp is the following. If f : Rn

→ V is regular
enough, then the divided differences from Definition 3.1 still make sense, only this time f [x0, . . . , xk] ∈

Symk(Rn) ⊗ V. Then, one can still define K ( f, x) as in Proposition 3.4, and it defines an element of
Rp−1[X ]⊗ V that interpolates the divided differences of f . Similarly, everything we did from Section 3.1
to Section 5.3 can be adapted to the case of V -valued maps, simply by tensoring each vector space by V,
and each linear map by IdV . One can check that we recover the same objects as in Definitions 5.18
and 5.19, up to canonical isomorphisms.

6. Application to zeros of Gaussian fields

This section is concerned with our application of multijet bundles to Gaussian fields. In Section 6.1,
we describe the local model for the Gaussian fields with values in a vector bundle that we consider. In
Section 6.2, we prove a Bulinskaya-type lemma and a Kac–Rice formula for the zeros of these fields.
Section 6.3 is dedicated to the definition of the Kac–Rice densities of order larger than 2. We also relate
the properties of these functions with the moments of the linear statistics associated with our field. Finally,
we prove Theorems 1.6 and 1.9 in Section 6.4, using the multijet bundles defined in Theorem 1.1.

6.1. Gaussian vectors and Gaussian sections. In this section, we briefly recall some notation and
conventions concerning Gaussian vectors. Then we describe the local model for Gaussian fields with
values in a vector bundle. We will mostly consider centered random vectors in finite-dimensional vector
spaces, so we restrict ourselves to this setting. In the following, V is a finite-dimensional real vector space.

Definition 6.1 (Gaussian vector). We say that a random vector X with values in V is a centered Gaussian
vector if, for all η ∈ V ∗, the real random variable η(X) is a centered Gaussian in R.

In particular, a centered Gaussian vector in V has finite moments up to any order. Let us assume that
V is endowed with an inner product ⟨ · , · ⟩. Then for all v ∈ V, we define v∗

= ⟨v, · ⟩ ∈ V ∗.

Definition 6.2 (variance operator). Let X be a centered Gaussian vector in (V, ⟨ · , · ⟩). Then its variance
operator is the nonnegative self-adjoint endomorphism Var(X) = E[X ⊗ X∗

] of V. We say that X is
nondegenerate if Var(X) is invertible.

Recall that a centered Gaussian vector in (V, ⟨ · , · ⟩) is completely determined by its variance. In the
following, we denote by N (0, 3) the centered Gaussian distribution of variance 3, and by X ∼ N (0, 3)

the fact that X follows this distribution.

Definition 6.3 (Gaussian field). Let E → M be a vector bundle over some manifold M. We say that
a random section s of E → M is a centered Gaussian field if for all m ⩾ 1 and all x1, . . . , xm the



MULTIJET BUNDLES AND THE FINITENESS OF MOMENTS FOR ZEROS OF GAUSSIAN FIELDS 1455

random vector (s(x1), . . . , s(xm)) is a centered Gaussian. We say that this field is nondegenerate if s(x)

is nondegenerate for all x ∈ M.

If the centered Gaussian field s is C p, then its jet jk(s, x) is a centered Gaussian for all x ∈ M. Thus,
the definition of p-nondegeneracy of the field makes sense; see Definition 1.8. Note that 0-nondegenerate
simply means nondegenerate.

Since this will appear in several places later on, let us describe the local model for Gaussian fields in this
context. Let x0 ∈ M. There exists a chart (U, ϕ) of M around x0. That is ϕ : U → � is a diffeomorphism
between an open neighborhood U of x0 and an open subset � ⊂ Rn. Up to reducing U, we can assume
that E is trivial over U, i.e., there exists a trivialization τ : E|U → Rr

× U. Letting τϕ = (Id, ϕ) ◦ τ , we
have the following commutative diagram, where arrows on the top row are bundle maps covering the
maps on the bottom row:

E|U Rr
× U Rr

× �

U U �

τ

τϕ

(Id,ϕ)

Id ϕ

(6-1)

Let s be a local section of E|U . Then τϕ ◦s ◦ϕ−1 is a section of the trivial bundle on the right-hand side
of (6-1). Hence there exists a map f :�→Rr such that τϕ◦s◦ϕ−1

= ( f, Id). For all x ∈�, the vector f (x)

is the image of s(ϕ−1(x)) by a linear bijection. Thus, if s : M → E is a centered Gaussian field, its restriction
to U corresponds to a centered Gaussian field f : � → Rr . Moreover, f has the same regularity as s.

The local trivializations on the diagram (6-1) induce a similar picture for jet bundles so that we have a
local trivialization Jp(U, E|U ) ≃ Jp(�, Rr ), under which jp( f, x) corresponds to jp(s, ϕ

−1(x)). Thus,
the Gaussian section s is p-nondegenerate in the sense of Definition 1.8 if and only if f is p-nondegenerate
in the sense of Definition 1.4. If this is the case, up to replacing � by a smaller �′ such that �′

⊂ �

is compact, we can assume that f is uniformly p-nondegenerate, in the sense that det Var(jp( f, x)) is
bounded from below on �. This local picture is summarized in the following lemma.

Lemma 6.4 (local model for Gaussian fields). Let s : M → E be a centered p-nondegenerate Gaussian
field. For all x0 ∈ M, there exist an open neighborhood U of x0 and a local trivialization of the form (6-1)
such that s reads in local coordinates as a centered Gaussian field f : � → Rr of the same regularity as s
and which is uniformly p-nondegenerate on �.

6.2. Bulinskaya lemma and Kac–Rice formula for the expectation. Let (M, g) be a Riemannian mani-
fold of dimension n⩾1 without boundary and let E → M be a vector bundle of rank r ∈[[1, n]]. We consider
a nondegenerate centered Gaussian field s : M → E , in the sense of Definition 6.3. The goal of this section
is to state a Bulinskaya-type lemma and a Kac–Rice formula for the expectation of the linear statistics of s.

When M is an open subset of Rn and E = Rr
× M is trivial, these results are proved by Armentano,

Azaïs and Leòn [Armentano et al. 2023b, Proposition 2.1 and Theorem 2.2]. They are extended to fields
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on submanifolds of RN in [Armentano et al. 2023b, Section 9.1]. In the following we check that the
results of that work can be adapted to the case of Gaussian sections.

Remark 6.5. Some readers are most interested in the zeros of Gaussian fields from Rn to Rr and the
present geometric setting may seem overly complicated to them. Let us stress that, even in the simpler
setting of fields from Rn to Rr , our proof of Theorem 1.6 uses the Kac–Rice formula in the more general
setting we are studying here.

In order to state the Bulinskaya lemma and the Kac–Rice formula, we need the following.

Definition 6.6 (Jacobian determinant). Let L : V → V ′ be a linear map between Euclidean spaces and let
L∗ denote its adjoint map. The Jacobian of L is defined as Jac(L) = det(L L∗)1/2.

Remark 6.7. We have Jac(L) ⩾ 0, and Jac(L) > 0 if and only if L is surjective. In particular, the fact
that Jac(L) = 0 depends only on L and not on the Euclidean structures on V and V ′. Thus the condition
Jac(L) = 0 makes sense even if no inner product is specified.

Proposition 6.8 (weak Bulinskaya lemma). Let ∇ be a connection on E → M. If the centered Gaussian
field s : M → E is C1 and nondegenerate, the (n−r)-dimensional Hausdorff measure of

{x ∈ M | s(x) = 0 and Jac(∇x s) = 0}

is almost surely 0.

Remark 6.9. If s(x) = 0 then ∇x s does not depend on ∇. Hence the random set we are interested in
Proposition 6.8 does not depend on the choice ∇.

Proof of Proposition 6.8. We can cover M by countably many open trivialization domains of the type
described in Lemma 6.4. Then it is enough to prove the result in each of these domains.

Let U ⊂ M be as Lemma 6.4. In local coordinates, the restriction of s reads as a uniformly nondegenerate
C1 centered Gaussian field f : � → Rr , where � ⊂ Rn is open. Moreover, for any x ∈ � such that
f (x) = 0, the covariant derivative of s reads as Dx f , independently of the choice of ∇. Thus, we are left

with proving that the (n−r)-dimensional Hausdorff measure of

{x ∈ � | f (x) = 0 and Jac(Dx f ) = 0}

is almost surely 0, which is given by [Armentano et al. 2023b, Proposition 2.1]. □

Let us assume from now on that the centered Gaussian field s : M → E is C1 and nondegenerate. We
denote its zero set by Z = s−1(0). Let us define Zsing = {x ∈ Z | Jac(∇x s) = 0} and Zreg = Z \ Zsing. By
Proposition 6.8, the (n−r)-dimensional Hausdorff measure of the singular part Zsing is almost surely 0.
On the other hand, the regular part Zreg is the set of points where s vanishes transversally. As such, it is a
(possibly empty) C1 submanifold of M of codimension r without boundary. Thus, Z is almost surely the
union of an open (in Z ) regular part Zreg of dimension n − r , and a negligible singular part Zsing that we
can think of as a set of lower dimension. Let us mention that, under additional assumptions on the field,
the singular part is almost surely empty.
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Proposition 6.10 (strong Bulinskaya lemma). If the centered Gaussian field s : M → E is C2 and
1-nondegenerate, then Zsing = ∅ almost surely.

Proof. As in the proof of Proposition 6.8, it is enough to prove the result in local coordinates given by
Lemma 6.4. In these coordinates, s reads as a C2 centered Gaussian field f : � → Rr which is uniformly
1-nondegenerate, that is, det Var( f (x), Dx f ) is bounded from below on �. Then the result follows from
[Azaïs and Wschebor 2009, Proposition 6.12]. □

The Riemannian metric g induces a metric on Zreg, which in turn defines an (n−r)-dimensional
Riemannian volume measure dVolZ . This measure coincides with the (n−r)-dimensional Hausdorff
measure on Z . In the following, we consider this measure as a Radon measure on M defined as follows.
Recall that the space of Radon measures is the topological dual of C 0

c (M), and that being a nonnegative
Radon is equivalent to being a Borel measure which is finite on compact subsets.

Definition 6.11 (random measure associated with Z ). We denote by ν the random nonnegative Radon
measure on M defined by

∀φ ∈ C 0
c (M), ⟨ν, φ⟩ =

∫
Zreg

φ(x) dVolZ (x).

We define ⟨ν, φ⟩ similarly if φ is nonnegative Borel function (in which case ⟨ν, φ⟩ ∈ [0, +∞]) or if φ is
a Borel function such that ⟨ν, |φ|⟩ < +∞ almost surely.

Example 6.12. If n = r then Z is almost surely locally finite. In this case ν =
∑

x∈Z δx is the random
counting measure of this point process.

Let us go back to the local model of Lemma 6.4. Around any x0 ∈ M there exists a chart (U, ϕ) and
a local trivialization of the kind described by (6-1). Since s is C1 and nondegenerate, it corresponds in
local coordinates to a C1 nondegenerate Gaussian field f : � → Rr. We still denote by Z (resp. Zreg) the
image of Z (resp. Zreg) by ϕ, which is the zero set of f (resp. its regular part). Similarly, we still denote
by g (resp. dVolZ ) the push-forward to � of the metric g (resp. of the measure dVolZ ), and we identify
test-functions on U with test-functions on �. Thus, if φ ∈ L∞

c (U ) we have

⟨ν, φ⟩ =

∫
Zreg

φ(x) dVolZ (x),

where we think of everything on the right-hand side as defined on �. Now, the measure dVolZ is the
(n−r)-dimensional Riemannian volume on Z ⊂ � ⊂ Rn induced by g. In the following, we will need to
understand how it compares with the Riemannian volume dVol0Z on Z induced by the Euclidean metric.
This is the purpose of what comes next.

Definition 6.13 (Riemannian densities). Let x ∈ � and let G be a subspace of Rn. We denote by
det(g(x)|G) the determinant of the restriction to G of the inner product g(x), in any basis of G which is
orthonormal for the Euclidean inner product of Rn.

For all r ∈ [[0, n]], we denote by γr : � × Grr (R
n) → (0, +∞) the continuous map defined by

γr : (x, G) 7→ det(g(x)|G)1/2. We also write γ : x 7→ γ0(x, Rn) for simplicity.
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Lemma 6.14 (comparing volumes). Let Z be a submanifold of codimension r of � and let dVolZ

(resp. dVol0Z ) denote the (n−r)-dimensional Riemannian volume on Z induced by g (resp. the Euclidean
metric). Then dVolZ admits the density x 7→ γr (x, Tx Z) with respect to dVol0Z . In particular dVol�
admits the density γ with respect to the Lebesgue measure on �.

Proof. This follows directly from the definition of the Riemannian volume measures; see [Lee 2018,
Chapter 3] for example. □

We can now state and prove the Kac–Rice formula for the expectation of the linear statistics in our
setting of Gaussian fields on M with values in a vector bundle E .

Definition 6.15 (Kac–Rice density). Let ρ1 : M → [0, +∞) be defined by

ρ1 : x 7−→
E[Jac(∇x s) | s(x) = 0]

det(2π Var(s(x)))1/2 ,

where the numerator stands for the conditional expectation of Jac(∇x s) given that s(x) = 0.

Remark 6.16. Since s is nondegenerate and C1, the function ρ1 is well-defined and continuous. Moreover,
it does not depend on the choice of ∇, nor on the choice of a metric on E .

Proposition 6.17 (Kac–Rice formula for the expectation). Let s be a nondegenerate C1 centered Gaussian
field. Then, for any Borel function φ : M → R which is nonnegative or such that φρ1 ∈ L1(M), we have

E[⟨ν, φ⟩] =

∫
M

φ(x)ρ1(x) dVolM(x),

i.e., E[ν] is the Radon measure on M with density ρ1 with respect to the Riemannian volume dVolM .

Remark 6.18. For any Borel maps φ1 and φ2, we have

E[|⟨ν, φ1⟩ − ⟨ν, φ2⟩|] ⩽ E[⟨ν, |φ1 − φ2|⟩] =

∫
M

|φ1(x) − φ2(x)|ρ1(x) dVolM(x).

Then, if φ1 = φ2 almost everywhere on M, we have ⟨ν, φ1⟩ = ⟨ν, φ2⟩ almost surely. Thus, ⟨ν, φ⟩ makes
sense as a random variable even if φ is only defined up to modification on a negligible set.

Proof of Proposition 6.17. By a partition of unity argument, it enough to prove the result if φ is compactly
supported in an open domain U satisfying the same properties as in Lemma 6.4. In this case, in local
coordinates, the field s corresponds to a nondegenerate C1 centered Gaussian field f : � → Rr with
� ⊂ Rn open. Thanks to Remark 6.16, we can assume that ∇ corresponds in this trivialization to the
standard derivation for maps from � to Rr and that the metric on E corresponds to the canonical inner
product on Rr. Identifying Zreg, the metric g, the measure dVolZ and the test-function φ with their images
in the trivialization, we have reduced our problem to proving the result for the vanishing locus of f with
the volume measures induced by g.

By Lemma 6.14, we have

E[⟨ν, φ⟩] = E

[∫
Zreg

φ(x) dVolZ (x)

]
= E

[∫
Zreg

φ(x)γr (x, ker Dx f ) dVol0Z (x)

]
.
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For all x ∈ � and λ ∈ C 0(�,L(Rn, Rr )) we define 9(x, λ) = φ(x)γr (x, ker λ(x))1O(λ(x)), where
O = {L ∈ L(Rn, Rr ) | Jac(L) > 0}. Since O is open and the maps ker : O → Grr (R

n) and γr are
continuous, the map 9 is lower semicontinuous with respect to each variable, where C 0(�,L(Rn, Rr )) is
equipped with the weak topology. Thus, we can apply the Euclidean Kac–Rice formula with weight from
[Armentano et al. 2023b, Theorem 7.1 and Remark 8] to 9(x, D f ). This yields

E[⟨ν, φ⟩] =

∫
�

φ(x)
E[γr (x, ker Dx f ) Jac0(Dx f ) | f (x) = 0]

det(2π Var( f (x)))1/2 dx,

where Jac0 means that we computed the Jacobian with respect to the Euclidean metric on Rn.
To conclude, we need to compare Jac0 with the Jacobian Jac with respect to g. This is the content

of Lemma 6.19 below, which yields that γr (x, ker Dx f ) Jac0(Dx f ) = γ (x) Jac(Dx f ). Since γ (x) is
deterministic, by Lemma 6.14 we have

E[⟨ν, φ⟩] =

∫
�

φ(x)
E[Jac(Dx f ) | f (x) = 0]

det(2π Var( f (x)))1/2 γ (x) dx =

∫
�

φ(x)ρ1(x) dVol�(x).

This proves that the result holds locally, that is, for a field f : � → Rr, with the volume measures induced
by any Riemannian metric on �, which concludes the proof. □

Lemma 6.19 (comparing Jacobians). Let x ∈ � and let L : Rn
→ Rr be a surjective linear map. With the

same notation as above, we have γr (x, ker L) Jac0(L) = γ (x) Jac(L).

Proof. We denote by L∗
g (resp. L∗

0) the adjoint of L with respect to the inner product g(x) (resp. the
Euclidean inner product). In a Euclidean orthonormal basis adapted to ker(L)⊥ ⊕ ker(L), the matrix of
g(x) is symmetric of the form

(
A t B
B C

)
with A and C positive-definite, the matrix of L is (F 0), that of L∗

0
is

( t F
0

)
and that of L∗

g is
(

X
Y

)
. We have

( t F
0

)
=

(
A t B
B C

)(
X
Y

)
, which leads to t F = (A−

t BC−1 B)X . Hence,

det(L L∗

0) = det(F t F) = det(A −
t BC−1 B) det(F X) = det(A −

t BC−1 B) det(L L∗

g),

and γr (x, G) Jac0(L) = det(C)1/2 det(A −
t BC−1 B)1/2 Jac(L). Since A −

t BC−1 B is the Schur comple-
ment of C in the matrix of g(x), we have det(C)1/2 det(A −

t BC−1 B)1/2
= γ (x). □

6.3. Factorial moment measures and Kac–Rice densities. As in the previous section, we consider a
nondegenerate C1 centered Gaussian field s : M → E which is a random section of some vector bundle
E → M. Recall that n = dim(M) and r ∈ [[1, n]] is the rank of E . We are interested in the finiteness
of the moments of the linear statistics ⟨ν, φ⟩ with φ ∈ L∞

c (M); see Definition 6.11. In this section, we
introduce the factorial moment measures and Kac–Rice densities of the fields s, and we relate them to
higher moments of the linear statistics.

In the following, p will always denote the order of the moment we are considering. Recall that, under
our hypothesis on s, the random measure ν is almost surely a nonnegative Radon measure on M ; see
Remark 6.18.
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Definition 6.20 (product measures). Let p ⩾ 1. We denote by ν⊗p the product measure of ν with itself
p-times. We also denote by ν[p] the restriction of ν⊗p to M p

\ 1p. That is, for any test-function 8,

⟨ν⊗p, 8⟩ =

∫
Z p

reg

8(x) dVol⊗p
Z (x) and ⟨ν[p], 8⟩ =

∫
Z p

reg\1p

8(x) dVol⊗p
Z (x).

Almost surely, these measures are Radon measures on M p. More generally, if we want to consider product
spaces indexed by a nonempty finite set A instead of [[1, p]], we denote by ν⊗A the product measure of ν

with itself |A| times on M A and by ν[A] its restriction to M A
\ 1A.

The following lemma describes the relation between ν⊗p and ν[p], using the notation introduced in
Section 2.1.

Lemma 6.21 (relation between ν⊗p and ν[p]). Let p ⩾ 1. If r < n then ν⊗p
= ν[p]. If r = n then

ν⊗p
=

∑
I∈Pp

(ιI)∗(ν
[I]).

Proof. If r < n then Zreg is a C1 submanifold of positive dimension in M. In particular, the large diagonal
in (Zreg)

p has positive codimension, and hence is negligible for dVol⊗p
Z . Thus ν⊗p

= ν[p] in this case.
If r = n then Zreg is a locally finite set and ν is its counting measure. Similarly, ν⊗p is the counting

measure of the locally finite (Zreg)
p, and 1p is no longer negligible for this measure. If r = n = 1, we

proved in [Ancona and Letendre 2021, Lemma 2.7] that ν⊗p
=

∑
I∈Pp

(ιI)∗(ν
[I]). The proof is purely

combinatorics and it extends immediately to the case r = n ⩾ 1. □

Our interest in these measures is that, by the Fubini theorem, for all φ ∈ L∞
c (M) we have E[⟨ν, φ⟩

p
] =

E[⟨ν⊗p, φ⊗p
⟩]= ⟨E[ν⊗p

], φ⊗p
⟩, where φ⊗p

: (x1, . . . , x p) 7→φ(x1) · · · φ(x p). Thus, the measure E[ν⊗p
]

is closely related with the computation of moments of linear statistics. For technical reasons, it is more
convenient to consider E[ν[p]

] instead.

Definition 6.22 (moment measures). Let p ⩾ 1. The measure E[ν⊗p
] is called the p-th moment measure

of the field s and E[ν[p]
] is called its p-th factorial moment measure.

Definition 6.23 (Kac–Rice density of order p). Let p ⩾ 1 and let us assume that the random vector
(s(x1), . . . , s(x p)) is nondegenerate for all (x1, . . . , x p) ∈ M p

\ 1p. Then we define

ρp : (x1, . . . , x p) 7−→
E
[∏p

i=1 Jac(∇xi s) | ∀i ∈ [[1, p]], s(xi ) = 0
]

det(2π Var(s(x1), . . . , s(x p)))1/2

from M p
\ 1p to [0, +∞), where the numerator is the conditional expectation of

∏p
i=1 Jac(∇xi s) given

that s(xi ) = 0 for all i ∈ [[1, p]].

Once again, ρp is well-defined and continuous on M p
\ 1p thanks to our nondegeneracy hypothesis.

However, its expression is singular along 1p. In particular, ρp is in general not bounded, which raises
the question of its local integrability near 1p. For example, if f : Rn

→ R is a nondegenerate enough
stationary Gaussian field and p = 2, one can check that as y → x , the corresponding Kac–Rice density
ρ2(x, y) behaves like ∥y − x∥ if n = 1 and like 1/∥y − x∥ if n > 1.
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Proposition 6.24 (Kac–Rice formula for the p-th factorial moment). Let s be a C1 centered Gaussian
field such that (s(x1), . . . , s(x p)) is nondegenerate for all (x1, . . . , x p) ∈ M p

\1p. Then, for any Borel
function 8 : M p

→ R which is nonnegative or such that 8ρp ∈ L1(M p), we have

E[⟨ν[p], 8⟩] =

∫
M p

8(x)ρp(x) dVol⊗p
M (x),

i.e., E[ν[p]
] is the measure on M p with density ρp with respect to the Riemannian volume dVol⊗p

M .

Proof. Let us consider S : (x1, . . . , x p) 7→ (s(x1), . . . , s(x p)) on M p
\ 1p, which is a random section

of the restriction over M p
\ 1p of the vector bundle E p

→ M p. This is a nondegenerate C1 centered
Gaussian field on M p

\ 1p, and ν[p] is the measure of integration over its zero set. Bearing in mind that
1p is negligible in M p for dVol⊗p

M , the result follows from Proposition 6.17 applied to S. □

The following proposition relates the properties of the Kac–Rice densities, the moment measures and
the moments of linear statistics.

Proposition 6.25 (relation between moments, measures and densities). Let p ⩾ 1 and let s be a C1

centered Gaussian field such that (s(x1), . . . , s(x p)) is nondegenerate for all (x1, . . . , x p) /∈ 1p. Then
the following four properties are equivalent:

(1) For all φ ∈ L∞
c (M), we have E[|⟨ν, φ⟩|

p
] < +∞.

(2) For all k ∈ [[1, p]], the moment measure E[ν⊗k
] is Radon on Mk, i.e., finite on compact sets.

(3) For all k ∈ [[1, p]], the factorial moment measure E[ν[k]
] is Radon on Mk.

(4) For all k ∈ [[1, p]], the Kac–Rice density satisfies ρk ∈ L1
loc(Mk).

Proof. Let us assume (1). Let k ∈ [[1, p]] and let K0 ⊂ Mk be compact. There exists a compact set K ⊂ M
such that K0 ⊂ K k. Then,

⟨E[ν⊗k
], 1K0⟩ ⩽ ⟨E[ν⊗k

], 1⊗k
K ⟩ = E[⟨ν, 1K ⟩

k
] = E[|⟨ν, 1K ⟩|

k
].

Since 1K ∈ L∞
c (M), the p-th absolute moment of ⟨ν, 1K ⟩ is finite; hence so is its k-th absolute moment.

Thus ⟨E[ν⊗k
], 1K0⟩ < +∞ for all compact K0 and (2) is satisfied.

If (2) is satisfied then so is (3). Indeed, for any k ∈ [[1, p]], the measure ν[k] is the restriction of ν⊗k to
Mk

\ 1k . Thus, for any compact K ⊂ Mk we have

⟨E[ν[k]
], 1K ⟩ = E[⟨ν[k], 1K ⟩] ⩽ E[⟨ν⊗k, 1K ⟩] = ⟨E[ν⊗k

], 1K ⟩ < +∞.

If (3) is satisfied, let k ∈ [[1, p]] and let K ⊂ Mk be a compact. By Proposition 6.24 we have∫
K

ρk(x) dVol⊗p
M (x) =

∫
M

1K (x)ρk(x) dVol⊗p
M (x) = E[⟨ν[k], 1K ⟩] = ⟨E[ν[k]

], 1K ⟩ < +∞.

Thus ρk is integrable on any compact set, that is, ρk ∈ L1
loc(Mk). This proves (4) in this case.

Finally, let us assume that (4) holds. Let φ ∈ L∞
c (M), and let us denote by K ⊂ M its compact support.

We have E[|⟨ν, φ⟩|
p
] ⩽ E[⟨ν, |φ|⟩

p
] ⩽ ∥φ∥

p
∞E[⟨ν, 1K ⟩

p
], so it is enough to prove that E[⟨ν, 1K ⟩

p
] =
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E[⟨ν⊗p, 1K p⟩] is finite. By Lemma 6.21, whether r = n or not, we have

E[⟨ν⊗p, 1K p⟩] ⩽
∑
I∈Pp

E[⟨ν[I], 1K p ◦ ιI⟩] =

∑
I∈Pp

⟨E[ν[I]
], 1KI ⟩.

Then, the Kac–Rice formula for moments and the local integrability of the (ρk)1⩽k⩽p yields

E[⟨ν, 1K ⟩
p
] ⩽

∑
I∈Pp

⟨E[ν[I]
], 1KI ⟩ =

∑
I∈Pp

∫
K |I|

ρ|I|(x) dVol⊗|I|

M (x) < +∞,

which proves (1) and concludes the proof. □

6.4. Proofs of Theorems 1.6 and 1.9: finiteness of moments. The goal of this section is to prove
Theorems 1.6 and 1.9, which give simple conditions for the finiteness of the moments of the linear
statistics of a Gaussian field. We begin by proving a local version of Theorem 1.6, under a nondegeneracy
hypothesis for the multijets of the field. This is Theorem 6.26 below. Then we deduce Theorem 1.9
from Theorem 6.26, in the case of Gaussian fields with value in a vector bundle. Finally, Theorem 1.6 is
obtained as a special case of Theorem 1.9.

Let � ⊂ Rn be open. Recall that MJ p(�, Rr ) → C p[�] is defined in Definition 1.3 as the restriction
over C p[�] ⊂ C p[R

n
] of the vector bundle MJ p(R

n, Rr ) → C p[R
n
] from Theorem 1.1.

Theorem 6.26 (finiteness of moments, local version). Let f : � → Rr be a centered Gaussian field and
ν be as in Definition 6.11. Let p ⩾ 1. If f is C p and for all k ∈ [[1, p]] the Gaussian field mjk( f, · ) :

Ck[�] → MJ k(�, Rr ) is nondegenerate, then the four equivalent statements in Proposition 6.25 hold.

Proof. Let f : � → Rr be a C p centered Gaussian field such that mjk( f, · ) : Ck[�] → MJ k(�, Rr ) is
nondegenerate for all k ∈ [[1, p]].

Step 1: Gaussianity and nondegeneracy of the multijets. Since f is C p, for all k ∈ [[1, p]] we have
mjk( f, · ) ∈ 01(Ck[�],MJ k(�, Rr )) because of (2) in Theorem 1.1. Since f is centered and Gaussian,
so is any finite collection of jets of f . Then, for all m ⩾ 1 and all z1, . . . , zm ∈ Ck[�] we have that
(mjk( f, z1), . . . , mjk( f, zm)) is a centered Gaussian. Indeed, by (4) in Theorem 1.1, this is the image of
a centered Gaussian by a linear map. Thus, mjk( f, · ) is a nondegenerate C1 centered Gaussian field on
Ck[�] with values in MJ k(�, Rr ).

Let z /∈ π−1(1p) and let x = (x1, . . . , x p) = π(z). By (4) in Theorem 1.1, the map 2z is a linear
surjection. A dimension argument shows that it is actually a bijection. Thus

( f (x1), . . . , f (x p)) = ( j0( f, x1), . . . , j0( f, x p)) = 2−1
z (mjp( f, z)),

which proves that ( f (x1), . . . , f (x p)) is nondegenerate. Thus, the hypotheses of Proposition 6.25 are
satisfied, and the four statements appearing in this proposition are indeed equivalent.

Step 2: Comparing zeros of f and mjk( f, · ). Let k ∈ [[1, p]]. In the following we are going to prove that
E[ν[k]

] is a Radon measure on �k, which is enough to conclude the proof. In the following, we say that a
subset of Ck[�] (resp. �k) is negligible if its k(n−r)-dimensional Hausdorff measure is 0.
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Let us consider the Gaussian field mjk( f, · ) : Ck[�] → MJ k(�, Rr ). We have checked above that
it satisfies the hypotheses of Proposition 6.8. Let X ⊂ Ck[�] denote the zero set of mjk( f, · ). As in
Section 6.2, we define Xsing ={z ∈ Ck[�] | mjk( f, x)= 0 and Jac(∇z mjk( f, · ))= 0} and Xreg = X \ Xsing.
Recall that Xreg is a C1 submanifold of codimension kr and that Xsing is almost surely negligible by
Proposition 6.8. Let Y = X ∩ π−1(�k

\ 1k). We also let Ysing = Y ∩ Xsing and Yreg = Y ∩ Xreg.
Recalling that Z = f −1(0) ⊂ �, for all z ∈ Ck[�] we have z ∈ Y if and only if π(z) ∈ Z k

\1k ; see (3)
in Theorem 1.1. By (1) in the same theorem, the restriction of π to π−1(�k

\ 1k) is a diffeomorphism.
Hence π(Y ) = Z k

\ 1k , the set π(Yreg) is a C1 submanifold of �k
\ 1k , and π(Ysing) is almost surely

negligible. Since Z k
\ (Zreg)

k is also almost surely negligible, the submanifolds Z k
reg \ 1k and π(Yreg)

are almost surely the same, up to a negligible set (actually the reader can check that π(Yreg) = Z k
reg \1k

using the trivialization τ introduced at the end of Section 5.2). Recalling Definition 6.20, this shows that
ν[k] is the same as the integral over π(Yreg) with respect to the Riemannian volume dVolπ(Y ) induced by
the Euclidean metric on (Rn)k. At this stage we know that, almost surely,

∀8 ∈ L∞

c (�k), ⟨ν[k], 8⟩ =

∫
π(Yreg)

8(x) dVolπ(Y )(x). (6-2)

Step 3: Comparing volumes. Let us introduce a Riemannian metric g on Ck[�]. It induces a volume
measure dVolX on Xreg, and hence on Yreg. Additionally, let z ∈ Ck[�] and let G ⊂ Tz(Ck[�]) be a vector
subspace of codimension kr . We define J (G) = det((Dzπ|G)∗Dzπ|G)1/2, where the adjoint of Dzπ|G is
computed with respect to g on G and to the Euclidean metric on (Rn)k. Since π is smooth, this defines a
smooth nonnegative function J on the total space of the Grassmannian bundle Grkr (T (Ck[�])) → Ck[�]

of subspaces of codimension kr in the tangent of Ck[�]. Our interest in this map is that if z ∈ Yreg

and G = TzYreg then J (G) is the Jacobian determinant of Dz(πY ), where the C∞-diffeomorphism
πY : Yreg → π(Yreg) is the restriction of π on both sides.

Let K ⊂ �k be compact and let us apply (6-2) to 1K . Using the previous notation, the change of
variables πY yields

⟨ν[k], 1K ⟩ =

∫
Yreg

1K (π(z))J (TzYreg) dVolX (z) ⩽
∫

Xreg

1π−1(K )(z)J (Tz Xreg) dVolX (z).

By (1) in Theorem 1.1, the projection π is proper; hence K̃ = π−1(K ) is compact. Since the bundle
Grkr (T (Ck[�])) → Ck[�] has compact fiber, its restriction over K̃ ⊂ Ck[�] is compact. By continuity,
the function J is bounded on this compact set by some constant CK . Finally, we have proved that, almost
surely,

⟨ν[k], 1K ⟩ ⩽ CK ⟨ν̃, 1K̃ ⟩,

where ν̃ is defined by integrating over Xreg with respect to dVolX . Taking expectation on both sides we
get ⟨E[ν[k]

], 1K ⟩ ⩽ CK ⟨E[ν̃], 1K̃ ⟩.

Step 4: Applying the Kac–Rice formula to multijets. Now, Xreg is the regular part of the zero set X of
the Gaussian field mjk( f, · ). We have checked at the beginning of the proof that mjk( f, · ) satisfies the
hypotheses of Proposition 6.17. This proposition yields that E[ν̃] is a Radon measure on Ck[�]. Hence
⟨E[ν̃], 1K̃ ⟩ is finite, and so is ⟨E[ν[k]

], 1K ⟩. Thus E[ν[k]
] is Radon on �k, which concludes the proof. □
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We can now prove Theorem 1.9, which gives a criterion for the finiteness of the p-th moments of the
linear statistics associated with a centered Gaussian field s : M → E , where E → M is some vector bundle
of rank r over a Riemannian manifold (M, g) without boundary of dimension n ⩾ r . The idea of the
proof is to patch together the local results obtained by applying Theorem 6.26 in nice local trivializations.

Proof of Theorem 1.9. Let p ⩾ 1 and let s ∈ 0 p(M, E) be a centered Gaussian field which is C p and
(p−1)-nondegenerate.

Step 1: Existence of nice local trivializations. Let x0 ∈ M. There exists an open neighborhood U of x0

and a local trivialization of E over U given by Lemma 6.4. In this trivialization, the Gaussian section s
corresponds to a centered Gaussian field f : � → Rr which is C p and (p−1)-nondegenerate. We denote
by x ∈ � the image of x0 in local coordinates.

Let k ∈ [[1, p]] and let x = (x, . . . , x) ∈ �k. Since jp−1( f, x) is nondegenerate so is jk−1( f, x);
see Definition 1.4. Then, by (4) in Theorem 1.1, for all z ∈ π−1({x}) ⊂ Ck[�] the Gaussian vector
mjk( f, z) = 2z(jk−1( f, x)) ∈ MJ k(�, Rr )z is nondegenerate. By (1) in Theorem 1.1, the map π is
proper; hence π−1({x}) is compact. One the other hand, since f is C p, we know mjk( f, · ) is at least C1.
Thus z 7→ det Var(mjk( f, z)) is continuous on Ck[�] and positive on the compact π−1({x}), and hence
on some neighborhood Vk of π−1({x}) in Ck[�].

Up to reducing Vk we can assume that Vk = π−1(Wk), where Wk is an open neighborhood of x in �k.
Otherwise, there would exist a sequence (zn)n∈N ∈ Ck[�] \ Vk such that π(zn) n→+∞

−−−−→ x . By properness
of π , up to extracting a subsequence, we could assume that zn n→+∞

−−−−→ z. By continuity z ∈ π−1({x}),
which would be absurd. Since Wk is a neighborhood of x in �k, there exists an open neighborhood ϒk

of x in � such that (ϒk)
k
⊂ Wk .

Let us define ϒ =
⋂p

k=1 ϒk , which is an open neighborhood of x . For all k ∈ [[1, p]], we have
Ck[ϒ] = π−1(ϒk) ⊂ π−1((ϒk)

k) ⊂ π−1(Wk) = Vk and mjk( f, · ) is nondegenerate on Ck[ϒ]. Thus, up to
replacing � by the smaller neighborhood ϒ of x in � and replacing U by the corresponding neighborhood
of x0 on M, we can assume that the local trivialization given by Lemma 6.4 is such that, for all k ∈ [[1, p]],
the Gaussian field mjk( f, · ) : Ck[�] → MJ k(�, Rr ) is nondegenerate.

Step 2: Reduction to the local case. Let φ ∈ L∞
c (M) and let K denote its support. By compactness, there

exists a finite family (Ui )
m
1=1 of open subsets such that K ⊂

⋃m
i=1 Ui and each Ui is the domain of nice

trivialization of the type we built in the previous paragraph. Letting U0 = M \ K , there exists a smooth
partition of unity (χi )

m
i=0 subordinated to the open covering (Ui )

m
i=0 of M. Then φ =

∑m
i=1 χiφ by the

definition of K .
Recall that ν is the measure from Definition 6.11. We have |⟨ν, φ⟩| ⩽ ⟨ν, |φ|⟩ =

∑m
i=1⟨ν, φi ⟩, where

φi = χi |φ| for all i ∈ [[1, m]]. Let p ⩾ 1, by Hölder’s inequality we get

E[|⟨ν, φ⟩|
p
] ⩽ E

[( m∑
i=1

⟨ν, φi ⟩

)p]
=

∑
1⩽i1,...,i p⩽m

E

[ p∏
j=1

⟨ν, φi j ⟩

]
⩽

∑
1⩽i1,...,i p⩽m

p∏
j=1

E[⟨ν, φi j ⟩
p
]
1/p

⩽ m p max
1⩽i⩽m

E[⟨ν, φi ⟩
p
].
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Thus, in order to prove Theorem 1.9, it is enough to prove that E[⟨ν, φ⟩
p
] < +∞ for any nonnegative

φ ∈ L∞
c (M) whose support is included in the domain of a nice trivialization.

Step 3: Local case. Let U ⊂ M be an open subset over which we have a nice trivialization of E and s.
That is, U is as in Lemma 6.4, the section s reads as f : � → Rr in local coordinates, and in addition we
can assume that for all k ∈ [[1, p]] the field mjk( f, · ) is nondegenerate on Ck[�]. Identifying objects on U
with their image in the local trivialization, we reduced our problem to proving that E[⟨ν, φ⟩

p
] < +∞

for all nonnegative φ ∈ L∞
c (�). Note that ν is the measure of integration over Zreg with respect to the

Riemannian volume measure dVolZ induced by the metric g. In order to apply Theorem 6.26, we need to
compare ν with ν̃, which is the measure of integration over Zreg with respect to the Euclidean volume
measure dVol0Z .

Let φ ∈ L∞
c (�) be nonnegative and let K denote its compact support. Recalling Definition 6.13,

Lemma 6.14 shows that

⟨ν, φ⟩ =

∫
Zreg

φ(x) dVolZ (x) =

∫
Zreg∩K

φ(x)γr (x, ker Dx f ) dVol0Z (x).

Since γr is continuous and K × Grr (R
n) is compact, the nonnegative function γr is bounded by some

CK > 0 on this set. Thus ⟨ν, φ⟩ ⩽ CK ⟨ν̃, φ⟩. Since f : � → Rr satisfies the hypotheses of Theorem 6.26
and ν̃ is the measure of integration over its zero set induced by the Euclidean metric, we have E[⟨ν, φ⟩

p
]⩽

C p
K E[⟨ν̃, φ⟩

p
] < +∞. □

We conclude this section with the proof of Theorem 1.6, which is a corollary of Theorem 1.9.

Proof of Theorem 1.6. Let f : � → Rr be a centered Gaussian field which is C p and (p−1)-nondegenerate
in the sense of Definition 1.4. Then s = ( f, Id) is a random section of the trivial bundle Rr

× � → �.
This s is also a C p and (p−1)-nondegenerate centered Gaussian field. Its vanishing locus (as a section) is
the same as the vanishing locus of f . Hence, the result follows from applying Theorem 1.9 to s. □

7. Multijets adapted to a differential operator

In Theorem 1.1 we defined multijets such that, over the configuration space (Rn)p
\ 1p ⊂ C p[R

n
], the

p-multijet mjp( f, x) reads as ( f (x1), . . . , f (x p)) in the natural trivialization τ (see the end of Section 5.2).
Thus mjp( f, x) is a way to patch together the 0-jets of f at xi into a smooth object that does not degenerate
along 1p. In this section, we explain how a similar construction allows us to build a multijet that patches
together the k-jets of f at xi , and more generally the values at xi of D f , where D is a differential operator.
In Section 7.1 we recall the definition of a differential operator. Then we define a multijet adapted to a
given differential operator in Section 7.2. Finally, in Section 7.3, we prove Theorem 1.10.

7.1. Differential operator. In this section, we recall a few fact about differential operators. In the
following, we use the multi-index notation introduced in Section 2.2.

Definition 7.1 (differential operator). Let � ⊂ Rn be open, let q, r ⩾ 1 and let d ⩾ 0. We say a differential
operator of order at most d is a linear map D : Cd(�, Rq) → C 0(�, Rr ) such that there exist continuous
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functions (ai jα)1⩽i⩽r;1⩽ j⩽q;|α|⩽d on � such that, for all f = ( f1, . . . , fq) ∈ Cd(�, Rq),

D( f ) : x 7−→

( q∑
j=1

∑
|α|⩽d

ai jα(x)∂α f j (x)

)
1⩽i⩽r

. (7-1)

More generally, let M be a manifold of dimension n and let E → M and F → M be two vector bundles
of ranks q and r respectively. We say that D : 0d(M, E) → 00(M, F) is a differential operator of order
at most d if around any point x ∈ M there exist a chart and local trivializations of E and F such that D
is of the form (7-1) in the corresponding local coordinates. We say that D is of order d ∈ N if it is of
order at most d and not of order at most d − 1. If s ∈ 0d(M, E) and x ∈ M, we write Ds = D(s) and
Dx s = D(s)(x) for simplicity.

Remark 7.2. Let us make some important comments.

• If D : 0d(M, E) → 00(M, F) is a differential operator of order at most d, then it is of the form (7-1)
in any set of local coordinates on M, E and F.

• An equivalent definition of a differential operator of order at most d is that it factors linearly through
the bundle of d-jets. That is, there exists L ∈ 00(M,Jd(M, E)∗ ⊗ F) such that Dx s = L(x) jd(s, x) ∈ Fx

for all s ∈ 0d(M, E) and x ∈ M.

In the following we always assume that M, E , F and L are smooth. In particular, the functions
(ai jα) appearing in the local expression (7-1) of D are smooth. This implies that if s ∈ 0d+l(M, E) then
Ds ∈ 0l(M, F).

Example 7.3. The main examples we have in mind are the following.

• The differential D : C1(M) → 00(M, T ∗M) is a differential operator of order 1.

• For all k ∈ N, the jet map jk : 0k(M, E) → 00(M,Jk(M, E)) is a differential operator of order k
corresponding to L(x) being the identity of Jk(M, E)x for all x ∈ M.

• If M is equipped with a Riemannian metric, the Laplace–Beltrami operator 1 acting on C2(M) is a
differential operator of order 2.

• If ∇ is a connection on E → M then ∇ : 01(M, E) → 00(M, T ∗M ⊗ E) is a differential operator of
order 1. Indeed, in a local frame (e1, . . . , eq) of E and local coordinates (x1, . . . , xn) on M the covariant
derivative of s =

∑q
j=1 f j e j ∈ 01(M, E) at x is given by

∇x s =

n∑
i=1

q∑
j=1

(
∂i f j (x) +

q∑
k=1

µi jk(x) fk(x)

)
dxi ⊗ e j (x),

where the (µi jk) are defined by the relations ∇ek =
∑n

i=1
∑q

j=1 µi jkdxi ⊗ e j for all k ∈ [[1, q]].

7.2. Multijets adapted to D. The purpose of this section is to explain how to modify the construction of
Section 5 in order to define a multijet bundle adapted to a given differential operator.

Let n, q and r ⩾ 1. We consider a differential operator D : Cd(Rn, Rq) → C 0(Rn, Rr ) of order d . As in
Remark 7.2, there exists a section L of Jd(Rn, Rq)∗ ⊗ Rr such that for any f ∈ Cd(Rn, Rq) and x ∈ Rn
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we have Dx f = L(x) jd( f, x). We assume that for all x ∈ Rn the linear map Dx : Cd(Rn, Rq) → Rr is
surjective, which is equivalent to L(x) : Jd(Rn, Rq)x → Rr being surjective. Moreover, we assume that
L is smooth. In this context, we have the following analogue of Theorem 1.1. It holds in particular if
D = jk or D = D is the differential.

Theorem 7.4 (existence of multijets adapted to D). Let D : Cd(Rn, Rq) → C 0(Rn, Rr ) be a differential
operator of order d as above. Let p ⩾ 1. There exist a smooth manifold CD

p [Rn
] of dimension np without

boundary and a smooth vector bundle MJ D
p (Rn) → CD

p [Rn
] of rank r p with the following properties:

(1) There exists a smooth proper surjection π : CD
p [Rn

] → (Rn)p such that π−1((Rn)p
\ 1p) is a dense

open subset of CD
p [Rn

], and π restricted to π−1((Rn)p
\ 1p) is a C∞-diffeomorphism onto (Rn)p

\ 1p.

(2) There exists a map mjDp : C(d+1)p−1(Rn, Rr ) × CD
p [Rn

] → MJ D
p (Rn) such that

• for all z ∈ CD
p [Rn

], the map mjDp ( · , z) : C(d+1)p−1(Rn, Rr ) → MJ D
p (Rn)z is surjective;

• for all f ∈ C l+(d+1)p−1(Rn, Rr ), the section mjDp ( f, · ) of MJ D
p (Rn) → CD

p [Rn
] is C l.

(3) Let z ∈ CD
p [Rn

] be such that π(z) = (x1, . . . , x p) /∈ 1p. Then for all f ∈ C(d+1)p−1(Rn, Rq)

mjDp ( f, z) = 0 ⇐⇒ ∀i ∈ [[1, p]], Dxi f = 0.

(4) Let z ∈ CD
p [Rn

], let I = I(π(z)) and let (yI )I∈I = ι−1
I (π(z)) ∈ (Rn)I \ 1I . There exists a linear

surjection 2D
z :

∏
I∈I J(d+1)|I |−1(R

n, Rq)yI → MJ D
p (Rn)z such that

∀ f ∈ C(d+1)p−1(Rn, Rr ), mjDp ( f, z) = 2D
z (( j(d+1)|I |−1( f, yI ))I∈I).

Proof. The proof follows the same strategy as what we did in Sections 4 and 5 in order to prove
Theorem 1.1. Let us sketch its main steps.

Let x = (x1, . . . , x p) ∈ (Rn)p and let x̂ = (x, . . . , x) ∈ (Rn)(d+1)p. Let f ∈ C(d+1)p−1(Rn, Rq). The
polynomial map K ( f, x̂) ∈ R(d+1)p−1[X ] ⊗ Rq is defined as in Definition 3.6. For all i ∈ [[1, p]],
since xi appears with multiplicity d + 1 in x̂ , the map K ( f, x̂) has the same d-jet as f at xi . Hence
Dxi f = L(xi ) jd( f, xi ) = L(xi ) jd(K ( f, x̂), xi ) = Dxi (K ( f, x̂)).

If x /∈ 1p, let us define evD
x : P 7→ (Dxi P)1⩽i⩽p from R(d+1)p−1[X ]⊗Rq to (Rr )p. Since we assumed

that L(xi ) is surjective for all i ∈ [[1, p]], the previous interpolation result proves that evD
x is surjective.

Then, as in (4-2), for all nonempty I ⊂ [[1, p]] we define

GD
I (x) = ker evD

x I
∈ Grr |I |(R(d+1)|I |−1[X ] ⊗ Rq).

We also define GD(x) = GD
[[1,p]]

(x).
Following the same strategy as in Section 5, we denote by 6D the graph of (GD

I )I⊂[[1,p]] defined on
(Rn)p

\ 1p. We define CD
p [Rn

] as a resolution of the singularities of the algebraic variety

6D ⊂ (Rn)p
×

∏
∅̸=I⊂[[1,p]]

Grr |I |(R(d+1)|I |−1[X ] ⊗ Rq).
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The manifold CD
p [Rn

] satisfies the analogue of Corollary 5.6. In particular the maps GD
I with I ⊂ [[1, p]]

extend smoothly to CD
p [Rn

]. Then we define the p-multijet bundle adapted to D as

MJ D
p (Rn) =

(
(R(d+1)p−1[X ] ⊗ Rq) × CD

p [Rn
]
)
/GD

over CD
p [Rn

], similarly to Definition 5.7. Given a function f ∈ C(d+1)p−1(Rn, Rq), we define its p-multijet
adapted to D at z ∈ CD

p [Rn
] as

mjDp ( f, z) = K ( f, π̂(z)) mod GD(z).

Then, following the same steps as in Section 5, one can check that the objects we just defined satisfy the
conditions in Theorem 7.4. □

As before, thanks to the localness condition in Theorem 7.4(4), the multijet mjDp ( f, z) makes sense
even if f is only defined and C(d+1)|I |−1 near yI for all I ∈ I(π(z)). Hence, the following definition
makes sense.

Definition 7.5 (multijets adapted to D). Let �⊂ Rn be open. We define CD
p [�]=π−1(�p) and denote by

MJ D
p (�) the restriction of MJ D

p (Rn) to CD
p [�]. We call MJ D

p (�) → CD
p [�] the bundle of p-multijets

adapted to D. Let f : � → Rq be of class C(d+1)p−1. We call the section mjDp ( f, · ) of MJ D
p (�) the

p-multijet of f adapted to D.

7.3. Finiteness of moments for critical points. The purpose of this section is to prove Theorem 1.10.
More generally we prove an analogous result for the zero set of Ds, where s is a section of a vector
bundle E → M and D is a differential operator; see Theorem 7.8. This is done by adapting what we did
in Section 6 to this framework.

Let (M, g) be Riemannian manifold of dimension n ⩾ 1 without boundary. Let E → M (resp. F → M)
be a smooth vector bundle of rank q ⩾ 1 (resp. r ∈ [[1, n]]). We consider a differential operator D :

0d(M, E) → 00(M, F) of order d ⩾ 0, corresponding to a smooth section L ∈ 0∞(M,Jd(M, E)∗ ⊗ F);
see Remark 7.2. Thanks to this smoothness assumption we have D : 0d+l(M, E) → 0l(M, F) for all
l ⩾ 0. Finally we assume that L(x) :Jd(M, E)x → Fx (or equivalently Dx :0d(M, E)→ Fx) is surjective
for all x ∈ M.

Let s : M → E be a centered Gaussian field on M with values in E in the sense of Definition 6.3.
We assume that s is Cd+1 and d-nondegenerate, so that jd(s, · ) is a centered Gaussian field with values
in Jd(M, E) which is C1 and nondegenerate. Then Ds ∈ 01(M, F) is a centered Gaussian field with
values in F which is nondegenerate because of the surjectivity assumption on L . Everything we did
in Sections 6.2 and 6.3 applies to Ds. In particular, Ds satisfies the weak Bulinskaya lemma (see
Proposition 6.8). Hence its vanishing locus is almost surely the union of a codimension-r submanifold
of M and a negligible singular set. We denote by νD the random Radon measure on M defined by
integrating over the zero set of Ds. The formal definition is similar to Definition 6.11.

Example 7.6. Let us assume that E = R × M is trivial. Then we can identify 01(M, E) with C1(M)

and consider the differential D : C1(M) → 00(M, T ∗M), which is a differential operator of order 1.
Let f : M → R be a C2 and 1-nondegenerate centered Gaussian field. Then D f is a nondegenerate C1
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centered Gaussian field on M with values in T ∗M, the vanishing locus of D f is the set of critical points
of f , and νD is the counting measure this random set.

We can now state the analogue of Theorem 6.26 in this context, bearing in mind that Proposition 6.25
applies to νD.

Theorem 7.7 (finiteness of moments for νD, local version). Let � ⊂ Rn be open and f : � → Rq be a
centered Gaussian field. Let r ∈ [[1, n]]. Let D : Cd(�, Rq) → C 0(�, Rr ) be a differential operator of
order d satisfying the previous hypotheses and νD denote the measure of integration over the zero set
of D f . Let p ⩾ 1. If f is C(d+1)p and the Gaussian field mjDk ( f, · ) : CD

k [�]→MJ D
k (�) is nondegenerate

for all k ∈ [[1, p]], then the four equivalent statements in Proposition 6.25 hold for νD.

Proof. Under these hypotheses, for all k ∈ [[1, p]] the Gaussian field mjDk ( f, · ) is at least C1. Then the
proof is the same as that of Theorem 6.26. □

Theorem 7.8 (finiteness of moments for zeros of Ds). In the setting introduced at the beginning of this
section, let s : M → E be a centered Gaussian field and νD denote the measure of integration over the
zero set of Ds. Let p ⩾ 1. If s is C(d+1)p and ((d+1)p−1)-nondegenerate then E[|⟨νD, φ⟩|

p
] < +∞ for

all φ ∈ L∞
c (M).

Proof. We deduce Theorem 7.8 from Theorem 7.7 in the same way that we deduced Theorem 1.9 from
Theorem 6.26; see Section 6.4. □

8. Multijets of holomorphic maps

The purpose of this section is to explain how to adapt what we did in Sections 3 to 6 to the case of
holomorphic maps. Theorem 1.6 asks for the (p−1)-nondegeneracy of the field f , that is, jp−1( f, x) needs
to be nondegenerate for all x . If f : Cn

→ C is a centered holomorphic Gaussian field, then ( f (x), Dx f )

is always degenerate. Indeed, identifying canonically C with R2, the differential Dx f takes values in
the subspace of L(R2n, R2) consisting of R-linear maps that are actually C-linear. Thus, if we see the
holomorphic field f as a smooth field from R2n to R2, we cannot apply Theorem 1.6. From the point of
view of multijets, the multijet mjp( f, · ) of a holomorphic function f : Cn

→ C takes values in a strict
sub-bundle of MJ p(R

2n, R2), which is similar to what happens for jet bundles. Thus, the field mjp( f, · )
associated with a holomorphic Gaussian field f is necessarily degenerated and Theorem 6.26 does not
apply. To remedy this situation, we define in Section 8.1 a multijet bundle adapted to holomorphic maps.
Then, in Section 8.2, we use this holomorphic multijet to prove Theorem 1.11.

8.1. Definition of the holomorphic multijet bundles. In this section, we define a multijet bundle for
holomorphic maps. Our main result is an equivalent of Theorem 1.1 in this context. Let us first introduce
some notation.

Definition 8.1 (spaces of holomorphic maps). We define the following spaces.

• We denote by Cd [X ] the space of complex polynomials of degree at most d in n variables, where
X = (X1, . . . , Xn) is multivariate.
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• If M and N are two complex manifolds, we denote by O(M, N ) the space of holomorphic maps from
M to N. If N = C, we simply write O(M).

• If E → M is a holomorphic vector bundle, we denote by J C
k (M, E) → M the holomorphic bundle of

k-jets of holomorphic sections of E . If E = V × M is trivial with fiber V, we denote its holomorphic k-jet
bundle by J C

k (M, V ) → M. If V = C, we simply write J C
k (M) → M. Given a holomorphic section s of

E , we denote by jCk (s, x) its holomorphic k-jet at x ∈ M.

Theorem 8.2 (existence of holomorphic multijet bundles). Let n ⩾ 1 and p ⩾ 1 and let V be a complex
vector space of dimension r ⩾ 1. There exist a complex manifold CC

p [Cn
] of dimension np and a

holomorphic vector bundle MJ C
p (Cn, V ) → CC

p [Cn
] of rank r p with the following properties:

(1) There exists a holomorphic proper surjection π : CC
p [Cn

] → (Cn)p such that π−1((Cn)p
\ 1p) is a

dense open subset of CC
p [Cn

], and π restricted to π−1((Cn)p
\1p) is a biholomorphism onto (Cn)p

\1p.

(2) There exists a map mjCp : O(Cn, V ) × CC
p [Cn

] → MJ C
p (Cn, V ) such that

• for all z ∈ CC
p [Cn

], the linear map mjCp( · , z) : O(Cn, V ) → MJ C
p (Cn, V )z is surjective;

• for all f ∈ O(Cn, V ), the section mjCp( f, · ) of MJ C
p (Cn, V ) → CC

p [Cn
] is holomorphic.

(3) Let z ∈ CC
p [Cn

] be such that π(z) = (x1, . . . , x p) /∈ 1p. Then for all f ∈ O(Cn, V ) we have

mjCp( f, z) = 0 ⇐⇒ ∀i ∈ [[1, p]], f (xi ) = 0.

(4) Let z ∈ CC
p [Cn

], let I = I(π(z)) and let (yI )I∈I = ι−1
I (π(z)) ∈ (Cn)I \ 1I . There exists a linear

surjection 2C
z :

∏
I∈I J

C
|I |−1(C

n, V )yI → MJ C
p (Cn, V )z such that

∀ f ∈ O(Cn, V ), mjCp( f, z) = 2C
z (( jC

|I |−1( f, yI ))I∈I).

Proof. The proof follows the same steps as what we did in Sections 3, 4 and 5 to prove Theorem 1.1. In
the following, we sketch how the proof of Theorem 1.1 adapts to the holomorphic case.

Step 1: Divided differences and Kergin interpolation. Let us consider f ∈ O(Cn) and x = (x0, . . . , xk) ∈

(Cn)k+1. The divided difference f [x0, . . . , xk] from Definition 3.1 still makes sense. Since f is holo-
morphic, it is now a symmetric C-multilinear form on Cn that depends linearly on f and is holomorphic
with respect to x . As explained in [Kergin 1980, Proposition 5.1], the Kergin interpolating polynomial is
well-behaved with respect to holomorphic maps. Given f ∈O(Cn) and x ∈ (Cn)p, (3-3) defines K ( f, x) ∈

Cp−1[X ] that interpolates the values of f [x I ] for all nonempty I ⊂ [[1, p]]. The equivalent of Lemma 3.8
is true, in the sense that K ( · , x) is C-linear and K ( f, · ) is holomorphic from (Cn)p to Cp−1[X ].

In this complex framework, the equivalent of Lemma 3.9 holds, that is: for all x ∈ (Cn)p the map
P 7→ (K (P, x I ))I∈I(x) is surjective from Cp−1[X ] to

∏
I∈I(x) C|I |−1[X ]. Note however that the proof

we gave of Lemma 3.9 does not adapt to the holomorphic setting since it uses bump functions. Here,
we deduce the surjectivity of (K ( · , x I ))I∈I(x) from a general amplitude result in algebraic geometry.
Let I = I(x) and (yI )I∈I = ι−1

I (x). For all I ∈ I, let PI ∈ C|I |−1[X ]. Multiplying each monomial in
PI by the right power of X0 yields a homogeneous polynomial P̃I ∈ Chom

p−1[X0, . . . , Xn], that is, a global
holomorphic section of the line bundle O(p − 1) → CPn. Recall that O(p − 1) is the (p−1)-th tensor
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power of the hyperplane line bundle O(1) → CPn. Since O(1) is very ample, the bundle O(p − 1)

is (p−1)-jet ample; see [Beltrametti and Sommese 1993, Corollary 2.1]. This means that there exists
P̃ ∈ Chom

p−1[X0, . . . , Xn] with the same (|I |−1)-jet as P̃I at yI for all I ∈ I, where we see Cn as a standard
affine chart in CPn. Then, for all I ∈ I, the polynomial P = P̃(1, X1, . . . , Xn) ∈ Cp−1[X ] has the same
(|I |−1)-jet (i.e., the same Taylor polynomial of order |I |−1) as PI at yI . Thus (K (P, x I ))I∈I = (PI )I∈I .

Step 2: Kernel of the evaluation and resolution of singularities. As in Definition 4.3, we define a complex
evaluation map by evC

x : f 7→ ( f (x1), . . . , f (x p)), where x ∈ (Cn)p. If x /∈ 1p, this map is surjective from
Cp−1[X ] to Cp. Hence we can define GC

I (x) = ker evC
x I

∈ Gr|I |(C|I |−1[X ]) for all nonempty I ⊂ [[1, p]],
where the Grassmannian is now the Grassmannian of complex subspaces of codimension |I |. Then,
everything we did in Sections 4 and 5 works in the holomorphic setting after replacing R-linear objects
by C-linear ones.

We define 6C as the graph of (GC
I )I⊂[[1,p]] from (Cn)p

\1p to
∏

∅̸=I⊂[[1,p]]
Gr|I |(C|I |−1[X ]) and CC

p [Cn
]

as a resolution of the singularities of its closure 6C in (Cn)p
×

∏
∅̸=I⊂[[1,p]]

Gr|I |(C|I |−1[X ]). The resolu-
tion of singularities is a result from algebraic geometry which holds over fields of characteristic 0. In partic-
ular, in Proposition 5.5 and Corollary 5.6, “smooth” can be replaced by “algebraic” everywhere. The same
results hold over C, in which case algebraic implies holomorphic. Thus, CC

p [Cn
] is a complex manifold of

dimension np, which satisfies the equivalent of Corollary 5.6 with “smooth” replaced by “holomorphic”.

Step 3: Definition of the holomorphic multijet bundles. Everything we did in Sections 5.2, 5.3 and 5.4
adapts to the holomorphic setting. It is enough to replace Ck functions by holomorphic ones and to
write the linear arguments over C instead of R. We can then define the holomorphic vector bundle of
p-multijets of holomorphic functions on Cn by

MJ C
p (Cn) = (Cp−1[X ] × CC

p [Cn
])/GC (8-1)

and the p-multijet of f ∈ O(Cn) by mjCp( f, z) = K ( f, π(z)) mod GC(z) for all z ∈ CC
p [Cn

]. If V is a
complex vector space of finite dimension, we define as in Definition 5.18

MJ C
p (Cn, V ) = MJ C

p (Cn) ⊗ V . (8-2)

Then we define the p-multijet of f ∈ O(Cn, V ) as in Definition 5.19. If (v1, . . . , vr ) is a basis of V
and f =

∑r
i=1 fivi is holomorphic, then mjCp( f, z) =

∑r
i=1 mjCp( fi , z) ⊗ vi for all z ∈ CC

p [Cn
]. As in

Lemma 5.20, this definition does not depend on a choice of basis. This defines the holomorphic p-multijet
that we are looking for. □

As in the real case, thanks to (4) in Theorem 8.2, the holomorphic multijet mjCp( f, z) of f at z ∈ CC
p [Cn

]

only depends on the germ of f near the xi , where (xi )1⩽i⩽p = π(z). Thus, we can define a holomorphic
multijet bundle over any open subset of Cn.

Definition 8.3 (holomorphic multijets). Let � ⊂ Cn be open. We denote by CC
p [�] = π−1(�p) and

by MJ C
p (�, V ) → CC

p [�] the restriction of MJ C
p (Cn, V ) to C p[�]. If V = C, we drop it from the

notation and write MJ C
p (�) → CC

p [�]. Let f ∈O(�, V ), we call the section mjCp( f, · ) of MJ C
p (�, V )

the holomorphic p-multijet of f .
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8.2. Application to the zeros of holomorphic Gaussian fields. In this section, we explain how the holo-
morphic multijets defined in Section 8.1 allow us to prove Theorem 1.11, and the analogue of Theorem 6.26
for holomorphic Gaussian fields. We start by recalling a few facts about complex Gaussian vectors; see
[Andersen et al. 1995, Chapter 2].

A random variable X ∈ C is called a centered complex Gaussian if its real and imaginary parts are
independent real centered Gaussian variables of the same variance, i.e., there exists λ ⩾ 0 such that
X = Xℜ + i Xℑ, with (Xℜ, Xℑ) ∼ N (0, λ Id) in R2.

Definition 8.4 (complex Gaussian vector). We say that a random vector X in a finite-dimensional complex
vector space V is a centered Gaussian if for all η ∈ V ∗ the complex variable η(X) is a centered complex
Gaussian.

If V is equipped with a Hermitian inner product ⟨ · , · ⟩ and we define v∗
= ⟨v, · ⟩ then the variance

of X is the nonnegative Hermitian operator VarC(X) = E[X ⊗ X∗
]. We say that X is nondegenerate if

VarC(X) is positive-definite.

Remark 8.5. As in the real case, the Gaussianity and nondegeneracy of X do not depend on ⟨ · , · ⟩, but
the variance operator does.

A centered complex Gaussian vector X in (V, ⟨ · , · ⟩) is completely determined by its variance. For
example, if VarC(X) = 3 is positive-definite, then X admits the density v 7→ e−⟨v,3−1v⟩/det(π3) with
respect to the Lebesgue measure on V. We denote by NC(0, 3) the centered complex Gaussian distribution
of variance 3. Then X ∼ NC(0, 3) in Cn if and only if its real and imaginary part satisfy

(Xℜ, Xℑ) ∼ N
(

0,
1
2

(
ℜ(3) ℑ(3)

−ℑ(3) ℜ(3)

))
in R2n .

Let E → M be a holomorphic vector bundle over a complex manifold M. We denote by H 0(M, E)

the vector space of global holomorphic sections of E → M.

Definition 8.6 (holomorphic Gaussian field). We say that a random section s ∈ H 0(M, E) is a centered
holomorphic Gaussian field if for all m ⩾ 1 and all x1, . . . , xm the random vector (s(x1), . . . , s(xm)) is a
centered complex Gaussian. We say that this field is nondegenerate if s(x) is nondegenerate for all x ∈ M.

Note that if s ∈ H 0(M, E) is a centered holomorphic Gaussian field then, for all k ∈ N, its holomorphic
k-jet jCk (s, · ) defines a centered holomorphic Gaussian field with values in J C

k (M, E).

Definition 8.7 (p-nondegeneracy for holomorphic fields). Let p⩾1. We say that the centered holomorphic
Gaussian field s ∈ H 0(M, E) is p-nondegenerate if the centered complex Gaussian jCp(s, x)∈J C

p (M, E)x

is nondegenerate for all x ∈ M.

As in the real framework, we need the following definition.

Definition 8.8 (complex Jacobian). Let L : V → V ′ be a C-linear map between Hermitian spaces and let
L∗ denote its adjoint map. The complex Jacobian of L is defined as JacC(L) = det(L L∗).
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Remark 8.9. If we see V, V ′ and L as R-linear objects and we equip V and V ′ with the Euclidean
structures induced by their Hermitian inner products, then the real and complex Jacobians are related by
JacC(L) = Jac(L)2; see [Andersen et al. 1995, Theorem A.5].

Let us consider a complex manifold M of complex dimension n equipped with a Riemannian metric g
and a holomorphic vector bundle E → M of complex rank r ∈ [[1, n]]. In the following, we denote by ∇

a connection on E which is compatible with the complex structure. As in the real case, the choice of
this connection will not matter. Let s ∈ H 0(M, E) be a centered holomorphic Gaussian field on M with
values in E and let Z = s−1(0) denote its vanishing locus. We will always assume that s is nondegenerate.
In this setting, the random section s satisfies a strong Bulinskaya-type lemma.

Proposition 8.10 (holomorphic Bulinskaya lemma). Almost surely the following set is empty:

{x ∈ M | s(x) = 0 and JacC(∇x s) = 0}.

In particular, the zero set Z is almost surely a ( possibly empty) complex submanifold of complex
codimension r in M.

Proof. It is enough to check the result locally. On an open subset � ⊂ M over which E is trivial, we can
consider s as a nondegenerate smooth centered Gaussian field from � to Cr

≃ R2r. Then, the local result
follows from [Lerario and Stecconi 2019, Theorem 7]. □

Let us consider Z as random submanifold of real codimension 2r in the Riemannian manifold (M, g)

of real dimension 2n. The metric g induces a (2n−2r)-dimensional Riemannian volume dVolZ on Z
and we can define ν as in Definition 6.11, bearing in mind that Z = Zreg. Then Propositions 6.17, 6.24
and 6.25 hold for the holomorphic field s and the associated linear statistics ⟨ν, φ⟩ with φ ∈ L∞

c (M).
More generally, everything we did in Sections 6.2, 6.3 and 6.4 adapts to the holomorphic setting.

Remark 8.11. In Definition 6.23, the function ρp is defined in terms of real Jacobians and the variance of
(s(x1), . . . , s(x p)) seen as a real Gaussian vector. One can check that another expression of ρp(x1, . . . , x p)

is the following, which is more natural in our holomorphic framework:

∀(x1, . . . , x p) /∈ 1p, ρp(x1, . . . , x p) =
E
[∏p

i=1 JacC(∇xi s) | ∀i ∈ [[1, p]], s(xi ) = 0
]

det(π VarC(s(x1), . . . , s(x p)))
.

We can now state the equivalent of Theorem 6.26 for holomorphic Gaussian fields. Let � ⊂ Cn be open.
Recall that MJ C

p (�, Cr ) → CC
p [�] is defined in Definition 8.3 as the restriction over CC

p [�] ⊂ CC
p [Cn

]

of the vector bundle MJ C
p (Cn, Cr ) → CC

p [Cn
] from Theorem 8.2.

Theorem 8.12 (finiteness of moments for holomorphic fields, local version). Let f : � → Cr be a
centered holomorphic Gaussian field and ν be as in Definition 6.11. Let p ⩾ 1. If for all k ∈ [[1, p]]

the holomorphic Gaussian field mjCk ( f, · ) ∈ H 0(CC
k [�],MJ C

k (�, Cr )) is nondegenerate, then the four
equivalent statements in Proposition 6.25 hold.

Proof. The proof of Theorem 6.26 relies mostly on two facts that are valid for all k ∈ [[1, p]]. First, on
the open dense subset �k

\1k ⊂ Ck[�], the zero set of mjk( f, · ) is the same as that of (x1, . . . , xk) 7→



1474 MICHELE ANCONA AND THOMAS LETENDRE

( f (x1), . . . , f (xk)). And second, the field mjk( f, · ) is nondegenerate on Ck[�], so that we can apply
the Kac–Rice formula (Proposition 6.17) to the k-multijet.

These two facts are still true in the present holomorphic setting. Hence, the same proof as that of
Theorem 6.26 yields the result. □

We deduce from this result the equivalent of Theorem 1.9 for a centered holomorphic Gaussian field s
on a complex manifold M of dimension n with values in a holomorphic vector bundle E of rank r ∈ [[1, n]].
Theorem 1.11 is a special case of the following.

Theorem 8.13 (finiteness of moments for zeros of holomorphic Gaussian sections). Let p ⩾ 1, let
s ∈ H 0(M, E) be a centered holomorphic Gaussian field and let ν be as in Definition 6.11. If s is
(p−1)-nondegenerate then E[|⟨ν, φ⟩|

p
] < +∞ for all φ ∈ L∞

c (M).

Proof. We deduce Theorem 8.13 from Theorem 8.12 in the same way that we deduced Theorem 1.9 from
Theorem 6.26; see Section 6.4. □

Remark 8.14. In particular, Theorem 8.13 proves the local integrability of the p-points correlation
functions studied in [Bleher et al. 2000] and their scaling limit.
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EXISTENCE OF SOLUTIONS
TO A FRACTIONAL SEMILINEAR HEAT EQUATION

IN UNIFORMLY LOCAL WEAK ZYGMUND-TYPE SPACES

NORISUKE IOKU, KAZUHIRO ISHIGE AND TATSUKI KAWAKAMI

We introduce uniformly local weak Zygmund-type spaces and obtain an optimal sufficient condition for
the existence of solutions to the critical fractional semilinear heat equation.

1. Introduction

Consider the Cauchy problem for the fractional semilinear heat equation�
@tuC .��/

�
2 uD jujp�1u; x 2 Rn; t > 0;

u.x; 0/D '.x/; x 2 Rn;
(P)

where n� 1, @t WD @=@t , � 2 .0; 2�, p > 1, and ' is a locally integrable function in Rn. Here .��/�=2

denotes the fractional power of the Laplace operator �� in Rn. In this paper we establish the local-in-time
existence of solutions to problem (P) in the critical case

p D p� WD 1C
�

n

in the framework of uniformly local weak Zygmund-type spaces.
The solvability of the Cauchy problem for semilinear heat equations has fascinated many mathematicians

since the pioneering work by Fujita [1966]. The literature is very large, and we refer the reader to the
comprehensive monograph [Quittner and Souplet 2007] and the papers [Andreucci and DiBenedetto
1991; Baras and Pierre 1985; Brezis and Cazenave 1996; Fujishima et al. 2023; 2024; Fujishima and Ioku
2021; 2022; Giraudon and Miyamoto 2022; Hisa and Ishige 2018; Hisa et al. 2023; Ishige et al. 2014;
2020; 2022; Kozono and Yamazaki 1994; Laister and Sierżęga 2020; 2021; Laister et al. 2016; Miyamoto
2021; Robinson and Sierżęga 2013; Sugitani 1975; Weissler 1981; Zhanpeisov 2023], some of which are
closely related to this paper, while the others include recent developments in this subject. The study of
the solvability of problem (P) is divided into the following three cases:

1 < p < p� (subcritical case); p > p� (supercritical case); p D p� (critical case):

We collect some known results on necessary conditions and sufficient conditions for the existence of
solutions to problem (P).
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(1) Subcritical case .1 < p < p� /.

(a) Necessity: There exists C1 D C1.n; �; p/ > 0 such that if problem (P) possesses a nonnegative
solution in Rn � .0; T / for some T > 0, then

sup
x2Rn

Z
B.x;T 1=� /

'.y/ dy � C1T
n
�
� 1
p�1 :

See [Andreucci and DiBenedetto 1991; Baras and Pierre 1985] for � D 2 and [Hisa and Ishige 2018]
for � 2 .0; 2�.

(b) Sufficiency: There exists �1 D �1.n; �; p/ > 0 such that if

sup
x2Rn

Z
B.x;T 1=� /

j'.y/j dy � �1T
n
�
� 1
p�1

for some T 2 .0;1/, then problem (P) possesses a solution in Rn � .0; T /. See, e.g., [Andreucci
and DiBenedetto 1991; Hisa and Ishige 2018; Weissler 1981].

The results in (a) and (b) (see also (1-4)) imply that, for any nonnegative measurable initial function '
in Rn, problem (P) possesses a local-in-time nonnegative solution if and only if

sup
x2Rn

Z
B.x;1/

'.y/ dy <1:

(2) Supercritical case .p > p� /.

(a) Necessity: There exists C2 D C2.n; �; p/ > 0 such that if problem (P) possesses a nonnegative
solution in Rn � .0; T / for some T > 0, then

sup
x2Rn

sup
�2.0;T 1=� /

jB.x; �/j
�

n.p�1/
�1

Z
B.x;�/

'.y/ dy � C2:

See [Andreucci and DiBenedetto 1991; Baras and Pierre 1985] for � D 2 and [Hisa and Ishige 2018]
for � 2 .0; 2�.

(b) Sufficiency: For any r 2 .1;1/, there exists �2 D �2.n; �; p; r/ > 0 such that if

sup
x2Rn

sup
�2.0;T 1=� /

jB.x; �/j
�

n.p�1/
� 1
r

�Z
B.x;�/

j'.y/jr dy

� 1
r

� �2

for some T 2 .0;1�, then problem (P) possesses a solution in Rn � .0; T /. See [Kozono and
Yamazaki 1994; Robinson and Sierżęga 2013] for � D 2 and [Hisa and Ishige 2018; Ishige et al.
2020; 2022; Zhanpeisov 2023] for � 2 .0; 2�. See, e.g., [Andreucci and DiBenedetto 1991; Ishige
et al. 2014; Weissler 1981] for related results.

(3) Critical case .p D p� /.

(a) Necessity: There exists C3DC3.n; �/ > 0 such that if problem (P) possesses a nonnegative solution
in Rn � .0; T / for some T > 0, then

sup
x2Rn

Z
B.x;�/

'.y/ dy � C3

�
log
�
eC

T 1=�

�

���n
�

; � 2 .0; T
1
� /:

See [Baras and Pierre 1985] for � D 2 and [Hisa and Ishige 2018] for � 2 .0; 2�.
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(b) Sufficiency: For any ˛ > 0, there exists �3 D �3.n; �; ˛/ > 0 such that if

sup
x2Rn

‰�1˛

�
1

jB.x; �/j

Z
B.x;�/

‰˛.T
1
p�1 j'.y/j/ dy

�
� �3�.�T

� 1
� /; � 2 .0; T

1
� /;

for some T > 0, then problem (P) possesses a solution in Rn � .0; T /, where

‰˛.s/ WD sŒlog.eC s/�˛; �.s/ WD s�n
�

log
�
eC

1

s

���n
�

:

See [Hisa and Ishige 2018; Ishige et al. 2020; 2022].

Furthermore, the results in (2) and (3) imply the following results.

(4) Let p � p� , and set

'c.x/ WD

(
jxj�n

�
log
�
eC 1

jxj

���n
�
�1 if p D p� ;

jxj�
�
p�1 if p > p�

for x 2 Rn: (1-1)

(a) There exists C4 D C4.n; �; p/ > 0 such that if

'.x/� C4'c.x/

for almost all x in a neighborhood of the origin, then problem (P) possesses no local-in-time
nonnegative solutions.

(b) There exists �4 D �4.n; �; p/ > 0 such that if

j'.x/j � �4'c.x/CK; a.a. x 2 Rn;

for some K � 0, then problem (P) possesses a local-in-time solution.

The results in (4) show that the “strength” of the singularity at the origin of the function 'c is the critical
threshold for the local-in-time solvability of problem (P). The function 'c is quite useful for identifying
optimal function spaces to which initial functions belong from the view of the solvability of problem (P).
We remark that assertion (2b) with r D 1 and assertion (3b) with ˛ D 0 do not hold. (See [Takahashi
2016, Theorem 1 and Proposition 1], which treat only the case of � D 2 but which is also applicable to
the case of � 2 .0; 2/. See also [Kan and Takahashi 2017, Section 4].)

There are (at least) two useful strategies for the proof of the existence of solutions to problem (P). One is
the supersolution method (SSM) and the other is the contraction mapping theorem (CMT). SSM depends
on the following principle: if there exists a nonnegative supersolution v to problem (P) in Rn � .0; T /

for some T > 0, then problem (P) possesses a nonnegative solution u in Rn � .0; T / such that u� v in
Rn � .0; T /. In our problem (P) with nonnegative initial function ', the following functions have been
used as supersolutions in Rn � .0; T / for some T > 0:

2S� .t/' .1 < p < p� /; 2.S� .t/'
r/
1
r .p > p� /; 2‰�1˛ .S� .t/‰˛.'// .p D p� /;

where S� .t/' is a solution to the fractional heat equation (see (1-5)), r > 1, and ‰˛ is as in assertion (3b).
(See, e.g., [Weissler 1981] for 1 < p < p� ; [Hisa and Ishige 2018; Robinson and Sierżęga 2013]
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for p > p� ; [Hisa and Ishige 2018] for p D p� .) Furthermore, thanks to the arguments in [Tayachi
and Weissler 2014], SSM is also applicable to the study of the existence of sign-changing solutions to
problem (P) (see [Ishige et al. 2020; 2022]), however we require additional arguments in which sense
the solution converges to the initial function. On the other hand, CMT is widely used in the proof of
the existence of solutions in various evolution equations, and the choice of function spaces is crucial.
For our problem (P) with p > p� , the existence of solutions has been proved by CMT in the framework
of weak Lebesgue spaces (see [Fujishima and Ioku 2021; Ishige et al. 2014]) and Morrey spaces (see
[Kozono and Yamazaki 1994; Zhanpeisov 2023]). The results in [Fujishima and Ioku 2021; Ishige et al.
2014; Kozono and Yamazaki 1994; Zhanpeisov 2023] cover the result in (4b) with p > p� . However,
in the critical case p D p� , the arguments in [Fujishima and Ioku 2021; Ishige et al. 2014; Kozono and
Yamazaki 1994; Zhanpeisov 2023] are not applicable to the proof of assertion (4b) by the logarithmic
singularity of 'c .

supersolution method (SSM) weak spaces (CMT) Morrey spaces (CMT)

p > p�
[Hisa and Ishige 2018] [Fujishima and Ioku 2021] [Kozono and Yamazaki 1994]

[Robinson and Sierżęga 2013] [Ishige et al. 2014] [Zhanpeisov 2023]

p D p� [Hisa and Ishige 2018] open not applicable
(see [Takahashi 2016])

The aim of this paper is to establish a sharp sufficient condition on the existence of solutions to
problem (P) in the critical case pDp� in the framework of Banach spaces. For the critical case pDp� , the
weak Zygmund space L1;1.logL/1Cn=� seems a reasonable Banach space since 'c 2L1;1.logL/1Cn=� .
(See Remark 4.4 (i) for the definition of the weak Zygmund spaces Lq;1.logL/˛ , where 1� q <1 and
˛ � 0.) Then we require sharp decay estimates of solutions to the fractional heat equation in the weak
Zygmund spaces Lq;1.logL/˛; however, by the peculiarity of L1;1.logL/˛ , it seems difficult to obtain
our desired sharp decay estimates. (See Remark 4.4 (ii) for further details.)

In this paper we introduce new weak Zygmund-type spaces Lq;1.logL/˛ and uniformly local weak
Zygmund-type spaces Lq;1ul .logL/˛ . Then we establish sharp decay estimates of solutions to the fractional
heat equation in the spaces Lq;1.logL/˛ and L

q;1
ul .logL/˛, and obtain a sufficient condition on the

existence of solutions to problem (P) with p D p� in the framework of the space L
q;1
ul .logL/˛. Our

sufficient condition is simpler than that of assertion (3b) and covers assertion (4b) with p D p� .

We introduce some notation and define the weak Zygmund-type spaces Lq;1.logL/˛ and the uni-
formly local weak Zygmund-type spaces Lq;1ul .logL/˛ . We also formulate the definition of solutions to
problem (P). Let M be the set of Lebesgue measurable sets in Rn. For any E 2M, we denote by jEj
and �E the n-dimensional Lebesgue measure of E and the characteristic function of E, respectively. Let
L1loc be the set of locally integrable functions in Rn. For any q 2 Œ1;1�, we denote by Lq and k � kLq the
usual Lq-space on Rn and its norm, respectively.

Let q 2 Œ1;1� and ˛ 2 Œ0;1/. We define the weak Zygmund-type space Lq;1.logL/˛ by

Lq;1.logL/˛ WD ff 2 L1loc W kf kLq;1.logL/˛ <1g;
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where

kf kLq;1.logL/˛ WD

(
sups>0

˚�
log
�
eC 1

s

��˛ supjE jDs
R
E jf .x/j

q dx
	 1
q if q 2 Œ1;1/;

kf kL1 if q D1:
(1-2)

Then Lq;1.logL/˛ is a Banach space equipped with the norm k�kLq;1.logL/˛ (see Lemma 2.1). See (2-9)
for different expressions of the norm k � kLq;1.logL/˛ . We remark that

Lq D Lq;1.logL/0 � Lq;1.logL/˛ for ˛ � 0: (1-3)

Next, we introduce the uniformly local weak Zygmund-type space L
q;1
ul .logL/˛ by

L
q;1
ul .logL/˛ WD ff 2 L1loc W kf kLq;1ul .logL/˛ <1g;

where
kf kLq;1ul .logL/˛ WD sup

z2Rn
kf�B.z;1/kLq;1.logL/˛ :

Then L
q;1
ul .logL/˛ is also a Banach space equipped with the norm k � kLq;1ul .logL/˛ . We often write, for

any f 2 Lq;1ul .logL/˛ and � > 0,

jjjf jjjq;˛I� WD sup
z2Rn
kf�B.z;�/kLq;1.logL/˛

for simplicity. We remark that L1;1ul .logL/˛ DL1 and jjj � jjj1;˛I� D k � kL1 for all ˛ 2 Œ0;1/. Notice
that, for any k � 1, there exists C D C.n; k/ > 0 such that

jjjf jjjq;˛Ik� � C jjjf jjjq;˛I� (1-4)

for f 2 Lq;1ul .logL/˛ and � > 0.
We formulate the definition of solutions to problem (P). Let � 2 .0; 2�. Let G� be the fundamental

solution to the fractional heat equation

@tvC .��/
�
2 v D 0 in Rn � .0;1/:

For any ' in L1loc, we write

.S� .t/'/.x/ WD

Z
Rn
G� .x�y; t/'.y/ dy; .x; t/ 2 Rn � .0;1/; (1-5)

for simplicity.

Definition 1.1. Let � 2 .0; 2�, p > 1, and T > 0. Set Fp.s/ WD jsjp�1s for s 2 R. Let u be a measurable
and finite almost everywhere function in Rn � .0; T /. We say that u is a solution to problem (P) in
Rn � .0; T / if, for almost all .x; t/ 2 Rn � .0; T /,

� G� .x�y; t/'.y/ is integrable in Rn with respect to y 2 Rn,

� G� .x�y; t � s/Fp.u.y; s// is integrable in Rn � .0; t/ with respect to .y; s/ 2 Rn � .0; t/,

� u satisfies

u.x; t/D ŒS� .t/'�.x/C

Z t

0

ŒS� .t � s/Fp.u.s//�.x/ ds:

We are ready to state our main results.
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Theorem 1.2. Let � 2 .0; 2�, p D p� D 1C �=n, and T� 2 .0;1/. Then there exists � > 0 such that if
' 2 L1;1ul .logL/n=� satisfies

jjj'jjj1;n
�
IT 1=� � � for some T 2 .0; T��;

then problem (P) possesses a solution u 2C..0; T / WL1;1ul .logL/n=� /\L1loc..0; T / WL
1/ in Rn� .0; T /,

with u satisfying

sup
t2.0;T /

jjju.t/jjj1;n
�
IT 1=� C sup

t2.0;T /

t
n
�

�
log
�
eC

1

t

��n
�

ku.t/kL1 <1: (1-6)

Furthermore, the solution u satisfies

lim
t!C0

ku.t/�S� .t/'kL1;1ul .logL/ D 0 for any  2 Œ0; n=�/;

lim
t!C0

u.t/D ' in the sense of distributions:
(1-7)

We remark that Theorem 1.2 with T�D1 does not hold since problem (P) possesses no global-in-time
positive solutions (see [Sugitani 1975]). As a direct consequence of Theorem 1.2, we obtain assertion (4b).

Corollary 1.3. Let � 2 .0; 2� and p D p� . Let 'c be as in (1-1). Then there exists � > 0 such that if

j'.x/j � �'c.x/CK; a.a. x 2 Rn;

for some K � 0, then problem (P) possesses a local-in-time solution.

Furthermore, as a consequence of Theorem 1.2, we have the following.

Theorem 1.4. Let � 2 .0; 2� and p D p� . If ' 2 L1;1ul .logL/˛ for some ˛ > n=� , then problem (P)
possesses a solution u in Rn � .0; T / for some T > 0, with u satisfying (1-6) and (1-7).

The rest of this paper is organized as follows. In Section 2 we collect some properties of nonincreasing
rearrangements of measurable functions and prove some lemmas in Lq;1.logL/˛ and L

q;1
ul .logL/˛.

Furthermore, we recall Hardy’s inequalities and some properties of S� .t/'. In Section 3 we establish
decay estimates of S� .t/' in weak Zygmund-type spaces (see Proposition 3.1). Furthermore, we obtain
decay estimates of S� .t/' in L

q;1
ul .logL/˛ using Besicovitch’s covering lemma. In Section 4 we apply

the contraction mapping theorem in L
q;1
ul .logL/˛ to prove Theorems 1.2 and 1.4. In the Appendix we

give two propositions on relations among the weak Zygmund-type spaces Lq;1.logL/˛, the Zygmund
spaces Lq.logL/˛, and the weak Zygmund spaces Lq;1.logL/˛.

2. Preliminaries

In this section we introduce some notation and give some lemmas on our weak Zygmund-type spaces.
Furthermore, we recall some lemmas on Hardy’s inequalities. In all that follows, we will use C to denote
generic positive constants and point out that C may take different values within a calculation. For any
positive functions f1 and f2 in .0;1/, we write

f1 � f2 for s > 0 if C�1f2.s/� f1.s/� Cf2.s/ for s > 0:
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2.1. Weak Zygmund-type spaces. For any (Lebesgue) measurable function f in Rn, we denote by �f
the distribution function of f , that is,

�f .�/ WD jfx W jf .x/j> �gj for � > 0:

We define the nonincreasing rearrangement f � of f by

f �.s/ WD inff� > 0 W �f .�/� sg for s 2 Œ0;1/:

Here we adopt the convention inf∅D1. Then f � is nonincreasing and right-continuous in Œ0;1/, and
it has the following properties (see [Grafakos 2008, Proposition 1.4.5]):

.kf /� D jkjf �; .jf jq/� D .f �/q;

Z
Rn
jf .x/jq dx D

Z 1
0

f �.s/q ds; f �.0/D kf kL1 ; (2-1)

where q 2 .0;1/ and k 2 R. We remark that if E 2M with jEj<1, then

.�E /
�.s/D �Œ0;jE j/.s/ for s � 0: (2-2)

Define

f ��.s/ WD
1

s

Z s

0

f �.�/ d� for s 2 .0;1/: (2-3)

Here we collect properties of f � and f �� used in the paper.

(a) Since f � is nonincreasing in .0;1/, it follows that

f ��.s/� f �.s/ for s 2 .0;1/: (2-4)

(b) For any q 2 Œ1;1/, Jensen’s inequality together with (2-1) yields

.f ��.s//q �
1

s

Z s

0

f �.�/q d� D
1

s

Z s

0

.jf jq/�.�/ d� D .jf jq/��.s/ for s 2 .0;1/: (2-5)

(c) It follows from [Bennett and Sharpley 1988, Chapter 2, Proposition 3.3] that

f ��.s/D
1

s

Z s

0

f �.�/ d� D
1

s
sup
jE jDs

Z
E

jf .x/j dx for s 2 .0;1/: (2-6)

(d) (O’Neil’s inequality) For any f , g 2 L1, it follows from [O’Neil 1963, Lemma 1.6] that

.f �g/��.s/�

Z 1
s

f ��.�/g��.�/ d� for s 2 .0;1/; (2-7)

where

.f �g/.x/D

Z
Rn
f .x�y/g.y/ dy:

(e) For any f1, f2 2 L1loc, it follows from [O’Neil 1963, Theorem 3.3] that

.f1f2/
��.s/�

1

s

Z s

0

f �1 .�/f
�
2 .�/ d� for s 2 .0;1/: (2-8)
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Let q 2 Œ1;1/ and ˛ � 0. For any L1loc-function f , by (1-2), (2-1), and (2-6), we have

kf kLq;1.logL/˛ D sup
s>0

��
log
�
eC

1

s

��˛
s.jf jq/��.s/

�1
q

D sup
s>0

��
log
�
eC

1

s

��˛ Z s

0

.jf jq/�.�/ d�

�1
q

D sup
s>0

��
log
�
eC

1

s

��˛ Z s

0

f �.�/q d�

�1
q

: (2-9)

Furthermore, for any E 2M with jEj<1, it follows from (2-2) and (2-8) that

.f�E /
��.s/D .f�E�E /

��.s/�
1

s

Z s

0

.f�E /
�.�/.�E /

�.�/ d�D
1

s

Z minfs;jE jg

0

.f�E /
�.�/ d�: (2-10)

For any ˇ 2 Œ˛;1/, since

the function .0;1/ 3 � 7!
�

log
�
eC

1

�

��˛�ˇ
2 R is nondecreasing; (2-11)

by (2-1), (2-9), and (2-10), we have

kf�EkL1;1.logL/˛ D sup
s>0

��
log
�
eC

1

s

��˛
s.f�E /

��.s/

�
� sup
s>0

��
log
�
eC

1

s

��˛ Z minfs;jE jg

0

.f�E /
�.�/ d�

�
D sup
0<s�jE j

��
log
�
eC

1

s

��ˇC˛�ˇ Z minfs;jE jg

0

.f�E /
�.�/ d�

�

�

�
log
�
eC

1

jEj

��˛�ˇ
sup

0<s�jE j

��
log
�
eC

1

s

��ˇ Z minfs;jE jg

0

.f�E /
�.�/ d�

�

�

�
log
�
eC

1

jEj

��˛�ˇ
sup
s>0

��
log
�
eC

1

s

��ˇ Z s

0

.f�E /
�.�/ d�

�
D

�
log
�
eC

1

jEj

��˛�ˇ
kf�EkL1;1.logL/ˇ :

In particular,

jjjf jjj1;˛I� � C

�
log
�
eC

1

�

��˛�ˇ
jjjf jjj1;ˇ I� (2-12)

for f 2 L1;1ul .logL/ˇ , 0� ˛ � ˇ, and � > 0. Here we show that Lq;1.logL/˛ and L
q;1
ul .logL/˛ are

Banach spaces.

Lemma 2.1. For any 1 � q < 1 and ˛ � 0, the weak Zygmund-type space Lq;1.logL/˛ and the
uniformly local weak Zygmund-type space L

q;1
ul .logL/˛ are Banach spaces.

Proof. Let 1� q <1 and ˛� 0. It suffices to prove that Lq;1.logL/˛ (resp. Lq;1ul .logL/˛) is a complete
metric space with the norm k � kLq;1.logL/˛ (resp. k � kLq;1ul .logL/˛ ). Let ffng be a Cauchy sequence in
Lq;1.logL/˛ . It follows from (1-3) that ffng is a Cauchy sequence in Lq , and hence there exists f 2Lq
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such that fn! f as n!1 in Lq . Since the Cauchy sequence ffng is bounded in Lq;1.logL/˛, we
observe from (1-2) that f 2 Lq;1.logL/˛ . It remains to prove that fn! f as n!1 in Lq;1.logL/˛ .
For this aim, we take a subsequence ffnkg such that ffnkg converges almost everywhere to f . Then
Fatou’s lemma gives us that

kf �fnj kLq;1.logL/˛ � sup
s>0

��
log
�
eC

1

s

��˛
sup
jE jDs

lim inf
k!1

Z
E

jfnk .x/�fnj .x/j
q dx

�1
q

� lim inf
k!1

kfnk �fnj kLq;1.logL/˛ :

This implies that fnj converges to f in Lq;1.logL/˛. Thus Lq;1.logL/˛ is a complete metric space.
Similarly, we see that Lq;1ul .logL/˛ is a complete metric space. �

Next, we prove two lemmas on our weak Zygmund-type spaces and uniformly local weak Zygmund-type
spaces.

Lemma 2.2. Let q1, q2 2 Œ1;1� and ˛1, ˛2 � 0 be such that

1D
1

q1
C
1

q2
; ˛ D

˛1

q1
C
˛2

q2
: (2-13)

Then

kf1f2kL1;1.logL/˛ � kf1kLq1;1.logL/˛1kf2kLq2;1.logL/˛2 (2-14)

for f1 2 Lq1;1.logL/˛1 and f2 2 Lq2;1.logL/˛2 . Furthermore,

jjj Qf1 Qf2jjj1;˛I� � jjj Qf1jjjq1;˛1I�jjj
Qf2jjjq2;˛2I� (2-15)

for Qf1 2 L
q1;1
ul .logL/˛1 , Qf2 2 L

q2;1
ul .logL/˛2 , and � > 0.

Proof. Let q1, q2 2 Œ1;1/ and ˛1, ˛2 � 0 satisfy (2-13). Let

f1 2 L
q1;1.logL/˛1 and f2 2 L

q2;1.logL/˛2 :

It follows from Hölder’s inequality, (2-8), and (2-9) that

kf1f2kL1;1.logL/˛ D sup
s>0

��
log
�
eC

1

s

��˛
s.f1f2/

��.s/

�
� sup
s>0

��
log
�
eC

1

s

��˛ Z s

0

f �1 .�/f
�
2 .�/d�

�

� sup
s>0

��
log
�
eC

1

s

��˛�Z s

0

f �1 .�/
q1 d�

� 1
q1

�Z s

0

f �2 .�/
q2 d�

� 1
q2

�

� sup
s>0

��
log
�
eC

1

s

��˛1Z s

0

f �1 .�/
q1 d�

� 1
q1

sup
s>0

��
log
�
eC

1

s

��˛2Z s

0

f �2 .�/
q2 d�

� 1
q2

Dkf1kLq1;1.logL/˛1kf2kLq2;1.logL/˛2 :
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Thus (2-14) holds. Furthermore, for any Qf1 2L
q1;1
ul .logL/˛1 , Qf2 2L

q2;1
ul .logL/˛2 , and �>0, by (2-14)

we have
jjj Qf1 Qf2jjj1;˛I� D sup

x2Rn
k Qf1 Qf2�B.x;�/kL1;1.logL/˛

� sup
x2Rn
fk Qf1�B.x;�/kLq1;1.logL/˛1k

Qf2�B.x;�/kLq2;1.logL/˛2 g

� sup
x2Rn

k Qf1�B.x;�/kLq1;1.logL/˛1 � sup
x2Rn

k Qf2�B.x;�/kLq2;1.logL/˛2

D jjj Qf1jjjq1;˛1I�jjj
Qf2jjjq2;˛2I�:

Thus (2-15) holds, and Lemma 2.2 follows for q1, q2 2 Œ1;1/. If q1 D1 or q2 D1, the conclusion
follows from (1-2). �

Lemma 2.3. Let q 2 Œ1;1/ and ˛ � 0. Then, for any r > 0 with rq � 1,

kjf jrkLq;1.logL/˛ D kf k
r
Lrq;1.logL/˛ for f 2 Lrq;1.logL/˛;

jjjj Qf jr jjjq;˛I� D jjj Qf jjj
r
rq;˛I� for Qf 2 Lq;1ul .logL/˛ and � > 0:

Proof. It follows from (2-9) that

kjf jrkLq;1.logL/˛ D sup
s>0

��
log
�
eC

1

s

��˛ Z s

0

..jf jr/q/�.�/ d�

�1
q

D sup
s>0

��
log
�
eC

1

s

��˛ Z s

0

.jf jrq/�.�/ d�

� r
rq

D kf krLrq;1.logL/˛

for f 2 Lrq;1.logL/˛. Then

jjjj Qf jr jjjq;˛I� D sup
x2Rn

kj Qf jr�B.x;�/kLq;1.logL/˛

D sup
x2Rn

kj Qf j�B.x;�/k
r
Lrq;1.logL/˛

D jjj Qf jjjrrq;˛I�

for Qf 2 Lrq;1ul .logL/˛ and � > 0. Thus Lemma 2.3 follows. �

2.2. Hardy’s inequalities. We recall the following two lemmas on Hardy’s inequality. (See [Muckenhoupt
1972, Theorems 1 and 2].) Throughout this paper, for any q 2 Œ1;1�, we denote by q0 the Hölder conjugate
of q, that is, q0 D q=.q� 1/ if q 2 .1;1/, q0 D1 if q D 1, and q0 D 1 if q D1.

Lemma 2.4. Let q 2 Œ1;1�. Let U and V be locally integrable functions in Œ0;1/. Then there exists
C > 0 such that

kU zF kLq..0;1// � CkVf kLq..0;1//; with zF .s/ WD
Z s

0

f .�/ d�;

holds for all locally integrable functions f in Œ0;1/ if and only if

sup
s>0

fkU kLq..s;1//kV
�1
kLq0 ..0;s//g<1:
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Lemma 2.5. Let q 2 Œ1;1�. Let U and V be locally integrable functions in Œ0;1/. Then there exists
C > 0 such that

kU yF kLq..0;1// � CkVf kLq..0;1//; with yF .s/ WD
Z 1
s

f .�/ d�;

holds for all locally integrable functions f in .0;1/, with f 2 L1..1;1//, if and only if

sup
s>0

fkU kLq..0;s//kV
�1
kLq0 ..s;1//g<1:

2.3. Fundamental solutions. Let � 2 .0; 2�. Let G� be the fundamental solution to the fractional heat
equation

@tvC .��/
�
2 v D 0 in Rn � .0;1/:

The function G� is positive and smooth in Rn � .0;1/, and it satisfies

G� .x; t/D .4�t/
�n
2 exp

�
�
jxj2

4t

�
� Ch�;t .x/ if � D 2;

G� .x; t/� h�;t .x/ if 0 < � < 2
(2-16)

for .x; t/ 2 Rn � .0;1/, where
h�;t .x/ WD t

�n
� .1C t�

1
� jxj/�n�� : (2-17)

Furthermore,

� G� .x; t/D t
�n
�G� .t

� 1
� x; 1/,

R
Rn
G� .x; t/ dx D 1,

� G� . � ; 1/ is radially symmetric and G� .x; 1/�G� .y; 1/ if jxj � jyj,

� G� .x; t/D
R

Rn
G� .x�y; t � s/G� .y; s/ dy

for x, y 2 Rn and 0 < s < t (see, e.g., [Bogdan and Jakubowski 2007; Brandolese and Karch 2008;
Sugitani 1975]), and

lim
t!C0

kS� .t/�� �kL1 D 0 for � 2 C0.Rn/: (2-18)

In addition, it follows from Young’s inequality that

kS� .t/�kLq � Ct
�n
�
. 1
r
� 1
q
/
k�kLr (2-19)

for � 2 Lr , 1� r � q �1, and t > 0.

3. Decay estimates of S�.t/'

In this section we obtain decay estimates of S� .t/' in our weak Zygmund-type spaces and uniformly
local weak Zygmund-type spaces. For simplicity we write gt WDG� . � ; t / and ht WD h�;t .

Proposition 3.1. Let � 2 .0; 2�, 1� r � q �1, and ˛, ˇ � 0. Assume that ˛ � ˇ if r D q. Then there
exists C > 0 such that

kS� .t/'kLq;1.logL/ˇ � Ct
�n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

k'kLr;1.logL/˛

for ' 2 Lr;1.logL/˛ and t > 0.
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Before starting the proof, we recall the following relations on logarithmic functions: for any fixed
L> 1 and k > 0,

log
�
eC

1

s

�
� log

�
LC

1

s

�
� log

�
eC

k

s

�
� log

�
eC

1

sk

�
for s > 0: (3-1)

Furthermore, we have the following results.

Lemma 3.2. (1) Let q > �1 and ˛ 2 R. Then there exists C1 > 0 such thatZ s

0

�q
�

log
�
eC

1

�

��˛
d� � C1s

qC1

�
log
�
eC

1

s

��˛
for s > 0:

(2) Let S > 0 and ˛ < �1. Then there exists C2 > 0 such thatZ s

0

��1
�

log
�
eC

1

�

��˛
d� � C2

�
log
�
eC

1

s

��˛C1
for s 2 .0; S/:

(3) Let q < �1 and ˛ 2 R. Then there exists C3 > 0 such thatZ 1
s

�q
�

log
�
eC

1

�

��˛
d� � C3s

qC1

�
log
�
eC

1

s

��˛
for s > 0:

Proof. We prove assertion (1). Let ı > 0 be such that q� ı >�1. Then there exists L 2 Œe;1/ such that

the function .0;1/ 3 � 7! �ı
�

log
�
LC

1

�

��˛
is nondecreasing: (3-2)

This together with (3-1) implies thatZ s

0

�q
�

log
�
eC

1

�

��˛
d� � C

Z s

0

�q�ı � �ı
�

log
�
LC

1

�

��˛
d�

� Csı
�

log
�
LC

1

s

��˛ Z s

0

�q�ı d� � CsqC1
�

log
�
eC

1

s

��˛
for s > 0. Thus assertion (1) follows.

We prove assertion (2). Let S > 0. It follows thatZ s

0

��1
�

log
�
eC

1

�

��˛
d� � C

Z s

0

��1j log � j˛ d� � C j log sj˛C1 � C
�

log
�
eC

1

s

��˛C1
for s 2

�
0; 1
2

�
. If S � 1

2
, thenZ s

0

��1
�

log
�
eC

1

�

��˛
d� �

Z S

1
4

��1
�

log
�
eC

1

�

��˛
d� CC � C � C

�
log
�
eC

1

s

��˛C1
for s 2

�
1
2
; S
�
. Thus assertion (2) follows.

It remains to prove assertion (3). Let ı0 > 0 be such that qC ı0 < �1. Then there exists L0 2 Œe;1/
such that

the function .0;1/ 3 � 7! ��ı
0

�
log
�
L0C

1

�

��˛
is nonincreasing:
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This together with (3-1) implies thatZ 1
s

�q
�

log
�
eC

1

�

��˛
d� � C

Z 1
s

�qCı
0

� ��ı
0

�
log
�
L0C

1

�

��˛
d�

� Cs�ı
0

�
log
�
L0C

1

s

��˛ Z 1
s

�qCı
0

d� � CsqC1
�

log
�
eC

1

s

��˛
for s > 0. Thus assertion (3) follows. �

Next, we prepare the following lemma on h�t , where ht D h�;t is as in (2-17).

Lemma 3.3. Let 1� r � q <1 and  2 R. Assume that  � 0 if r D q. Then there exists C > 0 such
that Z 1

0

�q.1�
1
r
/
�

log
�
eC

1

�

��
.h�t .�//

q d� � Ct�
nq
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

��
(3-3)

for t > 0.

Proof. It follows from (2-17) that

.ht /
�.s/D ht ..!

�1
n s/

1
n e1/� Ct

�n
� .1C t�

1
� s

1
n /�n��

for s 2 Œ0;1/ and t 2 .0;1/, where !n is the volume of the n-dimensional unit ball B.0; 1/ and
e1 WD .1; 0; : : : ; 0/ 2 Rn. Then

I WD

Z 1
0

�q.1�
1
r
/
�

log
�
eC

1

�

��
.h�t .�//

q d�

� Ct�
nq
�

Z 1
0

�q.1�
1
r
/
�

log
�
eC

1

�

��
.1C t�

1
� �

1
n /�q.nC�/ d�

� Ct�
nq
�
. 1
r
� 1
q
/
Z 1
0

�nq.1�
1
r
/Cn�1.1C �/�q.nC�/

�
log
�
eC

1

.t1=��/n

��
d� (3-4)

for t > 0.
We first consider the case of  � 0. It follows from (3-1) that�

log
�
eC

1

.t1=��/n

��
� C

�
log
�
eC

1

t1=��

��
� C

�
log
�
eC

1

t1=�

�
C log

�
eC

1

�

��
� C

�
log
�
eC

1

t

��
CC

�
log
�
eC

1

�

��
(3-5)

for t > 0 and � 2
�
0; 1
2

�
. Similarly, by (3-1), we have�

log
�
eC

1

.t1=��/n

��
�

�
log
�
eC

2n

.t1=� /n

��
� C

�
log
�
eC

1

t

��
(3-6)
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for t > 0 and � 2
�
1
2
;1

�
. Since

nq

�
1�

1

r

�
Cn� 1� q.nC �/D�

nq

r
Cn� 1� q� D�nq

�
1

r
�
1

q

�
� 1� q� < �1; (3-7)

by Lemma 3.2, (3-4), (3-5), and (3-6), we obtain

I � Ct�
nq
�
. 1
r
� 1
q
/
Z 1

2

0

�nq.1�
1
r
/Cn�1

��
log
�
eC

1

t

��
C

�
log
�
eC

1

�

���
d�

CCt�
nq
�
. 1
r
� 1
q
/
Z 1
1
2

�nq.1�
1
r
/Cn�1.1C �/�q.nC�/

�
log
�
eC

1

t

��
d�

� Ct�
nq
�
. 1
r
� 1
q
/
�
1C

�
log
�
eC

1

t

���
� Ct�

nq
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

��
for t > 0. This implies (3-3) in the case of  � 0.

Consider the case of  < 0. Then, by (3-1), we have�
log
�
eC

1

.t1=��/n

��
�

�
log
�
eC

2n

.t1=� /n

��
� C

�
log
�
eC

1

t

��
(3-8)

for t > 0 and � 2
�
0; 1
2

�
. Let 0 < ı < �q=j j. We find L 2 Œe;1/ such that the function f in .0;1/

defined by

f .z/ WD zı log
�
LC

1

zn

�
is nondecreasing in .0;1/. Since  < 0, by (3-1), we obtain�

log
�
eC

1

.t1=��/n

��
� C

�
log
�
LC

1

.t1=��/n

��
D C Œz�ıf .z/ �jzDt1=��

� C.t
1
� �/�ıf .z/ j

zD t
1=�

2

� C��ı
�

log
�
eC

2n

tn=�

��
� C��ı

�
log
�
eC

1

t

��
for t > 0 and � 2

�
1
2
;1

�
. This together with (3-7) and (3-8) implies that

I � Ct�
nq
�
. 1
r
� 1
q
/
Z 1

2

0

�nq.1�
1
r
/Cn�1

�
log
�
eC

1

t

��
d�

CCt�
nq
�
. 1
r
� 1
q
/
Z 1
1
2

�nq.1�
1
r
/Cn�1�ı .1C �/�q.nC�/

�
log
�
eC

1

t

��
d�

� Ct�
nq
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

��
for t > 0. This implies (3-3) in the case of  < 0. Thus Lemma 3.3 follows. �
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Proof of Proposition 3.1. The proof is divided into the following three cases:

1� r < q <1; 1� r D q <1; 1� r � q D1:

Step 1. Consider the case of 1� r < q <1. It follows from (2-4), (2-7), (2-9), and (2-16) that

kS� .t/'k
q

Lq;1.logL/ˇ
D sup
s>0

��
log
�
eC

1

s

��ˇ Z s

0

..S� .t/'/
�.�//q d�

�

� sup
s>0

��
log
�
eC

1

s

��ˇ Z s

0

..S� .t/'/
��.�//q d�

�

� sup
s>0

��
log
�
eC

1

s

��ˇ Z s

0

�Z 1
�

g��t .�/'
��.�/ d�

�q
d�

�

� C sup
s>0

��
log
�
eC

1

s

��ˇ Z s

0

�Z 1
�

h��t .�/'
��.�/ d�

�q
d�

�
for t > 0. Furthermore, thanks to (2-11), we have

kS� .t/'k
q

Lq;1.logL/ˇ
� C

Z 1
0

��
log
�
eC

1

�

��ˇ
q
Z 1
�

h��t .�/'
��.�/ d�

�q
d� (3-9)

for t > 0. On the other hand, set

U.�/ WD

�
log
�
eC

1

�

��ˇ
q

; V .�/ WD �

�
log
�
eC

1

�

��ˇ
q

for � > 0. It follows from Lemma 3.2 (1) and (3) that

sup
s>0

�Z s

0

jU.�/jq d�

�1
q
�Z 1

s

jV.�/j�q
0

d�

� 1
q0

� sup
s>0

�
Cs

1
q

�
log
�
eC

1

s

��ˇ
q

�Cs
�1C 1

q0

�
log
�
eC

1

s

���ˇ
q
�
<1:

Then, by Lemma 2.5, (2-3), and (3-9), we have

kS� .t/'k
q

Lq;1.logL/ˇ
�C

Z 1
0

�
�

�
log
�
eC

1

�

��ˇ
q

h��t .�/'
��.�/

�q
d�

�C sup
s>0

��
log
�
eC

1

s

��˛
s.'��.s//r

�q
r
Z 1
0

�
�1�

1
r

�
log
�
eC

1

�

���˛
r
C
ˇ
q

h��t .�/

�q
d�

for t > 0. This together with (2-5) and (2-9) implies that

kS� .t/'k
q

Lq;1.logL/ˇ
� Ck'k

q

Lr;1.logL/˛

Z 1
0

�
��

1
r

�
log
�
eC

1

�

�� Z �

0

h�t .�/ d�

�q
d� (3-10)
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for t > 0, where

 WD �
˛

r
C
ˇ

q
:

Set

zU.�/D ��
1
r

�
log
�
eC

1

�

��
; zV .�/D �1�

1
r

�
log
�
eC

1

�

��
:

Since q > r and q0 < r 0, by Lemma 3.2 (1) and (3), we have

sup
s>0

�Z 1
s

j zU.�/jq d�

�1
q
�Z s

0

j zV .�/j�q
0

d�

� 1
q0

D sup
s>0

�Z 1
s

��
q
r

�
log
�
eC

1

�

��q
d�

�1
q
�Z s

0

��
q0

r0

�
log
�
eC

1

�

���q0
d�

� 1
q0

� sup
s>0

�
Cs

1
q
� 1
r

�
log
�
eC

1

s

��
�Cs

1
q0
� 1
r0

�
log
�
eC

1

s

����
<1: (3-11)

Applying Lemma 2.4 to (3-10), by (3-11), we obtain

kS� .t/'k
q

Lq;1.logL/ˇ
� Ck'k

q

Lr;1.logL/˛

Z 1
0

�
�1�

1
r

�
log
�
eC

1

�

��
h�t .�/

�q
d�

for t > 0. This together with Lemma 3.3 implies that

kS� .t/'k
q

Lq;1.logL/ˇ
� Ct�

nq
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

��q
k'k

q

Lr;1.logL/˛

for t > 0. Thus Proposition 3.1 follows in the case of 1� r < q <1.

Step 2. Consider the case of 1� r D q <1. It follows from Hölder’s inequality and (2-16) that

jŒS� .t/'�.x/j
r
� C

�Z
Rn
jht .x�y/jj'.y/j dy

�r
� C

�Z
Rn
jht .x�y/j dy

�r�1 Z
Rn
jht .x�y/jj'.y/j

r dy

� C

Z
Rn
jht .x�y/jj'.y/j

r dy:

Then it follows from (2-7) and (2-9) that

kS� .t/'k
r
Lr;1.logL/ˇ D sup

s>0

��
log
�
eC

1

s

��ˇ
s.jS� .t/'j

r/��.s/

�

� C sup
s>0

��
log
�
eC

1

s

��ˇ
s

Z 1
s

.ht /
��.�/.j'jr/��.�/ d�

�
(3-12)
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for t > 0. Set

yU.r/D r

�
log
�
eC

1

r

��ˇ
; yV .r/D r2

�
log
�
eC

1

r

��ˇ
:

Similarly to (3-2), we find L 2 Œe;1/ such that

the function .0;1/ 3 r 7! r

�
log
�
LC

1

r

��ˇ
is nondecreasing:

Then, by (3-1), we have

k yU kL1.0;s/ � C sup
r2.0;s/

�
r

�
log
�
LC

1

r

��ˇ�

� Cs

�
log
�
LC

1

s

��ˇ
� Cs

�
log
�
eC

1

s

��ˇ
for s > 0. This together with Lemma 3.2 (3) implies that

sup
s>0

�
k yU kL1..0;s//

Z 1
s

j yV .�/j�1 d�

�
� sup
s>0

�
Cs

�
log
�
eC

1

s

��ˇ
�Cs�1

�
log
�
eC

1

s

���ˇ�
<1: (3-13)

Applying Lemma 2.5 with q D1, by (2-9), (3-12) and (3-13), we obtain

kS� .t/'k
r
Lr;1.logL/ˇ � C sup

s>0

�
s2
�

log
�
eC

1

s

��ˇ
.ht /

��.s/.j'jr/��.s/

�

� C sup
s>0

�
s

�
log
�
eC

1

s

��ˇ�˛
.ht /

��.s/

�
� sup
s>0

�
s

�
log
�
eC

1

s

��˛
.j'jr/��.s/

�
D CkhtkL1;1.logL/ˇ�˛k'k

r
Lr;1.logL/˛ (3-14)

for t > 0. Furthermore, since ˛ � ˇ, by Lemma 3.3, (2-9), and (2-11), we have

khtkL1;1.logL/ˇ�˛ D sup
s>0

��
log
�
eC

1

s

��ˇ�˛ Z s

0

.ht /
�.�/ d�

�
�

Z 1
0

�
log
�
eC

1

�

��ˇ�˛
.ht /

�.�/ d�

� C

�
log
�
eC

1

t

��ˇ�˛
for t > 0. This together with (3-14) implies that

kS� .t/'k
r
Lr;1.logL/ˇ � C

�
log
�
eC

1

t

��ˇ�˛
k'krLr;1.logL/˛ for t > 0:

Thus Proposition 3.1 follows in the case of 1� r D q <1.
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Step 3. It remains to consider the case of 1� r � q D1. If r D q D1, then it follows from (2-16) that

kS� .t/'kL1 � Ck'kL1

Z
Rn
ht .y/ dy � Ck'kL1

for t > 0, and Proposition 3.1 follows. On the other hand, in the case of 1� r < q D1, let Qq 2 .r;1/.
Then, by Proposition 3.1 with q D Qq > r , (1-3), (2-19), and (3-1), we have

kS� .t/'kL1 D
S�� t2�S�� t2�'L1 � Ct� n

� Qq

S�� t2�'L Qq D C� n
� Qq

S�� t2�'L Qq;1.logL/0

� Ct�
n
� Qq �Ct�

n
�
. 1
r
� 1
Qq
/
�

log
�
eC

2

t

���˛
r

k'kLr;1.logL/˛

D Ct�
n
�r

�
log
�
eC

1

t

���˛
r

k'kLr;1.logL/˛

for t > 0. Thus Proposition 3.1 follows in the case of 1 � r < q D1. The proof of Proposition 3.1 is
complete. �

Furthermore, by Proposition 3.1, we employ the arguments in the proof of [Hisa and Ishige 2018,
Lemma 2.1] to obtain decay estimates of S� .t/' in uniformly local weak Zygmund-type spaces.

Proposition 3.4. Let � 2 .0; 2�, 1� r � q �1, and ˛, ˇ � 0. Assume that ˛ � ˇ if r D q. There exists
C > 0 such that, for any T > 0,

jjjS� .t/'jjjq;ˇ IT 1=� � Ct
�n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

jjj'jjjr;˛IT 1=� (3-15)

for ' 2 Lr;1ul .logL/˛ and t 2 .0; T �.

Proof. We first consider the case of � 2 .0; 2/. It suffices to prove

t
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

��˛
r
�
ˇ
q

k�B.z;T 1=� /S� .t/'kLq;1.logL/ˇ � C jjj'jjjr;˛IT 1=� (3-16)

for z 2 Rn and 0 < t � T . For the proof, by translating if necessary, we have only to consider the case
of z D 0.

By Besicovitch’s covering lemma, we can find an integer m depending only on n and a set

fxk;igkD1;:::;m; i2N � Rn nB.0; 10T
1
� /

such that
Bk;i \Bk;j D∅ if i 6D j and Rn nB.0; 10T

1
� /�

m[
kD1

1[
iD1

Bk;i ; (3-17)

where Bk;i WD B.xk;i ; T 1=� /. Then

jŒS� .t/'�.x/j � ju0.x; t/jC

mX
kD1

1X
iD1

juk;i .x; t/j; .x; t/ 2 Rn � .0; T /; (3-18)

where
u0.x; t/ WD ŒS� .t/.'�B.0;10T 1=� //�.x/; uk;i .x; t/ WD ŒS� .t/.'�Bk;i /�.x/:
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By Proposition 3.1 and (1-4), we have

ku0.t/�B.0;T 1=� /kLq;1.logL/ˇ � ku0.t/kLq;1.logL/ˇ

� Ct�
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

k'�B.0;10T 1=� /kLr;1.logL/˛

� Ct�
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

jjj'jjjr;˛I10T 1=�

� Ct�
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

jjj'jjjr;˛IT 1=� (3-19)

for t 2 .0; T �.
Let k D 1; : : : ; m and i2 N. By (2-16), we have

juk;i .x; t/j � C

Z
B.xk;i ;T 1=� /

ht .x�y/j'.y/j dy D C

Z
Rn
ht .x� z� xk;i /'k;i .z/ dz (3-20)

for .x; t/ 2Rn� .0;1/, where 'k;i .x/D j'.xCxk;i /j�B.0;T 1=� /. Since jxk;i j � 10T 1=� , it follows that

.1CT �
1
� jxk;i j/.1C t

� 1
� jx� zj/D 1CT �

1
� jxk;i jC t

� 1
� jx� zjC t�

1
� T �

1
� jxk;i jjx� zj

� 1C 3t�
1
� jxk;i jC t

� 1
� jx� zj

D 1C 4t�
1
� .jxk;i j � jx� zj/� t

� 1
� jxk;i jC 5t

� 1
� jx� zj

� 4.1C t�
1
� .jxk;i j � jx� zj//� 4.1C t

� 1
� jx� z� xk;i j/

for x, z 2 B.0; T 1=� / and t 2 .0; T /. This together with (2-16) implies that

ht .x� z� xk;i /� Ct
�n
� .1CT �

1
� jxk;i j/

�n�� .1C t�
1
� jx� zj/�n��

� C.1CT �
1
� jxk;i j/

�n��gt .x� z/ (3-21)

for x, z 2 B.0; T 1=� / and t 2 .0; T /. We observe from (3-20) and (3-21) that

juk;i .x; t/j � C.1CT
� 1
� jxk;i j/

�n�� ŒS� .t/'k;i �.x/

for x 2 B.0; T 1=� / and t 2 .0; T /. Then, by Proposition 3.1, we obtain

kuk;i .t/�B.0;T 1=� /kLq;1.logL/ˇ

� C.1CT �
1
� jxk;i j/

�n��
kS� .t/'k;ikLq;1.logL/ˇ

� C.1CT �
1
� jxk;i j/

�n�� t�
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

k'k;ikLr;1.logL/˛

D C.1CT �
1
� jxk;i j/

�n�� t�
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

k'�B.xk;i ;T 1=� /kLr;1.logL/˛

� C.1CT �
1
� jxk;i j/

�n�� t�
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

jjj'jjjr;˛IT 1=� (3-22)

for t 2 .0; T /.
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On the other hand, since

1
2
jyj � 1

2
.jxk;i jCT

1
� /� jxk;i j for y 2 Bk;i ;

we have
1

jBk;i j

Z
Bk;i

�
1C 1

2
T �

1
� jyj

��n��
dy � .1CT �

1
� jxk;i j/

�n�� :

Then, by (3-17), we see that

1X
iD1

.1CT �
1
� jxk;i j/

�n��
� CT �

n
�

1X
iD1

Z
Bk;i

�
1C 1

2
T �

1
� jyj

��n��
dy

� CT �
n
�

Z
Rn

�
1C 1

2
T �

1
� jyj

��n��
dy � C (3-23)

for T > 0. Combining (3-18), (3-19), (3-22), and (3-23), we obtain

t
n
�
. 1
r
� 1
q
/
�

log
�
eC

1

t

��˛
r
�
ˇ
q

k�B.0;T 1=� /S� .t/'kLq;1.logL/ˇ

� C jjj'jjjr;˛IT 1=� CC jjj'jjjr;˛IT 1=�

mX
kD1

1X
iD1

.1CT �
1
� jxk;i j/

�n��

� C jjj'jjjr;˛IT 1=�

for t 2 .0; T /. This implies (3-16) with z D 0; that is, (3-15) holds. Thus Proposition 3.4 follows in the
case of 0 < � < 2.

Consider the case of � D 2; that is, S� .t/D et�. Let � D t1=2. It follows from (2-16) that

jŒet�'�.x/j � C

Z
Rn
t�

n
2 .1C t�

1
2 jx�yj/�n�1j'.y/j dy

� C ŒS1.�/j'j�.x/

for .x; t/ 2 Rn � .0;1/. This together with Proposition 3.4 in the case of � D 1 implies that

jjjet�'jjjq;ˇ IT 1=2 � C jjjS1.�/j'jjjjq;ˇ IT 1=2

� C��n.
1
r
� 1
q
/
�

log
�
eC

1

�

���˛
r
C
ˇ
q

jjj'jjjr;˛IT 1=2

� Ct�
n
2
. 1
r
� 1
q
/
�

log
�
eC

1

t

���˛
r
C
ˇ
q

jjj'jjjr;˛IT 1=2 for t 2 .0; T /:

Thus Proposition 3.4 follows in the case of � D 2. The proof of Proposition 3.4 is complete. �

4. Proof of Theorems 1.2 and 1.4

We apply the contraction mapping theorem to problem (P) in uniformly local weak Zygmund-type spaces
and prove Theorems 1.2 and 1.4. We also prove Corollary 1.3. We first prove the following proposition.
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Proposition 4.1. Let p D p� , T� 2 .0;1/, and  2 Œ0; n=�/. Then there exists � > 0 such that if
' 2 L1;1ul .logL/n=� satisfies

jjj'jjj1;n
�
IT 1=� � � for some T 2 .0; T��; (4-1)

then problem (P) possesses a solution

u 2 C..0; T / W L1;1ul .logL/n=� /\L1loc.0; T W L
1/ in Rn � .0; T /;

with u satisfying
jjju.t/jjj1;n

�
IT 1=� � C jjj'jjj1;n

�
IT 1=� ;

jjju.t/jjjp; IT 1=� � Ct
�n
�
.1� 1

p
/
�

log
�
eC

1

t

���n
�
C

p

jjj'jjj1;n
�
IT 1=� ;

ku.t/kL1 � Ct
�n
�

�
log
�
eC

1

t

���n
�

jjj'jjj1;n
�
IT 1=�

(4-2)

for t 2 .0; T /. Here C is a positive constant depending only on T�, n, � , and  .

Throughout this section, we set

T� 2 .0;1/; T 2 .0; T��; p WD p� D 1C
�

n
; ˛ WD

n

�
; 0�  < ˛; ' 2 L1;1ul .logL/˛:

Let � > 0, and assume (4-1). By Proposition 3.4, we find C� > 0 such that

sup
0<t<T

jjjS� .t/'jjj1;˛IT 1=� � C�jjj'jjj1;˛IT 1=� � C��;

sup
0<t<T

t
n
�
.1� 1

p
/
�

log
�
eC

1

t

��� 
p
C˛

jjjS� .t/'jjjp; IT 1=� � C�jjj'jjj1;˛IT 1=� � C��;

sup
0<t<T

t
n
�

�
log
�
eC

1

t

��˛
kS� .t/'kL1 � C�jjj'jjj1;˛IT 1=� � C��:

(4-3)

Define
XT WD C..0; T / W L

1;1
ul .logL/˛/\L1loc..0; T / W L

p;1
ul .logL/ /\L1loc..0; T / W L

1/:

Setting C � D 2C�, for any u 2XT , we say that u 2XT .C ��/ if u satisfies

sup
0<t<T

jjju.t/jjj1;˛IT 1=� C sup
0<t<T

t
n
�
.1� 1

p
/
�

log
�
eC

1

t

��� 
p
C˛

jjju.t/jjjp; IT 1=�

C sup
0<t<T

t
n
�

�
log
�
eC

1

t

��˛
ku.t/kL1 � C

��: (4-4)

For any u, v 2XT .C ��/, set

dX .u; v/ WD d
1
X .u; v/C d

2
X .u; v/C d

3
X .u; v/;

where
d1X .u; v/ WD sup

0<t<T

jjju.t/� v.t/jjj1;˛IT 1=� ;
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d2X .u; v/ WD sup
0<t<T

t
n
�
.1� 1

p
/
�

log
�
eC

1

t

��� 
p
C˛

jjju.t/� v.t/jjjp; IT 1=� ;

d3X .u; v/ WD sup
0<t<T

t
n
�

�
log
�
eC

1

t

��˛
ku.t/� v.t/kL1 :

Then .XT ; dX / is a Banach space and XT .C ��/ is closed in .XT ; dX /. Define

ˆ.u/ WD S� .t/'C

Z t

0

S� .t � s/Fp.u.s// ds for u 2XT .C ��/;

where Fp.s/D jsjp�1s for s 2 R. For the proof of Proposition 4.1 we prepare the following two lemmas.

Lemma 4.2. Let � > 0, and assume that (4-1) holds for some T 2 .0; T��. Then there exists C D
C.n; �; C�; T�/ > 0 such that

d1X .ˆ.u/;ˆ.v//C d
2
X .ˆ.u/;ˆ.v//� C�

p�1 d2X .u; v/ for u; v 2XT .C ��/:

Proof. Let u, v 2XT .C ��/. Let 0 < s < t < T . It follows that

jFp.u.x; s//�Fp.v.x; s//j � w.x; s/ju.x; s/� v.x; s/j for x 2 Rn; (4-5)

where w.x; s/ WD p.ju.x; s/jp�1Cjv.x; s/jp�1/. Then, by Lemmas 2.2 and 2.3, we have

jjjFp.u.s//�Fp.v.s//jjj1; IT 1=� � jjjw.s/jjj p
.p�1/

; IT 1=� jjju.s/�v.s/jjjp; IT 1=�

� p.jjju.s/jjj
p�1

p; IT 1=�
Cjjjv.s/jjj

p�1

p; IT 1=�
/jjju.s/�v.s/jjjp; IT 1=� : (4-6)

Since u, v 2XT .C ��/, by (4-4), we obtain

jjjFp.u.s//�Fp.v.s//jjj1; IT 1=�

� Cs�
n.p�1/
�

.1� 1
p
/
�

log
�
eC

1

s

��.p�1/
p
�˛.p�1/

.C ��/p�1Cs�
n
�
.1� 1

p
/
�

log
�
eC

1

s

�� 
p
�˛

d2X .u; v/

D C�p�1s�
n.p�1/
�

�
log
�
eC

1

s

���˛p
d2X .u; v/: (4-7)

This together with Proposition 3.4 implies thatˇ̌̌̌̌̌̌̌ ˇ̌̌̌Z t

0

S� .t � s/ŒFp.u.s//�Fp.v.s//� ds

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
q;ˇ IT 1=�

�

Z t

0

jjjS� .t � s/ŒFp.u.s//�Fp.v.s//�jjjq;ˇ IT 1=� ds

� C

Z t

0

.t � s/�
n
�
.1� 1

q
/
�

log
�
eC

1

t � s

���Cˇ
q

jjjFp.u.s//�Fp.v.s//jjj1; IT 1=� ds

� C�p�1d2X .u; v/

Z t

0

.t � s/�
n
�
.1� 1

q
/
�

log
�
eC

1

t � s

���Cˇ
q

s�
n
�
.p�1/

�
log
�
eC

1

s

���˛p
ds (4-8)

for q 2 Œ1; p� and ˇ 2 Œ; ˛�.
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On the other hand, since

 �˛p D  �
n

�

�
1C

�

n

�
D  �

n

�
� 1D  �˛� 1 < �1; (4-9)

by Lemma 3.2 (2) and (3-1), we haveZ t
2

0

.t � s/�
n
�
.1� 1

q
/
�

log
�
eC

1

t � s

���Cˇ
q

s�
n
�
.p�1/

�
log
�
eC

1

s

���˛p
ds

� Ct�
n
�
.1� 1

q
/
�

log
�
eC

1

t

���Cˇ
q
Z t

2

0

s�1
�

log
�
eC

1

s

���˛p
ds

� Ct�
n
�
.1� 1

q
/
�

log
�
eC

1

t

���Cˇ
q

�C

�
log
�
eC

1

t

���n
�

D Ct�
n
�
.1� 1

q
/
�

log
�
eC

1

t

��ˇ
q
�˛

(4-10)

for t 2 .0; T /. Similarly, since

�
n

�

�
1�

1

q

�
� �

n.p� 1/

�p
D�

1

p
> �1;

by Lemma 3.2 (1) and (3-1), we obtainZ t

t
2

.t � s/�
n
�
.1� 1

q
/
�

log
�
eC

1

t � s

���Cˇ
q

s�
n
�
.p�1/

�
log
�
eC

1

s

���˛p
ds

� Ct�
n
�
.p�1/

�
log
�
eC

1

t

���˛p Z t

t
2

.t � s/�
n
�
.1� 1

q
/
�

log
�
eC

1

t � s

���Cˇ
q

ds

� Ct�1
�

log
�
eC

1

t

���˛p
�Ct�

n
�
.1� 1

q
/C1

�
log
�
eC

1

t

���Cˇ
q

D Ct�
n
�
.1� 1

q
/
�

log
�
eC

1

t

��ˇ
q
�˛p

� Ct�
n
�
.1� 1

q
/
�

log
�
eC

1

t

��ˇ
q
�˛

(4-11)

for t 2 .0; T /. Combining (4-8), (4-10), and (4-11) with .q; ˇ/D .1; ˛/ and .p; /, we deduce that

d1X .ˆ.u/;ˆ.v//C d
2
X .ˆ.u/;ˆ.v//

D sup
0<t<T

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌Z t

0

S� .t � s/ŒFp.u.s//�Fp.v.s//� ds

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
1;˛IT 1=�

C sup
0<t<T

t
n
�
.1� 1

p
/
�

log
�
eC

1

t

��� 
p
C˛ ˇ̌̌̌̌̌̌̌ ˇ̌̌̌Z t

0

S� .t � s/ŒFp.u.s//�Fp.v.s//� ds

ˇ̌̌̌̌̌̌̌ ˇ̌̌̌
p; IT 1=�

� C�p�1d2X .u; v/

for u, v 2XT .C ��/. Thus Lemma 4.2 follows. �

Lemma 4.3. Let � > 0, and assume that (4-1) holds for some T 2 .0; T��. Then there exists C D
C.n; �; C�; T�/ > 0 such that

d3X .ˆ.u/;ˆ.v//� C�
p�1.d2X .u; v/C d

3
X .u; v// for u; v 2XT .C ��/:
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Proof. Let u, v 2XT .C ��/. Let 0 < s < t < T . Similarly to (4-6), we have

kFp.u.s//�Fp.v.s//kL1 � kw.s/kL1ku.s/� v.s/kL1

� p.ku.s/k
p�1
L1 Ckv.s/k

p�1
L1 /ku.s/� v.s/kL1 :

Since u, v 2XT .C ��/, by (4-4), we obtain

kFp.u.s//�Fp.v.s//kL1 � Cs
�
n.p�1/
�

�
log
�
eC

1

s

���˛.p�1/
.C ��/p�1 �s�

n
�

�
log
�
eC

1

s

���˛
d3X .u; v/

D C�p�1s�
np
�

�
log
�
eC

1

s

���˛p
d3X .u; v/:

This together with Proposition 3.4 and (4-7) implies thatZ t

0

S� .t � s/ŒFp.u.s//�Fp.v.s//� ds


L1

�

Z t

0

kS� .t � s/ŒFp.u.s//�Fp.v.s//�kL1 ds

� C

Z t
2

0

.t � s/�
n
�

�
log
�
eC

1

t � s

���
jjjFp.u.s//�Fp.v.s//jjj1; IT 1=� ds

CC

Z t

t
2

kFp.u.s//�Fp.v.s//kL1 ds

� C�p�1d2X .u; v/

Z t
2

0

.t � s/�
n
�

�
log
�
eC

1

t � s

���
s�

n
�
.p�1/

�
log
�
eC

1

s

���˛p
ds

CC�p�1d3X .u; v/

Z t

t
2

s�
np
�

�
log
�
eC

1

s

���˛p
ds

� C�p�1t�
n
�

�
log
�
eC

1

t

���
d2X .u; v/

Z t
2

0

s�1
�

log
�
eC

1

s

���˛p
ds

CC�p�1t�
np
�
C1

�
log
�
eC

1

t

���˛p
d3X .u; v/:

Since np D nC � and ˛p > ˛, we haveZ t

0

S� .t � s/ŒFp.u.s//�Fp.v.s//� ds


L1

� C�p�1t�
n
�

�
log
�
eC

1

t

���
d2X .u; v/

Z t
2

0

s�1
�

log
�
eC

1

s

���˛p
ds

CC�p�1t�
n
�

�
log
�
eC

1

t

���˛
d3X .u; v/: (4-12)

Furthermore, by Lemma 3.2 (2) and (4-9) we see thatZ t
2

0

s�1
�

log
�
eC

1

s

���˛p
ds � C

�
log
�
eC

1

t

���˛
(4-13)
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for t 2 .0; T /. Combining (4-12) and (4-13), we deduce that

d3X .ˆ.u/;ˆ.v//D sup
0<t<T

t
n
�

�
log
�
eC

1

t

��˛Z t

0

S� .t � s/ŒFp.u.s//�Fp.v.s//� ds


L1

� C�p�1.d2X .u; v/C d
3
X .u; v//

for u, v 2XT .C ��/. Thus Lemma 4.3 follows. �

Proof of Proposition 4.1. Let T� > 0. Let � > 0 be small enough. Let ' 2 L1;1ul .logL/˛ be such that
jjj'jjj1;˛IT 1=� < � for some T 2 .0; T��. By (4-3), (4-4), and Lemma 4.2, we have

sup
t2.0;T /

jjjˆ.u.t//jjj1;˛IT 1=� C sup
0<t<T

�
t
n
�
.1� 1

p
/
�

log
�
eC

1

t

��� 
p
C˛

jjjˆ.u.t//jjjp; IT 1=�

�

� jjjS� .t/'jjj1;˛;T 1=� C sup
0<t<T

�
t
n
�
.1� 1

p
/
�

log
�
eC

1

t

��� 
p
C˛

jjjS� .t/'jjjp; IT 1=�

�
Cd1X .ˆ.u/;ˆ.0//C d

2
X .ˆ.u/;ˆ.0//

� C��CC�
p�1d2X .u; 0/

� C��CC�
p�1
�C ��

� C �� (4-14)

for u 2XT .C ��/. Similarly, we observe from Lemma 4.3, (4-3), and (4-4) that

sup
0<t<T

�
t
n
�

�
log
�
eC

1

t

��˛
kˆ.u.t//kL1

�
� sup
0<t<T

�
t
n
�

�
log
�
eC

1

t

��˛
kS� .t/'kL1

�
Cd3X .ˆ.u/;ˆ.0//

�C��CC�
p�1.d2X .u;0/Cd

3
X .u;0//

�C��CC�
p�1
�2C ��

�C �� (4-15)

for u 2XT .C ��/. By (4-14) and (4-15), we see that ˆ.u/ 2XT .C ��/ for u 2XT .C ��/. Furthermore,
taking small enough � > 0 if necessary, by Lemmas 4.2 and 4.3, we have

dX .ˆ.u/;ˆ.v//D d
1
X .ˆ.u/;ˆ.v//C d

2
X .ˆ.u/;ˆ.v//C d

3
X .ˆ.u/;ˆ.v//

� C�p�1.d2X .u; v/C d
3
X .u; v//

�
1
2
dX .u; v/

for u, v 2XT .C ��/. Then we apply the contraction mapping theorem to find a unique u� 2XT .C ��/
such that ˆ.u�/D u� in XT .C ��/. The function u� is a solution to problem (P) in Rn� .0; T /, with u�
satisfying (4-2). Thus Proposition 4.1 follows. �

Proof of Theorem 1.2. Let T > 0. Let ' 2 L1;1ul .logL/˛ be such that jjj'jjj1;˛IT 1=� is small enough.
Then, by Proposition 4.1, we find a solution u to problem (P) in Rn � .0; T /, with u satisfying (4-2). Let
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ˇ 2 .; n=�/. Then, by Proposition 3.4, Lemma 2.3, and (4-2), we obtain

jjju.t/�S� .t/'jjj1;ˇ IT 1=� �

Z t

0

jjjS� .t�s/Fp.u.s//jjj1;ˇ IT 1=� ds

� C

Z t

0

�
log
�
eC

1

t�s

���Cˇ
jjjFp.u.s//jjj1; IT 1=� ds

D C

Z t

0

�
log
�
eC

1

t�s

���Cˇ
jjju.s/jjj

p

p; IT 1=�
ds

� C jjj'jjj
p

1;˛IT 1=�

Z t

0

�
log
�
eC

1

t�s

���Cˇ
s�1

�
log
�
eC

1

s

���˛p
ds (4-16)

for t 2 .0; T /. On the other hand, since ˇ < �=n, by Lemma 3.2 (2) and (4-9), we haveZ t
2

0

�
log
�
eC

1

t � s

���Cˇ
s�1

�
log
�
eC

1

s

���˛p
ds

� C

�
log
�
eC

1

t

���Cˇ Z t
2

0

s�1
�

log
�
eC

1

s

���˛p
ds

� C

�
log
�
eC

1

t

���Cˇ
�C

�
log
�
eC

1

t

���n
�

! 0 (4-17)

andZ t

t
2

�
log
�
eC

1

t � s

���Cˇ
s�1

�
log
�
eC

1

s

���˛p
ds

� Ct�1
�

log
�
eC

1

t

���n
�
�1 Z t

t
2

�
log
�
eC

1

t � s

���Cˇ
ds

� Ct�1
�

log
�
eC

1

t

���n
�
�1

�Ct

�
log
�
eC

1

t

���Cˇ
! 0 (4-18)

as t !C0. Combining (4-16), (4-17), and (4-18), we see that

lim
t!C0

jjju.t/�S� .t/'jjj1;ˇ IT 1=� D 0 for ˇ 2 .; n=�/:

This together with (2-12) implies that

lim
t!C0

jjju.t/�S� .t/'jjj1;ˇ IT 1=� D 0 for ˇ 2 Œ0; n=�/: (4-19)

It remains to prove that u! ' in the sense of distributions. Let � 2 C0.Rn/. Let R > 0 be such that
supp �� B.0;R/. By (1-3), (1-4), and (4-19), we haveˇ̌̌̌Z

Rn
.u.x; t/� ŒS� .t/'�.x//�.x/ dx

ˇ̌̌̌
� Ck�kL1

Z
B.0;R/

ju.x; t/� ŒS� .t/'�.x/j dx

� Ck�kL1 jjju.t/�S� .t/'jjj1;0IT 1=� ! 0 (4-20)
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as t !C0. Set

�.x; t/ WD

Z
Rn
G� .x�y; t/�.y/ dy for .x; t/ 2 Rn � .0;1/:

It follows from (2-18) that
lim
t!C0

k�. � ; t /� �kL1 D 0: (4-21)

On the other hand, by (2-16), we have

j�.x; t/j � Ct�
n
�

Z
B.0;R/

.1C t�
1
� jx�yj/�n�� j�.y/j dy � Ck�kL1 t

�n
� �C.t�

1
� jxj/�n�� � T jxj�n��

for x 2 Rn nB.0; 2R/ and t 2 .0; T /. Since k�. � ; t /kL1 � k�kL1 for t > 0, we obtain

j�.x; t/j � C.1Cjxj/�n�� for .x; t/ 2 Rn � .0; T /: (4-22)

Furthermore, it follows from Proposition 3.4 with q D1 that

ŒS� .1/j'j�.0/D

Z
Rn
G� .y; 1/j'.y/j dy <1:

This together with (2-16) implies thatZ
Rn
.1Cjyj/�n�� j'.y/j dy <1: (4-23)

Therefore, by (4-21), (4-22), and (4-23), we apply the Fubini theorem and the Lebesgue convergence
theorem to obtainZ

Rn
ŒS� .t/'�.x/�.x/ dx

D

Z
Rn

�Z
Rn
G� .x�y; t/'.y/ dy

�
�.x/ dx D

Z
Rn

�Z
Rn
G� .x�y; t/�.x/ dx

�
'.y/ dy

D

Z
Rn
�.y; t/'.y/ dy!

Z
Rn
�.y/'.y/ dy

as t !C0. Then we deduce from (4-20) that

lim
t!C0

Z
Rn
u.x; t/�.x/ dx D

Z
Rn
'.x/�.x/ dx for � 2 C0.Rn/I

that is, u.t/! ' in the sense of distributions. The proof of Theorem 1.2 is complete. �

Proof of Corollary 1.3. Let 'c be as in (1-1) with p D p� . It follows from the definition of the
nonincreasing rearrangements that

.'c/
�.s/� Cs�1

�
log
�
eC

1

s

���n
�
�1

for s 2 .0;1/: (4-24)

Let S > 0. Then, by Lemma 3.2 (2), (2-3), and (4-24), we see that

.'c/
��.s/� Cs�1

�
log
�
eC

1

s

���n
�

for s 2 .0; S/:

This implies that 'c 2 L
1;1
ul .logL/n=� . Then Corollary 1.3 follows from Theorem 1.2. �
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Proof of Theorem 1.4. Since ˛ > n=� , it follows from (2-12) that

jjj'jjj1;n
�
IT 1=� � C

�
log
�
eC

1

T 1=�

��n
�
�˛

jjj'jjj1;˛IT 1=� ! 0 as T !C0:

Then, by Theorem 1.2, we find a solution u to problem (P) in Rn � .0; T / for some small enough T > 0,
with u satisfying (1-6) and (1-7). Thus Theorem 1.4 follows. �

At the end of this paper we recall the definitions of the usual Zygmund space and the usual weak
Zygmund space, and explain the advantage of our weak Zygmund-type spaces.

Remark 4.4. (i) We recall the Zygmund space Lq.logL/˛ and the weak Zygmund space Lq;1.logL/˛ .
For any q 2 Œ1;1� and ˛ � 0, set

Lq.logL/˛ WD ff 2 L1loc.R
n/ W kf kLq.logL/˛ <1g;

Lq;1.logL/˛ WD ff 2 L1loc.R
n/ W kf kLq;1.logL/˛ <1g;

where

kf kLq.logL/˛ WD

�Z 1
0

�
log
�
eC

1

s

��˛
f �.s/q ds

�1
q

; (4-25)

kf kLq;1.logL/˛ WD sup
s>0

��
log
�
eC

1

s

��˛
sf �.s/q

�1
q

: (4-26)

See, e.g., [Bennett and Sharpley 1988, Chapter 4, Section 6] and [Wadade 2014]. For the case q > 1, as
in the Lorentz space (see, e.g., [Grafakos 2008, Chapter 1, Exercises 1:4:3]), applying Hardy’s inequality
(see Lemma 2.4) and Lemma 3.2 with (2-3), for any f 2 L1loc, we see that f 2Lq.logL/˛ if and only if

Œf �Lq.logL/˛ WD

�Z 1
0

�
log
�
eC

1

s

��˛
f ��.s/q ds

�1
q

<1:

In contrast, the above relation does not hold for the case q D 1. In fact, applying integration by parts, we
see that Z 1

0

�
log
�
eC

1

s

��˛
f �.s/ ds D ˛

Z 1
0

�
log
�
eC

1

s

��˛�1
f ��.s/

ds

esC 1
Ckf kL1 :

(ii) By O’Neil’s inequality (2-7), we have the inequality

.G� . � ; t /�'/
��.s/�

Z 1
s

.G� . � ; t //
��.�/'��.�/ d�; s > 0;

which is crucial in the proof of our sharp decay estimates of S� .t/'. Our Zygmund-type spaces are
defined by the average of the nonincreasing rearrangement, and they are effectively used in the proof of
our sharp decay estimates of S� .t/' (see the proof of Proposition 3.1). These sharp decay estimates of
S� .t/' in the spaces Lq;1.logL/˛ enable us to obtain Theorem 1.2.
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On the other hand, since the weak Zygmund space Lq;1.logL/˛ is defined by the nonincreasing
rearrangement, the inequality

.G� . � ; t /�'/
�.s/� .G� . � ; t /�'/

��.s/�

Z 1
s

.G� . � ; t //
��.�/'��.�/ d�; s > 0; (4-27)

seems useful for the study of decay estimates of S� .t/' in the space Lq;1.logL/˛ . The first inequality in
(4-27) follows from inequality (2-4). However, in general, inequality (2-4) is not sharp in L1;1.logL/˛ ,
where ˛ > 1. Indeed, let f 2 L1loc be such that

f �.s/D s�1
�

log
�
eC

1

s

���˛
; s > 0;

where ˛ > 1. Then f 2 L1;1.logL/˛ and

f ��.s/� s�1
�

log
�
eC

1

s

���˛C1
for small enough s > 0. Then f �.s/=f ��.s/! 0 as s!C0, and we see that inequality (2-4) is not sharp.
This suggests that it is difficult to obtain sharp decay estimates of S� .t/' in the usual weak Zygmund
spaces.

(iii) In order to overcome the disadvantage of the usual weak Zygmund spaces, one might consider the
weak Zygmund-type spaces

Lq;1.log L/˛ WD ff 2 L1loc W kf kLq;1.log L/˛ <1g;

where 1� q <1, ˛ � 0, and

kf kLq;1.log L/˛ WD sup
s>0

��
log
�
eC

1

s

��˛
sf ��.s/q

�1
q

:

Indeed, applying the arguments to those in the proof of Proposition 3.4, we can obtain similar sharp decay
estimates of S� .t/' in the weak Zygmund-type space Lq;1.log L/˛ to those in Proposition 3.4.

On the other hand, in the proof of Theorem 1.2, we used the inequality

kjf jpkL1;1.logL/˛ � Ckf k
p

Lp;1.logL/˛ for f 2 Lp;1.logL/˛ (4-28)

in order to estimate the nonlinear term jujp�1u, where p > 1 and ˛ � 0. Actually, (4-28) holds with
C D 1 and “�” replace by “D” (see Lemma 2.3). In the case of Lq;1.log L/˛ , it follows from (2-5) that

kjf jpkL1;1.log L/˛ D sup
s>0

��
log
�
eC

1

s

��˛
s.jf jp/��.s/

�
� sup
s>0

��
log
�
eC

1

s

��˛
s.f ��.s//p

�
D kf k

p

Lp;1.log L/˛

for f 2 Lp;1.log L/˛; that is, the reverse to the desired inequality holds. This suggests that it is difficult
to obtain a similar result to that of Theorem 1.2 in the framework of weak Zygmund-type spaces
Lq;1.log L/˛.
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Appendix

Here we prove two propositions on relations between Lq.logL/˛, Lq;1.logL/˛, and Lq;1.logL/˛.
We remark that the following relations hold for ˛ D 0:

Lq D Lq.logL/0 D Lq;1.logL/0 ¨ Lq;1 D Lq;1.logL/0 if q 2 Œ1;1/:

Proposition A.1. Let 1� q <1 and ˛ � 0. Then

kf kLq;1.logL/˛ � kf kLq.logL/˛ for f 2 Lq.logL/˛;

kf kLq;1.logL/˛ � kf kLq;1.logL/˛ for f 2 Lq;1.logL/˛:
Furthermore,

Lq.logL/˛ ¨ Lq;1.logL/˛ ¨ Lq;1.logL/˛; ˛ > 0:

Proof. By (2-9), (2-11), and (4-25), we see that

kf kLq;1.logL/˛ D sup
s>0

��
log
�
eC

1

s

��˛ Z s

0

.f �.�//q d�

�1
q

� sup
s>0

�Z s

0

�
log
�
eC

1

�

��˛
.f �.�//q d�

�1
q

D kf kLq.logL/˛

for f 2 Lq.logL/˛ . This implies that Lq.logL/˛ � Lq;1.logL/˛ . Let g be a function in Rn such that

g�.s/D
d

ds

��
log
�
eC

1

s

���˛�
�.0;ı/.s/D

˛

es2C s

�
log
�
eC

1

s

���˛�1
�.0;ı/.s/;

where ı > 0 is chosen so that g� is decreasing. Set f .x/ WD jg.x/j1=q . It follows from (2-1) that
f �.s/q D g�.s/. Furthermore,

kf k
q

Lq;1.logL/˛ D sup
s>0

�
log
�
eC

1

s

��˛ Z s

0

g�.�/ d�D 1

and

kf k
q

Lq.logL/˛ D

Z 1
0

�
log
�
eC

1

�

��˛
g�.�/ d�D

Z ı

0

˛

e�2C �

�
log
�
eC

1

�

���1
d�D1:

Thus Lq.logL/˛ ¨ Lq;1.logL/˛.
On the other hand, it follows from (2-1), (2-4), (2-9), and (4-26) that

kf kLq;1.logL/˛ D sup
s>0

��
log
�
eC

1

s

��˛
s.jf jq/��.s/

�1
q

� sup
s>0

��
log
�
eC

1

s

��˛
s.jf jq/�.s/

�1
q

D sup
s>0

��
log
�
eC

1

s

��˛
s.f �.s//q

�1
q

D kf kLq;1.logL/˛
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for f 2 Lq;1.logL/˛, and hence Lq;1.logL/˛ � Lq;1.logL/˛. We finally show that the inclusion is
strict. Let f be a function such that

f �.s/D s�
1
q

�
log
�
eC

1

s

���˛
q

�.0;ı/.s/;

where ı > 0 is chosen so that f � is decreasing. Then kf kLq;1.logL/˛ D 1. On the other hand, for the
case ˛ � 1, we see that

s.jf jq/��.s/D

Z s

0

��1
�

log
�
eC

1

�

���˛
d��

Z s

0

��1
�

log
�
eC

1

�

���1
d�D1

for s 2 .0; ı/. This implies that f … Lq;1.logL/˛. Furthermore, for the case ˛ > 1, there exists C > 0
such that

s.jf jq/��.s/D

Z s

0

��1
�

log
�
eC

1

�

���˛
d�

� C

Z s

0

.e�2C �/�1
�

log
�
eC

1

�

���˛
d�D

C

˛� 1

�
log
�
eC

1

s

��1�˛
for s 2 .0; ı/. In conclusion, there exists C > 0 such that

kf kLq;1.logL/˛ � C sup
0<s<ı

�
log
�
eC

1

s

�� 1
q

D1:

Thus Lq;1.logL/˛ ¨ Lq;1.logL/˛. The proof of Proposition A.1 is complete. �

Let f be a locally integrable function in Rn such that�
log
�
eC

1

s

��˛
s.jf jq/��.s/D 1; s > 0; (A-1)

which is a typical function in Lq;1.logL/˛. By (A-1), we see

f �.s/q D
d

ds
.s.jf jq/��.s//D

˛

es2C s

�
log
�
eC

1

s

���˛�1
; s > 0:

Since

f �.s/� s�
1
q

�
log
�
eC

1

s

���˛C1
q

for small enough s > 0;

we see that f also has a typical singularity of functions in Lq;1.logL/˛C1. These arguments suggest
that Lq;1.logL/˛ is closely related to Lq;1.logL/˛C1.

Proposition A.2. Let 1� q <1 and ˛ > 0. Then there exists C > 0 such that

kf kLq;1.logL/˛ � Ckf kLq;1.logL/˛C1 (A-2)

for f 2 Lq;1.logL/˛C1. Furthermore,

inf
�
kf kLq;1.logL/˛

kf kLq;1.logL/˛C1
W f 2 Lq;1.logL/˛C1

�
D 0: (A-3)
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Proof. By Lemma 2.3 and (2-1), it suffices to consider the case q D 1. We first prove (A-2) with q D 1.
Let f 2 L1;1.logL/˛C1, where ˛ > 0. By Lemma 3.2 (2), for any R > 0, we have

sf ��.s/D

Z s

0

f �.�/ d��

�Z s

0

��1
�

log
�
eC

1

�

���˛�1
d�

��
sup
�>0

�
log
�
eC

1

�

��˛C1
�f �.�/

�
� C

�
log
�
eC

1

s

���˛�
sup
�>0

�
log
�
eC

1

�

��˛C1
�f �.�/

�
for s 2 .0; R/. This together with (2-9) implies that

kf kL1;1.logL/˛ D sup
0<s<R

�
log
�
eC

1

s

��˛
sf ��.s/

� C sup
�>0

�
log
�
eC

1

�

��˛C1
�f �.�/D Ckf kL1;1.logL/˛C1 :

Thus (A-2) holds for q D 1, and the proof of (A-2) is complete.
Next, we prove (A-3) with q D 1. Let ffng be a sequence in L1loc such that

f �n .s/D nŒlog.eCn/��˛�1�.0; 1
n
/.s/:

Since

f ��n .s/D

(
nŒlog.eCn/��˛�1 for s 2

�
0; 1
n

�
;

s�1Œlog.eCn/��˛�1 for s 2
�
1
n
;1

�
;

(A-4)

we have

kfnkL1;1.logL/˛ D sup
s>0

�
log
�
eC

1

s

��˛
sf ��n .s/D

�
log
�
eC

1

s

��˛
sf ��n .s/

ˇ̌̌̌
sD 1

n

D Œlog.eCn/��1

for nD 1; 2; : : : . On the other hand, similarly to (3-2), we find L 2 Œe;1/ such that

the function .0;1/ 3 � 7! �

�
log
�
LC

1

�

��˛C1
is nondecreasing:

Then, by (3-1) and (A-4), we have

kfnkL1;1.logL/˛C1 D sup
s>0

�
log
�
eC

1

s

��˛C1
sf �n .s/

� C sup
s>0

�
log
�
LC

1

s

��˛C1
sf �n .s/D C

�
log
�
LC

1

s

��˛C1
sf �n .s/

ˇ̌̌̌
sD 1

n

� C

for nD 1; 2; : : : . These imply (A-3). Thus Proposition A.2 follows. �
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A MARCINKIEWICZ MULTIPLIER THEORY FOR SCHUR MULTIPLIERS

CHIAN YEONG CHUAH, ZHEN-CHUAN LIU AND TAO MEI

We prove a Marcinkiewicz-type multiplier theory for the boundedness of Schur multipliers on the Schatten
p-classes. This generalizes a previous result of J. Bourgain for Toeplitz-type Schur multipliers and
complements a recent result by J. Conde-Alonso et al. (Ann. of Math. (2) 198:3 (2023), 1229–1260). As
a corollary, we obtain a new unconditional decomposition for the Schatten p-classes, 1 < p < ∞. We
extend our main result to the Zd and Rd cases, and include an operator-valued version of it using Pisier’s
noncommutative L∞(ℓ1)-norm.

1. Introduction

Let A ∈ B(H) be a bounded operator on a (separable) Hilbert space H. We can write A in its matrix
representation

A = (ak, j )k, j∈Z,

with ak, j = ⟨Aek, e j ⟩ for a given orthonormal basis {ek}k∈Z of H. Given a bounded function m on Z × Z,
we call the map

Mm : (ak, j ) 7→ (m(k, j)ak, j ) (1-1)

a Schur multiplier with symbol m. The study of the boundedness of Schur multipliers with respect to the
Schatten p-norms has a rich history [Bennett 1977; Arazy 1982; Bożejko and Fendler 1984; Berkson and
Gillespie 1994; Pisier 1998; 2001; Harcharras 1999; Clément et al. 2000; Aleksandrov and Peller 2002;
Doust and Gillespie 2005]. The recent study of noncommutative analysis on the approximation properties
of operator functions and operator algebras [Haagerup et al. 2010; Neuwirth and Ricard 2011; Caspers and
de la Salle 2015; Potapov et al. 2015; 2017; de Laat and de la Salle 2018; Caspers et al. 2019; Parcet et al.
2022; Mei et al. 2022; Conde-Alonso et al. 2023], especially the work [Lafforgue and de la Salle 2011]
on the approximation property of higher-rank Lie groups, draws a lot of attention to the boundedness of
Schur multipliers for the case where 1 < p ̸= 2 < ∞. Conde-Alonso, González–Pérez, Parcet and Tablate
[Conde-Alonso et al. 2023] recently proved a Hörmander–Mikhlin-type Schur multiplier theory for S p,
1 < p ̸= 2 < ∞, in their remarkable work.

In this article, we prove a Marcinkiewicz-type Schur multiplier theory. Hörmander–Mikhlin-type
multipliers and Marcinkiewicz-type multipliers are rooted in classical Fourier analysis. Like their
counterpart in Fourier analysis, Marcinkiewicz-type Schur multipliers are a larger class of multipliers

MSC2020: primary 46B28, 46L52; secondary 42A45.
Keywords: Schur multipliers, Schatten p-classes, Littlewood–Paley theory, Marcinkiewicz multiplier theory, noncommutative

L p spaces.

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2025.18-6
https://doi.org/10.2140/apde.2025.18.1511
http://msp.org
http://dx.doi.org/10.4007/annals.2023.198.3.5
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1512 CHIAN YEONG CHUAH, ZHEN-CHUAN LIU AND TAO MEI

and their p-boundedness is more subtle; it was shown in [Tao and Wright 2001] that the L p-bounds of
Marcinkiewicz Fourier multipliers are of order p3/2 as p → ∞.

When m is of Toeplitz-type, i.e., m(k, j) = ṁ(k − j) for some function ṁ : Z → C, one may apply a
well-known transference method and obtain bounded Schur multipliers from the classical Fourier multiplier
theory. J. Bourgain’s work [1986, Theorem 4, Corollary 20] on scalar-valued Fourier multipliers acting
on Schatten p-valued functions implies that the following Marcinkiewicz-type condition is sufficient for
the boundedness of Mm on the Schatten p-classes for all 1 < p < ∞:∑

2n−1≤|k|<2n

|ṁ(k + 1) − ṁ(k)| < C (1-2)

for all n ∈ N. Let ṁε(k) = εn for 2n−1
≤ |k| < 2n. Then the associated multiplier Mmε

is bounded for any
sequence εn = ±1.

To extend Bourgain’s result to general non-Toeplitz-type Schur multipliers, one may ask whether the
condition that ∑

2n−1≤|k|<2n

|m(k + j + 1, j) − m(k + j, j)| < C (1-3)

for all n ∈ N, j ∈ Z implies the S p boundedness of general Schur multipliers. The answer is yes if m is
Toeplitz since condition (1-3) reduces to Bourgain’s condition (1-2) in that case. The answer would be
yes for general Schur multipliers as well if the family Mmε

, defined after condition (1-2), is R-bounded
for any family of sequences ε = (εk)k valued in {±1}. This implication was proved in the works of
Berkson and Gillespie [1994], Doust and Gillespie [2005] and Clément, de Pagter, Sukochev and Witvliet
[Clément et al. 2000], in which they studied the connection between vector-valued Littlewood–Paley
theory and Marcinkiewicz multiplier theory. We show in Section 5.1 that this is not true in general and
the condition (1-3) is not sufficient for the S p-boundedness of the associated Schur multiplier.1

The main result of this article is the following.

Theorem 1.1. Mm defined in (1-1) extends to a bounded map on the Schatten p-classes S p for all
1 < p < ∞ with bounds ≲ (p2/(p − 1))3 if m is bounded and there exists a constant C such that∑

2n−1≤|k|<2n

|m(k + j + 1, j) − m(k + j, j)| < C, (1-4)

∑
2n−1≤|k|<2n

|m( j, k + j + 1) − m( j, k + j)| < C (1-5)

for all n ∈ N, j ∈ Z.

The writing of this article was motivated by the recent article [Conde-Alonso et al. 2023], although the
third author had known Theorem 1.1 previously. The authors of [loc. cit.] further studied Schatten-p-classes
indexed in d-dimensional Euclidean spaces, aiming for possible applications to the approximation prop-
erties of higher-rank Lie groups. Following this trend, we extend Theorem 1.1 to the higher-dimensional

1This also shows that the family of “Littlewood–Paley operators” Mmε mentioned above is not R-bounded.
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cases as well. The proof of Theorem 1.1 relies on the crucial property that a Schur multiplier is an operator-
valued Fourier multiplier multiplying from the left, and is simultaneously an operator-valued Fourier
multiplier multiplying from the right. This property was already used by the authors of [Conde-Alonso
et al. 2023] in proving a Hörmander–Mikhlin-type criterion for the boundedness of Schur multipliers.

Theorem 1.1 implies a new unconditional decomposition for Schatten p classes. For (n, ℓ) ∈ Z × Z,
let E0,ℓ = {(ℓ, ℓ)} ⊂ Z × Z. Let

En,ℓ = {(k, j) ∈ Z × Z : 2n−1
≤ k − j < 2n, ℓ2n

≤ k < (ℓ + 1)2n
}

for n > 0, and

En,ℓ = {(k, j) ∈ Z × Z : −2|n| < k − j ≤ −2|n|−1, ℓ2|n|
≤ k < (ℓ + 1)2|n|

}

for n < 0. We then have the decomposition

Z × Z =

⋃
(n,ℓ)∈Z×Z

En,ℓ.

Let Pn,ℓ be the projection onto span{ek, j , (k, j) ∈ En,ℓ}. It is easy to see that
∑

n,ℓ εn,ℓ Pn,ℓ is a Schur
multiplier satisfying the assumptions of Theorem 1.1 for any bounded sequence εn,ℓ. We then obtain an
unconditional decomposition of S p.

Corollary 1.2.
∑

n,ℓ εn,ℓ Pn,ℓ extends to a bounded map on S p for all 1 < p < ∞ for any bounded
sequence εn,ℓ.

We will prove Theorem 1.1 in Section 3. We will explain how to extend Theorem 1.1 to the higher-
dimensional case in Section 4 and explain that the ball-type Schur multipliers remain bounded on
S p(ℓ2(Zd)) for d > 1 (Example 4.4), contrary to the behavior of Fourier multipliers. We will show
that the condition (1-4) alone is not sufficient in Section 5.1 and explain an operator-valued version of
Theorem 1.1 in Section 5.2.

2. Preliminaries

Given d ∈ N, denote by B(ℓ2(Zd)) the set of bounded linear operators on ℓ2(Zd). We represent the
operator A ∈B(ℓ2(Zd)) as A = (ai, j )(i, j)∈Zd×Zd with ai, j =⟨Aei , e j ⟩ for the canonical basis {ei } of ℓ2(Zd).
Given a bounded function m on Zd

× Zd, the associated Schur multiplier

Mm(A) = (m(i, j)ai j )

extends to a bounded operator on the Hilbert–Schmidt class S2(ℓ2(Zd)). We call m the symbol of Mm .
Recall that the Schatten p-class S p, 1 ≤ p < ∞, is the collection of all compact operators A with a finite
Schatten-p norm, which is defined as

∥A∥p = (tr[(A∗ A)
p
2 ])

1
p =

(∑
i

s p
i

)1
p

(2-1)

for 1 ≤ p < ∞, where si is the i-th singular value of A. The Schatten p norm is unitary invariant
and does not depend on the choice of the orthonormal basis. The Schatten-class S p, 1 ≤ p < ∞, and
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B(ℓ2(Zd)) share many similar properties with ℓp, 1 ≤ p ≤ ∞. In particular, the dual space of S1 (resp.
S p, 1 < p < ∞) is isomorphic to B(ℓ2) (resp. S p/(p−1)). The family forms an interpolation scale

[B(ℓ2), S1
] 1

p
= S p

for 1 < p < ∞. However, S p does not admit an unconditional basis whenever p ̸= 2. We will prove
that, for m satisfying additional conditions (1-4) and (1-5), Mm extends to a bounded map on S p for all
1 < p < ∞, which immediately implies the unconditional decomposition for S p as stated in Corollary 1.2.

Given d ∈ N, we denote by L p(Td
; S p) the space of S p-valued Bochner integrable functions f such that

∥ f ∥L p =

(
tr
[∫

[0,1)d
| f |

p(z) dθ

])1
p

< ∞.

Here we let z = ei2πθ , with θ ∈ [0, 1)d, and | f |
p
= ( f ∗ f )p/2 is defined via the functional calculus.

For f ∈ L p(Td
; S p) with 1 < p < ∞, we have the Fourier expansion

f (z) ∼

∑
k∈Zd

f̂ (k)zk,

with f̂ (k) =
∫
[0,1]d f (z)z̄k dθ ∈ S p. Given R a finite subset of Zd, denote by SR f the partial Fourier sum

SR f (z) =

∑
k∈R

f̂ (k)zk . (2-2)

Choose δ ∈ C∞(R) such that 0 ≤ δ ≤ 1, supp(δ) ⊂
[
−2

√
d, −1

4

]
∪

[ 1
4 , 2

√
d
]

and δ(x) = 1 when
1
2 ≤ |x | ≤

√
d. For j ≥ 0, define δ j (x) := δ(2− j x). For f ∈ L2(Td

; S2), we define

S j f (z) =

∑
k∈Zd

δ j (|k|2) f̂ (k)zk .

We denote by |k|2 the ℓ2 norm of k ∈ Zd in the formula above and will denote by |k|∞ the ℓ∞ norm of k.
Let (E j ) j≥0 be the cubes with squared holes in Zd given by

E j =

{
{k ∈ Zd

: 2 j−1
≤ |k|∞ < 2 j

}, j > 0,

{0}, j = 0.
(2-3)

Note our construction implies SE j S j = SE j , which we will need later.
For a sequence ( fk) in L p(Td

; S p), we use the classical notation

∥( fk)∥L p(ℓc
2)

=

∥∥∥∥(∑
k

| fk |
2
)1

2
∥∥∥∥

L p(Td ;S p)

, ∥( fk)∥L p(ℓr
2)

=

∥∥∥∥(∑
k

| f ∗

k |
2
)1

2
∥∥∥∥

L p(Td ;S p)

,

and

∥( fk)∥L p(ℓ2) =

{
max{∥( fk)∥L p(ℓc

2)
, ∥( f ∗

k )∥L p(ℓc
2)
} if 2 ≤ p ≤ ∞,

infyk+zk= fk ∥(yk)∥L p(ℓc
2)

+ ∥(zk)∥L p(ℓr
2)

if 0 < p < 2.

The above definition is justified by the following noncommutative Khintchine inequality:
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Lemma 2.1 [Lust-Piquard 1986; Lust-Piquard and Pisier 1991]. Let (εk) be a sequence of independent
Rademacher random variables. Then, for 1 ≤ p < ∞,

α−1
p Eε

∥∥∥∥∑
k

εk ⊗ fk

∥∥∥∥
L p(Td ;S p)

≤ ∥( fk)∥L p(ℓ2) ≤ βp Eε

∥∥∥∥∑
k

εk ⊗ fk

∥∥∥∥
L p(Td ;S p)

. (2-4)

The optimal constant βp is no greater than
√

3 for 1 ≤ p ≤ 2 and is 1 for p ≥ 2 (see [Haagerup and
Musat 2007]); αp is 1 for 1 ≤ p ≤ 2 and is of order

√
p as p → ∞. Inequality (2-4) was pushed further

to the case where 0 < p < 1 (see [Pisier and Ricard 2017]).
We will need the following noncommutative Littlewood–Paley theorem on Zd.

Lemma 2.2. There is a constant Cd > 0 that depends only on d such that

∥(S j f ) j≥0∥L p(ℓ2) ≤ Cd
p2

p − 1
∥ f ∥L p(Td ;S p), (2-5)

∥ f ∥L p(Td ;S p) ≤ Cd
p2

p − 1
∥(SE j f ) j≥0∥L p(ℓ2) (2-6)

for all f ∈ L p(Td
; S p) and 1 < p < ∞.

Proof. This lemma is well known. We explain here that the dependence of the constants on p is in the
order of p2/(p − 1). Given ε j = ±1, let Mε =

∑
j≥0 ε j S j . Our choice of S j ’s makes Mε a so-called

Hörmander–Mikhlin multiplier, which in particular is a Calderón–Zygmund operator. So it is bounded
from the classical Hardy space H 1 to L1. Moreover, it is from H 1 to H 1 since it commutes with the
classical Hilbert transform. By [Mei 2007, Theorem 6.4], it extends to a bounded operator on the
semicommutative BMO space BMOcr(L∞(Td) ⊗̄ B(ℓ2(Zd))). Inequality (2-5) then follows from the
interpolation result [Mei 2007, Theorem 6.2] and the Khintchine inequality (2-4). Inequality (2-6) follows
from (2-5) by duality because of the identity ⟨ f, g⟩ =

∑
j ⟨SE j f , SE j g⟩ =

∑
j ⟨S j f , SE j g⟩. □

Lemma 2.3. Suppose R j is a family of boxes with sides parallel to the axes in Rd. Then there is a constant
Cd > 0 that depends only on d such that, for all 1 < p <∞ and for all families of measurable functions f j

on Rd, we have ∥∥∥∥(∑
j

|SR j ( f j )|
2
)1

2
∥∥∥∥

L p(Td ;S p)

≤ Cd

(
p2

p − 1

)d∥∥∥∥(∑
j

| f j |
2
)1

2
∥∥∥∥

L p(Td ;S p)

. (2-7)

Proof. Assume d = 1 and R j = [a j , b j ]. Let Ta to be the operator that sends f ( · ) to f ( · )ei2πa j ( · ). Let
P+ be the analytic projection. Then

SR j = Ta j P+T−a j − Tb j P+T−b j .

Note that |Ta j f j |
2
= | f j |

2 and we obtain the inequality for d = 1 by the boundedness of P+. The case
d > 1 holds due to Fubini’s theorem. □

Lemma 2.4. For sequences (an), (cn) ∈ B(H), we have∣∣∣∣∑
n

a∗

ncn

∣∣∣∣2

≤

∥∥∥∥∑
n

a∗

nan

∥∥∥∥(∑
n

c∗

ncn

)
. (2-8)
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Proof. Given any v ∈ S2, we have by the Cauchy–Schwarz inequality that

tr
(
v∗

∣∣∣∣∑
n

a∗

ncn

∣∣∣∣2

v

)
= tr

(∣∣∣∣∑
n

a∗

ncnv

∣∣∣∣2 )
≤

∥∥∥∥∑
n

a∗

nan

∥∥∥∥ tr
[
v∗

(∑
n

c∗

ncn

)
v

]
.

Since v is arbitrary, we obtain (2-8). □

3. Proof of Theorem 1.1

For z ∈ Td given, let 5z be the *-homomorphism on B(ℓ2(Zd)) defined as

5z(A) = Uz AU∗

z ,

with Uz the unitary sending ek to zkek . It is easy to see that 5z has the presentation

5z : A = (ak, j ) 7−→ (ak, j zk− j ), (3-1)

with k, j ∈ Zd. 5z defines an isometric isomorphism on B(ℓ2(Zd)) and S p(ℓ2(Zd)) for all 1 ≤ p < ∞

because all these norms are unitary invariant. Considering z as a variable on Td, define 5 : B(ℓ2(Zd)) →

L∞(Td) ⊗B(ℓ2(Zd)) as

5(A)(z) = 5z(A). (3-2)

Then 5 is an isometric isomorphism from B(ℓ2(Zd)) to L∞(Td) ⊗B(ℓ2(Zd)) and from S p(ℓ2(Zd)) to
L p(Td

; S p(ℓ2(Zd))) for all 1 ≤ p < ∞.
Given a symbol m = (m(i, j))i, j∈Zd and A = (ai, j )i, j∈Zd ∈ S p(ℓ2(Zd)), set

Ml(n) =

∑
s∈Zd

m(s, s − n) es,s, Mr (n) =

∑
s∈Zd

m(s + n, s) es,s,

A(n) =

∑
s∈Zd

as,s−nes,s−n =

∑
s∈Zd

as+n,ses+n,s

(3-3)

for n ∈ Zd. Here es,t denotes the operator on ℓ2(Zd) sending et to es . Then Ml(n), Mr (n) ∈ B(ℓ2(Zd))

with norm bounded by C , A(n) ∈ S p(ℓ2(Zd)) for all n ∈ Zd, and

5(A)(z) =

∑
n

A(n)zn, Mm(A) =

∑
n

Ml(n)A(n) =

∑
n

A(n)Mr (n).

Here Ml(n)A(n) and A(n)Mr (n) denote the products of operators in B(ℓ2(Zd)). Let f = 5(A), i.e.,

f (z) =

∑
n∈Zd

A(n)zn. (3-4)

Denote by 5(S p) the image of 5, i.e., the subspace of L p(T
d
; S p) consisting of all f in the form of

(3-4). Define the operator-valued Fourier multiplier TM on 5(S p) as

TM f (z) =

∑
n∈Zd

Ml(n)A(n)zn. (3-5)
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Note that Ml(n)A(n) = A(n)Mr (n) for all n ∈ Zd ; we can represent TM as a multiplier from the right:

TM f (z) =

∑
n∈Zd

A(n)Mr (n)zn. (3-6)

TM is defined so that the following identity holds:

TM f = 5(Mm(A)).

Since 5 is a trace preserving ∗-homomorphism, we have

∥A∥S p = ∥ f ∥L p(Td ;S p), ∥Mm A∥S p = ∥TM( f )∥L p(Td ;S p). (3-7)

In order to prove Mm’s boundedness on S p, we only need to prove that TM is bounded on 5(S p), i.e.,
the subspace of L p(T

d
; S p) consisting all f in the form of (3-4). By Lemma 2.2 and the transference

relation (3-7), it is sufficient to show the inequality∥∥∥∥(∑
j≥0

|SE j (TM f )|2
)1

2
∥∥∥∥

L p(Td ;S p)

≤ Cd

(
p2

p − 1

)d∥∥∥∥(∑
j≥0

|S j f |
2
)1

2
∥∥∥∥

L p(Td ;S p)

(3-8)

and its adjoint form∥∥∥∥(∑
j≥0

|(SE j (TM f ))∗|2
)1

2
∥∥∥∥

L p(Td ;S p)

≤ Cd

(
p2

p − 1

)d∥∥∥∥(∑
j≥0

|(S j f )∗|2
)1

2
∥∥∥∥

L p(Td ;S p)

(3-9)

for p ≥ 2. By duality, we will obtain Mm’s boundedness on S p for 1 < p < 2 as well.
We will use (3-5) as the presentation of TM to prove (3-8) and will use the presentation (3-6) to prove

(3-9). Note that E j is symmetric so (SE j (TM f ))∗ = SE j (TM f )∗ and

(TM f )∗ =

(∑
n∈Zd

A(n)Mr (n)zn
)∗

=

∑
n∈Zd

(Mr (−n))∗(A(−n))∗zn.

So, both SE j (TM f ) and (SE j (Tm f ))∗ have the multiplier symbols on the left. This allows us to write
the corresponding squares in the forms with Mr or Ml sitting in the middle for both SE j (TM f ) and
(SE j (Tm f ))∗ and avoid the usual trouble caused by the noncommutativity of the operator products. After
noting these facts, the argument for the case d = 1 is rather standard, which we record below.

Proof of Theorem 1.1. We now set d = 1. By the notation in (3-3), the conditions (1-4) and (1-5) are
equivalent to

sup
j≥0

∥∥∥∥∑
n∈E j

|Ml(n + 1) − Ml(n)|

∥∥∥∥
∞

< C, sup
j≥0

∥∥∥∥∑
n∈E j

|Mr (n + 1) − Mr (n)|

∥∥∥∥
∞

< C, (3-10)

where E j is defined as in (2-3). Following the definition (2-2), we define S(a,b) as

S(a,b)g(z) =

∑
a<n<b

ĝ(n)zn (3-11)

for g(z) =
∑

n∈Z ĝ(n)zn
∈ L p(T; S p). We will deliberately extend the use of this notation and set

S(a,b)g = −S(b,a)g
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when a > b. For j ∈ N, write E j,1 = (−2 j , −2 j−1
], E j,2 = [2 j−1, 2 j ). Let 2( j)

1 = −2 j , 2( j)
2 = 2 j and

1Ml(n) =

{
Ml(n) − Ml(n − 1), n < 0,

Ml(n + 1) − Ml(n), n > 0.
(3-12)

By applying summation by parts and the presentation of TM f in (3-5) and (3-6), we obtain

SE j (TM f ) =

∑
i=1,2

SE j,i (TM f ) =

∑
i=1,2

(
Ml(2

( j−1)

i )(SE j,i f ) +

∑
n∈E j,i

1Ml(n)(S
(n,2( j)

i )
f )

)
(3-13)

=

∑
i=1,2

(
(SE j,i f )Mr (2

( j−1)

i ) +

∑
n∈E j,i

(S
(n,2( j)

i )
f )1Mr (n)

)
, (3-14)

with 1Mr (n) defined similarly. We will use the presentation (3-13) to prove (3-8) and will use (3-14) to
prove (3-9). The arguments are similar. So we will only give the argument for (3-8). We will ignore the
term j = 0 in (3-8) because ∥SE0(TM f )∥L p(T;S p) ≤ C∥ f ∥L p(T;S p).

Note 1Ml(n) is a diagonal operator; we can write 1Ml(n) = a∗
nbn , with an, bn diagonal operators and

|an|
2
= |bn|

2
= |1Ml(n)|. Then by Lemma 2.4, we have, for i = 1, 2,∣∣∣∣ ∑

n∈E j,i

1Mℓ(n)S
(n,2( j)

i )
f
∣∣∣∣2

≤

∥∥∥∥ ∑
n∈E j,i

|1Ml(n)|

∥∥∥∥
∞

( ∑
n∈E j,i

|bn S
(n,2( j)

i )
f |

2
)

≤ C
( ∑

n∈E j,i

|bn S
(n,2( j)

i )
f |

2
)

(3-15)

= C
( ∑

n∈E j,i

|S
(n,2( j)

i )
(bn S j f )|2

)
. (3-16)

Thus, ∥∥∥∥(∑
j∈N

∣∣∣∣ ∑
n∈E j,i

1Mℓ(n)S
(n,2( j)

i )
f
∣∣∣∣2)1

2
∥∥∥∥

L p(T;S p)

≤ C
1
2

∥∥∥∥(∑
j∈N

∑
n∈E j,i

|S
(n,2( j)

i )
(bn S j f )|2

)1
2
∥∥∥∥

L p(T;S p)

.

By Lemma 2.3, we get∥∥∥∥(∑
j∈N

∣∣∣∣ ∑
n∈E j,i

1Mℓ(n)S
(n,2( j)

i )
f
∣∣∣∣2)1

2
∥∥∥∥

L p(T;S p)

≤ C2
p2

p − 1
C

1
2

∥∥∥∥(∑
j∈N

∑
n∈E j,i

|(bn S j f )|2
)1

2
∥∥∥∥

L p(T;S p)

= C2
p2

p − 1
C

1
2

∥∥∥∥(∑
j∈N

(S j f )∗
( ∑

n∈E j,i

|bn|
2
)

S j f
)1

2
∥∥∥∥

L p(T;S p)

= C2
p2

p − 1
C

1
2

∥∥∥∥(∑
j∈N

(S j f )∗
( ∑

n∈E j,i

|1Ml(n)|

)
S j f

)1
2
∥∥∥∥

L p(T;S p)

≤ C2
p2

p − 1
C

∥∥∥∥(∑
j∈N

|S j f |
2
)1

2
∥∥∥∥

L p(T;S p)

. (3-17)
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Hence, by (3-13), (3-17), and Lemma 2.3∥∥∥∥(∑
j∈N

|SE j,i (TM f )|2
)1

2
∥∥∥∥

L p(T;S p)

≤

∥∥∥∥(∑
j∈N

|Ml(2
( j−1)

i )(SE j,i f )|2
)1

2
∥∥∥∥

L p(T;S p)

+ C
p2

p − 1
C2

∥∥∥∥(∑
j∈N

|S j f |
2
)1

2
∥∥∥∥

L p(T;S p)

≤

∥∥∥∥C
(∑

j∈N

|(SE j,i f )|2
)1

2
∥∥∥∥

L p(T;S p)

+ C
p2

p − 1
C2

∥∥∥∥(∑
j∈N

|S j f |
2
)1

2
∥∥∥∥

L p(T;S p)

=

∥∥∥∥C
(∑

j∈N

|(SE j,i S j f )|2
)1

2
∥∥∥∥

L p(T;S p)

+ C
p2

p − 1
C2

∥∥∥∥(∑
j∈N

|S j f |
2
)1

2
∥∥∥∥

L p(T;S p)

≤ C
p2

p − 1

∥∥∥∥(∑
j∈N

|S j f |
2
)1

2
∥∥∥∥

L p(T;S p)

for i = 1, 2. Therefore we finish the proof of (3-8). The arguments for the adjoint version of (3-9) are
similar. We then complete the proof of Theorem 1.1. □

Corollary 3.1 [Conde-Alonso et al. 2023, Corollary 3.5]. The following Mikhlin conditions imply the
boundedness of Mm on S p for all 1 < p < ∞:

|m(s, s + k) − m(s, s + k + 1)| ≤
C
|k|

, (3-18)

|m(s + k, s) − m(s + k + 1, s)| ≤
C
|k|

. (3-19)

Proof. It is clear that the Mikhlin conditions (3-18), (3-19) imply the Marcinkiewicz-type conditions
(1-4), (1-5). □

4. The case d > 1

In this part, we generalize Theorem 1.1 to the d-dimensional case. Before we proceed to the main
statement of the theorem, we need to borrow some notation from the calculus of finite differences.

Definition 4.1. Let σ : Zd
→ C and j = ( j1, . . . , jd) ∈ Zd. Let {e j }

d
j=1 be standard basis of Zd, i.e., the

j-th entry of e j is 1 and all other entries are 0 for j = 1, . . . , d . We define the forward partial difference
operators 1t j by

1t j σ(t) := σ(t + e j ) − σ(t), (4-1)
and for α ∈ {0, 1}

d, define
1α

t := 1
α1
t1 · · · 1

αd
td .

For α = (1, . . . , 1) ∈ {0, 1}
d, we simplify the notation 1α

t as 1t . Readers can find more information
on the calculus of finite differences in Chapter 3 of [Ruzhansky and Turunen 2010].

4.1. The case d = 2. Recall that we have the partition Z2
=

⋃
j≥0 E j with E j defined as

E j =

{
{(0, 0)}, j = 0,

{(n1, n2) ∈ Z2
: 2 j−1

≤ |(n1, n2)|∞ < 2 j
}, j ≥ 1.

(4-2)
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Theorem 4.2. Given m = (ms,t)s,t∈Z2 ∈ B(ℓ2(Z2)), suppose m satisfies:

(i) sups,t∈Z2 |ms,t | < C1.

(ii) For any k ∈ N, s ∈ Z2, there are constants C2, C3 such that( ∑
t=(t1,±2k−1)∈Ek

|1t1ms,s+t | +
∑

t=(±2k−1,t2)∈Ek

|1t2ms,s+t |

)
< C2, (4-3)

∑
t=(t1,t2)∈Ek

|1t ms,s+t | < C3, (4-4)

and ( ∑
t=(t1,±2k−1)∈Ek

|1t1ms+t,s | +
∑

t=(±2k−1,t2)∈Ek

|1t2ms+t,s |

)
< C2, (4-5)

∑
t=(t1,t2)∈Ek

|1t ms+t,s | < C3. (4-6)

Then Mm is a bounded Schur multiplier on S p(ℓ2(Z2)) for p ∈ (1, ∞) with an upper bound ≲ (p2/(p−1))4.
Here C1, C2 and C3 are positive absolute constants.

Now we come to the proof of Theorem 4.2. As explained at the beginning of Section 3, we only need
to prove (3-8) and its adjoint version. Recall that SE j is the partial sum projection on L p(T2

; S p(Z2))

given by SE j f (z) =
∑

n∈E j
f̂ (n)zn, where z ∈ T2.

Applying the definition of Ml (3-3), we see that (4-3) and (4-4) imply∥∥∥∥ ∑
n=(n1,±2 j−1)∈E j

|1n1 Ml(n)|

∥∥∥∥
∞

+

∥∥∥∥ ∑
n=(±2 j−1,n2)∈E j

|1n2 Ml(n)|

∥∥∥∥
∞

< C2, (4-7)

∥∥∥∥ ∑
n=(n1,n2)∈E j

|1n Ml(n)|

∥∥∥∥
∞

< C3. (4-8)

To prove (3-8), we will cut E j into four rectangles E j,k , k = 1, . . . , 4, for j ≥ 1. Let I j =[2 j−1, 2 j )∩Z,
J j = [−2 j−1, 2 j ) ∩ Z, and set

E j,1 = J j × I j , E j,2 = (−I j ) × J j ,

E j,3 = I j × (−J j ), E j,4 = (−J j ) × (−I j ).

Thus, we have

SE j TM f =

4∑
i=1

SE j,i TM f. (4-9)

To prove (3-8), it is sufficient to prove∥∥∥∥( ∞∑
j=0

|SE j,i TM f |
2
)1

2
∥∥∥∥

L p(T2;S p)

≤ C ′

(
p2

p − 1

)2∥∥∥∥( ∞∑
j=0

|S j f |
2
)1

2
∥∥∥∥

L p(T2;S p)

(4-10)

for p ≥ 2, i = 1, 2, 3, 4. The arguments for i = 1, 2, 3, 4 are similar. We will give the argument for i = 1
only. By the fundamental theorem of calculus,
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SE j,1 TM f = Ml(−2 j−1, 2 j−1)SE j,1 f +

∑
n1∈J j

1n1 Ml(n1, 2 j−1)S(n1,2 j )×I j f

+

∑
n2∈E j

1n2 Ml(−2 j−1, n2)SJ j ×(n2,2 j ) f +

∑
n=(n1,n2)∈E j,1

1n Ml(n1, n2)S(n1,2 j )×(n2,2 j ) f

=: P1
j + P2

j + P3
j + P4

j . (4-11)

By the operator inequality
∣∣∑n

k=1 ak
∣∣2

≤ n
∑n

k=1 |ak |
2, we have

|SE j,1 TM f |
2
= |P1

j + P2
j + P3

j + P4
j |

2
≤ 4(|P1

j |
2
+ |P2

j |
2
+ |P3

j |
2
+ |P4

j |
2). (4-12)

For part P1
j , by assumption (i) of Theorem 4.2, we have

|P1
j |

2
= |Ml(−2 j−1, 2 j−1) SE j,1 f |

2
≤ C2

1 |SE j,1 f |
2
= C2

1 |SE j,1 S j f |
2. (4-13)

By Lemma 2.3,∥∥∥∥(∑
j≥0

|P1
j |

2
)1

2
∥∥∥∥

L p(T2;S p(Z2))

≤ C
(

p2

p − 1

)2∥∥∥∥(∑
j≥0

|S j f |
2
)1

2
∥∥∥∥

L p(T2;S p(Z2))

. (4-14)

For part P2
j , we follow the arguments similar to (3-16) and (3-17) in the one-dimensional case and write

1n1 Ml(n1, 2 j−1) = a∗
nbn , with |an|

2
= |bn|

2
= |1n1 Ml(n1, 2 j−1)|. Letting Rn1, j = (n1, 2 j )× I j , we have

|P2
j |

2
=

∣∣∣∣ ∑
n1∈J j

1n1 Ml(n1,2 j−1)S(n1,2 j )×I j f
∣∣∣∣2

≤

∥∥∥∥ ∑
n1∈J j

|1n1 Ml(n1,2 j−1)|

∥∥∥∥
∞

( ∑
n1∈J j

|SRn1, j (bn Sj f )|2
)

. (4-15)

Thus, by (4-15), (4-7) and Lemma 2.3 and following the arguments similar to the case d = 1, we get∥∥∥∥(∑
j≥0

|P2
j |

2
)1

2
∥∥∥∥

L p(T2;S p(Z2))

≤ C2

(
p2

p − 1

)2∥∥∥∥(∑
j≥0

|S j f |
2
)1

2
∥∥∥∥

L p(T2;S p)

. (4-16)

Similarly, we have∥∥∥∥(∑
j≥0

|P3
j |

2
)1

2
∥∥∥∥

L p(T2;S p)

≤ C2

(
p2

p − 1

)2∥∥∥∥(∑
j≥0

|S j f |
2
)1

2
∥∥∥∥

L p(T2;S p)

. (4-17)

Now we come to the estimate of part P4
j . Define Rn, j = (n1, 2 j ) × (n2, 2 j ). Similarly,∥∥∥∥(∑

j≥0

|P4
j |

2
)1

2
∥∥∥∥

L p(T2;S p)

≤ C
1
2
3

∥∥∥∥(∑
j≥0

∑
n=(n1,n2)∈E j,1

|SRn, j S j |1n Ml(n)|
1
2 f |

2
)1

2
∥∥∥∥

L p(T2;S p)

≤ C
1
2
3

(
p2

p − 1

)2∥∥∥∥(∑
j≥0

∑
n=(n1,n2)∈E j,1

|S j |1n Ml(n)|
1
2 f |

2
)1

2
∥∥∥∥

L p(T2;S p)

≤ C3

(
p2

p − 1

)2∥∥∥∥(∑
j≥0

|S j f |
2
)1

2
∥∥∥∥

L p(T2;S p)

. (4-18)
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Therefore, by (4-9), (4-11) and (4-15)–(4-18), we have∥∥∥∥( ∞∑
j=0

|SE j,1 TM f |
2
)1

2
∥∥∥∥

L p(T2;S p)

≤ C ′

(
p2

p − 1

)2∥∥∥∥( ∞∑
j=0

|S j f |
2
)1

2
∥∥∥∥

L p(T2;S p)

. (4-19)

Thus, (4-10) is proved. Hence, we finish the proof of Theorem 4.2.

4.2. Higher-dimensional case. We need some additional notation to deal with the case d > 2. Borrowing
the notation from [Hytönen et al. 2016], we denote by Zα the space

Zα
:= {(ni )i :αi =1 : ni ∈ Z}

for α ∈ {0, 1}
d. For any n ∈ Zd and E = I1 × · · · × Id ⊆ Zd, let

nα := (ni )i :αi =1 ∈ Zα, Eα :=

∏
i :αi =1

Ii ⊆ Zα

be their natural projections onto Zα. In particular, we will use the splittings n = (nα, n1−α) ∈ Zα
× Z1−α

and E = Eα × E1−α, where 1 = (1, . . . , 1). Suppose s, t ∈ Zd and we abbreviate the interval notation
[s, t) ∩ Zd as [s, t).

Similarly, denote by Id the partition Id
:= {E j : j ≥ 0} of Zd, where

E j =

{
{(0, . . . , 0)}, j = 0,

{(n1, . . . , nd) ∈ Zd
: 2 j−1

≤ |(n1, . . . , nd)|∞ < 2 j
}, j ≥ 1.

(4-20)

Each E j can be further decomposed into 2d(2d
− 1) subsets and each of the subsets can be obtained

by translation of the cube F j = [2 j−1, 2 j )× · · ·× [2 j−1, 2 j ). Following similar procedures to those in
the two-dimensional case and using the discrete fundamental theorem formula,

χ[s,t)(n)m(n) = χ[s,t)

∑
α∈{0,1}d

∑
kα∈[s,n)α

1αm(s1−α, kα)

=

∑
α∈{0,1}d

∑
kα∈[s,t)α

χ[k,t)α×[s,t)1−α
(n)1αm(s1−α, kα), (4-21)

we can obtain the following theorem. The details are left to the interested reader.

Theorem 4.3. Given m = (ms,t)s,t∈Zd ∈ B(ℓ2(Zd)). Suppose m satisfies that, for some C > 0:

(i) sups,t∈Zd |ms,t | < C.

(ii) For any n ∈N, s ∈Zd, α ∈{0, 1}
d, α ̸=0, and any r (n)

∈Zd satisfying |r (n)
i |=2n−1 for all i =1, . . . , d ,∑

t=(tα,r (n)
1−α)∈En

|1α
t ms,s+t | < C,

∑
t=(tα,r (n)

1−α)∈En

|1α
t ms+t,s | < C. (4-22)

Then Mm extends to a bounded Schur multiplier on S p(ℓ2(Zd)) for p ∈ (1, ∞) with an upper bound
Cd(p2/(p − 1))d+2. Here Cd is a constant dependent only on the dimension d.
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Note that we cannot hope for an analogue of Theorem 4.3 with En defined by the ℓ2-metric instead of
the ℓ∞ metric because the ball-type Fourier multipliers are not uniformly bounded on L p(Td) for any
d > 1. Doust and Gillespie [2005, Theorem 6.2] gave an example of ball-type Schur multipliers for the
case d = 1. Their argument does not seem to extend to the case d > 1.

Example 4.4 (ball Schur multipliers). Let X0 = {(0, 0)} ⊂ Zd
× Zd. For i ∈ N, let

X i = {(k, j) ∈ Zd
× Zd

: 2i−1
≤ |(k, j)|2 < 2i

}.

Let m X =
∑

i εi 1X i , with |εi | ≤ 1. Then |1α
t m| ≤ 2|α|. Note that

|(k, j)|2 ≃ |k|2 + | j |2 ≃ |k − j |2 + | j |2 ≃ |k − j |∞ + | j |∞ ≃ |k − j |∞ + |k|∞.

We can find a constant Kd which only depends on d such that the set

{(s0, s0 + t) : t ∈ En} ∪ {(s0 + t, s0) : t ∈ En}

intersects with at most Kd many X i ’s for any fixed s0. Since
⋃

0≤i≤n X i is convex for all n, we conclude
that there are at most 2d Kd many nonzero terms in the two summations in (4-22), and the summations
are bounded by 2d Kd . So (4-22) is satisfied and Mm =

∑
i εi PX i is bounded on S p for any 1 < p < ∞.

4.3. The case of continuous indices. We explain in this section that Theorems 1.1 and 4.3 extend to
the continuous case by approximation. Let S p(Rd) be the space of Schatten p-class operators acting on
the Hilbert space L2(Rd). We identify S2(Rd) as L2(Rd

× Rd), so for A ∈ S2(Rd) we can talk about its
pointwise value as,t . For m ∈ L∞(Rd

× Rd), we consider the Schur-multiplier-type map

Mm(A) = (m(s, t)as,t)s,t∈Rd .

Motivated by the work of [Lafforgue and de la Salle 2011; Conde-Alonso et al. 2023], we wish to
find sufficient conditions on m so that Mm extends to a bounded map with respect to the S p-norm for
1 < p < ∞.

Theorem 4.5. For p ∈ (1, ∞), consider the Schur multiplier Mm on S p(R) with symbol m( · , · ) in
L∞(R2) whose partial derivatives are continuous on (−2 j+1, −2 j ) ∪ (2 j , 2 j+1) for all j ∈ Z. Suppose
there exists an absolute constant C such that, for all j ∈ Z and x, y ∈ R,∫

−2 j

−2 j+1
|∂1m(y + t, y)| dt +

∫ 2 j+1

2 j
|∂1m(y + t, y)| dt ≤ C, (4-23)∫

−2 j

−2 j+1
|∂2m(x, x + t)| dt +

∫ 2 j+1

2 j
|∂2m(x, x + t)| dt ≤ C. (4-24)

Then, the Schur multiplier Mm extends to a bounded map on S p(R) with ∥Mm∥ ≤ C max{p3, 1/(p − 1)3
}.

Proof. Let Dk be the σ -algebra generated by dyadic cubes

Qk,s,t =

(
s
2k ,

s + 1
2k

]
×

(
t

2k ,
t + 1

2k

]
, s, t ∈ Z.
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Then (Dk)
∞

k=1 is the usual dyadic filtration for R2. Given m ∈ L∞(R2), let mk = Ek(m) be the conditional
expectation of m with respect to the σ -algebra Dk . That is to say

mk(x) =

∑
Q∈Dk

1
|Q|

[∫
Q

m(y) dy
]
χQ(x) for all x ∈ R2.

Let L2(R,Dk) be the L2 space of all Dk-measurable functions. Let m̃k(s, t) = m(s/2k, t/2k) for s, t ∈ Z.
Note that S p(L2(R,Dk)) is isometrically isomorphic to S p(ℓ2(Z)). We see that Mm̃k extends to a bounded
Schur multiplier on S p(ℓ2(Z)) with the same norm if Mmk extends to a bounded Schur multiplier on
S p(L2(R,Dk)) and vice versa. By Lemma 1.11 of [Lafforgue and de la Salle 2011],

∥Mm∥ = limk→∞∥Mmk ∥ = limk→∞∥Mm̃k ∥.

So, we need to show that Mm̃k satisfies conditions (1-4), (1-5). First, we verify condition (1-5). For
each j ∈ N and s ∈ Z,

2 j
−2∑

ℓ=0

|mk(s, s + 2 j
+ ℓ + 1) − mk(s, s + 2 j

+ ℓ)|

= 22k
2 j

−2∑
ℓ=0

∣∣∣∣∫ s+1
2k

s
2k

∫ 2 j
+ℓ+1
2k

2 j +ℓ

2k

M
(

y, y + x +
1
2k

)
dx dy −

∫ s+1
2k

s
2k

∫ 2 j
+ℓ+1
2k

2 j +ℓ

2k

M(y, y + x) dx dy
∣∣∣∣

= 22k
2 j

−2∑
ℓ=0

∣∣∣∣∫ s+1
2k

s
2k

∫ 2 j
+ℓ+1
2k

2 j +ℓ

2k

∫ y+x+
1

2k

y+x
∂2 M(y, t) dt dx dy

∣∣∣∣
≤ 22k

2 j
−2∑

ℓ=0

∫ s+1
2k

s
2k

∫ 2 j
+ℓ+1
2k

2 j +ℓ

2k

∫ y+x+
1

2k

y+x
|∂2 M(y, t)| dt dx dy

= 22k
∫ s+1

2k

s
2k

∫ 2 j+1
−1

2k

2 j

2k

∫ y+x+
1

2k

y+x
|[∂2(M)](y, t)| dt dx dy

= 22k
∫ s+1

2k

s
2k

∫ 2 j+1
−1

2k

2 j

2k

∫ y+
2 j+1

2k

y+
2 j

2k

χ(x,x+
1

2k )
(t)|[∂2(M)](y, t)| dt dx dy

= 22k
∫ s+1

2k

s
2k

∫ y+
2 j+1

2k

y+
2 j

2k

∫ 2 j+1
−1

2k

2 j

2k

χ(t− 1
2k ,t)(x) dx |[∂2(M)](y, t)| dt dy

≤ 2k
∫ s+1

2k

s
2k

∫ y+
2 j+1

2k

y+
2 j

2k

|∂2 M(y, t)| dt dy ≤ sup
y∈R

∫ 2 j+1

2k

2 j

2k

|[∂2(M)](y, y + t)| dt ≤ A. (4-25)

The last inequality follows from the assumption in (4-24). So, condition (1-5) is verified. Applying the
same argument, we utilize the assumption in (4-23) to prove condition (1-4). Therefore, by Theorem 1.1,
∥Mm∥ = limk→∞∥Mm̃k ∥ ≤ C max{p3, 1/(p − 1)3

}. □

Similarly, Theorem 4.3 and Example 4.4 have analogues in the continuous case as well.
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Theorem 4.6. Define E j := {t ∈ Rd
: 2 j−1

≤ |t |∞ < 2 j
} for j ∈ Z. For p ∈ (1, ∞), consider the Schur

multiplier m ∈ L∞(R2d) whose partial derivatives are continuous up to the boundary of Ek for all k ∈ Z.
Assume there exists a constant C such that∫

(tα,r ( j)
1−α)∈E j

|∂αm(s, s + t)| dtα ≤ C, (4-26)∫
(tα,r ( j)

1−α)∈E j

|∂αm(s + t, s)| dtα ≤ C (4-27)

for any j ∈ Z, s ∈ Rd and any r ( j)
∈ Rd with |r ( j)

i | = 2 j−1 for all 1 ≤ i ≤ d. Then, the Schur multiplier Mm

extends to a bounded operator on S p(Rd) for all 1 < p < ∞ with ∥Mm∥ ≤ Cd max{pd+2, 1/(p − 1)d+2
}.

Here tα is defined as in Section 4.2.

Remark 4.7. The Schur multipliers in all theorems of this article are also completely bounded on S p for
1 < p < ∞; the arguments are exactly the same.

5. Discussions

5.1. Counterexamples.

(1) We show in the following that (1-4) alone is not sufficient for the boundedness of Mm .
Choose a large K ∈ N. Let m(s, t) = exp(i2πk j/K ) if s = 2k, t = 2 j for some j, k ∈ N satisfying

1 ≤ j < k ≤ K, and m(s, t) = 0 for other s, t ∈ N. Let m̃(k, j) = exp(i2πk j/K ) if 1 ≤ j < k ≤ K , and
m̃(k, j) = 0 for other k, j ∈ N. Let U be the partial isometry on ℓ2(N) sending ek to e2k . Then, we have
Mm̃(A) = U∗Mm(U AU∗)U for any A ∈ S p(ℓ2(N)) and ∥Mm̃∥ ≤ ∥Mm∥.

Note that, for any N, j given, there exists at most one k (actually k = N ) satisfying k > j and

2N−1
− 1 ≤ |2k

− 2 j
| < 2N .

Using the fact that |m(s, t)| ≤ 1, for any N, t , we get∑
2N−1≤|r |<2N

|m(t + r + 1, t) − m(t + r, t)| ≤ 2,

because there are at most two nonzero terms in the sum above. This means (m(s, t))s,t satisfies the row
condition (1-4). On the other hand, if s = 2N, then |m(s, t)−m(s, t +1)| does not vanish if t or t +1 has
the form of 2 j, j = 1, . . . , N − 1, by the definition of m(s, t). Hence we have∑

2N−1≤|t−s|<2N

|m(s, t + 1) − m(s, t)| =

∑
2N−1≤s−t<2N

|m(s, t + 1) − m(s, t)| = 2(N − 1),

which shows that (m(s, t))s,t fails the column condition (1-5).
Let A be the K × K matrix (exp(−i2πk j/K ))1≤k, j≤K . Then A has S p norm K 1/2+1/p. Mm̃(A) is the

lower triangular matrix with all nonzero coefficients being 1 which has S p norm ≃ K for any given p,
1< p <∞. This shows that K 1/2−1/p ≲∥Mm̃∥≤∥Mm∥. We then conclude that (1-4) alone is not sufficient
for the boundedness of Mm . By symmetry, (1-5) alone is not sufficient for the boundedness of Mm either.
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(2) A smooth version of the example above implies that neither the assumption (3-18) nor the assumption
(3-19) is removable in Corollary 3.1. Indeed, fix a large K > 0, let

m1(s, t) = exp
(

i2π log2 s log2 t
K

)
for 1 ≤ s ≤ t ≤ 2K, s, t ∈ N,

m1(s, t) =
2K+1

− t
2K exp(i2π log2 s)

for 1 ≤ s ≤ t , 2K < t ≤ 2K+1, s, t ∈ N and m1(s, t) = 0 otherwise. Then m1 satisfies (3-18) because∣∣∣∣ ∂

∂t
exp

(
i2π log2 s log2 t

K

)∣∣∣∣ ≲ 1
t

≤
1

t − s

whenever s < t ≤ 2K. Assuming the sufficiency of (3-18) would imply the uniform boundedness of Mm1

for all 1 < p < ∞, which is wrong because Mm(A) = Mm1(V AV ) for A ∈ S p(ℓ2(N)) and m, V defined
above. We conclude that neither the assumption (3-18) nor the assumption (3-19) is removable.

(3) Let
FN ,t = {(s, t) ∈ N × N : 2N−1

≤ |s − t | < 2N
}

for N , t ∈ N. Let QN ,t be the projection from S2(ℓ2(N)) onto the span of {es,t : (s, t) ∈ FN ,t }. One may
wonder whether Corollary 1.2 can be improved so that the Schur multiplier Sε =

∑
N ,t∈N ε(N , t)QN ,t

is bounded for any sequence |ε(N , t)| ≤ 1. This is impossible as well.2 To see this, let ε(N , t) =

exp(i2π N j/K ) if t = 2 j for some j ∈ N and j < N ≤ K. Let ε(N , t) = 0 otherwise. Let V be the
projection on ℓ2(N) such that V (ei ) = ei if i = 2k for some k ∈ N, and V (ei ) = 0 otherwise. Then, for
Mm defined in the first example and A ∈ S p(ℓ2(N)), we have

Mm(A) = Sε(V AV ).

Therefore, K 1/2−1/p ≲ ∥Sε∥.

5.2. Operator-valued symbol. The Schatten p class has a natural operator space structure inherited from
the operator space complex interpolation S p

= (S∞, S1)1/p, 1 < p <∞. Pisier [1998, Lemma 1.7] proved
that, with respect to S p’s natural operator space structure, a map M on S p(ℓ2) is completely bounded if
and only if M ⊗ idS p(H) is bounded on S p(S p) = S p(ℓ2

⊗ H) for any separable Hilbert space H. We will
explain an operator-valued version of Theorem 1.1 which particularly implies the complete boundedness
of the Schur multipliers considered in Theorem 1.1. We will assume the readers are familiar with the
terminology of operator spaces in this subsection.

We will consider A ∈ S2(ℓ2(Z)⊗ H) with H a separable Hilbert space. We present A in its matrix form
(ai, j )i, j∈Z with ai, j ∈ S2(H). More precisely, denote by ei the canonical basis of ℓ2, let e j,i be the rank-1
operator on ℓ2 sending ei to e j . Denote by tr (resp. τ ) the canonical trace on B(ℓ2(Z)) (resp. B(H)). We set

ai, j = (tr ⊗id)(A(e j,i ⊗ idH )).

2We can get the same conclusion for sequences εk = ±1 by choosing Hadamard orthogonal matrices instead of the matrices
(exp((−i2πk j)/K ))1≤k, j≤K .
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Let M be a finite von Neumann algebra with a normal faithful tracial state τ . Given an M-valued
bounded function m on Z × Z and A ∈ S2(ℓ2(Z)⊗ H) in its matrix form (ai, j )i, j∈Z, we define Mm(A) as
the matrix

Mm(A) = (mi, j ⊗ ai, j )i, j . (5-1)

We will show that an analogue of Theorem 1.1 holds, that is, there exists C p ≃ (p2/(p − 1))3 for
1 < p < ∞ such that

∥Mm(A)∥L p(M⊗B(ℓ2(Z)⊗H)) ≤ C p∥A∥S p(ℓ2⊗H)

for all A ∈ S2
∩ S p. By the density of S2

∩ S p, Mm extends to a bounded operator from S p(ℓ2(Z) ⊗ H)

to L p(M⊗ B(ℓ2(Z)⊗ H)) when m satisfies Marcinkiewicz-type conditions. When M = C, this implies
the complete boundedness of Mm in Theorem 1.1 by Pisier’s result. We will need Pisier’s L∞(ℓ1) norm
to express this Marcinkiewicz-type condition.

Definition 5.1 (Pisier’s L∞(ℓ1) norm). Given N -tuples (x1, . . . , xN ) in M, set

∥x∥L∞(M;ℓ1) = inf
{∥∥∥∥(∑

a j a∗

j

)1
2
∥∥∥∥ ·

∥∥∥∥(∑
b∗

j b j

)1
2
∥∥∥∥}

, (5-2)

where the infimum runs over all possible factorizations x j = a j b j , with a j , b j ∈ M.

When xk ≥ 0, we have ∥x∥L∞(M;ℓ1) =
∥∥∑

k |xk |
∥∥ but the two quantities are not comparable in general.

Pisier showed that ∥x∥L∞(M;ℓ1) < ∞ if and only if there is a decomposition xk = xk,1 −xk,2 + i xk,3 − i xk,4

such that xk,ℓ ≥ 0 and ∥(xk,ℓ)k∥L∞(M;ℓ1) < ∞ for all ℓ = 1, 2, 3, 4.
Given Mm defined as in (5-1), let

1sm(s, t) = m(s + 1, t) − m(s, t), 1t m(s, t) = m(s, t + 1) − m(s, t)

for s, t ∈ Z.

Theorem 5.2. Mm defined as in (5-1) extends to a bounded map from Schatten p-classes S p(ℓ2
⊗ H)

to L p(M⊗ B(ℓ2(Z) ⊗ H)) for all 1 < p < ∞ with bounds ≲ (p2/(p − 1))3 if m is bounded in M and
there is a constant C such that,

(i) for any n ∈ N, t ∈ Z,

∥(1sm(s + t, t))2n−1≤|s|<2n∥L∞(M;ℓ1) < C, (5-3)

(ii) for any n ∈ N, s ∈ Z,

∥(1t m(s, s + t))2n−1≤|t |<2n∥L∞(M;ℓ1) < C. (5-4)

Sketch of proof. Define m̃(s, t) = m(s, t) ⊗ 1ℓ2⊗H and ãs,t = 1M ⊗ as,t . Then m̃(s, t) commutes with
as′,t ′ for any s, t, s ′, t ′

∈ Z. Let

M̃l( j) =

∑
s∈Z

m̃(s, s − j) ⊗ es,s, M̃r ( j) =

∑
s∈Z

m̃(s + j, s) ⊗ es,s,

Ã( j) =

∑
s∈Z

ãs,s− j ⊗ es,s− j =

∑
s∈Z

ãs+ j,s ⊗ es+ j,s,
(5-5)
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with es,t the canonical basis of S2(ℓ2(Z)). Let f (z) =
∑

j∈Z Ã( j)z j and

TM̃ f (z) =

∑
j∈Z

M̃l( j) Ã( j)z j . (5-6)

We still have

TM̃ f (z) =

∑
j∈Z

Ã( j)M̃r ( j)z j (5-7)

and the identities
∥ f ∥L p(M⊗B(ℓ2(Z)⊗H)) = ∥A∥S p(ℓ2⊗H),

|TM̃ f ∥L p(M⊗B(ℓ2(Z)⊗H)) = ∥Mm(A)∥S p(ℓ2⊗H).

Moreover, the conditions (5-3) and (5-4) imply that

∥1l M̃( j)2n−1<| j |≤2n∥L∞(M⊗B(ℓ2(Z)),ℓ1), ∥1r M̃( j)2n−1<| j |≤2n∥L∞(M⊗B(ℓ2(Z)),ℓ1) < C

for

1l M̃( j) = M̃l( j + 1) − M̃l( j), 1r M̃( j) = M̃r ( j + 1) − M̃r ( j).

After these, it is not hard to check that the arguments for the proof of Theorem 1.1 work as well for the
tensor case. □

Corollary 5.3. The Schur multipliers considered in Theorem 1.1 are completely bounded on the Schatten
classes S p, 1 < p < ∞, with bounds ≲ (p2/(p − 1))3 with respect to their natural operator space
structure.

Remark 5.4. The optimal constant for the L p bounds of the classical Marcinkiewicz Fourier multipliers
is p3/2 as p → ∞ [Tao and Wright 2001]. It is unclear what is the optimal asymptotic order for the
S p-bounds of the Schur multipliers in Theorem 1.1.

Open Question. Assume m is a bounded map on Z × Z such that∑
s

|m(k, js) − m(k, js+1)|
2 < C

for all possible increasing sequences js ∈ Z. Does Mm extend to a bounded map on S p for all 1 < p < ∞?

Remark 5.5. The authors heard this question from Potapov and Sukochev. They told the authors that it
stems from the work of Birman and Solomyak on double operator integrals. The third author noticed
Theorem 1.1 during his effort of attacking this question.
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DOUBLE DUALS AND HILBERT MODULES

HUAXIN LIN

Let A be a C∗-algebra, H be a Hilbert A-module and K (H) be the closure of the set of finite-rank module
maps. We show that the W ∗-algebra of all bounded A∗∗-module maps on the smallest self-dual Hilbert
A∗∗-module containing H is isomorphic to K (H)∗∗ as W ∗-algebras. We also show that the unit ball of H
is closed in H ♯, the dual of H in an A-weak topology of H ♯, and the unit ball of H is also dense in
the unit ball of H ♯ in a weak* topology. Some versions of the Kaplansky density theorem for Hilbert
C∗-modules are also presented.

1. Introduction

Hilbert C∗-modules as a generalization of Hilbert spaces were first introduced by I. Kaplansky [1953] in
special cases and later by W. Paschke [1973] for general C∗-algebras. Hilbert C∗-modules are crucial
to Kasparov’s formulation of KK -theory [1980]. Early applications also include C∗-algebraic quantum
group theory; see [Baaj and Skandalis 1993]. Later, in the study of Cuntz semigroups in connection with
the classification of amenable C∗-algebras, Hilbert C∗-modules play an important role; see, for example,
[Brown and Ciuperca 2009; Brown and Lin 2025; Coward et al. 2008; Ortega et al. 2011].

Let A be a C∗-algebra. Unlike Hilbert spaces, bounded module maps on a Hilbert A-module H may
not have adjoints and the dual module H ♯, i.e., the Banach A-module of all bounded module maps from H
to A, may not be identified as elements in H . Moreover, the C∗-algebra L(H) of all bounded module
maps with adjoints may not be a W ∗-algebra. If H0 ⊂ H is a Hilbert A-submodule, a bounded module
map ϕ : H0 → A may not be extended to a bounded module map from H to A. In general, one should not
expect that H can be decomposed into an orthogonal direct sum of H0 and its orthogonal complement. In
fact, H0 may not even have an orthogonal complement. Study of these phenomena may be found, for
example, in [Lin 1991a; 1992] and more recently in [Brown and Lin 2025].

However, Paschke [1973] found that, if A is a W ∗-algebra, then the dual module H ♯ of a Hilbert
A-module H can be made into a Hilbert A-module in a natural way which extends H , and H ♯ is a
self-dual Hilbert A-module. Even if A is not a W ∗-algebra, one can extend H into an A∗∗-module
H • A∗∗ naturally. Then its dual H∼

:= (H • A∗∗)♯ becomes a self-dual Hilbert A∗∗-module containing H .
In fact, H∼ is the smallest self-dual Hilbert A∗∗-module containing H as a Hilbert A-submodule; see
Proposition 3.2. Paschke showed that the Banach algebra of all bounded module maps on H∼ becomes a
W ∗-algebra.
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For a Hilbert A-module H , the rank-1 module maps are the module maps T of the form T (h) = x⟨y, h⟩

for all h ∈ H (and fixed x, y ∈ H , where ⟨ · , · ⟩ is the A-valued inner product). Denote by F(H) the linear
span of rank-1 module maps and denote by K (H) the norm closure of F(H). K (H) is a C∗-algebra and
an important algebra related to the Hilbert module H . It was proved by Kasparov [1980, Theorem 1]
that the C∗-algebra L(H) may be identified with M(K (H)), the multiplier algebra of K (H), and it was
proved in [Lin 1991a] that the Banach algebra of all bounded module maps on H is identified with the
left multipliers of K (H). (All Hilbert A-modules considered in this paper are right A-modules.) Over the
decades, we eventually realized that it is rather convenient to work in B(H∼) in many occasions as we
study module maps on a Hilbert module H . It is not difficult to establish a natural normal homomorphism
9 : K (H)∗∗

→ B(H∼) which extends beyond M(K (H)) and L M(K (H)). It remained unknown for
many years whether 9 is an isomorphism. The original motivation of this paper is to show that indeed 9

is an isomorphism between W ∗-algebras K (H)∗∗ and B(H∼).
As we study the relation among Hilbert modules H , H • A∗∗ and H∼, naturally we ask: how dense

is H in H • A∗∗ and in H∼? Since H∼
= (H • A∗∗)♯, the dual of H • A∗∗, one may also ask about the

density of H in H ♯ in general.
We first note that it was shown (Theorem 6.1 of [Brown and Lin 2025]) that H is dense in H ♯ in an

A-weak topology. More precisely, for any ξ ∈ H ♯, there is a net {xα} in H with ∥xα∥ ≤ ∥ξ∥ for all α such
that limα ∥ξ(x) − ⟨xα, x⟩∥ = 0 for all x ∈ H . However, we show here that the unit ball of H is closed
in H ♯ in the topology where xα → ξ if and only if limα ∥⟨ξ − xα, ζ ⟩∥ = 0 for all ζ ∈ H ♯, and where the
inner product is extended to H∼.

On the other hand, it is easy to see that, for any ξ ∈ H • A∗∗, there is a net {xλ} in H such that
limλ πU (⟨xλ, y⟩)(v) = πU (⟨ξ, y⟩)(v) for all y ∈ H • A∗∗ and v ∈ HU , where HU is the Hilbert space
corresponding to the universal representation πU of A. To be a more useful approximation, one may
ask whether the net can be chosen to be bounded (by ∥ξ∥). We will present a Kaplansky-style density
theorem. Perhaps a more interesting question is: how dense is H in H∼

= (H • A∗∗)♯? Since H∼ is the
dual of H • A∗∗, it is relatively easy to show that, for any ζ ∈ H∼, there is a net {zα} in H such that

lim
λ

f (⟨zα, y⟩) = f (⟨ζ, y⟩) for all y ∈ H • A∗∗ and f ∈ A∗.

It is more challenging to show that y can be replaced by any element in H∼
= (H • A∗∗)♯. We show that

the unit ball of H is actually dense in the unit ball of H∼ in the weak* topology (as H∼ is a conjugate
space), another Kaplansky-style density theorem. In fact, we show a stronger density theorem that, for
any ξ ∈ H∼, there is a net {xα} in H with ∥xα∥ ≤ ∥ξ∥ such that

lim
α

f (⟨ξ − xα, ξ − xα⟩) = 0 for all f ∈ A∗.

2. Self-duals

Definition 2.1. Let A be a C∗-algebra. Denote by Ã the minimum unitization of A. We use the following
convention: if A is a C∗-subalgebra of a unital C∗-algebra B, we write 1 Ã = 1B if either A is unital and
1A = 1 Ã = 1B , or A⊥

= {b ∈ B : ba = ab = 0} = {0}, and we unitize A by adjoining 1B to form Ã ⊂ B.
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Definition 2.2. Let X be a Hilbert space and B(X) be the C∗-algebra of all bounded linear operators
on X . Suppose that A ⊂ B(X). Then ASOT is the closure of A in the strong operator topology. Note that
if {eα} is an approximate identity for A, then eα ↗ 1M , i.e., eα increasingly converges to the identity of
M = ASOT in the strong operator topology as well as in the weak* topology (of M). In particular, we
may write 1 Ã = 1M .

This works particularly for the pair A and A∗∗ (where X is Hu , the Hilbert space corresponding to the
universal representation of A).

In general, if M is a W ∗-algebra, we denote by M∗ the predual of M .

Definition 2.3. Let A be a C∗-algebra. In this paper, we use the formal definition of Hilbert modules in
[Paschke 1973] and consider only right A-modules. Recall that a linear space H is a pre-Hilbert module
if it is also a right A-module with an inner product H × H → A satisfying the following properties: for
any x, y, z ∈ H , a ∈ A and λ ∈ C,

(1) ⟨x, λy + z⟩ = ⟨x, y⟩ + λ⟨x, y⟩,

(2) ⟨x, ya⟩ = ⟨x, y⟩a,

(3) ⟨x, y⟩
∗
= ⟨y, x⟩,

(4) ⟨x, x⟩ ≥ 0; if ⟨x, x⟩ = 0, then x = 0.

Define ∥x∥ = ∥⟨x, x⟩∥
1/2 for x ∈ H . Then H becomes a normed space. H is a Hilbert A-module if H is

complete with this norm.
Denote by H ♯ the Banach space of all bounded module maps from H into A. A Hilbert A-module is

said to be self-dual if, for every f ∈ H ♯, there is x ∈ H such that

f (y) = ⟨x, y⟩ for all y ∈ H.

Denote by B(H) the Banach algebra of all bounded module maps from H into itself, and by L(H) the
C∗-algebra of all those bounded module maps T with an adjoint T ∗ in L(H) defined by

⟨T (x), y⟩ = ⟨x, T ∗(y)⟩ for all x, y ∈ H.

Let F(H) be the algebra of all finite-rank module maps, i.e., the linear span of all bounded module
maps of the form θx,y : H → H defined by

θx,y(ξ) = x⟨y, ξ⟩

for all ξ ∈ H and x, y ∈ H . Denote by K (H) the norm closure of F(H), which is a C∗-algebra.
By Theorem 1 of [Kasparov 1980], we identify L(H) with M(K (H)), the multiplier algebra of K (H)

and, by Theorem 1.5 of [Lin 1991a], B(H) with L M(K (H)), the Banach algebra of left multipliers
of K (H) (in K (H)∗∗). If H is self-dual, then B(H) = L(H).

We refer to [Kasparov 1980; Lin 1991a; 1992; Paschke 1973] for common terminologies related to
Hilbert C∗-modules.



1534 HUAXIN LIN

Definition 2.4. Let A be a C∗-algebra and H a Hilbert A-module. Let us give the definition of a self-dual
Hilbert A∗∗-module H∼; see Definition 1.3 of [Lin 1991a].

We may view H as a Hilbert Ã-module. Let B be a unital C∗-algebra containing A and 1 Ã = 1B (see
the convention in Definition 2.1). The algebraical tensor product H ⊗ B becomes a right B-module if we
set (h ⊗ a) · b = h ⊗ ab for any h ∈ H and a, b ∈ B. Define ⟨ − , − ⟩ : H ⊗ B × H ⊗ B → B by〈∑

i

hi ⊗ ai ,
∑

j

x j ⊗ b j

〉
=

∑
i, j

a∗

i ⟨hi , x j ⟩b j

and N = {z ∈ H ⊗ A∗∗
: ⟨z, z⟩ = 0}. Then (H ⊗ B)/N becomes a pre-Hilbert B-module (see Section 4

of [Paschke 1973], but exchange B with A). Denote by H • B := ((H ⊗ B)/N )− (the completion of) the
Hilbert B-module.

We are particularly interested in the case that B = A∗∗. We view Ã as a C∗-subalgebra of A∗∗. Then
H∼

:= (H • A∗∗)♯ is a self-dual Hilbert A∗∗-module.
Note that Ã is ultraweakly dense in A∗∗ (since A is). By applying the result [Paschke 1973, Theorem 4.2]

to the pair A∗∗ (as A in that result) and Ã (as B in that result, see also the remark right after the proof of
that result), we obtain an isometric (surjective) isomorphism ι : H∼

:= (H • A∗∗)♯ → B(H, A∗∗), with
B(H, A∗∗) the Banach space of all bounded A-module maps from H to A∗∗ (written as M(H, A∗∗) in
that same result).

Let x ∈ H and b ∈ B. Then

∥(x ⊗ b)/N∥
2
= ∥b∗

⟨x, x⟩b∥ ≤ ∥x∥
2
∥b∗b∥.

Hence
∥(x ⊗ b)/N∥ ≤ ∥x∥∥b∥.

In what follows, for x ∈ H and b ∈ B, we write x • b := (x ⊗ b)/N .
In general, if E is a self-dual Hilbert module, then B(E) = L(E); see [Paschke 1973, Corollary 3.5].

If in addition A is a W ∗-algebra, B(E) is also a W ∗ -algebra; see [Paschke 1973, Proposition 3.11].
Let us recall the description of the predual of B(E) in this case. Denote by E∼ the linear space E with

the “twisted” scalar multiplication (i.e., λx = λ̄x for x ∈ E and λ ∈ C) and consider E∼ ⊗ E ⊗ A∗ with
the greatest cross-norm, where A∗ is the usual predual of the W ∗-algebra A. For each T ∈ B(E), define a
linear functional Ť on E∼ ⊗ E ⊗ A∗ by

Ť
( n∑

j=1

x j ⊗ y j ⊗ g j

)
=

n∑
j=1

g j (⟨T (x j ), y j ⟩)

for x j , y j ∈ E and g j ∈ A∗, 1 ≤ j ≤ n. The map T → Ť is a linear isometry of B(E) = L(E) into
(E∼⊗E⊗A∗)

∗. It was shown [Paschke 1973, Proposition 3.10] that B(E )̌ is weak*-closed in E∼⊗E⊗A∗.
A bounded net {Tα} in B(E) converges to T ∈ B(E) in the weak* topology if and only if

f (⟨Tα(x), y⟩) → f (⟨T (x), y⟩) for all x, y ∈ E and f ∈ A∗

[Paschke 1973, Remark 3.9 and Proposition 3.10]. In particular, B(H∼) is a W ∗-algebra.
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Definition 2.5. Keep the notation in Definition 2.4. Recall that H is a Hilbert A-module and Ã ⊂ B.
Then ι : H → H • B defined by x → x ⊗ 1 is an injective map. Note that, for all a ∈ A,

⟨(x · a) ⊗ 1 − x ⊗ a, (x · a) ⊗ 1 − x ⊗ a⟩ = ⟨x · a, x · a⟩ − ⟨x · a, x⟩a − a∗
⟨x, x · a⟩ + a∗

⟨x, x⟩a

= a∗
⟨x, x⟩a − a∗

⟨x, x⟩a − a∗
⟨x, x⟩a + a∗

⟨x, x⟩a = 0.

Hence ι(x · a) = x ⊗ a/N for all a ∈ Ã. In the case B = A∗∗, we then extend ι from H ♯ to (H • A∗∗)♯ by

ι( f )(x • b) = f (x)b for all x ∈ H and b ∈ A∗∗

and f ∈ H ♯. Note that the map is a module map from H ♯ to (H∼)♯, which is conjugate module isomorphic
to H∼.

From now on, we may view H as a submodule of H∼ and, sometimes, omit the map ι.

The following result provides a convenient and easy fact that H • B is the smallest Hilbert B-module
containing H as a Hilbert A-module.

Proposition 2.6. Let A and B be a pair of C∗-algebras such that A ⊂ B, B is unital and 1 Ã = 1B .
Suppose that H is a Hilbert A-module, H1 is a Hilbert B-module and there is an embedding ι : H → H1

as Hilbert modules, i.e., ι is a linear and A-module map such that

⟨ι(x), ι(y)⟩ = ⟨x, y⟩ for all x, y ∈ H.

Then there is a unique B-module embedding ι̃ : H • B → H1 such that

ι̃(x • b) = ι(x)b for all x ∈ H and b ∈ B, ⟨ι̃(ξ ), ι̃(ζ )⟩ = ⟨ξ, ζ ⟩ for all ξ, ζ ∈ H • B.

Proof. For any ξ =
∑n

i=1 xi • ai , where xi ∈ H and ai ∈ B (1 ≤ i ≤ n), define

ι̃(ξ ) =

n∑
i=1

ι(xi )ai .

Then, for ζ =
∑n

i=1 yi • bi ,

⟨ι̃(ξ ), ι̃(ζ )⟩ =

n∑
i, j

a∗

i ⟨xi , y j ⟩b j = ⟨ξ, ζ ⟩.

In particular,

∥ι̃(ξ ), ι̃(ξ)⟩∥ =

∥∥∥∥ n∑
i, j

a∗

i ⟨xi , x j ⟩b j

∥∥∥∥ = ∥ξ∥
2.

Therefore ∥ι̃∥ ≤ 1 on (H ⊗ B)/N . So ι̃ is uniquely extended to a contractive linear map from H • B
into H1. It is a B-module map. Since (H ⊗ B)/N is dense in H • B,

⟨ι̃(x), ι̃(y)⟩ = ⟨x, y⟩ for all x, y ∈ H • B.

To see this embedding is unique, let ι̃1 be another such embedding. Then (ι̃ − ι̃1)|H = 0. For any
ξ =

∑n
i=1 xi • ai , where xi ∈ H and ai ∈ B,

(ι̃ − ι̃1)(ξ) =

n∑
i=1

(ι(xi ) − ι(xi )) • ai = 0.

In other words, ι̃1 = ι̃. □
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Definition 2.7. Keep the notation in Definitions 2.3, 2.4 and 2.5. Recall that F(H) is the algebra of all
finite-rank module maps. Define 90 : F(H) → F(H • B) ⊂ B(H • B) by

90(θx,y)(ζ ) = ι(x)⟨ι(y), ζ ⟩

for all ζ ∈ H • B, x, y ∈ H . 9 is a ∗-preserving homomorphism from the ∗-algebra F(H) into F(H • B).
Moreover, 90 is an isometry on F(H). In particular, ∥90∥ = 1. Therefore it extends uniquely to a
C∗-algebra homomorphism from K (H) to K (H • B), which preserves the norm. It has to be an isometry
as F(H) is dense in K (H).

In the case that B = A∗∗, we may define 9̃0 : F(H) → F(H∼) ⊂ B(H∼) by

9̃0(θx,y)(ζ ) = ι(x)⟨ι(y), ζ ⟩

for all ζ ∈ H∼, x, y ∈ H . Then 9̃0 is a ∗-preserving homomorphism from the ∗-algebra F(H) into F(H∼)

and it extends uniquely to a C∗-algebra homomorphism 9̃0 from K (H) to K (H∼), which preserves the
norm. Recall that ι(H ♯) ⊂ H∼.

Proposition 2.8. Let A ⊂ B be a pair of C∗-algebras, where B is unital and 1B = 1 Ã. Let T ∈ K (H).
Then 90(T )(x • b) = T (x) • b for all x ∈ H and b ∈ B.

Proof. From the definition, for any S ∈ F(H), any x ∈ H and any b ∈ B,

90(S)(x ⊗ b) = S(x) ⊗ b (mod N).

Fix T ∈ K (H), and let ϵ > 0. There exists S ∈ F(H) such that

∥T − S∥ < 1
4ϵ(1 + ∥x • b∥ +∥x∥∥b∥).

Then
∥90(T ) − 90(S)∥ < 1

4ϵ(1 + ∥x ⊗ b∥ +∥x∥∥b∥) and ∥T (x) • b − S(x) • b∥ ≤
1
2ϵ.

Hence
∥90(T )(x • b) − T (x) • b∥ < ϵ.

Since this holds for all ϵ > 0, we conclude that

90(x • b) = T (x) • b. □

Lemma 2.9. Let A and B be as in Proposition 2.8 and H be a Hilbert A-module. Suppose that {Eλ} is an
approximate identity for K (H). Then {90(Eλ)} forms an approximate identity for K (H • B). Moreover

lim
λ

∥90(Eλ)(x) − x∥ = 0 for all x ∈ H • B.

Proof. By Lemma 3.1 of [Brown and Lin 2025],

lim
λ

∥Eλ(x) − x∥ = 0 for all x ∈ H. (2-1)

Let S =
∑n

i=1 θxi ,yi , where xi , yi ∈ (H ⊗ B)/N , 1 ≤ i ≤ n. Write xi =
∑k(i)

j=1 ξ j,i • b j,i , where ξ j,i ∈ H
and b j,i ∈ B, j = 1, 2, . . . , k(i), i = 1, 2, . . . , n. By Proposition 2.8,

90(Eλ)(ξ j,i • b j,i ) = Eλ(ξ j,i ) • b j,i .
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By (2-1),
lim
λ

∥90(Eλ)(ξ j,i • b j,i ) − (ξ j,i • b j,i )∥ = 0 (2-2)

for j = 1, 2, . . . , k(i), i = 1, 2, . . . , n. It follows that

lim
λ

∥90(Eλ)(xi ) − xi∥ = 0, i = 1, 2, . . . , n.

For any z ∈ H • B,
90(Eλ)θxi ,yi (z) = (90(Eλ)xi )⟨yi , z⟩ = Eλ(xi )⟨yi , z⟩.

It follows that, for 1 ≤ i ≤ n,
lim
λ

∥90(Eλ)θxi ,yi − θxi ,yi ∥ = 0.

Hence
lim
λ

∥90(Eλ)S − S∥ = 0.

The set of those module maps with the form of S is norm-dense in K (H • B). Therefore we conclude that

lim
λ

∥90(Eλ)S − S∥ = 0 for all S ∈ K (H • B).

It follows that {90(Eλ)} forms an approximate identity for K (H • B). □

2.10. Let A be a C∗-algebra and H be a Hilbert A-module. Then H ♯ is a Banach A-module in general.
Recall that, for each T ∈ B(H), one may define a bounded conjugate module map T ∗

: H → H ♯ as
follows: for x, y ∈ H , define

T ∗(x)(y) = ⟨x, T (y)⟩.

So, for a fixed x , we have that T ∗(x) gives an element in H ♯. Moreover, T ∗ is a bounded conjugate
module map from H to H ♯ with ∥T ∗

∥ = ∥T ∥. However, if we view H as a submodule of H ♯, then T ∗ is
a bounded module map. Note that, if T ∈ L(H), then T ∗

∈ L(H) and T ∗(H) ⊂ H .
If A is a W ∗-algebra, by Theorem 3.2 of [Paschke 1973], H ♯ becomes a Hilbert A module in a natural

way. For T ∈ B(H) and f ∈ H ♯, define, for each x ∈ H ,

T̃ ( f )(x) = ⟨ f, T ∗(x)⟩, (2-3)

where T ∗ is defined above. Thus T̃ ( f ) is a bounded linear module map from H to A with ∥T̃ ( f )∥ ≤

∥T ∥∥ f ∥. Hence we extend T to a bounded (conjugate) module map from H ♯ to H ♯. As we view H ♯ as a
Hilbert A-submodule in this case, T is in fact a bounded module map on H ♯ (we will take the conjugate
as Hilbert space cases). By Corollary 3.7 of [Paschke 1973], such an extension is unique.

By Lemma 3.7 of [Lin 1992], one may ease the assumption that A is a W ∗-algebra to the assumption
that A is a monotone complete C∗-algebra.

Proposition 2.11. Let A and B be as in Proposition 2.8, H be a Hilbert A-module and {Eλ} an approxi-
mate identity for K (H). Then

lim
λ

(sup{∥9̃0(Eλ)( f )(x) − f (x)∥ : f ∈ (H • B)♯, ∥ f ∥ ≤ 1}) = 0 for all x ∈ H • B. (2-4)

Moreover, suppose that (H • B)♯ extends H • B as a Hilbert B-module, then, for any T ∈ B((H • B)♯),

lim
λ

∥⟨9̃0(Eλ)T 9̃0(Eλ)(x), y⟩ − ⟨T (x), y⟩∥ = 0 for all x, y ∈ H • B.
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Proof. Fix f ∈ H ♯. For any x ∈ H • B, by Lemma 2.9,

∥9̃0(Eλ)( f )(x) − f (x)∥ = ∥ f (Eλ(x)) − f (x)∥ ≤ ∥ f ∥∥Eλ(x) − x∥ → 0.

Hence (2-4) holds.
To see the “moreover” part of the lemma, let T ∈ B((H • B)♯). Then, for any x, y ∈ H • B,

∥⟨9̃0(Eλ)T 9̃0(Eλ)(x), y⟩ − ⟨T (x), y⟩∥

≤ ∥⟨T 9̃0(Eλ)(x), 9̃0(Eλ)(y)⟩ − ⟨T (x), 9̃0(Eλ)(y)⟩∥ + ∥⟨T (x), 9̃0(Eλ)(y)⟩ − ⟨T (x), y⟩∥

≤ ∥y∥∥T ∥∥90(Eλ)(x) − x∥ +∥T ∥∥x∥∥90(Eλ)(y) − y∥

By applying Lemma 2.9 to the two terms of the last inequality above, we conclude that

lim
λ

∥⟨9̃0(Eλ)T 9̃0(Eλ)(x), y⟩ − ⟨T (x), y⟩∥ = 0 for all x, y ∈ H • B. □

Definition 2.12. Let A be a C∗-algebra and H be a Hilbert A-module. Recall [Lin 1991a, Theorem 1.5]
that we identify B(H) with L M(K (H)), the Banach algebra of left multipliers of K (H) (in K (H)∗∗).

By Lemma 2.9, 90 maps K (H) into K (H • B) which maps approximate identities to approximate
identities. We may then extend a homomorphism 90 : B(H)= L M(K (H))→ L M(K (H • B))= B(H • B)

by
90(T ) = lim

λ
90(T Eλ),

where the convergence is in the left strict topology of L M(K (H • B)). Since 90|K (H) is an isometry, so
is 90.

We are mostly interested in the case that B = A∗∗. By Theorem 3.2 of [Paschke 1973], (H • A∗∗)♯ is a
self-dual Hilbert A∗∗-module. Therefore, by Section 2.10, for each T ∈ B(H), the extension 9̃0(T ) is
unique. Hence 90 may be extended to a Banach algebra isomorphism 9̃0 from B(H) into B(H∼) such
that

9̃0(T )|H•A∗∗ = 90(T ) for all T ∈ B(H). (2-5)

We will visualize the map 90 a bit more.

Proposition 2.13. Let A and B be a pair of C∗-algebras as in Proposition 2.8 and H be a Hilbert
A-module. Then, for any T ∈ B(H),

lim
λ

∥90(T )90(Eλ)(x) − 90(T )(x)∥ = 0 for all x ∈ H • B. (2-6)
Moreover

90(T )(x • b) = T (x) • b for all x ∈ H and b ∈ B.

Consequently, 9̃0(idH ) = idH∼ .

Proof. The identity (2-6) follows immediately from Lemma 2.9.
Since

90(T Eλ)(x • b) = T Eλ(x) • b,

by (2-6) and by Lemma 3.1 of [Brown and Lin 2025],

90(T )(x • b) = T (x) • b
for all x ∈ H and b ∈ B.
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For the last part of the proposition, we note that, by considering the pair A and A∗∗, and by the
“moreover” part of the proposition, 90(idH ) = idH•A∗∗ . Therefore, since the extension 9̃0(idH•A∗∗)

is unique (Corollary 3.7 of [Paschke 1973], see Section 2.10 for convenience), we must have that
9̃0(idH ) = idH∼ . □

The following is a slightly strengthened restatement of [Brown and Lin 2025, Proposition 2.3].

Proposition 2.14. Let A be a C∗-algebra and H a Hilbert A-module. Then there is a homomorphism 9

from K (H)∗∗ into B(H∼) such that 9|B(H) = 9̃0. Moreover, if T ∈ K (H)∗∗ and Tλ ∈ K (H)∗∗ such that
Tλ → T in the weak* topology, then

lim
λ

f (⟨9(Tλ)(x), y⟩) = f (⟨9(T )(x), y⟩) for all x, y ∈ H∼ and f ∈ A∗.

Proof. By Definition 2.4, B(H∼) = L(H∼) is a W ∗-algebra; see [Paschke 1973, Proposition 3.11]. Let
π : B(H∼) → B(Hπ ) be a faithful normal representation such that π(B(H∼)) is weakly closed in B(Hπ ).
Then, by, for example, [Pedersen 1979, Theorem 3.7.7] and [Conway 2000, Corollary 46.5], there is a
normal homomorphism 8 : K (H)∗∗

→ B(Hπ ) such that 8|K (H) = π ◦ 9̃0|K (H) and π ◦ 9̃0(K (H)) is
weakly dense in 8(K (H)∗∗). Since π(B(H∼)) is a von Neumann algebra, 8(K (H)∗∗) ⊂ π(B(H∼)).
Since π is injective, we may define 9 =π−1

◦8. Recall that π−1 is an isomorphism between W ∗-algebras
π(B(H∼)) and B(H∼). It follows that 9 is weak*-continuous. Then, 9|K (H) = π−1

◦ π ◦ 9̃0|K (H) =

9̃0|K (H).
Let V = B(H∼)∗ be the predual (as Banach spaces). Then 9 induces a map 9∗

: V → K (H)∗, the
predual of K (H)∗∗, by L(9∗(v)) = 9(L)(v) for all L ∈ (K (H)∗)∗ and v ∈ V . Thus if Tλ ∈ K (H)∗∗ such
that Tλ → T in the weak* topology in K (H)∗∗, then 9(Tλ)(v) = Tλ(9

∗(v)) converges to T (9∗(v)) =

9(T )(v) for all v ∈ V . In other words, 9(Tλ) → 9(T ) in the weak* topology in V ∗
= B(H∼). By

Definition 2.4 (see Remark 3.9 and proof of Theorem 3.10 of [Paschke 1973]), this implies, in particular,
for any f ∈ A∗, x, y ∈ H∼, that f (⟨9(Tλ)(x), y⟩) → f (⟨9(T )(x), y⟩).

By Theorem 1.5 of [Lin 1991a], B(H) = L M(K (H)). Let {Eλ} be an approximate identity for K (H).
Then T Eλ ∈ K (H) for all T ∈ B(H). It follows from Proposition 2.13 that, for T ∈ B(H),

lim
λ

∥9(T Eλ)( f )(x) − 9(T )( f )(x)∥ = lim
λ

∥9(T )9(Eλ)( f )(x) − 9(T )( f )(x)∥ = 0

for all x ∈ H • A∗∗ and f ∈ (H • A∗∗)♯. On the other hand, by Lemma 2.9,

lim
λ

∥90(T Eλ)(x) − 90(T )(x)∥ = 0 for all x ∈ H • A∗∗.

However, we have shown that 9(T Eλ)(y) = 9̃0(T Eλ)(y) = 90(T Eλ)(y) for all y ∈ H • A∗∗ (see also
Definition 2.12). Therefore, combining these three facts, for x, y ∈ H • A∗∗, we obtain

⟨9(T )(x), y⟩ = ⟨90(T )(x), y⟩.

It follows that 9(T )|H•A∗∗ =90(T ). Since the extension of 90(T ) to a bounded module map on (H • A∗∗)♯

is unique (see the end of Section 2.10 and [Lin 1992, Lemma 3.5]), we have 9(T ) = 9̃0(T ) for all
T ∈ B(H). Hence

9|B(H) = 9̃0. □
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Definition 2.15. Let M be a W ∗-algebra and H be a Hilbert M-module. Then, H ♯ is a self-dual Hilbert
M-module by [Paschke 1973, Theorem 3.2]. Let F0 : F(H) → F(H ♯) be the homomorphism defined by

F0(θx,y)(z) = x⟨y, z⟩ for all z ∈ H ♯ and x, y ∈ H.

Clearly F0 is an isometry. It extends uniquely to a homomorphism F0 : K (H) → K (H ♯). We further
extend F : K̃ (H) → K̃ (H ♯) by F(idH ) = idH ♯ .

Proposition 2.16. Let M be a W ∗-algebra and H a Hilbert M-module. Then there exists a unital normal
homomorphism F : K (H)∗∗

→ B(H ♯) such that F |K (H) = F0 and, if Tλ → T in the weak* topology
of K (H)∗∗, then

lim
λ

f (⟨F(Tλ)(x), y⟩) = f (⟨F(T )(x), y⟩)

for all x, y ∈ H ♯ and f ∈ M∗, the predual of M. Moreover, F(T ) = T̃ for all T ∈ B(H) as defined
by (2-3).

Proof. Recall that B(H ♯) is a W ∗-algebra. We may assume that B(H ♯) acts on a Hilbert space X as a
von Neumann algebra with 1B(H ♯) = idX . Then, by [Lin 2001, Theorem 1.8.2] (see also [Pedersen 1979,
Theorem 3.7.7]), there is a unital normal homomorphism F : K (H)∗∗

→ F0(K (H))SOT
⊂ B(H ♯) such

that F |K (H) = F0. So F is weak*-continuous (see, for example, [Conway 2000, Corollary 46.5]).
Suppose that Tλ → T in the weak* topology of K (H)∗∗. Then F(Tλ) → F(T ) in the weak* topology

of B(H ♯). Therefore (see the later part of Definition 2.4, also, Remark 3.9 and the proof of Proposition 3.9
of [Paschke 1973]),

f (⟨F(Tλ)(x), y⟩) → f (⟨F(T )(x), y⟩) for all x, y ∈ H ♯ and f ∈ M∗.

Let {Eλ} be an approximate identity for K (H). Then, for any T ∈ B(H), by Lemma 3.1 of [Brown and
Lin 2025],

lim
λ

∥F(T )F(Eλ)(x) − F(T )(x)∥ = lim
λ

∥F(T )Eλ(x) − F(T )(x)∥ = 0 for all x ∈ H.

On the other hand, since F(T )F(Eλ)|H = F(T Eλ)|H = T Eλ and (by [Brown and Lin 2025, Lemma 3.1])

lim
λ

∥T Eλ(x) − T (x)∥ = 0,

we conclude that
T (x) = F(T )(x) for all x ∈ H.

Since the extension of T to H ♯ is unique (by Proposition 3.6 of [Paschke 1973], see also Lemma 3.5 of
[Lin 1992]), T̃ = F(T ). □

3. Isomorphism of B(H∼) and K (H)∗∗

Let A be a monotone complete C∗-algebra and H be a Hilbert A-module. Then, by Lemma 3.7 of [Lin
1992], H ♯ becomes a self-dual Hilbert A-module such that ⟨τ, x⟩ = τ(x) for all x ∈ H and τ ∈ H ♯. Note
that, if E is self-dual, we conjugate map E♯ onto E just as in the case of Hilbert spaces.
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We will apply the following lemma several times.

Proposition 3.1. Let A be a monotone complete C∗-algebra and H1 ⊂ H2 be Hilbert A-modules such
that H2 is self-dual. Then H ♯

1 is an orthogonal summand of H ♯

2 and the embedding H ♯

1 → H ♯

2 extends the
embedding H1 ⊂ H2.

Proof. Define P0 : H2 → H ♯

1 by

P0(y)(x) = ⟨y, x⟩ for all y ∈ H2 and x ∈ H1. (3-1)

It is a bounded module map (by viewing H ♯

1 as a Hilbert module instead of the dual to avoid the
conjugation) with ∥P0∥ = 1. Note that P0|H1 = idH1 .

Let τ ∈ H ♯

1 . Since A is monotone complete, by Theorem 3.8 of [Lin 1992], there is τ̃ ∈ H ♯

2 = H2 such
that τ̃ |H1 = τ and ∥τ̃∥ = ∥τ∥. This implies that P0 is surjective.

Define j : H ♯

1 → H ♯

2 = H2 by

j (x)(y) = ⟨x, P0(y)⟩ for all x ∈ H ♯

1 and y ∈ H2. (3-2)

Then j extends the embedding H1 ↪→ H2. Now, for x ∈ H ♯

1 and y ∈ H2, by (3-1) and (3-2),

P0 ◦ j (x)(y) = P0( j (x))(y) = ⟨ j (x), y⟩ = ⟨x, P0(y)⟩ = ⟨P0(y), x⟩
∗
= (P0(y)(x))∗ = ⟨y, x⟩

∗
= ⟨x, y⟩.

It follows that P0 ◦ j = id |H ♯

1
, and thus j : H ♯

1 → H2 is an embedding. With the identification of H ♯

1
and j (H ♯

1 ), P0|H ♯

1
= id |H ♯

1
. It follows that P0 is a projection and H ♯

1 is an orthogonal summand of H2. □

Applying Propositions 3.1 and 2.6, we obtain the following characterization of H∼.

Proposition 3.2. Let A be a C∗-algebra and H be a Hilbert A-module. Then H∼ is the smallest self-dual
Hilbert A∗∗-module containing H as a Hilbert A-submodule.

Proof. Let H1 be a self-dual Hilbert A∗∗-module containing H as a Hilbert A-submodule. Then, by
Proposition 2.6,

H ⊂ H • A∗∗
⊂ H1.

Applying Proposition 3.1, since H1 is self-dual,

H∼
= (H • A∗∗)♯ ⊂ H ♯

1 = H1.

The proposition follows. □

3.3. In the next proposition, let A be a C∗-algebra, and let H1 ⊂ H be Hilbert A-modules. Then, by
Proposition 2.6, H1 • A∗∗

⊂ H • A∗∗. Since A∗∗ is monotone complete and (H • A∗∗)♯ = H∼ and
(H1 • A∗∗)♯ = H∼

1 , by Proposition 3.1, we may write H∼
= H∼

1 ⊕ (H∼

1 )⊥. Denote by P : H∼
→ H∼

1 the
projection. Note that P ∈ L(H∼). By Lemma 3.2 of [Lin 1992], K (H1) is a hereditary C∗-subalgebra
of K (H). Let 9H : K (H)∗∗

→ B(H∼) and 91 : K (H1)
∗∗

→ B(H∼

1 ) be the homomorphisms given by
Proposition 2.14, respectively.
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Proposition 3.4. Using the notation above, we have that

91 = 9H |K (H1)∗∗ = P9H P|K (H1)∗∗;

in particular, 91(T ) = 9H (T )|H∼

1
= P9H (T )P|H∼

1
for T ∈ K (H1)

∗∗. Moreover,

P9H (L)P|K (H1)∗∗ ⊂ 91(K (H1)
∗∗) for all L ∈ K (H)∗∗.

Furthermore, 9(Q) = P , where Q is the open projection in K (H)∗∗ corresponding to the hereditary
C∗-subalgebra K (H1).

Proof. Denote by 9K (H),0 the injective homomorphism from K (H) into K (H • A∗∗) and by 9K (H1),0 the
injective homomorphism from K (H1) into K (H1 • A∗∗) described in Definition 2.7, respectively.

Fix S ∈ K (H1). For each x ∈ H1 and b ∈ A∗∗, by Proposition 2.8,

9K (H),0(S)(x • b) = S(x) • b,

P9K (H),0(S)P(x • b) = P(S(x • b)) = S(x) • b = 9K (H1),0(S)(x • b).

It follows that
9K (H),0(S)|H1•A∗∗ = P9K (H),0(S)P|H1•A∗∗ = 9K (H1),0(S).

Since the extensions of 9K (H),0(S)|H1•A∗∗ and 9K (H1),0(S) to bounded module maps on H∼

1 are unique,
and 9(S)|H∼

1
and 9(S) are corresponding extensions, by Corollary 3.7 of [Paschke 1973], we conclude

that 9(S)|H∼

1
= P9H (S)P|H∼

1
= 91(S).

Let T ∈ K (H1)
∗∗ and {Tλ} ⊂ K (H1) be a net such that Tλ → T in the weak* topology. By

Proposition 2.14, for any g ∈ A∗,

lim
λ

|g(⟨9H (Tλ)(x), y⟩) − g(⟨9H (T )(x), y⟩)| = 0, (3-3)

lim
λ

|g(⟨91(Tλ)(x), y⟩) − g(⟨91(T )(x), y⟩)| = 0 (3-4)

for all x, y ∈ H∼

1 . Since we have shown that 9H (Tλ)|H∼

1
= P9H (Tλ)P|H∼

1
= 91(Tλ), we conclude that

9H (T )|H∼

1
= P9H (T )P|H∼

1
= 91(T ). (3-5)

Hence
91 = P9H P|K (H1)∗∗ = 9H |K (H1)∗∗ .

Let {qλ} be an approximate identity for K (H1). Then qλ ↗ idH1 ∈ K (H1)
∗∗. It follows from

Proposition 2.14 that

lim
λ

f (⟨91(qλ(y)), z⟩) = f (⟨y, z⟩) for all y, z ∈ H∼

1 and f ∈ A∗.

On the other hand, we also have that qλ ↗ Q in K (H)∗∗. By Proposition 3.1, H∼
= H∼

1 ⊕ (H∼

1 )⊥.
Note that qλ(x) ∈ H1 for all x ∈ H . Then, for x ∈ H , b ∈ A∗∗ and g ∈ (H∼

1 )⊥, by Proposition 2.8,

⟨9H (qλ)(x • b), g⟩ = g(qλ(x • b))∗ = g(qλ(x) • b)∗ = 0.

It follows that, for any y ∈ H • A∗∗ and g ∈ (H∼

1 )⊥,

⟨9H (qλ)(y), g⟩ = 0.
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Hence, for g ∈ (H∼

1 )⊥,

⟨y, 9H (qλ)(g)⟩ = 0 for all y ∈ H • A∗∗.

It follows that 9H (qλ)(g) = 0 and

⟨9H (qλ)(z), g⟩ = ⟨z, 9H (qλ)(g)⟩ = 0 for all z ∈ H∼.

In other words, 9H (qλ)(z) ∈ H∼

1 for all z ∈ H and λ. Therefore

P9H (qλ) = 9H (qλ) = 9H (qλ)P.

Note that Pz ∈ H∼

1 for any z ∈ H∼. Thus, by (3-5) and (3-4),

lim
λ

f (⟨9(qλ)(y), z⟩) = lim
λ

f (⟨9(qλ)(P(y)), P(z)⟩) = lim
λ

f (⟨91(qλ)(P(y)), P(z)⟩)

= f (⟨P(y), P(z)⟩) = f (⟨P(y), z⟩).

By (3-3) and (3-5), limλ f (⟨9(qλ)(y), z⟩) = f (⟨9(Q)(y), z⟩). Therefore

9(Q) = P.

This proves the “furthermore” part. In what follows we will identify Q with P as well as 9(Q) and 9(P).
Now let L ∈ K (H)∗∗ and {Lλ} ⊂ K (H) be a net such that Lλ → L in the weak* topology. By

Proposition 2.14, for any g ∈ A∗, x, y ∈ H∼

1 ,

lim
λ

|g(⟨9H (Tλ)(x), y⟩) − g(⟨9H (T )(x), y⟩)| = 0,

lim
λ

|g(⟨91(Tλ)(x), y⟩) − g(⟨91(T )(x), y⟩)| = 0

(note that 91(Tλ) = P91(Tλ)P). We also have, for any x, y ∈ H∼

1 ,

⟨9H (PTλ P)(x), y⟩ = ⟨9H (Tλ)(x), y⟩,

⟨P9H (T )P(x), y⟩ = ⟨9H (T )(x), y⟩.

Since PTλ P ∈ K (H1)
∗∗, by the first part of the lemma, 9H (PTλ P)(x) = 91(PTλ P)(x) for x ∈ H∼

1 . It
follows that P9H (T )P(x) = 91(PT P)(x) for all x ∈ H∼

1 . Then

P9H (T )P = 91(PT P) ∈ 91(K (H1)
∗∗). □

3.5. Let A be a C∗-algebra and let, for n ∈ N,

Hn = A(n)
= {(a1, a2, . . . , an) : a j ∈ A, 1 ≤ j ≤ n},

the direct sum of n copies of A, where ⟨a, b⟩=
∑n

j=1 a∗

j b j if a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn).
Let

HA =

{
{an} : an ∈ A and

n∑
i=1

a∗

k ak converges in norm
}
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be the standard countably generated Hilbert (right) A-module. Note that

⟨{an}, {bn}⟩ =

∞∑
n=1

a∗

nbn.

We note that HA is the closure of
⋃

n A(n). We may also view Hn = A(n) as an orthogonal summand
of HA. Then

H ♯
A =

{
{an} :

{∥∥∥∥ n∑
k=1

a∗

k ak

∥∥∥∥}
is bounded

}
.

If g = {an} ∈ H ♯, then

g(x) =

∞∑
n=1

a∗

nbn for all x = {bn} ∈ HA,

where the sum converges in norm. Moreover ∥g∥ = limn→∞

∥∥∑n
k=1 a∗

k ak
∥∥.

If A is a W ∗-algebra, as mentioned earlier, H ♯
A becomes a Hilbert A-module in a natural way (see

Theorem 3.2 of [Paschke 1973]). In fact, we may define

⟨x, y⟩ =

∞∑
n=1

a∗

nbn for all x = {an}, y = {bn} ∈ H ♯
A. (3-6)

To see the right side converges in the weak* topology, we first let f ∈ A∗. Note that, if {an} ∈ H ♯
A,∣∣∣∣ N∑

k=1

f (a∗

k ak)

∣∣∣∣ =

∣∣∣∣ f
( N∑

k=1

a∗

k ak

)∣∣∣∣ ≤ ∥ f ∥

∥∥∥∥ N∑
k=1

a∗

k ak

∥∥∥∥
for any integer N . Hence

{∑n
k=1 f (a∗

k ak)
}

is bounded, is increasing and converges for any positive linear
functional f . Hence, for any m > n,

m∑
k=n

f (a∗

k ak) → 0 as n → ∞ for all f ∈ A∗. (3-7)

For any positive linear functional f of A and for any m > n in N,∣∣∣∣ f
( m∑

k=n

a∗

k bk

)∣∣∣∣ =

∣∣∣∣ m∑
k=n

f (a∗

k bk)

∣∣∣∣ ≤

m∑
k=n

| f (a∗

k bk)|

≤

m∑
k=n

| f (a∗

k ak)|
1/2

| f (b∗

k bk)|
1/2

≤

(( m∑
k=n

| f (a∗

k ak)|

)( m∑
k=n

| f (b∗

k bk)|

))1/2

≤ ∥ f ∥
1/2

∥{bk}∥

( m∑
k=n

| f (a∗

k ak)|

)1/2

→ 0 as n → ∞.
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It follows that f
(∑n

k=1 a∗

k bk
)

converges for all f ∈ A∗ as n →∞. Let us write the limit as f
(∑

∞

k=1 a∗

k bk
)
.

Then, by the above inequalities (with n = 1), we also have∣∣∣∣ f
( ∞∑

k=1

a∗

k bk

)∣∣∣∣ ≤ ∥ f ∥Mb Ma,

where

Ma = sup
{∥∥∥∥ n∑

k=1

a∗

k ak

∥∥∥∥}1/2

and Mb = sup
{∥∥∥∥ n∑

k=1

b∗

k bk

∥∥∥∥}1/2

.

Thus
∑

∞

k=1 a∗

k bk defines a bounded linear functional on A∗. Its restriction on A∗ gives an element in A
(recall that A is assumed to be a W ∗-algebra). This shows the infinite series in the right side of (3-6)
converges in the weak* topology. It is then standard to verify that (3-6) defines an inner product which
extends the inner product on HA.

Let A act on a Hilbert space X (as a W ∗-algebra). Consider l2(X), the Hilbert space direct sum
of countably many copies of X . Suppose that b = {bn} ∈ H ♯

A. Then the infinite matrix b̄ = (bi, j ),
with bi,1 = bi , i ∈ N and bi, j = 0 if j ≥ 2, defines a bounded linear operator on l2(X), by b̄(v) =

(b1(v1), b2(v1), . . . , bn(v1), . . .), where v = (v1, v2, . . . , vn, . . .) ∈ l2(X). Moreover

∥b̄∥
2
= ∥b̄∗b̄∥ =

∥∥∥∥ ∞∑
i=1

b∗

i bi

∥∥∥∥ = sup
{∥∥∥∥ n∑

i=1

b∗

i bi

∥∥∥∥ : n ∈ N

}
(3-8)

(some of these details in this subsection may be found in [Lin 1991b]).

Proposition 3.6. Let C be a unital C∗-algebra and A ⊂ C be a C∗-subalgebra such that 1 Ã = 1C . Denote
by R = AC the closed right ideal of C generated by A. Then:

(1) HA • C = {{bn} ∈ HC : bn ∈ R}.

(2) If C is a W ∗-algebra and eα ↗ 1C , where {eα} is an approximate identity for A, then

(HA • C)♯ = H ♯
C .

Proof. To see (1), we first note that A • C = R as Hilbert C-modules. Hence A(n)
• C = R(n). Clearly,

HA • C ⊂ HC . We note that {{rn} ∈ HC : rn ∈ R} is closed in HC . Since both
⋃

n A(n)
• C and

⋃
∞

n=1 R(n)

are dense in {{rn} ∈ HC : rn ∈ R}, and
⋃

n A(n)
• C is dense HA • C , we obtain

{{rn} ∈ HC : rn ∈ R} = HA • C.

This proves (1).
For (2) we may assume that A ⊂ C ⊂ B(X), where X is a Hilbert space, 1C = idX , and the range

C(X) equals X . Otherwise, we replace X by 1C(X).

Claim 1: R(X) = C(X) = X . Since eα ↗ 1C = idX , for any v ∈ X , eα(v) → v. This proves the claim.

Claim 2: R♯
= C , where R♯ is the dual of the Hilbert C-module R (as we assume that C is a W ∗-algebra).

Let f ∈ R♯. Then f (eα)r = f (eαr) → f (r) for all r ∈ R in norm as eαr → r in norm. Hence
f (eα)r(v) → f (r)(v) for all r ∈ R and v ∈ X . Define T on R(X) by T (r(v)) = limα f (eα)r(v) for
all v ∈ X and r ∈ R. One checks that T is a well-defined linear map on R(X). Moreover, we have
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∥T ∥ ≤ sup{∥ f (eα)∥ : α} ≤ ∥ f ∥. Since, by Claim 1, R(X) = X , we have that T extends uniquely to a
bounded linear operator (denote by T again) on X . Moreover, f (eα) converges to T on X . Since C is
closed in the weak operator topology, T ∈ C . Moreover, T r(v) = f (r)(v) for all v ∈ X . It follows that
T r = f (r) for all r ∈ R.

For each c ∈ C , define fc ∈ R♯ by

fc(r) = c∗r for all r ∈ R.

For the above T , we note that fT ∗(r) = T r for all r ∈ R. Hence the map c → fc is surjective. To see it is
injective, suppose that c∗r = 0 for all r ∈ R. Then

c∗eαc = 0 for all α.

Since c∗eαc ↗ c∗c, this implies that c∗c = 0. Thus the map c 7→ fc is injective, which extends the identity
map on R. It follows that R♯

= C , and Claim 2 is proved.
By Claim 2, we obtain that ((A(n)) • C)♯ = C (n). By (1), (A(n)) • C is a direct summand of HA • C .

Hence we may write ((A(n)) • C)♯ ⊂ (HA • C)♯. Together with (1), we obtain that

HA • C ⊂ HC ⊂ (HA • C)♯.

Note HC is a Hilbert C-submodule of the self-dual Hilbert C module (HA • C)♯. It follows from
Proposition 3.1 that

(HA • C)♯ ⊂ H ♯
C ⊂ (HA • C)♯.

Consequently, H ♯
C = (HA • C)♯. □

3.7. Note that, if A is unital, HA • C = HC .
From the above discussion, we obtain the following result.

Lemma 3.8. Let A be a C∗-algebra, Hn = (A∗∗)(n) and Pn : H ♯
A∗∗ → Hn be the projection.

(1) Let S ⊂ H ♯
A∗∗ be a bounded subset. Then, for any f ∈ A∗ and x ∈ H ♯

A∗∗ ,

lim
n→∞

sup{| f (⟨Pn(x), y⟩) − f (⟨x, y⟩)| : y ∈ S} = 0,

lim
n→∞

sup{| f (⟨y, Pn(x)⟩) − f (⟨y, x⟩)| : y ∈ S} = 0.

(2) Moreover,

lim
n→∞

| f (⟨Pn(x), Pn(x)⟩) − f (⟨x, x⟩)| = 0 for all x ∈ H ♯
A∗∗ and f ∈ A∗.

Proof. Set M = sup{∥y∥ : y ∈ S} + 1. Let f be a positive linear functional in A∗ and x = {an} ∈ H ♯
A∗∗ .

For each y = {bn} ∈ S,

| f (⟨Pn(x), y⟩) − f (⟨x, y⟩)| =

∣∣∣∣ ∞∑
k=n+1

f (a∗

k bk)

∣∣∣∣ ≤

( ∞∑
k=n+1

f (a∗

k ak)

)1/2( ∞∑
k=n+1

f (b∗

k bk)

)1/2

≤ ∥ f ∥∥y∥

( ∞∑
k=n+1

f (a∗

k ak)

)1/2

≤ M∥ f ∥

( ∞∑
k=n+1

f (a∗

k ak)

)1/2

.
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By what has been discussed in Section 3.5,

lim
n→∞

( ∞∑
k=n+1

f (a∗

k an)

)1/2

= 0.

Thus, for this f and x , we have that | f (⟨Pn(x), y⟩) − f (⟨x, y⟩)| converges uniformly on S. Almost
identical estimates show that | f (⟨y, Pn(x)⟩) − f (⟨y, x⟩)| converges uniformly on S.

Since any f ∈ A∗ can be written as a linear combination of four positive linear functionals in A∗, the
first part of the statement holds.

For the second part, we note that, for any f ∈ A∗ and x ∈ H ♯
A∗∗ , by the first part of the lemma (since

∥Pn(x)∥ ≤ ∥x∥),

lim
n→∞

| f (⟨Pn(x), Pn(x)⟩) − f (⟨x, Pn(x)⟩)| = 0.

We also have

lim
n→∞

| f (⟨Pn(x), x⟩) − f (⟨x, x⟩)| = 0.

Hence the second part of the lemma also follows. □

The following are two easy facts which we present here for convenience.

Lemma 3.9. Let A be a C∗-algebra.

(1) Let H be a Hilbert A-module and {Eλ} be an approximate identity for K (H). Suppose T ∈ K (H)∗∗

is a nonzero positive element. Then there is λ0 such that

EλT Eλ ̸= 0 for all λ ≥ λ0.

(2) Let T ∈ K (HA)∗∗ be a nonzero positive element and Pn : HA → Hn = A(n) be the projection (n ∈ N).
Then, there exists n0 ∈ N such that

PnT Pn ̸= 0 for all n ≥ n0.

Proof. Let f ∈ K (H)∗ be a positive linear functional. Then

| f (T 1/2(1 − Eλ))|
2
≤ f (T ) f ((1 − Eλ)

2) ≤ f (T ) f (1 − Eλ) → 0.

It follows that f (T 1/2 Eλ) → f (T 1/2) for all positive linear functionals in K (H)∗, whence for all
f ∈ K (H)∗. Since T 1/2

̸= 0 for some λ0, we have that T 1/2 Eλ ̸= 0 for all λ ≥ λ0. It follows that

EλT Eλ ̸= 0

for all λ ≥ λ0. This proves (1).
There are several easy proofs for (2). Let us use part (1). Choose an approximate identity {eα} for A.

Let λ = (α, n) and λ1 = (β1, n) ≤ λ2 = (β2, m) if β1 ≤ β2 and n ≤ m. Define

Eβ,n = diag(

n︷ ︸︸ ︷
eβ, eβ, . . . , eβ, 0, . . . ).



1548 HUAXIN LIN

Then {Eβ,n} forms an approximate identity for K (HA) ∼= A ⊗K. Let T ∈ K (HA)∗∗
+

be a nonzero positive
element. By (1), there is β0 and n0 ∈ N such that

Eβ,nT Eβ,n ̸= 0 for all (β, n) ≥ (β0, n0).

Hence ∥T 1/2 E2
β,nT 1/2

∥ = ∥Eβ,nT Eβ,n∥ ̸= 0 for all (β, n) ≥ (β0, n0). Since

T 1/2 PnT 1/2
≥ T 1/2 E2

β,nT 1/2
̸= 0,

we have T 1/2 PnT 1/2
̸= 0. It follows that

PnT Pn ̸= 0 for all n ≥ n0. □

Lemma 3.10. Let A be a C∗-algebra and H be a countably generated Hilbert A-module. Then the
homomorphism 9 from K (H)∗∗ into B(H∼) (given by Proposition 2.16) is injective.

Proof. Let Hn = A(n)
={(a1, a2, . . . , an) : a j ∈ A} be the Hilbert A-module whose inner product is defined

by ⟨x, y⟩ =
∑n

j=1 a∗

j b j , where x = {a j }1≤ j≤n and y = {b j }1≤ j≤n . One identifies K (Hn) with Mn(A).

Claim: The map 9 : K (Hn)
∗∗

→ B(H∼
n ) is a W ∗-isomorphism.

Since we identify K (Hn) with Mn(A), we have K (Hn)
∗∗

= Mn(A∗∗).
By Proposition 3.6 (2) (and Claim 2 of the proof), (Hn • A∗∗)♯ = (A∗∗)(n). So H∼

n = (A∗∗)(n). Note
that B(H∼

n ) = Mn(A∗∗). One then easily checks that 9 : K (Hn)
∗∗

→ B(H∼
n ) is a W ∗-isomorphism. This

proves the claim.
Let us consider the homomorphism 9HA : K (HA)∗∗

→ B(H∼

A ) given by Proposition 2.14. Put
T ∈ K (HA)∗∗

+
\ {0}.

By Lemma 3.9 (2), there exists n0 ∈ N such that PnT Pn ̸= 0 for all n ≥ n0. Recall that Hn is a direct
summand of HA. Hence by the claim and applying Proposition 3.4, we conclude that 9HA(PnT Pn) ̸= 0
for all n ≥ n0. There must be an element x ∈ Hn such that

⟨9HA(PnT Pn)(x), x⟩ ̸= 0.

It follows that ⟨9HA(T )x, x⟩ ̸= 0. Hence 9HA(T ) ̸= 0. This implies that ker 9HA = {0}.
In general, since H is countably generated, by Kasparov’s absorbing theorem [1980, Theorem 2],

we may write HA = H ⊕ H⊥. To show 9 is injective, let T ∈ B(H)∗∗ be a nonzero element. Then
K (H)∗∗

= P K (HA)∗∗ P , where P : HA → H is the projection. Hence PT P = T in K (HA)∗∗. We have
shown that 9HA(PT P) ̸= 0. By Proposition 3.4, we have that 9(T ) = P9HA(T )P|H∼ ̸= 0. This implies
that 9 is injective. □

Lemma 3.11. Let A be a C∗-algebra and H be a countably generated Hilbert A-module. Then there is
an isomorphism 9 from K (H)∗∗ onto B(H∼) as W ∗-algebras.

Proof. By Lemma 3.10 (and by Proposition 2.14), it suffices to show that 9 is surjective. Let us first
consider the case H = HA (even though HA is not countably generated when A is not σ -unital). By
the end of Definition 2.4 (see also Remark 3.9 (and Proposition 3.10) of [Paschke 1973]), to show that
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T ∈ B(H∼) = B(H ♯

A∗∗) is in 9(K (HA)∗∗), it suffices to show that, for any ϵ > 0, any finite subsets
X ⊂ H ♯

A∗∗ and a finite subset F ⊂ A∗, there exists S ∈ K (H)∗∗ such that

| f (⟨9(S)(x), y⟩) − f (⟨T (x), y⟩)| < ϵ for all x, y ∈ X and f ∈ F .

We now fix ϵ, X and F .
For any T ∈ B(H∼

A ) = B(H ♯
A),

| f (⟨PnT Pn(x), y⟩ − f (⟨T (x), y⟩)|

≤ | f (T Pn(x), Pn(y)⟩) − f (⟨T (x), Pn(y)⟩)| + | f (⟨T (x), Pn(y)⟩) − f (⟨T (x), y⟩)| (3-9)

for any x, y ∈ H ♯
A∗∗ and f ∈ A∗. However, ∥Pn(y)∥ ≤ ∥y∥ for all n ∈ N. By Lemma 3.8 (1),

| f (T Pn(x), Pn(y)⟩) − f (⟨T (x), Pn(y)⟩)| → 0,

and by Lemma 3.8 (2),
| f (⟨T (x), Pn(y)⟩) − f (⟨T (x), y⟩)| → 0.

It follows that (by (3-9))
lim

n→∞
| f (⟨PnT Pn(x), y⟩ − f (⟨T (x), y⟩)| = 0

for all x, y ∈ H ♯
A and f ∈ A∗.

We then choose n0 ∈ N such that, for all n ≥ n0 (recall Pn is a projection),

| f (⟨PnT Pn(x), Pn(y)⟩) − f (T (x), y⟩)| < ϵ (3-10)

for all x, y ∈ X and f ∈ F .
Now fix n ≥ n0. Then we have Pn(x), Pn(y) ∈ (Hn)

∼ for all x, y ∈ X , and PnT Pn ⊂ B(H∼
n ). By

the claim for Hn in the proof of Lemma 3.10, we obtain an element S ∈ K (Hn)
∗∗ such that 9n(S) =

(PnT Pn)|H∼
n

, where
9n : K (Hn)

∗∗ ∼= Mn(A∗∗) → B(H∼

n ) = Mn(A∗∗)

is the isomorphism given by the claim. Note, by Proposition 3.4, that 9(S)= Pn9(S)=9(S)Pn =9n(S).
Hence it follows that, for all x, y ∈ X and f ∈ F (and n ≥ n0), applying (3-10),

| f (⟨9(S)(x), y⟩) − f (⟨T (x), y⟩)|

= | f (⟨Pn9(S)Pn(x), y⟩) − f (T (x), y⟩)|

= |( f (⟨Pn9(S)Pn(x), Pn(y)⟩) − f (⟨PnT Pn(x), Pn(y))| + | f (⟨PnT Pn(x), Pn(y)⟩) − f (T (x), y⟩)|

< 0 + ϵ = ϵ.

As mentioned above, this implies that 9 is surjective.
For a general countably generated Hilbert A-module H , by Kasparov’s absorbing theorem [1980,

Theorem 2], we may write HA = H ⊕ H⊥. By Proposition 3.4, H∼

A = H∼
⊕(H⊥)∼. Let S ∈ B(H∼)\{0}.

Define T ∈ B(H∼

A ) by T |H∼ = S and S|(H⊥)∼) = {0}. We have shown that there is L ∈ B(HA)∗∗ such
that 9HA(L) = S. Then P S P = S, and, by Proposition 3.4, 9(L) = P9HA(L)P|H∼ = T . Hence 9 is
surjective. □
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Theorem 3.12. Let A be a C∗-algebra and H be a Hilbert A-module. Then there is an isomorphism 9

(given by Proposition 2.14) from K (H)∗∗ onto B(H∼) as W ∗-algebras. Moreover,

9|B(H) = 9̃0.

Proof. By Proposition 2.14, it suffices to show that 9 is bijective. If K (H) is unital, by Proposition 2.8
of [Brown and Lin 2025], H is finitely generated. The theorem then follows from Lemma 3.11. So we
will assume that K (H) is not unital.

Let {Eλ} be an approximate identity for K (H) and Hλ = Eλ(H). Then K (Hλ) = EλK (H)Eλ is
σ -unital. By Proposition 3.2 of [Brown and Lin 2025], Hλ is countably generated.

Denote by Pλ : H∼
→ H∼

λ the projection given by Proposition 3.1 and let 9λ : K (Hλ)
∗∗

→ B(H∼

λ )

be the map given by Proposition 2.14.
To see 9 is injective, let T ∈ K (H)∗∗

+
\ {0}. It follows from Lemma 3.9 that EλT Eλ ̸= 0 for all λ ≥ λ0

and some λ0. Since Hλ is countably generated, by Lemma 3.11, 9λ(EλT Eλ) ̸= 0 (for λ ≥ λ0). By
Proposition 3.4,

9(EλT Eλ)|H∼

λ
= 9λ(EλT Eλ).

It follows that 9(EλT Eλ)|H∼

λ
̸= 0 for all λ ≥ λ0. For λ ≥ λ0, there are x, y ∈ Hλ such that

⟨9(T )(Eλ(x)), Eλ(y)⟩ = ⟨9(EλT Eλ)(x), y⟩ ̸= 0.

Hence 9(T ) ̸= 0. This shows that 9 is injective.
To see that 9 is surjective, let L ∈ B(H∼). Since, by Proposition 2.14, 9(K (H)∗∗) is weak*-closed

in the W ∗-algebra B(H∼), it suffices to show the following: for any ϵ > 0, any finite subsets X, Y ⊂ H∼

and finite subset F ⊂ A∗, there exists T ∈ K (H)∗∗ such that

| f (⟨9(T )(x), y⟩) − f (⟨L(x), y⟩)| < ϵ for all x ∈ X, y ∈ Y, f ∈ F (3-11)

(see the last part of Definition 2.4). We now fix ϵ, X, Y and F . By Proposition 2.14 (since Eλ ↗ 1K (H)∗∗),

lim
λ

f (⟨x, 9(Eλ)(y)⟩) = lim
λ

f (⟨9(Eλ)(x), y⟩) = f (⟨x, y⟩)

for all x, y ∈ H∼ and f ∈ A∗. It follows that there is λ0 such that, for all λ ≥ λ0,

or
| f (⟨9(Eλ)(x), L∗(y)⟩) − f (⟨x, L∗(y)⟩)| < 1

2ϵ

| f (⟨L9(Eλ)(x), y⟩) − f (⟨L(x), y⟩)| < 1
2ϵ

for all x ∈ X , y ∈ Y and f ∈ F . We note that the proof would be shorter if we knew

lim
λ

f (⟨9(Eλ)L9(Eλ)(x), y⟩) = f (⟨L(x), y⟩).

However, we may also assume that, for fixed λ0, there is λ1 ≥ λ0 such that

or
| f (⟨L9(Eλ0)(x), 9(Eλ)(y)⟩) − f (⟨L9(Eλ0)(x), y⟩)| < 1

2ϵ

| f (⟨9(Eλ)L9(Eλ0)(x), y⟩) − f (⟨L9(Eλ0)(x), y⟩)| < 1
2ϵ
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for all x ∈ X , y ∈ Y and f ∈ F , and λ ≥ λ1. It follows that, for all x ∈ X , y ∈ Y and f ∈ F , if λ ≥ λ1,

| f (⟨L(x), y⟩) − f (⟨9(Eλ)L9(Eλ0)(x), y⟩)|

≤ | f (⟨L(x), y⟩) − f (⟨L9(Eλ0)(x), y⟩)| + | f (⟨L9(Eλ0)(x), y⟩) − f (⟨9(Eλ)L9(Eλ0)(x), y⟩)|

< 1
2ϵ +

1
2ϵ = ϵ. (3-12)

Fix λ ≥ λ1 ≥ λ0. Then Hλ = Eλ(H) ⊃ Hλ0 . Hence

Pλ9(Eλ) = 9(Eλ) and 9(Eλ0)Pλ = 9(Eλ0). (3-13)

We also note that 9(Eλ)L9(Eλ0)|H∼

λ
∈ B(Hλ). Since Hλ is countably generated, by Lemma 3.11,

there is Tλ ∈ K (Hλ)
∗∗ such that

9λ(Tλ) = 9(Eλ)L9(Eλ0)|H∼

λ
. (3-14)

However, by Proposition 3.4,

Pλ9(Tλ)Pλ|H∼

λ
= 9(Tλ)|H∼

λ
= 9λ(Tλ). (3-15)

Fix λ ≥ λ1 ≥ λ0. Then, for any x ∈ X , y ∈ Y and f ∈ A∗∗, by (3-15), (3-14), (3-13) and (3-12),

| f (⟨9(Tλ)(x), (y)⟩) − f (⟨L(x), y⟩)| = | f (⟨9(Tλ)Pλ(x), Pλ(y)⟩) − f (⟨L(x), y⟩)|

= | f (⟨9(Eλ)L9(Eλ0)Pλ(x), Pλ(y)⟩) − f (⟨L(x), y⟩)|

= | f (⟨Pλ9(Eλ)L9(Eλ0)Pλ(x), y⟩) − f (⟨L(x), y⟩)|

= | f (⟨9(Eλ)L9(Eλ0)(x), y⟩) − f (⟨L(x), y⟩)| < ϵ.

As mentioned above, this implies that 9 is surjective. □

Corollary 3.13. Let A be a W ∗-algebra and H be a Hilbert A-module. Then F : K (H)∗∗
→ B(H ♯), the

map given by Proposition 2.16, is a surjective map.

Proof. Consider the pair A and A∗∗ and H∼
= (H • A∗∗)♯. By Corollary 4.3 of [Paschke 1973],

H∼
= B(H, A∗∗), the A∗∗-module of all bounded A∗∗-valued A-module maps from H into A∗∗. It

follows that H ♯
⊂ H∼ as an A-submodule. It then follows from Proposition 2.6 that H ♯

• A∗∗
⊂ H∼ as

Hilbert A∗∗-modules. Then, by applying Proposition 3.1,

(H ♯
• A∗∗)♯ ⊂ H∼.

However, H • A∗∗
⊂ H ♯

• A∗∗. By applying Proposition 3.1 again, we obtain

H∼
= (H • A∗∗)♯ ⊂ (H ♯

• A∗∗)♯ ⊂ H∼.

Hence (H ♯
• A∗∗)♯ = H∼. Denote by 9̃ : K (H)∗∗

→ B(H∼) the isomorphism given by Theorem 3.12
and by 9̃H ♯ : B(H ♯) → B((H ♯

• A∗∗)♯) = B(H∼) the map given by Theorem 3.12.
Now let T ∈ B(H ♯). Then, by applying Theorem 3.12, we obtain a ∈ K (H)∗∗ such that 9̃(a)= 9̃H ♯(T ).

It follows that (viewing H ♯
⊂ H∼)

9̃(a)|H ♯ = T .
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Since a ∈ K (H)∗∗, there exists a net {aα} in K (H) such that aα → a in the weak* topology. Therefore,
by Proposition 2.14, for any f ∈ A∗ and any ξ, ζ ∈ H∼,

lim
α

f (⟨(9̃(a) − 9̃(aα))(ξ), ζ ⟩) = 0.

Note, by Theorem 3.12, 9̃(aα) = 9̃0(aα). On the other hand, by Proposition 2.16, for any g ∈ A∗ and
any x, y ∈ H ,

lim
α

g(⟨(F(a) − aα)(x), y⟩) = 0.

Hence (since 9̃0(aα)x = aα(x) for all x ∈ H , see Definition 2.12)

g(⟨(F(a) − 9̃(a))(x), y⟩) = 0 for all x, y ∈ H and g ∈ A∗.

Since 9̃(a)|H ♯ = T , we actually have

g(⟨(F(a) − T )(x), y⟩) = 0 for all x, y ∈ H and g ∈ A∗. (3-16)

Note that F(a), T ∈ B(H ♯). So F(a)(x), T (x) ∈ H ♯ for all x ∈ H . It follows that

⟨(F(a) − T )(x), y⟩ ∈ A for all x, y ∈ H.

Then, by (3-16),
⟨(F(a) − T )(x), y⟩ = 0 for all x, y ∈ H.

Hence F(a) = T . In other words, F is surjective. □

4. A Kaplansky density theorem in Hilbert modules

As mentioned in the introduction, in this section we study the density of H in H • A∗∗.

Definition 4.1. Let X be a Hilbert space and A ⊂ B(X) be a C∗-subalgebra of B(X). Let M = ASOT,
the strong operator closure of A, and let H be a Hilbert A-module. Recall, by Proposition 2.6, H • M is
the smallest Hilbert M-module containing H as a Hilbert A-module. We consider the question of how
large H is in H • M as a submodule.

Let ϵ > 0 and V be a finite subset of X . For each ξ ∈ H • M , define

Nξ,ϵ,V = {z ∈ H • M : ∥⟨ξ − z, ξ − z⟩(v)∥ < ϵ, v ∈ V }.

Let Ts be the topology generated by Nξ,ϵ,V for all ξ ∈ H • M , ϵ ∈ R+ \ {0}, and any finite subset V ⊂ X .
In other words, in Ts , a net {zα} converges to ξ in H • M if and only if

lim
α

∥⟨ξ − zα, ξ − zα⟩(v)∥ = 0 for all v ∈ X.

In the special case that X = HU is the Hilbert space corresponding to the universal representation πU

of A and M = A∗∗, we use Tsu for the topology generated by Nξ,ϵ,V for all ξ ∈ H • A∗∗, ϵ ∈ R+ \ {0},
and any finite subset V ⊂ HU .

We note that H is dense in H • M in the topology Ts , but to be more useful, we will show in Theorem 4.4
that the unit ball of H is dense in the unit ball of H • M in Ts , a Kaplansky-style density theorem.
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Lemma 4.2. Suppose that x ∈ H • M and {xα} ⊂ H • M is a bounded net. Then xα → x in Ts if and only
if , for any v ∈ X ,

lim
α

sup{∥⟨y, xα − x⟩(v)∥ : y ∈ H • M, ∥y∥ ≤ 1} = 0.

Moreover, if xα → x in Ts , then, for any f ∈ M∗,

lim
α

sup{| f (⟨y, xα − x⟩)| : y ∈ H • M, ∥y∥ ≤ 1} = 0.

Proof. Suppose that xα → x in Ts . We have (see Proposition 2.3 (ii) of [Paschke 1973]), for any y ∈ H • M ,

⟨xα − x, y⟩ · ⟨y, xα − x⟩ ≤ ∥y∥
2
⟨xα − x, xα − x⟩.

Then, for any v ∈ X and any y ∈ H • M with ∥y∥ ≤ 1,

∥⟨y, xα − x⟩(v)∥2
= ⟨⟨xα − x, y⟩ · ⟨y, xα − x⟩v, v⟩X

≤ ∥y∥
2
⟨⟨xα − x, xα − x⟩v, v⟩X ≤ ∥⟨xα − x, xα − x⟩v∥∥v∥ → 0

(where ⟨ · , · ⟩X is the inner product in the Hilbert space X ). Conversely, let K = supα{∥xα∥ + ∥x∥} + 1.
Then

∥⟨xα − x, xα − x⟩(v)∥ ≤ K sup{∥⟨y, xα − x⟩(v)∥ : y ∈ H • M, ∥y∥ ≤ 1} → 0

For the “moreover” part of the lemma, suppose that ⟨xα − x, xα − x⟩ → 0 in the strong operator
topology. Then it converges in the weak operator topology. However, since {⟨xα − x, xα − x⟩} is bounded,
this also implies that it converges to zero in the σ -weak topology and in the weak* topology. Hence

lim
α

f (⟨xα − x, xα − x⟩) = 0 for all f ∈ M∗.

Let f ∈ M∗ be a positive normal functional. Then, f (⟨ · , · ⟩) defines a pseudo inner product on H • M .
Hence, for any y ∈ H • M , we have, by the Cauchy–Bunyakovsky–Schwarz inequality,

| f (⟨y, xα − x⟩)|2 ≤ f (⟨y, y⟩) f (⟨xα − x, xα − x⟩) ≤ ∥ f ∥
2
∥y∥

2 f (⟨xα − x, xα − x⟩).

Thus

lim
α

sup{| f (⟨y, xα − x⟩)| : y ∈ H • M, ∥y∥ ≤ 1} = 0. □

Lemma 4.3. Let X be a Hilbert space, A ⊂ B(X) be a C∗-subalgebra and M = ASOT such that idX ∈ M.
Then the unit ball of HA is dense in the unit ball of HA • M in Ts .

Proof. Let ξ ∈ HA • M with ∥ξ∥ ≤ 1. We will show that there is a net {xα} ∈ H such that ∥xα∥ ≤ ∥ξ∥ and
limα ∥⟨xα − ξ, xα − ξ⟩(v)∥ = 0 for all v ∈ X . From the inequality

∥⟨xα − ξ, xα − ξ⟩(v)∥ ≤ ∥⟨xα − ξ, xα − ξ⟩
1/2

∥∥⟨xα − ξ, xα − ξ⟩
1/2(v)∥ ≤ 2∥⟨xα − ξ, xα − ξ⟩

1/2(v)∥,

we conclude that it is enough to show that there is a net {xα} ∈ H such that

∥xα∥ ≤ ∥ξ∥ and lim
α

∥⟨xα − ξ, xα − ξ⟩
1/2v∥ = 0
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for all v ∈ X . Therefore it suffices to show that, for any ϵ > 0 and any finite subset V ⊂ X , there exists
z ∈ H with ∥z∥ ≤ 1 such that

∥(⟨ξ − z, ξ − z⟩)1/2(v)∥ < ϵ for all v ∈ V .

To simplify notation, we may also assume that ∥v∥ ≤ 1 for all v ∈ V .
Denote by R = AM , the closed right ideal of M generated by A. Note, by Proposition 3.6,

HA • M = {{bn} ∈ HB : bn ∈ R}.

We write ξ = {bn} ∈ HA • M . There exists n0 ∈ N such that, for all n ≥ n0,∥∥∥∥ ∞∑
k=n

b∗

nbn

∥∥∥∥ < 1
2ϵ.

Fix an integer n ≥ n0. Let Pn : HA • M → R(n)
= {(c1, c2, . . . , cn) : ci ∈ R} be the projection. Put

S =


b1 0 0 · · · 0
b2 0 0 · · · 0
...

...
...

...
bn 0 0 · · · 0

 .

For any v ∈ V , put

uv =


v

0
...
0

 .

By the Kaplansky density theorem, there is L ∈ Mn(A) such that

∥L∥ ≤ ∥S∥ and ∥L(uv) − S(uv)∥ < 1
2ϵ (4-1)

for all v ∈ V . Hence, denoting by ⟨ · , · ⟩X the inner product in X ,

⟨(L − S)∗(L − S)uv, uv⟩X < 1
2ϵ for all v ∈ V . (4-2)

Define q = diag(1, 0, . . . , 0) ∈ Mn(M). Then S = Sq. Replacing L by Lq , we may write

L =


a1 0 0 · · · 0
a2 0 0 · · · 0
...

...
...

...
an 0 0 · · · 0

 ,

where ai ∈ A, i = 1, 2, . . . , n. Then∥∥∥∥ n∑
i=1

a∗

i ai

∥∥∥∥ = ∥L∗L∥ = ∥L∥
2
≤ ∥S∥

2
=

∥∥∥∥ n∑
i=1

b∗

i bi

∥∥∥∥ ≤ ∥ξ∥
2. (4-3)

It follows from (4-2) that 〈 n∑
i=1

(bi − ai )
∗(bi − ai )(v), v

〉
X

< 1
2ϵ.
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Put x = (a1, a2, . . . , an, 0, 0, . . . ) ∈ HA. Then, by (4-3), we have ∥x∥ ≤ ∥ξ∥ and

⟨⟨ξ − x, ξ − x⟩(v), v⟩X =

〈 n∑
i=1

(bi − ai )
∗(bi − ai )(v), v

〉
X

+

〈 ∞∑
i=n+1

b∗

i bi (v), v

〉
X

< 1
2ϵ +

∥∥∥∥ ∞∑
i=n+1

b∗

i bi

∥∥∥∥ < 1
2ϵ +

1
2ϵ = ϵ.

In other words, for any v ∈ V ,

∥(⟨ξ − xα, ξ − xα⟩
1/2(v)∥ = ⟨⟨ξ − x, ξ − x⟩(v), v⟩X < ϵ.

The lemma then follows. □

Theorem 4.4. Let X be a Hilbert space, A ⊂ B(X) be a C∗-subalgebra and M = ASOT, with idX ∈ M.
Let H be a Hilbert A-module. Then the unit ball of H is dense in the unit ball of H • M in Ts .

Proof. Let ξ ∈ H • M , with ∥ξ∥ ≤ 1.
Let us first assume that H is a countably generated A-module. By Lemma 4.2, it suffices to show that,

for any ϵ > 0 and any finite subset V ⊂ X , there exists z ∈ H with ∥z∥ ≤ 1 such that

∥⟨y, ξ − z⟩)(v)∥ < ϵ for all y ∈ H, ∥y∥ ≤ 1 and v ∈ V .

To simplify notation, we may also assume that ∥v∥ ≤ 1 for all v ∈ V .
By Kasparov’s absorbing theorem [1980, Theorem 2], we may write HA = H ⊕ H⊥. It follows that

HA • M = H • M ⊕ H⊥
• M.

Define Q : HA → H to be the projection. Then Q ∈ L(HA) = M(K (HA)). We identify Q with 90(Q)

in the sense that Q ∈ L(HM) which extends Q|HA . In particular, H • M = Q(HA • M).
By applying Lemmas 4.3 and 4.2, we obtain z ∈ HA with ∥z∥ ≤ ∥ξ∥ such that

∥⟨y, ξ − z⟩(v)∥ < ϵ for all y ∈ H • M, ∥y∥ ≤ 1, and v ∈ V .

Note Q(ξ) = ξ and Q(y) = y for all y ∈ H . Put x = Q(z) ∈ H . We have

∥⟨y, ξ − x⟩(v)∥ = ∥⟨y, Q(ξ) − Q(z))⟩(v)∥ = ∥⟨Q(y), ξ − z⟩(v)∥ = ∥⟨y, ξ − z⟩(v)∥ < ϵ.

This proves the case that H is countably generated.
Next we let H be a general Hilbert A-module. We will show that, for any ϵ > 0 and any finite subset

V ⊂ X , there exists z ∈ H with ∥z∥ ≤ 1 such that

∥⟨ξ − z, ξ − z⟩)(v)∥ < ϵ for all v ∈ V .

Again, we may also assume that ∥v∥ ≤ 1 for all v ∈ V .
Let {Eλ} be an approximate identity for K (H). Then, as in the proof of Theorem 3.12, Hλ = Eλ(H)

is countably generated for each λ. It follows from Lemma 2.9 that there is λ such that

∥90(Eλ)(ξ) − ξ∥ < 1
4ϵ. (4-4)
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Fix such a λ. Note that, by Proposition 2.8, 90(Eλ)(ξ) ∈ Hλ • M ⊂ H • M . Since Hλ is countably
generated, by the first part of the proof, we obtain x ∈ Hλ with ∥x∥ ≤ ∥90(Eλ)(ξ)∥ ≤ ∥ξ∥ such that

sup{∥⟨y, 90(Eλ)(ξ) − x⟩(v)∥ : y ∈ H • M, ∥y∥ ≤ 1} < 1
4ϵ. (4-5)

Then, applying (4-4) and then (4-5), for any v ∈ V ,

∥⟨ξ − x, ξ − x⟩(v)∥ ≤ ∥⟨ξ − x, ξ − 90(Eλ)(ξ)⟩(v)∥ +∥⟨ξ − x, 90(Eλ)(ξ) − x⟩(v)∥

< 2∥ξ − 90(Eλ)(ξ)∥ + 2
∥∥〈 1

2(ξ − x), 90(Eλ)(ξ) − x
〉
(v)

∥∥ < 1
2ϵ +

1
2ϵ = ϵ. □

We then obtain the following corollary as a Kaplansky density theorem.

Theorem 4.5. Let A be a C∗-algebra and H be a Hilbert A-module. Then the unit ball of H is dense in
the unit ball of H • A∗∗ in Tsu .

5. Closeness of H

Let H be a Hilbert A-module., Then, by Theorem 6.1 of [Brown and Lin 2025], the unit ball of H is
A-weakly dense (see Definition 3.3 of [Brown and Lin 2025]) in the unit ball of H ♯, i.e., for any f ∈ H ♯,
there is a net {xα} in H with ∥xα∥ ≤ ∥ f ∥ such that limα ∥⟨ f − xα, y⟩∥ = 0 for all y ∈ H . In the case
that A is a W ∗-algebra, H ♯ is a Hilbert A-module. One may ask: can one find the net {xα} ∈ H with
∥xα∥ ≤ ∥ f ∥ such that limα ∥⟨ f − xα, ξ⟩∥ = 0 for all ξ ∈ H ♯?

We begin with the following example.

Example 5.1. Let M be a W ∗-algebra which contains a self-adjoint element a with infinite spectrum.
Then, by the spectral theory, one obtains a sequence of mutually orthogonal nonzero projections
p1, p2, . . . , pn, . . . . Let H = HM , and let ξ = {pn} ∈ H ♯

M . Note that ∥ξ∥ =
∥∥∑

∞

n=1 pn
∥∥ = 1 (the

convergence is in the strong operator topology and weak* topology of M). We claim that there is no
net {xα} in HM such that

lim
α

∥⟨ξ − xα, ξ⟩∥ = 0.

Otherwise, there would be x ∈ HM such that

∥⟨ξ − x, ξ⟩∥ < 1
4 . (5-1)

Since x = {an} ∈ HM , there is N ∈ N such that∥∥∥∥∑
N+1

a∗

nan

∥∥∥∥ <
( 1

16(1 + ∥x∥)
)2

.

Choose q =
∑

∞

n=N+1 pn ∈ M . Define PN : H ♯
M → M (N )

={(b1, b2, . . . , bN ) : bi ∈ M} to be the projection.
Then

∥⟨ξ − PN (x), ξ⟩∥ ≤ ∥⟨ξ − x, ξ⟩∥ + ∥⟨(1 − PN )(x), ξ⟩∥

< 1
4 + ∥(1 − PN )(x)∥∥ξ∥ < 1

4 +
1

16 =
5
16 .
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On the other hand,

5
16 ≥ ∥⟨ξ − PN (x), ξ⟩∥ ≥ ∥⟨ξ − PN (x), ξ⟩q∥ =

∥∥∥∥( ∞∑
N+1

pn −

N∑
i=1

(pi − ai )
∗ pi

)
q
∥∥∥∥ =

∥∥∥∥ ∞∑
N+1

pnq
∥∥∥∥ = 1.

A contradiction. In other words, the question at the beginning of this section is negative. This also follows
from Corollary 5.7 below. However, we think that the example above might also be helpful.

Lemma 5.2. Let A be a C∗-algebra. Suppose that ξ ∈ H ♯
A and {xα} is a bounded net in HA such that

lim
α

∥ξ(x) − xα(x)∥ = 0 for all x ∈ HA

and ξ(xα) := ⟨ξ, xα⟩ converges in norm. Then ξ ∈ HA and ⟨ξ, ξ⟩ = limα⟨ξ, xα⟩.

Proof. Write ξ = {bn} and xα = {aα,n}, where {bn} ∈ H ♯
A, aα,n ∈ A and, for each α, {aα,n} ∈ HA.

Put
M = 1 + sup{∥xα∥ : α} + ∥ξ∥ < ∞ and a = lim

α
⟨xα, ξ⟩.

Note ξ(xα) = ⟨ξ, xα⟩ ∈ A for all α. Hence a ∈ A.
Let Pn : H ♯

A → Hn := A(n) be the projection to the first n copies of A, n ∈ N. Then Pnξ ∈ Hn ⊂ HA.
It follows that, for each n ∈ N,

lim
α

⟨xα, Pn(ξ)⟩ = ⟨ξ, Pn(ξ)⟩ =

n∑
j=1

b∗

j b j . (5-2)

Fix f ∈ A∗. Let ϵ > 0. By Lemma 3.8, since {xα} is bounded, there is an integer N ∈ N such that, for all
n ≥ N ,

| f (⟨xα, ξ⟩) − f (⟨xα, Pn(ξ)⟩)| < 1
3ϵ for all α. (5-3)

Fix any n ≥ N . By (5-2), choose α0 such that, for all α ≥ α0,∥∥∥∥⟨xα, Pn(ξ)⟩ −

n∑
j=1

b∗

j b j

∥∥∥∥ < 1
3ϵ(1 + ∥ f ∥), (5-4)

∥⟨xα, ξ⟩ − a∥ < 1
3ϵ(1 + ∥ f ∥). (5-5)

It follows that, for all n ≥ N , by (5-5), (5-3) and (5-4),∣∣∣∣ f (a) − f
( n∑

j=1

b∗

j b j

)∣∣∣∣
≤ | f (a − ⟨xα0, ξ⟩)| + | f (⟨xα0, ξ⟩) − f (xα0, Pn(ξ)⟩)| + ∥ f ∥

∥∥∥∥⟨xα0, Pn(ξ)⟩ −

n∑
j=1

b∗

j b j

∥∥∥∥
< 1

3ϵ +
1
3ϵ +

1
3ϵ = ϵ.

Hence, on the state space S(A) of A,

lim
n→∞

f
( n∑

j=1

b∗

j b j

)
= f (a). (5-6)
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On the compact space S(A) (in the weak* topology), â( f ) = f (a) is a continuous function for all
f ∈ S(A), and ̂∑n

j=1 b∗

j b j is increasing. By the Dini theorem, ̂∑n
j=1 b∗

j b j converges uniformly to â
on S(A). It follows that

n∑
j=1

b∗

j b j → a

in norm. This implies that ξ = {bn} ∈ HA and ⟨ξ, ξ⟩ = a = limα⟨ξ, xα⟩. □

Proposition 5.3. Let A be a C∗-algebra and H be a Hilbert A-module. Then, for any T ∈ K (H), one
has 90(T )(H ♯) ⊂ H , where 90 is given in Definition 2.7.

Proof. Suppose that T ∈ F(H) and T =
∑m

i=1 θxi ,yi for some xi , yi ∈ H , i = 1, 2, . . . , m. Then, for any
ξ ∈ H ♯,

90(T )(ξ) =

m∑
i=1

xi ⟨yi , ξ⟩ =

m∑
i=1

xi (ξ(yi )
∗) ∈ H.

Since F(H) is dense in K (H), this implies that 90(T )(H ♯) ⊂ H . □

Lemma 5.4. Let A be a C∗-algebra, H be a Hilbert A-module and {Eλ} be an approximate identity
for K (H). Then, for any ξ ∈ H∼ and any f ∈ A∗,

lim
α

sup{ f (⟨ξ − 90(Eλ)(ξ), y⟩)| : y ∈ H∼, ∥y∥ ≤ 1} = 0.

Proof. By Lemma 2.9, {90(Eλ)} is an approximate identity for K (H • A∗∗). In the universal representation
of K (H • A∗∗), 1−90(Eλ) converges to zero in the strong operator topology. Note that ∥1−90(Eλ)∥≤ 1.
Therefore (1 − 90(Eλ))(1 − 90(Eλ)) also converges to zero in the strong operator topology. Hence it
converges to zero in the weak operator topology. Since {(1 −90(Eλ))

2
} is bounded, it also converges to

zero in the weak* topology of K (H • A∗∗). Recall that (H • A∗∗)♯ = H∼. It follows from Proposition 2.16,
for any ξ ∈ H∼, that

lim
α

| f (⟨ξ − 90(Eλ)(ξ), ξ − 90(Eλ)(ξ)⟩)| = lim
α

| f (⟨ξ − F ◦ 90(Eλ)(ξ), ξ − F ◦ 90(Eλ)(ξ)⟩)

= lim
α

| f (⟨(1 − F ◦ 90(Eλ))
2(ξ), ξ⟩)| = 0,

where F : K (H)∗∗
→ B(H ♯) is the homomorphism given by Proposition 2.16. Suppose that y ∈ H∼ and

∥y∥ ≤ 1. Then, for any positive linear functional f ∈ A∗,

f (⟨ξ − 90(Eλ)(ξ), y⟩)2
≤ f (⟨ξ − 90(Eλ)(ξ), ξ − 90(Eλ)(ξ)⟩) f (⟨y, y⟩)

≤ ∥ f ∥ f (⟨ξ − 90(Eλ)(ξ), ξ − 90(Eλ)(ξ)⟩).

It follows that, for any f ∈ A∗,

lim
α

sup{ f (⟨ξ − 90(Eλ)(ξ), y⟩)| : y ∈ H∼, ∥y∥ ≤ 1} = 0. □

Theorem 5.5. Let A be a C∗-algebra and H be a Hilbert A-module. Suppose that ξ ∈ H ♯ and there is a
bounded net {xα} in H such that

lim
α

∥ξ(x) − ⟨xα, x⟩∥ = 0 for all x ∈ H

and ξ(xα) := ⟨ξ, xα⟩ converges in norm. Then ξ ∈ H and ⟨ξ, ξ⟩ = limα⟨ξ, xα⟩ ∈ A.
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Proof. First let us assume H is countably generated. Then, by Kasparov’s absorbing theorem [1980,
Theorem 2], we may write HA = H ⊕ H⊥. Then ξ ∈ H ♯

⊂ H ♯
A. By applying Lemma 5.2, we obtain that

ξ ∈ HA and ⟨ξ, ξ⟩ = lim
α

⟨ξ, xα⟩.

Since ξ(xα) ∈ A, we have a = ⟨ξ, ξ⟩ ∈ A. Let P : HA → H be the projection. Then P ∈ L(HA). Put
η = P(ξ) ∈ H . Note that ⟨P(ξ) − ξ, x⟩ = 0 for all x ∈ H . Hence ξ = η. Therefore this case follows.

In what follows we will work in H∼ and use the inner product in H∼ whenever it is convenient.
In general, let a = limα⟨ξ, xα⟩. Since ⟨ξ, xα⟩ = ξ(xα) ∈ A for all α, we have a ∈ A.

Claim: a = ⟨ξ, ξ⟩ (in the inner product of H∼).
Let {Eλ} be an approximate identity for K (H). Let ϵ > 0 and f ∈ A∗, with ∥ f ∥ ≤ 1. By applying

Lemma 5.4, we have (since {∥ξ − xα∥} is bounded)

lim
λ

(
sup
α

{| f (⟨ξ − 90(Eλ)(ξ), ξ − xα⟩)|}
)
= 0. (5-7)

Thus, by applying Lemma 5.4 and (5-7), we obtain λ0 such that, for all λ ≥ λ0,

| f (⟨ξ − 90(Eλ)(ξ), ξ⟩)| < 1
3ϵ,

| f (⟨ξ − 90(Eλ)(ξ), ξ − xα⟩)| < 1
3ϵ for all α. (5-8)

Recall that, by Proposition 5.3, 90(Eλ)(ξ) ∈ H . Fix any λ ≥ λ0. Choose α0 such that, for any α ≥ α0,

∥⟨ξ, xα⟩ − a∥ < 1
3ϵ and | f (⟨90(Eλ)(ξ), ξ − xα⟩)| < 1

3ϵ. (5-9)

Now, by the first inequality of (5-9), (5-8) and then the second inequality of (5-9),

| f (⟨ξ, ξ⟩ − a)| < | f (⟨ξ, ξ⟩ − ⟨ξ, xα⟩)| + 1
3ϵ = | f (⟨ξ, ξ − xα⟩)| + 1

3ϵ

≤ | f (⟨ξ − 90(Eλ)(ξ), ξ − xα⟩)| + | f (⟨90(Eλ)(ξ), ξ − xα⟩)| + 1
3ϵ < 1

3ϵ +
1
3ϵ +

1
3ϵ = ϵ.

Since this holds for any ϵ, we conclude that

f (⟨ξ, ξ⟩) = f (a) for all f ∈ A∗.

By the Hahn–Banach theorem, we obtain ⟨ξ, ξ⟩ = a. The claim is proved.
There exists x1 ∈ {xα} and then x2 ∈ {xα} such that

∥⟨x1, ξ⟩ − a∥ < 1
2 , ∥⟨ξ − x2, x1⟩∥ < 1

4 and ∥⟨x2, ξ⟩ − a∥ < 1
4 .

Suppose that we have found x1, x2, . . . , xn such that

∥⟨ξ − x j , xi ⟩∥ < 1/2 j and ∥⟨x j , ξ⟩ − a∥ < 1/2 j , i = 1, 2, . . . , j − 1,

and j = 1, 2, . . . , n. Then choose xn+1 ∈ {xα} such that

∥⟨ξ − xn+1, xi ⟩∥ < 1/2n+1 and ∥⟨xn+1, ξ⟩ − a∥ < 1/2n+1, i = 1, 2, . . . , n.
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Thus, by induction, we obtain a subsequence {xn} in {xα} such that

lim
n→∞

∥⟨xn, ξ⟩ − a∥ = 0 and lim
n→∞

∥⟨ξ − xn, xi ⟩∥ = 0 for i ∈ N.

Denote by H0 the Hilbert A-submodule generated by {x1, x2, . . . , xn, . . . }. In particular, xn ∈ H0 and
n ∈ N. Let η = ξ |H0 .

Now H0 is countably generated and xn ∈ H0, so we have

lim
n→∞

∥η(xn) − a∥ = lim
n→∞

∥ξ(xn) − a∥ = 0.

Moreover, if y =
∑m

i=1 xi · ai , where ai ∈ A, then

lim
n→∞

∥η(y) − ⟨xn, y⟩∥ = 0.

Since {xn} is bounded (since {xα} is bounded), this implies that

lim
n→∞

∥η(y) − ⟨xn, y⟩∥ = 0 for all y ∈ H0.

Applying what has been proved, we conclude that η ∈ H0 and limn→∞⟨η, xn⟩ = ⟨η, η⟩ = a.
We now consider Hilbert A∗∗-modules H0 • A∗∗

⊂ H • A∗∗. By Proposition 3.1, we obtain a projection
P : H∼

→ H∼

0 such that P|H0•A∗∗ = idH0•A∗∗ . Then η = P(ξ). Hence, by the claim,

∥(1 − P)ξ∥
2
= ∥⟨(1 − P)(ξ), (1 − P)(ξ)⟩∥ ≤ ∥⟨(1 − P)(ξ), ξ⟩∥ + ∥⟨(1 − P)(ξ), P(ξ)⟩∥

= ∥⟨ξ, ξ⟩ − ⟨P(ξ), ξ⟩∥ + 0 = ∥a − ⟨P(ξ), P(ξ)⟩∥ = ∥a − ⟨η, η⟩∥ = 0.

In other words, P(ξ) = η = ξ . The theorem follows. □

Definition 5.6. Let A be a C∗-algebra and H be a Hilbert A-module. Then H ♯
⊂ H∼.

For each ξ ∈ H ♯, ϵ > 0 and a finite subset Y ⊂ H ♯, define

Oξ,ϵ,Y = {ζ ∈ H ♯
: ∥⟨ξ − ζ, y⟩∥ < ϵ, y ∈ Y },

where the inner product is taken from H ♯ if H ♯ is a Hilbert A-module, or from H∼ (with values in A∗∗).
Denote by TN W the topology in H ♯ generated by Oξ,ϵ,Y for all ξ ∈ H ♯, ϵ ∈ R+ \ {0} and finite subsets

Y ⊂ H ♯. Note that a net {ζα} converges to ξ in H ♯ in TN W if and only if

lim
α

∥⟨ξ − ζα, y⟩∥ = 0

for all y ∈ H ♯, where the inner product is the one defined above.

Corollary 5.7. Let A be a C∗-algebra and H be a Hilbert A-module. Then, with TN W , the unit ball of H
is closed in H ♯.

Proof. Let ξ ∈ H ♯. Suppose that there is a net {xα} in H with ∥xα∥ ≤ 1 such that

lim
α

∥⟨ξ − xα, η⟩∥ = 0 for all η ∈ H ♯,

where the inner product is in H∼. Then, for each x ∈ H , limα ∥⟨ξ − xα, x⟩∥ = 0 and (by choosing η = ξ )
{ξ(xα)} = {⟨ξ, xα⟩} converges in norm to ⟨ξ, ξ⟩. By Theorem 5.5, ξ ∈ H . □
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Corollary 5.8. Let A be a monotone complete C∗-algebra and H be a Hilbert A-module. Then the unit
ball of H is closed in H ♯ in the topology TN W , where we view H ♯ as a self-dual Hilbert A-module.

Lemma 5.9. Let X be a Hilbert space, A ⊂ B(X) be a C∗-subalgebra and M = ASOT, with idX ∈ M.
Let H be a Hilbert A-module. Suppose that ξ ∈ H • M and ⟨ξ, x⟩ ∈ A for all x ∈ H. Then ξ ∈ H.

Proof. First let us consider the case that H = HA. Then, by Proposition 3.6,

HA • M =

{
{an} : an ∈ AM and

n∑
k=1

a∗

k ak converges in norm
}
.

Write ξ = {bn} ∈ HA • M . The condition that ⟨ξ, x⟩ ∈ A for all x ∈ HA implies that ξ ∈ H ♯
A. It follows

that bn ∈ A. Hence ξ ∈ HA.
Next, let us assume that H is countably generated. Let ξ ∈ H • M and ⟨ξ, x⟩ ∈ A for all x ∈ H . By

Kasparov’s absorbing theorem, we may write HA = H ⊕ H⊥. It follows from what has been proved that
ξ ∈ HA. Let P : HA → H be the projection. Then P(ξ) ∈ H . However, ⟨ξ − P(ξ), x⟩ = 0 for all x ∈ H .
For any y ∈ H⊥, since ξ ∈ H • M , we have ⟨ξ, y⟩ = 0 for all y ∈ H . Hence ξ = P(ξ) ∈ H .

In general, since ξ ∈ H • M , there are xn,i ∈ H , i = 1, 2, . . . , k(n), bn,i ∈ M , i = 1, 2, . . . , k(n),
n ∈ N, such that

lim
n→∞

∥∥∥∥ξ −

k(n)∑
i=1

xn,i • bn,i

∥∥∥∥ = 0.

Let H0 be the Hilbert A-submodule generated by {xn,i : 1 ≤ i ≤ k(n), n ∈ N}. Then ξ ∈ H0 • M and
ξ |H0 ∈ H ♯

0 , as ⟨ξ, h⟩ ∈ A for all h ∈ H0 ⊂ H . From what has just been proved, ξ ∈ H0 ⊂ H . □

We end this section with the following result.

Theorem 5.10. Let A be a C∗-algebra and H be a Hilbert A-module. Then the unit ball of H is closed
in H∼ in the topology TN W of H∼

= (H • A∗∗)♯.

Proof. Let {xα} be a net in the unit ball of H and ξ ∈ H∼ such that

lim
α

∥⟨ξ − xα, ζ ⟩∥ = 0 for all ζ ∈ H∼.

Since H∼
= (H • A∗∗)♯ and H ⊂ H • A∗∗, by applying Corollary 5.8, we conclude that ξ ∈ H • A∗∗.

We also have, for all y ∈ H ,
lim
α

∥⟨ξ − xα, y⟩∥ = 0.

Since ⟨xα, y⟩ ∈ A, it follows that ⟨ξ, y⟩ ∈ A. By Lemma 5.9, ξ ∈ H . □

6. A Kaplansky-style density theorem in the self-dual Hilbert modules

In the last section, we show that H is closed in H ♯ and H∼ in the topology TN W of H ♯ and that of H∼,
respectively. In this section, however, we will show that H is dense in H∼ in a weaker topology. In
fact, by Theorem 4.5, it is easy to show that H is dense in H ♯ in T0, the topology defined below (see
Definition 6.1). A similar question is whether one can replace x in (6-1) by any element in H ♯.
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Definition 6.1. Let A be a W ∗-algebra and H be a Hilbert A-module.
Let ϵ > 0, and let Y ⊂ H and F ⊂ A∗ be finite subsets. Let ξ ∈ H ♯. Define

Oξ,ϵ,Y,F = {ζ ∈ H ♯
: | f (⟨ξ − ζ, x⟩)| < ϵ, x ∈ Y, f ∈ F} ⊂ H ♯. (6-1)

Let T0 be the topology of H ♯ generated by the subsets Oξ,ϵ,Y,F .
Let ϵ > 0, and let Z ⊂ H ♯ and F ⊂ A∗ be finite subsets. Let ξ ∈ H ♯. Define

Oξ,ϵ,Z ,F = {ζ ∈ H ♯
: | f (⟨ξ − ζ, x⟩)| < ϵ, x ∈ Z , f ∈ F} ⊂ H ♯.

Let Tw be the topology of H ♯ generated by the subsets Oξ,ϵ,Z ,F .
In fact, by [Paschke 1973, Proposition 3.8] and the definition before it, Tw is the weak* topology of H ♯

as a conjugate space. So a natural question is whether H is dense in H ♯ in Tw. To be more useful (but
perhaps not useful enough to be used twice on Sundays — see [Pedersen 1979, 2.3.4]), we will also prove
a Kaplansky-style density theorem in Theorem 6.4.

Let us also consider another topology. Let ϵ > 0, ξ ∈ H ♯, and let F ⊂ A∗ be a finite subset. Define

Oϵ,ξ,F = {ζ ∈ H ♯
: | f (⟨ξ − ζ, ξ − ζ ⟩)| < ϵ, f ∈ F}.

Let Tws be the topology generated by Oϵ,ξ,F for all ϵ > 0, ξ ∈ H ♯ and finite subsets F ⊂ A∗. Note that
Tws is stronger than Tw, which is stronger than T0.

Lemma 6.2. Let X be a Hilbert space and A ⊂ B(X) be a C∗-subalgebra. Suppose that M = ASOT, with
idX ∈ M and b = {bk} ∈ H ♯

M . There is a net aα = {(a1,α, a2,α, . . . , an,α, . . .)} ∈ HA such that∥∥∥∥ ∞∑
j=1

a∗

j,αa j,α

∥∥∥∥1/2

≤ ∥b∥, (6-2)

lim
α

f
( ∞∑

j=1

(b j − a j,α)∗(b j − a j,α)

)
= 0 (6-3)

for all f ∈ M∗.

Proof. Let Y = l2(X), the Hilbert space direct sum of countably many copies of X . Let b̄ = (ci, j ) ∈ B(Y ),
where ci,1 = bi , i ∈ N, and ci, j = 0 if j ≥ 2 (see (3-8)). Denote by Pn : Y → X (n) the projection, where
X (n) is the direct sum of (first) n copies of X . Let ϵ > 0 and V ∈ L2(X) be a finite subset. Then there is
n0 ∈ N such that

∥(1 − Pn0)(v)∥ < 1
2ϵ(1 + ∥b∥) for all v ∈ V .

There is d ∈ Mn0(A) such that

∥(b̄ − d)(Pn0(v))∥ < 1
4ϵ for all v ∈ V .

We have

∥(b̄ − d Pn0)(v)∥ ≤ ∥(b̄ − d Pn0)(1 − Pn0)(v)∥ +∥(b̄ − d)Pn0(v)∥

= ∥b̄(1 − Pn0)(v)∥ +
1
4ϵ < ϵ for all v ∈ V .
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Let B be the self-adjoint algebra of those bounded operators on Y which can be expressed as infinite
matrices with entries in A, where all are zero except finitely many of them. Then, by what has been
proved, we conclude that, in the strong operator topology (of B(Y )), operator b̄ is in the closure of
operators in B in the strong operator topology.

Then, by the Kaplansky density theorem, there is a net {dα} ∈ B with ∥dα∥ ≤ ∥b̄∥ such that

lim
α

∥(b̄ − dα)v∥ = 0 for all v ∈ Y.

Since {∥b̄ − dα∥} is bounded, we also have

lim
α

∥(b̄ − dα)∗(b̄ − dα)v∥ = 0 for all v ∈ Y.

We further note that

∥b̄∥
2
= ∥(b̄)∗b̄∥ =

∥∥∥∥ ∞∑
j=1

b∗

j b j

∥∥∥∥ ≤ ∥b∥.

Then
lim
α

∥(b̄ − dα)∗(b̄ − dα)P1v∥ = 0 for all v ∈ Y. (6-4)

Note b̄P1 = b̄. Let d ′
α = dα P1 = (di, j,α), where di, j,α = 0 if j ≥ 2. Put a j,α = d1, j,α , j ∈ N. Then, for all

n ∈ N, ∥∥∥∥ n∑
j=1

a∗

j,αa j,α

∥∥∥∥ ≤ ∥(d ′

α)∗d ′

α∥ = ∥d ′

α∥
2
≤ ∥dα∥

2
≤ ∥b̄∥

2
≤ ∥b∥

2.

Put aα = {a j,α}. Since dα ∈ B, for each α, there are only finitely many a j,α which are not zero. Hence
aα ∈ HA. Then ∥aα∥ ≤ ∥b∥. Thus (6-2) holds. On the other hand, by (6-4),

lim
α

∥(b̄ − d ′

α)∗(b̄ − d ′

α)P1v∥ = 0. (6-5)

Let h ∈ X . By (6-5),

lim
α

∥∥∥∥ ∞∑
j=1

(b j − a j,α)∗(b j − a j,α)h
∥∥∥∥ = 0.

In other words,
∑

∞

i=1(b j − a j,α)∗(b j − a j,α) = ⟨b − aα, b − aα⟩ → 0 in the strong operator topology.
However, ∥∥∥∥ n∑

j=1

(b j − a j,α)∗(b j − a j,α)

∥∥∥∥ = ∥(b̄ − d ′

α)∥2
≤ (∥b̄∥ +∥dα∥)2

≤ 4∥b∥
2.

Therefore
∑n

i=1(b j −a j,α)∗(b j −a j,α)→ 0 in the σ -weak operator topology and hence in the weak* topol-
ogy (see, for example, 4.6.13 of [Pedersen 1989]). Therefore (6-3) holds. □

Lemma 6.3. Let A ⊂ B(X) be a C∗-subalgebra, and let M = ASOT, with 1X ∈ M. Suppose that H is
a countably generated Hilbert A-module. Then H is dense in (H • M)♯ in the following sense: for any
ξ ∈ (H • M)♯, there is a net xα ∈ H with ∥xα∥ ≤ ∥ξ∥ such that

lim
α

sup{| f (⟨ξ − xα, ζ ⟩)| : ζ ∈ (H • M)♯, ∥ζ∥ ≤ 1} = 0 for all f ∈ M∗. (6-6)
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Proof. Let us first prove this for H = HA, even though when A is not σ -unital, HA is not countably
generated. Lemma 6.2 provides a net {xα} in HA with ∥xα∥ ≤ ∥ξ∥ such that

lim
α

f (⟨ξ − xα, ξ − xα⟩) = 0 for all f ∈ M∗.

Recall that, for any positive linear functional f , the map H ♯
M × H ♯

M → R defined by [x, y] f = f (⟨x, y⟩)

(for all x, y ∈ H ♯
M ) is a pseudo inner product. Therefore, by the Cauchy–Bunyakovsky–Schwarz inequality,

f (⟨x, y⟩)2
≤ f (⟨x, x⟩) f (⟨y, y⟩) for all x, y ∈ H ♯

M .

It follows that, for any positive normal linear functional f ,

sup{| f (⟨ξ − xα, ζ ⟩)| : ζ ∈ H ♯
M , ∥ζ∥ ≤ 1}

2
≤ sup{ f (⟨ζ, ζ ⟩) f (⟨ξ − xα, ξ − xα⟩) : ζ ∈ H ♯

M , ∥ζ∥ ≤ 1}

= ∥ f ∥ f (⟨ξ − xα, ξ − xα⟩) → 0.

Thus we proved (6-6) holds for H = HA.
Now let H be a countably generated Hilbert A-module. Then, by Kasparov’s absorbing theorem, we

may write HA = H ⊕ H⊥. Hence HA • M = H • M ⊕ (H⊥
• M). It follows that

H ♯
M = (HA • M)♯ = (H • M)♯ ⊕ (H⊥

• M)♯.

Let P : H ♯
M → (H • M)♯ be the projection such that P|H = idH . Then, by what has been proved for HA,

there is a net yα ∈ HA such that ∥yα∥ ≤ ∥ξ∥ and, for any f ∈ M∗,

lim
α

sup{ f (⟨ξ − yα, ζ ⟩) : ζ ∈ H ♯
M , ∥ζ∥ ≤ 1} = 0.

Put xα = P(yα) ∈ (H • M)♯. Note that P(ξ) = ξ . Then, for any f ∈ M∗,

lim
α

sup{ f (⟨ξ − xα, ζ ⟩) : ζ ∈ (H • M)♯, ∥ζ∥ ≤ 1} = lim
α

sup{ f (⟨ξ − xα, P(ζ )⟩) : ζ ∈ (H • M)♯, ∥ζ∥ ≤ 1}

= lim
α

sup{ f (⟨ξ − yα, ζ ⟩) : ζ ∈ (H • M)♯, ∥ζ∥ ≤ 1}

≤ lim
α

sup{ f (⟨ξ − yα, ζ ⟩) : ζ ∈ H ♯
M , ∥ζ∥ ≤ 1} = 0. □

Theorem 6.4. Let X be a Hilbert space, A ⊂ B(X) a C∗-subalgebra and M = ASOT, with 1M = idX , and
let H be a Hilbert A-module. Then the unit ball of H is dense in the unit ball of (H • M)♯ in Tws (the
topology on (H • M)♯).

Proof. Let ξ ∈ (H • M)♯ with ∥ξ∥≤ 1. It suffices to show that, for any ϵ > 0, any finite subset Y ⊂ (H • M)♯

and any finite subset F ⊂ M∗, there is x ∈ H such that

∥x∥ ≤ ∥ξ∥ and | f (⟨ξ − x, y⟩)| < ϵ for all y ∈ (H • M)♯, ∥y∥ ≤ 1, and f ∈ F .

Let us fix ϵ and F . Choose an approximate identity {Eλ} for K (H). It follows that Eλ ↗ idH .
Note that idH ∈ M(K (H)). By the last part of Proposition 2.13, 90(idH ) = idH•M . By [Paschke 1973,
Corollary 3.7], F ◦ 90(idH ) = id(H•M)♯ , where F : K (H • M)∗∗

→ B(H • M)♯ is the map given by
Proposition 2.16. Note also that, by Lemma 2.9, {90(Eλ)} is an approximate identity for K (H • M).
In the universal representation of K (H • M), we have that 1 − 90(Eλ) converges to zero in the strong
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operator topology. Note that ∥1 −90(Eλ)∥ ≤ 1. Therefore (1 −90(Eλ))
∗(1 −90(Eλ)) also converges

to zero in the strong operator topology. Hence (since {∥(1 − 90(Eλ))
∗(1 − 90(Eλ))∥} is bounded), it

converges to zero in the weak* topology. By Proposition 2.16, we have, for all f ∈ M∗,

f (⟨ξ − F ◦ 90(Eλ)(ξ), ξ − F ◦ 90(Eλ)(ξ)⟩)

= f (⟨(1 − F ◦ 90(Eλ))
∗(1 − F ◦ 90(Eλ))(ξ), ξ⟩) → 0. (6-7)

Next let g be a positive normal linear functional in M∗. Then, for any y ∈ (H • M)♯ with ∥y∥ ≤ 1,

|g(⟨ξ − F ◦ 90(Eλ)(ξ), y⟩)|2 ≤ g(⟨ξ − F ◦ 90(Eλ)(ξ), ξ − F ◦ 90(Eλ)(ξ)⟩)g(⟨y, y⟩)

≤ ∥g∥∥y∥
2g(⟨ξ − F ◦ 90(Eλ)(ξ), ξ − F ◦ 90(Eλ)(ξ)⟩).

Hence, by (6-7),

lim
α

(
sup{|g(⟨ξ − F ◦ 90(Eλ)(ξ), y⟩)| : y ∈ (H • M)♯, ∥y∥ ≤ 1}

)
= 0.

It follows that, for any f ∈ M∗,

lim
α

(
sup{| f (⟨ξ − F ◦ 90(Eλ)(ξ), y⟩)| : y ∈ (H • M)♯, ∥y∥ ≤ 1}

)
= 0.

Put 8 := F ◦ 90. We obtain λ0 such that, for all λ ≥ λ0,

| f (⟨ξ − 8(Eλ)(ξ), y⟩)| < 1
2ϵ for all y ∈ (H • M)♯, ∥y∥ ≤ 1, and f ∈ F . (6-8)

Let Hλ = Eλ(H). As in the proof of Theorem 3.12, we have that Hλ is countably generated. Moreover,
by Proposition 3.1,

(H • M)♯ = (Hλ • M)♯ ⊕ ((Hλ • M)♯)⊥.

Let Pλ : (H • M)♯ → (Hλ • M)♯ be the projection. Note that

8(Eλ)(ξ), 8(Eλ)(y) ∈ Pλ((H • M)♯) = (Hλ • M)♯

for all y ∈ (H • M)♯.
It follows from Lemma 6.3 that there is x ∈ Hλ with ∥x∥ ≤ ∥8(Eλ)(ξ)∥ ≤ ∥ξ∥ such that

| f (⟨9(Eλ)(ξ) − x, Pλ(y)⟩)| < 1
2ϵ for all y ∈ (Hλ • M)♯, ∥y∥ ≤ 1.

Since Pλ8(Eλ) = 8(Eλ) and x ∈ Hλ, we have, for all y ∈ (Hλ • M)♯, ∥y∥ ≤ 1,

| f (⟨8(Eλ)(ξ) − x, y⟩)| = | f (⟨Pλ8(Eλ)(ξ) − Pλ(x), y⟩)| = | f (⟨8(Eλ)(ξ) − x, Pλ(y)⟩)| < 1
2ϵ.

Thus (also applying (6-8)) for all y ∈ (H • M)♯ with ∥y∥ ≤ 1 and f ∈ F ,

| f (⟨ξ − x, y⟩)| ≤ | f (⟨ξ − 8(Eλ)(ξ), y⟩)| + | f (⟨8(Eλ)(ξ) − x, y⟩)| < 1
2ϵ +

1
2ϵ = ϵ. □

The next two statements are the main results of this section.

Corollary 6.5. Let A be a W ∗-algebra and H be a Hilbert A-module. Then the unit ball of H is dense in
H ♯ in Tws .

Proof. Let M = A and then apply Theorem 6.4. □
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Theorem 6.6. Let A be a C∗-algebra and H be a Hilbert A-module. Then the unit ball of H is dense in
H∼ in Tws (as H∼

= (H • A∗∗)♯).

Proof. We choose the universal representation πU and its strong operator closure A′′
= A∗∗, then apply

Theorem 6.4. □
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