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THE FRACTAL UNCERTAINTY PRINCIPLE
VIA DOLGOPYAT’S METHOD IN HIGHER DIMENSIONS

AIDAN BACKUS, JAMES LENG AND ZHONGKAI TAO

We prove a fractal uncertainty principle with exponent 1
2 d − δ + ε, ε > 0, for Ahlfors–David regular

subsets of Rd with dimension δ which satisfy a suitable “nonorthogonality condition”. This generalizes
the application of Dolgopyat’s method by Dyatlov and Jin (2018) to higher dimensions. As a corollary,
we get a quantitative essential spectral gap for the Laplacian on convex cocompact hyperbolic manifolds
of arbitrary dimension with Zariski-dense fundamental groups.

1. Introduction

The fractal uncertainty principle, informally, is the assertion that a function cannot be microlocalized
to a neighborhood of a fractal set in phase space. Such assertions have applications in spectral theory,
where one can apply microlocal methods to show that fractal uncertainty principles imply the existence
of essential spectral gaps [Dyatlov and Zahl 2016]. In particular, one can obtain L2

→ L2 bounds on the
scattering resolvents of the Laplacian on convex cocompact hyperbolic manifolds, as well as improvements
on the size of the maximal region in which certain zeta functions admit analytic continuation [Bourgain
and Dyatlov 2018].

To make the fractal uncertainty principle more precise, we introduce the semiclassical Fourier transform

Fh f (ξ) := (2πh)−d/2
∫

Rd
e−i x ·ξ/h f (x) dx,

where h> 0 is a small parameter. If we have sets X , Y and we write Xh , Yh for the sumsets Xh := X + Bh ,
Yh := Y + Bh , Bh := B(0, h), then the fractal uncertainty principle for X , Y asserts bounds of the form

∥1Xh Fh1Yh ∥L2→L2 ≲ hβ (1-1)

for some β > 0 in the limit h → 0. We are interested in the case that X , Y are Ahlfors–David regular sets.

Definition 1.1. A compactly supported finite Borel measure µ on Rd is Ahlfors–David regular of
dimension δ ∈ [0, d] on scales [α, β] with regularity constant CR ≥ 1 if, for every closed square box I
with side length r ∈ [α, β] or closed ball I with radius r ∈ [α, β],

µ(I )≤ CRr δ
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and if, in addition, I is centered on a point in X := suppµ,

C−1
R r δ ≤ µ(I ).

In short we say that (X, µ) is δ-regular.

Applying Plancherel’s theorem and Hölder’s inequality, one can easily check that if X is δ-regular
and Y is δ′-regular on scales [h, 1] then

∥1Xh Fh1Yh ∥L2→L2 ≲ hmax(0, 1
2 (d−δ−δ′))

; (1-2)

this estimate is a straightforward modification of [Dyatlov 2019, (2.7)]. In fact, (1-2) is sharp if δ or δ′

are either 0 or d , or if X , Y are orthogonal line segments in R2.
Thus we say that X , Y satisfy the fractal uncertainty principle if (1-1) holds for some

β >max
(
0, 1

2(d − δ− δ′)
)
.

We note that the two ranges δ+ δ′ ≥ d and δ+ δ′ ≤ d are very different and the corresponding fractal
uncertainty principles usually hold for different reasons. There are several cases in which the fractal
uncertainty principle is known:

(1) If d = 1 and 0< δ, δ′ < 1, then the fractal uncertainty principle holds [Bourgain and Dyatlov 2018;
Dyatlov and Jin 2018; Dyatlov and Zahl 2016].

(2) If d < δ+ δ′ < 2d , then the fractal uncertainty principle holds under the additional assumption that
either Y can be decomposed as a product of Ahlfors–David fractals in R [Han and Schlag 2020] or
Y is line-porous [Cohen 2023].

(3) If d is odd and δ, δ′ are very close to 1
2 d, then the fractal uncertainty principle holds [Cladek and

Tao 2021].

(4) If X , Y are arithmetic Cantor sets,1 then the fractal uncertainty principle holds for d = 1 [Dyatlov
and Jin 2017] and d = 2, δ+ δ′ ≥ 1 under the condition that X does not contain any line [Cohen
2025].

1.1. The main theorem. In this paper we establish the fractal uncertainty principle for 0< δ+ δ′ ≤ d
under the following additional hypothesis, which rules out the possibility that X , Y are orthogonal line
segments. For 8(x, y) := −x · y, it is a quantitative form of the statement that “X and Y do not lie in
submanifolds which have orthogonal tangent spaces”.

Definition 1.2. Let X, Y ⊆ Rd , and let 8 ∈ C2(Rd
× Rd). We say that (X, Y ) is 8-nonorthogonal with

constant 0< cN ≤ 1 from scales (αX
0 , α

Y
0 ) to (αX

1 , α
Y
1 ) if, for any x0 ∈ X , y0 ∈ Y and rX ∈ (αX

0 , α
X
1 ) and

rY ∈ (αY
0 , α

Y
1 ), there exists x1, x2 ∈ X ∩ B(x0, rX ), y1, y2 ∈ Y ∩ B(y0, rY ) such that

|8(x1, y1)−8(x2, y1)−8(x1, y2)+8(x2, y2)| ≥ cN rXrY . (1-3)

1We define these fundamental examples in Section 1.2.1, but for now the reader may view them as Cantor sets where the
removed boxes have rational vertices.
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The motivation for this definition is as follows: we want nonorthogonality to be visible on virtually all
scales; after all, orthogonality of fractals is a local property, so we want nonorthogonal examples on most
balls centered on a point in X and Y . The Ahlfors–David regularity condition guarantees that each such
ball contributes roughly the same amount of fractal mass and is hence the reason why we upgrade “most”
to “all”. At the same time, we don’t want nonorthogonal points to lie too close to each other. This is why
we take the right-hand side to be rXrY instead of |x1 − x0| · |y1 − y0|. One can verify that this definition
of nonorthogonality generalizes the nonorthogonality hypothesis of [Dyatlov 2019, Proposition 6.5].

The nonorthogonality condition (1-3) is based on the local nonintegrability condition (LNI) of [Naud
2005; Stoyanov 2011], which itself can be traced back to the uniform nonintegrability condition of
[Chernov 1998; Dolgopyat 1998]. In such papers one is concerned with the nonintegrability of the stable
and unstable foliations of an Axiom A (or perhaps even Anosov) flow. Roughly speaking, given fractals
X , Y , one may define two laminations (in the sense of [Thurston 1979, Chapter 8]) in Rd

x × Rd
ξ , the

vertical lamination {x ∈ X} and horizontal lamination {ξ = ∂x8(x, y) : y ∈ Y }, and then (1-3) essentially
asserts that the vertical and horizontal laminations satisfy LNI.

In order to state our result, we need one more condition which involves how the measure of a cube I
varies when we double it.

Definition 1.3. A measure µ is doubling on scales [h, 1] if there exists CD > 0 such that, for every
r ∈

[
h, 1

2

]
and every cube I of side length r centered at x ∈ suppµ, we have µ(I ·2)≤ CDµ(I ), where I ·2

is the cube with the same center as I and side length 2r .

Clearly every regular measure is doubling; we highlight that our main theorem only needs to assume the
measure is doubling rather than regular. It is essential that we only consider cubes centered at x ∈ suppµ in
the definition. One can compare this doubling property with the Federer property in [Dolgopyat 1998, §7],
in which case the Gibbs measure is supported everywhere.

What follows is our main theorem.

Theorem 1.4. Let µX , µY be doubling probability measures on scales [h, 1] with compact supports
X ⊂ I0, Y ⊂ J0, where I0, J0 ⊂ Rd are rectangular boxes with unit length. Let Bh be the semiclassical
Fourier integral operator

Bh f (x)=

∫
Y

exp
(

i8(x, y)
h

)
p(x, y) f (y) dµY (y), (1-4)

where the phase 8 belongs to C3(I0 × J0), X , Y are 8-nonorthogonal from scales h to 1, and the
symbol p belongs to C1(I0 × J0). Then there exists ε0 > 0 such that

∥Bh∥L2(µY )→L2(µX ) ≲ hε0 .

We use the notation ≲ in the statements of our theorems to record the existence of a hidden constant. The
constant could depend on the dimension d , the nonorthogonality constant cN , the doubling constant CD ,
the diameters of X , Y , ∥8∥C3 , and ∥p∥C1 , but is independent of h.

If one additionally assumes d =1 and thatµX , µY are regular with dimension ∈ (0, 1), then Theorem 1.4
was proven in [Dyatlov and Jin 2018], extending the method of [Dolgopyat 1998] which had already been
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applied to construct spectral gaps. Using the construction of dyadic cubes in [Christ 1990], it might be
possible that Theorem 1.4 can be generalized to doubling metric spaces. Since there is no immediate
application for metric spaces, we have not attempted to write down the more general version.

Following the methods of [Dyatlov and Jin 2018], Theorem 1.4 implies the following fractal uncertainty
principle which is interesting in the range 1

2(d − δ− δ′)+ ε0 > 0.

Theorem 1.5. Let X and Y be Ahlfors–David regular sets in Rd which are nonorthogonal with respect to
the dot product on Rd

× Rd . Assume that X is δ-regular, Y is δ′-regular, 0< δ, δ′ < d. Then there exists
ε0 > 0 such that

∥1Xh Fh1Yh ∥L2→L2 ≲ h
1
2 (d−δ−δ′)+ε0 .

1.1.1. Lower bounds on the uncertainty exponent. If we let

L :=
1014d3

c3
N

max(1, ∥∂2
xy8∥

3
C1), (1-5)

then we can take in Theorem 1.4
1
ε0

≤ 6 · 109c−2
N d2(CD(X)CD(Y ))4⌈log2(20L5/3)⌉L2/3 log L . (1-6)

In the model case where X = Y is regular, d = 1, and8(x, y)=−xy, we can always take cN = C−4/δ
R and

CD = 2δC2
R , which gives a subexponential bound of the form 1/ε0 ≲ eC(δ) log2 CR . This is because of the

rather poor dependence of ε0 on the doubling constant; if one modified our proof to use the Ahlfors–David
regularity directly, they would obtain a bound of the form 1/ε0 ≲ C O(1+1/δ)

R , which is comparable with
the bound 1/ε0 ≲ C160/(δ(1−δ))

R of [Dyatlov and Jin 2018].
In any case, it does not seem that one can use Dolgopyat’s method to obtain sharp fractal uncertainty

principles, which therefore remains an interesting and challenging open problem. To drive this point
home, we recall that in the case d = 1, δ =

1
2 , an unpublished manuscript of Murphy claims that

1/ε0 ≲ log CR log log CR [Cladek and Tao 2021, §1].

1.1.2. Applications to spectral gaps. Suppose M = 0\Hd+1 is a (noncompact) convex cocompact hy-
perbolic manifold and 3(0) is the limit set (see Section 5.2 for the definition). The Patterson–Sullivan
measure µ on 3(0) is Ahlfors–David regular of dimension δ0 ∈ [0, d) [Sullivan 1979, Theorem 7].
Under the condition that 0 is Zariski dense in G = SO(d + 1, 1)0, we have that (3(0), µ) satisfies the
nonorthogonality condition (1-3) for very general 8(x, y) (see Corollary 5.4). So we have the fractal
uncertainty principle for 3(0) with very general phase functions.

Dyatlov and Zahl [2016] showed that fractal uncertainty principles can be used to prove essential
spectral gaps. Let 1 be the Laplace–Beltrami operator on M . Then the resolvent

R(λ) :=
(
−1−

1
4 d2

− λ2)−1
: L2

comp(M)→ H 2
loc(M)

is well defined for Im(λ)≫ 1 with a meromorphic continuation to λ ∈ C; see [Guillarmou 2005; Mazzeo
and Melrose 1987] for (even) asymptotically hyperbolic manifolds and [Guillopé and Zworski 1995] for
manifolds with constant negative curvature near infinity. Vasy [2013a; 2013b] gave a new construction of
the meromorphic continuation, which is the one used in [Dyatlov and Zahl 2016].
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The standard Patterson–Sullivan gap [Patterson 1976; Sullivan 1979] says

R(λ) has only finitely many poles in
{
Im(λ)≥ − max

(
0, 1

2 d − δ0
)}
. (1-7)

Moreover, there is no pole in
{
Im(λ) > δ0−

1
2 d

}
, and there are conditions on δ0 such that λ= i

(
δ0−

1
2 d

)
is the first pole (see [Sullivan 1979; Patterson 1988]). Using methods of [Dyatlov and Zahl 2016], we can
improve the essential spectral gap when δ0 ≤

1
2 d .

Theorem 1.6. Let M be a noncompact convex cocompact hyperbolic (d+1)-dimensional manifold such
that 0 = π1(M) is Zariski dense in SO(d + 1, 1)0. Let δ0 ∈ (0, d) be the Hausdorff dimension of the
limit set 3(0). Then there exists ε0 > 0 such that, for any ε > 0, R(λ) has only finitely many poles
λ with Im λ > δ0 −

1
2 d − ε0 + ε. Moreover, for any χ ∈ C∞

0 (M), there exists C0 = C0(ε) > 0 and
C = C(ε, χ) > 0 such that

∥χR(λ)χ∥L2→L2 ≤ C |λ|−1−2 min(0,Im λ)+ε, |λ|> C0, Im λ≥ δ0 −
1
2 d − ε0 + ε. (1-8)

Dyatlov and Jin [2018, Theorem 2] showed Theorem 1.6 with d = 1 by proving Theorem 1.4 for
d = 1 and X , Y δ-regular and applying [Dyatlov and Zahl 2016, Theorem 3]; our result is the natural
higher-dimensional generalization of this theorem. Note the statement of the theorem holds for δ0 ∈ (0, d)
in the whole range, but when δ0 > 1

2 d + ε0, our theorem says nothing more than the Lax–Phillips gap
coming from unitarity. On the other hand, it improves the Lax–Phillips gap when δ0 < 1

2 d + ε0, which
slightly passes the threshold 1

2 d.
The spectral gap in Theorem 1.6 was first proved [Naud 2005] for surfaces and generalized [Stoyanov

2011] to higher dimensions. The size of their gap is implicit but our method gives an explicit constant ε0 as
in (1-6) depending on the fractal dimension δ0 , the regularity constant and the nonorthogonality constant
of the limit set 3(0). We give a method for computing nonorthogonality constants from the generators
of a classical Schottky group 0 ⊂ SL(2,C) in the Appendix.

Another advantage of the method of [Dyatlov and Zahl 2016] is that we also get the resolvent
estimate (1-8), which is hard to obtain using transfer operator techniques and in particular is not included
in [Naud 2005; Stoyanov 2011]. The resolvent bound is useful in applications; see, e.g., [Vacossin 2023].

Corollary 1.7. Let M be convex cocompact with 0 Zariski-dense. Let ζM be the Selberg zeta function

ζM(s)=

∏
l∈LM

∞∏
k=0

(1 − e−(s+k)l), s =
1
2 d − iλ,

where LM consists of the lengths of all primitive closed geodesics on M (with multiplicity). Then ζM(s)
has only finitely many singularities (i.e., zeroes or poles) in the half-plane {Re s > δ0 − ε0 + ϵ} for
any ϵ > 0.

Proof. This follows from Theorem 1.6 and [Bunke and Olbrich 1999; Patterson and Perry 2001]. □

The spectral gap is closely related to asymptotics of closed geodesics and exponential decay of
correlations, which are important and well-studied questions in dynamical systems. We list a few
references.
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• Chernov [1998] gave the first dynamical proof showing subexponential decay of correlations for
3-dimensional contact Anosov flows. The groundbreaking work of Dolgopyat [1998] showed expo-
nential decay of correlations for transitive Anosov flows with jointly nonintegrable C1 stable/unstable
foliations.

• Naud [2005] applied Dolgopyat’s method to establish a spectral gap for convex cocompact hyperbolic
surfaces.

• Stoyanov [2008; 2011] showed exponential mixing for a general class of Axiom A flows satisfying
his local nonintegrability condition.

• Sarkar and Winter [2021] used Dolgopyat’s method to prove exponential mixing of the frame flow for
convex cocompact hyperbolic manifolds. Chow and Sarkar [2022] extended it to locally symmetric
spaces.

• It is interesting to ask what happens on hyperbolic manifolds with cusps. We direct the readers to
[Li and Pan 2023; Li et al. 2023] for more details.

All the above works require certain nonintegrability conditions which should be thought of as the analogue
of our nonorthogonality condition (1-3).

We would like to mention some other related works on the spectral gap for convex cocompact hyperbolic
manifolds.

• Dyatlov and Zahl [2016], Dyatlov and Jin [2018], Bourgain and Dyatlov [2018], and Jin and Zhang
[2020] proved the fractal uncertainty principle for d = 1 and hence gave explicit essential spectral
gaps.

• Bourgain and Dyatlov [2017] used Fourier decay of the Patterson–Sullivan measure to get an essential
spectral gap that only depends on δ0 when d = 1, δ0 ≤

1
2 . This is generalized to Kleinian Schottky

groups when d = 2 by Li, Naud and Pan [Li et al. 2021], but in this case the essential spectral gap
will depend on δ0 and another quantity related to our nonorthogonality constant cN (see [Li et al.
2021, Lemma 4.4]). See also [Khalil 2023; 2024] for a method using additive combinatorics.

• Oh and Winter [2016] showed a uniform spectral gap for a large family of congruence arithmetic
surfaces, which was then generalized to arbitrary dimensions by Sarkar [2022].

1.2. Idea of the proof.

1.2.1. Model problem: Arithmetic Cantor sets. We first describe the problem in the model case that X , Y
are arithmetic Cantor sets. Let M ≥ 3 be an integer and A, B ⊆ {0, 1, . . . ,M − 1}

d be sets with

δA :=
log |A|

log(M)
≤

1
2 d, δB :=

log |B|

log(M)
≤

1
2 d.

We let N := Mk and define the arithmetic Cantor sets

Ck,A := {a0 + a1 M + · · · + ak−1 Mk−1
: ai ∈ A} ⊂ (Z/NZ)d ,

Ck,B := {b0 + b1 M + · · · + bk−1 Mk−1
: bi ∈ B} ⊂ (Z/NZ)d .
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We introduce the discrete Fourier transform

FN f ( j) := N−d/2
∑

ℓ∈{0,1,...,N−1}d

exp
(

2π i j ·
ℓ

N

)
f (ℓ), j ∈ (Z/NZ)d .

The fractal uncertainty principle states that there exists some ε0 > 0 such that

∥1Ck,AFN 1Ck,B ∥ℓ2→ℓ2 ≲ N−β−ε0, (1-9)

where β :=
1
2(d − δA − δB) [Dyatlov and Jin 2017, §3]. Analyzing the Hilbert–Schmidt norm, we have

∥1Ck,AFN 1Ck,B ∥ℓ2→ℓ2 ≤ ∥1Ck,AFN 1Ck,B ∥H S =

√
|A|

k
|B|

k

N d = N−β . (1-10)

Thus, our goal is to obtain additional gain beyond β. To prove this, one can show as in [Dyatlov 2019,
Lemma 6.4] that if we let

rk := ∥1Ck,AFN 1Ck,B ∥ℓ2→ℓ2

then rk1+k2 ≤ rk1rk2 . This can be used to show that if we can get any gain at all at some scale k then we
get a gain on all further levels, so we suppose for the sake of contradiction that we cannot obtain any gain
at any scale, or that the inequality present in (1-10) is an equality. Then, since the Hilbert–Schmidt norm
measures the square root of the sum of squares of the singular values and the operator norm measures the
largest singular value, it follows that the operator N d/21Ck,AFN 1Ck,B must be rank 1. A simple computation
then shows that the operator N d/21Ck,AFN 1Ck,B is the matrix (exp(2π i j · ℓ/N )) j∈Ck,A,ℓ∈Ck,B (and is zero
in the unspecified entries). Computing the determinant of 2 × 2 minors, we see that∣∣∣∣det

(
exp(2π i j · ℓ/N ) exp(2π i j ′

· ℓ/N )
exp(2π i j · ℓ′/N ) exp(2π i j ′

· ℓ′/N )

)∣∣∣∣ =

∣∣∣∣exp
(

2π i
⟨ j − j ′, ℓ− ℓ′⟩

N

)
− 1

∣∣∣∣ = 0

for all j, j ′
∈ Ck,A and ℓ, ℓ′ ∈ Ck,B . Thus, (1-9) holds as long as a nonorthogonality condition

⟨ j − j ′, ℓ− ℓ′⟩ ̸= 0

holds for some choice of j, j ′
∈ A, ℓ, ℓ′ ∈ B. If nonorthogonality is violated at all scales, then (1-9)

cannot hold; see Example 1.9.

1.2.2. Nonorthogonality and Dolgopyat’s method. Our proof and the proof of [Dyatlov and Jin 2018]
lies in the continuous setting where the fractal is not necessarily self-similar. Thus, we must construct a
tree of tiles that discretizes the doubling measure µ and which is regular enough so that each tile has
two children which are spaced far enough apart. While very nice submultiplicativity does not hold as it
does in the discrete case, we can still, via an induction on scales argument, propagate gain on one scale
to gain on all scales. The key tool allowing us to obtain gain on all scales is nonorthogonality, which
we formulated in (1-3); it asserts that we can find many points in the intersections of the vertical and
horizontal laminations where the phase is “oscillating faster than the function Bh is being tested against”
at every scale, and so we must obtain a gain at every scale. This technique, called Dolgopyat’s method,
has been used to obtain fractal uncertainty principles, spectral gaps, or exponential mixing in previous
works, including [Dolgopyat 1998; Dyatlov and Jin 2018; Liverani 2004; Naud 2005; Stoyanov 2008;
2011; Tsujii and Zhang 2023].
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Figure 1. Nonorthogonality of the Sierpiński carpet X (the white region) to itself at scale 1
3 (where

diam X =
√

2). Given any two points x1, y1 ∈ X (green stars), we can find two points x2, y2 ∈ X
(red pentagons) such that |x1 − x2| and |y1 − y2| are both ≈ 0.15, and |sin ̸ (x2 − x1, y2 − y1)| ≪ 1,
so (X, X) is nonorthogonal with constant (3 · 0.14)2 ≈ 0.42. Image adapted from [Rössel 2008].

The improvement on each child is measured in the spaces Cθ (I ) that were introduced in [Naud 2005,
Lemma 5.4]. Informally speaking, localizations of Bh to a tile I have roughly constant oscillation when
normalized by θ diam(I ) for some appropriate choice of θ [Dyatlov and Jin 2018, §2.2]. The Cθ (I ) norms
are meant to capture this fact and to measure cancellation on scale I , similar to how algebraic manipulations
on Mk-dimensional vectors can be used to measure cancellation in the arithmetic Cantor case.

1.2.3. Improvements over Dyatlov–Jin. The method of [Dyatlov and Jin 2018] does not immediately
generalize to d ≥ 2 for two reasons. First, in order to ensure that each interval has at least two children
that are sufficiently far apart, Dyatlov–Jin allows intervals of varying length to appear in the tree by
merging together consecutive intervals that intersect the fractal. However, in higher dimensions this leads
to long, narrow, winding tiles appearing in the tree; these do not satisfy suitable doubling estimates, as
exemplified by the following example.

Example 1.8. Let X be a Sierpiński carpet, and consider the merged discretization for X (see Section 3
or [Dyatlov and Jin 2018, §2.1]). Since X is path-connected, every scale consists of a single tile, the only
child of the single tile at the previous scale! It is impossible to prove that every tile has two children
which enjoy phase cancellation.

However, our method must be able to handle the Sierpiński carpet, since it meets the hypotheses of
Theorem 1.5 if it is embedded in R4. Indeed, 2δX ≈ 3.8< 4. Moreover, X is nonorthogonal to itself at
one scale (see Figure 1), so it is at every scale by self-similarity.
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Secondly, as remarked above, one cannot obtain cancellation for arbitrary children I1, I2, but only those
which are “not orthogonal to each other”. Otherwise, even if we construct I1, I2 to be the appropriate
distance apart to impose cancellation, it will not follow that the phases actually cancel each other.

Example 1.9. Let X := [−5, 5] × {0} and Y := {0} × [−5, 5]. The Gaussian

f (x, y) := e−x2/2−y2/(2h2)

is localized to X5h and its Fourier transform is localized to Y5h . So the fractal uncertainty principle is
simply false for (X, Y ), even though

δX + δY = 2 ≤ 2,

and we must use the nonorthogonality hypothesis somehow. One can also see that if X ′
⊂ X and Y ′

⊂ Y
are fractals then the fractal uncertainty principle does not hold for (X ′, Y ′).

To overcome these difficulties, we improve on Dyatlov–Jin as follows:

(1) We carefully construct the tree, so that tiles in the tree are very close to cubes and therefore satisfy
good doubling estimates, but also so that each tile contains two children with a suitable distance
from each other.

(2) We prove that if X , Y are nonorthogonal then we may choose tangent vectors to X , Y so that the
phases cannot decouple.

These goals are accomplished by Proposition 3.3, which asserts that we can construct the so-called
perturbed standard discretization of µ, and Proposition 3.13, which asserts that many quadruples of tiles
in the perturbed standard discretization have the properties above.

We found it convenient to use the language of probability theory to state Proposition 3.13, as we then
could interpret the various quantities appearing in the induction on scale (Proposition 4.3) as expected
values or variances of certain averages of Bh f taken over random tiles. The necessary estimates needed
to obtain a contradiction then follow from the second moment method — namely, the observation that, if
Proposition 4.3 is false, then the variance of such random variables is impossibly small given the large
size of their tails. A similar approach was taken by [Dyatlov and Jin 2018], which used the strict convexity
of balls in Hilbert spaces [Dyatlov and Jin 2018, Lemma 2.7] to accomplish the same goals.

1.3. Outline of the paper. In Section 2 we recall some preliminaries.
In Section 3 we construct our discretization and show that it has good statistical properties, as made

precise by Proposition 3.13.
In Section 4 we carry out our inductive argument. The main proposition is the iterative step,

Proposition 4.3; we then use this to prove Theorem 1.4.
We then turn to the applications in Section 5, where we reduce Theorems 1.5 and 1.6 to Theorem 1.4

by standard techniques.
In the Appendix, we demonstrate how one can compute the nonorthogonality constant in a typical

application: classical Schottky groups.
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2. Preliminaries

2.1. Probability theory. We shall have probability spaces A, B, and will denote by a, a′, a′′ and b, b′, b′′

outcomes in those spaces (or equivalently random variables with values in A, B). The expected value of
a random variable X is denoted E X , while E(X | E) refers to the conditional expectation of X assuming
an event E . The probability of the event E is denoted Pr(E), and the variance of a random variable is

Var X := E(X2)− (E X)2.

If X , Y are i.i.d., then

E |X − Y |
2
= E |X |

2
+ E |Y |

2
− 2 E(XY )= 2(E |X |

2
− (E X)2),

and so

E |X − Y |
2
= 2 Var X. (2-1)

We also record Cantelli’s inequality, valid for any constant λ > 0 [Lugosi 2009, Theorem 1]:

Pr(X ≥ E X + λ)≤
Var X

λ2 + Var X
,

Pr(X ≤ E X − λ)≤
Var X

λ2 + Var X
.

(2-2)

2.2. A geometric mean value theorem. We shall need an analogue of the mean value theorem for phase
functions [Dyatlov and Jin 2018, Lemma 2.5]. To formulate it, we shall recall some differential geometry.

If R is a nondegenerate 2-dimensional rectangle in Rd
x × Rd

y and v, w are unit vectors tangent to the
edges of R, then we write γR := v⊗w for the unit bitangent to R and dAR for the area element on R.2

We will consider the case when v ∈ Rd
x and w ∈ Rd

y . In that case, γR and the off-diagonal Hessian ∂2
xy8

both lie in Rd
x ⊗ Rd

y , so we can consider their contraction

⟨∂2
xy8, γR⟩ = ∂v∂w8.

Lemma 2.1. Let 8 ∈ C2(Rd
× Rd). Let x0, x1, y0, y1 ∈ Rd , and let R be the rectangle with vertices

(xi , y j ), i, j ∈ {0, 1}. Then∫
R
⟨∂2

xy8, γR⟩ dAR =8(x0, y0)−8(x0, y1)−8(x1, y0)+8(x1, y1). (2-3)

Proof. Both sides of (2-3) are preserved by orientation-preserving isometries which preserve the product
structure on Rd

× Rd . In particular, we may take x0, y0 = 0, x1 = (ξ∗, 0, . . . , 0), and y1 = (η∗, 0, . . . , 0)
for some ξ∗, η∗

∈ R. We then set

ϕ(ξ, η) :=8((ξ, 0, . . . , 0), (η, 0, . . . , 0)).

2Strictly speaking, the unit bitangent should be defined using the exterior algebra, but since R is assumed nondegenerate this
adds more complication for no gain.
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Then by Fubini’s theorem,∫
R
⟨∂2

xy8, γR⟩ dAR =

∫ ξ∗

0

∫ η∗

0
∂ξ∂ηϕ(ξ, η) dη dξ =

∫ ξ∗

0
∂ξϕ(ξ, η

∗)− ∂ξϕ(ξ, 0) dξ

= ϕ(ξ∗, η∗)−ϕ(ξ∗, 0)− (ϕ(0, η∗)−ϕ(0, 0))

=8(x0, y0)−8(x0, y1)−8(x1, y0)+8(x1, y1). □

We now estimate the difference between (2-3) evaluated over two different rectangles R, R′ by
differentiating 8 along a homotopy between R, R′. This estimate will be useful when applying the
nonorthogonality hypothesis.

Lemma 2.2. Let 8 ∈ C3(Rd
× Rd), and let Rt = [x0(t), x1(t)] × [y0(t), y1(t)], where t = 0, 1 and

xi (t), yi (t) ∈ Rd . Let γt := γRt be the unit bitangent to Rt . Assume that, for some 0 ≤ εx , εy, cx , cy ≤ 1,

(1) for every i ∈ {0, 1}, we have |xi (1)− xi (0)| ≤ εx and |yi (1)− yi (0)| ≤ εy ,

(2) for every t ∈ {0, 1}, we have |x1(t)− x0(t)| ≤ cx and |y1(t)− y0(t)| ≤ cy .

Then ∣∣∣∣∫
R1

⟨∂2
xy8, γ1⟩ dAR1 −

∫
R0

⟨∂2
xy8, γ0⟩ dAR0

∣∣∣∣ ≤ 7∥∂2
xy8∥C1(εx cy + εycx). (2-4)

Proof. By taking convex combinations, we define xi (t) and yi (t) for any t ∈ [0, 1] and hence also Rt

and γt . Now introduce the parametrization

9t(ξ, η) :=

[
ξ x1(t)+ (1 − ξ)x0(t)
ηy1(t)+ (1 − η)y0(t)

]
∈ Rd

× Rd

which maps [0, 1]
2 to Rt . Also let vt := x1(t)−x0(t) andwt := y1(t)−y0(t), so |vt ||wt | is the (unoriented)

Jacobian of the map 9t . We record for later that |vt | ≤ cx and |wt | ≤ cy .
We estimate∣∣∣∣∫
R1

⟨∂2
xy8, γ1⟩ dAR1 −

∫
R0

⟨∂2
xy8, γ0⟩ dAR0

∣∣∣∣ =

∣∣∣∣∫ 1

0
∂t

∫
Rt

⟨∂2
xy8, γt ⟩ dARt dt

∣∣∣∣
≤

∫ 1

0

∫ 1

0

∫ 1

0
|∂t(⟨∂

2
xy8 ◦9t(ξ, η), γt ⟩ · |vt | · |wt |)| dξ dη dt.

We next split up the above integrand:

|∂t(⟨∂
2
xy8 ◦9t(ξ, η), γt ⟩|vt ||wt |)|

≤ |⟨∂t(∂
2
xy8 ◦9t(ξ, η)), γt ⟩| · |vt | · |wt | + |⟨∂2

xy8 ◦9t(ξ, η), ∂tγt ⟩| · |vt | · |wt |

+ |⟨∂2
xy8 ◦9t(ξ, η), γt ⟩| · |∂t |vt || · |wt | + |⟨∂2

xy8 ◦9t(ξ, η), γt ⟩| · |vt | · |∂t |wt ||

=: I + II + III + IV.

To estimate I, we compute

∂t9t(ξ, η)=

[
ξ(x1(1)− x1(0))+ (1 − ξ)(x0(1)− x0(0))
η(y1(1)− y1(0))+ (1 − η)(y0(1)− y0(0))

]
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and conclude that ∥∂t9t∥C0 ≤ εx + εy . Therefore, by the chain rule,

I ≤ ∥∇∂2
xy8∥C0∥∂t9t∥C0 |vt | · |wt | ≤ ∥∂2

xy8∥C1cx cy(εx + εy)≤ ∥∂2
xy8∥C1(cxεy + cyεx).

We furthermore estimate
|∂tvt | = |x1(1)− x1(0)− x0(1)+ x0(0)| ≤ 2εx

and similarly for wt . Now to estimate II, we recall

γt =
vt

|vt |
⊗
wt

|wt |
.

By the product rule,

|∂tγt | ≤
2

|vt |
|∂tvt | +

2
|wt |

|∂twt | ≤ 4
[
εx

|vt |
+

εy

|wt |

]
.

So
II ≤ 4∥∂2

xy8∥C0(cxεy + cyεx)≤ 4∥∂2
xy8∥C1(cxεy + cyεx).

To estimate III, we use Kato’s inequality |∂t |vt || ≤ |∂tvt | to bound

III ≤ 2∥∂2
xy8∥C0cyεx ≤ 2∥∂2

xy8∥C1cyεx .

The estimate on IV is similar but with x and y swapped. Adding up these terms and integrating, we
conclude the result. □

3. Discretization of sets and measures

3.1. A new discretization. As in previous works on the fractal uncertainty principle, such as [Bourgain
and Dyatlov 2018; Dyatlov and Jin 2018], we will discretize fractals as trees.

Definition 3.1. Let X ⊆ Rd be a set. A discretization of X is a family V (X)= (Vn(X))n∈Z of sets, where
Vn(X) is a set of nonempty subsets of Rd such that

• X =
⋃

{I ∩ X : I ∈ Vn(X)} for each n and the union is disjoint;

• for any I ∈ Vn(x), there exist Ik ∈ Vn+1(X) such that I =
⋃

k Ik .

Given I ∈
⋃

n Vn(X), the height of I is defined as H(I )= sup{n : I ∈ Vn(X)}.

Definition 3.2. For a compact set X ⊂ Rd and base L ≥ 2, its standard L-adic discretization V 0
= (V 0

n )n∈Z

is defined by I ∈ V 0
n (X) if and only if

I = In(q) := [q1, L−n
+ q1)× [q2, L−n

+ q2)× · · · × [qd , L−n
+ qd)

for some q ∈ L−nZd and I ∩ X ̸= ∅.

The standard discretization was used in [Bourgain and Dyatlov 2018] to prove the fractal uncertainty
principle in the case d = 1, δ > 1

2 . The problem with the standard discretization is that a box in V 0
n (X)

may be too small for the fractal measure. Dyatlov and Jin [2018] addressed this issue in the case d = 1,
δ ≤

1
2 , by considering a discretization that we call the merged discretization. Unfortunately, if d ≥ 2 and



THE FRACTAL UNCERTAINTY PRINCIPLE VIA DOLGOPYAT’S METHOD IN HIGHER DIMENSIONS 1781

δ ≥ 1, then the merged discretization does not satisfy desirable estimates, as intimated by the fact that
such estimates have a constant of the form O(1)1/(δ(1−δ)) for δ < 1 in [Dyatlov and Jin 2018].

We now construct a discretization which is more appropriate to our setting. Given a compact convex
set I and a real number α > 0, we denote by Iα the dilation of I by α from its barycenter. For sets
A, B ⊂ Rd and x ∈ Rd , we use the ℓ∞ Hausdorff distance,

dist∞(x, A) := inf
a∈A

|a − x |ℓ∞,

dist∞(A, B) := max
(

sup
a∈A

dist∞(a, B), sup
b∈B

dist∞(b, A)
)
,

where, for points x = (xi ) and y = (yi ), we have |x − y|ℓ∞ := max1≤i≤d |xi − yi |. Note that dist∞(x, A) ̸=
dist∞({x}, A) in general. We recall that for the Hausdorff distance we have the triangle inequalities: for
every x ∈ Rd and every subset X ⊂ Rd ,

dist∞(x, A)≤ dist∞(x, B)+ dist∞(A, B), dist∞(X, A)≤ dist∞(X, B)+ dist∞(A, B).

Proposition 3.3. For every compact set X ⊂ Rd , N ∈ N, and L ≥ 103, there is a discretization V (X)
of X such that, for all I ∈ Vn(X) and 1 ≤ n ≤ N ,

• there exists I 0
∈ V 0

n (X) such that

I 0(1 − L−2/3)⊂ I ⊂ I 0(1 + L−2/3), (3-1)

• and there exists a point x0 in X ∩ I such that

dist∞(x0, ∂ I )≥
1

10 L−2/3−n. (3-2)

We call this discretization the perturbed standard discretization, and we call elements of the perturbed
standard discretization tiles (to emphasize that they may not be cubes).

Remark 3.4. Christ [1990] constructed dyadic cubes with similar properties for metric spaces with a
doubling measure µ as in Definition 1.3. It’s possible that the construction there can also be applied to
prove Theorem 1.4. Our construction is less general but does not rely on the existence of a doubling
measure.

3.2. Constructing the new discretization. We prove Proposition 3.3 in this section.

3.2.1. Preliminaries. We establish some terminology and notation that we will use in the construction of
the new discretization. Let I be a cube such that Ī = [a1, b1] × · · · × [ad , bd ]. For 1 ≤ k ≤ d , define the
k-boundary

∂k I :=

⋃
j1,..., jk

[a1, b1] × · · · × {a ji , b ji } × · · · × [ad , bd ].

In other words, ∂k I is the union of all (d−k)-dimensional faces of I , so that ∂1 I = ∂ I and ∂d I is the set
of all vertices of I . For a set A ∈ Rd , r > 0, let the ℓ∞ ball around A with radius r be

B∞(A, r)= {x ∈ Rd
: ∃a ∈ A, |a − x |ℓ∞ < r}.
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1 2

3 4

5 6

1 2

3 4

5 6

Figure 2. A standard (left) and perturbed standard (right) discretization. On the left, cube 1 is
type 2, cubes 2 and 3 are type 1, cube 4 is type 0, and cubes 5 and 6 are type −1; on the right,
tiles 1 and 3 are good and all other tiles are type −1.

We stress that a B without a subscript refers to the ℓ2 ball, and in particular that the balls in the definition
of nonorthogonality are ℓ2 balls!

For a subset P ⊂ ∂k I of the k-boundary of a cube I , suppose without loss of generality that

P ⊆ {a1, b1} × · · · × {ak, bk} × [ak+1, bk+1] × · · · × [ad , bd ].

In that case, we define the tubular neighborhoods

B t
∞
(P, r) :=

{
x ∈ Rd

: there exists y = (yi ) ∈ P,
|x1 − y1|< r, . . . , |xk − yk |< r, xk+1 = yk+1, . . . , xd = yd

}
(3-3)

and
B t

∞
(P, r1, r2) := B t

∞
(P, r1)∪ B∞(P, r2). (3-4)

We will use these tubular neighborhoods to modify the standard cubes. Note that B t
∞
(P, r1, r2) has the

advantage that dist∞(x, ∂B t
∞
(P, r1, r2))≥ min(r1, r2) for any x ∈ P .

Let V 0(X) be the standard discretization.

Definition 3.5. For every n ≤ N and I ∈ V 0
n (X), the type of I is defined as follows:

• I is of type d if there exists a point x ∈ X ∩ I such that dist∞(x, ∂ I ) > 1
2 L−2/3−n .

• If d − 1> 0, I is of type d − 1 if there exists a point x ∈ X ∩ I with dist∞(x, ∂2 I ) > 1
2 L−2/3−n but

I is not of type d .

• If d − 2> 0, I is of type d − 2 if there exists a point x ∈ X ∩ I with dist∞(x, ∂3 I ) > 1
2 L−2/3−n but

I is not of type ≥ d − 1.

• . . . .

• I is of type 0 if X ∩ I is nonempty and dist∞(X ∩ I, ∂d I )≤
1
2 L−2/3−n .

• I is of type −1 if X ∩ I is empty.

See Figure 2 for an example of cube types.
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We want to modify the cubes I ∈ V 0
n (X) into tiles T , so that there exists x0 ∈ X ∩ T satisfying

dist∞(x0, ∂T )≥
1
5 L−2/3−n. (3-5)

We say that a tile T is good if (3-5) holds and otherwise that it is bad. For the remainder of the proof, we
assume the following.

Invariant 3.6. If a tile T constructed from a cube I is bad, then T ⊆ I .

This invariant is true at the current stage of the proof; we necessarily have T = I since we have not
modified any tiles yet.

We want to do induction on the type of the tiles. In order to do so, we will need a notion of “type” for
a bad tile. By Invariant 3.6, in order for type to be well defined, it suffices to define the type of a tile T
which was modified from a cube I such that T ⊆ I .

Definition 3.7. Let T be a bad tile which was modified from a cube I such that T ⊆ I . Assume that I
has type k with respect to X ∩T ; that is, assume that I has type k in Vn(X ∩T ), where V (X ∩T ) consists
of the restriction of elements of V (X) that we are already defined to T . Then the type of T is k.

3.2.2. Induction on type. We now induct backwards on the largest type k of a bad tile. At every stage of
the induction, we iterate over all bad tiles of type k. At each stage of this iteration, either we do nothing,
or we replace a tile T with T ∪T for a tubular neighborhood T of some set. In the latter case, we replace
all other tiles T ′ with T ′

\ T . Here a tubular neighborhood T is always of the form (3-3) or (3-4). In
short, we say that we moved the set T . It will be important that we keep track of which sets we have
already moved. As such, we make the following inductive assumptions, which are vacuous at the start of
the inductive process when k = d − 1:

Invariant 3.8. Every bad tile has type ≤ k.

Invariant 3.9. If a tile T was constructed from a cube I , then dist∞(∂T, ∂ I )≤
1
2 L−n−2/3.

Invariant 3.10. Let T be the tubular neighborhood of a set P. If T has been moved, then dim P ≥ k.

Lemma 3.11. Assume that 0 ≤ k ≤ d − 1 and the above set of tiles satisfies Invariants 3.6, 3.8, 3.9,
and 3.10. Then we may modify each tile to obtain a new set of tiles satisfying Invariants 3.6, 3.8, 3.9,
and 3.10 but with k replaced by k − 1.

Proof. Let T be a bad tile of type k modified from some cube I , and let P be a connected component of
∂d−k I \ B∞

(
∂d−k+1 I, 1

2 L−2/3−n
)

such that B t
(
P, 1

5 L−n−2/3
)
∩ X ∩ T ̸=∅. We modify the adjacent tiles

to P:

(1) If there is a good tile T ′
̸= T adjacent to P , then we enlarge T ′ to contain the tubular neighborhood

T := B t
∞

(
P, 1

2 L−2/3−n
)
∩ (T ′

∪ T ). Then:

(a) T ′ is still good.
(b) T no longer contains P .
(c) Since T is contained in T ′

∪ T , no other tile is affected.
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Figure 3. The proof of Lemma 3.11, Case (2). The boldest black lines represent components P
of the boundary. The tubular neighborhoods around them do not intersect.

(2) Otherwise, by Invariant 3.8, every tile adjacent to P has type ≤ k. In this case, we enlarge T by a
tubular neighborhood T := B t

∞

(
P, 1

2 L−2/3−n, 1
4 L−2/3−n

)
. Then:

(a) Let T ′ be a tubular neighborhood of a set P ′ which we already moved. Then:

(i) If dim P ′ > k, then we claim that T is disjoint from T ′. If this is not true, then let T ′ be the
tile containing T ′. Then T ′ is adjacent to P . By Invariant 3.6, T ′ is good, which contradicts
the fact that we are in Case (2).

(ii) If dim P ′
= k, then T is disjoint from T ′. See Figure 3.

(iii) We cannot have dim P ′ < k, by Invariant 3.10.

Therefore T is disjoint from all tubular neighborhoods which were already moved.
(b) T becomes good.
(c) Every tile T ′

̸= T adjacent to P no longer contains P .

We iterate the above procedure over all possible components P , stopping once there are no more
components to consider. This happens after finitely many stages because of the following facts:

(1) If a tubular neighborhood of a component P is absorbed by a tile T of type k and its other neighboring
tile is T ′, then T becomes good, and P can no longer witness that T ′ has type ≥ k. Therefore we
will not iterate over P again.

(2) At each stage, no new bad tiles are created, and no bad tiles are given more points and remain bad.
Therefore Invariants 3.6 and 3.8 are preserved.

(3) Invariant 3.9 is preserved because if T was constructed from I then we only modify T in a neighbor-
hood of distance 1

2 L−n−2/3 of ∂ I .

(4) Invariant 3.10 is preserved because we only moved tubular neighborhoods of sets of dimension k.

After iterating over all possible components P , Invariant 3.8 is improved, so that every bad tile has type
≤ k −1. Indeed, if T is still bad and was type k, then every tubular neighborhood of a component P which
could witness that T had type k was absorbed into a neighboring tile, so T must have type ≤ k − 1. □



THE FRACTAL UNCERTAINTY PRINCIPLE VIA DOLGOPYAT’S METHOD IN HIGHER DIMENSIONS 1785

After stage k = 0, every bad tile has type −1 by Invariant 3.8. However, if T is a tile of type −1, then
by definition X ∩ T ∩ I is empty. Then, by Invariant 3.6, X ∩ T is empty, and we may discard the tile T
entirely.

Let Ṽn(X) be the set of good tiles that were constructed from Vn(X) by the above procedure. Then
every tile in Ṽn(X) satisfies (3-5) and

X =

⊔
T ∈Ṽn(X)

T ∩ X.

However, Ṽ (X) may not have a tree structure, so it is not a discretization.

3.2.3. Obtaining a tree structure. We now modify Ṽ (X) to be a discretization V (X). We again proceed
by induction. For n > N , let Vn(X) = V 0

n (X). Now suppose that n ≤ N and we have constructed
(Vm(X))m≥n+1 to be a discretization of X . For each element T ∈ Ṽn(X), we define subsets C(T ) of
Vn+1(X) as follows:

• The subsets C(T ) are all disjoint and their disjoint union is Vn+1(X).

• If S ∈ Vn+1(X) and S ⊆ T , then S ∈ C(T ).
• If S ∈ Vn+1(X) intersects multiple T , then we pick one T for which S lies in C(T ).

We now define Vn(X) =
{⋃

S∈C(T ) S : T ∈ Ṽn(X)
}
. Thus, for each I ∈ Vn(X), there exists an element

T ∈ Ṽn(X) such that
dist∞(∂T, ∂ I )≤ 2L−n−1

≤
1
10 L−n−2/3

(where the second inequality is because L ≥ 103), and, for x ∈ T satisfying (3-5), x ∈ I . Then, for
every x ∈ X , there exists a unique I ′

∈ Vn+1(X) containing x by our inductive assumption, and a unique
I ∈ Vn(X) which is a superset of I ′ by the fact that {C(T ) : T ∈ Ṽn(X)} is a partition of Vn+1(X). It
follows that (Vm(X))m≥n is a discretization of X .

By construction, there exists x0 ∈ X ∩ T satisfying (3-5); hence

dist∞(x0, ∂ I )≥ dist∞(x0, ∂T )− dist∞(∂ I, ∂T )≥
( 1

5 −
1

10

)
L−n−2/3

=
1
10 L−n−2/3,

and hence x0 satisfies (3-2). If we denote by I 0 the cube that we modified to create T , then, by Invariant 3.9,

dist∞(∂ I 0, ∂ I )≤ dist∞(∂ I 0, ∂T )+ dist∞(∂T, ∂ I )≤
( 1

2 +
1

10

)
L−n−2/3,

which one can use to show (3-1). This completes the proof of Proposition 3.3.

3.3. Regularity of the discretization. We now show that if the compact set X is the support of a doubling
measure then its perturbed standard discretization V (X) satisfies regularity conditions similar to those
established in [Dyatlov and Jin 2018, Lemma 2.1] for the merged discretization in the case d = 1.

We begin by showing that every pair of tiles (I, J )∈ Vn(X)×Vm(Y ) has children which contain points
for which the estimate

|8(x0, y0)−8(x0, y1)−8(x1, y0)+8(x1, y1)| ≳ |x0 − x1| · |y0 − y1|

holds. This is the key new estimate needed in the higher-dimensional case.
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∂ Ia

∂ Ia′

∂ I

∂K

Figure 4. A typical situation in the proof of Lemma 3.12. The child tiles Ia , Ia′ are contained in
the cube K ⊂ I and are much smaller than I . The green 7-pointed star denotes x , the red triangles
denote x̃a , x̃a′ , and the blue pentagons denote xa , xa′ .

Lemma 3.12. Let8∈ C3(Rd
×Rd), and let X, Y ⊆ Rd be8-nonorthogonal with constant cN from scales

(L−K X , L−KY ) to 1. Let V (X), V (Y ) be the perturbed standard discretizations of X , Y . Then, for

L ≥ max(1803, 1010c−3
N ∥∂2

xy8∥
3
C1)d3/2 (3-6)

and every n < K X , m < KY , I ∈ Vn(X), J ∈ Vm(Y ), there exist children Ia , Ia′ of I and Jb, Jb′ of J
such that, for every xα ∈ Iα, yβ ∈ Jβ , and ωαβ :=8(xα, yβ), we have

cN

1000
≤ Lm+n+4/3

|ωab −ωa′b −ωab′ +ωa′b′ | ≤
∥∂2

xy8∥C0

20
(3-7)

and

Ln+2/3
|xa − xa′ |, Lm+2/3

|yb − yb′ | ≤
1
2 . (3-8)

Moreover, we may assume:

for any xa ∈ Ia and xa′ ∈ Ia′, the line segment xaxa′ always lies in I. (3-9)

Proof. By Proposition 3.3, we may choose x ∈ X ∩ I and y ∈ Y ∩ J such that

min(Ln+2/3dist∞(x, ∂ I ), Lm+2/3dist∞(y, ∂ J ))≥
1

10 .

Let rX =
1

20 L−n−2/3 and rY =
1
20 L−m−2/3. One can show that, if (3-6) holds, then L ≥ 203 and

(1 + 2L−2/3)4 ≤
9
8 . (3-10)

Since n ≤ K X − 1 and L ≥ 203,

rX =
1
20 L−n−2/3

≥
1

20 L−K X L1/3
≥ L−K X ,
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and similarly rY ≥ L−KY . By nonorthogonality, there exist x̃a, x̃a′ ∈ X ∩B(x, rX ) and ỹb, ỹb′ ∈Y ∩B(y, rY )

such that for ω̃αβ :=8(x̃α, ỹβ),

|ω̃ab − ω̃a′b − ω̃ab′ + ω̃a′b′ | ≥ cN rXrY . (3-11)

In the other direction, (2-3) and the triangle inequality gives

|ω̃ab − ω̃a′b − ω̃ab′ + ω̃a′b′ | ≤ ∥∂2
xy8∥C0 · |x̃a − x̃a′ | · |ỹb − ỹb′ |. (3-12)

Let Iα be the child of I containing x̃α and Jβ be the child of J containing ỹβ . Pick arbitrary points xα ∈ Iα
and yβ ∈ Jβ . We first use (3-1), (3-10), and (3-6) to bound

|xa − xa′ | ≤ 2rX + diam Ia + diam Ia′

≤
1
10 L−n−2/3

+ 2d1/2L−n−1(1 + 2L−2/3)2

≤
1
10 L−n−2/3

+ 5d1/2L−n−1

≤
1
2 L−n−2/3.

A similar estimate holds on |yb − yb′ |, which proves the upper bound in (3-8).
To prove (3-7), let cx := 2rX , cy := 2rY , εx := max(diam Ia, diam Ia′), εy := max(diam Jb, diam Jb′).

Then, by (2-3), Lemma 2.2, (3-1), (3-10), and (3-6),

|ωab −ωab′ −ωa′b +ωa′b′ − ω̃ab + ω̃ab′ + ω̃a′b − ω̃a′b′ | ≤ 7∥∂2
xy8∥C1(cxεy + cyεx)

≤
7
5∥∂2

xy8∥C1(d1/2L−n−m−5/3(1 + 2L−2/3)2)

≤ 2∥∂2
xy8∥C1d1/2L−n−m−5/3.

Combining this estimate with (3-11) and (3-6), we obtain

|ωab −ωab′ −ωa′b +ωa′b′ |

≥ |ω̃ab − ω̃a′b − ω̃ab′ + ω̃a′b′ | − |ωab −ωab′ −ωa′b +ωa′b′ − ω̃ab + ω̃ab′ + ω̃a′b − ω̃a′b′ |

≥
1

400 cN L−n−m−4/3
− 2∥∂2

xy8∥C1d1/2L−n−m−5/3

≥
1

1000 cN L−n−m−4/3,

which is the desired lower bound in (3-7). For the upper bound, since x̃a, x̃a′ ∈ B(x, rX ) and ỹb, ỹb′ ∈

B(y, rY ) we use (2-3):

|ωab −ωab′ −ωa′b +ωa′b′ | ≤ 4∥∂2
xy8∥C0(rX +

√
d L−n−1)(rY +

√
d L−m−1)

≤
1

20∥∂2
xy8∥C0 L−n−m−4/3.

Finally we prove (3-9). We use (3-1), (3-10), (3-6), and the fact that dist∞(a, b)≤ |a − b| to estimate

dist∞(xa, x)≤ dist∞(xa, x̃a)+ dist∞(x̃a, x)≤ 2L−n−1
+ rX ≤

1
15 L−n−2/3.

The same bound holds for xa′ , and it follows that xa , xa′ are contained in the convex set

K := B∞

(
x, 1

15 L−n−2/3).
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In particular, ℓ := xaxa′ satisfies ℓ⊂ K . This implies ℓ⊂ I since

dist∞(∂K , ∂ I )≥ dist∞(x, ∂ I )− 1
15 L−n−2/3

≥
1

30 L−n−2/3,

so that K ⊆ I . □

We now give a probabilistic interpretation of the above lemmas. To establish notation, suppose that
I ∈ Vn(X) for some compact set X and some n. We write {Ia : a ∈ A} for the set of children of I . This
induces the structure of a probability space on A; namely,

Pr(a) :=
µX (Ia)

µX (I )
.

Proposition 3.13. Let8∈ C3(Rd
×Rd), and suppose that L satisfies (3-6). Let (X, µX ) be doubling with

constant CD(X) on scales [L−K X , 1], let (Y, µY ) be doubling with constant CD(Y ) on scales [L−KY , 1],
let V (X), V (Y ) be their perturbed standard discretizations, and assume that (X, Y ) is 8-nonorthogonal
with constant cN from scales (L−K X , L−KY ) to 1, n < K X , m < KY , I ∈ Vn(X), and J ∈ Vm(Y ), and
{Ia : a ∈ A} and {Jb : b ∈ B} are the sets of children of I , J . Furthermore, choose, for each a ∈ A and
b ∈ B, xa ∈ Ia and yb ∈ Jb, and set ωab :=8(xa, yb).

Draw independent random outcomes a, a′
∈ A and b, b′

∈ B. Then, with probability

ρ ≥ CD(X)−2⌈log2(20L5/3)⌉CD(Y )−2⌈log2(20L5/3)⌉, (3-13)

we have
1

1000 cN L−1/3
≤ Ln+m+1

|ωab −ωa′b −ωab′ +ωa′b′ | ≤ π (3-14)

and

Ln+2/3
|xa − xa′ |, Lm+2/3

|yb − yb′ | ≤
1
2 . (3-15)

Moreover, we may assume,

for any xa ∈ Ia and xa′ ∈ Ia′, the line segment xaxa′ always lies in I. (3-16)

Proof. By Lemma 3.12, there exist a, b, a′, b′ satisfying (3-7) and (3-8). By definition of the perturbed
standard discretization, there exists x∗ ∈ Ia ∩ X with I∗ :=

1
10 B∞(x∗, L−n−5/3)⊂ Ia . Moreover,

I ⊂ B∞(x0, 2L−n)= I∗(20L5/3).

Therefore,

Pr(a)=
µX (Ia)

µX (I )
≥

µX (I∗)
µX (I∗(20L5/3))

≥ CD(X)−⌈log2(20L5/3)⌉.

We have analogous lower bounds on Pr(b), Pr(a′), and Pr(b′). Then, by independence,

ρ ≥ Pr(a)Pr(a′)Pr(b)Pr(b′),

which gives (3-13), and (3-7) and (3-8) clearly imply (3-15) and the lower bound on (3-14). The condition
(3-16) comes from (3-9). For the upper bound we apply (3-7) and (3-6). □
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4. The induction on scales

We now begin the proof of Theorem 1.4. Let 8 ∈ C3(Rd
× Rd) and p ∈ C1(Rd

× Rd) be the phase and
symbol of Bh , and let K := ⌊−logL h⌋.

Let (X, µX ), (Y, µY ) be doubling with constants CD(X), CD(Y ) on scales ≥ h, let V (X), V (Y ) be
their perturbed standard discretizations, and assume that (X, Y ) is 8-nonorthogonal with constant cN

from scales (h, h) to 1.
For I ∈ Vn(X) and J ∈ Vm(Y ), where n + m + 1 = K , we set

FJ (x)=
1

µY (J )

∫
J

exp
(

i
8(x, y)−8(x, yJ )

h

)
p(x, y) f (y) dµY (y).

Here yJ is the center of J 0, the box in the standard discretization associated to J . Let {Ia : a ∈ A}

and {Jb : b ∈ B} be sets of children with their usual probability measures. Let xa := arg maxIa
|FJ | and

yb := yJb .

4.1. Mean value space. We need to generalize the space Cθ (I ) where d = 1 (see [Dyatlov and Jin 2018,
§2.2] and also [Naud 2005, Lemma 5.4]), which is supposed to locally measure oscillation on I whilst
also being “scale-invariant”.3 This will allow us to get some gain out of the cancellation obtained from
nonorthogonality while performing induction on scales.

Definition 4.1. Given I ∈ Vn(X) and θ ∈ (0, 1), we define the Cθ (I ) norm for functions f ∈ C1(I ) by

∥ f ∥Cθ (I ) := max(∥ f ∥C0(I ), θ diam(I )∥∇ f ∥C0(I )).

Given J ∈ Vm(Y ), we define 9b : I → R as

9b(x) :=
8(x, yJb)−8(x, yJ )

h
.

Lemma 4.2. Let

θ ≤
1

8 max(1, ∥∂2
xy8∥C0(Iconv))

(where Iconv is the convex hull of I ) and L ≥ 10. Then, for f ∈ Cθ (I ),

∥ei9b f ∥Cθ (Ia) ≤ ∥ f ∥Cθ (I ). (4-1)

Proof. Observe that if ψ is a smooth function on Ia,conv then any f ∈ Cθ (Ia) satisfies

|∇(eiψ f )| = |ieiψ f ∇ψ + eiψ
∇ f | ≤ | f ∇ψ | + |∇ f |.

Hence

θ diam(Ia)|∇(ei9b f )(x)| ≤ θ diam(Ia)∥∇9b∥C0(Ia)∥ f ∥C0(Ia) + θ diam(Ia)∥∇ f ∥C0(Ia).

3We cannot use the space C1(I ) with its norm ∥ f ∥C1(I ) := ∥ f ∥C0(I )+∥∇ f ∥C0(I ), because the first and second terms in
the norm will scale differently if we rescale I .
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We estimate that

|∇9b(x)| =
1
h
|∂x(8(x, yJb)−8(x, yJ ))| ≤

1
h
|yJb − yJ |∥∂

2
xy8∥C0(Iconv) ≤

diam(J )
h

∥∂2
xy8∥C0(Iconv).

So, by hypothesis on θ and L ,

θ diam(Ia)∥∇9b∥C0(Ia)∥ f ∥C0(Ia) ≤ θ
diam(Ia) diam(J )

h
∥∂2

xy8∥C0(Iconv)∥ f ∥C0(I )

≤ θ(1 + L−2/3)2∥∂2
xy8∥C0(Iconv)∥ f ∥Cθ (I )

≤
1
4
∥ f ∥Cθ (I ).

In addition, by hypothesis on L ,

θ diam(Ia)∥∇ f ∥C0(Ia) ≤
2
L
θ diam(I )∥∇ f ∥C0(I ) ≤

1
4∥ f ∥Cθ (I ).

Summing up,
θ diam(Ia)∥∇(ei9b f )∥C0(Ia) ≤ ∥ f ∥Cθ (I ).

We also trivially have
∥ f ∥C0(Ia) ≤ ∥ f ∥C0(I ) ≤ ∥ f ∥Cθ (I ),

which proves (4-1). □

4.2. Inductive step. Our next task is to prove the following analogue of [Dyatlov and Jin 2018, Lemma 3.2].

Proposition 4.3. Let I ∈ Vn(X), J ∈ Vm(Y ), where n + m + 1 = K . Draw a random b ∈ B, and assume
that (3-14) and (3-15) hold with probability ρ. Assume that

L ≥ max
(

1012d3

c3
Nθ

3/2
,

1010
∥∂2

xy8∥
3
C1d3/2

c3
N

)
, (4-2)

ε1 ≤
ρ2c2

N

109d2L2/3 . (4-3)

Then we have the improvement

E
a∈A

∥FJ ∥
2
Cθ (Ia)

≤ (1 − ε1) E
b∈B

∥FJb∥
2
Cθ (I ). (4-4)

By Proposition 3.13, we can always choose L and ε1 > 0 such that the hypotheses of this proposition
are met.

4.2.1. The contradiction assumption. We set up the proof of Proposition 4.3 by first recording

FJ = E
b∈B

ei9b FJb . (4-5)

We have the following lemma which is nearly identical to [Dyatlov and Jin 2018, Lemma 3.3].

Lemma 4.4. For each a ∈ A,

∥FJ ∥
2
Cθ (Ia)

≤

(
E

b∈B
∥FJb∥Cθ (I )

)2
≤ E

b∈B
∥FJb∥

2
Cθ (I ). (4-6)
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Proof. By (4-1),

∥ei9b FJb∥Cθ (Ia) ≤ ∥FJb∥Cθ (I ).

The assertions of (4-6) now follow from (4-5) and the Cauchy–Schwarz inequality. □

We set R := Eb∈B ∥FJb∥
2
Cθ (I ). Draw a ∈ A independently of b. Taking expectations in (4-6), we obtain

σ 2
:= E

b∈B
∥FJb∥

2
Cθ (I ) − E

a∈A
∥FJ ∥

2
Cθ (Ia)

≥ Var
b∈B

∥FJb∥Cθ (I ). (4-7)

In particular, (4-7) can be written as

σ 2
= R − E

a∈A
∥FJ ∥

2
Cθ (Ia)

.

If we knew that σ 2
≥ε1 R, then the improvement (4-4) would follow. So, we assume towards a contradiction

that

σ 2 < ε1 R. (4-8)

Let

Fab := FJb(xa), ωab :=9b(xa), fab := eiωab Fab. (4-9)

Note carefully that ωab disagrees with the phase in Proposition 3.13 by a factor of h. We compute

FJ (xa)= E
b∈B

fab (4-10)

and, for each a ∈ A,

E
b∈B

|Fab|
2
≤ E

b∈B
∥FJb∥

2
Cθ (I ) = R. (4-11)

4.2.2. Outline of the proof. By our contradiction assumption (4-8) and variance bound (4-7), the Cθ (I )
norms of the functions FJb are all almost independent of b. One can show that fab is almost independent
of b (see (4-12)). By the mean value theorem, Fab does not vary too much in a (see (4-23)). However, the
events (3-14) and (3-15) have positive probability, so we may condition on them without losing too much,
and, after conditioning, the phases of fab and fa′b′ cannot be too correlated by (3-14) and (3-15). So we
expect cancellation between fab and fa′b′ whenever a, a′, b, b′ are drawn at random by the square-root
cancellation heuristic. This cancellation implies that the conditional expectation of |Fab|

2 is both very
small and comparable to R, a contradiction.

4.2.3. Two unconditional moment estimates. We now make two unconditional moment estimates; we
shall later use Cantelli’s inequality to show that weaker versions of the same moment estimates hold even
when we condition on the events (3-14) and (3-15).

Lemma 4.5. One has

E
a∈A

Var
b∈B

fab ≤ E
a∈A
b∈B

|Fab|
2
− R + 2σ 2

≤ 2σ 2, (4-12)

E
a∈A
b∈B

|Fab| ≥ (1 − 2ε1)
√

R. (4-13)
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Proof. We follow [Dyatlov and Jin 2018, Lemma 3.5]. By Lemma 4.2, for each a, b,

θ∥∇(ei9b FJb)∥C0(Ia) diam Ia ≤
1
2∥FJb∥Cθ (I ).

From the definition of Cθ (Ia), (4-5), and the triangle inequality, for each a ∈ A,

∥FJ ∥Cθ (Ia) = max(∥FJ ∥C0(Ia), θ∥∇FJ ∥C0(Ia) diam Ia)

≤ max
(
∥FJ ∥C0(Ia), θ diam Ia E

b∈B
∥∇(ei9b FJb)∥C0(Ia)

)
≤ max

(
∥FJ ∥C0(Ia),

1
2 E

b∈B
∥FJb∥Cθ (I )

)
.

We estimate the squares of the two terms in the maximum using (4-6):

∥FJ ∥
2
C0(Ia)

≤
1
2(∥FJ ∥

2
C0(Ia)

+ ∥FJ ∥
2
Cθ (Ia)

)≤
1
2(∥FJ ∥

2
C0(Ia)

+ R)

and (
1
2 E

b∈B
∥FJb∥Cθ (I )

)2
≤

1
4 E

b∈B
∥FJb∥

2
Cθ (I ) ≤

1
4 R ≤

1
2(∥FJ ∥

2
C0(Ia)

+ R).

In summary, we have

∥FJ ∥
2
Cθ (Ia)

≤
1
2(∥FJ ∥

2
C0(Ia)

+ R). (4-14)

After taking expectations and applying (4-7), we get

E
a∈A

∥FJ ∥
2
C0(Ia)

≥ 2 E
a∈A

∥FJ ∥
2
Cθ (Ia)

− R = R − 2σ 2. (4-15)

We also record that, by (4-5), (4-10), and the fact that xa maximizes |FJ |,

E
a∈A

∣∣∣ E
b∈B

fab

∣∣∣ = E
a∈A

∣∣∣ E
b∈B

ei9b(xa)FJb(xa)

∣∣∣ = E
a∈A

|FJ (xa)| = E
a∈A

∥FJ ∥C0(Ia). (4-16)

Combining this fact with (4-15),

E
a∈A

∣∣∣ E
b∈B

fab

∣∣∣2
≥ R − 2σ 2.

Therefore,

E
a∈A
b∈B

|Fab|
2
= E

a∈A
b∈B

| fab|
2
= E

a∈A

(∣∣∣ E
b∈B

fab

∣∣∣2
+ Var

b∈B
fab

)
≥ R − 2σ 2

+ E
a∈A

Var
b∈B

fab. (4-17)

Rearranging, we obtain

E
a∈A

Var
b∈B

fab ≤ E
a∈A
b∈B

|Fab|
2
− R + 2σ 2. (4-18)

Then (4-12) follows from (4-11).
To obtain (4-13), we first estimate

E
a∈A
b∈B

|Fab| = E
a∈A
b∈B

| fab| ≥ E
a∈A

∣∣∣ E
b∈B

fab

∣∣∣ = E
a∈A

√
E

b∈B
| fab|

2
− Var

b∈B
fab. (4-19)
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From (4-17) and (4-11), and the contradiction assumption (4-8),

E
a∈A

√
E

b∈B
| fab|

2
− Var

b∈B
fab ≥

1√
maxa∈A Eb∈B | fab|

2
E

a∈A

(
E

b∈B
| fab|

2
− Var

b∈B
fab

)
≥ E

a∈A

Eb∈B | fab|
2
− Varb∈B fab

√
R

≥
R − 2σ 2

√
R

≥ (1 − 2ε1)
√

R. □

4.2.4. Drawing random nonorthogonal tiles. By (4-6) and the Cauchy–Schwarz inequality,

E
b∈B

∥FJb∥Cθ (I ) ≤
√

R. (4-20)

Let T be the event that ∥FJb∥Cθ (I ) ≤ 2
√

R. By the moment bounds (4-20) and (4-7), the contradiction
assumption (4-8), and Cantelli’s inequality (2-2),

Pr(T ) > 1 − ε1. (4-21)

We let T ′ be the respective event for b′, where a′, b′ are drawn independently from a, b. From (4-12),
(4-21), and (2-1), we obtain

E
a∈A

b,b′
∈B

(| fab − fab′ |
2
| T ∩ T ′)≤

1
Pr(T ∩ T ′)

E
a∈A

b,b′
∈B

| fab − fab′ |
2

≤
2

Pr(T )2
E

a∈A
Var
b∈B

fab ≤ 2.5 · 2σ 2
= 5σ 2. (4-22)

If T and (3-16) hold, then, by Lemma 4.2,

|Fab − Fa′b| ≤
2
√

R
θ

L H(I )
|xa − xa′ |. (4-23)

Let S be the intersection of T , T ′, and the events (3-14), (3-15) and (3-16). By (4-3), ε1 ≤
1

10ρ, so by
(4-21),

Pr(S)
Pr(T )2

≥
ρ− 2(1 − Pr(T ))

Pr(T )2
≥
ρ− 2ε1

(1 − ε1)2
≥

1
2ρ. (4-24)

If S holds, then by (4-23) and (3-15),

|Fab − Fa′b| ≤

√
R

L2/3θ
. (4-25)

4.2.5. Conditional second moment bounds. We now use (4-24) and (4-25) to obtain lower and upper
bounds on E(|Fab|

2
| S) which are not both tenable.

Lemma 4.6. For M := 8000000,

E
a∈A
b∈B

(|Fab|
2
| S)≤ Md2

(
R

c2
N L2/3θ

+ 2
L2/3σ 2

c2
Nρ

)
. (4-26)
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Proof. We take all expectations and probabilities over a, a′, b, b′. Write

τ := ωab −ωab′ −ωa′b +ωa′b′;

so if S holds then

|eiτ
− 1|

2
≥ |τ |2 ≥ 10−6c2

N L−2/3

by (3-14) and [Dyatlov and Jin 2018, Lemma 2.6]. Following [Dyatlov and Jin 2018, 19], we rewrite
(recalling the notation set in (4-9))

|(eiτ
− 1)Fab| = |ei(ωab−ωab′ )Fab − ei(ωa′b−ωa′b′ )Fab|

= |e−iωab′ ( fab − fab′)+ Fab′ − Fa′b′ − e−iωa′b′ ( fa′b − fa′b′)+ ei(ωa′b−ωa′b′ )(Fa′b − Fab)|.

So by the triangle inequality in L2,

E(|(eiτ
− 1)Fab|

2
| S)≤ 4 E(|Fab − Fa′b|

2
+ |Fa′b′ − Fab′ |

2
+ | fab − fab′ |

2
+ | fa′b′ − fa′b|

2
| S).

So

E(|Fab|
2
| S)

≤ 106
·

d2L2/3

c2
N

E(|(eiτ
− 1)Fab|

2
| S)

≤
Md2L2/3

2c2
N

E(|Fab − Fa′b|
2
+ |Fa′b′ − Fab′ |

2
| S)+

Md2L2/3

2c2
N

E(| fab − fab′ |
2
+ | fa′b′ − fa′b|

2
| S).

Applying (4-25),

|Fab − Fa′b|
2
+ |Fa′b′ − Fab′ |

2
≤

2R
L4/3θ

.

Since S implies T ∩ T ′ and a, a′ are independent,

E(| fab − fab′ |
2
+ | fa′b′ − fa′b|

2
| S)≤ 2

Pr(T )2

Pr(S)
E(| fab − fab′ |

2
| T ∩ T ′).

By (4-24), Pr(T )2/Pr(S)≤ 2/ρ. Summing all this up and applying (4-22), we conclude (4-26). □

Lemma 4.7. One has

E
a∈A
b∈B

(|Fab|
2
| S)≥

1
6 R. (4-27)

Proof. By (4-13), we conclude that

Pr
a∈A

(
E

b∈B
|Fab|< (1 − 2

√
ϵ1)

√
R

)
≤

√
ϵ1.

By Cantelli’s inequality (2-2),

Pr
b∈B

(
|Fab| ≤ E

b∈B
|Fab| −

1
2

√
R

)
≤

Varb∈B |Fab|

Varb∈B |Fab| +
1
4 R
.
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Since |Fab| = | fab|, it follows from (4-12) and (4-8) that

Pr
(
|Fab|

2
≤

1
5 R

)
≤ Pr

a∈A

(
E

b∈B
|Fab|< (1 − 2

√
ϵ1)

√
R

)
+ Pr

(
E

b∈B
|Fab| ≥ (1 − 2

√
ϵ1)

√
R, |Fab|

2
≤

1
5 R

)
≤

√
ϵ1 + E

a∈A
Pr

b∈B

(
|Fab| ≤ E

b∈B
|Fab| −

1
2

√
R

)
≤

√
ϵ1 +

4 Ea∈A Varb∈B fab

R

≤
√
ϵ1 +

8σ 2

R
< 2

√
ϵ1.

But by (4-24),

Pr
(
|Fab|

2
≤

1
5 R

∣∣ S
)
=

Pr
((

|Fab|
2
≤

1
5 R

)
∩ S

)
Pr(S)

≤
2 Pr

(
|Fab|

2
≤

1
5 R

)
ρ

.

The definition (4-3) of ε1 then implies

Pr
(
|Fab|

2
≤

1
5 R

∣∣ S
)
≤

4
√
ε1

ρ
< L−1/3.

Therefore

Pr
(
|Fab|

2
≥

1
5 R

∣∣ S
)
≥ 1 − L−1/3,

so by Markov’s inequality and the assumption (4-2),

E
a∈A
b∈B

(|Fab|
2
| S)≥

1
5 R Pr

(
|Fab|

2
≥

1
5 R

∣∣ S
)
≥

1
6 R. □

4.2.6. Deriving a contradiction. The two above conditional second moment bounds contradict (4-2)
and (4-3) and the contradiction assumption (4-8). To be more precise, combining (4-26) with (4-27)
and (4-8), we obtain

1
6 R ≤ E

a∈A
b∈B

(|Fab|
2
| S)≤ Md2

(
R

c2
N L2/3θ

+
2L2/3σ 2

c2
Nρ

)
< Md2

(
R

c2
N L2/3θ

+
2L2/3ε1 R

c2
Nρ

)
.

Dividing both sides by RM and applying (4-2) and (4-3), we obtain

2 · 10−8 <
1

48 · 106 =
1

6M
≤

d2

c2
N L2/3θ

+
2d2L2/3ε1

c2
Nρ

≤
1

108 +
2

109 = 1.2 · 10−8.

This is a contradiction that proves that σ 2
≥ ε1 R and so completes the proof of Proposition 4.3.

4.3. Proof of main theorem. To prove Theorem 1.4, we iterate Proposition 4.3. For each J , we define

E J : VK−H(J )(X)→ R, I 7→ ∥FJ ∥Cθ (I ).

We endow Vn(X) with the discrete measure induced by µX , namely µX ({I })= µX (I ), and J with the
restricted fractal measure µY .
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First suppose that J ∈ VK (Y ). Then, by the Cauchy–Schwarz inequality, it follows that

|∇FJ (x)| =
1

µY (J )

∫
J

i∂x9J (x, y) exp(i(9J (x, y)))p(x, y) f (x, y)

+ exp(i(9J (x, y)))∂x p(x, y) f (y) dµY (y)

≤
1

√
µY (J )

(
diam J

h
∥∂2

xy8∥C0∥ f ∥L2(J )∥p∥C0 + ∥∂x p∥C0∥ f ∥L2(J )

)
and

∥FJ ∥C0 ≤
∥p∥C0∥ f ∥L2(J )

√
µY (J )

.

Thus,

E J (I )= ∥FJ ∥Cθ (I ) ≤
∥p∥C1∥ f ∥L2(J )

√
µY (J )

. (4-28)

Taking L2 norms of both sides of (4-28), we get

∥E J ∥
2
L2 ≤

∥p∥
2
C1µX (X)

µY (J )
∥ f ∥

2
L2(J ). (4-29)

If we take L2 norms of both sides of (4-4), we get

∥E J ∥
2
L2 ≤ (1 − ε1) E

b∈B
∥E Jb∥

2
L2 . (4-30)

Inducting backwards on H(J ) with (4-29) as base case and (4-30) as inductive case, we conclude that,
if J is a tile in Y such that H(J )= 0,

∥E J ∥
2
L2 ≤

∥p∥
2
C1µX (X)

µY (J )
(1 − ε1)

K
∥ f ∥

2
L2(J ).

Summing both sides in J , we obtain (note ∥Bh(1J f )∥L2 ≤ µY (J )∥E J ∥L2 and µX (X)= µY (Y )= 1)

∥Bh f ∥
2
L2 ≲ ∥p∥

2
C1µX (X)µY (Y )(1 − ε1)

K
∥ f ∥

2
L2 ≲ (1 − ε1)

K
∥ f ∥

2
L2 .

We now can set

ε0 :=
ε1

6 log L
≤

log(1 − ε1)
−1

2 log L

and plug in θ in (4-2) to obtain (1-5) and (1-6). Then (1 − ε1)
K/2

≤ hε0 , so

∥Bh∥L2(µY )→L2(µX ) ≲ hε0,

which completes the proof of Theorem 1.4.

5. Applications

5.1. Classical fractal uncertainty principle. We now prove Theorem 1.5 following [Dyatlov and Jin
2018, Theorem 1, Remarks 1]. The classical version of the fractal uncertainty principle, Theorem 1.5,
uses Lebesgue measure. In order to use our main Theorem 1.4, we need to define a rescaling of the
Lebesgue measure. This is the content of the following lemma.
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Lemma 5.1. Let (X, µ) be δ-regular on scales [h, 1], h > 0, where δ ∈ [0, d] and µ is the δ-dimensional
Hausdorff measure. Let Xh := X + Bh and

µh(A) := hδ−d
|Xh ∩ A|.

Then (Xh, µh) is δ-regular on scales [2h, 1] with constant

CR(Xh) := 6d max(|Bd
|, |Bd

|
−1)CR(X)2.

Here |Xh ∩ A| is the Lebesgue measure of Xh ∩ A and Bd is the unit ball in Rd .

Proof. Let N = NX (x, r, h) be the cardinality of a maximal h-separated subset of X ∩ B(x, r) for x ∈ X
and r ≥ 2h. By [Dyatlov and Zahl 2016, Lemma 7.4], we have

CR(X)−2 r δ

hδ
≤ NX (x, r, h)≤ CR(X)2

(
1 +

2r
h

)δ
.

If {x1, . . . , xN } is such a maximal set and In := B(xn, 2h), then Xh ∩ B(x, r)⊆
⋃N

n=1 In , so we have

µh(B(x, r))≤ hδ−d
N∑

n=1

|In| ≤ 2dhδ|Bd
|N ≤ 2d

|Bd
|CR(X)2(h + 2r)δ ≤ CR(Xh)r δ.

Conversely, if Jn := B
(
xn,

1
2 h

)
, then Jn and Jm are disjoint and

⋃N
n=1 Jn ⊆ Xh ∩ B(x, r), so we have

µh(B(x, r))≥

N∑
n=1

hδ−d
|Jn| ≥ N

hδ

2d |Bd
| ≥ CR(X)−22−d

|Bd
|r δ ≥ CR(Xh)

−1r δ. □

We now show that the nonorthogonality condition also holds for (Xh, Yh).

Lemma 5.2. Let (X, Y ) be 8-nonorthogonal on scales [h, 1], h > 0. Then (Xh, Yh) is 8-nonorthogonal
on scales [2h, 1] with constant cN (Xh, Yh) :=

1
4 cN (X, Y ).

Proof. Let x0 ∈ Xh , y0 ∈ Yh , and rX , rY ≥ 2h; then there exist x̃0 ∈ X and ỹ0 ∈ Y with

max(|x0 − x̃0|, |y0 − ỹ0|)≤ h.

Putting r̃X := rX − h and r̃Y := rY − h, we can find by 8-nonorthogonality of (X, Y ) points

x1, x2 ∈ X ∩ B(x̃0, r̃X )⊆ X ∩ B(x0, rX )

and
y1, y2 ∈ Y ∩ B(ỹ0, r̃Y )⊆ Y ∩ B(y0, rY )

such that
|8(x1, y1)−8(x1, y2)−8(x2, y1)+8(x2, y2)| ≥ cN (X)r̃X r̃Y ≥ cN (Xh)rXrY . □

Proof of Theorem 1.5. We define (Xh, µX,h), (Yh, µY,h) as in Lemma 5.1 and introduce the Fourier
integral operator

Bh f (ξ) :=

∫
Yh

ei x ·ξ/h f (x) dµY,h(x).
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By the above lemmas, (Xh, µX,h) is δ-regular, (Yh, µY,h) is δ′-regular, and (Xh, Yh) is 8-nonorthogonal.
Thus, by Theorem 1.4,4 there exists ε0 > 0 such that

∥1Xh Fh1Yh ∥L2→L2 =
h(d−δ−δ′)/2

(2π)d/2
∥Bh∥L2(µY,h)→L2(µX,h) ≲ h(d−δ−δ′)/2+ε0 . □

5.2. Convex cocompact hyperbolic manifolds. In this section we prove Theorem 1.6. First we recall
some preliminaries for convex cocompact hyperbolic manifolds.

Let Hd+1 be the (d+1)-dimensional hyperbolic space (with constant curvature −1). The orientation
preserving isometry group is given by G = SO(d + 1, 1)0. Let K = SO(d + 1) be a maximal compact
subgroup, so that Hd+1

= G/K . We are interested in infinite volume hyperbolic manifolds given by
M = 0\G/K , where 0 ⊂ G is a convex cocompact Zariski-dense torsion-free discrete subgroup.

The limit set is defined as 3(0) := 0x ∩ ∂∞(H
d+1) ⊂ Hd+1 for any x ∈ Hd+1 (one can show that

the definition is independent of the choice of x). Let Hull(3(0)) be the convex hull of 3(0) in Hd+1.
Then 0 is called convex cocompact if the convex core Core(M) :=0\Hull(3(0))⊂ M is compact, and 0
is Zariski dense if 0 is not contained in the zero set of some nontrivial polynomial on SO(d + 1, 1)0. We
identify the sphere Sd with Rd

∪ {∞}. In the Poincaré upper half-space model, the limit set 3(0)⊂ Sd

is a compact set of dimension δ0 ∈ (0, d) (see [Sarkar and Winter 2021, §2]), and we may assume that
3(0) is a compact subset of Rd .

We recall the following nonconcentration property from [Sarkar and Winter 2021, Proposition 6.6].

Proposition 5.3. Let 0 ⊂ G be a convex cocompact subgroup such that 0 is Zariski dense in G. Then
there exists c0 > 0 such that, for any x ∈3(0)∩ Rd , ε ∈ (0, 1), and w ∈ Rd with |w| = 1, there exists
y ∈3(0)∩ B(x, ε) such that

|⟨y − x, w⟩|> c0ε. (5-1)

As a corollary we have the following.

Corollary 5.4. Let M be a convex cocompact hyperbolic (d+1)-dimensional manifold such that 0 is
Zariski dense in G. Then, for any 8 ∈ C3(Rd

× Rd
; R) such that ∂2

xy8(x, y) is nonvanishing, the pair
(3(0),3(0)) is 8-nonorthogonal with some constant cN > 0 from scales 0 to 1.

Proof. By the mean value theorem, for x1, x2 ∈ B(x0, rX ) and y1, y2 ∈ B(y0, rY ),

|8(x0, y0)−8(x1, y0)−8(x0, y1)+8(x1, y1)−⟨∂xy8(x0, y0)(x1−x0), y1−y0⟩| ≤ ∥8∥C3rXrY (rX +rY ).

Let H = ker(∂2
xy8(x0, y0)) and v be a unit normal vector to H (if H = {0}, then we choose v arbitrarily).

By Proposition 5.3, there exists x1 ∈3(0)∩ B(x0, rX ) such that |⟨x1 − x0, v⟩|> c0rX . This would imply,
for some c1 ∈ (0, 1), that

|∂2
xy8(x0, y0)(x1 − x0)|> c1c0rX .

By Proposition 5.3 again, there exists y1 ∈3(0)∩ B(y0, rY ) such that

|⟨∂2
xy8(x0, y0)(x1 − x0), y1 − y0⟩|> c1c2

0rXrY .

4The fact that regularity and nonorthogonality only hold up to scale 2h causes us to incur a loss of a power of 2, but this is
irrelevant.
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Thus we may choose rX , rY ≤
1
10 c1c2

0∥8∥
−1
C3 such that

|8(x0, y0)−8(x1, y0)−8(x0, y1)+8(x1, y1)|>
1
2 c1c2

0rXrY ,

i.e., nonorthogonality holds with

cN =
c3

1c6
0

200(1 + ∥8∥C3)2
> 0. □

Proof of Theorem 1.6. As before, we may assume that 3(0) is contained in a compact region of Rd
⊂ Sd .

On such a region, the stereographic projection ϕ : Sd
\ {∞} → Rd is bounded in C3 with C3-bounded

inverse. Consider the measure
µh(A) := hδ0−d

|3(0)h ∩ A|,

which is defined using the Euclidean metric but is comparable to the measure defined using the spherical
metric due to the bounds on the stereographic projection. By Lemma 5.1, µh is δ0-regular on scales [2h, 1].

Let χ ∈ C∞

0 (S
d
× Sd

\ {(x, x) : x ∈ Sd
}), and define Bχ (h) : L2(Sd)→ L2(Sd) by

Bχ (h)u(x)= (2πh)−d/2
∫

Sd
|x − y|

2i/hχ(x, y)u(y) dy.

Then 13(0)h Bχ (h)13(0)h can be rewritten as (2πh)−d/2hd−δ0Bh , where Bh is the operator studied in
Theorem 1.4 with p(y′) dy′

=χ(ϕ−1(y))ϕ∗(dy), µX =µY =µh , and8(x, y)= 2 log |ϕ−1(x)−ϕ−1(y)|.
Combining Theorem 1.4 with the bounds on the stereographic projection and Corollary 5.4, we conclude
the fractal uncertainty bound

∥13(0)h Bχ (h)13(0)h ∥L2(Sd )→L2(Sd ) ≤ Chd/2−δ0+ε0 .

By a covering argument as in [Bourgain and Dyatlov 2018, Proposition 4.2], we have, for ρ ∈ (0, 1),

∥13(0)hρ Bχ (h)13(0)hρ ∥L2(Sd )→L2(Sd ) ≤ Chd/2−δ0+ε0−2(1−ρ).

Thus, 3(0) satisfies the fractal uncertainty principle with exponent β =
1
2 d − δ0 + ε0 in the sense of

[Dyatlov and Zahl 2016, Definition 1.1]. Applying [Dyatlov and Zahl 2016, Theorem 3], we conclude
that the Laplacian on M has only finitely many resonances in

{
Im λ > δ0 −

1
2 d − ε0 + ε

}
for any ε > 0,

proving Theorem 1.6. □

Appendix: The nonorthogonality constant of a classical Schottky group

In this appendix we demonstrate a simple way to estimate the nonorthogonality constant for classical
Schottky groups 0 in SO(3, 1)0 = PSL(2,C), pointed out to us by Qiuyu Ren. The key idea is to use the
fact that Möbius transformations are conformal maps and preserve circles in order to derive (5-1).

We illustrate this by considering Schottky groups of genus 2. Let D1, D2, D3, D4 be four disjoint
closed disks in CP1

= ∂∞H3, and let γ1, γ2 ∈ PSL(2,C) such that

γ1(Dc
3)= D1, γ2(Dc

4)= D2, γ3 = γ−1
1 , γ4 = γ−1

2 .

Let 0 = ⟨γ1, γ2⟩ be the free group generated by γ1 and γ2. Thus, 0 is a Schottky group of genus 2.
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We identify CP1, S2, and R2
∪ {∞}. We may assume that the Di do not contain ∞ and hence are

contained in R2. Given vectors v,w ∈ R2, let ̸ (v,w) denote the angle between v,w. The notion of a
circle is not completely invariant under conformal transformations of CP1. We recall that a generalized
circle is either a circle or a line; conformal transformations map generalized circles to generalized circles.
We will choose the disks D1, D2, D3, D4 such that

no generalized circle passes though all four disks. (A-1)

The circle taken here is not necessarily a great circle.
Let ā ≡ a + 2 mod 4 for a ∈ A = {1, 2, 3, 4}, so that 1̄ = 3, 2̄ = 4. The limit set 3(0) is given by the

Cantor-like procedure

3(0)=

∞⋂
n=1

⊔
a∈Wn

Da, Wn
= {a1a2 · · · an ∈ An

: āi ̸= ai+1},

where Da = γa1(γa2( · · · (γan−1(Dan )))).
The nonorthogonality condition (1-3) follows from the nonconcentration property (5-1). Thus it suffices

to find absolute constants 0 < c1 < 1 and κ = κ(0) > 0 such that, for each x ∈3(0), ϵ > 0, and unit
vector w ∈ R2, there exists an element y ∈3(0)∩ B(x, ϵ) \ B(x, c1ϵ) such that

|cos ̸ (x − y, w)| ≥ κ.

Suppose x ∈ Da = Da0b and B(x, ϵ) is roughly of the size of Da0 . Then there are two other disks in Da0 ,
which we call Da0c and Da0d . By condition (A-1) and conformal invariance of the action of 0, we know
that, for any yc ∈ Da0c ∩3(0) and yd ∈ Da0d ∩3(0),

the circle passing through x, yc, yd lies inside Da0 . (A-2)

A Möbius transformation preserving the unit disk is a composition of a rotation and the map

z 7→
a − z
1 − āz

.

A simple computation shows the angles of the triangle 1(x, yc, yd) are uniformly lower bounded under
conformal maps preserving Da0 if we assume (A-2). This implies that

θ < ̸ (yc − x, yd − x) < π − θ

for some constant θ depending on the initial angles between γa(Db), a ̸= b̄. Thus, by the pigeonhole
principle,

max(|cos ̸ (yc − x, w)|, |cos ̸ (yd − x, w)|)≥ cos
(
π−θ

2

)
.

If we assume, moreover,

for any b ̸= ā ̸= c, there exist a′
̸= a, b′

̸= ā′ such that
no circle passes through γa(Db), γa(Dc), γa′(Db′), and Dā (A-3)
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D1

D3

D2 D4

Figure 5. Iteration of disks under a Schottky group.

(which can be achieved if we choose the disks Da to be small and with generic centers), then we can
derive a lower bound on c1 in a similar way. To be more precise, let x ∈ Da = Da0b = Sa1ab as before;
then by assumption (A-3), there exists a′

̸= a and b′
̸= ā′ such that

the circle passing through Da0b, Da0c, and Da1a′b′ lies inside Da1 . (A-4)

In particular, for any ya′b′ ∈ Da1a′b′ , the angles of the triangle 1(x, yc, ya′b′) are lower bounded. This in
particular implies that the length of xyc is comparable to the length of yc ya′b′ , which by the previous step
is comparable with the size of Da0 . This allows us to compute a lower bound of c1.

If one runs this procedure carefully, then it would be possible to compute an explicit nonorthogonality
constant in terms of the angles between the disks γa(Db) in the initial step and the uniform constants in
doing conformal transformations.

We do not bother to do the computation here, but we include Figure 5 to indicate how the procedure
works. Conformal invariance ensures that the small blue disks always have an angle that lies in [θ, π−θ ].

While one needs to compute the above parameters κ and θ for any given Zariski-dense classical
Schottky group 0, we claim that this is always possible in principle, at least after passing to a finer scale.
We say that a pair of words a, b ∈Wn , n ∈ N∪{+∞}, is ε-separated if their weighted Hamming distance
satisfies

n∑
i=1

1ai ̸=bi

2i ≥ ε.

Lemma A.1. Let 0 be a classical Schottky group which is Zariski dense in PSL(2,C). For every ε > 0,
there exists N ∈ N such that, for every n ≥ N and every triple of words an, bn, cn

∈ Wn which are
pairwise ε-separated, there exists dn

∈ Wn such that, for every circle X which meets all three disks Dan ,
Dbn , Dcn , we have that X does not meet Ddn .
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Proof. We first prove an analogous result for the set of infinite words W∞ and then reduce the finite
case to the infinite case. To formulate it, let xa be the unique point in limn Da1···an (so a 7→ xa is a
homeomorphism W∞

→3(0), where W∞ is given the product topology).
Let a, b, c ∈ W∞ be distinct. Then there is a unique circle Xabc ⊂ CP1 passing through xa, xb, xc.

We claim that there exists d ∈ W∞ such that xd /∈ Xabc. Otherwise 3(0) is contained in a circle, which
contradicts Proposition 5.3.

We now address the finite case. Suppose that the lemma fails on some an, bn, cn
∈ Wn for each n ∈ N

which are ε-separated, so, for every dn
∈Wn , there exists a circle X (dn) which meets all disks Dan , Dbn ,

Dcn , Ddn . Let a, b, c ∈ W∞ be the limits of an , etc., and let d ∈ W∞ be given. Then d = limn dn for
some sequence dn

∈ Wn , and we can define

X := lim
n

X (dn)

in Hausdorff distance. Then, xa, xb, xc, xd ∈ X , and a, b, c are ε-separated and hence distinct. Moreover,
X is the limit of circles in CP1 whose radii are bounded from below (by ε-separation), so X is a circle,
and hence X = Xabc. This contradicts the infinite case. □

Assuming Lemma A.1, for Da = Da1···a2n , we can find b, c ∈ W2n such that any circle passing through
Da, Db, and Dc lies in the disk Da1 . This is because, given Da1···a2n and Dc

a1
, we have

γ ān · · · γ ā2γ ā1(Da1···a2n )= Dan+1···a2n , γ ān · · · γ ā2γ ā1(Dc
a1
)= Dān ···ā2ā1 .

By Lemma A.1, there exists b0, c0 ∈ Wn such that no circle passes through Dan+1···a2n , Dān ···ā2ā1 , Db0 ,
and Dc0 . Applying γa1 · · · γan , we conclude any circle passing through

Da1···a2n , Da1···an b0, Da1···an c0

lies inside Da1 (there might be cancellations for the words a1 · · · an b0 and a1 · · · an c0 but one can always
pass to a smaller disk). This allows us to compute the angle θ as before for general Zariski-dense classical
Schottky groups.
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