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RECONSTRUCTION FOR THE CALDERÓN PROBLEM
WITH LIPSCHITZ CONDUCTIVITIES

PEDRO CARO, MARÍA ÁNGELES GARCÍA-FERRERO AND KEITH M. ROGERS

We determine the conductivity of the interior of a body using electrical measurements on its surface. We
assume only that the conductivity is bounded below by a positive constant and that the conductivity and
surface are Lipschitz continuous. To determine the conductivity we first solve an associated integral
equation in a ball B that properly contains the body, finding solutions in H 1(B). A key ingredient is to
equip this Sobolev space with an equivalent norm which depends on two auxiliary parameters that can be
chosen to yield a contraction.

1. Introduction

We consider the conductivity equation in a bounded domain � ⊂ Rn and place electric potentials
φ ∈ H 1/2(∂�) on the Lipschitz boundary ∂�:{

∇ · (σ∇u)= 0 in �,
u|∂� = φ.

(1)

Throughout the article, the conductivity σ is assumed to be bounded above and below by positive constants,
so that (1) has a unique weak solution u in the L2-Sobolev space H 1(�). The Dirichlet-to-Neumann
map 3σ can then be formally defined by

3σ : φ 7→ σ ∂νu|∂�, (2)

where ν denotes the outward unit normal vector to ∂�. This provides us with the steady-state perpendicular
currents induced by the electric potentials φ.

Motivated by the possibility of creating an image of the interior of a body from these noninvasive
voltage-to-current measurements on its surface, Calderón [2006] asked whether the conductivity σ is
uniquely determined by 3σ and, if so, whether σ can be calculated from 3σ . In two dimensions, Astala
and Päivärinta answered the uniqueness part [2006b] and also provided a reconstruction algorithm [2006a].
The two-dimensional problem has distinct mathematical characteristics, so from now on we consider
only n ⩾ 3.

With n ⩾ 3, it has so far been necessary to make additional regularity assumptions. Kohn and Vogelius
[1984] proved uniqueness for real-analytic conductivities, and Sylvester and Uhlmann [1987] improved
this to smooth conductivities. Nachman, Sylvester and Uhlmann [Nachman et al. 1988] then proved
uniqueness for twice continuously differentiable conductivities, and Nachman [1988] and Novikov [1988]
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provided reconstruction algorithms. These pioneering articles provoked a great deal of interesting work,
including that of Brown [1996], Päivärinta, Panchenko and Uhlmann [Päivärinta et al. 2003] and Brown
and Torres [2003] for conductivities with 3

2 derivatives. In the past decade, a breakthrough was made
by Haberman and Tataru [2013], who proved uniqueness for continuously differentiable conductivities
or Lipschitz conductivities with ∥∇ log σ∥∞ sufficiently small. García and Zhang [2016] then provided
a reconstruction algorithm under the same assumptions. Two of the authors removed the smallness
condition from the uniqueness result in [Caro and Rogers 2016], and the purpose of this article will be to
extend this work to a reconstruction algorithm that holds for all Lipschitz conductivities. We will not
assume that the conductivity is constant near the boundary, nor will we extend the conductivity in order
to achieve this, leading to simpler formulas than those of [García and Zhang 2016]; see Section 3.

Before we outline the proof, we remark that there are also uniqueness results for conductivities in
Sobolev spaces; see [Haberman 2015; Ham et al. 2021; Ponce-Vanegas 2021]. In particular, [Haberman
2015] proved that uniqueness holds for bounded conductivities in W 1,n(�), with n = 3 or 4. Note that this
is a strictly larger class than Lipschitz, however there are obstacles to reconstruction via their methods;
see Remark 11.2 for more details. It has been conjectured that Lipschitz continuity is the sharp threshold
within the scale of Hölder continuity; see for example [Brown 1996] or [Uhlmann 1998, Open Problem 1].

When σ is Lipschitz, weak solutions to (1) are in fact strong solutions; see for example [Zhang and
Bao 2012, Theorem 1.3]. Defining the Dirichlet-to-Neumann map as in (2) by identifying σ ∂νu|∂� with
the normal trace of σ∇u, we have the divergence identity∫

∂�

3σ [φ]ψ =

∫
�

σ∇u · ∇ψ

whenever (φ, ψ) ∈ H 1/2(∂�)× H 1(�); see for example [Kim and Kwon 2022, Proposition 2.4]. Given
this identity, it is possible to describe the heuristic which underlies the reconstruction: For each ξ ∈ Rn ,
one hopes to choose an oscillating pair (φ, ψ) so that the right-hand side becomes a nonlinear Fourier
transform of σ evaluated at ξ . As the left-hand side can be calculated from the measurements, the
conductivity might then be recoverable by Fourier inversion. Indeed, much of the literature, including the
original work of Calderón [2006], has involved pairs (eρ·x , eρ

′
·x), with ρ, ρ ′

∈ Cn chosen carefully, so
that ρ+ ρ ′ is equal to a real constant multiple of −iξ , where i :=

√
−1. The hope is that the essentially

harmonic u is not so different from eρ := eρ·x , and so the complex vector ρ is chosen in such a way that
ρ · ρ = 0, so that eρ is harmonic.

In fact we begin by noting that u is a solution to the conductivity equation if and only if v = σ 1/2u is a
solution to the Schrödinger equation

1v = qv in �, (3)

where formally q = σ−1/21σ 1/2. Kohn and Vogelius [1985] observed that if σ |∂� and ν · ∇σ |∂� are
known, then the Dirichlet-to-Neumann map 3q for the Schrödinger equation (3) can be written in terms
of 3γ , and so the literature has mainly considered the essentially equivalent problem of recovering q
from 3q (which is intimately connected to inverse scattering at fixed energy). We will only partially
use the equivalence however: we will recover q directly from 3γ , circumventing the need to calculate
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ν · ∇σ |∂�. This is connected to the fact that our conductivities are not regular enough to define q in
a pointwise fashion. However, as noted by Brown [1996], it suffices to define ⟨qv, ψ⟩ := ⟨q, vψ⟩ for
suitable test functions ψ , with

⟨q, • ⟩ := −

∫
�

∇σ 1/2
· ∇(σ−1/2

• ). (4)

By the product rule and the Cauchy–Schwarz inequality, ⟨q, • ⟩ and ⟨qv, • ⟩ are bounded linear functionals
on H 1(B), where B is a ball that properly contains �, so in particular we can make sense of q and qv as
distributions.

Rather than solving (3) directly, we consider solutions to the Lippmann–Schwinger-type equation

v =1−1
◦ Mq [v] + eρ, (5)

where Mq : f 7→ q f and the inverse of the Laplacian is defined using the Faddeev fundamental solution;
see Section 2.1. Integral equations like this are usually solved globally, however we will find a v ∈ H 1(B)
which is a solution of (5) in the ball B. Writing v = eρ(1 + w) and additionally requiring that the
remainders w vanish in some sense as |ρ| → ∞ gives hope that the nonlinear Fourier transform will
converge to the linear Fourier transform in the limit. Solutions of this type were introduced to the problem
by Sylvester and Uhlmann [1987] and have since become known as CGO solutions, where CGO stands
for complex geometrical optics. Substituting into (3) and multiplying by e−ρ , we find that

1ρw = Mq [1 +w] in �, (6)

where 1ρ :=1+ 2ρ · ∇. In much of the literature 1ρ is inverted using the Fourier transform and the
resulting integral equation is solved globally via a contraction for 1−1

ρ ◦Mq and Neumann series. In order
to reconstruct σ from 3σ (as opposed to just proving uniqueness), we must additionally determine which
electric potentials should be placed on the boundary in order to generate the CGO solutions. A contraction
for 1−1

ρ ◦ Mq can also be helpful in this step; however, the need for such a contraction was circumvented
in the uniqueness result of [Caro and Rogers 2016], instead solving the differential equation (6) via the
method of a priori estimates.

Nachman and Street [2010] were able to recover the boundary values of CGO solutions that had
been constructed via a priori estimates, however, we were unable to take advantage of their ideas; see
Remark 11.1 for more details. Instead we will reprove the existence of CGO solutions, this time via
Neumann series; however, we will adopt the previously mentioned intermediate approach of solving the
integral equation in the ball B. That is to say, we find a w ∈ H 1(B) such that

(I −1−1
ρ ◦ Mq)w =1−1

ρ ◦ Mq [1], (7)

where the identity holds as elements of H 1(B). This is equivalent to (5) when 1−1
◦ Mq is defined

appropriately; see Remark 9.3.
Most of the article will be occupied by the proof of the contraction for 1−1

ρ ◦ Mq in Sections 4–9. In
Section 4 we give a sketch of its proof before proving the key Carleman estimate in Section 5. In Section 6
we incorporate the associated convex weights into our localised versions of the Haberman–Tataru norms,
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so that they not only depend on ρ but also on an auxiliary parameter λ > 1. The final estimate for 1−1
ρ ,

proved in Section 7, is somewhat weaker and easier to prove than the main estimate of [Caro and Rogers
2016], so the present article also simplifies the uniqueness result of that work. In Section 8 we bound Mq

with respect to the new norms, and in Section 9 we choose the parameters in order to yield the contraction.
In Section 2 we list some of the main definitions before presenting the reconstruction algorithm in

Section 3. The reconstruction formulas will not make mention of the new norms, which are only used in
Section 11 to prove the validity of the formulas. In the final Section 12 we suggest some simplifications
that could make the algorithm easier to implement.

2. Preliminary notation

We invert our main operator 1ρ initially on the space of Schwartz functions S(Rn) using the Fourier
transform defined by

f̂ (ξ) :=

∫
Rn

e−iξ ·x f (x) dx

for all ξ ∈ Rn and f ∈ S(Rn). By integration by parts, one can calculate that

1̂ρ f (ξ)= mρ(ξ) f̂ (ξ), where mρ(ξ) := −|ξ |2 + 2iρ · ξ, (8)

for all ξ ∈ Rn . The reciprocal of this Fourier multiplier is integrable on compact sets, so we can define an
inverse by

1−1
ρ g(x) :=

1
(2π)n

∫
Rn

ei x ·ξ 1
mρ(ξ)

ĝ(ξ) dξ

for all x ∈ Rn and g ∈ S(Rn).

2.1. The Faddeev fundamental solutions. Writing the inverse Fourier transform of the product as a
convolution, we find

1−1
ρ g(x)=

∫
Rn

Fρ(x − y)g(y) dy (9)

for all x ∈ Rn and g ∈ S(Rn), where the fundamental solution Fρ for 1ρ is defined by

Fρ(x) := lim
r→∞

1
(2π)n

∫
Rn

ei x ·ξ 1
mρ(ξ)

χ̂(ξ/r) dξ.

Here χ ∈ S(Rn) must be positive and satisfy χ̂(0)= 1, but the limit is insensitive to the precise choice
of χ and so the integral is often written formally, taking χ̂ = 1. This fundamental solution was first
considered by Faddeev [1965] in the context of quantum inverse scattering.

We also consider the associated fundamental solution Gρ := eρFρ for the Laplacian, and we will often
write Gρ(x, y) := Gρ(x − y). This is not so different from the usual potential-theoretic fundamental
solution. Indeed, by subtracting one from the other, one obtains a harmonic function which is thus smooth
by Weyl’s lemma:

Hρ(x) := Gρ(x)−
cn

(2 − n)
1

|x |n−2 , (10)
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where cn denotes the reciprocal of the measure of the unit sphere. For more details regarding the properties
of Faddeev’s fundamental solutions, see [Newton 1989, Section 6.1].

2.2. The boundary integral. For notational compactness we write the reconstruction formulas in terms
of the bilinear functional B I3σ : H 1/2(∂�)× H 1(�)→ C defined by

B I3σ (φ, ψ) :=

∫
∂�

(σ−1/23σ [σ
−1/2φ] − ν · ∇ P0[φ])ψ, (11)

where P0[φ] denotes the harmonic extension of φ. Brown [2001] calculated σ |∂� from 3σ , so the
boundary integral B I3σ can be recovered from 3σ . In Lemma 10.1 we will prove that

B I3σ (φ,Gρ(x, • )) ∈ H 1(B \�),

where B properly contains � and f (x) denotes a function that takes the values f (x) for all x in the
domain. This allows us to define 03σ : H 1/2(∂�)→ H 1/2(∂�) by taking the outer trace on ∂�:

03σ [φ] := B I3σ (φ,Gρ(x, • ))|∂�. (12)

As Hρ is smooth, the singularity of Gρ is the same as that of the usual potential-theoretic fundamental
solution, so 03σ shares many properties with the single layer potential; see for example [Mitrea and
Taylor 1999, Propositions 3.8 and 7.9]. However, we will not need these types of estimates going forward.

3. The reconstruction algorithm

Recall our a priori assumptions, that the boundary and conductivity are Lipschitz continuous and that the
conductivity is bounded below by a positive constant.

The first step of the reconstruction algorithm is to determine the electric potentials that we place on the
boundary in order to generate the CGO solutions. As in the previous reconstruction formulas of [García
and Zhang 2016; Nachman 1988; Novikov 1988], we resort to the Fredholm alternative; however, once
we have obtained the contraction, the argument will be direct, avoiding the use of generalised double
layer potentials. The proof is postponed until Section 11.

Theorem 3.1. Consider ρ ∈ Cn such that ρ ·ρ = 0 and |ρ|
2
= ρ · ρ̄ is sufficiently large. Let 03σ be defined

by (12). Then

(i) 03σ : H 1/2(∂�)→ H 1/2(∂�) is bounded compactly,

(ii) if 03σ [φ] = φ, then φ = 0,

(iii) I −03σ has a bounded inverse on H 1/2(∂�),

and if v = eρ(1 +w), where w ∈ H 1(B) is a solution to (7), then

(iv) v|∂� = (I −03σ )
−1

[eρ |∂�].

Next we provide a formula for the Fourier transform q̂(ξ) := ⟨q, e−iξ ·x
⟩, where q is defined in (4).

Again we postpone the proof until the penultimate section.
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Theorem 3.2. Let 5 be a two-dimensional linear subspace orthogonal to ξ ∈ Rn , and define

S1
:=5∩ {θ ∈ Rn

: |θ | = 1}.

For θ ∈ S1, let ϑ ∈ S1 be such that {θ, ϑ} is an orthonormal basis of 5, and define

ρ := τθ + i
(
−
ξ

2
+

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
, ρ ′

:= −τθ + i
(
−
ξ

2
−

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
,

where τ > 1. Let B I3σ and 03σ be defined by (11) and (12), respectively. Then

q̂(ξ)= lim
T →∞

1
2πT

∫ 2T

T

∫
S1

B I3σ ((I −03σ )
−1

[eρ |∂�], eρ′) dθ dτ.

Finally, we recover σ from q using the approach of [García and Zhang 2016]. By [Brown 2001] and
Plancherel’s identity, we can now calculate the right-hand side of{

1w+ |∇w|
2
= q in �,

w|∂� =
1
2 log σ |∂�.

(13)

If w ∈ H 1(�) is the unique bounded solution to (13), we then have

σ = e2w in �.

This completes the reconstruction algorithm.
That w = log σ 1/2 solves (13) follows directly by inspection of the definition (4) of q . For uniqueness,

note that if w̃ also solved (13), then u = w− w̃ would solve{
∇ · (γ∇u)= 0 in �,
u|∂� = 0,

where γ := ew+w̃. Then u = 0 by uniqueness of solutions for elliptic equations; see for example [Gilbarg
and Trudinger 1983, Corollary 8.2].

4. Sketch of the proof of the contraction for 1−1
ρ ◦ Mq

One of the main ideas of [Haberman and Tataru 2013] was to extend the domain of 1−1
ρ using Bourgain-

type spaces that are adapted to the problem, instead of the usual Sobolev spaces. With s =
1
2 or −

1
2 , their

norms are defined by
∥ • ∥Ẋ s

ρ
: f ∈ S(Rn) 7→ ∥|mρ |

s f̂ ∥L2(Rn),

where mρ is the multiplier defined in (8). Then Ẋ s
ρ is defined to be the Banach completion of S(Rn) with

respect to this norm. It is immediate from the definitions that

∥1−1
ρ g∥Ẋ1/2

ρ
⩽ ∥g∥Ẋ−1/2

ρ
(14)

whenever g ∈ S(Rn), which can be used to continuously extend the operator. For ease of reference we
will call (14) the trivial inequality.
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On the other hand, Haberman and Tataru also proved that Mq : f 7→ q f satisfies

∥ Mq f ∥Ẋ−1/2
ρ

⩽ C∥∇ log σ∥∞(1 + |ρ|
−1

∥∇ log σ∥∞)∥ f ∥Ẋ1/2
ρ

(15)

whenever f ∈ Ẋ1/2
ρ ; see [Haberman and Tataru 2013, Theorem 2.1]. Together these inequalities yield a

contraction for 1−1
ρ ◦ Mq whenever |ρ|> 1 and ∥∇ log σ∥∞ is sufficiently small. In order to remove this

smallness condition, we will alter the norms in such a way that the constant of (15) can be taken small for
any Lipschitz conductivity, while maintaining a version of (14).

There is a natural gain for the higher frequencies in (15) whereas a gain for the lower frequencies
can be engineered in (14) by introducing convex weights. This was the key observation of [Caro and
Rogers 2016]. In order to have a gain for all frequencies, in at least one of the inequalities, we dampen
the higher frequencies relative to the lower frequencies in our main norm (with the lower frequencies
dampened relative to the higher frequencies in the dual norm), so that the gain for the lower frequencies
in our version of (14) is passed through to our version of (15).

We prove the Carleman estimate in Section 5, we define new Banach spaces in Section 6, and then we
extend the domain of 1−1

ρ via density in Section 7. We prove our version of (15) in Section 8 and then
combine the estimates to obtain the contraction in Section 9.

5. Bounds for 1−1
ρ with convex weights

Let B be an open ball centred at the origin, with radius

R := 2 sup
x∈�

|x |,

so that we comfortably have �⊂ B. The forthcoming constants will invariably depend on this R, but
never on the auxiliary parameters ρ ∈ Cn or λ > 1.

5.1. The Carleman estimate. Here we will deduce our estimate for1−1
ρ from a Carleman estimate for1ρ

before defining the main spaces and their duals in the following section. We improve upon the estimate

|ρ|∥1−1
ρ f ∥L2(B) ⩽ C∥ f ∥L2(Rn) (16)

whenever f ∈ C∞
c (B), which does not seem strong enough to construct CGO solutions for Lipschitz

conductivities. The inequality (16) follows by combining

|ρ|
1/2

∥g∥L2(B) ⩽ C∥g∥Ẋ1/2
ρ

(17)

whenever g ∈ Ẋ1/2
ρ with the trivial inequality (14), and then

|ρ|
1/2

∥ f ∥Ẋ−1/2
ρ

⩽ C∥ f ∥L2(Rn) (18)

whenever f ∈ C∞
c (B). The constants C > 1 depend only on R. Away from the zero set of the Fourier

multiplier mρ , these inequalities are obvious, and the localisation serves to blur out the effect of the zero
set; see Lemma 2.2 of [Haberman and Tataru 2013] for the proof.



2040 PEDRO CARO, MARÍA ÁNGELES GARCÍA-FERRERO AND KEITH M. ROGERS

In the following lemma we improve the constant in (16) by introducing exponential weights that depend
on the auxiliary parameter λ > 1. The extra gain in terms of λ will be key to constructing our CGO
solutions for Lipschitz conductivities.

Lemma 5.1. Consider ρ ∈ Cn such that ρ · ρ = 0, and write θ := Re ρ/|Re ρ|. Then∫
B

|1−1
ρ f (x)|2eλ(θ ·x)

2
dx ⩽

2
λ|ρ|2

∫
Rn

| f (x)|2eλ(θ ·x)
2

dx

whenever f ∈ C∞
c (R

n) and λ > 1 satisfies |ρ| ⩾ 4λR.

Proof. If mρ had been defined slightly differently at the beginning, including a superfluous ρ ·ρ term, we
could have proved a version of this lemma without the hypothesis that ρ · ρ = 0. In fact, we begin by
reducing to a purely real vector case. Indeed, letting Re ρ, Im ρ ∈ Rn denote the real and imaginary parts
of ρ, respectively, we define 1−1

Re ρ as in Section 2, but with mρ replaced by

mRe ρ(ξ) := −|ξ |2 + 2i Re ρ · ξ + Re ρ · Re ρ

for all ξ ∈ Rn . Then, observing that

mρ(ξ)= −|ξ |2 + 2iρ · ξ + ρ · ρ = mRe ρ(ξ + Im ρ)

and defining the modulation operator by ModIm ρ f (x) := ei Im ρ·x f (x), we find that

ModIm ρ[1
−1
ρ f ] =1−1

Re ρ[ModIm ρ f ]

whenever f ∈ C∞
c (R

n). Recalling that |ρ|
2
= 2|Re ρ|

2 if ρ · ρ = 0, it will therefore suffice to prove∫
B

|1−1
Re ρ f (x)|2eλ(θ ·x)

2
dx ⩽

1
λ|Re ρ|2

∫
Rn

| f (x)|2eλ(θ ·x)
2

dx

whenever |Re ρ| ⩾ 2λR. Recalling that θ := Re ρ/|Re ρ|, by rotating to en , this would follow from∫
B

|1−1
τen

f (x)|2eλx2
n dx ⩽

1
λτ 2

∫
Rn

| f (x)|2eλx2
n dx (19)

whenever f ∈ C∞
c (R

n) and τ ⩾ 2λR.
In order to prove (19), we will first prove the closely related Carleman estimate

∥g∥
2
L2(B) ⩽

1
λτ 2 ∥eλx2

n/2(1+ 2τen · ∇ + τ 2)(e−λx2
n/2g)∥2

L2(Rn)
(20)

whenever g ∈ S(Rn). Defining ϕ(x)= τ xn +
1
2λx2

n , the integrand of the right-hand side can be rewritten as

eϕ1(e−ϕg)=1g − ∇ϕ · ∇g − ∇ · (∇ϕg)+ |∇ϕ|
2g.

Defining the formally self-adjoint A and skew-adjoint B by

Ag =1g + |∇ϕ|
2g and Bg = −∇ϕ · ∇g − ∇ · (∇ϕg)
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and integrating by parts, we have that

∥(A + B)g∥
2
L2(Rn)

= ∥Ag∥
2
L2(Rn)

+ ∥Bg∥
2
L2(Rn)

+

∫
Rn

[A,B]gḡ, (21)

where [A,B] = AB − BA denotes the commutator. By the definition of ϕ, we have

Ag(x)=1g(x)+ (τ + λxn)
2g(x),

Bg(x)= −2(τ + λxn) ∂xn g(x)− λg(x),

which yields

[A,B]g(x)= −4λ∂2
xn

g(x)+ 4λ(τ + λxn)
2g(x).

After another integration by parts, we find∫
Rn

[A,B]gḡ = 4λ
∫

Rn
|∂xn g|

2
+ 4λ

∫
Rn

|∇ϕ|
2
|g|

2,

so that, substituting this into (21) and throwing three of the terms away, we find

∥eϕ1(e−ϕg)∥2
L2(Rn)

⩾ 4λ
∫

Rn
|∇ϕ|

2
|g|

2.

As |∇ϕ(x)| ⩾ τ − λR whenever |xn| ⩽ R, this yields

∥eϕ1(e−ϕg)∥2
L2(Rn)

⩾ 4λ(τ − λR)2∥g∥
2
L2(B),

which implies (20) whenever τ ⩾ 2λR and g ∈ S(Rn).
Finally, by density, the inequality (20) also holds for every g ∈ L2

loc(R
n) such that

eλx2
n/2(1+ 2τen · ∇ + τ 2)(e−λx2

n/2g) ∈ L2(Rn).

Choosing g = eλx2
n/21−1

τen
f with f ∈ C∞

c (R
n), we find that (20) implies (19). □

Remark 5.2. The proof of Lemma 5.1 yields the following strengthened estimate: if ρ ∈ Cn and
θ := Re ρ/|Re ρ|, then∫

|θ ·x |<|Re ρ|/(2λ)
|1−1

ρ f (x)|2eλ(θ ·x)
2

dx ⩽
1

λ|Re ρ|2

∫
Rn

| f (x)|2eλ(θ ·x)
2

dx

whenever f ∈ S(Rn) is such that the right-hand side is finite and λ > 1.

5.2. Estimates for derivatives. The inequality of Lemma 5.1 has a gain in the sense of L2, however,
this is not enough to construct CGO solutions for Lipschitz conductivities since we need to control the
first-order partial derivatives present in the operator Mq . For this we consider

∥ • ∥X1/2
λ,ρ

:= λ1/4
|ρ|

1/2
∥ • ∥L2(B,eλ(θ ·x)2 ) +

1
λ1/4 ∥ • ∥Ẋ1/2

ρ
(22)

and combine Lemma 5.1 with the trivial inequality (14).
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Lemma 5.3. Consider ρ ∈ Cn such that ρ · ρ = 0, and write θ := Re ρ/|Re ρ|. Then there is a constant
C > 1, depending only on the radius R of B, such that

∥1−1
ρ f ∥X1/2

λ,ρ

⩽
C

λ1/4|ρ|1/2
∥ f ∥L2(Rn,eλ(θ ·x)2 )

whenever f ∈ C∞
c (B) and λ > 1 satisfies |ρ| ⩾ 4λR.

Proof. The first term in the definition (22) is bounded using Lemma 5.1, so it remains to bound the second
term. Combining the trivial inequality (14) with (18), we see that

∥1−1
ρ f ∥Ẋ1/2

ρ
⩽ ∥ f ∥Ẋ−1/2

ρ
⩽

C
|ρ|1/2

∥ f ∥L2(Rn) ⩽
C

|ρ|1/2
∥ f ∥L2(Rn,eλ(θ ·x)2 )

whenever f ∈ C∞
c (B), where the constant C > 1 depends only on R. Dividing by λ1/4 yields the desired

estimate for the second term. □

Lemma 5.4. Consider ρ ∈ Cn such that ρ · ρ = 0, and write θ := Re ρ/|Re ρ|. Then there is a constant
C > 1, depending only on the radius R of B, such that

∥1−1
ρ f ∥X1/2

λ,ρ

⩽ Cλ1/4eλR2/2
∥ f ∥Ẋ−1/2

ρ

whenever f ∈ C∞
c (B) and λ > 1.

Proof. The second term in the definition (22) can be bounded easily using the trivial inequality (14), so it
remains to bound the first term. By (17), we have

|ρ|
1/2

∥g∥L2(B,eλ(θ ·x)2 ) ⩽ eλR2/2
|ρ|

1/2
∥g∥L2(B) ⩽ CeλR2/2

∥g∥Ẋ1/2
ρ

whenever g ∈ Ẋ1/2
ρ , where the constant C > 1 depends only on R. Taking g =1−1

ρ f and multiplying the
inequality by λ1/4 yields

λ1/4
|ρ|

1/2
∥1−1

ρ f ∥L2(B,eλ(θ ·x)2 ) ⩽ Cλ1/4eλR2/2
∥1−1

ρ f ∥Ẋ1/2
ρ
.

A final application of the trivial inequality (14) yields the desired estimate. □

6. The new spaces

We must extend the domain of1−1
ρ by taking limits, so we carefully define Banach spaces using equivalence

classes. We define
Ẋ1/2
ρ (B) := {[ f ]B : f ∈ Ẋ1/2

ρ },

where the equivalence class [ f ]B is given by

[ f ]B := {g ∈ Ẋ1/2
ρ : ess supp( f − g)⊂ Rn

\ B}.

The space can be endowed with the norm

∥[ f ]B∥Ẋ1/2
ρ (B) := inf{∥g∥Ẋ1/2

ρ
: g ∈ [ f ]B},
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so that

(Ẋ1/2
ρ (B), ∥ • ∥Ẋ1/2

ρ (B)) is a Banach space.

We can rephrase the inequality (17) in terms of this norm. Indeed, as

|ρ|
1/2

∥g∥L2(B) ⩽ C∥g∥Ẋ1/2
ρ

whenever g ∈ [ f ]B , where C > 1 is a constant depending only on R, we can take the infimum to find

|ρ|
1/2

∥ f ∥L2(B) ⩽ C∥ f ∥Ẋ1/2
ρ (B). (23)

Identifying the elements [ f ]B of Ẋ1/2
ρ (B) with f |B , the restriction of f to B, this yields the embedding

Ẋ1/2
ρ (B) ↪→ L2(B). (24)

Moreover, we have the following equivalence of norms.

6.1. Equivalence with the Sobolev norm. There are constants c,C > 0, depending only on R, such that

c|ρ|
−1/2

∥ f ∥H1(B) ⩽ ∥ f ∥Ẋ1/2
ρ (B) ⩽ C |ρ|

1/2
∥ f ∥H1(B) (25)

whenever f ∈ H 1(B) and |ρ|> 1. To see this, note that

|mρ(ξ)| ⩽ 2(1 + |ρ|)(1 + |ξ |2)

for all ξ ∈ Rn , so that

∥g∥Ẋ1/2
ρ

⩽ 21/2(1 + |ρ|)1/2∥g∥H1(Rn)

whenever g ∈ H 1(Rn). Thus H 1-extensions are also Ẋ1/2
ρ -extensions, so the right-hand inequality of (25)

follows by taking the infimum over H 1-extensions g of f ∈ H 1(B).
For the left-hand inequality, consider gB := χB g, where χB is a smooth function equal to one on B

and supported on 2B. Then, separating the low and high frequencies,

∥gB∥
2
H1(Rn)

⩽ ∥gB∥
2
L2(Rn)

+ 16|ρ|
2
∫

|ξ |⩽4|ρ|

|ĝB(ξ)|
2 dξ + 2

∫
|ξ |>4|ρ|

|mρ(ξ)||ĝB(ξ)|
2 dξ

⩽ C |ρ|∥g∥
2
Ẋ1/2
ρ

whenever |ρ|> 1, where the second inequality follows from Lemma 2.2 of [Haberman and Tataru 2013].
Restricting the left-hand side to B, we find that

∥g∥H1(B) ⩽ C |ρ|
1/2

∥g∥Ẋ1/2
ρ
.

Now if g is an Ẋ1/2
ρ -extension of f ∈ Ẋ1/2

ρ (B), then f = g almost everywhere in B, so we can replace g
on the left-hand side by f and take the infimum over g to obtain the left-hand inequality of (25).
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6.2. The main space. We define our main norm by

∥ • ∥X1/2
λ,ρ(B)

: f ∈ Ẋ1/2
ρ (B) 7→ λ1/4

|ρ|
1/2

∥ f ∥L2(B,eλ(θ ·x)2 ) +
1
λ1/4 ∥ f ∥Ẋ1/2

ρ (B),

and note that by (23) it is equivalent to the homogeneous norm:

λ−1/4
∥ f ∥Ẋ1/2

ρ (B) ⩽ ∥ f ∥X1/2
λ,ρ(B)

⩽ Cλ1/4eλR2/2
∥ f ∥Ẋ1/2

ρ (B), (26)

where C > 1 depends only on R. Thus we can conclude that

(Ẋ1/2
ρ (B), ∥ • ∥X1/2

λ,ρ(B)
) is a Banach space. (27)

Later we will use that the constants in this norm equivalence are independent of |ρ|.

6.3. A minor variant of the main space. We also consider the norm ∥ • ∥Y 1/2
λ,−ρ(B)

defined by

f ∈ Ẋ1/2
−ρ (B) 7→ max

{
λ1/4

|ρ|
1/2

∥ f ∥L2(B,e−λ(θ ·x)2 )
,

1
λ1/4eλR2/2

∥ f ∥Ẋ1/2
−ρ (B)

}
.

Notice that little more than some signs have changed. As before, this norm is equivalent to the homoge-
neous norm:

1
λ1/4eλR2/2

∥ f ∥Ẋ1/2
−ρ (B)

⩽ ∥ f ∥Y 1/2
λ,−ρ(B)

⩽ Cλ1/4
∥ f ∥Ẋ1/2

−ρ (B)
, (28)

where C > 1 depends only on R, and so

(Ẋ1/2
−ρ (B), ∥ • ∥Y 1/2

λ,−ρ(B)
) is a Banach space. (29)

Recalling the embedding (24), this can be identified with the intersection of the spaces

(L2(B), λ1/4
|ρ|

1/2
∥ • ∥L2(B,e−λ(θ ·x)2 )

) and
(

Ẋ1/2
−ρ (B),

1
λ1/4eλR2/2

∥ • ∥Ẋ1/2
−ρ (B)

)
.

As (29) is dense in both of these spaces, we can identify the dual of their intersection with the sum of
their duals; see for example [Bennett 1974, Theorem 3.1]. This provides an alternative identification of
the dual of (29) which we describe now.

6.4. The dual space. Let Ẋ−1/2
ρ,c (B) denote the Banach completion of C∞

c (B) with respect to the norm

∥ • ∥Ẋ−1/2
ρ

: f ∈ C∞

c (B) 7→ ∥|mρ |
−1/2 f̂ ∥L2(Rn).

We endow L2(B)+ Ẋ−1/2
ρ,c (B) with the norm

∥ f ∥Y −1/2
λ,ρ,c (B)

:= inf
f = f ♭+ f ♯

(
1

λ1/4|ρ|1/2
∥ f ♭∥L2(B,eλ(θ ·x)2 ) + λ

1/4eλR2/2
∥ f ♯∥Ẋ−1/2

ρ

)
,

with the infimum taken over all f ♭ ∈ L2(B) and f ♯ ∈ Ẋ−1/2
ρ,c (B). Then

(L2(B)+ Ẋ−1/2
ρ,c (B), ∥ • ∥Y −1/2

λ,ρ,c (B)
) is a Banach space. (30)
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With real-bracket pairings, Plancherel’s identity takes the form

⟨ f, g⟩ =

∫
Rn

f̂ (ξ)ǧ(ξ) dξ =

∫
Rn

f̂ (ξ)ĝ(−ξ) dξ, (31)

so that, by similar arguments to those used for Sobolev spaces, we find(
Ẋ1/2

−ρ (B),
1

λ1/4eλR2/2
∥ • ∥Ẋ1/2

−ρ (B)

)∗

∼= (Ẋ−1/2
ρ,c (B), λ1/4eλR2/2

∥ • ∥Ẋ−1/2
ρ
);

see for example [Jerison and Kenig 1995, Proposition 2.9]. On the other hand, it is easy to see that

(L2(B), λ1/4
|ρ|

1/2
∥ • ∥L2(B,e−λ(θ ·x)2 )

)∗ ∼=

(
L2(B),

1
λ1/4|ρ|1/2

∥ • ∥L2(B,eλ(θ ·x)2 )

)
.

Thus the dual of (29) can be identified with the sum of the two dual spaces as described in (30); see for
example [Bennett 1974, Theorem 3.1].

7. The locally defined extension of 1−1
ρ

We are now ready to extend the domain of 1−1
ρ by combining Lemmas 5.3 and 5.4. This extension will

make no sense outside of B in contrast with the globally defined extension of f ∈ C∞
c (B) 7→1−1

ρ f given
by the trivial inequality (14). We denote the globally defined extension by 1−1

ρ and the locally defined
extension by TB

ρ .

Corollary 7.1. Consider ρ ∈ Cn such that ρ · ρ = 0 and λ > 1. Then there is a continuous linear
extension TB

ρ of

f ∈ C∞

c (B) 7→1−1
ρ f |B

and a constant C > 1, depending only on the radius R of B, such that

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽ C∥ f ∥Y −1/2

λ,ρ,c (B)

whenever f ∈ L2(B)+ Ẋ−1/2
ρ,c (B) and |ρ| ⩾ 4λR.

Proof. By Lemma 5.3 and the density of C∞
c (B) in(

L2(B),
1

λ1/4|ρ|1/2
∥ • ∥L2(B,eλ(θ ·x)2 )

)
,

we can extend f ∈ C∞
c (B) 7→1−1

ρ f |B to a bounded linear operator TB
ρ that satisfies

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽

C
λ1/4|ρ|1/2

∥ f ∥L2(B,eλ(θ ·x)2 )

whenever f ∈ L2(B). The constant C > 1 depends only on R. On the other hand, by Lemma 5.4 and the
density of C∞

c (B) in

(Ẋ−1/2
ρ,c (B), λ1/4eλR2/2

∥ • ∥Ẋ−1/2
ρ
),
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we can extend f ∈ C∞
c (B) 7→1−1

ρ f |B to a bounded linear operator TB
ρ that satisfies

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽ Cλ1/4eλR2/2

∥ f ∥Ẋ−1/2
ρ

whenever f ∈ Ẋ−1/2
ρ,c (B). Again, the constant C > 1 depends only on R.

Considering now f = f ♭ + f ♯ with f ♭ ∈ L2(B) and f ♯ ∈ Ẋ−1/2
ρ,c (B), we define

TB
ρ f := TB

ρ f ♭ + TB
ρ f ♯.

One can show that this is well defined using the linearity of the previous extensions and the density
of C∞

c (B). Then, by the triangle inequality and the previous bounds,

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽ C

(
1

λ1/4|ρ|1/2
∥ f ♭∥L2(eλ(θ ·x)2 ) + λ

1/4eλR2/2
∥ f ♯∥Ẋ−1/2

ρ

)
,

where the constant C depends only on R. Since the left-hand side is independent of the representation
f = f ♭+ f ♯, we can take the infimum over such representations, and the desired inequality follows. □

8. The bound for Mq

With a view to further applications, we write part of this section in greater generality. Consider bounded
functions a0, a1, . . . , an ⊂ L∞(Rn) with compact support:

supp a j ⊂�⊂ B = {x ∈ Rn
: |x |< R},

where R := 2 supx∈� |x |. Define the bilinear form B : H 1(B)× H 1(B)→ C by

B( f, g) :=

∫
�

a0 f g +

∫
�

A · ∇( f g),

where A is the vector field with components (a1, . . . , an). This is well defined by an application of the
product rule, followed by the Cauchy–Schwarz inequality.

Proposition 8.1. Consider ρ ∈ Cn such that ρ ·ρ= 0 and λ> 1. Then there is a constant C > 1, depending
only on the radius R of B, such that

|B( f, g)| ⩽ C
(

1
λ1/2|ρ|

+
1
λ1/2 +

eλR2/2

|ρ|1/2

) n∑
j=0

∥a j∥L∞(�)∥ f ∥X1/2
λ,ρ(B)

∥g∥Y 1/2
λ,−ρ(B)

whenever ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B).

Proof. For the first term, we note that, by the Cauchy–Schwarz inequality,∣∣∣∣∫
�

a0 f g
∣∣∣∣ ⩽ ∥a0∥∞∥eλ(θ ·x)

2/2 f ∥L2(B)∥e−λ(θ ·x)2/2g∥L2(B) ⩽
1
λ1/2

1
|ρ|

∥a0∥∞∥ f ∥X1/2
λ,ρ(B)

∥g∥Y 1/2
λ,−ρ(B)

whenever ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B). The second inequality follows directly from the weightings in the
definition of the norms.
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For the more difficult first-order term, we consider a positive and smooth function χ , equal to 1 on the
ball of radius 1

2 , supported in the unit ball, and bounded above by 1. Then we work with fB := χB f and
gB := χB g, where χB := χ( • /R) is equal to 1 on � and supported on B. Letting A♭ denote the vector
field with components

a♭j (x) :=
1

(2π)n

∫
Rn

ei x ·ξχ

(
ξ

16|ρ|

)
â j (ξ) dξ

for all x ∈ Rn and j = 1, . . . , n, and letting A♯ := A − A♭, by integration by parts,∫
�

A · ∇( f g)= −

∫
Rn

∇ · A♭ fB gB +

∫
Rn

A♯ · ∇( fB gB).

Noting that ∥∇ · A♭∥∞ ⩽ C |ρ|∥A∥∞, the first term can be bounded as before:∣∣∣∣∫
Rn

∇ · A♭ fB gB

∣∣∣∣ ⩽ C∥∇ · A♭∥∞∥eλ(θ ·x)
2/2 f ∥L2(B)∥e−λ(θ ·x)2/2g∥L2(B)

⩽ C∥A∥∞|ρ|
1/2

∥ f ∥L2(B,eλ(θ ·x)2 )|ρ|
1/2

∥g∥L2(B,e−λ(θ ·x)2 )
.

Again by the weightings in the definitions of the norms, this implies that∣∣∣∣∫
Rn

∇ · A♭ fB gB

∣∣∣∣ ⩽ C
1
λ1/2 ∥A∥∞∥ f ∥X1/2

λ,ρ(B)
∥g∥Y 1/2

λ,−ρ(B)

whenever ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B).
It remains to show that∣∣∣∣∫

Rn
A♯ · ∇( fB gB)

∣∣∣∣ ⩽ C
eλR2/2

|ρ|1/2
∥A∥∞∥ f ∥X1/2

λ,ρ(B)
∥g∥Y 1/2

λ,−ρ(B)
. (32)

Using the product rule, we can separate into two similar terms,∫
Rn

A♯ · ∇( fB gB)=

∫
Rn

A♯ · ∇ fB gB +

∫
Rn

A♯ · ∇gB fB, (33)

and initially treat the first term on the right-hand side (the second term will eventually be dealt with by
symmetry). We decompose the integral as∫

Rn
A♯ · ∇ fB gB =

∫
Rn

A♯ · ∇L fB LgB +

∫
Rn

A♯ · ∇L fB HgB +

∫
Rn

A♯ · ∇H fB gB,

where L denotes the low-frequency filter defined by

L f (x) :=
1

(2π)n

∫
Rn

eix·ξχ

(
ξ

4|ρ|

)
f̂ (ξ) dξ

and H := I − L . By the properties of χ , the frequency supports of ∇L fB LgB and A♯ are disjoint, so that
by Plancherel’s identity the first term is in fact 0, yielding∫

Rn
A♯ · ∇ fB gB =

∫
Rn

A♯ · ∇L fB HgB +

∫
Rn

A♯ · ∇H fB gB .
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Then, by the Cauchy–Schwarz inequality (writing ∥ • ∥2 := ∥ • ∥L2(Rn)),∣∣∣∣∫
Rn

A♯ · ∇ fB gB

∣∣∣∣ ⩽ ∥A♯∥∞(∥∇L fB∥2∥HgB∥2 + ∥∇H fB∥2∥gB∥2).

Now as ∥A♯∥∞ ⩽ C∥A∥∞ and

∥∇L fB∥2∥HgB∥2 ⩽ C |ρ|∥L fB∥2∥HgB∥2 ⩽ C∥ fB∥2∥∇ HgB∥2,

we find that ∣∣∣∣∫
Rn

A♯ · ∇ fB gB

∣∣∣∣ ⩽ C∥A∥∞(∥ fB∥2∥∇ HgB∥2 + ∥∇H fB∥2∥gB∥2).

Since the right-hand side is symmetric in the roles of fB and gB , we can conclude the same bound for the
second term on the right-hand side of (33), yielding∣∣∣∣∫

Rn
A♯ · ∇( fB gB)

∣∣∣∣ ⩽ C∥A∥∞(∥ fB∥2∥∇ HgB∥2 + ∥∇H fB∥2∥gB∥2). (34)

Now clearly we have that

∥ fB∥2 ⩽ ∥ f ∥L2(B,eλ(θ ·x)2 ) and ∥gB∥2 ⩽ eλR2/2
∥g∥L2(B,e−λ(θ ·x)2 )

.

On the other hand, by Lemma 2.2 of [Haberman and Tataru 2013], we have

∥∇ H fB∥2 ⩽ C∥ f̃ ∥Ẋ1/2
ρ

and ∥∇ HgB∥2 ⩽ C∥g̃∥Ẋ1/2
−ρ
,

where ( f̃ , g̃) ∈ Ẋ1/2
ρ × Ẋ1/2

−ρ denotes any pair of extensions of ( f, g). Substituting these inequalities
into (34) and taking the infimum over extensions yields∣∣∣∣∫

Rn
A♯ · ∇( fB gB)

∣∣∣∣ ⩽ C∥A∥∞(∥ f ∥L2(B,eλ(θ ·x)2 )∥g∥Ẋ1/2
−ρ (B)

+ eλR2/2
∥ f ∥Ẋ1/2

ρ (B)∥g∥L2(B,e−λ(θ ·x)2 )
).

Recalling the weightings in the norms, this completes the proof of (32). □

From this we can deduce our estimate for Mq : f 7→ q f , where q is defined in (4).

Corollary 8.2. Consider ρ ∈ Cn such that ρ · ρ = 0 and λ > 1. Then there is a C > 1, depending on
∥∇ log σ∥∞ and the radius R of B, such that

∥ Mq f ∥Y −1/2
λ,ρ,c (B)

⩽ C
(

1
λ1/2|ρ|

+
1
λ1/2 +

eλR2/2

|ρ|1/2

)
∥ f ∥X1/2

λ,ρ(B)

whenever f ∈ Ẋ1/2
ρ (B).

Proof. By an application of the product rule, the definition (4) can be rewritten as

⟨q, ψ⟩ =
1
4

∫
�

|∇ log σ |
2ψ −

1
2

∫
�

∇ log σ · ∇ψ.
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Using our a priori assumptions that σ is bounded below and ∇σ is bounded above almost everywhere
(which follows from Lipschitz continuity), ∇ log σ = σ−1

∇σ is a vector of bounded functions. Thus, by
taking

a0 =
1
4 |∇ log σ |

2 and A = −
1
2∇ log σ,

we can write

⟨Mq f, g⟩ := ⟨q f, g⟩ := ⟨q, f g⟩ = B( f, g)

for all ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B). Then, by Proposition 8.1, we find that

|⟨Mq f, g⟩| ⩽ C
(

1
λ1/2|ρ|

+
1
λ1/2 +

eλR2/2

|ρ|1/2

) n∑
j=0

∥a j∥∞∥ f ∥X1/2
λ,ρ(B)

∥g∥Y 1/2
λ,−ρ(B)

for all ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B). Finally, using the identification

(Ẋ1/2
−ρ (B), ∥ • ∥Y 1/2

λ,−ρ(B)
)∗ ∼= (L2(B)+ Ẋ−1/2

ρ,c (B), ∥ • ∥Y −1/2
λ,ρ,c (B)

),

we obtain the desired inequality. □

9. Locally defined CGO solutions via Neumann series

Let X1/2
λ,ρ(B) and Y −1/2

λ,ρ,c (B) denote the Banach spaces defined in (27) and (30), respectively. Recall that
f ∈ C∞

c (B) 7→1−1
ρ f |B can be extended as a bounded linear operator

TB
ρ : Y −1/2

λ,ρ,c (B)→ X1/2
λ,ρ(B)

using Corollary 7.1 and that Mq : f 7→ q f , with q defined in (4), is bounded as

Mq : X1/2
λ,ρ(B)→ Y −1/2

λ,ρ,c (B)

by Corollary 8.2. The contraction will follow by choosing |ρ| and λ appropriately so that the product of
the operator norms is small.

Theorem 9.1. Consider ρ ∈ Cn such that ρ · ρ = 0 and λ > 1. Then there is a C0 > 1, depending on
∥∇ log σ∥∞ and the radius R of B, such that

∥TB
ρ ◦ Mq ∥L(X1/2

λ,ρ(B))
⩽ 1

2 (35)

whenever |ρ|> λeλR2
and λ= 36C2

0 . For all f ∈ Y −1/2
λ,ρ,c (B), there is a w ∈ X1/2

λ,ρ(B) such that

(I − TB
ρ ◦ Mq)w = TB

ρ [ f ]. (36)

Moreover, there is a C > 1, depending only on R, such that

∥w∥X1/2
λ,ρ(B)

⩽ C∥ f ∥Y −1/2
λ,ρ,c (B)

. (37)
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Proof. By combining Corollaries 7.1 and 8.2, we have that TB
ρ ◦ Mq is a bounded operator whenever

|ρ| ⩾ 4λR. Furthermore, there exists a constant C0 > 1 such that

∥TB
ρ ◦ Mq ∥L(X1/2

λ,ρ(B))
⩽ C0

(
1

λ1/2|ρ|
+

1
λ1/2 +

eλR2/2

|ρ|1/2

)
⩽ 1

2

whenever |ρ|
1/2 > 6C0eλR2/2 and λ1/2

= 6C0. Then, by Neumann series, I − TB
ρ ◦ Mq has a bounded

inverse,

(I − TB
ρ ◦ Mq)

−1
=

∑
k⩾0

(TB
ρ ◦ Mq)

k

on X1/2
λ,ρ(B), and so w = (I − TB

ρ ◦ Mq)
−1TB

ρ [ f ] satisfies (36). Moreover,

∥w∥X1/2
λ,ρ(B)

⩽
∑
k⩾0

∥(TB
ρ ◦ Mq)

kTB
ρ [ f ]∥X1/2

λ,ρ(B)
⩽ 2∥TB

ρ [ f ]∥X1/2
λ,ρ(B)

by the triangle inequality, the contraction (35), and summing the geometric series. Then (37) follows by a
final application of Corollary 7.1. □

Recall that we can also use the trivial inequality (14) to extend f ∈ C∞
c (B) 7→1−1

ρ f as a bounded
linear operator

1−1
ρ : Ẋ−1/2

ρ → Ẋ1/2
ρ .

In the following corollary we clarify that the restriction of this extension to the ball B and the previous
locally defined extension TB

ρ are the same. We also record the properties of our CGO solutions that we
will need in the remaining sections.

Corollary 9.2. Consider ρ ∈ Cn and λ > 1 as in Theorem 9.1. Then

∥1−1
ρ ◦ Mq ∥L(X1/2

λ,ρ(B))
⩽ 1

2 , (38)

there is a w ∈ H 1(B) that solves (7), and there is a C > 1, depending on ∥∇ log σ∥∞ and the radius R
of B, such that

∥w∥Ẋ1/2
ρ (B) ⩽ C∥q∥Ẋ−1/2

ρ
. (39)

Moreover, v = eρ(1 +w) ∈ H 1(B) solves the Lippmann–Schwinger-type equation

(I − Sq)v = eρ, where Sq := eρ1−1
ρ ◦ Mq [e−ρ • ] (40)

as elements of H 1(B), and is also a weak solution to the Schrödinger equation (3).

Proof. By Corollary 7.1, the equivalence of norms (26), and the trivial inequality (14),

∥TB
ρ g −1−1

ρ g∥X1/2
λ,ρ(B)

⩽ ∥TB
ρ [g − g j ]∥X1/2

λ,ρ(B)
+ ∥1−1

ρ [g j − g]∥X1/2
λ,ρ(B)

⩽ C(∥g − g j∥Y −1/2
λ,ρ,c (B)

+ ∥g j − g∥Ẋ−1/2
ρ
),
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and given that the dual norms are also equivalent, by (28), we can choose g j ∈ C∞
c (B) such that the

right-hand side converges to 0. Then, combining with Corollary 8.2, the contraction (38) follows directly
from the previous contraction (35).

Taking f = Mq [1] in Theorem 9.1, we find w ∈ X1/2
λ,ρ(B) solving

w = TB
ρ ◦ Mq [1 +w].

Again by Corollary 8.2, we have Mq [1 +w] ∈ Y −1/2
λ,ρ,c (B), so that, taking this as the function g above, we

can also write

w =1−1
ρ ◦ Mq [1 +w] (41)

as elements of X1/2
λ,ρ(B). Thus, combining with the norm equivalences (25) and (26), we find that

w ∈ H 1(B) solves (7). Moreover, the inequality (39) follows from the previous inequality (37) combined
with (26) and the dual version of (28).

Finally, writing v = eρ(1 +w), we can multiply (41) by eρ to find

v− eρ = eρ1−1
ρ ◦ Mq [e−ρv] =: Sq [v]

as elements of H 1(B). Then, by integration by parts and Plancherel’s identity (31), cancelling the Fourier
multipliers,

−

∫
Rn

∇Sq [v] · ∇ψ =

∫
Rn
1−1
ρ ◦ Mq [e−ρv]eρ1[e−ρeρψ]

=

∫
Rn

m−1
ρ

̂Mq [e−ρv]mρ(eρψ)∨

= ⟨qv, ψ⟩ (42)

whenever ψ ∈ C∞
c (B). Given that eρ is harmonic, we see that v ∈ H 1(B) is also a weak solution to the

Schrödinger equation (3). □

Remark 9.3. The CGO solutions v = eρ(1 +w) given by Corollary 9.2 also satisfy

v =

∑
k⩾0

eρ(1−1
ρ ◦ Mq)

k
[1], (43)

with convergence in H 1(B). On the other hand, we have that

eρ(1−1
ρ ◦ Mq)

k
[1] = (eρ1−1

ρ ◦ Mq [e−ρ • ])k[eρ] = Sk
q [eρ]

as elements of H 1(B). Substituting this into (43), we find that

v =

∑
k⩾0

Sk
q [eρ]

again in the H 1(B)-sense. If we had proven that Sq is contractive on H 1(B), we could have solved (40)
more directly by Neumann series, and the solution would have taken this form.
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10. The boundary integral identities

Here we use the divergence theorem to equate the boundary integral to an integral over the domain. Iden-
tities similar to the first identity of Lemma 10.1, often known as Alessandrini identities, are foundational
for the Calderón problem. Recall that our boundary integral B I3σ : H 1/2(∂�)× H 1(�)→ C is defined
by

B I3σ (φ, ψ) :=

∫
∂�

(σ−1/23σ [σ
−1/2φ] − ν · ∇ P0[φ])ψ, (44)

where P0[φ] denotes the harmonic extension of φ. A key idea of [Nachman 1988] and [Novikov 1988]
was to take the Faddeev fundamental solution within boundary integrals similar to this, yielding similar
formulas to the second identity in Lemma 10.1.

Lemma 10.1. Let q be defined by (4), and let B I3σ be defined by (44). Then

B I3σ (v|∂�, ψ)= ⟨qv, ψ⟩

whenever ψ is harmonic on � and v ∈ H 1(�) solves the Schrödinger equation (3). Moreover,

B I3σ (v|∂�,Gρ(x, • ))= Sq [v](x)

as elements of H 1(B \�), where Sq is defined in (40).

Proof. For the first identity, consider the weak solution to the conductivity equation given by u = σ−1/2v.
Recalling that ∇σ is bounded almost everywhere, by an application of the product rule, we find that
1u = −σ−1

∇σ · ∇u ∈ L2(�). Thus the normal traces can be defined so that the divergence theorem can
be applied to σ∇uσ−1/2ψ − ∇ P0[φ]ψ , yielding

B I3σ (v|∂�, ψ)=

∫
�

(σ∇u · ∇(σ−1/2ψ)− ∇ P0[v|∂�] · ∇ψ); (45)

see for example [Kim and Kwon 2022, Proposition 2.4]. Now, as ψ is harmonic on �, we have∫
�

∇(P0[v|∂�] − σ 1/2u) · ∇ψ = 0,

which can be substituted in (45) to find that

B I3σ (v|∂�, ψ)=

∫
�

(σ∇u · ∇(σ−1/2ψ)− ∇(σ 1/2u) · ∇ψ).

Then, after applying the product rule again, terms cancel and one finds that the right-hand side of this
identity is equal to ⟨qσ 1/2u, ψ⟩ = ⟨qv, ψ⟩, as desired.

For the second identity, recall that G−ρ := e−ρF−ρ is a fundamental solution for the Laplacian. In
particular 1G−ρ( • , x) = 0 on � for all x ∈ B \�. On the other hand, Gρ inherits a skew symmetry
from Fρ ,

G−ρ(y, x) := e−ρ(y − x)F−ρ(y − x)= eρ(x − y)Fρ(x − y)=: Gρ(x, y), (46)
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so we can reinterpret this as 1Gρ(x, • )= 0 on � for all x ∈ B \�. Thus, we can substitute this into the
first identity to find that

B I3σ (v|∂�,Gρ(x, • ))= ⟨qv,Gρ(x, • )⟩ (47)

for all x ∈ B \�.
Now, for any f ∈ H 1(�) and any smooth ψx supported in a small ball centred at x and properly

contained in B \�, we have that∫
B
⟨q f,Gρ(y, • )⟩ψx(y) dy =

〈
q f,

∫
B

Gρ(y, • )ψx(y) dy
〉
. (48)

This follows by interchanging the integral and the gradient, using Lebesgue’s dominated convergence
theorem, and applying Fubini’s theorem. Then using the skew symmetry (46) again and the kernel
representation (9) of 1−1

ρ , the right-hand side of (48) can be rewritten as

⟨q f, e−ρ1
−1
−ρ[eρψx ]⟩ =

∫
B

eρ1−1
ρ [q f e−ρ](y)ψx(y) dy. (49)

Here we have considered 1−1
ρ to be the globally defined extension given by (14), and the identity follows

by moving the Fourier multiplier m−1
ρ from one term to the other after an application of Plancherel’s

identity (31). Combining (48) with (49) and recalling the definition (40) of Sq , we find that∫
B
⟨q f,Gρ(y, • )⟩ψx(y) dy =

∫
B

Sq [ f ](y)ψx(y) dy.

Now by the bounds of the previous section, we have that Sq [ f ] ∈ H 1(B), and so, letting ψx approximate
the Dirac delta δx , we find that

⟨q f,Gρ(x, • )⟩ = Sq [ f ](x) (50)

for almost every x ∈ B \� by a suitable version of the Lebesgue differentiation theorem; see for example
[Muscalu and Schlag 2013, Theorem 2.12]. Taking f = v and combining (47) with (50) yields the second
identity. □

11. The proofs of Theorems 3.1 and 3.2

The second identity of Lemma 10.1 allows us to define 03σ : H 1/2(∂�)→ H 1/2(∂�) by taking the outer
trace T∂� : H 1(B \�)→ H 1/2(∂�) of the boundary integral:

03σ [φ] := T∂�[B I3σ (φ,Gρ(x, • ))] (51)

for all φ ∈ H 1/2(∂�). Moreover, it gives us the alternative representation

03σ [φ] = T∂� ◦ Sq ◦ Pq [φ], (52)

where Sq is defined in (40) and Pq [φ] denotes the solution to (3) with Dirichlet data φ.
We restate the main theorems from Section 3 before proving them. The proof of the second part of

the following theorem bears some resemblance to the argument of [Astala et al. 2016, Theorem 3.1],
allowing us to avoid the use of double layer potentials.
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Theorem 3.1. Consider ρ ∈ Cn such that ρ ·ρ = 0 and |ρ|
2
= ρ · ρ̄ is sufficiently large. Let 03σ be defined

by (12). Then

(i) 03σ : H 1/2(∂�)→ H 1/2(∂�) is bounded compactly,

(ii) if 03σ [φ] = φ, then φ = 0,

(iii) I −03σ has a bounded inverse on H 1/2(∂�),

and if v = eρ(1 +w), where w ∈ H 1(B) is a solution to (7), then

(iv) v|∂� = (I −03σ )
−1

[eρ |∂�].

Proof. By hypothesis (I − Sq)v = eρ , so part (iv) follows from the alternative representation (52) and
part (iii), which in turn will follow from parts (i) and (ii) by the Fredholm alternative.

To see (i), note first that the trace operator T∂� : H 1(B \ �) → H 1/2(∂�) and solution operator
Pq : H 1/2(∂�)→ H 1(�) are bounded. Combining this with the alternative representation (52), it will
suffice to show that Sq : H 1(�)→ H 1(B \�) is bounded compactly. For this we recall that, on B \�,
we have the representation (50), and so by applications of the product rule we can divide the operator
into three parts Sq = S1 + S2 + S3, where

S1[ f ] :=
1
4

∫
�

|∇ log σ(y)|2 f (y)Gρ( • − y) dy,

S2[ f ] := −
1
2

∫
�

∇ log σ(y) · ∇ f (y)Gρ( • − y) dy,

S3[ f ] :=
1
2

∫
�

∇ log σ(y) · ∇Gρ( • − y) f (y) dy.

By our a priori assumptions, ∇ log σ = σ−1
∇σ ∈ L∞(�)n , and on the other hand Gρ and ∇Gρ are locally

integrable by (10). Thus, by Young’s convolution inequality,

S1 : L2(�)→ L2(B \�), S2 : H 1(�)→ L2(B \�), and S3 : L2(�)→ L2(B \�)

are bounded. Moreover, by Lebesgue’s dominated convergence theorem, we can take derivatives under
the integral, and by (10) we have that

∂x j ∂xi Gρ(x − y)= cnn
(x j − y j )(xi − yi )

|x − y|n+2 + ∂x j ∂xi Hρ(x − y).

On the one hand, the second-order Riesz transforms are easily bounded in L2 noting that the Fourier
multipliers −ξ jξi/|ξ |

2 are uniformly bounded; see for example [Muscalu and Schlag 2013, Section 7.2].
On the other hand, the operator corresponding to the second term can be bounded in L2(B \�) by Young’s
inequality again. Together we find that

S1 : L2(�)→ H 2(B \�), S2 : H 1(�)→ H 2(B \�), and S3 : L2(�)→ H 1(B \�)

are bounded. Thus, by Rellich’s theorem, all three operators are bounded from H 1(�) to H 1(B \�)

compactly. Altogether we find that Sq maps H 1(�) to H 1(B \�) compactly, which completes the proof
of (i).
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In order to see (ii), we combine its hypothesis with the alternative representation (52), obtaining

φ = 03σ [φ] = T∂� ◦ Sq ◦ Pq [φ]. (53)

By the bounds of Section 9, we know that Sq ◦ Pq [φ] = eρ1−1
ρ ◦ Mq [e−ρPq [φ]] ∈ H 1(B), so we can

replace the outer trace on ∂� with the inner trace as they both extend the restriction to ∂� of smooth
functions, which are dense in H 1(B). On the other hand, combining the calculation (42) with the defining
property of Pq [φ], we have that

−

∫
Rn

∇(Sq ◦ Pq [φ]) · ∇ψ = ⟨q Pq [φ], ψ⟩ = −

∫
Rn

∇ Pq [φ] · ∇ψ

whenever ψ ∈ C∞
c (�), and so 1[Sq ◦ Pq [φ] − Pq [φ]] = 0 in � in the weak sense. Combining this with

our hypothesis (53) and the uniqueness of solutions for the Dirichlet problem with zero boundary data,
we find that

Sq ◦ Pq [φ] = Pq [φ] in �. (54)

If we had a contraction for Sq , it would be easier to conclude that φ = 0. In any case, we can use the
contraction we have by considering

η := e−ρSq ◦ Pq [φ] =1−1
ρ ◦ Mq [e−ρPq [φ]] =1−1

ρ ◦ Mq [η],

where the final identity follows from the definition of η and (54). Then our contraction (38) implies that η
must be the zero element of X1/2

λ,ρ(B), so, by the equivalence of the norms, eρη must be the zero element
of H 1(B). Then, by the definition of η and (54) again, Pq [φ] is the zero element of H 1(�). Finally, by
uniqueness of the Dirichlet problem, φ is the zero element of H 1/2(∂�), which completes the proof of
the injectivity. □

Remark 11.1. Much of the previous argument is insensitive to the choice of fundamental solutions used
to invert 1 and 1ρ . Rather than troubling ourselves to invert 1ρ using the Faddeev fundamental solution,
we could have more easily inverted the operator using the a priori estimates proved in the uniqueness result
of [Caro and Rogers 2016]. Indeed, we were able to use those estimates to find a different fundamental
solution Kρ and w such that

w(x)− ⟨qw, Kρ(x, • )⟩ = ⟨q, Kρ(x, • )⟩ in B \�.

The associated CGO solutions v = eρ(1 +w) satisfy

v(x)− ⟨qv, Lρ(x, • )⟩ = eρ(x) in B \�,

where Lρ(x, y) := eρ(x − y)Kρ(x, y) as before. However, not only are these fundamental solutions less
explicitly defined, they also fail to satisfy the skew symmetry law (46): that is K−ρ(x, y) = Kρ(y, x).
Thus, even though we know that Lρ( • , y) is harmonic on Rn

\{y}, one is unable to conclude that Lρ(x, • )

is harmonic on Rn
\{x}, which is what allowed us to take it in the boundary integral identity. We attempted

to modify the fundamental solution so that the skew symmetry law is satisfied as in [Nachman and Street
2010]; however, we were unable to do this while maintaining the contraction.



2056 PEDRO CARO, MARÍA ÁNGELES GARCÍA-FERRERO AND KEITH M. ROGERS

We are now ready to complete the formula for the Fourier transform q̂(ξ) := ⟨q, e−iξ ·x
⟩, with q defined

in (4). The proof makes use of the boundary integral identity again combined with the averaging argument
due to [Haberman and Tataru 2013].

Theorem 3.2. Let 5 be a two-dimensional linear subspace orthogonal to ξ ∈ Rn , and define

S1
:=5∩ {θ ∈ Rn

: |θ | = 1}.

For θ ∈ S1, let ϑ ∈ S1 be such that {θ, ϑ} is an orthonormal basis of 5, and define

ρ := τθ + i
(
−
ξ

2
+

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
, ρ ′

:= −τθ + i
(
−
ξ

2
−

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
,

where τ > 1. Let B I3σ and 03σ be defined by (11) and (12), respectively. Then

q̂(ξ)= lim
T →∞

1
2πT

∫ 2T

T

∫
S1

B I3σ ((I −03σ )
−1

[eρ |∂�], eρ′) dθ dτ.

Proof. Noting that ρ · ρ = ρ ′
· ρ ′

= 0, we can take the CGO solution v = eρ(1 +w) ∈ H 1(B) given
by Corollary 9.2 and ψ = eρ′ in the first boundary integral identity of Lemma 10.1. Noting also that
ρ+ ρ ′

= −iξ , the right-hand side of the identity can be written as q̂(ξ) plus a remainder term. Indeed,
we find that

B I3σ (v|∂�, eρ′)= q̂(ξ)+ ⟨qw, e−iξ ·x
⟩. (55)

Now, for any extension w̃ ∈ Ẋ1/2
ρ of w and smooth χB equal to 1 on � and supported on B, by duality

we have that

|⟨qw, e−iξ ·x
⟩| ⩽ ∥q∥Ẋ−1/2

ρ
∥χBe−iξ ·xw̃∥Ẋ1/2

ρ
⩽ C∥q∥Ẋ−1/2

ρ
∥w̃∥Ẋ1/2

ρ
,

where the constant C > 1 depends on |ξ | and R; see [Haberman and Tataru 2013, Lemma 2.2] or [Caro
et al. 2013, (3.17)]. Taking the infimum over extensions, we find

|⟨qw, e−iξ ·x
⟩| ⩽ C∥q∥Ẋ−1/2

ρ
∥w∥Ẋ1/2

ρ (B).

Then, using the estimate (39) for the remainder in Corollary 9.2 and taking an average over ρ, we find that

1
2πT

∫ 2T

T

∫
S1

|⟨qw, e−iξ ·x
⟩| dθ dτ ⩽

C
2πT

∫ 2T

T

∫
S1

∥q∥
2
Ẋ−1/2
ρ

dθ dτ,

where C>1 depends on |ξ |, the radius R, and ∥∇ log σ∥∞. Now, [Haberman and Tataru 2013, Lemma 3.1]
proved that the right-hand side converges to 0 as T → ∞. Combining with (55), noting that q̂(ξ) is
unchanged by the average, yields

q̂(ξ)= lim
T →∞

1
2πT

∫ 2T

T

∫
S1

B I3σ (v|∂�, eρ′) dθ dτ.

Finally, we can use our formula for the values of v on the boundary given by Theorem 3.1, which
completes the proof. □
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Remark 11.2. In [Haberman 2015; Ham et al. 2021; Ponce-Vanegas 2021], the contraction was found
after taking similar averages over ρ, which yields the existence of a sequence of CGO solutions

{v j = eρ j (1 +w j )} j⩾1 with |ρ j | → ∞ as j → ∞.

The authors of the aforementioned works were able to take advantage of the existence of these solutions
to prove uniqueness; however, in order to reconstruct in terms of these solutions, one would need to know
which values of ρ j ∈ Cn to take.

12. Reconstruction in practice

There is an extensive literature dedicated to the real-world practicalities of the Calderón problem, such as
stability, partial data and numerical implementation; see for example [Caro et al. 2016; Delbary et al.
2012; Kenig et al. 2007]. Here we suggest some simplifications that would make things easier to measure
and calculate without dwelling on how much the simplifications would corrupt the image.

12.1. What to measure. An approximation of the conductivity on the surface σ |∂� could be measured
directly by placing real potential differences over pairs of adjacent electrodes, measuring the induced
current, and applying Ohm’s law. Earlier reconstruction algorithms also required the perpendicular
gradient of the conductivity on the surface, which seems harder to measure directly. We would also need
to measure an approximation of

MeasT (ξ) :=
1

2πT

∫ 2T

T

∫
S1

∫
∂�

3σ [σ
−1/2eρ]σ−1/2eρ′ dθ dτ

for all ξ ∈ R−1Zn
∩ [−cT, cT ]

n , where cT > 1 and R is approximately twice the diameter of �. For the
complex integrand one can place two separate real electric potentials. Given sufficient access to a large
enough part of the surface, one would hope to approximate the inner integral with some accuracy; however,
applying the oscillating electric potentials could prove to be the more difficult technical challenge. The
outer averaged integrals seem less important and a more rudimentary finite sum approximation could be
sufficient.

12.2. What to calculate. Given MeasT and σ |∂�, one could then employ a triangular finite element
method to calculate an approximate solution to{

1v = (Re qT )v in �,
v = σ |

1/2
∂� on ∂�,

where, letting 1� denote the characteristic function of the domain, qT is defined by

qT (x) :=
1

(2πR)n
∑

ξ∈R−1Zn∩[−cT,cT ]n

eix·ξ

(
MeasT (ξ)+

|ξ |2

2
1̂�(ξ)

)
.

Then the grayscale image is given by v2, taking T as large as is practicable.
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12.3. Justification of the simplifications. A loose interpretation of Theorem 3.1 is that v|∂� is not so
different from eρ |∂� (this is known as the Born approximation; see [Delbary et al. 2012; Knudsen and
Mueller 2011; Siltanen et al. 2000] for numerical implementations). Indeed, if the conductivity were
constant, then 03σ would be identically 0 and so part of the reconstruction integral from Theorem 3.2
could be rewritten using the divergence theorem:∫

∂�

∂νP0[eρ]eρ′ =

∫
�

∇eρ · ∇eρ′ = ρ · ρ ′

∫
�

e−iξ ·x
= −

|ξ |2

2
1̂�(ξ).

Note also that, by the uncertainty principle, q̂ and 1̂� are essentially constant at scale R−1. Thus the
reconstruction formula approximately simplifies to q̂ ≈ limT →∞ q̂T pointwise. Note that the cutoff of the
frequencies serves to mollify, so that qT is a function even though it approximately converges to q in the
distributional sense. Finally, one observes that σ 1/2 is the unique solution to the Schrödinger equation
with v|∂� = σ |

1/2
∂� .
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