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UNIFORM CONTRACTIVITY OF THE FISHER INFINITESIMAL MODEL
WITH STRONGLY CONVEX SELECTION

VINCENT CALVEZ, DAVID POYATO AND FILIPPO SANTAMBROGIO

The Fisher infinitesimal model is a classical model of phenotypic trait inheritance in quantitative genetics.
Here, we prove that it encompasses a remarkable convexity structure which is compatible with a selection
function having a convex shape. It yields uniform contractivity along the flow, as measured by an
L∞ version of the Fisher information. It induces in turn asynchronous exponential growth of solutions,
associated with a well-defined, log-concave, equilibrium distribution. Although the equation is nonlinear
and nonconservative, our result shares some similarities with the Bakry–Emery approach to the exponential
convergence of solutions to the Fokker–Planck equation with a convex potential. Indeed, the contraction
takes place at the level of the Fisher information. Moreover, the key lemma for proving contraction
involves the Wasserstein distance W∞ between two probability distributions of a (dual) backward-in-time
process, and it is inspired by a maximum principle by Caffarelli for the Monge–Ampère equation.

1. Introduction

Let us consider the nonlinear model

Fn = T [Fn−1], n ∈ N, x ∈ R, (1-1)

describing the evolution of the distribution Fn = Fn(x) of a one-dimensional trait x ∈ R, subject to sexual
reproduction and the effect of selection at each generation. The operator T above is defined by

T [F](x) := e−m(x)B[F](x), x ∈ R, (1-2)

B[F](x) :=

∫∫
R2

G
(

x −
x1 + x2

2

)
F(x1)

F(x2)

∥F∥L1
dx1 dx2, x ∈ R, (1-3)

for any F ∈ L1
+
(R)\{0}. On the one hand, the operator B describes the distribution of traits of descendants

of the previous generation Fn−1, arising as recombination of parental traits in agreement with Fisher’s
infinitesimal model [1919], which is a classical model in quantitative genetics; see also [Barton et al.
2017]. Accordingly, the mixing kernel G is set to a centered Gaussian distribution with unit segregation
variance without loss of generality, namely

G(x) :=
1

(2π)1/2
e−x2/2, x ∈ R. (1-4)

MSC2020: primary 35B40, 35P30; secondary 35Q92, 47G20, 92D15.
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On the other hand, the trait-dependent mortality function m = m(x)≥ 0 represents the effect of selection
on the population, which acts multiplicatively over the descendants. In other words, the multiplicative
factor e−m(x) in (1-2) represents the survival probability to the next generation of individuals having the
trait x . We note that the time-discrete generations n ∈ N are assumed nonoverlapping since, altogether,
Fn describes the distribution of those offspring of Fn−1 having survived after the selection step, and then
different generations do not get mixed; see [Calvez et al. 2024] for further insight.

As the model is tracking only one trait distribution, it applies either when individuals are hermaphroditic,
or when the traits are equally distributed between male and female individuals within the population. We
refer to [Barton et al. 2017] for a comprehensive presentation of the model, its derivation and its limitations.

The goal of this paper is to extend the studies initiated in [Calvez et al. 2024] to a broader class of
selection functions. Specifically, when m is a strongly convex function we prove asynchronous exponential
growth [Webb 1987] of solutions to (1-1). In other words, we derive quantitative rates for the relaxation
of the solutions {Fn}n∈N of (1-1) to a strongly log-concave quasiequilibrium of the form λn F, where
λ> 0 and F ∈ L1(R)∩P(R) is an appropriate probability density. The fact that the quasiequilibrium is
strongly log-concave is crucial in our approach and will be present throughout the paper.

Definition 1.1 (log-concavity). Consider any nonnegative function F = e−V
: Rd

→ R+:

(i) F is said to be log-concave when V is a convex function.

(ii) F is said to be strongly log-concave with log-concavity parameter γ > 0 (or γ -log-concave) when
V is a strongly convex function with convexity parameter γ (or γ -convex).

When the potential function V is in C2(Rd), we can equivalently formulate log-concavity in terms of
second-order derivatives. Namely, F is log-concave when D2V ≥ 0, and F is γ -log-concave when
D2V ≥ γ Id .

We remark that in order for an ansatz of the form Fn(x)= λn F(x) to define a solution to (1-1), we
need that the pair (λ, F) solves the nonlinear eigenproblem

λF = T [F], x ∈ R,

F ≥ 0,
∫

R
F(x) dx = 1. (1-5)

Hence, the possible quasiequilibria are to be found as solutions to (1-5). Note that contrarily to the special
quadratic regime treated in [Calvez et al. 2024], the Gaussian structure can no longer be exploited and, in
particular, the existence of solutions to (1-5) is unclear. Indeed, the above nonlinear integral operator is
1-homogeneous but nonmonotone, and therefore the Krein–Rutman theorem [Mahadevan 2007] cannot
be applied as it has been done in other (usually linear) problems in population dynamics [Berestycki
et al. 2016; Li et al. 2017]. Hence, the study of the nonlinear evolution problem (1-1) and the nonlinear
eigenproblem (1-5) requires innovative ideas.

Throughout this paper, we address jointly the following two problems: (i) existence of a strongly
log-concave solution (λ, F) to (1-5), and (ii) quantitative relaxation of the solutions to (1-1) towards the
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quasiequilibrium λn F. We make the crucial hypothesis that m is a strongly convex function,

m′′
≥ α for some α > 0. (H1)

The function m necessarily reaches its minimum value over R. For convenience, we assume the following
additional hypothesis without loss of generality:

m ≥ 0 and m(0)= 0. (H2)

The L∞ relative Fisher information I∞ plays a pivotal role in our analysis, as it measures the contractivity
along the flow (see methodological notes below). It is defined as follows, for a pair of functions
P, Q ∈ L1

+
(R)∩ C1(R):

I∞(P∥Q) :=

∥∥∥∥ d
dx

(
log

P
Q

)∥∥∥∥
L∞

. (1-6)

Theorem 1.2. Let m ∈ C2(Rd) satisfy (H1)–(H2). Then, the following statements hold true:

(i) (existence of quasiequilibrium) There is at least one solution (λ, F) to (1-5). In addition, F = e− V
∈

L1
+
(R)∩ C∞(R) is β-log-concave, where β > 1

2 is uniquely defined by the relationship

β = α+
2β

1 + 2β
. (1-7)

Moreover, (λ, F) is the unique solution to (1-5) among all pairs (λ, F) such that

d
dx

(
log

F
F

)
∈ L∞(R). (1-8)

(ii) (one-step contraction) Consider any F0 ∈ L1
+
(R)∩ C1(R) such that

d
dx

(
log

F0

F

)
∈ L∞(R), (H3)

and let {Fn}n∈N be the solution to (1-1) issued at F0. Then, we have

I∞(Fn ∥ F)≤
2

1 + 2β
I∞(Fn−1 ∥ F) (1-9)

for any n ∈ N.

(iii) (asynchronous exponential growth) Consider any F0 ∈ L1
+
(R)∩ C1(R) satisfying the assumption

(H3) above, and let {Fn}n∈N be the solution to (1-1) issued at F0. Then, we have∣∣∣∣ ∥Fn∥L1

∥Fn−1∥L1
− λ

∣∣∣∣ ≤ C
(

2
1 + 2β

)n

, (1-10)

DKL

(
Fn

∥Fn∥L1

∥∥∥∥ F
)

≤ C
(

2
1 + 2β

)2n

(1-11)
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for every n ∈ N, where C > 0 is a explicit constant depending on F0, and DKL is the Kullback–Leibler
divergence (or relative entropy), that is,

DKL(P∥Q) :=

∫
R

log
(

P(x)
Q(x)

)
P(x) dx, P, Q ∈ L1

+
(R)∩P(R). (1-12)

Remark 1.3 (case of quadratic selection). For quadratic selection m(x) =
1
2 α |x |

2, we have that m
satisfies the hypotheses (H1)–(H2) in Theorem 1.2, and then our new result applies. Such a special case
was studied in detail in [Calvez et al. 2024], where in particular it was proven that there is a unique
eigenpair (λ, F) of (1-5), which involves a Gaussian eigenfunction F(x)= G0,σ 2(x) with variance σ 2> 0
satisfying

1
σ 2 = α+

1
1 + σ 2/2

. (1-13)

In particular, F is (1/σ 2)-log-concave (see Definition 1.1), which is compatible with our new result
in view of the identity σ 2

= β−1 stemming from (1-7) and (1-13). Furthermore, the contraction factor
in (1-9) predicted by Theorem 1.2 also recovers the one obtained in [Calvez et al. 2024] for quadratic
selection. Specifically,

2
1 + 2β

=
(3 + 2α)−

√
(3 + 2α)2 − 8
2

,

which agrees precisely with the contraction factor found in [Calvez et al. 2024, Lemma 6.3].

Remark 1.4 (close-to-equilibrium initial data). In contrast with [Calvez et al. 2024], where the above
framework was restricted to m(x)=

1
2 α |x |

2 but generic F0 ∈ M+(R), Theorem 1.2 applies to a broader
class of selection functions satisfying (H1)–(H2) at the cost of restricting to initial data fulfilling the
hypothesis (H3). Specifically, such a condition imposes a precise behavior of the tails of F0, which must
be very close to those of the eigenfunction F (in particular, two Gaussian initial distributions should have
the same variance).

Remark 1.5 (conditional uniqueness). Another difference with [Calvez et al. 2024] is that the current
approach does not guarantee global uniqueness of solutions to the eigenproblem (1-5), but only within
the class of eigenpairs satisfying (1-8). Nevertheless, we conjecture that global uniqueness holds true, as
in the quadratic case m(x)=

1
2 α |x |

2. Proving global uniqueness would require a careful control of the
behavior at infinity, in the spirit of [Calvez et al. 2024], which is beyond the scope of this paper.

Remark 1.6 (on the convexity assumption). The convexity assumption (H1) ensures that m must have
a unique minimum. It implies that the quasiequilibrium F obtained in Theorem 1.2 is log-concave,
as a consequence of the Prékopa–Leindler inequality. In the presence of multiple local minima of m,
it was proven in [Calvez et al. 2019, Corollary 1.5] that several quasiequilibria could coexist in the
time-continuous version of (1-1) provided that the variance of kernel (1-4) is small enough (in original
units). That is, in the case of nonconvex m there is evidence that the generalized eigenproblem (1-5) may
admit nonunique solutions, in contrast with general conclusions of the Krein–Rutman theory in the linear
case. This is illustrated by numerical simulations shown in Figure 1, where two different quasiequilibria
(one of them bimodal) are found numerically if m has two minima. A similar behavior can be observed



UNIFORM CONTRACTIVITY OF THE FISHER INFINITESIMAL MODEL 1839

−5 3 5

1

3

5

α

(a) Double-well selection function.

−8 −6 −4 −2 0 2 4 6 8
Trait: x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
i e

d 
pr
of
ile

: F
n/‖

F n
‖ L

1

Time iterations: n=0, 1 and 40
n = 0
n = 1
n = 40

no
rm

al
iz

ed
pr

ofi
le

:
F n
/
∥

F n
∥

L
1

trait: x

time iterations: n = 0, 1 and 40

−8 −6 −4 −2 0 2 4 6 8
Trait: x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
i e

d 
pr
of
ile

: F
n/‖

F n
‖ L

1

Time iterations: n=0, 1 and 40
n = 0
n = 1
n = 40

no
rm

al
iz

ed
pr

ofi
le

:
F n
/
∥

F n
∥

L
1

trait: x

time iterations: n = 0, 1 and 40

(b) Nonuniqueness of quasiequilibria for the double-well selection function.

Figure 1. (a) Double-well selection function m(x) = 0.015((x − 3)2 + 1)(x + 5)2 used in the
simulations. (b) Time-evolution of the normalized profiles Fn/∥Fn∥L1 up to generation n = 40
(solid line) for two different choices of initial datum F0. On the left, F0 = 1[−3.5,1.5] leads
to concentration near the left (globally) optimal trait. On the right, F0 = 1[−1.5,3.5] leads to
concentration near the right (locally) optimal trait.

in a population adapting to a heterogeneous, patchy environment, when each patch is associated with a
different optimal trait [Dekens 2022]. The same conclusions also hold for the (continuous) time-marching
problem in [Raoul 2021; Patout 2023; Guerand et al. 2025].

Remark 1.7 (log-concavity and contraction factor). For any α > 0, we have that the log-concavity
parameter β in (1-7) and the corresponding contraction factor 2

1+2β in (1-9) satisfy the properties

α ↘ 0 =⇒ β ↘
1
2

and 2
1+2β

↗ 1,

α ↗ ∞ =⇒ β ↗ ∞ and 2
1+2β

↘ 0.

See Figure 2. In particular, we have genuine contraction in (1-9) since 0< 2
1+2β < 1 for every α > 0.

Remark 1.8 (one-dimensional traits). In this paper we restrict to one-dimensional traits, but note that
an analogous version of (1-1) and (1-5) makes sense in higher dimensions yet. In fact, these were studied
in [Calvez et al. 2024] for quadratic selection functions. However, a higher-dimensional version of our
result for generic strongly convex selection function would require some nontrivial improvements of the
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Figure 2. Plot of the log-concavity parameter β of the eigenfunction F (left) and the contraction
parameter 2

1+2β in Theorem 1.2 as a function of α (right).

present methods. Just to emphasize some nontrivial obstructions, we remark that our approach exploits
a maximum principle for the Monge–Ampère equation in convex but not uniformly convex domains,
as described below. In this setting, it is not even clear why the standard elliptic regularity should hold
up to the boundary, as in the seminal work [Caffarelli 1996]. In two-dimensional domains with special
symmetries, this theory has been developed recently in [Jhaveri 2019], but a higher-dimensional extension
would require further work which goes beyond the scope of this paper. The extension to any dimension was
achieved in [Khudiakova et al. 2024], which was released during the time of revision of the present work.

Bibliographical notes. This work can be viewed as another step in using optimal transportation tools
for nonconservative problems arising in biology. The connection between the Fisher infinitesimal model
and the L2 Wasserstein distance was spotted by G. Raoul [2017] (see also [Mirrahimi and Raoul 2013]
for similar results in a different context of protein exchanges between cells). In fact, when there is no
selection (that is, m ≡ const.), the operator T is nonexpansive for the latter distance. Contraction cannot
be expected because of translational invariance. Nevertheless, it is contractive with rate 1/

√
2 in the class

of distributions having the same center of mass (the latter being preserved by the flow) [Raoul 2017,
Theorem 4.1 and Corollary 4.2]. This remarkable structure was further exploited by G. Raoul [2021] in a
perturbative setting, when selection is small (in amplitude), and restricted to a compact interval (m is
constant beyond a certain range). More precisely, G. Raoul proved that the dynamics is well captured by
some averaged quantities (“moments”) of the Gaussian distribution coupled with the selection function,
provided that the initial data is well-prepared, in the basin of attraction of the stationary state, and the
amplitude of selection is small enough. For that purpose, he carefully established that the contraction
issued from the infinitesimal operator was robust enough to dominate detrimental effects due to selection.
Note that the later references consider overlapping generations, that is, a continuous-in-time rather than
discrete dynamics. However, some fruitful analogy can be drawn between the results and methodology.

In parallel, the regime of small segregation variance (when G (1-4) has variance ε2 and ε is small
enough) was investigated by [Calvez et al. 2019; Patout 2023] in another perturbative setting, without
exploiting the Wasserstein metric structure. This methodology built upon the seminal works on vanishing
viscosity limits associated with linear (asexual) modes of reproduction in quantitative genetics models
[Diekmann et al. 2005; Perthame and Barles 2008; Barles et al. 2009]. Interestingly, it was proven in
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[Calvez et al. 2019] that the problem (1-5) lacks uniqueness in full generality. More precisely, it was
possible to build a solution to (1-5) centered in the vicinity of any local minimum of m, provided that the
selection value at the local minimum is close enough to the global minimum. This result gives a clear
separation with linear, order-preserving operators (and nonlinear extensions [Mahadevan 2007; Nussbaum
1988]) for which (1-5) genuinely admits a unique solution (under standard irreducibility assumptions); see
Remark 1.6. The Cauchy problem initialized with some concentrated initial data was further investigated
in [Patout 2023] (in a multiplicative perturbative approach) and more recently in [Guerand et al. 2025] (in
a moment-based approach), still in the regime of small segregation variance. The case of zero segregation
variance was the subject of the recent [Frouvelle and Taing 2025].

Heuristically, uniqueness of the (nonlinear) eigenpair (λ, F) is rather clear when the selection function m
is convex, and [Calvez et al. 2024] was a first contribution in this direction, restricted to m(x)=

1
2 α |x |

2.
By exploiting the quadratic structure of the operator T in (1-2) (which involves products and convolutions
by Gaussian density functions), it was possible to prove asynchronous exponential growth towards the
explicit Gaussian distribution of equilibrium F, starting from any initial configuration F0. This was
achieved by a careful study of the binary tree of ancestors, together with explicit change of variables in
a high-dimensional integral, to prove a sort of concentration of measure estimates. More precisely, it
was shown that the traits of the ancestors decorrelate sufficiently fast, backward in the tree, from the
trait of the individual at generation n. This implies that the dependence of the trait distribution Fn at
generation n upon the initial distribution F0 diminishes exponentially fast. Asynchronous exponential
growth is a consequence of this observation, which is a backward feature.

Last, but not least, let us mention that both the infinitesimal model (1-2), and the relative information
(1-6) (or rather (1-18) below) date back to a couple of seminal works [Fisher 1919; 1922] respectively on
seemingly different purposes; see [Stigler 2005] for a discussion.

Methodological notes. In the present study, we push further the observations of [Calvez et al. 2024]. We
identify a key mechanism ensuring a one-step contraction for the flow (1-1). This can be summarized
roughly as follows:

For any two given individuals with traits X and X ′ respectively, the associated parental traits
(X1, X2) and (X ′

1, X ′

2) are closer to each other than X and X ′ are, in some sense.

See also [Garnier et al. 2023, Appendix F.2] for a visual explanation. To make sense of this contraction,
we shall work with the L∞ Wasserstein distance, denoted by W∞ (in contrast with the L2 Wasserstein
distance). This naturally leads to estimates on the so-called L∞ relative Fisher information I∞ (1-6)
(in contrast with the (L2) relative Fisher information I2, see (1-18) below). The core estimate (1-9) is
forward-in-time, and it naturally arises as a dual estimate of a backward-in-time estimate analogous to
the work in [Calvez et al. 2024].

A forward-backward argument. We propose a short warm-up to this argument, which may help the
reader follow our method (without details of the proofs). Indeed, one complication of our setting is that
each individual has two parents, so that the dimension of the distribution doubles at each generation.
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Nonetheless, the same methodology can be applied to the case of a single parent, which boils down to a
linear operator. We thus consider, temporarily, the linear operator

A[F](x) := e−m(x)
∫

R

G(x − y)F(y) dy, x ∈ R, (1-14)

in place of the above nonlinear operator T in (1-2). In this simpler case, the Krein–Rutman theorem can
be applied (at least formally), and there exists an eigenpair (λ, F) of the linear eigenproblem (1-5) with
T replaced by A. Now, consider any solution {Fn}n∈N to the time-discrete problem (1-1) with T replaced
again by the linear operator A. We may introduce the associated relative distribution un = Fn/(λ

n F) to
follow the trend of Fn across generations. It satisfies the equation

un(x)=

∫
R

G(x − y)un−1(y) F(y) dy∫
R

G(x − z) F(z) dz
=

∫
R

P(x; y)un−1(y) dy, n ∈ N, x ∈ R,

where the x-dependent probability distribution function P(x; · ) is defined as

P(x; y)=
G(x − y) F(y)∫

R
G(x − z) F(z) dz

, x, y ∈ R, (1-15)

and it can be interpreted as the transition probability from trait y to trait x . The fact that it is a probability
distribution function,

∫
P(x; y) dy = 1, is immediate by the choice of the normalization, which is such

that constant functions un ≡ const. are invariant by the flow.
Next, it can be proven that, if F is strongly log-concave, then we have

W∞(P(x; · ), P(x ′
; · ))≤ κ|x − x ′

|, (1-16)

where κ ∈ (0, 1) is related to the modulus of convexity of V = − log F. By duality, this backward
contraction estimate results in the forward estimate (see Lemma 2.4)∥∥∥ d

dx
(log un)

∥∥∥
L∞

≤ κ

∥∥∥ d
dx
(log un−1)

∥∥∥
L∞
,

which, by iteration and using the L∞ relative Fisher information, can be expressed as

I∞(Fn∥ F)≤ κn I∞(F0∥ F). (1-17)

As mentioned in Remark 1.8, the key estimate (1-16) is a consequence of the maximum principle on the
Monge–Ampère equation for the optimal transportation plan between P(x; · ) and P(x ′

; · ). Interestingly,
this is an argument borrowed from the theory of conservative equations, whereas our problem is not. The
trick is to match an individual to its ancestor, which is obviously a conservative process, backward-in-time.

Analogy with the Bakry–Emery argument. There is some analogy between our results and the standard
Bakry–Emery method for exponential relaxation towards equilibrium for the gradient flow of some
displacement convex “entropy”, for instance, the Fokker–Planck equation with a convex potential [Bakry
1994; Arnold et al. 2001; Villani 2003; Bakry et al. 2014]. Indeed, from (1-9) (alternatively (1-17) in the
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linear case) we obtain exponential convergence on a quantity which is the L∞ analog of the usual (L2)
relative Fisher information,

I2(P∥Q) :=

∫
R

∣∣∣∣ d
dx

(
log

P
Q

)
(x)

∣∣∣∣2

P(x) dx . (1-18)

Recall that, in the usual Bakry–Emery argument, the exponential convergence is established at the level
of the dissipation of entropy, that is, the usual relative Fisher information [Villani 2003]. In turn, the
exponential relaxation of the dissipation is intimately linked with the displacement convexity of the
entropy functional (essentially because the gradient flow is differentiated, which leads to the second
derivative of the entropy functional). In our argument, it is the convexity of V = − log F which induces
the geometrical relaxation of the uniform relative Fisher information.

Connection with another projective metric. The uniform relative Fisher information (1-6) may also be
viewed as a kind of first-order version of the Hilbert’s projective distance associated with the cone of
nonnegative functions, that is,

H(P, Q) := osc
(

log
P
Q

)
≡ sup

x∈R

log
P(x)
Q(x)

− inf
x∈R

log
P(x)
Q(x)

.

The latter distance is well-suited for the analysis of 1-positively homogeneous, order-preserving operators
[Nussbaum 1988]. An obvious reason is the projective character of that metric [Nussbaum 1994], which
makes it insensitive to the exponential growth (or decay) O(λn). This character is also shared by I∞ (in
contrast with I2).

A linear argument, even in the nonlinear case. The previous discussion focused on the linear operator
(1-14) for the sake of clarity. Interestingly, the nonlinear case under study (1-2) also involves a linear
argument when formulated backward in time. Similarly, define the relative distribution un = Fn/(λ

n F),
where the pair (λ, F) is the strongly log-concave solution to (1-5) from part (i) in Theorem 1.2. Then, un

satisfies the forward-in-time nonlinear problem

un(x)=
1

∥un−1 F ∥L1

∫∫
Rd

P(x; x1, x2)un−1(x1)un−1(x2) dx1 dx2, n ∈ N, x ∈ R, (1-19)

where the function P(x; x1, x2) is explicitly defined as

P(x; x1, x2)=
G

(
x −

1
2(x1 + x2)

)
F(x1) F(x2)∫∫

R2 G
(
x −

1
2(x

′

1 + x ′

2)
)

F(x ′

1) F(x ′

2) dx ′

1 dx ′

2

, x ∈ R, (x1, x2) ∈ R2. (1-20)

Since P is normalized with respect to the variables (x1, x2), it can be regarded as a Markov kernel with
source x ∈ R and target (x1, x2) ∈ R2 representing the probability of transitioning from the trait of the
offspring x to the traits of the parents (x1, x2). In Lemma 2.6, we prove the very same contraction estimate
as in (1-16) for the family of Markov kernels P indexed by its first variable x . The key difference is
that this Markov kernel makes the transition between un and un−1 ⊗ un−1 due to the joint distribution of
parental traits (the nonlinearity, in fact). This is rescued by an appropriate tensorization property of the
relative Fisher information, which is expressed in Lemma 2.4.
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A close-to-optimal result despite a nonoptimal argument. The rate of contraction 2
1+2β coincides with

the optimal one in the quadratic case (see Remark 1.3). However, there is a nonoptimal step in the
proof. Indeed, our key contraction estimate (1-16) is a consequence of the maximum principle on the
Monge–Ampère equation satisfied by the Brenier transportation map between the joint distributions of
the parental traits (X1, X2) and (X ′

1, X ′

2). There is some subtlety here to be noticed, as the contraction is
set for the L∞ Wasserstein distance (maximum of the optimal transportation displacement), whereas the
Brenier transportation map used in our argument is optimal for the L2 Wasserstein distance. Nevertheless,
in the quadratic case, the transportation map is simply a translation, so that it comes with the same cost,
measured either in (weighted) L2 or in L∞.

In the recent contribution [Khudiakova et al. 2024], the authors used a different approach based on
Langevin dynamics to make the connection between the two joint distributions. Hence, they bypassed the
use of the Brenier map. Their approach is much simpler, and it enabled them to extend the result readily to
higher dimensions. These results were originally motivated by a computation in a previous version of our
paper, where we obtained an upper bound on the displacement ∥T (x)− x∥2 for the Brenier map between
a strongly log-concave density and a perturbation of it. In the current version, such an estimate cited
by [Khudiakova et al. 2024] is not crucial, as the important one concerns the displacement ∥T (x)− x∥1

(see Sections 2.3 and 2.4) and interpolating ℓ1 estimates from ℓ2 ones worsens the coefficients (see
Remark 3.1). We have moved the ℓ2 estimates to Appendix C for an easier readability. In [Khudiakova
et al. 2024], the authors bypass this delicate issue of choosing ℓ1- rather than ℓ2-based distances by
establishing some fruitful anisotropic version of our Corollary C.2.

Organization of the paper. In Section 2 we provide a sketch of the proof of the one-step contraction
property in Theorem 1.2(ii) under an additional technical condition. In Section 3 we derive the fundamental
contraction property of the one-step transition probability of the problem under the W∞,1 Wasserstein
distance (see definition below), thus removing the technical condition used in the sketch of proof of
Section 2. In Section 4 we analyze a truncated version of the time-marching problem (1-5) to bounded
intervals, which will be necessary in the next part. Section 5 focuses on proving the existence of strongly
log-concave solutions of the nonlinear eigenproblem (1-5) as claimed in Theorem 1.2(i). In Section 6
we prove asymptotic exponential growth of (1-5) for restricted initial data (H3) as in Theorem 1.2(iii).
Finally, Appendices A and B contain some technical results to alleviate the reading of the paper.

Notation. • (vector norms) Throughout paper, Rd will be endowed with the various ℓq norms, namely,
for any z = (z1, . . . , zd) ∈ Rd and any 1 ≤ q ≤ ∞ we define

∥z∥q :=

{(∑d
i=1 |zi |

q
)1/q if 1 ≤ q <∞,

max1≤i≤d |zi | if q = ∞.
(1-21)

The associated ℓ2 and ℓ∞ open balls centered at 0 with radius R > 0 are respectively denoted by

BR := {z ∈ Rd
: ∥z∥2 < R},

Q R := {z ∈ Rd
: ∥z∥∞ < R}.

(1-22)
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• (characteristic function) Given any set A ⊂ Rd, we will denote the associated characteristic function of
convex analysis by χA : Rd

→ (−∞,+∞], which is the mapping defined by

χA(z) :=

{
0 if z ∈ A,
+∞ if z ∈ Rd

\ A.
(1-23)

• (measure spaces) We denote by M(Rd) the space of finite Radon measures, endowed with the total
variation norm, and M+(Rd) represents the cone of nonnegative finite Radon measures. Similarly, P(Rd)

is the subspace of probability measures, endowed with the narrow topology except otherwise specified.

• (Wasserstein metrics) For any 1 ≤ p ≤ ∞, we define the L p Wasserstein space

Pp(R
d) :=

{
P ∈ P(Rd) :

∫
Rd

|z|p P(dz) <∞

}
if 1 ≤ p <∞,

P∞(R
d) := {P ∈ P(Rd) : supp P is compact}.

Similarly, we consider the L p Wasserstein metric associated with the ℓq vector norm of Rd. Specifically,
for any P, Q ∈ P(Rd) and any 1 ≤ p, q ≤ ∞ we define

Wp,q(P, Q) :=

(
inf

γ∈0(P,Q)

∫
R2d

∥z − z̃∥p
q γ (dz, dz̃)

)1/p
if 1 ≤ p <∞,

W∞,q(P, Q) := inf
γ∈0(P,Q)

γ -ess sup
z,z̃∈Rd

∥z − z̃∥q ,
(1-24)

where 0(P, Q) is the family of transference plan γ ∈ P(Rd
× R)d with marginals P and Q. Whilst the

L p Wasserstein distances could be infinitely valued over P(Rd), note that they take finite values over
Pp(R

d) at least, although not exclusively. In particular, note that the L∞ Wasserstein distances take finite
values over distributions P and Q that only differ on a space translation independently of their supports
being compact or not. For this reason, throughout paper we shall not restrict to compactly supported
distributions, but in all our computations the involved L∞ Wasserstein distances will take finite values, as
it will become clear later in the proofs.

2. Proof of the one-step contraction property

For the reader’s convenience, we provide first the main ingredients behind the proof of the fundamental
one-step contraction property in Theorem 1.2(ii). Here, we shall assume that Theorem 1.2(i) holds
true, i.e., there exists a β-log-concave solution (λ, F) to (1-5) with β given by (1-7) (recall the precise
notion of strong log-concavity in Definition 1.1). We remark that its use will be crucial in our following
argument, but its proof is not apparent with regards to classical approaches based on the application of
the Krein–Rutman theorem. For this reason, a major part of this paper is devoted to rigorously addressing
this question, which will be introduced in full detail in Section 5 of this paper.

2.1. Sharp log-concavity parameter. First, we elaborate on the precise value of β given in (1-7). Specifi-
cally, we prove that it amounts to the sharpest possible log-concavity parameter of a generic solution
(λ, F) to (1-5). To this end, it is worthwhile to note that the nonlinear operator T in (1-2) can be restated
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as the composition of a multiplicative operator and a double convolution operator, namely,

T [F] =
e−m

∥F∥L1
(G ∗ F ∗ F) (2-1)

for every F ∈ L1
+
(R) \ {0}, where we define F(x) := 2F(2x) for x ∈ R. The starting point is to realize

that strong log-concavity is stable under convolutions. This is a classical corollary of the celebrated
Prékopa–Leindler inequality, which reads as follows (see [Saumard and Wellner 2014, Proposition 7.1]
for further details).

Lemma 2.1 (stability of log-concavity under convolutions). Assume that F1, F2 ∈ L1
+
(R) satisfy that Fi

are γi -log-concave for some γ1, γ2 > 0. Then F1 ∗ F2 is also γ -log-concave for γ > 0 given by

1
γ

=
1
γ1

+
1
γ2
.

Let us remark that the above result could be applied to any pair of Gaussian distributions F1 and F2

with respective variances σ 2
1 and σ 2

2 since they are in particular γi -log-concave with parameters γi = 1/σ 2
i

for i = 1, 2. In doing so one finds that the above result is consistent with the classical fact that the
convolution F1 ∗ F2 of two Gaussian distributions is again Gaussian with variance σ 2

= σ 2
1 + σ 2

2 .
In addition, note that the mortality function m has been chosen α-convex by the hypothesis (H1)

in Theorem 1.2, and then e−m is α-log-concave. Since strong log-concavity is also preserved under
multiplication, and F is 4γ -log-concave whenever F is γ -log-concave, we obtain that log-concavity must
also be preserved under the full operator T .

Lemma 2.2 (stability of log-concavity under T ). Assume that F ∈ L1
+
(R)\{0} is γ -log-concave for some

γ > 0. Then, T [F] is also δ-log-concave for δ > 0 given by

δ = α+
2γ

1 + 2γ
.

Thereby, log-concavity is preserved by the dynamics in (1-1), and we also obtain that the sharpest
log-concavity coefficient of the eigenfunction F must be the one given in (1-7).

Lemma 2.3 (propagation of log-concavity). (i) Assume that F0 ∈ L1
+
(R)\{0} is β0-log-concave for some

β0 > 0. Then, the solution {Fn}n∈N to the evolution problem (1-1) satisfies that Fn is βn-log-concave for
βn > 0 satisfying the recurrence

βn = α+
2βn−1

1 + 2βn−1
, n ∈ N. (2-2)

(ii) Assume that (λ, F) is any solution to the nonlinear eigenproblem (1-5) and that F is strongly
log-concave. Then, F is β-log-concave with β given by (1-7), that is,

β = α+
2β

1 + 2β
.

Proof. Since (i) is clear by Lemma 2.2, we just prove (ii). Recall that for any solution (λ, F) of (1-5) with
γ -log-concave F, we can build Fn(x)= λn F(x), which solves the evolution problem (1-1). Therefore,



UNIFORM CONTRACTIVITY OF THE FISHER INFINITESIMAL MODEL 1847

the above applied to {Fn}n∈N shows that F is βn log-concave for any n ∈ N with {β}n∈N satisfying the
recurrence (2-2) above and β0 = γ . Since βn → β, then F is also β-log-concave. □

2.2. The renormalized problem. We introduce a renormalized version of the evolution problem (1-1).
Specifically, for any solution {Fn}n∈N to (1-1) we renormalize by the strongly log-concave quasiequilibrium
λn F granted in Theorem 1.2(i). Namely, we set

un(x) :=
Fn(x)

λn F(x)
, n ∈ N, x ∈ R. (2-3)

By inspection, we obtain that {un}n∈N must solve the evolution problem

un(x)=
1

∥un−1 F ∥L1

∫∫
R2

P(x; x1, x2)un−1(x1)un−1(x2) dx1 dx2 (2-4)

for any x ∈ R, where P(x; x1, x2) is the one-step transition probability of transitioning from the parental
traits (x1, x2) to the descendant trait x . More, specifically, P(x; · ) ∈ L1

+
(R2)∩P(R2) is a probability

density on two variables (x1, x2) depending on the parameter x ∈ R which takes the form (recall the
notation F = e− V )

P(x; x1, x2) :=
1

Z(x)e
− W(x;x1,x2), x ∈ R, (x1, x2) ∈ R2,

W(x; x1, x2) :=
1
2

∣∣x −
1
2(x1 + x2)

∣∣2
+ V (x1)+ V (x2),

Z(x) :=

∫∫
R2

e− W(x;x1,x2) dx1 dx2.

(2-5)

Inspired by our method in [Calvez et al. 2024], we plan to study the relaxation to zero of
∥∥ d

dx (log un)
∥∥

L∞

as n grows. Nevertheless, contrarily to the aforementioned paper, we do not need to accumulate a large
enough amount of generations in order to observe some ergodic behavior, but we rather find a precise
contraction of such a quantity after a single step.

2.3. A nonlinear Kantorovich-type duality. Our new approach exploits a nice nonlinear version of a
Kantorovich-type duality which relates the L∞ transport distance to the Lipschitz norm of the log of
test functions. This nonlinear extension is reminiscent of the usual Kantorovich duality theorem, which
relates the L1 transport distance to the Lipschitz norm of test functions; see [Ambrosio et al. 2008,
Theorem 6.1.1]. More specifically, we remark that the usual Kantorovich duality is fundamental in the
linear setting to establish a general equivalence between the contraction of a forward semigroup under the
Lipschitz norm, and the contraction of its backward (or dual) semigroup under the L1 transport distance.
We refer to [Kuwada 2010] for further extensions, yet in a linear setting. In our case, our nonlinear relation
provides a method to derive contraction of a forward semigroup under the Lipschitz norms of the log of
tests functions, once we know that there is contraction of the backward semigroup under a suitable L∞

transport distance. Interestingly, our nonlinear relation does not only apply to the linear setting, but also
to our nonlinear setting. To the best of our knowledge, this relation appears to be new. Moreover, it does
not represent an isolated example but there is a full family of related inequalities interpolating between
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the (classical) L1 result and the (seemingly new) L∞ result, and which further adapt to L p transport
distances; see Appendix A.

Lemma 2.4 (L∞-type Kantorovich duality). Consider the one-step transition from u0 to u1 in (2-4),
where it is assumed that u0 ∈ C1(R) with u0 > 0 and d

dx (log u0) ∈ L∞(R). Then, we have

|log u1(x)− log u1(x̃)| ≤

∥∥∥ d
dx
(log u0)

∥∥∥
L∞

W∞,1(P(x; · ), P(x̃; · )) (2-6)

for any x, x̃ ∈ R. Here, the metric W∞,1 represents the L∞ Wasserstein distance associated with the ℓ1

norm; see (1-24).

Proof. Set x, x̃ ∈ R and assume that

W∞,1(P(x; · ), P(x̃; · )) <∞

(otherwise the inequality is obvious). Indeed, this will always be the case as we prove later in Section 3.
Then, consider any γ ∈ 0(P(x; · ), P(x̃; · )) minimizing the W∞,1 transport distance (1-24) and note that

u1(x)=
1

∥u0 F ∥L1

∫∫
R2

u0(x1)u0(x2)γ (dx1, dx2, dx̃1, dx̃2)

=
1

∥u0 F ∥L1

∫∫
R2

exp
(
log u0(x1)−log u0(x̃1)+log u0(x2)−log u0(x̃2)

)
×u0(x̃1)u0(x̃2)γ (dx1, dx2, dx̃1, dx̃2)

≤
1

∥u0 F ∥L1

∫∫
R2

exp
(∥∥∥ d

dx
(log u0)

∥∥∥
L∞

∥(x1, x2)−(x̃1, x̃2)∥1

)
u0(x̃1)u0(x̃2)γ (dx1, dx2, dx̃1, dx̃2)

≤ exp
(∥∥∥ d

dx
(log u0)

∥∥∥
L∞

W∞,1(P(x; · ), P(x̃; · ))
)

u1(x̃),

where in the next-to-last line we have used the mean value theorem and in the last one we have exploited
the fact that γ is minimizer. Then, taking the logarithm at each side of the above inequality ends the
proof. □

Remark 2.5 (the choice of ℓ1 norm). We note that Lemma 2.4 is a particular instance of Proposition A.1
in Appendix A which can be recovered by setting d1 = 1, d2 = 2, q = 1 and

u(x1, x2) := u0(x1)u0(x2), (x1, x2) ∈ R2.

However, the special choice q = 1 (that is ℓ1 norms) is apparently less clear at this stage since in fact
choosing any other 1 ≤ q ≤ ∞ would be possible in Proposition A.1 and it would yield more generally

|log u1(x)− log u1(x̃)| ≤ 21/q ′
∥∥∥ d

dx
(log u0)

∥∥∥
L∞

W∞,q(P(x; · ), P(x̃; · )) (2-7)

for every x, x̃ ∈ R. Here, the metric W∞,q represents the L∞ Wasserstein distance associated with the
ℓq norm; see (1-24). By the natural relation between ℓ1 and ℓq vector norms, we infer that the above
estimate (2-6) is sharper than (2-7), namely

W∞,1(P(x; · ), P(x̃; · ))≤ 21/q ′

W∞,q(P(x; · ), P(x̃; · )).
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Therefore, it is clear that whenever q > 1, the additional factor 21/q ′

makes the one-step contraction
factor in next section nonoptimal as compared to the explicit one-step contraction for quadratic selection
m(x)=

1
2 α |x |

2, as illustrated in Remark 2.7 and detailed later in Remark 3.1.

2.4. Contraction of the one-step transition probability. The last step of our argument requires showing
that the mapping x ∈ R 7→ P(x; · ) ∈ L1

+
(R2)∩P(R2) is a contraction when the space P(R2) is endowed

with the W∞,1 Wasserstein distance in (1-24). Specifically, in the following result we quantify the exact
Lipschitz constant, which will account for the precise contraction factor in Theorem 1.2(ii).

Lemma 2.6 (W∞,1-contraction). Consider the one-step transition probability P = P(x; x1, x2) defined
in (2-5) in terms of the potential V of the β-log-concave quasiequilibrium F = e− V in Theorem 1.2(i).
Then, the following inequality holds true for every x, x̃ ∈ R:

W∞,1(P(x; · ), P(x̃; · ))≤
2

1 + 2β
|x − x̃ |.

A similar contraction property, with respect to W1 distances instead of W∞, appeared previously in
[Ollivier 2007; 2009] leading to the definition of coarse Ricci curvature of a Markov kernel P(x; · ):

κ(x, x̃)= 1 −
W1(P(x; · ), P(x̃; · ))

|x − x̃ |
, x, x̃ ∈ R.

Specifically, the above references proved that a positive lower bound on the coarse Ricci curvature amounts
to the aforementioned contraction of the forward semigroup under the Lipschitz norm (or equivalently,
the contraction of the backward semigroup under the L1 transport distance [Kuwada 2010]). For heat
kernels in a linear setting, this hypothesis on the coarse Ricci curvature is compatible with the Bakry–
Emery convexity condition and was proved equivalent to the contraction of the backward semigroup in
all Wp transport distances [von Renesse and Sturm 2005], including W∞. However, the decay of the
L∞ relative Fisher information has not been addressed in those works, and a nonlinear adaptation of them
does not seem straightforward.

Before entering into the details of the proof of the Lemma 2.6, let us note that putting Lemmas 2.4
and 2.6 together automatically implies the one-step contraction estimate∥∥∥ d

dx
(log u1)

∥∥∥
L∞

≤
2

1+2β

∥∥∥ d
dx
(log u0)

∥∥∥
L∞
, (2-8)

which can be iterated and propagated into (1-9) in Theorem 1.2(ii) (at generation n), thus concluding this
section. Nevertheless, we remark that Lemma 2.6 is far from straightforward as one typically cannot even
ensure that the above W∞,1 distance must be finite because the probability densities P(x; · ) and P(x̃; · )

are supported on the full plane R2.

Remark 2.7 (quadratic selection). In the case of quadratic selection m(x)=
1
2 α |x |

2 studied in [Calvez
et al. 2024], we recall from Remark 1.3 that the unique eigenfunction of (1-5) is the Gaussian F = G0,σ 2

with variance σ 2
= β−1. Therefore, one easily obtains from (2-5) that

P(x, x1, x2)∝ exp
(
−

1
2

∣∣x −
1
2(x1 + x2)

∣∣2
−

1
2β|x1|

2
−

1
2β|x2|

2).
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Completing squares with respect to the variables (x1, x2) we readily find that P(x; · ) = Gµx ,6 is the
density of a bivariate normal distribution with mean and covariance matrix determined by

µx :=
1

1 + 2β
(x, x), 6−1

:=

(1
4 +β 1

4
1
4

1
4 +β

)
.

Since 6 is independent of x , any couple of Gaussians P(x; · ) and P(x̃; · ) must agree up to a translation
in the direction joining their means. Hence, the transport cost reduces to moving the center µx of P(x; · )

to the center µx̃ of P(x̃; · ), which yields Lemma 2.6 (with identity indeed):

W∞,1(P(x; · ), P(x̃; · ))= ∥µx −µx̃∥1 =
2

1 + 2β
|x − x̃ |.

The goal of this section is to prove Lemma 2.6. To alleviate the notation, throughout this section we
let z := (x1, x2) ∈ R2, we fix x, x̃ ∈ R with x ̸= x̃ and then we simplify the notation on the one-step
transition probability in (2-5) by setting p(z) := P(x; x1, x2) and p̃(z) := P(x̃; x1, x2), that is,

p(z)=
1
Z

e− W(z), p̃(z)=
1
Z̃

e−W̃(z), (2-9)

where the potentials W and W̃, and the normalizing constants Z and Z̃ are then given by

W(z) := W(x; x1, x2)=
1
2

∣∣x −
1
2(x1 + x2)

∣∣2
+ V (x1)+ V (x2),

W̃(z) := W(x̃; x1, x2)=
1
2

∣∣x̃ −
1
2(x1 + x2)

∣∣2
+ V (x1)+ V (x2),

Z := Z(x)=

∫∫
R2

e− W(z) dz, Z̃ := Z(x̃)=

∫∫
R2

e−W̃(z) dz.

(2-10)

For any transport map T : R2
→ R2 with T# p = p̃, note that a possible strategy in order to estimate

the W∞,1 distance is to compute an L∞ bound for the ℓ1 associated displacement, namely,

W∞,1( p, p̃)≤
∥∥∥T − I∥1

∥∥
L∞ . (2-11)

Whilst the choice of T is somehow arbitrary at this point, a comfortable one is usually the Brenier map
T : R2

→ R2 from the density p to the density p̃, which is characterized as the unique transport map
satisfying T# p = p̃ and solving the Monge problem [Brenier 1991]∫∫

R2
∥T (z)− z∥2

2 p(z) dz = W 2
2,2( p, p̃),

where W2,2 is the L2 Wasserstein distance associated with the ℓ2 norm of R2; see (1-24). As we anticipated
in the Methodological notes in Section 1, in many cases this nonoptimal argument leads to no loss of
generality since the W∞,1 and the uniform bound of the ℓ1 displacement of the Brenier map have the
same order. This was further depicted in the example of the Gaussians from Remark 2.7, where the
Brenier map is a translation, and therefore the transport cost is indeed identical to the displacement.

Our proof of Lemma 2.6 is based on the derivation of a novel L∞ bound of the ℓ1 displacement
∥T − I∥1 associated with the Brenier map T between the densities p and p̃. We derive those bounds
by reformulating such a Brenier map as a solution to a Monge–Ampère equation and using a version
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of Caffarelli’s maximum principle along with the strong log-concavity of our densities. Indeed, by the
strong log-concavity of F in Theorem 1.2(i) we have

−D2
(x1,x2)

log p = −D2
(x1,x2)

log p̃ ≥

(1
4 +β 1

4
1
4

1
4 +β

)
≥ β

(
1 0
0 1

)
,

and then p, p̃ are β-log-concave. The aforementioned strategy recalls the one applied in Caffarelli’s
contraction principle [2000] (see also [Colombo and Fathi 2021; Colombo et al. 2017]) to find Lipschitz
bounds of the Brenier map between strongly log-concave probability densities. Yet, in order to obtain
Lipschitz bounds on the map (i.e., bounds on the Hessian of the potential), it is necessary to differentiate
twice the Monge–Ampère equation; here we only require bounds on the displacement, and we need to
differentiate only once. This recalls more what was done in [Ferrari and Santambrogio 2021], where the
goal was to obtain Lipschitz bounds on the logarithm of the solution of a JKO scheme or, equivalently,
L∞ bounds of the displacement associated with the Brenier map between two subsequent measures in
the same JKO scheme. Among the important differences, [Ferrari and Santambrogio 2021] was not
concerned with log-concave measures, but required one of the two to be obtained from the other via the
JKO scheme. As another important difference, [Ferrari and Santambrogio 2021] was concerned with ℓ2

displacement bounds, and the choice of the Euclidean ball played a special role. In our setting, in view
of the definition (1-24) of W∞,1, the choice of ℓ2 is not suitable and we focus on ℓ1. For the ℓ1 norm,
we obtain new bounds on the Monge–Ampère equation, which lead to the sharp contraction factor, and
which cannot be recovered by interpolation from known ℓ2 estimates; see Remark 3.1.

For the reader’s convenience, we provide below a formal proof of Lemma 2.6 under the strong additional
assumption that the maximal ℓ1 displacement associated with the Brenier map is attained. Whilst true in
particular situations (see Remark 2.7), unfortunately this hypothesis is not necessarily always true, and
thus the rigorous derivation requires further work which we provide in detail in Section 3.

Formal proof of Lemma 2.6. It is well known that the Brenier map T : R2
→ R2 from p to p̃ takes the

form T = ∇φ for some convex function φ : R2
→ R. Since p, p̃> 0 and p, p̃ ∈ C∞(R2), the regularity

results in [Caffarelli 1992b] imply that φ ∈ C∞(R2). Moreover, the change of variable formula implies

det(D2φ)=
p

p̃ ◦ ∇φ
, z ∈ R2. (2-12)

As usual we make the change of variables through the displacement potential

ψ(z) := φ(z)− 1
2∥z∥2

2, z ∈ R2. (2-13)

In view of the relation (2-11), we note that the core of the proof then reduces to obtaining L∞ bounds for
the ℓ1 norm of the displacement of the Brenier map, that is,

H(z) := ∥T (z)− z∥1 = ∥∇ψ(z)∥1 = |∂x1ψ(z)| + |∂x2ψ(z)|, z ∈ R2. (2-14)

We start by restating the Monge–Ampère equation (2-12) by taking its logarithm,

log det(D2ψ(z)+ I )= W̃(∇ψ(z)+ z)− W(z)+ log
Z̃
Z
, z ∈ R2. (2-15)
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Taking partial derivatives ∂xk in (2-15) we have

tr((D2φ)−1∂xk D2ψ)= ∇W̃(∇ψ + z) · ∂xk ∇ψ + (∇W̃(∇ψ + z)− ∇ W) · ek, z ∈ R2, (2-16)

for k = 1, 2. Let us assume that H attains its maximum at some z∗
= (x∗

1 , x∗

2 ) ∈ R2 (for the general case
where the maximum is not attained we refer to Section 3) and let us also define the auxiliary function

H̃(z) := sgn(∂x1ψ(z
∗)) ∂x1ψ(z)+ sgn(∂x2ψ(z

∗)) ∂x2ψ(z), z ∈ R2. (2-17)

Then, H̃ must also attain its maximum at z∗ and it agrees with the maximum of H. In particular, we have
the necessary optimality conditions

∇ H̃(z∗)= 0, D2 H̃(z∗)≤ 0. (2-18)

Now, we perform an appropriate convex combination of (2-16) depending on the signs of ∂x1ψ(z
∗) and

∂x2ψ(z
∗) in order to make the auxiliary function H̃ in (2-14) appear.

Case 1: ∂x1ψ(z
∗)≥ 0 and ∂x2ψ(z

∗)≥ 0. In this case we have H̃ := ∂x1ψ + ∂x2ψ . Evaluating (2-16) at
z∗ and summing over k ∈ {1, 2} we have

tr((D2φ(z∗))−1 D2 H̃(z∗))= ∇W̃(∇ψ(z∗)+ z∗) · ∇ H̃(z∗)+
(
∇W̃(∇ψ(z∗)+ z∗)− ∇ W(z∗)

)
· (1, 1).

By the optimality conditions (2-18) and since D2φ(z∗)−1 is positive definite, the term in the left-hand
side above is nonpositive, and we obtain(

∇W̃(∇ψ(z∗)+ z∗)− ∇W̃(z∗)
)
· (1, 1)≤ ∇(W −W̃)(z∗) · (1, 1)= x̃ − x .

By expanding the left-hand side we obtain(
∇W̃(∇ψ(z∗)+ z∗)− ∇W̃(z∗)

)
· (1, 1)

=
∂x1ψ(z

∗)+ ∂x2ψ(z
∗)

2
+ V ′(∂x1ψ(z

∗)+ x∗

1 )− V ′(x∗

1 )+ V ′(∂x2ψ(z
∗)+ x∗

2 )− V ′(x∗

2 )

≥
∂x1ψ(z

∗)+ ∂x2ψ(z
∗)

2
+β(∂x1ψ(z

∗)+ ∂x2ψ(z
∗))=

1 + 2β
2

H̃(z∗),

where we have used that in this case ∂x1ψ(z
∗)≥ 0 and ∂x2ψ(z

∗)≥ 0, along with the β-convexity of V.
Therefore, we conclude that x̃ > x and

∥H∥L∞ = H(z∗)= H̃(z∗)≤
2

1 + 2β
|x − x̃ |.

Case 2: ∂x1ψ(z
∗) < 0 and ∂x2ψ(z

∗) < 0. This case follows the same argument as Case 1. Indeed, note
now that H̃ = −∂x1ψ − ∂x2ψ . Then, we sum over k ∈ 1, 2, multiply by −1 on (2-16) and we obtain

1 + 2β
2

H̃(z∗)≤ x − x̃ .

Hence, in this case we obtain x > x̃ and we recover

∥H∥L∞ = H(z∗)= H̃(z∗)≤
2

1 + 2β
|x − x̃ |.
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We show below that the other two cases (namely, ∂x1ψ(z
∗) ≥ 0 and ∂x2ψ(z

∗) < 0, or ∂x1ψ(z
∗) < 0

and ∂x2ψ(z
∗)≥ 0) cannot happen.

Case 3: ∂x1ψ(z
∗) ≥ 0 and ∂x2ψ(z

∗) < 0. Our goal is to show that this case cannot take place. In this
case, we have H̃ := ∂x1ψ − ∂x2ψ . Taking the difference of (2-16) with k = 1 and k = 2 we obtain

tr
(
(D2φ(z∗))−1 D2 H̃(z∗)

)
= ∇W̃(∇ψ(z∗)+ z∗) · ∇ H̃(z∗)+

(
∇W̃(∇ψ(z∗)+ z∗)− ∇ W(z∗)

)
· (1,−1).

Since z∗ is a maximizer of H̃, we have(
∇W̃(∇ψ(z∗)+ z∗)− ∇W̃(z∗)

)
· (1,−1)≤ ∇(W −W̃)(z∗) · (1,−1)= 0

The expansion on the left-hand side is now radically different because the above factor 1
2(∂x1ψ(z

∗)+∂x2ψ(z
∗))

cancels and now we obtain(
∇W̃(∇ψ(z∗)+z∗)−∇W̃(z∗)

)
·(1,−1)= V ′(∂x1ψ(z

∗)+x∗

1 )−V ′(x∗

1 )−V ′(∂x2ψ(z
∗)+x∗

2 )+V ′(x∗

2 )

≥ β(∂x1ψ(z
∗)−∂x2ψ(z

∗))= β H̃(z∗),

which implies ∥H∥L∞ = H(z∗)= H̃(z∗)= 0. This is clearly impossible since otherwise T (z)= z for all
z ∈ R2, that is, x = x̃ .

Case 4: ∂x1ψ(z
∗) < 0 and ∂x2ψ(z

∗)≥ 0. This case cannot happen either thanks to the same argument as
in Case 3 with H̃ replaced by H̃ = −∂x1ψ + ∂x2ψ . Thus, we omit the proof. □

2.5. Proof of the one-step contraction property. With all the above machinery in hand, we are finally in
position to prove the one-step contraction property (1-9) in Theorem 1.2.

Proof of Theorem 1.2(ii). Combining Lemmas 2.4 and 2.6 applied to the solution (2-3) of (2-4) we obtain∥∥∥∥ d
dx

(
log

Fn

F

)∥∥∥∥
L∞

≤
2

1 + 2β

∥∥∥∥ d
dx

(
log

Fn−1

F

)∥∥∥∥
L∞

for every n ∈ N, and this amounts to (1-9). □

3. Main contractivity lemma

In this section, we provide a rigorous proof of Lemma 2.6, where the a priori assumption that the maximal
displacement associated with the Brenier map must be attained is no longer required. To do so, we shall
argue by deriving a local version of the lemma valid for more general strongly log-concave densities
f and g compactly supported on an appropriate domain and bounded away from zero on it. More
specifically, we propose to adapt the contribution of the maximum principle to the formal argument above
(Section 2.4) to compact domains. However, since the maximum may be attained at the boundary, the
boundary information is crucial in order to infer information from the nonlinear elliptic PDE (2-12), and
therefore the choice of the domain cannot be made arbitrarily.

We refer to Appendix C for a bound on the maximum of ∥T − I∥2 (in ℓ2 norm) for the Brenier map
T : B R → B R between two generic strongly log-concave probability densities f = e−W and g = e−W̃,
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Figure 3. Comparison of the theoretical contraction factor 1
1+2β in Lemma 2.6, and the contraction

factor 1
β

obtained by estimating the ℓ1 norm with the ℓ2 norm in R2.

supported and strictly positive on an Euclidean ball B R . Specifically, we obtain

W∞,2( f, g)≤
∥∥∥T − I∥2

∥∥
L∞(B R)

≤
1
γ

∥∥∥∇(W − W̃ )∥2
∥∥

L∞(B R)
, (3-1)

where γ > 0 is the log-concavity parameter of f and g.

Remark 3.1 (inaccuracy of controlling ℓ1 by ℓ2 norms). We may be tempted to apply this ℓ2 estimate to
our setting by setting f and g as truncations of p ∝ e− W and p̃ ∝ e−W̃ (see (2-9)–(2-10)) to ℓ2 balls and
using the Cauchy–Schwarz inequality to get ℓ1 estimates. Specifically, consider an increasing sequence
of balls BR and set f and g in (3-1) to be the truncation of p and p̃ on such balls. First, recall that

D2 W(x1, x2)= D2W̃(x1, x2)=

(1
4 +V ′′(x1)

1
4

1
4

1
4 +V ′′(x2)

)
≥

(
β 0
0 β

)
,

because V ′′
≥ 0, and therefore we can set γ = β in (3-1). Also note that

∇(W −W̃)(x1, x2)=
1
2(x̃ − x, x̃ − x).

Altogether this implies the ℓ2 estimate

W∞,2( f, g)≤
∥∥∥T − I∥2

∥∥
L∞(B R)

≤
1
β

∥∥∥∇(W −W̃)∥2
∥∥

L∞ =
1
β

∥∥1
2(x̃ − x, x̃ − x)

∥∥
2 =

1
√

2β
|x − x̃ |,

and by the Cauchy–Schwarz inequality we also have the ℓ1 estimate

W∞,1( f, g)≤
√

2W∞,2( f, g)≤
1
β

|x − x̃ |.

In particular, we note that such an estimate only provides contraction as long as β > 1 and, in addition,
the contraction factor is worse than the one claimed in Lemma 2.6 as depicted in Figure 3.

We refer to [Khudiakova et al. 2024] for a nice and fruitful anisotropic version of (3-1) which enables
us to obtain directly the claimed contraction factor.
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Thus, we need to improve our proof and avoid using the ℓ2 norm. This was done, formally, in the
previous section, but we need a rigorous proof which also takes care of the boundary. Let us focus on the
observation made in [Ferrari and Santambrogio 2021, Lemma 3.1] that, for generic f and g smooth on a ℓ2

ball and bounded away from zero on it, the maximal ℓ2 displacement of the Brenier map must be attained
at some interior point in the ball. Apparently, the use of ℓ2 norms to quantify the size of the displacement
proved extremely well-suited to control the boundary information on ℓ2 balls. Interestingly, in the sequel
we show that in order to find precise information about the maximizers for the ℓ1 displacement, we need
densities f and g to be supported over ℓ∞ balls B R (see (1-22)). This is the content of the following.

Lemma 3.2 (maximizers in the ℓ1 setting). Consider two densities f, g ∈ L1
+
(R2)∩P(R2), assume that,

{z ∈ R2
: f (z) > 0} = {z ∈ R2

: g(z) > 0} = Q R,

where Q R is the ℓ∞ ball (see (1-22)), and suppose that f, g ∈ C1,δ(Q R) for some δ > 0. Let T = ∇φ :

Q R → Q R be the Brenier map from f to g, define the displacement potential ψ(z) := φ(z)− 1
2∥z∥2

2 and
the displacement function quantified in the ℓ1 norm

H(z) := ∥T (z)− z∥1 = |∂x1ψ(z)| + |∂x2ψ(z)|, z ∈ Q R. (3-2)

Then, T ∈ C2,δ(Q R) and we have the optimality conditions

∇ H̃(z∗)= 0, D2 H̃(z∗)≤ 0 (3-3)

for any maximizer z∗
= (z∗

1, z∗

2) ∈ Q R of H, where H̃ is the auxiliary function

H̃(z) := sgn(∂x1ψ(z
∗)) ∂x1ψ(z)+ sgn(∂x2ψ(z

∗)) ∂x2ψ(z), z ∈ Q R. (3-4)

In contrast with the standard regularity theory for optimal transport, Q R is not uniformly convex.
Then, the regularity theory of the Monge–Ampère equation is not directly applicable in full generality.
Specifically, since f, g ∈ C1,δ(Q R) are bounded away from zero on Q R , we have T ∈ C0,δ(Q R) by
[Caffarelli 1992a]. However, the lack of uniform convexity may prevent the full elliptic regularity
[Caffarelli 1996], which claims that T is a diffeomorphism of class C2,δ(Q R). Fortunately, we can
proceed as in [Jhaveri 2019, Theorem 3.3] which, thanks to a clever symmetrization argument around
each corner of Q R and the classical interior regularity in [Caffarelli 1992b], shows that T is indeed a
diffeomorphism of class C2,δ(Q R). Moreover, it fixes the corners and sends each segment of the boundary
to itself. This guarantees in particular that H̃ ∈ C2(Q R) and the optimality conditions above make sense,
as shown below.

Proof of Lemma 3.2. We remark that z∗
∈ Q R must also be a maximizer of H̃ since we have

H̃(z)≤ H(z)≤ H(z∗)= H̃(z∗)

for every z∗
∈ Q R by the definitions of H and H̃ in (3-2) and (3-4). Since the maximizer z∗ may lie in

principle in all Q R , two possible options arise, either z∗
∈ Q R or z∗

∈ ∂Q R . In the first case, the usual
optimality conditions at interior points yield (3-3). In the second case, namely z∗

∈ ∂Q R , note that the
result is trivial if z∗ is one of the four corners since those are fixed points of T and therefore H̃ ≡ 0.
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Hence, from here on we will assume that z∗
∈ ∂Q R is not at a corner, but it lies in the interior of some of

the four segments. Note that at those points we only have to prove that ∇ H̃(z∗)= 0. In fact, we remark
that those z∗ can be approached by interior points from any direction, and then the above readily implies
the second-order optimality condition D2 H̃(z∗)≤ 0. To show that ∇ H̃(z∗)= 0, note that the boundary
∂Q R contains four segments:

S+

1 := {(x1, x2) ∈ R2
: x1 = R, x2 ∈ [−R, R]}, S+

2 := {(x1, x2) ∈ R2
: x1 ∈ [−R, R], x2 = R},

S−

1 := {(x1, x2) ∈ R2
: x1 = −R, x2 ∈ [−R, R]}, S−

2 := {(x1, x2) ∈ R2
: x1 ∈ [−R, R], x2 = −R}.

Since T (∂Q R)= ∂Q R and each segment is mapped to itself, we have

∂x1ψ(z)= 0 if z ∈ S+

1 ∪ S−

1 , (3-5)

∂x2ψ(z)= 0 if z ∈ S+

2 ∪ S−

2 . (3-6)

By differentiation it is clear that we also have

∂x1x2ψ(z)= 0 if z ∈ ∂Q R. (3-7)

Now, we argue according to the four possible segments of ∂Q R that z∗ may belong to.

Case 1: z∗
∈ S+

1 ∪ S−

1 . In this case, by (3-5) we have ∂x1ψ(z
∗)= 0 and therefore we have

H̃(z)= sgn(∂x2ψ(z
∗)) ∂x2ψ(z), z ∈ Q R.

Since z∗ is a maximizer of H̃, there exists λ ∈ R (indeed λ≥ 0 if z∗
∈ S+

1 and λ≤ 0 if z∗
∈ S−

1 ) such that
its gradient at z∗ equals the multiple λ(1, 0) of the outer normal vector, that is,

∇ H̃(z∗)= sgn(∂x2ψ(z
∗))

(
∂x1x2ψ(z

∗)

∂x2x2ψ(z
∗)

)
=

(
λ

0

)
.

This implies that the second component of the gradient must vanish, but the first one also vanishes by the
condition (3-7) on the crossed derivative. Then, we have ∇ H̃(z∗)= 0.

Case 2: z∗
∈ S+

2 ∪ S−

2 . In this case, by (3-6) we have ∂x2ψ(z
∗)= 0 and therefore we have

H̃(z)= sgn(∂x1ψ(z
∗)) ∂x1ψ(z), z ∈ Q R.

Since z∗ is a maximizer of H̃, there exists λ ∈ R (indeed λ≥ 0 if z∗
∈ S+

2 and λ≤ 0 if z∗
∈ S−

2 ) such that
its gradient at z∗ equals the multiple λ(0, 1) of the outer normal vector, that is,

∇ H̃(z∗)= sgn(∂x1ψ(z
∗))

(
∂x1x1ψ(z

∗)

∂x1x2ψ(z
∗)

)
=

(
0
λ

)
.

This implies that the first component of the gradient must vanish, but the second one also vanishes by the
condition (3-7) on the crossed derivative. Then, we have ∇ H̃(z∗)= 0. □

We remark that the unique formal point of the sketch of the proof of Lemma 2.6 in Section 2 which could
break down is the fact that for the global densities f = p and g = p̃ in (2-9)–(2-10) the ℓ1 displacement
of their Brenier map does not necessarily attain its maximum. In particular, we may be deprived of the
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optimality condition (2-18), which was crucially used throughout the maximum-type principle sketched
in Section 2. However, Lemma 3.2 does guarantee that the maximum must be attained and the optimality
conditions (3-3) must hold in particular when f and g are set to be the truncation of the densities p and p̃
on ℓ∞ balls. In fact, the result does not exploit the special potential V in the definition (2-9)–(2-10) of
p, p̃, which corresponds to the potential of the eigenfunction F = e− V in Theorem 1.2(i), but it can
actually be replaced by any strongly convex function supported on Q R . Since we shall use this more
general version later in Section 4, we state in full generality below.

Lemma 3.3 (maximum principle on ℓ∞ balls). For any γ -convex potential V ∈ C1,δ
loc (R) with γ > 0, any

x, x̃ ∈ R with x ̸= x̃ , and any R > 0 we define f, g ∈ L1
+
(Rd)∩P(R2) given by

f (z)=
1
Z

e−W (z), g(z)=
1

Z̃
e−W̃ (z), z ∈ R2,

where the potentials W and W̃, and the normalizing constants Z and Z̃ are

W (z) :=
1
2

∣∣x −
1
2(x1 + x2)

∣∣2
+ V (x1)+ V (x2)+χQ R

(z),

W̃ (z) :=
1
2

∣∣x̃ −
1
2(x1 + x2)

∣∣2
+ V (x1)+ V (x2)+χQ R

(z),

Z :=

∫∫
R2

e−W (z) dz, Z̃ :=

∫∫
R2

e−W̃ (z) dz,

and χQ R
is the characteristic function associated to the ℓ∞ ball Q R; see (1-23). Then, the Brenier map

T = ∇φ : Q R → Q R from f to g satisfies

W∞,1( f, g)≤
∥∥∥T − I∥1

∥∥
L∞(Q R)

≤
2

1+2γ
|x − x̃ |.

As explained above, we omit the proof since it follows the formal proof of Lemma 2.6 in Section 2
and the optimality conditions in Lemma 3.2. In particular, by setting V = V (and therefore γ = β) we
have that Lemma 3.3 is directly applicable to the truncations to Q R of the densities p, p̃ in (2-9)–(2-10).

Definition 3.4 (truncation to Q R). For the probability densities p, p̃ ∈ L1
+
(R2)∩P(R2) given in (2-9)–

(2-10), we define their truncations to the ℓ∞ ball Q R (see (1-22)) as

pR(z) :=
1

ZR
e− W R(z), p̃R(z) :=

1

Z̃R
e−W̃ R(z),

W R(z) := W(z)+χQ R
(z), W̃ R(z) := W̃(z)+χQ R

(z),

ZR :=

∫
R2

e− W R(z) dz, Z̃R :=

∫
R2

e−W̃ R(z) dz,

for any R > 0, where χQ R
is the characteristic function associated to the ℓ∞ ball Q R; see (1-23).

Then, we are in position to rigorously prove Lemma 2.6 by taking limits R → ∞ and noting that
Lemma 3.3 yields a uniform bound of the displacement independent of R.

Rigorous proof of Lemma 2.6. Consider p and p̃ given in (2-9)–(2-10) and set the associated Brenier map
T : R2

→ R2 from p to p̃. Similarly, we consider the family of truncations pR and p̃R in Definition 3.4
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and we set the associated Brenier maps TR : R2
→ R2. By the above Lemma 3.3 we have∥∥∥TR − I∥1

∥∥
L∞(Q R)

≤
2

1 + 2β
|x − x̃ | (3-8)

for every R > 0. We set the optimal transference plans γ ∈ 0o( p, p̃) and γR ∈ 0o( pR, p̃R) associated
with the W2,2 distance, which are known to be supported on the graph of the above Brenier maps, i.e.,

γ := (I, T )# p, γR := (I, TR)# pR .

Since the involved potentials W and W̃ are β-convex, we have enough integrability on p and p̃ to ensure
that p, p̃ ∈ P2(R

2). Hence, the dominated convergence theorem applies and we have indeed

pR → p, p̃R → p̃ in (P2(R
2),W2,2).

By stability of optimal transference plans, the sequence γR must converge narrowly to some optimal
transference plan (up to a subsequence); see [Ambrosio et al. 2008, Proposition 7.1.3]. Since the unique
optimal transference plan between p and p̃ is precisely the above γ supported on the graph of T, we obtain

γR → γ narrowly in P(R2).

Now we use the Kuratowski convergence of the supports under the narrow convergence of measures; see
[Ambrosio et al. 2008, Proposition 5.1.8]. Namely, consider any z ∈ R2. Since (z, T (z)) ∈ supp γ , there
exists (zR, wR) ∈ supp γR such that (zR, wR)→ (z, T (z)). Since γR is supported on the graph of TR , we
have zR

∈ Q R and wR
= TR(zR). In particular, we have TR(zR)− zR

→ T (z)− z as R → ∞ and by the
above uniform bound (3-8) the same bound is preserved in the limit, that is,

W∞,1( p, p̃)≤
∥∥∥T − I∥1

∥∥
L∞ ≤

2
1 + 2β

|x − x̃ |. □

Remark 3.5 (replacing ℓ∞ balls by ℓ1 balls). We note that in Lemmas 3.2 and 3.3 the choice of ℓ∞ is
crucial. However, this is not the only possible choice and a similar proof could be obtained if replacing
ℓ∞ balls with ℓ1 balls. It is clear anyway that the shape of the boundary and the norm to be optimized
should satisfy some form of compatibility conditions.

4. Analysis of a truncated problem

In this part, we study an auxiliary version of the original time marching problem (1-1) restricted to the
bounded interval IR := (−R, R) with R > 0, namely,

F R
n = TR[F R

n−1], n ∈ N, x ∈ R. (4-1)

Here, we truncate the selection function m R as

m R(x) := m(x)+χI R
(x), x ∈ R, (4-2)

where χI R
is the characteristic function associated to the interval I R (see (1-23)), so that the truncated

integral operator TR takes the form

TR[F](x) := e−m R(x)
∫∫

R2
G

(
x −

x1 + x2

2

)
F(x1)

F(x2)

∥F∥L1
dx1 dx2, x ∈ R. (4-3)
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Again, solutions of the form F R
n (x)= (λR)n F R(x) come as eigenpairs of the nonlinear eigenproblem

λR F R
= TR[F R

], x ∈ R,

F R
≥ 0,

∫
R

F R(x) dx = 1.
(4-4)

The goal of this section is to derive an analogous truncated version of Theorem 1.2. More specifically,
we study (i) existence of a unique strongly log-concave solution (λR, F R) to (4-4), and (ii) quantitative
relaxation of the solutions to (4-1) towards the quasiequilibrium (λR)n F R.

Theorem 4.1 (truncated problem). Consider any m ∈ C2(R) satisfying (H1)–(H2) in Theorem 1.2. Set
any R > 0 and define the truncation m R according to (4-2). Then, the following statements hold true:

(i) (existence of quasiequilibrium) There is a unique solution (λR, F R) to (4-4). In addition, F R
=e− V R

∈

L1
+
(R)∩ C∞(I R) is compactly supported on I R and bounded away from zero on it and β-log-concave

with parameter β > 0 given in (1-7) in Theorem 1.2.

(ii) (one-step contraction) Consider any F R
0 ∈ L1

+
(R)∩ C1(I R) compactly supported on I R and bounded

away from zero on it, and let {F R
n }n∈N be the solution to (4-1) issued at F R

0 . Then, we have∥∥∥∥ d
dx

(
log

F R
n

F R

)∥∥∥∥
L∞(I R)

≤
2

1 + 2β

∥∥∥∥ d
dx

(
log

F R
n−1

F R

)∥∥∥∥
L∞(I R)

for any n ∈ N.

(iii) (asynchronous exponential growth) Consider any F R
0 ∈ L1

+
(R)∩C1(I R) compactly supported on I R

and bounded away from zero on it, and let {F R
n }n∈N be the solution to (4-1) issued at F R

0 . Then, we have∣∣∣∣ ∥F R
n ∥L1

∥F R
n−1∥L1

− λR
∣∣∣∣ ≤ CR

(
2

1 + 2β

)n

,∥∥∥∥ F R
n

∥F R
n ∥L1

− F R
∥∥∥∥

C1
≤ C ′

R

(
2

1 + 2β

)n

for any n ∈ N and some constants CR,C ′

R depending on R and F R
0 .

As we show below, our proof exploits the overarching local contraction result, Lemma 3.3, to answer
simultaneously both questions. More specifically, our main observation is the following type of contraction
which holds true providing that the initial data F R

0 is strongly log-concave.

Lemma 4.2 (Cauchy-type property). Let m ∈ C2(R) satisfy (H1)–(H2) in Theorem 1.2. Consider a
β0-log-concave density F R

0 ∈ L1
+
(R)∩ C1,δ(I R) with β0 > 0 and 0< δ < 1, compactly supported on I R

and bounded away from zero on it. Let {F R
n }n∈N be the solution to (4-1) issued at F R

0 . Then, we have∥∥∥∥ d
dx

(
log

F R
n

F R
n−1

)∥∥∥∥
L∞(I R)

≤
2

1 + 2βn−2

∥∥∥∥ d
dx

(
log

F R
n−1

F R
n−2

)∥∥∥∥
L∞(I R)

, n ≥ 2,

where the sequence {βn}n∈N is defined by recurrence as in (2-2).
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Proof. For any n ∈ N, we define

u R
n (x) :=

F R
n (x)

F R
n−1(x)

, x ∈ I R,

and note that, arguing as in (2-3), we have that {un}n∈N must solve the following analog of (2-4):

u R
n (x)=

∥F R
n−2∥L1

∥F R
n−1∥L1

∫∫
Q R

P R
n (x; x1, x2)u R

n−1(x1)u R
n−1(x2) dx1 dx2

for any x ∈ I R and n ≥ 2. We remark that the system above holds only on I R and the one-step transition
probability P R

n (x; · )∈ L1
+
(Q R)∩P(Q R) is not time-homogeneous but it depends explicitly on n, namely

P R
n (x; x1, x2) :=

1
Z R

n (x)
e−W R

n (x;x1,x2), x ∈ I R, (x1, x2) ∈ Q R,

W R
n (x; x1, x2) :=

1
2

∣∣x −
1
2(x1 + x2)

∣∣2
+ V R

n−2(x1)+ V R
n−2(x2),

Z R
n (x) :=

∫∫
Q R

e−W R
n (x;x1,x2) dx1 dx2,

where we let V R
n : I R → R so that F R

n = e−V R
n . By Lemma 2.2, V R

n−2 is βn−2-convex and therefore the
contractivity Lemma 3.3 applies to f = P R

n (x; · ) and g = P R
n (x̃; · ) with x, x̃ ∈ I R leading to

W∞,1(P R
n (x; · ), P R

n (x̃; · ))≤
2

1 + 2βn−2
|x − x̃ |.

Therefore, arguing as in Lemma 2.4 we end the proof. □

Proof of Theorem 4.1. Step 1: Proof of (i). Under appropriate assumptions on F R
0 we shall prove that

∥F R
n ∥L1/∥F R

n−1∥L1 and F R
n /∥F R

n ∥L1 must converge as in (iii), and their limit (λR, F R) solves (4-4). We
set a β0-log-concave density F R

0 ∈ L1
+
(R)∩ C1,δ(I R) with β0 > β and 0< δ < 1, compactly supported

on I R and bounded away from zero on it. Let {F R
n }n∈N be the solution to (4-1). Since the initial datum

has been chosen strongly log-concave, Lemma 4.2 implies∥∥∥∥ d
dx

(
log

F R
n

F R
n−1

)∥∥∥∥
L∞(I R)

≤

(
2

1 + 2β

)n−1∥∥∥∥ d
dx

(
log

F R
1

F R
0

)∥∥∥∥
L∞(I R)

for all n ≥1 because F R
n are βn-log-concave with βn>β for all n ∈N by Lemma 2.2. Setting V R

n : I R →R

as before so that F R
n = e−V R

n we obtain∥∥∥ d
dx
(V R

n − V R
m )

∥∥∥
L∞(I R)

≤

n∑
k=m+1

∥∥∥ d
dx
(V R

k − V R
k−1)

∥∥∥
L∞(I R)

≤

n−1∑
k=m

(
2

1 + 2β

)k∥∥∥ d
dx
(V R

1 − V R
0 )

∥∥∥
L∞(I R)

for all n ≥ m ≥ 1. Since 2
1+2β < 1 by Remark 1.7,

{ d
dx (V

R
n )

}
n∈N

is a Cauchy sequence in C(I R) and
therefore it must converge uniformly to some limit DR

∈ C(I R). In particular, we have

d
dx
(log F R

n )→ DR in C(I R). (4-5)
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Now, we show that F R
n /∥F R

n ∥L1 must also converge when evaluated at least at one point, and we choose
x = 0 for instance. To this purpose, we note that F R

n (0)/∥F R
n ∥L1 can be restated as∫∫

Q R
G

( 1
2(x1+x2)

)
exp

(
−(V R

n−1(x1)−V R
n−1(0))−(V

R
n−1(x2)−V R

n−1(0))
)
dx1 dx1∫

I R

∫∫
Q R

G
(
x ′−

1
2(x1+x2)

)
exp

(
−m(x ′)−(V R

n−1(x1)−V R
n−1(0))−(V

R
n−1(x2)−V R

n−1(0))
)

dx ′ dx1 dx2
,

and, by the fundamental theory of calculus, V R
n−1(x)− V R

n−1(0) in the integrand can be represented by

V R
n−1(x)− V R

n−1(0)=

∫ 1

0

dV R
n−1

dx
(θx)x dθ, x ∈ I R,

which converges uniformly to some limit. Therefore, there exists L R
∈ R such that

log
F R

n (0)
∥F R

n ∥L1
→ L R. (4-6)

Putting (4-5)–(4-6) together and using the fundamental theorem of calculus gives

log
F R

n (x)
∥F R

n ∥L1
= log

F R
n (0)

∥F R
n ∥L1

+

∫ 1

0

d
dx
(log F R

n )(θx)x dθ → L R
+

∫ 1

0
DR(θx)x dθ in C1(I R).

We define F R(x) := exp
(
L R

+
∫ 1

0 DR(θx)x dθ +χI R
(x)

)
∈ L1

+
(R)∩P(R) and therefore we achieve

F R
n

∥F R
n ∥L1

→ F R in C1(I R). (4-7)

Our second step is to prove the convergence of ∥F R
n ∥L1/∥F R

n−1∥L1 . Note that we have

∥F R
n ∥L1

∥F R
n−1∥L1

=

∫∫
R2

HR(x1, x2)
F R

n−1(x1)

∥F R
n−1∥L1

F R
n−1(x2)

∥F R
n−1∥L1

dx1 dx2, (4-8)

where we have defined

HR(x1, x2) :=

∫
I R

e−m(x)G
(
x −

1
2(x1 + x2)

)
dx, (x1, x2) ∈ R2.

Since HR is a bounded function, we have HR ∈ L1(Q R) and, consequently, the above uniform convergence
(4-7) of the normalized profiles, along with (4-8), implies that there must exists λR with

∥F R
n ∥L1

∥F R
n−1∥L1

→ λR . (4-9)

The last step is to show that (λR, F R) must solve (4-4). This is actually clear because we have

∥F R
n ∥L1

∥F R
n−1∥L1

F R
n

∥F R
n ∥L1

= TR

[
F R

n−1

∥F R
n−1∥L1

]
for all n ∈ N, and ∥F R

n ∥L1/∥F R
n−1∥L1 and F R

n /∥F R
n ∥L1 converge in the above sense (4-7)–(4-9). We note

that F R must be β-log-concave because so is F R
n for all n ∈ N. The uniqueness of the solution to (4-4)

will not be analyzed here, but it will hold as a consequence of the next contraction property in Step 2.
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Step 2: Proof of (ii). Once a strongly log-concave solution (λR, F R) of the truncated nonlinear eigen-
problem (4-4) exists, the one-step contraction property follows the same ideas as in the global version in
Theorem 1.2(ii) sketched in Section 2. More specifically, we shall argue like in the proof of Lemma 4.2
where again we replace un by the normalization of F R

n by the quasiequilibrium (λR)n F R. That is, for
any n ∈ N, we define

u R
n (x) :=

F R
n (x)

(λR)n F R , x ∈ I R,

which must solve

u R
n (x)=

1
∥u R

n−1 F R
∥L1

∫∫
Q R

P R(x; x1, x2)u R
n−1(x1)u R

n−1(x2) dx1 dx2

for any x ∈ I R and n ∈ N, where P R(x; · ) ∈ L1
+
(Q R)∩P(Q R) is the one-step transition probability

P R(x; x1, x2) :=
1

ZR(x)
e− W R(x;x1,x2), x ∈ I R, (x1, x2) ∈ Q R,

W R(x; x1, x2) :=
1
2

∣∣x −
1
2(x1 + x2)

∣∣2
+ V R(x1)+ V R(x2),

ZR(x) :=

∫∫
Q R

e− W R(x;x1,x2) dx1 dx2.

Again, we let V R
: I R → R so that F R

= e− V R
. By Step 1 we have that V R is β-convex and therefore

the contractivity result, Lemma 3.3, applies to P R(x; · ) and P R(x̃; · ) with x, x̃ ∈ I R leading to

W∞,1(P R(x; · ), P R(x̃; · ))≤
2

1 + 2β
|x − x̃ |.

Therefore, arguing as in Lemma 2.4 we end the proof.
In particular, the above implies that (λR, F R) must be the unique solution to the truncated nonlinear

eigenequation (4-4). Indeed, if a second solution (λR, F R) exists, one can always define the special
solution F R

n (x)= (λR)n F R(x) of (4-1) and therefore the above one-step contraction implies∥∥∥∥ d
dx

(
log

F R

F R

)∥∥∥∥
L∞(I R)

≤
2

1 + 2β

∥∥∥∥ d
dx

(
log

F R

F R

)∥∥∥∥
L∞(I R)

.

Since 2
1+2β < 1 by Remark 1.7, we have F R

= F R (and therefore λR
= λR) because both F R and F R

are probability densities by definition.

Step 3: Proof of (iii). We prove that the convergence in Step 1 holds for generic initial data F R
0 ∈

L1
+
(R)∩ C1(I R) compactly supported on I R and bounded away from zero on it, and not necessarily

strongly log-concave. Note that by the above one-step contractivity property we have again∥∥∥∥ d
dx
(V R

n − V R)

∥∥∥∥
L∞(I R)

≤

(
2

1 + 2β

)n∥∥∥∥ d
dx
(V R

0 − V R)

∥∥∥∥
L∞(I R)

,

for all n ∈ N. Then, the same argument as in Step 1 can be applied with explicit convergence rates and
equal to

( 2
1+2β

)n at each step: first d
dx (log F R

n ), then log(F R
n (0)/∥F R

n ∥L1), hence log(F R
n /∥F R

n ∥L1), and
finally also ∥F R

n ∥L1/∥F R
n−1∥L1 . Therefore, we readily obtain the claimed convergence rates for the rates

of growth and the normalized profiles. □
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5. Existence and uniqueness of strongly log-concave quasiequilibria

In this section, we employ the truncated quasiequilibria in the above Theorem 4.1 to build a globally
defined quasiequilibrium of the nontruncated model (1-1), thus proving Theorem 1.2(i). In the following,
we show that the probability densities in the family {F R

}R>0 are uniformly tight, and therefore weak limits
cannot lose mass at infinity, which will be useful in the sequel in order to pass to the limit with R → ∞.

Proposition 5.1 (bounded second-order moments). Under the assumptions in Theorem 4.1, let us consider
the unique eigenpair (λR, F R) of (4-4) for any R > 0 according to Theorem 4.1(i). Then,

sup
R>0

∫
R

x2 F R(x) dx <∞. (5-1)

We recall that a similar result was necessary in [Calvez et al. 2024]. Indeed, a general strategy was
developed therein to propagate second-order moments along any solution {Fn}n∈N under the a priori
knowledge that the centers of mass stay uniformly bounded. However, such a condition proved difficult to
verify unless the initial datum F0 is centered at the origin, and m is an even function, which would leave
the center of mass fixed at the origin (and thus bounded) for all times. To overcome this problem, an
alternative approach was developed in [Calvez et al. 2024, Lemma 4.5] in order to control the convergence
to zero of the center of mass in the case of quadratic selection. Unfortunately, the proof exploits the
Gaussian structure in a crucial way and cannot be easily adapted to more general selection functions.
Here, we propose an alternative strategy based on the extra knowledge that F R are β-log-concave.

Proof of Proposition 5.1. Step 1: Uniform bound of the variance. Let us define the center of mass and
the variance

µR :=

∫
R

x F R(x) dx and σ 2
R :=

∫
R

(x − µR)
2 F R(x) dx,

for any R > 0. Since each eigenfunction F R is β-log-concave, a straightforward application of the
Brascamp–Lieb inequality shows that variances σ 2

R satisfy

σ 2
R ≤

1
β

(5-2)

for any R > 0; see [Brascamp and Lieb 1976, Theorem 4.1]. Then, in order to control the (noncentered)
second-order moments, we actually need to find a bound of the center of mass µR .

Step 2: Uniform bound of the center of mass. Assume that {µR}R>0 is unbounded by contradiction.
Changing variables x with −x if necessary, we may assume without loss of generality that µR ↗ +∞ as
R ↗ +∞ up to an appropriate subsequence, which we denote in the same way for simplicity of notation.
Note that integrating (4-4) against em R(x) and remarking that

∫
R
B[F R

](x) dx =
∫

R
F R(x) dx = 1 (where

B is given in (1-3)) we obtain
AR BR = 1 (5-3)

for every R > 0, where each factor reads

AR :=

∫
R

em R(x) F R(x) dx, BR :=

∫
R2
φR( 1

2(x1 + x2)
)

F R(x1) F R(x2) dx1 dx2,
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and φR
:= G ∗ e−m R. By Chebyshev’s inequality we know that∫

|x−µR |≤
√

2 σ R

F R(x) dx ≥
1
2 (5-4)

for all R > 0. Therefore, noting that m is nondecreasing in R+ by virtue of the hypotheses (H1)–(H2) we
obtain the lower bound

AR ≥

∫
|x−µR |≤

√
2 σ R

em R(x) F R(x) dx ≥
1
2 min

|x−µR |≤
√

2 σ R

em(x)
=

1
2 em(µR −

√
2 σ R) (5-5)

for large enough R > 0 so that [µR −
√

2 σ R,µR +
√

2 σ R] ⊂ R+. Similarly, using (5-4) and noting that
φR is nonincreasing at the right of its maximizer (by strong log-concavity, see Lemma 2.2) we obtain

BR ≥

∫∫
|xi −µR |≤

√
2σR

φR( 1
2(x1 + x2)

)
F R(x1) F R(x2) dx1 dx2

≥
1
4 min

|x−µR |≤
√

2 σ R

φR(x)≥
1
4φ

R(µR +
√

2 σ R) (5-6)

for large enough R > 0 so that [µR −
√

2 σ R,µR +
√

2 σ R] lies in that region of the domain. Note
that the above can be obtained if R > 0 is large enough since µR

−
√

2 σ R → ∞ by assumptions, but
the maximizers of φR must converge to the maximizer of φ, which is a fixed number in the real line.
Multiplying (5-5) and (5-6) yields the lower bound

AR BR ≥
1
8 em R(µR −

√
2 σ R)(G ∗ e−m R )(µR +

√
2 σ R) (5-7)

for large enough R > 0. Lemma B.2 provides an explicit lower bound (B-6) on Gaussian convolutions.
Therefore, applying it to the second factor in (5-7) with the choices

f = e−m, γ = α, x0 = µR, δ =
√

2 σ R

implies the lower bound

AR BR ≥ G(2
√

2 σ R)

∫ α
α+1 µR −

√
2 σ R
α+1

0
exp

(1
2(α+1)z2) dz

≥ G
(

2
√

2
√
β

) ∫ α
α+1 µR −

√
2

√
β(α+1)

0
exp

( 1
2(α+1)z2) dz, (5-8)

where in the last line we have used the bound (5-2) of variances. Since the left-hand side in (5-8) diverges
as R → ∞ because µR → +∞, we reach a contradiction with (5-3), and this ends the proof. □

Theorem 5.2 (existence of quasiequilibria). Under the assumptions in Theorem 4.1, let us consider the
unique eigenpair (λR, F R) of (4-4) for any R > 0. Then, there exist λ ∈ R and F ∈ L1

+
(R)∩ C∞(R)

which is β-log-concave (with β given in (1-7)) such that

λR
→ λ, F R

→ F, as R → ∞,

up to subsequence, both pointwise and in any space (Pp(R),Wp) with 1 ≤ p < 2. Moreover, the pair
(λ, F) is the unique solution to (1-5) among all pairs (λ, F) satisfying (1-8).
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Proof. Step 1: Existence via limit as R → ∞. Let us notice that by (5-1) in Proposition 5.1 we have that
{F R

}R>0 is a uniformly tight sequence of probability measures. Therefore, by Prokhorov’s theorem there
must exist Rn ↗ ∞ and some limiting probability measure F ∈ P(R) such that

F Rn → F narrowly in P(R). (5-9)

By integration on (4-4) we also obtain that

λRn =

∫∫
R2
(e−m Rn ∗ G)

( 1
2(x1 + x2)

)
F Rn (x1) F Rn (x2) dx1 dx2,

and then we can pass to the limit as n → ∞ in the eigenvalues too. Specifically, since e−m R → e−m in
L∞(R), we have e−m R ∗ G → e−m

∗ G in Cb(R), and therefore by (5-9) we obtain

λRn → λ (5-10)
as n → ∞, where λ is given by

λ :=

∫∫
R2
(e−m

∗ G)
( 1

2(x1 + x2)
)

F(x1) F(x2) dx1 dx2 =

∫
R

T [F](x) dx . (5-11)

Putting (5-9) and (5-10) together and taking limits as n → ∞ in (4-4) implies that {F Rn }n∈N must
also converge pointwise to some other limit F̃ ∈ L1

+
(R) by Fatou’s lemma. Note that since F R are all

β-log-concave, their pointwise limit F̃ must be also. Indeed, note that we further have

λ F̃(x)= T [F](x), x ∈ R, (5-12)

and therefore, F̃ ∈ L1
+
(R)∩P(R), in view of (5-11). Then, we actually have F Rn → F̃ in L1(R) (thus

narrowly in P(R)) by Scheffé’s lemma. Since F is a narrow limit of the same sequence, we have F̃ = F
and by (5-12) we obtain that (λ, F) must satisfy the initial problem (1-5). Let us also emphasize that we
indeed have convergence in any L p Wasserstein space with 1 ≤ p< 2 because all the p-th order moments
with 1 ≤ p < 2 are uniformly integrable by (5-1); see [Ambrosio et al. 2008, Proposition 7.1.5].

Step 2: Uniqueness of quasiequilibria. Note that several different convergent subsequences of {F R
}R>0

in Step 1 could give rise to various eigenpairs (λ, F) of (1-5). Whilst the global uniqueness is unclear with
this method, we prove that there can only exist one solution to (1-5) among the pairs (λ, F) satisfying
(1-8). We exploit the one-step contraction property in Theorem 1.2(ii). Specifically, assume that (λ, F)
is any other solution to (1-5) and define Fn(x) = λn F(x), which is clearly a solution to the evolution
problem (1-1) with initial datum F0 ∈ L1

+
(R)∩ C1(R) satisfying the hypothesis (H3) by virtue of the

assumption (1-8). Then, (1-9) implies∥∥∥∥ d
dx

(
log

F
F

)∥∥∥∥
L∞

≤
2

1 + 2β

∥∥∥∥ d
dx

(
log

F
F

)∥∥∥∥
L∞

.

Again, since 2
1+2β < 1 by Remark 1.7, we obtain that F/ F must be constant. Since both F and F are

normalized probability densities, then we necessarily have that F = F (and therefore λ= λ). □

6. Convergence to equilibrium for restricted initial data

In this section, we prove asynchronous exponential growth as claimed in Theorem 1.2(iii). More
specifically, we show that for restricted initial data the asymptotic behavior of the rate of growth of the
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mass ∥Fn∥L1/∥Fn−1∥L1 and the normalized profiles Fn/∥Fn∥L1 is dictated by the solution (λ, F) of the
eigenproblem (1-5) obtained in Theorem 1.2(i). We derive the relaxation of the normalized profiles under
the relative entropy metric. Our starting point is the one-step contraction property of the L∞ relative Fisher
information in Theorem 1.2(ii) and the following version of the logarithmic-Sobolev inequality with respect
to strongly log-concave densities, which relate the (L2) relative Fisher information and the relative entropy.

Proposition 6.1 (logarithmic-Sobolev inequality). Consider any pair P, Q ∈ L1
+
(R)∩P(R) such that Q

is γ -log-concave for some γ > 0. Then, we have

DK L(P∥Q)≤
1

2γ
I2(P∥Q)≤

1
2γ

I2
∞
(P∥Q), (6-1)

where DKL is the relative entropy (1-12), I2 is the usual (or L2) relative Fisher information (1-18), and
I∞ is the L∞ relative Fisher information (1-6).

On the one hand, the first part of the inequality (6-1) amounts to the usual logarithmic-Sobolev
inequality with respect to a strongly log-concave measure; see Corollary 5.7.2 and Section 9.3.1 in [Bakry
et al. 2014] for details. On the other hand, the second part of the inequality readily holds by definition.
Therefore, putting Theorem 1.2(ii) and Proposition 6.1 together, we end the proof of Theorem 1.2(iii).

Proof of Theorem 1.2(iii). By iterating n times the one-step contraction property in Theorem 1.2(ii) and
using the logarithmic-Sobolev inequality (6-1) in Proposition 6.1 we obtain

DKL

(
Fn

∥Fn∥L1

∥∥∥∥ F
)

≤ C1

(
2

1 + 2β

)2n

(6-2)

for every n ∈ N, where the constant C1 reads

C1 :=
1

2γ
I2

∞
(F0 ∥ F),

and it is finite by the assumption (H3). This proves the relaxation of the normalized profiles towards F in
the relative entropy sense. Regarding the rate of growth, we note that

∥Fn∥L1

∥Fn−1∥L1
=

∫∫
R2
φ

(
x1 + x2

2

)
Fn−1(x1)

∥Fn−1∥L1

Fn−1(x2)

∥Fn−1∥L1
dx1 dx2 (6-3)

λ =

∫∫
R2
φ

(
x1 + x2

2

)
F(x1) F(x2) dx1 dx2. (6-4)

where (λ, F) is the solution to (1-5) in Theorem 1.2(i), and φ := G ∗ e−m again. Taking the difference of
the two identities (6-3) and (6-4) above, we achieve∣∣∣∣ ∥Fn∥L1

∥Fn−1∥L1
− λ

∣∣∣∣ ≤ ∥φ∥L∞

∥∥∥∥ Fn−1

∥Fn−1∥L1
⊗

Fn−1

∥Fn−1∥L1
− F ⊗ F

∥∥∥∥
L1

≤ ∥φ∥L∞

√
1
2
DKL

(
Fn−1

∥Fn−1∥L1
⊗

Fn−1

∥Fn−1∥L1

∥∥∥∥ F ⊗ F
)

= ∥φ∥L∞

√
DKL

(
Fn−1

∥Fn−1∥L1

∥∥∥∥ F
)

≤ C2

(
2

1 + 2β

)n

,
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with a explicit constant C2 > 0 taking the form

C2 := ∥φ∥L∞

√
C1.

Note that above, we have used successively Hölder’s inequality, Pinsker’s inequality, the tensorization
property of the relative entropy, and (6-2) to reach the conclusion. □

Appendix A: Intermediate dualities

For simplicity of the discussion, we do not present here the intermediate Kantorovich-type dualities in
the case of nonlinear transition semigroups as in (2-4), but we rather focus on linear semigroups. More
specifically, we have the following intermediate result which is reminiscent of the natural interpolation of
Kantorovich duality for L1 Wasserstein distance, and Lemma 2.4 for L∞ Wasserstein metric.

Proposition A.1. Consider any µ, ν ∈ Pp(R
d) for some 1 ≤ p ≤ ∞, and set any function u ∈ C1(Rd)

such that u > 0 and ∇(u1/p) ∈ L∞(Rd ,Rd). Then, the following inequality holds true for any 1 ≤ q ≤ ∞,
and q ′ given by 1

q +
1
q ′ = 1:∣∣∣∣(∫

Rd
u(x) µ(dx)

)1/p

−

(∫
Rd

u(x) ν(dx)
)1/p∣∣∣∣ ≤

∥∥∥∇(u1/p)∥q ′

∥∥
L∞ Wp,q(µ, ν).

Here, Wp,q denotes the L p Wasserstein distance associated with ℓq norm of Rd, see (1-24), and we use
the convention that u1/∞

= log u for all u > 0.

Proof. Let us consider any constant-speed geodesic t ∈ [0, 1] 7→ ρt ∈ Pp(R
d) in the Wasserstein space

(Pp(R
d),Wp,q) joining µ to ν. Specifically, ρ satisfies the continuity equation

∂tρt + div(ρtvt)= 0, t ∈ [0, 1], x ∈ Rd ,

ρ0 = µ, ρ1 = ν,
(A-1)

in the distributional sense and, in addition, we have∥∥∥vt∥q
∥∥

L p(ρt )
= Wp,q(µ, ν), t ∈ [0, 1]. (A-2)

Let us also define the function
E(t) :=

∫
Rd

u(y) ρt(dy), t ∈ [0, 1].

Since ρ ∈ Lip([0, 1],Pp(R
d)), we have E ∈ AC([0, 1]) and by the continuity equation (A-1) we have

d E
dt
(t)=

∫
Rd

∇u(y) · vt(y) ρt(dy)= p
∫

Rd
∇(u1/p)(y) · vt(y)u1/p′

(y) ρt(dy) (A-3)

for a.e. t ∈ [0, 1], where we have used the identity ∇u = p∇(u1/p)u1/p′

. Therefore, we obtain∣∣∣∣d E
dt
(t)

∣∣∣∣ ≤ p
∫

Rd
∥∇(u1/p)(y)∥q ′ ∥vt(y)∥qu1/p′

(y) ρt(dy)

≤ p
∥∥∥∇(u1/p)∥q ′

∥∥
L∞

∫
Rd

∥vt(y)∥qu1/p′

(y) ρt(dy)

≤ p
∥∥∥∇(u1/p)∥q ′

∥∥
L∞

∥∥∥vt∥q
∥∥

L p(ρt )
∥u1/p′

∥L p′
(ρt )
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for a.e. t ∈ [0, 1], where in the first step we have used Hölder’s inequality with the exponent q applied to
the inner product in the integrand of (A-3), and in the last step we have used Hölder’s inequality with
exponent p applied to the integral of the second line. Using the constant-speed condition (A-2) in the
second factor, and ∥u1/p′

∥L p′
(ρt )

= E(t)1/p′

in the last one, we obtain the relation∣∣∣∣d E
dt
(t)

∣∣∣∣ ≤ p
∥∥∥∇(u1/p)∥q ′

∥∥
L∞ Wp,q(µ, ν)E(t)1/p′

for a.e. t ∈ [0, 1], which amounts to∣∣∣∣d E1/p

dt
(t)

∣∣∣∣ ≤
∥∥∥∇(u1/p)∥q ′

∥∥
L∞ Wp,q(µ, ν)

for a.e. t ∈ [0, 1]. Integrating between 0 and 1 implies

|E(0)1/p
− E(1)1/p

| ≤
∥∥∥∇(u1/p)∥q ′

∥∥
L∞ Wp,q(µ, ν).

Then, noting that E(0)=
∫

Rd u(x) µ(dx) and E(1)=
∫

Rd u(x) ν(dx) ends the proof. □

As a consequence, we obtain the following result, which allows identifying the Lipschitz constant of a
function with the Lipschitz constant of an associated nonlinear functional over Pp(R

d).

Corollary A.2. Consider any 1 ≤ p ≤ ∞, set any v ∈ C1(Rd) with ∇v ∈ L∞(Rd ,Rd), and assume that
v > 0 when p <∞ but not necessarily when p = ∞. Define the functional 8p,v : Pp(R

d)→ R by

8p,v[µ] :=

{(∫
Rd v(x)p µ(dx)

)1/p if p <∞,

log
(∫

Rd ev(x) µ(dx)
)

if p = ∞,

for any µ ∈ Pp(R
d). Then, for any 1 ≤ q ≤ ∞ the following identify holds true:

∥∥∥∇v∥q ′

∥∥
L∞ = sup

µ,ν∈Pp(Rd )

8p,v[µ] −8p,v[ν]

Wp,q(µ, ν)
.

Proof. First, note that the change of variable v = u1/p and Proposition A.1 readily imply∥∥∥∇v∥q ′

∥∥
L∞ ≥ sup

µ,ν∈Pp(Rd )

8p,v[µ] −8p,v[ν]

Wp,q(µ, ν)
.

On the other hand, also note that by particularizing the measures µ, ν ∈ Pp(R
d) to be Dirac masses at

respective points x, x ′
∈ Rd we obtain

sup
µ,ν∈Pp(Rd )

8p,v[µ] −8p,v[ν]

Wp,q(µ, ν)
≥ sup

x,x ′∈Rd

8p,v[δx ] −8p,v[δx ′]

Wp,q(δx , δx ′)
= sup

x,x ′∈Rd

v(x)− v(x ′)

∥x − x ′∥q
=

∥∥∥∇v∥q ′

∥∥
L∞ .

This proves the converse inequality and then the above identity holds. □
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Appendix B: Lower bound of Gaussian convolution of log-concave densities

We present a technical result which computes an explicit lower bound on the convolution of a Gaussian
density and any strongly log-concave probability density.

Lemma B.1 (lower bound I). Consider any f = e−V
∈ L1

+
(R) ∩ P(R), such that V ∈ C1(R) with

V ′(0)= 0, and f is γ -log-concave for some γ > 0. Then, we have

(G ∗ f )(x0 + δ)≥ G(2δ) f (x0 − δ)

∫ γ
γ+1 x0−

δ
γ+1

0
exp

(
γ + 1

2
z2

)
dz (B-1)

for any δ > 0 and each x0 >
γ+2
γ
δ, where G denotes the standard Gaussian distribution (1-4).

Proof. For simplicity of notation, we define x± := x0 ± δ and we note that we can write

(G ∗ f )(x+)=
1

(2π)1/2
f (x−)

∫
R

eV (x−)−U (x) dx, (B-2)

where the function U : R → R is defined by

U (x) := V (x)+ 1
2(x − x+)

2, x ∈ R.

Since the potential V is γ convex, we have that the potential U is (γ+1)-convex. By the convexity
inequality applied to the pair of points (x, x−) we then obtain

U (x−)≥ U (x)+ U ′(x)(x− − x)+
γ + 1

2
(x− − x)2 (B-3)

for any x ∈ R. Consider the unique minimizer x∗ ∈ R of the potential U. Since in particular x∗ is a critical
point of U, we have

0 = U ′(x∗)= V ′(x∗)+ (x∗ − x+).

Multiplying above by x∗, using that V ′(0)= 0 by hypothesis along with the convexity inequality of V
applied at the pair (x∗, 0), we infer γ x2

∗
≤ (x+ − x∗)x∗, and therefore

|x∗| ≤
1

γ + 1
x+. (B-4)

Since U ′(x) > 0 for x > x∗ and x− − x > 0 for x < x−, (B-3) implies

U (x−)≥ U (x)+
γ + 1

2
(x− − x)2

for any x ∈ (x∗, x−). Let us note that indeed we have the appropriate ordering x∗ < x− since by (B-4)
and the assumption x0 >

γ+2
γ
δ we obtain

x∗ ≤
1

γ + 1
x+ =

1
γ + 1

(x0 + δ)≤ x0 − δ = x−.

Writing everything in terms of V implies

V (x−)− U (x)≥ −
1
2
(x− − x+)

2
+
γ + 1

2
(x− − x)2 (B-5)
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for any x ∈ (x∗, x−). Injecting (B-5) into (B-2) we obtain

(G ∗ f )(x+)≥ G(x+ − x−) f (x−)

∫ x−

x∗

exp
(
γ + 1

2
(x− − x)2

)
dx .

Of course, the above implies (B-1) by a simple change of variables z = x− − x , and noting again that

x− − x∗ ≥ x− −
1

γ + 1
x+ = (x0 − δ)−

1
γ + 1

(x0 + δ)=
γ

γ + 1
x0 −

γ + 2
γ + 1

δ,

thanks to (B-4), which yields again positive a positive upper bound by the assumption x0 >
γ+2
γ
δ. □

Note that arguing along the same lines, we can prove an analogous result where the above positive
strongly log-concave density f is replaced by its truncation fR to intervals IR := (−R, R). Specifically,
anything that we need to guarantee is that [x∗, x−] ⊂ IR . First, note that x− < R amounts to the condition
x0 < R + δ. Second, by (B-4) we obtain that x∗ > −R as long as 1

γ+1 x+ < R, which amounts to the
condition x0 < (γ +1)R − δ. If we take R large enough (namely R > 2δ/γ ) then we have that the former
condition on x0 is the most restrictive. Therefore, we have the following result.

Lemma B.2 (lower bound II). Under the assumptions in Lemma B.1, let us define

fR(x) := e−VR(x), x ∈ R,

VR(x) := V (x)+χI R
(x), x ∈ R,

for any R > 0, where χI R
is the characteristic function associated to I R (see (1-23)). Then, we have

(G ∗ fR)(x0 + δ)≥ G(2δ) fR(x0 − δ)

∫ γ
γ+1 x0−

δ
γ+1

0
exp

(
γ + 1

2
z2

)
dz (B-6)

for any δ > 0, each γ+2
γ
δ < x0 < R + δ, and every R > 2δ

γ
.

Appendix C: Euclidean estimates on the displacement of the Brenier map between perturbations
of log-concave measures

In this section we present a proof of the uniform bound of the ℓ2 norm on the displacement of the Brenier
map between perturbations of log-concave measures.

Lemma C.1. Consider two densities f, g ∈ L1
+
(Rd)∩P(Rd), assume that

{z ∈ Rd
: f (z) > 0} = {z ∈ Rd

: g(z) > 0} = B R,

where BR is the Euclidean ball, and suppose that f = e−W, g = e−W̃ are γ -log-concave for some γ > 0
and f, g ∈ C1,δ(B R) for some δ > 0. Let T = ∇φ : B R → B R be the Brenier map from f to g. Then,

W∞,2( f, g)≤
∥∥∥T − I∥2

∥∥
L∞(B R)

≤
1
γ

∥∥∥∇(W − W̃ )∥2
∥∥

L∞(B R)
.

As mentioned in Remark 3.1, this result is not enough for the sake of this paper, but was the starting
point to prove Lemma 2.6. The technique to prove it is essentially based on the computations in [Ferrari
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and Santambrogio 2021], but we provide the proof here since the statement is not a direct consequence
of it. On the other hand, this very result has its own interest, as one can see from the recent paper
[Khudiakova et al. 2024].

Proof of Lemma C.1. Since f, g ∈ C1,δ(B R) are bounded below on BR by a positive constant, f = g = 0
outside BR , and BR is uniformly convex, Caffarelli’s theory [1996] proves that T ∈ C2,δ(B R). We consider
T (z)− z = ∇ψ(z), where ψ(z)= φ(z)− 1

2∥z∥2
2. The function ψ solves the Monge–Ampère equation,

which we write in logarithmic form:

log det(D2ψ(z)+ I )= W̃ (∇ψ(z)+ z)− W (z), z ∈ Rd . (C-1)

Taking partial derivatives ∂xk in (C-1) we have

tr((D2φ)−1∂xk D2ψ)= ∇W̃ (∇ψ + z) · ∂xk ∇ψ + (∇W̃ (∇ψ + z)− ∇W ) · ek, z ∈ Rd ,

for 1 ≤ k ≤ d . We then multiply by ∂xkψ and sum over k, so that we obtain

tr
(
(D2φ)−1

∑
k

∂xk D2ψ∂xkψ

)
=∇W̃ (∇ψ+z)·∂xk

( 1
2∥∇ψ∥

2
2
)
+(∇W̃ (∇ψ+z)−∇W )·∇ψ(z), z ∈Rd .

We now consider the point z∗
∈ B R which maximizes 1

2∥∇ψ∥
2
2, which is also the maximum point

for the displacement ∥T − I∥2. Such a point exists since the ball B R is compact. Moreover, [Ferrari
and Santambrogio 2021, Lemma 3.1] shows that such a maximum cannot be attained on the bound-
ary ∂BR . Hence, we can apply first- and second-order optimality conditions. In particular, we have
∂xk

( 1
2∥∇ψ∥

2
2

)
(z∗)= 0 and the Hessian matrix D2

(1
2∥∇ψ∥

2
2

)
(z∗) has to be negative-definite, i.e.,∑

k

∂xk D2ψ(z∗)∂xkψ(z
∗)+ (D2ψ(z∗))2 ≤ 0.

Using the fact that (D2ψ(z∗))2 is the square of a symmetric matrix, and hence is negative, we obtain
that

∑
k ∂xk D2ψ(z∗)∂xkψ(z

∗) is itself negative definite, and the trace of its product times (D2φ)−1 is also
negative. This allows to obtain

(∇W̃ (∇ψ(z∗)+ z∗)− ∇W (z∗) · ∇ψ(z∗)≤ 0,

which implies (
∇W (∇ψ(z∗)+ z∗)− ∇W (z∗)

)
· ∇ψ(z∗)≤ ∥∇(W̃ − W )∥L∞ ∥∇ψ(z∗)∥2,

and hence by γ -convexity of W we have

γ ∥∇ψ(z∗)∥2
2 ≤ ∥∇(W̃ − W )∥L∞ ∥∇ψ(z∗)∥2,

which ends the proof. □

Similarly to Lemma 2.6 for the ℓ1 norm of the displacement of the Brenier map, a more general result
holds for strictly positive densities f, g ∈ C1,δ

loc (R
d) supported in the full space Rd.
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Corollary C.2. Consider two densities f, g ∈ L1
+
(Rd) ∩ P(Rd), assume that f, g > 0, and suppose

that f = e−W, g = e−W̃ are γ -log-concave for some γ > 0 and f, g ∈ C1,δ
loc (R

d) for some δ > 0. Let
T = ∇φ : Rd

→ Rd be the Brenier map from f to g. Then,

W∞,2( f, g)≤
∥∥∥T − I∥2

∥∥
L∞(Rd ≤

1
γ

∥∥∥∇(W − W̃ )∥2
∥∥

L∞(Rd )
.

The proof is similar to the one of Lemma 2.6 arguing by a truncation argument and applying the local
version in Lemma C.1. Specifically, we truncate W and W̃ and accordingly f and g to an increasing
sequence BR of Euclidean balls preserving the Lipschitz and convexity bounds. We obtain a sequence of
optimal transport maps TR transporting the associated truncations fR onto gR and satisfying∥∥∥TR − I∥2

∥∥
L∞(B R)

≤
1
γ

∥∇(W − W̃ )∥L∞(Rd ),

for all R > 0. Finally, we pass to the limit in the above estimate as R → ∞.
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THE L∞ ESTIMATE
FOR PARABOLIC COMPLEX MONGE–AMPÈRE EQUATIONS

QIZHI ZHAO

Following the recent developments in Chen and Cheng (2023) and Guo et al. (2023), we derive the
L∞ estimate for Kähler–Ricci flows under certain integral assumptions. The technique also extends to
some other parabolic Monge–Ampère equations derived from Kähler geometry and G2 geometry.

1. Introduction

We will derive the L∞ estimate for the Kähler–Ricci flow∂tϕ = log
(
ωϕ

n

enFω0n

)
,

ϕ( · , 0)= ϕ0( · )
(1-1)

under the assumption that the p-entropy Entp(F)=
∫

M |F |
penFω0

n is bounded and
∫

M Fω0
n has a lower

bound. Here is our main theorem.

Theorem 1.1. Let us consider the flow equation (1-1) on M × [0, T ), where M is an n-dimensional
compact Kähler manifold. Let F be a space function, i.e., F : M → R. Assume, for some p > n + 1, the
p-entropy Entp(F) =

∫
M |F |

penFω0
n is bounded and

∫
M nFω0

n
≥ −K . Moreover, suppose ϕ is a C2

solution, and let ϕ̃ = ϕ− /
∫
ϕω0

n be a normalization which has the zero integral. Then we have the L∞

estimate
∥ϕ̃∥L∞(M×[0,T )) ≤ C,

where C depends on n, ω0, ϕ0, p, K , and Entp(F). Most importantly, such a C does not depend on T .

Yau [1978] applied the method of Moser iteration to derive the L∞ estimate for Monge–Ampère
equations when ∥enF

∥L p is bounded for some p> n. Later, Kołodziej [2003] gave another proof by using
the pluripotential theory under a weaker assumption that ∥enF

∥L p is bounded for some p > 1. More
recently, Guo, Phong, and Tong [Guo et al. 2023] recovered Kołodziej’s estimate by a PDE method which
was partly motivated by the breakthrough on the cscK metric of Chen and Cheng [2021].

The Kähler–Ricci flow was firstly studied by Cao [1985] when he gave an alternative proof of Calabi’s
conjecture for c1(M)=0 and c1(M)<0, which investigated the estimates for the Kähler–Ricci flow instead
of Monge–Ampère equations. There are abundant results on Kähler–Ricci flow, see [Eyssidieux et al. 2015;
2016; Guedj et al. 2021; Jian and Shi 2024]. Our result requires a weaker regularity on the right-hand side
than Cao’s L∞ estimate and can be viewed as a parabolic analogue of [Guo et al. 2023; Wang et al. 2021].
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There are some technical improvements in our paper compared with previous results in [Chen and
Cheng 2023; Guo and Phong 2023; 2024; Guo et al. 2023]. The difficulty for the flow problem is that
we want to derive an L∞ estimate independent of T . But the original auxiliary equation may not serve
as a good choice. Our approach is to consider a local version of auxiliary flows instead, see Section 2.
Compared with the elliptic version of L∞ estimates, our theorem requires an extra integral condition.
Rewriting (1-1) by ωn

ϕ = eϕ̇+nFω0
n , we could see that the L∞ estimate of ϕ comes from some p-entropy

bounds on eϕ̇+nF . Roughly speaking, we need not only the p-entropy bound controls on enF but also
some upper bounds on ϕ̇. In Kähler–Ricci flow, Cao proved the supremum of ϕ̇ can be controlled by
the infimum of enF when F is smooth. Indeed such estimates can be generalized to general parabolic
Monge–Ampère flows. However, in our theorem, we can improve the pointwise condition by some
integral condition on F .

There are two directions to generalize Theorem 1.1. As in [Chen and Cheng 2023], we can replace
the Monge–Ampère operator on the right-hand side by a more general nonlinear operator F . Write
ω0 =

√
−1g jm dz j

∧ dz̄m in local coordinate; then the corresponding endomorphism hϕ , which is relative
to ωϕ , can be expressed by (hϕ)

j
k = g jm(ωϕ)mk in local coordinate. Let λ[hϕ] be the vector of eigenvalues

of hϕ , and consider the nonlinear operator F : 0 ⊂ Rn
→ R+ with the following four conditions:

(1) The domain 0 is a symmetric cone with 0n ⊂0⊂01, where 0k is defined to be the cone of vectors λ
with σ j (λ) > 0 for 1 ≤ j ≤ k, where σ j is the j-th symmetric polynomial in λ.

(2) F (λ) is symmetric in λ ∈ 0 and it is of homogeneous degree r .

(3) ∂F
∂λ j

> 0 for each j = 1, . . . , n and λ ∈ 0.

(4) There is a γ > 0 such that
n∏

j=1

∂F (λ)

∂λ j
≥ γF n(1−1/r) for all λ ∈ 0. (1-2)

The above requirements come from [Guo et al. 2023], and there is a slight modification on the last
condition since the homogeneous degree of F is r under our assumption. The complex Hessian operators
and p-Monge–Ampère operators are examples. More examples can be found in [Harvey and Lawson
2023]. Here is our first generalization.

Theorem 1.2. Let ϕ be a C2 solution of the flow∂tϕ = log
(
F (λ[hϕ])

er F

)
,

ϕ( · , 0)= ϕ0

(1-3)

on M×[0, T ), where M is an n-dimensional compact Kähler manifold. Let F : M →R be a space function.
Assume, for some p > n + 1, the p-entropy Entp(F)=

∫
M |F |

penFω0
n is bounded and

∫
M Fω0

n
≥ −K .

Then we have the L∞ estimate on the normalization ϕ̃

∥ϕ̃∥L∞(M×[0,T )) ≤ C,

where C depends on n, ω0, ϕ0, p, K , γ , r , and Entp(F).
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Another direction of generalization is motivated by Chen and Cheng [2023], who considered the
L∞ estimate for the inverse Monge–Ampère flow{

(−∂t u)ωn
ϕ = enFω0

n,

ϕ( · , 0)= ϕ0.
(1-4)

Indeed, we can consider the general complex Monge–Ampère flow∂tϕ =2
(
ωϕ

n

enFω0n

)
,

ϕ( · , 0)= ϕ0,
(1-5)

where 2 : R+ → R is a strictly increasing smooth function. Picard and Zhang [2020] proved the long
time existence and convergence of the flow (1-5) under the assumption that F ∈ C∞(M,R). It is the
Kähler–Ricci flow when 2(y)= log y and the inverse Monge–Ampère flow (1-4) when 2(y)= −1/y.
The general parabolic Monge–Ampère flow (1-5) also arises from many other geometric problems. For
example, when 2(y)= y, this is the flow reduced from the anomaly flow with conformal Kähler initial
data; see [Phong et al. 2019]. When 2(y) = y1/3, this is the reduction of the G2-Laplacian flow over
a seven dimensional manifold [Picard and Suan 2024]. We can apply the new technique to prove the
L∞ estimate of the solution ϕ to the flow (1-5) under an analogue assumption on F .

Theorem 1.3. Assume 2(y) = −1/y, y, or y1/3, and Entp(F) is bounded. Moreover, consider the
constant K equal to max

(
0,

∫
M 2(e

−nF )ω0
n
)
. Then, there exists a constant C depending on n, ω0, ϕ0,

p, K , and Entp(F) such that
∥ϕ̃∥L∞(M×[0,T )) ≤ C,

where ϕ̃ is a normalization of a C2 solution of the flow (1-5).

Since 2< 0 in the inverse Monge–Ampère equation, we have K ≡ 0, which means there is no extra
condition for this case.

Going forward, a constant is called universal if it depends only on n, ω0, ϕ0, p, γ , r , K , and Entp(F).

2. Auxiliary equations

In this section, we want to find suitable auxiliary equations as in [Guo et al. 2023] and [Chen and Cheng
2023]. To motivate what a good auxiliary equation is, we first consider the parabolic Monge–Ampère
flow (1-5). To have some monotonicity properties of the auxiliary solutions, we prefer a flow with negative
time derivative of ψ . Thus the inverse Monge–Ampère flow, see (1-4), is a good candidate.

Let us consider the inverse Monge–Ampère flow{
(−ψ̇s)ωψs

n
= fsenFω0

n,

ψs( · , 0)= 0,
(2-1)

where

fs =
(−ϕ− s)+

As
, As =

∫
�s

(−ϕ− s)enFω0
n dt, �s = {(z, t) | −ϕ(z, t)− s > 0}.
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But such a flow has singularities, since the factor (−ϕ − s)+/As is not smooth in a neighborhood
of ∂�s . Thus we need to consider a sequence of smooth functions τk(x) which converges uniformly to
x ·χR+(x) and replace fs on the right-hand side by

τk(−ϕ− s)∫
�
τk(−ϕ− s)enF .

By the dominated convergence theorem, ψs,k converges to ψs uniformly, which means we can always
take a limit in the inequalities to get the desired estimates as in [Guo et al. 2023] and [Chen and Cheng
2023]. To simplify our computations, we will keep using (2-1) as our auxiliary equation.

Another crucial modification of our auxiliary flow is that we must restrict the integration over the time
slices. To express our idea more clearly, we need Lemma 2.1 as well as Corollary 2.2 in [Chen and Cheng
2023], which will be stated below. For the reader’s convenience, we will also include the proof from
[Chen and Cheng 2023] here.

Lemma 2.1. Consider the inverse Monge–Ampère flow{
(−ϕ̇)ωϕ

n
= enFω0

n,

ϕ|t=0 = ϕ0.

Assuming ∫
M×[0,T ]

enFω0
n dt = C1 <∞,

we have |supM ϕ| ≤ C , where C depends on n, ω0, C1, and ∥ϕ0∥L∞ .

Proof. Since ϕ̇ < 0, we can get the upper bound by

sup
M
ϕ ≤ sup

M
ϕ0 ≤ ∥ϕ0∥L∞ .

To estimate the lower bound of supM ϕ, let us consider the I -functional

I (ϕ)=
1

n+1

∫
M
ϕ

n∑
j=0

ω0
n− j

∧ωϕ
j

and its derivative
d
dt

I (ϕ)=

∫
M
∂tϕωϕ

n
= −

∫
M

enFω0
n.

Therefore, for any t ′
∈ [0, T ], we have

I (ϕ)− I (ϕ0)=

∫ t ′

0

d
dt

I (ϕ) dt = −

∫
M×[0,t ′]

enFω0
n dt

≥ −

∫
M×[0,T ]

enFω0
n dt = −C1,

which implies I (ϕ) is bounded from below on [0, T ].
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The lower bound estimate of
∫

M ϕω0
n comes from integration by parts:∫

M
ϕω0

n
− I (ϕ)=

∫
M
ϕ

1
n+1

n∑
j=0

ω0
n− j

∧ (ω0
j
−ωϕ

j )

=
1

n+1

∫
M
ϕ

n∑
j=0

ω0
n− j

∧
√

−1∂∂̄(−ϕ)
j−1∑
l=0

ω0
j−1−l

∧ωϕ
l

=
1

n+1

∫
M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n∑
j=0

j−1∑
l=0

ω0
n−1−l

∧ωϕ
l
≥ 0.

Therefore, we have
∫

M ϕω0
n

≥ −C1 and

sup
M
ϕ ≥

1
Vol(M, ω0)

∫
M
ϕω0

n
≥ −

C1

Vol(M, ω0)
. □

Corollary 2.2. There exists a constant α > 0 depending only on ω0 such that

sup
t∈[0,T ]

∫
M

e−αϕω0
n

≤ C2,

where C2 depends on M , ω0, C1, and ∥ϕ0∥L∞ .

This is a flow version of Hörmander’s result; see [Hörmander 1973, Lemma 4.4] and [Tian 1987] for
local and global version of such integral estimate, respectively.

Proof. Since ϕ is a ω0-psh function for every t ∈ [0, T ], we have

sup
t∈[0,T ]

∫
M

e−α(ϕ−supM ϕ)ω0
n

≤ C.

From Lemma 2.1, the uniform bound of supM ϕ gives us the desired inequality. □

The above Corollary 2.2 gives us a uniform bound on each time slice. If we apply this corollary on the
space time M ×[0, T ), then a factor T seems unavoidable on the right-hand side. Therefore it is better to
divide the whole space-time into several pieces M ×[t0, t0 + 1] and try to seek an estimate independent
of t0. This idea inspires us to consider such auxiliary equations involving only local information.

To get the L∞ estimate, we need also to consider the normalization in Theorem 1.1, which follows the
same normalization in [Picard and Zhang 2020]. In conclusion, we need to use the domain

�̃s = {(z, t) | −ϕ̃(z, t)− s > 0}

as a substitute for �s .
For any t0 ∈ [0, T − 1), let us consider a family of regions �s,t0 = �̃s ∩ (M ×[t0, t0 + 1]) and define a

family of auxiliary equations {
(−ψ̇s,t0)ωψs,t0

n
= fs,t0enFω0

n,

ψs,t0( · , 0)= 0,
(2-2)

where As,t0 =
∫
�s,t0

(−ϕ̃− s)enFω0
n dt and fs,t0 = (−ϕ̃− s) ·χ�s,t0

/As,t0 .
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The benefits appear when we apply Corollary 2.2 to such auxiliary equations. As a result of the choice
of fs,t0 , the integral on the right-hand side of the equation is 1. This implies∫

�s,t0

e−αψs,t0ω0
n dt ≤ C2, (2-3)

where the C2 is universal now. The above inequality is crucial, because it integrates against t while it
remains independent of T and t0. We will use inequality (2-3) frequently in the following sections.

The family of auxiliary equations (2-2) meets the same problem as (2-1). To be precise, we also need to
apply τk to remove the singularities. For the same reason, we will keep using (2-2) in the following sections.

The extra integral condition was chosen to make the normalization ϕ̃ satisfy three properties, as follows.

Lemma 2.3. Let ϕ̃ be given in Theorem 1.1. Then we have

(1) supt∈[0,T )
∫

M ϕ̇ω0
n

≤ C3,

(2) ϕ̃ ≤ C3,

(3)
∫

M |ϕ̃|ω0
n

≤ C3,

where C3 is universal.

Proof. For (1), it comes directly from the estimates

/

∫
M
ϕ̇ω0

n
= /

∫
M

log
(

ωϕ
n

enFω0n

)
ω0

n
= /

∫
log

(
ωϕ

n

ω0n

)
ω0

n
− /

∫
log(enF )ω0

n

≤ log
(
/

∫
ωϕ

n
)

− /

∫
log(enF )ω0

n
= − /

∫
log(enF )ω0

n
≤ K .

The first estimate comes from Jensen’s inequality while the second one comes from the assumption on F .
The average integral is chosen with respect to V =

∫
M ω0

n .
To prove (2) and (3), let’s consider Green’s formula

ϕ̃ = /

∫
M
ϕ̃ω0

n
−

∫
M

G1ϕ̃ω0
n

= −

∫
M

G1ϕ̃ω0
n

= −

∫
M

G1ϕω0
n,

where G is the Green’s function with respect to ω0.
It is well known that the Green’s function G could be shifted to be nonnegative and with L1 norm

bound C ′. Combining with trω0 ωϕ = n +1ϕ > 0 and Green’s formula, we have the universal estimate
ϕ̃ ≤ nC ′.

Let I+ and I− be the integrals of the positive and negative parts of ϕ̃, respectively. Then we have

0 =

∫
M
ϕ̃ = I+ − I− and I+ ≤ nC ′V .

Thus ∫
M

|ϕ̃| = I+ + I− = 2I+ ≤ 2nC ′V .

The lemma follows from choosing C3 = max(K V, nC ′, 2nC ′V ). □
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3. Entropy bounded by energy

From Section 2, we get a good choice of a family of auxiliary equations (2-2). The following lemma is a
key to the proof of Theorem 1.1,

Lemma 3.1. Let ϕ be as in Theorem 1.1 and ψs,t0 be a solution of the auxiliary flow (2-2). Then there are
constants β, ϵ, and 3, with

β =
n+1
n+2

, ϵn+2
=

(n+2
n+1

)n+2
3, ϵn+2

=

( C4
(n+1)β

)n+1
As,t0,

where C4 is a universal constant defined below, such that

−ϵ(−ψs,t0 +3)β − ϕ̃− s ≤ 0 (3-1)

holds on M × [t0, t0 + 1].

In the following estimates we will use ψ and f to denote ψs,t0 and fs,t0 , respectively. Let us consider
the test function H = −ϵ(−ψ +3)β − ϕ̃ − s and the linearization operator L = −∂/∂t +1ωϕt

of the
Kähler–Ricci flow (1-1). The idea of the following argument comes from [Guo et al. 2023].

Let �◦
s,t0 denote the interior of �s,t0 . Suppose the maximum of H is attained at some point x0 = (z0, t0)

outside �◦
s,t0 ; then we have H ≤ H(x0)≤ −ϕ̃(x0)−s ≤ 0. To complete the proof, we only need to assume

the maximal point x0 of H is in �◦
s,t0 and then apply the maximum principle.

The scheme of the proof is to estimate L H at x0. The constants are chosen to make 0< β < 1 and
1 −βϵ3β−1

= 0, which imply some cancellations. Moreover, such relations among the constants imply
that L H is different from H by a positive coefficient at x0. Roughly speaking, the lemma holds because
of the facts that H is proportional to L H and L H ≤ 0. Therefore let us firstly apply the operator L to H
at x0:

0 ≥ L H = −βϵ(−ψ +3)β−1ψ̇ + ϕ̇− /
∫
ϕ̇ω0

n

+βϵ(−ψ +3)β−11ωϕψ +β(1 −β)ϵ(−ψ +3)β−2
|∂ϕ|

2
ωϕ

−1ωϕϕ

≥ βϵ(−ψ +3)β−1(−ψ̇)− (−ϕ̇)+βϵ(−ψ +3)β−11ωϕψ −1ωϕϕ− C3

= βϵ(−ψ +3)β−1(−ψ̇)− (−ϕ̇)+βϵ(−ψ +3)β−1 trωϕ ωψ
− trωϕ ωϕ + (1 −βϵ(−ψ +3)β−1) trωϕ ω0 − C3

≥ βϵ(−ψ +3)β−1(−ψ̇ + trωϕ ωψ)− (−ϕ̇+ C3 + n).

The last estimate comes from the choice of auxiliary equations. Since ψ solves some inverse Monge–
Ampère flows with initial data being identically 0, we have ψ ≤ 0 on M × [0, T ), and moreover

1 −βϵ(−ψ +3)β−1
≥ 1 −βϵ3β−1

= 0.

Then we need to deal with the factor −ψ̇ + trωϕ ωψ , which is the main term of the estimate. By the
geometric-arithmetic inequality, we have

−ψ̇ + trωϕ ωψ ≥ −ψ̇ + n
(
ωn
ψ

ωn
ϕ

)1/n

. (3-2)
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Combining (3-2) with the two flow equations (1-1) and (2-2) and using the geometric-arithmetic
inequality again, we have

−ψ̇ + trωϕ ωψ ≥ −ψ̇ + n
(
ωn
ψ

ωn
ϕ

)1/n

≥ −ψ̇ + n f 1/n exp
(
−

1
n
ϕ̇
)
(−ψ̇)−1/n

≥ (n + 1) f 1/(n+1) exp
(
−

1
n+1

ϕ̇
)
. (3-3)

Thus replacing −ψ̇ + trωϕ ωψ by (3-3), we have the following estimate at x0:

0 ≥ L H ≥ (n + 1)βϵ(−ψ +3)β−1 f 1/(n+1) exp
(
−

1
n+1

ϕ̇
)

− (−ϕ̇+ C3 + n)

≥

[
(n + 1)βϵ(−ψ +3)β−1 f 1/(n+1)

− (−ϕ̇+ C3 + n) exp
( 1

n+1
ϕ̇
)]

exp
(
−

1
n+1

ϕ̇
)
.

Since the exponential function is positive, we can simplify it by

0 ≥ (n + 1)βϵ(−ψ +3)β−1 f 1/(n+1)
+ (ϕ̇− C3 − n) exp

( 1
n+1

ϕ̇
)
, (3-4)

which looks similar to the desired inequality (3-1) in Lemma 3.1. Let us consider a function

h(x)= (x − n − C3) exp
( 1

n+1
x
)
.

The function h : R → R has a universal lower bound −C4, where

C4 = (n + 1) exp
(C3−1

n+1

)
.

Thus we have h(ϕ̇)≥ −C4, and moreover

(n + 1)βϵ(−ψ +3)β−1 f 1/(n+1)
− C4 ≤ 0. (3-5)

Since f = (−ϕ̃− s)/As,t0 at the maximal point x0, inequality (3-5) is equivalent to(
(n + 1)β

C4

)n+1

ϵn+1 −ϕ̃− s
As,t0

≤ (−ψ +3)(n+1)(1−β), (3-6)

which is the test function when we chose the constants β, ϵ, and 3 as stated in Lemma 3.1. Thus we have

H ≤ H(x0)≤ 0,

which completes the proof.
From the above Lemma 3.1, we have

−ϕ̃− s

A1/(n+2)
s,t0

≤ (c(−ψ +3))(n+1)/(n+2), (3-7)

where

c =

(
(n + 1)2ϵ
(n + 2)C4

)n+2

.
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The following estimate comes from (3-7):∫
�s,t0

exp
[
λ

(
−ϕ̃− s

A1/(n+2)
s,t0

)(n+2)/(n+1)]
ω0

n dt ≤

∫
�s,t0

exp{λc(−ψs,t0 +3)}ω0
n dt.

If the universal constant λ is chosen to make λc = α, then, by Corollary 2.2 and inequality (2-3), we
have ∫

�s,t0

e−λcψs,t0ω0
n dt ≤

∫
M×[t0,t0+1]

e−αψs,t0ω0
n dt ≤ C2,

where C2 is universal. In Lemma 3.1, The constant3 is chosen to be proportional to As,t0 , i.e.,3= c′ As,t0

for some universal constant c′. Then we can bound the right integral by C exp (C As,t0) for some universal
constant C .

Let us define E = supt0∈[0,T −1)
∫

M×[t0,t0+1]
(−ϕ̃+ C3)enFω0

n dt . Then we have

As,t0 =

∫
�s,t0

(−ϕ̃− s)enF
≤

∫
�s,t0

(−ϕ̃+ C3)enF
+

∫
�s,t0

(−C3 − s)enF

≤

∫
�s,t0

(−ϕ̃+ C3)enF
=

∫
M×[t0,t0+1]

(−ϕ̃+ C3)enF
+

∫
M×[t0,t0+1]\�s,t0

(ϕ̃− C3)enF

= E +

∫
M×[t0,t0+1]\�s,t0

(ϕ̃− C3)enF
≤ E,

where the last inequality comes from ϕ̃ ≤ C3 by Lemma 2.3. In summary, we have∫
�s,t0

exp
[
λ

(
−ϕ̃− s

A1/(n+2)
s,t0

)(n+2)/(n+1)]
ω0

n dt ≤ C exp(C E). (3-8)

The E defined above is called the energy. The C3 term inside the integral comes purely from a technical
consideration that makes the inside function of the integral positive. There is no significant difference
from the elliptic case where E =

∫
(−ϕ̃) since the extra integral 0<

∫
enF

≤ Vol(M, ω0)+ Entp(F) is
universally bounded from both sides.

To end this section, we will use the De Giorgi iteration method to derive the C0 estimate by assuming E
is universally bounded. In the next section, we will apply the ABP estimate to get the universal bound
on E which will complete the proof of Theorem 1.1. To prepare for the iteration procedure, we need such
an inequality to run the iteration:

rφt0(s + r)≤ As,t0 ≤ B0φt0(s)
1+δ0, (3-9)

where φt0(s)=
∫
�s,t0

enFω0
n dt .

The following lemma is the De Giorgi iteration mentioned above.

Lemma 3.2. Let 8 : R+ → R+ be a decreasing right continuous function with lims→∞8(s) = 0.
Moreover, assume r8(s + r)≤ B08(s)1+δ0 for some constant B0 > 0 and all s > 0 and r ∈ [0, r ]. Then
there exists a constant S∞ = S∞(δ0, B0, s0) > 0 such that 8(s)= 0 for all s ≥ S∞, where s0 is defined
during the proof.
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Proof. Fix an s0 > 0 such that 8(s0)
δ0 < 1/(2B0). Such an s0 exists since 8(s)→ 0 as s → ∞. Define

{s j } by
s j+1 = sup

{
s > s j | φ(s) > 1

2φ(s j )
}
.

Thus
s j+1 − s j ≤ B08(s j )

1+δ/8(s j+1)≤ 2B08(s j )
δ
≤ 2B02− jδ08δ0 ≤ 2− jδ0 .

Letting

S∞ = s0 +

∑
j≥0

(s j+1 − s j )≤ s0 +
1

1 − 2−δ0
,

we complete the proof. □

In our application, 8 is chosen to be φt0 . Let us derive the two sides of (3-9) separately. The left-hand
side of (3-9) can be derived by definition which is similar to the proof in [Guo et al. 2023]. The following
calculations are direct:

As,t0 =

∫
�s,t0

(−ϕ̃− s)enFω0
n dt ≥

∫
�s+r,t0

(−ϕ̃− s)enFω0
n dt

≥

∫
�s+r,t0

(s + r − s)enFω0
n dt = rφ(s + r).

To get the right-hand side of (3-9), we need to apply the following inequality coming from Young’s
inequality: ∫

�s,t0

v penFω0
n dt ≤ ∥enF

∥L1(log L)p(M×[t0,t0+1]) + C p

∫
�s,t0

e2vω0
n dt. (3-10)

If we choose

v =
λ

2

(
−ϕ̃− s

A1/(n+2)
s,t0

)(n+2)/(n+1)

,

then by the above inequality (3-10) we have∫
�s,t0

(−ϕ̃− s)(n+2)p/(n+1)enFω0
n dt ≤ C(E)Ap/(n+1)

s,t0 , (3-11)

where the factor C(E) is a constant dependent on n, ω0, ϕ0, p, γ , K , Entp(F) and additionally on E .
The explicit dependence of the constant C(E) on E can be expressed by combining inequalities (3-10)
and (3-8).

Thus the right-hand side can be derived by the estimate

As,t0 =

∫
�s,t0

(−ϕ̃− s)enFω0
n dt

≤

(∫
�s,t0

(−ϕ̃− s)(n+2)p/(n+1)enF
)(n+1)/((n+2)p)

·

(∫
�s,t0

enF
)1/q

≤ C(E)(n+1)/((n+2)p)A1/(n+2)
s,t0 φ

1−(n+1)/(p(n+2))
t0 ,
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where the first line is by Hölder’s inequality and p is the Hölder coefficient

n+1
p(n+2)

+
1
q

= 1.

In (3-9), we can choose

δ0 = 1 +
p−n−1
p(n+1)

and B0 = C(E)1/p.

To complete this section, we need to get an explicit expression on s0. By Chebyshev’s inequality

φt0(s)≤
1
s

∫
�s,t0

(−ϕ̃)enFωn
0 ≤

E
s
,

we can choose s0 = (2B0)
1/δ0 E .

In conclusion, we get the following theorem from the above arguments.

Theorem 3.3. Let ϕ̃ be as in Theorem 1.1. Then we have

sup
M×[0,T )

|ϕ̃| ≤ C(n, ω0, ϕ0, p, γ, K ,Entp(F), E).

Moreover, if E can be controlled by a universal constant, then we have Theorem 1.1.

4. Energy bounds by the ABP estimate

In this section we use a parabolic version of the ABP estimate proved by Krylov [1976] and Tso [1985]
to give us a uniform energy bound. This approach was introduced in [Chen and Cheng 2023] and is an
analogue to the elliptic version in [Guo et al. 2023].

Let u be a function defined on D =�×[0, T ], where� is a bounded domain in Rn . Then the parabolic
ABP estimate says that

sup
D

u ≤ sup
∂P D

u + Cn(diam�)n/(n+1)
(∫

0

|∂t u det D2
x u| dx dt

)1/(n+1)

, (4-1)

where ∂P D is the parabolic boundary of D and 0 = {(x, t) | ∂t u ≥ 0, D2
x u ≤ 0}.

As mentioned in Section 2, we want to construct a family of local auxiliary equations. The auxiliary
equations in this section are chosen to be(−∂tψt0)ωψt0

n
=

(|F |
p
+1)·χM×[t0,t0+1]∫

M×[t0,t0+1]
(|F |p+1)enFω0n dt

enFω0
n,

ψt0( · , 0)= 0.
(4-2)

We will use ψ to denote ψt0 for convenience and will skip the computation involved with τk for the
same reason we did in Section 2. Moreover, define a universal constant

9 =

∫
M×[t0,t0+1]

(|F |
p
+ 1)enFω0

n dt.

Parallel with Lemma 3.1, the following lemma plays a key role in this section.
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Lemma 4.1. Let ϕ be as in Theorem 1.1 and ψ be a solution of (4-2). For any 0< β < 1, there exists
a constant C which depends on n, ω0, ϕ0, p, γ , K , Entp(F), and additionally on β, such that the
following holds on M × [t0, t0 + 1]:

−ϵ(−ψ +3)β − ϕ̃ ≤ C, (4-3)

where the constants ϵ > 0 and 3> 0 are defined as

βϵ3β−1
=

1
4 , 3=

(
n p(2n + 1)p2p4n+19n+1(n + 1)n+1Cn+1

4 9

10n+1α p

)1/((n+1)(1−β))

. (4-4)

The constants ϵ and 3 depend additionally on β.

Let ρ be the test function defined by

ρ = −ϵ(−ψ +3)β − ϕ̃

and L be the linearization as above. To prove Lemma 4.1, we only need to restrict ρ to its positive part.
More precisely, consider hs(x)= x +

√
x2 + s and use hs(ρ) to approximate 2ρ+. Therefore we have

2 sup ρ ≤ 2 sup ρ+ ≤ sup hs(ρ),

and in addition the upper bounds of hs imply an upper bound of ρ.
Let us consider hs(ρ)

b, where

b = 1 +
1

(2n + 2)(2n + 1)
,

and assume hs(ρ)
b attains its maximal value Q at some point x0 ∈ M ×[0, T ). Moreover, we can assume

Q > 1, otherwise there is nothing to prove. Let us apply the parabolic ABP estimate for H = hs(ρ)
b
· η,

where η is a cut-off function defined below.
Assume r0 = min{1, inj(M, ω0)}, where inj(M, ω0) is the injectivity radius of (M, ω0). The cut-off

function η : M → R is defined in the following way:

η ≡ 1 on Bω0

(
x0,

1
2r0

)
, (4-5)

η ≡ 1 − θ on
{

M\Bω0

(
x0,

3
4r0

)}
, (4-6)

1 − θ ≤ η ≤ 1 on
{

Bω0

(
x0,

3
4r0

)
\Bω0

(
x0,

1
2r0

)}
, (4-7)

|∇η|2ω0
≤ 10θ2/r2

0 , (4-8)

|∇
2η|ω0 ≤ 10θ/r2

0 , (4-9)

where 0< θ < 1 is a small constant defined by

θ = min
{

r2
0

100Q1/b ,
1

2(2n + 1)(2n + 2)

}
≤

1
10
.

Since η is a space function, it has vanishing time derivative, which reduce our later computations.
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Proof of Lemma 4.1. The following inequality can be derived directly by applying the operator L on H :

L H ≥ bh′hb−1(−∂tρ)η+ (1ωϕhb)η+ 2 Re⟨∇hb,∇η⟩ωϕ + hb1ωϕη. (4-10)

We will consider each of the terms separately to get good controls. Let us bound the last two terms:

hb1ωϕη ≥ −
10θ
r2

0
hb trωϕ ω0, (4-11)

2 Re⟨∇hb,∇η⟩ ≥ −
b(b − 1)

2
|∇h|

2
ωϕ

hb−2
−

2b
b − 1

hb
|∇η|2ωϕ . (4-12)

Then, we expand the second term and get

(1ωϕhb)η = b(b − 1)|∇h|
2
ωϕ

hb−2η+ bh′hb−1(1ωϕρ)η+ b|∇ρ|
2
ωϕ

h′′hb−1η. (4-13)

Combining (4-10)–(4-13), and noticing that the first term in (4-13) can be absorbed into the first term
in (4-12) and the third term of (4-13) is positive, we have

L H ≥ bh′hb−1(−∂tρ)η+ bh′hb−1(1ωϕρ)η−
2b

b − 1
hb

|∇η|2ωϕ −
10θ
r2

0
hb trωϕ ω0

≥ bh′hb−1(Lρ)η−
2b

b − 1
10θ2

r2
0

hb trωϕ ω0 −
10θ
r2

0
hb trωϕ ω0. (4-14)

As we mentioned, the derivatives of the cut-off function η will produce trωϕ ω0 terms in (4-14) which
will be absorbed in the later estimates. The Lρ term is the main term of (4-14), and it has the same
structure as the main term of the test function appearing in Lemma 3.1. This fact motivates the following
argument.

Let us compute Lρ and drop the positive term β(1 −β)ϵ(−ψ +3)β−2
|∇ψ |

2. Then we have

Lρ ≥ −βϵψ̇(−ψ +3)β−1
+ ˙̃ϕ+βϵ(−ψ +3)β−11ωϕψ +β(1 −β)ϵ(−ψ +3)β−2

|∇ψ |
2
−1ωϕ ϕ̃

≥ −βϵψ̇(−ψ +3)β−1
+ ϕ̇+βϵ(−ψ +3)β−11ωϕψ −1ωϕϕ− C3.

Since 1ωϕϕ+ trωϕ ω0 = n and 1ωϕψ + trωϕ ω0 = trωϕ ωψ , we have

Lρ ≥ βϵ(−ψ +3)β−1(−ψ̇ + trωϕ ωψ)+ ϕ̇+ (1 −βϵ3β−1) trωϕ ω0 − C3 − n. (4-15)

The trωϕ ω0 term in (4-15) will serve as a good term to absorb the last two terms in (4-14). The estimate
for the rest of the terms in (4-15) follows the same idea in (3-2)–(3-4).

βϵ(−ψ +3)β−1(−ψ̇ + trωϕ ωψ)+ ϕ̇− C3 − n

≥ (n + 1)βϵ(−ψ +3)β−1 f̃ 1/(n+1) exp
(
−

1
n+1

ϕ̇
)

+ ϕ̇− C3 − n

=

[
(n + 1)βϵ(−ψ +3)β−1 f̃ 1/(n+1)

+ (ϕ̇− C3 − n) exp
( 1

n+1
ϕ̇
)]

exp
(
−

1
n+1

ϕ̇
)

≥ [(n + 1)βϵ(−ψ +3)β−1 f̃ 1/(n+1)
− C4] exp

(
−

1
n+1

ϕ̇
)
, (4-16)
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where
f̃ =

(|F |
p
+ 1)χM×[t0,t0+1]∫

M×[t0,t0+1]
(|F |p + 1)enFω0n dt

.

What we have now is the following inequality, noting that the cut-off function satisfies 9
10 ≤ η ≤ 1 for

any points in the space-time M × [0, T ):

L H ≥ (n + 1)bh′hb−1
[

9
10
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

−
C4

n + 1

]
exp

(
−

1
n+1

ϕ̇
)

+ bhb−1
[

9
10

h′(1 −βϵ3β−1)−
20θ2

(b − 1)r2
0

h −
10θ
br2

0
h
]

trωϕ ω0. (4-17)

Although the core of the lemma is to control ρ+, the choice of hs makes the negative part of ρ involved
in the above inequality. So we will estimate on sets �+ = {ρ > 0} and �− = {ρ ≤ 0} separately.

On �−, we have
0 ≤ hs(ρ)= ρ+

√
ρ2 + s =

s√
ρ2 + s − ρ

≤
√

s

and
0 ≤ h′

s(ρ)= 1 +
ρ√
ρ2 + s

≤ 1.

Combining the two bounds on h and h′ and inequality (4-17), we have

L H ≥ bs(b−1)/2
[
−C exp

(
−

1
n+1

ϕ̇
)

−
20θ2

(b − 1)r2
0

h trωϕ ω0 −
10θ
br2

0
h trωϕ ω0

]
= bs(b−1)/2

[
−C exp

(
−

1
n+1

ϕ̇
)

− c(b, θ, r0)h trωϕ ω0

]
on �−, where C is universal and

c(b, θ, r0)=
20θ2

(b − 1)r2
0

+
10θ
br2

0
.

On the other hand, 1 ≤ h′
≤ 2 on �+. By the choice of the constants 3 and ϵ in (4-4), the coefficient

of the trωϕ ω0 term in (4-17) is positive.
Therefore, on the set �+, we have

L H ≥ Cbhb−1
[
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

−
10C4

9(n + 1)

]
exp

(
−

1
n+1

ϕ̇
)
.

Combining the above two estimates, we obtain

L H ≥ bs(b−1)/2
[
−C exp

(
−

1
n+1

ϕ̇
)

− c(b, θ, r0)h trωϕ ω0

]
χ�−

+ Cbhb−1
(
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

−
10C4

9(n + 1)

)
exp

(
−

1
n+1

ϕ̇
)
χ�+

=: R. (4-18)

To apply the parabolic ABP estimate for the test function H , we define the domain

0̃ = {(z, t) | ∂t H ≥ 0, D2
z H ≤ 0}.
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We need also discuss how to control the operator L on 0̃. The estimate can be derived by

L H = −
∂

∂t
H +1ωϕ H ≤ −(2n + 1)

(∣∣∣∣ ∂∂t
H · det D2 H

∣∣∣∣ · (ω0
n

ωϕn

)2 )1/(2n+1)

,

which connects our operator with the parabolic ABP estimate. In conclusion,(
|∂t H · det D2 H | ·

(
ω0

n

ωϕn

)2 )1/(2n+1)

≤ −
R

2n + 1
≤

R−

2n + 1
.

Note that the Hessian matrix D2 H is the real Hessian of H instead of the complex Hessian of H .
Therefore we have

|∂t H · det D2 H | ≤ cn R−
2n+1

(
ωϕ

n

ω0n

)2

.

The factor ωϕn/ω0
n is hard to control since it appears as a quadratic term. We can use different strategies

to bound such term on �+ and �−. On the domain �+, we have

h(2n+1)(b−1)
(
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

−
10C4

9(n + 1)

)2n+1

−

exp
(
−

2n+1
n+1

ϕ̇
)(
ωϕ

n

ω0n

)2

≤ h(2n+1)(b−1)
(

10C4

9(n + 1)

)2n+1

e(n(2n+1)/(n+1))F
(
ωϕ

n

ω0n

)2−(2n+1)/(n+1)

=

(
10C4

9(n + 1)

)2n+1

h(2n+1)(b−1)e(n(2n+1)/(n+1))F
(
ωϕ

n

ω0n

)1/(n+1)

, (4-19)

while on �−, we have

s(2n+1)(b−1)/2
(

exp
(
−

1
n+1

ϕ̇
)

+ c(b, θ, r0)h trωϕ ω0

)2n+1
(
ωϕ

n

ω0n

)2

≤ C5s(2n+1)(b−1)/2
= C5s1/(4n+4), (4-20)

where C5 is not universal since it depends additionally on ϕ, t , and t0.
Defining D = Br (x0)× [t0, t0 + 1] and combining (4-19) and (4-20), the parabolic estimate (4-1) tells

us that
sup

D
(H)− sup

∂P D
(H)

≤ C6

(∫
D∩�+

h(2n+1)(b−1)e(n(2n+1)/(n+1))F
(
ωϕ

n

ω0n

)1/(n+1)

ω0
n dt +

∫
D∩�−

C5s1/(4n+4)ω0
n dt

)1/(2n+1)

≤ C6

(∫
D∩�+

1
n + 1

(
nh(2n+1)(n+1)(b−1)en(2n+1)F

+
ωϕ

n

ω0n

)
ω0

n dt + C5s1/(4n+4)
)1/(2n+1)

≤ C6

(∫
D∩�+

h1/2en(2n+1)F
+

∫
M×[t0,t0+1]

ωϕ
n dt + C5s1/(4n+4)

)1/(2n+1)

≤ C6

(∫
D∩�+

h1/2en(2n+1)F
+ 1 + C5s1/(4n+4)

)1/(2n+1)

, (4-21)
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where C6 is universal. Moreover, C6 changes line by line as it absorbs all universal coefficients derived
from the estimates. We use the volume of M to absorb the bad factor on �+ and C5 to absorb the same
bad factor on �−

The integral over the set D ∩�+ is in fact integrated over the set

{ρ > 0} ∩

{
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

−
10C4

9(n + 1)
< 0

}
.

Over this set we have, from the choice of constants,

n(2n + 1)|F | ≤

(
10C4

9(n + 1)

)(n+1)/p

91/p(βϵ)−(n+1)/p(−ψ +3)(1−β)(n+1)/p

=
α

2
(−ψ +3)(1−β)(n+1)/p. (4-22)

Moreover, h(ρ)≤ 2ρ+
√

s. Then by combining with the inequality (4-21), we have

sup
D
(H)− sup

∂P D
(H)

≤ C6

(∫
D∩�+

(−ϕ̃+
√

s)1/2 exp
(
α

2
(−ψ +3)(1−β)(n+1)/p

)
ω0

n dt + 1 + C5s1/(4n+4)
)1/(2n+1)

≤ C6

(∫
D∩�+

(−ϕ̃+ exp(α(−ψ +3)(1−β)(n+1)/p))ω0
n dt + 1 + s1/2

+ C5s1/(4n+4)
)1/(2n+1)

≤ C + C5s1/(4n+2), (4-23)

where C has the same dependencies as 3. Moreover C5 changes line by line.
The last inequality is derived based on the following two inequalities: the integral

∫
M(−ϕ)ω0

n dt is
uniformly bounded by Lemma 2.3, and the fact that 0< (1−β)(n+1)/p< (n+1)/p< 1 since 0<β < 1
and p > n + 1. Therefore the second integral is bounded by Corollary 2.2 and inequality (2-3).

By (4-23) and the definition of θ , we have

cQ1−1/b
≤ θQ ≤ sup

D
(H)− sup

∂P D
(H)≤ C + C5s1/(4n+2),

where c is universal. In addition, sup ρ can be controlled by

2 sup ρ+ ≤ sup hs(ρ)≤ Q1/b.

The proof of Lemma 4.1 follows from taking the limit s → 0+. □

Once we have Lemma 4.1, the following theorem is a direct application of Jensen’s inequality.

Theorem 4.2. Let ϕ be the C2 solution defined in Theorem 1.1. For any β ∈ (0, 1) and t0 ∈ [0, T −1), we
have the energy estimate ∫

M×[t0,t0+1]

(−ϕ̃+ C3)
1/βenFω0

n dt ≤ C,

where the constant C has the same dependencies as 3 defined in Lemma 4.1.
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Proof. Similar to the application of Lemma 3.1 and (3-7), we have∫
M×[t0,t0+1]

exp(cβ(−ϕ̃+ C3)
1/β)ω0

n dt ≤ Cβ,

where cβ and Cβ both have the same dependencies as 3.
Let Ṽ =

∫
M enFω0

n dt be the volume on the weighted volume form enFω0
n dt . Taking logarithms of

both sides and applying Jensen’s inequality, we have

Ṽ log
(

Cβ
Ṽ

)
≥ Ṽ log

(
1

Ṽ

∫
M×[t0,t0+1]

exp(cβ(−ϕ̃+ C3)
1/β

− nF)enFω0
n dt

)
≥

∫
M×[t0,t0+1]

(cβ(−ϕ̃+ C3)
1/β

− nF)enFω0
n dt

≥ cβ

∫
M×[t0,t0+1]

(−ϕ̃+ C3)
1/βenFω0

n dt − Entp(F).

The theorem follows from Ṽ ≤ Entp(F)+ V (M, ω0) and the fact y log(y) >−1/e for y > 0. □

Proof of Theorem 1.1. Theorem 3.3 tells us the result follows directly from a uniform control on E . By
Hölder’s inequality, we have∫

M×[t0,t0+1]

(−ϕ̃+ C3)enFω0
n dt ≤ Ṽ 1/n

(∫
M×[t0,t0+1]

(−ϕ̃+ C3)
n/(n−1)enFω0

n dt
)(n−1)/n

.

If we fix β = 1 − 1/n in Theorem 4.2, then the integral estimate is universal and independent of t0.
Thus we complete the proof of Theorem 1.1. □

5. Some generalizations

In this section, we derive some generalizations, Theorems 1.2 and 1.3, of Theorem 1.1.
The idea of Theorem 1.2 comes from the result of Chen and Cheng [2023] for general parabolic

Hessian equations. Recall that r denotes the homogeneous degree of the operator F and the linearization
of the flow (1-3) is

Lu = −∂t u + Gi j̄ ui j̄ ,

where

Gi j̄
=

1
F

∂F (λ[hϕ])
∂hi j̄

.

To prove Theorem 1.2, we will use the family of auxiliary equations (2-2) and follow the same argument
as in Sections 3 and 4.

The proof of main estimate (3-1) is tedious, and we will only show the essential differences compared
to previous sections. When we apply the operator L to the test function

−ϵ(−ψ +3)β − ϕ̃− s,
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the Laplacian operator will be replaced by the trace operator trG v = Gi j̄vi j̄ . More precisely, we have the
estimates

0 ≥ L(−ϵ(−ψ +3)β − ϕ̃− s)

≥ −βϵ(−ψ +3)β−1ψ̇ + ˙̃ϕ+βϵ(−ψ +3)β−1 trG(
√

−1∂∂̄ψ)

+β(1 −β)ϵ(−ϕ+3)β−2
|∂ϕ|

2
G − trG(

√
−1∂∂̄ϕ)

≥ βϵ(−ψ +3)β−1(−ψ̇)− (−ϕ̇)+βϵ(−ψ +3)β−1 trG(
√

−1∂∂̄ψ)− trG(
√

−1∂∂̄ϕ)− C3

≥ βϵ(−ψ +3)β−1(−ψ̇)− (−ϕ̇)+βϵ(−ψ +3)β−1 trG ωψ − trG ωϕ − C3

≥ βϵ(−ψ +3)β−1(−ψ̇ + trG ωψ)− (−ϕ̇+ r + C3).

We also must deal with the factor −ψ̇ + trG ωψ as in inequalities (3-2)–(3-4). The lower bound of the
determinant on the condition of F will give us the lower bound det Gi j̄

≥ γF −n/r . By the flows (2-2)
and (1-3) and the homogeneous degree r condition, we have

−ψ̇ + trG ωψ ≥ (n + 1) n+1

√
f enFω0n

ωψ n ·ωψ n det Gi j̄

≥ C7 f 1/(n+1) n+1

√(
er F

F

)n/r

≥ C7 f 1/(n+1) exp
(
−

n
r(n + 1)

ϕ̇

)
, (5-1)

where C7 is a universal constant.
Since the function

h(x)= (x − r − C3) exp
(

n
r(n + 1)

x
)
> c,

where

c = −
r(n + 1)

n
exp

(
nC3 − r
r(n + 1)

)
,

we have the same estimate

0 ≥ C7βϵ(−ψ +3)β−1 f 1/(n+1)
−

r(n + 1)
n

exp
(

nC3 − r
r(n + 1)

)
.

To derive the ABP estimate and (4-16) for this case, we need to calculate the estimate of the operator L
on 0̃. We have

L H ≤ −(2n + 1)
(
|Ht · det D2 H | ·

(
1

(det G)2

))1/(2n+1)

.

Moreover the bad factor in the integration over D ∩�+ is

exp
(
−

n(2n + 1)
r(n + 1)

ϕ̇

)
1

(det G)2
= e(n

2(2n+1)/(r(n+1)))FF −n(2n+1)/(r(n+1)) 1
(det G)2

≤
1
γ 2 e(n

2(2n+1)/(r(n+1)))FF n/(r(n+1)).

The exponent of F is n/(r(n + 1)), which is less than or equal to 1 if we assume the degree satisfies
1 ≤ r ≤ n, and so we have a similar control as in (4-21). Theorem 1.2 follows from an analogue of
Theorem 4.2.
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We can also consider the much more general flow equation (1-5). Let us list the linearization operators
for different choices of 2 firstly:

Lu =


−
∂
∂t u + ϕ̇1ϕu, 2(x)= x,

−
∂
∂t u +

1
3 ϕ̇1ϕu, 2(x)= x1/3,

−
∂
∂t u − ϕ̇1ϕu, 2(x)= −1/x .

(5-2)

To get Lemmas 3.1 and 4.1 under the new setting, we need to reprove Lemma 2.3 to get the upper
bound of the integral. The following arguments are divided into two cases.

When 2(y)= −1/y, we have ∫
M
ϕ̇ =

∫
M

−enF ω0
n

ωϕn < 0.

When 2(y)= ya for a > 0, we have

ϕ̈ =
d
dt

(
ωϕ

n

enFω0n

)a

= a1ϕϕ̇
ωϕ

n

enFω0n

(
ωϕ

n

enFω0n

)a−1

= aϕ̇1ϕϕ̇.

Consider the first variation of the functional
∫

M ϕ̇ωϕ
n , given by

d
dt

∫
M
ϕ̇ωϕ

n
=

∫
M
ϕ̈ωϕ

n
+

∫
M
ϕ̇

d
dt
(ωϕ

n)

=

∫
M
ϕ̈ωϕ

n
+

∫
M
ϕ̇1ϕϕ̇ωϕ

n

= (a + 1)
∫

M
ϕ̇1ϕϕ̇ωϕ

n

= −(a + 1)
∫

M
|∇ϕ̇|

2
ωϕ
ωϕ

n
≤ 0.

Then the estimate of
∫

M ϕ̇ω0
n follows from∫

M
ϕ̇ω0

n
≤

∫
M
ϕ̇ω0

n
−

∫
M
ϕ̇ωϕ

n
+

∫
M
ϕ̇( · , 0)ωϕ0

n

≤

∫
M
ϕ̇(ω0

n
−ωϕ

n)+

∫
M

e−anF
(
ωϕ0

n

ω0n

)a

ωϕ0
n

≤

∫
M
ϕ̇(1 − enF ϕ̇1/a)ω0

n
+ C

∫
M

e−anFω0
n,

where C is universal.
Consider a function A(y)= y − ly1+1/a defined on y ∈ [0,∞), where l is positive. Using calculus, we

have

A(y)≤ A
(

aa

la(a + 1)a

)
=

aa

(a + 1)a+1 l−a.

This yields the estimate∫
M
ϕ̇ω0

n
≤

aa

(a + 1)a+1

∫
M

e−anFω0
n
+ C

∫
M

e−anFω0
n

≤ C K .
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Once we have the above results, we need to prove Lemmas 3.1 and 4.1 for the flow equation (1-5).
However the operator L has an extra factor −ϕ̇ in the Laplacian term which requires slightly different
calculations. We will only discuss the case when 2= −1/y; the other two cases can be treated similarly.
To start with, we have

L(−ϵ(−ψ +3)β − ϕ̃− s)≥ βϵ(−ψ +3)β−1(−ψ̇ − ϕ̇ trωψ ωϕ)+ ϕ̇+ nϕ̇. (5-3)

There is no constant C3 since
∫
ϕ̇ < 0, and there is a term nϕ̇ since we have the extra factor when we

compute the second derivative. By applying the geometric-arithmetic inequality, we have

−ψ̇ − ϕ̇ trωψ ωϕ ≥ (n + 1)
(

f enFω0
n

ωψ n (−ϕ̇)n
ωψ

n

ωϕn

)1/(n+1)

= (n + 1) f 1/(n+1)(−ϕ̇)

and
L(−ϵ(−ψ +3)β − ϕ̃− s)≥ (n + 1)(βϵ(−ψ +3)β−1 f 1/(n+1)

− 1)(−ϕ̇).

Therefore we can drop the positive factor −ϕ̇ and evaluate the inequality at the maximal point.
To derive an analogue of Lemma 4.1, we need to consider

ρ = −ϵ(−ψ +3)β − ϕ̃− (n + 1)(t − t0),

where the last two terms −(t − t0) do not affect the result since we only estimate locally on M ×[t0, t0 +1].
If the new ρ has an upper bound which has the same dependencies as the constants in Lemma 4.1, then
−ϵ(−ψ +3)β − ϕ̃ does as well. Following a similar calculation, we have

Lρ ≥ (n + 1)
(
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

− 1 +
1

−ϕ̇

)
(−ϕ̇),

where 1/−ϕ̇ comes from L(t − t0)= −1. Applying the ABP estimate, we have(
|∂t H · det D2 H | · (−ϕ̇)2n

(
ω0

n

ωϕn

)2 )1/(2n+1)

≤
R−

2n + 1
. (5-4)

In conclusion, the main term in the ABP estimate is(
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

− 1 +
1

−ϕ̇

)2n+1

−

(−ϕ̇)2n+1−2n
(
ωϕ

n

ω0n

)2

=

(
βϵ(−ψ +3)β−1 f̃ 1/(n+1)

− 1 +
1

−ϕ̇

)2n+1

−

e2nF 1
−ϕ̇

. (5-5)

The term 1/−ϕ̇ can be controlled pointwisely on the domain D ∩�+. More specifically,

βϵ(−ψ +3)β−1 f̃ 1/(n+1)
− 1 +

1
−ϕ̇

< 0

implies both inequalities

βϵ(−ψ +3)β−1 f̃ 1/(n+1)
− 1< 0 and

1
−ϕ̇

− 1< 0.

The rest of the proof for the 2= −1/y case follows the same procedure.
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SPECTRAL ASYMPTOTICS OF THE NEUMANN LAPLACIAN
WITH VARIABLE MAGNETIC FIELD

ON A SMOOTH BOUNDED DOMAIN IN THREE DIMENSIONS

MAHA AAFARANI, KHALED ABOU ALFA, FRÉDÉRIC HÉRAU AND NICOLAS RAYMOND

This article is devoted to the semiclassical spectral analysis of the Neumann magnetic Laplacian on a smooth
bounded domain in three dimensions. Under a generic assumption on the variable magnetic field (involving
a localization of the eigenfunctions near the boundary), we establish a semiclassical expansion of the lowest
eigenvalues. In particular, we prove that the eigenvalues become simple in the semiclassical limit.

1. Motivation and main result

1.1. The operator. Let �⊂ R3 be a smooth connected open bounded domain. We consider A :�→ R3,
a smooth magnetic vector potential. The associated magnetic field is given by

B(x)= ∇ × A(x)

and assumed to be nonvanishing on �. For h > 0, we consider the self-adjoint operator

Lh = (−ih∇ − A)2 (1-1)
with domain

Dom(Lh)= {ψ ∈ H 2(�) : n · (−ih∇ − A)ψ = 0 on ∂�},

where n is the outward pointing normal to the boundary.
The associated quadratic form is defined, for all ψ ∈ H 1(�), by

Qh(ψ)=

∫
�

|(−ih∇ − A)ψ |
2 dx .

Since � is smooth and bounded, the operator Lh has compact resolvent and we can consider the
nondecreasing sequence of its eigenvalues (λn(h))n⩾1 (repeated according to their multiplicities). The
aim of this article is to describe the behavior of the eigenvalues λn(h) in the semiclassical limit h → 0.

1.2. The operator on a half-space with constant magnetic field. The boundary of � has an important
influence on the spectral asymptotics. Let us consider x0 ∈ ∂� and the angle θ(x0) ∈

[
−
π
2 ,

π
2

]
given by

B(x0) · n(x0)= ∥B(x0)∥ sin(θ(x0)),

where n(x0) is the outward pointing normal at x0.
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Near x0, one will approximate � by the half-space R3
+

= {(r, s, t) ∈ R3
: t > 0} (the variable t playing

the role of the distance to the boundary). Then, this will lead us to consider the Neumann realization of

Lθ = (Dr − t cos θ + s sin θ)2 + D2
s + D2

t

in the ambient space L2(R3
+
), which already appeared in [Lu and Pan 2000] in the context of Ginzburg–

Landau theory. We use the notation D =−i ∂ . The corresponding magnetic field is b(θ)= (0, cos θ, sin θ).
We let

e(θ)= inf sp(Lθ ).

It is well known (see [Helffer and Morame 2002; Lu and Pan 2000] and also [Raymond 2017, Sec-
tion 2.5.2]) that e is even, continuous and increasing on

[
0, π2

]
(from20 := e(0)∈ (0, 1) to 1) and analytic

on
(
0, π2

)
. Moreover, we can prove that, for all θ ∈

(
0, π2

)
, e(θ) is also the groundstate energy of the

Neumann realization of the “Lu–Pan” operator, acting on L2(R2
+
),

Lθ = (t cos θ − s sin θ)2 + D2
s + D2

t ; (1-2)

see [Raymond 2017, Section 0.1.5.4]. In this case, the groundstate energy belongs to the discrete spectrum
and it is a simple eigenvalue.

These considerations lead us to introduce the function β on the boundary.

Definition 1.1. We let, for all x ∈ ∂�,

β(x)= ∥B(x)∥e(θ(x)).

1.3. Context, known results, and main theorem. The function β plays a central role in the semiclassical
spectral asymptotics. The one-term asymptotics of λ1(h) are established in [Lu and Pan 2000] (see also
[Raymond 2010a] and [Fournais and Helffer 2010], where additional details are provided).

Theorem 1.2 [Lu and Pan 2000]. We have

λ1(h)= h min(bmin, βmin)+ o(h),

where bmin = minx∈� ∥B(x)∥ and βmin = minx∈∂� β(x).

When B is constant (or with constant norm), more accurate estimates of the groundstate energy have
been obtained in [Helffer and Kachmar 2023; Helffer and Morame 2004; Raymond 2010b]. When looking
at Theorem 1.2, natural questions can be asked. Can we describe more than the groundstate energy? Is
the groundstate energy a simple eigenvalue? In three dimensions, most of the results in this direction
have been obtained rather recently:

• When bmin < βmin, we can prove that the boundary is essentially not seen by the eigenfunctions with
low eigenvalues and that they are localized near the minima of ∥B∥. Then, if the minimum is unique and
nondegenerate, the analysis of [Helffer et al. 2016] applies and it can be established that

λn(h)= bminh + C0h3/2
+ (C1(2n − 1)+ C2)h2

+ o(h2),

where the constants (C0,C1,C2) ∈ R × R+ × R reflect the classical dynamics in a magnetic field.
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• When B is constant (or with constant norm), we can prove that βmin < bmin and that βmin =20∥B∥.
In this case, the eigenfunctions with low eigenvalues are localized near the points of the boundary
where the magnetic field is tangent, that is, where e(θ(x)) is minimal. Assuming that the magnetic field
becomes generically tangent to the boundary along a nice closed curve and assuming also a nondegeneracy
assumption, we have, from [Hérau and Raymond 2024],

λn(h)= βminh + C0h4/3
+ C1h3/2

+ (C2(2n − 1)+ C3)h5/3
+ o(h2)

for some constants (C0,C1,C2,C3) ∈ R2
× R+ × R.

The result in [Hérau and Raymond 2024] is stated in the case of a constant magnetic field, but only the
fact that its norm is constant is actually used in the analysis; see Section 3.2.1 in that same work. Note
that without the additional nondegeneracy assumption and stopping the analysis before Section 5.6 in
that same work provides us with the two-term expansion. This observation is motivated by [Helffer and
Kachmar 2023], where the two-term expansion of the groundstate energy has been obtained independently
and where examples are also analyzed in detail.

When βmin < bmin and when ∥B∥ is variable, it seems that less is known. The first estimates of the
low-lying eigenvalues, and not only of the first one, are done in [Raymond 2010a] (see also [Raymond
2009]), where an upper bound is obtained under a generic assumption (see Assumption 1.3 below):

λn(h)⩽ βminh + C0h3/2
+ (C1(2n − 1)+ C2)h2

+ o(h2) (1-3)

for some constants (C0,C1,C2) ∈ R × R+ × R and where C1 is explicitly given by

C1 =

√

det Hessx0 β

2∥B(x0)∥ sin θ(x0)
.

The upper bound (1-3) is obtained by means of a construction of quasimodes in local coordinates near
the minimum of β and involves a number of rather subtle algebraic cancellations. At a conference in
Dijon in March 2010, S. Vũ Ngo. c suggested to the last author that these algebraic cancellations were the
signs of a hidden normal form. At the same conference, J. Sjöstrand also suggested that a dimensional
reduction in the Grushin spirit (see the remarkable survey [Sjöstrand and Zworski 2007]) could provide us
with the lower bound. Retrospectively, we will see that both of them were somewhat right, but that some
microlocal techniques needed to be developed further in order to tackle the problem in an efficient way.

Until now, the matching lower bound to (1-3) has only been obtained for a toy model in the case of a
flat boundary with an explicit polynomial magnetic field; see [Raymond 2012]. The aim of this article
is to establish a lower bound that matches (1-3) in the general case. To do so, we will, of course, work
under the same assumption as in [Raymond 2010a].

Assumption 1.3. The function β has a unique minimum, which is nondegenerate. It is attained at x0 ∈ ∂�,
and we have

θ(x0) ∈
(
0, π2

)
. (1-4)

Moreover, we have
βmin = β(x0)= min

x∈∂�
β(x) <min

x∈�

∥B(x)∥ = bmin.
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The main result of this article is a three-term expansion of the n-th eigenvalue of Lh . Thereby, it
completes the picture described above.

Theorem 1.4. Under Assumption 1.3, there exist C0,C1 ∈ R such that, for all n ⩾ 1, we have

λn(h) =
h→0

βminh + C0h3/2
+

( √

det Hessx0 β

∥B(x0)∥ sin θ(x0)

(
n −

1
2

)
+ C1

)
h2

+ o(h2).

In particular, for all n ⩾ 1, λn(h) becomes a simple eigenvalue as soon as h is small enough.

1.4. Organization and strategy of the proof. In Section 2, we recall the already known results of
localization of the eigenfunctions near x0. This formally reduces the spectral analysis to a neighborhood
of x0. This suggests that we should introduce local coordinates near x0. These coordinates (r, s, t) are
adapted to the geometry of the magnetic field: the coordinate s is the curvilinear coordinate along the
projection of the magnetic field on the boundary

(
we use here that θ(x0) <

π
2

)
, the coordinate r is the

geodesic coordinate transverse to s, and t is the distance to the boundary. A rather similar coordinate
system has been used and described in [Hérau and Raymond 2024] (inspired from [Helffer and Morame
2004]). Then, the local action of the operator is described in Section 2.3, where we perform a Taylor
expansion with respect to the normal variable t only. After a local change of gauge, this makes an
approximate magnetic vector potential appear, see (2-10). In Section 2.3.2, we define a new operator
on L2(R3

+
) by extending the coefficients, seen as functions of (r, s) defined near (0, 0), to functions on R2.

Since this extension occurs away from the localization zone of the eigenfunctions, we get a new operator
L

app
h whose spectrum is close to that of Lh , see Proposition 2.11.
In Section 3, we perform the analysis of L

app
h with the help of the change of coordinates (r, s) 7→

J (r, s)= (u1, u2), whose geometric role is to make the normal component of the magnetic field constant
(here, we use θ(x0) > 0). This idea is reminiscent of [Morin et al. 2023] in two dimensions; see
Proposition 2.2 in that work. We are reduced to the spectral analysis of the operator Nh , see (3-1). Then,
we conjugate Nh by a tangential Fourier transform (in the direction u1) and a translation/dilation T (after
these transforms, the variable u1 becomes z). After these explicit transforms, we get a new operator N

♯
h̄ ,

which can be seen as a differential operator of order 2 in the variables (z, t) with coefficients that are
h-pseudodifferential operators (with an expansion in powers of h̄ = h1/2) in the variable u2 only, see (3-10).
Its eigenfunctions are localized in (z, t), see Proposition 3.3 and Remark 3.4.

In Section 4, this localization with respect to z suggests that we should insert cutoff functions in the
coefficients of our operator. By doing this, we get the operator N

♭
h̄ , see (4-1). The advantage of N

♭
h̄ is that

it can be considered as a pseudodifferential operator with operator-valued symbol in a reasonable class
S(R2, N ), see Proposition 4.2. The principal operator symbol n0(u,υ) is unitarily equivalent to the Lu–Pan
operator ∥B(υ,−u)∥Lθ(υ,−u) (where we make a slight abuse of notation by forgetting the reference to the
local coordinates on the boundary), see Proposition 4.4. Then, we may construct an inverse for n0 −3 by
means of the so-called Grushin formalism as soon as 3 is close to βmin, see Lemma 4.5. This is the first
step in the approximate parametrix construction for N

♭
h̄ −3 given in Proposition 4.7, which is the key

of the proof of Theorem 1.4. Let us emphasize that this parametrix construction is inspired by [Keraval
2018] and based on ideas developed by A. Martinez and J. Sjöstrand. This formalism has recently been
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used in [Hérau and Raymond 2024] in three dimensions (see also [Bonnaillie-Noël et al. 2022; Fahs et al.
2024; Fournais et al. 2023] in the case of two dimensions). At a formal level, this parametrix construction
relates the kernel of N

♭
h̄ −3 to that of an effective pseudodifferential operator Q±

h̄ (3), see (4-7).
In Section 5 we relate the spectrum of N

♯
h̄ to that of the effective operator (peff

h̄ )
W , see (5-1). Note: the

effective operator is an operator in one dimension. This contrasts with [Hérau and Raymond 2024], where
a double Grushin reduction is used: here this reduction is done in one step with the help of the Lu–Pan
operator. The quasi-parametrix in Proposition 4.7 is the bridge between the spectra of N

♯
h̄ and (peff

h̄ )
W .

We emphasize that we have to be very careful when studying this connection since the symbol of
the effective operator is not necessarily real-valued (only its principal symbol p0 is a priori real). This
again contrasts with [Hérau and Raymond 2024] and all the previous works on the subject. This non-self-
adjointness comes from the fact that Nh is not self-adjoint on the canonical L2-space but on a weighted
L2-space. That is why a short detour into the world of non-self-adjoint operators is used in Section 5.
In fact, one will not need the operator (peff

h̄ )
W more than its approximation (pmod

h̄ )W near the minimum
of p0, see Section 5.1. This approximation is a complex perturbation of the harmonic oscillator. Its
spectrum is well known as well as the behavior of its resolvent.

In Section 5.2.1, we use rescaled Hermite functions to construct quasimodes for N
♯

h̄ . This shows that
the spectrum of the model operator is in fact real, and we get an accurate upper bound of λn(N

♯
h̄ ) in (5-5).

This reproves in a much shorter way (1-3) (see [Raymond 2010a, Theorem 1.5], where the convention
∥B(x0)∥ = 1 is used). Section 5.2.2 is devoted to establishing the corresponding lower bound (by using
in particular that the eigenvalues of the non-self-adjoint operator (pmod

h̄ )W have algebraic multiplicity 1).

Remark 1.5. The above analysis explains the presence of βmin, attached to the lowest eigenvalue of the
Lu–Pan operator, as the leading term in the semiclassical asymptotics. Similarly, the constant

√

det Hessx0 β

∥B(x0)∥ sin θ(x0)

appears as the uncertainty constant attached to the effective harmonic oscillator (pmod
h̄ )W after the Grushin

reduction to a one-dimensional problem. This spectral gap combines the normal component of the magnetic
field with the spectrum of the Lu–Pan operator (and thus it has no obvious dynamical interpretation). The
latter is deeply related to the nondegeneracy assumption on β. However, the geometric interpretation of
the constants C0 and C1 is not clear since they come from the non-self-adjoint linear part of (pmod

h̄ )W .

2. Localization near x0 and consequences

2.1. Localization estimates. In this section, we gather some already-known localization properties of the
eigenfunctions; see [Raymond 2009].

Proposition 2.1 (localization near the boundary). Again under Assumption 1.3, for all ϵ > 0 such that
βmin + ϵ < bmin, there exist α, C , h0 > 0 such that, for all h ∈ (0, h0) and all eigenfunctions ψ of Lh

associated with an eigenvalue λ⩽ (βmin + ϵ)h, we have∫
�

e2α dist(x,∂�)/
√

h
|ψ |

2 dx ⩽ C∥ψ∥
2. (2-1)



1902 MAHA AAFARANI, KHALED ABOU ALFA, FRÉDÉRIC HÉRAU AND NICOLAS RAYMOND

For δ > 0, we consider the δ-neighborhood of the boundary given by

�δ := {x ∈� : dist(x, ∂�) < δ}.

Due to Proposition 2.1, in the following, we take

δ = h1/2−η

for η ∈
(
0, 1

2

)
. We consider Lh,δ = (−ih∇ − A)2, the operator with magnetic Neumann condition on ∂�

and Dirichlet condition on ∂�δ \ ∂�.

Corollary 2.2. Let n ⩾ 1. There exist C, h0 > 0 such that, for all h ∈ (0, h0),

λn(Lh,δ)− Ce−Ch−η

⩽ λn(Lh)⩽ λn(Lh,δ).

Note that the upper bound in Corollary 2.2 easily follows from the min-max theorem, whereas the
lower bound is obtained by using Proposition 2.1.

Thanks to Corollary 2.2, we may focus on the spectral analysis of Lh,δ . The following proposition can
be found in [Fournais and Helffer 2010, Chapter 9] and [Helffer and Morame 2002, Theorem 4.3] (see
also the proof of [Hérau and Raymond 2024, Proposition 2.9]).

Proposition 2.3 (localization near x0). Let M > 0. There exist C, h0 > 0 and α > 0 such that, for all
h ∈ (0, h0) and all eigenfunctions ψ of Lh,δ associated with an eigenvalue λ such that λ⩽ βminh+ Mh3/2,
we have ∫

�δ

e2α dist(x,∂�)/
√

h
|ψ(x)|2 dx +

∫
�δ

e2α∥x−x0∥
2/h1/4

|ψ(x)|2 dx ⩽ C∥ψ∥
2. (2-2)

Proposition 2.3 invites us to consider a local chart near x0 and to write the operator in the corresponding
coordinates. In order to simplify our analysis, we construct below a system of coordinates compatible
with the geometry of the magnetic field.

2.2. Adapted coordinates near x0. This section is devoted to introducing coordinates adapted to the
magnetic field. Most of the properties of our coordinates system have been established in [Hérau and
Raymond 2024].

2.2.1. Coordinate in the direction of the magnetic field on the boundary. We set

b(x)=
B(x)

∥B(x)∥
,

and we consider its projection on the tangent plane at x ∈ ∂�:

b∥(x)= b(x)− ⟨b(x), n(x)⟩n(x),

where n is the outward pointing normal.
Due to Assumption 1.3, near x0, the vector field b∥ does not vanish. This allows us to consider the unit

vector field

f (x)=
b∥(x)

∥b∥(x)∥
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and the associated integral curve γ given by

γ ′(s)= f (γ (s)), γ (0)= x0,

which is well-defined on (−s0, s0) for some s0 > 0. Clearly, γ is smooth and with values in ∂�.

2.2.2. Coordinates on the boundary. Denoting by K the second fundamental form of ∂� associated to
the Weingarten map defined by,

for all U, V ∈ Tx∂�, Kx(U, V )= ⟨dnx(U ), V ⟩,

we can consider the ODE with parameter s of unknown r 7→ γ (r, s),

∂2
r γ (r, s)= −K (∂rγ (r, s), ∂rγ (r, s))n(γ (r, s)),

with initial conditions

γ (0, s)= γ (s), ∂rγ (0, s)= −γ ′(s)⊥,

where ⊥ is taken in the tangent space and such that (γ ′, γ ′⊥, n) is a direct orthonormal basis. The minus
is here so that (∂rγ, ∂sγ, n) is also a direct orthonormal basis along γ ( · ). The curve γ (r, · ) is the image
of γ ( · ) under the geodesic flow on ∂� (with initial velocity orthogonal to γ ( · )) at time r .

This ODE has a unique smooth solution (−r0, r0)× (−s0, s0) ∋ (r, s) 7→ γ (r, s), where r0 > 0 is
chosen small enough. Let us gather the important properties of (r, s) 7→ γ (r, s). Their proofs may be
found in [Hérau and Raymond 2024].

Proposition 2.4. The function (r, s) 7→ γ (r, s) is valued in ∂�. Moreover, we have

|∂rγ (r, s)| = 1, ⟨∂rγ, ∂sγ ⟩ = 0.

In this chart γ , the first fundamental form on ∂� is given by the matrix

g(r, s)=

(
1 0
0 α(r, s)

)
, α(r, s)= |∂sγ (r, s)|2.

For all s ∈ (−s0, s0), we have α(0, s)= 1 and ∂sα(0, s)= 0.

2.2.3. Coordinates near the boundary. We consider the tubular coordinates associated with the chart γ :

y = (r, s, t) 7→ 0(r, s, t)= γ (r, s)− tn(γ (r, s))= x . (2-3)

The map 0 is a smooth diffeomorphism from Q0 := (−r0, r0)× (−s0, s0)× (0, t0) to 0(Q0), as soon as
t0 > 0 is chosen small enough. The differential of 0 can be written as

d0y = [(Id −t dn)(∂rγ ), (Id −t dn)(∂sγ ),−n], (2-4)

and the Euclidean metric becomes

G = (d0)T d0 =

(
g 0
0 1

)
, (2-5)
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with

g(r, s, t)=

(
∥(Id −t dn)(∂rγ )∥

2
⟨(Id −t dn)(∂rγ ), (Id −t dn)(∂sγ )⟩

⟨(Id −t dn)(∂rγ ), (Id −t dn)(∂sγ )⟩ ∥(Id −t dn)(∂sγ )∥
2

)
.

We have g(r, s)= g(r, s, 0), where g is defined in Proposition 2.4.

2.2.4. The magnetic form in tubular coordinates. In this section, we discuss the expression of the magnetic
field in the coordinates induced by 0. This discussion can be found in [Raymond 2017, Section 0.1.2.2]
and [Hérau and Raymond 2024, Section 3.2]. We consider the 1-form

σ = A · dx =

3∑
ℓ=1

Aℓ dxℓ.

Its exterior derivative is the magnetic 2-form

ω = dσ =

∑
1⩽k<ℓ⩽3

(∂k Aℓ − ∂ℓAk) dxk ∧ dxℓ,

which can also be written as

ω = B3 dx1 ∧ dx2 − B2 dx1 ∧ dx3 + B1 dx2 ∧ dx3.

Note also that,

for all U, V ∈ R3, ω(U, V )= det(U, V, B)= ⟨U × V, B⟩.

Let us now consider the effect of the change of variables 0(y)= x . We have

0∗σ =

3∑
j=1

Ã j dy j , Ã = (d0)T ◦ A ◦0, (2-6)

and

0∗ω = 0∗ dσ = d(0∗σ)= [ · , · ,∇ × Ã].

Here we use the notation 0∗ for the pullback by 0. This also gives that, for all U, V ∈ R3,

det(d0(U ), d0(V ), B)= det(U, V,∇ × Ã) or det d0( · , · , d0−1(B))= det( · , · ,∇ × Ã),

so that,

∇ × Ã = (det d0) d0−1(B).

Note then that, using (2-5), we get

|g|
−1/2

∇ × Ã = B, (2-7)

where B(y) := d0−1
y (B(x)) corresponds to the coordinates of B(y) in the image of the canonical basis

by d0y . With our specific change of coordinates (2-3), we have

B = d0(B)= B1(Id −t dn)(∂rγ )+B2(Id −t dn)(∂sγ )−B3n.
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For all x ∈ ∂�, i.e., t = 0, we have

B(x)= B1(r, s, 0) ∂rγ +B2(r, s, 0) ∂sγ −B3(r, s, 0)n(γ (r, s)),

∥B(x)∥2
= B2

1(r, s, 0)+α(r, s)B2
2(r, s, 0)+B2

3(r, s, 0).
(2-8)

Moreover, we have

B1(r, s, 0)= ⟨B, ∂rγ ⟩, α(r, s)B2(r, s, 0)= ⟨B, ∂sγ ⟩, B3(r, s, 0)= −⟨B, n⟩.

Note that our choice of coordinate s (along the projection of the magnetic field on the tangent plane) and
of transverse coordinate r implies that

B1(0, s, 0)= 0, B2(0, s, 0) > 0,

thanks to Assumption 1.3.

Definition 2.5. In a neighborhood of (0, 0), we can consider the unique smooth function θ such that

B(γ (r, s)) · n(γ (r, s))= ∥B(γ (r, s))∥ sin θ(r, s)

and satisfying θ(r, s) ∈
(
0, π2

)
. With a slight abuse of notation, we let

β(r, s)= ∥B(γ (r, s))∥e(θ(r, s)).

Remark 2.6. We have

B3(r, s)= −∥B(γ (r, s))∥ sin(θ(r, s)).

Moreover, since B2 > 0 and α(0, s)= 1,

B2(0, s, 0)= ∥B(γ (0, s))∥ cos θ(0, s), B3(0, s, 0)= −∥B(γ (0, s))∥ sin θ(0, s).

In fact, we can choose a suitable explicit Ã such that (2-7) holds in a neighborhood of (0, 0, 0).

Lemma 2.7. Considering

Ã1(r, s, t)=

∫ t

0
[|g|

1/2B2](r, s, τ ) dτ,

Ã2(r, s, t)= −

∫ t

0
[|g|

1/2B1](r, s, τ ) dτ +

∫ r

0
[|g|

1/2B3](u, s, 0) du,

Ã3(r, s, t)= 0,

we have ∇ × Ã(r, s, t)= |g|
1/2B(r, s, t).

Proof. This follows from a straightforward computation and the fact that |g|
1/2B is divergence-free. □

Remark 2.8. Note that the proof of Lemma 2.7 does not involve global geometric quantities on the
boundary as in [Hérau and Raymond 2024, Proposition 3.3], since our analysis is local near x0.
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2.3. First approximation of the magnetic Laplacian in local coordinates. If the support of ψ is close
enough to x0, we may express Qh(ψ) in the local chart given by 0(y)= x . Letting ψ̃(y)=ψ ◦0(y), we
have then

Qh(ψ)=

∫
⟨G−1(−ih∇y − Ã(y))ψ̃, (−ih∇y − Ã(y))ψ̃⟩|g|

1/2 dy.

In the Hilbert space L2(|g|
1/2 dy), the operator locally takes the form

|g|
−1/2(−ih∇y − Ã(y)) · |g|

1/2G−1(−ih∇y − Ã(y)), (2-9)

where G is defined in (2-5). From now on, the analysis deviates from [Hérau and Raymond 2024].

2.3.1. Expansion with respect to t . Due to the localization near the boundary at the scale h1/2, we are led
to replace Ã by its Taylor expansion Ã[3] at order 3 and g and G by their Taylor expansions at order 2.
We let

Ã[3]

1 (r, s, t)= t[|g|
1/2B2](r, s, 0)+ C2 t̂ 2

+ C3 t̂ 3,

Ã[3]

2 (r, s, t)= −t[|g|
1/2B1](r, s, 0)+ F(r, s)+ E2 t̂ 2

+ E3 t̂ 3,

Ã[3]

3 (r, s, t)= 0,

(2-10)

where t̂ = tχ(h−1/2+ηt) for some smooth cutoff function χ equal to 1 near 0 and where

F(r, s)=

∫ r

0
[|g|

1/2B3](ℓ, s, 0) dℓ, (2-11)

and the functions C j (r, s) and E j (r, s) are smooth. We emphasize that we only truncate the terms of
order at least 2 in t in the above expression.

Due to Assumption 1.3, (r, s) 7→ (F(r, s), s) is a smooth diffeomorphism on a neighborhood of (0, 0).
We also consider the expansions

|g|
1/2(r, s, t)= a0(r, s)+ ta1(r, s)+ t2a2(r, s)+ O(t3),

G−1
= (M0(r, s)+ t M1(r, s)+ t2 M2(r, s))−1

+ O(t3),

and we let

m(r, s, t)= a0(r, s)+ t̂a1(r, s)+ t̂ 2a2(r, s), M(r, s, t)= M0(r, s)+ t̂ M1(r, s)+ t̂ 2 M2(r, s). (2-12)

Recall that |g|(r, s, 0)= α(r, s).

2.3.2. Extension of the functions of the tangential variables. It will be convenient to work on the half-
space R3

+
instead of a neighborhood of (0, 0, 0).

Given ϵ0 > 0, consider a smooth, odd, and nondecreasing function ζ : R → R such that ζ(x)= x on
[0, ϵ0] and ζ(x)= 2ϵ0 for all x ⩾ 2ϵ0. In particular, ∥ζ∥∞ = 2ϵ0. We let

Z(r, s)= (ζ(r), ζ(s)).

The following lemma is a straightforward consequence of Assumption 1.3.
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Lemma 2.9. For ϵ0 small enough, the function β̂ = β ◦ Z : R2
→ R+ is smooth and has a unique minimum

(at (0, 0)), which is nondegenerate and not attained at infinity.

Let us now replace the function B : (r, s) 7→ α(r, s)1/2B(r, s, 0) by B ◦ Z in (2-10) and (2-11). We
replace the other coefficients C j and E j by C j ◦ Z and E j ◦ Z . Note that we have the following.

Lemma 2.10. For ϵ0 small enough, the function

J : R2
∋ (r, s) 7→

(∫ r

0
[|g|

1/2B3](Z(ℓ, s), 0) dℓ, s
)

= u = (u1, u2) ∈ R2

is smooth, and it is a global diffeomorphism.

This leads us to consider the new vector potential

Â1(r, s, t)= tC̊1 + C̊2 t̂ 2
+ C̊3 t̂ 3,

Â2(r, s, t)= −t E̊1 + J1(r, s)+ E̊2 t̂ 2
+ E̊3 t̂ 3,

Â3(r, s, t)= 0,

(2-13)

where C1 = α1/2B2, E1 = α1/2B1 and with the notation f̊ = f ◦ Z .
The rest of the article will be devoted to the spectral analysis of the operator associated with the new

quadratic form

Qapp
h (ϕ)=

∫
R3

+

⟨(M̊)−1(−ih∇y − Â(y))ϕ, (−ih∇y − Â(y))ϕ⟩m̊ dy.

This self-adjoint operator L
app

h is acting as

m̊−1(−ih∇y − Â) · m̊(M̊)−1(−ih∇y − Â)

in the ambient Hilbert space L2(R3
+
, m̊ dy). We recall that m and M are given in (2-12). This spectral

analysis is motivated by the fact that the low-lying spectra of Lh and L
app

h coincide modulo o(h2) in the
sense of the following proposition.

Proposition 2.11. We have, for all n ⩾ 1,

λn(h)= λn(L
app

h )+ o(h2).

We omit the proof. It follows from Corollary 2.2, the localization estimates given in Proposition 2.3
(which are also true in the coordinates (r, s, t) for the eigenfunctions of L

app
h by using the same arguments),

and the min-max theorem. These localization estimates allow us to remove the cutoff functions up to
remainders of order O(h∞) and to control the remainders of the expansion in t .

3. Change of coordinates and metaplectic transform

In order to perform the spectral analysis of L
app

h , it is convenient to use the change of variable J given
in Lemma 2.10. More precisely, we will use the unitary transform induced by J defined by

U : L2(R3
+
, m̊ dy)→ L2(R3

+
, m̆|JacJ −1

| du dt), ϕ 7→ ϕ̆,
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where we use the notation f̆ (u, t) = f (J −1(u), t) and the slight abuse of notation ˘̊f = f̆ . Then, we
focus on the operator Nh = UL

app
h U−1 acting in L2(R3

+
, m̆|JacJ −1

| du dt). The operator Nh is acting
as

Nh = UL
app

h U−1
= m̆−1Dh · m̆(M̆)−1Dh, (3-1)

where

Dh =

 −ihC̆0 ∂u1 − tC̆1 − t̂ 2C̆2 − t̂ 3C̆3

−ih ∂u2 − u1 − ih Ĕ0 ∂u1 + t Ĕ1 − t̂ 2 Ĕ2 − t̂ 3 Ĕ3

−ih ∂t


and

C0 = ∂rJ1 = α1/2B3, E0 = ∂sJ1. (3-2)

Notation 3.1. We will use the following classical notation for the semiclassical Weyl quantization of a
symbol a = a(u, υ). We let

aWψ(u)=
1

(2πh)2

∫
R4

ei(u−x)·υ/ha
(u+x

2
, υ
)
ψ(x) dx dυ.

Proposition 3.2. Let K > 0 and η ∈
(
0, 1

2

)
. Let 4 be a smooth function of the real variable equal to 0

near 0 and 1 away from a compact neighborhood of 0. There exists h0 > 0 such that, for all h ∈ (0, h0)

and for all normalized eigenfunctions ψ of Nh associated with an eigenvalue λ such that λ ⩽ K h, we
have, in L2(R3

+
), [

4

(
u1 − υ2

h1/2−η

)]W

ψ = O(h∞).

Proof. To simplify the notation, we write

4h =4

(
u1 − υ2

h1/2−η

)
.

Note that 4W
h is a bounded operator by virtue of the Calderón–Vaillancourt theorem (see [Zworski 2012,

Theorem 4.23]).
Let ψ be a normalized eigenfunction of Nh associated with an eigenvalue λ such that λ⩽ K h. The

eigenvalue equation gives us

⟨Nh4
W
h ψ,4

W
h ψ⟩ = λ∥4W

h ψ∥
2
+ ⟨[Nh, 4

W
h ]ψ,4W

h ψ⟩, (3-3)

where ⟨ · , · ⟩ is the scalar product in L2(R3
+
, m̆|JacJ −1

| du dt).
According to the localization at the scale h1/2 with respect to t , we can insert a cutoff function supported

in {t ⩽ h(1−η)/2
}, and we obtain, for j = 2, 3,

∥t j4W
h ψ∥ ⩽ Ch1−η

∥4W
h ψ∥ + O(h∞)∥ψ∥. (3-4)

Then, we write

⟨Nh4
W
h ψ,4

W
h ψ⟩L2(R3

+,m̆|JacJ −1| du dt) = ⟨Dh · m̆(M̆)−1Dh4
W
h ψ, |JacJ −1

|4W
h ψ⟩L2(R3

+, du dt)

= ⟨m̆(M̆)−1Dh4
W
h ψ,Dh(|JacJ −1

|4W
h ψ)⟩L2(R3

+, du dt).
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We notice that [Dh, |JacJ −1
|] = O(h) and that m̆(M̆)−1 ⩾ c > 0. This implies that

⟨Nh4
W
h ψ,4

W
h ψ⟩L2(R3

+,m̆|JacJ −1| du dt) ⩾ c∥Dh4
W
h ψ∥

2
− Ch∥Dh4

W
h ψ∥∥4W

h ψ∥

⩾ 1
2 c∥Dh4

W
h ψ∥

2
− Ch2

∥4W
h ψ∥

2,

where we use the Young inequality to get the last estimate.
By using again the Young inequality and (3-4) to deal with the powers t̂ 2 and t̂ 3 in Dh , this yields, for

some c,C > 0,

⟨Nh4
W
h ψ,4

W
h ψ⟩L2(R3

+,m̆|JacJ −1| du dt) ⩾ cQ0
h(4

W
h ψ)− Ch1−η

∥4W
h ψ∥

2
+ O(h∞)∥ψ∥

2, (3-5)

where
Q0

h(ϕ)= ∥h ∂tϕ∥
2
+ ∥(hC̆0 Du1 − tC̆1)ϕ∥

2
+ ∥(h Du2 − u1 + h Ĕ0 Du1 + t Ĕ1)ϕ∥

2.

Then, using again the Young inequality, we find that

Q0
h(ϕ)⩾ ∥h ∂tϕ∥

2
+

1
2∥hC̆0 Du1ϕ∥

2
+

1
2∥(h Du2 − u1)ϕ∥

2
− 2∥h Ĕ0 Du1ϕ∥

2
− C∥tϕ∥

2.

Notice that there exists c > 0 such that

|C̆0| ⩾ c, |Ĕ0| ⩽
1
4 c, (3-6)

where we recall (3-2) and Lemma 2.10. Indeed, we have E0(0, 0) = 0 and, for some c0 > 0, we have
C0 ⩾ c0 > 0. In particular, ϵ0 can be chosen small enough in the extension procedure in Section 2.3.2
that (3-6) holds. This shows that, for some c0 > 0,

Q0
h(ϕ)⩾ ∥h ∂tϕ∥

2
+ c0∥h Du1ϕ∥

2
+

1
2∥(h Du2 − u1)ϕ∥

2
− C∥tϕ∥

2. (3-7)

On the support of 4h , we have (υ2 − u1)
2 ⩾ ch1−2η for some c > 0. Thus (3-4), (3-5), (3-7), and again

the localization in t yield

⟨Nh4
W
h ψ,4

W
h ψ⟩L2(R3

+,m̆|JacJ −1| du dt) ⩾
1
2 c̃h1−2η

∥4W
h ψ∥

2
+ O(h∞)∥ψ∥

2. (3-8)

Using classical results of composition of pseudo-differential operators, we have

⟨[Nh, 4
W
h ]ψ,4W

h ψ⟩ ⩽ Ch1+η
∥4W

h ψ∥
2
+ O(h∞)∥ψ∥

2, (3-9)

where 4 has a support slightly larger than that of 4h . Here we use the energy estimate

∥Dh4
W
h ψ∥ = O(h1/2)∥4W

h ψ∥ + O(h∞)∥ψ∥,

which follows from rough estimates of (3-3).
Thus, by combining (3-3), (3-8), and (3-9) with the fact that λ⩽ K h, we obtain

∥4W
h ψ∥

2 ⩽ Mhη∥4W
h ψ∥

2
+ O(h∞)∥ψ∥

2.

Finally, by an induction argument on the size of the support of 4, we get

∥4W
h ψ∥ = O(h∞)∥ψ∥. □
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Let us consider the partial semiclassical Fourier transform F2 with respect to u2 and the transla-
tion/dilation T : u1 7→ (u1 − υ2)h−1/2

= z. Slightly abusing notation, we identify T with ϕ 7→ ϕ ◦ T .
We mention that F2 is the metaplectic transform associated with the linear symplectic application
(u2, υ2) 7→ (υ2,−u2); see, for instance, [Martinez 2002, Section 3.4]. Letting V = F−1

2 T , we have

V ∗(−ih ∂u2 − u1)V = −h1/2z.

For the following it is pertinent to introduce the new semiclassical parameter

h̄ = h1/2,

keeping in mind that we continue to deal not only with h-pseudodifferential operators but also with
asymptotic expansions in h̄. The preceding equality then becomes

V ∗(−ih ∂u2 − u1)V = −h̄z.

Similarly, with the dilation W : t 7→ h−1/2t = h̄−1t , we get

W ∗V ∗Dh V W = h̄D
♯
h̄,

with

D
♯
h̄ =

 −iC♯

0 ∂z − tC♯

1 − h̄t2χ(h̄2ηt)2C♯

2 − h̄2t3χ(h̄2ηt)3C♯

3

−z − i E♯0 ∂z + t E♯1 − h̄t2χ(h̄2ηt)2 E♯2 − h̄2t3χ(h̄2ηt)3 E♯3
−i ∂t


W

,

where the coefficients of the conjugated operator D
♯
h̄ are now given by P♯ = P̆(υ2 + h̄z,−u2). Here the

Weyl quantization can be considered only in the variables (u2, υ2) since z is now a “space variable”. We
let

N
♯

h̄ = [m h̄
−1

]
♯D

♯
h̄ · [m h̄(Mh̄)

−1
]
♯D

♯
h̄,

where m h̄( · , t) = m( · , h̄t) and Mh̄( · , t) = M( · , h̄t). The operator N
♯

h̄ is equipped with the domain
(V W )−1 Dom Nh (which is still made of functions satisfying the Neumann boundary condition). Note
that Nh and h̄2N

♯
h̄ are unitarily equivalent since

W ∗V ∗Nh V W = h̄2N
♯

h̄ . (3-10)

After all these elementary transforms, Proposition 3.2 can be reformulated as follows.

Proposition 3.3. Let K > 0 and η ∈
(
0, 1

2

)
. Let 4 be a smooth function of the real variable equal to 0

near 0 and 1 away from a compact neighborhood of 0. There exists h̄0 > 0 such that, for all h̄ ∈ (0, h̄0)

and for all normalized eigenfunctions ψ of N
♯

h̄ associated with an eigenvalue λ such that λ⩽ K , we have

4(h̄2ηz)ψ = O(h̄∞).

Remark 3.4. As a consequence of the Agmon estimates and working in the coordinates (u1, u2, t),
we notice that the eigenfunctions are also roughly localized in “frequency” in the sense that, for all
(α, β, γ ) ∈ N3 and all η ∈

(
0, 1

2

)
, there exist C, h̄0 > 0 such that, for all h̄ ∈ (0, h̄0),

∥tαzβDγ
z ψ∥ +∥tαzβDγ

t ψ∥ ⩽ Ch̄−2η(α+β+γ )
∥ψ∥.
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4. A pseudodifferential operator with operator symbol

Proposition 3.3 invites us to insert cutoff functions in the coefficients of the operator N
♯

h̄ . Working from
now on with the semiclassical parameter h̄, we therefore consider

N
♭

h̄ = ([m h̄
−1

]
♭)W D

♭
h̄ · ([m h̄(Mh̄)

−1
]
♭)W D

♭
h̄, (4-1)

where

D
♭
h̄ =

 −iC♭

0 ∂z − tC♭

1 − h̄t2χ(h̄2ηt)2C♭

2 − h̄2t3χ(h̄2ηt)3C♭

3

−z − i E♭0 ∂z + t E♭1 − h̄t2χ(h̄2ηt)2 E♭2 − h̄2t3χ(h̄2ηt)3 E♭3
−i ∂t


W

, (4-2)

with P♭ = P̆(υ2 + h̄χη(z)z,−u2), where χη(z)= χ0(h̄2ηz), the function χ0 being smooth, with a compact
support, and equal to 1 on a neighborhood of the support of 1 −4.

4.1. The symbol and its properties. Expanding the operator N
♭

h̄ with respect to h̄ (say first at a formal
level) suggests that we should consider the following self-adjoint operator, depending on the parameters
(u2, υ2) and acting in the variables (z, t) as

n0(u2, υ2)

= (−i C̆0(υ2,−u2) ∂z − tC̆1(υ2,−u2))
2
+α−1(υ2,−u2)(−z − i Ĕ0(υ2,−u2) ∂z + t Ĕ1(υ2,−u2))

2
− ∂2

t ,

with the domain

Dom(n0)= {ψ ∈ L2(R2
+
) : n0(u2, υ2)ψ ∈ L2(R2

+
), ∂tψ(z, 0)= 0},

and where we recall that C1 and E1 are given in (2-13). The domain of n0(u2, υ2) depends on (u2, υ2).
However, we can check that it is unitarily equivalent to a self-adjoint operator with domain independent of
(u2, υ2), see the proof of Proposition 4.4 below. In the following, we will use a class of operator symbols
of the form

S(R2,L(A1,A2))= {a ∈ C ∞(R2,L(A1,A2)) : ∀γ ∈ N2, ∃Cγ > 0 : ∥∂γ a∥L(A1,A2) ⩽ Cγ },

where A1 and A2 are (fixed) Hilbert spaces. We also introduce

Bk = {ψ ∈ L2(R2
+
) : ∀α ∈ N2, |α| ⩽ k ⇒ (⟨t⟩k

+ ⟨z⟩k) ∂αψ ∈ L2(R2
+
)} (4-3)

and the class of symbols

S(R2, N )=

⋂
k⩾N

S(R2,L(Bk,Bk−N )),

and we notice that n0 ∈ S(R2, 2).

Remark 4.1. Note that these classes of symbols are not algebras. However, the classical Moyal product
of symbols in S(R2, N ) and S(R2,M) is well-defined and belongs to S(R2, N + M); see [Keraval 2018,
Theorem 2.1.12].
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In fact, for N ⩾ 2, by using a classical trace theorem, we may also define

BNeu
N = {ψ ∈ BN : ∂tψ(z, 0)= 0} (⊂ Dom n0)

and the associated class SNeu(R2, N ). We can also write n0 ∈ SNeu(R2, 2) to remember that the domain
of n0 is equipped with the Neumann condition.

By expanding N
♭

h̄ in powers of h̄ and by using the composition theorem for pseudodifferential operators
[Keraval 2018, Theorem 2.1.12], we get the following.

Proposition 4.2. The operator N
♭

h̄ is an h-pseudodifferential operator with symbol in the class SNeu(R2,2).
Moreover, we can write the expansion

N
♭

h̄ = nW
0 + h̄nW

1 + h̄2nW
2 + h̄3r W

h̄ , (4-4)

with n1, n2, and rh̄ in the class SNeu(R2, 8).

Proof. Let us recall that N
♭

h̄ is given in (4-1). Let us notice that the operator D
♭
h̄ , defined in (4-2), is

indeed a pseudodifferential operator with operator-valued symbol. With respect to the variables z and t , it
is a differential operator of order 1 whose symbol is −iC♭

0 ∂z − tC♭

1 − h̄t2χ(h̄2ηt)2C♭

2 − h̄2t3χ(h̄2ηt)3C♭

3

−z − i E♭0 ∂z + t E♭1 − h̄t2χ(h̄2ηt)2 E♭2 − h̄2t3χ(h̄2ηt)3 E♭3
−i ∂t

 (4-5)

and belongs to S(R2, 1). The functions/symbols [m h̄
−1

]
♭ and [m h̄(Mh̄)

−1
]
♭ belong to S(R2, 0). Combining

these considerations with (4-1), it remains to apply the composition theorem for pseudodifferential
operators with operator symbols, see Remark 4.1.

To get (4-4), it is sufficient to use the Taylor expansions in h̄ of the symbol (4-5), [m h̄
−1

]
♭, and

[m h̄(Mh̄)
−1

]
♭, and to apply again the composition theorem (the worst remainders being roughly of order 8

in (z, t)). □

Remark 4.3. We will see that the accurate descriptions of n1 and n2 in (4-4) are not necessary to prove
our main theorem. The use of the more restrictive class SNeu(R2, 8) allows us to deal with the uniformity
in the semiclassical expansions in h̄.

Let us describe the groundstate energy of the principal symbol n0. From now on, we lighten the
notation by setting (u2, υ2)= (u, υ).

Proposition 4.4. For all (u, υ) ∈ R2, the bottom of the spectrum of n0 belongs to the discrete spectrum
and it is a simple eigenvalue that equals β̆(υ,−u). The corresponding normalized eigenfunction fu,υ
belongs to the Schwartz class and depends on (u, υ) smoothly.

Moreover, there exists c > 0 such that, by possibly choosing ϵ0 smaller in Lemma 2.9, we have, for all
(u, υ) ∈ R2,

inf sp(n0(u, υ)|f⊥u,υ )⩾ βmin + c ⩾ β̆(υ,−u).
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Proof. By using the Fourier transform in z and then a change of gauge, we are reduced to the case when
E0 = 0. With a rescaling in z, n0 is unitarily equivalent to

(−i ∂z − tC̆1)
2
+α−1(−C̆0z + t Ĕ1)

2
− ∂2

t = (−i ∂z − tb2)
2
+ (b3z + tb1)

2
− ∂2

t ,

with
b1 = B̆1, b2 = (α1/2B2)̆, b3 = −B̆3,

where the functions are evaluated at (υ2,−u2). Recalling (2-8), we see that the Euclidean norm of
b = (b1, b2, b3) is

∥b∥2 = ∥B̆∥,

with a slight abuse of notation. By homogeneity, we can easily scale out ∥B̆∥ and consider the operator

(−i ∂z − tb2)
2
− ∂2

t + (tb1 + b3z)2,

with
b1 = cos θ cosϕ, b2 = cos θ sinϕ, b3 = sin θ.

Completing a square leads to the identity

(−i ∂z −tb2)
2
−∂2

t +(tb1 +b3z)2 =−∂2
t +(t cos θ−sinϕDz −z sin θ cosϕ)2 +(cosϕDz −z sin θ sinϕ)2.

This shows, thanks to the rescaling z = z̃ sinϕ (since sinϕ is nonzero) and the change of gauge

ψ 7→ e−i z̃2

2 sin θ cosϕ
ψ,

that the operator is unitarily equivalent to

D2
t + (t cos θ − Dz̃)

2
+ (cotϕDz̃ − z̃ sin θ)2

and then, by the Fourier transform, to

D2
t + (t cos θ − ζ )2 + (ζ cotϕ+ sin θDζ )

2.

Thanks to the change of gauge

ψ 7→ e−i ζ
2 cotϕ
2 sin θ ψ

(which is well-defined since sin θ ̸= 0), this last operator is unitarily equivalent to

D2
t + D2

z + (t cos θ − z sin θ)2,

which is nothing but the Lu–Pan operator defined in (1-2), which is unitarily equivalent to

cos2 θD2
t + sin2 θD2

z + (t − z)2

(whose domain is independent of θ ).
The eigenfunction fu,υ belongs to the Schwartz class by virtue of [Raymond 2009, Corollaire 5.1.2]

and the stability of the Schwartz class under Fourier and gauge transforms. □
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4.2. An approximate parametrix.

4.2.1. Inverting the principal symbol.

Lemma 4.5. Consider ϵ > 0 and 3⩽ βmin + ϵ. We let

P0(3)=

(
n0(u, υ)−3 · fu,υ

⟨ · , fu,υ⟩ 0

)
.

For ϵ small enough, P0(3) : Dom n0 × C → L2(R2
+
)× C is bijective. Its inverse is denoted by Q0 and is

given by

Q0 = Q0(3)=

(
(n0(u, υ)−3)−1

⊥
· fu,υ

⟨ · , fu,υ⟩ 3− β̆(υ,−u)

)
,

where (n0(u, υ)−3)−1
⊥

is the regularized resolvent on (span fu,υ)⊥.
Moreover, we have Q0 ∈ S(R2, 0).

Proof. Using the same algebraic computations as in [Keraval 2018] and the spectral gap in Proposition 4.4,
we get the announced inverse. Moreover, it is also clear that Q0 is bounded from L2(R2

+
) to L2(R2

+
)

uniformly in (u, υ). The fact that it belongs to the class S(R2, 0) follows from weighted resolvent
estimates similar to [Raymond 2009, pp. 100-101]; see also [Fahs et al. 2024, Appendix]. □

We let

Ph̄(3)=

(
n0 + h̄n1 + h̄2n2 + h̄3rh̄ −3 · fu,υ

⟨ · , fu,υ⟩ 0

)
= P0(3)+ h̄P1 + h̄2P2 + h̄3Rh̄,

where n0, n1, n2, and rh̄ are given in Proposition 4.2.

4.2.2. The approximate parametrix. Let us now construct an approximate (at order 2) inverse of PW
h̄

when it acts on the Schwartz class (with Neumann condition). We consider

Qh̄ = Q0 + h̄Q1 + h̄2Q2 =

(
Q h̄ Q+

h̄

Q−

h̄ Q±

h̄

)
,

where
Q1 = −Q0P1Q0, Q2 = −Q0P2Q0 + Q0P1Q0P1Q0 −

1
i
{Q0,P0}Q0. (4-6)

By Remark 4.1, the symbols Q1 and Q2 belong to S(R2,M) for some M ⩾ 8. By computing products of
matrices and using the exponential decay of fu,υ , we get

Q±

h̄ (3)=3− (p0 + h̄ p1 + h̄2 p2,3), (4-7)

with p0 = β̆(υ,−u) and p1, p2,3 ∈ SR2(1), where

SR2(1)= {a ∈ C ∞(R2,C) : ∀α ∈ N2, ∃Cα > 0 : |∂αa| ⩽ Cα}.

In addition, 3 7→ p2,3 ∈ SR2(1) is analytic in a neighborhood of βmin.

Remark 4.6. Let us emphasize here that nothing a priori ensures that the subprincipal symbols p1 and
p2,E are real-valued since our formal operator is not self-adjoint on the canonical L2-space.
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The reason to consider the expressions (4-6) simply comes from the semiclassical expansion of
the product QW

h̄ PW
h̄ by means of the composition theorem [Keraval 2018, Theorem 2.1.12]. These

explicit choices, with the Calderón–Vaillancourt theorem [Keraval 2018, Theorem 2.1.16] to estimate the
remainders, imply the following proposition.

Proposition 4.7. There exists N ⩾ 2 such that the following holds. We have

QW
h̄ PW

h̄ = IdS Neu(R3
+)×S (R) +h̄3RW

h̄,ℓ, PW
h̄ QW

h̄ = IdS (R3
+)×S (R) +h̄3RW

h̄,r ,

where Rh̄,ℓ and Rh̄,r belong to S(R2, N ) and where S Neu(R3
+
) denotes the Schwartz class on R2

+
with

Neumann condition at t = 0.
In particular, we have, for all ψ ∈ S Neu(R3

+
),

QW
h̄ (N

♭
h̄ −3)ψ + (Q+

h̄ )
WPψ = ψ + O(h̄3)∥ψ∥L2(R,BN ),

(Q−

h̄ )
W (N

♭
h̄ −3)ψ + (Q±

h̄ )
WPψ = O(h̄3)∥ψ∥L2(R,BN )

(4-8)

and, for all ϕ ∈ S (R),

(N
♭

h̄ −3)(Q+

h̄ )
Wϕ+P∗(Q±

h̄ )
Wϕ = O(h̄3)∥ϕ∥,

P(Q+

h̄ )
Wϕ = ϕ+ O(h̄3)∥ϕ∥.

(4-9)

Here, P = (⟨ · , fu,υ⟩)
W , BN is given in (4-3), and ∥ · ∥L2(R,BN ) is the L2-norm defined thanks to the

Bochner integral valued in the Banach space BN .

5. Spectral consequences

This last section is devoted to the proof of Theorem 1.4, with the help of Proposition 4.7. The spectrum
of N

♯
h̄ will be compared to the spectrum of a model operator, derived from an effective h-pseudodifferential

operator whose symbol has the following expansion in powers of h̄ = h1/2:

peff
h̄ = p0 + h̄ p1 + h̄2 p2,βmin, (5-1)

see (4-7).

5.1. A model operator. Let us consider

pmod
h̄ (U )= peff

h̄ (0)+
1
2 Hess(0,0) p0(U,U )+ h̄ plin

1 (U ), U = (u, υ),

where plin
1 is the linear approximation of p1 at (0, 0). The corresponding h-pseudodifferential operator

(pmod
h̄ )W is not self-adjoint due to the linear part. However, this operator still has compact resolvent, and

we can compute its spectrum and estimate its resolvent. Let us explain this. Thanks to Assumption 1.3,
the quadratic form Hess(0,0) p0(U,U ) can be diagonalized with a rotation (which is a symplectic trans-
formation in two dimensions). Thus, by using a metaplectic transformation (or by means of an explicit
linear transformation in u), we may assume that the symbol is

pmod
h̄ = peff

h̄ (0)+
1
2 d0(u2

+ υ2)+ h̄(αu +βυ)

for some d0 > 0 and (α, β) ∈ C2.
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Remark 5.1. In fact, we have

d0 =

√
det Hess(0,0) p0 =

√
det Hess(0,0) β̆(υ,−u)=

√
det Hessx0 β

∥B(x0)∥2 sin2 θ(x0)
,

where we use the notation introduced at the beginning of Section 3, the change of variable J in
Lemma 2.10, and Remark 2.6.

By completing the square and recalling that we deal with h-quantizations and that we have let h̄ = h1/2,
we get

(pmod
h̄ )W = p̃eff

h̄ (0)+
d0

2

((
u +

h̄α
d0

)2

+

(
h̄2 Du +

h̄β
d0

)2)
, p̃eff

h̄ (0)= peff
h̄ (0)−

α2
+β2

2d0
h̄2.

For all n ⩾ 1, we let

fn(u)= [e−iβ·/d0 Hn( · )]

(
u +

α

d0

)
,

fn,h̄(u)= h̄−1/2 fn(h̄−1u),

where Hn is the n-th normalized Hermite function.
The family ( fn,h̄)n⩾1 is a total family in L2(R) (but not necessarily orthogonal). It satisfies

(pmod
h̄ )W fn,h̄ = λmod

n (h̄) fn,h̄,

λmod
n (h̄)=

1
2 d0(2n − 1)h̄2

+ p̃eff
h̄ (0).

(5-2)

By the analytic perturbation theory (see [Kato 1995, Chapter VII]), the spectrum of (pmod
h̄ )W is made of

eigenvalues of algebraic multiplicity 1, and it is given by

sp((pmod
h̄ )W )=

{1
2 d0(2n − 1)h̄2

+ p̃eff
h̄ (0), n ⩾ 1

}
.

Moreover, for all compact K ⊂ C, there exists CK > 0 such that, for all µ ∈ K ,

∥((pmod
h̄ )W − p̃eff

h̄ (0)− h̄2µ)−1
∥ ⩽

CK

dist( p̃eff
h (0)+ h̄2µ, sp((pmod

h̄ )W ))
. (5-3)

To see this, consider the operator

Ah̄ = (pmod
h̄ )W − p̃eff

h̄ (0)=

(
u +

h̄α
d0

)2

+

(
h̄2 Du +

h̄β
d0

)2

.

When h̄ = 1, we have the estimate

∥(A1 −µ)−1
∥ ⩽

CK

dist(µ, sp(A1))
, (5-4)

which follows from the fact that the eigenvalues have algebraic multiplicity 1 (the Riesz projectors
associated with the finite number of eigenvalues in K have rank 1). To get (5-3), we use the rescaling
u = h̄ũ and (5-4).
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5.2. Refined estimates.

5.2.1. From the model operator to N
♯

h̄ . The functions ( fn,h̄) can serve as quasimodes for N
♯

h̄ with the
help of (4-9). Indeed, by taking 3= λmod

n (h̄) and ϕ = fn,h̄ , we see that

(N
♭

h̄ − λmod
n (h̄))(Q+

h̄ )
W fn,h̄ = O(h̄3).

Since (Q+

h̄ )
W fn,h̄ is localized near (z, t)= (0, 0) (due to the exponential decay of fu,υ , which is uniform

in (u, υ)), we get
(N

♯
h̄ − λmod

n (h̄))(Q+

h̄ )
W fn,h̄ = O(h̄3).

By using the inverse Fourier transform and translation/dilation, (Q+

h̄ )
W fn,h̄ becomes a quasimode for Nh ,

see (3-1) and the end of Section 3. But the operator Nh is unitarily equivalent to a self-adjoint operator
for a suitable scalar product on the usual L2-space. Therefore, we can apply the spectral theorem, and we
deduce that

dist(λmod
n (h̄), sp(N ♯

h̄ ))⩽ Ch̄3.

In particular, this implies that, for h̄ small enough, λmod
n (h̄) is real. This shows that we necessarily have

p1(0) ∈ R, p2(0)−
α2

+β2

2d0
∈ R.

This also implies that
λn(N

♯
h̄ )⩽ λ

mod
n (h̄)+ Ch̄3. (5-5)

5.2.2. From N
♯

h̄ to the model operator. Let n ⩾ 1. Let us consider an eigenfunction ψ of N
♯

h̄ associated
with the eigenvalue λn(N

♯
h̄ ).

We know that λn(N
♯

h̄ )= βmin + o(1) and that the corresponding eigenfunctions are localized in (z, t)
(due to the Agmon estimates and Proposition 3.3). Thus, in (4-8), we can replace N

♭
h̄ by N

♯
h̄ , and we

deduce that
((peff

h̄ )
W

− λn(N
♯

h̄ ))Pψ = O(h̄3−η)∥ψ∥, ∥ψ∥ ⩽ C∥Pψ∥, (5-6)

for η > 0 as small as we want. We use Remark 3.4 to control the remainders ∥ψ∥L2(R,BN ) by O(h̄−η)∥ψ∥.
By taking the scalar product with Pψ , taking the real part and using the min-max principle, we get that

λn(N
♯

h̄ )⩾ βmin + p1(0)h̄ − Ch̄2.

This establishes the two-term asymptotic estimate

λn(N
♯

h̄ )= βmin + p1(0)h̄ + O(h̄2).

Therefore, we can focus on the description of the eigenvalues of the form

λn(N
♯

h̄ )= βmin + p1(0)h̄ +µn(h̄)h̄2

for µn(h̄) ∈ D(0, R) with a given R > 0. We have

((peff
h̄ )

W
− (βmin + p1(0)h̄ +µn(h̄)h̄2))Pψn = O(h̄3−η)∥Pψn∥, (5-7)
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where ψn denotes a normalized eigenfunction associated to the n-th eigenvalue of N
♯

h̄ . In fact, by
considering (5-7) and again Proposition 4.7, the function Pψn is microlocalized near (0, 0), the minimum
of the principal symbol p0. Since this minimum is nondegenerate, the quadratic approximation of the
symbol shows that Pψn is microlocalized near (u, υ) = (0, 0) at the scale h̄1−η for any η ∈

(
0, 1

2

)
. In

particular, we deduce that

((pmod
h̄ )W − (βmin + p1(0)h̄ +µn(h̄)h̄2))Pψn = O(h̄3−3η)∥Pψn∥.

From the resolvent estimate (5-3), this implies that

µn(h̄) ∈

⋃
j⩾1

D
(

d0

2
(2 j − 1)+ d1,Ch̄1−3η

)
, d1 = p2(0)−

α2
+β2

2d0
,

where D(z, r) denotes the disc of center z ∈ C and radius r > 0. In particular, we have

µ1(h̄)⩾ 1
2 d0 + d1 − Ch̄1−3η.

This shows that
λ1(N

♯
h̄ )⩾ βmin + p1(0)h̄ +

(1
2 d0 + d1

)
h̄2

− Ch̄3−3η,

and thus, with (5-5), we get
µ1(h̄)=

1
2 d0 + d1 + O(h̄1−3η)

and
λ1(N

♯
h̄ )= λmod

1 (h̄)+ O(h̄3−3η).

Let us now deal with λ2(N
♯

h̄ ) and recall (5-5). Assume by contradiction that µ2(h̄)∈ D
(1

2 d0+d1,Ch̄1−3η).
Then, we have

|µ2(h̄)−µ1(h̄)| ⩽ Ch̄1−3η.

We infer that
((pmod

h̄ )W − λmod
1 (h̄))Pψ = O(h̄3−3η)∥Pψ∥

for all ψ ∈ span(ψ1, ψ2). Moreover, coming back to (4-8) (see also (5-7)), we also get that ∥ψ∥⩽C∥Pψ∥

for all ψ ∈ span(ψ1, ψ2). In particular, P(span(ψ1, ψ2)) is of dimension 2. Let us consider the Riesz
projector (in the characteristic subspace of (pmod

h̄ )W associated with the smallest eigenvalue)

5=
1

2iπ

∫
C (λmod

1 (h̄),h̄3−4η)

(ζ − (pmod
h̄ )W )−1 dζ,

which is of rank 1. Then, for all ϕ ∈ P(span(ψ1, ψ2)), we write, with the Cauchy formula,

5ϕ = ϕ+
1

2iπ

∫
C (λmod

1 (h̄),h̄3−4η)

((ζ − (pmod
h̄ )W )−1

− (ζ − λmod
1 (h̄))−1)ϕ dζ.

But, we have

(ζ − (pmod
h̄ )W )−1

− (ζ − λmod
1 (h̄))−1

= (ζ − λmod
1 (h̄))−1(ζ − (pmod

h̄ )W )−1((pmod
h̄ )W − λmod

1 (h̄)),
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so that, by using the resolvent estimate (5-3), we get

∥5ϕ−ϕ∥ ⩽ Ch̄3−4ηh̄−3+4ηh̄−3+4ηh̄3−3η
∥ϕ∥ = Ch̄η∥ϕ∥.

This shows that the range of 5 is of dimension at least 2 as soon as h̄ is small enough. This is a
contradiction. Therefore, we must have µ2(h̄) ∈ D

(
3
( 1

2 d0
)
+ d1,Ch̄1−3η). In particular, we have

µ2(h̄)= 3
( 1

2 d0
)
+ d1 + O(h̄1−3η), λ2(N

♯
h̄ )= λmod

2 (h̄)+ O(h̄3−3η).

We proceed by induction to get that, for all n ⩾ 1,

µn(h̄)= (2n − 1)
( 1

2 d0
)
+ d1 + O(h̄1−3η), λn(N

♯
h̄ )= λmod

n (h̄)+ O(h̄3−3η). (5-8)

5.2.3. End of the proof of Theorem 1.4. Proposition 2.11 shows that the first eigenvalues of Lh coincide
with those of L

app
h modulo o(h2). Then, by (3-1), L

app
h is unitarily equivalent to Nh . The operator Nh is

unitarily equivalent to h̄2N
♯

h̄ , see (3-10). Theorem 1.4 follows from (5-8) and (5-2) (see also Remark 5.1
for the explicit formula for d0).
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CHARACTERIZATION OF WEIGHTED HARDY SPACES
ON WHICH ALL COMPOSITION OPERATORS ARE BOUNDED

PASCAL LEFÈVRE, DANIEL LI, HERVÉ QUEFFÉLEC AND LUIS RODRÍGUEZ-PIAZZA

We give a complete characterization of the sequences β = (βn) of positive numbers for which all
composition operators on H 2(β) are bounded, where H 2(β) is the space of analytic functions f on the
unit disk D such that

∑
∞

n=0 |an|
2βn <+∞ if f (z)=

∑
∞

n=0 anzn . We prove that all composition operators
are bounded on H 2(β) if and only if β is essentially decreasing and slowly oscillating. We also prove that
every automorphism of the unit disk induces a bounded composition operator on H 2(β) if and only if β is
slowly oscillating. We give applications of our results.

1. Introduction

Let β = (βn)n≥0 be a sequence of positive numbers such that

lim inf
n→∞

β1/n
n ≥ 1. (1-1)

The associated weighted Hardy space H 2(β) is defined to be the Hilbertian space of analytic functions
f (z)=

∑
∞

n=0 anzn such that

∥ f ∥
2
:=

∞∑
n=0

|an|
2βn <∞. (1-2)

Condition (1-1) is equivalent to the inclusion H 2(β) ⊆ Hol(D). Indeed, if (1-1) holds, we have
H 2(β)⊆ Hol(D) since |an|

2βn is bounded and thanks to the Hadamard formula. Conversely, testing the
inclusion H 2(β)⊆ Hol(D) on the function f (z)=

∑
∞

n=1(n
√
β(n))−1zn

∈ H 2(β), we get (1-1) from the
Hadamard formula.

Condition (1-1) will therefore be assumed throughout this paper, without repeating it.
When βn ≡ 1, we recover the usual Hardy space H 2; the Bergman space corresponds to βn = 1/(n +1)

and the Dirichlet space to βn = n + 1.
Recall that a symbol is a (nonconstant) analytic self-map ϕ : D → D, and the associated composition

operator Cϕ : H 2(β)→ Hol(D) is defined as

Cϕ( f )= f ◦ϕ. (1-3)

An important question in the theory is to decide when Cϕ is bounded on H 2(β), i.e., when

Cϕ : H 2(β)→ H 2(β).
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This question appears in the literature in several places. For instance, it is Problem 1 in the thesis of
Nina Zorboska [1988, p. 49]. This thesis contains many interesting results, in particular Propositions 3.1
and 4.2 of the present paper (we discovered the content of Zorboska’s thesis once the present paper was
almost finished). See also Question 36 raised by Deddens in [Shields 1974, p. 122.c].

When H 2(β) is the usual Hardy space H 2 (i.e., when βn ≡ 1), it is well known, as a consequence of
the Littlewood subordination principle [1925], that all symbols generate bounded composition operators
[Shapiro 1993, pp. 13–17]. On the other hand, for the Dirichlet space, corresponding to βn = n + 1, not
all composition operators are bounded since there exist symbols ϕ not belonging to the Dirichlet space
(e.g., any infinite Blaschke product).

Note that, by definition of the norm of H 2(β), all rotations Rθ , defined by Rθ (z)= eiθ z, with θ ∈ R,
induce bounded and surjective composition operators on H 2(β) and send isometrically H 2(β) into itself.

Our goal in this paper is to characterize the sequences β for which all composition operators act
boundedly on the space H 2(β), i.e., send H 2(β) into itself.

In Shapiro’s presentation for the Hardy space H 2, the main point is the case ϕ(0)=0 and a subordination
principle for subharmonic functions (Littlewood’s subordination principle). The case of automorphisms
is claimed to be simple, using an integral representation for the norm and some change of variable. For
general weights β, the situation is different, as we will see in this paper, and it turns out that the conditions
on β for the boundedness of the composition operators Cϕ on H 2(β) are not the same depending on
whether we consider the class of all symbols such that ϕ(0)= 0, or the class of symbols ϕ = Ta , where

Ta(z)=
a+z
1+āz

for a ∈ D. (1-4)

It is clear that when these two classes of composition operators are bounded, then all composition
operators are bounded. Recall that every symbol ϕ can be written as the composition ϕ = Ta ◦ψ , where
ψ(0)= 0 and a = ϕ(0), and then Cϕ = Cψ ◦ CTa .

In many occurrences, the weight β is defined as

βn =

∫ 1

0
tn dσ(t), (1-5)

where σ is a positive measure on (0, 1); more specifically the following definition is often used: let
G : (0, 1)→ R+ be an integrable function, and let H 2

G be the space of analytic functions f : D → C such
that

∥ f ∥
2
H2

G
:=

∫
D

| f (z)|2G(1 − |z|2) d A(z) <∞. (1-6)

Such weighted Bergman-type spaces are used, for instance, in [Kellay and Lefèvre 2012; Kriete and
MacCluer 1995; Li et al. 2014]. We have H 2

G = H 2(β) with

βn = 2
∫ 1

0
r2n+1G(1 − r2) dr =

∫ 1

0
tnG(1 − t) dt, (1-7)

and the sequence β = (βn)n is nonincreasing (actually, the representation (1-5) is equivalent, by the
Hausdorff moment theorem, to a high regularity of the sequence β, namely its complete monotony).
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When the weight β is nonincreasing (or more generally, essentially decreasing), all the symbols
vanishing at the origin induce a bounded composition operator. This was proved by C. Cowen [1990,
Corollary, p. 31], using Hadamard multiplication. We can also use Kacnelson’s theorem (see [Chalendar
and Partington 2014] or [Lefèvre et al. 2021, Theorem 3.12]). Actually that follows from an older theorem
of Goluzin [1951] (see [Duren 1983, Theorem 6.3]), which itself uses a self-refinement observed by
Rogosinski of Littlewood’s principle [Duren 1983, Theorem 6.2].

For weights defined as in (1-5), we have at our disposal integral representations for the norm in H 2(β),
and, as in the Hardy space case, this integral representation rather easily allows us to decide when
the boundedness of CTa on H 2(β) occurs. This is not always the case, as shown by T. Kriete and
B. MacCluer in [Kriete and MacCluer 1995]. They consider spaces of Bergman-type A2

G̃
:= H 2

G , where
G̃(r)= G(1 − r2), defined as the spaces of analytic functions in D such that∫

D

| f (z)|2G̃(|z|) d A <∞

for a positive nonincreasing continuous function G̃ on [0, 1). They prove [Kriete and MacCluer 1995,
Theorem 3] that, for

G̃(r)= exp
(
−B 1

(1−r)α
)
, B > 0, 0< α ≤ 2,

and
ϕ(z)= z + t (1 − z)γ , 1< γ ≤ 3, 0< t < 21−γ ,

ϕ is a symbol and Cϕ is bounded on A2
G̃

if and only if γ ≥ α+ 1.
Here

βn =

∫ 1

0
tne−B/(1−

√
t)α dt ≲ exp(−cnα/(α+1)).

We point out that β is nonincreasing, so, for every symbol ϕ fixing the origin, the composition operator Cϕ
is bounded. Nevertheless, choosing γ < α+ 1, there exist symbols inducing an unbounded composition
operator, hence not all the CTa are bounded. Actually, for every α ∈ (0, 2], no CTa is bounded because β
has no polynomial lower estimate (see Proposition 4.5 below).

Contents of the paper. In Section 2, we introduce several notions of growth or regularity for a sequence β—
essentially decreasing, polynomial lower and upper bounds, slow oscillation — and give some connections
between them. In Section 3, we consider the composition operators whose symbol vanishes at the origin.
We show that, in order for all these operators to be bounded, it is necessary that β be bounded above. We
show that β is essentially decreasing if and only if all these operators are bounded and

sup
ϕ(0)=0

∥Cϕ∥<+∞.

In Theorem 3.3, we give a sufficient condition for having all the composition operators Cϕ with
ϕ(0) = 0 bounded, allowing us to give an example of a sequence β for which this happens even
though supϕ(0)=0 ∥Cϕ∥ = +∞ (Theorem 3.7). In Section 4, we prove that all CTa are bounded on H 2(β)

if and only if β is slowly oscillating (Theorems 4.6 and 4.9). We state our main result.



1924 PASCAL LEFÈVRE, DANIEL LI, HERVÉ QUEFFÉLEC AND LUIS RODRÍGUEZ-PIAZZA

Theorem 1.1. Let β be a sequence of positive numbers, and let

Ta(z)=
a+z
1+āz

for a ∈ D. The following assertions are equivalent:

(1) For some a ∈ D \ {0}, the map Ta induces a bounded composition operator CTa on H 2(β).

(2) For all a ∈ D, the maps Ta induce bounded composition operators CTa on H 2(β).

(3) β is slowly oscillating.

The deep implication is (2) ⇒ (3). Its proof requires some sharp estimates on the mean of Taylor
coefficients of Ta for a belonging to a subinterval of (0, 1). Once we found the equivalence of (1) and (2),
we realized that it already appeared in the thesis of Zorboska [1988].

In Section 5, we show (Theorem 5.1) that if β is slowly oscillating, and moreover all composition
operators are bounded on H 2(β), then β is essentially decreasing. We thus obtain the following theorem.

Theorem 1.2. Let β be a sequence of positive numbers. Then all composition operators on H 2(β) are
bounded if and only if β is essentially decreasing and slowly oscillating.

For the notion of essentially decreasing and slowly oscillating sequences, see Definitions 2.1 and 2.2.
We end the paper with some results about multipliers.
A first version of this paper, not including the complete characterization given here, was put on arXiv on

30 November 2020 (and a second version on 21 March 2022) under the title “Boundedness of composition
operators on general weighted Hardy spaces of analytic functions”.

2. Definitions, notation, and preliminary results

The open unit disk of C is denoted by D and we write T for its boundary ∂D. We set

en(z)= zn, n ≥ 0.

The weighted Hardy space H 2(β) defined in the introduction is a Hilbert space with the canonical
orthonormal basis

eβn (z)=
1

√
βn

zn, n ≥ 0, (2-1)

and the reproducing kernel Kw given, for all w ∈ D, by

Kw(z)=

∞∑
n=0

eβn (z)e
β
n (w)=

∞∑
n=0

1
βn
wnzn. (2-2)

Note that H 2 is continuously embedded in H 2(β) if and only if β is bounded above. In particular, this
is the case when β is nonincreasing. In this paper, we need a slightly more general notion.

Definition 2.1. A sequence of positive numbers β = (βn)n≥0 is said to be essentially decreasing if, for
some constant C ≥ 1, we have, for all m ≥ n ≥ 0,

βm ≤ Cβn. (2-3)
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Note: saying that β is essentially decreasing means that the shift operator on H 2(β) is power bounded.
If β is essentially decreasing and if we set

β̃n = sup
m≥n

βm,

the sequence β̃ = (β̃n) is nonincreasing and we have βn ≤ β̃n ≤ Cβn . In particular, H 2(β)= H 2(β̃) (with
equivalent norms) and H 2 is continuously embedded in H 2(β).

Definition 2.2. A sequence β is slowly oscillating if there are positive constants c < 1< C such that

c ≤
βm

βn
≤ C when n/2 ≤ m ≤ 2n. (2-4)

We may remark that this is equivalent to the existence of some function ρ : (0,∞)→ (0,∞) which is
bounded above on each compact subset of (0,∞) and for which βm/βn ≤ ρ(m/n), equivalently

1
ρ(n/m)

≤
βm

βn
≤ ρ(m/n).

Definition 2.3. The sequence of positive numbers β = (βn) is said to have a polynomial lower bound if
there are positive constants c and α such that, for all integers n ≥ 1,

βn ≥ cn−α. (2-5)

This means that H 2(β) is continuously embedded in the weighted Bergman space B2
α−1 of the analytic

functions f : D → C such that

∥ f ∥
2
B2
α−1

:= α

∫
D

| f (z)|2(1 − |z|2)α−1 d A(z) <∞

since B2
α−1 = H 2(γ ) with γn ≈ n−α.

Definition 2.4. The sequence of positive numbers β = (βn) is said to have a polynomial upper bound if
there are positive constants C and γ such that, for all integers n ≥ 1,

βn ≤ Cnγ . (2-6)

The following simple proposition links these notions.

Proposition 2.5. (1) Every slowly oscillating sequence β has polynomial lower and upper bounds.

(2) There are sequences that are essentially decreasing and with polynomial lower bound but are not
slowly oscillating.

(3) There are bounded sequences that are slowly oscillating but not essentially decreasing.

Proof. (1) This is clear because, for some c ∈ (0, 1), if 2 j
≤ n < 2 j+1, then

βn ≥ cβ2 j ≥ c j+1β1 ≥ cβ1n−α,

with α = log(1/c)/ log 2, and, for some C > 1,

βn ≤ Cβ2 j ≤ C j+1β1 ≤ Cβ1nγ ,
with γ = log C/ log 2.
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(2) Let δ > 0. We set β0 = β1 = 1 and, for n ≥ 2,

βn =
1

(k!)δ
when k!< n ≤ (k + 1)! .

The sequence β is nonincreasing.
For n and k as above, we have

βn =
1

(k!)δ
≥

1
nδ

;

hence β has arbitrarily slow polynomial lower bound. However we have, for k ≥ 2,

β2(k!)

βk!

=
(k!)−δ

[(k − 1)!]−δ
=

1
kδ k→∞

−−−→ 0,

so β is not slowly oscillating.

(3) We define βn as follows. Let (ak) be an increasing sequence of positive square integers such that
limk→∞ ak+1/ak = ∞, for example ak = 4k2

, and let bk =
√

akak+1; with our choice, this is an integer
and we clearly have ak < bk < ak+1. We set

βn =

{
ak/n for ak ≤ n < bk,

(ak/b2
k)n = (1/ak+1)n for bk ≤ n < ak+1.

The sequence (βn) is slowly oscillating by construction. Indeed, since the other cases are obvious, it
suffices to check that, for ak ≤ n/2< bk ≤ n< ak+1, the quotient βm/βn remains lower and upper bounded
when n/2 ≤ m ≤ n (it will then be automatically also satisfied when n ≤ m ≤ 2n). But, for n/2 ≤ m < bk ,
we have

βm

βn
=

ak/m
n/ak+1

=
akak+1

mn
=

b2
k

mn
,

which is ≤ 2b2
k/n2

≤ 2 and ≥ b2
k/n2

≥ (n/2)2/n2
=

1
4 ; and, for bk ≤ m, we have

βm

βn
=

m/ak+1

n/ak+1
=

m
n

∈
[ 1

2 , 1
]
.

However, even though (βn) is bounded, since βn ≤ 1 for ak ≤ n < bk and, for bk ≤ n < ak+1,

βn ≤ βak+1−1 =
1

ak+1
(ak+1 − 1)≤ 1,

it is not essentially decreasing, since

βak+1−1

βbk

=
1

√
akak+1

(ak+1 − 1)∼

√
ak+1

ak
k→∞

−−−→ ∞. □

Now we are going to recall some well-known facts about matrix representation of an operator T defined
on a Hilbert space with an orthonormal basis (en)n≥0 and explain how they translate into our framework.

The entry am,n (where m, n ≥ 0) is defined by the m-th coordinate of T (en):

am,n = e∗

m(T (en)),

where e∗

k(x) stands for the k-th coordinate of the vector x .
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We shall use the notation f̂ (k) for the k-th Fourier coefficient of a function f ∈ L1(−π, π):

f̂ (k)=
1

2π

∫ π

−π

f (t)e−ikt dt.

Let us point out that when the operator is the composition operator Cϕ associated to the symbol ϕ,
viewed on H 2(β), its matrix representation in the basis (eβn )n≥0 has an entry (m, n), which we write as

(eβm)
∗(Cϕ(eβn ))=

√
βm

√
βn

e∗

m(ϕ
n)=

√
βm

√
βn
ϕ̂n(m)

since the m-th Taylor coefficient of ϕn coincides with its m-th Fourier coefficient.
We say that the reproducing kernels Kw have a slow growth if

∥Kw∥ ≤
C

(1 − |w|)s
(2-7)

for positive constants C and s. We have the following equivalence.

Proposition 2.6. The sequence β has polynomial lower bound if and only if the reproducing kernels Kw

of H 2(β) have a slow growth.

Proof. Assume that the reproducing kernels have a slow growth. Since

∥Kw∥
2
=

∞∑
k=0

|w|
2k

βk
,

we get, for any k ≥ 2,
|w|

2k

βk
≤

C2

(1 − |w|)2s .

Taking w = 1 − 1/k, we obtain βk ≥ C ′k−2s .
For the necessity, we only have to see that

∥Kw∥
2
=

1
β0

+

∞∑
n=1

|w|
2n

βn
≤

1
β0

+ δ−1
∞∑

n=1

nα|w|
2n

≤
C

(1 − |w|2)α+1 . □

3. Boundedness of composition operators whose symbol vanishes at the origin

3.1. Necessary conditions. We begin with this simple observation, see [Zorboska 1988, Proposition 3.1].

Proposition 3.1. If all composition operators with symbol vanishing at 0 are bounded on H 2(β), then the
sequence β is bounded above.

Proof. Let f ∈ H∞. Write f = Aϕ+ f (0), where A is a constant and ϕ a symbol vanishing at 0. We have
ϕ = Cϕ(z) ∈ H 2(β), by hypothesis, and so f ∈ H 2(β) and H∞

⊆ H 2(β). It follows (by the closed graph
theorem, since the convergence in norm implies pointwise convergence) that there exists a constant M
such that ∥ f ∥H2(β) ≤ M∥ f ∥∞ for all f ∈ H∞. Testing this with f (z)= zn , we get βn ≤ M2. □
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Let us point out that boundedness of βn does not suffice. For example, let (βn) be a sequence such that
β4k+2/β2k+1 k→∞

−−−→ ∞ (for instance β2k = 1 and β2k+1 = 1/(k + 1)); if ϕ(z)= z2, then

∥Cϕ(z2n+1)∥2
= ∥z2(2n+1)

∥
2
= β2(2n+1);

since ∥z2n+1
∥

2
= β2n+1, the operator Cϕ is not bounded on H 2(β).

A partial characterization is given in the next proposition.

Proposition 3.2. The following assertions are equivalent:

(1) All symbols ϕ such that ϕ(0)= 0 induce bounded composition operators Cϕ on H 2(β) and

sup
ϕ(0)=0

∥Cϕ∥<∞. (3-1)

(2) β is an essentially decreasing sequence.

Of course, by the uniform boundedness principle, (3-1) is equivalent to

sup
ϕ(0)=0

∥ f ◦ϕ∥<∞ for all f ∈ H 2(β).

Let us point out an important fact: we shall see in Theorem 3.7 that there are weights β for which all
composition operators Cϕ with ϕ(0)= 0 are bounded but supϕ(0)=0 ∥Cϕ∥ = +∞.

Proof. (2)⇒ (1) We may assume that β is nonincreasing. Then the Goluzin–Rogosinski theorem [Duren
1983, Theorem 6.3] gives the result; in fact, writing

f (z)=

∞∑
n=0

cnzn and (Cϕ f )(z)=

∞∑
n=0

dnzn,

it says that ∑
0≤k≤n

|dk |
2
≤

∑
0≤k≤n

|ck |
2 for all n ≥ 0,

and hence, by Abel summation,

∥Cϕ f ∥
2
=

∞∑
n=0

|dn|
2βn ≤

∞∑
n=0

|cn|
2βn = ∥ f ∥

2,

leading to Cϕ bounded and ∥Cϕ∥ ≤ 1. This same result was also proved by Cowen [1990, Corollary of
Theorem 7]. Alternatively, we can use a result of Kacnelson [1972]; see also [Chalendar and Partington
2014; 2017, Corollary 2.2; Lefèvre et al. 2021, Theorem 3.12].

(1)⇒ (2) Set M = supϕ(0)=0 ∥Cϕ∥. Let m > n, and take

ϕ(z)= ϕm,n(z)= z
( 1

2(1 + zm−n)
)1/n

.

Then ϕ(0)= 0 and [ϕ(z)]n
=

1
2(z

n
+ zm); hence

1
4(βn +βm)= ∥ϕn

∥
2
= ∥Cϕ(en)∥

2
≤ ∥Cϕ∥2

∥en∥
2
≤ M2βn,

so β is essentially decreasing. □
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Remark. Let us mention the following example. For 0< r < 1, let βn = πnr2n for n ≥ 1 and β0 = 1.
This sequence is eventually decreasing, so it is essentially decreasing. The quantity ∥ f ∥

2
H2(β)

−| f (0)|2 is
the area of the part of the Riemann surface on which rD is mapped by f . E. Reich [1954], generalizing
Goluzin’s result [1951] (see [Duren 1983, Theorem 6.3]), proved that, for all symbols ϕ such that ϕ(0)= 0,
the composition operator Cϕ is bounded on H 2(β) and

∥Cϕ∥ ≤ sup
n≥1

√
nrn−1

≤
1

√
2e

1

r
√

log(1/r)
.

For 0< r < 1/
√

2, Goluzin’s theorem asserts that ∥Cϕ∥ ≤ 1.
Note that this sequence β is not slowly oscillating, since β2n/βn = 2r2n . Hence, from Theorem 4.9

below, we get that no composition operator CTa is bounded on H 2(β).
However, that the weight β is essentially decreasing is not necessary for the boundedness of all

composition operators Cϕ , with symbol ϕ vanishing at 0, as we will see later (Theorem 3.7).

3.2. Sufficient condition.

Theorem 3.3. Let β = (βn)
∞

n=0 be a sequence of positive numbers that is weakly decreasing, i.e.,

for every δ > 0, there exists a positive constant C = C(δ)
such that βm ≤ Cβn whenever m > (1 + δ)n. (3-2)

Then, for all symbols ϕ : D → D vanishing at 0, the composition operator Cϕ is bounded on H 2(β).

Let us point out that (3-2) implies that β is bounded.
Note that Zorboska showed [1988, Example 1, pp. 14-15] that, for βn = exp(na), with 0< a< 1, which

is unbounded, the symbol ϕ(z)= zk , k ≥ 2, induces an unbounded composition operator on H 2(β).
To prove Theorem 3.3, we need several lemmas.

Lemma 3.4. Let ϕ : D → D be an analytic self-map such that ϕ(0)= 0 and |ϕ′(0)|< 1. Then there exists
ρ > 0 such that, for all integers n and m,

|ϕ̂n(m)| ≤ exp(−[(1 + ρ)n − m]).

Proof. Since ϕ(0) = 0, we can write ϕ(z) = zϕ1(z). Since |ϕ′(0)| < 1, we have ϕ1 : D → D. Now let
M(r)= sup|z|=r |ϕ1(z)|. Cauchy’s inequalities say that |ϕ̂n

1 (m)| ≤ [M(r)]n/rm . We have M(r) < 1, so
there exists a positive number ρ = ρ(r) such that M(r)= rρ . We get

|ϕ̂n(m)| = |ϕ̂n
1 (m − n)| ≤

rρn

rm−n = r (1+ρ)n−m,

and the result follows by taking r = e−1. □

The following result of V. È. Kacnelson [1972] was used in [Chalendar and Partington 2014; 2017,
Corollary 2.2]; see also [Lefèvre et al. 2021, Theorem 3.12].

Theorem 3.5 [Kacnelson 1972]. Let H be a separable complex Hilbert space, and let (ei )i≥0 be a fixed
orthonormal basis of H. Let M : H → H be a bounded linear operator. We assume that the matrix of M
with respect to this basis is lower-triangular: ⟨Me j |ei ⟩ = 0 for i < j .
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Let (γ j ) j≥0 be a nondecreasing sequence of positive real numbers, and let 0 be the (possibly un-
bounded) diagonal operator such that 0(e j ) = γ j e j , j ≥ 0. Then the operator 0−1 M0 : H → H is
bounded and, moreover,

∥0−1 M0∥ ≤ ∥M∥.

We need the following generalization of Kacnelson’s theorem, which is implicitly used in [Lefèvre
et al. 2021, p. 13]. The matrix A only needs to be lower-triangular with respect to the order induced by
the sequence (dn)n .

Lemma 3.6. Let A : ℓ2 → ℓ2 be a bounded operator represented by the matrix (am,n)m,n , i.e., am,n =

⟨Aen, em⟩, where (en)n≥0 is the canonical basis of ℓ2.
Let (dn) be a sequence of positive numbers such that, for every m and n,

dm < dn =⇒ am,n = 0. (3-3)

Then, D being the (possibly unbounded) diagonal operator with entries dn , we have

∥D−1 AD∥ ≤ ∥A∥.

We will propose two different proofs. The first one, using complex variables, is an adaptation of that
of Kacnelson, and we reproduce it for the convenience of the reader; the second one is new and uses real
variables.

Proof 1. Let C0 be the right-half-plane C0 = {z ∈ C : Re z > 0}. We set HN = span{en : n ≤ N } and

AN = PN AJN ,

where PN is the orthogonal projection from ℓ2 onto HN and JN is the canonical injection from HN into ℓ2.
We consider, for z ∈ C0,

AN (z)= D−z AN Dz
: HN → HN ,

where Dz(en)= d z
nen .

If (am,n(z))m,n is the matrix of AN (z) on the basis {en : n ≤ N } of HN , we clearly have

am,n(z)= am,n(dn/dm)
z.

In particular, we have, thanks to (3-3),

am,n(z)= 0 if dm < dn

and

|am,n(z)| ≤ sup
k,l

|ak,l | := M for all z ∈ C0.

Since

∥AN (z)∥2
≤ ∥AN (z)∥2

H S =

∑
m,n≤N

|am,n(z)|2 ≤ (N + 1)2 M2,

we get

∥AN (z)∥ ≤ (N + 1)M for all z ∈ C0.
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Let us consider the function uN : C0 → C0 defined by

uN (z)= ∥AN (z)∥. (3-4)

This function uN is continuous on C0, bounded above by (N + 1)M , and subharmonic in C0. Moreover,
thanks to (3-3), the maximum principle gives

sup
C0

uN (z)= sup
∂C0

uN (z).

Since ∥Dz
∥ = ∥D−z

∥ = 1 for z ∈ ∂C0, we have

∥AN (z)∥ ≤ ∥AN ∥ for z ∈ ∂C0,

and we get
sup
C0

uN (z)≤ ∥AN ∥ ≤ ∥A∥.

In particular, uN (1)≤ ∥A∥ and, letting N go to infinity, we obtain ∥D−1 AD∥ ≤ ∥A∥.

Proof 2. Since dn is positive, we can write dn = e−ρn , where ρn ∈ R. Let x = (xn)n≥0 and y = (yn)n≥0

be in ℓ2 with finite support. We are interested in controlling the sum

S =

∑
m,n

am,n
dn

dm
xn ym,

which can also be written
S =

∑
m,n

am,ne−|ρn−ρm |xn ym

since the nontrivial part of the sum runs over the pairs (m, n) such that dm ≥ dn , i.e., ρn ≥ ρm .
Now we introduce the function

f (t)=
1

π(1 + t2)
for t ∈ R,

which is positive and belongs to the unit ball of L1(R). Moreover, its Fourier transform satisfies, for
every x ∈ R,

F( f )(−x)=

∫
R

f (t)ei xt dt = e−|x |.

We get

S =

∫
R

f (t)
(∑

m,n

am,nxneiρn t ymeiρm t

)
dt =

∫
R

f (t)⟨A(x(t)), y(t)⟩ℓ2 dt,

where
x(t)= (xneiρn t)n≥0 and y(t)= (yneiρn t)n≥0.

We obtain
|S| ≤

∫
R

f (t)∥A∥∥x(t)∥∥y(t)∥ dt =

∫
R

f (t)∥A∥∥x∥∥y∥ dt = ∥A∥∥x∥∥y∥

since ∥ f ∥L1(R) = 1.
Since x and y are arbitrary, this proves ∥D−1 AD∥ ≤ ∥A∥. □
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Proof of Theorem 3.3. First, if |ϕ′(0)| = 1, we have ϕ(z)= αz for some α with |α| = 1, and the result is
trivial.

So, we assume that |ϕ′(0)|< 1. Then, by Lemma 3.4, there exists ρ > 0 such that, for all m, n,

|ϕ̂n(m)| ≤ exp(−[(1 + ρ)n − m]).

It follows that, with δ =
1
2ρ, we have

|ϕ̂n(m)| ≤ exp(−δn) when m ≤ (1 + δ)n.

Since ϕ(0)= 0, we also know that ϕ̂n(m)= 0 if m < n.
Now, using property (3-2), there exists M ≥ 1 such that

βm ≤ Mβn when m ≥ (1 + δ)n.

Define now a new sequence γ = (γn) as

γn = max
{
βn, sup

m>(1+δ)n
βm

}
.

We have

(1) βn ≤ γn ≤ Mβn ,

(2) γm ≤ γn if m ≥ (1 + δ)n.

Item (1) implies that H 2(γ ) = H 2(β), and we are reduced to proving that Cϕ : H 2(γ )→ H 2(γ ) is
bounded.

Let A = (am,n)m,n = (ϕ̂n(m))m,n . We have to prove that

B = (γ 1/2
m γ−1/2

n am,n)m,n

represents a bounded operator on ℓ2.
Define the matrix

A1 = (am,n1{(m,n):m≤(1+δ)n})m,n,

and set A2 = A − A1. Define analogously B1 and B2 = B − B1.
Then A1 is a Hilbert–Schmidt operator because (recall that am,n = 0 if m < n) we have

∞∑
n=1

(1+δ)n∑
m=1

|am,n|
2
≤

∞∑
n=1

(1+δ)n∑
m=n

exp(−2δn)≤

∞∑
n=1

(δn + 1) exp(−2δn) <+∞.

Since A is bounded, it follows that A2 = A − A1 is bounded.
We now remark that, writing A2 = (αm,n)m,n , we have, with dn = 1/

√
γn ,

dm < dn =⇒ γm > γn =⇒ m < (1 + δ)n =⇒ αm,n = 0.

Hence we can apply Lemma 3.6 to the matrix A2, which implies that B2 is bounded.
Now, we have lim infβ1/n

n ≥ 1, so βn ≥ e−δn for n large enough; hence we have βn ≥ ce−δn for
every n ≥ 1.
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Since γ is bounded (like β is), we have, for some positive constant C ,

∞∑
n=1

(1+δ)n∑
m=n

γm

γn
|am,n|

2
≤

∞∑
n=1

(1+δ)n∑
m=n

C
βn

exp(−2δn)≤

∞∑
n=1

C
c
(δn + 1) exp(−δn) <+∞,

meaning that B1 is a Hilbert–Schmidt operator.
Therefore B = B1 + B2 is bounded, as desired. □

As a corollary of Theorem 3.3, we can provide the following example.

Theorem 3.7. There exists a bounded sequence β, with polynomial lower bound, which is not essentially
decreasing, and for which every composition operator with symbol vanishing at 0 is bounded on H 2(β).

We hence have supϕ(0)=0 ∥Cϕ∥ = +∞.

It should be noted that, for this weight, the composition operators are not all bounded, as we will see
in Proposition 4.10.

Proof. Define βn = 1 for n ≤ 3!, and, for k ≥ 3,{
βn = 1/k! for k!< n ≤ (k + 1)! − 2 and for n = (k + 1)!,
βn = 1/(k + 1)! for n = (k + 1)! − 1.

Note that, for m > n, we have βm > βn only if n = (k + 1)! − 1 and m = (k + 1)! = n + 1 for some
k ≥ 3.

However β is not essentially decreasing since, for every k ≥3, we have βn+1/βn =k+1 if n = (k+1)!−1.
The sequence β has a polynomial lower bound because βn ≥ 1/(2n) for all n ≥ 1. In fact, for k ≥ 3,

we have βn ≥ (k + 1)/n ≥ 1/n if k!< n ≤ (k + 1)! − 2 or if n = (k + 1)!, and, for n = (k + 1)! − 1, we
have nβn = [(k + 1)! − 1]/(k + 1)! ≥ 1

2 . It has a polynomial upper bound since it is bounded above by 1.
Now, it remains to check (3-2) in order to apply Theorem 3.3 and finish the proof of Theorem 3.7.

Note first that we have βm/βn ≤ 1 if m ≥ n + 2. Next, for given δ > 0, there exists an integer N such
that (1 + δ)n ≥ n + 2 for every n ≥ N , so βm/βn ≤ 1 if m ≥ (1 + δ)n and n ≥ N . It suffices to take
C = max1≤n≤N βn+1/βn to obtain (3-2). The last assertion follows from Proposition 3.2. □

4. Boundedness of composition operators of the symbol Ta

Recall that, for a ∈ D, we defined
Ta(z)=

a+z
1+āz

, z ∈ D. (4-1)

It is well known that Ta is an automorphism of D and that Ta(0)= a and Ta(−a)= 0.
Though we do not really need this, we remark that (Ta)a∈(−1,1) is a group and (Ta)a∈(0,1) is a semigroup.

It suffices to see that Ta ◦ Tb = Ta∗b, with
a ∗ b =

a+b
1+ab

. (4-2)

In this section, we are going to prove a necessary and sufficient condition for the statement that all
composition operators CTa for a ∈ D are bounded on H 2(β). Namely, we have the following theorem,
the proof of which will occupy Sections 4.2 and 4.3.
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Theorem 4.1. All composition operators CTa , with a ∈ D, are bounded on H 2(β) if and only if β is
slowly oscillating.

Before that, let us note the following fact; see also [Zorboska 1988, Proposition 3.6]. Recall that if ϕ
and ψ are two symbols, then Cϕ ◦ Cψ = Cψ◦ϕ .

Proposition 4.2. If CTa is bounded on H 2(β) for some a ∈ D \ {0}, then CTb is bounded on H 2(β) for
all b ∈ D.

Moreover, the maps CTb are uniformly bounded on the compact subsets of D.

We decompose the proof into lemmas. The first one was first proved in [Zorboska 1988] (see also
[Gallardo-Gutiérrez and Partington 2013, Proposition 2.1]) and follows from the fact that if b =ρeiθ and Rθ
is the rotation Rθ (z)= eiθ z, which induces a unitary operator CRθ on H 2(β), then Tb = Rθ ◦ Tρ ◦ R−θ

and CTb = CR−θ
◦ CTρ ◦ CRθ .

Lemma 4.3. The composition operator CTb is bounded if and only if CT|b|
is bounded, with equal norms.

Lemma 4.4. Let r ∈ (0, 1) such that CTr is bounded. For any b ∈ D satisfying |b| ≤ 2r/(1 + r2), CTb is
bounded and we have ∥CTb∥ ≤ ∥CTr ∥

2.

Proof. Let S be the circle C(0, r) and u : S → R+ be the continuous function defined by

u(s)=

∣∣∣ s+r
1+s̄r

∣∣∣. (4-3)

By connectedness, u(S) contains the segment [0, 2r/(1 + r2)] = [u(−r), u(r)]. Let now

b ∈ D
(
0, 2r

1+r2

)
.

By the above, there exists s ∈ S such that |b| = u(s). This means that

|Tb(0)| = |b| = |u(s)| = |Ts(r)| = |(Ts ◦ Tr )(0)|.

Therefore, Tb(0)= eiα(Ts ◦ Tr )(0) for some α ∈ R, and hence, by Schwarz’s lemma, there is some θ ∈ R

such that Tb = Rα ◦ Ts ◦ Tr ◦ Rθ . We then have CTb = CRθ ◦ CTr ◦ CTs ◦ CRα . Since CRθ and CRα are
unitary, we get, using Lemma 4.3 for CTs ,

∥CTb∥ = ∥CTr ◦ CTs ∥ ≤ ∥CTr ∥∥CTs ∥ = ∥CTr ∥
2. □

Proof of Proposition 4.2. It suffices to use Lemmas 4.3 and 4.4 and do an iteration, noting that if
r0 = |a|> 0 and rn+1 = 2rn/(1 + r2

n )= rn ∗ rn , then (rn)n≥0 increases to 1. □

4.1. An elementary necessary condition. We begin with an elementary necessary condition. It is implied
by Theorem 4.9, but its statement deserves to be pointed out. Moreover, its proof is simple and highlights
the role of the reproducing kernel.

Proposition 4.5. Let a ∈ (0, 1), and assume that Ta induces a bounded composition operator on H 2(β).
Then β has polynomial lower bound.
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Proof. Since

∥Kx∥
2
=

∞∑
n=0

x2n

βn
,

we have ∥Kx∥ ≤ ∥K y∥ for 0 ≤ x ≤ y < 1.
We define by induction a sequence (un)n≥0 with

u0 = 0 and un+1 = Ta(un).

Since Ta(1)= 1 (recall that a ∈ (0, 1)), we have

1 − un+1 =

∫ 1

un

T ′

a(t) dt =

∫ 1

un

1 − a2

(1 + at)2
dt;

hence
1−a
1+a

(1 − un)≤ 1 − un+1 ≤ (1 − a2)(1 − un).

Let 0< x < 1. We can find N ≥ 0 such that uN ≤ x < uN+1. Then

1 − x ≤ 1 − uN ≤ (1 − a2)N .

On the other hand, since C
∗

Ta
Kz = KTa(z) for all z ∈ D, we have

∥Kx∥ ≤ ∥KuN+1∥ ≤ ∥CTa ∥∥KuN ∥ ≤ ∥CTa ∥
N+1

∥Ku0∥ =
1

√
β0

∥CTa ∥
N+1.

Let s ≥ 0 such that (1 − a2)−s
= ∥CTa ∥. We obtain

∥Kx∥ ≤
1

√
β0(1 − x)s

∥CTa ∥. (4-4)

We get the result by using Proposition 2.6. □

Remarks. (1) For example, when βn = exp[−c(log(n + 1))2], with c > 0, no Ta induces a bounded
composition operator on H 2(β), even though Cϕ is bounded for all symbols ϕ with ϕ(0)= 0, since β is
decreasing, as we saw in Proposition 3.2.

(2) For the Dirichlet space D2, we have βn = n + 1, but all the maps Ta induce bounded composition
operators on D2; see [Lefèvre et al. 2021, Remark before Theorem 3.12]. In this case β has polynomial
upper bound even though it is not bounded above.

(3) However, even for decreasing sequences, a polynomial lower bound for β is not enough for some Ta

to induce a bounded composition operator. Indeed, we saw in Proposition 2.5 an example of a decreasing
sequence β with polynomial lower bound but not slowly oscillating, and we will see in Theorem 4.9 that
this condition is needed to have some Ta induce a bounded composition operator.

(4) Gallardo-Gutiérrez and Partington [2013] give estimates for the norm of CTa , with a ∈ (0, 1), when CTa

is bounded on H 2(β). More precisely, they proved that if β is bounded above and CTa is bounded, then

∥CTa ∥ ≥

(1+a
1−a

)σ
,
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where σ = inf{s ≥ 0 : (1 − z)−s /∈ H 2(β)}, and

∥CTa ∥ ≤

(1+a
1−a

)τ
,

where τ =
1
2 supRe W (A), with A the infinitesimal generator of the continuous semigroup (St) defined

as St = CTtanh t , namely (A f )(z)= f ′(z)(1 − z2), and W (A) its numerical range.
For βn = 1/(n + 1)ν with 0 ≤ ν ≤ 1, the two bounds coincide, so they get

∥CTa ∥ =

(1+a
1−a

)(ν+1)/2
.

4.2. Sufficient condition. The following sufficient condition explains in particular why all composition
operators CTa are bounded on the Dirichlet space.

Theorem 4.6. If β is slowly oscillating, then all symbols that extend analytically in a neighborhood of D

induce a bounded composition operator on H 2(β).
In particular, all CTa , for a ∈ D, are bounded on H 2(β).

To prove Theorem 4.6, we begin with a very elementary fact.

Lemma 4.7. Let ϕ : D → D have an analytic extension to an open neighborhood � of D. Then there are
a constant b > 0 and an integer λ > 1 such that

|ϕ̂n(m)| ≤

{
e−bn if n ≥ λm,
e−bm if m ≥ λn.

Proof. Let R > 1 such that D(0, R)⊆�. For 0< r ≤ R, we set

M(r)= sup
|z|=r

|ϕ(z)|.

Take any r ∈ (0, 1), for instance r = e−1. We have M(r) < 1, so we can write M(r) = e−ρ for some
positive ρ.

Cauchy’s inequalities give

|ϕ̂n(m)| ≤
[M(r)]n

rm = em−ρn.

Choose λ1 = max(2, 2/ρ) and b1 = ρ− λ−1
1 . Then |ϕ̂n(m)| ≤ e−b1n if n ≥ λ1m.

For the second inequality, write R =: eβ , with β > 0. Let α > 0 with M(R)≤ eα . Cauchy’s inequalities
again give

|ϕ̂n(m)| ≤
[M(R)]n

Rm ≤ eαn−βm .

Choose λ2 = max(2, 2α/β) and b2 = β−αλ−1
2 . Then |ϕ̂n(m)| ≤ e−b2m if m ≥ λ2n. We get the conclusion

taking b = min(b1, b2) and choosing an integer λ≥ max(λ1, λ2). □

Lemma 4.8. Let (βn) be a slowly oscillating sequence of positive numbers. Let A = (am,n)m,n be the
matrix of a bounded operator on ℓ2. Assume that, for some integer λ > 1 and some constants c, b, we
have:
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(1) |am,n| ≤ ce−bn when n ≥ λm,

(2) |am,n| ≤ ce−bm when m ≥ λn.

Then the matrix Ã = (am,n
√
βm/βn)m,n also defines a bounded operator on ℓ2.

Proof. In the sequel ∥ · ∥ stands for the ℓ2-norm.
Since β is slowly oscillating, it has polynomial lower and upper bounds: for some α, γ > 0 and

δ ∈ (0, 1), we have δ(n + 1)−α ≤ βn ≤ δ−1(n + 1)γ .
The matrix Ã is Hilbert–Schmidt far from the diagonal since

∞∑
n=1

∑
λm<n

|am,n|
2βm

βn
≲

∞∑
n=1

∑
λm<n

(n + 1)α+γ
|am,n|

2 ≲
∞∑

n=1

(n + 1)α+γ+1e−2bn <+∞

and
∞∑

n=0

∑
m>λn

|am,n|
2βm

βn
≲

∞∑
n=0

∑
m>λn

(n + 1)α+γ
|am,n|

2 ≲
∞∑

n=0

(n + 1)α+γ

( ∑
m>λn

e−2bm
)
<+∞.

Since βm/βn remains bounded from above and below around the diagonal, the matrix Ã behaves like A
near the diagonal. More precisely, if I , J are blocks of integers such that (m, n) ∈ I × J implies that
n/λ2

≤ m ≤ λ2n, then, with obvious notation (e.g., PI is the orthogonal projection on span(en, n ∈ I )),
the slow oscillation of β gives, for some C > 0,∣∣∣∣ ∑

(m,n)∈I×J

am,nxn ym

√
βm

βn

∣∣∣∣ ≤ ∥A∥

( ∑
(m,n)∈I×J

|xn|
2
|ym |

2βm

βn

)1/2

≤ C1/2
∥A∥∥PJ x∥∥PI y∥.

For k = 0, 1, 2, . . . , let Jk = [λk, λk+1
[ and, for k = 1, 2, . . . , we define Ik = [λk−1, λk+2

[. We also
define I0 = [0, λ2

[.
We define the matrix R to have entries

rm,n =

{√
βm/βnam,n if (m, n) ∈

⋃
∞

k=0(Ik × Jk),

0 elsewhere.

Let Hk be the subspace of the sequences (xn)n≥0 in ℓ2 such that xn = 0 for n /∈ Ik , i.e.,

Hk = span{en : n ∈ Ik} and H̃k = span{en : n ∈ Jk}.

Let Pk be (the matrix of) the orthogonal projection of ℓ2 with range Hk and Qk that with range H̃k .
Then Rk = Pk AQk is the matrix with entries am,n when (m, n) ∈ Ik × Jk and 0 elsewhere. By the above
discussion, we have

|(Rk x | y)| ≤ C1/2
∥A∥∥Qk x∥∥Pk y∥.

We point out that, for every y ∈ ℓ2, we have
∑

∥Pk y∥
2
≤ 3∥y∥

2 since each integer belongs to at most
three intervals Ik .

In the same way, for every x ∈ ℓ2, we have
∑

∥Qk x∥
2
≤ ∥x∥

2 since the subspaces H̃k are orthogonal.
Summing up over k, we get the boundedness of R =

∑
∞

k=0 Rk .
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Now let us check when the entries of R do not coincide with the entries of Ã. Actually, it happens
when (m, n) does not belong to the union of the Ik × Jk . When n ≥ 1, it means that n belongs to some Jp

but m /∈ Ip: either m < λp−1 or m ≥ λp+2, and hence either m/n < λ−1 or m/n > λ. Therefore the
nonzero entries (m, n) of Ã − R satisfy either n > λm or m > λn.

That ends the proof since we have seen at the beginning that Ã − R is Hilbert–Schmidt. □

Remark. The proof shows that, instead of (1) and (2), it is enough to have∑
m<C1n

nα+1
|am,n|

2 <∞ and
∑

m>C2n

mα
|am,n|

2 <∞.

Moreover, the proof also shows that, when β is slowly oscillating, if we set

E = {(m, n) : C1n ≤ m ≤ C2n} for some C1,C2 > 0,

then the matrix (
√
βm/βn1E(m, n)) is a Schur multiplier over all the bounded matrices, while Kacnelson’s

theorem (Theorem 3.5) says that, if γ = (γn) is nonincreasing, the matrix (γm/γn) is a Schur multiplier
of all bounded lower-triangular matrices.

Proof of Theorem 4.6. Thanks to Lemma 4.7, the hypotheses of Lemma 4.8 are fulfilled by the matrix
whose entries are am,n = ϕ̂n(m). It follows (with the notation of Lemma 4.8) that Ã is bounded on ℓ2,
which means exactly that Ta is bounded on H 2(β). □

4.3. Necessary condition. The main theorem of this section is the following.

Theorem 4.9. If the composition operator CTa is bounded on H 2(β) for some a ∈ D \ {0}, then β is
slowly oscillating.

Let us give a corollary of this result.

Proposition 4.10. For the weight β constructed in the proof of Theorem 3.7, no automorphism Ta with
0< a < 1 can be bounded.

Proof. Indeed, it is clear that β is not slowly oscillating, since

β(k+1)!−1

β(k+1)!
=

1
k + 1 k→∞

−−−→ 0. □

To prove Theorem 4.9, we need estimates on the Taylor coefficients of T n
a . Actually, the Taylor

coefficients of T n
a are the Fourier coefficients of x ∈ R 7→ T n

a (e
i x), and we shall denote them with the

same notation T̂ n
a . Sharp such estimates are given in [Szehr and Zarouf 2020; 2021], and we thank

R. Zarouf for interesting information on this subject (see also [Borichev et al. 2024]). Our method, using
stationary phase and the van der Corput lemma, is a variant of that used in [Szehr and Zarouf 2020; 2021]
and goes back at least to [Girard 1973]. However, we need minorizations of |T̂ n

a (m)| when m is close
to n, and Szehr and Zarouf’s estimates show that this quantity oscillates and, for individual a, can be
too small for our purpose, so we cannot use them and have to prove an estimate in mean for a in some
subinterval of (0, 1).

We begin with a standard fact, which we give with its proof for the convenience of the reader.
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Lemma 4.11. Let a ∈ (0, 1), and let

P−a(x)=
1 − a2

1 + 2a cos x + a2

be the Poisson kernel at the point −a. Then, for all x ∈ [−π, π],

Ta(ei x)= exp[iVa(x)], (4-5)

where

Va(x)=

∫ x

0
P−a(t) dt. (4-6)

Proof. For t ∈ [−π, π], write

ψ(t) :=
ei t

+ a
1 + aei t = exp(iv(t)),

with v a real-valued, C1-function on [−π, π] such that v(0)= 0. This is possible since |ψ(ei t)| = 1 and
ψ(0)= 1. Differentiating both sides with respect to t , we get

iei t 1 − a2

(1 + aei t)2
= iv′(t)

ei t
+ a

1 + aei t .

This implies

v′(t)=
1 − a2

|1 + aei t |2
= P−a(t),

and the result follows since v(0)= 0 = Va(0). □

Let us note that, with Va the function of Lemma 4.11, the Fourier formulas give, since T̂ n
a (m) is real

or since nVa(x)− mx is odd,

2π T̂ n
a (m)=

∫ π

−π

exp(i[nVa(x)− mx]) dx = 2Re Im,n, (4-7)

where

Im,n =

∫ π

0
exp i[nVa(x)− mx] dx . (4-8)

Now the main ingredient for proving Theorem 4.9 is the following.

Proposition 4.12. Let I :=
[1

2 ,
2
3

]
. There exist constants α > 1, e.g., α =

5
4 , and δ ∈

(
0, 1

2

)
such that, for

n large enough (n ≥ n0), we have∫
I
|T̂ n

a (m)|
2 da ≥

δ

n
for all m ∈ [α−1n, αn]. (4-9)

Proof. We will set once and for all
q =

m
n
, (4-10)

so that α−1
≤ q ≤ α where α =

5
4 (say). We will only consider pairs (a, q) satisfying

a ∈ I =
[ 1

2 ,
2
3

]
, q ∈ J :=

[4
5 ,

5
4

]
. (4-11)

Such pairs will be called admissible.
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With this notation, we set, for 0 ≤ x ≤ π ,

Fq(x)= Va(x)−
m
n

x =

∫ x

0
P−a(t) dt − qx, (4-12)

where P−a is the Poisson kernel at −a. We have

F ′

q(x)=
(1 − a2)

1 + 2a cos x + a2 − q,

and the unique (if it exists) critical point xq = xq(a) of Fq in [0, π] is given by P−a(xq)= q , that is,

cos xq =
1
q

1−a2

2a
−

1+a2

2a
=: hq(a). (4-13)

We now proceed through a series of simple lemmas and begin by estimates on hq and xq .

Lemma 4.13. There are positive constants C>1 and δ∈
(
0, 1

2

)
such that, for every admissible pair (a, q),

we have
|hq(a)| ≤ 1 − δ and |h′

q(a)| ≤ C, (4-14)

so there is one critical point xq(a) satisfying

δ ≤ xq(a)≤ π − δ and sin xq(a)≥ δ; (4-15)

moreover,
|x ′

q(a)| ≤ C and δ ≤ |P ′

−a(xq)| ≤ C. (4-16)

Proof. We have

hq(a)=

(1
q

1−a2

2a

)
+

(
−

1+a2

2a

)
=: u(a)+ v(a),

with u and v respectively decreasing and increasing on [0, 1] and with v ≤ 0, so that we have, for q ∈ J ,

hq(a)≤ u
(1

2

)
=

3
4q

≤
15
16
.

Similarly:

hq(a)≥ u
(2

3

)
+ v

(1
2

)
=

5
12q

−
5
4

≥
1
3

−
5
4

= −
11
12
.

Next, 2h′
q(a)= (1 − 1/q)1/a2

− (1 + 1/q); hence |h′
q(a)| ≤ C . So, writing xq = xq(a)= arccos hq(a),

we get, with another constant C > 0,

|x ′

q(a)| =
|h′

q(a)|√
1 − hq(a)2

≤ C

since hq(a)2 ≤ 1 − δ. Finally, 1
9 ≤ (1 − a)2 ≤ 1 + 2a cos xq + a2

≤ 4, and since

P ′

−a(xq)=
2a(1 − a2) sin xq

(1 + 2a cos xq + a2)2
,

we get the final estimates, ending the proof. □

Back to Proposition 4.12.
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We saw in (4-7) that the value of am,n := T̂ n
a (m) is given by the formula

am,n =
1
π
Re Im,n. (4-17)

We have the following estimate, whose proof is postponed (recall that q = m/n and xq = xq(a)).

Proposition 4.14. We have

Im,n =
√

2πn−1/2 ei[nFq (xq )+π/4]√
|P ′

−a(xq)|
+ O(n−3/5), (4-18)

where the O only depends on a and so is absolute as long as (a, q) is admissible.

Note that 3
5 >

1
2 . We hence have

am,n =

√
2
π

n−1/2 cos[π/4 + nFq(xq)]√
|P ′

−a(xq)|
+ O(n−3/5). (4-19)

It will be convenient to introduce ϕq(a), which we do by setting

Fq(xq(a))= ϕq(a). (4-20)

Then, since 1
2 +

3
5 =

11
10 , cos2(π/4 + x)=

1
2(1 − sin 2x) and |P ′

−a(xq)| ≥ δ by Lemma 4.13, we have

a2
m,n =

1
π

n−1 1 − sin[2nϕq(a)]
|P ′

−a(xq)|
+ O(n−11/10)

implying, since |P ′
−a(xq)| ≤ C by Lemma 4.13 (again for (a, q) admissible) and changing δ,

a2
m,n ≥ δn−1(1 − sin[2nϕq(a)])+ O(n−11/10). (4-21)

We will also need estimates on the derivatives of ϕq(a).

Lemma 4.15. If (a, q) is admissible, then ϕq decreases on I and, moreover,

(1) |ϕ′
q(a)| ≥ δ,

(2) |ϕ′′
q (a)| ≤ C.

Proof. Note, in passing, that, with x = xq(a) ∈ [0, π] (thanks to (4-12)),

ϕq(a)=

∫ x

0
[P−a(t)− P−a(x)] dt ≤ 0

since the integrand is negative. Next, if f and g are real C1-functions and

8(a)=

∫ f (a)

0
g(a, t) dt,

the chain rule gives

8′(a)= f ′(a)g(a, f (a))+
∫ f (a)

0

∂g
∂a
(a, t) dt.

With g(a, t)= P−a(t) and f (a)= xq(a), we get, remembering that xq(a) is critical for Fq ,

ϕ′

q(a)= [P−a(xq(a))− q]x ′

q(a)+
∫ xq (a)

0

∂P−a
∂a

(a, t) dt =

∫ xq (a)

0

∂P−a
∂a

(a, t) dt.
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But P−a(t)= 1 + 2
∑

∞

k=1(−a)k cos kt , so we have

ϕ′

q(a)=

∫ xq (a)

0

(
−2

∞∑
k=1

k(−a)k−1 cos kt
)

dt =
2
a

∞∑
k=0

(−a)k sin[kxq(a)],

that is,

ϕ′

q(a)=
2
a
Im

1
1 + aei xq (a)

=
−2 sin xq(a)

1 + 2a cos xq(a)+ a2 < 0. (4-22)

Now, (4-15) gives (1).
Since |x ′

q(a)| ≤ C by Lemma 4.13, the chain rule and (4-22) clearly give the uniform boundedness of
|ϕ′′

q (a)| when (a, q) is admissible, and this ends the proof. □

Lemmas 4.13 and 4.15 will now be exploited through a simple variant of the van der Corput inequalities.

Lemma 4.16. Let f : [A, B] → R, with A < B, be a C2-function satisfying | f ′
| ≥ δ and | f ′′

| ≤ C , and
let us put M =

∫ B
A ein f (x) dx. Then

|M | ≤
2

nδ
+

C(B − A)
nδ2 .

Proof. Write

ein f
=
(ein f )′

in f ′

and integrate by parts to get

M =

[
ein f

in f ′

]B

A
−

i
n

∫ B

A
ein f (x) f ′′(x)

[ f ′(x)]2 dx =: M1 + M2,

with |M1| ≤ 2/(nδ) and |M2| ≤ ((B − A)/n) · C/δ2. □

End of proof of Proposition 4.12. The preceding lemma can be applied with A =
1
2 , B =

2
3 , f = ϕq and

n changed into 2n, since Lemma 4.15 shows that this f meets the assumptions of Lemma 4.16. This
gives us, uniformly with respect to (a, q) admissible,∣∣∣∣∫

I
sin[2nϕq(a)] da

∣∣∣∣ ≤

∣∣∣∣∫
I

e2inϕq (a) da
∣∣∣∣ ≤

C
n
. (4-23)

Now, integrating (4-21) on I and using (4-23) gives, for some numerical δ ∈
(
0, 1

2

)
,∫

I
|T̂ n

a (m)|
2 da ≥ δn−1

+ O(n−2)+ O(n−11/10)≥
1
2δn

−1

for n ≥ n0 and α−1
≤ m/n ≤ α (recall that am,n = T̂ n

a (m)). This ends the proof of Proposition 4.12. □

Proof of Theorem 4.9. By Proposition 4.2, CTa is bounded for all a ∈ D, and, thanks to Lemma 4.4,

K := sup
1/2≤a≤2/3

∥CTa ∥<+∞.

Matricially, this can be written, for all a ∈
( 1

2 ,
2
3

)
,∥∥∥∥(

T̂ n
a (m)

√
βm

βn

)
m,n

∥∥∥∥ ≤ K .
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In particular, for every n ≥ 1, we have, considering the columns and rows of the previous matrix,
∞∑

m=1

|T̂ n
a (m)|

2βm

βn
≤ K 2, i.e.,

∞∑
m=1

|T̂ n
a (m)|

2βm ≤ K 2βn,

and, for every m ≥ 1,
∞∑

n=1

|T̂ n
a (m)|

2βm

βn
≤ K 2, i.e.,

∞∑
n=1

|T̂ n
a (m)|

2 1
βn

≤
K 2

βm
.

In particular, for every n ≥ 1, ∑
(4/5)n≤ j≤(5/4)n

|T̂ n
a ( j)|2β j ≤ K 2βn (4-24)

and, for every m ≥ 1, ∑
(4/5)m≤k≤(5/4)m

|T̂ k
a (m)|

2 1
βk

≤
K 2

βm
. (4-25)

Integrating on a ∈
( 1

2 ,
2
3

)
and using Proposition 4.12, we get, from (4-24), for n large enough,

δ

n

∑
(4/5)n≤ j≤(5/4)n

β j ≤
K 2

6
βn (4-26)

and, from (4-25), for m large enough, we have both

δ

m

∑
(4/5)m≤k≤m

1
βk

≤
5K 2

24
1
βm

(4-27)

and
δ

m

∑
m≤k≤(5/4)m

1
βk

≤
5K 2

24
1
βm
. (4-28)

Since the harmonic mean (over the sets of integers
[ 4

5 m,m
]

and
[
m, 5

4 m
]
, which have cardinality ≈ n ≈ m)

is less than the arithmetical mean, we obtain, from (4-27) and (4-28), both

βm ≤
125
24δ

K 2

m

∑
(4/5)m≤k≤m

βk (4-29)

and

βm ≤
10
3δ

K 2

m

∑
m≤k≤(5/4)m

βk . (4-30)

Now assume that n ≤ m ≤
5
4 n. From (4-29), we have

βm ≲ 1
m

∑
(4/5)m≤k≤m

βk ≲
1
n

∑
(4/5)n≤k≤(5/4)n

βk ≲ βn

thanks to (4-26). From (4-30) and (4-26), we treat the case 4
5 n ≤ m ≤ n in the same way. We conclude

that, for some constant c > 0, we have, for n and m large enough satisfying 4
5 n ≤ m ≤

5
4 n,

βm ≤ cβn, (4-31)

which means that β is slowly oscillating. □
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Proof of Proposition 4.14. We will use a variant of [Titchmarsh 1986, Lemma 4.6, p. 72] on the van der
Corput’s version of the stationary phase method. A careful reading of the proof in [Titchmarsh 1986,
p. 72] gives the version below, which only needs local estimates on the second derivative F ′′, as occurs in
our situation. For the sake of completeness, we will give a proof, postponed to the Appendix.

Proposition 4.17 (stationary phase). Let F be a real function with continuous derivatives up to the third
order on the interval [A, B] and F ′′ > 0 throughout ]A, B[. Assume that there is a (unique) point c in
]A, B[ such that F ′(c)= 0 and that, for some positive numbers λ2, λ3, and η, the following assertions
hold:

(1) [c − η, c + η] ⊆ [A, B],

(2) F ′′(x)≥ λ2 for all x ∈ [c − η, c + η],

(3) |F ′′′(x)| ≤ λ3 for all x ∈ [A, B].

Then ∫ B

A
ei F(x) dx =

√
2π

ei[F(c)+π/4]

F ′′(c)1/2
+ O

( 1
ηλ2

+ η4λ3

)
, (4-32)

where the O involves an absolute constant.

We will show that Proposition 4.17 is applicable with F = nFq and

[A, B] = [0, π], c = xq , λ2 = κ0n, λ3 = C0n, η = (λ2λ3)
−1/5.

The parameter η is chosen to make both error terms in Proposition 4.17 equal: (ηλ2)
−1

= η4λ3; so

η = κn−2/5

and
1
ηλ2

+ η4λ3 = κ̃n−3/5
= O(n−3/5) (4-33)

(with κ = (κ0C0)
−1/5 and κ̃ = 2/κ0κ).

The slight technical difficulty encountered here is that F ′′
q (x) vanishes at 0 and π . But Proposition 4.17

covers this case. We have

F ′′(x)= nF ′′

q (x)= n P ′

−a(x)= 2a(1 − a2)
sin x

(1 + 2a cos x + a2)2
n,

and there are some positive (and absolute) constants κ0 and σ such that

F ′′(x)≥ κ0n = λ2 for x ∈ [σ, π − σ ]. (4-34)

Now (for n large enough), we have [xq − η, xq + η] ⊆ [σ, π − σ ]. Hence assumptions (1) and (2) of
Proposition 4.17 are satisfied.

Finally, since F(x) = nFq(x) = n[Va(x)− qx] and F ′′′
= nF ′′′

q = nV ′′′
a = n P ′′

−a , we have, for all
x ∈ [0, π] and (a, q) admissible,

|F ′′′(x)| ≤ C0n = λ3,

where C0 is absolute and assertion (3) of Proposition 4.17 holds.
With (4-33) this ends the proof of (4-18), once we note that nV ′′

a (xq)= F ′′(xq). □
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5. Boundedness of all composition operators

In this section, we characterize all the sequences β for which all composition operators are bounded
on H 2(β). The main remaining step is the following theorem.

Theorem 5.1. Assume that all composition operators Cϕ are bounded on H 2(β). Then β is essentially
decreasing.

As an immediate consequence, we obtain Theorem 1.2.

Proof of Theorem 1.2. Assume that β is essentially decreasing and slowly oscillating. All composition
operators Cψ with ψ(0)= 0 are bounded on H 2(β) (see the introduction or Proposition 3.2). Since β is
slowly oscillating, all the composition operators CTa , with a ∈ D, are bounded thanks to Theorem 4.6.
Now it is very classical that we can get the boundedness of every composition operators. Indeed given a
symbol ϕ, the symbol ψ = Ta ◦ϕ fixes the origin for a = −ϕ(0). Since Cϕ = Cψ ◦ CT−a , the conclusion
follows.

Assume that all composition operators are bounded on H 2(β); in particular, the CTa ones are bounded
on H 2(β), and β is slowly oscillating, thanks to Theorem 4.9. It also follows from Theorem 5.1 that β is
essentially decreasing. □

We will use the following elementary, but crucial, lemma.

Lemma 5.2. Let u be a function analytic in an open neighborhood � of D. Then, for every ε > 0, there
exists an integer N ≥ 1 such that

∞∑
j=N p

|û p( j)|2 ≤ ε for all p ≥ 1. (5-1)

Proof. From Lemma 4.7, we know that there exist some integer λ > 1 and a constant b > 0 such that
|û p( j)| ≤ e−bj when j ≥ λp. Therefore, for any N ≥ λ, we have

∞∑
j=N p

|û p( j)|2 ≤ (1 − e−2b)−1e−2bN p
≤ (1 − e−2b)−1e−2bN

≤ ε

as soon as N is chosen large enough. □

Proof of Theorem 5.1. Thanks to Theorem 4.9, we know that β is slowly oscillating.
Now, assume that the sequence β is not essentially decreasing.
We are going to construct an analytic function ϕ : D → D such that the composition operator Cϕ is not

bounded on H 2(β). This function ϕ will be a Blaschke product of the form

ϕ(z)=

∞∏
k=1

Tak (z
nk )=

∞∏
k=1

znk + ak

1 + akznk

for a sequence of numbers ak ∈ (0, 1) such that
∑

k≥1(1−ak)<+∞ and a sequence of positive integers nk

increasing to infinity.
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Observe that ϕ will be indeed a convergent Blaschke product, with nk zeroes of modulus a1/nk
k ,

k = 1, 2, . . . , because, for Ta(z)= (z + a)/(1 + az), with 0< a < 1, we have

|Tak (z
nk )− 1| ≤

2(1 − ak)

1 − |z|
and, setting ak = e−εk , we get∑

k

nk(1 − a1/nk
k )≤

∑
k

nk(εk/nk)=

∑
k

εk <+∞.

These sequences will be constructed by induction, together with another sequence of integers (mk)k≥1.
Since β is not essentially decreasing, there exist integers n1 > m1 ≥ 4 such that βn1 ≥ 2βm1 . We start

with
a1 = 1 −

1
m1

≥
3
4
.

Using Lemma 5.2 with u = Ta1 , we get N0 ≥ 1 such that
∞∑

j=N0m

|T̂ m
a1
( j)|2 ≤ 2−15 for all m ≥ 1.

Assume now that we have constructed increasing sequences of integers

m1,m2, . . . ,mk, n1, n2, . . . , nk, N0, N1, . . . , Nk−1

such that, for 1 ≤ l ≤ k − 1, we have

ml+1 ≥ 4ml and nl+1 ≥ 4nl

and, for 1 ≤ l ≤ k,
nl ≥ Nl−1ml and βnl ≥ 2lβml

and
∞∑

j=Nl−1ml

|ϕ̂m
l ( j)|2 ≤ 2−15,

where
al = 1 −

1
ml

and ϕl(z)= Tal (z
nl ).

We then apply Lemma 5.2 again to the function u = uk = ϕ1 · · ·ϕk . We get Nk > Nk−1 such that
∞∑

j=Nkm

|ûm
k ( j)|2 ≤ 2−15 for all m ≥ 1. (5-2)

Since β is not essentially decreasing but is slowly oscillating, there exist mk+1 ≥ 4mk and nk+1 ≥ 4nk

such that
nk+1 ≥ Nkmk+1 and βnk+1 ≥ 2k+1βmk+1 .

We set
ak+1 = 1 −

1
mk+1

and ϕk+1(z)= Tak+1(z
nk+1).

This ends the induction.
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It remains to check that
∞∑

k=1

(1 − ak)=

∞∑
k=1

1
mk

≤

∞∑
k=1

4−k
=

1
3
<+∞

to get that the infinite product ϕ =
∏

k≥1 ϕk converges uniformly on compact subsets of D.
To show that the composition operator Cϕ is not bounded on H 2(β), it suffices to show that, for some

constant c1 > 0, we have, for all k ≥ 2,
2nk∑
j=nk

|ϕ̂mk ( j)|2 ≥ c1. (5-3)

Indeed, since β is slowly oscillating, there is a positive constant δ < 1 such that

β j ≥ δβnk for j = nk, nk + 1, . . . , 2nk .

Then, if we set ek(z)= zmk , we have, since Cϕ(ek)= ϕmk ,

∥Cϕ(ek)∥
2
H2(β)

∥ek∥
2
H2(β)

≥

∑2nk
j=nk

|ϕ̂mk ( j)|2β j

βmk

≥
c1δβnk

βmk

≥ 2kc1δ k→∞
−−−→ +∞,

and so Cϕ is not bounded on H 2(β).
We now have to show (5-3). Let us agree to write formally, for an analytic function f (z)=

∑
∞

k=0 fkzk

and an arbitrary positive integer p,

f (z)=

p∑
k=0

fkzk
+ O(z p+1).

For that, we set

Gk(z)=

∞∏
l=k+1

ϕl(z)=

∞∏
l=k+1

al + O(znk+1).

We have, for k ≥ 2,

ϕ(z)= vk(z)ϕk(z)Gk(z),

where vk = ϕ1 · · ·ϕk−1.
Remark now that, for 0< a < 1, we have

Ta(z)= a + (1 − a2)z + O(z2),

so

ϕk(z)= Tak (z
nk )= ak + (1 − a2

k )z
nk + O(z2nk ).

Then

[Gk(z)]mk =

( ∞∏
l=k+1

al

)mk

+ O(znk+1) (5-4)

and

[ϕk(z)]mk = amk
k + (1 − a2

k )mkamk−1
k znk + O(z2nk ). (5-5)
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But

amk−1
k =

(
1 −

1
mk

)mk−1
≥ e−1

:= c2 (5-6)

and

(1 − a2
k )mkamk−1

k ≥ (1 − ak)mkamk−1
k ≥ c2. (5-7)

Moreover, since 1 − x ≥ e−2x for 0 ≤ x ≤
1
2 , we have( ∞∏

l=k+1

al

)mk

≥ exp
(
−2

( ∞∑
l=k+1

1
ml

)
mk

)
≥ exp

(
−2

∞∑
l=1

4−l
)

= exp
(
−

2
3

)
:= c3. (5-8)

Afterwards, by (5-2), we have
∞∑

j=Nk−1mk

|v̂
mk
k ( j)|2 ≤ 2−15. (5-9)

Set vmk
k = g1 + g2, with {

g1(z)=
∑Nk−1mk

j=0 v̂
mk
k ( j)z j ,

g2(z)=
∑

j>Nk−1mk
v̂

mk
k ( j)z j .

By (5-9), we have, with ∥ · ∥2 = ∥ · ∥L2(T),

∥g2∥
2
2 =

∑
j>Nk−1mk

|v̂
mk
k ( j)|2 ≤ 2−15.

Besides, since ϕk is inner as a product of inner functions, we have |vk(z)| = 1 for all z ∈ T, so

∥g1∥
2
2 = ∥vk∥

2
2 − ∥g2∥

2
2 ≥ 1 − 2−15.

Now, ϕmk = v
mk
k ϕ

mk
k Gmk

k = F1 + F2, with

F1 = g1ϕ
mk
k Gmk

k and F2 = g2ϕ
mk
k Gmk

k .

Using (5-4), (5-5), (5-7) and (5-8), we get

nk+Nk−1mk∑
j=nk

|F̂1( j)|2 =

( ∞∏
l=k+1

al

)2mk

[(1 − a2
k )mkamk−1

k ]
2

Nk−1mk∑
j=0

|ĝ1( j)|2 ≥ (1 − 2−15)c2
2c2

3.

As

∥F2∥
2
2 ≤ ∥g2∥

2
2∥ϕ

mk
k ∥

2
∞

∥Gmk
k ∥

2
∞

≤ 2−15,

we get, using the inequality |a + b|
2
≥

1
2 |a|

2
− |b|

2,

2nk∑
j=nk

|ϕ̂mk ( j)|2 ≥

nk+Nk−1mk∑
j=nk

|F̂1( j)+ F̂2( j)|2 ≥
1
2

nk+Nk−1mk∑
j=nk

|F̂1( j)|2 −

nk+Nk−1mk∑
j=nk

|F̂2( j)|2

≥
1
2
(1 − 2−15)c2

2c2
3 − 2−15

=
1
2
(1 − 2−15)e−10/3

− 2−15
≥ 2−9

− 2−15 > 0. □
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6. Some results on multipliers

In this section, we give some results on the multipliers on H 2(β), which show how the different notions
of regularity for β come into play.

The set M(H 2(β)) of multipliers of H 2(β) is by definition the vector space of functions h analytic
on D such that h f ∈ H 2(β) for all f ∈ H 2(β). When h ∈ M(H 2(β)), the operator Mh of multiplication
by h is bounded on H 2(β) by the closed graph theorem. The space M(H 2(β)) equipped with the operator
norm is a Banach space. We note the obvious property

M(H 2(β)) ↪→ H∞ contractively. (6-1)

Indeed, if h ∈ M(H 2(β)), we easily get, for all w ∈ D,

M∗

h (Kw)= h(w)Kw,

and so by taking norms and simplifying, we are left with |h(w)| ≤ ∥Mh∥, showing that h ∈ H∞ with
∥h∥∞ ≤ ∥Mh∥.

Proposition 6.1. We have M(H 2(β))= H∞ isomorphically if and only if β is essentially decreasing.

Proof. The sufficient condition is proved in [Lefèvre et al. 2021, beginning of the proof of Proposition 3.16].
For the necessity, we then have ∥Mh∥ ≈ ∥h∥∞ for every h ∈ H∞ by the Banach isomorphism theorem.
Now, for m > n (recall that en(z)= zn),

em(z)= zm−nzn
= (Mem−n en)(z);

so, since ∥Mem−n∥ ≤ C∥em−n∥∞ = C for some positive constant C ,

βm = ∥em∥
2
≤ C2

∥en∥
2
= C2βn. □

In [Lefèvre et al. 2021, Section 3.6], we gave the following notion of an admissible Hilbert space of
analytic functions.

Definition 6.2. A Hilbert space H of analytic functions on D, containing the constants, and with
reproducing kernels Ka , a ∈ D, is said to be admissible if

(i) H 2 is continuously embedded in H ,

(ii) M(H)= H∞,

(iii) the automorphisms of D induce bounded composition operators on H ,

(iv) ∥Ka∥H
∥Kb∥H

≤ h
(1−|b|

1−|a|

)
for a, b ∈ D, where h : R+

→ R+ is a nondecreasing function.

We proved in that paper that every weighted Hilbert space H 2(β) with β nonincreasing is admissible
under the additional hypothesis that the automorphisms of D induce bounded composition operators. In
view of Theorem 4.6, we get the following result.
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Proposition 6.3. Let β be a weight.

(1) If β is essentially decreasing, then we have (i), (ii), (iii) in Definition 6.2.

(2) If β is slowly oscillating, then we have (iv) in Definition 6.2.

Let us give a different proof from the one in [Lefèvre et al. 2021].

Proof. (1) Let us assume that β is essentially decreasing. Then item (i) holds, as well as item (ii), by
Proposition 6.1. Item (iii) is Theorem 4.6.

(2) Now we assume that β is slowly oscillating.
Let 0< s < r < 1.
Without loss of generality, we may assume that r, s ≥

1
2 . It is enough to prove

∥Kr∥
2
≤ C∥Kr2∥

2 (6-2)

for some constant C > 1. Indeed, iteration of (6-2) gives

∥Kr∥
2
≤ Ck

∥Kr2k ∥
2,

and if k is the smallest integer such that r2k
≤ s, we have

2k−1 log r > log s
and

2k
≤ D 1−s

1−r
,

where D is a numerical constant. Writing C = 2α with α > 1, we obtain(
∥Kr∥

∥Ks∥

)2

≤ Ck
= (2k)α ≤ Dα

(1−s
1−r

)α
.

To prove (6-2), we pick some M > 1 such that

β2n ≥ M−1βn

and
β2n−1 ≥ M−1βn

for all n ≥ 1, since β is slowly oscillating. Write t = r2. We have

∥Kr∥
2
=

1
β0

+

∞∑
n=1

t2n

β2n
+

∞∑
n=1

t2n−1

β2n−1
,

implying, since t2n−1
≤ 4t2n ,

∥Kr∥
2
≤

1
β0

+ M
∞∑

n=1

t2n

βn
+ 4M

∞∑
n=1

t2n

βn
≤ 5M∥Kt∥

2. □

The notion of an admissible Hilbert space H is useful for the set of conditional multipliers:

M(H, ϕ)= {w ∈ H : w( f ◦ϕ) ∈ H for all f ∈ H}.

As a corollary of [Lefèvre et al. 2021, Theorem 3.18], we get the following.
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Corollary 6.4. Let β be essentially decreasing and slowly oscillating. Then

(1) M(H 2, ϕ)⊆ M(H 2(β), ϕ),

(2) M(H 2(β), ϕ)= H 2(β) if and only if ∥ϕ∥∞ < 1,

(3) M(H 2(β), ϕ)= H∞ if and only if ϕ is a finite Blaschke product.

We add here as another application of our results an answer to a question appearing in Problem 5 in
the thesis of Zorboska [1988].

Theorem 6.5. Let β be a weight such that H 2(β) is disc-automorphism-invariant, and let ϕ be a symbol
inducing a compact composition operator on H 2(β). Then the Denjoy–Wolff point of ϕ must be in D.

In other words, ϕ has a fixed point in D.
In the statement, “H 2(β) is disc-automorphism-invariant” means that, for all the automorphisms Ta ,

where a ∈ D, we have that CTa is bounded on H 2(β) (equivalently it is bounded for at least one a ∈ D\{0}).
For the definition of the Denjoy–Wolff point, we refer to [Shapiro 1993].

Proof. From Theorem 4.9, we know that β is slowly oscillating, and from Proposition 6.3, we know that

∥Ka∥H2(β)

∥Kb∥H2(β)

≤ h
(

1 − |b|

1 − |a|

)
for every a, b ∈ D, (6-3)

where h : R+
→ R+ is a nondecreasing function.

Now we split the proof into two cases:

• If
∑

1/βn < ∞, then H 2(β) ⊂ A(D) (continuously) thanks to the Cauchy–Schwarz inequality. It
follows from [Shapiro 1987, Theorem 2.1] that ∥ϕ∥∞ < 1, and the conclusion follows obviously.

• If
∑

1/βn = ∞, then the normalized reproducing kernel Kz/∥Kz∥ is weakly converging to 0 when
|z| → 1− since ∥Kz∥ → +∞.

Since Cϕ is compact, C∗
ϕ is compact as well, and we get

Kϕ(z)

∥Kz∥
→ 0 when |z| → 1−

and equivalently
∥Kz∥

∥Kϕ(z)∥
→ +∞ when |z| → 1−.

But, from (6-3), we get

h
(

1 − |ϕ(z)|
1 − |z|

)
→ +∞ when |z| → 1−

;

hence, since h is nondecreasing,

1 − |ϕ(z)|
1 − |z|

→ +∞ when |z| → 1−.

By the Denjoy–Wolff theorem [Shapiro 1993], the conclusion follows in this case too. □
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Appendix

In this appendix, we give the proof of Proposition 4.17.
The following lemma can be found in [Montgomery 1994, Lemma 1, p. 47].

Lemma A.1. Let F : [u, v] → R, with u <v, be a C2-function with F ′′> 0 and F ′ not vanishing on [u, v].
Let

J =

∫ v

u
ei F(x) dx .

Then:

(a) if F ′ > 0 on [u, v], we have |J | ≤ 2/F ′(u),

(b) if F ′ < 0 on [u, v], we have |J | ≤ 2/|F ′(v)|.

Proof of Proposition 4.17. Write now the integral I of Proposition 4.17 on [A, B] as I = I1 + I2 + I3, with

I1 =

∫ c−η

A
ei F(x) dx, I2 =

∫ c+η

c−η
ei F(x) dx, I3 =

∫ B

c+η
ei F(x) dx .

Lemma A.1 with u = A and v = c − η implies, since F ′ < 0 on [A, c − η],

|I1| ≤
2

|F ′(c − η)|
≤

2
ηλ2

, (A-1)

where, for the last inequality, we just have to write

|F ′(c − η)| = F ′(c)− F ′(c − η)= ηF ′′(ξ)

for some ξ ∈ [c − η, c] and to note that F ′′(ξ)≥ λ2, by hypothesis.
Similarly, Lemma A.1 with u = c + η and v = B implies

|I3| ≤
2

F ′(c + η)
≤

2
ηλ2

. (A-2)

We can now estimate I2. The Taylor formula shows that

F(x)= F(c)+ 1
2(x − c)2 F ′′(c)+ R,

with
|R| ≤

1
6 |x − c|3λ3.

Hence

I2 = ei F(c)
∫ η

0
2 exp

( 1
2 i x2 F ′′(c)

)
dx + S,

with

|S| ≤ λ3

∫ η

0

1
3 x3 dx =

1
12η

4λ3.

Finally, set

K =

∫ η

0
2 exp

( 1
2 i x2 F ′′(c)

)
dx .
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We make the change of variable x =
√

2/F ′′(c)
√

t . Recall that
∫

∞

0 ei t/
√

t dt =
√
πeiπ/4 is the classical

Fresnel integral and that an integration by parts gives, for m > 0,∣∣∣∣∫ ∞

m

ei t
√

t
dt

∣∣∣∣ ≤
2

√
m
.

Therefore, with m =
1
2η

2 F ′′(c),

K =

√
2

F ′′(c)

∫ m

0

ei t
√

t
dt =

√
2π

F ′′(c)
eiπ/4

+ Rm,

with

|Rm | ≤ C
√

1
F ′′(c)

1
√

m
≤

C
ηλ2

.

All in all, we proved that

I2 =

√
2π

F ′′(c)
exp[i(F(c)+π/4)] + O

( 1
ηλ2

+ η4λ3

)
, (A-3)

and the same estimate holds for I , thanks to (A-1) and (A-2).
We have hence proved Proposition 4.17. □
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LONG-TIME BEHAVIOR OF
THE STOKES-TRANSPORT SYSTEM IN A CHANNEL

ANNE-LAURE DALIBARD, JULIEN GUILLOD AND ANTOINE LEBLOND

We consider here a two-dimensional incompressible fluid in a periodic channel, whose density is advected
by pure transport, and whose velocity is given by the Stokes equation with gravity source term. Dirichlet
boundary conditions are taken for the velocity field on the bottom and top of the channel and periodic
conditions in the horizontal variable. We prove that the affine stratified density profile is stable under
small perturbations in Sobolev spaces and prove convergence of the density to another limiting stratified
density profile for large time with an explicit algebraic decay rate. Moreover, we are able to precisely
identify the limiting profile as the decreasing vertical rearrangement of the initial density. Finally, we
show that boundary layers are formed for large times in the vicinity of the upper and lower boundaries.
These boundary layers, which had not been identified in previous works, are given by a self-similar ansatz
and driven by a linear mechanism. This allows us to precisely characterize the long-time behavior beyond
the constant limiting profile and reach more optimal decay rates.

1. Introduction 1955
2. Long-time stability of stratified profiles: proof of Theorem 1.1 1967
3. Formation of large-time boundary layers in the linear setting: proof of Theorem 1.2 1984
4. Long-time boundary layers in the nonlinear setting: proof of Theorem 1.3 1995
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Appendix C. Proof of Lemma 3.2 2025
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1. Introduction

The Stokes-transport system 
∂tρ+ u · ∇ρ = 0,
−1u + ∇ p = −ρez,

div u = 0,
ρ|t=0 = ρ0

(1-1a)

models the evolution of an incompressible inhomogeneous fluid with density ρ and velocity and pressure
fields (u, p). For physical reasons and without loss of generality, we assume that the initial density ρ0 is
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nonnegative. This equation will be studied in a two-dimensional periodic strip, namely �= T × (0, 1)
with variables (x, z) ∈� and with Dirichlet boundary condition of the velocity field:

u = 0 on ∂�. (1-1b)

It consists of a coupling of the transport equation for the density of the fluid with a velocity field
satisfying for all times the Stokes equation with gravity forcing −ρez , where ez is the unitary vertical
vector. This equation has been studied in particular in [Höfer 2018; Mecherbet 2021] showing that
(1-1a) is a model obtained as the homogenization limit of inertialess particles in a fluid-satisfying Stokes
equation. The more recent paper [Grayer 2023] shows that this system is obtained as a formal limit where
the Prandtl number is infinite. In this paper, the domain is chosen as �= T × (0, 1), which describes a
physically meaningful situation including Dirichlet boundary conditions.

Well-posedness. The well-posedness of this system has been shown in [Antontsev et al. 2000] for
piecewise constant initial data in bounded domains of Rn and in [Leblond 2022] for arbitrary L∞ data in
bounded domains of R2 and R3 or in the infinite strip R × (0, 1), the well-posedness in �= T × (0, 1)
being a direct consequence.

Well-posedness in Sobolev spaces is required for our results. Since this result does not seem to appear in
the literature, we provide a concise proof of the global well-posedness of this problem in Appendix A for
the sake of completeness. More precisely, for any ρ0 ∈ H m with m ≥3, there exists a unique strong solution
(ρ, u) of (1-1a) with ρ∈C(R+; H m(�)) and u∈C(R+; H m+2(�)). Well-posedness in other domains and
spaces has also been proven; see for example the recent results [Mecherbet and Sueur 2024; Inversi 2023].

Steady states. Before going further let us observe that the stationary states, i.e., states such that ∂tρ = 0,
of this system are precisely the stratified density profiles, which means in this paper density profiles
depending only on the vertical variable z. Indeed, for such a map ρs = ρs(z),

(ρ, u, p)=

(
ρs, 0,−

∫ z
ρs(z′) dz′

)
is a solution of (1-1a). To show the converse, let us introduce the potential energy associated to a density
profile ρ,

E(ρ) :=

∫
�

zρ dx dz.
The energy balance is

d
dt

E(ρ)=
∫
�

z∂tρ= −

∫
�

zu·∇ρ=

∫
�

u·ezρ= −∥∇u∥
2
L2, (1-2)

where the divergence-free and the Dirichlet boundary conditions on u are used in the integration by parts.
The last equality is simply the basic estimate of the Stokes equation. The potential energy dissipates exactly
through the viscosity effects. From this observation we see that the whole evolution is nonreversible; the
fluid only rearranges in states of lower potential energy. Moreover, a stationary state is exactly a state for
which u = 0; therefore it means that the density ρ and the pressure p must satisfy

∇ p = −ρez,

so that the pressure is independent of the x-variable, implying ρ depends only on the z-variable.
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The aim of this paper is to study the long-time behavior of perturbations of stratified initial data in the
stable regime, with lighter fluid on top and heavier fluid on the bottom. We will prove three different
results: The first one, Theorem 1.1, provides the stability of such stratified profiles, together with some
decay estimates. The second one, Theorem 1.2, gives an explicit asymptotic decomposition of solutions
of a linear version of (1-1a) as t → ∞. In particular, we identify boundary layer profiles in the vicinity of
the top and bottom boundaries. Eventually, in Theorem 1.3, we go back to the nonlinear system (1-1a) and
provide a more precise description of the solutions as t → ∞, building on the analysis from Theorem 1.2.
A striking consequence of our results lies in the fact that the boundaries slow down the relaxation towards
the asymptotic state. This new observation could probably be adapted to other systems; see Remark 1.4.

Main stability result. For simplicity and in the rest of this paper, we consider perturbations of the
affine profile ρs(z)= 1 − z, although more general profiles such that ∂zρs < 0 could be considered; see
Remark 2.8.

Our main stability result for perturbations vanishing on the boundary is the following:

Theorem 1.1. There exists a small universal constant ε0 > 0 such that, for any ρ0 ∈ H 6(�) satisfying
∥ρ0 − ρs∥H6 ≤ ε0 and ρ0 − ρs ∈ H 2

0 (�), the solution ρ of (1-1a) satisfies

∥ρ− ρ∞∥L2(�) ≲
ε0

1 + t
, ∥ρ− ρ∞∥H4(�) ≲ ε0, (1-3)

where ρ∞ is given by the decreasing vertical rearrangement of ρ0:

ρ∞(z) :=

∫ ∞

0
10≤z≤|{ρ0>λ}| dλ.

Note that the condition on H 2
0 (�) is equivalent to the following requirements, discussed in the following

subsections:
ρ0|∂� = ρs |∂�, ∂nρ0|∂� = ∂nρs |∂�.

This theorem will be proven in Section 2, and we provide a scheme of proof at the end of this section.

Remarks on the main stability result.

• Since the set of steady states is not discrete, it is expected that ρs is not asymptotically stable, and that
the long-time behavior is given by a slightly modified density profile. In general, this asymptotic profile
depends on the entire nonlinear dynamics in a very nonexplicit way. However the transport equation is
remarkable since it preserves the measure of the level sets. This property combined with the fact that
the asymptotic profile is strictly decreasing (as a smooth perturbation of ρs) allows us to identify the
asymptotic profile as the decreasing vertical rearrangement of ρ0, which can be computed directly from ρ0

without dependence on the full nonlinear dynamics. See Section 2.4 for details.

• In fact the identification of the limit as the decreasing vertical rearrangement is quite general and only re-
quires two properties. First the density needs to converge to a stratified (i.e., independent of x) and decreas-
ing limiting profile. Second, the density should satisfy a transport equation with well-defined characteristics.
This is in particular the case for the incompressible porous medium equation; see Section 2.4 for details.
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• This result proves the stability of the particular state ρs(z)= 1− z. We believe that the result generalizes
and our proofs adapt to the case of stratified ρs ∈ H 6 satisfying

sup
(0,1)

∂zρs < 0.

This remark is detailed at the end of Section 2.2. We note that without the monotony assumption,
lighter fluid might be below heavy one, and physical instabilities — similar to the Rayleigh–Bénard
or Rayleigh–Taylor instabilities — are expected to develop (see [Drazin and Reid 2004]). Some weak
convergence up to extraction toward a stationary state could be proven, but the limit might be a non-
trivial ω-limit set in general. In any case, it is not clear whether convergence to the rearranging steady
state holds.

• One can of course wonder about the strong regularity requirement in Theorem 1.1. It turns out that
one can adapt a strategy developed in [Kiselev and Yao 2023] about the instability of the incompressible
porous media equation. Indeed, the arguments are essentially geometric, and the result is the same: there
exist smooth perturbations small in H 2−(�)-norm such that lim supt→∞ ∥ρ(t)− ρs∥H s(�) = ∞ for any
s > 1. Therefore, this shows the existence of a regularity threshold between H 2(�) and H 6(�) between
stability and instability. The details are provided in the thesis of Antoine Leblond [2023].

• Finally, an interesting question is the optimality of the (1 + t)−1 decay in (1-3). The dynamics of
the equation preserve the fact that the perturbation and its normal derivative are vanishing on ∂� i.e.,
ρ − ρs ∈ H 2

0 (�). For higher normal derivatives this property is not preserved, and this is the main
reason why the time-decay is limited. This is one of the main motivations to study the formation of
boundary layers in this system, together with the possibility to allow nonvanishing perturbations on ∂�.
Theorem 1.3 below indicates that the optimal decay rate under the assumptions of Theorem 1.1 is very
likely (1 + t)−9/8. We refer to the discussion at the top of page 1961 for more details.

Related results and comparison with the incompressible porous medium equation. In [Gancedo et al.
2025] the interface problem for (1-1a) is considered also in the domain � = T × (0, 1). The interface
problem treats the case where the density is equal to two different constants below and above an interface
0(t) ⊂ �. The question lies in the regularity of the interface, the well-posedness for L∞ densities
being established in [Leblond 2022; Antontsev et al. 2000]. More precisely, the authors prove local
well-posedness for the interface in C1,γ for 0< γ < 1 as well as the global well-posedness and decay
of small perturbation in H 3(T) of the flat interface with lighter fluid on top. The proof is very different
from ours as it uses a contour dynamics equation, but the spirit of the stability result is pretty similar.

Let us also compare the results and properties of the Stokes-transport equation and of the incompressible
porous medium equation, namely (1-1a) where the Stokes equation is replaced by Darcy’s law,

∂tρ+ u · ∇ρ = 0,
u + ∇ p = −ρez,

div u = 0,
ρ|t=0 = ρ0.

(1-4)
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This equation has been intensively studied and we only cite comparable results. The question of well-
posedness is much more difficult than for the Stokes-transport equation. In particular global well-posedness
like Theorem A.1 seems to remain an open question. Local in time well-posedness has been shown in
[Córdoba et al. 2007; Xue 2009; Yu and He 2014; Constantin et al. 2015], whereas ill-posedness through
nonuniqueness in some spaces has been shown in [Córdoba et al. 2011; Shvydkoy 2011; Isett and Vicol
2015].

Concerning classical global solutions, the only known results have been proven for initial data close
enough in Sobolev space to the stratified initial data ρs(z)= 1 − z by [Elgindi 2017] in R2 and T2 and
later generalized in [Castro et al. 2019a] to the domain T × (0, 1). More precisely, these results prove that
the profile ρs(z)= 1− z is asymptotically stable under small perturbations in H m for some m. Let us also
mention the recent work [Park 2025], which revisits these results, relying mainly on energy estimates.

In T × (0, 1), the boundary conditions identified and used by Castro, Córdoba and Lear [Castro et al.
2019a] ensure that the main linearized structure remains stable by differentiation, which makes the
analysis of that work similar to the one of the periodic or whole space case. This analysis has then been
extended by the same authors to the Boussinesq system with a damping velocity term in [Castro et al.
2019b]. In particular integrations by parts of high-order derivatives are possible to obtain uniform bounds
in Sobolev spaces of high enough regularity. By using similar boundary conditions for Stokes-transport in
T × (0, 1), the results of [Castro et al. 2019a] could be adapted in a straightforward way. In our situation,
the presence of the Dirichlet boundary condition is the major obstacle. In particular, uniform bounds in
high-regularity Sobolev spaces are no longer valid, as Theorem 1.3 below will highlight. This is due to
the presence of boundary layers, as explained above. More details are provided below in the scheme of
the proof.

Eventually, let us mention that the existence of the limiting profile was obtained in [Elgindi 2017;
Castro et al. 2019a] through a fixed-point argument. One contribution of the present paper is to precisely
identify the long-time asymptotic profile as the decreasing vertical rearrangement of ρ0. As explained
previously, our method to identify the limiting profile is robust and in particular also applies to show
that the long-time asymptotic profile for the incompressible porous media equation is also given by the
decreasing vertical rearrangement.

Linear asymptotic expansion for nonvanishing perturbation on ∂�. Theorem 1.1 is only valid under the
assumption that the perturbation and its normal derivative are vanishing on ∂�, i.e., when ρ0−ρs ∈ H 2

0 (�).
If the perturbation does not vanish on the boundary, this question is nontrivial even for the linearized
equations around ρs = 1 − z: denoting by θ the perturbed density, we consider

∂tθ − u · ez = 0,
−1u + ∇ p = −θez,

div u = 0,
θ |t=0 = θ0.

(1-5)

It can be easily checked that Theorem 1.1 is also valid for (1-5). In other words, if θ0 ∈ H 6
∩ H 2

0 , then
∥θ(t)∥L2 ≲ (1 + t)−1. Note that there is no smallness assumption in this case because the system is linear.
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If θ0 or ∂nθ0 do not vanish on the boundary, however, it turns out that θ vanishes as t → ∞ but with a
much slower rate. This is due to the formation of boundary layers of typical size t−1/4 as t → ∞, in the
vicinity of z = 0 and z = 1. More precisely, we will prove the following result in Section 3:

Theorem 1.2. Let θ0 ∈ H s(�) for some s sufficiently large. Then the solution of (1-5) satisfies

θ = θ̄0 + θBL
+ O(t−1) in L2(�) as t → ∞,

where θ̄0(z) =
1

2π

∫ 2π
0 θ0(x, z) dx is the horizontal average of the initial data and θBL is the boundary

layer part whose leading terms are

θBL
=20

top(x, t
1
4 (1 − z))+20

bot(x, t
1
4 z)+ l.o.t., (1-6)

with 20
top (resp. 21

bot) decaying exponentially as Z top = t1/4(1 − z)→ ∞ (resp. as Zbot = t1/4z → ∞).
Furthermore, for t ≥ 1,

C−1
∥θ0|∂�∥L2 t−

1
8 + O(t−

3
8 )≤ ∥θBL

∥L2(�) ≤ C∥θ0|∂�∥L2 t−
1
8 + O(t−

3
8 ).

Remarks on the linear asymptotic expansion.

• In fact, the definition of θBL is more involved and is given as a sum in powers of t−1/4 of different
boundary layer profiles. For instance, in the vicinity of z = 0 and for t > 1,

θBL
=

4∑
j=0

t−
j
42

j
bot(x, t

1
4 z).

Furthermore, the construction can be iterated. Up to a stronger regularity requirement on the initial data,
we could probably push the expansion of θBL further and prove that θ = θBL

+ O(t−k) for k arbitrarily
large. In this case, the definition of θBL has to be modified in order to include profiles up to j = 4k. We
shall give more details on this matter in Remark 3.8.

• Note that the scaling of boundary layers is consistent with the estimates of Theorem 1.1: heuristically,
one power of t1/4 is lost with each differentiation (with respect to z.)

Nonlinear asymptotic expansion. Let us now go back to the nonlinear problem in the case where
ρ0 − ρs ∈ H 2

0 (�). In this case, ρ(t)− ρs and ∂n(ρ(t)− ρs) vanish on the boundary for all t ≥ 0 (see
Lemma 2.1). As a consequence, the advection term is negligible in the vicinity of the boundary, and
we expect the dynamics to be driven by a linear mechanism in this zone at main order. Building on the
analysis of Theorem 1.2, we then derive uniform bounds in H 8(�), modulo some boundary layer terms:

Theorem 1.3. There exists ε0 > 0 small such that, for any ρ0 ∈ H 14(�) satisfying ∥ρ0 −ρs∥H14 ≤ ε0 and
ρ0 − ρs ∈ H 3

0 (�), the solution ρ of (1-1a) satisfies

ρ = ρ∞ + θBL
+ O(t−2) in L2(�) as t → ∞,

where θBL is the boundary layer part given by

θBL
=

1
t
2top(x, t

1
4 (1 − z))+ 1

t
2bot(x, t

1
4 z)+ l.o.t.

with 2top (resp. 2bot) decaying exponentially as Z top = t1/4(1 − z)→ ∞ (resp. as Zbot = t1/4z → ∞).
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A more precise version of the theorem, including H s estimates on the remainder, will be provided in
Proposition 4.1. We note that ∥θBL

∥L2(�) ≲ (1 + t)−9/8, so this result strongly suggests that the optimal
decay of ρ−ρ∞ is like t−9/8 in L2(�), which is close to the rate t−1 obtained in Theorem 1.1. Theorem 1.3
also shows that the decay rate is dictated by boundary layers. Nevertheless, it is not excluded that the
nonlinear dynamics drive the system to the case where these boundary layer terms always vanish, although
we expect this behavior to be rather unlikely. Let us emphasize that the formation of boundary layers, let
alone the construction of boundary layer profiles, had not been identified in previous works, even in the
linear setting of Theorem 1.2. We believe that our analysis could be extended to the incompressible porous
media (IPM) system (1-4), for which similar boundary layers are expected to develop; see Remark 1.4
below. Let us also recall that in the cases without boundaries (see [Elgindi 2017; Castro et al. 2019a; Park
2025]), the rate of decay of ρ−ρ∞ can be arbitrarily large, provided the initial data is sufficiently smooth.

Let us now say a few words about the case when the initial data ρ0 of (1-1a) is such that ρ0 − ρs or
∂n(ρ0 − ρs) do not vanish on the boundary. We expect the scaling of the boundary layers to be different.
Indeed, if the ansatz of the linear case (1-6) is plugged into (1-1a), we find that the quadratic term becomes
dominant close to the boundary, and cannot be balanced by other terms in the equation. As a consequence,
studying (1-1a) when ρ− ρs /∈ H 2

0 (�) goes beyond the scope of this paper. We expect that the boundary
layer equations become nonlinear in this setting.

Note that Theorem 1.3 requires more stringent assumptions on the initial data than Theorem 1.1, since
the initial perturbation is assumed to be small in H 14 (rather than H 6), and its second normal derivative
is also assumed to vanish on the boundary (i.e., ∂2

z (ρ− ρs)|∂� = 0). Actually, the latter condition can be
slightly weakened; see Proposition 4.1 for a more precise statement.

Remark 1.4 (extension to the incompressible porous medium equation). We believe that Theorem 1.3
could be extended to the IPM equation (1-4) when the initial datum ρ0 is sufficiently smooth and such
that ρ0 − ρs ∈ H 1

0 (i.e., the trace of ρ0 − ρs vanishes on the boundary). In this case, (ρ(t)− ρs)|∂� = 0
for all t ≥ 0 (see Lemma 2.1).

In this setting, the boundary layer ansatz from Theorem 1.3 should be replaced with

θBL
=

1
t
2IPM

top (x, t
1
2 (1 − z))+ 1

t
2IPM

bot (x, t
1
2 z)+ l.o.t.,

where the profiles 2IPM
a for a ∈ {top, bot} satisfy

−2IPM
a +

1
2 Z∂Z2

IPM
a = ∂x9

IPM
a ∂2

Z9
IPM
a = ∂x2

IPM
a .

This system should be compared with (4-18), and is endowed with the boundary conditions

9IPM
a |Z=0 =2IPM

a |Z=0 = 0, ∂2
Z2

IPM
a |Z=0 = γa,

where γtop(x)= limt→∞ ∂2
z θ(t, x, 1), γbot(x)= limt→∞ ∂2

z θ(t, x, 0).
Therefore the situation is very similar to the one of Theorem 1.3: the main difference lies in the

thickness of the boundary layer (t−1/2 for IPM vs. t−1/4 for Stokes-transport), which is consistent with the
order of the damping term (∂2

x1
−1 for IPM vs. ∂2

x1
−2 for Stokes-transport). Furthermore, if ∂2ℓ

z θ0|∂� = 0
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for 0 ≤ ℓ≤ k and for some k ≥ 1, then the above ansatz should be replaced by

θBL
=

1
tk+12

IPM
top (x, t

1
2 (1 − z))+

1
tk+12

IPM
bot (x, t

1
2 z)+ l.o.t.

Note that this is consistent with the results of [Park 2025] (see also [Castro et al. 2019b]), in which
the author proves that ∥ρ(t)− ρs∥L2 ≲ t−k−1/2 under a slightly more stringent version of the previous
assumption.

However, if the trace of ρ0 − ρs on the boundary does not vanish, the situation is different. In this
scenario, the nonlinear terms are expected to be of leading order close to the boundary, and we expect
that nonlinear boundary layers are created.

Interpolating between the IPM system and the Stokes-transport system, it is also natural to wonder
what happens for fractional equations such as

∂tθ + u · ∇θ = ∂2
x (−1)

−αθ,

with α ∈ (1, 2). One should however define carefully the fractional operator (−1)−α in this setting, since
the domain T × (0, 1) is bounded in the vertical direction (the boundedness in the horizontal direction is
not really an issue since we can rely on a Fourier definition of the fractional laplacian in the horizontal
variable.) One canonical choice is to use a spectral definition of the fractional laplacian. However, in
the present setting, there are two possible choices for the eigenbasis: the eigenfunctions of the laplacian,
or the ones of the bilaplacian, described in Lemma B.2. These two choices seem to lead to different
operators, and in particular, they are incompatible with one another.

Therefore it seems better to consider the so-called “restricted fractional laplacian”: for ψ ∈ H 2α(�)

such that ψ |∂� = 0 and ∂zψ |∂� = 0 if α > 3
2 , extend ψ by zero outside �, and define

(−1)αψ := CαPV
∫

T×R

1ψ(x ′, z′)−1ψ(x, z)
|(x, z)− (x ′, z′)|2α

dx ′ dz′.

The equation for ψ then becomes

(−1)αψ = ∂xθ in �, ψ |�c = 0.

The main advantage of this choice is to be compatible with the end cases α = 1 (IPM) and α = 2
(Stokes-transport). However, due to the nonlocal nature of the fractional laplacian, having a description
of the boundary layer formation seems much more involved.

Schemes of proofs. Here we explain the main steps and difficulties of the proofs of Theorems 1.1, 1.2
and 1.3.

Rewriting of the equation. Since perturbations of ρs(z)= 1 − z are considered, it is natural to introduce
the perturbation θ as

ρ = ρs + θ,

with initial perturbation θ0 = ρ0 − ρs . Substituting this expression in (1-1a) and recalling that stratified
states do not contribute to the velocity field in the Stokes equation, we obtain the following equation for
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the perturbation θ : 

∂tθ + u · ∇θ = uz,

−1u + ∇ p = −θez,

div u = 0,
u|∂� = 0,
θ |t=0 = θ0.

We note that we used the notation u = (ux , uz) and that x and z indices always denote the horizontal
and vertical components and never derivatives with respect to x or z.

The Stokes equation can be simplified by introducing the stream function of the divergence-free velocity
field u through u = ∇

⊥ψ = (−∂zψ, ∂xψ). Substituting it in the Stokes equation and considering the curl
of this equation, we get 

∂tθ + u · ∇θ = uz,

12ψ = ∂xθ,

u = ∇
⊥ψ,

ψ |∂� = ∂nψ |∂� = 0,
θ |t=0 = θ0.

Notice that this writing is consistent with the previous observation that any z-dependent perturbation of
the density does not affect the velocity field.

Once the steady states of (1-1a) are identified as the stratified density profiles, i.e., functions depending
only on z, it is natural to decompose the perturbation θ(t, x, z) as the sum of its horizontal average θ̄ (t, z)
and its complement θ ′(t, x, z) with zero horizontal average, following [Elgindi 2017] and others:

θ(t, x, z)= θ̄ (t, z)+ θ ′(t, x, z), θ̄ (t, z)=
1

2π

∫ 2π

0
θ(t, x, z) dx .

We note that contrary to [Elgindi 2017; Castro et al. 2019a], θ̄ denotes the average rather than the
fluctuation, as this seems a more natural notation. In particular our notation is comparable to the standard
notation used for the Reynolds-averaged Navier–Stokes equations.

This decomposition is actually orthogonal in any Sobolev space H m and one can project the transport
equation onto the two appropriate complementary subspaces, leading to

∂tθ
′
+ (u · ∇θ ′)′ = (1 − ∂z θ̄ )uz, θ ′

|t=0 = θ ′

0,

∂t θ̄ + u · ∇θ ′ = 0, θ̄ |t=0 = θ̄0,

12ψ = ∂xθ
′, ψ |∂� = 0,

u = ∇
⊥ψ, ∂nψ |∂� = 0.

(1-7)

Although more complicated at first sight, this equation allows us to distinguish the evolution of θ ′ and of
the average perturbation θ̄ . This is needed since the whole perturbation cannot be expected to decay in
Sobolev spaces due to its pure transport. Only the average-free part θ ′ is decaying.

Toy problem on the torus. In order to get an intuition of the decay of ∥θ ′
∥L2(�) and to highlight the

specific difficulties of our work, we will first explain the strategy in the case when the problem is set
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on the torus, in order to avoid the issues associated with the boundary conditions. More precisely, we
consider the following linear problem for θ ′ on the torus T2:

∂tθ
′
= (1 − G)∂xψ + S,

12ψ = ∂xθ
′,

θ ′
|t=0 = θ ′

0,

(1-8)

where G is a given small function of t and z, whose finality is to be replaced by ∂z θ̄ . The source term S,
which will include the nonlinearities of the system, will be omitted in this short presentation for simplicity.
Note that (1-8) differs from our original system through the periodic boundary conditions on ψ in the
vertical variable. The choice of periodic boundary conditions simplifies the analysis in several ways,
which we will detail below.

For any s ≥ 0, applying 1s/2 to the first equation of (1-8) and projecting on 1s/2θ ′, we obtain, after
several integrations by parts in the right-hand side,

1
2

d
dt

∥1
s
2 θ ′

∥
2
L2 = −

∫
T2
1

s
2 ((1 − G)ψ)1

s
2 +2ψ

= −

∫
T2
1

s
2 +1((1 − G)ψ)1

s
2 +1ψ

≤ −(1 − C∥G∥H s+2)∥1
s
2 +1ψ∥

2
L2, (1-9)

where C is a universal constant. As a consequence, if C∥G(t)∥H s+2 < 1, then the H s norm of θ ′ is
nonincreasing, and whence uniformly bounded.

Then, the decay of ∥θ ′(t)∥L2 is deduced by using the following Gagliardo–Nirenberg interpolation
inequality, which in the case of the torus can be proved simply by Fourier analysis:

∥∂−1
x 12φ∥

2
L2 ≲

1
K

∥1φ∥
2
L2 + K 2

∥∂−3
x 14φ∥

2
L2, (1-10)

where ∂−1
x f denotes the antiderivative of f with null horizontal average, and K > 0 is an arbitrary positive

constant.
More precisely, combining (1-9) and (1-10) with φ =1r/2ψ for some r ≥ 0 leads to

d
dt

∥1
r
2 θ ′

∥
2
L2 ≲ −∥1

r
2 +1ψ∥

2
L2

≲ K 3
∥1

r
2 +4∂−3

x ψ∥
2
L2 − K∥∂−1

x 1
r
2 +2ψ∥

2
L2

≲ K 3
∥1

r
2 +2∂−2

x θ ′
∥

2
L2 − K∥1

r
2 θ ′

∥
2
L2,

recalling that 12ψ = ∂xθ
′. Taking K ≃ (1 + t)−1 we deduce

d
dt

∥1
r
2 θ ′

∥
2
L2 +

3
1 + t

∥1
r
2 θ ′

∥
2
L2 ≲

1
(1 + t)3

∥1
r
2 +2∂−2

x θ ′
∥

2
L2 . (1-11)

Note that here the factor 3 could be made arbitrarily large by taking a larger multiplicative constant in K ,
but any constant strictly larger than 2 is sufficient for the argument.
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Since 1r/2+2∂−2
x θ ′ is uniformly bounded in L2(T2) by ∥∂−2

x θ ′

0∥H r+4 , this integrates into

∀t ≥ 0, ∥1
r
2 θ ′(t)∥L2 ≲

∥∂−2
x θ ′

0∥H r+4

1 + t
. (1-12)

Note that the index of regularity r is arbitrary. Hence, plugging this estimate back into (1-11) and using
an induction argument, we find that, for any α ≥ 0, r ≥ 0,

∀t ≥ 0, ∥1
r
2 θ ′(t)∥L2 ≤ (1 + t)−

α
2 ∥∂−α

x θ ′

0∥H r+2α . (1-13)

Let us emphasize that when G = 0, this estimate can be proved directly from the Fourier representation
formula

θ ′(t, x, z)=

∑
k∈Z2

kx ̸=0

θ̂k(0) exp
(
−

k2
x

|k|4
t
)

exp(i k · (x, z)).

Hence the decay rate can be expected to be somewhat optimal. Moreover, in the case of the torus, the
rate of decay can be as large as desired, the cost being the regularity required on θ ′

0. Note that, for r = 0,
α = 2, we find the decay rate announced in Theorem 1.1.

Difficulties with Dirichlet boundary conditions. Let us now explain the main differences between (1-8)
on T2 and the original system (1-7) on �= T × (0, 1). The strategy will be identical. We first prove a
uniform bound for θ ′ in H 4(�), and then use interpolation inequalities together with the energy estimate
to obtain the decay estimate (1-12). However the derivation of the different bounds will be substantially
more involved.

We shall prove the uniform H 4(�) bound for θ ′ directly from the equation without spectral analysis.
More precisely, the estimate (1-9) remains valid for s = 0 since ψ |∂�= ∂nψ |∂�= 0. Higher-order uniform
estimates in H s(�) fail in general due to nonvanishing terms on the boundary. The question is therefore
when the integration by parts done in (1-9) can be performed. The traces of θ ′ and ∂nθ

′ being zero, the
traces of 12ψ and ∂n1

2ψ are also vanishing (see Section 2.1) so integrations by parts in (1-9) can be
done for s = 4 provided G = 0. Therefore a uniform H 4 bound can be deduced when G = 0. When
G is nonzero, some traces no longer vanish. The strategy will be to treat them perturbatively, i.e., not
performing integration by parts on 12(Gψ)13ψ . A similar interpolation argument (Lemma 2.7) allows
us to then deduce the analogue of (1-12), i.e., that ∥θ ′

∥L2 is bounded by (1 + t)−1.
However, note that the higher decay (1-13) for r > 0 and α > 2 does not hold in general, as Theorem 1.3

shows. Indeed, the decay rate is prescribed by the boundary layer part of the solution, for which we have
∥1r/2θBL

∥L2 ∝ (1 + t)−1+r/4−1/8. Hence the H s norm of θ ′ for s ≥ 5 is not expected to be bounded.
Finally, let us mention that proving some time integrability on the velocity field is crucial in order to

obtain the convergence of θ̄ . As a consequence, the linear decay from (1-12) is not entirely sufficient
to complete the proof of Theorem 1.1. In previous works, this higher decay on the velocity field was
obtained either thanks to high-regularity bounds, or by taking advantage of the Fourier representation
of the solution. Since none of these tools are available here, we rely on a different argument, involving
bounds on the time derivative of θ ′.
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Remark 1.5 (about the spectral decomposition). Since the equation is no longer set on the torus, but
rather in the domain � = T × (0, 1) endowed with boundary conditions, we can no longer perform a
(discrete) Fourier transform in the vertical variable. However it is possible to analyze explicitly the
eigenfunctions of the operator

L : θ ∈ L2
7→ ∂xψ ∈ L2, where 12ψ = ∂xθ, ψ |∂� = ∂nψ |∂� = 0, (1-14)

and show that the eigenvalues (λk)k∈Z×N of the operator L behave asymptotically as k2
x/|k|

4 (see
Lemma B.2), so that the estimate (1-12) remains true. Details on the spectral analysis are presented in
[Leblond 2023].

Bootstrap. The last step of the proof consists in bringing the previous linear analysis into the full nonlinear
system. Intuitively, the strategy is the following: denote by (0, T ∗) the maximal time interval over which
∥θ ′

∥L2 ≤ B(1 + t)−1 and ∥θ ′
∥H4 ≤ B are valid with a constant B. In fact more estimates need to be

included in the bootstrap argument for technical reasons; see (2-9). On this time interval, the quadratic
terms can be treated perturbatively, provided ∥θ0∥H4 is sufficiently small. Hence the bootstrap estimates
hold with a constant which is better than B, and thus T ∗

= ∞. It follows that θ ′ converges towards zero
in L2, and that the time derivative of θ̄ is integrable. Hence θ̄ has a limit in L2 as t → ∞. This is the
main part of the proof which is detailed in Section 2.3.

Identification of the limit. Since θ ′ converges to zero in any H m for m < 4 as t → ∞ and θ̄ has a limit
in L2 as t → ∞, the whole density ρ = ρs +θ = ρs + θ̄+θ ′ converges to some limit ρ∞ = ρs + θ̄∞ in L2

and ρ∞ depends only on z. The term ∂zθ is small compared to ∂zρs =−1, and so is its limit ∂z θ̄∞. Whence
ρ∞ is strictly decreasing with respect to z, as is ρs . The transport of the density by the divergence-free
field u ensures that the level sets of ρ are preserved by the time evolution, and by strong convergence this
is also the case for the limit ρ∞. According to rearrangement theory, ρ∞ is therefore a rearrangement
of ρ0. One can show that there exists a unique decreasing vertical rearrangement of ρ0; hence ρ∞ is
uniquely determined. This part of the proof is detailed in Section 2.4.

Linear boundary layers for system (1-5). Let us now give a sketch of the proof of Theorem 1.2. We start
with rather simple observations:

• First, it follows from the equation that ∂tθ |∂� = ∂t∂nθ |∂� = 0. Therefore, for all t ≥ 0,

θ |∂�(t)= θ0|∂�, ∂nθ |∂�(t)= ∂nθ0|∂�.

• Taking the horizontal average of the evolution equation, we find that ∂t θ̄ = 0, and thus θ̄ (t)= θ̄0. Hence
we focus on the long-time behavior of θ ′.

• Let us denote by (bk)k∈Z×N∗ the basis of eigenvectors of the operator L defined in (1-14) (see
Lemma B.2). Then we can always write

θ ′(t)=
∑

k∈Z∗×N

exp(−λkt)θ̂ ′

k(t = 0)bk,

with (θ̂ ′

k(t = 0))k∈Z∗×N ∈ ℓ2. We recall that λk behaves asymptotically as |kx |
2/|k|

4. It then follows from
Lebesgue’s dominated convergence theorem that θ ′(t)→ 0 in L2 as t → ∞.
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Therefore θ ′(t) vanishes in L2 while keeping a constant — and nonzero — value on the boundary. As a
consequence, it is reasonable to expect that boundary layers are formed in the vicinity of z = 0 and z = 1
as t → ∞. We then plug the ansatz (1-6) into (1-5) and identify the profiles 20

top, 20
bot. The role of 20

top

(resp. of 20
bot) is to lift the trace of θ ′

0 at the top boundary z = 1 (resp. at the bottom boundary z = 0). We
find that these two profiles satisfy an ODE, with boundary conditions given by

20
top(x, Z =0)= θ ′

0(x, z=1), ∂Z2
0
top(x, Z =0)= 0,

20
bot(x, Z =0)= θ ′

0(x, z=0), ∂Z2
0
bot(x, Z =0)= 0.

In a similar way, the next-order boundary layer terms 21
top and 21

bot lift the traces of ∂nθ0 on ∂�. Hence
the first step is to construct explicitly the boundary layer profiles in terms of θ0. By construction, the
remainder θ ′

− θBL vanishes on the boundary, together with its normal derivative. We can then apply the
decay analysis presented above to the remainder θ ′

− θBL, and we find that ∥(θ ′
− θBL)(t)∥L2 ≲ (1 + t)−1.

Boundary layers for system (1-1a). We now turn towards Theorem 1.3. Note that the boundary layer
term in Theorem 1.3 is smaller than in (1-6). This is directly linked to the fact that under the assumptions
of Theorem 1.3, θ = ρ − ρs vanishes on the boundary, together with its normal derivative. Therefore,
the boundary layer term θBL (or rather 12θBL) now lifts the traces of 12θ ′ and ∂n1

2θ ′. The overall
strategy is the same as the one described above: we first identify the boundary-layer part of the solution by
rigorously constructing the boundary layer profiles 2 j

bot and 2 j
top. We then prove some decay estimates

on the remainder θ rem
= θ ′

− θBL, noticing that 12θ rem satisfies assumptions that are very close to the
ones of Theorem 1.1. Note that the higher decay we obtain on θ rem is the main reason behind the strong
regularity requirements on ρ0.

However, there are several new conceptual and technical difficulties compared with Theorem 1.2. The
main one lies in the fact that the traces 12θ ′

|∂� and ∂n1
2θ ′

|∂� are not constant with respect to time.
They merely have a finite limit as t → ∞. Hence we need to find an asymptotic expansion in powers of
(1 + t)−1/4 for 12θ ′

|∂� and ∂n1
2θ ′

|∂� as t ≫ 1. The main boundary layer profiles 20
bot and 20

top will
lift the first term in this expansion (i.e., the long-time limit of 12θ ′

|∂�), whereas the next-order profiles
2

j
top,2

j
bot for j ≥ 2 will lift the lower-order terms. Furthermore, in order to prove that 12θ ′

|∂� converges
in H s as t → ∞ for some sufficiently large s, we shall need high-regularity bounds on θ ′. Eventually, the
proof of Theorem 1.3 involves two nested bootstrap arguments: one on θ ′, which allows us to construct
the boundary layer term θBL on the interval on which the bootstrap assumption is satisfied, and a second
one on the remainder θ ′

− θBL, on a possibly smaller interval.

Notation. Throughout the paper, we write A ≲ B whenever there exists a universal positive constant C
such that A ≤ C B.

2. Long-time stability of stratified profiles: proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof follows the steps highlighted in the
Introduction: we decompose θ into θ = θ̄ + θ ′, and we prove that θ ′ vanishes in L2 with algebraic decay,
while θ̄ converges in L2 towards a profile θ̄∞(z). To that end, we first study the linearized Stokes-transport
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system around a solution θ close to an affine profile. Thanks to a crucial interpolation inequality (see
Lemma 2.7), which somehow replaces the spectral decomposition in the periodic setting, we quantify the
L2 decay of solutions of the linearized equation with a source term (see Proposition 2.6). We then use
a bootstrap argument to show that the decay predicted by the linear analysis persists for the nonlinear
evolution. This allows us to prove that θ ′(t)→ 0 and that θ̄ → θ̄∞ in H s(�) as t → ∞ for all s < 4.
Eventually, we identify the asymptotic profile θ̄∞ in terms of the initial data.

The organization of this section is the following. We start in Section 2.1 with some preliminary
remarks concerning the traces of θ and ∂nθ . We then turn towards the analysis of the linearized system in
Section 2.2. The bootstrap argument is presented in Section 2.3. Eventually, we prove in Section 2.4 that
ρ∞ is the rearrangement of the initial data ρ0.

2.1. Vanishing traces for θ ′ and ∂nθ
′. We prove here the following preliminary result:

Lemma 2.1. Let θ0 ∈ H m(�) with m ≥ 3, and let θ ∈ L∞

loc(R+, H m) be the solution of (1-7). Assume
that θ0 = ∂nθ0 = 0 on ∂�. Then, for all t ≥ 0,

θ(t)|∂� = ∂nθ(t)|∂� = 0.

If additionally ∂2
z θ̄0 = 0 on ∂�, then ∂2

z θ̄ (t)|∂� = 0 for all t ≥ 0.

Remark 2.2. If ρ0 ∈ H m
0 (�) then the solution ρ(t) of (1-1a) belongs to H m

0 (�) for all times. Indeed,
the solution of the transport equation can be written as

ρ(t)= ρ0(X(t)−1),

where X : R+ ×� → � is the characteristic function associated to u, defined as the solution of the
ordinary differential equation { d

dt
X(t)= u(t, X(t)),

X(0)= Id�.

We recall that X(t) is a diffeomorphism of � for all times t ∈ R+. Since u(t) ∈ H 1
0 (�) due to the

homogeneous Dirichlet condition, the boundary ∂� is stable for the characteristic function at all times
t > 0. In other words, X(t)|∂� = Id∂�, and consequently X(t)−1

|∂� = Id∂�. It follows that if ρ0 ∈ H 1
0 (�),

then ρ(t)|∂� = 0 for all t ≥ 0. The claim for higher values of m follows easily by induction.
Note that the assumptions of Lemma 2.1 are different since ρ0 = 1 − z + θ0 does not vanish on the

boundary.

Proof. We recall (see Theorem A.1) that θ ∈ C(R+, H m)∩C1(R+, H m−1). Therefore, taking the trace of
(1-1a), we get

∂tθ |∂� + u|∂� · ∇θ |∂� = uz|∂�,

where u|∂� = 0. Hence ∂tθ |∂� = 0 and the trace of θ is constant in time, equal to 0. Since horizontal
derivatives preserve this property, we even have ∂ℓxθ |∂� = 0 for any ℓ. Let us now consider the normal
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derivative. We recall that ∂n coincides (up to a sign) with ∂z . Applying one vertical derivative to the
equation,

∂t∂zθ + ∂zu · ∇θ + u · ∇∂zθ = ∂zuz,

where
∂zu|∂� · ∇θ |∂� = ∂zux |∂� ∂xθ |∂� + ∂zuz|∂� ∂zθ |∂�.

We recall that ∂xθ |∂� = 0 and we use the divergence-free condition to observe ∂zuz|∂� = −∂x ux |∂� = 0.
In the end we get ∂zθ |∂� = 0 for all times; hence θ ∈ H 2

0 (�). Trying to go further, applying the same
ideas, we get

∂t∂
2
z θ |∂� = ∂2

z uz|∂�.

However, ∂2
z uz does not vanish on ∂�, and therefore we cannot iterate the argument. Nevertheless, we get

∂t∂
2
z θ̄ |∂� =

1
2π

∫
T
∂2

z uz|∂� = −
1

2π

∫
T
∂x∂zux |∂� = 0.

Note that for higher orders of derivation, we cannot infer any cancellation in general. □

Definition 2.3. In the rest of the paper, we will set

G(t, z)= ∂z θ̄ (t, z).

Under the assumptions of Lemma 2.1, we infer that G|∂� = ∂zG|∂� = 0.

2.2. Study of the linearized system. This subsection is concerned with the study of the linear system
∂tθ

′
= (1 − G)∂xψ + S in (0,+∞)×�,

12ψ = ∂xθ
′ in (0,+∞)×�,

ψ |∂� = ∂nψ |∂� = 0, θ ′
|t=0 = θ ′

0,

(2-1)

which is satisfied by (θ ′, ψ) in the first place, with G = ∂z θ̄ and S = −(∇⊥ψ · ∇θ ′)′. It will also be
satisfied for various derivatives of (θ ′, ψ) with different source terms S. The term G will always be ∂z θ̄ .

Our goal is to analyze the long-time behavior of θ ′, under suitable decay assumptions on S. For later
purposes, we have decomposed our results into several separate statements, whose proofs are postponed
to the end of the section. The first one is a uniform L2 bound on the solutions when the source term is
time integrable:

Lemma 2.4 (uniform L2 bound on solutions of the linearized system). Let G ∈ L∞(R+, H 2), S ∈

L∞(R+, L2), and θ ′

0 ∈ L2. Let θ ′
∈ L∞(R+, L2) be the unique solution of (2-1). Assume that S can be

decomposed as S = S⊥ + S∥ satisfying for some σ, δ > 0 and any t ≥ 0∫
�

S⊥(t, x)θ ′(t, x) dx = 0, ∥S∥(t)∥L2 ≲
σ

(1 + t)1+δ
. (2-2)

Thus, there exists a universal constant γ0 ∈ (0, 1) such that if

∥G∥H2 ≤ γ0, (2-3)
then

∥θ ′
∥L2 ≤ ∥θ ′

0∥L2 + Cδσ.
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Remark 2.5. The term S⊥ will often have the structure S⊥ = u · ∇θ ′: indeed, provided u and θ ′ have
sufficient regularity, the divergence-free and homogeneous Dirichlet conditions ensure that∫

�
(u · ∇θ ′)θ ′

=
1
2

∫
�

u · ∇|θ ′
|
2
= −

1
2

∫
�

div u|θ ′
|
2
+

1
2

∫
∂�

u · n|θ ′
|
2
= 0.

Our second result, which is at the core of Theorem 1.1, gives a quantitative algebraic decay on θ ′:

Proposition 2.6. There exists a universal constant γ0 ∈ (0, 1) such that the following result holds. Let
T > 0, G ∈ L∞(R+, H 2), S ∈ L∞(R+, L2), and θ ′

0 ∈ L2 such that ∂−2
x θ ′

0 ∈ H 4. Let θ ′
∈ C(R+, H 2)

be the unique solution of (2-1). Assume that θ ′ and ∂nθ
′ vanish on ∂�, and that S decomposes into

S = S⊥ + S∥ + S1 with, for some σ, δ > 0 and all t ∈ [0, T ],∫
�

S⊥(t, x)θ ′(t, x) dx = 0, ∥S∥(t)∥L2 ≤
σ

(1 + t)1+δ
, ∥S1(t)∥L2 ≲

∥1ψ∥L2

(1 + t)
1
2

. (2-4)

Assume moreover that G satisfies (2-3), and that there exist A, α ≥ 0 such that for all t ∈ [0, T ]

∥12∂−2
x θ ′(t)∥L2 ≤

A
(1 + t)α

. (2-5)

Then

∥θ ′(t)∥L2 ≲
∥θ ′

0∥L2 + A + σ

(1 + t)min(1+α,δ)
∀t ∈ [0, T ].

In order to prove this quantitative decay, we shall need to analyze the structure of the dissipation term

−

∫
�
∂xψθ

′
=

∫
�

|1ψ |
2.

In previous works for different but related models [Castro et al. 2019a], at this stage, an explicit spectral
decomposition of the solution was used, relying on Fourier series. Note that such a spectral decomposition
is also available for the operator 1−2∂2

x (see Lemma B.2). However, since we cannot interpolate for an
arbitrary regularity, we choose here to use a different approach. We replace this spectral analysis with
the following result, which can be seen as an interpolation lemma. It is noteworthy that in spite of its
deceitfully simple form (and proof), this lemma provides the correct scaling for the solutions.

Lemma 2.7. For any ℓ≥ 0, and for all ψ ∈ H 8+ℓ−2(�) satisfying

12ψ |∂� = ∂n1
2ψ |∂� = 0 ,

we have for all K > 0

∥∂ℓ−1
x 12ψ∥

2
L2 ≲

1
K

∥∂ℓx1ψ∥
2
L2 + K 2

∥∂ℓ−3
x 14ψ∥

2
L2 .

Proof. Since 12ψ and ∂n1
2ψ vanish on the boundary ∂�, we have after three integrations by parts

∥∂ℓ−1
x 12ψ∥

2
L2 = −

∫
�
∂ℓx1

2ψ∂ℓ−2
x 12ψ =

∫
�

∇∂ℓx1ψ · ∇∂ℓ−2
x 12ψ

= −

∫
�
∂ℓx1ψ∂

ℓ−2
x 13ψ ≤ ∥∂ℓx1ψ∥L2∥∂ℓ−2

x 13ψ∥L2 .
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On another hand, we also have by integrations by parts

∥∂ℓ−2
x 13ψ∥

2
L2 = −

∫
�
∂ℓ−1

x 13ψ∂ℓ−3
x 13ψ =

∫
�

∇∂ℓ−1
x 12ψ · ∇∂ℓ−3

x 13ψ

= −

∫
�
∂ℓ−1

x 12ψ∂ℓ−3
x 14ψ ≤ ∥∂ℓ−1

x 12ψ∥L2∥∂ℓ−3
x 14ψ∥L2 .

Hence, using the second bound in the first inequality, we obtain

∥∂ℓ−1
x 12ψ∥

2
L2 ≤ ∥∂ℓx1ψ∥L2 ∥∂ℓ−1

x 12ψ∥

1
2
L2 ∥∂ℓ−3

x 14ψ∥

1
2
L2 .

Gathering the similar terms on the left-hand side and applying Young’s inequality yields, for any constant
K > 0,

∥∂ℓ−1
x 12ψ∥

2
L2 ≤ ∥∂ℓx1ψ∥

4
3
L2 ∥∂ℓ−3

x 14ψ∥

2
3
L2

≲ (K −
2
3 ∥∂ℓx1ψ∥

4
3
L2)

3
2 + (K

2
3 ∥∂ℓ−3

x 14ψ∥

2
3
L2)

3

≲ 1
K

∥∂ℓx1ψ∥
2
L2 + K 2

∥∂ℓ−3
x 14ψ∥

2
L2 . □

Let us now turn towards the proof of Lemma 2.4 and Proposition 2.6.

Proof of Lemma 2.4. The energy estimate in (2-1) writes

1
2

d
dt

∥θ ′
∥

2
L2 =

∫
�
(1 − G)∂xψθ

′
+

∫
�

Sθ ′.

A few integrations by parts provide, since ψ |∂� = ∂nψ |∂� = 0,∫
�
(1 − G)∂xψθ

′
= −

∫
�
(1 − G)ψ12ψ = −

∫
�
1((1 − G)ψ)1ψ. (2-6)

Using the Sobolev embeddings H 2
⊂ L∞ and H 2

⊂ W 1,4, we get∫
�
(1 − G)∂xψθ

′
≤ −(1 − C∥G∥H2)∥1ψ∥

2
L2 .

At this point we have

1
2

d
dt

∥θ ′
∥

2
L2 ≤ −(1 − Cγ0)∥1ψ∥

2
L2 +

∫
�

Sθ ′
= −(1 − Cγ0)∥1ψ∥

2
L2 +

∫
�

S∥θ
′. (2-7)

So if γ0 is small enough, in a universal way, the first term in the right-hand side is nonpositive. Therefore

d
dt

∥θ ′(t)∥L2 ≤ ∥S∥(t)∥L2 ≤
σ

(1 + t)1+δ

and since δ > 0 this inequality integrates as

∥θ ′
∥L2 ≤ ∥θ ′

0∥L2 + Cδσ. □

Proof of Proposition 2.6. Back to (2-7) and plugging the decomposition of S we get

d
dt

∥θ ′
∥

2
L2 + (1 − Cγ0)∥1ψ∥

2
L2 ≤ (∥S∥∥L2 + ∥S1∥L2)∥θ ′

∥L2 .
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Then assumption (2-4) and Young’s inequality provide

∥S∥∥L2∥θ ′
∥L2 ≤

σ

(1 + t)
1
2 +δ

∥θ ′
∥L2

(1 + t)
1
2

≲
σ 2

(1 + t)1+2δ +
∥θ ′

∥
2
L2

1 + t
,

∥S1∥L2∥θ ′
∥L2 ≲ ∥1ψ∥L2

∥θ ′
∥L2

(1 + t)
1
2

≲ γ0∥1ψ∥
2
L2 +

1
γ0

∥θ ′
∥

2
L2

1 + t
.

Hence if γ0 is small enough, the dissipative term γ0∥1ψ∥
2 can be absorbed, and we have, for some

c0 ∈ (0, 1),
d
dt

∥θ ′
∥

2
L2 + c0∥1ψ∥

2
L2 ≲

σ 2

(1 + t)1+2δ +
∥θ ′

∥
2
L2

1 + t
.

We now use the interpolation lemma, Lemma 2.7, with ℓ= 0, recalling that 12ψ |∂� = ∂xθ
′
|∂� = 0 and

∂n1
2ψ |∂� = ∂n∂xθ

′
|∂� = 0. Choosing K = κ/c0(1 + t)−1 with κ > 0 arbitrary large independently of

the data, we obtain
d
dt

∥θ ′
∥

2
L2 +

κ

1 + t
∥θ ′

∥
2
L2 ≲ κ

3 ∥12∂−2
x θ ′

∥
2
L2

(1 + t)3
+

σ 2

(1 + t)1+2δ .

Plugging assumption (2-5) provides

d
dt

∥θ ′
∥

2
L2 +

κ

1 + t
∥θ ′

∥
2
L2 ≲

(κ3 A2
+ σ 2)

(1 + t)min(3+2α,1+2δ) ,

which for a suitable choice of κ integrates into

∥θ ′(t)∥L2 ≲
∥θ ′

0∥L2 + A + σ

(1 + t)min(1+α,δ)
∀t ∈ [0, T ]. □

Remark 2.8 (stability for more general stationary profiles). Let us now explain how our results can be
generalized to other stably stratified profiles ρs . Let ρs ∈ H 6(0, 1) such that sup ∂zρs < 0. The linear
evolution equation on θ ′ can be written as

∂tθ
′
= −∂zρs∂xψ.

Multiplying the above equation by −θ ′/∂zρs , we obtain

1
2

d
dt

∫
�

1
−∂zρs

θ ′(t, x)2 dx =

∫
�
∂xψθ

′
= −

∫
�

|1ψ |
2.

Since ∂zρs is bounded from above and below by negative constants, −
∫
�
(θ ′)2/∂zρs is equivalent to the

L2 norm, and the main linear estimate remains the same. However, additional commutators stem from
the nonlinear terms when we use the weight −1/∂zρs . For instance,∫

�
u · ∇θ ′ θ ′

−∂zρs
=

1
2

∫
�
(θ ′)2u · ∇

1
∂zρs

.

These commutators will enter the terms S∥ and S⊥ from Lemma 2.4 and Proposition 2.6. Also, the
constant γ0 involved in the smallness condition (2-3) on G will now depend on ∂zρs , but the result still
holds. We leave the details to the reader, and stick to the case of a linearly stratified profile for simplicity.
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Let us now consider the case of nonstably stratified profiles. First, if ∂zρs > 0, we have the opposite
sign in front of the dissipative term

∫
�

|1ψ |
2: at the linearized level, the perturbation grows. For the

nonlinear equation, starting from a small perturbation, ∥θ ′(t)∥L2 will have a transient growth for small
times, until its norm becomes of order 1 and the nonlinear term can no longer be neglected. In fact, when
∂zρs is constant — say ∂zρs = 1 — the equation satisfied by θ is

∂tθ + u · ∇θ + u2 = 0,

and therefore
1
2

d
dt

∥θ(t)∥2
L2 = −

∫
�

u2ρ =

∫
�
(1ψ)2 ≥ 0.

In this case, the L2 norm of θ is increasing on the whole interval [0,+∞), but remains bounded since
the L2 norm of ρ is conserved.

Let us indicate a few facts about the long-time behavior of solutions in the general case ρ0 ∈ L∞ (see
Section 3.6 in [Leblond 2023] for a proof of these results). The velocity u belongs to L2([0,+∞), H 1

0 (�)).
Furthermore the ω-limit set in H−1 of ρ0 is nonempty and contained in the set of stratified rearrangements
of ρ0. However it is not known in general whether this ω-limit set is a singleton.

We now go back to the case where ρ0 is a small perturbation of a stratified state ρs . When ∂zρs

is not of constant sign, we cannot conclude a priori, even at the linearized level. Indeed, if a density
profile is not monotonous, then we cannot guarantee the proper sign in front of the integral ∂zρ|1ψ |

2.
Therefore, if a profile admits a nonmonotonous function in any of its neighborhoods, in arbitrary high
regularity, and in particular in H 6, the proof of our stability result does not hold. In particular, when
∂zρs ≤ 0 and ∂zρs vanishes at a single point z0 ∈ (0, 1), this point is also an inflection point and
therefore ρs(z)= ρs(z0)+ O((z − z0)

3) in a neighborhood of z0. Perturbing ρs by a function of the type
ε(z − z0)

2χ(z − z0) with a cut-off function χ ∈ C∞

0 (R) breaks the monotony. Thus, even in the case
when ρs is monotonous, but has a vanishing derivative at single point, we cannot conclude.

2.3. Bootstrap argument. The purpose of this subsection is to prove, thanks to a bootstrap argument, that
under the assumptions of Theorem 1.1, the solution θ ′ of (1-7) enjoys the same decay rates as the ones
predicted by the linear analysis (see Proposition 2.6). More precisely, we shall prove the following result:

Proposition 2.9. Let θ0 ∈ H 6(�) such that θ0|∂� = ∂nθ0|∂� = 0. There exists ε0 > 0 such that if
∥θ0∥H6 ≤ ε ≤ ε0 the solution of (1-7) satisfies

∥∂3
x θ

′(t)∥L2 ≲
ε

1 + t
, ∥∂xθ

′(t)∥H4 ≲ ε, ∥θ̄ (t)∥H5 ≲ ε, ∀t > 0. (2-8)

Remark 2.10. The interplay between horizontal derivatives of θ and the considered regularities is
consistent with the operator 1−2∂2

x from the linearized system

∂tθ
′
= ∂xψ =1−2∂2

x θ
′.

Note that1−2 denotes the operator solving the bilaplacian12ψ = f equation endowed with the boundary
condition ψ |∂� = ∂nψ |∂� = 0.
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A proof of Proposition 2.9 is provided in the rest of this section. Remarks motivating the necessity
of the bootstrap hypothesis and the method in general are included throughout. We also present our
understanding of the obstacle to the iteration of this method to higher regularity on the perturbation.

Bootstrap assumption and general argument. Let 0 < B < 1. For some C0 > 1, to be chosen later,
let θ0 ∈ H 2

0 ∩ H 6 such that ∥θ0∥H6 ≤ B/C0. In particular ∥∂3
x θ

′

0∥L2 ≤ B/C0, ∥∂xθ
′

0∥H4 ≤ B/C0, and
∥∂z θ̄0∥H2 ≤ B/C0. Let us note ψ0 := ψ |t=0. We also have, according to Lemma B.1, with universal
positive constants gathered under the same notation C ,

∥ψ0∥H4 ≤ C∥∂xθ
′

0∥L2 ≤ C B/C0,

and therefore,

∥∂t∂xθ
′
|t=0∥L2 ≤ ∥1 − ∂z θ̄0∥L∞∥∂2

xψ0∥L2 + ∥∂x(∇
⊥ψ0 · ∇θ ′

0)∥L2

≤ (1 + ∥∂z θ̄0∥H2)∥∂2
xψ0∥L2 + ∥∂x(∇

⊥ψ0 · ∇θ ′

0)∥L2

≤ C(B/C0 + (B/C0)
2).

Up to a choice of C0 > 1 large enough, we find that all the bounds here above are strictly smaller than B.
Therefore, by continuity of the Sobolev norms of θ , ensured by Theorem A.1, there exists a maximal
time T ∗

∈ R+ ∪ {+∞} such that the following inequalities are satisfied on [0, T ∗):

∥∂3
x θ

′(t)∥L2 ≤
B

1 + t
, ∥∂xθ

′(t)∥H4 ≤ B,

∥∂z θ̄ (t)∥H2 ≤ B, ∥∂t∂xθ
′(t)∥L2 ≤

B
(1 + t)2

.
(2-9)

We recall that these decay rates follow the behavior of the linearized system; see Proposition 2.6.
Let us assume by contradiction that T ∗<+∞. We show below by a bootstrap argument that hypothesis

(2-9), combined with Lemma 2.4 and Proposition 2.6, actually leads to an improvement of the inequalities,
satisfied with some new constant 0< B < B, which contradicts the maximality of T ∗. Whence T ∗

= +∞

and inequalities (2-9) hold for all times.

Remark 2.11. Let us wait a little on the choice of the constant B. We will choose B ≤ γ0, so that
assumption (2-3) is satisfied on (0, T ∗).

Preliminary bounds. Throughout the proof we require estimates on θ ′ and ψ derived from the bootstrap
hypothesis (2-9). For the sake of readability, we introduce the following short-hand notation:

∥ f ∥
α
∥g∥

β︸ ︷︷ ︸
αr+βr ′

when ∥ f ∥ ≲
B

(1 + t)r
and ∥g∥ ≲

B
(1 + t)r ′

.

First, from an integration by parts, since θ ′
|∂� = ∂nθ

′
|∂� = 0 (see Lemma 2.1)

∥∂2
x θ

′
∥

2
H2 ≲

∫
�
∂2

x1θ
′∂2

x1θ
′
= −

∫
�
∂3

x θ
′∂x1

2θ ′
≤ ∥∂3

x θ
′
∥L2∥∂xθ

′
∥H4 .

We deduce, by assumption (2-9), for all t ∈ (0, T ∗)

∥∂2
x θ

′(t)∥H2 ≲ ∥∂3
x θ

′(t)∥
1
2
L2∥∂xθ

′(t)∥
1
2
H4︸ ︷︷ ︸

1
2 ×1+

1
2 ×0

≲
B

(1 + t)
1
2

. (2-10)
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We also get by interpolation, for any 0 ≤ m ≤ 4, for all t ∈ (0, T ∗)

∥∂xθ
′(t)∥Hm ≲ ∥∂xθ

′(t)∥
1−

m
4

L2 ∥∂xθ
′(t)∥

m
4
H4︸ ︷︷ ︸

(1−
m
4 )×1+

m
4 ×0

≲
B

(1 + t)1−
m
4
. (2-11)

We will frequently use Agmon’s inequality in dimension 2, namely

∀ f ∈ H 1
0 ∩ H 2(�), ∥ f ∥L∞ ≲ ∥ f ∥

1
2
L2∥ f ∥

1
2
H2,

together with the following direct consequence:

∀ f ∈ H 2
0 ∩ H 4(�), ∥∇ f ∥L∞ ≲ ∥ f ∥

1
2
L2∥ f ∥

1
2
H4 .

We infer, in particular, for all t ∈ (0, T ∗)

∥∂2
x θ

′(t)∥L∞ ≲ ∥∂2
x θ

′(t)∥
1
2
L2∥∂

2
x θ

′(t)∥
1
2
H2︸ ︷︷ ︸

1
2 ×1+

1
2 ×

1
2

≲
B

(1 + t)
3
4

,

∥∇∂xθ
′(t)∥L∞ ≲ ∥∂xθ

′(t)∥
1
2
L2∥∂xθ

′(t)∥
1
2
H4︸ ︷︷ ︸

1
2 ×1+

1
2 ×0

≲
B

(1 + t)
1
2

.

(2-12)

We also need estimates on ψ . Any Sobolev norm of order larger than 4 inherits the decays from θ ′ thanks
to Lemma B.1, providing, for t ∈ (0, T ∗),

∥∂2
xψ(t)∥H4 ≲ ∥∂3

x θ
′(t)∥L2 ≲

B
1 + t

,

∥∂xψ(t)∥H6 ≲ ∥∂2
x θ

′(t)∥H2 ≲
B

(1 + t)
1
2

.

(2-13)

We also need higher-order decays on ∂xψ in L2(�). We access this quantity thanks to the control of ∂tθ
′

by rewriting

∂xψ =
∂tθ

′
+ (u · ∇θ ′)′

1 − G
.

We know that ∥G∥L∞ ≲ ∥G∥H2 ≤ B so it is enough to have B smaller than a universal constant to ensure
that the inverse of (1 − G) is well-defined, which allows us to estimate ∂xψ and ∂2

xψ in L2. We illustrate
the computation for ∂xψ since the same reasoning applies for ∂2

xψ with a few extra terms:

∥∂xψ(t)∥L2 ≲ ∥∂tθ
′(t)∥L2 + ∥u · ∇θ ′(t)∥L2

≲ ∥∂tθ
′(t)∥L2 + ∥∂zψ(t)∥L∞∥∂xθ

′(t)∥L2 + ∥∂xψ(t)∥L2∥∂zθ
′(t)∥L∞

≲ ∥∂tθ
′(t)∥L2︸ ︷︷ ︸
2

+ ∥∂xθ
′(t)∥2

L2︸ ︷︷ ︸
2×2

+∥∂xψ(t)∥L2
B

(1+t)
1
2
.

Hence for B > 0 small enough once again we get

∥∂2
xψ(t)∥L2 ≲

B
(1 + t)2

.
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By interpolation and Agmon inequalities we deduce, in the same fashion as above, the following decay
estimates, with the latest valid for 0 ≤ m ≤ 4:

∥∂2
xψ(t)∥H2 ≲

B

(1 + t)
3
2

, ∥∂2
xψ(t)∥L∞ ≲

B

(1 + t)
7
4

, ∥∇∂2
xψ(t)∥L∞ ≲

B

(1 + t)
3
2

,

∥∇
2ψ(t)∥L∞ ≲

B

(1 + t)
5
4

, ∥∂2
xψ(t)∥Hm ≲ ∥∂2

xψ(t)∥
1−

m
4

L2 ∥∂2
xψ(t)∥

m
4
H4 ≲

B

(1 + t)2−
m
4
.

(2-14)

Remark 2.12. Let us come back briefly to the derivation of estimates (2-14), which ensure that ψ decays
faster than θ ′. Note that such a fast decay is necessary to close the estimates: indeed, ∥u(t)∥W 1,∞ should be
time integrable in order that θ(t) converges as t →∞. Formally, one needs to take an antiderivative in space
of the equation, i.e., apply the operator 1−2∂2

x to (1-7). However, because of the nonlinear term, this is a
rather tedious operation. Therefore we rather derive estimates on ∂tθ

′, and use (1-7) in order to infer esti-
mates onψ . Note that the two operations (taking a time derivative or an antispace derivative) are equivalent
at main order, since the linear operator is ∂t −1−2∂2

x . This idea, although simple, seems to us to be new.

H6 bound on the solution and H4 bound on G. In our nonlinear bootstrap argument, we shall need
some high Sobolev bound on the solution. In order to lighten the proof of the bootstrap as much as
possible, we isolate in the present subsection this technical step.

Lemma 2.13. Let θ0 ∈ H 6(�) such that θ0|∂� = ∂nθ0|∂� = 0. Let T ∗ be the maximal time on which the
assumptions (2-9) are satisfied. Then, for all t ∈ (0, T ∗),

∥θ ′(t)∥H6 ≲ B(1 + t)
1
2 , ∥G(t)∥H4 ≤ B/C0 + C B2, ∥∂t G(t)∥L∞ ≲ B2

(1+t)2
.

Proof. We cannot estimate θ ′ in H 6 directly from its evolution equation since it requires an assumption
on G = ∂z θ̄ ∈ H 6, and therefore on θ in H 7. To get around this, we directly perform an estimate from the
whole perturbed evolution equation, namely

∂tθ + u · ∇θ = uz.

For any derivative of order 6 (and less) of the previous equation, we obtain

1
2

d
dt

∥∂6θ∥2
L2 +

∫
�
[∂6, u · ∇]θ∂6θ =

∫
�
∂6∂xψ∂

6θ,

where the commutator comes from the incompressibility assumption and the no-slip boundary condition.
Hence we get

d
dt

∥θ∥H6 ≲ ∥∂xψ∥H6 + ∥[∂6, u · ∇]θ∥L2 .

The first term is dealt with thanks to the bilaplacian regularization (Lemma B.1) and estimate (2-10),

∥∂xψ∥H6 ≲ ∥∂2
x θ

′
∥H2 ≲

B
(1+t)

1
2
.

Notice that this 1
2 -algebraic decay, issued from the linear system, is critical to prove the 1

2 -algebraic
growth control of θ in H 6(�). Concerning the nonlinear term, we rely on the following tame estimate,
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valid for any m ∈ N,

∀ f, g ∈ H m
∩ L∞(�), ∥ f g∥Hm ≲ ∥ f ∥L∞∥g∥Hm + ∥ f ∥Hm ∥g∥L∞, (2-15)

which leads to

∀ f ∈ H m
∩W 1,∞(�), g ∈ H m−1

∩L∞(�), ∥[∂m, f ]g∥L2 ≲∥∇ f ∥L∞∥g∥Hm−1 +∥ f ∥Hm ∥g∥L∞ . (2-16)

Hence, we decompose the nonlinear commutator into

[∂6, u · ∇]θ = −[∂6, ∂zψ∂x ]θ + [∂6, ∂xψ∂z]θ.

Each part can be estimated, thanks to (2-16), as follows:

∥[∂6, ∂zψ]∂xθ∥L2 ≲ ∥∇∂zψ∥L∞∥∂xθ∥H5 + ∥∂zψ∥H6∥∂xθ∥L∞

≲ ∥∇
2ψ∥L∞︸ ︷︷ ︸

5
4

∥θ∥H6 + ∥∂xθ
′
∥H3∥∂xθ

′
∥L∞︸ ︷︷ ︸

1
4 +

3
4

≲
B

(1 + t)
5
4

∥θ∥H6 +
B2

1 + t
,

and

∥[∂6, ∂xψ]∂zθ∥L2 ≲ ∥∇∂xψ∥L∞∥∂zθ∥H5 + ∥∂xψ∥H6∥∂zθ∥L∞

≲ ∥∇∂xψ∥L∞︸ ︷︷ ︸
3
2

∥θ∥H6 + ∥∂2
x θ

′
∥H2︸ ︷︷ ︸

1
2

∥∇θ∥L∞ ≲
B

(1 + t)
3
2

∥θ∥H6 +
B2

1 + t
+

B2

(1 + t)
1
2

,

where we observed in particular that

∥∇θ∥L∞ ≤ ∥∇θ ′
∥L∞ + ∥G∥L∞ ≲

B

(1 + t)
1
2

+ B.

In the end, gathering and summing up all these bounds provides

d
dt

∥θ∥H6 ≲
B

(1 + t)
5
4

∥θ∥H6 +
B2

(1 + t)
1
2

,

and we get
∥θ∥H6 ≲ ∥θ0∥H6 + B(1 + t)

1
2 ≲ B2(1 + t)

1
2 .

Eventually, let us prove decaying bounds on ∂t G and uniform bounds on G. We recall that G = ∂z θ̄

depends only on the variables t and z. From the evolution equation and one integration by parts we
observe (omitting the factors 1

2π for clarity)

∂t θ̄ = −u · ∇θ ′ =

∫
T
(∂zψ∂xθ

′
− ∂xψ∂zθ

′)= −∂z

∫
T
∂xψθ

′,

so we can write
∂t G = −∂2

z

∫
T
∂xψθ

′.

The same arguments as above lead to

∥∂t G∥L2(0,1) ≲ ∥∂xψ∥L∞∥θ ′
∥H2︸ ︷︷ ︸

7
4 +

1
2

+ ∥∂xψ∥H2∥θ ′
∥L∞︸ ︷︷ ︸

3
2 +

3
4

≲
B2

(1 + t)2+
1
4

.
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Using the H 6 estimate, we also have

∥∂t G∥H4(0,1) ≲ ∥∂xψ∥L∞∥θ ′
∥H6︸ ︷︷ ︸

7
4 −

1
2

+ ∥∂xψ∥H6∥θ ′
∥L∞︸ ︷︷ ︸

1
2 +

3
4

≲
B2

(1 + t)1+
1
4

.

Since the right-hand side of the above inequality is time-integrable, we infer that

∥G∥H4(0,1) ≤ ∥G(0)∥H4(0,1) +
∫ t

0
∥∂t G∥H4(0,1) ≤ B/C0 + C B2.

Moreover, for all t ∈ (0, T ∗),

∥∂t G∥L∞ ≲ ∥∂t G∥

3
4
L2∥∂t G∥

1
4
H4︸ ︷︷ ︸

3
4 ×

9
4 +

1
4 ×

5
4

≲
B2

(1 + t)2
. □

Remark 2.14. In the estimate of ∂6θ , it would be tempting to proceed to the same computations as
in (2-6) in order to exhibit a dissipative term, which would allow us to ignore its contribution as for
lower-order derivatives. Doing so requires to control the boundary integrals, which do not vanish a priori
in this case,∫

�
∂6∂xψ∂

6θ = −

∫
�
∂6ψ12∂6ψ = −∥1∂6ψ∥

2
L2 +

∫
∂�
(∂n∂

6ψ1∂6ψ − ∂6ψ∂n∂
61ψ).

For instance, trying to bound the integral involving the higher order of z-derivatives on ψ provides at best∣∣∣∫
∂�
∂6ψ∂z1∂

6ψ

∣∣∣ ≲ ∥∂xψ∥H6+1/2+δ∥∂−1
x ψ∥H9+1/2+δ ≲ B2(1 + t)

1
4 +

δ
2 .

This estimate ensures no better growth control than ∥θ ′
∥H6 ≲ (1 + t)3/4, which is not enough to close the

bootstrap and get the control by (1 + t)1/2.

Improvements of the bootstrap bounds. We now improve the uniform bound on θ ′ and ∂xθ
′ in H 4(�),

relying on the linear analysis from Section 2.2. Since ∥θ ′
∥H4 ≤ ∥∂xθ

′
∥H4 , it is enough to treat ∂xθ

′. Also
we have according to Lemma B.1 the inequality

∥∂xθ
′
∥H4 ≲ ∥12∂xθ

′
∥L2

since ∂xθ
′ belongs in particular to H 2

0 ∩ H 4(�) as detailed in Section 2.1, so it is enough to deal with
∂x1

2θ ′ in L2(�).

Lemma 2.15 (uniform bound for ∥∂xθ
′
∥H4). As long as the bootstrap hypothesis (2-9) holds we have

∥∂x1
2θ ′(t)∥L2 ≤ B/C0 + C B2. (2-17)

Proof. In view of the application of Lemma 2.4 to 12∂xθ
′, we observe that its evolution is governed by

the equation

∂t1
2∂xθ

′
= (1 − G)∂x1

2∂xψ − [12∂x ,G]∂xψ −12∂x(u · ∇θ ′)′,
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which is of the form (2-1) with 12∂xψ = ∂2
x θ

′ and ∂z1
2∂xψ = ∂z∂

2
x θ

′ vanishing on the boundary ∂� and
with

S = −[12∂x ,G]∂xψ − [12∂x , u · ∇]θ ′︸ ︷︷ ︸
S∥

−u · ∇12∂xθ
′︸ ︷︷ ︸

S⊥

.

We already know that ∥G∥H2 satisfies the smallness assumption (2-9) for B > 0 small enough. We show
that S∥ presents an algebraic decay strictly larger than 1, as in (2-2). To do so we apply the tame estimate
(2-16) to the two commutator terms. Let us emphasize that we need to be thorough by substituting
u = ∇

⊥ψ such that the transport operator can be written as

u · ∇ = −∂zψ∂x + ∂xψ∂z.

Hence the nonlinear term presents formally only a vertical derivative of order 1. This makes a difference
in the estimates and allows us to reach more optimal decay rates.

On the one hand, we get for the perturbation due to G, using (2-14),

∥[12,G]∂2
xψ∥L2 ≤ ∥G∥H4 ∥∂2

xψ∥L∞︸ ︷︷ ︸
7
4

+∥∇G∥L∞ ∥∂2
xψ∥H3︸ ︷︷ ︸

5
4

≲
B2

(1 + t)
5
4

.

Note that we used here the uniform H 4 bound on G from Lemma 2.13. On the other hand the contribution
of [12∂x , u · ∇]θ ′ splits into four terms as follows:

[12∂x , u · ∇]θ ′
= −12(∂x∂zψ∂xθ

′)+12(∂2
xψ∂zθ

′)− [12, ∂zψ]∂2
x θ

′
+ [12, ∂xψ]∂z∂xθ

′.

We estimate each term accordingly. We have, for instance, using the bootstrap assumption (2-9), the
preliminary bounds (2-12) and (2-14), and Lemma 2.13,

∥12(∂2
xψ∂zθ

′)∥L2 ≲ ∥∂2
xψ∥H4∥∂zθ

′
∥L∞ + ∥∂2

xψ∥L∞∥∂zθ
′
∥H4

≲ ∥∂3
x θ

′
∥L2∥∇θ ′

∥L∞︸ ︷︷ ︸
1+

1
2

+ ∥∂2
xψ∥L∞∥θ ′

∥H5︸ ︷︷ ︸
7
4 −

1
4

≲
B2

(1 + t)
3
2

.

The limiting decay comes from one of the commutators, which we estimate, thanks to (2-16) together
with the bounds (2-14), (2-11) and (2-12):

∥[12, ∂zψ]∂2
x θ

′
∥L2 ≲ ∥∇∂zψ∥∞∥∂2

x θ
′
∥H3︸ ︷︷ ︸

5
4 +0

+ ∥ψ∥H5∥∂2
x θ∥L∞︸ ︷︷ ︸

3
4 +

3
4

≲
B2

(1 + t)
5
4

.

Gathering these estimates provides

∥S∥∥L2 ≲
B2

(1 + t)
5
4

,

and Lemma 2.4 applies, ensuring
∥12∂xθ

′
∥L2 ≤ ∥12∂xθ

′

0∥L2 + C B2. □

Lemma 2.16 (decay of ∥∂3
x θ

′
∥L2). As long as the bootstrap hypothesis (2-9) holds, we have

∥∂3
x θ

′
∥L2 ≲

B/C0 + B2

1 + t
.
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Proof. Note that ∂3
x θ

′ satisfies (2-1) with the source term

S = S∥ = −∂3
x (u · ∇θ ′).

We can bound the whole term S = S∥ as follows:

∥S∥L2 ≤ ∥∂3
x (∂zψ∂xθ

′)∥L2+∥∂3
x (∂xψ∂zθ

′)∥L2

≲ ∥∂3
x ∂zψ∥L2∥∂xθ

′
∥L∞+∥∂zψ∥L∞∥∂4

x θ
′
∥L2+∥∂4

xψ∥L2∥∂zθ
′
∥L∞+∥∂xψ∥L∞∥∂3

x ∂zθ
′
∥L2

≲ ∥∂2
xψ∥H2∥∂xθ

′
∥L∞︸ ︷︷ ︸

3
2 +

3
4>2

+ ∥∇ψ∥L∞∥∂2
x θ

′
∥H2︸ ︷︷ ︸

3
2 +

1
2 =2

+ ∥∂2
xψ∥H2∥∇θ ′

∥L∞︸ ︷︷ ︸
3
2 +

1
2 =2

+ ∥∂xψ∥L∞∥∂2
x θ

′
∥H2︸ ︷︷ ︸

7
4 +

1
2>2

≲
B2

(1+t)2
.

Assumption (2-4) is satisfied with δ = 1. Additionally, the norm of (12∂−2
x )∂3

x θ
′
=12∂xθ

′ is bounded
according to (2-17), so assumption (2-5) is satisfied with A = ∥12∂xθ

′

0∥L2 + C B2 and α = 0. Moreover,
the traces of ∂3

x θ
′ and ∂n∂

3
x θ

′ vanish as a direct consequence of Lemma 2.1. Therefore min(1 +α, δ)= 1
and Proposition 2.6 provides

∥∂3
x θ

′
∥L2 ≲ (∥∂3

x θ
′

0∥L2 + ∥12∂xθ
′
∥L∞((0,t),L2) + B2)

1
1+t

.

Using inequality (2-17), we obtain the desired estimate. □

Lemma 2.17 (stronger decay of ∥∂t∂xθ
′(t)∥L2). Under assumptions (2-9) we have, for all t ∈ (0, T ∗),

∥∂t∂xθ
′
∥L2 ≲

B/C0 + B2

(1 + t)2
.

Proof. The pair (∂t∂xθ
′, ∂t∂xψ) satisfies (2-1) with

S = −∂t G∂2
xψ − ∂t∂x(u · ∇θ ′).

Note that ∂t∂xθ
′ and ∂n∂t∂xθ

′ vanish on the boundary, from Lemma 2.1. In order to apply Proposition 2.6,
we have to bound (12∂−2

x )∂t∂xθ
′ in L2(�). Going back to (1-7), we have

12∂−1
x ∂tθ

′
=12((1 − G)ψ)−12∂−1

x (u · ∇θ ′)),

the norm of which can be estimated as

∥12∂−1
x ∂tθ

′
∥L2 ≤ (1 + ∥G∥H4)∥12ψ∥L2 + ∥12∂−1

x (u · ∇θ ′)∥L2

≲ ∥∂xθ
′
∥L2 + ∥ψ∥H5∥∇θ ′

∥L∞︸ ︷︷ ︸
3
4 +

1
2

+ ∥∇ψ∥L∞∥θ ′
∥H5︸ ︷︷ ︸

3
2 −

1
4

≲
B/C0 + B2

1 + t
+

B2

(1 + t)
5
4

.

Hence assumption (2-5) is satisfied with α = 1 and A = C(B/C0 + B2).
Let us set S⊥ := u · ∇∂t∂xθ

′, indeed orthogonal to ∂t∂xθ
′ in L2(�). We further define

S∥ := −∂t G∂2
xψ − ∂x u · ∇∂tθ

′,

S1 := ∂t∂x u · ∇θ ′
− ∂t u · ∇∂xθ

′,

so that S⊥ + S∥ + S1 = S. Let us now check that S∥ and S1 satisfy the assumptions of Proposition 2.6.
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The first term in S∥ can be bounded directly as follows, using Lemma 2.13:

∥∂t G∂2
xψ∥L2 ≤ ∥∂t G∥L∞∥∂2

xψ∥L2︸ ︷︷ ︸
2+2

≲
B2

(1 + t)4
.

The second requires, for instance, a bound on ∂tθ
′ in H 1(�), obtained directly from the evolution equation:

∥∂tθ
′
∥H1 ≲ (1 + γ0)∥∂xψ∥H1 + ∥u · ∇θ ′

∥H1

≲ (1 + γ0)∥∂xψ∥H1 + ∥u∥H1∥∇θ ′
∥L∞ + ∥u∥L∞∥∇θ ′

∥H1

≲ (1 + γ0) ∥∂xψ∥H1︸ ︷︷ ︸
7
4

+ ∥ψ∥H2∥∇θ ′
∥L∞︸ ︷︷ ︸

3
2 +

1
2

+ ∥∇ψ∥L∞∥θ ′
∥H2︸ ︷︷ ︸

3
2 +

1
2

≲
B

(1 + t)
7
4

.

Hence

∥∂x u · ∇∂tθ
′
∥L2 ≲ ∥∂x u∥L∞∥∂tθ

′
∥H1 ≲ ∥∇∂xψ∥L∞∥∂tθ

′
∥H1︸ ︷︷ ︸

3
2 +

7
4

≲
B2

(1 + t)
13
4

,

and S∥ satisfies the assumption (2-4) with σ = C B2 and δ =
9
4 . Continuing our computations,

∥∂t∂x u · ∇θ ′
∥L2 ≲ ∥∇∂t∂xψ∥L2 ∥∇θ ′

∥L∞︸ ︷︷ ︸
1
2

≲
B∥1∂t∂xψ∥L2

(1 + t)
1
2

,

and the same consideration applies for

∥∂t u · ∇∂xθ
′
∥L2 ≲ ∥∇∂tψ∥L2 ∥∇∂xθ

′
∥L∞︸ ︷︷ ︸

1
2

≲
B∥1∂t∂xψ∥L2

(1 + t)
1
2

.

Hence
S1 = ∂t∂x u · ∇θ ′

− ∂t u · ∇∂xθ
′

indeed satisfies assumption (2-4). Finally Proposition 2.6 applies with min(1 +α, δ)= 2 and we obtain

∥∂t∂xθ
′
∥L2 ≲

B/C0 + B2

(1 + t)2
. □

Conclusion. Let us close the bootstrap argument. Assuming ∥θ0∥H6 ≤ B/C0, we had, by continuity-in-
time of the Sobolev norms of θ ensured by Theorem A.1, existence of a maximal time T ∗

∈ R+ ∪ {+∞}

such that (2-9) is satisfied for any t ∈ [0, T ∗), reported here:

∥∂3
x θ

′
∥L2 ≤

B
1 + t

, ∥∂xθ
′
∥H4 ≤ B,

∥G∥H2 ≤ B, ∥∂t∂xθ
′
∥L2 ≤

B
(1 + t)2

.
(2-18)

These decay estimates induce, as shown in Lemmas 2.13, 2.15, 2.16, and 2.17 that (2-18) holds for
another constant B defined as

B =
C B
C0

+ C B2,
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where C > 0 is universal. By choosing C0 large enough and B small enough, we have B < B and
inequalities (2-18) are strictly satisfied for any t ∈ [0, T ∗). Therefore T ∗ must be +∞; otherwise the
continuity of t 7→∥θ(t)∥H6 would imply the existence of a larger validity time interval for (2-18). In the end,
these bounds are valid for all times, and setting ε0 := B/C0 closes the demonstration of Proposition 2.9.

Remark 2.18 (generalization at any order). Motivated by the fact that the perturbed subproblem
∂t∂

ℓ
xθ

′
= (1 − G)∂ℓ+1

x ψ,

12∂ℓ−1
x ψ = ∂ℓxθ

′,

∂ℓ−1
x ψ |∂� = ∂n∂

ℓ−1
x ψ |∂� = 0

is stable under horizontal derivation we could expect to propagate arbitrarily high horizontal regularity
on θ ′. Nevertheless, our proof relies on the control

∥θ∥H6 ≲ (1 + t)
1
2 ,

which we can obtain thanks to the classical divergence-free condition on u canceling the extra-derivative
term. Let us try to do the same on ∂ℓxθ ; we write

∂t∂
ℓ
xθ +

ℓ−1∑
k=0

Cℓ,k∂ℓ−k
x u · ∇∂k

x θ + u · ∇∂ℓxθ = ∂ℓ+1
x ψ,

and multiply by ∂ℓxθ
′. Then the estimation does not close, even though one of its terms does not contribute,

just as in the initial equation. Indeed, we have

1
2

d
dt

∥∂ℓxθ∥
2
H6 +

ℓ−1∑
k=0

Cℓ,k
∫
�
∂6(∂ℓ−k

x u · ∇∂k
x θ)∂

6∂ℓxθ +
1
2

∫
�

u · ∇|∂6∂ℓxθ |
2︸ ︷︷ ︸

=0

≤ ∥∂ℓxψ∥H6∥∂ℓxθ∥H6 .

Note that crossed derivatives integrands, such as∫
�
∂ℓx u · ∇∂6θ∂6∂ℓxθ

do not lead to a vanishing integral. Hence deriving an estimate on ∂ℓxθ
′ in H 6 requires first the derivation

of an estimate of θ in H 6+ℓ, in the spirit of Lemma 2.13. We will derive such estimates in Section 4 (see
Lemma 4.3), at the price of much stronger and more complicated bootstrap assumptions (see (4-3)).

2.4. Convergence as t → ∞ and identification of the asymptotic profile. Regarding the asymptotic
behavior of the density for the Stokes-transport system without any assumption on the type of initial data,
we can only say that if ρ converges toward some ρ∞ in H−1, this limit profile is stratified. Indeed, the
energy balance (1-2) ensures that u ∈ L2(R+, H 1), and since u is also Lip(R+, H 1) by linearity of the
Stokes system, we infer that ∥u(t)∥H1 → 0 as t → ∞, but without any information about its decay rate.
At least we have

∥∇ p + ρez∥H−1 ≲ ∥u∥H1 −−−→
t→∞

0.

The H−1 convergence of ρ leads to the existence of p∞ such that

∇ p∞ = −ρ∞ez.
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Observing that ∂x p∞ = 0 and that the domain �= T × (0, 1) is convex ensures that p∞ and ρ∞ are both
independent of the horizontal coordinate x .

In the context of a small perturbation of the stationary profile ρs(z)= 1− z, we obtained explicit decay
rates for Sobolev norms of u. We show that these decays are sufficient to ensure the strong convergence
of ρ toward a limit profile ρ∞. Moreover, the smallness of the perturbation θ does not affect the vertical
monotonicity of the whole density ρ, from which we deduce that ρ∞ is exactly the vertical rearrangement
of ρ0.

Proposition 2.19. Under the assumptions of Theorem 1.1, the whole density ρ converges in H m for any
m < 4 towards its vertical decreasing rearrangement.

Proof. The proof is divided in the following steps:

Convergence. It is enough to show that ∂tρ belongs to L1(R+, H m) for m < 4, which implies the strong
convergence of ρ(t) in H m and existence of a limit ρ∞. Let us estimate ∂tρ in H m for any 0 ≤ m ≤ 4,
using the tame estimates (2-15)

∥∂tρ∥Hm = ∥u · ∇ρ∥Hm ≤ ∥∂zψ∂xρ∥Hm + ∥∂xψ∂zρ∥Hm

≲ ∥∇ψ∥L∞∥∂xρ∥Hm + ∥ψ∥Hm+1∥∂xρ∥L∞ + ∥∂xψ∥L∞∥ρ∥Hm+1 + ∥∂xψ∥Hm ∥∂zρ∥L∞ .

Recalling that ∂zρ = −1 + G + ∂zθ
′ is bounded in H 5(�), that ∂xρ = ∂xθ

′ decays as (1 + t)−1+m/4 for
m ≤ 4, as well as the decay estimates (2-13) and (2-14), we find

∥∂tρ∥Hm ≲
∥ρ0∥

2
H6

(1 + t)2−
m
4
,

which is integrable for any m < 4, hence the convergence.

Stratified limit. Since ρ converges, so do θ ′
= (ρ − ρs)

′ and θ̄ = ρ− ρs . We obtained in (2-8) that θ ′

vanishes in H m for m < 4, and therefore the limit ρ∞ is stratified. Hence ρ∞ can be written as the sum
of ρs and the limit θ̄∞ of θ̄ . In view of (2-8) this limit satisfies in particular ∥∂z θ̄∞∥L∞ ≤ Cε0, with the
notation of Theorem 1.1. At least for ε0 > 0 such that Cε0 < 1 = −∂zρs , we know that sup(0,1) ∂zρ∞ < 0,
which means that ρ∞ is strictly decreasing with respect to z.

Rearrangement. The divergence-free character of the velocity field u ensures that all Lq norms and the
cumulative distribution function of ρ(t) are preserved along time, in the sense

∀λ≥ 0, |{ρ(t) > λ}| = |{ρ0 > λ}|. (2-19)

This property transfers to the limit state ρ∞ by Lq strong convergence of ρ. According to rearrangement
theory such as that developed in [Lieb and Loss 2001, Chapter 3], we say that two maps are rearrangements
of each other if they have the same level sets, in the sense of (2-19). Adapting slightly the construction of
[Lieb and Loss 2001], we know there exists a unique vertical decreasing rearrangement of ρ0 :�→ R+,
which can be defined as

ρ∗

0 (z) :=

∫ ∞

0
10≤z≤|{ρ0>λ}| dλ.

In the end, we know that ρ∞ is a decreasing rearrangement of ρ0; therefore it is ρ∗

0 by uniqueness. □
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Remark 2.20. Note that the above argument extends immediately to the settings investigated by Elgindi
[2017] and Castro, Córdoba and Lear [Castro et al. 2019a] for the incompressible porous media problem,
as mentioned in the Introduction.

Notice that we actually have ∥∂zθ∥L∞ ≲ ε0 for all times. Therefore the total density has a strictly
negative vertical derivative, for all x ∈ T and for all times t ∈ R+, since

∂zρ(t, x, · )= −1 + ∂zθ(t, x, · ),

and the density reordering is essentially horizontal. This is a rare case in which we can describe the
asymptotic profile. This intuition of having heavy fluids sinking under the lighter ones prompts to wonder
if, at least in a weak sense, the density profile should always converge toward the vertical rearrangement of
the initial datum, unless it is already stratified. This question remains open, both for the Stokes-transport
equation and for the incompressible porous media.

3. Formation of large-time boundary layers in the linear setting: proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. We consider the linear problem
∂tθ = ∂xψ in (0,+∞)×�,

12ψ = ∂xθ in �, ψ |∂� = ∂nψ |∂� = 0,
θ(t = 0)= θ0,

(3-1)

with θ0 ∈ H 6(�) arbitrary. The difference with the linear analysis of Section 2.2, and in particular with
Proposition 2.6, lies in the fact that we do not assume that θ0 and ∂nθ0 vanish on the boundary. As a
consequence, as explained in the sketch of the proof in the Introduction, boundary layers are created as
t → ∞ close to z = 0 and z = 1, and the purpose of this section is precisely to describe the mechanism
driving the apparition of these boundary layers. We will therefore decompose θ as the sum of an interior
term decaying like t−1 in L2, and some boundary layer terms which lift the traces of θ and ∂nθ on the
boundary. This will lead us to Theorem 1.2. We will then return to our nonlinear system (1-7) in Section 4.

In fact, we will prove a more precise version of Theorem 1.2:

Proposition 3.1. Let θ0 ∈ H s(�) for some s > 0 sufficiently large. Let θ ∈ C(R+, H s) be the unique
solution of (3-1). There exists a boundary layer profile θBL of the form

θBL
=

4∑
j=0
(1 + t)−

j
4 (2

j
bot(x, Zbot)+2

j
top(x, Z top)),

with Zbot = z(1 + t)1/4 and Z top = (1 − z)(1 + t)1/4, such that θ int
= θ − θBL satisfies, for all t ≥ 0,

∥∂2
x θ

int(t)∥L2 ≲
∥θ0∥H s

1 + t
, ∥θ int(t)∥H4 ≲ ∥θ0∥H s , ∥1−2∂2

x θ
int(t)∥L2 ≲

∥θ0∥H s

(1 + t)2
.

Furthermore, there exists a constant c> 0 such that ∥2
j
a( · , Z)∥H4(T)≲ ∥θ0∥H s exp(−cZ4/5) for all Z > 0.

The organization of this section is the following. After motivating the ansatz (1-6), we formally derive
the equation satisfied by the boundary layer profiles. We then construct the boundary layer part of the
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solution, denoted by θBL, and we establish some properties. Eventually, we prove that θ − θBL satisfies
the assumptions of Proposition 2.6, and we conclude.

3.1. Motivation for the ansatz and derivation of the boundary layer equations. We recall (see page 1966)
that a simple spectral decomposition suggests that the solution θ has strong variations close to the
boundaries, and that θ(t)|∂� = θ0|∂�, ∂nθ(t)|∂� = ∂nθ0|∂�. Hence we take an ansatz of the form

θ(t)≃ θ int
+20

bot(x, (1 + t)αz)+20
top(x, (1 + t)α(1 − z))

+ (1 + t)−α21
bot(x, (1 + t)αz)+ (1 + t)−α21

top(x, (1 + t)α(1 − z))+ l.o.t.

for some α > 0 to be determined, where

θ int
|∂� = ∂zθ

int
|∂� = 0,

2
j
bot(x, Z)→ 0 and 2

j
top(x, Z)→ 0 as Z → ∞.

The role of 20
top (resp. of 20

bot) is to lift the trace of θ0 at the top boundary z = 1 (resp. at the bottom
boundary z = 0). Hence we take

20
top(x, Z =0)= θ0(x, z=1), ∂Z2

0
top(x, Z =0)= 0,

20
bot(x, Z =0)= θ0(x, z=0), ∂Z2

0
bot(x, Z =0)= 0.

In a similar way, the next-order boundary layer terms 21
top and 21

bot lift the traces of ∂nθ0 on ∂�, i.e.,

21
top(x, Z =0)= 0, ∂Z2

1
top(x, Z =0)= −∂zθ0(x, z=1),

21
bot(x, Z =0)= 0, ∂Z2

1
bot(x, Z =0)= ∂zθ0(x, z=0).

Similarly, we assume that

ψ(t)≃ ψ int
+ (1 + t)−4α90

bot(x, (1 + t)αz)+ (1 + t)−4α90
top(x, (1 + t)α(1 − z))

+ (1 + t)−5α91
bot(x, (1 + t)αz)+ (1 + t)−5α91

bot(x, (1 + t)α(1 − z))+ l.o.t.,
where

∂4
Z9

j
a = ∂x2

j
a,

9 j
a = ∂Z9

j
a = 0 on Z = 0,

9 j
a → 0 as Z → ∞, a ∈ {top, bot}.

Plugging these ansatz into (3-1), we find that at main order

α(1 + t)−1 Z∂Z2
0
a = (1 + t)−4α∂x9

0
a .

Consequently, identifying the powers of (1+ t), we take α=
1
4 , which is precisely the ansatz (1-6). Hence

the equation for 90
a , a ∈ {top, bot}, becomes

1
4 Z∂5

Z9
0
a = ∂2

x9
0
a in T × (0,+∞),

90
a|Z=0 = ∂Z9

0
a|Z=0 = 0,

∂4
Z9

0
a|Z=0 = γ 0

a (x), ∂5
Z9

0
a|Z=0 = 0,

limZ→∞90
a (x, Z)= 0,

(3-2)
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where γ 0
bot(x) = ∂xθ0(x, z=0), γ 0

top(x) = ∂xθ0(x, z=1). Note that the above boundary conditions are
redundant: indeed, if ∂Z9

0
a|Z=0 =0, then it follows from the equation (after one differentiation with respect

to Z ) that ∂5
Z9

0
a|Z=0 = 0. Hence in the following subsection we will drop the condition ∂5

Z9
0
a|Z=0 = 0.

In a similar fashion, the equation for 91
a , a ∈ {top, bot}, is

−∂4
Z9

1
a + Z∂5

Z9
1
a = 4∂2

x9
1
a in T × (0,+∞),

91
a|Z=0 = ∂Z9

1
a|Z=0 = 0,

∂4
Z9

1
a|Z=0 = 0, ∂5

Z9
1
a|Z=0 = γ 1

a (x),

limZ→∞91
a (x, Z)= 0,

(3-3)

where γ 1
bot(x)= ∂x∂zθ0(x, z=0), γ 1

top(x)= −∂x∂zθ0(x, z=1). Once again, the condition ∂4
Z9

1
a|Z=0 = 0

is redundant and is automatically satisfied when one takes the trace of the equation at Z = 0, using the
other boundary conditions. We now turn towards the well-posedness of (3-2) and (3-3).

3.2. Construction of the main profiles. The well-posedness of (3-2) and (3-3) stems from the following
result:

Lemma 3.2. Let m ≥ m0 > 0 and let S ∈ C([0,+∞)), δ > 0, such that

∥S∥
2
:=

∫ 1

0

S(Z)2

Z2 dZ +

∫ ∞

0
S(Z)2 exp(δZ

4
5 ) dZ <+∞.

Consider the ODE

Z∂5
Z9(Z)= −m9(Z)+ S(Z) in (0,+∞), lim

Z→∞

9(Z)= 0, (3-4)

endowed with one of the following four boundary conditions:

(i) 9(0)= ∂Z9(0)= ∂4
Z9(0)= 0.

(ii) 9(0)= ∂3
Z9(0)= ∂4

Z9(0)= 0.

(iii) 9(0)= ∂2
Z9(0)= ∂3

Z9(0)= 0.

(iv) 9(0)= ∂Z9(0)= ∂2
Z9(0)= 0.

Then there exists a constant c > 0 depending only on m0 and δ such that (3-4) endowed with one of the
four previous conditions has a unique solution 9 ∈ H 5

loc(R+) such that, for all k ∈ {0, . . . , 5},∫ ∞

0
|∂k

Z9(Z)|
2 exp(cZ

4
5 ) dZ ≤ C∥S∥

2 <+∞.

As a consequence, for k ≤ 4, there exists a constant C such that

|∂k
Z9(Z)| ≤ C∥S∥ exp

(
−

c
4

Z
4
5

)
∀Z > 0.

The proof of Lemma 3.2 is postponed to Appendix C, and relies on the use of the Lax–Milgram lemma
in weighted Sobolev spaces. As a corollary, we have the following result:



LONG-TIME BEHAVIOR OF THE STOKES-TRANSPORT SYSTEM IN A CHANNEL 1987

Corollary 3.3. For all j ∈ {0, 1}, there exists a unique solution χ j ∈ C∞(0,+∞) of the ODE

Z∂5
Zχ j − j∂4

Zχ j + 4χ j = 0 on (0,+∞),

endowed with the boundary conditions

• χ0(0)= ∂Zχ0(0)= 0, ∂4
Zχ0(0)= 1,

• ∂Zχ1(0)= ∂4
Zχ1(0)= 0, ∂5

Zχ1(0)= 1,

and such that, for j = 0, 1, 0 ≤ k ≤ 5,∫ ∞

0
|∂K

Z χ j (Z)| exp(cZ
4
5 ) dZ <+∞.

Furthermore, ∂5
Zχ0(0)= χ1(0)= 0.

Proof. Let us start with χ0. Let η ∈ C∞
c (R) such that η≡ 1 in a neighborhood of zero. Then χ0 − Z4η/4!

satisfies (3-4) with the boundary conditions (i) and with a C∞ and compactly supported source term.
Hence the result follows from Lemma 3.2. The C∞ regularity of χ0 follows easily from the ODE (3-4)
and from an induction argument. Differentiating the ODE and taking the trace at Z = 0, we obtain
∂5

Zχ0(0)= −4∂Zχ0(0)= 0.
Concerning χ1, we first consider the solution of the ODE

Z∂5
Zφ+ 4φ = 0 on (0,+∞),

φ(0)= ∂3
Zφ(0)= 0, ∂4

Zφ(0)= 1, φ(+∞)= 0.

The existence, uniqueness, and exponential decay of φ follow from a lifting argument and Lemma 3.2 with
boundary conditions (ii). We then set χ1(Z)= −

∫
∞

Z φ and note that ∂Z (Z∂5
Zχ1 − ∂4

Zχ1 +4χ1)= 0. As a
consequence, Z∂5

Zχ1(Z)− ∂4
Zχ1(Z)+ 4χ1(Z)= const. = 0 on (0,+∞), thanks to the decay properties

of φ at infinity. Hence the existence, uniqueness and decay of χ1 follow. Taking the trace of the equation
at Z = 0, we find that χ1(0)= 0. □

Let us now explain how we construct the boundary layer profiles 9 j
a for a ∈ {top, bot} and j = 0, 1

which satisfy (3-2) and (3-3). Taking the Fourier transform of (3-2) with respect to x and dropping the
index a, we infer that 9̂0

k satisfies
1
4 Z∂5

Z 9̂
0
k = −k29̂0

k ,

∂4
Z 9̂

0
k|Z=0 = γ̂ 0

k , 9̂0
k|Z=0 = ∂Z 9̂

0
k|Z=0 = 0.

Considering the function χ0 defined in Corollary 3.3, it is then easily checked that

9̂0
k = |k|

−2γ̂ 0
k χ0(|k|

1
2 Z)

is a solution of the problem. We infer that

90
a (x, Z) :=

∑
k∈Z\{0}

|k|
−2γ̂ 0

a,k χ0(|k|
1
2 Z)eikx (3-5)
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is a solution of (3-2). In a similar way,

91
a (x, Z) :=

∑
k∈Z\{0}

|k|
−

5
2 γ̂ 1

a,k χ1(|k|
1
2 Z)eikx (3-6)

satisfies (3-3).
As a consequence, we have the following estimates, which follow easily from formulas (3-5) and (3-6):

Corollary 3.4. Let γ 0
a , γ

1
a ∈ L2(T). Then (3-2) (resp. (3-3)) has a unique solution90

a ∈ H 9/4
x L2

Z ∩L2
x H 9/2

Z
(resp. 91

a ∈ H 11/4
x L2

Z ∩ L2
x H 11/2

Z ). Furthermore, for all m > 9
2 ,

∥90
a∥Hm

x L2
z
≲ ∥γ 0

a ∥Hm−9/4 ≲ ∥∂xθ0∥Hm−7/4(�), ∥90
a∥L2

x Hm
z
≲ ∥γ 0

a ∥Hm/2−9/4 ≲ ∥∂xθ0∥Hm/2−7/4(�),

∥91
a∥Hm

x L2
z
≲ ∥γ 1

a ∥Hm−11/4 ≲ ∥∂xθ0∥Hm−5/4(�), ∥91
a∥L2

x Hm
z
≲ ∥γ 1

a ∥Hm/2−11/4 ≲ ∥∂xθ0∥Hm/2−5/4(�).

Additionally, the profiles 90
a and 91

a have exponential decay: there exists a universal constant c̄ > 0 such
that, for any Z0 ≥ 1 and any m ∈ N,

∥90
a∥Hm(T×(Z0,+∞)) ≲ ∥θ0∥H1(�) exp(−c̄Z

4
5
0 ),

∥91
a∥Hm(T×(Z0,+∞)) ≲ ∥θ0∥H2(�) exp(−c̄Z

4
5
0 ).

3.3. Construction of an approximate solution. The idea is now to find a decomposition of θ as θ =

θBL
+ θ int, where θBL is a solution of

∂tθ
BL

= ∂2
x1

−2θBL
+ Sr ,

with a remainder term Sr such that, for some δ > 0,

Sr (t)= O((1 + t)−2) in L2(�),

Sr (t)= O((1 + t)−1−δ) in H 4(�),

∂t Sr (t)= O((1 + t)−3) in L2(�),

and a boundary layer profile θBL such that θBL
|∂�(t = 0)= θ0|∂�, ∂nθ

BL
|∂� = ∂nθ |∂�. Recall that the

operator 1−2 is endowed with homogeneous conditions for the trace and the normal derivative on the
boundary of ∂�.

As a consequence, the interior part θ int satisfies

∂tθ
int

= ∂2
x1

−2θ int
− Sr

and the trace of θ int vanishes on ∂�, together with its normal derivative. Thus we may apply Lemma 2.4
and Proposition 2.6, and we obtain ∥θ int

∥L2 = O((1+t)−1), which will complete the proof of Theorem 1.2.
The main-order part of θBL will be given by the profiles 2 j

a , j = 0, 1, a ∈ {top, bot}, constructed in
Corollary 3.4. However, a few adjustments must be made in order to have a suitable decomposition:

• First, the profiles 2 j
a must be truncated away from z = 0 and z = 1, so that their (exponentially small)

trace does not pollute the opposite boundary. Since 2 j
a has exponential decay, this introduces a remainder

of order exp(−ct1/5), which will be included in Sr . More precisely, the error terms generated by this
truncation will be dealt with thanks to the following lemma, whose proof is left to the reader:
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Lemma 3.5. Let 9 ∈ L2(T × (0,+∞)) such that there exist c,C > 0 such that∫
T

∫ ∞

0
|9(x, Z)|2 exp(cZ

4
5 ) dZ dx ≤ C <+∞.

Let ζ ∈ L∞(0, 1) such that Supp ζ ⊂
(1

4 , 1
)
. Then there exists a constant c′ > 0, depending only (and

explicitly) on c, such that

∥9(x, (1 + t)
1
4 z)ζ(z)∥L2(T) ≲ C∥ζ∥∞ exp(−c′(1 + t)

1
5 ).

• More importantly, the main-order profiles (2 j
a, 9

j
a ) for j = 0, 1 do not satisfy exactly

12((1 + t)−19
j

bot(x, (1 + t)
1
4 z)

)
=2

j
bot(x, (1 + t)

1
4 z).

Indeed, when constructing 90
a , we only kept the main-order terms in 12, i.e., the z-derivatives. It turns out

that the term 2∂2
x ∂

2
z in the bilaplacian generates an error term in the equation which is not O((1 + t)−2).

As a consequence, we introduce lower-order correctors, whose purpose is precisely to cancel this error
term. We emphasize that the construction of such additional correctors is quite classical in multiscale
problems. In order to determine the order at which the expansion can be stopped, we will rely on the
following lemma, whose proof is postponed to the end of this section:

Lemma 3.6. • Let f ∈ H 4(T, L2(R+)) such that there exist constants c,C1 > 0 such that, for all
k ∈ {0, . . . , 4},

|∂k
x f (x, Z)| ≤ C1 exp(−cZ

4
5 ) ∀(x, Z) ∈ T × R+. (3-7)

Then there exists a constant C depending only on c such that∥∥1−2( f (x, (1 + t)
1
4 z)χ(z)

)∥∥
L2 ≤

CC1

(1 + t)
3
4

.

Furthermore, if ∫ ∞

0
Z2 f (x, Z) dZ =

∫ ∞

0
Z3 f (x, Z) dZ = 0 ∀x ∈ T,

this estimate becomes ∥∥1−2( f (x, (1 + t)
1
4 z)χ(z)

)∥∥
L2 ≤

CC1

1 + t
.

• Let f ∈ H 2(T, L2(R+)) such that (3-7) holds for all k ∈ {0, 1, 2}. Then there exists a constant C
depending only on c such that∥∥1−2( f (x, (1 + t)

1
4 z)χ(z)

)∥∥
L2 ≤

CC1

(1 + t)
1
2

.

With the two above lemmas in mind, we define θBL in the following way. Let χ ∈ C∞
c (R) be a cut-off

function such that χ ≡ 1 on
(
−

1
4 ,

1
4

)
, and Suppχ ⊂

(
−

1
2 ,

1
2

)
. We look for θBL in the form

θBL(t, x, z) :=

4∑
j=0

(1 + t)−
j
42

j
bot(x, (1 + t)

1
4 z)χ(z)+

4∑
j=0

(1 + t)−
j
42

j
top(x, (1 + t)

1
4 (1 − z))χ(z − 1)

=: θBL
bot + θBL

top
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and

ψBL(t, x, z) :=
4∑

j=0

(1+t)−1−
j
49

j
bot(x, (1+t)

1
4 z)χ(z)+

4∑
j=0

(1+t)−1−
j
49

j
top(x, (1+t)

1
4 (1−z))χ(z−1)

=:ψBL
bot +ψ

BL
top .

The profiles 2 j
a, 9

j
a for j = 0, 1 and a ∈ {bot, top} were defined in the previous subsection, and we

now proceed to define 2 j
a, 9

j
a for j ≥ 2. The reason why we stop the expansion at j = 4 follows from

Lemma 3.6, as we will see shortly.
We focus on the part near z = 0, since the part near z = 1 works identically. Setting Z = (1 + t)1/4z,

we have
∂

∂t
θBL

bot = (1 + t)−1
4∑

j=0

(1 + t)−
j
4
[
−

1
4 j2 j

bot(x, Z)+ 1
4 Z∂Z2

j
bot(x, Z)

]
χ(z).

For j = 0, 1, the bracketed term in the right-hand side is simply ∂x9
j

bot(x, (1 + t)1/4z). Similarly, we
choose 9 j

a for j = 2, 3, 4 and a ∈ {bot, top} so that

∂x9
j

a = −
1
4 j2 j

a +
1
4 Z∂Z2

j
a. (3-8)

With this choice, we have
∂tθ

BL
= ∂xψ

BL.

There remains to choose 2 j
a so that ∂xψ

BL
=1−2∂2

x θ
BL

+ O((1 + t)−2) in L2. To that end, we observe

12ψBL
bot =

4∑
j=0

(1 + t)−
j
4 ∂4

Z9
j

bot(x, Z)χ(z)+ 2
4∑

j=0

(1 + t)−
1
2 −

j
4 ∂2

x ∂
2
Z9

j
bot(x, Z)χ(z)

+

4∑
j=0

(1 + t)−1−
j
4 ∂4

x9
j

bot(x, Z)χ(z)

+

4∑
j=0

3∑
k=0

(k
4

)
(1 + t)−1+

k− j
4 ∂k

Z9
j

bot(x, Z)χ (4−k)(z)

+ 2
4∑

j=0

1∑
k=0

(k
2

)
(1 + t)−1+

k− j
4 ∂2

x ∂
k
Z9

j
bot(x, Z)χ (2−k)(z).

The last two terms are handled by Lemma 3.5 (anticipating that 9 j
a will have exponential decay for

j = 2, 3, 4).
We obtain

12ψBL
bot = ∂xθ

BL
bot + O(exp(−c′(1 + t)

1
5 ))

+ (1 + t)−
1
2 [−∂x2

2
bot + ∂

4
Z9

2
bot + 2∂2

x ∂
2
Z9

0
bot](x, Z)χ(z)

+ (1 + t)−
3
4 [−∂x2

3
bot + ∂

4
Z9

3
bot + 2∂2

x ∂
2
Z9

1
bot](x, Z)χ(z)

+ (1 + t)−1
[−∂x2

4
bot + ∂

4
Z9

4
bot + 2∂2

x ∂
2
Z9

2
bot + ∂

4
x9

0
](x, Z)χ(z)

+

∑
j≥5

(1 + t)−
j
48

j
bot(x, Z)χ(z) (3-9)
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for some functions 8 j
bot depending on the profiles 9 j

bot (for instance 85
= 2∂2

x ∂
2
Z9

3
bot + ∂

4
x9

1
bot). Thanks

to Lemma 3.6, the inverse bilaplacian of the last term has a size of order (1 + t)−2 in L2. Hence it will be
included in the remainder Sr . Note that the reason why we need to stop the expansion in θBL at j = 4
is dictated by the above formula and by Lemma 3.6. If we stop the expansion for a lower j , then the
remainder may be greater than (1 + t)−2 in L2.

Therefore we focus on the terms of order (1 + t)− j/4 with j = 2, 3, 4. We treat the cases j = 2 and
j = 3 simultaneously, and we will focus on the case j = 4 later.

• Construction of 9 j
a for j = 2, 3: Remembering (3-8), we choose 2 j

a and 9 j
a for a ∈ {bot, top} and

j = 2, 3 so that
∂x9

j
a = −

1
4 j2 j

a +
1
4 Z∂Z2

j
a, −∂x2

j
a + ∂4

Z9
j

a + 2∂2
x ∂

2
Z9

j−2
a = 0,

endowed with the boundary conditions

lim
Z→∞

9 j
a = 0, 9 j

a (Z =0)= ∂Z9
j

a (Z =0)=2 j
a(Z =0)= ∂Z2

j
a(Z =0)= 0.

As before, we note that the boundary conditions at Z = 0 are redundant. Eliminating2 j
a from the equation,

we find that 9 j
a satisfies

Z∂5
Z9

j
a − j∂4

Z9
j

a = 4∂2
x9

j
a + S j

a ,

9 j
a (Z =0)= ∂Z9

j
a (Z =0)= 0,

∂4
Z9

j
a = −2∂2

x ∂
2
Z9

j−2
a = −

1
j

S j
a at Z = 0,

∂5
Z9

j
a = −2∂2

x ∂
3
Z9

j−2
a = −

1
j −1

∂Z S j
a at Z = 0,

lim
Z→∞

9 j
a = 0,

(3-10)

where S j
a = −2(Z∂Z − j)∂2

x ∂
2
Z9

j−2
a . Therefore

∂
j
Z S j

a = −2Z∂ j+3
Z ∂2

x9
j−2

a = −8∂4
x ∂

j−2
Z 9 j−2

a .

As a consequence, ∂ j
Z9

j
a is a solution of

Z∂5
Z∂

j
Z9

j
a = 4∂2

x ∂
j
Z9

j
a − 8∂4

x ∂
j−2
Z 9

j−2
a ,

∂
j
Z9

j
a = 0 at Z = 0,

∂4
Z9

j
a = −2∂2

x ∂
2
Z9

j−2
a , ∂5

Z9
j

a = −2∂2
x ∂

3
Z9

j−2
a at Z = 0,

limZ→∞ ∂
j
Z9

j
a = 0.

Note that the boundary condition ∂ j
Z9

j
a (Z =0)= 0 follows from the identity

∂x∂
j
Z9

j
a =

1
4 Z∂ j+1

Z 2 j
a.

Taking the Fourier transform with respect to x , we observe that ∂̂ j
Z9a(k) satisfies (3-4) with nonhomoge-

neous boundary conditions of type (iii) (for j = 2) or (iv) (for j = 3). Using the Fourier representations
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(3-5) and (3-6) for 90 and 91, we anticipate that 92
a and 93

a can be written as

92
a (x, Z)=

∑
k∈Z\{0}

|k|
−1γ̂ 0

a,k χ2(|k|
1
2 Z)eikx ,

93
a (x, Z)=

∑
k∈Z\{0}

|k|
−

3
2 γ̂ 1

a,k χ3(|k|
1
2 Z)eikx ,

(3-11)

with χ2, χ3 ∈ C∞((0,+∞)) decaying like exp(−c̄Z4/5). The precise construction of χ2 and χ3 will be
performed below. We obtain the following result:

Lemma 3.7. Let a ∈ {top, bot} and γ 0
a , γ

1
a ∈ L2(T). Consider the solutions 90

a , 9
1
a of (3-2), (3-3) given

by Corollary 3.4.
Then there exist unique solutions 92

a ∈ H 5/4
x L2

Z ∩ L2
x H 5/2

Z , 93
a ∈ H 7/4

x L2
Z ∩ L2

x H 7/2
Z of (3-10). Further-

more, for any m ∈ N,

∥92
a∥Hm

x L2
Z
≲ ∥∂xθ0∥Hm−3/4(�), ∥92

a∥L2
x Hm

Z
≲ ∥∂xθ0∥Hm/2−3/4(�),

∥93
a∥Hm

x L2
Z
≲ ∥∂xθ0∥Hm−1/4(�), ∥93

a∥L2
x Hm

Z
≲ ∥∂xθ0∥Hm/2−1/4(�).

Additionally, the profiles 92
a and 93

a have exponential decay: for any Z0 ≥ 1, for any m ∈ N,

∥92
a∥Hm(T×(Z0,+∞)) ≲ ∥θ0∥H1(�) exp(−c̄Z

4
5
0 ),

∥93
a∥Hm(T×(Z0,+∞)) ≲ ∥θ0∥H2(�) exp(−c̄Z

4
5
0 ).

Proof. In view of (3-11), it is sufficient to construct χ2 and χ3. We first construct the solution φ j of
Z∂5

Zφ j (Z)= −4φ j (Z)− 8∂ j−2
Z χ j−2,

φ j (0)= 0, ∂
4− j
Z φ j (0)= −2∂2

Zχ j−2(0), ∂
5− j
Z φ j (0)= −2∂3

Zχ j−2(0),

limZ→∞ φ j (Z)= 0.

Note that after a suitable lifting, φ j satisfies (3-4) with the boundary conditions (iii) from Lemma 3.2 (for
j = 2) or (iv) (for j = 3). Hence the existence and uniqueness of φ j (and its exponential decay) follow
from Lemma 3.2. Now, define χ j as

∂
j
Zχ j = φ j , ∂k

Zχ j (+∞)= 0 for 0 ≤ k ≤ j − 1.

It follows that χ j decays like exp(−c̄Z4/5). Furthermore, by construction

∂
j
Z [Z∂5

Zχ j − j∂4
Zχ j + 4χ j − 2(Z∂Z − j)∂2

Zχ j−2] = 0.

We deduce that Z∂5
Zχ j − j∂4

Zχ j +4χ j +2(Z∂Z − j)∂2
Zχ j−2 is a polynomial of order at most j −1, which

has exponential decay at infinity. Therefore, the following equality holds:

Z∂5
Zχ j − j∂4

Zχ j + 4χ j − 2(Z∂Z − j)∂2
Zχ j−2 = 0.

Taking the trace of the above identity at Z = 0, we infer that χ j (0)= 0. In a similar way, we also find
that χ ′

j (0)= 0. Now, defining 9 j
a by (3-11), we obtain that 9 j

a satisfies (3-10). The Sobolev estimates
are then a consequence of the Fourier representation formula. □
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• Construction of 94
a : The definitions of 94

a and 24
a are similar. We choose 94

a such that
Z∂5

Z9
4
a − 4∂4

Z9
4
a = 4∂2

x9
4
a + S4

a ,

94
a (0)= ∂Z9

4
a (0)= 0, ∂4

Z9
4
a = −

1
4 S4

a , ∂5
Z9

4
a = −

1
3∂Z S4

a at Z = 0,

limZ→∞94
a = 0,

where
S4

a = −(Z∂Z − 4)(2∂2
x ∂

2
Z9

2
a + ∂4

x9
0
a ).

Therefore the Fourier transform of ∂4
z9

4
a , after a suitable lifting, is a solution of (3-4). The main difference

with the construction of 9 j
a for j ≤ 3 lies in the fact that ∂4

Z9
4
a is not fully determined. Indeed, we lack a

boundary condition on ∂k
Z9

4
a for some k ≥ 6. Once again, this phenomenon (a high-order corrector is

underdetermined) is quite common in multiscale problems. In fact it turns out that94
a could be determined

in a unique fashion if we were looking for a higher-order expansion (see Remark 3.8). In this case, we
should choose 94

bot so that ∂4
Z2

4
bot|Z=0 lifts the trace of 12θ |z=0. In the present case, since we merely

wish to close the first-order expansion, we simply further require that ∂8
Z9

4
a ||Z=0 = 0, so that the lifted

Fourier transform of ∂4
Z9

4
a satisfies the boundary conditions (i) of Lemma 3.2. We conclude that 94

a is
well-defined and satisfies the same estimates as 9 j

a for j ≤ 3. The details of the proof are left to the
reader.

3.4. Estimate of the remainder and conclusion. At this stage, we have constructed θBL such that, for
all t ≥ 0,

θBL(t)|∂� = θ(t)|∂� = θ0|∂�,

∂nθ
BL(t)|∂� = ∂nθ(t)|∂� = ∂nθ0|∂�

and
∂tθ

BL
=1−2∂2

x θ
BL

+1−2∂x Tr + O(exp(−c(1 + t)
1
5 ) in L2,

where Tr = Ttop + Tbot and
Tbot :=

[∑
j≥5
(1 + t)−

j
48

j
bot(x, (1 + t)

1
4 z)χ(z)

]
,

with a similar expression for Ttop. According to Lemma 3.6,

∥1−2∂x Tr∥L2 ≲ ∥θ0∥H s (1 + t)−2, ∥∂t1
−2∂x Tr∥L2 ≲ ∥θ0∥H s (1 + t)−3.

Furthermore,
∥1−2∂x Tr∥H4 ≲ ∥∂x Tr∥L2 ≲ ∥θ0∥H s (1 + t)−

5
4

for some finite (and computable) index s > 0. Therefore θ int
= θ − θBL solves

∂tθ
int

= ∂2
x1

−2θ int
−1−2∂x Tr + O(exp(−c(1 + t)

1
5 ),

and θ int
= ∂nθ

int
= 0 on ∂�. We first apply Lemma 2.4 to 12θ int and find that ∥12θ int(t)∥L2 ≲ ∥θ0∥H s for

all t ≥ 0, for some finite s. From there, we apply Proposition 2.6 to ∂2
x θ

int with α = 0, and we deduce that
∥∂2

x θ
int(t)∥L2 ≲ ∥θ0∥H s (1 + t)−1. As in Section 2, estimates on ψ int can be obtained by deriving bounds

on ∂tθ
int. More precisely, applying Proposition 2.6 to ∂tθ

int, we find that ∥∂tθ
int(t)∥L2 ≲ ∥θ0∥H s (1 + t)−2,

and therefore ∥∂2
x1

−2θ int
∥L2 ≲ ∥θ0∥H s (1 + t)−2. This completes the proof of Theorem 1.2.
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Remark 3.8 (construction of an approximation at any order). Since 12θ solves the same equation as θ ,
one can easily iterate this construction. More precisely, if θ0 ∈ H 4k, it can be proved that there exist
sequences of profiles (2 j

bot,2
j
top)0≤ j≤4k such that the following result holds:

θ(t, x)=

4k∑
j=1
(1 + t)−

j
4 [2

j
bot(x, (1 + t)

1
4 z)χ(z)+2 j

top(x, (1 + t)
1
4 (1 − z))χ(z − 1)] + θ j

rem(t)

and

∥θ j
rem(t)∥L2 ≲

1
(1 + t)k

, ∥θ j
rem(t)∥H4k ≲ 1.

For instance, the role of 24 j
bot is to lift the trace of 12 jθ at z = 0, the one of 24 j+1

top is to lift the one of
∂z1

2 jθ at z = 1, etc.
The details of the construction are very similar to the ones of the profiles 2 j

a for 0 ≤ j ≤ 3 above and
are left to the reader.

3.5. Proof of Lemma 3.6. We first define a function f1 such that

∂4
Z f1 = f,

and ∂k
Z f1(+∞) = 0 for 0 ≤ k ≤ 3. Note that the exponential decay assumption on f ensures that f1

exists, and f1 ∈ W 4,∞
∩ H 4. Moreover, for 0 ≤ m1,m2 ≤ 4,

|∂m1
x ∂

m2
Z f1(x, Z)| ≤ C exp(−cZ

1
5 ),

with possibly different constants C and c. Setting Z = (1 + t)1/4z, we infer that

12((1 + t)−1 f1(x, Z)χ(z)
)
= f (x, Z)χ(z)+ 2(1 + t)−

1
2 ∂2

x ∂
2
Z f1(x, Z)χ(z)

+ (1 + t)−1∂4
x f1(x, Z)χ(z)+ O(exp(−ct

1
5 )) in L2,

where the term O(exp(ct1/5)) stems from the commutator-involving derivatives of χ (see Lemma 3.5).
Note that ∂2

x ∂
2
Z f1 satisfies the same decay assumptions as f , and therefore we can lift it by another

corrector f2 such that

∂4
Z f2 = −2∂2

x ∂
2
Z f1,

i.e., ∂2
Z f2 = −2∂2

x f1. Therefore

12(((1 + t)−1 f1(x, Z)+ (1 + t)−
3
2 f2(x, Z)

)
χ(z)

)
= f (x, Z)χ(z)+ O((1 + t)−1) in H−2.

The only remaining issue lies in the fact that f1, f2 and their normal derivatives do not vanish on the
boundary. Hence we set ai (x)= fi (x, 0), bi (x)= ∂Z fi (x, 0), and we add a corrector

f3(t, x, z) := −
∑

i=1,2
(1 + t)−

i−1
2 (ai (x)+ z(1 + t)

1
4 bi (x))χ(z).

Now

12(((1+t)−1 f1(x, Z)+(1+t)−
3
2 f2(x, Z)

)
χ(z)+(1+t)−1 f3

)
= f (x, Z)χ(z)+O((1+t)−

3
4 ) in H−2,
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and for k = 0, 1

∂k
z
(
((1 + t)−1 f1(x, Z)+ (1 + t)−

3
2 f2(x, Z))χ(z)+ (1 + t)−1 f3

)
|∂� = 0.

It follows that(
(1+t)−1 f1(x, Z)+(1+t)−

3
2 f2(x, Z)

)
χ(z)+(1+t)−1 f3 =1−2( f (x, Z)χ(z))+O((1+t)−

3
4 ) in H 2.

Let us now prove that when
∫

∞

0 Z2 f ( · , Z) dZ =
∫

∞

0 Z3 f ( · , Z) dZ = 0, we gain an additional factor
(1 + t)−1/4. It can be easily checked that

f1|Z=0 =
1
6

∫ ∞

0
Z3 f ( · , Z) dZ = 0,

∂Z f1|Z=0 = −
1
2

∫ ∞

0
Z2 f ( · , Z) dZ = 0.

Hence, with the notation above, a1 = b1 = 0 and therefore f3 = O((1 + t)−1/4). With the same
arguments, we infer that(
(1+t)−1 f1(x, Z)+(1+t)−

3
2 f2(x, Z)

)
χ(z)+(1+t)−1 f3=1−2( f (x, Z)χ(z))+O((1+t)−1) in H 2. □

Remark 3.9. Note that the first statement of Lemma 3.6 provides a better decay of the H−2 norm, but the
second one requires less horizontal derivatives on f . In the next section, we will also use the following
variant: Assume that there exists a sequence (γk)k∈Z such that

f (x, Z)=
∑

k∈Z\{0}

γkeikxϕ(|k|
1
2 Z),

where ϕ ∈ C∞(R) decays like C1 exp(−cZ4/5). Then, following the previous computations,

f1(x, Z)=
∑

k∈Z\{0}

|k|
−2γkeikxϕ(−4)(|k|

1
2 Z),

f2(x, Z)= 2
∑

k∈Z\{0}

|k|
−1γkeikxϕ(−6)(|k|

1
2 Z),

where ∂m
Z ϕ

(−m)
= ϕ, and ϕ(−m)(+∞)= 0. Hence

∥1−2( f (x, (1 + t)
1
4 z)χ(z))∥L2 ≲ C1

( ∑
k∈Z\{0}

|k|
2
|γk |

2
)1

2
(1 + t)−

3
4 .

4. Long-time boundary layers in the nonlinear setting: proof of Theorem 1.3

We now go back to the long-time analysis of (1-7) when θ ′

0 = ∂nθ
′

0 = 0 on ∂�. We recall (see Theorem 1.1)
that in this case θ ′(t) converges towards zero in H s for all s < 4 as t → ∞.

A natural question is to investigate whether the algebraic decay rate provided by Theorem 1.1 can be
improved, possibly at the cost of a stronger regularity requirement on the initial data. In other words,
if we assume that θ0 ∈ H s with s large, can we prove a uniform H s bound on a solution, and thereby a
higher decay estimate on θ ′?
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As explained in the Introduction and in Section 2, such a result does not follow immediately from an
induction argument. Indeed, the traces of 12θ ′ and of ∂n1

2θ ′ do not vanish on the boundary (even when
the traces of 12θ ′

0 and of ∂n1
2θ ′

0 do), and therefore we cannot apply Proposition 2.6 to 12θ ′.
However, it turns out that when ∂2

z θ̄0|∂� = 0, we can use (a variant of) the linear analysis of Section 3
to analyze the long-time behavior of 12θ ′. In other words, in this case, there are boundary layers in the
vicinity of the boundary, but they are driven by a linear mechanism. Theorem 1.3 will follow.

To that end, the strategy is to consider the equation satisfied by 12θ ′. As we have seen previously, the
structure of the equation is overall the same. The main difference lies in the fact that the traces of 12θ ′

and ∂n1
2θ ′ do not vanish on the boundary, which makes the situation rather close to the one described in

Theorem 1.2. Following the methodology of the previous section, we may lift them thanks to a corrector
which remains linear at main order. Modifying slightly the bootstrap argument from Section 2 in order
to account for these boundary layers, we eventually prove Theorem 1.3, or rather the following more
precise version:

Proposition 4.1. There exists a universal constant ε0 such that the following statement holds. Let
θ0 ∈ H 14(�) such that θ0|∂� = ∂nθ0|∂� = 0, and ∂2

z θ̄0|∂� = 0. Assume that ∥θ0∥H14 ≤ ε0.
There exists a boundary layer profile θBL

∈ L∞

loc(R+, H 9(�)), given by

θBL
=

4∑
j=0
(1 + t)−1−

j
4 (2

j
bot(x, Zbot)+2

j
top(x, Z top)),

where Zbot = z(1+ t)1/4, Z top = (1−z)(1+ t)1/4, and2 j
a ∈ H 9(T×R+), such that the following estimates

hold on θ rem
:= θ ′

− θBL for all t ≥ 0:

∥∂4
x θ

rem(t)∥L2 ≲ ∥θ0∥H14(1 + t)−2,

∥∂2
x1

2θ rem(t)∥L2 ≲ ∥θ0∥H14(1 + t)−1,

∥14θ rem(t)∥L2 ≲ ∥θ0∥H14,

∥∂6
x1

−2θ rem(t)∥L2 ≲ ∥θ0∥H14(1 + t)−3.

Remark 4.2. Note that the assumptions of Proposition 4.1 are slightly weaker than the ones of Theorem 1.3.
Indeed, we do not require that θ0 ∈ H 3

0 , but rather that θ0 ∈ H 2
0 and ∂2

z θ̄0 = 0. According to Lemma 2.1,
these properties are propagated by the equation. Using the notation of Section 2 and setting G = ∂z θ̄ , we
infer that G and ∂zG vanish at z = 0 and z = 1.

4.1. General strategy. Following the same strategy as in Section 3, we look for an ansatz for θ ′ as a sum
of a boundary layer part θBL, whose role is to lift the trace of 12θ ′ and ∂n1

2θ ′ on the boundary, and an
interior part θ int, which vanishes at a high order on the boundary, and for which we will therefore be able
to prove better decay estimates. Let us give a few additional details on these two parts:

• As in the previous section, the boundary layer term will be defined as an asymptotic expansion in
powers of (1 + t)−1/4, and the width of the boundary layers will also be (1 + t)−1/4. The different terms
of the expansion will be constructed recursively: the main-order terms will lift the traces of 12θ ′ and
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∂n1
2θ ′ (or rather, their limits as t → ∞), and the next-order terms will correct error terms generated by

the first-order ones. The precise construction of the boundary layer is the purpose of Section 4.4 below.

• In fact, 12θ rem
= 12(θ ′

− θBL) is not identically zero on the boundary, but it is of order (1 + t)−1.
Hence we construct additional small correctors θc, σNL

lift , which handle the remaining traces and part of
the error term.

• Thanks to the design of the boundary layer, the remaining interior part θ int
= θ rem

−θc −σNL
lift is such that

θ int
= ∂nθ

int
=12θ int

= ∂n1
2θ int

= 0 on ∂�.

As a consequence, 14θ int satisfies assumptions that are similar to those of Lemma 2.4, and it is reasonable
to expect that ∥14θ int

∥L2 remains uniformly bounded. Applying Proposition 2.6 first to ∂2
x1

2θ int, and
then to ∂4

x θ
int, we infer that ∥∂2

x1
2θ int

∥L2 = O((1 + t)−1) and ∥∂4
x θ

int
∥L2 = O((1 + t)−2). We will use

a bootstrap argument to propagate these bounds; the corresponding argument is described in Section 4.5.

Before constructing θBL and proving the decay estimates on θ int, some preliminary (and somewhat
technical) steps are in order. The traces of 12θ ′ and ∂n1

2θ ′ need to be decomposed as an asymptotic
expansion in powers of (1 + t)−1/4, in order to identify the relevant boundary conditions for the terms in
the expansion of θBL. This is performed in Lemma 4.9 below, whose proof involves some high-regularity
bounds on θ . This is the main reason for the requirement θ0 ∈ H 14 from Theorem 1.3. As a consequence,
the organization of the rest of this section is the following. In Section 4.2, we prove some quantitative H s

bounds (s ≤ 14) on θ ′ under our bootstrap assumption. In Section 4.3, we provide a decomposition of
12θ ′

|∂� and ∂n1
2θ ′

|∂� under the bootstrap assumption. The main results of each section are given in
the beginning of the corresponding section. The reader wishing to avoid the technicalities may jump to
Section 4.4, in which we construct the boundary layer, using the decomposition of Section 4.3 together
with arguments from Section 3. Eventually, we close the bootstrap argument in Section 4.5.

Let us now introduce the bootstrap assumption that will be used throughout this section. We shall
decompose θ ′ as θ ′

= θBL
+ θ rem. As explained above, the remainder θ rem does not satisfy 12θ rem

|∂� =

∂n1
2θ rem

|∂�= 0, and therefore θ rem will be further decomposed into a sum of correctors and an interior
term.

The term θBL will take the form

θBL
=

1
1+t

2top(x, (1 + t)
1
4 (1 − z))+ 1

1+t
2bot(x, (1 + t)

1
4 z)+ l.o.t., (4-1)

with boundary layer profiles 2top,2bot such that

∥2a∥H9(T×R+)
≤ B

for some constant B > 0. Note that the amplitude of the boundary layer term θBL is O((1+ t)−1), whereas
we recall that the amplitude of the boundary layer term in Section 3 was O(1) (compare (4-1) with (1-6)).
This is directly linked to the fact that θ ′

|∂� = ∂nθ
′
|∂� = 0 in this section, while these quantities were

nonzero in Section 3. However we keep the same notation for the sake of simplicity.
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The remainder term θ rem will satisfy the bootstrap assumptions

sup
t∈[0,T ]

(1 + t)2∥∂4
x θ

rem(t)∥L2 + ∥14θ rem(t)∥L2 ≤ B,

sup
t∈[0,T ]

(1 + t)3∥∂t∂
4
x θ

rem(t)∥L2 + (1 + t)3∥∂5
xψ

rem
∥L2 ≤ B,

(4-2)

where ψ rem
=1−2∂xθ

rem.
As a consequence, our bootstrap assumptions on θ ′ read as follows:

∀t ∈ (0, T ), ∀k ∈ {4, . . . , 8}, ∥∂k
x θ

′
∥L2 ≤ B(1 + t)−

9
8 + B(1 + t)

k−8
2 ,

∀t ∈ (0, T ), ∀k ∈ {0, . . . , 8}, ∥∂k
z θ

′
∥L2 ≤ B(1 + t)−

9
8 +

k
4 , ∥∂4

x1
2θ ′

∥L2 ≤ B,

∀t ∈ (0, T ), ∥∂5
xψ(t)∥L2 ≤ B(1 + t)−

17
8 .

(4-3)

Note that these assumptions imply in particular that for 0 ≤ k ≤ 3

∥ψ∥W k,∞ ≲ B(1 + t)−
17
8 +

k+1
4 ∀t ∈ [0, T ]. (4-4)

Let us prove inequality (4-4) in the case k = 3 (the other cases are treated in a similar fashion and left to
the reader.) By the Gagliardo–Nirenberg–Sobolev inequality,

∥ψ∥W 3,∞ ≲ ∥ψ∥

1
5
L2∥ψ∥

4
5
H5 + ∥ψ∥L2 .

By (4-3), ∥ψ∥L2 ≲ ∥∂5
xψ∥L2 ≲ B(1 + t)−17/8, while

∥∂5
zψ∥L2 ≲ ∥∂z∂xθ

′
∥L2 ≲ ∥∂2

x θ
′
∥

1
2
L2∥∂

2
z θ

′
∥

1
2
L2 ≲ B(1 + t)−

7
8 .

Estimate (4-4) follows.
We also infer from (4-3) some interpolated inequalities (which may be suboptimal when compared to

the bootstrap assumption on ∂4
x1

2θ ′, depending on the values of k, ℓ): for all k, ℓ≥ 0 such that k + ℓ≤ 8,
we have

∥∂k
x ∂
ℓ
z θ

′
∥L2 ≤ ∥∂k+ℓ

x θ ′
∥

k
k+ℓ

L2 ∥∂k+ℓ
z θ ′

∥

ℓ
k+ℓ

L2 ≲ B(1 + t)−
9
8 +

ℓ
4 + B(1 + t)

k
2 +

ℓ
4 −4 k

k+ℓ
−

9
8

ℓ
k+ℓ . (4-5)

4.2. High regularity bounds under the bootstrap assumption. The purpose of this subsection is to
prove the following estimates, which are the analogue of Lemma 2.13 in higher regularity (see also
Remark 2.18):

Lemma 4.3. Let θ = θ ′
+ θ̄ be a solution of (1-7), and assume that θ0 ∈ H 14 satisfies the assumptions

of Theorem 1.3. Let T > 0 be such that the bounds (4-3) hold on (0, T ) for some constant B ∈ (0, 1).
Assume furthermore that ∥θ0∥H14 ≤ B. Then, for all t ∈ [0, T ],

∥θ̄ (t)∥H6 ≲ B, ∥θ̄ (t)∥H9 ≲ B(1 + t)
1
2 , ∥θ∥H14 ≲ B(1 + t)

5
2 ,

∥∂8
x1

2θ ′
∥L2 ≲ B, ∥∂10

x θ
′
∥L2 ≲ B(1 + t)−1, ∥∂10

x ψ∥L2 ≲ B(1 + t)−2.

Proof. First, recalling that
∂t θ̄ = −∇⊥ψ · ∇θ ′
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and using the bootstrap assumptions (4-3) and (4-4) together with the tame estimates (2-15), we infer that

∥∂t∂
6
z θ̄∥L2 ≲ B2(1 + t)−

5
4 ,

and thus ∥θ̄ (t)∥H6 ≲ ∥θ0∥H6 + B2 ≲ B. A similar argument also shows that ∥θ̄ (t)∥H7 ≲ B + B2 ln(1+ t).
Let us then compute the equation satisfied by ∂10θ , where ∂ ∈ {∂x , ∂z}. We have

∂t∂
10θ + u · ∇∂10θ = ∂10∂xψ − [∂10, u · ∇]θ.

Multiplying by ∂10θ and integrating by parts, we obtain

d
dt

∥∂10θ∥L2 ≤ 2∥∂10∂xψ∥L2 + 2∥[∂10, u · ∇]θ∥L2 .

Using the bootstrap assumptions (4-3), we have

∥∂10∂xψ∥L2 ≲ B(1 + t)
3
8 ∀t ∈ [0, T ].

As for the commutator term, using the tame estimates (2-16) together with the identity u = ∇
⊥ψ , we

obtain, for any k ≥ 5,

∥[∂k, u · ∇]θ∥L2 ≲ ∥ψ∥W 2,∞∥θ∥H k + ∥∂zψ∥H k ∥∂xθ∥∞ + ∥∂xψ∥H k ∥∂zθ∥∞

≲ B(1 + t)−
11
8 ∥θ∥H k + ∥∂xθ∥H k−3∥∂xθ∥∞ + ∥∂2

x θ∥H k−4∥∂zθ∥∞. (4-6)

In particular, using the estimates (4-5), we get, for k = 10,

∥[∂10, u · ∇]θ∥L2 ≲ B(1 + t)−
11
8 ∥θ∥H10 + B2(1 + t)

3
8 .

Assuming that B < 1, we obtain

d
dt

∥θ∥H10 ≲ B(1 + t)
3
8 + B(1 + t)−

11
8 ∥θ∥H10 .

The Gronwall lemma then ensures that

∥θ(t)∥H10 ≲ ∥θ0∥H10 + B(1 + t)
11
8 ≲ B(1 + t)

11
8 . (4-7)

We then use the same strategy to estimate ∥∂2
x1

4θ∥L2 . The linear term in the right-hand side is now

∂3
x1

4ψ = ∂4
x1

2θ ′
= O(B) in L2.

The only difference in the treatment of the commutator term lies in the bound of terms of the form
∂2

zψ∂
3
x ∂

7
z θ

′. For those, we use our first estimate on ∥θ∥H10 (4-7) together with the bootstrap assumptions
(4-3) (see in particular (4-4), (4-5)), and we obtain

∥∂2
zψ∂

3
x ∂

7
z θ

′
∥L2 ≲ ∥∂2

zψ∥∞∥θ ′
∥H10 ≲ B2(1 + t)−

11
8 +

11
8 ≲ B2.

It follows that
d
dt

∥∂2
x1

4θ∥L2 ≲ B + B(1 + t)−
11
8 ∥∂2

x1
4θ∥L2,

and therefore ∥∂2
x1

4θ∥L2 ≲ B(1 + t). The next step is to prove that supt∈[0,T ] ∥∂
6
x1

2θ ′
∥L2 ≲ B.

To that end, we check that ∂6
x1

2θ ′ satisfies the assumptions of Lemma 2.4. The source term is
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S = u · ∇∂6
x1

2θ ′
+ [∂6

x1
2, u · ∇]θ . Classically, the first term is orthogonal to θ ′. It is therefore sufficient

to bound the commutator. The terms involving θ̄ can be treated as perturbations of the dissipation term
∥∂7

x1θ
′
∥

2
L2, and therefore we focus on [∂6

x1
2, u · ∇]θ ′. First, note that

∥(∇⊥∂6
x1

2ψ) · ∇θ ′
∥L2 ≤ ∥∇θ ′

∥∞∥∇∂7
x θ

′
∥L2 ≲ B(1 + t)−

3
4 ∥∂7

x1θ
′
∥L2 .

The other terms can be estimated thanks to the bootstrap assumptions together with the preliminary
bounds on ∥θ∥H10 and ∥∂2

x1
4θ∥L2 . We obtain

∥[∂6
x1

2, u · ∇]θ∥L2 ≲ B(1 + t)−1−δ
∥∂6

x1
2θ ′

∥L2 + B2(1 + t)−1−δ
+ B(1 + t)−

1
2 −δ

∥∂7
x1θ

′
∥L2

for some δ > 0. The details are left to the reader. Using a Cauchy–Schwarz inequality, it follows that

d
dt

∥∂6
x1

2θ ′
∥

2
L2 + c∥∂7

x1θ
′
∥

2
L2 ≲ B2(1 + t)−1−δ

+ B(1 + t)−1−δ
∥∂6

x1
2θ ′

∥
2
L2 .

The Gronwall lemma then implies that supt∈[0,T ] ∥∂
6
x1

2θ ′
∥L2 ≲ ∥θ0∥H10 + B2 ≲ B.

We then follow the same strategy to obtain bounds on ∥θ∥H12 , ∥∂4
x1

4θ∥L2 and ∥∂8
x1

2θ∥L2 . We have

d
dt

∥θ∥H12 ≲ ∥∂2
x θ

′
∥H8 + ∥[∂12, u · ∇]θ∥L2 .

The first term in the right-hand side is bounded by B(1 + t). The commutator is estimated thanks to (4-6)
together with the bootstrap assumptions and our preliminary bounds on derivatives up to order 10. We
obtain ∥θ(t)∥H12 ≲ B(1 + t)2. We then write

∂t∂
4
x1

4θ ′
+ u · ∇∂4

x1
4θ ′

= ∂6
x1

2θ ′
− [∂4

x1
4, u · ∇]θ.

The first term in the right-hand side is bounded by C B in L2. We then check that the nonlinear term can be
treated perturbatively, using the bounds on θ ′ obtained so far, and we infer that ∥∂4

x1
4θ ′(t)∥L2 ≲ B(1+ t).

Once again, we then use Lemma 2.4 in order to prove that ∥∂8
x1

2θ ′(t)∥L2 ≲ B and that

d
dt

∥θ(t)∥H14 ≲ B(1 + t)−1−δ
∥θ(t)∥H14 + B(1 + t)

3
2 .

The computations are very similar to the ones above, are left to the reader, and lead to the estimate of
∥θ(t)∥H14 .

The last step is to prove additional decay on ∥∂10
x θ

′
∥L2 and ∥∂11

x ψ∥L2 . Setting S = −∂10
x (u · ∇θ ′), we

can decompose S into S = S∥ + S⊥ + S1, with S⊥ = u · ∇∂10
x θ

′, and

S1 := −

∑
k≤6

(10
k

)
∂z∂

10−k
x ψ∂k+1

x θ +

∑
k≤5

(10
k

)
∂11−k

x ψ∂k
x ∂zθ,

S∥ := −

∑
7≤k≤9

(10
k

)
∂z∂

10−k
x ψ∂k+1

x θ +

∑
6≤k≤9

(10
k

)
∂11−k

x ψ∂k
x ∂zθ,

so that

∥S∥∥L2 ≲ B2(1 + t)−2
+ B(1 + t)−1−δ

∥∂10
x θ∥L2, ∥S1∥L2 ≲ B(1 + t)−

1
2 ∥∂10

x 1ψ∥L2 .
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Hence for B sufficiently small, S satisfies the assumptions of Proposition 2.6, and we obtain

∥∂10
x θ

′(t)∥L2 ≲ B(1 + t)−1.

Differentiating the equation on ∂9
x θ with respect to time, we get

∂t∂t∂
9
x θ

′
= (1 − G)∂t∂

10
x ψ − ∂t∂

9
x (u · ∇)θ ′

− ∂t G∂10
x ψ.

Estimating the norm of each term in the right-hand side and using Proposition 2.6, we obtain, for all
t ∈ [0, T ],

∥∂t∂
9
x θ

′(t)∥L2 ≲
1

(1 + t)2
(

sup
s∈[0,T ]

(1 + s)∥∂s∂
7
x1

2θ ′(s)∥L2 + B2).
Writing

∂t∂
7
x1

2θ ′
= ∂9

x θ
′
− ∂7

x1
2(u · ∇θ),

we find that ∥∂t∂
7
x1

2θ ′
∥L2 ≲ B(1 + t)−1, and thus ∥∂t∂

9
x θ

′
∥L2 ≲ B(1 + t)−2. Going back to the equation

on ∂9
x θ

′, we find that
∂10

x ψ = ∂t∂
9
x θ

′
+ ∂9

x (∇
⊥ψ · ∇θ)= O((1 + t)−2) in L2.

Finally, plugging these estimates into the equation on θ̄ leads to the desired bound on ∥θ̄∥H9 . □

Let us now prove a useful (albeit technical) result concerning the trace of ∂3
z θ

′:

Corollary 4.4. Under the assumptions of Lemma 4.3, for all t ∈ [0, T ],

∥∂3
z θ

′
|z=0∥H33/4(T) ≲ B(1 + t)−

1
8 .

The same estimate holds for the trace at z = 1.

Proof. Using Theorem 3.1 in Chapter 1 of [Lions and Magenes 1968],

∥∂3
z θ

′
|z=0∥H s(T) ≲ ∥θ ′

∥

1
8

Hβ
x L2

z
∥∂4

z θ
′
∥

7
8
Hγ

x L2
z
,

where 1
8β +

7
8γ = s. Taking β = 10 and γ = 8 and using the bounds of Lemma 4.3, we obtain the desired

result. □

4.3. Decomposition of the traces of 12θ ′ and ∂n1
2θ ′. The role of the boundary layer is to lift the traces

of 12θ ′ and ∂n1
2θ ′ on the boundary. Therefore we first need to prove that these traces converge towards

a (generically nontrivial) limit. In fact, we will even need to have a rather precise asymptotic expansion
of the traces in powers of (1 + t)−1/4. This is the main purpose of this section.

The first result of this section concerns the long-time behavior of 12θ ′
|∂� and ∂n1

2θ ′
|∂�:

Lemma 4.5 (long-time behavior of ∂k
z1

2θ ′
|∂� and of ∂2+k

z G(t)|∂�, k = 0, 1). For k = 0, 1, let

γ k
top(t, x) := ∂k

z1
2θ ′(t, x, z=1), γ k

bot(t, x) := ∂k
z1

2θ ′(t, x, z=0).

Assume that θ0 ∈ H 14(�) and θ0 = ∂nθ0 = 0 on ∂�, ∂2
z θ̄0 = 0 on ∂�. Let T > 0, B ∈ (0, 1) such that

the bootstrap assumptions (4-3) hold on [0, T ]. Assume furthermore that ∥θ0∥H14 ≤ B. Then there exist
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universal constants B0, δ > 0 and functions γ 0
a,T ∈ H 9(T), γ 1

a,T ∈ H 8(T) such that if B ≤ B0,

∥γ 0
a,T ∥H9(T) ≲ ∥θ0∥H14 + B2 and ∥γ 0

a (t)− γ
0
a,T ∥H9(T) ≲ B2 1

(1+t)δ
∀t ∈ [0, T ],

∥γ 1
a,T ∥H8(T) ≲ ∥θ0∥H14 + B2 and ∥γ 1

a (t)− γ
1
a,T ∥H8(T) ≲ B2 1

(1+t)δ
∀t ∈ [0, T ].

In a similar fashion, for k = 2, 3, a ∈ {top, bot}, there exists gk
a,T ∈ R such that

|gk
a,T | ≲ ∥θ0∥H14 + B2 for k ∈ {2, 3},

|g2
bot,T − ∂2

z G(t, 0)| ≲ B2

(1+t)
3
4

∀t ∈ [0, T ),

|g3
bot,T − ∂3

z G(t, 0)| ≲ B2

(1+t)
1
2

∀t ∈ [0, T ).

The same estimates hold for gk
top,T − ∂k

z G(t, 1).

The proof of Lemma 4.5 is postponed to the end of this section.
The second intermediate result of this section pushes further the decomposition of γ k

a (t). It holds
under additional structural assumptions on θBL and θ rem

= θ ′
− θBL. More precisely, let us assume that

there exist profiles 2 j
a , 9 j

a such that

θBL(t, x, z)=

4∑
j=0
(1 + t)−1−

j
4
(
2

j
bot(x, (1 + t)

1
4 z)+2 j

top(x, (1 + t)
1
4 (1 − z))

)
,

ψBL(t, x, z)=

4∑
j=0
(1 + t)−2−

j
4
(
9

j
bot(x, (1 + t)

1
4 z)+9 j

top(x, (1 + t)
1
4 (1 − z))

)
,

(4-8)

where there exists a universal constant c > 0 such that, for all Z0 ≥ 0,

∥2 j
a∥H9(T×(Z0,+∞)) + ∥9 j

a ∥H11(T×(Z0,+∞)) ≲ (∥θ0∥H14 + B2) exp(−cZ
4
5
0 ). (4-9)

In the course of the proof, we shall also need the following assumption:

∂2
Z2

j
a|Z=0 ∈ H 7(T), ∂3

Z2
j
a|Z=0 ∈ H

15
2 (T). (4-10)

Remark 4.6. The profiles 2 j
a , 9 j

a are not the same as the ones of Section 3. However we kept the same
notation for convenience.

Definition 4.7 (definition of γ j,k
a ). Let 2 j

a, 9
j

a be the boundary layer profiles from (4-8), with a ∈

{top, bot}, j ∈ {0, . . . , 4}.
Let ηbot = 1 and ηtop = −1. We then define the following coefficients:

γ 0,2
a = 12g2

a,T ∂x∂
2
Z9

0
a |Z=0,

γ 0,3
a = 8g2

a,T ∂x∂
2
Z9

1
a |Z=0 −

4
3ηa[∂

4
Z {90

a ,2
0
a}x,Z ]

′

|Z=0,

γ 1,1
a = 40ηag2

a,T ∂x∂
3
Z9

0
a |Z=0,

γ 1,2
a = 20(ηag2

a,T ∂x∂
3
Z9

1
a |Z=0 + g3

a,T ∂x∂
2
Z9

0
a |Z=0)+ 2[∂5

Z {90
a ,2

0
a}x,Z ]

′

|Z=0,

(4-11)
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where { · , · }x,Z denotes the Poisson bracket

{ f, g}x,Z = ∂x f ∂Z G − ∂Z f ∂x g.

Remark 4.8. The bounds (4-9) ensure that ∥γ
j,k

a ∥H5(T) ≲ B2. We shall actually derive stronger regularity
estimates in the course of the proof, as we construct explicitly the profiles 2 j

a and 9 j
a .

Lemma 4.9 (decomposition of γ k
a ). Assume that θ0 ∈ H 14(�) and θ0 = ∂nθ0 = 0 on ∂�, ∂2

z θ̄0 = 0
on ∂�. Let T > 0, B ∈ (0, 1) such that ∥θ0∥H14(�) ≤ B and such that the bootstrap assumptions (4-3)
hold on [0, T ]. Assume furthermore that there exist profiles 2 j

a, 9
j

a satisfying (4-9) and (4-10) such that
θ rem

= θ ′
− θBL satisfies (4-2), where θBL is defined by (4-8). Define the coefficients γ j,k

a by (4-11).
Then for j = 0, 1, a ∈ {top, bot}, there exists 0 j

a,T ∈ W 1,∞((0, T ); L2(T)) such that for all t ∈ [0, T ],

γ 0
a (t)= γ 0

a,T + γ 0,2
a (1 + t)−

1
2 + γ 0,3

a (1 + t)−
3
4 +00

a,T (t)− γ
0,2
a (1 + T )−

1
2 − γ 0,3

a (1 + T )−
3
4 ,

γ 1
a (t)= γ 1

a,T + γ 1,1
a (1 + t)−

1
4 + γ 1,2

a (1 + t)−
1
2 +01

a,T (t)− γ
1,1
a (1 + T )−

1
4 + γ 1,2

a (1 + T )−
1
2 .

where, for all t ∈ [0, T ], for j = 0, 1, ℓ= 0, 1, 2,

∥∂ℓt 0
j
a,T (t)∥L2(T) ≲ B2(1 + t)−1−ℓ+

j
4 , ∥0

j
a,T (t)∥H4(T) ≲ B2(1 + t)−

23
24 +

j
4 .

Let us now prove Lemmas 4.5 and 4.9.

Proof of Lemma 4.5. We have
∂

∂t
12θ ′

= (1 − G)∂2
x θ

′
− 4∂zG∂z∂

3
xψ − 2∂2

z G∂3
xψ

−

4∑
k=1

(4
k

)
∂k

z G∂x∂
4−k
z ψ +12(∂zψ∂xθ

′)′ −12(∂xψ∂zθ
′)′. (4-12)

We now take the trace of the above equation at z = 0, recalling that G|z=0 = ∂zG|z=0 = 0 (see Lemma 2.1),
ψ |z=0 = ∂zψ |z=0 = 0, and θ ′

|z=0 = ∂zθ
′
|z=0 = 0. We obtain

d
dt
γ 0

bot = −6∂2
z G|z=0∂x∂

2
zψ |z=0 + 6(∂3

zψ |z=0∂x∂
2
z θ

′
|z=0)

′
+ 4(∂2

zψ |z=0∂x∂
3
z θ

′
|z=0)

′

− 6(∂x∂
2
zψ |z=0∂

3
z θ

′
|z=0)

′
− 4(∂x∂

3
zψ |z=0∂

2
z θ

′
|z=0)

′. (4-13)

We then estimate each term in the right-hand side using Lemma 4.3. Note that ∂2
z G|z=0 is bounded

in L∞(R+ × (0, 1)). We focus on the first term, which has the smallest decay. Using Theorem 3.1 in
Chapter 1 of [Lions and Magenes 1968], we infer that, for any s > 0,

∥∂x∂
2
zψ |z=0∥H s ≤ ∥∂2

zψ |z=0∥H s+1 ≲ ∥ψ∥

3
8

Hβ
x L2

z
∥∂4

zψ∥

5
8
Hγ

x L2
z
,

where β, γ are such that 3
8β +

5
8γ = s + 1. Let us choose β = γ = 10, s = 9. According to Lemma 4.3,

∥ψ∥H10
x L2

z
≲ B(1 + t)−2. As for the other term, using the short-hand notation from Section 2,

∥∂4
zψ∥H10

x L2
z
≲ ∥θ∥H11

x L2
z
≲ ∥θ∥

1
2
H10

x L2
z
∥θ∥

1
2
H12

x L2
z︸ ︷︷ ︸

1
2 ×1+

1
2 ×0

≲ B(1 + t)−
1
2 .

Hence
∥∂x∂

2
zψ |z=0∥H9 ≲ B(1 + t)−

17
16 .
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The quadratic terms, involving traces of derivatives of ψ and of θ ′, have a higher decay. Let us estimate
for instance ∂3

zψ∂x∂
2
z θ

′ at z = 0. We have, for any s > 1
2 ,

∥∂3
zψ |z=0∂x∂

2
z θ

′
|z=0∥H s(T) ≲ ∥∂3

zψ |z=0∥L∞(T)∥∂x∂
2
z θ

′
|z=0∥H s(T) + ∥∂3

zψ |z=0∥H s(T)∥∂x∂
2
z θ

′
|z=0∥L∞(T).

Using once again Theorem 3.1 in Chapter 1 of [Lions and Magenes 1968], we find that

∥∂x∂
2
z θ

′
|z=0∥L∞(T) ≲ ∥θ ′

∥

11
16
H4

x L2
z
∥∂8

z θ
′
∥

5
16
L2

x L2
z
≲ B(1 + t)−

1
2 ,

and we recall that ∥ψ∥W 3,∞ ≲ B(1 + t)−9/8 (see (4-4)). The same arguments together with Lemma 4.3
also imply

∥∂x∂
2
z θ

′
|z=0∥H19/2(T) ≲ ∥θ ′

∥

3
8
H12

x L2
z
∥∂4

z θ
′
∥

5
8
H8

x L2
z
≲ ∥∂8

x1
2θ ′

∥L2 ≲ B,

while
∥∂3

zψ |z=0∥H s(T) ≲ ∥ψ∥

1
8

L2
z Hβ

x
∥∂4

zψ∥

7
8
L2

z Hγ
x
≲ ∥ψ∥

1
8

L2
z Hβ

x
∥θ ′

∥

7
8

L2
z Hγ+1

x
, (4-14)

with 1
8β +

7
8γ = s. Taking β = 10 and γ = 9, we obtain, for some s > 9,

∥∂3
zψ |z=0∂x∂

2
z θ

′
|z=0∥H s(T) ≲ B2(1 + t)−

9
8 .

The other terms are treated in a similar fashion. We infer that there exists δ > 0 such that∣∣∣ d
dt

∥γ 0
a (t)∥H9(T)

∣∣∣ ≲ B2

(1 + t)1+δ
∀t ∈ (0, T ).

This completes the proof of the estimate on γ 0
a .

The estimate for γ 1
a follows from a similar argument. Taking the vertical derivative of (4-12), we have

∂

∂t
∂z1

2θ ′
= (1 − G)∂z∂

2
x θ

′

−

3∑
k=1

(3
k

)
∂k

z G∂3−k
z ∂3

xψ −

5∑
k=1

(5
k

)
∂k

z G∂x∂
5−k
z ψ + ∂z1

2(∂zψ∂xθ
′)′ −12(∂xψ∂zθ

′)′.

Taking the trace of the above equation at z = 0, we obtain

d
dt
γ 1

bot = −10∂2
z G|z=0∂x∂

3
zψ |z=0 − 10∂3

z G|z=0∂x∂
2
zψ |z=0

+ 6∂2
x (∂

2
zψ |z=0∂x∂

2
z θ

′
|z=0 − ∂x∂

2
zψ |z=0∂

2
z θ

′
|z=0)

+ 10(∂3
zψ |z=0∂x∂

3
z θ

′

z=0 + ∂4
zψz=0∂x∂

2
z θ

′
|z=0)

′
+ 5(∂2

zψ |z=0∂x∂
4
z θ

′

z=0)
′

− 10(∂x∂
3
zψ |z=0∂

3
z θ

′
|z=0 + ∂x∂

4
zψz=0∂

2
z θ

′
|z=0)

′
− 5(∂x∂

2
zψ |z=0∂

4
z θ

′
|z=0)

′.

The highest-order term is the first one. We recall that ∂2
z G and ∂3

z G are uniformly bounded by C B in L∞,
and that the trace of ∂3

zψ in H 9 is evaluated thanks to (4-14). Once again, the quadratic terms have a
higher decay and can be handled as perturbations. The trace of ∂4

z θ
′
|z=0 can estimated thanks to γ 0

bot. We
then obtain, for some δ > 0, ∣∣∣ d

dt
∥γ 1

a (t)∥H8(T)

∣∣∣ ≲ B2

(1 + t)1+δ
∀t ∈ (0, T ),

and the desired estimate for γ 1
a follows.
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Let us now address the convergence of ∂k
z G(t)|∂� as t → ∞. We recall that

∂t∂
k
z G(t, z=0)= −∂k+1

z u · ∇θ ′|z=0 = ∂k+1
z ∂zψ∂xθ ′ − ∂xψ∂zθ ′|z=0.

Since ψ |z=0 = ∂nψ |z=0 = 0 and θ ′
|z=0 = ∂nθ

′
|z=0 = 0, we have

∂t∂
2
z G(t, z=0)= 3∂2

zψ |z=0∂x∂2
z θ

′|z=0 − ∂x∂2
zψ |z=0∂2

z θ
′|z=0.

As above,

∥∂2
zψ |z=0∂x∂

2
z θ

′
|z=0∥L1(T) ≤ ∥∂2

zψ |z=0∥L2(T)∥∂x∂
2
z θ

′
|z=0∥L2(T)

≲ ∥∂2
zψ∥H1/2(�)∥∂x∂

2
z θ

′
∥H1/2(�) ≲ B2(1 + t)−

7
4 .

The estimate on ∂t∂
3
z G(t, z=0) is similar and left to the reader. □

We now turn towards the decomposition of γ 0
a and γ 1

a for a ∈ {top, bot}:

Proof of Lemma 4.9. We focus on a = bot by symmetry, and we start with the decomposition of γ 0
bot.

Let us go back to (4-13). The main term in the right-hand side is −6∂2
z G|z=0∂x∂

2
zψ |z=0. Following

Lemma 4.5 and using the decomposition θ ′
= θBL

+ θ rem, we write

∂2
z G|z=0∂x∂

2
zψ |z=0 = (1 + t)−

3
2 g2

bot,T ∂x∂
2
Z9

0
bot|Z=0 + (1 + t)−

7
4 g2

bot,T ∂x∂
2
Z9

1
bot|Z=0

+
∑
j≥2
(1 + t)−

3
2 −

j
4 ∂2

z G|z=0∂x∂
2
Z9

j
bot|Z=0

+
∑

j=0,1
(1 + t)−

3
2 −

j
4 (∂2

z G|z=0 − g2
bot,T )∂x∂

2
Z9

j
bot|Z=0

+ ∂2
z G|z=0∂x∂

2
zψ

rem
|z=0 + O(B2 exp(−c(1 + t)

1
5 ),

where the exponentially small term comes from the traces of derivatives of 9 j
top evaluated at Z = (1+ t)1/4.

The assumptions of the lemma and the bootstrap inequalities (4-2) ensure that, for all t ∈ [0, T ],∥∥∥∑
j≥2
(1 + t)−

3
2 −

j
4 ∂2

z G|z=0∂x∂
2
Z9

j
bot|Z=0

∥∥∥
L2(T)

≲ B2(1 + t)−2,

∥∂2
z G|z=0∂x∂

2
zψ

rem
|z=0∥L2(T) ≲ ∥∂2

z G∥∞∥∂xθ
rem

∥L2 ≲ B2(1 + t)−2.

Furthermore, Lemma 4.5 ensures that for all t ∈ (0, T )

|∂2
z G|z=0 − g2

bot,T | ≲ B2(1 + t)−
3
4 ,

and therefore ∥∥∥ ∑
j=0,1

(1 + t)−
3
2 −

j
4 (∂2

z G|z=0 − g2
bot,T )∂x∂

2
Z9

j
bot|Z=0

∥∥∥
L2(T)

≲ B3(1 + t)−
9
4 .

We now address the quadratic terms in (4-13), namely

B(ψ, θ ′) := 6{∂2
zψ, ∂

2
z θ

′
}
′
|z=0 + 4(∂2

zψ∂x∂
3
z θ

′
− ∂x∂

3
zψ∂

2
z θ

′)′|z=0.

Decomposing ψ and θ ′ into their boundary layer and their remainder part, we find that the main-order
quadratic term is

(1 + t)−
7
4
[
6∂3

Z9
0
bot∂x∂

2
Z2

0
bot + 4∂2

Z9
0
bot∂x∂

3
Z2

0
bot − 6∂x∂

2
Z9

0
bot∂

3
Z2

0
bot − 4∂x∂

3
Z9

0
bot∂

2
Z2

0
bot

]′
∣∣
z=0

=: (1 + t)−
7
4 γ 0

bot,NL,

while all the other terms are bounded in L2(T) by C B2(1 + t)−2.
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Defining γ 0, j
a by (4-11), we find that

∂t(γ
0,2
bot (1 + t)−

1
2 )= −6(1 + t)−

3
2 g2

bot,T ∂x∂
2
Z9

0
bot|Z=0,

∂t(γ
0,3
bot (1 + t)−

3
4 )= −6(1 + t)−

7
4 g2

bot,T ∂x∂
2
Z9

1
bot|Z=0 + (1 + t)−

7
4 γ 0

bot,NL,

where we recognize the main terms in −6∂2
z G|z=0∂x∂

2
zψ |z=0. Now, define 00

bot,T by

00
bot,T (t)= 6

∫ T

t

∑
j≥2
(1 + s)−

3
2 −

j
4 ∂2

z G(s)|z=0∂x∂
2
Z9

j
bot|Z=0 ds

+ 6
∫ T

t

∑
j=0,1

(1 + s)−
3
2 −

j
4 (∂2

z G(s)|z=0 − g2
bot,T )∂x∂

2
Z9

j
bot|Z=0 ds

+

∫ T

t
B
( 4∑

j=1
(1 + s)−2−

j
49

j
bot(x, Zbot)+ψ

rem, θ ′(s)
)

ds

+

∫ T

t
B
(
(1 + s)−290

bot(x, Zbot),
4∑

j=1
(1 + s)−1−

j
42

j
bot(x, Zbot)+ θ

rem
)

ds

+ O(B2 exp(−c(1 + t)
1
4 )).

The last — exponentially small — term comes once again from the trace of 9 j
top at the lower boundary,

i.e., at Z = (1 + t)1/4. We do not write its full expression for the sake of readability.
Note that the assumptions (4-2) on θ rem ensure that

∥∂3
z θ

rem
|z=0∥L2 ≲ ∥θ rem

∥

9
16
L2 ∥∂8

z θ
rem

∥

7
16
L2 ≲ B(1 + t)−

9
8 .

Recalling Corollary 4.4 and using the assumption ∂3
Z2

j
a|Z=0 ∈ H 15/2(T) (see (4-10)), we also infer that

∥∂3
z θ

rem
|z=0∥H15/2 ≲ B(1 + t)−

1
8 .

Interpolating between these two estimates, we find in particular that

∥∂3
z θ

rem
|z=0∥H5 ≲ B(1 + t)−

11
24 .

The above estimates ensure that for k = 0, 1

∥∂k
t 0

0
bot,T (t)∥L2(T) ≲ B2(1 + t)−k−1,

∥00
bot,T (t)∥H4(T) ≲ B2(1 + t)−

23
24 .

Therefore we obtain the decomposition announced in the lemma for γ 0
a .

The decomposition of γ 1
a follows from similar arguments and is left to the reader. □

4.4. Iterative construction of the boundary layer profile. Let us now turn towards the construction of the
boundary layer profile, and more generally, of an approximate solution. The purpose of this subsection is
to prove the two following lemmas. Our first result, which is truly the core of the construction, is valid
under the bootstrap assumption (4-3) on θ ′:

Lemma 4.10. Let θ0 ∈ H 14(�) such that ∥θ0∥H14 ≤ B < 1, and θ0|∂� = ∂nθ0|∂� = 0, ∂2
z θ̄0|∂� = 0.

Let θ = θ̄ + θ ′ be a solution of (1-7), and assume that the bounds (4-3) hold on (0, T ). Let γ 0
a,T , γ 1

a,T
be defined by Lemma 4.5.
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Then there exist profiles 2 j
a ∈ H 8(T × R+), 9

j
a ∈ H 9(T × R+), j ∈ {0, . . . , 4} and a corrector

θc ∈ H 9(�), depending only on γ 0
a,T , γ

1
a,T , g2

a,T and g3
a,T , such that, defining θBL by (4-8), γ j

a,T by
Lemma 4.5 and γ j,k

a by (4-11), the following properties hold:

(1) Bounds on the profiles: 2 j
a , 9 j

a satisfy (4-9).

(2) Bound on the corrector: setting ψc =1−2∂xθc,

sup
t∈[0,T ]

(
∥∂x1

4θc(t)∥L2 + (1 + t)2∥∂5
x θc(t)∥L2

)
≲ ∥θ0∥H14 + B2,

sup
t∈[0,T ]

(
(1 + t)3(∥∂t∂

4
x θc(t)∥ +∥∂5

xψc(t)∥L2)
)
≲ ∥θ0∥H14 + B2.

(3) Traces at the top and bottom: at z = 0,

12(θBL
+θc)|z=0 = γ 0

bot,T +γ
0,2
bot (1+t)−

1
2 +γ

0,3
bot (1+t)−

3
4 −γ

0,2
bot (1+T )−

1
2 −γ

0,3
bot (1+T )−

3
4 , (4-15)

∂z1
2(θBL

+θc)|z=0 = γ 1
bot,T +γ

1,1
bot,(1+t)−

1
4 +γ

1,2
bot (1+t)−

1
2 −γ

1,1
bot (1+T )−

1
4 −γ

1,2
bot (1+T )−

1
2 . (4-16)

Similar formulas hold at z = 1.

(4) Evolution equation: θBL
+ θc satisfies

∂t(θ
BL

+ θc)= (1 − G)∂2
x1

−2(θBL
+ θc)− (∇

⊥1−2∂x(θ
BL

+ θc) · ∇(θ
BL

+ θc))
′
+ RBL,

and the remainder RBL is such that, for ℓ= 0, 1, for all t ∈ [0, T ],

∥∂ℓt ∂
4
x RBL

∥L2 ≲ B2(1 + t)−3−ℓ, ∥∂2
x1

2 RBL
∥ ≲ B2(1 + t)−2, ∥14 RBL

∥L2 ≲ B2(1 + t)−
9
8 .

Remark 4.11. The reader may compare formulas (4-15), (4-16) with the ones from Lemma 4.9. The
terms 0 j

a,T are lifted neither by the boundary layer term θBL nor by the corrector θc, and an additional
corrector will be built to handle them; see Lemma 4.13 below.

Remark 4.12. Actually, all profiles 2 j
a, 9

j
a , and therefore θBL, ψBL, depend on T through γ 0

a,T , γ
1
a,T .

However, in order not to burden unnecessarily the notation, we will omit this dependency in the present
section. The dependency will be restored in Section 4.5 when we perform the final bootstrap argument.

Once the boundary layer part is constructed, under an additional bootstrap assumption on the remainder,
we can define a nonlinear corrector:

Lemma 4.13. Let θ0 ∈ H 14(�) such that ∥θ0∥H14 ≤ B < 1, and θ0|∂� = ∂nθ0|∂� = 0, ∂2
z θ̄0|∂� = 0.

Let θ = θ̄ + θ ′ be a solution of (1-7), and assume that the bounds (4-3) hold on (0, T ).
Let θBL, ψBL be given by Lemma 4.10, and let θ rem

= θ ′
− θBL. Assume that (4-2) holds on (0, T ), and

define 0 j
a,T as in Lemma 4.9.

Then there exists σNL
lift ∈ H 8(�) such that

12σNL
lift |z=0 = 00

bot,T , ∂z1
2σNL

lift |z=0 = 01
bot,T ,

12σNL
lift |z=1 = 00

top,T , ∂z1
2σNL

lift |z=1 = 01
top,T
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and, for all t ∈ [0, T ],

∥14σNL
lift ∥L2 ≲ B2(1 + t)−

1
12 , ∥∂2

x1
2σNL

lift ∥L2 ≲ B2(1 + t)−1+
1
64 , ∥∂4

xσ
NL
lift ∥L2 ≲ B2(1 + t)−2.

As a consequence, setting θ app
:= θBL

+ θc + σNL
lift , we have

12θ app
=12θ ′, ∂n1

2θ app
= ∂n1

2θ ′ on ∂�.

Furthermore θ app is a solution of

∂tθ
app

= (1 − G)∂2
x1

−2θ app
− (∇⊥1−2∂xθ

app
· ∇θ app)′ + Srem,

and the remainder Srem is such that, for all k,m ≥ 0 with k + m ≤ 8,

∥∂ℓt ∂
4
x Srem∥L2 ≲ B2(1 + t)−3−ℓ, ∥∂2

x1
2Srem∥ ≲ B2(1 + t)−2, ∥14Srem∥L2 ≲ B2(1 + t)−

9
8 .

The main part of this section will be devoted to the proof of Lemma 4.10. The strategy will be very
similar to the one of Section 3, and we will often refer the reader to the computations therein. We
begin with the construction of the profiles 2 j

a , 9 j
a

1. To that end, we plug the ansatz (4-8) into (1-7) and
identify the powers of 1 + t in the vicinity of z = 0 or z = 1. Note that for z ≪ 1 and t ∈ [0, T ], setting
Z = (1 + t)1/4z and using Lemma 4.5,

G(t, z)=
1
2∂

2
z G(t, 0)z2

+
1
6∂

3
z G(t, 0)z3

+ O(z4)

=
1
2(1 + t)−

1
2 g2

bot,T Z2
+

1
6(1 + t)−

3
4 g3

bot,T Z3
+ O((1 + t)−1 Z4

+ (1 + t)−
5
4 (Z2

+ Z3)). (4-17)

A similar expansion holds in the vicinity of z = 1. Furthermore, in the vicinity of z = 0, setting
S = −(∇⊥ψ · ∇θ ′)′ and assuming that (4-2) holds,

S =
∑

0≤i, j≤4
(1 + t)−3−

i+ j−1
4 (∂Z9

i
bot∂x2

j
bot − ∂x9

i
bot∂Z2

j
bot)

′
+ O((1 + t)−

15
4 ) in L2.

Following the computations of the previous section and identifying the coefficient of (1 + t)−2− j/4, we
obtain, for j ∈ {0, . . . , 3} (compare with (3-8)),

−
(
1 +

1
4 j

)
2 j

a +
1
4 Z∂Z2

j
a = ∂x9

j
a + S j

a , (4-18)

where the source terms S j
a are defined by

S0
a = S1

a = 0,

S2
a = −

1
2 g2

a,T Z2∂x9
0
a ,

S3
a = −

1
2 g2

a,T Z2∂x9
1
a − ηa

1
6 g3

a,T Z3∂x9
0
a + ηa(∂Z9

0
a∂x2

0
a − ∂x9

0
a∂Z2

0
a)

′,

(4-19)

with ηbot = 1, ηtop = −1.
Let us now proceed to define recursively the profiles 2 j

a, 9
j

a .

1We recall that these profiles are different from the ones constructed in Section 3, in spite of a similar notation.
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Main order boundary layer terms: 20
a and 21

a. The role of the boundary layer profiles 2 j
a for j = 0, 1

is to correct the traces of 12θ ′ and ∂z1
2θ ′ on ∂� at main order, i.e., γ j

a,T (see Lemma 4.9). Choosing
9

j
a such that ∂4

Z9
j

a = ∂x2
j
a for j = 0, 1 and recalling (4-18), we are led to
Z∂5

Z2
0
a = 4∂2

x2
0
a in T × (0,+∞),

∂4
Z2

0
a|Z=0 = γ 0

a,T , ∂5
Z2

0
a|Z=0 = 0,

20
a|Z=0 = 0, ∂Z2

0
a|Z=0 = 0, limZ→∞20

a = 0

and 
Z∂6

Z2
1
a = 4∂2

x ∂Z2
1
a in T × (0,+∞),

∂4
Z2

1
a|Z=0 = 0, ∂5

Z2
1
a|Z=0 = ηaγ

1
a,T ,

21
a|Z=0 = 0, ∂Z2

1
a|Z=0 = 0, limZ→∞21

a = 0.

Note that these systems are identical to (3-2) and (3-3) respectively. As a consequence, as in the previous
section (see (3-5)), we find that

20
a(x, Z)=

∑
k∈Z\{0}

|k|
−2γ̂ 0

a,T (k)χ0(|k|
1
2 Z)eikx ,

90
a (x, Z)=

∑
k∈Z\{0}

1
ik|k|2

γ̂ 0
a,T (k)

[ 1
4 |k|

1
2 Zχ ′

0(|k|
1
2 Z)−χ0(|k|

1
2 Z)

]
eikx ,

(4-20)

where χ0 is defined in Corollary 3.3. Since ∥γ 0
a,T ∥H9 ≲ ∥θ0∥H14 + B2 according to Lemma 4.5, it follows

that
∥20

a∥H11
x L2

Z
+ ∥20

a∥L2
x H22

Z
≲ ∥θ0∥H14 + B2,

∥90
a∥H12

x L2
Z
+ ∥90

a∥L2
x H24

Z
≲ ∥θ0∥H14 + B2.

In a similar fashion, recalling the definition of χ1 from Corollary 3.3 (see also (3-6)),

21
a(x, Z)= ηa

∑
k∈Z\{0}

|k|
−

5
2 γ̂ 1

a,T (k)χ1(|k|
1
2 Z)eikx ,

91
a (x, Z)= ηa

∑
k∈Z\{0}

1

ik|k|
5
2

γ̂ 1
a,T (k)

[ 1
4 |k|

1
2 Zχ ′

1(|k|
1
2 Z)− 5

4χ1(|k|
1
2 Z)

]
eikx .

(4-21)

Since ∥γ 1
a,T ∥H8 ≲ ∥θ0∥H14 + B2, we also have

∥21
a∥H21/2

x L2
Z
+ ∥21

a∥L2
x H21

Z
≲ ∥θ0∥H14 + B2,

∥91
a∥H23/2

x L2
Z
+ ∥91

a∥L2
x H23

Z
≲ ∥θ0∥H14 + B2.

Let us now define the boundary terms γ 0, j
a and γ 1, j

a by (4-11). It follows from the above expressions for
9

j
a and 2 j

a and from the boundary conditions χ0(0)= χ ′

0(0)= 0 that

∥γ 0,2
a ∥H10(T) ≲ B2, ∥γ 0,3

a ∥H17/2(T) ≲ B2,

∥γ 1,1
a ∥H19/2(T ) ≲ B2, ∥γ 1,2

a ∥H8(T) ≲ B2.
(4-22)
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In a similar fashion, defining the source terms S2
a , S3

a by (4-19), we have

∥S2
a∥H12

x L2
Z
+ ∥S2

a∥L2
x H24

Z
≲ B2,

∥S3
a∥H10

x L2
Z
+ ∥S3

a∥L2
x H20

Z
≲ B2.

(4-23)

Note however that because of the quadratic term {90
a ,2

0
a}x,Z , S3

a does not have the same self-similar
structure as 9 j

a ,2
j
a for j = 0, 1, which is also shared by S2

a .

Correctors 20
c,a and 21

c,a. We recall that the coefficients γ j,k
a are defined by (4-11), and are estimated

in (4-22) above. The terms γ 0,2
a (1 + T )−1/2 and γ 0,3

a (1 + T )−3/4 in Lemma 4.9 are constant in time, but
smaller (for T ≫ 1) than γ 0

a,T . Hence they give rise to a profile 20
c,a whose construction is very similar

to the one of 20
a , but whose size is much smaller. More precisely, we set

20
c,a(x, Z)=

∑
k∈Z\{0}

|k|
−2[γ̂ 0,2

a (k)(1 + T )−
1
2 + γ̂ 0,3

a (k)(1 + T )−
3
4
]
χ0(|k|

1
2 Z)eikx ,

21
c,a(x, Z)= ηa

∑
k∈Z\{0}

|k|
−

5
2
[
γ̂ 1,1

a (k)(1 + T )−
1
4 + γ̂ 1,2

a (1 + T )−
1
2
]
χ1(|k|

1
2 Z)eikx .

Remembering (4-22), we have, for j = 0, 1,

∥2 j
c,a∥H21/2

x L2
Z
+ ∥2 j

c,a∥L2
x H21

Z
≲ B2(1 + T )−

1
2 +

j
4 ,

∥∂2
Z2

j
c,a|Z=0∥H19/2(T) ≲ B2(1 + T )−

1
2 +

j
4 .

Analogously to 90
a and 91

a , we also define

90
c,a =

∑
k∈Z∗

1
ik|k|2

[
γ̂ 0,2

a (k)(1 + T )−
1
2 + γ̂ 0,3

a (k)(1 + T )−
3
4
](1

4ξχ
′

0(ξ)−χ0(ξ)
)
|ξ=|k|1/2 Z eikx ,

91
c,a = ηa

∑
k∈Z∗

1

ik|k|
5
2

[
γ̂ 1,1

a (k)(1 + T )−
1
4 + γ̂ 1,2

a (1 + T )−
1
2
](1

4ξχ
′

1(ξ)−χ1(ξ)
)
|ξ=|k|1/2 Z eikx ,

so that ∂4
Z9

j
c,a = ∂x2

j
c,a , and we have

∥9 j
c,a∥H23/2

x L2
Z
+ ∥9 j

c,a∥L2
x H23

Z
≲ B2(1 + T )−

1
2 +

j
4 .

Lower-order boundary layer terms: 22
a, 23

a and 22
c,a. We recall that 2 j

a , 9 j
a must satisfy (4-18), where

the source term S j
a is given by (4-19). Note that since 90

a , 91
a and 20

a have been constructed in the
previous step, the source terms S2

a and S3
a are defined unequivocally and have exponential decay. Moreover,

following Lemma 4.9 and noting that

12θBL
|z=0 =

3∑
j=0

(1 + t)−
j
4 ∂4

Z2
j
bot|Z=0 + 2

3∑
j=0

(1 + t)−
1
2 −

j
4 ∂2

x ∂
2
Z2

j
bot|Z=0 + O((1 + t)−1),

we enforce the following boundary conditions:

∂4
Z2

2
a|Z=0 = γ 0,2

a − 2∂2
x ∂

2
Z2

0
a|Z=0, ∂5

Z2
2
a|Z=0 = ηaγ

1,1
a − 2∂2

x ∂
3
Z2

0
a|Z=0,

∂4
Z2

3
a|Z=0 = γ 0,3

a − 2∂2
x ∂

2
Z2

1
a|Z=0, ∂5

Z2
3
a|Z=0 = ηaγ

1,2
a − 2∂2

x ∂
3
Z2

1
a|Z=0,

(4-24)
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where the coefficients γ j,k
a are defined in (4-11) and estimated in (4-22). There remains to specify the

relationship between 9 j
a and 2 j

a . In order that 12ψBL
= ∂xθ

BL at main order, following the computations
of the previous section (see in particular (3-9)), we take, for j = 2, 3,

∂4
Z9

j
a + 2∂2

x ∂
2
Z9

j−2
a = ∂x2

j
a.

Eliminating 92
a from the equation on 22

a , we find that the system satisfied by 22
a is

Z∂5
Z2

2
a − 2∂4

Z2
2
a = 4∂2

x2
2
a − 2g2

bot,T ∂
4
Z (Z

2∂x9
0
a )− 8∂3

x ∂
2
Z9

0
a ,

22
a|Z=0 = ∂Z2

2
a|Z=0 = 0,

22
a(Z)→ 0 as Z → ∞,

(4-25)

together with (4-24). Note that 2∂x∂
2
Z9

0
a|Z=0 = −∂2

Z2
0
a|Z=0 and 4∂x∂

3
Z9

0
a|Z=0 = ∂3

Z2
0
a|Z=0, so that the

boundary conditions are (once again) redundant. In other words, taking the trace of (4-25) at Z = 0, we
find ∂4

Z2
2
a|Z=0 = γ 0,2

a − 2∂2
x ∂

2
Z2

0
a|Z=0. Differentiating twice more with respect to Z , we find that the

Fourier transform of ∂2
Z2

2
a , after a suitable lifting, satisfies an equation of the form (3-4) with boundary

conditions of the type (iii) from Lemma 3.2. Using the explicit Fourier representation of 90
a and 20

a

(4-20), we find that

∥22
a∥H10

x L2
Z
+ ∥22

a∥L2
x H20

Z
≲ ∥θ0∥H14 + B2, ∥92

a∥H11
x L2

Z
+ ∥92

a∥L2
x H22

Z
≲ ∥θ0∥H14 + B2.

In a similar fashion, 23
a satisfies the system

Z∂5
Z2

3
a − 3∂4

Z2
3
a = 4∂2

x2
3
a + 4∂4

Z S3
a + 6∂2

x ∂
2
Z2

1
a − 2Z∂2

x ∂
3
Z2

1
a,

23
a|Z=0 = ∂Z2

3
a|Z=0 = 0,

23
a(Z)→ 0 as Z → ∞,

together with (4-24). Once again, we find that the lifted Fourier transform of ∂3
Z2

3
a satisfies an equation

of the form (3-4) with boundary conditions of the type (iv) from Lemma 3.2. Using the explicit Fourier
representation of 21

a (4-21) together with the estimates on S3
a (4-23), we find that

∥23
a∥H19/2

x L2
Z
+ ∥23

a∥L2
x H19

Z
≲ ∥θ0∥H14 + B2, ∥93

a∥H21/2
x L2

Z
+ ∥93

a∥L2
x H21

Z
≲ ∥θ0∥H14 + B2.

Note that the Fourier representation of 22
a and of the linear part of 23

a also ensure that, for j = 2, 3,

∥∂2
Z2

j
a|Z=0∥H8(T) + ∥∂3

Z2
j
a|Z=0∥H15/2(T) ≲ ∥θ0∥H14 + B2. (4-26)

Eventually, we define 22
c,a analogously to 22

a so that
Z∂5

Z2
2
c,a − 2∂4

Z2
2
c,a = 4∂2

x2
2
c,a − 8∂3

x ∂
2
Z9

0
c,a,

22
c,a|Z=0 = ∂Z2

2
c,a|Z=0 = 0,

∂
j
Z2

2
c,a|Z=0 = −2∂2

x ∂
j−2
Z 20

c,a|Z=0 ∀ j ∈ {4, 5},

22
c,a(x, Z)→ 0 as Z → ∞.
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Once again, note that the boundary conditions are redundant. We also define 92
c,a by ∂4

Z9
2
c,a =

∂x2
2
c,a − 2∂2

x ∂
2
Z9

2
c,a , with homogeneous boundary conditions at Z = 0. We obtain

∥22
c,a∥H9

x L2
Z
+ ∥22

c,a∥L2
x H18

Z
≲ B2(1 + T )−

1
2 ,

∥92
c,a∥H10

x L2
Z
+ ∥92

c,a∥L2
x H20

Z
≲ B2(1 + T )−

1
2 .

Boundary layer corrector 24
a. As in the previous section, we need to define a higher-order boundary

layer corrector 24
a , whose role is to ensure that

∥∂2
x1

−2θBL
− ∂xψ

BL
∥L2 ≲ B(1 + t)−3.

To that end, we choose 24
a , 94

a so that

∂4
Z9

4
a + 2∂2

x ∂
2
Z9

2
a + ∂4

x9
0
a = ∂x2

4
a,

Z∂Z2
4
a − 824

a = 4∂x9
4
a .

Eliminating 94
a from the equation, we find

Z∂5
Z2

4
a − 4∂4

Z2
4
a = 4∂2

x2
4
a − 8∂3

x ∂
2
Z9

2
a − 4∂5

x9
0
a .

We enforce the boundary conditions (which are redundant)

24
a|Z=0 = ∂Z2

4
a|Z=0 = 0, ∂4

Z2
4
a|Z=0 = 2∂3

x ∂
2
Z9

2
a |Z=0, ∂5

Z2
4
a|Z=0 =

8
3∂

3
x ∂

3
Z9

2
a |Z=0,

together with a decay assumption at infinity. Looking at the equation satisfied by the Fourier transform
and applying Lemma 3.2, we infer that there exists a (nonunique) solution 24

a of this equation such that

∥24
a∥H9

x L2
Z
+ ∥24

a∥L2
x H18

Z
≲ ∥θ0∥H14 + B2.

As in the previous section (see the discussion on page 1993), nonuniqueness comes from the fact that
the Fourier transform of ∂4

Z2
4
a satisfies an ODE of the form (3-4), with boundary conditions at Z = 0

for ∂4
Z2

4
a and ∂5

Z2
4
a . However, the boundary conditions above do not prescribe any condition on ∂k

Z2
4
a

for any k ≥ 6. We lift this indetermination by requiring (somewhat arbitrarily) that ∂8
Z2

4
a|Z=0 = 0. The

solution thus obtained satisfies the previous Sobolev estimates, and its trace satisfies

∥∂2
Z2

4
a|Z=0∥H8(T) + ∥∂3

Z2
4
a|Z=0∥H15/2(T) ≲ ∥θ0∥H14 + B2. (4-27)

Lift of the remaining traces of order B. At this stage, we have defined 2 j
a , 9 j

a for 0 ≤ j ≤ 4 together
with 2 j

c,a , 9 j
c,a for 0 ≤ j ≤ 2. Let χ ∈ C∞

c (R) be a cut-off function such that χ ≡ 1 on
(
−

1
4 ,

1
4

)
and

Suppχ ⊂
(
−

1
2 ,

1
2

)
. Setting 2 j

c,a = 9
j

c,a = 0 for j ≥ 3 and Zbot = (1 + t)1/4z, Z top = (1 + t)1/4(1 − z),
the main boundary layer term is given by

θBL
main :=

4∑
j=0
(1+t)−1−

j
4 (2

j
bot+2

j
c,bot)(x, Zbot)χ(z)+

4∑
j=0
(1+t)−1−

j
4 (2

j
top+2

j
c,top)(x, Z top)χ(1−z),

ψBL
main :=

4∑
j=0
(1+t)−2−

j
4 (9

j
bot+9

j
c,bot)(x, Zbot)χ(z)+

4∑
j=0
(1+t)−2−

j
4 (9

j
top+9

j
c,top)(x, Z top)χ(1−z).
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By construction, we have

12θBL
main|z=0 = γ 0

bot,T + γ 0
bot,2(1 + t)−

1
2 + γ 0

bot,3(1 + t)−
3
4 − γ 0

bot,2(1 + T )−
1
2 − γ 0

bot,3(1 + T )−
3
4

+ 2(1 + t)−
5
4 ∂2

x ∂
2
Z2

3
bot|Z=0 + 2(1 + t)−

3
2 ∂2

x ∂
2
Z2

4
bot|Z=0,

∂z1
2θBL

main|z=0 = γ 1
bot,T + γ 1

bot,1(1 + t)−
1
4 + γ 1

bot,2(1 + t)−
1
2 − γ 1

bot,1(1 + T )−
1
4 − γ 1

bot,2(1 + t)−
1
2

+ 2(1 + t)−1∂2
x ∂

3
Z2

3
bot|Z=0 + 2(1 + t)−

5
4 ∂2

x ∂
3
Z2

4
bot|Z=0.

Similar formulas hold at z = 1. Comparing with Lemmas 4.9 and 4.10, we see that we need to lift
the traces of ∂2

x ∂
k
Z2

j
a for k = 2, 3 and j ≥ 3. We lift these remaining traces thanks to a corrector σ lin

lift
which we define in Fourier space in the following way. Let ζ4, ζ5 ∈ C∞

c (R) such that ζ j (Z)= Z j/j ! in a
neighborhood of zero and such that Supp ζ j ⊂

(
−

1
4 ,

1
4

)
. In order to apply the last estimate of Lemma 3.6,

we further choose ζ j so that ∫ ∞

0
Z kζ j (Z) dZ = 0 ∀k ∈ {2, 3}. (4-28)

We then take

σ̂ lin
lift(t, k, z)= 2

∑
l≥3, j=0,1

(1 + t)−
3
2 −

j+l
4 |k|

−2− j
∧

∂
2+ j
Z 2l

bot(k)|Z=0 ζ4+ j (|k|z(1 + t)
1
4 )

+ 2
∑

l≥3, j=0,1
(1 + t)−

3
2 −

j+l
4 |k|

−2− j
∧

∂
2+ j
Z 2l

top(k)|Z=0 ζ4+ j (|k|(1 − z)(1 + t)
1
4 ),

so that
12σ lin

lift |z=0 = −2(1 + t)−
5
4 ∂2

x ∂
2
Z2

3
bot|Z=0 − 2(1 + t)−

3
2 ∂2

x ∂
2
Z2

4
bot|Z=0,

∂n1
2σ lin

lift |z=0 = −2(1 + t)−1∂2
x ∂

3
Z2

3
bot|Z=0 − 2(1 + t)−

5
4 ∂2

x ∂
3
Z2

4
bot|Z=0.

The estimates on the traces 2 j
a for j ≥ 2 (see (4-26), (4-27)) ensure that, for all k,m ≥ 0 such that

k + m ≤ 10,
∥σ lin

lift∥Hm
x H k

z
≲ (∥θ0∥H14 + B2)(1 + t)−2−

1
8 +

k
4 ,

∥∂tσ
lin
lift∥Hm

x H k
z
≲ (∥θ0∥H14 + B2)(1 + t)−3−

1
8 +

k
4 .

(4-29)

We define an associated corrector φlin
lift =1−2∂xσ

lin
lift . According to Lemma 3.6 and using (4-28), we have,

for all k,m ≥ 0 such that k + m ≤ 13,

∥φlin
lift∥Hm

x H k
z
≲ (∥θ0∥H14 + B2)(1 + t)−3−

1
8 +

k
4 ,

∥∂tφ
lin
lift∥Hm

x H k
z
≲ (∥θ0∥H14 + B2)(1 + t)−4−

1
8 +

k
4 .

(4-30)

Evaluation of the remainder. Let us now focus on the different remainder terms in the equation satisfied
by θBL

main, in view of defining one last linear corrector.

• Remainder stemming from the nonlinear term: Using Lemma 3.5 together with the estimates on 2 j
a ,

we have

∇
⊥ψBL

main · ∇θBL
main =

∑
0≤ j,k≤4

(1 + t)−3−
k+ j−1

4 {9
j

bot +9
j

c,bot,2
k
bot +2

k
c,bot}x,Z (x, Zbot)χ(z)

−
∑

0≤ j,k≤4
(1 + t)−3−

k+ j−1
4 {9

j
top +9

j
c,top,2

k
top +2k

c,top}x,Z (x, Z top)χ(1 − z)

+ O(exp(−c(1 + t)
1
5 )) in H 9(�).
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In the above expansion, we put aside the terms corresponding to k = j = 0, which are part of S3
a and are

lifted by 23
a . If j + k ≥ 1, we have, when 0 ≤ s + r ≤ 8,

∥{9
j

bot +9
j

c,bot,2
k
bot +2

k
c,top}x,Z (x, (1 + t)

1
4 z)χ(z)∥H r

x H s
z
≲ B2(1 + t)

s
4 −

1
8 ,

and the same estimate holds for the top boundary layer. We infer that

∇
⊥ψBL

main · ∇θBL
main = (1 + t)−

11
4 {90

bot,2
0
bot}x,Z (x, Zbot)χ(z)

− (1 + t)−
11
4 {90

top,2
0
top}x,Z (x, Z top)χ(1 − z)+ RNL,

where, for all r, s ≥ 0, r + s ≤ 8,

∥RNL∥H r
x H s

z
≲ B2(1 + t)−3+

s
4 −

1
8 .

Note in particular that ∥RNL∥H8 ≲ B2(1 + t)−1−δ with δ =
1
8 .

• Remainder stemming from the Taylor expansion of G: As explained in the construction of 22
a , 23

a ,
when defining the boundary layer term, we replaced G by its Taylor expansion in the vicinity of z = 0
and z = 1. Recalling (4-17), we have, in the vicinity of z = 0, setting Z = (1 + t)1/4z,

G∂xψ
BL
main =

1

2(1 + t)
1
2

g2
bot,T Z2∂xψ

BL
main +

1

6(1 + t)
3
4

g3
bot,T Z3∂xψ

BL
main + O((1 + t)−1(Z2

+ Z4)∂xψ
BL
main)

=
1

2(1 + t)
5
2

g2
bot,T Z2∂x9

0
bot(x, Z)χ(z)

+(1 + t)−
11
4
( 1

2 g2
bot,T Z2∂x9

1
bot(x, Z)+ 1

6 g3
bot,T Z3∂x9

0
bot(x, Z)

)
χ(z)+ RG,

where the first two terms enter the definition of 22
bot and 23

bot respectively, and the remainder term RG

satisfies
∥RG∥H r

x H s
z
≲ B2(1 + t)−3+

s
4 −

1
8 if 0 ≤ r + s ≤ 8.

• Remainder stemming from ψBL
−1−2∂xθ

BL: We now address the fact that 12ψBL
main is not equal to

∂xθ
BL
main. More precisely, using the definition of 9 j

a , we have, in �∩
{
z ≤

1
2

}
,

12ψBL
main − ∂xθ

BL
main = 2

∑
j=3,4

(1 + t)−2−
j−2
4 ∂2

x ∂
2
Z9

j
bot(x, (1 + t)

1
4 z)χ(z)

+
∑
j≥1
(1 + t)−2−

j
4 ∂4

x9
j

bot(x, (1 + t)
1
4 z)χ(z)

+ 2
∑

j=1,2
(1 + t)−2−

j−2
4 ∂2

x ∂
2
Z9

j
c,bot(x, (1 + t)

1
4 z)χ(z)

+
∑
j≥0
(1 + t)−2−

j
4 ∂4

x9
j

c,bot(x, (1 + t)
1
4 z)χ(z)

+ O(exp(−c(1 + t)
1
5 )) in H 8(�).

A similar expression holds in �∩
{
z ≥

1
2

}
, replacing bot with top and z with 1 − z. The exponentially

small remainder comes from the commutator of the bilaplacian with multiplication by χ (see Lemma 3.5),
and from the estimates on 9 j

a , 9 j
c,a . We now apply Lemma 3.6 and its variant Remark 3.9: more precisely,
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in order to avoid a high loss of horizontal derivatives, we apply the “self-similar version” from Remark 3.9
to the term involving ∂4

x9
1
⊥

, and the second statement from Lemma 3.6 to all other terms. We obtain

∂xψ
BL
main −1−2∂2

x θ
BL
main =: R12,

with

sup
t∈[0,T ]

(
(1 + t)3∥∂5

x R12∥L2 + (1 + t)2+
3
8 ∥∂3

x1
2 R12∥L2 + (1 + t)1+

3
8 ∥∂x1

4 R12∥L2
)
≲ B.

Note that the decay of this remainder is similar to the one of RNL and RG , but its order of magnitude
is B. Hence we call it a “linear” remainder. In order to simplify the forthcoming bootstrap argument, we
will lift it thanks to another (linear) corrector.

• Remainder stemming from σ lin
lift: Recalling (4-29), (4-30) and using a variant of Remark 3.9, we have,

setting Rc,lin = ∂tσ
lin
lift −1−2∂2

xσ
lin
lift , for k + m ≤ 10,

sup
t∈[0,T ]

(
(1 + t)3∥∂5

x Rc,lin∥L2 + (1 + t)2∥∂3
x1

2 Rc,lin∥L2 + (1 + t)
9
8 ∥∂x1

4 Rc,lin∥L2
)
≲ B.

Once again, Rc,lin is a linear remainder, and shall be lifted before the bootstrap argument of the next
subsection. We also have

∥G∂7
x1

−2σ lin
lift∥L2 ≲ B2(1 + t)−3.

In the remainders above, all terms of order B2(1 + t)−3 in L2 will be included in the remainder for
the interior part (see Section 4.5), while the terms of order B(1 + t)−3 will be lifted thanks to a linear
corrector σ R, which we now construct.

Definition of σ R. Let σ R be the solution of

∂tσ
R

= ∂2
x1

−2σ R
− R12 − Rc,lin, σ R(t = 0)= 0.

Note that ∂tσ
R
|∂� = ∂t∂nσ

R
|∂� = 0, and therefore σ R

|∂� = ∂nσ
R
|∂� = 0 for all t > 0. Applying 12 to

the above equation and taking the trace at z = 0, we have, using the identity (4-18)

∂t1
2σ R

|z=0 = −12(R12 + Rc,lin)|z=0

= −∂x1
2ψBL

main|z=0 − ∂t∂
4
z σ

lin
lift |z=0

= −2
∑
j≥3
(1 + t)−2−

j−2
4 ∂3

x ∂
2
Z9

j
bot|Z=0 + 2

∑
j≥3

1
4(2 + j)(1 + t)−2−

j−2
4 ∂2

x ∂
2
Z2

j
bot|Z=0 = 0.

Hence 12σ R
|z=0 = 0 for all t ∈ (0, T ). In a similar way, ∂z1

2σ R
|z=0 = 0 for all t ∈ (0, T ), and the same

properties hold at z = 1. Applying first Lemma 2.4 to ∂x1
4σ R, and then Proposition 2.6 to ∂3

x1
2σ R,

∂5
xσ

R, and ∂t∂
4
xσ

R , we infer
∥∂x1

4σ R
∥L2 ≲ ∥θ0∥H14 + B2,

∥∂3
x1

2σ R
∥L2 ≲ (∥θ0∥H14 + B2)(1 + t)−1,

∥∂5
xσ

R
∥L2 ≲ (∥θ0∥H14 + B2)(1 + t)−2,

∥∂t∂
4
xσ

R
∥L2 ≲ (∥θ0∥H14 + B2)(1 + t)−3,

∥∂6
x1

−2σ R
∥L2 ≲ (∥θ0∥H14 + B2)(1 + t)−3.
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Furthermore, looking at the expressions of R12 and Rc,lin and recalling the estimates on9 j
a , we can perform

similar estimates for zχ(z)∂zσ
R and (1 − z)χ(1 − z)∂zσ

R. For instance, estimating the commutators, we
find that

∂t1
4(zχ(z)∂zσ

R)=14(zχ(z)∂z∂
2
x1

−2σ R)−14(zχ(z)∂z(R12 + Rc,lin))

= ∂2
x1

2(zχ(z)∂zσ
R)+ [14, zχ(z)∂z]∂

2
x1

−2σ R
+ ∂2

x [zχ(z)∂z,1
2
]σ R

−14(zχ(z)∂z(R12 + Rc,lin)),

where

∥[14, zχ(z)∂z]∂
2
x1

−2σ R
∥L2 + ∥∂2

x [zχ(z)∂z,1
2
]σ R

∥L2 ≲ ∥∂2
x1

2σ R
∥L2 ≲ (∥θ0∥H14 + B2)(1 + t)−1,

∥14(zχ(z)∂z(R12 + Rc,lin))∥L2 ≲ (∥θ0∥H14 + B2)(1 + t)−
9
8 .

It follows that, for all t ∈ [0, T ],

∥14(zχ(z)∂zσ
R)∥L2 ≲ (∥θ0∥H14 + B2) ln(2 + t).

Conclusion. Let

θc := σ lin
lift + σ R

+ θBL
bot (χ(z)− 1)+ θBL

top (χ(1 − z)− 1), θBL
= θBL

bot + θBL
top ,

where

θBL
a =

4∑
j=0
(1 + t)−1−

j
4 (2 j

a +2 j
c,a)(x, Za), a ∈ {top, bot}.

Then (up to a redefinition of2 j
a +2

j
c,a as2 j

a), the bounds on the profiles2 j
a and the corrector θc, together

with the boundary conditions on θBL
+ θc announced in the statement of Lemma 4.10, are all satisfied.

Most of the remainder terms have already been evaluated. There only remains to evaluate the quadratic
terms involving σ lift

lin and σ R. We have for instance

∥∂2
x1

2(∇⊥ψBL
main) · ∇σ

R
∥H r

x H s
z
≲ B2(1 + t)−

3
4 (1 + t)−2+

1
4 ≲ B2(1 + t)−

5
2 .

For the H 8 estimate, we write, for z ≤
1
2 ,

∂xψ
BL
main∂zσ

R
=
∂xψ

BL
main

z
z∂zσ

R.

Both terms in the right-hand side belong to H 8, and we infer

∥∇
⊥ψBL

main · ∇σ R
∥H8 ≲ B2(1 + t)−

5
4 ln(2 + t).

The statement of Lemma 4.10 follows. □

Proof of Lemma 4.13. Assume that θ rem
= θ ′

− θBL satisfies (4-2), and define 0 j
a,T as in Lemma 4.9.

According to Lemma 4.9,
∥0

j
a,T (t)∥L2(T) ≲ B2(1 + t)−1+

j
4 ,

∥∂t0
j
a,T (t)∥L2(T) ≲ B2(1 + t)−2+

j
4 ,

∥0
j
a,T (t)∥H4(T) ≲ B2(1 + t)−

23
24 +

j
4 .
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We now lift these traces thanks to a corrector σNL
lift , whose definition is similar to the one of σ lin

lift , namely

σ̂NL
lift (t, k, z)=

∑
j=0,1

(1 + t)−1−
j
4 |k|

−4− j 0̂
j
bot,T (t, k)ζ4+ j (|k|z(1 + t)

1
4 )

+
∑

j=0,1
(1 + t)−1−

j
4 |k|

−4− j (−1) j 0̂
j
top,T (t, k)ζ4+ j (|k|(1 − z)(1 + t)

1
4 ),

where we recall that ζ j ∈ C∞
c (R), ζ(Z)= Z j/j ! in a neighborhood of zero, and ζ j satisfies (4-28).

It follows from the estimates on 0 j
a,T and from the formula defining σNL

lift that, for ℓ= 0, 1,

∥∂ℓt σ
NL
lift ∥Hm

x H k
z
≲ B2(1 + t)−2−ℓ+ k

4 −
1
8 if k + m ≤

9
2 ,

∥σNL
lift ∥H8(�) ≲ B2(1 + t)−

1
12 ,

∥zσNL
lift ∥H9(�∩{z≤ 1

2})
+ ∥(1 − z)σNL

lift ∥H9(�∩{z≥ 1
2})

≲ B2(1 + t)−
1
12 .

The function σNL
lift has been designed so that

12σNL
lift |z=0 = 00

bot(t), ∂n1
2σNL

lift |z=0 = 01
bot(t),

12σNL
lift |z=1 = 00

top(t), ∂n1
2σNL

lift |z=1 = 01
top(t).

Furthermore, according to Remark 3.9 and using (4-28), we have, for all k,m ≥ 0 such that k + m ≤ 8,

∥1−2σNL
lift ∥Hm

x H k
z
≲ B2(1 + t)−3−

1
8 +

k
4 ,

∥∂t1
−2σNL

lift ∥Hm
x H k

z
≲ B2(1 + t)−4−

1
8 +

k
4 .

The statement of Lemma 4.13 follows immediately from these estimates and Lemmas 4.9 and 4.10. □

4.5. Bootstrap argument for θ int. In this subsection, we complete the proof of Theorem 1.3 thanks to a
bootstrap argument (or rather, two nested bootstrap arguments). We start with an initial data θ0 ∈ H 14(�),
with ∥θ0∥H14(�) ≤ B and θ0 = ∂nθ0 = 0 on ∂�, ∂2

z θ̄0 = 0 on ∂�. We assume that B ≤ B0 < 1, where B0

is a small universal constant, so that Theorem 1.1 holds.
Let C ≥ 2 be a universal constant to be determined. We define

T1 = sup{T > 0 : (4-3) holds on (0, T ) with B1 = C∥θ0∥H14}.

By continuity, T1 > 0. For any T ∈ (0, T1), we define an associated boundary layer profile θBL
T (see

Lemma 4.10 and Remark 4.12) together with a corrector θc. We recall that there exists a universal
constant C1 such that, for all m, k ≥ 0 with k + m ≤ 8, for all T ∈ (0, T1), t ∈ [0, T ],

∥θBL
T (t)∥Hm

x H k
z

≤ C1(∥θ0∥H14 + B2
1 )(1 + t)−1+

k
4 −

1
8 ≤ 2C1∥θ0∥H14(1 + t)−1+

k
4 −

1
8 ,

provided C2 B0 ≤ 1. Similarly, for all t ∈ [0, T1],

(1 + t)2∥∂5
x θc∥L2 + ∥∂x1

4θc∥L2 + (1 + t)3∥∂t∂
4
x θc∥L2 + (1 + t)3∥∂5

xψc∥L2 ≤ 2C1∥θ0∥H14 .

We then introduce a new time

T2 = sup{T ∈ (0, T1) : θ
rem

= θ ′
− θBL

T satisfies (4-2) on (0, T ) with B2 = (2C + 3C1)∥θ0∥H14}. (4-31)
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On (0, T2), relying on Lemma 4.13, we construct an approximate solution θ app. We now set θ int
=

θ ′
− θ app

= θ rem
− θc − σNL

lift . Note that we can always choose ∥θ0∥H14 small enough so that for all
t ∈ (0, T2), for 0 ≤ k + m ≤ 8,

∥σNL
lift ∥Hm

x H k
z

≤ C∥θ0∥H14(1 + t)−2+
k
4 −

1
8 .

Consequently, θ int satisfies (4-2) with B3 = (3C+5C1)∥θ0∥H14 on (0, T2). Note that B j ≲ B for j =1, 2, 3.
Our goal is now to prove that T1 = T2 = +∞ for a suitable choice of C , provided ∥θ0∥H14 is sufficiently

small. To that end, we check that 12θ int satisfies the assumptions of Proposition 2.6.
By construction (see Lemma 4.13),

θ int
= ∂nθ

int
=12θ int

= ∂n1
2θ int

= 0 on ∂�.

Furthermore, defining the quadratic form

Q( f, g)= −(∇⊥1−2∂x f · ∇g)′,

we have, recalling Lemma 4.13,

∂tθ
int

= (1 − G)∂2
x1

−2θ int
+ S1

rem, (4-32)

where, recalling the definition of Srem from Lemma 4.13,

S1
rem = −Srem + Q(θ app

+ θ int, θ int)+ Q(θ int, θ app).

We claim that we have the following estimates on S1
rem:

Lemma 4.14 (estimates on S1
rem). Let T2 be defined by (4-31).

• L2 and H 4 estimates: for all t ∈ [0, T2),

∥∂4
x S1

rem(t)∥L2 ≲ B2 1
(1+t)3

, ∥∂2
x1

2S2
rem(t)∥L2 ≲ B2 1

(1+t)2
.

• H 8 estimate: there exist S2
∥
, S2

⊥
∈ L∞([0, T2), L2(�)) such that 14S1

rem(t)= S2
∥
+ S2

⊥
, with

∥S2
∥
(t)∥L2 ≲ B2 1

(1+t)
9
8

∀t ∈ [0, T2) and
∫
�

S2
⊥
(t)14θ int(t)= 0.

• Estimates on the time derivative: for all t ∈ [0, T2),

∥∂t∂
4
x S1

rem(t)∥L2 ≲ B2 1
(1+t)4

.

Proof. We estimate each term separately. The estimates on Srem have already been proved in the previous
subsection (see Lemma 4.13). Therefore we focus on the quadratic terms. It follows from the estimates
of Lemmas 4.10, 4.13 and from the bootstrap estimates (4-2) on θ rem that

∥∂4
x Q(θ app

+ θ int, θ int)∥L2 ≲ B2(1 + t)−3,

∥∂2
x1

2 Q(θ app
+ θ int, θ int)∥L2 ≲ B2(1 + t)−2.
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For the H 8 estimate, the situation is slightly different, because 14 Q(θ app
+ θ int, θ int) involves deriva-

tives of order 9 of θ int, for which we have no estimate. Therefore, as in Section 2, we decompose
14 Q(θ app

+ θ int, θ int) into two parts, writing

14 Q(θ app
+ θ int, θ int)= −(∇⊥1−2∂x(θ

app
+ θ int)) · ∇14θ int

− ∂8
z ∇⊥1−2∂x(θ app + θ int) · θ int − [14,∇⊥1−2∂x(θ

app
+ θ int) · ∇]θ int.

It can be easily checked that the term [14,∇⊥1−2∂x(θ
app

+ θ int) · ∇]θ int can be evaluated as above, and
we have

∥[14,∇⊥1−2∂x(θ
app

+ θ int) · ∇]θ int
∥L2 ≲ B2(1 + t)−2+

9
4 (1 + t)−2+

1
4 ≲ B2(1 + t)−

3
2 .

Furthermore, since ⟨14θ int(t, · , z)⟩ = 0 for all t, z,∫
�
∂8

z ∇⊥1−2∂x(θ app + θ int) · θ int14θ int
= 0.

Eventually, integrating by parts the remaining term,

−

∫
�

(
(∇⊥1−2∂x(θ

app
+ θ int)) · ∇14θ int)14θ int

=
1
2

∫
�

∇ ·
(
∇

⊥1−2∂x(θ
app

+ θ int)
)
|14θ int

|
2
= 0.

Therefore, setting

S2
⊥

= −∇
⊥1−2∂x(θ

app
+ θ int) · ∇14θ int

− ∂8
z ∇⊥1−2∂x(θ app + θ int) · θ int,

S2
∥

=14 Q(θ int, θ app)− [14,∇⊥1−2∂x(θ
app

+ θ int) · ∇]θ int,

we obtain the desired H 8 estimates.
We now need to estimate the time derivative of ∂4

x S1
rem in L2. Note that the definition of time T2 (see

(4-31)) ensures that
∥∂t∂

4
x θ

int(t)∥L2 ≲ B(1 + t)−3
∀t ∈ [0, T2].

Setting ψ int
=1−2∂xθ

int, it follows that

∥∂t∂
3
xψ

int
∥H4 ≲ B(1 + t)−3

∀t ∈ [0, T2].

From there, differentiating with respect to time ∂4
x S1

rem, we obtain the desired estimate in L2. The only
problematic term is ∂t∂

5
xψ

int∂zθ
app, which we decompose as

∂t∂
5
xψ

int∂zθ
appχ(z)+ ∂t∂

5
xψ

int∂zθ
app(1 −χ(z)),

with χ ∈ C∞
c (R) such that χ ≡ 1 in a neighborhood of zero and χ(z)= 0 for |z| ≥ 1

2 . Let us consider the
first term. Recalling that ψ int(z=0)= 0, we write, using the Hardy inequality,

∥∂t∂
5
xψ

int∂zθ
appχ(z)∥L2 ≤

∥∥∥1
z
∂t∂

5
xψ

int
∥∥∥

L2
∥z∂zθ

appχ(z)∥L∞

≲ ∥∂t∂
5
x ∂zψ

int
∥L2∥z∂zθ

appχ(z)∥L∞

≲ B(1 + t)−3
× B(1 + t)−1 ≲ B2(1 + t)−4.

The term involving (1 −χ(z)) is treated similarly, exchanging the roles of z = 0 and z = 1. □
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Conclusion. We apply the operator 14 to (4-32). We recall that by construction, 12θ int
= ∂n1

2θ int
= 0

on ∂�. We obtain
∂t1

4θ int
= (1 − G)∂x1

2θ int
+14S1

rem − [14,G]∂xψ
int.

Let us now check that the assumptions of Lemma 2.4 are satisfied. The decay assumptions on 14S1
rem

follow from Lemma 4.14. Therefore it suffices to check that the decay of the commutator term satisfies
the desired bounds. Using (2-16) together with the bounds on G (see Lemma 4.3), we have, for all
t ∈ (0, T2),

∥[14,G]∂xψ
int

∥L2 ≲ ∥G∥W 1,∞∥∂xψ
int

∥H7 + ∥G∥H8∥∂xψ
int

∥∞

≲ B2(1 + t)−
5
4 + B2(1 + t)

1
2 (1 + t)−

11
4 ≲ B2(1 + t)−

5
4 .

Therefore, according to Lemma 2.4, there exists a universal constant C2 such that, for all t ∈ (0, T2),
setting B = (3 + 2C1)C∥θ0∥H14 (see (4-31)),

∥14θ int(t)∥L2 ≤ C2(∥θ
int(t = 0)∥H8 + B2).

From there, we apply Proposition 2.6 twice (first to ∂2
x1

2θ int and then to ∂4
x θ

int), and we obtain, up to a
change in the constant C2, for all t ∈ [0, T2]

∥∂2
x1

2θ int(t)∥L2 ≤ C2(∥θ
int(t = 0)∥H8 + B2)(1 + t)−1,

∥∂4
x θ

int(t)∥L2 ≤ C2(∥θ
int(t = 0)∥H8 + B2)(1 + t)−2.

There remains to bound ∂t∂
4
x θ

int and ∂5
xψ

int in L2. To that end, we differentiate (4-32) with respect to
time, and we obtain

∂t∂t∂
4
x θ

int
= (1 − G)∂5

x ∂tψ
int

+ ∂t∂
4
x S1

rem − ∂t G∂5
xψ

int.

The source term ∂t∂
4
x S1

rem is evaluated in Lemma 4.14. As for the commutator term, we have

∥∂t G∂5
xψ

int
∥L2 ≤ ∥∂t G∥L∞∥∂5

xψ
int

∥L2 ≲ B3(1 + t)−3+
1
2 −3 ≲ B3(1 + t)−4.

Using Proposition 2.6, we find that, for any t ∈ (0, T2),

∥∂t∂
4
x θ

int
∥L2 ≤ C2(∥θ

int(t = 0)∥H8 + B2)
1

(1+t)3
.

Using (4-32),

∥∂5
xψ

int(t)∥L2 ≤ C2(∥θ
int(t = 0)∥H8 + B2)

1
(1+t)3

∀t ∈ (0, T2).

Grouping these estimates with the ones on σNL
lift from Lemma 4.13, we infer that, up to a change of the

constant C2, for any t ∈ (0, T2)

(1 + t)2∥∂4
x θ

rem(t)∥L2 + ∥14θ rem(t)∥L2 ≤ C2(∥θ0∥H8 + B2),

(1 + t)3
(
∥∂t∂

4
x θ

rem(t)∥L2 + ∥∂5
xψ

rem(t)∥L2
)
≤ C2(∥θ0∥H8 + B2).

We now recall that B3 = (3C + 5C1)∥θ0∥H14 for some constant C that remains to be chosen. We want to
pick C so that

C2
(
∥θ0∥H8 + (3C + 5C1)

2
∥θ0∥

2
H14

)
≤ (C + C1)∥θ0∥H14 .
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It is sufficient to take C such that 2C2 ≤ (C + C1), and ∥θ0∥H14 sufficiently small. We then infer that the
bounds within (4-31) are satisfied with B2 replaced by B2/2. It follows that T2 = T1. From there, recalling
the estimates on θBL, we deduce that there exists a universal constant C3 such that, for all t ∈ (0, T1), for
all k ∈ {4, . . . , 8},

∥∂k
x θ

′
∥L2 ≤ ∥∂k

x θ
BL

∥L2 + ∥∂k
x θ

rem
∥L2

≤ C3(∥θ0∥H14 + B2)((1 + t)−
9
8 + (1 + t)

k−8
2 ).

Similar estimates hold for ∂k
z θ

′ and ∂5
xψ in L2. Hence we further choose the constant C so that

2C3(∥θ0∥H14 + B2)≤ C∥θ0∥H14

provided ∥θ0∥H14 is sufficiently small. We conclude that T1 = +∞. Theorem 1.3 follows.

Appendix A: Well-posedness of the Stokes-transport equation in Sobolev spaces

The aim of this section is to prove the well-posedness of the Stokes-transport on the domain of interest of
the present paper, namely �= T × (0, 1). The proof is also valid on any regular enough bounded domain
of Rd with d = 2 or 3.

Theorem A.1. Let � satisfy either

(1) �= T × (0, 1) or

(2) � is a simply connected compact subdomain of Rd , d = 2, 3, regular enough.

Let m ≥ 3, ρ0 ∈ H m(�) (and � of regularity Cm+2). The system

∂tρ+ u · ∇ρ = 0,
−1u + ∇ p = −ρez,

div u = 0,
u|∂� = 0,
ρ|t=0 = 0

(A-1)

has a unique global solution for the present regularity

(ρ, u) ∈ C(R+; H m(�))× C(R+; H m+2(�)).

Moreover, the solution obeys the energy estimate

∥ρ(t)∥Hm ≤ ∥ρ0∥Hm exp
(
C

∫ t

0
∥∇u(s)∥L∞ + ∥∇ρ(s)∥L∞ ds

)
. (A-2)

The proof of this result follows rather classical techniques. It also relies on a previous work of one of the
authors [Leblond 2022], including in particular the well-posedness in a weak sense of the system (A-1).

Remark A.2. The well-posedness in the weak sense of (A-1) in T × (0, 1) is a direct consequence its the
well-posedness in R × (0, 1) stated in [Leblond 2022, Theorem 1.2]. In this latter unbounded domain, the
Poiseuille flows are avoided thanks to a zero flux condition on the velocity field. In the periodic case, this
condition is no longer required as the periodicity of the solution prevents the existence of Poiseuille flows.
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A priori estimate. Formally, the energy estimate for any derivative of order m can be written as

1
2

d
dt

∥∂mρ∥
2
L2 = −

∫
�
[∂m, u · ∇]ρ∂mρ,

due to the divergence-free condition satisfied by u. We apply the tame estimate (2-16), together with
the continuous Sobolev embedding of H m(�) in L∞(�) and the Stokes equation regularization estimate
∥u∥Hm ≲ ∥ρ∥Hm−2 , to get

d
dt

∥∂mρ∥
2
L2 ≲ (∥∇u∥L∞ + ∥∇ρ∥L∞)∥ρ∥

2
Hm .

One therefore obtains the same inequality with the complete H m norm on the left-hand side, and the
estimate (A-2) follows. This energy estimate tells us that ρ remains in H m(�) as long as ∥∇u∥L∞

and ∥∇ρ∥L∞ are integrable in time. Regarding the properties we know from [Leblond 2022] about the
solutions of this equation it is enough to prove that the solution exists globally and is unique. Let us recall
from [Galdi 2011, Theorem IV.6.1] and [Leblond 2022, Section 2.1] that the source term and the solution
of the Stokes equation satisfy for all times

∥u∥Hm ≲ ∥ρ∥Hm−2, ∥u∥W 1,∞ ≲ ∥ρ∥L∞ . (A-3)

Also, the uniform norm of ρ is constant since ρ is transported by an incompressible vector field. We also
observe

∥∇ρ∥L∞ ≤ ∥∇ρ0∥L∞ exp
(
C

∫ t

0
∥∇u(s)∥L∞ ds

)
≤ ∥∇ρ0∥L∞ exp(C∥ρ0∥L∞ t). (A-4)

Putting these considerations together leads to

∥ρ∥Hm ≤ ∥ρ0∥Hm exp
(

C∥ρ0∥L∞ t +
∥∇ρ0∥L∞

∥ρ0∥L∞

(exp(C∥ρ0∥L∞ t)− 1)
)
.

This suggests that if ρ0 ∈ H m
∩ W 1,∞, the solution exists globally in time in H m. In particular, if m is

large enough so that H m(�) ↪→ W 1,∞(�), the Stokes-transport system is well-posed in H m.

Proof. An iterative scheme allows us to formalize the previous considerations. Let ρ0
: t 7→ ρ0, which

belongs to C(R+, H m(�)). Now if ρN belongs to C(R+, H m(�)), which is true for N = 0, we know
that the Stokes system 

−1uN
+ ∇ pN

= −ρN ez,

div uN
= 0,

uN
|∂� = 0

admits for any time a unique solution uN (t) ∈ H m+2(�) obeying inequalities (A-3). By linearity of the
problem, uN in H m+2(�) inherits the continuity of ρN in H m(�). Then since uN belongs in particular
to C(R+, H m+2(�)), the transport equation{

∂tρ
N+1

+ uN
· ∇ρN+1

= 0,
ρN+1

|t=0 = ρ0

has a unique strong solution ρN+1
∈C(R+, H m(�)). This concludes the definition of the sequences (ρN )N

and (uN )N . We thereafter show that for any T > 0 the sequence (ρN )N is bounded in L∞((0, T ), H m(�))
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and equicontinuous in C((0, T ), H m−1(�)), so it converges in C((0, T ), H m−1(�)) to a solution of the
original system up to an extraction. Since this is true for any T > 0 and by uniqueness of the weak
solution ensured by [Leblond 2022, Theorems 1.1 and 1.2], we get the well-posedness of the system and
the proposition is proven.

Boundedness. Let us show that we have, for any N ∈ N,

∥ρN
∥Hm ≤ ∥ρ0∥Hm exp

(
C∥ρ0∥L∞ t +

∥∇ρ0∥L∞

∥ρ0∥L∞

(exp(C∥ρ0∥L∞ t)− 1)
)

=: Bρ0(t). (A-5)

This inequality is immediately satisfied for N = 0 since ρ0 is constant in time and equal to ρ0. Let N ∈ N

such that (A-5) is satisfied. Then the tame estimate (2-15) provides here

d
dt

∥ρN+1(t)∥2
Hm ≲ ∥∇uN

∥L∞∥ρN+1
∥

2
Hm + ∥∇ρN+1

∥L∞∥uN
∥Hm ∥ρN+1

∥Hm .

The considerations (A-3) and (A-4) applied to ρN, ρN+1 and uN lead here to

d
dt

∥ρN+1
∥Hm ≲ ∥ρ0∥L∞∥ρN+1

∥Hm + ∥∇ρ0∥L∞ exp(C∥ρ0∥L∞ t)∥ρN+1
∥Hm .

From here, we use the Grönwall lemma to estimate ∥ρN+1
∥Hm ,

∥ρN+1
∥Hm ≤ exp(C∥ρ0∥L∞ t)

(
∥ρ0∥Hm + C∥∇ρ0∥L∞

∫ t

0
∥ρN (s)∥Hm ds

)
. (A-6)

Then, according to the assumption on ρN, we observe that

C∥∇ρ0∥L∞

∫ t

0
∥ρN (s)∥Hm ds

≤ C∥ρ0∥Hm ∥∇ρ0∥L∞

∫ t

0
exp

(
C∥ρ0∥L∞s +

∥∇ρ0∥L∞

∥ρ0∥L∞

(exp(C∥ρ0∥L∞s)− 1)
)

ds

≤ C∥ρ0∥Hm ∥∇ρ0∥L∞

∫ exp(C∥ρ0∥L∞ t)−1

0
exp

(
∥∇ρ0∥L∞

∥ρ0∥L∞

r
)

dr
C∥ρ0∥L∞

= ∥ρ0∥Hm

(
exp

(
∥∇ρ0∥L∞

∥ρ0∥L∞

(exp(C∥ρ0∥L∞ t)− 1)
)

− 1
)
.

The latter bound substituted in (A-6) yields exactly the result (A-5). Therefore, for any T > 0 the sequence
(ρN )N is uniformly bounded in L∞(0, T, H m(�)).

Equicontinuity. We find a uniform bound on (∂tρ
N )N in H m−1(�) to show the equicontinuity of the

sequence in C((0, T ), H m−1(�)). This bound, uniform in N ∈ N and t ∈ [0, T ], is obtained thanks to
the tame estimate, the bounds (A-3) and the uniform bound (A-5) on ρN,

∥∂tρ
N
∥Hm−1 = ∥uN−1

· ∇ρN
∥Hm−1

≲ ∥uN−1
∥L∞∥∇ρN

∥Hm−1 + ∥∇ρN
∥L∞∥uN−1

∥Hm−1

≲ ∥ρ0∥L∞∥ρN
∥Hm + ∥ρN−1

∥Hm ∥∇ρ0∥∞ exp(C∥ρ0∥∞t)

≲ ∥ρ0∥W 1,∞∥ρ0∥Hm exp
(

C∥ρ0∥L∞ t +
∥∇ρ0∥L∞

∥ρ0∥L∞

(exp(C∥ρ0∥L∞ t)− 1)
)
.
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Regularity. Let us show that the limit ρ belongs to L∞((0, T ), H m(�)). For any t ∈ [0, T ], (ρN (t))N is
uniformly bounded in H m(�) with respect to N and t . Hence according to Banach–Alaoglu theorem,
for any t the sequence is weakly compact in H m(�). Thus up to an extraction, ρN (t) converges weakly
toward a ρ̄(t) ∈ H m(�), and this limit satisfies

∥ρ̄(t)∥Hm ≤ lim inf
N

∥ρN (t)∥Hm ,

where the right-hand side is uniformly bounded thanks to (A-5). As ρN already converges weakly in
H m(�), we can identify ρ̄ and ρ, which then belongs to L∞((0, T ), H m(�)). Finally, to reach the
regularity C((0, T ), H m(�)), Lemma II.5.6 in [Boyer and Fabrie 2013] tells us that since in particular
ρ ∈ L∞((0, T ), H m(�))∩ C0

w((0, T ), H m−1(�)) then ρ ∈ C0
w((0, T ), H m(�)). Hence it is enough to

show that t 7→ ∥ρ(t)∥Hm is continuous to prove the strong continuity of ρ in H m(�). By weak continuity,

∥ρ0∥Hm ≤ lim inf
t↘0

∥ρ(t)∥Hm .

Also by weak convergence
∥ρ(t)∥Hm ≤ lim inf

N→∞

∥ρN (t)∥Hm ≤ Bρ0(t),

which proves by clamping that t 7→∥ρ(t)∥Hm is continuous at t =0. This can be performed for any t ∈[0,T ],
hence the continuity. Finally, u ∈ C0((0,T ),H m+2(�)) by (A-3) and linearity of the Stokes equation.

Appendix B: About the bilaplacian equation

We use throughout the paper the following classical regularity result:

Lemma B.1 (regularity). Let f ∈ H m(�), m ≥ −2. The problem

12ψ = f, ψ |∂� = ∂nψ |∂� = 0,

admits a unique strong solution ψ ∈ H 2
0 ∩ H m+4(�) such that

∥ψ∥Hm+4 ≲ ∥ f ∥Hm .

The eigenvalues and eigenfunctions of the bilaplacian in a channel can be semiexplicitly computed
(see [Leblond 2023] for the details):

Lemma B.2 (spectrum of the bilaplacian). The eigenvalues of the operator 12 on H 2
0 in T × (−1, 1) are

the union, for all k ∈ Z, of strictly increasing sequences (λn,k)n∈N such that

λn,k ≃ (n2
+ k2)2,

with associated (unnormalized) eigenfunctions

bn,k = eikx


cos(ωn,kz)− cos(ωn,k)

cosh(rn,k)
cosh(rn,kz), n ∈ 2N,

sin(ωn,kz)− sin(ωn,k)

sinh(rn,k)
sinh(rn,kz), n ∈ 2N + 1,

with ωn,k = (k2
− λ

1/2
n,k )

1/2 and rn,k = (k2
+ λ

1/2
n,k )

1/2. Note that to simplify the calculations, the domain
was chosen to be T × (−1, 1) and not �= T × (0, 1).
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Appendix C: Proof of Lemma 3.2

The proof of the lemma relies on energy estimates in weighted Sobolev spaces, with weights that grow
like exp(cZ4/5) for Z ≫ 1. Unfortunately, we have not been able to treat all four cases for the boundary
conditions simultaneously, but we will treat (i) and (iii) (resp. (ii) and (iv)) together. Note that when (3-4)
is multiplied (formally) by 9w or by −∂Z9w, where w ∈ C∞([0,+∞)) is an arbitrary weight function,
there are many commutator terms when we integrate by parts the fifth-order derivative. The main idea is
that if the weight is adequately chosen, all these commutators can be absorbed in the main-order terms,
which will be designed to have a positive sign. Hence we start with the following result, which will allow
us to control the commutators:

Lemma C.1. Let 9 ∈ C∞
c ([0,+∞)) such that 9(0)= 0, and let r ∈ (0, 1).

(1) Let W ∈ C∞([0,+∞)) such that W (Z)= exp (Z4/5) for Z ≥ 1, and W ≥ 1, ∂2
z W ≥ 0, W ≡ 1 in a

neighborhood of zero.
Then, for k ∈ {1, 2}, there exists a constant Ck , independent of r , such that, for all r ∈ (0, 1),∣∣∣∣∫ ∞

0
|∂k

Z9(Z)|
2 |∂3−k

Z W (r Z)|2

W (r Z)
dZ

∣∣∣∣
≤ Ckr−

2
3 (3−k)

[∫
∞

0
|∂3

Z9(Z)|
2W (r Z) dZ +

∫
∞

0
92(Z)

(
r∂Z W (r Z)

Z
+

W (r Z)
Z2

)
dZ

]
.

(2) Let 8 : Z 7→9(Z)/Z. Then, for k ∈ {1, 2, 3, 4}, for all c > 0, for r sufficiently small,∫
∞

0
1r Z>c(r Z)

2+2k
5 exp((r Z)

4
5 )∂k

Z8(Z)
2 dZ

≲c r
2(k−1)

3

[∫
∞

0
∂4

Z9(Z)
2 exp((r Z)

4
5 ) dZ +

∫
∞

0
∂Z8(Z)2(r Z)

4
5 exp((r Z)

4
5 ) dZ

]
.

Proof. • For k = 0, . . . , 3, let us consider weights ωk ∈ W 1,∞
loc ((0,+∞)) such that

∀k ∈ {0, . . . , 3}, ∀Z ≥ 1, ωk(Z)= e−1 Z−
2
5 (3−k) exp(Z

4
5 ),

∀Z ∈ (0, 1), ω1(Z)= ω3(Z)= 1, ω0(Z)= Z−2, ω2(Z)= Z2.

Note that the weights ωk satisfy the following assumptions:

• For k ∈ {1, 2}, ωk ≤
√
ωk−1ωk+1.

• For k ∈ {1, 2}, |∂Zωk | ≤ Ck
√
ωkωk−1 for some constant Ck .

• ω2(0)= 0.

• ω3 ≤ CW , ω0(Z)≤ C(Z−2W (Z)+ Z−1∂Z W (Z)).

Let us now introduce, for k = 0, . . . , 3,

Ik :=

∫
∞

0
|∂k

Z9(Z)|
2ωk(r Z) dZ .
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Then by the definition of W, ω0, ω3, there exists a constant C (independent of r > 0) such that

r2 I0 + I3 ≤ C
∫

∞

0
|∂3

Z9(Z)|
2W (r Z) dZ +

∫
∞

0
92(Z)

(
r∂Z W (r Z)

Z
+

W (r Z)
Z2

)
dZ .

Let us set E = r2 I0 + I3. For k = 1, 2, integrating by parts and using the conditions 9(0)= ω2(0)= 0,
we have

Ik = −

∫
∞

0
∂k−1

Z 9(Z)∂k+1
Z 9(Z)ωk(r Z) dZ − r

∫
∞

0
∂k−1

Z 9(Z)∂k
Z9(Z)∂Zωk(r Z) dZ .

Using the properties of ωk , we deduce that there exist constants Ck such that

Ik ≤ Ck
(√

Ik−1 Ik+1 + r
√

Ik Ik−1
)
.

Since r2 I0 ≤ E , we deduce first that I1 ≲ E + r−1√I2 E , and plugging this inequality into the bound
on I2, we find, since r ∈ (0, 1),

I1 ≲ r−
4
3 E, I2 ≲ r−

2
3 E .

The first inequality from Lemma C.1 then follows easily by noticing that

(∂Z W )2

W
≲ ω2,

(∂2
Z W )2

W
≲ ω1.

• Let us now set, for k ∈ {1, . . . , 4},

Jk :=

∫
∞

0
∂k

Z8(Z)
2ζk(r Z) dZ ,

where the weights ζk ∈ W 1,∞
loc (R) satisfy ζk ≡ 0 in a neighborhood of zero, ζk(Z)= Z (2+2k)/5 exp (Z4/5)

for Z large enough, and ζk ≲
√
ζk−1ζk+1, ∂Zζk ≲

√
ζkζk−1. Let F := r−2 J4 + J1. As above, for k ∈ {2, 3},

we have
Jk ≤ Ck

(√
Jk−1 Jk + r

√
Jk Jk−1

)
.

From there, we infer that, for k ∈ {1, . . . 4}, Jk ≲ r2(k−1)/3 F.
Now, since 9 = Z8, we have ∂4

Z9 = Z∂4
Z8+ 4∂3

Z8. It follows that∫
∞

0
(∂4

Z9(Z))
2 exp((r Z)4/5) dZ

=

∫
∞

0
(Z∂4

Z8+ 4∂3
Z8)

2 exp((r Z)4/5) dZ

=

∫
∞

0
Z2(∂4

Z8)
2 exp((r Z)4/5) dZ +

∫
∞

0
16(∂3

Z8)
2 exp((r Z)4/5) dZ

− 4
∫

∞

0
(∂3

Z8)
2 ∂

∂Z
(Z exp((r Z)4/5)) dZ

=

∫
∞

0
Z2(∂4

Z8)
2 exp((r Z)4/5) dZ + 16

∫
∞

0
(∂3

Z8)
2 exp((r Z)4/5) dZ

− 4
∫

∞

0

(
1 +

4
5(r Z)

4
5
)
(∂3

Z8)
2 exp((r Z)4/5) dZ .
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We split the last integral into two parts, for r Z ≤ 1 and r Z ≥ 1. When r Z ≤ 1,

4
∫ r−1

0

(
1 +

4
5(r Z)

4
5
)
(∂3

Z8)
2 exp((r Z)4/5) dZ ≤ 8

∫ r−1

0
(∂3

Z8)
2 exp((r Z)4/5) dZ .

And for r Z ≥ 1, for a suitable choice of ζ3∫
∞

r−1

(
1 +

4
5(r Z)

4
5
)
(∂3

Z8)
2 exp((r Z)4/5) dZ ≲ J3 ≲ r

4
3 F.

We infer that ∫
∞

0
(∂4

Z9(Z))
2 exp((r Z)4/5) dZ ≥ C−1r−2 J4 − Cr

4
3 F,

and therefore, for r sufficiently small,

F ≲
∫

∞

0
(∂4

Z9(Z))
2 exp((r Z)4/5) dZ + J1.

The result follows. □

We now turn towards the proof of Lemma 3.2. In both cases, we start with a formal a priori estimate,
from which we deduce an appropriate notion of variational solution in a suitable Hilbert space. Existence
and uniqueness then follow in a straightforward manner from the Lax–Milgram lemma.

First case: conditions (ii) and (iv). As explained above, we start with a formal a priori estimate. Let
w ∈ C∞(R+) be an arbitrary weight function, and multiply (3-4) by ∂Z (9(Z)w(Z))/Z . On the one hand,∫

∞

0
∂5

Z9(Z)∂Z (9w)(Z) dZ =

∫
∞

0
∂3

Z9(Z)∂
3
Z (9w)(Z) dZ−∂4

Z9(0)∂Z (9w)(0)+∂3
Z9(0)∂

2
Z (9w)(0).

Note that the two boundary terms vanish in cases (ii) and (iv). We obtain∫
∞

0
∂5

Z9(Z)∂Z (9w)(Z) dZ =

∫
∞

0
(∂3

Z9(Z))
2w(Z)+

3∑
k=1

(3
k

) ∫
∞

0
∂3

Z9(Z)∂
3−k
Z 9(Z)∂k

Zw(Z) dZ .

On the other hand, since 9(0)= 0,∫
∞

0
9(Z)∂Z (9w)(Z)

dZ
Z

=

∫
∞

0
(9w)(Z)∂Z (9w)(Z)

dZ
Zw(Z)

= −
1
2

∫
∞

0
(9w)2(Z) d

dZ

(
1

Zw(Z)

)
dZ .

Choosing w such that ∂Zw ≥ 0, the right-hand side has a positive sign. We then choose w(Z)= W (r Z)
for some W ∈ C∞(R+) such that W (ξ)= exp(ξ 4/5) for ξ ≥ 1, W (ξ)= 1 for ξ in a neighborhood of zero,
∂ξW ≥ 0, and r > 0 small enough. With this choice, the positive terms in the energy are bounded from
below by ∫

∞

0
(∂3

Z9(Z)
2W (r Z) dZ +

∫
∞

0
92(Z)

(
W (r Z)

Z2 + r
∂Z W (r Z)

Z

)
dZ .
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Lemma C.1 then implies that there exists an explicit constant δ > 0 such that, for k = 1, 2, 3,∣∣∣∣∫ ∞

0
∂3

Z9(Z)∂
3−k
Z 9(Z)∂k

Zw(Z) dZ
∣∣∣∣

≤ r δ
[∫

∞

0
(∂3

Z9(Z))
2W (r Z) dZ +

∫
∞

0
92(Z)

(
W (r Z)

Z2 + r
∂Z W (r Z)

Z

)
dZ

]
.

Therefore, for r > 0 sufficiently small, we obtain∫
∞

0
(∂3

Z9(Z))
2W (r Z) dZ +

∫
∞

0
92(Z)

(
W (r Z)

Z2 + r
∂Z W (r Z)

Z

)
dZ

≲
∫ 1

0

S(Z)2

Z2 dZ +

∫
∞

0
S(Z)2W (r Z) dZ .

This leads us to the following formulation: let

H :=

{
9 ∈ H 3(R+) :9(0)= 0,

∫
∞

0
(∂3

Z9(Z))
2 exp((r Z)4/5) dZ <+∞,∫

∞

0
9(Z)2(Z−2

+ Z−
1
5 ) exp((r Z)4/5) dZ <+∞

}
,

and let

H0 := {9 ∈ H : ∂Z9(0)= ∂2
Z9(0)= 0}.

We endow H and H0 with the norm

∥9∥
2
H =

∫
∞

0
(∂3

Z9(Z))
2W (r Z) dZ +

∫
∞

0
92(Z)

(
W (r Z)

Z2 + r
∂Z W (r Z)

Z

)
dZ ,

where W is the previous weight. We say that 9 ∈ H is a solution of (3-4)-(ii) (resp. 9 ∈ H0 is a solution
of (3-4)-(iv)) if and only if, for all 8 ∈ H (resp. 8 ∈ H0),∫

∞

0
∂3

Z9∂
3
Z (8W (r · ))+

∫
∞

0
9(Z)

∂Z (8(Z)W (r Z))
Z

dZ =

∫
∞

0

S(Z)
Z

∂Z (8(Z)W (r Z)) dZ .

Existence and uniqueness of solutions of (3-4)-(ii) (resp. of (3-4)-(iv)) in H (resp. H0) follow easily from
the Lax–Milgram lemma. Using the equation, we then infer that∫

∞

0
(∂5

Z9(Z))
2 exp((r Z)4/5) dZ <+∞.

The result follows.

Second case: conditions (i) and (iii). The estimates in the case of conditions (i) and (iii) are similar, but
slightly less straightforward, since we shall need to combine two estimates.

We first multiply (3-4) by −∂3
Z9(Z)w1(Z)/Z , with a weight w1 to be chosen later. We obtain on the

one hand

−

∫
∞

0
∂5

Z9(Z)∂
3
Z9(Z)w1(Z) dZ =

∫
∞

0
(∂4

Z9(Z))
2w1(Z) dZ +

∫
∞

0
∂4

Z9(Z)∂
3
Z9(Z)∂Zw1(Z) dZ .
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Note that the boundary term −∂4
Z9(0)∂

3
Z9(0)w1(0) vanishes in cases (i) and (iii). The first term gives a

positive contribution to the energy, and the second one will be treated below with the help of Lemma C.1.
On the other hand, we obtain for the zeroth order term, noticing that either ∂2

Z9(0)= 0 (in case (iii)) or
(Z−19(Z))|z=0 = ∂Z9(0)= 0 (in case (i)),

−

∫
∞

0

9(Z)
Z

∂3
Z9(Z)w1(Z) dZ =

∫
∞

0
∂2

Z9(Z)
d

dZ

(
9(Z)

Z
w1(Z)

)
dZ .

As in Lemma C.1, we set 8(Z)=9(Z)/Z . Let us write ∂2
Z9 as

∂2
Z9(Z)= ∂2

Z (Z8(Z))= 2∂Z8(Z)+ Z∂2
Z8(Z).

Performing integrations by parts and assuming that ∂Zw1(0)= 0, we obtain∫
∞

0
∂2

Z9(Z)
d

dZ
(8(Z)w1(Z)) dZ

=
3
2

∫
∞

0
(∂Z8)

2(w1(Z)− Z∂Zw1(Z)) dZ +
1
2

∫
∞

0
9(Z)2 Z−1∂3

Zw1(Z) dZ .

We shall choose w1 so that ∂3
Zw1 ≥ 0, so that the last term has a positive sign. However, for Z ≫ 1,

w1 − Z∂Zw1 < 0, and therefore we need to add another term to the energy. More precisely, we now
multiply (3-4) by −Z−1∂Z (∂Z8w2), with a weight w2 which vanishes identically in a neighborhood of
zero. We obtain

−

∫
∞

0

9(Z)
Z

∂Z (∂Z8w2) dZ =

∫
∞

0
(∂Z8(Z))2w2(Z) dZ .

We then take wi (Z)= Wi (r Z), with 0< r ≪ 1 and W1,W2 satisfying the following properties:

• W1 ≡ 1, W2 ≡ 0 in a neighborhood of zero.

• ∂3
Z W1 ≥ 0.

• W1(Z)= C exp (Z4/5) for Z large enough.

• W2 +
3
2(W1 − Z∂Z W1)≳ (1 + Z4/5) exp (Z4/5).

Our energy is then∫
∞

0
(∂4

Z9(Z))
2W1(r Z) dZ +

∫
∞

0
(∂Z8(Z))2

[
W2 +

3
2(W1 − Z W ′

1)
]
(r Z) dZ

+
1
2r3

∫
∞

0
9(Z)2 Z−1∂3

Z W1(r Z) dZ

≳
∫

∞

0
(∂4

Z9(Z))
2 exp((r Z)

4
5 ) dZ +

∫
∞

0
(∂Z8(Z))2(1 + (r Z)

4
5 ) exp((r Z)

4
5 ) dZ .

Let us now consider the two commutator terms, namely

r
∫

∞

0
∂4

Z9(Z)∂
3
Z9(Z)∂Z W1(r Z) dZ and

∫
∞

0
∂4

Z9(Z)∂
2
Z (∂Z8w2) dZ .
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For the first one, we write ∂3
Z9 = Z∂3

Z8+3∂2
Z8. We note that ∂Z W1(r Z)≲ 1r Z>c(r Z)−1/5 exp((r Z)4/5).

Using the second part of Lemma C.1, we infer that there exists δ > 0 such that

r
∫

∞

0
∂4

Z9(Z)∂
3
Z9(Z)W

′

1(r Z) dZ

≲

(∫
∞

0
(∂4

Z9(Z))
2W1(r Z) dZ

)1
2
(∫

∞

0
1r Z>c(r Z)

8
5 (∂3

Z8(Z))
2 exp((r Z)

4
5 ) dZ

)1
2

+ r
(∫

∞

0
(∂4

Z9(Z))
2W1(r Z) dZ

)1
2
(∫

∞

0
1r Z>c(r Z)−

2
5 (∂2

Z8(Z))
2 exp((r Z)

4
5 ) dZ

)1
2

≲ r δ
[∫

∞

0
(∂4

Z9(Z))
2 exp((r Z)

4
5 ) dZ +

∫
∞

0
(∂Z8(Z))2(r Z)

4
5 exp((r Z)

4
5 dZ

]
.

Let us now address the second commutator term. We have for instance, using once again Lemma C.1,∫
∞

0
∂4

Z9(Z)∂
3
Z8w2(r Z) dZ

≲

(∫
∞

0
(∂4

Z9(Z))
2W1(r Z) dZ

)1
2
(∫

∞

0
1r Z>c(r Z)

8
5 (∂3

Z8)
2 exp((r Z)

4
5 ) dZ

)1
2

≲ r
2
3

[∫
∞

0
(∂4

Z9(Z))
2 exp((r Z)

4
5 ) dZ +

∫
∞

0
(∂Z8(Z))2(r Z)

4
5 ) exp((r Z)

4
5 dZ

]
.

The two other terms are treated in a similar fashion. As in the first case, we find that for r small enough,
the energy is controlled by∫ 1

0

S(Z)2

Z2 dZ +

∫
∞

0
S(Z)2(1 + (r Z)

2
5 ) exp (r Z)

4
5 dZ .

We conclude by a Lax–Milgram type argument. □
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RECONSTRUCTION FOR THE CALDERÓN PROBLEM
WITH LIPSCHITZ CONDUCTIVITIES

PEDRO CARO, MARÍA ÁNGELES GARCÍA-FERRERO AND KEITH M. ROGERS

We determine the conductivity of the interior of a body using electrical measurements on its surface. We
assume only that the conductivity is bounded below by a positive constant and that the conductivity and
surface are Lipschitz continuous. To determine the conductivity we first solve an associated integral
equation in a ball B that properly contains the body, finding solutions in H 1(B). A key ingredient is to
equip this Sobolev space with an equivalent norm which depends on two auxiliary parameters that can be
chosen to yield a contraction.

1. Introduction

We consider the conductivity equation in a bounded domain � ⊂ Rn and place electric potentials
φ ∈ H 1/2(∂�) on the Lipschitz boundary ∂�:{

∇ · (σ∇u)= 0 in �,
u|∂� = φ.

(1)

Throughout the article, the conductivity σ is assumed to be bounded above and below by positive constants,
so that (1) has a unique weak solution u in the L2-Sobolev space H 1(�). The Dirichlet-to-Neumann
map 3σ can then be formally defined by

3σ : φ 7→ σ ∂νu|∂�, (2)

where ν denotes the outward unit normal vector to ∂�. This provides us with the steady-state perpendicular
currents induced by the electric potentials φ.

Motivated by the possibility of creating an image of the interior of a body from these noninvasive
voltage-to-current measurements on its surface, Calderón [2006] asked whether the conductivity σ is
uniquely determined by 3σ and, if so, whether σ can be calculated from 3σ . In two dimensions, Astala
and Päivärinta answered the uniqueness part [2006b] and also provided a reconstruction algorithm [2006a].
The two-dimensional problem has distinct mathematical characteristics, so from now on we consider
only n ⩾ 3.

With n ⩾ 3, it has so far been necessary to make additional regularity assumptions. Kohn and Vogelius
[1984] proved uniqueness for real-analytic conductivities, and Sylvester and Uhlmann [1987] improved
this to smooth conductivities. Nachman, Sylvester and Uhlmann [Nachman et al. 1988] then proved
uniqueness for twice continuously differentiable conductivities, and Nachman [1988] and Novikov [1988]
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provided reconstruction algorithms. These pioneering articles provoked a great deal of interesting work,
including that of Brown [1996], Päivärinta, Panchenko and Uhlmann [Päivärinta et al. 2003] and Brown
and Torres [2003] for conductivities with 3

2 derivatives. In the past decade, a breakthrough was made
by Haberman and Tataru [2013], who proved uniqueness for continuously differentiable conductivities
or Lipschitz conductivities with ∥∇ log σ∥∞ sufficiently small. García and Zhang [2016] then provided
a reconstruction algorithm under the same assumptions. Two of the authors removed the smallness
condition from the uniqueness result in [Caro and Rogers 2016], and the purpose of this article will be to
extend this work to a reconstruction algorithm that holds for all Lipschitz conductivities. We will not
assume that the conductivity is constant near the boundary, nor will we extend the conductivity in order
to achieve this, leading to simpler formulas than those of [García and Zhang 2016]; see Section 3.

Before we outline the proof, we remark that there are also uniqueness results for conductivities in
Sobolev spaces; see [Haberman 2015; Ham et al. 2021; Ponce-Vanegas 2021]. In particular, [Haberman
2015] proved that uniqueness holds for bounded conductivities in W 1,n(�), with n = 3 or 4. Note that this
is a strictly larger class than Lipschitz, however there are obstacles to reconstruction via their methods;
see Remark 11.2 for more details. It has been conjectured that Lipschitz continuity is the sharp threshold
within the scale of Hölder continuity; see for example [Brown 1996] or [Uhlmann 1998, Open Problem 1].

When σ is Lipschitz, weak solutions to (1) are in fact strong solutions; see for example [Zhang and
Bao 2012, Theorem 1.3]. Defining the Dirichlet-to-Neumann map as in (2) by identifying σ ∂νu|∂� with
the normal trace of σ∇u, we have the divergence identity∫

∂�

3σ [φ]ψ =

∫
�

σ∇u · ∇ψ

whenever (φ, ψ) ∈ H 1/2(∂�)× H 1(�); see for example [Kim and Kwon 2022, Proposition 2.4]. Given
this identity, it is possible to describe the heuristic which underlies the reconstruction: For each ξ ∈ Rn ,
one hopes to choose an oscillating pair (φ, ψ) so that the right-hand side becomes a nonlinear Fourier
transform of σ evaluated at ξ . As the left-hand side can be calculated from the measurements, the
conductivity might then be recoverable by Fourier inversion. Indeed, much of the literature, including the
original work of Calderón [2006], has involved pairs (eρ·x , eρ

′
·x), with ρ, ρ ′

∈ Cn chosen carefully, so
that ρ+ ρ ′ is equal to a real constant multiple of −iξ , where i :=

√
−1. The hope is that the essentially

harmonic u is not so different from eρ := eρ·x , and so the complex vector ρ is chosen in such a way that
ρ · ρ = 0, so that eρ is harmonic.

In fact we begin by noting that u is a solution to the conductivity equation if and only if v = σ 1/2u is a
solution to the Schrödinger equation

1v = qv in �, (3)

where formally q = σ−1/21σ 1/2. Kohn and Vogelius [1985] observed that if σ |∂� and ν · ∇σ |∂� are
known, then the Dirichlet-to-Neumann map 3q for the Schrödinger equation (3) can be written in terms
of 3γ , and so the literature has mainly considered the essentially equivalent problem of recovering q
from 3q (which is intimately connected to inverse scattering at fixed energy). We will only partially
use the equivalence however: we will recover q directly from 3γ , circumventing the need to calculate
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ν · ∇σ |∂�. This is connected to the fact that our conductivities are not regular enough to define q in
a pointwise fashion. However, as noted by Brown [1996], it suffices to define ⟨qv, ψ⟩ := ⟨q, vψ⟩ for
suitable test functions ψ , with

⟨q, • ⟩ := −

∫
�

∇σ 1/2
· ∇(σ−1/2

• ). (4)

By the product rule and the Cauchy–Schwarz inequality, ⟨q, • ⟩ and ⟨qv, • ⟩ are bounded linear functionals
on H 1(B), where B is a ball that properly contains �, so in particular we can make sense of q and qv as
distributions.

Rather than solving (3) directly, we consider solutions to the Lippmann–Schwinger-type equation

v =1−1
◦ Mq [v] + eρ, (5)

where Mq : f 7→ q f and the inverse of the Laplacian is defined using the Faddeev fundamental solution;
see Section 2.1. Integral equations like this are usually solved globally, however we will find a v ∈ H 1(B)
which is a solution of (5) in the ball B. Writing v = eρ(1 + w) and additionally requiring that the
remainders w vanish in some sense as |ρ| → ∞ gives hope that the nonlinear Fourier transform will
converge to the linear Fourier transform in the limit. Solutions of this type were introduced to the problem
by Sylvester and Uhlmann [1987] and have since become known as CGO solutions, where CGO stands
for complex geometrical optics. Substituting into (3) and multiplying by e−ρ , we find that

1ρw = Mq [1 +w] in �, (6)

where 1ρ :=1+ 2ρ · ∇. In much of the literature 1ρ is inverted using the Fourier transform and the
resulting integral equation is solved globally via a contraction for 1−1

ρ ◦Mq and Neumann series. In order
to reconstruct σ from 3σ (as opposed to just proving uniqueness), we must additionally determine which
electric potentials should be placed on the boundary in order to generate the CGO solutions. A contraction
for 1−1

ρ ◦ Mq can also be helpful in this step; however, the need for such a contraction was circumvented
in the uniqueness result of [Caro and Rogers 2016], instead solving the differential equation (6) via the
method of a priori estimates.

Nachman and Street [2010] were able to recover the boundary values of CGO solutions that had
been constructed via a priori estimates, however, we were unable to take advantage of their ideas; see
Remark 11.1 for more details. Instead we will reprove the existence of CGO solutions, this time via
Neumann series; however, we will adopt the previously mentioned intermediate approach of solving the
integral equation in the ball B. That is to say, we find a w ∈ H 1(B) such that

(I −1−1
ρ ◦ Mq)w =1−1

ρ ◦ Mq [1], (7)

where the identity holds as elements of H 1(B). This is equivalent to (5) when 1−1
◦ Mq is defined

appropriately; see Remark 9.3.
Most of the article will be occupied by the proof of the contraction for 1−1

ρ ◦ Mq in Sections 4–9. In
Section 4 we give a sketch of its proof before proving the key Carleman estimate in Section 5. In Section 6
we incorporate the associated convex weights into our localised versions of the Haberman–Tataru norms,
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so that they not only depend on ρ but also on an auxiliary parameter λ > 1. The final estimate for 1−1
ρ ,

proved in Section 7, is somewhat weaker and easier to prove than the main estimate of [Caro and Rogers
2016], so the present article also simplifies the uniqueness result of that work. In Section 8 we bound Mq

with respect to the new norms, and in Section 9 we choose the parameters in order to yield the contraction.
In Section 2 we list some of the main definitions before presenting the reconstruction algorithm in

Section 3. The reconstruction formulas will not make mention of the new norms, which are only used in
Section 11 to prove the validity of the formulas. In the final Section 12 we suggest some simplifications
that could make the algorithm easier to implement.

2. Preliminary notation

We invert our main operator 1ρ initially on the space of Schwartz functions S(Rn) using the Fourier
transform defined by

f̂ (ξ) :=

∫
Rn

e−iξ ·x f (x) dx

for all ξ ∈ Rn and f ∈ S(Rn). By integration by parts, one can calculate that

1̂ρ f (ξ)= mρ(ξ) f̂ (ξ), where mρ(ξ) := −|ξ |2 + 2iρ · ξ, (8)

for all ξ ∈ Rn . The reciprocal of this Fourier multiplier is integrable on compact sets, so we can define an
inverse by

1−1
ρ g(x) :=

1
(2π)n

∫
Rn

ei x ·ξ 1
mρ(ξ)

ĝ(ξ) dξ

for all x ∈ Rn and g ∈ S(Rn).

2.1. The Faddeev fundamental solutions. Writing the inverse Fourier transform of the product as a
convolution, we find

1−1
ρ g(x)=

∫
Rn

Fρ(x − y)g(y) dy (9)

for all x ∈ Rn and g ∈ S(Rn), where the fundamental solution Fρ for 1ρ is defined by

Fρ(x) := lim
r→∞

1
(2π)n

∫
Rn

ei x ·ξ 1
mρ(ξ)

χ̂(ξ/r) dξ.

Here χ ∈ S(Rn) must be positive and satisfy χ̂(0)= 1, but the limit is insensitive to the precise choice
of χ and so the integral is often written formally, taking χ̂ = 1. This fundamental solution was first
considered by Faddeev [1965] in the context of quantum inverse scattering.

We also consider the associated fundamental solution Gρ := eρFρ for the Laplacian, and we will often
write Gρ(x, y) := Gρ(x − y). This is not so different from the usual potential-theoretic fundamental
solution. Indeed, by subtracting one from the other, one obtains a harmonic function which is thus smooth
by Weyl’s lemma:

Hρ(x) := Gρ(x)−
cn

(2 − n)
1

|x |n−2 , (10)
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where cn denotes the reciprocal of the measure of the unit sphere. For more details regarding the properties
of Faddeev’s fundamental solutions, see [Newton 1989, Section 6.1].

2.2. The boundary integral. For notational compactness we write the reconstruction formulas in terms
of the bilinear functional B I3σ : H 1/2(∂�)× H 1(�)→ C defined by

B I3σ (φ, ψ) :=

∫
∂�

(σ−1/23σ [σ
−1/2φ] − ν · ∇ P0[φ])ψ, (11)

where P0[φ] denotes the harmonic extension of φ. Brown [2001] calculated σ |∂� from 3σ , so the
boundary integral B I3σ can be recovered from 3σ . In Lemma 10.1 we will prove that

B I3σ (φ,Gρ(x, • )) ∈ H 1(B \�),

where B properly contains � and f (x) denotes a function that takes the values f (x) for all x in the
domain. This allows us to define 03σ : H 1/2(∂�)→ H 1/2(∂�) by taking the outer trace on ∂�:

03σ [φ] := B I3σ (φ,Gρ(x, • ))|∂�. (12)

As Hρ is smooth, the singularity of Gρ is the same as that of the usual potential-theoretic fundamental
solution, so 03σ shares many properties with the single layer potential; see for example [Mitrea and
Taylor 1999, Propositions 3.8 and 7.9]. However, we will not need these types of estimates going forward.

3. The reconstruction algorithm

Recall our a priori assumptions, that the boundary and conductivity are Lipschitz continuous and that the
conductivity is bounded below by a positive constant.

The first step of the reconstruction algorithm is to determine the electric potentials that we place on the
boundary in order to generate the CGO solutions. As in the previous reconstruction formulas of [García
and Zhang 2016; Nachman 1988; Novikov 1988], we resort to the Fredholm alternative; however, once
we have obtained the contraction, the argument will be direct, avoiding the use of generalised double
layer potentials. The proof is postponed until Section 11.

Theorem 3.1. Consider ρ ∈ Cn such that ρ ·ρ = 0 and |ρ|
2
= ρ · ρ̄ is sufficiently large. Let 03σ be defined

by (12). Then

(i) 03σ : H 1/2(∂�)→ H 1/2(∂�) is bounded compactly,

(ii) if 03σ [φ] = φ, then φ = 0,

(iii) I −03σ has a bounded inverse on H 1/2(∂�),

and if v = eρ(1 +w), where w ∈ H 1(B) is a solution to (7), then

(iv) v|∂� = (I −03σ )
−1

[eρ |∂�].

Next we provide a formula for the Fourier transform q̂(ξ) := ⟨q, e−iξ ·x
⟩, where q is defined in (4).

Again we postpone the proof until the penultimate section.
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Theorem 3.2. Let 5 be a two-dimensional linear subspace orthogonal to ξ ∈ Rn , and define

S1
:=5∩ {θ ∈ Rn

: |θ | = 1}.

For θ ∈ S1, let ϑ ∈ S1 be such that {θ, ϑ} is an orthonormal basis of 5, and define

ρ := τθ + i
(
−
ξ

2
+

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
, ρ ′

:= −τθ + i
(
−
ξ

2
−

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
,

where τ > 1. Let B I3σ and 03σ be defined by (11) and (12), respectively. Then

q̂(ξ)= lim
T →∞

1
2πT

∫ 2T

T

∫
S1

B I3σ ((I −03σ )
−1

[eρ |∂�], eρ′) dθ dτ.

Finally, we recover σ from q using the approach of [García and Zhang 2016]. By [Brown 2001] and
Plancherel’s identity, we can now calculate the right-hand side of{

1w+ |∇w|
2
= q in �,

w|∂� =
1
2 log σ |∂�.

(13)

If w ∈ H 1(�) is the unique bounded solution to (13), we then have

σ = e2w in �.

This completes the reconstruction algorithm.
That w = log σ 1/2 solves (13) follows directly by inspection of the definition (4) of q . For uniqueness,

note that if w̃ also solved (13), then u = w− w̃ would solve{
∇ · (γ∇u)= 0 in �,
u|∂� = 0,

where γ := ew+w̃. Then u = 0 by uniqueness of solutions for elliptic equations; see for example [Gilbarg
and Trudinger 1983, Corollary 8.2].

4. Sketch of the proof of the contraction for 1−1
ρ ◦ Mq

One of the main ideas of [Haberman and Tataru 2013] was to extend the domain of 1−1
ρ using Bourgain-

type spaces that are adapted to the problem, instead of the usual Sobolev spaces. With s =
1
2 or −

1
2 , their

norms are defined by
∥ • ∥Ẋ s

ρ
: f ∈ S(Rn) 7→ ∥|mρ |

s f̂ ∥L2(Rn),

where mρ is the multiplier defined in (8). Then Ẋ s
ρ is defined to be the Banach completion of S(Rn) with

respect to this norm. It is immediate from the definitions that

∥1−1
ρ g∥Ẋ1/2

ρ
⩽ ∥g∥Ẋ−1/2

ρ
(14)

whenever g ∈ S(Rn), which can be used to continuously extend the operator. For ease of reference we
will call (14) the trivial inequality.
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On the other hand, Haberman and Tataru also proved that Mq : f 7→ q f satisfies

∥ Mq f ∥Ẋ−1/2
ρ

⩽ C∥∇ log σ∥∞(1 + |ρ|
−1

∥∇ log σ∥∞)∥ f ∥Ẋ1/2
ρ

(15)

whenever f ∈ Ẋ1/2
ρ ; see [Haberman and Tataru 2013, Theorem 2.1]. Together these inequalities yield a

contraction for 1−1
ρ ◦ Mq whenever |ρ|> 1 and ∥∇ log σ∥∞ is sufficiently small. In order to remove this

smallness condition, we will alter the norms in such a way that the constant of (15) can be taken small for
any Lipschitz conductivity, while maintaining a version of (14).

There is a natural gain for the higher frequencies in (15) whereas a gain for the lower frequencies
can be engineered in (14) by introducing convex weights. This was the key observation of [Caro and
Rogers 2016]. In order to have a gain for all frequencies, in at least one of the inequalities, we dampen
the higher frequencies relative to the lower frequencies in our main norm (with the lower frequencies
dampened relative to the higher frequencies in the dual norm), so that the gain for the lower frequencies
in our version of (14) is passed through to our version of (15).

We prove the Carleman estimate in Section 5, we define new Banach spaces in Section 6, and then we
extend the domain of 1−1

ρ via density in Section 7. We prove our version of (15) in Section 8 and then
combine the estimates to obtain the contraction in Section 9.

5. Bounds for 1−1
ρ with convex weights

Let B be an open ball centred at the origin, with radius

R := 2 sup
x∈�

|x |,

so that we comfortably have �⊂ B. The forthcoming constants will invariably depend on this R, but
never on the auxiliary parameters ρ ∈ Cn or λ > 1.

5.1. The Carleman estimate. Here we will deduce our estimate for1−1
ρ from a Carleman estimate for1ρ

before defining the main spaces and their duals in the following section. We improve upon the estimate

|ρ|∥1−1
ρ f ∥L2(B) ⩽ C∥ f ∥L2(Rn) (16)

whenever f ∈ C∞
c (B), which does not seem strong enough to construct CGO solutions for Lipschitz

conductivities. The inequality (16) follows by combining

|ρ|
1/2

∥g∥L2(B) ⩽ C∥g∥Ẋ1/2
ρ

(17)

whenever g ∈ Ẋ1/2
ρ with the trivial inequality (14), and then

|ρ|
1/2

∥ f ∥Ẋ−1/2
ρ

⩽ C∥ f ∥L2(Rn) (18)

whenever f ∈ C∞
c (B). The constants C > 1 depend only on R. Away from the zero set of the Fourier

multiplier mρ , these inequalities are obvious, and the localisation serves to blur out the effect of the zero
set; see Lemma 2.2 of [Haberman and Tataru 2013] for the proof.
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In the following lemma we improve the constant in (16) by introducing exponential weights that depend
on the auxiliary parameter λ > 1. The extra gain in terms of λ will be key to constructing our CGO
solutions for Lipschitz conductivities.

Lemma 5.1. Consider ρ ∈ Cn such that ρ · ρ = 0, and write θ := Re ρ/|Re ρ|. Then∫
B

|1−1
ρ f (x)|2eλ(θ ·x)

2
dx ⩽

2
λ|ρ|2

∫
Rn

| f (x)|2eλ(θ ·x)
2

dx

whenever f ∈ C∞
c (R

n) and λ > 1 satisfies |ρ| ⩾ 4λR.

Proof. If mρ had been defined slightly differently at the beginning, including a superfluous ρ ·ρ term, we
could have proved a version of this lemma without the hypothesis that ρ · ρ = 0. In fact, we begin by
reducing to a purely real vector case. Indeed, letting Re ρ, Im ρ ∈ Rn denote the real and imaginary parts
of ρ, respectively, we define 1−1

Re ρ as in Section 2, but with mρ replaced by

mRe ρ(ξ) := −|ξ |2 + 2i Re ρ · ξ + Re ρ · Re ρ

for all ξ ∈ Rn . Then, observing that

mρ(ξ)= −|ξ |2 + 2iρ · ξ + ρ · ρ = mRe ρ(ξ + Im ρ)

and defining the modulation operator by ModIm ρ f (x) := ei Im ρ·x f (x), we find that

ModIm ρ[1
−1
ρ f ] =1−1

Re ρ[ModIm ρ f ]

whenever f ∈ C∞
c (R

n). Recalling that |ρ|
2
= 2|Re ρ|

2 if ρ · ρ = 0, it will therefore suffice to prove∫
B

|1−1
Re ρ f (x)|2eλ(θ ·x)

2
dx ⩽

1
λ|Re ρ|2

∫
Rn

| f (x)|2eλ(θ ·x)
2

dx

whenever |Re ρ| ⩾ 2λR. Recalling that θ := Re ρ/|Re ρ|, by rotating to en , this would follow from∫
B

|1−1
τen

f (x)|2eλx2
n dx ⩽

1
λτ 2

∫
Rn

| f (x)|2eλx2
n dx (19)

whenever f ∈ C∞
c (R

n) and τ ⩾ 2λR.
In order to prove (19), we will first prove the closely related Carleman estimate

∥g∥
2
L2(B) ⩽

1
λτ 2 ∥eλx2

n/2(1+ 2τen · ∇ + τ 2)(e−λx2
n/2g)∥2

L2(Rn)
(20)

whenever g ∈ S(Rn). Defining ϕ(x)= τ xn +
1
2λx2

n , the integrand of the right-hand side can be rewritten as

eϕ1(e−ϕg)=1g − ∇ϕ · ∇g − ∇ · (∇ϕg)+ |∇ϕ|
2g.

Defining the formally self-adjoint A and skew-adjoint B by

Ag =1g + |∇ϕ|
2g and Bg = −∇ϕ · ∇g − ∇ · (∇ϕg)
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and integrating by parts, we have that

∥(A + B)g∥
2
L2(Rn)

= ∥Ag∥
2
L2(Rn)

+ ∥Bg∥
2
L2(Rn)

+

∫
Rn

[A,B]gḡ, (21)

where [A,B] = AB − BA denotes the commutator. By the definition of ϕ, we have

Ag(x)=1g(x)+ (τ + λxn)
2g(x),

Bg(x)= −2(τ + λxn) ∂xn g(x)− λg(x),

which yields

[A,B]g(x)= −4λ∂2
xn

g(x)+ 4λ(τ + λxn)
2g(x).

After another integration by parts, we find∫
Rn

[A,B]gḡ = 4λ
∫

Rn
|∂xn g|

2
+ 4λ

∫
Rn

|∇ϕ|
2
|g|

2,

so that, substituting this into (21) and throwing three of the terms away, we find

∥eϕ1(e−ϕg)∥2
L2(Rn)

⩾ 4λ
∫

Rn
|∇ϕ|

2
|g|

2.

As |∇ϕ(x)| ⩾ τ − λR whenever |xn| ⩽ R, this yields

∥eϕ1(e−ϕg)∥2
L2(Rn)

⩾ 4λ(τ − λR)2∥g∥
2
L2(B),

which implies (20) whenever τ ⩾ 2λR and g ∈ S(Rn).
Finally, by density, the inequality (20) also holds for every g ∈ L2

loc(R
n) such that

eλx2
n/2(1+ 2τen · ∇ + τ 2)(e−λx2

n/2g) ∈ L2(Rn).

Choosing g = eλx2
n/21−1

τen
f with f ∈ C∞

c (R
n), we find that (20) implies (19). □

Remark 5.2. The proof of Lemma 5.1 yields the following strengthened estimate: if ρ ∈ Cn and
θ := Re ρ/|Re ρ|, then∫

|θ ·x |<|Re ρ|/(2λ)
|1−1

ρ f (x)|2eλ(θ ·x)
2

dx ⩽
1

λ|Re ρ|2

∫
Rn

| f (x)|2eλ(θ ·x)
2

dx

whenever f ∈ S(Rn) is such that the right-hand side is finite and λ > 1.

5.2. Estimates for derivatives. The inequality of Lemma 5.1 has a gain in the sense of L2, however,
this is not enough to construct CGO solutions for Lipschitz conductivities since we need to control the
first-order partial derivatives present in the operator Mq . For this we consider

∥ • ∥X1/2
λ,ρ

:= λ1/4
|ρ|

1/2
∥ • ∥L2(B,eλ(θ ·x)2 ) +

1
λ1/4 ∥ • ∥Ẋ1/2

ρ
(22)

and combine Lemma 5.1 with the trivial inequality (14).
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Lemma 5.3. Consider ρ ∈ Cn such that ρ · ρ = 0, and write θ := Re ρ/|Re ρ|. Then there is a constant
C > 1, depending only on the radius R of B, such that

∥1−1
ρ f ∥X1/2

λ,ρ

⩽
C

λ1/4|ρ|1/2
∥ f ∥L2(Rn,eλ(θ ·x)2 )

whenever f ∈ C∞
c (B) and λ > 1 satisfies |ρ| ⩾ 4λR.

Proof. The first term in the definition (22) is bounded using Lemma 5.1, so it remains to bound the second
term. Combining the trivial inequality (14) with (18), we see that

∥1−1
ρ f ∥Ẋ1/2

ρ
⩽ ∥ f ∥Ẋ−1/2

ρ
⩽

C
|ρ|1/2

∥ f ∥L2(Rn) ⩽
C

|ρ|1/2
∥ f ∥L2(Rn,eλ(θ ·x)2 )

whenever f ∈ C∞
c (B), where the constant C > 1 depends only on R. Dividing by λ1/4 yields the desired

estimate for the second term. □

Lemma 5.4. Consider ρ ∈ Cn such that ρ · ρ = 0, and write θ := Re ρ/|Re ρ|. Then there is a constant
C > 1, depending only on the radius R of B, such that

∥1−1
ρ f ∥X1/2

λ,ρ

⩽ Cλ1/4eλR2/2
∥ f ∥Ẋ−1/2

ρ

whenever f ∈ C∞
c (B) and λ > 1.

Proof. The second term in the definition (22) can be bounded easily using the trivial inequality (14), so it
remains to bound the first term. By (17), we have

|ρ|
1/2

∥g∥L2(B,eλ(θ ·x)2 ) ⩽ eλR2/2
|ρ|

1/2
∥g∥L2(B) ⩽ CeλR2/2

∥g∥Ẋ1/2
ρ

whenever g ∈ Ẋ1/2
ρ , where the constant C > 1 depends only on R. Taking g =1−1

ρ f and multiplying the
inequality by λ1/4 yields

λ1/4
|ρ|

1/2
∥1−1

ρ f ∥L2(B,eλ(θ ·x)2 ) ⩽ Cλ1/4eλR2/2
∥1−1

ρ f ∥Ẋ1/2
ρ
.

A final application of the trivial inequality (14) yields the desired estimate. □

6. The new spaces

We must extend the domain of1−1
ρ by taking limits, so we carefully define Banach spaces using equivalence

classes. We define
Ẋ1/2
ρ (B) := {[ f ]B : f ∈ Ẋ1/2

ρ },

where the equivalence class [ f ]B is given by

[ f ]B := {g ∈ Ẋ1/2
ρ : ess supp( f − g)⊂ Rn

\ B}.

The space can be endowed with the norm

∥[ f ]B∥Ẋ1/2
ρ (B) := inf{∥g∥Ẋ1/2

ρ
: g ∈ [ f ]B},
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so that

(Ẋ1/2
ρ (B), ∥ • ∥Ẋ1/2

ρ (B)) is a Banach space.

We can rephrase the inequality (17) in terms of this norm. Indeed, as

|ρ|
1/2

∥g∥L2(B) ⩽ C∥g∥Ẋ1/2
ρ

whenever g ∈ [ f ]B , where C > 1 is a constant depending only on R, we can take the infimum to find

|ρ|
1/2

∥ f ∥L2(B) ⩽ C∥ f ∥Ẋ1/2
ρ (B). (23)

Identifying the elements [ f ]B of Ẋ1/2
ρ (B) with f |B , the restriction of f to B, this yields the embedding

Ẋ1/2
ρ (B) ↪→ L2(B). (24)

Moreover, we have the following equivalence of norms.

6.1. Equivalence with the Sobolev norm. There are constants c,C > 0, depending only on R, such that

c|ρ|
−1/2

∥ f ∥H1(B) ⩽ ∥ f ∥Ẋ1/2
ρ (B) ⩽ C |ρ|

1/2
∥ f ∥H1(B) (25)

whenever f ∈ H 1(B) and |ρ|> 1. To see this, note that

|mρ(ξ)| ⩽ 2(1 + |ρ|)(1 + |ξ |2)

for all ξ ∈ Rn , so that

∥g∥Ẋ1/2
ρ

⩽ 21/2(1 + |ρ|)1/2∥g∥H1(Rn)

whenever g ∈ H 1(Rn). Thus H 1-extensions are also Ẋ1/2
ρ -extensions, so the right-hand inequality of (25)

follows by taking the infimum over H 1-extensions g of f ∈ H 1(B).
For the left-hand inequality, consider gB := χB g, where χB is a smooth function equal to one on B

and supported on 2B. Then, separating the low and high frequencies,

∥gB∥
2
H1(Rn)

⩽ ∥gB∥
2
L2(Rn)

+ 16|ρ|
2
∫

|ξ |⩽4|ρ|

|ĝB(ξ)|
2 dξ + 2

∫
|ξ |>4|ρ|

|mρ(ξ)||ĝB(ξ)|
2 dξ

⩽ C |ρ|∥g∥
2
Ẋ1/2
ρ

whenever |ρ|> 1, where the second inequality follows from Lemma 2.2 of [Haberman and Tataru 2013].
Restricting the left-hand side to B, we find that

∥g∥H1(B) ⩽ C |ρ|
1/2

∥g∥Ẋ1/2
ρ
.

Now if g is an Ẋ1/2
ρ -extension of f ∈ Ẋ1/2

ρ (B), then f = g almost everywhere in B, so we can replace g
on the left-hand side by f and take the infimum over g to obtain the left-hand inequality of (25).
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6.2. The main space. We define our main norm by

∥ • ∥X1/2
λ,ρ(B)

: f ∈ Ẋ1/2
ρ (B) 7→ λ1/4

|ρ|
1/2

∥ f ∥L2(B,eλ(θ ·x)2 ) +
1
λ1/4 ∥ f ∥Ẋ1/2

ρ (B),

and note that by (23) it is equivalent to the homogeneous norm:

λ−1/4
∥ f ∥Ẋ1/2

ρ (B) ⩽ ∥ f ∥X1/2
λ,ρ(B)

⩽ Cλ1/4eλR2/2
∥ f ∥Ẋ1/2

ρ (B), (26)

where C > 1 depends only on R. Thus we can conclude that

(Ẋ1/2
ρ (B), ∥ • ∥X1/2

λ,ρ(B)
) is a Banach space. (27)

Later we will use that the constants in this norm equivalence are independent of |ρ|.

6.3. A minor variant of the main space. We also consider the norm ∥ • ∥Y 1/2
λ,−ρ(B)

defined by

f ∈ Ẋ1/2
−ρ (B) 7→ max

{
λ1/4

|ρ|
1/2

∥ f ∥L2(B,e−λ(θ ·x)2 )
,

1
λ1/4eλR2/2

∥ f ∥Ẋ1/2
−ρ (B)

}
.

Notice that little more than some signs have changed. As before, this norm is equivalent to the homoge-
neous norm:

1
λ1/4eλR2/2

∥ f ∥Ẋ1/2
−ρ (B)

⩽ ∥ f ∥Y 1/2
λ,−ρ(B)

⩽ Cλ1/4
∥ f ∥Ẋ1/2

−ρ (B)
, (28)

where C > 1 depends only on R, and so

(Ẋ1/2
−ρ (B), ∥ • ∥Y 1/2

λ,−ρ(B)
) is a Banach space. (29)

Recalling the embedding (24), this can be identified with the intersection of the spaces

(L2(B), λ1/4
|ρ|

1/2
∥ • ∥L2(B,e−λ(θ ·x)2 )

) and
(

Ẋ1/2
−ρ (B),

1
λ1/4eλR2/2

∥ • ∥Ẋ1/2
−ρ (B)

)
.

As (29) is dense in both of these spaces, we can identify the dual of their intersection with the sum of
their duals; see for example [Bennett 1974, Theorem 3.1]. This provides an alternative identification of
the dual of (29) which we describe now.

6.4. The dual space. Let Ẋ−1/2
ρ,c (B) denote the Banach completion of C∞

c (B) with respect to the norm

∥ • ∥Ẋ−1/2
ρ

: f ∈ C∞

c (B) 7→ ∥|mρ |
−1/2 f̂ ∥L2(Rn).

We endow L2(B)+ Ẋ−1/2
ρ,c (B) with the norm

∥ f ∥Y −1/2
λ,ρ,c (B)

:= inf
f = f ♭+ f ♯

(
1

λ1/4|ρ|1/2
∥ f ♭∥L2(B,eλ(θ ·x)2 ) + λ

1/4eλR2/2
∥ f ♯∥Ẋ−1/2

ρ

)
,

with the infimum taken over all f ♭ ∈ L2(B) and f ♯ ∈ Ẋ−1/2
ρ,c (B). Then

(L2(B)+ Ẋ−1/2
ρ,c (B), ∥ • ∥Y −1/2

λ,ρ,c (B)
) is a Banach space. (30)
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With real-bracket pairings, Plancherel’s identity takes the form

⟨ f, g⟩ =

∫
Rn

f̂ (ξ)ǧ(ξ) dξ =

∫
Rn

f̂ (ξ)ĝ(−ξ) dξ, (31)

so that, by similar arguments to those used for Sobolev spaces, we find(
Ẋ1/2

−ρ (B),
1

λ1/4eλR2/2
∥ • ∥Ẋ1/2

−ρ (B)

)∗

∼= (Ẋ−1/2
ρ,c (B), λ1/4eλR2/2

∥ • ∥Ẋ−1/2
ρ
);

see for example [Jerison and Kenig 1995, Proposition 2.9]. On the other hand, it is easy to see that

(L2(B), λ1/4
|ρ|

1/2
∥ • ∥L2(B,e−λ(θ ·x)2 )

)∗ ∼=

(
L2(B),

1
λ1/4|ρ|1/2

∥ • ∥L2(B,eλ(θ ·x)2 )

)
.

Thus the dual of (29) can be identified with the sum of the two dual spaces as described in (30); see for
example [Bennett 1974, Theorem 3.1].

7. The locally defined extension of 1−1
ρ

We are now ready to extend the domain of 1−1
ρ by combining Lemmas 5.3 and 5.4. This extension will

make no sense outside of B in contrast with the globally defined extension of f ∈ C∞
c (B) 7→1−1

ρ f given
by the trivial inequality (14). We denote the globally defined extension by 1−1

ρ and the locally defined
extension by TB

ρ .

Corollary 7.1. Consider ρ ∈ Cn such that ρ · ρ = 0 and λ > 1. Then there is a continuous linear
extension TB

ρ of

f ∈ C∞

c (B) 7→1−1
ρ f |B

and a constant C > 1, depending only on the radius R of B, such that

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽ C∥ f ∥Y −1/2

λ,ρ,c (B)

whenever f ∈ L2(B)+ Ẋ−1/2
ρ,c (B) and |ρ| ⩾ 4λR.

Proof. By Lemma 5.3 and the density of C∞
c (B) in(

L2(B),
1

λ1/4|ρ|1/2
∥ • ∥L2(B,eλ(θ ·x)2 )

)
,

we can extend f ∈ C∞
c (B) 7→1−1

ρ f |B to a bounded linear operator TB
ρ that satisfies

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽

C
λ1/4|ρ|1/2

∥ f ∥L2(B,eλ(θ ·x)2 )

whenever f ∈ L2(B). The constant C > 1 depends only on R. On the other hand, by Lemma 5.4 and the
density of C∞

c (B) in

(Ẋ−1/2
ρ,c (B), λ1/4eλR2/2

∥ • ∥Ẋ−1/2
ρ
),
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we can extend f ∈ C∞
c (B) 7→1−1

ρ f |B to a bounded linear operator TB
ρ that satisfies

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽ Cλ1/4eλR2/2

∥ f ∥Ẋ−1/2
ρ

whenever f ∈ Ẋ−1/2
ρ,c (B). Again, the constant C > 1 depends only on R.

Considering now f = f ♭ + f ♯ with f ♭ ∈ L2(B) and f ♯ ∈ Ẋ−1/2
ρ,c (B), we define

TB
ρ f := TB

ρ f ♭ + TB
ρ f ♯.

One can show that this is well defined using the linearity of the previous extensions and the density
of C∞

c (B). Then, by the triangle inequality and the previous bounds,

∥TB
ρ f ∥X1/2

λ,ρ(B)
⩽ C

(
1

λ1/4|ρ|1/2
∥ f ♭∥L2(eλ(θ ·x)2 ) + λ

1/4eλR2/2
∥ f ♯∥Ẋ−1/2

ρ

)
,

where the constant C depends only on R. Since the left-hand side is independent of the representation
f = f ♭+ f ♯, we can take the infimum over such representations, and the desired inequality follows. □

8. The bound for Mq

With a view to further applications, we write part of this section in greater generality. Consider bounded
functions a0, a1, . . . , an ⊂ L∞(Rn) with compact support:

supp a j ⊂�⊂ B = {x ∈ Rn
: |x |< R},

where R := 2 supx∈� |x |. Define the bilinear form B : H 1(B)× H 1(B)→ C by

B( f, g) :=

∫
�

a0 f g +

∫
�

A · ∇( f g),

where A is the vector field with components (a1, . . . , an). This is well defined by an application of the
product rule, followed by the Cauchy–Schwarz inequality.

Proposition 8.1. Consider ρ ∈ Cn such that ρ ·ρ= 0 and λ> 1. Then there is a constant C > 1, depending
only on the radius R of B, such that

|B( f, g)| ⩽ C
(

1
λ1/2|ρ|

+
1
λ1/2 +

eλR2/2

|ρ|1/2

) n∑
j=0

∥a j∥L∞(�)∥ f ∥X1/2
λ,ρ(B)

∥g∥Y 1/2
λ,−ρ(B)

whenever ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B).

Proof. For the first term, we note that, by the Cauchy–Schwarz inequality,∣∣∣∣∫
�

a0 f g
∣∣∣∣ ⩽ ∥a0∥∞∥eλ(θ ·x)

2/2 f ∥L2(B)∥e−λ(θ ·x)2/2g∥L2(B) ⩽
1
λ1/2

1
|ρ|

∥a0∥∞∥ f ∥X1/2
λ,ρ(B)

∥g∥Y 1/2
λ,−ρ(B)

whenever ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B). The second inequality follows directly from the weightings in the
definition of the norms.
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For the more difficult first-order term, we consider a positive and smooth function χ , equal to 1 on the
ball of radius 1

2 , supported in the unit ball, and bounded above by 1. Then we work with fB := χB f and
gB := χB g, where χB := χ( • /R) is equal to 1 on � and supported on B. Letting A♭ denote the vector
field with components

a♭j (x) :=
1

(2π)n

∫
Rn

ei x ·ξχ

(
ξ

16|ρ|

)
â j (ξ) dξ

for all x ∈ Rn and j = 1, . . . , n, and letting A♯ := A − A♭, by integration by parts,∫
�

A · ∇( f g)= −

∫
Rn

∇ · A♭ fB gB +

∫
Rn

A♯ · ∇( fB gB).

Noting that ∥∇ · A♭∥∞ ⩽ C |ρ|∥A∥∞, the first term can be bounded as before:∣∣∣∣∫
Rn

∇ · A♭ fB gB

∣∣∣∣ ⩽ C∥∇ · A♭∥∞∥eλ(θ ·x)
2/2 f ∥L2(B)∥e−λ(θ ·x)2/2g∥L2(B)

⩽ C∥A∥∞|ρ|
1/2

∥ f ∥L2(B,eλ(θ ·x)2 )|ρ|
1/2

∥g∥L2(B,e−λ(θ ·x)2 )
.

Again by the weightings in the definitions of the norms, this implies that∣∣∣∣∫
Rn

∇ · A♭ fB gB

∣∣∣∣ ⩽ C
1
λ1/2 ∥A∥∞∥ f ∥X1/2

λ,ρ(B)
∥g∥Y 1/2

λ,−ρ(B)

whenever ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B).
It remains to show that∣∣∣∣∫

Rn
A♯ · ∇( fB gB)

∣∣∣∣ ⩽ C
eλR2/2

|ρ|1/2
∥A∥∞∥ f ∥X1/2

λ,ρ(B)
∥g∥Y 1/2

λ,−ρ(B)
. (32)

Using the product rule, we can separate into two similar terms,∫
Rn

A♯ · ∇( fB gB)=

∫
Rn

A♯ · ∇ fB gB +

∫
Rn

A♯ · ∇gB fB, (33)

and initially treat the first term on the right-hand side (the second term will eventually be dealt with by
symmetry). We decompose the integral as∫

Rn
A♯ · ∇ fB gB =

∫
Rn

A♯ · ∇L fB LgB +

∫
Rn

A♯ · ∇L fB HgB +

∫
Rn

A♯ · ∇H fB gB,

where L denotes the low-frequency filter defined by

L f (x) :=
1

(2π)n

∫
Rn

eix·ξχ

(
ξ

4|ρ|

)
f̂ (ξ) dξ

and H := I − L . By the properties of χ , the frequency supports of ∇L fB LgB and A♯ are disjoint, so that
by Plancherel’s identity the first term is in fact 0, yielding∫

Rn
A♯ · ∇ fB gB =

∫
Rn

A♯ · ∇L fB HgB +

∫
Rn

A♯ · ∇H fB gB .
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Then, by the Cauchy–Schwarz inequality (writing ∥ • ∥2 := ∥ • ∥L2(Rn)),∣∣∣∣∫
Rn

A♯ · ∇ fB gB

∣∣∣∣ ⩽ ∥A♯∥∞(∥∇L fB∥2∥HgB∥2 + ∥∇H fB∥2∥gB∥2).

Now as ∥A♯∥∞ ⩽ C∥A∥∞ and

∥∇L fB∥2∥HgB∥2 ⩽ C |ρ|∥L fB∥2∥HgB∥2 ⩽ C∥ fB∥2∥∇ HgB∥2,

we find that ∣∣∣∣∫
Rn

A♯ · ∇ fB gB

∣∣∣∣ ⩽ C∥A∥∞(∥ fB∥2∥∇ HgB∥2 + ∥∇H fB∥2∥gB∥2).

Since the right-hand side is symmetric in the roles of fB and gB , we can conclude the same bound for the
second term on the right-hand side of (33), yielding∣∣∣∣∫

Rn
A♯ · ∇( fB gB)

∣∣∣∣ ⩽ C∥A∥∞(∥ fB∥2∥∇ HgB∥2 + ∥∇H fB∥2∥gB∥2). (34)

Now clearly we have that

∥ fB∥2 ⩽ ∥ f ∥L2(B,eλ(θ ·x)2 ) and ∥gB∥2 ⩽ eλR2/2
∥g∥L2(B,e−λ(θ ·x)2 )

.

On the other hand, by Lemma 2.2 of [Haberman and Tataru 2013], we have

∥∇ H fB∥2 ⩽ C∥ f̃ ∥Ẋ1/2
ρ

and ∥∇ HgB∥2 ⩽ C∥g̃∥Ẋ1/2
−ρ
,

where ( f̃ , g̃) ∈ Ẋ1/2
ρ × Ẋ1/2

−ρ denotes any pair of extensions of ( f, g). Substituting these inequalities
into (34) and taking the infimum over extensions yields∣∣∣∣∫

Rn
A♯ · ∇( fB gB)

∣∣∣∣ ⩽ C∥A∥∞(∥ f ∥L2(B,eλ(θ ·x)2 )∥g∥Ẋ1/2
−ρ (B)

+ eλR2/2
∥ f ∥Ẋ1/2

ρ (B)∥g∥L2(B,e−λ(θ ·x)2 )
).

Recalling the weightings in the norms, this completes the proof of (32). □

From this we can deduce our estimate for Mq : f 7→ q f , where q is defined in (4).

Corollary 8.2. Consider ρ ∈ Cn such that ρ · ρ = 0 and λ > 1. Then there is a C > 1, depending on
∥∇ log σ∥∞ and the radius R of B, such that

∥ Mq f ∥Y −1/2
λ,ρ,c (B)

⩽ C
(

1
λ1/2|ρ|

+
1
λ1/2 +

eλR2/2

|ρ|1/2

)
∥ f ∥X1/2

λ,ρ(B)

whenever f ∈ Ẋ1/2
ρ (B).

Proof. By an application of the product rule, the definition (4) can be rewritten as

⟨q, ψ⟩ =
1
4

∫
�

|∇ log σ |
2ψ −

1
2

∫
�

∇ log σ · ∇ψ.
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Using our a priori assumptions that σ is bounded below and ∇σ is bounded above almost everywhere
(which follows from Lipschitz continuity), ∇ log σ = σ−1

∇σ is a vector of bounded functions. Thus, by
taking

a0 =
1
4 |∇ log σ |

2 and A = −
1
2∇ log σ,

we can write

⟨Mq f, g⟩ := ⟨q f, g⟩ := ⟨q, f g⟩ = B( f, g)

for all ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B). Then, by Proposition 8.1, we find that

|⟨Mq f, g⟩| ⩽ C
(

1
λ1/2|ρ|

+
1
λ1/2 +

eλR2/2

|ρ|1/2

) n∑
j=0

∥a j∥∞∥ f ∥X1/2
λ,ρ(B)

∥g∥Y 1/2
λ,−ρ(B)

for all ( f, g) ∈ Ẋ1/2
ρ (B)× Ẋ1/2

−ρ (B). Finally, using the identification

(Ẋ1/2
−ρ (B), ∥ • ∥Y 1/2

λ,−ρ(B)
)∗ ∼= (L2(B)+ Ẋ−1/2

ρ,c (B), ∥ • ∥Y −1/2
λ,ρ,c (B)

),

we obtain the desired inequality. □

9. Locally defined CGO solutions via Neumann series

Let X1/2
λ,ρ(B) and Y −1/2

λ,ρ,c (B) denote the Banach spaces defined in (27) and (30), respectively. Recall that
f ∈ C∞

c (B) 7→1−1
ρ f |B can be extended as a bounded linear operator

TB
ρ : Y −1/2

λ,ρ,c (B)→ X1/2
λ,ρ(B)

using Corollary 7.1 and that Mq : f 7→ q f , with q defined in (4), is bounded as

Mq : X1/2
λ,ρ(B)→ Y −1/2

λ,ρ,c (B)

by Corollary 8.2. The contraction will follow by choosing |ρ| and λ appropriately so that the product of
the operator norms is small.

Theorem 9.1. Consider ρ ∈ Cn such that ρ · ρ = 0 and λ > 1. Then there is a C0 > 1, depending on
∥∇ log σ∥∞ and the radius R of B, such that

∥TB
ρ ◦ Mq ∥L(X1/2

λ,ρ(B))
⩽ 1

2 (35)

whenever |ρ|> λeλR2
and λ= 36C2

0 . For all f ∈ Y −1/2
λ,ρ,c (B), there is a w ∈ X1/2

λ,ρ(B) such that

(I − TB
ρ ◦ Mq)w = TB

ρ [ f ]. (36)

Moreover, there is a C > 1, depending only on R, such that

∥w∥X1/2
λ,ρ(B)

⩽ C∥ f ∥Y −1/2
λ,ρ,c (B)

. (37)
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Proof. By combining Corollaries 7.1 and 8.2, we have that TB
ρ ◦ Mq is a bounded operator whenever

|ρ| ⩾ 4λR. Furthermore, there exists a constant C0 > 1 such that

∥TB
ρ ◦ Mq ∥L(X1/2

λ,ρ(B))
⩽ C0

(
1

λ1/2|ρ|
+

1
λ1/2 +

eλR2/2

|ρ|1/2

)
⩽ 1

2

whenever |ρ|
1/2 > 6C0eλR2/2 and λ1/2

= 6C0. Then, by Neumann series, I − TB
ρ ◦ Mq has a bounded

inverse,

(I − TB
ρ ◦ Mq)

−1
=

∑
k⩾0

(TB
ρ ◦ Mq)

k

on X1/2
λ,ρ(B), and so w = (I − TB

ρ ◦ Mq)
−1TB

ρ [ f ] satisfies (36). Moreover,

∥w∥X1/2
λ,ρ(B)

⩽
∑
k⩾0

∥(TB
ρ ◦ Mq)

kTB
ρ [ f ]∥X1/2

λ,ρ(B)
⩽ 2∥TB

ρ [ f ]∥X1/2
λ,ρ(B)

by the triangle inequality, the contraction (35), and summing the geometric series. Then (37) follows by a
final application of Corollary 7.1. □

Recall that we can also use the trivial inequality (14) to extend f ∈ C∞
c (B) 7→1−1

ρ f as a bounded
linear operator

1−1
ρ : Ẋ−1/2

ρ → Ẋ1/2
ρ .

In the following corollary we clarify that the restriction of this extension to the ball B and the previous
locally defined extension TB

ρ are the same. We also record the properties of our CGO solutions that we
will need in the remaining sections.

Corollary 9.2. Consider ρ ∈ Cn and λ > 1 as in Theorem 9.1. Then

∥1−1
ρ ◦ Mq ∥L(X1/2

λ,ρ(B))
⩽ 1

2 , (38)

there is a w ∈ H 1(B) that solves (7), and there is a C > 1, depending on ∥∇ log σ∥∞ and the radius R
of B, such that

∥w∥Ẋ1/2
ρ (B) ⩽ C∥q∥Ẋ−1/2

ρ
. (39)

Moreover, v = eρ(1 +w) ∈ H 1(B) solves the Lippmann–Schwinger-type equation

(I − Sq)v = eρ, where Sq := eρ1−1
ρ ◦ Mq [e−ρ • ] (40)

as elements of H 1(B), and is also a weak solution to the Schrödinger equation (3).

Proof. By Corollary 7.1, the equivalence of norms (26), and the trivial inequality (14),

∥TB
ρ g −1−1

ρ g∥X1/2
λ,ρ(B)

⩽ ∥TB
ρ [g − g j ]∥X1/2

λ,ρ(B)
+ ∥1−1

ρ [g j − g]∥X1/2
λ,ρ(B)

⩽ C(∥g − g j∥Y −1/2
λ,ρ,c (B)

+ ∥g j − g∥Ẋ−1/2
ρ
),
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and given that the dual norms are also equivalent, by (28), we can choose g j ∈ C∞
c (B) such that the

right-hand side converges to 0. Then, combining with Corollary 8.2, the contraction (38) follows directly
from the previous contraction (35).

Taking f = Mq [1] in Theorem 9.1, we find w ∈ X1/2
λ,ρ(B) solving

w = TB
ρ ◦ Mq [1 +w].

Again by Corollary 8.2, we have Mq [1 +w] ∈ Y −1/2
λ,ρ,c (B), so that, taking this as the function g above, we

can also write

w =1−1
ρ ◦ Mq [1 +w] (41)

as elements of X1/2
λ,ρ(B). Thus, combining with the norm equivalences (25) and (26), we find that

w ∈ H 1(B) solves (7). Moreover, the inequality (39) follows from the previous inequality (37) combined
with (26) and the dual version of (28).

Finally, writing v = eρ(1 +w), we can multiply (41) by eρ to find

v− eρ = eρ1−1
ρ ◦ Mq [e−ρv] =: Sq [v]

as elements of H 1(B). Then, by integration by parts and Plancherel’s identity (31), cancelling the Fourier
multipliers,

−

∫
Rn

∇Sq [v] · ∇ψ =

∫
Rn
1−1
ρ ◦ Mq [e−ρv]eρ1[e−ρeρψ]

=

∫
Rn

m−1
ρ

̂Mq [e−ρv]mρ(eρψ)∨

= ⟨qv, ψ⟩ (42)

whenever ψ ∈ C∞
c (B). Given that eρ is harmonic, we see that v ∈ H 1(B) is also a weak solution to the

Schrödinger equation (3). □

Remark 9.3. The CGO solutions v = eρ(1 +w) given by Corollary 9.2 also satisfy

v =

∑
k⩾0

eρ(1−1
ρ ◦ Mq)

k
[1], (43)

with convergence in H 1(B). On the other hand, we have that

eρ(1−1
ρ ◦ Mq)

k
[1] = (eρ1−1

ρ ◦ Mq [e−ρ • ])k[eρ] = Sk
q [eρ]

as elements of H 1(B). Substituting this into (43), we find that

v =

∑
k⩾0

Sk
q [eρ]

again in the H 1(B)-sense. If we had proven that Sq is contractive on H 1(B), we could have solved (40)
more directly by Neumann series, and the solution would have taken this form.
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10. The boundary integral identities

Here we use the divergence theorem to equate the boundary integral to an integral over the domain. Iden-
tities similar to the first identity of Lemma 10.1, often known as Alessandrini identities, are foundational
for the Calderón problem. Recall that our boundary integral B I3σ : H 1/2(∂�)× H 1(�)→ C is defined
by

B I3σ (φ, ψ) :=

∫
∂�

(σ−1/23σ [σ
−1/2φ] − ν · ∇ P0[φ])ψ, (44)

where P0[φ] denotes the harmonic extension of φ. A key idea of [Nachman 1988] and [Novikov 1988]
was to take the Faddeev fundamental solution within boundary integrals similar to this, yielding similar
formulas to the second identity in Lemma 10.1.

Lemma 10.1. Let q be defined by (4), and let B I3σ be defined by (44). Then

B I3σ (v|∂�, ψ)= ⟨qv, ψ⟩

whenever ψ is harmonic on � and v ∈ H 1(�) solves the Schrödinger equation (3). Moreover,

B I3σ (v|∂�,Gρ(x, • ))= Sq [v](x)

as elements of H 1(B \�), where Sq is defined in (40).

Proof. For the first identity, consider the weak solution to the conductivity equation given by u = σ−1/2v.
Recalling that ∇σ is bounded almost everywhere, by an application of the product rule, we find that
1u = −σ−1

∇σ · ∇u ∈ L2(�). Thus the normal traces can be defined so that the divergence theorem can
be applied to σ∇uσ−1/2ψ − ∇ P0[φ]ψ , yielding

B I3σ (v|∂�, ψ)=

∫
�

(σ∇u · ∇(σ−1/2ψ)− ∇ P0[v|∂�] · ∇ψ); (45)

see for example [Kim and Kwon 2022, Proposition 2.4]. Now, as ψ is harmonic on �, we have∫
�

∇(P0[v|∂�] − σ 1/2u) · ∇ψ = 0,

which can be substituted in (45) to find that

B I3σ (v|∂�, ψ)=

∫
�

(σ∇u · ∇(σ−1/2ψ)− ∇(σ 1/2u) · ∇ψ).

Then, after applying the product rule again, terms cancel and one finds that the right-hand side of this
identity is equal to ⟨qσ 1/2u, ψ⟩ = ⟨qv, ψ⟩, as desired.

For the second identity, recall that G−ρ := e−ρF−ρ is a fundamental solution for the Laplacian. In
particular 1G−ρ( • , x) = 0 on � for all x ∈ B \�. On the other hand, Gρ inherits a skew symmetry
from Fρ ,

G−ρ(y, x) := e−ρ(y − x)F−ρ(y − x)= eρ(x − y)Fρ(x − y)=: Gρ(x, y), (46)
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so we can reinterpret this as 1Gρ(x, • )= 0 on � for all x ∈ B \�. Thus, we can substitute this into the
first identity to find that

B I3σ (v|∂�,Gρ(x, • ))= ⟨qv,Gρ(x, • )⟩ (47)

for all x ∈ B \�.
Now, for any f ∈ H 1(�) and any smooth ψx supported in a small ball centred at x and properly

contained in B \�, we have that∫
B
⟨q f,Gρ(y, • )⟩ψx(y) dy =

〈
q f,

∫
B

Gρ(y, • )ψx(y) dy
〉
. (48)

This follows by interchanging the integral and the gradient, using Lebesgue’s dominated convergence
theorem, and applying Fubini’s theorem. Then using the skew symmetry (46) again and the kernel
representation (9) of 1−1

ρ , the right-hand side of (48) can be rewritten as

⟨q f, e−ρ1
−1
−ρ[eρψx ]⟩ =

∫
B

eρ1−1
ρ [q f e−ρ](y)ψx(y) dy. (49)

Here we have considered 1−1
ρ to be the globally defined extension given by (14), and the identity follows

by moving the Fourier multiplier m−1
ρ from one term to the other after an application of Plancherel’s

identity (31). Combining (48) with (49) and recalling the definition (40) of Sq , we find that∫
B
⟨q f,Gρ(y, • )⟩ψx(y) dy =

∫
B

Sq [ f ](y)ψx(y) dy.

Now by the bounds of the previous section, we have that Sq [ f ] ∈ H 1(B), and so, letting ψx approximate
the Dirac delta δx , we find that

⟨q f,Gρ(x, • )⟩ = Sq [ f ](x) (50)

for almost every x ∈ B \� by a suitable version of the Lebesgue differentiation theorem; see for example
[Muscalu and Schlag 2013, Theorem 2.12]. Taking f = v and combining (47) with (50) yields the second
identity. □

11. The proofs of Theorems 3.1 and 3.2

The second identity of Lemma 10.1 allows us to define 03σ : H 1/2(∂�)→ H 1/2(∂�) by taking the outer
trace T∂� : H 1(B \�)→ H 1/2(∂�) of the boundary integral:

03σ [φ] := T∂�[B I3σ (φ,Gρ(x, • ))] (51)

for all φ ∈ H 1/2(∂�). Moreover, it gives us the alternative representation

03σ [φ] = T∂� ◦ Sq ◦ Pq [φ], (52)

where Sq is defined in (40) and Pq [φ] denotes the solution to (3) with Dirichlet data φ.
We restate the main theorems from Section 3 before proving them. The proof of the second part of

the following theorem bears some resemblance to the argument of [Astala et al. 2016, Theorem 3.1],
allowing us to avoid the use of double layer potentials.
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Theorem 3.1. Consider ρ ∈ Cn such that ρ ·ρ = 0 and |ρ|
2
= ρ · ρ̄ is sufficiently large. Let 03σ be defined

by (12). Then

(i) 03σ : H 1/2(∂�)→ H 1/2(∂�) is bounded compactly,

(ii) if 03σ [φ] = φ, then φ = 0,

(iii) I −03σ has a bounded inverse on H 1/2(∂�),

and if v = eρ(1 +w), where w ∈ H 1(B) is a solution to (7), then

(iv) v|∂� = (I −03σ )
−1

[eρ |∂�].

Proof. By hypothesis (I − Sq)v = eρ , so part (iv) follows from the alternative representation (52) and
part (iii), which in turn will follow from parts (i) and (ii) by the Fredholm alternative.

To see (i), note first that the trace operator T∂� : H 1(B \ �) → H 1/2(∂�) and solution operator
Pq : H 1/2(∂�)→ H 1(�) are bounded. Combining this with the alternative representation (52), it will
suffice to show that Sq : H 1(�)→ H 1(B \�) is bounded compactly. For this we recall that, on B \�,
we have the representation (50), and so by applications of the product rule we can divide the operator
into three parts Sq = S1 + S2 + S3, where

S1[ f ] :=
1
4

∫
�

|∇ log σ(y)|2 f (y)Gρ( • − y) dy,

S2[ f ] := −
1
2

∫
�

∇ log σ(y) · ∇ f (y)Gρ( • − y) dy,

S3[ f ] :=
1
2

∫
�

∇ log σ(y) · ∇Gρ( • − y) f (y) dy.

By our a priori assumptions, ∇ log σ = σ−1
∇σ ∈ L∞(�)n , and on the other hand Gρ and ∇Gρ are locally

integrable by (10). Thus, by Young’s convolution inequality,

S1 : L2(�)→ L2(B \�), S2 : H 1(�)→ L2(B \�), and S3 : L2(�)→ L2(B \�)

are bounded. Moreover, by Lebesgue’s dominated convergence theorem, we can take derivatives under
the integral, and by (10) we have that

∂x j ∂xi Gρ(x − y)= cnn
(x j − y j )(xi − yi )

|x − y|n+2 + ∂x j ∂xi Hρ(x − y).

On the one hand, the second-order Riesz transforms are easily bounded in L2 noting that the Fourier
multipliers −ξ jξi/|ξ |

2 are uniformly bounded; see for example [Muscalu and Schlag 2013, Section 7.2].
On the other hand, the operator corresponding to the second term can be bounded in L2(B \�) by Young’s
inequality again. Together we find that

S1 : L2(�)→ H 2(B \�), S2 : H 1(�)→ H 2(B \�), and S3 : L2(�)→ H 1(B \�)

are bounded. Thus, by Rellich’s theorem, all three operators are bounded from H 1(�) to H 1(B \�)

compactly. Altogether we find that Sq maps H 1(�) to H 1(B \�) compactly, which completes the proof
of (i).
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In order to see (ii), we combine its hypothesis with the alternative representation (52), obtaining

φ = 03σ [φ] = T∂� ◦ Sq ◦ Pq [φ]. (53)

By the bounds of Section 9, we know that Sq ◦ Pq [φ] = eρ1−1
ρ ◦ Mq [e−ρPq [φ]] ∈ H 1(B), so we can

replace the outer trace on ∂� with the inner trace as they both extend the restriction to ∂� of smooth
functions, which are dense in H 1(B). On the other hand, combining the calculation (42) with the defining
property of Pq [φ], we have that

−

∫
Rn

∇(Sq ◦ Pq [φ]) · ∇ψ = ⟨q Pq [φ], ψ⟩ = −

∫
Rn

∇ Pq [φ] · ∇ψ

whenever ψ ∈ C∞
c (�), and so 1[Sq ◦ Pq [φ] − Pq [φ]] = 0 in � in the weak sense. Combining this with

our hypothesis (53) and the uniqueness of solutions for the Dirichlet problem with zero boundary data,
we find that

Sq ◦ Pq [φ] = Pq [φ] in �. (54)

If we had a contraction for Sq , it would be easier to conclude that φ = 0. In any case, we can use the
contraction we have by considering

η := e−ρSq ◦ Pq [φ] =1−1
ρ ◦ Mq [e−ρPq [φ]] =1−1

ρ ◦ Mq [η],

where the final identity follows from the definition of η and (54). Then our contraction (38) implies that η
must be the zero element of X1/2

λ,ρ(B), so, by the equivalence of the norms, eρη must be the zero element
of H 1(B). Then, by the definition of η and (54) again, Pq [φ] is the zero element of H 1(�). Finally, by
uniqueness of the Dirichlet problem, φ is the zero element of H 1/2(∂�), which completes the proof of
the injectivity. □

Remark 11.1. Much of the previous argument is insensitive to the choice of fundamental solutions used
to invert 1 and 1ρ . Rather than troubling ourselves to invert 1ρ using the Faddeev fundamental solution,
we could have more easily inverted the operator using the a priori estimates proved in the uniqueness result
of [Caro and Rogers 2016]. Indeed, we were able to use those estimates to find a different fundamental
solution Kρ and w such that

w(x)− ⟨qw, Kρ(x, • )⟩ = ⟨q, Kρ(x, • )⟩ in B \�.

The associated CGO solutions v = eρ(1 +w) satisfy

v(x)− ⟨qv, Lρ(x, • )⟩ = eρ(x) in B \�,

where Lρ(x, y) := eρ(x − y)Kρ(x, y) as before. However, not only are these fundamental solutions less
explicitly defined, they also fail to satisfy the skew symmetry law (46): that is K−ρ(x, y) = Kρ(y, x).
Thus, even though we know that Lρ( • , y) is harmonic on Rn

\{y}, one is unable to conclude that Lρ(x, • )

is harmonic on Rn
\{x}, which is what allowed us to take it in the boundary integral identity. We attempted

to modify the fundamental solution so that the skew symmetry law is satisfied as in [Nachman and Street
2010]; however, we were unable to do this while maintaining the contraction.



2056 PEDRO CARO, MARÍA ÁNGELES GARCÍA-FERRERO AND KEITH M. ROGERS

We are now ready to complete the formula for the Fourier transform q̂(ξ) := ⟨q, e−iξ ·x
⟩, with q defined

in (4). The proof makes use of the boundary integral identity again combined with the averaging argument
due to [Haberman and Tataru 2013].

Theorem 3.2. Let 5 be a two-dimensional linear subspace orthogonal to ξ ∈ Rn , and define

S1
:=5∩ {θ ∈ Rn

: |θ | = 1}.

For θ ∈ S1, let ϑ ∈ S1 be such that {θ, ϑ} is an orthonormal basis of 5, and define

ρ := τθ + i
(
−
ξ

2
+

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
, ρ ′

:= −τθ + i
(
−
ξ

2
−

(
τ 2

−
|ξ |2

4

)1/2

ϑ

)
,

where τ > 1. Let B I3σ and 03σ be defined by (11) and (12), respectively. Then

q̂(ξ)= lim
T →∞

1
2πT

∫ 2T

T

∫
S1

B I3σ ((I −03σ )
−1

[eρ |∂�], eρ′) dθ dτ.

Proof. Noting that ρ · ρ = ρ ′
· ρ ′

= 0, we can take the CGO solution v = eρ(1 +w) ∈ H 1(B) given
by Corollary 9.2 and ψ = eρ′ in the first boundary integral identity of Lemma 10.1. Noting also that
ρ+ ρ ′

= −iξ , the right-hand side of the identity can be written as q̂(ξ) plus a remainder term. Indeed,
we find that

B I3σ (v|∂�, eρ′)= q̂(ξ)+ ⟨qw, e−iξ ·x
⟩. (55)

Now, for any extension w̃ ∈ Ẋ1/2
ρ of w and smooth χB equal to 1 on � and supported on B, by duality

we have that

|⟨qw, e−iξ ·x
⟩| ⩽ ∥q∥Ẋ−1/2

ρ
∥χBe−iξ ·xw̃∥Ẋ1/2

ρ
⩽ C∥q∥Ẋ−1/2

ρ
∥w̃∥Ẋ1/2

ρ
,

where the constant C > 1 depends on |ξ | and R; see [Haberman and Tataru 2013, Lemma 2.2] or [Caro
et al. 2013, (3.17)]. Taking the infimum over extensions, we find

|⟨qw, e−iξ ·x
⟩| ⩽ C∥q∥Ẋ−1/2

ρ
∥w∥Ẋ1/2

ρ (B).

Then, using the estimate (39) for the remainder in Corollary 9.2 and taking an average over ρ, we find that

1
2πT

∫ 2T

T

∫
S1

|⟨qw, e−iξ ·x
⟩| dθ dτ ⩽

C
2πT

∫ 2T

T

∫
S1

∥q∥
2
Ẋ−1/2
ρ

dθ dτ,

where C>1 depends on |ξ |, the radius R, and ∥∇ log σ∥∞. Now, [Haberman and Tataru 2013, Lemma 3.1]
proved that the right-hand side converges to 0 as T → ∞. Combining with (55), noting that q̂(ξ) is
unchanged by the average, yields

q̂(ξ)= lim
T →∞

1
2πT

∫ 2T

T

∫
S1

B I3σ (v|∂�, eρ′) dθ dτ.

Finally, we can use our formula for the values of v on the boundary given by Theorem 3.1, which
completes the proof. □
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Remark 11.2. In [Haberman 2015; Ham et al. 2021; Ponce-Vanegas 2021], the contraction was found
after taking similar averages over ρ, which yields the existence of a sequence of CGO solutions

{v j = eρ j (1 +w j )} j⩾1 with |ρ j | → ∞ as j → ∞.

The authors of the aforementioned works were able to take advantage of the existence of these solutions
to prove uniqueness; however, in order to reconstruct in terms of these solutions, one would need to know
which values of ρ j ∈ Cn to take.

12. Reconstruction in practice

There is an extensive literature dedicated to the real-world practicalities of the Calderón problem, such as
stability, partial data and numerical implementation; see for example [Caro et al. 2016; Delbary et al.
2012; Kenig et al. 2007]. Here we suggest some simplifications that would make things easier to measure
and calculate without dwelling on how much the simplifications would corrupt the image.

12.1. What to measure. An approximation of the conductivity on the surface σ |∂� could be measured
directly by placing real potential differences over pairs of adjacent electrodes, measuring the induced
current, and applying Ohm’s law. Earlier reconstruction algorithms also required the perpendicular
gradient of the conductivity on the surface, which seems harder to measure directly. We would also need
to measure an approximation of

MeasT (ξ) :=
1

2πT

∫ 2T

T

∫
S1

∫
∂�

3σ [σ
−1/2eρ]σ−1/2eρ′ dθ dτ

for all ξ ∈ R−1Zn
∩ [−cT, cT ]

n , where cT > 1 and R is approximately twice the diameter of �. For the
complex integrand one can place two separate real electric potentials. Given sufficient access to a large
enough part of the surface, one would hope to approximate the inner integral with some accuracy; however,
applying the oscillating electric potentials could prove to be the more difficult technical challenge. The
outer averaged integrals seem less important and a more rudimentary finite sum approximation could be
sufficient.

12.2. What to calculate. Given MeasT and σ |∂�, one could then employ a triangular finite element
method to calculate an approximate solution to{

1v = (Re qT )v in �,
v = σ |

1/2
∂� on ∂�,

where, letting 1� denote the characteristic function of the domain, qT is defined by

qT (x) :=
1

(2πR)n
∑

ξ∈R−1Zn∩[−cT,cT ]n

eix·ξ

(
MeasT (ξ)+

|ξ |2

2
1̂�(ξ)

)
.

Then the grayscale image is given by v2, taking T as large as is practicable.
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12.3. Justification of the simplifications. A loose interpretation of Theorem 3.1 is that v|∂� is not so
different from eρ |∂� (this is known as the Born approximation; see [Delbary et al. 2012; Knudsen and
Mueller 2011; Siltanen et al. 2000] for numerical implementations). Indeed, if the conductivity were
constant, then 03σ would be identically 0 and so part of the reconstruction integral from Theorem 3.2
could be rewritten using the divergence theorem:∫

∂�

∂νP0[eρ]eρ′ =

∫
�

∇eρ · ∇eρ′ = ρ · ρ ′

∫
�

e−iξ ·x
= −

|ξ |2

2
1̂�(ξ).

Note also that, by the uncertainty principle, q̂ and 1̂� are essentially constant at scale R−1. Thus the
reconstruction formula approximately simplifies to q̂ ≈ limT →∞ q̂T pointwise. Note that the cutoff of the
frequencies serves to mollify, so that qT is a function even though it approximately converges to q in the
distributional sense. Finally, one observes that σ 1/2 is the unique solution to the Schrödinger equation
with v|∂� = σ |

1/2
∂� .
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WEAKLY TURBULENT SOLUTION
TO THE SCHRÖDINGER EQUATION ON THE TWO-DIMENSIONAL TORUS

WITH REAL POTENTIAL DECAYING TO ZERO AT INFINITY

AMBRE CHABERT

We build a smooth time-dependent real potential on the two-dimensional torus, decaying as time tends
to infinity in Sobolev norms along with all its time derivatives, and we exhibit a smooth solution to
the associated Schrödinger equation on the two-dimensional torus whose H s norms nevertheless grow
logarithmically as time tends to infinity. We use Fourier decomposition in order to exhibit a discrete
resonant system of interactions, which we are further able to reduce to a sequence of finite-dimensional
linear systems along which the energy propagates to higher and higher frequencies. The constructions are
very explicit, and we can thus obtain lower bounds on the growth rate of the solution.

1. Introduction

1.1. Main result. In this paper, we build an explicit C∞ solution to the Schrödinger equation on the
two-dimensional torus T2

:= R2/(2πZ)2,

i∂t u(t, x) = −1u(t, x) + V (t, x)u(t, x), (t, x) ∈ [0, +∞) × T2, (1-1)

where the potential V (t, x) is real, smooth on the interval [0, +∞) × T2, and decaying at infinity in
Sobolev norms. With a carefully chosen V , we are able to exhibit weakly turbulent behaviour; that is, we
are able to prove the following theorem.

Theorem 1.1. There exist a real smooth potential V (t, x) and a smooth function u(t, x) such that

i∂t u(t, x) = −1u(t, x) + V (t, x)u(t, x), (t, x) ∈ [0, +∞) × T2. (1-2)

Furthermore, given any small constant δ > 0 and any order s > 0, there exists cδ,s > 0 such that, as t →∞,

∥u(t)∥H s ⩾ cδ,s(log t)s(1−δ). (1-3)

Finally, the potential V satisfies the bound,

for all k ∈ N, for all s ⩾ 0, lim
t→∞

∥∂k
t V (t, · )∥H s = 0. (1-4)

We will in Section 5 explore possible upper bounds for the decay rate of V , which is subpolynomial;
see (5-16).
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1.2. Earlier work. The first example of unbounded growth of the Sobolev norms for the Schrödinger
equation (1-1) on the torus T2 was given in [Bourgain 1999a], although there the potential V was chosen
to be quasiperiodic. Bourgain proves that a logarithmic growth of the Sobolev norms can be achieved
in this setting and that it is optimal. Bourgain [1999b] also studied the case of a random behaviour in
time with certain smoothness conditions. Furthermore, Bourgain proves in those articles that, with a
bounded smooth potential V , the growth in any norm H s is bounded by tε for all ε > 0 (with a constant
that depends upon s, V, ε) and that, for a potential analytic in time, the bound can be refined to (log t)α .

With regards to the logarithmic growth rate we are able to achieve in the present article, it is necessarily
subpolynomial as V is assumed to be smooth and bounded, but we may not use the logarithmic a priori
bound as V (t) is not analytic in t in our construction. Still, logarithmic growth rate is nearly optimal as
the optimal growth is necessarily subpolynomial.

The study of upper bounds on the possible growth rate of Sobolev norms of the solutions to the linear
Schrödinger equation has a long history. The general question can be formulated as follow: consider u a
regular solution to

i∂t u = Hu + P(t)u, (1-5)

where H is either the Laplacian −1 on a d-dimensional torus, or, more generally, when the domain is Rd

or even a manifold, a time-independent self-adjoint nonnegative operator with some assumptions on its
spectrum, and P(t) is a smooth time-dependent family of pseudodifferential operators of order strictly
less than 2. Then one can try and prove an upper bound on the growth rate of ∥u(t)∥H s as t → ∞.

Maspero and Robert [2017, Theorem 1.9] proved, along with global well-posedness, tε upper bounds
on the growth rate in the case where H has an increasing spectral gap (as is the case for the Laplacian
on Zoll manifolds) and P(t) is a smooth perturbation with suitable assumptions. They also proved
polynomial upper bounds in broader settings. Under the increasing spectral gap assumption, the bound
can be improved to (log t)γ for some γ > 0 when P(t) is analytic in time, which is reminiscent of
Bourgain’s bound. Using those results, [Bambusi et al. 2021] proved tε upper bounds on the growth rate
of solutions to (1-5) in an abstract setting, which includes in particular the case where H is the harmonic
oscillator in Rd and P(t) is a pseudodifferential operator of order strictly lower than H depending in a
quasiperiodic way on time. The first result of a tε upper bound with an unbounded P(t) was obtained
in [Bambusi et al. 2022] on the torus Td with H = −1. Finally, tε upper bounds have been proved for
general hamiltonians of quantum integrable systems in [Bambusi and Langella 2022].

Regarding the dual question of exhibiting growth of Sobolev norms in solutions to (1-5), Maspero
[2022; 2023] proved the existence of solutions with (unbounded) polynomial growth in the case where H
has a fixed spectral gap and P(t) is a potential periodic in time using a resonance phenomenon. Loosening
the time smoothness hypothesis, Erdoğan, Killip and Schlag [Erdoğan et al. 2003] showed genericity of
Sobolev norm growth when the potential is a stationary Markov process. See also [Delort 2010; Eliasson
and Kuksin 2009; Nersesyan 2009; Wang 2008].

Regarding potentials whose Sobolev norms decay to 0 with time more specifically, Faou and Raphaël
[2023] were able to exhibit logarithmic growth in the context where

H = −1 + |x |
2
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is the harmonic oscillator on R2. Their method relies on quasiconformal modulations of so-called
bubble solutions of the unperturbed Schrödinger equation. It is not surprising that we are able to exhibit
logarithmic growth on the torus as the setting is similar. Indeed, both the harmonic oscillator on R2 and
the Laplacian on the torus are operators with compact resolvent and a spectrum with geometric properties
(as it is formed of points in a lattice) which allows for explicit resonance mechanism. Let us note that
the author was able to prove in [Chabert 2024] that their method extends to the case where the cubic
nonlinear term u|u|

2 is added to the equation, using an approximation scheme similar to the one found in
the present article.

The method we shall use here is inspired by the seminal work [Colliander et al. 2010] refined by
[Guardia and Kaloshin 2015]. Indeed, we use that, on the two-dimensional torus, eigenfunctions of
the Laplacian are given by ein·x for n ∈ Z2 with eigenvalue |n|

2. The lattice structure is then used to
produce resonance phenomena between carefully chosen frequencies of the Fourier decomposition of the
solution u. The idea is that only certain resonant interactions will dominate the behaviour of the solution;
thus, using an arbitrarily small potential, we are able to transfer the energy of the solution to higher and
higher frequencies, leading to the growth of Sobolev norms.

1.3. Main ideas of the proof. The first step of the proof is directly inspired by [Colliander et al. 2010]. In
Section 2, we decompose (1-1) into Fourier frequencies, thus reducing it to an infinite-dimensional ODE
on the Fourier frequencies (an(t)) of the solution. This enables us to exhibit some resonant interactions
between Fourier frequencies, which will dominate the behaviour of the solution in terms of Sobolev norms.
In that spirit, we first study a resonant Fourier system where we drop the nonresonant interactions. We then
build a family of Fourier frequencies (mn)n⩾0, satisfying carefully computed orthogonality properties,
along which we are able to transfer energy to higher frequencies (as |mn| → ∞) with a well-tailored
potential V for a solution (an(t)) whose Fourier frequencies are almost supported on the (mn).

In Section 3, we give a detailed construction of a potential allowing said energy transfer to higher
frequencies, thanks to the crucial point that, as we only consider resonant interactions, we may light up
only specific Fourier frequencies in the potential, which further reduces the resonant system to a sequence
of finite-dimensional linear systems which we can explicitly solve.

In Sections 4 and 5, we prove that the solution to the resonant system yields a solution to the full
system up to a perturbation thanks to a Cauchy sequence scheme, thus concluding that the perturbation
decays to 0 as t → ∞. We finally use the explicit construction of the solution to the resonant system to
deduce lower bounds on the growth of the Sobolev norm of the full solution, thus concluding to the proof
of Theorem 1.1.

2. Fourier decomposition and resonant system

2.1. Reduction to a resonant Fourier system. We now show how (1-1) can be heuristically approximated
by an easier equation, focussing on the resonant interactions. Indeed, as we wish to find smooth solutions
of (1-1), we may write

u(t, x) =

∑
n∈Z2

an(t)ei(n·x−|n|
2t). (2-1)
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We now set the potential to take the form

V (t, x) = −

∑
n∈Z2

2vn(t) sin(|n|
2t)ein·x , (2-2)

where v−n = vn is real. Thus, we need only find a solution to the l2 system

∂t an =

∑
m∈Z2

am(t)vn−m(t)(e−iω+
m,n t

− e−iω−
m,n t), (FS)

where we set
ω+

m,n := |m|
2
+ |m − n|

2
− |n|

2,

ω−

m,n := |m|
2
− |m − n|

2
− |n|

2.

Now, in the spirit of [Colliander et al. 2010], we expect that the resonant interaction will dominate,
that is, the interaction between frequencies m, n such that one of ω+

m,n or ω−
m,n is 0. We thus define, for

n ∈ Z2,
0+

res(n) := {m ∈ Z2
: |m|

2
+ |m − n|

2
− |n|

2
= 0},

0−

res(n) := {m ∈ Z2
: |m|

2
− |m − n|

2
− |n|

2
= 0}

and define the approximated system

∂t an =

∑
m∈0+

res(n)

am(t)vn−m(t) −

∑
m∈0−

res(n)

am(t)vn−m(t). (RFS)

We observe that (RFS) conserves the l2 norm. Indeed,

d
dt

∥(an)∥
2
l2 = 2 Re

(∑
n∈Z2

∑
m∈0+

res(n)

an(t)am(t)vn−m(t) −

∑
n∈Z2

∑
m∈0−

res(n)

an(t)am(t)vn−m(t)
)

.

However, m ∈ 0+
res(n) if and only if n ∈ 0−

res(m). Using moreover that v−k = vk , we see that the right-hand
side equals 0.

2.2. Geometric interpretation of the resonant frequencies. Now, we turn our attention to the geometric
interpretation of the equation ω

+/−
m,n = 0: we first see that ω+

m,n = 0 if and only if{
m + (n − m) = n,

|m|
2
+ |n − m|

2
= |n|

2,
(2-3)

which means that m is orthogonal to n − m. This can be reformulated by saying that m resonates with
m + l, where l ∈ Z2 is orthogonal to m.

Similarly we see that ω−
m,n = 0 if and only if (n − m) is orthogonal to n, which finally means that m

and n are resonant frequencies if one of m or n is the sum of the other one and an orthogonal vector. We
may sum these facts up in a lemma.

Lemma 2.1. For all n, m ∈ Z2, we have m ∈ 0+
res(n) if and only if m and n−m are orthogonal. Moreover,

m ∈ 0−
res(n) if and only if n and n − m are orthogonal.
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2.3. Explicit family of resonant frequencies and further reduction. We shall now build a potential
(vm(t)) and a specific solution to (RFS) by constructing two families (mk) and (lk), k ⩾ 0, of vectors
of Z2 which satisfy good orthogonality properties. Namely, in some sense, we require that there are no
exceptional resonances.

Lemma 2.2. There exist two families (mk)k⩾0 and (lk)k⩾0 of vectors of Z2 such that

(P1) mk ̸= 0, lk ̸= 0;

(P2) mk ⊥ lk′ ⇔ k = k ′;

(P3) mk+1 = mk + lk ;

(P4) mk is not orthogonal to mk′ and is not orthogonal to mk′ − lk′ for all k, k ′;

(P5) mk − lk is not orthogonal to lk′ for all k, k ′;

(P6) mk′ − lk is not orthogonal to lk for all k ′
̸= k + 1;

(P7) mk′ − lk′ − lk is not orthogonal to lk for all k, k ′;

(P8) lk + mk′ is not orthogonal to lk for all k, k ′;

(P9) lk + mk′ − lk′ is not orthogonal to lk for all k ̸= k ′;

(P10) |lk+1| > |lk | + 1.

Moreover, we can find families such that there exist universal constants C > 1 > c such that, for all
n ⩾ 1, we have

c(n − 1)! ⩽ |mn| ⩽ Cn(n − 1)!,

cn! ⩽ |ln| ⩽ Cnn!.

At first glance these properties may seem overwhelming, but it follows quite directly from geometric
observations that they greatly reduce the system if we choose the potential with nonzero Fourier frequencies
supported in the set {±lk}k⩾0. More precisely, before proving Lemma 2.2, we will state and prove the
following lemma.

Lemma 2.3. Set 3 := {±lk, k ⩾ 0} and 3′
:= {mk, k ⩾ 0}. Set moreover 6 := {mk − lk, k ⩾ 0}. Assume

(an(t))n∈Z2 is a solution to (RFS) with potential (vn(t))n such that (an(0)) is supported in 3′
∪6 (in the

sense that an(0) = 0 whenever n /∈ 3′
∪ 6). If (vn(t))n is supported in 3 for all t ⩾ 0, then (an(t)) is

supported in 3′
∪ 6 for all t ⩾ 0.

Moreover, define pk(t) := amk (t), sk(t) := amk−lk (t) and rk(t) := vlk (t) (with the convention that
p−1 = r−1 = 0). The system (RFS) reduces to,

for all k ⩾ 0,

{
∂t pk = pk−1rk−1 − pk+1rk − skrk,

∂t sk = pkrk .
(2-4)

Proof. As vn(t) = 0 whenever n /∈ 3, (RFS) reduces to

∂t an =

∑
m∈0+

res(n)
n−m∈3

am(t)vn−m(t) −

∑
m∈0−

res(n)
n−m∈3

am(t)vn−m(t). (2-5)
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In order to prove the first part of the lemma, we need only show that, whenever n /∈ 3′
∪6, those m that

appear on the right-hand side of (2-5) are also not in 3′
∪ 6. Indeed, the system then reduces to a linear

system with zero initial condition on Z2
\3′

∪ 6, so by uniqueness we have an(t) = 0 for all t whenever
n /∈ 3′

∪ 6.
Take n /∈ 3′

∪6. We claim that if m ∈ 3′
∪6 satisfies n − m ∈ 3, then m /∈ 0+

res(n)∪0−
res(n). Indeed,

assume first that m = mk for some k and n − m ∈ 3. Then there exists k ′ ⩾ 0 such that n − m = ±lk′ .

(i) If n = mk + lk′ , then k ̸= k ′ as otherwise n = mk+1 ∈ 3′; but then mk is not orthogonal to n −mk = lk′

thanks to (P2), thus mk /∈ 0+
res(n). Similarly, n − mk = lk is not orthogonal to n = mk + lk′ thanks

to (P8).

(ii) If n = mk − lk′ , then k ′
̸= k as otherwise n ∈ 6 and k ′

̸= k − 1 as otherwise n = mk−1 ∈ 3′. Thus,
mk /∈ 0+

res(n) as mk is not orthogonal to −lk′ by (P2), and mk /∈ 0−
res(n) as lk′ = n − mk is not

orthogonal to mk − lk′ = n thanks to (P6).

Now, assume that m = mk − lk for some k ⩾ 0 and n − m = ±lk′ for some k ′ ⩾ 0.

(i) If n = mk − lk + lk′ , then k ̸= k ′ as n /∈ 3′, so mk − lk is not orthogonal to lk′ thanks to (P5) — thus
mk − lk /∈ 0+

res(n) — and lk′ is not orthogonal to mk − lk + lk′ thanks to (P9) — thus mk − lk /∈ 0−
res(n).

(ii) Finally, if n = mk − lk − lk′ , then — as mk − lk is not orthogonal to −lk′ thanks to (P5) — we find
that mk − lk /∈ 0+

res(n) and — as mk − lk − lk′ is not orthogonal to −lk′ thanks to (P7) — we also find
that mk − lk /∈ 0−

res(n).

In order to prove the second part of the lemma, we follow the same steps. Take k ⩾ 0. First, let
m ∈ 0+

res(mk) ∩ (3′
∪ 6) such that mk − m = ±lk′ . As m is orthogonal to lk′ , properties (P2) and (P5)

yield that m = mk′ , and thus mk = mk′ ± lk′ . As mk is orthogonal to lk , (P5) yields that necessarily
mk = mk′ + lk′ = mk′+1, and thus k ′

= k −1 (as from (P3) and (P10) we have |mi+1| > |mi |), which yields
the contribution pk−1rk−1 to the right-hand side of the first equation.

Now, let m ∈ 0−
res(mk) ∩ (3′

∪ 6) such that mk − m = ±lk′ . As lk′ is orthogonal to mk , (P2) yields
that k = k ′ — thus m = mk ± lk — and both are in 0−

res(mk) ∩ (3′
∪ 6). This yields the contribution

−pk+1rk − skrk to the right-hand side of the first equation.
Finally, take k ⩾ 0 and m ∈ 0+

res(mk − lk)∩ (3′
∪6) such that mk − lk − m = ±lk′ : as m is orthogonal

to lk′ , we find again that m = mk′ , and thus that mk = lk + mk′ ± lk′ . If the sign is a minus, property (P9)
yields that k ′

= k, and thus m = mk , which gives the contribution pkrk to the right-hand side of the second
equation (as we recall that v−n = vn for all n). If the sign is a plus, we find that mk − lk = mk′+1 is
orthogonal to lk′+1, which contradicts property (P5).

We see moreover that there is not a m ∈ 0−
res(mk − lk)∩ (3′

∪6) such that mk − lk −m ∈ 3. Indeed by
definition of 0−

res, this would mean that there is a k ′ such that mk −lk is orthogonal to lk′ thus contradicting
property (P5). □

We now turn to the proof of Lemma 2.2. Choose m0 ∈ Z2
\{0} arbitrarily; for example, m0 = (1, 0). As

mk+1 = mk +lk , we need only construct the lk for k ⩾ 0. We will do so by induction. Assume the sequence
(mk) is constructed up to k = n and satisfies properties (P1)–(P10) (which means that l0, . . . , ln−1 have



WEAKLY TURBULENT SOLUTION TO THE SCHRÖDINGER EQUATION ON THE 2D TORUS 2067

been constructed). We need to construct ln ∈ Z2 (and thus mn+1 = mn + ln) such that the properties still
hold up to k = n + 1. Define m the vector obtained from mn by applying a rotation by angle π/2 (which
is orthogonal to mn and which has the same Euclidean norm). We will show that there is a ∈ N such that
n + 1 ⩽ a ⩽ C(n + 1), with C a universal constant such that setting ln := am will suffice.

• (P1) always holds, and (P3) holds by definition.

• In order for (P2) to hold, observe first that, by construction, ln = am is orthogonal to mn . Moreover,
we need, on the one hand, mk to be nonorthogonal to ln for k ⩽ n − 1. However, since mk ⊥ lk up to
k = n by induction and since we are in dimension 2, this amounts to asking lk to be nonorthogonal
to mn for k ⩽ n − 1, which is true by induction from (P2). On the other hand, we need mn+1 to be
nonorthogonal to lk up to k = n; that is, since lk ⊥ mk and since we are in dimension 2, we need only
prove that mn+1 = mn + am is not parallel to mk for k ⩽ n. It is always true for k = n as a > 0, and,
for each k ⩽ n − 1, there is at most one value of a for which mn+1 could be parallel to mk (as m is not
parallel to mk , otherwise mk would be orthogonal to mn , thus contradicting (P4)). This excludes at most n
possible values for a.

• In order for (P4) to hold, we need mn+1 · mk ̸= 0 for k ⩽ n. It is always true for k = n, and for k < n it
means that mn ·mk +am ·mk ̸= 0. Now, m ·mk ̸= 0, otherwise this would contradict (P2). Thus, at most n
possible values of a are to be excluded. We also need mn+1 · (mk − lk) ̸= 0 for k ⩽ n, which is always
true for k = n if we set a ⩾ 2, and it follows from the construction of (P5) that m · (mk − lk) ̸= 0, as mn is
not parallel to mk − lk ; hence this excludes at most n values of a. We finally need mk · (mn −am) ̸= 0 for
k ⩽ n − 1, which excludes at most n values of a, as m · mk ̸= 0.

• In order for (P5) to hold, we need, on the one hand, mk − lk to be nonparallel to mn+1 for k ⩽ n, which
excludes at most n values of a, as this is always true for k = n and as mk − lk is not parallel to m for
k < n thanks to (P4). On the other hand, we need mn − ln = mn − am to be nonparallel to mk for k ⩽ n,
which again excludes at most n values for a as m is not parallel to mk for k < n thanks to (P2).

• In order for (P6) to hold, we need, on the one hand, (mn+1 −lk) ·lk ̸= 0 for k ⩽ n−1, which is equivalent
to am · lk ̸= constant. As we know that m · lk ̸= 0 (otherwise mk is orthogonal to mn), this excludes at
most n values for a. One the other hand, we need mk − am to be nonorthogonal to am for k ⩽ n − 1,
which is ensured by the fact that |m| > |mk |.

• In order for (P7) to hold, we need, on the one hand, mn −am −lk to be nonorthogonal to lk for k ⩽ n−1,
which excludes at most n values for a, as m · lk ̸= 0. On the other hand, we need mk − lk − am to be
nonorthogonal to am for k ⩽ n − 1, and once again this excludes at most n values for a.

• In order for (P8) to hold, we need, on the one hand, am + mk to be nonorthogonal to am for k ⩽ n,
thus excluding at most n values for a, and, on the other hand, lk + mn + am to be nonorthogonal to lk for
k ⩽ n − 1, which excludes at most n values for a, as m · lk ̸= 0.

• In order for (P9) to hold, we need, on the one hand, am + mk − lk to be nonorthogonal to am for
k ⩽ n −1, thus excluding at most n values for a, and, on the other hand, lk +mn −am to be nonorthogonal
to lk , excluding once again at most n values for a.
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We thus finally see that any a ⩾ 1 except maybe at most C(n + 1) values can be chosen, where C ⩾ 2.
Up to taking C a little larger we may thus find n + 1 ⩽ a ⩽ C(n + 1) such that setting ln = am enables
the induction hypothesis to be satisfied.

By this procedure we are able to construct sequences for which the desired properties hold. Moreover,
we have n|mn| ⩽ |ln| ⩽ Cn|mn|, and thus

n|mn| ⩽ |mn+1| ⩽ C ′n|mn|

for C ′
=

√
C + 1; thus proving the last part of the lemma.

3. Solution to the resonant system

Thanks to the previous section, we are now able to exhibit explicit potential (rk(t)) and an explicit solution
(pk(t)), (sk(t)) to (2-4) for which we control precisely the energy transfer between Fourier frequencies.
We turn to the explicit study of the mechanism that will allow energy transfer between frequencies. We
start at t = 0 with well-chosen values for p0, p1, s0 and set the other pk and sk to be 0. The idea is then
to locally fully transfer the energy from (pk, sk, pk+1) to (pk+1, sk+1, pk+2) in finite time, thus ensuring
that, for all given n, after a time Tn , we have pk = sk = 0 for all k ⩽ n. Now, as (RFS) conserves the
l2 norm, this ensures that the Sobolev H s norm is greater than |mn|

s for t ⩾ Tn .

3.1. General form of the solution to the linear system. Explicitly, fix an interval I =[t0, t1] and a smooth
function φ on I . Fix k ⩾ 1. We look at the system

∂t pk+1 = φ(t)pk,

∂t pk = −φ(t)pk+1 − φ(t)sk,

∂t sk = φ(t)pk,

(3-1)

which corresponds to (2-4) when we only light up rk(t) = φ(t); that is, we set rk′(t) = 0 for k ′
̸= k on I .

In comparison, (2-4) is a system on all different values of k, whereas in system (3-1) we have fixed a
particular value for k. Hence, the equation for pk+1 corresponds to the first line of (2-4), where k is
replaced by k + 1 and rl = 0 for l ̸= k. The system can then be written in the form of a simple linear
system:

∂t

pk+1

pk

sk

 = φ(t)A

pk+1

pk

sk

 , (3-2)

where we set

A =

 0 1 0
−1 0 −1

0 1 0

 . (3-3)

Now, the solution with initial condition pk+1(t0)
pk(t0)
sk(t0)


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is given by pk+1(t)
pk(t)
sk(t)

 = exp
((∫ t

t0
φ(s) ds

)
A
) pk+1(t0)

pk(t0)
sk(t0)

 . (3-4)

Now, one can compute

exp(T A) =


1
2(cos(T

√
2) + 1) 1

√
2

sin(T
√

2) 1
2(cos(T

√
2) − 1)

−
1

√
2

sin(T
√

2) cos(T
√

2) −
1

√
2

sin(T
√

2)

1
2(cos(T

√
2) − 1) 1

√
2

sin(T
√

2) 1
2(cos(T

√
2) + 1)

 . (3-5)

This explicit matrix allows us to build three moves in order to transfer a specific configuration from
(pk, sk, pk+1) to (pk+1, sk+1, pk+2) in finite time.

3.1.1. First move. Start with pk+1(t0)
pk(t0)
sk(t0)

 =

 1/2
−1/

√
2

1/2

 . (3-6)

We set φ, a nonnegative C∞ function with support in [t0, t1] such that
∫

φ = 7π/(4
√

2). We havepk+1(t1)
pk(t1)
sk(t1)

 =

1/
√

2
0

1/
√

2

 . (3-7)

3.1.2. Second move. We now set pk+1(t0)
pk(t0)
sk(t0)

 =

0
1
0

 . (3-8)

With the integral of φ being π/(2
√

2), we havepk+1(t1)
pk(t1)
sk(t1)

 =

1/
√

2
0

1/
√

2

 . (3-9)

3.1.3. Third move. If finally we set pk+1(t0)
pk(t0)
sk(t0)

 =

0
0
1

 (3-10)

and set the integral of φ to be π/
√

2, we havepk+1(t1)
pk(t1)
sk(t1)

 =

−1
0
0

 . (3-11)
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3.2. Idea of the construction of the potential and the resonant solution. These easy observations yield
the construction both of the potential (rk(t)) and of the solution (pk(t)), (sk(t)). We may represent the
solution (pk(t)), (sk(t)) as points in the semi-infinite chain

p0

s0

p1

s1

p2

s2

p3

s3

p4

s4

p5

s5

p6

where the arrows represent the possible interactions between the Fourier frequencies induced by the
potential (rk(t)).

Assume that, at t = 0, we start with the configuration

p0 = −
1

√
2

s0 =
1
2

p1 =
1
2

s1 = 0

p2 = 0

Then, using the first move, if we light up only r0 during an appropriate time, we may fully transfer the
mass from p0 to s0 and p1 equally:

p0 = 0

s0 =
1

√
2

p1 =
1

√
2

s1 = 0

p2 = 0

Now, we clear p1 using the second move; that is, lighting up only r1(t), we can fully transfer the mass
from p1 to s1 and p2 equally:

p0 = 0

s0 =
1

√
2

p1 = 0

s1 =
1
2

p2 =
1
2
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Finally, we use the third move to transfer fully the remaining mass from s0 to p1 lighting only r0 again:

p0 = 0

s0 = 0

p1 = −
1

√
2

s1 =
1
2

p2 =
1
2

Thus, we find exactly the same situation as at the start, with indexes incremented by 1. This enables us
to start a recursive scheme so that, as time goes by, we repeat these three moves to transfer the mass to
higher frequencies. The strategy to ensure that the potential V decreases in Sobolev norms as t → ∞ is
that, up to lighting rk for a longer time, we may at each step choose it to be arbitrarily small.

3.3. Explicit computation of the potential and of the resonant solution. We now make the previous
argument rigorous. We first find a smooth function φ on R, nonnegative and nondecreasing, such that
φ = 0 on (−∞, 0], φ = 1 on [1, +∞), and we set α =

∫ 1
0 φ. Take (βk)k⩾0 to be a sequence of positive

real numbers such that βk ≪ 1. The (βk) will control the amplitude to which we light up rk , and we will
fix them later in order to control the decay of the potential V in Sobolev norms.

3.3.1. Initialising the induction. We choose, at t = 0,p1(0)

p0(0)

s0(0)

 =

 1/2
−1/

√
2

1/2

 (3-12)

(and the other pk , sk are set to 0). We now set

r0(t) =


7π

4
√

2α
β0φ(t), 0 ⩽ t ⩽ 1,

7π

4
√

2α
β0, 1 ⩽ t ⩽ 1 + t0,

7π

4
√

2α
β0φ(t0 + 2 − t), 1 + t0 ⩽ t ⩽ t0 + 2,

(3-13)

where we set t0 such that
∫ t0+2

0 r0 = 7π/(4
√

2), which means t0 = α(β−1
0 − 2). We set rk(t) = 0 on

[0, t0 + 2] for all k ⩾ 1.
Now, at t = t0 + 2, we find p1(t0 + 2)

p0(t0 + 2)

s0(t0 + 2)

 =

1/
√

2
0

1/
√

2

 . (3-14)

Set now

r1(t) =


π

2
√

2α
β1φ(t − (t0 + 2)), t0 + 2 ⩽ t ⩽ t0 + 3,

π

2
√

2α
β1, t0 + 3 ⩽ t ⩽ t0 + 3 + t1,

π

2
√

2α
β1φ(4 + t0 + t1 − t), 3 + t0 + t1 ⩽ t ⩽ 4 + t0 + t1,

(3-15)
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with t1 such that the integral of r1 on [2+t0, 4+t0+t1] is equal to π/(2
√

2), which means t1 =α(β−1
1 −2).

Set rk(t) = 0 on [2 + t0, 4 + t0 + t1] for all k ̸= 1. Now, at t = 4 + t0 + t1, we have
p2(4 + t0 + t1)
p1(4 + t0 + t1)
s1(4 + t0 + t1)
p0(4 + t0 + t1)
s0(4 + t0 + t1)

 =


1/2
0

1/2
0

1/
√

2

 , (3-16)

and the other pk , sk are equal to 0. To finish the cycle, we need to transfer all the mass from s0 to p1, and
we will end up with (p2, p1, s1) = (1/2, −1/

√
2, 1/2) which was exactly the initial state on (p1, p0, s0).

This enables us to start a recursive process. More precisely, set

r0(t) =


π

√
2α

β0φ(t − (4 + t0 + t1)), 4 + t0 + t1 ⩽ t ⩽ 5 + t0 + t1,
π

√
2α

β0, 5 + t0 + t1 ⩽ t ⩽ 5 + t0 + t1 + t0,
π

√
2α

β0φ(6 + t0 + t1 + t0 − t), 5 + t0 + t1 + t0 ⩽ t ⩽ 6 + t0 + t1 + t0,

(3-17)

with once again t0 = α(β−1
0 − 2), and rk(t) = 0 on [4 + t0 + t1, 6 + t0 + t1 + t0] for k ̸= 1. We have, at

t = 6 + 2t0 + t1, 
p2(t)
p1(t)
s1(t)
p0(t)
s0(t)

 =


1/2

−1/
√

2
1/2
0
0

 , (3-18)

as was expected.

3.3.2. Recursive scheme. Set tn := α(β−1
n −2). Suppose, for Tn = 6n +2t0 +3t1 +3t2 +· · ·+3tn−1 + tn ,

we have pn+1

pn

sn

 =

 1/2
−1/

√
2

1/2

 , (3-19)

with the other pk , sk being equal to 0. We set now

rn(t) =


7π

8
√

2α
βnφ(t), Tn ⩽ t ⩽ 1 + Tn,

7π

8
√

2α
βn, 1 + Tn ⩽ t ⩽ 1 + Tn + tn,

7π

8
√

2α
βnφ(2 + Tn + tn − t), 1 + Tn + tn ⩽ t ⩽ Tn + 2 + tn,

(3-20)

all the other rk being set to 0 on [Tn, Tn + 2 + tn]. Now we have, at t = Tn + 2 + tn ,pn+1

pn

sn

 =

1/
√

2
0

1/
√

2

 . (3-21)
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Now set

rn+1(t) =


π

2
√

2α
βn+1φ(t − (Tn + 2 + tn)), Tn + 2 + tn ⩽ t ⩽ Tn + 3 + tn,

π

2
√

2α
βn+1, Tn + 3 + tn ⩽ t ⩽ Tn + 3 + tn + tn+1,

π

2
√

2α
βn+1φ(Tn + 4 + tn + tn+1 − t), Tn + 3 + tn + tn+1 ⩽ t ⩽ Tn + 4 + tn + tn+1,

(3-22)

the other rk being set to 0 on [Tn + 2 + tn, Tn + 4 + tn + tn+1]. We have, at t = Tn + 4 + tn + tn+1,
pn+2(Tn + 4 + tn + tn+1)

pn+1(Tn + 4 + tn + tn+1)

sn+1(Tn + 4 + tn + tn+1)

pn(Tn + 4 + tn + tn+1)

sn(Tn + 4 + tn + tn+1)

 =


1/2
0

1/2
0

1/
√

2

 . (3-23)

Set finally

rn(t) =


π

√
2α

βnφ(t − (Tn + 4 + tn + tn+1)), Tn + 4 + tn + tn+1 ⩽ t ⩽ Tn + 5 + tn + tn+1,

π
√

2α
βn, Tn + 5 + tn + tn+1 ⩽ t ⩽ Tn + 5 + tn + tn+1 + tn,

π
√

2α
βnφ(Tn + 6 + tn + tn+1 + tn − t), Tn + 5 + tn + tn+1 + tn ⩽ t ⩽ Tn + 6 + tn + tn+1 + tn.

We now have, at Tn+1 = Tn + 6 + tn + tn+1 + tn ,
pn+2(t)
pn+1(t)
sn+1(t)
pn(t)
sn(t)

 =


1/2

−1/
√

2
1/2
0
0

 . (3-24)

We may now induce this construction for all n ⩾ 1, which yields a solution (pk(t), sk(t)) to (2-4), thus
leading to a solution (an(t)) of (RFS) which we control very explicitly.

Remark 3.1. Provided the βk are small enough, the explicit construction yields firstly that |an(t)|⩽ 1 for
all n, t , and secondly the following behaviour for (an(t)): for each n, observe that an(t) = 0 outside of
a finite interval. Moreover, this interval can be divided into a bounded number of subintervals, so that
either those subintervals are of length 2 (corresponding to the time we take to light up an rk or turn it off),
or an(t) is a finite linear combination of oscillating factors ei f t , where the frequency f is of the order
of βk for some k and hence is arbitrarily small.

3.4. Explicit choice for βk in order for V to decay. In order to prove Theorem 1.1, we need to ensure
that V and all its derivatives decay with respect to all Sobolev norms as t →∞. Now, from the construction,
we see that, for all t ⩾ 0, there is a unique k(t) such that vn = 0 for all n ̸= ±lk(t). Now, for any m ∈ N

and any s ⩾ 0, we have

∥∂m
t V (t, · )∥H s ≃ βk(t)|lk(t)|

s+2m . (3-25)
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As k(t) → +∞ when t → +∞, and thus as |lk(t)| → +∞, we need to ensure that βk decays faster with
respect to k than any power of lk . A natural choice is

βk := |lk |
−|lk |, (3-26)

and we will see that this choice indeed enables us to close the estimates.

4. Approximation

4.1. Resonant solution and perturbation decomposition. In order to construct a solution to the full
system (FS), we try and approximate it by the solution (an(t)) built in the previous section. In this spirit,
we set the solution (bn(t)) to have the a priori form bn(t) = an(t) + cn(t), where an(t) is the solution
to (RFS) built above and cn is a perturbation. We may thus write

∂t(an + cn) =

∑
m∈Z2

(am + cm)(t)vn−m(t)(e−iω+
m,n t

− e−iω−
m,n t), (4-1)

and we already know that

∂t an =

∑
m∈0+

res(n)

am(t)vn−m(t) −

∑
m∈0−

res(n)

am(t)vn−m(t). (4-2)

Thus we need (cn) to solve

∂t cn =

∑
m∈Z2

cm(t)vn−m(t)(e−iω+
m,n t

− e−iω−
m,n t)

+

∑
m /∈0+

res(n)

am(t)vn−m(t)e−iω+
m,n t

−

∑
m /∈0−

res(n)

am(t)vn−m(t)e−iω−
m,n t . (4-3)

Our goal is now to build a solution (cn) to (4-3) which decays as t → ∞. We will use a Cauchy sequence
method: equation (4-3) is globally well-posed in l1(Z), so we may set, for a given integer N > 0, the
solution (cN

n ) on R+ with initial condition cN (TN ) = 0. We have

cN
n (t) = −

∑
m∈Z2

∫ TN

t
cN

m (s)vn−m(s)(e−iω+
m,ns

− e−iω−
m,ns) ds

−

∑
m /∈0+

res(n)

∫ TN

t
am(s)vn−m(s)e−iω+

m,ns ds +

∑
m /∈0−

res(n)

∫ TN

t
am(s)vn−m(s)e−iω−

m,ns ds,

from which we infer, for t ⩽ TN ,

∥(cN
n (t))∥l1 ⩽ 2

∫ TN

t
∥(cN

n (s))∥l1∥(vn(s))∥l1 ds

+

∑
n

∑
m /∈0+

res(n)

∣∣∣∣∫ TN

t
am(s)vn−m(s)eiω+

m,ns ds
∣∣∣∣ + ∑

n

∑
m /∈0−

res(n)

∣∣∣∣∫ TN

t
am(s)vn−m(s)eiω−

m,ns ds
∣∣∣∣,

which we rewrite as the inequality, for t ⩽ TN ,

∥(cN
n (t))∥l1 ⩽ α(t) +

∫ TN

t
∥(cN

n (s))∥l1β(s) ds. (4-4)
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By Gronwall’s lemma,

for all t ⩽ TN , ∥(cN
n (t))∥l1 ⩽ α(t) +

∫ TN

t
α(s)β(s) exp

(∫ s

t
β(σ) dσ

)
ds. (4-5)

4.2. Estimates on α(t). First, let us study α(t). The set of pairs (m, n − m), n ∈ Z2 and m /∈ 0+
res(n)

(resp. m /∈ 0−
res(n)), is equal to the set of pairs (n1, n2) ∈ Z2 such that n1 and n2 aren’t orthogonal (resp.

n2 and n1 + n2 aren’t orthogonal). Moreover, we have vn(s) = 0 for all n ̸= ±lk for a given k ⩾ 0, and
we recall that v−n = vn . Finally, we know that an(s)vlk (s) = 0 as soon as

n /∈ {mk, mk − lk, mk+1, mk+1 − lk+1, mk+2} =: Ek .

We may then write

α(t) =

∑
k⩾0

∑
n∈Ek

I (k, n, t), (4-6)

where I (k, n) is a sum of at most four quantities of the form

J (k, n, ω, t) :=

∣∣∣∣∫ Tn

t
an(s)rk(s)eiωs ds

∣∣∣∣ (4-7)

and ω is a frequency belonging to Z\{0}, thus ensuring |ω| ⩾ 1. (It is here that we use the nonresonance
of the interactions).

We may now write∫ Tn

t
an(s)rk(s)eiωs ds =

[(∫ t

s
an(σ )eiωσ dσ

)
rk(s)

]TN

t
−

∫ TN

t

(∫ t

s
an(σ )eiωσ dσ

)
r ′

k(s) ds.

The bracket term is equal to 0 as rk is 0 at TN for all k. Moreover, we may infer from the construction
of rk that ∫

R+

|r ′

k(s)| ds ⩽ Cβk, (4-8)

with C a universal constant independent of k (indeed, we use that rk is a constant except maybe on a
finite number of intervals of length 2 where its derivative is bounded by cβk∥φ

′
∥∞).

Finally, we have ∣∣∣∣∫ t

s
an(σ )eiωσ dσ

∣∣∣∣ ⩽ C, (4-9)

with C a universal constant independent of s, n, t , ω. Indeed, for any n, using Remark 3.1, we know
that, on the one hand, |an| ⩽ 1 on R+, and, on the other hand, that, outside of a fixed finite number of
intervals of length 2 (yielding a bounded contribution to the integral), an is either equal to 0 or equal to a
finite linear combination with a bounded number of terms of oscillating exponentials ei f t , with frequency
f = C ′βl , where C ′ is a universal constant and l ⩾ 0. Thus, up to choosing |m0| larger, we can require
that we always have | f | < 1/2. Hence, we are left with integrating oscillating exponentials ei( f +ω)σ

where | f + ω| ⩾ 1/2 (since |ω| > 1). A simple integration is enough to conclude the proof of the claim.
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This yields the bound

J (k, n, ω, t) ⩽ Cβk, (4-10)

where C is a universal constant. Moreover, we see that rk(s) = 0 for all s ⩾ Tk+1; thus we have

J (k, n, ω, t) = 0 for all t ⩾ Tk+1. (4-11)

From this we may infer the bound

α(t) ⩽ C
∑

k⩾k(t)

βk, (4-12)

where we set k(t) to be the smallest nonnegative integer such that t ⩽ Tk+1. Using moreover the fast
decay of βk , we may further bound, up to taking a larger C ,

α(t) ⩽ Cβk(t). (4-13)

4.3. Estimates on β(t). As for β(t), we see that, for all t , there is a unique l(t) such that rk(t) = 0 as
soon as k ̸= l(t); thus we find that

β(t) = 4rl(t)(t). (4-14)

This yields the bound ∫ s

t
β(σ) dσ ⩽ 4

∫ s

0
rl(σ )(σ ) dσ ⩽ C(k(s) + 1);

indeed, we see that the integral of rk over R+ is a constant independent of k.

4.4. Conclusion of the estimates on cN . We may thus bound, for t ⩽ TN ,

∥(cN
n (t))∥l1 ⩽ C

(
βk(t) +

∫ TN

t
βk(s)βl(s) exp(C(k(s) + 1)) ds

)
. (4-15)

Now, from the construction of (rk(s)), we have l(s) ⩾ k(s), and thus βl(s) ⩽ βk(s). Therefore, for t ⩽ TN ,
we have

∥(cN
n (t))∥l1 ⩽ C

(
βk(t) +

∫ TN

t
β2

k(s) exp(C(k(s) + 1)) ds
)

. (4-16)

Now, k(s) is equal to k on an interval with measure lk such that lkβk is equal to a constant, yielding the
bound

∥(cN
n (t))∥l1 ⩽ C

(
βk(t) +

∑
k⩾k(t)

βkeCk
)

. (4-17)

As βk is decaying faster than a double exponential, we finally have,

for all t ⩽ TN , ∥(cN
n (t))∥l1 ⩽ Cβk(t)eCk(t). (4-18)



WEAKLY TURBULENT SOLUTION TO THE SCHRÖDINGER EQUATION ON THE 2D TORUS 2077

5. Cauchy sequence and conclusion

5.1. Cauchy sequence. We now prove that (cN ) is a Cauchy sequence in l1(Z). Set M > N . We look at
the equation satisfied by cM

− cN :

(cM
n − cN

n )(t) = −

∑
m∈Z2

∫ TN

t
(cM

m − cN
m )(s)vn−m(s)(eiω+

m,ns
− eiω−

m,ns) ds + cM
n (TN )

−

∑
m /∈0+

res(n)

∫ TM

TN

am(s)vn−m(s)e−iω+
m,ns ds +

∑
m /∈0−

res(n)

∫ TM

TN

am(s)vn−m(s)e−iω−
m,ns ds.

Thus

∥((cM
n − cN

n )(t))∥l1 ⩽ 2
∫ TN

t
∥((cM

n − cN
n )(s))∥l1∥(vn(s))∥l1 ds + ∥(cM

n (TN ))∥l1

+

∑
n

∑
m /∈0+

res(n)

∣∣∣∣∫ TM

TN

am(s)vn−m(s)e−iω+
m,ns ds

∣∣∣∣
+

∑
n

∑
m /∈0−

res(n)

∣∣∣∣∫ TM

TN

am(s)vn−m(s)e−iω−
m,ns ds

∣∣∣∣
⩽ 2

∫ TN

t
∥((cM

n − cN
n )(s))∥l1∥(vn(s))∥l1 ds + Cβk(TN )eCk(TN )

+ Cβk(TN )

⩽ 2
∫ TN

t
∥((cM

n − cN
n )(s))∥l1∥(vn(s))∥l1 ds + CβN−1eC(N−1).

Using the backward Gronwall lemma,

∥((cM
n − cN

n )(t))∥l1 ⩽ CβN−1eC(N−1)

(
1 +

∫ TN

t
β(s) exp

(∫ s

t
β(σ) dσ

)
ds

)
, (5-1)

where β(s) = 2∥(vn(s))∥l1 . We know that β(s) = 4rl(s)(s), and thus
∫ t

s β(σ) dσ ⩽C(k(s)+1). We have

∥((cM
n − cN

n )(t))∥l1 ⩽ CβN−1eC(N−1)

(
1 +

∫ TN

t
βk(s) exp(Ck(s)) ds

)
. (5-2)

This upper bound decays to 0 as N , M → ∞ if we fix t . This shows that (cN (t)) is a Cauchy sequence
in l1(Z2), and it thus converges to a c(t) such that, using integral form of the differential equation,
b = a + c is a solution to (RFS). We have, moreover,

∥(cn(t))∥l1 ⩽ Cβk(t)eCk(t), (5-3)

and this upper bound decays to 0 as t → +∞, as expected.

5.2. Growth of the Sobolev norm: qualitative result. In order to conclude, we recall that ∥(an(t))∥l2 is
preserved and that, for all t ⩾ 0, there are at most five of the an that are nonzero. Therefore, we have,
on the one hand, that ak = 0 for |k| < |mn| and for all t ⩾ Tn , and, on the other hand, that there exists
|k| ⩾ |mn| such that |ak(t)| ⩾ ε, where ε > 0 is a universal constant. Now, if we set N large enough, we
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can ensure that ∥(cn(t))∥l1 ⩽ ε/2 for t ⩾ TN . Therefore, for all t ⩾ TN with N large enough, there exists
|k| ⩾ |m N | such that bk = ak + ck satisfies |bk | ⩾ ε/2. Now, this ensures that,

for all t ⩾ TN , ∥(bn(t))∥H s ⩾ |k|
s
|bk | ⩾ (ε/2)|m N |

s . (5-4)

This already yields a qualitative result for Theorem 1.1, as we already proved in Section 3.4 that the
potential V along with all its time derivatives are decaying in all Sobolev norms when t → +∞.

5.3. Quantitative estimates on the growth rate. We now investigate the quantitative bounds that we can
hope to get on the rate of growth.

We first see that Tn ⩽ Cβ−1
n using the fast decay of βn . Moreover, as |ln| ⩽ Cnn!, we find that

Tn ⩽ exp(Cnn! log(Cnn!)). (5-5)

This yields the lower bound
∥(bn(t))∥H s ⩾ δ|mn(t)|

s, (5-6)

where δ > 0 is a constant and n(t) is the largest integer n such that exp(Cnn! log(Cnn!)) ⩽ t . Now, we
know moreover that |mn| ⩾ c(n − 1)!, thus leading to the lower bound

∥u(t)∥H s ⩾ εcs((n(t) − 1)!)s . (5-7)

In order to obtain better bounds, take η > 0. We first use Stirling’s formula

n! ∼

(n
e

)n√
2πn, (5-8)

which ensures that, provided n is large enough,

Cnn! log(Cnn!) ⩽ ((1 + η)n)(1+η)n. (5-9)

Now set f (x) := x x . We find that, provided

f ((1 + η)n) ⩽ log t (5-10)

and provided n is large enough, we have n ⩽ n(t). Now, provided n is large enough, we also have

(n − 1)! ⩾ ((1 − η)n)(1−η)n
= f ((1 − η)n). (5-11)

Thus, setting E(x) to be the largest integer k such that k ⩽ x , we can find a lower bound of the form

∥u(t)∥H s ⩾

(
c f

(
1 − η

1 + η
E( f −1(log t))

))s

⩾ cs,η exp
(

s
(1 − η)2

1 + η
f −1(log t) log

(
(1 − η)2

1 + η
f −1(log t)

))
(provided t is large enough)

⩾ cs,η exp
(

s
(1 − η)3

1 + η
f −1(log t) log( f −1(log t))

)
(provided t is large enough)

⩾ cs,η(log t)s(1−η)3/(1+η).



WEAKLY TURBULENT SOLUTION TO THE SCHRÖDINGER EQUATION ON THE 2D TORUS 2079

As we may choose η arbitrarily, we find that, given any δ, s > 0, there exists cδ,s > 0 such that, for t > 1,

∥u(t)∥H s ⩾ cδ,s(log t)s(1−δ), (5-12)

thus concluding the proof of Theorem 1.1.

5.4. Estimates on the decay rate of V . We now prove similar upper bounds on the decay rate of the
potential V (t). Fix s ⩾ 0 and m ∈ N ∪ {0}. Thanks to (1-4), we may bound

∥∂m
t V (t, · )∥H s ⩽ c|lk(t)|

M−|lk(t)|, (5-13)

where M = Mm,s > 0 and k(t) is the unique k ⩾ 0 such that rk(t) ̸= 0. We may furthermore infer from
the previous subsection that, given δ > 0, there exists cδ > 0 such that

|lk(t)| ⩾ cδ(log t)1−δ. (5-14)

Thus
∥∂m

t V (t, · )∥H s ⩽ Cδ exp((Mm,s − (log t)1−δ)(1 − δ) log log t). (5-15)

As this holds for all δ > 0, we may conclude that, for all δ > 0, there exists Cδ,m,s such that

∥∂m
t V (t, · )∥H s ⩽ Cδ,m,s exp(−(log t)1−δ) log log t). (5-16)

As this yields a quantitative bounds for the decay of V , it should be noted that it is subpolynomial in the
sense that the upper bound decays slower than t−ε for all ε > 0. It doesn’t seem that we can improve
the bound, as, on [TN , TN+1], ∥V (t)∥H1 is of order βN and TN+1 is of order β−1

N+1. As for all ε > 0
asymptotically we have βε

N+1 ≪ βN , we thus cannot hope for a better bound.
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