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MICROLOCAL PARTITION OF ENERGY
FOR FRACTIONAL-TYPE DISPERSIVE EQUATIONS

HAOCHENG YANG

This paper is devoted to the proof of the microlocal partition of energy for fractional-type dispersive
equations including the Schrödinger equation, the linearized gravity or capillary water-wave equation
and the half-Klein–Gordon equation. Roughly speaking, a quarter of the L2 energy lies inside or outside
the “light cone” |x | = |t P ′(ξ)| for large time. In addition, based on the study of the half-Klein–Gordon
equation, the microlocal partition of energy will also be proved for the Klein–Gordon equation.

1. Introduction

1.1. Background. The classical partition of energy states that the energy of the solution w to the linear
wave equation 

(∂2
t −1)w = 0,

w|t=0 = w0 ∈ Ḣ 1(Rd),

∂tw|t=0 = w1 ∈ L2(Rd),

(W)

inside and outside the light cone |x | = |t | satisfies, in odd dimension d,

lim
t→+∞

(
E in(w0, w1, t)+ E in(w0, w1,−t)

)
= ∥∂tw∥

2
L2 + ∥∇w∥

2
L2,

lim
t→+∞

(
Eout(w0, w1, t)+ Eout(w0, w1,−t)

)
= ∥∂tw∥

2
L2 + ∥∇w∥

2
L2,

(1-1)

where
E in(w0, w1, t) :=

∫
|x |<|t |

(|∇w|
2
+ |∂tw|

2) dx,

Eout(w0, w1, t) :=

∫
|x |>|t |

(|∇w|
2
+ |∂tw|

2) dx .

A proof of this can be found in [Duyckaerts et al. 2011; 2012], where the authors applied this result
to study the soliton of the focusing energy-critical nonlinear wave equation in dimension d = 3, 5 via
some nonlinear analysis on small data solutions. One may also refer to [Côte et al. 2015a; 2015b] for
the application in equivariant wave maps. In even dimension d, the limits (1-1) do not hold in general
settings. It is essential to add some extra corrections, which have been calculated in detail for radial
solutions in [Côte et al. 2014] and for general data in [Côte and Laurent 2024]. In these references, the
authors also discovered some special data such that the corrections vanish, an application of which to the
4-dimensional focusing energy-critical wave equation can be found in [Côte et al. 2018].

MSC2020: primary 35B40; secondary 47G30, 76B15.
Keywords: microlocal energy estimates, asymptotic behavior, boundedness of pseudodifferential operators, dispersive equations.
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The above results have been recently revisited in [Delort 2022] using the tools of microlocal analysis.
Consider first a solution u of the half-wave equation{

(∂t/ i − |Dx |)u = 0,
u|t=0 = u0 ∈ L2.

(HW)

Since u = ei t |Dx |u0, the stationary phase formula shows that one expects the microlocalized energy of the
solution outside a convenient neighborhood of {(x, ξ) : x = t (ξ/|ξ |)} at time t to vanish when t goes to
infinity. Because of that, it is natural to ask whether the microlocalized energy close to the preceding
point, truncated outside the wave cone, gives rise to lower bound of the form (1-1). More precisely, if one
defines this microlocalized truncated energy as

EHW
χ,χ̃,δ(u0, t) :=

∥∥Op(aHW
χ,χ̃,δ(t))u(t)

∥∥2
L2, (1-2)

aHW
χ,χ̃,δ(t, x, ξ) := χ

(
x + t (ξ/|ξ |)

|t |
1
2 +δ

)
χ̃

(
|x | − |t |

|t |δ

)
1|x |>|t |, (1-3)

where χ, χ̃ ∈ C∞
c (R

d) are chosen to be real, radial and equal to 1 near zero with δ ∈
]
0, 1

2

]
, then it has

been proved in [Delort 2022] that in any dimension d

lim
t→+∞

(
EHW
χ,χ̃,δ(u0, t)+ EHW

χ,χ̃,δ(u0,−t)
)
= ∥u0∥

2
L2 . (1-4)

This result may be used to recover (1-1) in odd dimension by taking u = (−i∂t + |Dx |)w. Actually, the
truncated energy in (1-2) may be expressed from the microlocalized truncated energy for the solution u
of the half-wave equation and from extra terms. These extra terms give a zero contribution at the limit t
tending to infinity in odd dimensions, but not in even ones.

The heuristics underlying estimate (1-4) for the half-wave equation are as follows. Define the quantiza-
tion Op(aHW

χ,χ̃,δ
) of the symbol (1-3) by

(
Op(aHW

χ,χ̃,δ) f
)
(t, x)=

1
(2π)d

∫
ei x ·ξaHW

χ,χ̃,δ(t, x, ξ) f̂ (t, ξ) dξ.

Then (1-2) may be written as

EHW
χ,χ̃,δ(u0, t)=

〈
Op(aHW

χ,χ̃,δ)e
i t |Dx |u0,Op(aHW

χ,χ̃,δ)e
i t |Dx |u0

〉
L2

=
〈
u0, e−i t |Dx | Op(aHW

χ,χ̃,δ)
∗ Op(aHW

χ,χ̃,δ)e
i t |Dx |u0

〉
L2 . (1-5)

If the symbols were smooth ones, so that symbolic calculus (whose details can be found in [Zworski
2012]) could be used, one would expect the composition Op(aHW

χ,χ̃,δ
)∗ Op(aHW

χ,χ̃,δ
) to be equal, modulo

negligible remainders, to Op(b), with b = |aHW
χ,χ̃,δ

|
2, and the conjugation e−i t |Dx | Op(b)ei t |Dx | to be equal,

up to remainders, to Op(c), where c(x, ξ)= b(x − t (ξ/|ξ |)). Applying this to (1-5), one could write this
quantity as ⟨u0,Op(e)u0⟩ modulo a term tending to zero when t goes to infinity, where e is given by

e(t, x, ξ)= χ2
(

x

|t |
1
2 +δ

)
χ̃2
(

|x − t (ξ/|ξ |)| − |t |
|t |δ

)
1|x−t (ξ/|ξ |)|>|t |.
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This symbol e roughly cuts-off the phase space on the domain{
(x, ξ) : |x | ≲ |t |

1
2 +δ,

∣∣∣∣x − t
ξ

|ξ |

∣∣∣∣> |t |
}
.

When t → +∞, the truncated domain tends to the half-space{
(x, ξ) : sgn(t)x ·

ξ

|ξ |
< 0

}
. (1-6)

As a consequence, the sum of truncated energy at time t and −t covers the whole phase space.
We emphasize that all the arguments above are merely formal. They hold only if all the involved

functions are regular enough. In fact, it has also been proved in [Delort 2022] that the cut-off operator
Op(aHW

χ,χ̃,δ
) may not even be bounded if the singular cut-off |x |> |t | is replaced by x · (ξ/|ξ |) > t , which

seems to work formally.
The above formal point of view, though purely heuristic, suggests that the classical result (1-1) might

be extended to a large class of dispersive equations. In the general system(
∂t
i

− P(Dx)
)

u = 0,

as in the half-wave equation, one may expect that the energy concentrates in the phase space around
x + t P ′(ξ)= 0 and the partition of energy holds with generalized “light cone”

|x | = |t P ′(ξ)|.

The first result for the Schrödinger equation has been given in [Delort 2022] with truncation

ESchr
χ,δ (u0, t) :=

∥∥Op(aSchr
χ,δ (t))u(t)

∥∥2
L2, (1-7)

aSchr
χ,δ (t, x, ξ) := χ

(
x + tξ

|tξ |⟨
√

|t ||ξ |⟩−
1
2 +δ

)
1|x |>|tξ |. (1-8)

The result is similar:
lim

t→+∞

(
ESchr
χ,δ (u0, t)+ ESchr

χ,δ (u0,−t)
)
=

1
2∥u0∥

2
L2 . (1-9)

Here the extra factor in the cut-off χ is only for technical use, and the loss of half of the total energy
∥u0∥

2
L2 is due to the convexity of P(ξ)=

1
2 |ξ |2.

The goal of this paper is to examine if the microlocal partition of energy results (1-4), (1-9) may be
extended to a large class of dispersive equations. In particular, this generalized result covers the system
of linearized gravity or capillary water-wave with infinite depth

∂t u
i

− |Dx |
1
2 u = 0, (LGWW)

∂t u
i

− |Dx |
3
2 u = 0, (LCWW)

or with finite and constant depth h,

∂t u
i

− |Dx |
1
2 tanh(h|Dx |)u = 0, (LGWWh)

∂t u
i

− |Dx |
3
2 tanh(h|Dx |)u = 0. (LCWWh)
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Moreover, the system of half-Klein–Gordon

∂t u
i

− ⟨Dx ⟩u = 0 (HKG)

can also be covered by the generalized result, and the associated conclusion will further imply the
microlocal partition of energy for the standard Klein–Gordon equation

(∂2
t −1+ 1)w = 0,

w|t=0 = w0 ∈ H 1(Rd),

∂tw|t=0 = w1 ∈ L2(Rd).

(KG)

One may have noticed that (1-4) and (1-9) are proved only for δ ∈
]
0, 1

2

]
or
]
0, 1

2

[
. The case δ ⩾ 1

2
seems useless since with such δ the cut-off χ gives no information in the concentration of energy. The
critical case δ = 0, however, leads to some interesting results in the limit of truncated energy. The related
results will be presented in detail in the next part.

1.2. Main results. We consider the fractional-type dispersive equation{
(∂t/ i − P(Dx))u = 0,
u|t=0 = u0,

(E)

where P is radial and smooth except at ξ = 0. For simplicity, P will be identified as a function of ρ = |ξ |

in what follows. We further assume that P is a fractional-type symbol. Namely, the following hypotheses
hold for some p0, p1 ̸= 0:

(1) P (1) is strictly positive and monotone on ]0,+∞[.

(2.0) ∃P0 ⩾ 0, ρ → 0+, |P (1)(ρ)− P0| ∼ ρ p0, |P (2)(ρ)| ∼ ρ p0−1.

(2.1) ∃P1 ⩾ 0, ρ → +∞, |P (1)(ρ)− P1| ∼ ρ p1, |P (2)(ρ)| ∼ ρ p1−1.

(3.0) ∀ j ∈ N∗, j ⩾ 3, ∀ρ ∈ ]0, 1[, |P ( j)(ρ)| ≲ ρ p0+1− j .

(3.1) ∀ j ∈ N∗, j ⩾ 3, ∀ρ ∈ ]1,∞[, |P ( j)(ρ)| ≲ ρ p1+1− j .

(Hp0,p1)

We introduce the symbol

a(t, x, ξ)= aχ,δ(t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ

)
1|x |>|t ||P ′(ξ)|, (1-10)

where δ ∈ R, and χ ∈ C∞
c (R

d) is real with χ(0)= 1. The corresponding truncated energy is defined as

E(u0, t)= Eχ,δ(u0, t)= ∥ Op(aχ,δ(t))(u(t))∥2
L2 = ∥Op(aχ,δ(t))(ei t P(Dx )u0)∥

2
L2, (1-11)

where

Op(aχ,δ(t))(ei t P(Dx )u0)(x) :=
1

(2π)d

∫
ei xξ+i t P(ξ)aχ,δ(t, x, ξ)û0(ξ) dξ. (1-12)

In Propositions 2.1, 2.2, and 3.1, we shall prove that, under some extra conditions on P, the operator
Op(a(t)), together with its variations to be introduced later, is bounded on L2, uniformly in |t | ≫ 1.
E(u0, t) is therefore a well-defined truncated energy, at least when the time |t | is sufficiently large.
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We first state the fundamental result which is available for fractional equations, namely (E) with
P ′(ξ) = |ξ |p(ξ/|ξ |), such as Schrödinger equation (p = 1), linearized gravity water-wave equation(
p = −

1
2

)
, and linearized capillary water-wave equation

(
p =

1
2

)
.

Theorem 1.1. Let χ ∈ C∞
c (R

d) be a real function such that χ(0)= 1. We further assume that P satisfies
hypotheses (Hp0,p1) with P0 = P1 = 0.

(i) If δ < 0,
lim

t→±∞
Eχ,δ(u0, t)= 0. (1-13)

(ii) If δ = 0,

lim
t→±∞

Eχ,δ(u0, t)=
1

(2π)d

∫
Gχ (ρ, ω)|û0(ρω)|

2ρd−1 dρ dω, (1-14)

where (ρ, ω) is the polar coordinate. The function Gχ (ρ, ω) is defined, when P is convex, by

Gχ (ρ, ω) :=
1

(2π)d

∣∣∣∣∫ ∞

0

∫
y·ω=0

ei 1
2 (r

2
+|y|

2)χ
(√

P ′′(ρ)rω+

√
ρ−1 P ′(ρ)y

)
dy dr

∣∣∣∣2, (1-15)

and, when P is concave, by

Gχ (ρ, ω) :=
1

(2π)d

∣∣∣∣∫ ∞

0

∫
y·ω=0

ei 1
2 (−r2

+|y|
2)χ
(√

−P ′′(ρ)rω+

√
ρ−1 P ′(ρ)y

)
dy dr

∣∣∣∣2. (1-16)

(iii) If 0< δ < 1
2 , we further assume that χ is radial. Then

lim
t→±∞

Eχ,δ(u0, t)=
1
4∥u0∥

2
L2 . (1-17)

Remark 1.2. In (1-17), we manage to calculate the limit of Eχ,δ(u0, t) and Eχ,δ(u0,−t) as t → +∞,
instead of their sum as in (1-1) and (1-9). Notice that the heuristics discussed after (1-6) in the case of
half-wave equations do not predict this fact. This shows the limitation of this formal reasoning when
sharp cut-offs are involved in the symbols.

Remark 1.3. For the Schrödinger equation, the special structure of P ′(ξ)= ξ allows us to reduce the
regularity required for χ . In Appendix C, we will show that limits (1-13) and (1-14) hold for all χ ∈ L1.

We will see later that our proof of Theorem 1.1 does not hold for P with nonzero P0, P1, such as the
half-Klein–Gordon equation (HKG), where P1 = 1. In order to deal with this difficulty, one way is to add
some cut-off in the frequency ξ . To be precise, we introduce the modified truncated symbol

amod(t, x, ξ)= amod
χ,δ (t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ

)
1|x |>|t ||P ′(ξ)|(1 −χl)

(
ξ

|t |−ϵ0

)
χh

(
ξ

|t |ϵ1

)
, (1-18)

where ϵ0, ϵ1 satisfies

0< ϵ0 ⩽
1

p0 + 1
, 0< ϵ1 ⩽

{
+∞ if − 1 ⩽ p1 < 0,
−1/(p1 + 1) if p1 <−1,

(1-19)

and χl, χh ∈C∞
c are radial and equal to 1 near zero. This symbol will be concerned only when p1<0< p0;

the reason for this will be explained later. The corresponding truncated energy is denoted by

Emod(u0, t)= Emod
χ,δ (u0, t) := ∥Op(amod

χ,δ (t))u(t)∥
2
L2 .
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Theorem 1.4. Let χ ∈ C∞
c (R

d) be a real function such that χ(0)= 1. We further assume that P satisfies
the hypotheses (Hp0,p1) with p1 < 0< p0, P0, P1 > 0, and that ϵ0, ϵ1 satisfy condition (1-19).

(i) If δ < 0,
lim

t→±∞
Emod
χ,δ (u0, t)= 0. (1-20)

(ii) If δ = 0,

lim
t→±∞

Emod
χ,δ (u0, t)=

1
(2π)d

∫
Gχ (ρ, ω)|û0(ρω)|

2ρd−1 dρ dω, (1-21)

where (ρ, ω) is the polar coordinate. The function Gχ (ρ, ω) is the same one defined by (1-15) and (1-16).

(iii) If 0< δ < 1
2 , we further assume that χ is radial. Then

lim
t→±∞

Emod
χ,δ (u0, t)=

1
4∥u0∥

2
L2 . (1-22)

Remark 1.5. In this theorem, we only consider the case p1 < 0 < p0, which is enough to cover all
P0, P1 ̸= 0. Actually, when p0 < 0 (resp. p1 > 0), the hypotheses (Hp0,p1) with P0 > 0 (resp. P1 > 0) are
equivalent to (Hp0,p1) with P0 = 0 (resp. P1 = 0), which has been studied in Theorem 1.1.

Another way to deal with nonzero P0, P1 is to add an extra factor in the cut-off χ , namely, consider an
alternative truncated symbol

aalt(t, x, ξ)= aalt
χ,δ,3(t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ3(|t |

1
2 ξ)

)
1|x |>|t ||P ′(ξ)|, (1-23)

where3∈C∞(Rd
\{0}) is strictly positive, radial and satisfies the following conditions for some σ0, σ1 ∈R:

(1.0) ρ → 0+, 3(ρ)∼ ρσ0 .

(1.1) ρ → +∞, 3(ρ)∼ ρσ1 .

(2.0) ∀ρ ∈ ]0, 1[, 3( j)(ρ)≲ ρσ0− j .

(2.1) ∀ρ ∈ ]1,∞[, 3( j)(ρ)≲ ρσ1− j .

(3) lim
ρ→+∞

3(ρ)

ρσ1
= λ1 > 0.

(Cσ0,σ1)

The associated truncated energy is denoted by

Ealt(u0, t)= Ealt
χ,δ,3(u0, t) := ∥Op(aalt

χ,δ,3(t))u(t)∥
2
L2,

and the result becomes:

Theorem 1.6. Let χ ∈ C∞
c (R

d) be a real function such that χ(0) = 1. We assume that P satisfies the
hypotheses (Hp0,p1) and 3 satisfies condition (Cσ0,σ1) with σ0 ⩾ p0, σ1 ⩽ p1.

(i) If δ+
1
2σ1 < 0,

lim
t→±∞

Ealt
χ,δ,3(u0, t)= 0. (1-24)

(ii) If δ+
1
2σ1 = 0,

lim
t→±∞

Ealt
χ,δ,3(u0, t)=

1
(2π)d

∫
Galt
χ (ρ, ω)|û0(ρω)|

2ρd−1 dρ dω, (1-25)
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where (ρ, ω) is the polar coordinate. The function Galt
χ (ρ, ω) is defined, when P is convex, by

Galt
χ (ρ, ω) :=

1
(2π)d

∣∣∣∣∫ ∞

0

∫
y·ω=0

ei 1
2 (r

2
+|y|

2)χ

(√
P ′′(ρ)rω+

√
ρ−1 P ′(ρ)y

λ1ρσ1

)
dy dr

∣∣∣∣2, (1-26)

and, when P is concave, by

Galt
χ (ρ, ω) :=

1
(2π)d

∣∣∣∣∫ ∞

0

∫
y·ω=0

ei 1
2 (−r2

+|y|
2)χ

(√
−P ′′(ρ)rω+

√
ρ−1 P ′(ρ)y

λ1ρσ1

)
dy dr

∣∣∣∣2. (1-27)

(iii) If 0< δ+
1
2σ1 <

1
2 , we further assume that χ is radial. Then

lim
t→±∞

Ealt
χ,δ,3(u0, t)=

1
4∥u0∥

2
L2 . (1-28)

Remark 1.7. The proof of Theorem 1.1 fails when |x/t | is close to P0 or P1. The extra factor 3 together
with the condition σ0 ⩾ p0, σ1 ⩽ p1 allows us to eliminate this case, and a demonstration similar to
Theorem 1.1 will work when |x/t | is away from P0, P1.

As a byproduct of Propositions 2.1 and 2.2, where the uniform-in-t boundedness on L2 of Op(a(t))
and Op(amod(t)) will be proved, these operators are also uniformly bounded with χ identically equal
to 1, namely:

Theorem 1.8. Let p0, p1 ̸= 0 and P satisfy the hypotheses (Hp0,p1). There exists a constant C > 0
independent of t such that,

(i) when P0 = P1 = 0,
∥Op(1|x |>|t P ′(ξ)|)∥L(L2) ⩽ C

holds for all |t |> 0;

(ii) when P0, P1 > 0, ∥∥∥∥Op
(

1|x |>|t P ′(ξ)|(1 −χl)

(
ξ

|t |−ϵ0

)
χh

(
ξ

|t |ϵ1

))∥∥∥∥
L(L2)

⩽ C

holds for all |t | > t0 ≫ 1, where ϵ0, ϵ1 are arbitrary parameters satisfying (1-19) and χl, χh ∈ C∞
c are

equal to 1 near zero.

The boundedness of Op(1E) for measurable sets E ⊂ R2d is of great concern in microlocal analysis, and
the results above give a positive answer to some E defined via convex functions. If one changes to Weyl
quantization, this problem is known as localization of the Wigner distribution. In fact, in this case, we have

⟨Opw(1E)u, v⟩L2 =
1

(2π)d/2

∫
E
W(u, v)(x, ξ) dx dξ,

where

W(u, v)(x, ξ)=
1

(2π)d/2

∫
Rd

eiy·ξu
(
x +

1
2 y
)
v
(
x −

1
2 y
)

dy

is the Wigner distribution of (u, v). It has been found that the operator properties of Opw(1E) (boundedness,
positivity, spectrum, etc.) are related to the geometry of E . For example, when E is an ellipsoid, in
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[Flandrin 1988; Lieb and Ostrover 2010], the authors gave some sharp estimates of the L2-norm of
Opw(1E), which is related to the size of the ellipsoid. As another example, when E is a polygon on R2

with N sides, it was proved in [Lerner 2024] that the norm of Opw(1E) can be controlled by
√

N/2 for
N ⩾ 3. In the same paper, the author also proved that there exists open set E such that Opw(1E) is not
even bounded on L2. The readers may refer to [Lerner 2024] for more results on this topic.

By applying the results of Theorems 1.4 and 1.8 to half-Klein–Gordon equation (HKG), we are able to
obtain the following microlocal partition of energy for Klein–Gordon equation, which is an analogue of
partition of energy for wave equation.

Theorem 1.9. Let w be the unique solution to Klein–Gordon equation (KG), namely
(∂2

t −1+ 1)w = 0,
w|t=0 = w0 ∈ H 1(Rd),

∂tw|t=0 = w1 ∈ L2(Rd),

where w0, w1 are real, and so is w. Then, the truncated energy

EKG
ϵ (w0, w1, t) := ∥Op(aKG

ϵ (t))∂tw(t)∥2
L2 + ∥Op(aKG

ϵ (t))∇w(t)∥2
L2 + ∥Op(aKG

ϵ (t))w(t)∥2
L2 (1-29)

satisfies
lim

t→±∞
EKG
ϵ (w0, w1, t)=

1
4(∥w0∥

2
H1 + ∥w1∥

2
L2), (1-30)

where

aKG(t, x, ξ)= aKG
ϵ (t, x, ξ) := 1|x |>|tξ/⟨ξ⟩|χ

(
ξ

|t |ϵ

)
, (1-31)

0< ϵ < 1, and χ ∈ C∞
c (R

d) is a real and radial function equal to 1 near zero.

Remark 1.10. In view of the similarity between wave equation and Klein–Gordon equation, one may ask
what (1-30) will become if we apply the same truncation 1|x |>|t | as in classical result (1-1). The answer
is, for all 0 ⩽ r0 ⩽ r1,

lim
t→±∞

∫
r0<|x/t |<r1

(|∂tw|
2
+ |∇w|

2
+ |w|

2) dx = ∥1]ρ0,ρ1[(|Dx |)w0∥
2
H1 + ∥1]ρ0,ρ1[(|Dx |)w1∥

2
L2, (1-32)

where ]ρ0, ρ1[ = P ′−1(]r0, r1[). Since P ′ takes values in [0, 1[, we have in particular,

lim
t→±∞

∫
|x |>|t |

(|∂tw|
2
+ |∇w|

2
+ |w|

2) dx = 0.

A detailed discussion of (1-32) will be given in Appendix D.

1.3. Nonnullity of the limit in the critical case. In Theorems 1.1, 1.4, and 1.6, we calculate the limit
of energy in three cases. In the subcritical case δ < 0 (or δ+

1
2σ1 < 0), the truncated energy tends to 0,

no matter which χ we choose. This phenomenon also exists in the supercritical case 0 < δ < 1
2

(
or

0< δ+
1
2σ1 <

1
2

)
, where the limit is always half of the total energy ∥u0∥L2 . In the critical case δ = 0 (or

δ+
1
2σ1 = 0), however, the limit does depend on our choice of χ . If we further assume χ to be radial, it

is not difficult to check that the limits (1-14), (1-21), and (1-25) are bounded and nonnegative.
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In fact, when χ is radial, the function Gχ , Galt
χ can be written in the form

1
4

1
(2π)d

∣∣∣∣∫
Rd

ei 1
2 (±x2

1+|x ′
|
2)χ

(√
±P ′′(ρ)x1 +

√
P ′(ρ)/ρx ′

λρσ

)
dx
∣∣∣∣2,

where + and − stand for the convex and concave cases, respectively, x = (x1, x ′) ∈ R × Rd−1, and λ > 0,
σ ∈ R. By the Plancherel theorem, it is equal to

1
4

1
(2π)2d

∣∣∣∣∫
Rd

ei((±ξ2
1 +|ξ ′

|
2)/(2(λρσ )2))χ̂

(
ξ1

√
±P ′′(ρ)

+

√
ρ

P ′(ρ)
ξ ′

)
1

√
±P ′′(ρ)

(
ρ

P ′(ρ)

)1
2 (d−1)

dξ
∣∣∣∣2,

which, after a change of variable, reads

1
4

1
(2π)2d

∣∣∣∣∫
Rd

e
i

P ′′(ρ)ρξ2
1 +P ′(ρ)|ξ ′|2

2ρ(λρσ )2 χ̂(ξ) dξ
∣∣∣∣2. (1-33)

Therefore, Gχ can be estimated by

0 ⩽ Gχ (ρ, ω)⩽
1
4

1
(2π)2d ∥χ̂∥

2
L1 .

A natural question is then whether limits (1-14), (1-21), and (1-25) are nonzero for nontrivial initial data
u0. The answer is positive for the fractional equation, i.e., with P ′(ξ)= |ξ |p−1ξ , p ̸= 0. More precisely:

Proposition 1.11. Under the assumption P ′(ξ) = |ξ |p−1ξ , (1-33) can be written, up to some multiple
with constants, as

G̃(ρ)=

∣∣∣∣∫
Rd

ei 1
2λ2 ρ

p−1−2σ (pξ2
1 +|ξ ′

|
2)
χ̂(ξ) dξ

∣∣∣∣2.
If p ̸= 2σ + 1 and χ ∈ S(Rd) with χ(0) ̸= 0, G̃(ρ) is nonzero except on a set of null Lebesgue measure.

Proof. Since χ is a Schwartz function, the complex function

F(z) :=
1

2(2π)d

∫
Rd

ei z
2λ2 (

1
2 pξ2

1 +
1
2 |ξ ′

|
2)
χ̂(ξ) dξ

is analytic on upper half-plane {z ∈ C : Im z > 0} and continuous on its closure. In [Lusin and Priwaloff
1925], the authors proved that either the real zeros of such function form a set of zero Lebesgue measure,
or it is identically zero. The same result holds thus for G̃(ρ) = |F(ρ p−1−2σ )|2. Due to the fact that
χ(0) ̸= 0, G̃ is nonzero as ρ p−1−2σ1 is small enough, and G̃ is therefore nonzero almost everywhere. □

As a consequence, the limits (1-14), (1-21), and (1-25) are strictly positive for all nontrivial u0 ∈ L2

under the assumption p ̸= 1 (or p ̸= 2σ1 + 1). If p = 1 (or p = 2σ1 + 1), the function Gχ (ρ) (or Galt
χ )

will no more depend on ρ and the limits (1-14), (1-21), (1-25) will take the form c0(χ)∥u0∥
2
L2 , where

c0(χ)=

∣∣∣∣ 1
2(2π)d

∫
Rd

ei( 1
2 pξ2

1 +
1
2 |ξ ′

|
2)χ̂(ξ) dξ

∣∣∣∣2.
To obtain a nonzero limit, it suffices to choose χ such that the quantity above is nonzero. For example,
one may take
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• χ to be positive and supported in a sufficiently small ball centered at zero;

• χ to be Gaussian;

• χ of the form χ = χ̃( · /R), with χ̃ ∈ C∞
c , χ̃(0) ̸= 0, and R ≫ 1.

1.4. Plan of this paper. The proofs of Theorems 1.1, 1.4, and 1.6 will be divided into two parts: uniform
boundedness of truncated operator and calculation of limit. In Section 2, we will prove that Op(a(t))
and Op(amod(t)) are uniformly bounded on L2 in three steps. The first two steps are exactly the same,
while the difference arises in the last step where one may see the difficulties caused by nonzero P0, P1.
As a byproduct of this proof, Theorem 1.8 can be shown easily. Section 3 is devoted to the uniform
boundedness of Op(aalt(t)), which is much simpler than that of Op(a(t)) and Op(amod(t)) thanks to the
extra factor 3. The uniform boundedness of truncated operators allows us to calculate the limits stated in
Theorems 1.1, 1.4, and 1.6 only for some regular data u0, which will be made precise in Section 4. In
Section 5, we will prove the microlocal partition of energy for the Klein–Gordon equation by studying
the half-Klein–Gordon equation.

In Appendix A, we collect technical inequalities which are frequently used in this paper, as well
as some criteria of L2-boundedness for pseudodifferential operators. Several stationary phase lemmas
are presented in Appendix B; these are key techniques in calculating the limit of truncated energy. As
mentioned before, our main result Theorem 1.1 can be refined for the Schrödinger equation, whose
rigorous statement and proof will be given in Appendix C. Appendix D is devoted to the discussion on the
classical partition of energy for the Klein–Gordon equation due to the study of the asymptotic behavior of
the solution to the half-Klein–Gordon equation. The last part, Appendix E, contains some details omitted
in Section 4, especially for concave P.

1.5. Notations and conventions. To end this section, we clarify some notations and conventions used in
this paper.

• We say a is a symbol on Rd if a is a function on {(x, ξ) ∈ Rd
× Rd

}. The corresponding (pseudodiffer-
ential) operator is defined by

Op(a) f (x) :=
1

(2π)d

∫
ei xξa(x, ξ) f̂ (ξ) dξ.

To make this definition meaningful, we will assume in this paper that a is a measurable function with at
most polynomial growth in ξ and that f belongs to the class of Schwartz functions.

• For any function P : Rd
→ C, which can be regarded as a symbol independent of x , the corresponding

operator will be denoted by P(Dx).

• The kernel (or kernel function) of a linear operator A : S(Rd) 7→ S ′(Rd) is defined as (if it exists) a
tempered distribution K on Rd

× Rd such that

Au(x)=

∫
K (x, y)u(y) dy.
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For the simplicity of notation, in this paper, we will use the symbol of the kernel function to represent the
operator, i.e.,

K u(x)=

∫
K (x, y)u(y) dy.

• A function F : Rd
→ C is said to be radial if there exists a function f : [0,∞[ 7→ C such that

F(x)= f (|x |) for all x ∈ Rd. In this case, we will not distinguish the functions F and f . That is, we will
write instead F(x)= F(|x |) or f (x)= f (|x |) for x ∈ Rd.

• We will use c, C , sometimes equipped with superscripts and subscripts, to represent all the small and
large constants respectively.

• For nonzero quantities ρ, r , the notation ρ ∼ r means that there exist constants c,C > 0 such that
c < ρ/r < C .

2. L2-boundedness of microlocal truncation operators

The goal of this section is the demonstration of following proposition, which eventually implies Theorem 1.8.

Proposition 2.1. Let p0, p1 ̸= 0, δ ∈ R, and χ ∈ C∞
c (R

d). There exists a constant C > 0 independent
of t such that, for all |t |> 0,

∥Op(aχ,δ(t))∥L(L2) ⩽ C,

where the symbol aχ,δ(t) is defined in (1-10) and P satisfies the hypotheses (Hp0,p1) with P0 = P1 = 0.

In parallel, we shall also prove the following result:

Proposition 2.2. Let p0 > 0> p1, δ ∈ R, and χ ∈ C∞
c (R

d). We assume that P satisfies the hypotheses
(Hp0,p1) with P0, P1 > 0. Then the modified truncated symbol

amod
χ,δ (t, x, ξ)= aχ,δ(t, x, ξ)(1 −χl)

(
ξ

|t |−ϵ0

)
χh

(
ξ

|t |ϵ1

)
,

which has already been defined in (1-18), corresponds to a bounded operator on L2, uniformly in
|t |> t0 ≫ 1. Here χl, χh ∈ C∞

c are radial and equal to 1 near zero and ϵ0, ϵ1 satisfy the condition (1-19).

One can see in the following proof that our demonstration cannot eliminate the truncation in ξ in
the definition (1-18) of amod. In fact, after some change of scaling, we will decompose the symbol a
(or amod) into three components, two of which are bounded for all P0, P1 ⩾ 0, while our treatment for the
last component does not hold for nonzero P0, P1. The complementary cut-off in ξ is used to solve this
problem. Note that it is still unknown whether such restriction is essential.

To begin with, one observes that it is equivalent to study the cut-off inside the cone, namely

ain(t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ

)
1|x |<|t ||P ′(ξ)|,

since the operator with symbol

χ

(
x + t P ′(ξ)

|t |
1
2 +δ

)
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is bounded uniformly in t and δ ∈ R, due to Lemma A.10 together with Lemma A.5. In this section, we
will not distinguish a and ain and denote both of them as a.

With a reflection in ξ , t can be assumed to be positive. The application of Lemma A.4 allows us to
replace a by

ã(t, x, ξ)= a
(

t,
√

t x,
ξ

√
t

)
= χ

(
x/

√
t + P ′(ξ/

√
t)

tδ−
1
2

)
1

|x/
√

t |<|P ′(ξ/
√

t)|.

Now, we split ã into high and low frequencies, namely ã = ã♭ + ã♯, where

ã♭(t, x, ξ)= ã(t, x, ξ)χ̃(ξ),

and χ̃ ∈ C∞
c (R

d) is a radial function which equals 1 near zero. In the following, we shall treat the high-
and low-frequency parts at the same time. Before entering the next step, we introduce some notations
which will be frequently used in this section. In all cases, we set

µ= tδ−
1
2 ∈ ]0,+∞[.

With j = 0 for the low-frequency part and j = 1 for the high-frequency part, we set,

• when Pj = 0,

X (t, x) :=
|x |
√

t
, 4(t, ξ) := P ′

(
|ξ |
√

t

)
, νj = +;

• when Pj > 0, P ′ > Pj ,

X (t, x) :=
|x |
√

t
− Pj , 4(t, ξ) := P ′

(
|ξ |
√

t

)
− Pj , νj = +;

• when Pj > 0, P ′ < Pj ,

X (t, x) := Pj −
|x |
√

t
, 4(t, ξ) := Pj − P ′

(
|ξ |
√

t

)
, νj = −.

Note that for all nonzero ξ , 4 is strictly positive. With these notations our problem can be reduced to
the uniform-in-µ, t boundedness of

b♭(t, µ, x, ξ)= χ

(
(P0 + ν0 X) x

|x |
+ (P0 + ν04)

ξ
|ξ |

µ

)
10< X

4
<1χ̃

(
ξ

√
t

)
,

b♯(t, µ, x, ξ)= χ

(
(P1 + ν1 X) x

|x |
+ (P1 + ν14)

ξ
|ξ |

µ

)
10< X

4
<1(1 − χ̃)

(
ξ

√
t

)
.

We emphasize that our definition of X does not ensure its strict positivity, but one may always eliminate
the part X < 0, due to the uniform boundedness of the operator with symbol

χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

µ

)
,

which is also a consequence of Lemmas A.10 and A.5.
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Now, we decompose bι (ι = ♭, ♯) as the sum of bι0, b̃ι, bι1 with cut-off 0 < X
4

≪ 1 and X
4

∼ 1 and
0< 1 −

X
4

≪ 1, respectively. To be precise,

bι(t, µ, x, ξ)= bι0(t, µ, x, ξ)+ b̃ι(t, µ, x, ξ)+ bι1(t, µ, x, ξ),

bι0(t, µ, x, ξ)= bι(t, µ, x, ξ)χ0(X/4),

b̃ι(t, µ, x, ξ)= bι(t, µ, x, ξ)9(X/4),

bι1(t, µ, x, ξ)= bι(t, µ, x, ξ)χ1(1 − X/4),

where χ0, χ1 and 9 are radial, smooth and compactly supported. χ0, χ1 are supported in a small
neighborhood of zero and equal to 1 near zero, while 9 is compactly supported in ]0, 1[. By regarding µ
as a t-independent parameter, we can reduce Propositions 2.1 and 2.2 to the following proposition:

Proposition 2.3. There exist t, µ-independent constants C > 0 such that

(i) if P0, P1 ⩾ 0, for all t, µ > 0,

∥Op(bι1(t, µ))∥L(L2) ⩽ C, (2-1)

∥Op(b̃ι(t, µ))∥L(L2) ⩽ C; (2-2)

(ii) if P0 = P1 = 0, for all t, µ > 0,

∥Op(bι0(t, µ))∥L(L2) ⩽ C; (2-3)

(iii) if P0, P1 > 0 and p1 < 0< p0, for all µ > 0, t > 1,∥∥∥∥Op
(

bι0(t, µ)(1 −χl)

(
ξ

t
1
2 −ϵ0

)
χh

(
ξ

t
1
2 +ϵ1

))∥∥∥∥
L(L2)

⩽ C. (2-4)

Before giving the proof, we indicate below the consequence of this proposition, which implies
Propositions 2.1 and 2.2, and will be used in the end of this section to conclude Theorem 1.8.

Corollary 2.4. Let χ , χl , χh be defined as before.

(i) If P satisfies (Hp0,p1) with p0, p1 ̸= 0 and P0 = P1 = 0, the operator

Op
(
χ

(
x + t P ′(ξ)

|t |µ

)
1|x |>|t P ′(ξ)|

)
is bounded on L2 uniformly in t ̸= 0 and µ > 0.

(ii) If P satisfies (Hp0,p1) with p0, p1 ̸= 0 and ϵ0, ϵ1 satisfy condition (1-19), the operator

Op
(
χ

(
x + t P ′(ξ)

|t |µ

)
1|x |>|t P ′(ξ)|(1 −χl)

(
ξ

t
1
2 −ϵ0

)
χh

(
ξ

t
1
2 +ϵ1

))
is bounded on L2 uniformly in t > 1 and µ > 0.
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2.1. Study of the symbols b1 and b̃. In this part, we shall prove (2-1) and (2-2). One observes that both
bι1 and b̃ι are supported for X ∼4, which allows us to reduce our problem via dyadic decomposition.

Proof of (2-2). We start with a homogeneous dyadic decomposition

1 =

∑
k∈Z

ϕ

(
η

2k

)
,

where ϕ ∈ C∞
c (R

d) is radial and supported away from zero. In this way, we may decompose b̃♯ as∑
k⩾0 b̃k , and b̃♭ as

∑
k<0 b̃k , where

b̃k(t, µ, x, ξ)= χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

µ

)
9

(
X
4

)
ψ(2−kpj X)ϕ

(
ξ

2k
√

t

)
, (2-5)

where ψ ∈ C∞
c (R

d) is also radial and supported away from zero. The extra factor ψ comes from the
truncation X ∼4∼ (t−1/2

|ξ |)pj ∼ 2kpj . This factors implies that the b̃k’s are almost orthogonal so that it
suffices to prove the uniform (in k, t, µ) boundedness of Op(b̃k).

Note that, due to the compact support of χ and the fact that 0 < c < X/4 < 1 − c for some small
c > 0, we have

2kpj ∼4≲ |X −4| =

∣∣∣∣∣∣∣∣(Pj + νj X)
x
|x |

∣∣∣∣− ∣∣∣∣(Pj + νj4)
ξ

|ξ |

∣∣∣∣∣∣∣∣
⩽

∣∣∣∣(Pj + νj X)
x
|x |

+ (Pj + νj4)
ξ

|ξ |

∣∣∣∣≲ µ. (2-6)

When t2k(pj +1) ⩾ 1, we shall apply the Calderón–Vaillancourt theorem (see Lemma A.11). For
each derivative in x , if it acts on χ , one gains t−1/2µ−1 ≲ t−1/22−kpj by (2-6). If ∂x acts on 9 or ψ ,
one obtains factors of size t−1/22−kpj. As for the derivatives in ξ , similarly, it leads to factors of size
P ′′(ξ/

√
t)t−1/2µ−1, 4−1 P ′′(ξ/

√
t)t−1/2 or t−1/22−k, which are all controlled by t−1/22−k, as |ξ | ∼ 2k√t

and 2kpj ≲ µ. Since
t−

1
2 2−kpj × t−

1
2 2−k

= t−12−k(pj +1) ⩽ 1,

we may conclude by a change of scaling (Lemma A.4).
When t2k(p+1) ⩽ 1, we shall use Lemma A.9. We first check the assumption (A-6) of this lemma with

µk ∈ ]0,+∞[ defined by

µk =

{
µ2−kpj if Pj + νj X ∼ 2kpj ,

µ if Pj + νj X ∼ 1.

Note that we have either Pj + νj X ∼ Pj + νj4∼ 1 or Pj + νj X ∼ Pj + νj4∼ 2kpj . In fact, by definition,
Pj + νj X and Pj + νj4 are both strictly positive. Thus, it is sufficient to consider |k| ≫ 1. When Pj is
nonzero and kpj < 0, we have X ∼4∼ 2kpj ≪ 1 and then Pj +νj X ∼ Pj +νj4∼ 1. While Pj is nonzero
and kpj > 0, we have similarly X ∼ 4 ∼ 2kpj ≫ 1 and Pj + νj X ∼ Pj + νj4 ∼ 2kpj. Otherwise, Pj is
equal to zero, which implies trivially Pj + νj X = X ∼ 2kpj and Pj + νj4=4∼ 2kpj . Due to observation
X ∼4∼ 2kpj , it is easy to obtain that, for all α, β ∈ Nd−1 and N ∈ N,

|∂αω∂
β
θ b̃k(t, µ, rω, ρθ)| ⩽ Cα,β,N gk(r, ρ)µ

−|α|−|β|

k

〈
d(ω,−θ)
µk

〉−N

,
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where x = rω, ξ = ρθ are polar coordinates and

gk(r, ρ)= 1ρ∼2k
√

t1r∼t1/22kpj .

The operator of kernel gk is controlled by

∥gk∥L2(drdρ) ≲ (
√

t2k
×

√
t2kpj )

1
2 = (t2k(pj +1))

1
2 ⩽ 1,

which is no more than the assumption (A-5) of Lemma A.9. As a result, we may conclude (2-2) by (A-7). □

The idea of the proof of (2-1) is similar. The only difficulty is that b1 has a singularity near X =4. We
may treat the part away from X =4 as above and study the area near X =4 by convexity (or concavity)
of P.

Proof of (2-1). As before, we begin with the homogeneous dyadic decomposition in ξ/
√

t , namely
b♯1 =

∑
k⩾0 b1,k and b♭1 =

∑
k<0 b1,k , with

b1,k = χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

µ

)
1 X
4
<1χ1

(
1 −

X
4

)
ψ(2−kpj X)ϕ

(
ξ

2k
√

t

)
.

It suffices to prove that Op(b1,k) is bounded on L2, uniformly in k, t, µ. In comparison with b̃k defined
by (2-5), the main difficulty is that the nonsmooth term cannot be deleted. In the case t2k(pj +1) ⩽ 1, we
may repeat exactly the same argument as in the study of b̃k since this argument does not require any
regularity in |x |, |ξ |.

When t2k(pj +1) > 1, we will separate the singularity near X/4= 1. Consider the decomposition

b1,k = b′

1,k + b′′

1,k,

b′

1,k = b1,k χ̃1(
√

t2k 1
2 (1−pj )(4− X)),

where χ̃1 ∈ C∞
c (R

d) is radial and equal to 1 near zero.
The proof of the boundedness of b′

1,k is similar to that of the case t2k(pj +1)⩽1. By setting µk ∈]0,+∞[

as before, namely

µk =

{
µ2−kpj if Pj + νj X ∼ 2kpj ,

µ if Pj + νj X ∼ 1,

we may have, for all α, β ∈ Nd−1 and N ∈ N,

|∂αω∂
β
θ b′

1,k(t, µ, rω, ρθ)| ⩽ Cα,β,N hk(r, ρ)µ
−|α|−|β|

k

〈
d(ω,−θ)
µk

〉−N

,

where
hk(r, ρ)=

∑
n∼

√
t2k(pj +1)/2

1In (r)1Jn (ρ), (2-7)

with

Jn := [2k 1
2 (1−pj )n, 2k 1

2 (1−pj )(n + 1)],

In :=

{[√
t P ′(t−

1
2 2k 1

2 (1−pj )n)− c2k 1
2 (pj −1),

√
t P ′(t−

1
2 2k 1

2 (1−pj )(n + 1))+ c2k 1
2 (pj −1)] if P ′′ > 0,[√

t P ′(t−
1
2 2k 1

2 (1−pj )(n + 1))− c2k 1
2 (pj −1),

√
t P ′(t−

1
2 2k 1

2 (1−pj )n)+ c2k 1
2 (pj −1)] if P ′′ < 0.
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Note that by writing in the polar system r = |x |, ρ = |ξ |, we have that b′

1,k is supported for ρ ∼ 2k√t
and

√
t2k(1−pj )/2|4− X | ≪ 1 due to the cut-off χ̃1. We first make a decomposition in ρ, namely

ρ ∈ [C−12k√t,C2k√t] ⊂

⋃
n∼

√
t2k(pj +1)/2

Jn,

and then the support
√

t2k(1−pj )/2|4− X | ≪ 1 ensures that r lies in In defined above, once ρ belongs
to Jn . This gives the control hk defined in (2-7).

In order to apply Lemma A.9, it suffices to check that the operator with kernel hk is uniformly bounded
on L2(R+), which can be reduced to |In||Jn| ≲ 1 and that {In} forms a uniformly finite cover. In fact,
since the In’s are pairwise disjoint (except for end points), one observes that, for all w ∈ L2(R+),∥∥∥∥∫ hk( · , ρ)w(ρ) dρ

∥∥∥∥2

L2(R+)

=

∥∥∥∥∑
n

1In ( · )

∫
1Jn (ρ)w(ρ) dρ

∥∥∥∥2

L2(R+)

=

∑
n

∥∥∥∥1In ( · )

∫
1Jn (ρ)w(ρ) dρ

∥∥∥∥2

L2(R+)

⩽
∑

n

|In||Jn|∥1Jnw∥
2
L2(R+)

≲
∑

n

∥1Jnw∥
2
L2(R+)

,

where the last inequality follows from the first assertion |In||Jn| ≲ 1. The second assertion guarantees
that each point of R+ belongs to at most N intervals in {Jn} for some N ∈ N. This implies that∑

n ∥1Jnw∥
2
L2(R+)

⩽ N∥w∥
2
L2(R+)

, which proves the uniform-in-t, k L2(R+)-boundedness of the operator
with kernel hk .

The first assertion is obvious since n ∼
√

t2k(pj +1)/2 implies that

|Jn||In| ≲ 2k 1
2 (1−pj )

(∣∣√t P ′(t−
1
2 2k 1

2 (1−pj )(n + 1))−
√

t P ′(t−
1
2 2k 1

2 (1−pj )n)
∣∣+ 2c2k 1

2 (pj −1))
≲ 2k 1

2 (1−pj )
(√

t2k(pj −1)t−
1
2 2k 1

2 (1−pj ) + 2c2k 1
2 (pj −1))≲ 1.

As for the second one, we observe that In ∩ In+l ̸= ∅ if and only if∣∣√t P ′(t−
1
2 2k 1

2 (1−pj )n)−
√

t P ′(t−
1
2 2k 1

2 (1−pj )(n + l))
∣∣⩽ 2c2k 1

2 (pj −1).

Without loss of generality, we may assume l ⩾0. Actually, the left-hand side has the following equivalence:∣∣√t P ′(t−
1
2 2k 1

2 (1−pj )n)−
√

t P ′(t−
1
2 2k 1

2 (1−pj )(n + l))
∣∣

=
∣∣2k 1

2 (1−p)l P ′′(t−
1
2 2k 1

2 (1−pj )(n + sl))
∣∣ for some s ∈ [0, 1]

∼ 2k 1
2 (1−pj )l × (t−

1
2 2k 1

2 (1−pj )(n + sl))pj −1 since |P ′′(ρ)| ∼ ρ pj −1

∼ 2k 1
2 (1−pj )l × 2k(pj −1)

= 2k 1
2 (pj −1)l.

To prove the last equivalence, we may use the fact that n, n + l ∼
√

t2k(pj +1)/2, which implies that

c
√

t2k 1
2 (pj +1) ⩽ n ⩽ n + sl ⩽ n + l ⩽ C

√
t2k 1

2 (pj +1).
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In conclusion, we have that In ∩ In+l ̸= ∅ holds for finitely many l. As a result, Op(b′

1,k) is bounded
uniformly in t, k.

It remains to study the smooth symbol b′′

1,k , which reads

b′′

1,k = χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

µ

)
ψ(2−kp X)ϕ

(
ξ

2k
√

t

)
1 X
4
<1χ1

(
1 −

X
4

)
× (1 − χ̃1)(

√
t2k 1

2 (1−pj )(4− X)).

Note that this symbol is smooth, since the singularity X/4= 1 is removed by the (1−χ̃1) factor. Under the
condition t2k(pj +1) > 1, it satisfies the condition of the Calderón–Vaillancourt theorem (see Lemma A.11).
In fact, each derivative in x leads to a factor of size t−1/2µ−1 (from χ), t−1/22−kpj (from ψ and χ1), or
2k(1−pj )/2 (from (1 − χ̃1)). The condition t2k(pj +1) > 1 implies that t−1/22−kpj ⩽ 2k(1−pj )/2, while the
compact support of χ and support of (1 − χ̃1) ensures that

t−
1
2 2k 1

2 (pj −1) ≲ |X −4| ≲ µ,

i.e., t−1/2µ−1 ≲ 2(1−pj )/2k. The same argument for ∂ξ gives that each derivative in ξ leads to a factor of
size 2−k(1−pj )/2. The desired result thus follows from a change of scaling (Lemma A.4). □

2.2. Study of the symbol b0 with P0 = P1 = 0. In the case P0 = P1 = 0, due to the lack of almost orthogo-
nality as b̃k’s and b1,k’s, the remaining symbol bι0 will be treated via the Cotlar–Stein lemma (Lemma A.3).
As before, we start with homogeneous dyadic decomposition in ξ , namely b♯0 = 1X>0

∑
k⩾0 ck and

b♭0 = 1X>0
∑

k<0 ck , with

ck = χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

µ

)
χ0

(
X
4

)
ϕ

(
ξ

2k
√

t

)
. (2-8)

It suffices to prove the (uniform-in-t) boundedness of
∑

k∈Z ck as the multiplication with 1X>0 is trivially
bounded on L2.

We first check that the Op(ck)’s are bounded uniformly in k, t, µ. More precisely, all the ck’s satisfy
the following estimate:

Lemma 2.5. There exists C > 0 independent of k, t such that, for all t > 0 and k ∈ Z,

∥Op(ck)∥L(L2) ⩽ C min
(
max(1, (t2k(pj +1))−Nd ), (t2k(pj +1))

d
2
)
⩽ C, (2-9)

where Nd ∈ N depends only on dimension d.

Proof. We observe that ck is supported for X ≪4∼ 2kpj, which implies, on the one hand, as in (2-6),

2kpj ∼ |X −4| ⩽

∣∣∣∣(Pj + νj X)
x
|x |

+ (Pj + νj4)
ξ

|ξ |

∣∣∣∣≲ µ,
and, on the another hand,

|x | ≪
√

t2kpj , |ξ | ∼
√

t2k .
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As a consequence of the second result, ∥Op(ck)∥L(L2) can be trivially bounded by

∥Op(ck)∥L(L2) ≲ ∥ck∥L2(R2d ) ≲ (t2
k(pj +1))

1
2 d .

It remains to check that
∥Op(ck)∥L(L2) ⩽ C max

(
1, (t2k(pj +1))−Nd

)
,

which can be proved via the Calderón–Vaillancourt theorem (see Lemma A.11). In fact, from each
derivative in x , we may obtain extra factors of size t−1/2µ−1 (action on χ ) or t−1/22−kpj (action on χ0).
As we have seen that t−1/2µ−1 ≲ t−1/22−kpj , each derivative in x leads to a factor of size (t1/22kpj )−1.
Similarly, the action of ∂ξ on χ, χ0, ϕ gives factors of size t−1/2µ−12k(pj −1), t−1/22−k, and t−1/22−k ,
respectively. We may also check that t−1/2µ−12k(pj −1) ≲ 2−k t−1/2. To sum up, ck is smooth and satisfies

|∂αx ∂
β
ξ ck(x, ξ)| ⩽ Cα,β

(
1

√
t2kpj

)|α|( 1
√

t2k

)|β|

∀α, β ∈ Nd . (2-10)

By Lemma A.4, it is equivalent to consider the rescaled symbol

c̃k(x, ξ)= ck(2k 1
2 (pj −1)x, 2−k 1

2 (pj −1)ξ),

which, as a result of (2-10), satisfies, for all γ ∈ N2d ,

∥∂
γ

x,ξ c̃k∥L∞(R2d ) ≲ (t2
k(pj +1))−|γ |.

By applying the Calderón–Vaillancourt theorem (Lemma A.11) to c̃k , we have, due to estimate (A-8), that

∥Op(ck)∥L(L2) = ∥Op(c̃k)∥L(L2) ⩽ C max
(
1, (t2k(pj +1))−Nd

)
. □

In order to conclude (2-3) by the Cotlar–Stein lemma (Lemma A.3), it is sufficient to check conditions
(A-2) and (A-3), namely:

Lemma 2.6. There exist t, µ-independent constants C such that, for all t, µ > 0,

sup
k∈Z+

∑
l∈Z+

∥Op(ck)Op(cl)
∗
∥

1
2
L(L2)

⩽ C, sup
k∈Z−

∑
l∈Z−

∥Op(ck)Op(cl)
∗
∥

1
2
L(L2)

⩽ C, (2-11)

sup
k∈Z+

∑
l∈Z+

∥Op(ck)
∗ Op(cl)∥

1
2
L(L2)

⩽ C, sup
k∈Z−

∑
l∈Z−

∥Op(ck)
∗ Op(cl)∥

1
2
L(L2)

⩽ C, (2-12)

where Z− = Z ∩ ]−∞, 0[ corresponds to the low-frequency part and Z+ = Z ∩ [0,+∞[ corresponds to
the high-frequency part.

Proof of (2-11). By symbolic calculus, Op(ck)Op(cl)
∗ is an operator of symbol

ck♯c∗

l (x, ξ)=
1

(2π)d

∫
e−iyηck(x, ξ + η)cl(x + y, ξ + η) dη.

By definition (2-8), cl(x, ξ) is supported for |ξ | ∼ 2l√t . Thus, ck♯c∗

l is nonzero only if |l − k|< N0 for
some large N0 ∈ N∗. As a consequence, (2-11) can be reduced to the uniform boundedness of Op(cl),
which has already been proved in Lemma 2.5. □
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Proof of (2-12). We apply again the symbolic calculus to obtain the following expression of the symbol
of Op(ck)

∗ Op(cl):

c∗

k♯cl(x, ξ)=
1

(2π)d

∫
ei(x−y)ηck(y, ξ + η)cl(y, ξ) dη dy.

Recall that cl is supported for |x | ≪
√

t2lpj and |ξ | ∼ t1/22l with the estimate (2-10). We shall check
that, for all l, k ∈ N,

∥Op(ck)
∗ Op(cl)∥L(L2) ≲ 2−

1
2 d|k−l|, (2-13)

which is enough to conclude (2-12). Due to (2-9), we may ignore the case |k − l| ⩽ N0 for some fixed
large N0 ∈ N. Note that it is sufficient to prove (2-13) only for l ⩾ k, since for terms with l < k, we have

∥Op(ck)
∗ Op(cl)∥L(L2) = ∥(Op(ck)

∗ Op(cl))
∗
∥L(L2)

= ∥Op(cl)
∗ Op(ck)∥L(L2) ≲ 2−

1
2 d|l−k|.

One observes that the bound of the operator with symbol c∗

k♯cl can be controlled by

∥Op(c∗

k♯cl)∥L(L2) ≲ ∥c∗

k♯cl∥L2(dx dξ) ≲

∥∥∥∥∫ e−iyηck(y, ξ + η)cl(y, ξ) dy
∥∥∥∥

L2(dη dξ)
.

The integrand of the last integral is supported for

|ξ + η| ∼ 2k√t, |ξ | ∼ 2l√t and |y| ≲ min(2kpj
√

t, 2lpj
√

t). (2-14)

Moreover, we may apply integration by parts in y to obtain some extra bounds in the estimate. To be
precise, for all N1 ∈ N,∫

e−iyηck(y, ξ + η)cl(y, ξ) dy =

∫ (
−1y

|η|2

)N1

e−iyηck(y, ξ + η)cl(y, ξ) dy

=

∫
e−iyη(−1y)

N1
(
ck(y, ξ + η)cl(y, ξ)

)
|η|−2N1 dy

=

∑
|α|+|β|=2N1

Cα,β

∫
e−iyη∂αy ck(y, ξ + η)∂βy cl(y, ξ)|η|−2N1 dy.

Since we have reduced our problem to the case l ⩾ k + N0, the integral above is supported for |η| ∼ 2l√t .
Together with (2-10) and (2-14), we have∣∣∣∣∫ e−iyηck(y, ξ + η)cl(y, ξ) dy

∣∣∣∣
⩽

∑
|α|+|β|=2N1

Cα,β

∫
|∂αy ck(y, ξ + η)||∂βy cl(y, ξ)||η|−2N1 dy

≲
∑

|α|+|β|=2N1

1
|ξ+η|∼2k

√
t1|ξ |∼2l

√
t(2

kpj
√

t)−|α|(2lpj
√

t)−|β|(2l√t)−2N1

∫
1

|y|≲min(2kpj
√

t,2lpj
√

t) dy

≲ 1
|ξ+η|∼2k

√
t1|ξ |∼2l

√
t(2

l√t)−2N1 min(2kpj
√

t, 2lpj
√

t)d−2N1 .
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The estimate above holds for all N1 ∈ N, and thus for all N1 ∈ [0,∞[. In particular, we choose N1 =
1
2 d ,

which gives

∥Op(c∗

k♯cl)∥L(L2) ≲

∥∥∥∥∫ e−iyηck(y, ξ + η)cl(y, ξ) dy
∥∥∥∥

L2(dη dξ)

≲ (2l√t)−d
∥1

|ξ+η|∼2k
√

t1|ξ |∼2l
√

t∥L2(dη dξ)

≲ (2l√t)−d
× (2k√t × 2l√t)

1
2 d

= 2
1
2 d(k−l)

= 2−
1
2 d|k−l|.

As a conclusion, we have managed to prove that

sup
k∈Z±

∑
l∈Z±

∥Op(ck)
∗ Op(cl)∥

1
2
L(L2)

≲ sup
k∈Z±

∑
l∈Z±

2−
1
4 d|k−l| <∞,

which completes the proof. □

2.3. Study of the symbol b0 with P0, P1 > 0. Till now, we have finished the proof of Proposition 2.1. To
complete the proof of Proposition 2.2, it remains to check (2-4). Note that the argument above relies on
the fact that |X | ≪ 2kpj implies x is supported in a region of area (

√
t2kpj )d, which is not true in the case

where P0, P1 are nonzero. To overcome this problem we need the extra truncation in ξ .

Proof of (2-4). As above, we may ignore the nonsmooth factor 10<X/4<1. There remain smooth symbols

c̃♯(t, x, ξ)= χ

(
(P1 + ν1 X) x

|x |
+ (P1ν14)

ξ
|ξ |

µ

)
χ0

(
X
4

)
(1 − χ̃)

(
ξ

√
t

)
χh

(
ξ

t
1
2 +ϵ1

)
,

c̃♭(t, x, ξ)= χ

(
(P0 + ν0 X) x

|x |
+ (P0ν04)

ξ
|ξ |

µ

)
χ0

(
X
4

)
χ̃

(
ξ

√
t

)
(1 −χl)

(
ξ

t
1
2 −ϵ0

)
.

We shall first check that c̃♯ belongs uniformly to the Hörmander class S0
1,κ for some κ ∈ ]0, 1[, namely

the collection of smooth symbols c(x, ξ) such that, for all α, β ∈ Nd,

|∂αx ∂
β
ξ c(x, ξ)| ≲ ⟨ξ⟩−|β|+κ|α|.

It is well known that the operators with symbol in this class are bounded on L2, a proof of which can
be found in [Hörmander 1994]. We begin with the observation that the high-frequency symbol c̃♯ is
supported for t1/2 ≲ |ξ | ≲ t1/2+ϵ1 . Before calculating the bounds of derivatives in x and ξ , recall that our
goal is to show (2-4) under the condition t > 1.

For each derivative in ξ , we obtain from χ a factor of size

t−
1
2µ−1 P ′′

(
|ξ |
√

t

)
∼ µ−1

(
|ξ |
√

t

)p1

|ξ |−1 ≲ ⟨ξ⟩−1.

The last inequality is due the support of c̃♯. More precisely,(
|ξ |
√

t

)p1

∼4≲ |X −4| ≲

∣∣∣∣(P1 + ν1 X)
x
|x |

+ (P1 + ν14)
ξ

|ξ |

∣∣∣∣≲ µ.
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From the factor χ0, one gains
X
4

P ′′(ξ/
√

t)
4

√
t

∼
X
4

1
|ξ |

≲ ⟨ξ⟩−1.

Trivially, we will also obtain ⟨ξ⟩−1 from the derivative on (1 − χ̃) and χh .
As for derivatives in x , if ∂x acts on χ , one gains t−1/2µ−1 ≲ (

√
t4)−1. When it acts on χ0, the

resulting factor is of size
1

√
t4

∼
1
t

(
|ξ |
√

t

)−p1−1

|ξ |.

When 0> p1 ⩾ −1, we have

1
t

(
|ξ |
√

t

)−p1−1

|ξ | = |ξ |−p1 t
1
2 (p1−1) ≲ ⟨ξ⟩t−

1
2 ≲ ⟨ξ⟩κ t(

1
2 +ϵ1)(1−κ)− 1

2 .

Thus, c̃♯ ∈ S0
1,κ for any κ ∈ ]0, 1[ such that( 1

2 + ϵ1
)
(1 − κ)− 1

2 ⩽ 0,

which is possible by choosing κ close to 1. When p1 <−1, the estimate above becomes

1
t

(
|ξ |
√

t

)−p1−1

|ξ | =
|ξ |1−κ

t

(
|ξ |
√

t

)−p1−1

|ξ |κ ≲ t−1+( 1
2 +ϵ1)(1−κ)−(p1+1)ϵ1⟨ξ⟩κ .

To conclude c̃♯ ∈ S0
1,κ , it suffices to choose κ ∈ ]0, 1[ such that

−1 +
( 1

2 + ϵ1
)
(1 − κ)− (p1 + 1)ϵ1 ⩽ 0,

which is equivalent to

ϵ1 ⩽
1

−(p1 + 1)

[
1 −

( 1
2 + ϵ1

)
(1 − κ)

]
.

This can be realized by choosing κ close to 1, due to the definition (1-19) of ϵ1.
To prove the uniform boundedness of c̃♭, which is supported for t1/2−ϵ0 ≲ |ξ | ≲ t1/2, we shall apply

the Calderón–Vaillancourt theorem (Lemma A.11). As above one may check easily that each ∂ξ gives

|ξ |−1 ≲ t−
1
2 +ϵ0,

while each ∂x gives
1

√
t

(
|ξ |
√

t

)−p0

≲ t−
1
2 +p0ϵ0 .

As a consequence, the desired result follows from Lemma A.4 and the Calderón–Vaillancourt theorem
(Lemma A.11) once we have

t−
1
2 +ϵ0 × t−

1
2 +p0ϵ0 ≲ 1 ∀t > 1,

equivalently, (1 + p0)ϵ0 ⩽ 1, which is exactly the definition (1-19) of ϵ0. □
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2.4. Proof of Theorem 1.8. In all the proof above, we regard µ= tδ−1/2
∈ ]0,+∞[ as a time-independent

parameter. This allows us to take the limit µ → +∞ with all the uniform estimates remaining true.
Rigorously, due to Corollary 2.4, for all f, g ∈ S(Rd) and t ∈ R, µ > 0,∣∣∣∣〈 f,Op

(
χ

(
x + t P ′(ξ)

|t |µ

)
1|x |>|t P ′(ξ)|�(t, ξ)

)
g
〉∣∣∣∣⩽ C∥ f ∥L2∥g∥L2, (2-15)

where �= 1 when P0 = P1 = 0, and

�(t, ξ)= (1 −χl)

(
ξ

|t |−ϵ0

)
χh

(
ξ

|t |ϵ1

)
when P0, P1 > 0.

The left-hand side of (2-15) is equal to∣∣∣∣ 1
(2π)d

∫
f (x)e−i xξχ

(
x + t P ′(ξ)

|t |µ

)
1|x |>|t P ′(ξ)|�(t, ξ)ĝ(ξ) dξ dx

∣∣∣∣,
which, when µ→ +∞, due to the dominated convergence theorem, tends to∣∣∣∣ 1

(2π)d

∫
f (x)e−i xξ1|x |>|t P ′(ξ)|�(t, ξ)ĝ(ξ) dξ dx

∣∣∣∣,
where we take χ(0)= 1 without loss of generality. In conclusion, for all f, g ∈ S(Rd),∣∣〈 f,Op(1|x |>|t P ′(ξ)|�(t, ξ))g

〉∣∣⩽ C∥ f ∥L2∥g∥L2 .

Theorem 1.8 follows from the density of S(Rd) in L2.

3. L2-boundedness of microlocal truncation operators: an alternative symbol

In this section, we will treat those P with nonzero P0, P1 in an alternative way. Instead of adding extra
truncation in ξ , we shall add some extra factor in the main truncation χ . To be precise:

Proposition 3.1. Let P, 3 satisfy conditions (Hp0,p1) and (Cσ0,σ1) of Section 1.2 respectively, with
p1 < 0 < p0, σ0 ⩾ p0, and σ1 ⩽ p1. We further assume that δ +

1
2σj <

1
2 , j = 0, 1. Then there exist

time-independent constants C > 0, t0 ≫ 1, such that, for all |t |> t0,

∥Op(aalt
χ,δ,3(t))∥L(L2) ⩽ C,

where aalt
χ,δ,3 is defined in (1-23)

Without loss of generality, we may assume t > 0. Meanwhile, the change of scaling (Lemma A.4)
allows us to reduce to the symbol

b(t, x, ξ)= χ

( x
√

t
+ P ′

(
ξ

√
t

)
tδ−

1
23(ξ)

)
H

( |x |
√

t
− P ′

(
|ξ |
√

t

)
tδ−

1
23(ξ)

)
, (3-1)

where H ∈ C∞

b (R\{0}) ∩ L∞(R). To recover the desired result in Proposition 3.1, it suffices to take
H = 1]0,+∞[.
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As in the previous section, we set,

• when Pj = 0,

X :=
|x |
√

t
, 4 := P ′

(
|ξ |
√

t

)
, νj = +;

• when Pj > 0, P ′ > Pj ,

X :=
|x |
√

t
− Pj , 4 := P ′

(
|ξ |
√

t

)
− Pj , νj = +;

• when Pj > 0, P ′ < Pj ,

X := Pj −
|x |
√

t
, 4 := Pj − P ′

(
|ξ |
√

t

)
, νj = −.

With these notations, via homogeneous dyadic decomposition, we may rewrite symbol b as

b(t, x, ξ)=

∑
k∈Z

bk(t, x, ξ),

bk(t, x, ξ)= χ

(
(P1 + ν1 X) x

|x |
+ (P1 + ν14)

ξ
|ξ |

tδ−
1
23(ξ)

)
H
(

X −4

tδ−
1
23(ξ)

)
ϕ

(
ξ

√
t2k

)
∀k ⩾ 0,

bk(t, x, ξ)= χ

(
(P0 + ν0 X) x

|x |
+ (P0 + ν04)

ξ
|ξ |

tδ−
1
23(ξ)

)
H
(

X −4

tδ−
1
23(ξ)

)
ϕ

(
ξ

√
t2k

)
∀k < 0,

where ϕ ∈ C∞
c (R

d) is radial and supported in an annulus centered at zero.
One observes that, due to factors χ and ϕ, bk is supported for

|X −4| ≲ tδ−
1
23(ξ)∼ tδ−

1
2 (

√
t2k)σj ,

where j = 0 when k < 0, j = 1 when k ⩾ 0. By using the fact that 4∼ |ξ/
√

t |pj ∼ 2kpj, we obtain∣∣∣∣ X
4

− 1
∣∣∣∣≲ tδ+

1
2σj −

1
2 2k(σj −pj ) ⩽ tδ+

1
2σj −

1
2 .

The last inequality is the consequence of our assumptions σ0 ⩾ p0 and σ1 ⩽ p1. Since δ+
1
2σj −

1
2 < 0, if

we further assume that t ⩾ t0 ≫ 1, the inequality above implies that X ∼ 4, which allows us to add a
complementary factor ψ(2−kpj X) to the definition of bk , where ψ ∈ C∞

c (R) is radial and supported in an
annulus centered at zero. In this way, we may reduce Proposition 3.1 to:

Proposition 3.2. Under the same assumptions as in Proposition 3.1, the operator Op(bk) is bounded,
uniformly in t and k.

In what follows, we keep using the subscript j , where j = 0 for k < 0 and j = 1 for k ⩾ 0. By
definition,

bk(t, x, ξ)= χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

tδ−
1
23(ξ)

)
H
(

X −4

tδ−
1
23(ξ)

)
ϕ

(
ξ

√
t2k

)
ψ

(
X

2kpj

)
.
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When Pj = 0, bk is supported for∣∣∣∣ x
|x |

+
ξ

|ξ |

∣∣∣∣⩽ 1
X

∣∣∣∣X x
|x |

+4
ξ

|ξ |

∣∣∣∣+ 1
X

∣∣∣∣(X −4)
ξ

|ξ |

∣∣∣∣
≲

1
X

tδ−
1
23(ξ)∼ 2−kpj tδ−

1
2 (

√
t2k)σj = tδ+

1
2σj −

1
2 2k(σj −pj ).

When Pj ̸= 0, we observe that 2kσj ⩽ 2kpj ⩽ 1, due to the choice p1 < 0< p0. By choosing Suppϕ small,
which allows us to take Suppψ small, we have Pj + νj X ∼ 1. Thus, bk is supported for∣∣∣∣ x

|x |
+
ξ

|ξ |

∣∣∣∣⩽ 1
Pj + νj X

∣∣∣∣(Pj + νj X)
x
|x |

+ (Pj + νj4)
ξ

|ξ |

∣∣∣∣+ 1
Pj + νj X

∣∣∣∣(X −4)
ξ

|ξ |

∣∣∣∣
≲

1
Pj + νj X

tδ−
1
23(ξ)∼ tδ−

1
2 (

√
t2k)σj = tδ+

1
2σj −

1
2 2kσj .

If t2k(pj +1)⩽1, by settingµ := tδ+σj/2−1/22k(σj −pj )∈]0, 1[ in the case Pj =0, andµ := tδ+σj/2−1/22kσj ∈

]0, 1[ in the case Pj ̸= 0, one may check that, for all α, β ∈ Nd−1 and N ∈ N,

|∂αω∂
β
θ bk(rω, ρθ)| ≲ µ−|α|−|β|1r≲

√
t2kp 1ρ∼

√
t2k

〈
d(ω,−θ)

µ

〉−N

.

By applying Lemma A.9, we have

∥Op(bk)∥L(L2) ≲ ∥1r≲
√

t2kpj 1ρ∼
√

t2k ∥L2(R2
+)

= C
√

t2k(pj +1) ⩽ C.

If t2k(pj +1) > 1, we decompose bk as the sum of b′

k, b′′

k , which are defined by

bk(t, x, ξ)= b′

k(t, x, ξ)+ b′′

k (t, x, ξ),

b′

k(t, x, ξ)= bkχ0
(√

t2k 1
2 (1−pj )(X −4)

)
,

where χ0 ∈ C∞
c (R) is radial, supported in a neighborhood of zero, and equal to 1 near zero.

Clearly, b′′

k is smooth on R2d. Thus, to prove the boundedness of Op(b′′

k ), we may apply the Calderón–
Vaillancourt theorem (Lemma A.11). By definition, b′′

k reads

χ

(
(Pj + νj X) x

|x |
+ (Pj + νj4)

ξ
|ξ |

tδ−
1
23(ξ)

)
H
(

X −4

tδ−
1
23(ξ)

)
ϕ

(
ξ

√
t2k

)
ψ

(
X

2kpj

)
(1 −χ0)

(√
t2k 1

2 (1−pj )(X −4)
)
,

which is supported for

t−
1
2 2k 1

2 (pj −1) ≲ |X −4| ≲ tδ−
1
23(ξ)∼ tδ+

1
2σj −

1
2 2kσj .

As a consequence, t−(δ+σj/2) ≲ 2k(σj +(1−pj )/2).
For each ∂x , when it acts on χ , one obtains in its bound an extra factor of size

1
√

t
t

1
2 −δ3(ξ)−1

∼ t−(δ+ 1
2σj)2−kpj ≲ 2k 1

2 (1−pj )2k(σj −pj ) ⩽ 2k 1
2 (1−pj ).
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When ∂x acts on ψ and (1 −χ0) factors, we gain t−1/22−kpj < 2k(pj +1)/2−kpj = 2k(1−pj )/2 and 2k(1−pj )/2,
respectively. For each ∂ξ , similarly, one gains 2k(pj −1)/2 in its bound. Namely, for all α, β ∈ Nd ,

|∂αx ∂
β
ξ b′′

k (x, ξ)| ≲ 2k 1
2 (1−pj )(|α|−|β|).

The uniform boundedness of Op(b′′

k ) follows from Lemma A.4 and the Calderón–Vaillancourt theorem
(Lemma A.11).

It remains to study the symbol b′

k . To overcome the singularity near X =4, we will apply Lemma A.9
with the same setting of µ as in the previous paragraph, namely µ := tδ+σj/2−1/22k(σj −pj ) ∈ ]0, 1[ in
the case Pj = 0, and µ := tδ+σj/2−1/22kσj ∈ ]0, 1[ in the case Pj ̸= 0. It is easy to check that, for all
α, β ∈ Nd−1 and N ∈ N,

|∂αω∂
β
θ bk(rω, ρθ)| ≲ µ−|α|−|β|hk(r, ρ)

〈
d(ω,−θ)

µ

〉−N

,

where
hk(r, ρ)=

∑
n∼

√
t2k(pj +1)/2

1In (r)1Jn (ρ),

which is exactly the same one defined in (2-7). We have seen that the operator with symbol hk is bounded
on L2(R+) uniformly in k. By Lemma A.9, we may conclude the uniform-in-k boundedness of b′

k and
the proof of Proposition 3.2; hence Proposition 3.1 is completed.

4. Limit of truncated energy

In this section, we will complete the proof of Theorems 1.1, 1.4, and 1.6 by calculating the limit of truncated
energy for some regular initial data u0. These three results will follow from the proposition below:

Proposition 4.1. Let aχ,δ,3(t) be the symbol defined by

a = aχ,δ,3(t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ3(|t |

1
2 ξ)

)
1|x |>|t ||P ′(ξ)|, (4-1)

where P ∈C∞(Rd
\{0}) is assumed to be a real radial function satisfying that P ′′(ρ) ̸=0 for all ρ ∈]0,∞[.

Furthermore, we assume that χ ∈ C∞
c (R

d) is real and radial with χ(0)= 1 and that 3 verifies condition
(Cσ0,σ1) without any restriction in σ0, σ1.

With these settings, if there exists t0 ≫ 1 such that Op(a(t)) is bounded on L2 uniformly in |t |> t0, for
all u0 ∈ L2, the limits (1-24), (1-25), and (1-28) hold true.

Corollary 4.2. We consider the same symbol a with an extra truncation in ξ , i.e.,

ã = ãχ,δ,3(t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ3(|t |

1
2 ξ)

)
1|x |>|t ||P ′(ξ)|(1 −χl)

(
ξ

|t |−ϵ0

)
χh

(
ξ

|t |ϵ1

)
,

where χl, χh ∈ C∞
c (R

d) are equal to 1 in a neighborhood of zero, and ϵ0, ϵ1 > 0.
If P, 3 satisfy the same conditions as in Proposition 4.1 and Op(ãδ,χ,3(t)) is bounded on L2 uniformly

in |t |> t0 ≫ 1, then, for all u0 ∈ L2, the limits (1-24), (1-25), and (1-28) hold true with Ealt
δ,χ,3(t) replaced

by ∥Op(ãδ,χ,3(t))u(t)∥2
L2 .
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In order to complete the proof of Theorems 1.1 and 1.6, we may combine Propositions 2.1 and 3.1 with
Proposition 4.1, where we need to take 3≡ 1 in the proof of Theorem 1.1. In the same way, Theorem 1.4
follows from Proposition 2.2 and Corollary 2.4 with 3≡ 1.

Before calculating the limit of truncated energy, we remark that, in the hypotheses of Proposition 4.1
and Corollary 4.2, Op(a(t)) (or Op(ã(t))) is assumed to be bounded uniformly in |t |> t0 ≫ 1, which
allows us to replace general u0 ∈ L2 by those belonging to some dense subset of L2. In what follows, we
may assume that û0 ∈ C∞

c (R\{0}). As a consequence, by taking t0 ≫ 1,

(1 −χl)

(
ξ

|t |−ϵ0

)
χh

(
ξ

|t |ϵ1

)
û0(ξ)= û0(ξ),

which proves Corollary 4.2 from Proposition 4.1.

4.1. Supercritical case 0 < δ +
1
2σ1 < 1

2 . In this part, we will study the case δ+
1
2σ1 ∈

]
0, 1

2

[
(associated

to the limit (1-17), (1-22), or (1-28)) by following the same method introduced in [Delort 2022].
By definition, the truncated energy introduced in (1-11) is

Eχ,δ,3(ϵt)= ∥Op(aχ,δ,3(ϵt))u(ϵt)∥2
L2

=
1

(2π)2d

∫
ei x ·(ξ−ξ ′)eiϵt (P(ξ)−P(ξ ′))χ

(
x + ϵt P ′(ξ)

t
1
2 +δ3(t

1
2 ξ)

)
×χ

(
x + ϵt P ′(ξ ′)

t
1
2 +δ3(t

1
2 ξ)

)
1 |x |

t >|P ′(ξ)|,|P ′(ξ ′)|
û0(ξ)û0(ξ ′) dx dξ dξ ′,

where t ≫ 1 and ϵ=±. In the polar system x = rω, ξ =ρθ , ξ ′
=ρ ′θ ′, the integral above can be written as

1
(2π)2d

∫
ei(rρω·θ−rρ′ω·θ ′)eiϵt (P(ρ)−P(ρ′))χ

(
rω+ ϵt P ′(ρ)θ

t
1
2 +δ3(t

1
2ρ)

)
χ

(
rω+ ϵt P ′(ρ ′)θ ′

t
1
2 +δ3(t

1
2ρ ′)

)
× 1 r

t >P ′(ρ),P ′(ρ′)û0(ρθ)û0(ρ ′θ ′)(rρρ ′)d−1 dθ dθ ′ dω dr dρ dρ ′.

We firstly focus on the integral in θ , with integral in θ ′ treated in exactly the same way,∫
eirρω·θχ

(
rω+ ϵt P ′(ρ)θ

t
1
2 +δ3(t

1
2ρ)

)
û0(ρθ) dθ. (4-2)

In this part, we always set
µ= tδ+

1
2σ1−

1
2 ∈ ]0, 1[,

which is strictly positive and small, since we may choose t > t0 ≫ 1. Due to Lemma B.5, (4-2) can be
written as the sum of

(2π)
1
2 (d−1)eiϵ π4 (d−1)e−iϵrρ(rρ)−

1
2 (d−1)χ

(
r − t P ′(ρ)

t
1
2 +δ3(t

1
2ρ)

)
û0(−ϵρω)κ

(
r
t

)
and a remainder

e−iϵrρµd−1S
−

1
2 (d+1)

(
ω,µ, ρ,

r
t

− P ′(ρ), t; rρµ2
)
κ

(
r
t

)
,
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where κ ∈ C∞
c (]0,∞[) equals 1 in a neighborhood of 1, and Sm(ω, µ, ρ, r ′, t; ζ ) is supported for

ζ > c > 0, ρ ∼ 1 and |r ′
| ≲ µ and satisfies, for all α ∈ Nd−1, j, k, l, γ ∈ N,

|∂αω∂
j
µ∂

k
ρ∂

l
r ′∂

γ

ζ Sm | ⩽ Cµ−(|α|+ j+l)
⟨ζ ⟩m−γ .

Note that it is harmless to add an extra factor κ , since the integrand of (4-2) is supported for r ∼ t , which is
a consequence of the cut-off χ together with t ≫ 1, δ+ 1

2σ1 <
1
2 , and ρ ∼ 1. We may repeat this argument

for the integral in θ ′ and the truncated energy Eχ,δ,3(ϵt) can be decomposed into a principal part

1
(2π)d+1

∫
e−iϵr(ρ−ρ′)eiϵt (P(ρ)−P(ρ′))χ

(
r − t P ′(ρ)

t
1
2 +δ3(t

1
2ρ)

)
χ

(
r − t P ′(ρ ′)

t
1
2 +δ3(t

1
2ρ ′)

)
× 1 r

t >P ′(ρ),P ′(ρ′)û0(−ϵρω)û0(−ϵρ ′ω)(ρρ ′)
1
2 (d−1)κ2

(
r
t

)
dω dr dρ dρ ′ (4-3)

and remainders

1
(2π)d+1

∫
e−iϵr(ρ−ρ′)eiϵt (P(ρ)−P(ρ′))µ2(d−1)κ2

(
r
t

)
Sm

(
ω,µ, ρ,

r
t

− P ′(ρ), t; rρµ2
)

× Sm′

(
ω,µ, ρ ′,

r
t

− P ′(ρ ′), t; rρ ′µ2
)

1 r
t >P ′(ρ),P ′(ρ′)(rρρ ′)d−1 dω dr dρ dρ ′,

where (m,m′) takes values among
(
−

d−1
2 ,−d+1

2

)
,
(
−

d+1
2 ,−d−1

2

)
,
(
−

d+1
2 ,− d+1

2

)
. Note that due to the

condition δ+
1
2σ1 >

1
2 , we have

rρµ2
= rρt2(δ+ 1

2σ1)−1
∼ t2(δ+ 1

2σ1) > c > 0.

The sum of these remainders can be simplified as∫
e−iϵr(ρ−ρ′)eiϵt (P(ρ)−P(ρ′)) 1

µ2r
6

(
ω,µ, ρ, ρ ′, r, t;

r
t
− P ′(ρ),

r
t
− P ′(ρ ′)

)
1 r

t >P ′(ρ),P ′(ρ′) dω dr dρ dρ ′,

(4-4)
where 6(ω,µ, ρ, ρ ′, r, t; s, s ′) is supported for r ∼ t , ρ, ρ ′

∼ 1 and |s|, |s ′
| ≲ µ and satisfies for all

α ∈ Nd−1, j, k, k ′, l, γ, γ ′
∈ N,

|∂αω∂
j
µ∂

k
ρ∂

k′

ρ′∂
l
r∂
γ
s ∂

γ ′

s′ 6| ≲ µ−(|α|+ j+γ+γ ′)t−l .

Before proceeding further, we introduce the integral

I (t, ϵ1, ϵ
′

1, ϵ2, ϵ
′

2; F) :=

∫
ei[r(ϵ1ρ+ϵ′

1ρ
′)−t (ϵ2 P(ρ)+ϵ′

2 P(ρ′))]1 r
t >P ′(ρ),P ′(ρ′)

× F
(
ρ, ρ ′, r, t; r − ϵ1ϵ2t P ′(ρ), r − ϵ′

1ϵ
′

2t P ′(ρ ′)
)

dr dρ dρ ′. (4-5)

The limit of such integral has been studied in [Delort 2022] for strictly convex P, while the concave case
can be studied with almost the same argument. To be precise:
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Proposition 4.3. Let F(ρ, ρ ′, r, t; ζ, ζ ′) be a smooth function on R4
+

× R2 and δ′ ∈
] 1

2 , 1
[
. Assume that

F is supported for

ρ, ρ ′
∼ 1, r ∼ t, |ζ |, |ζ ′

| ≲ tδ
′

,

and for all j, j ′, k, γ, γ ′
∈ N,

|∂ j
ρ∂

j ′

ρ′∂
k
r ∂

γ

ζ ∂
γ ′

ζ ′ F(ρ, ρ ′, r, t; ζ, ζ ′)| ≲ t−δ′(k+γ+γ ′).

We assume further that the following pointwise limit exists:

lim
t→+∞

F
(
ρ, ρ ′, r

√
t + t P ′(ρ ′), t; ζ

√
t, ζ ′

√
t
)
= F0(ρ, ρ

′).

Under all the assumptions above, we have

lim
t→+∞

I (t,−ϵ, ϵ,−ϵ, ϵ; F)=
π

2

∫
∞

0
F0(ρ, ρ) dρ

for all ϵ = ± and P ∈ C∞ with P ′′ > 0 or P ′′ < 0.

The proof for strictly convex P follows from that of Proposition 3.1.3 in [Delort 2022]. As for the con-
cave case, we will give a brief proof in Appendix E. Note that we compute the limit of I (t,−ϵ, ϵ,−ϵ, ϵ; F)
for both signs ϵ = ±1, while in [loc. cit.] only the limit of the sum of these two terms was determined.
The proof of our stronger result is not essentially different from the one in [loc. cit.] and we shall explain
the modification one has to make to the argument in Appendix E.

With the notations above, the truncated energy Eχ,δ,3(ϵt) given by the sum of (4-3) and (4-4) equals

Eχ,δ,3(ϵt)= I (t,−ϵ, ϵ,−ϵ, ϵ; F)+ I (t,−ϵ, ϵ,−ϵ, ϵ; FR),

where

F(ρ, ρ ′, r, t; ζ, ζ ′)=
1

(2π)d+1 κ
2
(

r
t

)∫
χ

(
ζ

t
1
2 +δ3(t

1
2ρ)

)
χ

(
ζ ′

t
1
2 +δ3(t

1
2ρ ′)

)
× û0(−ϵρω)û0(−ϵρ ′ω)(ρρ ′)

1
2 (d−1) dω,

FR(ρ, ρ
′, r, t; ζ, ζ ′)= t−2(δ+ 1

2σ1)
∫

t
r
6

(
ω, tδ+

1
2σ1−

1
2 , ρ, ρ ′, r, t;

ζ

t
,
ζ ′

t

)
dω.

It is easy to check that F, FR satisfy the conditions of Proposition 4.3 with

δ′ = δ+
1
2σ1 +

1
2 .

Note that due to the condition δ+
1
2σ1 ∈

]
0, 1

2

[
, we have δ′ ∈

] 1
2 , 1

[
, which is required by Proposition 4.3.

The corresponding limit is

F0(ρ, ρ
′)=

1
(2π)d+1

∫
û0(−ϵρω)û0(−ϵρ ′ω)(ρρ ′)

1
2 (d−1) dω
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and 0, respectively. Therefore, we may conclude (1-17), (1-22), and (1-28) by Proposition 4.3. In fact,
with ϵ = ±, one has

lim
t→±∞

Eχ,δ(t)= lim
t→+∞

Eχ,δ(ϵt)= lim
t→+∞

I (t,−ϵ, ϵ,−ϵ, ϵ; F)+ lim
t→+∞

I (t,−ϵ, ϵ,−ϵ, ϵ; FR)

=
π

2

∫
∞

0
F0(ρ, ρ) dρ+ 0

=
1
4

1
(2π)d

∫
û0(−ϵρω)û0(−ϵρω)ρ

d−1 dω dρ =
1
4
∥u0∥

2
L2 .

4.2. Subcritical and critical case δ +
1
2σ1 ⩽ 0. In the rest of this section, we will study, under the

condition δ+
1
2σ1 ⩽ 0, the truncated energy Eχ,δ,3(u0, ϵt), with ϵ = ±, t > t0 ≫ 1. Here, we only write

the proof of the case P ′′ > 0, while the case P ′′ < 0 can be calculated in exactly the same way.
By definition (1-11), the truncated energy Eχ,δ,3(u0, ϵt) equals

1
(2π)2d

∫
ei x ·(ξ−ξ ′)eiϵt (P(ξ)−P(ξ ′))χ

(
x + ϵt P ′(ξ)

t
1
2 +δ3(t

1
2 ξ)

)
χ

(
x + ϵt P ′(ξ ′)

t
1
2 +δ3(t

1
2 ξ ′)

)
× 1| x

t |>|P ′(ξ)|,|P ′(ξ ′)|û0(ξ)û0(ξ ′) dξ dξ ′ dx,

which can be rewritten in the polar system x = rω, ξ = ρθ, ξ ′
= ρ ′θ ′ as

1
(2π)2d

∫
eirω·(ρθ−ρ′θ ′)eiϵt (P(ρ)−P(ρ′))χ

(
rω+ ϵt P ′(ρ)θ

t
1
2 +δ3(t

1
2ρ)

)
χ

(
rω+ ϵt P ′(ρ ′)θ ′

t
1
2 +δ3(t

1
2ρ ′)

)
× 1 r

t >P ′(ρ),P ′(ρ′)û0(ρθ)û0(ρ ′θ ′)(rρρ ′)d−1 dr dθ dθ ′ dω dρ dρ ′.

We decompose Eχ,δ,3(u0, ϵt) as the sum of E±(ϵt), where E+, E− are defined as integrals over ρ > ρ ′,
ρ ′ > ρ, respectively, and the dependence on χ, δ,3, u0 is omitted for the simplicity of notation. Since
E− = E+, it is enough to focus on the study of E+(ϵt). We first check that:

Lemma 4.4. The integral

E+(ϵt)=
1

(2π)2d

∫
eirω·(ρθ−ρ′θ ′)eiϵt (P(ρ)−P(ρ′))χ

(
rω+ ϵt P ′(ρ)θ

t
1
2 +δ3(t

1
2ρ)

)
χ

(
rω+ ϵt P ′(ρ ′)θ ′

t
1
2 +δ3(t

1
2ρ ′)

)
× 1 r

t >P ′(ρ)1ρ>ρ′ û0(ρθ)û0(ρ ′θ ′)(rρρ ′)d−1 dr dθ dθ ′ dω dρ dρ ′

equals, up to some O(t−1/2) terms,

1
(2π)2d

∫
θ,θ ′∈

√
t(ϵω+Sd−1)

ei[
√

t P ′(ρ)ρω·(θ−θ ′)+rρω·(θ−θ ′)+wP ′(ρ)θ ′
·ω]e−ϵi[rw+

1
2 P ′′(ρ)w2]

×χ

(
rω+ ϵP ′(ρ)θ

tδ3(t
1
2ρ)

)
χ

(
(r + P ′′(ρ)w)ω+ ϵP ′(ρ)θ ′

tδ3(t
1
2ρ)

)
× 1r>01ρ> w

√
t
>0|û0(−ϵρω)|

2(P ′(ρ))d−1ρ2(d−1) dθ dθ ′ dr dw dω dρ. (4-6)

Proof. To begin with, via the change of variables,

r → r t
1
2 + t P ′(ρ), ρ ′

→ ρ−
w

t
1
2

,
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the integral E+(ϵt) can be rewritten as

td−1

(2π)2d

∫
ei[t P ′(ρ)ρω·(θ−θ ′)+

√
trρω·(θ−θ ′)+

√
twP ′(ρ)θ ′

·ω+rwθ ′
·ω]

× eϵi t(P(ρ)−P(ρ−
w
√

t
))
χ

(
rω+

√
t P ′(ρ)(ω+ ϵθ)

tδ3(t
1
2ρ)

)

×χ

(
rω+

√
t P ′(ρ)(ω+ ϵθ ′)− ϵ

√
t(P ′(ρ)− P ′(ρ− t−

1
2w))θ ′

tδ3(t
1
2ρ−w)

)
× 1r>01ρ> w

√
t
>0û0(ρθ)û0((ρ− t−

1
2w)θ ′)

×

(
r

√
t
+ P ′(ρ)

)d−1

ρd−1(ρ− t−
1
2w)d−1 dθ dθ ′ dr dw dω dρ.

Due to χ , û0 factors, the integrand is supported for

0< r, w ≲ tδ+
1
2σ1, ρ ∼ 1,

|ω+ ϵθ |, |ω+ ϵθ ′
| ≲ tδ+

1
2σ1−

1
2 .

(4-7)

In fact, ρ ∼ 1 follows directly from the fact that û0 is compactly supported away from zero. Since χ is
compactly supported, the first χ factor implies that

r =
∣∣|(r +

√
t P ′(ρ))ω| − |

√
t P ′(ρ)θ |

∣∣
⩽ |rω+

√
t P ′(ρ)(ω+ ϵθ)| ≲ tδ3(t

1
2ρ)∼ tδ+

1
2σ1,

which further implies that
√

t |ω+ ϵθ | ≲ |
√

t P ′(ρ)(ω+ ϵθ)| ⩽ |rω+
√

t P ′(ρ)(ω+ ϵθ)| + |rω| ≲ tδ3(t
1
2ρ)∼ tδ+

1
2σ1 .

By applying a similar argument to the second χ factor, we obtain

w ∼ |
√

t P ′(ρ)−
√

t P ′(ρ− t−
1
2w)|

⩽ |(r +
√

t P ′(ρ))−
√

t P ′(ρ− t−
1
2w)| + r

⩽ |(r +
√

t P ′(ρ))ω+ ϵ
√

t P ′(ρ− t−
1
2w)θ ′

| + r ≲ tδ+
1
2σ1,

and that
√

t |ω+ϵθ ′
| ∼ |

√
t P ′(ρ)(ω+ϵθ ′)|

⩽ |rω+
√

t P ′(ρ)(ω+ϵθ ′)−ϵ
√

t(P ′(ρ)−P ′(ρ−t−
1
2w))θ ′

|+r+|
√

t(P ′(ρ)−P ′(ρ−t−
1
2w))|

≲ tδ+
1
2σ1+r+w ≲ tδ+

1
2σ1 .

As a result, the boundedness of integrand implies that

E+(ϵt)≲ td−1
× t2(δ+ 1

2σ1)×

(
1

√
t
tδ+

1
2σ1

)2(d−1)

= t2(δ+ 1
2σ1)d ,

which tends to zero as t → +∞ when δ+
1
2σ1 < 0, and the limits (1-13), (1-20), and (1-24) follow. In

the remainder of this section, we take δ+
1
2σ1 = 0.
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The support of integrand also allows us to simplify E+(ϵt), up to some O(t−1/2) terms, as

td−1

(2π)2d

∫
ei[t P ′(ρ)ρω·(θ−θ ′)+

√
trρω·(θ−θ ′)+

√
twP ′(ρ)θ ′

·ω+rwθ ′
·ω]

× eϵi[
√

t P ′(ρ)w−
1
2 P ′′(ρ)w2]χ

(
rω+

√
t P ′(ρ)(ω+ ϵθ)

tδ3(t
1
2ρ)

)
×χ

(
rω+

√
t P ′(ρ)(ω+ ϵθ ′)− ϵP ′′(ρ)wθ ′

tδ3(t
1
2ρ)

)
× 1r>01ρ> w

√
t
>0û0(ρθ)û0(ρθ ′)(P ′(ρ))d−1ρ2(d−1) dθ dθ ′ dr dw dω dρ.

Here, we use the approximations

t
(

P(ρ)− P
(
ρ−

w

t
1
2

))
= t
(
−P ′(ρ)

(
−
w

t
1
2

)
−

P ′′(ρ)

2
w2

t
+ O

(
w3

t
3
2

))
=

√
t P ′(ρ)w−

1
2 P ′′(ρ)w2

+ O
(

1
√

t

)
to simplify the phase and

√
t
(

P ′(ρ)− P ′

(
ρ−

w
√

t

))
=

√
t
(
−P ′′(ρ)

(
−
w
√

t

)
+ O

(
w2

t

))
= P ′′(ρ)w+ O

(
1

√
t

)
to simplify the argument of the second χ .

By applying a change of variable in θ, θ ′,

θ 7→ t−
1
2 θ − ϵω,

θ ′
7→ t−

1
2 θ ′

− ϵω,

we can rewrite E+(ϵt) as
1

(2π)2d

∫
θ,θ ′∈

√
t(ϵω+Sd−1)

ei[
√

t P ′(ρ)ρω·(θ−θ ′)+rρω·(θ−θ ′)+wP ′(ρ)θ ′
·ω+t−1/2rwθ ′

·ω]

× e−ϵi[rw+
1
2 P ′′(ρ)w2]χ

(
rω+ ϵP ′(ρ)θ

tδ3(t
1
2ρ)

)
×χ

(
(r + P ′′(ρ)w)ω+ ϵP ′(ρ)θ ′

− ϵt−
1
2 P ′′(ρ)wθ ′

tδ3(t
1
2ρ)

)
× 1r>01ρ> w

√
t
>0û0(t−

1
2ρθ − ϵρω)û0(t−

1
2ρθ ′ − ϵρω)

× (P ′(ρ))d−1ρ2(d−1) dθ dθ ′ dr dw dω dρ+ O(t−
1
2 ),

where the integrand is supported for 0 < r, w ≲ 1, ρ ∼ 1, and |θ |, |θ ′
| ≲ 1 due to (4-7) together with

δ+
1
2σ1 = 0, which allows us to do another simplification and write E+(ϵt) as (4-6). □

Till now, we have managed to write E+(ϵt), up to some admissible terms, as (4-6), namely

1
(2π)2d

∫
θ,θ ′∈

√
t(ϵω+Sd−1)

ei[
√

t P ′(ρ)ρω·(θ−θ ′)+rρω·(θ−θ ′)+wP ′(ρ)θ ′
·ω]e−ϵi[rw+

1
2 P ′′(ρ)w2]

×χ

(
rω+ ϵP ′(ρ)θ

tδ3(t
1
2ρ)

)
χ

(
(r + P ′′(ρ)w)ω+ ϵP ′(ρ)θ ′

tδ3(t
1
2ρ)

)
× 1r>01ρ> w

√
t
>0|û0(−ϵρω)|

2(P ′(ρ))d−1ρ2(d−1) dθ dθ ′ dr dw dω dρ.
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In the rest of this section, we will calculate the limit of this integral and conclude Proposition 4.1. Since
the integral in θ, θ ′ is over a sphere centered at ϵω with radius

√
t , we may write θ , θ ′ in local coordinates

θ = hϵω+ y, h =
√

t −

√
t − |y|

2,

θ ′
= h′ϵω+ y′, h′

=
√

t −

√
t − |y′

|
2,

where h, h′
∈R, y, y′

∈ω⊥
:={z ∈Rd

: z·ω=0}. The condition of support implies that |h|, |h′
|, |y|, |y′

|≲1.
It is easy to check that, as t → +∞,

√
tω · (θ − θ ′)= ϵ

√
t
(√

t − |y′
|
2
−

√
t − |y|

2)
→ ϵ

(
|y|

2

2
−

|y′
|
2

2

)
,

θ ·ω = ϵ
(√

t −

√
t − |y|

2)
→ 0,

θ ′
·ω = ϵ

(√
t −

√
t − |y′

|
2)

→ 0.

Therefore, by the dominated convergence theorem, as t tends to infinity, the limit of E+(ϵt) equals

1
(2π)2d

∫
y,y′∈ω⊥,r,w>0

eϵi[P ′(ρ)ρ( 1
2 |y|

2
−

1
2 |y′

|
2)−rw−

1
2 P ′′(ρ)w2]

×χ

(
rω+ ϵP ′(ρ)y

λ1ρσ1

)
χ

(
(r + P ′′(ρ)w)ω+ ϵP ′(ρ)y′

λ1ρσ1

)
× |û0(−ϵρω)|

2(P ′(ρ))d−1ρ2(d−1) dy dy′ dr dw dω dρ,

which, after a change of variable, is equal to

1
(2π)2d

∫
y,y′∈ω⊥,r,w>0

eϵi[(
1
2 |y|

2
−

1
2 |y′

|
2)−rw−

1
2w

2]χ

(√
P ′′(ρ)rω+ ϵ

√
ρ−1 P ′(ρ)y

λ1ρσ1

)
×χ

(√
P ′′(ρ)(r +w)ω+ ϵ

√
ρ−1 P ′(ρ)y′

λ1ρσ1

)
× |û0(−ϵρω)|

2ρd−1 dy dy′ dr dw dω dρ. (4-8)

In order to give a compact form, we introduce the functions

H(r, ω) :=
1

(2π)
1
2 d

∫
y·ω=0

eϵi
1
2 (r

2
+|y|

2)χ

(√
P ′′(ρ)rω+ ϵ

√
ρ−1 P ′(ρ)y

λ1ρσ1

)
dy,

F(r, ω) :=

∫
∞

r
H(s, ω) ds.

Note that since χ ∈ S(Rd), H decays rapidly at infinity, uniformly in ω. Thus, F is well-defined. With
these functions, we can rewrite the integral (4-8) as

1
(2π)d

∫∫
∞

0
H(r, ω)

∫
∞

0
H(r +w,ω) dw dr |û0(−ϵρω)|

2ρd−1 dω dρ

= −
1

(2π)d

∫∫
∞

0
∂r F(r, ω)F(r, ω) dr |û0(−ϵρω)|

2ρd−1 dω dρ.
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As a consequence,

lim
t→∞

Eχ,δ,3(u0, ϵt)= lim
t→∞

2 Re E+(ϵt)

= −
2

(2π)d
Re
∫∫

∞

0
∂r F(r, ω)F(r, ω) dr |û0(−ϵρω)|

2ρd−1 dω dρ

= −
1

(2π)d

∫∫
∞

0

∂

∂r
|F |

2(r, ω) dr |û0(−ϵρω)|
2ρd−1 dω dρ

=
1

(2π)d

∫
|F(0, ω)|2|û0(−ϵρω)|

2ρd−1 dω dρ,

where

|F(0, ω)|2 =
1

(2π)d

∣∣∣∣∫ ∞

0

∫
y·ω=0

eϵi
1
2 (r

2
+|y|

2)χ

(√
P ′′(ρ)rω+ ϵ

√
ρ−1 P ′(ρ)y

λ1ρσ1

)
dy dr

∣∣∣∣2,
which is exactly Galt

χ (ρ, ω) defined in (1-26), or (1-15) with σ1 = 0 and λ1 = 1. The limits (1-14), (1-21),
and (1-25) thus follow.

5. Study of the Klein–Gordon equation

In this section, we shall prove Theorem 1.9 via a study of the half-Klein–Gordon equation, i.e., (E) with
P(ξ)= ⟨ξ⟩. Let w be the (real) solution to the Klein–Gordon equation (KG). We have then

0 = (∂2
t −1+ 1)w = −

(
∂t

i
− P(Dx)

)(
∂t

i
+ P(Dx)

)
w.

Thus, the complex-valued function

u :=

(
∂t

i
+ P(Dx)

)
w

is the unique solution to the half-Klein–Gordon equation with initial data

u0 := u|t=0 =
w1

i
+ P(Dx)w0 ∈ L2.

Due to the fact that w is real-valued, we have the relations

∂tw = − Im u, w = ⟨Dx ⟩
−1 Re u.

In this section, we denote the truncation Op(aKG
ϵ (t)), whose symbol is defined in (1-31), as A(t), and

define operators A±(t) as Op(aKG
±
(t)), where

aKG
±
(t)= χ

(
x ± t P ′(ξ)

|t |
1
2 +δ

)
1|x |>|t P ′(ξ)|χ

(
ξ

|t |ϵ

)
, (5-1)

0< δ < 1
2 , 0< ϵ < 1, and χ ∈ C∞

c (R
d) are the same as in (1-31). Since we are interested in the behavior

as t → +∞, it is harmless to assume t ≫ 1. Before continuing the proof, we clarify that all the involved
operators are bounded uniformly in t ≫ 1.



2114 HAOCHENG YANG

Lemma 5.1. There exist a time-independent constant C > 0 and t0 ≫ 1 such that, for all t > t0,

∥A(t)∥L(L2), ∥A±(t)∥L(L2) ⩽ C.

Proof. It is obvious that P(ξ)= ⟨ξ⟩ satisfies the hypotheses (Hp0,p1) with p0 = 1, P0 = 0, and p1 = −2,
P1 = 1. In what follows, we shall focus on symbols aKG

±
(t) (with aKG

ϵ (t) treated in the same way) and
decompose them into high and low frequencies. Let χ̃ ∈ C∞

c (R
d) be a radial function which is equal to 1

in the ball B(0, 1) and vanishes outside a larger ball B(0, 2). We may write

aKG
±,l (t) := aKG

±
(t)χ̃(ξ), aKG

±,h(t) := aKG
±
(t)(1 − χ̃)(ξ).

For the low-frequency part aKG
±,l (t), it is easy to construct a symbol Pl(ξ) such that Pl satisfies the

hypotheses (Hp0,p1) with p0 = p1 = 1 and P0 = P1 = 0, and that Pl(ξ) = P(ξ) for all |ξ | ⩽ 2. In this
way, we have

aKG
±,l (t, x, ξ)= χ

(
x ± t P ′

l (ξ)

|t |
1
2 +δ

)
1|x |>|t P ′(ξ)|χ̃(ξ),

where the factor involving tϵ disappears since the symbol is supported for |ξ |⩽ 2 ≪ tϵ by choosing t ≫ 1.
Now, we may apply Proposition 2.1 to obtain the uniform-in-t boundedness of the operator with symbol

χ

(
x ± t P ′

l (ξ)

|t |
1
2 +δ

)
1|x |>|t P ′(ξ)|

and hence boundedness of the operator Op(aKG
±,l (t)).

The boundedness of Op(aKG
±,h(t)) is actually an immediate consequence of Proposition 2.2. More

precisely, by choosing an arbitrary ϵ′ such that (ϵ′, ϵ) satisfies conditions (1-19) associated to P (i.e.,
with p0 = 1 and p1 = −2), namely

0< ϵ′ ⩽
1

p0 + 1
=

1
2
, 0< ϵ ⩽

1
−(p1 + 1)

= 1,

we are able to apply Proposition 2.2 to obtain the uniform boundedness of the operator with symbol

χ

(
x ± t P ′(ξ)

t
1
2 +δ

)
1|x |>|t P ′(ξ)|(1 −χ)

(
ξ

t−ϵ′

)
χ

(
ξ

tϵ

)
.

If we add the high-frequency truncation (1 − χ̃)(ξ), the symbol will be supported in |ξ | ⩾ 1 ≫ t−ϵ′

since
we have chosen t ≫ 1. As a result, the truncation (1 − χ) equals 1 and the uniform boundedness of
Op(aKG

±,h(t)) follows.
We have shown that A±(t)= Op(aKG

±,l (t))+Op(aKG
±,h(t)) is uniformly bounded on L2. By repeating the

same argument and replacing Propositions 2.1 and 2.2 by Theorem 1.8, we may also obtain the uniform
boundedness of A(t). □

Now we turn back to the proof of Theorem 1.9. By definition, the truncated energy (1-30) can be
expressed as

EKG
ϵ (±t)= ∥A(t) Im u(±t)∥2

L2 +

∥∥∥∥A(t)
Dx

⟨Dx ⟩
Re u(±t)

∥∥∥∥2

L2
+

∥∥∥∥A(t)
1

⟨Dx ⟩
Re u(±t)

∥∥∥∥2

L2
.
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The three terms on the right-hand side take the form

QKG
±
(t, ϵ0, R)=

1
4

∥∥A(t)
(
Ru(±t)+ ϵ0 Ru(±t)

)∥∥2
L2, (5-2)

where ϵ0 ∈ {+,−} and R is a bounded Fourier multiplier taking values among 1, Dx ⟨Dx ⟩
−1, and ⟨Dx ⟩

−1.
Due to the uniform boundedness of truncation operators A(t), A±(t), (5-2) can be written as

1
4

∥∥A±(t)Ru(±t)+ ϵ0 A∓(t)Ru(±t)
∥∥2

L2 + O(∥(A(t)− A±(t))Ru(±t)∥L2)

+ O(∥(A(t)− A∓(t))Ru(±t)∥L2)

=
1
4∥A±(t)Ru(±t)∥2

L2 +
1
4∥A∓(t)Ru(±t)∥2

L2 + ϵ0 Re⟨A±(t)Ru(±t), A∓(t)Ru(±t)⟩L2

+ O(∥(A(t)− A±(t))Ru(±t)∥L2)+ O(∥(A(t)− A∓(t))Ru(±t)∥L2)

=
1
2∥A±(t)Ru(±t)∥2

L2 + ϵ0 Re⟨A±(t)Ru(±t), A∓(t)Ru(±t)⟩L2 + O(∥(A(t)− A±(t))Ru(±t)∥L2),

where we use the fact that for all complex-valued functions f ∈ L2

A(t) f̄ = A(t) f , A±(t) f̄ = A∓(t) f .

In order to conclude the desired limit (1-30), it suffices to prove:

Proposition 5.2. Let v0, v1,0 be two functions in L2. With A(t), A±(t) as above, we have following limits:

lim
t→+∞

∥A±(t)e±i t P(Dx )v0∥
2
L2 =

1
4∥v0∥

2
L2, (5-3)

lim
t→+∞

⟨A±(t)e±i t P(Dx )v0, A∓(t)e∓i t P(Dx )v0,1⟩L2 = 0, (5-4)

lim
t→+∞

∥(A(t)− A±(t))e±i t P(Dx )v0∥
2
L2 = 0. (5-5)

Once Proposition 5.2 is proved, we may apply the three limits with v0 = Ru0 and v0,1 = Ru0 to obtain

lim
t→+∞

QKG
±
(t, ϵ0, R)=

1
8∥Ru0∥

2
L2,

since, due to the definition of u, we have, for all t ∈ R,

Ru(t)= ei t P(Dx )Ru0, Ru(t)= e−i t P(Dx )Ru0.

As a result, the limit (1-30) follows from

lim
t→±∞

EKG
ϵ (w0, w1, t)= lim

t→+∞
EKG
ϵ (w0, w1,±t)

= lim
t→+∞

QKG
±
(t,−1, 1)+QKG

±
(t,−1, Dx ⟨Dx ⟩

−1)+QKG
±
(t, 1, ⟨Dx ⟩

−1)

=
1
8

(
∥u0∥

2
L2 +

∥∥∥∥ Dx

⟨Dx ⟩
u0

∥∥∥∥2

L2
+

∥∥∥∥ 1
⟨Dx ⟩

u0

∥∥∥∥2

L2

)
=

1
4
∥u0∥

2
L2 =

1
4
(∥w0∥

2
H1 +∥w1∥

2
L2).

In the rest of this section, we shall prove the limits (5-3), (5-4), and (5-5). We have seen that the
operators A(t), A±(t) are bounded uniformly in t > t0 ≫ 1. As a result, it suffices to calculate these
limits for those v0, v0,1 belonging to some dense subspace of L2. In what follows, we assume v̂0, v̂0,1 are
smooth and supported in an annulus centered at zero.
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The first limit (5-3) is no more than a consequence of (1-22) with P(ξ)= ⟨ξ⟩, ϵ1 = ϵ, χh = χ , and
any ϵ0 ∈

]
0, 1

2

]
. The exceptional truncation χl is not a problem, since it disappears when |t | is large

enough. For the remaining results (5-4) and (5-5), we will apply a similar argument as in the proof of
Proposition 4.1 for supercritical case.

5.1. Limit of interaction term. We first calculate the limit (5-4). Clearly, via conjugation, it is enough to
study the limit of 〈

A+(t)ei t P(Dx )v0, A−(t)e−i t P(Dx )v0,1
〉
L2, (5-6)

since the other one can be recovered by relation〈
A−(t)e−i t P(Dx )v0, A+(t)e+i t P(Dx )v0,1

〉
L2 =

〈
A−(t)e−i t P(Dx )v0, A+(t)ei t P(Dx )v0,1

〉
L2

=
〈
A+(t)ei t P(Dx )v̄0, A−(t)e−i t P(Dx )v̄0,1

〉
L2,

where the Fourier transform of v̄0, v̄0,1 still belongs to the class C∞
c (R

d
\{0}).

By definition (5-1) of A±(t)= Op(aKG
±
(t)), (5-6) equals, in the polar system,

1
(2π)2d

∫
ei(rρω·θ−rρ′ω·θ ′)ei t (P(ρ)+P(ρ′))χ

(
rω+ t P ′(ρ)θ

t
1
2 +δ

)
χ

(
rω− t P ′(ρ ′)θ ′

t
1
2 +δ

)
× 1 r

t >P ′(ρ),P ′(ρ′)v̂0(ρθ)v̂0,1(ρ ′θ ′)(rρρ ′)d−1 dθ dθ ′ dω dr dρ dρ ′.

Here we may omit the truncation in ξ = ρθ and ξ ′
= ρ ′θ ′ by taking t ≫ 1. As in previous section, we

focus on the integrals in θ and θ ′, which are equal to, by Lemma B.5,∫
eirρω·θχ

(
rω+t P ′(ρ)θ

t
1
2 +δ

)
v̂0(ρθ)dθ = e−irρµd−1S+

−
1
2 (d−1)

(
ω,µ,ρ,

r
t
−P ′(ρ), t;rρµ2

)
κ

(
r
t

)
,∫

e−irρ′ω·θ ′

χ

(
rω−t P ′(ρ ′)θ ′

t
1
2 +δ

)
v̂0,1(ρ ′θ ′)dθ ′

= e−irρ′

µd−1S−

−
1
2 (d−1)

(
ω,µ,ρ ′,

r
t
−P ′(ρ ′), t;rρ ′µ2

)
κ

(
r
t

)
,

respectively, where µ= tδ−1/2 and S±
m (ω, µ, ρ, r

′, t; ζ ) is supported for ζ > c > 0, ρ ∼ 1 and |r ′
| ≲ µ

and satisfies, for all α ∈ Nd−1, j, k, l, γ ∈ N,

|∂αω∂
j
µ∂

k
ρ∂

l
r ′∂

γ

ζ Sm | ⩽ Cµ−(|α|+ j+l)
⟨ζ ⟩m−γ .

Here we add extra factor κ ∈ C∞
c (]0,+∞[), which equals 1 in a neighborhood of 1, due to the support

of the integrand.
As a consequence, (5-6) reads

1
(2π)2d

∫
ei[r(−ρ−ρ′)−t (−P(ρ)−P(ρ′))]S+

0

(
ω,µ, ρ,

r
t

− P ′(ρ), t; rρµ2
)

× S−

0

(
ω,µ, ρ ′,

r
t

− P ′(ρ ′), t; rρ ′µ2
)
κ2
(

r
t

)
1 r

t >P ′(ρ),P ′(ρ′)

× v̂0(ρθ)v̂0,1(ρ ′θ ′)(ρρ ′)
1
2 (d−1) dω dr dρ dρ ′,
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which can be rewritten as I (t,−,−,−,−; F) defined in (4-5), with

F(ρ, ρ ′, r, t; ζ, ζ ′)= S+

0

(
ω, tδ−

1
2 , ρ,

ζ

t
, t; rρt2δ−1

)
S−

0

(
ω, tδ−

1
2 , ρ ′,

ζ ′

t
, t; rρ ′t2δ−1

)
κ2
(

r
t

)
. (5-7)

In [Delort 2022], the author has proved in Proposition 3.1.1 that:

Proposition 5.3. Let F(ρ, ρ ′, r, t; ζ, ζ ′) be a smooth function on R4
+

× R2 and δ′ ∈
] 1

2 , 1
[
. Assume that

F is supported for
ρ, ρ ′

∼ 1, r ∼ t, |ζ |, |ζ ′
| ≲ tδ

′

,

and, for all j, j ′, k, γ, γ ′
∈ N,

|∂ j
ρ∂

j ′

ρ′∂
k
r ∂

γ

ζ ∂
γ ′

ζ ′ F(ρ, ρ ′, r, t; ζ, ζ ′)| ≲ t−δ′(k+γ+γ ′).

Under all the assumptions above, we have

lim
t→+∞

I (t,±,±,±,±; F)= 0.

It is easy to check that the function F defined in (5-7) satisfies the conditions above with δ′ = δ+
1
2

and the limit (5-4) follows.

5.2. Limit of the energy outside the truncation area. It remains to prove (5-5), which requires a study
of the L2-norm of (A(t)− A±(t))e±i t P(Dx )v0. As in previous part, by conjugation, it suffices to focus on

(A(t)− A+(t))ei t P(Dx )v0(x)=
1

(2π)d

∫
ei xξei t P(ξ)(1 −χ)

(
x + t P ′(ξ)

t
1
2 +δ

)
1|x |>|t P ′(ξ)|v̂0(ξ) dξ,

where we omit again the truncation in ξ by assuming t ≫ 1. Actually, we have

(A(t)− A−(t))e−i t P(Dx )v0 = (A(t)− A+(t))ei t P(Dx )v̄0,

with ˆ̄v0 belonging to the same subspace C∞
c (R

d
\{0}).

We first check that the L2-norm of (A(t)− A+(t))ei t P(Dx )v0 concentrates near |x | = t , i.e.:

Lemma 5.4. There exists a radial function κ ∈ C∞
c (R

d) supported in an annulus centered at zero such
that, when t → +∞,

(A(t)− A+(t))ei t P(Dx )v0 = κ

(
x
t

)
(A(t)− A+(t))ei t P(Dx )v0 + OL2(t−N ),

for any N ∈ N.

Proof. Let κ0 ∈ C∞
c (R

d) be a radial function supported near zero and equal to 1 near zero. By definition,

(A(t)− A+(t))ei t P(Dx )v0(x)=
1

(2π)d

∫
ei xξei t P(ξ)(1 −χ)

(
x + t P ′(ξ)

t
1
2 +δ

)
1|x |>|t P ′(ξ)|v̂0(ξ) dξ.

Due to the support of integrand, namely 0 < c < |ξ | < C and |x | > t P ′(|ξ |), the function above is
supported for |x |> tc0, where 0< c0 < P ′(c). That is to say, when Supp κ0 is chosen small enough,

κ0

(
x
t

)
(A(t)− A+(t))ei t P(Dx )v0(x)= 0 ∀t, x .
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Let κ1 ∈ C∞
c (R

d) be a radial function supported outside the unit ball. We further assume that κ1

equals 1 away from zero. By observing that |P ′(ξ)|< 1 for all ξ ∈ Rd, we have

κ1

(
x
t

)
(A(t)− A+(t))ei t P(Dx )v0(x)=

κ1
( x

t

)
(2π)d

∫
ei(xξ+t P(ξ))(1 −χ)

(
x + t P ′(ξ)

t
1
2 +δ

)
v̂0(ξ) dξ.

Note that the nonsmooth term 1|x |>t |P ′(ξ)| is identically 1 as we add the cut-off κ1. By integration by parts
in ξ , we may rewrite the quantity above as

κ1
( x

t

)
(2π)d

∫
ei(xξ+t P(ξ))−∂ξ

i
·

[
x + t P ′(ξ)

|x + t P ′(ξ)|2
(1 −χ)

(
x + t P ′(ξ)

t
1
2 +δ

)
v̂0(ξ)

]
dξ

=
κ1
( x

t

)
(2π)d

∫
ei(xξ+t P(ξ))q1(t, x, ξ)v̂0(ξ) dξ +

κ1
( x

t

)
(2π)d

∫
ei(xξ+t P(ξ))q0(t, x, ξ) · v̂1(ξ) dξ,

where v1(x)= xv0(x), and

q0(t, x, ξ)=
−∂ξ

i

[
x + t P ′(ξ)

|x + t P ′(ξ)|2
(1 −χ)

(
x + t P ′(ξ)

t
1
2 +δ

)]
,

q1(t, x, ξ)=
x + t P ′(ξ)

|x + t P ′(ξ)|2
(1 −χ)

(
x + t P ′(ξ)

t
1
2 +δ

)
are smooth symbols satisfying, for all α, β ∈ Nd ,

|∂αx ∂
β
ξ qk(t, x, ξ)| ≲ t−2δt−( 1

2 +δ)|α|t(
1
2 −δ)|β|, k = 0, 1.

By the Calderón–Vaillancourt theorem (Lemma A.11) and Lemma A.4, the L(L2)-norm of operators
Op(qk)’s is bounded by t−2δ, which implies that∥∥∥∥κ1

(
x
t

)
(A(t)− A+(t))ei t P(Dx )v0

∥∥∥∥
L2

≲ t−2δ(∥v0∥L2 + ∥v1∥L2)∼ t−2δ
∥⟨x⟩v0∥L2 .

By repeating this procedure M times, we obtain∥∥∥∥κ1

(
x
t

)
(A(t)− A+(t))ei t P(Dx )v0

∥∥∥∥
L2

≲ t−2Mδ
∥⟨x⟩

Mv0∥L2 ≲ t−2Mδ.

The last estimate follows from the fact that v0 is a Schwartz function. The proof is completed by choosing
κ = 1 − κ0 − κ1. □

Thanks to Lemma 5.4, it remains to estimate the L2(dx)-norm of

κ

(
x
t

)
(A(t)− A+(t))ei t P(Dx )v0(x),

or equivalently, in the polar system, the L2(rd−1drdω)-norm of I (t, r, ω) defined by

I (t, r, ω)= κ

(
r
t

)∫
eirρω·θei t P(ρ)(1 −χ)

(
rω+ t P ′(ρ)θ

t
1
2 +δ

)
1r>t P ′(ρ)v̂0(ρθ)ρ

d−1 dρ dθ. (5-8)
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To begin with, we decompose (5-8) into three parts I+(t, r, ω), I−(t, r, ω), I0(t, r, ω) by inserting

χ0

(
ω+ θ

tδ−
1
2

)
, χ0

(
ω− θ

tδ−
1
2

)
, 1 −χ0

(
ω+ θ

tδ−
1
2

)
−χ0

(
ω− θ

tδ−
1
2

)
into the integral respectively, where χ0 ∈ C∞

c (R
d) is radial, supported in a small ball centered at zero,

and equal to 1 near zero. The desired result (5-5) thus follows from the lemma below:

Lemma 5.5. For all N ∈ N, there exist constants C , CN , which are independent of t, r, ω, such that

∥I+(t, r, ω)∥2
L2(rd−1 dr dω) ⩽ CN t−N , (5-9)

∥I−(t, r, ω)∥2
L2(rd−1 dr dω) ⩽ Ct−1, (5-10)

∥I0(t, r, ω)∥2
L2(rd−1 dr dω) ⩽ CN t−N . (5-11)

Proof of (5-9). The integral I+(t, r, ω), by definition, reads

κ

(
r
t

)∫
ei[rρω·θ+t P(ρ)](1 −χ)

(
rω+ t P ′(ρ)θ

t
1
2 +δ

)
χ0

(
ω+ θ

tδ−
1
2

)
1r>t P ′(ρ)v̂0(ρθ)ρ

d−1 dρ dθ.

The integrand of I+ is supported for

|r − t P ′(ρ)| = |− rθ + t P ′(ρ)θ | ⩾ |rω+ t P ′(ρ)θ |− r |θ +ω| ⩾ ct
1
2 +δ

− Cc0t × tδ−
1
2 = (c − Cc0)t

1
2 +δ,

where 0< c0 ≪ 1 is the radius of Suppχ0. This implies that

|r − t P ′(ρ)| ⩾ c′t
1
2 +δ.

As a consequence, the integrand of I+ is smooth. This allows us to apply integration by parts in ρ, since
ρ ∼ 1 and

|rω · θ + t P ′(ρ)| ⩾ | − r + t P ′(ρ)| − r |ω+ θ | ⩾ (c − 2Cc0)t
1
2 +δ ⩾ c′′t

1
2 +δ.

More precisely, by using

ei[rρω·θ+t P(ρ)]
=

−i
rω · θ + t P ′(ρ)

∂ρei[rρω·θ+t P(ρ)],

one may gain t−(1/2+δ) from |rω · θ + t P ′(ρ)|−1 and t1/2−δ from each ∂ρ . In conclusion, after integrating
by parts M times in ρ we have

|I+(t, r, ω)| ≲ t−2Mδ.

Due to the factor κ , I+ is supported for r ∼ t , which implies that

∥I+(t, r, ω)∥2
L2(rd−1drdω) ≲ t−4Mδ+d ⩽ t−N ,

where M is large enough so that 4Mδ− d ⩾ N. □

Proof of (5-10). The integral I− will be treated as in Section 4. We first observe that the integrand of
I−(t, r, ω), which reads

κ

(
r
t

)∫
ei[rρω·θ+t P(ρ)](1 −χ)

(
rω+ t P ′(ρ)θ

t
1
2 +δ

)
χ0

(
ω− θ

tδ−
1
2

)
1r>t P ′(ρ)v̂0(ρθ)ρ

d−1 dρ dθ,
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is supported for, as t ≫ 1,

|rω+ t P ′(ρ)θ | ⩾ |rθ + t P ′(ρ)θ | − r |ω− θ | ⩾ r + t P ′(ρ)− Cc0t
1
2 +δ ⩾ c′t,

where 0 < c0 ≪ 1 is the radius of Suppχ0. That is to say, the factor (1 − χ) is identically 1, and I−
becomes

κ

(
r
t

)∫ min(ρ1,(P ′)−1(r/t))

ρ0

ei t P(ρ)
∫

Sd
eirρω·θχ0

(
ω− θ

tδ−
1
2

)
v̂0(ρθ) dθ ρd−1 dρ,

where v̂0(ρθ) is supported for ρ ∈ [ρ0, ρ1] and we use the convention (P ′)−1(s)= +∞ when s ⩾ 1. Now,
we may apply Lemma B.1 with λ= rρ, µ= tδ−

1
2 , and

F(x, y, z, µ; ρ)= χ0

(
y − z
µ

)
χ̃0

(
x − y
µ

)
v̂0(ρy).

Here χ̃0 ∈ C∞
c (R

d) is chosen to be equal to 1 on the support of χ0. Note that F has to be taken
at (x, y, z) = (ω, θ, ω) in order to recover the above integral. This corresponds in the statement of
Lemma B.1 to x = θ , y = θ ′, and z = ω (and no variable ω′). The extra term ρ is an extra parameter
staying in a compact subset. Due to our choice of µ, it is clear that r ∼ t and ρ ∼ 1 imply λµ2 ⩾ ct2δ

≫ 1.
As a result, the integral in θ equals∫

Sd
eirρω·θχ0

(
ω− θ

tδ−
1
2

)
v̂0(ρθ) dθ = (2π)

d−1
2 eirρµd−1S

−
1
2 (d−1)(ω, ρ, µ; rρµ2),

with Sm(ω, ρ, µ; ζ ) smooth, supported for ρ ∼ 1, ζ > 1, and satisfying, for all α,∈ N, j, k, γ ∈ N,

|∂αω∂
j
ρ∂

k
µ∂

γ

ζ S±

m (ω, ρ, µ; ζ )| ⩽ Cµ−|α|−k
⟨ζ ⟩m−γ .

This formulation allows us to rewrite I−r (d−1)/2, up to multiplication with constants, as

I−(t, r, ω)r
1
2 (d−1)

= κ

(
r
t

)∫ min(ρ1,(P ′)−1(r/t))

ρ0

ei[rρ+t P(ρ)]S0(ω, ρ, µ; rρµ2)ρ
1
2 (d−1) dρ.

Now, we may apply integration by parts in ρ. Due to the fact that r+t P ′(ρ)∼t and min(ρ1,(P ′)−1(r/t))∼1,
the boundary terms and remaining term are all bounded by t−1, namely

|I−(t, r, ω)r
1
2 (d−1)

| ≲ 1r∼t t−1,

which implies (5-10). □

Proof of (5-11). Unlike the study of I±, I0 will be estimated via integration by parts in the θ -variable. It
is clear that the integrand of

I0(t, r, ω)= κ

(
r
t

)∫
eirρω·θei t P(ρ)(1 −χ)

(
rω+ t P ′(ρ)θ

t
1
2 +δ

)
1r>t P ′(ρ)v̂0(ρθ)ρ

d−1

×

[
1 −χ0

(
ω+ θ

tδ−
1
2

)
−χ0

(
ω− θ

tδ−
1
2

)]
dρ dθ
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is supported away from {θ ±ω = 0}, which allows us to rewrite the integral above in local coordinates

θ = hω+

√
1 − h2 y, h ∈ [−1, 1], y ∈ ω⊥

∩ Sd−1,

where ω⊥ is defined as the hyperplane {y ∈ Rd
: y ·ω = 0}. In this way, we may rewrite I0 as

κ

(
r
t

)∫
eirρh F0(t, r, ρ, ω, hω+

√
1 − h2 y)(1 − h2)

1
2 d−1

×

[
1 −χ0

(
(h + 1)ω+

√
1 − h2 y

tδ−
1
2

)
−χ0

(
(h − 1)ω+

√
1 − h2 y

tδ−
1
2

)]
dh dy dρ, (5-12)

where

F0(t, r, ρ, ω, θ)= ei t P(ρ)(1 −χ)

(
rω+ t P ′(ρ)θ

t
1
2 +δ

)
1r>t P ′(ρ)v̂0(ρθ)ρ

d−1.

Note that due to the cut-off away from ±ω, the integrand of (5-12) is supported for

|(h ± 1)ω+

√
1 − h2 y|

2 ⩾ ct2δ−1.

By developing the inequality above we obtain√
1 − h2 ⩾ c′tδ−

1
2 .

Thus, F0 is supported for ρ ∼ 1 and satisfies, for all k ∈ N,∣∣∂k
h
(
F0(t, r, ρ, ω, hω+

√
1 − h2 y)

)∣∣≲ t (1−2δ)k .

The same estimates hold for (1 − h2)d/2−1 and cut-off χ0’s in dimension d ⩾ 2, while in the trivial case
d = 1, I0 is identically zero.

Now, we may apply M times integration by parts in h for (5-12). As r ∼ t , ρ ∼ 1, each ∂h in the
amplitude gives t1−2δ, we have

|I0(t, r, ω)| ≲ 1r∼t t−2Mδ,

and (5-11) follows from
∥I0(t, r, ω)∥2

L2(rd−1drdω) ≲ t−4Mδ+d ≲ t−N ,

by choosing 4Mδ− d ⩾ N. □

Appendix A: Technical lemmas

This appendix is a collection of technical lemmas which are used in previous sections.

A1. Some technical inequalities.

Lemma A.1. For any real number m > d − 1, there exists a constant C = C(m, d) > 0 such that

sup
ξ∈Rd

∫
Sd−1

⟨Rω− ξ⟩−m dω ⩽ C R−(d−1).

Proof. By a change of variable, it is equivalent to study the boundedness of∫
RSd−1

K (ω− ξ) dω,
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where K (x)= (1+|x |
m)−1. This integral can be regarded as a convolution of K and the Borel measure µR ,

which is defined by,

∀φ ∈ Cc(R
d), ⟨µR, φ⟩ :=

∫
RSd−1

φ(ω) dω.

We introduce the α-dimensional density of a Borel measure µ:

M (α)
µ (x) := sup

r>0

µ(B(x, r))
rα

.

Note that M (d−1)
µR (ξ)= M (d−1)

µ1 (ξ/R) and that M (d−1)
µ1 is a bounded function. Thus, M (d−1)

µR (ξ) is bounded
uniformly in R > 0 and ξ ∈ Rd.

Now, it suffices to show that there exists some constant c = c(m, d) such that, for any Borel measure µ
on Rd,

K ∗µ(ξ)⩽ cM (d−1)
µ (ξ).

By applying a translation, the problem can be reduced to the case ξ = 0:

K ∗µ(0)=

∫
Rd

K (−y) dµ(y)=

∫
Rd

K (y) dµ(y)= lim
n→∞

1
n

n∑
j=1

µ(B(0, r (n)j )),

where the last equality follows from dominated convergence theorem, with r (n)j defined by K −1(1− j/n)=
r (n)j Sd−1. We may calculate r (n)j explicitly:

r (n)j =

(
j/n

1 − j/n

)1
m

.

Therefore, by the definition of (d−1)-dimensional density, we have

K ∗µ(0)⩽ M (d−1)
µ (0) lim

n→∞

1
n

n∑
j=1

(r (n)j )d−1

= M (d−1)
µ (0) lim

n→∞

1
n

n∑
j=1

(
j/n

1 − j/n

)d−1
m

= M (d−1)
µ (0)

∫ 1

0

(
x

1 − x

)d−1
m

dx .

The last quantity is finite since m > d − 1. □

Lemma A.2. Let S−1 ∈ C∞(R) with |S(α)
−1 (ξ)| ⩽ Cα⟨ξ⟩−1−α for any α ∈ N. Then, for any N ∈ N, there

exists some constant C such that∣∣∣∣∫
R

eiλξ S−1(ξ) dξ
∣∣∣∣⩽ C⟨λ⟩−N (1 + log−(|λ|)) ∀λ ̸= 0, (A-1)

where the integral on the left-hand side should be understood as an oscillatory integral and the function
log− is defined by

log−(t) :=

{
|log(t)| if t ∈ ]0, 1[,

0 otherwise.
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Proof. For simplicity, we may assume λ > 0 and that S−1 is supported in [c0,∞[ for some c0 > 0.
When λ⩾ c for some small constant c > 0, we may apply integration by parts on ξ ; then the left-hand

side of (A-1) can be controlled by
C
λ

∫
R

⟨ξ⟩−2 dξ ≲ ⟨λ⟩−1.

To obtain arbitrary polynomial decrease for large λ, we only need to apply integration by parts several times.
When λ < c, we introduce a cut-off χ ∈ C∞

c (R) such that χ = 1 in a large neighborhood of 0. For
the part where |λξ | is small,∣∣∣∣∫

R

eiλξ S−1(ξ)χ(λξ) dξ
∣∣∣∣⩽ C

∫ c2/λ

c1

dξ
ξ

⩽ C ′(1 + log−(λ)).

For the remaining part where |λξ | is large, we need to estimate∫
R

eiλξ S−1(ξ)(1 −χ)(λξ) dξ.

By applying integration by parts in ξ , we will obtain two integrals. The first one is of the form∫
R

eiλξ S−1(ξ)χ
′(λξ) dξ,

which can be treated as above. The second one takes the form
1
λ

∫
R

eiλξ S−2(ξ)(1 −χ)(λξ) dξ,

which is bounded by
1
λ

∫
|ξ |>c′/λ

⟨ξ⟩−2 dξ ⩽ C. □

Lemma A.3 (Cotlar–Stein lemma). Let H be a Hilbert space and {Tj }j∈N be a series of bounded operators
on H. If

A = sup
j∈N

∑
k∈N

∥Tj T ∗

k ∥

1
2
L(H) <+∞, (A-2)

B = sup
j∈N

∑
k∈N

∥T ∗

j Tk∥
1
2
L(H) <+∞, (A-3)

the operator T =
∑

j∈N Tj is well-defined via the pointwise limit,

∀u ∈ H, T u := lim
J→+∞

J∑
j=0

Tj u in H.

Moreover, T is bounded on H with estimate

∥T ∥L(H) ⩽
√

AB. (A-4)

The inequality (A-4) was first given in [Cotlar 1955] for finite sum with ∥Tj T ∗

k ∥L(H) and ∥T ∗

j Tk∥L(H)

decreasing exponentially in | j − k|. The generalized version stated above and its proof can be found, for
example, in Theorem 1, Chapter VII of [Stein 1993].
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A2. Criteria on L2-boundedness of pseudodifferential operators.

Lemma A.4. Let a be a symbol on Rd and λ > 0. The rescaled symbol

aλ(x, ξ) := a
(
λx,

ξ

λ

)
satisfies

∥Op(aλ)∥L(L2) = ∥Op(a)∥L(L2).

Lemma A.5. Let a be a symbol on Rd and the symbol ã is defined as

ã(x, ξ) := a(ξ, x).

Then we have
∥Op(a)∥L(L2) = ∥Op(ã)∥L(L2).

Lemma A.6. Let K be a kernel function of operator K defined as

Ku(x) :=

∫
K (x, x − y)u(y) dy.

If there exists K0 ∈ L1(Rd) such that

|K (x, z)| ⩽ K0(z) ∀x, z ∈ Rd ,

we have
∥K∥L(L2) ⩽ ∥K0∥L1 .

Lemma A.7. Let a and b be symbols satisfying

|a(x, ξ)| ⩽ b(x, ξ),

and B ∈ L(L2) be an operator defined by

Bu(x)=

∫
b(x, ξ)v(ξ) dξ.

Then
∥Op(a)∥L(L2) ⩽ ∥B∥L(L2).

Lemma A.8. Let m : Sd−1
× Sd−1

× ]0,∞[ → C be a smooth function satisfying for all α, α′
∈ Nd−1

and N ∈ N

|∂αω∂
α′

ω′ m(ω, ω′, µ)| ⩽ Cα,α′,N Aµ−|α|−|α′
|

〈
d(ω,−ω′)

µ

〉−N

,

where A is a quantity independent of ω and ω′, d is the distance on the sphere Sd−1. For all λ > 0, the
operator Tλ is defined by

Tλu(ω′)=

∫
Sd−1

eiλωω′

m(ω, ω′, µ)u(ω) dω.

Then there exists a constant C > 0 such that

∥Tλ∥L(L2(Sd−1)) ⩽ C Aλ−
1
2 (d−1).



MICROLOCAL PARTITION OF ENERGY FOR FRACTIONAL-TYPE DISPERSIVE EQUATIONS 2125

When µ ∈ [1,∞[, the condition on m becomes m( · , · , µ) ∈ C∞

b (S
d−1

× Sd−1) uniformly in µ⩾ 1.
By using the local coordinate of the unit sphere Sd−1 (which is compact and thus can be covered by finite
local patches), one can reduce the problem to the Rd−1 case without considering the parameter µ. The
proof of this reduced case can be found in, for example, [Sogge 2017, Theorem 2.1.1]. As for the case
µ ∈ ]0, 1], one may refer to [Delort 2022, Proposition A.1.7]. A direct consequence is stated as following:

Lemma A.9. Let a(x, ξ, µ) be a smooth symbol on Rd
× Rd depending on a parameter µ ∈ ]0,∞[. Let

b be a function on R2
+

such that the associated operator B defined below is bounded on L2(R+), namely

∥B∥L(L2(R+))
<∞, B f (r)=

∫
∞

0
b(r, ρ) f (ρ) dρ. (A-5)

If , in the polar system x = rω, ξ = ρθ , a(x, ξ, µ) satisfies, for all α, β ∈ Nd−1 and N ∈ N,

|∂αω∂
β
θ a(rω, ρθ, µ)| ⩽ Cα,β,N b(r, ρ)µ−|α|−|β|

〈
d(ω,−θ)

µ

〉−N

, (A-6)

then we have

∥Op(a)∥L(L2(Rd )) ⩽ C∥B∥L(L2(R+))
, (A-7)

where C > 0 is a universal constant.

Proof. By the definition of Op(a), we have

Op(a)u(rω)=
1

(2π)d

∫
∞

0

∫
Sd−1

eirρωθa(rω, ρθ)û(ρθ)ρd−1 dθ dρ.

It is easy to check that ∥ f (ρ, θ)∥L2(dρ dθ) = (2π)d/2∥u∥L2(Rd ), with f (ρ, θ)= û(ρθ)ρ(d−1)/2. Thus,

∥Op(a)u∥L2(Rd ) = ∥Op(a)u(rω)r
1
2 (d−1)

∥L2(dr dω)

=

∥∥∥∥ 1
(2π)d

∫
∞

0

∫
Sd−1

eirρωθa(rω, ρθ) f (ρ, θ)(rρ)
1
2 (d−1) dθ dρ

∥∥∥∥
L2(dr dω)

⩽ C0

∥∥∥∥∫ ∞

0
(rρ)

1
2 (d−1)

∥∥∥∥∫
Sd−1

eirρωθa(rω, ρθ) f (ρ, θ) dθ
∥∥∥∥

L2(dω)
dρ
∥∥∥∥

L2(dr)
.

By applying the previous lemma with m(ω, θ, µ) = a(rω, ρθ, µ), where r, ρ should be regarded as
parameters, A = b(r, ρ), and λ= rρ, we obtain∥∥∥∥∫

Sd−1
eirρωθa(rω, ρθ) f (ρ, θ) dθ

∥∥∥∥
L2(dω)

⩽ C1(rρ)−
1
2 (d−1)b(r, ρ)∥ f (θ, ρ)∥L2(dθ).

Thus,

∥Op(a)u∥L2(Rd ) ⩽ C0C1

∥∥∥∥∫ ∞

0
b(r, ρ)∥ f (θ, ρ)∥L2(dθ) dρ

∥∥∥∥
L2(dr)

⩽ C0C1∥B∥L(L2(R+))
∥ f (θ, ρ)∥L2(dθ dρ) = C∥B∥L(L2(R+))

∥u∥L2(Rd ). □
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Lemma A.10. Let a be a symbol on Rd, depending on some parameter λ ∈ ]0,∞[. If , for all α ∈ Nd,

sup
x∈Rd

∥∂αξ a(x, · )∥L1
ξ
⩽ Cαλd−|α|,

the operator Op(a) is bounded on L2, uniformly in λ.

Proof. Due to Lemma A.4, the problem can be reduced to the case λ = 1. The kernel of the operator
Op(a) is K (x, y)= J (x, x − y), where

J (x, z)=
1

(2π)d

∫
ei z·ξa(x, ξ) dξ.

We first observe that, for all x ∈ Rd, |J (x, z)| ⩽ (2π)−d
∥a(x, · )∥L1

ξ
, which is uniformly bounded. Then,

by integration by parts, we have, for all N ∈ N,

||z|2N J (x, z)| ≲
∑

|α|=2N

∣∣∣∣∫ ei z·ξ∂αξ a(x, ξ) dξ
∣∣∣∣≲ ∑

|α|=2N

sup
x∈Rd

∥∂αξ a(x, · )∥L1
ξ
⩽ Cα.

That is to say, J is bounded and has any polynomial decay in z, uniformly in x . In particular,

|K (x, y)| = |J (x, x − y)| ≲ ⟨x − y⟩
−(d+1).

The conclusion follows from Schur’s lemma. □

Lemma A.11 (Calderón–Vaillancourt theorem). For smooth symbol a ∈ C∞(Rd
× Rd), the following

estimate holds:

∥Op(a)∥L(L2) ≲ sup
|α|,|β|⩽Nd

∥∂αx ∂
β
ξ a∥L∞(Rd

x ×Rd
ξ )
, (A-8)

where Nd is a universal constant depending only on dimension d.

The earliest version of (A-8) was given in [Calderón and Vaillancourt 1971], where αj , βj are required
to be no more than 3 for all j = 1, 2, . . . , d . Then, in [Coifman and Meyer 1978], the authors optimized
it to Nd =

[ 1
2 d
]
+1, while some other assumptions in α, β are given in the same paper. Readers may also

find an alternative proof via the Gabor transform in [Hwang 1987].

Appendix B: Stationary phase lemmas

Lemma B.1. Let
F : (Sd−1)4 × ]0, 1] → C,

(θ, θ ′, ω, ω′, µ) 7→ F(θ, θ ′, ω, ω′, µ),

be a smooth function supported for d(θ ′, θ)+ d(θ ′, ω′) < δ′, where d is the metric on the sphere Sd−1

and δ′ > 0 is a small constant. We assume that F satisfies, for all α, α′, β, β ′
∈ N, j, N ∈ N,

|∂αθ ∂
α′

θ ′ ∂
β
ω∂

β ′

ω′ ∂
j
µF | ⩽ Cµ−|α|−|α′

|−|β|− j
〈

d(θ ′, ω)

µ

〉−N

.
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For any parameter λ > 0, we define the integral

I±(θ, ω, ω′
; λ,µ)=

∫
Sd−1

e±iλθθ ′

F(θ, θ ′, ω, ω′, µ) dθ ′.

If δ′ is small enough (depending on the sphere Sd−1), and λµ2 ⩾ c > 0, then we can write

I±(θ, ω, ω′
; λ,µ)= e±iλµd−1S±

−
1
2 (d−1)

(θ, ω, ω′, µ; λµ2),

where S±

−(d−1)/2(θ, ω, ω
′, µ; ζ ) is a smooth function supported for d(θ, ω′) ⩽ 2δ′, satisfying, for all

α, β, β ′
∈ N, j, γ, N ∈ N,

|∂αθ ∂
β
ω∂

β ′

ω′ ∂
j
µ∂

γ

ζ S±

−
1
2 (d−1)

| ⩽ Cµ−|α|−|β|− j
⟨ζ ⟩−

1
2 (d−1)−γ

〈
d(θ, ω)
µ

〉−N

. (B-1)

Moreover, for |ζ | ⩾ c > 0, S±

−(d−1)/2(θ, ω, ω
′, µ; ζ ) can be decomposed as

(2π)
1
2 (d−1)e∓i π4 (d−1)F(θ, θ, ω, ω′, µ)ζ−

1
2 (d−1)

+ S±

−
1
2 (d+1)

(θ, ω, ω′, µ; ζ ), (B-2)

where S±

−(d+1)/2(θ, ω, ω
′, µ; ζ ) is smooth and supported for d(θ, ω′)⩽ 2δ′, satisfying the estimate (B-1)

with d − 1 replaced by d + 1.

Lemma B.2. Let
F0 : (Sd−1)4 × ]0, 1] → C,

(θ, θ ′, ω, ω′, µ) 7→ F(θ, θ ′, ω, ω′, µ),

be a smooth function supported for min(d(θ ′, θ), d(θ ′,−θ)) > δ′ > 0, where d is the metric on the sphere
Sd−1 and δ′ is constant. We assume that F satisfies, for all α, α′, β, β ′

∈ N, j, N ∈ N,

|∂αθ ∂
α′

θ ′ ∂
β
ω∂

β ′

ω′ ∂
j
µF0| ⩽ Cµ−|α|−|α′

|−|β|− j
〈

d(θ ′, ω)

µ

〉−N

.

For any parameter λ > 0, the integral

I±(θ, ω, ω′
; λ,µ)=

∫
Sd−1

e±iλθθ ′

F0(θ, θ
′, ω, ω′, µ) dθ ′

can be written as
I±(θ, ω, ω′

; λ,µ)= e±iλθωµd−1 R±(θ, ω, ω′, µ; λµ),

where R±(θ, ω, ω′, µ; ζ ) is a smooth function satisfying, for all α, β, β ′
∈ N, j, γ, N ∈ N,

|∂αθ ∂
β
ω∂

β ′

ω′ ∂
j
µ∂

γ

ζ R±
| ⩽ Cµ−|α|−|β|− j

⟨ζ ⟩−N . (B-3)

For the proof of Lemmas B.1 and B.2, one may find a general result in [Delort 2022, Proposition A.1.1].

Remark B.3. In Lemmas B.1 and B.2, the dependence on ω′ is not crucial in the proof; we may eliminate
the conditions and results involving ω′. Meanwhile, if F (resp. F0) depends on some other parameters,
the same condition can be inherited by S−(d−1)/2 (resp. R) from F (resp. F0).
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Lemmas B.1 and B.2, together with Remark B.3, result in the following lemmas, which are important
techniques used in the main text.

Lemma B.4. Let
G : (Sd−1)2 × ]0, 1] → C,

(θ ′, ω, µ) 7→ G(θ ′, ω, µ),

be a smooth function supported for d(θ ′, ω) < δ′, where d is the metric on Sd−1 and δ′ > 0 is a small
constant. We further assume that, for all α′, β ∈ Nd−1, j, N ∈ N,

|∂α
′

θ ′ ∂
β
ω∂

j
µG| ≲ µ−|α′

|−|β|− j
〈

d(θ ′, ω)

µ

〉−N

.

For λ > 0, ϵ ∈ {±}, we define

I (θ, ω,µ; λ) :=

∫
Sd−1

eϵiλθ ·θ
′

G(θ ′, ω, µ) dθ ′.

Then, under the conditions that δ′ is small enough and that λµ2> c> 0 for some constant c, the integral I
may be written as the sum of principal terms

e±ϵiλµd−1S±

−
1
2 (d−1)

(θ, ω,µ; λµ2),

and a remainder
eϵiλθ ·ωµd−1 R(θ, ω,µ; λµ),

where S±
m (θ, ω,µ; ζ ) is a smooth function supported on d(θ,±ω) < 2δ′, ζ > c > 0, satisfying, for all

α, β ∈ Nd−1, j, n, N ∈ N,

|∂αθ ∂
β
ω∂

j
µ∂

n
ζ S±

m | ≲ µ−|α|−|β|− j
⟨ζ ⟩m−n

〈
d(θ,±ω)

µ

〉−N

,

and R(θ, ω,µ; ζ ) is a smooth function satisfying, for all N ∈ N,

|R| ≲ ⟨ζ ⟩−N .

Moreover, if G depends on some extra parameters, the same bound for G (and its derivatives in parame-
ters) can be inherited by S±

−(d−1)/2 and R.

Proof. We only give the proof for ϵ = +, while the other one can be treated in the same way. To begin
with, we introduce the functions

F±(θ, θ
′, ω, µ) := G(±θ ′,±ω,µ)χ(θ − θ ′),

F0(θ, θ
′, ω, µ) := G(θ ′, ω, µ)

(
1 −χ(θ − θ ′)−χ(θ + θ ′)

)
,

where χ ∈ C∞
c (R

d) is radial and supported in a small neighborhood of zero, with value 1 near zero. By
using these functions, we may rewrite the integral I as I+ + I− + I0 with

I± =

∫
e±iλθ ·θ ′

F±(θ, θ
′,±ω,µ) dθ ′, I0 =

∫
eiλθ ·θ ′

F0(θ, θ
′, ω, µ) dθ ′.
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It is clear that F±, F0 satisfy the conditions in Lemmas B.1 and B.2, respectively. Then, by applying
these lemmas, we can obtain the desired expressions and corresponding estimates. There remain two
points to check: the support of S±

−(d−1)/2 and the dependence on extra parameters. The latter is merely an
application of Remark B.3, while the former can be shown by observing that, when Suppχ is taken to be
small enough, the integrand of integrals I± is supported on d(±θ ′, ω) < δ′ and d(θ, θ ′) < δ′. □

Lemma B.5. Let χ ∈ C∞
c (R

d) and f ∈ C∞
c (R

d
\{0}). Assume that P is smooth on ]0,∞[, and 3 is a

positive function such that
3(ρ)∼ ρσ as ρ → +∞,

|3( j)(ρ)| ≲ ρσ− j
∀ρ > ρ0 > 0, j ∈ N,

3(ρ)

ρσ
→ λ0 as ρ → +∞

hold for some σ ∈ R and λ0 > 0.
Then there exists t0 ≫ 1 depending on f , P ′, and 3 such that, for ϵ, ϵ′

∈ {+1,−1}, δ+
1
2σ ∈

[
0, 1

2

[
,

r > c > 0, and t > t0, the integral∫
Sd−1

eiϵ′rρωθχ

(
rω+ ϵt P ′(ρ)θ

t
1
2 +δ3(t

1
2ρ)

)
f (ρθ) dθ

can be decomposed as a principal term

(2π)
1
2 (d−1)eiϵϵ′ π

4 (d−1)e−iϵϵ′rρ(rρ)−
1
2 (d−1)χ

(
r − t P ′(ρ)

t
1
2 +δ3(t

1
2ρ)

)
f (−ϵρω)

and a remainder

e−iϵϵ′rρµd−1S−(d+1)/2

(
ω,µ, ρ,

r
t

− P ′(ρ), t; rρµ2
)
,

where µ= tδ+σ/2−1/2, Sm(ω, µ, ρ, r ′, t; ζ ) is supported for ζ > c > 0, ρ ∼ 1 and |r ′
| ≲ µ and satisfies,

for all α ∈ Nd−1, j, k, l, γ ∈ N,

|∂αω∂
j
µ∂

k
ρ∂

l
r ′∂

γ

ζ S
−

1
2 (d+1)| ⩽ Cµ−(|α|+ j+l)

⟨ζ ⟩m−γ .

Proof. Using the notation r = t (r ′
+ P ′(ρ)), where |r ′

| ≲ µ= tδ+σ/2−1/2, we can rewrite the integral as∫
Sd−1

eiϵ′t (r ′
+P ′(ρ))ρωθχ

(
r ′ω+ P ′(ρ)(ω+ ϵθ)

t−
1
2 +δ3(t

1
2ρ)

)
f (ρθ) dθ. (B-4)

Consider the function

F(x, y, z, µ; ρ, r ′, t)= χ

(
r ′x + P ′(ρ)(x − y)

µt−
1
2σ3(t

1
2ρ)

)
χ̃

(
x − y
µ

)
χ̃

(
y − z
µ

)
f (ρy),

with χ̃ ∈C∞
c (R

d) taking value 1 in a large ball centered at the origin. By setting λ= t (r ′
+P ′(ρ))ρ > c>0,

we may rewrite the integral (B-4) as∫
Sd−1

e−iϵϵ′λ(−ϵω)θ F(−ϵω, θ,−ϵω,µ; ρ, r ′, t) dθ.
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Note that the integrand in (B-4) ensures that |ω+ ϵθ | ≲ µ≪ 1, which allows us to add χ̃ factors in the
definition of F.

By using the fact that ρ ∼ 1, it is easy to verify that when x, y, z ∈ Sd−1, for all α, α′, β ∈ Nd−1,
j, k, l, N ∈ N,

|∂αx ∂
α′

y ∂
β
z ∂

j
µ∂

k
ρ∂

l
r ′ F(x, y, z, µ; ρ, r ′)| ⩽ Cµ−|α|−|α′

|−|β|− j−l
〈

d(y, z)
µ

〉−N

,

and that F is supported for ρ ∼ 1, |r ′
| ≲ µ, d(x, y)⩽ C0µ≪ 1, which ensures that

λµ2
= t2(δ+ 1

2σ)(r ′
+ P ′(ρ))ρ > c > 0.

Therefore, the conclusion follows from Lemma B.1 with extra parameters ρ, r ′, t but without the
ω′-variable. □

Appendix C: A refined result for the Schrödinger equation

In the case of the Schrödinger equation P(ξ)=
1
2 |ξ |2, the structure of P ′(ξ)= ξ allows us to prove parts

(i) and (ii) of Theorem 1.1 for nonsmooth χ , namely:

Theorem C.1. Let aχ,δ and Eχ,δ be as defined in (1-10) and (1-11), respectively. We assume, as in
Theorem 1.1, that 3 is identically equal to 1. Then, for any u0 ∈ L2, we have:

(i) If χ ∈ L1 and δ < 0,

lim
t→+∞

Eχ,δ(u0, t)= lim
t→+∞

Eχ,δ(u0,−t)= 0. (C-1)

(ii) If χ ∈ L1 and δ = 0,

lim
t→+∞

Eχ,δ(u0, t)= lim
t→+∞

Eχ,δ(u0,−t)=
1

(2π)d

∫
Gχ (ω)|û0(ρω)|

2ρd−1 dρ dω, (C-2)

where (ρ, ω) is the polar coordinate, and the function Gχ (ω) is defined as

Gχ (ω) :=
1

(2π)d

∣∣∣∣∫
x ·ω>0

ei 1
2 |x |

2
χ(x) dx

∣∣∣∣2. (C-3)

In order to prove the limits (C-1) and (C-2), we indicate that, compared with Theorem 1.1, the only
difficulty is the loss of regularity in χ , which can be overcome by finding a bound of the operator Op(a(t))
depending merely on ∥χ∥L1 .

C1. An alternative bound of the truncated operator. The goal of this subsection is to find a uniform
bound of Op(a(t)), which involves less regularity of χ than Proposition 2.1. Via Lemma A.4, it suffices
to study the symbol

b(x, ξ)= χ

(
x + ξ

λ

)
1|x |>|ξ |,

where λ= |t |δ ∈ ]0,∞[. To be precise, we shall prove the following proposition.
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Proposition C.2. There exists a constant C > 0 independent of λ such that, for all λ > 0,

∥Op(b)∥L(L2) ⩽ Cλd
∥χ∥L1 .

Proof of Proposition C.2. It is easy to calculate that∫
|b(x, ξ)| dx ⩽

∫ ∣∣∣∣χ( x + ξ

λ

)∣∣∣∣ dx = λd
∥χ∥L1,∫

|b(x, ξ)| dξ ⩽
∫ ∣∣∣∣χ( x + ξ

λ

)∣∣∣∣ dξ = λd
∥χ∥L1 .

Thus, the desired estimate follows from Schur’s lemma and Lemma A.7. □

C2. Calculation of the limit. By Proposition C.2, when δ < 0, we have

∥Op(a)∥L(L2) ⩽ Ctδd∥χ∥L1 → 0 as t → ∞,

which implies (C-1).
In the critical case δ = 0, when χ is smooth, compactly supported, and constant near zero, the limit

(C-2) follows from the limit (1-14). If χ is no more than an L1 function, we may approximate χ by some
regular function in L1. To be precise, for all n ∈ N, there exist χn ∈ C∞

c (R
d), which are constant near

zero, such that

∥χ −χn∥L1 <
1
n
.

To highlight the dependence on χ , in the rest of this section, we will add the subscript χ for concerning
terms, for example,

aχ (t, x, ξ)= χ

(
x + tξ

|t |
1
2

)
1|x |>|t ||ξ |.

Proposition C.2 implies that, for all u0 ∈ L2 and t ̸= 0,

∥Op(aχ )ei t P(Dx )u0 − Op(aχn )e
i t P(Dx )u0∥L2 = ∥Op(aχ−χn )e

i t P(Dx )u0∥L2

⩽ C∥χ −χn∥L1∥ei t P(Dx )u0∥L2 < C 1
n
∥u0∥L2 .

Therefore, for fixed u0 ∈ L2, the limit

Op(aχ )ei t P(Dx )u0 → Op(aχn )e
i t P(Dx )u0 in L2 as n → ∞

is uniform in t . We may conclude (C-2) by passing to the limit t → ±∞:

lim
t→±∞

Eχ,δ(u0, t)= lim
t→±∞

∥Op(aχ )ei t P(Dx )u0∥
2
L2

= lim
t→±∞

lim
n→∞

∥Op(aχn )e
i t P(Dx )u0∥

2
L2 = lim

n→∞
lim

t→±∞
∥Op(aχn )e

i t P(Dx )u0∥
2
L2

= lim
n→∞

1
(2π)d

∫
Gχn (ω)|û0(ρω)|

2ρd−1 dρ dω=
1

(2π)d

∫
Gχ (ω)|û0(ρω)|

2ρd−1 dρ dω.

The last equality follows from the dominated convergence theorem and the continuity of G on χ ∈ L1,
which is obvious due to the definition (C-3) of Gχ .
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Appendix D: Partition of energy for the Klein–Gordon equation — a classical setting

In this part, we shall give a proof of (1-32) via an alternative study of asymptotic behavior of the solution
to the half-Klein–Gordon equation (HKG), namely{

(∂t/ i − P(Dx))u = 0,
u|t=0 = u0,

where P(ξ) = ⟨ξ⟩ is a smooth symbol. As in Section 5, instead of studying the solution w to the
Klein–Gordon equation (KG), we turn to

u =

(
∂t

i
+ P(Dx)

)
w,

which is a solution to the half-Klein–Gordon equation with initial data

u0 = u|t=0 =
w1

i
+ P(Dx)w0 ∈ L2.

Using this notation, we may rewrite the integral on the left-hand side of (1-32) as∫
r0<| x

t |<r1

(|∂tw|
2
+ |∇w|

2
+ |w|

2) dx

=

∫ (∣∣1r0<| x
t |<r1

∂tw
∣∣2 +

∣∣1r0<| x
t |<r1

∇w
∣∣2 +

∣∣1r0<| x
t |<r1

w
∣∣2) dx

=

∫ (∣∣1r0<| x
t |<r1

Im u
∣∣2 +

∣∣∣∣1r0<| x
t |<r1

i
Dx

⟨Dx ⟩
Re u

∣∣∣∣2 +
∣∣1r0<| x

t |<r1
⟨Dx ⟩

−1 Re u
∣∣2) dx

=

∫ (∣∣Im 1r0<| x
t |<r1

u
∣∣2 +

∣∣∣∣Im 1r0<| x
t |<r1

Dx

⟨Dx ⟩
u
∣∣∣∣2 +

∣∣Re 1r0<| x
t |<r1

⟨Dx ⟩
−1u

∣∣2) dx

=

∫ (∣∣Im 1r0<| x
t |<r1

ei t P(Dx )u0
∣∣2 +

∣∣∣∣Im 1r0<| x
t |<r1

ei t P(Dx )
Dx

⟨Dx ⟩
u0

∣∣∣∣2
+
∣∣Re 1r0<| x

t |<r1
ei t P(Dx )⟨Dx ⟩

−1u0
∣∣2) dx .

Notice that the term on the right-hand side takes the form of∫ ∣∣∣∣Ag
(

x
t

)
v(t, x)

∣∣∣∣2 dx, (D-1)

where A ∈ {Re, Im}, g(y)= 1r0<|y|<r1 , and v is a solution to the half-Klein–Gordon equation, which can
be written as v(t)= ei t P(Dx )v0, with

v0 = u0,
Dx

⟨Dx ⟩
u0, ⟨Dx ⟩

−1u0,

which all belong to L2, since u0 ∈ L2. In order to calculate the limit of such quantity, we need to study
the asymptotic behavior of v, which will be given in the next part.

D1. Asymptotic behavior. In this part, we shall state our problem in a general setting. Let u be the
unique solution to (E) with initial data u0 ∈ L2. We assume the symbol P is smooth except at zero, which
covers all the fractional-type equations. Since P ′ is well-defined except at zero, we may introduce ν the



MICROLOCAL PARTITION OF ENERGY FOR FRACTIONAL-TYPE DISPERSIVE EQUATIONS 2133

push-forward of Lebesgue measure under P ′, i.e.,

ν(E) := Leb(P ′−1(E)) ∀E ⊂ Rd measurable. (D-2)

For all functions g ∈ L∞, we are interested in the asymptotic formula

g
(

x
t

)
u(t)= g(−P ′(Dx))u(t)+ oL2(1) as t → ±∞. (D-3)

We denote by G the collection of those functions g satisfying this formula for all u0 ∈ L2, namely

G := {g ∈ L∞
: (D-3) holds for all u0 ∈ L2

} := {g ∈ L∞
: (D-3) holds for all u0 with û0 ∈ C∞

c (R
d)}.

The two definitions given above are equivalent since the multiplication with g(x/t) and Fourier multiplier
g(−P ′(Dx)) are both bounded on L2 uniformly in time. The equivalence then follows from the fact that
the subspace F−1C∞

c (R
d
\{0}) is dense in L2, where F is the Fourier transform.

In order to prove (1-32), we may use the following lemma:

Lemma D.1. Let E ⊂ Rd be any measurable set whose boundary has null Lebesgue measure, namely

Leb(∂E)= 0.

If the measure ν defined in (D-2) is absolutely continuous with respect to Lebesgue measure, we have

1E ∈ G.

We assume this lemma is true and prove it later. It is easy to check that the assumptions in Lemma D.1
hold true for P(ξ)= ⟨ξ⟩ and E = {r0 < |y|< r1}. As a result, (D-1) can be written as∫ ∣∣∣∣A1E

(
x
t

)
v(t, x)

∣∣∣∣2 dx =

∫
|A1E(−P ′(Dx))v(t, x)|2 dx + o(1)

=

∫
|A1]ρ0,ρ1[(|Dx |)v(t, x)|2 dx + o(1),

when t → ±∞. Recall that ]ρ0, ρ1[ = P ′−1(]r0, r1[). Actually, this formula implies (1-32), since as
t → ±∞, we have∫

r0<| x
t |<r1

(|∂tw|
2
+ |∇w|

2
+ |w|

2) dx

=

∫ (∣∣Im 1r0<| x
t |<r1

u(t, x)
∣∣2 +

∣∣∣∣Im 1r0<| x
t |<r1

Dx

⟨Dx ⟩
u(t, x)

∣∣∣∣2 +
∣∣Re 1r0<| x

t |<r1
⟨Dx ⟩

−1u(t, x)
∣∣2) dx

=

∫ (∣∣Im 1]ρ0,ρ1[(|Dx |)u(t, x)
∣∣2 +

∣∣∣∣Im 1]ρ0,ρ1[(|Dx |)
Dx

⟨Dx ⟩
u(t, x)

∣∣∣∣2
+
∣∣Re 1]ρ0,ρ1[(|Dx |)⟨Dx ⟩

−1u(t, x)
∣∣2) dx + o(1)

=
∥∥1]ρ0,ρ1[(|Dx |)∂tw

∥∥2
L2 +

∥∥1]ρ0,ρ1[(|Dx |)∇w
∥∥2

L2 +
∥∥1]ρ0,ρ1[(|Dx |)w

∥∥2
L2 + o(1)

=
∥∥1]ρ0,ρ1[(|Dx |)∂tw

∥∥2
L2 +

∥∥1]ρ0,ρ1[(|Dx |)w
∥∥2

H1 + o(1)

= ∥1]ρ0,ρ1[(|Dx |)w1∥
2
H1 + ∥1]ρ0,ρ1[(|Dx |)w0∥

2
L2 + o(1).
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In order to complete the proof of (1-32), we give now the proof of Lemma D.1.

Proof of Lemma D.1. Without loss of generality, we may assume in what follows that û0 ∈ C∞
c (R

d). Now,
we fix χ ∈ C∞

c (R
d) which equals 1 in a ball centered at zero and consider the symbol

a0(t, x, ξ)= χ

(
x + t P ′(ξ)

|t |
1
2 +δ

)
, (D-4)

where δ ∈
]
0, 1

2

[
. We have seen that Lemmas A.5 and A.10 imply the uniform-in-t boundedness of

Op(a0(t)). Moreover, by integration by parts, we can prove that for all u0 ∈ L2

∥u(t)− Op(a0(t))u(t)∥L2 → 0 as t → ±∞.

By writing

Et := E + B(0, ct−
1
2 +δ), Ẽt := Ec

+ B(0, ct−
1
2 +δ),

where c > 0 is a constant determined by Suppχ , we may apply the uniform-in-time L2-boundedness of
multiplication with 1E(x/t) and Fourier multiplier 1E(−P ′(Dx)) to obtain that, as t → ±∞,

1E

(
x
t

)
u(t, x)− 1E(−P ′(Dx))u(t, x)

= 1E

(
x
t

)
Op(a0(t))u(t, x)− Op(a0(t))1E(−P ′(Dx))u(t, x)+ oL2(1)

= 1E

(
x
t

)
Op(a0(t))1Et (−P ′(Dx))u(t, x)− Op(a0(t))1E(−P ′(Dx))u(t, x)+ oL2(1)

= 1E

(
x
t

)
Op(a0(t))1Et\E(−P ′(Dx))u(t, x)− 1Ec

(
x
t

)
Op(a0(t))1E(−P ′(Dx))u(t, x)+ oL2(1)

=1E

(
x
t

)
Op(a0(t))1Et\E(−P ′(Dx))u(t, x)−1Ec

(
x
t

)
Op(a0(t))1E∩Ẽt

(−P ′(Dx))u(t, x)+oL2(1).

Note that in the calculation above, it is possible to add extra cut-off in −P ′(Dx) since the symbol a0(t) is
supported for ∣∣∣∣ xt − (−P ′(ξ))

∣∣∣∣⩽ ct−
1
2 +δ.

As a consequence, the uniform boundedness of multiplication with 1E(x/t), 1Ec and Op(a0(t)) implies

lim sup
t→+∞

∥∥∥∥1E

(
x
t

)
u(t)− 1E(−P ′(Dx))u(t)

∥∥∥∥
L2

≲ lim sup
t→+∞

(∥∥1Et\E(−P ′(Dx))u(t)
∥∥

L2 +
∥∥1E∩Ẽt

(−P ′(Dx))u(t)
∥∥

L2

)
= (2π)−

1
2 d lim sup

t→+∞

(∥∥1Et\E(−P ′)û0
∥∥

L2 +
∥∥1E∩Ẽt

(−P ′)û0
∥∥

L2

)
(Plancherel theorem)

= (2π)−
1
2 d(∥∥1⋂

t>0 Et\E(−P ′)û0
∥∥

L2 +
∥∥1⋂

t>0 E∩Ẽt
(−P ′)û0

∥∥
L2

)
(DCT)

≲ ∥1∂E(−P ′)û0∥L2 .
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The last quantity is actually zero since ∂E has zero Lebesgue measure and ν is absolutely continuous
with respect to Lebesgue measure, which ensures that 1∂E(−P ′(ξ)) vanishes almost everywhere. □

D2. Further remarks on G. In the proof of (1-32), we only study the function

g(y)= 1r0<|y|<r1 .

A natural question is whether (1-32) holds true for other functions g, or equivalently, which type of
function is contained in the class G. In this part, we shall indicate an error in a classical result and prove
that G contains at least the continuous functions.

The asymptotic formula (D-3) was, to our knowledge, first studied in [Strichartz 1981], where the
author claimed in Corollary 2.2 that, when ν is absolutely continuous with respect to Lebesgue measure,

L∞
= G. (D-5)

However, the original proof given in [loc. cit.] is false. Actually, the author managed to prove in
Theorem 2.1 that for general ν

{Fourier transform of finite measure} ⊂ G
and reduce the conjecture to

1E ⊂ G for bounded and measurable E ⊂ Rd . (D-6)

The method used in [loc. cit.] is that, by regularity of Lebesgue measure, we may choose a series of
compact sets {Kn}n∈N and bounded open sets {Un}n∈N such that for all n ∈ N

Kn ⊂ Kn+1, Un+1 ⊂ Un, Kn ⊂ E ⊂ Un, lim
n→+∞

Leb(Un\Kn)= 0.

Then it is easy to find smooth functions gn ∈ C∞
c (Un) which are nonnegative, range in [0, 1], and equal

to 1 on Kn . Clearly, 1E − gn is supported in Un\Kn , whose measure tends to zero. By the dominated
convergence theorem and the fact that 0 ⩽ 1E − gn ⩽ 1, we have

lim sup
t→±∞

∥(1E − gn)(−P ′(Dx))u∥
2
L2 = (2π)−d

∥(1E − gn)(−P ′(ξ))û0(ξ)∥
2
L2
ξ

n→+∞
−−−−→ 0.

Note that, to apply the dominated convergence theorem, we need (1E − gn)(−P ′(ξ)) converges to zero
almost everywhere, which is a consequence of absolute continuity of ν with respect to Lebesgue measure.
Therefore, in order to prove (D-6), it suffices to check that

lim sup
t→±∞

∥(1E − gn)(x/t)u∥
2
L2

x

n→+∞
−−−−→ 0. (D-7)

Once it holds true, one has, for all n ∈ N,

lim sup
t→±∞

∥1E(x/t)u − 1E(−P ′(Dx))u∥L2
x

⩽ lim sup
t→±∞

∥gn(x/t)u − gn(−P ′(Dx))u∥L2
x
+ lim sup

t→±∞

∥(1E − gn)(x/t)u∥L2
x

+ lim sup
t→±∞

∥(1E − gn)(−P ′(Dx))u∥L2

= lim sup
t→±∞

∥(1E − gn)(x/t)u∥L2
x
+ lim sup

t→±∞

∥(1E − gn)(−P ′(Dx))u∥L2,
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since gn is obviously the Fourier transform of some finite measure. The two quantities on the right-hand
side vanish as n tends to infinity, and the desired conclusion 1E ∈ G follows.

The proof of (D-7) given in [Strichartz 1981] is to find hn ∈ G such that

C ⩾ hn ⩾ 1On and hn → 0 a.e.,

where On = Un\Kn is an open set. If such hn exists, one obtains immediately that

lim
n→+∞

lim sup
t→±∞

∥(1E − gn)(x/t)u(t)∥2
L2 ⩽ lim

n→+∞
lim sup
t→±∞

∥hn(x/t)u(t)∥2
L2

⩽ lim
n→+∞

lim sup
t→±∞

∥hn(−P ′(Dx))u(t)∥2
L2

= lim
n→+∞

(2π)−d
∫

h2
n(−∇ P(ξ))|û0(ξ)|

2 dξ = 0.

Note that the second inequality is a consequence of hn ∈G and the last equality follows from the dominated
convergence theorem.

Since we only know that G contains a subset of continuous functions (Fourier transform of finite
measures), it is essential to assume the hn’s to be continuous. However, for general decreasing bounded
open sets On , even if their measures decrease to zero, such continuous hn’s do not exist. Otherwise, it
is harmless to assume hn’s are supported in the same large ball. Then, for one thing by the dominated
convergence theorem,

lim
n→+∞

∫
hn(y) dy = 0,

and for another thing, we have∫
hn(y) dy ⩾

∫
On

hn(y) dy = Leb(On)⩾ 0,

where On is the closure of open set On . Here the first inequality is due to the continuity of the hn’s. As a
result,

lim
n→+∞

Leb(On)= 0.

The contradiction arises from the fact that Leb(On) tends to zero does not imply that Leb(On) tends
to zero. For example, let {rj }j∈N be a sequence of rational numbers in the unit ball B = B(0, 1) of Rd

centered at zero. Consider the series of open sets

On :=

⋃
j∈N

B(rj , 2− j−n).

Clearly the On’s are open as the union of open sets and

Leb(On)⩽
∑
j∈N

Leb(B(rj , 2− j−n))≲
∑
j∈N

2−( j+n)d
∼ 2−nd

→ 0 as n → +∞.

Since {rj }j∈N is dense in B = B(0, 1), the closure of each On contains at least the unit ball B. As a
consequence,

lim
n→+∞

Leb(On)⩾ lim
n→+∞

Leb(B)= Cd > 0.
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We emphasize that the argument above does not falsify (D-5) and it is still unknown whether this conjecture
is true. Here we shall prove rigorously that all bounded continuous functions belong to G.

Proposition D.2. If the measure ν defined in (D-2) is absolutely continuous with respect to Lebesgue
measure, we have

C0
b(R

d)⊂ G.

Proof. As in the proof of Lemma D.1, we assume that û0 ∈ C∞
c (R

d). To begin with, we check that the
Schwartz class S ⊂ G. For any g ∈ S,(

g
(

x
t

)
− g(−P ′(Dx))

)
u(t, x)

=
1

(2π)d

∫
ei(x ·ξ+t P(ξ))

(
g
(

x
t

)
− g(−P ′(ξ))

)
û0(ξ) dξ

=
1

(2π)d

∫
ei(x ·ξ+t P(ξ))

(
x
t

+ P ′(ξ)

)∫ 1

0
g′

(
τ

t
x − (1 − τ)P ′(ξ)

)
dτ û0(ξ) dξ

=
i

(2π)d t

∫
ei(x ·ξ+t P(ξ))∂ξ

[∫ 1

0
g′

(
τ

t
x − (1 − τ)P ′(ξ)

)
dτ û0(ξ)

]
dξ

=
i

(2π)d t

∫
ei(x ·ξ+t P(ξ))

∫ 1

0
g′′

(
τ

t
x − (1 − τ)P ′(ξ)

)
(τ − 1) dτ P ′′(ξ)û0(ξ) dξ

+
i

(2π)d t

∫
ei(x ·ξ+t P(ξ))

∫ 1

0
g′

(
τ

t
x − (1 − τ)P ′(ξ)

)
dτ∂ξ û0(ξ) dξ.

Notice that, by Lemma A.5 and A.10, the operator of symbol

g′′

(
τ

t
x − (1 − τ)P ′(ξ)

)
, g′

(
τ

t
x − (1 − τ)P ′(ξ)

)
is bounded uniformly in t and τ and that functions

P ′′(ξ)û0(ξ), ∂ξ û0(ξ)

belong to L2, since we have assumed û0 ∈ C∞
c (R

d). As a consequence,∥∥∥∥(g
(

x
t

)
− g(−P ′(Dx))

)
u(t, x)

∥∥∥∥
L2

x

≲ |t |−1 t→±∞
−−−−→ 0.

By noticing that G is closed under L∞-norm, we have

C0
0 :=

{
g ∈ C0

: lim
|y|→+∞

g(y)= 0
}

= S ⊂ G,

where S is the closure of S with respect to L∞-norm.
It remains to pass to general continuous function g. In fact, we only need to consider those g ⩾ 0,

since once may always write g as the difference of two nonnegative continuous functions, which are both
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bounded. Let us fix χ ∈ C∞
c which equals 1 near zero and define, for all R > 0,

χR(y) := χ

(
y
R

)
.

For arbitrary R > 0, we have

lim sup
t→±∞

∥(g(x/t)− g(−P ′(Dx)))u(t)∥L2

⩽ lim sup
t→±∞

∥((gχR)(x/t)− (gχR)(−P ′(Dx)))u(t)∥L2

+ lim sup
t→±∞

∥(g(1 −χR))(x/t)u(t)∥L2 + lim sup
t→±∞

∥(g(1 −χR))(−P ′(Dx))u(t)∥L2

= lim sup
t→±∞

∥(g(1 −χR))(x/t)u(t)∥L2 + lim sup
t→±∞

∥(g(1 −χR))(−P ′(Dx))u(t)∥L2,

since gχR ∈ C0
0 . The second term on the right-hand side can be calculated as

lim sup
t→±∞

∥(g(1 −χR))(−P ′(Dx))u(t)∥L2 = (2π)−
1
2 d

∥(g(1 −χR))(−P ′)û0∥L2,

which, due to the dominated convergence theorem and the absolute continuity of ν with respect to
Lebesgue measure, converges to zero as R → +∞. As for the cut-off in x , we observe that

lim sup
t→±∞

∥(g(1 −χR))(x/t)u(t)∥L2 ⩽ ∥g∥L∞ lim sup
t→±∞

∥(1 −χR)(x/t)u(t)∥L2 .

Note that since χR ∈ S ⊂ G, (1 −χR)(x/t)u(t) can be written, when t → ±∞, as

u(t)−χR(−P ′(Dx))u(t)+ oL2(1).

As a result,
lim sup
t→±∞

∥(1 −χR)(x/t)u(t)∥L2 = lim sup
t→±∞

∥(1 −χR)(−P ′(Dx))u(t)∥L2

= (2π)−
1
2 d

∥(1 −χR)û0∥L2 .

We have seen that the last quantity tends to zero as R → +∞. In conclusion, we have proved that, for all
u0 ∈ F−1C∞

c (R
d
\{0}),

lim
R→+∞

lim sup
t→±∞

∥∥(g(x/t)− g(−P ′(Dx))
)
u(t)

∥∥
L2 = 0,

and thus g ∈ G. □

D3. Proof of (D-5) for the dispersive system. Before ending this section, we give a proof of (D-5) for
the dispersive system. To be precise, we assume that there exists some dense subspace D0 ⊂ L2 such that

∥ei t P(Dx )u0∥L∞ ⩽ C(u0)|t |−
1
2 d

∀u0 ∈ D0 ∀|t |> 1, (D-8)

where C(u0) is a constant depending on u0.

Theorem D.3. Assume that P is smooth except at zero and ν defined in (D-2) is absolutely continuous with
respect to Lebesgue measure. Then the dispersion estimate (D-8), associated with some dense subspace
D0 ⊂ L2, implies (D-5).
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Proof. Recall that, as mentioned in previous section, it has been proved in [Strichartz 1981] that, when ν
is absolutely continuous with respect to Lebesgue measure, (D-5) is equivalent to (D-6). Therefore, it
suffices to check that, for all u0 ∈ D0,∥∥∥∥1E

(
x
t

)
u(t)− 1E(Dx)u(t)

∥∥∥∥
L2

→ 0 as t → ±∞,

where E is any bounded measurable set.
In Lemma D.1, we have proved this result for those E whose boundary has zero Lebesgue measure.

The idea of treatment of general E is to approximate it by a finite union of cubes and control the remaining
part via a dispersion estimate. To begin with, we fix an arbitrarily small ϵ > 0. By outer regularity of
Lebesgue measure, there exists an open set Ẽϵ ⊃ E such that

Leb(Ẽϵ\E) < 1
2ϵ.

Since any open set can be expressed as the union of almost disjoint closed cubes, we may find finitely
many closed cubes {K j }

N
j=1 such that K j ⊂ Ẽϵ and

Leb(Ẽϵ\Eϵ) < 1
2ϵ, where Eϵ =

⋃N
j=1 K j .

One may observe that
Leb(E\Eϵ ⊔ Eϵ\E) < ϵ.

Now, for any u0 ∈ D0, we have∥∥∥∥1E

(
x
t

)
u(t)− 1E(Dx)u(t)

∥∥∥∥
L2

⩽

∥∥∥∥(1Eϵ − 1E)

(
x
t

)
u(t)

∥∥∥∥
L2

+

∥∥∥∥1Eϵ

(
x
t

)
u(t)− 1Eϵ (Dx)u(t)

∥∥∥∥
L2

+
∥∥(1Eϵ − 1E)(Dx)u(t)

∥∥
L2

⩽ C(u0)

∥∥∥∥(1Eϵ − 1E)

(
x
t

)∥∥∥∥
L2

|t |−
1
2 d

+

∥∥∥∥1Eϵ

(
x
t

)
u(t)− 1Eϵ (Dx)u(t)

∥∥∥∥
L2

+ (2π)−
1
2 d
∥∥(1Eϵ − 1E)û0

∥∥
L2

⩽ C(u0)Leb(E\Eϵ ⊔ Eϵ\E)
1
2 +

∥∥∥∥1Eϵ

(
x
t

)
u(t)− 1Eϵ (Dx)u(t)

∥∥∥∥
L2

+ (2π)−
1
2 d
∥∥1E\Eϵ⊔Eϵ\E(ξ)û0(ξ)

∥∥
L2
ξ

< C(u0)ϵ
1
2 +

∥∥∥∥1Eϵ

(
x
t

)
u(t)− 1Eϵ (Dx)u(t)

∥∥∥∥
L2

+ (2π)−
1
2 d
∥∥1E\Eϵ⊔Eϵ\E(ξ)û0(ξ)

∥∥
L2
ξ

.

Due to the fact that Eϵ is the union of finitely many closed cubes, the boundary of Eϵ has zero Lebesgue
measure. As a result, the second term on the right-hand side tends to zero as t → ±∞, i.e.,

lim sup
t→±∞

∥∥∥∥1E

(
x
t

)
u(t)− 1E(Dx)u(t)

∥∥∥∥
L2

≲ ϵ
1
2 +

∥∥1E\Eϵ⊔Eϵ\E(ξ)û0(ξ)
∥∥

L2
ξ

.

Since û0 ∈ L2 and Leb(E\Eϵ ⊔ Eϵ\E) < ϵ, the right-hand side becomes arbitrarily small, if ϵ > 0 is
taken small enough. The desired result thus follows. □

The dispersion estimate (D-8) holds for all symbols P we deal with in the present paper, as a conse-
quence of stationary phase lemma.
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Proposition D.4. Let P be radial and smooth except at zero. If P ′′ > 0 or P ′′ < 0, the dispersion estimate
(D-8) holds with D0 = F−1C∞

c (R
d
\{0}).

Proof. Without loss of generality, we assume that t > 1. Let u0 be any function in D0 =F−1C∞
c (R

d
\{0}).

To prove the inequality (D-8), it is equivalent by definition to prove that∥∥∥∥∫ ei(x ·ξ+t P(ξ))û0(ξ) dξ
∥∥∥∥

L∞(dx)
≲ t−

1
2 d .

Since P is radial, we may write the inequality above in the polar system ξ = ρθ as∥∥∥∥∫ ei t( x ·θ
t ρ+P(ρ))û0(ρθ)ρ

d−1 dρ dθ
∥∥∥∥

L∞(dx)
≲ t−

1
2 d .

By letting s = x · θ/t ∈ R, it suffices to prove that

sup
s∈R,θ∈Sd−1

∣∣∣∣∫ ei t (sρ+P(ρ))û0(ρθ)ρ
d−1 dρ

∣∣∣∣≲ t−
1
2 d .

Since ρ stays between two positive constants and P ′′
̸= 0 on ]0,+∞[, this inequality follows from

stationary phase lemma. □

Corollary D.5. Equation (D-5) holds for all P satisfying condition (Hp0,p1) with p0, p1 ̸= 0.

Appendix E: Proof of Proposition 4.3

In [Delort 2022], the author proved Proposition 4.3 for strictly convex P. In this part, we will explain how
the same argument works for strictly concave P and how to calculate the limit for ϵ = ± respectively.
Since most of the calculations were done in Section 3 of [loc. cit.], we will omit these details.

By definition I (t,−ϵ, ϵ,−ϵ, ϵ; F) equals∫
eiϵ[r(−ρ+ρ′)−t (−P(ρ)+P(ρ′))]1 r

t >P ′(ρ),P ′(ρ′)F
(
ρ, ρ ′, r, t; r − t P ′(ρ), r − t P ′(ρ ′)

)
dr dρ dρ ′,

which can be split into I+ and I−, with domain of integral ρ−ρ ′> 0 and ρ−ρ ′< 0, respectively. Namely,

I+ =

∫
eiϵ[r(−ρ+ρ′)−t (−P(ρ)+P(ρ′))]1r>t P ′(ρ′)1ρ−ρ′>0 F

(
ρ, ρ ′, r, t; r − t P ′(ρ), r − t P ′(ρ ′)

)
dr dρ dρ ′,

I− =

∫
eiϵ[r(−ρ+ρ′)−t (−P(ρ)+P(ρ′))]1r>t P ′(ρ′)1ρ−ρ′<0 F

(
ρ, ρ ′, r, t; r − t P ′(ρ), r − t P ′(ρ ′)

)
dr dρ dρ ′.

In what follows, we study mainly the integral I+, with I− manipulated in the same way. By the change of
variables r → tr + t P ′(ρ ′), ρ ′

→ ρ−w, I+ reads

t
∫

eiϵt[−(r+P ′(ρ−w))w−(−P(ρ)+P(ρ−w))]1r>01w>0

× F(ρ, ρ−w, t (r + P ′(ρ−w)), t; tr − t P ′(ρ)+ t P ′(ρ−w), tr) dr dρ dw.

We introduce the notation

P(ρ ′)− P(ρ)= P ′(ρ)(ρ ′
− ρ)+ g(ρ, ρ ′)(ρ ′

− ρ)2,
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where g is strictly negative since P is concave;

F̃(ρ, ρ ′, r, t; ζ, ζ ′)= F(ρ, ρ ′, tr, t; tζ, tζ ′),

which is smooth, supported for
ρ, ρ ′, r ∼ 1, |ζ |, |ζ ′

| ≲ tδ
′
−1,

and satisfies, for all j, j ′, k, γ, γ ′
∈ N,∣∣∂ j

ρ∂
j ′

ρ′∂
k
r ∂

γ

ζ ∂
γ ′

ζ ′ F̃(ρ, ρ ′, r, t; ζ, ζ ′)
∣∣≲ t (1−δ′)(k+γ+γ ′).

Moreover, we have the pointwise limit

lim
t→∞

F̃
(
ρ, ρ ′,

r
√

t
+ P ′(ρ ′), t;

ζ
√

t
,
ζ ′

√
t

)
= F0(ρ, ρ

′).

With these notations, I+ can be expressed as

t
∫

e−iϵt[rw−g(ρ−w,ρ)w2
]1r>01w>0 F̃

(
ρ, ρ−w, r + P ′(ρ−w), t; r − P ′(ρ)+ P ′(ρ−w), r

)
dr dρ dw.

The same calculus as in Lemma 3.1.4 of [Delort 2022] shows that, up to some terms tending to zero, I+
equals

t
∫

e−iϵtrw1r>0eiϵtg(ρ−w,ρ)w2
1w>0 F̃

(
ρ, ρ−w, r + P ′(ρ), t; r, r

)
dr dw dρ

=

∫
e−iϵrw1r>0eiϵg(ρ−w/

√
t,ρ)w2

1w>0 F̃
(
ρ, ρ−

w
√

t
,

r
√

t
+ P ′(ρ), t;

r
√

t
,

r
√

t

)
dr dw dρ,

whose formal limit by taking the pointwise limit of the integrand is∫
e−iϵrw1r>0eiϵg(ρ,ρ)w2

1w>0 F0(ρ, ρ) dr dw dρ.

The error between this integral and I+ is actually o(1), due the calculation of the proof of Proposition 3.1.3
of [loc. cit.]. In conclusion, we have

I+ =

∫
e−iϵrw1r>0eiϵg(ρ,ρ)w2

1w>0 F0(ρ, ρ) dr dw dρ+ o(1),

I− =

∫
e−iϵrw1r>0e−iϵg(ρ,ρ)w2

1w<0 F0(ρ, ρ) dr dw dρ+ o(1).

As a consequence, the limit of I (t,−ϵ, ϵ,−ϵ, ϵ; F) is∫
e−iϵrw1r>0 dr

(
eiϵg(ρ,ρ)w2

1w>0 + e−iϵg(ρ,ρ)w2
1w<0

)
dwF0(ρ, ρ) dρ

=

∫
−iϵ(w− iϵ0)−1(cos(ϵg(ρ, ρ)w2)+ sgn(w)i sin(ϵg(ρ, ρ)w2)

)
dw F0(ρ, ρ) dρ

=

∫
−iϵ(w− iϵ0)−1 cos(g(ρ, ρ)w2) dw F0(ρ, ρ) dρ+

∫
sin(g(ρ, ρ)w2)

|w|
dw F0(ρ, ρ) dρ,

where the integrals in r and w should be understood in the sense of oscillatory integral and distribution,
respectively.
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Due to the assumption that P is strictly concave, or equivalently P ′′ < 0, g is negative. Since
(w− iϵ0)−1 is homogeneous of degree −1, the right-hand side of the equality above can be rewritten as∫

−iϵ(w− iϵ0)−1 cos(w2) dw F0(ρ, ρ) dρ−

∫
sin(w2)

|w|
dw F0(ρ, ρ) dρ.

For one thing, the distribution (w± i0)−1 can be expressed as

(w± i0)−1
= ∓π iδ0 + P.V. 1

w
.

And for another thing, due to the Dirichlet integral
∫

∞

0 (sin y/y) dy =
π
2 , we have∫

sin(w2)

|w|
dw =

π

2
.

These identities imply

lim
t→+∞

I (t,−ϵ, ϵ,−ϵ, ϵ; F)=

∫ (
πδ0−iϵ P.V. 1

w

)
cos(w2) dw F0(ρ, ρ) dρ+sgn(g)π

2

∫
F0(ρ, ρ) dρ

= π

∫
F0(ρ, ρ) dρ−

π

2

∫
F0(ρ, ρ) dρ

=
π

2

∫
F0(ρ, ρ) dρ.

In the case of strictly convex P, it has been proved in [Delort 2022] that

lim
t→+∞

I (t,−ϵ, ϵ,−ϵ, ϵ; F)

=

∫
iϵ(w+ iϵ0)−1 cos(g(ρ, ρ)w2) dw F0(ρ, ρ) dρ−

∫
sin(g(ρ, ρ)w2)

|w|
dw F0(ρ, ρ) dρ,

where g is positive. We may repeat the argument above and conclude that

lim
t→+∞

I (t,−ϵ, ϵ,−ϵ, ϵ; F)=

∫ (
πδ0 + iϵ P.V. 1

w

)
cos(w2) dw F0(ρ, ρ) dρ−

π

2

∫
F0(ρ, ρ) dρ

= π

∫
F0(ρ, ρ)dρ−

π

2

∫
F0(ρ, ρ) dρ

=
π

2

∫
F0(ρ, ρ) dρ.

Acknowledgment

We thank Luis Vega and Carlos Kenig for some discussions related to Proposition 1.11 above.

References

[Calderón and Vaillancourt 1971] A.-P. Calderón and R. Vaillancourt, “On the boundedness of pseudo-differential operators”,
J. Math. Soc. Japan 23 (1971), 374–378. MR

[Coifman and Meyer 1978] R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Société
Mathématique de France, Paris, 1978. MR

https://doi.org/10.2969/jmsj/02320374
http://msp.org/idx/mr/284872
http://msp.org/idx/mr/518170


MICROLOCAL PARTITION OF ENERGY FOR FRACTIONAL-TYPE DISPERSIVE EQUATIONS 2143

[Côte and Laurent 2024] R. Côte and C. Laurent, “Concentration close to the cone for linear waves”, Rev. Mat. Iberoam. 40:1
(2024), 201–250. MR

[Côte et al. 2014] R. Côte, C. E. Kenig, and W. Schlag, “Energy partition for the linear radial wave equation”, Math. Ann.
358:3-4 (2014), 573–607. MR

[Côte et al. 2015a] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, “Characterization of large energy solutions of the equivariant
wave map problem: I”, Amer. J. Math. 137:1 (2015), 139–207. MR

[Côte et al. 2015b] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, “Characterization of large energy solutions of the equivariant
wave map problem, II”, Amer. J. Math. 137:1 (2015), 209–250. MR

[Côte et al. 2018] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, “Profiles for the radial focusing 4d energy-critical wave
equation”, Comm. Math. Phys. 357:3 (2018), 943–1008. MR

[Cotlar 1955] M. Cotlar, “A combinatorial inequality and its applications to L2-spaces”, Rev. Mat. Cuyana 1 (1955), 41–55. MR

[Delort 2022] J.-M. Delort, “Microlocal partition of energy for linear wave or Schrödinger equations”, Tunis. J. Math. 4:2 (2022),
329–385. MR

[Duyckaerts et al. 2011] T. Duyckaerts, C. Kenig, and F. Merle, “Universality of blow-up profile for small radial type II blow-up
solutions of the energy-critical wave equation”, J. Eur. Math. Soc. (JEMS) 13:3 (2011), 533–599. MR

[Duyckaerts et al. 2012] T. Duyckaerts, C. Kenig, and F. Merle, “Universality of the blow-up profile for small type II blow-up
solutions of the energy-critical wave equation: the nonradial case”, J. Eur. Math. Soc. (JEMS) 14:5 (2012), 1389–1454. MR

[Flandrin 1988] P. Flandrin, “Maximum signal energy concentration in a time-frequency domain”, pp. 2176–2179 in ICASSP-88,
International conference on acoustics, speech, and signal processing, vol. 4, 1988.

[Hörmander 1994] L. Hörmander, The analysis of linear partial differential operators, III: pseudo-differential operators, Grundl.
Math. Wissen. 274, Springer, 1994. MR

[Hwang 1987] I. L. Hwang, “The L2-boundedness of pseudodifferential operators”, Trans. Amer. Math. Soc. 302:1 (1987),
55–76. MR

[Lerner 2024] N. Lerner, Integrating the Wigner distribution on subsets of the phase space, a survey, Memoirs of the European
Mathematical Society 12, EMS Press, Berlin, 2024. MR

[Lieb and Ostrover 2010] E. H. Lieb and Y. Ostrover, “Localization of multidimensional Wigner distributions”, J. Math. Phys.
51:10 (2010), art. id. 102101. MR

[Lusin and Priwaloff 1925] N. Lusin and J. Priwaloff, “Sur l’unicité et la multiplicité des fonctions analytiques”, Ann. Sci. École
Norm. Sup. (3) 42 (1925), 143–191. MR

[Sogge 2017] C. D. Sogge, Fourier integrals in classical analysis, 2nd ed., Cambridge Tracts in Mathematics 210, Cambridge
Univ. Press, 2017. MR

[Stein 1993] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
Mathematical Series 43, Princeton Univ. Press, 1993. MR

[Strichartz 1981] R. S. Strichartz, “Asymptotic behavior of waves”, J. Functional Analysis 40:3 (1981), 341–357. MR

[Zworski 2012] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, Amer. Math. Soc., Providence, RI,
2012. MR

Received 22 Oct 2023. Accepted 29 Oct 2024.

HAOCHENG YANG: haocheng.yang@universite-paris-saclay.fr
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ON THE KINK-KINK COLLISION PROBLEM FOR
THE φ6 MODEL WITH LOW SPEED

ABDON MOUTINHO

We study the elasticity of the collision of two kinks with an incoming low speed v ∈ (0, 1) for the nonlinear
wave equation in dimension 1+1 known as the φ6 model. We prove for any k ∈ N that if the incoming
speed v is small enough, then, after the collision, the two solitons move away with a velocity v f such
that |v f − v| ≤ vk and the energy of the remainder will also be smaller than vk . This manuscript is the
continuation of our previous paper where we constructed a sequence φk of approximate solutions for
the φ6 model. The proof of our main result relies on the use of the set of approximate solutions from our
previous work, modulation analysis, and a refined energy estimate method to evaluate the precision of our
approximate solutions during a large time interval.

1. Introduction

1.1. Background. Considering the potential function U (φ)=φ2(1−φ2)2, the partial differential equation
known as the φ6 model in domain 1 + 1 is defined by

∂2
t φ(t, x)− ∂2

xφ(t, x)+ U ′(φ(t, x))= 0, (t, x) ∈ R × R. (1)

The solutions φ(t, x) of (1) preserve the energy given by

E(φ)(t)=

∫
R

1
2([∂tφ(t, x)]2

+ [∂xφ(t, x)]2)+ U (φ(t, x)) dx, (energy)

and the momentum
P(φ)= −

∫
R

∂tφ(t, x)∂xφ(t, x) dx . (momentum)

The kinetic energy and potential energy are given, respectively, by

Ekin(φ)(t)=

∫
R

1
2 [∂tφ(t, x)]2 dx, Epot(φ)(t)=

∫
R

1
2 [∂xφ(t, x)]2

+ U (φ(t, x)) dx .

The vacuum set V of the potential function U is the set U−1
{0} = {−1, 0, 1}. The unique constant

solutions with finite energy of (1) are the functions of the form φ ≡ η for any η ∈ V .
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stability, φ6 model.
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Furthermore, it is well known that if a solution φ(t, x) of the partial differential equation (1) is in the
energy space, which is the set of strong solutions with finite energy, then the solution is global-in-time
(see the introduction of [Moutinho 2023] for a proof) and there exist numbers η1, η2 ∈ V such that

lim
x→−∞

φ(t, x)= η1, lim
x→+∞

φ(t, x)= η2

for all t ∈ R. The set of solutions of (1) with finite energy is invariant under space translation, time
translation, space reflection, time reflection, and Lorentz transformations.

The unique nonconstant stationary solutions of (1) with finite energy are the kinks which are the space
translation of either H0,1(x) or H−1,0(x) that are denoted by

H0,1(x)=
e
√

2x√
1 + e2

√
2x
, H−1,0(x)= −H0,1(−x)=

−e−
√

2x√
1 + e−2

√
2x
,

and the antikinks which are the space translation of the functions

H1,0(x)= H0,1(−x)=
e−

√
2x√

1 + e−2
√

2x
, H0,−1(x)= −H0,1(x)=

−e
√

2x√
1 + e2

√
2x
.

Using the identity

H ′

0,1(x)=
√

2
e
√

2x

(1 + e2
√

2x)3/2
,

it is not difficult to verify that ∥∥∥∥ d
dx

H0,1(x)
∥∥∥∥2

L2
x (R)

=
1

2
√

2
. (2)

The kink H0,1 satisfies the Bogomolny identity, which is H ′

0,1(x)=
√

2U (H0,1(x)), and the estimate∣∣∣∣ dk

dxk H0,1(x)
∣∣∣∣ ≲k min(e

√
2x , e−2

√
2x) (3)

for any k ≥ 1, and clearly
|H0,1(x)| ≤ e

√
2 min(x,0). (4)

For the φ6 model there are stability results for the kinks. In [Moutinho 2023], the orbital stability
of two kinks with energy close to the minimal was obtained, and also the dynamics of two interacting
kinks, which is a kink-kink solution with low kinetic energy and potential energy slightly bigger than
the minimum possible for two kinks, was described in function of the initial data and the energy of the
solution. In [Kowalczyk et al. 2021], the asymptotic stability of a kink for the φ6 model was obtained,
and moreover, asymptotic stability of a single kink was also obtained for a certain class of nonlinear wave
equations of dimension 1+1. There are also asymptotic stability results for a single kink in other models;
for example, see [Kowalczyk et al. 2017; Delort and Masmoudi 2022] for the φ4 model.

This manuscript is the sequel of [Moutinho 2024]. In this paper, we study the traveling kink-kink
solutions of (1) with speed 0< v < 1 small enough. More precisely, we consider the following definition.
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Definition 1. The traveling kink-kink with speed v ∈ (0, 1) are the set of solutions φ(t, x) that satisfies,
for some positive constants K , c and any t ≥ K , the decay estimate∥∥∥∥(φ(t, x), ∂tφ(t, x))− −−→H0,1

(
x − vt

√
1 − v2

)
−

−−→H−1,0

(
x + vt

√
1 − v2

)∥∥∥∥
H1

x (R)×L2
x (R)

≤ e−ct , (5)

where, for any −1< v < 1 and any y ∈ R,

−−→H0,1

(
x − vt + y
√

1 − v2

)
=


H0,1

(
x − vt + y
√

1 − v2

)
−v

√
1 − v2

H ′

0,1

(
x − vt + y
√

1 − v2

)
, (6)

−−→H−1,0

(
x + vt − y
√

1 − v2

)
=


H−1,0

(
x + vt − y
√

1 − v2

)
v

√
1 − v2

H ′

−1,0

(
x + vt − y
√

1 − v2

)
. (7)

The existence and uniqueness of solutions φ(t, x) satisfying (5) for any 0 < v < 1 was obtained in
[Chen and Jendrej 2022], but the uniqueness of the solution of (1) satisfying

lim
t→+∞

∥∥∥∥→
φ(t, x)− −−→H0,1

(
x − vt

√
1 − v2

)
+

−−→H−1,0

(
x + vt

√
1 − v2

)∥∥∥∥
H1

x (R)×L2
x (R)

= 0

for 0< v < 1 is still an open problem. For references on the existence and uniqueness of multisoliton
solutions of other nonlinear dispersive partial differential equations; see, e.g., [Martel 2005; Combet 2011].

For nonintegrable dispersive models, there exist previous results about the inelasticity of the collision
of two solitons. For example, Martel and Merle [2011] verified that the collision between two solitons
with nearly equal speed is not elastic. More precisely, they showed that the incoming speed of the two
solitons is different to their outgoing speed after their collision.

Since the φ6 model is a nonintegrable system, the collision of two kinks with low speed 0< v < 1 is
expected to be inelastic. More precisely, we expect the existence of a value k > 1 such that if 0< v ≪ 1
and φ(t, x) is a solution (1) satisfying the condition (5), then φ(t, x) should have inelasticity of order vk,
which means the existence of t < 0 with |t | ≫ 1 such that

(φ(t, x), ∂tφ(t, x))=
−−→H0,1

(
x + v f t + y1(t)

√

1 − v2
f

)
+

−−→H−1,0

(
x − v f t + y2(t)

√

1 − v2
f

)
+ ro(t, x), (8)

with vk
≪ ∥ro(t)∥H1

x (R)×L2
x (R)

≪ v and v f (t), y1, y2 satisfying

vk
≪ |v f (t)− v| + max

j∈{1,2}

|ẏ j (t)| ≪ v (9)

for all t < 0 satisfying |t | ≫ 1. Actually, in the quartic gKdV, the collision of the two solitons satisfies a
similar property to our previous expectations in (8) and (9); see [Martel and Merle 2011, Theorem 1] for
more details.
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However, in this manuscript, we prove for the φ6 model and any k > 1 that if 0< v ≪ 1 and t is close
to −∞, both estimates (8) and (9) are not possible. Indeed, we demonstrate that if v ≪ 1 and φ(t, x)
satisfies (5), then there exists a number ek,2v ∈ R satisfying, for all t close to −∞,

(φ(t, x), ∂tφ(t, x))=
−−→H0,1

(
x + v f t − ek,2v

√

1 − v2
f

)
+

−−→H−1,0

(
x − v f t + ek,2v

√

1 − v2
f

)
+ rc,v(t, x),

lim sup
t→−∞

∥rc,v(t)∥H1
x ×L2

x
≤ v2k,

lim sup
t→−∞

|v f (v, t)− v| ≤ v2k . (10)

In conclusion, the inelasticity of the collision of two kinks cannot be of any order vk for any 1 ≪ k ∈ N,
if the incoming speed v of the kinks is small enough. The problem to verify the inelasticity of the
collision of kinks for the φ6 model is still open. But, because of the conclusion obtained in this paper,
the change |v− v f | in the speeds of each soliton is much smaller than any monomial function vk. More
precisely, for all k > 0,

lim
v→0+

lim sup
t→−∞

|v f (v, t)− v|
vk = 0. (11)

This is a new result.
The study of collision of kinks for the φ6 model is important for high energy physics; see, for example,

[Gani et al. 2014; Dorey et al. 2011]. Actually, in [Gani et al. 2014], it was shown numerically that there
exists a critical speed vc such that if each of the two kinks move with speed v with absolute value less
than vc and they approach each other, then they will collide and the collision will be very elastic, which is
exactly the result we obtain rigorously in this paper. The study of the dynamics of multisoliton solutions
of the φ6 model has also applications in condensed matter physics, see [Bishop and Schneider 1978], and
cosmology, see [Vilenkin and Shellard 1994].

For other nonlinear dispersive equations, there exist rigorous results of inelasticity and stability of
collision of solitons. For gKdV models, the inelasticity of collision of solitons was proved for the quartic
gKdV in [Martel and Merle 2011], and, for a certain class of gKdV, inelasticity of collision between
solitons was also proved in [Muñoz 2010; 2012]; see also [Martel and Merle 2009]. For the nonlinear
Schrödinger equation, Perelman [2011] studied the collision of two solitons of different sizes and showed
that the solution does not preserve the two solitons’ structure after the collision. See also [Martel and
Merle 2018] for discussion on the inelasticity of the collision of two solitons for the fifth-dimensional
energy critical wave equation.

1.2. Main results. The main theorem obtained in this manuscript is the following result:

Theorem 2. There exists a continuous function v f : (0, 1)×R→ (0, 1) and, for any 0<θ <1 and k ∈N≥2,
there exists 0 < δ(θ, k) < 1, such that if 0 < v < δ(θ, k), and φ(t, x) is a traveling kink-kink solution
of (1) with speed v, then there exists a number ev,k such that |ev,k |< ln(8/v2). Furthermore, if

t ≤ −
ln(1/v)2−θ

v
,



ON THE KINK-KINK COLLISION PROBLEM FOR THE φ6 MODEL WITH LOW SPEED 2149

then |v f (v, t)− v|< vk and∥∥∥∥φ(t, x)− H0,1

(
x − ek,v + v f t

√

1 − v2
f

)
− H−1,0

(
x + ek,v − v f t

√

1 − v2
f

)∥∥∥∥
H1

x (R)

+

∥∥∥∥∂tφ(t, x)−
v f

√

1 − v2
f

H ′

0,1

(
x − ev,k + v f t

√

1 − v2
f

)
+

v f
√

1 − v2
f

H ′

−1,0

(
x + ev,k − v f t

√

1 − v2
f

)∥∥∥∥
L2

x (R)

≤ vk .

If
−4 ln(1/v)2−θ

v
≤ t ≤

− ln(1/v)2−θ

v
,

then∥∥∥∥φ(t, x)− H0,1

(
x − ek,v + vt

√
1 − v2

)
− H−1,0

(
x + ek,v − vt

√
1 − v2

)∥∥∥∥
H1

x (R)

+

∥∥∥∥∂tφ(t, x)−
v

√
1 − v2

H ′

0,1

(
x − ev,k + vt

√
1 − v2

)
+

v
√

1 − v2
H ′

−1,0

(
x + ev,k − vt

√
1 − v2

)∥∥∥∥
L2

x (R)

≤ vk .

Remark 3. The second inequality in Theorem 2 follows from the energy estimate method used in
Section 3 to estimate the energy norm of the remainder during a large time interval.

Clearly, Theorem 2 implies (11). Actually, the first item of Theorem 2 is a consequence of the second
item of this theorem and the following result about the orbital stability of two moving kinks.

Theorem 4. There exists a constant c > 0 and, for any θ ∈ (0, 1), there exists δ(θ) ∈ (0, 1) such that if
0< v < δ(θ), and (ψ0(x), ψ1(x)) ∈ H 1

x (R)× L2
x(R) is an odd function satisfying

∥(ψ0, ψ1)∥H1
x ×L2

x
< v2+θ , (12)

and y0 ≥ −4 ln v, then the solution (φ(t, x), ∂tφ(t, x)) of the Cauchy problem

∂2
t φ(t, x)− ∂2

xφ(t, x)+ U ′(φ(t, x))= 0,

[
φ(0, x)

∂tφ(0, x)

]
=


H0,1

(
x − y0

√
1 − v2

)
+ H−1,0

(
x + y0

√
1 − v2

)
+ψ0(x)

−v
√

1 − v2
H ′

0,1

(
x − y0

√
1 − v2

)
+

v
√

1 − v2
H ′

−1,0

(
x + y0

√
1 − v2

)
+ψ1(x)

 (13)

is given for all t ≥ 0 by

[
φ(t, x)
∂tφ(t, x)

]
=


H0,1

(
x − y(t)
√

1 − v2

)
+ H−1,0

(
x + y(t)
√

1 − v2

)
+ψ(t, x)

−v
√

1 − v2
H ′

0,1

(
x − y(t)
√

1 − v2

)
+

v
√

1 − v2
H ′

−1,0

(
x + y(t)
√

1 − v2

)
+ ∂tψ(t, x)

, (14)

such that
|y(0)− y0| + ∥

→
ψ(t, x)∥H1

x ×L2
x
≤ c∥

→
ψ0(x)∥

1/2
H1

x ×L2
x
+ c(1 + y0)

1/2e−
√

2y0,

|ẏ(t)− v| ≤ c∥
→
ψ0(x)∥H1

x ×L2
x

(15)

for all t ∈ R≥0.
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Remark 5. Theorem 4 allows us to extend the description of the traveling kink-kink for all time below

−
ln (1/v)2−θ

v
,

from which we will deduce the first inequality in Theorem 2.

1.3. Notation. In this subsection, we explain the notation that we are going to use in the next sections.
First, for any real function f : R2

→ R satisfying the conditions f (t, · ) ∈ L∞
x (R), and ∂t f (t, · ) ∈ L2

x(R),
we define the function

→
f : R2

→ R2 by

→
f (t, x)= ( f (t, x), ∂t f (t, x)) for every (t, x) ∈ R2.

For any k ∈ N and any smooth function f : R → R, we use the notation

f (k)(x)=
dx

dxk f (x) for all x ∈ R.

For any z ∈ R, we use the notation H z
0,1(x)= H0,1(x − z), H z

−1,0(x)= H−1,0(x − z). For any subset
D ⊂ R, any v ∈ (0, 1) and any function y : D → R, we define the functions −−→H0,1,v,y : D × R → R2,
−−→H−1,0,v,y : D× R → R2 by

−−→H0,1,v,y(t, x)=


H0,1

(
x −vt + y(t)

√
1−v2

)
−v

√
1−v2

H ′

0,1

(
x −vt + y(t)

√
1−v2

)
, −−→H−1,0,v,y(t, x)=


H−1,0

(
x +vt − y(t)

√
1−v2

)
v

√
1−v2

H ′

−1,0

(
x +vt − y(t)

√
1−v2

)
.

For any set D⊂ R and any nonnegative function k :D→ R≥0, we say that f (x)= O(k(x)), if f has the
same domain D as k and there is a universal constant C > 0 such that | f (x)| ≤ Ck(x) for any x ∈ D. For
any two nonnegative real functions f1(x) and f2(x), we have f1 ≲ f2 if there is a universal constant C > 0
such that f1(x) ≤ C f2(x) for any x ∈ R. Furthermore, for a finite number of real variables α1, . . . , αn

and two nonnegative functions f1(α1, . . . , αn, x) and f2(α1, . . . , αn, x) both with domain D× R ⊂ Rn+1,
we say that f1 ≲α1,...,αn f2 if there is a positive function L : D → R+ such that

f1(α1, . . . , αn, x)≤ L(α1, . . . , αn) f2(α1, . . . , αn, x) for all (α1, . . . , αm, x) ∈ D× R.

We write f1 ∼= f2 if f1 ≲ f2 and f2 ≲ f1.
We consider for any f ∈ H 1

x (R) and any g ∈ L2
x(R) the norms

∥ f ∥H1
x

= ∥ f ∥H1
x (R)

=

(
∥ f ∥

2
L2

x (R)
+

∥∥∥∥d f
dx

∥∥∥∥2

L2
x (R)

)1/2

, ∥g∥L2
x
= ∥g∥L2

x (R)
.

We also consider the norm ∥ · ∥H1
x ×L2

x
given by

∥( f1(x), f2(x))∥H1
x ×L2

x
= (∥ f1∥

2
H1

x (R)
+ ∥ f2(x)∥2

L2
x (R)

)1/2
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for any ( f1, f2) ∈ H 1
x (R)× L2

x(R). For any ( f1, f2) ∈ L2
x(R)× L2

x(R) and any (g1, g2) ∈ L2
x(R)× L2

x(R),
we let

⟨( f1, f2), (g1, g2)⟩ =

∫
R

f1(x)g1(x)+ f2(x)g2(x) dx .

For any functions f1(x), g1(x) ∈ L2
x(R), we let

⟨ f1, g1⟩ =

∫
R

f1(x)g1(x) dx .

In this manuscript, we consider the set N as the set of all positive integers. For any n ∈ N, and
any a, b ∈ Rn, we denote the scalar product in the Euclidean space Rn by

⟨a : b⟩ =

n∑
j=1

a j b j ,

where a = (a1, . . . , an) and b = (b1, . . . , bn).

1.4. Organization of the manuscript. First, from the global well-posedness of the partial differential equa-
tion (1), we recall that if φ is a strong solution of (1) with finite energy satisfying limx→±∞ φ(t0, x)= ±1
for some t0 ∈ R, then the function φ satisfies

∥φ(t, x)− H0,1(x)− H−1,0(x)∥H1
x (R)

<+∞

for all t ∈ R.
In Section 2.1, we will review our results from [Moutinho 2024] about the existence of a sequence of

approximate solutions (ϕk,v)k≥2 of (1) for which there exists a set of real numbers (yk(v))k≥2 satisfying
lim

t→+∞
∥−−→ϕk(t, x)− −−→H0,1,v,yk (t, x)− −−→H−1,0,v,yk (t, x)∥H1

x ×L2
x
= 0,

and if v ≪ 1, then ∥∂ l
t3(ϕk,v)(t, x)∥H s

x
≲s,l v

2k+l−1/2e−2
√

2v|t | for all t ∈ R, l ∈ N ∪ {0}, and s ≥ 0.
In Section 2.2, we will verify that any solution of (1) with finite energy close to a sum of two kinks

can be written as

φ(t, x)= ϕk,v(t, x)+
y1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1

(
x −

1
2 d(t)+ ck(t)√
1 −

1
4 ḋ(t)2

)
+

y2(t)√
1 −

1
4 ḋ(t)2

H ′

0,1

(
−x −

1
2 d(t)+ ck(t)√

1 −
1
4 ḋ(t)2

)
+ u(t, x), (16)

such that, for any t ∈ R, u(t) ∈ H 1
x (R) satisfies the orthogonality conditions〈

u(t, x), H ′

0,1

(
x −

1
2 d(t)+ ck(t)√
1 −

1
4 ḋ(t)2

)〉
= 0,

〈
u(t, x), H ′

0,1

(
−x −

1
2 d(t)+ ck(t)√

1 −
1
4 ḋ(t)2

)〉
= 0.

Moreover, using 3(φ)≡ 0, we can verify that y1, y2 ∈ C2(R). Furthermore, using (16), we will estimate
3(φ)(t, x). More precisely, we will estimate the expression 3(φ)(t, x)−3(ϕk,v)(t, x), in terms of
y1(t), y2(t), d(t), u(t, x) and the estimate of the term 3(ϕk,v)(t, x) will follow from the main results of
Section 2.1 about the decay with respect to t of the approximate solutions. The function ck(t) will not
appear in the evaluation of 3(φ)(t, x), since we will use only its decay.
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In Section 3, we will construct a function L(t) to estimate ∥(u(t), ∂t u(t))∥H1
x ×L2

x
during a large time

interval. The main argument in this section is analogous to the ideas of Section 4 of [Moutinho 2023].
More precisely, for

wk,v(t, x)=
x −

1
2 d(t)+ ck(t)√
1 −

1
4 ḋ(t)2

,

we consider first

L1(t)=

∫
R

∂t u(t, x)2 + ∂x u(t, x)2 + U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
u(t, x)2 dx .

From the orthogonality conditions satisfied by u(t, x), if v ≪ 1, we deduce the coercivity inequality

∥(u(t), ∂t u(t))∥2
H1

x ×L2
x
≲ L1(t).

The function L(t) will be constructed after correction terms L2(t) and L3(t) are added to L1(t). The
motivation for using the correction term L3(t) is to reduce the growth of the modulus of the expression

2
∫

R

[
∂2

t u(t, x)− ∂2
x u(t, x)+ U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t, x))

)
u(t, x)

]
∂t u(t, x) dx

in L̇1(t). The time derivative of L2(t) will cancel with the expression∫
R

∂

∂t

[
U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t, x))

)]
u(t, x)2 dx,

from L̇1(t). Finally, under additional conditions in the growth of the functions y1(t), y2(t), if 0< v ≪ 1,
the function L(t)=

∑3
j=1 L j (t) will satisfy, for a constant C(k) depending only on k, the estimates

|L̇(t)| ≲
v

ln(1/v)
∥(u(t), ∂t u(t))∥2

H1
x ×L2

x
,

∥(u(t), ∂t u(t))∥2
H1

x ×L2
x
≲ L(t)+ C(k)v4k ln(1/v)2nk

for all t in a large time interval, where nk is the number described in Theorem 8. Hence, using Gronwall’s
lemma and the two estimates above, we will obtain an upper bound for ∥(u(t), ∂t u(t))∥H1

x ×L2
x

when t
belongs to a large time interval.

In Section 4, we will estimate ∥φ(t)−ϕk,v(t)∥H1
x ×L2

x
during a large time interval. This estimate follows

from the study of a linear ordinary differential system whose solutions ŷ1, ŷ2 are close to y1, y2 during a
time interval of size much larger than − ln(v)/v and from the conclusions of the last section. Indeed, the
closeness of the functions y1, y2 with ŷ1, ŷ2 during this large time interval is guaranteed because of the
upper bound obtained for ∥(u(t), ∂t u(t))∥H1

x ×L2
x

from the control of L(t), which implies that y1, y2 will sat-
isfy a ordinary differential system very close to the linear ordinary differential system satisfied by ŷ1 and ŷ2.

In Section 5, we will prove Theorem 4; the proof of this result is inspired by the demonstration of
[Kowalczyk et al. 2021, Theorem 1; Martel et al. 2006, Theorem 1]. This result will imply in the next
section the second item of Theorem 2. In addition, the main techniques used in this section are modulation
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techniques based on [Kowalczyk et al. 2021, §2; Martel et al. 2006], the use of conservation of energy
of φ(t, x) and the monotonicity of the localized momentum given by

P+(φ(t), ∂tφ(t))= −

∫
+∞

0
∂tφ(t, x)∂xφ(t, x) dx .

Finally, in Section 6, we will show that the demonstration of Theorem 2 is a direct consequence of the
main results of Sections 4 and 5. For complementary information, see the Appendices.

2. Preliminaries
2.1. Approximate solutions.

Definition 6. We define 3 as the nonlinear operator with domain C2(R2,R) that satisfies

3(φ1)(t, x)= ∂2
t φ1(t, x)− ∂2

xφ1(t, x)+ U̇ (φ1(t, x))

for any φ1(t, x) ∈ C2(R2,R).

In [Moutinho 2024], we constructed a sequence of approximate solutions (φk(v, t, x))k∈N≥2 of the
partial differential equation (1) such that

lim
t→+∞

∥∥∥∥φk(v, t, x)− H0,1

(
x − vt

√
1 − v2

)
− H−1,0

(
x + vt

√
1 − v2

)∥∥∥∥
H1

x

= 0,

lim
t→+∞

∥∥∥∥∂tφk(v, t, x)+
v

√
1 − v2

H ′

0,1

(
x − vt

√
1 − v2

)
−

v
√

1 − v2
H ′

−1,0

(
x + vt

√
1 − v2

)∥∥∥∥
L2

x

= 0

More precisely, in [Moutinho 2024] we proved the following result:

Theorem 7. There exist a sequence of functions (φk(v, t, x))k≥2, a sequence of real values δ(k) > 0 and
a sequence of numbers nk ∈ N such that, for any 0< v < δ(k), φk(v, t, x) satisfies

lim
t→+∞

∥∥∥∥φk(v, t, x)− H0,1

(
x − vt

√
1 − v2

)
− H−1,0

(
x + vt

√
1 − v2

)∥∥∥∥
H1

x

= 0,

lim
t→+∞

∥∥∥∥∂tφk(v, t, x)+
v

√
1 − v2

H ′

0,1

(
x − vt

√
1 − v2

)
−

v
√

1 − v2
H ′

−1,0

(
x + vt

√
1 − v2

)∥∥∥∥
L2

x

= 0,

lim
t→−∞

∥∥∥∥φk(v, t, x)− H0,1

(
x + vt − ev,k

√
1 − v2

)
− H−1,0

(
x − vt + ev,k

√
1 − v2

)∥∥∥∥
H1

x

= 0,

lim
t→−∞

∥∥∥∥∂tφk(v, t, x)−
v

√
1 − v2

H ′

0,1

(
x + vt − ev,k

√
1 − v2

)
+

v
√

1 − v2
H ′

−1,0

(
x − vt + ev,k

√
1 − v2

)∥∥∥∥
L2

x

= 0,

with ev,k ∈ R satisfying

lim
v→0

∣∣∣ev,k −
ln(8/v2)

√
2

∣∣∣
v|ln(v)|3

= 0.

Moreover, if 0< v < δ(k), then for any s ≥ 0 and l ∈ N ∪ {0}, there is C(k, s, l) > 0 such that∥∥∥∥ ∂ l

∂t l3(φk(v, t, x))
∥∥∥∥

H s
x (R)

≤ C(k, s, l)v2k+l(
|t |v+ ln(1/v2)

)nk e−2
√

2|t |v.
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We consider the Schwarz function G defined by

G(x)= e−
√

2x
−

e−
√

2x

(1 + e2
√

2x)3/2
+ 2

√
2x

e
√

2x

(1 + e2
√

2x)3/2
+ k1

e
√

2x

(1 + e2
√

2x)3/2
(17)

for all x ∈ R, where k1 is the real number such that G satisfies ⟨G(x), H ′

0,1(x)⟩L2
x (R)

= 0. The function G
satisfies the identity

−
d2

dx2G(x)+ U ′′(H0,1(x))G(x)= [−24H0,1(x)2 + 30H0,1(x)4]e−
√

2x
+ 8

√
2H ′

0,1(x); (18)

see Lemma A.1 and Remark A.2 in the Appendix of [Moutinho 2024] for the proof.
From now on, for any v ∈ (0, 1), we consider the function dv : R → R defined by

dv(t)=
1

√
2

ln
(

8
v2 cosh (

√
2vt)

2
)

for any t ∈ R.

The function dv describes the movement between two kinks for the φ6 model during a large time
interval when their total energy is small and their initial speeds are both zero. For more information, see
Theorem 1.11 from [Moutinho 2023].

Moreover, from the proof of Theorem 7 in [Moutinho 2024], we can construct inductively an explicit
sequence of smooth functions (ϕk,v)k∈N≥2 and for each k ∈ N≥2 there exists a real number τk,v satisfying

|τk,v|<

√
2
v

ln
(

8
v2

)
such that φk(v, t, x) := ϕk,v(t + τk,v, x) satisfies Theorem 7 for all k ∈ N≥2. More precisely, from
[Moutinho 2024], we have the following theorem:

Theorem 8. There exist a sequence of approximate solutions ϕk,v(t, x), functions rk(v, t) that are smooth
and even on t , and numbers nk ∈ N such that if 0< v ≪ 1, then, for any m ∈ N≥1,

|rk(v, t)| ≲k v
2(k−1) ln(1/v)nk,

∣∣∣∣ ∂m

∂tm rk(v, t)
∣∣∣∣ ≲k,m v

2(k−1)+m[
ln(1/v)+ |t |v

]nk e−2
√

2|t |v. (19)

Furthermore, ϕk,v(t, x) satisfies for ρk(v, t)= −
1
2 dv(t)+

∑k
j=2 r j (v, t) the identity

ϕk,v(t, x)= H0,1

(
x + ρk(v, t)√
1 −

1
4 ḋv(t)2

)
+ H−1,0

(
x − ρk(v, t)√
1 −

1
4 ḋv(t)2

)

+ e−

√
2dv(t)

[
G
(

x + ρk(v, t)√
1 −

1
4 ḋv(t)2

)
−G

(
−x + ρk(v, t)√

1 −
1
4 ḋv(t)2

)]

+Rk,v

(
vt,

x + ρk(v, t)√
1 −

1
4 ḋv(t)2

)
−Rk,v

(
vt,

−x + ρk(v, t)√
1 −

1
4 ḋv(t)2

)
(20)
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and, for any l ∈ N ∪ {0} and s ≥ 1 the estimates∥∥∥∥ ∂ l

∂t l3(ϕk,v(t, x))
∥∥∥∥

H s
x (R)

≲k,s,l v
2k+l[ln(1/v2)+ |t |v

]nk e−2
√

2|t |v, (21)∣∣∣∣ dl

dt l

[〈
3(ϕk,v)(t, x), H ′

0,1

(
x + ρk(v, t)(

1 −
1
4 ḋv(t)2

)1/2

)〉]∣∣∣∣ ≲k,l v
2k+l+2[ln(1/v2)+ |t |v

]nk+1e−2
√

2|t |v, (22)

where Rk,v(t, x) is a finite sum of functions pk,i,v(t)hk,i (x) with hk,i ∈ S (R) and each pk,i,v(t) being an
even function satisfying, for all m ∈ N,∣∣∣∣dm pk,i,v(t)

dtm

∣∣∣∣ ≲k,m,3 v
4(ln(1/v2)+ |t |

)nk,i e−2
√

2|t |,

where nk,i ∈ N depends only on k and i .

Remark 9. Furthermore, Remark 5.2 of [Moutinho 2024] implies that if v > 0 is small enough, then the
function r2 satisfies

∥r2(v, · )∥L∞(R) ≲ v
2 ln(1/v2),

∣∣∣∣ ∂ l

∂t l r2(v, t)
∣∣∣∣ ≲l v

2+l[ln(1/v2)+ |t |v
]
e−2

√
2|t |v

for all l ∈ N.

Remark 10. At first look, the statement of Theorem 8 seems to contain excessive information about
the approximate solutions φk(v, t, x) of [Moutinho 2024]. However, we will need all of it to study the
elasticity and stability of the collision of two kinks with low speed 0< v < 1.

2.2. Auxiliary estimates. First, we recall the Lemma 2.1 of [Moutinho 2023].

Lemma 11. If x2, x1 are real numbers satisfying z = x2 − x1 > 0 and α, β,m > 0 with α ̸= β, then∫
R

|x − x1|
me−α(x−x1)+e−β(x2−x)+ ≲m,α,β max((1 + zm)e−αz, e−βz),

Furthermore, for any α > 0,∫
R

|x − x1|
me−α(x−x1)+e−α(x2−x)+ ≲m,α [1 + zm+1

]e−αz.

Actually, we will also need to use the following lemma, which we proved in [Moutinho 2024].

Lemma 12. In the notation of Theorem 8, for v ∈ (0, 1), let wk,v : R2
→ R be the function

wk,v(t, x)=
x + ρk(v, t)√
1 −

1
4 ḋv(t)2

,

and let f ∈ L∞
x (R) be a function satisfying f ′

∈ S (R). Then, if 0< v ≪ 1, we have for any l ∈ N that

∂ l

∂t l f (wk,v(t, x))
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is a finite sum of functions qk,l,i,v(t)hi (wk,v(t, x)) with hi ∈ S (R) and qk,l,i,v(t) a smooth real function
satisfying

∥qk,l,i,v∥L∞(R) ≲ v
l .

Furthermore, if 0< v ≪ 1, we have for all l ∈ N and any s ≥ 0 that∥∥∥∥ ∂ l

∂t l f (wk,v(t, x))
∥∥∥∥

H s
x (R)

≲k,s,l v
l .

Moreover, we will use the following result several times in the computation of the estimates of this paper.

Lemma 13. For any s ≥ 1, we have for any functions f, g ∈ S (R) that

∥ f g∥H s
x (R)

≲s ∥ f ∥H s
x (R)

∥g∥L∞
x (R)

+ ∥g∥H s
x (R)

∥ f ∥L∞
x (R)

≲s ∥ f ∥H s
x (R)

∥g∥H s
x (R)

.

As a consequence,
∥ f g∥H s

x (R)
≲s ∥ f ∥H s+1

x (R)∥g∥H s+1
x (R)

for all s ≥ 0.

Proof. See the proof of Lemma A.8 in [Tao 2006]. □

Finally, we need also Lemma 2.5 of [Moutinho 2023] which studies the coercive properties of
the operator

−∂2
x + U ′′(H z

0,1(x)+ H−1,0(x))

when z ≫ 1. More precisely:

Lemma 14. There exist c, δ > 0 such that if z ≥
1
δ
, then for any g ∈ H 1(R) satisfying

⟨g(x), H ′

0,1(x − z)⟩ = ⟨g(x), H ′

−1,0(x)⟩ = 0,

we have that 〈
−

d2

dx2 g(x)+ U ′′(H0,1(x − z)+ H−1,0(x))g(x), g(x)
〉
≥ c∥g∥

2
H1

x (R)
.

Proof. See the proof of Lemma 9 in [Moutinho 2023]. □

In this manuscript, to simplify our notation, we denote dv(t) by d(t), which means that

d(t)=
1

√
2

ln
(

8
v2 cosh (

√
2vt)

2
)
. (23)

In Lemma 3.1 of [Moutinho 2024], we have verified by induction the estimates

|ḋ(t)| ≲ v,

|d(l)(t)| ≲l v
le−2

√
2|t |v for any l ∈ N≥2.

(24)

From now on, we consider for each k ∈N≥2 the function φk,v(t, x) satisfying Theorem 8. Next, for T0,k >0
to be chosen later, we consider the following kind of Cauchy problem:{

∂2
t φ(t, x)− ∂2

xφ(t, x)+ U ′(φ(t, x))= 0,
∥(φ(T0,k, x), ∂tφ(T0,k, x))− (φk,v(T0,k, x), ∂tφk,v(T0,k, x))∥H1

x (R)×L2
x (R)

< v8k .
(25)
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Our first objective is to prove the following theorem.

Theorem 15. There is a constant C > 0 and for any 0< θ < 1
4 , k ∈ N≥3 there exist C1(k) > 0, δk,θ > 0

and ηk ∈ N such that if

0< v < δk,θ and T0,k =
32k

2
√

2

ln(1/v2)

v
,

then any solution φ(t, x) of (25) satisfies

∥(φ(t, x), ∂tφ(t, x))− (ϕk,v(t, x), ∂tϕk,v(t, x))∥H1
x ×L2

x
< C1(k)v2k ln(1/v)ηk exp

(
C
v|t − T0,k |

ln(v)

)
(26)

if
|t − T0,k |<

ln(1/v)2−θ

v
.

Clearly, we can obtain from Theorems 8 and 15 the following result:

Corollary 16. There is a constant C > 0 and for any 0< θ < 1
4 , k ∈ N≥3 there exist C1(k) > 0, δk,θ > 0

and ηk ∈ N such that if

0< v < δk,θ and T0,k =
32k

2
√

2

ln(1/v2)

v
,

then any solution φ(t, x) of{
∂2

t φ(t, x)− ∂2
xφ(t, x)+ U ′(φ(t, x))= 0,

∥(φ(T0,k, x), ∂tφ(T0,k, x))− (φk(v, T0,k, x), ∂tφk(v, T0,k, x))∥H1
x (R)×L2

x (R)
< v8k

satisfies

∥(φ(t, x), ∂tφ(t, x))− (φk(v, t, x), ∂tφk(v, t, x))∥H1
x ×L2

x
< C1(k)v2k ln(1/v)ηk exp

(
C
v|t − T0,k |

ln(v)

)
,

if
|t − T0,k |<

ln(1/v)2−θ

v
.

Proof of Corollary 16. This follows from Theorems 7, 8 and 15. □

With the objective of simplifying the demonstration of Theorem 15, we will elaborate on necessary
lemmas before the proof of Theorem 15. Similarly to [Moutinho 2024], using the notation of Theorem 8,
we consider

wk,v(t, x)=
x −

1
2 d(t)+ ck(v, t)√

1 −
1
4 ḋ(t)2

. (27)

From now on, we denote any solution φ(t, x) of the partial differential equation (25) as

φ(t, x)= ϕk,v(t, x)+
y1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))+
y2(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))+ u(t, x), (28)

such that 〈
u(t, x), H ′

0,1(wk,v(t, x))
〉
=

〈
u(t, x), H ′

0,1(wk,v(t,−x))
〉
= 0. (29)
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Therefore, for ζk(t)= d(t)−2ck(v, t) and from the orthogonal conditions (29) satisfied by u(t, x), we
deduce the identity [

y1(t)
y2(t)

]
= M(t)−1

[ 〈
φ(t, x)−ϕk,v(t, x), H ′

0,1(wk,v(t, x))
〉〈

φ(t, x)−ϕk,v(t, x), H ′

−1,0(wk,v(t,−x))
〉], (30)

where, for any t ∈ R, M(t) is denoted by

M(t)=

[
∥H ′

0,1∥
2
L2

x

〈
H ′

0,1(x − ζk(t)), H ′

−1,0(x)
〉〈

H ′

0,1(x − ζk(t)), H ′

−1,0(x)
〉

∥H ′

0,1∥
2
L2

x

]
.

Moreover, since ln(1/v)≲ ζk , we obtain from Lemma 11 that
〈
H ′

0,1(x −ζk(t)), H ′

−1,0(x)
〉
≪ 1. Therefore,

since the matrix M(t) is a smooth function with domain R, then M(t)−1 is also smooth on R.
Next, forψ(t, x)=φ(t, x)−ϕk,v(t, x), we obtain from the partial differential equation (25) thatψ(t, x)

satisfies the partial differential equation

∂2

∂t2ψ(t, x)−
∂2

∂x2ψ(t, x)+3(ϕk,v)(t, x)+
6∑

j=2

U ( j)(ϕk,v(t, x))
( j − 1)!

ψ(t, x) j−1
= 0. (31)

Since ϕk,v satisfies Theorem 8 and the partial differential equation (1) is globally well-posed in the energy
space, we can verify for any initial data (ψ0(x), ψ1(x)) ∈ H 1

x (R)× L2
x(R) that there exists a unique

solution ψ(t, x) of (31) satisfying (ψ(0, x), ∂tψ(0, x))= (ψ0(x), ψ1(x)) and

(ψ(t, x), ∂tψ(t, x)) ∈ C(R; H 1
x (R)× L2

x(R)). (32)

Therefore, for any function h ∈ S (R), we deduce from (31) that

d
dt

⟨ψ(t, x), h(x)⟩ = ⟨∂tψ(t, x), h(x)⟩,

d2

dt2 ⟨ψ(t, x), h(x)⟩ =

〈
∂2

∂x2ψ(t, x)− U ′(ϕk,v(t, x)+ψ(t, x))+ U ′(ϕk,v(t, x)), h(x)
〉

− ⟨3(ϕk,v)(t, x), h(x)⟩,

which implies that the real functions

P1(t)=
〈
ψ(t, x), H ′

0,1(wk,v(t, x))
〉

and P2(t)=
〈
ψ(t, x), H ′

−1,0(wk,v(t,−x))
〉

are in C2(R). In conclusion, using (30) and the product rule of derivative, we deduce that y1, y2 ∈ C2(R).
In conclusion, we obtain the following lemma:

Lemma 17. Assuming the same hypotheses of Theorem 15, there exist functions y1, y2 : R → R of class C2

such that any solution φ(t, x) of (25) satisfies for any t ∈ R the identity

φ(t, x)= ϕk,v(t, x)+
y1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))+
y2(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))+ u(t, x),

where (u(t), ∂t u(t)) ∈ H 1
x (R)× L2

x(R) and the function u satisfies the orthogonality conditions

⟨u(t, x), H ′

0,1(wk,v(t, x))⟩ = 0, ⟨u(t, x), H ′

0,1(wk,v(t,−x))⟩ = 0.
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Remark 18. Moreover, Theorem 8 implies that

d2

dt2

[
y j (t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, (−1) j+1x))
]

=
ÿ j (t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, (−1) j+1x))+
ẏ j (t)d̈(t)ḋ(t)

2
(
1 −

1
4 ḋ(t)2

)3/2 H ′

0,1(wk,v(t, (−1) j+1x))

+ 2
ẏ j (t)∂tρk(v, t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(t, (−1) j+1x))

+
ẏ j (t)d̈(t)ḋ(t)

2
(
1 −

1
4 ḋ(t)2

)2 ((−1) j+1x + ρk(v, t))H ′′

0,1(wk,v(t, (−1) j+1x))

+
y j (t)√

1 −
1
4 ḋ(t)2

∂2

∂t2 [H ′

0,1(wk,v(t, (−1) j+1x))].

Therefore, from Theorem 8, Remark 9 and estimates (24), we deduce from the estimate above that

∂2

∂t2

[
y j (t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, (−1) j+1x))
]

=
ÿ j (t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, (−1) j+1x))−
ẏ j (t)ḋ(t)

1 −
1
4 ḋv(t)2

H ′′

0,1(wk,v(t, (−1) j+1x))

+
y j (t)√

1 −
1
4 ḋ(t)2

∂2

∂t2 [H ′

0,1(wk,v(t, (−1) j+1x))] +Q1(t, x),

where Q1(t, · ) is a function in H 1
x (R) satisfying

∥Q1(t, x)∥H1
x (R)

≲ [ max
j∈{1,2}

|ẏ j (t)| + v max
j∈{1,2}

|y j (t)|]v3(ln(1/v2)+ |t |v
)
e−2

√
2|t |v.

Moreover, using identities

d3

dx3 H0,1(x)= U ′′(H0,1(x))H ′

0,1(x), d̈(t)= 16
√

2e−
√

2d(t),

estimates (24) and the estimates of rj (v, t) in Theorem 8 and Remark 9, we obtain(
∂2

∂t2 −
∂2

∂x2

)
[H ′

0,1(wk,v(t, (−1) j+1x))]

= −
8
√

2e−
√

2d(t)√
1 −

1
4 ḋ(t)2

H ′′

0,1(wk,v(t, (−1) j+1x))

− U ′′(H0,1(wk,v(t, (−1) j+1x)))H ′

0,1(wk,v(t, (−1) j+1x))+ Q2(t, x),

where Q2(t, · ) is a function in H 1
x (R) satisfying

∥Q2(t, x)∥H1
x (R)

≲ v4(ln(1/v2)+ |t |v
)
e−2

√
2|t |v.
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Consequently, using Lemmas 12, 13, 17 and identity 3(φ)= 0, we conclude from Taylor’s expansion
theorem that

3(ϕk,v)(t, x)+ ∂2
t u(t, x)− ∂2

x u(t, x)+ U ′′(ϕk,v(t, x))(φ(t, x)−ϕk,v(t, x))

+
ÿ1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))+
ÿ2(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))

−
y1(t)8

√
2e−

√
2d(t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(t, x))−
y2(t)8

√
2e−

√
2d(t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(t,−x))

−
ẏ1(t)ḋ(t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(x, t))−
ẏ2(t)ḋ(t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(t,−x))

− y1(t)
U ′′(H0,1(wk,v(t, x)))√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))− y2(t)
U ′′(H0,1(wk,v(t,−x)))√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))

= Q(t, x), (33)

where Q(t, · ) is a function in H 1
x (R) satisfying, for all t ∈ R,

∥Q(t, x)∥H1
x (R)

≲ ∥u(t)∥2
H1

x
+ ∥u(t)∥6

H1
x
+ max

j∈{1,2}

|y j (t)|2 + max
j∈{1,2}

|y j (t)|6

+
[

max
j∈{1,2}

|ẏ j (t)| + v max
j∈{1,2}

|y j (t)|
]
v3(ln(1/v2)+ |t |v

)
e−2

√
2|t |v,

if v > 0 is small enough.

Next, from (33) of Remark 18, we consider the terms

Y1(t, x)=
[
U ′′(ϕk,v(t, x))− U ′′(H0,1(wk,v(t, x)))

] y1(t)√
1 −

1
4 ḋ(t)2

H ′

0,1(wk,v(t, x)), (34)

Y2(t, x)=
[
U ′′(ϕk,v(t, x))− U ′′(H0,1(wk,v(t,−x)))

] y2(t)√
1 −

1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x)). (35)

Now, we will estimate the expressions

⟨Y1(t), H ′

0,1(wk,v(t, x))⟩, ⟨Y2(t), H ′

0,1(wk,v(t,−x))⟩.

Lemma 19. In notation of Theorem 8 and Lemma 17, the functions Y1(t) and Y2(t) satisfy

⟨Y1(t), H ′

0,1(wk,v(t, x))⟩ = 4
√

2e−
√

2d(t)y1(t)+ y1(t)Res1(v, t),

⟨Y2(t), H ′

0,1(wk,v(t, x))⟩ = −4
√

2e−
√

2d(t)y2(t)+ y2(t)Res2(v, t),

where, for any j ∈ {1, 2} and all v ∈ (0, 1), the function Res j (v, t) is a Schwarz function on t satisfying
for any l ∈ N ∪ {0}, if 0< v ≪ 1, the estimate∣∣∣∣ ∂ l

∂t l Res j (v, t)
∣∣∣∣ ≲l v

l+4[ln(1/v2)+ |t |v
]ηk e−2

√
2|t |v (36)

for a number ηk ≥ 0 depending only on k ∈ N≥2.
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Proof of Lemma 19. First, we observe that∣∣∣∣ dl

dt l e−
√

2d(t)
∣∣∣∣ =

∣∣∣∣ dl

dt l

v2

8
sech (

√
2vt)

2
∣∣∣∣ ≲l v

2+le−2
√

2|t |v.

Using Taylor’s expansion theorem, Theorem 8 and Lemma 13, we deduce that

U ′′(ϕk,v(t, x))= U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))+ e−
√

2d(t)U (3)(H0,1(wk,v(t, x))

− H0,1(wk,v(t,−x)))[G(wk,v(t, x))−G(wk,v(t,−x))] + res1(v, t, x),

where, if 0< v ≪ 1, res1(v, t, x) is a smooth function on the variables (t, x) which satisfies for some
ηk ∈ N and any s ≥ 0, l ∈ N ∪ {0} the inequality∥∥∥∥ ∂ l

∂t l res1(v, t, x)
∥∥∥∥

H s
x

≲s,l v
4+l[ln(1/v2)+ |t |v

]ηk e−2
√

2|t |v. (37)

Therefore, using

U ′′(ϕk,v(t, x))− U ′′(H0,1(wk,v(t, x)))

= U ′′(ϕk,v(t, x))− U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
+U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′

(
H0,1(wk,v(t, x))

)
,

we obtain that

Y1(t, x)
√

1 −
1
4 ḋ(t)2

=
[
U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′(H0,1(wk,v(t, x)))

]
y1(t)H ′

0,1(wk,v(x, t))

+ y1(t)e−
√

2d(t)U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
G(wk,v(t, x))H ′

0,1(wk,v(t, x))

− y1(t)e−
√

2d(t)U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
G(wk,v(t,−x))H ′

0,1(wk,v(t, x))

+ y1(t) res1(v, t, x). (38)

By a similar reasoning, we obtain that

Y2(t, x)
√

1 −
1
4 ḋ(t)2

=
[
U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′(H0,1(wk,v(t,−x)))

]
y2(t)H ′

0,1(wk,v(t,−x))

+ y2(t)e−
√

2d(t)U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
G(wk,v(t, x))H ′

0,1(wk,v(t,−x))

− y2(t)e−
√

2d(t)U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
G(wk,v(t,−x))H ′

0,1(wk,v(t,−x))

+ y2(t) res2(v, t, x), (39)

where, if 0 < v ≪ 1, res2(v, t, x) is a smooth function on t, x satisfying, for some constant ηk ≥ 0,
any l ∈ N ∪ {0} and s ≥ 0, the estimate∥∥∥∥ ∂ l

∂t l res2(v, t, x)
∥∥∥∥

H s
x

≲s,l v
4+l[ln(1/v2)+ |t |v

]ηk e−2
√

2|t |v. (40)
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Next, from the fundamental theorem of calculus, we have for any ζ > 1 that[
U ′′(H ζ

0,1(x)+ H−1,0(x))− U ′′(H ζ

0,1(x))
]
∂x H ζ

0,1(x)

= U (3)(H ζ

0,1(x))H−1,0(x)∂x H ζ

0,1(x)+
∫ 1

0
U (4)(H ζ

0,1 + θH−1,0)(1 − θ)H−1,0(x)2∂x H ζ

0,1(x) dθ,

from which with Lemma 11, estimates (3), (4) and∣∣∣∣ dl

dx l [H−1,0(x)+ e−
√

2x
]

∣∣∣∣ ≲l min(e−
√

2x , e−3
√

2x),

we obtain that〈
[U ′′(H ζ

0,1(x)+ H−1,0(x))− U ′′(H ζ

0,1(x))]∂x H ζ

0,1(x), ∂x H ζ

0,1(x)
〉

= −e−
√

2ζ
∫

R

U (3)(H0,1(x))H ′

0,1(x)
2e−

√
2x dx + res3(ζ ), (41)

with res3 ∈ C∞(R≥1) satisfying, for all l ∈ N ∪ {0} and ζ ≥ 1,

|res(l)3 (ζ )| ≲l ζe−2
√

2ζ .

Next, using U ∈ C∞(R) and estimates (3), (4), we deduce for all ζ ≥ 1 and any l ∈ N ∪ {0} that∣∣∣∣ ∂ l

∂ζ l

[
U (3)(H ζ

0,1(x)+ H−1,0(x))− U (3)(H ζ

0,1(x))
]∣∣∣∣ ≲l |H−1,0(x)|.

Therefore, since G defined in (17) is a Schwarz function, Lemma 11 implies that

int(ζ )=
〈[

U (3)(H ζ

0,1(x)+ H−1,0(x))− U (3)(H ζ

0,1(x))
]
G(x − ζ )∂x H ζ

0,1(x), ∂x H ζ

0,1(x)
〉

satisfies for all ζ ≥ 1 and any l ∈ N ∪ {0} the inequality |int(l)(ζ )| ≲l e−
√

2ζ . Moreover, using the identity

U (3)(φ)= −48φ+ 120φ3, (42)

we can deduce similarly that

int2(ζ )=
〈
U (3)(H ζ

0,1(x)+ H−1,0(x))G(−x)H ′

−1,0(x), ∂x H ζ

0,1(x)
〉

satisfies |int(l)2 (ζ )| ≲l e−
√

2ζ for any l ∈ N ∪{0} and ζ ≥ 1. As a consequence, we deduce that there exists
a real function int3 : R≥1 → R satisfying, for any l ∈ N ∪ {0},

|int(l)3 (ζ )| ≲l e−
√

2ζ ,

where the function int3 satisfies the identity〈
U (3)(H ζ

0,1(x)+ H−1,0(x))G(x − ζ )∂x H ζ

0,1(x), ∂x H ζ

0,1(x)
〉

−
〈
U (3)(H ζ

0,1(x)+ H−1,0(x))G(−x)H ′

0,1(−x), ∂x H ζ

0,1(x)
〉

=

∫
R

U (3)(H0,1(x))H ′

0,1(x)
2G(x) dx + int3(ζ ). (43)
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From Theorem 8, estimates (24) and the identity

e−
√

2d(t)
=
v2

8
sech (

√
2|t |v)

2
,

it is not difficult to verify for any l ∈ N ∪ {0} that if 0< v ≪ 1, then

dl

dt l exp
(

2ρk,v(t)√
1 −

1
4 ḋ(t)2

)
≲l v

2+le−2
√

2|t |v. (44)

In conclusion, from estimates (38), (41), (43) and Lemma 32 of Appendix A, we obtain using identity

wk,v(t, x)=
x −

1
2 d(t)+ ck,v√
1 −

1
4 ḋ(t)2

,

and Theorem 8 that Y1(t) satisfies Lemma 19.
The proof that Y2(t) satisfies Lemma 19 is similar. First, from the fundamental theorem of calculus,

we have for any real number ζ ≥ 1 the identity[
U ′′(H ζ

0,1(x)+ H−1,0(x))− U ′′(H−1,0(x))
]
H ′

−1,0(x)

= [U ′′(H ζ

0,1(x))− 2]H ′

−1,0(x)+ U (3)(H ζ

0,1(x))H−1,0(x)H ′

−1,0(x)

+

∫ 1

0

[
U (4)(H ζ

0,1(x)+ θH−1,0(x))− U (4)(θH−1,0(x))
]
H−1,0(x)2 H ′

−1,0(x)(1 − θ) dθ.

Therefore, estimates (3), (4), identity (42) and Lemma 11 imply for any ζ ≥ 1 the estimate∣∣∣∣ dl

dζ l

〈
U ′′(H ζ

0,1(x)+H−1,0(x))−U ′′(H−1,0(x))−U ′′(H ζ

0,1(x))+2,H ′

−1,0(x)∂x H ζ

0,1(x)
〉∣∣∣∣≲l ζe−2

√
2ζ . (45)

Similarly, Lemma 11 and identity (42) imply that the functions

int4(ζ )=
〈
U (3)(H ζ

0,1(x)+ H−1,0(x))G(x − ζ )H ′

−1,0(x), ∂x H ζ

0,1(x)
〉
,

int5(ζ )=
〈
U (3)(H ζ

0,1(x)+ H−1,0(x))G(−x)H ′

−1,0(x), ∂x H ζ

0,1(x)
〉

satisfy the estimates

|int(l)4 (ζ )| + |int(l)5 (ζ )| ≲l e−
√

2ζ (46)

for all ζ ≥ 1 and any l ∈ N ∪ {0}. Therefore, from estimates (44), (39), (45), (46), Lemma 11 and
Theorem 8 imply that〈
Y2(t, x), H ′

0,1(wk,v(t, x))
〉

= y2(t)
∫

R

[U ′′(H0,1(x))− 2]H ′

0,1(x)H
′

−1,0

(
x +

d(t)√
1 −

1
4 ḋ(t)2

)
dx + y2(t) res6(v, t), (47)

where res6(v, t) is a real function, which satisfies for some constant ηk ≥ 0, if 0< v ≪ 1,∣∣∣∣ ∂ l

∂t l res6(v, t)
∣∣∣∣ ≲l v

4+l[ln(1/v2)+ |t |v
]ηk e−2

√
2|t |v
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for all l ∈ N ∪ {0}. So, from identity (144) of Appendix A, estimates (24),∣∣∣∣ dl

dx l [H−1,0(x)+ e−
√

2x
]

∣∣∣∣ ≲l min(e−
√

2x , e−3
√

2x),

and Lemma 11, we conclude the proof of Lemma 19 for Y2(t). □

Remark 20. If v ≪ 1, using the formula U ′′(φ)= 2 − 24φ2
+ 30φ4, Lemmas 11, 12, the estimates (37),

(38), (39) and (40) of the proof of Lemma 19 imply for any s ≥ 0 that

max
j∈{1,2}

∥Y j (t)∥H s
x
≲s max

j∈{1,2}

|y j (t)|v2e−2
√

2|t |v,

max
j∈{1,2}

∥∂t Y j (t)∥H s
x
≲s max

j∈{1,2}

|y j (t)|v3e−2
√

2|t |v
+ max

j∈{1,2}

|ẏ j (t)|v2e−2
√

2|t |v,

max
j∈{1,2}

∥∂2
t Y j (t)∥H s

x
≲s max

j∈{1,2}

|y j (t)|v4e−2
√

2|t |v
+ max

j∈{1,2}

|ẏ j (t)|v3e−2
√

2|t |v
+ max

j∈{1,2}

|y(2)j (t)|v
2e−2

√
2|t |v.

These estimates above don’t depend on k, because from Theorem 8 we can verify for any l ∈ N ∪ {0} the
existence of 0< δk,l ≪ 1 such that if 0< v < δk,l , then∥∥∥∥ ∂ l

∂t l ck(v, t)
∥∥∥∥

L∞
t (R)

≲l v
2+l ln(1/v),

which implies, for any l ∈ N and any v ≪ 1,∥∥∥∥ ∂ l

∂t l

[
−

1
2 d(t)+ ck(v, t)

]∥∥∥∥
L∞

t (R)

≲l v
l, 1

2 d(t)− v <
∣∣−1

2 d(t)+ ck(v, t)
∣∣.

3. Energy estimate method

In this section, we will repeat the main argument of Section 4 of [Moutinho 2023] to construct a function
L : R → R, which is going to be used to estimate the energy norm of (u(t), ∂t u(t)) during a large
time interval.

First, we consider a smooth cut-off function χ : R → R satisfying 0 ≤ χ ≤ 1 and

χ(x)=

{
1 if x ≤

49
100 ,

0 if x ≥
1
2 .

(48)

Next, using the notation of Theorem 8, we let

x1(t)= −
1
2 d(t)+

k∑
j=2

r j (v, t), x2(t)=
1
2 d(t)−

k∑
j=2

r j (v, t). (49)

Actually, Theorem 8 and estimates (24) imply that

max
j∈{1,2}

|ẋ j (t)| ≲ v, ln(1/v)≲ x2(t)− x1(t), max
j∈{1,2}

|ẍ j (t)| ≲ v2e−2
√

2|t |v. (50)

From now on, we define the function χ1 : R2
→ R by

χ1(t, x)= χ

(
x − x1(t)

x2(t)− x1(t)

)
. (51)
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Clearly, using the identities

∂

∂t
χ1(t, x)=

−ẋ1(t)
x2(t)− x1(t)

χ̇

(
x − x1(t)

x2(t)− x1(t)

)
−
(ẋ2(t)− ẋ1(t))(x − x1(t))

(x2(t)− x1(t))2
χ̇

(
x − x1(t)

x2(t)− x1(t)

)
,

∂

∂x
χ1(t, x)=

1
x2(t)− x1(t)

χ̇

(
x − x1(t)

x2(t)− x1(t)

)
,

we obtain the estimates∥∥∥∥ ∂∂t
χ1(t, x)

∥∥∥∥
L∞

x (R)

≲
v

ln(1/v)
,

∥∥∥∥ ∂∂x
χ1(t, x)

∥∥∥∥
L∞

x (R)

≲
1

ln(1/v)
. (52)

Finally, using the notation (28) and the functions Y1(t), Y2(t) denoted respectively by (34) and (35),
we define the function A : R2

→ R by

A(t, x)= −3(ϕk,v)(t, x)
8
√

2e−
√

2d(t)

1 −
1
4 ḋ(t)2

[
y1(t)H ′′

0,1(wk,v(t, x))+ y2(t)H ′′

0,1(wk,v(t,−x))
]

− Y1(t, x)− Y2(t, x)+
ẏ1(t)ḋ(t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(t, x))+
ẏ2(t)ḋ(t)

1 −
1
4 ḋ(t)2

H ′′

0,1(wk,v(t,−x)) (53)

for any (t, x) ∈ R2. Clearly, in the notation of Remark 18, we have the identity

∂2
t u(t, x)− ∂2

x u(t, x)+ U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))u(t, x)

= −
ÿ1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))−
ÿ2(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))+ A(t, x)+Q(t, x)

+
[
U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))− U ′′(ϕk,v(t, x))

]
u(t, x). (54)

Next, we consider

L(t)=

∫
R

∂t u(t, x)2 + ∂x u(t, x)2 + U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))u(t, x)2 dx

+ 2
∫

R

∂t u(t, x)∂x u(t, x)[ẋ1(t)χ1(t, x)+ ẋ2(t)(1 −χ1(t, x))] dx − 2
∫

R

u(t, x)A(t, x) dx . (55)

From now on, we use the notation →u(t)= (u(t), ∂t u(t))∈ H 1
x (R)×L2

x(R). The main objective of Section 3
is to demonstrate the following theorem.

Theorem 21. There exist constants K , c > 0 and, for any k ∈ N≥3, there exists 0< δ(k) < 1 such that if
0< v ≤ δ(k), then the function L(t) given in (55) satisfies, while the condition

max
j∈{1,2}

v2
|y j (t)| + v|ẏ j (t)|< v2k ln(1/v)nk (56)

is true, the estimates

c∥→u(t)∥2
H1

x ×L2
x
≤ L(t)+ C(k)v4k ln(1/v)2nk ,

|L̇(t)| ≤ K
[

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x
+ C(k)∥→u(t)∥H1

x ×L2
x
v2k+1 ln(1/v)nk

]
+ v max

j∈{1,2}

|ÿ j (t)|∥
→u(t)∥H1

x ×L2
x
+ K max

j∈{3.7}

∥
→u(t)∥ j

H1
x ×L2

x
,
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where C(k) > 0 is a constant depending only on k and nk is the number defined in the statement
of Theorem 8.

Proof of Theorem 21. To simplify the proof of this theorem, we describe briefly the organization of our
arguments. First, we let

L(t)= L1(t)+ L2(t)+ L3(t)

be such that

L1(t)=

∫
R

∂t u(t, x)2 + ∂x u(t, x)2 + Ü (H0,1(wk,v(t, x)− H0,1(wk,v(t,−x))))u(t, x)2 dx, (L1)

L2(t)= 2
∫

R

∂t u(t, x)∂x u(t, x)[ẋ1(t)χ1(t, x)+ ẋ2(t)(1 −χ1(t, x))] dx, (L2)

L3(t)= −2
∫

R

u(t, x)A(t, x) dx . (L3)

Next, instead of estimating the size of |L̇(t)|, we will estimate L̇ j (t) for each j ∈ {1, 2, 3}. Then, using
these estimates, we can evaluate with high precision

|L̇1(t)+ L̇2(t)+ L̇3(t)|,

and obtain the second inequality of Theorem 21. The proof of the first inequality of Theorem 21 is short
and it will be done later.

From identity (23), Remark 20 and (53) satisfied by A(t, x), we deduce from the triangle inequality that

∥A(t, x)∥H1
x (R)

≲ ∥3(ϕk,v)(t, x)∥H1
x (R)

+ v2e−2
√

2v|t | max
j∈{1,2}

|y j (t)| + v max
j∈{1,2}

|ẏ j (t)|.

Therefore, from Theorems 7 and 8, we obtain the existence of a value C(k) > 0 depending only on k
such that if v ≪ 1, then

∥A(t, x)∥H1(R) ≲ C(k)v2k(ln(1/v)+|t |v
)nk e−2

√
2|t |v

+v2e−2
√

2|t |v max
j∈{1,2}

|y j (t)|+v max
j∈{1,2}

|ẏ j (t)|. (57)

In conclusion, we obtain from (L3) and the Cauchy–Schwarz inequality the existence of a value C(k) > 0
depending only on k satisfying

|L3(t)|≲ ∥u(t)∥L2
x

[
C(k)v2k(ln(1/v)+|t |v

)nk e−2
√

2|t |v
+v2e−2

√
2|t |v max

j∈{1,2}

|y j (t)|+ max
j∈{1,2}

|ẏ j (t)|v
]
. (58)

Next, Lemmas 12, 13, Remark 20 and identity (53) satisfied by A(t, x) imply the inequality

∥∂t A(t, x)∥H1
x (R)

≲

∥∥∥∥ ∂∂t
[3(φk)(v, t, x)]

∥∥∥∥
H1

x (R)

+ max
j∈{1,2}

|y j (t)|v3e−2
√

2|t |v
+ max

j∈{1,2}

|ẏ j (t)|v2
+ max

j∈{1,2}

|ÿ j (t)|v,

from which with Theorem 8 we conclude the existence of a new value C(k) depending only on k satisfying

∥∂t A(t, x)∥H1
x

≲C(k)v2k+1(ln(1/v)+|t |v
)nk e−2

√
2|t |v

+ max
j∈{1,2}

|y j (t)|v3e−2
√

2|t |v
+ max

j∈{1,2}

|ẏ j (t)|v2
+ max

j∈{1,2}

|ÿ j (t)|v. (59)
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In conclusion, the identity (L3), estimate (59) and Cauchy–Schwarz inequality imply the existence of a
new value C(k) > 0 depending only on k, which satisfies∣∣∣∣L̇3(t)+ 2

∫
R

∂t u(t, x)A(t, x) dx
∣∣∣∣

≲ ∥u(t, x)∥L2
x

[
C(k)v2k+1(ln(1/v)+ |t |v

)nk e−2
√

2|t |v
+ max

j∈{1,2}

|y j (t)|v3e−2
√

2|t |v]
+ ∥u(t, x)∥L2

x

[
max

j∈{1,2}

|ẏ j (t)|v2
+ max

j∈{1,2}

|ÿ j (t)|v
]
. (60)

Next, Theorem 8 implies that if v ≪ 1, then

L̇1(t)

= 2
∫

R

∂t u(t, x)
[
∂2

t u(t, x)−∂2
x u(t, x)+U ′′

(
H0,1(wk,v(t, x))−H0,1(wk,v(t,−x))

)
u(t, x)

]
dx

−
ḋ(t)

2
(
1−

1
4 ḋ(t)2

)1/2

∫
R

U (3)(H0,1(wk,v(t, x))−H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t, x))u(t, x)2 dx

+
ḋ(t)

2
(
1−

1
4 ḋ(t)2

)1/2

∫
R

U (3)(H0,1(wk,v(t, x))−H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

+O
(

v

ln(1/v)
∥(u(t),∂t u(t))∥2

H1
x ,L2

x

)
(61)

Thus, from Lemma 17, identity (53), Remark 18, hypothesis (56), estimates (60), (61) and orthogonality
conditions (29), we obtain the existence of a value C(k) > 0 depending only on k such that if v≪ 1, then

L̇1(t)+ L̇3(t)

= 2
∫

R

∂t u(t, x)
[
U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′(ϕk,v(t, x))

]
u(t, x) dx

+
ḋ(t)

2
√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

−
ḋ(t)

2
√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t, x))u(t, x)2 dx

+ O
(
v max

j∈{1,2}

|ÿ j (t)|∥u(t)∥H1
x (R)

+ max
j∈{3,7}

∥
→u(t)∥ j

H1
x ×L2

x
+ ∥

→u(t)∥H1
x ×L2

x
max

j∈{1,2}

|y j (t)|2
)

+ O
(

∥
→u(t)∥H1

x ×L2
x

[
max

j∈{1,2}

|ẏ j (t)|v2
+ |y j (t)|v3e−2

√
2|t |v]

+ ∥
→u(t)∥2

H1
x ×L2

x

v

ln(1/v)

)
+ O

(
C(k)∥→u(t)∥H1

x ×L2
x
v2k+1 ln(1/v)nk

)
. (62)

Moreover, using estimates (24), Lemma 13 and identity U (φ)= φ2(1 −φ2)2, we obtain from Theorem 8
that if 0< v ≪ 1 and s ≥ 0, then∥∥[

U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′(ϕk,v(t, x))

]∥∥
H s

x
≲s,k v

2e−2
√

2|t |v.
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Therefore, we deduce using the Cauchy–Schwarz inequality that∣∣∣∣2 ∫
R

∂t u(t, x)
[
U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′(ϕk,v(t, x))

]
u(t, x) dx

∣∣∣∣
≲

∥∥[
U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t, x)))− U ′′(ϕk,v(t, x))

]
u(t, x)

∥∥
L2

x
∥∂t u(t, x)∥L2

x

≲
∥∥[

U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))− U ′′(ϕk,v(t, x))
]∥∥

H1
x (R)

∥
→u(t)∥2

H1
x ×L2

x

≲ v2
∥

→u(t)∥2
H1

x ×L2
x
.

In conclusion,

L̇1(t)+ L̇3(t)

=
ḋ(t)

2
(
1 −

1
4 ḋ(t)2

)1/2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

−
ḋ(t)

2
√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t, x))u(t, x)2 dx

+ O
(
v max

j∈{1,2}

|ÿ j (t)|∥u(t)∥H1
x (R)

+ max
j∈{3,7}

∥
→u(t)∥ j

H1
x ×L2

x
+ ∥

→u(t)∥H1
x ×L2

x
max

j∈{1,2}

|y j (t)|2
)

+ O
(

∥
→u(t)∥H1

x ×L2
x

[
max

j∈{1,2}

|ẏ j (t)|v2
+ |y j (t)|v3e−2

√
2|t |v]

+ ∥
→u(t)∥2

H1
x ×L2

x

v

ln(1/v)

)
+ O

(
C(k)∥→u(t)∥H1

x ×L2
x
v2k+1 ln(1/v)nk

)
. (63)

Based on the arguments of [Jendrej et al. 2022; Moutinho 2023], we will estimate the derivative of L2(t),
for more accurate information see the third step of Lemma 4.2 in [Jendrej et al. 2022] or Theorem 4.1
of [Moutinho 2023]. Because of an argument of analogy, we only need to estimate the time derivative of

L2,1(t)= 2ẋ1(t)
∫

R

χ1(t, x)∂t u(t, x)∂x u(t, x) dx

to evaluate with high precision the derivative of L2(t). From the estimates (52), we can verify first that
if v ≪ 1, then

L̇2,1(t)= 2ẋ1(t)
∫

R

χ1(t, x)∂2
t u(t, x)∂x u(t, x) dx + 2ẋ1(t)

∫
R

χ1(t, x)∂t u(t, x)∂2
x,t u(t, x) dx

+ O
(

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
,

from which we deduce, using integration by parts and estimates (50), (52), that

L̇2,1(t)= 2ẋ1(t)
∫

R

χ1(t, x)∂2
t u(t, x)∂x u(t, x) dx + O

(
v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
= 2ẋ1(t)

∫
R

χ1(t, x)[∂2
t u(t, x)− ∂2

x u(t, x)]∂x u(t, x) dx

+ 2ẋ1(t)
∫

R

χ1(t, x)U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
u(t, x)∂x u(t, x) dx
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+ 2ẋ1(t)
∫

R

χ1(t, x)∂2
x u(t, x)∂x u(t, x) dx

− 2ẋ1(t)
∫

R

χ1(t, x)U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
u(t, x)∂x u(t, x) dx

+ O
(

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
,

and, after using integration by parts again, we deduce from (52) that

L̇2,1(t)= 2ẋ1(t)
∫

R

χ1(t, x)[∂2
t u(t)−∂2

x u(t)]∂x u(t)dx

+2ẋ1(t)
∫

R

χ1(t)U ′′(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))u(t)∂x u(t)dx

+
ẋ1(t)√

1−
1
4 ḋ(t)2

∫
R

χ1(t)U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))H ′

0,1(wk,v(t, x))u(t)2 dx

+
ẋ1(t)√

1−
1
4 ḋ(t)2

∫
R

χ1(t)U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x)))H ′

0,1(wk,v(t,−x))u(t)2 dx

+ O
(

v

ln(1/v)
∥

→u(t)∥2
H1

x (R)×L2
x (R)

)
.

Next, using estimates (3) satisfied by H0,1, definition of χ1(t, x), Theorem 8 and identity (27), we deduce,
for v ≪ 1, the inequality

|χ1(t, x)H ′

0,1(wk,v(t, x))| + |(1 −χ1(t, x))H ′

0,1(wk,v(t,−x))| ≲ e−
√

2 49d(t)
100 ≲ v

98
100 ≪

1
ln(1/v)

,

from which we conclude that

L̇2,1(t)= 2ẋ1(t)
∫

R

χ1(t)[∂2
t u(t, x)− ∂2

x u(t, x)]∂x u(t, x) dx

+ 2ẋ1(t)
∫

R

χ1(t)U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
u(t, x)∂x u(t, x) dx

+
ẋ1(t)√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

+ O
(

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
.

Furthermore, from Remark 18, estimate (57) of A(t, x) and identity (54) satisfied by u(t, x), we conclude
the existence of a value C(k) > 0 depending only on k and satisfying, for any positive number v ≪ 1,

L̇2,1(t)=
ẋ1(t)√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

+ O
(
∥

→u(t)∥H1
x ×L2

x

[
v max

j∈{1,2}

|ÿ j (t)| + C(k)v2k+1 ln(1/v)nk + v max
j∈{2,6}

∥
→u(t)∥ j

H1
x ×L2

x

])
+ O

(
∥

→u(t)∥H1
x ×L2

x
[v3e−2

√
2v|t | max

j∈{1,2}

|y j (t)| + v2
|ẏ j (t)|] +

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
.
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Therefore, using an argument of analogy, we obtain, for any positive number v ≪ 1, that

L̇2(t)=
ẋ2(t)√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t, x))u(t, x)2 dx

+
ẋ1(t)√

1 −
1
4 ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

+ O
(
∥

→u(t)∥H1
x ×L2

x

[
v max

j∈{1,2}

|ÿ j (t)| + C(k)v2k+1 ln(1/v)nk
]
+ v max

j∈{3,7}

∥
→u(t)∥ j

H1
x ×L2

x

)
+ O

(
∥

→u(t)∥H1
x ×L2

x
[v3e−2

√
2v|t | max

j∈{1,2}

|y j (t)| + v2
|ẏ j (t)|] +

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
, (64)

where C(k) > 0 is a parameter depending only on k. Moreover, using (49) and Theorem 8, we deduce
from estimate (64) that

L̇2(t)=
ḋ(t)√

4 − ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t, x))u(t, x)2 dx

−
ḋ(t)√

4 − ḋ(t)2

∫
R

U (3)(H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))
)
H ′

0,1(wk,v(t,−x))u(t, x)2 dx

+ O
(
∥

→u(t)∥H1
x ×L2

x

[
v max

j∈{1,2}

|ÿ j (t)| + C(k)v2k+1 ln(1/v)nk
]
+ v max

j∈{3,7}

∥
→u(t)∥ j

H1
x ×L2

x

)
+ O

(
∥

→u(t)∥H1
x ×L2

x
[v3e−2

√
2v|t | max

j∈{1,2}

|y j (t)| + v2
|ẏ j (t)|] +

v

ln(1/v)
∥

→u(t)∥2
H1

x ×L2
x

)
. (65)

Finally, the estimates (65) and (62) imply, for any k ∈ N≥3, the existence of a parameter C(k) > 0,
depending only on k, which satisfies for any positive number v ≪ 1 the estimate

|L̇(t)| = O
(
v max

j∈{1,2}

|ÿ j (t)|∥
→u(t)∥H1

x ×L2
x
+ max

j∈{3,7}

∥
→u(t)∥ j

H1
x ×L2

x

)
+ O

(
∥

→u(t)∥H1
x ×L2

x
max

j∈{1,2}

|y j (t)|2
)

+ O
(
∥

→u(t)∥H1
x ×L2

x

[
max

j∈{1,2}

|ẏ j (t)|v2
+ |y j (t)|v3e−2

√
2|t |v])

+ O
(

∥
→u(t)∥2

H1
x ×L2

x

v

ln(1/v2)
+ C(k)∥→u(t)∥H1

x ×L2
x
v2k+1 ln(1/v)nk

)
, (66)

from which we obtain the existence of a new constant C(k) > 0 satisfying the second inequality of
Theorem 21 if the condition (56) is true and v ≪ 1.

Now, it remains to prove the first inequality of Theorem 21. Using change of variables and Lemma 14,
it is not difficult to verify that there exists K > 0 such that if v ≪ 1, then

L1(t)≥ K∥(u(t), ∂t u(t))∥2
H1

x ×L2
x
.

Next, from the definition of L2(t) and estimates (50), we obtain that if v ≪ 1, then

|L2(t)| ≪ v3/4
∥(u(t), ∂t u(t))∥2

H1
x ×L2

x
,

and while condition (56) is true, we deduce from Theorem 8 and estimate (57) the following inequality:

|L3(t)| ≲k ∥(u(t), ∂t u(t))∥H1
x ×L2

x
v2k ln(1/v)nk .
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So, using Young’s inequality, we can find a parameter C1(k)>0 large enough depending only on k such that

|L3(t)| ≤
1
2 K∥(u(t), ∂t u(t))∥2

H1
x ×L2

x
+ C1(k)v4k ln(1/v)2nk .

In conclusion, all the estimates above imply the first inequality of Theorem 21 if 0 < v ≪ 1 and
condition (56) is true. □

4. Proof of Theorem 15

From the information of Theorem 21 in the last section, we are ready to start the demonstration of
Theorem 15.

Proof of Theorem 15. First, for any (t, x) ∈ R2, Lemma 17 implies that φ(t, x) has the representation

φ(t, x)= ϕk,v(t, x)+
y1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))+
y2(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))+ u(t, x),

such that the function u(t, x) satisfies the orthogonality conditions (29) and y1, y2 are functions in C2(R).

Step 1 (ordinary differential system of y1(t), y2(t)). From Remarks 9, 18 and the definition of A(t, x)
in (53), we have that u(t, x) is a solution of a partial differential equation of the form

∂2
t u(t, x)− ∂2

x u(t, x)+ U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
u(t, x)

= −
ÿ1(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t, x))−
ÿ2(t)√

1 −
1
4 ḋ(t)2

H ′

0,1(wk,v(t,−x))+ A(t, x)+P1(v, t, x), (67)

where P1(v, t, x) satisfies for any 0< v ≪ 1 and any t ∈ R the inequality

∥P1(v, t, x)∥H1
x
≲ ∥u(t)∥2

H1
x
+ max

j∈{1,2}

|y j (t)|2 + max
j∈{1,2}

|ẏ j (t)|v3(ln(1/v2)+ |t |v
)
e−2

√
2|t |v

+ ∥u(t)∥6
H1

x
+ max

j∈{1,2}

|y j (t)|6 + max
j∈{1,2}

|y j (t)|v4(ln(1/v2)+ |t |v
)
e−2

√
2|t |v.

With the objective of simplifying our computations, we let

NOL(t)= ∥u(t)∥2
H1 + max

j∈{1,2}

|y j (t)|2 + v2(k+1)(
|t |v+ ln(1/v2)

)nk+1e−2
√

2|t |v

+ ∥u(t)∥6
H1

x
+ max

j∈{1,2}

|y j (t)|6 + max
j∈{1,2}

|ẏ j (t)|v3(ln(1/v2)+ |t |v
)
e−2

√
2|t |v

+ max
j∈{1,2}

|y j (t)|v4(ln(1/v2)+ |t |v
)max{1,ηk}e−2

√
2|t |v, (68)

where ηk is the number denoted in Lemma 19. Also, from Theorem 8, Lemma 19 and identity (53), we
deduce that [ 〈

A(t, x), H ′

0,1(wk,v(t, x))
〉〈

A(t, x), H ′

0,1(wk,v(t,−x))
〉] = e−

√
2d(t)

[
−4

√
2 4

√
2

4
√

2 −4
√

2

] [
y1(t)
y2(t)

]
+ Rest(t), (69)



2172 ABDON MOUTINHO

where, if v ≪ 1, the real function Rest(t) satisfies, for any t ∈ R,

e2
√

2|t |v
|Rest(t)| ≲k v

2(k+1)(
|t |v+ ln(1/v2)

)nk+1
+ max

j∈{1,2}

|y j (t)|v4(
|t |v+ ln(1/v2)

)max{1,ηk}

+ max
j∈{1,2}

|ẏ j (t)|v3(
|t |v+ ln(1/v2)

)
. (70)

From the orthogonality conditions (29), Theorem 8 and Lemma 12, we obtain the estimate

〈
∂2

t u(t, x), H ′

0,1(wk,v(t, x))
〉
=

ḋ(t)√
1 −

1
4 ḋ(t)2

〈
∂t u(t, x), H ′′

0,1(wk,v(t, x))
〉
L2

x
+ O(∥→u(t)∥H1

x ×L2
x
v2). (71)

Also, using integration by parts, identity

−
d3

dx3 H0,1(x)+ U ′′(H0,1(x))H ′

0,1(x)= 0,

Lemma 11 and the Cauchy–Schwarz inequality, we deduce that if 0< v ≪ 1, then〈
−∂2

x u(t)+ U ′′
(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
u(t), H ′

0,1(wk,v(t, x))
〉

=
〈
u(t),

[
U ′′

(
H0,1(wk,v(t, x))− H0,1(wk,v(t,−x))

)
− U ′′(H0,1(wk,v(t, x)))

]
H ′

0,1(wk,v(t, x))
〉

+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

= O(v2
∥

→u(t)∥H1
x ×L2

x
). (72)

From now on, we denote any continuous function f (t) as Ok(NOL(t)), if and only if f satisfies
the estimate

| f (t)| ≲k NOL(t).

In conclusion, applying the scalar product of the (67) with H ′

0,1(wk,v(t, x)) and H ′

0,1(wk,v(t,−x)), we
obtain using Lemma 11 and estimates (71), (72) that[

∥H ′

0,1∥
2
L2

x
O(d(t)e−

√
2d(t))

O(d(t)e−
√

2d(t)) ∥H ′

0,1∥
2
L2

x

] [
ÿ1(t)
ÿ2(t)

]

= e−
√

2d(t)
[
−4

√
2 4

√
2

4
√

2 −4
√

2

] [
y1(t)
y2(t)

]
+

[
O(v2

∥
→u(t)∥H1

x ×L2
x
)

O(v2
∥

→u(t)∥H1
x ×L2

x
)

]

−


ḋ(t)(

1−
1
4 ḋ(t)2

)1/2

〈
∂t u(t, x), H ′′

0,1(wk,v(t, x))
〉

ḋ(t)(
1−

1
4 ḋ(t)2

)1/2

〈
∂t u(t, x), H ′′

0,1(wk,v(t,−x))
〉
 +

[
Ok(NOL(t))
Ok(NOL(t))

]
. (73)

Step 2 (refined ordinary differential system). Motivated by (73), for j ∈ {1, 2} we define the functions

c j (t)= y j (t)− y j (T0,k)+ 2
√

2
∫ t

T0,k

ḋ(s)(
1 −

1
4 ḋ(s)2

)1/2

〈
u(s), H ′′

0,1(wk,v(s, (−1) j+1x))
〉
ds.
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Clearly, we can verify using (24), Lemma 12 and the Cauchy–Schwarz inequality that

ċ j (t)= ẏ j (t)+
2
√

2ḋ(t)(
1 −

1
4 ḋ(t)2

)1/2

〈
u(t, x), H ′′

0,1(wk,v(t, (−1) j+1x))
〉
,

c̈ j (t)= ÿ j (t)+
2
√

2ḋ(t)(
1 −

1
4 ḋ(t)2

)1/2

〈
∂t u(t, x), Ḧ0,1(wk,v(t, (−1) j+1x))

〉
+ O(v2

∥u(t)∥H1
x
).

In conclusion, from the ordinary differential system of equations (73) we deduce that

d
dt


y1(t)
y2(t)
ċ1(t)
ċ2(t)

 =


0 0 1 0
0 0 0 1

−16e−
√

2d(t) 16e−
√

2d(t) 0 0
16e−

√
2d(t)

−16e−
√

2d(t) 0 0




y1(t)
y2(t)
ċ1(t)
ċ2(t)

 +


O(v∥u(t)∥H1

x
)

O(v∥u(t)∥H1
x
)

Ok(NOL(t))+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

Ok(NOL(t))+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

.
Actually, using the change of variables

e1(t)= y1(t)− y2(t), e2(t)= y1(t)+ y2(t), ξ1(t)= c1(t)− c2(t) and ξ2(t)= c1(t)+ c2(t),

we obtain from the ordinary differential system of equations above that

d
dt


e1(t)
e2(t)
ξ̇1(t)
ξ̇2(t)

 =


0 0 1 0
0 0 0 1

−32e−
√

2d(t) 0 0 0
0 0 0 0




e1(t)
e2(t)
ξ̇1(t)
ξ̇2(t)

 +


O(v∥u(t)∥H1

x
)

O(v∥u(t)∥H1
x
)

Ok(NOL(t))+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

Ok(NOL(t))+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

. (74)

To simplify our notation, we let

M(t)=


0 0 1 0
0 0 0 1

−32e−
√

2d(t) 0 0 0
0 0 0 0

. (75)

It is not difficult to verify that all the solutions of linear ordinary differential equation

L̇(t)= M(t)L(t) for L(t) ∈ R4

are the linear space generated by the functions

L1(t)=


tanh (

√
2vt)

0
√

2v sech (
√

2vt)
2

0

, L2(t)=


√

2vt tanh (
√

2vt)− 1
0

2v2t sech (
√

2vt)
2
+

√
2v tanh (

√
2vt)

0

,

L3(t)=


0
1
0
0

, L4(t)=


0
t
0
1

.
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Also, by elementary computation, we can verify for any t ∈ R that

det [L1(t), L2(t), L3(t), L4(t)] = −
√

2v. (76)

In conclusion, using the variation of parameters technique, we can write any C1 solution of (74) as
L(t)=

∑4
i=1 ai (t)L i (t), such that ai (t) ∈ C1(R) for all 1 ≤ i ≤ 4 and

tanh (
√

2vt)
√

2vt tanh (
√

2vt)− 1 0 0
0 0 1 t

√
2v sech (

√
2vt)

2
2v2t sech (

√
2vt)

2
+

√
2v tanh (

√
2vt) 0 0

0 0 0 1




ȧ1(t)
ȧ2(t)
ȧ3(t)
ȧ4(t)



=


O(v∥u(t)∥H1

x
)

O(v∥u(t)∥H1
x
)

Ok(NOL(t))+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

Ok(NOL(t))+ O(v2
∥

→u(t)∥H1
x ×L2

x
)

, (77)

with
tanh (

√
2vT0,k)

√
2vT0,k tanh (

√
2vT0,k)− 1 0 0

0 0 1 T0,k
√

2v sech (
√

2vT0,k)
2

2v2t sech (
√

2vT0,k)
2
+

√
2v tanh (

√
2vT0,k) 0 0

0 0 0 1




a1(T0,k)

a2(T0,k)

a3(T0,k)

a4(T0,k)



=


y1(T0,k)− y2(T0,k)

y1(T0,k)+ y1(T0,k)

ċ1(T0,k)

ċ2(T0,k)

. (78)

Step 3 (estimate of ∥
→u(t)∥H1

x ×L2
x
). From now on, for C1 > 1,C2 > 0 being fixed numbers to be chosen

later, we consider the set

BC1,C2 =

{
t ∈ R

∣∣ max
j∈{1,2}

|y j (t)|v2
+ |ẏ j (t)|v ≤ C1v

2(k+1) ln(1/v)nk+3 exp
(

C2v|t − T0,k |

ln(1/v)

)}
.

We also consider the set
Du,v = {t ∈ R | ∥

→u(t)∥H1
x ×L2

x
< v2

}.

First, if v2
|y(T0,k)|+v|ẏ(T0,k)|<v

3k and v≪ 1, then T0,k ∈ BC1,C2 ∩ Du,v . Indeed, this happens when

∥(ϕk,v(T0,k), ∂tϕk,v(T0,k))− (φ(T0,k), ∂tφ(T0,k))∥H1
x ×L2

x
< v4k,

because, since u(t, x) satisfies the orthogonality conditions (29), we can verify using Lemma 11 that

∥ϕk,v(T0,k)−φ(T0,k)∥
2
H1

x

∼= max
j∈{1,2}

y j (T0,k)
2
+ ∥u(T0,k)∥

2
H1

x
. (79)

By a similar reasoning but using now Lemma 12 and estimate (79), we can verify that if 0< v≪ 1, then

max
j∈{1,2}

ẏ j (T0,k)
2
+ ∥∂t u(T0,k)∥

2
L2

x
≲ ∥(ϕk,v(T0,k), ∂tϕk,(T0,k))− (φ(T0,k), ∂tφ(T0,k))∥

2
H1

x ×L2
x
, (80)
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where T0,k satisfies the hypothesis of Theorem 15, for more details see Appendix B in [Moutinho 2023].
Also, for any θ ∈ (0, 1), if v ≪ 1, then while

|t − T0,k |<
ln(1/v)2−θ

v
,

and t ∈ BC1,C2 ∩ Du,v, we can verify the estimate

max
j∈{1,2}

v2
|y j (t)| + v|ẏ j (t)|< v2k+1 ln(1/v)nk ,

from which with estimate (73), the definition of NOL(t) at (68), the definition of Du,v and the assumption
of k ≥ 2, we obtain that

max
j∈{1,2}

|ÿ j (t)| ≲k v
2k ln(1/v)nk + v∥

→u(t)∥H1
x ×L2

x
+ ∥

→u(t)∥2
H1

x ×L2
x
.

In conclusion, if v ≪ 1, from Theorem 21, we deduce that the functional L(t) defined in last section
satisfies, for a constant C0 and a parameter C(k) depending only on k, the estimates

|L̇(t)| ≲ v max
j∈{1,2}

|ÿ j (t)|∥
→u(t)∥H1

x ×L2
x
+ ∥

→u(t)∥3
H1

x ×L2
x
+ C(k)∥→u(t)∥H1

x ×L2
x
v2k+1 ln(1/v)nk

+ ∥
→u(t)∥2

H1
x ×L2

x

v

ln(1/v2)
,

C0∥
→u(t)∥2

H1
x (R)×L2

x (R)
≤ L(t)+ C(k)v4k ln(1/v)2nk .

Therefore, from the ordinary differential system of equations defined in (73), we conclude for v ≪ 1 that
if t ∈ BC1,C2 ∩ Du,v and

|t − T0,k |<
ln(1/v)2−θ

v
, (81)

then there exists a constant C(k) > 0 depending only on k satisfying

|L̇(t)| ≲ C(k)∥→u(t)∥H1
x ×L2

x
v2k+1 ln(1/v)nk + ∥

→u(t)∥2
H1

x ×L2
x

v

ln(1/v2)
.

Therefore, by a similar argument to the proof of Theorem 4.5 in [Moutinho 2023], we can verify from
Theorem 21 and the Gronwall lemma applied on L(t) that there exists a constant K > 1, independent
of k and v, such that if t satisfies condition (81) and t ∈ BC1,C2 ∩ Du,v, then we have the estimate

∥(u(t), ∂t u(t))∥H1
x ×L2

x
≲k max

(
∥

→u(T0,k)∥H1
x ×L2

x
, v2k ln(1/v)nk+1) exp

(
K |t − T0,k |v

ln(1/v)

)
. (82)

In conclusion, if v ≪ 1, t ∈ BC1,C2 and t satisfies (81), then t ∈ Du,v and (82) is true.

Step 4 (estimate of y1(t), y2(t)). Next, we will use the estimate (82) in the ordinary differential system of
equations (74) to estimate the evolution of y1(t) and y2(t) while t ∈ BC1,C2 and t satisfies condition (81).
From (68), we have that if t ∈ BC1,C2 , t satisfies condition (81) and 0< v ≪ 1, then

NOL(t)≪ v2 max
(
∥

→u(T0,k)∥H1
x ×L2

x
, v2k ln(1/v)nk+1) exp

(
K |t − T0,k |v

ln(1/v)

)
. (83)
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In conclusion, from the Cauchy problem (25) satisfied by φ, identity (76) and estimates (79), (80), and (83),
we deduce from the linear system (77) the estimates

|ȧ1(t)| ≲k v
2k+1

[|t |v+ 1] ln(1/v)nk+1 exp
(

K
v|t − T0,k |

ln(1/v)

)
,

|ȧ2(t)| ≲k v
2k+1 ln(1/v)nk+1 exp

(
K
v|t − T0,k |

ln(1/v)

)
,

|ȧ3(t)| ≲k v
2k+1

[|t |v+ 1] ln(1/v)nk+1 exp
(

K
v|t − T0,k |

ln(1/v)

)
,

|ȧ4(t)| ≲k v
2k+2 ln(1/v)nk+1 exp

(
K
v|t − T0,k |

ln(1/v)

)
.

In conclusion, using the initial condition (78), we deduce from the fact that T0,k is in BC1,C2 ,the fundamental
theorem of calculus and the elementary estimate

|t |v < ln(1/v) exp
(

v|t |
ln(1/v)

)
,

that if {θ t + (1 − θ)T0,k |0< θ < 1} ⊂ BC1,c2 and t satisfies (81), then

|a1(t)| + |a3(t)| ≲k v
2k ln(1/v)nk+3 exp

(
(K + 1)|t − T0,k |v

ln(1/v)

)
,

v|a2(t)| + |a4(t)| ≲k v
2k+1 ln(1/v)nk+2 exp

(
K |t − T0,k |v

ln(1/v)

)
.

In conclusion from the ordinary differential system of equations (74) satisfied by e j (t) for j ∈ {1, 2, 3, 4},
the fact that e1(t) = y1(t)− y2(t), e2(t) = y1(t)+ y2(t) and ξ1(t) = c1(t)− c2(t), ξ2(t) = c1(t)+ c2(t),
we can verify by triangle inequality and the identity

e1(t)
e2(t)
e3(t)
e4(t)

 =

4∑
j=1

a j L j (t)

the existence of C1(k) > 0 depending on k such that for C2 = K + 2 and v ≪ 1 we have that if

|t − T0,k |<
ln(1/v)2−θ

v
,

then t ∈ BC1(k),C2 . □

Remark 22. For any constants θ, γ ∈ (0, 1), obviously

lim
v→+0

vγ exp
(
ln(1/v)θ

)
= 0.

In conclusion, for fixed k ∈ N large and 0<θ < 1
4 , we can deduce from Theorem 15 that there is a1k,θ > 0

such that if 0< v <1k,θ , then

∥(φ(t, x), ∂tφ(t, x))− (φk(v, t, x), ∂tφk(v, t, x))∥H1
x ×L2

x
< v2k−1/2,

for all t satisfying
|t − T0,k |<

ln(1/v)2−θ

v
.
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5. Proof of Theorem 4

Remark 23. The importance of this theorem is to describe the dynamics of the two solitons before the
collision instant, for all t < 0 and |t | ≫ 1. More precisely, if two moving kinks are coming from an
infinite distance with a sufficiently low speed v satisfying v ≤ δ(2k), then the inelasticity of the collision
is going to be of order at most O(vk) and the kinks will move away each one with the speed of size in
modulus v+ O(vk) when t goes to −∞.

The proof of Theorem 4 uses energy estimate techniques from [Henry et al. 1982], and the monotonicity
property of the function

P+(φ(t), ∂tφ(t))= −

∫
+∞

0
∂tφ(t, x)∂xφ(t, x) dx, (84)

which is nondecreasing on t when φ(t, · ) is odd on x . Furthermore, the demonstration of Theorem 4 is
quite similar to the proof of Theorem 1 of [Kowalczyk et al. 2021] and also uses modulation techniques
inspired by [Raphaël and Szeftel 2011; Kowalczyk et al. 2021].

Moreover, since the solution φ(t, x) is an odd function in the variable x for all t ∈ R, we have that

E(φ)= 2
[∫

+∞

0

∂xφ(t, x)2 + ∂tφ(t, x)2

2
+ U (φ(t, x)) dx

]
= 2E+(φ(t), ∂tφ(t)),

where

E+(φ(t), ∂tφ(t))=

∫
+∞

0

∂xφ(t, x)2 + ∂tφ(t, x)2

2
+ U (φ(t, x)) dx (85)

is a conserved quantity.

5.1. Modulation techniques. First, similarly to [Kowalczyk et al. 2021], we consider, for any 0< v < 1,
y ∈ R, the following function on x ∈ R:

−−→H0,1((v, y), x)=

 H0,1

(
x−y

√
1−v2

)
−v

√
1−v2

H ′

0,1

(
x−y

√
1−v2

)
,

−−→H−1,0((v, y), x)= −
−−→H0,1((v, y),−x) for all x ∈ R.

(86)

Next, we consider the antisymmetric map

J =

[
0 1

−1 0

]
, (87)

and based on [Kowalczyk et al. 2021], we consider for any 0 < v < 1 and any y ∈ R the following
functions, which were defined in Section 2.3 of [Kowalczyk et al. 2021]:

Cv,y(x)=

 1
√

1−v2
H ′

0,1

(
x−y

√
1−v2

)
−v

1−v2
H ′′

0,1

(
x−y

√
1−v2

)
, (88)
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Dv,y(x)=


v

1−v2
x−y

√
1−v2

H ′

0,1

(
x−y

√
1−v2

)
−1

(1−v2)3/2
H ′

0,1

(
x−y

√
1−v2

)
−

v2

(1−v2)3/2
x−y

√
1−v2

H ′′

0,1

(
x−y

√
1−v2

)
. (89)

See also [Chen and Jendrej 2019].
The following identity is going to be useful for our next results.

Lemma 24. For any v ∈ (0, 1), there holds

⟨∂x
−−→H0,1((v, 0), x), JD0,v⟩ = −(1 − v2)−3/2

∥H ′

0,1∥
2
L2

x
.

Proof. See the proof of Lemma 2.4 from [Kowalczyk et al. 2021]. □

Next, for any value y0 ≫ 1, we will modulate any odd function (φ0, φ1) close to
−−→H−1,0((v, y0), x)+ −−→H0,1((v, y0), x)

in the energy norm in terms of an orthogonal condition.

Lemma 25. There exist K > 0 and δ0, δ1 ∈ (0, 1) such that if 0 < v < δ1, y0 > 1/δ1, 0 ≤ δ ≤ δ0 and
(φ1 − H0,1 − H−1,0, φ2) ∈ H 1

x (R)× L2
x(R) is an odd function satisfying

∥(φ1(x), φ2(x))−
−−→H−1,0((v, y0), x)− −−→H0,1((v, y0), x)∥H1

x ×L2
x
≤ δv, (90)

then there exists a unique ŷ > 1 such that |ŷ − y0| ≤ K δv and the function

→κ(x)= (φ1(x), φ2(x))−
−−→H−1,0((v, ŷ), x)− −−→H0,1((v, ŷ), x)

satisfies
∥

→κ∥H1
x ×L2

x
≤ K δv (91)

and ⟨
→κ(x), J ◦ Dv,ŷ(x)⟩ = 0.

Proof of Lemma 25. The proof is completely analogous to that of Lemma 2.1 of [Kowalczyk et al. 2021]. □

Corollary 26. In the notation of Lemma 25, there exists a constant C > 1 such that if v ∈ (0, 1) is small
enough, then there exists at most one number y ≥ 2 ln 1

v
satisfying

∥
→κ0∥H1

x ×L2
x
≤ min

{
δ0v,

K
3C
δ0v

}
and ⟨

→κ0(x), J ◦ Dv,y(x)⟩ = 0,

where
→κ0(x)= (φ1(x), φ2(x))−

−−→H−1,0((v, y), x)− −−→H0,1((v, y), x)

Proof of Corollary 26. Let y1, y2 two real numbers satisfying the results of Corollary 26. We consider the
functions

→κ1(x)= (κ1,0(x), κ1,1(x))= (φ1(x), φ2(x))−
−−→H−1,0((v, y1), x)− −−→H0,1((v, y1), x),

→κ2(x)= (κ2,0(x), κ2,1(x))= (φ0(x), φ1(x))−
−−→H−1,0((v, y2), x)− −−→H0,1((v, y2), x).

Choosing x = y1, we obtain the ng identity

H0,1(0)− H0,1

(
y1 − y2
√

1 − v2

)
= −H0,1

(
−2y1

√
1 − v2

)
+ H0,1

(
−y1 − y2
√

1 − v2

)
+ κ2,0(y1)− κ1,0(y1). (92)
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Since there exists a constant c > 0 satisfying for any f ∈ H 1
x (R) the inequality

∥ f ∥L∞
x (R)

≤ c∥ f ∥H1
x
,

we deduce from (92) and the hypotheses of Corollary 26 that∣∣∣∣H0,1(0)− H0,1

(
y1 − y2
√

1 − v2

)∣∣∣∣ ≤
2cK
3C

δ0v+

∣∣∣∣H0,1

(
−2y1

√
1 − v2

)∣∣∣∣ + ∣∣∣∣H0,1

(
−y1 − y2
√

1 − v2

)∣∣∣∣,
from which we deduce the estimate∣∣∣∣H0,1(0)− H0,1

(
y1 − y2
√

1 − v2

)∣∣∣∣ ≤
2cK
3C

δ0v+ 2v4.

Consequently, since H0,1 is an increasing function and H ′

0,1(0)=
1
2 , we obtain that if δ1 ≪ 1 and 0<v<δ1,

then
|y1 − y2| ≤

5K c
3C

δ0v.

Therefore, choosing C = 2c + 1, from Lemma 25, we have y1 = y2 if v > 0 is small enough. □

Finally, using Lemma 25 and repeating the argument of the demonstration of Lemma 2.11 in [Kowalczyk
et al. 2021], we can verify the following result.

Lemma 27. There exist K > 1, δ0 > 0 and δ1 ∈ (0, 1) such that if 0< δ2 < δ0, 0< v < δ1, y0 >
7
2 ln 1

v

and the solution (φ(t, x), ∂tφ(t, x)) of (1) satisfies, for T > 0,

sup
t∈[0,T ]

inf
y∈R≥y0

∥(φ(t, x), ∂tφ(t, x))− −−→H−1,0((v, y), x)− −−→H0,1((v, y), x)∥H1
x ×L2

x
≤ δ2v, (93)

then there exists a real function y1 : [0, T ] → R≥y0/2 such that the solution (φ(t), ∂tφ(t)) satisfies, for
any 0 ≤ t ≤ T ,

(φ(t), ∂tφ(t))=
−−→H−1,0((v, y1(t)), x)+ −−→H0,1((v, y1(t)), x)+ (ψ1(t), ψ2(t)), (94)

∥(ψ1(t), ψ2(t))∥H1
x ×L2

x
≤ K δ2v, (95)

where (ψ1(t), ψ2(t)) ∈ H 1
x (R) × L2

x(R) and y1(t) satisfy the orthogonality condition of Lemma 25,
and y1(t) is a function of class C1 satisfying the inequality

|ẏ1(t)− v| ≤ K [∥(ψ1(t), ψ2(t))∥H1
x ×L2

x
+ e−2

√
2y1(t)]. (96)

Proof. First, from Lemma 25 and the fact that
→
φ ∈ C(R; H 1

x (R)× L2
x(R)), if δ1 is small enough, we can

find a constant K > 0 and a function ŷ : [0, T ] →
(
3 ln 1

v
,+∞

)
such that for

→κ(t, x)= (φ(t, x), ∂tφ(t, x))− −−→H−1,0((v, ŷ(t)), x)− −−→H0,1((v, ŷ(t)), x), (97)

we have →κ(t), ŷ(t) satisfying the orthogonality condition of Lemma 25 and

∥
→κ(t)∥H1

x ×L2
x
≤ K δ2v (98)

for all 0 ≤ t ≤ T.
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Next, we will construct a linear ordinary differential system of equations with solution y1(t) and we
will verify that if y1(0)= ŷ(0), then y1(t)= ŷ(t) for all t ∈ [0, T ].

Step 1 (construction of the ordinary differential equation satisfied by y1). The argument of the demon-
stration of the remaining part of Lemma 27 is completely analogous to the proof of Lemma 2.11 of
[Kowalczyk et al. 2021]. More precisely, similarly to Lemma 2.11 of [Kowalczyk et al. 2021], we will
construct an ordinary differential equation with solution y1(t), which, during their time of existence,
preserves the orthogonality conditions

⟨(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)⟩ = 0, (99)

where J is defined in (87), and we will verify that if y1(0)= ŷ(0), then y1(t)= ŷ(t) for all 0 ≤ t ≤ T. From
the global well-posedness of the partial differential (1) in the energy space, we have for any T0 > 0 that
φ(t, x)− H0,1(x)− H−1,0(x) ∈ C([−T0, T0], H 1

x (R)) and ∂tφ(t, x) ∈ C([−T0, T0], L2
x(R)). Therefore,

if there exists a interval [0, T1] ⊂ [0, T ] such that y1 ∈ C1([0, T1]) when restricted to this interval and

(φ(t),∂tφ(t))=
−−→H−1,0((v, y1(t)), x)+

−−→H0,1((v, y1(t)), x)+(ψ1(t),ψ2(t)) for any t ∈ [0,T1], (100)

then (ψ1(t), ψ2(t))= (ψ1(t, x), ψ2(t, x)) satisfies, for any functions h1, h2 ∈ S (R), the identity

d
dt

〈
(ψ1(t, x), ψ2(t, x)), (h1(x), h2(x))

〉
=

〈
∂t(ψ1(t, x), ψ2(t, x)), (h1(x), h2(x))

〉
if t ∈ [0, T1].

Consequently, if we derive the (99) in time, we obtain the following linear ordinary differential equation
satisfied by y1(t):

ẏ1(t)
〈
(ψ1(t, x), ψ2(t, x)), J∂y1 Dv,y1(t)(x)

〉
+

〈
∂t(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)

〉
= 0. (101)

Since xm H ′

0,1(x) ∈ S (R) for all m ∈ N ∪ {0}, we have that the functions ω1, ω2 : [0, T ]× (1,+∞)→ R

defined by

ω1(t, y)=
〈
(ψ1(t, x), ψ2(t, x)), J∂y Dv,y(x)

〉
, ω2(t, y)=

〈
∂t(ψ1(t, x), ψ2(t, x)), JDv,y(x)

〉
are continuous and, for any t ∈ [0, T ], ω1(t, · ), ω2(t, · ) : (1,+∞)→ R are smooth.

Step 2 (partial differential equation satisfied by
→
ψ). First, we consider the self-adjoint operator

Hess(y1(t), x) : H 2
x (R)⊂ L2

x(R)→ R,

which satisfies, for all t ∈ [0, T ],

Hess(y1(t), x)=

[
−∂2

x + U ′′

(
H0,1

(
x−y1(t)
√

1−v2

)
− H0,1

(
−x−y1(t)
√

1−v2

))
0

0 1

]
, (102)

and the self-adjoint operator Hess1(y1(t), x) : H 2
x (R)⊂ L2

x(R)→ R denoted by

Hess1(y1(t), x)=

[
−∂2

x + U ′′

(
H0,1

(
x−y1(t)
√

1−v2

))
0

0 1

]
. (103)
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Next, we consider the maps Int : R2
→ R2 and T : R2

× H 1
x (R)→ R2, which we denote by

Int(y, x)=

[
0

U ′

(
−H0,1

(
−x−y1
√

1−v2

))
+ U ′

(
H0,1

(
x−y

√
1−v2

))]

−

[
0

U ′

(
H0,1

(
x−y

√
1−v2

)
− H0,1

(
−x−y
√

1−v2

))]
, (104)

T (y, x, ψ)=

 0

−

6∑
j=3

U ( j)
(

H0,1

(
x−y

√
1−v2

)
− H0,1

(
−x−y
√

1−v2

))
ψ(x) j−1

( j −1)!

 (105)

for any (y, x)∈ R2 and ψ ∈ H 1
x (R). Therefore, if [0, T1] ⊂ [0, T ], y1 ∈ C1([0, T1]) and y1 ≥ 1, 0<v1 < 1

then, from the partial differential equation (1) and identity (100), we deduce that (ψ1(t, x), ψ2(t, x)) is a
solution in the space C([0, T1], H 1

x (R)× L2
x(R)) of the partial differential equation

∂t(ψ1(t, x), ψ2(t, x))= (ẏ1(t)− v)[Cv,y1(t)(x)− Cv,y1(t)(−x)] + J Hess(y1(t), x)(ψ1(t, x), ψ2(t, x))
+ Int(y1(t), x)+ T (y1(t), x, ψ1(t)), (106)

where J is the antisymmetric operator defined in (87).
In the next step, we will assume the existence of 0 ≤ T1 ≤ T such that y1 is of class C1 in the

interval [0, T1], and y1 ≥ 1 for any t ∈ [0, T1]. Moreover, we will prove that when this condition is true,
then |ẏ1(t)− v| is sufficiently small for all t ∈ [0, T1].

Step 3 (estimate of |ẏ1(t) − v|). Uniquely in this step, for any continuous nonnegative function
f : [0, T1] × (0, 1)× (1,+∞)→ R, we say that a function g : [0, T1] × (0, 1)× (1,+∞)→ R is O( f )
if and only if g is a continuous function satisfying the following properties:

• There is a constant c>0 such that |g(t, v, y)|<c f (t, v, y) for all (t, v, y) in [0, T1]×(0, 1)×(1,+∞).

• g(t, · ) : (0, 1)× (1,+∞)→ R is smooth for all t ∈ [0, T1].

We recall that J,Cv,y1(t) and Dv,y1(t) are defined, respectively, in (87), (88) and (89). Using Lemma 11,
we obtain that if y1(t)≥ 1 and v ∈ (0, 1) is small enough, then

|⟨Cv,y1(t)(x), J ◦ Dv,y1(t)(−x)⟩| + |⟨Cv,y1(t)(x), JCv,y1(t)(−x)⟩| + |⟨Dv,y1(t)(x), JDv,y1(t)(−x)⟩|

≲ y1(t)4e−2
√

2y1(t). (107)

Furthermore, using the partial differential equation (106) satisfied by (ψ1(t, x), ψ2(t, x)), we deduce
for any t ∈ [0, T1] ⊂ [0, T ] the identity

⟨∂t(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)⟩

= (ẏ1(t)− v)⟨Cv,y1(t)(x), JDv,y1(t)(x)⟩ − (ẏ1(t)− v)⟨Cv,y1(t)(−x), JDv,y1(t)(x)⟩

+
〈
J Hess(y1(t), x)(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)

〉
+

〈
T (y1(t), x, ψ1(t))+ Int(y1(t), x), JDv,y1(t)(x)

〉
. (108)
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Moreover, from Lemma 24 and identity J ∗
= −J, we have

⟨JDv,y1(t)(x),Cv,y1(t)(x)⟩ = −⟨Dv,y1(t)(x), JCv,y1(t)(x)⟩ = (1 − v2)−3/2
∥H ′

0,1∥
2
L2

x
. (109)

Therefore, using (108), estimates (107) and Lemma 11, we deduce the following estimate〈
∂t(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)

〉
= (ẏ1(t)− v)[(1 − v2)−3/2

∥H ′

0,1∥
2
L2

x
+ O(y1(t)4e−2

√
2y1(t))]

+
〈
J Hess(y1(t), x)(ψ1(t, x), ψ2(t, x)), JDv,y1(t)

〉
+

〈
T (y1(t), x, ψ1(t)), JDv,y1(t)(x)

〉
+

〈
Int(y1(t), x), JDv,y1(t)(x)

〉
.

Furthermore, since for any ζ ∈ R we have the identity

U ′(H ζ

0,1(x)+ H−1,0(x))− U ′(H ζ

0,1(x))− U ′(H−1,0(x))

= −24H−1,0(x)H
ζ

0,1(x)(H−1,0(x)+ H ζ

0,1(x))+
4∑

j=1

(
5
j

)
H−1,0(x) j H ζ

0,1(x)
5− j ,

we deduce from Lemma 11 and the definition of function Int that ∥Int(y1(t), x, ψ(t))∥L2
x
≲ e−2

√
2y1(t).

Next, since ∥U (l)
∥L∞[−1,1] <+∞ for any l ∈ N ∪ {0}, we deduce using Lemma 13 and the definition of

function T that

∥T (y1(t), x, ψ1(t))∥L2
x
≤ ∥T (y1(t), x, ψ1(t))∥H1

x
≲ ∥ψ1(t, x)∥2

H1
x
.

As a consequence,〈
∂t(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)

〉
= (ẏ1(t)− v)

[
(1 − v2)−3/2

∥H ′

0,1∥
2
L2

x
+ O(y1(t)4e−2

√
2y1(t))

]
+

〈
J Hess(y1(t), x)(ψ1(t, x), ψ2(t, x)), JDv1(t),y1(t)(x)

〉
+ O(e−2

√
2y1(t) + ∥

→
ψ(t)∥2

H1
x ×L2

x
) (110)

for any t ∈ [0, T1].
Furthermore, using identities (102), (103), the formula of Dv,y in (89) and Lemma 11, we can deduce

the estimate
∥[Hess(y1(t), x)− Hess1(y1(t), x)]Dv,y1(t)(x)∥L2

x (R;R2) ≲ e−2
√

2y1(t)

for all t ∈ [0, T1]. Thus, after using integration by parts and the Cauchy–Schwarz inequality, we deduce
for all t ∈ [0, T1] that∣∣〈J [Hess(y1(t), x)− Hess1(y1(t), x)]

→
ψ(t), JDv1(t),y1(t)(x)

〉∣∣ ≲ ∥
→
ψ(t)∥H1

x ×L2
x
e−2

√
2y1(t).

Consequently, since ⟨ j (a), a⟩ = 0 for all a ∈ R2, we obtain that if y1 is a function of class C1 in the
interval [0, T1] and v ∈ (0, 1) is small enough, then〈
∂t(ψ1(t, x),ψ2(t, x)), JDv,y1(t)(x)

〉
= (ẏ1(t)−v)

[
−

∥H ′

0,1∥
2
L2

x

(1−v2)3/2
+O(y1(t)4e−2

√
2y1(t))

]
+

〈
J Hess1(y1(t), x)(ψ1(t, x),ψ2(t, x)), JDv,y1(t)(x)

〉
+O(e−2

√
2y1(t)+∥

→
ψ(t)∥2

H1
x ×L2

x
) (111)

for any t ∈ [0, T1].
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Next, using (103), it is not difficult to verify the identity

Hess1(y1(t), x)Dv,y1(t)(x)− v J [∂x Dv,y1(t)(x)] = JCv,y1(t)(x);

see Lemma 2.4 of [Kowalczyk et al. 2021] for the proof. Consequently, we have for any t ∈ [0, T1] that〈
J Hess1(y1(t), x)(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)

〉
= −v

〈
(ψ1(t, x), ψ2(t, x)), J∂y1 Dv,y1(t)(x)

〉
+

〈
(ψ1(t, x), ψ2(t, x)), JCv,y1(t)(x)

〉
.

In conclusion, estimate (111) and identity (101) imply that

(ẏ1(t)− v)
[
−∥H ′

0,1∥
2
L2

x

(1 − v2)3/2
+ O(∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
+ y1(t)4e−2

√
2y1(t))

]
= O(e−2

√
2y1(t) + ∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
) (112)

for all t ∈ [0, T1].

Step 4 (proof that y1 ∈ C1). Equations (101) and (108) imply that y1 satisfies the ordinary differential
equation

(ẏ1(t)− v)
[〈

Cv,y1(t)(x), JDv,y1(t)(x)
〉
−

〈
Cv,y1(t)(−x), JDv,y1(t)(x)

〉
+

〈
(ψ1(t), ψ2(t)), J∂y1 Dv,y1(t)(x)

〉]
= −v

〈
(ψ1(t, x), ψ2(t, x)), J∂y1 Dv,y1(t)(x)

〉
−

〈
J Hess(y1(t), x)(ψ1(t, x), ψ2(t, x))+ T (y1(t), x, ψ1(t))+ Int(y1(t), x), JDv,y1(t)(x)

〉
, (113)

which is a first-order nonautonomous differential system of the form

(ẏ1(t)− v)αv(t, y1(t))= βv(t, y1(t)),

where the functions αv, βv : [0, T ] × R → R are continuous when v ∈ (0, 1).
Moreover, from the hypotheses of Lemma 27, Lemma 11 and identities (102), (104), (105), we can

deduce for any t ∈ [0, T ] that the restrictions of αv(t, · ) and βv(t, · ) in the set
(
3 ln 1

v
,+∞

)
are locally

Lipschitz when v is small enough.
Furthermore, from the first step, we have y1(0)= ŷ(0) > 3 ln 1

v
which implies y1(0)4e−2

√
2y1(0) < v3

if v is small enough. Moreover, we deduce from (97) and (98) that ∥(ψ1(0), ψ2(0))∥H1
x ×L2

x
≤ K δ2v and

we also have
αv(0, y1(0))=

−∥H ′

0,1∥
2
L2

x

(1 − v2)3/2
+ O(v) > 0,

because of the estimate (112) when v is small enough.
Consequently, the Picard–Lindelöf theorem implies the existence of an interval [0, T1] ⊂ [0, T ] such

that y1 : [0, T1] → R>2 ln(1/v) is a C1 function and since y1 satisfies (101), we have for any t ∈ [0, T1] that〈
(ψ1(t, x), ψ2(t, x)), JDv,y1(t)(x)

〉
= ⟨

→
ψ(0, x), JDv,y1(0)(x)⟩ = 0. (114)

Furthermore, since ŷ(t)≥ 3 ln 1
v
, we can deduce from the continuity of function y1, Lemma 25 and

Corollary 26 the identity y1(t)= ŷ(t) for all t ∈ [0, T1]. Consequently, y1(t)≥ 3 ln 1
v

for all t ∈ [0, T1] and

∥(ψ1(t), ψ2(t))∥H1
x ×L2

x
=

∥∥→
φ(t, x)− −−→H−1,0((v, y1(t)), x)− −−→H0,1((v, y1(t)), x)

∥∥
H1

x ×L2
x
≤ K δ2v (115)

for all t ∈ [0, T1], because of estimate (97) and identity (98).
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Therefore, using a bootstrap argument and estimate (112), we can conclude that the function y1

is in C1
[0, T ] and satisfies (114) for all t ∈ [0, T ]. Finally, estimate (96) is a direct consequence

of (112), (115) and the fact that y1 ≥ 3 ln 1
v
. □

5.2. Orbital stability of the parameter y. In this subsection, we consider φ(t, x) as a solution of (1)
having finite energy and with an initial data (u1(x), u2(x)) satisfying the hypotheses of Theorem 4.
Moreover, if v is small enough, from the local well-posedness of the partial differential equation (1) in the
space of solutions with finite energy, we can deduce from Lemma 25 the existence of a constant C > 0
and a positive number ϵ such that, for all t ∈ [0, ϵ],

(φ(t, x), ∂tφ(t, x))=
−−→H−1,0((v, y(t)), x)+ −−→H0,1((v, y(t)), x)+ (ψ1(t, x), ψ2(t, x)),

where (ψ1(t, x), ψ2(t, x)) is an odd function in x , and y(t), (ψ1(t, x), ψ2(t, x)) satisfy the orthogonality
conditions in Lemma 25 and the inequality

|y(t)− y0| + ∥(ψ1(t, x), ψ2(t, x))∥H1
x ×L2

x
≤ 2C∥(u1, u2)∥H1

x ×L2
x
. (116)

Finally, we are ready to start the proof of Theorem 4

Remark 28 (main argument). The main techniques of the demonstration of Theorem 4 are inspired by
the proof of Theorem 1 of [Kowalczyk et al. 2021].

More precisely, recalling the functions E+ and P+ from (85) and (84), we will analyze the function

M(φ(t))= E+(φ(t))− vP+(φ(t)). (117)

First, from the local well-posedness of the partial differential equation (1) in the energy space, it
is enough to verify Theorem 4 in the case where (u1(x), u2(x)) is a smooth odd function because the
estimate (15) and the density of smooth functions in Sobolev spaces would imply that (15) would be true
for any (u1(x), u2(x)) ∈ H 1

x × L2
x satisfying the hypothesis of Theorem 4.

Since P+(t) is not necessarily a conserved quantity, M(t) is not necessarily a constant function given
any smooth initial data of (φ(0, x), ∂tφ(0, x)) satisfying the hypotheses of Theorem 4.

However, P+(t) is a nonincreasing function in time, more precisely, for smooth solutions φ(t, x)
of (13), we can verify using integration by parts, from the fact that φ(t, x) is an odd function in x for
any t ∈ R, the estimate

d
dt

[
−

∫
+∞

0
∂tφ(t, x)∂xφ(t, x) dx

]
=

1
2φ(t, 0)2 ≥ 0. (118)

In conclusion, since it was verified before that E+(t) is a conserved quantity, we have that

M(φ(t))≤ M(φ(0)) for any t ≥ 0,

and using Lemma 25, we will verify that M(φ(0))− M(φ(t)) satisfies a coercive inequality, from which
we will deduce (15).

Proof of Theorem 4. From the observations in Remark 28, it is enough to prove Theorem 4 for the case
where

→
ψ0(x) is a smooth odd function. To simplify our proof, we separate the argument into different steps.
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Step 1 (local description of solution φ(t, x)). From the observation of inequality (116) and from the
Lemma 25, we can verify the existence of an interval [0, ϵ] such that if t ∈ [0, ϵ], then

(φ(t, x), ∂tφ(t, x))=
−−→H−1,0((v, y(t)), x)+ −−→H0,1((v, y(t)), x)+ (ψ1(t, x), ψ2(t, x)), (119)

with v(t), y(t), (ψ1(t, x), ψ2(t, x)) satisfying all the conditions of Lemma 25.

Step 2 (estimate of E+(φ(t), ∂tφ(t)) around the kinks). We recall the definition of E+(φ(t), ∂tφ(t))
in (85) given by

E+(φ(t), ∂tφ(t))=

∫
+∞

0

∂xφ(t, x)2 + ∂tφ(t, x)2

2
+ U (φ(t, x)) dx .

Next, we substitute φ(t, x) and ∂tφ(t, x) in the equation above by the formula of (φ(t, x), ∂tφ(t, x)) in
Step 1. Using (4), (3) and the fact that y(t) > 1 for 0 ≤ t ≤ ϵ, we obtain for all x ≥ 0 that∣∣∣∣ ∂ l

∂x l H−1,0

(
x + y(t)
√

1 − v2

)∣∣∣∣ ≲l (1 − v2)−l/2e−
√

2(y(t)+x) for any l ∈ N ∪ {0}, (120)

from which we also deduce, using Lemma 11, the estimate∫
R

H ′

0,1

(
x − y(t)
√

1 − v2

)
H ′

−1,0

(
x + y(t)
√

1 − v2

)
≲ (1 − v2)1/2 y(t)e−2

√
2y(t). (121)

In addition, since ∥U (l)
∥L∞[−1,1] <+∞ for any l ∈ N, we can deduce using Lemma 13 the inequality∥∥∥∥U (l)

(
H0,1

(
x − y(t)
√

1 − v2

)
+ H−1,0

(
x + y(t)
√

1 − v2

))
ψ1(t, x)l

∥∥∥∥
H1

x

≲l ∥ψ1(t, x)∥l
H1

x
.

In conclusion, since

φ(t, x)= H0,1

(
x − y(t)
√

1 − v2

)
+ H−1,0

(
x + y(t)
√

1 − v2

)
+ψ1(t, x), (122)

∂tφ(t, x)= −
v

√
1 − v2

H ′

0,1

(
x − y(t)
√

1 − v2

)
+

v
√

1 − v2
H ′

−1,0

(
x + y(t)
√

1 − v2

)
+ψ2(t, x), (123)

we deduce from the formula (85), estimates (120), (121) and Taylor’s expansion theorem that

E+(φ(t), ∂tφ(t))

=

∫
+∞

0

1 + v2

2(1 − v2)
H ′

0,1

(
x − y(t)
√

1 − v2

)2

+ U
(

H0,1

(
x − y(t)
√

1 − v2

))
dx

−
1

√
1 − v2

∫
+∞

0
vH ′

0,1

(
x − y(t)
√

1 − v2

)
ψ2(t, x) dx − H ′

0,1

(
x − y(t)
√

1 − v2

)
∂xψ1(t, x)

+

∫
+∞

0
U ′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x) dx

+
1
2

[∫
+∞

0
∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x)2 +ψ2(t, x)2

]
dx

+ O
(
(1 − v2)−1/2 y(t)e−2

√
2y(t))

+ O
(
∥
→
ψ(t)∥H1

x ×L2
x
e−

√
2y(t)

+ ∥ψ1(t, x)∥3
H1

x (R)

)
, (124)
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while (φ(t, x), ∂tφ(t, x)) satisfies identities (122) and (123). Moreover, from (122), we can obtain
from (124), while (φ(t), ∂tφ(t)) satisfies (122) and (123), that

E+(φ(t), ∂tφ(t))

=

∫
+∞

−∞

1 + v2

2(1 − v2)
H ′

0,1

(
x − y(t)
√

1 − v2

)2

+ U
(

H0,1

(
x − y(t)
√

1 − v2

))
dx

−
1

√
1 − v2

∫
+∞

−∞

vH ′

0,1

(
x − y(t)
√

1 − v2

)
ψ2(t, x)− H ′

0,1

(
x − y(t)
√

1 − v2

)
∂xψ1(t, x)

+

∫
+∞

−∞

U ′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x) dx

+
1
2

[∫
+∞

0
∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x)2 +ψ2(t, x)2 dx

]
+ O

(
(1 − v2)−1/2 y(t)e−2

√
2y(t))

+ O
(
∥
→
ψ(t)∥H1

x ×L2
x
e−

√
2y(t)

+ ∥ψ1(t, x)∥3
H1

x (R)

)
, (125)

We also recall the Bogomolny identity H ′

0,1(x)=
√

2U (H0,1(x)), from which we deduce with change
of variables that

1
2

∫
R

H ′

0,1

(
x

√
1 − v2

)2

dx =

∫
R

U
(

H0,1

(
x

√
1 − v2

))
dx =

√
1 − v2

∥H ′

0,1∥
2
L2

x

2
. (126)

Step 3 (conclusion of the estimate of E+(t)). Since −−→H0,1((v, y(t)), x) is defined by

−−→H0,1((v, y(t)), x)=

 H0,1

(
x−y(t)√
1−v(t)2

)
−

v
√

1−v2
H ′

0,1

(
x−y(t)
√

1−v2

)
,

and we can verify by similar reasoning to (124) the identity

E(−−→H0,1((v, y(t)), x))=

∫
+∞

−∞

1 + v2

2(1 − v2)
H ′

0,1

(
x − y(t)
√

1 − v2

)2

+ U
(

H0,1

(
x − y(t)
√

1 − v2

))
dx .

We conclude that E(−−→H0,1((v, y(t)), x))= (1/
√

1 − v2)∥H ′

0,1∥
2
L2

x
. In conclusion, using (125), we obtain that

E+(φ(t), ∂tφ(t))

=
1

√
1 − v2

∥H ′

0,1∥
2
L2

x
−

∫
+∞

−∞

v
√

1 − v2
H ′

0,1

(
x − y(t)
√

1 − v2

)
ψ2(t, x) dx

+

∫
+∞

−∞

1
√

1 − v2
H ′

0,1

(
x − y(t)
√

1 − v2

)
∂xψ1(t, x)+

∫
+∞

−∞

U ′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x) dx

+
1
2

[∫
+∞

0
∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x)2 +ψ2(t, x)2

]
+ O

(
(1 − v2)−1/2 y(t)e−2

√
2y(t)

+ ∥(ψ1(t), ψ2(t))∥H1
x ×L2

x
e−

√
2y(t))

+ O(∥ψ1(t)∥3
H1

x (R)
).
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From this using integration by parts we conclude that

E+(φ(t), ∂tφ(t))

=
1

√
1 − v2

∥H ′

0,1∥
2
L2

x
+ v⟨J ◦ Cv,y(t),

−−→
ψ(t)⟩

+
1
2

[∫
+∞

0
ψ2(t, x)2 + ∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x)2

]
+ O

(
(1 − v2)−1/2 y(t)e−2

√
2y(t))

+ O
(
∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
e−

√
2y(t)

+ ∥ψ1(t)∥3
H1

x

)
, (127)

where the function Cv,y(x) is defined in (88).

Step 4 (estimate of −vP+(φ(t), ∂tφ(t))). First, we recall from (84) that P+(φ(t), ∂tφ(t)) is given by

P+(φ(t), ∂tφ(t))= −

∫
+∞

0
∂tφ(t, x)∂xφ(t, x) dx .

Then, while (φ(t, x), ∂tφ(t, x)) satisfies the formula

(φ(t, x), ∂tφ(t, x))=
−−→H−1,0((v, y(t)), x)+ −−→H0,1((v, y(t)), x)+ (ψ1(t, x), ψ2(t, x)),

using the estimates (120) and (121), we obtain by similar reasoning to the estimate of (2.12) of Lemma 2.3
in [Kowalczyk et al. 2021] that

−vP+(φ(t), ∂tφ(t))= −
v2

√
1 − v2

∥H ′

0,1∥
2
L2

x
− v⟨J ◦ Cv,y(t),

→
ψ(t)⟩

+ v

∫
+∞

0
∂xψ1(t, x)ψ2(t, x) dx + O

(
v2

(1 − v2)
y(t)e−2

√
2y(t)

)
+ O

(
v

√
1 − v2

e−
√

2y(t)
∥(ψ1(t), ψ2(t))∥H1

x ×L2
x

)
. (128)

More precisely, the errors in the estimate (128) come from estimate (120) and the Cauchy–Schwarz
inequality applied to ∫

+∞

0

∣∣∣∣H ′

−1,0

(
x + y(t)
√

1 − v2

)∣∣∣∣[|∂xψ1(t, x)| + |ψ2(t, x)|] dx,

from Lemma 11 applied to the integral∫
+∞

0
H ′

0,1

(
x − y(t)
√

1 − v2

)
H ′

−1,0

(
x + y(t)
√

1 − v2

)
dx,

and from the elementary estimate∫ 0

−∞

H ′

0,1

(
x − y(t)
√

1 − v2

)2

dx +

∫
+∞

0
H ′

−1,0

(
x + y(t)
√

1 − v2

)2

dx ≲ e−2
√

2y(t),

which can be obtained from (120).
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Step 5 (estimate and monotonicity of M(φ(t), ∂tφ(t))). From estimates (127) and (128), we deduce

M(φ(t), ∂tφ(t))

= E+(φ(t), ∂tφ(t))− vP+(φ(t), ∂tφ(t))

=

√
1 − v2∥H ′

0,1∥
2
L2

x
+

1
2

[∫
+∞

0
ψ2(t, x)2 + ∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)√
1 − v(t)2

))
ψ1(t, x)2 dx

]
+ O

(
v∥(ψ1(t), ψ2(t))∥2

H1
x ×L2

x
+ ∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
e−

√
2y(t))

+ O
(
∥ψ1(t)∥3

H1
x
+ +y(t)e−2

√
2y(t)). (129)

Furthermore, using estimate (127) and Lemma 11, we can also verify the estimates

E+

( −−→H0,1(v, y(t))+ −−→H−1,0(v, y(t))
)
=

1
√

1 − v2
∥H ′

0,1∥
2
L2

x
+ O(y(t)e−2

√
2y(t)),

P+

( −−→H0,1(v, y(t))+ −−→H−1,0(v, y(t))
)
=

v
√

1 − v2
∥H ′

0,1∥
2
L2

x
+ O(y(t)e−2

√
2y(t)).

Therefore, we obtain that

M
( −−→H0,1(v, y(t))+ −−→H−1,0(v, y(t))

)
=

√
1 − v2∥H ′

0,1∥
2
L2

x
+ O(y(t)e−2

√
2y(t)), (130)

from which we deduce

M(φ(t), ∂tφ(t))

= M(−−→H0,1(v, y(0))+ −−→H−1,0(v, y(0)))

+
1
2

[∫
+∞

0
ψ2(t, x)2 + ∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x)2 dx

]
+O

(
max{y(t)e−2

√
2y(t), y(0)e−2

√
2y(0)

}
)
+O

(
v∥(ψ1(t), ψ2(t))∥2

H1
x ×L2

x
+∥(ψ1(t), ψ2(t))∥3

H1
x ×L2

x

)
.

Consequently, since M(φ(0), ∂tφ(0))≥ M(φ(t), ∂tφ(t)) for all t ≥ 0 and

(φ(0), ∂tφ(0))=
−−→H0,1(v, y(0))+ −−→H−1,0(v, y(0))+ (ψ1(0), ψ2(0)),

we have for every t ≥ 0 the estimate∫
+∞

0
ψ2(t, x)2 + ∂xψ1(t, x)2 + U ′′

(
H0,1

(
x − y(t)
√

1 − v2

))
ψ1(t, x)2 dx

≲ y(t)e−2
√

2y(t)
+ y(0)e−2

√
2y(0)

+ v∥(ψ1(t), ψ2(t))∥2
H1

x ×L2
x
+ ∥(ψ1(t), ψ2(t))∥3

H1
x ×L2

x

+ ∥(ψ1(0), ψ2(0))∥H1
x ×L2

x
,

from which with Lemma 34 we deduce for all t ≥ 0 that

∥(ψ1(t), ψ2(t))∥2
H1

x ×L2
x
≲ y(t)e−2

√
2y(t)

+ y(0)e−2
√

2y(0)
+ ∥(ψ1(0), ψ2(0))∥H1

x ×L2
x
, (131)

if v ≪ 1.
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Step 6 (final argument). The last argument is to prove that the set denoted by

BO =
{
t ∈ R≥0 | ∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
≤ v1+θ/4, y(t)≥ y(0) and (119) is true

}
(132)

is the proper R≥0. From the hypotheses of Theorem 4 and Step 1, we can verify that 0 ∈ BO .
Furthermore, from Step 1, we have obtained that there exists ϵ > 0 such that if 0 ≤ t ≤ ϵ, then

(φ(t, x), ∂tφ(t, x))=
→
H−1,0((v, y(t)), x)+

→
H 0,1((v, y(t)), x)+ (ψ1(t, x), ψ2(t, x))

and
|y(t)− y0| + ∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
≤ 2C∥(u1, u2)∥H1

x ×L2
x
. (133)

Since ∥(u1, u2)∥H1
x ×L2

x
≤ v2+θ and Lemma 25 implies the estimate

∥(ψ1(0), ψ2(0))∥H1
x ×L2

x
≲ ∥(u1, u2)∥H1

x ×L2
x
,

from (133) and Lemma 27, we deduce the existence of a constant 0< K independent of ϵ and v such
that y(t) is a function of class C1 in [0, ϵ] and for any t ∈ [0, ϵ], the inequality

|ẏ(t)− v| ≤ K [∥(ψ1(t), ψ2(t))∥H1
x ×L2

x
+ e−2

√
2y(t)

] (134)

is true. Therefore,
ẏ(t)≥ v− K [∥(ψ1(t), ψ2(t))∥H1

x ×L2
x
+ e−2

√
2y(t)

] (135)

while t ∈ [0, ϵ]. Moreover, from inequality (133) and the observations done before, to prove that
[0, ϵ] ⊂ BO it is only needed to verify that y(t)≥ y(0) for all t ∈ [0, ϵ].

First, since y(t) is continuous for t ∈ [0, ϵ], there exists ϵ2 ∈ (0, ϵ) such that if 0 ≤ t ≤ ϵ2, then

y(t)≥
3
4 y(0),

so (133), (135) and the estimate ∥(ψ1(0), ψ2(0))∥H1
x ×L2

x
≲ ∥(u1, u2)∥H1

x ×L2
x
≤ v2+θ imply that if 0 ≤ t ≤ ϵ2

and 0< v ≪ 1, then
ẏ(t)≥ v− v2

− K e−3
√

2y(0)/2
≥

4
5v. (136)

In conclusion, estimate (133), the hypothesis of y0 ≥ 4 ln 1
v

and inequality (136) imply for v ≪ 1 that
if 0 ≤ t ≤ ϵ2, then y(t)≥ y(0)+ 4

5vt and [0, ϵ2] ⊂ BO .
If t ∈ [ϵ2, ϵ], it is not difficult to verify that y(t) ≥ y(0) in this region. Indeed, the continuity of the

function y would imply otherwise the existence of ti satisfying ϵ2< ti ≤ ϵ, y(ti )= y(0) and y(s)> y(0) for
any ϵ2 ≤ s< ti , which implies that estimate (136) is true for t ∈ [ϵ2, t1]. But, repeating the argument above,
we would conclude that y(ti )≥ y(0)+ 4

5vti , which is a contradiction. In conclusion, the interval [0, ϵ]
is contained in the set BO .

Similarly, from Lemma 27, we can use inequality (135) to verify that y(t) ≥ y(0) +
4
5vt always

when [0, t] ⊂ BO . Therefore, estimate (131) implies

∥(ψ1(t), ψ2(t))∥H1
x ×L2

x (x) ≲ ∥(u1, u2)∥
1/2
H1

x ×L2
x
+ y(0)1/2e−

√
2y(0)

≪ v1+θ/4 (137)

if [0, t] ∈ BO .
In conclusion, BO = R≥0 and estimates (134), (137) imply the result of Theorem 4 for all t ≥ 0. □
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6. Proof of Theorem 2

First, from Theorem 1.3 in [Chen and Jendrej 2022], we know for any 0< v < 1 that there exist δ(v) > 0,
T (v) > 0 and a solution φ(t, x) of (1) with finite energy satisfying the identity

φ(t, x)= H0,1

(
x − vt

(1 − v2)1/2

)
+ H−1,0

(
−x − vt
(1 − v2)1/2

)
+ψ(t, x), (138)

and the decay estimate
sup
t≥T

∥(ψ(t, x), ∂tψ(t, x))∥H1
x ×L2

x
eδt <+∞ (139)

for any T ≥ T (v) and δ ≤ δ(v). Moreover, we can find δ(v), T (v) > 0 such that

sup
t≥T (v)

∥(ψ(t, x), ∂tψ(t, x))∥H1
x ×L2

x
eδ(v)t < 1. (140)

Indeed, in [Chen and Jendrej 2022] it was proved using fixed point theorem that for any 0< v < 1 there
is a unique solution of (1) that satisfies (139) for some T, δ > 0.

Next, if we restrict the argument of the proof of Proposition 3.6 of [Chen and Jendrej 2022] to the travel-
ing kink-kink of the φ6 model, we can find explicitly the values of δ(v) and T (v). More precisely, we have:

Theorem 29. There is δ0 > 0 such that if 0< v < δ0 there exists a unique solution φ(t, x) of (1) with

h(t, x)= φ(t, x)− H0,1

(
x − vt

(1 − v2)1/2

)
− H−1,0

(
x + vt

(1 − v2)1/2

)
,

satisfying (139) for some 0< δ < 1 and T > 0. Furthermore, we have if

t ≥
4 ln(1/v)

v

that
∥(h(t, x), ∂t h(t, x))∥H1

x ×L2
x
≤ e−vt . (141)

This solution is also an odd function on x.

Proof. See Appendix B. □

Finally, we have obtained all the framework necessary to start the demonstration of Theorem 2.

Proof of Theorem 2. First, from Theorem 29, for any k ∈ N bigger than 2 and 0< v ≤ δ0, we have that
the traveling kink-kink with speed v satisfies for

T0,k =
32k ln(1/v2)

2
√

2v
the estimate

∥(h(T0,k), ∂t h(T0,k))∥H1
x ×L2

x
≤ v16

√
2k (142)

for h(t, x) the function denoted in Theorem 29. Now, we start the proof of the second item of Theorem 2.

Step 1 (proof of second item of Theorem 2). First, in the notation of Theorem 8, we consider

φk(v, t, x)= ϕk,v(t, x + τk,v).
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For the T0,k given before, we can verify using Theorems 7 and 8 that∥∥∥∥φk(v, T0,k, x)− H0,1

(
x − vT0,k
√

1 − v2

)
− H−1,0

(
x + vT0,k
√

1 − v2

)∥∥∥∥
H1

x

+

∥∥∥∥∂tφk(v, T0,k, x)+
v

√
1 − v2

H ′

0,1

(
x − vT0,k
√

1 − v2

)
−

v
√

1 − v2
H ′

−1,0

(
x + vT0,k
√

1 − v2

)∥∥∥∥
H1

x

≤ v15k .

In conclusion, Theorem 15 and Remark 22 imply that there is 1k,θ > 0 such that if also v < 1k,θ , then

∥(φ(t, x), ∂tφ(t, x))− (φk(v, t, x), ∂tφk(v, t, x))∥H1
x ×L2

x
< v2k−1/2,

while
|t − T0,k |<

ln(1/v)2−θ/2

v
.

Also, Theorems 7 and 8 implies that if v ≪ 1 and

−4
ln(1/v)2−θ

v
≤ t ≤ −

ln(1/v)2−θ

v
,

then there exist ek,v satisfying ∣∣∣∣ev,k −
1

√
2

ln
(

8
v2

)∣∣∣∣ ≪ 1

such that∥∥∥∥φk(v, t, x)− H0,1

(
x −ek,v+vt

√
1−v2

)
− H−1,0

(
x +ek,v−vt

√
1−v2

)∥∥∥∥
H1

x

+

∥∥∥∥∂tφk(v, t, x)−
v

√
1−v2

H ′

0,1

(
x −ek,v+vt

√
1−v2

)
+

v
√

1−v2
H ′

−1,0

(
x +ek,v−vt

√
1−v2

)∥∥∥∥
H1

x

≪v2k−1/2. (143)

In conclusion, the second item of Theorem 2 follows from the observation above and Remark 22.

Step 2 (proof of first item of Theorem 2). From Step 1, for

t0 = −
ln(1/v)2−θ

v
,

we obtained that φ(t0, x) satisfies (143). Next, we will study the behavior of φ(t, x) for t ≤ t0, which is
equivalent to studying the function φ1(t, x)= φ(−(t + t0), x) for t ≥ 0.

However, from the estimate (143), we can verify that (φ1(0, x), ∂tφ1(0, x)) satisfies the hypotheses of
Theorem 4, if we consider y0 = ek,v − vt0 and 0< v <≪ 1. Therefore, using the result of Theorem 4 and
the identity φ1(t, x)= φ(−(t + t0), x), we obtain the first item of Theorem 2. □

Appendix A: Auxiliary estimates

In this appendix, we complement our article by demonstrating complementary estimates.

Lemma 30. For

G(x)= e−
√

2x
−

e−
√

2x

(1 + e2
√

2x)3/2
+ x

e
√

2x

(1 + e2
√

2x)3/2
+ k1

e
√

2x

(1 + e2
√

2x)3/2
,
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we have that∫
R

U (3)(H0,1(x))H ′

0,1(x)
2G(x) dx

=

∫
R

U (3)(H0,1(x))H ′

0,1(x)
2e−

√
2x dx −

√
2

∫
R

[U ′′(H0,1(x))− 2]H ′

0,1(x)e
−

√
2x dx .

Remark 31. Indeed, the value k1 in Lemma 30 can be replaced by zero, since∫
R

U (3)(H0,1(x))H ′

0,1(x)
3 dx = 0.

Proof of Lemma 30. First, from identity H ′′

0,1(x)= U ′(H0,1(x)) and integration by parts, we can verify
the identity∫

R

U (3)(H0,1(x))H ′

0,1(x)
2G(x) dx =

∫
R

U ′(H0,1(x))[G′′(x)− U ′′(H0,1)G(x)] dx .

Also, since −G′′(x)+U ′′(H0,1(x))G(x)=[U ′′(H0,1(x))−2]e−
√

2x
+8

√
2H ′

0,1(x) and ⟨H ′

0,1,U
′(H0,1)⟩=0,

we conclude using integration by parts that∫
R

U (3)(H0,1(x))H ′

0,1(x)
2G(x) dx

= −

∫
R

U ′(H0,1(x))[U ′′(H0,1(x))− 2]e−
√

2x dx

= −

∫
R

H ′′

0,1(x)[U
′′(H0,1(x))− 2]e−

√
2x dx,

=

∫
R

U (3)(H0,1(x))H ′

0,1(x)
2e−

√
2x dx −

√
2

∫
R

[U ′′(H0,1(x))− 2]H ′

0,1(x)e
−

√
2x dx . □

Now, using integration by parts and identity (27) of [Moutinho 2023], we have that

−

∫
R

[U ′′(H0,1(x))− 2]e−
√

2x H ′

0,1(x) dx = −
√

2
∫

R

[6H0,1(x)5 − 8H0,1(x)3]e−
√

2x dx = 4, (144)

from which we deduce the following lemma.

Lemma 32.
∫

R

U (3)(H0,1(x))H ′

0,1(x)
2G(x) dx −

∫
R

U (3)(H0,1(x))H ′

0,1(x)
2e−

√
2x dx = 4

√
2.

Lemma 33. There is δ > 0, c > 0 such that if

0< v < δ, d(t)=
1

√
2

ln
(

8
v2 cosh (

√
2vt)

2
)
,

then for

H+

0,1(x, t)= H0,1

(
x −

1
2 d(t)√

1 −
1
4 ḋ(t)2

)
, H−

0,1(x, t)= H−1,0

(
x +

1
2 d(t)√

1 −
1
4 ḋ(t)2

)
,

and any g ∈ H 1
x (R) such that

⟨g(x), ∂x H+

0,1(x, t)⟩ = 0, ⟨g(x), ∂x H−

0,1(x, t)⟩ = 0,

we have
c∥g∥

2
H1

x
≤

〈
−∂2

x g(x)+ U ′′(H+

0,1(x, t)+ H−

0,1(x, t))g(x), g(x)
〉
. (145)
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Proof of Lemma 33. First, to simplify our computations we let

γd(t) =
1√

1 −
1
4 ḋ(t)2

.

Next, we can verify using a change of variables that

⟨U ′′(H+

0,1(x, t))g(x), g(x)⟩ =

√
1 −

1
4 ḋ(t)2

∫
R

U ′′(H0,1(y))
[
g
((

y +
1
2 d(t)γd(t)

)
γ−1

d(t)

)]2 dy,

and ∫
R

dg(x)
dx

2 dx =
1√

1 −
1
4 ḋ(t)2

∫
R

[
d

dy
[g(yγ−1

d(t))]

]2

dy. (146)

We now let
g1(t, y)= g

(
y
√

1 −
1
4 ḋ(t)2

)
= g(yγ−1

d(t)).

Moreover, L = −∂2
x + U ′′(H0,1(x)) is a positive operator in L2(R) when it is restricted to the orthogonal

complement of H ′

0,1(x) in L2
x(R); see [Jendrej et al. 2022] or [Moutinho 2023] for the proof. In conclusion,

we deduce that there is a constant C > 0 independent of v > 0 such that〈
−

d2

dx2 g(x)+ U ′′(H+

0,1(x, t))g(x), g(x)
〉
≥ C

√
1 −

1
4 ḋ(t)2∥g1(t, y)∥2

H1
y (R)

, (147)

so, from ḋ(t) = v tanh (
√

2vt) and identity (146), we deduce that there is a constant C1 > 0 such that
if v ≪ 1, then 〈

−
d2

dx2 g(x)+ U ′′(H+

0,1(x, t))g(x), g(x)
〉
≥ C1∥g(x)∥2

H1(R)
. (148)

Similarly, we can verify for the same constant C1 > 0 that if ⟨g(x), ∂x H−

−1,0(x, t)⟩L2
x
= 0 and v≪ 1, then〈

−
d2

dx2 g(x)+ U ′′(H−

0,1(x, t))g(x), g(x)
〉
≥ C1∥g(x)∥2

H1(R)
. (149)

The remaining part of the proof proceeds exactly as the proof of Lemma 2.6 of [Moutinho 2023]. □

Lemma 34. There exist C > 1, c> 0δ > 0 such that if 0< v < δ, then for any (ϕ1, ϕ2) ∈ H 1
x (R)× L2

x(R)

we have that∫
R

ϕ2
2 + ∂xϕ

2
1 + U ′′

(
H0,1

(
x

√
1 − v2

))
ϕ1(x)2 dx ≥ c∥(ϕ1, ϕ2)∥

2
H1

x ×L2
x
− C⟨(ϕ1, ϕ2), JDv,0(x)⟩2.

Proof. The proof is completely analogous to that of property (2) of [Kowalczyk et al. 2021, Lemma 2.8]. □

Appendix B: Proof of Theorem 29

We start by letting

J =

[
0 1

−1 0

]
,
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and we consider for x ∈ R and −1< v < 1 the functions

ψ0
−1,0(x, v)= J

 H ′

−1,0

(
x

√
1−v2

)
v

1−v2
H (2)

−1,0

(
x

√
1−v2

)
, (150)

ψ1
−1,0(x, v)= J

 vx H ′

−1,0

(
x

√
1−v2

)
1

√
1−v2

H ′

−1,0

(
x

√
1−v2

)
+

v2x
1−v2

H (2)
−1,0

(
x

√
1−v2

)
, (151)

and we write, for j ∈ {0, 1}, ψ j
0,1(x, v)= ψ

j
−1,0(−x,−v).

Next, we will use Lemma 2.6 of [Chen and Jendrej 2022].

Lemma 35. The functions

Y 0
−1,0(v; x, t)= −Jψ0

−1,0(x + vt, v), (152)

Y 1
−1,0(v; x, t)= −Jψ1

−1,0(x + vt, v)+ t
√

1 − v2Y 0
−1,0(v; x + vt, t) (153)

are solutions of the linear differential system

d
dt

[
w1(t)
w2(t)

]
= J

−
∂2

∂x2
+ U ′′

(
H−1,0

(
x+vt

√
1−v2

))
0

0 1

 [
w1(t)
w2(t)

]
, (154)

and the functions

Y 0
0,1(v; x, t)= −Jψ0

0,1(x − vt, v), (155)

Y 1
0,1(v; x, t)= −Jψ1

0,1(x − vt, v)+ t
√

1 − v2Y 0
0,1(v; x − vt, t) (156)

are solutions of the linear differential system

d
dt

[
w1(t)
w2(t)

]
= J

−
∂2

∂x2
+ U ′′

(
H0,1

(
x−vt

√
1−v2

))
0

0 1

 [
w1(t)
w2(t)

]
. (157)

Now, similarly to [Chen and Jendrej 2022], we consider the linear operator L+,−(v, t) defined by

L+,−(v, t)=

−
∂2

∂x2
+ U ′′

(
H0,1

(
x−vt

√
1−v2

)
+ H−1,0

(
x+vt

√
1−v2

))
0

0 1

. (158)

We recall that

H0,1(x)=
e
√

2x√
1 + e2

√
2x
, and

∣∣∣∣ dl

dx l H0,1(x)
∣∣∣∣ ≲ min(e

√
2x , e−2

√
2x) for any l ∈ N.

From now on, we let ψ j
−1,0(v; t, x) = ψ

j
−1,0(x + vt, v) and ψ j

0,1(v; t, x) = ψ
j
−1,0(x − vt, v) for

any j ∈ {0, 1}. Furthermore, using Lemma 11, we can verify similarly to the proof of Proposition 2.8 of
[Chen and Jendrej 2022] the following result.
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Lemma 36. There exists C > 0, such that for any 0< v < 1, we have for all t ∈ R≥1 that∥∥∥∥ ∂∂t
ψ0

0,1(v; t, x)− L+,− Jψ0
0,1(v; t, x)

∥∥∥∥
L2

x

≤ C exp
(

−2
√

2v|t |
√

1−v2

)
,∥∥∥∥ ∂∂t

ψ0
−1,0(v; t, x)− L+,− Jψ0

−1,0(v; t, x)
∥∥∥∥

L2
x

≤ C exp
(

−2
√

2v|t |
√

1−v2

)
,∥∥∥∥ ∂∂t

ψ1
0,1(v; t, x)− L+,− Jψ1

0,1(v; t, x)+
√

1−v2ψ0
0,1(v; t, x)

∥∥∥∥
L2

x

≤ C(|t |v+1)v exp
(

−2
√

2v|t |
√

1−v2

)
,∥∥∥∥ ∂∂t

ψ1
−1,0(v; t, x)− L+,− Jψ1

−1,0(v; t, x)+
√

1−v2ψ0
−1,0(v; t, x)

∥∥∥∥
L2

x

≤ C(|t |v+1)v exp
(

−2
√

2v|t |
√

1−v2

)
.

Next, we consider a smooth cut function 0 ≤ χ(x)≤ 1 that satisfies

χ(x)=

{
1 if x ≤ 2(1 − 10−3),
0 if x ≥ 2.

From now on, for each 0< v < 1, we consider p(v)=
1
2v(1 − 10−3) and we also let

χ1(v; t, x)= χ

(
x + vt
p(v)t

)
, χ2(v; t, x)= 1 −χ

(
x + vt
p(v)t

)
.

Lemma 37. There is c, δ0 > 0 such that if 0< v < δ0, then

Q(t, r)=
1
2

[∫
R

∂tr(t, x)2 + ∂xr(t, x)2 + U ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
r(t, x)2 dx

]
+

2∑
j=1

v

∫
R

χ j (v; t, x)(−1) j∂tr(t, x)∂xr(t, x) dx

satisfies, for any t ≥
ln(1/v)
v

,

Q(t, r)≥ c∥→r(t)∥2
H1

x ×L2
x
−

1
c

[ 1∑
j=0

⟨
→r(t), ψ j

−1,0(v; t)⟩2
+ ⟨

→r(t), ψ j
0,1(v; t)⟩2

]
.

Proof. From the definitions of ψ1
−1,0 and ψ1

0,1, we can verify that there is a constant C > 0 such that
if v ≪ 1, then∣∣∣∣〈r(t), H ′

0,1

(
x − vt

√
1 − v2

)〉2∣∣∣∣ ≤ C
[
⟨(r(t), ∂tr(t)), ψ1

0,1(v; t)⟩2
+ v2

∥(r(t), ∂tr(t))∥2
H1

x ×L2
x

]
, (159)∣∣∣∣〈r(t), Ḣ−1,0

(
x + vt

√
1 − v2

)〉2∣∣∣∣ ≤ C
[
⟨(r(t), ∂tr(t)), ψ1

−1,0(v; t)⟩2
+ v2

∥(r(t), ∂tr(t))∥2
H1

x ×L2
x

]
. (160)

Then, using the estimates (159) and (160), the proof of Lemma 37 is analogous to the demonstration of
Lemma 2.3 of [Jendrej et al. 2022] or the proof of Lemma 2.5 in [Moutinho 2023] or the demonstration
of Lemma 33 in Appendix A □
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Remark 38. Proposition 2.10 of [Chen and Jendrej 2022] implies that for any 0 < v < 1, there is Tv
and cv such that Lemma 37 holds with cv in the place of c for all t ≥ Tv.

Lemma 39. There exists C > 0 such that, for any 0 < v < 1, if f (t, x) ∈ L∞
t (R; H 1

x (R)) and
h(t, x) ∈ L∞

t (R≥1; H 1
x (R)) ∩ C1

t (R≥1; L2
x(R)) is a solution of the integral equation associated to the

partial differential equation

∂2
t h(t, x)− ∂2

x h(t, x)+ U ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
h(t, x)= f (t, x),

for some boundary condition (h(t0), ∂t h(t0)) ∈ H 1
x (R)× L2

x(R), then

Q(t, h)=
1
2

[∫
R

∂t h(t, x)2 + ∂x h(t, x)2 + U ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
h(t, x)2 dx

]
+

2∑
j=1

v

∫
R

χ j (v; t, x)(−1) j∂t h(t, x)∂x h(t, x) dx

satisfies∣∣∣∣ ∂∂t
Q(t, h)

∣∣∣∣
≤ C

[
∥ f (t)∥L2

x
∥(h(t), ∂t h(t))∥H1

x ×L2
x
+ ∥(h(t), ∂t h(t))∥2

H1
x ×L2

x

(
v exp

(
−

√
2vt (1 − 10−3)2
√

1 − v2

)
+

1
t

)]
for all t ≥ 1.

Proof. First, from the equation satisfied by h(t, x), we obtain that∫
R

[
∂2

t h(t, x)− ∂2
x h(t, x)+ U ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
h(t, x)2

]
∂t h(t, x) dx

=

∫
R

f (t, x)∂t h(t, x) dx . (161)

As a consequence, we deduce by integration by parts that

d
dt

[∫
R

∂t h(t)2 + ∂x h(t)2 + U ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
h(t)2 dx

]
= −

v
√

1 − v2

∫
R

U (3)
(

H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
H ′

0,1

(
x − vt

√
1 − v2

)
h(t)2 dx

+
v

√
1 − v2

∫
R

U (3)
(

H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
H ′

−1,0

(
x + vt

√
1 − v2

)
h(t)2 dx

+ 2
∫

R

f (t, x)h(t, x) dx . (162)
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Next, from the definition of χ1(v; t, x) and χ2(v; t, x), we can verify for each j ∈ {1, 2} that

d
dt

[
v

∫
R

χ j (v; t, x)(−1) j∂t h(t, x)∂x h(t, x) dx
]

= v

∫
R

χ j (v; t, x)(−1) j∂2
t h(t, x)∂x h(t, x) dx + v

∫
R

χ j (v; t, x)(−1) j∂t h(t, x)∂2
t,x h(t, x) dx

+ O
(

∥χ̇∥L∞
x (R)

v

t
∥(h(t), ∂t h(t))∥2

H1
x ×L2

x

)
,

from which we deduce using integration by parts that

d
dt

[
v

∫
R

χ j (v; t, x)(−1) j∂t h(t, x)∂x h(t, x) dx
]

= v

∫
R

χ j (v; t, x)(−1) j∂2
t h(t, x)∂xr(t, x) dx + O

(
∥χ̇∥L∞

x (R)

1
t
∥(h(t), ∂t h(t))∥2

H1
x ×L2

x

)
. (163)

From the equation satisfied by h(t, x), we have that

v

∫
R

χ j (v; t, x)(−1) j∂2
t h(t, x)∂x h(t, x) dx

= v

∫
R

χ j (v; t, x)(−1) j f (t, x)∂x h(t, x) dx + v

∫
R

χ j (v; t, x)(−1) j∂2
x h(t, x)∂x h(t, x) dx

− v

∫
R

χ j (v; t, x)(−1) jU ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
h(t, x)∂x h(t, x) dx .

So, using integration by parts, we obtain for any j ∈ {1, 2} that

2
√

1 − v2
∫

R

χ j (v; t, x)∂2
t h(t, x)∂x h(t, x) dx

=

∫
R

χ j (v; t, x)U (3)
(

H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
H ′

0,1

(
x − vt

√
1 − v2

)
h(t, x)2 dx

+

∫
R

χ j (v; t, x)U (3)
(

H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
H ′

−1,0

(
x + vt

√
1 − v2

)
h(t, x)2 dx

+ O
(

∥χ ′
∥L∞

x (R)

1
vt

∥(h(t), ∂t h(t))∥2
H1

x ×L2
x
+ ∥ f (t)∥L2

x
∥(h(t), ∂t h(t))∥H1

x ×L2
x

)
.

From the definitions of χ1(v; t, x) and χ2(v; t, x), we can verify for all t > 1 that

H ′

0,1

(
x − vt

√
1 − v2

)
χ1(v; t, x) <

√
2 exp

(
−

√
2vt (1 + 2 × 10−3)

√
1 − v2

)
,

Ḣ−1,0

(
x + vt

√
1 − v2

)
χ2(v; t, x) <

√
2 exp

(
−

√
2vt (1 − 10−3)2

√
1 − v2

)
.



2198 ABDON MOUTINHO

In conclusion, we obtain that

2∑
j=1

v

∫
R

χ j (v; t, x)(−1) j∂2
t h(t, x)∂x h(t, x) dx

=
v

2
√

1 − v2

∫
R

U (3)
(

H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
H ′

0,1

(
x − vt

√
1 − v2

)
h(t, x)2 dx

−
v

2
√

1 − v2

∫
R

U (3)
(

H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
H ′

−1,0

(
x + vt

√
1 − v2

)
h(t, x)2 dx

+ O
(

∥χ̇∥L∞
x (R)

1
t
∥(h(t), ∂t h(t))∥2

H1
x ×L2

x
+ v∥ f (t)∥L2

x
∥(h(t), ∂t h(t))∥H1

x ×L2
x

)
+ O

(
v exp

(
−

√
2vt (1 − 10−3)2

(1 − v2)1/2

)
∥h(t, x)∥2

H1
x (R)

)
. (164)

So, using estimate (164), Lemma 39 will follow from the sum of (162) and (163). □

Lemma 40. There is C > 0, such that, for any 0 < v < 1, if f (t, x) ∈ L∞
t (R; H 1

x (R)) and h(t, x) ∈

L∞
t (R≥1; H 1

x (R)) ∩ C1
t (R≥1; L2

x(R)) is a solution of the integral equation associated to the partial
differential equation

∂2
t h(t, x)− ∂2

x h(t, x)+ U ′′

(
H0,1

(
x − vt

√
1 − v2

)
+ H−1,0

(
x + vt

√
1 − v2

))
h(t, x)= f (t, x)

for some boundary condition (h(t0), ∂t h(t0))∈ H 1
x (R)×L2

x(R), then for
→
h(t)= (h(t, x), ∂t h(t, x)) we have∣∣∣∣ d

dt
⟨
→
h(t), ψ0

−1,0(v; t)⟩
∣∣∣∣ ≤ C

[
∥ f (t)∥L2

x (R)
+ ∥

−−→h(t)∥H1
x (R)×L2

x (R)
exp

(
−2

√
2vt

(1 − v2)1/2

)]
,∣∣∣∣ d

dt
⟨
→
h(t), ψ0

0,1(v; t)⟩
∣∣∣∣ ≤ C

[
∥ f (t)∥L2

x (R)
+ ∥

−−→h(t)∥H1
x (R)×L2

x (R)
exp

(
−2

√
2vt

(1 − v2)1/2

)]
,∣∣∣∣ d

dt
⟨
→
h(t), ψ1

−1,0(v; t)⟩ + (1 − v2)1/2⟨
→
h(t), ψ0

−1,0(v; t)⟩
∣∣∣∣

≤ C
[
∥ f (t)∥L2

x
+ ∥

−−→h(t)∥H1
x ×L2

x
(|t |v+ 1) exp

(
−2

√
2vt

(1 − v2)1/2

)]
,∣∣∣∣ d

dt
⟨
→
h(t), ψ1

0,1(v; t)⟩ + (1 − v2)1/2⟨
→
h(t), ψ0

0,1(v; t)⟩
∣∣∣∣

≤ C
[
∥ f (t)∥L2

x
+ ∥

−−→h(t)∥H1
x ×L2

x
(|t |v+ 1) exp

(
−2

√
2vt

(1 − v2)1/2

)]
.

Proof of Lemma 40. This follows directly from the identity

d
dt

→
h(t)= J L+,−

→
h(t)+

[
0

f (t, x)

]
, (165)

and from Lemma 36. □
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Proof of Theorem 29. For
T0 ≥

4 ln(1/v)
v

,

we consider similarly to [Chen and Jendrej 2022] the norms

∥u∥L2
v,T0

= sup
t≥T0

evt
∥u(t, x)∥L2

x (R)
, ∥u∥H1

v,T0
= sup

t≥T0

evt
[∥u(t, x)∥2

H1
x (R)

+ ∥∂t u(t, x)∥2
L2

x (R)
]
1/2.

Next, from Lemma 40, we can verify using the fundamental theorem of calculus that there is a constant
C > 1 such that if v ≪ 1, then for any t ≥ T0 we have that

|⟨
→
h(t), ψ0

−1,0(v; t)⟩| ≤ C
[
∥ f ∥L2

v,T0

e−vt

v
+ ∥h∥H1

v,T0

e−(2
√

2+1)vt

v

]
, (166)

|⟨
→
h(t), ψ1

−1,0(v; t)⟩| ≤ C
[
∥ f ∥L2

v,T0

e−vt

v2 + ∥h∥H1
v,T0

te−(2
√

2+1)vt
+ ∥h∥H1

v,T0

e−(2
√

2+1)vt

v2

]
, (167)

|⟨
→
h(t), ψ0

0,1(v; t)⟩| ≤ C
[
∥ f ∥L2

v,T0

e−vt

v
+ ∥h∥H1

v,T0

e−(2
√

2+1)vt

v

]
, (168)

|⟨
→
h(t), ψ1

0,1(v; t)⟩| ≤ C
[
∥ f ∥L2

v,T0

e−vt

v2 + ∥h∥H1
v,T0

te−(2
√

2+1)vt
+ ∥h∥H1

v,T0

e−(2
√

2+1)vt

v2

]
. (169)

Also, from Lemma 39, we can verify using the fundamental theorem of calculus for any t ≥ T0 that
there is a constant K ≥ 1 such that if v ≪ 1, then∫

+∞

t

∣∣∣∣ d
ds

Q(s, h)
∣∣∣∣ ds ≤ K

[
e−2vt

v
∥ f ∥L2

v,T0
∥h∥H1

v,T0
+ ∥h∥

2
H1
v,T0

(
e−2vt

vt
+ e−t (2v+

√
2v(1−10−3)2)

)]
. (170)

In conclusion, similarly to Step 1 in the proof of Lemma 3.1 of [Chen and Jendrej 2022], we deduce
using the estimates (166)–(170) with Lemma 37 that there exists a new constant C > 1 such that for
any t ≥ T0 and v ≪ 1 we have

∥h∥
2
H1
v,T0

≤
C
v4 ∥ f ∥

2
L2
v,T0
. (171)

The fact that the constant C in (171) is independent of v follows from

T0 ≥
4 ln(1/v)

v
,

which implies that
e−2vt

v4 +
e−2vt

vt
≪ v4.

We also observe that if (g1(t, x), ∂t g1(t, x)) and (g2(t, x), ∂t g2(t, x)) are in the space (g(t), ∂t g(t)) ∈

H 1
x (R)× L2

x(R) such that
∥(g(t), ∂t g(t))∥L∞([T0,+∞],H1

x ×L2
x )

≤ 1, (172)

then, since U ∈ C∞, we can verify that the function

N (v,→g)(t, x)= U ′

(
H−1,0

(
x + vt

√
1 − v2

)
+ H0,1

(
x − vt

√
1 − v2

)
+ g(t, x)

)
−U ′

(
H−1,0

(
x + vt

√
1 − v2

))
− U ′

(
H0,1

(
x − vt

√
1 − v2

))
− U ′′

(
H−1,0

(
x + vt

√
1 − v2

)
+ H0,1

(
x − vt

√
1 − v2

))
g(t, x) (173)
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satisfies, for some new constant C ≥ 1 and any v ≪ 1,

∥N (v,−−→g1(t))− N (v,−−→g2(t))∥H1
x

≤ C[∥g1(t)∥H1
x
+ ∥g2(t)∥H1

x
]∥g1(t)− g2(t)∥H1

x
,

which implies

∥N (v,−−→g1(t))− N (v,−−→g2(t))∥H1
v,T0

≤ Ce−vt
[∥g1∥H1

v,T0
+ ∥g2∥H1

v,T0
]∥g1 − g2∥H1

v,T0
. (174)

In conclusion, by repeating the argument of the proof of Proposition 3.6 of [Chen and Jendrej 2022], we
can verify using the Lipschitz estimate of (174) and estimate (171) that if

T0 ≥
4 ln(1/v)

v
and v ≪ 1,

then there exists a map

S : {u ∈ H 1
v,T0

| ∥u∥H1
v,T0

≤ 1} → {u ∈ H 1
v,T0

| ∥u∥H1
v,T0

≤ 1} (175)

such that µ(t, x)= S(u)(t, x) is the unique solution of the equation

∂2
t µ(t, x)− ∂2

xµ(t, x)+ U ′′

(
H−1,0

(
x + vt

√
1 − v2

)
+ H0,1

(
x − vt

√
1 − v2

))
µ(t, x)= N (v, −−→µ)(t, x), (176)

such that µ ∈ H 1
v,T0

. Indeed, the uniqueness is guaranteed by estimate (171) and from estimates (171)
and (174) we have that the map S is a contraction in the set

B = {u ∈ H 1
v,T0

| ∥u∥H1
v,T0

≤ 1},

and so Theorem 29 follows similarly to the proof of Proposition 3.6 of [Chen and Jendrej 2022] by using
Banach’s fixed point theorem. □
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Let (Mn, g0) be a smooth compact Riemannian manifold of dimension n ≥3 with nonempty boundary ∂M .
Let 0 ⊂ Rn be a symmetric convex cone and f a symmetric defining function for 0 satisfying standard
assumptions. Under an algebraic condition on 0, which is satisfied for example by the Gårding cones 0+

k
when k < 1

2 n, we prove the existence of a locally Lipschitz viscosity solution gu = e2u g0 to the fully
nonlinear Loewner–Nirenberg problem associated to ( f, 0),{

f (λ(−g−1
u Agu ))= 1, λ(−g−1

u Agu ) ∈ 0 on M \ ∂M,
u(x)→ +∞ as distg0(x, ∂M)→ 0,

where Agu is the Schouten tensor of gu . Previous results on Euclidean domains show that, in general,
u is not differentiable. The solution u is obtained as the limit of smooth solutions to a sequence of fully
nonlinear Loewner–Nirenberg problems on approximating cones containing (1, 0, . . . , 0), for which we
also have uniqueness. In the process, we obtain an existence and uniqueness result for the corresponding
Dirichlet boundary value problem with finite boundary data, which is also of independent interest. An
important feature of our paper is that the existence of a conformal metric g satisfying λ(−g−1 Ag) ∈ 0

on M is a consequence of our results, rather than an assumption.
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1. Introduction

A pertinent theme in conformal geometry is to establish the existence of conformal metrics satisfying
some notion of constant curvature. For example, given a compact Riemannian manifold (Mn, g0) of
dimension n ≥ 3 with nonempty boundary ∂M , a natural question is whether there exists a conformal
metric which is complete on M \ ∂M and has constant negative scalar curvature on M \ ∂M . In the
seminal work of Loewner and Nirenberg [1974], the authors proved among other results the existence and
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uniqueness of such a metric when M \ ∂M is a bounded Euclidean domain with smooth boundary1 and
g0 is the flat metric. Aviles and McOwen [1988] later extended this result to the Riemannian setting; for
further related results we refer, e.g., to [Allen et al. 2018; Andersson et al. 1992; Aviles 1982; Finn 1998;
Gover and Waldron 2017; Graham 2017; Han and Shen 2020; Han et al. 2024; Jiang 2021; Li 2022b;
Mazzeo 1991; Véron 1981]. We note that the related problem of finding conformal metrics with constant
scalar curvature on closed manifolds, known as the Yamabe problem, was solved in [Aubin 1970; Schoen
1984; Trudinger 1968; Yamabe 1960].

Since the works of Viaclovsky [2000] and Chang, Gursky and Yang [Chang et al. 2002], there has been
significant interest in fully nonlinear generalisations of Yamabe-type problems, including on manifolds
with boundary. Suppose that

0 ⊂ Rn is an open, convex, connected symmetric cone with vertex at 0, (1-1)

0+

n = {λ ∈ Rn
: λi > 0 ∀1 ≤ i ≤ n} ⊆ 0 ⊆ 0+

1 = {λ ∈ Rn
: λ1 + · · · + λn > 0}, (1-2)

f ∈ C∞(0)∩ C0(0) is concave, 1-homogeneous and symmetric in the λi , (1-3)

f > 0 in 0, f = 0 on ∂0, fλi > 0 in 0 for 1 ≤ i ≤ n. (1-4)

In this paper, we study the natural generalisation of the Loewner–Nirenberg problem to the fully nonlinear
setting on Riemannian manifolds. That is, for ( f, 0) satisfying (1-1)–(1-4) and a compact Riemannian
manifold (M, g0) with nonempty boundary ∂M , we study the existence and uniqueness of a conformal
metric gu = e2ug0 satisfying{

f (λ(−g−1
u Agu ))= 1, λ(−g−1

u Agu ) ∈ 0 on M \ ∂M,
u(x)→ +∞ as d(x, ∂M)→ 0.

(1-5)

Here,

Ag =
1

n − 2

(
Ricg −

Rg

2(n − 1)
g
)

denotes the (0, 2)-Schouten tensor of a Riemannian metric g, Ricg and Rg denote the Ricci curvature
tensor and scalar curvature of g, respectively, λ(T ) denotes the vector of eigenvalues of a (1, 1)-tensor T ,
and d(x, ∂M) is the distance from x ∈ M to ∂M with respect to g0. Typical examples of ( f, 0) satisfying
(1-1)–(1-4) are given by (σ 1/k

k , 0+

k ) for 1 ≤ k ≤ n, where σk is the k-th elementary symmetric polynomial
and 0+

k ={λ∈ Rn
:σ j (λ)> 0 ∀1 ≤ j ≤ k}. When f =σ1, (1-5) reduces to the original Loewner–Nirenberg

problem on Riemannian manifolds discussed above.
Much of the motivation to study (1-5) stems from the fact that, as a consequence of the Ricci decompo-

sition, the Schouten tensor fully determines the conformal transformation properties of the full Riemann
curvature tensor. We note that, for gu = e2ug0, one has the transformation law

Agu = −∇
2
g0

u −
1
2 |∇g0u|

2
g0

g0 + du ⊗ du + Ag0, (1-6)

which demonstrates the fully nonlinear nature of (1-5) when f ̸= cσ1. Moreover, (1-5) is nonuniformly
elliptic when f ̸= cσ1.

1Loewner and Nirenberg [1974] also considered the problem on a class of nonsmooth Euclidean domains, but we will not be
concerned with such generalisations in this paper.
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By the 1-homogeneity of f , without loss of generality we may assume

f
( 1

2 , . . . ,
1
2

)
= 1. (1-7)

As in [Li and Nguyen 2014], we define µ+

0 to be the number satisfying

(−µ+

0 , 1, . . . , 1) ∈ ∂0.

We note that µ+

0 is uniquely determined by 0 and is easily seen to satisfy µ+

0 ∈ [0, n −1]. When 0 = 0+

k ,
one has µ+

0+

k
= (n − k)/k.

Our first main result concerns the solution to the Loewner–Nirenberg problem (1-5) under the assump-
tion

µ+

0 > 1. (1-8)

Observe that, for 0 = 0+

k , (1-8) holds if and only if k < 1
2 n. The role of condition (1-8) will be discussed

later in the introduction.

Theorem 1.1. Let (M, g0) be a smooth compact Riemannian manifold of dimension n ≥ 3 with nonempty
boundary ∂M , and suppose ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8). Then there exists a locally
Lipschitz viscosity solution to (1-5) satisfying

lim
d(x,∂M)→0

(u(x)+ ln d(x, ∂M))= 0, (1-9)

which is maximal in the sense that if ũ is any continuous viscosity solution to (1-5), then ũ ≤ u on M \∂M.
Moreover, when (1, 0, . . . , 0) ∈ 0, u is smooth and is the unique continuous viscosity solution to (1-5).

We recall that a continuous function u on M\∂M is a viscosity subsolution (resp. viscosity supersolution)
to the equation in (1-5) if, for any x0 ∈ M \ ∂M and ϕ ∈ C2(M \ ∂M) satisfying u(x0) = ϕ(x0) and
u(x) ≤ ϕ(x) near x0 (resp. u(x) ≥ ϕ(x) near x0), we have λ(−g−1

ϕ Agϕ )(x0) ∈ {λ ∈ 0 : f (λ) ≥ 1}

(resp. λ(−g−1
ϕ Agϕ )(x0) ∈ Rn

\{λ ∈ 0 : f (λ) > 1}). We say that u is a viscosity solution to the equation in
(1-5) if it is both a viscosity subsolution and a viscosity supersolution.

Remark 1.2. In previous work studying equations of the form f (λ(−g−1
u Agu ))= 1, it has been typical

to assume that the background metric g0 satisfies λ(−g−1
0 Ag0) ∈ 0 on M (a notable exception is a result

of Gursky, Streets and Warren [Gursky et al. 2011], which will be discussed later in the introduction).
In contrast, one of the key points of this paper is that we do not assume the existence of such a metric
in Theorem 1.1. Rather, the existence of such a metric is established as a by-product of the proof of
Theorem 1.1 (see Theorem 1.6), and our proof of Theorem 1.1 would not be substantially simpler even
if we were to assume the existence of such a metric from the outset. We note that after our work was
submitted, Professor Rirong Yuan [2024] brought to our attention his work, where a conformal metric
satisfying λ(−g−1 Ag) ∈ 0 is constructed under the assumption (1-8) by an entirely different method.
See also [Yuan 2022], which considers the existence problem for (1-5) assuming λ(−g−1

0 Ag0) ∈ 0 and
(1, 0, . . . , 0) ∈ 0, and addresses (1-9) and uniqueness of solutions under an even stronger assumption
on 0 (see condition (1.20) therein).



2206 JONAH A. J. DUNCAN AND LUC NGUYEN

Remark 1.3. In the case that M \ ∂M is a Euclidean domain, the existence of a Lipschitz viscosity
solution to (1-5) was established by Gonzáles, Li and Nguyen [González et al. 2018]. It was also shown in
their work that this solution is unique among continuous viscosity solutions. We note that the uniqueness
of the viscosity solution obtained in Theorem 1.1 remains an open problem when M \ ∂M is not a
Euclidean domain and (1, 0, . . . , 0) ∈ ∂0.

Remark 1.4. In [Li and Nguyen 2021; Li et al. 2023] it was shown that if M \∂M is a Euclidean domain
with disconnected boundary and 0⊂0+

2 (in particular, this implies (1, 0, . . . , 0)∈ ∂0), then the Lipschitz
viscosity solution to (1-5) is not differentiable. Thus, in general, the Lipschitz regularity of the solution
in Theorem 1.1 cannot be improved to C1 regularity when (1, 0, . . . , 0) ∈ ∂0. On the other hand, the
existence of a unique smooth solution to (1-5) satisfying (1-9) when (1, 0, . . . , 0) ∈ 0 is new even when
M \ ∂M is a Euclidean domain. This smoothness result can be viewed as an analogue of the result in
[Gursky and Viaclovsky 2003] on the existence of a smooth solution to the σk-Yamabe problem for the
trace-modified Schouten tensor on closed manifolds.

To describe the proof of Theorem 1.1, we first introduce some notation and an equivalent formulation
of the result. For τ ∈ [0, 1], λ ∈ Rn and e = (1, . . . , 1) ∈ Rn , we define

λτ := τλ+ (1 − τ)σ1(λ)e, f τ (λ) :=
f (λτ )

τ + n(1 − τ)
and 0τ := {λ : λτ ∈ 0}.

As shown in [Duncan and Nguyen 2023, Appendix A], 0 satisfies (1-1), (1-2) and (1, 0, . . . , 0) ∈ 0 if
and only if there exists 0̃ satisfying (1-1), (1-2) and a number τ < 1 for which 0 = (0̃)τ . Note that (1-7)
implies f τ

(1
2 , . . . ,

1
2

)
= 1. An equivalent formulation of Theorem 1.1 is then as follows.

Theorem 1.1′. Let (M, g0) be a smooth compact Riemannian manifold of dimension n ≥ 3 with nonempty
boundary ∂M , and suppose ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8). Then, for each τ < 1, there exists
a smooth solution u to{

f τ (λ(−g−1
u Agu ))= 1, λ(−g−1

u Agu ) ∈ 0τ on M \ ∂M,
u(x)→ +∞ as d(x, ∂M)→ 0,

(1-10)

and moreover u satisfies (1-9) and is the unique continuous viscosity solution to (1-10). When τ = 1, there
exists a Lipschitz viscosity solution u to (1-10) satisfying (1-9), which is maximal in the sense that if ũ is
any continuous viscosity solution to (1-10), then ũ ≤ u on M \ ∂M.

Remark 1.5. If we label the solution to (1-10) in Theorem 1.1′ as uτ for each τ ≤ 1, then we will show
that, for each compact set K ⊂ M \∂M , there exists a constant C which is independent of τ but dependent
on M, g0, f , 0 and K such that

∥uτ∥C0,1(K ) ≤ C for all τ ∈ [0, 1].

In the proof of Theorem 1.1′, we will first prove the existence of a unique smooth solution to (1-10)
when τ < 1. The Lipschitz viscosity solution in the case τ = 1 is then obtained in the limit as τ → 1. In
turn, for each τ <1, the existence of a smooth solution to (1-10) is obtained as the limit of smooth solutions
to Dirichlet boundary value problems with finite boundary data. Although we only need to consider
constant boundary data in the proof of Theorem 1.1′, we will prove the following more general result.
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Theorem 1.6. Let (M, g0) be a smooth compact Riemannian manifold of dimension n ≥ 3 with nonempty
boundary ∂M , and suppose ( f, 0) satisfies (1-1)–(1-4) and (1-8). Let ψ ∈ C∞(M) be positive and
ξ ∈ C∞(∂M). Then, for each τ < 1, there exists a smooth solution u to{

f τ (λ(−g−1
u Agu ))= ψ, λ(−g−1

u Agu ) ∈ 0τ on M \ ∂M,
u = ξ on ∂M,

(1-11)

and moreover u is the unique continuous viscosity solution to (1-11). When τ = 1, there exists a Lipschitz
viscosity solution to (1-11).

Remark 1.7. If we label the solution to (1-11) in Theorem 1.6 as uτ for each τ ≤ 1, then we will show
that there exists a constant C which is independent of τ but dependent on M, g0, f , 0, ψ and ξ such that

∥uτ∥C0,1(M) ≤ C for all τ ∈ [0, 1].

The existence of a smooth solution to (1-11) when τ < 1 is achieved using the continuity method,
which relies on obtaining a priori estimates. To keep the introduction concise, we only discuss the C0

estimates here and postpone the discussion of the other estimates to the main body of the paper. Now, if
one assumes λ(−g−1

0 Ag0) ∈ 0 on M , then it is straightforward to obtain both the a priori upper and lower
bounds on solutions to (1-11). Since we do not make such an assumption on g0, a large portion of our
work involves proving the lower bound. The a priori lower bound is obtained in two independent stages,
which can be summarised as follows:

(1) First, in Section 2, we prove a local interior gradient estimate on solutions to (1-11) of the form

|∇g0u|g0(x)≤ C(r−1
+ esupBr u) for x ∈ Br/2, (1-12)

where Br is a geodesic ball contained in the interior of M . An important feature is that the estimate (1-12)
does not depend on a lower bound for u.

(2) Second, in Section 3.2, we construct suitable barrier functions to prove a lower bound for u in a
uniform neighbourhood of ∂M — this is one of the key new ideas in this paper.

We note that the assumption µ+

0 > 1 is used in both stages above. Once the lower bound in a uniform
neighbourhood of ∂M is established in the second step, the local interior gradient estimate from the first
step and a trivial global upper bound in Proposition 3.1 then allows one to propagate the lower bound
to all of M — see the proof of Proposition 3.2 for the details. As indicated in Remark 1.7 above, it is
important that all estimates in the two steps above (as well as the boundary gradient estimates obtained in
the main body of the paper — see Proposition 3.8) are independent of τ .

In fact, the proof of Step (2) provides a purely local lower bound: if x0 ∈ ∂M and u solves (1-11) in
M ∩ Br (x0), then u ≥ C in M ∩ Br/2(x0). In our subsequent work [Duncan and Nguyen 2025], we show
that this local lower bound cannot hold when (1-8) fails, that is when µ+

0 ≤ 1.
We now discuss the two steps above in more detail. Our local interior gradient estimate, which is also

of independent interest, is as follows.
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Theorem 1.8. Let (M, g0) be a smooth Riemannian manifold of dimension n ≥ 3, possibly with nonempty
boundary, and suppose ( f, 0) satisfies (1-1)–(1-4) and (1-8). Fix τ ∈ (0, 1], fix a positive function
ψ ∈ C∞(M) and suppose that u ∈ C3(Br ) satisfies

f τ (λ(−g−1
u Agu ))= ψ, λ(−g−1

u Agu ) ∈ 0τ (1-13)

in a geodesic ball Br contained in the interior of M. Then

|∇g0u|g0(x)≤ C(r−1
+ esupBr u) for x ∈ Br/2, (1-14)

where C is a constant depending on n, f , 0, ∥g0∥C3(Br ) and ∥ψ∥C1(Br ) but independent of τ and infBr ψ .

We note that Theorem 1.8 was previously obtained for ( f, 0)= (σ
1/k
k , 0+

k ) when k < 1
2 n and τ = 1 in

the thesis of Khomrutai [2009].2 Roughly speaking, one important observation in the thesis is as follows:
if ρ|∇g0u|

2
g0

attains its maximum at x0 (here ρ is a cutoff function satisfying standard assumptions), then
in a “worst case scenario” (i.e., in a situation where the gradient estimate cannot be obtained somewhat
directly), the ordered eigenvalues λ1(x0)≥ · · · ≥ λn(x0) of (−g−1

0 Agu )(x0) are greater than or equal to a
perturbation of (1, . . . , 1,−1) 1

2 |∇u|
2(x0). But when k < 1

2 n, the vector (1, . . . , 1,−1) belongs to 0+

k ,
and so by (1-13) and homogeneity of σ 1/k

k , the gradient estimate follows. In our proof of Theorem 1.8, we
show that this phenomenon persists for general cones satisfying µ+

0 > 1. In order to circumvent certain
arguments of Khomrutai that rely on algebraic properties of the σk operators, we appeal to some general
cone properties recently observed by Yuan [2022].

Remark 1.9. For gradient estimates on solutions to equations of the form (1-13) which depend on
two-sided C0 bounds, see for instance [Guan 2008; Gursky and Viaclovsky 2003]. For gradient estimates
for the related positive cone equation, see e.g., [Chen 2005; Guan and Wang 2003; Jin et al. 2007; Li
2009; Li and Li 2003; Viaclovsky 2002; Wang 2006].

Remark 1.10. We have been informed that in an upcoming work of Baozhi Chu, YanYan Li and Zongyuan
Li [Chu et al. 2023], a Liouville-type theorem for a fully nonlinear, degenerate elliptic Yamabe-type
equation on negative cones is proved for all µ+

0 ̸= 1. As an application of this Liouville-type theorem
and the method in [Li 2009] (which dealt with local gradient estimates for equations on positive cones),
the authors obtain local interior gradient estimates for solutions to (1-13) depending only on one-sided
C0 bounds for all µ+

0 ̸= 1 without assuming concavity of f . Counterexamples to both results are also
given when µ+

0 = 1. This proof is entirely different from our proof of Theorem 1.8.

We now turn to the second step mentioned above, namely the lower bound in a neighbourhood of ∂M .
This is achieved through constructing suitable comparison functions on small annuli; the main step here
is to prove the following proposition (see Proposition 3.4 for a more precise version).

Proposition 1.11. Suppose ( f, 0) satisfies (1-1)–(1-4) and (1-8), let g0 be a Riemannian metric defined
on a neighbourhood � of the origin in Rn , let m ∈ R and define Ar−,r+

:= {x : r− < dg0(x, 0) < r+}.

2We would like to thank Baozhi Chu, YanYan Li and Zongyuan Li for bringing [Khomrutai 2009] to our attention.
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Then there exist constants S > 1 and 0 < R < 1 depending on g0, f , 0 and m such that, whenever
1< r+/r− < S and r+ < R, there exists a solution to

f (λ(−g−1
w Agw))≥ 1, λ(−g−1

w Agw) ∈ 0 on Ar−,r+
,

w(x)= m for x ∈ Sr−
,

w(x)→ −∞ as dg0(x,Sr+
)→ 0.

Our construction of w in Proposition 1.11 is modelled on the radial solutions of Chang, Han and
Yang [Chang et al. 2005] to the σk-Yamabe equation on annular domains in Rn when k < 1

2 n. To apply
Proposition 1.11 to complete the second step, we attach a collar neighbourhood N to ∂M and cover
a neighbourhood of ∂M in M by sufficiently small annuli whose centres lie in N and whose inner
boundaries touch ∂M . On each of these annuli, the solutions constructed in Proposition 1.11 then serve
as the desired lower bound by the comparison principle. See the proof of Proposition 3.3 for details.

Remark 1.12. The assumption µ+

0 > 1 plays an important role in our proof of Proposition 1.11, and in
fact a similar construction is not possible when µ+

0 ≤ 1. More precisely, given a smooth metric g0 defined
on an annulus Ar,R and given a cone 0 satisfying (1-1), (1-2) and µ+

0 ≤ 1, there is no smooth metric
gw = e2wg0 satisfying λ(−g−1

w Agw) ∈ 0 on Ar,R and for which w→ −∞ at either boundary component
of Ar,R . The proof of this nonexistence result uses arguments different in nature to those considered in
this paper and appears in our more recent work [Duncan and Nguyen 2025].

For the remainder of the introduction, we discuss in more detail how our results and methods compare
to previous work on fully nonlinear problems of Loewner–Nirenberg type. As mentioned before, when
M \ ∂M is a Euclidean domain, the existence of a Lipschitz viscosity solution to (1-5), as well as
uniqueness of this solution among continuous viscosity solutions, was established in [González et al.
2018]. Moreover, counterexamples to C1 regularity were given in [Li and Nguyen 2021; Li et al. 2023].
The proof in [González et al. 2018] uses Perron’s method, which in turn uses canonical solutions on
interior/exterior balls and a comparison principle on Euclidean domains established in [Li et al. 2018].
Since one cannot use exterior balls in the Riemannian setting and since it is not currently known whether
the comparison principle in [Li et al. 2018] extends to the Riemannian setting, a different approach to
that in [González et al. 2018] is required to prove Theorem 1.1′.

On the other hand, for ( f, 0) = (σ
1/k
k , 0+

k ), 2 ≤ k ≤ n, Gursky, Streets and Warren [Gursky et al.
2011] proved the existence of a unique smooth solution to (1-5) with the Ricci tensor in place of the
Schouten tensor (see Remark 1.13 below for the relation between this result and Theorem 1.1′, and see also
[Wang 2021; Li 2022a] for some further related results). As in the present paper, the solution of Gursky,
Streets and Warren is constructed as a limit of solutions with finite boundary data, and these solutions
are in turn obtained using the continuity method. Their method for obtaining an a priori lower bound
on solutions is different to ours and is instead based on the explicit construction of a global subsolution.
Roughly speaking, the subsolution construction in [Gursky et al. 2011] uses the fact that, in the analogous
formula to (1-6) for the Ricci tensor, the gradient terms are collectively nonnegative definite and so can
be neglected in certain computations. In our case, the gradient terms do not have an overall sign, thus
leading to our new approach for the lower bound discussed above.
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Remark 1.13. Since µ+

0+

k
= (n − k)/k, it is easy to see that µ+

(0+

k )
τ = (n − k)/k + (n − 1)(1 − τ). Thus

µ+

(0+

k )
τ > 1 if and only if τ < an,k :=

n − k + k(n − 2)
k(n − 1)

.

On the other hand, for τ = (n − 2)/(n − 1), we have

(σ
1/k
k )τ (λ(−g−1

u Agu ))=
1

n − 1
· σ

1/k
k (λ(−g−1

u Ricgu )).

Since (n − 2)/(n − 1) < an,k if and only if k < n, we therefore see that Theorem 1.1′ recovers the result
of [Gursky et al. 2011] for k < n.

The plan of the paper is as follows: In Section 2 we prove the local interior gradient estimate
stated in Theorem 1.8. In Section 3 we consider the Dirichlet boundary value problem (1-11), proving
Theorem 1.6. Finally, in Section 4 we turn to the fully nonlinear Loewner–Nirenberg problem (1-10),
proving Theorem 1.1′ (and hence Theorem 1.1).

Notation. Throughout the rest of the paper, if X is a (1, 1)-tensor satisfying λ(X) ∈ 0 then we frequently
write f (X) := f (λ(X)).

2. Proof of Theorem 1.8: the local interior gradient estimate

In this section we prove the local interior gradient estimate stated in Theorem 1.8. Throughout the section,
unless otherwise stated all derivatives and norms are taken with respect to g0. Moreover, C will denote a
constant that may change from line to line and depends only on n, f , 0, ∥g0∥C3(Br ) and ∥ψ∥C1(Br ).

2.1. Set-up and main ideas of the proof. Our set-up for the proof of Theorem 1.8 is similar to that in the
related works [Chen 2005; Guan and Wang 2003; Jin et al. 2007; Khomrutai 2009; Li 2009; Li and Li
2003; Wang 2006] on local gradient estimates. Throughout this section we write S = Ag0 and

W = ∇
2u +

1
2 |∇u|

2g0 − du ⊗ du − S.

By a standard argument, it suffices to consider the case r = 1 in the proof of Theorem 1.8. Suppose
ρ ∈ C∞

c (B1) is a cutoff function in B1 with ρ= 1 on B1/2, |∇ρ| ≤ Cρ1/2 and |∇
2ρ| ≤ C . Set H = ρ|∇u|

2

and suppose H attains a maximum at x0. We may assume that |∇u| ≥ 1 at x0, otherwise we are done.
Choosing suitable normal coordinates centred at x0, we may also assume W = (wi j ) is diagonal at x0

with w11 ≥ · · · ≥ wnn , and hence at x0 we have{
wi i = ui i − u2

i +
1
2 |∇u|

2
− Si i for all 1 ≤ i ≤ n,

ui j = ui u j + Si j for i ̸= j.
(2-1)

Using the fact that Hi (x0)= 0 for each i , we obtain at x0

n∑
l=1

uilul = −
ρi

2ρ
|∇u|

2, (2-2)
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and hence ∣∣∣∣ n∑
l=1

uilul

∣∣∣∣ ≤ Cρ−1/2
|∇u|

2. (2-3)

For A0 a large number to be fixed later, we may assume at x0 that

ρ−1/2
≤ C

|∇u|

A0
and |S| ≤

|∇u|
2

A0
, (2-4)

otherwise we are done. Note that, by combining (2-3) with the first estimate in (2-4), we have∣∣∣∣ n∑
l=1

uilul

∣∣∣∣ ≤ C
|∇u|

3

A0
. (2-5)

Denote by F i j
τ the coefficients of the linearised operator at (g−1

0 W )(x0), that is,

F i j
τ =

∂ f τ

∂Ai j

∣∣∣∣
A=(g−1

0 W )(x0)

.

Then (F i j
τ ) is a positive definite, diagonal matrix. Also define

Fτ =

n∑
i=1

F i i
τ and ũi j := ui j − Si j .

By homogeneity and concavity of f , it is easy to see that Fτ ≥ 1/C> 0: indeed, writing λ=λ(g−1
0 W )(x0),

we have

Fτ =

n∑
i=1

∂ f τ

∂λi
(λ)= f τ (λ)+

n∑
i=1

∂ f τ

∂λi
(λ)(1 − λi )≥ f τ (1, . . . , 1). (2-6)

With our set-up and notation established, we now briefly discuss the main ideas in the proof of
Theorem 1.8. The first step is to obtain the following lemma.

Lemma 2.1. Under the same hypotheses as Theorem 1.8 but without the restriction µ+

0 > 1, there exists a
constant C such that

0 ≥ −CFτ (1 + e2u)|∇u|
2
− CρFτ

|∇u|
4

A0
+ ρ

∑
i,l

F i i
τ ũ2

il at x0. (2-7)

The proof of Lemma 2.1 is by now standard and will be given in Section 2.2.
Now, in the case that the positive term on the right-hand side of (2-7) dominates |∇u|

4Fτ , in the sense
that ∑

i,l

F i i
τ ũ2

il ≥ ε|∇u|
4Fτ at x0 (2-8)

for a suitably chosen small constant ε > 0, then the desired gradient estimate is routine (the details will
be given later). On the other hand, if (2-8) fails for our suitably chosen small constant ε > 0, we will
see that the ordered eigenvalues w11 ≥ · · · ≥ wnn of W at x0 are greater than or equal to a perturbation
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of (1, . . . , 1,−1)1
2 |∇u|

2. As mentioned in the introduction, this phenomenon was previously observed
in the case ( f, 0) = (σ 1/k

k , 0+

k ) when k < 1
2 n in the thesis of Khomrutai [2009]. Using the fact that

(1, . . . , 1,−1) ∈ 0 (this is the only place in the proof of Theorem 1.8 where the assumption µ+

0 > 1 is
used), the gradient estimate again follows. The details will be given in Section 2.3.

2.2. Proof of Lemma 2.1. We follow closely the proof in [Guan and Wang 2003]. In what follows, all
computations are implicitly carried out at x0. First observe that, by (2-2),

Hi j =

(
ρi j −

2ρiρ j

ρ

)
|∇u|

2
+ 2ρ

n∑
l=1

uli j ul + 2ρ
n∑

l=1

uilu jl,

and hence, by positivity of (F i j
τ ) and nonpositivity of (Hi j ),

0 ≥

n∑
i=1

F i i
τ Hi i =

n∑
i=1

F i i
τ

[(
ρi i −

2ρ2
i

ρ

)
|∇u|

2
+ 2ρ

n∑
l=1

uli i ul + 2ρ
n∑

l=1

u2
il

]
= −C |∇u|

2Fτ + 2ρ
∑
i,l

F i i
τ uli i ul + 2ρ

∑
i,l

F i i
τ u2

il . (2-9)

Now, commuting derivatives yields∑
i,l

F i i
τ uli i ul ≥

∑
i,l

F i i
τ ui ilul −C |∇u|

2Fτ

=

∑
i,l

F i i
τ

[
(wi i )l −

( 1
2 |∇u|

2
−u2

i
)

l +(Si i )l
]
ul −C |∇u|

2Fτ

=

n∑
l=1

(ψe2u)lul −Fτ
∑
k,l

uklukul +2
∑
i,l

F i i
τ uilui ul +

∑
i,l

F i i
τ (Si i )lul −C |∇u|

2Fτ , (2-10)

where to reach the last line we have used the fact that f τ is homogeneous of degree 1 to assert that∑
i F i i

τ (wi i )l = ( f τ (g−1
0 W ))l = (ψe2u)l . Also, since |∇u| ≥ 1, we can bound the penultimate term in

(2-10) from below by −C |∇u|
2Fτ , and also observe that

n∑
l=1

(ψe2u)lul =

n∑
l=1

e2uψlul + 2e2uψ |∇u|
2
≥ −Ce2u

|∇u|
2. (2-11)

Also, by (2-5) we have

−Fτ
∑
k,l

uklukul ≥ −C
|∇u|

4

A0
Fτ , (2-12)

and likewise

2
∑
i,l

F i i
τ uilui ul = 2

∑
i

(
F i i
τ ui

∑
l

uilul

)
≥ −2

∑
i

(
|F i i
τ ui |

∣∣∣∣∑
l

uilul

∣∣∣∣) ≥ −C
|∇u|

4

A0
Fτ . (2-13)

Substituting (2-11)–(2-13) back into (2-10) and recalling Fτ ≥ 1/C , we get∑
i,l

F i i
τ uli i ul ≥ −C(1 + e2u)|∇u|

2Fτ − CFτ
|∇u|

4

A0
,
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and, substituting this back into (2-9), we see

0 ≥ −CFτ (1 + e2u)|∇u|
2
− CρFτ

|∇u|
4

A0
+ 2ρ

∑
i,l

F i i
τ u2

il . (2-14)

The desired estimate (2-7) then follows from (2-14) and the following inequality, which is a consequence
of the Cauchy–Schwarz inequality and the second inequality in (2-4):∑

i,l

F i i
τ u2

il ≥
1
2

∑
i,l

F i i
τ ũ2

il −
1
A0

Fτ |∇u|
4. □

2.3. Proof of Theorem 1.8. We begin this section by stating a central result in our argument, namely
Proposition 2.2. The proof of Theorem 1.8 is then given assuming the validity of Proposition 2.2 — this
should serve to elucidate the ideas outlined at the end of Section 2.1. The proof of Proposition 2.2 will be
given later in the section and consists of a series of technical lemmas.

To this end, for 1> δ0 ≥ A−1/10
0 a small number to be fixed later, define the set

I =
{
i ∈ {1, . . . , n} :

∣∣w j j +
1
2 |∇u|

2∣∣< 2δ2
0|∇u|

2}.
We remind the reader that all computations are implicitly carried out at x0, and that we have the ordering
w11 ≥ · · · ≥ wnn . We will prove:

Proposition 2.2. There exists a constant C̃ > 1 depending only on n, f , 0, ∥g0∥C3(Br ) and ∥ψ∥C1(Br )

such that if A−1/10
0 ≤ δ0 ≤ C̃−1 and ∑

i,l

F i i
τ ũ2

il < C̃−1δ4
0|∇u|

4Fτ , (2-15)

then:

(1) I = {n}, and

(2)
∣∣wn−1,n−1 −

1
2 |∇u|

2
∣∣< 2δ0|∇u|

2.

Assuming the validity of Proposition 2.2 for now, let us complete the proof of Theorem 1.8.

Proof of Theorem 1.8. We start by fixing C̃ sufficiently large so that Proposition 2.2 applies. Then, for
A0 > C̃10 to be fixed later, if A−1/10

0 ≤ δ0 ≤ C̃−1 and (2-15) is satisfied,

wn−1,n−1 = (1 + an−1)
|∇u|

2

2
and wnn = −(1 + an)

|∇u|
2

2
for some |an−1|, |an| ≤ 4δ0. On the other hand, since w11 ≥ · · · ≥wnn for each α = 1, . . . , n − 2, we can
write wαα = wn−1,n−1 + Xα for some Xα ≥ 0. Therefore

w11
...

wn−2,n−2

wn−1,n−1

wnn

 =


X1
...

Xn−2

0
0

 +
|∇u|

2

2


1 + an−1

...

1 + an−1

1 + an−1

−(1 + an)


︸ ︷︷ ︸

B

, (2-16)



2214 JONAH A. J. DUNCAN AND LUC NGUYEN

with the first vector on the right-hand side of (2-16) clearly belonging to 0τ for each τ ≤ 1 since each
entry is nonnegative. We also observe that B is a perturbation of B0 := (1, . . . , 1,−1) and that B0 ∈ 0τ

for any τ ≤ 1 since we assume µ+

0 > 1. Therefore, since |an−1|, |an| ≤ 4δ0, for C̃ sufficiently large we
will have B ∈ 0 with f τ (B)≥

1
2 f τ (B0). Monotonicity of f then implies

ψe2u
= f τ (w11, . . . , wnn)≥

1
2 |∇u|

2 f τ (B)≥
1
4 |∇u|

2 f τ (B0),

which implies the desired gradient estimate.
It remains to address the case that, for the value of C̃ fixed in the foregoing argument, (2-15) is not

satisfied. Then ∑
i,l

F i i
τ ũ2

il ≥ C̃−1 A−2/5
0 |∇u|

4Fτ , (2-17)

and substituting (2-17) into (2-7) we therefore have

0 ≥ −CFτ (1 + e2u)|∇u|
2
− CρFτ

|∇u|
4

A0
+ C̃−1 A−2/5

0 ρ|∇u|
4Fτ .

Multiplying through by C̃ A2/5
0 ρ then yields the estimate

0 ≥ −C̃C A2/5
0 ρ(1 + e2u)|∇u|

2
−

C̃C

A3/5
0

ρ2
|∇u|

4
+ ρ2

|∇u|
4. (2-18)

It follows that if we choose A0 ≥ max{(2C̃C)5/3, C̃10
} (where C and C̃ are the constants in (2-18)), then

we have (for a possibly different constant C)

0 ≥ −Cρ(1 + e2u)|∇u|
2
+

1
2ρ

2
|∇u|

4, (2-19)

and therefore

H 2
= ρ2

|∇u|
4
≤ C(1 + e2u)H. (2-20)

After dividing through by H we again arrive at the desired gradient estimate. □

The rest of the section is devoted to the proof of Proposition 2.2, which we obtain through a series of
three lemmas. In the first of these lemmas we show that if A−1/10

0 ≤ δ0 ≤ C̃−1 for C̃ sufficiently large,
then I ̸= ∅.

Lemma 2.3. There exists a constant C̃ > 1 depending only on n, f , 0, ∥g0∥C3(Br ) and ∥ψ∥C1(Br ) such
that if A−1/10

0 ≤ δ0 ≤ C̃−1, then I ̸= ∅.

Proof. It is clear that, for δ0 ≤
√

1/n, there is at least one index j ∈ {1, . . . , n} such that u2
j ≥ δ2

0|∇u|
2.

We claim that, for such an index j , we have j ∈ I. We follow the method in [Guan and Wang 2003]. We
know that, for l ̸= j , we have u jl = u j ul + S jl and therefore∑

l ̸= j

u jlul =

∑
l ̸= j

u j u2
l +

∑
l ̸= j

S jlul .
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It follows that
n∑

l=1

u jlul =

∑
l ̸= j

u j u2
l +

∑
l ̸= j

S jlul + u j j u j

= u j |∇u|
2
+

∑
l ̸= j

S jlul + u j j u j − u3
j

=

∑
l ̸= j

S jlul − u j ((u2
j − |∇u|

2)− u j j ).

Hence ∣∣∣∣u j ((u2
j − |∇u|

2)− u j j )−
∑
l ̸= j

S jlul

∣∣∣∣ =

∣∣∣∣ n∑
l=1

u jlul

∣∣∣∣ (2-5)
≤ C

|∇u|
3

A0
.

It follows that

|u j ||(u2
j − |∇u|

2)− u j j | ≤ C
|∇u|

3

A0
+

∣∣∣∣∑
l ̸= j

S jlul

∣∣∣∣ (2-4)
≤ C

|∇u|
3

A0
≤ Cδ10

0 |∇u|
3, (2-21)

where to reach the last inequality we have used A−1/10
0 ≤ δ0. Substituting |u j | ≥ δ0|∇u| back into (2-21)

yields

|(u2
j − |∇u|

2)− u j j | ≤ Cδ9
0|∇u|

2. (2-22)

Next, substituting u j j = w j j + u2
j −

1
2 |∇u|

2
+ S j j into (2-22) and again applying (2-4), we obtain

∣∣w j j +
1
2 |∇u|

2∣∣ ≤ Cδ9
0|∇u|

2
+

|∇u|
2

A0
= Cδ9

0|∇u|
2
+ δ10

0 |∇u|
2. (2-23)

It is clear that one can then choose C̃ sufficiently large so that the right-hand side of (2-23) is less than
2δ2

0|∇u|
2 for δ0 ≤ C̃−1. Once such a choice is made, we see that (2-23) implies j ∈ I, which proves the

claim and therefore the lemma. □

In our subsequent arguments we will use the following proposition, which is essentially a consequence
of [Yuan 2022, Theorem 1.4] — see Appendix A for a summary of the proof.

Proposition 2.4. Suppose 0 satisfies (1-1) and (1-2) with 0 ̸= 0+
n (equivalently, µ+

0 > 0). Then there
exists a constant θ = θ(n, 0) > 0 such that, for any λ ∈ 0 with λ1 ≥ · · · ≥ λn ,

∂ f
∂λi

(λ)≥ θ

n∑
j=1

∂ f
∂λ j

(λ) if i ∈ {n − 1, n} or λi ≤ 0. (2-24)

We are now in a position to show that if one additionally assumes (2-15) holds for C̃ sufficiently large,
then |I| = {n} (recall once again the ordering w11 ≥ · · · ≥ wnn).

Lemma 2.5. There exists a constant C̃ > 1 depending only on n, f , 0, ∥g0∥C3(Br ) and ∥ψ∥C1(Br ) such
that if A−1/10

0 ≤ δ0 ≤ C̃−1 and (2-15) is satisfied, then |I| = {n}.
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Proof. We first claim that if C̃ is sufficiently large and (2-15) holds, then u j j > −2δ2
0|∇u|

2 for j ∈ I.
Indeed, suppose for a contradiction that this is not the case. Then we would have∑

i,l

F i i
τ ũ2

il ≥ F j j
τ ũ2

j j
(2-4)
≥

1
2

F j j
τ u2

j j − F j j
τ

|∇u|
4

A2
0

≥ 2F j j
τ δ

4
0|∇u|

4
− F j j

τ δ
20
0 |∇u|

4

≥ F j j
τ δ

4
0|∇u|

4
≥ θδ4

0|∇u|
4Fτ , (2-25)

with the last inequality following from Proposition 2.4 — note that Proposition 2.4 applies in this case
since w j j < 0 by virtue of j ∈ I if C̃ is sufficiently large. But this contradicts (2-15) if C̃ is sufficiently
large, proving the claim.

By the claim, we may therefore suppose that C̃ is large enough so that u j j > −2δ2
0|∇u|

2 whenever
j ∈ I. Then, for j ∈ I, we therefore have

−2δ2
0|∇u|

2
− u2

j +
1
2 |∇u|

2
− S j j < u j j − u2

j +
1
2 |∇u|

2
− S j j = w j j <−

1
2 |∇u|

2
+ 2δ2

0|∇u|
2,

with the last inequality following from the definition of I. That is,

−u2
j < (−1 + 4δ2

0)|∇u|
2
+ S j j

(2-4)
< (−1 + 4δ2

0)|∇u|
2
+ δ10

0 |∇u|
2 < (−1 + 5δ2

0)|∇u|
2. (2-26)

Clearly (2-26) cannot hold for more than one index if 10δ2
0 < 1. Hence |I| ≤ 1 for C̃ sufficiently large,

and after increasing C̃ further if necessary so that I ̸= ∅ (recall that this is possible by Lemma 2.3), it
must be the case that |I| = 1, i.e., I = {n}. □

To finish the proof of Proposition 2.2 it remains to show (after taking C̃ larger if necessary) that∣∣wn−1,n−1 −
1
2 |∇u|

2
∣∣< 2δ0|∇u|

2. This is the focus of the next lemma.

Lemma 2.6. There exists a constant C̃ > 1 depending only on n, f , 0, ∥g0∥C3(Br ) and ∥ψ∥C1(Br ) such
that if A−1/10

0 ≤ δ0 ≤ C̃−1 and (2-15) is satisfied, then∣∣wn−1,n−1 −
1
2 |∇u|

2∣∣< 2δ0|∇u|
2.

Proof. Step 1: In this first step we show

wn−1,n−1 >
(1

2 − 2δ0
)
|∇u|

2. (2-27)

Suppose for a contradiction that wn−1,n−1 ≤
( 1

2 − 2δ0
)
|∇u|

2, i.e.,

un−1,n−1 − u2
n−1 − Sn−1,n−1 ≤ −2δ0|∇u|

2. (2-28)

Either u2
n−1 < δ0|∇u|

2 or u2
n−1 ≥ δ0|∇u|

2. In the former case, (2-28) then implies

un−1,n−1 <−δ0|∇u|
2
+ Sn−1,n−1

(2-4)
< −δ0|∇u|

2
+ δ10

0 |∇u|
2 <−

1
2δ0|∇u|

2 (2-29)

if δ0 <
1
2 , and one obtains a contradiction as in (2-25) if C̃ is sufficiently large — note that Proposition 2.4

is again justified since wn−1,n−1 is the second lowest eigenvalue. If instead u2
n−1 ≥ δ0|∇u|

2, the proof
of Lemma 2.3 shows that n − 1 ∈ I. This contradicts the conclusion |I| = {n} of Lemma 2.5 if C̃ is
sufficiently large. Thus (2-27) is established, which completes the proof of Step 1.
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Step 2: In this second step we show

wn−1,n−1 <
(1

2 + 2δ0
)
|∇u|

2. (2-30)

Indeed, we have

wn−1,n−1 = un−1,n−1 − u2
n−1 +

1
2 |∇u|

2
− Sn−1,n−1

(2-4)
≤ |un−1,n−1| +

1
2 |∇u|

2
+ δ10

0 |∇u|
2.

But |un−1,n−1| ≤ δ0|∇u|
2, else one would obtain a contradiction as in (2-25) if C̃ is sufficiently large

(again we are using the fact wn−1,n−1 is the second lowest eigenvalue, so Proposition 2.4 applies). The
estimate (2-30) thus follows, which completes the proof of Step 2.

With (2-27) and (2-30) established, the proof of Lemma 2.6 is complete. □

Proof of Proposition 2.2. This is an immediate consequence of Lemmas 2.3, 2.5 and 2.6. □

3. Proof of Theorem 1.6: the Dirichlet boundary value problem

As discussed in the introduction, in the proof of Theorem 1.1′, we will first address the corresponding
Dirichlet boundary value problem with finite boundary data. To this end, in this section we prove
Theorem 1.6. Our proof uses the continuity method, and we proceed according to the following steps:

(1) In Section 3.1 we give a routine proof of the global upper bound on solutions for τ ≤ 1, independent
of whether or not µ+

0 > 1.

(2) In Section 3.2 we prove the global lower bound on solutions for τ ≤ 1 when µ+

0 > 1. As outlined in the
introduction, we use two main ingredients: our local interior gradient estimate obtained in Theorem 1.8
and a lower bound in a uniform neighbourhood of ∂M , which is obtained by constructing suitable
comparison functions on small annuli (see Propositions 3.3 and 3.4).

(3) In Section 3.3 we prove the global gradient estimate for τ ≤ 1 when µ+

0 > 1. To obtain the lower
bound for the normal derivative on ∂M , we use our comparison functions on small annuli constructed in
Section 3.2, and to obtain the upper bound for the normal derivative on ∂M , we use comparison functions
similar to that of [Guan 2008] (this latter argument does not use µ+

0 > 1). For the interior estimates we
use Theorem 1.8, and for estimates near ∂M we appeal to the proof of Theorem 1.8.

(4) In Section 3.4 we prove the global Hessian estimate for τ < 1 following arguments of [Guan 2008].
These estimates apply whether or not µ+

0 > 1.

(5) In Section 3.5 we complete the proof of Theorem 1.6: we first prove the existence of a unique smooth
solution when τ < 1 using the continuity method, and we then obtain a Lipschitz viscosity solution in the
case τ = 1 in the limit as τ → 1.

We point out that, in order to obtain a Lipschitz viscosity solution in the limit τ → 1 in Section 3.5,
it is important that our a priori C1 estimates obtained in Sections 3.1–3.3 are uniform in τ ∈ [0, 1]. On
the other hand, the global Hessian estimate in Section 3.4 deteriorates as τ → 1; this is to be expected
in view of the work in [Li and Nguyen 2021; Li et al. 2023], where the nonexistence of C2 solutions is
established for all Euclidean domains with disconnected smooth boundary when τ = 1.
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3.1. Upper bound. The global upper bound on solutions to (1-11) is routine and does not require the
assumption µ+

0 > 1.

Proposition 3.1. Suppose ( f, 0) satisfies (1-1)–(1-4), and let τ ≤ 1. Let ψ ∈ C∞(M) be positive and
ξ ∈ C∞(∂M). Then there exists a constant C which is independent of τ but dependent on g0, f , 0, a
lower bound for infM ψ and an upper bound for sup∂M ξ such that any C2 solution to (1-11) satisfies
u ≤ C on M.

Proof. Suppose the maximum of u occurs at x0 ∈ M . If x0 ∈ ∂M , then u(x0) ≤ ξ(x0). If x0 ∈ M \ ∂M ,
then ∇

2
g0

u(x0)≤ 0 and du(x0)= 0, and hence

ψ(x0)e2u(x0) ≤ f τ (−g−1
0 Ag0)(x0),

which yields

u(x0)≤
1
2

ln
(

f τ (−g−1
0 Ag0)

ψ

)
(x0). □

3.2. Lower bound. In this section we obtain the global lower bound on solutions to (1-11).

Proposition 3.2. Suppose ( f, 0) satisfies (1-1)–(1-4) and (1-8), and let τ ≤ 1. Let ψ ∈ C∞(M) be positive
and ξ ∈ C∞(∂M). Then there exists a constant C which is independent of τ but dependent on g0, f , 0,
an upper bound for ∥ψ∥C1(M) and a lower bound for inf∂M ξ such that any C3 solution to (1-11) satisfies
u ≥ C on M.

There are two main ingredients in our proof of Proposition 3.2: our local interior gradient estimate
from Theorem 1.8 and a lower bound in a uniform neighbourhood of ∂M ; the assumption µ+

0 > 1 plays a
role at both stages. As pointed out before, a delicate point is that we do not assume that the background
metric satisfies λ(−g−1

0 Ag0) ∈ 0 on M — if such an assumption is made, then the proof of the lower
bound is as straightforward as the proof of Proposition 3.1. In our case, the global lower bound requires
more work and is one of the key steps in this paper.

To state our result concerning the lower bound near ∂M , for δ > 0, we define

Mδ = {x ∈ M : d(x, ∂M) < δ},

where d(x, ∂M) is the distance from x to ∂M with respect to g0. It is well known that, for δ > 0 sufficiently
small, Mδ is a tubular neighbourhood of ∂M . We show the following.

Proposition 3.3. Under the same hypotheses as Proposition 3.2, there exists a constant δ > 0 which is
independent of τ but dependent on g0, f , 0, an upper bound for supM ψ and a lower bound for inf∂M ξ

such that any C3 solution u to (1-11) satisfies u ≥ inf∂M ξ − 1 in Mδ.

Assuming the validity of Proposition 3.3 for now, we give the proof of Proposition 3.2.

Proof of Proposition 3.2. Let δ > 0 be as in the statement of Proposition 3.3, so that u satisfies the lower
bound u ≥ inf∂M ξ − 1 in Mδ. It follows that

u ≥ inf
∂M
ξ − 1 − diam(M, g0) sup

M\Mδ

|∇g0u|g0 in M. (3-1)
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On the other hand, by Theorem 1.8 and the uniform upper bound for u obtained in Proposition 3.1, we
have

|∇g0u|g0 ≤ C(δ−1
+ 1) in M \ Mδ. (3-2)

Substituting (3-2) into (3-1), the proof of Proposition 3.2 is complete. □

Roughly speaking, to prove Proposition 3.3 we cover a neighbourhood of ∂M by small annuli on which
we construct suitable comparison functions. The construction of such comparison functions is given in
the following proposition (which is a more precise version of Proposition 1.11 stated in the introduction).
For a Riemannian metric g0 defined on a neighbourhood of the origin in Rn , let r(x) = dg0(0, x), let
Sr = ∂Br denote the geodesic sphere of radius r centred at the origin, and denote by Ar1,r2 the annulus
Br2 \ Br1 . We also write

β =
2

µ+

0 − 1
and recall the convention gw = e2wg0.

Proposition 3.4. Suppose ( f, 0) satisfies (1-1)–(1-4) and (1-8), and let g0 be a Riemannian metric defined
on a neighbourhood � of the origin in Rn . Fix a constant ε > 0. Then there exists a constant C > 1
depending only on g0, f and 0, and a constant 0< R < 1 depending additionally on ε, such that, for
each m ∈ R,

w(r) := (β + ε) ln
(

r+ − r
r+ − r−

)
+ m (3-3)

satisfies
f (λ(−g−1

w Agw))≥
f (−µ+

0+C−1ε, 1, . . . , 1)
Ce2m(r+−r−)2

> 0, λ(−g−1
w Agw) ∈ 0 on Ar−,r+

,

w(x)= m for x ∈ Sr−
,

w(x)→ −∞ as d(x,Sr+
)→ 0,

(3-4)

whenever 1< r+/r− < 1 + ε/(2(β + 2)) and r+ < R.

Remark 3.5. Our choice of w in (3-3) is motivated by the work of Chang, Han and Yang [Chang et al.
2005] on radial solutions to the σk-Yamabe equation on annular domains in Rn . Indeed, when ε = 0 and
µ+

0 = (n − k)/k, (3-8) corresponds to the leading order term in the solution to the σk-Yamabe equation in
0−

k on annular domains in Rn for k < 1
2 n.

Remark 3.6. We reiterate that Proposition 3.4 relies crucially on the assumption µ+

0 > 1 and that a
similar construction is not possible when µ+

0 ≤ 1 — see Remark 1.12 in the introduction.

Assuming the validity of Proposition 3.4 for now, we first give the proof of Proposition 3.3 — the
reader may wish to refer to Figure 1 in the following argument.

Proof of Proposition 3.3. We attach a collar neighbourhood N to ∂M such that g0 extends smoothly to
M ∪ N ; we denote this extension also by g0. Let

D = inf
x∈∂M

dg0(x, ∂(M ∪ N ))
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M

∂M

N Ar i
−
,r i

+
(xi )

xi

D

Figure 1. An annulus in the covering of a neighbourhood of ∂M in M in the proof of Proposition 3.3.

denote the thickness of N . Fix ε > 0 and let m = inf∂M ξ , and cover a neighbourhood of ∂M in M by a
finite collection of annuli {Ar i

−,r
i
+
(xi )}1≤i≤K centred at xi such that the collection {Ar i

−,(r
i
−+r i

+)/2
(xi )} still

covers a neighbourhood of ∂M in M , and such that, for each i ,

(1) xi ∈ N ,

(2) r i
−

+ r i
+
< D,

(3) r i
−

= dg0(xi , ∂M),

(4) the closed ball Br i
+
(xi ) is contained in a single normal coordinate chart (Ui , ζi ) mapping xi to the

origin,

(5)
r i
+

r i
−

≤ 1 +
ε

2(β + 2)
,

(6) r+

i < R is sufficiently small so that

f (−µ+

0 + C−1ε, 1, . . . , 1)
Ce2m(r i

+ − r i
−)

2
≥ sup

M
ψ

(here C and R are as in the statement of Proposition 3.4, where we are implicitly identifying the
annulus Ar i

−,r
i
+
(xi ) with its image under ζi , which is possible by property (4)).

In what follows, we continue to implicitly make the identification between Ar i
−,r

i
+
(xi ) and its image

under ζi .
Let wi denote the solution obtained in Proposition 3.4 on Ar i

−,r
i
+
(xi ) with ε > 0 and m = inf∂M ξ as

fixed above. Since wi is radially decreasing and wi (x)= inf∂M ξ for x ∈ Sr i
−
(xi ), we have wi ≤ inf∂M ξ

on Ar i
−,r

i
+
(xi )∩ ∂M . On the other hand, wi = −∞< u on Sr i

+
(xi ). Therefore, the comparison principle

(see Proposition 3.7 below) yields u ≥ wi on Ar i
−,r

i
+
(xi )∩ M for each i . This yields a finite lower bound

for u on Ar i
−,(r

i
−+r i

+)/2
(xi ). Since we assume the collection {Ar i

−,(r
i
−+r i

+)/2
(xi )} still covers a neighbourhood

of ∂M in M , we may piece together the estimates for u on each annulus Ar i
−,(r

i
−+r i

+)/2
(xi ) to obtain the

desired estimate for u on a uniform neighbourhood of ∂M in M . □
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In the above proof we made use of the following comparison principle.

Proposition 3.7 (comparison principle). Let α > 0 be a positive constant and (M, g) a compact Riemann-
ian manifold with nonempty boundary ∂M. Suppose u, v ∈ C0(M) with at least one of u or v belonging
to C2(M \ ∂M). If f (−g−1

u Agu ) ≥ f (−g−1
v Agv ) ≥ α > 0 in the viscosity sense on M \ ∂M and u ≤ v

on ∂M , then u ≤ v in M.

In the proof of Proposition 3.3, we only needed Proposition 3.7 in the case that both u, v ∈ C2(M \∂M).
In this case, the proof of Proposition 3.7 is standard in light of the fact that if f (−g−1

v Agv ) > 0, c is
a positive constant and w = v + c, then f (−g−1

w Agw) < f (−g−1
v Agv ). The case when u ∈ C0(M) in

Proposition 3.7 will be needed later in the paper. When u ∈ C2(M \ ∂M), Proposition 3.7 follows from
[Caffarelli et al. 2013, Theorem 2.1], since the proof on page 130 therein applies also on Riemannian
manifolds with boundary. When v ∈ C2(M \ ∂M), Proposition 3.7 again follows from [Caffarelli et al.
2013, Theorem 2.1], therein considering F̃(x, s, p,M) := −F(x,−s,−p,−M) in place of F .

We now give the proof of Proposition 3.4.

Proof of Proposition 3.4. It will be more convenient to write our conformal metrics in the form gv = v−2g0,
so that gw = gv for e2w

= v−2. Then the (0, 2)-Schouten tensor of gv is given by

(Agv )i j = v−1(∇2
g0
v)i j −

1
2v

−2
|∇g0v|

2
g0
(g0)i j + (Ag0)i j .

In a fixed normal coordinate system based at the origin, it follows that if v = v(r) then

((gv)−1 Agv )
p
j = v2

(
λδ

p
j +χ

x px j

r2

)
+ O(r2)v|vrr | + O(r)v|vr | + O(1)v2 as r → 0, (3-5)

where

λ=
vr

rv

(
1 −

rvr

2v

)
and χ =

vrr

v
−
vr

vr
; (3-6)

we refer the reader to Appendix B for the derivation of (3-5). Therefore

(−(gv)−1 Agv )
p
j ≥ −v2

(
λδ

p
j +χ

x px j

r2

)
− |9|δ

p
j (3-7)

in the sense of matrices, where |9| = O(r2)v|vrr | + O(r)v|vr | + O(1)v2 as r → 0.

Step 1: In this first step we compute and estimate the quantities on the right-hand side of (3-7) for our
particular choice of w in (3-3), i.e., for

v(r)= e−3(r+ − r)−β−ε, (3-8)

where we have written 3= m − (β + ε) ln(r+ − r−). For shorthand we write ϕ(r)= r+ − r . Then

vr = e−3(β + ε)ϕ−β−ε−1 and vrr = e−3(β + ε)(β + ε+ 1)ϕ−β−ε−2, (3-9)

from which it follows that

vr

rv
= (β + ε)r−1ϕ−1,

rvr

2v
=
β + ε

2
rϕ−1 and

vrr

v
= (β + ε)(β + ε+ 1)ϕ−2.
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Therefore

λ=
vr

rv

(
1 −

rvr

2v

)
= (β + ε)r−1ϕ−1

(
1 −

β + ε

2
rϕ−1

)
(3-10)

and
χ =

vrr

v
−
vr

vr
= −(β + ε)r−1ϕ−1(1 − (β + ε+ 1)rϕ−1). (3-11)

For 9 we estimate using (3-9) to get

|9| ≤ Cr2v|vrr | + Crv|vr | + Cv2

≤ Cre−23ϕ−2β−2ε−2(r +ϕ+ r−1ϕ2)≤ C1re−23ϕ−2β−2ε−2
=: η, (3-12)

where to obtain the final estimate in (3-12) we have used the fact that r, ϕ ≤ 1 and

r−1ϕ2
≤

r2
+

r−

≤ r+

(
1 +

ε

2(β + 2)

)
≤ C.

Step 2: We now use the computations from Step 1 to analyse the eigenvalues of the matrix on the
right-hand side of (3-7), or more precisely the eigenvalues of

−v2
(
λδ

p
j +χ

x px j

r2

)
− ηδ

p
j ,

which are given by
−(χv2

+ λv2
+ η, λv2

+ η, . . . , λv2
+ η).

We write this vector of eigenvalues more conveniently as

(−λv2
− η)

(
χv2

λv2 + η
+ 1, 1, . . . , 1

)
.

We make the following two claims:

Claim 1: There exist constants c1 > 0 and 0< R1 < 1 depending only on g0, f and 0 such that

−λv2
− η > c1e−23ϕ−2β−2ε−2 in {r− < r < r+} (3-13)

whenever 1< r+/r− < 1 + ε/(2(β + 2)) and r+ < R1.

Claim 2: There exists a constant c2 > 0 depending only on g0, f and 0, and a constant 0 < R2 < 1
depending additionally on ε such that

χv2

λv2 + η
+ 1>−µ+

0 + c2ε in {r− < r < r+} (3-14)

whenever 1< r+/r− < 1 + ε/(2(β + 2)) and r+ < R2.

Once the claims are proved, Proposition 3.4 is obtained as follows. First fix r+ and r− such that
1< r+/r− < 1 + ε/(2(β + 2)) and r+ <min{R1, R2}. By Claim 2 and the definition of µ+

0 ,

f
(

χv2

λv2 + η
+ 1, 1, . . . , 1

)
> f (−µ+

0 + c2ε, 1, . . . , 1) > 0 in {r− < r < r+}.
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Then, by Claim 1, it follows that

f
(
(−λv2

−η)

(
χv2

λv2 + η
+1, 1, . . . , 1

))
> c1e−23ϕ−2β−2ε−2 f (−µ+

0 +c2ε, 1, . . . , 1) in {r−< r < r+},

from which (3-4) follows. To complete the proof of Proposition 3.4, it therefore remains to prove Claims 1
and 2.

Note: We will use at various stages the fact that

1<
r+

r−

< 1 +
ε

2(β + 2)
⇐⇒ 0< ϕr−1 <

ε

2(β + 2)
in {r− < r < r+}. (3-15)

Proof of Claim 1. Suppose 1< r+/r− < 1 + ε/(2(β + 2)) and r+ < 1. We start by computing

−λv2
= e−23ϕ−2β−2ε−2(β + ε)

(
β + ε

2
−ϕr−1

)
. (3-16)

By (3-15) and (3-16), it follows that

−λv2
≥

1
C

e−23ϕ−2β−2ε−2 in {r− < r < r+}. (3-17)

Recalling also that

η = C1re−23ϕ−2β−2ε−2, (3-18)

we see that (3-17) and (3-18) imply

−λv2
− η ≥ (C−1

− C1r)e−23ϕ−2β−2ε−2 in {r− < r < r+}. (3-19)

The inequality (3-13) then follows from (3-19) after taking r+ sufficiently small. This completes the
proof of Claim 1. □

Proof of Claim 2. Suppose 1 < r+/r− < 1 + ε/(2(β + 2)) and r+ < 1. By (3-16) and the fact that
µ+

0 = (2 +β)/β, we have

−λv2
−µ+

0λv
2
= −

2 + 2β
β

λv2
=

2 + 2β
β

e−23ϕ−2β−2ε−2(β + ε)

(
β + ε

2
−ϕr−1

)
, (3-20)

and, by the formula for χ in (3-11), we have

−χv2
= e−23(β + ε)ϕ−2β−2ε−2(ϕr−1

− (β + ε+ 1)). (3-21)

It follows from (3-20) and (3-21) that

−χv2
− λv2

−µ+

0λv
2
= e−23ϕ−2β−2ε−2β + ε

β
(ε− (β + 2)r−1ϕ). (3-22)

On the other hand, by (3-15), we have

β + ε

β
(ε− (β + 2)r−1ϕ) >

ε

2
in {r− < r < r+},
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which when substituted into (3-22) yields

−χv2
− λv2

−µ+

0λv
2 >

ε

2
e−23ϕ−2β−2ε−2 in {r− < r < r+}. (3-23)

Recalling (3-18), the estimate (3-23) therefore implies

−χv2
− λv2

−µ+

0λv
2
− η−µ+

0η ≥

(
ε

2
− Cr

)
e−23ϕ−2β−2ε−2 in {r− < r < r+}. (3-24)

After taking r+ smaller if necessary (but in a way that only depends on ε and the constant C in (3-24)),
we therefore have

−χv2
− λv2

−µ+

0λv
2
− η−µ+

0η ≥
ε

4
e−23ϕ−2β−2ε−2 in {r− < r < r+},

or equivalently
χv2

λv2 + η
+ 1 ≥ −µ+

0 +

ε
4 e−23ϕ−2β−2ε−2

−λv2 − η
. (3-25)

On the other hand, by (3-16), we have

0<−λv2
− η ≤ −λv2

≤ Ce−23ϕ−2β−2ε−2 in {r− < r < r+}.

Thus, if r+ is chosen sufficiently small (but depending only on g0, f , 0 and ε), we see

χv2

λv2 + η
+ 1 ≥ −µ+

0 + cε in {r− < r < r+},

as required. This completes the proof of Claim 2. □

As explained above, with Claims 1 and 2 established, the proof of Proposition 3.4 is complete. □

3.3. Gradient estimate. In this section we prove the global gradient estimate.

Proposition 3.8. Suppose ( f, 0) satisfies (1-1)–(1-4) and (1-8), and let τ ≤ 1. Let ψ ∈ C∞(M) be
positive and ξ ∈ C∞(∂M). Then there exists a constant C which is independent of τ but dependent on
g0, f , 0 and upper bounds for ∥ψ∥C1(M), ∥ξ∥C2(∂M) and ∥u∥C0(M) such that any C3 solution to (1-11)
satisfies |∇g0u|g0 ≤ C on M.

Proof. By a conformal change of background metric, we may assume without loss of generality that
ξ ≡ 0.

By our interior local gradient estimate in Theorem 1.8, we only need to prove the gradient estimate
near the boundary, say in B1/2(y0)∩ M , where y0 ∈ ∂M is arbitrary. Consider H = ρ|∇g0u|

2
g0

, where ρ
is a smooth cutoff function satisfying ρ = 1 on B1/2(y0), ρ = 0 outside B1(y0), |∇g0ρ|g0 ≤ Cρ1/2 and
|∇

2
g0
ρ|g0 ≤ C . Suppose that H attains its maximum at x0 ∈ M . If x0 ̸∈ B1(y0)∩ M , then ∇g0u = 0 in

B1/2(y0)∩ M and we are done. If x0 ∈ B1(y0)∩ (M \ ∂M), then our proof of Theorem 1.8 applies and
we again obtain the desired estimate. It remains to consider the case that x0 ∈ B1(y0)∩ ∂M .

We first observe that, since ξ ≡ 0 on ∂M , the tangential derivatives of u on ∂M vanish. Therefore,
we only need to bound the normal derivative ∇νu(x0), where ν denotes the inward pointing unit normal
to ∂M at x0. We first consider the lower bound for ∇νu(x0). With the same setup and notation as in
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the proof of Proposition 3.3, except now with m = u(x0)= 0, consider an annulus Ar−,r+
(y) satisfying

Sr−
(y) ∩ ∂M = {x0} and conditions (1)–(6) in the proof of Proposition 3.3. Then the function w on

Ar−,r+
(y), as defined in (3-3), satisfies w ≤ u on Ar−,r+

(y)∩ ∂M since w(x0)= u(x0) and w is radially
decreasing. By the comparison principle stated in Proposition 3.7, it follows that w≤ u on Ar−,r+

(y)∩ M .
Thus, for x ∈ Ar−,r+

(y)∩ M , we have

u(x)− u(x0)

d(x, x0)
=

u(x)−w(x0)

d(x, x0)
≥
w(x)−w(x0)

d(x, x0)
,

which implies

∇νu(x0)≥ ∇νw(x0).

For the upper bound for ∇νu(x0), we use a barrier function constructed in [Guan 2008]. First observe
that, since 0 ⊂ 0+

1 , we have

0< σ1(−g−1
0 Agu )=1g0u +

n − 2
2

|∇g0u|
2
g0

− σ1(g−1
0 Ag0).

Now let d(x) = d(x, ∂M) and recall Mδ = {x ∈ M : d(x) < δ}. It is well known that, for sufficiently
small δ > 0, d is smooth in Mδ with |∇g0d|g0 = 1. To obtain an upper bound for ∇νu(x0), it suffices to
find a function ū ∈ C3(Mδ) satisfying

σ1(−g−1
0 Agū )≤ 0 in Mδ,

ū = u on ∂M,
ū ≥ u on ∂Mδ \ ∂M.

(3-26)

Indeed, once such a function ū is obtained, the maximum principle implies ū ≥ u on Mδ, and it follows
that, for any x ∈ Mδ, we have

u(x)− u(x0)

d(x, x0)
=

u(x)− ū(x0)

d(x, x0)
≤

ū(x)− ū(x0)

d(x, x0)
,

which implies ∇νu(x0)≤ ∇ν ū(x0).
To this end, we define as in [Guan 2008]

ū(x)=
1

n − 2
ln

d(x)+ δ2

δ2 .

We first observe that ū|∂M = 0 = u|∂M . Next we calculate σ1(−g−1
0 Agū ). In what follows, we denote

by ∇d the differential of d (whereas ∇g0d will continue to denote the gradient of d with respect to g0).
Routine computations yield

∇g0 ū(x)=
1

n − 2
∇g0d(x)

d(x)+ δ2

and

∇
2
g0

ū(x)=
1

n − 2

(
∇

2
g0

d(x)

d(x)+ δ2 −
∇d(x)⊗ ∇d(x)
(d(x)+ δ2)2

)
,
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from which it follows that

σ1(−g−1
0 Agū )=1g0 ū +

n − 2
2

|∇g0 ū|
2
g0

− σ1(g−1
0 Ag0)

≤ C −
1

2(n − 2)
1

(d(x)+ δ2)2
+

C
d(x)+ δ2 , (3-27)

where we have used the fact that |∇g0d|g0 = 1 and |1g0d| ≤ C in Mδ for δ sufficiently small. We then see
that the negative term on the last line of (3-27) dominates the remaining terms for δ > 0 sufficiently small.
Therefore, for δ > 0 sufficiently small, we have σ1(−g−1

0 Agū )≤ 0 in Mδ.
Finally, we observe that on ∂Mδ \ ∂M we have

ū =
1

n − 2
ln

(
δ+ δ2

δ2

)
≥

1
n − 2

ln(1/δ).

Choosing δ smaller if necessary so that

1
n − 2

ln(1/δ)≥ max
M

u on ∂Mδ \ ∂M,

the construction of ū is complete. This completes the proof of Proposition 3.8. □

3.4. Hessian estimate. In this section we give the global Hessian estimate assuming τ < 1.

Proposition 3.9. Suppose ( f, 0) satisfies (1-1)–(1-4), and let τ < 1. Let ψ ∈ C∞(M) be positive and
ξ ∈ C∞(∂M). Then there exists a constant C depending on g0, f , 0, (1 − τ)−1 and upper bounds for
∥ψ∥C2(M), ∥ξ∥C2(M) and ∥u∥C1(M) such that any solution to (1-11) satisfies |∇

2
g0

u|g0 ≤ C on M.

We point out that we do not require µ+

0 > 1 in Proposition 3.9.

Proof. If the maximum of |∇
2
g0

u|g0 occurs in M \ ∂M , then one can appeal to the proof of the global
estimate in [Gursky and Viaclovsky 2003] if f = σ 1/k

k , or the proof of the global estimate in [Guan
2008] for general ( f, 0) satisfying (1-1)–(1-4). So we suppose that the maximum occurs at a point
x0 ∈ ∂M . Let en denote the interior unit normal vector field on ∂M , and fix an orthonormal frame
{e1, . . . , en−1} for the tangent bundle of ∂M near x0. By parallel transporting along geodesics normal
to ∂M , we may extend this to an orthonormal frame {e1, . . . , en} for the tangent bundle of M near x0.
Since (∇2

g0
u)i j (x0)= (∇2

g0
ξ)i j (x0) for i, j ̸= n, we only need to estimate (∇2

g0
u)i j (x0) when at least one

of i or j are equal to n. The proof is almost identical to that in [Guan 2008], but for the convenience
of the reader we summarise the argument here. In what follows, all computations are carried out in a
neighbourhood of x0 on which the frame {e1, . . . , en} is defined.

Still with the convention gu = e2ug0, it will be convenient to write the equation in (1-11) in the
equivalent form

f (λ(−g−1
0 Aτgu

))= ψe2u, λ(−g−1
u Aτgu

) ∈ 0 on M \ ∂M, (3-28)

where
Aτgu

= τ Agu + (1 − τ)σ1(−g−1
u Agu )gu

= −τ∇2
g0

u − (1 − τ)1g0ug0 − bn,τ |∇g0u|
2
g0

g0 + τdu ⊗ du + Aτg0
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and bn,τ =
1
2(n − 2 − (n − 3)τ ). Writing F[u] = f (λ(−g−1

0 Aτgu
)) and

F i j
=

∂ f
∂Ai j

∣∣∣∣
A=−g−1

0 Aτgu

,

the linearisation of F at u in the direction η (excluding zero-order terms) is given by

Lη = F i j (τ (∇2
g0
η)i j + (1 − τ)1g0η(g0)i j + 2bn,τ ⟨∇g0u,∇g0η⟩g0(g0)i j − 2τ ∂i u, ∂ jη)

= F i j (τ (∇2
g0
η)i j − 2τ ∂i u ∂ jη)+ ((1 − τ)1g0η+ 2bn,τ ⟨∇g0u,∇g0η⟩g0)

∑
i

F i i . (3-29)

Now suppose δ > 0 is sufficiently small so that d(x)= d(x, ∂M) is smooth in Mδ = {x ∈ M : d(x) < δ}.
For a positive constant N to be determined later, define

v =
N
2

d2
− d. (3-30)

A routine computation shows that, for δ > 0 sufficiently small,

|Ld| ≤ C0
∑

i

F i i in Mδ, (3-31)

where C0 is a constant independent of τ but depending on g0 and an upper bound for ∥u∥C1(M). It follows
that

Ld2
= 2dLd + 2(1 − τ)|∇g0d|

2
g0

∑
i

F i i
+ 2F i j ∂i d ∂ j d

≥ 2dLd + 2(1 − τ)
∑

i

F i i

≥ 2((1 − τ)− C0d)
∑

i

F i i in Mδ. (3-32)

Choosing N ≥ 4(1 +C0)/(1 − τ) and subsequently δ ≤ min{N−1,C−1
0 }, one sees from (3-31) and (3-32)

that the function v defined in (3-30) satisfies

Lv ≥

∑
i

F i i and v ≤ −
d
2

in Mδ. (3-33)

With (3-33) in hand, one can then show the following.

Lemma 3.10. Fix δ > 0 sufficiently small as in the foregoing argument. If h ∈ C2(Mδ) satisfies h ≤ 0
on ∂M , h(z0)= 0 for some z0 ∈ ∂M and

−Lh ≤ C1
∑

i

F i i in Mδ (3-34)

for some constant C1, then

(∇g0h)n(z0)≤ C, (3-35)

where C is a constant depending on g0, C1, (1 − τ)−1 and upper bounds for ∥h∥C0(Mδ)
and ∥u∥C1(M).
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Proof. It is clear from the definition of v that we can choose A > 0 large (depending on ∥h∥C0(Mδ)
) such

that −Av− h ≥ 0 on ∂Mδ. On the other hand, using (3-33) and (3-34), we have

L(−Av− h)≤ (−A + C1)
∑

i

F i i in Mδ,

and hence L(−Av− h)≤ 0 in Mδ for A sufficiently large. Thus, for A sufficiently large the maximum
principle yields −Av−h ≥ 0 in Mδ , and since (−Av−h)(z0)= 0, it follows that (∇g0(−Av−h))n(z0)≥ 0,
i.e., (∇g0h)n(z0)≤ −A(∇g0v)n(z0). The estimate (3-35) then follows. □

We now continue the proof of Proposition 3.9. Suppose i ∈{1, . . . , n−1} and define h =±(∇g0(u−ξ̄ ))i ,
where (as in the proof of Proposition 3.8) ξ̄ denotes the extension of ξ to Mδ such that ξ̄ is constant along
geodesics normal to ∂M . By differentiating (3-28), one can show directly that |L(∇g0u)i | ≤ C

∑
i F i i ,

and by (2-6) we also have |Lξ̄ | ≤ C ≤ C
∑

i F i i . Therefore h satisfies the assumptions of Lemma 3.10,
and it follows from Lemma 3.10 that

|(∇2
g0

u)in(x0)| ≤ C.

It remains to estimate the double normal derivative (∇2
g0

u)nn(x0). Note that, since {e1, . . . , en} is an
orthonormal frame and (∇2

g0
u)i i (x0)= (∇2

g0
ξ)i i (x0) for i ∈ {1, . . . , n−1}, obtaining an upper (resp. lower)

bound for (∇2
g0

u)nn(x0) is equivalent to obtaining an upper (resp. lower) bound for 1g0u(x0). Now, since
0 ⊆ 0+

1 , the lower bound 1g0u ≥ −C in M is immediate. To obtain the upper bound for (∇2
g0

u)nn(x0),
we may assume (∇2

g0
u)nn(x0)≥ 1, otherwise we are done. We may also assume that, with respect to the

frame {e1, . . . , en}, the Hessian of u at x0 is given by ∇
2
g0

u(x0)= diag((∇2
g0

u)11(x0), . . . , (∇
2
g0

u)nn(x0)).
Then, by (3-28), monotonicity of f and our estimates for (∇2

g0
u)i j (x0) when i and j are not both equal

to n, we have
ψ(x0)e2u(x0) = f (−g−1

0 Aτgu
(x0))≥ f ((1 − τ)(∇2

g0
u)nn(x0)g0 + B), (3-36)

where B is a symmetric matrix bounded in terms of ∥u∥C1(M). Observing that, by homogeneity of f ,

1
t

f (tg0 + B)= f (g0 + t−1 B)→ f (g0) as t → ∞,

we see that (3-36) implies an upper bound for (∇2
g0

u)nn(x0). □

3.5. Proof of Theorem 1.6. We first prove the existence of a smooth solution to (1-11) when τ < 1. Fix
ε > 0, and let Sε = {τ ∈ [0, 1 − ε]: (1-11) admits a solution in C2,α(M)}. Since (1-11) admits a unique
smooth solution when τ = 0, Sε is nonempty. A computation as in (3-29) (but now including zero-order
terms) shows that the linearised operator is invertible as a mapping from C2,α(M) to Cα(M), from which
openness of Sε follows. By Propositions 3.1 and 3.2, solutions to (1-11) admit a global C0 estimate. By
Proposition 3.8, solutions to (1-11) therefore admit a global C1 estimate. Note that, at this point, the
estimates are independent of ε. By Proposition 3.9, one then obtains the global C2 estimate on solutions to
(1-11), which do now depend on ε. With the C2 estimate established, (1-11) becomes uniformly elliptic,
and the regularity theory of Evans and Kyrlov [Evans 1982; Krylov 1982; 1983] then implies a C2,α

estimate. Thus Sε is also closed, and so Sε = [0, 1 − ε]. Since ε > 0 was arbitrary, existence of a C2,α
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solution to (1-11) for any τ < 1 then follows. Higher regularity then follows from classical Schauder
theory, and uniqueness is a consequence of the comparison principle in Proposition 3.7.

Now, since the solutions obtained to (1-11) are uniformly bounded in C1(M) as τ → 1, along a
sequence τi → 1 these solutions converge uniformly to some u ∈ C0,1(M). The proof that u is a viscosity
solution to (1-11) when τ = 1 is exactly the same as in the proof of Theorem 1.3 in [Li and Nguyen
2021] and is omitted here. □

4. Proof of Theorem 1.1′: the fully nonlinear Loewner–Nirenberg problem

In this section we prove Theorem 1.1′. Our proof proceeds according to the following steps:

(1) In Section 4.1 we construct a smooth solution to (1-10) when τ < 1. The solution is obtained as the
limit of solutions with constant finite boundary data m ∈ R (which we know to exist by Theorem 1.6) as
m → ∞.

(2) In Section 4.2 we prove that there exists a smooth solution u to (1-10) when τ < 1 satisfying the
asymptotics stated in (1-9).

(3) In Section 4.3 we prove that any smooth solution to (1-10) must satisfy (1-9) when τ < 1. When
combined with the maximum principle, this will imply that the solution u obtained to (1-10) is unique
when τ < 1.

(4) In Section 4.4 we complete the proof of Theorem 1.1′.

4.1. Existence of a smooth solution to (1-10) when τ < 1. Fix τ < 1, and suppose that ( f, 0) satisfies
(1-1)–(1-4), (1-7) and (1-8). By Theorem 1.6, we know that, for each m ∈ R, there exists a unique smooth
solution um to {

f τ (λ(−g−1
um

Agum
))= 1, λ(−g−1

um
Agum

) ∈ 0τ on M \ ∂M,
um = m on ∂M.

(4-1)

In this section we show that, in the limit m → ∞, one obtains a smooth solution u to (1-10).

Proposition 4.1. Fix τ < 1, and suppose that ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8). Let um denote
the unique smooth solution to (4-1). Then a subsequence of {um}m converges locally uniformly as m → ∞

to a solution u ∈ C∞(M \ ∂M) of (1-10). Moreover, given any constant α > 0, there exists a constant
δ > 0 independent of τ but dependent on g0, α, f and 0 such that u ≥ α in Mδ \ ∂M.

Proof. Since the comparison principle in Proposition 3.7 implies um+1 ≥ um , to prove the existence of a
limit u ∈ C∞(M \ ∂M) solving (1-10), it suffices to show that, for each compact set K ⊂ M \ ∂M , there
exists a constant C independent of m such that ∥um∥C2(K ) ≤ C ; higher order estimates then follow from
the work of Evans and Krylov [Evans 1982; Krylov 1982] and classical Schauder theory.

The lower bound is trivial (and in fact global) since um ≥ u1 for all m. Next we address the local upper
bound — note that whilst we obtained a global upper bound in Proposition 3.1, the bound therein depends
on m, which is insufficient for our current purposes. Recalling the normalisation f

( 1
2 , . . . ,

1
2

)
= 1, we
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have by concavity and homogeneity of f

f (λ)≤ f
(
σ1(λ)

n
e
)

+ ∇ f
(
σ1(λ)

n
e
)

·

(
λ−

σ1(λ)

n
e
)

=
f (e)
n
σ1(λ)=

2
n
σ1(λ) (4-2)

for λ ∈ 0, and thus any solution to the equation in (4-1) satisfies Rgum
≤ −n(n − 1). On the other hand,

by [Aviles and McOwen 1988], there exists a smooth metric gw = e2wg0 satisfying{
Rgw = −n(n − 1) on M \ ∂M,
w(y)→ +∞ as d(y, ∂M)→ 0.

(4-3)

By the comparison principle for the semilinear equation (4-3), um ≤ w in M \ ∂M for each m, which
yields a finite upper bound for um on any compact subset of M \ ∂M which is independent of m. The
local gradient estimate then follows from Theorem 1.8, or alternatively one can appeal to [Guan 2008,
Theorem 2.1] since we have the two-sided C0 bound at this point. For the local Hessian estimate, we
appeal to [Guan 2008, Theorem 3.1]. We therefore obtain the full C2 estimate ∥um∥C2(K ) ≤ C(K ) on any
compact set K ⊂ M \ ∂M , as required.

It remains to prove the second assertion in the statement of Proposition 4.1. Fix α > 0 and consider
the solution uα+1 to (4-1) with m = α+1. Since uα+1 admits a global C0 estimate depending only g0, α,
f and 0, there exists a constant δ > 0 depending only on g0, α, f and 0 such that uα+1 ≥ α in Mδ . By
the comparison principle in Proposition 3.7, u ≥ uα+1 in M \ ∂M , and in particular u ≥ α in Mδ \ ∂M , as
required. □

4.2. Asymptotics. Fix τ < 1 and suppose that ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8). In this section
we show that there exists a smooth solution u to (1-10) satisfying (1-9), that is

lim
d(x,∂M)→0

(u(x)+ ln d(x, ∂M))= 0. (4-4)

Remark 4.2. At this point of the argument, we do not know that this constructed solution coincides with
the one obtained in Section 4.1, although we will later see in Section 4.3 that this is the case.

We start by proving an upper bound on the growth of any smooth solution to the equation in (1-10),
irrespective of the boundary data or whether τ < 1 or µ+

0 > 1.

Proposition 4.3. Let (M, g0) be a smooth Riemannian manifold with nonempty boundary and suppose
that ( f, 0) satisfies (1-1)–(1-4) and (1-7). Then there exist constants δ > 0 and C > 0 depending only
on g0 such that any continuous metric gu = e2ug0 satisfying

f (λ(−g−1
u Agu ))≥ 1, λ(−g−1

u Agu ) ∈ 0 in the viscosity sense on M \ ∂M (4-5)

satisfies
u(x)+ ln d(x, ∂M)≤ Cd(x, ∂M)1/2 in Mδ \ ∂M. (4-6)

In particular, any continuous metric gu = e2ug0 satisfying (4-5) satisfies

lim sup
d(x,∂M)→0

(u(x)+ ln d(x, ∂M))≤ 0. (4-7)
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Proof. By (4-2), the comparison principle for viscosity sub- and supersolutions to uniformly elliptic
equations implies that if gw = e2wg0 satisfies{

σ1(−g−1
w Agw)≤

1
2 n in �⋐ M \ ∂M,

w(x)→ +∞ as d(x, ∂�)→ 0,
(4-8)

then u ≤ w in �. Since σ1(−g−1
w Agw)= −(2(n − 1))−1 Rgw , the transformation law for scalar curvature

implies that the equation in (4-8) is equivalent to

−
Sg0

n − 1
+ 21g0w+ (n − 2)|∇g0w|

2
g0

≤ ne2w. (4-9)

We follow an argument of Gursky, Streets and Warren [Gursky et al. 2011], in turn based on the original
argument of Loewner and Nirenberg [1974], to construct such local supersolutions near ∂M . For a
point x0 a distance d from ∂M , consider a point z0 a distance R > d from ∂M , which lies along the
shortest path geodesic from x0 to ∂M . We may assume R is small enough so that 1g0d2(z0, · ) ≥ 1
on BR(z0), and so that there exists a function h defined on [0, R2

] satisfying

(n − 2)(h′)2 + 2h′′
≤ 0, h′ >max

M
|Sg0 | + C̃(g0), h(0)= 0, (4-10)

where C̃(g0) is a sufficiently large constant to be fixed in the proof. Indeed, once C̃(g0) is fixed, the
function h(t)=

√
t + ε2 − ε satisfies (4-10) for ε sufficiently small and t in a sufficiently small interval

[0, R2
].

Let r denote the distance from z0, and define on BR(z0) the radial function

w(r)= −ln(R2
− r2)+ h(R2

− r2)+ lnα,

where α > 0 is to be determined. Exactly as in the proof of Lemma 5.2 in [Gursky et al. 2011], a direct
computation shows that, for R sufficiently small and C̃(g0) sufficiently large, the left-hand side of (4-9)
satisfies

−
Sg0

n − 1
+ 21g0w+ (n − 2)|∇g0w|

2
g0

≤
4n R2

(R2 − r2)2
e2h

=
4n R2

α2 e2w. (4-11)

Therefore, if we take α = 2R, we see w indeed satisfies (4-9). We then obtain

u(x0)≤ w(x0)= −ln(R2
− (R − d)2)+ h(R2

− (R − d)2)+ ln(2R)

= −ln(d(2R − d))+ h(d(2R − d))+ ln(2R)

= −ln d − ln
(
1 −

d
2R

)
+ h(d(2R − d)).

But h(d(2R − d))=

√
d(2R − d)+ ε2 − ε ≤

√
d(2R − d)≤ C

√
d and

ln
(
1 −

d
2R

)
≥ −

d
2R

≥ −C
√

d

for sufficiently small d , and thus (4-6) follows. The inequality (4-7) is a clear consequence of (4-6). □

We are now in a position to prove the existence of a smooth solution to (1-10) when τ < 1 with the
desired asymptotic behaviour in (4-4).
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Proposition 4.4. Fix τ < 1, and suppose that ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8). Then there
exists a smooth solution gv = e2vg0 to (1-10) and a constant C independent of τ but dependent on g0,
f and 0 such that the following holds: for each ε > 0 sufficiently small, there exists a constant a ≫ 0
independent of τ but dependent on g0, ε, C , f and 0 such that

v(x)+ ln d(x, ∂M)≥ ln
√

1 − 2ε− ln(1 + ad(x, ∂M)) in Aa
ε ⊂ M, (4-12)

where
Aa
ε =

{
x ∈ M \ ∂M : d(x)+ ad(x)2 ≤

ε

C

}
.

In particular,
lim

d(x,∂M)→0
(v(x)+ ln d(x, ∂M))= 0. (4-13)

Proof. Consider an exhaustion of M by smooth compact manifolds with boundary defined by

M( j) = {x ∈ M : d(x, ∂M)≥ j−1
}.

By Proposition 4.1, for each j , there exists a smooth solution gv( j) = e2v( j)g0 to{
f τ (−g−1

v( j)
Agv( j)

)= 1, λ(−g−1
v( j)

Agv( j)
) ∈ 0τ on M( j) \ ∂M( j),

v( j)(x)→ +∞ as d(x, ∂M( j))→ 0.

(Note that we put parentheses around the index j to avoid confusion with the solutions um to (4-1)). Since
v( j)(x)→ +∞ as d(x, ∂M( j))→ 0, the comparison principle in Proposition 3.7 implies that if j < m,
then

v(m)|M( j) < v( j). (4-14)

Now, as justified in the proof of Proposition 4.1, a subsequence of {v( j)} j converges locally uniformly to
some v ∈ C∞(M \ ∂M). We claim that v is our desired function. It is clear that v solves the equation
in (1-10). We now establish (4-12), which we split into two steps: in the first step we show v(x)→ +∞

as d(x, ∂M)→ 0, and in the second step we prove (4-12).

Step 1: In this first step we show that v(x)→ +∞ as d(x, ∂M)→ 0. To this end, let d(x)= d(x, ∂M),
and define ϕ = −ln(B(d + ad2)), gϕ = e2ϕg0, where a and B are positive constants to be determined.
Writing e2ϕ

= ψ−2, so that ψ = B(d + ad2), we compute near ∂M

|∇g0ψ |
2
g0

= B2(1 + 2ad)2 and ∇
2
g0
ψ = B(1 + 2ad)∇2

g0
d + 2aB∇d ⊗ ∇d,

where ∇d denotes the differential of d . It follows that, near ∂M ,

−g−1
ϕ Agϕ = g−1

0

(
−ψ∇

2
g0
ψ +

1
2 |∇g0ψ |

2
g0

g0 −ψ2 Ag0

)
= B2g−1

0

( 1
2 g0 + 2a2d2

[g0 − ∇d ⊗ ∇d − d∇
2
g0

d] − d(1 + 3ad)∇2
g0

d

+ 2ad[g0 − ∇d ⊗ ∇d] − d2(1 + ad)2 Ag0

)
. (4-15)

Taking for instance a = 1, we then see that, for δ fixed sufficiently small and B fixed sufficiently large,

f τ (−g−1
ϕ Agϕ )≥ 1 in Mδ \ ∂M. (4-16)
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To use (4-16) to show v(x)→ +∞ as d(x, ∂M)→ 0, we follow the proof of [Loewner and Nirenberg
1974, Theorem 5]. For m ≫ 1, denote by Sm the set where ϕ(x) = −ln(B(d + d2)) ≥ m. We may
assume (by taking m sufficiently large) that Sm is a tubular neighbourhood of ∂M contained in Mδ. Let
6m = ∂Sm \ ∂M and Dm = min6m v, and suppose J is sufficiently large so that 6m ⊂ M( j) for all j ≥ J .
Then ϕ = m and v ≥ Dm on 6m , and, by the monotonicity in (4-14), we also have v( j) ≥ Dm on 6m for
each j ≥ J . Therefore

v( j) + max{0,m − Dm} ≥ m = ϕ on 6m (4-17)

and
v( j) + max{0,m − Dm} = ∞> ϕ on ∂M( j). (4-18)

In light of (4-16)–(4-18), the comparison principle in Proposition 3.7 implies v( j)+max{0,m − Dm} ≥ ϕ

on M( j) ∩ Sm . Sending j → ∞, it follows that v + max{0,m − Dm} ≥ ϕ in Sm , and in particular
v(x)→ +∞ as d(x, ∂M)→ 0.

Step 2: In this second step we show that v satisfies (4-12). The method is essentially a quantitative
version of Step 1, requiring a more careful choice of parameters a and B in the definition of ϕ.

We first claim that the two quantities in the square parentheses in (4-15) are nonnegative definite for
sufficiently small d . Indeed, observe that g0(x)−∇d(x)⊗∇d(x) is the induced metric on ∂Md(x)\∂M and
is therefore nonnegative definite. Moreover, ∇

2
g0

d is a bounded tensor near ∂M whose kernel contains ∇d .
Hence ∇

2
g0

d is bounded from above by C(g0 −∇d ⊗∇d) for some constant C depending only on (M, g0).
Therefore, g0 − ∇d ⊗ ∇d − d∇

2
g0

d is nonnegative definite for d sufficiently small, as claimed.
In light of (4-15) and the above claim, we see that, for δ chosen sufficiently small independently of a

(but depending on (M, g0)) and Ĉ ≥ 1 a constant such that |Ag0 |g0, |∇
2
g0

d|g0 ≤ Ĉ on Mδ, we have

−g−1
ϕ Agϕ ≥ B2g−1

0

( 1
2 g0 − d(1 + 3ad)∇2

g0
d − d2(1 + ad)2 Ag0

)
≥ B2g−1

0

( 1
2 − Ĉd − Ĉ(1 + 3a)d2

− 2Ĉad3
− Ĉa2d4)g0 (4-19)

in Mδ \ ∂M . Since we will eventually take a large, we may assume a ≥ 1, in which case (4-19) implies

−g−1
ϕ Agϕ ≥ B2( 1

2 − Ĉ[d + 4ad2
+ 2ad3

+ a2d4
]
)

Id in Mδ \ ∂M. (4-20)

Now fix ε > 0 small, define B = 1/
√

1 − 2ε and denote by Âa
ε the set

Âa
ε =

{
x ∈ M \ ∂M : ϕ(x)= −ln(B(d + ad2))≥ −ln

ε

100Ĉ

}
=

{
x ∈ M \ ∂M : d + ad2

≤
ε
√

1 − 2ε

100Ĉ

}
,

where Ĉ is the constant in (4-20). It is easily verified that, in Âa
ε , we have Ĉ(d +4ad2

+2ad3
+a2d4)≤ ε.

Moreover, if we define
6a
ε = ∂ Âa

ε \ ∂M,

then 6a
ε converges to ∂M as a increases. It follows from these two facts and (4-20) that, for a sufficiently

large (depending only on (M, g0)),

−g−1
ϕ Agϕ ≥ B2 diag

( 1
2 − ε, . . . , 1

2 − ε
)
= diag

( 1
2 , . . . ,

1
2

)
in Âa

ε .
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It then follows from our normalisation f
( 1

2 , . . . ,
1
2

)
= 1 that

f τ (−g−1
ϕ Agϕ )≥ 1 in Âa

ε . (4-21)

We now let
Ca
ε = min

6a
ε

v.

Since v(x)→ +∞ as d(x, ∂M)→ 0 (by Step 1) and since 6a
ε converges to ∂M as a increases, we can

choose a large enough so that Ca
ε ≥ −ln(ε/(100Ĉ)). Moreover, this choice of a depends only on g0, ε,

Ĉ , f and 0: since each v( j) was constructed according to the procedure in the proof of Proposition 4.1,
we know from the second statement in Proposition 4.1 that there exists δ = δ(g0, ε, Ĉ, f, 0) > 0 such
that v( j) ≥ −ln(ε/(100Ĉ)) in (M( j))δ \ ∂M( j) for each j . Taking j → ∞, we see v ≥ −ln(ε/(100Ĉ))
in Mδ \ ∂M . Therefore, to ensure Ca

ε ≥ −ln(ε/(100Ĉ)), one only needs to pick a large depending on
δ = δ(g0, ε, Ĉ, f, 0).

We now fix such a value of a and suppose J is sufficiently large so that 6a
ε ⊂ M( j) for all j ≥ J . Then

ϕ= −ln(ε/(100Ĉ)) and v≥ Ca
ε on 6a

ε , and, by the monotonicity in (4-14), we also have v( j) ≥ Ca
ε on 6a

ε

for each j ≥ J . Therefore,
v( j) ≥ −ln

ε

100Ĉ
= ϕ on 6a

ε (4-22)

and
v( j) = ∞> ϕ on ∂M( j). (4-23)

In light of (4-21)–(4-23), the comparison principle in Proposition 3.7 then yields

v( j) ≥ ϕ in Âa
ε ∩ M( j).

Sending j → ∞, it follows that v ≥ ϕ in Âa
ε , i.e.,

v ≥ ϕ = −ln(B(d + ad2))= ln
√

1 − 2ε− ln d − ln(1 + ad) in Âa
ε .

This is precisely (4-12) after relabelling constants, and thus the second step is complete.

To complete the proof of the proposition, we observe that (4-12) implies

lim inf
d(x,∂M)→0

(v(x)+ ln d(x, ∂M))≥ ln
√

1 − 2ε,

and, since ε > 0 is arbitrary, it follows that

lim inf
d(x,∂M)→0

(v(x)+ ln d(x, ∂M))≥ 0. (4-24)

By (4-24) and Proposition 4.3, we therefore see that v satisfies (4-13). □

4.3. Uniqueness. Having just established the existence of a smooth solution to (1-10) satisfying (4-4)
when τ < 1 and µ+

0 > 1, we now turn to uniqueness of solutions. We start with the following.

Proposition 4.5. Fix τ < 1, and suppose that ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8). Then any
continuous viscosity solution gu = e2ug0 to (1-10) satisfies (4-4).
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Proof. Let u be a continuous viscosity solution to (1-10). By Proposition 4.3, we know that u satisfies
lim supd(x,∂M)→0(u(x)+ ln d(x, ∂M))≤ 0, so it remains to show

lim inf
d(x,∂M)→0

(u(x)+ ln d(x, ∂M))≥ 0. (4-25)

To prove (4-25), we attach a collar neighbourhood N to ∂M , extend g0 smoothly to M ∪ N and consider
the sequence {M ( j)

} j of smooth compact manifolds with boundary given by

M ( j)
= {x ∈ M ∪ N : d(x,M)≤ j−1

}.

Note that for x ∈ M and j sufficiently large, d(x, ∂M ( j))= d(x, ∂M)+ j−1. Fix ε > 0. By Proposition 4.4,
there exist constants δ > 0 and a > 0 depending on g0, ε, f , 0 but independent of j , and a smooth
metric gu( j) = e2u( j)

g0 for each j such that

f τ (−g−1
u( j) Agu( j) )= 1, λ(−gu( j) Agu( j) ) ∈ 0τ on M ( j)

\ ∂M ( j)

and
u( j)(x)+ ln d(x, ∂M ( j))≥ ln

√
1 − 2ε− ln(1 + ad(x, ∂M ( j))) in (M ( j))δ \ ∂M ( j).

In particular, for j sufficiently large so that (M ( j))δ ∩ M ̸= ∅, we have

u( j)(x)+ ln
(

d(x, ∂M)+
1
j

)
≥ ln

√
1 − 2ε− ln

(
1 + ad(x, ∂M)+

a
j

)
in Mδ−1/j . (4-26)

Now, by the comparison principle in Proposition 3.7, u( j)
|M ≤ u for each j , and thus (4-26) implies

u(x)+ ln
(

d(x, ∂M)+
1
j

)
≥ ln

√
1 − 2ε− ln

(
1 + ad(x, ∂M)+

a
j

)
in Mδ−1/j \ ∂M. (4-27)

After taking j → ∞ in (4-27), it follows that

lim inf
d(x,∂M)→0

(u(x)+ ln d(x, ∂M))≥ ln
√

1 − 2ε,

and, since ε > 0 is arbitrary, we obtain (4-25). □

Finally we prove uniqueness of solutions to (1-10) when τ < 1.

Proposition 4.6. Fix τ < 1, suppose that ( f, 0) satisfies (1-1)–(1-4), (1-7) and (1-8), and let v denote the
smooth solution to (1-10) obtained in Proposition 4.4. Then v is the unique continuous viscosity solution
to (1-10).

Proof. Suppose that w is a continuous viscosity solution to (1-10). By Proposition 4.5, both v and w
satisfy (4-4). For δ ≥ 0, define 6δ = {d = δ}. Then, for each ε > 0, there exists a minimal δε > 0 such
that w ≤ v+ ε on 6δε . Writing vε = v+ ε, we have

f τ (−g−1
0 Agvε )= f τ (−g−1

0 Agv )= e2v < e2vε ,

and thus vε is a supersolution of the equation in (1-10). By the comparison principle in Proposition 3.7,
it follows that w ≤ v+ ε on M \ Mδε . By minimality of δε, we have δε → 0 as ε → 0, and thus w ≤ v

on M \ ∂M . Reversing the roles of w and v, we see that w ≥ v on M \ ∂M , and therefore w = v. □
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4.4. Proof of Theorem 1.1′. The existence of a smooth solution to (1-10) for each τ < 1, the asymptotic
behaviour stated in (1-9) and uniqueness in the class of continuous viscosity solutions follow from
Propositions 4.4 and 4.6. Let us denote these solutions by uτ . As observed previously, these solutions uτ

satisfy a locally uniform C1 estimate which is independent of τ ; i.e., for each compact set K ⊂ M \ ∂M ,
there exists a constant C independent of τ but dependent on g0, f , 0 and K such that

∥uτ∥C1(K ) ≤ C.

It follows that a subsequence of {uτ } converges locally uniformly in C0,α to some u ∈ C0,1
loc (M, g0) for

each α ∈ (0, 1). As noted in the proof of Theorem 1.6 in Section 3.5, the fact that u is a viscosity solution
to (1-10) when τ = 1 follows from exactly the same argument as in the proof of [Li and Nguyen 2021,
Theorem 1.4]. It remains to show that u satisfies the asymptotics in (1-9) and is maximal.

To this end, first note that, since we only require u to be a viscosity subsolution in Proposition 4.3,

lim sup
d(x,∂M)→0

(u(x)+ ln d(x, ∂M))≤ 0. (4-28)

To show that
lim inf

d(x,∂M)→0
(u(x)+ ln d(x, ∂M))≥ 0, (4-29)

we first recall that u is the C0,α limit of the solutions uτ as τ → 1. By Proposition 4.4, for each ε > 0
sufficiently small, there exist constants δ > 0 and a > 0 independent of τ (but dependent on g0, ε,
f and 0) such that

uτ (x)+ ln d(x, ∂M)≥ ln
√

1 − 2ε− ln(1 + ad(x, ∂M)) in Mδ \ ∂M. (4-30)

Taking τ → 1 in (4-30), we obtain

u(x)+ ln d(x, ∂M)≥ ln
√

1 − 2ε− ln(1 + ad(x, ∂M)) in Mδ \ ∂M,

and (4-29) then follows exactly as in the proof of Proposition 4.4.
Finally, to see that u is maximal, suppose that ũ is another continuous viscosity solution to (1-10). By

Proposition 4.3, (4-28) holds with ũ in place of u, and we also know that (1-9) is satisfied with uτ in
place of u for each τ ≤ 1. Combining these facts, it follows that, for each τ ≤ 1 and ε > 0, there exists
δ > 0 such that

ũ ≤ uτε := uτ + ε in Mδ \ ∂M.

On the other hand, f τ (−g−1
uτε

Aguτε
)= e−2ε f τ (−g−1

uτ Aguτ ) < 1 on M \ ∂M and f τ (−g−1
ũ Agũ )≥ 1 in the

viscosity sense on M \ ∂M ; to see this latter inequality, observe

f τ (λ)=
1

τ + n(1 − τ)
f (τλ+ (1 − τ)σ1(λ)e)≥

1
τ + n(1 − τ)

(τ f (λ)+ (1 − τ)σ1(λ) f (e))

(4-2)
≥

1
τ + n(1 − τ)

(
τ f (λ)+ (1 − τ)

n f (λ)
f (e)

f (e)
)

= f (λ).

By the comparison principle in Proposition 3.7, it follows that ũ ≤ uτε in M \ Mδ , and therefore ũ ≤ uτε
in M \ ∂M . Taking ε→ 0 and then τ → 1, it follows that ũ ≤ u in M \ ∂M , as claimed. □
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Appendix A: Proof of Proposition 2.4: a cone property

Proposition 2.4 is essentially a consequence of [Yuan 2022, Theorem 1.4]. We summarise the details here
for the convenience of the reader. Let 0 be any cone satisfying (1-1) and (1-2), and define

κ0 = max{k : (0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

) ∈ 0}.

Assume for now that there exists a constant θ = θ(n, 0)> 0 such that, whenever λ∈0 with λ1 ≥ · · · ≥ λn ,

∂ f
∂λi

(λ)≥ θ

n∑
j=1

∂ f
∂λ j

(λ) for i ≥ n − κ0. (A-1)

Since κ0 = 0 if and only if 0 = 0+
n , we see that κ0 ≥ 1 whenever 0 ̸= 0+

n , and thus (2-24) holds for
i ∈ {n − 1, n}. Also, it is easy to see that κ0 is equal to the maximum number of negative entries a vector
in 0 can have; i.e.,

κ0 = max{k : (−α1, . . . ,−αk, αk+1, . . . , αn) ∈ 0, α j > 0 for all 1 ≤ j ≤ n}.

Thus (2-24) also holds if λi ≤ 0.
It remains to justify (A-1), for which we follow [Yuan 2022]. By concavity, fi (λ)≥ f j (λ) whenever

λi ≤ λ j . In particular, our ordering implies

∂ f
∂λn

(λ)≥
1
n

n∑
j=1

∂ f
∂λ j

(λ),

which establishes (A-1) for 0 = 0+
n .

On the other hand, for a general cone 0 satisfying (1-1) and (1-2), we have
n∑

i=1

fi (λ)µi > 0 whenever λ,µ ∈ 0. (A-2)

Suppose 0 ̸= 0+
n , in which case it is clear that κ0 > 0, and fix any α1, . . . , αn > 0 such that

(−α1, . . . ,−ακ0 , ακ0+1, . . . , αn) ∈ 0.

Then (A-2) implies
n∑

i=κ0+1

αi fn−i+1(λ)−

κ0∑
i=1

αi fn−i+1(λ) > 0. (A-3)

We may assume α1 ≥ · · · ≥ ακ0 , in which case (A-3) implies

fn−κ0 (λ) >
α1∑n

i=κ0+1 αi
fn(λ).

The desired estimate then follows for all i ≥ n − κ0, again by our ordering. □

Appendix B: The Schouten tensor for a radial conformal factor

In this appendix we prove the formula (3-5). In normal coordinates, r =

√

x2
1 + · · · + x2

n , and therefore
∂iv(r)= (xi/r)vr . It follows that

|∇g0v|
2
g0

= gi j
0 ∂iv∂ jv =

gi j
0 xi x j

r2 v2
r = v2

r ,
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where we have used the fact that
∂

∂r
=

xi
√

x2
1 + · · · + x2

n

∂

∂xi
has unit magnitude. Moreover,

(∇2
g0
v)i j = ∂i∂ jv−0k

i j∂kv =
δi j

r
vr +

xi x j

r

(
vrr

r
−
vr

r2

)
−0k

i j∂kv.

Combining the above, we therefore see that

(g−1
v Agv )

p
j = v2(g−1

0 Agv )
p
j = v2g pi

0 (Agv )i j

= v2
[

g pi
0 δi j

vr
vr +g pi

0
xi x j

vr

(
vrr

r
−
vr

r2

)
−g pi

0

0k
i j xkvr

vr
−
v2

r

2v2 δ
p
j +(g−1

0 Ag0)
p
j

]
.

Now write g pi
0 = δ pi

+χ pi , where χ = O(r2) as r → 0. Then

(g−1
v Agv )

p
j = v2

[
δ

p
j

vr
vr +

x px j

vr

(
vrr

r
−
vr

r2

)
−
v2

r

2v2 δ
p
j

]
+ v2

[
χ piδi j

vr
vr +χ pi xi x j

vr

(
vrr

r
−
vr

r2

)
− g pi

0

0k
i j xkvr

vr
+ (g−1

0 Ag0)
p
j

]
︸ ︷︷ ︸

=9
p
j

= v2
(
λδ

p
j +χ

x px j

r2

)
+9

p
j ,

where λ and χ are as in (3-6). Now, since χ = O(r2), we have

v2χ
piδi j

vr
vr = O(r)v|vr |, v2χ pi xi x j

vr

(
vrr

r
−
vr

r2

)
= O(r2)v|vrr | + O(r)v|vr |,

and, since 0k
i j = O(r) and (g−1

0 Ag0)
p
j = O(1), we also have

v2g pi
0

0k
i j xkvr

vr
= O(r)v|vr | and v2(g−1

0 Ag0)
p
j = O(1)v2.

The claim (3-5) then follows.
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via minimizing movements lead to the same nonlocal conservation law. Our main result shows that this
equation admits an entropy solution for unstable initial data with an analytic interface.
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1. Introduction

An outstanding open problem in hydrodynamics is the description of unstable interface configurations
quickly leading to turbulent regimes. Examples are the thoroughly studied Saffman–Taylor [Saffman
and Taylor 1958], Rayleigh–Taylor [Rayleigh 1882; Taylor 1950] and Kelvin–Helmholtz [Thomson
1871] instabilities. In these unstable regimes, Eulerian quantities — such as the velocity field — are very
irregular, and the Lagrangian trajectories typically fail to be uniquely defined. Hence uniqueness is not to
be expected at the microscopic level, a phenomenon that in the physics literature is known as spontaneous
stochasticity [Thalabard et al. 2020], and instead it will be desirable to have a well-defined deterministic
evolution at the macroscopic level. The current paper provides such a macroscopic evolution in the context
of the incompressible porous medium equation derived from maximal potential energy dissipation.
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1.1. IPM and interfaces. Throughout the article, we will consider the incompressible porous media
(IPM) equation, given by

∂tρ+ div(ρv)= 0,

div v = 0,

v = −∇ p − ρe2

(1-1)

on the two-dimensional periodic strip T × R, where T denotes the flat 1-torus of length 2π , and over a
time interval [0, T ), T > 0. Here the (normalized) fluid density ρ : [0, T )× T × R → R, the velocity
v : [0, T )× T × R → R2 and the pressure p : [0, T )× T × R → R are the unknowns, and

−e2 := (0,−1)T ∈ R2

is the direction of gravity.
The model describes the evolution of a two-dimensional density-dependent incompressible fluid in

an overdamped scenario (the porous medium) and under the influence of gravity. It consists of the
law for mass conservation, the incompressibility condition for the velocity field and Darcy’s law (see
[Allaire 1989; Darcy 1856; Muskat 1934; Saffman and Taylor 1958; Sánchez-Palencia 1980] for more
physical background). Constants such as mobilities (viscosities), permeability of the medium, and gravity
have been set to 1. System (1-1) also models the motion of an incompressible and viscous fluid in a
Hele-Shaw cell [Saffman and Taylor 1958], a different physical scenario with the same mathematical
formulation.

Concerning initial conditions, we are interested in the unstable interface case, i.e.,

ρ0(x)=

{
+1, x2 > γ0(x1),

−1, x2 < γ0(x1),
(1-2)

for a graph γ0 : T → R.
Generally speaking, if the initial data ρ0 is sufficiently regular it is well known that the IPM equation

has a unique regular local-in-time solution; see [Castro et al. 2009; Córdoba et al. 2007]. However, the
problem of formation of singularities versus global existence is still open and only partial results are
known. For example, the existence of solutions with Sobolev norms unbounded in time has recently been
proven in [Kiselev and Yao 2023].

In the case of discontinuous initial data of the type (1-2), the situation is even more subtle as the
following dichotomy shows: If the denser fluid is below the lighter one, then the problem is stable and the
existence of solutions is well known (see Section 2.1). However, if the lighter fluid is below the heavier
one, the problem is ill-posed (at least in the Muskat sense, see Section 2.1, and in the sense of bounded
weak solutions, see Section 2.2).

1.2. Macroscopic IPM. In spite of this difficulty, there have been several attempts to understand the
evolution of such an initial configuration at least in the coarse-grained picture. Namely, on the one
hand, Felix Otto [1999] discovered that, in the Lagrangian formulation, IPM is a gradient flow, and
he suggested in the unstable situation a relaxation based on the corresponding minimizing movements
scheme in the Wasserstein setting (JKO scheme). On the other hand, [Córdoba et al. 2011b] showed that
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(nonstrict) IPM subsolutions
Definition 2.4 (nonstrict: with “≤” instead of “<” in (2-4))
existence: [Arnaiz et al. 2021; Castro et al. 2021; Förster and Székelyhidi 2018;

Noisette and Székelyhidi 2021] and boxes below
uniqueness: no

macroscopic IPM solutions
Definition 3.1
existence: boxes below
uniqueness: no

IPM solutions
Definition 2.1
existence: [Siegel et al. 2004] and induced by subsolutions via [Székelyhidi 2012]
uniqueness: no

macroscopic IPM entropy solutions
Definition 3.4
existence: Theorem 3.2
uniqueness: open

Figure 1. Relation of (sub)solutions in the unstable nonflat interface case: note that each IPM
solution is indeed also a macroscopic IPM solution due to the fact that IPM solutions satisfy
ρ(t, x)2 = 1 for almost every (t, x). Concerning the strictness of the stated inclusions, the listed
references [Arnaiz et al. 2021; Castro et al. 2021; Förster and Székelyhidi 2018; Noisette and
Székelyhidi 2021] provide subsolutions different from macroscopic IPM solutions. We also
believe that the other two inclusions are strict, e.g., by methods similar to the ones used in the
present paper, it should be possible to construct a nonflat two-shock solution to macroscopic IPM
that is neither an entropy solution nor an IPM solution.

IPM can be recast as a differential inclusion in the Tartar framework and therefore fits the adaptation of
convex integration in hydrodynamics by De Lellis and Székelyhidi [2009; 2010]. Subsequently, the full
relaxation of the differential inclusion has been computed in [Székelyhidi 2012] leading to a concept of
coarse-grained solutions (subsolutions in the convex integration jargon). In Section 2 we present precise
definitions and review the historical landmarks of the theory. As an overview the reader can also consult
two diagrams: one concerning the various notions of (sub)solutions occurring in the paper and their
relations, see Figure 1, and another concerning the steps of the relaxations, see Figure 2.

Let us remark that [Székelyhidi 2012] proved in the case of a flat interface that Otto’s relaxation
selects a convex integration subsolution, which turns out to be the global-in-time entropy solution to a
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macroscopic IPM
(1-3)

IPM subsolutions
Theorem 2.2

IPM (1-1)

imposing maximal dissipation
of potential energy,

Section 2.5.2

reformulation as differential inclusion
[Córdoba et al. 2011b; Székelyhidi 2012]

and relaxation [Székelyhidi 2012]

well-posed variational problems
[Otto 1999, (2.10)]

Eulerian coordinates
and h → 0,

[Otto 1999, Steps 4–5]

gradient flow for potential energy
(2-8)Lagrangian coordinates,

[Otto 1999, Step 1]

time step h and relaxation of
discrete variational problems,

[Otto 1999, Steps 2–3]

Figure 2. Relaxation of IPM in Eulerian coordinates via subsolutions on the left and in Lagrangian
coordinates via minimizing movements on the right.

one-dimensional Burgers equation, reconciling both relaxation theories. In the case of a nonflat interface,
the theory of convex integration starting from [Castro et al. 2021] has provided a number of subsolutions
[Arnaiz et al. 2021; Castro et al. 2022; Förster and Székelyhidi 2018; Noisette and Székelyhidi 2021]. In
all these situations, the starting point is an ansatz for the coarse-grained density ρ̄ and for the growth of
the mixing zone motivated in analogy to the flat case. These subsolutions show that also on a macroscopic
level plenty of different evolutions are possible, such that a selection, which so far has not been available,
has to be made for an attempt to claim uniqueness.

The aim of this paper is to use maximal potential energy dissipation as a selection criterion. Since, as
discovered by Otto, in Lagrangian coordinates IPM is a gradient flow with respect to potential energy,
this seems a natural approach. In any case, we first revisit the strategy proposed by Otto [1999] in the
case of nonflat interfaces (the scheme is explained in Section 2.5.1 and Appendix B). We then reconcile it
by selecting the subsolution in the convex integration terminology which at each time instant dissipates
the most potential energy.
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It can be shown that both (a) the relaxed minimizing movements scheme provided in [Otto 1999]
(at least formally) and (b) imposing maximal potential energy dissipation among convex integration
subsolutions (rigorously) lead to the equation

∂tρ+ div(ρv)+ ∂x2(ρ
2)= 0,

div v = 0,

v = −∇ p − ρe2,

(1-3)

which will be referred to as macroscopic IPM. In Section 2 we explain in detail how the Muskat problem,
the theory of subsolutions, convex integration for IPM and Otto’s relaxation are connected. The derivation
of (1-3) from the JKO scheme is known to experts, but as far as we are aware the arguments around
maximal potential energy dissipation for subsolutions are new. In particular, it will be explained in which
way (1-3) can offer a selection criterion for IPM subsolutions based on a natural extension of the gradient
flow structure of IPM.

(Entropy) solutions to macroscopic IPM are subsolutions to IPM as long as they exist. By introducing
a parameter 0< µ< 1 in the first equation,

∂tρ+ div(ρv+µρ2e2)= 0,

macroscopic IPM produces strict subsolutions. Hence, by a suitable h-principle, see Theorem 2.2, the
time of existence of microscopic solutions to IPM will be dictated by the time of existence of (1-3).
This is in stark contrast to [Castro et al. 2021], where a rarefaction-like ansatz with a prescribed speed
of opening of the mixing zone is made and a resulting time- and space-dependent parameter µ(t, x) is
derived which is smaller than 1 just for short times.

In general we emphasize that, contrary to the procedure of [Castro et al. 2021] (and also of [Arnaiz et al.
2021; Castro et al. 2022; Förster and Székelyhidi 2018; Noisette and Székelyhidi 2021]), i.e., deriving a
macroscopic equation from an ansatz, we here follow the reversed process, i.e., we consider based on a
selection a fixed equation for the macroscopic evolution and derive properties of its solutions, such as
the speed of opening of the mixing zone. We believe that this is a necessity when it comes to potential
applications addressing for instance the prediction of a unique mixing zone evolution.

1.3. Existence result and idea of proof. The bulk of the paper is devoted to proving the existence of
an entropy solution for (1-3) with (1-2) as initial data. System (1-3) can be written as a single scalar
nonlocal hyperbolic conservation law,

∂tρ+ div(ρT [ρ])+ ∂x2(ρ
2)= 0, (1-4)

where v = T [ρ] is a zeroth-order singular integral operator. Contrary to other nonlocal conservation
laws with a more regular nonlocal feedback — see [Amadori and Shen 2012; Amorim 2012; Betancourt
et al. 2011; Blandin and Goatin 2016; Colombo et al. 2012] for examples and [Keimer and Pflug 2023]
for a recent overview — a general existence and uniqueness theory for nonlocal terms as in (1-4) is not
available. We bypass this by using the structure of the two-phase initial data (1-2). This approach, born
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out of necessity, not only provides us with the existence of a solution but in addition allows us to learn
about certain properties of it. More precisely, by showing that the Burgers’ term ∂x2(ρ

2) is able to tear up
the initial discontinuity of the density even in the presence of the incompressible velocity v, we will prove
the existence of a local-in-time solution which is Lipschitz for t > 0. This fact is highly nontrivial and
presents many technical difficulties that will be tackled in Sections 4–6, which together form the proof of
our main theorem and will be described below. A careful statement of our main theorem itself, containing
further properties of the solution, can be found in Section 3. We have preferred to state the existence
theorem for (1-3) after the reader is hopefully convinced by Section 2 that (1-3) renders a macroscopic
description for the unstable Muskat problem consistent with maximal potential energy dissipation.

One main ingredient of our proof is to look at the evolution of level sets of the density ρ in suitably
scaled coordinates and to adjust properly to leading-order terms of this evolution. These steps, carried out
in Section 4, reduce the initial value problem (1-2), (1-3) to a fixed-point problem of the type

η(t, y)=
1

t1+α

∫ t

0

∫ 2

−2

∫
T

(Ks[η(s, · )])(y, z)(hs[∂y1η(s, · )])(y, z) dz1 dz2 ds −
1
tα

h0(y) (1-5)

for functions η : [0, T )× T × (−2, 2)→ R describing the evolution of the level sets in superlinear order
with respect to t > 0 small. The constants ±2 for the domain of η are coming from the rarefaction
speed of Burgers’ equation. Moreover, here h0(y) is one of the mentioned leading-order terms — in
fact the first-order term — depending on the initial graph γ0 and α ∈ (0, 1). Moreover, for each s > 0,
y ∈ T × (−2, 2) and ξ : T × (−2, 2)→ R fixed, the function z 7→ (Ks[ξ ])(y, z) is a convolution kernel
of order −1 induced by the Biot–Savart law. The dependence on ξ involves both ξ(z) and ξ(y) in the
form of the difference ξ(y)− ξ(z). Similarly, the function (y, z) 7→ hs[∂y1ξ ](y, z), again considered for
a fixed s and ξ , depends on the difference ∂y1ξ(y)− ∂y1ξ(z). Thus, after integration in z, the regularity of
the right-hand side of (1-5) with respect to y is the regularity of ∂y1η, i.e., the right-hand side when seen
as an operator looses one derivative in y1.

In addition, as one of the main difficulties — also for potential equivalent reformulations of (1-5)
where the above loss of a derivative might be avoided — we would like to point out that the kernels
Ks[ξ ] degenerate as s → 0 to a one-dimensional kernel with singularity ∼ 1/(y1 − z1), i.e., to an
integral kernel of order 0. Thus, estimates for Ks[ξ ](y, · ) as a kernel of order −1 cannot be obtained
uniformly in s.

Regardless, in order to keep the paper enjoyable, we deal with (1-5) and its loss of derivative by
considering real analytic initial interfaces. This allows us to use an adaptation of the Nirenberg–Nishida
abstract Cauchy–Kovalevskaya theorem. Still, the application of it — even when we continue to ignore
the so far not mentioned factor t−(1+α) on the right-hand side — takes quite a lot of effort. It is the second
main part of our proof and can be found in Section 5.

Finally, Section 6 puts everything together to give a solution to the macroscopic IPM equation. In
Appendices A, B and C, we give a proof of a version of the abstract Cauchy–Kovalevskaya theorem
needed for our situation, and we give some more details regarding the derivation of the macroscopic IPM
equation.
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1.4. On the entropy condition. We emphasize that the solution we find is an entropy solution of (1-3), or
rather (1-4). The notion of an entropy solution is stated in Definition 3.4. This is consistent with the flat
case γ0 = 0 where, as said earlier, the relaxed minimizing movements scheme of Otto [1999] converges to
the entropy solution of (1-4) which in that case reduces to Burgers’ equation. For an extended discussion
concerning the selection of the entropy solution by the minimizing movements scheme (including other
gradient flows as counterexamples where a corresponding selection fails), we refer to [Gigli and Otto
2013], where the IPM relaxation is revisited in the flat setting of Otto’s original work [1999]. In addition
see also [Otto 2001] for a stability result in the flat case. Concerning the general, nonflat case, it was
also conjectured by Otto (personal communication) that the convergence of the minimizing movements
scheme to an entropy solution remains true.

Moreover, we point out that some sort of choice among solutions of (1-3) is critical in order to have
a selection criterion. Indeed, already in the flat case solutions are clearly not unique, and also in the
general case nonentropic solutions for (1-3) can be obtained in an easier way, for instance via (2-1) below;
see Remark 3.3. We believe that the requirement of being an entropy solution leads to uniqueness for
the initial value problem (1-2), (1-3), but, since the velocity v depends on ρ in a comparably singular
nonlocal way, standard methods do not seem to work and uniqueness of entropy solutions to macroscopic
IPM stands as an interesting open question. In any case, we emphasize that for the scheme we present
there is a unique solution, and therefore our maximal dissipating subsolution is amenable to numerical
calculations.

1.5. Further questions. Besides the question of uniqueness of the found entropy solution, our work
opens the door to many other questions with various levels of difficulty, such as improving the regularity
of the solutions, considering initial interfaces (not being analytical or not being a graph, as for example in
[Castro et al. 2022]) or other densities as initial data as well. It would be interesting to see whether the
JKO scheme does converge rigorously or what happens in the case of different mobilities [Mengual 2022;
Otto 1999]. On a more general level, there might be other selection criteria for IPM, for example, based
on surface tension [Jacobs et al. 2021] or on vanishing diffusion [Menon and Otto 2005; 2006]. Finally,
we emphasize that our selection criterion ultimately is tailored to the gradient flow structure of IPM, and
for other equations the reasoning necessarily must be different. In any case, we hope our work encourages
the research on finding a deterministic coarse-grained evolution in the presence of instabilities.

2. Ill-posedness and relaxation

The unstable interface initial value problem considered here is highly ill-posed. In this section we explain
in which sense this ill-posedness holds, as well as a strategy based on convex integration and the relaxation
of [Otto 1999] to overcome it. This section, having the purpose to fully motivate equation (1-3), is mostly
a review of existing results. Except for the derivation in Section 2.5.2 showing that maximal potential
energy dissipating subsolutions coincide with Otto’s relaxation, we do not claim any novelty. However,
we are not aware that the computations in Section 2.5.1 can be found in the literature. A reader only
interested in solving system (1-3) can go directly to Section 3.
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2.1. The Muskat problem. If one assumes that

ρ(x, t)=

{
ρup, x2 > f (x1, t),
ρdown, x2 < f (x1, t),

a closed equation from (1-1) can be obtained for the interface (x1, f (x1, t)). Indeed,

∂t f (x, t)=
ρdown − ρup

4π

∫
T

sin(y)( fx(x, t)− fx(x − y, t))
cosh( f (x, t)− f (x − y, t))− cos(y)

dy. (2-1)

This equation is usually known in the literature as the Muskat equation honoring M. Muskat [1934].

In the case ρdown > ρup, the problem is stable and local existence and regularity of solutions can
be proven in different functional settings and situations [Abels and Matioc 2022; Agrawal et al. 2023;
Alazard and Lazar 2020; Alazard and Nguyen 2021b; 2021a; 2023; 2022; Cameron 2019; Chen et al.
2022; Cheng et al. 2016; Choi et al. 2007; Córdoba and Gancedo 2007; Córdoba et al. 2011a; 2013; 2014;
Deng et al. 2017; Escher and Matioc 2011; García-Juárez et al. 2022; 2024; Matioc 2019; Nguyen and
Pausader 2020; Shi 2023], as well as global for small and medium size initial data [Alonso-Orán and
Granero-Belinchón 2022; Constantin et al. 2013; 2016; 2017; Córdoba and Lazar 2021; Dong et al. 2023;
Gancedo and Lazar 2022; Granero-Belinchón and Lazar 2020]. The existence of singularities for large
initial data is shown in [Castro et al. 2012a; 2013] and also in [Córdoba et al. 2015; 2017].

However, if ρdown < ρup, the Muskat equation is ill-posed [Córdoba and Gancedo 2007; Siegel et al.
2004]. Surprisingly, convex integration has allowed us to construct solutions to IPM starting in these
kinds of unstable situations. They have been called mixing solutions and, in them, the initial interface
between the two different densities disappears and a strip arises in which the two densities mix. We
elaborate on these mixing solutions in the next sections. For a general picture of convex integration in the
context of fluid dynamics, we refer to the surveys [Buckmaster and Vicol 2021; De Lellis and Székelyhidi
2019; 2022].

2.2. IPM as differential inclusion. The first examples of nonuniqueness of weak solutions for (1-1)
using convex integration were given in [Córdoba et al. 2011b] by Córdoba, Gancedo and the second
author for the initial value ρ0 = 0. Their method bypasses the computation of the relaxation by means of
so-called T4 configurations. After this, Székelyhidi [2012] established the explicit relaxation of (1-1) for
initial data of two-phase type, enabling a systematic investigation of interface problems in IPM. While
the results in [Córdoba et al. 2011b; Székelyhidi 2012] established ill-posedness of IPM in the class
of essentially bounded solutions, Isett and Vicol [2015] could also show the existence of compactly
supported Cαt,x -solutions for α < 1

9 . The starting point of our investigation is the relaxation of [Székelyhidi
2012], which we will describe in this subsection.

In the following we consider initial data with |ρ0| = 1 almost everywhere. The corresponding notion
of weak solutions is fixed in Definition 2.1 below. Note that, for such initial data, the last condition in
the definition is an additional consistency requirement coming from the continuity, or rather transport,
equation in (1-1).
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Definition 2.1. A pair ρ ∈ L∞((0, T )× T × R), v ∈ L∞(0, T ; L2(T × R; R2)) is a solution of (1-1),
(1-2) provided, for any ϕ ∈ C∞

c ([0, T )× T × R), we have∫ T

0

∫
T×R

ρ∂tϕ+ ρv · ∇ϕ dx dt +

∫
T×R

ρ0ϕ(0, · ) dx = 0,∫ T

0

∫
T×R

v · ∇ϕ dx dt = 0,∫ T

0

∫
T×R

(v+ ρe2) · ∇
⊥ϕ dx dt = 0,

and |ρ(t, x)| = 1 for almost every (t, x) ∈ (0, T )× T × R.

A key step in [Córdoba et al. 2011b; Székelyhidi 2012] is to recast weak solutions as defined above
as solutions to a differential inclusion, to be able to use the Murat–Tartar compensated compactness
formalism [Tartar 1979].

A pair (ρ, v) is a weak solution if and only if the triple

(ρ, v,m) ∈ L∞((0, T )× T × R)× (L∞(0, T ; L2(T × R)))2

satisfies the linear system
∂tρ+ div m = 0,

div v = 0,

v = −∇ p − ρe2,

ρ(0, · )= ρ0

(2-2)

distributionally, i.e., in analogy to Definition 2.1, together with

(ρ(t, x), v(t, x),m(t, x)) ∈ K := {(ρ, v,m) ∈ R5
: |ρ| = 1, m = ρv} (2-3)

for almost every (t, x) ∈ (0, T )× T × R.
Then the relaxation of the incompressible porous media equation is understood as the relaxation of the

corresponding differential inclusion; i.e., in the pointwise nonlinear constraint (2-3), the set K is replaced
by its convex (or more generally 3-convex) hull. Up to technicalities, one can recover highly oscillatory
solutions from this set, as the main theorem of [Székelyhidi 2012] shows.

Theorem 2.2 [Székelyhidi 2012]. Let ρ̄ ∈ L∞((0, T )× T × R) and v̄,m ∈ L∞(0, T ; L2(T × R)) satisfy
(2-2) in the sense of distributions. Suppose that there exists a bounded and open set U ⊂ (0, T )× T × R

such that (2-3) holds for almost every (t, x) /∈ U , while (ρ̄, v̄,m) are continuous on U with

(ρ̄(t, x), v̄(t, x),m(t, x)) ∈ {(ρ, v,m) ∈ R5
: |ρ|< 1, |2(m − ρv)+ (1 − ρ2)e2|< (1 − ρ2)} (2-4)

for every (t, x) ∈ U . Then there exist infinitely many weak solutions (ρ, v) of (1-1), (1-2) that coincide
with (ρ̄, v̄) outside of U and are arbitrarily close to (ρ̄, v̄) in the weak L2(U )-topology.
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In the case of the IPM system, the set on the right-hand side of (2-4) is indeed only the interior of the
3-convex hull of K , see [Székelyhidi 2012] for a precise definition, which does not coincide with the full
convex hull as opposed to the Euler equations. Still, (2-4) describes all possible weak limits of solutions
to the IPM system, see [Székelyhidi 2012]. In view of that, one can therefore truly speak about the full
relaxation of IPM in the context of two-phase mixtures.

This fact has been quantified in [Castro et al. 2019], where the relation between solutions and subsolu-
tions has been made precise through an adapted h-principle. In particular, this leads to additional properties
of the solutions like a degraded macroscopic behavior or the turbulent mixing at every time-slice property.
The latter means that the solutions (ρ, v) induced by (ρ̄, v̄,m) satisfy ρ ∈C0([0, T ); L2

weak(T×(−R, R))),
where R is some positive number with U ⊂ (0, T )× T × (−R, R), and(∫

B
(1 − ρ(t, x)) dx

)(∫
B
(1 + ρ(t, x)) dx

)
> 0 (2-5)

for any t ∈ (0, T ) and any ball B fully contained in Ut := {x ∈ T × R : (t, x) ∈ U }.
For later purposes, we also point out the following possible upgrade of Theorem 2.2, which is obtained

by using convex integration as in [Castro et al. 2019; De Lellis and Székelyhidi 2010].

Lemma 2.3. Let (ρ̄, v̄,m) be as in Theorem 2.2 and δ : [0, T )→ R continuous with δ(0)= 0, δ(t) > 0,
t > 0. Then there exist infinitely many solutions (ρ, v) as in Theorem 2.2 with the additional property that∣∣∣∣∫

T×R

(ρ̄(t, x)− ρ(t, x))x2 dx
∣∣∣∣≤ δ(t)

for almost every t ∈ [0, T ).

Definition 2.4. Any triple (ρ̄, v̄,m) satisfying the conditions of Theorem 2.2 is called a subsolution of
(1-1), (1-2). The set U , in other papers frequently also denoted by �mix, is called the mixing zone of the
subsolution.

Theorem 2.2 shifts the focus from a single solution to the investigation of subsolutions which are
understood as possible coarse-grained or averaged solutions. As subsolutions play the central role also
in the present investigation, we will frequently omit the bars in notation and instead mark solutions by
(ρsol, vsol) in case there is a chance of confusion.

2.3. Examples of subsolutions. The first examples of nonconstant subsolutions have been given in the
same paper of Székelyhidi [2012] for the perfectly flat initial interface, ρ0(x)= sign(x2). Keeping the
one-dimensional structure of the initial data, one sees that v = 0, m = −α(1 − ρ2)e2, α ∈ (0, 1) reduces
(2-2), (2-3) to the one-dimensional conservation law

∂tρ+α∂x2(ρ
2)= 0,

which has a unique entropy solution given by

ρ(t, x)=


1, x2 > 2αt,
x2/(2αt), −2αt < x2 < 2αt,
−1, x2 <−2αt.
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It also has been mentioned in [Székelyhidi 2012] that the limiting case α = 1 is in agreement with the
relaxation of Otto [1999]. It coincides with (1-3) in the flat situation, see Section 4.1. In addition, this case
gives an upper bound for the mixing zone. More precisely, it has been shown in [Székelyhidi 2012] that
the mixing zone at time t > 0, Ut , of any one-dimensional subsolution emanating from ρ0(x)= sign(x2) is
contained in the strip [−1, 1]× (−2t, 2t). A similar subsolution in the harder case of different viscosities
was studied in [Mengual 2022]. Actually, the 3-hull of IPM with different viscosities and densities is
computed in that paper.

In the context of IPM and differential inclusions, we would also like to mention [Hitruhin and Lindberg
2021] which addresses the stationary, i.e., time-independent, IPM system. In that paper the lamination
convex hull of that system is computed, and in addition a rigidity result for its subsolutions and an
application for long-term limits of (1-1) is given.

The first examples of subsolutions giving rise to mixing solutions, i.e., solutions obtained from the
subsolution via convex integration with property (2-5), for IPM starting in a nonflat interface (x1, f0(x1))

were provided in [Castro et al. 2021]. In this paper the density ρ of the subsolution is Lipschitz and the
prescribed speed of opening of the mixing zone c(x1) (= 2α in the flat case above) satisfies 1 ≤ c< 2 and,
as indicated, might depend on x1. The result of [Castro et al. 2021] holds for initial data f0 ∈ H 5(R), i.e.,
in a regime where the Muskat problem cannot be solved. A numerical analysis of these subsolutions can
be found in [Castro 2017], where the formation of fingers can be observed. In [Arnaiz et al. 2021], the
semiclassical viewpoint developed in [Castro et al. 2021] is taken one step further (using semiclassical
Sobolev spaces for example), providing an alternative proof to the main result of [Castro et al. 2021].
Indeed this later approach improves the subsolutions with respect to their regularity, as the boundary of
the mixing zone is in H 5−1/c(x1), where c(x1) is the local speed of opening of the mixing zone, instead of
merely in H 4.

Förster and Székelyhidi [2018] constructed mixing solutions with an initial interface f0 ∈ C3+α relaxing
the initial regularity needed in [Castro et al. 2021] but relying on subsolutions with piecewise constant
density instead of Lipschitz. In this case the speed of opening of the mixing zone is 0 < c < 2 with c
uniform in x1. Thereafter the same kind of subsolutions have been constructed in [Noisette and Székelyhidi
2021] with variable speed of opening.

As mentioned before, mixing solutions obtained via convex integration are not unique. There are two
reasons for this fact: (a) different subsolutions can be found, (b) infinitely many solutions, corresponding
to different distributions of the density, emanate from every fixed subsolution. In order to deal with
point (b), in [Castro et al. 2019] it has been shown that all the solutions obtained from a fixed subsolution
can be chosen in such a way that they share averages over large sets, i.e., they are the same as the
subsolution at a macroscopic level. One of the main points of the present paper is to deal with point (a).
A particular instance of this multiplicity will be illustrated in Section 2.4 below.

The constructions of the subsolutions above seem to rely on the Saffman–Taylor instability (heavy
fluid on top of a lighter fluid). In [Castro et al. 2021] it was observed that there also exist mixing solutions
in the stable regime (see also [Förster and Székelyhidi 2018]) which build on Kelvin–Helmholtz-type
instabilities (discontinuity of the velocity field, see [Mengual 2022] for a thorough discussion of this
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phenomena at the level of the hulls). Actually, the analysis in [Castro et al. 2021] indicates that the
mixing can be created around any point of the interface which is not both flat (with zero slope) and stable.
We call points having zero slope in the stable regime fully stable points. It happens that, in an initially
overhanging interface, there must be always a fully stable point. Partially unstable situations therefore
require one to find compatibility between the Muskat solution and mixing solutions, see [Castro et al.
2022]. Remarkably, the construction in that paper allows one to answer the question on how to prolongate
in time the singular solutions to the Muskat problem found in [Castro et al. 2012a; 2013], namely as
mixing solutions.

As a last remark we would like to point out that the subsolutions constructed in [Castro et al. 2021;
2022; Förster and Székelyhidi 2018; Noisette and Székelyhidi 2021] are local in time in the sense that,
although the involved functions exist over a potentially larger time interval, a small time interval has to
be chosen in order to guarantee that they take values inside the convex hull, i.e., that (2-4) holds. This is
in contrast to the flat cases [Mengual 2022; Székelyhidi 2012] and to the subsolution constructed in the
present paper. Although here we will only prove a local-in-time existence result, the involved functions
take values in (the closure of) the convex hull as long as they exist.

2.4. The subsolution selection problem. As described, the constructions from the previous subsection
contain ansatzes for certain properties of the subsolution and hence for the induced mixing solutions
of (1-1). To illustrate this freedom in the simplest case, let us discuss the flat interface with γ0(x1)= 0 in
slightly more detail. As in [Székelyhidi 2012], setting v ≡ 0, m = m2(t, x2)e2, ρ = ρ(t, x2), one sees
that (ρ, 0,m) is a subsolution if and only if

∂tρ+ ∂x2m2 = 0, ρ(0, x)= sign(x2), |ρ| ≤ 1,

|2m2 + 1 − ρ2
|< 1 − ρ2 when |ρ|< 1, m2 = 0 when |ρ| = 1,

and the required continuity conditions hold. Thus one could make the ansatz

m2 = −
1 − ρ2

2
+

1 − ρ2

2
ξ2 (2-6)

with ξ2 : [0, T )× R → R satisfying |ξ2|< 1 and for any such ξ2 solve the conservation law

∂tρ+ ∂x2

(
(ξ2(t, x2)− 1)

1 − ρ2

2

)
= 0

with initial data ρ0(x2)= sign(x2) to get plenty of subsolutions with different mixing zones and density
profiles. Note that in this sense ξ2, or rather the whole relation (2-6), plays the role of a constitutive law.

Summarizing once more, these examples show that not only does each subsolution induce infinitely
many solutions of the incompressible porous media equation sharing a common coarse-grained, or
averaged, behavior, but there are also infinitely many possibilities for this averaged evolution via the vast
amount of possible subsolutions. This is a common problem in the construction of turbulent solutions
emanating from unstable interface initial data, as for instance also for the Kelvin–Helmholtz instability
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[Gebhard and Kolumbán 2022a; Mengual and Székelyhidi 2023; Székelyhidi 2011] and the Rayleigh-
Taylor instability in the context of the Euler equations [Gebhard and Kolumbán 2022b; Gebhard et al.
2021; 2024]. We emphasize that, however, our criteria builds on the gradient flow structure of IPM, and
therefore different ideas should be used in the case of the Euler equations, see Section 2.5.3 for a short
overview of strategies used so far.

2.5. A selection criterion. We now focus in the general, not necessarily flat, case on the selection of
subsolutions in terms of choosing an appropriate relation between m, ρ and v such that (2-4) holds
provided |ρ| ≤ 1.

First we will review the strategy proposed by F. Otto [1999] to relax system (1-1) based on its gradient
flow structure in Lagrangian coordinates, and we will formally obtain (1-3) from this relaxation. The
strategy of Otto does not rely on the notion of a subsolution in the context of differential inclusions as in
Section 2. However, the solution of (1-3) will be a (nonstrict) subsolution with

m = ρv− (1 − ρ2)e2.

Thereafter, we will also give an argument to derive (1-3) in Eulerian coordinates directly based on
subsolutions. Also, here the starting point will be the gradient flow structure of (1-1). This second
argument shows that the relaxation of Otto selects among all subsolutions precisely those that maximize
the dissipation of potential energy at every time instant.

The relations are summarized in Figure 2 on page 2244.

2.5.1. Otto’s relaxation. In this section we give a very brief summary of Otto’s five-step strategy leading
to the macroscopic IPM equation (1-3). The discussion is not rigorous and even then we have put most of
the explicit calculations in Appendix B. We adapt our notation to that of [Otto 1999], which, due to a
different normalization, studies the evolution of

s(x, t)=
1 − ρ

(
x, 1

2 t
)

2
instead of ρ(x, t), i.e., contrary to other sections the density s is now taking values in [0, 1]. In these
coordinates the IPM system (1-1) reads

∂t s + u · ∇s = 0,

div u = 0,

u = −∇5+ se2;

(2-7)

see Appendix B.
The starting point (Step 1) of Otto’s relaxation is the vital fact that, when formulated in Lagrangian

coordinates, IPM can be seen as a gradient flow with respect to the potential energy

E[8] = −

∫
s(x, 0)8(x) · e2

on the manifold
M0 = {8 one-to-one and onto, smooth, volume-preserving maps}.
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More precisely, if (s, u,5) is a solution of (2-7), then the flow 8(x, t) induced by u satisfies∫
∂t8( · , t) ·w = −d E[8( · , t)]w for all w ∈ T8( · ,t)M0, (2-8)

where d E[8]w is the Fréchet derivative of the functional E at the point 8 ∈ M0 in the direction

w ∈ T8M0 = {w smooth and such that ∇ · (w ◦8−1)= 0}.

Fast-forwarding a bit, the next steps of Otto consist of the introduction of a time discretization with
step size h > 0 in the form of a minimizing movements scheme (Step 2), the extension of the underlying
manifold M0 to its L2-closure in order to turn the potentially ill-posed discrete variational problems
emanating from Step 2 to well-posed ones (Step 3), and a translation of the now existing sequence of
minimizers back to Eulerian coordinates (Step 4). At this point there exists a sequence of functions θ (k)

corresponding to s( · , t) at time t = kh, but of course potentially on a coarse-grained or “locally averaged”
level, which is characterized by the following JKO scheme: θ (0) = s( · , 0) and, given θ (k), θ (k+1) is the
minimizer in K of

1
2 dist2(θ (k), θ)+ 1

2 dist2(1 − θ (k), 1 − θ)− h
∫
θ(x)x2, (2-9)

where the set K consists of measurable θ taking values in [0, 1] and such that
∫
θ =

∫
s(x, 0), and

dist2(θ0, θ1) for θ0, θ1 ∈ K is the L2-Wasserstein distance

dist2(θ0, θ1)= inf
8∈I (θ0,θ1)

∫
θ0(x)|8(x)− x |

2 dx

with

I (θ0, θ1)=

{
8 :

∫
θ1(y)ζ(y) dy =

∫
θ0(x)ζ(8(x)) dx ∀ζ ∈ C0

0

}
.

Notice that this indeed is a relaxation of the original problem since the densities are no longer taking
values in {0, 1} and the transport maps are not necessarily injective.

The fifth and last step consists of passing to the limit h → 0 whenever this is possible. Otto [1999]
proved that this is the case for the unstable flat situation

s(x, 0)=

{
0, x2 > 0,
1, x2 < 0,

and that the limit of θh defined by

θh(x, t) := θ (k)(x), t ∈ [kh, (k + 1)h)

is the unique entropy solution of the conservation law

∂tθ + ∂x2(θ(1 − θ))= 0.

For a different proof of this statement we refer to the work of Gigli and Otto [2013], which in particular
also contains a further examination of the relation between the minimizing movements scheme and the
entropy condition.
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In fact, it was conjectured by Otto (personal communication) that the described scheme, if it converges,
should also lead to an entropy solution of the macroscopic IPM equation in the general, nonflat case. We
refer to Section 3 for the definition of entropy solutions.

In the rest of this section we sketch how at least formally system (1-3), or rather its equivalent
reformulation in terms of s(x, t), arises from the JKO-characterization (2-9) of the discrete functions θ (k)

when assuming suitable convergence. Our presentation here, as well as in Appendix B which contains
some more details, is devoted to conveying that the scheme indeed leads to the macroscopic IPM equation
rather than to providing a rigorous proof which we defer to future work. A similar computation was
derived by Otto (personal communication).

Fix t and write for simplicity θ0
:= θh(t), θ1

:= θh(t + h). Furthermore, let 8h denote the transport
map corresponding to dist2(θ0, θ1) and 8h the transport map corresponding to dist2(1−θ0, 1−θ1). Then
it can be shown that there are functions ah , āh such that

8h(x)= x + (∇ah
◦8h)(x),

8h(x)= x + (∇āh
◦8h)(x).

This in fact is a consequence of Brenier’s theorem [1991]; still an argument is also provided in Appendix B.
Moreover, it can be deduced from first variations of the functional (2-9) that

ah
− āh

= hx2. (2-10)

Now, we write ah
= hph , āh

= h p̄h and make the strong assumption that the introduced functions ph , p̄h

have a well defined C2 limit denoted by p, p̄. Moreover, we also assume that θh(t, x) is converging in a
strong enough sense and denote the limit function by θ(t, x).

If this is the case we can pass to the limit h → 0 and obtain, see Appendix B,

∂tθ = −div(θ∇ p), (2-11)

∂tθ =1 p̄ − div(θ∇ p̄). (2-12)

Now (2-10) yields p = p̄ + x2. Thus (2-11), (2-12) imply that

1 p̄ = div((∇ p̄ − ∇ p)θ)= −∂x2θ. (2-13)

Therefore, from (2-12) and (2-13), we deduce

∂tθ = −∂x2θ − div(∇ p̄θ)= −∂x2θ − div((∇ p̄ + θe2)θ)+ div(θ2e2).

To finish we define u = ∇ p̄ + θe2, which clearly satisfies div u = 0, to get

∂tθ + u · ∇θ + ∂x2θ − 2θ∂x2θ = 0,

u = ∇ p̄ + θe2,

div u = 0.

Undoing the change of coordinates from the beginning, i.e., considering

ρ(t, x)= 1 − 2s(x, 2t),

one obtains (1-3). As said, more details can be found in Appendix B.
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2.5.2. Transfer to subsolutions. Now we give an alternative derivation of the macroscopic system (1-3),
taking a different route after Step 1 of Otto’s relaxation; i.e., the starting point is again the gradient flow
structure of IPM saying that solutions of (1-1) seek to maximize the dissipation of potential energy at
every time instance. However, at this point we do not care in which precise sense the dissipation is
maximized (in Lagrangian coordinates with respect to the L2-metric on the manifold of area preserving
diffeomorphisms). We instead simply extend the principle of maximal energy dissipation for solutions of
(1-1) to its relaxation given in Theorem 2.2; i.e., we seek to investigate also subsolutions that decrease
the potential energy at every time instant as much as possible.

Suppose that (ρ, v,m) is a subsolution in the sense of Definition 2.4. We define its associated relative
potential energy

Erel(t) :=

∫
T×R

(ρ(t, x)− ρ0(x))x2 dx (2-14)

and, for now formally, compute

∂t Erel(t)= −

∫
T×R

x2 div m(t, x) dx =

∫
T×R

m2(t, x) dx . (2-15)

Moreover, similar to (2-6), condition (2-4) implies

m = ρv−
1 − ρ2

2
e2 +

1 − ρ2

2
ξ

almost everywhere for some ξ : [0, T )× T × R → R2 satisfying |ξ |< 1. Plugging this into (2-15), one
deduces

∂t Erel(t)=

∫
T×R

ρv2 − (1 − ρ2)
1 − ξ2

2
dx .

Hence considering ρ(t, · ), and therefore also v(t, · ), see Section 4.2 below, to be given, one easily sees
that the energy dissipation at time t is maximized in the closure of all admissible ξ with the choice
ξ(t, x)= −e2.

Hence choosing constantly ξ = −e2, and therefore

m = ρv− (1 − ρ2)e2, (2-16)

we deduce that (nonstrict) subsolutions that maximize at each time instant the dissipation of potential
energy are characterized as solutions of

∂tρ+ div(ρv− (1 − ρ2)e2)= 0,

div v = 0,

v = −∇ p − ρe2.

(2-17)

The above formal computation in (2-15) can be made rigorous under mild decay assumptions, as for
instance shown in Appendix C. Here, however, we would like to state some further remarks.

First of all we emphasize that, by choosing m as in (2-16), we do not obtain a subsolution in the sense
of Definition 2.4, since (2-4) holds only in a nonstrict sense; thus we speak about a nonstrict subsolution.
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By considering instead

m = ρv−µ(1 − ρ2)e2, (2-18)

i.e., ξ = (1 − 2µ)e2 with µ arbitrarily close to 1 but µ < 1, one obtains strict subsolutions and hence
actual mixing solutions via Theorem 2.2, arbitrarily close to the nonstrict ones with maximal energy
dissipation. However, in the remainder of the paper we will solve (2-17) as the outstanding case and
remark that a similar analysis leads to a subsolution corresponding to the system with m given by (2-18);
see also Remark 3.3.

Moreover, we would like to point out that, in the flat case, where v = 0, system (2-17) is exactly the
hyperbolic conservation law found in [Székelyhidi 2012], whose entropy solution corresponds to the
maximum speed of expansion of the mixing zone; see Section 2.3.

Furthermore, we remark that, given a strict subsolution (ρ, v,m) with relative potential energy Erel(t)
defined in (2-14), one obtains infinitely many mixing solutions (ρsol, vsol) as in Theorem 2.2 with the
additional property that their relative potential energy at almost every time t is arbitrarily close to Erel(t);
see Lemma 2.3. In this sense there also exist actual mixing solutions with potential energy decay arbitrarily
close to the maximal decay for subsolutions characterized by (2-17).

2.5.3. Comparison to selection criteria in related problems. As mentioned in Section 2.4, the selection of
a meaningful subsolution is a general problem when studying hydrodynamic instabilities via differential
inclusions. We briefly give an overview of previously applied selection criteria.

In the case of a perfectly flat interface, the selection typically is done by reducing the subsolution
system to a one-dimensional hyperbolic conservation law and picking the unique entropy solution as a
natural candidate. This has been done in the context of the Kelvin–Helmholtz instability for the Euler
equations [Székelyhidi 2011], the Rayleigh–Taylor instability for the inhomogeneous Euler equations
[Gebhard et al. 2021], and as discussed in all detail above for the flat unstable Muskat problem in IPM
[Székelyhidi 2012].

Another approach, selecting the subsolution that at initial time maximizes the total energy dissipation,
has been applied in the context of the nonflat Kelvin–Helmholtz instability [Mengual and Székelyhidi
2023] within the class of all subsolutions with vorticity concentrated on a finite number of sheets, and
thereafter in the class of one-dimensional self-similar subsolutions emanating from the flat Rayleigh–
Taylor instability modeled by the Euler equations in Boussinesq approximation [Gebhard and Kolumbán
2022b]. This strategy has been motivated by the entropy rate admissibility criterion of Dafermos [1973],
which has also been investigated in [Chiodaroli and Kreml 2014; Feireisl 2014] for convex integration
solutions of the compressible Euler equations. In view of Section 2.5.2, also the selection criterion
considered in the present paper falls into that category. However, in contrast to [Gebhard and Kolumbán
2022b; Mengual and Székelyhidi 2023], the selection applies among all possible subsolutions (with
certain natural decay at infinity) and not only within a special subclass, and it applies at all times instead
of only the initial time.

Another way to select subsolutions globally in time has been studied in [Gebhard et al. 2024] in
the context of the flat Rayleigh–Taylor instability for the Euler equations in Boussinesq approximation.
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Similar to Section 2.5.2 above, the underlying geometric principle of the equation, in that case the least
action principle, has been imposed on the level of subsolutions leading to a degenerate elliptic variational
problem that turns out to be formally equivalent to the direct relaxation of the least action principle by
Brenier [1989]. However, solutions obtained from this relaxation conserve the total energy, which is
inconsistent with anomalous energy dissipation present in turbulent regimes. In view of that, in [Gebhard
et al. 2024] an additional term, responsible for energy dissipation but subject to certain choices, has been
added in the variational problem. In contrast, the relaxation of IPM considered here is not relying on any
comparable choices.

3. The main result

According to the previous section, we consider on T × R the system

∂tρ+ div(ρv+ ρ2e2)= 0,

div v = 0,

v = −∇ p − ρe2

(3-1)

with initial data (1-2), i.e.,

ρ0(x)=

{
+1, x2 > γ0(x1),

−1, x2 < γ0(x1),

for a sufficiently regular function γ0 : T → R. In fact we here consider the case of a real analytic initial
interface. For completeness we also state the notion of a general weak solution to system (3-1).

Definition 3.1. A pair ρ ∈ L∞((0, T )× T × R), v ∈ L∞(0, T ; L2(T × R; R2)) is a solution of (3-1),
(1-2) provided, for any ϕ ∈ C∞

c ([0, T )× T × R), we have∫ T

0

∫
T×R

ρ∂tϕ+ (ρv+ ρ2e2) · ∇ϕ dx dt +

∫
T×R

ρ0ϕ(0, · ) dx = 0,∫ T

0

∫
T×R

v · ∇ϕ dx dt = 0,∫ T

0

∫
T×R

(v+ ρe2) · ∇
⊥ϕ dx dt = 0.

Theorem 3.2. Let γ0 : T → R be real analytic. Then the initial value problem (3-1), (1-2) has a
local-in-time solution with the following properties:

(i) ρ and v are continuous on [0, T )× T × R \ {(0, x1, γ0(x1)) : x1 ∈ T}.

(ii) ρ(t, · ) is Lipschitz continuous at positive times and v(t, · ) is log-Lipschitz continuous, with

∥∇ρ(t, · )∥L∞(T×R) ≤ C0t−1,

|v(t, x)− v(t, x ′)| ≤ C0t−1
|(x − x ′) log|x − x ′

||
(3-2)

for t ∈ (0, T ), x, x ′
∈ T × R, |x − x ′

| ≤
1
2 and a constant C0 > 0 depending on γ0.
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(iii) For t ∈ (0, T ), there exist two real analytic curves γt( · ,±1) : T → R such that ρ(t, x)= 1 whenever
x2 ≥ γt(x1, 1) and ρ(t, x)= −1 whenever x2 ≤ γt(x1,−1). Moreover, ρ(t, · ) maps the remaining
set into (−1, 1). Also there, the level sets 0t(h) := {x ∈ T × R : ρ(t, x) = h}, h ∈ (−1, 1),
are given by graphs of real analytic functions γt( · , h) : T → R. Furthermore, the joint map
[0, T )× T ×[−1, 1] → R, (t, x1, h) 7→ γt(x1, h) belongs to the space C1([0, T ); C1(T ×[−1, 1])),
and there exists a real analytic function s0 : T → R such that

γt(x1, h)= γ0(x1)+ t (2h + s0(x1))+ o(t) (3-3)

with respect to ∥ · ∥C1(T×[−1,1]) as t → 0.

(iv) For any locally Lipschitz continuous η : R → R, we have the balance

∂t(η(ρ))+ div(η(ρ)v+ Q(ρ)e2)= 0, (3-4)

with initial data η(ρ)(0, · )= η(ρ0) and flux Q(ρ) :=
∫ ρ

0 2η′(s)s ds.

Remark 3.3. (a) In fact the function s0 : T → R appearing in (3-3) is precisely the normal part of
the initial velocity when evaluated in (x1, γ0(x1)). See Section 4.2, in particular equation (4-9), for the
definition and further discussion.

(b) Note that (iii) implies that ρ is piecewise C1 with the exceptional set given by

{(t, x1, γt(x1,±1) : t ∈ [0, T ), x1 ∈ T}.

(c) Equation (3-4) is a priori understood in analogy to Definition 3.1, i.e., in a distributional sense.
However, given the regularity of ρ and v, it in fact holds pointwise almost everywhere on (0, T )× T × R;
see Section 6.

(d) Since convex functions are locally Lipschitz, the balance (3-4) in particular states that ρ is an entropy
solution for the conservation law ∂tρ+ div(ρv+

2 e2)= 0, see Definition 3.4 below.

(e) We notice that, for an analytic initial interface, the Muskat equation (2-1) can be solved for short time
in order to find a solution to the macroscopic IPM system (3-1), which at the same time is also a solution
for IPM (see [Castro et al. 2012a] and in the case of the vortex-sheet problem [Castro et al. 2012b]).
However, this solution is not an entropy solution. Moreover, piecewise constant solutions of (3-1) also
could be constructed but again they would not be entropy solutions.

(f) As discussed earlier in Section 2.5.2, the solution (ρ, v) given by Theorem 3.2 induces only a nonstrict
subsolution by setting m := ρv− (1 − ρ2)e2. However, an analogous existence statement remains true
when replacing the first equation of (3-1) by

∂tρ+ div(ρv+µρ2e2)= 0

corresponding to a choice of m as in (2-18) and thus to strict subsolutions when µ < 1. This can be seen
for instance by rescaling time and considering the nonlocal velocity field µ−1v in Sections 4 and 5.
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(g) Notice that (iii) describes precisely the mixing zone U of the subsolution, see Definition 2.4, where
the corresponding solutions develop a mixing behavior. In particular, from (3-3) one can deduce the
initial growth of the mixing zone, which is linear in time. When combined with [Castro et al. 2019], it
also implies the observed degraded mixing property of solutions (the closer to the upper boundary, the
bigger the volume fraction of the heavier fluid). In particular, by letting µ tend to 1, our method predicts
a unique mixing zone selected by maximal potential energy dissipation which can be compared with
experiments, as opposed to subsolutions where the mixing zone depends on an a priori ansatz.

(h) The time of existence T > 0 of the found solution depends on how well γ0 can be extended holo-
morphically onto a complex strip, see, e.g., Lemma 5.6. In addition T is capped by 1. While the latter
is an artificial bound making our proof of existence at some points slightly less technical, the former
dependence is naturally appearing in proofs relying on Cauchy–Kovalevskaya theorems. The question
regarding a global-in-time solution, may it be as a general entropy solution or as a solution of the level
set formulation introduced in Section 4, is open.

(i) The choice of the periodic infinite strip T × R as our spatial domain seemed to us to be the least
technical choice. Compared to the whole plane R2, one does not need to speak about decay/flatness
at x1 → ±∞, still we believe that our approach can be adapted to that setting. The same is true for
the bounded periodic domain T × (0, 1), where the necessary estimates for the Biot–Savart kernel, see
Lemma 5.5, have to be derived on a more abstract level. However, the situation in a bounded domain
with vertical boundaries is more delicate and not within the scope of this paper.

For completeness we include in the following the notion of an entropy solution for equation (3-1).
Note that (3-1) is a nonlocal hyperbolic conservation law. As is common for such equations, see, e.g.,
[Amadori and Shen 2012; Amorim 2012; Betancourt et al. 2011; Blandin and Goatin 2016; Colombo
et al. 2012], the notion of an entropy solution is the one for the corresponding local conservation law
where the otherwise nonlocal velocity field is considered as a fixed local one.

Definition 3.4 (entropy solution). A solution (ρ, v) in the sense of Definition 3.1 is called an entropy
solution provided, for any ϕ ∈ C∞

c ([0, T )× T × R), ϕ ≥ 0 and any convex η : R → R with induced flux
Q(ρ) :=

∫ ρ
0 2η′(s)s ds, we have∫ T

0

∫
T×R

η(ρ)∂tϕ+ (η(ρ)v+ Q(ρ)e2) · ∇ϕ dx dt +

∫
T×R

η(ρ0)ϕ(0, · ) dx ≥ 0.

We remark that typically the set of η for which the stated imbalance is required to hold is taken to be
a strict subset of all convex functions, such as for instance the family {r 7→ |r − c| : c ∈ R} of Kružkov
[1970]; see also [Dafermos 2016]. Since our solution already satisfies the stronger property (iv), we
refrain at this point from restricting the set of entropies.

In any case, due to the nature of the nonlocality of our velocity field — which is a zeroth-order singular
integral operator with respect to the density ρ (see Section 4.2) — the uniqueness of the found entropy
solution remains open.
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4. Level set formulation

We begin our investigation with a look at the illustrative example of a perfectly flat initial interface
γ0(x1)= 0 (Section 4.1) and some known facts concerning the nonlocal velocity field v— in particular at
initial time — in the nonflat case (Section 4.2). Thereafter, with the beginning of Section 4.3, we will
reformulate problem (3-1), (1-2) as a suitable fixed-point problem.

4.1. The flat interface. In the perfectly flat case, γ0 = 0, an x1-independent solution of (3-1) is obtained
by observing that v = 0 and solving the Riemann problem for Burgers’ equation

∂tρ+ ∂x2(ρ
2)= 0, ρ(0, x2)= sign(x2).

The unique entropy solution is Lipschitz continuous at positive times and explicitly given by

ρ(t, x)=


1, x2 > 2t,
x2/(2t), |x2| ≤ 2t,
−1, x2 <−2t.

As discussed earlier, see Section 2.3, this solution bounds the mixing zone in the class of all one-
dimensional IPM subsolutions.

However, in rescaled coordinates y 7→ x , x = (y1, t y2), the solution is given by the stationary profile

ρ(t, y1, t y2)= φ0(y) :=


1, y2 > 2,
1
2 y2, |y2| ≤ 2,
−1, y2 <−2,

(4-1)

or in other words the level sets ρ(t, · )−1({h}), h ∈ (−1, 1), are given by flat lines {x : x2 = 2ht} that as
time evolves are pulled apart with speed 2h.

Of course these are simple reformulations, but a key point in our analysis is an appropriate extension
of this principle to the general, nonflat case where the velocity field does not vanish. This will be done by
keeping the profile φ0(y) on the right-hand side of (4-1) and allowing the transformation y 7→ x to be
of the type x = (y1, t y2 + f (t, y)), i.e., we keep the “pulling”-term t y2 dealing with the Burgers’ term
∂x2(ρ

2) in the equation and allow the level sets to have a general form reacting to the nonlocal velocity
field. The details in terms of induced equations for f are in Sections 4.3–4.5.

4.2. Biot–Savart and the initial velocity field. The flat case discussed in the previous subsection is a very
special case in the sense that v = 0 and the resulting equation is local. In the general case a key feature of
both systems, IPM and the relaxation, is the nonlocal relation between the density ρ and the velocity
field v. More precisely, the last two equations in (1-1), (3-1), respectively, i.e., the incompressibility
condition and Darcy’s law, can be understood by means of a zeroth-order convolution operator. Indeed,
taking the curl of Darcy’s law, one sees that, at each time, v(t, · ) is an incompressible vector field with
vorticity given by

∂x1v2(t, x)− ∂x2v1(t, x)= −∂x1ρ(t, x). (4-2)
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Thus, when requiring decay as |x2| → ∞, the velocity field v is, at least in the case of our interest,
uniquely determined in terms of the Biot–Savart operator

v(t, x)= (K ∗ (−∂x1ρ(t, · )))(x)=

∫
T×R

K (x − z)(−∂x1ρ(t, z)) dz. (4-3)

On T × R the kernel K is given by

K (z) :=
1

4π
(− sinh(z2), sin(z1))

T

cosh(z2)− cos(z1)
, (4-4)

and, as usual, K is the orthogonal gradient of the corresponding Green’s function

G(z) :=
1

4π
log(cosh(z2)− cos(z1)). (4-5)

Relation (4-3) has to be interpreted accordingly at initial time t = 0 due to the fact that −∂x1ρ0 is only
a measure supported on the interface

00 := {(x1, γ0(x1)) : x1 ∈ T}.

Thus, the initial velocity field v0(x) is the one of a vortex-sheet and therefore discontinuous across the
interface.

Lemma 4.1. The unique square integrable solution of

v = −∇ p − ρ0e2, div v = 0 on T × R (4-6)

is given by

v0(x)=

∫
T

K
(

x1 − z1

x2 − γ0(z1)

)
2γ ′

0(z1) dz1 (4-7)

for x /∈ 00, while the one-sided limits at 00 are given by

lim
±(y2−γ0(y1))>0
y→(x1,γ0(x1))

v0(y)= p.v.
∫

T

K
(

x1 − z1

γ0(x1)− γ0(z1)

)
2γ ′

0(z1) dz1 ∓
γ ′

0(x1)

1 + γ ′

0(x1)2

(
1

γ ′

0(x1)

)
. (4-8)

Proof. First of all one can check that the right-hand side of (4-7) defines a locally integrable solution
of (4-6) with exponential decay as |x2| → ∞. Thus standard elliptic estimates imply that this is the only
solution with these properties.

In order to compute the one-sided limits, we write

K (z)=
1

2π
z⊥

|z|2
η(z1)+ Kreg(z),

where η : T×R is a smooth periodic cutoff function with η(z1)= 1 for |z1| ≤ 1 and η(z1)= 0 for |z1| ≥ 2,
and the regular part Kreg : T × R → R2,

Kreg(z) := K (z)−
1

2π
z⊥

|z|2
η(z1),

is smooth. In fact Kreg is harmonic where η(z1) = 1. Furthermore, using complex notation, we write
z⊥/|z|2 = (1/(i z))∗, where z∗ denotes complex conjugation.
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Then, denoting by v0,reg the contribution from the regular part Kreg, we have

v0(y)− v0,reg(y)=

(
1

2π i

∫
T

2γ ′

0(z1)

y − (z1 + iγ0(z1))
dz1

)∗

= −

(
1

2π i

∫
00

1
ξ − y

2γ ′

0(ξ1)

1 + iγ ′

0(ξ1)
dξ
)∗

for y /∈00. Now taking one sided limits y → x ∈00, expression (4-8) follows from the Sokhotski–Plemelj
formula; see [Muskhelishvili 1972]. □

Formulas (4-8) show that the initial velocity field is still continuous across the interface in the normal
direction. Therefore the (not normalized) normal velocity at the interface s0 : T → R,

s0(x1) := v0(x1, γ0(x1)) ·

(
−γ ′

0(x1)

1

)
= p.v.

∫
T

K
(

x1 − z1

γ0(x1)− γ0(z1)

)
2γ ′

0(z1) dz1 ·

(
−γ ′

0(x1)

1

)
, (4-9)

is well-defined. It will play an important role in our further analysis as it dictates the motion of Lagrangian
particles at the interface to first order when ignoring the Burgers’ term ∂x2(ρ

2).

4.3. Rescaling and level set function. We now transform problem (3-1), (1-2) in terms of level sets. The
reformulation here is understood on a formal level. We will solve the derived fixed-point problem in
Section 5 and a posteriori justify the transformations in Section 6.

The starting point is the following ansatz for ρ capturing the effect of the Burgers’ part described in
Section 4.1. Assume that there exists f : [0, T )× T × R → R sufficiently regular with

f (0, y)= γ0(y1) (4-10)

and such that, for every t ∈ (0, T ), y1 ∈ T, the map R → R, y2 7→ t y2 + f (t, y1, y2) is a monotone
diffeomorphism.

Then each of the transformations X t : T × R → T × R, t ∈ (0, T ),

X t(y)=

(
y1

t y2 + f (t, y)

)
,

is a diffeomorphism as well.
We now seek to find a solution of (3-1), (1-2) on [0, T ) having the property that

ρ(t, X t(y))= φ0(y2)=


+1, y2 ≥ 2,
1
2 y2, y2 ∈ (−2,+2),
−1, y2 ≤ −2.

(4-11)

For t > 0, we compute

DX t(y)=

(
1 0

∂y1 f (t, y) t + ∂y2 f (t, y)

)
, (4-12)

DX t(y)−1
=

(
1 0

−∂y1 f (t,y)
t+∂y2 f (t,y)

1
t+∂y2 f (t,y)

)
, (4-13)

∇ρ(t, X t(y))=
1

2(t + ∂y2 f (t, y))

(
−∂y1 f (t, y)

1

)
1(−2,2)(y2), (4-14)
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so that the first equation of (3-1) — when written in nondivergence form — under the ansatz (4-11) is
equivalent to

0 = 1(−2,2)(y2)

(
−∂y1 f (t, y)

1

)
·

((
0

y2 + ∂t f (t, y)− 2φ0(y2)

)
− v(t, X t(y))

)
.

Since 2φ0(y2)= 1(−2,2)(y2)= y2, expanding the above equation leads to

∂t f (t, y)= v(t, y1, t y2 + f (t, y)) ·
(

−∂y1 f (t, y)
1

)
(4-15)

for (t, y1, y2) ∈ (0, T )× T × (−2, 2).
Note that, in view of (4-14), the velocity field in (4-15) is always considered in directions normal to

the level sets of ρ.

4.4. Transformation of the velocity field. For t > 0, we have that v(t, · ) (in all reasonable scenarios) is
given by the Biot–Savart law (4-3); see Section 4.2.

Applying the transformation X t(y), we compute the velocity field

v(t, y1, t y2 + f (t, y))= v(t, X t(y))

occurring in (4-15). First of all, formulas (4-12) and (4-14) imply

v(t, X t(y))= −

∫
T×R

K (X t(y)− z)∂x1ρ(t, z) dz

= −

∫
T×R

K (X t(y)− X t(z))∂x1ρ(t, X t(z)) det DX t(z) dz

=
1
2

∫ 2

−2

∫
T

K (X t(y)− X t(z))∂y1 f (t, z) dz1 dz2.

Next we compute the full right-hand side of (4-15) and exploit the fact that the velocity field v(t, X t(y))
is only needed in normal directions. More precisely, for z ̸= y, we have

∂y1 f (t, z)K (X t(y)− X t(z)) ·
(

−∂y1 f (t, y)
1

)
= ∂y1 f (t, z)∇G(X t(y)− X t(z)) ·

(
1

∂y1 f (t, y)

)

= ∂y1 f (t, y)∇G(X t(y)− X t(z)) ·
(

1
∂y1 f (t, z)

)
− ∂1G(X t(y)− X t(z))(∂y1 f (t, y)− ∂y1 f (t, z))

= −∂y1 f (t, y) d
dz1

(G(X t(y)− X t(z)))− K2(X t(y)− X t(z))(∂y1 f (t, y)− ∂y1 f (t, z)).

Thus after integration we obtain an additional cancelation in the convolution, i.e.,

v(t, X t(y)) ·
(

−∂y1 f (t, y)
1

)
= −

1
2

∫ 2

−2

∫
T

K2(X t(y)− X t(z))(∂y1 f (t, y)− ∂y1 f (t, z)) dz1 dz2. (4-16)
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4.5. Equation for f . Combining (4-16) with (4-15), we see that (3-1) can — after our ansatz — be written
in the closed form

∂t f (t, y)= −
1
2

∫ 2

−2

∫
T

K2(1̃X t(y, z))(∂y1 f (t, y)− ∂y1 f (t, z)) dz1 dz2, (4-17)

where

1̃X t(y, z) := X t(y)− X t(z)=

(
y1 − z1

t (y2 − z2)+ f (t, y)− f (t, z)

)
also depends on f . Via translation in z1, equation (4-17) can also be written as

∂t f (t, y)= −
1
2

∫ 2

−2

∫
T

K2(1X t(y, z))1∂y1 ft(y, z) dz1 dz2, (4-18)

where we have used the abbreviation

1X t(y, z) :=

(
z1

t (y2 − z2)+ f (t, y1, y2)− ft(t, y1 − z1, z2)

)
,

1∂y1 ft(y, z) := ∂y1 f (t, y1, y2)− ∂y1 f (t, y1 − z1, z2).

(4-19)

The latter form turns out to be more convenient to work with.

4.6. One more ansatz. One important assumption in the above derivation is the invertibility of the maps
(X t)t>0. In order to guarantee this, we further make the ansatz

f (t, y)= γ0(y1)+ ts0(y1)+
1
2 t1+αη(t, y), (4-20)

where α ∈ (0, 1) and the functions s0 : T → R, η : (0, T )×T×R → R are sufficiently regular. In order to
avoid potential confusion, we emphasize that the function η has nothing to do with an entropy; compare
with the η appearing in Definition 3.4. Furthermore, we remark that the particular choice of α ∈ (0, 1) is
not important; see Section 5.7 for further discussion.

By this ansatz f satisfies (4-10), and the desired invertibility can be assumed true for a small time
interval (depending on ∥∂y2η∥L∞). Moreover, since at t = 0 we have ∂t f = s0, ∂y1 f = γ ′

0, passing
formally to the limit on the right-hand side of (4-18), one sees that s0 necessarily is given by

−
1
2

∫ 2

−2

∫
T

K2(1X0(y1, z1))1γ
′

0(y1, z1) dz1 dz2, (4-21)

where

1X0(y1, z1) :=

(
z1

γ0(y1)− γ0(y1 − z1)

)
,

1γ ′

0(y1, z1) := γ ′

0(y1)− γ
′

0(y1 − z1).

A quick computation similar to the one in Section 4.4 and comparison with (4-9) shows that the above
expression is precisely the normal component of the initial velocity evaluated at (y1, γ0(y1)), i.e., (4-21).
This shows that the function s0(y1) is indeed forced to be the normal component of v0(y1, γ0(y1)).
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Finally we integrate (4-18) in time and use (4-20), (4-21) in order to deduce that, for f to be a solution
to (4-18), η must be a solution of the fixed-point problem

η(t, y)= −
1

t1+α

∫ t

0

∫ 2

−2

∫
T

K2(1Xs(y, z))1∂y1 fs(y, z)

− K2(1X0(y1, z1))1γ
′

0(y1, z1) dz1 dz2 ds. (4-22)

Note that η and ∂y1η enter the right-hand side through (4-19), (4-20).

5. Existence of a solution for analytic graphs

Our goal is to show that, for a real analytic γ0 : T → R, there exists a unique local-in-time solution η of
problem (4-22). The proof relies on the following version of the abstract Cauchy–Kovalevskaya theorem
based on the formulation of Nishida [1977]; see also [Nirenberg 1972].

In order to avoid confusion we emphasize that, throughout Section 5, every symbol ρ, ρ ′, ρ̄, ρ0

denotes a positive constant referring to the size of the domain of analyticity. This is done in analogy to
[Nishida 1977]. At no time in Section 5 do we mention the density function ρ(t, x), which we seek to
construct, or the initial density ρ0(x).

Theorem 5.1. Let (Bρ)ρ∈(0,ρ0), ρ0>0, be a scale of Banach spaces with ∥ · ∥ρ′ ≤∥ · ∥ρ for 0<ρ ′<ρ<ρ0,
and consider the integral equation

u(t)=
1

a(t)

∫ t

0
F(u(s), s) ds (5-1)

for a given continuous function a : [0,∞)→ R with a(t) > 0 for t > 0. If F is such that

(i) there exist R > 0, T > 0 such that, for every 0< ρ ′ < ρ < ρ0, the map

{u ∈ Bρ : ∥u∥ρ < R} × [0, T )→ Bρ′, (u, t) 7→ F(u, t),

is well-defined and continuous,

(ii) there exists b : [0, T )→ [0,∞) continuous such that, for any 0 < ρ ′ < ρ < ρ0 and all u, v ∈ Bρ ,
∥u∥ρ < R, ∥v∥ρ < R, t ∈ [0, T ), we have

∥F(u, t)− F(v, t)∥ρ′ ≤
b(t)
ρ− ρ ′

∥u − v∥ρ,

(iii) F(0, · ) ∈ L1(0, T ; Bρ) for any ρ ∈ (0, ρ0), and there exists c : [0, T ) → [0,∞) continuously
differentiable on (0, T ) and continuous on [0, T ) with c(0)= 0 as well as c′(t) > 0 for t > 0 such
that, for all ρ ∈ (0, ρ0), t ∈ (0, T ), we have

1
a(t)

∫ t

0
∥F(0, s)∥ρ ds ≤

c(t)
ρ0 − ρ

,

(iv) for a constant K > 0, the functions a(t), b(t), c(t) appearing in (5-1), (ii), (iii) satisfy the relation

sup
s∈(0,t)

∣∣∣∣b(s)c(s)c′(s)

∣∣∣∣≤ K a(t)c(t), t ∈ (0, T ), (5-2)
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then there exists a constant ā = ā(K , R) > 0 and a unique u(t) which, for any ρ ∈ (0, ρ0), maps the
interval {t ∈ [0, T ) : c(t) < ā(ρ0 −ρ)} continuously into the R-ball of Bρ . Moreover, u satisfies (5-1) and

∥u(t)∥ρ = O
(

c(t)
ρ0 − ρ

)
as t → 0.

In particular, u(0)= 0.

For the choices a(t) = 1, b(t) = c1, c(t) = c2t with some constants c1, c2 > 0, the above theorem
is the abstract Cauchy–Kovalevskaya theorem in the formulation of Nishida [1977]. The proof of
Theorem 5.1 requires indeed just some minor modifications which are presented in Appendix A. For a
related generalization of the abstract Cauchy–Kovalevskaya theorem, see also [Reissig 1987; 1988].

We will apply Theorem 5.1 in the following situation.

Lemma 5.2. Let c1, c2>0 and α∈ (0, 1). There exist T = T (α), K = K (c1, c2)>0 such that a(t) := t1+α,
b(t) := c1t1+α

|log t |, c(t) := c2t1−α
|log t | satisfy (5-2).

Proof. Consider T ∈ (0, 1) such that

(1 −α)|log t | ≥ 2, |log t |tα ≤ 1

for all t ∈ (0, T ). Then, for 0< s < t < T , we have

b(s)c(s)
c′(s)

= c1
s2+α

|log s|2

(1 −α)|log s| − 1
≤ c1s2

|log s| ≤ c1t2
|log t | =

c1

c2
a(t)c(t).

Thus (5-2) holds with K := c1c−1
2 . □

5.1. Banach spaces. Set
�0 := T × (−2, 2)

as well as
Uρ := {z ∈ C : |Im(z)|< ρ}, �ρ := Uρ × (−2, 2)

for ρ > 0.
We define the space Bρ to consist of all continuous functions η :�0 → R, y 7→ η(y), which satisfy

(i) for every y2 ∈ (−2, 2), the function η( · , y2) extends to a holomorphic function Uρ → C which is
again denoted by η( · , y2),

(ii) the derivative ∂y2η : �ρ → C exists and is uniformly continuous, and ∂y2η( · , y2) is holomorphic
on Uρ for every y2 ∈ (−2, 2),

(iii) the norm
∥η∥ρ := ∥η∥L∞(�ρ) + ∥∂y1η∥L∞(�ρ) + ∥∂y2η∥L∞(�ρ)

is finite.

For clarification, the extension in (i) strictly speaking is the extension of the 2π-periodic function
η( · , y2) : R → R. The extension Uρ → C, y1 7→ η(y1, y2), therefore is periodic in the real part of y1.
Moreover, ∂y1η denotes the complex derivative in the first component, while ∂y2η is the real partial
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derivative with respect to the second component. Although the two derivatives are of slightly different
nature, we still use a gradient notation ∇yη := (∂y1η, ∂y2η)

T .
Clearly each Bρ is a Banach space and Bρ ⊂ Bρ′ , ∥ · ∥ρ′ ≤ ∥ · ∥ρ whenever ρ ′ < ρ. Moreover, for the

introduced scale of spaces, we have the following lemma, which is a direct consequence of Cauchy’s
integral formula for analytic functions.

Lemma 5.3 (Cauchy). Let 0< ρ ′ < ρ and η ∈ Bρ . Then, for j = 1, 2, we have

∥∂y1∂y jη∥L∞(�ρ′ ) ≤
C

ρ−ρ ′
∥η∥ρ

for C = (2π)−1.

In particular, ∂y1η is — as is η itself — Lipschitz continuous on �0. This together with the assumed
uniform continuity of ∂y2η implies the following.

Lemma 5.4. Let ρ > 0 and η ∈ Bρ . Then η :�0 → R extends to C1(�0), and η( · , y2) and ∂y2η( · , y2)

are real analytic for each y2 ∈ [−2, 2].

Also note that ∂y2∂y1η(y)= ∂y1∂y2η(y) for η ∈ Bρ , y ∈�ρ , for instance, by means of Cauchy’s integral
formula.

5.2. Notation. From now on we fix α ∈ (0, 1) and a real analytic initial datum γ0 : T → R. Clearly γ0

can be extended to a holomorphic function defined on U2ρ0 for some ρ0 > 0 small.
Hence all (complex) derivatives are uniformly bounded on Uρ0 , e.g., there exist a constant C0 > 0 such

that
∥γ ′

0∥L∞(Uρ0 )
≤ C0. (5-3)

More generally, henceforth, C0 > 0 always denotes a constant depending solely on the L∞(Uρ0)-norm
of a fixed finite amount of derivatives of γ0. (A detailed look at the proof reveals that the first five
derivatives of γ0 are sufficient. However, the precise number is not important.) In contrast C > 0 usually
denotes a constant not depending on γ0. Both constants typically change from line to line. Also we point
out that distinguishing C0 from C is not essential for the proof of Theorem 3.2.

For a pair a = (a1, a2) ∈ R × C, we define

|a|∗ := (|a1|
2
+ |a2|

2)1/2 = (a2
1 + a2a∗

2)
1/2. (5-4)

Moreover, whenever we write |z1| for z1 ∈ T, we mean the absolute value of the unique representative
of z1 in [−π, π). In particular, we will also use |a|∗ for pairs a ∈ T × C.

For any function g :�ρ0 → Cn or h : Uρ0 → Cn we use the abbreviation

1g(y, z) := g(y)− g(y1 − z1, z2) or 1h(y1, z1) := h(y1)− h(y1 − z1) (5-5)

for y = (y1, y2) ∈�ρ0 , z = (z1, z2) ∈�0 and y1 ∈ Uρ0 , z1 ∈ T, respectively. In the proofs we will usually
omit the points (y, z) and simply write 1g and 1h.

Furthermore, for t ≥ 0 and η ∈ Bρ0 , we define f ηt :�ρ0 → C, Xη
t :�ρ0 → C2,

f ηt (y) := γ0(y1)+ ts0(y1)+
1
2 t1+αη(y), Xη

t (y) :=

(
y1

t y2 + f ηt (y)

)
. (5-6)
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The function s0 : Uρ0 → C will be introduced in Lemma 5.6 below. At time t = 0, we simply write X0(y1)

instead of Xη

0(y). The second component of Xη
t (y) is denoted by Xη

t,2(y). There is no need to distinguish
the first component, since it is just given by y1.

5.3. Preliminary lemmas. In order to define the function F as a complex extension of the functional
appearing in (4-22), we need some preparation.

Recall that the second component K2 of the Biot–Savart kernel on T × R is given by

K2(a)= K2(a1, a2)=
1

4π
sin(a1)

cosh(a2)− cos(a1)
.

Thus, for fixed a1 ∈ T, the canonical extension of K2(a1, · ) to a2 ∈ C is holomorphic on the open set
{a2 ∈ C : cosh(a2)− cos(a1) ̸= 0}. We define

U := {a ∈ T × C : cosh(a2)− cos(a1) ̸= 0}.

Lemma 5.5. Let κ ∈
(
0, 1

2

)
. The sets

Uκ :=
{
(a1, a2) ∈ T × C : |Im(a2)|< κ(|a1| + |Re(a2)|), |Im(a2)|<

π
2

}
are subsets of U with ∂Uκ ∩ ∂U = {0}. Moreover, there exists a constant C > 0 depending on κ such that,
for all a ∈ Uκ , j = 0, 1, 2, we have

|∂ j
a2

K2(a)| ≤ C |a|
−(1+ j)
∗

. (5-7)

Proof. Let a ∈ Uκ ∩ ∂U , a2 = u + iv. Then

0 = cosh(a2)− cos(a1)= cosh(u) cos(v)− cos(a1)+ i sinh(u) sin(v)

implies v = 0, and thus cosh(u) = cos(a1), which is only possible for a1 = u = 0; or u = 0 and
cos(v)= cos(a1), which in the closure of Uκ is again only possible for a1 = u = 0. Thus Uκ ⊂ U and
∂Uκ ∩ ∂U = {0}.

For the second part we split the analysis into three regions: a ∈ Uκ , |a|∗ close to 0; a ∈ Uκ , |a|∗ large;
and the remaining subset of Uκ .

Let us start with a ∈ Uκ , |a|∗ close to 0. Writing again a = (a1, u+iv) and using that v2
≤ 2κ2(a2

1 +u2),
we have

|a2
1 + a2

2 | = (a4
1 + 2a2

1(u
2
− v2)+ (u2

− v2)2 + 4u2v2)1/2

≥ ((1 − 4κ2)a4
1 + 2a2

1(1 − 2κ2)u2
+ (u2

+ v2)2)1/2

≥ (1 − 4κ2)(a4
1 + |a2|

4)1/2 ≥
1
2(1 − 4κ2)|a|

2
∗
.

Then, for a ∈ Uκ , a small, it follows that

|K2(a)| ≤
1

2π
|a1| + O(|a1|

3)

|a2
1 + a2

2 | − O(|a1|4)− O(|a2|4)
≤

1
π

|a|∗ + O(|a|
3
∗
)

(1 − 4κ2)|a|2
∗
− O(|a|4

∗
)

≤
C

|a|∗
.

Doing the same for higher-order derivatives, it follows that there exists ε > 0 such that (5-7) holds for all
a ∈ Uκ with |a|∗ < ε. We fix such an ε.
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Next let us consider the opposite regime a = u + iv ∈ Uκ , |a|∗ large. Note that this necessarily means
that |u| has to be large since |a1| ≤ π , |v| ≤

π
2 by definition of Uκ . We then estimate

|cosh(a2)− cos(a1)| ≥ |cosh(u) cos(v)+ i sinh(u) sin(v)| − 1

= (cosh2(u)− sin2(v))1/2 − 1

≥

(u2

2
− 1

)1/2
− 1.

Consequently one can find constants C > 0 and R > 0 such that (5-7) with j = 0 holds for all a ∈ Uκ

with |a|∗ > R. Again this procedure can be extended to higher-order derivatives giving an R as above but
with (5-7) valid for j = 0, 1, 2 for |a|∗ > R. Let us also fix such an R.

Let now a be in the remaining set, i.e., a ∈ Uκ with ε ≤ |a|∗ ≤ R. The closure of this set is compact
and bounded away from ∂U , where the denominator of K2 vanishes. Therefore the existence of C > 0
such that (5-7) holds also on this set follows just by continuity of ∂ j

a2 K2, j = 0, 1, 2. This finishes the
proof of the lemma. □

Lemma 5.6. Let ρ0 > 0 be chosen such that γ0 extends holomorphically to U2ρ0 with

4∥Im(γ ′

0)∥L∞(Uρ0 )
< 1. (5-8)

Then the complex extension of the initial normal velocity s0 :�0 → R,

s0(y1) := −2
∫

T

K2(1X0(y1, z1))1γ
′

0(y1, z1) dz1,

is holomorphic on Uρ0 . Moreover, the L∞(Uρ0)-norm of any finite number of derivatives of s0 can be
bounded by C0. In particular, all derivatives of s0 are given by differentiation under the integral.

Proof. By (5-8) one estimates
|Im(γ0(y1)− γ0(y1 − z1))|<

1
4 |z1|

for z1 ∈ [−π, π), z1 ̸= 0, y1 ∈ Uρ0 . Thus, by Lemma 5.5 the composition of K2 with y1 7→1X0(y1, z1)

is holomorphic for every z1 ̸= 0. Moreover, again by Lemma 5.5, for such z1, we have

|∂y1(K2(1X0(y1, z1)))| ≤ C
(

|1γ ′

0(y1, z1)|
2

|1X0(y1, z1)|2∗
+

|1γ ′′

0 (y1, z1)|

|1X0(y1, z1)|∗

)
≤ C0.

It follows that s0 is holomorphic and that ∥s ′

0∥L∞(Uρ0 )
≤ C0. The same can be shown for higher-order

derivatives. □

The following two lemmas provide careful estimates needed for the compensation of various terms
appearing in the definition of our nonlinear map F below. We are also careful with the uniform integrability
as we need to be able to neglect what happens in some small sets.

Lemma 5.7. Let ρ0 > 0 be as in Lemma 5.6, and let R > 0. There exists T = T (R,C0, α) ∈ (0, 1) such
that, for all η ∈ Bρ , ∥η∥ρ < R, ρ ∈ (0, ρ0) and t ∈ [0, T ), y ∈�ρ , z ∈�0, we have 1Xη

t (y, z) ∈ U3/8

and
t |y2 − z2| ≤ C0|1Xη

t (y, z)|∗. (5-9)
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Proof. First of all chose T ∈ (0, 1) with T αR ≤ 1. Then, omitting the (y, z) dependence in the notation,
see Section 5.2, we have

1
2 t |y2 − z2| ≤ t |y2 − z2| −

1
2 t1+αR|y2 − z2|

≤
∣∣t (y2 − z2)+

1
2 t1+α Re(η(y)− η(y1, z2))

∣∣
=
∣∣Re

(
1Xη

t,2 −1γ0 − t1s0 −
1
2 t1+α(η(y1, z2)− η(y1 − z1, z2))

)∣∣
≤ |Re(1Xη

t,2)| + (C0(1 + T )+ T 1+αR)|z1| ≤ |Re(1Xη

t,2)| + C0|z1|.

This implies (5-9).
In order to see that 1Xη

t ∈ U3/8, we use (5-8) as well as the just shown inequality to deduce

|Im(1Xη

t,2)| =
∣∣Im(1γ0 + t1s0 +

1
2 t1+α1η

)∣∣
≤
(1

4 + T C0 + T 1+αR
)
|z1| + T αRt |y2 − z2|

≤
(1

4 + T (C0 + 1)
)
|z1| + T αR|Re(1Xη

t,2)| + T αRC0|z1|.

Thus by choosing T > 0 even smaller, we have the desired inequality

|Im(1Xη

t,2)| ≤
3
8(|z1| + |1Re(Xη

t,2)|). □

Lemma 5.8. Let ρ0, R, T > 0 be as in Lemma 5.7. For η ∈ Bρ , ∥η∥ρ < R, ρ ∈ (0, ρ0) and y ∈ �ρ ,
t ∈ (0, T ), we have ∫

�0

1
|1Xη

t (y, z)|∗
dz ≤ C0|log t |. (5-10)

The integrability of |1Xη
t (y, · )|−1

∗
is uniform with respect to y ∈�0 and with respect to t considered on

any interval of the form [t0, T ) with t0 > 0.

Proof. In view of (5-9), we have∫
�0

1
|1Xη

t |∗
dz ≤ C0

∫
�0

1
|z1| + t |y2 − z2|

dz = C0

∫
T

∫ y2+2

y2−2

1
|z1| + t |z2|

dz2 dz1

≤ C0

∫ π

0

∫ 4

0

1
z1 + t z2

dz2 dz1 = C0

(
π

t
log
(

1 +
4t
π

)
+ 4 log

(
π

4t
+ 1

))
,

which is of order |log t |. Note here that t < 1 since T is assumed to be less than 1.
The uniform integrability follows from

1
|z1| + t0|z2|

∈ L1(T × (−4, 4)). □

5.4. Definition of F. Let us fix ρ0 > 0 as in Lemma 5.6. Take R = 1 and a corresponding T ∈ (0, 1)
from Lemma 5.7.

We define the application (η, t) 7→ F(η, t)= Ft(η) by setting

Ft(η)(y) := −

∫
�0

K2(1Xη
t (y, z))1∂y1 f ηt (y, z)− K2(1X0(y1, z1))1γ

′

0(y1, z1) dz

for t > 0 and F0(η)(y)= 0.
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Lemma 5.9. F when seen as a map

{η ∈ Bρ : ∥η∥ρ < 1} × [0, T )→ Bρ′

is well-defined for all 0<ρ ′<ρ<ρ0. Moreover, for η∈ Bρ , ∥η∥ρ < 1, the map [0, T )→ Bρ′ , t 7→ Ft(η),
is continuous.

Proof. Let η ∈ Bρ , ∥η∥ρ < 1 and t ∈ (0, T ). In view of Lemma 5.6, it remains to look at

F̃t(η)(y) := Ft(η)(y)+ 2s0(y1)= −

∫
�0

K2(1Xη
t (y, z))1∂y1 f ηt (y, z) dz.

For y ∈�ρ and z ∈�0 with z1 ̸= 0, one computes

∂y1(K2(1Xη
t )1∂y1 f ηt )= ∂a2 K2(1Xη

t )(1∂y1 f ηt )
2
+ K2(1Xη

t )1∂
2
y1

f ηt , (5-11)

∂y2(K2(1Xη
t )1∂y1 f ηt )= ∂a2 K2(1Xη

t )
(
t +

1
2 t1+α∂y2η(y)

)
1∂y1 f ηt + K2(1Xη

t )
1
2 t1+α∂y2∂y1η(y), (5-12)

where, as usual, we have omitted the (y, z) dependence in the 1-notation.
In order to get uniform integrability, we use (5-9) to estimate

|1∂ j
y1

f ηt | ≤ C0|z1| + ∥∂ j+1
y1

η∥L∞(�ρ′ )|z1| + ∥∂y2∂
j
y1
η∥L∞(�ρ′ )t |y2 − z2|

≤ C0(1 + ∥∂ j
y1

∇yη∥L∞(�ρ′ ))|1Xη
t |∗ (5-13)

for y ∈�ρ′ , j = 0, 1, 2. Now (5-13) and Lemmas 5.5 and 5.7 imply

|K2(1Xη
t )1∂y1 f ηt | ≤ C0(1 + ∥∂y1∇yη∥L∞(�ρ′ )). (5-14)

As a consequence F̃t , and thus Ft , maps at least into L∞(�ρ′). Moreover, combining similarly (5-7),
(5-13) for j = 1, 2, and (5-9) to estimate (5-11), (5-12), one sees that

|∂y1(K2(1Xη
t )1∂y1 f ηt )| ≤ C0(1 + ∥∂y1∇yη∥

2
L∞(�ρ′ ) + ∥∂2

y1
∇yη∥L∞(�ρ′ )) (5-15)

and, recalling t < 1, |∂y2η(y)|< 1, that

|∂y2(K2(1Xη
t )1∂y1 f ηt )| ≤ C0

t
|1Xη

t |∗
(1 + ∥∂y1∇yη∥L∞(�ρ′ )). (5-16)

It follows that the complex derivative ∂y1 Ft(η) exists and is bounded on �ρ′ . Moreover, in view of
Lemma 5.8, the same is true for the (real) derivative ∂y2 Ft(η).

Next we turn to the required uniform continuity of ∂y2 Ft(η) on �ρ′ . First of all observe that the
corresponding integrant (5-12) as a function of (z, y) ∈ �0 ×�ρ′ is uniformly continuous on subsets
which have their z1-component bounded away from 0. Here one uses the Cauchy integral formula and
the assumed uniform continuity of ∂y2η on the larger set �ρ in order to conclude the uniform continuity
of ∂y2∂y1η(y)= ∂y1∂y2η(y). This together with the uniform integrability of the majorant given in (5-16)
via Lemma 5.8 implies that ∂y2 Ft(η) is uniformly continuous on �ρ′ ; see also the argument below for
continuity in time.
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Moreover, in a similar way as above for (5-14)–(5-16), one can check that, for any y ∈�ρ′ , z1 ̸= 0,

|∂y1∂y2(K2(1Xη
t )1∂y1 f ηt )| ≤

C0t
|1Xη

t |∗
(1 + ∥∂y1∇yη∥

2
L∞(�ρ′ ) + ∥∂2

y1
∇yη∥L∞(�ρ′ )),

which implies that also ∂y2 Ft(η) is complex-differentiable in y1.
In order to conclude Ft(η) ∈ Bρ′ , it therefore only remains to observe that Ft(y) ∈ R for y ∈�0.
It remains to prove the continuity of [0, T ) ∋ t 7→ Ft(η) ∈ Bρ′ . Let t, t0 ∈ (0, T ) and take δ > 0

sufficiently small. For z ∈�0 with |z1|> δ as well as y ∈�ρ′ , we have

|K2(1Xη
t )1∂y1 f ηt − K2(1Xη

t0)1∂y1 f ηt0 | ≤
C0

δ2 |t − t0|

due to Lemmas 5.5 and 5.7. On the set {z ∈�0 : |z1|< δ}, one uses the uniform majorant given in (5-14)
to conclude the continuity of (0, T ) ∋ t 7→ Ft(η) with respect to ∥ · ∥L∞(�ρ′ ).

For the corresponding continuity of ∂y1 Ft(η), ∂y2 Ft(η) with respect to ∥ · ∥L∞(�ρ′ ), one uses a similar
combination of Lipschitz continuity on |z1|> δ and uniform integrability on the strip |z1|< δ induced by
(5-15), (5-16) and Lemma 5.8.

Finally, continuity at t0 = 0 can be shown in the exact same way by noting that, compared to Lemma 5.8,
the additional factor t in (5-16) for ∂y2 Ft(η) causes t |1Xη

t |
−1
∗

to be uniformly integrable with respect to t
taken from the open interval t ∈ (0, T ). □

Remark 5.10. The continuity of F as stated in (i) of Theorem 5.1 will follow from Lemma 5.9 when
combined with the Lipschitz property of Lemma 5.11 below.

5.5. Contraction property. Next we will verify (ii) of Theorem 5.1, with b(t)= C0t1+α
|log t |. Let ρ0,

R, T > 0 be as in Section 5.4. Recall that R = 1 and T = T (R,C0, α) < 1. Without loss of generality
we also assume ρ0 < 1.

Lemma 5.11. For all 0< ρ ′ < ρ < ρ0, η, ζ ∈ Bρ , ∥η∥ρ < 1, ∥ζ∥ρ < 1 and t ∈ [0, T ), we have

∥Ft(η)− Ft(ζ )∥ρ′ ≤
C0t1+α

|log t |
ρ− ρ ′

∥η− ζ∥ρ .

For the proof of Lemma 5.11 we first of all state some estimates implied by the lemmas in Section 5.3.

Lemma 5.12. Let 0< ρ ′ < ρ < ρ0 and η, ξ, ζ ∈ Bρ with ∥η∥ρ , ∥ξ∥ρ , ∥ζ∥ρ < 1. For y ∈�ρ′ , z ∈�0,
t ∈ [0, T ), we have

t |1ζ(y, z)| ≤ C0∥ζ∥ρ′ |1X ξ
t (y, z)|∗, (5-17)

t |1∂y1ζ(y, z)| ≤
C0

ρ− ρ ′
∥ζ∥ρ |1X ξ

t (y, z)|∗, (5-18)

|1∂y1 f ηt (y, z)| ≤
C0

ρ− ρ ′
|1X ξ

t (y, z)|∗, (5-19)

|1ζ(y, z)1∂y1 f ηt (y, z)| ≤ C0∥ζ∥ρ′ |1X ξ
t (y, z)|∗, (5-20)

|1ζ(y, z)1∂2
y1

f ηt (y, z)| ≤
C0

ρ− ρ ′
∥ζ∥ρ′ |1X ξ

t (y, z)|∗. (5-21)
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Proof. By (5-9) in Lemma 5.7, one deduces

t |1ζ | ≤ ∥∇yζ∥L∞(�ρ′ )(|z1| + t |y2 − z2|)≤ C0∥ζ∥ρ′ |1X ξ
t (y, z)|∗.

This shows (5-17). Inequality (5-18) is obtained in the same way by additionally applying Cauchy’s
Lemma 5.3.

Next, (5-19) follows from

|1∂y1 f ηt | ≤ C0|z1| + t1+α
|1∂y1η|

and (5-18), while (5-20) is a consequence of

|1ζ1∂y1 f ηt | ≤ C0∥ζ∥L∞(�ρ′ )|z1| + t1+α
|1ζ |∥∂y1η∥L∞(�ρ′ )

and (5-17).
Finally, (5-21) is achieved in the same way as (5-20) but with an additional use of Lemma 5.3. □

Proof of Lemma 5.11. Let 0< ρ ′ < ρ < ρ0 and η, ζ ∈ Bρ be as stated. For λ ∈ [0, 1], define

ξλ := λη+ (1 − λ)ζ.

Then ξλ ∈ Bρ and ∥ξλ∥ρ < 1.
Now for y ∈�ρ′ we write

|Ft(η)(y)− Ft(ζ )(y)|

≤

∫
�0

|(K2(1Xη
t )− K2(1X ζ

t ))1∂y1 f ηt | dz +

∫
�0

|K2(1X ζ
t )(1∂y1 f ηt −1∂y1 f ζt )| dz. (5-22)

In order to estimate the first term, we first use the fundamental theorem of calculus to write∫
�0

|K2(1Xη
t )− K2(1X ζ

t )||1∂y1 f ηt | dz =

∫
�0

∣∣∣∣∫ 1

0
∂a2 K2(1X ξλ

t )
1
2 t1+α(1η−1ζ) dλ

∣∣∣∣|1∂y1 f ηt | dz.

Now, |1∂y1 f ηt | is dealt with by (5-19) with ξ = ξλ, Lemma 5.5 and its equation (5-7) are used to deal
with ∂a2 K2(1X ξλ

t ) and by definition of ∥ · ∥ρ′ we arrive at the estimate∫
�0

|K2(1Xη
t )− K2(1X ζ

t )||1∂y1 f ηt | dz

=

∫
�0

∣∣∣∣∫ 1

0
∂a2 K2(1X ξλ

t )
1
2 t1+α(1η−1ζ) dλ

∣∣∣∣|1∂y1 f ηt | dz

≤ C0t1+α
∥η− ζ∥ρ′

∫
�0

∫ 1

0

1

|1X ξλ
t |2

∗

|1X ξλ
t |∗

ρ− ρ ′
dλ dz ≤

C0t1+α
|log t |

ρ− ρ ′
∥η− ζ∥ρ,

where the last inequality is a direct application of Lemma 5.8. Again by Lemmas 5.5 and 5.8, the second
term in (5-22) is bounded by∫
�0

|K2(1X ζ
t )(1∂y1 f ηt −1∂y1 f ζt )| dz ≤C

∫
�0

1

|1X ζ
t |∗

t1+α
|1∂y1η−1∂y1ζ | dz ≤C0t1+α

|log t |∥η−ζ∥ρ .
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Thus,

∥Ft(η)− Ft(ζ )∥L∞(�ρ′ ) ≤
C0t1+α

|log t |
ρ− ρ ′

∥η− ζ∥ρ .

Let us now turn to the corresponding inequality with ∂y1 . In a similar way as before we write the
decomposition

∂y1 Ft(η)(y)− ∂y1 Ft(ζ )(y)= −

∫
�0

A1 + A2 + A3 + A4 dz,

where
A1 := (∂a2 K2(1Xη

t )− ∂a2 K2(1X ζ
t ))(1∂y1 f ηt )

2,

A2 := ∂a2 K2(1X ζ
t )((1∂y1 f ηt )

2
− (1∂y1 f ζt )

2),

A3 := (K2(1Xη
t )− K2(1X ζ

t ))1∂
2
y1

f ηt ,

A4 := K2(1X ζ
t )(1∂

2
y1

f ηt −1∂2
y1

f ζt ),

see (5-11). Regarding A1, we use (5-19) and (5-20) to deduce∫
�0

|A1| dz ≤ C
∫
�0

∫ 1

0

1

|1X ξλ
t |3

∗

t1+α
|1(η− ζ )1∂y1 f ηt ||1∂y1 f ηt | dz dλ

≤
C0t1+α

ρ− ρ ′
∥η− ζ∥ρ′

∫ 1

0

∫
�0

1

|1X ξλ
t |∗

dz dλ≤
C0t1+α

|log t |
ρ− ρ ′

∥η− ζ∥ρ .

By making use of (5-21) instead of (5-20), one can bound
∫
�0

|A3| dz in a similar way. We omit the details.
Next for A2, inequality (5-19) implies∫
�0

|A2| dz ≤ C
∫
�0

1

|1X ζ
t |2

∗

|1∂y1 f ηt +1∂y1 f ζt |t1+α
|1∂y1η−1∂y1ζ | dz ≤

C0t1+α
|log t |

ρ− ρ ′
∥η− ζ∥ρ .

Finally, the estimate for
∫
�0

|A4| dz is a straightforward consequence of Lemmas 5.5, 5.7, 5.8 and Cauchy’s
Lemma 5.3.

Summarizing, we have shown

∥∂y1 Ft(η)− ∂y1 Ft(ζ )∥L∞(�ρ′ ) ≤
C0t1+α

|log t |
ρ− ρ ′

∥η− ζ∥ρ .

It therefore remains to check ∂y2 . Again we write the decomposition

∂y2 Ft(η)(y)− ∂y2 Ft(ζ )(y)= −

∫
�0

B1 + B2 + B3 + B4 dz,

where, see (5-12),

B1 := (∂a2 K2(1Xη
t )− ∂a2 K2(1X ζ

t ))
(
t +

1
2 t1+α∂y2η(y)

)
1∂y1 f ηt ,

B2 := ∂a2 K2(1X ζ
t )
[(

t +
1
2 t1+α∂y2η(y)

)
1∂y1 f ηt −

(
t +

1
2 t1+α∂y2ζ(y)

)
1∂y1 f ζt

]
,

B3 := (K2(1Xη
t )− K2(1X ζ

t ))
1
2 t1+α∂y2∂y1η(y),

B4 := K2(1X ζ
t )

1
2 t1+α(∂y2∂y1η(y)− ∂y2∂y1ζ(y)).
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Since t < 1 and |∂y2η(y)|< 1, we get∫
�0

|B1| dz ≤ Ct1+α

∫ 1

0

∫
�0

1

|1X ξλ
t |3

∗

t |1η−1ζ ||1∂y1 f ηt | dz dλ

≤
C0t1+α

|log t |
ρ− ρ ′

∥η− ζ∥ρ

by (5-17) and (5-19).
Moreover,∫
�0

|B2| dz ≤ C
∫
�0

1

|1X ζ
t |2

∗

[
t1+α

|∂y2η(y)− ∂y2ζ(y)||1∂y1 f ηt |

+ (t + t1+α
|∂y2ζ(y)|)t

1+α
|1∂y1η−1∂y1ζ |

]
dz

≤
C0t1+α

|log t |
ρ− ρ ′

∥η− ζ∥ρ

by use of (5-19) in the first term as well as (5-18) in the second.
The estimate for

∫
�0

|B3| dz follows in analogy to
∫
�0

|B1| dz utilizing (5-17) and Cauchy’s Lemma 5.3,
whereas the estimate for

∫
�0

|B4| dz relies solely on Lemma 5.3.
This finishes the proof of Lemma 5.11. □

5.6. The affine term. In order to complete the list of ingredients of Theorem 5.1, we investigate Ft(0). As
usual, we consider ρ0 ∈ (0, 1) to be fixed according to Lemma 5.6 and R = 1, T = T (R,C0, α) ∈ (0, 1)
given by Lemma 5.7.

Lemma 5.13. For any ρ ∈ (0, ρ0), t ∈ (0, T ), we have

∥Ft(0)∥ρ ≤ C0t |log t |.

Proof. Let y ∈�ρ . Recall that

1X0
t =

(
z1

1γ0 + t1s0 + t (y2 − z2)

)
=1X0 +

(
0

t1s0 + t (y2 − z2)

)
, z ∈�0.

In view of Lemmas 5.5, 5.7, 5.8 and the boundedness of �0, we have

|Ft(0)(y)| ≤

∫
�0

|K2(1X0
t )− K2(1X0)||1γ

′

0| + t |K2(1X0
t )|A |1s ′

0| dz

≤

∫ 1

0

∫
�0

|∂a2 K2(1X0
λt)t (y2 − z2 +1s0)||1γ

′

0| dz dλ+ C0t

≤ C0t
(

1 +

∫ 1

0

∫
�0

1
|1X0

λt |∗
dz dλ

)
≤ C0t

(
1 +

∫ 1

0
|log(λt)| dλ

)
≤ C0t |log t |.
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Next we estimate ∂y1 Ft(0). One has

|∂y1 Ft(0)(y)| ≤

∫
�0

|∂a2 K2(1X0
t )− ∂a2 K2(1X0)||1γ

′

0|
2
+ |K2(1X0

t )|t |1s ′′

0 |

+ |K2(1X0
t )− K2(1X0)||1γ

′′

0 | + |∂a2 K2(1X0
t )|(2t1γ ′

01s ′

0 + t2
|1s ′

0|
2) dz.

The terms appearing on the right-hand side can be dealt with in a similar way as above.
Finally, we also state

|∂y2 Ft(0)(y)| ≤

∫
�0

|∂a2 K2(1X0
t )|t |1γ

′

0 + t1s ′

0| dz ≤ C0t |log t |.

This finishes the proof of Lemma 5.13. □

Remark 5.14. Note that Lemma 5.13 implies

1
t1+α

∫ t

0
∥Fs(0)∥ρ ds ≤ C0t1−α

|log t | ≤
C0

ρ0 − ρ
t1−α

|log t |;

i.e., Theorem 5.1 (iii) holds with a(t)= t1+α, c(t)= C0t1−α
|log t |.

5.7. Conclusion and additional remarks. In Sections 5.1–5.6 we have verified all the conditions of
Theorem 5.1. As a consequence we deduce the following statement.

Proposition 5.15. Let ρ0 > 0 be as in Lemma 5.6. There exists ā = ā(C0) > 0, T = T (C0, α) > 0 and a
unique function t 7→ ηt with the properties that, for every ρ ∈ (0, ρ0), the map

Iρ := {t ∈ [0, T ) : C0t1−α
|log t |< ā(ρ0 − ρ)} ∋ t 7→ ηt ∈ Bρ

is continuous with ∥ηt∥ρ < 1, t ∈ Iρ , and such that, for all y ∈�ρ , t ∈ Iρ , we have

η0(y)= 0, ηt(y)=
1

t1+α

∫ t

0
Fs(ηs)(y) ds. (5-23)

We finish the investigation of the fixed-point problem (4-22) with some accompanying remarks
concerning properties of the solution ηt given by Proposition 5.15.

The first addresses regularity. In contrast to the analyticity of ηt in y1, we only know that ηt is
continuously differentiable in y2. Using (5-23) it seems possible to upgrade the regularity with respect
to y2. However, since Fs(ηs)(y) involves the integration over the finite interval (−2, 2) with respect to z2,
in contrast to T for the integration in z1, the maximal regularity for ηt(y1, · ) : [−2, 2] → C is expected to
be finite. In any case, since a higher regularity of ηt with respect to y2 would only improve the regularity
of our subsolution inside the mixing zone and not across its boundary, we have not pursued this topic any
further.

Next we turn to the role of the parameter α. Suppose that we set up problem (4-22) with respect to two
different choices 0< α < β < 1 leading to two different right-hand sides involving Fαt (η), Fβt (η). Our
previous analysis gives two solutions ηαt , ηβt with corresponding intervals I αρ ⊂ [0, T α), I βρ ⊂ [0, T β),
ρ ∈ (0, ρ0). Note that the intervals I αρ , I βρ are defined with the same ā and recall that T α, T β

∈ (0, 1).
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Lemma 5.16. We have tβ−αη
β
t = ηαt on [0,min{T α, T β

}).

Proof. Define Jαρ := I αρ ∩ [0, T β) and Jβρ := I βρ ∩ [0, T α). Then Jβρ ⊂ Jαρ due to the fact that β > α and
t < 1. Both functions tβ−αη

β
t , ηαt are continuous maps from Jβρ into the unit ball of Bρ , ρ ∈ (0, ρ0), and

they both vanish at t = 0. Moreover, it is easy to check that

tβ−αη
β
t (y)= tβ−α 1

t1+β

∫ t

0
Fβs (η

β
s )(y) ds =

1
t1+α

∫ t

0
Fαs (s

β−αηβs )(y) ds.

Thus Proposition 5.15 implies tβ−αη
β
t = ηαt as long as both are defined. □

Both solutions tβ−αη
β
t , ηαt of (5-23) then extend uniquely to a common maximal solution of (5-23)

enjoying the properties of Proposition 5.15. Moreover, Lemma 5.16 shows that t1+αηαt is independent of
the considered α ∈ (0, 1). Hence the induced function f (t, y), defined in Section 6 below, is independent
of α ∈ (0, 1).

Finally we remark that, for the choice α = 1 in ansatz (4-20), a more careful analysis would have been
required. In that case the initial value η0(y) is not expected to be given by 0 and the estimate given in
Lemma 5.13 does not even lead to boundedness of t−2

∫ t
0 ∥Fs(0)∥ρ ds. However, since this analysis has

not been needed in order to prove existence of a Lipschitz solution of (3-1), we leave the case α = 1 as a
possible future improvement.

6. Justification of ansatzes

We will now verify that η provided by Proposition 5.15 indeed induces — when undoing the transformations
stated in Section 4 — a solution of the macroscopic IPM system (3-1).

Given η from Proposition 5.15, we first of all define f : [0, T )×�0 → R,

f (t, y) := f ηt
t (y)= γ0(y1)+ ts0(y1)+

1
2 t1+αηt(y),

where T = T (C0, α) > 0 can be taken as the endpoint of the interval Iρ0/2 for instance. Also recall
Lemma 5.4 if needed for the extension to the closure of �0.

Lemma 6.1. We have f ∈ C1([0, T ); C1(�0)), with

∥∂y2 f (t, · )∥L∞(�0) ≤
1
2 t1+α, t ∈ (0, T ). (6-1)

Moreover, the functions f (t, · , y2), ∂t f (t, · , y2), ∂y2 f (t, · , y2), t ∈ [0, T ), y2 ∈ [−2, 2], are real
analytic, and f satisfies the initial value problem f (0, y)= γ0(y1),

∂t f (t, y)= −
1
2

∫
�0

K2(1Xηt
t (y, z))(∂y1 f (t, y)− ∂y1 f (t, y1 − z1, z2)) dz (6-2)

for t ∈ [0, T ), y ∈�0.

Proof. As a direct consequence of Lemma 5.9 and Proposition 5.15, one sees that f belongs to
C1([0, T ); Bρ0/2) and satisfies (6-1), (6-2) for t ∈ [0, T ), y ∈ �ρ0/2. The statement follows from the
definition of the spaces Bρ and Lemma 5.4. □
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We are now able to prove our main result.

Proof of Theorem 3.2. Let f be as in Lemma 6.1. Define the open space-time set

U := {(t, x) ∈ (0, T )× T × R : −2t + f (t, x1,−2) < x2 < 2t + f (t, x1, 2)}

as well as the slices

Ut := {x ∈ T × R : (t, x) ∈ U }, t ∈ (0, T ).

As a consequence of (6-1), the maps X t :�0 → Ut ,

X t(y) :=

(
y1

t y2 + f (t, y)

)
, t ∈ (0, T ),

are C1 diffeomorphisms with the property that the joint maps (0, T )×�0 → T × R, (t, y) 7→ X t(y), and
U → T × R, (t, x) 7→ X−1

t (x), are also of class C1.
In view of (4-11), we thus can indeed define the density ρ : [0, T )× T × R → R by setting

ρ(t, x) :=


1, x2 ≥ 2t + f (t, x1, 2),
1
2(X

−1
t (x))2, x ∈ Ut ,

−1, x2 ≤ −2t + f (t, x1,−2),

for t ∈ (0, T ) and ρ(0, x) := ρ0(x). Here (X−1
t (x))2 denotes the second component of X−1

t (x). Observe
that ρ is continuous except at points (0, x1, γ0(x1)), x1 ∈ T, and piecewise C1 with the exceptional set
being ∂U ⊂ [0, T )× T × R. Moreover, as long as t is positive, ρ(t, · ) is Lipschitz continuous and there
exists a constant C0 > 0 depending on the initial data such that

|∇ρ(t, x)| ≤
C0

t
1Ut (x) (6-3)

for all (t, x) /∈ ∂U .
Moreover, standard elliptic estimates show that v defined through (4-3), (4-7) and (4-8) is the unique

L2 solution of the last two equations of (3-1).
The stated log-Lipschitz continuity of v(t, · ), t > 0, is a consequence of the Biot–Savart operator acting

on a compactly supported L∞-vorticity; see [Marchioro and Pulvirenti 1994]. In addition, it is also easy to
see that v : [0, T )×T×R → R2 is continuous except at the one-dimensional set {(0, x1, γ0(x1)) : x1 ∈ T}.

Hence we have shown properties (i), (ii) of Theorem 3.2. Moreover, observe that property (iii) holds
by construction, with γt given by

γt(x1, h) := t2h + f (t, x1, 2h), x1 ∈ T, h ∈ [−1, 1].

It thus remains to show that the first equation of (3-1) and the entropy balances (3-4) are satisfied.
The regularity of ρ implies∫

T×R

ρ(t, · )v(t, · ) · ∇ϕ dx = −

∫
T×R

v(t, · ) · ∇ρ(t, · )ϕ dx
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for all t ∈ (0, T ), ϕ ∈ C∞(T × R). It follows that (ρ, v) is a solution in the sense of Definition 3.1 if and
only if the transport form

∂tρ+ v · ∇ρ+ 2ρ∂x2ρ = 0 (6-4)

of the equation is satisfied pointwise in (0, T )× T × R \ ∂U .
At points (t, x) /∈ U , equation (6-4) trivially holds. Inside U one can check that the computations

in Section 4.3 are possible showing that (6-4) is equivalent to (4-15). Note that in Section 4.3 we have
formally assumed that the X t are global diffeomorphisms mapping T × R to itself, but as the reader can
easily see, it is enough to have transformations from �0 to the corresponding Ut .

Observing also that the computations in Section 4.4 are legal in our scenario, one sees that (6-4) on U

is indeed equivalent to (6-2).
Finally, let η : R → R be an arbitrary Lipschitz continuous function, and define the function Q : R → R,

Q(u) :=

∫ u

0
2η′(s)s ds,

which is also Lipschitz continuous when restricted to any compact interval of R. Consequently we have
enough regularity to deduce (3-4) by multiplying (6-4) with η′(ρ(t, x)) and applying the chain rule. This
finishes the proof of Theorem 3.2. □

Appendix A: The abstract Cauchy–Kovalevskaya theorem

Proof of Theorem 5.1. As indicated in Section 5, the proof of Theorem 5.1 is a slight modification of the
original proof in [Nishida 1977].

Let a0 > 0 and set ak+1 := ak(1 − (k + 2)−2), k = 0, 1, . . . . Then

a := lim
k→∞

ak > 0.

For ρ ∈ (0, ρ0) and k = 0, 1, . . . , we define the intervals

Ik,ρ := {t ∈ [0, T ) : c(t) < ak(ρ0 − ρ)}.

We also define for a function u with u : Ik,ρ → Bρ continuous for any ρ ∈ (0, ρ0) the norm

Mk[u] := sup
{
∥u(t)∥ρ

(
ak(ρ0 − ρ)

c(t)
− 1
)

: ρ ∈ (0, ρ0), t ∈ Ik,ρ

}
.

Note that, for c(t)= t , one recovers Nishida’s setup. Now one recursively constructs the sequence

u0(t) := 0, uk+1(t) :=

{ 1
a(t)

∫ t
0 F(uk(s), s) ds, t ∈ (0, T ),

0, t = 0.

We claim that, for a0 chosen sufficiently small, the recursion is well-defined, that each uk : Ik,ρ → Bρ
is continuous with ∥uk(t)∥ρ < 1

2 R for t ∈ Ik,ρ , ρ ∈ (0, ρ0), and that

λk−1 := Mk[uk − uk−1] ≤ (4K a0)
k−1a0, (A-1)

where K > 0 is the constant appearing in (5-2).
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We first of all note that u1(t) exists and satisfies the stated continuity condition due to assumptions (i)
and (iii). Moreover, for t ∈ I0,ρ , we have ∥u1(t)∥ρ < a0. Thus, we pick a0 at least as small as 1

2 R. One
also easily checks that λ0 ≤ a0.

From now on we proceed by induction. Assume that the recursion with the above stated properties
is possible up to some k ≥ 1. Then it is also clear that uk+1 : Ik+1,ρ → Bρ is well-defined as well as
continuous on the open interval Ik+1,ρ \ {0} for any ρ ∈ (0, ρ0).

If we assume for now that (A-1) also holds for λk , then, for t ∈ Ik+1,ρ , we obtain in analogy to [Nishida
1977] the estimate

∥uk+1(t)∥ρ ≤

k∑
j=0

λ j

(
a j (ρ0 − ρ)

c(t)
− 1
)−1

≤

k∑
j=0

λ j

(
a j

a j+1
− 1
)−1

≤ a0

k∑
j=0

(4K a0)
j ( j + 2)2 < 1

2 R

by choice of a0 independent of k. Moreover, the first inequality in the above line of estimates applied at
times t > 0 with c(t) < 1

2a(ρ0 − ρ) also gives

∥uk+1(t)∥ρ ≤ c(t)
k∑

j=0

λ j

a j (ρ0 − ρ)− c(t)
≤

2a0c(t)
a(ρ0 − ρ)

k∑
j=0

(4K a0)
j ,

which shows that uk+1 is also continuous with respect to ∥ · ∥ρ at t = 0.
To finish the induction it thus remains to show (A-1) for λk . The clever move is to use the contraction

property with a different Banach space at each time τ inside the integral. Namely, exactly as in [Nishida
1977, p. 631], the contraction property of F (Theorem 5.1 (ii)) with

ρ(τ) :=
1
2

(
ρ0 −

c(τ )
ak

+ ρ

)
and the definition of λk−1 lead to

∥uk+1(t)− uk(t)∥ρ ≤
4λk−1ak

a(t)

∫ t

0

b(τ )c(τ )
(ak(ρ0 − ρ)− c(τ ))2

dτ

for t ∈ Ik,ρ . At this point we use (5-2) and a change of variables to obtain

∥uk+1(t)− uk(t)∥ρ ≤ 4λk−1ak K c(t)
∫ c(t)

0

1
(ak(ρ0 − ρ)− ξ)2

dξ

from where one can conclude λk ≤ 4Kλk−1a0 by following [Nishida 1977] again.
Now Theorem 5.1 follows as in [Nirenberg 1972; Nishida 1977]. □

Appendix B: More on Otto’s relaxation

We here add some more details regarding the fifth step of Otto’s relaxation [1999] in the general nonflat
case, which has only been sketched in Section 2.5.1.



2282 ÁNGEL CASTRO, DANIEL FARACO AND BJÖRN GEBHARD

Before doing that we will quickly convince ourselves that the setting in [Otto 1999] is indeed equivalent
to the formulation of IPM considered in our paper. Otto considers the equations

∂t s + u · ∇s = 0,

∇ · u = 0,

u = −∇ p + se2,

(B-1)

which correspond with [Otto 1999, (1.1)–(1.2)] and the first equation on page 875 of [Otto 1999] with
λ= 1. The parameter λ in that paper is the quotient of the mobilities. In our case, we have taken both
mobilities equal to one and then λ= 1. More importantly, in that paper,

s = {0, 1}, (B-2)

however
ρ = {−1, 1} (B-3)

in our case.
Let us see how we can go from (1-1), (B-3) to (B-1)–(B-2). Firstly we define

s̄ =
1
2(1 − ρ), ρ = 1 − 2s̄,

and thus
∂t s̄ + v · ∇ s̄ = 0,

∇ · v = 0,

v = −∇(p + x2)+ 2s̄e2,

with
s̄ = {0, 1}.

We define ū =
1
2v and 5=

1
2(p + x2), which yields

∂t s̄ + 2ū · ∇ s̄ = 0,

∇ · ū = 0,

ū = −∇5+ s̄e2.

Finally we take s(x, t)= s̄
(
x, 1

2 t
)
, u
(
x, 1

2 t
)
= ū

(
x, 1

2 t
)

and 5(x, t)=5
(
x, 1

2 t
)
; thus

∂t s + u · ∇s = 0,

∇ · u = 0,

u = −∇5+ se2,

with s = {0, 1}, which agrees with (B-1)–(B-2) (up to a relabeling of the pressure). Therefore, if we show
that (B-1)–(B-2) relaxes to

∂t s + u · ∇s + ∂x2s − 2s∂x2s = 0,

∇ · u = 0,

u = −∇5+ se2,

(B-4)
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with s ∈ [0, 1], by undoing the previous transformations, we see that (1-1), (B-3) relaxes to

∂tρ+ v · ∇ρ+ 2ρ∂x2ρ = 0,

∇ · v = 0,

v = −∇ p − ρe2,

(B-5)

with ρ ∈ [−1, 1].
Next, we begin our formal discussion with the outcome of the fourth step of Otto, after which there

exists for each h > 0 a sequence of “coarse-grained” functions {θ k
}

N (h)
k=0 that are characterized by the

following JKO scheme (which we understand as a minimizing movements scheme with respect to the
Wasserstein distance):
θ (k+1) is the minimizer in K of

1
2 dist2(θ (k), θ)+ 1

2 dist2(1 − θ (k), 1 − θ)− h
∫
θ(x)x2, (B-6)

where the set K consists of measurable θ taking values in [0, 1] and such that
∫
θ =

∫
s(x, 0), and

dist2(θ0, θ1) is the L2-Wasserstein distance

dist2(θ0, θ1)= inf
8∈I (θ0,θ1)

∫
θ0(x)|8(x)− x |

2 dx,

with

I (θ0, θ1)=

{
8 :

∫
θ1(y)ζ(y) dy =

∫
θ0(x)ζ(8(x)) dx ∀ζ ∈ C0

0

}
.

In the definition of I (θ0, θ1), we have been deliberately imprecise and defer the reader to [Otto 1999] for
the proper definition. Even more, in order to make the exposition clearer, in the following we will assume
that the minimizer exists, that it is smooth and that it satisfies pointwise the corresponding Monge–Ampere
equation; i.e.,

I (θ0, θ1)= {8 diffeomorphism : (θ1 ◦8)(x)J8(x)= θ0(x)}.

Here J8 denotes the Jacobian determinant det D8.
As explained in Section 2.5.1, our goal is to show, on a formal level, that the limit as h → 0 — we will

assume that it exists in the first place — of the functions

θh(x, t) := θ (k)(x), t ∈ [kh, (k + 1)h)),

is characterized by system (B-4).
We begin with the Euler–Lagrange equation of (B-6). For a given θ0 ∈ K , let θ1 be the minimizer in K

of

F[θ ] ≡
1
2 dist2(θ0, θ)+

1
2 dist2(1 − θ0, 1 − θ)− h

∫
θ(x)x2.

Then we have that

Dθ F[θ1]ψ =
d

dτ
F[θ1 + τψ]

∣∣∣
τ=0

= 0,
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where we simply assume that θ1 + τψ ∈ K ; i.e., we in particular consider ψ with
∫
ψ = 0. In order to

compute Dθ F[θ1]ψ , we first look at Dθ dist2(θ0, θ1)ψ . Let 8τ0 ∈ I (θ0, θ1 + τψ) be such that

dist2(θ0, θ1 + τψ)= inf
8∈I (θ0,θ1+τψ)

∫
θ0(x)|8(x)− x |

2 dx =

∫
θ0(x)|8τ0(x)− x |

2 dx .

We define

w ◦80
0 =

d8τ0
dτ

∣∣∣∣
τ=0
,

and thus
1
2 Dθ dist2(θ0, θ1)ψ =

∫
θ0(x)(80

0(x)− x) · (w ◦80
0)(x) dx . (B-7)

We next compute for which w we have 8τ0 ∈ I (θ0, θ1 + τψ). We have

J8τ0 (x)((θ1 + τψ) ◦8τ0)(x)= θ0(x). (B-8)

Taking a τ -derivative in (B-8) and evaluating at τ = 0 yields

J80
0

divw ◦80
0θ1 ◦80

0 + J80
0
w ◦80

0 · ∇θ1 ◦80
0 + J80

0
ψ ◦80

0 = 0,

which reduces to
div(wθ1)+ψ = 0. (B-9)

In addition, 80
0 minimizes ∫

θ0(x)|8(x)− x |
2 dx

in I (θ0, θ1). So, for every family of flows (80
δ) ∈ I (θ0, θ1), we have that

d
dδ

∫
θ0(x)|80

δ(x)− x |
2 dx

∣∣∣
δ=0

= 0.

That is, ∫
θ0(x)(80

0(x)− x) · (w ◦80
0)(x) dx = 0,

where if 8δ is the flow of a vector field w,

w ◦80
0 =

d80
δ

dδ

∣∣∣∣
δ=0
, (B-10)

div(θ1w)= 0. (B-11)

The condition (B-11), equivalent to 8δ ∈ I (θ0, θ1), is deduced by differentiating

J80
δ
(x)(θ1 ◦80

δ)(x)= θ0(x) (B-12)

with respect to δ.
Therefore, we have

0 =

∫
θ0(x)(80

0(x)− x) · (w ◦80
0)(x) dx =

∫
θ1(x)w(x) · (x − (80

0)
−1(x)) dx,
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where in the last equality we have used the definition of I (θ0, θ1). Since w is an arbitrary vector field,
Hodge decomposition implies that

x − (80
0)

−1(x)= ∇a(x) (B-13)

for some function a. In order to avoid technicalities, we here have implicitly assumed that θ1 does not
vanish.

From (B-7), (B-9) and (B-13), we see that

1
2 Dθ dist2(θ0, θ1)ψ =

∫
θ1(x)w(x) · ∇a(x) dx = −

∫
∇ · (θ1w)(x)a(x) dx =

∫
ψ(x)a(x).

We have obtained that

1
2 Dθ dist2(θ0, θ1)ψ =

∫
ψ(x)a(x)80

0(x)= x + (∇a ◦80
0)(x).

Similar computations yield

1
2 Dθ dist2(1 − θ0, 1 − θ1)ψ = −

∫
ψ(x)ā(x)80

0(x)= x + (∇ā ◦80
0)(x),

and putting everything together we arrive at

Dθ F[θ1]ψ =

∫
(a(x)− ā(x)− hx2)ψ(x) dx = 0 (B-14)

for all ψ with
∫
ψ = 0. Moreover, since 80

0 ∈ I (θ0, θ1) and 80
0 ∈ I (1 − θ0, 1 − θ1),

θ1(x)= J(80
0)

−1(x)θ0(x − ∇a(x)), (B-15)

(1 − θ1)(x)= J(80
0)

−1(x)(1 − θ0)(x − ∇ā(x)). (B-16)

Note that so far we have omitted the h-dependence of the functions a, ā, 80
0, 80

0 in our notation. We
continue doing so when introducing p = a/h, p̄ = ā/h which, up to a constant, satisfy

p − p̄ = x2

by (B-14). Note that the constant is irrelevant since only derivatives of p and p̄ will play a role. To obtain
a formal limit as h → 0, we will assume in the following that the h-dependent functions p and p̄ have a
well-defined C2 limit, which will again be denoted by p and p̄.

Now we take said limit. On one hand we have from (B-15) that

θ1(x)− θ0(x)
h

=

J(80
0)

−1(x)θ0(x − h∇ p(x))− θ0(x)

h

=

(J(80
0)

−1(x)− 1)θ0(x − h∇ p(x))+ θ0(x − h∇ p(x))− θ0(x)

h
.

Recall that 80
0 is linked to p via (B-13), and thus, since 80

0(x)→ x , we have

J(80
0)

−1(x)− 1 = −h1p(x)



2286 ÁNGEL CASTRO, DANIEL FARACO AND BJÖRN GEBHARD

at first order in h. Thus, when letting h → 0 in the difference quotient, we arrive at

∂tθ = −1pθ − ∇ p · ∇θ. (B-17)

On the other hand, we have from (B-16) that

θ1(x)− θ0(x)
h

=

1 − J(80
0)

−1(x)+ J(80
0)

−1(x)θ0(x − h∇ p̄(x))− θ0(x)

h
.

Passing to the limit yields
∂tθ =1 p̄ −1 p̄θ − ∇θ · ∇ p̄. (B-18)

In order for (B-17) and (B-18) to agree, we have

1 p̄ − ∇ · (∇ p̄θ)= −∇ · (∇ pθ),

and since p = p̄ + x2 we have
1 p̄ = −∇ · (∇x2θ)= −∂x2θ. (B-19)

Therefore, from (B-18) and (B-19),

∂tθ = −∂x2θ − ∇ · (∇ p̄θ)= −∂x2θ − ∇ · ((∇ p̄ + θe2)θ)+ ∇ · (θ2e2).

To finish we define u = ∇ p̄ + θe2, which clearly satisfies ∇ · u = 0, to get

∂tθ + u · ∇θ + ∂x2θ − 2θ∂x2θ = 0,

u = ∇ p̄ + θe2,

∇ · u = 0,
which agrees with (B-4).

Appendix C: Rigorous energy dissipation

In Section 2.5.2 equation (2-15), we have formally computed the decay rate of the total potential energy.
For completeness we give sufficient conditions when this computation is justified. Also for completeness,
we show that the subsolution given by Theorem 3.2 indeed satisfies the sufficient conditions.

Lemma C.1. Let ρ0 ∈ L1
loc(T × R) be some initial data, and further suppose that the pair of functions

(ρ,m) ∈ L1
loc((0, T )× T × R; R × R2) satisfies

∂tρ+ div m = 0, ρ(0, · )= ρ0

on (0, T )× T × R in the sense of distributions. If there exists α > 0 such that

m2, (ρ− ρ0)x2, (ρ− ρ0)|x2|
1+α

∈ C0([0, T ); L1(T × R)), m2|x2|
α

∈ L1((0, T )× T × R),

then the relative potential energy defined in (2-14) belongs to C1([0, T )), and we have

d
dt

Erel(t)=

∫
T×R

m2(t, x) dx .
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Proof. Let R > 0 and ϕR : R → [0, 1] be a cutoff function with ϕR(x2)= 1 for |x2| ≤ R, ϕR(x2)= 0 for
|x2| ≥ 2R and |ϕ′

R(x2)| ≤ 2R−1, x2 ∈ R.
We use the abbreviation E(t)= Erel(t) and define

ER(t) :=

∫
T×R

(ρ(t, x)− ρ0(x))x2ϕR(x2) dx .

Note that E(t), ER(t) are well-defined at every time t ∈ [0, T ), and we have

|E(t)− ER(t)| ≤ ∥(ρ(t, · )− ρ0)|x2|
1+α

∥L1(T×R)
1

Rα
= O(R−α)

uniformly in time as R → ∞. Thus

h−1(E(t + h)− E(t))= h−1(ER(t + h)− ER(t))+ h−1O(R−α).

Moreover, the assumed continuity conditions and approximation of the indicator function of [t, t + h]

imply

ER(t + h)− ER(t)=

∫ t+h

t

∫
T×R

m · ∇(x2ϕR(x2)) dx ds

=

∫ t+h

t

∫
T×R

m2 dx ds +

∫ t+h

t

∫
T×R

m2(ϕR(x2)− 1 + x2ϕ
′

R(x2)) dx ds.

Now the latter term can be bounded by 5R−α
∥m2|x2|

α
∥L1((0,T )×T×R), implying that

h−1(E(t + h)− E(t))= h−1
∫ t+h

t

∫
T×R

m2 dx ds + h−1O(R−α).

The statement follows. □

Let (ρ, v) be the solution constructed in Theorem 3.2 and set

m = ρv− (1 − ρ2)e2.

Lemma C.2. In addition to the properties stated in Theorem 3.2, the velocity field v satisfies

|v(t, x)| ≤ Ce−|x2|

whenever |x2| ≥ R for constants C, R > 0 independent of t . The pair (ρ,m) in particular satisfies the
conditions of Lemma C.1.

Proof. Regarding the second component, one easily sees that

|v2(t, x)| ≤ |Ut |∥∂x1ρ(t, · )∥L∞(T×R)∥K2(x − · )∥L∞(Ut ),

which can be bounded by Ce−|x2| for |x2| ≥ R with constants C, R > 0 independent of time.
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Regarding the first component, we cannot exploit the decay of the kernel, since K1(z) → ∓1 as
z2 → ±∞. Still by subtracting vanishing horizontal averages, we deduce

|v1(t, x)| =

∣∣∣∣∫
T×R

∂x1ρ(t, y)(K1(x − y)− K1(x − (0, y2)) dy
∣∣∣∣

≤ |Ut |∥∂x1ρ(t, · )∥L∞(T×R)∥∂z1 K1(x − · )∥L∞(U ∗
t )π,

where U ∗
t is the set of points obtained by taking all segments between y ∈ Ut and (0, y2). It is only

important that those sets are bounded uniformly in time, which allows us to argue as above for v2, since
∂z1 K1 now has the required decay. □
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We prove bounds in the strict local L2(Rd) range for trilinear Fourier multiplier forms with a d-dimensional
singular subspace. Given a fixed parameter K ≥ 1, we treat multipliers with nondegenerate singularity
that are push-forwards by K -quasiconformal matrices of suitable symbols. As particular applications, our
result recovers the uniform bounds for the one-dimensional bilinear Hilbert transforms in the strict local
L2 range, and it implies the uniform bounds for two-dimensional bilinear Beurling transforms, which are
new, in the same range.
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1. Introduction

Let d ≥1, and let 00 be the linear subspace of R3×d consisting of all vectors (ξ1, ξ2, ξ3)with ξ1+ξ2+ξ3 =0.
Trilinear Fourier multiplier forms on 00 are studied in order to understand mapping properties of bilinear
Fourier multiplier operators on Rd . In the present paper, we prove bounds in the strict local L2 range for
multipliers whose singular set can be written as an image of the d-dimensional diagonal of R3×d under
a block K -quasiconformal matrix. Our bounds depend on the matrix through the parameter K alone;
in this sense we prove bounds uniform in isotropic dilations and rotations. We comment more on the
motivation for such bounds after stating the main result.

We normalize the Fourier transform of a Schwartz function as

f̂ (ξ)=

∫
Rd

f (x)e−2π i x ·ξ dx .
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Let 1< p <∞. We denote the L p norm of a measurable function by

∥ f ∥
p
p :=

∫
Rd

| f (x)|p dx .

Let K ≥ 1. A linear map
L = L1 ⊕ L2 ⊕ L3

mapping R3×d to itself is said to be block K -quasiconformal if, for all n ∈ {1, 2, 3}, we have Ln : Rd
→ Rd

and
∥Ln∥

d
op ≤ K det Ln.

We say that L is nontrivial if additionally

L1 + L2 + L3 = 0.

Theorem 1.1. Let d ≥ 1, K ≥ 1 and

1
p1

+
1
p2

+
1
p3

= 1, 2< p1, p2, p3 <∞.

There exists a constant C = C(d, K , p1, p2, p3) such that the following holds.
Let m : R3×d

→ C satisfy

|∂
γ1
1 ∂

γ2
2 ∂

γ3
3 m(ξ)| ≤ sup{|ξ − (τ, τ, τ )|−|γ |

: τ ∈ Rd
} (1-1)

for all γ ∈ N3×d with |γ | ≤ 100d. Let L be a nontrivial block K -quasiconformal matrix. Define

3m( f1, f2, f3)=

∫
R3×d

δ0(ξ1 + ξ2 + ξ3) f̂1(ξ1) f̂2(ξ2) f̂3(ξ3)m(L−1ξ) dξ,

where δ0 is the Dirac mass at the origin.
Then, for all triples of Schwartz functions f1, f2 and f3 on Rd ,

|3m( f1, f2, f3)| ≤ C
3∏

n=1

∥ fn∥pn .

We use a symbol m defined on all of R3×d for convenience, but instead of that, a symbol only defined
on 00 with conditions stated using directional differential operators within the space 00 could be used
as well. Similarly, the use of the mapping L in the definition of the form is a compact way to express
a set of certain anisotropic symbol estimates on m through the simple condition (1-1). We point out that
the restriction of Theorem 1.1 to the strict local L2 range is likely not to be sharp. Moreover, we do not
see any obvious obstruction for an analogy of our result for higher orders of multilinearity. The only
missing ingredient for the latter seems to be a suitable generalization of the uniform paraproduct estimate
as in [Muscalu et al. 2002b]. However, we did not attempt any of these extensions in order to keep the
technicalities in this paper more limited and have better focus on some of the key ideas of our approach.
For related work in d = 1 extending the range of exponents of the bilinear Hilbert transform, see [Di Plinio
and Thiele 2016; Li 2006; Oberlin and Thiele 2011; Thiele 2002; Uraltsev and Warchalski 2022].
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The simplest interesting special case of Theorem 1.1 is d = K = 1, when L = (L1, L2, L3) is a vector
of nonzero real numbers adding up to 0 and

m(ξ1, ξ2, ξ3)=
L1ξ1 + L2ξ2 + L3ξ3√

(L1ξ1 + L2ξ2 + L3ξ3)2 + (ξ1 + ξ2 + ξ3)2
,

which restricted to the hyperplane ξ1 + ξ2 + ξ3 = 0 reads as

m(ξ1, ξ2, ξ3)= sgn(L1ξ1 + L2ξ2 + L3ξ3).

In this case, 3m is a scalar multiple of the trilinear form dual to the bilinear Hilbert transform, which can
be written on the spatial side as

p.v.
∫∫

R2
f1(x + M1t) f2(x + M2t) f3(x + M3t)

dx dt
t
, (1-2)

where M = (M1,M2,M3) is a unit vector perpendicular to both (1, 1, 1) and L . No two components
of M are equal, because no component of L is zero. This condition is referred to as nondegeneracy of M .
The case of (1-2) with two components of the unit vector M equal is called degenerate. If for example
M3 = M1, we have

3m( f1, f2, f3)=

∫
R

f1(x) f3(x)
[

p.v.
∫

R

f2(x + t)dt
t

]
dx .

One obtains L p bounds for this form by Hölder’s inequality and bounds for the linear Hilbert transform.
Bounds for the nondegenerate case of the bilinear Hilbert transform require a different argument and were
shown in the exponent range of Theorem 1.1 in [Lacey and Thiele 1997], albeit with constants blowing
up as M tends to a degenerate value. Bounds uniform in M were later proven in [Grafakos and Li 2004]
for the first time. These results are covered by Theorem 1.1.

The simplest example of our main theorem which is new is the case where d = 2, K = 1 and
(L1, L2, L3) is a triple of conformal matrices adding up to zero. In this case, we identify R2 with C and
view the application of the matrices Ln as multiplication by complex numbers. Moreover, we set

m(ζ1, ζ2, ζ3)=
(L1ζ1 + L2ζ2 + L3ζ3)

2

|L1ζ1 + L2ζ2 + L3ζ3|2 + |ζ1 + ζ2 + ζ3|2
.

Similar computations as for the bilinear Hilbert transform identify 3m as a scalar multiple of what one
might call the bilinear Beurling transform

p.v.
∫∫

C2
f1(z + M1ζ ) f2(z + M2ζ ) f3(z + M3ζ )

dA(z) dA(ζ )
ζ 2 ,

where A denotes the area measure. Thus our main theorem implies L p bounds in the strictly locally L2

range for the bilinear Beurling transform uniformly in M . The Beurling kernel ζ−2 can be replaced by
any standard Calderón–Zygmund kernel arising from a Mikhlin multiplier.

In dimension d = 1, the cases for L allowed in Theorem 1.1 together with a small number of easily
understood degenerate cases provide an exhaustive picture of all cases of L . The situation in higher
dimensions is more complicated. There are completely nondegenerate cases, completely degenerate cases
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in the sense that Ln = 0 for some n, and further there is a zoo of distinct cases that one may call partially
degenerate. For fixed K , our main theorem proves uniform bounds for the nondegenerate cases as one
approaches the completely degenerate cases inside a cone that stays away from the partially degenerate
cases. Within the conformal context, our theorem covers all cases including the degenerate ones. In this
respect, we show that the setting of one complex dimension is quite analogous to the setting of one real
dimension.

Concerning the general case, a list, not exhaustive, of five partially degenerate cases for d = 2 was
described in [Demeter and Thiele 2010], and four of the cases were shown to be bounded, albeit without
any attempt to prove uniform bounds. The remaining case, called the twisted paraproduct, was later treated
in [Kovač 2012] (see also [Bernicot 2012] for preliminary results and [Durcik 2015; 2017] for further
work). A further partially degenerate case is the triangular Hilbert transform described in [Kovač et al.
2015], where one dimension of the kernel is integrated out because it projects to zero in the arguments
of all functions. The triangular Hilbert transform is not known to satisfy any L p bounds, and it is
well understood that presently known techniques are insufficient to obtain such bounds. A version of
Theorem 1.1 with uniformity in K , as opposed to our assumption on K being fixed, would imply bounds
for the triangular Hilbert transform. Bounds for the triangular Hilbert transform as well as some of the
known bounds for other partially degenerate cases in d = 2 would, in turn, imply bounds for the so-called
Carleson operator in the corresponding L p spaces, see [Carleson 1966; Fefferman 1973; Hunt 1968]. A
more systematic classification of the partially degenerate cases appears in [Warchalski 2019], where also
some uniform bounds are proven in a discrete model.

The main technical novelty of the current work is the application of our previous work [Fraccaroli
et al. 2022], where we improved and extended the method of phase plane projections, previously studied
in [Muscalu et al. 2002a] in dimension 1, to higher dimensions. In order to apply the set-up introduced in
[Fraccaroli et al. 2022], we have to reformulate the standard phase space decomposition of the form 3m

in a new way. Unlike the existing literature using either stopping times and outer measures, see [Do and
Thiele 2015], or a tree-selection algorithm with various size functionals acting on families of multitiles,
see [Grafakos and Li 2004; Lacey and Thiele 1997; Thiele 2002], our proof arranges the tree-selection in
a different way. In particular, unlike our main inspiration [Muscalu et al. 2002a], we put emphasis on
choosing the top intervals and top frequencies and let them define regions in phase space, the trees. Each
tree, a region in the phase space, is then divided into a boundary and a core. The treatise of these two
parts can be separated into two independent modules. The estimation of the boundaries is completely
independent of paraproduct theory of any kind, just invoking Hölder’s inequality. The estimation of
the cores in turn relies on two real analysis lemmas, one on paraproduct estimates and one on phase
space localization, which are stand-alone results that do not make any explicit reference to the notion
of a tree. Clarifying the roles of the core part and the boundary part of a tree is the main insight we are
communicating. Later, at the level of tree selection, we further notice that almost all nontrivial phase space
interaction of the selected trees is encoded in their boundary parts. Summing up, while the paraproduct
theory of boundaries is very simple and that of cores more complicated, the orders of complexity are
swapped when carrying out the tree selection.
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We close the introduction commenting a bit more on the background context of the study uniform
bounds for multilinear operators. On one hand, one may use uniform bounds over parametrized families
of singular operators to conclude bounds for superpositions of these operators as the parameter varies.
While integrable rather than uniform dependence on the parameter may suffice for this purpose in some
applications, even integrable dependence may need more work than the basic nonuniform bounds. We
refer to [Muscalu 2014a; 2014b; 2014c] for a discussion about connections to Calderón commutators
and the Cauchy integral over Lipschitz curves as the original motivation for studying the bilinear Hilbert
transforms. Secondly, multilinear forms whose multipliers are characteristic functions of convex sets E
are closely related to uniform bounds for multipliers which are characteristic functions of half-planes
relative to tangent lines of E . This connection appears in [Demeter and Gautam 2012; Grafakos and Li
2006; Li 2008; Lie 2015; Muscalu 2000; Saari and Thiele 2023].

Finally, we describe the structure of the present paper. Section 2 contains the outline of the proof
of Theorem 1.1, which is organized into four propositions. These principal propositions are proved in
Sections 3, 4, 5 and 6, one proposition in each section. Theorem 1.1 is deduced from the contents of
the outline Section 2 in Section 7. Sections 3–6 are independent of each other and only make reference
to Section 2. Section 7 depends on arguments in Sections 3–6 only through the propositions stated in
Section 2. Section 5 is slightly longer than its siblings, and it is divided further into an outline part and
five further numbered subsections, which only refer to Section 2 and the overview part of Section 5.

2. Outline of the proof

We fix the dimension d ≥ 1, dilation parameters k2 > k1 > k0 ≥ 3 with ki − k j > 100d for 0 ≤ j < i ≤ 2,
and the triple of exponents (p1, p2, p3) satisfying

1
p1

+
1
p2

+
1
p3

= 1, 2< p1, p2, p3 <∞.

Let

ε = min{p1 − 2, p2 − 2, p3 − 2}.

In addition, we fix a number α > 2d , α < 8d . We further fix linear maps L1, L2 and L3 as in Theorem 1.1.
For n ∈ {1, 2, 3}, we choose vn ∈ Z such that

2vn−1 < ∥Ln∥op ≤ 2vn .

Fix an index n∗ ∈ {1, 2, 3} such that

vn∗
= min{v1, v2, v3}. (2-1)

As the condition (1-1) is invariant under scaling ξ 7→ λξ , we may assume that vn∗
= 0.

Denote by B(x, r) the open ball centered at x ∈ Rd and with radius r . For ξ ∈ R3×d , r > 0, and
n ∈ {1, 2, 3}, define Qn(ξ, r) ⊂ Rd to be the minimal open rectangular box with sides parallel to the
coordinate axes containing B(ξn, 2vnr). Let

Q(ξ, r)= Q1(ξ, r)× Q2(ξ, r)× Q3(ξ, r).
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Let
0 = {(L1τ, L2τ, L3τ) : τ ∈ Rd

}.

Let W be a maximal set of pairwise disjoint rectangles of the form Q(ξ, 2− j ) with ξ ∈ R3×d and j ∈ Z

with
0 ∩ Q(ξ, 2k0− j )= ∅

and
0 ∩ Q(ξ, 2k0+1− j ) ̸= ∅.

For all N > 0, let WN be the finite subset of W defined by

WN = {Q(ξ, 2− j ) ∈ W : |ξ |, | j | ≤ N }.

For a cube with sides parallel to the coordinate axes I ⊂ Rd , define the mollified distance ρI by

ρI (x)= inf{r > 1 : x ∈ (2r − 1)I },

where aI denotes the cube with the same center as I and a times the side-length. Moreover, for a Borel
set F ⊂ Rd , define

ρI (F)= inf{ρI (x) : x ∈ F}.

Definition 2.1 (frequency cut-offs). Let E ⊂ R3×d be bounded with open interior. Define 8αn (E) to be
the set of continuous complex-valued functions φ on Rd with

|φ(x)| ≤ 2(vn− j)dρ−α

[0,2 j−vn )d
(x)

for all x ∈ Rd and
supp φ̂ ⊂ {ξn : ξ ∈ E},

where j ∈ Z is maximal such that there exists ξ ∈ R3×d with E ⊂ Q(ξ, 2− j ).

In Section 7, Theorem 1.1 is reduced to Proposition 2.2 below, where the multiplier is replaced by a
sum of tensor multipliers.

Proposition 2.2 (weak estimate for tensor model). Let

1
q1

+
1
q2

+
1
q3

= 1, 2< q1, q2, q3 <∞.

There exists a constant C = C(d, α, k0, q1, q2, q3) such that the following holds.
For Q ∈ W and n ∈ {1, 2, 3}, let φQ,n ∈84α

n (Q). For each n ∈ {1, 2, 3}, let fn ∈ L2(Rd) be a function
such that

∥ fn∥∞ ≤ 2.

Then, for all N > 0, ∣∣∣∣ ∑
Q∈WN

∫
Rd

3∏
n=1

[φQ,n ∗ fn(x)] dx
∣∣∣∣ ≤ C

3∏
n=1

∥ fn∥
2/qn
2 . (2-2)
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The proof of Proposition 2.2 can be found in Section 6. It requires several intermediate results, which
we state next. The following frequency-localized version of Proposition 2.2 will play a role inside the
proof. While the singularity of the bilinear multiplier in Proposition 2.2 can still be truly d-dimensional,
Proposition 2.3 only deals with a point singularity in the spirit of more classical Coifman–Meyer multilinear
multipliers. Proposition 2.3 will be proven in Section 3.

Proposition 2.3 (frequency-localized estimate). Let k be a positive integer and

1
q1

+
1
q2

+
1
q3

= 1, 2< q1, q2, q3 <∞.

There exists a constant C = C(d, α, k0, k, q1, q2, q3) such that the following holds.
Let η ∈ 0. For Q ∈ W and n ∈ {1, 2, 3}, let φQ,n ∈84α

n (Q). For each n ∈ {1, 2, 3}, let fn ∈ Lqn (Rd).
Then, for all N > 0, ∣∣∣∣ ∑

Q∈WN
η∈2k Q

∫
Rd

3∏
n=1

[φQ,n ∗ fn(x)] dx
∣∣∣∣ ≤ C

3∏
n=1

∥ fn∥qn .

The reduction of Proposition 2.2 to Proposition 2.3 features a stopping-time argument, which introduces
spatial truncations in addition to the mere frequency localization discussed so far and utilizes the notion
of trees defined below.

For k ∈ Z, let Dk = {2k([0, 1)d + l) : l ∈ Zd
} and D =

⋃
k∈Z Dk . An element of D is called a dyadic

cube.

Definition 2.4 (multitile, n-tile). A product I×Q is called a multitile if I ∈D and Q ∈W and |Qn∗
|
−1

=|I |.
For a multitile I × Q and n ∈ {1, 2, 3}, we call the product I × Qn an n-tile. If P = I × Q is a multitile,
we write IP for I and Q P for Q.

Definition 2.5 (tree). Let V be a finite subset of multitiles, let ξ ∈ 0, and let I0 ∈ D. Assume there exists
at least one P ∈ V with IP = I0 and ξ ∈ 2k2+1 Q P . Then the triple (ξ, I0,V) defines a tree T . We write
ξT for ξ , IT for I0, VT for V , and jT for the top scale log2|I0|

1/d . Attached to the tree T are the following
objects:

• The family PT of multitiles in V with IP ⊂ IT and

ξT ∈ 2k2+1 Q P .

• The family BT of multitiles P ∈ PT with

ξT ∈ 2k2+1 Q P \ 2k1+1 Q P .

• The family IT of dyadic cubes I ∈ D such that there exist P and P ′ in PT \BT with

IP ⊂ I ⊂ IP ′ .

The following definition gives a gauge to the size of a function near a tree.
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Definition 2.6 (main sizes). Let 1 ≤ p ≤ ∞, n ∈ {1, 2, 3}, and f ∈ L p(Rd). Let T be a tree. We define

6bdr
n,p, f (T )= sup

P∈BT

sup
φ∈84α

n (Q P )

∥ρ−α
IP

[φ ∗ f ]∥p

|IP |1/p ,

6sum
n, f (T )=

(
1

|IT |

∑
P∈BT

sup
φ∈84α

n (Q P )

∥1IP [φ ∗ f ]∥
2
2

)1/2

,

6cor
n,p, f (T )= sup

i∈Z

sup
I∈Di ∩IT

sup
φ∈84α

n (QT,i )

∥ρ−α
I [φ ∗ f ]∥p

|I |1/p ,

where QT,i = Q(ξT , 2k1+5d−i ) and 1/∞ is understood to be 0.

Heuristically, the core size is large enough to control a phase space paraproduct, but it is slightly too
imprecise in terms of phase space localization. In order to maintain the information about frequency
localization of a tree, the frequencies seen as peripheral with respect to the top frequency must be measured
with a different kind of size, the sum size. The pair of sum size and core size are together strong enough
to control the paraproduct and maintain the phase space localization, but in order to sum together the
trees of different amplitudes, this couple still fails by a logarithmic blowup. To adjust this last piece, a
multiplicative fraction of the sum size is replaced by the boundary size, which is a sup size again, but of
nature lacunary with respect to the top frequency. After this last adjustment, the triple of sizes succeeds in
the task of controlling the paraproduct, maintaining phase space localization and recovering summability
over amplitudes. In the following proposition, we control the phase space paraproduct by the sizes. The
proof can be found in Section 4.

Proposition 2.7 (phase space-localized estimate). Let

1
q1

+
1
q2

+
1
q3

= 1, 2< q1, q2, q3 <∞.

There exists a constant C = C(d, α, k0, k, q1, q2, q3) such that the following holds.
Let T be a tree. For each P ∈ PT and n ∈ {1, 2, 3}, let φP,n ∈84α

n (Q P). Then, for any n′
∈ {1, 2, 3},∣∣∣∣ ∑

P∈BT

∫
Rd

1IP (x)
3∏

n=1

[φP,n ∗ fn(x)] dx
∣∣∣∣ ≤ C |IT |6bdr

n′,∞, fn′
(T )

∏
n ̸=n′

6sum
n, fn

(T ), (2-3)

∣∣∣∣ ∑
P∈PT \BT

∫
Rd

1IP (x)
3∏

n=1

[φP,n ∗ fn(x)] dx
∣∣∣∣ ≤ C |IT |

3∏
n=1

6cor
n,qn, f (T ). (2-4)

The remaining ingredient of the proof of Proposition 2.2 is a partition of the set of all multitiles into
trees, to which Proposition 2.7 can be applied. This last proposition will be proved in Section 5.

Proposition 2.8 (decomposition of the phase space). There exists a constant C = C(d, α, k0, k1, k2) such
that the following holds.

Let N , N ′ > 0. Let V be the finite subset of multitiles defined by

V = {P : Q P ∈ WN , IP ⊂ [−N ′2N , N ′2N
]
3×d

},
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with W as in Proposition 2.2. For each M ∈ Z ∪ {−∞}, there exists a family of trees TM such that

V =

⋃
M∈Z∪{−∞}

⋃
T ∈TM

PT ,

and the following hold for each n ∈ {1, 2, 3}:

• For each tree T ∈ TM for which there exists P ∈ PT with 2k1+1 Q P ∋ ξT , we have

6cor
n,2, fn

(T )≤ 2M/2
∥ fn∥2.

• For every tree T ∈ TM , we have

6bdr
n,2, fn

(T )+6sum
n, fn

(T )≤ 2M/2
∥ fn∥2.

• For every tree T with VT ⊂ V , we have

6cor
n,2, fn

(T )+6bdr
n,2, fn

(T )+6sum
n, fn

(T )≤ C∥ fn∥∞. (2-5)
• We have ∑

T ∈TM

2M
|IT | ≤ C. (2-6)

Complementary notation. We conclude the section outlining the proof by listing some notational con-
ventions that we intentionally omitted when describing the strategy of the proof but which will be helpful
for understanding the proofs. In what follows, a constant C will depend on d , α, ε, k0, k1, and k2. The
exact dependence will be implicit in our arguments. We occasionally use the shorthand notation A ≲ B
when A ≤ C B for such a constant C .

Concerning the frequency cut-offs, see Definition 2.1, we use the following shorthand notations:

• Given ξ ∈ R3×d and j ∈ Z, we define

8αn, j (ξ)=8αn (Q(ξ, 2− j )).

• Given ξ ∈ R3×d and j ∈ Z, we define

9α
n, j (ξ)=8αn (Q(ξ, 2− j ) \ Q(ξ, 2− j−2)).

• Given ξ ∈ R3×d , we denote by Mn(ξ, E) the set of φ such that

sup
τ∈Rd\{ξn}

|(τ − ξn)
β∂β φ̂(τ )| ≤ 2−vn |β|, supp φ̂ ⊂ E

for all β ∈ Nd with |β| ≤ 100d . We call such a φ a normalized n-Mikhlin cut-off to E at ξ .

3. Proof of Proposition 2.3: paraproduct

Let η and φQ,n be given as in Proposition 2.3. By a translation on the Fourier transform side we may
assume η = 0. By definition of W , for each Q ∈ W we have 0 /∈ 2Q. Hence there exists n ∈ {1, 2, 3}

such that 0 /∈ 2Qn . By splitting into three cases and estimating (2-2) in each case separately, we may
assume without loss of generality that 0 /∈ 2Q1 for all Q ∈ W . Further, for each j ∈ Z, there exists at
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most C(d, k) distinct elements Q ∈ W with 2k Q ∋ 0 and |Qn∗
| = 2− jd . By splitting into C(d, k) further

subcases, we may assume there exists at most one such Q. Even further, for each Q with |Qn∗
| = 2− jd ,

there exist C(d, k), C̃(d, k), and {c j ′,n : |c j ′,n| ≤ C̃(d, k), | j ′
− j | ≤ C(d, k)} such that

φQ,n =

∑
j ′:| j ′− j |≤C(d,k)

c j ′,nφ j ′,n, φ j ′,n ∈84α
n, j ′(0).

Hence we may further reduce the study to the case where φQ,n is replaced by φ j,n as above and vn is
replaced by v′

n with |vn − v′
n| ≤ C(d, k). Hence we aim at bounding∣∣∣∣∑

j∈N

∫
Rd

c j

3∏
n=1

[φ j,n ∗ fn(x)] dx
∣∣∣∣,

where N ⊂ Z is finite, φ j,1 ∈94α
1, j (0), and φ j,n ∈84α

n, j (0) for n ∈ {2, 3}.
Let χ be a Schwartz function on Rd such that χ̂(τ )= 0 for |τ | ≥ 2 and χ̂(τ )= 1 for |τ | ≤ 1. Define,

for l ∈ Z,

χl(x)= 2−ldχ(2−l x),

and, for each j ∈ N and n ∈ {2, 3}, define

ρ̂ j,n = φ̂ j,n − φ̂ j,n(0)χ̂ j−vn .

By the triangle inequality, it suffices to prove, for any collection

{c j : |c j | ≤ 1, j ∈ N },

bounds for the tree expressions

I =

∣∣∣∣∑
j∈N

∫
Rd

[c jφ j,1 ∗ f1(x)][ρ j,2 ∗ f2(x)][φ j,3 ∗ f3(x)] dx
∣∣∣∣, (3-1)

II =

∣∣∣∣∑
j∈N

∫
Rd

[c jφ j,1 ∗ f1(x)][χ j−v2 ∗ f2(x)][ρ j,3 ∗ f3(x)] dx
∣∣∣∣, (3-2)

III =

∣∣∣∣∑
j∈N

∫
Rd

[c jφ j,1 ∗ f1(x)][χ j−v2 ∗ f2(x)][χ j−v3 ∗ f3(x)] dx
∣∣∣∣ (3-3)

separately.
We begin with (3-1). We estimate it with Cauchy–Schwartz in N and Hölder in Rd by∥∥∥∥(∑

j∈N

|φ j,1 ∗ f1|
2
)1/2∥∥∥∥

q1

∥∥∥∥(∑
j∈N

|ρ j,2 ∗ f2|
2
)1/2∥∥∥∥

q2

∥∥sup
j∈N

|φ j,3 ∗ f3|
∥∥

q3
.

The term (3-2) is estimated similarly by∥∥∥∥(∑
j∈N

|φ j,1 ∗ f1|
2
)1/2∥∥∥∥

q1

∥∥sup
j∈N

|χ j−v2 ∗ f2|
∥∥

q2

∥∥∥∥(∑
j∈N

|ρ j,3 ∗ f3|
2
)1/2∥∥∥∥

q3

.
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In both cases, we can apply the standard square function estimate (see Theorem 5.1.2 in [Grafakos 2008])
and maximal function estimates to obtain the desired bound. This completes the proof for I and II.

It remains to estimate (3-3). We telescope χ j−v2 and χ j−v3 into functions ψl := χl−1 − χl and thus
write

III ≲
−v1+10∑

m1=−v1−10

∣∣∣∣ ∑
m2≥−v2
m3≥−v3

∑
j∈N

∫
Rd

[φm1+ j ∗ f1(x)]
3∏

n=2

[ψmn+ j ∗ fn(x)] dx
∣∣∣∣, (3-4)

where φm1+ j = φ j,1 ∗ψm1+ j .
We fix a triple (κ1, κ2, κ3) ∈ Z3 and restrict the sums to mn ∈ κn + 1000dZ for n ∈ {2, 3} and

j ∈ Ñ = κ1 +1000dZ. By the triangle inequality and summation over the (1000d)3 values of (κ1, κ2, κ3),
it suffices to bound the restricted sum. Consider then a fixed term in the sum (3-4). Such a term is nonzero
only if

0 ∈ (supp φ̂m1+ j + supp ψ̂m2+ j + supp ψ̂m3+ j ).

Recalling that we work with indices modulo 1000d, this happens only if two of the numbers in
{m1,m2,m3} are equal and the remaining one is larger.

We first assume m1 = mn ≤ mn′ for fixed n, n′
∈ {2, 3}. Then, for m = max(m1,−vn′), we bound

(3-4) by∣∣∣∣ ∑
mn′≥m

∑
j∈Ñ

∫
Rd

[φm1+ j ∗ f1(x)][ψm1+ j ∗ fn(x)][ψmn′+ j ∗ fn′(x)] dx
∣∣∣∣

≤

∫
Rd

∑
j∈Ñ

|φm1+ j ∗ f1(x)||ψm1+ j ∗ fn(x)|
∣∣∣∣ ∑
mn′≥m

ψmn′+ j ∗ fn′(x)
∣∣∣∣ dx

≤

∥∥∥∥(∑
j∈Ñ

|φm1+ j ∗ f1|
2
)1/2∥∥∥∥

q1

∥∥∥∥(∑
j∈Ñ

|ψm1+ j ∗ fn|
2
)1/2∥∥∥∥

qn

∥∥∥∥sup
j∈Ñ

∣∣∣∣ ∑
mn′≥m+ j

ψmn′ ∗ fn′

∣∣∣∣∥∥∥∥
qn′

.

These factors are bounded by the square function estimate and maximally truncated singular integral
estimate, which completes the proof in this case.

Assume then that m2 = m3 ≤ m1. Now, for m = max(−v2,−v3), we bound (3-4) by∣∣∣∣∑
j∈Ñ

∫
Rd

[φm1+ j ∗ f1(x)]
j+m1∑

k= j+m

[ψk ∗ f2(x)][ψk ∗ f3(x)] dx
∣∣∣∣

=

∣∣∣∣∫
Rd

∑
k∈Z

[ψk ∗ f2(x)][ψk ∗ f3(x)]
∑

j∈Ñ∩{k−m1,...,k−m}

[φm1+ j ∗ f1(x)]
∣∣∣∣ dx

≤

∥∥∥∥(∑
k∈Z

|ψk ∗ f2|
2
)1/2∥∥∥∥

q2

∥∥∥∥(∑
k∈Z

|ψk ∗ f3|
2
)1/2∥∥∥∥

q3

∥∥∥∥sup
k∈Z

∣∣∣∣ ∑
j∈Ñ∩{k−m1,...,k−m}

φm1+ j ∗ f1

∣∣∣∣∥∥∥∥
q1

.

Again, the bound follows by the square function estimate and maximally truncated singular integral
estimate, and the proof is complete. □
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4. Proof of Proposition 2.7: tree estimate

Boundary part. Given any family of multitiles F ⊂ PT , we define

3F ( f1, f2, f3)=

∑
P∈F

∫
Rd

1IP (x)
3∏

n=1

[φP,n ∗ fn(x)] dx .

We start with the easier bound (2-3).

Proposition 4.1. There exists a constant C such that, for any n′
∈ {1, 2, 3},

|3BT ( f1, f2, f3)| ≤ C |IT |6bdr
n,∞, fn′

(T )
∏
n ̸=n′

6sum
n, fn

(T ).

Proof. By Hölder’s inequality in Rd and the Cauchy–Schwartz inequality in BT ,

|3BT ( f1, f2, f3)| ≤ sup
P∈BT

∥1P [φP,n′ ∗ fn′]∥∞

∏
n ̸=n′

( ∑
P∈BT

∥1P [φP,n ∗ fn]∥
2
2

)1/2

. □

We turn to estimating the form 3BT \PT , which is the main source of difficulty in the proof. Here we
will need several auxiliary tools, including Proposition 2.3 and some results from [Fraccaroli et al. 2022].

Phase space projections. Define, for j ∈ Z,

IT, j := {IP : P ∈ PT \BT } ∩D j , E0
j :=

⋃
IT, j .

Define further, for each integer k ≥ 1,

Ik
T, j := {I ∈ D j : ρI (E0

j )≤ k}, Ek
j :=

⋃
Ik

T, j .

Finally, for ξ ∈ R3×d and n ∈ {1, 2, 3}, we let Modn,ξ be the mapping such that

FT(Modn,ξ f )(τ )= f̂ (τ + ξn),

where FT is the Fourier transform. We define the phase space localization by using the construction from
[Fraccaroli et al. 2022].

Definition 4.2 (phase plane projection). Let v ≥ 0 be an integer, n ∈ {1, 2, 3}, and T be a tree. Let h be a
Schwartz function. We define 5T,nh = Modn,−ξ g, where g is the output of Theorem 1.1 in [Fraccaroli
et al. 2022] based on the input parameter m = vn , input function f = Modn,ξ h, input cube U = IT , and
the input M being the family of minimal cubes in

⋃
j∈Z IT, j .

By scaling, we can now quote the following result from [Fraccaroli et al. 2022].

Theorem 4.3 [Fraccaroli et al. 2022, Theorem 1.1]. Let 1 ≤ p ≤ ∞ and 1/p + 1/p′
= 1. Let α > d and

0 ≤ k ≤ k1 + 4d. There exists a constant C = C(d, α, p, k0, k1) such that the following holds.
Let T be a tree and fix n ∈ {1, 2, 3}. Then, for every j ≤ jT and J ∈ D j ,

∥5T,n f ∥p ≤ C6cor
n,p, f (T )|IT |

1/p (4-1)
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and ∑
i≤ jT

∑
I∈IT,i
I⊂J

sup
φ∈84α

n,i−k(ξ)

|I |1/p′

∥ρ−3α
I [φ ∗ ( f −5T,n f )]∥p ≤ C6cor

n,p, f (T )|J |. (4-2)

For every j ≤ jT and J ∈ D j such that I ̸⊂ 3J for any I ∈ IT, j ,∑
i≤ jT

sup
I∈Di \IT

I⊂J

sup
ψ∈94α

n,i−k(ξ)

|I |−1/p
∥ρ−3α

I [ψ ∗5T,n f ]∥p ≤ C6cor
n,p, f (T )∥17IT ρ

−α
J ∥∞. (4-3)

Proof of Proposition 2.7. It remains to prove

|3PT \BT ( f1, f2, f3)| ≤ C |IT |

3∏
n=1

6cor
n,qn, fn

(T ),

as by Proposition 4.1 we already know (2-3) to hold.

Core part. By decomposing 3PT \BT into C(d, k0, k1) many distinct sums, we can assume that, for each
j ∈ Z, there is at most one Q ∈ W such that Q P = Q and |IP | = 2 jd for some P ∈ PT \BT . We pick a
sequence of functions

φ j,n ∈84α
n (Q)

such that

|3PT \BT ( f1, f2, f3)| ≤

∑
j∈Z

max
P:Q P=Q

∣∣∣∣∫
Rd

1E1
j
(x)

3∏
n=1

[φP,n ∗ fn(x)] dx
∣∣∣∣

≤ C
∑
j∈Z

∫
Rd

1E1
j
(x)

3∏
n=1

[φ j,n ∗ fn(x)] dx .

We define

3CT ( f1, f2, f3) :=

∑
j∈Z

∫
Rd

1E1
j
(x)

3∏
n=1

[φ j,n ∗ fn(x)] dx,

3CT ,c( f1, f2, f3) :=

∑
j∈Z

E0
j ̸=∅

∫
Rd

1(E1
j )

c(x)
3∏

n=1

[φ j,n ∗ fn(x)] dx .

We compute

|3CT ( f1, f2, f3)| ≤ |3CT ,c(5T,1 f1,5T,2 f2,5T,3 f3)|

+ |3CT (5T,1 f1,5T,2 f2,5T,3 f3)+3CT ,c(5T,1 f1,5T,2 f2,5T,3 f3)|

+ |3CT ( f1 −5T,1 f1,5T,2 f2,5T,3 f3)|

+ |3CT ( f1, f2 −5T,2 f2,5T,3 f3)|

+ |3CT ( f1, f2, f3 −5T,3 f3)|

=: I + II + III + IV + V . (4-4)

For clarity, we state three auxiliary facts before estimating the five terms above.
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Lemma 4.4. For each j ∈ Z, there is n j ∈ {1, 2, 3} and coefficients ci, j and functions φi, j ∈94α
n, j+i (ξT )

such that

φP,n j =

−k0+1∑
i=−k1−3d

ci, jφi, j ,

−k0+1∑
i=−k1−3d

|ci, j | ≤ C(d).

Proof. For each j ∈ Z and P ∈ PT \BT with |IP | = 2 jd , we know that ξT /∈ 2k0 Q P . Hence there exists at
least one n j ∈ {1, 2, 3} such that (ξT )n j /∈ 2k0 Qn j . The claim follows from this. □

Lemma 4.5. Let A be the set of dyadic cubes I maximal with |I | ≤ |IT | and J ⊂ 3I for no J ∈ IT with
|J | ≤ |I |. Then

A j = {J ∈ A : |J | ≥ 2 jd
}

is a partition of Rd
\ E1

j .

Proof. Disjointness follows from maximality. If x ∈ Rd
\
⋃

A j , then J ∈ D j with x ∈ J satisfies 3J ⊃ I
for some I ∈ IT with |I | ≤ |J |. Then Î ∈ D j with Î ⊃ I satisfies Î ∈ IT, j and J ⊂ 3 Î . Hence J ⊂ E1

j .
The inclusion

⋃
A j ⊂ Rd

\ E1
j follows by definition. □

Lemma 4.6. Let j ∈ Z and J ∈ D j be such that 5J ⊃ I for some I ∈ IT, j . Then

∥1J [φ j,n ∗5T,n fn]∥qn ≤ C |J |
1/qn6cor

n,qn, fn
(T ).

Proof. This follows by applying (4-2) to J and restricting the sum on the left-hand side to a single term as

∥1J [φ j,n ∗5T,n fn]∥qn ≤ ∥1J [φ j,n ∗ (5T,n fn − fn)]∥qn + ∥1J [φ j,n ∗ fn]∥qn

≤ C |J |
1/qn6cor

n,qn, fn
(T ). □

Now we can estimate the five terms in (4-4). To estimate I, we recall that, for each j ∈ Z, there exists
n j ∈ {1, 2, 3} as in Lemma 4.4. We fix n j to be one of them so that the three sets

Nn = { j ∈ Z : E1
j ̸= ∅, n j = n}

partition the subset of Z appearing in the definition of I. Then

I = |3CT ,c(5T,1 f1,5T,2 f2,5T,3 f3)| ≤

3∑
ν=1

∫
Rd

∑
j∈Nν

1(E1
j )

c

3∏
n=1

|φ j,n ∗5T,n fn(x)| dx

≤

3∑
ν=1

(∏
n ̸=ν

∥MHL5T,n fn∥qn

)∥∥∥∥ ∑
j∈Nν

1(E1
j )

c |φ j,ν ∗5T,ν fν |
∥∥∥∥

qν

,

where MHL is the Hardy–Littlewood maximal function. By the maximal function theorem and (4-1) from
Theorem 4.3,

∥MHL5T,n fn∥qn ≤ C |IT |
1/qn6cor

n,qn, fn
(T ).
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By Lemma 4.5 and Minkowski’s inequality,∥∥∥∥ ∑
j∈Nν

1(E1
j )

c |φ j,ν ∗5T,ν fν |
∥∥∥∥qν

qν

=

∑
J∈A

∥∥∥∥1J

∑
j∈Nν

∑
I∈D j \I1

T, j

1I |φ j,ν ∗5T,ν fν |
∥∥∥∥qν

qν

≤

∑
J∈A

( ∑
j∈Nν

( ∑
I∈D j \I1

T, j
I⊂J

∥1I [φ j,ν ∗5T,ν fν]∥qν
qν

)1/qν)qν
.

By Lemma 4.4 and (4-3) from Theorem 4.3,∑
j∈Nν

( ∑
I∈D j \I1

T, j
I⊂J

∥1I [φ j,ν∗5T,ν fν]∥qν
qν

)1/qν
≤ |J |

1/qn

−k0+1∑
i=−k1−3d

∑
j∈Nν

sup
I∈D j \I1

T, j
I⊂J

sup
ψ∈94α

ν, j+i (ξT )

∥1I [ψ∗5T,ν fν]∥qν

|I |1/qν

≤ C |J |
1/qν6cor

ν,qν , fν (T )∥17IT ρ
−α
J ∥∞.

Summing the qν-th power over J concludes the proof.
To estimate

II = |3CT (5T,1 f1,5T,2 f2,5T,3 f3)+3CT ,c(5T,1 f1,5T,2 f2,5T,3 f3)|,

it suffices to apply Proposition 2.3 (the global paraproduct estimate) and (4-1) in Theorem 4.3 (the L p

estimate for the phase space projection). The desired bound follows.
We move to estimate III + IV + V. Note that, for n ∈ {1, 2, 3} and J ∈ I1

T, j , by definition of 6cor
n,p, f (T ),

∥1J [φ j,n ∗ fn]∥qn ≤ |J |
1/qn6cor

n,qn, fn
(T ),

and further, by Lemma 4.6,

∥1J [φ j,n ∗5T,n fn]∥qn ≤ C |J |
1/qn6cor

n,qn, fn
(T ).

By these estimates and Hölder’s inequality,

III + IV + V ≤ C max
n∈{1,2,3}

{( ∏
n′ ̸=n

6cor
n′,qn′ , fn′

(T )
) ∑

j∈Z

∑
J∈I1

T, j

|J |
1−1/qn∥1J [φ j,n ∗ ( fn −5T,n fn)]∥qn

}
,

from which the claim follows by (4-2) of Theorem 4.3. □

5. Proof of Proposition 2.8: tree selection

We start by defining two auxiliary sizes that are needed to complement those in Definition 2.6.

Definition 5.1. Under the set-up of Definition 2.6, define

6
bdr,top
n,p, f (T )= sup

P∈BT
IP=IT

sup
φ∈84α

n (Q P )

∥ρ−α
IT

[φ ∗ f ]∥p

|IT |1/p ,

6
cor,top
n,p, f (T )= sup

φ∈84α
n, jT −k1−5d (ξT )

∥ρ−α
I [φ ∗ f ]∥p

|IT |1/p .
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We formalize the idea of greedy selection by stating the following definition.

Definition 5.2 (selection). Let V be a finite set of multitiles. Let T be the family of all trees in any of the
subsets of V . Let S be a positive integer. A selection is a mapping σ : {1, . . . , S} → T such that

• σ(1) is a tree in Vσ(1) = V ,

• σ(i + 1) is a tree in Vσ(i+1) = Vσ(i) \Pσ(i) for all i ∈ {1, . . . , S − 1}.

To prove Proposition 2.8, we will construct several selections over the initial set of multitiles. We first
show that selections based on top size defined above have good orthogonality properties and as a second
step we show that convexity properties allow us to infer estimates for main sizes of Definition 2.6 from
those for the auxiliary top sizes of Definition 5.1. There will be three different selection processes. The
first selection serves to identify the trees with large core size. The following proposition shows that they
have controlled overlap.

Proposition 5.3. There exists a constant C such that the following holds.
Let D > 1. Let f ∈ L2(Rd). Let V be a finite set of multitiles and let σ be a selection in V . Let M > 0.

Assume the following properties of the selection:

• If Ii is the top cube of σ(i) and if Ii+1 is the top cube of σ(i + 1), then |Ii+1| ≤ |Ii | for all
i ∈ {1, . . . , S − 1}.

• For each i ∈ {1, . . . , S}, there exists Ai ∈ Pσ(i) with 2k1+1 Q Ai ∋ ξσ(i).

• For each i ∈ {1, . . . , S}, we have M ≤ (6
cor,top
n,2, f ◦ σ)(i)≤ DM.

Then ( S∑
i=1

M2
|Iσ(i)|

)1/2

≤ C D∥ f ∥2.

The next selection serves to remove the trees that contain a lacunary multitile, not treated by the core
size, that however happens to give a large contribution.

Proposition 5.4. There exists a constant C such that the following holds.
Let D > 1. Let f ∈ L2(Rd). Let V be a finite set of multitiles and let σ be a selection in V . Let M > 0.

Assume the following properties of the selection:

• If Ii is the top cube of σ(i) and if Ii+1 is the top cube of σ(i + 1), then |Ii+1| ≤ |Ii | for all
i ∈ {1, . . . , S − 1}.

• For each i ∈ {1, . . . , S}, we have M ≤ (6
bdr,top
n,2, f ◦ σ)(i)≤ DM.

Then ( S∑
i=1

M2
|Iσ(i)|

)1/2

≤ C D∥ f ∥2.

The third selection removes the trees whose boundaries are contributing a lot to the right-hand side of
Proposition 2.7. While the choice order of the previous selections was based on metric geometry, only
using the size of the top cube, the treatise of the lacunary parts of the trees requires us to carry out a cone
decomposition and consider an order of selection based on that.
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Proposition 5.5. There exists a constant C such that the following holds.
Let D > 1, and let e be a unit vector orthogonal to d − 1 coordinate axes. Let f ∈ L2(Rd). Let V be a

finite set of multitiles, and let σ be a selection in V . Let M > 0. For each i ∈ {1, . . . , S}, define

Ci = {ξ ∈ Rd
: |ξ − ξσ(i)| ≤ 2(ξ − ξσ(i)) · e},

and let µi ∈ Mn(ξσ(i),Ci ). Assume the following properties of the selection:

• For all i ∈ {1, . . . , S − 1}, assume that ξσ(i) · e ≥ ξσ(i+1) · e.

• For each i ∈ {1, . . . , S}, we have M ≤ (6sum
n,µi ∗ f ◦ σ)(i) and (6bdr

n,2,µi ∗ f ◦ σ)(i)≤ DM.

Then ( S∑
i=1

M2
|Iσ(i)|

)1/2

≤ C D∥ f ∥2.

To apply the propositions stated above, we still have to solve the discrepancy between the definitions
of sizes in Definitions 2.6 and 5.1. This is the content of the last proposition of this section. We need one
more definition.

Definition 5.6 (convex collection). A finite family of multitiles V is a convex collection if, for any tree T
on V and

jmin = min
P∈PT

log2|IP |
1/d ,

the condition j ∈ Z∩{i : jmin ≤ i ≤ jT } implies that there exist P ∈ PT with |IP | = 2 jd and the condition
that 2k1+1 Q P ∋ ξT for some P ∈ PT implies 2k1+1 Q P ′ for a P ′

∈ PT with IP ′ = IT .

For the purpose of the proof of our main theorem, the convex collections are the only ones that matter.
The importance of the convex collections lies in the fact that every tree on a convex collection has a
subtree whose size is attained by one of its top multitiles.

Moreover, for a tree T , we set

2(T )=

{
1 if there exists P ∈ PT with 2k1+1 Q P ∋ ξT .

0 otherwise.

Proposition 5.7. Let V be a convex family. Let {eδ : 1 ≤ δ ≤ 2d} be the unit vectors orthogonal to the
(d−1)-dimensional coordinate hyperplanes. Let

Ce = {ξ ∈ Rd
: |ξ − ξσ(i)| ≤ 2(ξ − ξσ(i)) · e}.

Let µδ,n ∈ Mn(Ceδ ) with
2d∑
δ=1

µ̂δ,n(ξ)= 1, ξ ̸= 0.

For a tree T on V , we set

µ̂δT,n(ξ)= µ̂δ,n(ξ − (ξT )n).
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Let M ∈ Z be such that, for all trees T on V ,

max
1≤δ≤2d

n∈{1,2,3}

max{6bdr
n,2, fn

(T ), 6sum
n,µδ,nT ∗ fn

(T ), 2(T )6cor
n,2, fn

(T )} ≤ 2M/2
∥ fn∥2.

Then there exists a selection σ on V such that

ṼM−1 = V \

S⋃
i=1

Pσ(i)

is a convex family such that, for all trees on ṼM−1,

max
1≤δ≤2d

n∈{1,2,3}

max{6bdr
n,2, fn

(T ), 6sum
n,µδ,nT ∗ fn

(T ), 2(T )6cor
n,2, fn

(T )} ≤ 2(M−10d)/2
∥ fn∥2 (5-1)

and
S∑

i=1

2M
|Iσ(i)| ≲ 1. (5-2)

Auxiliary propositions for almost orthogonality. In this subsection, we prove two additional estimates
that are needed in the proofs of Propositions 5.3, 5.4 and 5.5.

Proposition 5.8. Let α > 2d. There exists a constant C such that the following holds.
Let j ∈ Z, k ≥ 0, ξ ∈ Rd , and f ∈ L∞(Rd). Let ϕ ∈84α

n, j−k(ξ) and I be a cube with |I | = 2 jd . Denote
by MHL the Hardy–Littlewood maximal function. Then, for all x ∈ Rd ,

|ϕ ∗ (ρ−α
I f )(x)| ≤ CρI (x)−αMHL f (x).

Proof. As for j ′
≤ j we have ρ

[0,2 j ′ )d ≥ ρ[0,2 j )d , then, for any ϕ ∈84α
n, j−k(ξ) and x ∈ Rd , we have

|ρα
[0,2 j−k)d

(x)ϕ(x)| ≤ 2( j−k+vn)dρ−3α
[0,2 j−k−vn )d

(x).

We also have

ρ−α

[0,2 j )d
(x − y)ρ−α

I (y)≤ Cρ−α
I (x)

for all x, y ∈ Rd . Indeed, if 2ρI (y)≥ ρI (x), this is clear, and if 2ρI (y)≤ ρI (x), then

ρ[0,2 j )d (x − y)≥ ρI (x)− ρI (y)≥
ρI (x)

2
.

In conclusion,

|ϕ ∗ (ρ−α
I f )(x)| =

∣∣∣∣∫
Rd
ρα

[0,2 j )d
(x − y)ϕ(x − y)ρ−α

[0,2 j )d
(x − y)ρ−α

I (y) f (y) dy
∣∣∣∣

≤ CρI (x)−α[2( j−k+vn)dρ−3α
[0,2 j−k−vn )d

∗ (ρ−α
I | f |)](x). □

The second auxiliary proposition is essentially a restatement of Lemmata 5.1, 5.2 and 5.3 in [Muscalu
et al. 2002a]. Also this estimate is needed in the proofs of Propositions 5.3, 5.4 and 5.5.
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Proposition 5.9. Let A1 be a positive constant, and let α > d. Then there exists a constant A2 such that
the following holds.

Let J ∈ D. Let I ⊂ D be a family of cubes satisfying∑
I∈I
I⊂I ′

|I | ≤ A1|I ′
|

for all cubes I ′ and |I | ≤ |J | for all I ∈ I. For each I ∈ I, let gI ∈ L2(R) be given. Then∥∥∥∥ρ−α
J

∑
I∈I

|I |1/2gIρ
−α
I

∥∥∥∥
2
≤ A2|J |

1/2 sup
I∈I

∥gI ∥2. (5-3)

Proof. We first prove the reminiscent inequality∥∥∥∥∑
I∈I

|I |1/2gI 1DI

∥∥∥∥
2
≤ 2Dd

√
5A1 sup

I∈I
∥gI ∥2

(∑
I∈I

|I |
)1/2

(5-4)

for all odd numbers D ≥ 3. Here the nonlocal cut-off functions are replaced by sharp cut-off functions.
Fix a family I and the corresponding functions gI . Let I ′

⊂ I be finite. Let A be the sharp constant
for the inequality (5-4) when considered over all finite subfamilies of I ′. Then∥∥∥∥∑

I∈I ′

|I |1/2gI 1DI

∥∥∥∥2

2
≤ 2

∑
I∈I ′

∑
J∈I ′

D J⊂5DI

⟨|I |1/2gI 1DI , |J |
1/2gJ 1D J ⟩ ≤ 2

∑
I∈I ′

|I |1/2∥gI ∥2

∥∥∥∥ ∑
J∈I ′

D J⊂5DI

|J |
1/2gJ 1D J

∥∥∥∥
2

≤ 2ADd/2 sup
I∈I ′

∥gI ∥
2
2

∑
I∈I ′

|I |1/2
( ∑

J∈I ′

J⊂5DI

|J |

)1/2

≤ 2
√

5A1 ADd sup
I∈I ′

∥gI ∥
2
2

(∑
I∈I ′

|I |
)
.

Consequently, A ≤ 2Dd√
5A1. As this constant is independent of I ′ and the functions gI , the proof

of (5-4) is complete.
To prove (5-3), we write

ρ−α
I ≤

∞∑
k=1

k−α1(2k−1)I and ρ−α
J ≤ 1J +

∞∑
l=1

l−α1(2l+1)J\(2l−1)J .

Set Ik,l = {I ∈ I : (2k − 1)I ∩ (2l + 1)J ̸= ∅}. Then∥∥∥∥ρ−α
J

∑
I∈I

|I |1/2gIρ
−α
I

∥∥∥∥
2
≤

∞∑
k,l=1

k−αl−α
∥∥∥∥1(2l+1)J\(2l−1)J

∑
I∈Ik,l

|I |1/2gI 1(2k−1)I

∥∥∥∥
2

≤

∞∑
k,l=1

k−αl−α
∥∥∥∥1(2 max{l,k}+2)J

∑
I∈Ik,l

|I |1/2gI 1(2k−1)I

∥∥∥∥
2

≲
∞∑

k,l=1

2−d/2k−α−d/2l−α|(2 max{l, k} + 2)J |
1/2 ≲ |J |

1/2. □
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Finally, we state as a separate proposition the obvious fact that elements of W with overlapping
projections are close to each other in the product space too, something that is a direct consequence of the
defining inequalities of W .

Proposition 5.10. Let a ≥ 0. Let Q, Q′
∈W satisfy |Q| ≥ |Q′

|. Assume that, for some n ∈ {1, 2, 3}, there
exist

ξ ∈ 2a Qn ∩ 2a Q′

n, η ∈ 2a Q ∩0, ζ ∈ 2a Q′
∩0.

Then 2a+4 Q ⊃ Q′.

Proof. First we note that the projection P : 0 → Rd defined through Pξ = ξn is a bijection. This follows
from the regularity of L and the fact 0 = {L(τ, τ, τ ) : τ ∈ Rd

}. Consider the metrics

distfull(ξ, η)= inf{r : η ∈ Q(ξ, r)},

distn(ξn, ηn)= inf{r : ηn ∈ Qn(ξn, r)}.

The left inverse P−1 is a 2-Lipschitz mapping (Rd , distn) → (0, distfull) following directly from the
definition of the metrics. We infer that

distfull(P
−1ξ,P−1Pη)≤ 2 distn(ξ,Pη),

distfull(P
−1ξ,P−1Pζ )≤ 2 distn(ξ,Pζ ),

so that
distfull(P

−1Pζ,P−1Pη)≤ 2a+2 diam Qn,

where the diameter diam is computed with respect to dn . As |Q| ≥ |Q′
|, we conclude 2a+3 Q ∩ Q′

̸= ∅,
and the claim follows. □

As an immediate corollary of Proposition 5.10, we conclude that the multitiles P ∈ BT have all their
frequency projections supported far from the projections of the top frequency. This will imply important
L2 orthogonality properties for the sum size.

Proposition 5.11. Given P ∈ BT with |IP | = 2 jd for some j ∈ Z, we have, for all n ∈ {1, 2, 3},

(Q P)n ⊂ Rd
\ Qn(ξT , 2− j−k2).

Proof. Define Q = Q P . By construction, 2k0+1 Q ∩ 0 ̸= ∅. On the other hand, as P ∈ BT , we know
that ξT /∈ 2k1+1 Q. Set Q′

= Q(ξT , 2− j+k1/50). Then Q′
∩ Q = ∅. It follows by Proposition 5.10 that

Q′
n ∩ Qn = ∅. □

5.1. Proof of Proposition 5.3: core size. For each i ∈ {1, . . . , S}, we find

φi ∈84α
n, jσ(i)−k1−5d(ξσ(i))

such that
ci = ∥ρ−α

Iσ(i)[φi ∗ f ]∥2, M
√

|Iσ(i)| ≤ ci ≤ DM
√

|Iσ(i)|.

Let

gi =

ρ−α
Iσ(i)[φi ∗ f ]

∥ρ−α
Iσ(i)[φi ∗ f ]∥2

.
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Now
S∑

i=1

M2
|Iσ(i)| ≲

S∑
i=1

ci |Iσ(i)|1/2⟨ f, φ̄i ∗ (ρ−α
Iσ(i)gi )⟩ ≤ ∥ f ∥2

∥∥∥∥ S∑
i=1

ci |Iσ(i)|1/2[φi ∗ (ρ−α
Iσ(i)gi )]

∥∥∥∥
2
.

Expanding the square and using the symmetry, we obtain∥∥∥∥ S∑
i=1

|Iσ(i)|1/2ci [φi ∗ (ρ
−α
IT

gi )]

∥∥∥∥2

2
≲ D2 M2

S∑
i=1

|Iσ(i)|1/2
S∑

l=i

|Iσ(l)|1/2⟨ρ−α
Iσ(l)gl, φl ∗ [φi ∗ (ρ

−α
Iσ(i)gi )]⟩. (5-5)

Let
Ai = {l ∈ {i, . . . , S} : supp φ̂l ∩ supp φ̂i ̸= ∅}.

By Proposition 5.8, for all l ∈ Ai ,

φl ∗ [φi ∗ (ρ−α
Iσ(i)gi )] ≤ Cρ−α

Iσ(i)MHLgi ,

where MHL is the Hardy–Littlewood maximal function. Using this estimate, the Cauchy–Schwarz
inequality and the Hardy–Littlewood maximal function theorem, we bound the right-hand side of (5-5) by

C D2 M2
S∑

i=1

|Iσ(i)|
∥∥∥∥ 1
|Iσ(i)|1/2

∑
l∈Ai

|Iσ(l)|1/2glρ
−α
Iσ(l)ρ

−α
Iσ(i)

∥∥∥∥
2
.

By hypothesis, for each l ∈ {1, . . . , S}, there exists a top multitile Al ∈Pσ(l) with ξσ(l) ∈ 2k1+1 Q Al . Hence,
given l, j ∈ Ai with l > j , we have

(2 supp φ̂l)∩ (2 supp φ̂ j ) ̸= ∅.
Therefore, we have

(2 supp φ̂l)∩ (2 supp φ̂ j ) ̸= ∅ and Iσ(l) ∩ Iσ( j) ̸= ∅

only if |Iσ(l)| ≳ |Iσ( j)|, as otherwise Proposition 5.10 would imply

2k2+1 Q Al ⊃ 2k1+5 Q Al ⊃ 2k1+1 Q A j ∋ ξσ( j),

which in turn would contradict Al ∈ Vσ(l). By the definition of the selection, |Iσ(l)| ≤ |Iσ( j)|. Moreover,
for every fixed Iσ( j), there are only up to C(d, k0) elements l ∈ Ai such that Iσ( j) = Iσ(l), so we can
conclude that, for any i ∈ {1, . . . , S}, ∥∥∥∥∑

l∈Ai

1Iσ(l)

∥∥∥∥
∞

≲ 1;

hence {Iσ(l) : l ∈ Ai } is a Carleson family. By Proposition 5.9,∥∥∥∥ 1
|Iσ(i)|1/2

∑
l∈Ai

|Iσ(l)|1/2glρ
−α
Iσ(l)ρ

−α
Iσ(i)

∥∥∥∥
2
≲ 1,

and we have shown the claim for the sum over all i ∈ {1, . . . , S}. □



2314 MARCO FRACCAROLI, OLLI SAARI AND CHRISTOPH THIELE

5.2. Proof of Proposition 5.4: boundary size. For each i ∈ {1, . . . , S}, we find

φi ∈84α
n (Qi ),

where Qi = Q Pi and Pi is a top multitile of σ(i) such that

ci = ∥ρ−α
Iσ(i)[φi ∗ f ]∥2, M

√
|Iσ(i)| ≤ ci ≤ DM

√
|Iσ(i)|.

Let

gi =
ρ−α

IT
[φi ∗ f ]

∥ρ−α
IT

[φi ∗ f ]∥2
.

Now
S∑

i=1

M2
|Iσ(i)| ≲

S∑
i=1

ci |Iσ(i)|1/2⟨ f, φ̄i ∗ (ρ−α
Iσ(i)gi )⟩ ≤ ∥ f ∥2

∥∥∥∥ S∑
i=1

ci |Iσ(i)|1/2[φi ∗ (ρ−α
Iσ(i)gi )]

∥∥∥∥
2
.

Fix κ ∈ {0, . . . , 99}. Write L = {i ∈ {1, . . . , S} : log2|Ii |
1/d

∈ κ+100Z}. Expanding the square and using
the symmetry, we obtain∥∥∥∥∑

i∈L

|Iσ(i)|1/2ci [φi ∗ (ρ−α
IT

gi )]

∥∥∥∥2

2
≲ D2 M2

∑
i∈L

|Iσ(i)|1/2
∑
l∈L

|Il |≤|Ii |

|Iσ(l)|1/2⟨glρ
−α
Iσ(l), φl ∗ [φi ∗ (ρ−α

Iσ(i)gi )]⟩.

Let
Ai = {l ∈ L : l ∈ {i, . . . , S}, supp φ̂l ∩ supp φ̂i ̸= ∅}.

By Proposition 5.8, the Cauchy–Schwarz inequality and the estimates for the Hardy–Littlewood maximal
function as above, it suffices to prove a bound by constant of∥∥∥∥ 1

|Iσ(i)|1/2
∑
l∈Ai

|Iσ(l)|1/2glρ
−α
Iσ(l)ρ

−α
Iσ(i)

∥∥∥∥
2
.

Indeed, by the triangle inequality we can then sum over κ ∈ {0, . . . , 99} to conclude the proof. By
Proposition 5.9, it hence remains to show that {Iσ(l) : l ∈ Ai } is a Carleson family.

Given l, j ∈ Ai with l > j ≥ i and hence |Iσ(l)| ≤ |Iσ( j)|, we have

(Q j )n ∩ (Qi )n ̸= ∅, (Ql)n ∩ (Qi )n ̸= ∅.
Therefore, we have

Iσ(l) ∩ Iσ( j) ̸= ∅

only if |Iσ(l)| = |Iσ( j)|, as otherwise Proposition 5.10 would imply

2k2+1 Ql ⊃ 2k2+1 Q j ∋ ξσ( j),

which in turn would contradict Pl ∈Vσ(l). Therefore Iσ( j) and Iσ(l) are pairwise disjoint unless Iσ( j)= Iσ(l).
However, as above, for every fixed Iσ( j), there are only up to C(d, k0) elements l ∈Ai such that Iσ( j)= Iσ(l).
Hence {Iσ(l) : l ∈ Ai } is a Carleson family, and the proof is complete. □
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5.3. Proof of Proposition 5.5: sum size. Consider an index i ∈ {1, . . . , S}. For θ ≥ 1, we define

Ci (θ)= {ξ ∈ Rd
: |ξ − ξσ(i)| ≤ θ(ξ − ξσ(i)) · e}.

Write
ai ( j, θ)= Ci (θ)∩ (Qn(ξσ(i), 2− j+1) \ Qn(ξσ(i), 2− j )).

We let
Bi

j = {P ∈ Bσ(i) : (Q P)n ∩ ai ( j, 2) ̸= ∅}.

We note that if P ∈ Bi
j , then by Proposition 5.11,

(Q P)n ⊂

j+50k2⋃
k= j−50k2

ai (k, 10).

For each P ∈ Bi
j , we find φP ∈ Mn(ξσ(i), (Q P)n) with φ̂P ⊂ (Q P)n such that, for

cP = ∥ρ−α
IP

[φP ∗ f ]∥2,

we have ∑
j∈Z

∑
P∈Bi

j

c2
P ≳ M2

|Iσ(i)|, cP ≤ DM
√

|IP |.

Let

gP =
ρ−α

IP
[φP ∗ f ]

∥ρ−α
IP

[φP ∗ f ]∥2

if P ∈ Bi
j for some i and j , and gP = 0 otherwise.

Now
S∑

i=1

M2
|Iσ(i)| ≲

S∑
i=1

∑
j∈Z

∑
P∈Bi

j

cP⟨ f, φ̄P ∗ (ρ−α
IP

gP)⟩

≤ ∥ f ∥2

∥∥∥∥ S∑
i=1

∑
j∈Z

∑
P∈Bi

j

cP [φP ∗ (ρ−α
IP

gP)]

∥∥∥∥
2
.

By the triangle inequality, we may restrict the sum over j ∈ Z to a sum over j ∈ κ+1000k2Z and integer κ .
For fixed κ and every i ∈ {1, . . . , S} we define

E i
κ =

⋃
j∈κ+1000k2Z

Bi
j .

Squaring the second factor and using symmetry, we compute∥∥∥∥ S∑
i=1

∑
P∈E i

κ

cP [φP ∗ (ρ−α
IP

gP)]

∥∥∥∥2

2

≲

(
sup

P∈
⋃S

i=1 E i
κ

c2
P

|IP |

) S∑
s=1

∑
P∈Es

κ

|IP |
1/2

S∑
l=1

∑
P ′

∈E l
κ

|IP ′ |≤|IP |

|IP ′ |
1/2

⟨ρ−α
IP ′

gP ′, φP ′ ∗ [φP ∗ (ρ−α
IP

gP)]⟩. (5-6)
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Fix s and P ∈ Pσ(s), and let

AP =

{
P ′

∈

⋃
j≤0

Bs
jσ(s)+1000 j : supp φ̂P ∩ supp φ̂P ′ ̸= ∅

}
.

By Proposition 5.11, we may apply Proposition 5.8 to bound

φP ′ ∗ [φP ∗ (ρ−α
IP

gP)] ≲ ρ
−α
IP

MHLgP .

By the Cauchy–Schwarz inequality and the Hardy–Littlewood maximal function theorem as above, we
hence obtain∑
P ′∈AP

|IP ′ |
1/2

⟨ρ−α
IP ′

gP ′, φP ′ ∗ [φP ∗ (ρ−α
IP

gP)]⟩

≲
∑

P ′∈AP

|IP ′ |
1/2

⟨ρ−α
IP
ρ−α

IP ′
gP ′,MHLgP⟩ ≲

∥∥∥∥ ∑
P ′∈AP

|IP ′ |
1/2ρ−α

IP
ρ−α

IP ′
gP ′

∥∥∥∥
2
≲ |IP |

1/2ρIP (R
d
\ Iσ(s)), (5-7)

where the last inequality follows by Proposition 5.12 below, the fact that, for every fixed IP , there are
only up to C(d, k0) elements P ′

∈ AP such that IP = IP ′ , and Proposition 5.9.

Proposition 5.12. Assume that L ∈ σ(l), H ∈ σ(h), and that L , H ∈ AP . Assume additionally that
|IH |< |IL |< |IP |. Then

IL ∩ IH = ∅, (IL ∪ IH )∩ IP = ∅.

Proof. Because L , H ∈ AP ,

(QL)n ∩ (Q P)n ̸= ∅, (Q H )n ∩ (Q P)n ̸= ∅.

As 22000k2 |IH | ≤ 21000k2 |IL | ≤ |IP |, this implies, by Proposition 5.10,

ξσ(s) ∈ 2k2+1 Q P ⊂ 2k2+1 QL ⊂ 2k2+1 Q H . (5-8)

Further,

al( j, 10)∩ ah( j ′, 10) ̸= ∅,

with j ′
≤ j −10k2 only if ξσ(l) ·e> ξσ(h) ·e. Hence s < l < h, and the claim follows by (5-8), as otherwise

it would contradict L ∈ Vσ(l) and H ∈ Vσ(h). □

Applying the estimate (5-7) to the second factor on the right-hand side of (5-6), we obtain

S∑
s=1

∑
P∈Es

κ

|IP |
1/2

∥∥∥∥ ∑
P ′∈AP

|IP ′ |
1/2ρ−α

IP
ρ−α

IP ′
gP ′

∥∥∥∥
2
≲

S∑
s=1

∑
P∈Pσ(s)

|IP |ρ−α
IP
(Rd

\ Iσ(s))

≲
S∑

s=1

|Iσ(s)|
∞∑

k=0

k2−k ≲
S∑

s=1

|Iσ(s)|.

This concludes the proof of Proposition 5.5. □
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5.4. Proof of Proposition 5.7: recursion. To streamline the language, we introduce the following defini-
tion.

Definition 5.13 (admissible tree). Let V be a finite subset of multitiles. A tree T = T (ξ, I0,V) is said to
be n-admissible with respect to boundary size if

6bdr
n,2, fn

(T )≤6
bdr,top
n,2, fn

(T ).

It is said to be n-admissible with respect to core size if

6cor
n,2, fn

(T )≤6
cor,top
n,2, fn

(T ).

Proposition 5.14. Let N , N ′ > 0. The family of multitiles

V = {P : Q P ∈ WN , IP ⊂ [−N ′2N , N ′2N
]
3×d

},

with W in Proposition 2.2, is a convex collection. If σ is a selection on a convex collection, then Vσ(i) is a
convex collection for all i ∈ {1, . . . , S}.

Proof. The proof is clear. □

Now we can proceed to the actual proof. We define the selection on V as follows. For notational
purposes, we set Iσ(0) = Rd , Pσ(0) = ∅, and Vσ(0) = V . Finally, without loss of generality and only for
notational convenience, assume ∥ fn∥2 = 1 for all n.

Suppose σ(i −1) has been defined. A tree T is called an X -tree if X (T )≥ 2(M−10d)/2 for some size X .
We first define the selection by choosing repeatedly 6cor,top

n,2, fn
-trees with n = 1 such that trees with larger

top cubes are chosen first, only admissible trees are chosen, and only trees T with 2(T ) ̸= 0 are chosen.
We denote by sn the number of steps at which we reach the last tree chosen. This number is finite as there
are only finitely many multitiles in the original collection V .

We replace V with Vσ(sn) \Pσ(sn). We repeat the same process with X replaced by 6cor,top
n,2, fn

, first with
n = 2 and then with n = 3. This way, we create three selections. The first is σ1 on V . The second
is σ2 on Vσ(s1) \Pσ(s1), and the third is σ3 on Vσ(s2) \Pσ(s2). By Proposition 5.3, each of these selections
satisfies (5-2). Set

V1 = V \

3⋃
n=1

sn⋃
i=sn−1+1

Pσ(i).

A tree T on V1 is either inadmissible or satisfies

2(T )6cor,top
n,2, fn

(T )≤ 2(M−10d)/2.

For admissible trees, the latter condition is the desired size bound. On the other hand, if an inadmissible
tree violates the size bound, then, by convexity of the reference family, it contains an admissible subtree
violating the size bound. But this possibility was just ruled out. This concludes the treatise with respect
to the core size.
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We repeat the same selection process with 6bdr,top
n,2, fn

instead of 26cor,top
n,2, fn

, and this gives us three more
selections σ4, σ5, and σ6 and a family V2 such that the trees in the selections satisfy (5-2) by Proposition 5.4
and, by the argument as in the case of the core size, the size bound is also valid.

It remains to treat the sum size. Let {eδ : 1 ≤ δ ≤ 2d} be the collection of unit vectors orthogonal to the
(d−1)-dimensional hyperplanes. Let µδ,n ∈ Mn(Ceδ ), with

2d∑
δ=1

µ̂δ,n(ξ)= 1, ξ ̸= 0.

For a tree T on V2 or any of its subfamilies, we set µ̂δT,n(ξ) = µ̂δ,n(ξ − (ξT )n). We run the selection
choosing trees T such that

6sum
n,2,µδ,n∗ fn

(T )≥ 2(M−10d)/2,

so that those with maximal eδ · (ξT )n are chosen first. Again, we repeat this process for each n and each δ.
Each of the 6d selections satisfies the hypotheses of Proposition 5.5, and the trees not chosen satisfy (5-1).
Collecting the trees in all of the selections constructed so far, we obtain the family TM , and the proof is
complete. □

5.5. Conclusion of the proof of Proposition 2.8. Because the family of multitiles V in the hypothesis
of the proposition is finite, there exists M such that the hypothesis of Proposition 5.7 holds. The claim
except for (2-5) follows by induction.

To prove (2-5), we first note that, for any tree T and any p ∈ [1,∞],

6cor
n,p, fn

(T )+6bdr
n,p, fn

(T )≤ C(d)∥ fn∥∞

is obvious. It remains to bound the sum size.
Let η be a smooth function with η ≳ 1IT and supp η̂ ⊂ Qn∗

(0, 2− jT ). Let {ϕP ∈84α
n (Q P) : P ∈ BT }

be functions that almost achieve the supremum in the definition of the sum size. First, we note∑
P∈BT

∥1IP [ϕP ∗ (1Rd\3IT fn)]∥
2
2 ≲ ∥ fn∥∞

∑
P∈BT

|IIP |ρ−α
IP
(Rd

\ 3IT )≲ |IT |∥ fn∥∞.

Second, we note ∑
P∈BT

∥1IP [ϕP ∗ (13IT fn)]∥
2
2 ≲

k2∑
k=k1

∑
j≤ jT

∥1T [ϕ j,k ∗ (13IT fn)]∥
2
2 (5-9)

for a family of sequences {{ϕ j,k ∈94α
n, j−k(ξT ) : j ≤ jT } : k ∈ {k1, . . . , k2}}. Without loss of generality, we

fix k and we drop it from notation. For terms with jT − j ≤ 100, we estimate

∥1T [ϕ j ∗ (13IT fn)]∥
2
2 ≲ |IT |∥ fn∥∞

as in the cases of core and boundary sizes. For terms with jT − j > 100, we note that

[Rd
\ Qn(ξT , 2− j+k−100)] ⊃ (supp η̂+ supp ϕ̂ j )⊃ supp(η̂ ∗ ϕ̂ j ).
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Consequently, we have supp(η̂∗ ϕ̂ j )∩supp(η̂∗ ϕ̂ j ′)=∅ whenever | j − j ′
| ≥ 100, and

∑
j< jT −100 η̂∗ ϕ̂ j

is a Mikhlin multiplier with bounds only depending on the dimension.
We bound each inner sum in (5-9) by∑

j< jT −100

∥η[ϕ j ∗ (13IT fn)]∥
2
2

≲
100∑
l=1

∑
j∈l+100Z
j< jT −100

∥η[ϕ j ∗ (13IT fn)]∥
2
2 ≲

100∑
l=1

∥∥∥∥η ∑
j∈l+100Z
j< jT −100

[ϕ j ∗ (13IT fn)]

∥∥∥∥2

2
≲ ∥13IT fn∥

2
2,

where the last step followed by the Mikhlin multiplier theorem. The claim then follows. □

6. Proof of Proposition 2.2: tensorized model form

By dominated convergence, there exists N ′
= N ′(d, α, ε, k0, fn, N ) > 0 such that, for the finite subset of

multitiles V = {P : Q P ∈ WN , IP ⊂ [−N ′2N , N ′2N
]
3×d

}, we have∣∣∣∣ ∑
Q∈WN

∫
Rd

3∏
n=1

[φQ,n ∗ fn(x)] dx
∣∣∣∣ ≤ 2

∣∣∣∣∑
P∈V

∫
Rd

1IP (x)
3∏

n=1

[φP,n ∗ fn(x)] dx
∣∣∣∣.

Consider the families of trees TM as in Proposition 2.8. By the triangle inequality, we get the upper
bound ∑

M∈N∪{−∞}

∑
T ∈TM

∣∣∣∣ ∑
P∈PT

∫
Rd

1IP (x)
3∏

n=1

[φP,n ∗ fn(x)] dx
∣∣∣∣.

By Proposition 2.7, we get the upper bound∑
M∈N∪{−∞}

∑
T ∈TM

|IT |

(
6bdr

n∗,∞, fn∗
(T )

∏
n ̸=n∗

6sum
n, fn

(T )+
3∏

n=1

6cor
n,qn, fn

(T )
)
, (6-1)

where the second summand in brackets appears if and only if PT \BT ̸= ∅, i.e., if there exists P ∈ PT

with 2k1+1 Q P ∋ ξT .
By log-convexity and (2-5) from Proposition 2.8, we have

6cor
n,qn, fn

(T )≲6cor
n,2, fn

(T )2/qn , 6sum
n, fn

(T )≲6sum
n, fn

(T )2/qn .

By the local Bernstein’s inequality (see, e.g., Proposition 1.2 in [Fraccaroli et al. 2022]),

6bdr
n,∞, fn

(T )≲ 2dvn/26bdr
n,2, fn

(T ), 6cor
n,qn, fn

(T )≲ 2dvn(1/2−1/qn)6cor
n,2, fn

(T ).

In addition, we know by Proposition 2.8 that, for all n ∈ {1, 2, 3} and T ∈ TM ,

6bdr
n,2, fn

(T )≲ min{1, 2M/2
∥ fn∥2}, 6sum

n, fn
(T )≤ 2M/2

∥ fn∥2, 6cor
n,2, fn

(T )≲ 1.

Moreover, if there exists P ∈ PT with 2k1+1 Q P ∋ ξT , we also have

6cor
n,2, fn

(T )≤ 2M/2
∥ fn∥2.
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Recalling that there is n∗ such that vn∗
= 0, we hence bound (6-1) by∑

M∈N∪{−∞}

∑
T ∈TM

|IT | min{1, 2M/2
∥ fn∗

∥2}
∏

n ̸=n∗

2M/qn∥ fn∥
2/qn
2

≲
∑

M∈N∪{−∞}

min{2−M/qn∗ , 2M(1/2−1/qn∗ )∥ fn∗
∥2}

∏
n ̸=n∗

∥ fn∥
2/qn
2 ≲

3∏
n=1

∥ fn∥
2/qn
2 ,

where the first inequality used equation (2-6) from Proposition 2.8. This concludes the proof of
Proposition 2.2. □

7. Proof of Theorem 1.1

The integral ∫
R3×d

δ0(ξ1 + ξ2 + ξ3) f̂1(ξ1) f̂2(ξ2) f̂3(ξ3)m(L−1ξ) dξ (7-1)

is absolutely convergent for Schwartz functions f1, f2, and f3. Approximating m with a symbol supported
in a compact set not meeting {(τ, τ, τ ) : τ ∈ Rd

}, we conclude by the Lebesgue dominated convergence
theorem, boundedness of m and absolute convergence of the integral that it suffices to assume m is
compactly supported.

By multilinear interpolation [Janson 1988], it suffices to prove a bound for the integral (7-1) by

C
3∏

n=1

∥ fn∥qn

when fn = 1En for measurable sets En of finite measure and where C is a constant independent of all En

and m. Because m is assumed to be compactly supported, the integral (7-1) is absolutely convergent even
with fn = 1En . By standard convolution approximation and the dominated convergence theorem, we see
that it suffices to bound the integral (7-1) by

C
3∏

n=1

|En|
1/qn

whenever fn is a smooth function with

∥ fn∥∞ ≤ 2, ∥ fn∥2 ≤ 2|En|
1/2.

Indeed, the convolution mollification converges in all L p norms with p finite, in particular with p ∈ {2, qn}.
We see that, for each n ∈ {1, 2, 3}, the function fn satisfies the assumptions on Proposition 2.2.

Next we form a Whitney-type decomposition of R3×d
\0. For each ξ ∈ R3×d

\0, set

rξ =
3
4 inf{r > 0 : Q(ξ, r)∩0 ̸= ∅},

where Q(ξ, r)⊂ R3×d is the open rectangular box defined in Section 2. Let

A = {Q(ξ, r) : r = 2−k0rξ }.
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We let W be a maximal pairwise disjoint family of Q ∈ A such that Q ∩ [−2N , 2N
]
3×d

̸= ∅, where
N ≥ 100 is an integer such that supp m ⊂ L−1([−2N , 2N

]
3×d). It is clear that, for each fixed k ≤ k0,

{2k Q : Q ∈ W}

has bounded overlap. Note that

supp m ⊂ L−1
( ⋃

Q∈W

5Q
)
.

For Q ∈ W , we define Qn = {ξn ∈ Rd
: ξ ∈ Q}. Let {ηQ : Q ∈ W} form a partition of unity adapted

to W , meaning that, for each Q ∈ W , the smooth function ηQ ≥ 0 is supported in 6Q and satisfies the
bounds

|∂
γ1
1 ∂

γ2
2 ∂

γ3
3 ηQ(ξ)| ≤ Cγ |Q1|

−|γ1|/d |Q2|
−|γ2|/d |Q3|

−|γ3|/d

for constants Cγ only depending on γ = (γ1, γ2, γ3) ∈ N3×d .
Let χQ,n be a smooth function with

17Qn ≤ χQ,n ≤ 18Qn , |∂γχQ,n(τ )| ≤ Cγ |Qn|
−|γ |/d

for all γ ∈ Nd and |γ | ≤ 100d. Let χQ(ξ)= χQ,1(ξ1)χQ,2(ξ2)χQ,3(ξ3) for ξ ∈ R3×d .
Let AQ be a linear mapping sending 7Q −P(ξQ) into [0, 2π)3×d and such that

AQ([8Q −P(ξQ)]) \ (−2π, 2π)3×d
̸= ∅,

where ξQ is such that Q = Q(ξQ, r) and P is the orthogonal projection of R3×d onto 0. Such a matrix is
of block form: AQ = AQ,1 ⊕ AQ,2 ⊕ AQ,3. We expand as a Fourier series

m Q(L−1ξ) := ηQ(ξ)m(L−1ξ)= χQ(ξ)
∑

k∈Z3×d

aQ,k

3∏
n=1

e2π ikn ·Anξn ,

so that m =
∑

Q∈W m Q .
Write

m Q,k,n(L−1
n ξn)= χQ,n(ξn)e2π ikn ·Anξn and ak = sup

Q∈W
|aQ,k |.

For the function φQ,k,n defined by

φ̂Q,k,n(τ )= (1 + |kn|)
−4αm Q,k,n(L−1

n τ),

we have cφQ,k,n ∈84α
n (Q) up to a bounded multiplicative constant c independent of Q, k, and n.

Now we can write∣∣∣∣∫
R3×d

δ0(ξ1 + ξ2 + ξ3) f̂1(ξ1) f̂2(ξ2) f̂3(ξ3)m(L−1ξ) dξ
∣∣∣∣

≤

∑
k∈Z3×d

|ak |

∣∣∣∣ ∑
Q∈W

∫
R3×d

δ0(ξ1 + ξ2 + ξ3)

3∏
n=1

m Q,k,n(L−1
n ξn) f̂n(ξn) dξ

∣∣∣∣
≲

∑
k∈Z3×d

|ak |(1 + |k|)12α
∣∣∣∣ ∑

Q∈W

∫
Rd

3∏
n=1

[φQ,k,n ∗ fn(x)] dx
∣∣∣∣.
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By Proposition 2.2, this is bounded by

C
3∏

n=1

|En|
1/qn

∑
k∈Z3×d

|ak |(1 + |k|)12α.

By smoothness of the symbol m and the upper bound on α, we know |ak | ≤ C |k|
−12α−3d−1, and hence

the proof is complete. □
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