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We develop algebraic tools for statistical inference from samples of rotation matrices. This rests on the
theory of D-modules in algebraic analysis. Noncommutative Gröbner bases are used to design numerical
algorithms for maximum likelihood estimation, building on the holonomic gradient method of Sei, Shibata,
Takemura, Ohara, and Takayama. We study the Fisher model for sampling from rotation matrices, and
we apply our algorithms to data from the applied sciences. On the theoretical side, we generalize the
underlying equivariant D-modules from SO(3) to arbitrary Lie groups. For compact groups, our D-ideals
encode the normalizing constant of the Fisher model.

1. Introduction

Many of the multivariate functions that arise in statistical inference are holonomic. Being holonomic
roughly means that the function is annihilated by a system of linear partial differential operators with
polynomial coefficients whose solution space is finite-dimensional. Such a system of PDEs can be written
as a left ideal in the Weyl algebra, or D-ideal, for short. This representation allows for the application of
algebraic geometry and algebraic analysis, including the use of computational tools, such as Gröbner
bases in the Weyl algebra [28; 30].

This important connection between statistics and algebraic analysis was first observed by a group of
scholars in Japan, and it led to their development of the holonomic gradient method (HGM) and the
holonomic gradient descent (HGD). We refer to [10; 16; 31] and to further references given therein. The
point of departure for the present article is the work of Sei et al. [29], who developed HGD for data
sampled from the rotation group SO(n), and the article of Koyama [16] who undertook a study of the
associated equivariant D-module.

The statistical model we examine in this article is the Fisher distribution on the group of rotations,
defined in (1) and (2). The aim of maximum likelihood estimation (MLE) is to learn the model parameters
2 that best explain a given data set. In our case, the MLE problem is difficult because there is no simple
formula for evaluating the normalizing constant of the distribution. This is where algebraic analysis
comes in. The normalizing constant is a holonomic function of the model parameters, and we can use its
holonomic D-ideal to derive an efficient numerical scheme for solving the maximum likelihood estimation
problem.
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The present article addresses diverse audiences and it offers multiple points of entry. First, we give an
introduction to the use of D-module methods in statistics. We focus on data in the group of rotations in
3-space, and we advance both the theory and the practice of this application. Readers with an interest in
the applied sciences may start in Section 5, as that displays a panorama of occurrences of rotation data in
the real world. Experts in representation theory can jump straight to Section 6, where our approach is
developed for arbitrary Lie groups. For such readers, the particular group SO(3) is merely an example.

Our presentation is organized as follows. Section 2 is purely expository. Here, we introduce the Fisher
model, and we express its log-likelihood function in terms of the sufficient statistics of the given data.
These are obtained from the singular value decomposition of the sample mean. In Section 3, we turn to
algebraic analysis. We review the holonomic D-ideal in [29] that annihilates the normalizing constant of
the Fisher distribution, and we derive its associated Pfaffian system. Passing to n ≥ 3, we next study the
D-ideals on SO(n) given in [16]. First new results can be found in Theorem 3.4 and in Propositions 3.5
and 3.6.

Section 4 is concerned with numerical algorithms for maximum likelihood estimation. We develop
and compare holonomic gradient ascent (HGA), holonomic BFGS (H-BFGS), and a holonomic Newton
method. We implemented these methods in the language R. Section 5 highlights how samples of rotation
matrices arise in the sciences and engineering. Topics range from materials science and geology to
astronomy and biomechanics. We apply holonomic methods to data from the literature, and we discuss
both successes and challenges.

The D-ideal of the normalizing constant is of independent interest from the perspective of representation
theory, as it generalizes naturally to other Lie groups. The development of that theory is our main new
mathematical contribution. This work is presented in Section 6.

2. The Fisher model for random rotations

In this section, we introduce the Fisher model on the rotation group, building on [29]. The group SO(3)
consists of all real 3×3 matrices Y that satisfy Y tY = Id3 and det(Y ) = 1. This is a smooth algebraic
variety of dimension 3 in the 9-dimensional space R3×3. See [5] for a study of rotation groups from the
perspective of combinatorics and algebraic geometry.

The Haar measure on SO(3) is the unique probability measure µ that is invariant under the group
action. The Fisher model is a family of probability distributions on SO(3) that is parametrized by 3× 3
matrices 2. For a fixed 2, the density of the Fisher distribution equals

f2(Y ) =
1

c(2)
· exp(tr(2t

· Y )) for all Y ∈ SO(3). (1)

This is the density with respect to the Haar measure µ. The denominator is the normalizing constant. It is
chosen such that

∫
SO(3) f2(Y )µ(dY ) = 1. This requirement is equivalent to

c(2) =
∫

SO(3)
exp(tr(2t

· Y ))µ(dY ). (2)
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This function is the Fourier–Laplace transform of the Haar measure µ; see Remark 6.6. The Fisher model
is an exponential family. It is one of the simplest statistical models on SO(3). The task at hand is the
accurate numerical evaluation of the integral (2) for given 2 in R3×3. We begin with the observation
that, since integration is against the Haar measure, the function (2) is invariant under multiplying 2 on
the left or right by a rotation matrix:

c(Q ·2 · R) = c(2) for all Q, R ∈ SO(3).

In order to evaluate (2), we can therefore restrict to the case of diagonal matrices. Namely, given any
3× 3 matrix 2, we first compute its sign-preserving singular value decomposition

2 = Q · diag(x1, x2, x3) · R.

Sign-preserving means that Q, R ∈ SO(3) and |x1| ≥ x2 ≥ x3 ≥ 0. For nonsingular 2 this implies that
x1 > 0 whenever det(2) > 0 and x1 < 0 otherwise.

The normalizing constant c(2) is the following function of the three singular values:

c̃(x1, x2, x3) := c(diag(x1, x2, x3)) =

∫
SO(3)

exp(x1 y11+ x2 y22+ x3 y33)µ(dY ). (3)

The statistical problem we address in this paper is parameter estimation for the Fisher model. Suppose
we are given a finite sample {Y1, Y2, . . . , YN } from the rotation group SO(3). We refer to Figure 1
for a concrete example. Our aim is to find the parameter matrix 2 whose Fisher distribution f2 best

Figure 1. A dataset of 28 rotations from a study in vectorcardiography [7], a method in
medical imaging. Each point represents the rotation of the unit standard vector on the
x-axis (depicted in red color), the y-axis (green), and the z-axis (purple). This sample
from the group SO(3) will be analyzed in Section 5.1.



192 MICHAEL F. ADAMER, ANDRÁS C. LŐRINCZ, ANNA-LAURA SATTELBERGER AND BERND STURMFELS

explains the data. We work in the classical framework of likelihood inference, i.e. we seek to compute
the maximum likelihood estimate (MLE) for the given data {Y1, Y2, . . . , YN }. By definition, the MLE is
the 3× 3 parameter matrix 2̂ which maximizes the log-likelihood function. Thus, we must solve an
optimization problem.

From our data we obtain the sample mean Ȳ = 1
N

∑N
k=1 Yk . Of course, the sample mean Ȳ is generally

not a rotation matrix anymore. We next compute the sign-preserving singular value decomposition of the
sample mean, i.e., we determine Q, R ∈ SO(3) such that

Ȳ = Q · diag(g1, g2, g2) · R.

The signed singular values g1, g2, g3 together with Q and R are sufficient statistics for the Fisher model.
The sample {Y1, . . . , YN } enters the log-likelihood function only via g1, g2, g3.

Lemma 2.1 [29, Lemma 2]. The log-likelihood function for the given sample from SO(3) is

` : R3
−→ R, x 7→ x1g1 + x2g2 + x3g3 − log(c̃(x1, x2, x3)). (4)

If (x̂1, x̂2, x̂3) is the maximizer of the function `, then the matrix 2̂ = Q diag(x̂1, x̂2, x̂3)R is the MLE
of the Fisher model (1) of the sample {Y1, . . . , YN } from the rotation group SO(3).

Lemma 2.1 says that we need to maximize the function (4) in order to compute the MLE in the Fisher
model. We note that a local maximum is already a global one since (4) is a strictly concave function. The
maximum is attained at a unique point in R3. We shall compute this point using tools from algebraic
analysis that are discussed in the next section.

Remark 2.2. The singular values of the sample mean Ȳ are bounded from above and below, namely
1≥ |g1| ≥ g2 ≥ g3 ≥ 0. If g3 is close to 1, i.e., the average of the rotation matrices is almost a rotation
matrix, then the data is typically concentrated about a preferred rotation. In this case the normalizing
constant becomes very large and MLE on SO(3) is numerically intractable; see also Remark 4.3. However,
due to the small spread of the data around a point in SO(3), a matrix valued Gaussian model on R3 is an
accurate approximation.

3. Holonomic representation

We shall represent the normalizing constant c̃ by a system of linear differential equations it satisfies.
This is known as the holonomic representation of this function. We work in the Weyl algebra D and in
the rational Weyl algebra R with complex coefficients:

D = C[x1, x2, x3]〈∂1, ∂2, ∂3〉 and R = C(x1, x2, x3)〈∂1, ∂2, ∂3〉.

We refer to [28; 30] for basics on these two noncommutative algebras of linear partial differential operators
with polynomial and rational function coefficients, respectively. In order to stress the number of variables,
we sometimes write D3 instead of D and R3 instead of R. By a D-ideal we mean a left ideal in D,
and by an R-ideal a left ideal in R. The use of these algebras in statistical inference was pioneered by
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Takemura, Takayama, and their collaborators [10; 16; 17; 29; 31]. We begin with an exposition of their
results from [29].

The normalizing constant c̃ is closely related to the hypergeometric function 0 F1 of a matrix argument.
In [29], annihilating differential operators of c̃ are derived from

Hi = ∂2
i − 1 +

∑
j 6=i

1
x2

i − x2
j
(xi∂i − x j∂ j ) for i = 1, 2, 3. (5)

These in turn can be obtained from Muirhead’s differential operators in [21, Theorem 7.5.6] by a change
of variables. In the notation of [28], we have Hi • c̃ = 0 for i = 1, 2, 3. Written in the more familiar
form of linear PDEs, this says

∂2c̃
∂x2

i
+

∑
j 6=i

1
x2

i − x2
j

(
xi
∂ c̃
∂xi
− x j

∂ c̃
∂x j

)
= c̃ for i = 1, 2, 3.

Note that the operators Hi are elements in the rational Weyl algebra R. Clearing the denominators, we
obtain elements Gi in the Weyl algebra D that annihilate c̃, namely

Gi =
∏
j 6=i

(x2
i − x2

j ) · Hi . (6)

By [29, Theorem 1], the following three additional differential operators in D annihilate c̃:

L i j := (x2
i − x2

j )∂i∂ j − (x j∂i − xi∂ j ) − (x2
i − x2

j )∂k . (7)

Here the indices are chosen to satisfy 1≤ i < j ≤ 3 and {i, j, k} = {1, 2, 3}.
Let us consider the D-ideal that is generated by the six operators in (6) and (7):

I := 〈G1,G2,G3, L12, L13, L23〉. (8)

In the rational Weyl algebra, we have RI = 〈H1, H2, H3, L12, L13, L23〉 as R-ideals. We enter the
D-ideal I into the computer algebra system Singular:Plural as follows:

ring r = 0,(x1,x2,x3,d1,d2,d3),dp;
def D = Weyl(r); setring D;
poly L12 = (x1^2-x2^2)*d1*d2 - (x2*d1-x1*d2)-(x1^2-x2^2)*d3;
poly L13 = (x1^2-x3^2)*d1*d3 - (x3*d1-x1*d3)-(x1^2-x3^2)*d2;
poly L23 = (x2^2-x3^2)*d2*d3 - (x3*d2-x2*d3)-(x2^2-x3^2)*d1;
poly G1 = (x1^2-x2^2)*(x1^2-x3^2)*d1^2 + (x1^2-x3^2)*(x1*d1-x2*d2)

+ (x1^2-x2^2)*(x1*d1-x3*d3) - (x1^2-x2^2)*(x1^2-x3^2);
poly G2 = (x2^2-x1^2)*(x2^2-x3^2)*d2^2 + (x2^2-x3^2)*(x2*d2-x1*d1)

+ (x2^2-x1^2)*(x2*d2-x3*d3) - (x2^2-x1^2)*(x2^2-x3^2);
poly G3 = (x3^2-x1^2)*(x3^2-x2^2)*d3^2 + (x3^2-x2^2)*(x3*d3-x1*d1)

+ (x3^2-x1^2)*(x3*d3-x2*d2) - (x3^2-x1^2)*(x3^2-x2^2);
ideal I = L12,L13,L23,G1,G2,G3;
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We can now perform various symbolic computations in the Weyl algebra D. We used the libraries
dmodloc [1] and dmod [18], due to Andres, Levandovskyy, and Martín-Morales. In particular, the
following two lines confirm that I is holonomic and its holonomic rank is 4:

isHolonomic(I);
holonomicRank(I);

The rank statement means algebraically that dimC(x1,x2,x3)(R/RI ) = 4. In terms of analysis, it means
that the set of holomorphic solutions to I on a small open ball U ⊂ C3 is a 4-dimensional vector space.
Here U is chosen to be disjoint from the singular locus

Sing(I ) =
{

x ∈ C3
: (x2

1 − x2
2)(x

2
1 − x2

3)(x
2
2 − x2

3) = 0
}
. (9)

We note that the normalizing constant c̃ = c̃(x1, x2, x3) is a real analytic function on R3
\Sing(I ) that

extends to a holomorphic function on all of complex affine space C3.
Using Gröbner bases in the rational Weyl algebra R, we find that the initial ideal of RI for the degree

reverse lexicographic order is generated by the symbols of our six operators:

in(RI ) = 〈 ∂1∂2 , ∂1∂3 , ∂2∂3 , ∂
2
1 , ∂

2
2 , ∂

2
3 〉.

The set of standard monomials equals S = {1, ∂1, ∂2, ∂3}. This is a C(x1, x2, x3)-basis for the vector
space R/RI . In this situation, we can associate a Pfaffian system to the D-ideal I . For the general theory,
we refer the reader to [30] and specifically to [28, (23)].

The Pfaffian system is a system of first-order linear differential equations associated to the holonomic
function c̃. It consists of three 4×4 matrices P1, P2, P3 whose entries are rational functions in x1, x2, x3.
We introduce the column vector C = ( c̃, ∂1 • c̃, ∂2 • c̃, ∂3 • c̃ )t.

Theorem 3.1 [29, Theorem 2]. The Pfaffian system associated to the normalizing constant c̃ of the
Fisher distribution (1) consists of the following three vector equations:

∂i •C = Pi ·C for i = 1, 2, 3, (10)

where the matrices P1, P2, P3 ∈ C(x1, x2, x3)
4×4 are

P1 =


0 1 0 0

1 x1(−2x2
1+x2

2+x2
3 )

(x2
1−x2

3 )(x
2
1−x2

2 )

x2
x2

1−x2
2

x3
x2

1−x2
3

0 x2
x2

1−x2
2

−x1
x2

1−x2
2

1

0 x3
x2

1−x2
3

1 −x1
x2

1−x2
3

 , P2 =


0 0 1 0
0 −x2

x2
2−x2

1

x1
x2

2−x2
1

1

1 x1
x2

2−x2
1

x2(x2
1−2x2

2+x2
3 )

(x2
2−x2

1 )(x
2
2−x2

3 )

x3
x2

2−x2
3

0 1 x3
x2

2−x2
3

−x2
x2

2−x2
3

 ,

and P3 =


0 0 0 1
0 −x3

x2
3−x2

1
1 x1

x2
3−x2

1

0 1 −x3
x2

3−x2
2

x2
x2

3−x2
2

1 x1
x2

3−x2
1

x2
x2

3−x2
2

x3(x2
1+x2

2−2x2
3 )

(x2
3−x2

1 )(x
2
3−x2

2 )

 .
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We reproduced this Pfaffian system from the operators G1,G2,G3, L12, L13, L23 with the Mathe-
matica package HolonomicFunctions [15]. This was done by running Gröbner basis computations in
the rational Weyl algebra R with the degree reverse lexicographic order. See [28, Example 3.4] for an
illustration on how this is done.

The Pfaffian system (10) allows us to recover the i th partial derivative of the normalizing constant
as the first coordinate of the column vector Pi ·C . In symbols we have ∂i • c̃ = (Pi ·C)1. We make
extensive use of this fact when computing the MLE in Section 4. In the same vein, we can recover the
Hessian of c̃ from the Pfaffian system of c̃ as follows:

∂2
1 • c̃ = (P1 ·C)2, ∂1∂2 • c̃ = (P2 ·C)2, ∂1∂3 • c̃ = (P3 ·C)2,
∂2

2 • c̃ = (P2 ·C)3, ∂2∂3 • c̃ = (P3 ·C)3, ∂2
3 • c̃ = (P3 ·C)4.

(11)

This allows for the use of second order optimization algorithms, see Section 4.
An object of interest—from the algebraic analysis perspective—is the Weyl closure of the D-ideal I .

By definition, the Weyl closure is the following D-ideal which clearly contains I :

W (I ) := RI ∩ D.

In general, it is a challenging problem to compute the Weyl closure of a D-ideal. This computation is
reminiscent of finding the radical of a polynomial ideal, which, according to Hilbert’s Nullstellensatz,
consists of all polynomials that vanish on the complex solutions to the given polynomials. The Weyl
closure plays a similar role for holonomic functions. It turns out that computing W (I ) is fairly benign
for the D-ideal I studied in this section.

Lemma 3.2. Let I be the holonomic D-ideal in (8). Then the Weyl closure W (I ) is generated by I and
the one additional operator x1∂1∂3+ x2∂2∂3+ x3∂

2
3 − x2∂1− x1∂2− x3+ 2∂3.

Proof. We used the Singular library dmodloc [1] to compute the Weyl closure of I . We found that I is
not Weyl-closed, i.e., I ( W (I ). Moreover, by Gröbner basis reductions in the Weyl algebra, we find
that adding the claimed operator results in a Weyl-closed ideal. �

Following [16; 29], we now consider the Fisher distribution on SO(n). The normalizing constant
c(2) is defined as in (2), with the integral taken over SO(n) with its Haar measure. Let Dn2 be the
Weyl algebra whose variables are the entries of the n× n matrix 2 = (ti j ). The corresponding n× n
matrix of differential operators in Dn2 is denoted by ∂ = (∂i j ). The following result was established
by Koyama [16], based on earlier work of Sei et al. [29]. We shall prove a more general statement for
arbitrary compact Lie groups in Section 6.

Theorem 3.3. The annihilator of c(2) is the D-ideal J generated by the following operators:

d = 1 − det(∂), gi j = δi j −
∑n

k=1 ∂ik∂ jk for 1≤ i ≤ j ≤ n,

Pi j =
∑n

k=1
(
tik∂ jk − t jk∂ik

)
for 1≤ i < j ≤ n.

Above we omitted half of the equations given in [16, (12)], which is justified by the results in [25, Section
8.7.3]. Also, the operators Pi j are induced from left matrix multiplication (as in (26)) rather than right
multiplication as in [16, (11)].
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A problem that was left open in [16; 29], even for n = 3, is the determination of the holonomic rank of
J . We now address this by introducing dimensionality reduction via invariant theory. The same approach
makes sense for the general definition of J seen in (30).

Let J ′ be the D-ideal generated by the operators Pi j , gi j . This is the analogue of J for the orthogonal
group O(n) in its standard representation in GLn(C) (see Section 6). Since O(n) has two connected
components, the corresponding module in Theorem 6.2 is a direct sum of two simple holonomic Dn2-
modules. By symmetry, we obtain

rank(J ′) = 2 · rank(J ). (12)

The ring of O(n)-invariant polynomials on Cn×n is generated by the
(n+1

2

)
entries {ykl}1≤k≤l≤n of the

symmetric matrix Y = 2t
·2 (see [25, Section 11.2.1]). These matrix entries ykl are algebraically

independent quadratic forms in the n2 unknowns ti j .
We now work in the Weyl algebra D(n+1

2 )
with the convention ykl = ylk and ∂kl = ∂lk . Let K

denote the left ideal in that Weyl algebra which is generated by the operators

hi j = 2δi j n · ∂i j − δi j +

n∑
k, l =1

2δki+δl j ykl · ∂ik∂ jl for 1≤ i ≤ j ≤ n. (13)

Theorem 3.4. A holomorphic function is a solution to J ′ if and only if it is of the form 2 7→ φ(yi j (2)),
where φ is a solution to K . In particular, rank(K ) = 2 · rank(J ).

Proof. The Lie algebra operators Pi j express left invariance under SO(n). The fact that every solution to
J ′ is expressible in Y follows from Luna’s Theorem [19] (see also [11, Section 6.4]). We note that the
determinant det(2) is an SO(n)-invariant that we may omit, due to the relation det(2)2 = det Y . The
D-ideal K is the invariant version of J ′. The operator hi j is derived from gi j by the chain rule. The
result therefore follows from (12). �

As an application of Theorem 3.4, we answer a question left open in [29, Proposition 2].

Proposition 3.5. For n = 3, we have rank(J ) = 4.

Proof. We used the computer algebra system Macaulay2 [9]. Unlike for rank(J ), the calculations for
rank(K ) finished, and we found rank(K ) = 8. We conclude by Theorem 3.4. �

For arbitrary n ≥ 2, we define I to be the D-ideal generated by the n operators Gi analogous to (6)
and the

(n
2

)
operators L i j analogous to (7). We saw this D-ideal in (8) for n = 3. We now explain how

the Dn2-ideal J and the Dn-ideal I are connected. We use the construction of the restriction ideal. For
the general definition see [28, (13)]. In our case, the construction works as follows. We set xi = ti i for
i = 1, . . . , n and we write Dn for the corresponding Weyl algebra. Then

Jdiag := ( J + { ti j : 1≤ i 6= j ≤ n} · Dn2 ) ∩ Dn (14)

is the Dn-ideal obtained by restricting the annihilator of c(2) to the diagonal entries of the matrix 2.
Note that the second summand in (14) is a right ideal in the Weyl algebra Dn2 .
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If f (2) is a function in the n2 variables ti j that is annihilated by J , then the restriction ideal Jdiag

annihilates the function f (diag(x1, . . . , xn)) in n variables. Therefore, Jdiag annihilates the restricted
normalizing constant c̃(x1, . . . , xn). The result to be presented next guarantees that the Pfaffian system in
Theorem 3.1 is indeed of minimal size.

Proposition 3.6. The following inclusions hold among holonomic Dn-ideals representing c̃:

I ⊆ Jdiag ⊆ W (Jdiag) ⊆ annDn (c̃).

Equality holds for n ≤ 3 in the rightmost inclusion.

Sketch of proof. The proof of [29, Theorem 1] shows that I is contained in Jdiag. Note that for n = 3 the
middle inclusion is strict by Lemma 3.2. We have W (Jdiag) ⊆ annDn (c̃) because the annihilator of a
smooth function such as c̃ is Weyl-closed, by an argument spelled out in [8].

The equality on the right for n = 3 is shown by proving W (I ) = annD3(c̃). We use the following
argument and computations. The Fourier transform W (I )F is the D-ideal obtained by switching ∂i

and xi (up to sign). We find that its holonomic rank is 1. We next compute the holonomic dual of the
module D3/W (I )F . This is another D3-module, as defined in [12, Section 2.6]. There is a built-in
command for the holonomic dual in Macaulay2 [9]. Another computation, using localization techniques,
verifies that both D3/W (I )F and its holonomic dual are torsion-free as C[x1, x2, x3]-modules. These
facts imply that D3/W (I )F is a simple D-module, and hence so is D3/W (I ). From this we conclude
that W (I ) = annD3(c̃). �

We conjecture that the inclusion on the right is an equality for all positive integers n. Using results
from Section 6, we can argue that W (Jdiag)

F is regular holonomic for any n. It appears that its singular
locus is a hyperplane arrangement. The special combinatorial structure encountered in this arrangement
gives strong evidence for the conjecture above.

4. Maximum likelihood estimation

We now proceed to computing the maximum of the log-likelihood function of Lemma 2.1 for given
datasets. Since the objective function (4) is strictly concave, a local maximum is the global maximizer and
attained at a unique point x̂ = (x̂1, x̂2, x̂3) ∈ R3. In order to compute x̂ , we run a number of algorithms,
each using the holonomic gradient method. This is based on the results presented in the previous section,
especially on Theorem 3.1 and equation (11). These are used to compute the function values, gradients,
and Hessians in each iteration. The code for the numerical computations of this section can be found at
https://github.com/MikeAdamer/hgm_MLE.

A critical step in running any local optimization method is finding a suitable starting point. As
mentioned in Section 3, solutions to the D-ideal I are analytic outside the singular locus Sing(I ).
Starting points need to be chosen in R3

\Sing(I ). For the Fisher model on SO(3), the singular locus
Sing(I ) is the arrangement (9) of six planes through the origin in R3. This partitions R3 into 24 distinct
chambers. For the algorithms described below, we choose starting points in each of the 24 connected
components of R3/Sing(I ), and we evaluate the vector C at these points. This initialization can be done

https://github.com/MikeAdamer/hgm_MLE
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either via the series expansion method of [29, Section 3.2] or, equivalently, using the package hgm [31] in
the statistical software R, which uses a series expansion in conjunction with HGM.

In this section, we present three optimization methods based on algebraic analysis, building on the
methods given in [22]. The holonomic part of the algorithms stems from the basic structure of most
optimization schemes. In essence, there are always two steps: a gradient evaluation step and a gradient
descent step.

In this paper, we show how HGD is used in the first step for exact evaluation of the gradients. For
further details on the second step in a number of optimization schemes we refer to [23]. The simplest
algorithm is holonomic gradient ascent (HGA). This is a straightforward adaptation of the HGD method
in [29]. Second, we introduce a holonomic version of the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [23, Chapter 6, §1]. BFGS is a quasi-Newton method that requires the gradient and the function
value as inputs. Both can be calculated directly using (10). This turns BFGS into holonomic BFGS
(H-BFGS). Our third algorithm is a holonomic Newton method. This second-order method exploits the
fact that the Hessian is easy to calculate from (11) and that the objective function is strictly concave.

To get started, we need an expression for the gradient of the log-likelihood function ` and a holonomic
gradient method (HGM) for evaluating that expression. By Lemma 2.1,

∇`(x) =

g1

g2

g3

 − 1
c̃(x)
· ∇ c̃(x). (15)

Note that C(x) = (c̃(x),∇ c̃(x))t. Hence, our task to evaluate ∇` at any point amounts to evaluating
the vector-valued function C at any point. This is where the HGM comes in.

In general, we approximate the function C at a point x (n+1) given its value at a previous point x (n).
To this end, a path x (n)→ x (n) + δ(1)→ x (n) + δ(2)→ · · · → x (n) + δ(K )→ x (n+1) is chosen, where
δ(1), . . . , δ(K ) ∈ R3 with ‖δ(m+1)

−δ(m)‖ sufficiently small. The linear part of the Taylor series expansion
of C at x (n) yields the following approximations:

C(x (n)+ δ(m+1)) ≈ C(x (n)+ δ(m)) +
3∑

i=1

(δ
(m+1)
i − δ

(m)
i ) (∂i •C)(x (n)+ δ(m))

= C(x (n)+ δ(m)) +
3∑

i=1

(δ
(m+1)
i − δ

(m)
i ) Pi ·C(x (n)+ δ(m)). (16)

We choose a path consisting of points, separated by intervals of size 1t , on the line segment x(t) =
x (n)(1− t) + x (n+1)t with t ∈ [0, 1]. With this notation, (16) becomes

C(x((m+ 1)1t)) ≈ C(x(m1t)) +
∑3

i=1 (x
(n+1)
i − x (n)i )1t · Pi ·C(x(m1t)). (17)

If we take the limit 1t→ 0, then the equation above becomes the differential equation

dC(t)
dt

=

3∑
i=1

∂xi

∂t
∂C
∂xi
=

3∑
i=1

(
x (n+1)

i − x (n)i

)
Pi ·C.
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This ordinary differential equation can be solved using any numerical ODE solver, e.g., an Euler scheme
or Runge–Kutta scheme. This leads to the following algorithm.

Algorithm 1: Holonomic gradient method.

Input: x (n), x (n+1), C(x (n)), a Pfaffian system P1, P2, P3

Output: C(x (n+1))

1 Set x(t) = x (n)(1− t) + x (n+1)t .
2 Let dC(t)

dt =
∑3

i=1
∂xi
∂t

∂C
∂xi
=
∑3

i=1(x
(n+1)
i − x (n)i )Pi ·C .

3 Numerically integrate line 2 from t = 0 to t = 1.

We employ Algorithm 1 as a subroutine for the holonomic gradient ascent algorithm, which will be
described next. HGA is analogous to other gradient ascent/descent methods, however, with the special
feature that the gradients are calculated via the HGM algorithm. A description of the algorithm, adapted
for data from SO(3), is outlined below.

Algorithm 2: Holonomic gradient ascent.

Input: Matrices Q and R, singular values g1, g2, g3 and a starting point x (0) ∈ R3

Result: A maximum likelihood estimate for the data in the Fisher model (1)
1 Choose a learning rate γn .
2 Choose a threshold δ.
3 Evaluate C at the starting point x (0).
4 Evaluate ∇` at the starting point x (0).
5 Set n = 0.
6 while max |∇`(x (n))| < δ do
7 x (n+1)

= x (n) + γn∇`(x (n)).
8 Calculate C(x (n+1)) via HGM using Algorithm 1.
9 Calculate ∇`(x (n+1)) from C(x (n+1)).

10 Set n = n+ 1.
11 end
12 Output the vector x (n) ∈ R3 as our approximation for (x̂1, x̂2, x̂3).
13 Output the rotation matrix 2̂ = Q · x (n) · R as our approximation for the MLE.

The given data is a list of rotation matrices Y1, . . . , YN in SO(3). As explained in Section 2, we
encode these in the singular values g1, g2, g3 of the sample mean Ȳ = 1

N

∑N
k=1 Yk . Thus, the input for

HGA consists primarily of just three numbers g1, g2, g3. They are used in the evaluation in the first terms
of ∇`, as seen in (15). The second term is evaluated by matrix multiplication with P1, P2, P3, as seen
in (10). Part of the input are also the matrices Q and R that diagonalize the sample mean Ȳ . They
are needed in the last step to recover 2̂ from x̂1, x̂2, x̂3 as in Lemma 2.1. The HGA algorithm has two
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parameters, namely the threshold δ which indicates a termination condition, and the learning rate γn .
While δ can be chosen freely depending on the desired accuracy, choosing the learning rate can have
significant effects on the convergence of the algorithm. In our computations we chose γn = 10−2. This
can clearly be improved. However, the standard technique of performing line searches to find a good γn

is not recommended as evaluating C at a new point is costly.
To employ more advanced methods such as BFGS, and to avoid integrating along a path crossing the

singular locus, we use [29, Corollary 1]. This states that the value of the column vector C at a point
(x1, x2, x3) can be obtained by fixing (x1, x2, x3) and integrating the following ODE from t = ε � 1
to t = 1. Here C is regarded as a function of the parameter t :

C ′(t) =


0 x1 x2 x3

x1 −2/t x3 x2

x2 x3 −2/t x1

x3 x2 x1 −2/t

 ·C(t). (18)

Using this approach for calculating C , we can employ BFGS optimization using HGM as a subroutine
to calculate the gradients and function values required as inputs. This also prevents the accumulation
of numerical errors as the initial conditions of the ODE are exact. The H-BFGS method achieves faster
convergence rates than the simple HGA Algorithm 2.

A final very powerful algorithm for concave (or convex) functions is the Newton method which uses
the Hessian matrix. Often, finding the Hessian matrix H[`(x)] of a function is a difficult task. However,
using holonomic methods the Hessian is obtained for free via

∂i∂ j • ` =
1
c̃2 (∂i • c̃) (∂ j • c̃) −

1
c̃
∂i∂ j • c̃,

and the relations in (10) and (11). We found that the Newton method,

x (n+1)
= x (n) − H[`(x)]−1

· ∇`(x),

gives the fastest convergence. We refer to this approach as the Holonomic Newton method.
We implemented the H-BFGS method in a script in the software R. Interested readers may obtain our

implementation at https://github.com/MikeAdamer/hgm_MLE. This code is custom-tailored for rotations
in 3-space. The function C is evaluated at the starting point x (0) using the series expansion method that
is described in [29, Section 3.2]. Here we truncate the series at order 41.

Example 4.1. We created a synthetic dataset consisting of N = 500 rotation matrices. These were
sampled from the Fisher distribution with parameter matrix

2 =

 −1.178 0.2804 1.037
−0.3825 0.9181 0.6016
−0.0955 0.9037 1.695

 . (19)

https://github.com/MikeAdamer/hgm_MLE
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Figure 2. The Frobenius distance of the MLE parameters to the true parameter values.
The convergence is relatively slow. This suggests that the MLE problem is not well
conditioned.

The sample mean and its sign-preserving singular value decomposition are found to be

Ȳ =

−0.2262 0.1021 0.2260
−0.0233 0.0611 0.2779
−0.0364 0.2802 0.3529

 = Q ·

0.5946 0.0000 0.0000
0.0000 0.1838 0.0000
0.0000 0.0000 0.1059

 · R,
with Q =

−0.4977 0.8589 0.1211
−0.4518 −0.1376 −0.8815
−0.7404 −0.4934 0.4565

 , R =

 0.2524 −0.4808 −0.8397
−0.9419 −0.3209 −0.0993
−0.2217 0.8160 −0.5339

 .
Running H-BFGS on this input, the MLE is found to be

2̂ =

−0.8972 0.3446 0.9682
−0.2392 0.7777 0.7856
−0.0763 0.8664 1.616

 = Q ·

 2.422 0.0000 0.0000
0.0000 0.7432 0.0000
0.0000 0.0000 −0.3043

 · R. (20)

While the entries of the MLE 2̂ have the correct sign and order of magnitude, the actual values are not
very close to those in 2. In order to isolate the effect of the sample size on the MLE, we extended the
data to 10000 matrices. In the iterations we recorded the Frobenius distance (FD) from 2̂ to 2. Our
findings are outlined in Figure 2.

Remark 4.2. The authors in [29] report that the HGD algorithm becomes numerically unstable when it
is close to the singular locus of the Pfaffian system. They recommend picking a starting point in the same
connected component of R3

\Sing(I ) where the MLE is suspected. In contrast, our computations suggest
that the output of the HGA does not depend on the connected component which the starting point lies in,
when a sufficiently stable numerical integration method (e.g. lsode from the R package deSolve ) is



202 MICHAEL F. ADAMER, ANDRÁS C. LŐRINCZ, ANNA-LAURA SATTELBERGER AND BERND STURMFELS

chosen in Algorithm 1. Therefore, the starting point of the optimization can be chosen arbitrarily, as long
as it is close enough to the origin so that the series expansion converges.

Remark 4.3. The sample mean matrix Ȳ lies in the convex hull of the rotation group. This convex body,
denoted conv(SO(3)), was studied in [27, Section 4.4], and an explicit representation as a spectrahedron
was given in [27, Proposition 4.1]. It follows from the theory of orbitopes [27] that the singular values of
matrices in conv(SO(3)) are precisely the triples that satisfy 1≥ |g1| ≥ g2 ≥ g3 ≥ 0. These inequalities
define two polytopes, which are responsible for the facial description of conv(SO(3)) found in [27,
Theorem 4.11].

We can think of the MLE as a map from the interior of the orbitope conv(SO(3)) to R3. Using the
singular value decomposition, we restricted this map to the open polytopes given by 1> |g1|> g2> g3> 0.
Note that the coordinates of the vector x̂ goes off to infinity as the maximum of {g1, g2, g3} approaches 1.
This follows from [14, (4.12)], where the analogue for O(n) was derived. This divergence can cause
numerical problems.

In this section, we have turned the earlier results on D-ideals into numerical algorithms. This is just
a first step. The success of any local method relies heavily on a clear understanding of the numerical
analysis that is relevant for the problem at hand. A future study of condition numbers from the perspective
of holonomic representations would be desirable.

5. Rotation data in the sciences

Rotation data arise in any field of science in which the orientation of an object in 3-space is important.
Occurrences include a diverse number of research areas such as medical imaging, biomechanics, as-
tronomy, geology, and materials science. In this section, we apply our methods to a prominent dataset
of vectorcardiograms and to biomechanical data. We also review previous findings on rotation data in
astronomy, geology, and materials science.

5.1. Medical imaging. One important occurrence of rotational data in the applied sciences stems from
medical imaging, and more precisely from vectorcardiography. In that field, the electrical forces generated
by the heart are studied and their magnitude and direction are recorded.

The dataset presented in [7] is a famous example of directional data. It contains the orientation of the
vectorcardiogram (VC) loop of 98 children aged 2− 19. In particular, the orientation is measured using
two different techniques. Both measurements are given in the form of two vectors. The first identifies
the VC loop of greatest magnitude and the second is the normal direction to the loop. We add as a third
vector the cross product of the magnitude and normal vector to form a right handed set and, therefore, a
rotation matrix.

This dataset has been used to exemplify a range of methods in directional statistics, see, e.g., [24]. We
applied the optimization methods from Section 4 to the same dataset. In other words, we computed the
maximum of the log-likelihood function (4) for the orientations of the VC loop. In order to match our
analysis with the results of [24], we only consider the 28 data points of the boys aged 2− 10. A colorful
illustration of the action of these 28 rotation matrices on the coordinate axes is shown in Figure 1.
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We now proceed to the MLE. The sample mean has the singular value decomposition

Ȳ =

0.6868 0.5756 0.1828
0.5511 −0.7372 −0.0045
0.1216 0.1417 −0.8630

 = Q ·

0.9469 0.0000 0.0000
0.0000 0.8962 0.0000
0.0000 0.0000 0.8737

 · R, (21)

where

Q =

 0.6112 0.7636 0.2079
−0.7498 0.4748 0.4608
0.2532 −0.4376 0.8628

 , R =

0.03941 0.99324 −0.1092
0.81778 0.03072 0.5747
0.57418 −0.11194 −0.8110

 . (22)

By forming the matrix product Q R we recover the result of [24]. The matrix Q R, however, is only one
part of the MLE as described in [14]. By using H-BFGS, we can find the full MLE of the Fisher model.
We compared H-BFGS to other methods. For that, we estimated x1, x2, x3 with a BFGS optimization of
the log-likelihood using the series expansion of the normalizing constant. We then compare the resulting
estimate to the output of H-BFGS. The H-BFGS algorithm finds the MLE

x̂1 = 20.072407,

x̂2 = 12.513841,

x̂3 = −6.510704,

which corresponds to a log-likelihood of ˆ̀ = 3.97299. The runtime of the algorithm is highly dependent
on the number of nonzero terms in the series expansion for c̃. In this calculation, the first 6000 nonzero
terms are used and the runtime is about 4 seconds. To improve the runtime one could try to truncate
the series at lower order. For further refinement of the MLE one can combine H-BFGS with H-Newton
by using the output of H-BFGS as the starting point of H-Newton. The classical BFGS method is not
convergent if only the first 6000 nonzero terms are used. Hence, we need to truncate the series expansion
at higher order. If we use the first 48000 nonzero terms, then the series expansion BFGS method finds the
MLE x̂1 = 17.604156, x̂2 = 10.024591, x̂3 = −3.881811, which gives ˆ̀ = 3.96330. The computation
takes about 20 seconds. Hence, the holonomic BFGS outperformed the classical method by finding a
better likelihood value in much shorter time.

5.2. Biomechanics. Rotational data is ubiquitous in the biomedical sciences. A prominent experiment
in this area is the human kinematics study of [26]. In this experiment, the rotations of four different upper
body parts were tracked while the subject was drilling holes into six different locations of a vertical panel.
In [3], this dataset was studied and maximum likelihood and Bayesian point estimates for the orientation
of the wrist were obtained and credible regions constructed.

A further experiment concerns the heel orientation of primates. In the experiments, the rotation of
the calcaneus bone (the heel) and the cuboid bone, which is horizontally adjacent to the heel and closer
to the toes, was measured. A load was applied to three sedentary primates, a human, a chimpanzee,
and a baboon and the rotation of their ankle was recorded. While the data is actually a time series, the
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simplifying assumption of independent identically distributed data is made in its analysis [4]. We study
this dataset which was kindly provided by Melissa Bingham. The sample mean for the human data equals

Ȳ =

−0.1013 −0.9127 −0.3811
0.3275 −0.3895 0.8535
−0.9335 −0.0358 0.3475

 = Q ·

0.9997 0.0000 0.0000
0.0000 0.9926 0.0000
0.0000 0.0000 0.9923

 · R, (23)

with

Q =

 0.4771 0.8753 −0.0791
−0.4320 0.1552 −0.8884
−0.7654 0.4580 0.4521

 and R =

 0.5248 −0.2399 −0.8167
−0.4690 −0.8822 −0.0422
−0.7104 0.4051 −0.5754

 .
We see on the right hand side in (23) that the singular values for this dataset only differ in the third

significant figure and the smallest singular value is approximately 1. We found that the normalizing
constant gets too large to be computed directly. Indeed, our simulations returned a value error when
c̃ ≈ 10308. This is a serious numerical issue, arising in any MLE algorithm that attempts to directly
calculate c̃ when the sample mean is almost a rotation matrix. Singular values close to 1 imply that the
samples are concentrated on the unit sphere. One could either use a rotational Maxwell distribution [13]
as a local model or the approximation in [4]. The data for the baboon and the chimpanzee show similar
traits.

Progress can be made by applying a gauge transform in (18), aimed at scaling the input for H-BFGS.
Let λ0 be the largest eigenvalue of

A =


0 x1 x2 x3

x1 0 x3 x2

x2 x3 0 x1

x3 x2 x1 0

 .
We can derive an ODE for the function E = C · exp(−λ0t) from (18). The function E is guaranteed to
have smaller values than C . Furthermore, the ratio (∂i • c̃)/c̃ = Ci/C0 = Di/D0 is invariant. Despite
being able to compute log(c̃) using the gauge transformation, MLE becomes very unstable due to the
numerical accuracy required. Finding the MLE from a random starting point using H-BFGS proved
intractable. However, to provide a suitable starting point for H-BFGS, we use the asymptotic formula
of [14], which gives x̂1= 5543.102, x̂2= 3753.025, x̂3=−3685.298. We refined this result with H-BFGS
and found the MLE x̂1= 5543.106, x̂2= 3753.078, x̂3=−3685.242 corresponding to a log-likelihood of
ˆ̀ = 10.59342. Calculating the log-likelihood using HGM and the asymptotic values yields ˆ̀ = 10.52366.
Hence, H-BFGS finds a slightly better MLE than the asymptotic formula.

5.3. Astronomy, geology, and materials science. Astronomical applications of the matrix Fisher model
on SO(3) are often concerned with the orbits of near-earth objects [20; 29]. Such objects are comets or
asteroids in an elliptic orbit around the sun with the sun in their focus. The data comes as sets of vectors
in R3 taking the sun as the origin. The first vector, X1, is the perihelion direction, which points to the
location on the orbit closest to the sun. The second vector, X2, is the unit normal to the orbit. Together
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with their cross product these vectors form a right handed set. Therefore, they define a rotation matrix.
Questions of astronomical interest are whether the perihelion direction is uniformly distributed on the
sphere and whether the orbit orientations are uniform on SO(3). To answer the latter question the Raleigh
statistic can be used [20; 29].

Sei et al. [29] studied a dataset of rotations representing 151 comets and 6496 asteroids. They computed
maximum likelihood estimates using the holonomic gradient method and also series expansions. The
Raleigh statistic for the dataset was calculated and the null hypothesis of a uniform distribution was
strongly rejected. Further, the hypothesis of the data originating from a Fisher distribution on a Stiefel
manifold was tested against the hypothesis of SO(3), and the evidence strongly suggested to reject the
Stiefel manifold.

Rotations arise in geology and earth sciences in the study of earthquake epicenters [13] and the analysis
of plate tectonics [6]. Davis and Titus [6] studied a dataset of the deformation of a shear zone in northern
Idaho. However, this was done in the context of invalidating a geology inspired model that had been used
previously to explain the shear deformations.

Kagan [13] studied rotational data describing the earthquake focal mechanism orientation. Various
models, including the Fisher model, were discussed in this article. However, the Fisher model was
dismissed due to the difficulty of normalization for small spread data as discussed in Remark 2.2. The
alternative model used in [13] was a rotational Maxwell distribution as a local approximation. Our results
offer a chance to revisit the Fisher model.

One important source of rotational data is materials science, where patterns from electron backscatter
diffraction (EBSD) are analyzed (see, e.g., [2]). This type of data provides information about the
orientation of grains within a material. Crystal orientation has important implications on the properties
of polycrystalline materials. One issue with EBSD data is the fact that orientations of the crystals can
only be determined within a coset of the crystallographic group the grain belongs to. This is due to the
fact that a crystal is a lattice and every lattice comes with certain translational and rotational symmetries.
Orientations can only be determined up to the rotational invariance of the lattice. Hence, the data, although
giving information about rotations, is strictly speaking not on SO(3), but on its quotient by a discrete
symmetry subgroup. To adapt our analysis, an appropriate parametrization or embedding for such a
quotient needs to be found. This, however, is beyond the scope of this paper and is left for future work.
Before going to such manifolds, we start with Lie groups.

6. Compact Lie groups

The Fisher model on SO(n) generalizes naturally to other compact Lie groups. We define the Fisher
distribution and the normalizing constant as in (1) and (2), but with integration over the Haar measure on
the Lie group. In this section, we introduce these objects and their holonomic representation. In particular,
we establish the analogue of Theorem 3.3 for compact Lie groups. This opens up the possibility of
applying algebraic analysis to data sampled from manifolds other than SO(n) provided these have the
structure of a group.
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Let G be a compact connected Lie group and fix a real representation π : G → GLn(R). We can
assume that π is injective, i.e., the representation is faithful. We note that any compact Lie group admits
a faithful representation [25, Section 8.3.4]. The matrix group π(G) ⊂ Rn×n is a closed algebraic
subvariety (see [25, Section 8.7]). If one starts with a complex representation instead, the situation can be
studied in the polynomial ring over C.

For our algebraic approach, the ambient setting is the complex affine space X := Cn×n . The complex-
ification GC of our group G is a complex connected reductive algebraic group [25, Section 8.7.2]. The
extension π : GC→ X is a closed embedding. Its image, the matrix group π(GC), is the complex affine
variety in X , cut out by the same polynomials as the ones defining π(G). We denote by IG the ideal
generated by these polynomials in C[X ]. The quotient ring C[G] := C[X ]/IG is the ring of polynomial
functions on the group π(GC).

Let g denote the complex Lie algebra of GC. This is the complexification of the real Lie algebra of
the given Lie group G. We write U (g) for the universal enveloping algebra of g. For any affine variety,
one can define the ring of algebraic differential operators on that variety. This is generally a complicated
object, but things are quite nice in our case.

Let DG denote the ring of differential operators on GC. We have natural inclusions

g ⊂ U (g) ⊂ DG and C[G] ⊂ DG .

These inclusions exhibit desirable properties. Namely, we have canonical isomorphisms

DG ∼= C[G] ⊗ U (g) ∼= U (g) ⊗ C[G]. (24)

This holds because left (or right) invariant vector fields of GC trivialize the tangent bundle. Recall that
GC acts on X = Cn×n by left matrix multiplication via π . Through this action, elements in the Lie
algebra g induce vector fields on X . This gives an injective map

φ : U (g) ↪→ Dn2 . (25)

We now proceed to describing the algebra map φ explicitly. Fix an arbitrary element ξ ∈ g. Let −Mξ

be the n× n matrix corresponding to ξ via the inclusion g ↪→ gl(n). The following is the vector field
encoding the Lie algebra action of Mξ on the space gl(n)' Cn×n:

φ(ξ) =

n∑
i, j = 1

(Mξ )i j ·

n∑
k=1

t jk∂ik ∈ Dn2 . (26)

Example 6.1. Fix G = SO(n) and let π : G → GLn(R) be the standard representation on Rn . The
associated Lie algebra g is the space of skew-symmetric n× n matrices over C. A canonical basis of g

consists of the rank 2 matrices ei j − e j i for 1≤ i < j ≤ n. The operator Pi j ∈ Dn2 in Theorem 3.3 is
Fourier dual to the vector field (26) if we take ξ = e j i − ei j .

As seen in [12, Section 1.3], the morphism of varieties π : GC→ X induces a pushforward functor of
D-modules π+ :Mod(DG)→Mod(Dn2) satisfying the following key property.
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Theorem 6.2. If we regard C[G] as a left DG -module, then we have the isomorphism

π+(C[G]) ∼= Dn2 /〈 IG, φ(g) 〉.

In particular, this quotient is a regular holonomic simple Dn2-module.

Proof. By (24), we have the following isomorphism of right DG -modules:

C[G] ∼= C ⊗U (g) DG . (27)

On the right, C denotes the trivial representation of the universal enveloping algebra U (g).
Let DG→X := C[G] ⊗C[X ] DX denote the transfer bimodule. This is a left DG -module and a

right DX -module. Since the action of g extends to the whole space X , we have C[G] ∼= C[X ]/IG as
g-modules, and the left U (g)-structure of DG→X is induced by the Leibniz rule via the map (25) on the
second factor. We obtain the isomorphism of bimodules

DG→X ∼= DX/(IG · DX ). (28)

By (27) and (28), we have the following isomorphisms of right DX -modules:

π+(C[G]) := C[G] ⊗DG DG→X ∼= (C ⊗U (g) DG) ⊗DG DG→X

∼= C ⊗U (g) DX/(IG · DX ) ∼= DX/((IG +φ(g)) · DX ).

The fist claim now follows by switching to left DX -modules. By Kashiwara’s Equivalence Theorem [12,
Section 1.6], the module DX/〈IG, φ(g)〉 is regular holonomic and simple. �

Remark 6.3. The assumption that G is compact is not needed in Theorem 6.2. The proof works for
any representation π : H → GLn(C) of a complex connected algebraic group such that π(H) is closed
in Cn×n . Such a representation exists for all semisimple groups H . Another natural setting is that of
orbits of a compact group G acting linearly on a real vector space, with left-invariant measures used in
Corollary 6.5. In our view, the theory of orbitopes [27] should be of interest for statistical inference with
data sampled from orbits.

Remark 6.4. Here is a more conceptual argument for Theorem 6.2. The D-module M = Dn2/〈IG, φ(g)〉

is equivariant and supported on π(GC) (see [12, Section 11.5]). By Kashiwara’s Equivalence Theorem,
it is the pushforward of a coherent equivariant D-module on GC. This is a direct sum of copies of
the module C[G], by the Riemann–Hilbert Correspondence. Hence, M is a direct sum of copies of
π+(C[G]). The existence of a unique left-invariant measure on G implies that there is only one such
summand in M .

Let µπ be the distribution on Rn×n given by integration against the Haar measure on G. The following
corollary generalizes [16, Theorem 1] from SO(n) to other Lie groups G.

Corollary 6.5. The annihilator in Dn2 of this distribution equals

annDn2 (µπ ) = 〈 IG, φ(g) 〉.
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Proof. Since supp(µπ ) = π(G), we have IG ⊂ annDn2 (µπ ). Since µπ is a left-invariant distribution,
we have also φ(g) ⊂ annDn2 (µπ ). By Theorem 6.2, the D-ideal 〈 IG, φ(g) 〉 is a maximal left ideal in
Dn2, since its quotient is simple. It is therefore equal to annDn2 (µπ ). �

The following observation establishes the connection to statistics, as in [16, Section 4].

Remark 6.6. The Fourier–Laplace transform of µπ has a complex analytic continuation to a holomorphic
function on Cn×n by the Paley–Wiener–Schwartz Theorem, namely

c(2) =
∫

G
exp(tr(2tπ(Y )))µ(dY ). (29)

This is the normalizing constant of the Fisher distribution on the group π(G) ⊂ GLn(R). Note that this
can be defined for a complex representation π(G) ⊂ GLn(C) as well.

The Fourier transform, denoted by (•)F , switches the operators ti j and ∂i j in the Weyl algebra Dn2 ,
with a minus sign involved. We consider the image of the D-ideal in Corollary 6.5 under this automorphism
of Dn2 . This image is a D-ideal Jπ that is defined over R:

Jπ = 〈 IG, φ(g) 〉
F . (30)

The following result generalizes Theorem 3.3 to compact Lie groups other than SO(n).

Corollary 6.7. The D-module Dn2/Jπ is simple holonomic and annDn2 (c(2)) = Jπ .

Proof. By Corollary 6.5, Remark 6.6, and the defining property of the Fourier transform, we see that Jπ
annihilates the integral in (29). The proof concludes by recalling that the Fourier transform induces an
auto-equivalence on the category of (holonomic) Dn2-modules. �

We saw in Section 5 that sampling from SO(3) is ubiquitous in the applied sciences. It would be
worthwhile to explore such scenarios also for other matrix groups π(G), and to apply holonomic methods
to maximum likelihood estimation in their Fisher model. An example of such a model is the complex
matrix Fisher distribution for unitary groups [20, Section 13.2.4].

One promising context for data applications is the unitary group in quantum physics. The following
example is as an invitation to mathematical physicists to develop this further.

Example 6.8. The compact group G = SU(2) consists of complex 2×2 matrices of the form(
α β

−β α

)
, with |α|2 + |β|2 = 1. (31)

Note that G is a double cover of SO(3). While the odd-dimensional (complex) representations of
G descend to real-valued representations of SO(3), this is not true for the even-dimensional (spin)
representations. Consider the standard representation G ⊂ C2×2.

The complexification of the matrix group in (31) is simply the group SL2(C) ⊂ C2×2. The associated



ALGEBRAIC ANALYSIS OF ROTATION DATA 209

(maximal, holonomic) ideal Jπ is generated by four operators:

d = det(∂)− 1, h = t11∂11+ t12∂12− t21∂21− t22∂22,

e = t21∂11+ t22∂12, f = t11∂21+ t12∂22.

A computation shows that rank Jπ = 2 and Sing(Jπ ) = {2 ∈ C2×2
| det(2) = 0}. The Lie algebra

operators e, f, h ensure that every holomorphic solution to Jπ is SL2-invariant. By [19], every solution
has the form 2 7→ φ(det(2)), for some analytic function φ in a domain of C∗. This is annihilated by
d (hence, by Jπ ) if and only if φ(x) is annihilated by

x∂2
+ 2∂ − 1 ∈ D1.

This has only one (up to scaling) entire solution φ, with series expansion at x = 0 given by

φ(x) =
∞∑

n=0

1
n! · (n+ 1)!

xn.

By comparing constant terms, we conclude that c(2) = φ
(
det(2)

)
. It is straightforward to generalize

the above considerations to the fundamental representation of the special unitary group SU(m) for any
m ≥ 1. In that setting, we find that rank(Jπ ) = m.

In conclusion, the D-ideal Jπ is an interesting object that deserves further study, not just for the
rotation group SO(n), but for arbitrary Lie groups G. Sections 3 and 6 offer numerous suggestions for
future research. For instance, what is the holonomic rank of Jπ? Furthermore, it would be desirable to
experiment with data sampled from groups G other than SO(3), so as to broaden the applicability of
algebraic analysis in statistical inference.
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