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MAXIMUM LIKELIHOOD DEGREE
OF THE TWO-DIMENSIONAL LINEAR GAUSSIAN COVARIANCE MODEL

JANE IVY COONS, ORLANDO MARIGLIANO AND MICHAEL RUDDY

In algebraic statistics, the maximum likelihood degree of a statistical model is the number of complex
critical points of its log-likelihood function. A priori knowledge of this number is useful for applying
techniques of numerical algebraic geometry to the maximum likelihood estimation problem. We compute
the maximum likelihood degree of a generic two-dimensional subspace of the space of n× n Gaussian
covariance matrices. We use the intersection theory of plane curves to show that this number is 2n− 3.

1. Introduction

A linear Gaussian covariance model is a collection of multivariate Gaussian probability distributions
whose covariance matrices are linear combinations of some fixed symmetric matrices. In this paper, we
will focus on the two-dimensional linear Gaussian covariance model, in which all of the covariance
matrices in the model lie in a two-dimensional linear space. Linear Gaussian covariance models were first
studied by 1] in the context of the analysis of time series models. They continue to be studied towards
this end, for example, in [23]. These models also have applications in a variety of other contexts.

One of the most common types of linear Gaussian covariance models consists of covariance matrices
with some prescribed zeros. Given a Gaussian random vector (X1, . . . , Xn) with mean µ and positive-
definite covariance matrix 6 ∈ Rn×n , we can discern independence statements from the zeros in 6. In
particular, the disjoint subvectors (X i1, . . . , X ik ) and (X j1, . . . , X jl ) are independent if and only if the
submatrix of 6 that consists of rows i1, . . . , ik and columns j1, . . . , jl is the zero matrix [22, Proposition
2.4.4].

Maximum likelihood estimation for covariance matrices with a fixed independence structure was
studied in [7]. These types of models find applications in the study of gene expression using relevance
networks [5]. In these networks, genes are connected with an edge if their expressions are sufficiently
correlated. The edges and nonedges in the resulting graph dictate the sparsity structure of the covariance
matrix. Problems related to estimation of sparse covariance matrices have been studied in [3; 18].

Linear Gaussian covariance models are also applicable to the field of phylogenetics. In particular,
Brownian motion tree models, which model evolution of normally distributed traits along an evolutionary
tree, are linear Gaussian covariance models [11]. The covariance matrices of Brownian motion tree
models require linear combinations of more than two matrices. However, the authors believe that the
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results in this paper will find applications to mixtures of Brownian motion tree models. These apply, for
example, to models of trait evolution that consider two genes instead of just one [16].

Algorithms for computing the maximum likelihood estimate for generic linear Gaussian covariance
models have been the subject of much study [1; 2; 3; 7]. Zwiernik, Uhler, and Richards have shown that
when the number of data points is sufficiently large, maximum likelihood estimation for such models
behaves like a convex optimization problem in a large convex region containing the maximum likelihood
estimate [24].

In this paper, we are concerned with computing the maximum likelihood degree (ML-degree) of the
two-dimensional linear Gaussian covariance model for generic parameters and data. This is the number
of complex critical points of the log-likelihood function, and it is considered to be a measurement of
the difficulty of computing the maximum likelihood estimate (MLE) [21, Table 3]. Knowledge of the
ML-degree of a model is important when applying numerical algebraic geometry methods to solve the
MLE problem; in particular, it gives a stopping criterion for monodromy methods [21, §5]. For more
background on ML-degrees, we refer the reader to [6; 10, Chapter 2].

2. Preliminaries

Let n be a natural number, and let PDn ⊂ R(
n+1

2 ) be the cone of all n × n symmetric positive-definite
matrices. We view PDn as the space of covariance matrices of all normal distributions N(0, 6) with mean
zero.

In algebraic statistics, a Gaussian statistical model is an algebraic subset of PDn . In this paper, we
consider models of the form

MA,B = {x A+ y B | x, y ∈ R} ∩PDn

for symmetric matrices A and B, whenever the intersection is not empty. That is, MA,B is the intersection
of the positive-definite cone with the linear span of A and B. We call MA,B the two-dimensional linear
Gaussian covariance model with respect to A and B.

Given independent, identically distributed (i.i.d.) samples u1, . . . , ur ∈ Rn from some normal distribu-
tion, the maximum likelihood estimation problem for MA,B is to find a covariance matrix 6̂ ∈MA,B , if
one exists, that maximizes the value of the likelihood function

L(6 | u1, . . . , ur )=

r∏
i=1

f6(ui ),

where f6 is the density of N(0, 6). Let S denote the sample covariance matrix

S =
1
r

r∑
i=1

ui uT
i .

Since for all6 the value L(6 |u1, . . . , ur ) only depends on S, we identify the data given by r i.i.d. samples
from a normal distribution with their sample covariance matrix S. The logarithm is a concave function,
so the maximizer of the likelihood function is also the maximizer of its natural log, the log-likelihood
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function. This function can be written in terms of S:

`(6 | S) := log L(6 | S)

=−
rn
2

log(2π)−
r
2

log det(6)−
r
2

tr(S6−1).

Note that the maximizer of this function is equal to the minimizer of

˜̀(6 | S) := log det(6)+ tr(S6−1).

When we restrict to the model MA,B , we require that 6 = x A+ y B for some x, y ∈R such that x A+ y B
is positive-definite. So the maximum likelihood estimation problem in this case is equivalent to

argmin
x,y

˜̀(x A+ y B | S) subject to x A+ y B ∈ PDn.

To find local extrema of the log-likelihood function, we set its gradient equal to 0 and solve for x and y.
The two resulting equations are called the score equations.

Definition 2.1. The score equations for MA,B are the partial derivatives of the function ˜̀(x A+ y B | S)
with respect to x and y. The maximum likelihood degree or ML-degree of MA,B is the number of complex
solutions to the score equations, counted with multiplicity, for a generic sample covariance matrix S.

Definition 2.1 makes reference to a generic sample covariance matrix. We give a detailed explanation
of this term from algebraic geometry at the end of this section.

One benefit of working with ˜̀ is that the score equations are rational functions of the data. This allows
us to use tools from algebraic geometry to analyze their solutions. Let 6 = x A+ y B. For the sake of
brevity, we will denote P(x, y)= det6 and T (x, y)= tr(S adj6), where adj6 is the classical adjoint.
With this notation, the function ˜̀ takes the form

˜̀(6 | S)= log P +
T
P
.

Accordingly, the score equations are

˜̀x(x, y)=
Px

P
+

PTx − T Px

P2 ,

˜̀y(x, y)=
Py

P
+

PTy − T Py

P2 .

Here and throughout, the notation hx is used for the derivative of a function h with respect to the variable
x . We are concerned with values of (x, y) ∈ C2 where both of the score equations are zero. We clear
denominators by multiplying ˜̀x and ˜̀y by P2 to obtain two polynomials,

f (x, y) := P Px + PTx − T Px ,

g(x, y) := P Py + PTy − T Py .
(1)
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We note the degrees of each relevant term for generic A, B, and S. Specifically, their total degrees with
respect to their variables x and y are

deg P = n,

deg Px = deg Py = deg T = n− 1,

deg Tx = deg Ty = n− 2.

A polynomial h is called a homogeneous form if each of its terms has the same degree. The polynomials
f and g can be written as a sum of a homogeneous degree 2n − 1 form with a homogeneous degree
2n− 2 form.

The critical points of ˜̀ are in the variety V ( f, g). However, this variety also contains points at which ˜̀

and the score equations are not defined since we cleared denominators. The ideal whose variety is exactly
the critical points of ˜̀ is the saturation

J = I( f, g) : 〈P〉∞

:= {h ∈ C[x, y] | h P N
∈ I( f, g) for some N }.

Saturating with P = det6 removes all points in V ( f, g) where the determinant is zero and ˜̀ is undefined.
For more details on the geometric content of saturation, we refer the reader to Chapter 7 of [22]. We
will show that I( f, g) and hence J are zero-dimensional in Lemmas 3.3 and 3.4. The ML-degree of the
model is hence the degree of J . This is the number of isolated points in the variety of J counted with
multiplicity. For more background on degrees of general varieties, see [15, Lecture 13; 20, Chapter 4,
§1.4].

We now state the main result and offer an outline for its proof, which we follow in the remaining
sections.

Theorem 2.2. For generic n × n symmetric matrices A and B, the maximum likelihood degree of the
two-dimensional linear Gaussian covariance model MA,B is 2n− 3.

A key tool used in the proof of Theorem 2.2 is Bézout’s theorem, a proof of which can be found in
Chapter 5.3 of [13].

Theorem 2.3 (Bézout’s theorem). Let H and K be projective plane curves of degrees d1 and d2, respec-
tively. Suppose further that H and K share no common component. Then the intersection of H and K is
zero-dimensional and the number of intersection points of H and K , counted with multiplicity, is d1d2.

Let F(x, y, z) and G(x, y, z) denote the homogenizations of f and g with respect to z. Then F and G
both define projective plane curves of degree 2n− 1. Lemmas 3.3 and 3.4 will show that F and G do not
share a common component. So we can apply Bézout’s theorem to count their intersection points.

Let q = [x : y : z] be a point in CP2. Then by Bézout’s theorem,

(2n− 1)2 =
∑

q∈V (F,G)

Iq(F,G),
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where Iq(F,G) denotes the intersection multiplicity of F and G at q. The definition and properties of
the intersection multiplicity of a pair of algebraic curves at a point can be found in [13, §3, Theorem 3].
For affine points (x, y) ∈ V ( f, g) we sometimes denote the intersection multiplicity as I(x,y)( f, g) :=
I[x :y:1](F,G).

We show in Proposition 3.5 that saturating the ideal I( f, g) with det6 corresponds to removing only
the origin from the affine variety of f and g. This in turn corresponds to removing the point [0 : 0 : 1]
from the projective variety V (F,G). Since we are only interested in affine intersection points of F and G
outside of the origin, we split the sum on the right-hand side of the above equation as follows:

(2n− 1)2 = I[0:0:1](F,G)+
∑

q∈V (F,G)
q /∈{[0:0:1]}∪V (F,G,z)

Iq(F,G)+
∑

q∈V (F,G,z)

Iq(F,G). (2)

The middle term of the right-hand side of (2) is exactly the degree of the saturated ideal J = I( f, g) :
〈det6〉∞. Thus one can find the degree of J by computing the intersection multiplicities of F and G at
the origin and at their intersection points at infinity. We compute the former in Section 4 and the latter in
Section 5 to obtain

I[0:0:1](F,G)= (2n− 2)2 and
∑

q∈V (F,G,z)

Iq(F,G)= 2n

for generic A, B, and S. Thus, by rearranging (2),∑
q∈V (F,G)

q /∈{[0:0:1]}∪V (F,G,z)

Iq(F,G)= (2n− 1)2− (2n− 2)2− 2n = 2n− 3,

which implies deg J = 2n− 3.

Example 2.4. Let n = 3 and consider the model MA,B defined by the positive-definite matrices

A =

5 1 0
1 3 −2
0 −2 6

 , B =

 1 −1 0
−1 6 −2

0 −2 1

 .
Using the Julia software package LinearCovarianceModels.jl [21] we find that the maximum likeli-
hood degree of MA,B is indeed 2 · 3− 3= 3, meaning that for a generic sample covariance matrix there
will be three solutions over the complex number to the score equations. If we take the sample covariance
matrix,

S =

 1 2 −2
2 6 −7
−2 −7 9

 ,
then the equations f, g from (1) for MA,B and S are given explicitly by

f = 12288x5
+ 57600x4 y+ 74272x3 y2

+ 20172x2 y3
+ 1729xy4

+ 37y5

− 10496x4
− 33792x3 y− 45484x2 y2

− 7232xy3
− 513y4
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and

g = 11520x5
+ 37136x4 y+ 20172x3 y2

+ 3458x2 y3
+ 185xy4

+ 3y5

− 12624x4
− 9448x3 y− 6480x2 y2

− 528xy3
− 21y4.

We used the numerical polynomial solver package HomotopyContinuation.jl [4] to find the solutions
to the system of equations f = 0, g = 0. The solution set consisted of the origin (with multiplicity 16)
and three points corresponding to the critical points of the log-likelihood function,

{(0.6897, 0.1773), (0.2655+ 0.3071i, 0.9865− 2.4601i), (0.2655− 0.3071i, 0.9865+ 2.4601i)}.

The number of critical points and the multiplicity at the origin are predicted by Theorem 2.2 and
Corollary 4.2, respectively. This fits into (2), which for n = 3 becomes 52

= 16+ 3+ 6. Thus the
maximum likelihood estimate for MA,B and S is the real point in the list above, which corresponds to the
positive-definite covariance matrix

6 =

3.6257 0.5124 0
0.5124 3.1329 −1.7340
0 −1.7340 4.3154


that maximizes the likelihood function L(6 | S).

Properties that hold generically. In Example 2.4, it was important to choose the matrices A, B, and S to
be “generic enough.” We explain the precise notion of genericity in classical algebraic geometry below.

Let X be an algebraic variety and P a property of the points of X . One says that P(x) holds for generic
x ∈ X , or holds generically on X , if there exists a nonempty Zariski open set U of X such that P(x)
holds for all x ∈U .

Consider the case X = CN . A Zariski open set in CN is the complement of a set V = V ( f1, . . . , fk)

of common zeros of a collection of polynomials f1, . . . , fk in N variables.
Thus, to verify that some property P holds generically on CN , we first have to find such a set V with

the property that for all x , if P(x) does not hold, then x ∈ V . This verifies that P(x) holds for all x ∈U ,
where U = CN

\ V . We also have to verify that U is nonempty, which amounts to finding a specific
element x0 such that x0 6∈ V .

Note that dim V is at most N − 1, which justifies the term “generic”. In particular it is expected that a
point x ∈ CN taken at random1 will lie in U .

Suppose that Q is another property of the points of X and we want to show that both P(x) and Q(x)
hold generically on X . Then it is enough to show separately that P(x) holds for generic x and that Q(x)
holds for generic x . This follows from the fact that the intersection of two nonempty Zariski open sets
U1,U2 is always a nonempty Zariski open set. In practice, this means that after finding U1 and U2 it is
enough to find two separate elements x1 ∈U1 and x2 ∈U2, which could be easier than finding an element
x0 ∈U1 ∩U2.

1Say, according to the multivariate normal distribution.
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In this article, the notion of a property holding generically is important for two reasons. First, it is
needed for the definition of the ML-degree. Indeed, the number (with multiplicities) of solutions (x̂, ŷ) to
the score equations ˜̀i (x, y) given an empirical covariance matrix S could vary with S. Nevertheless, it
is constant for generic S, which justifies the use of a single number. Second, we consider a family of
models MA,B parametrized by pairs of symmetric matrices (A, B) and compute its ML-degree only for
generic A, B. To perform the computation, we use several properties that hold for generic A, B, and S.
We prove this separately for each one of them and use them together at the same time, as explained above.

3. Geometry of the score equations

In this section, we use Bézout’s theorem to derive a formula for computing deg J . Lemma 3.2 will
be used throughout the paper for all arguments involving generic A, B, and S. We will use Euler’s
homogeneous function theorem, which says that if H(x, y) is a homogeneous function of degree m, then
m H = x Hx + y Hy . We will also use the following fact about binary forms.

Proposition 3.1. Let H(x, y) ∈ C[x, y] be a homogeneous polynomial in two variables. Then H(x, y)
factors as a product of linear forms.

Proof. Suppose that H(x, y) is homogeneous of degree d. Let h(x) := H(x, 1) have degree c. Since
C is algebraically closed, by the fundamental theorem of algebra, h(x) = a

∏c
i=1(x − ri ) for some

a, r1, . . . , rc ∈ C. Then H(x, y)= ayd−c ∏c
i=1(x − ri y). �

We further note that a generic h ∈ C[x, y] factors as a product of distinct linear forms. A binary form
has a multiple root if and only if its discriminant vanishes, which is a closed condition on the space
coefficients [17, §0.12].

Lemma 3.2. For generic A, B, and S, the following projective varieties are empty:

(1) V (P, Px), V (P, T ), V (P, Py),

(2) V (Px , Py),

(3) V (Px , Tx), V (Py, Ty), V (T, Tx), V (T, Ty).

Proof. The emptiness of the varieties in the statement is an open condition in the space of parameters
(A, B, S). For instance, the subset of the parameter space A(A,B,S) where V (P, Px) is nonempty is the
image of the variety defined by P and Px in the space A(A,B,S)×P1

[x :y] under the first projection. This is
a Zariski-closed subset of the parameter space by the projective elimination theorem [8, Chapter 8.5].

To show that the projective varieties in the statement are empty, we show that the polynomials defining
them have no common factors. This makes use of Proposition 3.1, which states that every homogeneous
form in two variables factors as a product of linear forms.

First, consider the case where A is the n× n identity matrix, B is the diagonal matrix with diagonal
entries 1, . . . , n, and S = uuT where u is the vector of all ones. We have

P =
n∏

k=1

(x + ky) and Px =

n∑
k=1

∏
j 6=k

(x + j y).
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From this we deduce that if p = x + ky is a linear form that divides P , then it does not divide Px . This
shows that V (P, Px) is empty. The variety V (P, T ) is empty as well since Px = T in this case. Similarly,
one shows that V (P, Py) is empty.

Euler’s homogeneous function theorem applied to P says that n P = x Px + y Py . Since V (P, Px) is
generically empty, the same holds for V (Px , Py).

To prove the rest of the statements, we switch to an element (A, B, S) that makes the form of T
particularly simple. Let A and B be as before and u = (1, 0, . . . , 0). This is allowed when combining
generic properties as we explained at the end of Section 2. In this case we have

T =
∏
k 6=1

(x + ky) and Px = T + (x + y)Tx .

Assume p divides Px and Tx . Then p divides T ; hence, we may assume p= x+ky with k 6= 1. However,
we have p - Px as before. This contradiction shows that V (Px , Tx) is empty. Similarly, V (Py, Ty) is
empty. This example also has T with no common roots; hence, V (T, Tx) and V (T, Ty) are generically
empty. �

Now we will show that the projective curves defined by F and G satisfy the hypothesis of Bézout’s
theorem, that is, that they do not share a common component. This justifies our application of Bézout’s
theorem and allows us to count the points in their variety. To prove this, we show that the polynomials f
and g in (1) generically are irreducible and do not share a common factor.

Lemma 3.3. The polynomials f and g in (1) are irreducible for generic A, B, and S.

Proof. We prove the statement for f . The proof for g is analogous. Write f = F2n−1+ F2n−2, where

F2n−1 = P Px and F2n−2 = PTx − T Px

and deg Fi = i . If f decomposes into a product of two polynomials, then at least one of them is
homogeneous and we call it h. Indeed, otherwise the degrees of F2n−1 and F2n−2 would be at least two
apart, when in fact they differ by one. Since h is homogeneous and divides a nonzero sum of homogeneous
polynomials, h divides each of the summands F2n−1 and F2n−2. Using Proposition 3.1, let h0 be a linear
factor of h. Since h0 divides F2n−1 and is irreducible, h0 divides P or Px . In the first case, since h0

divides F2n−2, it would have to divide either T or Px . This would imply that one of the projective varieties
V (P, T ) and V (P, Px) is nonempty. By Lemma 3.2 this does not happen generically. In the second case,
it would have to divide either P or Tx , which for the same reason does not happen generically. �

Lemma 3.4. For generic A, B, and S, the polynomials f and g in (1) are not constant multiples of one
another.

Proof. If f and g are constant multiples of each other, then so are their highest-degree terms P Px and P Py .
This does not happen generically since by Lemma 3.2 the projective variety V (Px , Py) is generically
empty. �
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Furthermore, we can describe exactly which points are removed from the affine variety V ( f, g) after
we saturate with the determinant. For generic parameters, the only point that is removed after saturation
is the origin.

Proposition 3.5. For generic A, B, and S, we have

V ( f, g) \ V (det6)= V ( f, g) \ {(0, 0)}.

Proof. Let q ∈ V (P, f, g). Then f (q) = −T (q)Px(q) and g(q) = −T (q)Py(q). In order to have
f (q)= g(q)= 0, we must either have both Px(q)= Py(q)= 0 or T (q)= 0. By Lemma 3.2, for generic
A, B, and S, both of these imply q = (0, 0). �

Proposition 3.6. For generic A and B, the ML-degree of the model MA,B is

(2n− 1)2− I[0:0:1](F,G)−
∑

q∈V (F,G,z)

Iq(F,G).

Proof. The ML-degree of MA,B is defined as the degree of the ideal J = 〈 f, g〉 : (det6)∞. The affine
variety V (J ) embeds in projective space as

V (F,G) \ (V (F,G, z)∪ V (det6)).

By Bézout’s theorem (Theorem 2.3), Lemmas 3.3 and 3.4 imply that the variety V (F,G) is zero-
dimensional. Using Proposition 3.5 we have

deg J =
∑

q∈V (F,G)
q /∈{[0:0:1]}∪V (F,G,z)

Iq(F,G)

=

∑
q∈V (F,G)

Iq(F,G)− I[0:0:1](F,G)−
∑

q∈V (F,G,z)

Iq(F,G).

Both F and G have degree 2n− 1. Applying Theorem 2.3 to F and G gives the desired equality. �

4. Multiplicity at the origin

In this section we compute the intersection multiplicity of the polynomials f, g in (1) at the origin, denoted
by I[0:0:1](F,G) and also I(0,0)( f, g).

For a polynomial in two variables h there is a notion of multiplicity of h at the origin, denoted
m(0,0)(h). This is the degree of the lowest-degree summand in the decomposition of h as a sum of
homogeneous polynomials (for details, see [13, §3.1]). Since the polynomials f, g can be written as
the sum of a homogeneous degree 2n − 2 form with a homogeneous degree 2n − 1 form, we have
m(0,0)( f )= m(0,0)(g)= 2n− 2. We have the identity

I(0,0)( f, g)= m(0,0)( f ) ·m(0,0)(g) (3)

if the lowest-degree homogeneous forms of f and g share no common factors [13, §3.3]. The degree
2n− 2 parts of f and g are Q = PTx − T Px and R = PTy − T Py , respectively.
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Proposition 4.1. For generic A, B, and S, the polynomials Q and R share no common factor.

Proof. By the definition of Q and R and two applications of Euler’s homogeneous function theorem we
have

x Q+ y R = (xTx + yTy)P − (x Px + y Py)T

= (2n− 2)T P − (2n− 1)PT

=−PT .

Assume that Q and R share a common factor p, which we may assume is irreducible. Then p divides PT .
So p divides P or p divides T , but not both by Lemma 3.2. If p divides P , then since Q = PTx − T Px

and p is a factor of Q, p also divides T Px . Similarly if p divides T , then p also divides PTx . But then
either P and T Px share a common factor, or T and PTx do. Each of the resulting four further cases does
not occur generically by Lemma 3.2. �

Corollary 4.2. For generic A, B, and S, the intersection multiplicity of f and g at the origin is (2n−2)2.

Proof. By Proposition 4.1, this follows from (3). �

5. Multiplicity at infinity

In this section we compute the intersection multiplicity at a point at infinity for the curves V ( f ) and V (g)
defined by the polynomials in (1) for generic A, B, and S. To do this we use the connection between
intersection multiplicity of curves and their series expansions about an intersection point.

Consider an irreducible polynomial h in two variables such that h(0, 0)= 0 and h y(0, 0) 6= 0. By [12,
§7.11, Corollary 2], there exists an infinite series α =

∑
∞

m=1 am tm and an open neighborhood U ⊂ C

containing t = 0 such that h(t, α(t))= 0 for all t ∈U . The series α is called the series expansion of h at
the origin. The valuation of a series is the number M such that aM 6= 0 and am = 0 for all m < M .

Proposition 5.1. Let h and k be irreducible polynomials in two variables such that h and k vanish at
(0, 0) and h y and ky do not. Let α and β be infinite series expansions of h and k at (0, 0), respectively.
The intersection multiplicity I(0,0)(h, k) is the valuation of the series α−β.

Proof. By [12, §8.7], the intersection multiplicity of h and k at (0, 0) is the valuation of the infinite series
h(t, β(t)). We prove that this is the same as the valuation of α−β. First, let s(t)=

∑
∞

m=1 sm tm be any
infinite series and write h=

∑
i, j ci, j x i y j , where the sum ranges over the pairs (i, j)with 0< i+ j ≤deg h.

We have

h(t, s(t))=
∑
i, j

ci, j t i
( ∞∑

m=1

sm tm
)j

=

∑
i, j

ci, j t i
( ∞∑
ν=0

(∑
|a|=ν

sa1 · · · sa j

)
tν
)

=

∑
i, j

∞∑
ν=0

∑
|a|=ν

ci, j sa1 · · · sa j t
ν+i .

The coefficient rm of tm in this infinite series is a finite sum of products of the form ci, j sa1 · · · sa j with
a j ≤ m and |a| + i = m. The term sm only appears in rm when j = 1 and i = 0. Hence, we have
rm = c0,1sm + p(s1, . . . , sm−1) for some polynomial p, where c0,1 6= 0 since h y(0, 0) 6= 0. For example,
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the coefficient r0 is zero since h, k vanishing at the origin implies that c0,0 and s0 are zero, and the
coefficient of the first nonzero term is given by r1 = c0,1s1+ c1,0.

Write α(t)=
∑
∞

m=1 am tm and β(t)=
∑
∞

m=1 bm tm . Suppose that the valuation of the series α−β is M .
Then aM 6= bM and am = bm for all m < M . We show that this is equivalent to h(t, β(t))=

∑
∞

m=1 rm tm

having valuation M . Suppose that M = 1; then a1 6= b1. Since h(t, α(t)) is identically zero in a
neighborhood of t = 0, we have rm(a1, . . . , am) = 0 for all m. In particular r1(a1) = c0,1a1+ c1,0 = 0.
Since a1 6= b1 this implies that r1(b1)= c0,1b1+ c1,0 6= 0 and h(t, β(t)) has valuation one. Similarly if
h(t, β(t)) has valuation one, then r1(a1) 6= r1(b1) implying a1 6= b1. Thus α−β has valuation one if and
only if h(t, β(t)) has valuation one.

Now suppose M > 1. By the form of rm it now follows from an inductive argument on m that am

and bm agree up to m = M and differ at m = M + 1 if and only if rm(a1, . . . , am) and rm(b1, . . . , bm)

agree up to m = M and differ at m = M + 1. Since rm(a1, . . . , am)= 0 for all m, the latter is equivalent
to h(t, β(t)) having valuation M . �

Remark 5.2. In the context of Proposition 5.1, consider instead polynomials h and k defining the curves
X and Y, respectively, such that X and Y meet at a nonsingular point q. Also, let v be a vector such
that the directional derivatives hv and kv do not vanish at q. Choose an affine-linear transformation
ϕ : C2

→ C2 sending (0, 0) to q and (0, 1) to v. Then Iq(h, k)= I(0,0)(h ◦ϕ, k ◦ϕ) and the polynomials
h◦ϕ and k◦ϕ satisfy the hypotheses of Proposition 5.1. Thus we can compute the intersection multiplicity
at any nonsingular intersection point of h, k using Proposition 5.1.

Remark 5.3. When the series α−β has valuation M , one says that h and k have contact order or order
of tangency M − 1 at q . Therefore the contact order of two curves at an intersection point is always one
less than the intersection multiplicity. For more on contact order of algebraic curves see [19, Chapter 5].

Remark 5.4. The fact that the curves X and Y have intersection multiplicity one at q if and only if
the gradients of h and k at q are linearly independent (see, e.g., [13, §3.3]) arises as a special case of
Proposition 5.1 once one computes the first terms of the series α and β.

Returning to the expressions in (1), recall that F and G denote the homogenizations of f and g with
respect to the new variable z. The intersection points of V ( f ) and V (g) at infinity are exactly the variety
V (F,G, z).

Lemma 5.5. For generic A, B, and S, the projective variety V (F,G, z) consists of n points of the form
[q1 : q2 : 0] such that P(q1, q2)= 0.

Proof. Let q = [q1 : q2 : 0] be a projective point of V (F,G). We have

F = P Px + z(PTx − T Px),

G = P Py + z(PTy − T Py),

and hence V (F,G, z) consists of points q where [q1 : q2] ∈ V (P Px , P Py). Clearly if P(q1, q2) = 0,
then q ∈ V (F,G, z). These are the only such points since, by Lemma 3.2, for generic A, B, and S the
variety V (Px , Py) is empty. By Proposition 3.1 P(x, y) factors in n linear forms. These forms are distinct,
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since a repeated factor would divide both P and Px , while V (P, Px) is empty by Lemma 3.2. Thus there
are n distinct points in V (F,G, z). �

Lemma 5.6. For generic A, B, and S, the projective variety V (P, PyTx − Px Ty) is empty.

Proof. Let H = PyTx − Px Ty . By applying Euler’s homogeneous function theorem twice in the following
chain of equalities, we have

nTx P − y H = Tx(n P − y Py)+ y Px Ty = Px(yTy + xTx)= (n− 1)Px T .

If P and H have an irreducible common factor p, then p | Px T . This does not happen generically by
Lemma 3.2. �

Lemma 5.7. For generic A, B, and S, if q ∈ V (F,G, z), then Iq(F,G)= 2.

Proof. By Lemma 5.5, such points are of the form q = [q1 : q2 : 0] where P(q1, q2) = 0. Fix such a
point q and assume for simplicity that q1 6= 0. This is not a restriction since the conditions q1 = 0 and
P(q)= 0 imply det B = 0, which is a closed condition on the parameter space. Thus we can assume q is
of the form [1 : q2 : 0].

Since intersection multiplicity at a point is a local quantity, we may dehomogenize with respect to x
and consider the intersection multiplicity of the affine curves V (F(1, y, z)) and V (G(1, y, z)) at q. We
can compute the partial derivatives with respect to y and z:

Fy(x, y, z)= Py Px + P Pxy + z
(

d
dy
(PTx − T Px)

)
, Fz(x, y, z)= PTx − T Px ,

G y(x, y, z)= P2
y + P Pyy + z

(
d

dy
(PTy − T Py)

)
, Gz(x, y, z)= PTy − T Py .

(4)

Consider the translated polynomials obtained by translating q to [1 : 0 : 0] given by F̃ = F(1, y+ q2, z)
and G̃ =G(1, y+q2, z). Then F̃z(1 : 0 : 0), G̃z(1 : 0 : 0) 6= 0 if and only if Fz(q),Gz(q) 6= 0, and from (4),
we have that

Fz(q)= (−T Px)(1, q2) and Gz(q)= (−T Py)(1, q2).

Since P(1, q2) = 0, Lemma 3.2 implies that Fz(q),Gz(q) 6= 0. Thus there exist series expansions
α =

∑
∞

m=1 am tm and β =
∑
∞

m=1 bm tm such that, for all t in a neighborhood of t = 0,

F̃
(

1, t,
∞∑

m=1

am tm
)
= 0 and G̃

(
1, t,

∞∑
m=1

bm tm
)
= 0,

and hence

F
(

1, t + q2,

∞∑
m=1

am tm
)
= 0 and G

(
1, t + q2,

∞∑
m=1

am tm
)
= 0, (5)

in this same neighborhood. Since I[1:0:0](F̃, G̃) = Iq(F,G), by Proposition 5.1 we can compute the
valuation of the series α−β to determine Iq(F,G). Differentiating the expressions in (5) with respect
to t , then substituting t = 0 yields

Fy(q)+ Fz(q)a1 = 0 and G y(q)+Gz(q)b1 = 0.
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Thus a1 =−Fy(q)/Fz(q) and b1 =−G y(q)/Gz(q), and (FyGz− FzG y)(q)= 0 implies that a1−b1 = 0.
By differentiating (5) twice with respect to t and substituting these values for a1 and b1, one can similarly
show that

a2 =

(
−Fyy F2

z + 2Fyz Fy Fz − Fzz F2
y

2F3
z

)∣∣∣∣
q
,

b2 =

(
−G yyG2

z + 2G yzG yGz −GzzG2
y

2G3
z

)∣∣∣∣
q
.

(6)

Since we know that a1− b1 = 0, the valuation of α−β =
∑
∞

m=1(am − bm)tm is at least two; we now
show that the valuation is exactly two for generic A, B, and S. We verified that a2 − b2 6= 0 with the
help of the computer algebra system Maple by the following steps. First, we computed all second-order
derivatives of F and G with respect to y and z in terms of partial derivatives of P and T , by differentiating
the expressions in (4). Then, we substituted P = 0 and z = 0 in these expressions, which corresponds to
evaluation at q . Thus from (6) we can obtain expressions for a2 and b2 evaluated at q in terms of partial
derivatives of P and T . Next we cleared denominators in the resulting expression for a2− b2, yielding

(a2− b2)(q)= (T 4 P2
x P4

y (PyTx − Px Ty))(1, q2).

Since P(1, q2)= 0, this expression does not generically evaluate to 0 by Lemmas 3.2 and 5.6. �

Corollary 5.8. For generic A, B, and S, we have
∑

q∈V (F,G,z) Iq(F,G)= 2n.

Proof. This follows from Lemmas 5.5 and 5.7. �

Now we can prove our main result that deg J = 2n− 3:

Proof of Theorem 2.2. Combining Proposition 3.6 with Corollaries 4.2 and 5.8 shows that the ML-degree
of MA,B for generic A and B is

(2n− 1)2− (2n− 2)2− 2n = 2n− 3. �

6. Discussion

Sturmfels, Timme, and Zwiernik [21] use numerical algebraic geometry methods implemented in the Julia
package LinearGaussianCovariance.jl to compute the ML-degrees of linear Gaussian covariance
models for several values of n and m, where n is the size of the covariance matrix and m is the dimension
of model. We have proven that for m = 2 and arbitrary n, the ML-degree is 2n−3, which agrees with the
computations in Table 1 of [21].

For higher-dimensional linear spaces, where m> 2, the score equations consist of the partial derivatives
of ˜̀ with respect to the m parameters of the linear space. Again, in this case, these are rational functions
of the data and the parameters. For instance when m = 3, we can consider the linear span of three n× n
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matrices A, B, and C . Then if6= x A+y B+zC , P = det6, and T = tr(S adj6), the score equations are

˜̀x(x, y, z)=
Px

P
+

PTx − T Px

P2 ,

˜̀y(x, y, z)=
Py

P
+

PTy − T Py

P2 ,

˜̀z(x, y, z)=
Pz

P
+

PTz − T Pz

P2 ,

and we can similarly define polynomials

f (x, y, z) := P Px + PTx − T Px ,

g(x, y, z) := P Py + PTy − T Py,

h(x, y, z) := P Pz + PTz − T Pz,

such that the ML-degree of the model is the degree of J = I( f, g, h) : 〈det6〉∞. 21] conjecture that
the ML-degree in this case is 3n2

− 9n+ 7. To prove this conjecture as we did for m = 2, one might
turn to a higher-dimensional generalization of Bézout’s theorem, which says that the number of solutions
to V ( f, g, h) counted with multiplicity is the product deg( f ) deg(g) deg(h) provided that V ( f, g, h) is
zero-dimensional (see for example [9, §3, Chapter 3] or [20, §2.1, Chapter 3]). This zero-dimensionality
restriction is necessary for equality; otherwise the product of the degrees in this case simply gives an
upper bound for the number of zero-dimensional solutions counted with multiplicity [14, Theorem 12.3].

Indeed the variety V ( f, g, h) contains the one-dimensional affine variety V (P, T ) as well as a “curve
at infinity” corresponding to the vanishing of P . When m = 2, the variety V (P, T )⊂ C2 consisted of
only the origin and the elements at infinity were points whose multiplicity we were able to ascertain using
properties of curves. This illustrates the added difficulties in counting solutions when moving from planar
intersection theory to higher-dimensional intersections.

21] also consider the generic diagonal model, in which the linear space that comprises the model
consists of diagonal matrices. Their computations show that for m = 2, the ML-degree of the generic
diagonal model for the first several values of n is also 2n− 3 [21, Table 2]. It follows from the proof of
our result that this ML-degree is indeed 2n− 3 for all n, as the witnesses for the nonemptiness of the
open dense sets that we produced in the proof of Lemma 3.2 were all diagonal matrices. For m > 2 and
n > 3, the ML-degree of the generic diagonal model is conjectured in [21] to be strictly less than the
corresponding generic linear Gaussian covariance model. This suggests that the study of linear Gaussian
covariance models of arbitrary dimension will require us to look beyond diagonal matrices as witnesses
to the nontriviality of some open conditions.

Indeed, many of the projective varieties in Lemma 3.2 are nonempty for diagonal matrices when m > 2.
For example, when m ≥ 3, the determinant of P for a diagonal 6 has a nonempty singular locus. Let
m = 3 and let

6 = x A+ y B+ zC
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where A, B, and C are the diagonal matrices with diagonal entries (a1, . . . , an), (b1, . . . , bn), and
(c1, . . . , cn), respectively. Then we have

P =
n∏

i=1

(ai x + bi y+ ci z).

The derivatives of P are of the form

Px =

n∑
i=1

ai

n∏
j=1
j 6=i

(a j x + b j y+ c j z),

and similarly for Py and Pz . So any projective point in the intersection of linear spaces of the form

V (ai x + bi y+ ci z)∩ V (a j x + b j y+ c j z)

for i 6= j is a singular point of P . When m > 2, these intersections are nonempty, so such singular points
exist.

Thus, when 6 is not defined by diagonal matrices, the problem of finding witnesses to the emptiness
of the varieties in Lemma 3.2 for arbitrary n is nontrivial, which adds another layer of difficulty for
establishing the ML-degree when m > 3. Nevertheless we believe that examining the structure of the
score equations for m = 2 provides a possible blueprint for approaching the problem for m > 2, although
it will require different tools from intersection theory.

For the purposes of statistical inference, one is most interested in real solutions to the score equations,
as these are the ones that may have statistical meaning. Furthermore, it would be nice to understand
whether there are truly 2n− 3 distinct (complex) solutions to the score equations, as opposed to some
having higher multiplicity. Based on the examples we have computed, we conjecture an affirmative
answer. We thus still have the following open questions regarding the m = 2 case.

Problem. How many real solutions can the score equations of a generic two-dimensional linear Gaussian
covariance model have?

Conjecture. For generic values of A, B, and S, the score equations of MA,B with sample covariance
matrix S have 2n− 3 distinct solutions.
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HOLONOMIC GRADIENT METHOD FOR TWO-WAY CONTINGENCY TABLES

YOSHIHITO TACHIBANA, YOSHIAKI GOTO, TAMIO KOYAMA AND NOBUKI TAKAYAMA

The holonomic gradient method gives an algorithm to efficiently and accurately evaluate normalizing
constants and their derivatives. We apply the holonomic gradient method in the case of the conditional
Poisson or multinomial distribution on two-way contingency tables. We utilize the modular method in
computer algebra or some other tricks for an efficient and exact evaluation, and we compare them and
discuss on their implementation. We also discuss on a theoretical aspect of the distribution from the
viewpoint of the conditional maximum likelihood estimation. We decompose parameters of interest and
nuisance parameters in terms of sigma algebras for general two-way contingency tables with arbitrary
zero cell patterns.

1. Introduction

The holonomic gradient method (HGM) proposed in [17] provides an algorithm to efficiently and
accurately evaluate normalizing constants and their derivatives. This algorithm utilizes holonomic
differential equations or holonomic difference equations. Y. Goto and K. Matsumoto [8] determined a
system of difference equations for the hypergeometric system of type (k, n). The normalizing constant
of the conditional Poisson or multinomial distribution on two-way contingency tables is a polynomial
solution of this hypergeometric system. Thus, we can apply these difference equations to exactly evaluate
the normalizing constant and its derivatives by HGM. However, there is a difficulty: numerical evaluation
errors, incurred by repeatedly applying these difference equations or recurrence relations, increase rapidly
if we use floating point number arithmetic. Accordingly, we evaluate the normalizing constant by exact
rational arithmetic. However, in general, exact evaluation is slow. The modular method in computer
algebra (see, e.g., [18], [25]) has been used for efficient and exact evaluation over the field of rational
numbers. We apply the modular method or some other tricks to our evaluation procedure. We compare
these methods and explore implementation of these algorithms in Sections 4 and 5.

We then turn from computation to a theoretical question before presenting statistical applications.
An interesting application of the evaluation of the normalizing constant is the conditional maximum
likelihood estimation (CMLE) of parameters of interest with fixed marginal sums. Broadly speaking,
the parameters of interest in this case are (generalized) odds ratios. However, we could not identify a
rigorous formulation on parameters of interest for contingency tables with zero cells in the literature. In
Sections 7 and 8, we introduce A-distributions as a conditional distribution. The conditional Poisson

MSC2010: 33C90, 65Q10, 62B05, 62H17.
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or multinomial distribution on contingency tables with fixed marginal sums is a special and important
case of A-distributions. We will decompose parameters of interest and nuisance parameters in terms of
σ -algebras. We note that the conditional distribution of a statistic given the occurrence of a sufficient
statistic of a nuisance parameter does not depend on the value of the nuisance parameter. Hence, by the
conditional distribution, we can estimate the parameter of interest without being affected by the nuisance
parameter.

Finally, we apply our method to a CMLE problem for contingency tables. This problem is discussed
in [20] for the case of 2× n contingency tables and the work presented here generalizes this to two-way
contingency tables of any size and with any pattern of zero cells.

2. Two-way contingency tables

We introduce our notation for contingency tables and review how the normalizing constant for a conditional
distribution is expressed by a hypergeometric polynomial of type (k, n). There are several salient references
on contingency tables. Among them, we will refer to [1] and [10, Chap 4] herein.

2.1. r1 × r2 contingency table.

Definition 1 (r1× r2 (two-way) contingency table). An r1× r2 matrix with nonnegative integer entries
is called an r1× r2 contingency table. For a contingency table u = (ui j ), we define the row sum vector
by βr

=
(∑

j u1 j , · · · ,
∑

j ur1 j
)T , and the column sum vector by βc

=
(∑

i ui1, · · · ,
∑

i uir2

)T . A
contingency table u is also written as a column vector of length r1 × r2, denoted by u f . The column
vector obtained by joining βr and βc is denoted by β, which is called the row column sum vector or the
marginal sum vector.

Example 1 (2× 3 contingency table and the row sum and the column sum). For the 2× 3 contingency
table u =

( 5
7

3
2

6
4

)
the row sum vector and the column sum vector are

βr
=

(
5+ 3+ 6= 14
7+ 2+ 4= 13

)
, βc

=

 5+ 7= 12
3+ 2= 5
6+ 4= 10

 .
The corresponding vector expressions of u f and β are

u f
=
(

5 3 6 7 2 4
)T
, β =

(
14 13 12 5 10

)T
.

We fix p = (pi j ) ∈ R
r1×r2
>0 , N ∈ N0 and consider the multinomial distribution

N !pu

u!|p|N
, pu
=

∏
i, j

pui j
i j , u! =

∏
i, j

ui j !

on contingency tables satisfying |u| =
∑

i, j ui j = N . The conditional distribution obtained by fixing the
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row sum vector βr and the column sum vector βc is

pu

u!Z(β; p)
, Z(β; p)=

∑
Au f=β, u∈N

r1×r2
0

pu

u!
. (1)

Here, the polynomial Z(β; p) is the normalizing constant of this conditional distribution. The matrix
A satisfies the following conditions: (1) entries are 0 or 1; (2) Au f is the marginal sum vector (see
Example 2). The expectation of the u-value at (i, j) of this conditional distribution is equal to

E[Ui j ] = pi j
∂ log Z
∂pi j

. (2)

Exact evaluation of the conditional probability of getting a contingency table u and evaluation of the
expectation is reduced to the evaluation of the normalizing constant Z and its derivatives. For given
rational numbers pi j , we provide an efficient and exact method to evaluate Z and its derivatives.

Example 2 (example of A). When u f
=
(

5 3 6 7 2 4
)T

, the matrix A is

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


and we have

Au f
=


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





5
3
6
7
2
4


=


14
13
12
5

10

= β.

Example 3. We consider 2× 2 contingency tables with the marginal sum vector β =
(

5 7 8 4
)T

. All
contingency tables u satisfying Au f

= β are(
5 0
3 4

)
,

(
4 1
4 3

)
,

(
3 2
5 2

)
,

(
2 3
6 1

)
,

(
1 4
7 0

)
.

These u are written as (
5 0
3 4

)
+ i

(
−1 1

1 −1

)
(i = 0, 1, 2, 3, 4).

3. The normalizing constant of 2 × 2 tables

It is known that the normalizing constant for the conditional distribution for r1 × r2 tables is A-
hypergeometric polynomial (see, e.g., [10, Section 6.13]). We will illustrate this correspondence for 2×2
contingency tables.
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Consider the marginal sum vector β = (u11, u21+ u22, u11+ u21, u22) with ui j ≥ 0. The 2 × 2
contingency tables with the marginal sum vector β are

u =
(

u11 0
u21 u22

)
+ i

(
−1 1

1 −1

)
(i = 0, 1, 2, · · · , n).

Here, we have n =min{u11, u22}. The normalizing constant is

Z(β; p)=
n∑

i=0

pu11−i
11 pi

12 pu21+i
21 pu22−i

22

(u11− i)! (i)! (u21+ i)! (u22− i)!
=

pu11
11 pu21

21 pu22
22

u11!u21!u22!

n∑
i=0

(−u11)i (−u22)i

(u21+ 1)i (1)i

(
p12 p21

p11 p22

)i

,

where (a)i = a(a+ 1) · · · (a+ i − 1). Then, it can be expressed in terms of the Gauss hypergeometric
function

2 F1(a, b, c; x)=
∞∑

i=0

(a)i (b)i
(c)i (1)i

x i .

Note that when a, b ∈ Z≤0, it is a polynomial. The normalizing constant can also be expressed in terms
of 2 F1 for other types of marginal sum vectors. A consequence of this observation is that we can utilize
several formulae of the hypergeometric function to evaluate the normalizing constant.

4. Contiguity relation

In the previous section, we expressed the normalizing constant for 2× 2 contingency tables with a fixed
marginal sum vector in terms of the Gauss hypergeometric function. For r1× r2 contingency tables, the
normalizing constant with a fixed marginal sum vector can be expressed in terms of the Aomoto–Gel’fand
hypergeometric function of type (r1, r1+r2) [29] (the function 2 F1 is of type (2, 4)). This hypergeometric
function is also called the A-hypergeometric function for the product of the (r1−1)-simplex and (r2−1)-
simplex. The difference holonomic gradient method for these hypergeometric functions utilizes contiguity
relations. We illustrate this for the case of the Gauss hypergeometric function; for the general case, see [8].

Example 4 (the case of 2 F1). Put f (a)= 2 F1(a, b, c; x) and

F(a)=
(

f (a)
θx f (a)

)
, M(a)=

1
a− c+ 1

(
bx + a− c+ 1 x − 1
−abx a(1− x)

)
,

where θx is the Euler operator x∂x . Then, we have

F(a)= M(a)F(a+ 1). (3)

Now, note the following relations:

1
a
(a+ θx) • f (a)= f (a+ 1), (4)(

θx(c− 1+ θx)− x(a+ θx)(b+ θx)
)
• f (a)= 0. (5)
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The first relation can be shown from the series expansion and the second relation is the Gauss hypergeo-
metric differential equation. It follows from (4), (5) that

1
a
(a+ θx) • F(a)= F(a+ 1), θx • F(a)=

 0 1
abx
1−x

ax+bx−c+1
1−x

 F(a)= A(a)F(a).

Next, we have (3) as

1
a
(a+ θx) • F(a)= 1

a
(aE + A(a))F(a), F(a)=

(1
a
(aE + A(a))

)−1
F(a+ 1)= M(a)F(a+ 1),

where E is the identity matrix.

A relation like F(a)= M(a)F(a+ 1) is called a contiguity relation. In [8], the vector valued function
F(a) is called the Gauss–Manin vector.

There are several algorithms to obtain contiguity relations [28], [22], [21], [8]. Among them, we
choose to use the method of twisted cohomology groups given in [8], because it is the most efficient
method for the case of two-way contingency tables.

We briefly summarize the method given in [8]. Consider the hypergeometric series f (α; x) of type
(r1, r1+ r2). Here, the parameter α = (α1, . . . , αr1+r2−1) stands for the marginal sum vector β and the
variable x = (xi j )1≤i≤r1−1,1≤ j≤r2−1 stands for p. It follows from the twisted cohomology group (a vector
space spanned by equivalence classes of differential forms) associated to the integral representation of f
that the contiguity relation for αi → αi + 1 can be obtained as follows.

We consider the twisted cohomology group H (resp. H ′) standing for the function f (α; x) (resp.
f (α; x)|αi→αi+1). Both twisted cohomology groups are of dimension r =

(r1+r2−2
r1−1

)
. We take a basis

ϕ1, . . . , ϕr of H such that the “integral” of (ϕ1, . . . , ϕr )
T gives a constant multiple of the Gauss–Manin

vector
F(α; x)= ( f (α; x), δ(2) • f (α; x), . . . , δ(r) • f (α; x))T ,

where δ(i) is some differential operator with respect to x = (xi j ). There exist a basis ϕ′1, . . . , ϕ
′
r of H ′

and a linear map Ui : H ′→ H such that the integral of
(
Ui (ϕ

′

1), . . . ,Ui (ϕ
′
r )
)T gives a constant multiple

of the shifted Gauss–Manin vector F(α; x)|αi→αi+1. Let Ui (α; x) be a representation matrix of Ui with
respect to the bases {ϕ′i } and {ϕ j }:(

Ui (ϕ
′

1), . . . ,Ui (ϕ
′

r )
)T
=Ui (α; x) · (ϕ1, . . . , ϕr )

T .

Integrating both sides, we thus obtain the contiguity relation

F(α; x)|αi→αi+1 = Ũi (α; x)F(α; x),

where Ũi is a constant multiple of Ui . It turns out that the representation matrix Ui can be expressed in
terms of a simple diagonal matrix and base transformation matrices which can be obtained by evaluating
intersection numbers among differential forms. The contiguity relation for αi → αi − 1 can be derived
analogously. For more details, see [8]. Here, we illustrate this method in the case of 2 F1.
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Example 5 (the case of 2 F1 (r1 = r2 = 2, r = 2)). For the parameter (a, b, c) of 2 F1, we put

(α1, α2, α3)= (b,−a, c− b− 1).

Here, we set α0 =−α1−α2−α3 = a− c+1 for convenience. Since the move a+1→ a corresponds to
α2− 1→ α2 (and α0+ 1→ α0) in the new parametrization, the matrix M(a) in Example 4 stands for
U2(α; x). The representation matrix U2 has the following decomposition (see the Appendix) for more
details):

U2 =
α1(α2−1)

α3

(
1
α0
+

1
α1

1
α0

1
α0

1
α0
+

1
α2

)(
α1 −α1

0 −α2

)(
1 0
0 1−x

)( 1
α0+1+

1
α1

1
α0+1

1
α0+1

1
α0+1

)(
α1+α3
α2−1 1

1 α2−1+α3
α1

)
.

Apart from the diagonal matrix diag(1, 1− x), the matrices are expressed by intersection numbers. Since
we have δ(2) = 1

α2
θx , the matrix U2 has a small difference with M(a) in Example 4 and we obtain M(a)

by adjusting the scale factor 1/α2 of θx .

By the contiguity relation, we can evaluate the normalizing constant Z and its derivatives. We explain
the procedure for the case of 2 F1. Suppose a ∈ Z<−1. By the contiguity relation (3), we have

F(a) = M(a)F(a+1)

= M(a)M(a+1)F(a+2)
...

= M(a)M(a+1) · · ·M(−2)F(−1). (6)

Then, we can obtain the value of F(a) from the initial value F(−1)=
(
1− b

c x,− b
c x
)T by applying linear

transformations. Values of the normalizing constant and its derivatives can be obtained from F(a) with
the differential equation for the Gauss hypergeometric function. This method is called the difference
holonomic gradient method (difference HGM) and can be generalized to the case of r1× r2 contingency
tables with the Gauss–Manin vector and contiguity relations given in [8].

We note that a naive evaluation of the polynomial Z is very slow. For example, the polynomial
Z of the 2 × 5 contingency table with the row sum (4n, 5n), the column sum (5n, n, n, n, n) and
p =

( 1
1

1/2
1

1/3
1

1/5
1

1/7
1

)
can be expressed in terms of the Lauricella function FD(−4n;−n,−n,−n,−n;

n + 1; 1/2, 1/3, 1/5, 1/7) of 4 variables (see, e.g., [6]). The number of terms is O(n4). Here is a
comparison of the naive summation of FD and our HGM implementation discussed in the next section.

n 20 30 40

Naive summation (in seconds) 16.0 111.7 456.6
HGM (in seconds) 0.28 0.276 0.284

Thus, the HGM is worth researching.
We briefly introduce an algorithm of difference HGM for r1× r2 contingency tables. The following

algorithm computes the Gauss–Manin vector F(β; p) which is essentially the same as F(α; x) in the
above (for the correspondence between (β; p) and (α; x), see [8, Proposition 7.1]). In fact, we give an
improvement of Step 2–4 of [8, Algorithm 7.8].
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Algorithm 1 (A modified version of [8, Step 1–4 of Algorithm 7.8]).
Input: β = (β(1)1 , . . . , β

(1)
r1 ;β

(2)
1 , . . . , β

(2)
r2 ): a marginal sum vector, p = (pi j ) ∈Q

r1×r2
>0 : probabilities

of the cells.
Output: the Gauss–Manin vector F(β; p) (which is a vector of size r =

(r1+r2−2
r1−1

)
).

(1) Set B0 = (1, . . . , 1, β(1)1 + · · ·+β
(1)
r1 − r1+ 1;β(2)1 , . . . , β

(2)
r2 ). Compute F(B0; p) by the definition.

(In this case, the normalizing constant Z(B0; p) is a polynomial of small degree, and hence the
Gauss–Manin vector F(B0; p) is easily computed.)

(2) For k = 1, . . . , r1− 1, define Bk inductively as Bk = Bk−1+ (β
(1)
k − 1) · δk , where

δk = (0, . . . , 0, 1
k-th
, 0, . . . , 0,−1; 0, . . . , 0)

(note that Br1−1 is β). Evaluate the contiguity matrices Ck(t) that satisfy

F(Bk−1+ (T + 1)δk; p)= Ck(T ) · F(Bk−1+ T δk; p), T = 0, 1, . . . , β(1)k − 2.

Here, t is an indeterminate and each entry of Ck(t) is an element of Q(t).

(3) For k = 1, . . . , r1− 1, compute F(Bk; p) inductively as

F(Bk; p)= Ck(β
(1)
k − 2) · · ·Ck(1)Ck(0)F(Bk−1; p). (7)

(4) Return F(Br1−1; p).

By using F(β; p), we can compute the normalizing constant Z(β; p) and the expectations E[Ui j ] (see
[8, Step 5–7 of Algorithm 7.8]).

Example 6 (cf. [8, Example 7.10]). We consider 3× 3 contingency tables whose marginal sum vector is
β = (2, 3, 3; 1, 3, 4). In this case, the Gauss–Manin vector is of size

(3+3−2
3−1

)
= 6.

(1) We set B0 = (1, 1, 6; 1, 3, 4), and compute F(B0; p) by the definition. In this case, the normalizing
constant Z(B0; p) has only eight terms.

(2) We set B1 = (2, 1, 5; 1, 3, 4), B2 = (2, 3, 3; 1, 3, 4)(= β). By using notations in [8], we put

C1(t)=U−1
1 (−5+ t,−2− t,−1, 3, 4, 1; x), C2(t)=U−1

2 (−4+ t,−2,−2− t, 3, 4, 1; x).

Here, x ∈Q(r1−1)×(r2−1) is defined from p. We have

C1(0)F(1, 1, 6; 1, 3, 4; p)= F(2, 1, 5; 1, 3, 4; p),

C2(0)F(2, 1, 5; 1, 3, 4; p)= F(2, 2, 4; 1, 3, 4; p), C2(1)F(2, 2, 4; 1, 3, 4; p)= F(2, 3, 3; 1, 3, 4; p).

(3) We compute the product

C2(1)C2(0)C1(0)F(B0; p)= C2(1)C2(0)C1(0)F(1, 1, 6; 1, 3, 4; p)

= C2(1)C2(0)F(2, 1, 5; 1, 3, 4; p) (= C2(1)C2(0)F(B1; p))

= C2(1)F(2, 2, 4; 1, 3, 4; p)

= C2(1)F(2, 3, 3; 1, 3, 4; p) (= F(B2; p)).
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(4) We obtain the Gauss–Manin vector F(B2; p)= F(β; p).

For example, when p =

(
1 1/2 1/3
1 1/5 1/7
1 1 1

)
, the 6× 6 matrix C2(t) is given as follows.1

C2(t)=



−(35t+29)
35(t+2)

12
5(t+2)

24
7(t+2)

−12
5(t+2)

−24
7(t+2)

0

1
5 −

1
5 0 1

5 0 0
1
7 0 −

1
7 0 1

7 0

−8
5(t+2)

8
5(t+2)

0
21t−73
35(t+2)

−88
35(t+2)

88
35(t+2)

−6
7(t+2)

0
6

7(t+2)
−33

35(t+2)
10t−47
35(t+2)

−33
35(t+2)

0 0 0 −
1
35

1
35 −

1
35



.

Remark 1. The algorithm given in [8] requires more matrix multiplications than Algorithm 1. As [8, Ex-
ample 7.10], the former algorithm computes the above F(2, 3, 3; 1, 3, 4; p) by nine matrix multiplications
(each “ 7→” means one multiplication):

F(1, 1, 2; 2, 1, 1; p) 7→ F(1, 1, 3; 2, 2, 1; p) 7→ F(1, 1, 4; 2, 3, 1; p)

7→ F(1, 1, 5; 2, 3, 2; p) 7→ F(1, 1, 6; 2, 3, 3; p) 7→ F(1, 1, 7; 2, 3, 4; p)

7→ F(1, 1, 6; 1, 3, 4; p) 7→ F(2, 1, 5; 1, 3, 4; p) 7→ F(2, 2, 4; 1, 3, 4; p) 7→ F(2, 3, 3; 1, 3, 4; p).

On the other hand, Algorithm 1 needs only the last three steps.

We give the complexity to construct the matrix Ck(t). The Appendix will help the reader follow the
argument. By [8, Theorem 5.3], the matrix U±1

k for the contiguity relation is the product of five matrices
of size r =

(r1+r2−2
r1−1

)
=

(r1+r2−2)!
(r1−1)! (r2−1)! :

(a) one diagonal matrix whose entries are rational functions in p,

(b) two intersection matrices whose entries are rational functions in β,

(c) two inverse matrices of intersection matrices

(cf. Example 5). For U−1
k , by substituting

• β
(1)
k and β(1)r1 with certain polynomials in t of degree 1,

• the other β(i)j ’s and p with certain rational numbers,

we obtain the matrix Ck(t). By this construction and the formula for (a), (b), (c) in [8], it turns out that
when we construct Ck(t), we treat rational functions in t whose denominator and numerator are of degree
at most 12. As long as we have tried on a computer for cases 5× ri , ri ≤ 12, the degrees of numerators

1This is obtained by our program gtt_ekn3 as
gtt_ekn3.downAlpha3(2,2,2 | arule=gtt_ekn3.alphaRule_num([-5+t,-2,-1-t,3,4,1],2,2),

xrule=gtt_ekn3.xRule_num([[1,1/2,1/3],[1,1/5,1/7],[1,1,1]],2,2)).
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and denominators are much smaller than 12 and no big number (large number so that FFT multiplication
algorithms are used) appears in the matrix Ck(t); when we use the modular method, all numbers in the
matrix are elements in a finite field. Thus, we assume in the following theorem that the complexity of
arithmetics of polynomials in one variable is O(1).

Theorem 1. Let r1, r2 ≥ 2. Assume that the complexity of arithmetics is O(1), the complexities of
multiplying two n× n matrices and evaluating the determinant of an n× n matrix are O(nω) for some
2≤ ω < 3. The complexity of obtaining the matrix Ck(t) in Algorithm 1 for r1× r2 contingency tables is
O(rω), where r =

(r1+r2−2
r1−1

)
. Especially, it is

(1) O(rωr1
2 ) when r1 is fixed,

(2) O(rωr2
1 ) when r2 is fixed,

(3) O(22ωr1) when r1 = r2.

Proof. As explained later, the complexity to construct the above matrices (a), (b) and (c) are O(rω1 r),
O(r2

1r2) and O(r2
1r2), respectively. Since the size of each matrix is r , the complexity of multiplication is

O(rω). Thus, the complexity to obtain a contiguity relation is O(rω)+ O(rω1 r)+ O(r2
1r2). Since r is

larger than r2
1 in general, the complexity is equal to O(rω).

(1) We fix r1 and assume r2� r1. By the Stirling formula log n! ∼ n log n− n, we have

log r ∼ (r1+ r2) log(r1+ r2)− r2 log r2

= r1 log r2+ r1 log
(

1+
r1

r2

)
+ r2 log

(
1+

r1

r2

)
∼ r1 log r2.

Then we obtain r ∼ r r1
2 and the complexity is O(rωr1

2 ).

(2) This can be obtained by a similar argument to Claim (1).

(3) If r1 = r2, then by the Stirling formula, we have

log r ∼ 2r1 log 2r1− 2r1 log r1 = 2r1 log 2,

which implies r ∼ 22r1 . Thus, the complexity is O(22ωr1).

Now, we explain the complexity of obtaining the matrices (a), (b), (c).

(a) As [8, Theorem 5.3], each nonzero entry of the diagonal matrix is the ratio of determinants of two
r1× r1 matrices. Thus the complexity of evaluation is O(rω1 r).

(b) The entries of intersection matrices are intersection numbers of (r1 − 1)-th twisted cohomology
groups, which can be evaluated by the formula in [8, Fact 3.2]. The complexity of evaluating an
intersection number by this formula is O(r2

1 ), and hence the complexity of obtaining the intersection
matrix is O(r2

1r2).

(c) By the proof of [8, Proposition A.1], the inverse matrix of an intersection matrix is expressed as
a product of two diagonal matrices and one intersection matrix. The complexity of obtaining the
diagonal matrices is O(r1r), since that of their nonzero entry is O(r1). Therefore, the complexity of
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obtaining the inverse matrix of the intersection matrix is dominated by the complexity O(r2
1r2) of

obtaining the intersection matrix. �

In this section we conducted a complexity analysis of the method for obtaining the contiguity relation.
The theoretical complexity is of a polynomial order when ri is fixed and our implementation shows that
this step is efficient for small sized contingency tables. However, a naive evaluation of the composition of
linear transformations (6) is slow, even for small contingency tables, because of large numbers when |a|
is large.

5. Efficient evaluation of a composition of linear transformations

To perform exact and efficient evaluations by the difference HGM, we need a fast and exact evaluation
of a composition of linear transformations for vectors with rational number entries. This problem has
hitherto been explored and there are several implementations, e.g., LINBOX [15]. For the purposes of
empirical application, we study several methods to evaluate the composition of linear transformations
such as (6) or (7). Our implementation is published as the package gtt_ekn3 for Risa/Asir [24]. The
function names in this section are those in this package.

5.1. Our benchmark problems. We use four benchmark problems to compare the various methods. The
timing data are taken on a machine with

CPU Intel(R) Xeon(R) CPU E5-4650 2.70 GHz
the number of CPU’s 32
the number of cores 8
OS Debian 9.8
memory 256 GB
software system Risa/Asir (2018) version 20190328 with GMP [9]

Benchmark Problem 1. Evaluate

f = 2 F1

(
−36N ,−11N , 2N ;

1− 1
N

56

)
, N ∈ N.

It stands for the 2× 2 contingency tables with the row sums (36N , 13N − 1) and the column sums

(38N − 1, 11N ). The parameter (pi j ) is set to
(

1 1−1/N
56

1 1

)
.

Benchmark Problem 2. Evaluate the expectation for the 3× 5 contingency tables with the row sums
(N , 2N , 12N ), the column sums (N , 2N , 3N , 4N , 5N ), and the parameter p given by 1 1

2
1
3

1
5

1
7

1 1
11

1
13

1
17

1
19

1 1 1 1 1

 .



HOLONOMIC GRADIENT METHOD FOR TWO-WAY CONTINGENCY TABLES 135

Benchmark Problem 3. Evaluate the expectation for the 5× 5 contingency tables with the row sums
(4N , 4N , 4N , 4N , 4N ), the column sums (2N , 3N , 5N , 5N , 5N ), and the parameter p given by

1 1
2

1
3

1
5

1
7

1 1
11

1
13

1
17

1
19

1 1
23

1
29

1
31

1
37

1 1
37

1
41

1
43

1
47

1 1 1 1 1

 .

Benchmark Problem 4. Evaluate the expectation for the 7× 7 contingency tables with the row sums
(N , 2N , 3N , 4N , 5N , 6N , 7N ), the column sums (N , 2N , 3N , 4N , 5N , 6N , 7N ), and the parameter p
given by 

1 1
2

1
3

1
5

1
7

1
11

1
13

1 1
17

1
19

1
23

1
29

1
31

1
37

1 1
41

1
43

1
47

1
53

1
59

1
61

1 1
67

1
71

1
73

1
79

1
83

1
89

1 1
97

1
101

1
103

1
107

1
109

1
113

1 1
127

1
131

1
137

1
139

1
149

1
151

1 1 1 1 1 1 1


.

5.2. Floating point arithmetic. If we can evaluate the composition of linear transformations (7) ac-
curately over floating point numbers, we can utilize GPU’s or other hardware for efficient evaluation.
Unfortunately, we lose the precision during the iteration of linear transformations in general. For
example, let us evaluate the case of N = 100 for our 2× 2 Benchmark Problem 1 with double arith-
metic. The output by the double precision floating point arithmetic is 4.08315e+94, but the answer is
4.48194745579962e+94 where we use the double value expression in the standard form, e.g., 4.08e+94
means 4.08× 1094. The output by double has only one digit of accuracy.

5.3. Intermediate swell of integers. We denote by M(n) the complexity of the multiplication of two
n-digits integers. The book [4] is a survey on algorithms and complexities on integer arithmetic.

Arithmetic over Q is more expensive than arithmetic over Z, because the reduction of a rational number
needs the computation of GCD of the numerator and the denominator. The best known complexity of the
operation of GCD is O(M(n) log n) for two n-digits numbers (see, e.g., [16], [4]). The complexity of the
Euclidean algorithm for GCD is O(n2).2

One way to avoid reductions in Q in our iterations of linear transformations (7) is to evaluate numerators
and denominators separately and compute the GCD of the numerator and the denominator every R step
of the linear transformations. We will call this sequential method g_mat_fac_int (generalized matrix
factorial over integers). A reduction performing in every R step is necessary. In fact, our evaluation

2Timing data over Q in the version 1 of this paper at arxiv is very slow, because asir 2000 uses the Euclidean algorithm for
the reductions in Q as default. The system asir 2018 based on GMP uses faster GCD algorithms as default.
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Figure 1. Intermediate reduction.

problems make intermediate swell of integers by the method g_mat_fac_int. For example, the table
below shows sizes of the numerators and the denominators by the separate evaluation without the
intermediate reduction in our Benchmark Problem 1:

N digits of num./den. digits of num./den. after reduction time

300 1.97× 105/1.96× 105 3.35× 104/3.28× 104 0.92s
500 3.47× 105/3.47× 105 5.87× 104/5.76× 104 1.56s

After the reduction, the numerators and the denominators become smaller as shown in the second column
of the table.

We have no theoretical estimate for the best choice of R for intermediate reductions. Figure 1 shows
timing data of our Benchmark Problem 2 with N = 100. The horizontal axis is the interval R of the
intermediate reduction and the vertical axis is the timing. The graph indicates that we should choose R
such that 5≤ R ≤ 100.

5.4. Multimodular method. It may be standard to use the modular method when we have an intermediate
swell of integers. We refer to, e.g., [11] and its references for the complexity analysis on modular methods.

Algorithm 2 (g_mat_fac_itor (generalized matrix factorial by itor), modular method). 3

Input: M(k) (matrix), F (vector), S < E (indices), Plist (a list of prime numbers), Clist (a list of
processes for a distributed computation).

Output: A candidate value of M(E) · · ·M(S+ 2)M(S+ 1)M(S)F or “failure”.

3We use “itor” as an abbreviation of the procedure IntegerToRational.
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(1) Let Fn , Fd (scalar), Mn , Md (scalar) be numerators and denominators of F and M respectively.

(2) For each prime number Pi in Plist, perform the linear transformations

E−S∏
i=0

(Mn(S+ i)Md(S+ i)−1)Fn F−1
d

of F over FPi . If the integer Fd or Md is not invertible modulo Pi (unlucky case), then skip this
prime number Pi and set Plist to Plist \ {Pi }. Let the output be Gi . This step may be distributed to
processes in the Clist.

(3) Apply the Chinese remainder theorem to construct a vector G over Z/PZ satisfying G≡Gi mod Pi

where P =
∏

Pi∈Plist
Pi .

(4) Return a candidate value by the procedure IntegerToRational(G, P) (rational reconstruction).

The complexity of the modular method g_mat_fac_itor is estimated as follows.

Theorem 2. Let n be the number of the linear transformations and the size of the square matrix r =(r1+r2−2
r1−1

)
. Suppose that each prime number Pi is dp digits number and we use Np prime numbers. C is

the number of processes. The complexity of g_mat_fac_itor is approximated as

max
{

O
(

nr2 Np M(dp)

C

)
, O

(
r(dp Np)

2)}
when n is in a bounded region where the rational reconstruction succeeds and the asymptotic complexity
of the Chinese remainder theorem approximates well the corresponding exact complexity in the region.

Proof. We estimate the complexity of each step of g_mat_fac_itor.

(1) The complexity of one linear transformation is O(r2 M(dp)). The linear transformation is performed
n times for Np prime numbers. Then the complexity is O(nr2 Np M(dp)) on a single process. This

step can be distributed into C processes, then the complexity is O( nr2 Np M(dp)

C ).

(2) The complexity to find an integer x such that x ≡ xi mod pi (i = 1, . . . , Np) is discussed in [11,
Theorem 6] under the assumption that an inborn FFT scheme is used. It follows from the estimate
that the reconstruction complexity Cn(Np) of Np primes of dp digits is bounded by( 2

3 + o(1)
)
M(dp Np)max

(
log Np

log log(dp Np)
, 1+ O(N−1

p )

)
.

(3) The rational reconstruction algorithm IntegerToRational, see, e.g., [5], [19], is a variation of
the Euclidean algorithm and its complexity is bounded by O((Npdp)

2). We have r numbers to
reconstruct.

Since the complexity of step (2) is smaller than other parts, we obtain the conclusion. �

The complexity is linear with respect to n (which is proportional to the size of the marginal sum vector
in our benchmark problems) when the first argument of the “max” in the theorem is dominant. However,
when n becomes larger, the rational reconstruction fails or gives a wrong answer. This is why we make
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Figure 2. 5× 5 contingency table, the Benchmark Problem 3 with 32 processes.

the assumption that n is in a bounded region. Note that the complexity estimate in the theorem is not an
asymptotic complexity and is an approximate evaluation of it.

Let us present an example that this approximate evaluation works. Figure 2 is a graph of the timing
data for the Benchmark Problem 3 with Np = 400 and dp = 100 by the decimal digits. The top point
graph is the total time, the second top point graph is the time of the generalized matrix factorial (the
execution time of Algorithm 2), the third point graph is the time of the distributed generalized matrix
factorial by modulo Pi ’s (the step (2) of Algorithm 2). The last point graph is the time to obtain contiguity
relations. Contiguity relations for several directions are obtained by distributing the procedures into 32
processes. Note that the point graph is linear with respect to N , which is proportional to the number of
the linear transformations n. The timing data imply that the first argument of “max” of Theorem 2 is
dominant in this case. In fact, when N = 200, the step for reconstructing rational numbers only takes
about 8 seconds and linear transformations over finite fields take from 35 seconds to 52 seconds.

We should ask if our multimodular method is efficient on real computer environments. The following
table is a comparison of timing data of the sequential method g_mat_fac_int (with a distributed
computation of contiguity relations by 32 processors) and the multimodular method g_mat_fac_itor
by 32 processors for the Benchmark Problem 3.

N 90 200

g_mat_fac_int with the reduction interval R = 100 21.57 45.40
g_mat_fac_int without the intermediate reduction 68.17 227.23
g_mat_fac_itor by 32 processors 103.23 205.57

Unfortunately, the multimodular method is slower than the sequential method g_mat_fac_int with a
relevant choice of R on our best computer, however it is faster than the case of a bad choice of R =∞.

When the size of the contingency table becomes larger, the rank r becomes larger rapidly. For example,
r = 20 for the 5× 5 contingency tables and r = 924 for the 7× 7 contingency tables. Figure 3 shows
timing data of our Benchmark Problem 4 of 7× 7 contingency tables with the multimodular method by
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Figure 3. 7× 7 contingency table, the Benchmark Problem 4 with 32 processes.

32 processors. We can also see linear timing with respect to N , but the slope is much larger than the 5×5
case as shown in our complexity analysis.

5.5. Binary splitting method. It is well-known that the binary splitting method for the evaluation of the
factorial m! of a natural number m is faster method than a naive evaluation of the factorial by m! =
m×(m−1)! . The binary splitting method evaluates m(m−1) · · · (bm/2c+1) and bm/2c(bm/2c−1) · · · 1
and obtains m!. This procedure can be recursively executed. This binary splitting can be easily generalized
to our generalized matrix factorial; we may evaluate, for example, M(a)M(a + 1) · · ·M(ba/2c − 1)
and M(ba/2c) · · ·M(−2) to obtain M(a)M(a + 1) · · ·M(−2), a < −2 in (6). This procedure can be
recursively applied. However, what we want to evaluate is the application of the matrix to the vector
F(−1). The matrix multiplication is slower than the linear transformation. Then, we cannot expect
that this method is efficient for our problem when the size of the matrix is not small and the length of
multiplication is not very long. However, there are cases that the binary splitting method is faster. Here is
an output by our package gtt_ekn3.rr.

[1828] import("gtt_ekn3.rr")$
[4014] cputime(1)$
0sec(1.001e-05sec)
[4015] gtt_ekn3.expectation(Marginal=[[1950,2550,5295],[1350,1785,6660]],

P=[[17/100,1,10],[7/50,1,33/10],[1,1,1]]|bs=1)$ //binary splitting
3.192sec(3.19sec)
[4016] gtt_ekn3.expectation(Marginal,P)$

4.156sec(4.157sec)

5.6. Benchmark of constructing contiguity relations. We gave a complexity analysis of finding con-
tiguity relations. When r1 is fixed, it is O(r3r1

2 ). The Figure 4 shows timing data to obtain contiguity
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Figure 4. Time to obtain contiguity relations.

relations for 5× r2 contingency tables where the parameter p is
1 1 1 · · · 1
1 1/p1 1/p2 · · · 1/pr2−1

1 1/pr2 1/pr2+1 · · · 1/p2(r2−1)

1 · · ·

1 1/p(r1−1)(r2−1)+1 · · ·


(pi is the i-th prime number), the row sum vector is (a1, 400, 400, 400, 400), and the column sum vector
is (200, 300, 500, 500, . . . , 500). As is shown by our complexity analysis, when r2 becomes larger, it
rapidly becomes harder to obtain contiguity relations.

6. Zero cells

The contiguity relations derived by [8] are valid only when there are no zero cells in the contingency
table. If there is a zero (pi j = 0 and ui j = 0) in the contingency table, a denominator of the contiguity
relation is zero in general and therefore we cannot use their identity. One method to avoid this difficulty
is interpolation. Note that the normalizing constant Z is a rational function in pi j and the expectation
E[Ui j ] = pi j

∂ log Z
∂pi j

is also a rational function. Because it is a rational function, we can obtain the exact
value by evaluating it on a sufficient number of rational pi j ’s.

Proposition 1. Let β be the marginal sum vector and L a generic line in p-space. If we evaluate E[Ui j ]

at 2β1 points p ∈ R
r1×r2
>0 on a line L , then the exact value of E[Ui j ] can be obtained at any point on L.

Proof. When we restrict E[Ui j ] to the line L , it is a rational function in one variable. The degree of the
denominator and the numerator is β1 at most. Apply an interpolation algorithm by rational function, e.g.,
Stoer–Bulirsch algorithm [27], [23]. Then, we can obtain the exact value by interpolation. �
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Example 7. Let the marginal sums and the parameter p (cell probability) be

∗ ∗ ∗ 3
∗ ∗ ∗ 4
∗ ∗ ∗ 3
3 4 3

, p =

 1 1/2 0
1 1/3 1/4
1 1 1


Then, we can evaluate the expectation matrix (E[Ui j ]) by the difference HGM and interpolation. Below
is an output of our package gtt_ekn3. Here the randinit parameter specifies an interval of random
nonzero pi j ’s where (i, j)’s are positions of zero cells.

[5150] import("gtt_ekn3.rr");
0
[5151] E=gtt_ekn3.cBasistoE_0(0,[[3,4,3],[3,4,3]],[[1,1/2,0],[1,1/3,1/4],[1,1,1]] | randinit=20);
[ 71076/56575 98649/56575 0 ]
[ 157581/113150 28069/22630 77337/56575 ]
[ 39717/113150 114957/113150 92388/56575 ]
// Expectation (exact value)
[5153] number_eval(E); // Expectation (approximate value)
[ 1.25631462660186 1.74368537339814 0 ]
[ 1.39267344233319 1.2403446752099 1.36698188245692 ]
[ 0.351011931064958 1.01596995139196 1.63301811754308 ]

Although the interpolation method is applicable to any pattern of zero cells, a more efficient method
involves utilizing hypergeometric functions restricted on some pi j = 0’s. In general, contiguity relations
and Pfaffian systems for such hypergeometric functions become complicated. In [7], a method is put
forward to evaluate intersection numbers and contiguity relations when only one pi j is zero.

7. Sufficient statistics as σ -algebra

Often we decompose parameters for contingency tables into row and column probabilities and odds ratios.
When only odds ratios are the parameters of interest, CMLE is an appropriate method to estimate those
odds ratios. However, this decomposition is no longer elementary when contingency tables contain zero
cells. To facilitate a mathematically clear discussion of CMLE in the next section, we offer a formulation
of parameters of interest, nuisance parameters, and sufficient statistics. Theorems 3, 4, and 5 explain what
sufficient statistics are for the two-way contingency tables admitting zero cells. In order to prove these
theorems, we utilize the notion of sufficient σ -algebra.

Classical formulations of sufficient statistics as σ -algebras appear in, e.g., [3], [14]. Our formulation is
different because we treat parameters as random variables instead of considering a family of probability
measures. This Bayesian statistical approach enables us to consider σ -algebras on parameter spaces. We
express nuisance parameters and parameters of interest as sub-σ -algebras of the σ -algebra generated by
all parameters. A Bayesian approach to sufficient statistics is presented in, e.g., Chapter 2 of the textbook
by M. Schervish [26]. This book studies sufficient statistics by conditional probabilities given parameter
valued random variables. We study them by a more general approach of conditional expectations given
σ -algebras. The technical details are lengthy and, in this section and the next, we state only fundamental
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notions and theorems which we need to study two-way contingency tables. Proofs for them are given in
the preprint of this paper at arxiv (1803.04170). A general framework of the theory will be given in [13].

The treatment of nuisance parameters and parameters of interest is an important issue in statistics. The
distinction between those parameters which are salient and of interest versus those which are not, may
seem easy. However, it seems to be only a matter of declaring that µ is a parameter of interest or ν is a
nuisance parameter. As we will see in the next section, when a group acts on parameter spaces and the
group is regarded as the space of nuisance parameters, the distinction between them is not trivial. From a
geometric perspective, the cause of this difficulty is that determining whether a parameter is “of interest”
or a “nuisance” depends on a coordinate system. To formulate the “of interest” notion independently of
a specific coordinate system, we will consider σ -algebras on parameter spaces. In probability theory
and stochastic processes, σ -algebra is important as a natural way to express information (see, e.g. [12]).
Discussions in this section are based on conditional expectations with respect to σ -algebra. For basic
properties of conditional expectation, see [30].

Let 2 be a set. The set 2 stands for the parameter spaces. Let B(2) be a σ -algebra on 2, then
(2,B(2)) is a measure space. In the case where 2 is a topological space, we assume that B(2) is the
Borel algebra on 2.

In standard parameter estimation, we assume a probability space (�′,F ′,P ′c) with a parameter c ∈2.
Let us define our probability space from the standard setting. Suppose (2,B(2), µ) is a probability
space. Put � :=�′×2. Let F be the σ -algebra on � generated by

A× B := {(ω, c) ∈� | ω ∈ A, c ∈ B} (A ∈ F ′, B ∈ B(2)).

The measurable space (�,F) is deemed to be the product measurable space of (�′,F ′) and (2,B(2))
[30, p75]. For A ∈ F ′, let f A : 2→ R be the function defined by f A(c) :=

∫
A P ′c(dω) (c ∈ 2). If f A

is B(2)-measurable for any A ∈ F ′, we can define a measure P on F by P(A× B) :=
∫

B f A(c)µ(dc)
(A ∈ F ′, B ∈ B(2)). Thus, our probability space is defined as the product space under the measurable
condition of f A.

Let θ be a measurable map from � to 2 defined by

θ :� 3 (ω′, c) 7→ c ∈2.

This implies that parameters can be regarded as a 2-valued random variable. Although random variables
are usually denoted by capital letters, we use lower case letters to denote random variables that are
regarded as parameters.

Example 8. Let (�′,F ′,P ′c) be the probability space (R,B(R), N (µ, σ 2)), where N (µ, σ 2) is the Gauss-
ian distribution on R with mean µ and variance σ 2. In this case, the parameter space is

2= {(µ, σ 2) ∈ R2
| σ 2 > 0}

and the parameter θ as a measurable map is defined by

θ :� 3 (x, (µ, σ 2)) 7→ (µ, σ 2) ∈2.

https://arxiv.org/abs/1803.04170
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We restart from a probability space (�,F,P), which is not necessarily a product space. For a sub-
σ -algebra G of F , we use L1(G) to denote the linear space of random variables which are integrable
and G-measurable. When two elements X and Y of L1(G) satisfy X (ω)= Y (ω) for all ω ∈�, we state
that X and Y are equal and denote X = Y . Note that X = Y almost surely does not imply that X = Y .
Let ϑ be the sub-σ -algebra of F generated by a random variable θ . It represents the information of
θ . We formulate notions of nuisance parameters, sufficient parameters, and parameters of interest as
sub-σ -algebras of ϑ .

For a pair of random variables X and Y , Y is σ(X)-measurable if and only if Y equals to f (X) for a
Borel measurable function f . See, e.g., [30, p206].

Let X and Y be R-valued random variables and θ be a 2-valued random variable, which we will call a
parameter. We assume that X is integrable. The conditional expectation E (X |Y, θ) can be regarded as a
function of (Y, θ), i.e., we can take a Borel measurable function f from R×2 to R such that

f (Y, θ)= E (X |Y, θ) a.s.

Because the equation f (y, c1) = f (y, c2) may hold even if c1 6= c2, the conditional expectation
E (X |Y, θ) is measurable with respect to a sub-σ -algebra strictly smaller than σ(Y, θ). This suggests that
taking conditional expectation can reduce the information of θ .

Let us express this loss of information of θ in terms of σ -algebra. Let D and G be sub-σ -algebras of
F . In some applications, such as Theorem 3 discussed later, it is assumed that D is the sub-σ -algebra
generated by all observable statistics and G is a sub-σ -algebra generated by a fraction of the observable
statistics and a fraction of the parameters. Note that G may include some information of parameters. For
X ∈ L1(D), the conditional expectation E (X |G) can be measurable for a sub-σ -algebra which is strictly
smaller than G.

Definition 2. A sub-σ -algebra I is said to be of interest with respect to a pair of sub-σ -algebras (D,G)
if, for all X ∈ L1(D), there exists a version of E (X |G) which is I-measurable.

Notions of nuisance and sufficiency describe a special case of such information loss.

Definition 3. Let D, S and N be sub-σ -algebras of F . When S is of interest with respect to (D, σ (S,N )),
we deem that S is sufficient for (D,N ) or that N is nuisance for (D,S).

Remark 2. Note that the condition of Definition 3 is equivalent to stating that the equation

E (X |σ(S,N ))= E (X |S) a.s. (8)

holds for any X ∈ L1(D). In fact, we have

E (X |σ(S,N ))= E (E (X |σ(S,N )) |S) (E (X |σ(S,N )) ∈ L1(S))

= E (X |S) (tower property).

Remark 3. In statistics, a statistic T is sufficient with respect to a parameter θ if the conditional distribution
of observed data X given the statistic T = t does not depend on the parameter θ . This condition is
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formally expressed as
p(x |t, θ)= p(x |t).

In similar tests and the Neyman–Scott problem, θ is denoted as a nuisance parameter or an uninteresting
parameter [2]. We express this condition in terms of measure theory in Definition 3. In our definition, we
use σ -algebra instead of statistics and parameters. Traditional definitions can be reduced to ours by

D = σ(X), S = σ(T ), N = σ(θ).

Intuitively, D, S, and N denote the information of the observed data, the sufficient statistics, and the
nuisance parameters, respectively.

In addition, we utilize conditional expectations instead of conditional probabilities because the latter
can only be defined for a limited class of probability space and conditions.

Fundamental theorems on sufficient statistics can be generalized in our formulation on the sufficient
sigma field [13].

Example 9. For random variables X1, . . . , Xn, θ , suppose that

(1) 0≤ θ ≤ 1, and

(2) the conditional probability of X1, . . . , Xn for given θ is

P (X1 = x1, . . . , Xn = xn|θ)=

n∏
i=1

θ xi (1− θ)1−xi (xi ∈ {0, 1})

Then, putting D := σ(X1, . . . , Xn), N := σ(θ), S := σ(X1+ · · ·+ Xn), S is sufficient for (D,N ).
In order to clarify our formulation by the σ -algebra, we will prove that S is sufficient. For x =

(x1, . . . , xn)
>
∈Rn , we denote by |x | the sum of elements of x . Put X := (X1, . . . , Xn)

> and T := |X | =
X1+ · · ·+ Xn . By [30, p206], for any Y ∈ L1(D), we can take a Borel measurable function f : Rd

→ R
such that Y = f (X). Let g : {0, 1, . . . , n} → R be a function defined by

g(t) :=
(

n
t

)−1 ∑
x∈{0,1}n

δt,|x | f (x).

Then, g(T ) is S-measurable. For any B,C ∈ B(R), we have (with IB and IC the indicator functions of B
and C)

E (Y ; T ∈ B, θ ∈ C)= E (Y IB(T )IC(θ))= E ( f (X)IB(|X |)IC(θ))

=

∫ ∑
x∈{0,1}n

f (x)IB(|x |)IC(θ)

n∏
i=1

θ xi (1− θ)1−xi p(θ) dθ

=

∫ ∑
x∈{0,1}n

n∑
t=0

δt,|x | f (x)IB(|x |)IC(θ)

n∏
i=1

θ xi (1− θ)1−xi p(θ) dθ

=

∫ ∑
x∈{0,1}n

n∑
t=0

δt,|x | f (x)IB(t)IC(θ)θ
t(1− θ)n−t p(θ) dθ
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=

∫ n∑
t=0

(
n
t

)−1 ∑
x∈{0,1}n

δt,|x | f (x)IB(t)IC(θ)

(
n
t

)
θ t(1− θ)n−t p(θ) dθ

= E (g(T )IB(t)IC(θ))

= E (g(T ); T ∈ B, θ ∈ C) .

Since σ(S,N ) is generated by {T ∈ B} ∩ {θ ∈ C} (B,C ∈ B(R)), by [30, 1.6. Lemma (a)], we have
E (Y ; A) = E (g(T ); A) for any A ∈ σ(S,N ). Consequently, g(T ) is a version of E (Y |σ(S,N )) and
S-measurable. Hence, S is sufficient for (D,N ).

To describe a sub-σ -algebra of interest in our application to the A-distribution, we consider orbits of
some group action. Suppose that a group G acts on a measurable space (S, 6). For B ⊂ S and g ∈ G,
we put

g · B := {g · b | b ∈ B} , G · B := {g · b | g ∈ G, b ∈ B} .

Note that G · B = B holds if and only if g · B = B for any g ∈ G.

8. Application to the conditional MLE problem

In this section, we discuss a conditional MLE problem for A-distributions.
Let A be an integer matrix of size d × n, and b be an integer vector of length d . Suppose that Poisson

random variables Xk ∼ Pois(ck), (k = 1, . . . , n) are mutually independent. We denote the conditional
distribution of the random vector X := (X1, . . . , Xn)

> given AX = b as an A-distribution. The parameters
of the A-distribution are c = (c1, . . . , cn)

> and b = (b1, . . . , bn)
>. The probability mass function of the

A-distribution is given as

P (X = x | AX = b, θ = c)=

n∏
j=1

cx j
j

x j !
exp(−c j )

∑
Ay=b

∏n
j=1

cy j
j

y j !
exp(−c j )

=

n∏
j=1

cx j
j

x j !∑
Ay=b

∏n
j=1

cy j
j

y j !

.

An application of conditional distributions in statistics is the elimination of nuisance parameters. By
Definition 3 and Remark 3, the conditional distribution of a statistic given the occurrence of a sufficient
statistic of a nuisance parameter does not depend on the value of the nuisance parameter. This is an
important property in similar tests and the Neyman–Scott problems (see, e.g., [2] and [10]). Hence, by the
conditional distribution, we can estimate the parameter of interest without being affected by the nuisance
parameter. From this perspective, we can regard the A-distribution as the conditional distribution given the
sufficient statistic AX , and the nuisance parameter corresponding to AX is Aθ . The traditional definition
does not offer a mathematically clear description of the parameter of interest for this case. This is the
motivation for the discussions in the previous section. The space of parameters of interest is naturally
described as a sub-σ -algebra under less restrictive conditions on θ and c.
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The parameter c of the A-distribution moves on the set 2 := Rn
≥0. Consider the action of the

multiplicative group G := Rd
>0 on the space 2 defined as

g · c =
(

c j

d∏
i=1

gai j
i

)
j=1,...,n

(g ∈ G, c ∈2).

This group action on 2 induces a group action on Zd
≥0×2 by

g · (b, c)= (b, g · c) (g ∈ G, (b, c) ∈ Zd
≥0×2).

Theorem 3. The sub-σ -algebra

O := {{(AX, θ) ∈ B} | B ∈ B(Zd
≥0)×B(2), G · B = B}

is of interest with respect to (σ (X), σ (AX, θ)).

Note that the quotient space 2/G by the group action G is not a manifold. Therein lies the difficulty
in describing the space of parameters of interest and hence why we utilized the notion of σ -algebra of
interest.

For a vector v = (v1, . . . , vn)
>
∈ Rn , we use J (v) to denote the set of subscript j that satisfies v j 6= 0.

We also use |J (v)| to denote the number of elements in J (v), and we put J (v)c := { j ∈ N | j /∈ J (v)}.
For α = (α1, . . . , αn)

>
∈ Rn , let Rα be the function from 2= Rn

≥0 to R defined by

Rα(c) :=

{∏
j∈J (α) cα j

j (c j 6= 0 for all j ∈ J (α))

0 (c j = 0 for some j ∈ J (α))
(c = (c1, . . . , cn)

>
∈2).

Let Z :2→ Rn be the function defined by Z(c) := (Z1(c), . . . , Zn(c))> (c ∈2) where

Z j (c) :=

{
1 (c j > 0)

0 (c j = 0).

Theorem 4. Let θ̂ :�→ Zd
≥0×2 be the measurable function defined by θ̂ (ω)= (AX (ω), θ(ω)). If θ̂ is

surjective, then
O = σ

(
AX, Rα(θ), Z(θ);α ∈ ker A

)
. (9)

This theorem implies that the sub-σ -algebra of interest O stands for generalized odds ratios, which are,
intuitively, parameters of interest. Note that the parameter may lie on the border θi .

As an interesting and important case of A-distributions, we consider the r1 × r2 contingency table.
Let ui j be independent Poisson random variables with parameter θi j ≥ 0 (1≤ i ≤ r1, 1≤ j ≤ r2). The
parameter θ := (θi j ) lies on the set 2 := R

r1×r2
≥0 . As in the previous section, we regard θ as a measurable

function from (�,F) to (2,B(2)). Note that we can assume that θ is surjective without loss of generality.
Let D be the sub-σ -algebra generated by all ui j , and G be the sub-σ -algebra generated by

θi j (1≤ i ≤ r1, 1≤ j ≤ r2),

r1∑
i=1

ui j (1≤ j ≤ r2),

r2∑
j=1

ui j (1≤ i ≤ r1).



HOLONOMIC GRADIENT METHOD FOR TWO-WAY CONTINGENCY TABLES 147

For all X ∈ L1(D), the conditional expectation E (X |G) is invariant under the action of the multiplicative
group G := R

r1+r2
>0 on 2 defined by

g · c := (gi gr1+ j ci j ) (g = (gi ) ∈ G, c = (ci j ) ∈2).

For 1≤ i, k ≤ r1 and 1≤ j, `≤ r2, let Ri jk` :2→ R be a function defined by

Ri jk`(c) :=

{ ci j ck`
ci`ck j

(ci j ck`ci`ck j 6= 0)

0 (ci j ck`ci`ck j = 0)
(c = (ci j ) ∈2).

Note that Ri jk` is a function obtained from the odds ratio. For 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2, we define a
function Zi j :2→ R by

Zi j (c) :=
{

1 (ci j > 0)
0 (ci j = 0)

(c = (ci j ) ∈2).

The functions Zi j (1≤ i ≤ r1, 1≤ j ≤ r2) hold information on the position of zero cells. The functions
Ri jk` and Zi j are invariant with respect to the action of group G.

The following theorem states that Aθ is a nuisance parameter.

Theorem 5. σ(AX, θ)= σ(Aθ,O).

Corollary 1. σ(Aθ) is nuisance for (σ (X),O).

Proof. By Theorem 3, for any Y ∈ L1(σ (X)), E (Y |σ(AX, θ)) is O-measurable. The equation in
Theorem 5 implies that E (Y |σ(AX, θ)) = E (Y |σ(Aθ,O)) . Hence, O is of interest with respect to
(σ (X), σ (Aθ,O)). Therefore σ(Aθ) is nuisance for (σ (X),O). �

9. Examples of CMLE problems

In the first part of this paper, we propose some efficient methods to evaluate the normalizing constant of
the conditional distribution of fixed row and column sums for solving CMLE problems. In the second
part, we clarify a statistical meaning of considering the conditional distribution. When the independence
of rows and columns (the null model) is rejected under a test, it will be natural to estimate parameters of
interest under the alternative hypothesis based on CMLE we have discussed. More precisely, Theorem 4
and 5 claim that when AX is given, σ(Rα(θ), Z(θ)) are of interest and σ(Aθ) is a nuisance. In the case
of contingency tables, generalized odds ratios Rα(p) and positions of zero cells Z(p) are of interest and
row and column probabilities Ap are a nuisance when the marginal sums of the table are given. We
present examples of estimating generalized odds ratios by CMLE.

Example 10. We generate categorical data concerning the number of hours slept and time of going to
bed from a student sample in the LearnBayes package4 of the system R for statistical computing.

Rows are categorized by time spent sleeping. The categories are sleeping less than 6 hours, 6–7 hours,
and more than 7 hours. Columns are categorized by the time of going to bed. The categories are going to

4https://cran.r-project.org/web/packages/LearnBayes/index.html
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bed before midnight, between midnight and 1am, and after 1am. We wish to analyze these categorical
data by the Poisson random model Ui j ∼ Pois(pi j ). The independence of rows and columns is rejected
by the χ2 test with the threshold p-value 0.05. Then, we regard the column sum

∑
i pi j and the row sum∑

j pi j as nuisance parameters. These represent probabilities of the event standing for j-th row and one
standing for i-th column when the rows and the columns are independent. We perform CMLE under the
condition that column sums

∑
i ui j and row sums

∑
j ui j are given.

Categorical data for all:

Bed time \ Hours slept less than 6 hour 6–7 more than 7 hours

Before 24 1 6 123
24–25 3 22 145

After 25 86 91 176

We omit titles and express this table as

 1 6 123
3 22 145
86 91 176

. Categorical data for males:

 1 2 28
0 4 47

35 32 71


Categorical data for females:  0 4 95

3 18 98
51 59 105


Because this CMLE can be solved by the A-distribution discussed previously, we apply our algorithm

for evaluating normalizing constants and their derivatives to the method for estimating the conditional
maximum likelihood in [29, §4]. We obtain the following estimates. CMLE (pi j ) for all:0.176556059977815 1 10.5634953362788

0.144532927997885 1 3.39969669537228
1 1 1


CMLE for males: 0.458167657900967 1 6.25676090279981

0 1 5.25200491199345
1 1 1


CMLE for females:  0 1 13.2714773737657

0.193351042187373 1 3.04872586155291
1 1 1


As explained in the previous section, the space of parameters of interest should be regarded as the
collection of different orbits by the torus action. When the parameter value obtained via CMLE is (pi j ),
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values on the orbit (gi h j pi j ), gi , h j ∈ R>0 are equivalent parameters. Since the normalized elements of
the second column and the third row are 1, we have g3h1= g3h2= g3h3= 1 and g1h2= g2h2= g3h2= 1.
Then, we have gi h j = 1 for all i, j . The condition whereby this normalization is possible (pi2 6= 0,
p3 j 6= 0) defines a subspace of the parameters of interest. The subspace is isomorphic to R4

≥0 by the
quotient topology. The correspondence is given by

(pi j ) 7→


p11 p32
p12 p31

1 p13 p32
p12 p33

p21 p32
p22 p31

1 p23 p32
p22 p33

1 1 1

 (10)

In this chart, males and females exhibit different tendencies. For example, the underlined values at (1, 3)
and (2, 3) positions are close in the case of males but not for females.

The number obtained by replacing pi j by the frequency ui j in (10) is called a generalized odds ratio.
Generalized odds ratios for our data are as follows. Odds ratios for all:0.176356589147287 1 10.5994318181818

0.144291754756871 1 3.40779958677686
1 1 1


Odds ratios for males: 0.457142857142857 1 6.30985915492958

0 1 5.29577464788732
1 1 1


Odds ratios for females:  0 1 13.3452380952381

0.19281045751634 1 3.05925925925926
1 1 1


Note that, as proved in [29, Theorem 5], these generalized odds ratios approximate CMLE because we
have a sufficient sample size.

When the sample size is relatively small, a generalized odds ratio may not approximate the corresponding
CMLE well. We present one example.

Example 11. The categorical data below are taken from emergency safety information on diclofenac
sodium for influenza encephalitis and encephalopathy.5

Categorical data:

acetaminophen diclofenac sodium mefenamic acid

death 4 7 2
survival 32 5 6

5Pharmaceuticals and Medical Devices Agency, Japan, 2000, https://www.pmda.go.jp/files/000148557.pdf



150 YOSHIHITO TACHIBANA, YOSHIAKI GOTO, TAMIO KOYAMA AND NOBUKI TAKAYAMA

We omit titles and express this table as
( 4

32
7
5

2
6

)
. By applying our algorithm and the method in [29], we

obtain the following CMLE.(
1 10.5557279737263 2.62096714359908
1 1 1

)
Generalized odds ratios are (

1 11.2 2.66666666666667
1 1 1

)
See the numbers underlined above. We observe that the odds ratio is larger than the CMLE. In other
words, the effect of nuisance parameters increases the risk in this case. Finally, we briefly note how
subsequent data released from the same institute in 2001 appeared to show that diclofenac sodium was in
fact more associated with survival, rather than death. This reminds us of some of the difficulties inherent
in statistical analyses. Here are those new data:6

acetaminophen diclofenac sodium mefenamic acid

death 23 13 6
survival 78 25 9

Our algorithm outputs CMLE(
1 1.7567483756645 2.24788463785377
1 1 1

)
and odds ratios: (

1 1.76347826086957 2.26086956521739
1 1 1

)
.

Appendix

We will explain the derivation of the matrix U2 of Example 5 with twisted cohomology groups by following [8] and
the program gtt_ekn3/ekn_pfaffian_8.rr of the package gtt_ekn3.

We start with the integral representation of 2 F1:

0(b)0(c− b)
0(c)

· 2 F1(a, b, c; x)=
∫ 1

0
tb−1(1− t)c−b−1(1− xt)−adt = (−1)b

∫
−1

0
tb(1+ xt)−a(1+ t)c−b−1 dt

t
.

We replace the parameters a, b, c by

(α0, α1, α2, α3)= (a− c+ 1, b,−a, c− b− 1),

where α0 = −α1− α2− α3 stands for the exponent at infinity. The decrement of a stands for an increment of α2

(and decrement of α0). The identity we want to derive is F(a)= M(a)F(a+ 1), which is a special case of

S(α; x)=
1
α2

U2(α(2); x)S(α(2); x), α(2) := (α0+ 1, α1, α2− 1, α3)

6http://idsc.nih.go.jp/disease/influenza/iencepha.html
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in [8, Corollary 6.3] (α(2) stands for a+1). The function upAlpha(2,1,1) in the program derives 1
α2

U2. S(α; x) is
the vector consisting of the hypergeometric series S(α; x) defined in [8, Section 6] and its derivatives (Gauss–Manin
vector). When c ∈ N0, it can be expressed in terms of 2 F1 as

S(α; x)=

(
S

1
α2
θx S

)
=

(
1 0
0 1/α2

)(
S
θx S

)
=

1
(−a)! (−b)! (c− 1)!

(
1 0
0 1/α2

)(
2 F1

θx 2 F1

)
.

Hence, the matrix M(a) can be expressed as

M(a)=−a
(

1 0
0 α2

)( 1
α2

U2(α(2))
)(1 0

0 1/(α2− 1)

)
=

(
1 0
0 α2

)
U2(α(2))

(
1 0
0 1/(α2− 1)

)
.

It follows from [8, Theorem 5.3] that the representation matrix U2 can be expressed as

U2(α(2); x)= C(α)P2(α)
−1 D2(x)Q2(α(2))C(α(2))−1.

We use the notation |x̃〈i j〉|, which is the determinant of the minor matrix consisting of the i-th column and the j-th
column of the matrix x̃ =

( 1
0

0
1

1
x

1
1

)
, where the numbering starts with 0 (see [8] as to details). We put ϕ〈i j〉 = |x̃〈i j〉|dt

L i L j
,

where L0 = 1, L1 = t , L2 = 1+ xt , and L3 = 1+ t . We have the following expressions with these notations.

D2(x)= diag
(
|x̃〈21〉|
|x̃〈01〉|

,
|x̃〈23〉|
|x̃〈03〉|

)
= diag(1, 1− x)=

(
1 0
0 1− x

)
,

C(α)=
(
I(ϕ〈01〉, ϕ〈01〉) I(ϕ〈01〉, ϕ〈02〉)
I(ϕ〈02〉, ϕ〈01〉) I(ϕ〈02〉, ϕ〈02〉)

)
= 2π

√
−1

(
1
α0
+

1
α1

1
α0

1
α0

1
α0
+

1
α2

)
,

Q2(α)=

(
I(ϕ〈01〉, ϕ〈01〉) I(ϕ〈01〉, ϕ〈02〉)
I(ϕ〈03〉, ϕ〈01〉) I(ϕ〈03〉, ϕ〈02〉)

)
= 2π

√
−1

(
1
α0
+

1
α1

1
α0

1
α0

1
α0

)
,

P2(α)=

(
I(ϕ〈21〉, ϕ〈01〉) I(ϕ〈21〉, ϕ〈02〉)
I(ϕ〈23〉, ϕ〈01〉) I(ϕ〈23〉, ϕ〈02〉)

)
= 2π

√
−1

(
1
α1
−

1
α2

0 − 1
α2

)
,

where I is the intersection form on the twisted cohomology group. The inverse matrices of them can also be
expressed in terms of intersection numbers as in [8, Appendix]. This method is implemented as the function
invintMatrix_k in our package and it outputs

P2(α)
−1
=

1

(2π
√
−1)2

(
α1 0
0 α2

)(
I(ϕ〈31〉, ϕ〈01〉) I(ϕ〈31〉, ϕ〈03〉)
I(ϕ〈32〉, ϕ〈01〉) I(ϕ〈32〉, ϕ〈03〉)

)(
α1 0
0 α3

)
=

1

2π
√
−1

(
α1 0
0 α2

)( 1
α1
−

1
α3

0 − 1
α3

)(
α1 0
0 α3

)
=

1

2π
√
−1

(
α1 −α1

0 −α2

)
,

C(α)−1
=

1

(2π
√
−1)2

(
α1 0
0 α2

)(
I(ϕ〈31〉, ϕ〈31〉) I(ϕ〈31〉, ϕ〈32〉)
I(ϕ〈32〉, ϕ〈31〉) I(ϕ〈32〉, ϕ〈32〉)

)(
α1 0
0 α2

)
=

1

2π
√
−1

(
α1 0
0 α2

)( 1
α3
+

1
α1

1
α3

1
α3

1
α3
+

1
α2

)(
α1 0
0 α2

)
=

α1α2

2π
√
−1 ·α3

(
α1+α3
α2

1
1 α2+α3

α1

)
.
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These matrices can be obtained in our program as

D2(x)= repMatrix(2,1,1), Q2(α)/(2π
√
−1)= intMatrix([0,2],[0,3],1,1),

P2(α)/(2π
√
−1)= intMatrix([2,0],[0,3],1,1), (2π

√
−1)P2(α)

−1
= invintMatrix_k([2,0],[0,3],1,1),

C(α)/(2π
√
−1)= intMatrix([0,3],[0,3],1,1), (2π

√
−1)C(α)−1

= invintMatrix_k([0,3],[0,3],1,1).

The argument (1, 1) stands for (r1− 1, r2− 1).
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TROPICAL GAUSSIANS: A BRIEF SURVEY

NGOC MAI TRAN

We review the existing analogues of the Gaussian measure in the tropical semiring and outline various
research directions.

1. Introduction

Tropical mathematics has found many applications in both pure and applied areas, as documented by a
growing number of monographs on its interactions with various other areas of mathematics: algebraic
geometry [Baker and Payne 2016; Gross 2011; Huh 2018; Maclagan and Sturmfels 2015], discrete event
systems [Baccelli et al. 1992; Butkovič 2010], large deviations and calculus of variations [Kolokoltsov
and Maslov 1997; Puhalskii 2001], and combinatorial optimization [Joswig ≥ 2020]. At the same time,
new applications are emerging in phylogenetics [Monod et al. 2018; Yoshida et al. 2019; Page et al.
2020], statistics [Hook 2017], economics [Baldwin and Klemperer 2019; Crowell and Tran 2016; Elsner
and van den Driessche 2004; Gursoy et al. 2013; Joswig 2017; Shiozawa 2015; Tran 2013; Tran and
Yu 2019], game theory, and complexity theory [Allamigeon et al. 2018; Akian et al. 2012]. There is a
growing need for a systematic study of probability distributions in tropical settings. Over the classical
algebra, the Gaussian measure is arguably the most important distribution to both theoretical probability
and applied statistics. In this work, we review the existing analogues of the Gaussian measure in the
tropical semiring. We focus on the three main characterizations of the classical Gaussians central to
statistics: invariance under orthonormal transformations, independence and orthogonality, and stability.
We show that some notions do not yield satisfactory generalizations, others yield the classical geometric
or exponential distributions, while yet others yield completely different distributions. There is no single
notion of a ‘tropical Gaussian measure’ that would satisfy multiple tropical analogues of the different
characterizations of the classical Gaussians. This is somewhat expected, for the interaction between
geometry and algebra over the tropical semiring is rather different from that over R. Different branches
of tropical mathematics lead to different notions of a tropical Gaussian, and it is a worthy goal to fully
explore all the options. We conclude with various research directions.

The author would like to thank Bernd Sturmfels for raising the question that inspired this paper. The author would also like
to thank Yue Ren and Martin Ulirsch, the organizers of the Tropical Panorama conference at the Max-Planck Institute for
Mathematics in the Sciences, for the opportunity to speak about this work while it was still in progress.
Keywords: Gaussian, normal distribution, tropical semiring, p-adic, idempotent probability.
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2. Three characterizations of the classical Gaussian

The Gaussian measure N (µ,6), also called the normal distribution with mean µ ∈ Rn and covariance
6 ∈ Rn×n is the probability distribution with density

f6,µ(x)∝ exp(−
1
2
(x −µ)>6−1(x −µ)), x ∈ Rn.

Let I denote the identity matrix, and 0 ∈ Rn the zero vector. Measures N (0, 6) are called centered
Gaussians, while N (0, I) is the standard Gaussian. Any Gaussian can be standardized by an affine linear
transformation.

Lemma 2.1. Let 6 = U3U> be the eigendecomposition of 6. Then X ∼ N (µ,6) if and only if
(U31/2)−1(X −µ)∼N (0, I).

The standard Gaussian has two important properties. First, if X is a standard Gaussian in Rn , then its
coordinates X1, . . . , Xn are n independent and identically distributed (i.i.d) random variables. Second, for
any orthonormal matrix A, AX d

= X . These two properties completely characterize the standard Gaussian
[Kallenberg 2002, Proposition 11.2]. This result was first formalized in dimension three by Maxwell
[1860] when he studied the distribution of gas particles, though the essence of his argument was made by
Herschel [1850] ten years earlier, as pointed out in [Bryc 1995, p10].

Theorem 2.2 (Maxwell). Let X1, . . . , Xn be i.i.d univariate random variables, where n ≥ 2. Then the
distribution of X = (X1, . . . , Xn) is spherically symmetric iff the X i ’s are centered Gaussians on R.

From a statistical perspective, Lemma 2.1 and Theorem 2.2 reduces working with data from the
Gaussian measure to doing linear algebra. In particular, if data points come from a Gaussian measure,
then they are the affine linear transformation of data points from a standard Gaussian, whose coordinates
are always independent regardless of the orthonormal basis that it is represented in. These properties are
fundamental to principal component analysis, an important statistical technique whose tropical analogue
is actively being studied [Yoshida et al. 2019].

There are numerous other characterizations of the Gaussian measure whose ingredients are only
orthogonality and independence, see [Bogachev 1998, §1.9] and references therein. One famous example
is Kac’s theorem [1939]. It is a special case of the Darmois–Skitovich theorem [Darmois 1953; Skitovich
1953], which characterizes Gaussians (not necessarily centered) in terms of independence of linear
combinations. A multivariate version of this theorem is also known; see [Kagan et al. 1972].

Theorem 2.3 (Darmois–Skitovich). Let X1, . . . , Xn be independent univariate random variables. Then
the X i ’s are Gaussians if and only if there exist α, β ∈ Rn , αi , βi 6= 0 for all i = 1, . . . , n, such that∑

i αi X i and
∑

i βi X i are independent.

Another reason for the wide applicability of Gaussians in statistics is the Central Limit Theorem. An
interesting historical account of its development can be found in [Kallenberg 2002, §4]. From the Central
Limit Theorem, one can derive yet other characterizations of the Gaussian, such as the distribution which
maximizes entropy subject to a fixed variance [Barron 1986]. The appearance of the Gaussian in the
Central Limit Theorem is fundamentally linked to its characterization as the unique 2-stable distribution.
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This is expressed in the following theorem by Pólya [1923]. There are a number of variants of this
theorem; see [Bogachev 1998; Bryc 1995] and discussions therein.

Theorem 2.4 (Pólya). Suppose X, Y ∈Rn are independent random variables. Then X, Y and (X+Y )/
√

2
have the same distribution iff this distribution is the centered Gaussian.

3. Tropical analogues of Gaussians

3.1. Tropicalizations of p-adic Gaussians. Evans [2001] used Kac’s Theorem as the definition of Gaus-
sians to extend them to local fields. Local fields are finite algebraic extensions of either the field of p-adic
numbers or the field of formal Laurent series with coefficients drawn from the finite field with p elements
[Evans 2001]. In particular, local fields come with a tropical valuation val, and thus one can define a
tropical Gaussian to be the tropicalization of the Gaussian measure on a local field. A direct translation
of [Evans 2001, Theorem 4.2] shows that the tropicalization of the one-dimensional p-adic Gaussian is
the classical geometric distribution.

Proposition 3.1 (tropicalization of the p-adic Gaussian). For a prime p ∈ N, let X be a Qp-valued
Gaussian with index k ∈ Z. Then val(X) is a random variable supported on {k, k+ 1, k+ 2, . . . }, and it
is distributed as k+ geometric(1− p−1). That is,

P(val(X)= k+ s)= p−s(1− p−1) for s = 0, 1, 2, . . . .

Proof. Recall that a nonzero rational number r ∈Q\{0} can be uniquely written as r = ps(a/b) where a
and b are not divisible by p, in which case the valuation of r is |r | := p−s . The completion of Q under
the metric (x, y) 7→ |x − y| is the field of p-adic numbers, denoted Qp. The tropical valuation of r is
val(r) := s. By [Evans 2001, Theorem 4.2], the family of Qp-valued Gaussians is indexed by Z. For
each k ∈ Z, there is a unique Qp-valued Gaussian supported on the ball pkZp := {x ∈Qp : |x | ≤ p−k

}.
Furthermore, the Gaussian is the normalized Haar measure on this support. As pkZp is made up of
p translated copies of pk+1Zp, which in turn is made up of p translated copies of pk+2Zp, a direct
computation yields the density of val(X). �

There is a large and growing literature surrounding probability on local fields, or more generally,
analysis on ultrametric spaces. They have found diverse applications, from spin glasses, protein dynamics,
and genetics, to cryptography and geology; see the recent comprehensive review [Dragovich et al. 2017]
and references therein. The p-adic Gaussian was originally defined as a step towards building Brownian
motions on Qp [Evans 2001]. It would be interesting to use tools from tropical algebraic geometry to
revisit and expand results involving random p-adic polynomials, such as the expected number of zeroes
in a random p-adic polynomial system [Evans 2006], or properties of determinants of matrices with i.i.d
p-adic Gaussians [Evans 2002]. Previous work on random p-adic polynomials from a tropical perspective
tends to consider systems with uniform valuations [Avendaño and Ibrahim 2011]. Proposition 3.1 hints
that to connect the two literatures, the geometric distribution may be more suitable.
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3.2. Gaussians via tropical linear algebra. Consider arithmetic done in the tropical algebra (R,⊕,�),
where R is R together with the additive identity. In the max-plus algebra (R,⊕,�) where a ⊕ b =
max(a, b), for instance, R= R∪{−∞}. In the min-plus algebra (R,⊕,�) where a⊕ b=min(a, b), we
have R= R∪ {+∞}. To avoid unnecessary technical details, in this section we focus on vectors taking
values in R instead of R.

Tropical linear algebra was developed by several communities with different motivations. It evolved as
a linearization tool for certain problems in discrete event systems, queueing theory and combinatorial
optimization; see the monographs [Baccelli et al. 1992; Butkovič 2010], as well as the recent survey
[Komenda et al. 2018] and references therein. A large body of work focuses on using the tropical setting
to find analogous versions of classical results in linear algebra and convex geometry. Many fundamental
concepts have rich tropical analogues, including the spectral theory of matrices [Akian et al. 2006; Baccelli
et al. 1992; Butkovič 2010], linear independence and projectors [Allamigeon et al. 2011; Akian et al.
2011; Butkovič et al. 2007; Sergeev 2009], separation and duality theorems in convex analysis [Briec
and Horvath 2008; Cohen et al. 2004; Gaubert and Katz 2011; Nitica and Singer 2007], matrix identities
[Gaubert 1996; Hollings and Kambites 2012; Morrison and Tran 2016; Simon 1994], matrix rank [Chan
et al. 2011; Develin et al. 2005; Izhakian and Rowen 2009; Shitov 2011], and tensors [Butkovic and
Fiedler 2018; Tsukerman 2015]. Another research direction focuses on the combinatorics of objects
arising in tropical convex geometry, such as polyhedra and hyperplane arrangements [Akian et al. 2012;
Develin and Sturmfels 2004; Joswig and Loho 2016; Joswig et al. 2007; Sturmfels and Tran 2013; Tran
2017]. These works have close connections to matroid theory and are at the interface of tropical linear
algebra and tropical algebraic geometry [Ardila and Develin 2009; Fink and Rincón 2015; Giansiracusa
and Giansiracusa 2018; Hampe 2015; Loho and Smith 2020].

Despite the rich theory of tropical linear algebra, in this section we shall show that there is currently
no satisfactory way to define the tropical Gaussian as a classical probability measure based on the
characterizations of Gaussians via orthogonality and independence as in Section 2. This is somewhat
surprising, for there are good analogues of norms and orthogonal decomposition in the tropical algebra.
In hindsight, the main difficulty stems from the fact that such tropical analogues are compatible with
tropical arithmetic, while classical measure theory was developed with the usual algebra. In Section 3.3
we consider the idempotent probability measure theory, where there is a well-defined Gaussian measure
complete with a quadratic density function analogous to the classical case.

The natural definition for tropical linear combinations of v1, . . . , vm ∈ Rn is the set of vectors of the
form

[v1, . . . , vm] := {a1� v1⊕ · · ·⊕ am � vm for a1, . . . , am ∈ R}, (1)

where scalar-vector multiplication is defined pointwise. That is, for a ∈ R and v ∈ Rn , a� v ∈ Rn is the
vector with entries

(a� v)i = a+ vi for i = 1, . . . , n.

We shall also write a+ v for a� v, with the convention scalar-vector addition is defined pointwise.
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For finite m, V := [v1, . . . , vm] is always a compact set in TPn−1
:= Rn/R1 [Develin and Sturmfels

2004]. Unfortunately, this means one cannot hope to have finitely many vectors to ‘tropically span’ Rm .
Nonetheless, there is a well-defined analogue orthogonal projection in the tropical algebra. Associated to
a tropical polytope V := [v1, . . . , vm] defined by (1) is the canonical projector PV : R

n
→ V that plays

the role of the orthogonal projection onto V [Cohen et al. 2004]. This projection is compatible with the
projective Hilbert metric dH [Cohen et al. 2001; 2004], in the sense that PV (x) is a best-approximation
under the projective Hilbert metric of x by points in V [Cohen et al. 2004; Akian et al. 2011]. When V is
a polytrope, that is, a tropical polytope that is also classically convex, then PV can be written as a tropical
matrix-vector multiplication. This is analogous to classical linear algebra, where best-approximations in
the Euclidean distance can be written as a matrix-vector multiplication.

In the max-plus algebra, the projective Hilbert metric is defined by

dH (x, y)= max
i, j∈[n]

(xi − yi + y j − x j ).

It induces the Hilbert projective norm ‖·‖H :R
m
→R via ‖x‖H = dH (x, 0). Since dH (x, y)=maxi (xi−

yi )−min j (x j − y j ), one finds that

‖x‖H = ‖x −min
i

xi‖∞.

This formulation shows that the projective Hilbert norm plays the role of the `∞-norm on TPn−1. The
appearance of `∞, instead of `2, agrees with the conventional ‘wisdom’ that generally in the tropical
algebra, `2 is replaced by `∞ [Evans 2001].

To generalize Maxwell’s characterization of the classical Gaussians, we need a concept of orthogonality.
One could attempt to mimic orthogonality via the orthogonal decomposition theorem, as done in [Evans
2001] for the case of local fields discussed in Section 3.1. Namely, over a normed space (Y, ‖ · ‖) over
some field K , say that y1, . . . , ym ∈ Y are orthogonal if and only if for all αi ∈ K , the norm of the vector∑

i αi yi equals the norm of the vector (|α1|‖y1‖, . . . , |αm |‖ym‖), that is,∥∥∥∥∑
i

αi yi

∥∥∥∥= ∥∥(|α1|‖y1‖, . . . , |αm |‖ym‖)
∥∥. (2)

In the Euclidean case, this is the Pythagorean identity∥∥∥∥∑
i

αi yi

∥∥∥∥
2
=

(∑
i

|αi |
2
‖yi‖

2
)1/2

,

for example. The `∞-norm, unfortunately, does not work well with the usual notion of independence in
probability. In the Hilbert projective norm, (2) can be interpreted either as

‖maxi (αi + yi )‖H =maxi ‖αi + yi‖H −mini ‖αi + yi‖H =maxi ‖yi‖H −mini ‖yi‖H (3)

or

‖maxi (αi + yi )‖H =maxi (αi +‖yi‖H )−mini (αi +‖yi‖H ). (4)
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Unfortunately, neither formulation give a satisfactory notion of orthogonality. In (3), as the norm is
projective, the coefficients αi have disappeared from the RHS. This does not support the notion that over
an orthogonal set of vectors in the classical sense, computing the norm of linear combinations is the same
as computing norm of the vector of coefficients. In (4), for sufficiently large α1, the RHS increases without
bound whereas the LHS is bounded, and thus equality cannot hold for all αi ∈ R over any generating set
of yi ’s.

The Darmois–Skitovich characterization for Gaussians also does not generalize well. Note that the
additive identity in (R,⊕,�) is either −∞ or +∞, so the condition that αi , βi 6= 0 becomes redundant.
The following lemma states that the any compact distribution will satisfy the Darmois–Skitovich condition.

Lemma 3.2. Let X1, . . . , Xn be independent random variables on Rn . Then there exist α, β ∈ Rn such
that

⊕n
i=1 αi � X i and

⊕n
i=1 βi � X i are independent if and only if X1, . . . , Xn have compact support.

Proof. Let us sketch the proof for n = 2 under the min-plus algebra. Let X = (X1, X2) ∈ R2 and
Y = (Y1, Y2) ∈ R2 be two independent variables. Define FX , FY : R

2
→ [0, 1] via FX (t)= P(X ≥ t) and

FY (t)= P(Y ≥ t). Fix α, β ∈ R2. For t ∈ R2,

P(α1� X ⊕α2� Y ≥ t)= P(min(α1+ X, α2+ Y )≥ t) by definition

= P(X ≥ t −α1)P(Y ≥ t −α2) by independence

= FX (t −α1)FY (t −α2).

Meanwhile,

P(α1� X ⊕α2� Y ≥ t,β1� X ⊕β2� Y ≥ t)

=P(min(α1+ X, α2+ Y )≥ t,min(β1+ X, β2+ Y )≥ t) by definition

=P(X ≥ t −α1, X ≥ t −β1)P(Y ≥ t −α2, Y ≥ t −β2) by independence

= min(FX (t −α1), FX (t −β1))min(FY (t −α2), FY (t −β2)).

Therefore, for α1� X ⊕α2� Y and β1� X ⊕β2� Y to be independent, for all t ∈ R2, we need

FX (t−α1)FX (t−β1)FY (t−α2)FY (t−β2)=min(FX (t−α1), FX (t−β1))min(FY (t−α2), FY (t−β2)) ·

max(FX (t−α1), FX (t−β1))max(FY (t−α2), FY (t−β2))

= min(FX (t−α1), FX (t−β1))min(FY (t−α2), FY (t−β2)).

But FX and FY are nonincreasing functions taking values between 0 and 1. So

FX (t−α1)FX (t−β1)FY (t−α2)FY (t−β2)≤min(FX (t−α1), FX (t−β1))min(FY (t−α2), FY (t−β2)),

and equality holds if and only if

min(FX (t −α1), FX (t −β1))= 0, or min(FY (t −α2), FY (t −β2))= 0.

As either of these scenarios must hold for each t ∈ R2, we conclude that X and Y must have compact
supports. Conversely, suppose that X and Y have compact supports. Then one can choose α1 = β2 = 0
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and α2 = β1 be a sufficiently large number, so that

α1� X ⊕α2� Y = X, and β1� X ⊕β2� Y = Y.

In this case, the Darmois–Skitovich condition holds trivially, as desired. �

Now consider Pólya’s condition. Here the Gaussian is characterized via stability under addition. When
addition is replaced by minimum, it is well-known that this leads to the classical exponential distribution.
One such characterization, which generalizes to distributions on arbitrary lattices, is the following [Bryc
1995, Theorem 3.4.1].

Theorem 3.3. Suppose X, Y are independent and identically distributed nonnegative random variables.
Then this distribution is the exponential if and only if for all a, b > 0 such that a+ b = 1, min(X/a, Y/b)
has the same distribution as X.

By considering log(X) and log(Y ), one could restate this theorem in terms of the min-plus algebra,
though the condition a + b = 1 does not have an obvious tropical interpretation. This shows that the
tropical analogue of Gaussian is the classical exponential distribution.

3.3. Gaussians in idempotent probability. Idempotent probability is a branch of idempotent analysis,
which is functional analysis over idempotent semirings [Kolokoltsov and Maslov 1997]. Idempotent
semirings are characterized by the additive operation being idempotent, that is, a⊕ a = a. The tropical
semirings used in the previous sections are idempotent, but there are others, such as the Boolean semiring
in semigroup theory. Idempotent analysis was developed by Litvinov, Maslov and Shipz [Litvinov et al.
1998] in relation to problems of calculus of variations. Closely related are the work on large deviations
[Puhalskii 2001], which has found applications in queueing theory, as well as fuzzy measure theory
and logic [Dubois and Prade 2000; Wang and Klir 1992]. The work we discussed in this section is
based on that of Akian, Quadrat and Viot and coauthors [Akian et al. 2011; 1994], whose goal was to
develop idempotent probability as a theory completely in parallel to classical probability. Following their
convention, we work over the min-plus algebra.

All fundamental concepts of probability have an idempotent analogue, see [Akian et al. 1994] and
references therein. For a flavor of this theory, we compare the concept of a measure. In classical settings,
a probability measure µ is a map from the σ -algebra on a space � to R≥0 that satisfies three properties:
(i) µ(∅)= 0, (ii) µ(�)= 1, and (iii) for a countable sequence (Ei ) of pairwise disjoint sets,

µ
( ∞⋃

i=1
Ei
)
=

∞∑
i=1
µ(Ei ).

The analogous object in the min-plus probability is the cost measure K defined by three axioms: (i)
K(∅)=+∞, (ii) K(�)= 0, and

K
(⋃

i
Ei
)
=
⊕

i
K(Ei )= infi K(Ei ).

Idempotent probability is rich and has interesting connections with dynamic programming and optimization.
For instance, tropical matrix-vector multiplication can be interpreted as an update step in a Markov chain,
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so the Bellman equation plays the analogue of the Kolmogorov–Chapman equation. Most notably, the
classical quadratic form (x − y)2/2σ 2 defines a stable distribution [Akian et al. 1994]. Furthermore, it is
the unique density that is invariant under the Legendre–Fenchel transform [Akian et al. 1994], which is
the tropical analogue of the Fourier transform [Kolokoltsov and Maslov 1997]. This is in parallel to the
characterization of the scaled version of the Gaussian density x 7→ exp(−πx2) being invariant under the
Fourier transform. While x 7→ exp(−πx2) is not the unique function to possess this property [Duffin 1948],
the fact that the Fourier transform of a N (µ, σ 2) univariate Gaussian has the form x 7→ exp(iµx − x2

2 ) is
frequently employed to prove independence of linear combinations of Gaussians. Under this light, one
can regard the idempotent measure correspond to the density (x− y)2/2σ 2 to be the idempotent analogue
of the classical Gaussian.

4. Open directions

4.1. Tropical curves, metric graphs and Gaussians via the Laplacian operator. From the perspective
of stochastic analysis, the Gaussian measure can be characterized as the unique invariant measure for
the Ornstein–Uhlenbeck semigroup [Bogachev 1998, §1]. This semigroup is a powerful tool in proving
hypercontractivity and log-Sobolev inequalities. In particular, the Gaussian density can be characterized
as the function that satisfies such inequalities with the best constants [Bogachev 1998]. One useful
characterization of the Ornstein–Uhlenbeck semigroup is by its generator, whose definition has two
ingredients: a Laplacian operator and a gradient operator ∇. Let us elaborate. Let γ be a centered
Gaussian measure on Rn . The Ornstein–Uhlenbeck semigroup (Tt , t ≥ 0) is defined on L2(γ ) by the
Mehler formula

Tt h(x)=
∫

Rn
h(e−t x +

√
1− e−2t y) γ (dy), t > 0

and T0 is the identity operator. It characterizes the Gaussian measure in the following sense [Bogachev
1998, §1].

Lemma 4.1. γ is the unique invariant probability measure for (Tt , t ≥ 0).

One can arrive at this semigroup without the Mehler’s formula as follows. Let D = {h ∈ L2(γ ) :

limt→0
Tt h−h

t exists in the norm of L2(γ )}. (Recall that L2(γ ) is the space of square integrable functions
with respect to the measure γ ). The linear operator L defined on D by

Lh = lim
t→0

Tt h− h
t

is called the generator of the semigroup (Tt , t ≥ 0). The generator of the Ornstein–Uhlenbeck semigroup
is given by

Lh(x)=1h(x)−〈x,∇h〉 =
n∑

i=1

∂2h
∂x2

i
(x)−

n∑
i=1

xi
∂h
∂xi

(x).

This generator uniquely specifies the semigroup. Importantly, the two ingredients needed to define L are
the Laplacian operator 1, and the gradient operator ∇. Thus the semigroup can be defined on Riemannian
manifolds, for instance. This opens up ways to define Gaussians on tropical curves.
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In tropical algebraic geometry, an abstract tropical curve is a metric graph [Mikhalkin and Zharkov
2008]. There are some minor variants: with vertex weights [Brannetti et al. 2011; Chan 2012], or just
the compact part [Baker and Faber 2006]. An embedded tropical curve is a balanced weighted one-
dimensional complex in Rn . There are several constructions of tropical curves. In particular, they arise
as limits of amoebas through a process called Maslov dequantization in idempotent analysis [Litvinov
et al. 1998]. Tropical algebraic geometry took off with the landmark paper of Mikhalkin [2005], who
used tropical curves to compute Gromov–Witten invariants of the plane P2 [Maclagan and Sturmfels
2015]. Since then, tropical curves, and more generally, tropical varieties, have been studied in connection
to mirror and symplectic geometry [Gross 2011]. Another heavily explored aspect of tropical curves is
their divisors and Riemann–Roch theory [Baker and Norine 2007; Baker and Payne 2016; Gathmann and
Kerber 2008; Mikhalkin and Zharkov 2008]. This theory is connected to chip-firing and sandpiles, which
were initially conceived as deterministic models of random walks on graphs [Cooper and Spencer 2006].

Metric graphs are Riemannian manifolds with singularities [Baker and Faber 2006]. Brownian motions
defined on metric graphs, heat semigroups on graphs, and graph Laplacians are an active research area
[Kostrykin et al. 2012; Post 2009]. As of now, however, the author is unaware of an analogue of the
Ornstein–Uhlenbeck semigroup and its invariant measure on graphs. It would also be interesting to study
what Brownian motion on graphs reveals about tropical curves and their Jacobians.

4.2. Further open directions. The natural ambient space for doing tropical convex geometry is not Rm ,
but TPn−1, where a vector x ∈Rm is identified with all of its scalar multiples a� x . Probability theory on
classical projective spaces relies on group representation [Benoist and Quint 2014]. Unfortunately, there
is no satisfactory tropical analogue of the general linear group. Every invertible n× n matrix with entries
in R is the composition of a diagonal matrix and a permutation of the standard basis of Rn [Kolokoltsov
and Maslov 1997]. We note that several authors have studied tropicalization of special linear group over
a field with valuation [Joswig et al. 2007; Werner 2011]. It would be interesting to see whether this can
be utilized to define probability measures on TPn−1.

Another approach is to ‘fix’ the main difficulty with the idempotent algebra, namely, the lack of the
additive inverse. Some authors have put back the additive inverse and developed a theory of linear algebra
in this new algebra, called the supertropical algebra [Izhakian and Rowen 2010]. It would be interesting
to study matrix groups and their actions under this algebra, and in particular, pursue the definition of
Gaussians as invariant measures under actions of the orthogonal group.

4.3. Beyond Gaussians. In a more applied direction, TPn−1 is a natural ambient space to study problems
in economics, network flow and phylogenetics. Thus one may want an axiomatic approach to finding
distributions on TPn−1 tailored for specific applications. For instance, in shape-constrained density
estimation, log-concave multivariate totally positive of ordered two (MTP2) distributions are those whose
density f : Rd

→ R is log-concave and satisfies the inequality

f (x) f (y)≤ f (x ∨ y) f (x ∧ y) for all x, y ∈ Rd .
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A variety of distributions belong to this family. Requiring that such inequalities hold for all x, y ∈ TPn−1

leads to the stronger condition of L\-concavity

f (x) f (y)≤ f ((x +α1)∨ y) f (x ∧ (y−α1)) for all x, y ∈ Rd , α ≥ 0.

A Gaussian distribution is log-concave MTP2 if and only if the inverse of its covariance matrix is an
M-matrix [Lauritzen et al. 2019]. Only diagonally dominant Gaussians are L\-concave [Murota 2003,
§2]. This subclass of densities has nice properties that make them algorithmically tractable in Gaussian
graphical models [Malioutov et al. 2006; Weiss and Freeman 2001]. In particular, density estimation for
L\-concave distributions is significantly easier than for log-concave MTP2 [Robeva et al. 2018]. It would
be interesting to pursue this direction to define distributions on the space of phylogenetic trees.
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THE NORM OF THE SATURATION OF A BINOMIAL IDEAL,
WITH APPLICATIONS TO MARKOV BASES

DAVID HOLMES

Let B be a finite set of pure binomials in the variables xi , and write IB for the ideal generated by these
binomials. We define a new measure of the complexity of the saturation of the ideal IB with respect to the
product of the xi , which we call the norm of B. We give a bound on the norm in terms of easily computed
invariants of B. We discuss statistical applications, both practical and theoretical.
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1. Introduction

1.1. Background. Let A be a k×r matrix with integer entries, and let u ∈Nr be a vector with nonnegative
entries. The fibre containing u is defined as

F(u)= {v ∈ Nr
: Au = Av}. (1.1.1)

Understanding the structure of this fibre is important in a number of statistical tests. For example, the
vectors in Nr might represent tables of data, and the matrix A might output the row and column sums
of these tables, so the fibre consists of all tables with nonnegative entries and with the same row and
column sums as the starting table u. See [Diaconis and Sturmfels 1998] for more details and examples.
In particular, one often wants to generate samples from some probability distribution (often uniform or
hypergeometric) on the fibre. If the fibre is small it is feasible to simply enumerate all the elements of the
fibre. However, in practical applications the fibre is often far too large to enumerate, and the standard
approach is to perform a random walk in the fibre, generating samples via the Metropolis–Hastings
Markov chain Monte Carlo algorithm. In order to perform a random walk, we must upgrade the fibre into
a graph (whose vertices are the elements of the fibre). The requirements for the Metropolis–Hastings
algorithm are rather mild, the key condition is that the graph must be connected (since the random walk
will always remain within its starting connected component).

MSC2010: 13P25, 14M25.
Keywords: markov basis, saturation, toric ideals.
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1.1.1. A random walk in the fibre. The most naive way to convert the fibre into a graph is to choose a
generating set B for the kernel K ⊆ Zr of A as a Z-module, and then form a (simple, undirected) graph
by putting an edge between distinct vertices v1 and v2 whenever v1 − v2 ∈ B or v2 − v1 ∈ B. We say
F(u) is connected by B if the resulting graph is connected. In Section 2 we will see several examples
of B that fail to connect F(u). The major innovation of Diaconis and Sturmfels [1998] was to give an
algorithm to construct a generating set B which connects every fibre of a given matrix A.

1.1.2. Saturated ideals and connected fibres. To describe their result, we need a little more notation. Given
b ∈ B, we write b = b+− b−, both summands having nonnegative entries. In the ring R = Z[x1, . . . , xr ]

we form the elements

xb+
:=

r∏
i=1

x
b+i
i , xb−

:=

r∏
i=1

x
b−i
i , (1.1.2)

and define an ideal IB = (xb+
− xb−

: b ∈ B)⊆ R. Then the key theorem is the following (where we use
[Sturmfels 1996, Lemma 12.2 p. 114] to interpret toric ideals as saturated ideals).

Theorem 1.1 [Diaconis and Sturmfels 1998]. Fix a k× r matrix A, and let B be a generating set for the
integral kernel of A. Suppose the ideal IB is saturated with respect to the element x1 · · · xr ∈ R. Then for
every u ∈ Nr , the fibre F(u) is connected by B.

If IB is saturated, B is often called a Markov basis (though we use the word “basis”, this should not be
interpreted as implying linear independence of the elements of B). The theorem then tells us that we can
generate samples according to our preferred distribution by following the naive random walk algorithm
above using the basis B.

On the other hand, suppose that we have a generating set B such that IB is not saturated. We can (at
least in principal) apply a standard saturation algorithm to IB to produce a saturated ideal, and moreover
the generating set produced will in fact consist of pure difference binomials (i.e. differences of monomials;
see Definition 4.1). Reversing the procedure (1.1.2) we can recover a new generating set B ′ for the kernel
K of A, and following the above theorem of Diaconis–Sturmfels, this generating set will connect all
fibres, enabling efficient sampling.

Thus, when it is possible to compute this saturation, the problem is essentially solved. However,
the standard algorithm for saturation involves r computations of Gröbner bases (where r is the number
of columns as above), and is at present only practical for relatively small examples. General purpose
algorithms (not taking advantage of the toric structure) are available in many packages (such as MAGMA
[Bosma et al. 1997] and Singular [Decker et al. 2019]), and also specialised implementations for the toric
case are available (CoCoa [Bigatti et al. 1999], 4ti2 [Hemmecke et al. 2001–]).

1.1.3. Connected fibres without saturation. The difficulty of computing the saturation motivated Aoki,
Hara and Takemura [Hara et al. 2012] to suggest an algorithm for generating samples without needing
to compute the saturation. They begin in the same way, with a generating set B = {b1, . . . , bn} for the
integral kernel, but instead of making moves consisting of addition or subtraction of a single element of
B, they instead generate n nonnegative integers ai from a Poisson distribution with some chosen mean λ,
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and n elements εi ∈ {+1,−1}, and their move consists of addition of
∑

i εi ai bi if the result lies in the
fibre, and staying put otherwise. Since the Poisson distribution generates every nonnegative integer with
nonzero probability it is immediate that the resulting fibre is connected; in fact, the graph on the fibre is a
complete graph, but with highly nonuniform probability of selecting moves from among edges.

They then perform a number of numerical experiments with various values of λ. In cases where it
was possible to compute the saturation, they show that for careful choice of λ their algorithm performs
comparably to that coming from a Markov basis, and they also illustrate that their algorithm can be applied
in cases where the saturation is too hard to compute (though they can of course provide no guarantee that
their algorithm is converging in reasonable time; it appears to do so, but this might be deceptive if the
fibre has some connected components that are very hard to hit — see Section 1.4).

There is some tension in the use of this algorithm when it comes to choosing the value of λ. If one
chooses λ very large then the algorithm takes a long time before it (appears to) converge. On the other hand,
a small value of λwill product more rapid apparent convergence, but there is a greater risk that one is simply
failing to see one or more connected components of the fibre in the time for which the algorithm is run.

1.2. Results.

1.2.1. A bound on the complexity of the saturation. In the light of the above discussion it is natural to try
to bound how large and complex the saturation of the ideal IB can get. To make this more precise, we
define the norm of the generating set B as follows.

Definition 1.2. Let B be set of n ≥ 1 vectors in Zr . We write IB for the ideal in R = Z[x1, . . . , xr ] as
defined in Section 1.1.2. The norm of B is the smallest integer N ≥ 1 such that there exists a finite
generating set G for the saturation of IB with respect to x1 · · · xr , with the properties that

(1) Every element of G is a pure difference binomial;

(2) Every g ∈ G can be written in the form

g =
N∑

i=1

εi mi (xb+i − xb−i ). (1.2.1)

where the εi ∈ {−1, 0, 1}, the mi are Laurent monomials, and the bi are elements of B.

The main result of this paper is the following explicit bound on the norm. In Sections 1.3.1–1.3.2 we
will show how this can be applied to give new algorithms for sampling from fibres without needing to
compute the saturation.

Theorem 1.3. Let B be set of n ≥ 1 vectors in Zr . Write β for the maximum of the absolute values of the
coefficients of elements of B. Then the norm of B is at most

nnβn−1. (1.2.2)

Our proof (see Section 4.1) is constructive; it gives an algorithm to determine a generating set G as in
the definition of the norm. We do not know whether this algorithm could be practical; it is a-priori less
efficient than procedures using Gröbner bases, but is highly parallelisable.
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The connection of the norm to fibre connectivity and Markov chains runs via the following result
(proven in Section 4.2).

Proposition 1.4. Let A be a k × r integer matrix, and B = {b1, . . . , bn} a basis of the kernel, with B
having norm N. Let u ∈Nr , and construct a graph with vertex set the fibre F(u), and where we draw an
edge from v1 to v2 if and only if v1− v2 can be written as an integer linear combination

v1− v2 =

n∑
i=1

ai bi

with
n∑

i=1
|ai | ≤ N. Then this graph is connected.

Remark 1.5. Given a k× r integral matrix A, note that it is easy to compute a basis B of the integral
kernel of A from the Smith normal form of A. Indeed, if S AT = D is the Smith normal form (so S and
T are invertible, and D diagonal with Di,i | Di+1,i+1), then let 1≤ j ≤ r be maximal such that D j, j 6= 0.
Then an integral basis of the kernel of A is given by T e j+1, . . . , T er , where ei is the i-th standard basis
vector in Zr .

Conversely, while B does not determine A, it does determine the fibres F(u), so the matrix A is not
really essential, but is very relevant to the statistical applications.

1.2.2. Comparison to other results in the literature. Needless to say, we are not the first to try to control
the complexity of the saturation of an ideal in a polynomial ring. Indeed, the standard method of computing
the saturation reduces to a Gröbner basis computation, whose efficient implementation has been the focus
of too much research to begin to list here. Specialising to the case of binomial ideals, the literature is still
much too large to give more than a quick glimpse of. There are general theoretical results on the structure
of fibre graphs; see, e.g., [Gross and Petrović 2013; Hemmecke and Windisch 2015; Windisch 2016;
2019]. There are also many results bounding the degree of the binomials appearing in the saturation [Haws
et al. 2014; Koyama et al. 2015; Sturmfels 1996, Chapter 13], and bounding the Markov complexity; this
is defined in [Santos and Sturmfels 2003], and studied in [Charalambous et al. 2014] and elsewhere.

However, we are not aware on bounds on the norm 1.2 in the literature. Indeed, from an algebraic
point of view it appears a rather unnatural invariant. The reason for studying it comes purely from the
application (via Proposition 1.4) to fibre connectivity and Markov bases. In the remainder of Section 1
we hope to justify it from this point of view, and perhaps motivate further research in this direction. An
unusual feature of our results is that we do not utilise Gröbner bases; this is not from dislike, but simply
because we could not see how to bound the norm from that perspective; we hope that others may have
more success.

1.3. Algorithms.

1.3.1. Bounded-AHT algorithms. Aoki, Hara and Takemura connect the fibre by allowing arbitrarily
large integer linear combinations of elements of the basis B. This is guaranteed to connect the fibre
(since it eventually hits every integer vector), but risks wasting time searching far away from the fibre.
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Proposition 1.4 shows that it actually suffices to take combinations with coefficients bounded by the norm
N of B; this allows us to improve the efficiency of their algorithm, by truncating the Poisson distribution at
N , spending less time exploring far from the fibre. A second algorithm they present (where the coefficients
of the bi are chosen from a multinomial distribution) can be enhanced in a similar way. An even simpler
variant is to choose uniformly at random at each step a vector of L∞-length bounded by the norm.1

We will refer to this class of algorithm as bounded-AHT algorithms, as they are characterised by the
distribution used to select random vectors being of bounded support. We will see in Section 2.1 that, when
a good bound on the norm is available, such an algorithm can be substantially faster than the conventional
AHT algorithm.

The bound on the norm coming from Theorem 1.3 is in general large, so using it for truncation will
not have a large impact on the runtime (though we hope that better bounds on the norm can be found in
the future). On the other hand, if a Markov basis can be computed one can obtain a very tight bound on
the norm, and our algorithm seems to converge substantially faster than that of Diaconis–Sturmfels, so it
is plausible that these bounded-AHT algorithms give the best performance in these cases also.

Another application might be to predicting good values of the constant λ in the AHT algorithm, or
giving heuristic bounds on the convergence time for a given value of λ. The norm N can be seen as the
maximum distance between connected components of the fibre, thus to have a reasonable chance of hitting
all components we should take a number of steps that is very large compared to 1/P(Poissonλ ≥ N ).

1.3.2. The stepping-out algorithm. In the naive algorithm of Section 1.1.1, one starts at a vector v ∈F(u),
and chooses at random an element b ∈ ±B, and considers the step v+ b. If v+ b is in F(u) then this is
returned as the next element of the Markov chain. If v+ b /∈ F(u), then the algorithm simply returns
v. However, if we have a bound on the norm then we can modify the algorithm so that the fibre will
always be connected; if v+ b /∈ F(u) then, rather than returning v, we choose another element b1 from
±B, and consider the vector v+ b+ b1. If v+ b+ b1 lies in F(u) we return v+ b+ b1 as the next step
in the Markov chain, otherwise we repeat, until we either hit F(u) again, or we have taken N consecutive
steps outside the fibre, in which case we return v again. Alternatively, this can be viewed as a weighted
random walk in a certain graph with vertex set F(u). To define this graph, we first define a graph FZ(u)
with vertex set {v ∈ Zr

: Au = Av} and with an edge between v1 and v2 whenever v1− v2 ∈ ±B. Then
we define a graph with vertex set F(u) by putting an edge between two vertices whenever they can
be connected by a path in FZ(u) of length at most N , and which does not intersect F(u) except at its
endpoints. Again, by Proposition 1.4 this new graph is guaranteed to be connected.

In the examples in Section 2.1, the best performance seems to be obtained by bounded-AHT algorithms.
However, we include the stepping-out algorithm because it is an example of a general technique where
one can choose any algorithm to efficiently explore the interior of the fibre, and then add some “small”
extra steps on the boundary to ensure that the resulting graph is connected.

1.3.3. Speed comparisons. In Section 2.1 we describe some numerical experiments to compare the
performance of the four algorithms:

1That is, with the maximum entry bounded by the norm.
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(1) the algorithm of Diaconis–Sturmfels using a Markov basis (DS),

(2) the algorithm of Aoki, Hara and Takemura (AHT);

(3) the bounded-AHT algorithm;

(4) the stepping-out algorithm.

The best results are obtained with the new bounded-AHT algorithm, and the worst with the DS algorithm.
In between, the AHT algorithm is faster than the stepping-out algorithm. But one should not extrapolate
too much from this small collection of examples.

More generally, with Theorem 1.3 and Proposition 1.4 in hand it is easy to propose new sampling
algorithms which guarantee to connect the fibre. The challenge is to design algorithms with reasonable
runtime, at least heuristically (rigorous runtime analysis seems hard but very interesting).

If the fibre F(u) is large with respect to the norm N then designing reasonably efficient algorithms is
not hard, since the runtime will be dominated by time spent in the “interior” of the fibre. On the other
hand, if the fibre is small compared to N then the runtime will be dominated by time spent around the
edge of the fibre looking for new connected components, and will depend sensitively on the norm (or
more precisely, on our bound on the norm).

1.4. Practical consequences.

(1) The norm bounds coming from Theorem 1.3 are in general rather large, so our new algorithms are
unlikely to work very using them. We hope that these bounds can be improved, but in the meantime
we note that one way to get a very good bound on the norm is simply to find a Markov basis. When
this is possible it is conventional to run the algorithm of Diaconis–Sturmfels, but in Section 2.1 we
illustrate that it may in fact be faster to obtain a norm bound form the Markov basis and then apply
the bounded-AHT algorithm.

(2) The AHT algorithm of Section 1.1.3 is proven to converge, and in practice the Markov chain is
often observed to settle down quite fast. Indeed, in practice it is the latter which will generally be
relied upon; people run algorithms until the chain appears to converge. However, there is a critical
problem here. Namely, we see in Section 2.2 examples where the chain will appear to converge
very rapidly, but this “apparent” limit will not be the true limit (the runtime required to achieve
true convergence may easily be arranged to exceed the lifespan of the solar system). We hope that
this kind of pathological behaviour will be very rare in practice, but at present this seems hard to
verify. Our aim in this paper is to get an idea of how long the algorithm should be run in order to
be reasonably confident that the “apparent limit” of the chain is in fact the true limit. We are not
completely successful in this, partly because our bound on the norm is rather large for practical use
(and probably not sharp), and also because passing from the bound in Theorem 1.3 to an estimate
on the convergence time needs substantial further work. We think it is interesting and useful to
investigate this further. In the meantime, we would encourage people using this type of algorithm to
let it run for as long as possible, even after the chain appears to have settled down, to maximise the
change of hitting new connected components.
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2. Examples

2.1. A very simple example. Consider the matrix

A =
[

0 1 2 3
3 2 1 0

]
.

An integral basis for the kernel of A is then given by B = {b, b′} where

b =


1
−2

1
0

 , b′ =


0
1
−2

1

 .
The fibre containing the vector [2 2 2 2]T is illustrated in Figure 1, where red arrows (pointing up and
to the right) correspond to addition of b, and blue arrows (pointing down and to the right) to addition
of b′. Evidently, this fibre is not connected, since the element [4 0 0 4]T is isolated. Thus if our chain
begins anywhere in the large component it will never hit the isolated vertex, and if it begins at the isolated
vertex it will remain there. This has practical consequences, since it is common to simply run such a
Markov chain until it appears (by eye) to have converged; in this example, convergence will be rapid, but
the resulting distribution will not be the expected one (see Section 1.4).

The approach of Diaconis–Sturmfels is to replace the basis B by a larger generating set which makes
the fibre connected. The ideal IB is generated by x1x3 − x2

2 and x2x4 − x2
3 , and its saturation can be

generated by these two polynomials together with the polynomial x1x4− x2x3, the latter corresponding to
the vector [1 −1 −1 1]T . Clearly one can step from [3 1 1 3]T to [4 0 0 4]T by addition of this new
vector, so the fibre is indeed connected by this new generating set for the integral kernel of A.

Our approach is to allow the chain to step briefly outside the fibre while it hunts for vectors with
nonnegative entries. As long as we allow two negative steps the fibre will become connected, as we can
step from [3 1 1 3]T to [4 0 0 4]T via [4 −1 2 3]T or [3 2 −1 4]T ; one sees easily that the norm
is 2. Let us compute the bound resulting from Theorem 1.3: we have β = 2 and n = 2, so our bound is 8.
Thus if we use the bound from the theorem we should allow 8 negative steps; it is clear that this will be
sufficient to connect the fibre, but also that this bound is not optimal.

Remark 2.1. This is an opportune moment to illustrate the necessity of allowing εi = 0 in Definition 1.2.
In the above example the norm is 2. However, there does not exist a generating set G for the saturation of
IB with respect to x1 · · · xr , with the properties that

(1) Every element of G is a pure difference binomial;

(2) Every g ∈ G can be written in the form

g =
2∑

i=1

εi mi (xb+i − xb−i ). (2.1.1)
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
2
0
6
0


1
2
5
0




2
1
4
1




3
0
3
2


0
4
4
0




1
3
3
1




2
2
2
2
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3
1
1
3
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

4
0
0
4


0
5
2
1




1
4
1
2




2
3
0
3


0
6
0
2


Figure 1. A (nonconnected) fibre.

where the εi ∈ {−1, 1}, the mi are Laurent monomials, and the bi are elements of B (this differs
from Definition 1.2 exactly by requiring εi ∈ {−1, 1}).

To see this, suppose that G is such a generating set. Since N = 2 and #G= 2, elementary considerations
yield that every element of G is of one of the following forms:

(1) pxb where p is a polynomial consisting of two monomials with coefficients in ±1;

(2) pxb′ where p is a polynomial consisting of two monomials with coefficients in ±1;

(3) m(x1x4− x2x4) where m is a monomial.

We know that xb lies in the ideal generated by G; translating into vectors, this means that b can be
written as a linear combination b = ab+ a′b′ with a, a′ integer vectors whose entries sum together to an
even number. This is evidently impossible.

2.2. Families where the fibres are arbitrarily badly connected. Consider the 1×3 matrix A= [1 1 1],
and write ei for the i-th standard basis vector in Z3. Let u = e2. Then the fibre F(u)= {e1, e2, e3}. For a
positive integer n, choose the basis

Bn =


 0

1
−1

 ,
 −1

n
1−n


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of the kernel of A. Then the fibre consists of two connected components, namely {e2, e3} and {e1}.
Moreover, to step between the connected components requires (n− 1) consecutive negative steps. Thus
for every positive integer M and every real number λ there exists an integer n such that the algorithm of
Aoki, Hara and Takemura presented in Section 1.1.3 applied to the above basis Bn will appear to converge
immediately, but will take M steps before the probability of hitting the other connected component rises
above any given positive threshold. This issue may be well-known, but this particular example appears to
be new.

This example is quite artificial, as the fibre is essentially simple, but we have made a poor choice of
generating set Bn . We can also construct a slightly less artificial example of the same phenomenon, by
generalising the example in Section 2.1. For an integer n ≥ 2, let

An =

[
1 2 · · · n−1 n
n n−1 · · · 2 1

]
,

and consider the basis of the integral kernel given by

Bn =





1
−2

1
0
0
...

0


,



0
1
−2

1
0
...

0


, · · · ,



0
0
...

1
−2

1




,

where we denote the elements of Bn by b2, . . . , bn−1 in the given order. Then the fibre of [2 · · · 2]T

contains the vector v = [n 0 · · · 0 n]T . This vector v is at least n−2 steps distant from any other point
in the fibre; more precisely, if c1, . . . , cr ∈ ±Bn are such that

v+

r∑
i=1

ci ∈ F(v),

then either r ≥ n − 2 or v+
∑r

i=1 ci = v (the bound n − 2 is in fact sharp). We leave the elementary
verification to the interested reader. Again we see that, though the algorithm of Section 1.1.3 (and variants)
may appear to converge rapidly, there are connected components which take an arbitrarily long time to hit.

2.3. The no-three-factor-interaction model. This model is described in detail (in particular, its statistical
interpretation) in [Aoki et al. 2012]. It depends on a choice of three positive integers I , J and K ; we will
often take I = J = K for simplicity. The matrix A is then an (I J + J K + K I )× I J K matrix, described
in a slightly complicated way. Define I dI to be the I × I identity matrix, and 1I to be a row vector of
length I with all entries equal to 1. Then

A =

I dI ⊗ I dJ ⊗ 1K

I dI ⊗ 1J ⊗ I dK

1I ⊗ I dJ ⊗ I dK

 ,
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where ⊗ represents the Kroneker product of matrices.
Hara et al. [2012] numerically tested their algorithm 1.1.3 on the no-three-factor-interaction model

in the cases I = J = K = 3, 5, and 10. In the case I = 3 the saturation can be computed by Gröbner
basis techniques, but seems presently out of reach I = 5, and worse for I = 10. In each case they
compute a basis for the integral kernel, then run numerical tests of their algorithm for several values of
the Poisson parameter λ, and also occasionally replacing the Poisson with a different distribution (we
are not completely clear on how they chose these parameters and distributions). In the case I = 3 they
compare their results to those obtained using a saturated basis, and observe that the Markov chains coming
from their algorithm converge similarly to those coming from a saturated basis (though for λ= 50 the
convergence is rather slow).

For I = 10 their algorithm does not converge well, but for I = 5 it appears to converge fairly rapidly.
As throughout this paper, the question we are interested in is whether this apparent convergence can
be trusted, or is it possible that there is some connected component of the fibre which their chain has
never hit? Of course, their algorithm will find every component with probability 1 if allowed to run for
unlimited time, but there is no a-priori reason to assume that the time required for this will be in any way
comparable to the time required for the chain to appear to settle down.

To try to get a handle on this, let us compute our upper bound on the number of negative steps required
to walk between components (the “distance between” connected components of the fibre). Using SAGE
we compute the smith normal form of the 75× 125 matrix A, obtaining an integral basis B with n = 64
elements. The largest absolute value of an entry in B is β=1. This leads to an upper bound on the norm by

N ′ = nnβn−1
= 6464

≈ 3.9× 10115. (2.3.1)

Now, in this example Aoki, Hara and Takemura replace the Poisson distribution with a geometric
distribution (for reasons which are unclear to us), and try parameters p= 0.1, 0.5. The proportion of steps
in their algorithm which will exceed N ′ in length is then so small that it is likely never to occur before
the sun runs cold. This means that if the bound N ′ were to be close to the true norm, then this algorithm
will in practice never converge to the correct solution. In practice, our bound on the norm is surely very
far from sharp, but we gave this example to illustrate the difficulty in guaranteeing convergence (despite
the fact that the algorithm might appear to the human eye to have converged).

3. Computational experiments

3.1. The very simple example. For the example in Section 2.1 we implemented four algorithms:

(1) The algorithm of [Diaconis and Sturmfels 1998] using the Markov basis described in Section 2.1
(we refer to this algorithm as DS);

(2) The algorithm of Aoki, Hara and Takemura described in Section 1.1.3 (referred to as AHT);

(3) The bounded-AHT algorithm described in Section 1.3.1, generating vectors uniformly at random of
L∞-length up to some integer at least the norm;

(4) The stepping-out algorithm of Section 1.3.2,
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so that we could compare their results. We considered the fibre containing the vector [10, 10, 10, 10]T

which has 211 elements, as this small example allowed us to run many simulations to get reasonably
accurate timings of the algorithms.

We use the Kolmogorov Smirnov statistic to decide how well a chain has converged. For a chain of
length n in the fibre F := F([10, 10, 10, 10]T ), a perfectly uniform distribution would sample each point
n/211 times. Given a function d : F→ Z with

∑
v∈F d(v)= n we define

KS(d)=max
v∈F
|d(v)−

n
211
|, (3.1.1)

so a larger value of KS(d) indicates that d is further from being uniform.
There are two subtleties to comparing the outputs of the algorithms:

(1) The AHT, bounded-AHT and stepping-out algorithms have parameters that can be tuned: the mean
of the Poisson distribution for AHT and the bound on the norm used in the latter two (even when the
norm is known, as in this example, it is not obvious that using it as the bound will yield the best
convergence). To work around this, we will tune the parameters of all three algorithms to try to get
the best performance out of each for our example.

(2) When comparing runtimes, counting the number of steps in the chain is not a very good measure.
Each step in AHT requires repeated sampling from a Poisson distribution, and steps in the stepping-
out algorithm can involve a number of substeps outside the fibre. Because of this, we will also
compare the actual runtimes, though this is then sensitive to implementation issues.

We produce a chain of n= 211, 000 samples, so that each site expects 1000 samples. Table 1 compares
the Kolmogorov Smirnov statistic and runtime for the four algorithms, making optimised choices of
parameters for the AHT, bounded-AHT and stepping-out algorithms. Table 2, left, shows how the
Kolmogorov Smirnov statistic and runtime for the bounded-AHT algorithm vary with the bound used,
and Table 2, right, shows the same for the stepping-out algorithm.

algorithm DS AHT bounded-AHT stepping-out

KS statistic (lower is better) 309 210.9 162.8 270.5
runtime (s) (lower is better) 174 161.7 98.3 156.1

optimised parameter - λ= 2 N = 3 N = 4

Table 1. Comparison of algorithms (averaged over 20 runs).

Norm bound 2 3 8

KS statistic 177.3 162.8 201.4
runtime (s) 98.8 98.3 96.0

Norm bound 2 4 8

KS statistic 360.8 270.5 305.0
runtime (s) 147.6 156.1 174.3

Table 2. Comparison of norm bounds for bounded-AHT (left) and stepping-out (right),
averaged over 20 runs.
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We make a number of comments on these results; all come with the serious caveat that this is only a
small, simple example.

(1) The improvement obtained by using the bounded-AHT algorithm in place of the original DS algorithm
is quite substantial; both the KS statistic and runtime are close to being halved. This suggests that the
bounded-AHT algorithm is worth investigating even in cases where a Markov basis can be computed.

(2) While bounded-AHT performs best with a norm bound N = 3, its performance with the bound of
N = 8 coming from Theorem 1.3 is still better than any of the other algorithms.

(3) The worst performance is achieved by the DS algorithm (using a Markov basis), perhaps somewhat
surprisingly. Even though this algorithm should explore the boundary of the fibre in a more efficient
way, it probably looses out by exploring the interior less efficiently.

3.2. The no-three-factor-interaction model. Here we took I = J = K = 5, as this beyond the range
where the saturation can currently be computed, and hence it is interesting to investigate other approaches
to sampling. We implemented the stepping-out algorithm described in Section 1.3.2 for this example.
Now, with the given norm bound of order 10115 it is clear that this algorithm will not work well. However,
we remain optimistic that bounds on the norm can be improved, so it seems interesting to investigate
how the runtime of the algorithm depends on the given bound. We do this in a very crude way; we
simply measure the proportion of steps in the algorithm which take place within the fibre (as opposed to
searching for new components outside the fibre). We interpret this as giving a very rough idea of how
much slower the algorithm of Section 1.3.2 will be compared to what could be done if one had a Markov
basis. The results were as follows.

(1) For a fixed fibre, when the norm bound is large compared to the diameter of the fibre, the runtime
seems to be very roughly linear in the given bound on the norm.

(2) For a fixed fibre, when the norm bound is small compared to the diameter of the fibre, the runtime
seems to be relatively insensitive to the size of the bound.

In other words, this might be interpreted as suggesting that the algorithm of Section 1.3.2 will work
reasonably well when the norm bound is not too large compared to the diameter of the fibre.

We did not implement the bounded-AHT algorithm here; for formal reasons it is clear that it must
perform slightly better than AHT, but the size of the norm bound also makes it clear that the difference
will be entirely imperceptible for any practical computation.

4. Proof of the main results

4.1. Proof of Theorem 1.3. Let B = {b1, . . . , bn} be a set of vectors in Zr . Following the notation of
(1.1.2), we write

f +i = xb+i , f −i = xb−i , fi = f +i − f −i
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in the ring R = Z[x1, . . . , xr ]. Then IB = ( f1, . . . , fn) ⊆ R, and our goal is to bound how far the
saturation

Satx1···xr IB = {a ∈ R : ∃m > 0 : a(x1 · · · xr )
m
∈ IB} (4.1.1)

can be from IB .

Definition 4.1. A monomial in R is an element of the form
∏r

i=1 xmi
i with mi ∈ Z≥0. A pure binomial

in R is an element of the form m1 −m2 where the mi are monomials. An ideal I ⊆ R is called pure
binomial if it admits a generating set consisting of pure binomials; evidently, IB is a pure binomial ideal.

Lemma 4.2 [Herzog et al. 2018, Proposition 3.18]. The saturation of IB with respect to x1 · · · xr is also
a pure binomial ideal.

Definition 4.3. Given pure binomials f = f +− f − and g= g+−g−, we define the subtraction polynomial
(again a pure binomial)

S( f, g)= g+ f + f −g = f +g+− f −g−.

If f , g ∈ IB then clearly S( f, g) lies in IB .
We make the unsurprising notational conventions that −−=+, +−=−+=− and ++=+; thus we

interpret f −− = f +, which is less usual, but makes for efficient and hopefully comprehensible notation
in what follows.

Definition 4.4. Let ε : {1, . . . , n} → {+,−}, and let t : {1, . . . , n} → N. Define

S(ε, t)=
n∏

i=1

( f ε(i)i )t (i)−

n∏
i=1

( f −ε(i)i )t (i) ∈ IB, (4.1.2)

(here we use our convention that −−=+ when we write f −ε(i)i ).

Lemma 4.5. Let P be a pure binomial in IB . Then there exist ε, t , and monomials m and n such that

n P = mS(ε, t).

Proof. For the purposes of the proof, we will simplify notation by assuming that for every bi ∈ B, the
element −bi also lies in B.

Let P ∈ IB be a pure binomial. Write P =
∑k

j=1 m j fi j , where the m j are monomials. We can and do
assume that k is chosen minimal, and we proceed by induction on k. The case k = 1 is trivial.

Up to harmless sign changes, there exists a j0 such that m j0 f +i j0
= P+. Reordering, we may assume

that j0 = 1, so

P −m1 fi1 =

k∑
j=2

m j fi j

is again a pure difference binomial. By the induction hypothesis there exist monomials m and n and
vectors ε, t with

m
k∑

j=2

m j fi j = nS(ε, t).
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Write S(ε, t)= S+− S−. Then

m P = nS+− nS−+m1 f +i1
−m1 f −i1

.

Since this is a binomial, up to signs we may assume without loss of generality that nS− = m1 f +i1
. We

can then write
f +i1

m P = n
(

f +i1
S+− f −i1

S−
)
= nS′

where S′ is an iterated subtraction binomial of the fi . �

Theorem 4.6. There exist a positive integer M , functions ε1, . . . , εM and t1, . . . , tM as in Definition 4.4,
and monomials m1, . . . ,mM ∈ R, such that

(1) for all 1≤ j ≤ M we have m j | S(ε j , t j );

(2)

Satx1···xr IB =

(
S(ε j , t j )

m j
: 1≤ j ≤ M

)
.

Proof. Combine Lemma 4.2 and Lemma 4.5. �

Given t : {1, . . . , n}→N we define the L1-length of t to be the sum of its values. To prove Theorem 1.3
it suffices to show that we can choose each of the vectors t j in Theorem 4.6 to have L1-length bounded
by N = nnβn−1, where β is the maximum of the absolute values of entries of vectors in B; compare
(1.2.2)). Given vectors ε of signs and t of natural numbers as in Definition 4.4, observe that the power of
x j dividing S(t, ε) is given by

min
( n∑

i=1

t (i) ordx j f ε(i)i ,

n∑
i=1

t (i) ordx j f −ε(i)i

)
; (4.1.3)

here ordx f denotes the largest power of x which divides f . We say the minimum in (4.1.3) is achieved
on the + side if

n∑
i=1

t (i) ordx j f ε(i)i ≤

n∑
i=1

t (i) ordx j f −ε(i)i ,

and we say the minimum in (4.1.3) is achieved on the − side if
n∑

i=1

t (i) ordx j f ε(i)i ≥

n∑
i=1

t (i) ordx j f −ε(i)i .

Definition 4.7. Given ε : {1, . . . , n} → {+,−} and δ : {1, . . . , r} → {+,−}, we define

Tε,δ = {t ∈ Nn
: ∀1≤ i ≤ r, the minimum in (4.1.3) is achieved on the δ(i) side}.

This set Tε,δ is a rational polyhedral cone in Nn , and for fixed ε we have⋃
δ

Tε,δ = Nn. (4.1.4)
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Given t ∈ Tε,δ, we write

ϕt =
S(ε, t)

r∏
j=1

x
∑n

i=1 t (i) ordx j f ε(i)δ(i)i
j

, (4.1.5)

which we write as a difference of monomials ϕt = ϕ
+
t −ϕ

−
t in the usual way. From the definition of Tε,δ

we see that ϕt ∈ R, i.e. all exponents of the xi are nonnegative.

Lemma 4.8. Fix ε and δ as above, and let t, t1, . . . , ta ∈ Tε,δ such that t = t1+ · · ·+ ta . Then

ϕt ∈ (ϕt1, . . . , ϕta )⊆ R.

Proof. Elementary manipulations yield

ϕt =

a∏
α=1

ϕ+tα −

a∏
α=1

ϕ−tα = S(· · · S(S(ϕt1, ϕt2)ϕt3) · · ·ϕta ). �

Theorem 4.9. For each ε and each δ, choose a generating set τε,δ for the cone Tε,δ. Then⋃
ε,δ

{ϕt : t ∈ τε,δ} (4.1.6)

is a generating set for Satx1···xr IB .

Proof. Let t ∈ Nn , then S(ε, t) ∈ IB , and ϕt ∈ R, hence by definition of the saturation we see that
ϕt ∈ Satx1···xr IB . Conversely, Theorem 4.6 tells us that the ϕt generate Satx1···xr IB as t ranges over Nn .
We must justify why it suffices to consider only t ranging over the set in (4.1.6). Fixing ε, we note that
every t ∈ Nr lies in some Tε,δ by (4.1.4), and then by Lemma 4.8 it suffices to range over elements of a
generating set for Tε,δ. �

Fixing ε and δ, it remains to show that Tε,δ can be generated by vectors of length bounded by
N = nnβn−1. First, we have an elementary lemma.

Lemma 4.10. Let v1, . . . , va ∈ Nn , and let C be the intersection of Nn with the rational cone spanned by
the vi . Then C is generated by

C ∩
{ a∑

i=1

λivi : λi ∈ [0, 1)
}
∪ {v1, . . . , va}.

Observe that the faces of Tε,δ are defined by the equations
n∑

i=1

t (i) ordx j f ε(i)i =

n∑
i=1

t (i) ordx j f −ε(i)i ; (4.1.7)

thus the extremal rays of Tε,δ are obtained by solving n− 1 equations of the form (4.1.7). Let β be the
maximum of the absolute values of the ordx j fi = bi, j as i and j vary. Observing that for any given i
and j at least one of ordx j f ε(i)i and ordx j f −ε(i)i is equal to zero, we can rearrange these equations to
the form

∑
i βi, j,ε t (i)= 0 with βi, j,ε an integer of absolute value not greater than β. By Siegel’s lemma,
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the L1-length of such a (nonzero) solution is then bounded above by (nβ)n−1. From Lemma 4.10, and
cutting into simplicial cones, we see that Tε,δ can be generated by vectors of length at most N = nnβn−1,
concluding the proof.

4.1.1. Detailed description of the Tε,δ . The Tε,δ for fixed ε and varying δ resemble the cones of a complete
polyhedral fan in Nn in the sense of [Fulton 1993]. More precisely, they form a collection of polyhedral
cones in Nn which cover Nn and such that the intersection of any two cones is a face of both. However,
they do not quite form a fan, for two reasons:

(1) it can happen that Tε,δ = Tε,δ′ for δ 6= δ′;

(2) the intersection of two Tε,δ does not necessarily occur among the Tε,δ.

However, by throwing away duplicate cones and appending the intersections of cones, one does obtain a
complete fan. The corresponding toric variety is then a toric blowup of affine space An .

In the example of Section 2.1 we have n = 2 and r = 4, and so the fans can readily be drawn for each ε.
We use this to illustrate the above comments in Table 3.

To explain this in more detail for the case ε = (+,+) (i.e. ε taking the constant value +), the fan is
obtained by subdividing N2 along the rays through (1, 2) and (2, 1). For each δ we describe in Table 4
the fan T(+,+),δ.

Our main work in this proof is to bound the lengths of generators for these cones. The general bound
we obtained is N = nnβn−1, which in this case yields N = 8. However, just from studying the last row of
Table 3 we see that we can take a generating set to be

(1, 0), (0, 1), (1, 2), (2, 1), (1, 1). (4.1.8)

In particular, we obtain a bound on the norm of 3. This is very close to sharp, as we saw in Section 2.1
that the norm is 2. This illustrates that a major source of nonsharpness in our bound is the application
of Siegel’s lemma below. It seems reasonable to hope that one can find better bounds on the norm by
studying Hilbert bases for the cones Tε,δ.

ε (+,+) (+,−) (−,+) (−,−)

rays generating fan (1,2), (2,1) - - (1,2), (2,1)

fan

generating set (0,1), (1,0), (1,0), (0,1) (1,0), (0,1) (0,1), (1,0),
for all cones (1,2), (2,1), (1,1) (1,2), (2,1), (1,1)

Table 3. The fans generated by the Tε,δ.
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δ(1)δ(2)δ(3)δ(4) cone

++++ {(0, 0)}
+++− {(0, 0)}
++−+ {(0, 0)}
++−− {(0, 0)}
+−++ {(0, 0)}
+−+− 〈(0, 1)〉
+−−+ {(0, 0)}
+−−− {(0, 0)}
−+++ {(0, 0)}
−++− 〈(1, 2), (2, 1)〉
−+−+ 〈(1, 0)〉
−+−− 〈(0, 1), (1, 2)〉
−−++ {(0, 0)}
−−+− 〈(1, 0), (2, 1)〉
−−−+ {(0, 0)}
−−−− {(0, 0)}

Table 4. The cones T(++),δ.

4.2. Proof of Proposition 1.4. Let G be a generating set for the saturation as in Definition 1.2. Each
g ∈ G is a pure difference binomial, say g = xc+

− xc− with c+, c− ∈ Nr , and can be written in the form

g =
N∑

i=1

εi mi f ji ,

with εi ∈ {1, 0,−1}, mi monomials, and f j as in Section 4.1. Writing c = c+ − c−, it suffices (by
Theorem 1.1) to show that c can be written as c =

∑n
i=1 ai bi with

∑n
i=1|ai | ≤ N .

We wish to prove this by induction on N , but this makes no sense as N is the norm. Instead we
rephrase things slightly so that induction makes sense, resulting in the following lemma.

Lemma 4.11. Let M be a positive integer, and suppose that the expression

M∑
i=1

εi mi f ji , (4.2.1)

is a pure binomial xc+
− xc− , where εi ∈ {1,−1}, and the mi are monomials. Then there exist integers

a1, . . . , an with
∑n

i=1|ai | ≤ M and c+− c− =
∑n

i=1 ai bi .

It is clear that the lemma (applied with M = N ) implies Proposition 1.4, so it only remains to verify the
lemma.

Proof. For a warmup we treat first the case M = 1. Then

xc+
− xc−

=±m(xb+j1 − xb−j1 )=±(xd+b+j1 − xd+b−j1 )
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where we write m = xd for some d ∈ Nr . Hence

c+− c− =±((d + b+j1)− (d + b−j1))=±b j1

as required.
We prove the general case by induction on M . First, up to changing some signs, observe that we can

reorder the terms in the expression (4.2.1) so that mM f +jM
= xc+ , hence we can assume that

∑M−1
i=1 εi mi f ji

is also a pure binomial, say
M−1∑
i=1

εi mi f ji = xc′+
− xc′− .

By our induction hypothesis we can write c′+− c′− =
∑n

i=1 a′i bi with
∑n

i=1|a
′

i | ≤ M − 1. Then

M−1∑
i=1

εi mi f ji = xc′+
− xc′−

= xc+
− xc−

− εM mM(x
b+jM − xb−jM ),

and we can (again changing some signs, without loss of generality) assume that εM = +1 and that
xc−
= mM xb+jM . Writing mM = xd , we see

• xc+
= xc′+ , so c+ = c′+;

• xc−
= xd+b+jM , so c− = d + b+jM

;

• xc′−
= mM xb−jM = xd+b−jM , so c′− = d + b−jM

.

Putting these together we see

c+− c− = c′+− c− = (c′+− c′−)+ (b+jM
− b−jM

)= (c′+− c′−)+ b jM ,

from which the result is immediate. �
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ALGEBRAIC ANALYSIS OF ROTATION DATA

MICHAEL F. ADAMER, ANDRÁS C. LŐRINCZ,
ANNA-LAURA SATTELBERGER AND BERND STURMFELS

We develop algebraic tools for statistical inference from samples of rotation matrices. This rests on the
theory of D-modules in algebraic analysis. Noncommutative Gröbner bases are used to design numerical
algorithms for maximum likelihood estimation, building on the holonomic gradient method of Sei, Shibata,
Takemura, Ohara, and Takayama. We study the Fisher model for sampling from rotation matrices, and
we apply our algorithms to data from the applied sciences. On the theoretical side, we generalize the
underlying equivariant D-modules from SO(3) to arbitrary Lie groups. For compact groups, our D-ideals
encode the normalizing constant of the Fisher model.

1. Introduction

Many of the multivariate functions that arise in statistical inference are holonomic. Being holonomic
roughly means that the function is annihilated by a system of linear partial differential operators with
polynomial coefficients whose solution space is finite-dimensional. Such a system of PDEs can be written
as a left ideal in the Weyl algebra, or D-ideal, for short. This representation allows for the application of
algebraic geometry and algebraic analysis, including the use of computational tools, such as Gröbner
bases in the Weyl algebra [28; 30].

This important connection between statistics and algebraic analysis was first observed by a group of
scholars in Japan, and it led to their development of the holonomic gradient method (HGM) and the
holonomic gradient descent (HGD). We refer to [10; 16; 31] and to further references given therein. The
point of departure for the present article is the work of Sei et al. [29], who developed HGD for data
sampled from the rotation group SO(n), and the article of Koyama [16] who undertook a study of the
associated equivariant D-module.

The statistical model we examine in this article is the Fisher distribution on the group of rotations,
defined in (1) and (2). The aim of maximum likelihood estimation (MLE) is to learn the model parameters
2 that best explain a given data set. In our case, the MLE problem is difficult because there is no simple
formula for evaluating the normalizing constant of the distribution. This is where algebraic analysis
comes in. The normalizing constant is a holonomic function of the model parameters, and we can use its
holonomic D-ideal to derive an efficient numerical scheme for solving the maximum likelihood estimation
problem.

ORCID: Adamer 0000-0002-8996-7167 / Sattelberger 0000-0002-2308-4070.
MSC2020: 14F10, 33F10, 62F10, 62H11, 62R01, 90C90.
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The present article addresses diverse audiences and it offers multiple points of entry. First, we give an
introduction to the use of D-module methods in statistics. We focus on data in the group of rotations in
3-space, and we advance both the theory and the practice of this application. Readers with an interest in
the applied sciences may start in Section 5, as that displays a panorama of occurrences of rotation data in
the real world. Experts in representation theory can jump straight to Section 6, where our approach is
developed for arbitrary Lie groups. For such readers, the particular group SO(3) is merely an example.

Our presentation is organized as follows. Section 2 is purely expository. Here, we introduce the Fisher
model, and we express its log-likelihood function in terms of the sufficient statistics of the given data.
These are obtained from the singular value decomposition of the sample mean. In Section 3, we turn to
algebraic analysis. We review the holonomic D-ideal in [29] that annihilates the normalizing constant of
the Fisher distribution, and we derive its associated Pfaffian system. Passing to n ≥ 3, we next study the
D-ideals on SO(n) given in [16]. First new results can be found in Theorem 3.4 and in Propositions 3.5
and 3.6.

Section 4 is concerned with numerical algorithms for maximum likelihood estimation. We develop
and compare holonomic gradient ascent (HGA), holonomic BFGS (H-BFGS), and a holonomic Newton
method. We implemented these methods in the language R. Section 5 highlights how samples of rotation
matrices arise in the sciences and engineering. Topics range from materials science and geology to
astronomy and biomechanics. We apply holonomic methods to data from the literature, and we discuss
both successes and challenges.

The D-ideal of the normalizing constant is of independent interest from the perspective of representation
theory, as it generalizes naturally to other Lie groups. The development of that theory is our main new
mathematical contribution. This work is presented in Section 6.

2. The Fisher model for random rotations

In this section, we introduce the Fisher model on the rotation group, building on [29]. The group SO(3)
consists of all real 3×3 matrices Y that satisfy Y tY = Id3 and det(Y ) = 1. This is a smooth algebraic
variety of dimension 3 in the 9-dimensional space R3×3. See [5] for a study of rotation groups from the
perspective of combinatorics and algebraic geometry.

The Haar measure on SO(3) is the unique probability measure µ that is invariant under the group
action. The Fisher model is a family of probability distributions on SO(3) that is parametrized by 3× 3
matrices 2. For a fixed 2, the density of the Fisher distribution equals

f2(Y ) =
1

c(2)
· exp(tr(2t

· Y )) for all Y ∈ SO(3). (1)

This is the density with respect to the Haar measure µ. The denominator is the normalizing constant. It is
chosen such that

∫
SO(3) f2(Y )µ(dY ) = 1. This requirement is equivalent to

c(2) =
∫

SO(3)
exp(tr(2t

· Y ))µ(dY ). (2)
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This function is the Fourier–Laplace transform of the Haar measure µ; see Remark 6.6. The Fisher model
is an exponential family. It is one of the simplest statistical models on SO(3). The task at hand is the
accurate numerical evaluation of the integral (2) for given 2 in R3×3. We begin with the observation
that, since integration is against the Haar measure, the function (2) is invariant under multiplying 2 on
the left or right by a rotation matrix:

c(Q ·2 · R) = c(2) for all Q, R ∈ SO(3).

In order to evaluate (2), we can therefore restrict to the case of diagonal matrices. Namely, given any
3× 3 matrix 2, we first compute its sign-preserving singular value decomposition

2 = Q · diag(x1, x2, x3) · R.

Sign-preserving means that Q, R ∈ SO(3) and |x1| ≥ x2 ≥ x3 ≥ 0. For nonsingular 2 this implies that
x1 > 0 whenever det(2) > 0 and x1 < 0 otherwise.

The normalizing constant c(2) is the following function of the three singular values:

c̃(x1, x2, x3) := c(diag(x1, x2, x3)) =

∫
SO(3)

exp(x1 y11+ x2 y22+ x3 y33)µ(dY ). (3)

The statistical problem we address in this paper is parameter estimation for the Fisher model. Suppose
we are given a finite sample {Y1, Y2, . . . , YN } from the rotation group SO(3). We refer to Figure 1
for a concrete example. Our aim is to find the parameter matrix 2 whose Fisher distribution f2 best

Figure 1. A dataset of 28 rotations from a study in vectorcardiography [7], a method in
medical imaging. Each point represents the rotation of the unit standard vector on the
x-axis (depicted in red color), the y-axis (green), and the z-axis (purple). This sample
from the group SO(3) will be analyzed in Section 5.1.
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explains the data. We work in the classical framework of likelihood inference, i.e. we seek to compute
the maximum likelihood estimate (MLE) for the given data {Y1, Y2, . . . , YN }. By definition, the MLE is
the 3× 3 parameter matrix 2̂ which maximizes the log-likelihood function. Thus, we must solve an
optimization problem.

From our data we obtain the sample mean Ȳ = 1
N

∑N
k=1 Yk . Of course, the sample mean Ȳ is generally

not a rotation matrix anymore. We next compute the sign-preserving singular value decomposition of the
sample mean, i.e., we determine Q, R ∈ SO(3) such that

Ȳ = Q · diag(g1, g2, g2) · R.

The signed singular values g1, g2, g3 together with Q and R are sufficient statistics for the Fisher model.
The sample {Y1, . . . , YN } enters the log-likelihood function only via g1, g2, g3.

Lemma 2.1 [29, Lemma 2]. The log-likelihood function for the given sample from SO(3) is

` : R3
−→ R, x 7→ x1g1 + x2g2 + x3g3 − log(c̃(x1, x2, x3)). (4)

If (x̂1, x̂2, x̂3) is the maximizer of the function `, then the matrix 2̂ = Q diag(x̂1, x̂2, x̂3)R is the MLE
of the Fisher model (1) of the sample {Y1, . . . , YN } from the rotation group SO(3).

Lemma 2.1 says that we need to maximize the function (4) in order to compute the MLE in the Fisher
model. We note that a local maximum is already a global one since (4) is a strictly concave function. The
maximum is attained at a unique point in R3. We shall compute this point using tools from algebraic
analysis that are discussed in the next section.

Remark 2.2. The singular values of the sample mean Ȳ are bounded from above and below, namely
1≥ |g1| ≥ g2 ≥ g3 ≥ 0. If g3 is close to 1, i.e., the average of the rotation matrices is almost a rotation
matrix, then the data is typically concentrated about a preferred rotation. In this case the normalizing
constant becomes very large and MLE on SO(3) is numerically intractable; see also Remark 4.3. However,
due to the small spread of the data around a point in SO(3), a matrix valued Gaussian model on R3 is an
accurate approximation.

3. Holonomic representation

We shall represent the normalizing constant c̃ by a system of linear differential equations it satisfies.
This is known as the holonomic representation of this function. We work in the Weyl algebra D and in
the rational Weyl algebra R with complex coefficients:

D = C[x1, x2, x3]〈∂1, ∂2, ∂3〉 and R = C(x1, x2, x3)〈∂1, ∂2, ∂3〉.

We refer to [28; 30] for basics on these two noncommutative algebras of linear partial differential operators
with polynomial and rational function coefficients, respectively. In order to stress the number of variables,
we sometimes write D3 instead of D and R3 instead of R. By a D-ideal we mean a left ideal in D,
and by an R-ideal a left ideal in R. The use of these algebras in statistical inference was pioneered by
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Takemura, Takayama, and their collaborators [10; 16; 17; 29; 31]. We begin with an exposition of their
results from [29].

The normalizing constant c̃ is closely related to the hypergeometric function 0 F1 of a matrix argument.
In [29], annihilating differential operators of c̃ are derived from

Hi = ∂2
i − 1 +

∑
j 6=i

1
x2

i − x2
j
(xi∂i − x j∂ j ) for i = 1, 2, 3. (5)

These in turn can be obtained from Muirhead’s differential operators in [21, Theorem 7.5.6] by a change
of variables. In the notation of [28], we have Hi • c̃ = 0 for i = 1, 2, 3. Written in the more familiar
form of linear PDEs, this says

∂2c̃
∂x2

i
+

∑
j 6=i

1
x2

i − x2
j

(
xi
∂ c̃
∂xi
− x j

∂ c̃
∂x j

)
= c̃ for i = 1, 2, 3.

Note that the operators Hi are elements in the rational Weyl algebra R. Clearing the denominators, we
obtain elements Gi in the Weyl algebra D that annihilate c̃, namely

Gi =
∏
j 6=i

(x2
i − x2

j ) · Hi . (6)

By [29, Theorem 1], the following three additional differential operators in D annihilate c̃:

L i j := (x2
i − x2

j )∂i∂ j − (x j∂i − xi∂ j ) − (x2
i − x2

j )∂k . (7)

Here the indices are chosen to satisfy 1≤ i < j ≤ 3 and {i, j, k} = {1, 2, 3}.
Let us consider the D-ideal that is generated by the six operators in (6) and (7):

I := 〈G1,G2,G3, L12, L13, L23〉. (8)

In the rational Weyl algebra, we have RI = 〈H1, H2, H3, L12, L13, L23〉 as R-ideals. We enter the
D-ideal I into the computer algebra system Singular:Plural as follows:

ring r = 0,(x1,x2,x3,d1,d2,d3),dp;
def D = Weyl(r); setring D;
poly L12 = (x1^2-x2^2)*d1*d2 - (x2*d1-x1*d2)-(x1^2-x2^2)*d3;
poly L13 = (x1^2-x3^2)*d1*d3 - (x3*d1-x1*d3)-(x1^2-x3^2)*d2;
poly L23 = (x2^2-x3^2)*d2*d3 - (x3*d2-x2*d3)-(x2^2-x3^2)*d1;
poly G1 = (x1^2-x2^2)*(x1^2-x3^2)*d1^2 + (x1^2-x3^2)*(x1*d1-x2*d2)

+ (x1^2-x2^2)*(x1*d1-x3*d3) - (x1^2-x2^2)*(x1^2-x3^2);
poly G2 = (x2^2-x1^2)*(x2^2-x3^2)*d2^2 + (x2^2-x3^2)*(x2*d2-x1*d1)

+ (x2^2-x1^2)*(x2*d2-x3*d3) - (x2^2-x1^2)*(x2^2-x3^2);
poly G3 = (x3^2-x1^2)*(x3^2-x2^2)*d3^2 + (x3^2-x2^2)*(x3*d3-x1*d1)

+ (x3^2-x1^2)*(x3*d3-x2*d2) - (x3^2-x1^2)*(x3^2-x2^2);
ideal I = L12,L13,L23,G1,G2,G3;
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We can now perform various symbolic computations in the Weyl algebra D. We used the libraries
dmodloc [1] and dmod [18], due to Andres, Levandovskyy, and Martín-Morales. In particular, the
following two lines confirm that I is holonomic and its holonomic rank is 4:

isHolonomic(I);
holonomicRank(I);

The rank statement means algebraically that dimC(x1,x2,x3)(R/RI ) = 4. In terms of analysis, it means
that the set of holomorphic solutions to I on a small open ball U ⊂ C3 is a 4-dimensional vector space.
Here U is chosen to be disjoint from the singular locus

Sing(I ) =
{

x ∈ C3
: (x2

1 − x2
2)(x

2
1 − x2

3)(x
2
2 − x2

3) = 0
}
. (9)

We note that the normalizing constant c̃ = c̃(x1, x2, x3) is a real analytic function on R3
\Sing(I ) that

extends to a holomorphic function on all of complex affine space C3.
Using Gröbner bases in the rational Weyl algebra R, we find that the initial ideal of RI for the degree

reverse lexicographic order is generated by the symbols of our six operators:

in(RI ) = 〈 ∂1∂2 , ∂1∂3 , ∂2∂3 , ∂
2
1 , ∂

2
2 , ∂

2
3 〉.

The set of standard monomials equals S = {1, ∂1, ∂2, ∂3}. This is a C(x1, x2, x3)-basis for the vector
space R/RI . In this situation, we can associate a Pfaffian system to the D-ideal I . For the general theory,
we refer the reader to [30] and specifically to [28, (23)].

The Pfaffian system is a system of first-order linear differential equations associated to the holonomic
function c̃. It consists of three 4×4 matrices P1, P2, P3 whose entries are rational functions in x1, x2, x3.
We introduce the column vector C = ( c̃, ∂1 • c̃, ∂2 • c̃, ∂3 • c̃ )t.

Theorem 3.1 [29, Theorem 2]. The Pfaffian system associated to the normalizing constant c̃ of the
Fisher distribution (1) consists of the following three vector equations:

∂i •C = Pi ·C for i = 1, 2, 3, (10)

where the matrices P1, P2, P3 ∈ C(x1, x2, x3)
4×4 are

P1 =


0 1 0 0

1 x1(−2x2
1+x2

2+x2
3 )

(x2
1−x2

3 )(x
2
1−x2

2 )

x2
x2

1−x2
2

x3
x2

1−x2
3

0 x2
x2

1−x2
2

−x1
x2

1−x2
2

1

0 x3
x2

1−x2
3

1 −x1
x2

1−x2
3

 , P2 =


0 0 1 0
0 −x2

x2
2−x2

1

x1
x2

2−x2
1

1

1 x1
x2

2−x2
1

x2(x2
1−2x2

2+x2
3 )

(x2
2−x2

1 )(x
2
2−x2

3 )

x3
x2

2−x2
3

0 1 x3
x2

2−x2
3

−x2
x2

2−x2
3

 ,

and P3 =


0 0 0 1
0 −x3

x2
3−x2

1
1 x1

x2
3−x2

1

0 1 −x3
x2

3−x2
2

x2
x2

3−x2
2

1 x1
x2

3−x2
1

x2
x2

3−x2
2

x3(x2
1+x2

2−2x2
3 )

(x2
3−x2

1 )(x
2
3−x2

2 )

 .
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We reproduced this Pfaffian system from the operators G1,G2,G3, L12, L13, L23 with the Mathe-
matica package HolonomicFunctions [15]. This was done by running Gröbner basis computations in
the rational Weyl algebra R with the degree reverse lexicographic order. See [28, Example 3.4] for an
illustration on how this is done.

The Pfaffian system (10) allows us to recover the i th partial derivative of the normalizing constant
as the first coordinate of the column vector Pi ·C . In symbols we have ∂i • c̃ = (Pi ·C)1. We make
extensive use of this fact when computing the MLE in Section 4. In the same vein, we can recover the
Hessian of c̃ from the Pfaffian system of c̃ as follows:

∂2
1 • c̃ = (P1 ·C)2, ∂1∂2 • c̃ = (P2 ·C)2, ∂1∂3 • c̃ = (P3 ·C)2,
∂2

2 • c̃ = (P2 ·C)3, ∂2∂3 • c̃ = (P3 ·C)3, ∂2
3 • c̃ = (P3 ·C)4.

(11)

This allows for the use of second order optimization algorithms, see Section 4.
An object of interest—from the algebraic analysis perspective—is the Weyl closure of the D-ideal I .

By definition, the Weyl closure is the following D-ideal which clearly contains I :

W (I ) := RI ∩ D.

In general, it is a challenging problem to compute the Weyl closure of a D-ideal. This computation is
reminiscent of finding the radical of a polynomial ideal, which, according to Hilbert’s Nullstellensatz,
consists of all polynomials that vanish on the complex solutions to the given polynomials. The Weyl
closure plays a similar role for holonomic functions. It turns out that computing W (I ) is fairly benign
for the D-ideal I studied in this section.

Lemma 3.2. Let I be the holonomic D-ideal in (8). Then the Weyl closure W (I ) is generated by I and
the one additional operator x1∂1∂3+ x2∂2∂3+ x3∂

2
3 − x2∂1− x1∂2− x3+ 2∂3.

Proof. We used the Singular library dmodloc [1] to compute the Weyl closure of I . We found that I is
not Weyl-closed, i.e., I ( W (I ). Moreover, by Gröbner basis reductions in the Weyl algebra, we find
that adding the claimed operator results in a Weyl-closed ideal. �

Following [16; 29], we now consider the Fisher distribution on SO(n). The normalizing constant
c(2) is defined as in (2), with the integral taken over SO(n) with its Haar measure. Let Dn2 be the
Weyl algebra whose variables are the entries of the n× n matrix 2 = (ti j ). The corresponding n× n
matrix of differential operators in Dn2 is denoted by ∂ = (∂i j ). The following result was established
by Koyama [16], based on earlier work of Sei et al. [29]. We shall prove a more general statement for
arbitrary compact Lie groups in Section 6.

Theorem 3.3. The annihilator of c(2) is the D-ideal J generated by the following operators:

d = 1 − det(∂), gi j = δi j −
∑n

k=1 ∂ik∂ jk for 1≤ i ≤ j ≤ n,

Pi j =
∑n

k=1
(
tik∂ jk − t jk∂ik

)
for 1≤ i < j ≤ n.

Above we omitted half of the equations given in [16, (12)], which is justified by the results in [25, Section
8.7.3]. Also, the operators Pi j are induced from left matrix multiplication (as in (26)) rather than right
multiplication as in [16, (11)].
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A problem that was left open in [16; 29], even for n = 3, is the determination of the holonomic rank of
J . We now address this by introducing dimensionality reduction via invariant theory. The same approach
makes sense for the general definition of J seen in (30).

Let J ′ be the D-ideal generated by the operators Pi j , gi j . This is the analogue of J for the orthogonal
group O(n) in its standard representation in GLn(C) (see Section 6). Since O(n) has two connected
components, the corresponding module in Theorem 6.2 is a direct sum of two simple holonomic Dn2-
modules. By symmetry, we obtain

rank(J ′) = 2 · rank(J ). (12)

The ring of O(n)-invariant polynomials on Cn×n is generated by the
(n+1

2

)
entries {ykl}1≤k≤l≤n of the

symmetric matrix Y = 2t
·2 (see [25, Section 11.2.1]). These matrix entries ykl are algebraically

independent quadratic forms in the n2 unknowns ti j .
We now work in the Weyl algebra D(n+1

2 )
with the convention ykl = ylk and ∂kl = ∂lk . Let K

denote the left ideal in that Weyl algebra which is generated by the operators

hi j = 2δi j n · ∂i j − δi j +

n∑
k, l =1

2δki+δl j ykl · ∂ik∂ jl for 1≤ i ≤ j ≤ n. (13)

Theorem 3.4. A holomorphic function is a solution to J ′ if and only if it is of the form 2 7→ φ(yi j (2)),
where φ is a solution to K . In particular, rank(K ) = 2 · rank(J ).

Proof. The Lie algebra operators Pi j express left invariance under SO(n). The fact that every solution to
J ′ is expressible in Y follows from Luna’s Theorem [19] (see also [11, Section 6.4]). We note that the
determinant det(2) is an SO(n)-invariant that we may omit, due to the relation det(2)2 = det Y . The
D-ideal K is the invariant version of J ′. The operator hi j is derived from gi j by the chain rule. The
result therefore follows from (12). �

As an application of Theorem 3.4, we answer a question left open in [29, Proposition 2].

Proposition 3.5. For n = 3, we have rank(J ) = 4.

Proof. We used the computer algebra system Macaulay2 [9]. Unlike for rank(J ), the calculations for
rank(K ) finished, and we found rank(K ) = 8. We conclude by Theorem 3.4. �

For arbitrary n ≥ 2, we define I to be the D-ideal generated by the n operators Gi analogous to (6)
and the

(n
2

)
operators L i j analogous to (7). We saw this D-ideal in (8) for n = 3. We now explain how

the Dn2-ideal J and the Dn-ideal I are connected. We use the construction of the restriction ideal. For
the general definition see [28, (13)]. In our case, the construction works as follows. We set xi = ti i for
i = 1, . . . , n and we write Dn for the corresponding Weyl algebra. Then

Jdiag := ( J + { ti j : 1≤ i 6= j ≤ n} · Dn2 ) ∩ Dn (14)

is the Dn-ideal obtained by restricting the annihilator of c(2) to the diagonal entries of the matrix 2.
Note that the second summand in (14) is a right ideal in the Weyl algebra Dn2 .
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If f (2) is a function in the n2 variables ti j that is annihilated by J , then the restriction ideal Jdiag

annihilates the function f (diag(x1, . . . , xn)) in n variables. Therefore, Jdiag annihilates the restricted
normalizing constant c̃(x1, . . . , xn). The result to be presented next guarantees that the Pfaffian system in
Theorem 3.1 is indeed of minimal size.

Proposition 3.6. The following inclusions hold among holonomic Dn-ideals representing c̃:

I ⊆ Jdiag ⊆ W (Jdiag) ⊆ annDn (c̃).

Equality holds for n ≤ 3 in the rightmost inclusion.

Sketch of proof. The proof of [29, Theorem 1] shows that I is contained in Jdiag. Note that for n = 3 the
middle inclusion is strict by Lemma 3.2. We have W (Jdiag) ⊆ annDn (c̃) because the annihilator of a
smooth function such as c̃ is Weyl-closed, by an argument spelled out in [8].

The equality on the right for n = 3 is shown by proving W (I ) = annD3(c̃). We use the following
argument and computations. The Fourier transform W (I )F is the D-ideal obtained by switching ∂i

and xi (up to sign). We find that its holonomic rank is 1. We next compute the holonomic dual of the
module D3/W (I )F . This is another D3-module, as defined in [12, Section 2.6]. There is a built-in
command for the holonomic dual in Macaulay2 [9]. Another computation, using localization techniques,
verifies that both D3/W (I )F and its holonomic dual are torsion-free as C[x1, x2, x3]-modules. These
facts imply that D3/W (I )F is a simple D-module, and hence so is D3/W (I ). From this we conclude
that W (I ) = annD3(c̃). �

We conjecture that the inclusion on the right is an equality for all positive integers n. Using results
from Section 6, we can argue that W (Jdiag)

F is regular holonomic for any n. It appears that its singular
locus is a hyperplane arrangement. The special combinatorial structure encountered in this arrangement
gives strong evidence for the conjecture above.

4. Maximum likelihood estimation

We now proceed to computing the maximum of the log-likelihood function of Lemma 2.1 for given
datasets. Since the objective function (4) is strictly concave, a local maximum is the global maximizer and
attained at a unique point x̂ = (x̂1, x̂2, x̂3) ∈ R3. In order to compute x̂ , we run a number of algorithms,
each using the holonomic gradient method. This is based on the results presented in the previous section,
especially on Theorem 3.1 and equation (11). These are used to compute the function values, gradients,
and Hessians in each iteration. The code for the numerical computations of this section can be found at
https://github.com/MikeAdamer/hgm_MLE.

A critical step in running any local optimization method is finding a suitable starting point. As
mentioned in Section 3, solutions to the D-ideal I are analytic outside the singular locus Sing(I ).
Starting points need to be chosen in R3

\Sing(I ). For the Fisher model on SO(3), the singular locus
Sing(I ) is the arrangement (9) of six planes through the origin in R3. This partitions R3 into 24 distinct
chambers. For the algorithms described below, we choose starting points in each of the 24 connected
components of R3/Sing(I ), and we evaluate the vector C at these points. This initialization can be done

https://github.com/MikeAdamer/hgm_MLE
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either via the series expansion method of [29, Section 3.2] or, equivalently, using the package hgm [31] in
the statistical software R, which uses a series expansion in conjunction with HGM.

In this section, we present three optimization methods based on algebraic analysis, building on the
methods given in [22]. The holonomic part of the algorithms stems from the basic structure of most
optimization schemes. In essence, there are always two steps: a gradient evaluation step and a gradient
descent step.

In this paper, we show how HGD is used in the first step for exact evaluation of the gradients. For
further details on the second step in a number of optimization schemes we refer to [23]. The simplest
algorithm is holonomic gradient ascent (HGA). This is a straightforward adaptation of the HGD method
in [29]. Second, we introduce a holonomic version of the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [23, Chapter 6, §1]. BFGS is a quasi-Newton method that requires the gradient and the function
value as inputs. Both can be calculated directly using (10). This turns BFGS into holonomic BFGS
(H-BFGS). Our third algorithm is a holonomic Newton method. This second-order method exploits the
fact that the Hessian is easy to calculate from (11) and that the objective function is strictly concave.

To get started, we need an expression for the gradient of the log-likelihood function ` and a holonomic
gradient method (HGM) for evaluating that expression. By Lemma 2.1,

∇`(x) =

g1

g2

g3

 − 1
c̃(x)
· ∇ c̃(x). (15)

Note that C(x) = (c̃(x),∇ c̃(x))t. Hence, our task to evaluate ∇` at any point amounts to evaluating
the vector-valued function C at any point. This is where the HGM comes in.

In general, we approximate the function C at a point x (n+1) given its value at a previous point x (n).
To this end, a path x (n)→ x (n) + δ(1)→ x (n) + δ(2)→ · · · → x (n) + δ(K )→ x (n+1) is chosen, where
δ(1), . . . , δ(K ) ∈ R3 with ‖δ(m+1)

−δ(m)‖ sufficiently small. The linear part of the Taylor series expansion
of C at x (n) yields the following approximations:

C(x (n)+ δ(m+1)) ≈ C(x (n)+ δ(m)) +
3∑

i=1

(δ
(m+1)
i − δ

(m)
i ) (∂i •C)(x (n)+ δ(m))

= C(x (n)+ δ(m)) +
3∑

i=1

(δ
(m+1)
i − δ

(m)
i ) Pi ·C(x (n)+ δ(m)). (16)

We choose a path consisting of points, separated by intervals of size 1t , on the line segment x(t) =
x (n)(1− t) + x (n+1)t with t ∈ [0, 1]. With this notation, (16) becomes

C(x((m+ 1)1t)) ≈ C(x(m1t)) +
∑3

i=1 (x
(n+1)
i − x (n)i )1t · Pi ·C(x(m1t)). (17)

If we take the limit 1t→ 0, then the equation above becomes the differential equation

dC(t)
dt

=

3∑
i=1

∂xi

∂t
∂C
∂xi
=

3∑
i=1

(
x (n+1)

i − x (n)i

)
Pi ·C.
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This ordinary differential equation can be solved using any numerical ODE solver, e.g., an Euler scheme
or Runge–Kutta scheme. This leads to the following algorithm.

Algorithm 1: Holonomic gradient method.

Input: x (n), x (n+1), C(x (n)), a Pfaffian system P1, P2, P3

Output: C(x (n+1))

1 Set x(t) = x (n)(1− t) + x (n+1)t .
2 Let dC(t)

dt =
∑3

i=1
∂xi
∂t

∂C
∂xi
=
∑3

i=1(x
(n+1)
i − x (n)i )Pi ·C .

3 Numerically integrate line 2 from t = 0 to t = 1.

We employ Algorithm 1 as a subroutine for the holonomic gradient ascent algorithm, which will be
described next. HGA is analogous to other gradient ascent/descent methods, however, with the special
feature that the gradients are calculated via the HGM algorithm. A description of the algorithm, adapted
for data from SO(3), is outlined below.

Algorithm 2: Holonomic gradient ascent.

Input: Matrices Q and R, singular values g1, g2, g3 and a starting point x (0) ∈ R3

Result: A maximum likelihood estimate for the data in the Fisher model (1)
1 Choose a learning rate γn .
2 Choose a threshold δ.
3 Evaluate C at the starting point x (0).
4 Evaluate ∇` at the starting point x (0).
5 Set n = 0.
6 while max |∇`(x (n))| < δ do
7 x (n+1)

= x (n) + γn∇`(x (n)).
8 Calculate C(x (n+1)) via HGM using Algorithm 1.
9 Calculate ∇`(x (n+1)) from C(x (n+1)).

10 Set n = n+ 1.
11 end
12 Output the vector x (n) ∈ R3 as our approximation for (x̂1, x̂2, x̂3).
13 Output the rotation matrix 2̂ = Q · x (n) · R as our approximation for the MLE.

The given data is a list of rotation matrices Y1, . . . , YN in SO(3). As explained in Section 2, we
encode these in the singular values g1, g2, g3 of the sample mean Ȳ = 1

N

∑N
k=1 Yk . Thus, the input for

HGA consists primarily of just three numbers g1, g2, g3. They are used in the evaluation in the first terms
of ∇`, as seen in (15). The second term is evaluated by matrix multiplication with P1, P2, P3, as seen
in (10). Part of the input are also the matrices Q and R that diagonalize the sample mean Ȳ . They
are needed in the last step to recover 2̂ from x̂1, x̂2, x̂3 as in Lemma 2.1. The HGA algorithm has two
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parameters, namely the threshold δ which indicates a termination condition, and the learning rate γn .
While δ can be chosen freely depending on the desired accuracy, choosing the learning rate can have
significant effects on the convergence of the algorithm. In our computations we chose γn = 10−2. This
can clearly be improved. However, the standard technique of performing line searches to find a good γn

is not recommended as evaluating C at a new point is costly.
To employ more advanced methods such as BFGS, and to avoid integrating along a path crossing the

singular locus, we use [29, Corollary 1]. This states that the value of the column vector C at a point
(x1, x2, x3) can be obtained by fixing (x1, x2, x3) and integrating the following ODE from t = ε � 1
to t = 1. Here C is regarded as a function of the parameter t :

C ′(t) =


0 x1 x2 x3

x1 −2/t x3 x2

x2 x3 −2/t x1

x3 x2 x1 −2/t

 ·C(t). (18)

Using this approach for calculating C , we can employ BFGS optimization using HGM as a subroutine
to calculate the gradients and function values required as inputs. This also prevents the accumulation
of numerical errors as the initial conditions of the ODE are exact. The H-BFGS method achieves faster
convergence rates than the simple HGA Algorithm 2.

A final very powerful algorithm for concave (or convex) functions is the Newton method which uses
the Hessian matrix. Often, finding the Hessian matrix H[`(x)] of a function is a difficult task. However,
using holonomic methods the Hessian is obtained for free via

∂i∂ j • ` =
1
c̃2 (∂i • c̃) (∂ j • c̃) −

1
c̃
∂i∂ j • c̃,

and the relations in (10) and (11). We found that the Newton method,

x (n+1)
= x (n) − H[`(x)]−1

· ∇`(x),

gives the fastest convergence. We refer to this approach as the Holonomic Newton method.
We implemented the H-BFGS method in a script in the software R. Interested readers may obtain our

implementation at https://github.com/MikeAdamer/hgm_MLE. This code is custom-tailored for rotations
in 3-space. The function C is evaluated at the starting point x (0) using the series expansion method that
is described in [29, Section 3.2]. Here we truncate the series at order 41.

Example 4.1. We created a synthetic dataset consisting of N = 500 rotation matrices. These were
sampled from the Fisher distribution with parameter matrix

2 =

 −1.178 0.2804 1.037
−0.3825 0.9181 0.6016
−0.0955 0.9037 1.695

 . (19)

https://github.com/MikeAdamer/hgm_MLE
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Figure 2. The Frobenius distance of the MLE parameters to the true parameter values.
The convergence is relatively slow. This suggests that the MLE problem is not well
conditioned.

The sample mean and its sign-preserving singular value decomposition are found to be

Ȳ =

−0.2262 0.1021 0.2260
−0.0233 0.0611 0.2779
−0.0364 0.2802 0.3529

 = Q ·

0.5946 0.0000 0.0000
0.0000 0.1838 0.0000
0.0000 0.0000 0.1059

 · R,
with Q =

−0.4977 0.8589 0.1211
−0.4518 −0.1376 −0.8815
−0.7404 −0.4934 0.4565

 , R =

 0.2524 −0.4808 −0.8397
−0.9419 −0.3209 −0.0993
−0.2217 0.8160 −0.5339

 .
Running H-BFGS on this input, the MLE is found to be

2̂ =

−0.8972 0.3446 0.9682
−0.2392 0.7777 0.7856
−0.0763 0.8664 1.616

 = Q ·

 2.422 0.0000 0.0000
0.0000 0.7432 0.0000
0.0000 0.0000 −0.3043

 · R. (20)

While the entries of the MLE 2̂ have the correct sign and order of magnitude, the actual values are not
very close to those in 2. In order to isolate the effect of the sample size on the MLE, we extended the
data to 10000 matrices. In the iterations we recorded the Frobenius distance (FD) from 2̂ to 2. Our
findings are outlined in Figure 2.

Remark 4.2. The authors in [29] report that the HGD algorithm becomes numerically unstable when it
is close to the singular locus of the Pfaffian system. They recommend picking a starting point in the same
connected component of R3

\Sing(I ) where the MLE is suspected. In contrast, our computations suggest
that the output of the HGA does not depend on the connected component which the starting point lies in,
when a sufficiently stable numerical integration method (e.g. lsode from the R package deSolve ) is
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chosen in Algorithm 1. Therefore, the starting point of the optimization can be chosen arbitrarily, as long
as it is close enough to the origin so that the series expansion converges.

Remark 4.3. The sample mean matrix Ȳ lies in the convex hull of the rotation group. This convex body,
denoted conv(SO(3)), was studied in [27, Section 4.4], and an explicit representation as a spectrahedron
was given in [27, Proposition 4.1]. It follows from the theory of orbitopes [27] that the singular values of
matrices in conv(SO(3)) are precisely the triples that satisfy 1≥ |g1| ≥ g2 ≥ g3 ≥ 0. These inequalities
define two polytopes, which are responsible for the facial description of conv(SO(3)) found in [27,
Theorem 4.11].

We can think of the MLE as a map from the interior of the orbitope conv(SO(3)) to R3. Using the
singular value decomposition, we restricted this map to the open polytopes given by 1> |g1|> g2> g3> 0.
Note that the coordinates of the vector x̂ goes off to infinity as the maximum of {g1, g2, g3} approaches 1.
This follows from [14, (4.12)], where the analogue for O(n) was derived. This divergence can cause
numerical problems.

In this section, we have turned the earlier results on D-ideals into numerical algorithms. This is just
a first step. The success of any local method relies heavily on a clear understanding of the numerical
analysis that is relevant for the problem at hand. A future study of condition numbers from the perspective
of holonomic representations would be desirable.

5. Rotation data in the sciences

Rotation data arise in any field of science in which the orientation of an object in 3-space is important.
Occurrences include a diverse number of research areas such as medical imaging, biomechanics, as-
tronomy, geology, and materials science. In this section, we apply our methods to a prominent dataset
of vectorcardiograms and to biomechanical data. We also review previous findings on rotation data in
astronomy, geology, and materials science.

5.1. Medical imaging. One important occurrence of rotational data in the applied sciences stems from
medical imaging, and more precisely from vectorcardiography. In that field, the electrical forces generated
by the heart are studied and their magnitude and direction are recorded.

The dataset presented in [7] is a famous example of directional data. It contains the orientation of the
vectorcardiogram (VC) loop of 98 children aged 2− 19. In particular, the orientation is measured using
two different techniques. Both measurements are given in the form of two vectors. The first identifies
the VC loop of greatest magnitude and the second is the normal direction to the loop. We add as a third
vector the cross product of the magnitude and normal vector to form a right handed set and, therefore, a
rotation matrix.

This dataset has been used to exemplify a range of methods in directional statistics, see, e.g., [24]. We
applied the optimization methods from Section 4 to the same dataset. In other words, we computed the
maximum of the log-likelihood function (4) for the orientations of the VC loop. In order to match our
analysis with the results of [24], we only consider the 28 data points of the boys aged 2− 10. A colorful
illustration of the action of these 28 rotation matrices on the coordinate axes is shown in Figure 1.
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We now proceed to the MLE. The sample mean has the singular value decomposition

Ȳ =

0.6868 0.5756 0.1828
0.5511 −0.7372 −0.0045
0.1216 0.1417 −0.8630

 = Q ·

0.9469 0.0000 0.0000
0.0000 0.8962 0.0000
0.0000 0.0000 0.8737

 · R, (21)

where

Q =

 0.6112 0.7636 0.2079
−0.7498 0.4748 0.4608
0.2532 −0.4376 0.8628

 , R =

0.03941 0.99324 −0.1092
0.81778 0.03072 0.5747
0.57418 −0.11194 −0.8110

 . (22)

By forming the matrix product Q R we recover the result of [24]. The matrix Q R, however, is only one
part of the MLE as described in [14]. By using H-BFGS, we can find the full MLE of the Fisher model.
We compared H-BFGS to other methods. For that, we estimated x1, x2, x3 with a BFGS optimization of
the log-likelihood using the series expansion of the normalizing constant. We then compare the resulting
estimate to the output of H-BFGS. The H-BFGS algorithm finds the MLE

x̂1 = 20.072407,

x̂2 = 12.513841,

x̂3 = −6.510704,

which corresponds to a log-likelihood of ˆ̀ = 3.97299. The runtime of the algorithm is highly dependent
on the number of nonzero terms in the series expansion for c̃. In this calculation, the first 6000 nonzero
terms are used and the runtime is about 4 seconds. To improve the runtime one could try to truncate
the series at lower order. For further refinement of the MLE one can combine H-BFGS with H-Newton
by using the output of H-BFGS as the starting point of H-Newton. The classical BFGS method is not
convergent if only the first 6000 nonzero terms are used. Hence, we need to truncate the series expansion
at higher order. If we use the first 48000 nonzero terms, then the series expansion BFGS method finds the
MLE x̂1 = 17.604156, x̂2 = 10.024591, x̂3 = −3.881811, which gives ˆ̀ = 3.96330. The computation
takes about 20 seconds. Hence, the holonomic BFGS outperformed the classical method by finding a
better likelihood value in much shorter time.

5.2. Biomechanics. Rotational data is ubiquitous in the biomedical sciences. A prominent experiment
in this area is the human kinematics study of [26]. In this experiment, the rotations of four different upper
body parts were tracked while the subject was drilling holes into six different locations of a vertical panel.
In [3], this dataset was studied and maximum likelihood and Bayesian point estimates for the orientation
of the wrist were obtained and credible regions constructed.

A further experiment concerns the heel orientation of primates. In the experiments, the rotation of
the calcaneus bone (the heel) and the cuboid bone, which is horizontally adjacent to the heel and closer
to the toes, was measured. A load was applied to three sedentary primates, a human, a chimpanzee,
and a baboon and the rotation of their ankle was recorded. While the data is actually a time series, the
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simplifying assumption of independent identically distributed data is made in its analysis [4]. We study
this dataset which was kindly provided by Melissa Bingham. The sample mean for the human data equals

Ȳ =

−0.1013 −0.9127 −0.3811
0.3275 −0.3895 0.8535
−0.9335 −0.0358 0.3475

 = Q ·

0.9997 0.0000 0.0000
0.0000 0.9926 0.0000
0.0000 0.0000 0.9923

 · R, (23)

with

Q =

 0.4771 0.8753 −0.0791
−0.4320 0.1552 −0.8884
−0.7654 0.4580 0.4521

 and R =

 0.5248 −0.2399 −0.8167
−0.4690 −0.8822 −0.0422
−0.7104 0.4051 −0.5754

 .
We see on the right hand side in (23) that the singular values for this dataset only differ in the third

significant figure and the smallest singular value is approximately 1. We found that the normalizing
constant gets too large to be computed directly. Indeed, our simulations returned a value error when
c̃ ≈ 10308. This is a serious numerical issue, arising in any MLE algorithm that attempts to directly
calculate c̃ when the sample mean is almost a rotation matrix. Singular values close to 1 imply that the
samples are concentrated on the unit sphere. One could either use a rotational Maxwell distribution [13]
as a local model or the approximation in [4]. The data for the baboon and the chimpanzee show similar
traits.

Progress can be made by applying a gauge transform in (18), aimed at scaling the input for H-BFGS.
Let λ0 be the largest eigenvalue of

A =


0 x1 x2 x3

x1 0 x3 x2

x2 x3 0 x1

x3 x2 x1 0

 .
We can derive an ODE for the function E = C · exp(−λ0t) from (18). The function E is guaranteed to
have smaller values than C . Furthermore, the ratio (∂i • c̃)/c̃ = Ci/C0 = Di/D0 is invariant. Despite
being able to compute log(c̃) using the gauge transformation, MLE becomes very unstable due to the
numerical accuracy required. Finding the MLE from a random starting point using H-BFGS proved
intractable. However, to provide a suitable starting point for H-BFGS, we use the asymptotic formula
of [14], which gives x̂1= 5543.102, x̂2= 3753.025, x̂3=−3685.298. We refined this result with H-BFGS
and found the MLE x̂1= 5543.106, x̂2= 3753.078, x̂3=−3685.242 corresponding to a log-likelihood of
ˆ̀ = 10.59342. Calculating the log-likelihood using HGM and the asymptotic values yields ˆ̀ = 10.52366.
Hence, H-BFGS finds a slightly better MLE than the asymptotic formula.

5.3. Astronomy, geology, and materials science. Astronomical applications of the matrix Fisher model
on SO(3) are often concerned with the orbits of near-earth objects [20; 29]. Such objects are comets or
asteroids in an elliptic orbit around the sun with the sun in their focus. The data comes as sets of vectors
in R3 taking the sun as the origin. The first vector, X1, is the perihelion direction, which points to the
location on the orbit closest to the sun. The second vector, X2, is the unit normal to the orbit. Together
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with their cross product these vectors form a right handed set. Therefore, they define a rotation matrix.
Questions of astronomical interest are whether the perihelion direction is uniformly distributed on the
sphere and whether the orbit orientations are uniform on SO(3). To answer the latter question the Raleigh
statistic can be used [20; 29].

Sei et al. [29] studied a dataset of rotations representing 151 comets and 6496 asteroids. They computed
maximum likelihood estimates using the holonomic gradient method and also series expansions. The
Raleigh statistic for the dataset was calculated and the null hypothesis of a uniform distribution was
strongly rejected. Further, the hypothesis of the data originating from a Fisher distribution on a Stiefel
manifold was tested against the hypothesis of SO(3), and the evidence strongly suggested to reject the
Stiefel manifold.

Rotations arise in geology and earth sciences in the study of earthquake epicenters [13] and the analysis
of plate tectonics [6]. Davis and Titus [6] studied a dataset of the deformation of a shear zone in northern
Idaho. However, this was done in the context of invalidating a geology inspired model that had been used
previously to explain the shear deformations.

Kagan [13] studied rotational data describing the earthquake focal mechanism orientation. Various
models, including the Fisher model, were discussed in this article. However, the Fisher model was
dismissed due to the difficulty of normalization for small spread data as discussed in Remark 2.2. The
alternative model used in [13] was a rotational Maxwell distribution as a local approximation. Our results
offer a chance to revisit the Fisher model.

One important source of rotational data is materials science, where patterns from electron backscatter
diffraction (EBSD) are analyzed (see, e.g., [2]). This type of data provides information about the
orientation of grains within a material. Crystal orientation has important implications on the properties
of polycrystalline materials. One issue with EBSD data is the fact that orientations of the crystals can
only be determined within a coset of the crystallographic group the grain belongs to. This is due to the
fact that a crystal is a lattice and every lattice comes with certain translational and rotational symmetries.
Orientations can only be determined up to the rotational invariance of the lattice. Hence, the data, although
giving information about rotations, is strictly speaking not on SO(3), but on its quotient by a discrete
symmetry subgroup. To adapt our analysis, an appropriate parametrization or embedding for such a
quotient needs to be found. This, however, is beyond the scope of this paper and is left for future work.
Before going to such manifolds, we start with Lie groups.

6. Compact Lie groups

The Fisher model on SO(n) generalizes naturally to other compact Lie groups. We define the Fisher
distribution and the normalizing constant as in (1) and (2), but with integration over the Haar measure on
the Lie group. In this section, we introduce these objects and their holonomic representation. In particular,
we establish the analogue of Theorem 3.3 for compact Lie groups. This opens up the possibility of
applying algebraic analysis to data sampled from manifolds other than SO(n) provided these have the
structure of a group.
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Let G be a compact connected Lie group and fix a real representation π : G → GLn(R). We can
assume that π is injective, i.e., the representation is faithful. We note that any compact Lie group admits
a faithful representation [25, Section 8.3.4]. The matrix group π(G) ⊂ Rn×n is a closed algebraic
subvariety (see [25, Section 8.7]). If one starts with a complex representation instead, the situation can be
studied in the polynomial ring over C.

For our algebraic approach, the ambient setting is the complex affine space X := Cn×n . The complex-
ification GC of our group G is a complex connected reductive algebraic group [25, Section 8.7.2]. The
extension π : GC→ X is a closed embedding. Its image, the matrix group π(GC), is the complex affine
variety in X , cut out by the same polynomials as the ones defining π(G). We denote by IG the ideal
generated by these polynomials in C[X ]. The quotient ring C[G] := C[X ]/IG is the ring of polynomial
functions on the group π(GC).

Let g denote the complex Lie algebra of GC. This is the complexification of the real Lie algebra of
the given Lie group G. We write U (g) for the universal enveloping algebra of g. For any affine variety,
one can define the ring of algebraic differential operators on that variety. This is generally a complicated
object, but things are quite nice in our case.

Let DG denote the ring of differential operators on GC. We have natural inclusions

g ⊂ U (g) ⊂ DG and C[G] ⊂ DG .

These inclusions exhibit desirable properties. Namely, we have canonical isomorphisms

DG ∼= C[G] ⊗ U (g) ∼= U (g) ⊗ C[G]. (24)

This holds because left (or right) invariant vector fields of GC trivialize the tangent bundle. Recall that
GC acts on X = Cn×n by left matrix multiplication via π . Through this action, elements in the Lie
algebra g induce vector fields on X . This gives an injective map

φ : U (g) ↪→ Dn2 . (25)

We now proceed to describing the algebra map φ explicitly. Fix an arbitrary element ξ ∈ g. Let −Mξ

be the n× n matrix corresponding to ξ via the inclusion g ↪→ gl(n). The following is the vector field
encoding the Lie algebra action of Mξ on the space gl(n)' Cn×n:

φ(ξ) =

n∑
i, j = 1

(Mξ )i j ·

n∑
k=1

t jk∂ik ∈ Dn2 . (26)

Example 6.1. Fix G = SO(n) and let π : G → GLn(R) be the standard representation on Rn . The
associated Lie algebra g is the space of skew-symmetric n× n matrices over C. A canonical basis of g

consists of the rank 2 matrices ei j − e j i for 1≤ i < j ≤ n. The operator Pi j ∈ Dn2 in Theorem 3.3 is
Fourier dual to the vector field (26) if we take ξ = e j i − ei j .

As seen in [12, Section 1.3], the morphism of varieties π : GC→ X induces a pushforward functor of
D-modules π+ :Mod(DG)→Mod(Dn2) satisfying the following key property.
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Theorem 6.2. If we regard C[G] as a left DG -module, then we have the isomorphism

π+(C[G]) ∼= Dn2 /〈 IG, φ(g) 〉.

In particular, this quotient is a regular holonomic simple Dn2-module.

Proof. By (24), we have the following isomorphism of right DG -modules:

C[G] ∼= C ⊗U (g) DG . (27)

On the right, C denotes the trivial representation of the universal enveloping algebra U (g).
Let DG→X := C[G] ⊗C[X ] DX denote the transfer bimodule. This is a left DG -module and a

right DX -module. Since the action of g extends to the whole space X , we have C[G] ∼= C[X ]/IG as
g-modules, and the left U (g)-structure of DG→X is induced by the Leibniz rule via the map (25) on the
second factor. We obtain the isomorphism of bimodules

DG→X ∼= DX/(IG · DX ). (28)

By (27) and (28), we have the following isomorphisms of right DX -modules:

π+(C[G]) := C[G] ⊗DG DG→X ∼= (C ⊗U (g) DG) ⊗DG DG→X

∼= C ⊗U (g) DX/(IG · DX ) ∼= DX/((IG +φ(g)) · DX ).

The fist claim now follows by switching to left DX -modules. By Kashiwara’s Equivalence Theorem [12,
Section 1.6], the module DX/〈IG, φ(g)〉 is regular holonomic and simple. �

Remark 6.3. The assumption that G is compact is not needed in Theorem 6.2. The proof works for
any representation π : H → GLn(C) of a complex connected algebraic group such that π(H) is closed
in Cn×n . Such a representation exists for all semisimple groups H . Another natural setting is that of
orbits of a compact group G acting linearly on a real vector space, with left-invariant measures used in
Corollary 6.5. In our view, the theory of orbitopes [27] should be of interest for statistical inference with
data sampled from orbits.

Remark 6.4. Here is a more conceptual argument for Theorem 6.2. The D-module M = Dn2/〈IG, φ(g)〉

is equivariant and supported on π(GC) (see [12, Section 11.5]). By Kashiwara’s Equivalence Theorem,
it is the pushforward of a coherent equivariant D-module on GC. This is a direct sum of copies of
the module C[G], by the Riemann–Hilbert Correspondence. Hence, M is a direct sum of copies of
π+(C[G]). The existence of a unique left-invariant measure on G implies that there is only one such
summand in M .

Let µπ be the distribution on Rn×n given by integration against the Haar measure on G. The following
corollary generalizes [16, Theorem 1] from SO(n) to other Lie groups G.

Corollary 6.5. The annihilator in Dn2 of this distribution equals

annDn2 (µπ ) = 〈 IG, φ(g) 〉.
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Proof. Since supp(µπ ) = π(G), we have IG ⊂ annDn2 (µπ ). Since µπ is a left-invariant distribution,
we have also φ(g) ⊂ annDn2 (µπ ). By Theorem 6.2, the D-ideal 〈 IG, φ(g) 〉 is a maximal left ideal in
Dn2, since its quotient is simple. It is therefore equal to annDn2 (µπ ). �

The following observation establishes the connection to statistics, as in [16, Section 4].

Remark 6.6. The Fourier–Laplace transform of µπ has a complex analytic continuation to a holomorphic
function on Cn×n by the Paley–Wiener–Schwartz Theorem, namely

c(2) =
∫

G
exp(tr(2tπ(Y )))µ(dY ). (29)

This is the normalizing constant of the Fisher distribution on the group π(G) ⊂ GLn(R). Note that this
can be defined for a complex representation π(G) ⊂ GLn(C) as well.

The Fourier transform, denoted by (•)F , switches the operators ti j and ∂i j in the Weyl algebra Dn2 ,
with a minus sign involved. We consider the image of the D-ideal in Corollary 6.5 under this automorphism
of Dn2 . This image is a D-ideal Jπ that is defined over R:

Jπ = 〈 IG, φ(g) 〉
F . (30)

The following result generalizes Theorem 3.3 to compact Lie groups other than SO(n).

Corollary 6.7. The D-module Dn2/Jπ is simple holonomic and annDn2 (c(2)) = Jπ .

Proof. By Corollary 6.5, Remark 6.6, and the defining property of the Fourier transform, we see that Jπ
annihilates the integral in (29). The proof concludes by recalling that the Fourier transform induces an
auto-equivalence on the category of (holonomic) Dn2-modules. �

We saw in Section 5 that sampling from SO(3) is ubiquitous in the applied sciences. It would be
worthwhile to explore such scenarios also for other matrix groups π(G), and to apply holonomic methods
to maximum likelihood estimation in their Fisher model. An example of such a model is the complex
matrix Fisher distribution for unitary groups [20, Section 13.2.4].

One promising context for data applications is the unitary group in quantum physics. The following
example is as an invitation to mathematical physicists to develop this further.

Example 6.8. The compact group G = SU(2) consists of complex 2×2 matrices of the form(
α β

−β α

)
, with |α|2 + |β|2 = 1. (31)

Note that G is a double cover of SO(3). While the odd-dimensional (complex) representations of
G descend to real-valued representations of SO(3), this is not true for the even-dimensional (spin)
representations. Consider the standard representation G ⊂ C2×2.

The complexification of the matrix group in (31) is simply the group SL2(C) ⊂ C2×2. The associated
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(maximal, holonomic) ideal Jπ is generated by four operators:

d = det(∂)− 1, h = t11∂11+ t12∂12− t21∂21− t22∂22,

e = t21∂11+ t22∂12, f = t11∂21+ t12∂22.

A computation shows that rank Jπ = 2 and Sing(Jπ ) = {2 ∈ C2×2
| det(2) = 0}. The Lie algebra

operators e, f, h ensure that every holomorphic solution to Jπ is SL2-invariant. By [19], every solution
has the form 2 7→ φ(det(2)), for some analytic function φ in a domain of C∗. This is annihilated by
d (hence, by Jπ ) if and only if φ(x) is annihilated by

x∂2
+ 2∂ − 1 ∈ D1.

This has only one (up to scaling) entire solution φ, with series expansion at x = 0 given by

φ(x) =
∞∑

n=0

1
n! · (n+ 1)!

xn.

By comparing constant terms, we conclude that c(2) = φ
(
det(2)

)
. It is straightforward to generalize

the above considerations to the fundamental representation of the special unitary group SU(m) for any
m ≥ 1. In that setting, we find that rank(Jπ ) = m.

In conclusion, the D-ideal Jπ is an interesting object that deserves further study, not just for the
rotation group SO(n), but for arbitrary Lie groups G. Sections 3 and 6 offer numerous suggestions for
future research. For instance, what is the holonomic rank of Jπ? Furthermore, it would be desirable to
experiment with data sampled from groups G other than SO(3), so as to broaden the applicability of
algebraic analysis in statistical inference.
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COMPATIBILITY OF DISTRIBUTIONS IN PROBABILISTIC MODELS:
AN ALGEBRAIC FRAME AND SOME CHARACTERIZATIONS

LUIGI BURIGANA AND MICHELE VICOVARO

A probabilistic model may be formed of distinct distributional assumptions, and these may specify
admissible distributions on distinct (not necessarily disjoint) subsets of the whole set of random variables
of concern in the model. Such distributions on subsets of variables are said to be mutually compatible if
there exists a distribution on the whole set of variables that precisely subsumes all of them. In Section 2
of this paper, an algebraic frame for this compatibility concept is constructed, by first observing that all
marginal and/or conditional distributions (also called “probability kernels”) that are implicit in a global
distribution form a lattice, and then by highlighting the properties of useful operations that are internal
to this algebraic structure. In Sections 3, 4, and 5, characterizations of the concept of compatibility
are presented; first a characterization that depends only on set-theoretic relations between the variables
involved in the distributions under judgment; then characterizations that are applicable only to pairs of
candidate distributions; and then a characterization that is applicable to any set of candidate distributions
when the variables involved in each of these are exhaustive of the set of variables in the model. Lastly, in
Section 6, different categories of models are mentioned (a model of classical statistics, a corresponding
hierarchical Bayesian model, Bayesian networks, Markov random fields, and the Gibbs sampler) to
illustrate why the compatibility problem may have different levels of saliency and solutions in different
kinds of probabilistic models.

1. Introduction

Several of the probabilistic models used in statistics and in other areas of applied probability are presented
in modular form. By this, we mean that a model may be defined by a number of assumptions A1, . . . , Am

concerning the distributions acting on definite subsets X1, . . . , Xm of the total set T = {T1, . . . , Tn} of
the elementary random variables of concern in the model. Some of these subsets may be disjoint, and
others may overlap with one another. Any assumption Ai may specify a single distribution pi (X i ) or,
more typically, it may fix only a constraint on an unknown pi (X i ) such that it in fact specifies a class
of admissible distributions for X i . Furthermore, each distribution pi (X i ) imposed or allowed for by
an assumption Ai may be a marginal distribution; alternatively, it may be a conditional distribution
that expresses how some of the variables in the set X i are expected to be stochastically influenced by
some other variables within the same X i . Assumptions that specify or constrain the local conditional
distributions are characteristic of hierarchical Bayesian models, Bayesian networks, Markov random
fields, and probabilistic graphical models in general (Lauritzen, 1996; Koller and Friedman, 2009).

Burigana is the corresponding author.
MSC2020: 62H10, 62H22, 62R01, 60E99.
Keywords: probability kernel, conditional distribution, compatibility, lattice, graphical model.

213

http://msp.org/astat/
http://msp.org/astat/
https://doi.org/10.2140/astat.2020.11-2
http://https://doi.org/10.2140/astat.2020.11.213
http://msp.org


214 LUIGI BURIGANA AND MICHELE VICOVARO

When considering a model that is presented in modular form, the following question naturally arises.
Suppose that p1(X1), . . . , pm(Xm) are local distributions specified (or allowed for) by the assumptions
constituting the model. Are we assured that there exists a global distribution p(T ) that acts on the total
set of variables and faithfully “assembles” these local distributions, in the sense that each pi (X i ) can be
deduced from p(T ) through marginalization and/or conditioning? This is known as the compatibility
problem for distributional assumptions (Berti, Dreassi and Rigo, 2014, p. 191). Compatibility is an
essential requirement for the consistency and plausibility of a model as a whole. Indeed, if the local
distributions p1(X1), . . . , pm(Xm) that comply with these assumptions were not mutually compatible,
then analyses guided by the model (so far as these concern the whole set T of variables) would be
disqualified as efforts towards a non-existing target, as there would be no p(T ) consistent with all
p1(X1), . . . , pm(Xm). The compatibility problem thus conceived has been the subject of systematic
research over the past three decades (Arnold, Castillo and Sarabia, 1999, 2001). Interest in this problem is
particularly related to the study of so-called “conditionally specified statistical models”, as the difficulty
of testing compatibility greatly increases when the local distributions under judgment are in conditional
form and act on sets of variables that overlap with one another.

With this study, we intend to contribute to the discussion of the compatibility requirement by setting
this concept within an algebraic frame and presenting characterizations of it, some of which are taken
and reformulated from the literature, and others we believe are new. The algebraic frame is defined
in Section 2, and relies on the lattice structure possessed by the set of all marginal and conditional
distributions that are deducible from a full joint distribution p(T ). The characterizations are presented
in the next three sections; we examine a characterization that depends only on set-theoretic relations
between the variables in the distributions under consideration (Section 3); characterizations limited to
pairs of conditional distributions (Section 4); and a characterization that is applicable to any collection
of conditional distributions such that the variables involved in each distribution exhaust the total set T
(Section 5). Finally, in Section 6, we comment on simple examples to illustrate that in probabilistic models
of different kinds, the compatibility problem may attain different saliency and may require different
arguments for its solution.

The main reason for characterizing the frame of this study as an “algebraic” one is that our principal
analyses will be conducted by working on structures that are lattices, as defined in abstract algebra, and by
discussing relations and operations of algebraic character definable within those structures. In particular,
this aspect will become apparent in Sections 2 and 3. Research on the compatibility problem, however,
has also produced studies that can be categorized as “algebraic” for a complementary reason, that is,
the mathematical tools used in them are of a kind familiar to contemporary algebraic statistics, such as
analytical and computational tools from the theory of polynomials and algebraic geometry. Selected
references to these studies will be presented in Sections 4 and 5 of our paper.

2. An algebraic view of variable pairs and probability kernels

In dealing with any probabilistic model, we assume that the elementary random quantities (individual
data, parameters, hyper-parameters, etc.) involved in the model are exhaustively enumerated in a set
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T = {T1, . . . , Tn}. The word variable is used here for any subset of T , including the whole T (the full
variable), the empty set ∅ (the empty variable), any singleton {Ti } (an elementary variable, also denoted
by Ti ), and arbitrary multiple variables (that is, sets of two or more elements of T ). As they are understood
as subsets of T , arbitrary variables may be compared or combined in set-theoretical manner, so that if X
and Y are variables, then X ∪ Y , X ∩ Y , or X \ Y are also variables.

For each elementary variable Ti , we assume that a measure space (T ◦i ,Bi , µi ) is specified, in which
T ◦i is a standard set that includes all possible values of Ti (e.g., T ◦i could be the real axis, or a definite
subset of this), Bi is a sigma-field of subsets of T ◦i , and µi is a reference measure on this sigma-field.
Through multiplication, this construction associated with elementary variables is inherited by multiple
variables. Specifically, a definite measure space (X◦,BX , µX ) may be associated with any variable
X = {Ti1, . . . , Tik } ⊆ T , in which X◦ = T ◦i1

× · · · × T ◦ik
is the product of the spaces characteristic of the

individual components (the space X◦ includes all possible values of X ), BX =Bi1×· · ·×Bik is the product
of the corresponding sigma-fields, and µX = µi1 × · · · ×µik is the product of the reference measures
defined on these sigma-fields (Billingsley, 1995, § 18).

Discussions of conditional probability distributions imply reference to ordered pairs (Y |X) in which
X and Y are disjoint variables. Specifically, the term X (on the right of the bar) has the role of the
conditioning variable and may be empty, whereas the term Y (on the left of the bar) has the role of the
conditioned variable and is non-empty. We call (Y |X) a variable pair and denote by O(T ) the collection
of such pairs. Simple combinatorics shows that if n is the cardinality of T , then 3n

− 2n is the cardinality
of O(T ). For the purposes of our analysis, we make no substantial difference between any pairs (∅|X)
and (∅|U ) that have the empty variable on the left: both are symbols of one formal entity, called null
variable pair and generally denoted by ⊥. The symbol Õ(T ) stands for the set O(T )∪ {⊥}.

For the utilities that will appear in the next paragraphs, the following criterion for comparing variable
pairs is adopted.

Definition 1. A non-null variable pair (V |U ) is dominated by another non-null variable pair (Y |X)
(notation (V |U )� (Y |X)) if the inclusions V ∪U ⊆ Y ∪ X and U ⊇ X are both true. Furthermore, the
null variable pair is dominated by any other variable pair (that is, ⊥� (Y |X) for all (Y |X) ∈O(T )).

For example, assuming T = {T1, . . . , T5}, if (V |U ) = (T1, T2|T4, T5), (Y |X) = (T1, T2, T4|T5), and
(Z |W ) = (T1, T2|T5), then both (V |U ) � (Y |X) and (Z |W ) � (Y |X), but neither (V |U ) � (Z |W )

(condition V ∪U ⊆ Z ∪W is violated) nor (Z |W ) � (V |U ) (condition W ⊇ U is violated). Figure 1
allows us to present a useful characterization of the dominance defined above. This figure describes
the crossing between two generic pairs (V |U ) and (Y |X), by labeling the intersections and differences
between the variables constituting each pair (for example, A stands for the difference Y \ (V ∪U ), E for
the intersection Y ∩U , etc.). In these terms, it is readily seen that

(V |U )� (Y |X) if and only if B ∪C ∪ D ∪G =∅.

Figure 1 also plays a crucial role in the proofs of Theorems 1 and 2 stated below.
From the stated definition, any relation (V |U ) � (Y |X) is the logical conjunction of the inclusions

V ∪U ⊆ Y ∪ X and U ⊇ X . Due to this and to the fact that inclusion is a partial order (a reflexive,
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Figure 1. Crossing of two generic variable pairs (V |U )= (B ∪ F ∪G|D ∪ E ∪ H) and
(Y |X) = (A ∪ E ∪ F |C ∪ G ∪ H). Some of the eight subvariables A, . . . , H may be
empty.

transitive, and antisymmetric relation), we obtain that the relation � is itself a partial order, and that the
structure (Õ(T ),�) is a partially ordered set. More specifically, the following properties can be proved
(Burigana and Vicovaro, 2020, Proposition 1).

Proposition 1. The structure (Õ(T ),�) is a lattice in which the pair (T |∅) is the supremum, the null
pair ⊥ is the infimum, and for all non-null pairs (V |U ) and (Y |X) their join (least upper bound) and
meet (greatest lower bound) are given by the following equations:

(V |U )∨ (Y |X)= (V ∪ Y ∪ (U + X)|U ∩ X) (1)

with U + X = (U \ X)∪ (X \U );

(V |U )∧ (Y |X)= (V ∩ Y |U ∪ X) or =⊥ (2)

depending on whether the conditions V ∩ Y 6=∅, U ⊆ Y ∪ X, X ⊆ V ∪U

are or are not jointly true.

The following additional properties are easily recognized: the atoms in the lattice Õ(T ) are the pairs
(Y |X) with |Y | = 1 (i.e., the conditioned variable is elementary, so that if n = |T |, then n2n−1 is the
number of atoms); the lattice is atomic, in that each member of O(T ) can be expressed as the join of
a suitable set of atoms; it is rankable, the rank of any pair (Y |X) being simply the cardinality |Y | of
the conditioned variable; and it is locally distributive, by which we mean that the distributive laws hold
true on any triple of variable pairs whose pairwise meets are all different from ⊥ (the null variable pair).
Figure 2 shows the Hasse diagrams (in three-dimensional form) of the lattices Õ(T ) for |T | = 2, 3, 4.
In each diagram, a downward line represents a covering (V |U ) ≺·(Y |X) in which |Y \ V | = 1 and
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Figure 2. Three-dimensional Hasse diagrams of the lattices Õ(T ) for |T | = 2 (top right),
|T | = 3 (top left), and (bottom) |T | = 4.

Y \ V =U \ X (that is, (V |U ) is derived from (Y |X) by transferring one elementary variable from the
left to the right component of the pair), whereas a backward line represents a covering (V |U )≺·(Y |X)
in which |Y \ V | = 1 and U = X (that is, (V |U ) is derived from (Y |X) by cancelling one elementary
variable from the left component of the pair).

The next definition introduces the basic probabilistic objects of our study.

Definition 2. For any variable pair (Y |X), a probability kernel associated with it is any family {p(Y |x) :
x ∈ X◦} (indexed by the values of X ) in which each member p(Y |x) is a non-negative valued function
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defined on the space Y ◦, measurable relative to the sigma-field BY , and such that
∫

p(y|x)µY (dy)= 1.
The family is also denoted by the symbol p(Y |X).

The terms Y ◦, BY , and µY in this definition are the components of the measure space associated with
the conditioned variable Y in the kernel. Following common usage, any member p(Y |x) of a given family
p(Y |X) is referred to here as a density, irrespective of the kind (discrete, continuous, mixed, or other)
of the variable Y 1. The symbol S(p(Y |x)) will denote the support for any density p(Y |x), that is, the
set of points in the space Y ◦ on which the density is positive. Furthermore, simply by considering the
set-theoretic characteristics of the variables involved, basic kinds of kernels may be distinguished, which
are assigned distinctive names. In particular, a kernel p(Y |X) is elementary if Y is an elementary variable
(a singleton in T ), saturated if X ∪ Y = T (the full variable), marginal if X = ∅ (a marginal kernel
p(Y |∅) is tantamount to one density p(Y ) on the space Y ◦), full if Y = T (one density p(T ) over the
space T ◦), null if Y =∅ (symbol ] is used here for the null kernel).

Probability kernels are subject to peculiar operations. The following are two basic exemplars.

Definition 3. Let p(Y ∪ Z |X) be a kernel in which Y and Z are non-empty disjoint variables.
(i) The result of projecting p(Y ∪ Z |X) relative to Z , denoted by J [p(Y ∪ Z |X), Z ], is the kernel that is
formed on the variable pair (Y |X) by setting for all (y, x) ∈ Y ◦× X◦

p(y|x)=
∫

p(y, z|x)µZ (dz).

(ii) The result of conditioning p(Y ∪ Z |X) relative to Z , denoted by C[p(Y ∪ Z |X), Z ], is the kernel that
is formed on the variable pair (Y |Z ∪ X) by setting for all (y, z, x) ∈ Y ◦× Z◦× X◦

p(y|z, x)=


p(y, z|x)

p(z|x)
if p(z|x) 6= 0,

q(y) if p(z|x)= 0,

where p(Z |X)= J [p(Y ∪ Z |X), Y ] and q(Y ) is a freely chosen density on the space Y ◦.

The projection operation (symbol J ) is tantamount to marginalization, as applicable to multivariate
density functions. The conditioning operation (symbol C) is determined here as a division (the ratio
p(y, z|x)/p(z|x) in the formula), thus imitating the concept of conditional probability in its elementary
version. For completeness, the definition may include an arbitrary density q(Y ), which however does
not affect the univocal recovery of p(Y ∪ Z |X) from p(Y |Z ∪ X) and p(Z |X) through the promotion
operation in Definition 5 hereafter2. In the stated form, projection and conditioning are only defined for

1Based on any kernel p(Y |X)= {p(Y |x) : x ∈ X◦}, which according to Definition 2 is a family of point functions, a family
PY |X = {PY |x : x ∈ X◦} of set functions on the sigma-field BY can be constructed by setting PY |x (B) =

∫
B p(y|x)µY (dy)

for all B ∈ BY and x ∈ X◦. In fact, in the measure-theoretic approach to probability, it is precisely a family like PY |X that
is called a probability kernel and is taken as a primitive structure, whereas p(Y |X) is deduced as a corresponding family of
Radon-Nikodym derivatives (Pollard, 2002, pp. 84, 119). Besides the term “probability kernel”, other expressions are also used
in different contexts to indicate probabilistic structures of the stated kind, such as “transition probability measure” (Parthasarathy,
2005, p. 174), “probability potential” (Koski and Noble, 2009, p. 58), “characteristic” (Griffeath, 1976, p. 426), “conditional
probability distribution” (Koller and Friedman, 2009, p. 47), or simply “conditional” (Gelfand and Smith, 1990, p. 400).

2A discussion of the formal difficulties implicit in the intuitive notion of conditional probability and alternative ways of
addressing them is given by Chang and Pollard (1997).
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any p(Y ∪ Z |X) such that Y and Z are non-empty. Both concepts, however, may consistently be extended
beyond this boundary by assuming these equations:

J [p(Y |X),∅] = p(Y |X)= C[p(Y |X),∅], (3)

J [p(Z |X), Z ] = ]= C[p(Z |X), Z ].

For example, J [p(Z |X), Z ] = J [p(∅ ∪ Z |X), Z ] = p(∅|X), which is the null kernel ]. Lastly, the
following equations, in which X , Y , W , and Z are disjoint variables, are easily deduced from Definition 3:

J [J [p(Y ∪ Z ∪W |X), Z ],W ] = p(Y |X)= J [J [p(Y ∪ Z ∪W |X),W ], Z ],

C[C[p(Y ∪ Z ∪W |X), Z ],W ] = p(Y |Z ∪W ∪ X)= C[C[p(Y ∪ Z ∪W |X),W ], Z ],

J [C[p(Y ∪ Z ∪W |X), Z ],W ] = p(Y |Z ∪ X)= C[J [p(Y ∪ Z ∪W |X),W ], Z ].

They express commutativity properties of projection and conditioning.
These operations determine a key relation among kernels.

Definition 4. A kernel p(V |U ) is dominated by a kernel p(Y |X) (notation p(V |U ) � p(Y |X)) if the
former can be obtained from the latter by projection, conditioning, or a combination of projection and
conditioning.

Note that, if p(V |U ) � p(Y |X), meaning that p(V |U ) = J [C[p(Y |X),W ], Z ] for some W and Z
disjoint sub-variables of Y , then V = Y \ (W ∪ Z) and U = W ∪ X according to Definition 3, so that
V ∪U ⊆ Y ∪ X and U ⊇ X , and therefore (V |U )� (Y |X) on applying Definition 1. In other words:

if p(V |U )� p(Y |X) then (V |U )� (Y |X). (4)

Hence, dominance between variable pairs (the symbol � in the consequent of this implication) is a
necessary condition for dominance between kernels (the symbol � in the antecedent).

From a general perspective, given a full density p(T )= p(T |∅), we may consider the set of all kernels
that are dominated by p(T ), a set denoted here by P(T ). On the one hand, implication (4) shows that
there is a natural one-to-one correspondence between this set P(T ) and the set O(T ) of all variable pairs
in T , and there is also correspondence between the null kernel ] and the null variable pair ⊥. On the
other hand, it can be seen that if comparison is limited to kernels belonging to a definite set P(T ), then
the implication (4) is reinforced as a bi-implication, that is:

for all p(V |U ) and p(Y |X) in P(T )

p(V |U )� p(Y |X) if and only if (V |U )� (Y |X),

so that the abovementioned correspondence is in fact an isomorphism between the structure (P̃(T ),�)
(with P̃(T )=P(T )∪{]}) and the structure (Õ(T ),�) (with Õ(T )=O(T )∪{⊥}). Proposition 1 ensures
that the latter structure is a lattice. This means that the former is also a lattice, referred to here as the
lattice of kernels generated by the assumed full density p(T ). This full density is the supremum in the
lattice P̃(T ), while the infimum is the null kernel ], and the atoms are the elementary kernels. The
join and meet operations are expressed by formulas that are similar to (1) and (2) but involve arbitrary
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kernels p(V |U ) and p(Y |X), rather than variable pairs. In the Hasse diagram of a lattice P̃(T ) (see
Figure 2) each backward line represents the move from a p(Y |X) to p(Y \ {Ti }|X)= J [p(Y |X), {Ti }] by
projection relative to an elementary variable Ti ∈ Y , whereas each downward line represents the move
from a p(Y |X) to p(Y \ {Ti }|{Ti } ∪ X)= C[p(Y |X), {Ti }] by elementary conditioning.

For later use, we note the following special property of any lattice of kernels.

Lemma 1. Let p(T ) be a full density and suppose that q(Y |Z ∪ X) and q(Y |X) are kernels such that
q(Y |z, x) = q(Y |x) for all (z, x) ∈ Z◦ × X◦. In these conditions, if q(Y |Z ∪ X) belongs to the lattice
P̃(T ) generated by p(T ), then q(Y |X) also belongs to the same lattice.

Proof. Consider the kernels p(Y |Z ∪ X) = J [C[p(T ), Z ∪ X ], T \ (Y ∪ Z ∪ X)] and p(Y |X) =
J [C[p(T ), X ], T \ (Y ∪ X)], which surely belong to P̃(T ). If q(Y |Z ∪ X) ∈ P̃(T ), then q(Y |Z ∪ X)=
p(Y |Z ∪ X), due to the one-to-one correspondence between P̃(T ) and Õ(T ). The hypothesized relation
between q(Y |Z ∪ X) and q(Y |X) implies that for each x ∈ X◦, the density p(Y |z, x) is invariant relative
to z varying in Z◦. Thus, under the density p(T ) the variables Y and Z are conditionally independent
given X , which means p(Y |z, x)= p(Y |x) for all (z, x)∈ Z◦×X◦ (Lauritzen, 1996, p. 29). We then have
q(Y |x) = q(Y |z, x) = p(Y |z, x) = p(Y |x) for all (z, x) ∈ Z◦ × X◦, so that q(Y |X) = p(Y |X), which
combined with p(Y |X) ∈ P̃(T ) implies q(Y |X) ∈ P̃(T ). �

In our analyses, in addition to the projection and conditioning operations (which have a kernel and a
variable as operands), two further operations are considered that have two kernels as operands. These are
constrained operations, since to be applied they require that the operands (and, in particular, the variable
pairs in these) comply with definite conditions.

Definition 5. (i) Given two kernels p(Y |V ∪U ) and p(V |U ), the result of promoting the former by the
latter, denoted by M[p(Y |V ∪U ), p(V |U )], is the kernel that is formed on the variable pair (Y ∪ V |U )
by setting for all (y, v, u) ∈ Y ◦× V ◦×U ◦

p(y, v|u)= p(y|v, u) · p(v|u).

(ii) Given two kernels p(Y |V ∪U ) and p(V |Y ∪U ) that are dominated by some full density p(T ) under
which the equation S(p(Y ∪V ∪U ))= S(p(Y ))×S(p(V ))×S(p(U )) concerning the supports is satisfied,
the result of lightening the former kernel by the latter, denoted by L[p(Y |V ∪U ), p(V |Y ∪U )], is the
kernel that is formed on the variable pair (Y |U ) by setting for all (y, u) ∈ Y ◦×U ◦

p(y|u)=
1∫

p(v|y, u)
p(y|v, u)

µV (dv)
.

With regard to the variable pairs, the applicability conditions of these two operations are implicit
in the notation used in their definition. In particular, promotion is applicable only if the variable
pair in the second operand p(V |U ) (the promoter) is a bipartition of the conditioning variable in the
first operand p(Y |V ∪U ); in relation to this, the operation has the effect of transferring the variable
V from the right to the left of the bar, yielding p(Y ∪ V |U ) as the result. Lightening is applicable
only if the variable pairs in the operands p(Y |V ∪ U ) and p(V |Y ∪ U ) have the same union and
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the conditioned variables are disjoint; the operation has the effect of cancelling the variable V from
p(Y |V ∪ U ), thus yielding p(Y |U ) as the result. Furthermore, lightening is applicable only if the
factorability S(p(Y ∪ V ∪U )) = S(p(Y ))× S(p(V ))× S(p(U )) of the support of p(Y ∪ V ∪U ) is
satisfied, meaning that for each (y, v, u) ∈ Y ◦ × V ◦ ×U ◦ the value p(y, v, u) is positive if (and only
if) all three values p(y), p(v), and p(u) are positive, where p(Y ∪ V ∪U ), p(Y ), p(V ), and p(U ) are
densities deducible from some full density p(T ) through projection3. Under this condition, for each
(y, v, u) ∈ S(p(Y ∪ V ∪U )) the ratio p(v|y, u)/p(y|v, u) does exist as a positive real number and for
each (y, u) ∈ S(p(Y ∪U )) the following equations are true:

1∫ p(v|y, u)
p(y|v, u)

µV (dv)
=

1∫ p(y, v, u)/p(y, u)
p(y, v, u)/p(v, u)

µV (dv)
=

p(y, u)∫
p(v, u)µV (dv)

=
p(y, u)

p(u)
= p(y|u).

This shows that the result L[p(Y |V ∪U ), p(V |Y ∪U )] of lightening is precisely the kernel p(Y |U )
belonging to the same lattice to which the operands p(Y |V ∪U ) and p(V |Y ∪U ) belong4.

With regard to the promotion operation, it is readily seen that for any two kernels p(Y |V ∪U ) and
p(V |U ) its result p(Y ∪ V |U ) = M[p(Y |V ∪U ), p(V |U )] is itself a kernel on the indicated variable
pair. In particular, for all u ∈U ◦,∫

p(y, v|u)(µY ×µV )(d(y, v))=
∫

p(y|v, u) · p(v|u)(µY ×µV )(d(y, v))

=

∫ [∫
p(y|v, u)µY (dy)

]
· p(v|u)µV (dv)=

∫
1 · p(v|u)µV (dv)= 1

where the second step is justified by Fubini’s theorem. When reference is made to a definite lattice of
kernels, the promotion operation (as well as the lightening operation) may then be viewed as a binary
operation internal to the lattice and subject to a specific applicability condition. Indeed, when applicable,
promotion produces the same results as the join operation in the lattice, as may be inferred from Equation
(1). Furthermore, its definition may be consistently refined by assuming these equations:

M[], p(V |U )] = p(V |U ), M[p(Y |X), ]] = p(Y |X). (5)

These characterize the null kernel ] as the left and right identity term for promotion and can be justified
by replacing ] by p(∅|V ∪U ) in one case and by p(∅|X) in the other. Lastly, the following equation is
easily deduced from Definition 5(i):

M[M[p(Y |W ∪ V ∪U ), p(W |V ∪U )], p(V |U )] = p(Y ∪W ∪ V |U )= (6)

M[p(Y |W ∪ V ∪U ),M[p(W |V ∪U ), p(V |U )]].

This characterizes promotion as an associative operation.

3This factorability requirement is also known as the “positivity condition” regarding multivariate densities (Besag, 1974,
p. 195).

4The operation we call “lightening” was considered, for example, by Gourieroux and Monfort (1979) and Robert and Casella
(2004, p. 344).
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On the whole, we have four basic operations on probability kernels, with the symbols J (proJection), C
(Conditioning), M (proMotion), and L (Lightening). In the next lemma, several equations are highlighted
that arise from the combined use of these operations and will be applied in the following.

Lemma 2. In each of the following equations, the kernels involved are assumed to belong to one lattice
P̃(T ).

(i) J [M[p(Y |V ∪U ), p(V |U )], V ] = p(Y |U ) (relative to the first operand, part V of the conditioning
variable is cancelled).

(ii) C[M[p(Y |V ∪U ), p(V |U )], V ] = p(Y |V ∪U ) (recovery of the first operand of a promotion).

(iii) J [M[p(Y |V ∪U ), p(V |U )], Y ] = p(V |U ) (recovery of the second operand of a promotion).

(iv) J [M[p(Y ∪X |V ∪U ), p(V |U )], X ]=M[J [p(Y ∪X |V ∪U ), X ], p(V |U )] (a kind of commutativity
between projection and promotion).

(v) M[p(Y |V ∪U ), L[p(V |Y ∪U ), p(Y |V ∪U )]] = p(Y ∪ V |U ) (simulation of the join operation).

(vi) M[C[p(Y ∪ Z |X), Z ], J [p(Y ∪ Z |X), Y )]] = p(Y ∪ Z |X) (recovery of a kernel through promotion).

Proof. Each of these equations can be proved by noting that the kernel resulting from the composite
operation on the left-hand side acts on the same variable pair as the kernel specified on the right-hand
side, and then considering the one-to-one correspondence between variable pairs and kernels in a lattice
(as implied by Equation (4)). Consider, for example, statement (v). From Definition 5(ii), the result
L[p(V |Y ∪U ), p(Y |V ∪U )] is a kernel on the variable pair (V |U ), so that from Definition 5(i), the
result M[p(Y |V ∪U ), L[p(V |Y ∪U ), p(Y |V ∪U )]] is a kernel on the variable pair (Y ∪ V |U ). This
is the same variable pair as that for the kernel p(Y ∪ V |U ), so that from the mentioned one-to-one
correspondence, that result must be equal to this kernel. In turn, according to Equation (1), p(Y ∪ V |U )
is equal to p(Y |V ∪U )∨ p(V |Y ∪U ), which is the join of the two input kernels on the left-hand side of
the equation. �

As a point that is relevant to the following, let us consider this task: for any full density p(T ), find
a (preferably small) set of kernels that are dominated by p(T ) and that form a sufficient basis for the
univocal recovery of p(T ), using available operations on kernels. As they are all dominated by p(T ), the
kernels in any such sufficient basis are compatible with one another. We shall see that the stated task is
related to the problem of compatibility among kernels, and especially to the possible uniqueness of a
consensus density for compatible kernels. The next lemma presents two exemplary answers to the task
that describe sufficient bases of different forms, one of which follows a “cumulative scheme” and the
other an “alternating scheme” as regards the variable pairs in the kernels.

Lemma 3. Let p(T ) be a full density and {Y1, . . . , Ym} be a partition of the full variable T .

(i) Suppose X1=∅ and X i = Y1∪· · ·∪Yi−1 for i = 2, . . . ,m. Then the set {p(Y1|X1), . . . , p(Ym |Xm)}

of kernels dominated by p(T ) is a sufficient basis for the recovery of p(T ).



COMPATIBILITY OF DISTRIBUTIONS IN PROBABILISTIC MODELS 223

(ii) Suppose that X i = T \ Yi = Y1 ∪ · · · ∪ Yi−1 ∪ Yi+1 ∪ · · · ∪ Ym for i = 1, . . . ,m and that S(p(T ))=
S(p(Y1)) × · · · × S(p(Ym)) (factorability of the support for the density p(T )). Then the set
{p(Y1|X1), . . . , p(Ym |Xm)} of kernels dominated by p(T ) is a sufficient basis for the recovery
of p(T ).

Proof. (i) Consider this sequence of densities, all deducible (by projection) from the full density in
question:

p(Y1), . . . , p(Y1 ∪ · · · ∪ Yi−1), p(Y1 ∪ · · · ∪ Yi−1 ∪ Yi ), . . . , p(Y1 ∪ · · · ∪ Ym).

The density p(Y1) is equal to p(Y1|∅) = p(Y1|X1), which is available in the assumed set of kernels.
Consider any 1< i ≤ m and suppose (as an inductive hypothesis) that the density p(Y1 ∪ · · · ∪ Yi−1) is
uniquely determined by the available kernels. Then, p(Y1 ∪ · · · ∪ Yi−1 ∪ Yi ) is also uniquely determined,
since

p(Y1 ∪ · · · ∪ Yi−1 ∪ Yi )= M[p(Yi |Y1 ∪ · · · ∪ Yi−1), p(Y1 ∪ · · · ∪ Yi−1)]

by Definition 5(i) and p(Yi |Y1 ∪ · · · ∪ Yi−1) = p(Yi |X i ) is one of the available kernels. In particular,
we can then conclude for i = m that the full density p(T )= p(Y1 ∪ · · · ∪ Ym) is univocally recoverable
(through iterated promotion) from the available kernels.

(ii) For each i = 1, . . . ,m, let us denote by Zi the variable Y1 ∪ · · · ∪ Yi , and then consider this sequence
of saturated kernels, which are all deducible from p(T ) by conditioning:

p(Z1|T \ Z1), . . . , p(Zi−1|T \ Zi−1), p(Zi |T \ Zi ), . . . , p(Zm |T \ Zm).

The first member equals p(Y1|T \Y1), which is one of the available kernels. We then consider any 1< i≤m,
and assume (as an inductive hypothesis) that the kernel p(Zi−1|T \ Zi−1) is uniquely determined by the
available kernels. According to Lemma 2(v), and since Zi = Zi−1 ∪ Yi , the following equation is true:

p(Zi |T \ Zi )= M[p(Zi−1|T \ Zi−1), L[p(Yi |T \ Yi ), p(Zi−1|T \ Zi−1)]].

Hence, from the inductive hypothesis concerning p(Zi−1|T \ Zi−1) and the fact that p(Yi |T \ Yi ) is one
of the available kernels, we can deduce that p(Zi |T \ Zi ) is uniquely determined by the available kernels.
In particular, we then have for i = m that the full density p(T )= p(T |∅)= p(Zm |T \ Zm) is univocally
recoverable (through an iterated lightening-and-promotion operation) from the available kernels. Note
that this property can also be proved using the odds-product method that is discussed in Section 5. �

The partition hypothesized in Lemma 3 could be the subdivision {{T1}, . . . , {Tn}} of the full variable
T = {T1, . . . , Tn} into singletons, meaning that all kernels mentioned in the lemma would be elementary
kernels, that is, atoms in a lattice P̃(T ). Part (ii) of the lemma would then state that a full density p(T ) is
unambiguously recoverable from the corresponding set {p(T1|T \{T1}), . . . , p(Tn|T \{Tn})} of elementary
saturated kernels, which is a well-known result in the theory of conditionally specified probabilistic models
(Besag, 1974, pp. 195–196). In addition to corollaries, Lemma 3 also admits significant generalizations.
It is proven, for example, that if {Y1, . . . , Ym} is a partition of T and X i includes (but does not necessarily
equal) Y1 ∪ · · · ∪ Yi−1 for all i = 1, . . . ,m, then {p(Y1|X1), . . . , p(Ym |Xm)} is a sufficient basis for the
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recovery of p(T ) (Gelman and Speed, 1993). Furthermore, if given variables Y1, . . . , Ym cover the whole
of T (but may overlap with one another), then the set {p(Y1|T \ Y1), . . . , p(Ym |T \ Ym)} of saturated
kernels is a sufficient basis for the recovery of p(T ) (see the “if” part of Theorem 3 in Section 5). Lastly,
the conditions for the recovery of a full density p(T ) are easily adaptable to the recovery of any kernel
p(Y |X). For example, if {Z1, . . . , Zk} is any partition of the variable Y , then p(Y |X) is unambiguously
recoverable both from the set {p(Z1|X), p(Z2|Z1 ∪ X), . . . , p(Zk |Zk−1 ∪ · · · ∪ Z1 ∪ X)} and from the
set {p(Z1|(Y \ Z1)∪ X), . . . , p(Zk |(Y \ Zk)∪ X)} of kernels dominated by it in a lattice.

3. Compatibility of probability kernels and sure compatibility of variable pairs

The algebraic frame outlined in the preceding section allows us to assign a suitable place to the main
concept of our study.

Definition 6. Given probability kernels p(Y1|X1), . . . , p(Ym |Xm) on variable pairs within a full variable
T are compatible with one another if there exists a full density p(T ) that dominates each of them. Such
p(T ) is said to be a consensus density for the given kernels.

In other words, compatibility within a set of kernels means that there exists a lattice of kernels that
includes that set. This concept is a topic in the literature concerning conditionally specified probabilistic
models (Arnold, Castillo and Sarabia, 1999, p. 5; Kaiser, 2002, p. 1213). Terms such as “candidate,
putative, proposed conditionals” are used in relation to kernels whose mutual compatibility is under
judgement (Arnold, Castillo and Sarabia, 2004, pp. 147, 157).

As a first comment on the above definition, we remark that there are alternative ways of expressing
the compatibility relation. In particular, we can refer to the join (Z |W ) = (Y1|X1)∨ · · · ∨ (Ym |Xm) of
the variable pairs in the candidate kernels, and state that these are compatible if there exists a kernel
p(Z |W ) that dominates each of them. As a second comment, we note that a uniqueness problem and
a construction problem are naturally associated with the compatibility problem (concerning existence).
That is, if there are reasons for stating that given kernels are compatible, then one may ask whether there
is only one consensus density for them, or a (possibly infinite) number of such densities, and look for
practical procedures for discovering or constructing such a density. The concept of a “sufficient basis”,
which was discussed at the end of the preceding section, is related to these problems. As a third comment,
we remark that compatibility is not a transitive relation in general. For example, if X and Y are disjoint
variables, then any density p(X) is compatible both with any density p(Y ) and with any kernel p(Y |X),
although these two may fail to be compatible unless p(Y )= J [M[p(Y |X), p(X)], X ] (see Lemma 2(i)).
This lack of transitivity implies that compatibility within a set of three or more kernels cannot be approved
solely on the basis of pairwise compatibility, and is a sign of the difficulty of the problem. Indeed,
the compatibility problem may become quite tricky, as revealed by paradoxical situations noted in the
literature. It is surprising, for example, that if p(Y |X) and p(X |Y ) are deduced (by conditioning) from
a certain density p(X ∪ Y ), a collection Q of kernels may nevertheless exist such that compatibility
is true within Q∪ {p(Y |X), p(X |Y )} but false within Q∪ {p(X ∪ Y )}, even though {p(Y |X), p(X |Y )}
and p(X ∪Y ) are substantially equivalent, since the latter (under suitable conditions) may be recovered
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from the former through lightening-and-promotion, as shown by Lemma 2(v) (Kuo and Wang, 2011,
pp. 2460–2461).

The next definition focuses on variable pairs as the set-theoretic carriers of probability kernels.

Definition 7. A set {(Y1|X1), . . . , (Ym |Xm)} of variable pairs has sure compatibility if every set

{p(Y1|X1), . . . , p(Ym |Xm)}

of kernels definable on those pairs satisfies the compatibility condition.

Note that given any set {(Y1|X1), . . . , (Ym |Xm)} of variable pairs in a full variable T , there is certainly
some set {p(Y1|X1), . . . , p(Ym |Xm)} of kernels on those pairs that are mutually compatible: we can
simply consider any density p(T ) on the full variable and then derive the kernels from it by suitable
projections and/or conditionings. However, Definition 7 demands much more than this: it demands that
every possible set {p(Y1|X1), . . . , p(Ym |Xm)} of kernels on the given variable pairs satisfies compatibility,
meaning that the root of compatibility is to be found not in the numerical characteristics of the particular
kernels considered but in the set-theoretic characteristics of the variable pairs themselves. For example, if
X and Y are disjoint variables, then the set {(X |∅), (Y |∅)} has sure compatibility, since for any densities
p(X) = p(X |∅) and q(Y ) = q(Y |∅) we can consider (for example) the product density r(X ∪ Y ) =
p(X) ·q(Y ), which dominates (by projection) both p(X |∅) and q(Y |∅), so that these two are compatible
with each other. Conversely, if X and Y are not disjoint, then any given densities p(X)= p(X |∅) and
q(Y ) = q(Y |∅) are compatible only if p(X ∩ Y ) = q(X ∩ Y ) (with p(X ∩ Y ) = J [p(X), X \ Y ] and
q(X ∩ Y )= J [q(Y ), Y \ X ]), so that the set {(X |∅), (Y |∅)} has not sure compatibility.

The next lemma highlights two further counterexamples to sure compatibility.

Lemma 4. (i) For all variable pairs (V |U ) and (Y |X) such that V ∩ Y 6= ∅, the set {(V |U ), (Y |X)}
has not sure compatibility.

(ii) Any circular set {(Zm |Zm−1), (Zm−1|Zm−2), . . . , (Z2|Z1), (Z1|Zm)} of non-null variable pairs has
not sure compatibility.

Proof. (i) Since V ∩Y is a non-empty variable, there are densities p(V ∩Y ) and q(V ∩Y ) that are different
from each other. Choose any densities p(V ) and q(Y ) such that p(V ∩Y )� p(V ) and q(V ∩Y )� q(Y ),
and then construct the kernels p(V |U ) and q(Y |X) by setting p(V |u) = p(V ) for all u ∈ U ◦ and
q(Y |x)= q(Y ) for all x ∈ X◦. We claim that these kernels are not compatible with each other (which then
implies that the set {(V |U ), (Y |X)} has not sure compatibility). Indeed, suppose (ad absurdum) that they
are compatible, so that there is a full density r(T ) such that p(V |U )� r(T ) and q(Y |X)� r(T ). Then,
considering the way in which p(V |U ) and q(Y |X) are constructed, we should also have p(V )� r(T )
and q(Y )� r(T ) by Lemma 1, and then p(V ∩Y )� r(T ) and q(V ∩Y )� r(T ) by transitivity. However,
this is impossible, because p(V ∩ Y ) and q(V ∩ Y ) act on the same variable and are different.
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(ii) Given a circular set {(Zm |Zm−1), . . . , (Z2|Z1), (Z1|Zm)} of variable pairs, let us construct a corre-
sponding set {pm−1(Zm |Zm−1), . . . , p1(Z2|Z1), pm(Z1|Zm)} of kernels with these characteristics:

for each i = 1, . . . ,m− 1, the kernel pi (Zi+1|Zi ) is of deterministic type,

which means that there is a function fi from Z◦i to Z◦i+1 such that

pi (v|u)= 1 or = 0, depending on whether v equals or does not equal fi (u),

for all u ∈ Z◦i and v ∈ Z◦i+1;

the kernel pm(Z1|Zm) is such that

there are t ∈ Z◦1 and w 6= w′ ∈ Z◦m with pm(t |w) > 0 and pm(t |w′) > 0.

Our claim is that such kernels are not mutually compatible (which then implies that the given circular set
of variable pairs has not sure compatibility). Suppose the contrary, that is, the existence of a consensus
density r(T ), so that

r(Zi+1|Zi )= pi (Zi+1|Zi ) for all i = 1, . . . ,m− 1 and r(Z1|Zm)= pm(Z1|Zm).

It can be seen that, due to the deterministic character of the kernels r(Zm |Zm−1), . . . , r(Z2|Z1), under
the density r(T ) for each point u ∈ Z◦1 there must be a single point g(u) ∈ Z◦m with positive conditional
probability given the hypothesis Z1 = u. In other words, the kernel r(Zm |Z1) that is deducible from r(T )
must itself be deterministic. In regard to the above-mentioned points t ∈ Z◦1 and w 6=w′ ∈ Z◦m , this implies,
in particular, that we cannot have both r(t, w) > 0 and r(t, w′) > 0, whereas from the construction of
pm(Z1|Zm) and the equality r(Z1|Zm)= pm(Z1|Zm) we should have both r(t, w) > 0 and r(t, w′) > 0,
which is a contradiction. Therefore, the constructed kernels cannot have a consensus density; that is, they
are not mutually compatible. �

In the next paragraph, we will present a characterization of the concept of “sure compatibility”. In
expressing the characterization, use will be made of a simple binary relation between variable pairs that
is different from the dominance relation specified in Definition 1.

Definition 8. A variable pair (V |U ) is incident on a variable pair (Y |X) (notation (V |U )→ (Y |X)) if
V ∩ X 6=∅.

This relation is areflexive, simply because in any variable pair the two variables are assumed to be
disjoint. Besides, it is free as regards other possible formal properties of binary relations, such as symmetry,
asymmetry, transitivity, acyclicity, and so on. For example, if X and Y are disjoint non-empty variables,
then the set {(Y |X), (X |Y )} of two symmetric variable pairs forms a cycle of length two according to
incidence. If T = {T1, T2, T3, T4, T5}, then the pairs {(T1, T3|T4, T5), (T4|T2), (T2, T3|T1)} form a cycle
of length three, whereas within the set {(T5|T3, T4), (T4|T1, T2), (T3|T1), (T1|∅)} the incidence relation is
acyclic.

The following is a salient result of our discussion of compatibility in this article.
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Theorem 1. A set {(Y1|X1), . . . , (Ym |Xm)} of variable pairs in a full variable T has sure compatibility
of kernels if and only if (i) the conditioned variables Y1, . . . , Ym in the pairs are disjoint from one another
and (ii) the incidence→ between the pairs is an acyclic relation.

Proof. “Only if” part. The necessity of condition (i) follows directly from Lemma 4(i), since if a set
of variable pairs has sure compatibility, then each of its subsets must also have this property. To prove
the necessity of condition (ii), let us first suppose that the given set of variable pairs forms a→-cycle,
specifically

(Ym |Xm)→ (Y1|X1)→ (Y2|X2)→ · · · → (Ym−2|Xm−2)→ (Ym−1|Xm−1)→ (Ym |Xm),

which means that the following variables are all non-empty

Z1 = X1 ∩ Ym, Z2 = X2 ∩ Y1, . . . , Zm−1 = Xm−1 ∩ Ym−2, Zm = Xm ∩ Ym−1.

Thus, {(Zm |Zm−1), . . . , (Z2|Z1), (Z1|Zm)} is a circular set of non-null variable pairs and Lemma 4(ii)
ensures the existence of a set of kernels {pm−1(Zm |Zm−1), . . . , p1(Z2|Z1), pm(Z1|Zm)} that are not
mutually compatible. For each i = 1, . . . ,m (with i − 1= m for i = 1, and i + 1= 1 for i = m), we can
expand the kernel

pi (Zi+1|Zi )= pi (X i+1 ∩ Yi |X i ∩ Yi−1)

into a kernel
pi (Yi |X i )= pi (Zi+1 ∪ (Yi \ X i+1)|Zi ∪ (X i \ Yi−1))

by first constructing

pi (Zi+1 ∪ (Yi \ X i+1)|Zi )= M[pi (Yi \ X i+1|Zi+1 ∪ Zi ), pi (Zi+1|Zi )]

where pi (Yi \ X i+1|Zi+1 ∪ Zi ) is an arbitrarily chosen kernel, and then setting

pi (Zi+1 ∪ (Yi \ X i+1)|Zi , u)= pi (Zi+1 ∪ (Yi \ X i+1)|Zi ) for every u ∈ (X i \ Yi−1)
◦.

It can be seen that if we have a full density p(T ) such that pi (Yi |X i )� p(T ) for all i = 1, . . . ,m, then,
from Lemmas 1 and 2(iii), we also have pi (Zi+1|Zi )� p(T ) for all i = 1, . . . ,m, which contradicts the
assumption that the kernels {pi (Zi+1|Zi )} are not compatible. Hence, the kernels {pi (Yi |X i )} constructed
in this way are not compatible, which proves that the set of pairs {(Yi |X i )} has not sure compatibility.
Lastly, if the set of pairs {(Y1|X1), . . . , (Ym |Xm)} were not a→-cycle but included a subset that formed
a→-cycle, then the argument developed above could be applied to that subset, thus showing that not
only the subset but also the entire set including it has not sure compatibility.

“If” part. Suppose that {(Y1|X1), . . . , (Ym |Xm)} is a set of variable pairs that complies with conditions (i)
and (ii) in the theorem. Property (ii) implies that there is a permutation ((Ys(1)|Xs(1)), . . . , (Ys(m)|Xs(m)))

of the given set such that not((Ys(i)|Xs(i))→ (Ys( j)|Xs( j))) for all 1≤ j < i ≤m. Together with property (i),
this implies

Ys(i) ∩ (Ys(i−1) ∪ Xs(i−1) ∪ · · · ∪ Ys(1) ∪ Xs(1))=∅ for all i = 2, . . . ,m. (7)
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The proof of sure compatibility is by induction on the number m ≥ 2 of variable pairs.

First step: For m = 2, let any two variable pairs (Ys(1)|Xs(1))= (Y |X) and (Ys(2)|Xs(2))= (V |U ) be given
such that V∩(Y∪X)=∅, that is FG=∅ in the terms of Figure 1, so that (Y |X)∨(V |U )= (ABC DE |H)
according to Equation (1) (here and in the rest of this proof the symbol ∪ is omitted for simplicity, so that
FG and ABC DE stand for F ∪G and A ∪ B ∪C ∪ D ∪ E , respectively). Let p(Y |X) = p(AE |C H)
and p(V |U )= p(B|DE H) be arbitrary kernels on the variable pairs. First, we extend p(B|DE H) into
p(B|AC DE H) by setting

p(B|a, c, DE H)= p(B|DE H), for all (a, c) ∈ A◦×C◦. (8)

Then by multiple promotion we can construct this kernel

p(ABC DE |H)= p(B|AC DE H) M p(D|AC E H) M p(AE |C H) M p(C |H)

where p(D|AC E H) and p(C |H) are freely chosen kernels (this writing takes account of the associativity
of the promotion operation, as noted in Equation (6)). The kernel p(ABC DE |H) thus constructed
dominates p(AE |C H) due to parts (ii) and (iii) of Lemma 2, and dominates p(B|AC DE H) due to part
(ii) of that lemma. Hence, it also dominates p(B|DE H) on account of Equation (8) and of Lemma
1. The kernels p(Y |X) = p(AE |C H) and p(V |U ) = p(B|DE H) (which are arbitrary) are therefore
compatible with each other, as there is a kernel p(ABC DE |H) on the join variable pair (Y |X)∨(V |U )=
(ABC DE |H) that dominates both of them. Note that p(ABC DE |H) does not involve any variables
besides those involved in p(AE |C H) or in p(B|DE H).

Inductive step: Let us now consider any list

(ps(1)(Ys(1)|Xs(1)), . . . , ps(m−1)(Ys(m−1)|Xs(m−1)), ps(m)(Ys(m)|Xs(m)))

of m > 2 kernels whose variable pairs comply with condition (7), and suppose (as an inductive hypothesis)
that the first m− 1 members in the list are compatible with one another, so that there is a kernel p(Z |W )

that dominates all of them. Based on the remark that concludes the preceding step in the current proof,
we may presume that Z ∪W ⊆ Ys(m−1) ∪ Xs(m−1) ∪ · · · ∪ Ys(1) ∪ Xs(1), so that Ys(m) ∩ (Z ∪W )=∅ due
to hypothesis (7). Thus, the conditions are satisfied that make it possible to apply the argument in the
preceding step to the kernels p(Z |W ) and ps(m)(Ys(m)|Xs(m)). This argument ensures the existence of a
kernel that dominates both p(Z |W ) (and hence

ps(1)(Ys(1)|Xs(1)), . . . , ps(m−1)(Ys(m−1)|Xs(m−1))

by transitivity) and ps(m)(Ys(m)|Xs(m)). The m kernels are therefore all compatible with one another. As
these are arbitrary, this proves that the given set of variable pairs has sure compatibility. �

The theorem thus proved characterizes the sure compatibility of a set of variable pairs by referring
only to the set-theoretic properties of those pairs, rather than to the numerical properties of the probability
kernels definable on them. The “if” part of the theorem ensures that if a given set of pairs satisfies
the set-theoretic conditions (i) and (ii), then no further test is required to accept the compatibility
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hypothesis of any set of kernels acting on those pairs. The “only if” part signifies, complementarily,
that if conditions (i) and (ii) are not both satisfied, then the acceptance (or refusal) of the compatibility
hypothesis requires further tests of the numerical characteristics of the kernels under judgement. Let us
consider, for example, the two schemes presented in Lemma 3. We can see that the cumulative scheme
(e.g., {(Y1|∅), (Y2|Y1), (Y3|Y1 ∪ Y2)} for m = 3) complies with conditions (i) and (ii), so that arbitrary
kernels defined on the variable pairs in the scheme are mutually compatible. From Lemma 3(i), there
is a single consensus density for the given kernels, which can be constructed from these by multiple
promotion. On the contrary, the alternating scheme (e.g., {(Y1|Y2 ∪ Y3), (Y2|Y1 ∪ Y3), (Y3|Y1 ∪ Y2)} for
m = 3) violates condition (ii) (indeed, the incidence relation within that scheme forms a complete directed
graph, thus containing cycles) so that compatibility is not generally ensured for kernels definable on the
variable pairs in the scheme. From Lemma 3(ii), if kernels defined on the variable pairs in an alternating
scheme admit a consensus density whose support is factorable, then this density is unique and can be
constructed from the given kernels through lightening-and-promotion operations.

4. Compatibility beyond structural assurance: the two kernels case

In light of the preceding discussion, we can expect that the situations explored in research on the
compatibility of distributions are those in which the two conditions in Theorem 1 are not both satisfied,
so that compatibility is not structurally guaranteed. The simplest of these situations involves a set
{p(Y |X), q(X |Y )} of two kernels on symmetric variable pairs. The pairs (Y |X) and (X |Y ) form a cycle
(of length two) according to the incidence relation (Definition 8), and thus they falsify condition (ii) of
Theorem 1. In the first half of this section, we review some results from the literature that characterize
compatibility within a pair of kernels on symmetric variable pairs. We review them from the standpoint
defined in the preceding section and, for simplicity, limit ourselves to results applicable to kernels p(Y |X)
and q(X |Y ) that satisfy the following positivity condition (see footnote 3):

p(y|x) > 0 and q(x |y) > 0 for all (x, y) ∈ X◦× Y ◦. (9)

In the literature, however, there are also generalizations of these results that apply to kernels satisfying
the following, less restrictive condition:

p(y|x) > 0 if and only if q(x |y) > 0 for all (x, y) ∈ X◦× Y ◦. (10)

Note that this condition is necessary for compatibility, because if kernels p(Y |X) and q(X |Y ) are both
dominated by a density r(X∪Y ) such that S(r(X))= X◦ and S(r(Y ))= Y ◦, then, according to Definition
3(ii), p(y|x) = r(x, y)/r(x) and q(x |y) = r(x, y)/r(y) for all (x, y) ∈ X◦ × Y ◦, so that p(y|x) and
q(x |y) are positive precisely when r(x, y) is positive. In the second half of the current section, we will
present a result of our own analysis, which characterizes compatibility between kernels on arbitrary
variable pairs (Y |X) and (V |U ), thus going beyond the special case of symmetric variable pairs.

One characterization is expressed by the following statement (Arnold and Press, 1989).

Proposition 2. Two kernels p(Y |X) and q(X |Y ) on symmetric variable pairs are compatible if and only
if there are densities p(X) and q(Y ) such that p(y|x) · p(x)= q(x |y) · q(y) for all (x, y) ∈ X◦× Y ◦.
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In the notation used in Definition 5(i), the equation in this proposition can be rewritten as

M[p(Y |X), p(X)] = M[q(X |Y ), q(Y )]. (11)

The truth of the proposition is clarified by noting that the existence of densities p(X) and q(Y ) that
satisfy equation (11) is tantamount to the existence of a common upper bound p(X ∪ Y )= q(X ∪ Y ) for
p(Y |X) and q(X |Y ) within a lattice of kernels, which is precisely the meaning of compatibility between
the given kernels. The stated characterization is of existential type, as it links the compatibility between
p(Y |X) and q(X |Y ) to the existence of a solution to Equation (11) in the unknowns p(X) and q(Y ).

A second characterization involves two functions that are deducible from the kernels under consideration.
Specifically, once a reference point (x ′, y′) ∈ X◦×Y ◦ has been arbitrarily chosen, two functions f (X, Y )
and g(X, Y ) can be separately derived from the kernels p(Y |X) and q(X |Y ) by setting, for each (x, y) ∈
X◦× Y ◦,

f (x, y)=
p(y|x) · p(y′|x ′)
p(y′|x) · p(y|x ′)

, g(x, y)=
q(x |y) · q(x ′|y′)
q(x ′|y) · q(x |y′)

.

In other words, f (X, Y ) is obtained as an odd-ratio function based on p(Y |X), and similarly g(X, Y )
from q(X |Y ) (all ratios exist as real numbers, under the positivity condition (9)). In these terms, the
following relationship is true (Arnold and Press, 1989, p. 52; Chen, 2010, p. 672).

Proposition 3. Kernels p(Y |X) and q(X |Y ) are compatible if and only if f (X,Y)=g(X,Y).

The truth of the “only if” part is easily seen: if p(Y |X) and q(X |Y ) are dominated by the same
density r(X ∪ Y ), then p(y|x) = r(x, y)/r(x) and q(x |y) = r(x, y)/r(y), so that f (x, y) = r(x, y) ·
r(x ′, y′)/r(x ′, y) · r(x, y′)= g(x, y) for all (x, y) ∈ X◦×Y ◦. The given characterization is of deductive
type: it expresses compatibility in terms of the equality between two functions f (X, Y ) and g(X, Y ) that
are deducible from p(Y |X) and q(X |Y ) in the described way.

A third characterization involves another function that is deducible from the kernels in question.
Specifically, based on p(Y |X) and q(X |Y ), a ratio function h(X, Y ) can be constructed by setting, for all
(x, y) ∈ X◦× Y ◦,

h(x, y)=
p(y|x)
q(x |y)

which again is a legitimate computation under the positivity condition. The following statement holds
true (Arnold and Press, 1989, pp. 152–153; Tian, Tan, Ng and Tang, 2009, p. 119):

Proposition 4. Kernels p(Y |X) and q(X |Y ) are compatible if and only if there are functions a(X) and
b(Y ) such that h(x, y)= a(x) · b(y) for all (x, y) ∈ X◦× Y ◦.

As above, the “only if” part is easily proved: if p(Y |X) and q(X |Y ) are dominated by the same
density r(X ∪ Y ), then h(x, y)= p(y|x)/q(x |y)= (r(x, y)/r(x))/(r(x, y)/r(y))= (1/r(x)) · r(y) for
all (x, y) ∈ X◦× Y ◦, so that by setting a(X) = 1/r(X) and b(Y ) = r(Y ) a factorization of h(X, Y ) in
the asserted form is obtained.

In particular, if sets X◦ and Y ◦ have finite cardinality, then the function h(X, Y ) can be represented
as a matrix of |X◦| rows and |Y ◦| columns. The equation h(X, Y )= a(X) · b(Y ) would then mean that
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this matrix is expressible as the product of a column vector a(X) by a row vector b(Y ), implying that all
rows in the matrix are proportional to one another (and similarly for the columns). As a consequence,
when referring to variables with finite sets of possible values, the above connection can be reformulated
as follows (Arnold, Castillo and Sarabia, 2004, p. 137; Kuo, Song and Jiang, 2017, pp. 117–118).

Proposition 5. Kernels p(Y |X) and q(X |Y ) are compatible if and only if the matrix h(X, Y ) has rank 1.

Note that, although the general characterization in Proposition 4 is of the existential type (it demands the
existence of functions a(X) and b(Y ) satisfying a definite equation), the specific version in Proposition 5 is
of the deductive type, as it concerns a possible property (unit rank) of the matrix h(X, Y ) that is deducible
from the given kernels. We also remark that, besides this elementary result, there are other ways in which
linear algebra and associated geometrical arguments have proved of use in discussing compatibility of
distributions. For example, Arnold, Castillo, and Sarabia (2002, pp. 235–239) on considering any pair of
kernels {p(Y |X), q(X |Y )} that comply with (10) but may violate (9), show how the search for a consensus
distribution r(X ∪ Y ) can be formalized as the task of solving a definite system of linear equations and
inequalities. Thus, the set of possible solutions is tantamount to a convex subset of a geometric space and
may be explored using methods of linear programming.

The characterizations reviewed so far are limited in scope, as they apply only to any pair of kernels
{p(Y |X), q(X |Y )} on symmetric variable pairs. With the next theorem, we contribute to the topic of
compatibility by presenting a characterization that is applicable to any pair of kernels {p(V |U ), q(X |Y )}
that are free of constraints on the variable pairs. In stating and proving this theorem, use will be made of
the set-theoretic labeling represented in Figure 1 and the basic operations on kernels defined in Section
2. As in the proof of Theorem 1, the symbol ∪ will be omitted for brevity when specifying composite
variables (e.g., B FG stands for B ∪ F ∪G).

Theorem 2. Any two kernels p(V |U ) = p(B FG|DE H) and q(Y |X) = q(AE F |CG H) on variable
pairs in a full variable T are compatible with each other if and only if there are kernels p(DE |H) and
q(CG|H) that satisfy the equation

J [M[p(B FG|DE H), p(DE |H)], B D] = J [M[q(AE F |CG H), q(CG|H)], AC], (12)

where J and M are the projection and promotion operations.

Proof. “Only if” part. If the given kernels are compatible, then there is a consensus full density r(T ) for
them, such that p(B FG|DE H) = r(B FG|DE H) and q(AE F |CG H) = r(AE F |CG H). By setting
p(DE |H)= r(DE |H) and q(CG|H)= r(CG|H), we find that both sides of Equation (12) specify the
kernel r(E FG|H), so that the equation is satisfied.

“If” part. Let p(V |U ) = p(B FG|DE H) and q(Y |X) = q(AE F |CG H) be arbitrary kernels on the
indicated variable pairs, and suppose that there are kernels p(DE |H) and q(CG|H) that when combined
with them satisfy Equation (12). By promotion, we can first construct the kernels

p(B DE FG|H)= M[p(B FG|DE H), p(DE |H)], (13)

q(AC E FG|H)= M[q(AF E |CG H), q(CG|H)], (14)



232 LUIGI BURIGANA AND MICHELE VICOVARO

from which we may derive the following further kernels by conditioning

p(B D|E FG H)= C[p(B DE FG|H), E FG], (15)

q(AC |E FG H)= C[q(AC E FG|H), E FG]. (16)

Hypothesis (12) means that the projection (relative to B D) of the kernel defined in (13) equals the
projection (relative to AC) of the kernel defined in (14), so that the same symbol r(E FG|H) may be
used for both projections:

r(E FG|H)= J [p(B DE FG|H), B D] = J [q(AC E FG|H), AC]. (17)

Furthermore, the kernels defined in (15) and (16) act on variable pairs that have the same conditioning
variable E FG H and disjoint conditioned variables B D and AC . Thus, by Theorem 1 the pair of such
variable pairs has sure compatibility, implying that there exists some kernel r(ABC D|E FG H) that
dominates both kernels. More precisely

p(B D|E FG H)= J [r(ABC D|E FG H), AC], (18)

q(AC |E FG H)= J [r(ABC D|E FG H), B D]. (19)

Lastly, the kernels r(ABC D|E FG H) and r(E FG|H) are suitable for promotion, thus producing the
result

r(ABC DE FG|H)= M[r(ABC D|E FG H), r(E FG|H)]. (20)

We now prove that this kernel (which acts on the join variable pair (ABC DE FG|H)= (V |U )∨ (Y |X))
dominates both p(V |U ) and q(Y |X), so that these are compatible. Indeed:

C[J [r(ABC DE FG|H), AC], DE] = by (20)

C[J [M[r(ABC D|E FG H), r(E FG|H)], AC], DE] = by Lemma 2(iv)

C[M[J [r(ABC D|E FG H), AC], r(E FG|H)], DE] = by (18)

C[M[p(B D|E FG H), r(E FG|H)], DE] = by (15) and (17)

C[M[C[p(B DE FG|H), E FG], J [p(B DE FG|H), B D]], DE] = by Lemma 2(vi)

C[p(B DE FG|H), DE] = by Definition 3(ii)

p(B FG|DE H)= p(V |U ),

so that r(ABC DE FG|H) dominates p(V |U ). The dominance of r(ABC DE FG|H) over q(Y |X) is
proved by a similar argument. �

The characterization in Theorem 2 is of the existential type, as it demands the existence (and the
discovery in actual applications) of kernels p(DE |H) and q(CG|H) such that when combined with the
given kernels p(V |U ) and q(Y |X) through promotion-and-projection, Equation (12) is verified. From
Theorem 2, several corollaries may be deduced by setting constraints on the kernels p(V |U ) and q(Y |X)
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under consideration, more precisely by assuming that certain parts of the variables they involve are empty.
For example, if ABC DF H =∅, then Equation (12) becomes

J [M[p(G|E), p(E |∅)],∅] = J [M[q(E |G), q(G|∅)],∅],

that is, due to (3),

M[p(G|E), p(E)] = M[q(E |G), q(G)],

which is a rewriting of (11). Hence, the characterization in Proposition 2 amounts to a special case of the
characterization in Theorem 2. As another example, if C DEG =∅, then Equation (12) becomes

J [M[p(B F |H), p(∅|H)], B] = J [M[q(AF |H), q(∅|H)], A],

that is, due to (5),

J [p(B F |H), B] = J [q(AF |H), A].

This formally corroborates the following intuitive principle: any two kernels with the same conditioning
variable and partially overlapping conditioned variables are compatible if and only if their projections on
the intersection of the conditioned variables are equal.

5. Compatibility beyond structural assurance: the multiple kernels case

A natural generalization of the case discussed in the first half of the preceding section (that is, a pair of
kernels {p(Y |X), q(X |Y )} on symmetric variable pairs) is given by any set {p1(Y1|X1), . . . , pm(Ym |Xm)}

of saturated kernels whose conditioned variables are exhaustive of the full variable T . A notable
example of this is the alternating scheme represented in Lemma 3(ii), in which the conditioned variables
Y1, . . . , Ym more precisely form a partition of T . In this section, we then refer to any set of kernels
{p1(Y1|X1), . . . , pm(Ym |Xm)} whose variable pairs comply with these conditions:

X i = T \ Yi for each i = 1, . . . ,m (the kernels are saturated); (21)

Y1 ∪ · · · ∪ Ym = T (the conditioned variables are exhaustive). (22)

Note that within a set of variable pairs with these properties, the incidence relation→ in Definition 8
can give rise to cycles (for example, within an alternating scheme, it determines a complete directed
graph that obviously has cycles), so that based on Theorem 1, such a set of variable pairs could fail to
have sure compatibility. In that situation, a decision concerning the compatibility between given kernels
should then be taken by examining the numerical properties of the kernels themselves, as families of
density functions. Here, we review an exemplary decision criterion limited to densities on finite domains,
a criterion that has been variously studied in the literature.

Let T = {T1, . . . , Tn} be a full variable whose elements are variables with finite sets of possible values.
For any point t in the space T ◦ and any sub-variable U of T , let tU denote the projection of the point t
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on the space U ◦. In formal terms:

for any t = (t1, . . . , tn) ∈ T ◦1 × · · ·× T ◦n = T ◦ and any U = {Tg(1), . . . , Tg(k)} ⊆ T

tU stands for (tg(1), . . . , tg(k)).

For example, if T = {T1, T2, T3, T4, T5}, U = {T2, T3, T5}, and t = (2, 3, 1, 3, 2), then tU = (3, 1, 2).
Using this notation and referring to any set {p1(Y1|X1), . . . , pm(Ym |Xm)} of saturated kernels, we first
remark that if these kernels are compatible, then the following condition must be true:

for all t ∈ T ◦ and all 1≤ i, j ≤ m (23)

pi (tYi |tX i ) > 0 if and only if p j (tY j |tX j ) > 0.

This condition generalizes requirement (10), and its necessity for compatibility can be proved by an
argument similar to that used for that requirement. Our discussion in this section, however, is focused on
sets of kernels that satisfy the positivity condition

pi (yi |xi ) > 0 for all xi ∈ X◦i , yi ∈ Y ◦i , and i = 1, . . . ,m, (24)

which is stronger than (23) and in turn generalizes (9). After presenting the main result, in the last
paragraph we will comment on the complications that may arise when the kernels comply with (23) but
not with (24), that is, when there are “structural zeros” in the kernels under consideration.

In the assumed conditions, for each i = 1, . . . ,m an adjacency relation Ei within the space T ◦ can be
determined by setting

Ei = {(s, i, t) : s, t ∈ T ◦, sX i = tX i }. (25)

In other words, any two points s = (s1, . . . , sn) and t = (t1, . . . , tn) in the space T ◦ are adjacent according
to Ei if they coincide in all the coordinates for the elementary variables in X i (and thus may only
differ in some of the coordinates for the elementary variables in Yi = T \ X i ). For example, suppose
T = {T1, . . . , T5}, T ◦ = {1, 2, 3}5, and X i = {T2, T3}, and consider the points s = (1, 3, 1, 2, 2), t =
(2, 3, 1, 3, 2), and u = (1, 2, 1, 2, 2). Then (s, i, t) ∈ Ei because sX i = (3, 1)= tX i , whereas (s, i, u) /∈ Ei

because sX i = (3, 1) 6= (2, 1)= u X i . Overall, we can then consider a relational structure

(T ◦, E)= (T ◦, E1 ∪ · · · ∪ Em)

which formally amounts to a graph with the space T ◦ as the set of points and the relation E = E1∪· · ·∪Em

as the set of lines.
We note the following properties of this graphical structure. First, the lines in the graph are labeled

and directed. Indeed, each line (s, i, t) has the label i , which indicates the adjacency Ei to which the line
belongs, and it is counted as distinct from the inverse line (t, i, s), which also belongs to Ei . Secondly,
each adjacency Ei has the formal properties of an equivalence (reflexivity, symmetry, and transitivity).
However, the pooled adjacency E = E1 ∪ · · · ∪ Em may fail to be transitive because for any points s,
t , and u, the existence of some Ei and E j such that (s, i, t) ∈ Ei and (t, j, u) ∈ E j does not ensure
the existence of some Eh such that (s, h, u) ∈ Eh . Thirdly, any two points in T ◦ may have multiple
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adjacency. For example, referring to the case mentioned in the preceding paragraph with s= (1, 3, 1, 2, 2)
and t = (2, 3, 1, 3, 2), and assuming X i = {T2, T3} and X j = {T3, T5}, then both (s, i, t) ∈ Ei (since
sX i = (3, 1) = tX i ) and (s, j, t) ∈ E j (since sX j = (1, 2) = tX j ). Fourthly, the description of any walk
within the graph has the following generic form

(t0, i(1), t1, i(2), t2, . . . , tk−1, i(k), tk)

which records not only the points t0, t1, . . . , tk touched on by the walk, but also the adjacencies
Ei(1), . . . , Ei(k) used in passing from point to point. For example, assuming X i = {T2, T3}, X j = {T3, T5},
and Xh = {T1, T4, T5}, the following expressions describe two different walks with the same initial and
terminal points:

((2, 1, 3, 2, 3), j, (2, 2, 3, 1, 3), h, (2, 3, 1, 1, 3)),

((2, 1, 3, 2, 3), h, (2, 3, 1, 2, 3), i, (1, 3, 1, 2, 3), j, (2, 3, 1, 1, 3)).

Lastly, the assumption (22) ensures that the graph is connected. Indeed, the fact that the conditioned
variables Y1, . . . , Ym (on which any difference in coordinates is permitted) exhaust the full variable T
allows us to transform any point s into any other point t through a sequence of changes each of which
preserves adjacency.

The graphical structure described thus far is only determined by the set {X1, . . . , Xm} of the conditioning
variables in the assumed set of kernels {p1(Y1|X1), . . . , pm(Ym |Xm)}. As families of density functions,
these kernels allow us to endow that structure with a valuation function. Specifically, let us consider any
kernel pi (Yi |X i ) in the set, the corresponding adjacency Ei (determined by X i according to (25)), and any
line (s, i, t) belonging to Ei (so that the projections sX i and tX i are equal and are a point in X◦i , whereas
the projections sYi and tYi are possibly different points in Y ◦i ). The kernel pi (Yi |X i ) provides definite
values pi (sYi |sX i ) and pi (tYi |tX i ), which under the positivity condition (24) are both positive real numbers.
Thus, they may be combined by division to obtain a positive value associated with the line in question:

R(s, i, t)=
pi (tYi |tX i )

pi (sYi |sX i )
. (26)

This value may be interpreted as an odds quantity, being the ratio between the probabilities of two events
Yi = tYi and Yi = sYi concerning the variable Yi , both conditional on the event X i = tX i = sX i concerning
the variable X i . By applying this method in relation to each kernel pi (Yi |X i ) in the given set and each
line (s, i, t) in the corresponding adjacency Ei , a positive-valued function R on the pooled adjacency
E is generated that upgrades the graphical structure in the following form:

(T ◦, E, R)= (T ◦, E1 ∪ · · · ∪ Em, R).

In graph-theoretic terms, this is a line-valued directed multi-graph (Yao, Chen and Wang, 2014, p. 2).
The valuation R, which is first defined on single lines in the graph, can be consistently extended to any
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walk by setting

R(t0, i(1), t1, i(2), t2, . . . , tk−1, i(k), tk)= (27)

R(t0, i(1), t1) · R(t1, i(2), t2) · · · R(tk−1, i(k), tk).

Under condition (24), all factors in this product exist as positive real numbers, meaning that the product
itself is a positive real number. The characterization of compatibility expressed in the next theorem
specifically refers to the values that may result from this multiplicative formula (a product of odds).

Theorem 3. Let {p1(Y1|X1), . . . , pm(Ym |Xm)} be a set of kernels that satisfy the conditions of saturation
(21), exhaustiveness (22), and positivity (24), and let (T ◦, E, R) be the line-valued directed graph that
can be constructed based on the kernels in the way described above. The kernels are mutually compatible
if and only if the valuation R assigns the value 1 to every closed walk in the graph.

Proof. “Only if” part. Suppose that the saturated kernels {p1(Y1|X1), . . . , pm(Ym |Xm)} are mutually
compatible, that is, there exists a full density r(T ) such that pi (Yi |X i )= r(Yi |X i ) for all i = 1, . . . ,m,
which means

pi (tYi |tX i )= r(tYi |tX i )=
r(t)

r(tX i )
for all t ∈ T ◦. (28)

If (t0, i(1), t1, i(2), t2, . . . , tk−1, i(k), t0) is any closed walk in the graph (T ◦, E, R) (note the term t0 in
the place of tk), then

R(t0, i(1), t1, . . . , tk−1, i(k), t0)= R(t0, i(1), t1) · · · R(tk−1, i(k), t0)

=

pi(1)(t1
Yi(1)
|t1

X i(1)
)

pi(1)(t0
Yi(1)
|t0

X i(1)
)
· · ·

pi(k)(t0
Yi(k)
|t0

X i(k)
)

pi(k)(tk−1
Yi(k)
|tk−1

X i(k)
)

=

r(t1)/r(t1
X i(1)

)

r(t0)/r(t0
X i(1)

)
· · ·

r(t0)/r(t0
X i(k)

)

r(tk−1)/r(tk−1
X i(k)

)

=
r(t1)

r(t0)
· · ·

r(t0)

r(tk−1)
=

r(t1) · · · r(tk−1) · r(t0)

r(t0) · r(t1) · · · r(tk−1)
= 1

where the first three equalities are justified by (27), (26), and (28), respectively, and the fourth is derived
from the fact that (th, i(h+ 1), th+1) ∈ Ei(h+1) for every h = 0, . . . , k− 1, meaning that th

X i(h+1)
= th+1

X i(h+1)
.

“If” part. Let {p1(Y1|X1), . . . , pm(Ym |Xm)} be a set of saturated kernels such that in the resulting graph
(T ◦, E, R) the valuation R assigns value 1 to every closed walk. First note that definition (26) implies
R(s, i, t)= 1/R(t, i, s) for each pair {(s, i, t), (t, i, s)} of symmetric lines. In turn, this implies that our
assumption concerning R can be reformulated as follows:

for all walks (t0, i(1), t1, . . . , tk−1, i(k), tk) and (u0, j (1), u1, . . . , uh−1, j (h), uh) (29)

if t0
= u0 and tk

= uh

then R(t0, i(1), t1, . . . , tk−1, i(k), tk)= R(u0, j (1), u1, . . . , uh−1, j (h), uh).



COMPATIBILITY OF DISTRIBUTIONS IN PROBABILISTIC MODELS 237

Consider the following constructive procedure: (arbitrarily) choose a reference point o in the space T ◦;
construct a function f on T ◦ by setting

f (t) equal to the value assigned by R to any walk from o to t, for all t ∈ T ◦; (30)

and then define

r(t)=
f (t)∑

s∈T ◦ f (s)
for all t ∈ T ◦. (31)

The connectedness of the graph (ensured by (22)), the positivity assumption (24), and the hypothesis (29)
imply that f is a well-defined positive-valued function over the space T ◦ (in particular, hypothesis (29)
ensures that for each t ∈ T ◦, the value f (t) is invariant relative to the available walks from o to t). Hence,
the function r(T ) specified by (31) is a well-defined full density over the space T ◦. We will now show
that r(T ) is indeed a consensus density for the given kernels, that is

pi (tYi |tX i )= r(tYi |tX i )=
r(t)

r(tX i )
for all t ∈ T ◦ and all i = 1, . . . ,m (32)

which allows us to conclude that the given kernels are mutually compatible. Consider any i = 1, . . . ,m
and any t ∈ T ◦, and define

T ◦|(i, t)= {s ∈ T ◦ : (t, i, s) ∈ Ei } = {s ∈ T ◦ : tX i = sX i }

so that ∑
s∈T ◦|(i,t)

pi (sYi |sX i )= 1 and
∑

s∈T ◦|(i,t)

r(s)= r(tX i ).

If W = (o, i(1), w1, . . . , wk−1, i(k), t) is any walk from o to t , then f (t) = R(W ), and for each s ∈
T ◦|(i, t) the list (o, i(1), w1, . . . , wk−1, i(k), t, i, s) describes a walk from o to s, so that from (26), (27),
and (30)

f (s)= R(W ) ·
pi (sYi |sX i )

pi (tYi |tX i )
.

Therefore

r(t)
r(tX i )

=
r(t)∑

s∈T ◦|(i,t)
r(s)
=

f (t)∑
s∈T ◦|(i,t)

f (s)
=

R(W )∑
s∈T ◦|(i,t)

R(W ) ·
pi (sYi |sX i )

pi (tYi |tX i )

=
pi (tYi |tX i )∑

s∈T ◦|(i,t)
pi (sYi |sX i )

= pi (tYi |tX i ),

which verifies Equation (32). �

A key idea underlying the proof of Theorem 3 is that the product of a suitable chain of ratios between
conditional probabilities (that is, a product of odds) equals the ratio between two joint probabilities
associated with the first and the last links in the chain. The paper generally cited as the source of this idea
is Besag (1974), where this odds-product method is applied to problems of spatial statistics. The same
idea occurs as a crucial principle in several studies concerning compatibility of distributions, although
from one study to another there may be differences in the mathematical context in which it is embedded
and the form in which it is expressed (Gurevich, 1992, pp. 373–374; Cressie, 1993, pp. 412–414; Hobert
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and Casella, 1998, pp. 48–49; Slavkovic and Sullivant, 2006, pp. 198 and 206; Yao, Chen and Wang,
2014). In particular, Slavkovic and Sullivant (2006) address the compatibility problem using tools from
the algebra of polynomials, show that the compatibility between any two or more saturated probability
kernels can be characterized in terms of a system of binomial equations, and come to conclude that for
any fixed combination {(Y1|X1), . . . , (Ym |Xm)} of saturated variable pairs, the set of all combinations
{p1(Y1|X1), . . . , pm(Ym |Xm)} of kernels that are mutually compatible (within each combination) is a
“unimodular toric variety”. The algebraic method applied in the cited study is different from the graph-
theoretic view we took in preparing and proving Theorem 3 above. Nevertheless, there is a common
root in both approaches, which may be recognized by comparing the “circuits” used in constructing the
required binomial equations with the “closed walks” mentioned in Theorem 3, and by considering this
simple fact: if (v1, v2, v3, v4, . . . , vr−1, vr ) is a list of an even number of non-null values (“indeterminates”
in polynomials), then the binomial equation v1v3 · · · vr−1− v2v4 · · · vr = 0 is equivalent to the equation
(v1/v2)(v3/v4) · · · (vr−1/vr )= 1 concerning a product of ratios. Ultimately, that common root is related
to the Besag’s (1974) idea of a consistent chain of pairs of conditional probabilities mentioned above.
The Slavkovic and Sullivant’s (2006) method has the additional merit of wider generality: it can also be
applied to saturated kernels that (while satisfying the necessary condition (23)) may violate the condition
(24) of positivity.

One advantage of the characterization in Theorem 3 (also shared by that in Slavkovic and Sullivant, 2006)
is that it is of deductive type: the mutual compatibility of the given kernels {p1(Y1|X1), . . . , pm(Ym |Xm)}

can be decided through a series of tests on the graphical structure (T ◦, E, R), which is directly deducible
from the kernels in question. A limitation is that it is applicable only to saturated kernels, or more generally
to kernels in which the united variable Yi ∪ X i is the same for all i = 1, . . . ,m. Another limitation is its
expensiveness, as the acceptance of the compatibility hypothesis requires a test (with positive result) on
each cycle within the graph (T ◦, E, R). Algorithms may be devised to simplify this testing process by
exploiting redundancies implicit in the graph (Wang and Kuo, 2010; Kuo and Wang, 2011; Yao, Chen and
Wang, 2014). Lastly we remark that, of the cases covered by Theorem 3, special notice should be given
to the case in which the conditioned variables Y1, . . . , Ym in the kernels, in addition to being exhaustive,
are also mutually disjoint, so that they form a partition of the full variable T – this is the “alternating
scheme” focused on by Lemma 3(ii). In this case, a formal simplification is available, since if Yi ∩Y j =∅,
X i = T \ Yi , and X j = T \ Y j , then for no points s 6= t in T ◦ can we have both sX i = tX i and sX j = tX j ;
hence, the directed graph (T ◦, E) is simple, that is, a graph with at most one line directed from a point s
to another point t .

The proof of the “if” part of Theorem 3 implies that, under the stated conditions, the given kernels
admit a single consensus density. Indeed, under those conditions, the graph (T ◦, E, R) is connected, so
that the rule in (30) determines a single valuation f (T ) over T ◦, which in turn by (31) determines a single
full density r(T ) dominating over the given kernels (this argument, if applied to an alternating scheme
of kernels, provides a supplementary proof of Lemma 3(ii)). The connectedness of the graph and the
positive valuation of all lines in it are ensured by assumptions (22) and (24). Now suppose that the kernels
{p1(Y1|X1), . . . , pm(Ym |Xm)} satisfy (22) (as well as (23)) but violate (24), so that there are points u in
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T ◦ such that pi (uYi |u X i )= 0 for some i = 1, . . . ,m. In this looser situation, the pooled adjacency E will
contain lines (s, i, t) such that the ratio R(s, i, t) as defined by (26) is either null or nonexistent as a real
number; hence, these lines are of no use for the odds-product method and should be cancelled from E ,
which then degrades into a poorer adjacency G. Unlike E , this G could fail to be connected, so that the
space T ◦ would be divided into two or more connected components (T ◦)1, . . . , (T ◦)k according to G. If
the graph satisfies the condition stated in Theorem 3 (concerning closed walks), then by the odds-product
method we would still be able to uniquely construct densities r1(T ), . . . , rk(T ) separately defined on
(T ◦)1, . . . , (T ◦)k . These could be assembled into a full density r(T ) by choosing a set (c1, . . . , ck) of
positive numbers with unit sum and then setting

r(t)= c1r ′1(t)+ · · ·+ ckr ′k(t) for all t ∈ T ◦, (33)

where (for h= 1, . . . , k) we set r ′h(t)= rh(t) if t ∈ (T ◦)h and r ′h(t)= 0 otherwise. Following the reasoning
developed for Theorem 3 and considering that any two (T ◦)h 6= (T ◦)h′ have disjoint projections on each
space X◦i (for i = 1, . . . ,m), it can be seen that a density r(T ) thus constructed dominates each of
the given kernels, so that these are mutually compatible. The main point of this discussion is that if
the diminished graph (T ◦,G) fails to be connected, then there are several (infinitely many) consensus
densities that are constructible according to (33), simply because the set (c1, . . . , ck) may be chosen as
any k-tuple of positive numbers with unit sum. Thus, the possible violation of the positivity condition
(24) is detrimental not to the existence of a consensus density (which is still guaranteed by the condition
on closed walks stated in Theorem 3), but to the uniqueness of such a density.

6. Concluding remarks: the varying saliency of the compatibility problem

In principle, as noted in the Introduction, compatibility of distributions is a basic requirement of any
probabilistic model. Indeed, if the distributional assumptions in a model were not fully compatible with
one another, then the data analyses guided by the model could in fact be directed towards a nonexistent
ideal target, as there could be no global distribution that consistently encompasses all the local distributions
postulated by the assumptions. In practice, however, the compatibility problem does not appear to have
equal saliency for different kinds of probabilistic models. There are even models for which that problem
may seem an idle question, since compatibility appears implicit in the basic structure of such models,
regardless of the mathematical form of the distributions involved. In this concluding section, we will use
some of the results of our study (in particular, those in Section 3) to illustrate the reasons for the different
saliency of compatibility relative to different elementary kinds of probabilistic models.

First, we consider a simple model of classical statistics: the model for comparing the means of two
normal populations under the assumption of equal variance. The full variable in the model is the set
T = {T1,1, . . . , T1,n1, T2,1, . . . , T2,n2}, formed of a sample taken from one population and a sample taken
from the other. In addition to the assumptions of stochastic independence within and between both
samples, the model includes distributional assumptions, which are expressed by these assignments

T1,i ∼ Normal(µ1, σ
2) and T2, j ∼ Normal(µ2, σ

2) for i = 1, . . . , n1 and j = 1, . . . , n2, (34)
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where µ1, µ2, and σ 2 are quantities that are unknown but (in the classical view) not treated as random
variables. In the terms used in this study, the distributional assumptions are about the following marginal
densities

p(T1,1), . . . , p(T1,n1), p(T2,1), . . . , p(T2,n2)

which may be viewed as probability kernels on the variable pairs

(T1,1|∅), . . . , (T1,n1 |∅), (T2,1|∅), . . . , (T2,n2 |∅)

which in turn are atoms in the lattice Õ(T ). The (elementary) conditioned variables in the pairs are
disjoint from one another, and the incidence relation→ when referred to these pairs is acyclic (indeed,
it is empty), so that from Theorem 1, the n1 + n2 kernels (or marginal densities) are compatible with
one another for any values of µ1, µ2, and σ 2. Thus, distributional compatibility is assured here by the
basic structure of the model (regardless of the form of the distributions) and this may explain why the
compatibility question is not generally raised when presenting this and other similar models of classical
statistics. Of course, there is another, more familiar way of reaching the same conclusion, that is, to
observe that the product function p(T )= p(T1,1) · · · p(T1,n1)· p(T2,1) · · · p(T2,n2) is certainly a consensus
density for the n1 + n2 marginal densities, as each of these can be deduced from p(T ) by projection
(operation J in Definition 3). Note that if the assumptions of stochastic independence are left out of the
model, then the product function is not the only consensus density for the given marginal densities.

Our second example is a Bayesian expansion of the preceding classical model. Specifically, let us
suppose that the parameters µ1, µ2, and σ 2 are themselves conceived of as random variables and that the
system (34) becomes enriched by the following distributional assumptions:

µ1 ∼ Normal(ν, τ 2), µ2 ∼ Normal(ν, τ 2), σ 2
∼ InverseGamma(α, β),

ν ∼ Uniform(0, 50), τ 2
∼ Uniform(0, 10), α ∼ Uniform(0, 1), β ∼ Uniform(0, 1).

The full set of elementary random variables in the model then becomes

T = {T1,1, . . . , T1,n1, T2,1, . . . , T2,n2, µ1, µ2, σ
2, ν, τ 2, α, β}

in which the first n1+ n2 elements are the data, the next three are first-level parameters, and the last four
are second-level parameters (or hyper-parameters). On the whole, the distributional assumptions in the
model are constraints on these probability kernels

p(T1,1|µ1, σ
2), . . . , p(T1,n1 |µ1, σ

2), p(T2,1|µ2, σ
2), . . . , p(T2,n2 |µ2, σ

2),

p(µ1|ν, τ
2), p(µ2|ν, τ

2), p(σ 2
|α, β), p(ν|∅), p(τ 2

|∅), p(α|∅), p(β|∅).

Note that the assumptions precisely specify the densities of the four hyper-parameters, and thus the
conditioning variable in the last four kernels is the empty variable. Figure 3 is the directed graph generated
by the incidence relation→ when this is applied to the set of variable pairs in the kernels in question. It
is seen that the graph has no cycle. This property and the fact that the conditioned variables in the pairs
are mutually disjoint (they are distinct elementary variables) guarantee (again by Theorem 1) that this set
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(T1,1|µ1, σ
2) . . . (T1,n1

|µ1, σ
2) (T2,1|µ2, σ

2) . . . (T2,n2
|µ2, σ

2)

(µ1|ν, τ 2) (σ 2|α, β) (µ2|ν, τ 2)

(ν|?) (α|?) (β|?) (τ 2|?)

Figure 3. Incidence relation within a set of n1+ n2+ 7 variable pairs.

of variable pairs has sure compatibility, so that the distributional assumptions in the model are compatible.
This appears to be a general property of hierarchical Bayesian models (Gelman et al., 2014, chapter 5;
Lunn et al., 2013, chapter 10): the hierarchical form of a model implies absence of cycles among variable
pairs in the primitive kernels, and then mutual compatibility of the kernels themselves.

Similar arguments may be used for the probabilistic models known as “Bayesian networks” (Pearl,
1988). Any Bayesian network rests on a graphical structure called a directed acyclic graph (DAG). A DAG
differs from the kind of structures illustrated in Figure 3, since the nodes in it are individual elementary
variables, rather than pairs of variables. However, a DAG can be faithfully translated into a graph of
variable pairs, simply by replacing each elementary variable Ti by the pair (Ti |X i ), where X i is the set
of “parents” of Ti (i.e., variables sending an arrow towards Ti in the DAG). For example, using this
criterion, the graph of individual variables in the left-hand part of Figure 4 becomes translated into the
graph of variable pairs in the right-hand part of the same figure. A DAG is acyclic, and this implies that
the corresponding graph of variable pairs (related by the incidence relation→) is also acyclic. Hence,
by virtue of Theorem 1, we have that any assignment of kernels {p1(T1|X1), . . . , pn(Tn|Xn)} (which
specify how each variable Ti is expected to depend on the set X i of its parents in the network) will be
mathematically consistent, that is, there is a consensus density p(T ) for the kernels. Within this structural
assurance of consistency presumably lies a reason for the importance of the acyclicity requirement for
Bayesian networks. Moreover, the DAG of a Bayesian network is also intended to represent a set of
conditional stochastic independencies between the variables in the network. Specifically, each Ti is
assumed to be independent of T \ (Ti ∪ X i ∪ Zi ) conditional on X i , where X i is the set of parents and Zi

is the set of descendants of Ti in the DAG. For example, the DAG in Figure 4 is intended to represent the
following conditional independencies:

I (T1, T2|∅), I (T2, T1T3|∅), I (T3, T2T4|T1), I (T4, T3|T1T2), I (T5, T1T2|T3T4).

Based on these, any set of hypothesized kernels

p(T1|∅), p(T2|∅), p(T3|T1), p(T4|T1T2), p(T5|T3T4)
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T1 T2

T3 T4

T5

(T1|?) (T2|?)

(T3|T1) (T4|T1, T2)

(T5|T3, T4)

Figure 4. The DAG of a Bayesian network for five variables (left) and its rewriting in
terms of incidence between variable pairs (right).

may equivalently be presented as

p(T1|∅), p(T2|T1), p(T3|T1T2), p(T4|T1T2T3), p(T5|T1T2T3T4).

In this form, the kernels constitute a cumulative scheme, so that by Lemma 3(i) there is a single full
density p(T ) that is admissible for the network, which is obtainable from the kernels through multiple
promotion (or the “chain rule” for Bayesian networks: Pearl, 1988, pp. 119–120; Kjærulff and Madsen,
2008, pp. 58–60).

As for Bayesian networks, the definition of a Markov random field is a mix of stochastic independence
assumptions (each elementary variable Ti is assumed to be stochastically independent of T \ (Ti ∪ X i )

conditional on X i , this being the set of elementary variables adjacent to Ti in the field) and stochastic
dependence assumptions (a kernel p(Ti |X i ) or a class of such kernels is associated with each elementary
variable Ti and expresses how Ti is expected to be affected by its neighborhood X i ) (Kindermann and
Snell, 1980; Koller and Friedman, 2009, chapter 4). Unlike the DAG of a Bayesian network, however,
the graphical structure (an undirected graph) implicit in a Markov field does not generally possess the
acyclicity character required for directly ensuring (by Theorem 1) compatibility between the kernels. Let
us consider, for example, the graph in Figure 5. To specify a Markov field on this graph is tantamount to
specifying nine local kernels

p(T1|T2T4), p(T2|T1T3T5), p(T3|T2T6),

p(T4|T1T5T7), p(T5|T2T4T6T8), p(T6|T3T5T9),

p(T7|T4T8), p(T8|T5T7T9), p(T9|T6T8).

Each of these expresses how one of the nine elementary variables is assumed to be affected by its
neighborhood in the graph. Evidently, there are→-cycles within the set of variable pairs – for example,
(T1|T2T4)→ (T2|T1T3T5)→ (T1|T2T4) is a cycle – so that Theorem 1 cannot be invoked to directly
conclude in favor of compatibility between the kernels. To answer the compatibility question in this
situation, we need to consider the numerical properties of the kernels themselves, as families of density
functions. The theory of Markov random fields especially explores the stochastic independence properties
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T1 T2 T3

T4 T5 T6

T7 T8 T9

Figure 5. The neighborhood system of a possible Markov random field on nine variables.

implicit in such fields. For the reasons now suggested, however, advancements regarding compatibility,
beyond structural assurance and in the directions illustrated in Sections 4 and 5, may also be relevant in
dealing with such probabilistic models (Kaiser and Cressie, 2000; Kaiser, 2002).

Our last comment is on the relevance of the compatibility requirement for the so-called “Gibbs sampler”
in probability simulations (Geman and Geman, 1984, pp. 730–732; Robert and Casella, 2004, chapter 10).
A typical context for a Gibbs sampling is formed of a set T = {T1, . . . , Tn} of elementary variables
and a corresponding complete set {p(T1|T \ {T1}), . . . , p(Tn|T \ {Tn})} of elementary saturated kernels
(so-called “full conditionals”). The method produces simulations of the full density p(T ) implied by the
n input kernels, as well as simulations of other densities or probability kernels dominated by p(T ). In
most applications, the input kernels are specified in a deductive manner. This means that a researcher first
specifies the analytical expression for a full density p(T ), and then deduces (by conditioning) the analytical
expression for each input kernel p(Ti |T \ {Ti }), which should be “available to sampling”, that is, for each
xi ∈ (T \{Ti })

◦, it is practically possible to simulate samples from the distribution p(Ti |xi ). In this approach,
the mutual compatibility of the input kernels is true by construction, simply because their analytical
expressions are deduced from the formula of p(T ), so that the input kernels are jointly dominated by
p(T ). Furthermore, the kernels {p(T1|T \{T1}), . . . , p(Tn|T \{Tn})} thus determined form an alternating
scheme, so that under the conditions stated in Lemma 3(ii) they constitute a sufficient basis for the univocal
recovery of p(T ). A different route, however, could be taken. A researcher could directly specify (rather
than deduce from a full density p(T )) a set {p(T1|T \ {T1}), . . . , p(Tn|T \ {Tn})} of elementary saturated
kernels, and then apply to these the Gibbs sampler for simulation purposes. It is from this perspective that
the critical role of the compatibility requirement appears more clearly. The mutual compatibility of the
input kernels thus proposed has neither deductive assurance (they are not deduced from a common parent
density p(T )) nor structural assurance (the incidence→ among their variable pairs forms a complete
directed graph, certainly containing cycles, so that the “if” part of Theorem 1 cannot be invoked). Thus,
the proposed input kernels may fail to be compatible, in which case applying the Gibbs sampler would
be tantamount to trying to simulate a nonexistent full density, resulting in erratic non-converging output
sequences (Heckerman et al., 2000, pp. 56–57; Robert and Casella, 2011, p. 108). All of this demonstrates
the saliency of the compatibility problem for the Gibbs sampler in current use for probability simulations.



244 LUIGI BURIGANA AND MICHELE VICOVARO

References

Arnold, B. C., Castillo, E. and Sarabia, J. M. (1999), Conditional specification of statistical models. New
York: Springer.

Arnold, B. C., Castillo, E. and Sarabia, J. M. (2001), “Conditionally specified distributions: An introduction
(with comments and a rejoinder by the authors)”, Stat. Science 16, 249–274. DOI 10.1214/ss/1009213728

Arnold, B. C., Castillo, E. and Sarabia, J. M. (2002), “Exact and near compatibility of discrete conditional
distributions”, Comput. Stat. Data Anal. 40, 231–252. DOI 10.1016/S0167-9473(01)00111-6

Arnold, B. C., Castillo, E. and Sarabia, J. M. (2004), “Compatibility of partial or complete condi-
tional probability specifications”, J. Stat. Planning and Inference 123, 133–159. DOI 10.1016/S0378-
3758(03)00137-X

Arnold, B. C. and Press, S. J. (1989), “Compatible conditional distributions”, J. Amer. Stat. Assoc. 84,
152–156. DOI 10.2307/2289858

Berti, P., Dreassi, E. and Rigo, P. (2014), “Compatibility results for conditional distributions”, J. Multi-
variate Anal. 125, 190–203. DOI 10.1016/j.jmva.2013.12.009

Besag, J. E. (1974), “Spatial interaction and the statistical analysis of lattice systems (with discussion)”, J.
Royal Stat. Society, Series B 36, 192–236. DOI 10.1111/j.2517-6161.1974.tb00999.x

Billingsley, P. (1995), Probability and measure. New York: Wiley.

Burigana, L. and Vicovaro, M. (2020), “Inferring properties of probability kernels from the pairs of
variables they involve”, Algebraic Stat. 11, 79–97. DOI 10.2140/astat.2020.11.79

Chang, J. T. and Pollard, D. (1997), “Conditioning as disintegration”, Stat. Neerlandica 51, 287–317.
DOI 10.1111/1467-9574.00056

Chen, H. Y. (2010), “Compatibility of conditionally specified models”, Stat. Prob. Let. 80, 670–677. DOI
10.1016/j.spl.2009.12.025

Cressie, N. (1993), Statistics for spatial data. New York: Wiley.

Gelfand, A. E. and Smith, A. F. M. (1990), “Sampling-based approaches to calculating marginal densities”,
J. Amer. Stat. Assoc. 85, 398–409. DOI 10.2307/2289776

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014), Bayesian
data analysis. Boca Raton, FL: CRC Press.

Gelman, A. and Speed, T. P. (1993), “Characterizing a joint probability distribution by conditionals”, J.
Royal Stat. Society, Series B 55, 185–188. DOI 10.1111/j.2517-6161.1993.tb01477.x

Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721–741. DOI
10.1109/TPAMI.1984.4767596

Gourieroux, C. and Monfort, A. (1979), “On the characterization of a joint probability distribution by
conditional distributions”, J. Econometrics 10, 115–118. DOI 10.1016/0304-4076(79)90070-8

https://doi.org/10.1214/ss/1009213728 
https://doi.org/10.1016/S0167-9473(01)00111-6 
https://doi.org/10.1016/S0378-3758(03)00137-X 
https://doi.org/10.1016/S0378-3758(03)00137-X 
https://doi.org/10.2307/2289858 
https://doi.org/10.1016/j.jmva.2013.12.009 
https://doi.org/10.1111/j.2517-6161.1974.tb00999.x 
https://doi.org/10.2140/astat.2020.11.79 
https://doi.org/10.1111/1467-9574.00056 
https://doi.org/10.1016/j.spl.2009.12.025 
https://doi.org/10.2307/2289776 
https://doi.org/10.1111/j.2517-6161.1993.tb01477.x 
https://doi.org/10.1109/TPAMI.1984.4767596 
https://doi.org/10.1016/0304-4076(79)90070-8 


COMPATIBILITY OF DISTRIBUTIONS IN PROBABILISTIC MODELS 245

Griffeath, D. (1976), “Introduction to random fields”, pp. 425–458 in Denumerable Markov chains, edited
by J. G. Kemeny, J. L. Snell and A. W. Knapp. Berlin: Springer.

Gurevich, B. M. (1992), “On the joint distribution of random variables with given cross conditional distri-
butions: discrete case”, Theory of Probability and its Applications 36, 371–375. DOI 10.1137/1136041

Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R. and Kadie, C. (2000), “Dependency
networks for inference, collaborative filtering, and data visualization”, J. Machine Learning Research 1,
49–75.

Hobert, J. P. and Casella, G. (1998), “Functional compatibility, Markov chains, and Gibbs sampling with
improper posteriors”, J. Comput. Graphical Stat. 7, 42–60. DOI 10.1080/10618600.1998.10474760

Kaiser, M. S. (2002), “Markov random field models”, pp. 1213–1224 in Encyclopedia of Environmetrics,
vol. 3, edited by A. H. El-Shaarawi and W. W. Piegorsch, New York: Wiley. 10.1002/9781118445112.
stat07479

Kaiser, M. S. and Cressie, N. (2000), “The construction of multivariate distributions from Markov random
fields”, J. Multivariate Anal. 73, 199–220. DOI 10.1006/jmva.1999.1878

Kindermann, R. and Snell, J. L. (1980), Markov random fields and their applications. Providence, RI:
American Mathematical Society.

Kjærulff, U. B. and Madsen, A. L. (2008), Bayesian networks and influence diagrams: A guide to
construction and analysis. New York: Springer.

Koller, D. and Friedman, N. (2009), Probabilistic graphical models: Principles and techniques. Cambridge,
MA: MIT Press.

Koski, T. and Noble, J. M. (2009), Bayesian networks: An introduction. Chichester, UK: Wiley.

Kuo, K. L, Song, C. C. and Jiang, T. J. (2017), “Exactly and almost compatible joint distributions
for high-dimensional discrete conditional distributions”, J. Multivariate Anal. 157, 115–123. DOI
10.1016/j.jmva.2017.03.005

Kuo, K. L. and Wang, Y. J. (2011), “A simple algorithm for checking compatibility among discrete
conditional distributions”, Comput. Stat. Data Anal. 55, 2457–2462. DOI 10.1016/j.csda.2011.02.017

Lauritzen, S. L. (1996), Graphical models. Oxford, UK: Oxford University Press.

Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2013), The BUGS book: A practical
introduction to Bayesian analysis. Boca Raton, FL: CRC Press.

Parthasarathy, K. R. (2005), Introduction to probability and measure. New Delhi: Hindustan Book Agency.

Pearl, J. (1988), Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo,
CA: Morgan Kaufmann.

Pollard, D. (2002), A user’s guide to measure theoretic probability. Cambridge, UK: Cambridge University
Press.

Robert, C. P. and Casella, G. (2004), Monte Carlo statistical methods. New York: Springer.

https://doi.org/10.1137/1136041 
https://doi.org/10.1080/10618600.1998.10474760 
https://doi.org/10.1002/9781118445112.stat07479
https://doi.org/10.1002/9781118445112.stat07479
https://doi.org/10.1006/jmva.1999.1878 
https://doi.org/10.1016/j.jmva.2017.03.005 
https://doi.org/10.1016/j.csda.2011.02.017 


246 LUIGI BURIGANA AND MICHELE VICOVARO

Robert, C. P. and Casella, G. (2011), “A short history of Markov chain Monte Carlo: Subjective recollec-
tions from incomplete data”, Stat. Science 26, 102–115. DOI 10.1214/10-STS351

Slavkovic, A. B. and Sullivant, S. (2006), “The space of compatible full conditionals is a unimodular
toric variety”, J. Symbolic Computation 41, 196–209. DOI 10.1016/j.jsc.2005.04.006

Tian, G. L., Tan, M., Ng, K. W. and Tang, M. L. (2009), “A unified method for checking compatibility
and uniqueness for finite discrete conditional distributions”, Commun. Stat. Theory Methods 28, 115–129.
DOI 10.1080/03610920802169586

Wang, Y. J. and Kuo, K. L. (2010), “Compatibility of discrete conditional distributions with structural
zeros”, J. Multivariate Anal. 101, 191–199. DOI 10.1016/j.jmva.2009.07.007

Yao, Y. C., Chen, S. C. and Wang, S. H. (2014), “On compatibility of discrete full conditional distributions:
A graphical representation approach”, J. Multivariate Analysis 124, 1–9. DOI 10.1016/j.jmva.2013.10.007

Received 2020-01-25. Revised 2020-06-11. Accepted 2020-07-06.

LUIGI BURIGANA: luigi.burigana@unipd.it

Department of General Psychology, University of Padua, I-35131 Padova, Italy

MICHELE VICOVARO: michele.vicovaro@unipd.it

Department of General Psychology, University of Padua, I-35131 Padova, Italy

mathematical sciences publishers msp

https://doi.org/10.1214/10-STS351 
https://doi.org/10.1016/j.jsc.2005.04.006 
https://doi.org/10.1080/03610920802169586 
https://doi.org/10.1016/j.jmva.2009.07.007 
https://doi.org/10.1016/j.jmva.2013.10.007 
mailto:luigi.burigana@unipd.it
mailto:michele.vicovaro@unipd.it
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the submission page.

Originality. Submission of a manuscript acknowledges that the manuscript is original and and is not, in whole or in part,
published or under consideration for publication elsewhere. It is understood also that the manuscript will not be submitted
elsewhere while under consideration for publication in this journal.

Language. Articles are usually in English or French, but articles written in other languages are welcome.

Required items. A brief abstract of about 150 words or less must be included. It should be self-contained and not refer
to bibliography keys. If the article is not in English, two versions of the abstract must be included, one in the language of
the article and one in English. Also required are keywords and a Mathematics Subject Classification for the article, and,
for each author, affiliation (if appropriate) and email address.

Format. Authors are encouraged to use LATEX and the standard amsart class, but submissions in other varieties of TEX,
and exceptionally in other formats, are acceptable. Initial uploads should normally be in PDF format; after the refereeing
process we will ask you to submit all source material.

References. Bibliographical references should be complete, including article titles and page ranges. All references in the
bibliography should be cited in the text. The use of BIBTEX is preferred but not required. Tags will be converted to the
house format, however, for submission you may use the format of your choice. Links will be provided to all literature
with known web locations and authors are encouraged to provide their own links in addition to those supplied in the
editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to submit the original source files in
vector graphics format for all diagrams in your manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages — Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc. — allow the user to
save files in one of these formats. Make sure that what you are saving is vector graphics and not a bitmap. If you need
help, please write to graphics@msp.org with as many details as you can about how your graphics were generated.

Bundle your figure files into a single archive (using zip, tar, rar or other format of your choice) and upload on the link
you been provided at acceptance time. Each figure should be captioned and numbered so that it can float. Small figures
occupying no more than three lines of vertical space can be kept in the text (“the curve looks like this:”). It is acceptable
to submit a manuscript with all figures at the end, if their placement is specified in the text by means of comments such
as “Place Figure 1 here”. The same considerations apply to tables.

White Space. Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying
to optimize line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding author) at a Web site in PDF
format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may cause
publication to be postponed.



Algebraic Statistics
2020 11 : 2

107Maximum likelihood degree of the two-dimensional linear Gaussian covariance
model

JANE IVY COONS, ORLANDO MARIGLIANO and MICHAEL RUDDY

125Holonomic gradient method for two-way contingency tables
YOSHIHITO TACHIBANA, YOSHIAKI GOTO, TAMIO KOYAMA and NOBUKI
TAKAYAMA

155Tropical Gaussians: a brief survey
NGOC MAI TRAN

169The norm of the saturation of a binomial ideal, with applications to Markov bases
DAVID HOLMES

189Algebraic analysis of rotation data
MICHAEL F. ADAMER, ANDRÁS C. LŐRINCZ, ANNA-LAURA
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