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PROBLEM REDUCTION, RENORMALIZATION, AND MEMORY

ALEXANDRE J. CHORIN AND PANAGIOTIS STINIS

We present methods for the reduction of the complexity of computational prob-
lems, both time-dependent and stationary, together with connections to renor-
malization, scaling, and irreversible statistical mechanics. Most of the methods
have been presented before; what is new here is the common framework which
relates the several constructions to each other and to methods of theoretical
physics, as well as the analysis of the approximate reductions for time-dependent
problems. The key conclusions are: (i) in time dependent problems, it is not
in general legitimate to average equations without taking into account memory
effects and noise; (ii) mathematical tools developed in physics for carrying
out renormalization group transformations yield effective block Monte Carlo
methods; (iii) the Mori–Zwanzig formalism, which in principle yields exact
reduction methods but is often hard to use, can be tamed by approximation; and
(iv) more generally, problem reduction is a search for hidden similarities.

1. Introduction

There are many problems in science that are too complex for numerical solution as
they stand. Examples include turbulence, molecular dynamics, and other problems
where multiple scales must be taken into account. Such problems must be reduced
to more amenable forms before one computes. In the present paper we would like
to summarize some of the reduction methods that have been developed in recent
years, together with an account of what was learned in the process. It is obvious
that the problem has not been fully solved, but we think that the examples and the
conclusions reached so far are useful.

In general terms, a reduction to a more amenable form is a renormalization
group transformation, as in physics — a transformation of a problem into a more
tractable form while keeping quantities of interest invariant. A renormalization
group transformation involves an incomplete similarity transformation, and thus a
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reduction method is a search for hidden similarities. This is a general feature of
reduction methods, and it will be illustrated in the examples. A successful problem
reduction produces a new problem which must in some asymptotic sense be similar
to the original problem. For general background on renormalization, see, e.g., [5;
20; 39].

In problems with strong time dependence, reduction methods resemble methods
for the analysis of thermodynamic systems not in equilibrium; indeed, those as-
pects of the problem that are ignored in a reduced description conspire to destroy
order and increase entropy. Problem reduction for time-dependent problems is
basically renormalization group theory for non-equilibrium statistical mechanics.
For background on such theory, see, e.g., [3; 22; 8; 44].

The content of the paper is as follows: In section 2 we consider Hamiltonian
systems and their conditional expectations. In section 3 we narrow the discussion
to statistically stationary Hamiltonian systems and recover Kadanoff real-space
renormalization groups and an interesting block Monte Carlo method. In section 4
we display an example that exhibits and also extends the main features of this
analysis in simple form.

In section 5 we explain the Mori–Zwanzig formalism for the reduction of statis-
tically time-dependent problems. The analysis shows that averaging the equations
is in general not enough; one must take into account noise and a temporal memory.
The Mori–Zwanzig formalism is rather dense, and in the sections that follow we
present various special cases in which it can be simplified, in particular when the
memory is very short or very long. We wish to draw the reader’s attention in
particular to the “t-model”, for which we present a new analysis; it seems to us
that it represents a step forward in modeling for a relatively small price in added
computational complexity.

One of our goals in exploring the connections between problem reduction and
irreversible statistical mechanics is to point out some of the places where the
knowledge acquired in statistical mechanics still awaits its proper integration into
computational practice.

The paper [21] is a survey of reduction methods organized along different lines
and can be profitably read in tandem with the present paper.

For the sake of readability, we remind the reader of the rudiments of similarity the-
ory [3]. Suppose a variable a is a function of variables a1, a2, . . . , am , b1, b2, . . . , bk ,
where a1, . . . , am have independent units, for example units of length and mass,
while the units of b1, . . . , bk , can be formed from the units of a1, a2, . . . , am . Then
there exist dimensionless variables 5 =

a
a
α1
1 ···aαm

m
, 5i =

bi

a
αi1
1 ···a

αim
m

, i = 1, . . . , k,

where the αi , αi j are simple fractions, such that 5 is a function of the 5i :

5=8(51, . . . ,5k). (1)
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This is just a consequence of the requirement that a physical relationship be indepen-
dent of the size of the units of measurement. At this stage nothing can be said about
the function 8. Now suppose the variables 5i are small or large, and assume that
the function 8 has a non-zero finite limit as its arguments tend to zero or to infinity;
then 5∼ constant, and one finds a power monomial relation between a and the ai .
This is a complete similarity relation. If the function 8 does not have the assumed
limit, it may happen that for 51 small or large, 8(51)=5α

181(51)+ · · · , where
the dots denote lower order terms, α is a constant, the other arguments of 8 have
been omitted and 81 has a finite non-zero limit. One can then obtain a scaling
expression for a in terms of the ai and bi , with undetermined powers which must
be found by means other than dimensional analysis. The resulting power relation is
an incomplete similarity relation. Of course one may well have functions 8 with
neither kind of similarity.

Incomplete similarity expresses what is invariant under a renormalization group;
all renormalization group transformations involve incomplete similarity. The expo-
nent α is called an anomalous exponent.

2. Averaging a Hamiltonian system

We begin by examining what happens when one tries to reduce the complexity of a
Hamiltonian system by averaging (see also [15; 16; 38; 2]). This first section is
partially historical – this is how our group in Berkeley started working on problem
reduction; part of this development has been superseded by the theory in the section
on the Mori–Zwanzig formalism below. It seems to us that this is still the right place
to start, because the conclusions here explain the (less than intuitively obvious)
need to go beyond averaging to a more complicated theory, and also because the
theory in this section is the basis for the analysis of the stationary case in the two
sections that follow.

Consider a system of nonlinear ordinary differential equations,

d
dt
ϕ(t)= R(ϕ(t)),

ϕ(0)= x, (2)

where ϕ and x are n-dimensional vectors with components ϕi and xi , and R is a
vector-valued function with components Ri ; t is time. To each initial value x in (2)
corresponds a trajectory ϕ(t)= ϕ(x, t).

Suppose that we only want to find m of the n components of the solution
vector ϕ(t) without finding the n − m others. One has to assume something
about the variables that are not evaluated, and we assume that at time t=0 we
have a joint probability density f (x) for all the variables. The variables we keep
will have definite initial values x1, x2, . . . , xm , and the rest of variables will then
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have a conditional probability density fm = f (x1, . . . , xm, xm+1, . . . )/Zm , where
Zm =

∫
+∞

−∞
f (x1, . . . , xm, xm+1, . . . )dxm+1dxm+2 · · · is a normalization constant.

Without some assumption about the missing variables the problem is meaningless;
this particular assumption is reasonable because in practice f can often be estimated
from previous experience or from general considerations of statistical mechanics.
The question is how to use this prior knowledge in the evaluation of ϕ(t).

Partition the vector x so that x̂ = (x1, x2, . . . , xm), x̃ = (xm+1, . . . , xn) and
x = (x̂, x̃), and similarly ϕ= (ϕ̂, ϕ̃), R = (R̂, R̃). In general, the first m components
of R depend on all the components of ϕ, R̂ = R̂(ϕ)= R̂(ϕ̂, ϕ̃); if they do not we
have a system of m equations in m variables and nothing further needs to be done.
We want to calculate only the variables ϕ̂; then (d/dt)ϕ̂(t) = R̂(ϕ(t)) where the
right-hand side depends on the variables ϕ̃ which are unknown at time t . We shall
call the variables ϕ̂ the “resolved variables” and the remaining variables ϕ̃ the
“unresolved variables”.

Consider in particular a Hamiltonian system as in [15],[16]. There exists then
by definition a Hamiltonian function H = H(ϕ) such that for i odd Ri , the i-th
component of the vector R in (2) satisfies Ri = ∂H

/
∂ϕi+1, while for i even, one

has Ri = −∂H
/
∂ϕi−1, with n, the size of the system, even. Assume furthermore

that f , the initial probability density, is f (ϕ) = Z−1 exp(−H/T ) where T is a
parameter, known in physics as the “temperature”, which will be set equal to one in
much, but not all, of the discussion below. In physics this density appears naturally
and is known as the “canonical” density; the normalizing constant Z = Z(T ) is the
“partition function”. This density f is invariant, i.e., sampling it and evolving the
system in time commute.

A numerical analyst who wants to approximate the solution of an equation usually
starts by approximating the equation. If one solves for the resolved variables one
has values for the variables ϕ̂ available at each instant t and the best approximation
should be a function of these variables; it is natural to seek a best approximation
in the mean square sense with respect to the invariant density f at each time;
the best approximation in this sense is the conditional expectation E[R(ϕ)|ϕ̂] =∫

Re−H dϕ̃
/∫

e−H dϕ̃ (note that we set T = 1 for simplicity). This conditional
expectation is the orthogonal projection of R onto the space of functions of ϕ̂
with respect to the inner product (u, v)= E[uv] =

∫
u(ϕ)v(ϕ) f (ϕ)dϕ, where dϕ

denotes integration over all the components of ϕ. We then try to approximate the
system (2) by:

d
dt
ϕ̂(t)= E[R(ϕ(t))|ϕ̂(t)],

ϕ̂(0)= x̂ . (3)
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It has been shown in [13; 15; 11] that: (i) the new system (3) is also Hamiltonian:

E
[
∂H
∂ϕi

|ϕ̂(t)
]

=

∫
∂H
∂ϕi

exp(−H)dϕ̃
/∫

exp(−H)dϕ̃ =
∂ Ĥ
∂ϕi

, (4)

where i ≤ m = the dimension of ϕ̂, and

Ĥ = −log
∫

exp(−H)dϕ̃ (5)

is the new Hamiltonian.
(ii) the new canonical density f̂ = Z−1 exp(−Ĥ) is invariant in the evolution of

the new, reduced, system.
(iii) when the data are sampled from the canonical distribution, the distribution

of ϕ̂ in the new system is its marginal distribution in the old system; equivalently,
the partition function Z is the same for the old system and for the new system.

Now the question is, what does the solution ϕ̂(t) of (3) represent? Having
averaged the equations, one could hope that the result is an average of the solution,
of course constrained by the initial data x̂ , i.e., that the solution of equations (3) is
E[ϕ̂(t)|x̂]. This is the case for linear systems (where averaging and time integration
commute), and is approximately the case for limited time in some other special
situations – nearly linear systems and some systems where the “unresolved variables”
are fast. However, in general this is not the case. On the other hand, the solution of
equations (3) does not approximate the true values of ϕ̂(t) in the full system either
– the latter depend strongly on the missing data x̃ while the former does not. We
shall see below that a reduced description of the solution of nonlinear systems in
time requires in general a “noise” (which describes the fluctuations in ϕ̃(t)) and
a “memory” (which depends on the temporal fluctuations of the noise and on the
history of the solutions).

The fact that the solution of the averaged equations is not the average of the
solutions can be understood by the following physics argument. In physics, a system
in which the values of all the variables are drawn from a canonical distribution
is a system in thermal equilibrium. The assignment of definite values x̂ to the
variables ϕ̂ at time t = 0 amounts to taking the system out of equilibrium at t = 0;
if the system is ergodic it will then decay to equilibrium in time, so that all the
variables become randomized and acquire the joint density f . Thus the predictive
value of the partial initial data x̂ decreases in time; all averages of the ϕ̂ approach
equilibrium averages. However, the reduced system (3) is Hamiltonian, and the
solutions it produces oscillate forever.

In Figure 1 we consider the Hald Hamiltonian system [13] with

H =
1
2

(
ϕ2

1 +ϕ2
2 +ϕ2

3 +ϕ2
4 +ϕ2

1ϕ
2
3
)

(6)
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Figure 1. Comparison of the evolution of E[φ1(t)|φ1(0), φ2(0)]
(truth), to the prediction by the “Galerkin” approximation and the
prediction by the averaging procedure described in the text.

(physically, two linear oscillators with a nonlinear coupling). We assume that
ϕ1(0), ϕ2(0) are given and sample the two other initial data from the canonical
distribution with T = 1.

Figure 1 displays (1) the result for ϕ1 of a “Galerkin” calculation in which
the unresolved variables are set to zero (this is what is implicitly done in many
unresolved computations); (2) the result of the averaging procedure just described,
and (3) the true E[ϕ1(t)|x̂], calculated by repeatedly sampling the initial data,
solving the full system, and averaging. As one can see, averaging is initially better
than the null “Galerkin” method, but in the long run the truth decays but the solution
of the averaged system oscillates forever. For more detail, see [13].

Consider now the current practice of “large-eddy simulation” in hydrodynamics
(see, e.g., [31]). One defines there as ϕ̂(t) “filtered” (i.e., locally averaged) variables
and one finds for the time evolution of these variables equations obtained by relating
various averaged terms in the Navier–Stokes equations to the filtered variables at
one time. The result can be exactly equivalent to equations (3), as in [30], or indeed
it could be an even worse approximation, because the conditional expectation of
R is the best approximation of R by a function of the ϕ̂. One should consider the
possibility that some of the well-known difficulties of large-eddy simulation are
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due to basic flaws in this procedure, and we will offer a possible alternative below.
For a description of special cases, with small fluctuations and particular structures,
where the use of equations (3) is legitimate, see [21].

3. Prediction with no data and block Monte Carlo

There is, however, a case where the construction of the preceding section can be
very useful – when one tries to predict the future with no initial information. All
the data are then sampled from the canonical density, which is invariant. If the
system is ergodic, the solutions of equations (2) sample the space of solutions and
their time average equals their average with respect to the canonical density. The
system then simply samples the canonical density, and the reduction by conditional
expectation of the previous section creates a smaller system whose variables have
the same probability density after reduction as they had before reduction, and can
be sampled at lower cost. This is the starting point for some interesting analysis
as well as for block sampling methods (see [38; 2] for applications to molecular
dynamics).

To see in detail what the reduction by conditional expectations of the previous
section accomplishes under these circumstances, suppose the variables ϕi are
associated with nodes on a regular lattice, for example, they may represent spins in
a solid, or originate in the spatial discretization of a partial differential equation.

Divide the lattice into blocks of some fixed shape (for example, divide a regular
one-dimensional lattice into groups of two contiguous nodes). We have not yet
specified how the variables are to be divided into resolved and unresolved. Now
decide to “resolve” one variable per block, and leave the others in the same block
unresolved. The transformation between the old variables and the smaller set of
resolved variables is a Kadanoff renormalization group transformation exactly as the
latter are defined in [28] even if the steps which lead to it are presented differently;
the Hamiltonian Ĥ defined above in equation (5) is the renormalized Hamiltonian
in the sense of Kadanoff. This is an easy instance of our general claim that problem
reduction is renormalization.

Suppose the system described by the Hamiltonian is translation invariant. The
equations of motion at any one point, say at the location labeled by 1, have the
same form as the equations of motion at any other point. The relation between the
right-hand side of the reduced system and the right-hand side of the old system can
be rewritten as:

∂ Ĥ
∂ϕ1

= E[
∂H
∂ϕ1

|ϕ̂], (7)

where the expected value is with respect to the invariant density as before. This
relation is the starting point for the evaluation of Ĥ .
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The key to success is to expand H and Ĥ in series, so that the calculation of the
conditional expectations becomes easier for each term than it is for the Hamiltonians
themselves. We use here a version of what is known in physics as an expansion in
successive couplings (see [28]). The Hamiltonians are functions of the variables ϕ
and can be expanded in the form:

H =

∑
j

a jψ j , (8)

where the ψ j are “elementary Hamiltonians”. In a translation invariant system,
where each equation has the same form as any other, the Hamiltonian is made up
of sums over i of terms of the form h(ϕiϕi+ j ) for various values of j , where h is
some function; these terms represent “couplings” between variables j apart; one
can then choose the elementary Hamiltonians to be polynomials in xi xi+ j with a
fixed j in each ψ j , i.e., one segregates the couplings between variables j apart into
separate terms.

In a homogeneous system where there is only one variable per site, it is enough
to satisfy (7) for one variable, say for ϕ1. Define ψ ′

j =
∂
∂ϕ1
ψ j , noting that though

each ψ j for a homogeneous system is necessarily a function with at least as many
arguments as there are components on ϕ, ψ ′

j can be sparse in the sense that it
depends only on a few of the variables (for example, if ψ0 =

∑
i ϕ

2
i , then ψ ′

0 = 2ϕ1).
Equation (7) reduces to

∂ Ĥ
∂ϕ1

=

∑
j

a j Pψ ′

j (ϕ) (9)

with the projection P defined as before by Pg(ϕ)= E[g|ϕ̂] for any function g of
ϕ. Now we’re almost done. Pick a basis in L̂2, the subspace of square integrable
functions that depend only on the variables ϕ̂, made up of a subset of the set of
functions ψ ′

j . The right-hand side of equation (9) is then again a linear combination
of ψ ′

j ; integration with respect to ϕ1 requires only the erasure of the primes and
yields a series for Ĥ . The elements of ϕ̃ are now gone, and one can relabel the
remaining variables ϕ̂ so that the terms in the series have exactly the same form as
before; the calculation can then be repeated, yielding a sequence of Hamiltonians
with ever fewer variables: H, H (1)

= Ĥ , H (2)
= Ĥ (1), . . . . The corresponding

densities f (n) = Z−1 exp(−H (n)/T ) can be sampled by any sampling scheme, for
example, by Metropolis sampling (see, e.g., [10]).

At this point we have reduced the number of variables by a factor L equal to the
number of variables in each block, but this may well seem to be a Pyrrhic victory.
The Hamiltonians one usually encounters are simple in the sense that they involve
few couplings – finite differences typically link a few neighboring variables, and so
do the usual spin Hamiltonians in physics. As one reduces the number of variables,
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the new Hamiltonians become more complex, with more terms in the series (8);
the cost per time step of solving the equations in time or the cost per move in a
Metropolis sampling typically increases quickly as well. To see what has been
gained one must again turn to the physics literature (see, e.g., [28],[24]).

Consider the spatial correlation length ` which measures the range of values
of | j | over which the spatial covariances E[ϕiϕi+ j ] are non negligible, and the
correlation time τ for which the temporal covariances E[ϕi (t)ϕ j (t + s)] are non-
negligible. For very large and very small values of the temperature T (the variance
parameter in the density f ) both the correlation time and the correlation length
are usually small (see [28],[17]); the properties of the system can then be found
from calculations with a small number of variables and it is not urgent to reduce
the number of variables. There is a range of intermediate values of T for which the
correlation length and time are large and then the reduction is worthwhile. There
often is a value Tc of T , the “critical value”, for which `= ∞. Values of T around
Tc are often of great interest.

Now we can see what the reduction can accomplish. If one tries to compute
averages with T near Tc one finds that the cost of computation is proportional to
τ and to some positive power of ` – one has to compute long enough to obtain
independent samples of ϕ, and a new independent sample will not appear until a
time ∼ τ has passed. The reductions above produce a system with smaller ` and τ
and therefore computation takes less time. Though we started with the declared goal
of reducing the number of variables, what has been produced is more interesting: a
new system with shorter correlations which is more amenable to computation. It
is not the raw number of variables that matters. It is important to notice that what
started as a scheme for winnowing out variables has ended up by producing a new
system related to the original system by a scaling transformation.

The renormalization can be used with a multigrid scheme, in which one runs
up and down on different levels of renormalization, on the finer ones to achieve
accuracy and the cruder ones to move fast from one macroscopic configuration to
another. It is well known that multigrid schemes require that one store conditional
expectations (see, e.g., [7]), and the physicists’ expansion in successive linkages
provides an effective way to do so; for details see [10],[35].

An alternative method for obtaining the expansion coefficients for the renormal-
ized Hamiltonians was proposed in [42]. The method is based on the maximization
of the likelihood of the renormalized density. The maximization of the likelihood
leads to a moment-matching problem. The moments in this case are the expectation
values of the “elementary Hamiltonians” (see above) with respect to the renormalized
density. The solution of the moment matching problem yields the expansion of the
renormalized Hamiltonian.
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The systematic development of the links of probability with renormalization
began with Jona–Lasinio (see, e.g., [26]). The connection of renormalization with
incomplete similarity is too well known (see [3; 28; 22]) to require further comment
here. The analysis of this section provides a striking example of the benefits to
be found in applying to computation ideas drawn from experience in statistical
physics.

4. An example: The Korteveg–deVries–Burgers equation

As a further illustration of the ideas in the previous section, consider the equation

ut + uux = εuxx −βuxxx , (10)

with boundary conditions

u(−∞)= u0, u(+∞)= 0, ux(−∞)= 0, (11)

where the subscripts denote differentiation, x is the spatial variable, t is time, ε > 0
is a diffusion coefficient, β > 0 is a dispersion coefficient, and u0 > 0 is a given
constant. The boundary conditions create a traveling wave solution moving to
the right (towards +∞) with velocity u0/2 which becomes steady in a moving
framework as t → ∞. In nondimensional form the equation can be written as:

ut + uux =
1
R

uxx + uxxx , (12)

with ux(−∞)= 0, u(+∞)= 0, u(−∞)= 1; R =
√
βu0/ε is a “Reynolds number”.

For R ≤ 1 the traveling wave has a monotonic profile, while for R > 1 the profile is
oscillatory, with oscillations whose wave length is of order 1 [6]. At zero diffusion
(R = ∞) the stationary asymptotic wave train extends to infinity on the left. For
finite R the wave train is damped and the solution tends to 1 as x decreases.

The steady wave profile can be found by noting that it satisfies an ordinary
differential equation, whose solution connects a spiral singularity at x = −∞ to a
saddle point at x = +∞. At the steady state we average the solution at each point x
over the region (x − `/2, x + `/2) and call the result ū. The task we set ourselves
is to find an effective equation g(v, vx , vxx , . . .)= 0 whose solution v approximates
ū; v can be expected to be smoother than the solution of (12) and thus require
fewer mesh points for an accurate numerical solution; this is analogous to finding a
renormalized Hamiltonian further from the critical point so that the solution of the
corresponding problem has lower fluctuations, as we did in the previous section;
note that the problem of this present section is not Hamiltonian.

We now make an analogy between the conditional expectations which define the
renormalized variables in the previous sections and an averaging in space which
defines “renormalized” variables for solutions of the KdVB equations that are
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stationary in a moving frame. Averaging over an increasing length scale corresponds
either to more renormalization steps or, equivalently, to renormalization with a
greater number of variables grouped together. We pick a class of equations in which
to seek the “effective” equation, the one whose solutions best approximate the
averages of the true solution in the mean square sense; the choice of mean-square
approximation in the KdVB case corresponds to the use of L2 norms implied by
the use of conditional expectations in the previous sections, and the choice of a
class of equations in which to look for the effective equation is analogous to the
choice of a basis for the representation of the Hamiltonian; the calculation of the
best coefficients in the chosen class of “effective” equations corresponds to the
evaluation of the coefficients in the series for the renormalized Hamiltonians. In
the Hamiltonian case we average the right-hand sides of the equations and in the
analogous KdVB case we attempt to average the solutions; this must be so because
in the KdVB case we do not have theorems which guarantee that averaging the
right-hand sides produces the correct statistics for the solutions.

We can look for an effective equation in the class of equations of the form

−cvx + vvx = εe f f vxx + vxxx +β|vx |
αvxx + · · · , (13)

where ε ≥ 0, α ≥ 0, β ≥ 0 are constants and c = 1/2 is the velocity of propagation
of the steady wave (see also [4]). This expansion is analogous to the expansion
in successive linkages (8) of the previous section; in a continuum limit, a series
of partial Hamiltonians, whose derivatives have larger and larger “stencils” across
which variables are connected, can be reorganized into an expansion in higher and
higher derivatives of the unknown. One knows a priori that u and v propagate at the
same velocity, which helps fix some of the parameters (i.e., expansion coefficients)
at the outset. The problem is to find the values of the parameters in the effective
equation which minimize

I =

∫
+∞

−∞

|ū(x)− v(x)|2dx . (14)

One finds numerically that the last terms have little effect on the minimum of I
when `≥ 5 (in physics terminology, they are “irrelevant”). The effective equation
is thus a Burgers equation with a value of the dimensionless diffusion coefficient
εe f f different from 1/R.

The minimization in (14) was carried out in [9], and it showed that the minimum
was achieved when εe f f = Rν8(`), with the exponent ν ∼ 0.75. Note that when the
diffusion coefficient ε→0, then εe f f →∞! This is an incomplete similarity relation,
as advertised, relating a “bare” Reynolds number R to a “dressed” Reynolds number
ε−1

e f f . The form of the effective equation could conceivably have been found by



12 ALEXANDRE J. CHORIN AND PANAGIOTIS STINIS

averaging the original equation, but the relation between the original ε and εe f f

requires some form of renormalization-like reasoning.

5. The Mori–Zwanzig formalism

We now return to the problem we started investigating in section 2: how to determine
the evolution of a subset ϕ̂ of components of a vector ϕ described by a nonlinear
set of equations of the form (2). This is a nonlinear closure problem of a type much
studied in physics, and a variety of formalisms is available for the job. We choose
the Mori–Zwanzig formalism of irreversible statistical mechanics [19; 23; 33; 46;
34], because it homes in on the basic difficulty, which is the description of the
memory in the system; the relation of this formalism to other nonlinear formalisms
is described in [14]. That a reduced description of a nonlinear system involves
a memory should be intuitively obvious: suppose you have n > 3 billiard balls
moving about on top of a table and are trying to describe the motion of just three;
the second ball may strike the seventh ball at a time t1 and the seventh ball may
then strike the third ball at a later time. The third ball then “remembers” the state of
the system at time t1, and if this memory is not encoded in the explicit knowledge
of where the seventh ball is at all times, then it has to be encoded in some other
way. We are no longer assuming that the system is Hamiltonian nor that we know
an invariant density.

It is much easier to do theory for linear equations, and we start by finding a linear
equation equivalent to (not approximating!) the system (2). Introduce the linear
Liouville operator L =

∑n
i=1 Ri (x) ∂∂xi

, and the Liouville equation:

∂

∂t
u(x, t)= Lu(x, t)

u(x, 0)= g(x), (15)

with initial data g(x). This is the partial differential equation for which (2) is the
set of characteristic equations. One can verify that the solution of the Liouville
equation is u(x, t) = g(ϕ(x, t)) (see, e.g., [11]). In particular, if g(x) = xi , the
solution is u(x, t)= ϕi (x, t), the i-th component of the solution of (2). This linear
partial differential equation is thus equivalent to the nonlinear system (2). The
linearity of equation (15) greatly facilitates the analysis.

Introduce the semigroup notation u(x, t)= (et L g)(x)= g(ϕ(x, t)), where et L is
the evolution operator associated with the operator L; therefore et L g(x)= g(et L x),
and one can also verify that et L L = Let L (this can be seen to be a change of
variables formula). Equation (15) becomes

∂

∂t
et L g = Let L g = et L Lg.
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We suppose that as before we are given the initial values of the m coordinates x̂ ,
and that the distribution of the remaining n − m coordinates x̃ is the conditional
density, f conditioned by x̂ , where f is initially given.

We define a projection operator P by Pg = E[g|x̂]. The conditioning variables
are the initial values of ϕ̂; in section 2 the conditioning variables were the values of
ϕ̂(t), which are unusable here when we do not know the probability density at time
t . Quantities such as Pϕ̂(t)= E[ϕ̂(t)|x̂] are by definition the best estimates of the
future values of the variables ϕ̂ given the partial data x̂ and are often the quantities
of greatest interest.

Consider a resolved coordinate ϕ j (x, t) = et L x j ( j ≤ m), and split its time
derivative, R j (ϕ(x, t))= et L Lx j as follows:

∂

∂t
et L x j = et L Lx j = et L P Lx j + et L QLx j , (16)

where Q = I − P . Define R̂ j (x̂) = (P R j )(x̂); the first term is et L P Lx j =

R̂ j (ϕ̂(x, t)) and is a function of the resolved components only (but it is a function
of the whole vector of initial data). Note that if Q were zero we would recover
something that looks like the crude approximation of an earlier section; however the
conditioning variables are not the same. We shall see that the term in Q is essential.

We further split the remaining term et L QLx j . This splitting will bring it into
a very useful form: a noise term, and a memory term whose kernel depends on
the correlations of the noise term. The fact that such a splitting is possible is the
essence of “fluctuation-dissipation” theorems (see, e.g., [29]).

The evolution operators et L and et QL satisfy the Duhamel relation

et L
= et QL

+

∫ t

0
e(t−s)L P Les QL ds.

Hence,

et L QLx j = et QL QLx j +

∫ t

0
e(t−s)L P Les QL QLx j ds. (17)

Collecting terms, we find

∂

∂t
et L x j = et L P Lx j +

∫ t

0
e(t−s)L P Les QL QLx j ds + et QL QLx j (18)

The first term on the right-hand side is the Markovian contribution to ∂tϕ j (x, t)—
it depends only on the instantaneous value of the resolved ϕ̂(x, t). The second
term depends on x through the values of ϕ̂(x, s) at times s between 0 and t , and
embodies a memory—a dependence on the past values of the resolved variables.
Finally, the third term, which depends on full knowledge of the initial conditions x ,
lies in the null space of P and can be viewed as noise.
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It is important to see that equation (18) is an identity. The memory and noise
terms have not been added artificially, their presence is a direct consequence of the
original equations of motion. However tempting it may be to average equations
by taking one-time averages, the results will, in general, be wrong; one must
add a memory and a noise as well. Note that the first term in equation (18) is,
apart from the change of conditioning variables, the same as the right-hand side in
equations (3).

If what is desired is Pϕ̂(t), the conditional expectation of ϕ̂(t) given x̂ (the
best approximation in the sense of L2 to ϕ̂ given the partial data x̂), then one can
premultiply equation (18) by P; the noise term then drops out and we find

∂

∂t
Pet L x j = Pet L P Lx j + P

∫ t

0
e(t−s)L P Les QL QLx j ds. (19)

Even if the system we start with is Hamiltonian, the Langevin equation (18) is not;
the memory and the noise allow the system to forget its initial values and decay to
“thermal equilibrium” as it should (see section 2).

Let w(x, t)= et QL QLx j ; by definition w, the noise, is a solution of the initial
value problem:

∂

∂t
w(x, t)= QLw(x, t) = Lw(x, t)− P Lw(x, t)

w(x, 0)= QLx j . (20)

If for some function h(x), Ph = 0, then Pet QLh = 0 for all time t , i.e., et QL

maps the null space of P into itself. The solution of the equations (20) defines the
“orthogonal dynamics” for the system (2) with with data x̂ and the given joint density
for all the data at the initial time. The initial data for the orthogonal dynamics,
QLx j = (I − P)R j = R j − E[R j |x̂] can be thought of as the fluctuations in the
initial values of the R j . The range of the projection P is everything that can
be expressed as a function of x̂ , i.e., everything that can be predicted from the
knowledge of x̂ ; one can think of the range of P as the “resolved space”. One can
think of the range of Q as the “noise space”. The orthogonal dynamics modify
the temporal evolution that starts from QLx j by continuously removing from the
evolutes any component that can be resolved or predicted; the result always remains
in the noise space.

We now show that the memory term is a functional of the temporal covariances
of the noise (i.e., of covariances of stochastic processes confined to the noise
space). To save on writing we restrict ourselves to cases where the operator L
is skew-symmetric, i.e, (Lu, v) = −(u, Lv), (remember (u, v) = E[uv]). The
skew-symmetry holds in particular for Hamiltonian systems with canonical data,
see [13],[18]; however, here the assumption of skew-symmetry is only an excuse
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to reduce the number of symbols, not a return to the Hamiltonian case. Pick an
orthonormal basis {hk = hk(x̂), k = 1, . . . } in the range of P , which is the space of
functions of x̂ (for example, the hk could be Hermite polynomials in the variables x̂).
The projection of any function ψ(x, t) can be written as ψ =

∑
k(ψ(x, t), hk)hk(x̂),

and in particular,

P(L Qes QL QLx j )=

∑
k

(L Qes QL QLx j , hk)hk(x̂), (21)

where a factor Q has been inserted before the exponential, harmlessly because
the operators that follow it all live in the null space of P . The memory term now
becomes∫ t

0
e(t−s)L P Les QL QLx j ds=

∫ t

0

∑
k

e(t−s)L(L Qes QL QLx j , hk)hk(x̂)ds

=

∑
k

∫ t

0
(L Qes QL QLx j , hk)hk(ϕ̂(t − s))ds. (22)

In the last identity we used the fact that the inner product in parentheses is inde-
pendent of time and therefore commutes with the time evolution operator et QL ,
and also the fact that e(t−s)Lhk(x̂)= hk(ϕ̂(t − s)). Now (L Qes QL QLx j , hk(x̂))=
−(es QL QLx j , QLhk(x̂)) by the symmetry of Q and the assumed skew-symmetry
of L; each term on the right-hand side of equation (22) is the ensemble average of
the product of the value of the stochastic process et QL QLx j at time s = t , with the
value of the stochastic process et QL QLhk(x̂) evaluated at time s = 0, i.e., it is a
temporal correlation. All these stochastic processes are in the range of Q for all t ,
and are therefore components of the noise. Remember that by definition Lx j = R j

(a right-hand side in equations (2)). P Lx j is then an average of the right-hand side
of (2) and QLx j = R j − E[R j |x̂] is the initial fluctuation in that right-hand side.

The first, “Markovian”, term in equations (18) looks straightforward, but perils
lurk there as well. In general R j in equations (2) is nonlinear, and so is P Lx j =

E[R j |x̂]. et L P Lx j is a nonlinear function of the functions ϕ̂(t) that depends on
all the components of x , not only on x̂ . Some way of approximating this function
must be found. If one looks for conditional expectations, one must find a way to
commute P with a nonlinear function; for a discussion, see [13]. This bullet was
dodged in section 2 when the conditioning variables were chosen to be ϕ̂(t) which
change in time, but it may be hard to dodge in general.

The task now at hand is to extract something usable from these rather cumbersome
formulas. A very detailed presentation of the analysis in this section can be found
in [17].
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6. Fluctuation-dissipation theorems

We have established a relation between kernels in the memory term and the noise
(the former is made up of covariances of the latter). This is the mathematical content
of what are known as “fluctuation-dissipation theorems” in physics. A key difficulty
is that the kernels in the memory term consist of covariances of the orthogonal
dynamics, whose determination requires in principle the solution of the orthogonal
dynamics equations (20), which can be very onerous. However, in the physics
literature fluctuation-dissipation theorems are presented in a way that does not stress
this difficulty, and we take a moment to explain how the usual physics versions
of the theorems come about; they are worth understanding because even though
they camouflage the orthogonal dynamics issue they contain significant additional
insights.

In the physics literature one often takes a restricted basis in the range of P
consisting of the coordinate functions x1, ..., xm (the components of x̂). The
resulting projection is called the “ linear projection” as if P as defined above
were not linear. The use of this projection is appropriate when the amplitude of the
functions φ̂(t) is small. One then has hk(x̂) = xk for k ≤ m. The covariances in
equation (22) are then simply the temporal covariances of the fluctuations in the
resolved variables only – all the other covariances have been set to zero. This is
known as the fluctuation-dissipation theorem of the second kind. The fluctuations
of course obey the orthogonal dynamics equation.

Specialize further to a situation where there is a single resolved variable, say φ1,
so that m = 1 and φ̂ has a single component. The Mori–Zwanzig equation becomes:

∂

∂t
et L x1 = et L P Lx1 + et QL QLx1 +

∫ t

0
e(t−s)L P Les QL QLx1ds,

or,

∂

∂t
φ1(x, t)= (Lx1, x1)φ1(x, t)+ et QL QLx1

+

∫ t

0
(L Qes QL QLx1, x1)φ1(x, t − s)ds

= (Lx1, x1)φ1(x, t)+ et QL QLx1 −

∫ t

0
(es QL QLx1, QLx1)φ1(x, t − s)ds,

(23)

where we have again inserted a harmless factor Q in front of eQL , assumed that L
was skew-symmetric as above, and for the sake of simplicity also assumed (x1, x1)=

1 (if the last statement is not true the formulas can be adjusted appropriately). Take
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the inner product of equation (23) with x1, you find:

∂

∂t
(φ1(x, t), x1)= (Lx1, x1)(φ1(x, t), x1)

+ (et QL QLx1, x1)−

∫ t

0
(es QL QLx1, QLx1)φ1(x, t − s)ds

= (Lx1, x1)(φ1(x, t), x1)−

∫ t

0
(es QL QLx1, QLx1)(φ1(x, t − s), x1)ds, (24)

because Pet QL QLx1 = (et QL QLx1, x1)x1 = 0 and hence (et QL QLx1, x1) = 0.
Multiply equation (24) by x1, and remember that Pφ1(x, t)= (φ1(x, t), x1)x1. You
find:

∂

∂t
Pφ1(x, t)= (Lx1, x1)Pφ1(x, t)−

∫ t

0
(es QL QLx1, QLx1)Pφ1(x, t − s)ds.

(25)
Observe that the covariance (φ1(x, t), x1) and the projection of φ1 onto x1 obey
the same homogeneous linear integral equation. This is the fluctuation-dissipation
theorem of the first kind, which embodies the Onsager principle, according to
which spontaneous fluctuations in a system decay at the same rate as perturbations
imposed by external means, when both are small (so that the linear projection
is adequate). This reasoning can be extended to cases where there are multiple
resolved variables, and this is usually done with the added simplifying assumption
that (xi , x j ) = 0 when i 6= j . We omit the details. Finally, if one makes short-
memory approximations as in the next section, the issue of orthogonal dynamics
disappears completely, as we shall now see.

7. Short-range memory

We have already pointed out that a salient difficulty in using the Mori–Zwanzig
equations (18) is the need to solve the orthogonal dynamics equation. We wish
now to examine what happens if one bypasses these equations by replacing the
orthogonal dynamics by the real dynamics, i.e., if one sets:

et QL ∼= et L . (26)

We will show that this is a reasonable approximation under some important circum-
stances, and that the approximation leads to greatly simplified equations.

First, some heuristic comments. If the resolved dynamics (what happens in the
range of P) have no effect on the noise, then the assumption (26) should be valid,
for then the unresolved variables interact just with each other; the resulting noise
remains unpredictable from the knowledge of x̂ and thus remains in the noise space;
et QL and et L acting on a vector in the noise space should be the same. The effect of
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the resolved variables on the noise is small in particular if (i) the memory (i.e., the
range of t’s for which the covariances in the memory term is significant) is short,
or (ii) the memory is long. The noise et QL QLx j starts out in the noise space by
construction, and if the memory is short the operator et L can take the quantities
QLx j only a small distance out of the noise space before it becomes irrelevant
for the evaluation of the covariances; in this short time et QL QLx j and et L QLx j

are the same. If the memory is long, the noise goes on unaffected by the resolved
variables. We therefore examine the approximation (26) in these two opposite cases.

In the present section we examine the case of short memory. The memory term
in the Mori–Zwanzig equations (18) can be rewritten as∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
e(t−s)L P L Qes QL QLx j ds, (27)

where the insertion of the extra Q is harmless. Adding and subtracting equal
quantities, we find:

P Les QL QLx j = P L QesL QLx j + P L Q(es QL
− esL)QLx j ; (28)

a Taylor series yields:

es QL
− esL

= I + s QL + · · · − I − sL − · · · = −s P L + O(s2), (29)

and therefore, using Q P = 0, we find:∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
e(t−s)L P L QesL QLx j ds + O(t3). (30)

If P is a finite rank projection then

P Les QL QLx j =

∑
k

(QLes QL QLx j , hk)hk(x̂), (31)

where, as before, one can write (QLes QL QLx j , hk) as −(es QL QLx j , QLhk)when
L is skew-symmetric. If the covariances (es QL QLx j , QLhk) and also the covari-
ances (esL QLx j , QLhk) are significant only over short times t0, the approximation
(26) provides an approximation with an error O(t3

0 ) without requiring the solution of
the orthogonal dynamics equation; this is still a short covariance time approximation
but it can be preferable to a white noise approximation (see [41] for an application
to the dimensional reduction of the Kuramoto–Sivashinsky equation and [2] for an
application to molecular dynamics).

One important short-memory situation where the Mori–Zwanzig formalism
simplifies even more is when the noise can be viewed as white noise. This is a valid
approximation in a number of important cases, in particular when there is scale
separation between the resolved and unresolved variables or when these variables
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are weakly coupled (for recent reviews see, e.g., [21],[32], [40]). These situations
are often encountered in applications, but we do not survey them here because their
analysis does not require all of our machinery.

If the noise can indeed be viewed as white, one sets:

et QL QLx j = A jw
′

j (t), (32)

where the prime denotes a derivative, the w j (t) are independent unit Brownian
motions so that that the w′ are white noises, and the A j are constants that must
be derived from some prior knowledge. The covariances of the noise are then
delta functions (thus the memory is vanishingly short). If one assumes further
that the projection P is well represented by the physicists’ “linear” projection,
then the integral in the memory term can be easily seen to reduce to a constant
times the unknowns, and equations (18) become stochastic ordinary differential
equations of the usual kind. As usual (see, e.g., [27]), the corresponding probability
densities can be found via Fokker–Planck formalisms (or Kolmogorov equations,
in mathematicians’ language).

It is important to note that the assumption of white noise does not require that the
linear projection be used. More noise terms appear when one uses a more general
linear projection, and one encounters situations where the additional noise terms
can no longer be viewed as white and their uses detracts from the overall accuracy
(see, e.g., [41; 42; 32]). These papers also include suggestions as to how to pick
the best number of terms to use in the projections. Projections other than linear are
important for mode-coupling theory in condensed matter physics, see, e.g., [45].

There is a comment to be added here. White noise and delta memory constitute
an important special case. However, this is not the general case and maybe not even
the usual case. It is rather surprising that 40 years after Alder and Wainwright [1]
demonstrated the long-range memory in a common physical system, years during
which physicists have learned how to model systems with arbitrary memory, most
numerical treatments of dimensional reduction seem to assume that all memory is
ultra-short. It is also surprising that most papers on dynamic renormalization (see,
e.g., [24]) assume that the noise is white without comment, making it pointless to
compare the schemes below with this dynamical renormalization literature.

Finally, it should be obvious that very short memory is very different from no
memory, i.e., from situations where the memory term is absent altogether.
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8. Long-range memory and the t-model

We examine now the validity of the ansatz et QL ∼= et L for cases with slowly decaying
memory. Write the memory term in the Mori–Zwanzig equation (18) as∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
Le(t−s)Les QL QLx j ds

−

∫ t

0
e(t−s)Les QL QL QLx j ds,

where we have used the commutation of L and QL with et L and es QL , respectively.
At this point, make the approximation (26), which eliminates the s dependence of
both integrands and we obtain:∫ t

0
e(t−s)L P Les QL QLx j ds ∼= tet L P L QLx j . (33)

All that remains of the integration in time is the coefficient t . To estimate the error,
consider the difference between the full memory term and its approximation:

∫ t

0
e(t−s)L P Les QL QLx j ds − tet L P L QLx j =∫ t

0
[e(t−s)L P Les QL

− et L P L]QLx j ds.

Adding and subtracting equal quantities, we find

e(t−s)L P Les QL
= et L P L + et L

[e−sL P Les QL
− P L],

and a Taylor series around s = 0 gives

e−sL P Les QL
− P L = (I − sL + . . .)P L(I + s QL + . . .)− P L = O(s). (34)

This implies ∫ t

0
e(t−s)L P Les QL QLx j ds = tet L P L QLx j + O(t2).

To understand this estimate, examine an alternate derivation of (33). Expand the
integrand of the memory term of the Mori–Zwanzig equation around s = 0 and
retain only the leading term, finding∫ t

0
e(t−s)L P Les QL QLx j ds =

∫ t

0
[et L P L QLx j + O(s)]ds

= tet L P L QLx j + O(t2).
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If we retain only the leading term, we do not keep any information about the time
evolution of the integrand, which in turn means no information about the evolution
of the resolved component and of the coupling to the orthogonal dynamics (through
the term (L Qes QL QLx j , hk)). Such a drastic approximation is expected to be
appropriate in cases where the memory term integrand is slowly decaying, so that
information about its initial value is sufficient to make predictions.

We have just seen that if the memory is long the ansatz et QL ∼= et L reduces
the memory to a Markovian term with a time-dependent coefficient. Thus the
assumption et QL ∼= et L greatly simplifies the equations, as expected. The resulting
equations were introduced in [13] and are known as the “t-model”.

As an example, consider again the Hald model whose Hamiltonian is

H(φ)=
1
2
(φ2

1 +φ2
2 +φ2

3 +φ2
4 +φ2

1φ
2
3). (35)

The resulting equations of motion are:

dφ1

dt
= φ2

dφ2

dt
= −φ1(1 +φ2

3)

dφ3

dt
= φ4

dφ4

dt
= −φ3(1 +φ2

1).

Suppose one wants to solve only for φ̂ = (φ1, φ2), with initial data x̂ = (x1, x2).
Assume the initial data x3, x4 are sampled from a canonical density with temperature
T = 1. A quick calculation yields E[x2

3 |x1, x2] = 1/(1 + x2
1). The advance in time

described by the multiplication by et L requires just the substitution x̂ → φ̂. If one
commutes the nonlinear function evaluation and the conditional averaging, i.e.,
writes P f (φ̂) = f (Pφ̂) (a “mean-field approximation”), and writes furthermore
8(t)= Pφ̂ = E[φ̂|x̂] one finds Pet L P Lx1 =82, Pet L P Lx2 = −81(1 + 1/(1 +

82
2)); one can calculate Pet L L QLx j for j = 1, 2 and finally one finds:

d
dt
81 =82

d
dt
82 = −81(1 +

1
1 +82

1
)− 2t

82
182

(1 +82
1)

2
. (36)

The last term represents the damping due to the loss of predictive power of partial
data; the coefficient of the last term increases in time and one may worry that this
last term eventually overpowers the equations and leads to some odd behavior. This
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Figure 2. Comparison of the evolution of E[φ1(t)|φ1(0), φ2(0)]
(truth) with the prediction by the t-model; for comments, see the
text.

is not the case. Indeed, one can prove the following general result: If the system
one starts from, equation (2) is Hamiltonian with Hamiltonian H , and if the initial
data are sampled from an initial canonical density conditioned by partial data x̂ , and
if Ĥ is the renormalized Hamiltonian (in the sense of section 2), then (d/dt)Ĥ ≤ 0,
showing that the components of φ̂ decay as they should. The proof requires a
technical assumption (that the Hamiltonian H can be separated into the sum of
a function of the momenta and a function of the position, a condition commonly
satisfied) and we omit it (see [13]).

The solution of the t-model with the mean-field approximation for the Hald
model is presented in Figure 2. The applicability of the approximation suffers from
the fact that at the temperature T = 1 the Hald system is not ergodic. To see what
has been gained, contrast this figure with Figure 1.

If the t-model is not sufficient for the approximation of a given problem, one can
try to generalize it. Indeed, we have just seen that the t-model is the zero-th order
term in a Taylor expansion (around s = 0) of the integrand of the memory term in
(18). However, nothing prevents us from keeping more terms in this expansion. Let

K (ϕ̂(t − s), s)= e(t−s)L P Les QL QLx j
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and expand K around s = 0, i.e.,

K (ϕ̂(t − s), s)= K (ϕ̂(t), 0)+ s
∂K
∂s

|s=0 +
1
2

s2 ∂
2K
∂s2 |s=0 + O(s3).

In the case when P is the finite-rank projection and the density used to define
the projection is invariant, the derivatives of K at s = 0 are equal-time (static)
covariances. In mode-coupling theory, such expressions are known as “sum rules”.
One can assume a functional form for the memory term integrand around s = 0,
e.g., a Gaussian ae−bs2

, and use the derivatives of K at s = 0 to estimate a, b (see
[37] for more on sum rules and mode-coupling theory). This is potentially another
place where current ideas in physics can be helpful in numerical modeling.

The usefulness of the t-model depends on the range of the memory; this raises
the question of what this range depends on and whether it can be modified. If the
number of resolved variables is small, the range of the memory depends on the
range of the memory in the full system (2)- indeed, if there are no resolved variables,
as in section 3 above, the dynamics and the orthogonal dynamics are the same.
However, in the general case, is it possible to have a reduced model with very short
or very long memory, depending on how one coarse-grains a particular system at
hand? In [41] evidence was presented that, for the Kuramoto–Sivashinsky equation,
the range of the memory of a reduced model can vary dramatically, depending on
whether all the unstable modes in the system are resolved or not. The construction
of a reduced model corresponds to renormalization, and the two extreme cases can
be interpreted as two fixed points of a renormalization scheme. In which one a
reduced model will end up depends on how one renormalizes. How to formalize
these remarks and put them to use remains a topic for further work.

Both the long memory approximation and the short memory approximation have
been derived from the assumption et QL ∼= et L , but this assumption has been used
differently. In the short memory case one first makes this substitution in the memory
term and then one performs the projection in that term; in the long memory case one
performs these two operations in the reverse order. This leads to different results.

Finally, we go back to the remark at the end of section 2. We believe that the
t-model is a sound basis for large eddy simulation in hydrodynamics; the equations
are relatively simple and the memory is taken into account. We are acting on this
basis and expect to publish results soon.

9. Intermediate-range memory

There are intermediate cases where the memory cannot be viewed as either short
or long so that neither model above can be used. At present, it is not known how
to deal effectively with such cases. In a series of papers [11]-[13] we presented
special cases and their solutions. In particular in [13] we presented a detailed
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analysis of the Hald system without the t-model assumptions. We showed that the
memory decays roughly at the same rate as the solution itself (this is the general
case in the absence of separation of scales). We expanded the various covariances
at equilibrium (i.e., when there are no resolved variables) in Hermite polynomials,
evaluated the coefficients in the expansions by Monte Carlo once and for all, and
then obtained a system of integro-differential approximations to equations (18)
which we then solved in various cases. This is a legitimate procedure which may
be useful when the same system of equations has to be solved repeatedly. These
calculations do exhibit a salient feature of model reduction in time-dependent
problems, which is that its set-up costs are often very high. The future remedy, if
there is one, will surely lie in a deeper understanding of dynamical renormalization
and, in particular, of the way memory depends on scale.

10. Conclusions

We have made two sets of claims. First, theoretical claims: If one assumes that a
probability density is initially available for all the degrees of freedom in a complex
problem, then the problem of following the evolution of just a few degrees of freedom
becomes a problem in statistical mechanics, of the equilibrium kind for problems
with stationary densities, and of the non-equilibrium kind otherwise. Finding an
equivalent problem with lesser complexity is equivalent to a renormalization, and a
successful reduction in complexity corresponds to uncovering a similarity relation
between the full problem and the reduced problem. Physics is often a good guide
to what should be done.

On the practical side, reduction by conditional expectation is a powerful tool.
In the stationary case we have used it to generate block Monte Carlo algorithms
and effective equations for mean solutions. In the time dependent case it leads
to the Mori–Zwanzig formalism, generalized Langevin equations, and promising
approximation schemes. We have high hopes for the usefulness of one particular
approximation scheme, the t-model, which yields good approximations in interesting
cases with a relatively low overhead.
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