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ON THE ACCURACY OF FINITE DIFFERENCE METHODS
FOR ELLIPTIC PROBLEMS WITH INTERFACES

J. THOMAS BEALE AND ANITA T. LAYTON

In problems with interfaces, the unknown or its derivatives may have jump
discontinuities. Finite difference methods, including the method of A. Mayo
and the immersed interface method of R. LeVeque and Z. Li, maintain accuracy
by adding corrections, found from the jumps, to the difference operator at grid
points near the interface and by modifying the operator if necessary. It has long
been observed that the solution can be computed with uniform O.h2/ accuracy
even if the truncation error is O.h/ at the interface, while O.h2/ in the interior.
We prove this fact for a class of static interface problems of elliptic type using
discrete analogues of estimates for elliptic equations. Moreover, we show that
the gradient is uniformly accurate to O.h2 log .1=h//. Various implications are
discussed, including the accuracy of these methods for steady fluid flow governed
by the Stokes equations. Two-fluid problems can be handled by first solving an
integral equation for an unknown jump. Numerical examples are presented which
confirm the analytical conclusions, although the observed error in the gradient is
O.h2/.

1. Introduction

Often in problems of fluid flow or wave propagation an interface between dif-
ferent regions exerts a force on the material, or an interface separates regions
of different material properties. The static problem is formulated as an elliptic
partial differential equation with possible discontinuities in the coefficients and
nonhomogeneous terms, and with possible jump conditions for the unknown and
its derivative across the interface. For the numerical solution a finite difference
method is straightforward away from the interface, but accuracy will be lost near
the interface unless special care is taken. A class of practical methods has been
developed, including the method of A. Mayo [32; 34; 31] and the immersed interface
method of R. LeVeque and Z. Li [24; 27; 26], in which the specified jumps at the

MSC2000: 35R05, 65N06, 65N15.
Keywords: elliptic equations, interfaces, discontinuous coefficients, finite differences, immersed

interface method.
This work was supported in part by the National Science Foundation under grants DMS-0404765
(Beale) and DMS-0340654 (Layton).

91



92 J. THOMAS BEALE AND ANITA T. LAYTON

interface are used to derive corrections to the difference operator when the stencil
crosses the interface, and, if needed, modification of the difference operator as well
[24; 27; 26]. Using Taylor expansions and incorporating jumps, the truncation
error is corrected to a desired order. It has long been observed that, with grid size
h and O.h2/ truncation error in the interior, but only O.h/ truncation error near
the interface, the solution is still uniformly accurate to O.h2/. In this paper we
provide a rigorous explanation for this fact in certain cases. Although we treat
steady problems here, this class of methods is naturally suited for time-dependent
problems with moving boundaries such as Stokes flow of a viscous fluid; see
[25].

We consider a problem in a rectangular region � in Rd , d D 2 or 3, of the form

ˇ��u� D f� in ��; ˇC�uC D fC in �C; (1–1)

Œu� D g0 on S; Œˇ@nu� D g1 on S (1–2)

in which a closed curve S (d D 2), or a closed surface S (d D 3), separates an inner
region �� from an outer region �C, with � D �� [S [�C. Here Œu� D uC �u�

on S and similarly for ˇ@nu D ˇ@u=@n, where n is the normal to S , outward
from ��. We assume here that ˇ˙ are positive constants, although operators in
divergence form with variable coefficients are dealt with by the immersed interface
method. We suppose u is given on @�. If the problem is given in free space, the
solution might first be computed on @� from an integral representation (see Section
4). Our results hold for other boundary conditions as well; the simplest would be
periodicity on @�.

We first treat the case ˇ� D ˇC; in that case Œ@nu� is known on S . In Sections 2
and 3 we prove that, with the truncation error as above, the computed solution is
uniformly O.h2/ accurate, and moreover the gradient can be found uniformly to
O.h2 log .1=h//. We verify that this result holds for the methods of Mayo and of
LeVeque and Li. The gain in accuracy is shown to be a consequence of two facts.
First, since the O.h/ truncation error is on a set of relative size O.h/, it can be
written as the discrete divergence of a function which is only O.h2/ in magnitude.
Second, the gain in regularity in solving the discrete elliptic problem means that
this part of the truncation error contributes an error to the solution which is O.h2/

in a higher norm. To make this plausible, we consider an analogous estimate with
continuous variable: If v is a localized function of x 2 Rd and �v D

Pd
kD1 @kFk ,

then v D
P

@kG ? Fk , where G is the fundamental solution, @k D @=@xk , and ?

denotes convolution. The kernel @kG is locally integrable, and if Fk is bounded,
then v is bounded. Moreover, estimates for @`@kG show that @`v 2 Lp for any
p < 1. We follow a related line of argument for the discrete problem, using a
discrete Green’s function.
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Various extensions and applications are discussed in Section 4. For the case
where ˇ�; ˇC are unequal positive constants, the problem (1–1), (1–2) in free
space can be treated by first solving an integral equation on S for Œ@nu� and then
proceeding as before. The theory of Sections 2 and 3 shows that the immersed
interface method for steady fluid flow governed by the Stokes equations as in [25]
is second-order accurate. The two-fluid case can again be treated by first solving an
integral equation. The analysis can be applied to higher-order methods; use of the
nine-point Laplacian in two dimensions, rather than the usual five-point Laplacian,
leads to uniform O.h4/ accuracy. Mayo [32] noted that a boundary value problem
could be treated as an interface problem by writing the solution as a layer potential
on S and first solving a classical integral equation for the strength of the potential.
A different but related method introduced by Mayo [33] and expanded on in [2]
for solving interface problems or boundary value problems can also be viewed
with the present analysis. This approach is to compute the solution near S as a
nearly singular integral, form the discrete Laplacian, and then invert. Computational
examples of the several types of problems are given in Section 5. We observe O.h2/

accuracy in the gradient, indicating that the O.h2 log.1=h// estimate proved here
may not be sharp.

The gain in accuracy which is established here has been noted and analyzed
since these methods were introduced [32; 33; 24]. The ideas in the Appendix of
[33] are related to those used here. In [32] it was shown that, with O.h/ truncation
error at the irregular points, the error in L2 norm is at most O.h3=2/. Proofs of
O.h2/ accuracy for general equations in one dimension have been given in [3; 37;
17]. Theorems with a conclusion similar to the present one were proved in [27],
Theorems 5.1 and 5.2, for a more general class of equations with Dirichlet boundary
condition, using the maximum principle and comparison functions. However, this
result required a hypothesis, related to the position of the interface with respect
to the grid points, which does not hold in general. In particular, the hypothesis
implies that, where the slope of the curve is close to horizontal, the curve cannot
cross a vertical grid line closer than C0h to a grid point, or the curve must be within
C1h1C� of the grid point for some � > 0 independent of h. This hypothesis is
violated for any parabola x2 D ax2

1
C b for arbitrarily small h; this is shown in the

Appendix.
Related but different methods for solving Dirichlet problems in general regions

by embedding in a larger domain and using a regular grid have been used since
the 1930’s. At internal grid points the standard discrete Laplacian can be used, but
a modified stencil must be used at the boundary of the region. A line of analysis
beginning with Gerschgorin, and presented in [15], Section 23, shows that the order
of accuracy can exceed that of the truncation error at the boundary by 2 under
certain circumstances; for example, the accuracy of the solution can be O.h2/
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when the truncation error is O.h2/ in the interior, but only O.1/ near the boundary.
The method of proof is based on the maximum principle, and the gain in accuracy
depends on the modification of the difference operator at the boundary. A general
approach for such results using discrete Green’s functions was developed in [5; 6],
and a convergence proof for a class of methods with interpolation at the boundary
was given by Böhmer [4]. For a recent review, see Jomaa and Macaskill [21].
Analysis and examples in [21] indicate that an O.h/ truncation error at the interface
is preferable despite the theoretical results. As noted in [32],[37], the interface
methods studied here can be used to solve boundary value problems, extending past
the boundary to a computational box. This approach has the important difference
from the one just described that the stencil of the differential operator is not modified
at the boundary.

Elliptic problems with interfaces can be solved by finite element methods. Con-
vergence results include [9; 11; 29]. In [28] a Cartesian grid method using a finite
element formulation is introduced, and the various numerical approaches to interface
problems are discussed and compared. Discrete elliptic estimates like Lemma 2.3
below are well known for finite element approximations to elliptic problems; see
[10], Chapter 8 and [12], Section 21.

The main result is presented in Section 2 as Theorem 2.1. It gives the error
estimate for the solution of Equations (1–1), (1–2) with ˇ˙ D 1, assuming estimates
for the truncation error. The theorem follows from two facts: Lemma 2.2 shows
that a grid function localized near the interface can be written as the divergence
of a function smaller in norm, and Lemma 2.3 gives a maximum norm estimate
for a discrete elliptic problem with a nonhomogeneous term of divergence form.
The applicability to the methods of Mayo, LeVeque, and Li is explained, including
a discussion of smoothness properties needed to justify the truncation error. The
lemmas are proved in Section 3. Extensions and applications are given in Section
4, and computational examples are presented in Section 5.

2. Main results

We consider the interface problem with ˇC D ˇ�, a positive constant. For simplicity,
we assume ˇ˙ D 1. We write the problem (1–1), (1–2) as

�u˙ D f˙ in �˙; Œu� D g0 on S; Œ@nu� D g1 on S (2–1)

where S � �, S�� D �� [ S , S�C D �C [ S ; f˙; u˙ are defined on S�˙; and
g0; g1 are on S . To complete the problem we assume u is specified on @�,

u D u0 on @�; (2–2)
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although other boundary conditions are considered below. We assume that f˙, g0,
g1, and S are fairly smooth, with a possible jump in f˙ at S . For appropriate u0

on @�, or for other boundary conditions, it follows that u˙ is smooth on S�˙, as
discussed below. In order to estimate truncation errors in difference schemes, we
suppose for now that u˙ is C 4 on S�˙ and also that S is C 4. It follows that each
of u˙ has a C 4 extension to an open set containing S ; this fact will be used to
justify the corrections at the interface. Sufficient conditions for the regularity of u

are given in Lemma 2.4.
To discuss discretization, we write the region � as

� D fx 2 Rd
W 0 < xk < Ak ; 1 � k � dg: (2–3)

For simplicity, we assume ratios of the lengths Ak are rational, so that the domain
can be partitioned by grid cubes of size h for arbitrarily small h. We assume h is
chosen so that Ak D Nkh with integer Nk for each k. The computational domain
is

�h D fj h 2 hZd
W 1 � jk � Nk � 1; 1 � k � dg; (2–4)

with boundary

@�h D fj h W 0 � jk � Nk ; 1 � k � d I jk D 0 or Nk for some kg: (2–5)

The closure is S�h D �h [ @�h. We also need the partial boundary

@0�h D fj h W 0 � jk � Nk � 1; 1 � k � d I jk D 0 for some kg: (2–6)

We use the usual second-order discrete Laplacian, defined for a function uh on S�h

as

�huh
D

dX
kD1

D�
k DC

k
u; (2–7)

where D˙
k

is the usual forward or backward difference operator in the k-th direction;
for example, with d D 2,

DC

1
u.j1h; j2h/ D

�
u..j1 C 1/h; j2h/ � u.j1h; j2h/

�
=h:

We write r˙
h

u for the discrete gradient whose components are D˙
k

. We will use
the discrete Lp norm and maximum norm,

kuh
kp;�h

D

� X
jh2�h

juh.j h/jphd

�1=p

; kuh
kmax;�h

D max
jh2�h

juh.j h/j: (2–8)

Now suppose the grid size h is chosen and each grid point j h 2 S�h is labeled
as a point in S�C or S��; points lying on S can be assigned arbitrarily. We say a
grid point is regular with respect to S if all grid points in the stencil of the discrete
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Laplacian at that point are in the same closed region. Otherwise it is irregular. Let
ue be the exact solution of (2–1), (2–2). At each regular point we have the usual
truncation error

�hue.j h/ D f˙.j h/ C �h.j h/; j�h.j h/j � C h2; (2–9)

with f˙ chosen according to whether j h 2 S�C or S��. This holds even if there are
boundary points within h of j h, since the ue

˙
have smooth extensions independent

of h; the usual Taylor expansion applies to the extended ue
˙

, once h is small enough.
Next we consider the error at the irregular points. Suppose we identify the leading
terms in �hue.j h/, as is done in the methods under discussion, and explained
further below see (2–23)–(2–26), with a first order error remaining. That is, we find
T h.j h/, determined by the jumps, so that

�hue.j h/ D f˙.j h/ C T h.j h/ C �h.j h/; j�h.j h/j � C h: (2–10)

(If j h 2 S , f˙ is chosen to be consistent with the labeling of j h.) Now define f h

on �h by

f h.j h/ D

�
f˙.j h/ C T h.j h/; j h irregular;
f˙.j h/; j h regular:

(2–11)

Finally, as in [32; 34; 24], we take uh to be the solution of

�huh
D f h in �h; uh

D u0 on @�h: (2–12)

Then the error uh � ue satisfies

�h.uh
� ue/ D ��h in �h; uh

� ue
D 0 on @�h: (2–13)

We can now state our main result. We assume that (2–9) and (2–10) hold, rather
than making assumptions about the smoothness of the problem. After the theorem
and related lemmas, we describe the assumptions which guarantee the needed
smoothness and then review the derivation of (2–10). The theorem implies that the
error in (2–13) is uniformly O.h2/, with a similar estimate for the discrete gradient.

Theorem 2.1. Let ue be the exact solution of the problem (2–1), (2–2) with S at
least C 1. Suppose �hue has the form given by (2–9), (2–10), with j�h.j h/j � C h

at irregular grid points and j�h.j h/j � C h2 at regular grid points. Let uh be the
solution of (2–11), (2–12). Then

juh.j h/ � ue.j h/j � C0h2; j h 2 �h (2–14)

and for 1 � ` � d ,

jDC

`
uh.j h/ � DC

`
ue.j h/j � C1h2 log .1=h/; j h 2 �h [ @0�h (2–15)
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with C0; C1 dependent on ue but independent of h.

The discrete gradient estimate (2–15) can be interpreted as an estimate for

D�
` .uh

� ue/

at a slightly different set of points, and thus a similar estimate also holds for
centered differences on �h. An accurate approximation to rue can thus be found;
see Corollary 2.5 and Equation (2–27) below.

Theorem 2.1 will follow directly from the next two lemmas, which are proved in
Section 3.

Lemma 2.2. Suppose f irr is a function on �h which is nonzero only on the set of
irregular points. Assume S is C 1. Then there exist functions Fk on �h [ @0�h,
1 � k � d , such that Fk D 0 on @0�h,

f irr
D

dX
kD1

D�
k Fk in �h (2–16)

and
kFkkmax;�h[@0�h

� C hkf irr
kmax;�h

; 1 � k � d; (2–17)

where C depends on S but is independent of h.

Lemma 2.3. Suppose

�hv D f reg
C

dX
kD1

D�
k Fk in �h; v D 0 on @�h; (2–18)

where

v W S�h ! R; f reg
W �h ! R; (2–19)

Fk W �h [ @0�h ! R; 1 � k � d (2–20)

and Fk.j h/ D 0 for each j h 2 @0�h with j` D 0 for some ` ¤ k. Then

kvkmax;�h
� C0

�
kf reg

k2;�h
C

dX
kD1

kFkkmax;�h[@0�h

�
; (2–21)

kDC

`
vkmax;�h[@0�h

� C1 log .1=h/

�
kf reg

kmax;�h
C

dX
kD1

kFkkmax;�h[@0�h

�
(2–22)

for 1 � ` � d , where C0; C1 depend only on the lengths Ak .
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To derive the theorem, we set f irr equal to the restriction of �h to the irregular
points and use Lemma 2.2, concluding that Fk D O.h �h/ D O.h2/. Then we apply
Lemma 2.3 to v D uh � ue, using (2–13) with f reg equal to the regular part of �h.
The entire right side of (2–21) is O.h2/, and similarly for (2–22). Theorem 2.1 and
the lemmas also hold with periodic or Neumann boundary conditions, rather than
Dirichlet, as discussed below. For the discrete Dirichlet problem (2–18), it is well
known that the maximum of v can be estimated by the maximum of the right side,
using the discrete maximum principle, but (2–21) is sharper in dependence on Fk .

In order to verify Equations (2–9), (2–10) we need general conditions on the
problem (2–1), (2–2) to ensure the smoothness of u˙. An existence and regularity
theorem for a general class of interface problems is given in [22], Section 16.
The statement of higher regularity given below for the present case is based on
potential theory and the classical Schauder estimates for elliptic equations. A brief
justification is given in Section 3. This statement can be extended to the case with
a discontinuous coefficient in the jump in normal derivative; see Section 4. We
say that f 2 C mC˛.S�/, for integer m and 0 < ˛ < 1, if f 2 C m.S�/ and Dmf is
uniformly Hölder continuous with exponent ˛ on S�.

Lemma 2.4. Suppose u˙ in Equation (2–1) is the restriction to � of a solution to
the extended problem in Rd . Suppose S is C 4C˛,

f� 2C 2C˛.S��/; fC 2C 2C˛.Rd
���/; g0 2C 4C˛.S/; and g1 2C 3C˛.S/;

for some 0 < ˛ < 1. Then u˙ 2 C 4C˛.S�˙/.

We now describe the derivation of (2–10) as in Mayo’s method [32; 34; 31],
the related work of Wiegmann and Bube [37], or the immersed interface method
of LeVeque and Li [24; 27; 26]. All these methods start with the observation that
jumps in higher derivatives of u˙ in (2–1) can be found by differentiating the jumps
in u˙; @nu˙ along S and using �u˙ D f˙. To be specific, we emphasize Mayo’s
point of view. For dimension 2, writing .x; y/ 2 R2, the jumps in first and second
derivatives are

Œux � D x0g0
0 C y0g1; Œuy � D y0g0

0 � x0g1; (2–23)

Œuxx � D g2 C y02Œf �; Œuyy � D �g2 C x02Œf �; (2–24)

where
g2 � 2�x0y0g0

0 C .x02
� y02/.g00

0 � �g1/ C 2x0y0g0
1; (2–25)

and where primes denote arclength derivative d=ds along S and � is the curvature
� D x00y0 � x0y00. These jump formulas, or equivalent ones, are used to find the
corrections Th at the irregular grid points. Suppose, for example, that

.j1h; j2h/ 2 S�� but ..j1 C 1/h; j2h/ 2 S�C:
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To correct �hu.j1h; j2h/, we find a point ..j1 C �/h; j2h/ 2 S , 0 � � � 1. A
Taylor expansion gives

uC..j1 C 1/h; j2h/ � u�.j1h; j2h/ D hu�;x C
1
2
h2u�;xx

C Œu� C .1 � �/hŒux � C 1
2
.1 � �/2h2Œuxx � C O.h3/; (2–26)

where u�;x ,u�;xx are evaluated at .j1h; j2h/ and the jumps are located at

..j1 C �/h; j2h/:

This expression is valid even if S intersects the segment at more than one point; the
Taylor expansion for u˙ applies to the extended functions under the smoothness
assumptions of Lemma 2.4. To approximate �hu.j1h; j2h/ we consider four such
segments, finding jump terms if needed, add expressions similar to (2–26), and
divide by h2, to obtain an equation in the form (2–10), thus identifying T h.j1h; j2h/.
The procedure for the immersed interface method [24] is very similar, but for each
irregular point .j1h; j2h/, one nearby boundary point is chosen, and a Taylor
expansion in .x; y/ about this point is used for each of the points in the stencil. In
either case the derivation of (2–9), (2–10) is justified, and Theorem 2.1 applies:

Corollary 2.5. For the problem (2–1), (2–2), with the smoothness assumptions of
Lemma 2.4, either Mayo’s method [32; 34] or the immersed interface method of
LeVeque and Li [24], with corrections of the form (2–10), gives a computed solution
uh with juh � uej � C h2 uniformly. Moreover, rue can be found on �h from uh

with error uniformly O.h2 log .1=h//.

It remains to verify the last statement of the corollary. For regular points the
centered difference of uh gives a value of rue accurate to O.h2 log .1=h//, ac-
cording to (2–15). At irregular points we can correct the centered difference to
the same order using formulas such as (2–26). For example, suppose .j1h; j2h/

and ..j1 � 1/h; j2h/ are in S�� but ..j1 C 1/h; j2h/ 2 S�C. We find, for the exact
solution,

uC

�
.j1C1/h; j2h

�
� u�

�
.j1�1/h; j2h

�
D 2hu�;x.j1h; j2h/ C Œu� C .1 � �/hŒux �C1

2
.1��/2h2Œuxx � C O.h3/: (2–27)

From this we obtain a computed value of ru which is again accurate to

O.h2 log .1=h//:

Similar results hold if we impose a boundary condition on @� other than (2–2).
No change is needed if we use the homogeneous Dirichlet condition u D 0 on
@�, provided f is the restriction to � of an odd, periodic function, with period
2Ak in direction k, which is smooth except for the jump at S and its reflections.
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(For example, this would be true if fC D 0 near @�.) The solution is then smooth,
since the problem extends to Rd with u odd and periodic. Alternatively, we could
use periodic boundary conditions for u on S�, if f extends smoothly to a periodic
function with periods Ak . In this case we have the necessary conditionZ

��

f� C

Z
�C

fC C

Z
S

Œg1� dS D 0 (2–28)

and u has an arbitrary constant. Finally, we could impose the Neumann, or no-flux,
condition

@nu D 0 on @�; (2–29)

again with condition (2–28), if f has a smooth, even, periodic extension. In this
case we solve for uh on S�h, with uh extended past @�h so that

u.�h; j2h/ D u.h; j2h/;

etc., consistent with (2–29). The exact and discrete Neumann problems both extend
to even, periodic problems, and the analysis for the periodic case applies to this
case as well.

We discuss the modifications of the analysis for the periodic boundary condition.
We cannot solve �huh D f h exactly with uh periodic; instead we solve

�huh
D f h

� f h
0 ; (2–30)

where f h
0

is the mean value of f h. Since �huh has mean value zero, and the
number of irregular points is O.h�dC1/, it follows from (2–9), (2–10) that

f h
0 D O.h2/;

so that this term does not affect the error estimate. Lemma 2.2 must be replaced by
the version below. The proof of Lemma 2.3 is similar to the earlier case but simpler.
The new term F0 is treated in the theorem like the term f reg.

Lemma 2.6. Suppose f irr is a function on �h which is nonzero only on the set
of irregular points. Assume S is C 1. Then there exist periodic functions Fk on
�h [ @0�h, 0 � k � d , so that Fk D 0 on @0�h for 1 � k � d ,

f irr
D F0 C

3X
kD1

D�
k Fk in �h (2–31)

and
kFkkmax;�h[@0�h

� C hkf irr
kmax;�h

; 0 � k � d (2–32)

where C depends on S but is independent of h.
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3. Proofs of the lemmas

Proof of Lemma 2.2. For simplicity, we assume dimension d D 3. We wish to work
with pieces of S for which one spatial coordinate can be written as a function of
the others. We can localize using a partition of unity (see, for example, [14], p. 13):
Since S is C 1 and compact, there are finitely many open sets Ui ; Vi � � and C 1

functions �i � 0 on � so that SVi � Ui ; the Vi cover S ; each �i is supported in Vi ;P
i �i.x/ D 1 for each x in an open neighborhood N of S ; and for each i we can

choose one coordinate, say x3, so that the part of S in Ui consists of

S \ Ui D f.x1; x2; Zi.x1; x2// W .x1; x2/ 2 U 0
i g; (3–1)

where U 0
i is an open subset of R2 and Z W U 0

i ! R is a C 1 function. Since the
irregular points are within distance h of S , they are contained in N once h is small
enough. For f irr as specified, we can then write f irr D

P
i �if

irr. It will suffice to
prove the lemma for each f .i/ D �if

irr.
Having localized the problem to considering f .i/ on Vi , we first estimate the

number of irregular points in Vi with given projection on U 0
i . Let V 0

i be the
projection of Vi on U 0

i . Suppose x0 D j h D .j1h; j2h/ 2 V 0
i . If p D .x0; z/ 2 Vi is

an irregular point, then there is some q 2 S with jq �pj � h, say q D .x00; z00/ with
x00 2 U 0

i . Then jx00 � x0j � h, jz00 � zj � h, and z00 D Zi.x
00/. If M is a bound for

jrZi j, then jZi.x
00/ � Zi.x

0/j � M h, and

jz � Zi.x
0/j � jz � z00

j C jZi.x
00/ � Zi.x

0/j � .1 C M /h: (3–2)

Thus z is restricted to an interval of length 2.M C 1/h, and the number of irregular
points in Vi projecting onto x0 is at most C1 � 2M C 3, a number bounded
independent of x0 D j h.

We will write f .i/ as D�
3

F .i/ for some F .i/. We set F .i/ D 0 on @0�h, and for
.j h; kh/ D .j1h; j2h; kh/ 2 �h we define

F .i/.j h; kh/ D

kX
`D1

f .i/.j h; `h/ h: (3–3)

Then, since kh is the third coordinate,

D�
3 F .i/

D f .i/ in �h: (3–4)

The function f .i/ can only be nonzero at irregular points, and as noted above, the
number of such points contributing to the sum (3–3) has a uniform upper bound.
The estimate (2–17) for F .i/ follows, and the proof is completed by summing
over i . �
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In proving Lemma 2.3 we will use a discrete Green’s function Gh on hZd ,
satisfying

�hGh.x/ D ıh.x/; x 2 hZd ; (3–5)

where ıh.x/ D h�d for x D 0 and ıh.x/ D 0 for x ¤ 0. For d D 2 or 3 such Gh

exists, with pointwise estimates analogous to those for the fundamental solution of
the exact Laplacian,

jGh.x/j � C00 C C0j log.jxj C h/j; d D 2; (3–6)

jGh.x/j � C0.jxj C h/�1; d D 3; (3–7)

and for the first and second differences in directions k or `, 1 � k; ` � d ,

jDC

k
Gh.x/j � C1.jxj C h/1�d ; d D 2; 3; (3–8)

jDC

`
DC

k
Gh.x/j � C2.jxj C h/�d ; d D 2; 3: (3–9)

For example, for h D 1, G1 is introduced in [23] in terms of the expected number
of visits to x by a random walk on Zd starting at 0. The estimates (3–6)–(3–9)
follow from those in [23], (pp. 32, 40), after rescaling G1 to Gh. (For d D 2, Gh

must also be adjusted by a constant. For second differences, [23] gives an estimate
for a repeated difference in any direction, but DC

k
DC

`
can be reduced to this case

by writing, with h D 1,

.Sk � I/.S` � I/ D
1
2

�
.Sk � I/2

C .S` � I/2
� S2

` .SkS�1
` � I/2

�
(3–10)

where Sk is the forward shift in direction k.) If w is a function on hZd supported
in a bounded set, then

w.x/ D

X
y2hZd

Gh.x � y/.�hw/.y/ hd : (3–11)

This follows from (3–5) and the uniqueness of solution of the discrete Poisson
problem.

We will need estimates for norms of Gh, DC

k
Gh, and D�

`
DC

k
Gh which follow

directly from the pointwise estimates (3–6)–(3–9). With Bh.R/ D fx 2 hZd W jxj <

Rg, we have

kGhk2;Bh.R/ � C0.R/; kDC

k
Ghk1;Bh.R/ � C1.R/; (3–12)

kDC

`
DC

k
Ghk1;Bh.R/ � C2.R/ log .1=h/; (3–13)

with constants depending on R. Discrete Green’s functions for more general elliptic
operators and domains were constructed by Bramble et al. [7] and pointwise
estimates for Gh were found using the maximum principle [8].
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Proof of Lemma 2.3. First we check that

kr
C

h
vk2;�h[@0�h

� C
�
kf reg

k2;�h
C

X
k

kFkk2;�h

�
: (3–14)

To show this, we multiply by v in (2–18), sum over �h, and then sum by parts on
the left and in the Fk terms, using the boundary conditions for v and Fk , to obtain

hr
C

h
v; r

C

h
vi�h[@0�h

D �hf reg; vi�h
C

X
k

hFk ; DC

k
vi�h

; (3–15)

where brackets denote the usual discrete inner product, for example,

hv; wi�h
D

X
jh2�h

v.j h/w.j h/hd ; kvk2;�h
D hv; vi

1=2
�h

: (3–16)

We can then derive (3–15) from the Cauchy–Schwarz inequality and the discrete
Poincaré inequality, valid since v D 0 on @�,

kvk2;�h
� kr

C

h
vk2;�h[@0�h

: (3–17)

Next we extend the Poisson equation from �h to hZd . Let Qf be the odd, periodic
extension of f reg, with period 2Nkh in direction k, with Qf D 0 on the faces

jkh D 0; Nkh

and their images. Let Q�k be the similar odd periodic extension of D�
k

Fk , and Qv the
odd periodic extension of v. Then

�h Qv D Qf C

X
k

Q�k in hZd : (3–18)

We want to write Q�k as D�
k

of some extension QFk of Fk . For example, if k D 1

and d D 3, for 1 � j1 � N1 and 0 � jk � Nk � 1, k D 2; 3, we define

QF1.�j1h; j2h; j3h/ D F1..j1 � 1/h; j2h; j3/h:

We then extend QF1 to all j1h, with period 2N1h. Finally we extend QF1 to be odd
and periodic in j2h; j3h, with QF1.j1h; j2h; j3h/ D 0 if jkh is a multiple of Nkh

for k D 2 or 3. With this definition, and a similar one for each QFk , we have

Q�k D D�
k

QFk in hZd : (3–19)

We can now derive the maximum estimate for v. Choose a smooth function
� W Rd ! Œ0; 1� with �.x/ D 1 for an open set containing S� and � D 0 outside a
bounded set B. Then

�h.� Qv/ D � Qf C �r
�
h � QF � r

˙
h � � r

˙
h Qv � .�h�/ Qv in hZd ; (3–20)
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where QF is the vector with components QFk and ˙ indicates two terms. We use the
discrete Green’s function Gh to write, for x 2 �h,

v.x/ D T1 C T2 C T3 C T4; (3–21)

where

T1 D

X
y2hZd

Gh.x�y/�.y/ Qf .y/ hd ; T2 D

X
y2hZd

Gh.x�y/�.y/r�
h � QF .y/ hd

or, after summation by parts,

T2 D

X
y2hZd

.rC

h
Gh/.x � y/�.y/ QF .y/ hd

�

X
y2hZd

Gh.x � y/.rC

h
�/.y/ QF .y/ hd (3–22)

and similarly T3; T4 are discrete convolutions of Gh with r˙
h

� � r˙
h

Qv and .�h�/ Qv.
To estimate these terms, let QB � Rd be a bounded set which contains all points

x � y with x 2 S� and y 2 B, and let Bh D B \ hZd , QBh D QB \ hZd . Then for
each x 2 �h,

jT1j � kGhk
2; QBh

k Qf k2;Bh
;

jT2j �
�
kr

C

h
Ghk

1; QBh
C C2kGhk

2; QBh

� (3–23)

and
jT3j � C3kGhk

2; QBh

�
kr

C

h
Qvk2;Bh

C kr
�
h Qvk2;Bh

�
;

jT4j � C4kGhk
2; QBh

k Qvk2;Bh
:

(3–24)

The extension of f and F was such that

k Qf k2;Bh
� C kf reg

k2;�h
; k QFkmax;Bh

� C kFkmax;�h[@0�h
(3–25)

and using (3–12) we get

jT1j C jT2j � C
�
kf reg

k2;�h
C kFkmax;�h[@0�h

�
: (3–26)

Also v was extended so that

k Qvk2;Bh
� C kvk2;�h

; kr
˙
h Qvk2;Bh

� C kr
C

h
vk2;�h[@0�h

: (3–27)

Combining this with (3–24), (3–14), (3–17), and (3–12), we see that T3; T4 have
the same estimate as in (3–26), and (2–21) is now established.

The proof of (2–22) is very similar. We apply DC

`
to (3–21) with T2 in the form

(3–22); in each term D�
`

acts on the x-variable in Gh. In T3 and T4, DC

`
Gh is

uniformly bounded for x 2 �h since the support of r˙
h

� is away from �h. �
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Proof of Lemma 2.4. We first reduce to the case f˙ D 0, as in [18]. From the
Schauder regularity theory, the presumed solution uC is C 4C˛ away from S . Using
this fact and the Schauder theory, we see that there exists vC in C 4C˛.Rd � ��/

such that �vC D fC and vC D 0 on S , and there exists v� in C 4C˛.S��/ such that
�v� D f� and v� D 0 on S . Subtracting v˙, we now consider the reduced problem
with f˙ D 0. We can write a solution as the sum of a double layer potential and
a single layer, with strengths g0 and g1 respectively. The double layer potential
has boundary values on each side of S in C 4C˛ , the same as for g0, and it follows
from the Schauder theory that it has the desired regularity in S�˙. A similar remark
applies to the Neumann boundary condition for the single layer potential. This
solution may not be the same as u˙, since we have not imposed a condition at
infinity, but the difference is harmonic throughout and therefore is smooth. �

Proof of Lemma 2.6. We proceed as in the proof of Lemma 2.2, but in place of
(3–3), we set F .i/.j h; 0/ D 0 and

F .i/.j h; kh/ D

kX
`D1

�
f .i/.j h; `h/ � F

.i/
0

.j h/
�

h; 1 � k � N3; (3–28)

where F
.i/
0

.j h/ is the average of f
.i/

0
.j h; `h/ over `, that is,

F
.i/
0

.j h/ D A�1
3

N3�1X
`D0

f .i/.j h; `h/ h (3–29)

for j h 2 V 0
i and F

.i/
0

.j h/ D 0 otherwise. Then F .i/.j h; N3h/ D 0, so that F .i/

extends periodically, and

f .i/
D D�

3 F .i/
C F

.i/
0

: (3–30)

For each j , there are at most C1 D O.1/ terms in the sum (3–28), and thus

kF
.i/
0

kmax � A�1
3 C1hkf .i/

kmax � A�1
3 C1hkf irr

kmax: (3–31)

Then (2–17) holds for F .i/, as defined in (3–28). Finally, we sum over i . �

4. Applications and extensions

Piecewise constant coefficients. In Section 2 we treated the problem (1–1), (1–2)
in the special case ˇC D ˇ�. We now return to the problem where ˇC, ˇ� are
unequal, positive constants, perhaps representing different material properties. The
important change is that Œ@nu� is not known, although Œˇ@nu� is known. One
possible approach is to enlarge the system of equations for the discretized elliptic
system ([37; 27]). Here we use a different strategy, assuming the problem is in free
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space: We first solve an integral equation on S for the unknown Œ@nu�, based on
an integral representation for the solution, thus reducing the problem to the earlier
case. A similar strategy is used below for Stokes flow with two fluids, using such a
representation, as described, for example, in [36].

Suppose the problem (1–1), (1–2) is the restriction to � of a problem in R2 in
which fC D 0 outside � and u ! 0 at infinity. We will assume u is continuous
across S , that is, g0 D 0 in (1–2), but Œˇ@nu� D g1 may be nonzero. The extra step
of solving for Œ@nu� is needed even if g1 D 0. The unknown u can be thought of as
a weak solution of

r � .ˇru/ D f C g1ıS ; (4–1)

where ıS is the measure that restricts to S . A recent analytical treatment of such
problems can be found in [18]. The solution has the form

u.x/ D

Z
�

G.x � y/
f .y/

ˇ.y/
dy C

Z
S

G.x � y/q.y/ ds.y/ (4–2)

for some q defined on S , where G.x/ D .2�/�1 log jxj, ˇ.y/ D ˇ˙ for y 2 �˙ and
f D f˙. The last term is a single layer potential with strength q, to be determined.
From potential theory we have an expression for the normal derivative of u˙ at S :

@nu˙.x/ DZ
�

@n.x/G.x�y/
f .y/

ˇ.y/
dy C

Z
S

@n.x/G.x�y/q.y/ ds.y/ ˙
1
2

q.x/: (4–3)

Here

@n.x/G.x � y/ D n.x/ � rG.x � y/; rG.x � y/ D
x � y

2�jx � yj2
: (4–4)

Subtracting, we see that

Œ@nu.x/� D q.x/ (4–5)

so that, once q is known, we have reduced the problem to one of the earlier type for
the unknown u. To find q we multiply (4–3) by ˇ˙, subtract, and use the second
condition in (1–2), obtaining the integral equation

1
2
.ˇC C ˇ�/q C .ˇC � ˇ�/

Z
S

.@nG/q ds D

g1 � .ˇC � ˇ�/

Z
�

.@nG/ .f=ˇ/ dy (4–6)

([36], Section 5.3). The equation has a unique solution since

j.ˇC C ˇ�/=.ˇC � ˇ�/j > 1
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(see, for example, [36], Section 5.4). In this two-dimensional case, @n.x/G.x � y/

is smooth for x; y 2 S , whereas the second integrand in (4–2) has an integrable
singularity. If fC D 0 near @�, u can be found on @� from (4–2) in a routine way,
and the solution u can be found as in Section 2 using (4–5). We see from (2–23)–
(2–26) that we need to solve for q with accuracy O.h2/ in order to obtain O.h/

truncation error near S , and thereby O.h2/ accuracy for the solution u, according
to the theory of Section 2. The solution of (4–6) is discussed further in Section 5;
see (5–10)–(5–11).

Higher order accuracy. In principle, the theory of Sections 2 and 3 can be applied
to higher order methods. In dimension d D 2, the nine-point Laplacian (see, for
example, [19], Section 7.3) has truncation error O.h2/ proportional to the Laplacian,
with remaining error O.h4/. The right-hand side of the discrete Poisson equation
can be modified so that the truncation error is O.h4/. In this way the methods
outlined in Section 2 can then be improved so that the error in the solution is
uniformly O.h4/. The jump conditions of (2–23)-(2–26) can be carried to the
fourth derivatives so that the truncation error �h in (2–10) remaining at the irregular
points after correction is O.h3/, while at the regular points the truncation error
is O.h4/. The analogue of Lemma 2.3 holds for the nine-point Laplacian; the
estimates (3–6), (3–8), (3–9) apply to the discrete Green’s function for this operator,
as can be seen from Theorem 2 in [16], and thus (3–12), (3–13) hold as well. It
then follows from Lemma 2.2 and the modified version of Lemma 2.3 that the
conclusion of Theorem 2.1 holds, with h4 in place of h2 in the estimates (2–14),
(2–15). Fourth order methods of this type have been given in [30] and [20].

Nearly singular integrals. Mayo [33] suggested a procedure to solve a problem
for a harmonic function with prescribed jumps, such as (2.1) with f˙ D 0, distinct
from the approach of [32]. The first step is to write the solution as a layer potential
and calculate it at grid points near the interface, directly as a nearly singular integral.
The discrete Laplacian is then formed at the irregular points from these values
and extended to be zero at regular points. Finally, a fast Poisson solver is used
to find the solution at all grid points. Mayo was able to solve a boundary value
problem in this manner by regarding the boundary as an interface and solving an
integral equation for the strength of the layer potential. Beale and Lai [2] developed
a method for computing nearly singular integrals and used the approach of [33]
to solve Dirichlet problems ([2], Section 4). An error estimate for the solution
resulting from this procedure is justified by the theory of Section 2: Suppose we
find the solution at the irregular points, accurate to O.h3/, as was essentially done
in [2], Section 4. The discrete Laplacian formed from these values at the irregular
grid points near the interface is accurate at least to O.h/. The discrete Laplacian is
set to zero elsewhere, with truncation error O.h2/. Thus it follows from Theorem
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2.1 that the computed solution is uniformly accurate to O.h2/. The estimate for
the gradient applies as well. Mayo gave an argument for a similar conclusion in the
Appendix of [33].

Stokes flow. The methods studied here have been used to solve the Stokes equations,
describing creeping flow of a very viscous fluid, with an interface separating regions.
The immersed interface method of LeVeque and Li was applied to problems with
moving interfaces in one fluid in a periodic region [25]. Here we discuss a very
similar method for the steady problem in free space. We emphasize the implications
of the present results for the error estimates. We see that choices for corrections
as in [25] lead to uniform O.h2/ accuracy for both pressure and velocity. We first
discuss the case of 2D flow with one fluid, and then explain how the procedure
can be extended to the two-fluid case by first solving an integral equation on the
interface.

We write the problem as

� ��v C rp D f ıS ; r � v D 0; (4–7)

where v D .v1; v2/ is the fluid velocity, � is the viscosity, p is the pressure, and
f D .f1; f2/ is a specified force on the interface S . The associated stress tensor is

�ij D �pıij C �
� @vi

@xj
C

@vj

@xi

�
; (4–8)

with i; j D 1; 2. We assume for now that � has the same value on both sides, but
later we consider the case of different viscosities. We always assume the velocity is
continuous across S . The delta function terms in the Stokes equations amount to a
jump condition on � (see [35]),

Œ�ij �nj D �fi ; i D 1; 2 (4–9)

with sum over j understood. From the jump in stress we obtain jump conditions
for p and @v=@n [35; 25]

Œp� D f � n; �

�
@v

@n

�
D �.f � �/�: (4–10)

We also need the jump condition for @p=@n, derived in [25],�
@p

@n

�
D

@.f � �/

@s
; (4–11)

where s is the arclength parameter on S .
To solve (4–7) we proceed in steps, as in [25], solving first for p and then for

v. We choose a computational rectangle � containing S and use a square grid
as before. We solve the free space problem, assuming decay at infinity. On the
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computational boundary we prescribe the exact solution, which is known in integral
form (for example, see [36; 13]). The pressure is

p.x/ D

Z
S

rG.x � y/ � f .y/ ds.y/; (4–12)

with rG as in (4–4). The velocity is

vi.x/ D
1

�

Z
S

Vij .x � y/fj .y/ ds.y/; (4–13)

Vij .x/ D �
ıij

4�
log jxj C

xixj

4�jxj2
: (4–14)

The pressure p is determined by a problem of the form (2–1), with �p D 0 in
�˙ and jump conditions for p; @p=@n given in (4–10), (4–11). We solve for p

using the procedure of Section 2, adding corrections to the discrete Laplacian. In
this way we obtain a solution ph with error uniformly O.h2/. Next we solve for
the velocity components vh

1
; vh

2
. For the exact v we have ��v D rp in �˙. We

find a computed velocity vh as the solution of

��hvh
D r

hph
C T h; (4–15)

where rh is the centered difference operator for r. In T h we include correction
terms to account for the jumps in @v=@n and in rp, given in (4–10), (4–11), as well
as corrections for the difference approximation to rp, as in (2–27). According to
Theorem 2.1, the resulting vh would be uniformly second-order accurate if ph were
exact. However, since ph �pe D O.h2/ uniformly, the error on the right-hand side
of the form rh.ph � pe/ contributes an error to the solution which is uniformly
O.h2/, according to Lemma 2.3. (As noted in [25], we only need correct the
difference rhp to O.h/ near S to obtain O.h2/ accuracy for the velocity.)

Stokes flow with two fluids. Next we consider the case of two different viscosities,
�˙. With the Stokes equations (4–7) otherwise the same, we have the same jump
condition (4–9) for the normal stress. The solution can be written in integral form,
derived in [36], Section 5.3:

p.x/ D �˙

Z
S

rG.x � y/ � q.y/ ds.y/; (4–16)

vi.x/ D

Z
S

Vij .x � y/qj .y/ ds.y/: (4–17)

Here q D .q1; q2/ is a function on S which solves the integral equation

1
2
qi.x/ D ˛nk.x/

Z
S

Tijk.x � y/qj .y/ ds.y/ C f̌i.x/; (4–18)
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with

Tijk D �
xixj xk

�jxj4
; ˛ D

�C � ��

�C C ��

; ˇ D
1

�C C ��

: (4–19)

(See equation (5.3.9) in [36], noting the factors of 4� should be replaced by 2�

in the two-dimensional case.) To solve the flow problem, we begin by solving
this integral equation for q. The solvability is discussed in [36], Section 5.4. The
kernel nkTijk is smooth on S , and the integrals can be computed in a standard way.
After solving for q, we can think of v; p=�˙ on �˙ as the solution of the Stokes
equations with �˙ replaced by 1 and with

Œ�
.1/
ij � nj D �qi ; (4–20)

where

�
.1/
ij D �

p

�˙

ıij C

� @vi

@xj
C

@vj

@xi

�
: (4–21)

It follows that v; p=�˙ have jumps as in (4–10), (4–11) but with f replaced by q.
Once these jumps are known, we can solve for p=�˙ and then v as in the earlier
one-fluid case. In view of (2–23)–(2–26), we need to find q to accuracy O.h3/ to
obtain an O.h/ truncation error near S in the problem for p of the form (4–10), in
order to solve for p, and then v, with O.h2/ accuracy. It is not difficult to solve
the integral equation (4–18) to this accuracy provided S and f are smooth enough.

5. Numerical examples

Interface problem with ˇC D ˇ�. In the first set of examples, we consider the
interface problem with ˇ˙ D 1:

�u˙ D f˙ in �˙; (5–1)

where the interface S is given by the ellipse

x2

a2
C

y2

b2
D 1 (5–2)

and � D Œ�1:1; 1:1� � Œ�1:1; 1:1�.
The first example we consider has a solution given by

u� D sin x cos y; uC D 0: (5–3)

With u˙ specified, f˙ in (5–1) and the jump conditions g0 and g1 can be determined.
Two choices for the semi-axes of the ellipse were used, first, .a; b/ D .0:7; 0:9/,
and then .a; b/ D .0:9; 0:1/. In the latter, the curvature � D �90 at .˙a; 0/, leading
to a more severe test. The solution and its gradient were computed using the
technique of Mayo [32] and using the immersed interface method of LeVeque
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and Li [24]. Results for the two ellipses are reported in Table 1. Solutions were
obtained for N D 40, 80, 160, 320, and 640, where N denotes half of the number
of subintervals in each dimension. Normalized errors in the Lr -norm, defined
as kuh � uekr =kuhkr , are shown for r D 2 and 1. These results show O.h2/

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

40 5.106E-5 3.451E-5 1.448E-4 1.370E-4 2.120E-4 1.436E-4
80 1.415E-5 1.045E-5 3.565E-5 3.275E-5 5.475E-5 3.594E-5

160 3.416E-6 2.458E-6 8.980E-6 8.269E-6 1.336E-5 8.965E-6
320 8.217E-7 5.728E-7 2.262E-6 2.089E-6 3.269E-6 2.352E-6
640 1.180E-7 8.756E-8 4.189E-7 3.945E-7 5.532E-7 4.186E-7

Immersed interface method

40 2.345E-5 1.773E-5 1.107E-4 1.035E-4 1.362E-4 1.302E-4
80 2.748E-5 2.632E-5 2.748E-5 2.632E-5 3.613E-5 3.510E-5

160 1.510E-6 1.139E-6 6.912E-6 6.656E-6 8.856E-6 8.989E-6
320 3.722E-7 2.805E-7 1.731E-6 1.664E-6 2.199E-6 2.323E-6
640 9.732E-8 7.645E-8 4.305E-7 4.166E-7 5.184E-7 5.967E-7

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

20 2.377E-5 1.209E-5 4.926E-4 4.900E-4 1.506E-3 9.577E-4
40 6.020E-6 2.730E-6 1.231E-4 1.219E-4 3.637E-4 2.269E-4
80 2.261E-6 1.003E-6 3.057E-5 3.001E-5 1.424E-4 1.376E-4

160 5.730E-7 2.340E-7 7.637E-6 7.532E-6 3.649E-5 3.331E-5
320 1.297E-7 5.360E-8 1.915E-6 1.951E-6 8.189E-6 8.309E-6

Immersed interface method

20 7.134E-4 6.933E-4 1.601E-3 3.051E-3 6.267E-2 7.441E-2
40 1.311E-5 7.441E-6 1.221E-4 1.611E-4 9.386E-4 1.559E-3
80 4.750E-6 2.043E-6 2.993E-5 3.538E-5 3.019E-4 2.047E-4

160 1.210E-6 5.156E-7 7.468E-6 7.949E-6 7.696E-5 5.145E-5
320 2.972E-7 1.249E-7 1.869E-6 2.036E-6 1.881E-5 1.277E-5

Table 1. Results for interface problem with ˇ D 1, example (5–3).
Normalized errors in computed solution and first derivatives. Top:
a D 0:7, b D 0:9; bottom: a D 0:9, b D 0:1.
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convergence in the solution u, consistent with Theorem 2.1. In Section 2, we
proved that ru can be approximated from uh with error uniformly O.h2 log.1=h//.
However, results in both tables show O.h2/ accuracy in ruh.

We then consider a second example where the solution is given by

u� D x9y8; uC D 0: (5–4)

This example is constructed such that the solution has large high-order derivatives.
In particular, j@3u=@x3j and j@3u=@y3j, which occur in the lowest-order uncorrected
terms in both Mayo’s method and the immersed interface method, are large. Tables 2
and 3 show normalized errors in the solution and its gradient. Results in Table 2,
computed for the ellipse .a; b/ D .0:7; 0:9/, show O.h2/ convergence, although the
magnitude of the errors is larger in this example. In particular, as in the previous
example, O.h2/ accuracy was obtained for ruh.

The ellipse .a; b/ D .0:9; 0:1/ used in the next example has large curvature
j�j � 90, compared to j�j < 1:84 in the previous example. As shown in Table 3, the
computed solution has large errors, compared to all previous examples. In particular,
solution errors are > 100% for N D 40. These large errors can be attributed to the
O.h3/ error terms neglected in (2–26) by Mayo’s technique and in the analogous
expression by the immersed interface method. The magnitude of these O.h3/ error
terms is proportional to � and to r3u — both of which are large in this example by

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

40 2.370E-2 6.401E-3 2.489E-2 1.994E-2 1.340E-2 1.046E-2
80 7.469E-3 2.764E-3 5.895E-3 5.520E-3 3.249E-3 2.385E-3

160 1.362E-3 4.802E-4 1.508E-3 1.411E-3 7.825E-4 6.834E-4
320 3.232E-4 9.426E-5 3.858E-4 3.532E-4 1.985E-4 1.768E-4
640 8.363E-5 2.952E-5 9.389E-5 9.304E-5 4.839E-5 4.211E-5

Immersed interface method

40 2.140E-2 5.699E-3 2.557E-2 2.096E-2 1.390E-2 1.144E-2
80 6.963E-3 2.478E-3 6.139E-3 5.840E-3 3.546E-3 2.695E-3

160 1.236E-3 3.719E-4 1.565E-3 1.489E-3 8.571E-4 7.456E-4
320 2.815E-4 7.053E-5 3.992E-4 3.749E-4 2.170E-4 1.931E-4
640 7.858E-5 2.502E-5 9.742E-5 9.795E-5 5.365E-5 4.618E-5

Table 2. Results for interface problem with ˇ D 1, example (5–4).
Normalized errors in computed solution and first derivatives, ob-
tained for a D 0:7, b D 0:9.
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construction. Thus, for a sufficiently coarse grid, these uncorrected O.h3/ error
terms result in large solution errors. Nonetheless, for sufficiently large N , the
approximations show O.h2/ convergence, although the error magnitude remains
large.

Interface problem with piecewise-constant ˇ . Next we consider the problem of
an interface with piecewise-constant coefficients ˇ˙

ˇ˙�u˙ D f˙ in �˙; (5–5)

Œu� D 0; Œˇ@nu� D g1; (5–6)

where the interface S is given by an ellipse (5–2) with a D 0:9 and b D 0:7, and
� D Œ�1:3; 1:3� � Œ�1:3; 1:3�. The solution is given in elliptic coordinates to be

u� D a3
0

�
cosh2 � sinh � cos2 � sin � C sinh3 � sin3 �

�
;

uC D ce�3� sin 3� C de�� sin �;
(5–7)

where � 2 Œ0; 1/ and � 2 Œ0; 2��; � and � are defined by the conformal mapping

x C {y D a cosh.� C {�/ (5–8)
such that

x D a0 cosh � cos �; y D a0 sinh � sin �: (5–9)

N
u ux uy

L2 L1 L2 L1 L2 L1

Mayo’s technique

40 5.068E0 2.356E0 4.146E0 3.575E0 8.513E-1 6.492E-1
80 6.787E-1 1.946E-1 6.443E-1 4.322E-1 2.004E-1 1.523E-1

160 1.388E-1 3.359E-2 1.236E-1 1.107E-1 4.859E-2 4.095E-2
320 3.777E-2 9.627E-3 2.523E-2 2.869E-2 1.120E-2 1.128E-2
640 8.629E-3 2.126E-2 5.548E-3 7.501E-3 3.003E-3 3.019E-3

Immersed interface method

40 4.683E0 2.291E0 4.183E0 3.663E0 8.542E-1 6.511E-1
80 6.262E-1 1.791E-1 6.452E-1 3.264E-1 2.009E-1 1.527E-1

160 1.391E-1 3.015E-2 1.251E-1 1.133E-1 4.871E-2 4.101E-2
320 3.493E-2 8.695E-3 2.549E-2 2.944E-2 1.202E-2 1.130E-2
640 8.665E-3 1.921E-3 5.731E-3 7.663E-3 3.009E-3 3.024E-3

Table 3. Results for interface problem with ˇ D 1, example (5–4).
Normalized errors in computed solution and first derivatives, ob-
tained for a D 0:9, b D 0:1.
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Note that uC is harmonic, that is, fC D 0. The coefficients c and d in (5–7) are set
to 1.26713535 and 1.12854242, respectively, so that Œu� D 0.

To compute the solution for (5–5) and (5–6), Œ@nu� � q is first computed by
solving (4–6) iteratively:

qŒkC1�
D

2

ˇC C ˇ�

�
g1 � .ˇC � ˇ�/

�Z
S

.@nG/qŒk� ds C

Z
��

�
@nG

�
.f�=ˇ/ dy

��
(5–10)

Because @n.x/G.x � y/ is nearly singular for y near (though not on) S , a naı̈ve
integration of the second integral containing @nG yields only O.h/ accuracy. To
attain O.h2/ accuracy, we follow a standard procedure and subtract

@n.x/G.x � y/f�.x/=ˇ

from the integrand, where x 2 S is the point at which q.x/ in (5–10) is being
evaluated; then we add an O.h2/ approximation to f�.x/=ˇ timesZ

�

@n.x/G.x � y/ dy D �

Z
S

n.x/ � n.y/G.x � y/ ds.y/: (5–11)

The resulting interface condition Œ@nu� D q, together with Œu� D 0, is then used
to solve (5–5): f˙ is divided by ˇ˙, and then u is computed as in the previous
example with constant coefficient ˇ D 1.

Normalized errors in u are shown in Table 4 for two pairs of coefficients. In
the first case, ˇC D 2 and ˇ� D 0:5; in the second case the difference between
ˇ’s is increased substantially: ˇC D 100 and ˇ� D 0:2. Mayo’s technique was
used to compute correction terms for the finite-difference stencil. The results in
Table 4 suggest that, for this problem, not only is O.h2/ accuracy obtained as
predicted by Theorem 2.1, but the accuracy of the method is insensitive to the
difference between the ˇ’s. We did observe a small increase (�20%) in the number

N L2 L1

ˇC D 2, ˇ� D 0:5

40 1.979E-2 7.252E-2
80 5.637E-4 1.058E-3

160 1.381E-4 2.565E-4
320 3.485E-5 6.507E-5

N L2 L1

ˇC D 100, ˇ� D 0:2

40 2.002E-2 7.298E-2
80 4.618E-4 9.524E-4

160 1.123E-4 2.302E-4
320 2.847E-5 5.857E-5

Table 4. Normalized errors in computed solution for the interface
problem with piecewise-constant ˇ˙. N denotes half of the number
of subintervals in each dimension and along the interface S .
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of iterations required for (5–10) to converge, when the ratio ˇC=ˇ� was increased
from 4 to 50. Similar results were also obtained for the immersed interface method,
and for the cases where ˇ� > ˇC.

Stokes equations. In the third example we solved the Stokes equations (4–7) for
two fluids. In [13], Cortez derived analytic solutions for the one-fluid case where
the enclosed boundary is a unit circle; see examples 4a and 4b in [13]. In each of
those examples, the boundary force has either a normal or a tangential component.
To obtain a more general example with nontrivial jumps Œp�, Œ@p=@n�, Œ@v=@n�,
we combined those two examples by adding the two solutions, and extended the
resulting example to the two-fluid case. To that end, we assumed the same v as
in [13], scaled p by the appropriate viscosity �˙, and computed boundary forces
using (4–8) and (4–9). The resulting pressure and velocities are given by

p.r; �/ D

(
�Cr�3.sin 3� � cos 3�/; r � 1;

���r3.sin 3� C cos 3�/; r < 1;
(5–12)

v1.r; �/ D

8̂̂̂̂
<̂
ˆ̂̂:

1
8
r�2.sin 2��cos 2�/ C

1
16

r�4.�3 sin 4�C5 cos 4�/

C
1
4
r�2.sin 4��cos 4�/; r � 1;

1
8
r2.3 sin 2�Ccos 2�/ C

1
16

r4.sin 4�Ccos 4�/

C
1
4
r4.� sin 2��cos 2�/; r < 1;

(5–13)

v2.r; �/ D

8̂̂̂̂
<̂
ˆ̂̂:

1
8
r�2.sin 2�Ccos 2�/ C

1
16

r�4.5 sin 4�C3 cos 4�/

C
1
4
r�2.� sin 4��cos 4�/; r � 1;

1
8
r2.3 sin 2��sin 2�/ C

1
16

r4.sin 4��cos 4�/

C
1
4
r4.sin 2��cos 2�/; r < 1:

(5–14)

With p and v chosen, the boundary force f is determined by (4–8), (4–9). The
viscosities �C and �� were set to 0.5 and 2, respectively. The computational
domain � was chosen to be Œ�3:0; 3:0� � Œ�3:0; 3:0�.

The solution was computed following the procedure described in Section 4.
As noted there, the integral equation (4–18) must be solved to O.h3/ accuracy
so that the corrections at the interface lead to an O.h2/ solution of the problem.
The integral in (4–18) was approximated using the trapezoid rule, providing the
necessary accuracy when S is a unit circle. Table 5 shows normalized errors in
the solution obtained using Mayo’s technique [32]. These results show evidence of
the expected O.h2/ convergence. The immersed interface method yielded similar
accuracy.
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N
p u v

L2 L1 L2 L1 L2 L1

40 4.769E-2 7.646E-2 5.358E-2 4.558E-2 4.004E-2 3.726E-2
80 1.264E-2 2.192E-2 1.687E-2 1.377E-2 9.338E-3 8.745E-3

160 3.233E-3 5.485E-3 2.597E-3 2.268E-3 2.712E-3 2.564E-3
320 7.811E-4 1.352E-3 6.641E-4 5.825E-4 6.003E-4 5.458E-4
640 1.973E-4 3.385E-4 1.507E-4 1.326E-4 1.605E-4 1.480E-4

Table 5. Normalized errors in computed solution for the Stokes
equations. N denotes half of the number of subintervals in each
dimension and along the interface S . Results show second-order
convergence.

Appendix

The following lemma shows that a parabola y D ax2 C b can cross a vertical grid
line, near the vertex, such that the vertical distance from a grid point is of any
specified order in h for small h. Thus a hypothesis such as in Theorem 5.2 of Œ27�

is often violated.

Lemma A.1. Given a; b; � 2 R, with a ¤ 0 and 0 < � < 1, there are infinitely many
integers N > 0 such that, with h D 1=N , there is a point .x; y/ 2 R2 on the curve
y D ax2 C b of the form

x D j h; y D kh C ch1C� (A–1)

for some j ; k; c depending on N , where j and k are integers, 1
2

< c < 2, and
x D j h D O.h.1C�/=2/.

Proof. According to a theorem of Dirichlet (see [1], Section 6.1, for instance), if b

is irrational, there are infinitely many fractions m=N such that b D m=N C �=N 2

with j� j < 1. If b is irrational, we choose these N ; if b is rational, we can choose
infinitely many N so that b D m=N for some m, and we take � D 0 in the argument
to follow.

Substituting for x; y and b in ax2 C b D y, we seek j ; k; c so that

aj 2h2
C mh C �h2

D kh C ch1C� (A–2)

or, multiplying by N 2 D h�2,

aj 2
C mN C � D kN C cN 1�� : (A–3)
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We choose k D m and divide by a, so that the equation is now

j 2
C �=a D .c=a/N 1�� : (A–4)

We will first choose j as an approximate solution, ignoring � and c, and then choose
c. Let r D

p
N 1��=a, and let j be the greatest integer � r . Finally, define c so that

(A.4) holds, that is, c D .j 2 C �=a/=r2. It is easy to check that c ! 1 as r ! 1,
that is, as N ! 1. Finally, j D O.N 1=2��=2/, and x D j h D O.N �1=2��=2/. �
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