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A number of problems in image reconstruction and image processing can be
addressed, in principle, using the sinc kernel. Since the sinc kernel decays slowly,
however, it is generally avoided in favor of some more local but less precise choice.
In this paper, we describe the fast sinc transform, an algorithm which computes
the convolution of arbitrarily spaced data with the sinc kernel in O.N log N /

operations, where N denotes the number of data points. We briefly discuss
its application to the construction of optimal density compensation weights for
Fourier reconstruction and to the iterative approximation of the pseudoinverse of
the signal equation in MRI.

1. Introduction

A number of imaging modalities require the inversion of the equation

s.n/ D

Z
V

�.r/e2�{k.n/�rdr ; (1)

where k.n/ denotes the location of the nth measurement in the frequency domain
(“k-space”) and r denotes position in the image domain. It will be convenient below
to write this in operator form as

s D H�.r/ ; (2)

where H is the “continuous-to-discrete” Fourier operator which maps the image
space to the signal space. (In standard magnetic resonance imaging, �.r/ is the
proton spin density.)

We are particularly concerned with nonuniform sampling schemes, where the
points fk.n/g do not lie on a regular grid. The inversion of (2) is, of course, an
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inherently ill-posed problem; the space of all possible densities �.r/ is infinite
dimensional, while the vector of measurements fs.n/g is finite dimensional. In the
present paper, we concentrate on two possible approaches to reconstruction, leaving
a more general discussion to [12].

Scheme 1. The first reconstruction scheme relies on the inverse Fourier transform

�.r/ D

Z Z
s.k/e�2�{k�rdk ; (3)

or, more precisely, its approximation at M locations rm via

�.rm/ �

NX
nD1

s.n/e�2�{k.n/�rmwn: (4)

The computation of the sum (4) for every location appears to require O.NM /

operations. Using the nonuniform fast Fourier transform (NUFFT), however, this
can be accomplished using O..N C M / log.N C M // operations. This is now a
relatively mature technology [2; 6; 8; 9; 11; 14; 15; 17].

In (4), the values fwng can be considered quadrature weights, and it is shown in
[3; 12] that an optimal set of weights is given by the formula

1

wn
D

NX
mD1

sinc2.k.m/ � k.n//: (5)

Here, sinc.k/ � sin.�k/=�k and, in d dimensions, we define sinc.k/ D sinc.k1/

� sinc.k2/ � � � sinc.kd /, where k D .k1; k2; : : : ; kd /. While the evaluation of these
weights appears to require O.N 2/ operations, the fast sinc2 transform, described
below, makes use of the NUFFT to reduce the cost to O.N log N /.

Scheme 2. A second class of reconstruction schemes is based directly on the signal
equation (2). The minimum-norm least-squares solution to this problem, denoted
by O�.r/, can be found by applying HC, the pseudo-inverse [10] of the operator H,
to the signal. Following the discussion of [19], we write

O�.r/ D HCs D H|.HH|/Cs; (6)

where H| is the adjoint of H

ŒH|a�.r/ D

X
n

e�2�{k.n/�ra.n/;

where a D .a.1/; : : : ; a.n// and .HH|/C is the pseudoinverse of HH|.
Given the N sample points fk.n/g in k-space, it is straightforward to verify that

.HH|/mn D sinc.km � kn/: (7)
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For notational convenience, we let M D HH|. The desired function O�.r/ in (6) can
then be computed in two steps:

(1) Solve the system

M a D s (8)

(2) Compute

O�.r/ D H|a:

The matrix M , however, may be ill-conditioned, with the precise condition number
depending on the distribution of the sample points. (If two sample points coincide,
for example, M is actually singular.) Thus, it is natural, as in [19], to use the
pseudoinverse construction

a D M Cs ;

which can be computed using the singular value decomposition (SVD) at a cost
of O.N 3/ work. For this, some additional assumptions need to be made as to the
choice of regularization [10]. Alternatively, one can attempt an iterative solution of
(8). In [5], the authors suggest applying the conjugate gradient method, which is
suitable for symmetric positive definite matrices. Since the cost of applying M to a
vector is O.N 2/ work, the total cost of solving the system is of the order O.J �N 2/,
where J denotes the number of iterations.

Remark 1. Note that (4) can be written as

�.r/ � H|W s

where W is the diagonal matrix of quadrature weights. Thus, the quadrature
approach based on the inverse Fourier transform can be viewed as a diagonal
approximation (W s) of the pseudoinverse construction (M Cs). As a result, W

serves as a good preconditioner for the conjugate gradient method applied to (8).

In summary, both Scheme 1 and Scheme 2 would benefit from appropriate fast
algorithms: the optimal weights require a single convolution with the kernel sinc2.k/

and the iterative solution of the signal equation requires repeated convolution with
the kernel sinc.k/.

2. The fast sinc transform

Suppose now that we are given two sets of points fkn D .k1
n ; k2

n ; : : : ; kd
n /j n D

1; : : : ; N g, and fvm D .v1
m; v2

m; : : : ; vd
m/j m D 1; : : : ; M g, which we think of as

located in the frequency domain in d dimensions. The point sets fkng and fvmg

may or may not coincide. We define the d-dimensional sinc and sinc2 transforms
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by

Um D

NX
nD1

qn sinc.kn � vm/ and Wm D

NX
nD1

qn sinc2.kn � vm/; (9)

respectively. Clearly, the naive computation of either Um or Wm from qn requires
O.M � N / work. Since the transforms take the form of convolutions, it is perhaps
not surprising that the Fourier transform will play a role in the fast algorithm. Since
the data are not assumed to lie on a regular mesh, however, an essential ingredient
will be the nonuniform fast Fourier transform (NUFFT), mentioned above. In its
most general form, the NUFFT of “type 3” computes sums of the form

Gj D

PX
pD1

gp e�ikj �xp ; (10)

for j D 1; : : : ; J or

gp D

JX
jD1

Gj eCikj �xp ; (11)

for p D 1; : : : ; P in O..J C P / log.J C P // operations to any desired precision.
We will refer to equation (10) as the forward NUFFT. We can think of it as a
discretization of the continuous Fourier transform,

G.k/ D

Z 1

�1

� � �

Z 1

�1

g.x/ e�2�ix�k dx D Fg.x/; (12)

using nonuniformly sampled discretization points and evaluated at nonuniformly
sampled frequencies. We will refer to (11) as the adjoint NUFFT. We can think of
it as a discretization of the continuous inverse Fourier transform,

g.x/ D

Z 1

�1

� � �

Z 1

�1

G.k/ e2� ix�k dk D F�1G.k/; (13)

using nonuniformly sampled frequencies and evaluated at nonuniformly sampled
discretization points.

Remark 2. The nomenclature inverse NUFFT would be misleading since, in the
discrete case with nonuniform points, it is not the inverse of the forward transform.

Remark 3. The NUFFT has been used previously in order to accelerate iterative
methods for the signal equation (1). In [5; 20], for example, the signal equation
(or an analog) was discretized and the resulting linear system was solved using
the conjugate gradient method applied to the normal equations. Their approach,
however, did not make use of the sinc kernel.
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The development of the fast sinc or sinc2 transform now follows. For the sake of
concreteness, we restrict our attention to the two-dimensional case, but the approach
is clearly independent of dimension. First, we observe that the first equation in (9)
can be viewed as the evaluation of the function

U.v/ D

Z 1

�1

Z 1

�1

sinc.v � k/H.k/ dk (14)

at the points vm, due to the singular “source” distribution

H.k/ D

NX
nD1

qnı.k � kn/:

This follows from the elementary properties of the ı-function. From the convolution
theorem we have that U.v/ is given by

U.v/ D

Z 1

�1

Z 1

�1

u.x/ e�2�ix�v dx (15)

with
u.x/ D F�1sinc.k/ � F�1H.k/: (16)

The latter two functions can be easily computed. The inverse Fourier transform
F�1sinc.k/ in two dimensions is simply

….x/ D

�
0 if jx1j > 1=2 or jx2j > 1=2;

1 if jx1j < 1=2 and jx2j < 1=2;
(17)

where x D .x1; x2/. Further, it is easy to see that

h.x/ D F�1H.k/ D

NX
nD1

qne2�ix�kn : (18)

Thus, we can compute U.vm/ from (15)-(18):

U.vm/ D

Z 1=2

�1=2

Z 1=2

�1=2

h.x/ e�2�ix�vm dx: (19)

This result is certainly classical.

2.1. Quadrature considerations. Equation (19) is an exact relation, and it remains
only to discretize the integral. Doing so is straightforward, because h.x/ consists of
a collection of exponential functions with maximum frequency given by Kmax D

maxn kknkL1 . Furthermore, we are only interested in computing U.vm/ itself up
to the frequency Kmax so that the term e�2� ix�vm also has a maximal frequency
content given by Kmax. Thus, the integrand in (19) is a band-limited function with
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band limit 2 � Kmax. Nyquist sampling (two points per oscillation) requires that an
accurate quadrature in two dimensions use at least .4Kmax/2 points.

Gauss–Legendre quadrature [4] is particularly useful in this context. While this
approach is more involved than the trapezoidal rule or the rectangle rule, it achieves
much higher order accuracy. More precisely, the P -point Gauss–Legendre rule can
be defined by P weights fqpg and nodes fxpg so that the relationZ 1

�1

xndx D

PX
pD1

qpxn
p

is exactly satisfied for n D 0; : : : ; 2P � 1. This yields a 2P � 2P nonlinear system.
Fortunately, the weights and nodes are easy to compute using standard software
such as the Fortran routine gaussq.f from NETLIB (http://www.netlib.org). The
weights are positive, but the nodes are not equally spaced, tending to cluster at
the endpoints of the interval Œ�1; 1�. Given these weights and nodes, one of the
remarkable features of Gauss–Legendre quadrature,Z 1

�1

f .x/ dx �

PX
pD1

qpf .xp/;

is that it satisfies the error estimate:

E D

ˇ̌̌̌ Z 1

�1

f .x/ dx �

PX
pD1

qpf .xp/

ˇ̌̌̌
<

22PC1.P!/4

.2P C 1/Œ.2P /!�3
� max jf 2P .x/j;

where f 2P .x/ denotes the 2P -th derivative of the integrand. If the function f .x/

is band-limited by 2Kmax, then jf 2P .x/j < .4� Kmax/2P . A modest amount of
algebra then shows that the error E in using the P -point rule satisfies:

E <
2
p

�
p

P

.2P C 1/

�
1

2e

�4P �
4� Kmax

P

�2P

<

�
1

e

�4P �
� Kmax

P

�2P

:

Thus we see that, once P exceeds � Kmax, the error decays exponentially.
Using a tensor-product rule for the double integral, we have

U.vm/ D

Z 1=2

�1=2

Z 1=2

�1=2

h.x/ e�2� ix�vm dx

�

PX
p1D1

PX
p2D1

h.xp1
; xp2

/e�2� i.xp1
;xp2

/�vm qp1
qp2

(20)

The error, as in the one-dimensional case, decays at an exponential rate once P

exceeds �Kmax.
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Remark 4. The usual weights and nodes are defined on the interval Œ�1; 1� and we
have scaled them to the interval Œ�1=2; 1=2�.

In summary, the fast sinc transform requires the adjoint NUFFT to compute
h.x/ via (18) at the tensor product quadrature points. Given the values h.xp1

; xp2
/,

the forward NUFFT is used to compute (20). The amount of work is of the order
O..N CM CP2/ log.N CM CP2// = O..N CM CK2

max/ log.N CM CK2
max//.

Since the quadrature used is spectrally accurate, the error in the fast sinc transform
is dominated by the tolerance requested of the NUFFT. In most implementations,
this is a user-controlled parameter and affects only the constant prefactor implicit
in the O..N C M / log.N C M // notation.

Remark 5. For low accuracy, one could use the trapezoidal rule (a uniform mesh
on Œ�1=2; 1=2�). The NUFFTs in this case are slightly more efficient, with a net
savings of a factor of two or so in CPU time. The error is of the order O.1=P2/,
however, rather than exponentially small.

2.2. The fast sinc2 transform. The theory underlying the sinc2 transform is almost
identical. The only change is that the inverse Fourier transform of sinc2.k/ in two
dimensions is t.x1/ � t.x2/ where

t.x/ D

�
0 if jxj > 1;

1 � jxj if jxj < 1:

We therefore need to compute

W .k/ D

Z 1

�1

Z 1

�1

h.x1; x2/ t.x1/ t.x2/ e�2� i.x1;x2/�k dx1dx2: (21)

Since the integrand is piecewise smooth, we maintain high accuracy by using
four tensor product Gaussian quadrature rules (each with P2 > .� Kmax/2 points)
on the four quadrants Œ�1; 0� � Œ�1; 0�, Œ�1; 0� � Œ0; 1�, Œ0; 1� � Œ�1; 0�, Œ0; 1� � Œ0; 1�.

In summary, the fast sinc2 transform requires the adjoint NUFFT to compute
h.x/ via (18) at the tensor product quadrature points, followed by the forward
NUFFT to compute (21) using tensor product Gaussian quadrature. The amount
of work is again of the order O..N C M C K2

max/ log.N C M C K2
max//. Related

algorithms that rely on the NUFFT for other convolution kernels are described in
[16].

3. Results

We illustrate the performance of the algorithm in the context of magnetic resonance
image reconstruction (MRI). In MRI, one seeks to produce a spatial map of the
effective spin density �.r/ from raw complex-valued data s.n/ D s.k.n// acquired
in the Fourier domain. When the points k.n/ are located on a Cartesian grid, the
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N TFST TFS2T Tdir Error

4096 0.05 0.26 9.1 < 10�3

16384 0.11 0.36 145 < 10�3

4096 0.09 0.34 9.1 < 10�5

16384 0.19 0.61 145 < 10�5

Table 1. Timing results for FST and FS2T on an Archimedean
spiral with Kmax D 64. N denotes the number of sampling points
along the spiral, TFST denotes the time required for the fast sinc
transform, TFS2T denotes the time required for the fast sinc2 trans-
form, and Tdir is the time required for the direct calculation. The
direct calculation for sinc and sinc2 are essentially the same, so
only one timing is listed. Error is the requested tolerance for the
NUFFT and is an upper bound on the L2 error in the transform
data. Calculations were carried out on a laptop computer with a
1.2GHz Pentium processor.

FFT is typically used to reconstruct the image according to (4) with constant weights
fwng. Many modern techniques in MRI, however, including functional MRI, MR
angiography, and abdominal imaging, use nonuniform samplings in k-space which
allow for significantly faster data acquisition rates [1; 18].

One prototypical acquisition scheme is the Archimedean spiral, which we truncate
at Kmax D 64 and sample at N points according to the formula

kn D Kmax

r
n

N

�
cos

�
3�Kmax

r
n

N

�
; sin

�
3�Kmax

r
n

N

��
:

Before discussing the image reconstruction process itself, we first use this sampling
pattern in order to test the efficiency of our fast transforms. For this, the points
kn serve as both the “source” locations and as the targets (the vm in the earlier
discussion). Sample timings are given in Table 1.

While the fast transform timings scale as expected with problem size, they rely on
the NUFFT algorithm from [14], which has not yet been fine-tuned for performance.
We believe that an order of magnitude improvement can be obtained through careful
code optimization.

To illustrate the performance of the algorithm in terms of image quality, we
generate synthetic data s.n/ according to (1) from a standard test image (the Shepp–
Logan phantom [7; 13]), depicted in Figure 1. We then consider two data acquisition
patterns: an integer Cartesian grid truncated at Kmax D 64 and the Archimedean
spiral above. Both data sets contained 1282 D 16; 384 (complex) values. The
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resulting reconstructions are shown in Figure 1. The top figure is based on the
FFT using the Cartesian data, the lower left figure is based on the optimal weight
reconstruction (Scheme 1) using (4), (5), and the lower right figure is obtained by
using 5 iterations of the preconditioned conjugate gradient method (Scheme 2),
with a diagonal preconditioner defined by the quadrature weights (5), as discussed
in Remark 1. The total time for image reconstruction was approximately 0.2
seconds using the quadrature method (the lower left figure) and 1 second using
the approximate pseudoinverse (lower right), the latter requiring 5 sinc transforms,

Figure 1. Image reconstruction from Cartesian (top) and spiral
(bottom) k-space sampling. Note that the quadrature approxi-
mation (left) gives a very reasonable image. The pseudoinverse
approximation (right) is nearly identical to that obtained in the
Cartesian case.
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one sinc2 transform and one final NUFFT to apply the adjoint H|. The FFT
reconstruction is, of course, much faster — it required less than 0:01 seconds.

4. Discussion

We have constructed a fast algorithm for the (discrete) sinc and sinc2 transforms
which have immediate application in MR image reconstruction. The two algorithms
will also accelerate, for example, the band-limited interpolation method of [3]. Since
sinc convolution arises naturally in many signal and image processing contexts, we
expect that the algorithms described here will be of fairly broad utility.
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