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We compare the Immersed Interface Method (IIM) with the Extended Finite
Element Method (X-FEM) for elliptic equations with singular sources and discon-
tinuous coefficients. The IIM has been compared favorably with a number of other
competing methods. These methods are of particular interest because they allow
for the solution of elliptic equations with internal boundaries on nonconforming
meshes. In the context of moving interface problems, the emphasis in this paper
is placed on accuracy of solutions and their normal derivatives on the interface.
These methods are briefly described and the results for benchmark problems are
compared.

1. Introduction

Consider the elliptic equation

r � .ˇru/C �u D f (1)

in a domain � in two dimensions. Embedded within �, there is an interface �I

(see Figure 1). The coefficients ˇ, �, and f may be discontinuous across �I and
jump conditions are given on the interface.

This type of problem arises in a broad spectrum of mathematical models and
hence, a wide range of numerical methods have been devised to solve it. Often, the
location of �I varies in time. As a result, methods which are easily adapted to an
arbitrary �I are important. Of particular note in this area is the Immersed Interface
Method (IIM) [7], which has been shown to perform very well against competing
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Ω

Γ

Figure 1. Domain � with interface �I .

algorithms [7; 9]. It is representative of a class of methods that are constructed to
be globally second order but locally first order on the interface.

In this paper, we compare the Extended Finite Element Method (X-FEM) [11; 3]
and the IIM. The X-FEM is a variation on the partition of unity method [10] and has
been used for the solution of crack growth problems [11; 2; 17; 15], arbitrary fixed
material interfaces and voids [16], solidification problems [5; 4], and modeling
rigid particles in Stokes flow [18].

These two methods offer similar advantages in that they both produce accurate
solutions without the need for a conforming mesh. This makes them particularly
attractive for coupling to methods for moving interfaces, e.g. the level set method
[12].

This paper is organized as follows: Sections 2 and 3 discuss the IIM and X-FEM,
respectively. A comparison of the numerical results for various types of problems
is given in Section 4. Finally, Section 5 gives a summary and concluding remarks.

2. The immersed interface method

The Immersed Interface Method is a finite difference method for approximating the
solution to (1). It was introduced in [7] and a detailed overview can be found in [9].

The method solves (1) with singular sources and discontinuous coefficients as
well as jump conditions given on the interface by using a regular cartesian grid
that does not conform to the interface. For grid points away from the interface,
the standard five-point finite difference stencil is used. As a result, the method is
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second order away from the interface. For grid points near the interface, a six-point
stencil and correction terms are added to the right hand side in order to maintain
global second order accuracy.

2.1. Stencil generation. For simplicity, suppose the domain � is a square with
space step of length h in both the x and y directions, and let the grid points be
located at points .xi ;yj /. In general, the goal is to develop a finite difference
equation of the form


1;0uiC1;j C 
�1;0ui�1;j C 
0;1ui;jC1 C 
0;�1ui;j�1

C 
0;0ui;j C 
˙1;˙1ui˙1;j˙1 C �i;j ui;j D fi;j C Ci;j

for the grid point at
�
xi ;yj

�
. Here, only one combination of ˙1 is used in the

subscripts above which corresponds to the extra point in the stencil as described
below.

For points away from the interface, i.e. a point where the interface does not come
between any points in the standard five-point stencil, the standard five-point stencil

1

h

��
ˇiC1=2;j

uiC1;j � ui;j

h
�ˇi�1=2;j

ui;j � ui�1;j

h

�
C

�
ˇi;jC1=2

ui;jC1=2 � ui;j

h
�ˇi;j�1=2

ui;j � ui;j�1

h

��
C �i;j ui;j D fi;j ;

with Ci;j D 
˙1;˙1 D 0, is used.
For a grid point which bounds a square cut by the interface, the finite difference

equation is generated by using a first order expansion of the equation about some
point .x�;y�/ on the interface. The point is chosen to be the point on the interface
closest to the grid point .xi ;yi/ as shown in Figure 2. To achieve global second
order accuracy, a set of equations is solved to generate the coefficients 
k;` and
Ci;j .

First, a new transformed coordinate system is introduced. Let � be the angle be-
tween the x-axis and the normal direction as shown in Figure 2. The transformation
is:

� D
�
x � x�

i

�
cos � C

�
y � y�

j

�
sin �

�D �
�
x � x�

i

�
sin � C

�
y � y�

j

�
cos �

After the transform, the truncation error is of the form

Ti;j D a1u�
C a2uC

C a3u�
� C a4uC

�
C a5u�

� C a6uC
� C a7u�

�� C a8uC

��

C a9u�
�� C a10uC

�� C a11u�
�� C a12uC

��
C ��u�

�f �
� Ci;j C O .h/
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Figure 2. Geometry at a grid point .i; j / near the interface.

where aj is given by
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a11 D

X
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k a12 D
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k2K C
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k

and the sets KC and K� are defined as

K˙
D fk W .�k ; �k/ is on the ˙ side of �I g

In order to ensure Ti;j D O .h/, the coefficients of u�, uC, u�
�

, u�
� , u�

��
, u�

��
,

and u�
�� must vanish as well as the constant terms. This gives the following six
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equations for the unknowns 
k ; � � � ; 
k :

a1 C a2 � a8 Œ�� =ˇ
C

D 0 (2)

a3 C �a4 C a8

�
ˇ�

� � �ˇC

�
� Œˇ� �00

�
=ˇC

C a10 Œˇ� �
00=ˇC

C a12

�
ˇ�

� � �ˇC
�

�
=ˇC

D ˇ�
� (3)

a5 C a6 � a8

�
ˇ�

�
=ˇC

C a12 .1 � �/ �00
D ˇ�

� (4)

a7 C a8�D ˇ� (5)

a9 C a10 C a8 .�� 1/D ˇ� (6)

a11 C a12�D 0 (7)

where �D ˇ�=ˇC and �00 is the curvature of the interface at .x�;y�/.
Once the 
j ’s are computed, Ci;j can be obtained from

Ci;j D a2wC a12

v0

ˇC
C

 
a6 � a8

ˇC

�

ˇC
C a12�

00

!
w0

C a10w
00

C
1

ˇC

 
a4 C a8

 
�00

�
ˇC

�

ˇC

!
� a10�

00
� a12

ˇC
�

ˇC

!
v

C a8

�
Œf �

ˇC
�
�C

ˇC
w�w00

�
(8)

where w and v are defined from the jump conditions on the interface:

w .�/D uC
� u�

v .�/D ˇC @u

@ On

C

�ˇ� @u

@ On

�

For a detailed derivation of these equations, see [7].
To summarize, using (2)–(7) to solve for 
k and (8) for Ci;j , the stencil and

the right hand side corrections are obtained. For continuous coefficients ˇ and
�, the five-point stencil is obtained while a six-point stencil is needed if they are
discontinuous. These stencils and the correction term, Ci;j , is used to assemble the
linear system to solve for the values ui;j at the grid points.

3. The extended finite element method

The second method used in this paper is the Extended Finite Element Method
(X-FEM). Like the Immersed Interface Method, the X-FEM can use a regular
cartesian mesh that does not conform to the interface. Note that the X-FEM can
also be used on arbitrary triangulated meshes as well. Since there is no comparable
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review article discussing this method in detail, we provide here a little more detail
on its implementation.

In contrast to finite element meshes, where the mesh conforms to the interface,
the X-FEM uses a fixed mesh which does not need to conform to the interface. This
is done by extending the standard finite element approximation with extra basis
functions on certain “enriched” nodes that capture the behavior of the solution near
the interface. This is particularly useful for problems involving moving interfaces
where the mesh would otherwise require regeneration every time step. We present
here a summary of the method described in [2; 3; 11] with some slight modifications.
While the discussion here will focus on 2D problems, it should be noted that this
method can be readily applied to 3D as well.

Consider solving (1) on a rectangular domain� in two dimensions with Dirichlet
boundary conditions applied to the domain boundary @�. The X-FEM approxima-
tion of u is

uh .x;y/D

X
ni 2N

�i .x;y/ui C

X
nj 2NE

�j .x;y/  .'/ aj (9)

where ni and nj are the i-th and j -th nodes of their respective sets, N is the
set of all nodes in the domain, NE is the set of enriched nodes, � is a standard
finite element basis function (i.e., bilinear or biquadratic),  is the enrichment
function (described in Section 3.1), and ' is the signed distance function from
the interface. The variables ui and aj are the unenriched and enriched degrees of
freedom, respectively. Also, multiple enrichment functions can be used in the same
X-FEM approximation while in this paper, only one is used at a time.

The domain � may be meshed by an arbitrary finite element mesh, but in this
paper it is meshed with regular rectangular elements independent of the interface.
The interface �I is represented by a signed distance function ' and within each
element cut by the interface, �I is interpolated as a single line segment.

3.1. Enrichments. To include the interface’s effect, enrichment functions are added
to the standard finite element approximation for each element cut by the interface
(Figure 3). The choice of enrichment function is based on the behavior of the
solution near the interface. In this paper, two enrichment functions are used: a
discontinuous, generalized Heaviside function or step function [17] and a continuous
ramp function [5]. More application specific enrichment functions can also be used,
e.g., a square root singularity function around crack tips [1]. Each of these is a
function of the signed distance from the interface given as

' .x/D ˙ min
X2�I

jjx � X jj
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Enriched Node

Figure 3. Enriched nodes.

where the sign is positive (negative) if x is outside (inside) the region enclosed by
the interface �I . For moving interface problems, the signed distance function is
provided directly by the Level Set Method.

The step enrichment function is defined as:

 Step .'/D

�
1 ' > 0

�1 ' � 0

This enrichment function can yield a continuous or discontinuous solution across the
interface but requires Lagrange multipliers to apply the Dirichlet jump condition.

The ramp function is defined as:

 Ramp .'/D

�
1 ' > 0

1 � 2' ' � 0

This enrichment function yields only continuous solutions. The advantage is that it
automatically satisfies the continuity condition ŒŒu��D 0 and does not require the use
of Lagrange multipliers.

3.2. Element matrices. Using the weak form of (1), there are two types of integral
terms: domain and interface.

All the matrices computed from the integral terms are block matrices of the form

A D

�
AU U AUA

AAU AAA

�
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(b) Ramp function

Figure 4. Enrichment functions.

where AU U is the standard FEM element matrix. The AUA, AAU , and AAA

matrices are the new matrix terms that arise from the addition of the enriched
degrees of freedom. Note that the enriched matrix terms only appear when an
element has enriched degrees of freedom and are much smaller than the standard
FEM matrix term.

The vector terms also have the same form

v D

�
vU

vA

�
where vU is the standard FEM element vector and vA is the vector term from the
enriched degrees of freedom.

3.2.1. Domain integrals. The following domain integral terms come from the
Laplacian operator r � . ˇ r u /:

KU U
i;j D �

Z
�E

ˇ
�
r�i � r�j

�
@�E

KUA
i;j D �

Z
�E

ˇ
�
r�i � r

�
�j j

��
@�E D KAU

j ;i

KAA
i;j D �

Z
�E

ˇ
�
r .�i i/ �

�
r�j j

��
@�E

From the mass operator �u, the matrices are:

M U U
i;j D

Z
�E

��i�j@�E

M UA
i;j D

Z
�E

��i�j j@�E D M AU
j ;i

M AA
i;j D

Z
�E

��i i�j j@�E
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Interface Γ 

Sub-Partition 
Boundary

Figure 5. Element subpartitions.

and from the force operator f , the vectors:

f U
i D

Z
�E

�if .x;y/ @�E

f A
i D

Z
�E

�i if .x;y/ @�E

3.2.2. Element integration. Evaluating the domain integral terms requires a nu-
merical quadrature method. Elements away from the interface are evaluated using
standard Gaussian quadrature in two dimensions.

Elements that are cut by the interface must be treated differently due to discontinu-
ities in the coefficients and enrichment functions. The interface is first interpolated
as a line segment and the element is then divided into triangles and quadrilaterals
that conform to the interface as illustrated in Figure 5. The subdivisions are
for integration only and do not introduce any extra degrees of freedom. This
method is slightly different than the method used in [3] in that the elements are
not partitioned strictly into triangles. In this method, quadrilaterals are used with
triangles transformed into quads for integration using the method given in [14].

3.3. Interface conditions. After creating the element matrices for each element,
the only remaining terms arise from the interface conditions. Enforcing the Dirichlet
jump conditions are discussed in Section 3.4.
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The Neumann jump condition, ŒŒˇ On � ru��D v .x;y/, is enforced by introducing
a line source term with strength v. The term is of the formZ

�I

v .x;y/ ı .x � X .s// @�I (10)

where X .s/ is the parameterized coordinates of the interface and the direction of
integration is such that the normal points from the positive domain into the negative
domain. This term is only added if a source term is not already in the equation and
the Neumann jump condition is an external constraint.

Integrating (10) over each element yields the vector terms


U
i D

Z
�I

�iv .x;y/ @�I


A
i D  i .0

�/

Z
�I

�iv .x;y/ @�I

where  i .0
�/ indicates that the enrichment function is evaluated on the negative

side of the interface.

3.4. Lagrange multipliers. Since the Dirichlet jump condition on the interface has
not been satisfied when using step enrichments, Lagrange multipliers are used to
enforce this condition.

Equations (1) and (10) are combined and rewritten as

r � .ˇru/C �u C ŒŒu�� �D f C

Z
�I

v .x;y/ ı .x � X .s// @�I (11)

where v D

hh
ˇ @u

@n

ii
and � is the Lagrange multiplier used to enforce the jump in

the solution.
First, a one dimensional mesh is laid down along the interface as shown in Figure

6 by using a piecewise linear interpolation of the interface within each rectangular
element. Next, the Lagrange multipliers are approximated using a 1D finite element
approximation

�h
D

X
mi 2M

�i�i

where M is the set of all Lagrange multiplier nodes [6].
The jump in the solution ŒŒu��D w .x;y/ yields

C D

�
0

C A

�
where

C A
i;j D

Z
�I

�j�i ŒŒ i �� @�I



METHOD COMPARISON FOR ELLIPTIC EQUATIONS WITH SINGULAR SOURCES 217

Lagrange Node

Interface

Figure 6. Lagrange multiplier mesh.

and the vector term
gi D

Z
�I

�iw@�I

3.5. Linear system. The resulting linear system contains terms (see Section 3.2)
of the form

K D

�
KU U KUA

KAU KAA

�
M D

�
M U U M UA

M AU M AA

�
f D

"
f U

f A

#


 D

�

U


A

�
and the Lagrange multiplier terms C and g.

The final assembled linear system is Ax D b where

A D

�
K C M C

.C /T 0

�

x D

24 u

a

�

35
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b D

�
f C 


g

�
and K, M , and C are all block matrices and f and 
 are block vectors. When
using ramp enrichments, the Lagrange multiplier terms, C and g, along with the
Lagrange degrees of freedom, �, are not needed.

4. Results

In this section, the Immersed Interface Method and the X-FEM are compared on
three example problems that are originally from [7]. For all the examples, a square
domain is used with an embedded circular interface (Figure 7). Also, the results
are confined to be on the interface since the results there are the most important for
moving interface problems, and both methods become their standard counterparts
away from the interface. In addition, since the solution of the linear system with
the X-FEM requires very little time compared with the construction of the system,
a direct linear solver is used for the example problems.

Ω

Γ

Figure 7. Domain � with interface �I .

4.1. Example 1. The first example has a singular source on �I . The differential
equation is:

r
2u D

Z
�I

ı .r � RI / @�I (12)

where �I is a circle of radius RI D 1=2 and ı is the Dirac delta function.
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The solution to this equation is continuous, ŒŒu��D 0, but the line source gives a
jump in the normal ��

@u

@n

��
D �2

The exact solution to (12) is:

u .x;y/D

�
1 r �

1
2

1 C log .2r/ r > 1
2

Figure 8. Solution for example 1.

Table 1 shows the convergence results for the X-FEM using four node bilinear
elements with step and ramp enrichments. Piecewise constant Lagrange multipliers
are used to enforce the Dirichlet jump conditions at the interface when using step
enrichments. For comparison, convergence results for the Immersed Interface
Method and the Immersed Boundary Method (IBM) [13] are shown. The error
values for the Immersed Boundary Method data are taken from [7]. The error given
is the maximum error at the nodes defined as

kTnk1 D max
ni 2N

f

ˇ̌̌
u .xi ;yi/� uh

i

ˇ̌̌
g

where ni is the i-th node with coordinates .xi ;yi/, N is the set of all nodes, and
uh

i is the computed solution at that node. In addition, the ratio of successive errors
is given as kT2nk = kTnk.

Note that this is one of the two error measures that are given in [7]. The second,
En, is the measure of the error at the nodes away from the interface. In this paper,
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Tn is used since the error near or on the interface is of more concern for moving
interface problems. In addition, the results for our implementation of the IIM differ
from the results given in [7] possibly due to the representation of the interface, a
signed distance function, and the choice of the point on the interface for computing
the irregular stencil. This implementation does not converge as nicely but the error
values are much smaller.

n
Step Enrichment Ramp Enrichment
kTnk1 ratio kTnk1 ratio

19 3:8397 � 10�3 7:8138 � 10�3

39 9:3782 � 10�4 4.0943 3:9577 � 10�3 1.9743
79 2:3034 � 10�4 4.0715 1:9029 � 10�3 2.0798
159 6:4061 � 10�5 3.5956 9:3797 � 10�4 2.0287
319 1:5619 � 10�5 4.1015 4:7646 � 10�4 1.9686

n
IIM IBM

kTnk1 ratio kEnk1 ratio
19 3:1207 � 10�2 3:6140 � 10�1

39 4:3918 � 10�3 7.1057 2:6467 � 10�2 12.7939
79 3:2066 � 10�3 1.3696 1:3204 � 10�2 2.0045
159 8:9322 � 10�4 3.5899 6:6847 � 10�3 1.9753
319 3:4105 � 10�4 2.6190 3:3393 � 10�3 2.0018

Table 1. Numerical results for example 1.

From Table 1, the X-FEM is shown to be first order with ramp enrichments
and second order with step enrichments coupled with bilinear elements. Ramp
enrichments give accuracy comparable with IIM but are only first order. On the
other hand, step enrichments show second order accuracy and an order of magnitude
improvement over IIM. The first order convergence for the IIM is expected since
the error measure includes all the nodes near the interface where the approximation
is only first order. Away from the interface both IIM and X-FEM converge second
order. As shown before in [7], the IIM outperforms the IBM and consequently, the
X-FEM is more accurate than IBM.

Notice that with the X-FEM, the choice of enrichments can change the conver-
gence rate of the method. For this example, ramp enrichments converge first order
while step enrichments converge second order. The cause of this is a subject of
current research but it seems that extending the region where nodes are enriched,
ie enriching nodes a certain distance from the interface but whose support is not
necessarily cut by the interface, can regain the second order convergence for certain
enrichments.
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The X-FEM does show a slight increase in the linear system size. Table 2 gives
the linear system size and its sparsity. It is seen that the enrichments and Lagrange
multipliers introduce only a small number of new degrees of freedom (less than 2%
for a 319�319 mesh).

n
Step Enrichment Ramp Enrichment IIM

Sys. Size % Sparse Sys. Size % Sparse Sys. Size % Sparse
19 520 2.07396% 480 2.15625% 400 1.09250%
39 1,840 0.54277% 1,760 0.55191% 1,600 0.29234%
79 6,880 0.13840% 6,720 0.13940% 6,400 0.07558%
159 26,560 0.03490% 26,240 0.03501% 25,600 0.01921%
319 104,320 0.00876% 103,680 0.00877% 102,400 0.00484%

Table 2. System sizes for example 1.

Table 3 shows the errors interpolated on the interface using (9) for the X-FEM
and the method described in [8] for the IIM. The interpolated value on the interface
is important if the method is to be coupled with methods for evolving interfaces
where the interface velocity is tied to the value at the interface. The interface is
parameterized and the errors are computed at 10,000 evenly spaced points on the
interface. It is seen that the X-FEM still maintains an order of magnitude improve-
ment over IIM when using step enrichments and both maintain their respective
convergence rates.

n
Step Enrichment Ramp Enrichment IIM
kTnk1 ratio kTnk1 ratio kTnk1 ratio

19 5:1857�10�3 2:1871�10�2 6:1970�10�2

39 1:2444�10�3 4.1672 1:1708�10�2 1.8680 7:5111�10�3 8.2505
79 3:0043�10�4 4.1421 6:0996�10�3 1.9482 3:3766�10�3 2.2245
159 8:8146�10�5 3.4083 3:1101�10�3 1.9612 1:1298�10�3 2.9887
319 1:9315�10�5 4.5636 1:6142�10�3 1.9267 3:6684�10�4 3.0798

Table 3. Interface results for example 1.

Table 4 gives the error in the normal derivative on the interface. This data is
quite important when the speed of an evolving interface depends on the gradient of
the solution at the interface, eg when the speed is derived from a potential. With the
X-FEM using ramp enrichments and IIM, the normal derivative is not accurately
captured with O.1/ errors, which is expected since the IIM is only an O.h/ method
on the interface and taking the derivative costs the method an order of accuracy. On
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the other hand, using X-FEM with step enrichments captures the normal derivative
with first order accuracy.

n
Step Enrichment Ramp Enrichment IIM
kTnk1 ratio kTnk1 ratio kTnk1 ratio

19 4:1828 � 10�1 1:8292 � 10�0 4:6176

39 1:6067 � 10�1 2.6033 1:6479 � 10�0 1.1100 4:4095 1.0472
79 9:3826 � 10�2 1.7124 1:3096 � 10�0 1.2583 4:2222 1.0444
159 4:5301 � 10�2 2.0712 1:4733 � 10�0 0.8889 4:1219 1.0243
319 2:2290 � 10�2 2.0323 1:3818 � 10�0 1.0662 4:0640 1.0142

Table 4. Interface derivative results for example 1.

Since using step enrichments with the X-FEM yields much better accuracy while
only slightly increasing the system size, the remaining examples will only use step
enrichments with the X-FEM.

4.2. Example 2. The second example has discontinuous coefficients along with a
singular source term. The equation is

r � .ˇru/D f C C

Z
�I

ı .x � X .s// @�I (13)

where
f .x;y/D 8

�
x2

C y2
�

C 4

and

ˇ .x;y/D

�
r2 C 1 r �

1
2

b r > 1
2

with the following jump conditions

ŒŒu��D 0��
ˇ
@u

@n

��
D 0

The exact solution to (13) is:

u .x;y/D

(
r2 r �

1
2

1
4

�
1 �

1
8b

�
1
b

�
C

1
b

�
r4

2
C r2

�
C C log .2r/ r > 1

2

with b D 10 and C D 0:1.
Table 5 shows the results for the IIM and the X-FEM. Both methods handle

the discontinuous variable coefficient with the IIM still being first order while the
X-FEM achieves second order accuracy. The results are similar for interpolation on
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Figure 9. Solution for example 2.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 1:7613 � 10�3 2:5520 � 10�2

39 4:1771 � 10�4 4.2166 8:4159 � 10�3 3.0324
79 1:0289 � 10�4 4.0598 3:5290 � 10�3 2.3848
159 3:0164 � 10�5 3.4110 2:1227 � 10�3 1.6625
319 6:7960 � 10�6 4.4385 9:8789 � 10�4 2.1487

Table 5. Numerical results for example 2.

the interface as show in Table 6. In addition, Table 7 shows the same convergence
results as the previous example problem for evaluating the normal derivative on
the interface with no convergence for the IIM and first order convergence for the
X-FEM.

4.3. Example 3. For the third example, jumps in the function u are imposed on
the interface �I . The differential equation is

r
2u D 0 (14)

with the jump conditions
ŒŒu��D ex cos y��

@u

@n

��
D 2ex .x cos y � y sin y/

The exact solution of (14) is:
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n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 1:6517 � 10�3 2:5988 � 10�2

39 3:3824 � 10�4 4.8832 8:8692 � 10�3 2.9301
79 8:2238 � 10�5 4.1129 3:6100 � 10�3 2.4568
159 3:1568 � 10�5 2.6051 2:1768 � 10�3 1.6584
319 7:4612 � 10�6 4.2310 1:0004 � 10�4 2.1759

Table 6. Interface results for example 2.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 2:7307 � 10�1 4:6176 � 10�0

39 1:2776 � 10�1 2.1374 4:4095 � 10�0 1.0472
79 6:1203 � 10�2 2.0875 4:2222 � 10�0 1.0444
159 4:8216 � 10�2 1.2694 4:1219 � 10�0 1.0243
319 2:4790 � 10�2 1.9450 4:0640 � 10�0 1.0142

Table 7. Interface derivative results for example 2.

u .x;y/D

�
ex cos y r �

1
2

0 r > 1
2

(15)

Figure 10. Solution for example 3.
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Since (14) does not have a line source term explicitly, the equation is modified
for the X-FEM to include one that yields the correct jump in the normal derivative.
The new equation is

r
2u D

Z
�I

2ex .x cos y � y sin y/ ı .x � X .x// @�I (16)

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 1:7648 � 10�4 3:6253 � 10�3

39 6:0109 � 10�5 2.9360 4:6278 � 10�4 7.8337
79 1:7769 � 10�5 3.3828 3:0920 � 10�4 1.4967
159 4:8626 � 10�6 3.6542 1:1963 � 10�4 2.5846
319 1:2362 � 10�6 3.9335 4:5535 � 10�5 2.6272

Table 8. Numerical results for example 3.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 4:7842 � 10�4 4:0230 � 10�3

39 1:0659 � 10�4 4.4884 5:7563 � 10�4 6.9889
79 2:8361 � 10�5 3.7583 3:1617 � 10�4 1.8206
159 7:3603 � 10�6 3.8532 1:2004 � 10�4 2.6339
319 2:0634 � 10�6 3.5671 4:5526 � 10�5 2.6367

Table 9. Interface results for example 3.

n
X-FEM with steps IIM
kTnk1 ratio kTnk1 ratio

19 5:6520 � 10�2 3:0009 � 10C1

39 2:4190 � 10�2 2.3365 5:5185 � 10C1 0.5438
79 9:4512 � 10�3 2.5595 1:2034 � 10C2 0.5392
159 7:1671 � 10�3 1.3187 2:6466 � 10C2 0.4547
319 2:6865 � 10�3 2.6678 5:2870 � 10C2 0.5006

Table 10. Interface derivative results for example 3.
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Table 8 gives the results for the X-FEM and the IIM with the X-FEM is second
order while the IIM is first order with the X-FEM giving about an order of magnitude
better improvement at the nodes. The conclusions are similar for errors taken on the
interface as given in Table 9. Table 10 contains the errors in the normal derivative on
the interface for the X-FEM and the IIM. Once again, the X-FEM is first order when
computing the normal derivative and the IIM is unable give an accurate evaluation
of the normal derivative at the interface.

5. Conclusion

In this paper, the Extended Finite Element Method and the Immersed Interface
Method were compared. Both methods use a regular cartesian mesh, which does
not conform to an internal interface.

The Immersed Interface Method is a finite difference method that handles inter-
faces by using a six point stencil where needed, along with correction terms on the
right hand side, to handle the jump conditions. It is second order accurate at the
grid points away from the interface and first order accurate at the grid points near
the interface.

The Extended Finite Element Method is a finite element method where extra
“enriched” basis functions are added to the standard finite element approximation.
These enrichment functions add discontinuities that approximate the behavior near
the interface. These enrichments coupled with the enforcement of the interface
conditions yields accurate results both near and away from the interface. In addition,
the X-FEM is not restricted to enforcing only jump conditions on the interface in
its formulation. The lack of this restriction allows explicit boundary conditions to
be applied, which is a subject of current research.

Overall, the X-FEM performed well compared to the IIM. It provides second
order accuracy at the nodes and on the interface while more accurately capturing
the gradient on the interface for each of the problems. Against other methods like
the IIM, which are constructed as second order methods away from the interface
but only have a local O.h/ truncation error near the interface, the X-FEM maintains
an advantage due it being second order on all the nodes including the ones near the
interface. This is an advantage because an accurate approximation of the gradient
at the interface is important for moving interface problems where the velocity is
often derived from a gradient of the velocity potential. This makes the X-FEM
a more attractive choice for coupling with moving interface methods such as the
Level Set Method.
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