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A class of novel deferred correction methods, integral deferred correction (IDC)
methods, is studied. This class of methods is an extension of ideas introduced
by Dutt, Greengard and Rokhlin on spectral deferred correction (SDC) methods
for solving ordinary differential equations (ODEs). The novel nature of this
class of defect correction methods is that the correction of the defect is carried
out using an accurate integral form of the residual instead of the more familiar
differential form. As a family of methods, these schemes are capable of matching
the efficiency of popular high-order RK methods.

The smoothness of the error vector associated with an IDC method is an
important indicator of the order of convergence that can be expected from a
scheme (Christlieb, Ong, and Qiu; Hansen and Strain; Skeel). It is demonstrated
that embedding an r -th order integrator in the correction loop of an IDC method
does not always result in an r-th order increase in accuracy. Examples include
IDC methods constructed using non-self-starting multistep integrators, and IDC
methods constructed using a nonuniform distribution of quadrature nodes.

Additionally, the integral deferred correction concept is reposed as a framework
to generate high-order Runge–Kutta (RK) methods; specifically, we explain how
the prediction and correction loops can be incorporated as stages of a high-order
RK method. This alternate point of view allows us to utilize standard methods
for quantifying the performance (efficiency, accuracy and stability) of integral
deferred correction schemes. It is found that IDC schemes constructed using
uniformly distributed nodes and high-order integrators are competitive in terms of
efficiency with IDC schemes constructed using Gauss–Lobatto nodes and forward
Euler integrators. With respect to regions of absolute stability, however, IDC
methods constructed with uniformly distributed nodes and high-order integrators
are far superior. It is observed that as the order of the embedded integrator
increases, the stability region of the IDC method increases.
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1. Introduction

In this paper, we construct and analyze a class of novel correction methods, integral
deferred correction methods (IDC), which are constructed using high-order single-
step and multistep integrators in the prediction and correction loops. IDC methods
were first introduced in [4], and further developed and analyzed in [2; 5; 11; 18; 15].
Essentially, a deferred correction procedure is applied to an integral formulation of
the error equation. This error equation is then solved by choosing a distribution
of quadrature nodes and an integrator; these choices are crucial in determining
the accuracy and stability of the scheme. For example, the selection of quadrature
nodes is discussed in [15] and the selection of integrators for the prediction and
correction loops are discussed in [16; 14; 18]. The authors in [11; 12] use Gaussian
quadrature nodes and Krylov subspace methods to accelerate the convergence of
the scheme. In [2], the advantages of using high-order RK integrators in SDC
framework are shown analytically and numerically.

To study the properties of IDC schemes, the error arising from these schemes has
to be analyzed. This error has two separate components: the first component is the
error between the collocation solution on a given set of quadrature nodes and the
exact solution [5; 11; 12]; this component limits the maximum achievable accuracy
of IDC methods. The second component is the error that arises from using deferred
correction iterations to approximate the collocation solution [2; 8; 9; 21]. In Section
3 of this paper, we focus on the second component of the abovementioned error. We
will show that IDC methods constructed with p-th order multistage RK integrators
(IDC-RK) and a uniform distribution of quadrature nodes give a p-th order increase
in accuracy after each correction loop (under mild assumptions), whereas IDC-RK
methods constructed with a nonuniform distribution of quadrature nodes do not give
a p-th order increase (p≥ 2) after each correction loop. When multistep methods —
for example, Adams–Bashforth (AB) methods — are used within an IDC method,
the smoothness of the rescaled error vector prevents a high-order accuracy increase
after each correction loop, regardless of the distribution of quadrature nodes.

In Section 4, we address a commonly perceived drawback of IDC methods:
the additional computational overhead needed to implement these schemes. By
formulating IDC-RK methods into an RK method, the local truncation error arising
from IDC-RK schemes can be estimated. We show that a smaller truncation
error offsets the computational overhead, making IDC methods constructed using
uniformly distributed nodes and high-order integrators, as well as IDC methods
constructed using Gaussian–Lobatto nodes and forward Euler integrators, competi-
tive (in terms of efficiency) with known RK methods for eighth- and higher-order
schemes. Additionally, the formulation of IDC-RK methods as an RK method
gives a systematic way to generate arbitrary-order RK methods without solving
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complicated order conditions; an added bonus is that the entries of the RK Butcher
tableau [6] can be computed exactly using a symbolic manipulator. Accuracy
plots are generated in Section 4.3, validating the error estimates while stability
plots in Section 4.4 show that IDC methods offer a much larger stability region
compared with known RK methods. In fact, as the order of the embedded integrator
is increased, the stability region of an IDC method also increases. These superior
stability regions are one of the promising features of IDC-RK methods.

This paper is organized into three main sections. In Section 2, a brief review
of IDC methods is given. In Section 3, properties of IDC methods constructed
using general high-order integrators and various distributions of quadrature nodes
are given, along with some examples. IDC methods are then reformulated into
high-order RK methods in Section 4, and a detailed comparison between IDC
methods and RK methods is given. Section 5 contains the conclusion and closing
remarks.

2. Review of IDC methods

This section is a review of IDC methods from [4]. Our discussion of these methods
is based on notation introduced below. We consider an IVP consisting of a system
of ODEs and initial conditions,{

y′(t)= f (t, y), t ∈ [0, T ],
y(0)= y0.

(2-1)

The time domain, [0, T ], is discretized into intervals,

0= t1 < t2 < · · ·< tn < · · ·< tN = T,

and each interval, In = [tn, tn+1], is further discretized into subintervals,

tn = tn,0 = tn,1 < · · ·< tn,m < · · ·< tn,M = tn+1. (2-2)

We refer to tn,m as quadrature nodes, whose index m runs from 0 to M .
An IDC method on each time interval [tn, tn+1], described below, is iterated

completely to define the starting value for the next interval, [tn+1, tn+2]. We drop
the subscript n, so that tn,m =: tm in (2-2), with the understanding that the IDC
method is described for that one time interval.

• (prediction step) Use an r0-th order numerical method to obtain a numerical
solution, Eη[0] = (η[0]0 , η

[0]
1 , . . . , η

[0]
m , . . . , η

[0]
M ), which is an r0-th order approxi-

mation to Ey= (y0, y1, . . . , ym, . . . , yM), where ym= y(tm) is the exact solution
at tm .
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• (correction loop) Use the error function to improve the accuracy of the scheme
at each iteration.
For k = 1, . . . , kl (kl is number of correction steps)

(1) Denote the error function from the (k−1)-st loop as

e(k−1)(t)= y(t)− η(k−1)(t), (2-3)

where y(t) is the exact solution and η(k−1)(t) is an M-th degree polyno-
mial interpolating Eη[k−1]. Note that the error function, e(k−1)(t), is not a
polynomial in general.

(2) Compute the residual function, ε(k−1)(t)= (η(k−1))′(t)− f (t, η(k−1)(t)).
In the literature, the residual function is often called the pointwise, or
differential defect.

(3) Compute the numerical error vector, Eδ[k]= (δ[k]0 , . . . , δ[k]m , . . . , δ[k]M ), using
an rk-th order numerical method to discretize the integral form of the error
equation,(

e(k−1)
+

∫ t

0
ε(k−1)(τ ) dτ

)′
(t)= f (t, η(k−1)(t)+ e(k−1)(t))− f (t, η(k−1)(t))

.
= F(t, e(k−1)(t)), (2-4)

where F(t, e(t)) = f (t, η(t)+ e(t))− f (t, η(t)), Eδ[k] is an rk-th order
approximation to

Ee[k−1]
= (e[k−1]

0 , . . . , e[k−1]
m , . . . , e[k−1]

M ),

and e[k−1]
m = e(k−1)(tm) is the value of the exact error function at tm .

(4) Update the numerical solution Eη[k] = Eη[k−1]
+ Eδ[k].

Notationally, superscripts with a round bracket, for example (k), denote a function,
while superscripts with a square bracket, [k], denote a vector at the k-th correction
step. English letters are reserved for functions or vectors in the exact solution space,
for example an exact solution y(t) and an exact error function e(t), while Greek
letters denote functions or vectors in the numerical solution space, for example a
numerical solution η(t) and a numerical error function δ(t).

A forward Euler discretization of the error (2-4) gives

δ[k]m+1 = δ
[k]
m +hm( f (tm, η[k−1]

m +δ[k]m )− f (tm, η[k−1]
m ))−

∫ tm+1

tm
ε(k−1)(t) dt, (2-5)

where hm = tm+1− tm . Expanding the integral in (2-5),∫ tm+1

tm
ε(k−1)(t) dt =

[
η(k−1)(tm+1)−η

(k−1)(tm)
]
−

∫ tm+1

tm
f (t, η(k−1)(t)) dt, (2-6)
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and substituting (2-6) into (2-5) results in

η[k]m+1 = η
[k]
m + hm

[
f (tm, η[k−1]

m + δ[k]m )− f (tm, η[k−1]
m )

]
+

∫ tm+1

tm
f (t, η[k−1](t)) dt.

(2-7)
The integral in (2-7) can be evaluated using a Lagrange interpolant constructed
from the function values,

∫ tm+1
tm

L(Et, Ef )(τ ) dτ , where

L(Et, Ef )(τ )=
M∑

m=0

αm(τ ) fm,

with αm(τ )=
∏
n 6=m

τ − tn
tm − tn

and fm = f (tm, η[k−1](tm)). (2-8)

Hence, (2-7) can also be written as

η[k]m+1 = η
[k]
m + hm

[
f (tm, η[k−1]

m + δ[k]m )− f (tm, η[k−1]
m )

]
+

M∑
j=0

Smj f (t j , η
[k−1]
j ),

where

Smj =

∫ tm+1

tm
α j (τ ) dτ

are the elements of the so-called integration matrix.
IDC methods constructed using s-stage RK integrators (IDC-RKs) are more

involved. We provide the following details for discretizing the error (2-4) for
uniformly distributed quadrature nodes; generalization to nonuniformly distributed
quadrature nodes is straightforward. Denoting by h the interval size for the uniformly
distributed nodes and implementing an s-stage RK integrator to discretize (2-4)
gives

k1 = F(tm, δ[k−1]
m ), (2-9a)

k2 = F
(

tm + c2h, δ[k−1]
m + ha2,1k1−

∫ tm+c2h

tm
ε(k−1)(τ ) dτ

)
, (2-9b)

k3 = F
(

tm + c3h, δ[k−1]
m + h(a3,1k1+ a3,2k2)−

∫ tm+c3h

tm
ε(k−1)(τ ) dτ

)
,

...

ks = F
(

tm + csh, δ[k−1]
m + h

s−1∑
l=1

as,lkl −

∫ tm+cs h

tm
ε(k−1)(τ ) dτ

)
, (2-9c)

δ[k−1]
m+1 = δ

[k−1]
m + h

s∑
l=1

blkl −

∫ tm+h

tm
ε(k−1)(τ ) dτ, (2-9d)
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where A, Eb, Ec are conventional Butcher table entries [7] for an s-stage RK integrator:

Ec A

EbT
.

Each RK stage, for example (2-9b),

k2 = f
(

tm + c2h, η(k−1)(tm + c2h)+ δ[k−1]
m + ha2,1k1−

∫ tm+c2h

tm
ε(k−1)(τ ) dτ

)
− f

(
tm + c2h, η(k−1)(tm + c2h)

)
, (2-10)

involves the integral of the residual function,∫ tm+c2h

tm
ε(k−1)(τ ) dτ

=
[
η(k−1)(tm + c2h)− η(k−1)(tm)

]
−

∫ tm+c2h

tm
f (t, η(k−1)(t)) dt, (2-11)

where the integral in (2-11)∫ tm+c2h

tm
f (t, η(k−1)(t)) dt =

M∑
j=0

Sm·s+2, j f (t j , η
[k−1]
j ),

can be evaluated using the integration matrix, Sm·s+2, j =
∫ tm+c2h

tm
α j (t) dt . For

future reference, the general expression for the entries of this expanded integration
matrix is

Sm·s+l, j =

{ ∫ tm+cl h
tm

α j (t) dt, l = 2, . . . , s, m = 0, . . . ,M − 1, j = 0, . . . ,M,∫ tm+1
tm

α j (t) dt, l = 1, m = 0, . . . ,M − 1, j = 0, . . . ,M.
(2-12)

We choose this expanded definition of the integration matrix so that IDC methods
constructed with single step integrators can be formulated as a high-order RK
method in Section 4.1. Using this definition of the integration matrix, (2-10) can be
expressed as

k2 = f
(

tm,+c2h, η[k]m + ha2,1k1−

M∑
j=0

Sm·s+2, j f (t j , η
[k−1]
j )

)
− f

(
tm + c2h, η(k−1)(tm + c2h)

)
. (2-13)

The term f
(
tm + c2h, η(k−1)(tm + c2h)

)
in (2-13) can be computed by evaluating

the Lagrangian interpolant at the intermediate stage, L(Et, Ef )(tm+c2h). This can also
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be written as

L(Et, Ef )(tm + c2h)=
M∑

j=0

Lm·s+2, j f (t j , η
[k−1]
j ),

where the entries of the interpolation matrix are given by

Lm·s+l, j = α j (tm + clh), l = 1, . . . , s, m = 0, . . . ,M − 1. (2-14)

The remaining stages and their combinations are evaluated in a similar fashion.
In Section 4.1, we systematically formulate IDC methods constructed using RK
integrators as high-order RK methods.

We omit details for constructing IDC methods using multistep integrators (such
as IDC-AB) because such schemes are not self-starting. We show in Section 3
that the obvious approach of using a high-order RK integrator to compute the first
few steps results in an error vector which lacks sufficient smoothness; this lack of
smoothness results in a poorer than desired accuracy increase after each correction
loop.

3. IDC methods constructed using high-order integrators

In this section, we discuss the accuracy of IDC methods constructed using high-
order integrators and various distributions of quadrature nodes. Specifically, IDC
methods constructed using multistage RK methods are discussed in Section 3.2 for
uniformly spaced quadrature nodes, and Section 3.3 for a nonuniform distribution.
IDC methods constructed using high-order multistep methods are given in Section
3.4. The smoothness of the rescaled error vector measured in a discrete Sobolev
norm is a crucial tool for both discussions; we review this concept in Section 3.1.

3.1. Mathematical preliminaries. Several analytical and numerical preliminaries
are needed to analyze IDC methods. The smoothness of discrete data sets will be
established, analog to the smoothness of functions; this idea of smoothness is used
to analyze the error vectors. Let f (t) be a function for t ∈ [0, T ], and denote the
corresponding discrete data set,

(Et, Ef )= {(t0, f0), . . . , (tM , fM)} , (3-1)

where

0= t0 < t1 < t2 < . . . < tM = H. (3-2)

Definition 3.1 (Smoothness of a function). A function f (t), t ∈ [0, T ], possesses S
degrees of smoothness if ‖ds f ‖∞ := ‖∂

s f/∂t s‖∞ is bounded for s = 0, 1, 2, . . . , S,
where ‖ f ‖∞ :=maxt∈[0,T ] | f (t)|.
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Definition 3.2 (s-th degree spectral differentiation). Consider the discrete data set,
(Et, Ef ), defined in (3-1), and let L(Et, Ef )(τ ) be the Lagrange interpolant described in
(2-8). An s-th degree spectral differentiation is a linear mapping that maps Ef into

−→

d̂s f , where (d̂s f )m = (∂s/∂τ s)L(Et, Ef )(τ )|τ=tm .

This linear mapping can be represented by
−→

d̂s f = D̂s · Ef ,

where D̂s ∈R(M+1)×(M+1) and (D̂s)mn = (∂
s/∂τ s)cn(τ )|τ=tm , m, n = 0, . . . ,M .

Remark 3.3. Given a distribution of quadrature nodes on [0, 1], the spectral differ-
entiation matrices, D̂[0,1]s , s = 1, . . . ,M , have constant entries. If this distribution
of quadrature nodes is rescaled from [0, 1] to [0, H ], then the corresponding differ-
entiation matrices are

D̂1 =
1
H

D̂[0,1]1 and D̂s =

(
1
H

)s

D̂[0,1]s .

Definition 3.4. The (Ŝ,∞) Sobolev norm of a discrete data set (Et, Ef ) is defined as

∥∥ Ef ∥∥Ŝ,∞ :=
∥∥ Ef ∥∥

∞
+

S∑
s=1

∥∥−→d̂s f
∥∥
∞
=
∥∥ Ef ∥∥

∞
+

S∑
s=1

∥∥D̂s · Ef
∥∥
∞
.

Definition 3.5 (Smoothness of a discrete date set). A discrete data set, (3-1), pos-
sesses S ≤ M degrees of smoothness if ‖ Ef ‖Ŝ,∞ is bounded as H → 0.

Remark 3.6. We emphasize that smoothness is a property of discrete data sets in
the limit as H → 0. We also impose S ≤ M , because

−−→

d̂S f ≡ E0,

for S > M . See [2] for a detailed discussion.

Example 3.7 (A discrete data set with only one degree of smoothness). Consider
the discrete data set

(Et, Ef )=
{
(0, 0),

(H
4
,

H
4

)
,
(H

2
,

H
2

)
,
(3H

4
,

H
4

)
, (H, 0)

}
.

The first derivative
−→

d̂1 f =
(
−

4
3
,

10
3
, 0,−

10
3
,

4
3

)
,

is bounded independent of H , while the second derivative
−→

d̂2 f =
( 272

3H
,−

16
3H

,−
112
3H

,−
16
3H

,
272
3H

)
,
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is unbounded as H → 0. Therefore, (Et, Ef ) has one and only one degree of smooth-
ness in the discrete sense.

3.2. IDC methods constructed using RK integrators and uniformly spaced quad-
rature nodes. Integral deferred correction methods constructed using high-order
RK integrators (IDC-RK) and uniformly spaced quadrature nodes boast superior
accuracy and stability regions [2]. We restate the following theorem and lemmas
from [2], which prove (under mild conditions) the accuracy of these IDC-RK
methods. An example is provided to illustrate the main components of the theorem.

Theorem 3.8. Let y(t), the solution to the IVP (2-1), have at least S≥M+2 degrees
of smoothness in the continuous sense. Then, the local error for an IDC method
constructed using (M + 1) uniformly distributed nodes, (tm = mh,m = 0, . . . ,M),
an (r0)-th order RK method in the prediction step and (r1, r2, . . . , rkl )-th order RK
methods, is O(h(skl+1)), where skl =

∑kl
j=0 r j ≤ M + 1.

The proof of Theorem 3.8 follows from the two lemmas below. Lemma 3.9
addresses the case k = 0, and Lemma 3.10 addresses the inductive argument. We
emphasize that both lemmas not only bound the error vectors, but also guarantee
sufficient smoothness in the prediction and correction steps.

Lemma 3.9. (prediction step) Let Eη[0] = (η[0]0 , . . . , η
[0]
m , . . . , η

[0]
M ) be the numerical

solution obtained after the prediction step. Then, the error vector Ee[0] = Ey − Eη[0]

satisfies

‖Ee[0]‖∞ ∼ O(hr0+1),

and the rescaled error vector Ẽe[0]= 1
hr0 Ee
[0] has min(S−r0,M) degrees of smoothness

in the discrete sense.

Proof. We provide the following outline for a proof when a forward Euler integrator
is used in the prediction step. Details for the more general case of using an RK
integrator is provided in [2].

We drop the superscript [0] as there is no ambiguity. Since ηm+1 = ηm +

h f (tm, ηm), the error at tm+1, em+1 = ym+1− ηm+1 satisfies

em+1 = em + h( f (tm, ym)− f (tm, ηm))+

S−1∑
i=2

hi

i !
y(i)(tm)+O(hS),

where we have performed a Taylor expansion of ym+1 about t = tm . Let um =

f (tm, ym)− f (tm, ηm), and

rm =
h2

2!
y(2)(tm)+ · · ·+

hS−1

(S− 1)!
y(S−1)(tm).
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Notice that

um = em fy(tm, ym)+ · · ·+
(−1)S−1(em)

S−2

(S− 2)!
fyS−2(tm, ym)+O((em)

S−1),

where we have performed a Taylor expansion of f (t, ηm) about y= ym . We are now
ready to bound ‖Ee[0]‖∞ by induction. By definition, e0= 0, so certainly, e0∼ O(h2).
Assume that em ∼ O(h2). Since um ∼ O(em)∼ O(h2), we have

em+1 = em + hum + rm +O(hS)∼ O(h2),

which completes the inductive proof that ‖Ee‖∞ ∼ O(h2). Note that the inductive
proof was with respect to m, the index of the grid points.

To prove the smoothness of the rescaled error vector, we will again use an
inductive approach, but this time with respect to s, the degree of smoothness. First,
note that a discrete differentiation of the rescaled error vector gives

(d1ẽ)m =
ẽm+1− ẽm

h
= ũm +

rm

h2 +O(hS−2), (3-3)

where

ũm =
um

h
=

S−2∑
i=1

(−1)i+1 hi−1

i !
fyi (tm, ym)(ẽm)

i
+O(h2S−3).

We are now ready to prove that Ẽe has M degrees of smoothness by induction.
Since ‖Ẽe‖∞ ∼ O(h), Ẽe has at least zero degrees of smoothness in the discrete sense.
Assume that Ẽe has s ≤ M − 1 degrees of smoothness. We will show that

−→
d1ẽ has s

degrees of smoothness, from which we can conclude that Ẽe has (s+ 1) degrees of
smoothness.

Since fyi has (S− i − 1) degrees of smoothness in the continuous sense,

−→
fyi = [ fyi (t0, y0), . . . , fyi (tM , yM)]

has (S− i − 1) degrees of smoothness in the discrete sense. Consequently, hi−1−→fyi

has (S−2) degrees of smoothness, which implies that Ẽu has min (S− 2, s) degrees
of smoothness. Similarly, Er/h2 has (S− 2) degrees of smoothness in the discrete
sense. Hence

−→
d1ẽ has s degrees of smoothness H⇒ Ẽe has (s + 1) degrees of

smoothness. Since this argument holds for S ≥ M + 2, we can conclude that Ẽe has
M degrees of smoothness. �

Lemma 3.10 (Correction step). Suppose after the (k − 1)-st correction loop the
error vector satisfies Ee[k−1]

∼ O(hsk−1+1) and the rescaled error vector

Ẽe[k−1]
=

1
hsk−1
Ee[k−1]
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has M + 1− sk−1 degrees of smoothness in the discrete sense. Then, after the k-th
(k < kl) correction loop the updated error vector satisfies

‖Ee[k]‖∞ ∼ O(hsk+1),

and the rescaled error vector
Ẽe[k] =

1
hsk
Ee[k]

has M + 1− sk degrees of smoothness in the discrete sense.

The proof is similar in spirit to the proof of Lemma 3.9 and is omitted for brevity.

Example 3.11. Consider the IVP

y′(t)= y(t); y(0)= 1. (3-4)

We solve IVP (3-4) with an IDC method constructed using six uniformly spaced
quadrature nodes and the second-order trapezoidal RK method in the prediction
and correction loops. Let H be the interval size and h = H

5 be the subinterval size.
Computing the Taylor expansion of the numerical solution about t = 0 with O(h7)

truncation error, the rescaled error vectors are

Ẽe[0] =
{

0,
h

750
+

h2

15,000
+

h3

375,000
+

h4

11,250,000
,

h
375
+

h2

1,500
+

4h3

46,875
+

4h4

703,125
,

h
250
+

9h2

5,000
+

51h3

125,000
+

71h4

1,250,000
,

2h
375
+

13h2

3,750
+

53h3

46,875
+

166h4

703,125
,

h
150
+

17h2

3000
+

181h3

75,000
+

301h4

450,000

}
+O(h5),

Ẽe[1] =
{

0,
h

225,000
−

h2

4,500,000
,

h
112,500

+
7h2

2,250,000
,

h
75,000

+
h2

100,000
,

h
56,250

+
23h2

1,125,000
,

h
45,000

+
86111h2

250,000

}
+O(h3),

Ẽe[2] = O(h).

As postulated by the lemmas, the rescaled error vector Ẽe[0] has five degrees of
smoothness, Ẽe[1] has three degrees of smoothness, and Ẽe[3] has one degree of
smoothness. Table 1 gives the error and order of the implemented IDC method after
the prediction step and each correction loop. As expected, second-order convergence
is observed after the prediction loop, fourth-order convergence is observed after one
correction loop, and sixth-order convergence is observed after the second correction
loop.
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1 loop of RK2 2 loops of RK2 3 loops of RK2

steps error order error order error order

5 7.03E-4 – 1.06E-7 – 5.91E-11 –
10 1.79E-4 1.98 6.36E-9 4.07 9.55E-13 5.95
15 7.97E-5 1.99 1.24E-9 4.04 8.26E-14 6.04
20 4.50E-5 1.99 3.88E-10 4.03 1.20E-14 6.71
25 2.88E-5 1.99 1.59E-10 4.02 4.44E-16 14.77

Table 1. Example 3.11: IDC6-RK2, the sixth-order IDC method
constructed using six uniformly distributed quadrature nodes and
the trapezoidal RK2, is used to solve IVP (3-4). The error at
T = 1 is measured after the prediction loop (1 loop of RK2), first
correction loop (2 loops of RK2) and second correction loop (3
loops of RK2). The corresponding order of convergence is calcu-
lated.

3.3. IDC Methods constructed using RK integrators and nonuniform distribu-
tions of quadrature nodes. One might consider constructing an IDC method using
a nonuniform distribution of quadrature nodes, such as Gaussian–Lobatto [1] (or
Gaussian–Radau or Gaussian) nodes, because their collocation solution can achieve
2M ((2M + 1) or (2M + 2)) orders of accuracy with M + 1 nodes. Consequently,
one would expect that the computational effort for an IDC scheme constructed with
Gaussian–Lobatto points should be a fraction of that for an equivalent scheme using
a uniform distribution of nodes.

However, when high-order integrators are applied to the error equation, the
lack of smoothness of the rescaled error vector associated with such IDC methods
destroys the high-order accuracy increase. Consequently, there is little advantage
to constructing IDC-RK integrators using a nonuniform distribution of quadrature
nodes. However, when considering IDC method with low-order integrators, such as
forward/backward Euler, nonuniform quadrature points, such as Gaussian points,
might be advantageous because of the reduced sensitivity to interpolation error,
and a better conditioned interpolation/integration matrix. This is best illustrated by
the following examples. In Example 3.12, we consider IDC methods constructed
using the trapezoidal RK2 method and quadrature nodes with linearly increasing
interval sizes. In Example 3.13, we consider an IDC method constructed using
Gaussian–Lobatto quadrature nodes and the trapezoidal RK2 method.

Example 3.12 (Linearly increasing interval sizes). We solve IVP (3-4) numerically
with an IDC method constructed using six quadrature nodes distributed smoothly,
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though nonuniformly, with each interval satisfying

tm − tm−1 = mh, h =
2H

(M + 1)M
, m = 1, . . . ,M, (3-5)

where H is the interval size. The trapezoidal RK2 integrator is applied in the
prediction and correction loops. Computing the Taylor expansion of the numerical
solution about t = 0 with O(h7) truncation error, the rescaled error vector after the
prediction step satisfies

Ẽe[0] =
{

0,
h

20,250
+

h2

1, 215,000
+

h3

91,125,000
+

h4

8,201,250,000
,

h
2,250

+
19h2

405,000
+

h3

375,000
+

h4

11,250,000
,

2h
1,125

+
19h2

40,500
+

161h3

2,531,250
+

67h4

12,656,250
,

2h
405
+

1469h2

607,500
+

547h3

911,250
+

31h4

328,050
,

h
90
+

3521h2

405,000
+

463h3

135,000
+

707h4

810,000

}
+O(h5).

It can be checked by Definition 3.5 that Ẽe[0] has one and only one degree of
smoothness. Since Ẽe[0] has only one degree of smoothness in the discrete sense,
only one order increase in accuracy is guaranteed after the first correction loop,
even when a high-order RK method is applied. By computing the rescaled error
vector after subsequent correction loops, one can show that only one order increase
in accuracy per loop can be guaranteed until the maximum order is achieved.

This is illustrated in Table 2, which gives the error and order of the IDC method
using the quadrature nodes distributed according to (3-5). Second-order accuracy is

RK2 pred. 1 corr. loop 2 corr. loops 3 corr. loops

steps error order error order error order error order

5 1.16E-3 – 2.16E-6 – 2.84E-9 – 2.3 E-10 –
10 2.96E-4 1.97 3.03E-7 2.83 2.77E-10 3.36 4.02E-12 5.86
15 1.32E-4 1.98 9.29E-8 2.91 6.12E-11 3.73 3.75E-13 5.85
20 7.47E-5 1.99 3.99E-8 2.94 2.04E-11 3.82 7.01E-14 5.83
25 4.79E-5 1.99 2.06E-8 2.95 8.58E-12 3.87 1.82E-14 6.05

Table 2. Example 3.12: The error at T = 1 and the order of the im-
plemented IDC-RK2 method are tabulated after the prediction loop,
first correction loop, second correction loop, etc. The quadrature
nodes are distributed as described in (3-5).
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observed after the RK2 prediction loop. Then, only third- and fourth-order accuracy
are observed after the first and second RK2 correction loop as per the discussion
above. Sixth-order accuracy is observed after the third RK2 correction loop.

Example 3.13. (Gaussian–Lobatto quadrature nodes) IVP (3-4) is solved numeri-
cally with an IDC method constructed using six Gaussian–Lobatto quadrature nodes
given by

t0 = 0, t3 =
(

1+
√

1
21(7− 2

√
7)
)H

2
,

t1 =
(

1−
√

1
21(7+ 2

√
7)
)H

2
, t4 =

(
1+

√
1

21(7+ 2
√

7)
)H

2
,

t2 =
(

1−
√

1
21(7− 2

√
7)
)H

2
, t5 = H,

(3-6)

where H is the interval size. RK2 is applied in the prediction and correction loops.
Computing the Taylor expansion of the numerical solution about t = 0 with O(h7)

truncation error, the rescaled error vector after the prediction step satisfies

Ẽe[0] = {0, 0.00027018h+ 0.00000793h2
+ 0.00000019h3,

0.00257165h+ 0.00048115h2
+ 0.00004858h3

+ 0.00000289h4,

0.00643924h+ 0.00287267h2
+ 0.00065172h3

+ 0.00008973h4

0.00874071h+ 0.00603452h2
+ 0.00209675h3

+ 0.00046357h4,

0.00901089h+ 0.00730769h2
+ 0.00297836h3

+ 0.00078573h4
}+O(h5).

It can be checked by Definition 3.5 that Ẽe[0] has one and only one degree of
smoothness. Since Ẽe[0] has only one degree of smoothness in the discrete sense, one
order increase in accuracy is guaranteed after the first correction loop. Computing
the rescaled error vectors after subsequent correction loops, one can show that the
smoothness constraint guarantees only one order accuracy increase per loop until
the maximum order is increased.

In Table 3, we show the error and rate of convergence of up to nine loops of RK2,
to demonstrate that the maximum 2M order can be achieved when using Gauss–
Lobatto points. The expected second/fourth/sixth-order convergence is observed
after one/three/five loops of RK2 steps, respectively. However, fourth/sixth-order
accuracy is observed after two/four RK2 loops. This discrepancy can be explained
by carefully studying the error vector after the first and third RK2 correction loops.

Ee[1] = {0,−0.00000716h4
+O(h5),−0.00004306h4

+O(h5),

−0.00004306h4
+O(h5),−0.00000716h4

+O(h5), 0.00004950h5
+O(h6)}.
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RK-2 prediction 1 RK-2 corr. loop 2 RK-2 corr. loop

steps error order error order error order

5 8.28E-3 – 2.13E-5 – 1.23E-6 –
10 2.19E-3 1.92 1.43E-6 3.90 8.51E-8 3.85
15 9.92E-4 1.95 2.89E-7 3.94 1.73E-8 3.93
20 5.63E-4 1.98 9.25E-8 3.96 5.55E-9 3.95
25 3.63E-4 1.97 3.82E-8 3.97 2.29E-9 3.97

3 RK-2 corr. loops 4 RK-2 corr. loops

steps error order error order

5 1.42E-8 – 2.25E-9 –
10 2.49E-10 5.84 3.86E-11 5.87
15 2.27E-11 5.91 3.48E-12 5.93
20 4.11E-12 5.94 6.27E-13 5.96
25 1.09E-12 5.95 1.64E-13 6.01

6 loops of RK-2 7 loops of RK-2 8 loops of RK-2

steps error order error order error order

3 8.89E-7 – 4.27E-8 – 1.59E-9 –
6 5.20E-9 7.41 3.70E-11 10.17 4.61E-12 8.43
9 2.29E-10 7.71 2.14E-13 12.70 1.03E-13 9.38

12 2.42E-11 7.81 9.59E-14 2.79 8.88E-15 8.52

Table 3. Example 3.13: The error and order of an IDC method
used for solving IVP (3-4) using Gaussian–Lobatto quadrature
nodes are tabulated. The error is computed at T = 1 after the
RK-2 prediction loop, first RK-2 correction loop, second RK-2
correction loop, etc. Note that constructing an IDC method with
six Gaussian–Lobatto points allows for up to tenth-order accuracy.
Coarse steps are taken for the IDC method constructed with five
correction loops or more because of machine precision limitations.

O(h5) is observed in the last element of Ee[1], corresponding to the results in the
second column of Table 3; third-order, not fourth, is actually consistently achieved
at the interior nodes after the first correction loop. After the second correction loop,
fourth-order convergence is consistently achieved everywhere. Similarly, the error
vector after the third correction loop,

Ee[3] = {0,−0.000000004h6
+O(h7), 0.00000003h6

+O(h7),

0.00000003h6
+O(h7),−0.000000004h6

+O(h7),−0.00000002h7
+O(h8)},
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is not consistently sixth-order at the interior nodes either.

3.4. IDC methods constructed using high-order multistep methods. A general
linear p-step multistep method for solving IVP (2-1) is of the form

yn+p + ap−1 yn+p−1+ ap−2 yn+p−2+ · · ·+ a0 yn

= h(bp f (tn+p, yn+p)+ bp−1 f (tn+p−1, yn+p−1)+ · · ·+ b0 f (tn, yn)).

Examples of popular multistep methods include the explicit Adams–Bashforth
methods (AB), implicit Adams–Moulton methods (AM), and backward differential
formulas (BDF). For example,

yn+1 = yn + h
( 3

2 f (tn, yn)−
1
2 f (tn−1, yn−1)

)
, (AB)

yn+1 = yn + h
( 1

2 f (tn, yn)+
1
2 f (tn+1, yn+1)

)
, (AM)

yn+1 =
4
3 yn −

1
3 yn−1+

2
3 h f (tn+1, yn+1). (BDF)

Most multistep methods are not self-starting; typically, a high-order integrator, such
as an RK integrator, is used to compute the first few steps. In the next example, we
show that using an RK-2 integrator as a starter ruins the desired accuracy increase
which is possible with a high-order multistep method. Similar comments are also
made in [14], in which a variable starting technique is suggested in conjunction
with the multistep methods. Although this technique showed some promise in
test examples (see [14, Figure 2]), we did not observe high-order increase in the
correction loops of our numerical experiments.

Example 3.14. Consider an IDC method that is constructed using six uniformly
distributed quadrature nodes and three loops of a second-order AB method in the
prediction and correction steps (an RK-2 method is used to start the multistep
method as necessary). We use this method to solve IVP (3-4). Let H denote the
interval size for a single step of the IDC method, and h = H

5 the subinterval size.
The numerical results are in Table 4 show the inconsistent accuracy increase after
the first correction loop. Computing the Taylor expansion of the numerical solution
about t = 0 with O(h7) truncation error, the rescaled error vector satisfies

Ẽe[0] =
{

0,
h

750
+

h2

15,000
+

h3

375,000
+

h4

11,250,000
,

7h
1500

+
2h2

1,875
+

4h3

46,875
+

4h4

703,125
,

h
125
+

9h2

2,500
+

81h3

125,000
+

81h4

1,250,000
,

17h
1500
+

14h2

1,875
+

1643h3

750,000
+

256h4

703,125
,

11h
750
+

19h2

1500
+

191h3

37,500
+

5521h4

4,500,000

}
+O(h5).
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AB-2 pred. 1 AB-2 corr. loop 2 AB-2 corr. loop

steps error order error order error order

5 1.55E-3 – 4.41E-6 – 7.74E-9 –
10 3.93E-4 1.98 4.56E-7 3.27 1.80E-10 5.43
15 1.76E-4 1.99 1.26E-7 3.18 1.88E-11 5.57
20 9.90E-5 1.99 5.10E-8 3.14 3.50E-12 5.84
25 6.34E-5 1.99 2.55E-8 3.11 8.61E-13 6.28

Table 4. Error and order of convergence for an IDC method con-
structed using a 2-step multistep method (AB) and uniformly dis-
tributed quadrature nodes. The error and rate of convergence are
computed at T = 1.

By Definition 3.5, Ẽe[0] has only one degree of smoothness since the leading term in
−−−→

d̂2e[0],

by Definition 3.2, is O( 1
h ). Since Ẽe[0] has no more than one degree of smoothness

in the discrete sense, this limits the increase in convergence rate for IDC methods,
although a high-order method is applied in the correction steps.

4. Comparisons between IDC and RK methods

IDC methods constructed using single-step integrators can be formulated into
arbitrary high-order RK methods. This is of particular interest because RK methods
are traditionally constructed by satisfying order conditions [6]; the number of order
conditions to be satisfied grows exponentially as the order increases, making it
difficult, if not impossible, to solve for the nodes, weights, and stage weights
exactly. Here, we address how IDC methods constructed with RK integrators and
uniformly distributed nodes can be formulated as a high-order RK method whose
nodes, weights, and stage weights are known exactly. In Section 4.1, we describe
the Butcher tableau structure for IDC-FE methods formulated as a high-order RK
method. Then, we bound the local truncation error arising from IDC methods
formulated as a high-order RK method; this bound on the local truncation error can
be used to give an estimate for the global error, in essence, proving the convergence
of IDC methods. The efficiency of IDC methods is then compared with known RK
methods in Section 4.2. In general, known RK methods are more efficient than IDC
methods for low-order schemes. For high-order schemes, comparable efficiency
is observed numerically; the accuracy regions in Section 4.3 agree qualitatively
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with the efficiency comparisons. In Section 4.4, we show that IDC methods offer a
much larger stability region compared with known RK methods. Additionally, as
the order of the embedded integrator is increased, the stability region of an IDC
method also increases.

4.1. Constructing RK methods using an IDC-FE scheme. The following two
points of view are equivalent: RK methods can be constructed using IDC ideas, or
an IDC method can be reformulated as an RK method. The node points c j , weights
bk and stage weights a jk are often conveniently expressed in a Butcher tableau
format using matrix A, and vectors b and c.

Ec A

EbT
.

Here, we illustrate the Butcher tableau structure of IDC methods constructed using
forward Euler time integrators. The algorithm is easily generalized for generating
IDC-RK Butcher tableaus. In this section, we adopt a Matlab-style notation in our
algorithms, where A( j, :) denotes the j-th row of matrix A, and A(:, j) denotes
the j-th column of matrix A.

Proposition 4.1. An IDC method constructed using (M + 1) quadrature nodes
and (kl + 1) prediction/correction iterations of an s-stage RK method, can be
reformulated as an ((kl + 1) · s ·M)-stage RK method.

For example, an IDC method constructed with four quadrature nodes, (M = 3),
a forward Euler prediction (s = 1), and three correction loops (kl = 3), can be
reformulated as a 12-stage RK method. Let’s examine the structure of this ((kl +

1) · s ·M)-stage RK method. Suppose (M + 1) quadrature nodes, notated as before
in (3-2),

0= t0 < t1 < t2 < . . . < tM = H,

have subinterval sizes

hm = tm − tm−1, m = 1, . . . ,M.

Then the prediction step of the IDC method constructed using forward Euler updates
can be formulated as an RK method with the following Butcher array format:

t0
t1 h1

t2 h1 h2
...

...
. . .

tM−1 h1 h2 . . . hM−1

h1 h2 . . . hM−1 hM
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We label components of the above Butcher tableau conventionally:

Ec1 A1

EbT
1

The first correction loop can now be included (2-7). The updated Butcher tableau
takes the form

Ec1 A1 Z
Ec2 P1 A2

EdT
1
EbT

2

,

where Z is a M ×M matrix of zeros,

Ec2 =
[
tM , t1, t2, . . . , tM−1

]T
,

P1 =



h1 h2 h3 . . . hM

S̃10 S̃11 S̃12 . . . S̃1,M−1

S̃20 (S̃21− h2) S̃22 . . . S̃2,M−1

S̃30 (S̃31− h2) (S̃32− h3) . . . S̃3,M−1
...

...
...

. . .
...

S̃M−1,0 (S̃M−1,1− h2) (S̃M−1,2− h3) . . . S̃M−1,M−1


,

where the terms

S̃i j =

{
Si j i = 1, j = 0, . . . ,M,
Si j + Si−1, j i = 2, . . . ,M, j = 0, . . . ,M,

are the sums of the integration matrix defined in (2-12),

A2 =



0 0 0 0 . . . 0
S̃1M 0 0 0 . . . 0
S̃2M h2 0 0 . . . 0
S̃3M h2 h3 0 . . . 0
...

...
...
. . .

. . . 0
S̃M−1,M h2 h3 . . . hM−1 0


,

and

Ed1 =
[
S̃M0, (S̃M1− h2), (S̃M2− h3), . . . , (S̃M,M−1− hM)

]T
,

Eb2 =
[
S̃M M , h2, h3, . . . , hM

]T
.

Subsequent correction steps can be added into a Butcher tableau format in a similar
fashion. This results in a distinct block structure, since at the k-th correction loop,
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(a) RK8 [20] (b) IDC8-FE

(c) IDC8-RK2 (d) IDC8-RK4

Figure 1. The sparsity structure of an RK8 [20] Butcher tableau
and various IDC8 Butcher tableaus. The block structure for the IDC
weights are evident; for example, IDC8-RK2 shows the prediction
loop, and the subsequent three correction loops.

only the initial value f (t, y0), the previous approximations f (t, η[k−1]), and the
current iterates f (t, η[k]) are used.

This block structure is more easily seen in Figure 1, where uniformly spaced
quadrature nodes are used to construct various IDC schemes. For future reference,
we adopt the following notation to denote our IDC schemes: IDCn-RKp denotes an
n-th order IDC scheme constructed using p-th order RK integrators. To construct
an n-th order IDC scheme, either (n+ 1) uniformly distributed quadrature nodes,
or (dn

2e+ 1) Gauss–Lobatto nodes are used. The only time we distinguish between
using uniformly distributed and Gauss–Lobatto nodes is when forward Euler inte-
grators are used to construct the IDC scheme; in all other cases, we use uniform
nodes to achieve the order of accuracy desired. In Figure 1, IDC8-FE denotes an
eighth-order IDC scheme constructed using forward Euler updates, IDC8-RK2
denotes an eighth-order IDC scheme constructed using a trapezoidal RK2 scheme
for the prediction and correction steps, and IDC8-RK4 denotes an eighth-order
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IDC scheme constructed using an RK4 predicition and correction loop. Several
observations can be made presently. The number of stages for the IDC methods are
consistent with Proposition 4.1. Specifically, IDC8-FE has M = 7, s = 2, kl = 7,
resulting in 56 overall stages. IDC8-RK2 has M = 7, s = 2, kl = 3, and IDC8-RK4
has M = 7, s = 4, kl = 1, both resulting in 56 overall stages. The sparsity structure
of the Butcher tableau which arises from the prediction and correction steps is also
evident. For example, IDC8-RK2 shows the prediction step and three subsequent
correction steps.

It is important to note that the stage weights, ai j , can be computed exactly using
a symbolic manipulator such as Maple or Mathematica. This contrasts with most
other optimization schemes for generating RK methods, where the coefficients have
to be approximated numerically. For eighth- or lower-order schemes, computing
the stage weights to double precision is sufficient. From numerical experiments, it
seems that ninth-order IDC schemes (or higher) require quad precision or better.

4.2. Efficiency comparison. In order to compare how various p-th order RK meth-
ods stack up against each other, a quantitative measure is the so-called efficiency:
how much computational effort is required to obtain a certain error tolerance. To
make this measurement, we need to review the computational effort of IDC/RK
methods, as well as bound the local truncation error (LTE).

In solving IVP (2-1), the evaluation of f (t, y) is usually the most computationally
expensive component. Hence, we will use the number of function evaluations, n f e,
(or equivalently, the number of stages of an RK method), as a measure of the com-
putational effort. Recall that an IDC method constructed using (M + 1) quadrature
nodes, kl correction loops, and an s-stage RK integrator requires ((M−1)·(kl+1)·s)
function evaluations (stages). For a p-th order IDC method, this corresponds to at
least p (p−1) function evaluations when p uniformly spaced quadrature nodes are
used, and at least ( p

2 − 1) p function evaluations when p
2 Gaussian nodes are used.

Compared to classically known p-th order RK methods which involve sp stages,
IDC methods require significantly more function evaluations per iteration. This is
offset, however, by the smaller LTE that arises from IDC methods.

The LTE which arises from solving y′ = f (t, y) can be computed by taking the
appropriate Taylor expansions of the scheme. For a p-th order method [10] the
LTE can be expressed as

LTE=
∞∑

i=p+1

hi
( λi∑

j=1

αi j Di j

)
.

Here, h is the interval size, Di j are the elementary differentials (sums of products
of partial derivatives of f (t, y)), αi j are the truncation error coefficients, and λi

denotes the number of elementary differentials of order O(hi ). Consequently, a very
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Method # Stages LTE Efficiency

RK4 (classical) 4 1.0417E-2 1
IDC4-FE (unif) 12 7.716 E-4 1.78

IDC4-FE (gauss) 8 3.906 E-3 1.64
IDC4-RK2 (unif) 12 5.144 E-4 1.64

SDC4-RK2 (gauss) 8 2.6042E-3 1.52

RK6 [20] 9 8.4369E-7 1
RK6 [17] 7 1.455 E-2 3.13

IDC6-FE (unif) 30 1.0000E-6 3.42
IDC6-FE (gauss) 18 5.5014E-5 3.63
IDC6-RK2 (unif) 30 8.8889E-7 3.36
IDC6-RK3 (unif) 30 4.4444E-7 3.04

RK8 [20] 13 3.8872E-6 1
RK8 [3] 11 2.1957E-5 1.03

IDC8-FE (unif) 56 6.776 E-10 1.65
IDC8-FE (gauss) 32 1.181 E-7 1.67
IDC8-RK2 (unif) 56 5.0193E-10 1.59
IDC8-RK4 (unif) 56 3.0689E-11 1.17

Table 5. A comparison of classical RK methods and IDC methods.
The second column lists the effective number of stages, the third
column lists a bound on the LTE coefficients, and the last column
is the computed efficiency between the respective orders. Eighth-
order IDC methods are almost as efficient as an RK8 method. The
LTE for twelfth-order methods is not presented due to machine
precision restrictions. Also, since three Gauss–Lobatto nodes are
in fact uniformly spaced, x = {0, 0.5, 1}, we are able to generate
a fourth-order IDC scheme using three Gauss–Lobatto nodes and
RK2 integrators for the prediction and correction loops. Note than
an efficiency close to 1 is optimal.

crude bound for the LTE, if h is sufficiently small, is

LTE≤ h p+1
· λp+1 · ‖αp+1, j‖∞ · ‖Dp+1, j‖∞.

We note that this local error estimate gives a bound on the global error [6], proving
the convergence of IDC-RK methods.

Now, consider the LTE for two p-th order RK methods,

(LTE)1 = c1h p+1
· (λp+1‖Dp+1, j‖∞),

(LTE)2 = c2h p+1
· (λp+1‖Dp+1, j‖∞).
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If both LTEs are bounded by the same tolerance ε, then the largest step size that
will satisfy this tolerance for both methods is

h1 =

( ε

βc1

)1/(p+1)
, h2 =

( ε

βc2

)1/(p+1)
,

respectively, where β = (λp+1‖Dp+1, j‖∞). If method one is computed in s1 stages
and method two is computed in s2 stages, then the total amount of work done by
each methods is si/hi , since 1/hi is the number of iterations required, and si is the
cost per iteration. A measure of efficiency is then given by the ratio of the amount
of work done:

efficiency=
s2/h2

s1/h1
=

s2

s1

(c2

c1

)1/(p+1)
. (4-1)

Using (4-1), the efficiencies for various IDC methods are computed and compared
to classically known RK methods. In Table 5, we list the number of stages for each
method, a bound on the LTE (using a code provided in [10]), and the computed
efficiency. An efficiency close to 1 is optimal while an efficiency of 1.5 means
it takes 50% more work to achieve the same error tolerance. We compute the
LTEs for eighth- and lower-order schemes to avoid machine precision issues. (As
mentioned in the previous section, the accuracy increase is lost when the nodes are
nonuniformly spaced; thus, IDC schemes constructed using Gaussian nodes and
high-order integrators are in general less efficient than IDC schemes constructed us-
ing uniformly spaced nodes and high-order integrators. Consequently, the efficiency
analysis for other IDC schemes using Gaussian nodes is not presented.)

Two observations are in order: first, that the efficiency of IDC schemes improves
as the order of the embedded integrator is increased; and second, that IDC8 schemes
are comparable, in terms of efficiency, to RK8 schemes. Although we are unable to
accurately compute the LTE for higher than eighth-order schemes, we show that
twelfth-order IDC schemes are comparable in terms of efficiency to known RK-12
schemes by generating their accuracy regions, defined in Section 4.3.

4.3. Accuracy region. A more visual way to compare these IDC methods is to
plot the accuracy region for each method. Specifically, the following IVP,

y′(t)= λy(t), y(0)= 1, (4-2)

is solved for various λ’s in the complex plane. A contour plot of the resulting error
at T = 1 is called the accuracy region. Figures 2–5 show the accuracy regions
for classical RK and IDC methods. Consistent with the efficiency analysis, the
IDC4 and IDC6 schemes perform poorly in contrast with classical RK methods.
IDC8-RK4 has a comparable accuracy region with RK8. The accuracy regions
for IDC12 methods are plotted, even though the efficiency is not computed in
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the previous section. It appears that IDC12-RK3 and IDC12-RK4 might be more
efficient than classically known RK12 schemes. One should also note that the
accuracy regions for IDC methods increase in area as the order of the embedded
integrator is increased.

4.4. Stability region. Another way to quantitatively compare RK and IDC methods
is to perform a linear stability analysis of the methods, and identify restrictions on
the possible time steps. The linear stability region, S, is the subset of the complex
plane, C, satisfying

S = {λ : Am(λ)≤ 1},

where Am(λ), the amplification factor for a numerical method, can be interpreted
as the numerical solution of IVP (4-2)

y′(t)= λy(t), y(0)= 1,

after a time step of size one. To quantify the size of these linear stability regions,
we measure the linear stability radius, the real interval {z : Re(z) ∈ S}, and the
maximum imaginary value, sup | Im(z)|, z ∈ S.

(a) RK4 (b) IDC4-FE (unif)

(c) IDC4-FE (gauss) (d) IDC4-RK2

Figure 2. Accuracy plots for various fourth-order RK and IDC
methods. Each plot was generated after 48 function evaluations.
The RK4 method is vastly superior to the IDC methods.
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(a) RK6 (b) IDC6-FE (unif)

(c) IDC6-FE (gauss) (d) IDC6-RK2

(e) IDC6-RK3

Figure 3. Accuracy plots for various sixth-order RK and IDC
methods are generated using ≈ 60 function evaluations. The RK6
method has a larger accuracy region. Also, observe that the accu-
racy regions for the IDC methods increase with the order of the
embedded integrator.

Definition 4.2. The linear stability radius is defined to be the radius of the largest
disc that can fit inside the stability region,

ρ = sup {r : D(r) ∈ S} ,

where D(r) is the disc D(r)= {z ∈ C : |z+ r | ≤ r}.

This measure of the stability region is argued to be a good compromise between
stretching the stability region in the real and in the imaginary directions [13; 19].
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(a) RK8 (b) IDC8-FE (unif)

(c) IDC8-FE (gauss) (d) IDC8-RK2

(e) IDC8-RK4

Figure 4. The accuracy plots for various eighth-order RK and IDC
methods are generated after ≈ 56 function evaluations. Notice that
accuracy regions for IDC methods get larger as the order of the low-
order integrator is increased. The accuracy region for IDC8-RK4
is comparable to the accuracy region for RK8, which is consistent
with the efficiency analysis.

We plot the stability regions for various IDC and RK methods in Figure 6. In
all cases, p-th order IDC methods offer a larger stability region in contrast with
classically derived p-th order RK methods. Additionally, the stability regions of
IDC methods increase with the order of the integrator used to construct the scheme;
for example, IDC8-RK4 has a larger stability region than IDC8-RK2. Quantitative
comparison of the stability regions are given in Table 6.
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(a) RK12 (b) IDC12-FE (unif)

(c) IDC12-FE (gauss) (d) IDC12-RK2

(e) IDC12-RK3 (f) IDC12-RK4

Figure 5. The accuracy plots for various twelfth-order RK and
IDC methods are generated after ≈ 132 function evaluations. The
accuracy region for IDC12-RK3 and IDC12-RK4 appear larger
than the classically known RK12 scheme.

5. Conclusion

In this paper, we studied a class of novel correction methods, IDC methods, con-
structed using high-order integrators within the prediction and correction loops.
It was also shown that the accuracy of an IDC method is closely related to the
smoothness of its error vector. Unlike IDC methods constructed with uniform
quadrature points, the order of accuracy for IDC methods constructed with a general
nonuniform distribution of quadrature nodes does not increase by r orders if an
r -th order RK correction step is applied; for multistep methods, the accuracy of
an IDC method depends heavily on the starting method. Finally, IDC methods are
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Fourth-order methods Sixth-order methods

Eighth-order methods Twelfth-order methods

Figure 6. Stability regions for fourth-, sixth-, eighth- and twelfth-
order IDC methods. The stability regions of IDC methods are larger
than that of the RK method. Additionally, the stability region of
the IDC methods increase with the order of the integrator used to
construct the scheme.

viewed as a means for generating high-order RK methods. The efficiency, stability,
and accuracy of IDC methods are compared with RK methods. As a family of
methods, these IDC schemes are capable of matching the efficiency of optimized
high-order RK methods. Additionally, superior regions of absolute stability are
observed for IDC methods constructed using high order integrators.

Present studies and analyses are being conducted on IDC methods constructed
using diagonally implicit Runge–Kutta integrators and IDC methods constructed
using additive Runge–Kutta integrators.
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