
Communications in
Applied
Mathematics and
Computational
Science

vol. 5 no. 2 2010

mathematical sciences publishers

Communications in Applied Mathematics and Computational Science
pjm.math.berkeley.edu/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

apde@mathscipub.org

Silvio Levy, Scientific Editor Sheila Newbery, Senior Production Editor

See inside back cover or pjm.math.berkeley.edu/camcos for submission instructions.

The subscription price for 2010 is US $70/year for the electronic version, and $100/year for print and electronic. Subscriptions, requests
for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers,
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Communications in Applied Mathematics and Computational Science, at Mathematical Sciences Publishers, Department of Mathemat-
ics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA
94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://www.mathscipub.org
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2010 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:apde@mathscipub.org
http://pjm.math.berkeley.edu/camcos
http://www.mathscipub.org
http://www.mathscipub.org

COMM. APP. MATH. AND COMP. SCI.
Vol. 5, No. 2, 2010

ON THE ACCURACY OF FINITE-VOLUME SCHEMES FOR
FLUCTUATING HYDRODYNAMICS

ALEKSANDAR DONEV, ERIC VANDEN-EIJNDEN,
ALEJANDRO GARCIA AND JOHN BELL

This paper describes the development and analysis of finite-volume methods
for the Landau–Lifshitz Navier–Stokes (LLNS) equations and related stochastic
partial differential equations in fluid dynamics. The LLNS equations incorporate
thermal fluctuations into macroscopic hydrodynamics by the addition of white-
noise fluxes whose magnitudes are set by a fluctuation-dissipation relation. Origi-
nally derived for equilibrium fluctuations, the LLNS equations have also been
shown to be accurate for nonequilibrium systems. Previous studies of numerical
methods for the LLNS equations focused primarily on measuring variances and
correlations computed at equilibrium and for selected nonequilibrium flows. In
this paper, we introduce a more systematic approach based on studying discrete
equilibrium structure factors for a broad class of explicit linear finite-volume
schemes. This new approach provides a better characterization of the accuracy
of a spatiotemporal discretization as a function of wavenumber and frequency,
allowing us to distinguish between behavior at long wavelengths, where accuracy
is a prime concern, and short wavelengths, where stability concerns are of greater
importance. We use this analysis to develop a specialized third-order Runge–Kutta
scheme that minimizes the temporal integration error in the discrete structure
factor at long wavelengths for the one-dimensional linearized LLNS equations.
Together with a novel method for discretizing the stochastic stress tensor in
dimension larger than one, our improved temporal integrator yields a scheme for
the three-dimensional equations that satisfies a discrete fluctuation-dissipation
balance for small time steps and is also sufficiently accurate even for time steps
close to the stability limit.

MSC2000: 35K05, 65C30, 65N12, 65N40.
Keywords: finite-volume scheme, hydrodynamics.
Donev’s work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344. The work of Bell and Garcia
was supported by the Applied Mathematics Research Program of the U. S. Department of Energy
under contract no. DE-AC02-05CH11231. The work of Vanden-Eijnden was supported by the
National Science Foundation through grants DMS02-09959, DMS02-39625, and DMS07-08140, and
by the Office of Naval Research through grant N00014-04-1-0565.

149

150 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

1. Introduction

Recently the fluid dynamics community has considered increasingly complex physi-
cal, chemical, and biological phenomena at the microscopic scale, including systems
for which significant interactions occur across multiple scales. At a molecular
scale, fluids are not deterministic; the state of the fluid is constantly changing and
stochastic, even at thermodynamic equilibrium. As simulations of fluids push toward
the microscale, these random thermal fluctuations play an increasingly important
role in describing the state of the fluid, especially when investigating systems where
the microscopic fluctuations drive a macroscopic phenomenon such as the evolution
of instabilities, or where the thermal fluctuations drive the motion of suspended
microscopic objects in complex fluids. Some examples in which spontaneous
fluctuations can significantly affect the dynamics include the breakup of droplets
in jets [56; 27; 42], Brownian molecular motors [4; 58; 24; 54], Rayleigh–Bénard
convection (both single species [65] and mixtures [60]), Kolmogorov flows [14; 15;
52], Rayleigh–Taylor mixing [41; 40], combustion and explosive detonation [57;
49], and reaction fronts [55].

Numerical schemes based on a particle representation of a fluid (e.g., molecu-
lar dynamics, direct simulation Monte Carlo [2]) inherently include spontaneous
fluctuations due to the irregular dynamics of the particles. However, by far the
most common numerical schemes in computational fluid dynamics are based on
solving partial differential equations. To incorporate thermal fluctuations into
macroscopic hydrodynamics, Landau and Lifshitz introduced an extended form of
the compressible Navier–Stokes equations obtained by adding white-noise stochastic
flux terms to the standard deterministic equations. While they were originally
developed for equilibrium fluctuations, specifically the Rayleigh and Brillouin
spectral lines in light scattering, the validity of the Landau–Lifshitz Navier–Stokes
(LLNS) equations for nonequilibrium systems has been assessed [28] and verified in
molecular simulations [33; 51; 53]. The LLNS system is one of the more complex
examples in a broad family of PDEs with stochastic fluxes. Many members of this
family arise from the LLNS equations in a variety of approximations (e.g., stochastic
heat equation) while others are stochastic variants of well known PDEs, such as the
stochastic Burger’s equation [12], which can be derived from the continuum limit
of an asymmetric excluded random walk.

Several numerical approaches for fluctuating hydrodynamics have been proposed.
The earliest work by Garcia et al. [32] developed a simple scheme for the stochastic
heat equation and the linearized one-dimensional LLNS equations. Ladd et al.
[45] have included stress fluctuations in (isothermal) Lattice Boltzmann methods
for some time, and recently a better theoretical foundation has been established
[1; 26]. Moseler and Landman [56] included the stochastic stress tensor of the

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 151

LLNS equations in the lubrication equations and obtain good agreement with their
molecular dynamics simulation in modeling the breakup of nanojets. Sharma
and Patankar [61] developed a fluid-structure coupling between a fluctuating in-
compressible solver and suspended Brownian particles. Coveney, De Fabritiis,
Delgado-Buscalioni and coworkers have also used the isothermal LLNS equations
in a hybrid scheme, coupling a continuum fluctuating solver to a molecular dynamics
simulation of a liquid [29; 35; 23]. Atzberger et al. [7] have developed a version
of the immersed boundary method that includes fluctuations in a pseudospectral
method for the incompressible Navier–Stokes equations. Voulgarakis and Chu
[63] developed a staggered scheme for the isothermal LLNS equations as part of a
multiscale method for biological applications, and a similar staggered scheme was
also described in [22].

Recently, Bell et al. [13] introduced a centered scheme for the LLNS equations
based on interpolation schemes designed to preserve fluctuations combined with
a third-order Runge–Kutta (RK3) temporal integrator. In that work, the principal
diagnostic used for evaluation of the numerical method was the accuracy of the
local (cell) variance and spatial (cell-to-cell) correlation structure for equilibrium
and selected nonequilibrium scenarios (e.g., constant temperature gradient). The
metric established by those types of tests is, in some sense, simultaneously too
crude and too demanding. It is too crude in the sense that it provides only limited
information from detailed simulations that cannot be directly linked to specific
properties of the scheme. On the other hand, such criteria are too demanding in
the sense that they place requirements on the discretization integrated over all
wavelengths, requiring that the method perform well at high wavenumbers where
a deterministic PDE solver performs poorly. Furthermore, although Bell et al.
[13] demonstrate that RK3 is an effective algorithm, compared with other explicit
schemes for the compressible Navier–Stokes equations, the general development of
schemes for the LLNS equations has been mostly trial and error.

Here, our goal is to establish a more rational basis for the analysis and develop-
ment of explicit finite-volume scheme for stochastic partial differential equations
(SPDEs) with a stochastic flux. The approach is based on analysis of the structure
factor (equilibrium fluctuation spectrum) of the discrete system. The structure
factor is, in essence, the stationary spatiotemporal correlations of hydrodynamic
fluctuations as a function of spatial wavenumber and temporal frequency; the
static structure factor is the integral over frequency (i.e., the spatial spectrum).
By analyzing the structure factor for a numerical scheme, we are able to develop
notions of accuracy for a given discretization at long wavelengths. Furthermore, in
many cases the theoretical analysis for the structure factor is tractable (with the aid
of symbolic manipulators) allowing us to determine optimal coefficients for a given
numerical scheme. We perform this optimization as a two-step procedure. First, a

152 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

spatial discretization is developed that satisfies a discrete form of the fluctuation-
dissipation balance condition. Then, a stable temporal integrator is proposed and
the covariances of the random numbers are chosen so as to maximize the order
of temporal accuracy of the small-wavenumber static structure factor. We focus
primarily on explicit schemes for solving the LLNS equations because even at the
scales where thermal fluctuations are important, the limitation on time step imposed
by stability is primarily due to the hyperbolic terms. That is, when the cell size is
comparable to the length scale for molecular transport (e.g., mean free path in a
dilute gas) the time step for these compressible hydrodynamic equations is limited
by the acoustic CFL (Courant–Friedrichs–Lewy) condition. At even smaller length
scales the viscous terms further limit the time step yet the validity of a continuum
representation for the fluid starts to break down at those atomic scales.

The paper is divided into roughly two parts: The first half (Sections 2–4) defines
notation, develops the formalism, and derives the expressions for analyzing a general
class of linear stochastic PDEs from the LLNS family of equations. The main
result in the first half, how to evaluate the structure factor for a numerical scheme,
appears in Section 3B. The second half applies this analysis to systems of increasing
complexity, starting with the stochastic heat equation (Section 5A), followed by the
LLNS system in one dimension (Section 6) and three dimensions (Section 7). The
paper closes with a summary and concluding remarks, followed by an Appendix
on the semi-implicit Crank–Nicolson method.

2. Landau–Lifshitz Navier–Stokes equations

We consider the accuracy of explicit finite-volume methods for solving the Landau–
Lifshitz Navier–Stokes (LLNS) system of stochastic partial differential equations
(SPDEs) in d dimensions, given in conservative form by

∂t U =−∇ · [F(U)−Z (U, r, t)], (1)

where U(r, t) = [ρ, j , e]T is a vector of conserved variables that are a function
of the spatial position r and time t . The conserved variables are the densities of
mass ρ, momentum j = ρv, and energy e = ε(ρ, T)+ 1

2ρv
2, expressed in terms

of the primitive variables, mass density ρ, velocity v, and temperature T ; here ε
is the internal energy density. The deterministic flux is taken from the traditional
compressible Navier–Stokes–Fourier equations and can be split into hyperbolic and
diffusive fluxes:

F(U)= FH (U)+ FD(U),
where

FH =

 ρv

ρvvT
+ P I

(e+ P)v

 and FD =−

 0
σ

σ · v+ ξ

 ,

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 153

P = P(ρ, T) is the pressure, the viscous stress tensor is

σ = η∇v = η

[
(∇v+∇vT)−

2 (∇ · v)
d

I
]

for d ≥ 2 (we have assumed zero bulk viscosity) and σ = ηvx for d = 1, and the
heat flux is ξ = µ∇T . We denote the adjoint (conjugate transpose) of a matrix or
linear operator M with M?

= MT . As postulated by Landau and Lifshitz [46; 28],
the stochastic flux

Z =

 0
6

6 · v+4


is composed of the stochastic stress tensor 6 and stochastic heat flux vector 4,
assumed to be mutually uncorrelated random Gaussian fields with the following
covariance (where bars denote means):

<<6(r, t)6?(r ′, t ′)>> = C6δ(t − t ′)δ(r − r ′),
where C (6)

i j,kl = 2η̄kB T
(
δikδ jl + δilδ jk −

2
d f
δi jδkl

)
;

<<4(r, t)4?(r ′, t ′)>> = C4δ(t − t ′)δ(r − r ′), where C (4)
i, j = 2µ̄kB T 2δi j .

(2)

In the LLNS system, the hyperbolic or advective fluxes are responsible for
transporting the conserved quantities at the speed of sound or fluid velocity, without
dissipation. On the other hand, the diffusive or dissipative fluxes are the ones
responsible for damping the thermal fluctuations generated by the stochastic or
fluctuating fluxes. At equilibrium a steady state is reached in which a fluctuation-
dissipation balance condition is satisfied.

In the original formulation, Landau and Lifshitz only considered adding stochastic
fluxes to the linearized Navier–Stokes equations, which leads to a well-defined sys-
tem of SPDEs whose equilibrium solutions are random Gaussian fields. Derivations
of the equations of fluctuating hydrodynamics through careful asymptotic expansions
of the underlying microscopic (particle) dynamics give equations for the Gaussian
fluctuations around the solution to the usual deterministic Navier–Stokes equations
[47], in the spirit of the Central Limit Theorem. Therefore, numerical solutions
should, in principle, consist of two steps: first solving the nonlinear deterministic
equations for the mean solution, and then solving the linearized equations for the
fluctuations around the mean. If the fluctuations are small perturbations, it makes
sense numerically to try to combine these two steps into one and simply consider
nonlinear equations with added thermal fluctuations. There is also hope that this
might capture effects not captured in the two-system approach, such as fluctuation-

154 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

driven transport in nonequilibrium systems [59], or the effect of fluctuations on the
very long-time dynamics of the mean (e.g., shock drift [13]) and hydrodynamic
instabilities [65; 56; 40].

The linearized equations of fluctuating hydrodynamics can be given a well
defined interpretation with the use of generalized functions or distributions [19].
However, the nonlinear fluctuating hydrodynamic equations (1) must be treated
with some care since they have not been derived from first principles [28] and
are in fact mathematically ill defined due to the high irregularity of white-noise
fluctuating stresses [34]. More specifically, because the solution of these equations
is itself a distribution the interpretation of the nonlinear terms requires giving a
precise meaning to products of distributions, which cannot be defined in general
and requires introducing some sort of regularization. Although written formally as
an SPDE, the LLNS equations are usually interpreted in a finite volume context,
where the issues of regularity, at first sight, disappear. However, in finite volume
form the level of fluctuations becomes increasingly large as the volume shrinks
and the nonlinear terms diverge leading to an “ultraviolet catastrophe” of the kind
familiar in other fields of physics [34; 16]. Furthermore, because the noise terms
are Gaussian, it is possible for rare events to push the system to states that are not
thermodynamically valid such as negative T or ρ. For that reason, we will focus
on the linearized LLNS equations, which can be given a well-defined interpretation.
Since the fluctuations are expected to be a small perturbation of the deterministic
solution, the nonlinear equations should behave similarly to the linearized equations
anyway, at least near equilibrium for sufficiently large cells.

To simplify the exposition we assume the fluid to be a monoatomic ideal gas;
the generalization of the results for an arbitrary fluid is tedious but straightforward.
For an ideal gas the equation of state may be written as

P = ρ (kB T/m)= ρc2,

where c is the isothermal speed of sound. The internal energy density is ε = ρcvT ,
where cv is the heat capacity at constant volume, which may be written as cv =
d f kB/2m where d f is the number of degrees of freedom of the molecules (for
monoatomic gases there are d f = d translational degrees of freedom), and cp =

(1+ 2/d f)cv is the heat capacity at constant pressure. For analytical calculations,
it is convenient to convert the LLNS system from conserved variables to primitive
variables, since the primitive variables are uncorrelated at equilibrium and the
equations (1) simplify considerably:

Dtρ =− ρ∇ · v,

ρ (Dtv)=−∇P +∇ · (σ +6) ,

ρcp (Dt T)= Dt P +∇ · (ξ +4)+ (σ +6) :∇v,

(3)

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 155

where Dt�= ∂t�+ v ·∇ (�) denotes the familiar advective derivative. Note that
in the fully nonlinear numerical implementation, however, we continue to use the
conserved variables to ensure that the physical conservation laws are strictly obeyed.

Linearizing (3) around a reference uniform equilibrium state ρ = ρ0+ δρ, v =
v0+ δv, T = T0+ δT , and dropping the deltas for notational simplicity,

U =

δρδv
δT

→
ρv

T

 ,
we obtain the linearized LLNS system for the equilibrium thermal fluctuations,

∂t U =−∇ · [FU −Z] = −∇ · [FH U + FD∇U −Z], (4)

where

FH U =

 ρ0v+ ρv0(
c2

0ρ
−1
0 ρ+ c2

0T−1
0 T

)
I + v0v

T

c2
0c−1
v v+ T v0

 and FD∇U =

 0

ρ−1
0 η0∇v

ρ−1
0 c−1

v µ0∇T

 ,
and Z (r, t) is a random Gaussian field with a covariance

<< Z (r, t)Z ?(r ′, t ′)>> = C Zδ(t − t ′)δ(r − r ′),

where the covariance matrix is block diagonal,

C Z =

0 0 0
0 ρ−2

0 C6 0
0 0 ρ−2

0 c−2
v C4

 ,
and C6 and C4 are given in (2). Equation (4) is a system of linear SPDEs with
additive noise that can be analyzed within a general framework, as we develop next.
We note that the stochastic “forcing” in (4) is essentially a divergence of white
noise, modeling conservative intrinsic (thermal) fluctuations [47], rather than the
more common external fluctuations modeled through white noise forcing [21; 39].

The next two sections develop the tools for analyzing finite volume schemes
for linearized SPDEs, such as the LLNS system, specifically how to predict the
equilibrium spectrum of the fluctuations (i.e., structure factor) from the spatial and
temporal discretization used by the numerical algorithm. These analysis tools are
demonstrated for simple examples in Section 5A and applied to the LLNS system
in Sections 6 and 7.

156 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

3. Explicit methods for linear stochastic partial differential equations

In this section, we develop an approach for analyzing the behavior of explicit
discretizations for a broad class of SPDEs, motivated by the linearized form of the
LLNS equations. In particular, we consider a general linear SPDE for the stochastic
field U (r, t)≡ U (t) of the form

dU (t)=LU (t) dt +K dB(t), (5)

with periodic boundary conditions on the torus r ∈ V = [0, H]d , where L (the
generator) and K (the filter) are time-independent linear operators, and B is a
cylindrical Wiener process (Brownian sheet), and the initial condition at t = 0 is
U 0. As common in the physics literature, we will abuse notation and write

∂t U =LU +KW ,

where W = dB(t)/dt is spatiotemporal white noise, that is, a random Gaussian
field with zero mean and covariance

<<W (r, t)W ?(r ′, t ′)>> = δ(t − t ′)δ(r − r ′). (6)

The so-called mild solution [19] of (5) is a generalized process

U (t)= etLU 0+

∫ t

0
e(t−s)LK dB(s), (7)

where the integral denotes a stochastic convolution. If the operator L is dissipative,
that is, limt→∞ etLU 0 = 0 for all U 0, then at long times t ′ the solution to (5) is a
Gaussian process with mean zero and covariance

CU (t)= << U (t ′)U ?(t ′+ t)>> =
∫ 0

−∞

e−sLKK?e(t−s)L?

ds, t ≥ 0. (8)

This means that (5) has a unique invariant measure (equilibrium or stationary
distribution) that is Gaussian with mean zero and covariance given in (8).

In general, the field U (r, t) is only a generalized function of the spatial coordinate
r and cannot be evaluated pointwise. For the cases we will consider here, specifically,
translationally invariant problems where L and K are differential operators, this
difficulty can be avoided by transforming (5) to Fourier space via the Fourier series
transform

U (r, t)=
∑
k∈V̂

ei k·r Û (k, t), (9)

Û (k, t)=
1
V

∫
r∈V

e−i k·r U (r, t)d r, (10)

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 157

where V = |V| = H d is the volume of the system, and each wavevector k ≡ k(κ)
is expressed in terms of the integer wave index κ ∈ Zd , giving the set of discrete
wavevectors

V̂ =
{

k = 2πκ/H | κ ∈ Zd} .
In Fourier space, the SPDE (5) becomes an infinite system of uncoupled stochastic
ordinary differential equations (SODEs),

d Û (t)= L̂Û (t)dt + K̂d B̂(t), (11)

one SODE for each k∈ V̂ . The invariant distribution of (11) is a zero-mean Gaussian
random process, characterized fully by the covariance obtained from the spatial
Fourier transform of (8),

S(k, t)= V << Û (k, t ′)Û ?
(k, t ′+ t)>> =

1
2π

∫
∞

−∞

eiωtS(k, ω)dω, (12)

where the dynamic structure factor (space-time spectrum) is

S(k, ω)= V << Û (k, ω)Û ?
(k, ω)>> = (L̂− iω)−1(K̂K̂?

)(L̂?
+ iω)−1, (13)

which follows directly from the space-time (k, ω) Fourier transform of the SPDE
(5). By integrating the dynamic spectrum over all frequencies ω, one gets the static
structure factor

S(k)= S(k, t = 0)=
1

2π

∫
∞

−∞

S(k, ω)dω, (14)

which is the spatial spectrum of an equilibrium snapshot of the fluctuating field
and is the Fourier equivalent of CU (t = 0). Note that the dynamic structure
factor of spatiotemporal white noise is unity independent of the wavevector and
wavefrequency: SW (k, ω)= I .

3A. Discretization. For the types of equations we will consider in this paper, the
invariant measure is spatially white, specifically, S(k) is diagonal and independent
of k. The associated fluctuating field U cannot be evaluated pointwise, therefore,
it is more natural to use finite-volume cell averages, denoted here by U . In the
deterministic setting, for uniform periodic grids there is no important difference
between finite-volume and finite-difference methods. Our general approach can
likely be extended also to analysis of stochastic finite-element discretizations,
however, such methods have yet to be developed for the LLNS equations and here
we focus on finite-volume methods. For notational simplicity, we will discuss
problems in one spatial dimension (d = 1), with (mostly) obvious generalizations
to higher dimensions.

158 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

Space is discretized into Nc identical cells of length 1x = H/Nc, and the value
U j stored in cell 1≤ j ≤ Nc is the average of the corresponding variable over the
cell

U j (t)=
1
1x

∫ j1x

(j−1)1x
U (x, t)dx . (15)

Time is discretized with a time step 1t , approximating cell averages of U (x, t)
pointwise in time with Un

= {Un
1 , . . . ,Un

Nc
},

Un
j ≈ U j (n1t),

where n ≥ 0 enumerates the time steps. The white noise W (x, t) cannot be
evaluated pointwise in either space or time and is discretized using a spatiotemporal
average

W n
j (t)=

1
1x1t

∫ (n+1)1t

n1t

∫ j1x

(j−1)1x
W (x, t)dx dt, (16)

which is a normal random variable with zero mean and variance (1x1t)−1, in-
dependent between different cells and time steps. Note that for certain types of
equations the dynamic structure factor may be white in frequency as well. In this
case, a pointwise-in-time discretization is not appropriate and one can instead use a
spatiotemporal average as done for white noise in (16).

We will study the accuracy of explicit linear finite-volume schemes for solving
the SPDE (5). Rather generally, such methods are specified by a linear recursion of
the form

Un+1
= (I + L1t)Un

+

√
1t
1x

K Wn, (17)

where L and K are consistent stencil discretizations of the continuum differential
operators L and K (note that L and K may involve powers of 1t in general). Here

Wn
= (1x1t)1/2 W n

(18)

is a vector of standard normal variables with mean zero and variance one.
Without the random forcing, the deterministic equation U t = LU and the

associated discretization can be studied using classical tools and notions of stability,
consistency, and convergence. Under the assumption that the discrete generator L
is dissipative, the initial condition U0 will be damped and the equilibrium solution
will simply be a constant. The addition of the random forcing, however, leads
to a nontrivial invariant measure (equilibrium distribution) of Un determined by
an interplay between the (discretized) fluctuations and dissipation. Because of
the dissipative nature of the generator, any memory of the initial condition will
eventually disappear and the long time dynamics is guaranteed to follow an ergodic
trajectory that samples the unique invariant measure. In order to characterize

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 159

the accuracy of the stochastic integrator, we will analyze how well the discrete
invariant measure (equilibrium distribution) reproduces the invariant measure of the
continuum SPDE (this is a form of weak convergence). Note that due to ergodicity,
ensemble averages can either be computed by averaging the power spectrum of
the fields over multiple samples or averaging over time (after sufficiently many
initial equilibration steps). In the theory we will consider the limit n→∞ and then
average over different realizations of the noise W to obtain the discrete structure
factors. In numerical calculations, we perform temporal averaging.

Regardless of the details of the iteration (17), Wn will always be a Gaussian
random vector generated anew at each step n using a random number generator.
The discretized field Un is therefore a linear combination of Gaussian variates and it
is therefore a Gaussian vector-valued stochastic process. In particular, the invariant
measure (equilibrium distribution) of Un is fully characterized by the covariance

C(U)
j, j ′,n = lim

Ns→∞
<<U Ns

j

(
U Ns+n

j ′
)?

>> , (19)

which we would like to compare to the covariance of the continuum Gaussian field
CU (t = n1t) given by (8). This comparison is best done in the Fourier domain by
using the spatial discrete Fourier transform, defined for a spatially discrete field U
(for example, U ≡ Un or U ≡ U(t)) via

U j =
∑
k∈V̂d

Ûkei j1k, (20)

Ûk =
1
V

Nc−1∑
j=0

U j+1e−i j1k1x, (21)

where we have denoted the discrete dimensionless wavenumber

k1x = 2πκ/Nc,

and the wave index is now limited to the first Nc values,

V̂d = {k = 2πκ/H | 0≤ κ < Nc} ⊂ V.

Since the fields are real-valued, there is a redundancy in the Fourier coefficients Ûk

because of the Hermitian symmetry between κ and Nc− κ (essentially, the second
half of the wave indices correspond to negative k), and thus we will only consider
0≤ κ ≤ bNc/2c, giving a (Nyquist) cutoff wavenumber kmax ≈ π/1x .

What we would like to compare is the Fourier coefficients of the numerical
approximation, Ûn

k , with the Fourier coefficients of the continuum solution

Û k(t = n1t).

160 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

The invariant measure of Ûn
k has zero mean and is characterized by the covariance

obtained from the spatial Fourier transform of (19),

Sk,n = V lim
Ns→∞

<< Û Ns
k

(
Û Ns+n

k

)?
>> . (22)

From the definition of the discrete Fourier transform it follows that for small1k, that
is, smooth Fourier basis functions on the scale of the discrete grid, Ûk(t) converges
to the Fourier coefficient Û (k, t = n1t) of the continuum field. Therefore, Sk,n is
the discrete equivalent (numerical approximation) to the continuum structure factor
S(k, t = n1t). We define a discrete approximation to be weakly consistent if

lim
1x,1t→0

Sk,n=bt/1tc = S (k, t) ,

for any chosen k ∈ V̂ and t . This means that, given a sufficiently fine discretization,
the numerical scheme can accurately reproduce the structure factor for a desired
wave index and time lag. An alternative view is that a convergent scheme reproduces
the slow (compared to 1t) and large-scale (compared to 1x) fluctuations, that is, it
accurately reproduces the dynamic structure factor S(k, ω) for small 1k = k1x
and 1ω= ω1t . Our goal here is to quantify this for several numerical methods for
solving stochastic conservation laws and optimize the numerical schemes by tuning
parameters to obtain the best possible approximation to S(k, ω) for small k and ω.

Much of our analysis will be focused on the discrete static structure factor

Sk = Sk,0 = V lim
Ns→∞

<< Û Ns
k

(
Û Ns

k

)?
>> .

Note that for a spatially white field U (x), the finite-volume averages U j are indepen-
dent Gaussian variates with mean zero and variance 1x−1, and the discrete Fourier
coefficients Ûk are independent Gaussian variates with mean zero and variance V−1.
As a measure of the accuracy of numerical schemes for solving (5), we will compare
the discrete static structure factors Sk with the continuum prediction S(k), for all of
the discrete wavenumbers (i.e., pointwise in Fourier space). It is expected that any
numerical scheme will produce some artifacts at the largest wavenumbers because
of the strong corrections due to the discretization; however, small wavenumbers
ought to have much smaller errors because they evolve over time scales and length
scales much larger than the discretization step sizes. Specifically, we propose to
look at the series expansions

Sk −S(k)= O(1t p1k p2),

and optimize the numerical schemes by maximizing the powers p1 and p2. Next
we describe the general formalism used to obtain explicit expressions for the
discrete structure factors Sk for a general explicit method, and then illustrate the

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 161

formalism on some simple examples, before attacking the more complex equations
of fluctuating hydrodynamics.

3B. Analysis of linear explicit methods. Regardless of the details of a particular
scheme and the particular linear SPDE being solved, at the end of the time step a
typical explicit scheme makes a linear combination of the values in the neighboring
cells and random variates to produce an updated value,

Un+1
j = Un

j +

1 j=wD∑
1 j=−wD

81 j Un
j+1 j +

1 j=wS∑
1 j=−wS

91 j Wn
j+1 j , (23)

where wD and wS are the deterministic and stochastic stencil widths. The particular
forms of the matrices of coefficients 8 and 9 depend on the scheme, and will
involve powers of1t and1x . Here we assume that for each n the random increment
Wn is an independent vector of Ns normal variates with covariance

CW = <<Wn
j (W

n
j)
?
>>

constant for all of the cells j and thus wavenumbers, where Ns is the total number
of random numbers utilized per cell per stage. Computer algebra systems can be
used to obtain explicit formulas for the matrices in (23); we have made extensive
use of Maple for the calculations presented in this paper.

Assuming a translation invariant scheme, the iteration (23) can easily be converted
from real space to an iteration in Fourier space,

Ûn+1
k = Ûn

k +

1 j=wD∑
1 j=−wD

81 j Ûn
k exp (i1 j1k)+

1 j=wS∑
1 j=−wS

91 j Ŵn
k exp (i1 j1k) , (24)

where different wavenumbers are not coupled to each other. In general, any linear
explicit method can be represented in Fourier space as a recursion of the form

Ûn+1
k = MkÛn

k + Nk Ŵn
k , (25)

where the explicit form of the matrices Mk and Nk depend on the particular scheme
and typically contain various powers of sin1k, cos1k, and 1t , and

C Ŵ = << Ŵn
k
(
Ŵn

k
)?

>> = N−1
c CW .

By iterating this recurrence relation, we can easily obtain (assuming Û0
k = 0)

Ûn+1
k =

n∑
l=0

(Mk)
l Nk Ŵn−l

k ,

162 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

from which we can calculate

Sn
k = V <<

(
Ûn

k
)(

Ûn
k
)?

>> =
n−1∑
l=0

(Mk)
l(1x Nk CW N?

k)(M
?
k)

l
=

n−1∑
l=0

(Mk)
l C̃(M?

k)
l .

In order to calculate this sum explicitly, we will use the identity

Mk Sn
k M?

k − Sn
k = (Mk)

n C̃(M?
k)

n
− C̃ (26)

to obtain a linear system for the entries of the matrix Sn
k . If the deterministic method

is stable, which means that all eigenvalues of the matrix Mk are below unity for all
wavenumbers, then in the limit n→∞ the first term on the right side will vanish,
to give

Mk Sk M?
k − Sk =−1x Nk CW N?

k . (27)

If one assumes existence of a unique structure factor, Equation (27) can be most
directly obtained from the condition of stationarity Sn+1

k = Sn
k ≡ Sk ,

<<
(
MkÛn

k + Nk Ŵn
k
)(

MkÛn
k + Nk Ŵn

k
)?

>> = <<
(
Ûn

k
)(

Ûn
k
)?

>> = V−1 Sk,

giving a path to easily extend the analysis to more complicated situations such as
multistep schemes.

Equation (27) is a linear system of equations for the equilibrium static structure
factor produced by a given scheme, where the number of unknowns is equal to
the square of the number of variables (field components). By simply deleting the
subscripts k one obtains a more general but much larger linear system [36] for the real
space equilibrium covariance of a snapshot of the discrete field C (U)

j, j ′ = C(U)
j, j ′,n=0 :

MCU M?
−CU =−1x NC(Nc)

W N?,

where
C(Nc)

W = << Wn(Wn)?>>

is the covariance matrix of the random increments. Note that this relation continues
to hold even for schemes that are not translation invariant such as generalizations
to nonperiodic boundary conditions; however, the number of unknowns is now the
square of the total number of degrees of freedom so that explicit solutions will in
general not be possible. Based on standard wisdom for deterministic schemes, it is
expected that schemes that perform well under periodic boundary conditions will
also perform well in the presence of boundaries when the discretization is suitably
modified only near the boundaries.

A similar approach to the one illustrated above for the static structure factor can
be used to evaluate the discrete dynamic structure factor

Sk,ω = lim
Ns→∞

V (Ns1t) << Û Ns
k,ω

(
Û Ns

k,ω

)?
>>

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 163

from the time-discrete Fourier transform

Û Ns
k,ω =

1
Ns

Ns∑
l=0

exp (−il1ω) Û l
k,

where 1ω = ω1t , and the frequency is less than the Nyquist cutoff ω ≤ π/1t .
The calculation yields

Sk,ω = [I − exp (−i1ω) Mk]
−1(1x1t Nk CW N?

k)[I − exp (i1ω) M?
k]
−1. (28)

Equation (28) can be seen as discretized forms of the continuum version (13) in
the limits 1k→ 0, 1t→ 0 (the corresponding correlations in the time-domain are
given in [36]).

Equations (27) and (28) are the main result of this section and we have used it
to obtain explicit expressions for Sk and Sk,ω for several equations and schemes.
Many of our results are in fact rather general; however, for clarity and specificity, in
the next sections we will illustrate the above formalism for several simple examples
of stochastic conservation laws.

3B1. Discrete fluctuation-dissipation balance. We consider first the static structure
factors for very small time steps. In the limit 1t→ 0, temporal terms of order two
or more can be ignored so that all time-integration methods behave like an explicit
first-order Euler iteration as in (17),

Ûn+1
k =

(
I +1t L̂(0)k

)
Ûn

k +

√
1t
1x

K̂ (0)
k Ŵk, (29)

where L(0) = L (1t = 0) can be thought of as the spatial discretization of the
generator L, and K (0)

= K (1t = 0) is the spatial discretization of the filtering
operator K. Comparing to (25) we can directly identify Mk = I +1t L̂(0)k and
Nk =

√
1t/1x K̂ (0)

k and substitute these into (27). Keeping only terms of order
1t on both sides we obtain the condition

L̂(0)k S(0)k + S(0)k

(
L̂(0)k

)?
=−K̂ (0)

k CW
(
K̂ (0)

k
)?
, (30)

where S(0)k = lim1t→0 Sk (see also a related real-space derivation using Ito’s calculus
in [6], as well as in [36, Section VIII]). It can be shown that if L̂(0)k is definite, (30)
has a unique solution. Assuming that W is as given in (18), that is, that CW = I ,
and that the spatial discretizations of the generator and filter operators satisfy a
discrete fluctuation-dissipation balance

L̂(0)k +
(
L̂(0)k

)?
=−K̂ (0)

k
(
K̂ (0)

k
)?
, (31)

we see that S(0)k = I is the solution to (30), that is, at equilibrium the discrete fields
are spatially white. The discrete fluctuation-dissipation balance condition can also

164 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

be written in real space:

L(0)+ (L(0))? =−K (0)(K (0))?. (32)

The condition (32) is the discrete equivalent of the continuum fluctuation-dissipation
balance condition [44]

L+L?
=−KK?, (33)

which ensures that S(k) = I , that is, that the invariant measure of the SPDE is
spatially white. We observe that adding a skew adjoint component to L does not
alter the fluctuation-dissipation balance above, as is the case with nondissipative
(advective) terms. Numerous equations [47] modeling conservative thermal systems
satisfy condition (33), including the linearized LLNS equations (with some addi-
tional prefactors). In essence, the fluctuations injected at all scales by the spatially
white forcing W are filtered by K and then dissipated by L at just equal rates.

Assuming a spatial discretization satisfies the discrete fluctuation-dissipation
balance condition, it is possible to extend the above analysis to higher powers of
1t and analyze the corrections to the structure factors for finite time steps. Some
general conclusions can be reached in this way, for example, the Euler method is
first-order accurate, predictor-corrector methods are at least second-order accurate,
while the Crank–Nicolson semi-implicit method gives Sk = I for any time step. We
will demonstrate these results for specific examples in the next section, including
the spatial truncation errors as well.

4. Linear stochastic conservation laws

The remainder of this paper is devoted to the study of the accuracy of finite-volume
methods for solving linear stochastic PDEs in conservation form,

∂t U =−∇ · [(AU −C∇U)− EW], (34)

where A, C and E are constants, and W is Gaussian spatiotemporal white noise.
The white noise forcing and its divergence here need to be interpreted in the
(weak) sense of distributions since they lack the regularity required for the classical
definitions. The linearization of the LLNS equations (1) leads to a system of the
form (34), as do a number of other classical PDEs [47], such as the stochastic
advection-diffusion equation

∂t T =−a ·∇T +µ∇2T +
√

2µ∇ ·W , (35)

where T (r, t)≡ U(r, t) is a scalar stochastic field, A≡ a is the advective velocity,
C ≡ µI , µ > 0 is the diffusion coefficient, and E ≡

√
2µI . The simplest case is

the stochastic heat equation, obtained by taking a = 0.

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 165

A key feature of the type of system considered here is that the noise is intrinsic
to the system and appears in the flux as opposed to commonly treated systems that
include an external stochastic forcing term, such as the form of a stochastic heat
equation considered in [21]. Since white noise is more regular than the spatial
derivative of white noise, external noise leads to more regular equilibrium fields
(e.g., continuous functions in one dimension). Intrinsic noise, on the other hand,
leads to very irregular equilibrium fields. Notationally, it is convenient to write (34)
as

∂t U =−D(AU −CGU − EW), (36)

defining the divergence D ≡∇· and gradient G ≡∇ operators, D?
=−G. In the

types of equations that appear in hydrodynamics, such as the LLNS equations, the
operator D A is skew-adjoint, (D A)?=−D A (hyperbolic or advective flux), C � 0
(dissipative or diffusive flux), and E E?

= 2C, that is, E?
= (2C)1/2. Therefore,

the generator L=−D A+DCG = (D A)?−DCD∗ and filter K=DE satisfy
the fluctuation-dissipation balance condition (33) and the equilibrium distribution
is spatially white. Note that even though advection makes some of the eigenvalues
of L complex, the generator is dissipative and (34) has a unique invariant measure
because the real part of all of the eigenvalues of L is negative except for the unique
zero eigenvalue.

It is important to point out that discretizations of the continuum operators do
not necessarily satisfy the discrete fluctuation-dissipation condition (32). One way
to ensure the condition is satisfied is to discretize the diffusive components of the
generator L D = DCG and the filter K = DE using a discrete divergence D and
discrete gradient G so that the discrete fluctuation-dissipation balance condition
L D+L?D=−K K ? holds. If, however, the discretization of the advective component
of the generator L A =−D A is not skew-adjoint, this can perturb the balance (31).
Notably, various upwinding methods lead to discretizations that are not skew-
adjoint. The correction to the structure factor S(0)k = I +1S(0)k due to a nonzero
1L A = (L A+ L?A)/2 can easily be obtained from (30), and in one dimension the
result is simply

1S(0)k =−
1L(A)k

L(D)k +1L(A)k

. (37)

We will use centered differences for the advective generator in this work, which
ensures a skew-adjoint L A, and our focus will therefore be on satisfying the discrete
fluctuation-dissipation balance between the diffusive and stochastic terms.

4A. Finite-volume numerical schemes. We consider here rather general finite-
volume methods for solving the linear SPDE (34) in one dimension,

∂t U =−
∂

∂x
[F(U)−Z] = −

∂

∂x

[(
A−C

∂

∂x

)
U − EW

]
(38)

166 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

with periodic boundaries, where we have denoted the stochastic flux with Z = EW .
As for classical finite-volume methods for the deterministic case, we start from the
PDE and integrate the left and right sides over a given cell j over a given time step
1t , and use integration by parts to obtain the formally exact

Un+1
j = Un

j −
1t
1x

(Fj+1/2− Fj−1/2)+
1t
1x

(1
√
1x1t

)
(Z j+1/2− Z j−1/2), (39)

where the deterministic discrete fluxes F and stochastic discrete fluxes Z are cal-
culated on the boundaries of the cells (points in one dimension, edges in two
dimensions, and faces in three dimensions), indexed here with half-integers. These
fluxes represent the total rate of transport through the interface between two cells
over a given finite time interval 1t , and (39) is nothing more than a restatement of
conservation. The classical interpretation of pointwise evaluation of the fluxes is
not appropriate because white noise forcing lacks the regularity of classical smooth
forcing and cannot be represented in a finite basis. Instead, just as we projected the
fluctuating fields using finite-volume averaging, we ought to project the stochastic
fluxes Z to a finite representation Z = (1x1t)−1/2 Z through spatio-temporal
averaging, as done in (16) and (18). For the purposes of our analysis, one can
simply think of the discrete fluxes as an approximation that has the same spectral
properties as the corresponding continuum Gaussian fields over the wavevectors
and frequencies represented by the finite discretization.

The goal of numerical methods is to approximate the fluxes as best as possible.
In general, within each time step of a scheme there may be Nst stages or substeps;
for example, in the classic MacCormack method there is a predictor and a corrector
stage (Nst = 2), and in the three-stage Runge–Kutta method of Williams et al. [13],
there are three stages (Nst = 3). Each stage 0< s ≤ Nst is of the conservative form
(39):

Un+s/Nst
j =

s−1∑
s′=0

α
(s)
s′ Un+s′/Nst

j −
1t
1x

(F(s)
j+1/2− F(s)

j−1/2)

+
1t1/2

1x3/2 (Z
(s)
j+1/2− Z(s)j−1/2), (40)

where the α’s are some coefficients,
∑s−1

s′=0 α
(s)
s′ = 1, and each of the stage fluxes

are partial approximations of the continuum flux. For the stochastic integrators we
discuss here, the deterministic fluxes are calculated the same way as they would
be in the corresponding deterministic scheme. In general, the stochastic fluxes
Z j+1/2 can be expressed in terms of independent unit normal variates W j+1/2 that
are sampled using a random number generator. The stochastic fluxes in each stage
may be the same, may be completely independent, or they may have nontrivial
correlations between stages.

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 167

Note that it is possible to avoid noninteger indices by reindexing the fluxes in
(39) and writing it in a form consistent with (23):

Un+1
j = Un

j −
1t
1x

(Fj − Fj−1)+
1t1/2

1x3/2 (Z j − Z j−1). (41)

However, when considering the order of accuracy of the stencils and also fluctuation-
dissipation balance in higher dimensions, it will become important to keep in mind
that the fluxes are evaluated on the faces (edges or half-grid points) of the grid, and
therefore we will keep the half-integer indices. Note that for face-centered values,
such as fluxes, it is best to add a phase factor exp (i1k/2) in the definition of the
Fourier transform, even though such pure phase shifts will not affect the correlation
functions and structure factors.

Before we analyze schemes for the complex LLNS equations, we present an
illustrative explicit calculation for the one-dimensional stochastic heat equation.

5. Example: stochastic heat equation

We now illustrate the general formalism presented in Section 4 for the simple case
of an Euler and predictor-corrector scheme for solving the stochastic heat equation
in one dimension,

υt = µυxx +
√

2µWx , (42)

where υ (x, t) ≡ U (x, t) is a scalar field and µ is the mass or heat diffusion
coefficient. The solution in the Fourier domain is trivial, giving

S(k, ω)=
2µk2

ω2+µ2k4 and S(k)= 1. (43)

5A. Static structure factor. We first study a simple second-order spatial discretiza-
tion of the dissipative fluxes

F j+1/2 =
µ

1x
(u j+1− u j),

combined with an Euler integration in time, to give a simple numerical method for
solving the SPDE (42):

un+1
j = un

j +
µ1t
1x2 (u

n
j−1− 2un

j + un
j+1)+

√
2µ
1t1/2

1x3/2 (W
n
j+1/2−W n

j−1/2), (44)

where u ≡U and the W ’s are independent unit normal random numbers with zero
mean generated anew at every time step (here Ns = Nst = 1). From (44), we can
extract the recursion coefficients appearing in (25),

Mk = 1+β(e−i1k
− 2+ ei1k)= 1+ 2β (cos1k− 1) ,

Nk =
√

2µ
1t1/2

1x3/2 (e
i1k/2
− e−i1k/2),

168 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

where
β =

µ1t
1x2

denotes a dimensionless diffusive time step (ratio of the time step to the diffusive
CFL limit). Together with CW = 1, Equation (27) becomes a scalar equation for
the discrete structure factor

(Mk M?
k − 1)Sk =−1x Nk N ?

k ,

with dimensionless solution

Sk =
4β(1− cos1k)
(1−M2

k)
= [1+β(cos1k− 1)]−1 . (45)

The time-dependent result can also easily be derived from (26):

Sn
k = (1− e−t/τ)Sk, where t = n1t,

and τ−1
= 4µ (cos1k− 1) /1x2

≈ 2µk2 is the familiar relaxation time for wave-
number k, showing that the smallest wavenumbers take a long time to reach the
equilibrium distribution.

Equation (45) is a vivid illustration of the typical result for schemes for stochastic
transport equations based on finite difference stencils, also shown in Figure 1. Firstly,
we see that for small k we have that Sk ≈ 1+β1k2/2, showing that the smallest
wavenumbers are correctly handled by the discretization for any time step. Also,
this shows that the error in the structure factor is of order β, that is, of order 1t ,
as expected for the Euler scheme, whose weak order of convergence is one for
SODEs. Finally, it shows that the error grows quadratically with k (from symmetry
arguments, only even powers will appear). By looking at the largest wavenumber,
1kmax = π , we see that Skmax = (1− 2β)−1, from which we instantly see the CFL
stability condition β < 1/2, which guarantees that the structure factor is finite and
positive for all 0≤ k ≤ π . Furthermore, we see that for β� 1, the structure factor
is approximately unity for all wavenumbers. That is, a sufficiently small step will
indeed reproduce the proper equilibrium distribution.

By contrast, a two-stage predictor-corrector scheme for the diffusion equation,

ũn
j = un

j +
µ1t
1x2 (u

n
j−1− 2un

j + un
j+1)+

√
2µ
1t1/2

1x3/2 (W
n
j+1/2−W n

j−1/2),

un+1
j =

1
2

[
un

j + ũn
j +

µ1t
1x2 (ũ

n
j−1− 2ũn

j + ũn
j+1)+

√
2µ
1t1/2

1x3/2 (W
n
j+1/2−W n

j−1/2)
]
.

(46)

achieves much higher accuracy, namely, a structure factor that deviates from unity
by a higher order in both 1t and k,

PC-1RNG: Sk ≈ 1− 1
4β

21k4,

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 169

0 0.2 0.4 0.6 0.8 1

k / k
max

0

0.5

1

1.5

2

S
k

β=0.125 Euler

β=0.25 Euler

β=0.125 PC

β=0.25 PC

β=0.5 PC

β=0 (Ideal)

Figure 1. An illustration of the discrete structure factor Sk for the
Euler (44) and predictor-corrector (46) schemes for the stochastic
heat equation (42).

as illustrated in Figure 1. We can also use different stochastic fluxes in the predictor
and the corrector stages (i.e., use Ns = 2 random numbers per cell per stage), with
an added prefactor of

√
2 to compensate for the variance reduction of the averaging

between the two stages,

ũn
j = un

j +
µ1t
1x2 (u

n
j−1− 2un

j + un
j+1)+ 2

√
µ
1t1/2

1x3/2

(
W (n,P)

j+1/2−W (n,P)
j−1/2

)
,

un+1
j =

1
2

[
un

j + ũn
j +

µ1t
1x2 (ũ

n
j−1− 2ũn

j + ũn
j+1)+ 2

√
µ
1t1/2

1x3/2 (W
(n,C)
j+1/2−W (n,C)

j−1/2)
]
.

(47)

For the scheme (47) the analysis reveals an even greater spatiotemporal accuracy of
the static structure factors, namely, third order temporal accuracy:

PC-2RNG: Sk ≈ 1+ 1
8β

31k6.

This illustrates the importance of the handling of the stochastic fluxes in multi-
stage algorithms, as we will come back to shortly. Note, however, that the PC-
1RNG method (46) may be preferred in practice over the PC-2RNG method (47)
even though using two random numbers per step gives greater accuracy for small
wavenumbers for small time steps. This is not only because of the computational
savings of generating half the random numbers, but also because PC-1RNG is
better-behaved (more stable) at large wavenumbers for large time steps. Specifically,
the structure factor can become rather large for 1k = π for PC-2RNG for β > 0.1.

The analysis we presented here for explicit methods can easily be extended to
implicit and semi-implicit schemes as well, as illustrated in the Appendix for the
Crank–Nicolson method for the stochastic heat equation.

170 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

Previous studies [13; 29] have measured the accuracy of numerical schemes
through the variance of the fields in real space, which, by Parseval’s theorem, is
related to the integral of the structure factor over all wavenumbers. For the Euler
scheme (44) for the stochastic heat equation this can be calculated analytically,

σ 2
u = <<u2

j >> − <<u j >>
2
=1x−1(1− 2β)−1/2

≈1x−1(1+β),

showing first-order temporal accuracy (in the weak sense). For the predictor-
corrector scheme (46), on the other hand,

(σ PC
u)2 ≈1x−1(1− 3β2/2).

It is important to note, however, that using the variance as a measure of accuracy of
stochastic real-space integrators is both too rough and also too stringent of a test. It
does not give insights into how well the equipartition is satisfied for the different
modes, and, at the same time, it requires that the structure factor be good even
for the highest wavenumbers, which is unreasonable to ask from a finite-stencil
scheme.

For pseudospectral methods, as studied for the incompressible fluctuating Navier–
Stokes equation in [8; 43], one can modify the spectrum of the stochastic forcing
so as to balance the numerical stencil artifacts, and one can also use an (exact)
exponential temporal integrator in Fourier space to avoid the artifacts of time
stepping. However, for finite-volume schemes, a more reasonable approach is to
keep the stochastic fluxes uncorrelated between disjoint cells (which is actually
physical), and instead of looking at the variance, focus on the accuracy of the
static structure factor for small wavenumbers. Specifically, basic schemes will
typically have Sk − 1= O(1tk2), while multistep schemes will typically achieve
Sk − 1= O(1t2k2) or higher temporal order, or even Sk − 1= O(1t2k4).

5B. Dynamic structure factor. It is also constructive to study the full dynamic
structure factor for a given numerical scheme, especially for small wavenumbers
and low frequencies. This is significantly more involved in terms of analytical
calculations and the results are algebraically more complicated, especially for
multistage methods and more complex equations. For the Euler scheme (44) the
solution to (28) is

Sk,ω =
2χ1χ

−1
2 µk2

21t−2 (1− cos1ω)+χ2
1χ
−1
2 µ2k4

,

where χ1 = 2(1− cos1k)/1k2 and χ2 = 1+2β (cos1k− 1). This shows that the
dynamic structure factor does not converge to the correct answer for all wavenumbers

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 171

even in the limit 1t→ 0, namely,

lim
β→0

Sk,ω =
2χ1µk2

ω2+χ2
1µ

2k4
. (48)

For small 1k, χ1 ≈ 1 − 1k2/6, and the numerical result closely matches the
theoretical result (43). However, for finite wavenumbers the effective diffusion
coefficient is multiplied by a prefactor χ1, which represents the spatial truncation
error in the second-order approximation to the Laplacian. For all of the time-
integration schemes for the stochastic heat equation discussed above, one can
reduce the discrete dynamic structure factor to a form

Sk,ω =
2χstochµk2

21t−2 (1− cos1ω)+χ2
detµ

2k4
,

where χstoch and χdet depend on β and 1k and can be used to judge the accuracy
of the scheme.

In this paper we focus on the static structure factors in order to optimize the
numerical schemes and then simply check numerically that they also produce rea-
sonably accurate results for the dynamic structure factors for small and intermediate
wavenumbers and frequencies.

5C. Higher-order differencing. Another interesting question is whether using a
higher-order differencing formula for the viscous fluxes improves upon the second-
order formula in the basic Euler scheme (44). For example, a standard fourth order
in space finite difference yields the modified Euler scheme

un+1
j = un

j +
µ1t

121x2 (−un
j−2+ 16un

j−1− 30un
j + 16un

j+1− un
j+2)

+
√

2µ
1t1/2

1x3/2 (W j+1/2−W j−1/2). (49)

Repeating the previous calculation shows that

lim
β→0

Sk = 6 [7− cos1k]−1 , (50)

demonstrating that the fluctuation-dissipation theorem is not satisfied for this scheme
at the discrete level even for infinitesimal time steps. This is because the spatial
discretization operators in (49) do not satisfy the discrete fluctuation dissipation
balance.

In order to obtain higher-order divergence and Laplacian stencils that satisfy
(31) we can start from a higher order divergence discretization D and then simply
calculate the resulting discrete Laplacian L =−D D?. Here D should be a fourth-
order (or higher) difference formula that combines four face-centered values, two

172 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

on each side of a given cell, into an approximation to the derivative at the cell
center. Conversely, D? combines the values from four cells, two on each side of a
given face, into an approximation to the derivative at the face center. A standard
fourth-order finite-difference stencil for D produces the higher-order Euler scheme

un+1
j = un

j+
µ1t
1x2

(1
576

un
j−3−

3
32

un
j−2+

87
64

un
j−1−

365
144

un
j+

87
64

un
j+1−

3
32

un
j+2+

1
576

un
j+3

)
+
√

2µ
1t1/2

1x3/2

(1
24

W j−3/2−
9
8

W j−1/2+
9
8

W j+1/2−
1

24
W j+3/2

)
, (51)

for which Sk ≈ 1+ β1k2/2, which is the same leading-order error as the basic
Euler scheme (44). On the other hand, the dynamic structure factor for small time
steps is as in (48) but now

χ1 = (1− cos1k)(13− cos1k)/
(
721k2)

≈ 1− 3
3201k4,

which shows the higher spatial order of the scheme.
Note that in (51) both the discretization of the Laplacian and of the gradient are of

higher spatial order than in (44), however, the Laplacian operator is not of the highest
order possible for the given stencil width. We will not use higher-order differencing
for the diffusive fluxes in this work in order to avoid large Laplacian stencils like
the one above. Rather, we will use the traditional second-order discretization and
focus on the time integration of the resulting system.

5D. Handling of advection. The analysis we illustrated here for the stochastic
heat equation can be directly applied to the scalar advection-diffusion equation (35)
in one dimension:

υt =−aυx +µυxx +
√

2µWx . (52)

For example, a second-order centered difference discretization of the advective term
−aυx leads to the following explicit Euler scheme

un+1
j = un

j −
α

2
(un

j+1− un
j−1)+β(u

n
j−1− 2un

j + un
j+1)

+
√

2µ
1t1/2

1x3/2 (W
n
j+1/2−W n

j−1/2), (53)

where the dimensionless advective CFL number is

α =
a1t
1x
= βr,

and r = a1x/µ is the so-called cell Reynolds number and measures the relative
importance of advective and diffusive terms at the grid scale. Note that this scheme
is unconditionally unstable when µ = 0, specifically, the stability condition is
α2/2≤ β ≤ 1/2.

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 173

For the Euler method (53) the analysis yields a structure factor

Sk ≈
1

1−αr/2
+

(1− r2/4)
2(1−αr/2)2

β1k2,

showing that even the smallest wavenumbers have the wrong spectrum for a finite
time step when |r |> 0, which is unacceptable in practice since it means that even
the slowly evolving large-scale fluctuations are not handled correctly. Adding an
artificial diffusion 1µ= µ |r | /2 to µ leads to an improved leading order error:

Sk ≈ 1+ 1
2(1− r2/4)β1k2

+ O(1t21k2).

It is well known that adding such an artificial diffusion is equivalent to upwinding
the advective term and leads to much improved stability for large r as well.1

The second-order predictor-corrector time stepping scheme can be applied when
advection is included as well. If |r |> 0, the leading order errors are

PC-1RNG: Sk ≈ 1− 1
4α

2(1− 1
2rα

)
1k2, (54)

PC-2RNG: Sk ≈ 1− 1
8rα31k2, (55)

showing that PC-2RNG gives a more accurate discrete structure factor than PC-
1RNG for small wavenumbers and time steps. Note that the predictor-corrector
method is unconditionally unstable when µ = 0. In Section 6A we analyze a
three-stage Runge–Kutta scheme that has a small leading order error in Sk but is
also stable when α < 1 even if µ= 0.

6. LLNS equations in one dimension

In this section, we will consider the linearized LLNS system (4) for a monoatomic
ideal gas in one spatial dimension, that is, where symmetry dictates variability along
only the x axis. As explained in the Introduction, focusing on an ideal gas simply
fixes the values of certain coefficients and thus simplifies the algebra, without
limiting the generality of our analysis. We will arbitrarily choose the number of
degrees of freedom per particle to be d f = 1, even though in most cases of physical
interest d f = 3 is appropriate; this merely changes some of the constant coefficients
and does not affect our discussion. Explicitly, the one-dimensional linearized LLNS

1Note that for this particular type of upwinding the denominator in (37) vanishes identically and it
can be shown that the correct solution is 1S(0)k = 0; however, this is not necessarily true for other,
higher order, upwind discretizations of advection.

174 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

equations are ∂tρ

∂tv

∂t T

=− ∂

∂x

 ρ0v+ ρv0

c2
0ρ
−1
0 ρ+ c2

0T−1
0 T + v0v

c2
0c−1
v v+ T v0



+
∂

∂x

 0

ρ−1
0 η0vx

ρ−1
0 c−1

v µ0Tx

+ ∂

∂x

 0

ρ−1
0 6

ρ−1
0 c−1

v 4

 , (56)

where the covariance matrices of the stochastic fluxes are C6 = 2η0kB T0 and
C4 = 2µ0kB T 2

0 . In Fourier space the flux becomes

F̂ =

 v0 ρ0 0

ρ−1
0 c2

0 (v0− ikρ−1
0 η0) T−1

0 c2
0

0 c2
0c−1
v (v0− ikρ−1

0 c−1
v µ0)

 ,
which through Equations (13) and (14) (or, equivalently, (30)) gives static structure
factors that are independent of k:

S(k)=

ρ0c−2
0 kB T0 0 0

0 ρ−1
0 kB T0 0

0 0 ρ−1
0 c−1

v kB T 2
0

 . (57)

Therefore, the invariant distribution for the fluctuating fields is spatially-white, with
no correlations among the different primitive variables, and with variances given
in (57). This is in agreement with predictions of statistical mechanics, and how
Landau and Lifshitz obtained the form of the stochastic fluxes. Note that in the
incompressible limit, c0→∞, the density fluctuations diminish, but the velocity
and temperature fluctuations are independent of c0.

In this section we will calculate the discrete structure factor for several finite-
volume approximations to (56). From the diagonal elements of Sk we can directly
obtain the nondimensionalized static structure factors for the three primitive vari-
ables, for example,

S(ρ)k =
V

ρ0c−2
0 kB T0

<< ρ̂k ρ̂
?
k >> ,

which for a perfect scheme would be unity for all wavevectors. Similarly, the
off-diagonal or cross elements, such as, for example,

S(ρ,v)k =
V√

(ρ0c−2
0 kB T0)(ρ

−1
0 kB T0)

<< ρ̂k v̂
?
k >> ,

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 175

would all vanish for all wavevectors for a perfect scheme. Our goal will be to
quantify the deviations from “perfect” for several methods, as a function of the
discretization parameters 1x and 1t .

6A. Third-order Runge–Kutta (RK3) scheme. When designing numerical schemes
to integrate the full LLNS system, it seems most appropriate to base the scheme on
well known robust deterministic methods, and modify the deterministic methods
by simply adding a stochastic component to the fluxes, in addition to the usual
deterministic component. With such an approach, at least we can be confident that
in the case of weak noise the solver will be robust and thus we will not compromise
the fluid solver just to accommodate the fluctuations.

A well known approach to solving PDEs in conservation form

∂t U =−∇ · [F(U)]=−∇ · [F H (U)+F D(∇U)]

is to use the method of lines to decouple the spatial and temporal discretizations. We
will focus on one dimension first for notational simplicity. In the method of lines, a
finite-volume spatial discretization is applied to the obtain a system of differential
equations for the discretized fields

dU j

dt
= −1x−1

[Fj+1/2(U)− Fj−1/2(U)]

= −1x−1
[FH (U j+1/2)− FH (U j−1/2)]

−1x−1
[FD(∇ j+1/2U)− FD(∇ j−1/2U)], (58)

where U j+1/2 are face-centered values of the fields that are calculated from the
cell-centered values U j , and ∇ j+1/2 is a cell-to-face discretization of the gradient
operator. Any classical temporal integrator can be applied to the resulting system
of semidiscrete system. It is well known that the Euler and Heun (two-step second-
order Runge–Kutta) methods are unconditionally unstable for hyperbolic equations.
In [13], an algorithm for the solution of the LLNS system of equations (1) was
proposed, which is based on the three-stage, low-storage TVD Runge–Kutta (RK3)
scheme of Gottlieb and Shu [37]. The RK3 scheme is the simplest TVD RK
discretization for the deterministic compressible Navier–Stokes equations that is
stable even in the inviscid limit, with the omission of slope-limiting. Here we adopt
the same basic scheme and investigate optimal ways of evaluating the stochastic
flux.

In the RK3 scheme, the hyperbolic component of the face flux FH is calculated
by a cubic interpolation of U from the cell centers to the faces using an interpolation
formula borrowed from PPM (piecewise parabolic method), [18],

U j+1/2 =
7

12(U j +U j+1)−
1
12(U j−1+U j+2), (59)

176 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

and then directly evaluating the hyperbolic flux from the interpolated values. In
[13; 10] a modified interpolation is proposed that preserves variances; however, our
analytical calculations indicate that this type of interpolation artificially increases
the structure factor for intermediate wavenumbers in order to compensate for the
errors at larger wavenumbers. Note that for the full nonlinear equations, either
the conserved or the primitive quantities can be interpolated. For the linearized
equations it does not matter and it is simpler to work exclusively with primitive
variables.

In the RK3 method, the diffusive components of the fluxes FD are calculated
using classical face-centered second-order centered stencils to evaluate the gradients
of the fields at the cell faces. Stochastic fluxes Z j+1/2 are also generated at the faces
of the grid using a standard random number generator (RNG). These stochastic
fluxes are generated independently for velocity and temperature, and are zero for
density,

Z(RN G)
j+1/2 =


0

ρ−1
0 (2η0kB T0)

1/2 W (1)
j+1/2

ρ−1
0 c−1

v (2µ0kB T 2
0)

1/2W (2)
j+1/2

 ,
where W (1/2)

j+1/2 denotes a normal variate with zero mean and unit variance.
For each stage of the RK3 scheme, a total cell increment is calculated as

1U j (U,W)=−
1t
1x
[Fj+1/2(U)− Fj−1/2(U)] +

1t1/2

1x3/2 (Z j+1/2− Z j−1/2).

Each time step of the RK3 algorithm is composed of three stages

Un+1/3
j = Un

j+1U j (Un,W1) (estimate at t = (n+1)1t),

Un+2/3
j =

3
4 Un

j+
1
4 [U

n+1/3
j +1U j (U

n+1/3
j ,W2)] (estimate at t = (n+ 1

2)1t),

Un+1
j =

1
3 Un

j+
2
3 [U

n+2/3
j +1U j (Un+2/3,W3)],

(60)

where for now we have not assumed anything about how the stochastic fluxes
between different stages, W1, W2 and W3, are related to each other. The relevant
dimensionless parameters that measure the ratio of the time step to the CFL stability
limits are

α =
c01t
1x

, β =
η01t
ρ01x2 =

α

r
, βT =

µ01t
ρ0cv1x2 =

1
Pr
α

r
=
α

p
,

where r = c0ρ01x/η0 is the cell Reynolds number (we have assumed a low Mach
number flow, that is, |v0| � c0), and Pr = η0cv/µ0 is the Prandtl number of the
fluid. For low-density gases, r and p = rPr can be close to or smaller than one;
however, for dense fluids sound dominates and r > 1 and p > 1 for all reasonable

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 177

1x (essentially, 1x > λ, where λ is the mean free path). In practice, in order to
fully resolve viscous scales, one should keep both r and p reasonably small.

6B. Evaluation of the stochastic fluxes. In the original RK3 algorithm [13], a
different stochastic flux is generated in each stage, that is, Ws=

√
2W (s)

RNG, s=1, 2, 3.
The additional prefactor

√
2 is added because the averaging between the three stages

reduces the variance of the overall stochastic flux. One can also use different weights
for each of the three stochastic fluxes, that is, Ws = ws W (s)

RNG. Another option is to
simply use the same stochastic flux W (0)

RNG in all three stages, that is, Ws =W (0)
RNG.

A further option is to use the same random flux W (0)
RNG in all three stages, but put

in different weights in each stage, that is, Ws = ws W (0)
RNG. Our goal is to find out

which approach is optimal. For this purpose, we can generally assume that the
three random fluxes are different, to obtain a total of six random numbers per cell
per step, and use the formalism developed in Section 3 with Ns = 6 to express the
structure factor in terms of the 6×6 covariance matrix of the random variates. This
calculation is too tedious even for a computer algebra system, and we therefore first
study the simple advection-diffusion Equation (35) in order to gain some insight.

6B1. Advection-diffusion equation. The RK3 method can be directly applied to
the scalar advection-diffusion equation in one dimension (52). Experience with
deterministic solvers suggests that a numerical scheme that performs well on this
type of model equation is likely to perform well on the full system (1) when viscous
effects are fully resolved. Here we use PPM-interpolation based discretization of
the hyperbolic flux given in (59), which leads to a standard fourth-order centered
difference approximation to the first derivative υx [9], and thus justifies our choice
for the interpolation. We discretize the gradient used in calculating the diffusive
fluxes using the second-order centered difference

∇ j+1/2u =
u j+1− u j

1x
,

which leads to the standard second-order centered difference approximation to the
second derivative υxx (the challenges with using the standard fourth-order centered
difference approximation to υxx [9] are discussed in Section 5C). The stencil widths
in (23) are wD = 6 (three stages with stencil width two each) and wS = 4, and
there are Ns = 3 random numbers per cell per step (one per stage), with a general
3× 3 covariance matrix CW . Equation (27) can then be solved to obtain the static
structure factor for any wavenumber, however, these expressions are too complex
to be useful for analysis. Instead, we perform an expansion of both sides of (27)
for small k and thus focus on the behavior of the static structure factors for small
wavenumbers and small time steps.

As a first condition on CW , we have the weak consistency requirement Sk=0 = 1.
With this condition satisfied, the method satisfies the discrete fluctuation-dissipation

178 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

balance in the limit 1t→ 0 since the discretization of the divergence is the negative
adjoint of the discretization of the gradient. A second condition is obtained by
equating the coefficient in front of the leading-order error term in Sk , of order α1k2,
to zero; where the advective dimensionless CFL number is α = a1t/1x . It turns
out that this also makes the term of order α1k4 vanish. A third condition is obtained
by equating the coefficient in front of the next-order error term of order α21k2 to
zero. Finally, a fourth condition equates the coefficient in front of α21k4 to zero.
For this three-stage method, it is not possible to make the terms with higher powers
of α vanish identically for any choice of CW . No additional conditions are obtained
by looking at terms with powers of the diffusive CFL number β = µ1t/1x2 since,
as it turns out, the accuracy is always limited by the hyperbolic fluxes.

The various ways of generating the stochastic fluxes can now be compared by
investigating how many of these conditions are satisfied. It turns out that only the
first condition is satisfied if we use a different independently generated stochastic
flux in each stage (one can satisfy one more condition by using different weights
for the three independent stochastic fluxes). The second condition is satisfied if we
use the same stochastic flux in all stages with a unit weight, that is, Ws = ws W (0)

RNG
with w1 = w2 = w3 = 1. Armed with the freedom to put a different weight for this
flux in each of the stages, we can satisfy the third condition as well if we use

w1 =
3
4 , w2 =

3
2 , w3 =

15
16 , (61)

which gives a structure factor

Sk = 1−
r
24
α31k2

−
1

6r2α
21k4

+ h.o.t.

If we are willing to increase the cost of each step and generate two random
numbers per cell per step, we can satisfy the fourth condition as well. For this
purpose, we look for a covariance matrix CW that satisfies the four conditions and
is also positive semidefinite and has a rank of two, that is, has a smallest eigenvalue
of zero. A solution to these equations gives the following method for evaluating
the stochastic fluxes in the three stages

W1 =W (A)
RNG−

√
3W (B)

RNG, W2 =W (A)
RNG+

√
3W (B)

RNG, W3 =W (A)
RNG, (62)

where W (A)
RNG and W (B)

RNG are two independent random vectors that need to be gener-
ated and stored during each RK3 step. This approach produces a structure factor

Sk = 1−
r
24
α31k2

−
24+ r2

288r
α31k4

+ h.o.t.

We will refer to the RK3 scheme that uses one random flux per step and the weights
in (61) as the RK3-1RNG scheme, and to the RK3 scheme with two random fluxes
per step as given in (62) as the RK3-2RNG scheme.

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 179

It is important to point out that for the MacCormack method, which is equivalent
to the Lax–Wendroff method for the advection-diffusion equation, the leading-order
errors are of order α1k2. This is much worse than for the stochastic heat equation
(see Section 5A) even though the MacCormack scheme is a predictor-corrector
method. This is because of the low-order handling of advective fluxes used in the
MacCormack method to stabilize the two-stage Runge–Kutta time integrator.

6C. Results for LLNS equations in one dimension. We can now theoretically
study the behavior of the RK3-1RNG and RK3-2RNG schemes on the full linearized
system (56), specializing to the case of zero background flow, v0 = 0. As expected,
we find that the behavior is very similar to the one observed for the advection-
diffusion equation; in particular, the leading order terms have the same basic form.
Specifically, the expansions of the diagonal and off-diagonal components of the
structure factor Sk for the RK3-1RNG method are

S(ρ)k ≈ S(T)k ≈ 1+
S(u)k − 1

3
≈ 1+ ε(α)1k2,

S(ρ,u)k ≈
i

12r
α21k3,

S(ρ,T)k ≈ 2ε(α)1k2,

S(u,T)k ≈ i
r − p
6pr

α21k3,

(63)

where

ε(α)=−
3α3 pr

4(3p+ 2r)
.

These structure factors are shown in Figure 2 for sample discretization parameters,
along with the corresponding results for RK3-2RNG. We see from these expressions
that as the speed of sound dominates the stability restrictions on the time step more
and more, namely, as p or r become larger and larger, a smaller α is required to
reach the same level of accuracy, that is, a smaller time step relative to the acoustic
CFL stability limit is required.

Similar results to Equation (63) hold also for the isothermal LLNS equations (in
which the there is no energy equation), for which the calculations are simpler. For
linearization around a constant background flow of speed v0 = c0Ma, where Ma is
the reference Mach number, the analysis for the isothermal LLNS equations shows
that the error grows with the Mach number as

S(ρ)k ≈ 1+ ε(α)[1+ 6Ma2
+Ma4

]1k2.

180 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

0 0.2 0.4 0.6 0.8 1

k / k
max

0.9

0.925

0.95

0.975

1

S
k

S
ρ

(1RNG)

1 + (S
u
-1) / 3

S
T

S
ρ

(2RNG)

Small k theory

0 0.2 0.4 0.6 0.8 1

k / k
max

0

0.05

0.1

0.15

S
k

| S
ρu

 | (1RNG)

| S
ρT

 |

| S
uT

 |

| S
ρu

 | (2RNG)

Figure 2. Discrete structure factor Sk for the LLNS equation under
the RK3-1RNG (lines) and RK3-2RNG (same style of lines with
added symbols) schemes, as calculated by numerical solution of
(27) for an ideal one-dimensional gas, for α = 0.5, β = 0.2 and
βT = 0.1. Left: diagonal (self) structure factors, which should
ideally be identically unity. Also shown is the leading order error
term 1+ε(α)1k2 (dotted line), which is the same for both schemes.
Right: off-diagonal (cross) structure factors, which should ideally
be identically zero.

7. Higher dimensions

Much of what we already described for one dimension applies directly to higher
dimensions [13; 10]. However, there is a peculiarity with the LLNS equations in
three dimensions that does not appear in one dimension, and also does not appear
for the scalar diffusion equation [6]. In one dimension the velocity component of
the LLNS system of equations is essentially an advection-diffusion equation. In
higher dimensions, however, there is an important difference: namely, the dissipation

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 181

operator is a modified Laplacian Lm . By neglecting the hyperbolic coupling between
velocity and the other variables in the linearized LLNS equations, we obtain the
stochastic diffusion equation

ϑt = η∇ · [C(∇ϑ)] +
√

2η∇ · [C1/2W]

= η (DCG) ϑ +
√

2ηDC1/2W = ηLmϑ +
√

2ηW m,
(64)

where C is the linear operator that transforms the velocity gradient into a traceless
symmetric stress tensor

C(∇ϑ)= 2
[1

2(∇ϑ +∇ϑ
T)− 1

3 I (∇ ·ϑ)
]
, (65)

and we have denoted the continuum velocity field by ϑ ≡ U in order to distinguish
from the discretized velocities v≡U . Here we will focus on two-dimensional flows,
ϑ = [ϑx , ϑy], however, identical considerations apply to the fully three-dimensional
case.

If we arrange the components of the velocity gradient as a vector with four com-
ponents, ∇ϑ = [∂xϑx , ∂xϑy, ∂yϑx , ∂yϑy]

T , the linear operator C in (65) becomes
the matrix

C =


4
3 0 0 −2

3
0 1 1 0
0 1 1 0
−

2
3 0 0 4

3

 , (66)

which is not diagonal. This means that the components of the stochastic stress
C1/2W would need to have nontrivial correlations between the x fluxes for vx and
y fluxes for vy , as well as between the x fluxes for vy and y fluxes for vx . These
correlations essentially amount to the requirement that the stochastic stress be a
traceless symmetric tensor, at least at the level of its covariance matrix. Numerically,
one generates independent random variates for the upper triangular portion of the
stochastic stress tensor for each cell, then makes the tensor traceless and symmetric
[28]. Note that one can save one random number by using only d − 1 variates to
generate the diagonal elements.

However, it is important to point out that an equivalent formulation is obtained
by using the operator

C =


4
3 0 0 1

3
0 1 0 0
0 0 1 0
1
3 0 0 4

3

= I +


1
3 0 0 1

3
0 0 0 0
0 0 0 0
1
3 0 0 1

3

 , (67)

where there is nontrivial cross correlations only between the x fluxes for vx and y
fluxes for vy . The splitting of the operator C in (67) corresponds to rewriting the

182 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

stochastic diffusion Equation (64) in the equivalent but suggestive form

ϑt =−η
[
∇

2ϑ + 1
3∇ (∇ ·ϑ)

]
+
√

2η
[
(∇ ·W T)+

√
1
3∇WV

]
−= η

(
DT GT +

1
3GV DV

)
ϑ +

√
2η
(
DT W T +

√
1
3GVWV

)
, (68)

where we have now distinguished between the tensorial divergence DT and gradient
operators GT =−D?

T , which map from tensor to vector fields and vector to tensor
fields, respectively, and the vectorial divergence DV and gradient operators GV =

−D?
V , which map from vector to scalar fields and scalar to vector fields, respectively.

Corresponding to the splitting of the modified Laplacian Lm =DCG =LT +LV

into the tensorial Laplacian operator LT = DT GT and the vectorial component
LV = GV DV /3, in (68) we have split the stochastic stress into a tensor white-
noise field W T in which all components are uncorrelated, and a scalar white-noise
field WV , which we will call the stochastic divergence stress. This representation
is perhaps more physically intuitive than the standard formulation in which the
stochastic stress has unexpected exact symmetry and is exactly traceless. Note that
in the more general case where the diffusion coefficient is spatially dependent and
there is nonzero bulk viscosity ηB , the dissipative term in (68) becomes

∇ · [η(∇ϑ)] +∇[(η/3+ ηB)∇ ·ϑ],

with an equivalent change in the stochastic term. Also note that for the fluctuating
incompressible Navier–Stokes equation the term with the velocity divergence disap-
pears and the dissipation operator is a projected traditional Laplacian [8; 5], while
the stochastic flux is simply a projected tensor white-noise field.

7A. Discrete fluctuation dissipation balance. Our ultimate goal is to find a scheme
that satisfies the discrete fluctuation dissipation theorem, that is, find a discrete
modified Laplacian Lm that is a consistent approximation to the continuum modified
Laplacian Lm(k)ϑ̂ = k · [C(kϑ̂T)] for small k, and a way to efficiently generate
random increments Wm that discretize W m and whose covariance is << Wm W ?

m >> =
Lm . This task is nontrivial in general, and completing it requires some ingenuity
and insight, as illustrated in the work of Atzberger [6] on multigrid methods for the
scalar stochastic diffusion equation. We illustrate two different approaches next,
the first corresponding to attempting to directly discretize the modified Laplacian
Lm , and the second corresponding to discretizing the split Laplacian LT +LV /3.
In the continuum context these are, of course, equivalent, but this is not the case in
the discrete context. Namely, in the continuum formulation, C maps from gradients
to stresses, the divergence operator D maps from fluxes to fields, and the gradient
G maps from fields to gradients. In the continuum context, stresses, gradients
and fluxes are all tensor fields and thus in the same Hilbert space. In the discrete

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 183

context, however, stresses, gradients and fluxes may be discretized differently and
thus belong to different spaces.

7A1. The modified Laplacian approach. One approach to the problem of con-
structing discrete operators that satisfy the discrete fluctuation-dissipation balance
is to find a discretization of the divergence D and gradient G operators that are
skew-adjoint and then form the modified Laplacian Lm = DCG =−DC D?, and
generate the stochastic increments as Wm = DC1/2W . As discussed above, for the
meaning of C1/2 to be clear, stresses and gradients must belong to the same space.
Furthermore, it is required that the discrete operators D and G be skew adjoint so
that the discrete fluctuation dissipation balance condition (31) is satisfied.

The issue of how to define skew adjoint D and G operators also arose in the
historical development of projection algorithms for incompressible flow. The
incompressible flow literature suggests two approaches that discretize both gradients
and stresses by representing them with tensors at the same grid of points. The first
approach corresponds to fully cell-centered discretization originally proposed by
Chorin [17], which uses centered differences to define a skew-adjoint gradient and
divergence operators. The second approach corresponds to a finite element-based
discretization developed by Fortin [31] and later used in the projection algorithm of
Bell et al. [11].

In the Fortin approach both stresses and gradients are represented as d×d tensors
at the corners of a regular grid, where d is the spatial dimension. The divergence
operator D combines the values of the stresses at the 2d corners of a cell to produce
a value at the center of the cell. The gradient G =−D? combines the values of the
fields at the centers of the 2d cells that share a corner into a gradient at that corner.
In this scheme, the stochastic stresses also live at the corners of the grid. They
are generated to have the required covariance, for example, (66). Unfortunately,
the discrete Fortin Laplacian L = DG suffers from a serious drawback: it has a
nontrivial null space. For example, for the scalar heat equation on a uniform grid in
two dimensions, the Laplacian stencil obtained from the Fortin discretization is

(L(F)u)i, j =1x−2[1
2(ui+1, j+1+ ui−1, j+1+ ui−1, j−1+ ui+1, j−1)− 2ui, j

]
,

for which the odd (i+ j odd) and even (i+ j even) points on the grid are completely
decoupled. In Fourier space the above Laplacian is−2[1−cos(1kx) cos(1ky)] and
thus vanishes for the largest wavevectors, |1kx | = π , |1ky| = π , which correspond
to checker board zero eigenmodes.

It can easily be verified that the same type of checker board zero eigenmodes
also exist for the modified Fortin Laplacian Lm = DCG. In three dimensions,
there are O(N) zero eigenmodes for a grid of size N 3. Issues arising when using
these types of stencils in the deterministic context are discussed in Almgren et
al. [3]. Our theory for the structure factor implicitly relies on the definiteness of the

184 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

discrete generator, and in fact, in the general nonlinear setting the zero modes lead
to instabilities of the solution of the full LLNS system of equations. We therefore
abandon the Fortin corner-centered discretization of the fluxes.

Fully cell-centered approximations to D and G based on second-order centered
differences, previously studied in the context of projection methods for incompress-
ible flows by Chorin [17], lead to a discrete Laplacian that also has a nontrivial null
space and suffers similar shortcomings as the Fortin Laplacian. Specifically, even
in one dimension one obtains a Laplacian stencil

(L(C)u)i =
1

41x2 [ui−2− 2ui + ui+2],

where the odd-even decoupling is evident. Here we develop a cell-centered (collo-
cated) discretization that preserves the null space of the continuum Laplacian.

7A2. The split Laplacian approach. An alternative to trying to form a discrete
modified Laplacian Lm= LT+LV directly is to use the splitting in (68) and form the
discrete tensorial LT = DT GT and vectorial LV =GV DV /3 components separately
from discretizations of the tensorial and vectorial divergence and gradient operators
that are skew-adjoint, GT = −D?

T and GV = −D?
V . The stochastic increments

would simply be generated as DT WT+GV WV /
√

3, where WV and the components
of WT are independent normal variates.

A popular approach to discretizing the tensorial divergence and gradient opera-
tors, commonly referred to as a MAC discretization in projection algorithms for
incompressible flow [38], defines a divergence at cells centers from normal fluxes
on edges, with a corresponding gradient that gives normal derivatives at cell edges
from cell-centered values:

(DZ)i, j =1x−1(Z(x)i+1/2, j − Z(x)i−1/2, j)+1y−1(Z(y)i, j+1/2− Z(y)i, j−1/2)→∇ · Z,

− (D?v)i+1/2, j =1x−1(vi+1, j− vi, j)→ ∂v/∂x,

− (D?v)i, j+1/2 =1y−1(vi, j+1− vi, j)→ ∂v/∂y.

(69)

In this discretization, the tensor field

Z = [Z(x); Z(y)] = [Z (x)vx
, Z (x)vy

; Z (y)vx
, Z (y)vy

]

is strictly divided into an x vector Z(x), which is represented on the x faces of
the grid, and a y vector Z(y), represented on the y faces of the grid. The MAC
discretization, which we used in the earlier one-dimensional examples, leads to a
standard 5 point discrete Laplacian in two dimensions (3 point in one dimension, 7
point in three dimensions),

(L(MAC)u)i, j = [1x−2(ui−1, j − 2ui, j + ui+1, j)+1y−2(ui, j−1− 2ui, j + ui, j+1)].

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 185

In Fourier space the MAC Laplacian is 2 cos(1kx)+ 2 cos(1ky)− 4 and is strictly
negative for all nonzero wavevectors, and thus does not suffer from the instabilities
of the Chorin and Fortin discrete Laplacians, discussed in Section 7A1.

The vectorial divergence and gradient operators cannot be discretized using the
MAC framework. Namely, DV must operate on a cell-centered vector field v,
whereas the MAC-type discretization operates on face-centered values. Instead,
for the vectorial component we can use either the Chorin discretization [17], in
which both scalar and vector fields are cell-centered, or the Fortin discretization
[31], in which scalar fields are represented at corners and vector fields are cell-
centered. Here we choose the Fortin discretization and calculate a (scalar-valued)
velocity divergence and the corresponding divergence stress at the corners of the
grid, and also generate a (scalar) random divergence stress at each corner. The
deterministic and random components are added to form the total corner-centered
divergence stress, and the velocity increment is calculated from the (vector-valued)
cell-centered gradient of the divergence stresses. Note that the nontrivial nullspace
of LV does not pose a problem since LT and thus also Lm = LT + LV has a trivial
nullspace.

The discrete modified Laplacian that is obtained by this mixed MAC/Fortin
discretization can be represented in terms of second-order centered-difference
stencils. The first (i.e., the vx) component of this Laplacian can be represented as a
linear combination of the velocities in the 9 neighboring cells:

(Lmv)
(vx)
jk =

1∑
l,m=−1

(1
1x2 L(MAC,x)

2−m,2+lv
(x)
j+l,k+m +

1
1y2 L(MAC,y)

2−m,2+lv
(x)
j+l,k+m

+
1

31x2 L(F,x)2−m,2+lv
(x)
j+l,k+m +

1
31x1y

L(F,xy)
2−m,2+lv

(y)
j+l,k+m

)
, (70)

where L(MAC,x/y) and L(F,x/y) correspond to a second-order MAC and Fortin
discretizations of the terms ∂xxϑx and ∂yyϑy respectively, and L(F,xy) discretizes
∂xyϑy . The same stencils apply to the second (i.e., the vy) component of the
Laplacian as well, by symmetry:

(Lmv)
(vy)

jk =

1∑
l,m=−1

(1
1x2 L(MAC,x)

2−m,2+lv
(y)
j+l,k+m +

1
1y2 L(MAC,y)

2−m,2+lv
(y)
j+l,k+m

+
1

31y2 L(F,y)2−m,2+lv
(y)
j+m,k+l +

1
31x1y

L(F,xy)
2−m,2+lv

(x)
j+m,k+l

)
. (71)

Note that we chose the peculiar indexing of the stencils so that when printed on
paper they correspond to the usual Cartesian representation of the x-y grid. The

186 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

coefficients of the MAC stencil (70) are

L(MAC,x)
=

0 0 0
1 −2 1
0 0 0

 and L(MAC,y)
=

0 1 0
0 −2 0
0 1 0

 , (72)

while the Fortin stencils are

L(F,x) =


1
4 −

1
2

1
4

1
2 −1 1

2
1
4 −

1
2

1
4

 , L(F,y) =


1
4

1
2

1
4

−
1
2 −1 −1

2
1
4

1
2

1
4

 ,

L(F,xy)
=

−
1
4 0 1

4

0 0 0
1
4 0 − 1

4

 . (73)

7B. Results in three dimensions. Our theoretical calculations have helped in for-
mulating a complete three-stage Runge–Kutta scheme for solving the full LLNS
system in one, two or three spatial dimensions. We have discussed how to generate
stochastic fluxes in each stage, including the required correlations among the
components of the stochastic stress, and have also discussed how to relate the
stochastic fluxes in each stage. Since theoretical calculation of the three-dimensional
structure factors is out of reach, we present some numerical results for the RK3-
2RNG method in three dimensions with the mixed MAC/Fortin handling of the split
Laplacian as given in Equations (70) and (71), hereafter termed the RK3D-2RNG
algorithm.

We note in passing that it is also possible to discretize the modified Laplacian (see
Section 7A1) using a MAC-like discretization of the viscous and stochastic stresses
that avoids the use of the Fortin corner-based discretization of the divergence stress.
This saves one random number per cell per stochastic flux, however, it requires the
use of a nonstandard randomized cell-to-face projection (splitting) of the stochastic
stresses that complicates the analysis and handling of physical boundaries and
makes parallelization more difficult. We therefore do not describe this approach
here, and only note that it produces very similar structure factors to those reported
here.

We focus on the behavior of the scheme in global equilibrium with periodic
boundary conditions. We have implemented the full nonlinear fluxes as proposed
in [13; 10], using the interpolation in (59) for the hyperbolic fluxes and simple
interpolation of the spatially varying viscosity and thermal conductivity in the
handling of the viscous and stochastic fluxes. However, in the tests reported here we
have made the magnitude of the fluctuations small compared to the means to ensure
that the behavior is very similar to the linearized LLNS equations. Including the full

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 187

nonlinear system guarantees conservation and ensures that there are no nonlinearly
unstable modes. More careful study of the proper handling of nonlinearity in
the LLNS equations themselves and the associated numerical solvers is deferred
to future publications; here, we focus on verification that the nonlinear scheme
produces behavior consistent with the linearized analysis. We note that we have
implemented the new RK3D algorithm also for the LLNS equations for a mixture
of two ideal gases, closely following the original scheme described in [10]. We find
that the spatial discretization satisfies the discrete fluctuation-dissipation balance
even in the presence of concentration as an additional primitive variable and that
the RK3D-2RNG method performs very well with reasonably large time steps.

7B1. Static structure factors. Examples of static structure factor Sk for the RK3D-
2RNG scheme are shown in Figure 3, showing that the diagonal components S(ρ)k ,
S(vx)

k , and S(T)k are close to unity, while the off-diagonal components S(ρ,vx)

k , S(vx ,vy)

k ,
and S(ρ,T)k are close to zero (similar results hold for S(vx ,T)

k , not shown), even for a
large time step (half of the stability limit). Note that the static structure factor is
difficult to obtain accurately for the smallest wavenumbers (slowest modes) and
therefore the values near the centers of the k-grid should be ignored.

It is seen in the figures that the diagonal components of Sk are quite close to unity
for the largest wavevectors, which is somewhat surprising, and the largest error is
actually seen for intermediate wavenumbers, consistent with the one-dimensional
results shown in Figure 2. We have tested the method on several cell Reynolds
numbers r and found that the results are worse as r increases, consistent with
the previous analysis, however, the higher order of temporal accuracy allows for
increasing the time step to be a reasonable fraction of the stability limit even for
large r .

These results represent a significant improvement over the results obtained for
the original RK3 scheme presented in Bell et al. [13; 10]. Results with the original
scheme were sensitive to time steps, requiring small time steps to obtain satisfactory
results; the new scheme produces satisfactory results for time steps near the stability
limit. Also, through the use of the mixed MAC and Fortin discretization, the new
scheme eliminates a weak but spurious correlation S(vx ,vy)

k present in the original
scheme for small wavenumbers even in the limit of small time steps.

7B2. Dynamic structure factors. Examples of dynamic structure factors Sk,ω for
the RK3D-2RNG scheme are shown in Figure 4 as a function of ω for two relatively
large wavevectors, along with the correct continuum result obtained by solving
the system (4) through a space-time Fourier transform (we did not make any of
the usual approximations made in analytical calculations of Sk,ω [20], and instead
used Maple’s numerical linear algebra). It is well known that S(ρ)k,ω and S(T)k,ω exhibit
three peaks for a given k [20], one central Rayleigh peak at ω = 0 similar to the

188 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

Figure 3. Left: S(ρ)k , S(vx)

k , and S(T)k (top to bottom). Right:
|S(ρ,vx)

k |, |S(vx ,vy)

k | and |S(ρ,T)k | (top to bottom) for RK3D-2RNG
(random direction), with the time step α = 0.5, β = 3βT /2= 0.1,
periodic boundary conditions with 303 cells, and averaging over
106 time steps.

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 189

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

ω

0

10

20

30

40

S
k
,ω

ρ
v
x

T
v
y

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

ω

-20

-10

0

10

R
e
[

 S
k
,ω

]

ρ-v
x

v
x
-v

y

ρ-T

v
x
-T

-1.5 -1 -0.5 0 0.5 1 1.5

ω

0

5

10

15

S
k
,ω

ρ
v
x

T

-1.5 -1 -0.5 0 0.5 1 1.5

ω

-10

-8

-6

-4

-2

0

2

R
e
[

 S
k
,ω

]

ρ-v
x

v
x
-v

y

ρ-T

v
x
-T

Figure 4. Diagonal (left) and the real part of the off-diagonal
(right) components of the dynamic structure factor Sk,ω for RK3D-
2RNG (dashed lines) for the same parameters as in Figure 3. For
comparison, the analytical solution of the LLNS equations in
Fourier space are also shown (solid lines). The imaginary part
of the off-diagonal components is less than 0.1 and it vanishes in
the theory. The top part shows the wavevector k =(kmax/2, 0, 0)
and the bottom shows k =(kmax/2, kmax/2, kmax/2).

peak for the diffusion equation given in (43), and two symmetric Brillouin peaks
at ω ≈ csk, where cs is the adiabatic speed of sound, cs = cT

√
1+ 2/d f for an

ideal gas. For the velocity components, the transverse components S(v⊥)k,ω exhibit
all three peaks, while the longitudinal component S(v‖)k,ω lacks the central peak, as
seen in the figure. Note that as the fluid becomes less compressible (i.e., the speed
of sound increases), there is an increasing separation of time-scales between the
side and central spectral peaks, showing the familiar numerical stiffness of the full
compressible Navier–Stokes equations.

We have verified that for small wavevectors the numerical dynamic structure
factors are in excellent agreement with the analytical predictions, even for such
large time steps. For wavevectors that are not small compared to the discretization
limits we do not expect a perfect dynamic structure factor, even for very small

190 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

time steps. It is important, however, that the discretization behave reasonably for
all wavevectors (e.g., there should be no spurious maxima), and be somewhat
accurate for intermediate wavevectors, even for large time steps. As seen in Figure
4, the RK3D-2RNG algorithm seems to perform well even with a large time step.
Improving the accuracy at larger wavevectors requires using higher-order spatial
differencing [50] (see discussion in Section 5C), compact stencils (linear solvers)
[48], or pseudospectral methods [30], each of which has certain advantages but
also significant disadvantages over the finite-volume approach in a more general
nonlinear nonequilibrium context.

8. Summary and concluding remarks

We analyzed finite-volume schemes for the linearized Landau–Lifshitz Navier–
Stokes (LLNS) system (4) and related SPDEs such as the stochastic advection-
diffusion Equation (35). Our approach to studying the accuracy of these explicit
schemes is based on evaluating the discrete static and dynamic structure factors,
focusing on the accuracy at small wavenumber 1k = k1x and wavefrequency
1ω = ω1t . The methodology for formulating the structure factor for numerical
schemes is developed in Section 3, and then specialized to stochastic conservation
laws in Section 4. Applying this analysis to the stochastic heat Equation (42) in
Section 5 we find the truncation error for the Euler method to be O(1tk2); the
error for a standard predictor-corrector scheme is O(1t2k4) using the same random
numbers in the predictor and corrector stages but O(1t3k6) using independent
random numbers at each stage. Section 6 extends this analysis to the third-order
Runge–Kutta scheme of Bell et al. [13; 10] for the one-dimensional advection-
diffusion SPDE. We find the best accuracy when the stochastic fluxes at the three
stages are generated from two sets of random numbers, as given by (62); using this
version, called RK3-2RNG, for the LLNS equations gives good results, even when
nonlinear effects are included (see Figures 2–4). Finally, Section 7 explains why the
cross-correlations in the stress tensor in the three-dimensional LLNS require special
treatment and proposes a mixed MAC/Fortin discretization as a way to obtain the
desired discrete fluctuation-dissipation balance.

Here we have investigated linearized PDEs with stochastic fluxes where the
noise is additive. As such, the stability properties of the numerical schemes are the
same as for the deterministic case. Yet in practice one would like to implement
these schemes for the nonlinear stochastic PDEs with state-dependent stochastic
fluxes. While in the limit of small fluctuations the behavior of the schemes is
expected to be similar to the linearized case, the proper mathematical foundation
and even formulation of the nonlinear fluctuating equations has yet to be laid
out. Furthermore, the stability properties of numerical schemes for the nonlinear

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 191

LLNS system are not well understood and the whole notion of stability is different
than it is for deterministic schemes. For example, even at equilibrium, a rare
fluctuation can cause a thermodynamic instability (e.g., a negative temperature
which implies a complex sound speed) or a mechanical instability (e.g., a negative
mass density). Capping the noises in the stochastic flux terms will not necessarily
solve the problem because the hydrodynamic variables are time-correlated so the
numerical instability may not appear on a single step but rather as an accumulated
effect. We are investigating these issues and will discuss strategies to address this
type of stability issue in future publications.

One of the advantages of finite volume solvers over spectral methods is the ability
to implement realistic, complex geometries for fluid simulations. In this paper we
only consider periodic boundaries but many other boundary conditions are of interest,
notably, impenetrable flat hard walls with stick and slip conditions for the velocities
and either adiabatic (zero temperature gradient) or thermal (constant temperature)
conditions for the temperature. Equilibrium statistical mechanics requires that
the static structure factor be oblivious to the presence of walls, even though the
dynamic structure factors typically exhibit additional peaks due to the reflections
of fluctuations from the boundaries [25]. Therefore, the numerical discretization
of the Laplacian operator L, the divergence operator D and the covariance of the
stochastic fluxes C should continue to satisfy the discrete fluctuation-dissipation
balance condition L + L? = −2DC D? and be consistent, even in the presence
of boundaries. Standard treatments of boundary conditions used in deterministic
schemes can easily be implemented in the stochastic setting [13; 6], however,
satisfying the discrete fluctuation-dissipation balance is not trivial and requires
modifying the stochastic fluxes and possibly also the finite-difference stencils near
the boundaries [6], as briefly discussed in the Appendix to [25]. In particular, the
case of Dirichlet boundary conditions is more complicated, especially in the case
of the mixed MAC and Fortin discretization of the compressible Navier–Stokes
equations. Complex boundaries present further challenges even in the deterministic
setting. We will explore the issues associated will fluctuations at physical boundaries
in future publications.

One motivation for the development of numerical methods for the LLNS equa-
tions is for their use in multialgorithm hybrids. One emerging paradigm in the
modeling and simulation of multiscale problems is multialgorithm refinement
(MAR). MAR is a general simulation approach that combines two or more algo-
rithms, each of which is appropriate for a different scale regime. MAR schemes
typically couple structurally different computational schemes such as particle-based
molecular simulations with continuum partial differential equation (PDE) solvers.
The general idea is to perform detailed calculations using an accurate but expensive
algorithm in a small region (or for a short time), and couple this computation to

192 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

a simpler, less expensive method applied to the rest. The major difficulty is in
constructing hybrid is that particle and continuum methods treat thermal noise
(fluctuations) in completely different ways. The challenge is to ensure that the
numerical coupling of the particle and continuum computations is self-consistent,
stable, and most importantly, does not adversely impact the underlying physics.
These problems become particularly acute when one wants to accurately capture
the physical fluctuations at micro- and mesoscopic scales. The correct treatment
of boundary conditions in stochastic PDE schemes is particularly difficult yet
crucial in hybrid schemes since the coupling of the two algorithms is essentially a
dynamic, two-way boundary condition. Recent work by Tysanner et al. [62], Foo
et al. [12], Williams et al. [64] and Donev et al. [25] has demonstrated the need to
model fluctuations at the continuum level in hybrid continuum / particle approaches,
however, a seamless coupling has yet to be developed.

In this paper we consider the fully compressible LLNS system, for many of
the phenomena of interest the fluid flow aspects occur at very low Mach numbers.
Another topic of future work for stochastic PDE schemes is to construct a low Mach
number fluctuating hydrodynamics algorithm. A number of researchers have consid-
ered extended versions of the incompressible Navier–Stokes equations that include
a stochastic stress tensor [56; 61; 8]. This type of model does introduce fluctuations
into the Navier–Stokes equations and is applicable in some settings, such as in
modeling simple Brownian motion. However, as pointed out by Zaitsev and Shliomis
[66], the incompressible approximation introduces fictitious correlations between
the velocity components of the fluid. Furthermore, this type of approach does not
capture the full range of fluctuations in the compressible equations. In particular,
adding a stochastic stress into the incompressible Navier–Stokes equations creates
fluctuations in velocity but does not reproduce the large scale and slow fluctuations
in density and temperature, which persist even in the incompressible limit. We plan
to investigate alternative formulations that can capture more of the features of the
fluctuating hydrodynamics while still exploiting the separation of scales inherent
in low Mach number flows. We also note that although the theoretical importance
of distinguishing between the incompressible approximation and the low Mach
number limit is well established for fluctuating hydrodynamics [14; 67], numerical
algorithms for the latter have yet to be developed.

Appendix: Semi-implicit Crank–Nicolson method

When sound is included in the fluctuating hydrodynamic equations implicit methods
are not really beneficial since the large sound speed limits the time step. However,
for the pure stochastic diffusion/heat equation or advection-diffusion equations
with a small advection speed the time step may become strongly limited by the

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 193

diffusive CFL limit, especially for small cells. In such cases an implicit method
can be used to lift the diffusive stability restriction on the time step. For example,
the second-order (in both space and time) Crank–Nicolson semi-implicit scheme
for the stochastic heat equation entails solving the linear system

un+1
j −

µ1t
21x2 (u

n+1
j−1− 2un+1

j + un+1
j+1)

= un
j +

µ1t
21x2 (u

n
j−1− 2un

j + un
j+1)+

√
2µ
1t1/2

1x3/2 (W
n
j+1/2−W n

j−1/2), (A.1)

which is tridiagonal except at periodic boundaries.
The analysis carried out above for explicit schemes can easily be extended to

implicit methods since in Fourier space different wavevectors again decouple and
the above iteration becomes a scalar linear equation for ûn+1

k that can trivially be
solved. Firstly, it is observed that the small time step limit is the same regardless of
the semi-implicit treatment, specifically, the same discrete fluctuation-dissipation
condition (31) applies. Remarkably, for the Crank–Nicolson iteration (A.1) it is
found that the discrete static structure factor is independent of the time step, Sk = 1
for all β. The dynamic structure factor, however, has the same spatial discretization
errors (48) as for the Euler scheme even in the limit β → 0. Furthermore, as
expected, the dynamics is not accurate for large β and the time step cannot be
enlarged much beyond the diffusive stability limit related to the smallest length-scale
at which one wishes to correctly resolve the dynamics of the fluctuations.

If advection is included as well and also discretized semi-implicitly, the method
again gives perfect structure factors, Sk = 1 identically, and is unconditionally
stable. If only diffusion is handled semi-implicitly but advection is handled with
a predictor-corrector approach, then it turns out that the optimal method is to not
include a stochastic flux in the predictor step, giving the same leading-order error
term as PC-2RNG in (55) when |r |> 0, but giving a perfect Sk = 1 when r = 0.

Acknowledgments

The authors thank Berni Alder and Jonathan Goodman for helpful discussions, and
Paul Atzberger for inspiring perspectives on the discrete fluctuation dissipation
relation and a critical reading of this paper.

References

[1] R. Adhikari, K. Stratford, M. E. Cates, and A. J. Wagner, Fluctuating lattice boltzmann, Euro-
physics Letters 71 (2005), 473–479.

[2] F. J. Alexander and A. L. Garcia, The direct simulation Monte Carlo method, Computers in
Physics 11 (1997), no. 6, 588–593.

194 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

[3] A. S. Almgren, J. B. Bell, and W. G. Szymczak, A numerical method for the incompressible
Navier–Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (1996),
no. 2, 358–369. MR 96j:76104 Zbl 0845.76055

[4] R. D. Astumian and P. Hanggi, Brownian motors, Physics Today (2002), 33–39.

[5] P. J. Atzberger, Stochastic eulerian-lagrangian methods for fluid-structure interactions with
thermal fluctuations and shear boundary conditions, Preprint. arXiv 0910.5739

[6] , Spatially adaptive stochastic numerical methods for intrinsic fluctuations in reaction-
diffusion systems, Journal of Computational Physics 229 (2010), no. 9, 3474 – 3501.

[7] P. J. Atzberger, P. R. Kramer, and C. S. Peskin, A stochastic immersed boundary method for
fluid-structure dynamics at microscopic length scales, J. Comput. Phys. 224 (2007), no. 2,
1255–1292. MR 2008g:74031 Zbl 1124.74052

[8] , A stochastic immersed boundary method for fluid-structure dynamics at microscopic
length scales, J. Comput. Phys. 224 (2007), no. 2, 1255–1292. MR 2008g:74031 Zbl 1124.74052

[9] W. Bao and S. Jin, High-order I -stable centered difference schemes for viscous compressible
flows, J. Comput. Math. 21 (2003), no. 1, 101–112. MR 2004c:65084 Zbl 1086.76052

[10] J. B. Bell, A. Garcia, and S. Williams, Computational fluctuating fluid dynamics, ESAIM:
Mathematical Modelling and Numerical Analysis (2010), To appear.

[11] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompress-
ible Navier–Stokes equations, J. Comput. Phys. 85 (1989), no. 2, 257–283. MR 90i:76002
Zbl 0681.76030

[12] J. B. Bell, J. Foo, and A. L. Garcia, Algorithm refinement for the stochastic Burgers’ equation, J.
Comput. Phys. 223 (2007), no. 1, 451–468. MR 2008a:65010

[13] J. B. Bell, A. L. Garcia, and S. A. Williams, Numerical methods for the stochastic Landau–
Lifshitz Navier–Stokes equations, Phys. Rev. E (3) 76 (2007), no. 1, 016708, 12. MR 2008i:76137

[14] I. Bena, F. Baras, and M. M. Mansour, Hydrodynamic fluctuations in the Kolmogorov flow:
Nonlinear regime, Phys. Rev. E 62 (2000), no. 5, 6560–6570.

[15] I. Bena, M. Malek Mansour, and F. Baras, Hydrodynamic fluctuations in the Kolmogorov flow:
linear regime, Phys. Rev. E (3) 59 (1999), no. 5, part B, 5503–5510. MR 1690930

[16] J. Borrill and M. Gleiser, Matching numerical simulations to continuum field theories: A lattice
renormalization study, Nuclear Phys. B 483 (1997), 416–428.

[17] A. J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comp. 22 (1968),
745–762. MR 39 #3723 Zbl 0198.50103

[18] P. Collela and P. R. Woodward, The piecewise parabolic method (ppm) for gas dynamics
calculations, J. Comp. Phys 54 (1984), 174.

[19] G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, Basel, 2004. MR : MR
2005m:60002 Zbl 1066.60061

[20] J. M. O. de Zarate and J. V. Sengers, Hydrodynamic fluctuations in fluids and fluid mixtures,
Elsevier Science, 2007.

[21] A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation,
Math. Comp. 78 (2009), no. 266, 845–863. MR 2010f:60192

[22] R. Delgado-Buscalioni and A. Dejoan, Nonreflecting boundaries for ultrasound in fluctuating
hydrodynamics of open systems, Phys. Rev. E 78 (2008), no. 4, 046708.

[23] R. Delgado-Buscalioni and G. D. Fabritiis, Embedding molecular dynamics within fluctuating
hydrodynamics in multiscale simulations of liquids, Phys. Rev. E 76 (2007), no. 3, 036709.

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 195

[24] C. V. den Broeck, R. Kawai, and P. Meurs, Exorcising a Maxwell demon, Phys. Rev. Lett. 93
(2004), 090601.

[25] A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder, A hybrid particle-continuum method for
hydrodynamics of complex fluids, SIAM J. Multiscale Modeling and Simulation 8 (2010), no. 3,
871–911.

[26] B. Dünweg, U. D. Schiller, and A. J. C. Ladd, Statistical mechanics of the fluctuating lattice
Boltzmann equation, Phys. Rev. E (3) 76 (2007), no. 3, 036704, 10. MR 2008i:82096

[27] J. Eggers, Dynamics of liquid nanojets, Phys. Rev. Lett. 89 (2002), no. 8, 084502.

[28] P. Español, Stochastic differential equations for non-linear hydrodynamics, Physica A 248
(1998), no. 1-2, 77–96.

[29] G. D. Fabritiis, M. Serrano, R. Delgado-Buscalioni, and P. V. Coveney, Fluctuating hydrodynamic
modeling of fluids at the nanoscale, Phys. Rev. E 75 (2007), no. 2, 026307.

[30] B. Fornberg, A practical guide to pseudospectral methods, Cambridge Monographs on Ap-
plied and Computational Mathematics, no. 1, Cambridge University Press, Cambridge, 1996.
MR 97g:65001 Zbl 0844.65084

[31] M. Fortin, Numerical solution of the steady state Navier–Stokes equations, Numerical Methods
in Fluid Dynamics (J. J. Smolderen, ed.), Technical Editing and Reproduction Ltd., London,
1972, pp. 5.1–5.7 AGARD–LS–48.

[32] A. L. Garcia, M. M. Mansour, G. Lie, and E. Clementi, Numerical integration of the fluctuating
hydrodynamic equations, J. Stat. Phys. 47 (1987), 209.

[33] A. L. Garcia and C. Penland, Fluctuating hydrodynamics and principal oscillation pattern
analysis, J. Stat. Phys. 64 (1991), 1121.

[34] C. W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural sciences,
3rd ed., Springer Series in Synergetics, no. 13, Springer, Berlin, 2004. MR 2004m:00008
Zbl 1143.60001

[35] G. Giupponi, G. D. Fabritiis, and P. V. Coveney, Hybrid method coupling fluctuating hydro-
dynamics and molecular dynamics for the simulation of macromolecules, J. Chem. Phys. 126
(2007), no. 15, 154903.

[36] J. Goodman and A. D. Sokal, Multigrid Monte Carlo method: Conceptual foundations, Phys.
Rev. D 40 (1989), no. 6, 2035–2071.

[37] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge–Kutta schemes, Math. Comp. 67
(1998), no. 221, 73–85. MR 98c:65122 Zbl 0897.65058

[38] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible
flow of fluids with free surfaces, Physics of Fluids 8 (1965), 2182–2189.

[39] A. Jentzen and P. E. Kloeden, The numerical approximation of stochastic partial differential
equations, Milan J. Math. 77 (2009), 205–244. MR 2578878 Zbl 1186.65011

[40] K. Kadau, C. Rosenblatt, J. L. Barber, T. C. Germann, Z. Huang, P. Carles, and B. J. Alder, The
importance of fluctuations in fluid mixing, PNAS 104 (2007), no. 19, 7741–7745.

[41] K. Kadau, T. C. Germann, N. G. Hadjiconstantinou, P. S. Lomdahl, G. Dimonte, B. L. Holian,
and B. J. Alder, Nanohydrodynamics simulations: an atomistic view of the Rayleigh–Taylor
instability, Proc. Natl. Acad. Sci. USA 101 (2004), no. 16, 5851–5855. MR 2004m:76077
Zbl 1063.76029

[42] W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing
liquid nanobridges in vacuum and gaseous environments, Phys. Rev. Lett. 98 (2007), no. 6,
064504.

196 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL

[43] P. R. Kramer, C. S. Peskin, and P. J. Atzberger, On the foundations of the stochastic immersed
boundary method, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 25-28, 2232–2249.
MR 2009d:60269 Zbl 1158.76420

[44] R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics 29 (1966), no. 1,
255–284.

[45] A. J. C. Ladd, Short-time motion of colloidal particles: Numerical simulation via a fluctuating
lattice-Boltzmann equation, Phys. Rev. Lett. 70 (1993), no. 9, 1339–1342.

[46] L. D. Landau and E. M. Lifshitz, Fluid mechanics, Course of Theoretical Physics, no. 6,
Pergamon Press, London, 1959. MR 21 #6839 Zbl 0146.22405

[47] J. L. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamic behavior, J.
Statist. Phys. 51 (1988), no. 5-6, 841–862. MR 90c:60072 Zbl 1086.60531

[48] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103
(1992), no. 1, 16–42. MR 93g:76086 Zbl 0759.65006

[49] A. Lemarchand and B. Nowakowski., Fluctuation-induced and nonequilibrium-induced bifurca-
tions in a thermochemical system, Molecular Simulation 30 (2004), no. 11-12, 773–780.

[50] K. Mahesh, A family of high order finite difference schemes with good spectral resolution, J.
Comput. Phys. 145 (1998), no. 1, 332–358. MR 99d:76068 Zbl 0926.76081

[51] M. M. Mansour, A. L. Garcia, G. C. Lie, and E. Clementi, Fluctuating hydrodynamics in a dilute
gas, Phys. Rev. Lett. 58 (1987), 874–877.

[52] M. M. Mansour, C. V. den Broeck, I. Bena, and F. Baras, Spurious diffusion in particle simula-
tions of the Kolmogorov flow, Europhysics Letters 47 (1999), no. 1, 8–13.

[53] M. Mareschal, M. M. Mansour, G. Sonnino, and E. Kestemont, Dynamic structure factor in a
nonequilibrium fluid: A molecular-dynamics approach, Phys. Rev. A 45 (1992), 7180–7183.

[54] P. Meurs, C. V. den Broeck, and A. L. Garcia, Rectification of thermal fluctuations in ideal gases,
Phys. Rev. Lett. E 70 (2004), 051109.

[55] E. Moro, Hybrid method for simulating front propagation in reaction-diffusion systems, Phys.
Rev. E 69 (2004), no. 6, 060101.

[56] M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289 (2000),
no. 5482, 1165–1169.

[57] B. Nowakowski and A. Lemarchand, Sensitivity of explosion to departure from partial equilib-
rium, Phys. Rev. E 68 (2003), 031105.

[58] G. Oster, Darwin’s motors, Nature 417 (2002), 25.

[59] Y. Pomeau and P. Résibois, Time dependent correlation functions and mode-mode coupling
theories, Phys. Rep. 19 (1975), 63–139.

[60] G. Quentin and I. Rehberg, Direct measurement of hydrodynamic fluctuations in a binary mixture,
Phys. Rev. Lett. 74 (1995), no. 9, 1578–1581.

[61] N. Sharma and N. A. Patankar, Direct numerical simulation of the Brownian motion of particles
by using fluctuating hydrodynamic equations, J. Comput. Phys. 201 (2004), 466–486.

[62] M. Tysanner and A. L. Garcia, Non-equilibrium behavior of equilibrium reservoirs in molecular
simulations, Int. J. Numer. Meth. Fluids 48 (2005), 1337–1349.

[63] N. K. Voulgarakis and J.-W. Chu, Bridging fluctuating hydrodynamics and molecular dynamics
simulations of fluids, J. Chem. Phys. 130 (2009), no. 13, 134111.

[64] S. A. Williams, J. B. Bell, and A. L. Garcia, Algorithm refinement for fluctuating hydrodynamics,
Multiscale Model. Simul. 6 (2007), no. 4, 1256–1280. MR 2009c:76059 Zbl 05381404

FINITE-VOLUME SCHEMES FOR FLUCTUATING HYDRODYNAMICS 197

[65] M. Wu, G. Ahlers, and D. S. Cannell, Thermally induced fluctuations below the onset of
Rayleigh–Bénard convection, Phys. Rev. Lett. 75 (1995), no. 9, 1743–1746.

[66] V. M. Zaitsev and M. I. Shliomis, Hydrodynamic fluctuations near convection threshold, Sov.
Phys. JETP 32 (1971), 866.

[67] R. Zwanzig and M. Bixon, Compressibility effects in the hydrodynamic theory of Brownian
motion, Journal of Fluid Mechanics 69 (1975), 21–25.

Received June 12, 2009. Revised December 18, 2009.

ALEKSANDAR DONEV: aleks.donev@gmail.com
Lawrence Berkeley National Laboratory, Center for Computational Sciences and Engineering,
MS 50A-1148, LBL, 1 Cyclotron Rd., Berkeley 94720, United States
http://cims.nyu.edu/~donev

ERIC VANDEN-EIJNDEN: eve2@cims.nyu.edu
New York University, Courant Institute of Mathematical Sciences, New York 10012, United States

ALEJANDRO GARCIA: algarcia@algarcia.org
San Jose State University, Department of Physics and Astronomy, San Jose, CA 95192, United States

JOHN BELL: jbbell@lbl.gov
Lawrence Berkeley National Laboratory, Center for Computational Science and Engineering,
Berkeley, CA 94720, United States

COMM. APP. MATH. AND COMP. SCI.
Vol. 5, No. 2, 2010

A VOLUME-OF-FLUID
INTERFACE RECONSTRUCTION ALGORITHM THAT IS

SECOND-ORDER ACCURATE IN THE MAX NORM

ELBRIDGE GERRY PUCKETT

In an article recently published in this journal the author proved there exists a
two-dimensional, volume-of-fluid interface reconstruction method that is second-
order accurate in the max norm. However, that article did not include an example
of such an algorithm. This article contains a description of a two-dimensional,
volume-of-fluid interface reconstruction method that is second-order accurate
in the max norm, provided the curve that one is reconstructing is two times
continuously differentiable and the length of the sides of the square grid cells
is less than a constant divided by the maximum of the absolute value of the
curvature of the interface. A computation made with this algorithm is presented
that demonstrates the convergence rate is second-order, as expected.

1. Introduction

Let � ∈ R2 denote a two-dimensional computational domain and take an oriented
curve in � parametrized by z(s)= (x(s), y(s)), where 0 ≤ s ≤ send is arc length.
Let L be a characteristic length of the computational domain �. Cover � with a
grid consisting of square cells each of side 1x ≤ L and let

h = 1x
L

(1)

be a dimensionless parameter that represents the size of a grid cell. Note that h
is bounded above by 1. For the remainder of this article it is to be understood
that quantities such as the arc length s are also nondimensional quantities that
have been obtained by division by L as in (1), and that the curvature κ has been
nondimensionalized by dividing by 1/L .

MSC2000: primary 76-04, 65M06, 65M15, 76M20, 76M25; secondary 74A50, 94A08, 74S99,
76T99.

Keywords: volume-of-fluid, interface reconstruction, front reconstruction, piecewise linear interface
reconstruction, fronts, two-phase flow, multiphase systems, adaptive mesh refinement,
computational fluid dynamics.

Sponsored by the U.S. Department of Energy Mathematical, Information, and Computing Sciences
Division contracts DE-FC02-01ER25473 and DE-FG02-03ER25579.

199

200 ELBRIDGE GERRY PUCKETT

The volume-of-fluid interface reconstruction problem is to compute an approxi-
mation z̃(s) to z(s) in � using only the volume fractions 3i j associated with the
curve z on the grid. In this paper the convention will be that the volume fraction3i j

in the i j-th cell is the fraction of material that lies in the i j-th cell on the “outside”
of z(s)— that is, on the side towards which the outward pointing unit normal vector
n to the interface z(s) points.

The purpose of this article is to describe a new volume-of-fluid method for
reconstructing the interface z(s)= (x(s), y(s)) between two materials that is second-
order accurate in the max norm. The main result in [24; 25] is a proof that∣∣ g(x)− g̃i j (x)

∣∣≤ (50
3
κmax+CS

)
h2 for all x ∈ [xi , xi+1], (2)

where (x, g̃i j (x)) is the volume-of-fluid approximation to the interface1 (x, g(x))
described in this paper; κmax is the maximum of the absolute value of the curvature
of the interface in the 3× 3 block of cells Bi j centered on the cell Ci j in which one
wishes to reconstruct the interface; x = xi and x = xi+1 are the x-coordinates of the
left and right edges of the cell Ci j = [xi , xi+1]× [y j , y j+1] in which one wishes to
reconstruct the interface; h =1x/L is the length defined in (1) of the edges of the
square grid cells; and

CS =

√
3

2

{
(2
√

2− 1)4
√
κmax+

(
1− 7 (1+

√
2)

20

)32
3
(
√
κmax)

3
}2
. (3)

The bound in (2) holds whenever the grid size h and the maximum κmax of the
absolute value of the curvature κ(s) of the interface z(s)

κmax =max
s
|κ(s)| (4)

satisfies2

h ≤ Ch
κmax

, (5)

where

Ch =
1
25
. (6)

1As explained in the following paragraph, it is proven in [24] that the constraint on h in terms of
κmax in (5) ensures that one can reparametrize the interface as y = g(x) or x =G(y) locally about the
cell Ci j = [xi , xi+1]× [y j , y j+1] in which one wishes to reconstruct the interface. For convenience,
in this article the interface will frequently be written as y = g(x) instead of z(s), it being understood
that in some cells the parametrizations has to be x = G(y).

2It is only necessary that this condition be satisfied in a neighborhood of the cell Ci j ; for example,
in the 3× 3 block of cells Bi j centered on the cell Ci j .

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 201

Section 2 of [24] contains a proof that the constraint in (5) on h is sufficient
to ensure that the interface z(s) = (x(s), y(s)) can be written as a single valued
function y = g(x) or x = G(y) on any 3× 3 block of cells Bi j centered on a cell
Ci j which contains a portion of the interface.3

In the algorithm described in this article one uses the row of three cells above
and below Bi j to determine which columns to use in the approximation to the slope
mi j of the piecewise linear approximation

g̃i j (x)= mi j x + bi j (7)

to the interface y = g(x). For this reason one must consider the 5×5 block of cells
B̃i j centered on the cell Ci j . However, as shown in Section 5, once one has rotated
the block B̃i j so that the interface only enters (resp., exits) the 3× 3 subblock Bi j

across its left or top edge (resp., top or right edge); it is not necessary to use the
first and last columns of the larger block of cells B̃i j .

The articles [24; 25] consist solely of a collection of proofs showing that there
exists a volume-of-fluid interface reconstruction algorithm that is second-order
accurate in the max norm; that is, they do not contain an example of such an
algorithm. However, the proofs in [24; 25] are constructive, and the algorithm
described here is based on those proofs. To date, no other volume-of-fluid interface
reconstruction algorithms have been proven to be second-order accurate in the
max norm. Section 6 contains a computational example to demonstrate that this
algorithm produces an approximation to cos x for 0≤ x ≤ π that is a second-order
accurate in the max norm.

A detailed statement of the problem. Suppose that one is given a simply connected
computational domain � ∈ R2 that is divided into two distinct, disjoint regions �1

and �2 such that �1 ∪ �2 = �. Let �1 be referred to as material 1 and �2 as
material 2. (Although these algorithms have historically been known as “volume-
of-fluid” methods, they are frequently used to model the interface between any two
materials, including gases, liquids, solids and any combination thereof; for example,
see [5; 14; 15; 16].)

Let z(s)= (x(s), y(s)), where s is arc length, denote the interface between these
two materials and assume that the interface has been oriented so that as one traverses
the interface with increasing arc length material 1 lies to the right. Cover � with a
uniform square grid of cells, each with side h, and let 3i j denote the fraction of
material 1 in the i j-th cell.

3In that article and this one interfaces that are undergoing topological changes, such as when
a droplet separates into two droplets, are not considered. In order for this algorithm to achieve
second-order accuracy, the interface must be a single-valued C2 function in the 3× 3 block Bi j
surrounding the cell Ci j .

202 ELBRIDGE GERRY PUCKETT

Each number 3i j satisfies 0 ≤ 3i j ≤ 1 and is called the volume fraction (of
material 1) in the i j-th cell.4 Note that

0<3i j < 1 (8)

if and only if a portion of the interface z(s) lies in the i j -th cell. Similarly, 3i j = 1
means the i j-th cell only contains material 1, and 3i j = 0 means it only contains
material 2.

Consider the following problem. Given only the collection of volume fractions
3i j in the grid covering �, reconstruct z(s); in other words, find a piecewise linear
approximation z̃ to z in each cell Ci j that contains a portion of the interface z(s).
Furthermore, the approximate interface z̃ must have the property that the volume
fractions 3̃i j due to z̃ are identical to the original volume fractions 3i j ; that is,

3̃i j =3i j for all cells Ci j . (9)

An algorithm for finding such an approximation is known as a volume-of-fluid
interface reconstruction method.

The property that 3̃i j =3i j is the principal feature that distinguishes volume-of-
fluid interface reconstruction methods from other interface reconstruction methods.
This ensures that the computational value of the total volume of each material is
conserved. In other words, all volume-of-fluid interface reconstruction methods are
conservative in that they conserve the volume of each material in the computation.
When the underlying numerical method is a conservative finite difference method
that one is using to model a system of hyperbolic conservation laws (e.g., gas
dynamics) this can be essential since, for example, in order to obtain the correct
shock speed it is necessary for all of the conserved quantities to be conserved by the
underlying numerical method [13]. More generally, a necessary condition for the
numerical method to converge to the correct weak solution of a system of hyperbolic
conservation laws is that all of the quantities that are conserved in the underlying
partial differential equation must be conserved by the numerical method [12].

Volume-of-fluid methods have been used by researchers to track material inter-
faces since at least the mid 1970s [18; 19]. Researchers have developed a variety of
volume-of-fluid algorithms for modeling everything from flame propagation [3] to
curvature and solidification [4]. In particular, the problem of developing high-order
accurate volume-of-fluid methods for modeling the curvature and surface tension
of an interface has received a lot of attention [1; 2; 4; 7; 32; 22]. Volume-of-fluid
methods were among the first interface tracking algorithms to be implemented in
codes originally developed at the U.S. National Laboratories, and subsequently

4Even though in two dimensions 3i j is technically an area fraction, the convention is to refer to it
as a volume fraction.

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 203

released to the general public, that were capable of tracking material interfaces in a
variety of complex material flow problems [6; 9; 17; 30; 31]. They continue to be
widely used at these institutions, as well as by the general scientific community.

This article does not contain work concerning the related problem of approximat-
ing the movement of the interface in time, for which one would use a volume-of-fluid
advection algorithm. The interested reader may wish to consult [21; 27; 28] for a
detailed description and analysis of several such algorithms. In this article only the
accuracy that one can obtain when using a volume-of-fluid interface reconstruction
algorithm to approximate a given stationary interface z(s) is considered.

2. Assumptions and definitions

Notation. The center cell Ci j = [xi , xi+1]× [y j , y j+1] is the square grid cell with
side h that contains a portion of the interface z(s) = (x(s), y(s)) for s in some
interval, say s ∈ (sl, sr), in which one wishes to reconstruct the interface. This is
equivalent to saying that 0<3i j < 1. In what follows the 5× 5 block of square
cells — each with side h — centered on the center cell Ci j , as shown, for example,
in Figure 1, will be denoted B̃i j = [xi−2, xi+3] × [y j−2, y j+3]. In addition, the
subblock of B̃i j which consists of the 3× 3 subblock of cells centered on the cell

xi−2 xi−1 xi xi+1 xi+2 xi+3
xc

|yj−2

yj−1

yj

yj+1

yj+2

yj+3

g(x) = tanh(x)

(xi−2 , yl)

(xi+3, yr)

g̃ij(x) = mij x + bij

Figure 1. In this example the interface is g(x) = tanh(x) and
material 1 lies below the curve. Note that all three of the column
sums are exact, but that for the inverse function x = g−1(y), only
the (horizontal) center column sum is exact. (Exact column sums
are defined in Section 4 below.) The cell in which one wishes to
reconstruct the interface is Ci j , the 3× 3 block of cells centered on
Ci j is Bi j , and the 5× 5 block of cells centered on Ci j is B̃i j .

204 ELBRIDGE GERRY PUCKETT

Ci j will be denoted Bi j = [xi−1, xi+2] × [y j−1, y j+2], and the 3× 5 subblock of
B̃i j , which is Bi j together with the row of 3 cells Ci−1, j−2, Ci j−2 and Ci+1, j−2

added to its bottom and the row of 3 cells Ci−1, j+2, Ci, j+2 and Ci+1, j+2 added to
its top, will be denoted B̂i j = [xi−1, xi+2] × [y j−2, y j+3]. The coordinates of the
vertical edges of the cells in B̃i j are denoted xi−2, xi−1, xi , xi+1, xi+2 and xi+3 and
the horizontal edges by y j−2, y j−1, y j , y j+1, y j+2 and y j+3 as shown, for example,
in Figure 1.5 It will always be the case that xi+1− xi = h, y j+1− y j = h, etc.

Assumptions concerning the interface. In this article the exact interface

z(s)= ((x(s), y(s))

is assumed to satisfy the following conditions:

I. The interface z is two times continuously differentiable; in other words,

z(s) ∈ C2(�). (10)

II. The grid size h and the maximum value

κmax =max
s
|κ(s)|

of the absolute value of the curvature κ(s) of the interface satisfy the following
constraint in terms of each other:6

h ≤ Ch
κmax

, (11)

where
Ch =

1
25
.

Remark. One can show that the constraint in (11) prevents configurations in which
the interface enters the center cell Ci j , exits it, and then enters it again, before
exiting the 5× 5 block of cells B̃i j , as shown in Figure 2. In particular, one can use
the constraint in (11) to show that the interface does not have hairpin turns which
are on the order of a grid cell. See [24] for a proof of these facts.

Note that it may be possible for the interface to pass through the center cell,
then exit the 3× 3 block Bi j , “wander around the computational domain”, and then
reenter the 3× 3 block Bi j and the center cell Ci j again. The constraint in (11)
simply guarantees that given a point on the interface that lies in the center cell Ci j ,
one can find an orientation of the 3× 3 block Bi j such that locally the interface
can be written as a single-valued function on the interval [xi−1, xi+2] such that the

5Whenever possible, the same notation is used in this article as in [24; 25]. One significant change,
however, is that the lower left corner of the center cell Ci j is now (xi , y j) rather than (xi−1, y j−1) as
it was denoted in [24].

6See footnote 2.

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 205

xi−1 xi xi+1 xi+2xc

|yj−2

yj−1

yj

yj+1

yj+2

g(x)

(xl, yj+2) (xr, yj+2)

Figure 2. In this example, h = 1 and the interface is the parabola
g(x) = a(x − xc)

2
−

1
2 with a = 9. Consequently, the maximum

curvature of the interface is

κmax = 2a = 18> Ch h−1
=

1
25
,

and hence the constraint on the cell size h in (5) is not satisfied. As
one can see from the figure, the interface enters the 3× 3 block of
cells Bi j through the top edge of the left column, passes through
the center cell Ci j , exits the 3× 3 block of cells Bi j through the
bottom edge of the center column (i.e., the line y = y j−1), and then
passes through Bi j again; the second path being a reflection about
the line x = xc of the first. The constraint on h with respect to
the maximum curvature κmax in (5) ensures that the interface does
not have sharp or “hairpin” turns that are on the scale of the 3× 3
block of cells Bi j , such as the one illustrated here. A finer grid (i.e.,
smaller h) is required in order to resolve curves such as this one.

curve enters the 3× 3 block Bi j , passes through the center cell once — and only
once — and then exits Bi j . It does not prevent the curve from eventually reentering
the center cell after traversing the domain for a large number of cell lengths. In this
article it is assumed that this latter case does not occur.

206 ELBRIDGE GERRY PUCKETT

3. Rotation of the 5 by 5 block

Given a cell Ci j that contains a portion y = g(x) of the interface, or equivalently, a
cell Ci j in which 0<3i j < 1, assume that the 5× 5 block of cells B̃i j centered on
Ci j has been rotated so that in the rotated coordinate frame the bottom row of cells
in the 3× 5 subblock of cells B̂i j satisfy

3i−1, j−2 = 1, 3i j−2 = 1, 3i+1, j−2 = 1.

This ensures that the interface does not exit the 3×5 subblock of cells B̂i j across its
bottom edge. Not only does this reduce the number of cases that one must consider
in the description of the algorithm, but it also reduces the number of cases one must
consider in the implementation of the algorithm. This is because the Symmetry
Lemma of [24, page 119] states that all configurations of the interface with respect
to the 3× 3 block Bi j are equivalent to the following two cases:

Configuration A: The interface enters Bi j across the left edge of Bi j and exits
across the right edge of Bi j (as shown, for example, in Figure 1).

Configuration B: The interface enters Bi j across the left edge of Bi j and exits
across the top edge of Bi j (as shown, for example, in Figure 4).

Provided only that the interface satisfies the conditions in (5) and (10), these two
cases are equivalent to all of the other ways in which the interface can enter the 3×3
block of cells Bi j , pass through the center cell Ci j , and exit the block Bi j . In other
words, rotating the block Bi j by 0, 90, 180 or 270 degrees and/or interchanging
the direction traversed by the arc length parameter s →−s, one can arrive at a
configuration that is identical to one of the two configurations listed above. This is
a consequence of the Symmetry Lemma cited above.

In the implementation of this algorithm, for the purposes of producing the results
shown in Section 6, the case in which — after the 5× 5 block of cells B̃i j has
been rotated — the interface enters Bi j across the top edge and exits it across the
right edge is also included. In other words, the symmetric image of the example
shown in Figure 4 is also included in this implementation of the algorithm, although
according to the Symmetry Lemma this is not strictly necessary.

During the course of proving the results in [24; 25], or in developing a second-
order accurate volume-of-fluid interface reconstruction method such as the one
described here, it is often necessary to rotate the 5× 5 block of cells B̃i j centered
on Ci j by 90, 180, or 270 degrees and/or reflect the coordinates about one of the
coordinate axes: x→−x or y→−y. No other coordinate transformations besides
one of these three rotations and a possible reversal of one or both of the variables
x→−x and/or y→−y are required in order for the algorithm studied in this article
and the articles in [24; 25] to converge to the exact interface as h→ 0. Furthermore,

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 207

these coordinate transformations are only used to determine a first-order accurate
approximation mi j to g′(xc) in the center cell. The grid covering the domain �
always remains the same.

Thus, if one is using the interface reconstruction algorithm as part of a numer-
ical method to solve a more complex problem than the one posed here (e.g., the
movement of a fluid interface where the underlying fluid flow is a solution of the
Euler or Navier–Stokes equations), it is not necessary to perform these coordinate
transformations on the underlying numerical fluid flow solver. Therefore, unless
noted otherwise, in what follows the interface will always be written y=g(x) and the
coordinates of the edges of the cells in the 3×3 block Bi j will be denoted by xi−1, xi ,
xi+1, xi+2 and y j−1, y j , y j+1, y j+2, it being implicitly understood that a transforma-
tion of the coordinate system as described above may have been performed in order
for this representation of the interface to be valid, and that the names of the variables
x and y might have been interchanged in order to write the interface as y = g(x).

4. Column sums

Let Si−1, Si and Si+1 represent the left, center and right column sums respectively
in the 3× 3 subblock of cells Bi j centered on Ci j :

Si−1 =

j+1∑
j ′= j−1

3i−1, j ′, Si =

j+1∑
j ′= j−1

3i j ′, Si+1 =

j+1∑
j ′= j−1

3i+1, j ′ . (12)

The volume fraction 3i j in the i j-th cell Ci j is a nondimensional way of storing
the volume of material 1 in that cell, while the i-th column sum Si defined above is
a nondimensional way of storing the total volume of material 1 in the column of
three cells centered on the i j-th cell, and similarly for Si−1 and Si+1.

Now consider an arbitrary column consisting of three cells with left edge x = xi

and right edge x = xi+1. Furthermore, assume that the interface can be written
as a function y = g(x) on the interval [xi , xi+1]. Assume also that the interface
enters the column through its left edge, exits the column through its right edge and
does not cross the top or bottom edges of the column, as is the case with each of
the columns Si−1, Si and Si+1 in the 3× 3 subblock of cells Bi j centered on the
cell of interest Ci j shown in the example in Figure 1. Then, in particular, the total
volume of material 1 that occupies the three cells of the center column and lies
below the interface g(x) is equal to the integral of (g(x)− y j−1) over the interval
[xi , xi+1]. This leads to the following relationship between the column sum and
the normalized volume of material 1 in the column:

Si =

j+1∑
j ′= j−1

3i j ′ =
1
h2

∫ xi+1

xi

(g(x)− y j−1) dx . (13)

208 ELBRIDGE GERRY PUCKETT

This in turn leads to the following definition.

Definition. Assume that the interface y = g(x) enters the i-th column through its
left edge and exits the i-th column through its right edge and does not cross the top
or bottom edges of the column. Then the column sum Si is exact whenever (13)
holds. Integrals such as the one on the right in (13) will be referred to as the
normalized integral of g in the i-th column.7

Given the 3× 3 block of cells Bi j surrounding a cell Ci j that contains a portion
y = g(x) of the interface, the accuracy of the algorithm described in this paper is
based on how well the column sums Si−1, Si and Si+1 approximate the normalized
integral of g in the (i − 1)-st, i-th, and (i + 1)-st column. This is because if two of
the column sums Si+α and Si+β with α, β = 1, 0,−1 and α 6= β are exact, then the
slope

mi j =
Si+β − Si+α

β −α
(14)

will be a first-order accurate approximation to g′(xc), where xc =
1
2(xi+1 − xi),

as shown in (18) below. (This is Theorem 23 in [24].) It then follows that the
piecewise linear approximation

g̃i j (x)= mi j x + bi j (15)

to the portion of the interface g(x) in Ci j is pointwise second-order accurate, as
shown in (19) below. (This is Theorem 24 in [24].) Therefore, one should use one
of the following three slopes for mi j in (15):

ml
i j = (Si − Si−1), mc

i j =
1
2(Si+1− Si−1), mr

i j = (Si+1− Si). (16)

Example 1. In order to see why one of the three slopes in (16) will be the best
choice for mi j , consider the case when the interface is a line g(x) = m x + b. In
this case the 3× 3 subblock of cells Bi j has two exact column sums as shown in
Figure 3. Note that in this particular orientation of Bi j , g has two exact column
sums; namely the sums in the first and second columns. It is easy to check that

m =
1
h2

∫ xi

xi−1

(g(x)− y j−1) dx −
1
h2

∫ xi−1

xi−2

(g(x)− y j−1) dx

= (Si − Si−1)= ml
i j .

7In [24] an exact column sum was mistakenly defined as

Si ≡
j+1∑

j ′= j−1
3i j ′ =

1
h2

∫ xi+1

xi

(g(x)− yj−1h) dx;

that is, yj−1h appears in the integrand, rather than just yj−1. The correct definition appears here.

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 209

xi−1 xi xi+1 xi+2

yj−1

yj

yj+1

yj+2

g(x)

(xl, yl)

(xr, yr)

Figure 3. Here the interface g is a line g(x) = m x + b that has
two exact column sums; namely the sums in the first and second
columns. In this case the slope ml

i j from (16) is exactly equal to the
slope m of the interface: ml

i j = m. It is always the case that when
the exact interface is a line on a grid of square cells one can find an
orientation of the 3× 3 block of cells Bi j such that at least one of
the divided differences of the column sums in (16) is exact.

In this example the divided difference ml
i j of the column sums Si−1 and Si is

exactly equal to the slope m of the exact interface. In fact, it is always the case that
when the exact interface is a line and the grid consists of square cells, one can find
an orientation of the 3×3 subblock of cells Bi j such that at least one of the divided
differences of the column sums in (16) is exact. For example, note that in the case
shown in Figure 3 one could rotate the 3× 3 block of cells 90 degrees clockwise
and then the correct slope to use when forming the piecewise linear approximation
g̃i j (x)= mi j x + bi j would be mi j = mr

i j in the rotated coordinate frame. One can
easily check that this choice for mi j would again be exactly equal to the slope m of
the exact interface (in the rotated coordinate frame).

Example 2. However, as demonstrated in Example 2 of [25], there are instances
in which the interface satisfies (5) but the center column sum Si is not exact. An
example was shown in Figure 4. All of the work in [25] is devoted to showing
that when the interface satisfies (5), the center column sum Si will still be exact to

210 ELBRIDGE GERRY PUCKETT

xi−1 xi xi+1 xi+2xc

|yj−1

yj

yj+1

yj+2

•(xl, yl)

•
(xr, yr)

•
(xm, ym)

g(x)

Figure 4. An example of a circular interface g(x) that satisfies (5),
but for which the center column sum is not exact in any of the four
standard orientations of the grid. Consequently, any approximation
mi j to the slope g′(xc) of the form (14) must have a center column
sum Si that is not exact. (See [25, Example 2] for more details.)
Theorem 4 of [25] states that if (5) is satisfied, then the error
between the column sum Si and the normalized integral of g over
the center column is O(h); that is, (5) implies that (17) holds. This
suffices to ensure that (18) is true, and hence that (19) is true.

O(h):8 ∣∣∣∣Si −
1
h2

∫ xi+1

xi

(g(x)− y j−1) dx
∣∣∣∣≤ CSh, (17)

where CS is defined in (3). This is sufficient for either the left- or the right-sided
difference in (16) to satisfy

|mi j − g′(xc)| ≤
(26

3
κmax+CS

)
h, (18)

where κmax is defined in (4). This, in turn, is sufficient for the piecewise linear
volume-of-fluid approximation g̃i j = mi j x + bi j to still be second-order accurate

8In [24] the definition that the center column sum is exact to O(h) was mistakenly defined as∣∣∣∣Si −
1

h2

∫ xi+1

xi

(g(x)− yj−1h)dx
∣∣∣∣≤ CSh,

that is, yj−1h appears in the integrand, rather than just yj−1. The correct definition appears here.

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 211

in the max norm:

| g(x)− g̃i j (x)| ≤
(50

3
κmax+CS

)
h2 for all x ∈ [xi , xi+1]. (19)

See Section 4 of [24] for proofs of (18) and (19).

To summarize, once the 5×5 block of cells B̃i j centered on the cell Ci j in which
one wishes to reconstruct the interface has been rotated as described in Section 3,
the interface reconstruction algorithm is based on choosing the slope mi j of the
piecewise linear approximation g̃i j = mi j x + bi j to the interface g(x) to be one
of the three divided differences of the column sums Si−1, Si and Si+1 from the
3× 3 subblock Bi j centered on the cell Ci j as shown in (16). The best choice is
when both column sums are exact, which — provided that the condition in (5) is
satisfied — is true in all but one case.

This one case is the one in which the interface g satisfies (5) yet exits the i-th
column Si across its top edge as shown in Figure 4. (In this particular case the
interface is always monotonically increasing.) Example 2 of [25] demonstrates
that this case can occur for any value of h, no matter how small. However, in [25]
it is proven that when this case occurs, one of the two divided differences of
column sums, ml

i j or mr
i j , will still satisfy (18). Thus, choosing this quantity for

the slope mi j in g̃i j = mi j x + bi j still yields a pointwise second-order accurate
approximation to g; that is, the bound in (19) remains true. The following section
contains a description of an algorithm for determining which of these cases is
present, and hence which of the slopes in (16) — the first or the third — will yield a
second-order accurate approximation to the interface in Ci j .

5. A description of the algorithm

Before proceeding one should note that there are a variety of ways to implement
this algorithm. In particular, one can implement it so that it is not necessary rotate
the 5× 5 block B̃i j . The description given here was chosen because it seems to be
the easiest one to follow. Furthermore this is the way in which the algorithm was
implemented in order to produce the computational results shown in Section 6.

There are two steps involved in computing the approximation g̃i j (x) to the
interface g(x) in a given cell Ci j .

I. Determine the slope mi j of the piecewise linear approximation

g̃i j (x)= mi j x + bi j

to the interface g(x) in the cell Ci j .

II. Determine the y-intercept bi j of g̃i j (x).

212 ELBRIDGE GERRY PUCKETT

Step I. Given that the 5×5 block B̃i j has been placed in the configuration described
in Section 3 above, one need only consider the five cases listed below; namely
Cases 1(a), 1(b) and Cases 2–4. From the discussion on column sums in Section 4
it is apparent that one needs two column sums that are either exact, or a left (resp.,
right) column sum that is exact and a center column sum that is exact to O(h) as
shown, for example, in Figure 4 (page 210).

The constraint in (5) on the interface z(s) ensures that, once the 5× 5 block of
cells B̃i j has been rotated as described above, only the following cases can occur:

(1) The center column sum Si is exact to O(h), and hence satisfies (17), as shown,
for example, in Figure 4, and one of the following two cases hold:

(a) The left column sum Si−1 is exact, in which case one uses the left-sided
divided difference:

mi j = ml
i j = Si − Si−1. (20)

(b) The right column sum Si−1 is exact, in which case one uses the right-sided
divided difference:

mi j = mr
i j = Si+1− Si . (21)

(2) All three column sums Si−1, Si and Si+1 are exact as shown, for example, in
Figure 1. In this case one uses the centered difference of the left and right
column sums:

mi j = mc
i j =

1
2(Si+1− Si−1). (22)

(3) The left column sum Si−1 and center column sum Si are exact. In this case
one uses the left-sided divided difference:

mi j = ml
i j = Si − Si−1. (23)

(4) The center column Si and right column sum Si+1 are exact. In this case one
uses the right-sided divided difference:

mi j = mr
i j = Si+1− Si . (24)

The various theorems and lemmas in [24; 25] prove that in each of the above
cases the formulas in (20)–(24) result in a first-order accurate approximation mi j to
the first derivative g′(xc) of the interface at the point xc =

1
2(xi + xi+1), as shown

in Equation (18).
Next is a description of the algorithm that one uses to obtain the correct slope

given only the volume fraction information in the 3× 5 block of cells B̂i j .

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 213

The algorithm to choose the slopes. Once the 5× 5 block B̃i j has been rotated
as described in Section 3, one only uses the 3× 5 portion B̂i j of B̃i j to make the
decision as to which of the cases listed above one uses for that particular cell Ci j .
The algorithm for selecting the slope is as follows.

Case 1: (The center column sum Si is not exact, but is exact to O(h).) First one
checks the cell Ci j+2. If 3i j+2 > 0, then the cell above the center column
contains some material 1 and hence the center column sum Si is not exact.
However, by Theorem 4 of [25] the condition on h in (5) ensures that Si is
exact to O(h). Therefore, one next checks the left column sum Si−1 and right
column sum Si+1 to determine which column sum is exact, and hence which
difference one will use; that is, Case 1(a) or 1(b) from the list above. (The
constraint in (5) will ensure that the column sums Si−1 and Si+1 are not both
exact, but one of them will be.)

Case 1(a): If 3i−1, j+2 = 0, the left column sum Si−1 is exact, and hence
one uses the left-sided difference:

mi j = ml
i j = Si − Si−1.

Case 1(b): Otherwise, it must be the case that 3i+1, j+2 = 0, and hence the
right column sum is exact. Therefore, one uses the right-sided difference:

mi j = mr
i j = Si+1− Si .

Case 2: (The center column sum must be exact.) Otherwise, 3i, j+2 = 0, and
hence the center column sum Si is exact. In this case one first checks to see
which of the left and right column sums are exact. If both are exact, then one
uses a centered difference. Otherwise one uses a one-sided difference with the
center column and whichever of the left or right column sums is exact.

Case 2(a): If 3i−1, j+2 = 0 and 3i+1, j+2 = 0, then both the left column
sum Si−1 and the right column sum Si+1 are exact. Therefore, one uses a
centered difference, since it is one order more accurate than a one sided
difference:

mi j = mc
i j =

1
2(Si+1− Si−1).

Case 2(b): If only 3i−1, j+2 = 0, and hence the right column sum Si+1 is
not exact, then one uses the left-sided difference:

mi j = ml
i j = Si − Si−1.

Case 2(c): Otherwise, if only 3i+1, j+2 = 0, and hence the left column sum
Si−1 is not exact, then one uses the right-sided difference:

mi j = mr
i j = Si+1− Si .

214 ELBRIDGE GERRY PUCKETT

Step II. Once the slope mi j has been found the constraint

3̃i j (g̃)=3i j (g),

where 3̃i j (g̃) denotes the fraction of material 1 in the i j-th cell due to g̃, imme-
diately determines bi j . In other words, once the 5× 5 block of cells B̃i j has been
appropriately rotated, bi j is a single valued function of 3̃i j (g̃) and mi j :

bi j = bi j (3̃i j (g̃),mi j).

There are a variety of formulas one can employ to determine bi j given mi j .
For example, there is an approach that is based on representing the boundary of
the portion of the cell Ci j that contains material 1 by directed line segments and
using the divergence theorem to compute the volume fraction 3i j developed by
S. G. Roberts and used in [26]. There is the approach developed by J. S. Saltzman
and used in [23] that is based on employing a coordinate system in which the
approximate interface g̃i j (x) is given by

nx
i j x + ny

i j y = σ,

where ni j = (nx
i j , ny

i j) is the unit normal to g̃i j (x) that points away from the material
1 and σ is the distance from g̃i j to (xi , y j), the lower left hand corner of the cell Ci j .
In work with Kothe et al. [8; 10; 32; 11], M. W. Williams developed algorithms for
working on three-dimensional hexahedral and other unstructured meshes. Details
of this work may also be found in Williams’ Ph.D. thesis [33]. Finally, an article
by Scardovelli and Zaleski [29] describes a collection of formulas one may use on
two and three dimensional rectangular grids.

The algorithm that was used to compute the computational example shown in
Section 6 of this article is based on determining which of the three polygons the
approximate interface g̃i j (x) forms when it passes through the cell Ci j :

(1) a triangle,

(2) the complement of a triangle in a square, and

(3) a trapezoid.

In other words, material 1 is contained in a region that has the shape of one of the
three polygons listed above.

Given the volume fraction 3i j — and hence the volume9 Vi j of material 1 in the
i j-th cell — and the slope mi j , one can write down algebraic formulas for each of
these polygons. In this way the polygon with the correct volume is readily identified,
and with it the point of intersection of the approximate interface g̃i j (x) with two of

9As previously noted, strictly speaking one is given the area of material 1 in the i j-th cell. By
convention this area is referred to as the volume of material 1 in the i j-th cell.

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 215

the four grid lines: x = xi , x = xi+1, y = y j and y = y j+1 that form the edges of
the cell Ci j . Given this information, the y-intercept bi j is easily found.

Note that several of the other algorithms for representing the approximate inter-
face listed above allow one to design the method so that it is not necessary to rotate
the 5× 5 block of cells B̃i j . However, the implementation of such an algorithm
may be more complex than the one described here.

6. A computational example

Table 1 contains the max norm error from a computation in which the interface
reconstruction algorithm described in this paper is used to approximate cos x for
0≤ x ≤ π on square grids with cell sizes varying from 32−1 to 4096−1. The error
reported in the table is computed according to the formula

l∞error=max
Ci j

{
max

x∈[xi ,xi+1]

∣∣ g(x)− g̃i j (x)
∣∣}, (25)

where maxx∈[xi ,xi+1]

∣∣ g(x)− g̃i j (x)
∣∣ is computed at 1000 points between the end-

points xl (resp., xr) at which the curve g(x) enters (resp., exits) the cell Ci j and the
outer maximum in (25) is taken over all cells Ci j that satisfy 0<3i j < 1.

The third column contains the error (25) for the cell size reported in the second
column. The fourth column contains the theoretical error bound from [25], which
is quoted in Equation (2) (and also in Equation (26) below). Note that for all values
of 1x the actual error is two orders of magnitude less than the theoretical error
bound.

The last column of Table 1 contains the convergence rate. For a particular value
of 1x = 2−k , the convergence rate is defined to be the rate at which the error would
have to decrease in going from 1x = 2−(k−1) to 1x = 2−k in order to achieve the

k cell size l∞ theoretical convergence
1x = 2−k error error bound rate

05 32−1 1.07·10−4 8.43·10−2 2.19
06 64−1 2.67·10−5 2.11·10−2 2.00
07 128−1 7.26·10−6 5.27·10−3 1.88
08 256−1 1.80·10−6 1.32·10−3 2.02
09 512−1 4.45·10−7 3.29·10−4 2.01
10 1024−1 1.12·10−7 5.95·10−5 1.99
11 2048−1 2.83·10−8 2.06·10−5 1.99
12 4096−1 7.13·10−9 5.14·10−6 1.99

Table 1. The max norm of the error from the computation of cos x
for 0≤ x ≤ π .

216 ELBRIDGE GERRY PUCKETT

error that is shown for 1x = 2−k . In other words,

convergence rate in the row with 1x = 2−k
:= log2

(
error(2−(k−1))

error(2−k)

)
,

where error(2−k) denotes the error in the max norm when 1x = 2−k . It is apparent
that the error in the max norm decreases at a rate commensurate with a method that
is second-order accurate in the max norm as claimed.

7. Conclusions

The main result of [24; 25] is a proof that

|g(x)− g̃i j (x)| ≤
(50

3
κmax+CS

)
h2 for all x ∈ [xi , xi+1], (26)

where g̃i j (x) is the volume-of-fluid approximation to the interface g(x) in the cell
Ci j that is described in this paper, κmax is the maximum curvature of the interface
as defined in (4), xi and xi+1 denote the left and right edges respectively of the cell
Ci j , h is the length of each side of the square grid cell Ci j and

CS =

√
3

2

{
(2
√

2− 1)4
√
κmax+

(
1−

7 (1+
√

2)
20

)32
3
(
√
κmax)

3
}2
.

The bound in (26) holds whenever the grid size h and the maximum value

κmax =max
s
|κ(s)|

of the curvature κ(s) of the interface z(s) in the 3× 3 block of cells Bi j satisfies

h ≤ Ch
κmax

, where Ch =
1

25
. (27)

However, in [24; 25] there are no examples of algorithms for finding the volume-
of-fluid approximation g̃i j (x) in each cell Ci j which contains a portion of the
interface. This article contains a description of one such algorithm. This algorithm
is new and has not appeared previously in the scientific literature. As shown in
Table 1 the computations to approximate cos x on the interval [0, π] shown in
Section 6 are consistent with the theoretical error bounds in [24; 25]. In other
words, the computational approximation of cos x made with this new algorithm is
consistent with the claim that it is second order accurate in the max norm provided
that the interface g ∈ C2 and (27) is satisfied.

It may be possible for the interface to pass through the center cell, then exit the
3× 3 block Bi j , wander around the computational domain, and reenter the 3× 3
block Bi j and the center cell Ci j again. For the purposes of this paper it is assumed
that this does not happen. When implementing the algorithm described in this paper,
one can design the code to automatically check for such cases and flag the 3× 3

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 217

block Bi j for grid refinement, so that no cell contains two instances of the interface
in a configuration such as the one just described.

In [21] J. E. Pilliod and Puckett described two volume-of-fluid interface recon-
struction algorithms they had developed, and which they named the Least Squares
Volume-of-Fluid Interface Reconstruction Algorithm (LVIRA) and the Efficient Least
Squares Volume-of-Fluid Interface Reconstruction Algorithm (ELVIRA). They then
presented computations with these algorithms on both C2 and C0 interfaces. When
the underlying exact solution was a circle, the LVIRA and ELVIRA algorithms
were shown to be second-order accurate in the max norm.

In all of the other computations they computed the errors in the averaged l1

norm; that is, the l1 norm averaged over 1000 random perturbations of the problem.
For example, the l1 error reported in approximating a circle was an average of
the errors obtained when approximating 1000 different unit circles in which the
center of the circle was chosen at random. They then compared the errors with
errors obtained when they used several other widely used volume-of-fluid interface
reconstruction algorithms such as SLIC [19] and the method developed by Parker
and Youngs [20]. The only other algorithm that was close to being second-order
accurate in the averaged l1 norm consisted of taking the centered difference for the
slope — that is, mi j = mc

i j , where mc
i j is defined in (16).

It is not clear whether the proofs in [24; 25] apply to the LVIRA and ELVIRA
algorithms. Hence, it is not clear whether LVIRA and ELVIRA are second-order
accurate in the max norm, or in the l1 and l2 norms when the errors are not averaged
over many computations. Future work should include a study of this issue and
a direct comparison between the algorithm presented here and the LVIRA and
ELVIRA algorithms.

One should also note that both the LVIRA and ELVIRA algorithms, as well as the
algorithm presented here, reconstruct lines exactly. It is an open problem to prove
whether or not this is a sufficient condition for the algorithm to be second-order
accurate when the underlying interface is C2.

Corollary 22 in [24] states that the algorithm presented in this paper with slope
mi j = 0 (i.e., the piecewise constant or “stair-step” volume-of-fluid interface recon-
struction algorithm) will be first-order accurate whenever the interface is C1 rather
than C2. (See footnote 10 in [24] regarding how smooth the interface must be in
order to prove Corollary 22.) Future work should include an exploration of how
well the algorithm presented here approximates interfaces that are less than C2.

Finally, when the interface reconstruction algorithm is coupled to an adaptive
mesh refinement algorithm, the parameter

Hmax = Ch(κmax)
−1,

where κmax is the maximum curvature of the interface over the 3× 3 block of cells

218 ELBRIDGE GERRY PUCKETT

Bi j centered on a given cell Ci j , can be used to develop a criterion for determining
when to increase the resolution of the grid. Namely, the computation of the interface
in Ci j is under-resolved whenever

h > Hmax,

and hence the grid needs to be refined in a neighborhood of the block Bi j .

References

[1] I. Aleinov and E. G. Puckett, Computing surface tension with high-order kernels, Proceedings
of the 6th International Symposium on Computational Fluid Dynamics (Lake Tahoe, CA) (K.
Oshima, ed.), 1995, pp. 6–13.

[2] J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension,
J. Comput. Phys. 100 (1992), no. 2, 335–354. MR 93c:76008 Zbl 0775.76110

[3] A. J. Chorin, Flame advection and propagation algorithms, J. Comput. Phys. 35 (1980), no. 1,
1–11. MR 81d:76061 Zbl 0425.76086

[4] , Curvature and solidification, J. Comput. Phys. 57 (1985), no. 3, 472–490. MR 86d:
80001 Zbl 0555.65085

[5] L. F. Henderson, P. Colella, and E. G. Puckett, On the refraction of shock waves at a slow-fast
gas interface, J. Fluid Mech. 224 (1991), 1–27.

[6] C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries,
J. Comput. Phys. 39 (1981), 201–225.

[7] R. M. Hurst, Numerical approximations to the curvature and normal of a smooth interface using
high-order kernels, MS Thesis, Department of Mathematics, University of California, Davis,
December 1995, Shields Library Special Collections LD781.D5j 1995 H873.

[8] D. R. Korzekwa, D. B. Kothe, K. L. Lam, E. G. Puckett, P. K. Tubesing, and M. W. Williams, A
second-order accurate, linearity-preserving volume tracking algorithm for free surface flows
on 3-d unstructured meshes, Proceedings of the 3rd ASME /JSME Joint Fluids Engineering
Conference (San Francisco, CA), FEDSM99-7109, American Society of Mechanical Engineers,
1999.

[9] D. B. Kothe, J. R. Baumgardner, S. T. Bennion, J. H. Cerutti, B. J. Daly, K. S. Holian, E. M.
Kober, S. J. Mosso, J. W. Painter, R. D. Smith, and M. D. Torrey, PAGOSA: A massively-parallel,
multi-material hydro-dynamics model for three-dimensional high-speed flow and high-rate
deformation, Technical Report LA-UR-92-4306, Los Alamos National Laboratory, 1992.

[10] D. B. Kothe, E. G. Puckett, and M. W. Williams, Approximating interface topologies with
applications to interface tracking algorithms, Proceedings of the 37th AIAA Aerospace Sciences
Meetings (Reno, NV), American Institute of Aeronautics and Astronautics, 1999, pp. 1–9.

[11] , Robust finite volume modeling of 3-d free surface flows on unstructured meshes,
Proceedings of the 14th AIAA Computational Fluid Dynamics Conference (Norfolk, VA),
American Institute of Aeronautics and Astronautics, 1999, pp. 1–6.

[12] P. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960),
217–237. MR 22 #11523 Zbl 0152.44802

[13] R. J. LeVeque, Numerical methods for conservation laws, Lectures in Math. ETH Zürich,
Birkhäuser, Basel, 1990. MR 91j:65142 Zbl 0723.65067

A SECOND-ORDER ACCURATE VOF INTERFACE RECONSTRUCTION ALGORITHM 219

[14] G. H. Miller and P. Colella, A conservative three-dimensional Eulerian method for coupled
solid-fluid shock capturing, J. Comput. Phys. 183 (2002), no. 1, 26–82. MR 2003j:76080
Zbl 1057.76558

[15] G. H. Miller and E. G. Puckett, Edge effects in molybdenum-encapsulated molten silicate shock
wave targets, J. Appl. Phys. 75 (1994), no. 3, 1426–1434.

[16] , A high-order Godunov method for multiple condensed phases, J. Comput. Phys. 128
(1996), no. 1, 134–164.

[17] B. D. Nichols, C. W. Hirt, and R. S. Hotchkiss, SOLA-VOF: A solution algorithm for transient
fluid flow with multiple free boundaries, Technical Report LA-8355, Los Alamos National
Laboratory, August 1980.

[18] W. F. Noh and P. R. Woodward, SLIC (Simple Line Interface Calculation), Technical Report
UCRL-77651, Lawrence Livermore National Laboratory, August 23 1976.

[19] , SLIC (Simple Line Interface Calculation), Lecture Notes in Physics (A. I. van der
Vooren and P. J. Zandbergen, eds.), vol. 59, Springer, New York, 1976, pp. 330–340.

[20] B. J. Parker and D. L. Youngs, Two and three dimensional Eulerian simulation of fluid flow with
material interfaces, Technical Report 01/92, UK Atomic Weapons Establishment, Aldermaston,
Berkshire, Feb 1992.

[21] J. E. Pilliod, Jr. and E. G. Puckett, Second-order accurate volume-of-fluid algorithms for
tracking material interfaces, J. Comput. Phys. 199 (2004), no. 2, 465–502. MR 2005d:65145
Zbl 1126.76347

[22] S. Popinet and S. Zaleski, A front-tracking algorithm for accurate representation of surface
tension, Int. J. for Numer. Methods in Fluids 30 (1999), no. 6, 775–793. Zbl 0940.76047

[23] E. G. Puckett and J. S. Saltzman, A 3D adaptive mesh refinement algorithm for multimaterial
gas dynamics, Phys. D 60 (1992), no. 1-4, 84–93. MR 93i:76062 Zbl 0779.76059

[24] E. G. Puckett, On the second-order accuracy of volume-of-fluid interface reconstruction algo-
rithms: Convergence in the max norm, Commun. Appl. Math. Comput. Sci. 5 (2010), 99–148.
MR 2600824 Zbl 05709095

[25] E. G. Puckett, On the second-order accuracy of volume-of-fluid interface reconstruction algo-
rithms II: An improved constraint on the cell size, CAMCoS (2010), Submitted for publication.

[26] E. G. Puckett and S. G. Roberts, A volume-of-fluid method for modeling flow by mean curvature,
1990, work performed at the Australian National University.

[27] W. J. Rider and D. B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998),
no. 2, 112–152. MR 99a:65200 Zbl 0933.76069

[28] R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow,
Annual review of fluid mechanics (C. Cambon and J. F. Scott, eds.), vol. 31, Annual Reviews,
Palo Alto, CA, 1999, pp. 567–603. MR 99m:76002

[29] R. Scardovelli and S. Zaleski, Analytical relations connecting linear interfaces and volume
fractions in rectangular grids, J. Comput. Phys. 164 (2000), no. 1, 228–237. MR 1786246
Zbl 0993.76067

[30] M. D. Torrey, L. D. Cloutman, R. C. Mjolsness, and C. W. Hirt, NASA-VOF2D: A computer
program for incompressible flows with free surfaces, Technical Report LA-10612-MS, Los
Alamos National Laboratory, December 1985.

[31] M. D. Torrey, R. C. Mjolsness, and L. R. Stein, NASA-VOF3D: A three-dimensonal computer
program for incompressible flows with free surfaces, Technical Report LA-11009-MS, Los
Alamos National Laboratory, July 1987.

220 ELBRIDGE GERRY PUCKETT

[32] M. W. Williams, D. B. Kothe, and E. G. Puckett, Accuracy and convergence of continuum
surface-tension models, Fluid dynamics at interfaces (W. Shyy, ed.), Cambridge Univ. Press,
1999, pp. 294–305. MR 1719592 Zbl 0979.76014

[33] M. W. Williams, Numerical methods for tracking interfaces with surface tension in 3-d mold-
filling processes, Ph.D. thesis, University of California, Davis, 2000.

Received February 23, 2010.

ELBRIDGE GERRY PUCKETT: egpuckett@ucdavis.edu
University of California, Davis, Department of Mathematics, One Shields Avenue, Davis, CA 95616,
United States
http://www.math.ucdavis.edu/

COMM. APP. MATH. AND COMP. SCI.
Vol. 5, No. 2, 2010

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION

ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

Implicit particle filters for data assimilation update the particles by first choosing
probabilities and then looking for particle locations that assume them, guiding
the particles one by one to the high probability domain. We provide a detailed
description of these filters, with illustrative examples, together with new, more
general, methods for solving the algebraic equations and with a new algorithm
for parameter identification.

1. Introduction

There are many problems in science, for example in meteorology and economics,
in which the state of a system must be identified from an uncertain equation
supplemented by noisy data (see, for instance, [9; 22]). A natural model of this
situation consists of an Ito stochastic differential equation (SDE):

dx = f (x, t) dt + g(x, t) dw, (1)

where x = (x1, x2, . . . , xm) is an m-dimensional vector, f is an m-dimensional
vector function, g(x, t) is an m by m matrix, and w is Brownian motion which
encapsulates all the uncertainty in the model. In the present paper we assume for
simplicity that the matrix g(x, t) is diagonal. The initial state x(0) is given and
may be random as well.

The SDE is supplemented by measurements bn at times tn , n = 0, 1, The
measurements are related to the state x(t) by

bn
= h(xn)+GW n, (2)

where h is a k-dimensional, generally nonlinear, vector function with k ≤ m, G
is a matrix, xn

= x(tn), and W n is a vector whose components are independent
Gaussian variables of mean 0 and variance 1, independent also of the Brownian
motion in (1). The independence requirements can be greatly relaxed but will be

MSC2000: 60G35, 62M20.
Keywords: implicit sampling, data assimilation, particle filter.
This work was supported in part by the Director, Office of Science, Computational and Technology
Research, United States Department of Energy under Contract no. DE-AC02-05CH11231, and by the
National Science Foundation under grants DMS-0705910 and OCE-0934298.

221

222 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

observed in the present paper. The task of a filter is to assimilate the data, that is,
estimate x on the basis of both (1) and the observations (2).

If the system (1) and the function h in (2) are linear and the data are Gaussian, the
solution can be found in principle via the Kalman–Bucy filter [19]. In the general
case, one often estimates x as a statistic (often the mean) of a probability density
function (pdf) evolving under the combined effect of (1) and (2). The initial state
x0 being known, all one has to do is evaluate sequentially the pdfs Pn+1 of the
variables xn+1 given the equations and the data. In a “particle” filter this is done by
following “particles” (replicas of the system) whose empirical distribution at time
tn approximates Pn . One may for example [1; 9; 7; 8; 19] use the pdf Pn and (1)
to generate a prior density (in the sense of Bayes) , and then use the data bn+1 to
generate sampling weights which define a posterior density Pn+1. This can be very
expensive because in most weighting schemes, most of the weights tend to zero
fast and the number of particles needed can grow catastrophically [21; 2]; various
strategies have been proposed to ameliorate this problem.

Our remedy is implicit sampling [4; 5]. The number of particles needed in a filter
remains moderate if one can find high probability particles; to this end, implicit
sampling works by first picking probabilities and then looking for particles that
assume them, so that the particles are guided efficiently to the high probability
region one at a time, without needing a global guess of the target density. In
the present paper we provide an expository account of particle filters, separating
clearly the general principles from details of implementation; we provide general
solution algorithms for the resulting algebraic equations, in particular for nonconvex
cases which we had not considered in our previous publications, as well as a new
algorithm for parameter identification based on an implicit filter. We also provide
examples, in particular of nonconvex problems.

Implicit filters are a special case of chainless sampling methods [3]; a key
connection was made in [23; 24], where it was observed that in the sampling of
stochastic differential equations, the marginals needed in Markov field sampling
can be read off the equations and need not be estimated numerically.

2. The mathematical framework

The first thing we do is discretize the SDE (1) by a difference scheme, so that the
equation becomes a discrete recurrence, and assume temporarily that the time step
in the dynamics equals the fixed time δ between observations. For simplicity, in
this section we assume the scheme is the Euler scheme

xn+1
= xn
+ δ f (xn, nδ)+ V, (3)

where V is a Gaussian of mean zero and variance g2(xn, nδ)δ. Higher-order schemes

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 223

are discussed in Section 4.
The conditional probability densities Pn(x) at times tn , determined by the dis-

cretized SDE (3) given the observations (2), satisfy the recurrence relation [9,
p. 6]

P(xn+1)= P(xn)P(xn+1
|xn)P(bn+1

|xn+1)/Z , (4)

where P(xn) = P(xn
|b1, b2, . . . , bn) is the probability density at time nδ given

the data up to time nδ, P(xn+1
|xn) is the probability density of xn+1 given xn

as it is determined by the dynamics, P(bn+1
|xn+1) is the probability of the next

observation given the new position, as per the observation equation, and Z is a
normalization constant.

We estimate Pn+1 with the help of M particles, with positions Xn
i at time tn and

Xn+1
i at time tn+1 (i = 1, . . . ,M), which define empirical densities P̂n, P̂n+1 that

approximate Pn, Pn+1. We do this by requiring that, when a particle moves from
Xn

i to Xn+1
i , the probability of Xn+1

i given bk for k ≤ n+ 1 be given by

P(Xn+1
i)= P(Xn

i)P(X
n+1
i |X

n
i)P(b

n+1
|Xn+1

i)/Z0, (5)

where the hats have been omitted as they will be from now on, P(Xn
i), the probability

of Xn
i given bk for k ≤ n, is assumed given, P(Xn+1

i |X
n
i), the probability of Xn+1

i
given Xn

i , is determined by the discretized SDE (3), P(bn+1
|Xn+1

i), the probability
of the observations bn+1 given the new positions Xn+1

i , is determined by the
observation equaiton (2), and Z0 is an unknown normalization constant. We shall
see below that one can set P(Xn

i)= 1 without loss of generality.
Equation (5) defines the pdf we now need to sample for each particle. One

way to do this is to pick a position Xn+1
i according to some prior guess of Pn+1,

and then use weights to get the resulting pdf to agree with the true Pn+1 (the
“posterior” density); in general many of the new positions will have low probability
and therefore small weights. The idea in implicit sampling is to define probabilities
first, and then look for particles that assume them; this is done by choosing once and
for all a fixed reference random variable, say ξ , with a given pdf, say a Gaussian
exp(−ξ T ξ/2)/(2π)m/2, which one knows how to sample, and then making Xn+1

i
a function of ξ , a different function of each particle and each step, each function
designed so that the map ξ→ Xn+1

i connects highly probable values of ξ to highly
probable values of Xn+1

i . To that end, write

P(Xn+1
i |X

n
i)P(b

n+1
|Xn+1

i)= exp(−Fi (X)),

where on the right-hand side X is a shorthand for Xn+1
i and all the other arguments

are omitted. This defines a function Fi for each particle i and each time tn . For each
i and n, Fi is an explicitly known function of X = Xn+1

i . Then solve the equation

Fi (X)−φi = ξ
T ξ/2, (6)

224 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

where ξ is a sample of the fixed reference variable and φi is an additive factor
needed to make the equation solvable. The need for φi becomes obvious if one
considers the case of a linear observation function h in (2), so that the right side
of (6) is quadratic but the left is a quadratic plus a constant. It is clear that setting
φi =min Fi will do the job, but it is sometimes convenient to perturb this choice
by a small amount (see below). In addition, and most important, with our choice
of reference variable ξ , the most likely choice of ξ is in the neighborhood of 0; if
the mapping ξ → X satisfies (6), this likely choice of ξ produces an X near the
minimum of F j , hence a high probability position for the particle. We also require
that for each particle, the function Xn+1

i = X = X (ξ) defined by (6) be one-to-one
so that the correct pdf is sampled, in particular, it must have distinct branches for
positive values and negative values of each component of ξ . The solution of (6) is
discussed in the next section. From now on we omit the index i in both F and φ,
but it should not be forgotten that these functions vary from particle to particle and
from one time step to the next.

Once the function X = X (ξ) is determined, each value of Xn+1
= X (the subscript

i is omitted) appears with probability exp(−ξ T ξ/2)J−1/(2π)m/2, where J is the
Jacobian of the map X = X (ξ), while the product P(Xn+1

|Xn)P(bn+1
|Xn+1)

evaluated at Xn+1 equals exp(−ξ T ξ/2) exp(−φ). The sampling weight for the
particle is therefore exp(−φ)J (2π)m/2. If the map ξ → X is smooth near ξ = 0,
so that φ and J do not vary rapidly from particle to particle, and if there is an easy
way to compute J (see the next section), then we have an effective way to sample
Pn+1 given Pn . It is important to note that though the functions F and φ vary from
particle to particle, the probabilities of the various samples are expressed in terms
of the fixed reference pdf, so that they can be compared with each other.

The weights can be eliminated by resampling. A standard resampling algo-
rithm goes as follows [9]: let the weight of the i-th particle be Wi , i = 1, . . . ,M .
Define A =

∑
Wi ; for each of M random numbers θk , k = 1, . . . ,M , drawn

from the uniform distribution on [0, 1], choose a new X̂n+1
k = Xn+1

i such that
A−1∑i−1

j=1 W j < θk ≤ A−1∑i
j=1 W j , and then suppress the hat. This justifies the

statement following (5) that one can set P(Xn)= 1.
To see what has been gained, compare our construction with the usual “Bayesian”

particle filter, where one samples P(Xn+1
|Xn)P(bn+1

|Xn+1) by first finding a
“prior” density Q(Xn+1) (omitting all arguments other than Xn+1), such that the
ratio W = P(Xn+1)/Q(Xn+1) is close to a constant, and then assigning to the i-th
particle the importance weight W =Wi evaluated at the location of the particle. The
pdf defined by the set of positions and weights is the density Pn+1 we are looking
for. An important special case is the choice Q(Xn+1) = P(Xn+1

|Xn); the prior
is then defined by the equation of motion alone and the posterior is obtained by
using the observations to weight the particles. We shall refer to this special case as

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 225

“standard importance sampling” or “standard filter”. Of course, once the positions
and the weights of the particles have been determined, one should resample as
above.

The catch in these earlier constructions is that the prior density Q and the desired
posterior can become nearly mutually singular, and the number of particles needed
may become catastrophically large, especially when the number of variables m is
large [2; 21]. To avoid this catch one has to make a good guess for the pdf Q, which
may not be easy because Q should approximate the unknown density Pn+1 one is
looking for — this is the basic conundrum of Monte Carlo methods, in which one
needs a good estimate to get a good estimate. In contrast, in implicit sampling one
does a separate calculation for each sample and there is no need for prior global
information. One can of course still identify the pdf defined by the positions of the
particles at time tn+1 as a “prior” and the pdf defined by both the positions and the
weights as a “posterior” density.

Note that one can recover standard importance sampling within our framework
by setting φ =− log P(bn+1

|Xn+1), but this choice of course violates our rule for
choosing φ.

Finally, implicit sampling can be viewed as an implicit Monte Carlo scheme for
solving the Zakai equation [25], which describes the evolution of the unnormalized
conditional distribution for an SDE conditioned by observations. This should be
contrasted with the procedure in the popular ensemble Kalman filter [11], where
a Gaussian approximation of the pdf defined by the SDE is extracted from a
Monte Carlo solution of the corresponding Fokker–Planck equation, a Gaussian
approximation is made for the pdf P(bn+1

|xn+1) [17], and new particle positions
are obtained by a Kalman step. Our replacement of the Fokker–Planck equation that
corresponds to the SDE alone by a Zakai equation that describes the evolution of the
unnormalized conditional distribution does away with the need for the approximate
and expensive extraction of Gaussians and consequent Kalman step.

3. Solution of the algebraic equation that defines a new sample

We now explain how to solve (6), F(X)−φ = ξ T ξ/2, under several sets of assump-
tions which are met in practice. This is a well-defined, deterministic, algebraic
equation for each particle. Note the great latitude that it provides in linking the
ξ variables to the X variables: it is a single equation that connects 2m variables
(the m components of ξ and the m components of X) and can be satisfied by many
maps ξ→ X as long as (i) they are one-to-one, (ii) they map the neighborhood of 0
into a set that contains the minimum of F , (iii) they are smooth near ξ = 0 so that
the weights exp(−φ)J not vary unduly from particle to particle in the target area,
and (iv) they allow the Jacobian J to be calculated easily. The solution methods

226 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

presented here are far from exhaustive; further examples will be presented in the
context of specific applications.

Algorithm A (presented in [4; 5]). Assume the function F is convex upwards and
h is not too different from a linear function. For each particle, we set up an iteration,
with iterates Xn+1, j , j = 0, 1, . . . , (X j for brevity), with X0

= 0, that converge to
the next position Xn+1 of that particle. The index i that identifies the particle is
omitted again. We write the equations as if the system were one-dimensional; the
multidimensional case was presented in detail in [5]. First we sample the reference
variable ξ . The iteration is defined when one knows how to find X j+1 given X j .

Expand the observation function h in (2) around X j :

h(X j+1)= h(X j)+ (Dh) j (X j+1
− X j), (7)

where (Dh) j is the derivative of h evaluated at X j . The observation function in (2)
is now approximated as a linear function of X j+1, and the function F is the sum
of two Gaussians in X j+1. Completing a square yields a single Gaussian with a
remainder φ, i.e., F(X)= (x− ā)2/(2v̄)+φ(X j), where the parameters φ, ā, v̄ are
functions of X j (this is what we called in [4] a “pseudo-Gaussian”). The next iterate
is now X j+1

= ā+
√
v̄ξ . In the multidimensional case, when each component of

the function h in (2) depends on more than one variable, finding X j+1 as a function
of ξ may require the solution of an equation of the form (X j+1)T AX j+1

= ξ T ξ/2,
where A is positive definite and symmetric. This is, as expected, a single equation
for several variables, so that the solution is not unique. We may choose, as in [5],
to connect ξ to X j+1 by performing a Choleski decomposition, A = L LT , where
L is lower triangular, and then solving

√
2LT X j+1

= ξ . A different connection
was presented in [4]. If the iteration converges, it converges to the exact solution
of (6), with φ the limit of the φ(X j). Its convergence can be accelerated by
Aitken’s extrapolation [13]. The Jacobian J can be evaluated either by an implicit
differentiation of (6) or numerically, by perturbing ξ in (6) and solving the perturbed
equation (which should not require more than a single additional iteration step). It
is easy to see that this iteration, when it converges, produces a mapping ξ→ X that
is one to one and onto.

An important special case occurs when the observation function h is linear in
X and there are observations at every step (see section 5 for the case of sparse
observations). It is immaterial then whether the SDE (1) is linear. In this case the
iteration converges in one step; the Jacobian J is easy to find; if in addition the
function g(x, t) in (1) is independent of x , then J is independent of the particle and
need not be evaluated; the additive term φ can be written explicitly as a function of
the previous position Xn of the particle and of the observation bn+1. We recover an
easy implementation of optimal sequential importance sampling [1; 9; 8].

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 227

This iteration has been used in [5]. It may fail to converge if the function F
is not convex, as happens in particular when the observation function h is highly
nonlinear. In the latter case the value of φ it produces may also be far from the
minimum of F . If h is strongly nonlinear, the next iteration is preferable.

Algorithm B. Assume the function F is U -shaped, i.e., in the scalar case, it is at
least piecewise differentiable, F ′ vanishes at a single point which is a minimum,
F is strictly decreasing on one side of the minimum and strictly increasing on the
other, with F(X) =∞ when X = ±∞. In the m-dimensional case, assume that
F has a single minimum and that each intersection of the graph of the function
y = F(X) with a vertical plane through the minimum is U -shaped in the scalar
sense (a function may be U -shaped without being convex).

Find z, the minimum of F (this is the minimum of a given real valued function,
not a minimum of a possibly multimodal pdf generated by the SDE; finding this
minimum is not equivalent to the difficult problem of finding a maximum likelihood
estimate of the state of the system). The minimum z can be found by standard
minimization algorithms.

Again we are solving the equations by finding iterates X j that converge to Xn+1.
In the scalar case, given a sample of the reference variable ξ , find first X0 such that
X0
− z has the sign of ξ , and then find the next iterates X j by standard tools (e.g.,

by Newton iteration), modified so that the X j are prevented from leaping over z.
In the vector case, if the observation function is diagonal — i.e., each component

of the observation is a function of a single component of the solution X — then
the scalar algorithm can be used component by component. In more complicated
situations one can take advantage of the freedom in connecting ξ to X .

Here is an interesting example of the use of this freedom, which we present in
the case of a multidimensional problem where the observation function is linear but
need not be diagonal. Set φ=min F . The function F(X)−φ can now be written as
(X − a)T A(X − a)/2, where a is a known vector, T denotes a transpose as before,
and A is a positive definite symmetric matrix. Write further y = X − a. Equation
(6) becomes

yT Ay = |ξ |2, (8)

where |ξ | is the length of the vector ξ . Make the ansatz

y = λη,

where λ is a scalar, η = ξ/|ξ | is a random unit vector and ξ is a sample of the
reference density. Substitution into (8) yields

λ2(ηT Aη)= |ξ |2. (9)

228 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

It is easy to see that E[ηiη j]= δi j/m, where E[·] denotes an expected value, the
ηi are the components of η, m is the number of variables, and δi j is the Kronecker
delta, and hence

E[ηT Aη] = trace(A)/m.

Replace (9) by
λ23= |ξ |2. (10)

where3= trace(A)/m. This equation has the solution λ=|ξ |/
√
3, and substitution

into the ansatz leads to yi = ξi/
√
3, an easily implementable transformation with

Jacobian J = 3−m/2. The difference between (9) and (10) can be compensated
for by adding to φ the term λ2

[(ηT Aη)−3]. Note that as m→∞, (ηT Aη)→3

provided A satisfies some minor requirements, so that when the number of variables
is sufficiently large, the perturbation one has to compensate for becomes negligible.
Detailed implementations and generalizations of this construction will be given
elsewhere in the context of specific applications.

One can readily devise algorithms also for cases where F is not U -shaped, for
example, by dividing F into monotonic pieces and sampling each of these pieces
with its predetermined probability. An alternative that is usually easier is to replace
the non-U -shaped function F by a suitable U -shaped function F0 and make up for
the bias by adding F(X)− F0(X) to the φ in the weights exp(−φ)J so that (6) is
still satisfied. One also has to make sure that the small ξ region is still mapped on
the high probability region for X ; see the examples below.

More generally, even in convex cases, one can often change F in (6) to make
the algebraic problem easy without reducing the quality of the samples; examples
will be given in the next two sections.

4. Examples

We now present examples that illustrate the algorithms we have just described. For
more examples, see [4; 5]. For the sake of clarity, in this section we continue to
rely on an Euler discretization of the SDE, as in (3).

We begin with a response to a comment we have often heard: “This is nice, but the
construction will fail the moment you are faced with potentials with multiple wells”.
This is not so: the function F depends on the nature of the noise in the SDE and on
the function h = h(x) in the observation (2), but not on the potential. Consider, for
example, a one dimensional particle moving in the potential V (x)= 2.5(x2

−0.5)2

(see Figure 1) with the force f (x)=−∇V =−10x(x2
− 1) and the resulting SDE

dx = f (x)dt+σdw, where σ = 0.1 and w is Brownian motion with unit variance;
with this choice of parameters the SDE has an invariant density concentrated in the
neighborhoods of x =±

√
1/2. We consider linear observations bn

= x(tn)+W ,
where W is a Gaussian variable with mean zero and variance s = 0.025. We

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 229

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

V
(x

)

Figure 1. The potential in the first example.

approximate the SDE by an Euler scheme [16] with time step δ = 0.01, and assume
observations are available at all the points nδ. The particles all start at x = 0. We
produce data bn by running a single particle and adding to its positions errors drawn
from the assumed error density in (2), and then attempt to reconstruct this path with
our filter. For the i-th particle located at time nδ at Xn

i the function F(X) is

F(X)=
(X − Xn

i)
2

2σδ
+
(X − bn+1)2

2s
,

which is always convex. A completion of the square yields

min F = φ =
(Xn

i − bn+1)2

2(σδ+ s)
;

the Jacobian J is independent of the particle and need not be evaluated. In Figure 2
we display a particle run used to generate data and its reconstruction by our filter
with 50 particles.

This figure is included for completeness but both of these paths are random,
their difference varies from realization to realization, and may be large or small by
accident. To get a quantitative estimate of the performance of the filter, we repeated
this calculation 104 times and computed the mean and the variance of the difference
1 between the run that generated the data and its reconstruction at time t = 1; see
Table 1. This table shows that the filter is unbiased and that the variance of 1 is
comparable to the variance of the error in the observations s = 0.025. Even with
one single particle (and therefore no resampling) the results are still acceptable.

230 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

Time

x
(t

)

Reconstruction

Random path

Figure 2. A random path (black) and its reconstruction by our filter (gray).

We now discuss the relation between the posterior we wish to sample and the
prior in several special cases, including nonconvex situations. We want to produce
samples of the pdf P(x) = exp(−F(x))/Z , where Z is a normalization constant
and

F(x)=
x2

2σ
+
(h(x)− b)2

2s
. (11)

Here h(x) is a given function of x as in (2), and σ, s, b are given parameters. This
can be viewed as a first step in time for a filtering problem where all the particles
start from the same point so that exp(−F(x))/Z = P1, or as an analysis of the
sampling for one particular particle in a general filtering problem, or as an instance
of the more general problem of sampling a given pdf when the important events
may be rare. In standard Bayesian sampling one samples the variable with pdf

exp(−x2/(2σ))
√

2πσ

M mean variance M mean variance

100 −0.0001 0.021 10 0.0001 0.024
50 −0.0001 0.022 5 −0.0001 0.027
20 −0.0001 0.023 1 −0.0001 0.038

Table 1. Mean and variance of the discrepancy between the ob-
served path and the reconstructed path in Example 1 as a function
of the number of particles M , with s = 0.025.

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 231

and then one attaches to the sample at x the weight exp(−(h(x)− b)2/(2s)); in an
implicit sampler one finds a sample x by solving F(x)−φ = ξ 2/2 for a suitable
φ and ξ and attaching to the sample the weight exp(−φ)J . For given σ, s, the
problem becomes more challenging as |b| increases.

In both the standard and the implicit filters one can view the empirical pdf
generated by the unweighted samples as a “prior” and the one generated by the
weighted samples as the “posterior”. The difficulty with standard filters is that
the prior and posterior densities may approach being mutually singular, so it is of
interest to estimate the Radon–Nikodým derivative of one of these with respect
to the other. If that derivative is a constant, we have achieved perfect importance
sampling, as every neighborhood in the sample space is visited with a frequency
proportional to its density. We estimate the Radon–Nikodým derivative of the prior
with respect to the posterior as follows. In this simple problem one can evaluate
the probability of any interval with respect to the posterior we wish to sample by
quadratures. We divide the interval [0, 1] into K pieces of equal lengths 1/K , then
find numerically points Y1, Y2, . . . , YK−1, with YK =+∞, such that the posterior
probability of the interval [−∞, Yk] is k/K for k = 1, 2, . . . , K . We then find
L = 105 samples of the prior and plot of a histogram of the frequencies with which
these samples fall into the posterior equal probability intervals (Yk−1, Yk). The more
this histogram departs from being a constant independent of k, the more samples
are needed to calculate the statistics of the posterior.

If h(x) is linear, the weights in the implicit filter are all equal and the histogram
is constant for all values of b. This remains true for all values of b, i.e., however
far the observation b is from what one may expect from the SDE alone. This is not
the case with a standard Bayesian filter, where some parts of the sample space that
have nonzero probability are visited very rarely.

In Table 2 we list the histogram of frequencies for a linear observation function
h(x) = x and b = 2 in a standard Bayesian filter, with K = 10. We used 104

samples; the fluctuations in the implicit case measure only the accuracy with which

k standard implicit k standard implicit

1 0.987 0.099 6 0.003 0.099
2 0.006 0.108 7 0.001 0.101
3 0.002 0.097 8 0.001 0.101
4 0.001 0.099 9 0.000 0.102
5 0.004 0.101 10 0.000 0.093

Table 2. Histogram of the Radon–Nikodým derivative of the prior
with respect to the posterior, standard Bayesian filter versus the
implicit filter, 10000 particles, b = 2, σ = s = 0.1, h(x)= x .

232 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

b exact standard implicit

0 0 −0.05 0.02
0.5 0.25 0.10 0.27
1 0.5 0.18 0.51
1.5 0.75 0.23 0.76
2 1 0.26 1.01

Table 3. Comparison of the estimates of the means, implicit vs.
standard filter, 30 particles, together with the exact results, linear
case, as explained in the text.

the histogram is computed with this number of samples. As a consequence, estimates
obtained with the implicit filter are much more reliable than the ones obtained with
the standard Bayesian filter.

In Table 3 we list the estimates of the mean position of the linear problem as
a function of b, with 30 particles, σ = s = 0.1, for the standard Bayesian and the
implicit filters, compared with the exact result. The standard deviations are not
displayed; they are all near 0.01.

The results in this one-dimensional problem mirror the situation with the example
of Bickel et al. [2; 21], designed to display the breakdown of the standard Bayesian
filter when the number of dimension is large; what happens there is that one
particle hogs almost the whole weight, so that the number of particles needed
grows catastrophically; in contrast, the implicit filter assigns equal weights to all
the particles in any number of dimensions, so that the number of particles needed
is independent of dimension; see also [5].

We now turn to nonlinear and nonconvex examples. Let the observation function
h be strongly nonlinear: h(x) = x3. With σ = s = 0.1, the pdf (11) becomes
non-U -shaped for |b| ≥ 0.77. In Figure 3 we display the function F for b = 1 (the
solid curve). To use the algorithms above we need a substitute function F0 that is
U -shaped; we also display in Figure 3 (the broken line) the function F0 we used;
the recipe here is to link a point above the local minimum on the left to the absolute
minimum on the right by a straight line. It is important to make F0 and F have the
same minimum. Many other constructions are possible (see in particular the next
section). As described above, we solve

F0(x)−φ = ξ T ξ/2

with φ =min F0, and once x has been determined, add the difference F(x)− F0(x)
to φ in the weight exp(−φ)J . This construction does not introduce any bias. The
function F0 constructed in this way is U -shaped but need not be convex, so that one

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 233

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
4

4.5

5

5.5

6

6.5

7

x

F
(x

)

Non−convex F

U−shaped substitute

Figure 3. A nonconvex function F (solid line) and a U -shaped
substitute (broken line).

needs Algorithm B above. In Table 4 we compare the Radon–Nikodým derivatives
of the prior with respect to the posterior for the resulting implicit sampling and for
standard Bayesian sampling with σ = s = 0.1, b = 1.5.

The histogram for the implicit filter is no longer perfectly balanced. The asymme-
try in the histogram reflects that of F0 and can be eliminated by biasing ξ , but there
is no reason to do so; there is enough importance sampling without this extra step.

k standard explicit

1 0.9948 0.0899
2 0.0028 0.0537
3 0.0011 0.0502
4 0.0004 0.0563
5 0.0003 0.0696
6 0.0002 0.1860
7 0.0001 0.1107
8 0.0001 0.1194
9 0.0001 0.1196
10 0 0.1446

Table 4. Radon–Nikodým derivatives of the prior with respect to
the posterior, h(x)= x3, σ = s = 0.1, b = 1.5, 10000 samples, F0

as in the text.

234 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

b exact standard implicit
0. 0. −0.00 ± 0.01 −0.00 ± 0.01
0.5 0.109 0.109± 0.01 0.109± 0.01
1.0 0.442 0.394± 0.04 0.451± 0.02
1.5 0.995 0.775± 0.09 0.995± 0.01
2.0 1.18 0.875± 0.05 1.18 ± 0.01
2.5 1.30 0.895± 0.02 1.29 ± 0.02

Table 5. Comparison of the estimates of the means, implicit vs.
standard filter, 1000 particles, together with the exact result, when
h(x)= x3, as explained in the text.

In Table 5 we display the estimates of the means of the density for the two filters
with 1000 particles for various values of b, compared with the exact results (the
number of particles is relatively large because with h(x)= x3 and our parameter
choices the variance of the conditional density is significant, and this number of
particles is needed for meaningful comparisons of either algorithm with the exact
result).

As mentioned in the previous section, there are alternatives to the replacement
of F by F0; the point is that for each particle the function F is an explicitly known
nonrandom function, and this fact can be used in multiple ways.

5. Sparse observations and higher-order difference approximations

We now discuss what happens when the observations are sparse, so that there
are data only every r > 1 time steps, and how to sample when the difference
approximation is more elaborate than the Euler scheme used so far. Along the way,
we suggest additional ways to solve the algebraic equations.

Consider again the discrete SDE (3), with observations available only at times
rδ, r > 1. To simplify the presentation, let g(x, t)= 1 and assume the equation is
scalar. Write the scheme in the form xn+1

= q(xn)+ δV , where V is a Gaussian
with mean zero and variance one. We have data at the points rδ, r > 1, where
bn+r
= h(xn+r)+

√
sW and W is a Gaussian of mean zero and variance one and s

is a constant. The probability of the particle path (Xn+1
i , Xn+1

i , . . . , Xn+r
i) (from

now on we will suppress the index i) is

P(Xn+1, . . . , Xn+r)= exp(−F(Xn+1, . . . , Xn+r))/Z , (12)

where Z is a normalization constant and

F(Xn+1, . . . , Xn+r)=
(h(Xn+r)− bn+r)2

2s
+

1
2δ

r∑
i=1

(Xn+i
− q(Xn+i−1))2.

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 235

The task at hand is to solve

F(Xn+1, . . . , Xn+r)−min F(Xn+1, . . . , Xn+r)= ξ T ξ/2, (13)

where ξ is a sample of a r-dimensional Gaussian reference variable. This can be
done by the methods presented above, but we use this opportunity to present some
variants.

First, we find the minimum of F . If F is convex, this can be easily done by
Newton’s method (note that the matrices one gets are sparse). If F is not convex,
one can try the following device: add to F the quantity αG, where α > 0 is a
parameter and G is the convex function

G = (Xn+r
− bn+r)2+

j=i+r∑
j=i+1

(X j
− X j−1)2.

Then minimize F +αG for a suitable sequence αn→ 0. (This device was inspired
by the rubber band construction of computational chemistry [12]. More generally,
it is useful to note the resemblance of the problem to the study of rare transitions
in computational chemistry [18; 10]). A minimization by a Newton’s method also
yields the Hessian H of F at the minimizer z of F .

Define F0 = φ+ (1/2)(X − z)T H(X − z), where φ = min F = F(z) and X is
the vector (Xn+1, . . . , Xn+r). Solve the equation F0(X)−φ = ξ T ξ/2 and obtain
X . This is a linear problem and Choleski construction works fine and also yields
the Jacobian J . Use as weight for the resulting sample X the quantity exp(−φ0)J ,
with φ0 = φ+ F(X)− F0(x) so that (13) is still satisfied and there is no bias. This
is still a high-probability sample, because the neighborhood of ξ = 0 is still mapped
on the neighborhood of the minimum of F .

As an example, consider the SDE dx = cos(5x)dt + σdW , with σ = 0.1,
discretized by Euler’s method with time step 0.01; the observations bn

= xn
+η are

available every 20 steps (a time interval of 0.2) and η is a Gaussian variable of mean
zero and variance 10−3. The data are generated by running the equation once and
observing its path. We used 4 particles. In Figure 4 we display the run that generated
the data path and the reconstruction; the data are used in the reconstruction only
when t = 0.2 and t = 0.4. Observe that between data the discrepancy can be quite
significant, as is indeed unavoidable.

This last example should make it plain what one should do when one uses a
higher-order discretization of the SDE. For example, suppose one is integrating the
SDE dx = f (x)dt + dW using the second-order Klauder–Petersen scheme [15]:

xn+1,∗
= xn
+ δ f (xn)+ η1, (14)

xn+1
= xn
+ (δ/2)

(
f (xn)+ f (xn+1,∗)

)
+ η2, (15)

236 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
(t

)

Time

Observed Path

Observations

Reconstruction

Figure 4. Reconstruction with sparse data.

where η1, η2 are Gaussians with mean zero and variance δ. Observations bn
=

h(xn)+ η3, where η3 has mean zero and variance s, are assumed available at every
step. The probability of the pair (xn+1,∗, xn+1) is exp(−F), with

F =

(xn+1,∗
−xn
−δ f (xn))2

2δ
+

(
xn+1
−xn
−
δ
2(f (xn)+ f (xn+1,∗))

)2

2δ
+

(
h(xn+1)−b

)2

2s
.

All one has to do then is solve F − min F = ξ T ξ/2 for a sample ξ of a two-
dimensional Gaussian reference variable, along the lines suggested above.

6. Parameter identification

One important application of particle filters is to parameter identification, where the
SDE contains an unknown parameter and the data are used to find this parameter’s
value. One of the standard ways of doing this [9; 14] is system augmentation: one
adds to the SDE the equation dσ = 0 for the unknown parameter σ , one offers σ a
gamut of possible values, and one relies on the resampling process that eliminates
the values that do not fit the data. With the implicit filter this procedure fails, because
the particles are not eliminated fast enough. One alternative is finding the unknown
parameter σ by stochastic approximation. Specifically, find a statistic T of the output
of the filter which is a function of σ , such that the expected value E[T] vanishes
when σ has the right value σ ∗, and then solve the equation E[T] = E[T (σ)] = 0

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 237

by the Robbins–Monro iteration [20]:

σn+1 = σn −αnT (σn), (16)

which converges when the coefficients αn are such that
∑
αn →∞ while

∑
α2

n
remains bounded (for example, αn = 1/nq with 0.5< q ≤ 1). Related ideas can be
found, for example, in [6].

As a concrete example, consider the SDE dx=dW , where W is Brownian motion
with variance σ , discretized with time steps δ, with observations bn

= xn
+η, where

η is a Gaussian with mean zero and variance s. Data are generated by running the
SDE once with the true value σ ∗ of σ , adding the appropriate noise, and registering
the result at time nδ as bn for n = 1, 2, . . . , N . For the functional T we chose

T (σ)= C
∑
(1i1i−1)√(∑
12

i

)(∑
12

i−1

) , (17)

where the summations are over i between 2 and N , 1i is the estimate of the
increment of x in the i-th step and C is a scaling constant. Clearly if the σ
used in the filtering equals σ ∗ then by construction the successive values of 1i

are independent and E[T] = 0. We picked the parameters N = 100, σ = 10−2,
s = 10−4, δ = 0.01 (so that the increment of W in one step has variance 10−4).

Our algorithm is as follows: We make a guess σ1, run the filter for N steps,
evaluate T , and make a new guess for σ using (16) and α1 = 1, rerun the filter, etc.,
with the αn , the coefficient in (16) at the n-th step, equal to 1/n. The scaling factor
in (17) was found by trial and error: if it is too large the iteration becomes unstable,
if it is too small the convergence is slow; we settled on C = 4.

This algorithm requires that the filter be run without resampling, because re-
sampling introduces correlations between successive values of the 1i and bias the
values of T . In a long run, in particular in a strongly nonlinear setting, one may
need resampling for the filter to stay on track, and this can be done by segmentation:
divide the run of the filter into segments of some moderate length L , perform the
summations in the definition of T over that segment, then go back and run that
segment with resampling, then proceed to the next segment, etc.

The first question is, how well is it possible in principle to reconstruct an unknown
value of σ from N observations; this issue was already discussed in [4]. Given 100
samples of a Gaussian variable of mean 0 and variance σ , the variance reconstructed
from the observations is a random variable of mean σ and variance 0.16 · σ ; 100
observations do not contain enough information to reconstruct σ perfectly. A good
way to estimate the best result that can be achieved is to run the algorithm with the
guess σ1 equal to the exact value σ ∗ with which the data were generated. When

238 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

Iteration 0 1 2 3 4 5 6 7 8 9
new estimate σ/σ ∗ 10 0.819 0.943 1.02 1.05 1.08 1.10 1.13 1.15 1.16

Table 6. Convergence of the parameter identification algorithm.

this was done, the estimate of σ was 1.27σ ∗. This result indicates the order of
magnitude of the accuracy that can be achieved.

In Table 6 we display the result of our algorithm, run with 50 particles and
starting value σ1 = 10σ ∗. Each iteration requires running the filter once.

7. Conclusions

We have presented the implicit filter for data assimilation, together with several
algorithms for the solution of its algebraic equations, including cases with nonconvex
functions F , as well as an algorithm for parameter identification. The key idea in
implicit sampling is to solve an algebraic equation of the form

F(X)−φ = ξ T ξ/2

for every particle, where the function F is explicitly known, X is the new position
of the particle, φ is an additive factor, and ξ is a sample of a fixed reference pdf; F
varies from particle to particle and step to step. This construction makes it possible
to guide the particles to the high-probability area one by one under a wide variety
of circumstances. It is important to note that the equation that links ξ to X is
underdetermined and its solution can be adapted for each particular problem. The
effectiveness of implicit sampling depends on one’s ability to design maps ξ → X
that satisfy the criteria above and are computationally efficient. The design of such
maps is problem dependent and we will present examples in the context of specific
applications.

Acknowledgements

We would like to thank Prof. Jonathan Weare for asking penetrating questions and
for making very useful suggestions, Prof. Robert Miller for his advice and encour-
agement, and Mr. G. Zehavi for performing some of the preliminary computations.

References

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online
nonlinear/nongaussian Bayesian tracking, IEEE Trans. Sig. Proc. 50 (2002), 174–188.

[2] P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high
dimensions, Pushing the limits of contemporary statistics: contributions in honor of Jayanta K.
Ghosh (B. Clarke and S. Ghosal, eds.), IMA Collections, no. 3, Inst. Math. Statist., Beachwood,
OH, 2008, pp. 318–329. MR 2010c:93107

IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION 239

[3] A. J. Chorin, Monte Carlo without chains, Commun. Appl. Math. Comput. Sci. 3 (2008), 77–93.
MR 2425547 Zbl 1165.65302

[4] A. J. Chorin and X. Tu, Implicit sampling for particle filters, Proc. Nat. Acad. Sc. USA 106
(2009), 17249–17254.

[5] , An iterative implementation of the implicit nonlinear filter, 2010, submitted to Math.
Mod. Num. Anal.

[6] D. P. Dee, On-line estimation of error covariance parameters for atmospheric data assimilation,
Mon. Wea. Rev. 123 (1995), 1128–1145.

[7] P. Del Moral, Feynman–Kac formulae: Genealogical and interacting particle systems with
applications, Springer, New York, 2004. MR 2005f:60003 Zbl 1130.60003

[8] A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling methods for
Bayesian filtering, Stat. Comp. 10 (2000), 197–208.

[9] A. Doucet, N. de Freitas, and N. Gordon (eds.), Sequential Monte Carlo methods in practice,
Springer, New York, 2001. MR 2003h:65007

[10] W. E, Principles of multiscale modeling, Cambridge University Press, New York, To appear.

[11] G. Evensen, Data assimilation: the Ensemble Kalman Filter, 2nd ed., Springer, Berlin, 2009.
MR 2555209 Zbl 1157.86001

[12] R. Gillian and K. Wilson, Shadowing, real events, and rubber bands. a variational Verlet
algorithm for molecular dynamics, J. Chem. Phys. 97 (1992), 1757–1772.

[13] E. Isaacson and H. B. Keller, Analysis of numerical methods, John Wiley & Sons, New York,
1966. MR 34 #924 Zbl 0168.13101

[14] G. Kitagawa, A self-organizing state-space model, J. Am. Stat. Ass. 93 (1998), 1203–1215.

[15] J. R. Klauder and W. P. Petersen, Numerical integration of multiplicative-noise stochastic
differential equations, SIAM J. Numer. Anal. 22 (1985), no. 6, 1153–1166. MR 87a:34064
Zbl 0583.65098

[16] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Appl. Math.,
no. 23, Springer, Berlin, 1992. MR 94b:60069 Zbl 0752.60043

[17] I. N. M. Jardak and M. Zupanski, Comparison of ensemble data assimilation for the shallow
water equations model in the presence of nonlinear observation operators, J. Geophys. Res.
(2010), in press.

[18] P. Metzner, C. Schuette, and E. Vanden-Eijnden, Illustration of transition path theory on a
collection of simple examples, J. Chem. Phys. 125 (2006), 084110.

[19] R. Miller, E. Carter, and S. Blue, Data assimilation into nonlinear stochastic systems, Tellus
51A (1999), 167–194.

[20] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statistics 22 (1951),
400–407. MR 13,144j Zbl 0054.05901

[21] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, Obstacles to high-dimensional particle
filtering, Mon. Wea. Rev. 136 (2008), 4629–4640.

[22] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010), 451–559.
MR 2652785

[23] J. Weare, Efficient Monte Carlo sampling by parallel marginalization, Proc. Nat. Acad. Sc. USA
104 (2007), 12657–12662.

[24] J. Weare, Particle filtering with path sampling and an application to a bimodal ocean current
model, J. Comput. Phys. 228 (2009), no. 12, 4312–4331. MR 2010g:86010 Zbl 1165.76045

240 ALEXANDRE CHORIN, MATTHIAS MORZFELD AND XUEMIN TU

[25] M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 11 (1969), 230–243. MR 39 #3883 Zbl 0164.19201

Received May 24, 2010.

ALEXANDRE CHORIN: chorin@math.berkeley.edu
Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, United States
http://math.berkeley.edu/~chorin

MATTHIAS MORZFELD: mmo@berkeley.edu
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, United States

XUEMIN TU: xuemin@math.berkeley.edu
Department of Mathematics, University of Kansas, 1460 Jayhawk Boulevard, Lawrence, KS 66045,
United States
http://math.ku.edu/~xtu

COMM. APP. MATH. AND COMP. SCI.
Vol. 5, No. 2, 2010

PARALLEL IN TIME ALGORITHMS WITH REDUCTION
METHODS FOR SOLVING CHEMICAL KINETICS

ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

We design suitable parallel in time algorithms coupled with reduction methods
for the stiff differential systems integration arising in chemical kinetics. We
consider linear as well as nonlinear systems. The numerical efficiency of our
approach is illustrated by a realistic ozone production model.

1. Introduction

Parareal algorithms were first introduced in [18] to solve evolution problems in
real time. The principle is the following. One first approximates the solution on
a coarse time grid, and then locally solves the equations on fine time subgrids on
parallel computers. One can prove that the associated iterative procedure ensures an
accuracy which is of same order as a sequential algorithm on a global fine time grid.
Mathematical properties of these algorithms have been recently investigated; see
[2; 25; 16; 15; 13; 14; 12], for example. They have been applied in various fields,
such as financial mathematics [3], fluid mechanics and fluid-structure interaction
[9; 11; 10], oceanography [19], chemistry [21] and quantum chemistry [22].

The present work is dedicated to standard chemistry. We study monomolecular
chemistry, as in [21], for which we carry out a new modified parareal algorithm
preserving stoichiometric invariants. We also investigate the nonlinear chemistry
case.

When the reaction scheme is monomolecular, the kinetic equations describing
species evolutions are linear but may be stiff. In this context, we consider the
thyroid reaction scheme given in [23]. An efficient reduction algorithm is described
in [5], and applied to this biochemical model. It is an inductive procedure, based
on linear algebraic techniques. The reduction process, applied to the initial kinetic
system, eliminates the fastest dynamics, and no change of coordinates is required.
This process is systematic and does not rely on conventional chemical assumptions
(see [27] for a large survey of these techniques). Applied to chemical kinetic sys-
tems with kinetic constants in different scales, the algorithm eliminates reactants

MSC2000: 65L05, 65L80, 68W10, 80A32.
Keywords: chemical kinetics, reduction, parareal algorithm.
Funded by the ANR-06-CIS6-007-01 project PITAC headed by Y. Maday.

241

242 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

arising in some of the fastest reactions. The reduced system then provides an
accurate approximation for the slow dynamics.

The ozone model we study here is a typical nonlinear, realistic model for ozone
production in the troposphere. The issue of ozone pollution is one of the most
important environmental problems we have faced for the last three decades (see
[24] and the references therein). The massive presence in the troposphere, mainly
above urban areas, of nitrogen dioxide NO2, coupled with one of various hydro-
carbons, induces a preferential chain of reactions which produces ozone O3. This
chain is really favored by a large amount of ultraviolet rays, basically during sunny
summers. The ozone concentration then reaches a level that may be dangerous for
both human health and ecosystems.

The ozone model of [1; 4] describes the evolution of the main species con-
centrations at stake. Numerical simulations of reactive flows can often be really
difficult to tackle, mainly because of the intricate chemical mechanisms that must
be taken into account. That is the case, for instance, with the air quality issue:
we do not focus on a simple description of the chemical kinetics of reactions of
nitrogen oxides and ozone. We need to take into account more reactions including
pollutants themselves to model more faithfully the pollution in the atmosphere.

We aim to compute numerically the evolution of the chemical species in the at-
mosphere, including the pollutants, within a reasonable computational time. Some
of the phenomena are really stiff and have to be discretized with a very small time
step. To get around this major numerical difficulty, we use a suitable parareal
algorithm where the associated coarse propagator is applied to the reduced system
in order to minimize its cost. We also need an accurate description of both the
physics (convection, diffusion, source or well of pollution) and the chemistry (re-
actions). Nevertheless, it is quite clear that our PDE system is large, and most of
the nonlinearity comes from the chemical part. We here assume that the chemistry
also governs the coupling between our equations. Therefore, the chemical kinetics
naturally stand as the key point of our study of the ozone model in the troposphere.

We first focus on the kinetics of the reactions producing ozone, and drop the
dependence on the space variable. Those reactions lead to an ODE system, where
several problems have to be taken care of.

• There is a large variety of characteristic time scales for the species involved.

• Dozens or even hundreds of chemical reactions and species may be concerned.

• Most of the ODEs are nonlinear.

Once again, our approach consists in first using a reduced model: when possi-
ble, we approximate the full differential system by an algebraic-differential system
where transitional fast states are neglected. This allows us to simultaneously lower
the size of the system and to avoid or at least weaken its stiffness. In the nonlinear

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 243

case, which is the most common situation, reduction algorithms are not so easy
to design. However, the quasisteady state (QSS) method seems to be an efficient
compromise: some species are put at chemical equilibrium, with high rates of both
production and consumption (the species is destroyed as soon as it is produced).

This work is organized as follows. In Section 2, we recall a convenient parareal
algorithm for our models, which considers stoichiometric invariants. Section 3 is
dedicated to the study of monomolecular chemistry, and Section 4 to the ozone
model. In each case, we describe the chemical models, briefly discuss a reduc-
tion method fitted to the situations, and show numerical results that indicate the
efficiency of the parareal algorithm.

2. Parareal algorithm

Let m ≥ 1 and consider the following ordinary differential equation, where y :
R+→ Rm is the unknown:

y′(t)= f (t, y(t)), (1)

with initial Cauchy condition y(0) = y0 ∈ Rm and where f : R+ ×Rm
→ Rm is

given. Section 3 corresponds to the linear version of (1), that is, with

f (t, y(t))= J y(t),

where J is a time-independent matrix.
We are interested in computing the solution u of (1) on an interval [0, T], with

T > 0. For any N ≥ 1, we consider intermediate times 0= T0< T1< · · ·< TN = T
and, for the sake of simplicity, a constant coarse time step 1T = Tn+1−Tn , where
n denotes the coarse time index. Note that 1T may not be constant, and that the
associated algorithm would only be an adjustment of the one presented below.

Let k denote the parareal iteration index. The parareal scheme consists in de-
signing a sequence (yk

n)k∈N at each coarse time step [Tn, Tn+1] such that, for each
n,

lim
k→+∞

yk
n = ȳn,

where ȳn is an approximation of y(Tn), and the convergence, which of course
depends on the accuracy of the coarse propagator, should be fast. Indeed, in many
applications, k ≤ 5 is enough to get a satisfying approximation.

The parareal algorithm uses two different schemes: a fine one Fδt , based on a
fine time step δt > 0, and a coarse one C1T , based on coarse time step 1T = sδt ,
s ∈ N∗. In most situations, we consider s� 1.

The coarse solver is applied for the evolution on [0, T]. The quantity

vn+1 = C1T (Tn+1; Tn, vn)

244 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

is an approximation, at time Tn+1, of the solution of (1) on [Tn, Tn+1], with initial
value vn at time Tn . Note that vn+1 is the only value computed by the coarse
solver on]Tn, Tn+1]. For simplicity and stability reasons, we use the implicit Euler
scheme. In the linear case, we write vn+1 = Cvn , where C = (I −1T J)−1.

The fine solver is applied for the evolution on each subinterval [Tn, Tn+1]. The
quantity

wn+1 = Fδt(Tn+1; Tn, wn)

is an approximation, at time Tn+1, of the solution of (1) on [Tn, Tn+1], with initial
value wn at time Tn . In the linear case, wn+1 can be written under the form wn+1=

F swn , where F is a time-independent matrix. For instance, in the case of an explicit
Euler scheme, we have F = I + δt J . We may also use the Runge–Kutta RK4 and
the implicit Euler schemes.

The full parareal sequence (yk
n)n,k is inductively defined, for any k, n, by

yk
0 = y0, (2)

y0
n+1 = C1T (Tn+1; Tn, y0

n), (3)

yk+1
n+1 = C1T (Tn+1; Tn, yk+1

n)+Fδt(Tn+1; Tn, yk
n)−C1T (Tn+1; Tn, yk

n). (4)

Passing to the limit in (4) as k goes to +∞, we get

ȳn+1 = Fδt(Tn+1; Tn, ȳn).

This relation means that ȳn+1 is obtained from ȳn by use of the fine scheme Fδt on
the interval [Tn, Tn+1]. That ensures that yk

n may be a good approximation of the
fine solution when k is not too small.

In order to reduce the CPU cost, we shall apply the coarse propagator C1T to a
reduced system of ODEs, that is

ỹ′(t)= f̃ (t, ỹ(t)) (5)

where m̃ < m and f̃ : R+ × Rm̃
→ Rm̃ can be computed from f . It is assumed

that (5) is easier to solve than (1) and that f̃ describes a simpler but still faithful
physics.

Remark 1. In a chemical kinetics context, when we apply algorithms (2)–(4) to
integrate the differential system, we should pay special attention to preserving
certain properties of the system, such as stoichiometric invariants and stationary
points. We shall see below how to establish from (2)–(4) an ad hoc numerical
scheme considering these invariants.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 245

3. Linear chemistry

3.1. Framework. Consider N gaseous species (Ai)1≤i≤N and denote by (yi)1≤i≤N

the corresponding concentrations. In the gaseous mixture, there can also be some
species (Nl)1≤l≤L , like O2 or N2 in air, whose concentration variations are ne-
glected. Consequently, we only take into account the variations of (yi) of the
limiting species (Ai). We assume that R chemical reactions take place simultane-
ously in the mixture, and that these R reactions are monomolecular in the species
(Ai); that is, each reaction r can be written as

Air +Nir

kr
−→A jr +Njr ,

with reaction rate vr = kr yir , where kr is a given positive kinetic constant. For the
sake of simplicity, we assume that a pair (Ai ,A j) appears in at most one reaction
as reactant-product.

The time evolution of the concentration yi , 1 ≤ i ≤ N , is governed by the law
of mass action

dyi

dt
=−

∑
r, ir=i

kr yir +
∑

r, jr=i
kr y jr =−

∑
r, ir=i

vr +
∑

r, jr=i
vr .

The first sum deals with the reactions where Ai is a reactant, and the second one
deals with the ones where Ai is a product. In other words, y = (yi)1≤i≤N satisfies
the stoichiometric system

dy
dt
= Sv,

where v = (vr)1≤r≤R is the vector of the reaction rates and S ∈ RN×R is the
stoichiometric matrix, defined by Si,r = −1 for i = ir , Si,r = 1 for i = jr , and
Si,r = 0 otherwise. Since the chemical reactions are assumed to be monomolecular,
v linearly depends on y. Hence, y solves the following differential system, for a
given initial datum,

dy
dt
= J y, t ≥ 0, (6)

where J ∈ RN×N is defined by J j j = −
∑

r, ir= j kr , Ji j = kr if i 6= j and there
exists r such that (ir , jr) = (j, i), and Ji j = 0 otherwise. By assumption on our
system, if i 6= j and if there exists a reaction r such that (ir , jr) = (j, i), then r
is unique. Note that J is a kinetic matrix, that is, it satisfies, for any j , J j j ≤ 0,
Ji j ≥ 0 for all i 6= j , and

∑
i Ji j = 0.

The kinetic matrix J is semistable, that is, all its nonzero eigenvalues have
negative real parts. Besides, 0 is an eigenvalue of J and its multiplicity indicates
the number of stoichiometric invariants. That implies that any solution of (6) has
a finite limit when t goes to +∞. The reader may find more details in [7; 8; 26].

246 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

3.2. A reduction method. In [5], the authors introduced an algorithm to obtain,
from (6), a reduced and nonstiff system which only involves a subset of the initial
species, coupled with algebraic equations for the remaining species concentrations.
This algebraic-differential system accurately approximates the full stiff system, af-
ter the exit time from the boundary layer. Let us briefly recall this reduction method
and the associated error estimate.

At each reduction step 1 ≤ k ≤ N − 1, an index ik ∈ {1, . . . , N }, a semistable
matrix J k , and real coefficients (βik , j) j∈Kk are inductively built with

Kk = {1, . . . , N }\{i1, . . . , ik}.

Let us then fix a step 1≤ p≤N−1 at which we decide to stop the reduction process.
For any y = (yi)1≤i≤N , we denote ỹ = (yi)i∈Kp . The reduced system associated
to (6) up to step p is the following algebraic-differential system of unknown z p

=

(z p
i)1≤i≤N , defined for a given initial datum (at t = T ∗) for the differential part of

the system:
dz̃ p

dt
= J p z̃ p, t ≥ T ∗, (7)

z p
ik
(t)=

∑
j∈Kk

βik j z
p
j (t), 1≤ k ≤ p, t ≥ T ∗. (8)

If p is suitably chosen, the reduced matrix J p only contains the N − p eigen-
values of J which have the lowest real parts. Note that, when the eigenvalues of
J p are small with respect to the p first eigenvalues of J , the differential system
(7) is not stiff anymore (this idea was also used in [17; 20]). Here, the algebraic
equations (8) approximate the fast species (zi)i 6∈Kp , and T ∗ is an exit time from
the corresponding boundary layer. Real coefficients βik j are expressed in terms of
left eigenvectors of matrices J k , k = 0, . . . , p.

It is shown in [5] that the nonstiff problem (7)–(8) actually yields a relevant
approximation of the solutions of (6) for t ≥ T ∗. More precisely, assume that the
initial data for (7) is chosen such that

|z p
j (T
∗)− y j (T ∗)| ≤ ch, for all j ∈ Kp,

where h can be viewed as the numerical error of the underlying scheme at time T ∗

and c is a nonnegative constant which does not depend on h. Then there exists α≥1
and C ≥ 0, depending on y(0), such that, for any t ≥ T ∗, with T ∗ ≥ αε ln(1/ε),

|z p
j (t)− y j (t)| ≤ C(h+ ε), 1≤ j ≤ N .

In other words, provided that the errors due to the prescribing of the values of the
slow species at the exit time T ∗ from the boundary layer are small, the errors with
respect to the exact solution remain small at any further time t ≥ T ∗.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 247

3.3. Numerical tests. We apply the previous algorithm to the dynamics of the thy-
roid hormones [23]. It was investigated in [5] for the reduction method, and in [21]
for both reduction method and parareal algorithm, including a source term. The
chemical network (see Figure 1) involves 8 species and 14 reactions.

The kinetic matrix of the set of reactions reads

J =



–5.1 0.01 0. 0. 0.06 0. 0. 0.
0. –2.516 0. 0. 0. 0.0008 0. 0.
0. 0. –1.3 0.001 0.0003 0. 0. 0.
0. 0. 0. –1.091 0. 0.00008 0. 0.
5. 0. 1. 0. –0.0603 0. 0. 0.
0. 2.5 0. 1. 0. –0.00088 0. 0.
0.1 0.006 0. 0. 0. 0. 0. 0.
0. 0. 0.3 0.09 0. 0. 0. 0.


.

In the following subsections, we compare the computational behavior of reduced
and/or parareal algorithms with respect to the fine algorithm. Let us note that for
all computations, the speed-up is defined as the ratio

CPU (fine scheme)
CPU (current scheme)

,

where the CPU of the currently studied scheme takes into account the initialization
step and neglects the communications between processors since we only simulate
parareal implementation, and not perform actual parareal computations.

3.3.1. Parareal algorithm vs. fine algorithm. The computations are first performed
up to final time T = 3 with the following parameters for the parareal algorithm.
The coarse grid has N = 50 cells which constitute a regular subdivision of [0, 3],
so that the coarse time step is 1T = 0.06. Then each coarse cell is divided into a
regular fine subdivision of s = 500 cells, so that the fine time step is δt = 0.00012.
The numerical tolerance is set to 0.01. We use Runge–Kutta RK4 for the fine

A1(T3F)
5

0.1 1

1

0.01

2.5

0.001

0.06

0.0008

0.00008

0.0003

0.006

0.3

0.09

A3(T3S)A5(T3)

A4(T4S)A2(T4F) A6(T4)

A7(Disposal) A8(Disposal)

Figure 1. The thyroid reaction scheme.

248 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

0

0.015

0.03

0.045

0.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fine solut ion - Parareal solut ion: iter = 0

0

0.015

0.03

0.045

0.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fine solut ion - Parareal solut ion: iter = 0

Figure 2. Thyroid: numerical error between the fine solution and
(top) the coarse initialized solution, and (bottom) the parareal so-
lution after 3 parareal iterations.

scheme and the implicit Euler for the coarse scheme. The speed-up we obtain is
approximately 12.

Figure 2 shows the error at the initialization step (top) and the error between the
fine and parareal solutions (bottom). We observe that the maximal error is divided
by 1000 after three iterations of the parareal algorithm.

Moreover, we check numerically (Figure 3) that the two stoichiometric invari-
ants of this problem still hold. The plots of both invariants are exactly superim-
posed, since both fine and coarse solvers in the parareal algorithm conserve the
stoichiometric invariants.

1.94

1.96

1.98

2.00

2.02

2.04

2.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Stoichiom etric invariants (fine solut ion)

1.94

1.96

1.98

2.00

2.02

2.04

2.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Stoichiom etric invariants (parareal solut ion)

Figure 3. Thyroid: stoichiometric invariants.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 249

1.289

1.2895

1.29

1.2905

0 5 10 15 20 25 30

First stoichiom etric invariant

1.698

1.6984

1.6988

0 5 10 15 20 25 30

Second stoichiom etric invariant

Figure 4. Thyroid: stoichiometric invariants with reduction.

3.3.2. Reduction algorithm vs. fine algorithm. We now use the reduction method
described in Section 3.2. Matrix J has four dominant eigenvalues of the same
magnitude, lying between−6 and−1. The remaining eigenvalues are either 0, with
multiplicity 2, or very small with respect to 1. We compare the results obtained
with the fine solver and by applying the reduction method. For the reduction, we
compute the solution of the full system up to the characteristic time T ∗ = 5, then
the solution of the reduced system up to final time T = 30, including the algebraic
equations.

One can check on Figure 4 that the stoichiometric invariants are not conserved.
However, the jumps in the stoichiometric invariants are small. We also note that
computations with the reduction method are 2.5 times faster compared to those
obtained by the fine solver.

3.3.3. Parareal algorithm with reduction method. We use the values T ∗ = 10 and
T = 30 as in 3.3.2. For the parareal algorithm, the coarse solver is, on [0, T ∗]
(respectively on [T ∗, T]), the implicit Euler scheme for the full problem with a
coarse time step 1T1 = 2 (respectively for the reduced problem with a coarse time
step 1T2 = 4). The fine solver is still RK4, with a fine time step δt1 = 0.02 on
[0, T ∗], and δt2 = 0.04 on [T ∗, T]. The tolerance is set at 0.01. The method
converges in three iterations and we obtain a speed-up of 4.3 for 10 processors,
that is, an efficiency of 0.43.

On Figure 5, we can check that the error between the parareal algorithm and
the reduction method decreases with the number of parareal iterations. Eventually,
we note on Figure 6 that the stoichiometric invariants are not conserved. Hence, a
basic parareal algorithm connected with the reduction method does not conserve
the stoichiometric invariants.

3.3.4. A modified parareal algorithm preserving stoichiometric invariants. Recall
that a stoichiometric invariant γ is a linear combination of concentrations (yi) such
that its time derivative is nil.

250 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

0

0.014

0.028

0.042

0.056

0.07

0 5 10 15 20 25 30

Error: parareal iterat ion 1

0

0.003

0.006

0.009

0.012

0 5 10 15 20 25 30

Error: parareal iterat ion 2

0

0.009

0 5 10 15 20 25 30

Error: parareal iterat ion 3

Figure 5. Thyroid: errors during the parareal iterations.

In other words, there exists a nonzero vector w ∈ ker(ST) such that γ = 〈w, y〉
and

dγ
dt
= 〈w, Sy(t)〉 = 〈STw, y(t)〉 = 0.

This shows that y(t) belongs to the affine space y(0)+Range(S).
In order to conserve the stoichiometric invariants, we consider the modified

parareal algorithm

yk+1
n+1 = Fδt(y

k
n)+5(C1T (y

k+1
n)−C1T (y

k
n)) (9)

1.94

1.98

2.02

2.06

0 5 10 15 20 25 30

Stoichiom etric invariants

Figure 6. Thyroid: fine (solid) and parareal (+) stoichiometric invariants.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 251

1.94

1.98

2.02

2.06

0 5 10 15 20 25 30

Stoichiom etric invariants

Figure 7. Thyroid: fine (solid) and new parareal (+) stoichiomet-
ric invariants with the improved parareal algorithm.

where5 is the orthogonal projection on the range of J . Nonorthogonal projections
can be used too.

Of course, one can then check on Figure 7 that the stoichiometric invariants are
now conserved. Moreover, the algorithm is still a good approximation of the fine
solution with the same number of iterations and the same speed-up.

4. Example of nonlinear chemistry: an ozone model

4.1. Description of the model.

4.1.1. Ozone model. The ozone model we investigate here is described in detail
in [1]. It involves 16 species and 12 reactions, that makes it a rather simple model,
though realistic. The kinetic constant of reaction r is denoted kr , 1≤ r ≤ 12. The
chemical reactions are

OD+ air+O2
k1
−→ O3+ air+O2,

O3+NO
k2
−→ NO2,

NO+HO2
k3
−→ NO2+OH,

OH+NO2
k4
−→ NHO3,

NO2
k5
−→ NO+OD,

RH+OH
k6
−→ RO2,

RCHO+OH
k7
−→ RCO3,

RCHO
k8
−→ RO2+CO+HO2,

NO+RO2
k9
−→ NO2+RCHO+HO2,

NO+RCO3
k10
−→ NO2+RO2+CO2,

RCO3+NO2
k11
−→ RCO3NO2,

RCO3NO2
k12
−→ RCO3+NO2.

The previous scheme is already somehow reduced, since the concentrations
of air, O2 and H2O (which does not appear in this system, but is necessary) are
considered as very high constants. Therefore, some reactions do not seem to be
balanced. That only means that we may not take into account those three species in

252 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

the previous reactions. Note also that CO2, NHO3 and CO are not reactants. The
values of the kinetic constants are the following:

k1 = 10−33, k5 = 8.9 10−3, k9 = 7.6 10−12,
k2 = 2 10−14, k6 = 2.6 10−12, k10 = 7.6 10−12,
k3 = 8.2 10−12, k7 = 1.6 10−11, k11 = 4.7 10−12,
k4 = 1.1 10−11, k8 = 3.2 10−6, k12 = 4 10−4.

Each species is denoted by an integer index, as follows:

index 1 2 3 4 5 6 7 8
species air O2 CO2 NHO3 RH CO NO NO2

index 9 10 11 12 13 14 15 16
species RCO3NO2 RCHO O3 OH HO2 RCO3 RO2 OD

The vector y = (yi)1≤i≤16 ∈ R16, whose coordinates yi are the concentrations
of the species represented in the previous table solves the following differential
system

y′1 = 0,

y′2 = 0,

y′3 = v10,

y′4 = v4,

y′5 =−v6,

y′6 = v8,

y′7 =−v2−v3+v5−v9−v10,

y′8 = v2+v3−v4−v5+v9+v10−v11+v12,

y′9 = v11−v12,

y′10 =−v7−v8+v9,

y′11 = v1−v2,

y′12 = v3−v4−v6−v7,

y′13 =−v3+v8+v9,

y′14 = v7−v10−v11+v12,

y′15 = v6+v8−v9+v10,

y′16 =−v1+v5,

where v = (vr)1≤r≤12 denotes the reaction rate vector, depending on y.
More precisely, we have

v1 = k1 y1 y2 y16, v2 = k2 y7 y11,

v3 = k3 y7 y13, v4 = k4 y8 y12,

v5 = k5 y8, v6 = k6 y5 y12,

v7 = k7 y10 y12, v8 = k8 y10,

v9 = k9 y7 y15, v10 = k10 y7 y14,

v11 = k11 y8 y14, v12 = k12 y9.

The differential system can be rewritten under the form

y′ = Sv, (10)

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 253

where S= (Si,r)1≤i≤16,1≤r≤12 is the stoichiometric matrix. Equation (10) is clearly
nonlinear, since each vr nonlinearly depends on y.

Figures 8–9 show the evolution of the concentrations of all the species involved
in the model, directly computed with the software Scilab, within two time scales,

O_3

0

1.125

2.25

3.375

4.5

0 15000 30000 45000 60000

O_3 (divided by 1.E+ 13)

CO_2
0

2

4

6

8

0 15000 30000 45000 60000

CO_2 (divided by 1.E+ 12)

OH

0

6.25

12.5

18.75

25

0 15000 30000 45000 60000

OH (divided by 1.E+ 5)

RO_2

0

300

600

900

1200

0 15000 30000 45000 60000

RO_2 (divided by 1.E+ 9)

CO
0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

HO_2

0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

NH0_3
0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

NO_2

0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

NO

0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

OD

0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

RCHO

0.75

0.875

1

0 15000 30000 45000 60000

RCO_3

0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

RCO_3NO_2
0

0.25

0.5

0.75

1

0 15000 30000 45000 60000

RH

0.92

0.94

0.96

0.98

1

0 15000 30000 45000 60000

Figure 8. Ozone: Normalized concentrations of all species (final
time 16 h 40 min).

254 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

CO_2
0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

CO
0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

HO_2

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

NH0_3
0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

NO_2

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

NO

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

O_3

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

OD

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

OH

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

RCHO

0.1

0.325

0.55

0.775

1

0 125000 250000 375000 500000

RCO_3

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

RCO_3NO_2
0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

RH

0.91

0.955

1

0 125000 250000 375000 500000

RO_2

0

0.25

0.5

0.75

1

0 125000 250000 375000 500000

Figure 9. Ozone: Normalized concentrations of all the species
(final time 5 days and 19 h).

with respective final times 16 h 40 min, and 5 days and 19 h. (Note that the model
may not hold anymore at the second time scale: this is discussed in [1; 4].) The
concentrations of air and O2 are not plotted, since they remain constant. The initial
values of the concentrations are:

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 255

air O2 CO2 NHO3 RH CO NO NO2

2.45 1019 4.18 1018 100 100 5 1013 100 1.23 1013 2.5 1012

RCO3NO2 RCHO O3 OH HO2 RCO3 RO2 OD

100 5 1013 100 200 100 300 200 100

We obviously recover the results from [1] with the same set of initial data.

4.1.2. Stoichiometric invariants. Since the rank of matrix S is 10, there are six
stoichiometric invariants in the model, which can be chosen as follows [1]:

d
dt

y1 = 0, (11)

d
dt

y2 = 0, (12)

d
dt
(y4+ y7+ y8+ y9)= 0, (13)

d
dt
(y5+ y9+ y10+ y14+ y15)= 0, (14)

d
dt
(y4− 2y6+ y9+ y12+ y13+ y14+ y15)= 0, (15)

d
dt
(−3y3− 3y6− y7− 2y9− 2y10+ y11+ y13− 2y14+ y16)= 0. (16)

The first two invariants are immediate, and equations (13)–(14) come from the
conservation of species involving N and R radicals. Invariants (15)–(16) are nu-
merically controlled with the same computation. More precisely, we can see in
Figure 10 that the invariant (15) is not as well conserved as invariant (16). This is
a consequence of the computation. Indeed, some concentrations involved in (15)–
(16) are of very high order of magnitude (∼ 1014). The numerical variations of a

799.98

800

800.02

800.04

0 20000 40000 60000

Invariant (15)

-12

-11.75

-11.5

-11.25

-11

0 20000 40000 60000

Invariant (16) divided by 1.E+ 13

Figure 10. Ozone: conservation of invariants (15) and (16).

256 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

10

10

-16

6

0 125000 250000 375000 500000

Figure 11. Ozone: evolution of the spectrum of the Jacobian matrix.

linear combination of such quantities, whose value is approximately 103, clearly
involve unavoidable numerical errors.

4.1.3. Stiffness. We recall that the differential system (10) is stiff if there are some
eigenvalues of its Jacobian matrix (∂yi (Sv) j)1≤i, j≤16 whose real parts are not of
the same order of magnitude with respect to the other eigenvalues. We can check
on Figure 11 that there are mainly three orders of magnitude for the eigenvalues.
Note that there are a lot of oscillations for the smaller eigenvalues, again due to
numerical errors.

4.2. A reduction method: the quasisteady states. There is no systematic method
to obtain, from a nonlinear stiff differential system, a reduced model giving fine
numerical approximations at any time. One solution consists in linearizing the
system in a neighborhood of a given stationary point [6]. Other possibilities exist,
such as the quasisteady state assumption on some species, or the partial equilibrium
assumption for some reactions [27].

In the section, we focus on the quasisteady state method. Before applying it to
the ozone model, let us briefly recall its mechanism. Denote by A an intermediary
compound in a given chain of reactions. The evolution of its concentration is
governed by

dyA

dt
= p− c,

where p and c are respectively the production and consumption of A. The species
A is in a quasisteady state when its production rate is very close to its destruction
rate, more precisely, if the quasistationary index, defined by

IA =
|p− c|
p+ c

,

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 257

is such that IA � 1. This index only gives an a posteriori criterion to select the
quasisteady state species. Moreover, the quasisteady state of the species A does
not mean that the concentration of A is constant.

In [1], using the a posteriori criterion defined above, one gets five quasistationary
species in the ozone model: OH, HO2, RCO3, RO2 and OD, for times smaller than
16 h and 40 min. In that situation, the concentration of OD, which is now denoted
z16, can be directly computed in terms of (yi)1≤i≤11:

z16 =
k5 y8

k1 y1 y2
.

The concentrations of the other quasistationary species, also denoted (zi)12≤i≤15,
depend on each other. In fact, (zi)13≤i≤15 can be written in terms of z12, more
precisely, we have

z15 =
(k4 y8+k6 y5+k7 y10)z12−k8 y10

k9 y7
, z14 =

(k4 y8+k7 y10)z12−2k8 y10

k10 y7
,

z13 =
(k4 y8+k6 y5+k7 y10)z12

k3 y7
,

with
z12 =

2k8 y10(k10 y7+ k11 y8)+ k10 k12 y7 y9

(k4 y8+ k7 y10)(k10 y7+ k11 y8)− k7 k10 y7 y10
.

The five previous equalities come from (10), where we put (Sv)i =0 for 12≤ i≤16.
Note that, beyond 16 h and 40 min, the quasistationary species are not the same,

and that the model itself does not hold anymore. Hence, in the sequel, we only
present computations on times smaller than 16 h and 40 min, when we make the
quasisteady state assumption.

4.3. Numerical tests. We apply the parareal algorithm (4) to solve the equations
of the ozone model. We use the implicit Euler scheme for the fine and the coarse
solvers, with different time steps. The parareal iterations are stopped as soon as
the sum of the relative errors on each concentration (between parareal iterations
k and k + 1) is smaller than the numerical tolerance, which is set to 0.05. In the
sequel, we only focus on the concentrations of four species: O3, CO2, OH and
RO2, for the sake of simplicity. Of course, the behaviors of the remaining species
concentrations have been checked too.

4.3.1. Parareal algorithm vs. fine algorithm: Test 1. We compute the solution in
the interval [0, 16 h 40 min]. One processor was used to solve the problem in
the tiny interval [0, 0.01 h] to capture the first boundary layers, 9 processors for
the computation in [0.01 h, 2 h 45 min], and 10 processors for the computation in
[2 h 45 min, 16 h 40 min]. The parareal algorithm converges after only 1 iteration
and the parareal computation is about 18 times faster than the fine computation

258 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

O_3

0

1.125

2.25

3.375

4.5

0 15000 30000 45000 60000

O_3 (divided by 1.E+ 13)

CO_2
0

2.25

4.5

6.75

9

0 15000 30000 45000 60000

CO_2 (divided by 1.E+ 12)

OH

0

3.5

7

10.5

14

0 15000 30000 45000 60000

OH (divided by 1.E+ 5)

RO_2

0

300

600

900

1200

0 15000 30000 45000 60000

RO_2 (divided by 1.E+ 9)

Figure 12. Ozone: fine (solid) and parareal (+) solutions on [0, 16 h 40 min].

obtained with the fine solver on the whole interval [0, 16 h 40 min]. We display the
evolution of the species of interest on Figure 12.

4.3.2. Parareal algorithm vs. fine algorithm: test 2. We compute the solution over
a long period of time [0, 5d19h]. The parareal computation converges after 2
iterations. It is 31 times faster than the fine computation on the whole interval
[0, 5d19h]. Let us precise that we have used 170 processors for these computations:
only one processor on [0, 0.01], 9 on [0.01, 1], 10 on [1, 10] and 150 processors
on [10, 5d19h]. The concentrations of some species are shown on Figure 13.

4.3.3. Parareal algorithm coupled with reduction vs. fine algorithm. As already
noted in Section 4.2, we focus on the time interval [0, 16 h 40 min]. The com-
putational parameters are the same as in Section 4.3.1. The parareal algorithm is
coupled with the QSS reduction, that is, the coarse solver uses the full system up to
2h45min, and the reduced system beyond that time, whereas the fine solver remains
the same. The algorithm converges after 3 iterations. The parareal computation is
about 4 times faster than the fine computation obtained with the fine scheme on the
whole interval [0, 16 h 40 min]. The evolution of some species is shown on Figure
14 and the stoichiometric invariants are quite well conserved, see Figure 15. Note
that the relative errors are at most of order 10−4.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 259

O_3

0

1.25

2.5

3.75

5

0 125000 250000 375000 500000

O_3 (divided by 1.E+ 13)

CO_2
0

2.25

4.5

6.75

9

0 125000 250000 375000 500000

CO_2 (divided by 1.E+ 12)

OH

0

3.5

7

10.5

14

0 125000 250000 375000 500000

OH (divided by 1.E+ 5)

RO_2

0

7500

0 125000 250000 375000 500000

RO_2 (divided by 1.E+ 9)

Figure 13. Ozone: fine (solid) and parareal (+) solutions on [0, 5 d 19 h].

O_3

0

1.125

2.25

3.375

4.5

0 15000 30000 45000 60000

O_3 (divided by 1.E+ 13)

CO_2
0

2

4

6

8

0 15000 30000 45000 60000

CO_2 (divided by 1.E+ 12)

OH

0

3

6

9

12

0 15000 30000 45000 60000

OH (divided by 1.E+ 5)

RO_2

0

300

600

900

1200

0 15000 30000 45000 60000

RO_2 (divided by 1.E+ 9)

Figure 14. Ozone: fine (solid) and reduced parareal (+) solutions
on [0, 16 h 40 min].

260 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

1.479985

1.479995

1.480005

1.480015

0 20000 40000 60000

Third Invariant (divided by 1.E+ 13)

0.999985

1.00001

0 20000 40000 60000

Fourth Invariant (divided by 1.E+ 14)

-12

2

0 20000 40000 60000

Fifth Invariant (divided by 1.E+ 8)

-1.124

-1.121

-1.118

-1.115

0 20000 40000 60000

Sixth Invariant (divided by 1.E+ 14)

Figure 15. Ozone: fine (solid) and reduced parareal (+) stoichio-
metric invariants on [0, 16 h 40 min].

In order to decrease the numerical errors on Figure 15, we proceed in the same
way as in Section 3.3.4 to modify the parareal algorithm, that is, we add an orthog-
onal projection to ensure a better conservation of the stoichiometric invariants; see
Figure 16.

5. Concluding remarks

In chemical kinetics, the parareal algorithms coupled with reduction methods pro-
vide an essential tool to solve stiff differential systems with accuracy. Numerical
tests point out the efficiency of the parareal approach in both linear and nonlin-
ear cases. Let us note that one can ensure a better numerical conservation of the
stoichiometric invariants by adding a projection in the standard parareal algorithm.

Acknowledgement

The authors thank the referees for suggestions resulting in a significant improve-
ment to some sections, and the IFP (Institut Français du Pétrole — mainly people
from its Applied Mathematics Department), for providing very helpful reports
about the ozone model. They are also grateful to Yvon Maday, who suggested
this work.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 261

1.479985

1.48002

0 20000 40000 60000

Third Invariant (divided by 1.E+ 13)

0.999985

0.999995

1.000005

1.000015

0 20000 40000 60000

Fourth Invariant (divided by 1.E+ 14)

-1.8

0.2

0 20000 40000 60000

Fifth Invariant (divided by 1.E+ 8)

-1.1245

-1.1225

0 20000 40000 60000

Sixth Invariant (divided by 1.E+ 14)

Figure 16. Ozone: fine (solid) and reduced parareal with projec-
tion (+) stoichiometric invariants on [0, 16 h 36 min].

References

[1] P. Ayoub, A. Bamberger, and Z. Benjelloun-Dabaghi, Étude mathématique et numérique com-
plète pour la réduction d’un schéma cinétique de production d’ozone, technical report, Institut
Français du Pétrole, 1994.

[2] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differen-
tial equations, Domain decomposition methods in science and engineering (R. Kornhuber et al.,
eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 425–432. MR 2235769

[3] G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE’s with application
to the pricing of an American put, Recent developments in domain decomposition methods (L.
Pavarino and A. Toselli, eds.), Lect. Notes Comput. Sci. Eng., no. 23, Springer, Berlin, 2002,
pp. 189–202. MR 1962689

[4] A. Bamberger and Z. Benjelloun-Dabaghi, Étude mathématique d’un schéma cinétique de la
production de l’ozone, technical report, Institut Français du Pétrole, 1994.

[5] A. Blouza, F. Coquel, and F. Hamel, Reduction of linear kinetic systems with multiple scales,
Combust. Theory Model. 4 (2000), no. 3, 339–362. MR 2001h:80009

[6] V. I. Bykov, V. I. Dimitri, and A. N. Gorban, Marcelin-de Donder kinetics near equilibrium,
React. Kin. Catal. Lett. 12 (1979), no. 1, 19–23.

[7] S. L. Campbell and N. J. Rose, Singular perturbation of autonomous linear systems, SIAM J.
Math. Anal. 10 (1979), no. 3, 542–551. MR 80i:34089a

262 ADEL BLOUZA, LAURENT BOUDIN AND SIDI MAHMOUD KABER

[8] M. Coderch, A. S. Willsky, S. S. Sastry, and D. A. Castañon, Hierarchical aggregation of linear
systems with multiple time scales, IEEE Trans. Automat. Control 28 (1983), no. 11, 1017–1030.
MR 84k:93007

[9] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasi-
bility studies for fluid, structure, and fluid-structure applications, Internat. J. Numer. Methods
Engrg. 58 (2003), no. 9, 1397–1434. MR 2004h:65154

[10] C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, Time-parallel implicit integrators for the
near-real-time prediction of linear structural dynamic responses, Internat. J. Numer. Methods
Engrg. 67 (2006), no. 5, 697–724. MR 2007a:74041

[11] P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the
Navier–Stokes equations, Domain decomposition methods in science and engineering (R. Ko-
rnhuber et al., eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 433–440.
MR 2235770

[12] M. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for
linear problems, Paris–Sud Working Group on Modelling and Scientific Computing 2007–
2008 (E. Cancés et al., eds.), ESAIM Proc., no. 25, EDP Sci., Les Ulis, 2008, pp. 114–129.
MR 2010i:65119

[13] M. J. Gander, Analysis of the parareal algorithm applied to hyperbolic problems using charac-
teristics, Bol. Soc. Esp. Mat. Apl. SEeMA (2008), no. 42, 21–35. MR 2009b:65268

[14] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, Do-
main decomposition methods in science and engineering XVII (M. Bercovier, ed.), Lect. Notes
Comput. Sci. Eng., no. 60, Springer, Berlin, 2008, pp. 45–56. MR 2009j:65165

[15] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method,
SIAM J. Sci. Comput. 29 (2007), no. 2, 556–578. MR 2008c:65386

[16] , On the superlinear and linear convergence of the parareal algorithm, Domain decom-
position methods in science and engineering XVI (O. Widlund and D. Keyes, eds.), Lect. Notes
Comput. Sci. Eng., no. 55, Springer, Berlin, 2007, pp. 291–298. MR 2008g:65103

[17] S. H. Lam and D. A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinet. 26
(1994), 461–486.

[18] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”,
C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, 661–668. MR 2002c:65140

[19] Y. Liu and J. Hu, Modified propagators of parareal in time algorithm and application to
Princeton ocean model, Internat. J. Numer. Methods Fluids 57 (2008), no. 12, 1793–1804.
MR 2009g:86009

[20] U. Maas and S. B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in
composition space, Combust. flame 88 (1992), 239–264.

[21] Y. Maday, Parareal in time algorithm for kinetic systems based on model reduction, High-
dimensional partial differential equations in science and engineering (A. Bandrauk et al., eds.),
CRM Proc. Lecture Notes, no. 41, Amer. Math. Soc., Providence, RI, 2007, pp. 183–194.
MR 2009b:65162

[22] Y. Maday, J. Salomon, and G. Turinici, Monotonic parareal control for quantum systems, SIAM
J. Numer. Anal. 45 (2007), no. 6, 2468–2482. MR 2008k:81003

[23] H. Mak and J. J. DiStefano, Optimal control policies for the prescription of thyroid hormones,
Math. Biosciences 42 (1978), 159–186.

[24] B. Sportisse, Modélisation et simulation de la pollution atmosphérique, habilitation à diriger
des recherches, Université Pierre et Marie Curie, Paris, 2007.

REDUCTION AND PARAREAL METHODS FOR CHEMICAL KINETICS 263

[25] G. A. Staff and E. M. Rønquist, Stability of the parareal algorithm, Domain decomposition
methods in science and engineering (R. Kornhuber et al., eds.), Lect. Notes Comput. Sci. Eng.,
no. 40, Springer, Berlin, 2005, pp. 449–456. MR 2235772

[26] R. S. Varga, Matrix iterative analysis, expanded ed., Springer Series in Computational Mathe-
matics, no. 27, Springer, Berlin, 2000. MR 2001g:65002

[27] F. A. Williams, Combustion theory: the fundamental theory of chemically reacting flow systems,
Benjamin-Cummings Publishing Company, 1985.

Received October 4, 2009. Revised July 17, 2010.

ADEL BLOUZA: adel.blouza@univ-rouen.fr
Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS–Université de Rouen,
76801 Saint-Etienne-du-Rouvray, France

LAURENT BOUDIN: laurent.boudin@upmc.fr
Laboratoire J.-L. Lions, Université Pierre et Marie Curie, 75252 Paris cedex 05, France

SIDI MAHMOUD KABER: sidi-mahmoud.kaber@upmc.fr
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75252 Paris cedex 05, France

COMM. APP. MATH. AND COMP. SCI.
Vol. 5, No. 2, 2010

msp

A HYBRID PARAREAL SPECTRAL DEFERRED
CORRECTIONS METHOD

MICHAEL L. MINION

The parareal algorithm introduced in 2001 by Lions, Maday, and Turinici is
an iterative method for the parallelization of the numerical solution of ordinary
differential equations or partial differential equations discretized in the temporal
direction. The temporal interval of interest is partitioned into successive domains
which are assigned to separate processor units. Each iteration of the parareal
algorithm consists of a high accuracy solution procedure performed in parallel
on each domain using approximate initial conditions and a serial step which
propagates a correction to the initial conditions through the entire time interval.
The original method is designed to use classical single-step numerical methods
for both of these steps. This paper investigates a variant of the parareal algorithm
first outlined by Minion and Williams in 2008 that utilizes a deferred correction
strategy within the parareal iterations. Here, the connections between parareal,
parallel deferred corrections, and a hybrid parareal-spectral deferred correction
method are further explored. The parallel speedup and efficiency of the hybrid
methods are analyzed, and numerical results for ODEs and discretized PDEs are
presented to demonstrate the performance of the hybrid approach.

1. Introduction

The prospect of parallelizing the numerical solution of ordinary differential equations
(ODEs) in the temporal direction has been the topic of research dating back at
least to the early work of Nievergelt [55] and Miranker and Liniger [54]. These
early papers as well as the methods described here employ multiple processing
units to compute the solution over multiple time intervals in parallel. Hence, in the
classification used in [13], for example, these methods are categorized as employing
parallelization across the steps as opposed to across the method or across the
problem.

Examples of approaches to parallelization across the method include the compu-
tation of intermediate or stage values in Runge–Kutta and general linear methods
simultaneously on multiple processors [38; 14]. These attempts to parallelize can

MSC2000: 65L99.
Keywords: parallel in time, parareal, ordinary differential equations, parallel computing, spectral

deferred corrections.

265

266 MICHAEL L. MINION

only be efficient when the number of processors being used is no larger than the
number of stage values and hence typically yield modest parallel speedup.

Methods that utilize parallelization across the problem rely on a splitting of
the problem into subproblems that can be computed in parallel and an iterative
procedure for coupling the subproblems so that the overall method converges to
the solution of the full problem. A well known class of methods in this style is the
parallel waveform-relaxation schemes [25; 61; 18]. Despite efforts to accelerate the
rate of convergence of wave-form relaxation methods [29; 34], convergence can
still be slow, especially for stiff problems.

In addition to the methods in [55; 54], methods based on multiple shooting [40]
also employ parallelization across the steps. In 2001, a new approach similar in
spirit to multiple shooting was introduced in [45]. The so called parareal method
is appropriate for larger numbers of processors and has sparked many new papers
devoted to the subject of time parallelization. The parareal method has been further
analyzed and refined [47; 22; 7; 60; 49; 30; 28; 62; 48; 32; 27; 9] and implemented
for different types of applications [8; 23; 46]. This paper details a new variant of the
parareal method first outlined in [53] that utilizes an iterative ODE method based on
deferred corrections within the parareal iteration. As outlined below, this approach
can either be thought of as a way to parallelize a deferred correction approach to
solving ODEs or as a way to increase the efficiency of the parareal algorithm by
removing the requirement to solve the subproblems on each processor during each
iteration with a full accuracy solver.

One of the justifications of the use of parareal methods is the scenario where a
specific computation must be completed in a fixed amount of time and sufficient
computational resources are available. In the context of the numerical solution of
time dependent PDEs, although parallelization of methods in the spatial dimensions
has seen a tremendous amount of successful research, for a fixed problem size,
spatial parallel speedup will eventually saturate as more processors are employed.
If additional processors are available, then additional parallelization in the temporal
direction could reduce the overall parallel computational cost. The name parareal
in fact is derived from parallel and real time and encapsulates the desire to complete
a computation of a specific size faster in real time. This is in contrast to the
common practice of reporting spatial parallel efficiency or speedup in the context of
increasing problem size as the number of processors are increased. The current work
is motivated by the desire to develop efficient methods for time-space parallelization
for PDEs.

As discussed in detail in Section 3, it has become standard to describe the
parareal algorithm in terms of two computational methods to approximate the
temporal evolution of the equation over a fixed time interval. A fine, or accurate,
method (denoted here by F) computes an accurate (and hence more computationally

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 267

expensive) approximation to the solution. A coarse or less accurate method (denoted
here by G) is also defined, and is used in a serial fashion to propagate a correction
through the time domain. We will refer to G and F as the coarse and fine propagators
respectively. The parareal method alternates between the parallel application of F

on multiple time domains using approximate initial conditions and a serial sweep
using G that propagates a correction to the initial conditions throughout the time
interval. Upon convergence, the accuracy of the parareal method is limited by what
one would obtain if the F method was used in serial on each subdomain. Hence, as
explained in detail in Section 5, in order for the parareal method to achieve parallel
efficiency, G must be less expensive than F. The reduced computational cost of G

can be achieved by using a coarser time step for G than for F, or a less expensive
numerical method, or both. As has been pointed out [8; 7; 23; 26], for PDEs, it is
also possible to use a coarser spatial discretization for G. The parareal algorithm
can, in principle, use any self-starting ODE method for F and G and hence can be
used in a “black box” fashion.

As detailed in Section 5, the parallel efficiency of parareal is limited by the fact
that during each iteration, the parallel application of F has the same computational
cost as the serial algorithm applied to the subdomain. Hence, a significant parallel
speed up (the ratio of serial to parallel cost) can only be achieved if the number of
iterations required to converge to the serial solution to a given tolerance is signifi-
cantly smaller than the number of subdomains. Similarly, the parallel efficiency
(speedup divided by the number of processors), is bounded above by the reciprocal
of the number of iterations regardless of the cost of G. In most instances, the total
computational cost of the parareal algorithm is dominated by the cost of the F.

In [53], a new variant of the parareal method is presented that uses an iterative
method for solving ODEs for the coarse and fine propagators rather than traditional
methods like Runge–Kutta (RK) that are typically used in the literature. The key
observation in [53] is that the F propagator in traditional parareal approaches makes
no use of the previously computed solution on the same interval (a recent alternative
approach to reusing information appears in [28]). It is shown how the use of an
iterative method can be combined with parareal to improve the solution from the
previous parareal iteration rather than computing a solution from scratch. The result
is that the F propagator becomes much cheaper than a full accuracy solution on the
interval, and in fact the dominant cost in the numerical tests in [53] becomes the G

propagator.
The numerical method in [53] is based on the method of spectral deferred

corrections (SDC) [21]. Since SDC methods converge to the solution of the Gaussian
collocation formula, very accurate solutions can be obtained using a modest number
of SDC substeps per time step. This accuracy is offset by the relatively high
computational cost of SDC methods per time step. However, when one compares

268 MICHAEL L. MINION

the computational cost for a given (sufficiently small) error tolerance, SDC methods
have been shown to compare favorably to RK schemes. This is especially true in the
case of problems for which semi-implicit or implicit-explicit (IMEX) methods are
appropriate since very higher-order IMEX RK methods have not been developed
whereas IMEX SDC methods with arbitrarily high formal order of accuracy are
easily constructed [51]. One main point of this paper is that the relatively high cost
per time step of SDC methods can be effectively amortized when SDC methods are
combined with the parareal algorithm since only one (or a few) SDC iterations are
done during each parareal iteration. This means that the cost of the F propagator
is similar to that of a modest number of steps of a low-order method rather than
many steps of a higher-order method. Differences between the hybrid parareal/SDC
approach and recent parallel deferred correction methods [33; 16] are discussed in
Section 4.1.

The preliminary numerical results included in Section 6 suggest that the use of a
single SDC iteration in lieu of a full-accuracy F propagator does not significantly
affect the convergence behavior of the parareal iteration. Rather, the accuracy of
G determines the rate of convergence (as was proven for the parareal method in
[27]). Since using a single SDC iteration is markedly less expensive than a higher-
order RK method with finer time steps, the dominant cost of the parareal/SDC
hybrid method when many processors are used becomes the serial procedure for
initializing the solution on each processor (typically done with G). Hence for PDEs,
the possibility of reducing the cost of G by using a coarser spatial discretization
(already proposed in [8; 7; 23; 26]) is very attractive. This idea will be pursued in a
sequel to this paper.

2. Spectral deferred corrections

The spectral deferred correction method (SDC) is a variant of the traditional deferred
and defect correction methods for ODEs introduced in the 1960s [63; 57; 58; 19].
The original methods never gained the popularity of Runge–Kutta or linear multistep
methods, however, a series of papers beginning in 2000 has rekindled interest
in using such methods for large scale physical simulations. The SDC method
introduced in [21] couples a Picard integral formulation of the correction equation
with spectral integration rules to achieve stable explicit and implicit methods with
arbitrarily high formal order of accuracy.

SDC methods possess two characteristics that make them an attractive option
for the temporal integration of complex physical applications. First, SDC methods
with an arbitrarily high formal order of accuracy and good stability properties
can easily be constructed. Second, the SDC framework provides the flexibility to
apply different time-stepping procedures to different terms in an equation (as in

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 269

operator splitting methods) while maintaining the high formal order of accuracy.
This second property has led to the development of semi- and multiimplicit methods
for equations with disparate time scales [50; 52; 10; 42]. Since SDC methods are
nonstandard, the original SDC method will be reviewed in the next section followed
by a brief discussion in Section 2.2 of the semi-implicit variants that are used in
the second numerical example in Section 6.2.

2.1. Original spectral deferred corrections. Consider the ODE initial value prob-
lem

u′(t)= f (t, u(t)), t ∈ [0, T],

u(0)= u0,

where u0, u(t) ∈ CN and f : R×CN
→ CN . This equation is equivalent to the

Picard integral equation

u(t)= u0+

∫ t

0
f (τ, u(τ))dτ, (1)

and this latter form is used extensively in the discussion that follows.
As with traditional deferred correction methods, a single time step [tn, tn+1]

of size 1t = tn+1 − tn is divided into a set of intermediate substeps by defining
tn = [t1, . . . , tJ] with tn ≤ t1 < · · · < tJ ≤ tn+1; however, for SDC methods,
tn corresponds to Gaussian quadrature nodes. The intermediate times in tn will
be denoted by the subscript j with j = 1 . . . J , and numerical approximations
of quantities at time t j will likewise carry the subscript j . Beginning with the
initial condition for the time step Un,1 ≈ u(tn), a provisional approximation U0

n =

[U 0
n,1, . . . ,U

0
n,J] is computed at the intermediate points using a standard numerical

method. The superscripts on numerical values (for example U0
n) denote here the

iteration number in the SDC procedure. The continuous counterpart of U0
n can be

constructed by standard interpolation theory and is represented as U 0
n (t). Using

U 0
n (t), an integral equation similar to (1) for the error δ(t)= u(t)−U 0

n (t) is then
derived

δ(t)=
∫ t

tn

[
f (τ,U 0

n (τ)+ δ(τ))− f (τ,U 0
n (τ))

]
dτ + ε(t), (2)

where

ε(t)=Un +

∫ t

tn
f (τ,U 0

n (τ))dτ −U 0
n (t). (3)

Note that ε(t j) can be accurately and stably approximated using spectral integration
[31], since the provisional solution U 0(t) is known at the Gaussian quadrature

270 MICHAEL L. MINION

nodes. An update form of (2) is

δ(t j+1)=δ(t j)+

∫ t j+1

t j

[
f (τ,U 0

n (τ)+δ(τ))− f (τ,U 0
n (τ))

]
dτ+ε(t j+1)−ε(t j). (4)

In order to discretize (4), an approximation to the integral term in

ε(t j+1)− ε(t j)=

∫ t j+1

t j

f (τ,U 0
n (τ))dτ −U 0

n (t j+1)+U 0
n (t j). (5)

must be constructed. This is done using spectral integration representing quadrature
at the nodes tn . The spectral quadrature approximation is denoted by

S j+1
j f (tn,U0

n)≈

∫ t j+1

t j

f (τ,U 0
n (τ))dτ, (6)

and the computation of the values S j+1
j f (tn,U0

n) is a matrix-vector multiplication
using a precomputed integration matrix (see [35] for details).

A low-order method is then applied to approximate (2) at the points tn resulting
in a correction to the provisional solution. For example, an explicit time-stepping
scheme similar to the forward Euler method is

δ0
j+1 = δ

0
j +1t j [f (t j ,U 0

n, j + δ
0
j)− f (t j ,U 0

n, j)]

+S j+1
j f (tn,U0

n)−U 0
n, j+1+U 0

n, j , (7)

where 1t j = t j+1− t j and again subscripts on numerical values denote approxima-
tions corresponding the t j . Similarly, an implicit method similar to the backward
Euler method is

δ0
j+1 = δ

0
j +1t j [f (t j+1,U 0

n, j+1+ δ
0
j+1)− f (t j+1,U 0

n, j+1)]

+ S j+1
j f (tn,U0

n)−U 0
n, j+1+U 0

n, j . (8)

The correction (2) can also be approximated by higher-order methods [41; 17].
The provisional numerical solution is then updated by adding to it the approxima-

tion of the correction, that is, U 1
n, j =U 0

n, j + δ
0
n, j . The SDC method then proceeds

iteratively, by recomputing the residuals, approximating a new correction, and
setting U k+1

n, j =U k
n, j + δ

k
n, j . Each SDC iteration raises the formal order of accuracy

of the numerical solution by the order of the approximation to (4) provided the
quadrature rule in (6) is sufficiently accurate. In the methods used in the numerical
experiments presented here, (2) is approximated with a first-order method so that
M total SDC sweeps (including the predictor) are needed for M-th order accuracy.

An alternative form of (8) for general k can be derived using U k+1
n, j =U k

n, j +δ
k
n, j :

U k+1
n, j+1 =U k+1

n, j +1t j
(

f (t j+1,U k+1
n, j+1)− f (t j+1,U k

n, j+1)
)
+ S j+1

j f (tn,Uk
n), (9)

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 271

This form of the update equation is compared below to the serial step in the
parareal algorithm.

2.2. Semiimplicit methods. SDC methods are particularly well-suited for the tem-
poral integration of ODEs which can be split into stiff and nonstiff components.
When both stiff and nonstiff terms appear in the equation, it is often significantly
more efficient to use methods that treat only the stiff terms implicitly and treat
nonstiff terms explicitly. Such methods are usually referred to as semi-implicit or
IMEX (implicit-explicit) methods. IMEX linear multistep methods that build on a
backward difference formula treatment of the stiff term have been developed [5; 24;
1; 2; 3; 37], but like backward difference formula methods themselves, the stability
of these methods deteriorates as the order increases, and methods above sixth-order
are unstable (see the discussion in [44]). IMEX or additive Runge–Kutta methods
have also been proposed [59; 64; 4; 15; 39; 56], but methods with order higher than
five have not yet appeared.

To derive IMEX SDC methods, consider the ODE

u′(t)= f (t, u(t))= fE(t, u(t))+ f I (t, u(t)), t ∈ [0, T], (10)

u(0)= u0. (11)

Here the right hand side of the equation is split into two terms, the first of which is
assumed to be nonstiff (and hence treated explicitly), and the second of which is
assumed to be stiff (and treated implicitly). A first-order semi-implicit method for
computing an initial solution is simply

U 0
n, j+1 =U 0

n, j +1t j
(

fE(t j ,U 0
n, j)+ f I (t j+1,U 0

n, j+1)
)
. (12)

Following the same logic used to derive (2), one arrives at the correction equation

δ(t)=∫ t

0

[
fE(τ,U 0(τ)+δ(τ))− fE(τ,U 0

n (τ))+ f I (τ,U 0
n (τ)+δ(τ))− f I (τ,U 0

n (τ))
]

dτ

+ε(t),

(13)

where
ε(t)=U0+

∫ t

0
fE(τ,U 0

n (τ))+ f I (τ,U 0
n (τ))dτ −U 0

n (t). (14)

A simple semi-implicit time-stepping method analogous to (9) is then

U k+1
n, j+1 =U k+1

n, j +1t j
(

fE(t j ,U k+1
n, j)− fE(t j ,U k

n, j)

+ f I (t j+1,U k+1
n, j+1)− f I (t j+1,U k

n, j+1)
)
+ S j+1

j f (tn,Uk
n). (15)

In [50; 52], such a semi-implicit version of SDC is used in combination with
an auxiliary variable projection method approach for the Navier–Stokes equations
that treats the viscous terms implicitly and the nonlinear advective terms explicitly.

272 MICHAEL L. MINION

These methods have been subsequently examined in more detail in [50; 44; 42; 41],
and the second numerical example in Section 6.2 is based on this semi-implicit
approach. Semi-implicit SDC methods have been extended to treat three or more
terms (explicit or implicit) in (10), including modifications that allow different
terms in the equation to be treated with different time steps [10; 42; 11].

2.3. Computational cost and storage. Like any numerical method, SDC has disad-
vantages as well as advantages. The price one pays to achieve the flexibility and high
order of accuracy for SDC methods is primarily in the large computational cost per
time step. SDC methods that use a first-order numerical method in the correction
iterates require M total iterations per time step (provisional and correction) to
achieve formal M-th order accuracy. Since each iteration sweep requires that the
solution be computed at a number of substeps that is proportional to the order, the
number of function evaluations per time step grows quadratically with the order.
This makes the cost per time step appear quite high compared to linear multistep or
Runge–Kutta methods.

However, relying on the number of function evaluations per time step as a measure
of efficiency is very misleading. First, the stability region of SDC methods also
increases roughly linearly with the order, so that larger substeps can be taken as the
order increases [21; 43]. In addition, a more relevant measure of cost is in terms of
computational effort versus error, and as is demonstrated in Section 6, SDC methods
compare well with higher-order RK methods in this measure (see also comparisons
in [51; 42]). For equations with both stiff and nonstiff terms, there are no semi-
or multiimplicit methods based on RK or linear multistep methods with order of
accuracy greater than six, so particularly when a small error is required, higher-order
SDC method are very attractive (see Section 6.2). Additionally, techniques to reduce
the computational cost of SDC methods by accelerating the convergence have also
appeared [35].

In the current context, however, it is the parallel cost of the time integration
method that is of interest. One of the main results of this paper is that, when
combined with the parareal strategy, the high cost per time step of SDC methods
due to the need to iterate the correction equation is amortized over the iterations that
must be performed during the parareal methods. Hence the cost of SDC methods
per parareal iteration is much smaller than for a noniterative method like RK.

As previously mentioned, SDC methods require that function values be stored at
a set of substeps within a given time step, which correspond to quadrature nodes
of the Picard integral discretization. If a semi- or multiimplicit operator splitting
treatment is used, each split piece of the function must be stored separately. Since
the number of substeps grows linearly with the order of the method, the storage
costs are comparable to higher-order Runge–Kutta or linear multistep methods.

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 273

3. The parareal method

The parareal method was introduced in 2001 by Lions, Maday and Turinici [45] and
has sparked renewed interest in the construction of time parallel methods. In this
section, a short review of the parareal method is provided, and then comparisons
between parareal and spectral deferred corrections will be explored.

3.1. Notation and method. The general strategy for the parareal method is to
divide the time interval of interest [0, T] into N intervals with each interval being
assigned to a different processor. To simplify the discussion, assume that there
are N processors P0 through PN−1, and that the time intervals are of uniform size
1T = T/N so that the n-th processor computes the solution on the interval [tn, tn+1]

where tn = n1T . On each interval, the parareal method iteratively computes a
succession of approximations U k

n+1≈ u(tn+1), where k denotes the iteration number.
It is becoming standard to describe the parareal algorithm in terms of two

numerical approximation methods denoted here by G and F. Both G and F propagate
an initial value Un ≈ u(tn) by approximating the solution to (1) from tn to tn+1. For
example, if G is defined by the forward Euler method applied to (1) , then

G(tn+1, tn,Un)=Un + (tn+1− tn) f (tn,Un). (16)

As discussed below, in order for the parareal method to be efficient, it must be the
case that the G propagator is computationally less expensive than the F propagator;
hence, in practice, G is usually a low-order method. Note that G or F could be
defined to be more than one step of a particular numerical method on the interval
[tn, tn+1]. Since the overall accuracy of parareal is limited by the accuracy of the F

propagator, F is typically higher-order and in addition may use a smaller time step
than G. For these reasons, G is referred to as the coarse propagator and F the fine
propagator.

The parareal method begins by computing a first approximation in serial, U 0
n for

n = 1 . . . N often performed with the coarse propagator G, that is,

U 0
n+1 = G(tn+1, tn,U 0

n) (17)

with U 0
0 = u(0). Alternatively, one could use the parareal method with a coarser

time step to compute the initial approximation [8; 7]. Once each processor Pn has a
value U 0

n , the processors can in parallel compute the approximation F(tn+1, tn,U 0
n).

This step is in spirit an accurate solution of the ODE on the interval [tn, tn+1] using
the approximate starting value U 0

n . Lastly, the parareal algorithm computes the
serial correction step

U k+1
n+1 = G(tn+1, tn,U k+1

n)+F(tn+1, tn,U k
n)−G(tn+1, tn,U k

n), (18)

274 MICHAEL L. MINION

for n=0 . . . N−1. The parareal method proceeds iteratively alternating between the
parallel computation of F(tn+1, tn,U k

n) and the serial computation of (18), which
requires computing the G propagator. The calculation in (18) will be referred to as
the G correction sweep.

Parareal is an iterative method and hence requires a stopping criteria. Note that
after k iterations of the parareal method, the solution U k

m for m ≤ k is exactly equal
to the numerical solution given by using the F propagator in a serial manner. Hence
after N iterations the parareal solution is exactly equal to applying F in serial. Since
each iteration of the parareal method requires the application of both F in parallel
and G in serial (plus the cost of communication between processors), the parareal
method can only provide parallel speedup compared to the serial F scheme if the
number of iterations required to converge to the specified criteria (denoted here by
K) is significantly less than N (see discussion in Section 5).

3.2. An examination of the parareal correction equation. Here we review the
connection between deferred corrections and the parareal step defined by (18) first
outlined in [53]. Both F and G are approximations to the exact update given by the
Picard equation

u(tn+1)= u(tn)+
∫ tn+1

tn
f (τ, u(τ))dτ. (19)

To highlight the approximation of F and G to the Picard Equation (19), we define

I(tn+1, tn,U k
n)= F(tn+1, tn,U k

n)−U k
n , (20)

Q(tn+1, tn,U k
n)= G(tn+1, tn,U k

n)−U k
n , (21)

so that

F(tn+1, tn,U k
n)=U k

n +I(tn+1, tn,U k
n), (22)

G(tn+1, tn,U k
n)=U k

n +Q(tn+1, tn,U k
n). (23)

Using these definitions, (18) can be rewritten

U k+1
n+1 =U k+1

n +Q(tn+1, tn,U k+1
n)−Q(tn+1, tn,U k

n)+I(tn+1, tn,U k
n). (24)

In the discussion leading to (9), (4) is discretized using a backward Euler type
method to give a concrete example of a time stepping scheme. If G is similarly
defined as a single step of backward Euler, then Q(tn+1, tn,U k

n)=1t f (tn+1,U k
n+1),

and (24) becomes

U k+1
n+1 =U k+1

n +1t
(

f (tn+1,U k+1
n+1)− f (tn+1,U k

n+1)
)
+I(tn+1, tn,U k

n). (25)

Note the similarities between this particular first-order incarnation of the parareal
update and the first-order SDC substep given in (9). The two differences between

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 275

these equations are how the previous fine solution is used in the update and the
fact that in the parareal update, only the solution at the end of the time interval is
updated while the SDC sweep is done for each intermediate substep in the time
interval. A hybrid parareal/SDC approach using deferred corrections for both the
F propagator and the G correction sweep is described next.

4. Parallel and parareal SDC

4.1. Parallel SDC. In the description of SDC above, note that once the provisional
solution has been computed at all the intermediate points t j in a given time step,
a provisional starting value for the next time step is available. This observation
naturally leads to a time parallel version of SDC in which multiple processors
are computing SDC iterations on a contiguous block of time steps simultaneously.
Variations of this approach have been employed in [33; 16] to create parallel
versions of deferred correction schemes. In practice, such an approach is only
efficient when the number of processors is approximately the number of iterations
of the serial deferred correction scheme. This then allows the first processor to
finish the calculation of the first time step as the last processor is finishing the
provisional solution. Then the first processor can receive a starting value from the
last processor and continue forward in time. Hence, the parallel speedup in this
type of parallel SDC method does not result from using an iterative strategy over
the full time domain, but rather computing the necessary iterations of the SDC
method on multiple processors simultaneously. In spirit, the hybrid parareal/SDC
methods discussed below combine the parallel speedup obtained with parallel
deferred corrections with that obtained with parareal.

4.2. Parareal using SDC. Since the parareal algorithm can in principle use any
single-step ODE method for the F and G propagators, it would be straightforward to
incorporate an SDC method into the parareal framework. However, in the standard
parareal scheme, if the F propagator were an SDC method requiring M iterations
in serial, then in the k-th parareal iteration, processor Pn would compute F using
the initial value U k

n by performing M total SDC iterations. When k > 1, however,
it would be foolish to ignore the results of the F propagator from iteration k − 1
when using SDC in iteration k.

Instead, the F propagator could perform one or several SDC sweeps on the
solution from the previous parareal iteration (incorporating the initial condition in
the first correction substep). In this approach, the fine solution is computed on each
processor on the J Gaussian quadrature nodes within the time slice assigned to the
processor. These values are stored from one parareal iteration to the next, and the
F propagator is replaced by L SDC sweeps (e.g., the method described in (9) or a
higher-order version thereof) over the J nodes.

276 MICHAEL L. MINION

As the parareal iterations converge, the fine solution on each processor converges
to the high-accuracy SDC solution (in fact the spectral collocation solution [35]),
but the cost of applying the F propagator during each iteration is that of a low-order
method and less than a full step of the SDC method by a factor of M/L . Numerical
experiments presented here suggest that L = 1 is sufficient for an efficient method.
Hence, the cost of F is similar to J steps of a low-order method. In the numerical
examples presented in Section 6, Gauss–Lobatto nodes are used for the fine solution
with J = 5, 7 and 9.

In addition, following the argument in Section 3.2, the G corrector sweep can
also be cast as a deferred correction sweep which both updates the initial condition
for the following time step and provides a correction to the solution in the interval.
However, since it is desirable to have G be as inexpensive as possible, the correction
to the solution generated in the G correction sweep will generally not be available at
all the fine SDC nodes. In [53] the G correction sweep is computed using one step
of a third-order RK method applied to the correction equation, and the correction
is interpolated from the 3 stage values to the SDC nodes of the fine solution. In
general, G could be computed on a subset of the fine SDC nodes and the correction
interpolated, and this approach is used in the examples presented here.

4.3. Parareal/SDC specifics. A detailed description of the parareal/SDC algorithm
used in the numerical results is now presented. The algorithm in pseudocode appears
in the Appendix. As in parareal, assume the time interval of interest [0, T] is divided
into N uniform intervals [tn, tn+1] where tn = n1T is assigned to Pn . On each
interval [tn, tn+1] choose the J fine SDC nodes tn corresponding to the Gauss–
Lobatto nodes with tn = tn,1 < · · · < tn,J = tn+1. Likewise choose some subset
t̃n of size J̃ of tn corresponding to the substeps for the coarse propagator G. In

the first numerical example J̃ = 3, that is, t̃n is the midpoint and endpoints of
[tn, tn+1]. This situation is shown in Figure 1, where J = 7 and J̃ = 3. The solution
at the coarse nodes t̃n on processor Pn during iteration k is denoted Ũ k

n,̃ , while the
solution at the fine nodes is denoted U k

n, j . One last piece of notational convention is
that f (tn,Uk

n) refers to the set of function values f (t j ,U k
n, j) at the nodes tn , with

analogous notation using t̃n .

Figure 1. Notation for SDC substeps for the F and G propagators.

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 277

Predictor step. Starting with the initial data Ũ 0
0,1 = u(0) on processor P0, compute

the initial approximation Ũ 0
n,1 on each processor in serial. Each processor (except

P0) must wait to receive the value Ũ 0
n,1 = Ũ 0

n−1, J̃ from processor Pn−1. Then the
values Ũ 0

n,̃ for ̃ = 1 . . . J̃ are computed using the numerical method of G. The
value Ũ 0

n, J̃ is then passed to the processor Pn+1 (if n < N − 1), where it is received
as Ũ 0

n+1,1.

First parallel iteration (k = 1). As soon as processor Pn is finished computing the
last predictor value Ũ 0

n, J̃ and sending it to Pn+1 (if n < N − 1), the following steps
are taken in the first parallel iteration. Note that each of these steps can be done in
parallel if the method is pipelined (see Section 5.2).

(1) Interpolate the values Ũ 0
n,̃ to all of the fine nodes t to form U 0

n, j and compute
f (t j ,U 0

n, j) for j = 1 . . . J .

(2) Compute the values S j+1
j f (tn,U0

n) for j = 1 . . . J − 1 using the spectral
quadrature rule as in (6).

(3) Perform one sweep (J−1 substeps) of the numerical method for the F propaga-
tor applied to the correction (2) using the values f (t j ,U 0

n, j) and S j+1
j f (tn,U0

n)

just computed. This will yield updated values U 1
n, j .

(4) Compute the values S̃+1
̃ f (t̃n,U1

n) for ̃ = 1 . . . J̃ − 1. Since the integral
over a coarse time step is the sum of the integrals over the corresponding fine
time steps, this is done by summing the corresponding values of the spectral
integration rule S j+1

j f (tn,U1
n).

(5) Receive the new initial value Ũ 1
n,1 from processor Pn−1 (if n > 0). If n = 0,

then Ũ 1
0,1 = Ũ 0

0,1.

(6) Perform one sweep (J̃−1 substeps) of the numerical method for the G propaga-
tor applied to the correction (2) using the values S̃+1

̃ f (t̃n,U0
n) just computed.

This will yield updated values Ũ 1
n,̃ for ̃ = 1 . . . J̃ .

(7) Pass the value Ũ 1
n, J̃ to processor Pn+1 (if n < N − 1) which will be received

as Ũ 2
n+1,1

Each subsequent iteration. After the first iteration, the parareal/SDC algorithm
proceeds in nearly the same way as in the first iteration except in the first two
steps above. In the first iteration, the coarse values from the initial predictor must
be interpolated to the fine nodes in step 1 above. In subsequent iterations, there
are two alternatives regarding how the results from applying G in the previous
parareal iteration are used. First, one could use no information from the values
U k−1

n,̃ computed in the previous G step. This alternative is in the spirit of parareal
where the G correction sweep only provides a new initial value for the F step on

278 MICHAEL L. MINION

the next processor. In this case step 1 above would be skipped and instead of using
a quadrature rule in step 2, set S j+1

j f (t,U k
n, j)= S j+1

j f (t, Ũ k−1
n, j).

Alternatively, the coarse values U k−1
n,̃ could also be used to improve the solution

at the fine nodes as well. In the numerical tests included here, this is done simply
by forming the difference U k−1

n,̃ − Ũ k−1
n,̃ at the coarse nodes, and then interpolating

this difference to the points tn to form U k
n, j in step 1. These values are then used to

compute S j+1
j f (t,Uk

n) in step 2.
Note that in each iteration, two SDC sweeps are performed, one on the coarse

nodes t̃n corresponding to G and one on the fine nodes tn corresponding to F.
However, data is only passed between processors once per iteration after G is
completed. The use of the coarse nodes for G reduces the serial cost of computing
the first predictor in contrast to the pipelined SDC methods from [33; 16] described
in Section 4.1.

5. Parallel speedup and efficiency

In this section, an analysis of the theoretical parallel speedup and efficiency of the
parareal and parareal/SDC methods is presented. First, the standard analysis of the
parareal method is reviewed which shows that the parallel efficiency cannot exceed
1/K , for K iterations of the method. Next, it is demonstrated that the parallel
efficiency of the parareal/SDC method can be much closer to 1.

The application of the G corrector sweep described by (18) in the parareal method
is generally regarded as a serial operation since Pn cannot apply the correction step
described by (18) until the value U k+1

n is computed on Pn−1 and sent to Pn . The G

propagator is often assumed to be used for the initial prediction phase as well which
is clearly a serial operation, hence parareal is often described as iteratively applying
the G propagator in serial and the F propagator in parallel. The theoretical parallel
speedup and efficiency of the parareal method from this point of view has been
studied previously by [6; 7; 22] and this analysis is first reviewed below. Then, an
analysis for a pipelined version of parareal will be discussed followed by a similar
analysis for a parareal/SDC method.

5.1. Serial-parallel parareal. To begin, assume that each processor is identical
and that the communication time between processors is negligible. Denote the
time for a processor to compute one step of the numerical method used in the G

propagator by τG . Likewise let τF denote the time for one processor to compute
one step of the numerical method used as the F propagator. Since multiple steps of
a numerical method can be used for either G or F, denote the number of steps as
NG and NF respectively, and the size of the steps by 1t and δt . Hence the total
cost of F is NFτF , which is denoted ϒF . We assume that the cost of applying the G

correction in (18) is equal to NGτG =ϒG , that is, the cost of forming the difference

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 279

N Number of processors
K Number of parareal iterations
τG Cost of the numerical method in G

τF Cost of the numerical method in F

T Length of time integration
1T Time increment per processor (T/N)
1t Time increment for G propagator
δt Time increment for F propagator
NG Number of G steps per processor (1T/1t)
NF Number of F steps per processor (1T/δt)
ϒG Total cost G propagator (NGτG)

ϒF Total cost F propagator (NFτF)

Table 1. Notation for the parareal algorithm.

in (18) is negligible. Let N denote the number of processors used, and 1T = T/N
the time increment per processor. Table 1 summarizes these definitions.

Assume that the prediction step is done with the G propagator, then for N
processors the cost of computing the predictor is N NGτG = NϒG . Likewise the
cost of each iteration of the parareal method is N NGτG + NFτF = NϒG +ϒF

(assuming that the method ends with a correction step). A graphical description
of the cost is shown in Figure 2. The dots in the figure indicate communication
between two processors.

To
ta

lT
im

e

P0 P1 P2 P3 P4 P5

NϒG

K (ϒF + NϒG)

Figure 2. Cost of the serial-parallel version of the parareal method
for K = 2 iterations and N = 6 processors. The dots indicate
communication between two processors.

280 MICHAEL L. MINION

The total cost for the predictor and K parareal iterations as implemented in
Figure 2 is hence

N NGτG + K (N NGτG + NFτF)= NϒG + K (NϒG +ϒF). (26)

The cost of applying F serially is N NFτF = NϒF ; hence the speedup for parareal
is

S =
NϒF

NϒG + K (NϒG +ϒF)
=

1
ϒG

ϒF
+ K

(
ϒG

ϒF
+

1
N

) . (27)

Denoting the ratio ϒG/ϒF by α we have

S =
1

α+ K (α+ 1/N)
. (28)

In [6], some further assumptions are made to simplify the computation of a maximum
possible speedup. Since we would like to compare the parareal solution with a
serial fine solution with some fixed time step δt , N and NF are related by

NF =1T /δt =
T

Nδt
. (29)

Assume further that the same method is used for both the fine and coarse propagator,
and only one step is used for the coarse propagator; that is, NG = 1 and τG = τF .
Then

α =
1

NF
=

Nδt
T
. (30)

Under these additional assumptions, the speedup becomes

S =
1

(K + 1)Nδt
T
+

K
N

. (31)

The maximum value of S in terms of N can hence be easily seen to occur when
N = N ∗, where

N ∗ =

√
K T

(K + 1)δt
. (32)

This value of N ∗ gives a maximum speedup of S∗ where

S∗ =
1
2

√
T

δt K (K + 1)
. (33)

If one considers the parallel efficiency E = S/N , using (28) gives

E =
1

Nα(K + 1)+ K
. (34)

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 281

Clearly the parallel efficiency is bounded by E < 1/K , which must be true since
each parareal iteration is more expensive than computing the serial solution over the
interval represented on each processor (i.e., 1T). Since K is usually at least 2, it is
often stated that the parallel efficiency of parareal is bounded by 1

2 . Using the value
of N ∗ above, we see that the parallel efficiency at maximum speedup is 1/(2K).

5.2. Pipelined parareal. The version of the parareal algorithm just discussed is
not the most efficient implementation possible on most current parallel architectures
in which processors are able to perform different tasks at different times. Although
the predictor step in parareal is certainly a serial operation, after Pn has computed
the value U 0

n , it is free to immediately apply the F propagator rather than wait for
the predictor to be computed on all processors. We refer to such an implementation
where a processor computes a step in the algorithm as soon as possible as “pipelined”.
Likewise, if each processor begins computing the G propagator as soon as the initial
condition is available, the parareal iterations can be pipelined so that the cost is of
each parareal iteration is NFτF+NGτG =ϒF+ϒG instead ofϒF+NϒG . Figure 3
demonstrates graphically the cost of a pipelined parareal implementation. Note that
this form of pipelining must be modified if the computation of the predictor is less
expensive than applying the G corrector sweep.

The parallel speedup for pipelined parareal is

S =
N NFτF

N NGτG + K (NGτG + NFτF)
=

NϒF

NϒG + K (ϒG +ϒF)
. (35)

Introducing α = ϒG/ϒF as above gives a parallel speedup of

S =
1

α+ K
(
α

N
+

1
N

) . (36)

To
ta

lT
im

e

P0 P1 P2 P3 P4 P5

NϒG

K (ϒF +ϒG)

Figure 3. Cost of the pipelined version of the parareal method
for K = 3 iterations and N = 6 processors. The dots indicate
communication between two processors.

282 MICHAEL L. MINION

To
ta

lT
im

e

P0 P1 P2 P3 P4 P5

NϒG

K (ϒF +ϒG)

Figure 4. Cost of the hybrid parareal/SDC method for K = 4. The
dots indicate communication between two processors.

Again making the simplifying assumptions from [6] of NG = 1 and τG = τF , and
hence α = Nδt/T , gives

S =
1

Nδt
T
+ K

(
δt
T
+

1
N

) . (37)

which is maximized by
N ∗ =

√
K T/δt . (38)

This value is a factor of
√

K + 1 larger than the value in (32), meaning that more
processors can be used before the speedup saturates. This value of N ∗ gives a
maximum speedup of

S∗ =
1
2

√
T
δt K

(
1

1+
√

K δt /T

)
. (39)

Comparing (33) and (39) shows that pipelining increases the maximum speedup by
approximately a factor of

√
K + 1 when δt/T is small.

The parallel efficiency for pipelined parareal is

E =
1

Nα+ K (α+ 1)
=

1
α(N + K)+ K

. (40)

Hence despite the lower cost of each parareal iteration, E < 1/K since the cost of
each iteration is still greater than the serial cost of computing the fine solution over
the interval of length 1T . In the first numerical tests presented in Section 6, for
the tolerances used, K is larger than 10, which unfortunately gives a low parallel
efficiency. Note that the bound E < 1/K holds regardless of the assumptions made
about the relative cost of τG because in the parareal iteration, F is computed during
every iteration.

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 283

5.3. Parareal with SDC. In order to examine the speedup and efficiency of the
parareal/SDC hybrid method, the analysis and notation above must be modified
slightly. First we assume again that parareal/SDC has been implemented in a
pipelined fashion as in Figure 3. We assume that the cost of computing one substep
of SDC with F or G is the same as one step of F or G for an ODE (i.e., the
cost of additional residual term in the correction equation is negligible). In the
implementation used for the numerical results presented here, the parareal/SDC
method will converge to an SDC method that uses one time step per processor.
Of relevance to the cost is the number of substeps used in the fine SDC method,
and this is denoted as in Section 4.3 as J (which is the number of SDC nodes
used minus one). Let τF denote the cost of the method used for each substep
in the correction step of SDC on the fine nodes. Likewise, let τG and J̃ be the
corresponding constants for the G propagator. The total cost of the computing F

is JτF , which is again denoted ϒF . The corresponding cost for G is ϒF = J̃τG .
Table 2 summarizes this notation.

N Number of processors
K Number of parareal iterations
M Number of SDC iterations for a serial method
τG Cost of the numerical method in G

τF Cost of the numerical method in F

J̃ Number of substeps for coarse SDC sweep in G

J Number of substeps for fine SDC sweep in F

ϒG Total cost G propagator (J̃τG)

ϒF Total cost F propagator (JτF)

Table 2. Notation for the parareal/SDC algorithm.

Assuming the method is pipelined, each parareal/SDC iteration will have a cost
JτF + J̃τG =ϒF +ϒG . If the method used for the predictor also has cost per time
stepϒG , then the total cost for K iterations of parareal/SDC is NϒG+K (ϒF+ϒG).

Let M denote the number of SDC iterations needed to compute the solution to
the desired accuracy on a single processor using the fine SDC nodes. Then the cost
of the serial SDC method will be approximately N MϒF . The parallel speedup S
is hence

S =
N MϒF

NϒG + K (ϒG +ϒF)
. (41)

Note that this is exactly M times greater than the value for the speedup for the
pipelined parareal method in (35). Proceeding as in the pipelined parareal analysis
above would lead to the same value for N ∗ and a value of S∗ which is again M
times bigger than before.

284 MICHAEL L. MINION

Setting α = ϒG/ϒF in (41) gives

S =
M

α+ (K/N)(α+ 1)
, (42)

and efficiency

E =
M

Nα+ K (α+ 1)
=

M
(N + K)α+ K

. (43)

Again, the efficiency is exactly M times greater than the value for the pipelined
parareal method in (40). This is due to the fact that the cost of doing M iterations
of the SDC method has been amortized over the cost of the parareal iterations. In
contrast to the standard parareal method, the efficiency is not automatically bounded
above by E < 1/K . However, since M is fixed, for the efficiency to approach M/K ,
the product (N + K)α should be as small as possible. Unfortunately, for ODEs
decreasing α is equivalent to decreasing the accuracy of G, and this leads in general
to an increase in K as is demonstrated in Section 6.

However for PDEs, if G could be computed on a coarser spatial mesh, the cost
τG could be reduced significantly. This idea has in fact been suggested for the
parareal method as well [8; 7; 23; 26]. In the parareal method however, reducing
the cost of τG cannot increase the parallel efficiency beyond the bound E < 1/K
since F is still computed in every iteration.

5.4. Further discussion. Several comments can be made about the parallel cost
and efficiency of parareal/SDC. First, it should be noted that achieving a large
parallel speedup is only significant if the serial method to which one is comparing
is efficient. Serial SDC methods have already been shown to be competitive in
terms of cost per accuracy with higher-order Runge–Kutta and linear multistep
methods [51; 43]. A comparison for explicit SDC methods and Runge–Kutta is
also included in Section 6.

Secondly, in order for parareal/SDC to converge to the accuracy of the serial
SDC method, K must be greater than M/2 since only 2K correction sweeps are
done for K parareal iterations. In practice, since it is desirable to make α small (i.e.,
G much less expensive than F), then K must be closer to M to achieve the accuracy
of M serial iterations of SDC. If one examines the efficiency when M = K , then

E =
1(

N
M
+ 1

)
α+ 1

. (44)

Although this still seems to scale poorly as N grows larger, it should be noted
that for the solution of PDEs (which motivates this work), temporal parallelization
would be combined with spatial parallelization and hence N would be chosen so
that the gain in efficiency from temporal parallelization exceeds the (presumably

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 285

saturated) spatial parallelization. Also, the processors in time parallelization can be
used in a cyclical nature. Rather than dividing the entire time domain by the number
of processors available, the processors are employed on the first N time-steps, and
as the first processor finishes, it is employed to begin iterating on the N + 1 time
step as in the parallel deferred correction methods [33; 16].

As previously mentioned, a very promising approach is to use a coarser spatial
grid for G as is discussed in [8; 7; 23; 26]. For three-dimensional calculations, even
a factor of two reduction in grid spacing results in a factor of eight reduction in
the number of spatial unknowns. In this scenario, the quantity α could be quite
small, and the efficiency could theoretically exceed 1/2 in contrast to parareal where
the efficiency is bounded by 1/K regardless of the cost of G. Investigation of
parareal/SDC using spatial coarsening for PDEs will be reported in a subsequent
paper.

Finally, the above discussion ignores the reality that current massively parallel
computers typically exhibit highly inhomogeneous communication costs between
processors, and in the case of large scale grid computing, processors are not
necessarily of comparable computational power. Even in a serial computation,
when iterative methods are employed to solve the implicit equations associated
with methods for stiff equations, the amount of work per time step can vary greatly.
Furthermore, the issue of time-step adaptivity, which is critical for the efficient
solution of many problems, causes further difficulties in analyzing the parallel
efficiency of the time-parallel methods.

6. Numerical examples

In this section, preliminary numerical results are presented to compare the efficiency
of the parareal/SDC method to standard implementations of parareal using Runge–
Kutta methods for both the F and G propagators. The problems considered are
taken from recent papers on parareal and focus on the effect of using SDC sweeps
for the F and G propagator on the convergence of the parareal iterations.

6.1. The Lorenz oscillator. Here the effectiveness of the hybrid parareal/SDC
method is explored using the Lorenz equation test problem from [27]. Specifically,
we consider

x ′ = σ(y− x), y′ = x(ρ− z)− y, z′ = xy−βz. (45)

in t ∈ [0, 10] with the usual choice of parameters σ = 10, ρ = 28, and β = 8/3
and initial conditions (x, y, z)(0)= (5,−5, 20). The resulting solution with these
parameters is very sensitive to numerical error.

The particular implementation of parareal considered in [27] uses use N = 180
processors and the standard explicit fourth-order RK method for both G and F, where

286 MICHAEL L. MINION

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of function evaluations

E
rr

o
r

SDC5

SDC7

SDC9

RK3

RK4

RK8

Figure 5. Error versus number of function evaluations: serial
Runge–Kutta and SDC methods for the Lorenz equation.

G is implemented as a single step and F 80 steps. Here, additional implementations
are considered using the standard explicit third-order RK method for G and explicit
third-, fourth-, and eighth-order [20] RK methods (denoted here RK3, RK4, and
RK8 respectively) as the F propagators. The convergence and efficiency of different
combinations of RK methods will be compared to parareal/SDC methods using a
single explicit correction sweep of SDC as the F propagator with five, seven, and
nine Gauss–Lobatto nodes for each processor.

Before studying the parallel methods, the error for serial methods is first examined
to understand the accuracy of different choices. Figure 5 compares the L2 error
of the solution at the final time T = 10 versus the number of function evaluations
using serial Runge–Kutta and SDC methods. In the SDC methods, the RK4 method
is used to compute the provisional solution at each node, and a second-order RK
method is applied to the correction (2) during the deferred correction sweeps. Two,
three, and four SDC sweeps respectively, are applied for the SDC methods using
five, seven, and nine Lobatto nodes.

Note that the formal order of accuracy of the three SDC methods if the SDC
iterations are fully converged to the collocation method would be 8, 12 and 16,
but in this example, the number of SDC iterations used limits the formal order of
accuracy to 8, 10, and 12. Here the computational cost of the SDC method ignores
the cost of computing the numerical quadrature for the correction equations (which
is done using a simple matrix-vector multiply). Figure 5 demonstrates that the
numerical approximations for the SDC methods are more efficient than the third-

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 287

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of time steps

E
rr

o
r

SDC5

SDC7

SDC9
RK3

RK4

RK8

Figure 6. Error versus time step: serial Runge–Kutta and SDC
methods for the Lorenz equation.

and fourth-order RK methods for a very modest error tolerance. For more stringent
error tolerances, the efficiency of the SDC methods using seven and nine Lobatto
nodes are similar to the eighth-order RK method.

In Figure 6 the error versus time step of the methods is compared. In this figure,
the cost per time step of the methods is not relevant, and it is evident that the SDC
methods are able to obtain the same level of accuracy as the RK methods with a
much larger time step. This fact will allow a substantial increase in the efficiency
of the parareal/SDC methods considered below since the increased cost per time
step is amortized over parareal iterations.

Next the behavior of various implementations of the parareal and parareal/SDC
methods in terms of the convergence of the parareal iterations is examined. First,
the traditional parareal method using RK is examined. In Figure 7, the error at the
final time is plotted versus parareal iteration for six different combinations of the
G and F propagators. Two choices for G are used (one step of RK3 or RK4), while
three choices for F are used (100 steps of RK3, 80 steps of RK4, or 8 steps of RK8).
In each case the G propagator is used for the initial serial prediction step. Note that
the convergence behavior for methods using the same G propagator are very similar.
On the other hand, the overall error after convergence of parareal depends on the
accuracy of the F propagator. Note that the absolute accuracy of the numerical
method is used in the plots, rather than the difference between the parareal iterates
and the result obtained from using F in serial. Hence the leveling off of the error
in the convergence plots gives an indication of the accuracy of the serial F method.

288 MICHAEL L. MINION

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration

E
rr

o
r

RK3/RK3

RK3/RK4

RK3/RK8

RK4/RK3

RK4/RK4

RK4/RK8

Figure 7. Convergence of parareal iterations for the Lorenz equa-
tion using different Runge–Kutta combinations for G and F. In the
legend, the combinations are listed as G/F.

The convergence results for parareal/SDC are presented in Figure 8. Again, six
variations are presented. As before G is either RK3 or RK4, although these methods

0 2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration

E
rr

o
r

RK3/SDC5

RK3/SDC7

RK3/SDC9

RK4/SDC5

RK4/SDC7

RK4/SDC9

Figure 8. Convergence of parareal/SDC iterations for the Lorenz
equation using different combinations of Runge–Kutta for G and a
second-order SDC sweep for F with different number of nodes. In
the legend, the combinations are listed as G/F.

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 289

are now applied to the correction (2). The F propagator is done using a single
sweep of (2) using the first order method in (7) for each node. This means that
F requires only 4, 6, and 8 function evaluations for the methods using 5, 7, and
9 Lobatto nodes respectively. As in Figure 7, the data in Figure 8 show that the
number of parareal iterations required to converge depends on G while the overall
accuracy depends on F (here the number of Lobatto nodes).

Next the convergence behavior of traditional parareal and parareal/SDC methods
is compared in Figure 9. Of interest is whether the use of a low-order corrector for
F in the parareal/SDC method adversely affects the number of iterations required
for convergence. The left panel in Figure 9 shows the convergence for methods
using RK3 in G and different choices of RK and SDC for F. The right panel shows
the corresponding data using RK4 for G. The data demonstrate that replacing the
full accuracy RK solve in F with a single SDC sweep does not significantly affect
the convergence of the parareal iterates for this example. As observed above, the
convergence behavior depends mainly on the accuracy of G for both methods and
the number of iterations needed to converge to a given tolerance is very similar
parareal and parareal/SDC methods.

Of greater interest here however is the total parallel computational cost of the
parareal and parareal/SDC methods. Hence Figure 10 shows the convergence of
parareal iterations versus total parallel cost for traditional parareal methods using

0 5 10 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

R−K 3 as G propagator

Iteration

E
rr

o
r

SDC5

SDC7

SDC9

RK3

RK4

RK8

0 5 10 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

R−K 4 as G propagator

Iteration

E
rr

o
r

Figure 9. Convergence of parareal and parareal/SDC methods for
the Lorenz equation. The methods in the left panel use explicit
RK3 for G, while those in the right panel use explicit RK4.

290 MICHAEL L. MINION

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Total computational cost

E
rr

o
r

RK3/RK3

RK3/RK4

RK3/RK8

RK4/RK3

RK4/RK4

RK4/RK8

Figure 10. Error versus parallel computational cost of the parareal
method using different combinations of Runge–Kutta for G and F

(listed as G/F in the legend) for the Lorenz equation.

RK methods for G and F. The cost is computed using the assumption of a pipelined
implementation as explained in Section 5.2 and is based on the number of explicit
function evaluations: communication cost is ignored. Figure 10 shows that the
total parallel cost is dominated by the cost of F. Although using RK4 for G rather
than RK3 reduces the number of iterations required somewhat, this is offset by the
increased cost of RK4. Since the use of higher-order methods for F is more efficient
in terms of accuracy per functions evaluations (see Figure 5), the total parallel cost
for methods using RK8 for F is substantially less than those using RK3 and RK4.

Next consider the parallel cost for parareal/SDC shown in Figure 11. Again
a pipelined implementation is assumed, and since only function evaluations are
counted, the cost of the computing the numerical quadrature and interpolating the
correction computed by G (both of which are simple matrix multiplications) is not
included. The most notable difference in the data is that the total computational
cost of the parareal/SDC method is dominated by the cost of the initial serial G

sweep. As noted before, this fact suggests that using spatial coarsening for G for
PDEs could increase the efficiency of parareal/SDC methods significantly.

Finally, the total parallel cost for both traditional parareal using RK and para-
real/SDC is compared in Figure 12. Since the methods use the same predictor,
the cost is identical at the end of the serial predictor step, but it is evident that the
much reduced cost of using SDC for F greatly reduces the total computational cost.
Specifically, the cost of F for the parareal/SDC method is either 4, 6, or 8 function

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 291

500 550 600 650 700 750 800 850 900 950 1000

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Total computational cost

E
rr

o
r

RK3/SDC5

RK3/SDC7

RK3/SDC9
RK4/SDC5

RK4/SDC7

RK4/SDC9

Figure 11. Error versus parallel computational cost of the para-
real/SDC method using different combinations of G and F (listed
as G/F in the legend) for the Lorenz equation.

0 2000 4000 6000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

RK3 as G propagator

Total computational cost

E
rr

o
r

SDC5

SDC7

SDC9
RK3

RK4

RK8

0 1000 2000 3000 4000 5000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

RK4 as G propagator

Total computational cost

E
rr

o
r

Figure 12. Comparison of total parallel cost for parareal and para-
real/SDC methods for the Lorenz equation.

evaluations while for the RK based parareal method, it is 300, 320, or 88 function
evaluations.

292 MICHAEL L. MINION

6.2. A PDE example. Next, the performance of the parareal/SDC method is demon-
strated for a discretized partial differential equation, namely the viscous Burgers
equation

ut + uux = νuxx , u(x, 0)= g(x).

The spatial domain for all experiment is the periodic interval [0, 1], with initial
data given by g(x) = sin(2πx), and ν = 1/50. This example is also considered
in [27], although there a second-order finite difference spatial discretization with
first-order backward Euler in time is used. Here, a semi-implicit or IMEX temporal
discretization is used, and the finite difference discretization is replaced by a pseudo-
spectral approach (with no de-aliasing). The semi-implicit time stepping requires
only the diffusive piece to be treated implicitly; hence the implicit problem is linear
(and here solved in spectral space).

For the parareal/SDC method, 7 Gauss–Lobatto nodes are used in the F propaga-
tor with a first-order semi-implicit corrector. For G, either 1 or 2 steps of a first-order
semi-implicit corrector is used. In each of the tests below, the error reported is the
maximum of the error at the final time as compared to a highly resolved reference
solution computed with Runge–Kutta and not the solution generated by using F

in serial. Note that the reference solution is computing using the same number
of spatial unknowns as the problem being run, so the solution to the PDE is not
necessarily fully resolved in space.

In the first set of tests, 64 spatial grid points are used, and the convergence
behavior for runs of different length of integration is compared. Specifically, the
simulations are run to final time T = 0.1, T = 0.5, and T = 1.0. In all cases, the
time interval for each processor is 1/100; hence 10, 50, and 100 processors are
used. In Figure 13, the results are displayed in the left panel using one step of for-
ward/backward Euler for G and in the right panel for two steps of forward/backward
Euler. In these figures, one does not observe the exponential convergence of the
error in the parareal iterations as is evident in the examples for the Lorenz equation.
This is due to the fact that the convergence of the SDC iteration is slower in this
example than the convergence of the parareal iterations for short time (Note in
particular the nearly constant convergence rate for the T = 0.1 example). Note also
in the right panel that the increase in the accuracy of G from using an additional step
of forward/backward Euler increases the rate of convergence of the parareal/SDC
iterations.

In the next set of tests, the integration time is fixed at T = 1 with 100 processors,
but the number points used in the spatial discretization is varied. Figure 14 shows
the convergence behavior for 64, 128, and 256 spatial points. The data show that the
convergence behavior is completely unaffected by the number of spatial variables
used.

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 293

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

A
b
s
o
lu

te
 e

rr
o
r

a
t
fi
n
a
l
ti
m

e

Parareal iteration

One backward Euler step for G

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Parareal iteration

Two backward Euler steps for G

T=0.1, 10 Proc

T=0.5, 50 Proc

T=1, 100 Proc

Figure 13. Convergence of the parareal/SDC method for Burgers
equation using one step (left) and two steps (right) of forward/
backward Euler for G.

In the final set of tests, the integration time is fixed at T = 1 with a grid size
of 64 spatial points, but the number of processors is varied. Figure 15 shows the
convergence behavior for N = 20, 40 and 100 for 1 step of forward/backward Euler
for G in the left panel, and 2 steps in the right panel. The fact that the parareal
iterates are converging faster for a larger number of processors is again due to
the increased accuracy of G. As the number of processors is increased, the coarse
time step gets smaller and hence G becomes more accurate. Hence the number of
iterations needed to converge decreases.

A few words should be said regarding any comparison in cost to the method
in [27]. First, the F propagator in [27] is based on 10 steps of backward Euler
for the first set of test cases. Here, the F method is 6 substeps of a semi-implicit
method applied in the SDC sweep. Depending on the efficiency of solving the
nonlinear equation for the fully implicit method, the semi-implicit approach could

294 MICHAEL L. MINION

0 5 10

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

A
b
s
o
lu

te
 e

rr
o
r

a
t
fi
n
a
l
ti
m

e

Parareal iteration

One backward Euler step for G

0 5 10

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Parareal iteration

Two backward Euler steps for G

Nx=64

Nx=128

Nx=256

Figure 14. Parareal/SDC convergence for different spatial resolu-
tions for Burgers equation. For all runs, the final time is T = 1, and
100 processors are used.

be substantially more efficient. The biggest difference between the two approaches
is in the overall accuracy, which for the high-order SDC-based method used here is
over ten orders of magnitude smaller than that achieved with the first-order temporal
method used in [27].

7. Conclusions

A new strategy for combining deferred corrections and the parareal method for the
temporal parallelization of ordinary differential equations first presented in [53] is
further developed and evaluated. One can regard the parareal/SDC strategy as either
a way to parallelize SDC methods in time or as a way to increase the efficiency of
parareal methods by reducing the computational cost of the F propagator.

The motivation of this research is to develop parallel-in-time strategies to be
combined with spatial parallelization for massively parallel computations of PDEs,

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 295

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

A
b
s
o
lu

te
 e

rr
o
r

a
t
fi
n
a
l
ti
m

e

Parareal iteration

One backward Euler step for G

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Parareal iteration

Two backward Euler steps for G

20 Proc

40 Proc

100 Proc

Figure 15. Parareal/SDC convergence for different numbers of
processors. Each run is to the final time T = 1 with 64 spatial grid
points.

particularly in computational fluid dynamics. One of the significant features of the
parareal/SDC approach is that the greatly reduced cost of computing F means that
reducing the cost of G by using a coarser spatial grid could increase the overall
parallel efficiency significantly. Results in this direction will be reported in the
future.

Other possibilities for further increasing the efficiency of the parareal/SDC
approach include the use of Krylov methods to accelerate the convergence of the
parareal/SDC iterations. Krylov acceleration methods have already been studied
for serial SDC methods for both ODEs and DAEs [35; 36; 12], as well as for the
traditional parareal method [28], although the effectiveness of these methods for
large scale PDEs has not yet been demonstrated. Another possibility concerns
the use of iterative solvers within implicit or semi-implicit temporal methods for
PDEs. It seems reasonable that the error tolerance within implicit solvers could

296 MICHAEL L. MINION

be dynamically decreased as the parareal iterations progress, but this may affect
the convergence of the parareal iterations. In the parareal/SDC approach, a very
good initial guess for these implicit solves is available from the previous parareal
iteration. In conclusion, despite the promising initial results reported here, avenues
for further improvement need to be pursued.

Appendix: Pseudo-code of the parareal/SDC method

The following is the pseudocode for a semi-implicit parareal/SDC implementation
using the first-order time-stepping method in (12) and (15).

Serial initialization:

FOR n = 0 . . . N − 1
COMMENT: Get initial data
IF n = 0

Ũ 0
1,1 = u(0)

ELSE
Receive Ũ 0

n−1, J̃ from Pn−1

Set Ũ 0
n,1 = Ũ 0

n−1, J̃
END IF

COMMENT: Compute solution at coarse time nodes
FOR ̃ = 0 . . . J̃ − 1

Ũ 0
n,̃+1 = Ũ 0

n,̃ +1t ̃
(
FE(t̃ , Ũ 0

n,̃)+ FI (t̃+1, Ũ 0
n,̃+1)

)
END FOR

COMMENT: Send data forward
IF n < N − 1

Send Ũ 0
n, J̃ to Pn+1

END IF
END FOR

Parallel iteration:

FOR k = 1 . . . K
DO in parallel on Pn , n = 0 . . . N − 1

COMMENT: Update values at fine time steps
IF k = 1

INTERPOLATE Ũ k
n,̃ at coarse times to form U k

n, j at fine points
COMPUTE f (t j ,U k

n, j) for j = 1 . . . J .
ELSE

INTERPOLATE Ũ k
n,̃ −U k−1

n,̃ at coarse times to form U k
n, j at fine points

END IF

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 297

COMMENT: Compute time integral of fine solution at fine nodes
COMPUTE S j+1

j f (tn,Uk
n) for j = 0 . . . J − 1 using spectral integration

COMMENT: Do a fine SDC sweep
FOR j = 0 . . . J − 1

U k
n, j+1 =U k

n, j +1t j
(
FE(t j ,U k

n, j)+ FI (t j+1,U k
n, j+1)

)
+ S j+1

j f (tn,Uk
n)

END FOR

COMMENT: Compute time integral of fine solution at coarse nodes
COMPUTE S̃+1

̃ f (t̃n,Uk
n) ̃ = 0 . . . J̃ − 1 by summing S j+1

j f (tn,Uk
n)

COMMENT: Get new initial data
IF n = 0

SET U k
0,1 = Ũ k−1

0,1 ,
SET f (tn,U k

0,1)= f (tn, Ũ k−1
0,1)

ELSE
RECEIVE Ũ k

n−1, J̃ from Pn−1

SET U 0
n,1 = Ũ k

n−1, J̃
COMPUTE f (tn,U k

n,1)= f (tn,U k
n,1)

END IF

COMMENT: Do a coarse SDC sweep
FOR ̃ = 0 . . . J̃ − 1

Ũ k
n,̃+1 = Ũ k

n,̃ +1t ̃
(
FE(t̃ , Ũ k

n,̃)+ FI (t̃+1, Ũ k
n,̃+1)

)
+ S̃+1

̃ f (t̃n, Ũ k
n)

END FOR

COMMENT: Send data forward
IF n < P − 1

Send U k
n, J̃ to Pn+1

END IF
END DO

END FOR

References

[1] G. Akrivis, M. Crouzeix, and C. Makridakis, Implicit-explicit multistep finite element methods
for nonlinear parabolic problems, Math. Comp. 67 (1998), no. 222, 457–477. MR 98g:65088
Zbl 0896.65066

[2] , Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math.
82 (1999), no. 4, 521–541. MR 2000e:65075 Zbl 0936.65118

[3] G. Akrivis and Y.-S. Smyrlis, Implicit-explicit BDF methods for the Kuramoto–Sivashinsky
equation, Appl. Numer. Math. 51 (2004), no. 2-3, 151–169. MR 2005h:65126 Zbl 1057.65069

298 MICHAEL L. MINION

[4] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge–Kutta methods for time-
dependent partial differential equations, Appl. Numer. Math. 25 (1997), no. 2-3, 151–167.
MR 98i:65054 Zbl 0896.65061

[5] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent
partial differential equations, SIAM J. Numer. Anal. 32 (1995), no. 3, 797–823. MR 96j:65076
Zbl 0841.65081

[6] G. Bal, Parallelization in time of (stochastic) ordinary differential equations, preprint, 2003,
Available at http://www.columbia.edu/~gb2030/PAPERS/paralleltime.pdf.

[7] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential
equations, Domain decomposition methods in science and engineering (R. Kornhuber et al.,
eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 425–432. MR 2235769
Zbl 1066.65091

[8] G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE’s with application
to the pricing of an American put, Recent developments in domain decomposition methods (L.
Pavarino and A. Toselli, eds.), Lect. Notes Comput. Sci. Eng., no. 23, Springer, Berlin, 2002,
pp. 189–202. MR 1962689

[9] G. Bal and Q. Wu, Symplectic parareal, Domain decomposition methods in science and engi-
neering XVII (U. Langer et al., eds.), Lect. Notes Comput. Sci. Eng., no. 60, Springer, Berlin,
2008, pp. 401–408. MR 2436107 Zbl 1140.65372

[10] A. Bourlioux, A. T. Layton, and M. L. Minion, High-order multi-implicit spectral deferred
correction methods for problems of reactive flow, J. Comput. Phys. 189 (2003), no. 2, 651–675.
MR 2004f:76084 Zbl 1061.76053

[11] E. L. Bouzarth, Regularized singularities and spectral deferred correction methods: A mathe-
matical study of numerically modeling Stokes fluid flow, Ph.D. thesis, The University of North
Carolina at Chapel Hill, 2008. MR 2711923

[12] S. Bu, J. Huang, and M. L. Minion, Semi-implicit Krylov deferred correction methods for
ordinary differential equations, Proceedings of the 15th American Conference on Applied
Mathematics, WSEAS, 2009, pp. 95–100.

[13] K. Burrage, Parallel methods for ODEs, Adv. Comput. Math. 7 (1997), no. 1-2, 1–31.

[14] J. C. Butcher, Order and stability of parallel methods for stiff problems: Parallel methods for
odes, Adv. Comput. Math. 7 (1997), no. 1-2, 79–96. MR 98c:65105 Zbl 0884.65090

[15] M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge–Kutta methods for advection-
reaction-diffusion equations, Appl. Numer. Math. 37 (2001), no. 4, 535–549. MR 2002e:65114
Zbl 0983.65106

[16] A. Christlieb, C. Macdonald, and B. Ong, Parallel high-order integrators, SIAM J. Sci. Comput.
32 (2010), no. 2, 818–835.

[17] A. Christlieb, B. Ong, and J.-M. Qiu, Integral deferred correction methods constructed with
high order Runge–Kutta integrators, Math. Comp. 79 (2010), no. 270, 761–783. MR 2600542
Zbl 05776244

[18] M. L. Crow and M. Ilic, The parallel implementation of the waveform relaxation method for
transient stability simulations, IEEE Trans. Power Syst. 5 (1990), no. 3, 922–932.

[19] J. W. Daniel, V. Pereyra, and L. L. Schumaker, Iterated deferred corrections for initial value
problems, Acta Ci. Venezolana 19 (1968), 128–135. MR 40 #8270

[20] J. R. Dormand and P. J. Prince, A family of embedded Runge–Kutta formulae, J. Comput. Appl.
Math. 6 (1980), no. 1, 19–26. MR 81g:65098 Zbl 0448.65045

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 299

[21] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT 40 (2000), no. 2, 241–266. MR 2001e:65104 Zbl 0959.65084

[22] C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility
studies for fluid, structure, and fluid-structure applications, Internat. J. Numer. Methods Engrg.
58 (2003), no. 9, 1397–1434. MR 2004h:65154 Zbl 1032.74701

[23] P. F. Fischer, F. Hecht, and Y. Maday, A parareal in time semi-implicit approximation of the
Navier–Stokes equations, Domain decomposition methods in science and engineering (T. J.
Barth et al., eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 433–440.
MR 2235770 Zbl 02143574

[24] J. Frank, W. Hundsdorfer, and J. G. Verwer, On the stability of implicit-explicit linear multistep
methods, Appl. Numer. Math. 25 (1997), no. 2-3, 193–205. MR 98m:65126 Zbl 0887.65094

[25] M. J. Gander, A waveform relaxation algorithm with overlapping splitting for reaction diffu-
sion equations, Numer. Linear Algebra Appl. 6 (1999), no. 2, 125–145. MR 2000m:65110
Zbl 0983.65107

[26] , Analysis of the parareal algorithm applied to hyperbolic problems using characteristics,
Bol. Soc. Esp. Mat. Apl. SEeMA 42 (2008), 21–35. MR 2009b:65268

[27] M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, Domain
decomposition methods in science and engineering XVII (U. Langer et al., eds.), Lect. Notes
Comput. Sci. Eng., no. 60, Springer, Berlin, 2008, pp. 45–56. MR 2009j:65165 Zbl 1140.65336

[28] M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for
linear problems, Paris-Sud Working Group on Modelling and Scientific Computing 2007–
2008 (E. Cancès et al., eds.), ESAIM Proc., no. 25, EDP Sci., Les Ulis, 2008, pp. 114–129.
MR 2010i:65119 Zbl 1156.65322

[29] M. J. Gander and A. E. Ruehli, Optimized waveform relaxation methods for RC type circuits,
IEEE Trans. Circuits Syst. I Regul. Pap. 51 (2004), no. 4, 755–768. MR 2005d:94228

[30] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method,
SIAM J. Sci. Comput. 29 (2007), no. 2, 556–578. MR 2008c:65386 Zbl 1141.65064

[31] L. Greengard, Spectral integration and two-point boundary value problems, SIAM J. Numer.
Anal. 28 (1991), no. 4, 1071–1080. MR 92h:65033 Zbl 0731.65064

[32] D. Guibert and D. Tromeur-Dervout, Adaptive parareal for systems of ODEs, Domain decompo-
sition methods in science and engineering XVI (O. Widlund and D. Keyes, eds.), Lect. Notes
Comput. Sci. Eng., no. 55, Springer, Berlin, 2007, pp. 587–594. MR 2334151

[33] , Parallel deferred correction method for CFD problems, Parallel computational fluid
dynamics: parallel computing and its applications (J. H. Kwon, A. Ecer, N. Satofuka, J. Periaux,
and P. Fox, eds.), Elsevier, Amsterdam, 2007, pp. 131–138.

[34] M. Hu, K. Jackson, J. Janssen, and S. Vandewalle, Remarks on the optimal convolution kernel for
CSOR waveform relaxation: Parallel methods for odes, Adv. Comput. Math. 7 (1997), no. 1-2,
135–156. MR 98c:65107 Zbl 0889.65069

[35] J. Huang, J. Jia, and M. Minion, Accelerating the convergence of spectral deferred correction
methods, J. Comput. Phys. 214 (2006), no. 2, 633–656. MR 2006k:65173 Zbl 1094.65066

[36] , Arbitrary order Krylov deferred correction methods for differential algebraic equations,
J. Comput. Phys. 221 (2007), no. 2, 739–760. MR 2008a:65134 Zbl 1110.65076

[37] K. J. in ’t Hout, On the contractivity of implicit-explicit linear multistep methods, Appl. Numer.
Math. 42 (2002), no. 1-3, 201–212. MR 2003j:65065 Zbl 1001.65090

[38] A. Iserles and S. P. Nørsett, On the theory of parallel Runge–Kutta methods, IMA J. Numer.
Anal. 10 (1990), no. 4, 463–488. MR 91i:65127

300 MICHAEL L. MINION

[39] C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-
reaction equations, Appl. Numer. Math. 44 (2003), no. 1-2, 139–181. MR 2003m:65111
Zbl 1013.65103

[40] M. Kiehl, Parallel multiple shooting for the solution of initial value problems, Parallel Comput.
20 (1994), no. 3, 275–295. MR 95c:65099 Zbl 0798.65079

[41] A. T. Layton, On the choice of correctors for semi-implicit Picard deferred correction methods,
Appl. Numer. Math. 58 (2008), no. 6, 845–858. MR 2009e:65116 Zbl 1143.65057

[42] A. T. Layton and M. L. Minion, Conservative multi-implicit spectral deferred correction methods
for reacting gas dynamics, J. Comput. Phys. 194 (2004), no. 2, 697–715. MR 2004k:76089
Zbl 1100.76048

[43] , Implications of the choice of quadrature nodes for Picard integral deferred corrections
methods for ordinary differential equations, BIT 45 (2005), no. 2, 341–373. MR 2006h:65087
Zbl 1078.65552

[44] , Implications of the choice of predictors for semi-implicit Picard integral deferred
correction methods, Commun. Appl. Math. Comput. Sci. 2 (2007), 1–34. MR 2008e:65252
Zbl 1131.65059

[45] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”,
C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, 661–668. MR 2002c:65140

[46] Y. Liu and J. Hu, Modified propagators of parareal in time algorithm and application to
Princeton ocean model, Internat. J. Numer. Methods Fluids 57 (2008), no. 12, 1793–1804.
MR 2009g:86009 Zbl 05312577

[47] Y. Maday and G. Turinici, Parallel in time algorithms for quantum control: Parareal time
discretization scheme, Int. J. Quantum Chem. 93 (2003), 223–228.

[48] Y. Maday, J. Salomon, and G. Turinici, Monotonic parareal control for quantum systems, SIAM
J. Numer. Anal. 45 (2007), no. 6, 2468–2482. MR 2008k:81003 Zbl 1153.49005

[49] Y. Maday and G. Turinici, The parareal in time iterative solver: a further direction to parallel
implementation, Domain decomposition methods in science and engineering (R. Kornhuber et al.,
eds.), Lect. Notes Comput. Sci. Eng., no. 40, Springer, Berlin, 2005, pp. 441–448. MR 2235771
Zbl 1067.65102

[50] M. L. Minion, Higher-order semi-implicit projection methods, Numerical simulations of in-
compressible flows (M. M. Hafez, ed.), World Sci. Publ., River Edge, NJ, 2003, pp. 126–140.
MR 1984431 Zbl 1079.76056

[51] , Semi-implicit spectral deferred correction methods for ordinary differential equations,
Commun. Math. Sci. 1 (2003), no. 3, 471–500. MR 2005f:65085 Zbl 1088.65556

[52] , Semi-implicit projection methods for incompressible flow based on spectral deferred
corrections, Appl. Numer. Math. 48 (2004), no. 3-4, 369–387. MR 2056924 Zbl 1035.76040

[53] M. L. Minion and S. A. Williams, Parareal and spectral deferred corrections, Numerical analysis
and applied mathematics (T. E. Simos, ed.), AIP Conference Proceedings, no. 1048, AIP, 2008,
pp. 388–391.

[54] W. L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary
differential equations, Math. Comp. 21 (1967), 303–320. MR 36 #6155 Zbl 0155.47204

[55] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7
(1964), 731–733. MR 31 #889 Zbl 0134.32804

[56] L. Pareschi and G. Russo, Implicit-explicit Runge–Kutta schemes for stiff systems of differential
equations, Recent trends in numerical analysis (D. Trigiante, ed.), Adv. Theory Comput. Math.,
no. 3, Nova Sci. Publ., Huntington, NY, 2001, pp. 269–288. MR 2005a:65065 Zbl 1018.65093

A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD 301

[57] V. Pereyra, On improving an approximate solution of a functional equation by deferred correc-
tions, Numer. Math. 8 (1966), 376–391. MR 34 #3814 Zbl 0173.18103

[58] , Iterated deferred corrections for nonlinear operator equations, Numer. Math. 10 (1967),
316–323. MR 36 #4812 Zbl 0258.65059

[59] J. W. Shen and X. Zhong, Semi-implicit Runge–Kutta schemes for the non-autonomous differen-
tial equations in reactive flow computations, Proceedings of the 27th AIAA Fluid Dynamics
Conference, AIAA, 1996, pp. 17–20.

[60] G. A. Staff and E. M. Rønquist, Stability of the parareal algorithm, Domain decomposition
methods in science and engineering (R. Kornhuber et al., eds.), Lect. Notes Comput. Sci. Eng.,
no. 40, Springer, Berlin, 2005, pp. 449–456. MR 2235772

[61] S. Vandewalle and D. Roose, The parallel waveform relaxation multigrid method, Proceedings
of the Third SIAM Conference on Parallel Processing for Scientific Computing, Soc. Indust.
Appl. Math., 1989, pp. 152–156.

[62] S. L. Wu, B. C. Shi, and C. M. Huang, Parareal-Richardson algorithm for solving nonlinear
ODEs and PDEs, Commun. Comput. Phys. 6 (2009), no. 4, 883–902.

[63] P. E. Zadunaisky, A method for the estimation of errors propagated in the numerical solution
of a system of ordinary differential equations, The theory of orbits in the solar system and in
stellar systems (G. Contopoulos, ed.), Proc. Int. Astron. Union Symp., no. 25, Academic Press,
London, 1964.

[64] X. Zhong, Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilib-
rium reactive flows, J. Comput. Phys. 128 (1996), no. 1, 19–31. MR 97e:80019 Zbl 0861.76057

Received January 18, 2010. Revised October 16, 2010.

MICHAEL L. MINION: minion@email.unc.edu
Department of Mathematics, University of North Carolina – Chapel Hill, Campus Box 3250,
Chapel Hill, NC 27514-3250, United States
amath.unc.edu/Minion

mathematical sciences publishers msp

Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
pjm.math.berkeley.edu/camcos.

Originality. Submission of a manuscript acknowledges that the manuscript is
original and and is not, in whole or in part, published or under consideration
for publication elsewhere. It is understood also that the manuscript will not be
submitted elsewhere while under consideration for publication in this journal.

Language. Articles in CAMCoS are usually in English, but articles written in
other languages are welcome.

Required items. A brief abstract of about 150 words or less must be included. It
should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and subject
classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties of
TEX, and exceptionally in other formats, are acceptable. Initial uploads should be
in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to
submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure
that what you are saving is vector graphics and not a bitmap. If you need help,
please write to graphics@mathscipub.org with details about how your graphics
were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated
corresponding author) at a Web site in PDF format. Failure to acknowledge the
receipt of proofs or to return corrections within the requested deadline may cause
publication to be postponed.

http://pjm.math.berkeley.edu/camcos
mailto:graphics@mathscipub.org

Communications in Applied Mathematics
and Computational Science

vol. 5 no. 2 2010

149On the accuracy of finite-volume schemes for fluctuating hydrodynamics
Aleksandar Donev, Eric Vanden-Eijnden, Alejandro

Garcia and John Bell

199A volume-of-fluid interface reconstruction algorithm that is second-order
accurate in the max norm

Elbridge Gerry Puckett

221Implicit particle filters for data assimilation
Alexandre Chorin, Matthias Morzfeld and Xuemin Tu

241Parallel in time algorithms with reduction methods for solving chemical
kinetics

Adel Blouza, Laurent Boudin and Sidi Mahmoud Kaber

265A hybrid parareal spectral deferred corrections method
Michael L. Minion

1559-3940(2010)5:2;1-7

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.5,
no.2

2010

	 vol. 5, no. 2, 2010
	Masthead and Copyright
	Aleksandar Donev and Eric Vanden-Eijnden and Alejandro Garcia and John Bell
	Elbridge Gerry Puckett
	Alexandre Chorin and Matthias Morzfeld and Xuemin Tu
	Adel Blouza and Laurent Boudin and Sidi Mahmoud Kaber
	Michael L. Minion
	Guidelines for Authors
	Table of Contents

